diff --git a/.copier-answers.yml b/.copier-answers.yml
new file mode 100644
index 0000000..0589b90
--- /dev/null
+++ b/.copier-answers.yml
@@ -0,0 +1,13 @@
+# Changes here will be overwritten by Copier; NEVER EDIT MANUALLY
+_commit: 2024.08.19
+_src_path: gh:scientific-python/cookie
+backend: hatch
+email: alanlujan91@gmail.com
+full_name: Alan Lujan
+license: MIT
+org: econ-ark
+project_name: estimark
+project_short_description: Estimating Microeconomic Dynamic Stochastic Optimization
+ Problems
+url: https://github.com/econ-ark/EstimatingMicroDSOPs
+vcs: true
diff --git a/.git_archival.txt b/.git_archival.txt
new file mode 100644
index 0000000..7c51009
--- /dev/null
+++ b/.git_archival.txt
@@ -0,0 +1,3 @@
+node: $Format:%H$
+node-date: $Format:%cI$
+describe-name: $Format:%(describe:tags=true,match=*[0-9]*)$
diff --git a/.gitattributes b/.gitattributes
new file mode 100644
index 0000000..00a7b00
--- /dev/null
+++ b/.gitattributes
@@ -0,0 +1 @@
+.git_archival.txt export-subst
diff --git a/.github/CONTRIBUTING.md b/.github/CONTRIBUTING.md
new file mode 100644
index 0000000..0c1bfb4
--- /dev/null
+++ b/.github/CONTRIBUTING.md
@@ -0,0 +1,89 @@
+See the [Scientific Python Developer Guide][spc-dev-intro] for a detailed
+description of best practices for developing scientific packages.
+
+[spc-dev-intro]: https://learn.scientific-python.org/development/
+
+# Quick development
+
+The fastest way to start with development is to use nox. If you don't have nox,
+you can use `pipx run nox` to run it without installing, or `pipx install nox`.
+If you don't have pipx (pip for applications), then you can install with
+`pip install pipx` (the only case were installing an application with regular
+pip is reasonable). If you use macOS, then pipx and nox are both in brew, use
+`brew install pipx nox`.
+
+To use, run `nox`. This will lint and test using every installed version of
+Python on your system, skipping ones that are not installed. You can also run
+specific jobs:
+
+```console
+$ nox -s lint # Lint only
+$ nox -s tests # Python tests
+$ nox -s docs -- --serve # Build and serve the docs
+$ nox -s build # Make an SDist and wheel
+```
+
+Nox handles everything for you, including setting up an temporary virtual
+environment for each run.
+
+# Setting up a development environment manually
+
+You can set up a development environment by running:
+
+```bash
+python3 -m venv .venv
+source ./.venv/bin/activate
+pip install -v -e .[dev]
+```
+
+If you have the
+[Python Launcher for Unix](https://github.com/brettcannon/python-launcher), you
+can instead do:
+
+```bash
+py -m venv .venv
+py -m install -v -e .[dev]
+```
+
+# Pre-commit
+
+You should prepare pre-commit, which will help you by checking that commits pass
+required checks:
+
+```bash
+pip install pre-commit # or brew install pre-commit on macOS
+pre-commit install # Will install a pre-commit hook into the git repo
+```
+
+You can also/alternatively run `pre-commit run` (changes only) or
+`pre-commit run --all-files` to check even without installing the hook.
+
+# Testing
+
+Use pytest to run the unit checks:
+
+```bash
+pytest
+```
+
+# Coverage
+
+Use pytest-cov to generate coverage reports:
+
+```bash
+pytest --cov=estimark
+```
+
+# Building docs
+
+You can build the docs using:
+
+```bash
+nox -s docs
+```
+
+You can see a preview with:
+
+```bash
+nox -s docs -- --serve
+```
diff --git a/.github/dependabot.yml b/.github/dependabot.yml
new file mode 100644
index 0000000..6c4b369
--- /dev/null
+++ b/.github/dependabot.yml
@@ -0,0 +1,11 @@
+version: 2
+updates:
+ # Maintain dependencies for GitHub Actions
+ - package-ecosystem: "github-actions"
+ directory: "/"
+ schedule:
+ interval: "weekly"
+ groups:
+ actions:
+ patterns:
+ - "*"
diff --git a/.github/release.yml b/.github/release.yml
new file mode 100644
index 0000000..9d1e098
--- /dev/null
+++ b/.github/release.yml
@@ -0,0 +1,5 @@
+changelog:
+ exclude:
+ authors:
+ - dependabot
+ - pre-commit-ci
diff --git a/.github/workflows/cd.yml b/.github/workflows/cd.yml
new file mode 100644
index 0000000..85e2836
--- /dev/null
+++ b/.github/workflows/cd.yml
@@ -0,0 +1,60 @@
+name: CD
+
+on:
+ workflow_dispatch:
+ pull_request:
+ push:
+ branches:
+ - main
+ release:
+ types:
+ - published
+
+concurrency:
+ group: ${{ github.workflow }}-${{ github.ref }}
+ cancel-in-progress: true
+
+env:
+ # Many color libraries just need this to be set to any value, but at least
+ # one distinguishes color depth, where "3" -> "256-bit color".
+ FORCE_COLOR: 3
+
+jobs:
+ dist:
+ name: Distribution build
+ runs-on: ubuntu-latest
+
+ steps:
+ - uses: actions/checkout@v4
+ with:
+ fetch-depth: 0
+
+ - uses: hynek/build-and-inspect-python-package@v2
+
+ publish:
+ needs: [dist]
+ name: Publish to PyPI
+ environment: pypi
+ permissions:
+ id-token: write
+ attestations: write
+ contents: read
+ runs-on: ubuntu-latest
+ if: github.event_name == 'release' && github.event.action == 'published'
+
+ steps:
+ - uses: actions/download-artifact@v4
+ with:
+ name: Packages
+ path: dist
+
+ - name: Generate artifact attestation for sdist and wheel
+ uses: actions/attest-build-provenance@v1.4.3
+ with:
+ subject-path: "dist/*"
+
+ - uses: pypa/gh-action-pypi-publish@release/v1
+ with:
+ # Remember to tell (test-)pypi about this repo before publishing
+ # Remove this line to publish to PyPI
+ repository-url: https://test.pypi.org/legacy/
diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml
new file mode 100644
index 0000000..98cc7c2
--- /dev/null
+++ b/.github/workflows/ci.yml
@@ -0,0 +1,71 @@
+name: CI
+
+on:
+ workflow_dispatch:
+ pull_request:
+ push:
+ branches:
+ - main
+
+concurrency:
+ group: ${{ github.workflow }}-${{ github.ref }}
+ cancel-in-progress: true
+
+env:
+ # Many color libraries just need this to be set to any value, but at least
+ # one distinguishes color depth, where "3" -> "256-bit color".
+ FORCE_COLOR: 3
+
+jobs:
+ pre-commit:
+ name: Format
+ runs-on: ubuntu-latest
+ steps:
+ - uses: actions/checkout@v4
+ with:
+ fetch-depth: 0
+ - uses: actions/setup-python@v5
+ with:
+ python-version: "3.x"
+ - uses: pre-commit/action@v3.0.1
+ with:
+ extra_args: --hook-stage manual --all-files
+ - name: Run PyLint
+ run: pipx run nox -s pylint -- --output-format=github
+
+ checks:
+ name: Check Python ${{ matrix.python-version }} on ${{ matrix.runs-on }}
+ runs-on: ${{ matrix.runs-on }}
+ needs: [pre-commit]
+ strategy:
+ fail-fast: false
+ matrix:
+ python-version: ["3.8", "3.13"]
+ runs-on: [ubuntu-latest, windows-latest, macos-14]
+
+ include:
+ - python-version: "pypy-3.10"
+ runs-on: ubuntu-latest
+
+ steps:
+ - uses: actions/checkout@v4
+ with:
+ fetch-depth: 0
+
+ - uses: actions/setup-python@v5
+ with:
+ python-version: ${{ matrix.python-version }}
+ allow-prereleases: true
+
+ - name: Install package
+ run: python -m pip install .[test]
+
+ - name: Test package
+ run: >-
+ python -m pytest -ra --cov --cov-report=xml --cov-report=term
+ --durations=20
+
+ - name: Upload coverage report
+ uses: codecov/codecov-action@v4.5.0
+ with:
+ token: ${{ secrets.CODECOV_TOKEN }}
diff --git a/.github/workflows/deploy.yml b/.github/workflows/deploy.yml
index de0c122..d2effb2 100644
--- a/.github/workflows/deploy.yml
+++ b/.github/workflows/deploy.yml
@@ -18,7 +18,7 @@ permissions:
# Allow only one concurrent deployment, skipping runs queued between the run in-progress and latest queued.
# However, do NOT cancel in-progress runs as we want to allow these production deployments to complete.
concurrency:
- group: 'pages'
+ group: "pages"
cancel-in-progress: false
jobs:
deploy:
@@ -29,7 +29,7 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Setup Pages
- uses: actions/configure-pages@v3
+ uses: actions/configure-pages@v5
- uses: actions/setup-node@v4
with:
node-version: 18.x
@@ -38,9 +38,9 @@ jobs:
- name: Build HTML Assets
run: myst build --html
- name: Upload artifact
- uses: actions/upload-pages-artifact@v1
+ uses: actions/upload-pages-artifact@v3
with:
- path: './_build/html'
+ path: "./_build/html"
- name: Deploy to GitHub Pages
id: deployment
- uses: actions/deploy-pages@v2
+ uses: actions/deploy-pages@v4
diff --git a/.gitignore b/.gitignore
index a2b208f..f9bc3e4 100644
--- a/.gitignore
+++ b/.gitignore
@@ -473,5 +473,25 @@ TSWLatexianTemp*
_build/
myst-gitlens.code-workspace
+# setuptools_scm
+src/*/_version.py
+
+
+# ruff
+.ruff_cache/
+
+# OS specific stuff
+.DS_Store
+.DS_Store?
+._*
+.Spotlight-V100
+.Trashes
+ehthumbs.db
+Thumbs.db
+
+# Common editor files
+*~
+*.swp
+
# MyST build outputs
_build
diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml
new file mode 100644
index 0000000..90f6435
--- /dev/null
+++ b/.pre-commit-config.yaml
@@ -0,0 +1,89 @@
+ci:
+ autoupdate_commit_msg: "chore: update pre-commit hooks"
+ autofix_commit_msg: "style: pre-commit fixes"
+
+exclude: ^.cruft.json|.copier-answers.yml$
+
+repos:
+ - repo: https://github.com/adamchainz/blacken-docs
+ rev: "1.18.0"
+ hooks:
+ - id: blacken-docs
+ additional_dependencies: [black==24.*]
+
+ - repo: https://github.com/pre-commit/pre-commit-hooks
+ rev: "v4.6.0"
+ hooks:
+ - id: check-added-large-files
+ - id: check-case-conflict
+ - id: check-merge-conflict
+ - id: check-symlinks
+ - id: check-yaml
+ - id: debug-statements
+ - id: end-of-file-fixer
+ - id: mixed-line-ending
+ - id: name-tests-test
+ args: ["--pytest-test-first"]
+ - id: requirements-txt-fixer
+ - id: trailing-whitespace
+
+ - repo: https://github.com/pre-commit/pygrep-hooks
+ rev: "v1.10.0"
+ hooks:
+ - id: rst-backticks
+ - id: rst-directive-colons
+ - id: rst-inline-touching-normal
+
+ - repo: https://github.com/rbubley/mirrors-prettier
+ rev: "v3.3.3"
+ hooks:
+ - id: prettier
+ types_or: [yaml, markdown, html, css, scss, javascript, json]
+ args: [--prose-wrap=always]
+
+ - repo: https://github.com/astral-sh/ruff-pre-commit
+ rev: "v0.6.1"
+ hooks:
+ - id: ruff
+ args: ["--fix", "--show-fixes"]
+ - id: ruff-format
+
+ - repo: https://github.com/pre-commit/mirrors-mypy
+ rev: "v1.11.1"
+ hooks:
+ - id: mypy
+ files: src|tests
+ args: []
+ additional_dependencies:
+ - pytest
+
+ - repo: https://github.com/codespell-project/codespell
+ rev: "v2.3.0"
+ hooks:
+ - id: codespell
+
+ - repo: https://github.com/shellcheck-py/shellcheck-py
+ rev: "v0.10.0.1"
+ hooks:
+ - id: shellcheck
+
+ - repo: local
+ hooks:
+ - id: disallow-caps
+ name: Disallow improper capitalization
+ language: pygrep
+ entry: PyBind|Numpy|Cmake|CCache|Github|PyTest
+ exclude: .pre-commit-config.yaml
+
+ - repo: https://github.com/abravalheri/validate-pyproject
+ rev: "v0.19"
+ hooks:
+ - id: validate-pyproject
+ additional_dependencies: ["validate-pyproject-schema-store[all]"]
+
+ - repo: https://github.com/python-jsonschema/check-jsonschema
+ rev: "0.29.1"
+ hooks:
+ - id: check-dependabot
+ - id: check-github-workflows
+ - id: check-readthedocs
diff --git a/.readthedocs.yaml b/.readthedocs.yaml
new file mode 100644
index 0000000..67c194c
--- /dev/null
+++ b/.readthedocs.yaml
@@ -0,0 +1,17 @@
+# Read the Docs configuration file
+# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
+
+version: 2
+
+build:
+ os: ubuntu-22.04
+ tools:
+ python: "3.12"
+ commands:
+ - asdf plugin add uv
+ - asdf install uv latest
+ - asdf global uv latest
+ - uv venv
+ - uv pip install .[docs]
+ - .venv/bin/python -m sphinx -T -b html -d docs/_build/doctrees -D
+ language=en docs $READTHEDOCS_OUTPUT/html
diff --git a/LICENSE b/LICENSE
index 97049b6..a438ea6 100644
--- a/LICENSE
+++ b/LICENSE
@@ -1,13 +1,11 @@
-MIT License
+Copyright 2024 Alan Lujan
-Copyright (c) 2024 Alan Lujan
-
-Permission is hereby granted, free of charge, to any person obtaining a copy
-of this software and associated documentation files (the "Software"), to deal
-in the Software without restriction, including without limitation the rights
-to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
+Permission is hereby granted, free of charge, to any person obtaining a copy of
+this software and associated documentation files (the "Software"), to deal in
+the Software without restriction, including without limitation the rights to
+use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
+of the Software, and to permit persons to whom the Software is furnished to do
+so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
diff --git a/README.md b/README.md
index f463dc1..69e9e9a 100644
--- a/README.md
+++ b/README.md
@@ -1,5 +1,67 @@
-# TRP-wealth-in-utility
+# Life-Cycle-Prime-Time
https://econ-ark.github.io/Life-Cycle-Prime-Time/
-https://mybinder.org/v2/gh/econ-ark/EstimatingMicroDSOPs/HEAD
+[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/econ-ark/Life-Cycle-Prime-Time/HEAD)
+
+To reproduces all the results in the repository first clone this repository
+locally:
+
+```
+# Clone this repository
+$ git clone https://github.com/econ-ark/Life-Cycle-Prime-Time
+
+# Change working directory to Life-Cycle-Prime-Time
+$ cd Life-Cycle-Prime-Time
+```
+
+Then you can either use a local virtual env(conda) or
+[nbreproduce](https://github.com/econ-ark/nbreproduce) to reproduce to the
+results.
+
+#### A local conda environment and execute the do_all.py file.
+
+```
+$ conda env create -f environment.yml
+$ conda activate Life-Cycle-Prime-Time
+# execute the script, select the appropriate option and use it to reproduce the data and figures.
+$ python do_all.py
+```
+
+#### [nbreproduce](https://github.com/econ-ark/nbreproduce) (requires Docker to be installed on the machine).
+
+```
+# Install nbreproduce
+$ pip install nbreproduce
+
+# Reproduce all results using nbreproduce
+$ nbreproduce
+```
+
+## References
+
+[![Actions Status][actions-badge]][actions-link]
+[![Documentation Status][rtd-badge]][rtd-link]
+
+[![PyPI version][pypi-version]][pypi-link]
+[![Conda-Forge][conda-badge]][conda-link]
+[![PyPI platforms][pypi-platforms]][pypi-link]
+
+[![GitHub Discussion][github-discussions-badge]][github-discussions-link]
+
+
+
+
+[actions-badge]: https://github.com/econ-ark/Life-Cycle-Prime-Time/workflows/CI/badge.svg
+[actions-link]: https://github.com/econ-ark/Life-Cycle-Prime-Time/actions
+[conda-badge]: https://img.shields.io/conda/vn/conda-forge/estimark
+[conda-link]: https://github.com/conda-forge/estimark-feedstock
+[github-discussions-badge]: https://img.shields.io/static/v1?label=Discussions&message=Ask&color=blue&logo=github
+[github-discussions-link]: https://github.com/econ-ark/Life-Cycle-Prime-Time/discussions
+[pypi-link]: https://pypi.org/project/estimark/
+[pypi-platforms]: https://img.shields.io/pypi/pyversions/estimark
+[pypi-version]: https://img.shields.io/pypi/v/estimark
+[rtd-badge]: https://readthedocs.org/projects/estimark/badge/?version=latest
+[rtd-link]: https://estimark.readthedocs.io/en/latest/?badge=latest
+
+
diff --git a/_toc.yml b/_toc.yml
new file mode 100644
index 0000000..79f3529
--- /dev/null
+++ b/_toc.yml
@@ -0,0 +1,23 @@
+# Table of Contents
+#
+# Myst will respect:
+# 1. New pages
+# - file: relative/path/to/page
+# 2. New sections without an associated page
+# - title: Folder Title
+# sections: ...
+# 3. New sections with an associated page
+# - file: relative/path/to/page
+# sections: ...
+#
+# Note: Titles defined on pages here are not recognized.
+#
+# This spec is based on the JupyterBook table of contents.
+# Learn more at https://jupyterbook.org/customize/toc.html
+
+format: jb-book
+root: README
+chapters:
+ - title: Paper
+ sections:
+ - file: content/paper/01-paper
diff --git a/content/figures/AllSMMcontour.pdf b/content/figures/AllSMMcontour.pdf
new file mode 100644
index 0000000..07a64d8
Binary files /dev/null and b/content/figures/AllSMMcontour.pdf differ
diff --git a/content/figures/AllSMMcontour.png b/content/figures/AllSMMcontour.png
new file mode 100644
index 0000000..b61e17b
Binary files /dev/null and b/content/figures/AllSMMcontour.png differ
diff --git a/content/figures/AllSMMcontour.svg b/content/figures/AllSMMcontour.svg
new file mode 100644
index 0000000..de239bc
--- /dev/null
+++ b/content/figures/AllSMMcontour.svg
@@ -0,0 +1,18111 @@
+
+
+
diff --git a/content/figures/AllSensitivity.pdf b/content/figures/AllSensitivity.pdf
new file mode 100644
index 0000000..f93442d
Binary files /dev/null and b/content/figures/AllSensitivity.pdf differ
diff --git a/content/figures/AllSensitivity.png b/content/figures/AllSensitivity.png
new file mode 100644
index 0000000..4e6c909
Binary files /dev/null and b/content/figures/AllSensitivity.png differ
diff --git a/content/figures/AllSensitivity.svg b/content/figures/AllSensitivity.svg
new file mode 100644
index 0000000..35e0301
--- /dev/null
+++ b/content/figures/AllSensitivity.svg
@@ -0,0 +1,4016 @@
+
+
+
diff --git a/content/figures/IndShockPortfolio_MedianShare.png b/content/figures/IndShockPortfolio_MedianShare.png
new file mode 100644
index 0000000..b8010ab
Binary files /dev/null and b/content/figures/IndShockPortfolio_MedianShare.png differ
diff --git a/content/figures/IndShockPortfolio_MedianVariables.png b/content/figures/IndShockPortfolio_MedianVariables.png
new file mode 100644
index 0000000..69455cd
Binary files /dev/null and b/content/figures/IndShockPortfolio_MedianVariables.png differ
diff --git a/content/figures/IndShockPortfolio_ShareFunc.png b/content/figures/IndShockPortfolio_ShareFunc.png
new file mode 100644
index 0000000..8722e47
Binary files /dev/null and b/content/figures/IndShockPortfolio_ShareFunc.png differ
diff --git a/content/figures/IndShockPortfolio_cFunc.png b/content/figures/IndShockPortfolio_cFunc.png
new file mode 100644
index 0000000..8722e47
Binary files /dev/null and b/content/figures/IndShockPortfolio_cFunc.png differ
diff --git a/content/figures/IndShockSMMcontour.pdf b/content/figures/IndShockSMMcontour.pdf
new file mode 100644
index 0000000..c69db2a
Binary files /dev/null and b/content/figures/IndShockSMMcontour.pdf differ
diff --git a/content/figures/IndShockSMMcontour.png b/content/figures/IndShockSMMcontour.png
new file mode 100644
index 0000000..a863971
Binary files /dev/null and b/content/figures/IndShockSMMcontour.png differ
diff --git a/content/figures/IndShockSMMcontour.svg b/content/figures/IndShockSMMcontour.svg
new file mode 100644
index 0000000..b070aeb
--- /dev/null
+++ b/content/figures/IndShockSMMcontour.svg
@@ -0,0 +1,4881 @@
+
+
+
diff --git a/content/figures/IndShockSensitivity.pdf b/content/figures/IndShockSensitivity.pdf
new file mode 100644
index 0000000..7313621
Binary files /dev/null and b/content/figures/IndShockSensitivity.pdf differ
diff --git a/content/figures/IndShockSensitivity.png b/content/figures/IndShockSensitivity.png
new file mode 100644
index 0000000..0eafda4
Binary files /dev/null and b/content/figures/IndShockSensitivity.png differ
diff --git a/content/figures/IndShockSensitivity.svg b/content/figures/IndShockSensitivity.svg
new file mode 100644
index 0000000..eb476a2
--- /dev/null
+++ b/content/figures/IndShockSensitivity.svg
@@ -0,0 +1,1342 @@
+
+
+
diff --git a/content/figures/IndShock_cFunc.png b/content/figures/IndShock_cFunc.png
new file mode 100644
index 0000000..8722e47
Binary files /dev/null and b/content/figures/IndShock_cFunc.png differ
diff --git a/content/figures/PortfolioSMMcontour.pdf b/content/figures/PortfolioSMMcontour.pdf
new file mode 100644
index 0000000..0b8f5a0
Binary files /dev/null and b/content/figures/PortfolioSMMcontour.pdf differ
diff --git a/content/figures/PortfolioSMMcontour.png b/content/figures/PortfolioSMMcontour.png
new file mode 100644
index 0000000..a863971
Binary files /dev/null and b/content/figures/PortfolioSMMcontour.png differ
diff --git a/content/figures/PortfolioSMMcontour.svg b/content/figures/PortfolioSMMcontour.svg
new file mode 100644
index 0000000..1826c12
--- /dev/null
+++ b/content/figures/PortfolioSMMcontour.svg
@@ -0,0 +1,4881 @@
+
+
+
diff --git a/content/figures/PortfolioSensitivity.pdf b/content/figures/PortfolioSensitivity.pdf
new file mode 100644
index 0000000..638df23
Binary files /dev/null and b/content/figures/PortfolioSensitivity.pdf differ
diff --git a/content/figures/PortfolioSensitivity.png b/content/figures/PortfolioSensitivity.png
new file mode 100644
index 0000000..0eafda4
Binary files /dev/null and b/content/figures/PortfolioSensitivity.png differ
diff --git a/content/figures/PortfolioSensitivity.svg b/content/figures/PortfolioSensitivity.svg
new file mode 100644
index 0000000..1bdab81
--- /dev/null
+++ b/content/figures/PortfolioSensitivity.svg
@@ -0,0 +1,1342 @@
+
+
+
diff --git a/content/figures/TRPPortfolio_MedianShare.png b/content/figures/TRPPortfolio_MedianShare.png
new file mode 100644
index 0000000..297ba2f
Binary files /dev/null and b/content/figures/TRPPortfolio_MedianShare.png differ
diff --git a/content/figures/TRPPortfolio_MedianVariables.png b/content/figures/TRPPortfolio_MedianVariables.png
new file mode 100644
index 0000000..1708e79
Binary files /dev/null and b/content/figures/TRPPortfolio_MedianVariables.png differ
diff --git a/content/figures/TRPPortfolio_ShareFunc.png b/content/figures/TRPPortfolio_ShareFunc.png
new file mode 100644
index 0000000..2b4171c
Binary files /dev/null and b/content/figures/TRPPortfolio_ShareFunc.png differ
diff --git a/content/figures/TRPPortfolio_cFunc.png b/content/figures/TRPPortfolio_cFunc.png
new file mode 100644
index 0000000..2b4171c
Binary files /dev/null and b/content/figures/TRPPortfolio_cFunc.png differ
diff --git a/content/figures/WarmGlowIndShockPortfolio_ShareFunc.png b/content/figures/WarmGlowIndShockPortfolio_ShareFunc.png
new file mode 100644
index 0000000..2b4171c
Binary files /dev/null and b/content/figures/WarmGlowIndShockPortfolio_ShareFunc.png differ
diff --git a/content/figures/WarmGlowIndShockPortfolio_cFunc.png b/content/figures/WarmGlowIndShockPortfolio_cFunc.png
new file mode 100644
index 0000000..2b4171c
Binary files /dev/null and b/content/figures/WarmGlowIndShockPortfolio_cFunc.png differ
diff --git a/content/figures/WarmGlowIndShock_cFunc.png b/content/figures/WarmGlowIndShock_cFunc.png
new file mode 100644
index 0000000..2b4171c
Binary files /dev/null and b/content/figures/WarmGlowIndShock_cFunc.png differ
diff --git a/content/figures/WarmGlowPortfolioSMMcontour.pdf b/content/figures/WarmGlowPortfolioSMMcontour.pdf
new file mode 100644
index 0000000..423b2a6
Binary files /dev/null and b/content/figures/WarmGlowPortfolioSMMcontour.pdf differ
diff --git a/content/figures/WarmGlowPortfolioSMMcontour.png b/content/figures/WarmGlowPortfolioSMMcontour.png
new file mode 100644
index 0000000..f878975
Binary files /dev/null and b/content/figures/WarmGlowPortfolioSMMcontour.png differ
diff --git a/content/figures/WarmGlowPortfolioSMMcontour.svg b/content/figures/WarmGlowPortfolioSMMcontour.svg
new file mode 100644
index 0000000..815ab8f
--- /dev/null
+++ b/content/figures/WarmGlowPortfolioSMMcontour.svg
@@ -0,0 +1,5363 @@
+
+
+
diff --git a/content/figures/WarmGlowPortfolioSensitivity.pdf b/content/figures/WarmGlowPortfolioSensitivity.pdf
new file mode 100644
index 0000000..10950c7
Binary files /dev/null and b/content/figures/WarmGlowPortfolioSensitivity.pdf differ
diff --git a/content/figures/WarmGlowPortfolioSensitivity.png b/content/figures/WarmGlowPortfolioSensitivity.png
new file mode 100644
index 0000000..896bcf8
Binary files /dev/null and b/content/figures/WarmGlowPortfolioSensitivity.png differ
diff --git a/content/figures/WarmGlowPortfolioSensitivity.svg b/content/figures/WarmGlowPortfolioSensitivity.svg
new file mode 100644
index 0000000..b7ef65d
--- /dev/null
+++ b/content/figures/WarmGlowPortfolioSensitivity.svg
@@ -0,0 +1,1355 @@
+
+
+
diff --git a/content/figures/WarmGlowSMMcontour.pdf b/content/figures/WarmGlowSMMcontour.pdf
new file mode 100644
index 0000000..1c5658d
Binary files /dev/null and b/content/figures/WarmGlowSMMcontour.pdf differ
diff --git a/content/figures/WarmGlowSMMcontour.png b/content/figures/WarmGlowSMMcontour.png
new file mode 100644
index 0000000..a71c325
Binary files /dev/null and b/content/figures/WarmGlowSMMcontour.png differ
diff --git a/content/figures/WarmGlowSMMcontour.svg b/content/figures/WarmGlowSMMcontour.svg
new file mode 100644
index 0000000..460736f
--- /dev/null
+++ b/content/figures/WarmGlowSMMcontour.svg
@@ -0,0 +1,5153 @@
+
+
+
diff --git a/content/figures/WarmGlowSensitivity.pdf b/content/figures/WarmGlowSensitivity.pdf
new file mode 100644
index 0000000..0735669
Binary files /dev/null and b/content/figures/WarmGlowSensitivity.pdf differ
diff --git a/content/figures/WarmGlowSensitivity.png b/content/figures/WarmGlowSensitivity.png
new file mode 100644
index 0000000..e966ea6
Binary files /dev/null and b/content/figures/WarmGlowSensitivity.png differ
diff --git a/content/figures/WarmGlowSensitivity.svg b/content/figures/WarmGlowSensitivity.svg
new file mode 100644
index 0000000..7354d96
--- /dev/null
+++ b/content/figures/WarmGlowSensitivity.svg
@@ -0,0 +1,1342 @@
+
+
+
diff --git a/content/figures/WealthPortfolioSMMcontour.pdf b/content/figures/WealthPortfolioSMMcontour.pdf
new file mode 100644
index 0000000..635bcf3
Binary files /dev/null and b/content/figures/WealthPortfolioSMMcontour.pdf differ
diff --git a/content/figures/WealthPortfolioSMMcontour.png b/content/figures/WealthPortfolioSMMcontour.png
new file mode 100644
index 0000000..094f855
Binary files /dev/null and b/content/figures/WealthPortfolioSMMcontour.png differ
diff --git a/content/figures/WealthPortfolioSMMcontour.svg b/content/figures/WealthPortfolioSMMcontour.svg
new file mode 100644
index 0000000..7544e9c
--- /dev/null
+++ b/content/figures/WealthPortfolioSMMcontour.svg
@@ -0,0 +1,4552 @@
+
+
+
diff --git a/content/figures/WealthPortfolioSensitivity.pdf b/content/figures/WealthPortfolioSensitivity.pdf
new file mode 100644
index 0000000..7ed595e
Binary files /dev/null and b/content/figures/WealthPortfolioSensitivity.pdf differ
diff --git a/content/figures/WealthPortfolioSensitivity.png b/content/figures/WealthPortfolioSensitivity.png
new file mode 100644
index 0000000..58406a1
Binary files /dev/null and b/content/figures/WealthPortfolioSensitivity.png differ
diff --git a/content/figures/WealthPortfolioSensitivity.svg b/content/figures/WealthPortfolioSensitivity.svg
new file mode 100644
index 0000000..d4e0deb
--- /dev/null
+++ b/content/figures/WealthPortfolioSensitivity.svg
@@ -0,0 +1,1372 @@
+
+
+
diff --git a/content/tables/TRP/Portfolio_estimate_results.csv b/content/tables/TRP/Portfolio_estimate_results.csv
new file mode 100644
index 0000000..ed64d84
--- /dev/null
+++ b/content/tables/TRP/Portfolio_estimate_results.csv
@@ -0,0 +1,1673 @@
+CRRA,9.252286005027539
+time_to_estimate,60.753241539001465
+params,{'CRRA': 9.252286005027539}
+criterion,0.6423582605057705
+start_criterion,0.6339648081630582
+start_params,{'CRRA': 9.252342476844415}
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,1
+message,Absolute criterion change smaller than tolerance.
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 9.252342476844415}, {'CRRA': 8.327108229159974}, {'CRRA': 10.177576724528857}, {'CRRA': 8.327108229159974}, {'CRRA': 8.327108229159974}, {'CRRA': 10.177576724528857}, {'CRRA': 8.327108229159974}, {'CRRA': 8.327108229159974}, {'CRRA': 10.177576724528857}, {'CRRA': 8.327108229159974}, {'CRRA': 10.177576724528857}, {'CRRA': 8.327108229159974}, {'CRRA': 10.177576724528857}, {'CRRA': 8.327108229159974}, {'CRRA': 9.250458955049714}, {'CRRA': 8.789725353002193}, {'CRRA': 9.231195795349796}, {'CRRA': 9.23850082029189}, {'CRRA': 9.191470898591822}, {'CRRA': 9.310169617324693}, {'CRRA': 9.250657961285336}, {'CRRA': 9.250710524700677}, {'CRRA': 9.248963361277593}, {'CRRA': 9.253968442160518}, {'CRRA': 9.255956673124432}, {'CRRA': 9.254149574984424}, {'CRRA': 9.25143892777441}, {'CRRA': 9.251890702309414}, {'CRRA': 9.252568364111916}, {'CRRA': 9.252455420478165}, {'CRRA': 9.252286005027539}], 'criterion': [0.6423583236273489, 0.6726961956566793, 0.672466609452884, 0.6726961956566793, 0.6726961956566793, 0.672466609452884, 0.6726961956566793, 0.6726961956566793, 0.672466609452884, 0.6726961956566793, 0.672466609452884, 0.6726961956566793, 0.672466609452884, 0.6726961956566793, 0.642369169571296, 0.6492959495923358, 0.6423762404892832, 0.6423752797264956, 0.6425219143922716, 0.642514400144132, 0.6423685692715722, 0.6423684112220268, 0.6423805942108727, 0.6423699960365742, 0.6423863674367805, 0.6423725213049074, 0.6423641176751165, 0.6423603114677403, 0.6423590691348976, 0.642358466533662, 0.6423582605057704], 'runtime': [0.0, 3.3893006040002547, 3.7743795520000276, 3.9942729670001427, 4.308895564000068, 4.500098180999885, 4.797666575000221, 5.097781724000015, 5.30452481400016, 5.586473449000096, 5.8145816500000365, 6.019138186999953, 6.258510488999946, 21.4172058070003, 22.745588674999908, 24.07027555800005, 25.37667203000001, 26.848738280999896, 28.141902802999994, 29.463674151000305, 30.76145256100017, 32.056981691000146, 33.34122019300003, 34.749019994000264, 36.131662315000085, 37.520465677000175, 38.87502066600018, 40.19993009200016, 41.659364199000265, 43.079727706000085, 44.41924671800007], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}"
+convergence_report,
+multistart_info,"{'start_parameters': [{'CRRA': 9.252342476844415}], 'local_optima': [Minimize with 1 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 9.827e-08* 9.827e-08*
+relative_params_change 6.104e-06* 6.104e-06*
+absolute_criterion_change 6.312e-08* 6.312e-08*
+absolute_params_change 5.647e-05 5.647e-05
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.)], 'exploration_sample': [{'CRRA': 9.252342476844415}, {'CRRA': 8.1875}, {'CRRA': 10.549999999999999}, {'CRRA': 12.9125}, {'CRRA': 5.824999999999999}, {'CRRA': 14.093749999999998}, {'CRRA': 15.274999999999999}, {'CRRA': 4.64375}, {'CRRA': 17.6375}, {'CRRA': 3.4625}], 'exploration_results': array([0.64235832, 0.6831279 , 0.69939713, 1.02360977, 1.18227674,
+ 1.26376333, 1.54278366, 1.78141341, 2.1808234 , 2.89794431])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([9.25234248]), radius=0.9252342476844415, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=[0], model=ScalarModel(intercept=0.6423583236273489, linear_terms=array([0.]), square_terms=array([[0.]]), scale=0.9252342476844415, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=0, candidate_x=array([9.25234248]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([9.25234248]), radius=0.9252342476844415, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]), model=ScalarModel(intercept=0.6366126588198241, linear_terms=array([0.00014855]), square_terms=array([[0.07297151]]), scale=0.9252342476844415, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=14, candidate_x=array([9.25045896]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-71.73087780998843, accepted=False, new_indices=array([ 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.46261712384222076, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 11, 12, 13, 14, 15]), model=ScalarModel(intercept=0.6391738833063486, linear_terms=array([0.0008387]), square_terms=array([[0.01834796]]), scale=0.46261712384222076, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=16, candidate_x=array([9.2311958]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-0.9346804797475832, accepted=False, new_indices=array([15]), old_indices_used=array([ 0, 11, 12, 13, 14]), old_indices_discarded=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.23130856192111038, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 12, 13, 14, 15, 16]), model=ScalarModel(intercept=0.6400364245764906, linear_terms=array([0.00027196]), square_terms=array([[0.00454468]]), scale=0.23130856192111038, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=17, candidate_x=array([9.23850082]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-2.083816827569783, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 13, 14, 15, 16]), old_indices_discarded=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.11565428096055519, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 14, 15, 16, 17]), model=ScalarModel(intercept=0.6424109502570059, linear_terms=array([0.00061503]), square_terms=array([[0.00116854]]), scale=0.11565428096055519, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=18, candidate_x=array([9.1914709]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-1.0107374685291592, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 15, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.057827140480277595, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 14, 16, 17, 19]), model=ScalarModel(intercept=0.6423641764261762, linear_terms=array([8.28433083e-06]), square_terms=array([[0.00028439]]), scale=0.057827140480277595, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=20, candidate_x=array([9.25065796]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-84.9118930196347, accepted=False, new_indices=array([19]), old_indices_used=array([ 0, 14, 16, 17]), old_indices_discarded=array([18]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.028913570240138797, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 14, 16, 17, 19, 20]), model=ScalarModel(intercept=0.642364947951701, linear_terms=array([4.01212888e-06]), square_terms=array([[7.10835612e-05]]), scale=0.028913570240138797, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=21, candidate_x=array([9.25071052]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-89.09165927837773, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 16, 17, 19, 20]), old_indices_discarded=array([18]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.014456785120069399, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 14, 16, 17, 20, 21]), model=ScalarModel(intercept=0.6423666277820237, linear_terms=array([4.21338439e-06]), square_terms=array([[1.80260164e-05]]), scale=0.014456785120069399, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=22, candidate_x=array([9.24896336]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-45.22714683487297, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 16, 17, 20, 21]), old_indices_discarded=array([18, 19]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.007228392560034699, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 14, 17, 20, 21, 22]), model=ScalarModel(intercept=0.6423680016960622, linear_terms=array([-1.01758484e-06]), square_terms=array([[4.52377587e-06]]), scale=0.007228392560034699, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=23, candidate_x=array([9.25396844]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-101.98829389658573, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 17, 20, 21, 22]), old_indices_discarded=array([16]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.0036141962800173497, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 14, 20, 21, 22, 23]), model=ScalarModel(intercept=0.6423664047173907, linear_terms=array([-8.15794512e-06]), square_terms=array([[1.06328797e-06]]), scale=0.0036141962800173497, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=24, candidate_x=array([9.25595667]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-3.6772491566976204, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 20, 21, 22, 23]), old_indices_discarded=array([17]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.0018070981400086748, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 14, 20, 21, 22, 23]), model=ScalarModel(intercept=0.6423664047173909, linear_terms=array([-4.07897256e-06]), square_terms=array([[2.65821992e-07]]), scale=0.0018070981400086748, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=25, candidate_x=array([9.25414957]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-3.597936150162183, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 20, 21, 22, 23]), old_indices_discarded=array([24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.0009035490700043374, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 14, 20, 21, 23, 25]), model=ScalarModel(intercept=0.6423678826985401, linear_terms=array([4.59211257e-07]), square_terms=array([[6.46936017e-08]]), scale=0.0009035490700043374, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=26, candidate_x=array([9.25143893]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-13.573507187210918, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 20, 21, 23, 25]), old_indices_discarded=array([22, 24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.0004517745350021687, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 20, 21, 23, 25, 26]), model=ScalarModel(intercept=0.6423670437711565, linear_terms=array([4.63065568e-07]), square_terms=array([[1.6122968e-08]]), scale=0.0004517745350021687, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=27, candidate_x=array([9.2518907]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-4.368840765358844, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 20, 21, 23, 25, 26]), old_indices_discarded=array([14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.00022588726750108435, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 26, 27]), model=ScalarModel(intercept=0.6423580233416285, linear_terms=array([-1.44028832e-06]), square_terms=array([[4.10130588e-09]]), scale=0.00022588726750108435, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=28, candidate_x=array([9.25256836]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-0.5183479506363351, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.00011294363375054218, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 27, 28]), model=ScalarModel(intercept=0.6423590665246325, linear_terms=array([-2.47320622e-07]), square_terms=array([[1.00136317e-09]]), scale=0.00011294363375054218, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=29, candidate_x=array([9.25245542]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-0.5789901455335319, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=5.647181687527109e-05, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 28, 29]), model=ScalarModel(intercept=0.6423582471741802, linear_terms=array([1.85886653e-07]), square_terms=array([[2.45317725e-10]]), scale=5.647181687527109e-05, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=30, candidate_x=array([9.25228601]), index=30, x=array([9.25228601]), fval=0.6423582605057705, rho=0.33979447206310537, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=5.647181687606917e-05, relative_step_length=1.0000000000141325, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 31 entries., 'multistart_info': {'start_parameters': [array([9.25234248])], 'local_optima': [{'solution_x': array([9.25228601]), 'solution_criterion': 0.6423582605057705, 'states': [State(trustregion=Region(center=array([9.25234248]), radius=0.9252342476844415, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=[0], model=ScalarModel(intercept=0.6423583236273489, linear_terms=array([0.]), square_terms=array([[0.]]), scale=0.9252342476844415, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=0, candidate_x=array([9.25234248]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([9.25234248]), radius=0.9252342476844415, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]), model=ScalarModel(intercept=0.6366126588198241, linear_terms=array([0.00014855]), square_terms=array([[0.07297151]]), scale=0.9252342476844415, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=14, candidate_x=array([9.25045896]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-71.73087780998843, accepted=False, new_indices=array([ 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.46261712384222076, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 11, 12, 13, 14, 15]), model=ScalarModel(intercept=0.6391738833063486, linear_terms=array([0.0008387]), square_terms=array([[0.01834796]]), scale=0.46261712384222076, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=16, candidate_x=array([9.2311958]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-0.9346804797475832, accepted=False, new_indices=array([15]), old_indices_used=array([ 0, 11, 12, 13, 14]), old_indices_discarded=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.23130856192111038, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 12, 13, 14, 15, 16]), model=ScalarModel(intercept=0.6400364245764906, linear_terms=array([0.00027196]), square_terms=array([[0.00454468]]), scale=0.23130856192111038, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=17, candidate_x=array([9.23850082]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-2.083816827569783, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 13, 14, 15, 16]), old_indices_discarded=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.11565428096055519, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 14, 15, 16, 17]), model=ScalarModel(intercept=0.6424109502570059, linear_terms=array([0.00061503]), square_terms=array([[0.00116854]]), scale=0.11565428096055519, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=18, candidate_x=array([9.1914709]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-1.0107374685291592, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 15, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.057827140480277595, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 14, 16, 17, 19]), model=ScalarModel(intercept=0.6423641764261762, linear_terms=array([8.28433083e-06]), square_terms=array([[0.00028439]]), scale=0.057827140480277595, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=20, candidate_x=array([9.25065796]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-84.9118930196347, accepted=False, new_indices=array([19]), old_indices_used=array([ 0, 14, 16, 17]), old_indices_discarded=array([18]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.028913570240138797, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 14, 16, 17, 19, 20]), model=ScalarModel(intercept=0.642364947951701, linear_terms=array([4.01212888e-06]), square_terms=array([[7.10835612e-05]]), scale=0.028913570240138797, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=21, candidate_x=array([9.25071052]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-89.09165927837773, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 16, 17, 19, 20]), old_indices_discarded=array([18]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.014456785120069399, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 14, 16, 17, 20, 21]), model=ScalarModel(intercept=0.6423666277820237, linear_terms=array([4.21338439e-06]), square_terms=array([[1.80260164e-05]]), scale=0.014456785120069399, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=22, candidate_x=array([9.24896336]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-45.22714683487297, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 16, 17, 20, 21]), old_indices_discarded=array([18, 19]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.007228392560034699, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 14, 17, 20, 21, 22]), model=ScalarModel(intercept=0.6423680016960622, linear_terms=array([-1.01758484e-06]), square_terms=array([[4.52377587e-06]]), scale=0.007228392560034699, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=23, candidate_x=array([9.25396844]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-101.98829389658573, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 17, 20, 21, 22]), old_indices_discarded=array([16]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.0036141962800173497, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 14, 20, 21, 22, 23]), model=ScalarModel(intercept=0.6423664047173907, linear_terms=array([-8.15794512e-06]), square_terms=array([[1.06328797e-06]]), scale=0.0036141962800173497, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=24, candidate_x=array([9.25595667]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-3.6772491566976204, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 20, 21, 22, 23]), old_indices_discarded=array([17]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.0018070981400086748, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 14, 20, 21, 22, 23]), model=ScalarModel(intercept=0.6423664047173909, linear_terms=array([-4.07897256e-06]), square_terms=array([[2.65821992e-07]]), scale=0.0018070981400086748, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=25, candidate_x=array([9.25414957]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-3.597936150162183, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 20, 21, 22, 23]), old_indices_discarded=array([24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.0009035490700043374, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 14, 20, 21, 23, 25]), model=ScalarModel(intercept=0.6423678826985401, linear_terms=array([4.59211257e-07]), square_terms=array([[6.46936017e-08]]), scale=0.0009035490700043374, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=26, candidate_x=array([9.25143893]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-13.573507187210918, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 20, 21, 23, 25]), old_indices_discarded=array([22, 24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.0004517745350021687, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 20, 21, 23, 25, 26]), model=ScalarModel(intercept=0.6423670437711565, linear_terms=array([4.63065568e-07]), square_terms=array([[1.6122968e-08]]), scale=0.0004517745350021687, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=27, candidate_x=array([9.2518907]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-4.368840765358844, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 20, 21, 23, 25, 26]), old_indices_discarded=array([14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.00022588726750108435, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 26, 27]), model=ScalarModel(intercept=0.6423580233416285, linear_terms=array([-1.44028832e-06]), square_terms=array([[4.10130588e-09]]), scale=0.00022588726750108435, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=28, candidate_x=array([9.25256836]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-0.5183479506363351, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=0.00011294363375054218, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 27, 28]), model=ScalarModel(intercept=0.6423590665246325, linear_terms=array([-2.47320622e-07]), square_terms=array([[1.00136317e-09]]), scale=0.00011294363375054218, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=29, candidate_x=array([9.25245542]), index=0, x=array([9.25234248]), fval=0.6423583236273489, rho=-0.5789901455335319, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.25234248]), radius=5.647181687527109e-05, bounds=Bounds(lower=array([1.1]), upper=array([20.]))), model_indices=array([ 0, 28, 29]), model=ScalarModel(intercept=0.6423582471741802, linear_terms=array([1.85886653e-07]), square_terms=array([[2.45317725e-10]]), scale=5.647181687527109e-05, shift=array([9.25234248])), vector_model=VectorModel(intercepts=array([ 0.04871268, 0.12404506, 0.14884697, 0.1938148 , 0.21740598,
+ 0.23241888, 0.23335722, 0.06701942, -0.08019005, -0.06712962,
+ -0.40905677, -0.41755326, -0.12516467, -0.09880123, -0.089428 ,
+ -0.09320898, -0.09959608]), linear_terms=array([[0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.],
+ [0.]]), square_terms=array([[[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]],
+
+ [[0.]]]), scale=0.9252342476844415, shift=array([9.25234248])), candidate_index=30, candidate_x=array([9.25228601]), index=30, x=array([9.25228601]), fval=0.6423582605057705, rho=0.33979447206310537, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=5.647181687606917e-05, relative_step_length=1.0000000000141325, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 31 entries., 'history': {'params': [{'CRRA': 9.252342476844415}, {'CRRA': 8.327108229159974}, {'CRRA': 10.177576724528857}, {'CRRA': 8.327108229159974}, {'CRRA': 8.327108229159974}, {'CRRA': 10.177576724528857}, {'CRRA': 8.327108229159974}, {'CRRA': 8.327108229159974}, {'CRRA': 10.177576724528857}, {'CRRA': 8.327108229159974}, {'CRRA': 10.177576724528857}, {'CRRA': 8.327108229159974}, {'CRRA': 10.177576724528857}, {'CRRA': 8.327108229159974}, {'CRRA': 9.250458955049714}, {'CRRA': 8.789725353002193}, {'CRRA': 9.231195795349796}, {'CRRA': 9.23850082029189}, {'CRRA': 9.191470898591822}, {'CRRA': 9.310169617324693}, {'CRRA': 9.250657961285336}, {'CRRA': 9.250710524700677}, {'CRRA': 9.248963361277593}, {'CRRA': 9.253968442160518}, {'CRRA': 9.255956673124432}, {'CRRA': 9.254149574984424}, {'CRRA': 9.25143892777441}, {'CRRA': 9.251890702309414}, {'CRRA': 9.252568364111916}, {'CRRA': 9.252455420478165}, {'CRRA': 9.252286005027539}], 'criterion': [0.6423583236273489, 0.6726961956566793, 0.672466609452884, 0.6726961956566793, 0.6726961956566793, 0.672466609452884, 0.6726961956566793, 0.6726961956566793, 0.672466609452884, 0.6726961956566793, 0.672466609452884, 0.6726961956566793, 0.672466609452884, 0.6726961956566793, 0.642369169571296, 0.6492959495923358, 0.6423762404892832, 0.6423752797264956, 0.6425219143922716, 0.642514400144132, 0.6423685692715722, 0.6423684112220268, 0.6423805942108727, 0.6423699960365742, 0.6423863674367805, 0.6423725213049074, 0.6423641176751165, 0.6423603114677403, 0.6423590691348976, 0.642358466533662, 0.6423582605057704], 'runtime': [0.0, 3.3893006040002547, 3.7743795520000276, 3.9942729670001427, 4.308895564000068, 4.500098180999885, 4.797666575000221, 5.097781724000015, 5.30452481400016, 5.586473449000096, 5.8145816500000365, 6.019138186999953, 6.258510488999946, 21.4172058070003, 22.745588674999908, 24.07027555800005, 25.37667203000001, 26.848738280999896, 28.141902802999994, 29.463674151000305, 30.76145256100017, 32.056981691000146, 33.34122019300003, 34.749019994000264, 36.131662315000085, 37.520465677000175, 38.87502066600018, 40.19993009200016, 41.659364199000265, 43.079727706000085, 44.41924671800007], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, 'multistart_info': {...}}], 'exploration_sample': array([[ 9.25234248],
+ [ 8.1875 ],
+ [10.55 ],
+ [12.9125 ],
+ [ 5.825 ],
+ [14.09375 ],
+ [15.275 ],
+ [ 4.64375 ],
+ [17.6375 ],
+ [ 3.4625 ]]), 'exploration_results': array([0.64235832, 0.6831279 , 0.69939713, 1.02360977, 1.18227674,
+ 1.26376333, 1.54278366, 1.78141341, 2.1808234 , 2.89794431])}}"
diff --git a/content/tables/TRP/WarmGlowPortfolio_estimate_results.csv b/content/tables/TRP/WarmGlowPortfolio_estimate_results.csv
new file mode 100644
index 0000000..4cd4e64
--- /dev/null
+++ b/content/tables/TRP/WarmGlowPortfolio_estimate_results.csv
@@ -0,0 +1,11062 @@
+CRRA,9.206775856414323
+BeqShift,45.64298427855443
+BeqFac,23.05054873023735
+time_to_estimate,236.11751127243042
+params,"{'CRRA': 9.206775856414323, 'BeqShift': 45.64298427855443, 'BeqFac': 23.05054873023735}"
+criterion,0.6411981344087744
+start_criterion,0.6327696850981256
+start_params,"{'CRRA': 9.206778216146489, 'BeqShift': 50.64405071849033, 'BeqFac': 26.1368726540768}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,3
+message,Absolute criterion change smaller than tolerance.
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 9.275230386313043, 'BeqShift': 45.88119053785236, 'BeqFac': 23.014811093019418}, {'CRRA': 10.556800566878689, 'BeqShift': 48.18211054060359, 'BeqFac': 19.257926550618446}, {'CRRA': 6.326950770325419, 'BeqShift': 48.028109248006054, 'BeqFac': 20.231068322997192}, {'CRRA': 5.376086840779585, 'BeqShift': 47.88380177945927, 'BeqFac': 24.370194536190226}, {'CRRA': 8.836842627116226, 'BeqShift': 41.31414348521892, 'BeqFac': 22.987721550281236}, {'CRRA': 8.588658189640931, 'BeqShift': 44.17145102421629, 'BeqFac': 27.216744679593038}, {'CRRA': 5.236533581737813, 'BeqShift': 43.73675712771144, 'BeqFac': 23.390536953045526}, {'CRRA': 11.326280642245544, 'BeqShift': 49.96975911041845, 'BeqFac': 22.657548826930118}, {'CRRA': 12.938221774324816, 'BeqShift': 44.69982951667233, 'BeqFac': 20.51726896510742}, {'CRRA': 8.667600751746502, 'BeqShift': 49.02354334490217, 'BeqFac': 26.30224801483706}, {'CRRA': 8.154447497289702, 'BeqShift': 43.68698161615405, 'BeqFac': 19.144393883554894}, {'CRRA': 12.565120095009513, 'BeqShift': 43.02726045627806, 'BeqFac': 24.457913738642898}, {'CRRA': 12.823724647554654, 'BeqShift': 47.096813337304226, 'BeqFac': 25.657023449945957}, {'CRRA': 9.311678364660667, 'BeqShift': 47.23783920054173, 'BeqFac': 27.400544008848303}, {'CRRA': 9.333051913639503, 'BeqShift': 43.638384441015646, 'BeqFac': 23.525261669970227}, {'CRRA': 9.268767404448845, 'BeqShift': 46.9682573257543, 'BeqFac': 22.64867805102556}, {'CRRA': 8.831533831545041, 'BeqShift': 45.59466418086527, 'BeqFac': 23.238317991339443}, {'CRRA': 9.361620676185886, 'BeqShift': 45.40070550988308, 'BeqFac': 23.315793111204844}, {'CRRA': 9.796481835172973, 'BeqShift': 45.65132081738558, 'BeqFac': 23.080963630626602}, {'CRRA': 9.146694561635886, 'BeqShift': 46.39516388252553, 'BeqFac': 23.23442270996616}, {'CRRA': 9.519809545643264, 'BeqShift': 45.92310412684718, 'BeqFac': 22.49775828581611}, {'CRRA': 9.178245077276975, 'BeqShift': 45.91327811917426, 'BeqFac': 23.579154566902133}, {'CRRA': 9.637366606519059, 'BeqShift': 46.11104748089384, 'BeqFac': 23.39552419143928}, {'CRRA': 9.04152500161205, 'BeqShift': 46.12418513753196, 'BeqFac': 22.550855559324393}, {'CRRA': 8.756549283474971, 'BeqShift': 46.12546685730564, 'BeqFac': 23.029586507428785}, {'CRRA': 9.415898206571834, 'BeqShift': 45.406456940223244, 'BeqFac': 22.725398074681124}, {'CRRA': 9.702984082303058, 'BeqShift': 46.23699979289743, 'BeqFac': 22.875721664416524}, {'CRRA': 8.907901362536863, 'BeqShift': 45.572436878516534, 'BeqFac': 22.700709380677225}, {'CRRA': 9.2269326252332, 'BeqShift': 46.40381892664681, 'BeqFac': 22.77679267843739}, {'CRRA': 9.221910364827966, 'BeqShift': 45.338751316218215, 'BeqFac': 23.202571270413852}, {'CRRA': 9.223886263826088, 'BeqShift': 45.90974892254417, 'BeqFac': 23.256216676893683}, {'CRRA': 9.221751706837178, 'BeqShift': 45.58988884682311, 'BeqFac': 23.063324451586116}, {'CRRA': 9.222505357250864, 'BeqShift': 45.69461820848268, 'BeqFac': 22.965402595154597}, {'CRRA': 9.244008790058333, 'BeqShift': 45.5486962511117, 'BeqFac': 23.004576128525276}, {'CRRA': 9.216406285831768, 'BeqShift': 45.58028224471952, 'BeqFac': 23.09744161387024}, {'CRRA': 9.240933603586875, 'BeqShift': 45.61982496608793, 'BeqFac': 23.058772013506424}, {'CRRA': 9.234749717455506, 'BeqShift': 45.595614465761955, 'BeqFac': 23.03041381349209}, {'CRRA': 9.202961465924762, 'BeqShift': 45.56888112953985, 'BeqFac': 23.04117848687416}, {'CRRA': 9.201784894590327, 'BeqShift': 45.60215589574166, 'BeqFac': 23.036200900720644}, {'CRRA': 9.247426332299995, 'BeqShift': 45.574415986204556, 'BeqFac': 23.082977575603586}, {'CRRA': 9.189826267295379, 'BeqShift': 45.60026608658839, 'BeqFac': 23.07589108585866}, {'CRRA': 9.195966849284334, 'BeqShift': 45.566999552023354, 'BeqFac': 23.073125594201784}, {'CRRA': 9.231363706484517, 'BeqShift': 45.55554449176668, 'BeqFac': 23.059730591466266}, {'CRRA': 9.207303364641179, 'BeqShift': 45.62269249218854, 'BeqFac': 23.06323871624112}, {'CRRA': 9.23266474121237, 'BeqShift': 45.609562436423126, 'BeqFac': 23.091229588120438}, {'CRRA': 9.256754750095292, 'BeqShift': 45.58801981025229, 'BeqFac': 23.05583213839253}, {'CRRA': 9.18863529106902, 'BeqShift': 45.600314176075436, 'BeqFac': 23.07223829523934}, {'CRRA': 9.168147552702221, 'BeqShift': 45.531257051169746, 'BeqFac': 23.06562619582368}, {'CRRA': 9.168918596025406, 'BeqShift': 45.575975231930954, 'BeqFac': 23.090429486909624}, {'CRRA': 9.183342948566528, 'BeqShift': 45.60584935731797, 'BeqFac': 23.055923321196172}, {'CRRA': 9.194720488865237, 'BeqShift': 45.60608041684006, 'BeqFac': 23.075404271151562}, {'CRRA': 9.191516911458288, 'BeqShift': 45.6017014622688, 'BeqFac': 23.058099905765154}, {'CRRA': 9.214133934207393, 'BeqShift': 45.628639140443504, 'BeqFac': 23.048420509242046}, {'CRRA': 9.20208961767841, 'BeqShift': 45.641385520352735, 'BeqFac': 23.04472260286614}, {'CRRA': 9.185606909284198, 'BeqShift': 45.675197732596914, 'BeqFac': 23.044759115436054}, {'CRRA': 9.187932774344503, 'BeqShift': 45.635125743114706, 'BeqFac': 23.054736295494244}, {'CRRA': 9.210527889769837, 'BeqShift': 45.642028636921346, 'BeqFac': 23.047669556113426}, {'CRRA': 9.198717723735376, 'BeqShift': 45.63699240343462, 'BeqFac': 23.034611068498204}, {'CRRA': 9.202828901152245, 'BeqShift': 45.63774773963509, 'BeqFac': 23.04931335079104}, {'CRRA': 9.212786735591258, 'BeqShift': 45.64603770370286, 'BeqFac': 23.047557931717197}, {'CRRA': 9.21155599333772, 'BeqShift': 45.64044685682919, 'BeqFac': 23.04644973413689}, {'CRRA': 9.210885017013494, 'BeqShift': 45.64284350706606, 'BeqFac': 23.04835012529288}, {'CRRA': 9.210790897716553, 'BeqShift': 45.64276152736314, 'BeqFac': 23.046864307053067}, {'CRRA': 9.211508026724854, 'BeqShift': 45.64148651466892, 'BeqFac': 23.04768230922163}, {'CRRA': 9.210471461362458, 'BeqShift': 45.64091060454041, 'BeqFac': 23.047630223443228}, {'CRRA': 9.211527920587232, 'BeqShift': 45.64249071767996, 'BeqFac': 23.047466707978835}, {'CRRA': 9.20969889083722, 'BeqShift': 45.64210371478283, 'BeqFac': 23.046919988429114}, {'CRRA': 9.210016075092323, 'BeqShift': 45.643020199838354, 'BeqFac': 23.047571697304832}, {'CRRA': 9.209737855991232, 'BeqShift': 45.64242608366559, 'BeqFac': 23.048357022725764}, {'CRRA': 9.210181077211525, 'BeqShift': 45.6415117304607, 'BeqFac': 23.04860082212766}, {'CRRA': 9.209582970482286, 'BeqShift': 45.641434808180165, 'BeqFac': 23.04757352177014}, {'CRRA': 9.211138979067368, 'BeqShift': 45.64179134643108, 'BeqFac': 23.0485778461126}, {'CRRA': 9.210663248412404, 'BeqShift': 45.64173145828194, 'BeqFac': 23.04659806625202}, {'CRRA': 9.209408148064174, 'BeqShift': 45.642000675489335, 'BeqFac': 23.047658407129283}, {'CRRA': 9.207168076249175, 'BeqShift': 45.64197451734907, 'BeqFac': 23.047675857947592}, {'CRRA': 9.202696454836946, 'BeqShift': 45.64218581986054, 'BeqFac': 23.047487190893754}, {'CRRA': 9.204935723944422, 'BeqShift': 45.641826120090585, 'BeqFac': 23.047792012830623}, {'CRRA': 9.206399869381904, 'BeqShift': 45.642244131402585, 'BeqFac': 23.048446345322642}, {'CRRA': 9.206767105271858, 'BeqShift': 45.642984279653554, 'BeqFac': 23.050548729131396}, {'CRRA': 9.205923254839844, 'BeqShift': 45.64307551103424, 'BeqFac': 23.05127970171125}, {'CRRA': 9.206698827452305, 'BeqShift': 45.64243320268834, 'BeqFac': 23.05062176491027}, {'CRRA': 9.206594232151652, 'BeqShift': 45.64340397650702, 'BeqFac': 23.050220626490844}, {'CRRA': 9.20713337603455, 'BeqShift': 45.64283882773331, 'BeqFac': 23.050150770120283}, {'CRRA': 9.207115847639438, 'BeqShift': 45.64269404388535, 'BeqFac': 23.050220363683852}, {'CRRA': 9.206823459476313, 'BeqShift': 45.64331021189635, 'BeqFac': 23.051000696258495}, {'CRRA': 9.207041628062601, 'BeqShift': 45.643427693084526, 'BeqFac': 23.05075294390518}, {'CRRA': 9.206380379259455, 'BeqShift': 45.642693314755185, 'BeqFac': 23.05083062330743}, {'CRRA': 9.206929117674852, 'BeqShift': 45.64245732193357, 'BeqFac': 23.050647468433905}, {'CRRA': 9.206993883107025, 'BeqShift': 45.64346006515096, 'BeqFac': 23.050738154264803}, {'CRRA': 9.20699901831678, 'BeqShift': 45.64332825830781, 'BeqFac': 23.050172462029135}, {'CRRA': 9.207244448400411, 'BeqShift': 45.64270232249096, 'BeqFac': 23.050469195469862}, {'CRRA': 9.206733994928353, 'BeqShift': 45.64309089048603, 'BeqFac': 23.05109756402714}, {'CRRA': 9.207263831163626, 'BeqShift': 45.64311555604552, 'BeqFac': 23.050325767689454}, {'CRRA': 9.206498242579613, 'BeqShift': 45.64304241379752, 'BeqFac': 23.05060120532441}, {'CRRA': 9.206634362553118, 'BeqShift': 45.64301072905277, 'BeqFac': 23.050584574899688}, {'CRRA': 9.206831909816598, 'BeqShift': 45.64295993768132, 'BeqFac': 23.05055917514351}, {'CRRA': 9.206773951534302, 'BeqShift': 45.64293216341425, 'BeqFac': 23.050594970953288}, {'CRRA': 9.206716014741186, 'BeqShift': 45.64295358692788, 'BeqFac': 23.05051200047682}, {'CRRA': 9.20678314151098, 'BeqShift': 45.642966712374324, 'BeqFac': 23.050482884545165}, {'CRRA': 9.20679670791884, 'BeqShift': 45.642996568355, 'BeqFac': 23.050610970202314}, {'CRRA': 9.206828001552537, 'BeqShift': 45.64301131663226, 'BeqFac': 23.050527236700585}, {'CRRA': 9.20671451644574, 'BeqShift': 45.64302029488826, 'BeqFac': 23.050519770574162}, {'CRRA': 9.206717384370393, 'BeqShift': 45.64294639381846, 'BeqFac': 23.050580253332537}, {'CRRA': 9.206780588202152, 'BeqShift': 45.642919535988945, 'BeqFac': 23.05052575635873}, {'CRRA': 9.206768005001422, 'BeqShift': 45.64303350167378, 'BeqFac': 23.050498953002453}, {'CRRA': 9.206732489025335, 'BeqShift': 45.643018538997424, 'BeqFac': 23.05059902120468}, {'CRRA': 9.206780183148403, 'BeqShift': 45.64305049040274, 'BeqFac': 23.050567340569742}, {'CRRA': 9.206816622659327, 'BeqShift': 45.642949465886495, 'BeqFac': 23.050513553717227}, {'CRRA': 9.206733419138653, 'BeqShift': 45.64298069805773, 'BeqFac': 23.05055754596479}, {'CRRA': 9.206752385405242, 'BeqShift': 45.64298302466031, 'BeqFac': 23.050558114252937}, {'CRRA': 9.206763701008121, 'BeqShift': 45.64298846386457, 'BeqFac': 23.05054183813267}, {'CRRA': 9.20677381754346, 'BeqShift': 45.64298167746425, 'BeqFac': 23.050553704723587}, {'CRRA': 9.206761795906926, 'BeqShift': 45.642977717452816, 'BeqFac': 23.050546420308667}, {'CRRA': 9.206763719848476, 'BeqShift': 45.64299224581804, 'BeqFac': 23.050550018173173}, {'CRRA': 9.206767383102955, 'BeqShift': 45.64298079689447, 'BeqFac': 23.05054070568476}, {'CRRA': 9.206772578794476, 'BeqShift': 45.64298953708823, 'BeqFac': 23.050553086014183}, {'CRRA': 9.206758543607302, 'BeqShift': 45.64298542723826, 'BeqFac': 23.050547327901125}, {'CRRA': 9.20676421096892, 'BeqShift': 45.642979391200605, 'BeqFac': 23.050555385597065}, {'CRRA': 9.206774382027705, 'BeqShift': 45.64298244517857, 'BeqFac': 23.050544227351445}, {'CRRA': 9.206769831250977, 'BeqShift': 45.6429759865795, 'BeqFac': 23.05054934269274}, {'CRRA': 9.206765550077016, 'BeqShift': 45.64298728889666, 'BeqFac': 23.05055679810418}, {'CRRA': 9.206771788913986, 'BeqShift': 45.642990348549915, 'BeqFac': 23.05054450840986}, {'CRRA': 9.206775856414323, 'BeqShift': 45.64298427855443, 'BeqFac': 23.05054873023735}], 'criterion': [0.6414954627541696, 0.705080307627117, 1.0156227891856817, 1.3706599175889254, 0.6466666874861555, 0.6558090761059442, 1.4378197273384359, 0.797824505494891, 1.1313558981352445, 0.6521249660157109, 0.6846709995515564, 1.0354097200621724, 1.1002663590477124, 0.6417462690448607, 0.6417166772513854, 0.641534122998605, 0.6468138219556707, 0.6420119029750454, 0.6537363005859433, 0.6416839944749574, 0.6444586219497835, 0.6414198885933808, 0.6477829076662067, 0.6426859704748842, 0.6490011557171669, 0.6426219628812977, 0.6499298106691026, 0.6449215915270762, 0.6414015158827587, 0.6413556371977909, 0.6413751105589036, 0.6413538895520631, 0.6413601492888105, 0.6415514740422953, 0.6412964787869825, 0.6415461265052923, 0.6414571768147486, 0.6412685056234589, 0.6412815172514039, 0.6415762177058121, 0.6413029648372444, 0.6412981556453861, 0.6414173071894537, 0.6412048202093121, 0.6414329200652998, 0.6416044108046374, 0.64132278013026, 0.6414343864325133, 0.6414243782009376, 0.6414087932865302, 0.6412954271044502, 0.6412865692543277, 0.6412854794294207, 0.641279581055819, 0.6413818350153835, 0.6413360725922467, 0.6412388217057458, 0.6412877040107962, 0.6412706976786109, 0.6412739272492612, 0.6412528783892343, 0.6412455571674617, 0.6412437419225396, 0.6412523925678478, 0.641237872543212, 0.6412525940364707, 0.6412266965010901, 0.6412304930550558, 0.6412272191205531, 0.641233030463995, 0.6412251230472868, 0.6412487097674622, 0.6412413355178332, 0.6412231729718957, 0.641203166149811, 0.6412728891948222, 0.6412280723530474, 0.6412001975141021, 0.6411981649680744, 0.6412079437030589, 0.6411984036181763, 0.6411986911783254, 0.6412027480647225, 0.641202525461889, 0.6411987437639856, 0.6412015723843267, 0.641200500556385, 0.6412001120408095, 0.6412009516967749, 0.6412010184458711, 0.6412040999888278, 0.6411982806489596, 0.6412043369021567, 0.641199213576318, 0.6411985861573757, 0.6411988531624396, 0.6411981410601364, 0.6411983435068044, 0.6411982218360789, 0.6411983974477781, 0.641198802565166, 0.6411983487460016, 0.6411983387176948, 0.6411981887862126, 0.6411981618258916, 0.6411982859124767, 0.6411981835432701, 0.6411986552585525, 0.6411982826614723, 0.6411982163849296, 0.6411981768576345, 0.6411981415280087, 0.641198183511717, 0.6411981767918296, 0.6411981639977796, 0.6411981458535818, 0.6411981948719611, 0.6411981750765026, 0.6411981395569295, 0.6411981554481666, 0.6411981703995496, 0.6411981486118316, 0.6411981344087745], 'runtime': [0.0, 1.6660772569994151, 1.8709459969995805, 2.0942662709994693, 2.2992738539996935, 2.573140214999512, 2.793285908999678, 3.0239409299992985, 3.21622742999989, 3.619086903999232, 3.837496295999699, 4.064787764999892, 4.257744123999146, 5.771405386999504, 7.115736492999531, 8.483594589999484, 10.179792636999991, 10.376474048999626, 10.572450558999662, 10.776888375999988, 10.970461102999252, 11.2191199709996, 11.477609637999194, 11.685499741999593, 11.92565495799954, 12.199407783999959, 12.418102449999424, 12.646197193999797, 14.152243655999882, 15.625608827999713, 16.969351719999395, 18.28108473499924, 19.585364371999276, 20.901589727999635, 22.48934374199962, 22.68442717599919, 22.880525249999664, 23.091497723999964, 23.296080404999884, 23.49989032999929, 23.722511152999687, 24.103386021000006, 24.334308810999573, 24.55911114099945, 24.749386731999948, 24.971330100999694, 26.516184221999538, 27.830082762999155, 29.15997776199947, 30.618337350999354, 32.042491603999224, 33.47518897499958, 34.98603190199992, 36.43389601199942, 37.84166763199937, 39.21184449299926, 40.55340066699955, 41.92501889799951, 43.2515812369993, 44.711765780999485, 46.01470684099968, 47.659159168999395, 47.85348247499951, 48.05084095099937, 48.25375765299941, 48.457000436999806, 48.651789432999976, 48.87244264999936, 49.13459188999968, 49.35882806399968, 49.59038818599947, 49.81993929499913, 50.037629032999575, 51.526061966999805, 52.89645295799983, 54.40159700000004, 55.99065433299984, 57.3362580489993, 58.66196896999918, 59.97153813599925, 61.57381356899987, 61.760147432999474, 62.01530456399996, 62.21522431899939, 62.42186290299924, 62.657604192999315, 62.87575448699954, 63.08432635399913, 63.47667616999934, 63.669311561999166, 63.89146974599953, 64.14564449699992, 65.63578254099957, 66.97582318299919, 68.28952709699934, 69.91957877599998, 70.13097531499989, 70.39026367599945, 70.66363012599959, 70.86506305199964, 71.1010670679998, 71.33640461300001, 71.55638564799938, 71.81790237399946, 72.03107159499996, 72.23905201799971, 72.46167476499977, 74.07334276299935, 75.45991226499973, 77.02644426299958, 78.62224931799938, 78.81875102399954, 79.01513964099922, 79.23094035199938, 79.42576199999985, 79.6535652449993, 79.8579345169992, 80.10478922699986, 80.32257100899915, 80.57707195499916, 80.81765127299968, 81.04075872399972, 82.53920170899983], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 8, 9, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 37, 38, 39, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 41, 42, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45]}"
+convergence_report,"{'one_step': {'relative_criterion_change': 3.5828565118959094e-08, 'relative_params_change': 0.1730113235913555, 'absolute_criterion_change': 2.297320911281986e-08, 'absolute_params_change': 5.876738890647083}, 'five_steps': {'relative_criterion_change': 3.5828565118959094e-08, 'relative_params_change': 0.1730113235913555, 'absolute_criterion_change': 2.297320911281986e-08, 'absolute_params_change': 5.876738890647083}}"
+multistart_info,"{'start_parameters': [{'CRRA': 9.20677821614649, 'BeqShift': 50.64405071849033, 'BeqFac': 26.1368726540768}, {'CRRA': 9.275230386313043, 'BeqShift': 45.88119053785236, 'BeqFac': 23.014811093019418}, {'CRRA': 9.128116958674036, 'BeqShift': 48.90833875417502, 'BeqFac': 23.98172788815444}], 'local_optima': [Minimize with 3 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Relative criterion change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 1.182e-08* 2.384e-08*
+relative_params_change 7.164e-07* 7.164e-07*
+absolute_criterion_change 7.578e-09** 1.529e-08*
+absolute_params_change 3.435e-05 3.435e-05
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.), Minimize with 3 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 8.029e-09** 7.847e-06*
+relative_params_change 2.558e-07* 0.0001336
+absolute_criterion_change 5.148e-09** 5.032e-06*
+absolute_params_change 5.08e-06* 0.00307
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.), Minimize with 3 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 5.493e-08* 6.761e-06*
+relative_params_change 1.236e-05 5.445e-05
+absolute_criterion_change 3.522e-08* 4.335e-06*
+absolute_params_change 0.0006154 0.000671
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.)], 'exploration_sample': [{'CRRA': 9.206778216146489, 'BeqShift': 50.64405071849033, 'BeqFac': 26.1368726540768}, {'CRRA': 9.368749999999999, 'BeqShift': 39.375, 'BeqFac': 18.75}, {'CRRA': 8.778125, 'BeqShift': 63.4375, 'BeqFac': 28.125}, {'CRRA': 9.959375, 'BeqShift': 6.5625, 'BeqFac': 84.375}, {'CRRA': 8.1875, 'BeqShift': 26.25, 'BeqFac': 62.5}, {'CRRA': 10.549999999999999, 'BeqShift': 35.0, 'BeqFac': 50.0}, {'CRRA': 7.596874999999999, 'BeqShift': 50.3125, 'BeqFac': 71.875}, {'CRRA': 7.00625, 'BeqShift': 13.125, 'BeqFac': 31.25}, {'CRRA': 11.73125, 'BeqShift': 30.625, 'BeqFac': 6.25}, {'CRRA': 12.321874999999999, 'BeqShift': 67.8125, 'BeqFac': 96.875}, {'CRRA': 6.415625, 'BeqShift': 19.6875, 'BeqFac': 15.625}, {'CRRA': 12.9125, 'BeqShift': 8.75, 'BeqFac': 87.5}, {'CRRA': 5.824999999999999, 'BeqShift': 52.5, 'BeqFac': 75.0}, {'CRRA': 13.503124999999999, 'BeqShift': 45.9375, 'BeqFac': 3.125}, {'CRRA': 5.234375, 'BeqShift': 59.0625, 'BeqFac': 9.375}, {'CRRA': 14.093749999999998, 'BeqShift': 56.875, 'BeqFac': 43.75}, {'CRRA': 14.684375, 'BeqShift': 24.0625, 'BeqFac': 59.375}, {'CRRA': 4.64375, 'BeqShift': 21.875, 'BeqFac': 93.75}, {'CRRA': 15.274999999999999, 'BeqShift': 17.5, 'BeqFac': 25.0}, {'CRRA': 4.053125, 'BeqShift': 10.9375, 'BeqFac': 53.125}, {'CRRA': 15.865624999999998, 'BeqShift': 54.6875, 'BeqFac': 65.625}, {'CRRA': 3.4625, 'BeqShift': 43.75, 'BeqFac': 37.5}, {'CRRA': 16.45625, 'BeqShift': 48.125, 'BeqFac': 81.25}, {'CRRA': 17.046875, 'BeqShift': 15.3125, 'BeqFac': 21.875}, {'CRRA': 2.871875, 'BeqShift': 32.8125, 'BeqFac': 46.875}, {'CRRA': 2.28125, 'BeqShift': 65.625, 'BeqFac': 56.25}, {'CRRA': 17.6375, 'BeqShift': 61.25, 'BeqFac': 12.5}, {'CRRA': 18.228125, 'BeqShift': 28.4375, 'BeqFac': 78.125}, {'CRRA': 18.81875, 'BeqShift': 4.375, 'BeqFac': 68.75}, {'CRRA': 19.409375, 'BeqShift': 41.5625, 'BeqFac': 34.375}], 'exploration_results': array([0.64119816, 0.64211564, 0.64842422, 0.66164008, 0.68191739,
+ 0.7044766 , 0.74714868, 0.84823283, 0.8626059 , 0.97951322,
+ 0.98996599, 1.12431839, 1.18221304, 1.30406645, 1.43892243,
+ 1.52011014, 1.78024917, 1.78131285, 2.0971452 , 2.24344059,
+ 2.48116605, 2.89787 , 2.94379242, 3.4976294 , 3.77080322,
+ 4.13701934, 4.16035282, 4.94978648, 5.89491246, 7.00125067])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([ 9.27523039, 45.88119054, 23.01481109]), radius=4.5881190537852365, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=[0], model=ScalarModel(intercept=0.6414954627541696, linear_terms=array([0., 0., 0.]), square_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=0, candidate_x=array([ 9.27523039, 45.88119054, 23.01481109]), index=0, x=array([ 9.27523039, 45.88119054, 23.01481109]), fval=0.6414954627541696, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([ 9.27523039, 45.88119054, 23.01481109]), radius=4.5881190537852365, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=0.5891883650231197, linear_terms=array([-0.00968953, -0.00117103, -0.00391564]), square_terms=array([[ 2.04288848e+00, -7.00381948e-03, -4.70750143e-03],
+ [-7.00381948e-03, 3.59762915e-05, 4.06366460e-05],
+ [-4.70750143e-03, 4.06366460e-05, 1.41716415e-04]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=13, candidate_x=array([ 9.31167836, 47.2378392 , 27.40054401]), index=0, x=array([ 9.27523039, 45.88119054, 23.01481109]), fval=0.6414954627541696, rho=-0.061531136949691, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.27523039, 45.88119054, 23.01481109]), radius=2.2940595268926183, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=0.5838720419935737, linear_terms=array([-0.00815151, 0.00777168, -0.0017958 ]), square_terms=array([[ 5.11958440e-01, 4.80442275e-03, -1.12028161e-03],
+ [ 4.80442275e-03, 3.51638936e-04, -1.06350122e-04],
+ [-1.12028161e-03, -1.06350122e-04, 3.29771720e-05]]), scale=2.2940595268926183, shift=array([ 9.27523039, 45.88119054, 23.01481109])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=14, candidate_x=array([ 9.33305191, 43.63838444, 23.52526167]), index=0, x=array([ 9.27523039, 45.88119054, 23.01481109]), fval=0.6414954627541696, rho=-0.02774497157353281, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_discarded=array([ 4, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.27523039, 45.88119054, 23.01481109]), radius=1.1470297634463091, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 14]), model=ScalarModel(intercept=0.592708784872857, linear_terms=array([ 0.00152966, -0.00076228, 0.00025576]), square_terms=array([[ 1.29771760e-01, -7.60521227e-04, 2.29395773e-04],
+ [-7.60521227e-04, 6.85822163e-06, -1.35713831e-06],
+ [ 2.29395773e-04, -1.35713831e-06, 6.87591617e-07]]), scale=1.1470297634463091, shift=array([ 9.27523039, 45.88119054, 23.01481109])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=15, candidate_x=array([ 9.2687674 , 46.96825733, 22.64867805]), index=0, x=array([ 9.27523039, 45.88119054, 23.01481109]), fval=0.6414954627541696, rho=-0.048166814746878124, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 14]), old_indices_discarded=array([ 4, 11, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.27523039, 45.88119054, 23.01481109]), radius=0.5735148817231546, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]), model=ScalarModel(intercept=0.6406974663539128, linear_terms=array([ 2.50388822e-03, -3.55470721e-05, 1.59802574e-05]), square_terms=array([[ 2.95828916e-02, -9.48578252e-06, 1.81188466e-06],
+ [-9.48578252e-06, 2.35871761e-08, 1.80023429e-08],
+ [ 1.81188466e-06, 1.80023429e-08, 6.07710911e-08]]), scale=0.5735148817231546, shift=array([ 9.27523039, 45.88119054, 23.01481109])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=28, candidate_x=array([ 9.22693263, 46.40381893, 22.77679268]), index=28, x=array([ 9.22693263, 46.40381893, 22.77679268]), fval=0.6414015158827587, rho=0.6515618478573166, accepted=True, new_indices=array([16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]), old_indices_used=array([ 0, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.5763036284627624, relative_step_length=1.0048625534026752, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.22693263, 46.40381893, 22.77679268]), radius=1.1470297634463091, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 15, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28]), model=ScalarModel(intercept=0.6408041108663739, linear_terms=array([ 0.00065102, 0.00049794, -0.00019907]), square_terms=array([[ 1.18433148e-01, 1.13521966e-04, -6.65681444e-05],
+ [ 1.13521966e-04, 8.00378364e-07, -1.25371889e-07],
+ [-6.65681444e-05, -1.25371889e-07, 3.16174660e-07]]), scale=1.1470297634463091, shift=array([ 9.22693263, 46.40381893, 22.77679268])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=29, candidate_x=array([ 9.22191036, 45.33875132, 23.20257127]), index=29, x=array([ 9.22191036, 45.33875132, 23.20257127]), fval=0.6413556371977909, rho=0.08543637029916488, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 15, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28]), old_indices_discarded=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 23, 26]), step_length=1.1470316679451833, relative_step_length=1.0000016603744164, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.22191036, 45.33875132, 23.20257127]), radius=0.5735148817231546, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 29]), model=ScalarModel(intercept=0.6408171976152108, linear_terms=array([-6.73581006e-05, -4.04978148e-04, -3.80738956e-05]), square_terms=array([[ 2.95973821e-02, -3.63270062e-05, 1.65796041e-06],
+ [-3.63270062e-05, 4.23472225e-07, 4.40106549e-08],
+ [ 1.65796041e-06, 4.40106549e-08, 5.10964732e-08]]), scale=0.5735148817231546, shift=array([ 9.22191036, 45.33875132, 23.20257127])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=30, candidate_x=array([ 9.22388626, 45.90974892, 23.25621668]), index=29, x=array([ 9.22191036, 45.33875132, 23.20257127]), fval=0.6413556371977909, rho=-0.04787806421435067, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 29]), old_indices_discarded=array([14, 15, 19, 26, 28]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.22191036, 45.33875132, 23.20257127]), radius=0.2867574408615773, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 16, 17, 18, 20, 21, 22, 24, 25, 27, 29, 30]), model=ScalarModel(intercept=0.6410097550441288, linear_terms=array([ 1.39651156e-05, -2.88874413e-04, 1.60170799e-04]), square_terms=array([[ 7.40015236e-03, -8.47567918e-06, 4.66545233e-06],
+ [-8.47567918e-06, 1.73700052e-07, -8.46835155e-08],
+ [ 4.66545233e-06, -8.46835155e-08, 6.84200563e-08]]), scale=0.2867574408615773, shift=array([ 9.22191036, 45.33875132, 23.20257127])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=31, candidate_x=array([ 9.22175171, 45.58988885, 23.06332445]), index=31, x=array([ 9.22175171, 45.58988885, 23.06332445]), fval=0.6413538895520631, rho=0.005285332353177379, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17, 18, 20, 21, 22, 24, 25, 27, 29, 30]), old_indices_discarded=array([19, 23, 26, 28]), step_length=0.2871580766830809, relative_step_length=1.0013971244139295, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.22175171, 45.58988885, 23.06332445]), radius=0.14337872043078864, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 16, 17, 18, 21, 24, 25, 27, 29, 30, 31]), model=ScalarModel(intercept=0.6407199525901757, linear_terms=array([-3.92919336e-06, -1.65929664e-04, 1.55155143e-04]), square_terms=array([[ 1.84527109e-03, -5.57596163e-06, 4.23287767e-06],
+ [-5.57596163e-06, 7.39326117e-08, -6.46121591e-08],
+ [ 4.23287767e-06, -6.46121591e-08, 7.38892314e-08]]), scale=0.14337872043078864, shift=array([ 9.22175171, 45.58988885, 23.06332445])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=32, candidate_x=array([ 9.22250536, 45.69461821, 22.9654026 ]), index=31, x=array([ 9.22175171, 45.58988885, 23.06332445]), fval=0.6413538895520631, rho=-0.02756030763036017, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17, 18, 21, 24, 25, 27, 29, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.22175171, 45.58988885, 23.06332445]), radius=0.07168936021539432, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 17, 29, 31, 32]), model=ScalarModel(intercept=0.6413730871630696, linear_terms=array([-1.63989532e-04, 3.65884738e-05, 5.21973410e-05]), square_terms=array([[ 4.60761375e-04, -7.31726922e-07, -1.08851257e-06],
+ [-7.31726922e-07, 2.10367260e-08, 3.07816346e-08],
+ [-1.08851257e-06, 3.07816346e-08, 4.50672893e-08]]), scale=0.07168936021539432, shift=array([ 9.22175171, 45.58988885, 23.06332445])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=33, candidate_x=array([ 9.24400879, 45.54869625, 23.00457613]), index=31, x=array([ 9.22175171, 45.58988885, 23.06332445]), fval=0.6413538895520631, rho=-2.1461414457605144, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 17, 29, 31, 32]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.22175171, 45.58988885, 23.06332445]), radius=0.03584468010769716, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]), model=ScalarModel(intercept=0.6413717608202565, linear_terms=array([ 2.00924894e-04, -1.09372237e-05, -5.43208484e-06]), square_terms=array([[1.15625621e-04, 3.96142165e-08, 3.87212268e-09],
+ [3.96142165e-08, 8.40304844e-10, 2.22207615e-10],
+ [3.87212268e-09, 2.22207615e-10, 3.03437454e-10]]), scale=0.03584468010769716, shift=array([ 9.22175171, 45.58988885, 23.06332445])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=46, candidate_x=array([ 9.18863529, 45.60031418, 23.0722383 ]), index=46, x=array([ 9.18863529, 45.60031418, 23.0722383 ]), fval=0.6413227801302601, rho=0.2209034862216151, accepted=True, new_indices=array([34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]), old_indices_used=array([31, 32, 33]), old_indices_discarded=array([], dtype=int64), step_length=0.03584468010769763, relative_step_length=1.000000000000013, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.18863529, 45.60031418, 23.0722383 ]), radius=0.07168936021539432, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([31, 34, 35, 36, 37, 38, 39, 41, 42, 44, 45, 46]), model=ScalarModel(intercept=0.6412728088877506, linear_terms=array([1.47083725e-04, 4.86568931e-05, 4.73713244e-06]), square_terms=array([[4.62518943e-04, 5.01529807e-07, 3.15449154e-07],
+ [5.01529807e-07, 7.95596362e-09, 2.36322212e-09],
+ [3.15449154e-07, 2.36322212e-09, 4.02093856e-09]]), scale=0.07168936021539432, shift=array([ 9.18863529, 45.60031418, 23.0722383 ])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=47, candidate_x=array([ 9.16814755, 45.53125705, 23.0656262 ]), index=46, x=array([ 9.18863529, 45.60031418, 23.0722383 ]), fval=0.6413227801302601, rho=-1.5874902190178886, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([31, 34, 35, 36, 37, 38, 39, 41, 42, 44, 45, 46]), old_indices_discarded=array([ 0, 29, 32, 33, 40, 43]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.18863529, 45.60031418, 23.0722383 ]), radius=0.03584468010769716, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([31, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46]), model=ScalarModel(intercept=0.6412601275794009, linear_terms=array([ 6.58420832e-05, 2.37502856e-06, -1.69911469e-06]), square_terms=array([[1.16248591e-04, 7.39108563e-08, 8.34825523e-08],
+ [7.39108563e-08, 8.95644154e-10, 2.55046365e-10],
+ [8.34825523e-08, 2.55046365e-10, 1.63561948e-09]]), scale=0.03584468010769716, shift=array([ 9.18863529, 45.60031418, 23.0722383 ])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=48, candidate_x=array([ 9.1689186 , 45.57597523, 23.09042949]), index=46, x=array([ 9.18863529, 45.60031418, 23.0722383 ]), fval=0.6413227801302601, rho=-4.814845868541751, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([31, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46]), old_indices_discarded=array([32, 33, 39, 45, 47]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.18863529, 45.60031418, 23.0722383 ]), radius=0.01792234005384858, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([31, 34, 35, 36, 37, 38, 40, 41, 43, 44, 46, 48]), model=ScalarModel(intercept=0.641301357069062, linear_terms=array([ 1.13424122e-05, -2.86544384e-06, 8.47454926e-06]), square_terms=array([[2.91095694e-05, 2.83004622e-08, 8.04819438e-09],
+ [2.83004622e-08, 4.86209411e-10, 4.53100349e-10],
+ [8.04819438e-09, 4.53100349e-10, 1.09578749e-09]]), scale=0.01792234005384858, shift=array([ 9.18863529, 45.60031418, 23.0722383 ])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=49, candidate_x=array([ 9.18334295, 45.60584936, 23.05592332]), index=46, x=array([ 9.18863529, 45.60031418, 23.0722383 ]), fval=0.6413227801302601, rho=-8.05386603687764, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([31, 34, 35, 36, 37, 38, 40, 41, 43, 44, 46, 48]), old_indices_discarded=array([39, 42, 45, 47]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.18863529, 45.60031418, 23.0722383 ]), radius=0.00896117002692429, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([31, 34, 38, 40, 41, 43, 46, 48, 49]), model=ScalarModel(intercept=0.6413208790980892, linear_terms=array([-2.60118911e-05, -1.28021483e-05, -5.38316365e-06]), square_terms=array([[7.31639774e-06, 1.22085331e-08, 1.54293572e-08],
+ [1.22085331e-08, 3.60772518e-10, 1.00381975e-10],
+ [1.54293572e-08, 1.00381975e-10, 4.51829443e-10]]), scale=0.00896117002692429, shift=array([ 9.18863529, 45.60031418, 23.0722383 ])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=50, candidate_x=array([ 9.19472049, 45.60608042, 23.07540427]), index=50, x=array([ 9.19472049, 45.60608042, 23.07540427]), fval=0.6412954271044503, rho=1.047714915274639, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([31, 34, 38, 40, 41, 43, 46, 48, 49]), old_indices_discarded=array([], dtype=int64), step_length=0.008961170026924032, relative_step_length=0.9999999999999711, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.19472049, 45.60608042, 23.07540427]), radius=0.01792234005384858, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([31, 34, 35, 38, 40, 41, 43, 44, 46, 48, 49, 50]), model=ScalarModel(intercept=0.6413235472013079, linear_terms=array([5.87195972e-06, 8.56723531e-07, 3.37566941e-06]), square_terms=array([[2.91564679e-05, 1.82177678e-08, 3.36634221e-08],
+ [1.82177678e-08, 9.65257547e-10, 1.21388748e-09],
+ [3.36634221e-08, 1.21388748e-09, 2.34389772e-09]]), scale=0.01792234005384858, shift=array([ 9.19472049, 45.60608042, 23.07540427])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=51, candidate_x=array([ 9.19151691, 45.60170146, 23.05809991]), index=51, x=array([ 9.19151691, 45.60170146, 23.05809991]), fval=0.6412865692543276, rho=2.1901531589690073, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([31, 34, 35, 38, 40, 41, 43, 44, 46, 48, 49, 50]), old_indices_discarded=array([36, 37, 39, 42, 45, 47]), step_length=0.01813502723366537, relative_step_length=1.0118671545779045, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.19151691, 45.60170146, 23.05809991]), radius=0.03584468010769716, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([31, 34, 37, 38, 40, 41, 43, 46, 48, 49, 50, 51]), model=ScalarModel(intercept=0.6413084866973564, linear_terms=array([-9.43455614e-05, -2.44499112e-05, 8.66979268e-06]), square_terms=array([[ 1.16998712e-04, 1.44344558e-07, 1.33852174e-07],
+ [ 1.44344558e-07, 2.46069903e-09, -2.10488309e-10],
+ [ 1.33852174e-07, -2.10488309e-10, 7.49795177e-09]]), scale=0.03584468010769716, shift=array([ 9.19151691, 45.60170146, 23.05809991])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=52, candidate_x=array([ 9.21413393, 45.62863914, 23.04842051]), index=52, x=array([ 9.21413393, 45.62863914, 23.04842051]), fval=0.6412854794294208, rho=0.0191505676819926, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([31, 34, 37, 38, 40, 41, 43, 46, 48, 49, 50, 51]), old_indices_discarded=array([32, 33, 35, 36, 39, 42, 44, 45, 47]), step_length=0.036480939414014354, relative_step_length=1.017750452909763, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21413393, 45.62863914, 23.04842051]), radius=0.01792234005384858, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([31, 35, 36, 38, 40, 43, 44, 46, 49, 50, 51, 52]), model=ScalarModel(intercept=0.6413111545180797, linear_terms=array([ 6.07234400e-05, -2.93353077e-05, 3.62911874e-06]), square_terms=array([[ 2.91163686e-05, -3.60530090e-09, 3.27467461e-08],
+ [-3.60530090e-09, 4.70892615e-09, -1.70722796e-09],
+ [ 3.27467461e-08, -1.70722796e-09, 9.04180163e-10]]), scale=0.01792234005384858, shift=array([ 9.21413393, 45.62863914, 23.04842051])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=53, candidate_x=array([ 9.20208962, 45.64138552, 23.0447226 ]), index=53, x=array([ 9.20208962, 45.64138552, 23.0447226 ]), fval=0.641279581055819, rho=0.10563477010312446, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([31, 35, 36, 38, 40, 43, 44, 46, 49, 50, 51, 52]), old_indices_discarded=array([34, 37, 39, 41, 42, 45, 48]), step_length=0.017922340053846738, relative_step_length=0.9999999999998972, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20208962, 45.64138552, 23.0447226 ]), radius=0.03584468010769716, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([31, 35, 36, 38, 40, 43, 46, 49, 50, 51, 52, 53]), model=ScalarModel(intercept=0.6412690149568342, linear_terms=array([ 7.72982084e-05, -4.84958394e-05, 8.58288716e-08]), square_terms=array([[ 1.16667259e-04, -2.39765872e-08, 2.87804376e-07],
+ [-2.39765872e-08, 1.59054285e-08, -6.18270308e-09],
+ [ 2.87804376e-07, -6.18270308e-09, 5.46381768e-09]]), scale=0.03584468010769716, shift=array([ 9.20208962, 45.64138552, 23.0447226 ])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=54, candidate_x=array([ 9.18560691, 45.67519773, 23.04475912]), index=53, x=array([ 9.20208962, 45.64138552, 23.0447226 ]), fval=0.641279581055819, rho=-1.483262913370219, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([31, 35, 36, 38, 40, 43, 46, 49, 50, 51, 52, 53]), old_indices_discarded=array([32, 33, 34, 37, 39, 41, 42, 44, 45, 47, 48]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20208962, 45.64138552, 23.0447226 ]), radius=0.01792234005384858, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([35, 36, 38, 40, 43, 46, 49, 50, 51, 52, 53, 54]), model=ScalarModel(intercept=0.6413288335696544, linear_terms=array([ 2.99084627e-05, 3.03647513e-06, -4.81804264e-06]), square_terms=array([[ 2.91926184e-05, -1.94104060e-08, 8.16030631e-08],
+ [-1.94104060e-08, 1.14242551e-10, -1.09412828e-10],
+ [ 8.16030631e-08, -1.09412828e-10, 1.22342917e-09]]), scale=0.01792234005384858, shift=array([ 9.20208962, 45.64138552, 23.0447226 ])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=55, candidate_x=array([ 9.18793277, 45.63512574, 23.0547363 ]), index=53, x=array([ 9.20208962, 45.64138552, 23.0447226 ]), fval=0.641279581055819, rho=-3.0850952098020277, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 36, 38, 40, 43, 46, 49, 50, 51, 52, 53, 54]), old_indices_discarded=array([31, 34, 37, 39, 41, 44, 45, 48]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20208962, 45.64138552, 23.0447226 ]), radius=0.00896117002692429, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([38, 43, 49, 51, 52, 53, 54, 55]), model=ScalarModel(intercept=0.6412927018713143, linear_terms=array([-3.95830918e-05, 1.71611401e-06, -1.75745674e-05]), square_terms=array([[ 7.34282847e-06, -1.66027178e-09, 3.06944699e-08],
+ [-1.66027178e-09, 4.31041762e-11, 1.22267555e-10],
+ [ 3.06944699e-08, 1.22267555e-10, 1.11863146e-09]]), scale=0.00896117002692429, shift=array([ 9.20208962, 45.64138552, 23.0447226 ])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=56, candidate_x=array([ 9.21052789, 45.64202864, 23.04766956]), index=56, x=array([ 9.21052789, 45.64202864, 23.04766956]), fval=0.6412388217057458, rho=1.0275942194681258, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([38, 43, 49, 51, 52, 53, 54, 55]), old_indices_discarded=array([], dtype=int64), step_length=0.008961170026924889, relative_step_length=1.0000000000000668, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21052789, 45.64202864, 23.04766956]), radius=0.01792234005384858, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([35, 38, 43, 46, 49, 50, 51, 52, 53, 54, 55, 56]), model=ScalarModel(intercept=0.6413235030118442, linear_terms=array([3.04274084e-05, 4.74538518e-06, 1.23753508e-05]), square_terms=array([[ 2.91839759e-05, -9.35564134e-09, 7.99806758e-08],
+ [-9.35564134e-09, 2.75030515e-10, 1.05398303e-09],
+ [ 7.99806758e-08, 1.05398303e-09, 5.78042311e-09]]), scale=0.01792234005384858, shift=array([ 9.21052789, 45.64202864, 23.04766956])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=57, candidate_x=array([ 9.19871772, 45.6369924 , 23.03461107]), index=56, x=array([ 9.21052789, 45.64202864, 23.04766956]), fval=0.6412388217057458, rho=-2.034547178334105, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 38, 43, 46, 49, 50, 51, 52, 53, 54, 55, 56]), old_indices_discarded=array([31, 34, 36, 37, 39, 40, 41, 44, 45, 48]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21052789, 45.64202864, 23.04766956]), radius=0.00896117002692429, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([35, 38, 43, 52, 53, 54, 55, 56, 57]), model=ScalarModel(intercept=0.641336784215586, linear_terms=array([ 3.37194784e-05, 1.47646655e-05, -4.94622101e-06]), square_terms=array([[ 7.27205053e-06, -8.46098600e-09, 2.41038200e-08],
+ [-8.46098600e-09, 7.14551454e-10, 5.67261002e-10],
+ [ 2.41038200e-08, 5.67261002e-10, 1.36351391e-09]]), scale=0.00896117002692429, shift=array([ 9.21052789, 45.64202864, 23.04766956])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=58, candidate_x=array([ 9.2028289 , 45.63774774, 23.04931335]), index=56, x=array([ 9.21052789, 45.64202864, 23.04766956]), fval=0.6412388217057458, rho=-0.9305753868686838, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 38, 43, 52, 53, 54, 55, 56, 57]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21052789, 45.64202864, 23.04766956]), radius=0.004480585013462145, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([52, 53, 56, 57, 58]), model=ScalarModel(intercept=0.6412438622916211, linear_terms=array([-9.52899239e-06, -1.52791403e-05, 4.25097244e-07]), square_terms=array([[1.82495925e-06, 6.38394061e-10, 4.11144666e-10],
+ [6.38394061e-10, 4.31291655e-10, 1.19384986e-10],
+ [4.11144666e-10, 1.19384986e-10, 5.63993449e-10]]), scale=0.004480585013462145, shift=array([ 9.21052789, 45.64202864, 23.04766956])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=59, candidate_x=array([ 9.21278674, 45.6460377 , 23.04755793]), index=56, x=array([ 9.21052789, 45.64202864, 23.04766956]), fval=0.6412388217057458, rho=-1.9232326674259503, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([52, 53, 56, 57, 58]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21052789, 45.64202864, 23.04766956]), radius=0.0022402925067310725, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([53, 56, 58, 59]), model=ScalarModel(intercept=0.6412388217057453, linear_terms=array([-2.10242301e-05, 3.20216675e-05, 2.46938450e-05]), square_terms=array([[ 4.58766424e-07, -3.09316980e-09, -1.53270498e-09],
+ [-3.09316980e-09, 1.89755517e-09, 1.49970806e-09],
+ [-1.53270498e-09, 1.49970806e-09, 1.24593067e-09]]), scale=0.0022402925067310725, shift=array([ 9.21052789, 45.64202864, 23.04766956])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=60, candidate_x=array([ 9.21155599, 45.64044686, 23.04644973]), index=56, x=array([ 9.21052789, 45.64202864, 23.04766956]), fval=0.6412388217057458, rho=-0.3079080046126188, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([53, 56, 58, 59]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21052789, 45.64202864, 23.04766956]), radius=0.0011201462533655363, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([56, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72]), model=ScalarModel(intercept=0.6412388437802616, linear_terms=array([1.64312695e-05, 4.65279188e-07, 1.07229961e-07]), square_terms=array([[ 1.08773373e-07, 6.78393854e-10, -2.26235629e-10],
+ [ 6.78393854e-10, 2.77167620e-11, -8.32587980e-12],
+ [-2.26235629e-10, -8.32587980e-12, 3.11734525e-12]]), scale=0.0011201462533655363, shift=array([ 9.21052789, 45.64202864, 23.04766956])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=73, candidate_x=array([ 9.20940815, 45.64200068, 23.04765841]), index=73, x=array([ 9.20940815, 45.64200068, 23.04765841]), fval=0.6412231729718957, rho=0.9551430358606648, accepted=True, new_indices=array([61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72]), old_indices_used=array([56, 59, 60]), old_indices_discarded=array([], dtype=int64), step_length=0.0011201462533656243, relative_step_length=1.0000000000000786, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20940815, 45.64200068, 23.04765841]), radius=0.0022402925067310725, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([56, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73]), model=ScalarModel(intercept=0.6412226294004633, linear_terms=array([ 3.24586330e-05, 5.92811032e-07, -3.43705302e-08]), square_terms=array([[4.28909220e-07, 2.16458658e-11, 5.94629399e-10],
+ [2.16458658e-11, 2.77111185e-12, 8.02947612e-13],
+ [5.94629399e-10, 8.02947612e-13, 7.42708381e-12]]), scale=0.0022402925067310725, shift=array([ 9.20940815, 45.64200068, 23.04765841])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=74, candidate_x=array([ 9.20716808, 45.64197452, 23.04767586]), index=74, x=array([ 9.20716808, 45.64197452, 23.04767586]), fval=0.641203166149811, rho=0.6204008749724397, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([56, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73]), old_indices_discarded=array([53, 58, 59, 60, 66, 70]), step_length=0.002240292506730774, relative_step_length=0.9999999999998668, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20716808, 45.64197452, 23.04767586]), radius=0.004480585013462145, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([56, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74]), model=ScalarModel(intercept=0.6411998091125397, linear_terms=array([ 5.18943226e-05, -1.60828779e-06, 1.35217729e-06]), square_terms=array([[ 1.73015705e-06, 3.77827059e-09, -1.90012334e-09],
+ [ 3.77827059e-09, 9.22190115e-11, -2.17780041e-11],
+ [-1.90012334e-09, -2.17780041e-11, 2.01557834e-11]]), scale=0.004480585013462145, shift=array([ 9.20716808, 45.64197452, 23.04767586])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=75, candidate_x=array([ 9.20269645, 45.64218582, 23.04748719]), index=74, x=array([ 9.20716808, 45.64197452, 23.04767586]), fval=0.641203166149811, rho=-1.365460544825835, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([56, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74]), old_indices_discarded=array([52, 53, 55, 57, 58, 59, 60, 62, 70, 73]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20716808, 45.64197452, 23.04767586]), radius=0.0022402925067310725, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([56, 61, 62, 64, 66, 67, 68, 69, 70, 72, 73, 74]), model=ScalarModel(intercept=0.6411999998265243, linear_terms=array([ 2.50884881e-05, 1.46068594e-06, -1.10174093e-06]), square_terms=array([[ 4.30036003e-07, -3.60509007e-10, 3.77466081e-10],
+ [-3.60509007e-10, 1.02282903e-11, -9.39314439e-12],
+ [ 3.77466081e-10, -9.39314439e-12, 1.07931716e-11]]), scale=0.0022402925067310725, shift=array([ 9.20716808, 45.64197452, 23.04767586])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=76, candidate_x=array([ 9.20493572, 45.64182612, 23.04779201]), index=74, x=array([ 9.20716808, 45.64197452, 23.04767586]), fval=0.641203166149811, rho=-0.9986451321394485, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([56, 61, 62, 64, 66, 67, 68, 69, 70, 72, 73, 74]), old_indices_discarded=array([53, 58, 59, 60, 63, 65, 71, 75]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20716808, 45.64197452, 23.04767586]), radius=0.0011201462533655363, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([56, 62, 64, 66, 67, 68, 69, 70, 72, 73, 74, 76]), model=ScalarModel(intercept=0.6412213950497655, linear_terms=array([ 3.86823120e-06, -1.33070744e-06, -3.80294539e-06]), square_terms=array([[1.11795853e-07, 3.74223299e-10, 8.85352147e-10],
+ [3.74223299e-10, 5.72514104e-12, 1.55351185e-11],
+ [8.85352147e-10, 1.55351185e-11, 4.57607236e-11]]), scale=0.0011201462533655363, shift=array([ 9.20716808, 45.64197452, 23.04767586])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=77, candidate_x=array([ 9.20639987, 45.64224413, 23.04844635]), index=77, x=array([ 9.20639987, 45.64224413, 23.04844635]), fval=0.641200197514102, rho=0.5336222775676067, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([56, 62, 64, 66, 67, 68, 69, 70, 72, 73, 74, 76]), old_indices_discarded=array([60, 61, 63, 65, 71, 75]), step_length=0.001120930115522763, relative_step_length=1.000699785545746, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20639987, 45.64224413, 23.04844635]), radius=0.0022402925067310725, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([56, 64, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77]), model=ScalarModel(intercept=0.6412241577746707, linear_terms=array([-4.24139607e-06, -8.38654247e-06, -2.38208500e-05]), square_terms=array([[4.54621752e-07, 4.15189024e-09, 5.17693770e-09],
+ [4.15189024e-09, 1.53039993e-10, 2.26888691e-10],
+ [5.17693770e-09, 2.26888691e-10, 7.63852052e-10]]), scale=0.0022402925067310725, shift=array([ 9.20639987, 45.64224413, 23.04844635])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=78, candidate_x=array([ 9.20676711, 45.64298428, 23.05054873]), index=78, x=array([ 9.20676711, 45.64298428, 23.05054873]), fval=0.6411981649680742, rho=0.07874134829834548, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([56, 64, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77]), old_indices_discarded=array([53, 58, 59, 60, 61, 62, 63, 65, 71, 72]), step_length=0.0022589155167016327, relative_step_length=1.0083127582289395, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20676711, 45.64298428, 23.05054873]), radius=0.0011201462533655363, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([56, 61, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78]), model=ScalarModel(intercept=0.6412027938426249, linear_terms=array([ 5.40552063e-06, -5.81510678e-07, -4.60889875e-06]), square_terms=array([[ 1.11417104e-07, -1.28705802e-10, 6.93508248e-10],
+ [-1.28705802e-10, 1.32519455e-11, 1.07286462e-11],
+ [ 6.93508248e-10, 1.07286462e-11, 3.37418922e-11]]), scale=0.0011201462533655363, shift=array([ 9.20676711, 45.64298428, 23.05054873])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=79, candidate_x=array([ 9.20592325, 45.64307551, 23.0512797 ]), index=78, x=array([ 9.20676711, 45.64298428, 23.05054873]), fval=0.6411981649680742, rho=-1.3780848715897542, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([56, 61, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78]), old_indices_discarded=array([62, 64, 71, 75]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20676711, 45.64298428, 23.05054873]), radius=0.0005600731266827681, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91]), model=ScalarModel(intercept=0.6412009708000245, linear_terms=array([-6.35493630e-07, -2.15627085e-07, 3.36056584e-07]), square_terms=array([[ 2.97074267e-08, 1.30526313e-11, -3.63146602e-11],
+ [ 1.30526313e-11, 1.58264530e-13, 1.04142450e-13],
+ [-3.63146602e-11, 1.04142450e-13, 1.34699673e-12]]), scale=0.0005600731266827681, shift=array([ 9.20676711, 45.64298428, 23.05054873])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=92, candidate_x=array([ 9.20726383, 45.64311556, 23.05032577]), index=78, x=array([ 9.20676711, 45.64298428, 23.05054873]), fval=0.6411981649680742, rho=-8.383049611305378, accepted=False, new_indices=array([80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91]), old_indices_used=array([77, 78, 79]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20676711, 45.64298428, 23.05054873]), radius=0.00028003656334138407, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([78, 80, 81, 82, 83, 84, 86, 88, 89, 90, 91, 92]), model=ScalarModel(intercept=0.641199936976986, linear_terms=array([ 1.68215172e-06, -3.60432889e-07, -3.25130121e-07]), square_terms=array([[7.25448649e-09, 1.27253368e-11, 1.53337190e-11],
+ [1.27253368e-11, 2.83381020e-13, 2.85430374e-13],
+ [1.53337190e-11, 2.85430374e-13, 3.32440347e-13]]), scale=0.00028003656334138407, shift=array([ 9.20676711, 45.64298428, 23.05054873])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=93, candidate_x=array([ 9.20649824, 45.64304241, 23.05060121]), index=78, x=array([ 9.20676711, 45.64298428, 23.05054873]), fval=0.6411981649680742, rho=-0.6000813756488979, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([78, 80, 81, 82, 83, 84, 86, 88, 89, 90, 91, 92]), old_indices_discarded=array([79, 85, 87]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20676711, 45.64298428, 23.05054873]), radius=0.00014001828167069203, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([78, 80, 81, 82, 83, 84, 86, 88, 90, 91, 92, 93]), model=ScalarModel(intercept=0.6412000970879008, linear_terms=array([ 7.73526022e-07, -1.53366108e-07, -2.08033084e-07]), square_terms=array([[1.81747170e-09, 2.20820579e-12, 5.45451394e-12],
+ [2.20820579e-12, 4.71590434e-14, 7.11155001e-14],
+ [5.45451394e-12, 7.11155001e-14, 1.49659707e-13]]), scale=0.00014001828167069203, shift=array([ 9.20676711, 45.64298428, 23.05054873])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=94, candidate_x=array([ 9.20663436, 45.64301073, 23.05058457]), index=78, x=array([ 9.20676711, 45.64298428, 23.05054873]), fval=0.6411981649680742, rho=-0.5169576261346827, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([78, 80, 81, 82, 83, 84, 86, 88, 90, 91, 92, 93]), old_indices_discarded=array([85, 87, 89]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20676711, 45.64298428, 23.05054873]), radius=7.000914083534602e-05, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 78, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
+ 105, 106]), model=ScalarModel(intercept=0.6411983657280034, linear_terms=array([-1.03793979e-07, 7.27301433e-08, 7.34858031e-08]), square_terms=array([[ 4.67614996e-10, -8.23635135e-13, -9.30032955e-13],
+ [-8.23635135e-13, 1.57774271e-14, 1.60155267e-14],
+ [-9.30032955e-13, 1.60155267e-14, 1.64466615e-14]]), scale=7.000914083534602e-05, shift=array([ 9.20676711, 45.64298428, 23.05054873])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=107, candidate_x=array([ 9.20681662, 45.64294947, 23.05051355]), index=78, x=array([ 9.20676711, 45.64298428, 23.05054873]), fval=0.6411981649680742, rho=-3.3493252311935513, accepted=False, new_indices=array([ 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106]), old_indices_used=array([78, 93, 94]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20676711, 45.64298428, 23.05054873]), radius=3.500457041767301e-05, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 78, 95, 96, 97, 98, 99, 100, 101, 102, 103, 106, 107]), model=ScalarModel(intercept=0.6411983574243617, linear_terms=array([ 1.23497155e-07, 1.30854524e-08, -3.22669068e-08]), square_terms=array([[ 1.14966940e-10, -7.98896006e-14, 1.97016633e-13],
+ [-7.98896006e-14, 4.88353748e-16, -1.20420334e-15],
+ [ 1.97016633e-13, -1.20420334e-15, 2.96937558e-15]]), scale=3.500457041767301e-05, shift=array([ 9.20676711, 45.64298428, 23.05054873])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=108, candidate_x=array([ 9.20673342, 45.6429807 , 23.05055755]), index=78, x=array([ 9.20676711, 45.64298428, 23.05054873]), fval=0.6411981649680742, rho=-0.9176254431425854, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 78, 95, 96, 97, 98, 99, 100, 101, 102, 103, 106, 107]), old_indices_discarded=array([ 94, 104, 105]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20676711, 45.64298428, 23.05054873]), radius=1.7502285208836504e-05, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 78, 95, 96, 97, 99, 100, 101, 102, 103, 106, 107, 108]), model=ScalarModel(intercept=0.6411983851403613, linear_terms=array([ 6.38639428e-08, 5.43914697e-09, -4.07015582e-08]), square_terms=array([[ 2.87288275e-11, -1.65702288e-14, 1.24010042e-13],
+ [-1.65702288e-14, 8.43754307e-17, -6.31386781e-16],
+ [ 1.24010042e-13, -6.31386781e-16, 4.72470794e-15]]), scale=1.7502285208836504e-05, shift=array([ 9.20676711, 45.64298428, 23.05054873])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=109, candidate_x=array([ 9.20675239, 45.64298302, 23.05055811]), index=78, x=array([ 9.20676711, 45.64298428, 23.05054873]), fval=0.6411981649680742, rho=-0.6772843375754085, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 78, 95, 96, 97, 99, 100, 101, 102, 103, 106, 107, 108]), old_indices_discarded=array([ 98, 104, 105]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20676711, 45.64298428, 23.05054873]), radius=8.751142604418252e-06, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 78, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
+ 120, 121]), model=ScalarModel(intercept=0.6411981649678726, linear_terms=array([-3.05612962e-08, 1.46809760e-13, -1.70649995e-13]), square_terms=array([[ 7.38373402e-12, 7.56759673e-19, -8.94606680e-19],
+ [ 7.56759673e-19, 1.33945952e-25, -1.57431020e-25],
+ [-8.94606680e-19, -1.57431020e-25, 1.85043423e-25]]), scale=8.751142604418252e-06, shift=array([ 9.20676711, 45.64298428, 23.05054873])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=122, candidate_x=array([ 9.20677586, 45.64298428, 23.05054873]), index=122, x=array([ 9.20677586, 45.64298428, 23.05054873]), fval=0.6411981344087744, rho=1.0000555009711634, accepted=True, new_indices=array([110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121]), old_indices_used=array([ 78, 108, 109]), old_indices_discarded=array([], dtype=int64), step_length=8.75114260381017e-06, relative_step_length=0.999999999930514, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 123 entries., 'multistart_info': {'start_parameters': [array([ 9.20677822, 50.64405072, 26.13687265]), array([ 9.27523039, 45.88119054, 23.01481109]), array([ 9.12811696, 48.90833875, 23.98172789])], 'local_optima': [{'solution_x': array([ 9.20676928, 50.64405258, 26.1368695 ]), 'solution_criterion': 0.6411981573819835, 'states': [State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=5.064405071849033, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=[0], model=ScalarModel(intercept=0.6411981580830596, linear_terms=array([0., 0., 0.]), square_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=0, candidate_x=array([ 9.20677822, 50.64405072, 26.13687265]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=5.064405071849033, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=0.5789960151511114, linear_terms=array([-0.05106117, -0.00134537, -0.00447129]), square_terms=array([[ 2.54921349e+00, -1.10137535e-02, -6.96996937e-03],
+ [-1.10137535e-02, 6.67996913e-05, 8.61725402e-05],
+ [-6.96996937e-03, 8.61725402e-05, 2.58016928e-04]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=13, candidate_x=array([ 9.32828881, 52.30084005, 30.93946475]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-0.09392165572328727, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=2.5322025359245166, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=0.5757857577586193, linear_terms=array([-0.02957024, -0.00320448, 0.00216017]), square_terms=array([[ 6.34961854e-01, -4.80911376e-03, 1.79236742e-03],
+ [-4.80911376e-03, 8.80608690e-05, -2.30795032e-05],
+ [ 1.79236742e-03, -2.30795032e-05, 1.02105624e-05]]), scale=2.5322025359245166, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=14, candidate_x=array([ 9.34375658, 52.7552565 , 24.74194456]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-0.12278291672953444, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_discarded=array([ 1, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=1.2661012679622583, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14]), model=ScalarModel(intercept=0.574745021508885, linear_terms=array([-0.01448034, 0.00480865, -0.00061109]), square_terms=array([[ 1.59580540e-01, 2.04832341e-03, -4.08843446e-04],
+ [ 2.04832341e-03, 1.90184721e-04, -4.96063564e-05],
+ [-4.08843446e-04, -4.96063564e-05, 1.36817947e-05]]), scale=1.2661012679622583, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=15, candidate_x=array([ 9.3343088 , 49.38777224, 26.2936056 ]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-0.09328618662280141, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14]), old_indices_discarded=array([ 1, 4, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=0.6330506339811292, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]), model=ScalarModel(intercept=0.6403286802894971, linear_terms=array([-3.81858233e-04, 7.65007951e-05, -4.10301280e-05]), square_terms=array([[ 3.62463318e-02, -4.15487066e-06, -2.26071914e-05],
+ [-4.15487066e-06, 3.00843205e-08, 2.19045970e-08],
+ [-2.26071914e-05, 2.19045970e-08, 7.32549810e-08]]), scale=0.6330506339811292, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=28, candidate_x=array([ 9.21355497, 50.0866759 , 26.43770107]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-0.9705446696147382, accepted=False, new_indices=array([16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]), old_indices_used=array([ 0, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=0.3165253169905646, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27]), model=ScalarModel(intercept=0.6404706538725462, linear_terms=array([-5.67345184e-04, 2.74265158e-04, 9.56828002e-05]), square_terms=array([[9.01546888e-03, 1.04773684e-05, 2.47603794e-06],
+ [1.04773684e-05, 1.74310737e-07, 6.31897341e-08],
+ [2.47603794e-06, 6.31897341e-08, 2.70525471e-08]]), scale=0.3165253169905646, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=29, candidate_x=array([ 9.22643862, 50.34519023, 26.0326932 ]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-0.6661027359823584, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27]), old_indices_discarded=array([15, 24, 28]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=0.1582626584952823, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 29]), model=ScalarModel(intercept=0.6404784832040219, linear_terms=array([-3.15520037e-04, 1.63853796e-04, 9.20223976e-05]), square_terms=array([[2.25226929e-03, 3.23332981e-06, 1.70120380e-06],
+ [3.23332981e-06, 6.16654786e-08, 3.52690733e-08],
+ [1.70120380e-06, 3.52690733e-08, 2.15873630e-08]]), scale=0.1582626584952823, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=30, candidate_x=array([ 9.22747482, 50.50608883, 26.05940528]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-0.9680679386475163, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 29]), old_indices_discarded=array([24, 25, 28]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=0.07913132924764114, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]), model=ScalarModel(intercept=0.6414058023823169, linear_terms=array([-5.22656412e-05, 8.88275468e-06, -2.13975506e-05]), square_terms=array([[ 5.67797994e-04, -1.08779162e-07, -6.52765214e-07],
+ [-1.08779162e-07, 1.75466701e-09, 2.24298365e-10],
+ [-6.52765214e-07, 2.24298365e-10, 3.40606226e-09]]), scale=0.07913132924764114, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=43, candidate_x=array([ 9.21387432, 50.61173749, 26.21500275]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-3.2197933365114784, accepted=False, new_indices=array([31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]), old_indices_used=array([ 0, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=0.03956566462382057, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42]), model=ScalarModel(intercept=0.6414136708984267, linear_terms=array([-2.98689783e-05, 9.90591607e-06, -1.50732791e-05]), square_terms=array([[ 1.41976539e-04, 2.95346995e-09, -1.05937432e-07],
+ [ 2.95346995e-09, 5.73210469e-09, -2.07901137e-10],
+ [-1.05937432e-07, -2.07901137e-10, 1.02469176e-09]]), scale=0.03956566462382057, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=44, candidate_x=array([ 9.21417122, 50.6226981 , 26.16941327]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-4.183452628096946, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42]), old_indices_discarded=array([30, 40, 43]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=0.019782832311910286, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 31, 32, 33, 34, 35, 36, 37, 39, 41, 42, 44]), model=ScalarModel(intercept=0.6414104317520569, linear_terms=array([-1.71941430e-05, 3.00680387e-06, -1.01831737e-05]), square_terms=array([[ 3.55162006e-05, 1.08509300e-08, -1.40682694e-08],
+ [ 1.08509300e-08, 8.26274781e-10, 9.37031761e-11],
+ [-1.40682694e-08, 9.37031761e-11, 4.64529280e-10]]), scale=0.019782832311910286, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=45, candidate_x=array([ 9.21415784, 50.63844304, 26.1558486 ]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-5.991408867597847, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 31, 32, 33, 34, 35, 36, 37, 39, 41, 42, 44]), old_indices_discarded=array([38, 40, 43]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=0.009891416155955143, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]), model=ScalarModel(intercept=0.6412572249847813, linear_terms=array([-5.53927555e-06, 7.39160776e-06, 1.37452164e-05]), square_terms=array([[ 8.92072166e-06, -1.53858821e-08, -1.99561660e-08],
+ [-1.53858821e-08, 1.22760088e-10, 1.48921582e-10],
+ [-1.99561660e-08, 1.48921582e-10, 2.83311686e-10]]), scale=0.009891416155955143, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=58, candidate_x=array([ 9.20896905, 50.63947734, 26.12836693]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-1.3730446696271148, accepted=False, new_indices=array([46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]), old_indices_used=array([ 0, 44, 45]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=0.0049457080779775715, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]), model=ScalarModel(intercept=0.6412595140316975, linear_terms=array([-2.27742736e-06, 7.78396411e-06, 1.06086832e-06]), square_terms=array([[ 2.22987352e-06, -4.48397478e-09, -4.11582136e-09],
+ [-4.48397478e-09, 1.10331897e-10, -8.93732402e-12],
+ [-4.11582136e-09, -8.93732402e-12, 4.14066802e-11]]), scale=0.0049457080779775715, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=59, candidate_x=array([ 9.20787121, 50.63927105, 26.1362217 ]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-1.7596015269275105, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]), old_indices_discarded=array([45, 47, 58]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=0.0024728540389887857, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 46, 48, 49, 50, 51, 52, 53, 54, 55, 57, 59]), model=ScalarModel(intercept=0.6412535531548258, linear_terms=array([-3.45240007e-06, 7.06290806e-06, -1.22931862e-06]), square_terms=array([[ 5.59064982e-07, -2.23550765e-09, -4.22062020e-10],
+ [-2.23550765e-09, 7.86359074e-11, -1.84433937e-11],
+ [-4.22062020e-10, -1.84433937e-11, 1.28062020e-11]]), scale=0.0024728540389887857, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=60, candidate_x=array([ 9.20781463, 50.64177496, 26.13726886]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-1.6880414428879142, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 46, 48, 49, 50, 51, 52, 53, 54, 55, 57, 59]), old_indices_discarded=array([47, 56, 58]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=0.0012364270194943929, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72]), model=ScalarModel(intercept=0.6412050560114186, linear_terms=array([ 2.34403636e-06, -1.25504945e-06, -6.72756376e-07]), square_terms=array([[1.43031335e-07, 2.72638134e-10, 1.85921639e-10],
+ [2.72638134e-10, 3.58667531e-12, 2.26234004e-12],
+ [1.85921639e-10, 2.26234004e-12, 4.96051423e-12]]), scale=0.0012364270194943929, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=73, candidate_x=array([ 9.20573979, 50.64464056, 26.13719284]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-4.720045973331271, accepted=False, new_indices=array([61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72]), old_indices_used=array([ 0, 59, 60]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=0.0006182135097471964, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73]), model=ScalarModel(intercept=0.6412044150956402, linear_terms=array([-1.02496555e-07, 3.31982306e-07, -1.51152871e-07]), square_terms=array([[ 3.59804504e-08, -2.07244738e-11, 2.86410518e-11],
+ [-2.07244738e-11, 4.97044676e-13, -5.27497115e-13],
+ [ 2.86410518e-11, -5.27497115e-13, 7.64804027e-13]]), scale=0.0006182135097471964, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=74, candidate_x=array([ 9.206938 , 50.64348138, 26.13713187]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-5.245952537715729, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73]), old_indices_discarded=array([60, 61, 66]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=0.0003091067548735982, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74]), model=ScalarModel(intercept=0.6412044828872996, linear_terms=array([-1.27443731e-07, 2.43052887e-07, 2.03585292e-07]), square_terms=array([[ 9.00189158e-09, -9.44681221e-12, -4.57998397e-12],
+ [-9.44681221e-12, 1.49391685e-13, 6.17187987e-14],
+ [-4.57998397e-12, 6.17187987e-14, 9.80244824e-14]]), scale=0.0003091067548735982, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=75, candidate_x=array([ 9.206892 , 50.64382791, 26.13668602]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-4.277350855267876, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74]), old_indices_discarded=array([61, 66, 72]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=0.0001545533774367991, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87]), model=ScalarModel(intercept=0.6411989618472214, linear_terms=array([ 7.46758928e-07, -6.31964096e-08, 1.47212322e-07]), square_terms=array([[ 2.23261497e-09, 1.62015486e-12, -4.18063334e-12],
+ [ 1.62015486e-12, 1.10921156e-14, -2.69297169e-14],
+ [-4.18063334e-12, -2.69297169e-14, 6.72153720e-14]]), scale=0.0001545533774367991, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=88, candidate_x=array([ 9.20662716, 50.64406369, 26.13684266]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-0.5859822328217689, accepted=False, new_indices=array([76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87]), old_indices_used=array([ 0, 74, 75]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=7.727668871839955e-05, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 76, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88]), model=ScalarModel(intercept=0.6411990081265565, linear_terms=array([3.25333457e-07, 3.30925020e-08, 1.33673466e-07]), square_terms=array([[ 5.59584480e-10, -6.31985828e-13, -1.91478111e-12],
+ [-6.31985828e-13, 6.07754261e-15, 1.67927703e-14],
+ [-1.91478111e-12, 1.67927703e-14, 5.52741188e-14]]), scale=7.727668871839955e-05, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=89, candidate_x=array([ 9.20670708, 50.64404344, 26.13684336]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-0.6137415283588851, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 76, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88]), old_indices_discarded=array([75, 77, 78]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=3.863834435919978e-05, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 76, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89]), model=ScalarModel(intercept=0.6411989723184431, linear_terms=array([1.71778699e-07, 6.81085265e-09, 6.62630558e-08]), square_terms=array([[ 1.39760194e-10, -8.24931696e-14, -4.76972134e-13],
+ [-8.24931696e-14, 4.93577895e-16, 2.09595584e-15],
+ [-4.76972134e-13, 2.09595584e-15, 1.37545094e-14]]), scale=3.863834435919978e-05, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=90, candidate_x=array([ 9.2067422 , 50.64404928, 26.13685874]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-0.5098285694817388, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 76, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89]), old_indices_discarded=array([77, 78, 86]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=1.931917217959989e-05, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
+ 101, 102]), model=ScalarModel(intercept=0.6411982071451217, linear_terms=array([-6.05426987e-09, 8.12416294e-09, -5.19020430e-08]), square_terms=array([[ 3.55347134e-11, -2.91079862e-14, 1.85924509e-13],
+ [-2.91079862e-14, 1.88258283e-16, -1.20265313e-15],
+ [ 1.85924509e-13, -1.20265313e-15, 7.68292653e-15]]), scale=1.931917217959989e-05, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=103, candidate_x=array([ 9.20678043, 50.64404775, 26.13689162]), index=0, x=array([ 9.20677822, 50.64405072, 26.13687265]), fval=0.6411981580830596, rho=-0.5410025828097851, accepted=False, new_indices=array([ 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102]), old_indices_used=array([ 0, 89, 90]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20677822, 50.64405072, 26.13687265]), radius=9.659586089799944e-06, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102]), model=ScalarModel(intercept=0.6411982194422793, linear_terms=array([ 7.59408746e-08, -1.57717395e-08, 2.68111814e-08]), square_terms=array([[ 8.61862000e-12, 2.46903340e-14, -4.19719973e-14],
+ [ 2.46903340e-14, 7.09360329e-16, -1.20587550e-15],
+ [-4.19719973e-14, -1.20587550e-15, 2.04992535e-15]]), scale=9.659586089799944e-06, shift=array([ 9.20677822, 50.64405072, 26.13687265])), vector_model=VectorModel(intercepts=array([ 0.04848823, 0.12360338, 0.14833629, 0.19329327, 0.2168361 ,
+ 0.23171846, 0.23263925, 0.06582157, -0.08093788, -0.06795554,
+ -0.41009007, -0.4187331 , -0.12365488, -0.09727806, -0.08783687,
+ -0.09147742, -0.09757722]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=5.064405071849033, shift=array([ 9.20677822, 50.64405072, 26.13687265])), candidate_index=104, candidate_x=array([ 9.20676928, 50.64405258, 26.1368695 ]), index=104, x=array([ 9.20676928, 50.64405258, 26.1368695 ]), fval=0.6411981573819835, rho=0.0085433573499533, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102]), old_indices_discarded=array([ 90, 100, 103]), step_length=9.659586090723239e-06, relative_step_length=1.0000000000955833, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Relative criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 105 entries., 'history': {'params': [{'CRRA': 9.20677821614649, 'BeqShift': 50.64405071849033, 'BeqFac': 26.1368726540768}, {'CRRA': 10.62138634777998, 'BeqShift': 53.18382590637229, 'BeqFac': 21.98999134872144}, {'CRRA': 5.952441947753802, 'BeqShift': 53.01383796182259, 'BeqFac': 23.064153564193404}, {'CRRA': 4.902870205831076, 'BeqShift': 52.85455014320962, 'BeqFac': 27.63295649658987}, {'CRRA': 8.722882056285245, 'BeqShift': 45.6029051018246, 'BeqFac': 26.106970984998675}, {'CRRA': 8.448933950499514, 'BeqShift': 48.75682561319241, 'BeqFac': 30.775002902649977}, {'CRRA': 4.748830124351252, 'BeqShift': 48.27700677057874, 'BeqFac': 26.551602073439014}, {'CRRA': 11.470745039368346, 'BeqShift': 55.157047694543834, 'BeqFac': 25.74252350769399}, {'CRRA': 13.250019454248527, 'BeqShift': 49.34005431447091, 'BeqFac': 23.380064281957736}, {'CRRA': 8.536071426058779, 'BeqShift': 54.112606635851016, 'BeqFac': 29.76557365879496}, {'CRRA': 7.969648472765358, 'BeqShift': 48.222064134995385, 'BeqFac': 21.864673019323945}, {'CRRA': 12.838186628009867, 'BeqShift': 47.49385827352681, 'BeqFac': 27.72978170286549}, {'CRRA': 13.123636545974042, 'BeqShift': 51.98586556654233, 'BeqFac': 29.05336926291726}, {'CRRA': 9.328288811521322, 'BeqShift': 52.30084004630286, 'BeqFac': 30.93946474925285}, {'CRRA': 9.343756575818412, 'BeqShift': 52.75525650026588, 'BeqFac': 24.741944555771756}, {'CRRA': 9.334308801392456, 'BeqShift': 49.387772243797045, 'BeqFac': 26.2936056024445}, {'CRRA': 8.760571973596782, 'BeqShift': 50.30760657564745, 'BeqFac': 26.434292278581136}, {'CRRA': 9.328683110257387, 'BeqShift': 50.30510627782382, 'BeqFac': 26.65745787103651}, {'CRRA': 9.748277486657958, 'BeqShift': 50.38059642564924, 'BeqFac': 26.332125005670985}, {'CRRA': 9.077214335092005, 'BeqShift': 51.26219335559197, 'BeqFac': 26.180069715400887}, {'CRRA': 9.746359418873869, 'BeqShift': 50.66350940890234, 'BeqFac': 25.80637819086352}, {'CRRA': 9.125051342937237, 'BeqShift': 50.86969918511925, 'BeqFac': 26.722668346180594}, {'CRRA': 9.635965911796614, 'BeqShift': 51.045910261006476, 'BeqFac': 26.371521189497667}, {'CRRA': 8.845999643449264, 'BeqShift': 50.74567724438737, 'BeqFac': 25.62671191871925}, {'CRRA': 8.621845204500444, 'BeqShift': 50.86614021326763, 'BeqFac': 26.23321959684178}, {'CRRA': 9.389211075575094, 'BeqShift': 50.20828259860967, 'BeqFac': 25.715473196696642}, {'CRRA': 9.342351647280148, 'BeqShift': 51.040336661189684, 'BeqFac': 25.66218285897537}, {'CRRA': 8.84744649935771, 'BeqShift': 50.19329116801906, 'BeqFac': 25.87524381363203}, {'CRRA': 9.213554965716096, 'BeqShift': 50.08667589790345, 'BeqFac': 26.437701072116173}, {'CRRA': 9.226438620871706, 'BeqShift': 50.34519022669459, 'BeqFac': 26.032693199582265}, {'CRRA': 9.227474819586835, 'BeqShift': 50.50608883094321, 'BeqFac': 26.059405283428845}, {'CRRA': 9.176666394120378, 'BeqShift': 50.60774138445433, 'BeqFac': 26.20040750832727}, {'CRRA': 9.241289824494036, 'BeqShift': 50.71388261079487, 'BeqFac': 26.122936263764718}, {'CRRA': 9.245558372919803, 'BeqShift': 50.65869736632045, 'BeqFac': 26.06946833361827}, {'CRRA': 9.189054653966641, 'BeqShift': 50.62580677815847, 'BeqFac': 26.061940676568373}, {'CRRA': 9.135981171707446, 'BeqShift': 50.64428166197232, 'BeqFac': 26.101524493837513}, {'CRRA': 9.249436594210819, 'BeqShift': 50.600627715943894, 'BeqFac': 26.187434229401074}, {'CRRA': 9.142396507953219, 'BeqShift': 50.668142570925106, 'BeqFac': 26.17606889834683}, {'CRRA': 9.167513685915457, 'BeqShift': 50.575350486736966, 'BeqFac': 26.13628776838735}, {'CRRA': 9.260284160849391, 'BeqShift': 50.5894087163105, 'BeqFac': 26.116546986861948}, {'CRRA': 9.175696389543402, 'BeqShift': 50.71474954331307, 'BeqFac': 26.11962842338367}, {'CRRA': 9.216088797081158, 'BeqShift': 50.6865232054343, 'BeqFac': 26.202987464852843}, {'CRRA': 9.281865975890593, 'BeqShift': 50.661945692436305, 'BeqFac': 26.154290045172583}, {'CRRA': 9.213874319135748, 'BeqShift': 50.611737492880735, 'BeqFac': 26.215002753008797}, {'CRRA': 9.214171216471302, 'BeqShift': 50.62269809700905, 'BeqFac': 26.16941326628907}, {'CRRA': 9.214157837580217, 'BeqShift': 50.638443043460285, 'BeqFac': 26.155848596443303}, {'CRRA': 9.20990514348597, 'BeqShift': 50.64951793673829, 'BeqFac': 26.144499708790974}, {'CRRA': 9.20972149939538, 'BeqShift': 50.65049077209843, 'BeqFac': 26.12996592498034}, {'CRRA': 9.215876886913987, 'BeqShift': 50.64159021353402, 'BeqFac': 26.133872617544522}, {'CRRA': 9.205348256892893, 'BeqShift': 50.63442148307648, 'BeqFac': 26.13511961230662}, {'CRRA': 9.214295617997292, 'BeqShift': 50.650310796388496, 'BeqFac': 26.138335598946806}, {'CRRA': 9.200390663072893, 'BeqShift': 50.64445776884281, 'BeqFac': 26.129331196040532}, {'CRRA': 9.202014556109866, 'BeqShift': 50.652580506743, 'BeqFac': 26.135326572258037}, {'CRRA': 9.200934030677926, 'BeqShift': 50.64794479033814, 'BeqFac': 26.14383841420929}, {'CRRA': 9.203546425206072, 'BeqShift': 50.63840182372465, 'BeqFac': 26.14432152169638}, {'CRRA': 9.197255600983837, 'BeqShift': 50.64139339601146, 'BeqFac': 26.137186582854696}, {'CRRA': 9.213212829206885, 'BeqShift': 50.637823009454294, 'BeqFac': 26.14107402391244}, {'CRRA': 9.208575115270197, 'BeqShift': 50.64002641986975, 'BeqFac': 26.12801735692075}, {'CRRA': 9.208969052220612, 'BeqShift': 50.639477340476375, 'BeqFac': 26.128366928828882}, {'CRRA': 9.207871210492497, 'BeqShift': 50.6392710504012, 'BeqFac': 26.13622170299542}, {'CRRA': 9.207814633201478, 'BeqShift': 50.64177495664858, 'BeqFac': 26.137268864353537}, {'CRRA': 9.205897280481937, 'BeqShift': 50.643238851544474, 'BeqFac': 26.13656675181841}, {'CRRA': 9.206033821824875, 'BeqShift': 50.64419039670794, 'BeqFac': 26.13589535224829}, {'CRRA': 9.207749422902328, 'BeqShift': 50.643796393003356, 'BeqFac': 26.13615097010259}, {'CRRA': 9.206983118734959, 'BeqShift': 50.64312991427928, 'BeqFac': 26.13607335043694}, {'CRRA': 9.207143657070052, 'BeqShift': 50.64479194771403, 'BeqFac': 26.137792319202727}, {'CRRA': 9.20778290536381, 'BeqShift': 50.64477136098046, 'BeqFac': 26.136867579378542}, {'CRRA': 9.205621547163176, 'BeqShift': 50.64432668839419, 'BeqFac': 26.13721134161678}, {'CRRA': 9.20650422511391, 'BeqShift': 50.64303662790956, 'BeqFac': 26.137524805119575}, {'CRRA': 9.20632355423026, 'BeqShift': 50.64520007939952, 'BeqFac': 26.13690433714608}, {'CRRA': 9.206956096721688, 'BeqShift': 50.644803849159885, 'BeqFac': 26.135908338531934}, {'CRRA': 9.207760348310156, 'BeqShift': 50.64361045265687, 'BeqFac': 26.137481204964995}, {'CRRA': 9.206461692703337, 'BeqShift': 50.6439719890909, 'BeqFac': 26.138065284097443}, {'CRRA': 9.20573979404228, 'BeqShift': 50.644640557381685, 'BeqFac': 26.13719284369291}, {'CRRA': 9.206937996119768, 'BeqShift': 50.64348137912855, 'BeqFac': 26.13713186719777}, {'CRRA': 9.206892002290795, 'BeqShift': 50.64382790557089, 'BeqFac': 26.136686020989824}, {'CRRA': 9.206924335853572, 'BeqShift': 50.6440280773388, 'BeqFac': 26.136917633582552}, {'CRRA': 9.206723505668897, 'BeqShift': 50.643913333391865, 'BeqFac': 26.13691758563408}, {'CRRA': 9.206641351685326, 'BeqShift': 50.643979121610585, 'BeqFac': 26.13687801621805}, {'CRRA': 9.206690397613176, 'BeqShift': 50.643949637538114, 'BeqFac': 26.13679547057608}, {'CRRA': 9.206839572793324, 'BeqShift': 50.64401248088507, 'BeqFac': 26.137009255665042}, {'CRRA': 9.206926612917886, 'BeqShift': 50.64405756596592, 'BeqFac': 26.13691529509924}, {'CRRA': 9.20662590963719, 'BeqShift': 50.64402943996553, 'BeqFac': 26.136888039072222}, {'CRRA': 9.20664513233647, 'BeqShift': 50.64398173816471, 'BeqFac': 26.136910299271253}, {'CRRA': 9.206877720938035, 'BeqShift': 50.643936736691124, 'BeqFac': 26.13684113119009}, {'CRRA': 9.206822075697833, 'BeqShift': 50.64407585423185, 'BeqFac': 26.136726601754905}, {'CRRA': 9.20663625693069, 'BeqShift': 50.644032427549725, 'BeqFac': 26.136930961615064}, {'CRRA': 9.206905561822111, 'BeqShift': 50.644119108152836, 'BeqFac': 26.136927359464465}, {'CRRA': 9.206627158002675, 'BeqShift': 50.64406369020424, 'BeqFac': 26.13684265543846}, {'CRRA': 9.206707078058109, 'BeqShift': 50.64404344347172, 'BeqFac': 26.13684336016779}, {'CRRA': 9.20674219708428, 'BeqShift': 50.64404928146958, 'BeqFac': 26.136858744231954}, {'CRRA': 9.206779304489483, 'BeqShift': 50.64406401256287, 'BeqFac': 26.13685867861407}, {'CRRA': 9.206796029438973, 'BeqShift': 50.64405197691585, 'BeqFac': 26.13686528295817}, {'CRRA': 9.206777620452703, 'BeqShift': 50.6440356023814, 'BeqFac': 26.13686063830327}, {'CRRA': 9.206777035014948, 'BeqShift': 50.644069273987114, 'BeqFac': 26.136867407279585}, {'CRRA': 9.206781076491463, 'BeqShift': 50.6440511835528, 'BeqFac': 26.136853553486304}, {'CRRA': 9.206784978578296, 'BeqShift': 50.64406730274076, 'BeqFac': 26.136879897181625}, {'CRRA': 9.206763642611994, 'BeqShift': 50.64403811399626, 'BeqFac': 26.136871250782363}, {'CRRA': 9.206767485336034, 'BeqShift': 50.64404308963533, 'BeqFac': 26.13688679199362}, {'CRRA': 9.20678768834861, 'BeqShift': 50.64403898233073, 'BeqFac': 26.136860580537196}, {'CRRA': 9.206783870255052, 'BeqShift': 50.64403584262765, 'BeqFac': 26.13686170098683}, {'CRRA': 9.206763358828995, 'BeqShift': 50.64404818940974, 'BeqFac': 26.136884741023557}, {'CRRA': 9.206787797369545, 'BeqShift': 50.64406700488012, 'BeqFac': 26.13686863113188}, {'CRRA': 9.206780427125146, 'BeqShift': 50.64404774951627, 'BeqFac': 26.136891621670163}, {'CRRA': 9.206769277589977, 'BeqShift': 50.64405257528418, 'BeqFac': 26.13686949779299}], 'criterion': [0.6411981580830596, 0.7112487684247719, 1.1362144678464896, 1.618853894223651, 0.6502215795184842, 0.6631744082852923, 1.7126505134440446, 0.8194333786332193, 1.223261450990546, 0.6582251219118612, 0.7021232581674297, 1.1040120628042465, 1.1852970059241923, 0.6416931580694478, 0.641782582874636, 0.6417211210625294, 0.6488353412030428, 0.6416954307095081, 0.651691541037559, 0.6422030835568494, 0.651618212235352, 0.6419173117452164, 0.6477684829517987, 0.6464258162559123, 0.6543086081644518, 0.6423192435683919, 0.6417621507791378, 0.6463765541833686, 0.6412844681152551, 0.6414038946914774, 0.6414017609573774, 0.6414155041931758, 0.6415467160080115, 0.6415638678381014, 0.6413162380876546, 0.6418396023619015, 0.641584500720459, 0.641744153519646, 0.6414432213900426, 0.641577579379121, 0.6414178472692312, 0.6412939928191069, 0.6415295735512484, 0.6412857689611132, 0.6412854285151801, 0.6412854467718407, 0.6412291869379874, 0.6412270033627487, 0.6412925901777091, 0.641218002929169, 0.6412855560081665, 0.6412899163125819, 0.6412800332048714, 0.6412853463812271, 0.6412583454978733, 0.6412893601766347, 0.641280345193484, 0.6412183587368531, 0.6412204559669911, 0.6412124284401708, 0.6412118209784493, 0.6412084161441574, 0.6412059184461134, 0.641211007134014, 0.6412008117851546, 0.6412028790315208, 0.6412114804337654, 0.6412124687093406, 0.6411991708717584, 0.6412013840163135, 0.6412004615671938, 0.6412111691890182, 0.6411995200607582, 0.641210861154327, 0.6412002270587622, 0.6411996312912115, 0.6412000500964, 0.641198317315905, 0.6411985678810963, 0.6411984331103835, 0.6411989523728293, 0.6412000795936361, 0.6411986082676019, 0.6411985579964115, 0.6411994463372177, 0.6411987258501974, 0.6411985812034867, 0.6411998069125714, 0.6411986050019289, 0.6411983747594618, 0.6411982519839904, 0.641198172170226, 0.6411983886648773, 0.6411981503726285, 0.6411981427949761, 0.6411981951066646, 0.6411982456153995, 0.6411981770619077, 0.6411981636410624, 0.6411982806914908, 0.6411982312691004, 0.6411981780530825, 0.6411982821027037, 0.6411981867013665, 0.6411981573819835], 'runtime': [0.0, 1.741092655999637, 1.9511895269997694, 2.150650272999883, 2.364944698999352, 2.612510132999887, 2.848578797999835, 3.0754288159996577, 3.3325294259993825, 3.6003782119996686, 3.9060686829998303, 4.234876341999552, 4.505377958999816, 6.018324919999941, 7.404840139999578, 8.7243116869995, 10.5747867759992, 10.764527328999975, 10.963280076999581, 11.157741928999712, 11.376654062999478, 11.634703972999887, 11.925132875999225, 12.19573415099967, 12.40920004399959, 12.62536381099926, 12.82942404699952, 13.033726185999512, 14.471324528999503, 15.804259841999738, 17.20924835599999, 18.9265819809998, 19.123914522999257, 19.340027077999366, 19.530735990999347, 19.76851599099973, 20.117825712000013, 20.34463118199983, 20.594751979999273, 20.819601956000042, 21.0492069539996, 21.248313412999778, 21.498196271999404, 23.018266518999553, 24.32021637299931, 25.641691206999894, 27.373447652999857, 27.590111434999926, 27.80535423099991, 28.033494462999442, 28.257874373999584, 28.493307226999605, 28.706003990999307, 28.927894646999448, 29.14462390099925, 29.39457991299969, 29.590416320999793, 29.813295047999418, 31.324800030000006, 32.843812919999436, 34.198620593999294, 35.88395878599931, 36.08372781499929, 36.2910078799996, 36.51809983599924, 36.717287655999826, 36.96291232799922, 37.17789251799968, 37.42308125399995, 37.63693642999988, 37.859192443999746, 38.06126696899992, 38.28311381399999, 39.81690756599983, 41.19128538099994, 42.54764601899933, 44.324595346000024, 44.53997478399924, 44.76005411599999, 44.962844829999995, 45.16980529899956, 45.378680891999466, 45.59922934199949, 45.831447233999825, 46.04689413199958, 46.273181599000054, 46.49314191299982, 46.72520658299982, 48.32034132699937, 49.62858914699973, 50.94919961699998, 52.57772140799989, 52.931281673999365, 53.154263189999256, 53.35307114199986, 53.572895979999885, 53.821950480999476, 54.066166519000035, 54.32157505699979, 54.51904240299973, 54.75313015099982, 54.949440847000005, 55.18286510300004, 56.762109994999264, 58.09238937800001], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 15, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 19, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 23, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 27]}}, {'solution_x': array([ 9.20677586, 45.64298428, 23.05054873]), 'solution_criterion': 0.6411981344087744, 'states': [State(trustregion=Region(center=array([ 9.27523039, 45.88119054, 23.01481109]), radius=4.5881190537852365, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=[0], model=ScalarModel(intercept=0.6414954627541696, linear_terms=array([0., 0., 0.]), square_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=0, candidate_x=array([ 9.27523039, 45.88119054, 23.01481109]), index=0, x=array([ 9.27523039, 45.88119054, 23.01481109]), fval=0.6414954627541696, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([ 9.27523039, 45.88119054, 23.01481109]), radius=4.5881190537852365, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=0.5891883650231197, linear_terms=array([-0.00968953, -0.00117103, -0.00391564]), square_terms=array([[ 2.04288848e+00, -7.00381948e-03, -4.70750143e-03],
+ [-7.00381948e-03, 3.59762915e-05, 4.06366460e-05],
+ [-4.70750143e-03, 4.06366460e-05, 1.41716415e-04]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=13, candidate_x=array([ 9.31167836, 47.2378392 , 27.40054401]), index=0, x=array([ 9.27523039, 45.88119054, 23.01481109]), fval=0.6414954627541696, rho=-0.061531136949691, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.27523039, 45.88119054, 23.01481109]), radius=2.2940595268926183, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=0.5838720419935737, linear_terms=array([-0.00815151, 0.00777168, -0.0017958 ]), square_terms=array([[ 5.11958440e-01, 4.80442275e-03, -1.12028161e-03],
+ [ 4.80442275e-03, 3.51638936e-04, -1.06350122e-04],
+ [-1.12028161e-03, -1.06350122e-04, 3.29771720e-05]]), scale=2.2940595268926183, shift=array([ 9.27523039, 45.88119054, 23.01481109])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=14, candidate_x=array([ 9.33305191, 43.63838444, 23.52526167]), index=0, x=array([ 9.27523039, 45.88119054, 23.01481109]), fval=0.6414954627541696, rho=-0.02774497157353281, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_discarded=array([ 4, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.27523039, 45.88119054, 23.01481109]), radius=1.1470297634463091, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 14]), model=ScalarModel(intercept=0.592708784872857, linear_terms=array([ 0.00152966, -0.00076228, 0.00025576]), square_terms=array([[ 1.29771760e-01, -7.60521227e-04, 2.29395773e-04],
+ [-7.60521227e-04, 6.85822163e-06, -1.35713831e-06],
+ [ 2.29395773e-04, -1.35713831e-06, 6.87591617e-07]]), scale=1.1470297634463091, shift=array([ 9.27523039, 45.88119054, 23.01481109])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=15, candidate_x=array([ 9.2687674 , 46.96825733, 22.64867805]), index=0, x=array([ 9.27523039, 45.88119054, 23.01481109]), fval=0.6414954627541696, rho=-0.048166814746878124, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 14]), old_indices_discarded=array([ 4, 11, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.27523039, 45.88119054, 23.01481109]), radius=0.5735148817231546, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]), model=ScalarModel(intercept=0.6406974663539128, linear_terms=array([ 2.50388822e-03, -3.55470721e-05, 1.59802574e-05]), square_terms=array([[ 2.95828916e-02, -9.48578252e-06, 1.81188466e-06],
+ [-9.48578252e-06, 2.35871761e-08, 1.80023429e-08],
+ [ 1.81188466e-06, 1.80023429e-08, 6.07710911e-08]]), scale=0.5735148817231546, shift=array([ 9.27523039, 45.88119054, 23.01481109])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=28, candidate_x=array([ 9.22693263, 46.40381893, 22.77679268]), index=28, x=array([ 9.22693263, 46.40381893, 22.77679268]), fval=0.6414015158827587, rho=0.6515618478573166, accepted=True, new_indices=array([16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]), old_indices_used=array([ 0, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.5763036284627624, relative_step_length=1.0048625534026752, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.22693263, 46.40381893, 22.77679268]), radius=1.1470297634463091, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 15, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28]), model=ScalarModel(intercept=0.6408041108663739, linear_terms=array([ 0.00065102, 0.00049794, -0.00019907]), square_terms=array([[ 1.18433148e-01, 1.13521966e-04, -6.65681444e-05],
+ [ 1.13521966e-04, 8.00378364e-07, -1.25371889e-07],
+ [-6.65681444e-05, -1.25371889e-07, 3.16174660e-07]]), scale=1.1470297634463091, shift=array([ 9.22693263, 46.40381893, 22.77679268])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=29, candidate_x=array([ 9.22191036, 45.33875132, 23.20257127]), index=29, x=array([ 9.22191036, 45.33875132, 23.20257127]), fval=0.6413556371977909, rho=0.08543637029916488, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 15, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28]), old_indices_discarded=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 23, 26]), step_length=1.1470316679451833, relative_step_length=1.0000016603744164, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.22191036, 45.33875132, 23.20257127]), radius=0.5735148817231546, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 29]), model=ScalarModel(intercept=0.6408171976152108, linear_terms=array([-6.73581006e-05, -4.04978148e-04, -3.80738956e-05]), square_terms=array([[ 2.95973821e-02, -3.63270062e-05, 1.65796041e-06],
+ [-3.63270062e-05, 4.23472225e-07, 4.40106549e-08],
+ [ 1.65796041e-06, 4.40106549e-08, 5.10964732e-08]]), scale=0.5735148817231546, shift=array([ 9.22191036, 45.33875132, 23.20257127])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=30, candidate_x=array([ 9.22388626, 45.90974892, 23.25621668]), index=29, x=array([ 9.22191036, 45.33875132, 23.20257127]), fval=0.6413556371977909, rho=-0.04787806421435067, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 29]), old_indices_discarded=array([14, 15, 19, 26, 28]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.22191036, 45.33875132, 23.20257127]), radius=0.2867574408615773, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 16, 17, 18, 20, 21, 22, 24, 25, 27, 29, 30]), model=ScalarModel(intercept=0.6410097550441288, linear_terms=array([ 1.39651156e-05, -2.88874413e-04, 1.60170799e-04]), square_terms=array([[ 7.40015236e-03, -8.47567918e-06, 4.66545233e-06],
+ [-8.47567918e-06, 1.73700052e-07, -8.46835155e-08],
+ [ 4.66545233e-06, -8.46835155e-08, 6.84200563e-08]]), scale=0.2867574408615773, shift=array([ 9.22191036, 45.33875132, 23.20257127])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=31, candidate_x=array([ 9.22175171, 45.58988885, 23.06332445]), index=31, x=array([ 9.22175171, 45.58988885, 23.06332445]), fval=0.6413538895520631, rho=0.005285332353177379, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17, 18, 20, 21, 22, 24, 25, 27, 29, 30]), old_indices_discarded=array([19, 23, 26, 28]), step_length=0.2871580766830809, relative_step_length=1.0013971244139295, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.22175171, 45.58988885, 23.06332445]), radius=0.14337872043078864, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 16, 17, 18, 21, 24, 25, 27, 29, 30, 31]), model=ScalarModel(intercept=0.6407199525901757, linear_terms=array([-3.92919336e-06, -1.65929664e-04, 1.55155143e-04]), square_terms=array([[ 1.84527109e-03, -5.57596163e-06, 4.23287767e-06],
+ [-5.57596163e-06, 7.39326117e-08, -6.46121591e-08],
+ [ 4.23287767e-06, -6.46121591e-08, 7.38892314e-08]]), scale=0.14337872043078864, shift=array([ 9.22175171, 45.58988885, 23.06332445])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=32, candidate_x=array([ 9.22250536, 45.69461821, 22.9654026 ]), index=31, x=array([ 9.22175171, 45.58988885, 23.06332445]), fval=0.6413538895520631, rho=-0.02756030763036017, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17, 18, 21, 24, 25, 27, 29, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.22175171, 45.58988885, 23.06332445]), radius=0.07168936021539432, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 17, 29, 31, 32]), model=ScalarModel(intercept=0.6413730871630696, linear_terms=array([-1.63989532e-04, 3.65884738e-05, 5.21973410e-05]), square_terms=array([[ 4.60761375e-04, -7.31726922e-07, -1.08851257e-06],
+ [-7.31726922e-07, 2.10367260e-08, 3.07816346e-08],
+ [-1.08851257e-06, 3.07816346e-08, 4.50672893e-08]]), scale=0.07168936021539432, shift=array([ 9.22175171, 45.58988885, 23.06332445])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=33, candidate_x=array([ 9.24400879, 45.54869625, 23.00457613]), index=31, x=array([ 9.22175171, 45.58988885, 23.06332445]), fval=0.6413538895520631, rho=-2.1461414457605144, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 17, 29, 31, 32]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.22175171, 45.58988885, 23.06332445]), radius=0.03584468010769716, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]), model=ScalarModel(intercept=0.6413717608202565, linear_terms=array([ 2.00924894e-04, -1.09372237e-05, -5.43208484e-06]), square_terms=array([[1.15625621e-04, 3.96142165e-08, 3.87212268e-09],
+ [3.96142165e-08, 8.40304844e-10, 2.22207615e-10],
+ [3.87212268e-09, 2.22207615e-10, 3.03437454e-10]]), scale=0.03584468010769716, shift=array([ 9.22175171, 45.58988885, 23.06332445])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=46, candidate_x=array([ 9.18863529, 45.60031418, 23.0722383 ]), index=46, x=array([ 9.18863529, 45.60031418, 23.0722383 ]), fval=0.6413227801302601, rho=0.2209034862216151, accepted=True, new_indices=array([34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]), old_indices_used=array([31, 32, 33]), old_indices_discarded=array([], dtype=int64), step_length=0.03584468010769763, relative_step_length=1.000000000000013, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.18863529, 45.60031418, 23.0722383 ]), radius=0.07168936021539432, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([31, 34, 35, 36, 37, 38, 39, 41, 42, 44, 45, 46]), model=ScalarModel(intercept=0.6412728088877506, linear_terms=array([1.47083725e-04, 4.86568931e-05, 4.73713244e-06]), square_terms=array([[4.62518943e-04, 5.01529807e-07, 3.15449154e-07],
+ [5.01529807e-07, 7.95596362e-09, 2.36322212e-09],
+ [3.15449154e-07, 2.36322212e-09, 4.02093856e-09]]), scale=0.07168936021539432, shift=array([ 9.18863529, 45.60031418, 23.0722383 ])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=47, candidate_x=array([ 9.16814755, 45.53125705, 23.0656262 ]), index=46, x=array([ 9.18863529, 45.60031418, 23.0722383 ]), fval=0.6413227801302601, rho=-1.5874902190178886, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([31, 34, 35, 36, 37, 38, 39, 41, 42, 44, 45, 46]), old_indices_discarded=array([ 0, 29, 32, 33, 40, 43]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.18863529, 45.60031418, 23.0722383 ]), radius=0.03584468010769716, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([31, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46]), model=ScalarModel(intercept=0.6412601275794009, linear_terms=array([ 6.58420832e-05, 2.37502856e-06, -1.69911469e-06]), square_terms=array([[1.16248591e-04, 7.39108563e-08, 8.34825523e-08],
+ [7.39108563e-08, 8.95644154e-10, 2.55046365e-10],
+ [8.34825523e-08, 2.55046365e-10, 1.63561948e-09]]), scale=0.03584468010769716, shift=array([ 9.18863529, 45.60031418, 23.0722383 ])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=48, candidate_x=array([ 9.1689186 , 45.57597523, 23.09042949]), index=46, x=array([ 9.18863529, 45.60031418, 23.0722383 ]), fval=0.6413227801302601, rho=-4.814845868541751, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([31, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46]), old_indices_discarded=array([32, 33, 39, 45, 47]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.18863529, 45.60031418, 23.0722383 ]), radius=0.01792234005384858, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([31, 34, 35, 36, 37, 38, 40, 41, 43, 44, 46, 48]), model=ScalarModel(intercept=0.641301357069062, linear_terms=array([ 1.13424122e-05, -2.86544384e-06, 8.47454926e-06]), square_terms=array([[2.91095694e-05, 2.83004622e-08, 8.04819438e-09],
+ [2.83004622e-08, 4.86209411e-10, 4.53100349e-10],
+ [8.04819438e-09, 4.53100349e-10, 1.09578749e-09]]), scale=0.01792234005384858, shift=array([ 9.18863529, 45.60031418, 23.0722383 ])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=49, candidate_x=array([ 9.18334295, 45.60584936, 23.05592332]), index=46, x=array([ 9.18863529, 45.60031418, 23.0722383 ]), fval=0.6413227801302601, rho=-8.05386603687764, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([31, 34, 35, 36, 37, 38, 40, 41, 43, 44, 46, 48]), old_indices_discarded=array([39, 42, 45, 47]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.18863529, 45.60031418, 23.0722383 ]), radius=0.00896117002692429, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([31, 34, 38, 40, 41, 43, 46, 48, 49]), model=ScalarModel(intercept=0.6413208790980892, linear_terms=array([-2.60118911e-05, -1.28021483e-05, -5.38316365e-06]), square_terms=array([[7.31639774e-06, 1.22085331e-08, 1.54293572e-08],
+ [1.22085331e-08, 3.60772518e-10, 1.00381975e-10],
+ [1.54293572e-08, 1.00381975e-10, 4.51829443e-10]]), scale=0.00896117002692429, shift=array([ 9.18863529, 45.60031418, 23.0722383 ])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=50, candidate_x=array([ 9.19472049, 45.60608042, 23.07540427]), index=50, x=array([ 9.19472049, 45.60608042, 23.07540427]), fval=0.6412954271044503, rho=1.047714915274639, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([31, 34, 38, 40, 41, 43, 46, 48, 49]), old_indices_discarded=array([], dtype=int64), step_length=0.008961170026924032, relative_step_length=0.9999999999999711, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.19472049, 45.60608042, 23.07540427]), radius=0.01792234005384858, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([31, 34, 35, 38, 40, 41, 43, 44, 46, 48, 49, 50]), model=ScalarModel(intercept=0.6413235472013079, linear_terms=array([5.87195972e-06, 8.56723531e-07, 3.37566941e-06]), square_terms=array([[2.91564679e-05, 1.82177678e-08, 3.36634221e-08],
+ [1.82177678e-08, 9.65257547e-10, 1.21388748e-09],
+ [3.36634221e-08, 1.21388748e-09, 2.34389772e-09]]), scale=0.01792234005384858, shift=array([ 9.19472049, 45.60608042, 23.07540427])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=51, candidate_x=array([ 9.19151691, 45.60170146, 23.05809991]), index=51, x=array([ 9.19151691, 45.60170146, 23.05809991]), fval=0.6412865692543276, rho=2.1901531589690073, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([31, 34, 35, 38, 40, 41, 43, 44, 46, 48, 49, 50]), old_indices_discarded=array([36, 37, 39, 42, 45, 47]), step_length=0.01813502723366537, relative_step_length=1.0118671545779045, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.19151691, 45.60170146, 23.05809991]), radius=0.03584468010769716, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([31, 34, 37, 38, 40, 41, 43, 46, 48, 49, 50, 51]), model=ScalarModel(intercept=0.6413084866973564, linear_terms=array([-9.43455614e-05, -2.44499112e-05, 8.66979268e-06]), square_terms=array([[ 1.16998712e-04, 1.44344558e-07, 1.33852174e-07],
+ [ 1.44344558e-07, 2.46069903e-09, -2.10488309e-10],
+ [ 1.33852174e-07, -2.10488309e-10, 7.49795177e-09]]), scale=0.03584468010769716, shift=array([ 9.19151691, 45.60170146, 23.05809991])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=52, candidate_x=array([ 9.21413393, 45.62863914, 23.04842051]), index=52, x=array([ 9.21413393, 45.62863914, 23.04842051]), fval=0.6412854794294208, rho=0.0191505676819926, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([31, 34, 37, 38, 40, 41, 43, 46, 48, 49, 50, 51]), old_indices_discarded=array([32, 33, 35, 36, 39, 42, 44, 45, 47]), step_length=0.036480939414014354, relative_step_length=1.017750452909763, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21413393, 45.62863914, 23.04842051]), radius=0.01792234005384858, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([31, 35, 36, 38, 40, 43, 44, 46, 49, 50, 51, 52]), model=ScalarModel(intercept=0.6413111545180797, linear_terms=array([ 6.07234400e-05, -2.93353077e-05, 3.62911874e-06]), square_terms=array([[ 2.91163686e-05, -3.60530090e-09, 3.27467461e-08],
+ [-3.60530090e-09, 4.70892615e-09, -1.70722796e-09],
+ [ 3.27467461e-08, -1.70722796e-09, 9.04180163e-10]]), scale=0.01792234005384858, shift=array([ 9.21413393, 45.62863914, 23.04842051])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=53, candidate_x=array([ 9.20208962, 45.64138552, 23.0447226 ]), index=53, x=array([ 9.20208962, 45.64138552, 23.0447226 ]), fval=0.641279581055819, rho=0.10563477010312446, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([31, 35, 36, 38, 40, 43, 44, 46, 49, 50, 51, 52]), old_indices_discarded=array([34, 37, 39, 41, 42, 45, 48]), step_length=0.017922340053846738, relative_step_length=0.9999999999998972, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20208962, 45.64138552, 23.0447226 ]), radius=0.03584468010769716, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([31, 35, 36, 38, 40, 43, 46, 49, 50, 51, 52, 53]), model=ScalarModel(intercept=0.6412690149568342, linear_terms=array([ 7.72982084e-05, -4.84958394e-05, 8.58288716e-08]), square_terms=array([[ 1.16667259e-04, -2.39765872e-08, 2.87804376e-07],
+ [-2.39765872e-08, 1.59054285e-08, -6.18270308e-09],
+ [ 2.87804376e-07, -6.18270308e-09, 5.46381768e-09]]), scale=0.03584468010769716, shift=array([ 9.20208962, 45.64138552, 23.0447226 ])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=54, candidate_x=array([ 9.18560691, 45.67519773, 23.04475912]), index=53, x=array([ 9.20208962, 45.64138552, 23.0447226 ]), fval=0.641279581055819, rho=-1.483262913370219, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([31, 35, 36, 38, 40, 43, 46, 49, 50, 51, 52, 53]), old_indices_discarded=array([32, 33, 34, 37, 39, 41, 42, 44, 45, 47, 48]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20208962, 45.64138552, 23.0447226 ]), radius=0.01792234005384858, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([35, 36, 38, 40, 43, 46, 49, 50, 51, 52, 53, 54]), model=ScalarModel(intercept=0.6413288335696544, linear_terms=array([ 2.99084627e-05, 3.03647513e-06, -4.81804264e-06]), square_terms=array([[ 2.91926184e-05, -1.94104060e-08, 8.16030631e-08],
+ [-1.94104060e-08, 1.14242551e-10, -1.09412828e-10],
+ [ 8.16030631e-08, -1.09412828e-10, 1.22342917e-09]]), scale=0.01792234005384858, shift=array([ 9.20208962, 45.64138552, 23.0447226 ])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=55, candidate_x=array([ 9.18793277, 45.63512574, 23.0547363 ]), index=53, x=array([ 9.20208962, 45.64138552, 23.0447226 ]), fval=0.641279581055819, rho=-3.0850952098020277, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 36, 38, 40, 43, 46, 49, 50, 51, 52, 53, 54]), old_indices_discarded=array([31, 34, 37, 39, 41, 44, 45, 48]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20208962, 45.64138552, 23.0447226 ]), radius=0.00896117002692429, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([38, 43, 49, 51, 52, 53, 54, 55]), model=ScalarModel(intercept=0.6412927018713143, linear_terms=array([-3.95830918e-05, 1.71611401e-06, -1.75745674e-05]), square_terms=array([[ 7.34282847e-06, -1.66027178e-09, 3.06944699e-08],
+ [-1.66027178e-09, 4.31041762e-11, 1.22267555e-10],
+ [ 3.06944699e-08, 1.22267555e-10, 1.11863146e-09]]), scale=0.00896117002692429, shift=array([ 9.20208962, 45.64138552, 23.0447226 ])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=56, candidate_x=array([ 9.21052789, 45.64202864, 23.04766956]), index=56, x=array([ 9.21052789, 45.64202864, 23.04766956]), fval=0.6412388217057458, rho=1.0275942194681258, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([38, 43, 49, 51, 52, 53, 54, 55]), old_indices_discarded=array([], dtype=int64), step_length=0.008961170026924889, relative_step_length=1.0000000000000668, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21052789, 45.64202864, 23.04766956]), radius=0.01792234005384858, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([35, 38, 43, 46, 49, 50, 51, 52, 53, 54, 55, 56]), model=ScalarModel(intercept=0.6413235030118442, linear_terms=array([3.04274084e-05, 4.74538518e-06, 1.23753508e-05]), square_terms=array([[ 2.91839759e-05, -9.35564134e-09, 7.99806758e-08],
+ [-9.35564134e-09, 2.75030515e-10, 1.05398303e-09],
+ [ 7.99806758e-08, 1.05398303e-09, 5.78042311e-09]]), scale=0.01792234005384858, shift=array([ 9.21052789, 45.64202864, 23.04766956])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=57, candidate_x=array([ 9.19871772, 45.6369924 , 23.03461107]), index=56, x=array([ 9.21052789, 45.64202864, 23.04766956]), fval=0.6412388217057458, rho=-2.034547178334105, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 38, 43, 46, 49, 50, 51, 52, 53, 54, 55, 56]), old_indices_discarded=array([31, 34, 36, 37, 39, 40, 41, 44, 45, 48]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21052789, 45.64202864, 23.04766956]), radius=0.00896117002692429, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([35, 38, 43, 52, 53, 54, 55, 56, 57]), model=ScalarModel(intercept=0.641336784215586, linear_terms=array([ 3.37194784e-05, 1.47646655e-05, -4.94622101e-06]), square_terms=array([[ 7.27205053e-06, -8.46098600e-09, 2.41038200e-08],
+ [-8.46098600e-09, 7.14551454e-10, 5.67261002e-10],
+ [ 2.41038200e-08, 5.67261002e-10, 1.36351391e-09]]), scale=0.00896117002692429, shift=array([ 9.21052789, 45.64202864, 23.04766956])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=58, candidate_x=array([ 9.2028289 , 45.63774774, 23.04931335]), index=56, x=array([ 9.21052789, 45.64202864, 23.04766956]), fval=0.6412388217057458, rho=-0.9305753868686838, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 38, 43, 52, 53, 54, 55, 56, 57]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21052789, 45.64202864, 23.04766956]), radius=0.004480585013462145, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([52, 53, 56, 57, 58]), model=ScalarModel(intercept=0.6412438622916211, linear_terms=array([-9.52899239e-06, -1.52791403e-05, 4.25097244e-07]), square_terms=array([[1.82495925e-06, 6.38394061e-10, 4.11144666e-10],
+ [6.38394061e-10, 4.31291655e-10, 1.19384986e-10],
+ [4.11144666e-10, 1.19384986e-10, 5.63993449e-10]]), scale=0.004480585013462145, shift=array([ 9.21052789, 45.64202864, 23.04766956])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=59, candidate_x=array([ 9.21278674, 45.6460377 , 23.04755793]), index=56, x=array([ 9.21052789, 45.64202864, 23.04766956]), fval=0.6412388217057458, rho=-1.9232326674259503, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([52, 53, 56, 57, 58]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21052789, 45.64202864, 23.04766956]), radius=0.0022402925067310725, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([53, 56, 58, 59]), model=ScalarModel(intercept=0.6412388217057453, linear_terms=array([-2.10242301e-05, 3.20216675e-05, 2.46938450e-05]), square_terms=array([[ 4.58766424e-07, -3.09316980e-09, -1.53270498e-09],
+ [-3.09316980e-09, 1.89755517e-09, 1.49970806e-09],
+ [-1.53270498e-09, 1.49970806e-09, 1.24593067e-09]]), scale=0.0022402925067310725, shift=array([ 9.21052789, 45.64202864, 23.04766956])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=60, candidate_x=array([ 9.21155599, 45.64044686, 23.04644973]), index=56, x=array([ 9.21052789, 45.64202864, 23.04766956]), fval=0.6412388217057458, rho=-0.3079080046126188, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([53, 56, 58, 59]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21052789, 45.64202864, 23.04766956]), radius=0.0011201462533655363, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([56, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72]), model=ScalarModel(intercept=0.6412388437802616, linear_terms=array([1.64312695e-05, 4.65279188e-07, 1.07229961e-07]), square_terms=array([[ 1.08773373e-07, 6.78393854e-10, -2.26235629e-10],
+ [ 6.78393854e-10, 2.77167620e-11, -8.32587980e-12],
+ [-2.26235629e-10, -8.32587980e-12, 3.11734525e-12]]), scale=0.0011201462533655363, shift=array([ 9.21052789, 45.64202864, 23.04766956])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=73, candidate_x=array([ 9.20940815, 45.64200068, 23.04765841]), index=73, x=array([ 9.20940815, 45.64200068, 23.04765841]), fval=0.6412231729718957, rho=0.9551430358606648, accepted=True, new_indices=array([61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72]), old_indices_used=array([56, 59, 60]), old_indices_discarded=array([], dtype=int64), step_length=0.0011201462533656243, relative_step_length=1.0000000000000786, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20940815, 45.64200068, 23.04765841]), radius=0.0022402925067310725, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([56, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73]), model=ScalarModel(intercept=0.6412226294004633, linear_terms=array([ 3.24586330e-05, 5.92811032e-07, -3.43705302e-08]), square_terms=array([[4.28909220e-07, 2.16458658e-11, 5.94629399e-10],
+ [2.16458658e-11, 2.77111185e-12, 8.02947612e-13],
+ [5.94629399e-10, 8.02947612e-13, 7.42708381e-12]]), scale=0.0022402925067310725, shift=array([ 9.20940815, 45.64200068, 23.04765841])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=74, candidate_x=array([ 9.20716808, 45.64197452, 23.04767586]), index=74, x=array([ 9.20716808, 45.64197452, 23.04767586]), fval=0.641203166149811, rho=0.6204008749724397, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([56, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73]), old_indices_discarded=array([53, 58, 59, 60, 66, 70]), step_length=0.002240292506730774, relative_step_length=0.9999999999998668, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20716808, 45.64197452, 23.04767586]), radius=0.004480585013462145, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([56, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74]), model=ScalarModel(intercept=0.6411998091125397, linear_terms=array([ 5.18943226e-05, -1.60828779e-06, 1.35217729e-06]), square_terms=array([[ 1.73015705e-06, 3.77827059e-09, -1.90012334e-09],
+ [ 3.77827059e-09, 9.22190115e-11, -2.17780041e-11],
+ [-1.90012334e-09, -2.17780041e-11, 2.01557834e-11]]), scale=0.004480585013462145, shift=array([ 9.20716808, 45.64197452, 23.04767586])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=75, candidate_x=array([ 9.20269645, 45.64218582, 23.04748719]), index=74, x=array([ 9.20716808, 45.64197452, 23.04767586]), fval=0.641203166149811, rho=-1.365460544825835, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([56, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74]), old_indices_discarded=array([52, 53, 55, 57, 58, 59, 60, 62, 70, 73]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20716808, 45.64197452, 23.04767586]), radius=0.0022402925067310725, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([56, 61, 62, 64, 66, 67, 68, 69, 70, 72, 73, 74]), model=ScalarModel(intercept=0.6411999998265243, linear_terms=array([ 2.50884881e-05, 1.46068594e-06, -1.10174093e-06]), square_terms=array([[ 4.30036003e-07, -3.60509007e-10, 3.77466081e-10],
+ [-3.60509007e-10, 1.02282903e-11, -9.39314439e-12],
+ [ 3.77466081e-10, -9.39314439e-12, 1.07931716e-11]]), scale=0.0022402925067310725, shift=array([ 9.20716808, 45.64197452, 23.04767586])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=76, candidate_x=array([ 9.20493572, 45.64182612, 23.04779201]), index=74, x=array([ 9.20716808, 45.64197452, 23.04767586]), fval=0.641203166149811, rho=-0.9986451321394485, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([56, 61, 62, 64, 66, 67, 68, 69, 70, 72, 73, 74]), old_indices_discarded=array([53, 58, 59, 60, 63, 65, 71, 75]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20716808, 45.64197452, 23.04767586]), radius=0.0011201462533655363, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([56, 62, 64, 66, 67, 68, 69, 70, 72, 73, 74, 76]), model=ScalarModel(intercept=0.6412213950497655, linear_terms=array([ 3.86823120e-06, -1.33070744e-06, -3.80294539e-06]), square_terms=array([[1.11795853e-07, 3.74223299e-10, 8.85352147e-10],
+ [3.74223299e-10, 5.72514104e-12, 1.55351185e-11],
+ [8.85352147e-10, 1.55351185e-11, 4.57607236e-11]]), scale=0.0011201462533655363, shift=array([ 9.20716808, 45.64197452, 23.04767586])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=77, candidate_x=array([ 9.20639987, 45.64224413, 23.04844635]), index=77, x=array([ 9.20639987, 45.64224413, 23.04844635]), fval=0.641200197514102, rho=0.5336222775676067, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([56, 62, 64, 66, 67, 68, 69, 70, 72, 73, 74, 76]), old_indices_discarded=array([60, 61, 63, 65, 71, 75]), step_length=0.001120930115522763, relative_step_length=1.000699785545746, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20639987, 45.64224413, 23.04844635]), radius=0.0022402925067310725, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([56, 64, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77]), model=ScalarModel(intercept=0.6412241577746707, linear_terms=array([-4.24139607e-06, -8.38654247e-06, -2.38208500e-05]), square_terms=array([[4.54621752e-07, 4.15189024e-09, 5.17693770e-09],
+ [4.15189024e-09, 1.53039993e-10, 2.26888691e-10],
+ [5.17693770e-09, 2.26888691e-10, 7.63852052e-10]]), scale=0.0022402925067310725, shift=array([ 9.20639987, 45.64224413, 23.04844635])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=78, candidate_x=array([ 9.20676711, 45.64298428, 23.05054873]), index=78, x=array([ 9.20676711, 45.64298428, 23.05054873]), fval=0.6411981649680742, rho=0.07874134829834548, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([56, 64, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77]), old_indices_discarded=array([53, 58, 59, 60, 61, 62, 63, 65, 71, 72]), step_length=0.0022589155167016327, relative_step_length=1.0083127582289395, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20676711, 45.64298428, 23.05054873]), radius=0.0011201462533655363, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([56, 61, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78]), model=ScalarModel(intercept=0.6412027938426249, linear_terms=array([ 5.40552063e-06, -5.81510678e-07, -4.60889875e-06]), square_terms=array([[ 1.11417104e-07, -1.28705802e-10, 6.93508248e-10],
+ [-1.28705802e-10, 1.32519455e-11, 1.07286462e-11],
+ [ 6.93508248e-10, 1.07286462e-11, 3.37418922e-11]]), scale=0.0011201462533655363, shift=array([ 9.20676711, 45.64298428, 23.05054873])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=79, candidate_x=array([ 9.20592325, 45.64307551, 23.0512797 ]), index=78, x=array([ 9.20676711, 45.64298428, 23.05054873]), fval=0.6411981649680742, rho=-1.3780848715897542, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([56, 61, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78]), old_indices_discarded=array([62, 64, 71, 75]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20676711, 45.64298428, 23.05054873]), radius=0.0005600731266827681, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91]), model=ScalarModel(intercept=0.6412009708000245, linear_terms=array([-6.35493630e-07, -2.15627085e-07, 3.36056584e-07]), square_terms=array([[ 2.97074267e-08, 1.30526313e-11, -3.63146602e-11],
+ [ 1.30526313e-11, 1.58264530e-13, 1.04142450e-13],
+ [-3.63146602e-11, 1.04142450e-13, 1.34699673e-12]]), scale=0.0005600731266827681, shift=array([ 9.20676711, 45.64298428, 23.05054873])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=92, candidate_x=array([ 9.20726383, 45.64311556, 23.05032577]), index=78, x=array([ 9.20676711, 45.64298428, 23.05054873]), fval=0.6411981649680742, rho=-8.383049611305378, accepted=False, new_indices=array([80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91]), old_indices_used=array([77, 78, 79]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20676711, 45.64298428, 23.05054873]), radius=0.00028003656334138407, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([78, 80, 81, 82, 83, 84, 86, 88, 89, 90, 91, 92]), model=ScalarModel(intercept=0.641199936976986, linear_terms=array([ 1.68215172e-06, -3.60432889e-07, -3.25130121e-07]), square_terms=array([[7.25448649e-09, 1.27253368e-11, 1.53337190e-11],
+ [1.27253368e-11, 2.83381020e-13, 2.85430374e-13],
+ [1.53337190e-11, 2.85430374e-13, 3.32440347e-13]]), scale=0.00028003656334138407, shift=array([ 9.20676711, 45.64298428, 23.05054873])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=93, candidate_x=array([ 9.20649824, 45.64304241, 23.05060121]), index=78, x=array([ 9.20676711, 45.64298428, 23.05054873]), fval=0.6411981649680742, rho=-0.6000813756488979, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([78, 80, 81, 82, 83, 84, 86, 88, 89, 90, 91, 92]), old_indices_discarded=array([79, 85, 87]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20676711, 45.64298428, 23.05054873]), radius=0.00014001828167069203, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([78, 80, 81, 82, 83, 84, 86, 88, 90, 91, 92, 93]), model=ScalarModel(intercept=0.6412000970879008, linear_terms=array([ 7.73526022e-07, -1.53366108e-07, -2.08033084e-07]), square_terms=array([[1.81747170e-09, 2.20820579e-12, 5.45451394e-12],
+ [2.20820579e-12, 4.71590434e-14, 7.11155001e-14],
+ [5.45451394e-12, 7.11155001e-14, 1.49659707e-13]]), scale=0.00014001828167069203, shift=array([ 9.20676711, 45.64298428, 23.05054873])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=94, candidate_x=array([ 9.20663436, 45.64301073, 23.05058457]), index=78, x=array([ 9.20676711, 45.64298428, 23.05054873]), fval=0.6411981649680742, rho=-0.5169576261346827, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([78, 80, 81, 82, 83, 84, 86, 88, 90, 91, 92, 93]), old_indices_discarded=array([85, 87, 89]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20676711, 45.64298428, 23.05054873]), radius=7.000914083534602e-05, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 78, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
+ 105, 106]), model=ScalarModel(intercept=0.6411983657280034, linear_terms=array([-1.03793979e-07, 7.27301433e-08, 7.34858031e-08]), square_terms=array([[ 4.67614996e-10, -8.23635135e-13, -9.30032955e-13],
+ [-8.23635135e-13, 1.57774271e-14, 1.60155267e-14],
+ [-9.30032955e-13, 1.60155267e-14, 1.64466615e-14]]), scale=7.000914083534602e-05, shift=array([ 9.20676711, 45.64298428, 23.05054873])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=107, candidate_x=array([ 9.20681662, 45.64294947, 23.05051355]), index=78, x=array([ 9.20676711, 45.64298428, 23.05054873]), fval=0.6411981649680742, rho=-3.3493252311935513, accepted=False, new_indices=array([ 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106]), old_indices_used=array([78, 93, 94]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20676711, 45.64298428, 23.05054873]), radius=3.500457041767301e-05, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 78, 95, 96, 97, 98, 99, 100, 101, 102, 103, 106, 107]), model=ScalarModel(intercept=0.6411983574243617, linear_terms=array([ 1.23497155e-07, 1.30854524e-08, -3.22669068e-08]), square_terms=array([[ 1.14966940e-10, -7.98896006e-14, 1.97016633e-13],
+ [-7.98896006e-14, 4.88353748e-16, -1.20420334e-15],
+ [ 1.97016633e-13, -1.20420334e-15, 2.96937558e-15]]), scale=3.500457041767301e-05, shift=array([ 9.20676711, 45.64298428, 23.05054873])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=108, candidate_x=array([ 9.20673342, 45.6429807 , 23.05055755]), index=78, x=array([ 9.20676711, 45.64298428, 23.05054873]), fval=0.6411981649680742, rho=-0.9176254431425854, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 78, 95, 96, 97, 98, 99, 100, 101, 102, 103, 106, 107]), old_indices_discarded=array([ 94, 104, 105]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20676711, 45.64298428, 23.05054873]), radius=1.7502285208836504e-05, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 78, 95, 96, 97, 99, 100, 101, 102, 103, 106, 107, 108]), model=ScalarModel(intercept=0.6411983851403613, linear_terms=array([ 6.38639428e-08, 5.43914697e-09, -4.07015582e-08]), square_terms=array([[ 2.87288275e-11, -1.65702288e-14, 1.24010042e-13],
+ [-1.65702288e-14, 8.43754307e-17, -6.31386781e-16],
+ [ 1.24010042e-13, -6.31386781e-16, 4.72470794e-15]]), scale=1.7502285208836504e-05, shift=array([ 9.20676711, 45.64298428, 23.05054873])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=109, candidate_x=array([ 9.20675239, 45.64298302, 23.05055811]), index=78, x=array([ 9.20676711, 45.64298428, 23.05054873]), fval=0.6411981649680742, rho=-0.6772843375754085, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 78, 95, 96, 97, 99, 100, 101, 102, 103, 106, 107, 108]), old_indices_discarded=array([ 98, 104, 105]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20676711, 45.64298428, 23.05054873]), radius=8.751142604418252e-06, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 78, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
+ 120, 121]), model=ScalarModel(intercept=0.6411981649678726, linear_terms=array([-3.05612962e-08, 1.46809760e-13, -1.70649995e-13]), square_terms=array([[ 7.38373402e-12, 7.56759673e-19, -8.94606680e-19],
+ [ 7.56759673e-19, 1.33945952e-25, -1.57431020e-25],
+ [-8.94606680e-19, -1.57431020e-25, 1.85043423e-25]]), scale=8.751142604418252e-06, shift=array([ 9.20676711, 45.64298428, 23.05054873])), vector_model=VectorModel(intercepts=array([ 0.04902623, 0.12501294, 0.1503741 , 0.19587585, 0.21991651,
+ 0.23522539, 0.2368249 , 0.07112057, -0.07578243, -0.06298703,
+ -0.4050205 , -0.41380612, -0.12606189, -0.09954036, -0.09019588,
+ -0.09363218, -0.09977924]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.5881190537852365, shift=array([ 9.27523039, 45.88119054, 23.01481109])), candidate_index=122, candidate_x=array([ 9.20677586, 45.64298428, 23.05054873]), index=122, x=array([ 9.20677586, 45.64298428, 23.05054873]), fval=0.6411981344087744, rho=1.0000555009711634, accepted=True, new_indices=array([110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121]), old_indices_used=array([ 78, 108, 109]), old_indices_discarded=array([], dtype=int64), step_length=8.75114260381017e-06, relative_step_length=0.999999999930514, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 123 entries., 'history': {'params': [{'CRRA': 9.275230386313043, 'BeqShift': 45.88119053785236, 'BeqFac': 23.014811093019418}, {'CRRA': 10.556800566878689, 'BeqShift': 48.18211054060359, 'BeqFac': 19.257926550618446}, {'CRRA': 6.326950770325419, 'BeqShift': 48.028109248006054, 'BeqFac': 20.231068322997192}, {'CRRA': 5.376086840779585, 'BeqShift': 47.88380177945927, 'BeqFac': 24.370194536190226}, {'CRRA': 8.836842627116226, 'BeqShift': 41.31414348521892, 'BeqFac': 22.987721550281236}, {'CRRA': 8.588658189640931, 'BeqShift': 44.17145102421629, 'BeqFac': 27.216744679593038}, {'CRRA': 5.236533581737813, 'BeqShift': 43.73675712771144, 'BeqFac': 23.390536953045526}, {'CRRA': 11.326280642245544, 'BeqShift': 49.96975911041845, 'BeqFac': 22.657548826930118}, {'CRRA': 12.938221774324816, 'BeqShift': 44.69982951667233, 'BeqFac': 20.51726896510742}, {'CRRA': 8.667600751746502, 'BeqShift': 49.02354334490217, 'BeqFac': 26.30224801483706}, {'CRRA': 8.154447497289702, 'BeqShift': 43.68698161615405, 'BeqFac': 19.144393883554894}, {'CRRA': 12.565120095009513, 'BeqShift': 43.02726045627806, 'BeqFac': 24.457913738642898}, {'CRRA': 12.823724647554654, 'BeqShift': 47.096813337304226, 'BeqFac': 25.657023449945957}, {'CRRA': 9.311678364660667, 'BeqShift': 47.23783920054173, 'BeqFac': 27.400544008848303}, {'CRRA': 9.333051913639503, 'BeqShift': 43.638384441015646, 'BeqFac': 23.525261669970227}, {'CRRA': 9.268767404448845, 'BeqShift': 46.9682573257543, 'BeqFac': 22.64867805102556}, {'CRRA': 8.831533831545041, 'BeqShift': 45.59466418086527, 'BeqFac': 23.238317991339443}, {'CRRA': 9.361620676185886, 'BeqShift': 45.40070550988308, 'BeqFac': 23.315793111204844}, {'CRRA': 9.796481835172973, 'BeqShift': 45.65132081738558, 'BeqFac': 23.080963630626602}, {'CRRA': 9.146694561635886, 'BeqShift': 46.39516388252553, 'BeqFac': 23.23442270996616}, {'CRRA': 9.519809545643264, 'BeqShift': 45.92310412684718, 'BeqFac': 22.49775828581611}, {'CRRA': 9.178245077276975, 'BeqShift': 45.91327811917426, 'BeqFac': 23.579154566902133}, {'CRRA': 9.637366606519059, 'BeqShift': 46.11104748089384, 'BeqFac': 23.39552419143928}, {'CRRA': 9.04152500161205, 'BeqShift': 46.12418513753196, 'BeqFac': 22.550855559324393}, {'CRRA': 8.756549283474971, 'BeqShift': 46.12546685730564, 'BeqFac': 23.029586507428785}, {'CRRA': 9.415898206571834, 'BeqShift': 45.406456940223244, 'BeqFac': 22.725398074681124}, {'CRRA': 9.702984082303058, 'BeqShift': 46.23699979289743, 'BeqFac': 22.875721664416524}, {'CRRA': 8.907901362536863, 'BeqShift': 45.572436878516534, 'BeqFac': 22.700709380677225}, {'CRRA': 9.2269326252332, 'BeqShift': 46.40381892664681, 'BeqFac': 22.77679267843739}, {'CRRA': 9.221910364827966, 'BeqShift': 45.338751316218215, 'BeqFac': 23.202571270413852}, {'CRRA': 9.223886263826088, 'BeqShift': 45.90974892254417, 'BeqFac': 23.256216676893683}, {'CRRA': 9.221751706837178, 'BeqShift': 45.58988884682311, 'BeqFac': 23.063324451586116}, {'CRRA': 9.222505357250864, 'BeqShift': 45.69461820848268, 'BeqFac': 22.965402595154597}, {'CRRA': 9.244008790058333, 'BeqShift': 45.5486962511117, 'BeqFac': 23.004576128525276}, {'CRRA': 9.216406285831768, 'BeqShift': 45.58028224471952, 'BeqFac': 23.09744161387024}, {'CRRA': 9.240933603586875, 'BeqShift': 45.61982496608793, 'BeqFac': 23.058772013506424}, {'CRRA': 9.234749717455506, 'BeqShift': 45.595614465761955, 'BeqFac': 23.03041381349209}, {'CRRA': 9.202961465924762, 'BeqShift': 45.56888112953985, 'BeqFac': 23.04117848687416}, {'CRRA': 9.201784894590327, 'BeqShift': 45.60215589574166, 'BeqFac': 23.036200900720644}, {'CRRA': 9.247426332299995, 'BeqShift': 45.574415986204556, 'BeqFac': 23.082977575603586}, {'CRRA': 9.189826267295379, 'BeqShift': 45.60026608658839, 'BeqFac': 23.07589108585866}, {'CRRA': 9.195966849284334, 'BeqShift': 45.566999552023354, 'BeqFac': 23.073125594201784}, {'CRRA': 9.231363706484517, 'BeqShift': 45.55554449176668, 'BeqFac': 23.059730591466266}, {'CRRA': 9.207303364641179, 'BeqShift': 45.62269249218854, 'BeqFac': 23.06323871624112}, {'CRRA': 9.23266474121237, 'BeqShift': 45.609562436423126, 'BeqFac': 23.091229588120438}, {'CRRA': 9.256754750095292, 'BeqShift': 45.58801981025229, 'BeqFac': 23.05583213839253}, {'CRRA': 9.18863529106902, 'BeqShift': 45.600314176075436, 'BeqFac': 23.07223829523934}, {'CRRA': 9.168147552702221, 'BeqShift': 45.531257051169746, 'BeqFac': 23.06562619582368}, {'CRRA': 9.168918596025406, 'BeqShift': 45.575975231930954, 'BeqFac': 23.090429486909624}, {'CRRA': 9.183342948566528, 'BeqShift': 45.60584935731797, 'BeqFac': 23.055923321196172}, {'CRRA': 9.194720488865237, 'BeqShift': 45.60608041684006, 'BeqFac': 23.075404271151562}, {'CRRA': 9.191516911458288, 'BeqShift': 45.6017014622688, 'BeqFac': 23.058099905765154}, {'CRRA': 9.214133934207393, 'BeqShift': 45.628639140443504, 'BeqFac': 23.048420509242046}, {'CRRA': 9.20208961767841, 'BeqShift': 45.641385520352735, 'BeqFac': 23.04472260286614}, {'CRRA': 9.185606909284198, 'BeqShift': 45.675197732596914, 'BeqFac': 23.044759115436054}, {'CRRA': 9.187932774344503, 'BeqShift': 45.635125743114706, 'BeqFac': 23.054736295494244}, {'CRRA': 9.210527889769837, 'BeqShift': 45.642028636921346, 'BeqFac': 23.047669556113426}, {'CRRA': 9.198717723735376, 'BeqShift': 45.63699240343462, 'BeqFac': 23.034611068498204}, {'CRRA': 9.202828901152245, 'BeqShift': 45.63774773963509, 'BeqFac': 23.04931335079104}, {'CRRA': 9.212786735591258, 'BeqShift': 45.64603770370286, 'BeqFac': 23.047557931717197}, {'CRRA': 9.21155599333772, 'BeqShift': 45.64044685682919, 'BeqFac': 23.04644973413689}, {'CRRA': 9.210885017013494, 'BeqShift': 45.64284350706606, 'BeqFac': 23.04835012529288}, {'CRRA': 9.210790897716553, 'BeqShift': 45.64276152736314, 'BeqFac': 23.046864307053067}, {'CRRA': 9.211508026724854, 'BeqShift': 45.64148651466892, 'BeqFac': 23.04768230922163}, {'CRRA': 9.210471461362458, 'BeqShift': 45.64091060454041, 'BeqFac': 23.047630223443228}, {'CRRA': 9.211527920587232, 'BeqShift': 45.64249071767996, 'BeqFac': 23.047466707978835}, {'CRRA': 9.20969889083722, 'BeqShift': 45.64210371478283, 'BeqFac': 23.046919988429114}, {'CRRA': 9.210016075092323, 'BeqShift': 45.643020199838354, 'BeqFac': 23.047571697304832}, {'CRRA': 9.209737855991232, 'BeqShift': 45.64242608366559, 'BeqFac': 23.048357022725764}, {'CRRA': 9.210181077211525, 'BeqShift': 45.6415117304607, 'BeqFac': 23.04860082212766}, {'CRRA': 9.209582970482286, 'BeqShift': 45.641434808180165, 'BeqFac': 23.04757352177014}, {'CRRA': 9.211138979067368, 'BeqShift': 45.64179134643108, 'BeqFac': 23.0485778461126}, {'CRRA': 9.210663248412404, 'BeqShift': 45.64173145828194, 'BeqFac': 23.04659806625202}, {'CRRA': 9.209408148064174, 'BeqShift': 45.642000675489335, 'BeqFac': 23.047658407129283}, {'CRRA': 9.207168076249175, 'BeqShift': 45.64197451734907, 'BeqFac': 23.047675857947592}, {'CRRA': 9.202696454836946, 'BeqShift': 45.64218581986054, 'BeqFac': 23.047487190893754}, {'CRRA': 9.204935723944422, 'BeqShift': 45.641826120090585, 'BeqFac': 23.047792012830623}, {'CRRA': 9.206399869381904, 'BeqShift': 45.642244131402585, 'BeqFac': 23.048446345322642}, {'CRRA': 9.206767105271858, 'BeqShift': 45.642984279653554, 'BeqFac': 23.050548729131396}, {'CRRA': 9.205923254839844, 'BeqShift': 45.64307551103424, 'BeqFac': 23.05127970171125}, {'CRRA': 9.206698827452305, 'BeqShift': 45.64243320268834, 'BeqFac': 23.05062176491027}, {'CRRA': 9.206594232151652, 'BeqShift': 45.64340397650702, 'BeqFac': 23.050220626490844}, {'CRRA': 9.20713337603455, 'BeqShift': 45.64283882773331, 'BeqFac': 23.050150770120283}, {'CRRA': 9.207115847639438, 'BeqShift': 45.64269404388535, 'BeqFac': 23.050220363683852}, {'CRRA': 9.206823459476313, 'BeqShift': 45.64331021189635, 'BeqFac': 23.051000696258495}, {'CRRA': 9.207041628062601, 'BeqShift': 45.643427693084526, 'BeqFac': 23.05075294390518}, {'CRRA': 9.206380379259455, 'BeqShift': 45.642693314755185, 'BeqFac': 23.05083062330743}, {'CRRA': 9.206929117674852, 'BeqShift': 45.64245732193357, 'BeqFac': 23.050647468433905}, {'CRRA': 9.206993883107025, 'BeqShift': 45.64346006515096, 'BeqFac': 23.050738154264803}, {'CRRA': 9.20699901831678, 'BeqShift': 45.64332825830781, 'BeqFac': 23.050172462029135}, {'CRRA': 9.207244448400411, 'BeqShift': 45.64270232249096, 'BeqFac': 23.050469195469862}, {'CRRA': 9.206733994928353, 'BeqShift': 45.64309089048603, 'BeqFac': 23.05109756402714}, {'CRRA': 9.207263831163626, 'BeqShift': 45.64311555604552, 'BeqFac': 23.050325767689454}, {'CRRA': 9.206498242579613, 'BeqShift': 45.64304241379752, 'BeqFac': 23.05060120532441}, {'CRRA': 9.206634362553118, 'BeqShift': 45.64301072905277, 'BeqFac': 23.050584574899688}, {'CRRA': 9.206831909816598, 'BeqShift': 45.64295993768132, 'BeqFac': 23.05055917514351}, {'CRRA': 9.206773951534302, 'BeqShift': 45.64293216341425, 'BeqFac': 23.050594970953288}, {'CRRA': 9.206716014741186, 'BeqShift': 45.64295358692788, 'BeqFac': 23.05051200047682}, {'CRRA': 9.20678314151098, 'BeqShift': 45.642966712374324, 'BeqFac': 23.050482884545165}, {'CRRA': 9.20679670791884, 'BeqShift': 45.642996568355, 'BeqFac': 23.050610970202314}, {'CRRA': 9.206828001552537, 'BeqShift': 45.64301131663226, 'BeqFac': 23.050527236700585}, {'CRRA': 9.20671451644574, 'BeqShift': 45.64302029488826, 'BeqFac': 23.050519770574162}, {'CRRA': 9.206717384370393, 'BeqShift': 45.64294639381846, 'BeqFac': 23.050580253332537}, {'CRRA': 9.206780588202152, 'BeqShift': 45.642919535988945, 'BeqFac': 23.05052575635873}, {'CRRA': 9.206768005001422, 'BeqShift': 45.64303350167378, 'BeqFac': 23.050498953002453}, {'CRRA': 9.206732489025335, 'BeqShift': 45.643018538997424, 'BeqFac': 23.05059902120468}, {'CRRA': 9.206780183148403, 'BeqShift': 45.64305049040274, 'BeqFac': 23.050567340569742}, {'CRRA': 9.206816622659327, 'BeqShift': 45.642949465886495, 'BeqFac': 23.050513553717227}, {'CRRA': 9.206733419138653, 'BeqShift': 45.64298069805773, 'BeqFac': 23.05055754596479}, {'CRRA': 9.206752385405242, 'BeqShift': 45.64298302466031, 'BeqFac': 23.050558114252937}, {'CRRA': 9.206763701008121, 'BeqShift': 45.64298846386457, 'BeqFac': 23.05054183813267}, {'CRRA': 9.20677381754346, 'BeqShift': 45.64298167746425, 'BeqFac': 23.050553704723587}, {'CRRA': 9.206761795906926, 'BeqShift': 45.642977717452816, 'BeqFac': 23.050546420308667}, {'CRRA': 9.206763719848476, 'BeqShift': 45.64299224581804, 'BeqFac': 23.050550018173173}, {'CRRA': 9.206767383102955, 'BeqShift': 45.64298079689447, 'BeqFac': 23.05054070568476}, {'CRRA': 9.206772578794476, 'BeqShift': 45.64298953708823, 'BeqFac': 23.050553086014183}, {'CRRA': 9.206758543607302, 'BeqShift': 45.64298542723826, 'BeqFac': 23.050547327901125}, {'CRRA': 9.20676421096892, 'BeqShift': 45.642979391200605, 'BeqFac': 23.050555385597065}, {'CRRA': 9.206774382027705, 'BeqShift': 45.64298244517857, 'BeqFac': 23.050544227351445}, {'CRRA': 9.206769831250977, 'BeqShift': 45.6429759865795, 'BeqFac': 23.05054934269274}, {'CRRA': 9.206765550077016, 'BeqShift': 45.64298728889666, 'BeqFac': 23.05055679810418}, {'CRRA': 9.206771788913986, 'BeqShift': 45.642990348549915, 'BeqFac': 23.05054450840986}, {'CRRA': 9.206775856414323, 'BeqShift': 45.64298427855443, 'BeqFac': 23.05054873023735}], 'criterion': [0.6414954627541696, 0.705080307627117, 1.0156227891856817, 1.3706599175889254, 0.6466666874861555, 0.6558090761059442, 1.4378197273384359, 0.797824505494891, 1.1313558981352445, 0.6521249660157109, 0.6846709995515564, 1.0354097200621724, 1.1002663590477124, 0.6417462690448607, 0.6417166772513854, 0.641534122998605, 0.6468138219556707, 0.6420119029750454, 0.6537363005859433, 0.6416839944749574, 0.6444586219497835, 0.6414198885933808, 0.6477829076662067, 0.6426859704748842, 0.6490011557171669, 0.6426219628812977, 0.6499298106691026, 0.6449215915270762, 0.6414015158827587, 0.6413556371977909, 0.6413751105589036, 0.6413538895520631, 0.6413601492888105, 0.6415514740422953, 0.6412964787869825, 0.6415461265052923, 0.6414571768147486, 0.6412685056234589, 0.6412815172514039, 0.6415762177058121, 0.6413029648372444, 0.6412981556453861, 0.6414173071894537, 0.6412048202093121, 0.6414329200652998, 0.6416044108046374, 0.64132278013026, 0.6414343864325133, 0.6414243782009376, 0.6414087932865302, 0.6412954271044502, 0.6412865692543277, 0.6412854794294207, 0.641279581055819, 0.6413818350153835, 0.6413360725922467, 0.6412388217057458, 0.6412877040107962, 0.6412706976786109, 0.6412739272492612, 0.6412528783892343, 0.6412455571674617, 0.6412437419225396, 0.6412523925678478, 0.641237872543212, 0.6412525940364707, 0.6412266965010901, 0.6412304930550558, 0.6412272191205531, 0.641233030463995, 0.6412251230472868, 0.6412487097674622, 0.6412413355178332, 0.6412231729718957, 0.641203166149811, 0.6412728891948222, 0.6412280723530474, 0.6412001975141021, 0.6411981649680744, 0.6412079437030589, 0.6411984036181763, 0.6411986911783254, 0.6412027480647225, 0.641202525461889, 0.6411987437639856, 0.6412015723843267, 0.641200500556385, 0.6412001120408095, 0.6412009516967749, 0.6412010184458711, 0.6412040999888278, 0.6411982806489596, 0.6412043369021567, 0.641199213576318, 0.6411985861573757, 0.6411988531624396, 0.6411981410601364, 0.6411983435068044, 0.6411982218360789, 0.6411983974477781, 0.641198802565166, 0.6411983487460016, 0.6411983387176948, 0.6411981887862126, 0.6411981618258916, 0.6411982859124767, 0.6411981835432701, 0.6411986552585525, 0.6411982826614723, 0.6411982163849296, 0.6411981768576345, 0.6411981415280087, 0.641198183511717, 0.6411981767918296, 0.6411981639977796, 0.6411981458535818, 0.6411981948719611, 0.6411981750765026, 0.6411981395569295, 0.6411981554481666, 0.6411981703995496, 0.6411981486118316, 0.6411981344087745], 'runtime': [0.0, 1.6660772569994151, 1.8709459969995805, 2.0942662709994693, 2.2992738539996935, 2.573140214999512, 2.793285908999678, 3.0239409299992985, 3.21622742999989, 3.619086903999232, 3.837496295999699, 4.064787764999892, 4.257744123999146, 5.771405386999504, 7.115736492999531, 8.483594589999484, 10.179792636999991, 10.376474048999626, 10.572450558999662, 10.776888375999988, 10.970461102999252, 11.2191199709996, 11.477609637999194, 11.685499741999593, 11.92565495799954, 12.199407783999959, 12.418102449999424, 12.646197193999797, 14.152243655999882, 15.625608827999713, 16.969351719999395, 18.28108473499924, 19.585364371999276, 20.901589727999635, 22.48934374199962, 22.68442717599919, 22.880525249999664, 23.091497723999964, 23.296080404999884, 23.49989032999929, 23.722511152999687, 24.103386021000006, 24.334308810999573, 24.55911114099945, 24.749386731999948, 24.971330100999694, 26.516184221999538, 27.830082762999155, 29.15997776199947, 30.618337350999354, 32.042491603999224, 33.47518897499958, 34.98603190199992, 36.43389601199942, 37.84166763199937, 39.21184449299926, 40.55340066699955, 41.92501889799951, 43.2515812369993, 44.711765780999485, 46.01470684099968, 47.659159168999395, 47.85348247499951, 48.05084095099937, 48.25375765299941, 48.457000436999806, 48.651789432999976, 48.87244264999936, 49.13459188999968, 49.35882806399968, 49.59038818599947, 49.81993929499913, 50.037629032999575, 51.526061966999805, 52.89645295799983, 54.40159700000004, 55.99065433299984, 57.3362580489993, 58.66196896999918, 59.97153813599925, 61.57381356899987, 61.760147432999474, 62.01530456399996, 62.21522431899939, 62.42186290299924, 62.657604192999315, 62.87575448699954, 63.08432635399913, 63.47667616999934, 63.669311561999166, 63.89146974599953, 64.14564449699992, 65.63578254099957, 66.97582318299919, 68.28952709699934, 69.91957877599998, 70.13097531499989, 70.39026367599945, 70.66363012599959, 70.86506305199964, 71.1010670679998, 71.33640461300001, 71.55638564799938, 71.81790237399946, 72.03107159499996, 72.23905201799971, 72.46167476499977, 74.07334276299935, 75.45991226499973, 77.02644426299958, 78.62224931799938, 78.81875102399954, 79.01513964099922, 79.23094035199938, 79.42576199999985, 79.6535652449993, 79.8579345169992, 80.10478922699986, 80.32257100899915, 80.57707195499916, 80.81765127299968, 81.04075872399972, 82.53920170899983], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 8, 9, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 37, 38, 39, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 41, 42, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45]}, 'multistart_info': {...}}, {'solution_x': array([ 9.20670483, 50.69074294, 26.21302219]), 'solution_criterion': 0.6411983826225262, 'states': [State(trustregion=Region(center=array([ 9.12811696, 48.90833875, 23.98172789]), radius=4.890833875417503, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=[0], model=ScalarModel(intercept=0.641913108278745, linear_terms=array([0., 0., 0.]), square_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=0, candidate_x=array([ 9.12811696, 48.90833875, 23.98172789]), index=0, x=array([ 9.12811696, 48.90833875, 23.98172789]), fval=0.641913108278745, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([ 9.12811696, 48.90833875, 23.98172789]), radius=4.890833875417503, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=0.583716765604152, linear_terms=array([-0.07859534, -0.0011287 , -0.00430102]), square_terms=array([[ 2.38031357e+00, -9.48468248e-03, -6.59715077e-03],
+ [-9.48468248e-03, 5.68338479e-05, 7.56457573e-05],
+ [-6.59715077e-03, 7.56457573e-05, 2.22800606e-04]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=13, candidate_x=array([ 9.30817323, 50.41072581, 28.64399966]), index=13, x=array([ 9.30817323, 50.41072581, 28.64399966]), fval=0.6417154484942845, rho=0.033276725821794646, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=4.901669630475602, relative_step_length=1.002215523024113, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.30817323, 50.41072581, 28.64399966]), radius=2.4454169377087513, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13]), model=ScalarModel(intercept=0.6095839952420734, linear_terms=array([0.02847601, 0.00192014, 0.02111076]), square_terms=array([[5.96661659e-01, 4.33856639e-04, 1.74507155e-02],
+ [4.33856639e-04, 2.74994283e-05, 2.16161701e-04],
+ [1.74507155e-02, 2.16161701e-04, 2.09801764e-03]]), scale=2.4454169377087513, shift=array([ 9.30817323, 50.41072581, 28.64399966])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=14, candidate_x=array([ 9.26566463, 50.18540399, 26.1572868 ]), index=14, x=array([ 9.26566463, 50.18540399, 26.1572868 ]), fval=0.641560429358155, rho=0.007512522107510051, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13]), old_indices_discarded=array([ 1, 10]), step_length=2.497262046774645, relative_step_length=1.02120092826153, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.26566463, 50.18540399, 26.1572868 ]), radius=1.2227084688543757, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 3, 5, 6, 7, 9, 11, 12, 13, 14]), model=ScalarModel(intercept=0.5910305640762153, linear_terms=array([0.00422937, 0.00796844, 0.01620315]), square_terms=array([[0.1522213 , 0.00363233, 0.0087327 ],
+ [0.00363233, 0.00041228, 0.00091517],
+ [0.0087327 , 0.00091517, 0.00204036]]), scale=1.2227084688543757, shift=array([ 9.26566463, 50.18540399, 26.1572868 ])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=15, candidate_x=array([ 9.30699788, 49.61506971, 25.01041036]), index=14, x=array([ 9.26566463, 50.18540399, 26.1572868 ]), fval=0.641560429358155, rho=-0.007886315339199876, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 5, 6, 7, 9, 11, 12, 13, 14]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.26566463, 50.18540399, 26.1572868 ]), radius=0.6113542344271878, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 9, 13, 14, 15]), model=ScalarModel(intercept=0.6412073334062556, linear_terms=array([ 5.19349520e-03, -5.98359323e-04, 8.59183085e-05]), square_terms=array([[ 3.44371233e-02, -5.21030805e-05, 5.09651589e-06],
+ [-5.21030805e-05, 6.91566502e-07, -9.74269049e-08],
+ [ 5.09651589e-06, -9.74269049e-08, 1.42970270e-08]]), scale=0.6113542344271878, shift=array([ 9.26566463, 50.18540399, 26.1572868 ])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=16, candidate_x=array([ 9.17594703, 50.79063701, 26.07002062]), index=16, x=array([ 9.17594703, 50.79063701, 26.07002062]), fval=0.6414177609144429, rho=0.14441039761596372, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 9, 13, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.6180385419257706, relative_step_length=1.0109336079185673, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.17594703, 50.79063701, 26.07002062]), radius=1.2227084688543757, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 2, 3, 5, 7, 9, 11, 12, 13, 14, 15, 16]), model=ScalarModel(intercept=0.6052290080578056, linear_terms=array([-0.00708001, 0.00285835, 0.00875437]), square_terms=array([[1.45734146e-01, 8.89361268e-04, 3.96564545e-03],
+ [8.89361268e-04, 3.28047912e-05, 1.13464106e-04],
+ [3.96564545e-03, 1.13464106e-04, 4.05115526e-04]]), scale=1.2227084688543757, shift=array([ 9.17594703, 50.79063701, 26.07002062])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=17, candidate_x=array([ 9.26389375, 50.41169957, 24.90532478]), index=16, x=array([ 9.17594703, 50.79063701, 26.07002062]), fval=0.6414177609144429, rho=-0.01627040853300433, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 5, 7, 9, 11, 12, 13, 14, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.17594703, 50.79063701, 26.07002062]), radius=0.6113542344271878, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 9, 13, 14, 15, 16, 17]), model=ScalarModel(intercept=0.6408669351182988, linear_terms=array([ 1.22927317e-03, -1.53440992e-04, -7.90629366e-05]), square_terms=array([[ 3.47101203e-02, 3.61136658e-06, -1.55842854e-05],
+ [ 3.61136658e-06, 4.50052366e-08, 1.45178126e-08],
+ [-1.55842854e-05, 1.45178126e-08, 1.99338003e-08]]), scale=0.6113542344271878, shift=array([ 9.17594703, 50.79063701, 26.07002062])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=18, candidate_x=array([ 9.15447068, 51.33486012, 26.34827514]), index=16, x=array([ 9.17594703, 50.79063701, 26.07002062]), fval=0.6414177609144429, rho=-0.37962116512774374, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 9, 13, 14, 15, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.17594703, 50.79063701, 26.07002062]), radius=0.3056771172135939, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([14, 16, 17, 18]), model=ScalarModel(intercept=0.6414177609144434, linear_terms=array([-7.19667964e-04, 3.27673764e-06, -4.38632601e-06]), square_terms=array([[ 8.32991536e-03, -4.95785367e-06, -1.12565541e-06],
+ [-4.95785367e-06, 3.12359635e-08, 6.32213746e-09],
+ [-1.12565541e-06, 6.32213746e-09, 1.43003510e-09]]), scale=0.3056771172135939, shift=array([ 9.17594703, 50.79063701, 26.07002062])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=19, candidate_x=array([ 9.20227374, 50.61564005, 26.34665317]), index=19, x=array([ 9.20227374, 50.61564005, 26.34665317]), fval=0.64127879028253, rho=3.7790387049118928, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 16, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.3283939779394031, relative_step_length=1.0743165236995338, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20227374, 50.61564005, 26.34665317]), radius=0.6113542344271878, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([ 0, 9, 13, 14, 15, 16, 17, 18, 19]), model=ScalarModel(intercept=0.6411417972530091, linear_terms=array([ 3.16072074e-03, 2.78118281e-05, -1.27986623e-04]), square_terms=array([[ 3.48228413e-02, 2.65152618e-05, -2.12954966e-05],
+ [ 2.65152618e-05, 5.39158692e-08, -3.83514408e-08],
+ [-2.12954966e-05, -3.83514408e-08, 4.64226978e-08]]), scale=0.6113542344271878, shift=array([ 9.20227374, 50.61564005, 26.34665317])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=20, candidate_x=array([ 9.14744387, 50.49524578, 26.94433444]), index=19, x=array([ 9.20227374, 50.61564005, 26.34665317]), fval=0.64127879028253, rho=-1.438980527261934, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 9, 13, 14, 15, 16, 17, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20227374, 50.61564005, 26.34665317]), radius=0.3056771172135939, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([14, 16, 17, 18, 19, 20]), model=ScalarModel(intercept=0.6413841070992645, linear_terms=array([-6.53726515e-04, -5.99067852e-05, -1.84848863e-05]), square_terms=array([[8.48604787e-03, 2.74233289e-06, 1.50336569e-07],
+ [2.74233289e-06, 1.06911664e-08, 2.45419451e-09],
+ [1.50336569e-07, 2.45419451e-09, 1.17491524e-09]]), scale=0.3056771172135939, shift=array([ 9.20227374, 50.61564005, 26.34665317])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=21, candidate_x=array([ 9.22555433, 50.90760858, 26.4370058 ]), index=19, x=array([ 9.20227374, 50.61564005, 26.34665317]), fval=0.64127879028253, rho=-1.3571447197113051, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 16, 17, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20227374, 50.61564005, 26.34665317]), radius=0.15283855860679696, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([14, 16, 18, 19, 20, 21]), model=ScalarModel(intercept=0.6413867749395041, linear_terms=array([-1.15334196e-04, -1.03339480e-05, 1.89663138e-05]), square_terms=array([[ 2.12361077e-03, 7.37109646e-07, -4.72884217e-07],
+ [ 7.37109646e-07, 2.13322450e-09, 4.55845370e-10],
+ [-4.72884217e-07, 4.55845370e-10, 3.49467194e-09]]), scale=0.15283855860679696, shift=array([ 9.20227374, 50.61564005, 26.34665317])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=22, candidate_x=array([ 9.21043634, 50.68853093, 26.21255295]), index=22, x=array([ 9.21043634, 50.68853093, 26.21255295]), fval=0.6412372943065084, rho=1.6828512349311813, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 16, 18, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.1528482217948772, relative_step_length=1.0000632248051036, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21043634, 50.68853093, 26.21255295]), radius=0.3056771172135939, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([14, 16, 17, 18, 19, 20, 21, 22]), model=ScalarModel(intercept=0.6413655868487599, linear_terms=array([-2.08473659e-04, -3.95761353e-05, -7.61346768e-06]), square_terms=array([[8.52016057e-03, 4.18394593e-06, 1.05230575e-06],
+ [4.18394593e-06, 1.37295451e-08, 5.81549864e-09],
+ [1.05230575e-06, 5.81549864e-09, 4.01248942e-09]]), scale=0.3056771172135939, shift=array([ 9.21043634, 50.68853093, 26.21255295])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=23, candidate_x=array([ 9.21772683, 50.98870086, 26.27022546]), index=22, x=array([ 9.21043634, 50.68853093, 26.21255295]), fval=0.6412372943065084, rho=-1.6364205448497149, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 16, 17, 18, 19, 20, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21043634, 50.68853093, 26.21255295]), radius=0.15283855860679696, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([14, 16, 18, 19, 20, 21, 22, 23]), model=ScalarModel(intercept=0.6413359796696954, linear_terms=array([-1.81109576e-05, -1.14485767e-05, 2.37026915e-05]), square_terms=array([[ 2.12663363e-03, 8.91621394e-07, -5.38885654e-07],
+ [ 8.91621394e-07, 2.74292807e-09, 6.77799196e-11],
+ [-5.38885654e-07, 6.77799196e-11, 3.59250963e-09]]), scale=0.15283855860679696, shift=array([ 9.21043634, 50.68853093, 26.21255295])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=24, candidate_x=array([ 9.21165679, 50.75953193, 26.06549617]), index=22, x=array([ 9.21043634, 50.68853093, 26.21255295]), fval=0.6412372943065084, rho=-0.5890207447246926, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 16, 18, 19, 20, 21, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21043634, 50.68853093, 26.21255295]), radius=0.07641927930339848, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([16, 19, 21, 22, 23, 24]), model=ScalarModel(intercept=0.6412542210909683, linear_terms=array([-2.23995338e-04, 2.54535201e-05, 2.11746359e-05]), square_terms=array([[ 5.33098874e-04, -5.21340692e-08, -6.08486471e-08],
+ [-5.21340692e-08, 2.75567603e-09, 1.19347943e-09],
+ [-6.08486471e-08, 1.19347943e-09, 8.72229962e-10]]), scale=0.07641927930339848, shift=array([ 9.21043634, 50.68853093, 26.21255295])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=25, candidate_x=array([ 9.24063024, 50.63073733, 26.16448842]), index=22, x=array([ 9.21043634, 50.68853093, 26.21255295]), fval=0.6412372943065084, rho=-3.849990572292386, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 19, 21, 22, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21043634, 50.68853093, 26.21255295]), radius=0.03820963965169924, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([16, 19, 22, 24, 25]), model=ScalarModel(intercept=0.641219258129736, linear_terms=array([-0.00032591, -0.00024411, -0.00013343]), square_terms=array([[1.34077944e-04, 5.43533915e-07, 3.15951718e-07],
+ [5.43533915e-07, 1.95813700e-07, 1.10514267e-07],
+ [3.15951718e-07, 1.10514267e-07, 6.24967287e-08]]), scale=0.03820963965169924, shift=array([ 9.21043634, 50.68853093, 26.21255295])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=26, candidate_x=array([ 9.23584043, 50.71471982, 26.22686584]), index=22, x=array([ 9.21043634, 50.68853093, 26.21255295]), fval=0.6412372943065084, rho=-0.5673497189202965, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 19, 22, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21043634, 50.68853093, 26.21255295]), radius=0.01910481982584962, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([22, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]), model=ScalarModel(intercept=0.6412969075158591, linear_terms=array([ 8.32111914e-05, -3.85237511e-06, -1.89858710e-05]), square_terms=array([[ 3.30302534e-05, -1.92352742e-09, 1.34216817e-08],
+ [-1.92352742e-09, 2.03912494e-10, 1.41492124e-10],
+ [ 1.34216817e-08, 1.41492124e-10, 7.26728056e-10]]), scale=0.01910481982584962, shift=array([ 9.21043634, 50.68853093, 26.21255295])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=39, candidate_x=array([ 9.19299773, 50.68734198, 26.22026498]), index=22, x=array([ 9.21043634, 50.68853093, 26.21255295]), fval=0.6412372943065084, rho=-0.8735221855116919, accepted=False, new_indices=array([27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]), old_indices_used=array([22, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21043634, 50.68853093, 26.21255295]), radius=0.00955240991292481, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([22, 27, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39]), model=ScalarModel(intercept=0.6412994242831694, linear_terms=array([ 2.85233747e-05, -1.63095244e-05, -8.02189878e-07]), square_terms=array([[ 8.22961168e-06, 8.93803337e-09, 1.13412880e-08],
+ [ 8.93803337e-09, 5.36069130e-10, -1.49130908e-10],
+ [ 1.13412880e-08, -1.49130908e-10, 3.21289345e-10]]), scale=0.00955240991292481, shift=array([ 9.21043634, 50.68853093, 26.21255295])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=40, candidate_x=array([ 9.20281168, 50.69426121, 26.21307923]), index=22, x=array([ 9.21043634, 50.68853093, 26.21255295]), fval=0.6412372943065084, rho=-1.1237580039409194, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 27, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39]), old_indices_discarded=array([26, 28, 34]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.21043634, 50.68853093, 26.21255295]), radius=0.004776204956462405, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([22, 27, 29, 30, 31, 32, 33, 35, 36, 37, 38, 40]), model=ScalarModel(intercept=0.6412963629457158, linear_terms=array([ 1.62960573e-05, -7.58208714e-06, -1.23880890e-06]), square_terms=array([[ 2.06057449e-06, 2.04005372e-09, 2.61576683e-09],
+ [ 2.04005372e-09, 1.27885790e-10, -2.61931144e-11],
+ [ 2.61576683e-09, -2.61931144e-11, 6.68359271e-11]]), scale=0.004776204956462405, shift=array([ 9.21043634, 50.68853093, 26.21255295])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=41, candidate_x=array([ 9.20624584, 50.69077625, 26.21301162]), index=41, x=array([ 9.20624584, 50.69077625, 26.21301162]), fval=0.6412025926118272, rho=2.0188340128829463, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 27, 29, 30, 31, 32, 33, 35, 36, 37, 38, 40]), old_indices_discarded=array([28, 34, 39]), step_length=0.004776204956462672, relative_step_length=1.000000000000056, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20624584, 50.69077625, 26.21301162]), radius=0.00955240991292481, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([22, 27, 28, 30, 32, 34, 35, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=0.6412523356275223, linear_terms=array([-2.97875373e-05, -3.12914020e-06, -1.35700767e-05]), square_terms=array([[8.24295698e-06, 1.83108503e-08, 2.74598078e-08],
+ [1.83108503e-08, 1.20423462e-10, 1.79372343e-10],
+ [2.74598078e-08, 1.79372343e-10, 4.82089539e-10]]), scale=0.00955240991292481, shift=array([ 9.20624584, 50.69077625, 26.21301162])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=42, candidate_x=array([ 9.21535452, 50.69006497, 26.21579992]), index=41, x=array([ 9.20624584, 50.69077625, 26.21301162]), fval=0.6412025926118272, rho=-3.058119371836011, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 27, 28, 30, 32, 34, 35, 37, 38, 39, 40, 41]), old_indices_discarded=array([26, 29, 31, 33, 36]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20624584, 50.69077625, 26.21301162]), radius=0.004776204956462405, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([22, 27, 30, 32, 34, 35, 37, 38, 39, 40, 41, 42]), model=ScalarModel(intercept=0.641260958677883, linear_terms=array([-8.54001386e-06, -4.00908422e-06, -5.87995380e-06]), square_terms=array([[2.06075442e-06, 4.78854877e-09, 6.77613271e-09],
+ [4.78854877e-09, 5.18473074e-11, 6.78590681e-11],
+ [6.77613271e-09, 6.78590681e-11, 1.04111696e-10]]), scale=0.004776204956462405, shift=array([ 9.20624584, 50.69077625, 26.21301162])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=43, candidate_x=array([ 9.20961343, 50.69268469, 26.21580971]), index=41, x=array([ 9.20624584, 50.69077625, 26.21301162]), fval=0.6412025926118272, rho=-2.1744638005385846, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 27, 30, 32, 34, 35, 37, 38, 39, 40, 41, 42]), old_indices_discarded=array([28, 29, 31, 33, 36]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20624584, 50.69077625, 26.21301162]), radius=0.0023881024782312025, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([22, 40, 41, 42, 43]), model=ScalarModel(intercept=0.6411961332281664, linear_terms=array([ 8.04706243e-05, 1.32742578e-04, -1.57116889e-04]), square_terms=array([[ 4.93024268e-07, -1.40881505e-08, 2.11157299e-08],
+ [-1.40881505e-08, 2.10191501e-08, -2.50091707e-08],
+ [ 2.11157299e-08, -2.50091707e-08, 2.99012604e-08]]), scale=0.0023881024782312025, shift=array([ 9.20624584, 50.69077625, 26.21301162])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=44, candidate_x=array([ 9.2053765 , 50.68933969, 26.21471197]), index=41, x=array([ 9.20624584, 50.69077625, 26.21301162]), fval=0.6412025926118272, rho=-0.06665297495399475, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 40, 41, 42, 43]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20624584, 50.69077625, 26.21301162]), radius=0.0011940512391156012, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([22, 40, 41, 43, 44]), model=ScalarModel(intercept=0.6412340229860928, linear_terms=array([ 3.52986518e-07, 8.56291047e-06, -9.16081742e-06]), square_terms=array([[ 1.28888785e-07, -6.98266228e-10, 1.36219560e-09],
+ [-6.98266228e-10, 9.60382236e-11, -9.67779110e-11],
+ [ 1.36219560e-09, -9.67779110e-11, 1.24968104e-10]]), scale=0.0011940512391156012, shift=array([ 9.20624584, 50.69077625, 26.21301162])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=45, candidate_x=array([ 9.20621228, 50.68995703, 26.21388804]), index=41, x=array([ 9.20624584, 50.69077625, 26.21301162]), fval=0.6412025926118272, rho=-0.04141465744419389, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 40, 41, 43, 44]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20624584, 50.69077625, 26.21301162]), radius=0.0005970256195578006, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]), model=ScalarModel(intercept=0.6412034259450424, linear_terms=array([-8.11970601e-06, -2.39531003e-07, 1.81597890e-07]), square_terms=array([[ 3.51047344e-08, -2.56898246e-11, 4.88710489e-11],
+ [-2.56898246e-11, 5.62665624e-13, -7.44694288e-13],
+ [ 4.88710489e-11, -7.44694288e-13, 1.18184915e-12]]), scale=0.0005970256195578006, shift=array([ 9.20624584, 50.69077625, 26.21301162])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=58, candidate_x=array([ 9.20684239, 50.69079511, 26.21299702]), index=58, x=array([ 9.20684239, 50.69079511, 26.21299702]), fval=0.6411989888451124, rho=0.44448642236637376, accepted=True, new_indices=array([46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]), old_indices_used=array([41, 44, 45]), old_indices_discarded=array([], dtype=int64), step_length=0.000597025619557705, relative_step_length=0.9999999999998398, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20684239, 50.69079511, 26.21299702]), radius=0.0011940512391156012, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58]), model=ScalarModel(intercept=0.6411961236662362, linear_terms=array([-1.48124284e-05, -2.26730670e-07, -2.78872623e-07]), square_terms=array([[1.40386495e-07, 1.43891086e-11, 9.74123226e-11],
+ [1.43891086e-11, 2.49639098e-13, 5.84477295e-13],
+ [9.74123226e-11, 5.84477295e-13, 1.67606530e-12]]), scale=0.0011940512391156012, shift=array([ 9.20684239, 50.69079511, 26.21299702])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=59, candidate_x=array([ 9.20803626, 50.69080762, 26.21301375]), index=58, x=array([ 9.20684239, 50.69079511, 26.21299702]), fval=0.6411989888451124, rho=-1.024937804675889, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58]), old_indices_discarded=array([22, 40, 43, 44, 45, 51, 57]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20684239, 50.69079511, 26.21299702]), radius=0.0005970256195578006, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([41, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58]), model=ScalarModel(intercept=0.6411968517699711, linear_terms=array([-6.43261951e-06, 2.03543544e-07, 1.62100697e-07]), square_terms=array([[ 3.49331176e-08, -1.80338542e-11, -5.22765309e-13],
+ [-1.80338542e-11, 2.50756952e-13, 1.87739614e-13],
+ [-5.22765309e-13, 1.87739614e-13, 1.76049815e-13]]), scale=0.0005970256195578006, shift=array([ 9.20684239, 50.69079511, 26.21299702])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=60, candidate_x=array([ 9.20743902, 50.6907779 , 26.21298366]), index=58, x=array([ 9.20684239, 50.69079511, 26.21299702]), fval=0.6411989888451124, rho=-1.202423070496879, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([41, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58]), old_indices_discarded=array([44, 45, 50, 53, 59]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20684239, 50.69079511, 26.21299702]), radius=0.0002985128097789003, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([41, 46, 47, 48, 49, 51, 54, 55, 56, 57, 58, 60]), model=ScalarModel(intercept=0.6412011641332256, linear_terms=array([-4.16514126e-07, 5.09594074e-07, -4.79341866e-07]), square_terms=array([[ 8.42771432e-09, -2.43642549e-11, 2.79372778e-11],
+ [-2.43642549e-11, 7.61207584e-13, -8.07048298e-13],
+ [ 2.79372778e-11, -8.07048298e-13, 8.96443906e-13]]), scale=0.0002985128097789003, shift=array([ 9.20684239, 50.69079511, 26.21299702])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=61, candidate_x=array([ 9.2069943 , 50.69060731, 26.21317367]), index=58, x=array([ 9.20684239, 50.69079511, 26.21299702]), fval=0.6411989888451124, rho=-2.4147290290986723, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([41, 46, 47, 48, 49, 51, 54, 55, 56, 57, 58, 60]), old_indices_discarded=array([45, 50, 52, 53, 59]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 9.20684239, 50.69079511, 26.21299702]), radius=0.00014925640488945016, bounds=Bounds(lower=array([1.1, 0. , 0. ]), upper=array([ 20., 70., 100.]))), model_indices=array([41, 47, 48, 51, 57, 58, 60, 61]), model=ScalarModel(intercept=0.6412008661256092, linear_terms=array([ 6.35130769e-07, 2.39823317e-07, -1.15441192e-07]), square_terms=array([[ 2.06563718e-09, -4.66680942e-12, 3.66227593e-12],
+ [-4.66680942e-12, 2.32998555e-13, -1.96650017e-13],
+ [ 3.66227593e-12, -1.96650017e-13, 2.15322317e-13]]), scale=0.00014925640488945016, shift=array([ 9.20684239, 50.69079511, 26.21299702])), vector_model=VectorModel(intercepts=array([ 0.04789857, 0.12198169, 0.14591124, 0.1902616 , 0.21318464,
+ 0.22770393, 0.22810445, 0.06014447, -0.08704184, -0.07443106,
+ -0.41631848, -0.42444566, -0.12082428, -0.09458328, -0.08510221,
+ -0.08890051, -0.09498588]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=4.890833875417503, shift=array([ 9.12811696, 48.90833875, 23.98172789])), candidate_index=62, candidate_x=array([ 9.20670483, 50.69074294, 26.21302219]), index=62, x=array([ 9.20670483, 50.69074294, 26.21302219]), fval=0.6411983826225262, rho=0.8814327915604036, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([41, 47, 48, 51, 57, 58, 60, 61]), old_indices_discarded=array([], dtype=int64), step_length=0.00014925640488986044, relative_step_length=1.000000000002749, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 63 entries., 'history': {'params': [{'CRRA': 9.128116958674036, 'BeqShift': 48.90833875417502, 'BeqFac': 23.98172788815444}, {'CRRA': 10.494242549435306, 'BeqShift': 51.36106880807309, 'BeqFac': 19.97697169708566}, {'CRRA': 5.985315812705749, 'BeqShift': 51.1969068214584, 'BeqFac': 21.014319396685387}, {'CRRA': 4.971715802980925, 'BeqShift': 51.043078237812104, 'BeqFac': 25.426536791395705}, {'CRRA': 8.660805261197643, 'BeqShift': 44.039967167954444, 'BeqFac': 23.952851032139954}, {'CRRA': 8.396246116169749, 'BeqShift': 47.08579408316602, 'BeqFac': 28.460896559794314}, {'CRRA': 4.822955101973545, 'BeqShift': 46.62241996197595, 'BeqFac': 24.382243381005484}, {'CRRA': 11.314491364896664, 'BeqShift': 53.26666281731726, 'BeqFac': 23.600894179849416}, {'CRRA': 13.032785114804481, 'BeqShift': 47.64903392059222, 'BeqFac': 21.319402978691425}, {'CRRA': 8.480397148963819, 'BeqShift': 52.25801764808977, 'BeqFac': 27.486063253484424}, {'CRRA': 7.9333870799667014, 'BeqShift': 46.56936036277259, 'BeqFac': 19.855948374122228}, {'CRRA': 12.63506694080353, 'BeqShift': 45.86611213420074, 'BeqFac': 25.520043529527573}, {'CRRA': 12.91073369903237, 'BeqShift': 50.2041658889099, 'BeqFac': 26.79826807593395}, {'CRRA': 9.308173225823834, 'BeqShift': 50.410725810642916, 'BeqFac': 28.64399965624611}, {'CRRA': 9.26566462573952, 'BeqShift': 50.1854039894783, 'BeqFac': 26.157286800670093}, {'CRRA': 9.306997881559322, 'BeqShift': 49.615069712990945, 'BeqFac': 25.0104103583992}, {'CRRA': 9.17594702814447, 'BeqShift': 50.79063700650143, 'BeqFac': 26.070020615394284}, {'CRRA': 9.263893754437193, 'BeqShift': 50.411699572494896, 'BeqFac': 24.905324775611366}, {'CRRA': 9.154470681554113, 'BeqShift': 51.334860122284155, 'BeqFac': 26.34827514398519}, {'CRRA': 9.2022737448878, 'BeqShift': 50.61564004625755, 'BeqFac': 26.346653174283844}, {'CRRA': 9.14744387487816, 'BeqShift': 50.49524578449314, 'BeqFac': 26.944334437017478}, {'CRRA': 9.22555433331291, 'BeqShift': 50.907608583114424, 'BeqFac': 26.437005802787674}, {'CRRA': 9.210436344325563, 'BeqShift': 50.688530931156656, 'BeqFac': 26.21255295140968}, {'CRRA': 9.217726825417827, 'BeqShift': 50.98870086262041, 'BeqFac': 26.270225457732973}, {'CRRA': 9.21165679169444, 'BeqShift': 50.75953192732864, 'BeqFac': 26.065496173292587}, {'CRRA': 9.240630244877064, 'BeqShift': 50.63073732595818, 'BeqFac': 26.16448841976408}, {'CRRA': 9.235840425579314, 'BeqShift': 50.7147198210303, 'BeqFac': 26.226865840805157}, {'CRRA': 9.19602476507296, 'BeqShift': 50.68003140717201, 'BeqFac': 26.221775674221224}, {'CRRA': 9.210438945727926, 'BeqShift': 50.67159109702013, 'BeqFac': 26.22138675881295}, {'CRRA': 9.224918206111747, 'BeqShift': 50.67883548084317, 'BeqFac': 26.220380343248777}, {'CRRA': 9.208931591100374, 'BeqShift': 50.70722782803226, 'BeqFac': 26.21618005845697}, {'CRRA': 9.225457792225846, 'BeqShift': 50.6898838205311, 'BeqFac': 26.20082606205667}, {'CRRA': 9.209148729911266, 'BeqShift': 50.69276847346778, 'BeqFac': 26.231137337997882}, {'CRRA': 9.226660297006042, 'BeqShift': 50.69486297326585, 'BeqFac': 26.22040678758872}, {'CRRA': 9.197756194047775, 'BeqShift': 50.69309878191141, 'BeqFac': 26.199012542664253}, {'CRRA': 9.194276904041157, 'BeqShift': 50.69764755187228, 'BeqFac': 26.217108591540374}, {'CRRA': 9.216515636816284, 'BeqShift': 50.675129217132195, 'BeqFac': 26.200369749671346}, {'CRRA': 9.21372456765587, 'BeqShift': 50.70129794667283, 'BeqFac': 26.198725983458683}, {'CRRA': 9.19974450203932, 'BeqShift': 50.67657389121503, 'BeqFac': 26.20217471240017}, {'CRRA': 9.192997732492683, 'BeqShift': 50.68734198391714, 'BeqFac': 26.220264978535024}, {'CRRA': 9.20281168271835, 'BeqShift': 50.694261210798274, 'BeqFac': 26.21307922676431}, {'CRRA': 9.206245840892574, 'BeqShift': 50.690776245300945, 'BeqFac': 26.213011622487578}, {'CRRA': 9.215354520147347, 'BeqShift': 50.690064972324855, 'BeqFac': 26.215799917330614}, {'CRRA': 9.20961343427463, 'BeqShift': 50.692684691391385, 'BeqFac': 26.215809707925725}, {'CRRA': 9.205376500062254, 'BeqShift': 50.689339688986, 'BeqFac': 26.214711974901615}, {'CRRA': 9.206212275198338, 'BeqShift': 50.68995702786194, 'BeqFac': 26.213888042490407}, {'CRRA': 9.206383278949096, 'BeqShift': 50.69067950951654, 'BeqFac': 26.21358450341678}, {'CRRA': 9.206400227873939, 'BeqShift': 50.69123681484353, 'BeqFac': 26.212664520273762}, {'CRRA': 9.206689440773921, 'BeqShift': 50.69071232573907, 'BeqFac': 26.2126171950224}, {'CRRA': 9.20618393419009, 'BeqShift': 50.69053519001226, 'BeqFac': 26.212468944407686}, {'CRRA': 9.20576293304336, 'BeqShift': 50.69078575068171, 'BeqFac': 26.2126606962171}, {'CRRA': 9.20673050637059, 'BeqShift': 50.690447165097176, 'BeqFac': 26.21312671021201}, {'CRRA': 9.205828536576984, 'BeqShift': 50.69086264611442, 'BeqFac': 26.213429751173546}, {'CRRA': 9.205780959370562, 'BeqShift': 50.69041417871431, 'BeqFac': 26.213107708635093}, {'CRRA': 9.20627061442872, 'BeqShift': 50.69018127553888, 'BeqFac': 26.212968764063078}, {'CRRA': 9.205906137770373, 'BeqShift': 50.691248116513165, 'BeqFac': 26.21287605354478}, {'CRRA': 9.206264599299153, 'BeqShift': 50.6912740083395, 'BeqFac': 26.213340742025192}, {'CRRA': 9.206740583228921, 'BeqShift': 50.69105929799355, 'BeqFac': 26.213189247891858}, {'CRRA': 9.206842389809529, 'BeqShift': 50.69079510897646, 'BeqFac': 26.212997023109683}, {'CRRA': 9.208036258240758, 'BeqShift': 50.69080762400932, 'BeqFac': 26.213013753456305}, {'CRRA': 9.207439017630938, 'BeqShift': 50.69077789545306, 'BeqFac': 26.212983661682323}, {'CRRA': 9.206994297388489, 'BeqShift': 50.69060731086223, 'BeqFac': 26.21317367153902}, {'CRRA': 9.206704829898786, 'BeqShift': 50.69074294245607, 'BeqFac': 26.21302219053918}], 'criterion': [0.641913108278745, 0.6993311991335497, 1.124943967609028, 1.5791773626837113, 0.6524834670210764, 0.6665191810333042, 1.6667604759808738, 0.7961007397690689, 1.1585873846733912, 0.6612905946584647, 0.7057495806215178, 1.0521938471112793, 1.1238080511804318, 0.6417154484942845, 0.641560429358155, 0.6416998320784174, 0.6414177609144429, 0.6415711874417671, 0.6414914762412312, 0.64127879028253, 0.6416696999087816, 0.6413977471143772, 0.6412372943065084, 0.6413072315419228, 0.6412538999213911, 0.6415430863538073, 0.6414664674742304, 0.6412979995415883, 0.6412373371379366, 0.6413868788250133, 0.6412202166633335, 0.641396414807483, 0.6412215977920664, 0.6414031336058099, 0.6412860652057653, 0.6412967396322089, 0.6412973336434422, 0.6412858131106813, 0.6412920971046923, 0.6412981117429888, 0.6412709825026036, 0.6412025926118272, 0.6412893760616618, 0.6412255366339068, 0.6412173207334658, 0.6412031147929009, 0.6412004554687146, 0.6412001919407437, 0.641198436458276, 0.641203555772694, 0.6412105615497572, 0.6411982928429767, 0.6412096286482352, 0.6412103281753796, 0.6412022072754073, 0.6412082550345554, 0.641202300831791, 0.6411982576237238, 0.6411989888451124, 0.6412141028559148, 0.641206708865415, 0.6412009570817677, 0.6411983826225262], 'runtime': [0.0, 1.6423095520003699, 2.040658591000465, 2.2376682650001385, 2.4299743769997804, 2.67046717500034, 2.862668802999906, 3.104374010000356, 3.32224695900004, 3.5381166859997393, 3.741620800000419, 4.010065631000543, 4.227599134000229, 5.809256223000375, 7.184767149999971, 8.550543121000374, 9.923031666000497, 11.329385642000489, 12.911365132000356, 14.307267012000011, 15.663889139000275, 17.065571911000006, 18.41535552300047, 19.819295285000408, 21.202764538999872, 22.709291078000206, 24.042428986000232, 25.732384420000017, 25.9312051349998, 26.183760038999935, 26.412906409999778, 26.61830315000043, 26.855693547000556, 27.050723016999655, 27.28677242699996, 27.52746980200027, 27.765533300000243, 27.970793123000476, 28.197342635000496, 29.677809333999903, 31.04888916300024, 32.42374823699993, 33.98980597300033, 35.40728008099995, 36.75439337300031, 38.18200040800002, 39.90860623499975, 40.13832715599983, 40.36971348000043, 40.58094771800006, 40.784019124000224, 40.990598760000466, 41.227546551999694, 41.53011763900031, 41.92065388799983, 42.16206820299976, 42.460215224999956, 42.67479388399988, 44.23093565199997, 45.70703041100023, 47.07414319700001, 48.44252813000003, 49.74495745600052], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 18, 19, 20, 21, 22, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 26, 27, 28, 29]}}], 'exploration_sample': array([[ 9.20677822, 50.64405072, 26.13687265],
+ [ 9.36875 , 39.375 , 18.75 ],
+ [ 8.778125 , 63.4375 , 28.125 ],
+ [ 9.959375 , 6.5625 , 84.375 ],
+ [ 8.1875 , 26.25 , 62.5 ],
+ [10.55 , 35. , 50. ],
+ [ 7.596875 , 50.3125 , 71.875 ],
+ [ 7.00625 , 13.125 , 31.25 ],
+ [11.73125 , 30.625 , 6.25 ],
+ [12.321875 , 67.8125 , 96.875 ],
+ [ 6.415625 , 19.6875 , 15.625 ],
+ [12.9125 , 8.75 , 87.5 ],
+ [ 5.825 , 52.5 , 75. ],
+ [13.503125 , 45.9375 , 3.125 ],
+ [ 5.234375 , 59.0625 , 9.375 ],
+ [14.09375 , 56.875 , 43.75 ],
+ [14.684375 , 24.0625 , 59.375 ],
+ [ 4.64375 , 21.875 , 93.75 ],
+ [15.275 , 17.5 , 25. ],
+ [ 4.053125 , 10.9375 , 53.125 ],
+ [15.865625 , 54.6875 , 65.625 ],
+ [ 3.4625 , 43.75 , 37.5 ],
+ [16.45625 , 48.125 , 81.25 ],
+ [17.046875 , 15.3125 , 21.875 ],
+ [ 2.871875 , 32.8125 , 46.875 ],
+ [ 2.28125 , 65.625 , 56.25 ],
+ [17.6375 , 61.25 , 12.5 ],
+ [18.228125 , 28.4375 , 78.125 ],
+ [18.81875 , 4.375 , 68.75 ],
+ [19.409375 , 41.5625 , 34.375 ]]), 'exploration_results': array([0.64119816, 0.64211564, 0.64842422, 0.66164008, 0.68191739,
+ 0.7044766 , 0.74714868, 0.84823283, 0.8626059 , 0.97951322,
+ 0.98996599, 1.12431839, 1.18221304, 1.30406645, 1.43892243,
+ 1.52011014, 1.78024917, 1.78131285, 2.0971452 , 2.24344059,
+ 2.48116605, 2.89787 , 2.94379242, 3.4976294 , 3.77080322,
+ 4.13701934, 4.16035282, 4.94978648, 5.89491246, 7.00125067])}}"
diff --git a/content/tables/TRP/WealthPortfolio_estimate_results.csv b/content/tables/TRP/WealthPortfolio_estimate_results.csv
new file mode 100644
index 0000000..49b3e99
--- /dev/null
+++ b/content/tables/TRP/WealthPortfolio_estimate_results.csv
@@ -0,0 +1,7386 @@
+CRRA,5.335577372664163
+WealthShare,0.1706005756625005
+time_to_estimate,202.92073488235474
+params,"{'CRRA': 5.335577372664163, 'WealthShare': 0.1706005756625005}"
+criterion,0.2421983863534466
+start_criterion,0.23890510137815316
+start_params,"{'CRRA': 5.35399091577092, 'WealthShare': 0.1710302407154898}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,Absolute criterion change smaller than tolerance.
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 5.837945053873421, 'WealthShare': 0.17769838670536425}, {'CRRA': 5.521836423832173, 'WealthShare': 0.01}, {'CRRA': 6.355319463479058, 'WealthShare': 0.01}, {'CRRA': 5.320570644267783, 'WealthShare': 0.01}, {'CRRA': 6.288942410133527, 'WealthShare': 0.6950727963110019}, {'CRRA': 6.355319463479058, 'WealthShare': 0.34434498212577297}, {'CRRA': 6.227220953739785, 'WealthShare': 0.01}, {'CRRA': 5.320570644267783, 'WealthShare': 0.01}, {'CRRA': 5.871508721893411, 'WealthShare': 0.6950727963110019}, {'CRRA': 6.355319463479058, 'WealthShare': 0.6700100023631337}, {'CRRA': 5.428342638379923, 'WealthShare': 0.6950727963110019}, {'CRRA': 5.320570644267783, 'WealthShare': 0.39643867888963663}, {'CRRA': 5.320570644267783, 'WealthShare': 0.6950727963110019}, {'CRRA': 6.129876895883085, 'WealthShare': 0.14106398655854144}, {'CRRA': 5.5792578490706015, 'WealthShare': 0.1204690698151589}, {'CRRA': 5.696390372221354, 'WealthShare': 0.1330305333078522}, {'CRRA': 5.764661943417508, 'WealthShare': 0.16014227844012982}, {'CRRA': 5.618872311285, 'WealthShare': 0.1672901244784106}, {'CRRA': 5.360185106482181, 'WealthShare': 0.15621623896813125}, {'CRRA': 5.4728571815195926, 'WealthShare': 0.16421014778193593}, {'CRRA': 5.545825951300451, 'WealthShare': 0.16306458747685207}, {'CRRA': 5.582398435175709, 'WealthShare': 0.1685319632864777}, {'CRRA': 5.509355844762908, 'WealthShare': 0.16418872811097143}, {'CRRA': 5.545831963262839, 'WealthShare': 0.1638629137313917}, {'CRRA': 5.564154615154598, 'WealthShare': 0.16862293277010182}, {'CRRA': 5.527673129514142, 'WealthShare': 0.16928670293386877}, {'CRRA': 5.454701789923809, 'WealthShare': 0.16996692667547664}, {'CRRA': 5.308764908353464, 'WealthShare': 0.17181847436097414}, {'CRRA': 5.0970292962882615, 'WealthShare': 0.1601742594497508}, {'CRRA': 5.454606416226443, 'WealthShare': 0.16345692042672777}, {'CRRA': 5.381637011093981, 'WealthShare': 0.1642816207639356}, {'CRRA': 5.272807055506822, 'WealthShare': 0.16562610692660415}, {'CRRA': 5.326977544603738, 'WealthShare': 0.17075638690650644}, {'CRRA': 5.290536727275727, 'WealthShare': 0.1654939898644262}, {'CRRA': 5.34522111280142, 'WealthShare': 0.17069763426574053}, {'CRRA': 5.336100860393708, 'WealthShare': 0.17086100179753094}, {'CRRA': 5.354343627621392, 'WealthShare': 0.1706887162046996}, {'CRRA': 5.345222085332012, 'WealthShare': 0.17075761374684867}, {'CRRA': 5.331561427746527, 'WealthShare': 0.1728165644941382}, {'CRRA': 5.333816121531683, 'WealthShare': 0.17032107739522934}, {'CRRA': 5.337237317831098, 'WealthShare': 0.17035022974547837}, {'CRRA': 5.335530348688637, 'WealthShare': 0.17082137941624043}, {'CRRA': 5.336665303591373, 'WealthShare': 0.17028845981607194}, {'CRRA': 5.334960873512694, 'WealthShare': 0.17089262349762813}, {'CRRA': 5.335767080396652, 'WealthShare': 0.170983623728545}, {'CRRA': 5.3355388649474635, 'WealthShare': 0.1706791061179343}, {'CRRA': 5.335333663634032, 'WealthShare': 0.17047473426234255}, {'CRRA': 5.335554589018792, 'WealthShare': 0.17053744817902458}, {'CRRA': 5.335343081312356, 'WealthShare': 0.17034634254745087}, {'CRRA': 5.33559928332507, 'WealthShare': 0.17040210920806037}, {'CRRA': 5.335580340581636, 'WealthShare': 0.1706038967420634}, {'CRRA': 5.335454088688302, 'WealthShare': 0.17053748476047093}, {'CRRA': 5.335633144546121, 'WealthShare': 0.17065220536865475}, {'CRRA': 5.335596501563392, 'WealthShare': 0.170572140462395}, {'CRRA': 5.335595445166626, 'WealthShare': 0.1705940558344041}, {'CRRA': 5.335583910614445, 'WealthShare': 0.17061205807039284}, {'CRRA': 5.335577372664163, 'WealthShare': 0.1706005756625005}], 'criterion': [0.2500249942408325, 1.1791007356386276, 0.9197651867022865, 1.2595025990222253, 33.4909498055013, 1.4882139243569137, 0.9530633832431904, 1.2595025990222253, 36.978934548688066, 26.44344185974536, 41.385698106382975, 3.0981667931180743, 42.608449629101216, 0.2728700599071999, 0.3342173205988753, 0.29198968043547885, 0.2481648865140715, 0.24373445213195505, 0.25114503099349234, 0.24406213167656582, 0.24489531582637777, 0.24315780951732555, 0.24426227832547462, 0.24453862473009094, 0.24306497226632034, 0.24285876672075696, 0.24259437399648875, 0.24243354455545987, 0.25079678704331854, 0.24441635199641626, 0.24414569958048554, 0.2439788766246561, 0.24225547458407035, 0.24394629290622924, 0.24227514910123488, 0.24223921155653808, 0.24227947343936865, 0.24227295597179582, 0.24250574148919085, 0.24223949661361607, 0.24225288167948408, 0.2422306308030337, 0.2422548267052162, 0.24224813492764274, 0.24225797040581512, 0.242202396887387, 0.24220875273143883, 0.2422004189428712, 0.24224389187159454, 0.24223135088965633, 0.2421984742592525, 0.24219915623837365, 0.24220019073252083, 0.24219911551794257, 0.2421985513731777, 0.24219868532057515, 0.24219838635344662], 'runtime': [0.0, 1.296167903999958, 1.3449491520000265, 1.3858779940001114, 1.4279043609999462, 1.4686698719997366, 1.514770218999729, 1.5592568910001319, 1.6084964980000223, 1.6590743809997548, 1.7047839209999438, 1.761857082000006, 1.8163866790000611, 3.181013745999735, 4.325823927999863, 5.600623542999983, 6.755316591999872, 7.917994205000014, 9.077396046000104, 10.294875745999889, 11.503319416000068, 12.720127907000006, 14.032752316999904, 15.207649181999841, 16.429454532999898, 17.670099559999926, 18.8472972149998, 20.135531741999785, 21.277609068999936, 22.423084480999933, 23.553762927999742, 24.684132019000117, 25.817971458000102, 26.998730913000145, 28.1869263640001, 29.34812033800017, 30.50678410599994, 31.65761656199993, 32.799299537000024, 33.94402660300011, 35.26958909099994, 36.47545633799973, 37.66156821799996, 38.83101894899983, 39.99145682000017, 41.17240058000016, 42.34739114900003, 43.51756579399989, 44.678886351000074, 45.83479911199993, 46.989458055999876, 48.12758910999992, 49.42098368999996, 50.618441345000065, 51.84377754599973, 52.98982088799994, 54.21043696800007], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]}"
+convergence_report,"{'one_step': {'relative_criterion_change': 0.00012034146417080751, 'relative_params_change': 0.004344123651656158, 'absolute_criterion_change': 2.9146508433580687e-05, 'absolute_params_change': 0.01844539352010625}, 'five_steps': {'relative_criterion_change': 0.00012034146417080751, 'relative_params_change': 0.004344123651656158, 'absolute_criterion_change': 2.9146508433580687e-05, 'absolute_params_change': 0.01844539352010625}}"
+multistart_info,"{'start_parameters': [{'CRRA': 5.35399091577092, 'WealthShare': 0.1710302407154898}, {'CRRA': 5.837945053873421, 'WealthShare': 0.17769838670536425}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 5.606e-08* 5.606e-08*
+relative_params_change 0.0001132 0.0001132
+absolute_criterion_change 1.358e-08* 1.358e-08*
+absolute_params_change 3.272e-05 3.272e-05
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.), Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 3.629e-07* 0.0001686
+relative_params_change 1.947e-05 0.00153
+absolute_criterion_change 8.791e-08* 4.083e-05
+absolute_params_change 4.454e-06* 0.0005847
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.)], 'exploration_sample': [{'CRRA': 5.35399091577092, 'WealthShare': 0.1710302407154898}, {'CRRA': 7.00625, 'WealthShare': 0.19375}, {'CRRA': 12.9125, 'WealthShare': 0.1325}, {'CRRA': 4.64375, 'WealthShare': 0.31625000000000003}, {'CRRA': 8.1875, 'WealthShare': 0.3775}, {'CRRA': 15.274999999999999, 'WealthShare': 0.255}, {'CRRA': 17.046875, 'WealthShare': 0.224375}, {'CRRA': 11.73125, 'WealthShare': 0.43875}, {'CRRA': 18.81875, 'WealthShare': 0.07125}, {'CRRA': 10.549999999999999, 'WealthShare': 0.5}, {'CRRA': 9.368749999999999, 'WealthShare': 0.56125}, {'CRRA': 16.45625, 'WealthShare': 0.68375}, {'CRRA': 2.871875, 'WealthShare': 0.469375}, {'CRRA': 7.596874999999999, 'WealthShare': 0.714375}, {'CRRA': 14.093749999999998, 'WealthShare': 0.80625}, {'CRRA': 3.4625, 'WealthShare': 0.6225}, {'CRRA': 17.6375, 'WealthShare': 0.8674999999999999}, {'CRRA': 5.824999999999999, 'WealthShare': 0.745}, {'CRRA': 12.321874999999999, 'WealthShare': 0.959375}, {'CRRA': 2.28125, 'WealthShare': 0.92875}], 'exploration_results': array([2.42227546e-01, 3.27384376e-01, 1.14034055e+00, 1.50312179e+00,
+ 1.79325436e+00, 2.08879824e+00, 2.54067782e+00, 2.64114350e+00,
+ 2.73814230e+00, 3.83228381e+00, 6.46248546e+00, 9.30118040e+00,
+ 1.59966394e+01, 3.03715662e+01, 3.38771067e+01, 4.26926083e+01,
+ 5.84656546e+01, 5.90505617e+01, 5.22500282e+02, 9.01924413e+02])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([5.83794505, 0.17769839]), radius=0.5837945053873421, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=[0], model=ScalarModel(intercept=0.2500249942408325, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=0, candidate_x=array([5.83794505, 0.17769839]), index=0, x=array([5.83794505, 0.17769839]), fval=0.25002499424083247, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([5.83794505, 0.17769839]), radius=0.5837945053873421, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=5.323973668078372, linear_terms=array([-0.75583641, 15.97016397]), square_terms=array([[ 0.06851782, -1.1616573 ],
+ [-1.1616573 , 24.80625807]]), scale=array([0.51737441, 0.3425364 ]), shift=array([5.83794505, 0.3525364 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=13, candidate_x=array([6.1298769 , 0.14106399]), index=0, x=array([5.83794505, 0.17769839]), fval=0.25002499424083247, rho=-0.10249831672421726, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.83794505, 0.17769839]), radius=0.29189725269367106, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 2, 3, 5, 6, 7, 8, 13]), model=ScalarModel(intercept=1.020144031837767, linear_terms=array([-0.15036877, 3.82287309]), square_terms=array([[ 0.02811468, -0.37120958],
+ [-0.37120958, 8.70439816]]), scale=array([0.2586872, 0.2131928]), shift=array([5.83794505, 0.2231928 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=14, candidate_x=array([5.57925785, 0.12046907]), index=0, x=array([5.83794505, 0.17769839]), fval=0.25002499424083247, rho=-0.3686077630799093, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 3, 5, 6, 7, 8, 13]), old_indices_discarded=array([ 4, 9, 10, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.83794505, 0.17769839]), radius=0.14594862634683553, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 3, 5, 6, 7, 8, 13, 14]), model=ScalarModel(intercept=0.32337401785450964, linear_terms=array([-0.05509149, 1.09845952]), square_terms=array([[ 0.02085975, -0.26486803],
+ [-0.26486803, 4.42259018]]), scale=0.14594862634683553, shift=array([5.83794505, 0.17769839])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=15, candidate_x=array([5.69639037, 0.13303053]), index=0, x=array([5.83794505, 0.17769839]), fval=0.25002499424083247, rho=-0.290539326522971, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 5, 6, 7, 8, 13, 14]), old_indices_discarded=array([ 2, 4, 9, 10, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.83794505, 0.17769839]), radius=0.07297431317341777, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 13, 14, 15]), model=ScalarModel(intercept=0.26967457001726336, linear_terms=array([0.00305809, 0.10758911]), square_terms=array([[2.03063183e-04, 7.58408569e-03],
+ [7.58408569e-03, 4.14525606e-01]]), scale=0.07297431317341777, shift=array([5.83794505, 0.17769839])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=16, candidate_x=array([5.76466194, 0.16014228]), index=16, x=array([5.76466194, 0.16014228]), fval=0.24816488651407154, rho=0.12380898705859822, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 13, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.07535669323632875, relative_step_length=1.0326468309095207, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.76466194, 0.16014228]), radius=0.14594862634683553, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 3, 6, 7, 13, 14, 15, 16]), model=ScalarModel(intercept=0.24980518122836323, linear_terms=array([ 0.00949845, -0.02386839]), square_terms=array([[0.00257834, 0.05299243],
+ [0.05299243, 1.55867884]]), scale=0.14594862634683553, shift=array([5.76466194, 0.16014228])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=17, candidate_x=array([5.61887231, 0.16729012]), index=17, x=array([5.61887231, 0.16729012]), fval=0.24373445213195502, rho=0.43892226114088795, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 6, 7, 13, 14, 15, 16]), old_indices_discarded=array([ 2, 5, 8, 10, 11, 12]), step_length=0.14596475101996004, relative_step_length=1.0001104818423312, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.61887231, 0.16729012]), radius=0.29189725269367106, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 3, 7, 11, 14, 15, 16, 17]), model=ScalarModel(intercept=0.3762029190210623, linear_terms=array([0.00847171, 1.1355556 ]), square_terms=array([[ 0.0351543 , -0.12066294],
+ [-0.12066294, 4.22970628]]), scale=array([0.2586872 , 0.20798866]), shift=array([5.61887231, 0.21798866])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=18, candidate_x=array([5.36018511, 0.15621624]), index=17, x=array([5.61887231, 0.16729012]), fval=0.24373445213195502, rho=-0.28174894853494853, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 11, 14, 15, 16, 17]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 10, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.61887231, 0.16729012]), radius=0.14594862634683553, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 3, 7, 14, 15, 16, 17, 18]), model=ScalarModel(intercept=0.24992252725033823, linear_terms=array([0.00316437, 0.06723442]), square_terms=array([[9.24265460e-04, 3.06288719e-02],
+ [3.06288719e-02, 1.73234651e+00]]), scale=0.14594862634683553, shift=array([5.61887231, 0.16729012])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=19, candidate_x=array([5.47285718, 0.16421015]), index=17, x=array([5.61887231, 0.16729012]), fval=0.24373445213195502, rho=-0.10605520364386403, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 14, 15, 16, 17, 18]), old_indices_discarded=array([ 6, 8, 10, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.61887231, 0.16729012]), radius=0.07297431317341777, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 7, 14, 15, 16, 17, 18, 19]), model=ScalarModel(intercept=0.24923278591953518, linear_terms=array([0.00140877, 0.03201995]), square_terms=array([[2.08936369e-04, 7.01345842e-03],
+ [7.01345842e-03, 4.30945644e-01]]), scale=0.07297431317341777, shift=array([5.61887231, 0.16729012])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=20, candidate_x=array([5.54582595, 0.16306459]), index=17, x=array([5.61887231, 0.16729012]), fval=0.24373445213195502, rho=-0.5716837122875763, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 7, 14, 15, 16, 17, 18, 19]), old_indices_discarded=array([3]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.61887231, 0.16729012]), radius=0.03648715658670888, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([14, 15, 16, 17, 19, 20]), model=ScalarModel(intercept=0.24447966591289924, linear_terms=array([ 0.00057646, -0.00219486]), square_terms=array([[4.59383981e-05, 1.38128890e-03],
+ [1.38128890e-03, 1.04480430e-01]]), scale=0.03648715658670888, shift=array([5.61887231, 0.16729012])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=21, candidate_x=array([5.58239844, 0.16853196]), index=21, x=array([5.58239844, 0.16853196]), fval=0.24315780951732555, rho=0.938417610541786, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 15, 16, 17, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.03649501064612971, relative_step_length=1.0002152554530293, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.58239844, 0.16853196]), radius=0.07297431317341777, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 1, 14, 15, 16, 17, 18, 19, 20, 21]), model=ScalarModel(intercept=0.2493403145907468, linear_terms=array([0.00206841, 0.03132845]), square_terms=array([[2.20612437e-04, 6.20169647e-03],
+ [6.20169647e-03, 4.20600928e-01]]), scale=0.07297431317341777, shift=array([5.58239844, 0.16853196])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=22, candidate_x=array([5.50935584, 0.16418873]), index=21, x=array([5.58239844, 0.16853196]), fval=0.24315780951732555, rho=-0.40755145676280513, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 14, 15, 16, 17, 18, 19, 20, 21]), old_indices_discarded=array([ 0, 3, 7, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.58239844, 0.16853196]), radius=0.03648715658670888, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 1, 14, 15, 17, 19, 20, 21, 22]), model=ScalarModel(intercept=0.24973373889649686, linear_terms=array([0.00287452, 0.0154878 ]), square_terms=array([[0.00011611, 0.00170606],
+ [0.00170606, 0.10513658]]), scale=0.03648715658670888, shift=array([5.58239844, 0.16853196])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=23, candidate_x=array([5.54583196, 0.16386291]), index=21, x=array([5.58239844, 0.16853196]), fval=0.24315780951732555, rho=-0.3707124284955786, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 14, 15, 17, 19, 20, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.58239844, 0.16853196]), radius=0.01824357829335444, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([14, 17, 20, 21, 22, 23]), model=ScalarModel(intercept=0.24348377086944023, linear_terms=array([5.04148881e-05, 1.91725030e-04]), square_terms=array([[9.67169504e-06, 3.22879765e-04],
+ [3.22879765e-04, 2.62610807e-02]]), scale=0.01824357829335444, shift=array([5.58239844, 0.16853196])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=24, candidate_x=array([5.56415462, 0.16862293]), index=24, x=array([5.56415462, 0.16862293]), fval=0.24306497226632034, rho=2.022284735880162, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 17, 20, 21, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.018244046821077237, relative_step_length=1.0000256817886963, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56415462, 0.16862293]), radius=0.03648715658670888, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([14, 15, 17, 19, 20, 21, 22, 23, 24]), model=ScalarModel(intercept=0.24352266720979443, linear_terms=array([ 0.00058615, -0.00048178]), square_terms=array([[4.77510213e-05, 1.43280356e-03],
+ [1.43280356e-03, 1.04666941e-01]]), scale=0.03648715658670888, shift=array([5.56415462, 0.16862293])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=25, candidate_x=array([5.52767313, 0.1692867 ]), index=25, x=array([5.52767313, 0.1692867 ]), fval=0.24285876672075696, rho=0.35571310395335953, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 15, 17, 19, 20, 21, 22, 23, 24]), old_indices_discarded=array([1]), step_length=0.03648752369461524, relative_step_length=1.0000100612911693, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.52767313, 0.1692867 ]), radius=0.07297431317341777, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([14, 17, 19, 20, 21, 22, 23, 24, 25]), model=ScalarModel(intercept=0.24314216726921375, linear_terms=array([0.00031071, 0.00112818]), square_terms=array([[1.58692645e-04, 5.04893216e-03],
+ [5.04893216e-03, 4.20396152e-01]]), scale=0.07297431317341777, shift=array([5.52767313, 0.1692867 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=26, candidate_x=array([5.45470179, 0.16996693]), index=26, x=array([5.45470179, 0.16996693]), fval=0.24259437399648873, rho=1.0590927394756011, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 17, 19, 20, 21, 22, 23, 24, 25]), old_indices_discarded=array([ 0, 1, 3, 7, 11, 15, 16, 18]), step_length=0.07297450997400595, relative_step_length=1.0000026968474196, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.45470179, 0.16996693]), radius=0.14594862634683553, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([14, 18, 19, 20, 21, 22, 24, 25, 26]), model=ScalarModel(intercept=0.2426437155645201, linear_terms=array([ 0.00066012, -0.0002101 ]), square_terms=array([[6.76799313e-04, 2.11994953e-02],
+ [2.11994953e-02, 1.68722879e+00]]), scale=0.14594862634683553, shift=array([5.45470179, 0.16996693])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=27, candidate_x=array([5.30876491, 0.17181847]), index=27, x=array([5.30876491, 0.17181847]), fval=0.24243354455545987, rho=0.35150966109351695, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 18, 19, 20, 21, 22, 24, 25, 26]), old_indices_discarded=array([ 0, 1, 3, 7, 8, 10, 11, 12, 13, 15, 16, 17, 23]), step_length=0.14594862668524397, relative_step_length=1.000000002318682, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.30876491, 0.17181847]), radius=0.29189725269367106, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 1, 3, 11, 14, 18, 19, 20, 21, 27]), model=ScalarModel(intercept=0.37246777346864934, linear_terms=array([0.00441854, 1.18206703]), square_terms=array([[ 0.02195466, -0.04742476],
+ [-0.04742476, 4.2726438 ]]), scale=array([0.2586872 , 0.21025284]), shift=array([5.30876491, 0.22025284])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=28, candidate_x=array([5.0970293 , 0.16017426]), index=27, x=array([5.30876491, 0.17181847]), fval=0.24243354455545987, rho=-0.7113501343654184, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 3, 11, 14, 18, 19, 20, 21, 27]), old_indices_discarded=array([ 0, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 22, 23, 24,
+ 25, 26]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.30876491, 0.17181847]), radius=0.14594862634683553, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 3, 7, 18, 19, 22, 25, 26, 27, 28]), model=ScalarModel(intercept=0.2464194023851543, linear_terms=array([-0.00084176, 0.08200684]), square_terms=array([[6.47218524e-04, 2.11981078e-02],
+ [2.11981078e-02, 1.79973195e+00]]), scale=0.14594862634683553, shift=array([5.30876491, 0.17181847])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=29, candidate_x=array([5.45460642, 0.16345692]), index=27, x=array([5.30876491, 0.17181847]), fval=0.24243354455545987, rho=-0.5703889919895696, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 18, 19, 22, 25, 26, 27, 28]), old_indices_discarded=array([ 0, 1, 10, 11, 12, 14, 15, 16, 17, 20, 21, 23, 24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.30876491, 0.17181847]), radius=0.07297431317341777, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 3, 7, 18, 19, 22, 26, 27, 28, 29]), model=ScalarModel(intercept=0.24664926765654258, linear_terms=array([-0.00024156, 0.04118899]), square_terms=array([[1.70654218e-04, 5.36001424e-03],
+ [5.36001424e-03, 4.50004550e-01]]), scale=0.07297431317341777, shift=array([5.30876491, 0.17181847])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=30, candidate_x=array([5.38163701, 0.16428162]), index=27, x=array([5.30876491, 0.17181847]), fval=0.24243354455545987, rho=-0.668055965403151, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 18, 19, 22, 26, 27, 28, 29]), old_indices_discarded=array([ 1, 11, 14, 17, 20, 21, 23, 24, 25]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.30876491, 0.17181847]), radius=0.03648715658670888, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 3, 7, 18, 19, 26, 27, 29, 30]), model=ScalarModel(intercept=0.24521815600368138, linear_terms=array([0.00026426, 0.02038709]), square_terms=array([[4.74795190e-05, 1.30395809e-03],
+ [1.30395809e-03, 1.12532052e-01]]), scale=0.03648715658670888, shift=array([5.30876491, 0.17181847])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=31, candidate_x=array([5.27280706, 0.16562611]), index=27, x=array([5.30876491, 0.17181847]), fval=0.24243354455545987, rho=-0.8314331419387987, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 18, 19, 26, 27, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.30876491, 0.17181847]), radius=0.01824357829335444, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([18, 27, 30, 31]), model=ScalarModel(intercept=0.2425172780472681, linear_terms=array([1.04804479e-05, 1.37888168e-03]), square_terms=array([[1.12857867e-05, 2.91582077e-04],
+ [2.91582077e-04, 2.87671916e-02]]), scale=0.01824357829335444, shift=array([5.30876491, 0.17181847])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=32, candidate_x=array([5.32697754, 0.17075639]), index=32, x=array([5.32697754, 0.17075639]), fval=0.24225547458407035, rho=5.498532498656186, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 27, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.018243578293354667, relative_step_length=1.0000000000000124, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.32697754, 0.17075639]), radius=0.03648715658670888, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 7, 18, 19, 26, 27, 29, 30, 31, 32]), model=ScalarModel(intercept=0.24442267125914174, linear_terms=array([0.00031052, 0.01755316]), square_terms=array([[4.95899758e-05, 1.31876158e-03],
+ [1.31876158e-03, 1.12502932e-01]]), scale=0.03648715658670888, shift=array([5.32697754, 0.17075639])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=33, candidate_x=array([5.29053673, 0.16549399]), index=32, x=array([5.32697754, 0.17075639]), fval=0.24225547458407035, rho=-1.1605097139907963, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 7, 18, 19, 26, 27, 29, 30, 31, 32]), old_indices_discarded=array([3]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.32697754, 0.17075639]), radius=0.01824357829335444, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([18, 27, 30, 31, 32, 33]), model=ScalarModel(intercept=0.24240138874383832, linear_terms=array([-1.34706482e-05, -2.00977445e-04]), square_terms=array([[1.12310877e-05, 2.93698037e-04],
+ [2.93698037e-04, 2.87879022e-02]]), scale=0.01824357829335444, shift=array([5.32697754, 0.17075639])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=34, candidate_x=array([5.34522111, 0.17069763]), index=32, x=array([5.32697754, 0.17075639]), fval=0.24225547458407035, rho=-2.4579564090648676, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([18, 27, 30, 31, 32, 33]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.32697754, 0.17075639]), radius=0.00912178914667722, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([18, 27, 32, 33, 34]), model=ScalarModel(intercept=0.24231372257835046, linear_terms=array([-3.67885812e-05, -1.56295915e-04]), square_terms=array([[2.74057907e-06, 7.34739042e-05],
+ [7.34739042e-05, 7.18730958e-03]]), scale=0.00912178914667722, shift=array([5.32697754, 0.17075639])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=35, candidate_x=array([5.33610086, 0.170861 ]), index=35, x=array([5.33610086, 0.170861 ]), fval=0.2422392115565381, rho=0.45299609567353283, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 27, 32, 33, 34]), old_indices_discarded=array([], dtype=int64), step_length=0.009123915567284637, relative_step_length=1.000233114422316, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33610086, 0.170861 ]), radius=0.01824357829335444, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([18, 27, 30, 31, 32, 33, 34, 35]), model=ScalarModel(intercept=0.2423307750427185, linear_terms=array([-1.78909546e-05, -1.98777282e-05]), square_terms=array([[1.11719188e-05, 2.91489798e-04],
+ [2.91489798e-04, 2.87505621e-02]]), scale=0.01824357829335444, shift=array([5.33610086, 0.170861 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=36, candidate_x=array([5.35434363, 0.17068872]), index=35, x=array([5.33610086, 0.170861 ]), fval=0.2422392115565381, rho=-2.963143065159759, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([18, 27, 30, 31, 32, 33, 34, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33610086, 0.170861 ]), radius=0.00912178914667722, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([18, 27, 32, 34, 35, 36]), model=ScalarModel(intercept=0.24228466564231269, linear_terms=array([-2.24742123e-05, 1.60446770e-05]), square_terms=array([[2.72376463e-06, 6.51825427e-05],
+ [6.51825427e-05, 7.14572234e-03]]), scale=0.00912178914667722, shift=array([5.33610086, 0.170861 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=37, candidate_x=array([5.34522209, 0.17075761]), index=35, x=array([5.33610086, 0.170861 ]), fval=0.2422392115565381, rho=-1.5642167142763028, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([18, 27, 32, 34, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33610086, 0.170861 ]), radius=0.00456089457333861, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([32, 34, 35, 36, 37]), model=ScalarModel(intercept=0.24224211188369624, linear_terms=array([ 2.56124148e-06, -7.33810091e-04]), square_terms=array([[6.58450434e-07, 1.62540985e-05],
+ [1.62540985e-05, 1.74025458e-03]]), scale=0.00456089457333861, shift=array([5.33610086, 0.170861 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=38, candidate_x=array([5.33156143, 0.17281656]), index=35, x=array([5.33610086, 0.170861 ]), fval=0.2422392115565381, rho=-1.626890346177331, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([32, 34, 35, 36, 37]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33610086, 0.170861 ]), radius=0.002280447286669305, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([32, 34, 35, 37, 38]), model=ScalarModel(intercept=0.2422610199987972, linear_terms=array([3.24076423e-06, 1.09212079e-04]), square_terms=array([[1.64689944e-07, 3.97469068e-06],
+ [3.97469068e-06, 4.42322743e-04]]), scale=0.002280447286669305, shift=array([5.33610086, 0.170861 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=39, candidate_x=array([5.33381612, 0.17032108]), index=35, x=array([5.33610086, 0.170861 ]), fval=0.2422392115565381, rho=-0.01817829767899888, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([32, 34, 35, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33610086, 0.170861 ]), radius=0.0011402236433346526, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 38, 39]), model=ScalarModel(intercept=0.2422392115565383, linear_terms=array([-5.63600427e-06, 5.10967489e-05]), square_terms=array([[4.70616627e-08, 8.13103968e-07],
+ [8.13103968e-07, 1.09902069e-04]]), scale=0.0011402236433346526, shift=array([5.33610086, 0.170861 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=40, candidate_x=array([5.33723732, 0.17035023]), index=35, x=array([5.33610086, 0.170861 ]), fval=0.2422392115565381, rho=-0.7671475430136175, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 38, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33610086, 0.170861 ]), radius=0.0005701118216673263, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 39, 40]), model=ScalarModel(intercept=0.2422392115565383, linear_terms=array([2.67123864e-06, 2.32015646e-06]), square_terms=array([[1.01503457e-08, 2.55683066e-07],
+ [2.55683066e-07, 2.70609068e-05]]), scale=0.0005701118216673263, shift=array([5.33610086, 0.170861 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=41, candidate_x=array([5.33553035, 0.17082138]), index=41, x=array([5.33553035, 0.17082138]), fval=0.2422306308030337, rho=3.1246566740586057, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([35, 39, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.0005718859490511061, relative_step_length=1.0031118936958565, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33553035, 0.17082138]), radius=0.0011402236433346526, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 38, 39, 40, 41]), model=ScalarModel(intercept=0.24224726707979996, linear_terms=array([-2.89843844e-07, 5.08377823e-05]), square_terms=array([[4.27453955e-08, 9.21556966e-07],
+ [9.21556966e-07, 1.10052928e-04]]), scale=0.0011402236433346526, shift=array([5.33553035, 0.17082138])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=42, candidate_x=array([5.3366653 , 0.17028846]), index=41, x=array([5.33553035, 0.17082138]), fval=0.2422306308030337, rho=-1.9455689355183137, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 38, 39, 40, 41]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33553035, 0.17082138]), radius=0.0005701118216673263, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 39, 40, 41, 42]), model=ScalarModel(intercept=0.24223360243650394, linear_terms=array([ 2.91278438e-06, -3.50722253e-06]), square_terms=array([[1.00813101e-08, 2.51773556e-07],
+ [2.51773556e-07, 2.71406595e-05]]), scale=0.0005701118216673263, shift=array([5.33553035, 0.17082138])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=43, candidate_x=array([5.33496087, 0.17089262]), index=41, x=array([5.33553035, 0.17082138]), fval=0.2422306308030337, rho=-5.535264368026378, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 39, 40, 41, 42]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33553035, 0.17082138]), radius=0.00028505591083366315, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 41, 42, 43]), model=ScalarModel(intercept=0.24224023352414065, linear_terms=array([-1.87742787e-06, -5.21106061e-06]), square_terms=array([[3.04573962e-09, 8.14917983e-08],
+ [8.14917983e-08, 6.83492010e-06]]), scale=0.00028505591083366315, shift=array([5.33553035, 0.17082138])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=44, candidate_x=array([5.33576708, 0.17098362]), index=41, x=array([5.33553035, 0.17082138]), fval=0.2422306308030337, rho=-8.092327093834392, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 41, 42, 43]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33553035, 0.17082138]), radius=0.00014252795541683157, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 41, 43, 44]), model=ScalarModel(intercept=0.24223295230251193, linear_terms=array([-5.31736790e-07, 2.27975409e-05]), square_terms=array([[7.19415359e-10, 1.86503337e-08],
+ [1.86503337e-08, 1.61403964e-06]]), scale=0.00014252795541683157, shift=array([5.33553035, 0.17082138])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=45, candidate_x=array([5.33553886, 0.17067911]), index=45, x=array([5.33553886, 0.17067911]), fval=0.24220239688738698, rho=1.2842031311521878, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([35, 41, 43, 44]), old_indices_discarded=array([], dtype=int64), step_length=0.00014252795541681761, relative_step_length=0.9999999999999021, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33553886, 0.17067911]), radius=0.00028505591083366315, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 41, 42, 43, 44, 45]), model=ScalarModel(intercept=0.24222997040159935, linear_terms=array([5.08790955e-06, 9.87341516e-06]), square_terms=array([[2.55137299e-09, 5.67163305e-08],
+ [5.67163305e-08, 6.70555493e-06]]), scale=0.00028505591083366315, shift=array([5.33553886, 0.17067911])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=46, candidate_x=array([5.33533366, 0.17047473]), index=45, x=array([5.33553886, 0.17067911]), fval=0.24220239688738698, rho=-0.7071442609659108, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 41, 42, 43, 44, 45]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33553886, 0.17067911]), radius=0.00014252795541683157, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 41, 43, 44, 45, 46]), model=ScalarModel(intercept=0.24221820849154518, linear_terms=array([-8.49124020e-07, 1.52697526e-05]), square_terms=array([[7.31788970e-10, 1.94307162e-08],
+ [1.94307162e-08, 1.63646545e-06]]), scale=0.00014252795541683157, shift=array([5.33553886, 0.17067911])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=47, candidate_x=array([5.33555459, 0.17053745]), index=47, x=array([5.33555459, 0.17053745]), fval=0.24220041894287114, rho=0.1367487913232024, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([35, 41, 43, 44, 45, 46]), old_indices_discarded=array([], dtype=int64), step_length=0.00014252795541680403, relative_step_length=0.9999999999998068, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33555459, 0.17053745]), radius=0.00028505591083366315, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 41, 42, 43, 44, 45, 46, 47]), model=ScalarModel(intercept=0.24221648568928017, linear_terms=array([7.61123169e-06, 1.35871487e-05]), square_terms=array([[2.37686475e-09, 4.53613218e-08],
+ [4.53613218e-08, 6.64587957e-06]]), scale=0.00028505591083366315, shift=array([5.33555459, 0.17053745])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=48, candidate_x=array([5.33534308, 0.17034634]), index=47, x=array([5.33555459, 0.17053745]), fval=0.24220041894287114, rho=-3.283522683589635, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 41, 42, 43, 44, 45, 46, 47]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33555459, 0.17053745]), radius=0.00014252795541683157, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 41, 43, 44, 45, 46, 47, 48]), model=ScalarModel(intercept=0.2422186103167294, linear_terms=array([-1.17163675e-06, 6.22141261e-06]), square_terms=array([[7.43556893e-10, 1.99248388e-08],
+ [1.99248388e-08, 1.65585538e-06]]), scale=0.00014252795541683157, shift=array([5.33555459, 0.17053745])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=49, candidate_x=array([5.33559928, 0.17040211]), index=47, x=array([5.33555459, 0.17053745]), fval=0.24220041894287114, rho=-5.589036142419969, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 41, 43, 44, 45, 46, 47, 48]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33555459, 0.17053745]), radius=7.126397770841579e-05, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([41, 45, 46, 47, 48, 49]), model=ScalarModel(intercept=0.2422175625561015, linear_terms=array([-1.08529643e-06, -2.15586658e-06]), square_terms=array([[2.13416381e-10, 6.09539586e-09],
+ [6.09539586e-09, 4.20627375e-07]]), scale=7.126397770841579e-05, shift=array([5.33555459, 0.17053745])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=50, candidate_x=array([5.33558034, 0.1706039 ]), index=50, x=array([5.33558034, 0.1706039 ]), fval=0.2421984742592525, rho=0.8769913650774368, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([41, 45, 46, 47, 48, 49]), old_indices_discarded=array([], dtype=int64), step_length=7.126397770841627e-05, relative_step_length=1.0000000000000069, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33558034, 0.1706039 ]), radius=0.00014252795541683157, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 41, 44, 45, 46, 47, 48, 49, 50]), model=ScalarModel(intercept=0.24222108854190627, linear_terms=array([2.91505429e-06, 2.31914584e-06]), square_terms=array([[6.76506500e-10, 1.48024983e-08],
+ [1.48024983e-08, 1.66662830e-06]]), scale=0.00014252795541683157, shift=array([5.33558034, 0.1706039 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=51, candidate_x=array([5.33545409, 0.17053748]), index=50, x=array([5.33558034, 0.1706039 ]), fval=0.2421984742592525, rho=-0.1962253015731078, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 41, 44, 45, 46, 47, 48, 49, 50]), old_indices_discarded=array([43]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33558034, 0.1706039 ]), radius=7.126397770841579e-05, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([41, 45, 46, 47, 48, 49, 50, 51]), model=ScalarModel(intercept=0.2422098774430771, linear_terms=array([-1.71847573e-06, -1.85797440e-06]), square_terms=array([[2.17594755e-10, 6.01691056e-09],
+ [6.01691056e-09, 4.20747740e-07]]), scale=7.126397770841579e-05, shift=array([5.33558034, 0.1706039 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=52, candidate_x=array([5.33563314, 0.17065221]), index=50, x=array([5.33558034, 0.1706039 ]), fval=0.2421984742592525, rho=-0.7054787268641671, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([41, 45, 46, 47, 48, 49, 50, 51]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33558034, 0.1706039 ]), radius=3.563198885420789e-05, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([45, 47, 50, 51, 52]), model=ScalarModel(intercept=0.24219982346462499, linear_terms=array([-2.48089008e-07, 6.03400460e-07]), square_terms=array([[3.67208696e-11, 7.72936282e-10],
+ [7.72936282e-10, 1.04547223e-07]]), scale=3.563198885420789e-05, shift=array([5.33558034, 0.1706039 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=53, candidate_x=array([5.3355965 , 0.17057214]), index=50, x=array([5.33558034, 0.1706039 ]), fval=0.2421984742592525, rho=-1.0528351576259545, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([45, 47, 50, 51, 52]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33558034, 0.1706039 ]), radius=1.7815994427103947e-05, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([45, 47, 50, 52, 53]), model=ScalarModel(intercept=0.24219994234056103, linear_terms=array([-3.77226186e-07, 2.60098977e-07]), square_terms=array([[9.65464377e-12, 1.64344963e-10],
+ [1.64344963e-10, 2.60967257e-08]]), scale=1.7815994427103947e-05, shift=array([5.33558034, 0.1706039 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=54, candidate_x=array([5.33559545, 0.17059406]), index=50, x=array([5.33558034, 0.1706039 ]), fval=0.2421984742592525, rho=-0.16779295077987869, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([45, 47, 50, 52, 53]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33558034, 0.1706039 ]), radius=8.907997213551973e-06, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([50, 53, 54]), model=ScalarModel(intercept=0.2421984742592526, linear_terms=array([-9.96134608e-08, -2.19237776e-07]), square_terms=array([[3.52007307e-12, 5.01984429e-11],
+ [5.01984429e-11, 6.41022815e-09]]), scale=8.907997213551973e-06, shift=array([5.33558034, 0.1706039 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=55, candidate_x=array([5.33558391, 0.17061206]), index=50, x=array([5.33558034, 0.1706039 ]), fval=0.2421984742592525, rho=-0.8865365759330065, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([50, 53, 54]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33558034, 0.1706039 ]), radius=4.453998606775987e-06, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([50, 54, 55]), model=ScalarModel(intercept=0.24219847425925245, linear_terms=array([7.44562175e-08, 8.11094797e-08]), square_terms=array([[7.34577640e-13, 2.02182033e-11],
+ [2.02182033e-11, 1.62644037e-09]]), scale=4.453998606775987e-06, shift=array([5.33558034, 0.1706039 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=56, candidate_x=array([5.33557737, 0.17060058]), index=56, x=array([5.33557737, 0.17060058]), fval=0.2421983863534466, rho=0.8018411091024058, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([50, 54, 55]), old_indices_discarded=array([], dtype=int64), step_length=4.453998606601968e-06, relative_step_length=0.9999999999609298, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 57 entries., 'multistart_info': {'start_parameters': [array([5.35399092, 0.17103024]), array([5.83794505, 0.17769839])], 'local_optima': [{'solution_x': array([5.3540173 , 0.17104959]), 'solution_criterion': 0.24222753286188017, 'states': [State(trustregion=Region(center=array([5.35399092, 0.17103024]), radius=0.535399091577092, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=[0], model=ScalarModel(intercept=0.24222754644165562, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.535399091577092, shift=array([5.35399092, 0.17103024])), vector_model=VectorModel(intercepts=array([ 0.039855 , 0.08727496, 0.08464579, 0.10728423, 0.11930841,
+ 0.1319508 , 0.14808462, 0.15979372, 0.07460467, 0.12637411,
+ -0.21040967, -0.24904034, -0.05785571, -0.0376285 , -0.03109732,
+ -0.03263715, -0.0247748 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.535399091577092, shift=array([5.35399092, 0.17103024])), candidate_index=0, candidate_x=array([5.35399092, 0.17103024]), index=0, x=array([5.35399092, 0.17103024]), fval=0.24222754644165564, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([5.35399092, 0.17103024]), radius=0.535399091577092, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=3.4201048201667734, linear_terms=array([-0.28177681, 11.21026201]), square_terms=array([[ 1.80970210e-02, -4.44098984e-01],
+ [-4.44098984e-01, 1.94933118e+01]]), scale=array([0.47448509, 0.31775767]), shift=array([5.35399092, 0.32775767])), vector_model=VectorModel(intercepts=array([ 0.039855 , 0.08727496, 0.08464579, 0.10728423, 0.11930841,
+ 0.1319508 , 0.14808462, 0.15979372, 0.07460467, 0.12637411,
+ -0.21040967, -0.24904034, -0.05785571, -0.0376285 , -0.03109732,
+ -0.03263715, -0.0247748 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.535399091577092, shift=array([5.35399092, 0.17103024])), candidate_index=13, candidate_x=array([5.82847601, 0.15225999]), index=0, x=array([5.35399092, 0.17103024]), fval=0.24222754644165564, rho=-0.15200421358915187, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.35399092, 0.17103024]), radius=0.267699545788546, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 2, 3, 5, 6, 7, 11, 13]), model=ScalarModel(intercept=0.3453241266842719, linear_terms=array([0.02479079, 0.95756552]), square_terms=array([[0.00728976, 0.05998005],
+ [0.05998005, 3.79816812]]), scale=array([0.23724255, 0.19913639]), shift=array([5.35399092, 0.20913639])), vector_model=VectorModel(intercepts=array([ 0.039855 , 0.08727496, 0.08464579, 0.10728423, 0.11930841,
+ 0.1319508 , 0.14808462, 0.15979372, 0.07460467, 0.12637411,
+ -0.21040967, -0.24904034, -0.05785571, -0.0376285 , -0.03109732,
+ -0.03263715, -0.0247748 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.535399091577092, shift=array([5.35399092, 0.17103024])), candidate_index=14, candidate_x=array([5.11674837, 0.16207636]), index=0, x=array([5.35399092, 0.17103024]), fval=0.24222754644165564, rho=-0.46143358417508423, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 3, 5, 6, 7, 11, 13]), old_indices_discarded=array([ 4, 8, 9, 10, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.35399092, 0.17103024]), radius=0.133849772894273, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 2, 5, 6, 7, 11, 13, 14]), model=ScalarModel(intercept=0.2361989522624684, linear_terms=array([0.00800855, 0.11334879]), square_terms=array([[0.00196917, 0.02968529],
+ [0.02968529, 1.62675202]]), scale=0.133849772894273, shift=array([5.35399092, 0.17103024])), vector_model=VectorModel(intercepts=array([ 0.039855 , 0.08727496, 0.08464579, 0.10728423, 0.11930841,
+ 0.1319508 , 0.14808462, 0.15979372, 0.07460467, 0.12637411,
+ -0.21040967, -0.24904034, -0.05785571, -0.0376285 , -0.03109732,
+ -0.03263715, -0.0247748 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.535399091577092, shift=array([5.35399092, 0.17103024])), candidate_index=15, candidate_x=array([5.2200408 , 0.16416724]), index=0, x=array([5.35399092, 0.17103024]), fval=0.24222754644165564, rho=-0.3292785496260621, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 5, 6, 7, 11, 13, 14]), old_indices_discarded=array([ 3, 4, 9, 10, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.35399092, 0.17103024]), radius=0.0669248864471365, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 14, 15]), model=ScalarModel(intercept=0.24255126823870177, linear_terms=array([-0.00173985, 0.04550415]), square_terms=array([[1.04037898e-04, 4.03282410e-03],
+ [4.03282410e-03, 4.06667977e-01]]), scale=0.0669248864471365, shift=array([5.35399092, 0.17103024])), vector_model=VectorModel(intercepts=array([ 0.039855 , 0.08727496, 0.08464579, 0.10728423, 0.11930841,
+ 0.1319508 , 0.14808462, 0.15979372, 0.07460467, 0.12637411,
+ -0.21040967, -0.24904034, -0.05785571, -0.0376285 , -0.03109732,
+ -0.03263715, -0.0247748 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.535399091577092, shift=array([5.35399092, 0.17103024])), candidate_index=16, candidate_x=array([5.42083761, 0.16292119]), index=0, x=array([5.35399092, 0.17103024]), fval=0.24222754644165564, rho=-0.5254278897156385, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.35399092, 0.17103024]), radius=0.03346244322356825, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 15, 16]), model=ScalarModel(intercept=0.24222754644165548, linear_terms=array([2.40076968e-05, 3.04590501e-05]), square_terms=array([[3.81907287e-05, 9.69902721e-04],
+ [9.69902721e-04, 9.61595844e-02]]), scale=0.03346244322356825, shift=array([5.35399092, 0.17103024])), vector_model=VectorModel(intercepts=array([ 0.039855 , 0.08727496, 0.08464579, 0.10728423, 0.11930841,
+ 0.1319508 , 0.14808462, 0.15979372, 0.07460467, 0.12637411,
+ -0.21040967, -0.24904034, -0.05785571, -0.0376285 , -0.03109732,
+ -0.03263715, -0.0247748 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.535399091577092, shift=array([5.35399092, 0.17103024])), candidate_index=17, candidate_x=array([5.32053009, 0.17135876]), index=0, x=array([5.35399092, 0.17103024]), fval=0.24222754644165564, rho=-12.331804806172741, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.35399092, 0.17103024]), radius=0.016731221611784124, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 16, 17]), model=ScalarModel(intercept=0.24222754644165576, linear_terms=array([-5.69494381e-05, -5.53184385e-04]), square_terms=array([[9.07291274e-06, 2.18209656e-04],
+ [2.18209656e-04, 2.36720867e-02]]), scale=0.016731221611784124, shift=array([5.35399092, 0.17103024])), vector_model=VectorModel(intercepts=array([ 0.039855 , 0.08727496, 0.08464579, 0.10728423, 0.11930841,
+ 0.1319508 , 0.14808462, 0.15979372, 0.07460467, 0.12637411,
+ -0.21040967, -0.24904034, -0.05785571, -0.0376285 , -0.03109732,
+ -0.03263715, -0.0247748 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.535399091577092, shift=array([5.35399092, 0.17103024])), candidate_index=18, candidate_x=array([5.3707248 , 0.17126653]), index=0, x=array([5.35399092, 0.17103024]), fval=0.24222754644165564, rho=-2.7558354422098033, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.35399092, 0.17103024]), radius=0.008365610805892062, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 17, 18]), model=ScalarModel(intercept=0.2422275464416555, linear_terms=array([1.38880687e-05, 4.03818545e-03]), square_terms=array([[2.16087810e-06, 4.68859000e-05],
+ [4.68859000e-05, 5.46996031e-03]]), scale=0.008365610805892062, shift=array([5.35399092, 0.17103024])), vector_model=VectorModel(intercepts=array([ 0.039855 , 0.08727496, 0.08464579, 0.10728423, 0.11930841,
+ 0.1319508 , 0.14808462, 0.15979372, 0.07460467, 0.12637411,
+ -0.21040967, -0.24904034, -0.05785571, -0.0376285 , -0.03109732,
+ -0.03263715, -0.0247748 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.535399091577092, shift=array([5.35399092, 0.17103024])), candidate_index=19, candidate_x=array([5.36002884, 0.16483287]), index=0, x=array([5.35399092, 0.17103024]), fval=0.24222754644165564, rho=-1.151992301822513, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.35399092, 0.17103024]), radius=0.004182805402946031, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 18, 19]), model=ScalarModel(intercept=0.24222754644165576, linear_terms=array([ 3.59888783e-05, -3.78793239e-05]), square_terms=array([[5.09713542e-07, 1.18397453e-05],
+ [1.18397453e-05, 1.50374245e-03]]), scale=0.004182805402946031, shift=array([5.35399092, 0.17103024])), vector_model=VectorModel(intercepts=array([ 0.039855 , 0.08727496, 0.08464579, 0.10728423, 0.11930841,
+ 0.1319508 , 0.14808462, 0.15979372, 0.07460467, 0.12637411,
+ -0.21040967, -0.24904034, -0.05785571, -0.0376285 , -0.03109732,
+ -0.03263715, -0.0247748 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.535399091577092, shift=array([5.35399092, 0.17103024])), candidate_index=20, candidate_x=array([5.34980904, 0.17116531]), index=0, x=array([5.35399092, 0.17103024]), fval=0.24222754644165564, rho=-1.286789678419487, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.35399092, 0.17103024]), radius=0.0020914027014730155, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 19, 20]), model=ScalarModel(intercept=0.24222754644165584, linear_terms=array([-2.51820360e-05, -6.10052937e-05]), square_terms=array([[1.51629548e-07, 3.66995116e-06],
+ [3.66995116e-06, 3.77296137e-04]]), scale=0.0020914027014730155, shift=array([5.35399092, 0.17103024])), vector_model=VectorModel(intercepts=array([ 0.039855 , 0.08727496, 0.08464579, 0.10728423, 0.11930841,
+ 0.1319508 , 0.14808462, 0.15979372, 0.07460467, 0.12637411,
+ -0.21040967, -0.24904034, -0.05785571, -0.0376285 , -0.03109732,
+ -0.03263715, -0.0247748 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.535399091577092, shift=array([5.35399092, 0.17103024])), candidate_index=21, candidate_x=array([5.35608532, 0.17132867]), index=0, x=array([5.35399092, 0.17103024]), fval=0.24222754644165564, rho=-1.568071751203749, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.35399092, 0.17103024]), radius=0.0010457013507365078, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 20, 21]), model=ScalarModel(intercept=0.24222754644165548, linear_terms=array([-5.59040445e-06, 1.86243050e-04]), square_terms=array([[3.53347737e-08, 8.32607267e-07],
+ [8.32607267e-07, 9.15341276e-05]]), scale=0.0010457013507365078, shift=array([5.35399092, 0.17103024])), vector_model=VectorModel(intercepts=array([ 0.039855 , 0.08727496, 0.08464579, 0.10728423, 0.11930841,
+ 0.1319508 , 0.14808462, 0.15979372, 0.07460467, 0.12637411,
+ -0.21040967, -0.24904034, -0.05785571, -0.0376285 , -0.03109732,
+ -0.03263715, -0.0247748 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.535399091577092, shift=array([5.35399092, 0.17103024])), candidate_index=22, candidate_x=array([5.35427497, 0.17002386]), index=0, x=array([5.35399092, 0.17103024]), fval=0.24222754644165564, rho=-0.6233361747230197, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.35399092, 0.17103024]), radius=0.0005228506753682539, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 21, 22]), model=ScalarModel(intercept=0.24222754644165556, linear_terms=array([ 1.31043474e-05, -1.84619410e-05]), square_terms=array([[7.50259381e-09, 1.55081065e-07],
+ [1.55081065e-07, 2.36939961e-05]]), scale=0.0005228506753682539, shift=array([5.35399092, 0.17103024])), vector_model=VectorModel(intercepts=array([ 0.039855 , 0.08727496, 0.08464579, 0.10728423, 0.11930841,
+ 0.1319508 , 0.14808462, 0.15979372, 0.07460467, 0.12637411,
+ -0.21040967, -0.24904034, -0.05785571, -0.0376285 , -0.03109732,
+ -0.03263715, -0.0247748 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.535399091577092, shift=array([5.35399092, 0.17103024])), candidate_index=23, candidate_x=array([5.35353155, 0.1712816 ]), index=0, x=array([5.35399092, 0.17103024]), fval=0.24222754644165564, rho=-3.5213900190638943, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.35399092, 0.17103024]), radius=0.00026142533768412694, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 22, 23]), model=ScalarModel(intercept=0.24222754644165576, linear_terms=array([-4.74482435e-05, -2.44726668e-05]), square_terms=array([[1.41323716e-08, 1.52966509e-07],
+ [1.52966509e-07, 5.98698669e-06]]), scale=0.00026142533768412694, shift=array([5.35399092, 0.17103024])), vector_model=VectorModel(intercepts=array([ 0.039855 , 0.08727496, 0.08464579, 0.10728423, 0.11930841,
+ 0.1319508 , 0.14808462, 0.15979372, 0.07460467, 0.12637411,
+ -0.21040967, -0.24904034, -0.05785571, -0.0376285 , -0.03109732,
+ -0.03263715, -0.0247748 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.535399091577092, shift=array([5.35399092, 0.17103024])), candidate_index=24, candidate_x=array([5.35423677, 0.1711431 ]), index=0, x=array([5.35399092, 0.17103024]), fval=0.24222754644165564, rho=-0.37132867808536096, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.35399092, 0.17103024]), radius=0.00013071266884206347, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 23, 24]), model=ScalarModel(intercept=0.24222754644165614, linear_terms=array([-2.07495743e-06, 2.73291039e-05]), square_terms=array([[6.59873106e-10, 1.88545139e-08],
+ [1.88545139e-08, 1.43548055e-06]]), scale=0.00013071266884206347, shift=array([5.35399092, 0.17103024])), vector_model=VectorModel(intercepts=array([ 0.039855 , 0.08727496, 0.08464579, 0.10728423, 0.11930841,
+ 0.1319508 , 0.14808462, 0.15979372, 0.07460467, 0.12637411,
+ -0.21040967, -0.24904034, -0.05785571, -0.0376285 , -0.03109732,
+ -0.03263715, -0.0247748 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.535399091577092, shift=array([5.35399092, 0.17103024])), candidate_index=25, candidate_x=array([5.35400433, 0.17090022]), index=0, x=array([5.35399092, 0.17103024]), fval=0.24222754644165564, rho=-0.7059482012607562, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.35399092, 0.17103024]), radius=6.535633442103174e-05, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 24, 25]), model=ScalarModel(intercept=0.24222754644165567, linear_terms=array([ 8.98967423e-06, -8.17920862e-06]), square_terms=array([[3.56744076e-10, 2.72970406e-09],
+ [2.72970406e-09, 3.66603832e-07]]), scale=6.535633442103174e-05, shift=array([5.35399092, 0.17103024])), vector_model=VectorModel(intercepts=array([ 0.039855 , 0.08727496, 0.08464579, 0.10728423, 0.11930841,
+ 0.1319508 , 0.14808462, 0.15979372, 0.07460467, 0.12637411,
+ -0.21040967, -0.24904034, -0.05785571, -0.0376285 , -0.03109732,
+ -0.03263715, -0.0247748 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.535399091577092, shift=array([5.35399092, 0.17103024])), candidate_index=26, candidate_x=array([5.35394182, 0.17107358]), index=0, x=array([5.35399092, 0.17103024]), fval=0.24222754644165564, rho=-0.3128693343239847, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.35399092, 0.17103024]), radius=3.267816721051587e-05, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 25, 26]), model=ScalarModel(intercept=0.24222754644165556, linear_terms=array([-7.13779397e-06, -5.28962750e-06]), square_terms=array([[3.64809042e-10, 1.76605938e-09],
+ [1.76605938e-09, 9.18716003e-08]]), scale=3.267816721051587e-05, shift=array([5.35399092, 0.17103024])), vector_model=VectorModel(intercepts=array([ 0.039855 , 0.08727496, 0.08464579, 0.10728423, 0.11930841,
+ 0.1319508 , 0.14808462, 0.15979372, 0.07460467, 0.12637411,
+ -0.21040967, -0.24904034, -0.05785571, -0.0376285 , -0.03109732,
+ -0.03263715, -0.0247748 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.535399091577092, shift=array([5.35399092, 0.17103024])), candidate_index=27, candidate_x=array([5.3540173 , 0.17104959]), index=27, x=array([5.3540173 , 0.17104959]), fval=0.24222753286188017, rho=0.0015295632727075413, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=3.2719461113430184e-05, relative_step_length=1.0012636541899151, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 28 entries., 'history': {'params': [{'CRRA': 5.35399091577092, 'WealthShare': 0.1710302407154898}, {'CRRA': 5.1093119034531025, 'WealthShare': 0.01}, {'CRRA': 5.828476006589486, 'WealthShare': 0.15198745519212556}, {'CRRA': 4.879505824952354, 'WealthShare': 0.33185149063946}, {'CRRA': 5.828476006589486, 'WealthShare': 0.4997551746631117}, {'CRRA': 5.649517952308574, 'WealthShare': 0.01}, {'CRRA': 5.828476006589486, 'WealthShare': 0.010842937001314876}, {'CRRA': 4.879505824952354, 'WealthShare': 0.28861369993918135}, {'CRRA': 5.828476006589486, 'WealthShare': 0.6447330294382924}, {'CRRA': 5.694910146460927, 'WealthShare': 0.6455153315340556}, {'CRRA': 4.890302007181595, 'WealthShare': 0.6455153315340556}, {'CRRA': 4.879890995481528, 'WealthShare': 0.01}, {'CRRA': 4.929924157788898, 'WealthShare': 0.6455153315340556}, {'CRRA': 5.828476006589486, 'WealthShare': 0.15225999422840883}, {'CRRA': 5.116748370361637, 'WealthShare': 0.16207635543589285}, {'CRRA': 5.220040802323193, 'WealthShare': 0.16416724396618038}, {'CRRA': 5.420837614218516, 'WealthShare': 0.1629211859056509}, {'CRRA': 5.320530085228392, 'WealthShare': 0.17135876148314994}, {'CRRA': 5.370724795910354, 'WealthShare': 0.17126652634633668}, {'CRRA': 5.360028842271749, 'WealthShare': 0.1648328683516738}, {'CRRA': 5.3498090449241085, 'WealthShare': 0.1711653098868402}, {'CRRA': 5.356085319371155, 'WealthShare': 0.1713286726894636}, {'CRRA': 5.354274968633282, 'WealthShare': 0.17002385843905796}, {'CRRA': 5.3535315455809025, 'WealthShare': 0.17128159597424597}, {'CRRA': 5.354236772470478, 'WealthShare': 0.17114309869726121}, {'CRRA': 5.354004328918206, 'WealthShare': 0.1709002180664024}, {'CRRA': 5.353941824468242, 'WealthShare': 0.1710735823210765}, {'CRRA': 5.354017300200224, 'WealthShare': 0.17104959078075785}], 'criterion': [0.24222754644165562, 1.3527895501225145, 0.25585219407190074, 1.7031686075554116, 7.114963255276454, 1.1323588986508293, 1.0629740860263677, 0.9739545965561691, 24.151208938585803, 25.14913495293009, 31.421723888560248, 1.4661445151338668, 31.05022360234911, 0.25555761258405385, 0.24846046601007443, 0.24524990438076233, 0.24469829766742782, 0.24234471653621914, 0.24237853905195023, 0.2439613583848765, 0.2422745753945035, 0.24227377574409864, 0.2423139315422859, 0.24228992204868513, 0.24224780659238057, 0.24224638784441083, 0.2422313312843987, 0.2422275328618802], 'runtime': [0.0, 1.3785228689998803, 1.4328838589999577, 1.470578452999689, 1.5146917719998783, 1.5656984319998628, 1.6097452690000864, 1.65279088699981, 1.7004059599998982, 1.7587006379999366, 1.8216978010000275, 1.8793760539997493, 1.9314585709998937, 104.02275508299999, 105.23868029999994, 106.46841068100002, 107.68304327499982, 109.34099135399993, 110.5392876169999, 111.69529685399993, 113.02670071900002, 114.160099747, 115.31350987099995, 116.4846465669998, 117.68432192499995, 118.91863271700004, 120.25697914400007, 121.4351695360001], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]}}, {'solution_x': array([5.33557737, 0.17060058]), 'solution_criterion': 0.2421983863534466, 'states': [State(trustregion=Region(center=array([5.83794505, 0.17769839]), radius=0.5837945053873421, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=[0], model=ScalarModel(intercept=0.2500249942408325, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=0, candidate_x=array([5.83794505, 0.17769839]), index=0, x=array([5.83794505, 0.17769839]), fval=0.25002499424083247, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([5.83794505, 0.17769839]), radius=0.5837945053873421, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=5.323973668078372, linear_terms=array([-0.75583641, 15.97016397]), square_terms=array([[ 0.06851782, -1.1616573 ],
+ [-1.1616573 , 24.80625807]]), scale=array([0.51737441, 0.3425364 ]), shift=array([5.83794505, 0.3525364 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=13, candidate_x=array([6.1298769 , 0.14106399]), index=0, x=array([5.83794505, 0.17769839]), fval=0.25002499424083247, rho=-0.10249831672421726, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.83794505, 0.17769839]), radius=0.29189725269367106, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 2, 3, 5, 6, 7, 8, 13]), model=ScalarModel(intercept=1.020144031837767, linear_terms=array([-0.15036877, 3.82287309]), square_terms=array([[ 0.02811468, -0.37120958],
+ [-0.37120958, 8.70439816]]), scale=array([0.2586872, 0.2131928]), shift=array([5.83794505, 0.2231928 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=14, candidate_x=array([5.57925785, 0.12046907]), index=0, x=array([5.83794505, 0.17769839]), fval=0.25002499424083247, rho=-0.3686077630799093, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 3, 5, 6, 7, 8, 13]), old_indices_discarded=array([ 4, 9, 10, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.83794505, 0.17769839]), radius=0.14594862634683553, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 3, 5, 6, 7, 8, 13, 14]), model=ScalarModel(intercept=0.32337401785450964, linear_terms=array([-0.05509149, 1.09845952]), square_terms=array([[ 0.02085975, -0.26486803],
+ [-0.26486803, 4.42259018]]), scale=0.14594862634683553, shift=array([5.83794505, 0.17769839])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=15, candidate_x=array([5.69639037, 0.13303053]), index=0, x=array([5.83794505, 0.17769839]), fval=0.25002499424083247, rho=-0.290539326522971, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 5, 6, 7, 8, 13, 14]), old_indices_discarded=array([ 2, 4, 9, 10, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.83794505, 0.17769839]), radius=0.07297431317341777, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 13, 14, 15]), model=ScalarModel(intercept=0.26967457001726336, linear_terms=array([0.00305809, 0.10758911]), square_terms=array([[2.03063183e-04, 7.58408569e-03],
+ [7.58408569e-03, 4.14525606e-01]]), scale=0.07297431317341777, shift=array([5.83794505, 0.17769839])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=16, candidate_x=array([5.76466194, 0.16014228]), index=16, x=array([5.76466194, 0.16014228]), fval=0.24816488651407154, rho=0.12380898705859822, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 13, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.07535669323632875, relative_step_length=1.0326468309095207, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.76466194, 0.16014228]), radius=0.14594862634683553, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 3, 6, 7, 13, 14, 15, 16]), model=ScalarModel(intercept=0.24980518122836323, linear_terms=array([ 0.00949845, -0.02386839]), square_terms=array([[0.00257834, 0.05299243],
+ [0.05299243, 1.55867884]]), scale=0.14594862634683553, shift=array([5.76466194, 0.16014228])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=17, candidate_x=array([5.61887231, 0.16729012]), index=17, x=array([5.61887231, 0.16729012]), fval=0.24373445213195502, rho=0.43892226114088795, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 6, 7, 13, 14, 15, 16]), old_indices_discarded=array([ 2, 5, 8, 10, 11, 12]), step_length=0.14596475101996004, relative_step_length=1.0001104818423312, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.61887231, 0.16729012]), radius=0.29189725269367106, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 3, 7, 11, 14, 15, 16, 17]), model=ScalarModel(intercept=0.3762029190210623, linear_terms=array([0.00847171, 1.1355556 ]), square_terms=array([[ 0.0351543 , -0.12066294],
+ [-0.12066294, 4.22970628]]), scale=array([0.2586872 , 0.20798866]), shift=array([5.61887231, 0.21798866])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=18, candidate_x=array([5.36018511, 0.15621624]), index=17, x=array([5.61887231, 0.16729012]), fval=0.24373445213195502, rho=-0.28174894853494853, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 11, 14, 15, 16, 17]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 10, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.61887231, 0.16729012]), radius=0.14594862634683553, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 3, 7, 14, 15, 16, 17, 18]), model=ScalarModel(intercept=0.24992252725033823, linear_terms=array([0.00316437, 0.06723442]), square_terms=array([[9.24265460e-04, 3.06288719e-02],
+ [3.06288719e-02, 1.73234651e+00]]), scale=0.14594862634683553, shift=array([5.61887231, 0.16729012])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=19, candidate_x=array([5.47285718, 0.16421015]), index=17, x=array([5.61887231, 0.16729012]), fval=0.24373445213195502, rho=-0.10605520364386403, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 14, 15, 16, 17, 18]), old_indices_discarded=array([ 6, 8, 10, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.61887231, 0.16729012]), radius=0.07297431317341777, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 0, 1, 7, 14, 15, 16, 17, 18, 19]), model=ScalarModel(intercept=0.24923278591953518, linear_terms=array([0.00140877, 0.03201995]), square_terms=array([[2.08936369e-04, 7.01345842e-03],
+ [7.01345842e-03, 4.30945644e-01]]), scale=0.07297431317341777, shift=array([5.61887231, 0.16729012])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=20, candidate_x=array([5.54582595, 0.16306459]), index=17, x=array([5.61887231, 0.16729012]), fval=0.24373445213195502, rho=-0.5716837122875763, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 7, 14, 15, 16, 17, 18, 19]), old_indices_discarded=array([3]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.61887231, 0.16729012]), radius=0.03648715658670888, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([14, 15, 16, 17, 19, 20]), model=ScalarModel(intercept=0.24447966591289924, linear_terms=array([ 0.00057646, -0.00219486]), square_terms=array([[4.59383981e-05, 1.38128890e-03],
+ [1.38128890e-03, 1.04480430e-01]]), scale=0.03648715658670888, shift=array([5.61887231, 0.16729012])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=21, candidate_x=array([5.58239844, 0.16853196]), index=21, x=array([5.58239844, 0.16853196]), fval=0.24315780951732555, rho=0.938417610541786, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 15, 16, 17, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.03649501064612971, relative_step_length=1.0002152554530293, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.58239844, 0.16853196]), radius=0.07297431317341777, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 1, 14, 15, 16, 17, 18, 19, 20, 21]), model=ScalarModel(intercept=0.2493403145907468, linear_terms=array([0.00206841, 0.03132845]), square_terms=array([[2.20612437e-04, 6.20169647e-03],
+ [6.20169647e-03, 4.20600928e-01]]), scale=0.07297431317341777, shift=array([5.58239844, 0.16853196])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=22, candidate_x=array([5.50935584, 0.16418873]), index=21, x=array([5.58239844, 0.16853196]), fval=0.24315780951732555, rho=-0.40755145676280513, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 14, 15, 16, 17, 18, 19, 20, 21]), old_indices_discarded=array([ 0, 3, 7, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.58239844, 0.16853196]), radius=0.03648715658670888, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 1, 14, 15, 17, 19, 20, 21, 22]), model=ScalarModel(intercept=0.24973373889649686, linear_terms=array([0.00287452, 0.0154878 ]), square_terms=array([[0.00011611, 0.00170606],
+ [0.00170606, 0.10513658]]), scale=0.03648715658670888, shift=array([5.58239844, 0.16853196])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=23, candidate_x=array([5.54583196, 0.16386291]), index=21, x=array([5.58239844, 0.16853196]), fval=0.24315780951732555, rho=-0.3707124284955786, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 14, 15, 17, 19, 20, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.58239844, 0.16853196]), radius=0.01824357829335444, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([14, 17, 20, 21, 22, 23]), model=ScalarModel(intercept=0.24348377086944023, linear_terms=array([5.04148881e-05, 1.91725030e-04]), square_terms=array([[9.67169504e-06, 3.22879765e-04],
+ [3.22879765e-04, 2.62610807e-02]]), scale=0.01824357829335444, shift=array([5.58239844, 0.16853196])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=24, candidate_x=array([5.56415462, 0.16862293]), index=24, x=array([5.56415462, 0.16862293]), fval=0.24306497226632034, rho=2.022284735880162, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 17, 20, 21, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.018244046821077237, relative_step_length=1.0000256817886963, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56415462, 0.16862293]), radius=0.03648715658670888, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([14, 15, 17, 19, 20, 21, 22, 23, 24]), model=ScalarModel(intercept=0.24352266720979443, linear_terms=array([ 0.00058615, -0.00048178]), square_terms=array([[4.77510213e-05, 1.43280356e-03],
+ [1.43280356e-03, 1.04666941e-01]]), scale=0.03648715658670888, shift=array([5.56415462, 0.16862293])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=25, candidate_x=array([5.52767313, 0.1692867 ]), index=25, x=array([5.52767313, 0.1692867 ]), fval=0.24285876672075696, rho=0.35571310395335953, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 15, 17, 19, 20, 21, 22, 23, 24]), old_indices_discarded=array([1]), step_length=0.03648752369461524, relative_step_length=1.0000100612911693, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.52767313, 0.1692867 ]), radius=0.07297431317341777, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([14, 17, 19, 20, 21, 22, 23, 24, 25]), model=ScalarModel(intercept=0.24314216726921375, linear_terms=array([0.00031071, 0.00112818]), square_terms=array([[1.58692645e-04, 5.04893216e-03],
+ [5.04893216e-03, 4.20396152e-01]]), scale=0.07297431317341777, shift=array([5.52767313, 0.1692867 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=26, candidate_x=array([5.45470179, 0.16996693]), index=26, x=array([5.45470179, 0.16996693]), fval=0.24259437399648873, rho=1.0590927394756011, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 17, 19, 20, 21, 22, 23, 24, 25]), old_indices_discarded=array([ 0, 1, 3, 7, 11, 15, 16, 18]), step_length=0.07297450997400595, relative_step_length=1.0000026968474196, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.45470179, 0.16996693]), radius=0.14594862634683553, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([14, 18, 19, 20, 21, 22, 24, 25, 26]), model=ScalarModel(intercept=0.2426437155645201, linear_terms=array([ 0.00066012, -0.0002101 ]), square_terms=array([[6.76799313e-04, 2.11994953e-02],
+ [2.11994953e-02, 1.68722879e+00]]), scale=0.14594862634683553, shift=array([5.45470179, 0.16996693])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=27, candidate_x=array([5.30876491, 0.17181847]), index=27, x=array([5.30876491, 0.17181847]), fval=0.24243354455545987, rho=0.35150966109351695, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 18, 19, 20, 21, 22, 24, 25, 26]), old_indices_discarded=array([ 0, 1, 3, 7, 8, 10, 11, 12, 13, 15, 16, 17, 23]), step_length=0.14594862668524397, relative_step_length=1.000000002318682, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.30876491, 0.17181847]), radius=0.29189725269367106, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 1, 3, 11, 14, 18, 19, 20, 21, 27]), model=ScalarModel(intercept=0.37246777346864934, linear_terms=array([0.00441854, 1.18206703]), square_terms=array([[ 0.02195466, -0.04742476],
+ [-0.04742476, 4.2726438 ]]), scale=array([0.2586872 , 0.21025284]), shift=array([5.30876491, 0.22025284])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=28, candidate_x=array([5.0970293 , 0.16017426]), index=27, x=array([5.30876491, 0.17181847]), fval=0.24243354455545987, rho=-0.7113501343654184, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 3, 11, 14, 18, 19, 20, 21, 27]), old_indices_discarded=array([ 0, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 22, 23, 24,
+ 25, 26]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.30876491, 0.17181847]), radius=0.14594862634683553, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 3, 7, 18, 19, 22, 25, 26, 27, 28]), model=ScalarModel(intercept=0.2464194023851543, linear_terms=array([-0.00084176, 0.08200684]), square_terms=array([[6.47218524e-04, 2.11981078e-02],
+ [2.11981078e-02, 1.79973195e+00]]), scale=0.14594862634683553, shift=array([5.30876491, 0.17181847])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=29, candidate_x=array([5.45460642, 0.16345692]), index=27, x=array([5.30876491, 0.17181847]), fval=0.24243354455545987, rho=-0.5703889919895696, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 18, 19, 22, 25, 26, 27, 28]), old_indices_discarded=array([ 0, 1, 10, 11, 12, 14, 15, 16, 17, 20, 21, 23, 24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.30876491, 0.17181847]), radius=0.07297431317341777, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 3, 7, 18, 19, 22, 26, 27, 28, 29]), model=ScalarModel(intercept=0.24664926765654258, linear_terms=array([-0.00024156, 0.04118899]), square_terms=array([[1.70654218e-04, 5.36001424e-03],
+ [5.36001424e-03, 4.50004550e-01]]), scale=0.07297431317341777, shift=array([5.30876491, 0.17181847])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=30, candidate_x=array([5.38163701, 0.16428162]), index=27, x=array([5.30876491, 0.17181847]), fval=0.24243354455545987, rho=-0.668055965403151, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 18, 19, 22, 26, 27, 28, 29]), old_indices_discarded=array([ 1, 11, 14, 17, 20, 21, 23, 24, 25]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.30876491, 0.17181847]), radius=0.03648715658670888, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 3, 7, 18, 19, 26, 27, 29, 30]), model=ScalarModel(intercept=0.24521815600368138, linear_terms=array([0.00026426, 0.02038709]), square_terms=array([[4.74795190e-05, 1.30395809e-03],
+ [1.30395809e-03, 1.12532052e-01]]), scale=0.03648715658670888, shift=array([5.30876491, 0.17181847])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=31, candidate_x=array([5.27280706, 0.16562611]), index=27, x=array([5.30876491, 0.17181847]), fval=0.24243354455545987, rho=-0.8314331419387987, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 18, 19, 26, 27, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.30876491, 0.17181847]), radius=0.01824357829335444, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([18, 27, 30, 31]), model=ScalarModel(intercept=0.2425172780472681, linear_terms=array([1.04804479e-05, 1.37888168e-03]), square_terms=array([[1.12857867e-05, 2.91582077e-04],
+ [2.91582077e-04, 2.87671916e-02]]), scale=0.01824357829335444, shift=array([5.30876491, 0.17181847])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=32, candidate_x=array([5.32697754, 0.17075639]), index=32, x=array([5.32697754, 0.17075639]), fval=0.24225547458407035, rho=5.498532498656186, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 27, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.018243578293354667, relative_step_length=1.0000000000000124, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.32697754, 0.17075639]), radius=0.03648715658670888, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([ 7, 18, 19, 26, 27, 29, 30, 31, 32]), model=ScalarModel(intercept=0.24442267125914174, linear_terms=array([0.00031052, 0.01755316]), square_terms=array([[4.95899758e-05, 1.31876158e-03],
+ [1.31876158e-03, 1.12502932e-01]]), scale=0.03648715658670888, shift=array([5.32697754, 0.17075639])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=33, candidate_x=array([5.29053673, 0.16549399]), index=32, x=array([5.32697754, 0.17075639]), fval=0.24225547458407035, rho=-1.1605097139907963, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 7, 18, 19, 26, 27, 29, 30, 31, 32]), old_indices_discarded=array([3]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.32697754, 0.17075639]), radius=0.01824357829335444, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([18, 27, 30, 31, 32, 33]), model=ScalarModel(intercept=0.24240138874383832, linear_terms=array([-1.34706482e-05, -2.00977445e-04]), square_terms=array([[1.12310877e-05, 2.93698037e-04],
+ [2.93698037e-04, 2.87879022e-02]]), scale=0.01824357829335444, shift=array([5.32697754, 0.17075639])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=34, candidate_x=array([5.34522111, 0.17069763]), index=32, x=array([5.32697754, 0.17075639]), fval=0.24225547458407035, rho=-2.4579564090648676, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([18, 27, 30, 31, 32, 33]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.32697754, 0.17075639]), radius=0.00912178914667722, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([18, 27, 32, 33, 34]), model=ScalarModel(intercept=0.24231372257835046, linear_terms=array([-3.67885812e-05, -1.56295915e-04]), square_terms=array([[2.74057907e-06, 7.34739042e-05],
+ [7.34739042e-05, 7.18730958e-03]]), scale=0.00912178914667722, shift=array([5.32697754, 0.17075639])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=35, candidate_x=array([5.33610086, 0.170861 ]), index=35, x=array([5.33610086, 0.170861 ]), fval=0.2422392115565381, rho=0.45299609567353283, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 27, 32, 33, 34]), old_indices_discarded=array([], dtype=int64), step_length=0.009123915567284637, relative_step_length=1.000233114422316, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33610086, 0.170861 ]), radius=0.01824357829335444, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([18, 27, 30, 31, 32, 33, 34, 35]), model=ScalarModel(intercept=0.2423307750427185, linear_terms=array([-1.78909546e-05, -1.98777282e-05]), square_terms=array([[1.11719188e-05, 2.91489798e-04],
+ [2.91489798e-04, 2.87505621e-02]]), scale=0.01824357829335444, shift=array([5.33610086, 0.170861 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=36, candidate_x=array([5.35434363, 0.17068872]), index=35, x=array([5.33610086, 0.170861 ]), fval=0.2422392115565381, rho=-2.963143065159759, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([18, 27, 30, 31, 32, 33, 34, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33610086, 0.170861 ]), radius=0.00912178914667722, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([18, 27, 32, 34, 35, 36]), model=ScalarModel(intercept=0.24228466564231269, linear_terms=array([-2.24742123e-05, 1.60446770e-05]), square_terms=array([[2.72376463e-06, 6.51825427e-05],
+ [6.51825427e-05, 7.14572234e-03]]), scale=0.00912178914667722, shift=array([5.33610086, 0.170861 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=37, candidate_x=array([5.34522209, 0.17075761]), index=35, x=array([5.33610086, 0.170861 ]), fval=0.2422392115565381, rho=-1.5642167142763028, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([18, 27, 32, 34, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33610086, 0.170861 ]), radius=0.00456089457333861, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([32, 34, 35, 36, 37]), model=ScalarModel(intercept=0.24224211188369624, linear_terms=array([ 2.56124148e-06, -7.33810091e-04]), square_terms=array([[6.58450434e-07, 1.62540985e-05],
+ [1.62540985e-05, 1.74025458e-03]]), scale=0.00456089457333861, shift=array([5.33610086, 0.170861 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=38, candidate_x=array([5.33156143, 0.17281656]), index=35, x=array([5.33610086, 0.170861 ]), fval=0.2422392115565381, rho=-1.626890346177331, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([32, 34, 35, 36, 37]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33610086, 0.170861 ]), radius=0.002280447286669305, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([32, 34, 35, 37, 38]), model=ScalarModel(intercept=0.2422610199987972, linear_terms=array([3.24076423e-06, 1.09212079e-04]), square_terms=array([[1.64689944e-07, 3.97469068e-06],
+ [3.97469068e-06, 4.42322743e-04]]), scale=0.002280447286669305, shift=array([5.33610086, 0.170861 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=39, candidate_x=array([5.33381612, 0.17032108]), index=35, x=array([5.33610086, 0.170861 ]), fval=0.2422392115565381, rho=-0.01817829767899888, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([32, 34, 35, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33610086, 0.170861 ]), radius=0.0011402236433346526, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 38, 39]), model=ScalarModel(intercept=0.2422392115565383, linear_terms=array([-5.63600427e-06, 5.10967489e-05]), square_terms=array([[4.70616627e-08, 8.13103968e-07],
+ [8.13103968e-07, 1.09902069e-04]]), scale=0.0011402236433346526, shift=array([5.33610086, 0.170861 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=40, candidate_x=array([5.33723732, 0.17035023]), index=35, x=array([5.33610086, 0.170861 ]), fval=0.2422392115565381, rho=-0.7671475430136175, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 38, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33610086, 0.170861 ]), radius=0.0005701118216673263, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 39, 40]), model=ScalarModel(intercept=0.2422392115565383, linear_terms=array([2.67123864e-06, 2.32015646e-06]), square_terms=array([[1.01503457e-08, 2.55683066e-07],
+ [2.55683066e-07, 2.70609068e-05]]), scale=0.0005701118216673263, shift=array([5.33610086, 0.170861 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=41, candidate_x=array([5.33553035, 0.17082138]), index=41, x=array([5.33553035, 0.17082138]), fval=0.2422306308030337, rho=3.1246566740586057, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([35, 39, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.0005718859490511061, relative_step_length=1.0031118936958565, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33553035, 0.17082138]), radius=0.0011402236433346526, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 38, 39, 40, 41]), model=ScalarModel(intercept=0.24224726707979996, linear_terms=array([-2.89843844e-07, 5.08377823e-05]), square_terms=array([[4.27453955e-08, 9.21556966e-07],
+ [9.21556966e-07, 1.10052928e-04]]), scale=0.0011402236433346526, shift=array([5.33553035, 0.17082138])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=42, candidate_x=array([5.3366653 , 0.17028846]), index=41, x=array([5.33553035, 0.17082138]), fval=0.2422306308030337, rho=-1.9455689355183137, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 38, 39, 40, 41]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33553035, 0.17082138]), radius=0.0005701118216673263, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 39, 40, 41, 42]), model=ScalarModel(intercept=0.24223360243650394, linear_terms=array([ 2.91278438e-06, -3.50722253e-06]), square_terms=array([[1.00813101e-08, 2.51773556e-07],
+ [2.51773556e-07, 2.71406595e-05]]), scale=0.0005701118216673263, shift=array([5.33553035, 0.17082138])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=43, candidate_x=array([5.33496087, 0.17089262]), index=41, x=array([5.33553035, 0.17082138]), fval=0.2422306308030337, rho=-5.535264368026378, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 39, 40, 41, 42]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33553035, 0.17082138]), radius=0.00028505591083366315, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 41, 42, 43]), model=ScalarModel(intercept=0.24224023352414065, linear_terms=array([-1.87742787e-06, -5.21106061e-06]), square_terms=array([[3.04573962e-09, 8.14917983e-08],
+ [8.14917983e-08, 6.83492010e-06]]), scale=0.00028505591083366315, shift=array([5.33553035, 0.17082138])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=44, candidate_x=array([5.33576708, 0.17098362]), index=41, x=array([5.33553035, 0.17082138]), fval=0.2422306308030337, rho=-8.092327093834392, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 41, 42, 43]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33553035, 0.17082138]), radius=0.00014252795541683157, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 41, 43, 44]), model=ScalarModel(intercept=0.24223295230251193, linear_terms=array([-5.31736790e-07, 2.27975409e-05]), square_terms=array([[7.19415359e-10, 1.86503337e-08],
+ [1.86503337e-08, 1.61403964e-06]]), scale=0.00014252795541683157, shift=array([5.33553035, 0.17082138])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=45, candidate_x=array([5.33553886, 0.17067911]), index=45, x=array([5.33553886, 0.17067911]), fval=0.24220239688738698, rho=1.2842031311521878, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([35, 41, 43, 44]), old_indices_discarded=array([], dtype=int64), step_length=0.00014252795541681761, relative_step_length=0.9999999999999021, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33553886, 0.17067911]), radius=0.00028505591083366315, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 41, 42, 43, 44, 45]), model=ScalarModel(intercept=0.24222997040159935, linear_terms=array([5.08790955e-06, 9.87341516e-06]), square_terms=array([[2.55137299e-09, 5.67163305e-08],
+ [5.67163305e-08, 6.70555493e-06]]), scale=0.00028505591083366315, shift=array([5.33553886, 0.17067911])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=46, candidate_x=array([5.33533366, 0.17047473]), index=45, x=array([5.33553886, 0.17067911]), fval=0.24220239688738698, rho=-0.7071442609659108, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 41, 42, 43, 44, 45]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33553886, 0.17067911]), radius=0.00014252795541683157, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 41, 43, 44, 45, 46]), model=ScalarModel(intercept=0.24221820849154518, linear_terms=array([-8.49124020e-07, 1.52697526e-05]), square_terms=array([[7.31788970e-10, 1.94307162e-08],
+ [1.94307162e-08, 1.63646545e-06]]), scale=0.00014252795541683157, shift=array([5.33553886, 0.17067911])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=47, candidate_x=array([5.33555459, 0.17053745]), index=47, x=array([5.33555459, 0.17053745]), fval=0.24220041894287114, rho=0.1367487913232024, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([35, 41, 43, 44, 45, 46]), old_indices_discarded=array([], dtype=int64), step_length=0.00014252795541680403, relative_step_length=0.9999999999998068, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33555459, 0.17053745]), radius=0.00028505591083366315, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 41, 42, 43, 44, 45, 46, 47]), model=ScalarModel(intercept=0.24221648568928017, linear_terms=array([7.61123169e-06, 1.35871487e-05]), square_terms=array([[2.37686475e-09, 4.53613218e-08],
+ [4.53613218e-08, 6.64587957e-06]]), scale=0.00028505591083366315, shift=array([5.33555459, 0.17053745])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=48, candidate_x=array([5.33534308, 0.17034634]), index=47, x=array([5.33555459, 0.17053745]), fval=0.24220041894287114, rho=-3.283522683589635, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 41, 42, 43, 44, 45, 46, 47]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33555459, 0.17053745]), radius=0.00014252795541683157, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 41, 43, 44, 45, 46, 47, 48]), model=ScalarModel(intercept=0.2422186103167294, linear_terms=array([-1.17163675e-06, 6.22141261e-06]), square_terms=array([[7.43556893e-10, 1.99248388e-08],
+ [1.99248388e-08, 1.65585538e-06]]), scale=0.00014252795541683157, shift=array([5.33555459, 0.17053745])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=49, candidate_x=array([5.33559928, 0.17040211]), index=47, x=array([5.33555459, 0.17053745]), fval=0.24220041894287114, rho=-5.589036142419969, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 41, 43, 44, 45, 46, 47, 48]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33555459, 0.17053745]), radius=7.126397770841579e-05, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([41, 45, 46, 47, 48, 49]), model=ScalarModel(intercept=0.2422175625561015, linear_terms=array([-1.08529643e-06, -2.15586658e-06]), square_terms=array([[2.13416381e-10, 6.09539586e-09],
+ [6.09539586e-09, 4.20627375e-07]]), scale=7.126397770841579e-05, shift=array([5.33555459, 0.17053745])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=50, candidate_x=array([5.33558034, 0.1706039 ]), index=50, x=array([5.33558034, 0.1706039 ]), fval=0.2421984742592525, rho=0.8769913650774368, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([41, 45, 46, 47, 48, 49]), old_indices_discarded=array([], dtype=int64), step_length=7.126397770841627e-05, relative_step_length=1.0000000000000069, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33558034, 0.1706039 ]), radius=0.00014252795541683157, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([35, 41, 44, 45, 46, 47, 48, 49, 50]), model=ScalarModel(intercept=0.24222108854190627, linear_terms=array([2.91505429e-06, 2.31914584e-06]), square_terms=array([[6.76506500e-10, 1.48024983e-08],
+ [1.48024983e-08, 1.66662830e-06]]), scale=0.00014252795541683157, shift=array([5.33558034, 0.1706039 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=51, candidate_x=array([5.33545409, 0.17053748]), index=50, x=array([5.33558034, 0.1706039 ]), fval=0.2421984742592525, rho=-0.1962253015731078, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 41, 44, 45, 46, 47, 48, 49, 50]), old_indices_discarded=array([43]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33558034, 0.1706039 ]), radius=7.126397770841579e-05, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([41, 45, 46, 47, 48, 49, 50, 51]), model=ScalarModel(intercept=0.2422098774430771, linear_terms=array([-1.71847573e-06, -1.85797440e-06]), square_terms=array([[2.17594755e-10, 6.01691056e-09],
+ [6.01691056e-09, 4.20747740e-07]]), scale=7.126397770841579e-05, shift=array([5.33558034, 0.1706039 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=52, candidate_x=array([5.33563314, 0.17065221]), index=50, x=array([5.33558034, 0.1706039 ]), fval=0.2421984742592525, rho=-0.7054787268641671, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([41, 45, 46, 47, 48, 49, 50, 51]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33558034, 0.1706039 ]), radius=3.563198885420789e-05, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([45, 47, 50, 51, 52]), model=ScalarModel(intercept=0.24219982346462499, linear_terms=array([-2.48089008e-07, 6.03400460e-07]), square_terms=array([[3.67208696e-11, 7.72936282e-10],
+ [7.72936282e-10, 1.04547223e-07]]), scale=3.563198885420789e-05, shift=array([5.33558034, 0.1706039 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=53, candidate_x=array([5.3355965 , 0.17057214]), index=50, x=array([5.33558034, 0.1706039 ]), fval=0.2421984742592525, rho=-1.0528351576259545, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([45, 47, 50, 51, 52]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33558034, 0.1706039 ]), radius=1.7815994427103947e-05, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([45, 47, 50, 52, 53]), model=ScalarModel(intercept=0.24219994234056103, linear_terms=array([-3.77226186e-07, 2.60098977e-07]), square_terms=array([[9.65464377e-12, 1.64344963e-10],
+ [1.64344963e-10, 2.60967257e-08]]), scale=1.7815994427103947e-05, shift=array([5.33558034, 0.1706039 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=54, candidate_x=array([5.33559545, 0.17059406]), index=50, x=array([5.33558034, 0.1706039 ]), fval=0.2421984742592525, rho=-0.16779295077987869, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([45, 47, 50, 52, 53]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33558034, 0.1706039 ]), radius=8.907997213551973e-06, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([50, 53, 54]), model=ScalarModel(intercept=0.2421984742592526, linear_terms=array([-9.96134608e-08, -2.19237776e-07]), square_terms=array([[3.52007307e-12, 5.01984429e-11],
+ [5.01984429e-11, 6.41022815e-09]]), scale=8.907997213551973e-06, shift=array([5.33558034, 0.1706039 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=55, candidate_x=array([5.33558391, 0.17061206]), index=50, x=array([5.33558034, 0.1706039 ]), fval=0.2421984742592525, rho=-0.8865365759330065, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([50, 53, 54]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.33558034, 0.1706039 ]), radius=4.453998606775987e-06, bounds=Bounds(lower=array([1.1 , 0.01]), upper=array([20. , 0.99]))), model_indices=array([50, 54, 55]), model=ScalarModel(intercept=0.24219847425925245, linear_terms=array([7.44562175e-08, 8.11094797e-08]), square_terms=array([[7.34577640e-13, 2.02182033e-11],
+ [2.02182033e-11, 1.62644037e-09]]), scale=4.453998606775987e-06, shift=array([5.33558034, 0.1706039 ])), vector_model=VectorModel(intercepts=array([ 0.04097158, 0.08958026, 0.08816431, 0.11232637, 0.12576489,
+ 0.13980983, 0.15782978, 0.17549271, 0.09352102, 0.15057374,
+ -0.17875787, -0.21072965, -0.08571349, -0.06417308, -0.05746845,
+ -0.05903034, -0.05317732]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5837945053873421, shift=array([5.83794505, 0.17769839])), candidate_index=56, candidate_x=array([5.33557737, 0.17060058]), index=56, x=array([5.33557737, 0.17060058]), fval=0.2421983863534466, rho=0.8018411091024058, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([50, 54, 55]), old_indices_discarded=array([], dtype=int64), step_length=4.453998606601968e-06, relative_step_length=0.9999999999609298, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 57 entries., 'history': {'params': [{'CRRA': 5.837945053873421, 'WealthShare': 0.17769838670536425}, {'CRRA': 5.521836423832173, 'WealthShare': 0.01}, {'CRRA': 6.355319463479058, 'WealthShare': 0.01}, {'CRRA': 5.320570644267783, 'WealthShare': 0.01}, {'CRRA': 6.288942410133527, 'WealthShare': 0.6950727963110019}, {'CRRA': 6.355319463479058, 'WealthShare': 0.34434498212577297}, {'CRRA': 6.227220953739785, 'WealthShare': 0.01}, {'CRRA': 5.320570644267783, 'WealthShare': 0.01}, {'CRRA': 5.871508721893411, 'WealthShare': 0.6950727963110019}, {'CRRA': 6.355319463479058, 'WealthShare': 0.6700100023631337}, {'CRRA': 5.428342638379923, 'WealthShare': 0.6950727963110019}, {'CRRA': 5.320570644267783, 'WealthShare': 0.39643867888963663}, {'CRRA': 5.320570644267783, 'WealthShare': 0.6950727963110019}, {'CRRA': 6.129876895883085, 'WealthShare': 0.14106398655854144}, {'CRRA': 5.5792578490706015, 'WealthShare': 0.1204690698151589}, {'CRRA': 5.696390372221354, 'WealthShare': 0.1330305333078522}, {'CRRA': 5.764661943417508, 'WealthShare': 0.16014227844012982}, {'CRRA': 5.618872311285, 'WealthShare': 0.1672901244784106}, {'CRRA': 5.360185106482181, 'WealthShare': 0.15621623896813125}, {'CRRA': 5.4728571815195926, 'WealthShare': 0.16421014778193593}, {'CRRA': 5.545825951300451, 'WealthShare': 0.16306458747685207}, {'CRRA': 5.582398435175709, 'WealthShare': 0.1685319632864777}, {'CRRA': 5.509355844762908, 'WealthShare': 0.16418872811097143}, {'CRRA': 5.545831963262839, 'WealthShare': 0.1638629137313917}, {'CRRA': 5.564154615154598, 'WealthShare': 0.16862293277010182}, {'CRRA': 5.527673129514142, 'WealthShare': 0.16928670293386877}, {'CRRA': 5.454701789923809, 'WealthShare': 0.16996692667547664}, {'CRRA': 5.308764908353464, 'WealthShare': 0.17181847436097414}, {'CRRA': 5.0970292962882615, 'WealthShare': 0.1601742594497508}, {'CRRA': 5.454606416226443, 'WealthShare': 0.16345692042672777}, {'CRRA': 5.381637011093981, 'WealthShare': 0.1642816207639356}, {'CRRA': 5.272807055506822, 'WealthShare': 0.16562610692660415}, {'CRRA': 5.326977544603738, 'WealthShare': 0.17075638690650644}, {'CRRA': 5.290536727275727, 'WealthShare': 0.1654939898644262}, {'CRRA': 5.34522111280142, 'WealthShare': 0.17069763426574053}, {'CRRA': 5.336100860393708, 'WealthShare': 0.17086100179753094}, {'CRRA': 5.354343627621392, 'WealthShare': 0.1706887162046996}, {'CRRA': 5.345222085332012, 'WealthShare': 0.17075761374684867}, {'CRRA': 5.331561427746527, 'WealthShare': 0.1728165644941382}, {'CRRA': 5.333816121531683, 'WealthShare': 0.17032107739522934}, {'CRRA': 5.337237317831098, 'WealthShare': 0.17035022974547837}, {'CRRA': 5.335530348688637, 'WealthShare': 0.17082137941624043}, {'CRRA': 5.336665303591373, 'WealthShare': 0.17028845981607194}, {'CRRA': 5.334960873512694, 'WealthShare': 0.17089262349762813}, {'CRRA': 5.335767080396652, 'WealthShare': 0.170983623728545}, {'CRRA': 5.3355388649474635, 'WealthShare': 0.1706791061179343}, {'CRRA': 5.335333663634032, 'WealthShare': 0.17047473426234255}, {'CRRA': 5.335554589018792, 'WealthShare': 0.17053744817902458}, {'CRRA': 5.335343081312356, 'WealthShare': 0.17034634254745087}, {'CRRA': 5.33559928332507, 'WealthShare': 0.17040210920806037}, {'CRRA': 5.335580340581636, 'WealthShare': 0.1706038967420634}, {'CRRA': 5.335454088688302, 'WealthShare': 0.17053748476047093}, {'CRRA': 5.335633144546121, 'WealthShare': 0.17065220536865475}, {'CRRA': 5.335596501563392, 'WealthShare': 0.170572140462395}, {'CRRA': 5.335595445166626, 'WealthShare': 0.1705940558344041}, {'CRRA': 5.335583910614445, 'WealthShare': 0.17061205807039284}, {'CRRA': 5.335577372664163, 'WealthShare': 0.1706005756625005}], 'criterion': [0.2500249942408325, 1.1791007356386276, 0.9197651867022865, 1.2595025990222253, 33.4909498055013, 1.4882139243569137, 0.9530633832431904, 1.2595025990222253, 36.978934548688066, 26.44344185974536, 41.385698106382975, 3.0981667931180743, 42.608449629101216, 0.2728700599071999, 0.3342173205988753, 0.29198968043547885, 0.2481648865140715, 0.24373445213195505, 0.25114503099349234, 0.24406213167656582, 0.24489531582637777, 0.24315780951732555, 0.24426227832547462, 0.24453862473009094, 0.24306497226632034, 0.24285876672075696, 0.24259437399648875, 0.24243354455545987, 0.25079678704331854, 0.24441635199641626, 0.24414569958048554, 0.2439788766246561, 0.24225547458407035, 0.24394629290622924, 0.24227514910123488, 0.24223921155653808, 0.24227947343936865, 0.24227295597179582, 0.24250574148919085, 0.24223949661361607, 0.24225288167948408, 0.2422306308030337, 0.2422548267052162, 0.24224813492764274, 0.24225797040581512, 0.242202396887387, 0.24220875273143883, 0.2422004189428712, 0.24224389187159454, 0.24223135088965633, 0.2421984742592525, 0.24219915623837365, 0.24220019073252083, 0.24219911551794257, 0.2421985513731777, 0.24219868532057515, 0.24219838635344662], 'runtime': [0.0, 1.296167903999958, 1.3449491520000265, 1.3858779940001114, 1.4279043609999462, 1.4686698719997366, 1.514770218999729, 1.5592568910001319, 1.6084964980000223, 1.6590743809997548, 1.7047839209999438, 1.761857082000006, 1.8163866790000611, 3.181013745999735, 4.325823927999863, 5.600623542999983, 6.755316591999872, 7.917994205000014, 9.077396046000104, 10.294875745999889, 11.503319416000068, 12.720127907000006, 14.032752316999904, 15.207649181999841, 16.429454532999898, 17.670099559999926, 18.8472972149998, 20.135531741999785, 21.277609068999936, 22.423084480999933, 23.553762927999742, 24.684132019000117, 25.817971458000102, 26.998730913000145, 28.1869263640001, 29.34812033800017, 30.50678410599994, 31.65761656199993, 32.799299537000024, 33.94402660300011, 35.26958909099994, 36.47545633799973, 37.66156821799996, 38.83101894899983, 39.99145682000017, 41.17240058000016, 42.34739114900003, 43.51756579399989, 44.678886351000074, 45.83479911199993, 46.989458055999876, 48.12758910999992, 49.42098368999996, 50.618441345000065, 51.84377754599973, 52.98982088799994, 54.21043696800007], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]}, 'multistart_info': {...}}], 'exploration_sample': array([[ 5.35399092, 0.17103024],
+ [ 7.00625 , 0.19375 ],
+ [12.9125 , 0.1325 ],
+ [ 4.64375 , 0.31625 ],
+ [ 8.1875 , 0.3775 ],
+ [15.275 , 0.255 ],
+ [17.046875 , 0.224375 ],
+ [11.73125 , 0.43875 ],
+ [18.81875 , 0.07125 ],
+ [10.55 , 0.5 ],
+ [ 9.36875 , 0.56125 ],
+ [16.45625 , 0.68375 ],
+ [ 2.871875 , 0.469375 ],
+ [ 7.596875 , 0.714375 ],
+ [14.09375 , 0.80625 ],
+ [ 3.4625 , 0.6225 ],
+ [17.6375 , 0.8675 ],
+ [ 5.825 , 0.745 ],
+ [12.321875 , 0.959375 ],
+ [ 2.28125 , 0.92875 ]]), 'exploration_results': array([2.42227546e-01, 3.27384376e-01, 1.14034055e+00, 1.50312179e+00,
+ 1.79325436e+00, 2.08879824e+00, 2.54067782e+00, 2.64114350e+00,
+ 2.73814230e+00, 3.83228381e+00, 6.46248546e+00, 9.30118040e+00,
+ 1.59966394e+01, 3.03715662e+01, 3.38771067e+01, 4.26926083e+01,
+ 5.84656546e+01, 5.90505617e+01, 5.22500282e+02, 9.01924413e+02])}}"
diff --git a/content/tables/min/IndShockSub(Labor)Market_estimate_results.csv b/content/tables/min/IndShockSub(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..4178f42
--- /dev/null
+++ b/content/tables/min/IndShockSub(Labor)Market_estimate_results.csv
@@ -0,0 +1,3432 @@
+CRRA,7.130704194162657
+DiscFac,1.1
+time_to_estimate,125.13451099395752
+params,"{'CRRA': 7.130704194162657, 'DiscFac': 1.1}"
+criterion,328.6857256480938
+start_criterion,326.59347458169844
+start_params,"{'CRRA': 7.130705399496962, 'DiscFac': 1.1}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,Absolute criterion change smaller than tolerance.
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 7.1307053994969625, 'DiscFac': 1.1}, {'CRRA': 6.510767198704628, 'DiscFac': 0.5}, {'CRRA': 7.76264771174752, 'DiscFac': 0.667509824412047}, {'CRRA': 6.498763087246405, 'DiscFac': 0.7646705193953846}, {'CRRA': 7.7572821825655724, 'DiscFac': 1.1}, {'CRRA': 7.76264771174752, 'DiscFac': 0.5136853258814519}, {'CRRA': 7.273282253690742, 'DiscFac': 0.5}, {'CRRA': 6.563689963434692, 'DiscFac': 1.1}, {'CRRA': 7.76264771174752, 'DiscFac': 0.8576010401343696}, {'CRRA': 7.541774270837221, 'DiscFac': 1.1}, {'CRRA': 6.498763087246405, 'DiscFac': 0.9393508821937643}, {'CRRA': 6.8257661935251335, 'DiscFac': 0.5}, {'CRRA': 6.975591610867178, 'DiscFac': 1.1}, {'CRRA': 7.76264771174752, 'DiscFac': 1.1}, {'CRRA': 7.446676555622242, 'DiscFac': 1.1}, {'CRRA': 7.288690977559602, 'DiscFac': 1.1}, {'CRRA': 7.1307053994969625, 'DiscFac': 1.0210072109686805}, {'CRRA': 7.091209004981303, 'DiscFac': 1.1}, {'CRRA': 7.150453596754792, 'DiscFac': 1.1}, {'CRRA': 7.1307053994969625, 'DiscFac': 1.0901259013710851}, {'CRRA': 7.125768350182505, 'DiscFac': 1.1}, {'CRRA': 7.133173924154192, 'DiscFac': 1.1}, {'CRRA': 7.1307053994969625, 'DiscFac': 1.0987657376713857}, {'CRRA': 7.130088268332655, 'DiscFac': 1.1}, {'CRRA': 7.1310139650791164, 'DiscFac': 1.1}, {'CRRA': 7.1307054098923786, 'DiscFac': 1.0998457172089233}, {'CRRA': 7.130628258101424, 'DiscFac': 1.1}, {'CRRA': 7.1307439701947315, 'DiscFac': 1.1}, {'CRRA': 7.130705399615011, 'DiscFac': 1.0999807146511156}, {'CRRA': 7.13069575682252, 'DiscFac': 1.1}, {'CRRA': 7.1307102208341835, 'DiscFac': 1.1}, {'CRRA': 7.130705399497495, 'DiscFac': 1.0999975893313896}, {'CRRA': 7.130704194162657, 'DiscFac': 1.1}], 'criterion': [328.68572765353184, 1206.2706415190628, 1148.075585346323, 1156.4087165998333, 331.973305021638, 1171.8842022006597, 1185.2077132955035, 331.393555989452, 1079.6701064572155, 330.3765261616103, 1034.509095781267, 1196.921365706314, 328.7368186327918, 332.02270492207424, 329.8967246379625, 329.18440465332003, 637.2317168949542, 328.7279849397648, 328.7538868285242, 336.2720412596524, 328.71228088422583, 328.69313869584244, 329.0616996890574, 328.68663665216843, 328.68620013808686, 328.722382669286, 328.6858270336297, 328.68579184091817, 328.69048423225576, 328.685735803517, 328.6857356755372, 328.6861565104462, 328.6857256480938], 'runtime': [0.0, 1.8174836779999168, 1.8582274160000907, 1.8944267730000774, 1.9308879210000214, 1.9681783720000112, 2.0083805479998773, 2.047968998999977, 2.087882699999909, 2.1254185349998806, 2.164312073000019, 2.2041665560000183, 2.2673407219999717, 4.470447659000001, 6.200013716000058, 7.911075711999956, 9.640005885999926, 11.525267746000054, 13.279075794999926, 15.050836525000022, 16.736254687999917, 18.404302440000038, 20.087218322999888, 21.787123633999954, 23.55556847799994, 25.282935239999915, 26.979193439000028, 28.675701849999996, 30.349664291999943, 32.026717970999925, 33.69924636699989, 35.48895722299994, 37.13772394700004], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]}"
+convergence_report,
+multistart_info,"{'start_parameters': [{'CRRA': 7.1307053994969625, 'DiscFac': 1.1}, {'CRRA': 8.65116292089478, 'DiscFac': 1.0945082521472478}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 6.101e-09** 6.101e-09**
+relative_params_change 1.69e-07* 1.69e-07*
+absolute_criterion_change 2.005e-06* 2.005e-06*
+absolute_params_change 1.205e-06* 1.205e-06*
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.), Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 1.804e-06* 0.01593
+relative_params_change 0.0001065 0.1347
+absolute_criterion_change 0.000593 5.236
+absolute_params_change 0.0007487 0.9471
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.)], 'exploration_sample': [{'CRRA': 7.130705399496962, 'DiscFac': 1.1}, {'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 17.6375, 'DiscFac': 1.0250000000000001}, {'CRRA': 14.093749999999998, 'DiscFac': 0.9875}, {'CRRA': 16.45625, 'DiscFac': 0.9125000000000001}, {'CRRA': 2.28125, 'DiscFac': 1.0625}, {'CRRA': 18.81875, 'DiscFac': 0.5375}, {'CRRA': 17.046875, 'DiscFac': 0.6312500000000001}, {'CRRA': 15.274999999999999, 'DiscFac': 0.65}, {'CRRA': 7.596874999999999, 'DiscFac': 0.9312500000000001}, {'CRRA': 11.73125, 'DiscFac': 0.7625000000000001}, {'CRRA': 10.549999999999999, 'DiscFac': 0.8}, {'CRRA': 12.9125, 'DiscFac': 0.575}, {'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 9.368749999999999, 'DiscFac': 0.8375}, {'CRRA': 8.1875, 'DiscFac': 0.7250000000000001}, {'CRRA': 7.00625, 'DiscFac': 0.6125}, {'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 2.871875, 'DiscFac': 0.78125}], 'exploration_results': array([ 328.68572765, 420.32021458, 528.04271383, 663.30843919,
+ 755.01356649, 860.62318106, 905.15922637, 916.6930808 ,
+ 958.0124336 , 1004.84993533, 1006.66630029, 1027.0399295 ,
+ 1032.30721934, 1038.25662345, 1043.08294325, 1119.86544023,
+ 1173.59414907, 1217.73888335, 1230.5461544 , 1263.48004797])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.7130705399496963, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=328.68572765353184, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=0, candidate_x=array([7.1307054, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.7130705399496963, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=684.6285593668615, linear_terms=array([ -22.9819671 , -547.66412791]), square_terms=array([[ 0.6439968 , 16.18455499],
+ [ 16.18455499, 423.45480142]]), scale=array([0.63194231, 0.3 ]), shift=array([7.1307054, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=13, candidate_x=array([7.76264771, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.5153303589217099, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.35653526997484813, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 7, 9, 10, 11, 12, 13]), model=ScalarModel(intercept=430.1275837731621, linear_terms=array([ -32.41979258, -147.64037513]), square_terms=array([[ 4.91529106, 23.07088099],
+ [ 23.07088099, 109.76970458]]), scale=array([0.31597116, 0.15798558]), shift=array([7.1307054 , 0.94201442])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=14, candidate_x=array([7.44667656, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.17572924528129888, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 7, 9, 10, 11, 12, 13]), old_indices_discarded=array([1, 2, 3, 5, 8]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.17826763498742407, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 7, 9, 10, 12, 13, 14]), model=ScalarModel(intercept=373.9288270957216, linear_terms=array([-11.86946609, -53.28346797]), square_terms=array([[ 1.46182094, 6.88656047],
+ [ 6.88656047, 32.81336042]]), scale=array([0.15798558, 0.07899279]), shift=array([7.1307054 , 1.02100721])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=15, candidate_x=array([7.28869098, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.11728070749441931, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 7, 9, 10, 12, 13, 14]), old_indices_discarded=array([ 1, 2, 3, 5, 8, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.08913381749371203, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 9, 12, 14, 15]), model=ScalarModel(intercept=82.18005561986612, linear_terms=array([4.37309415e-02, 1.64360111e+02]), square_terms=array([[9.69642782e-02, 4.37309415e-02],
+ [4.37309415e-02, 1.64360111e+02]]), scale=array([0.07899279, 0.03949639]), shift=array([7.1307054 , 1.06050361])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=16, candidate_x=array([7.1307054 , 1.02100721]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.9386279521050687, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 9, 12, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.04456690874685602, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16]), model=ScalarModel(intercept=351.29343542327797, linear_terms=array([ 1.03610956, -40.75215842]), square_terms=array([[ 2.66252145e-02, -9.79726420e-01],
+ [-9.79726420e-01, 3.63737347e+01]]), scale=array([0.03949639, 0.0197482 ]), shift=array([7.1307054, 1.0802518])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=17, candidate_x=array([7.091209, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.9811182562540376, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.02228345437342801, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17]), model=ScalarModel(intercept=335.45431480648267, linear_terms=array([ 0.23079179, -11.31139594]), square_terms=array([[ 6.66914167e-03, -2.45251292e-01],
+ [-2.45251292e-01, 9.08561757e+00]]), scale=array([0.0197482, 0.0098741]), shift=array([7.1307054, 1.0901259])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=18, candidate_x=array([7.1504536, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-6.126705629830687, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.011141727186714004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 18]), model=ScalarModel(intercept=82.17991947367543, linear_terms=array([2.05037269e-03, 1.64359839e+02]), square_terms=array([[1.67645145e-03, 2.05037269e-03],
+ [2.05037269e-03, 1.64359839e+02]]), scale=array([0.0098741 , 0.00493705]), shift=array([7.1307054 , 1.09506295])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=19, candidate_x=array([7.1307054, 1.0901259]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.02307836772872069, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.005570863593357002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 18, 19]), model=ScalarModel(intercept=329.4218198142641, linear_terms=array([ 0.0341575 , -1.12292091]), square_terms=array([[ 4.25689746e-04, -1.79690890e-02],
+ [-1.79690890e-02, 7.73657494e-01]]), scale=array([0.00493705, 0.00246852]), shift=array([7.1307054 , 1.09753148])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=20, candidate_x=array([7.12576835, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-1.6621148239306327, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.002785431796678501, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 19, 20]), model=ScalarModel(intercept=328.95706654716514, linear_terms=array([-0.0087333 , -0.36804608]), square_terms=array([[ 1.04746291e-04, -4.43856766e-03],
+ [-4.43856766e-03, 1.93414373e-01]]), scale=array([0.00246852, 0.00123426]), shift=array([7.1307054 , 1.09876574])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=21, candidate_x=array([7.13317392, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.5648877335859794, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.0013927158983392505, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 20, 21]), model=ScalarModel(intercept=82.17363166997947, linear_terms=array([-1.82653515e-03, 1.64347263e+02]), square_terms=array([[ 2.60901900e-05, -1.82653515e-03],
+ [-1.82653515e-03, 1.64347263e+02]]), scale=array([0.00123426, 0.00061713]), shift=array([7.1307054 , 1.09938287])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=22, candidate_x=array([7.1307054 , 1.09876574]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.0011438341834382178, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.0006963579491696253, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 21, 22]), model=ScalarModel(intercept=328.7606960199903, linear_terms=array([ 0.00212365, -0.08130991]), square_terms=array([[ 6.50959970e-06, -2.83906053e-04],
+ [-2.83906053e-04, 1.26830949e-02]]), scale=array([0.00061713, 0.00030857]), shift=array([7.1307054 , 1.09969143])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=23, candidate_x=array([7.13008827, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.4949661202782044, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.00034817897458481263, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 22, 23]), model=ScalarModel(intercept=328.72162644989186, linear_terms=array([-0.0003794 , -0.03748418]), square_terms=array([[ 1.74425143e-06, -7.33599165e-05],
+ [-7.33599165e-05, 3.17077374e-03]]), scale=array([0.00030857, 0.00015428]), shift=array([7.1307054 , 1.09984572])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=24, candidate_x=array([7.13101397, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-1.0455905987879714, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.00017408948729240632, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 23, 24]), model=ScalarModel(intercept=82.17153095327862, linear_terms=array([-4.71627572e-05, 1.64343062e+02]), square_terms=array([[ 4.35279396e-07, -4.71627572e-05],
+ [-4.71627572e-05, 1.64343062e+02]]), scale=array([1.54282791e-04, 7.71413955e-05]), shift=array([7.1307054 , 1.09992286])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=25, candidate_x=array([7.13070541, 1.09984572]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.00011151981510175064, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=8.704474364620316e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 24, 25]), model=ScalarModel(intercept=328.69458979956903, linear_terms=array([ 0.00012252, -0.00896268]), square_terms=array([[ 1.08524278e-07, -4.61317406e-06],
+ [-4.61317406e-06, 2.01068872e-04]]), scale=array([7.71413955e-05, 3.85706978e-05]), shift=array([7.1307054 , 1.09996143])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=26, candidate_x=array([7.13062826, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.8432774106898498, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=4.352237182310158e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 25, 26]), model=ScalarModel(intercept=328.6901335966009, linear_terms=array([-4.85159641e-05, -4.43107668e-03]), square_terms=array([[ 2.68136204e-08, -1.14727110e-06],
+ [-1.14727110e-06, 5.02672183e-05]]), scale=array([3.85706978e-05, 1.92853489e-05]), shift=array([7.1307054 , 1.09998071])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=27, candidate_x=array([7.13074397, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-1.2928017748452014, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=2.176118591155079e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 26, 27]), model=ScalarModel(intercept=82.17144411021586, linear_terms=array([-4.28457592e-06, 1.64342888e+02]), square_terms=array([[ 6.71814178e-09, -4.28457592e-06],
+ [-4.28457592e-06, 1.64342888e+02]]), scale=array([1.92853489e-05, 9.64267444e-06]), shift=array([7.1307054 , 1.09999036])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=28, candidate_x=array([7.1307054 , 1.09998071]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-1.4471507636928303e-05, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=1.0880592955775395e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 27, 28]), model=ScalarModel(intercept=328.6869119178632, linear_terms=array([ 1.61165492e-05, -1.18589110e-03]), square_terms=array([[ 1.69027365e-09, -7.30831108e-08],
+ [-7.30831108e-08, 3.25353312e-06]]), scale=array([9.64267444e-06, 4.82133722e-06]), shift=array([7.1307054 , 1.09999518])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=29, candidate_x=array([7.13069576, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.5080208001442879, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=5.440296477887697e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 28, 29]), model=ScalarModel(intercept=328.68631937904274, linear_terms=array([-4.05637097e-06, -5.92132203e-04]), square_terms=array([[ 4.19075878e-10, -1.82023087e-08],
+ [-1.82023087e-08, 8.13383279e-07]]), scale=array([4.82133722e-06, 2.41066861e-06]), shift=array([7.1307054 , 1.09999759])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=30, candidate_x=array([7.13071022, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-1.9688977200541027, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=2.7201482389438487e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 29, 30]), model=ScalarModel(intercept=82.17143320942247, linear_terms=array([-1.54616964e-07, 1.64342866e+02]), square_terms=array([[ 1.04999460e-10, -1.54616964e-07],
+ [-1.54616964e-07, 1.64342866e+02]]), scale=array([2.41066861e-06, 1.20533431e-06]), shift=array([7.1307054 , 1.09999879])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=31, candidate_x=array([7.1307054 , 1.09999759]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-1.3047627916968377e-06, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=1.3600741194719243e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 30, 31]), model=ScalarModel(intercept=328.68583478989285, linear_terms=array([ 2.00660539e-06, -1.07162317e-04]), square_terms=array([[ 2.64108489e-11, -1.15674817e-09],
+ [-1.15674817e-09, 5.19115862e-08]]), scale=array([1.20533431e-06, 6.02667153e-07]), shift=array([7.1307054, 1.0999994])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=32, candidate_x=array([7.13070419, 1.1 ]), index=32, x=array([7.13070419, 1.1 ]), fval=328.6857256480938, rho=1.000001303855134, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=1.2053343052542687e-06, relative_step_length=0.8862269254283461, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 33 entries., 'multistart_info': {'start_parameters': [array([7.1307054, 1.1 ]), array([8.65116292, 1.09450825])], 'local_optima': [{'solution_x': array([7.13070419, 1.1 ]), 'solution_criterion': 328.6857256480938, 'states': [State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.7130705399496963, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=328.68572765353184, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=0, candidate_x=array([7.1307054, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.7130705399496963, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=684.6285593668615, linear_terms=array([ -22.9819671 , -547.66412791]), square_terms=array([[ 0.6439968 , 16.18455499],
+ [ 16.18455499, 423.45480142]]), scale=array([0.63194231, 0.3 ]), shift=array([7.1307054, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=13, candidate_x=array([7.76264771, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.5153303589217099, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.35653526997484813, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 7, 9, 10, 11, 12, 13]), model=ScalarModel(intercept=430.1275837731621, linear_terms=array([ -32.41979258, -147.64037513]), square_terms=array([[ 4.91529106, 23.07088099],
+ [ 23.07088099, 109.76970458]]), scale=array([0.31597116, 0.15798558]), shift=array([7.1307054 , 0.94201442])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=14, candidate_x=array([7.44667656, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.17572924528129888, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 7, 9, 10, 11, 12, 13]), old_indices_discarded=array([1, 2, 3, 5, 8]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.17826763498742407, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 7, 9, 10, 12, 13, 14]), model=ScalarModel(intercept=373.9288270957216, linear_terms=array([-11.86946609, -53.28346797]), square_terms=array([[ 1.46182094, 6.88656047],
+ [ 6.88656047, 32.81336042]]), scale=array([0.15798558, 0.07899279]), shift=array([7.1307054 , 1.02100721])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=15, candidate_x=array([7.28869098, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.11728070749441931, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 7, 9, 10, 12, 13, 14]), old_indices_discarded=array([ 1, 2, 3, 5, 8, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.08913381749371203, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 9, 12, 14, 15]), model=ScalarModel(intercept=82.18005561986612, linear_terms=array([4.37309415e-02, 1.64360111e+02]), square_terms=array([[9.69642782e-02, 4.37309415e-02],
+ [4.37309415e-02, 1.64360111e+02]]), scale=array([0.07899279, 0.03949639]), shift=array([7.1307054 , 1.06050361])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=16, candidate_x=array([7.1307054 , 1.02100721]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.9386279521050687, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 9, 12, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.04456690874685602, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16]), model=ScalarModel(intercept=351.29343542327797, linear_terms=array([ 1.03610956, -40.75215842]), square_terms=array([[ 2.66252145e-02, -9.79726420e-01],
+ [-9.79726420e-01, 3.63737347e+01]]), scale=array([0.03949639, 0.0197482 ]), shift=array([7.1307054, 1.0802518])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=17, candidate_x=array([7.091209, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.9811182562540376, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.02228345437342801, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17]), model=ScalarModel(intercept=335.45431480648267, linear_terms=array([ 0.23079179, -11.31139594]), square_terms=array([[ 6.66914167e-03, -2.45251292e-01],
+ [-2.45251292e-01, 9.08561757e+00]]), scale=array([0.0197482, 0.0098741]), shift=array([7.1307054, 1.0901259])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=18, candidate_x=array([7.1504536, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-6.126705629830687, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.011141727186714004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 18]), model=ScalarModel(intercept=82.17991947367543, linear_terms=array([2.05037269e-03, 1.64359839e+02]), square_terms=array([[1.67645145e-03, 2.05037269e-03],
+ [2.05037269e-03, 1.64359839e+02]]), scale=array([0.0098741 , 0.00493705]), shift=array([7.1307054 , 1.09506295])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=19, candidate_x=array([7.1307054, 1.0901259]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.02307836772872069, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.005570863593357002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 18, 19]), model=ScalarModel(intercept=329.4218198142641, linear_terms=array([ 0.0341575 , -1.12292091]), square_terms=array([[ 4.25689746e-04, -1.79690890e-02],
+ [-1.79690890e-02, 7.73657494e-01]]), scale=array([0.00493705, 0.00246852]), shift=array([7.1307054 , 1.09753148])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=20, candidate_x=array([7.12576835, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-1.6621148239306327, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.002785431796678501, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 19, 20]), model=ScalarModel(intercept=328.95706654716514, linear_terms=array([-0.0087333 , -0.36804608]), square_terms=array([[ 1.04746291e-04, -4.43856766e-03],
+ [-4.43856766e-03, 1.93414373e-01]]), scale=array([0.00246852, 0.00123426]), shift=array([7.1307054 , 1.09876574])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=21, candidate_x=array([7.13317392, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.5648877335859794, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.0013927158983392505, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 20, 21]), model=ScalarModel(intercept=82.17363166997947, linear_terms=array([-1.82653515e-03, 1.64347263e+02]), square_terms=array([[ 2.60901900e-05, -1.82653515e-03],
+ [-1.82653515e-03, 1.64347263e+02]]), scale=array([0.00123426, 0.00061713]), shift=array([7.1307054 , 1.09938287])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=22, candidate_x=array([7.1307054 , 1.09876574]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.0011438341834382178, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.0006963579491696253, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 21, 22]), model=ScalarModel(intercept=328.7606960199903, linear_terms=array([ 0.00212365, -0.08130991]), square_terms=array([[ 6.50959970e-06, -2.83906053e-04],
+ [-2.83906053e-04, 1.26830949e-02]]), scale=array([0.00061713, 0.00030857]), shift=array([7.1307054 , 1.09969143])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=23, candidate_x=array([7.13008827, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.4949661202782044, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.00034817897458481263, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 22, 23]), model=ScalarModel(intercept=328.72162644989186, linear_terms=array([-0.0003794 , -0.03748418]), square_terms=array([[ 1.74425143e-06, -7.33599165e-05],
+ [-7.33599165e-05, 3.17077374e-03]]), scale=array([0.00030857, 0.00015428]), shift=array([7.1307054 , 1.09984572])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=24, candidate_x=array([7.13101397, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-1.0455905987879714, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=0.00017408948729240632, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 23, 24]), model=ScalarModel(intercept=82.17153095327862, linear_terms=array([-4.71627572e-05, 1.64343062e+02]), square_terms=array([[ 4.35279396e-07, -4.71627572e-05],
+ [-4.71627572e-05, 1.64343062e+02]]), scale=array([1.54282791e-04, 7.71413955e-05]), shift=array([7.1307054 , 1.09992286])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=25, candidate_x=array([7.13070541, 1.09984572]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.00011151981510175064, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=8.704474364620316e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 24, 25]), model=ScalarModel(intercept=328.69458979956903, linear_terms=array([ 0.00012252, -0.00896268]), square_terms=array([[ 1.08524278e-07, -4.61317406e-06],
+ [-4.61317406e-06, 2.01068872e-04]]), scale=array([7.71413955e-05, 3.85706978e-05]), shift=array([7.1307054 , 1.09996143])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=26, candidate_x=array([7.13062826, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.8432774106898498, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=4.352237182310158e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 25, 26]), model=ScalarModel(intercept=328.6901335966009, linear_terms=array([-4.85159641e-05, -4.43107668e-03]), square_terms=array([[ 2.68136204e-08, -1.14727110e-06],
+ [-1.14727110e-06, 5.02672183e-05]]), scale=array([3.85706978e-05, 1.92853489e-05]), shift=array([7.1307054 , 1.09998071])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=27, candidate_x=array([7.13074397, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-1.2928017748452014, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=2.176118591155079e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 26, 27]), model=ScalarModel(intercept=82.17144411021586, linear_terms=array([-4.28457592e-06, 1.64342888e+02]), square_terms=array([[ 6.71814178e-09, -4.28457592e-06],
+ [-4.28457592e-06, 1.64342888e+02]]), scale=array([1.92853489e-05, 9.64267444e-06]), shift=array([7.1307054 , 1.09999036])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=28, candidate_x=array([7.1307054 , 1.09998071]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-1.4471507636928303e-05, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=1.0880592955775395e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 27, 28]), model=ScalarModel(intercept=328.6869119178632, linear_terms=array([ 1.61165492e-05, -1.18589110e-03]), square_terms=array([[ 1.69027365e-09, -7.30831108e-08],
+ [-7.30831108e-08, 3.25353312e-06]]), scale=array([9.64267444e-06, 4.82133722e-06]), shift=array([7.1307054 , 1.09999518])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=29, candidate_x=array([7.13069576, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-0.5080208001442879, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=5.440296477887697e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 28, 29]), model=ScalarModel(intercept=328.68631937904274, linear_terms=array([-4.05637097e-06, -5.92132203e-04]), square_terms=array([[ 4.19075878e-10, -1.82023087e-08],
+ [-1.82023087e-08, 8.13383279e-07]]), scale=array([4.82133722e-06, 2.41066861e-06]), shift=array([7.1307054 , 1.09999759])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=30, candidate_x=array([7.13071022, 1.1 ]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-1.9688977200541027, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=2.7201482389438487e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 29, 30]), model=ScalarModel(intercept=82.17143320942247, linear_terms=array([-1.54616964e-07, 1.64342866e+02]), square_terms=array([[ 1.04999460e-10, -1.54616964e-07],
+ [-1.54616964e-07, 1.64342866e+02]]), scale=array([2.41066861e-06, 1.20533431e-06]), shift=array([7.1307054 , 1.09999879])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=31, candidate_x=array([7.1307054 , 1.09999759]), index=0, x=array([7.1307054, 1.1 ]), fval=328.68572765353184, rho=-1.3047627916968377e-06, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.1307054, 1.1 ]), radius=1.3600741194719243e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 30, 31]), model=ScalarModel(intercept=328.68583478989285, linear_terms=array([ 2.00660539e-06, -1.07162317e-04]), square_terms=array([[ 2.64108489e-11, -1.15674817e-09],
+ [-1.15674817e-09, 5.19115862e-08]]), scale=array([1.20533431e-06, 6.02667153e-07]), shift=array([7.1307054, 1.0999994])), vector_model=VectorModel(intercepts=array([ 0.18971506, 0.64530636, 0.88631615, 1.6998268 ,
+ 2.52794186, 3.6447253 , 4.19605438, 1.8984428 ,
+ -0.13233767, -2.54017195, -9.17924131, -13.89044349]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7130705399496963, shift=array([7.1307054, 1.1 ])), candidate_index=32, candidate_x=array([7.13070419, 1.1 ]), index=32, x=array([7.13070419, 1.1 ]), fval=328.6857256480938, rho=1.000001303855134, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=1.2053343052542687e-06, relative_step_length=0.8862269254283461, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 33 entries., 'history': {'params': [{'CRRA': 7.1307053994969625, 'DiscFac': 1.1}, {'CRRA': 6.510767198704628, 'DiscFac': 0.5}, {'CRRA': 7.76264771174752, 'DiscFac': 0.667509824412047}, {'CRRA': 6.498763087246405, 'DiscFac': 0.7646705193953846}, {'CRRA': 7.7572821825655724, 'DiscFac': 1.1}, {'CRRA': 7.76264771174752, 'DiscFac': 0.5136853258814519}, {'CRRA': 7.273282253690742, 'DiscFac': 0.5}, {'CRRA': 6.563689963434692, 'DiscFac': 1.1}, {'CRRA': 7.76264771174752, 'DiscFac': 0.8576010401343696}, {'CRRA': 7.541774270837221, 'DiscFac': 1.1}, {'CRRA': 6.498763087246405, 'DiscFac': 0.9393508821937643}, {'CRRA': 6.8257661935251335, 'DiscFac': 0.5}, {'CRRA': 6.975591610867178, 'DiscFac': 1.1}, {'CRRA': 7.76264771174752, 'DiscFac': 1.1}, {'CRRA': 7.446676555622242, 'DiscFac': 1.1}, {'CRRA': 7.288690977559602, 'DiscFac': 1.1}, {'CRRA': 7.1307053994969625, 'DiscFac': 1.0210072109686805}, {'CRRA': 7.091209004981303, 'DiscFac': 1.1}, {'CRRA': 7.150453596754792, 'DiscFac': 1.1}, {'CRRA': 7.1307053994969625, 'DiscFac': 1.0901259013710851}, {'CRRA': 7.125768350182505, 'DiscFac': 1.1}, {'CRRA': 7.133173924154192, 'DiscFac': 1.1}, {'CRRA': 7.1307053994969625, 'DiscFac': 1.0987657376713857}, {'CRRA': 7.130088268332655, 'DiscFac': 1.1}, {'CRRA': 7.1310139650791164, 'DiscFac': 1.1}, {'CRRA': 7.1307054098923786, 'DiscFac': 1.0998457172089233}, {'CRRA': 7.130628258101424, 'DiscFac': 1.1}, {'CRRA': 7.1307439701947315, 'DiscFac': 1.1}, {'CRRA': 7.130705399615011, 'DiscFac': 1.0999807146511156}, {'CRRA': 7.13069575682252, 'DiscFac': 1.1}, {'CRRA': 7.1307102208341835, 'DiscFac': 1.1}, {'CRRA': 7.130705399497495, 'DiscFac': 1.0999975893313896}, {'CRRA': 7.130704194162657, 'DiscFac': 1.1}], 'criterion': [328.68572765353184, 1206.2706415190628, 1148.075585346323, 1156.4087165998333, 331.973305021638, 1171.8842022006597, 1185.2077132955035, 331.393555989452, 1079.6701064572155, 330.3765261616103, 1034.509095781267, 1196.921365706314, 328.7368186327918, 332.02270492207424, 329.8967246379625, 329.18440465332003, 637.2317168949542, 328.7279849397648, 328.7538868285242, 336.2720412596524, 328.71228088422583, 328.69313869584244, 329.0616996890574, 328.68663665216843, 328.68620013808686, 328.722382669286, 328.6858270336297, 328.68579184091817, 328.69048423225576, 328.685735803517, 328.6857356755372, 328.6861565104462, 328.6857256480938], 'runtime': [0.0, 1.8174836779999168, 1.8582274160000907, 1.8944267730000774, 1.9308879210000214, 1.9681783720000112, 2.0083805479998773, 2.047968998999977, 2.087882699999909, 2.1254185349998806, 2.164312073000019, 2.2041665560000183, 2.2673407219999717, 4.470447659000001, 6.200013716000058, 7.911075711999956, 9.640005885999926, 11.525267746000054, 13.279075794999926, 15.050836525000022, 16.736254687999917, 18.404302440000038, 20.087218322999888, 21.787123633999954, 23.55556847799994, 25.282935239999915, 26.979193439000028, 28.675701849999996, 30.349664291999943, 32.026717970999925, 33.69924636699989, 35.48895722299994, 37.13772394700004], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]}, 'multistart_info': {...}}, {'solution_x': array([7.03317885, 1.1 ]), 'solution_criterion': 328.72089942436855, 'states': [State(trustregion=Region(center=array([8.65116292, 1.09450825]), radius=0.865116292089478, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=350.996261346693, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=0, candidate_x=array([8.65116292, 1.09450825]), index=0, x=array([8.65116292, 1.09450825]), fval=350.996261346693, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([8.65116292, 1.09450825]), radius=0.865116292089478, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=693.2245032792785, linear_terms=array([ -47.47225307, -422.8201401 ]), square_terms=array([[ 2.71828739, 25.34686446],
+ [ 25.34686446, 253.33390319]]), scale=array([0.76668935, 0.3 ]), shift=array([8.65116292, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=13, candidate_x=array([9.41785227, 1.1 ]), index=0, x=array([8.65116292, 1.09450825]), fval=350.996261346693, rho=-0.008800229201202457, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([8.65116292, 1.09450825]), radius=0.432558146044739, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 7, 8, 9, 10, 12, 13]), model=ScalarModel(intercept=589.8607919764854, linear_terms=array([ -33.60626935, -278.75739022]), square_terms=array([[ 1.86735575, 16.33334107],
+ [ 16.33334107, 154.90931889]]), scale=array([0.38334468, 0.19441821]), shift=array([8.65116292, 0.90558179])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=14, candidate_x=array([9.0345076, 1.1 ]), index=14, x=array([9.0345076, 1.1 ]), fval=346.42767854398153, rho=0.2295839662391366, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 7, 8, 9, 10, 12, 13]), old_indices_discarded=array([ 1, 2, 3, 5, 11]), step_length=0.3833840108769267, relative_step_length=0.8863178612691615, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.0345076, 1.1 ]), radius=0.865116292089478, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 6, 8, 9, 12, 14]), model=ScalarModel(intercept=631.9025651741308, linear_terms=array([ 98.33281066, -419.77042225]), square_terms=array([[ 16.07819307, -68.66536223],
+ [-68.66536223, 294.28570615]]), scale=array([0.76668935, 0.3 ]), shift=array([9.0345076, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=15, candidate_x=array([8.26781825, 1.1 ]), index=15, x=array([8.26781825, 1.1 ]), fval=337.1356979156533, rho=0.4296203738694711, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 8, 9, 12, 14]), old_indices_discarded=array([ 1, 3, 7, 10, 11, 13]), step_length=0.7666893516975488, relative_step_length=0.8862269254527586, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([8.26781825, 1.1 ]), radius=1.730232584178956, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 4, 5, 6, 7, 8, 9, 15]), model=ScalarModel(intercept=705.6342694831417, linear_terms=array([ -61.30627947, -454.66083041]), square_terms=array([[ 4.10824995, 31.0156482 ],
+ [ 31.0156482 , 283.64709579]]), scale=array([1.5333787, 0.3 ]), shift=array([8.26781825, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=16, candidate_x=array([9.80119695, 1.1 ]), index=15, x=array([8.26781825, 1.1 ]), fval=337.1356979156533, rho=-0.6621094135020358, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 4, 5, 6, 7, 8, 9, 15]), old_indices_discarded=array([ 2, 3, 10, 11, 12, 13, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([8.26781825, 1.1 ]), radius=0.865116292089478, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 4, 6, 7, 12, 14, 15]), model=ScalarModel(intercept=667.0619227892128, linear_terms=array([-138.82460985, -425.84473678]), square_terms=array([[ 26.78795585, 85.02464739],
+ [ 85.02464739, 276.6898722 ]]), scale=array([0.76668935, 0.3 ]), shift=array([8.26781825, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=17, candidate_x=array([9.0345076, 1.1 ]), index=15, x=array([8.26781825, 1.1 ]), fval=337.1356979156533, rho=-0.22996545521150924, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 4, 6, 7, 12, 14, 15]), old_indices_discarded=array([ 2, 5, 8, 9, 10, 11, 13, 16]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([8.26781825, 1.1 ]), radius=0.432558146044739, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 6, 7, 10, 11, 12, 15]), model=ScalarModel(intercept=518.531761813198, linear_terms=array([ -96.35860558, -189.44144632]), square_terms=array([[ 22.75383694, 47.30491434],
+ [ 47.30491434, 100.88841846]]), scale=array([0.38334468, 0.19167234]), shift=array([8.26781825, 0.90832766])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=18, candidate_x=array([8.65116292, 1.1 ]), index=15, x=array([8.26781825, 1.1 ]), fval=337.1356979156533, rho=-0.11892309864629821, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 6, 7, 10, 11, 12, 15]), old_indices_discarded=array([ 2, 4, 5, 8, 9, 13, 14, 16, 17]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([8.26781825, 1.1 ]), radius=0.2162790730223695, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 6, 7, 10, 11, 12, 15, 18]), model=ScalarModel(intercept=438.4724598424913, linear_terms=array([-39.71842359, -73.48998393]), square_terms=array([[ 6.66838716, 13.34996871],
+ [13.34996871, 27.39848794]]), scale=array([0.19167234, 0.09583617]), shift=array([8.26781825, 1.00416383])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=19, candidate_x=array([8.45949058, 1.1 ]), index=15, x=array([8.26781825, 1.1 ]), fval=337.1356979156533, rho=-0.09328886716788783, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 6, 7, 10, 11, 12, 15, 18]), old_indices_discarded=array([ 1, 4, 14, 17]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([8.26781825, 1.1 ]), radius=0.10813953651118476, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 7, 10, 12, 15, 18, 19]), model=ScalarModel(intercept=465.6908146663486, linear_terms=array([ 2.34840297, -198.24386739]), square_terms=array([[ 2.33813772e-02, -1.77226688e+00],
+ [-1.77226688e+00, 1.42140315e+02]]), scale=array([0.09583617, 0.04791808]), shift=array([8.26781825, 1.05208192])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=20, candidate_x=array([8.17198208, 1.1 ]), index=20, x=array([8.17198208, 1.1 ]), fval=336.07568759259027, rho=1.8779678346912752, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 7, 10, 12, 15, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.09583616896219382, relative_step_length=0.8862269254527607, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([8.17198208, 1.1 ]), radius=0.2162790730223695, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 12, 15, 18, 19, 20]), model=ScalarModel(intercept=446.8884033608795, linear_terms=array([-50.69148589, -80.13196328]), square_terms=array([[ 9.83245025, 17.0582945 ],
+ [17.0582945 , 30.87002433]]), scale=array([0.19167234, 0.09583617]), shift=array([8.17198208, 1.00416383])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=21, candidate_x=array([8.36365441, 1.1 ]), index=20, x=array([8.17198208, 1.1 ]), fval=336.07568759259027, rho=-0.07457134280643048, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 12, 15, 18, 19, 20]), old_indices_discarded=array([ 1, 4, 6, 11, 14, 17]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([8.17198208, 1.1 ]), radius=0.10813953651118476, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 7, 10, 12, 15, 18, 19, 20, 21]), model=ScalarModel(intercept=462.90103221621996, linear_terms=array([ 2.82472099, -198.25081024]), square_terms=array([[ 3.29641557e-02, -2.15601871e+00],
+ [-2.15601871e+00, 1.45186265e+02]]), scale=array([0.09583617, 0.04791808]), shift=array([8.17198208, 1.05208192])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=22, candidate_x=array([8.07614591, 1.1 ]), index=22, x=array([8.07614591, 1.1 ]), fval=335.0379978894075, rho=1.5910112912334122, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 7, 10, 12, 15, 18, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.09583616896219382, relative_step_length=0.8862269254527607, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([8.07614591, 1.1 ]), radius=0.2162790730223695, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 12, 15, 19, 20, 21, 22]), model=ScalarModel(intercept=450.0658505748284, linear_terms=array([-88.59696893, -76.20809182]), square_terms=array([[29.52819021, 27.95116491],
+ [27.95116491, 27.65884117]]), scale=array([0.19167234, 0.09583617]), shift=array([8.07614591, 1.00416383])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=23, candidate_x=array([8.26781825, 1.1 ]), index=22, x=array([8.07614591, 1.1 ]), fval=335.0379978894075, rho=-0.045719744886912835, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 12, 15, 19, 20, 21, 22]), old_indices_discarded=array([ 0, 1, 4, 6, 11, 14, 17, 18]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([8.07614591, 1.1 ]), radius=0.10813953651118476, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 7, 10, 12, 15, 19, 20, 21, 22, 23]), model=ScalarModel(intercept=458.8313103700649, linear_terms=array([ 1.51391966, -193.65407848]), square_terms=array([[ 1.30594814e-02, -1.20163564e+00],
+ [-1.20163564e+00, 1.42908571e+02]]), scale=array([0.09583617, 0.04791808]), shift=array([8.07614591, 1.05208192])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=24, candidate_x=array([7.98030974, 1.1 ]), index=24, x=array([7.98030974, 1.1 ]), fval=333.9565001654597, rho=3.537146752181767, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 7, 10, 12, 15, 19, 20, 21, 22, 23]), old_indices_discarded=array([3]), step_length=0.09583616896219382, relative_step_length=0.8862269254527607, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.98030974, 1.1 ]), radius=0.2162790730223695, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 7, 10, 12, 15, 20, 21, 22, 23, 24]), model=ScalarModel(intercept=722.4278442360151, linear_terms=array([ 7.34516855, -678.26881272]), square_terms=array([[ 8.14141338e-02, -6.45484828e+00],
+ [-6.45484828e+00, 5.82624548e+02]]), scale=array([0.19167234, 0.09583617]), shift=array([7.98030974, 1.00416383])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=25, candidate_x=array([7.7886374, 1.1 ]), index=25, x=array([7.7886374, 1.1 ]), fval=332.27529049642715, rho=1.9787942109411345, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 7, 10, 12, 15, 20, 21, 22, 23, 24]), old_indices_discarded=array([ 0, 1, 3, 6, 11, 14, 17, 18, 19]), step_length=0.19167233792438676, relative_step_length=0.8862269254527566, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.7886374, 1.1 ]), radius=0.432558146044739, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 7, 10, 12, 15, 20, 22, 23, 24, 25]), model=ScalarModel(intercept=1691.9509202183522, linear_terms=array([ 46.61506721, -2557.30936158]), square_terms=array([[ 8.28500190e-01, -4.40279990e+01],
+ [-4.40279990e+01, 2.39704782e+03]]), scale=array([0.38334468, 0.19167234]), shift=array([7.7886374 , 0.90832766])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=26, candidate_x=array([7.40529272, 1.1 ]), index=26, x=array([7.40529272, 1.1 ]), fval=329.61834100665794, rho=1.222812647522843, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 7, 10, 12, 15, 20, 22, 23, 24, 25]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 16, 17, 18, 19, 21]), step_length=0.3833446758487744, relative_step_length=0.8862269254527586, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.40529272, 1.1 ]), radius=0.865116292089478, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 11, 12, 15, 22, 24, 25, 26]), model=ScalarModel(intercept=643.567304264121, linear_terms=array([ 10.29942563, -504.83456548]), square_terms=array([[ 2.33922797e-01, -8.85959873e+00],
+ [-8.85959873e+00, 4.11114335e+02]]), scale=array([0.76668935, 0.3 ]), shift=array([7.40529272, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=27, candidate_x=array([6.63860337, 1.1 ]), index=26, x=array([7.40529272, 1.1 ]), fval=329.61834100665794, rho=-0.6853713078207403, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 11, 12, 15, 22, 24, 25, 26]), old_indices_discarded=array([ 0, 1, 2, 4, 5, 6, 8, 9, 10, 13, 14, 16, 17, 18, 19, 20, 21,
+ 23]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.40529272, 1.1 ]), radius=0.432558146044739, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 1, 3, 7, 10, 22, 24, 25, 26, 27]), model=ScalarModel(intercept=459.34754309772336, linear_terms=array([ 54.12204115, -193.49155259]), square_terms=array([[ 10.33456741, -38.99556157],
+ [-38.99556157, 148.70365672]]), scale=array([0.38334468, 0.19167234]), shift=array([7.40529272, 0.90832766])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=28, candidate_x=array([7.02194805, 1.1 ]), index=28, x=array([7.02194805, 1.1 ]), fval=328.72551916138025, rho=0.0896479852836265, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 3, 7, 10, 22, 24, 25, 26, 27]), old_indices_discarded=array([ 0, 2, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21,
+ 23]), step_length=0.3833446758487744, relative_step_length=0.8862269254527586, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.02194805, 1.1 ]), radius=0.2162790730223695, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 1, 3, 7, 10, 24, 25, 26, 27, 28]), model=ScalarModel(intercept=344.68498320341723, linear_terms=array([ 14.50456677, -31.58487069]), square_terms=array([[ 4.74363424, -12.33704645],
+ [-12.33704645, 32.58384172]]), scale=array([0.19167234, 0.09583617]), shift=array([7.02194805, 1.00416383])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=29, candidate_x=array([6.83027571, 1.06077587]), index=28, x=array([7.02194805, 1.1 ]), fval=328.72551916138025, rho=-33.90897314919695, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 3, 7, 10, 24, 25, 26, 27, 28]), old_indices_discarded=array([22]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.02194805, 1.1 ]), radius=0.10813953651118476, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([26, 27, 28, 29]), model=ScalarModel(intercept=472.8555269072373, linear_terms=array([ 6.88520604, -288.69818864]), square_terms=array([[ 1.70714674e-01, -6.98249164e+00],
+ [-6.98249164e+00, 2.89107224e+02]]), scale=array([0.09583617, 0.04791808]), shift=array([7.02194805, 1.05208192])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=30, candidate_x=array([7.07656245, 1.1 ]), index=28, x=array([7.02194805, 1.1 ]), fval=328.72551916138025, rho=-0.1305571607560506, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([26, 27, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.02194805, 1.1 ]), radius=0.05406976825559238, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([28, 29, 30]), model=ScalarModel(intercept=364.8494895641686, linear_terms=array([ 1.67827189, -71.77579257]), square_terms=array([[ 4.10272702e-02, -1.69847688e+00],
+ [-1.69847688e+00, 7.13036443e+01]]), scale=array([0.04791808, 0.02395904]), shift=array([7.02194805, 1.07604096])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=31, candidate_x=array([7.0455466, 1.1 ]), index=28, x=array([7.02194805, 1.1 ]), fval=328.72551916138025, rho=-1.4185831981745718, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([28, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.02194805, 1.1 ]), radius=0.02703488412779619, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([28, 30, 31]), model=ScalarModel(intercept=82.18251293128704, linear_terms=array([-5.29166152e-03, 1.64365026e+02]), square_terms=array([[ 1.02579323e-02, -5.29166152e-03],
+ [-5.29166152e-03, 1.64365026e+02]]), scale=array([0.02395904, 0.01197952]), shift=array([7.02194805, 1.08802048])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=32, candidate_x=array([7.02194805, 1.07604096]), index=28, x=array([7.02194805, 1.1 ]), fval=328.72551916138025, rho=-0.10796958207563324, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([28, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.02194805, 1.1 ]), radius=0.013517442063898094, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([28, 30, 31, 32]), model=ScalarModel(intercept=330.9096992755648, linear_terms=array([ 0.10081694, -4.41045785]), square_terms=array([[ 2.56448307e-03, -1.06108599e-01],
+ [-1.06108599e-01, 4.46162059e+00]]), scale=array([0.01197952, 0.00598976]), shift=array([7.02194805, 1.09401024])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=33, candidate_x=array([7.03392757, 1.1 ]), index=33, x=array([7.03392757, 1.1 ]), fval=328.72149242354726, rho=1.0043192903172269, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([28, 30, 31, 32]), old_indices_discarded=array([], dtype=int64), step_length=0.011979521120274228, relative_step_length=0.8862269254527607, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.03392757, 1.1 ]), radius=0.02703488412779619, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([28, 30, 31, 32, 33]), model=ScalarModel(intercept=337.7586531621453, linear_terms=array([ 0.41964668, -17.95725485]), square_terms=array([[ 1.02541614e-02, -4.24398631e-01],
+ [-4.24398631e-01, 1.78463967e+01]]), scale=array([0.02395904, 0.01197952]), shift=array([7.03392757, 1.08802048])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=34, candidate_x=array([7.04503059, 1.1 ]), index=33, x=array([7.03392757, 1.1 ]), fval=328.72149242354726, rho=-9.385043816977392, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([28, 30, 31, 32, 33]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.03392757, 1.1 ]), radius=0.013517442063898094, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([28, 30, 31, 32, 33, 34]), model=ScalarModel(intercept=331.01200705975515, linear_terms=array([ 0.1037477 , -4.51658506]), square_terms=array([[ 2.56351293e-03, -1.06098671e-01],
+ [-1.06098671e-01, 4.46163671e+00]]), scale=array([0.01197952, 0.00598976]), shift=array([7.03392757, 1.09401024])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=35, candidate_x=array([7.04491387, 1.1 ]), index=33, x=array([7.03392757, 1.1 ]), fval=328.72149242354726, rho=-9.42723543721136, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([28, 30, 31, 32, 33, 34]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.03392757, 1.1 ]), radius=0.006758721031949047, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([28, 31, 32, 33, 34, 35]), model=ScalarModel(intercept=329.31215250046296, linear_terms=array([ 0.028537 , -1.14367376]), square_terms=array([[ 6.39508336e-04, -2.64406249e-02],
+ [-2.64406249e-02, 1.11536573e+00]]), scale=array([0.00598976, 0.00299488]), shift=array([7.03392757, 1.09700512])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=36, candidate_x=array([7.02793781, 1.1 ]), index=33, x=array([7.03392757, 1.1 ]), fval=328.72149242354726, rho=-2.5950143062266875, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([28, 31, 32, 33, 34, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.03392757, 1.1 ]), radius=0.0033793605159745236, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([28, 31, 33, 34, 35, 36]), model=ScalarModel(intercept=82.18163067635267, linear_terms=array([4.81215646e-04, 1.64363261e+02]), square_terms=array([[1.59935293e-04, 4.81215646e-04],
+ [4.81215646e-04, 1.64363261e+02]]), scale=array([0.00299488, 0.00149744]), shift=array([7.03392757, 1.09850256])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=37, candidate_x=array([7.03392551, 1.09700512]), index=33, x=array([7.03392757, 1.1 ]), fval=328.72149242354726, rho=-0.0019149094965577828, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([28, 31, 33, 34, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.03392757, 1.1 ]), radius=0.0016896802579872618, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([33, 36, 37]), model=ScalarModel(intercept=328.7652607038937, linear_terms=array([ 0.00065678, -0.08163632]), square_terms=array([[ 4.04474684e-05, -1.72847733e-03],
+ [-1.72847733e-03, 7.57360751e-02]]), scale=array([0.00149744, 0.00074872]), shift=array([7.03392757, 1.09925128])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=38, candidate_x=array([7.03542501, 1.1 ]), index=33, x=array([7.03392757, 1.1 ]), fval=328.72149242354726, rho=-0.8847261537291441, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([33, 36, 37]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.03392757, 1.1 ]), radius=0.0008448401289936309, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([33, 37, 38]), model=ScalarModel(intercept=328.7339098944667, linear_terms=array([ 0.00088589, -0.02188448]), square_terms=array([[ 1.00055329e-05, -4.30765172e-04],
+ [-4.30765172e-04, 1.89340178e-02]]), scale=array([0.00074872, 0.00037436]), shift=array([7.03392757, 1.09962564])), vector_model=VectorModel(intercepts=array([ 0.16466094, 0.38553561, 0.39344118, 0.98377146,
+ 1.55037222, 2.35627331, 2.5554994 , -0.42663176,
+ -2.29184792, -4.28626857, -10.06557688, -14.49445188]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.865116292089478, shift=array([8.65116292, 1.09450825])), candidate_index=39, candidate_x=array([7.03317885, 1.1 ]), index=39, x=array([7.03317885, 1.1 ]), fval=328.72089942436855, rho=1.3174151462691097, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([33, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0007487200700166952, relative_step_length=0.886226925452235, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 40 entries., 'history': {'params': [{'CRRA': 8.65116292089478, 'DiscFac': 1.0945082521472478}, {'CRRA': 7.884473569197231, 'DiscFac': 0.5084093734459159}, {'CRRA': 9.376805280683232, 'DiscFac': 0.5}, {'CRRA': 7.884473569197231, 'DiscFac': 0.597079672072137}, {'CRRA': 9.132154259145231, 'DiscFac': 1.1}, {'CRRA': 9.417852272592329, 'DiscFac': 0.5}, {'CRRA': 8.628838272319168, 'DiscFac': 0.5}, {'CRRA': 7.884473569197231, 'DiscFac': 0.991899155984515}, {'CRRA': 9.417852272592329, 'DiscFac': 0.7986250683436422}, {'CRRA': 9.417852272592329, 'DiscFac': 1.0946856737678685}, {'CRRA': 7.884473569197231, 'DiscFac': 1.0326880782033383}, {'CRRA': 7.969201641905015, 'DiscFac': 0.5}, {'CRRA': 8.172030405904948, 'DiscFac': 1.1}, {'CRRA': 9.417852272592329, 'DiscFac': 1.1}, {'CRRA': 9.034507596743554, 'DiscFac': 1.1}, {'CRRA': 8.267818245046005, 'DiscFac': 1.1}, {'CRRA': 9.8011969484411, 'DiscFac': 1.1}, {'CRRA': 9.034507596743554, 'DiscFac': 1.1}, {'CRRA': 8.651162920894778, 'DiscFac': 1.1}, {'CRRA': 8.459490582970393, 'DiscFac': 1.1}, {'CRRA': 8.171982076083811, 'DiscFac': 1.1}, {'CRRA': 8.363654414008199, 'DiscFac': 1.1}, {'CRRA': 8.076145907121617, 'DiscFac': 1.1}, {'CRRA': 8.267818245046005, 'DiscFac': 1.1}, {'CRRA': 7.9803097381594235, 'DiscFac': 1.1}, {'CRRA': 7.788637400235037, 'DiscFac': 1.1}, {'CRRA': 7.405292724386262, 'DiscFac': 1.1}, {'CRRA': 6.6386033726887135, 'DiscFac': 1.1}, {'CRRA': 7.021948048537488, 'DiscFac': 1.1}, {'CRRA': 6.830275710613101, 'DiscFac': 1.0607758705938872}, {'CRRA': 7.0765624488051575, 'DiscFac': 1.1}, {'CRRA': 7.045546596436262, 'DiscFac': 1.1}, {'CRRA': 7.021948048537488, 'DiscFac': 1.0760409577594516}, {'CRRA': 7.033927569657762, 'DiscFac': 1.1}, {'CRRA': 7.0450305939480575, 'DiscFac': 1.1}, {'CRRA': 7.044913870387682, 'DiscFac': 1.1}, {'CRRA': 7.027937809097625, 'DiscFac': 1.1}, {'CRRA': 7.0339255109673875, 'DiscFac': 1.0970051197199315}, {'CRRA': 7.035425009797796, 'DiscFac': 1.1}, {'CRRA': 7.033178849587745, 'DiscFac': 1.1}], 'criterion': [350.996261346693, 1170.0661849848057, 1136.1711221431415, 1157.1132521733737, 347.64239741061925, 1135.0901487672663, 1156.1295319954902, 785.6173065198678, 1060.505414009956, 361.2431556777584, 571.0421242025416, 1169.5142048600862, 336.07619323885825, 351.20668606488493, 346.42767854398153, 337.1356979156533, 355.8313545359116, 346.42767854398153, 341.61633648106147, 339.28453805742834, 336.07568759259027, 338.21715032862573, 335.0379978894075, 337.1356979156533, 333.9565001654597, 332.27529049642715, 329.61834100665794, 330.5249950650412, 328.72551916138025, 414.33912647339173, 328.7291382315541, 328.73257695737027, 364.2183654618458, 328.72149242354726, 328.73182598744506, 328.7316552362415, 328.72610277857893, 329.3509739636462, 328.7224226866329, 328.72089942436855], 'runtime': [0.0, 1.727137932000005, 1.7634881000001315, 1.8007889259999956, 1.8387122760000238, 1.8739716889999727, 1.919525539999995, 1.9487520860000132, 1.983478089000073, 2.019379148000098, 2.062711801999967, 2.1234359350000886, 2.1681270500000664, 4.314270990000068, 6.025481959999979, 7.716149045000066, 9.449394989999973, 11.12918414800015, 12.826702885000032, 14.505306856000061, 16.165513319999945, 17.827433128999928, 19.492043205000073, 21.157377778999944, 22.975806641999952, 24.676801362000106, 26.346183448000147, 28.026251385000023, 29.700532247999945, 31.36276561700015, 33.03013676399996, 34.709746659000075, 36.37672618600004, 38.06136919200003, 39.754508002999955, 41.45337039800006, 43.128914240000086, 44.82997982799998, 46.48745151100002, 48.26309048500002], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]}}], 'exploration_sample': array([[ 7.1307054, 1.1 ],
+ [12.321875 , 1.08125 ],
+ [17.6375 , 1.025 ],
+ [14.09375 , 0.9875 ],
+ [16.45625 , 0.9125 ],
+ [ 2.28125 , 1.0625 ],
+ [18.81875 , 0.5375 ],
+ [17.046875 , 0.63125 ],
+ [15.275 , 0.65 ],
+ [ 7.596875 , 0.93125 ],
+ [11.73125 , 0.7625 ],
+ [10.55 , 0.8 ],
+ [12.9125 , 0.575 ],
+ [ 5.825 , 0.95 ],
+ [ 9.36875 , 0.8375 ],
+ [ 8.1875 , 0.725 ],
+ [ 7.00625 , 0.6125 ],
+ [ 3.4625 , 0.875 ],
+ [ 4.64375 , 0.6875 ],
+ [ 2.871875 , 0.78125 ]]), 'exploration_results': array([ 328.68572765, 420.32021458, 528.04271383, 663.30843919,
+ 755.01356649, 860.62318106, 905.15922637, 916.6930808 ,
+ 958.0124336 , 1004.84993533, 1006.66630029, 1027.0399295 ,
+ 1032.30721934, 1038.25662345, 1043.08294325, 1119.86544023,
+ 1173.59414907, 1217.73888335, 1230.5461544 , 1263.48004797])}}"
diff --git a/content/tables/min/IndShockSub(Stock)(Labor)Market_estimate_results.csv b/content/tables/min/IndShockSub(Stock)(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..062a68d
--- /dev/null
+++ b/content/tables/min/IndShockSub(Stock)(Labor)Market_estimate_results.csv
@@ -0,0 +1,3721 @@
+CRRA,6.039369571191269
+DiscFac,1.1
+time_to_estimate,142.97382497787476
+params,"{'CRRA': 6.039369571191269, 'DiscFac': 1.1}"
+criterion,327.98396253621803
+start_criterion,325.62672656303187
+start_params,"{'CRRA': 6.039365487749873, 'DiscFac': 1.1}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,Absolute criterion change smaller than tolerance.
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 6.039365487749873, 'DiscFac': 1.1}, {'CRRA': 5.514307563653458, 'DiscFac': 0.5647751692105935}, {'CRRA': 6.574590318539279, 'DiscFac': 0.7142008649214286}, {'CRRA': 5.504140656960466, 'DiscFac': 0.8008722258078252}, {'CRRA': 6.570045972650687, 'DiscFac': 1.1}, {'CRRA': 6.574590318539279, 'DiscFac': 0.5769830462592568}, {'CRRA': 6.1601212453261995, 'DiscFac': 0.5647751692105935}, {'CRRA': 5.559130607226342, 'DiscFac': 1.1}, {'CRRA': 6.574590318539279, 'DiscFac': 0.883770096203983}, {'CRRA': 6.387521107085344, 'DiscFac': 1.1}, {'CRRA': 5.504140656960466, 'DiscFac': 0.9566943385094835}, {'CRRA': 5.781096605047464, 'DiscFac': 0.5647751692105935}, {'CRRA': 5.907991547972339, 'DiscFac': 1.1}, {'CRRA': 6.574590318539279, 'DiscFac': 1.1}, {'CRRA': 6.306977903144576, 'DiscFac': 1.1}, {'CRRA': 6.173171695447224, 'DiscFac': 1.1}, {'CRRA': 6.039365487749873, 'DiscFac': 1.0330968961513243}, {'CRRA': 6.07281703967421, 'DiscFac': 1.1}, {'CRRA': 6.028731043723087, 'DiscFac': 1.1}, {'CRRA': 6.027928979667826, 'DiscFac': 1.1}, {'CRRA': 6.039361622061221, 'DiscFac': 1.0916371120189157}, {'CRRA': 6.043546931740415, 'DiscFac': 1.1}, {'CRRA': 6.041456209745144, 'DiscFac': 1.1}, {'CRRA': 6.039365487749873, 'DiscFac': 1.0989546390023646}, {'CRRA': 6.038842807251055, 'DiscFac': 1.1}, {'CRRA': 6.039626827999282, 'DiscFac': 1.1}, {'CRRA': 6.039365497432717, 'DiscFac': 1.0998693298752957}, {'CRRA': 6.03930015268752, 'DiscFac': 1.1}, {'CRRA': 6.039398155281049, 'DiscFac': 1.1}, {'CRRA': 6.039365487829561, 'DiscFac': 1.099983666234412}, {'CRRA': 6.0393573208670785, 'DiscFac': 1.1}, {'CRRA': 6.039369571191269, 'DiscFac': 1.1}], 'criterion': [327.98396556352463, 1228.9150329049723, 1168.3472017064682, 1177.9817288188055, 330.8717181120478, 1192.5000375134468, 1207.3141152065677, 331.15203360269527, 1113.3654262066202, 329.346768098511, 1064.643722382122, 1220.9186466524695, 328.1806911330513, 330.90965387351446, 328.7510110443769, 328.1891563382183, 644.4055514457284, 328.03739692493264, 328.0274414332465, 328.0253666491021, 338.8317868940389, 327.99236994618195, 327.98650331588243, 328.73050303716934, 327.9847748806261, 327.98424933631094, 328.1086092400093, 327.98401405708523, 327.9839784217286, 327.9938739215477, 327.9839716193877, 327.98396253621803], 'runtime': [0.0, 1.7629111660003218, 1.7969741930000964, 1.8328278670001055, 1.8675967369999853, 1.9038407150001149, 1.9360275830003957, 1.9721233080003913, 2.0105504640000618, 2.0486393700002736, 2.0854981720003707, 2.125488069000312, 2.1669091100002333, 4.268970466000155, 5.939877997000167, 7.606953285000145, 9.403391789000125, 11.076275230000192, 12.79517630600003, 14.58376199200029, 16.296275266000066, 18.030881056999988, 19.788515587000347, 21.50479367800017, 23.194084481000118, 24.86841848100039, 26.535735132000354, 28.18876280700033, 29.846337465000033, 31.526947226000175, 33.37655216200028, 35.10128562199998], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]}"
+convergence_report,
+multistart_info,"{'start_parameters': [{'CRRA': 6.039365487749873, 'DiscFac': 1.1}, {'CRRA': 7.879472808448048, 'DiscFac': 1.0945082521472478}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 9.23e-09** 9.23e-09**
+relative_params_change 6.761e-07* 6.761e-07*
+absolute_criterion_change 3.027e-06* 3.027e-06*
+absolute_params_change 4.083e-06* 4.083e-06*
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.), Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 8.88e-07* 0.0001055
+relative_params_change 5.646e-05 0.006636
+absolute_criterion_change 0.0002913 0.03461
+absolute_params_change 0.000341 0.04007
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.)], 'exploration_sample': [{'CRRA': 6.039365487749873, 'DiscFac': 1.1}, {'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 2.28125, 'DiscFac': 1.0625}, {'CRRA': 17.6375, 'DiscFac': 1.0250000000000001}, {'CRRA': 14.093749999999998, 'DiscFac': 0.9875}, {'CRRA': 16.45625, 'DiscFac': 0.9125000000000001}, {'CRRA': 18.81875, 'DiscFac': 0.5375}, {'CRRA': 17.046875, 'DiscFac': 0.6312500000000001}, {'CRRA': 15.274999999999999, 'DiscFac': 0.65}, {'CRRA': 11.73125, 'DiscFac': 0.7625000000000001}, {'CRRA': 7.596874999999999, 'DiscFac': 0.9312500000000001}, {'CRRA': 10.549999999999999, 'DiscFac': 0.8}, {'CRRA': 12.9125, 'DiscFac': 0.575}, {'CRRA': 9.368749999999999, 'DiscFac': 0.8375}, {'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 8.1875, 'DiscFac': 0.7250000000000001}, {'CRRA': 7.00625, 'DiscFac': 0.6125}, {'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 2.871875, 'DiscFac': 0.78125}], 'exploration_results': array([ 327.98396556, 444.08066157, 540.65943804, 544.96572798,
+ 689.47008041, 769.45866328, 909.59665878, 921.36892514,
+ 962.43294355, 1011.74494613, 1024.37390697, 1032.75469874,
+ 1035.57943478, 1049.83280992, 1065.59145403, 1123.108822 ,
+ 1175.63544527, 1221.64398624, 1232.43946077, 1265.07252504])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.6039365487749873, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=327.98396556352463, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=0, candidate_x=array([6.03936549, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.6039365487749873, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=696.5309985139809, linear_terms=array([ -24.53423506, -561.26319031]), square_terms=array([[ 0.67185156, 16.6323865 ],
+ [ 16.6323865 , 431.2650042 ]]), scale=array([0.53522483, 0.26761242]), shift=array([6.03936549, 0.83238758])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=13, candidate_x=array([6.57459032, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.38669285891897476, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.30196827438749363, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 7, 8, 9, 10, 12, 13]), model=ScalarModel(intercept=475.3714994074694, linear_terms=array([ -12.8822248 , -208.78027294]), square_terms=array([[ 0.41220516, 7.62788746],
+ [ 7.62788746, 151.06364724]]), scale=array([0.26761242, 0.13380621]), shift=array([6.03936549, 0.96619379])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=14, candidate_x=array([6.3069779, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.15194330625838892, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 7, 8, 9, 10, 12, 13]), old_indices_discarded=array([ 1, 2, 3, 5, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.15098413719374681, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 7, 9, 10, 12, 13, 14]), model=ScalarModel(intercept=374.02545387845635, linear_terms=array([-12.77816255, -50.95359 ]), square_terms=array([[ 1.53083186, 6.75843346],
+ [ 6.75843346, 30.16030439]]), scale=array([0.13380621, 0.0669031 ]), shift=array([6.03936549, 1.0330969 ])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=15, candidate_x=array([6.1731717, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.03905187381849163, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 7, 9, 10, 12, 13, 14]), old_indices_discarded=array([ 1, 2, 3, 5, 8, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.07549206859687341, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 9, 12, 14, 15]), model=ScalarModel(intercept=81.99623219316592, linear_terms=array([6.00642694e-03, 1.63992464e+02]), square_terms=array([[9.48148041e-02, 6.00642694e-03],
+ [6.00642694e-03, 1.63992464e+02]]), scale=array([0.0669031 , 0.03345155]), shift=array([6.03936549, 1.06654845])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=16, candidate_x=array([6.03936549, 1.0330969 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.9647442858617606, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 9, 12, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.037746034298436704, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 16, 17]), model=ScalarModel(intercept=355.5690312460679, linear_terms=array([ 0.96745994, -44.74534031]), square_terms=array([[ 2.71211892e-02, -9.58837955e-01],
+ [-9.58837955e-01, 3.43556665e+01]]), scale=array([0.03345155, 0.01672578]), shift=array([6.03936549, 1.08327422])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=18, candidate_x=array([6.02873104, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-31.72287269530175, accepted=False, new_indices=array([17]), old_indices_used=array([ 0, 12, 16]), old_indices_discarded=array([15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.018873017149218352, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17, 18]), model=ScalarModel(intercept=337.5037817416159, linear_terms=array([ 0.23793178, -13.78785468]), square_terms=array([[ 6.44286666e-03, -2.33526375e-01],
+ [-2.33526375e-01, 8.58721579e+00]]), scale=array([0.01672578, 0.00836289]), shift=array([6.03936549, 1.09163711])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=19, candidate_x=array([6.02792898, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-27.4883232237418, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.009436508574609176, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 18, 19]), model=ScalarModel(intercept=82.00359936243075, linear_terms=array([3.22891594e-04, 1.64007199e+02]), square_terms=array([[1.61137378e-03, 3.22891594e-04],
+ [3.22891594e-04, 1.64007199e+02]]), scale=array([0.00836289, 0.00418144]), shift=array([6.03936549, 1.09581856])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=20, candidate_x=array([6.03936162, 1.09163711]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.03307117435960311, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 17, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.004718254287304588, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 18, 19, 20]), model=ScalarModel(intercept=329.67519625480406, linear_terms=array([ 1.00101667e-03, -2.03133325e+00]), square_terms=array([[ 4.05448268e-04, -1.64373484e-02],
+ [-1.64373484e-02, 6.80586092e-01]]), scale=array([0.00418144, 0.00209072]), shift=array([6.03936549, 1.09790928])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=21, candidate_x=array([6.04354693, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.5517000871442037, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.002359127143652294, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 18, 19, 20, 21]), model=ScalarModel(intercept=328.7541308447501, linear_terms=array([-0.00126429, -0.84418061]), square_terms=array([[ 1.01603097e-04, -4.11444119e-03],
+ [-4.11444119e-03, 1.70140517e-01]]), scale=array([0.00209072, 0.00104536]), shift=array([6.03936549, 1.09895464])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=22, candidate_x=array([6.04145621, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.47631152639781554, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 18, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.001179563571826147, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 21, 22]), model=ScalarModel(intercept=81.99585687999274, linear_terms=array([1.02492387e-03, 1.63991714e+02]), square_terms=array([[2.57162142e-05, 1.02492387e-03],
+ [1.02492387e-03, 1.63991714e+02]]), scale=array([0.00104536, 0.00052268]), shift=array([6.03936549, 1.09947732])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=23, candidate_x=array([6.03936549, 1.09895464]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.002276143887176283, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.0005897817859130735, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 22, 23]), model=ScalarModel(intercept=328.1545372959133, linear_terms=array([ 0.00088326, -0.17592594]), square_terms=array([[ 6.57063367e-06, -2.61966221e-04],
+ [-2.61966221e-04, 1.07084240e-02]]), scale=array([0.00052268, 0.00026134]), shift=array([6.03936549, 1.09973866])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=24, candidate_x=array([6.03884281, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-1.3095502183058638, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.00029489089295653675, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 23, 24]), model=ScalarModel(intercept=328.06791287671706, linear_terms=array([-0.00033776, -0.08528587]), square_terms=array([[ 1.63289767e-06, -6.52683395e-05],
+ [-6.52683395e-05, 2.67710600e-03]]), scale=array([0.00026134, 0.00013067]), shift=array([6.03936549, 1.09986933])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=25, candidate_x=array([6.03962683, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.7055352872670753, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.00014744544647826837, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 24, 25]), model=ScalarModel(intercept=81.99606488811281, linear_terms=array([-5.1757451e-05, 1.6399213e+02]), square_terms=array([[ 4.09301525e-07, -5.17574510e-05],
+ [-5.17574510e-05, 1.63992130e+02]]), scale=array([1.30670125e-04, 6.53350624e-05]), shift=array([6.03936549, 1.09993466])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=26, candidate_x=array([6.0393655 , 1.09986933]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.0003800294460921199, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=7.372272323913419e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 25, 26]), model=ScalarModel(intercept=328.01486951589106, linear_terms=array([ 7.48970521e-05, -3.09896069e-02]), square_terms=array([[ 1.03088600e-07, -4.16003286e-06],
+ [-4.16003286e-06, 1.71309011e-04]]), scale=array([6.53350624e-05, 3.26675312e-05]), shift=array([6.03936549, 1.09996733])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=27, candidate_x=array([6.03930015, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.6860470368189644, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=3.6861361619567093e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 26, 27]), model=ScalarModel(intercept=327.99939612828905, linear_terms=array([-2.31799670e-05, -1.54519784e-02]), square_terms=array([[ 2.58647370e-08, -1.04094853e-06],
+ [-1.04094853e-06, 4.28272528e-05]]), scale=array([3.26675312e-05, 1.63337656e-05]), shift=array([6.03936549, 1.09998367])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=28, candidate_x=array([6.03939816, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.5311555206890006, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=1.8430680809783547e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 27, 28]), model=ScalarModel(intercept=81.9959953622531, linear_terms=array([-3.40764237e-06, 1.63991991e+02]), square_terms=array([[ 6.47325828e-09, -3.40764237e-06],
+ [-3.40764237e-06, 1.63991991e+02]]), scale=array([1.63337656e-05, 8.16688279e-06]), shift=array([6.03936549, 1.09999183])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=29, candidate_x=array([6.03936549, 1.09998367]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-3.020988396831276e-05, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=9.215340404891773e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 28, 29]), model=ScalarModel(intercept=327.9864386827784, linear_terms=array([ 3.27627114e-06, -2.47444267e-03]), square_terms=array([[ 1.62290726e-09, -6.49659870e-08],
+ [-6.49659870e-08, 2.64682914e-06]]), scale=array([8.16688279e-06, 4.08344140e-06]), shift=array([6.03936549, 1.09999592])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=30, candidate_x=array([6.03935732, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-1.8862716135995434, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=4.607670202445887e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 29, 30]), model=ScalarModel(intercept=327.985201792309, linear_terms=array([-3.01131413e-06, -1.23655964e-03]), square_terms=array([[ 4.04127531e-10, -1.62132729e-08],
+ [-1.62132729e-08, 6.61707286e-07]]), scale=array([4.0834414e-06, 2.0417207e-06]), shift=array([6.03936549, 1.09999796])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=31, candidate_x=array([6.03936957, 1.1 ]), index=31, x=array([6.03936957, 1.1 ]), fval=327.98396253621803, rho=0.9999938036629777, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=4.083441396574017e-06, relative_step_length=0.8862269253572893, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 32 entries., 'multistart_info': {'start_parameters': [array([6.03936549, 1.1 ]), array([7.87947281, 1.09450825])], 'local_optima': [{'solution_x': array([6.03936957, 1.1 ]), 'solution_criterion': 327.98396253621803, 'states': [State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.6039365487749873, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=327.98396556352463, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=0, candidate_x=array([6.03936549, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.6039365487749873, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=696.5309985139809, linear_terms=array([ -24.53423506, -561.26319031]), square_terms=array([[ 0.67185156, 16.6323865 ],
+ [ 16.6323865 , 431.2650042 ]]), scale=array([0.53522483, 0.26761242]), shift=array([6.03936549, 0.83238758])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=13, candidate_x=array([6.57459032, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.38669285891897476, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.30196827438749363, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 7, 8, 9, 10, 12, 13]), model=ScalarModel(intercept=475.3714994074694, linear_terms=array([ -12.8822248 , -208.78027294]), square_terms=array([[ 0.41220516, 7.62788746],
+ [ 7.62788746, 151.06364724]]), scale=array([0.26761242, 0.13380621]), shift=array([6.03936549, 0.96619379])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=14, candidate_x=array([6.3069779, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.15194330625838892, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 7, 8, 9, 10, 12, 13]), old_indices_discarded=array([ 1, 2, 3, 5, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.15098413719374681, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 7, 9, 10, 12, 13, 14]), model=ScalarModel(intercept=374.02545387845635, linear_terms=array([-12.77816255, -50.95359 ]), square_terms=array([[ 1.53083186, 6.75843346],
+ [ 6.75843346, 30.16030439]]), scale=array([0.13380621, 0.0669031 ]), shift=array([6.03936549, 1.0330969 ])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=15, candidate_x=array([6.1731717, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.03905187381849163, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 7, 9, 10, 12, 13, 14]), old_indices_discarded=array([ 1, 2, 3, 5, 8, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.07549206859687341, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 9, 12, 14, 15]), model=ScalarModel(intercept=81.99623219316592, linear_terms=array([6.00642694e-03, 1.63992464e+02]), square_terms=array([[9.48148041e-02, 6.00642694e-03],
+ [6.00642694e-03, 1.63992464e+02]]), scale=array([0.0669031 , 0.03345155]), shift=array([6.03936549, 1.06654845])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=16, candidate_x=array([6.03936549, 1.0330969 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.9647442858617606, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 9, 12, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.037746034298436704, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 16, 17]), model=ScalarModel(intercept=355.5690312460679, linear_terms=array([ 0.96745994, -44.74534031]), square_terms=array([[ 2.71211892e-02, -9.58837955e-01],
+ [-9.58837955e-01, 3.43556665e+01]]), scale=array([0.03345155, 0.01672578]), shift=array([6.03936549, 1.08327422])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=18, candidate_x=array([6.02873104, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-31.72287269530175, accepted=False, new_indices=array([17]), old_indices_used=array([ 0, 12, 16]), old_indices_discarded=array([15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.018873017149218352, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17, 18]), model=ScalarModel(intercept=337.5037817416159, linear_terms=array([ 0.23793178, -13.78785468]), square_terms=array([[ 6.44286666e-03, -2.33526375e-01],
+ [-2.33526375e-01, 8.58721579e+00]]), scale=array([0.01672578, 0.00836289]), shift=array([6.03936549, 1.09163711])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=19, candidate_x=array([6.02792898, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-27.4883232237418, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.009436508574609176, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 18, 19]), model=ScalarModel(intercept=82.00359936243075, linear_terms=array([3.22891594e-04, 1.64007199e+02]), square_terms=array([[1.61137378e-03, 3.22891594e-04],
+ [3.22891594e-04, 1.64007199e+02]]), scale=array([0.00836289, 0.00418144]), shift=array([6.03936549, 1.09581856])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=20, candidate_x=array([6.03936162, 1.09163711]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.03307117435960311, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 17, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.004718254287304588, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 18, 19, 20]), model=ScalarModel(intercept=329.67519625480406, linear_terms=array([ 1.00101667e-03, -2.03133325e+00]), square_terms=array([[ 4.05448268e-04, -1.64373484e-02],
+ [-1.64373484e-02, 6.80586092e-01]]), scale=array([0.00418144, 0.00209072]), shift=array([6.03936549, 1.09790928])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=21, candidate_x=array([6.04354693, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.5517000871442037, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.002359127143652294, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 18, 19, 20, 21]), model=ScalarModel(intercept=328.7541308447501, linear_terms=array([-0.00126429, -0.84418061]), square_terms=array([[ 1.01603097e-04, -4.11444119e-03],
+ [-4.11444119e-03, 1.70140517e-01]]), scale=array([0.00209072, 0.00104536]), shift=array([6.03936549, 1.09895464])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=22, candidate_x=array([6.04145621, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.47631152639781554, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 18, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.001179563571826147, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 21, 22]), model=ScalarModel(intercept=81.99585687999274, linear_terms=array([1.02492387e-03, 1.63991714e+02]), square_terms=array([[2.57162142e-05, 1.02492387e-03],
+ [1.02492387e-03, 1.63991714e+02]]), scale=array([0.00104536, 0.00052268]), shift=array([6.03936549, 1.09947732])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=23, candidate_x=array([6.03936549, 1.09895464]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.002276143887176283, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.0005897817859130735, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 22, 23]), model=ScalarModel(intercept=328.1545372959133, linear_terms=array([ 0.00088326, -0.17592594]), square_terms=array([[ 6.57063367e-06, -2.61966221e-04],
+ [-2.61966221e-04, 1.07084240e-02]]), scale=array([0.00052268, 0.00026134]), shift=array([6.03936549, 1.09973866])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=24, candidate_x=array([6.03884281, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-1.3095502183058638, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.00029489089295653675, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 23, 24]), model=ScalarModel(intercept=328.06791287671706, linear_terms=array([-0.00033776, -0.08528587]), square_terms=array([[ 1.63289767e-06, -6.52683395e-05],
+ [-6.52683395e-05, 2.67710600e-03]]), scale=array([0.00026134, 0.00013067]), shift=array([6.03936549, 1.09986933])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=25, candidate_x=array([6.03962683, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.7055352872670753, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=0.00014744544647826837, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 24, 25]), model=ScalarModel(intercept=81.99606488811281, linear_terms=array([-5.1757451e-05, 1.6399213e+02]), square_terms=array([[ 4.09301525e-07, -5.17574510e-05],
+ [-5.17574510e-05, 1.63992130e+02]]), scale=array([1.30670125e-04, 6.53350624e-05]), shift=array([6.03936549, 1.09993466])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=26, candidate_x=array([6.0393655 , 1.09986933]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.0003800294460921199, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=7.372272323913419e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 25, 26]), model=ScalarModel(intercept=328.01486951589106, linear_terms=array([ 7.48970521e-05, -3.09896069e-02]), square_terms=array([[ 1.03088600e-07, -4.16003286e-06],
+ [-4.16003286e-06, 1.71309011e-04]]), scale=array([6.53350624e-05, 3.26675312e-05]), shift=array([6.03936549, 1.09996733])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=27, candidate_x=array([6.03930015, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.6860470368189644, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=3.6861361619567093e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 26, 27]), model=ScalarModel(intercept=327.99939612828905, linear_terms=array([-2.31799670e-05, -1.54519784e-02]), square_terms=array([[ 2.58647370e-08, -1.04094853e-06],
+ [-1.04094853e-06, 4.28272528e-05]]), scale=array([3.26675312e-05, 1.63337656e-05]), shift=array([6.03936549, 1.09998367])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=28, candidate_x=array([6.03939816, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-0.5311555206890006, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=1.8430680809783547e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 27, 28]), model=ScalarModel(intercept=81.9959953622531, linear_terms=array([-3.40764237e-06, 1.63991991e+02]), square_terms=array([[ 6.47325828e-09, -3.40764237e-06],
+ [-3.40764237e-06, 1.63991991e+02]]), scale=array([1.63337656e-05, 8.16688279e-06]), shift=array([6.03936549, 1.09999183])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=29, candidate_x=array([6.03936549, 1.09998367]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-3.020988396831276e-05, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=9.215340404891773e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 28, 29]), model=ScalarModel(intercept=327.9864386827784, linear_terms=array([ 3.27627114e-06, -2.47444267e-03]), square_terms=array([[ 1.62290726e-09, -6.49659870e-08],
+ [-6.49659870e-08, 2.64682914e-06]]), scale=array([8.16688279e-06, 4.08344140e-06]), shift=array([6.03936549, 1.09999592])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=30, candidate_x=array([6.03935732, 1.1 ]), index=0, x=array([6.03936549, 1.1 ]), fval=327.98396556352463, rho=-1.8862716135995434, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03936549, 1.1 ]), radius=4.607670202445887e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 29, 30]), model=ScalarModel(intercept=327.985201792309, linear_terms=array([-3.01131413e-06, -1.23655964e-03]), square_terms=array([[ 4.04127531e-10, -1.62132729e-08],
+ [-1.62132729e-08, 6.61707286e-07]]), scale=array([4.0834414e-06, 2.0417207e-06]), shift=array([6.03936549, 1.09999796])), vector_model=VectorModel(intercepts=array([ 0.29039072, 0.99271422, 1.39732246, 2.3121125 ,
+ 3.18792659, 4.27665212, 4.69902694, 1.38743729,
+ -0.98655574, -3.47119021, -8.67868612, -13.37218272]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6039365487749873, shift=array([6.03936549, 1.1 ])), candidate_index=31, candidate_x=array([6.03936957, 1.1 ]), index=31, x=array([6.03936957, 1.1 ]), fval=327.98396253621803, rho=0.9999938036629777, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=4.083441396574017e-06, relative_step_length=0.8862269253572893, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 32 entries., 'history': {'params': [{'CRRA': 6.039365487749873, 'DiscFac': 1.1}, {'CRRA': 5.514307563653458, 'DiscFac': 0.5647751692105935}, {'CRRA': 6.574590318539279, 'DiscFac': 0.7142008649214286}, {'CRRA': 5.504140656960466, 'DiscFac': 0.8008722258078252}, {'CRRA': 6.570045972650687, 'DiscFac': 1.1}, {'CRRA': 6.574590318539279, 'DiscFac': 0.5769830462592568}, {'CRRA': 6.1601212453261995, 'DiscFac': 0.5647751692105935}, {'CRRA': 5.559130607226342, 'DiscFac': 1.1}, {'CRRA': 6.574590318539279, 'DiscFac': 0.883770096203983}, {'CRRA': 6.387521107085344, 'DiscFac': 1.1}, {'CRRA': 5.504140656960466, 'DiscFac': 0.9566943385094835}, {'CRRA': 5.781096605047464, 'DiscFac': 0.5647751692105935}, {'CRRA': 5.907991547972339, 'DiscFac': 1.1}, {'CRRA': 6.574590318539279, 'DiscFac': 1.1}, {'CRRA': 6.306977903144576, 'DiscFac': 1.1}, {'CRRA': 6.173171695447224, 'DiscFac': 1.1}, {'CRRA': 6.039365487749873, 'DiscFac': 1.0330968961513243}, {'CRRA': 6.07281703967421, 'DiscFac': 1.1}, {'CRRA': 6.028731043723087, 'DiscFac': 1.1}, {'CRRA': 6.027928979667826, 'DiscFac': 1.1}, {'CRRA': 6.039361622061221, 'DiscFac': 1.0916371120189157}, {'CRRA': 6.043546931740415, 'DiscFac': 1.1}, {'CRRA': 6.041456209745144, 'DiscFac': 1.1}, {'CRRA': 6.039365487749873, 'DiscFac': 1.0989546390023646}, {'CRRA': 6.038842807251055, 'DiscFac': 1.1}, {'CRRA': 6.039626827999282, 'DiscFac': 1.1}, {'CRRA': 6.039365497432717, 'DiscFac': 1.0998693298752957}, {'CRRA': 6.03930015268752, 'DiscFac': 1.1}, {'CRRA': 6.039398155281049, 'DiscFac': 1.1}, {'CRRA': 6.039365487829561, 'DiscFac': 1.099983666234412}, {'CRRA': 6.0393573208670785, 'DiscFac': 1.1}, {'CRRA': 6.039369571191269, 'DiscFac': 1.1}], 'criterion': [327.98396556352463, 1228.9150329049723, 1168.3472017064682, 1177.9817288188055, 330.8717181120478, 1192.5000375134468, 1207.3141152065677, 331.15203360269527, 1113.3654262066202, 329.346768098511, 1064.643722382122, 1220.9186466524695, 328.1806911330513, 330.90965387351446, 328.7510110443769, 328.1891563382183, 644.4055514457284, 328.03739692493264, 328.0274414332465, 328.0253666491021, 338.8317868940389, 327.99236994618195, 327.98650331588243, 328.73050303716934, 327.9847748806261, 327.98424933631094, 328.1086092400093, 327.98401405708523, 327.9839784217286, 327.9938739215477, 327.9839716193877, 327.98396253621803], 'runtime': [0.0, 1.7629111660003218, 1.7969741930000964, 1.8328278670001055, 1.8675967369999853, 1.9038407150001149, 1.9360275830003957, 1.9721233080003913, 2.0105504640000618, 2.0486393700002736, 2.0854981720003707, 2.125488069000312, 2.1669091100002333, 4.268970466000155, 5.939877997000167, 7.606953285000145, 9.403391789000125, 11.076275230000192, 12.79517630600003, 14.58376199200029, 16.296275266000066, 18.030881056999988, 19.788515587000347, 21.50479367800017, 23.194084481000118, 24.86841848100039, 26.535735132000354, 28.18876280700033, 29.846337465000033, 31.526947226000175, 33.37655216200028, 35.10128562199998], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]}, 'multistart_info': {...}}, {'solution_x': array([6.03931727, 1.1 ]), 'solution_criterion': 327.984001342669, 'states': [State(trustregion=Region(center=array([7.87947281, 1.09450825]), radius=0.7879472808448048, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=362.2293826755968, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=0, candidate_x=array([7.87947281, 1.09450825]), index=0, x=array([7.87947281, 1.09450825]), fval=362.2293826755968, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([7.87947281, 1.09450825]), radius=0.7879472808448048, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=725.9440240581436, linear_terms=array([ -57.20421931, -419.32327159]), square_terms=array([[ 3.38731262, 27.02228439],
+ [ 27.02228439, 231.35386938]]), scale=array([0.6983001, 0.3 ]), shift=array([7.87947281, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=13, candidate_x=array([8.5777729, 1.1 ]), index=13, x=array([8.5777729, 1.1 ]), fval=359.56273854626926, rho=0.08341610370819671, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.6983216905827906, relative_step_length=0.8862543314244052, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([8.5777729, 1.1 ]), radius=0.3939736404224024, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 6, 8, 9, 12, 13]), model=ScalarModel(intercept=532.8503293039123, linear_terms=array([ 33.02851593, -196.58819315]), square_terms=array([[ 2.68967089, -16.06467744],
+ [-16.06467744, 96.09379053]]), scale=array([0.34915005, 0.17457502]), shift=array([8.5777729 , 0.92542498])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=14, candidate_x=array([8.22862286, 1.1 ]), index=14, x=array([8.22862286, 1.1 ]), fval=354.28543556924024, rho=0.33787706950605756, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 8, 9, 12, 13]), old_indices_discarded=array([ 1, 3, 7, 10, 11]), step_length=0.3491500480609755, relative_step_length=0.8862269254527565, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([8.22862286, 1.1 ]), radius=0.7879472808448048, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 6, 8, 9, 12, 14]), model=ScalarModel(intercept=657.292805504021, linear_terms=array([ 99.3278996 , -424.58655344]), square_terms=array([[ 15.02464767, -64.4273026 ],
+ [-64.4273026 , 276.77392224]]), scale=array([0.6983001, 0.3 ]), shift=array([8.22862286, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=15, candidate_x=array([7.53032276, 1.1 ]), index=15, x=array([7.53032276, 1.1 ]), fval=343.61078177168645, rho=0.3897527141119779, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 8, 9, 12, 14]), old_indices_discarded=array([ 1, 3, 7, 10, 11, 13]), step_length=0.6983000961219519, relative_step_length=0.8862269254527576, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.53032276, 1.1 ]), radius=1.5758945616896096, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 4, 5, 6, 7, 8, 9, 15]), model=ScalarModel(intercept=741.96560799635, linear_terms=array([ -81.17490217, -456.86793398]), square_terms=array([[ 6.2118656 , 37.41354298],
+ [ 37.41354298, 262.61099621]]), scale=array([1.39660019, 0.3 ]), shift=array([7.53032276, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=16, candidate_x=array([8.92692295, 1.1 ]), index=15, x=array([7.53032276, 1.1 ]), fval=343.61078177168645, rho=-0.5197566873306682, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 4, 5, 6, 7, 8, 9, 15]), old_indices_discarded=array([ 2, 3, 10, 11, 12, 13, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.53032276, 1.1 ]), radius=0.7879472808448048, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 4, 6, 7, 12, 14, 15]), model=ScalarModel(intercept=696.7489995883543, linear_terms=array([-156.00233823, -422.415263 ]), square_terms=array([[ 29.90717633, 85.76296971],
+ [ 85.76296971, 251.92073865]]), scale=array([0.6983001, 0.3 ]), shift=array([7.53032276, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=17, candidate_x=array([8.22862286, 1.1 ]), index=15, x=array([7.53032276, 1.1 ]), fval=343.61078177168645, rho=-0.19308136249134683, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 4, 6, 7, 12, 14, 15]), old_indices_discarded=array([ 2, 5, 8, 9, 10, 11, 13, 16]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.53032276, 1.1 ]), radius=0.3939736404224024, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 6, 7, 10, 11, 12, 15]), model=ScalarModel(intercept=532.6627393859355, linear_terms=array([-107.3513404 , -166.70287139]), square_terms=array([[24.828587 , 42.60005527],
+ [42.60005527, 75.03119316]]), scale=array([0.34915005, 0.17457502]), shift=array([7.53032276, 0.92542498])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=18, candidate_x=array([7.87947281, 1.1 ]), index=15, x=array([7.53032276, 1.1 ]), fval=343.61078177168645, rho=-0.1008027544343953, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 6, 7, 10, 11, 12, 15]), old_indices_discarded=array([ 2, 4, 5, 8, 9, 13, 14, 16, 17]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.53032276, 1.1 ]), radius=0.1969868202112012, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 6, 7, 10, 11, 12, 15, 18]), model=ScalarModel(intercept=460.1437147096384, linear_terms=array([-47.06325937, -68.55904581]), square_terms=array([[ 7.32151626, 12.11173414],
+ [12.11173414, 20.54517742]]), scale=array([0.17457502, 0.08728751]), shift=array([7.53032276, 1.01271249])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=19, candidate_x=array([7.70489778, 1.1 ]), index=15, x=array([7.53032276, 1.1 ]), fval=343.61078177168645, rho=-0.08350368497772914, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 6, 7, 10, 11, 12, 15, 18]), old_indices_discarded=array([ 1, 4, 14, 17]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.53032276, 1.1 ]), radius=0.0984934101056006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 7, 10, 12, 15, 18, 19]), model=ScalarModel(intercept=484.24067620553103, linear_terms=array([ 1.0644039 , -197.58980592]), square_terms=array([[ 1.25819630e-02, -1.13285371e+00],
+ [-1.13285371e+00, 1.21597578e+02]]), scale=array([0.08728751, 0.04364376]), shift=array([7.53032276, 1.05635624])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=20, candidate_x=array([7.61761027, 1.1 ]), index=15, x=array([7.53032276, 1.1 ]), fval=343.61078177168645, rho=-21.298110543262506, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 7, 10, 12, 15, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.53032276, 1.1 ]), radius=0.0492467050528003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([12, 15, 19, 20]), model=ScalarModel(intercept=85.90337966170509, linear_terms=array([ 0.31541082, 171.80675932]), square_terms=array([[1.35745386e-02, 3.15410823e-01],
+ [3.15410823e-01, 1.71806759e+02]]), scale=array([0.04364376, 0.02182188]), shift=array([7.53032276, 1.07817812])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=21, candidate_x=array([7.53032276, 1.05635624]), index=15, x=array([7.53032276, 1.1 ]), fval=343.61078177168645, rho=-0.4842496873250061, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([12, 15, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.53032276, 1.1 ]), radius=0.02462335252640015, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([12, 15, 20, 21]), model=ScalarModel(intercept=370.3749860727118, linear_terms=array([ 0.50457648, -31.70198232]), square_terms=array([[ 3.50286658e-03, -1.84087878e-01],
+ [-1.84087878e-01, 9.89435283e+00]]), scale=array([0.02182188, 0.01091094]), shift=array([7.53032276, 1.08908906])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=22, candidate_x=array([7.50850088, 1.1 ]), index=22, x=array([7.50850088, 1.1 ]), fval=343.28224909887444, rho=1.030732234655116, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([12, 15, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.02182187800381108, relative_step_length=0.8862269254527609, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.50850088, 1.1 ]), radius=0.0492467050528003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([12, 15, 19, 20, 21, 22]), model=ScalarModel(intercept=406.34011345197075, linear_terms=array([ 1.34943418, -82.83589813]), square_terms=array([[ 1.35463583e-02, -7.24364450e-01],
+ [-7.24364450e-01, 3.95818331e+01]]), scale=array([0.04364376, 0.02182188]), shift=array([7.50850088, 1.07817812])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=23, candidate_x=array([7.46485713, 1.1 ]), index=23, x=array([7.46485713, 1.1 ]), fval=342.67788390884755, rho=0.9774681554682292, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([12, 15, 19, 20, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.04364375600762216, relative_step_length=0.8862269254527609, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.46485713, 1.1 ]), radius=0.0984934101056006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 7, 10, 12, 15, 19, 20, 21, 22, 23]), model=ScalarModel(intercept=485.2798968490961, linear_terms=array([ 2.10790896, -203.95653243]), square_terms=array([[ 2.49785511e-02, -1.75495211e+00],
+ [-1.75495211e+00, 1.28169197e+02]]), scale=array([0.08728751, 0.04364376]), shift=array([7.46485713, 1.05635624])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=24, candidate_x=array([7.37756961, 1.1 ]), index=24, x=array([7.37756961, 1.1 ]), fval=341.3356764476497, rho=3.9422476031380995, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 7, 10, 12, 15, 19, 20, 21, 22, 23]), old_indices_discarded=array([ 0, 18]), step_length=0.08728751201524432, relative_step_length=0.8862269254527609, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.37756961, 1.1 ]), radius=0.1969868202112012, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 7, 10, 12, 15, 20, 21, 22, 23, 24]), model=ScalarModel(intercept=752.8426020338497, linear_terms=array([ 11.7913993 , -670.97057512]), square_terms=array([[ 1.94255131e-01, -9.99673672e+00],
+ [-9.99673672e+00, 5.23616394e+02]]), scale=array([0.17457502, 0.08728751]), shift=array([7.37756961, 1.01271249])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=25, candidate_x=array([7.20299459, 1.1 ]), index=25, x=array([7.20299459, 1.1 ]), fval=338.7295161935011, rho=1.5352615607065352, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 7, 10, 12, 15, 20, 21, 22, 23, 24]), old_indices_discarded=array([ 0, 1, 3, 4, 6, 11, 14, 17, 18, 19]), step_length=0.17457502403048775, relative_step_length=0.8862269254527565, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.20299459, 1.1 ]), radius=0.3939736404224024, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 7, 10, 12, 15, 21, 22, 23, 24, 25]), model=ScalarModel(intercept=1672.4520919741888, linear_terms=array([ 59.20275575, -2396.40015865]), square_terms=array([[ 1.34997550e+00, -5.33739278e+01],
+ [-5.33739278e+01, 2.12746527e+03]]), scale=array([0.34915005, 0.17457502]), shift=array([7.20299459, 0.92542498])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=26, candidate_x=array([6.85384454, 1.1 ]), index=26, x=array([6.85384454, 1.1 ]), fval=334.0684862360313, rho=0.9043799998208798, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 7, 10, 12, 15, 21, 22, 23, 24, 25]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 16, 17, 18, 19, 20]), step_length=0.3491500480609764, relative_step_length=0.8862269254527587, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.85384454, 1.1 ]), radius=0.7879472808448048, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 11, 20, 21, 23, 24, 25, 26]), model=ScalarModel(intercept=687.9675100097688, linear_terms=array([ 27.86324984, -497.24927831]), square_terms=array([[ 1.04186318, -18.63808543],
+ [-18.63808543, 351.96003495]]), scale=array([0.6983001, 0.3 ]), shift=array([6.85384454, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=27, candidate_x=array([6.15554445, 1.1 ]), index=27, x=array([6.15554445, 1.1 ]), fval=328.1547443088514, rho=0.6794098978593791, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 11, 20, 21, 23, 24, 25, 26]), old_indices_discarded=array([ 0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19,
+ 22]), step_length=0.6983000961219519, relative_step_length=0.8862269254527576, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.15554445, 1.1 ]), radius=1.5758945616896096, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 11, 19, 21, 24, 25, 26, 27]), model=ScalarModel(intercept=541.024874876126, linear_terms=array([ 183.74810222, -385.25100262]), square_terms=array([[ 71.61201793, -157.85600624],
+ [-157.85600624, 351.48172557]]), scale=array([1.39660019, 0.3 ]), shift=array([6.15554445, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=28, candidate_x=array([4.75894425, 0.99408832]), index=27, x=array([6.15554445, 1.1 ]), fval=328.1547443088514, rho=-51.441844650874955, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 11, 19, 21, 24, 25, 26, 27]), old_indices_discarded=array([ 0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20,
+ 22, 23]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.15554445, 1.1 ]), radius=0.7879472808448048, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 1, 3, 7, 10, 11, 24, 25, 26, 27]), model=ScalarModel(intercept=474.6518866289607, linear_terms=array([ 129.29833356, -282.36003754]), square_terms=array([[ 48.05094448, -113.81690171],
+ [-113.81690171, 273.4429247 ]]), scale=array([0.6983001, 0.3 ]), shift=array([6.15554445, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=29, candidate_x=array([5.45724435, 0.98491223]), index=27, x=array([6.15554445, 1.1 ]), fval=328.1547443088514, rho=-55.08218130865472, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 3, 7, 10, 11, 24, 25, 26, 27]), old_indices_discarded=array([ 0, 2, 4, 5, 6, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 28]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.15554445, 1.1 ]), radius=0.3939736404224024, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 1, 3, 7, 10, 24, 25, 26, 27, 29]), model=ScalarModel(intercept=673.0196062200134, linear_terms=array([ -48.84501593, -283.59249035]), square_terms=array([[ 3.16938894, 19.7566563 ],
+ [ 19.7566563 , 125.67239874]]), scale=array([0.34915005, 0.17457502]), shift=array([6.15554445, 0.92542498])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=30, candidate_x=array([6.50469449, 1.1 ]), index=27, x=array([6.15554445, 1.1 ]), fval=328.1547443088514, rho=-0.0754593477356818, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 3, 7, 10, 24, 25, 26, 27, 29]), old_indices_discarded=array([ 0, 6, 11, 12, 15, 18, 19, 20, 21, 22, 23, 28]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.15554445, 1.1 ]), radius=0.1969868202112012, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([26, 27, 29, 30]), model=ScalarModel(intercept=764.1130434811344, linear_terms=array([ 20.06484004, -826.75640293]), square_terms=array([[ 4.93284740e-01, -1.95514687e+01],
+ [-1.95514687e+01, 7.81578372e+02]]), scale=array([0.17457502, 0.08728751]), shift=array([6.15554445, 1.01271249])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=31, candidate_x=array([5.98096942, 1.1 ]), index=31, x=array([5.98096942, 1.1 ]), fval=328.0443136638892, rho=0.41401820841177545, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([26, 27, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.17457502403048775, relative_step_length=0.8862269254527565, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.98096942, 1.1 ]), radius=0.3939736404224024, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 7, 10, 25, 26, 27, 28, 29, 30, 31]), model=ScalarModel(intercept=1781.353556601766, linear_terms=array([ 10.93716932, -2746.79789078]), square_terms=array([[ 5.27680505e-02, -1.13800463e+01],
+ [-1.13800463e+01, 2.59482090e+03]]), scale=array([0.34915005, 0.17457502]), shift=array([5.98096942, 0.92542498])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=32, candidate_x=array([6.33011947, 1.1 ]), index=31, x=array([5.98096942, 1.1 ]), fval=328.0443136638892, rho=-2.151335538932381, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 7, 10, 25, 26, 27, 28, 29, 30, 31]), old_indices_discarded=array([ 0, 1, 3, 11, 12, 15, 18, 19, 20, 21, 22, 23, 24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.98096942, 1.1 ]), radius=0.1969868202112012, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([26, 27, 29, 30, 31, 32]), model=ScalarModel(intercept=745.2066316366386, linear_terms=array([ 20.20317251, -811.00927104]), square_terms=array([[ 5.25594199e-01, -2.02581872e+01],
+ [-2.02581872e+01, 7.87518596e+02]]), scale=array([0.17457502, 0.08728751]), shift=array([5.98096942, 1.01271249])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=33, candidate_x=array([5.99924245, 1.1 ]), index=33, x=array([5.99924245, 1.1 ]), fval=328.0186137820637, rho=8.925939431058925, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([26, 27, 29, 30, 31, 32]), old_indices_discarded=array([], dtype=int64), step_length=0.01827302390022645, relative_step_length=0.09276267255156899, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.99924245, 1.1 ]), radius=0.1969868202112012, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([27, 29, 30, 31, 32, 33, 34]), model=ScalarModel(intercept=582.0194811496058, linear_terms=array([ -28.85282245, -443.47361967]), square_terms=array([[ 1.2267104 , 21.48342558],
+ [ 21.48342558, 395.80538633]]), scale=array([0.17457502, 0.08728751]), shift=array([5.99924245, 1.01271249])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=35, candidate_x=array([6.17381747, 1.1 ]), index=33, x=array([5.99924245, 1.1 ]), fval=328.0186137820637, rho=-0.025063369162145882, accepted=False, new_indices=array([34]), old_indices_used=array([27, 29, 30, 31, 32, 33]), old_indices_discarded=array([26]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.99924245, 1.1 ]), radius=0.0984934101056006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([27, 31, 32, 33, 34, 35]), model=ScalarModel(intercept=373.9527215685082, linear_terms=array([ 3.76666514, -91.66730808]), square_terms=array([[ 0.16148106, -3.82858358],
+ [-3.82858358, 91.45176386]]), scale=array([0.08728751, 0.04364376]), shift=array([5.99924245, 1.05635624])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=36, candidate_x=array([6.03271205, 1.1 ]), index=36, x=array([6.03271205, 1.1 ]), fval=328.0044517781902, rho=1.1929883954298723, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([27, 31, 32, 33, 34, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.03346960318564207, relative_step_length=0.33981566025338483, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03271205, 1.1 ]), radius=0.0984934101056006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([27, 30, 31, 32, 33, 34, 35, 36]), model=ScalarModel(intercept=375.50251992573067, linear_terms=array([ 3.71849567, -93.26586519]), square_terms=array([[ 0.15120155, -3.70612343],
+ [-3.70612343, 91.51845029]]), scale=array([0.08728751, 0.04364376]), shift=array([6.03271205, 1.05635624])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=37, candidate_x=array([6.02556965, 1.1 ]), index=36, x=array([6.03271205, 1.1 ]), fval=328.0044517781902, rho=-41.29603041690138, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([27, 30, 31, 32, 33, 34, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03271205, 1.1 ]), radius=0.0492467050528003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([27, 31, 33, 34, 35, 36, 37]), model=ScalarModel(intercept=340.27567010709225, linear_terms=array([ 0.97003223, -23.69091442]), square_terms=array([[ 0.04231341, -0.97941127],
+ [-0.97941127, 22.84408401]]), scale=array([0.04364376, 0.02182188]), shift=array([6.03271205, 1.07817812])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=38, candidate_x=array([6.04238597, 1.1 ]), index=38, x=array([6.04238597, 1.1 ]), fval=327.9885858870018, rho=15.263550557757792, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([27, 31, 33, 34, 35, 36, 37]), old_indices_discarded=array([], dtype=int64), step_length=0.009673921240452188, relative_step_length=0.1964379389459702, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.04238597, 1.1 ]), radius=0.0492467050528003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([27, 31, 33, 35, 36, 37, 38, 39]), model=ScalarModel(intercept=82.00226854986404, linear_terms=array([1.12355056e-03, 1.64004537e+02]), square_terms=array([[4.23535962e-02, 1.12355056e-03],
+ [1.12355056e-03, 1.64004537e+02]]), scale=array([0.04364376, 0.02182188]), shift=array([6.04238597, 1.07817812])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=40, candidate_x=array([6.04238597, 1.05635624]), index=38, x=array([6.04238597, 1.1 ]), fval=327.9885858870018, rho=-0.494329253043876, accepted=False, new_indices=array([39]), old_indices_used=array([27, 31, 33, 35, 36, 37, 38]), old_indices_discarded=array([34]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.04238597, 1.1 ]), radius=0.02462335252640015, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([27, 31, 33, 36, 37, 38, 39, 40]), model=ScalarModel(intercept=343.91263589535333, linear_terms=array([ 0.41921903, -24.11112863]), square_terms=array([[ 1.06977552e-02, -4.15677541e-01],
+ [-4.15677541e-01, 1.64193433e+01]]), scale=array([0.02182188, 0.01091094]), shift=array([6.04238597, 1.08908906])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=41, candidate_x=array([6.03516184, 1.1 ]), index=38, x=array([6.04238597, 1.1 ]), fval=327.9885858870018, rho=-8.610781824853877, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([27, 31, 33, 36, 37, 38, 39, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.04238597, 1.1 ]), radius=0.012311676263200075, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([31, 33, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=333.9166749762653, linear_terms=array([ 0.11087176, -7.95349274]), square_terms=array([[ 2.77123252e-03, -1.05793252e-01],
+ [-1.05793252e-01, 4.10375275e+00]]), scale=array([0.01091094, 0.00545547]), shift=array([6.04238597, 1.09454453])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=42, candidate_x=array([6.03147503, 1.1 ]), index=38, x=array([6.04238597, 1.1 ]), fval=327.9885858870018, rho=-5.532076896558681, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([31, 33, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.04238597, 1.1 ]), radius=0.006155838131600038, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([36, 37, 38, 41, 42]), model=ScalarModel(intercept=81.99616915231834, linear_terms=array([-5.57837938e-03, 1.63992338e+02]), square_terms=array([[ 6.95313444e-04, -5.57837938e-03],
+ [-5.57837938e-03, 1.63992338e+02]]), scale=array([0.00545547, 0.00272773]), shift=array([6.04238597, 1.09727227])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=43, candidate_x=array([6.04238597, 1.09454453]), index=38, x=array([6.04238597, 1.1 ]), fval=327.9885858870018, rho=-0.017449574377679796, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([36, 37, 38, 41, 42]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.04238597, 1.1 ]), radius=0.003077919065800019, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([36, 38, 41, 42, 43]), model=ScalarModel(intercept=328.98107778773453, linear_terms=array([ 0.00257064, -1.13993963]), square_terms=array([[ 1.73497189e-04, -7.02696057e-03],
+ [-7.02696057e-03, 2.91307159e-01]]), scale=array([0.00272773, 0.00136387]), shift=array([6.04238597, 1.09863613])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=44, candidate_x=array([6.04511371, 1.1 ]), index=38, x=array([6.04238597, 1.1 ]), fval=327.9885858870018, rho=-1.9565035599151293, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([36, 38, 41, 42, 43]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.04238597, 1.1 ]), radius=0.0015389595329000094, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([38, 41, 43, 44]), model=ScalarModel(intercept=328.45309645909305, linear_terms=array([ 0.0020121 , -0.49633079]), square_terms=array([[ 4.29178526e-05, -1.74592843e-03],
+ [-1.74592843e-03, 7.28313036e-02]]), scale=array([0.00136387, 0.00068193]), shift=array([6.04238597, 1.09931807])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=45, candidate_x=array([6.0410221, 1.1 ]), index=45, x=array([6.0410221, 1.1 ]), fval=327.98556983184415, rho=12.32505267649563, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([38, 41, 43, 44]), old_indices_discarded=array([], dtype=int64), step_length=0.0013638673752378594, relative_step_length=0.8862269254525446, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.0410221, 1.1 ]), radius=0.003077919065800019, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([36, 38, 41, 42, 43, 44, 45]), model=ScalarModel(intercept=328.98235930232534, linear_terms=array([ 0.00410544, -1.13528318]), square_terms=array([[ 1.72838051e-04, -7.01449154e-03],
+ [-7.01449154e-03, 2.91327554e-01]]), scale=array([0.00272773, 0.00136387]), shift=array([6.0410221 , 1.09863613])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=46, candidate_x=array([6.04374984, 1.1 ]), index=45, x=array([6.0410221, 1.1 ]), fval=327.98556983184415, rho=-2.667493300675556, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([36, 38, 41, 42, 43, 44, 45]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.0410221, 1.1 ]), radius=0.0015389595329000094, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([38, 41, 43, 44, 45, 46]), model=ScalarModel(intercept=328.44972430739466, linear_terms=array([ 0.00202841, -0.49477126]), square_terms=array([[ 4.29037016e-05, -1.74571541e-03],
+ [-1.74571541e-03, 7.28320789e-02]]), scale=array([0.00136387, 0.00068193]), shift=array([6.0410221 , 1.09931807])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=47, candidate_x=array([6.03965824, 1.1 ]), index=47, x=array([6.03965824, 1.1 ]), fval=327.98429259556826, rho=4.889085736765836, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([38, 41, 43, 44, 45, 46]), old_indices_discarded=array([], dtype=int64), step_length=0.0013638673752378594, relative_step_length=0.8862269254525446, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03965824, 1.1 ]), radius=0.003077919065800019, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([36, 38, 41, 42, 43, 44, 45, 46, 47]), model=ScalarModel(intercept=328.97968288575123, linear_terms=array([ 0.00413303, -1.13194477]), square_terms=array([[ 1.72725488e-04, -7.01224971e-03],
+ [-7.01224971e-03, 2.91334569e-01]]), scale=array([0.00272773, 0.00136387]), shift=array([6.03965824, 1.09863613])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=48, candidate_x=array([6.04238597, 1.1 ]), index=47, x=array([6.03965824, 1.1 ]), fval=327.98429259556826, rho=-1.5372396672850397, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([36, 38, 41, 42, 43, 44, 45, 46, 47]), old_indices_discarded=array([37]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03965824, 1.1 ]), radius=0.0015389595329000094, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([36, 38, 41, 43, 44, 45, 46, 47, 48]), model=ScalarModel(intercept=328.4488892463763, linear_terms=array([ 0.00084455, -0.49316821]), square_terms=array([[ 4.31680626e-05, -1.75188159e-03],
+ [-1.75188159e-03, 7.28330788e-02]]), scale=array([0.00136387, 0.00068193]), shift=array([6.03965824, 1.09931807])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=49, candidate_x=array([6.0410221, 1.1 ]), index=47, x=array([6.03965824, 1.1 ]), fval=327.98429259556826, rho=-1.4419895015300965, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([36, 38, 41, 43, 44, 45, 46, 47, 48]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03965824, 1.1 ]), radius=0.0007694797664500047, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([38, 45, 47, 48, 49]), model=ScalarModel(intercept=81.99595206365382, linear_terms=array([5.55897644e-04, 1.63991904e+02]), square_terms=array([[1.10604556e-05, 5.55897644e-04],
+ [5.55897644e-04, 1.63991904e+02]]), scale=array([0.00068193, 0.00034097]), shift=array([6.03965824, 1.09965903])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=50, candidate_x=array([6.03965769, 1.09931807]), index=47, x=array([6.03965824, 1.1 ]), fval=327.98429259556826, rho=-0.0014840750756800157, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([38, 45, 47, 48, 49]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.03965824, 1.1 ]), radius=0.00038473988322500235, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([45, 47, 49, 50]), model=ScalarModel(intercept=328.0990818934895, linear_terms=array([ 0.00042599, -0.11708902]), square_terms=array([[ 2.81678772e-06, -1.12313719e-04],
+ [-1.12313719e-04, 4.59943641e-03]]), scale=array([0.00034097, 0.00017048]), shift=array([6.03965824, 1.09982952])), vector_model=VectorModel(intercepts=array([ 0.16523807, 0.51247424, 0.62394851, 1.25726166,
+ 1.80642194, 2.52072732, 2.53217272, -1.3933831 ,
+ -3.46208642, -5.39227137, -9.89407466, -14.24933131]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7879472808448048, shift=array([7.87947281, 1.09450825])), candidate_index=51, candidate_x=array([6.03931727, 1.1 ]), index=51, x=array([6.03931727, 1.1 ]), fval=327.984001342669, rho=0.9327044045903453, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([45, 47, 49, 50]), old_indices_discarded=array([], dtype=int64), step_length=0.00034096684380990894, relative_step_length=0.8862269254536987, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 52 entries., 'history': {'params': [{'CRRA': 7.879472808448048, 'DiscFac': 1.0945082521472478}, {'CRRA': 7.181172712326096, 'DiscFac': 0.5084104012442524}, {'CRRA': 8.540392915867926, 'DiscFac': 0.5}, {'CRRA': 7.181172712326096, 'DiscFac': 0.5970983532003942}, {'CRRA': 8.317580122737366, 'DiscFac': 1.1}, {'CRRA': 8.57777290457, 'DiscFac': 0.5}, {'CRRA': 7.85919300418376, 'DiscFac': 0.5}, {'CRRA': 7.181172712326096, 'DiscFac': 0.9919024121209714}, {'CRRA': 8.57777290457, 'DiscFac': 0.7986351878702428}, {'CRRA': 8.57777290457, 'DiscFac': 1.0946879586797}, {'CRRA': 7.181172712326096, 'DiscFac': 1.0326803426307771}, {'CRRA': 7.258391150157858, 'DiscFac': 0.5}, {'CRRA': 7.443120349395053, 'DiscFac': 1.1}, {'CRRA': 8.57777290457, 'DiscFac': 1.1}, {'CRRA': 8.228622856509025, 'DiscFac': 1.1}, {'CRRA': 7.530322760387073, 'DiscFac': 1.1}, {'CRRA': 8.926922952630978, 'DiscFac': 1.1}, {'CRRA': 8.228622856509025, 'DiscFac': 1.1}, {'CRRA': 7.87947280844805, 'DiscFac': 1.1}, {'CRRA': 7.704897784417561, 'DiscFac': 1.1}, {'CRRA': 7.617610272402318, 'DiscFac': 1.1}, {'CRRA': 7.530322760387073, 'DiscFac': 1.0563562439923782}, {'CRRA': 7.508500882383262, 'DiscFac': 1.1}, {'CRRA': 7.46485712637564, 'DiscFac': 1.1}, {'CRRA': 7.377569614360396, 'DiscFac': 1.1}, {'CRRA': 7.202994590329908, 'DiscFac': 1.1}, {'CRRA': 6.853844542268932, 'DiscFac': 1.1}, {'CRRA': 6.15554444614698, 'DiscFac': 1.1}, {'CRRA': 4.758944253903075, 'DiscFac': 0.9940883236648268}, {'CRRA': 5.457244350025028, 'DiscFac': 0.9849122291338899}, {'CRRA': 6.504694494207956, 'DiscFac': 1.1}, {'CRRA': 5.980969422116492, 'DiscFac': 1.1}, {'CRRA': 6.330119470177468, 'DiscFac': 1.1}, {'CRRA': 5.999242446016718, 'DiscFac': 1.1}, {'CRRA': 6.173817470047206, 'DiscFac': 0.925424975969512}, {'CRRA': 6.173817470047206, 'DiscFac': 1.1}, {'CRRA': 6.0327120492023605, 'DiscFac': 1.1}, {'CRRA': 6.0255696487355195, 'DiscFac': 1.1}, {'CRRA': 6.042385970442813, 'DiscFac': 1.1}, {'CRRA': 6.086029726450435, 'DiscFac': 1.1}, {'CRRA': 6.042385970442813, 'DiscFac': 1.0563562439923782}, {'CRRA': 6.035161837634803, 'DiscFac': 1.1}, {'CRRA': 6.031475031440907, 'DiscFac': 1.1}, {'CRRA': 6.042385970442813, 'DiscFac': 1.0945445304990473}, {'CRRA': 6.045113705193289, 'DiscFac': 1.1}, {'CRRA': 6.041022103067575, 'DiscFac': 1.1}, {'CRRA': 6.043749837818051, 'DiscFac': 1.1}, {'CRRA': 6.039658235692337, 'DiscFac': 1.1}, {'CRRA': 6.042385970442814, 'DiscFac': 1.1}, {'CRRA': 6.041022103067575, 'DiscFac': 1.1}, {'CRRA': 6.039657692952983, 'DiscFac': 1.099318066313301}, {'CRRA': 6.039317268848527, 'DiscFac': 1.1}], 'criterion': [362.2293826755968, 1187.743679800527, 1159.7095068806466, 1174.0418141897962, 355.68144300647845, 1158.9666410651712, 1173.5778504276218, 864.5109614488913, 1088.0491210454918, 373.08167200198454, 642.3720812043641, 1187.1737226708901, 342.372356550768, 359.56273854626926, 354.28543556924024, 343.61078177168645, 364.74171151073244, 354.28543556924024, 348.88649468702897, 346.2236761294166, 344.9346473761243, 510.0055207370543, 343.28224909887444, 342.67788390884755, 341.3356764476497, 338.7295161935011, 334.0684862360313, 328.1547443088514, 944.9326629116758, 965.8465398719559, 330.23015294186956, 328.0443136638892, 328.9403298556242, 328.01861378206365, 1091.3153770562494, 328.1879429485059, 328.0044517781902, 328.0253552638186, 327.9885858870018, 328.07914476813323, 490.1330665276323, 327.9936335742644, 328.00901523323273, 333.71177889623465, 327.9971349694465, 327.98556983184415, 327.99309918135714, 327.98429259556826, 327.9885858870018, 327.98556983184415, 328.47104519062555, 327.984001342669], 'runtime': [0.0, 1.7765155639999648, 1.8151272790000803, 1.8593051980001292, 1.8948058890000539, 1.9326183160001165, 1.9705387630001496, 2.0124783999999636, 2.0458206460002657, 2.096703477000119, 2.1292357160000392, 2.176972142000068, 2.2070135070002834, 4.35327257300014, 6.049714535000021, 7.726529704999848, 9.414594586000021, 11.075412772000163, 12.730456283999956, 14.406838406000134, 16.128083006999987, 17.833465021999928, 19.535505804999957, 21.230333686999984, 23.028694962999907, 24.711374977000105, 26.380975154000225, 28.050134140999944, 29.71698349799999, 31.416988460000084, 33.12656330100026, 34.8171338950001, 36.516174843000044, 38.212346643000274, 39.884359208000205, 41.56874796200009, 43.223786692999965, 44.90209642800028, 46.58122632100003, 48.384702152000045, 50.08727036900018, 51.832894017999934, 53.547060395000244, 55.24626221800008, 56.92538110700025, 58.679952487000264, 60.40381566099995, 62.06925174800017, 63.74787286599985, 65.45953768300024, 67.17978708300006, 68.86361415100009], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]}}], 'exploration_sample': array([[ 6.03936549, 1.1 ],
+ [12.321875 , 1.08125 ],
+ [ 2.28125 , 1.0625 ],
+ [17.6375 , 1.025 ],
+ [14.09375 , 0.9875 ],
+ [16.45625 , 0.9125 ],
+ [18.81875 , 0.5375 ],
+ [17.046875 , 0.63125 ],
+ [15.275 , 0.65 ],
+ [11.73125 , 0.7625 ],
+ [ 7.596875 , 0.93125 ],
+ [10.55 , 0.8 ],
+ [12.9125 , 0.575 ],
+ [ 9.36875 , 0.8375 ],
+ [ 5.825 , 0.95 ],
+ [ 8.1875 , 0.725 ],
+ [ 7.00625 , 0.6125 ],
+ [ 3.4625 , 0.875 ],
+ [ 4.64375 , 0.6875 ],
+ [ 2.871875 , 0.78125 ]]), 'exploration_results': array([ 327.98396556, 444.08066157, 540.65943804, 544.96572798,
+ 689.47008041, 769.45866328, 909.59665878, 921.36892514,
+ 962.43294355, 1011.74494613, 1024.37390697, 1032.75469874,
+ 1035.57943478, 1049.83280992, 1065.59145403, 1123.108822 ,
+ 1175.63544527, 1221.64398624, 1232.43946077, 1265.07252504])}}"
diff --git a/content/tables/min/IndShockSub(Stock)Market_estimate_results.csv b/content/tables/min/IndShockSub(Stock)Market_estimate_results.csv
new file mode 100644
index 0000000..6e78c41
--- /dev/null
+++ b/content/tables/min/IndShockSub(Stock)Market_estimate_results.csv
@@ -0,0 +1,2278 @@
+CRRA,7.14171909860584
+DiscFac,0.9702277827402849
+time_to_estimate,73.5582926273346
+params,"{'CRRA': 7.14171909860584, 'DiscFac': 0.9702277827402849}"
+criterion,533.1537602800875
+start_criterion,533.15737536874
+start_params,"{'CRRA': 7.14177124762114, 'DiscFac': 0.9700614043534316}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,Absolute params change smaller than tolerance.
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 7.14177124762114, 'DiscFac': 0.9700614043534316}, {'CRRA': 6.7868466809109, 'DiscFac': 0.5}, {'CRRA': 7.774694245127759, 'DiscFac': 0.5}, {'CRRA': 6.508848250114521, 'DiscFac': 0.5822476891055735}, {'CRRA': 7.1224518033555935, 'DiscFac': 0.5}, {'CRRA': 6.508848250114521, 'DiscFac': 1.1}, {'CRRA': 7.774694245127759, 'DiscFac': 1.0997076620875013}, {'CRRA': 7.774694245127759, 'DiscFac': 0.5}, {'CRRA': 7.774694245127759, 'DiscFac': 0.8015740448404156}, {'CRRA': 6.508848250114521, 'DiscFac': 0.86701952781014}, {'CRRA': 6.643685659085663, 'DiscFac': 1.1}, {'CRRA': 6.7385739033781045, 'DiscFac': 0.5}, {'CRRA': 6.952085805903453, 'DiscFac': 1.1}, {'CRRA': 6.508848250114521, 'DiscFac': 0.8589548110844714}, {'CRRA': 7.458232746374449, 'DiscFac': 0.7931436368201807}, {'CRRA': 6.983540498244485, 'DiscFac': 0.895173793706215}, {'CRRA': 7.228788139736241, 'DiscFac': 0.9428726530440706}, {'CRRA': 7.097118053919887, 'DiscFac': 0.9665399827624269}, {'CRRA': 7.164075291790564, 'DiscFac': 0.9691220965048899}, {'CRRA': 7.130654871032354, 'DiscFac': 0.9728334071792328}, {'CRRA': 7.136152673415857, 'DiscFac': 0.9676722997627686}, {'CRRA': 7.144569087997866, 'DiscFac': 0.9705858692354545}, {'CRRA': 7.141216169840549, 'DiscFac': 0.9713410805045143}, {'CRRA': 7.141768129279196, 'DiscFac': 0.9693639727263295}, {'CRRA': 7.1421045480761505, 'DiscFac': 0.9701699258755666}, {'CRRA': 7.14171909860584, 'DiscFac': 0.9702277827402849}], 'criterion': [533.15737536874, 1161.6255596324959, 1125.3550485373012, 1148.0325263179116, 1148.9622366552176, 1115.600102107612, 1072.682807744145, 1125.3550485373012, 814.3281527350895, 762.7520449523593, 1109.3316900326913, 1163.50801717681, 1096.7008859842308, 785.9518656250486, 860.9640525487661, 648.6439339079293, 548.8324203759328, 533.8638831122132, 533.4640229418753, 533.537825382944, 533.5621230706874, 533.2947213944947, 533.3675712639503, 533.4630789324145, 533.1576972061284, 533.1537602800875], 'runtime': [0.0, 1.3984181969999554, 1.4335604479999802, 1.467527397999902, 1.5055896680000842, 1.5399199890000546, 1.574796397, 1.6134832329998972, 1.6568872610000653, 1.7109269620000305, 1.750221017000058, 1.7807563960000152, 1.84237283199991, 3.529250513000079, 4.813397466999959, 6.06371923100005, 7.346313510000073, 8.639765625999871, 9.935525670000061, 11.23562790699998, 12.586682291999978, 13.944498423999903, 15.273930696999969, 16.61528579600008, 17.93765505500005, 19.28534189800007], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]}"
+convergence_report,
+multistart_info,"{'start_parameters': [{'CRRA': 7.14177124762114, 'DiscFac': 0.9700614043534316}, {'CRRA': 7.275031175627114, 'DiscFac': 0.9588114544912715}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute params change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 6.781e-06* 6.781e-06*
+relative_params_change 0.0001716 0.0001716
+absolute_criterion_change 0.003615 0.003615
+absolute_params_change 0.0001744 0.0001744
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.), Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute params change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 7.135e-06* 0.002522
+relative_params_change 0.0007284 0.01496
+absolute_criterion_change 0.003805 1.345
+absolute_params_change 0.0007105 0.09367
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.)], 'exploration_sample': [{'CRRA': 7.14177124762114, 'DiscFac': 0.9700614043534316}, {'CRRA': 7.596874999999999, 'DiscFac': 0.9312500000000001}, {'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 16.45625, 'DiscFac': 0.9125000000000001}, {'CRRA': 17.046875, 'DiscFac': 0.6312500000000001}, {'CRRA': 9.368749999999999, 'DiscFac': 0.8375}, {'CRRA': 10.549999999999999, 'DiscFac': 0.8}, {'CRRA': 11.73125, 'DiscFac': 0.7625000000000001}, {'CRRA': 15.274999999999999, 'DiscFac': 0.65}, {'CRRA': 18.81875, 'DiscFac': 0.5375}, {'CRRA': 14.093749999999998, 'DiscFac': 0.9875}, {'CRRA': 12.9125, 'DiscFac': 0.575}, {'CRRA': 17.6375, 'DiscFac': 1.0250000000000001}, {'CRRA': 8.1875, 'DiscFac': 0.7250000000000001}, {'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 7.00625, 'DiscFac': 0.6125}, {'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 2.871875, 'DiscFac': 0.78125}, {'CRRA': 2.28125, 'DiscFac': 1.0625}], 'exploration_results': array([ 533.15737537, 554.91392947, 580.45087475, 623.67135041,
+ 630.89444653, 637.20876422, 645.36720654, 650.8682765 ,
+ 661.36967475, 665.67712442, 701.74175737, 833.17265466,
+ 899.56232297, 924.72647063, 987.48155993, 1111.46554906,
+ 1124.06873967, 1196.97223495, 1247.86777405, 1292.92183431])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.714177124762114, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=533.15737536874, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=0, candidate_x=array([7.14177125, 0.9700614 ]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.714177124762114, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=442.1495797287485, linear_terms=array([ 1.41452419, -238.64908191]), square_terms=array([[8.82252168e-01, 2.88981448e+01],
+ [2.88981448e+01, 1.36145238e+03]]), scale=array([0.632923, 0.3 ]), shift=array([7.14177125, 0.8 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=13, candidate_x=array([6.50884825, 0.85895481]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-2.28307560842845, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.357088562381057, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 4, 6, 9, 10, 11, 12, 13]), model=ScalarModel(intercept=422.6414371114164, linear_terms=array([ -4.184942 , 114.47022955]), square_terms=array([[ 28.6033514 , 131.8146705 ],
+ [131.8146705 , 657.10282209]]), scale=array([0.3164615 , 0.22320005]), shift=array([7.14177125, 0.87679995])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=14, candidate_x=array([7.45823275, 0.79314364]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-2.321101997346237, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 4, 6, 9, 10, 11, 12, 13]), old_indices_discarded=array([2, 3, 5, 7, 8]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.1785442811905285, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 4, 9, 10, 11, 12, 13, 14]), model=ScalarModel(intercept=484.33037893683667, linear_terms=array([ 3.99179309, 119.65638941]), square_terms=array([[7.78942951e-02, 3.82963431e+00],
+ [3.82963431e+00, 2.74752036e+02]]), scale=array([0.15823075, 0.14408467]), shift=array([7.14177125, 0.95591533])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=15, candidate_x=array([6.9835405 , 0.89517379]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-2.78689113089774, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 4, 9, 10, 11, 12, 13, 14]), old_indices_discarded=array([2, 3, 5, 6, 7, 8]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.08927214059526425, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 14, 15]), model=ScalarModel(intercept=499.0532038884674, linear_terms=array([9.04855388e-02, 1.02982568e+02]), square_terms=array([[ 4.87329587, 47.47303548],
+ [ 47.47303548, 480.20443204]]), scale=0.08927214059526425, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=16, candidate_x=array([7.22878814, 0.94287265]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-0.7542207154863827, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.04463607029763213, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 15, 16]), model=ScalarModel(intercept=533.1573753687401, linear_terms=array([1.83566489, 8.0288301 ]), square_terms=array([[8.68328033e-03, 4.45498440e-01],
+ [4.45498440e-01, 9.43298357e+01]]), scale=0.04463607029763213, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=17, candidate_x=array([7.09711805, 0.96653998]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-0.33065015869998954, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.022318035148816064, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17]), model=ScalarModel(intercept=533.1573753687401, linear_terms=array([-0.14937063, 0.59885935]), square_terms=array([[9.78342324e-03, 5.02961858e-01],
+ [5.02961858e-01, 2.60110124e+01]]), scale=0.022318035148816064, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=18, candidate_x=array([7.16407529, 0.9691221 ]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-1.8283997882836927, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.011159017574408032, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 18]), model=ScalarModel(intercept=533.1573753687401, linear_terms=array([ 0.07909469, -1.65056925]), square_terms=array([[1.77756833e-03, 1.10987896e-01],
+ [1.10987896e-01, 6.98434777e+00]]), scale=0.011159017574408032, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=19, candidate_x=array([7.13065487, 0.97283341]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-1.2685892957313123, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.005579508787204016, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 18, 19]), model=ScalarModel(intercept=533.1573753687384, linear_terms=array([0.10886642, 0.82071015]), square_terms=array([[4.64204757e-04, 2.81652064e-02],
+ [2.81652064e-02, 1.75477789e+00]]), scale=0.005579508787204016, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=20, candidate_x=array([7.13615267, 0.9676723 ]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-1.4063386870873529, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.002789754393602008, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 19, 20]), model=ScalarModel(intercept=533.1573753687398, linear_terms=array([-0.07319973, -0.10148276]), square_terms=array([[1.16420387e-04, 6.43434400e-03],
+ [6.43434400e-03, 4.33820453e-01]]), scale=0.002789754393602008, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=21, candidate_x=array([7.14456909, 0.97058587]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-1.6438304158523886, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.001394877196801004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 20, 21]), model=ScalarModel(intercept=533.1573753687402, linear_terms=array([ 0.16084792, -0.51508901]), square_terms=array([[5.82400978e-05, 1.92413731e-04],
+ [1.92413731e-04, 1.14954939e-01]]), scale=0.001394877196801004, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=22, candidate_x=array([7.14121617, 0.97134108]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-0.4305118795095497, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.000697438598400502, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 21, 22]), model=ScalarModel(intercept=533.1573753687398, linear_terms=array([0.01410848, 0.09622588]), square_terms=array([[3.52531352e-06, 2.52424871e-04],
+ [2.52424871e-04, 2.68727971e-02]]), scale=0.000697438598400502, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=23, candidate_x=array([7.14176813, 0.96936397]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-3.6898109781146147, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.000348719299200251, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 22, 23]), model=ScalarModel(intercept=533.1573753687397, linear_terms=array([-0.43619623, -0.14415327]), square_terms=array([[0.00042869, 0.00019034],
+ [0.00019034, 0.00674808]]), scale=0.000348719299200251, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=24, candidate_x=array([7.14210455, 0.97016993]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-0.0006978398706696238, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.0001743596496001255, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 23, 24]), model=ScalarModel(intercept=533.1573753687401, linear_terms=array([ 0.0238168 , -0.07315828]), square_terms=array([[ 1.33108636e-06, -9.62454114e-07],
+ [-9.62454114e-07, 1.68745639e-03]]), scale=0.0001743596496001255, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=25, candidate_x=array([7.1417191 , 0.97022778]), index=25, x=array([7.1417191 , 0.97022778]), fval=533.1537602800875, rho=0.04746438706449571, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.00017435964960002963, relative_step_length=0.9999999999994501, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 26 entries., 'multistart_info': {'start_parameters': [array([7.14177125, 0.9700614 ]), array([7.27503118, 0.95881145])], 'local_optima': [{'solution_x': array([7.1417191 , 0.97022778]), 'solution_criterion': 533.1537602800875, 'states': [State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.714177124762114, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=533.15737536874, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=0, candidate_x=array([7.14177125, 0.9700614 ]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.714177124762114, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=442.1495797287485, linear_terms=array([ 1.41452419, -238.64908191]), square_terms=array([[8.82252168e-01, 2.88981448e+01],
+ [2.88981448e+01, 1.36145238e+03]]), scale=array([0.632923, 0.3 ]), shift=array([7.14177125, 0.8 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=13, candidate_x=array([6.50884825, 0.85895481]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-2.28307560842845, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.357088562381057, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 4, 6, 9, 10, 11, 12, 13]), model=ScalarModel(intercept=422.6414371114164, linear_terms=array([ -4.184942 , 114.47022955]), square_terms=array([[ 28.6033514 , 131.8146705 ],
+ [131.8146705 , 657.10282209]]), scale=array([0.3164615 , 0.22320005]), shift=array([7.14177125, 0.87679995])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=14, candidate_x=array([7.45823275, 0.79314364]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-2.321101997346237, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 4, 6, 9, 10, 11, 12, 13]), old_indices_discarded=array([2, 3, 5, 7, 8]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.1785442811905285, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 4, 9, 10, 11, 12, 13, 14]), model=ScalarModel(intercept=484.33037893683667, linear_terms=array([ 3.99179309, 119.65638941]), square_terms=array([[7.78942951e-02, 3.82963431e+00],
+ [3.82963431e+00, 2.74752036e+02]]), scale=array([0.15823075, 0.14408467]), shift=array([7.14177125, 0.95591533])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=15, candidate_x=array([6.9835405 , 0.89517379]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-2.78689113089774, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 4, 9, 10, 11, 12, 13, 14]), old_indices_discarded=array([2, 3, 5, 6, 7, 8]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.08927214059526425, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 14, 15]), model=ScalarModel(intercept=499.0532038884674, linear_terms=array([9.04855388e-02, 1.02982568e+02]), square_terms=array([[ 4.87329587, 47.47303548],
+ [ 47.47303548, 480.20443204]]), scale=0.08927214059526425, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=16, candidate_x=array([7.22878814, 0.94287265]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-0.7542207154863827, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.04463607029763213, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 15, 16]), model=ScalarModel(intercept=533.1573753687401, linear_terms=array([1.83566489, 8.0288301 ]), square_terms=array([[8.68328033e-03, 4.45498440e-01],
+ [4.45498440e-01, 9.43298357e+01]]), scale=0.04463607029763213, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=17, candidate_x=array([7.09711805, 0.96653998]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-0.33065015869998954, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.022318035148816064, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17]), model=ScalarModel(intercept=533.1573753687401, linear_terms=array([-0.14937063, 0.59885935]), square_terms=array([[9.78342324e-03, 5.02961858e-01],
+ [5.02961858e-01, 2.60110124e+01]]), scale=0.022318035148816064, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=18, candidate_x=array([7.16407529, 0.9691221 ]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-1.8283997882836927, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.011159017574408032, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 18]), model=ScalarModel(intercept=533.1573753687401, linear_terms=array([ 0.07909469, -1.65056925]), square_terms=array([[1.77756833e-03, 1.10987896e-01],
+ [1.10987896e-01, 6.98434777e+00]]), scale=0.011159017574408032, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=19, candidate_x=array([7.13065487, 0.97283341]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-1.2685892957313123, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.005579508787204016, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 18, 19]), model=ScalarModel(intercept=533.1573753687384, linear_terms=array([0.10886642, 0.82071015]), square_terms=array([[4.64204757e-04, 2.81652064e-02],
+ [2.81652064e-02, 1.75477789e+00]]), scale=0.005579508787204016, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=20, candidate_x=array([7.13615267, 0.9676723 ]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-1.4063386870873529, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.002789754393602008, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 19, 20]), model=ScalarModel(intercept=533.1573753687398, linear_terms=array([-0.07319973, -0.10148276]), square_terms=array([[1.16420387e-04, 6.43434400e-03],
+ [6.43434400e-03, 4.33820453e-01]]), scale=0.002789754393602008, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=21, candidate_x=array([7.14456909, 0.97058587]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-1.6438304158523886, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.001394877196801004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 20, 21]), model=ScalarModel(intercept=533.1573753687402, linear_terms=array([ 0.16084792, -0.51508901]), square_terms=array([[5.82400978e-05, 1.92413731e-04],
+ [1.92413731e-04, 1.14954939e-01]]), scale=0.001394877196801004, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=22, candidate_x=array([7.14121617, 0.97134108]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-0.4305118795095497, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.000697438598400502, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 21, 22]), model=ScalarModel(intercept=533.1573753687398, linear_terms=array([0.01410848, 0.09622588]), square_terms=array([[3.52531352e-06, 2.52424871e-04],
+ [2.52424871e-04, 2.68727971e-02]]), scale=0.000697438598400502, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=23, candidate_x=array([7.14176813, 0.96936397]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-3.6898109781146147, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.000348719299200251, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 22, 23]), model=ScalarModel(intercept=533.1573753687397, linear_terms=array([-0.43619623, -0.14415327]), square_terms=array([[0.00042869, 0.00019034],
+ [0.00019034, 0.00674808]]), scale=0.000348719299200251, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=24, candidate_x=array([7.14210455, 0.97016993]), index=0, x=array([7.14177125, 0.9700614 ]), fval=533.15737536874, rho=-0.0006978398706696238, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.14177125, 0.9700614 ]), radius=0.0001743596496001255, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 23, 24]), model=ScalarModel(intercept=533.1573753687401, linear_terms=array([ 0.0238168 , -0.07315828]), square_terms=array([[ 1.33108636e-06, -9.62454114e-07],
+ [-9.62454114e-07, 1.68745639e-03]]), scale=0.0001743596496001255, shift=array([7.14177125, 0.9700614 ])), vector_model=VectorModel(intercepts=array([ 1.55437059, 3.34214162, 4.09540253, 5.14811998,
+ 6.18204764, 7.58497401, 7.99989814, -1.17627655,
+ -4.69083048, -6.78876609, -9.69389851, -12.37341873]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.714177124762114, shift=array([7.14177125, 0.9700614 ])), candidate_index=25, candidate_x=array([7.1417191 , 0.97022778]), index=25, x=array([7.1417191 , 0.97022778]), fval=533.1537602800875, rho=0.04746438706449571, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.00017435964960002963, relative_step_length=0.9999999999994501, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute params change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 26 entries., 'history': {'params': [{'CRRA': 7.14177124762114, 'DiscFac': 0.9700614043534316}, {'CRRA': 6.7868466809109, 'DiscFac': 0.5}, {'CRRA': 7.774694245127759, 'DiscFac': 0.5}, {'CRRA': 6.508848250114521, 'DiscFac': 0.5822476891055735}, {'CRRA': 7.1224518033555935, 'DiscFac': 0.5}, {'CRRA': 6.508848250114521, 'DiscFac': 1.1}, {'CRRA': 7.774694245127759, 'DiscFac': 1.0997076620875013}, {'CRRA': 7.774694245127759, 'DiscFac': 0.5}, {'CRRA': 7.774694245127759, 'DiscFac': 0.8015740448404156}, {'CRRA': 6.508848250114521, 'DiscFac': 0.86701952781014}, {'CRRA': 6.643685659085663, 'DiscFac': 1.1}, {'CRRA': 6.7385739033781045, 'DiscFac': 0.5}, {'CRRA': 6.952085805903453, 'DiscFac': 1.1}, {'CRRA': 6.508848250114521, 'DiscFac': 0.8589548110844714}, {'CRRA': 7.458232746374449, 'DiscFac': 0.7931436368201807}, {'CRRA': 6.983540498244485, 'DiscFac': 0.895173793706215}, {'CRRA': 7.228788139736241, 'DiscFac': 0.9428726530440706}, {'CRRA': 7.097118053919887, 'DiscFac': 0.9665399827624269}, {'CRRA': 7.164075291790564, 'DiscFac': 0.9691220965048899}, {'CRRA': 7.130654871032354, 'DiscFac': 0.9728334071792328}, {'CRRA': 7.136152673415857, 'DiscFac': 0.9676722997627686}, {'CRRA': 7.144569087997866, 'DiscFac': 0.9705858692354545}, {'CRRA': 7.141216169840549, 'DiscFac': 0.9713410805045143}, {'CRRA': 7.141768129279196, 'DiscFac': 0.9693639727263295}, {'CRRA': 7.1421045480761505, 'DiscFac': 0.9701699258755666}, {'CRRA': 7.14171909860584, 'DiscFac': 0.9702277827402849}], 'criterion': [533.15737536874, 1161.6255596324959, 1125.3550485373012, 1148.0325263179116, 1148.9622366552176, 1115.600102107612, 1072.682807744145, 1125.3550485373012, 814.3281527350895, 762.7520449523593, 1109.3316900326913, 1163.50801717681, 1096.7008859842308, 785.9518656250486, 860.9640525487661, 648.6439339079293, 548.8324203759328, 533.8638831122132, 533.4640229418753, 533.537825382944, 533.5621230706874, 533.2947213944947, 533.3675712639503, 533.4630789324145, 533.1576972061284, 533.1537602800875], 'runtime': [0.0, 1.3984181969999554, 1.4335604479999802, 1.467527397999902, 1.5055896680000842, 1.5399199890000546, 1.574796397, 1.6134832329998972, 1.6568872610000653, 1.7109269620000305, 1.750221017000058, 1.7807563960000152, 1.84237283199991, 3.529250513000079, 4.813397466999959, 6.06371923100005, 7.346313510000073, 8.639765625999871, 9.935525670000061, 11.23562790699998, 12.586682291999978, 13.944498423999903, 15.273930696999969, 16.61528579600008, 17.93765505500005, 19.28534189800007], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]}, 'multistart_info': {...}}, {'solution_x': array([7.13621442, 0.96990146]), 'solution_criterion': 533.2440439987661, 'states': [State(trustregion=Region(center=array([7.27503118, 0.95881145]), radius=0.7275031175627115, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=535.8336101105399, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), vector_model=VectorModel(intercepts=array([ 1.52500338, 3.24924761, 3.93209507, 4.90414442,
+ 5.84131877, 7.11596859, 7.37627124, -1.95398176,
+ -5.32763855, -7.27033929, -10.02191597, -12.60049836]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), candidate_index=0, candidate_x=array([7.27503118, 0.95881145]), index=0, x=array([7.27503118, 0.95881145]), fval=535.8336101105399, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([7.27503118, 0.95881145]), radius=0.7275031175627115, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=400.46594079211053, linear_terms=array([ 3.47010519, -78.89673366]), square_terms=array([[1.42101445e-01, 2.37200813e-01],
+ [2.37200813e-01, 1.39357169e+03]]), scale=array([0.64473285, 0.3 ]), shift=array([7.27503118, 0.8 ])), vector_model=VectorModel(intercepts=array([ 1.52500338, 3.24924761, 3.93209507, 4.90414442,
+ 5.84131877, 7.11596859, 7.37627124, -1.95398176,
+ -5.32763855, -7.27033929, -10.02191597, -12.60049836]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), candidate_index=13, candidate_x=array([6.63029832, 0.81703549]), index=0, x=array([7.27503118, 0.95881145]), fval=535.8336101105399, rho=-2.1996865150337928, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.27503118, 0.95881145]), radius=0.36375155878135573, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 5, 6, 10, 11, 12, 13]), model=ScalarModel(intercept=417.31221688662185, linear_terms=array([-0.54948831, 87.98913779]), square_terms=array([[ 1.47910127, 36.96601123],
+ [ 36.96601123, 942.9518399 ]]), scale=array([0.32236643, 0.23177749]), shift=array([7.27503118, 0.86822251])), vector_model=VectorModel(intercepts=array([ 1.52500338, 3.24924761, 3.93209507, 4.90414442,
+ 5.84131877, 7.11596859, 7.37627124, -1.95398176,
+ -5.32763855, -7.27033929, -10.02191597, -12.60049836]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), candidate_index=14, candidate_x=array([7.5973976 , 0.83750855]), index=0, x=array([7.27503118, 0.95881145]), fval=535.8336101105399, rho=-1.8353928289069765, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 5, 6, 10, 11, 12, 13]), old_indices_discarded=array([3, 4, 7, 8, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.27503118, 0.95881145]), radius=0.18187577939067787, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 5, 6, 10, 11, 12, 13, 14]), model=ScalarModel(intercept=479.25633430231835, linear_terms=array([ -0.9605358, 198.4344603]), square_terms=array([[ 3.53736626e-01, -1.25212887e+01],
+ [-1.25212887e+01, 5.27262999e+02]]), scale=array([0.16118321, 0.15118588]), shift=array([7.27503118, 0.94881412])), vector_model=VectorModel(intercepts=array([ 1.52500338, 3.24924761, 3.93209507, 4.90414442,
+ 5.84131877, 7.11596859, 7.37627124, -1.95398176,
+ -5.32763855, -7.27033929, -10.02191597, -12.60049836]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), candidate_index=15, candidate_x=array([7.11384796, 0.88832527]), index=0, x=array([7.27503118, 0.95881145]), fval=535.8336101105399, rho=-2.1919235286030267, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 5, 6, 10, 11, 12, 13, 14]), old_indices_discarded=array([2, 3, 4, 7, 8, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.27503118, 0.95881145]), radius=0.09093788969533893, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 14, 15]), model=ScalarModel(intercept=535.83361011054, linear_terms=array([-2.60296232, -6.42359962]), square_terms=array([[ 0.62558151, 13.75829417],
+ [ 13.75829417, 305.6691718 ]]), scale=0.09093788969533893, shift=array([7.27503118, 0.95881145])), vector_model=VectorModel(intercepts=array([ 1.52500338, 3.24924761, 3.93209507, 4.90414442,
+ 5.84131877, 7.11596859, 7.37627124, -1.95398176,
+ -5.32763855, -7.27033929, -10.02191597, -12.60049836]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), candidate_index=16, candidate_x=array([7.36596367, 0.95664593]), index=0, x=array([7.27503118, 0.95881145]), fval=535.8336101105399, rho=-0.17714922152722917, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.27503118, 0.95881145]), radius=0.04546894484766947, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 15, 16]), model=ScalarModel(intercept=535.8336101105402, linear_terms=array([ 0.05515596, -6.31406938]), square_terms=array([[2.36105391e-02, 1.41653415e+00],
+ [1.41653415e+00, 8.63639556e+01]]), scale=0.04546894484766947, shift=array([7.27503118, 0.95881145])), vector_model=VectorModel(intercepts=array([ 1.52500338, 3.24924761, 3.93209507, 4.90414442,
+ 5.84131877, 7.11596859, 7.37627124, -1.95398176,
+ -5.32763855, -7.27033929, -10.02191597, -12.60049836]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), candidate_index=17, candidate_x=array([7.22962273, 0.96287303]), index=17, x=array([7.22962273, 0.96287303]), fval=534.588843709447, rho=3.198849368892046, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.04558972329311975, relative_step_length=1.002656284324497, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.22962273, 0.96287303]), radius=0.09093788969533893, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 14, 15, 16, 17]), model=ScalarModel(intercept=536.8953875202508, linear_terms=array([-2.01628042, 0.31734197]), square_terms=array([[ 0.53816169, 12.68599992],
+ [ 12.68599992, 301.6904951 ]]), scale=0.09093788969533893, shift=array([7.22962273, 0.96287303])), vector_model=VectorModel(intercepts=array([ 1.52500338, 3.24924761, 3.93209507, 4.90414442,
+ 5.84131877, 7.11596859, 7.37627124, -1.95398176,
+ -5.32763855, -7.27033929, -10.02191597, -12.60049836]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), candidate_index=18, candidate_x=array([7.32047741, 0.95898305]), index=17, x=array([7.22962273, 0.96287303]), fval=534.588843709447, rho=-0.5149227125446602, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 15, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.22962273, 0.96287303]), radius=0.04546894484766947, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 15, 16, 17, 18]), model=ScalarModel(intercept=534.7951734150251, linear_terms=array([ 0.37660787, -0.24339639]), square_terms=array([[1.90879144e-02, 1.26918342e+00],
+ [1.26918342e+00, 8.74666070e+01]]), scale=0.04546894484766947, shift=array([7.22962273, 0.96287303])), vector_model=VectorModel(intercepts=array([ 1.52500338, 3.24924761, 3.93209507, 4.90414442,
+ 5.84131877, 7.11596859, 7.37627124, -1.95398176,
+ -5.32763855, -7.27033929, -10.02191597, -12.60049836]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), candidate_index=19, candidate_x=array([7.18416036, 0.96365584]), index=19, x=array([7.18416036, 0.96365584]), fval=534.4961590726019, rho=0.24385078198095397, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 15, 16, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.04546911152108367, relative_step_length=1.0000036656538822, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.18416036, 0.96365584]), radius=0.09093788969533893, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 14, 15, 16, 17, 18, 19]), model=ScalarModel(intercept=537.1732111300869, linear_terms=array([-1.8486363 , -1.37306878]), square_terms=array([[ 0.48035219, 12.01319527],
+ [ 12.01319527, 302.72448626]]), scale=0.09093788969533893, shift=array([7.18416036, 0.96365584])), vector_model=VectorModel(intercepts=array([ 1.52500338, 3.24924761, 3.93209507, 4.90414442,
+ 5.84131877, 7.11596859, 7.37627124, -1.95398176,
+ -5.32763855, -7.27033929, -10.02191597, -12.60049836]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), candidate_index=20, candidate_x=array([7.27504382, 0.96048049]), index=19, x=array([7.18416036, 0.96365584]), fval=534.4961590726019, rho=-0.4234582842544629, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 15, 16, 17, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.18416036, 0.96365584]), radius=0.04546894484766947, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 15, 16, 17, 18, 19, 20]), model=ScalarModel(intercept=534.462302941555, linear_terms=array([0.36485571, 0.02907571]), square_terms=array([[1.91627349e-02, 1.27347557e+00],
+ [1.27347557e+00, 8.74511060e+01]]), scale=0.04546894484766947, shift=array([7.18416036, 0.96365584])), vector_model=VectorModel(intercepts=array([ 1.52500338, 3.24924761, 3.93209507, 4.90414442,
+ 5.84131877, 7.11596859, 7.37627124, -1.95398176,
+ -5.32763855, -7.27033929, -10.02191597, -12.60049836]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), candidate_index=21, candidate_x=array([7.13869598, 0.9643001 ]), index=21, x=array([7.13869598, 0.9643001 ]), fval=534.4830529160092, rho=0.035996887089534295, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 15, 16, 17, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.04546894833187833, relative_step_length=1.0000000766283201, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.13869598, 0.9643001 ]), radius=0.022734472423834733, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([15, 17, 19, 21]), model=ScalarModel(intercept=534.4696686133611, linear_terms=array([0.02723782, 0.05853844]), square_terms=array([[6.08273978e-03, 3.62360068e-01],
+ [3.62360068e-01, 2.17695548e+01]]), scale=0.022734472423834733, shift=array([7.13869598, 0.9643001 ])), vector_model=VectorModel(intercepts=array([ 1.52500338, 3.24924761, 3.93209507, 4.90414442,
+ 5.84131877, 7.11596859, 7.37627124, -1.95398176,
+ -5.32763855, -7.27033929, -10.02191597, -12.60049836]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), candidate_index=22, candidate_x=array([7.11596363, 0.96461698]), index=21, x=array([7.13869598, 0.9643001 ]), fval=534.4830529160092, rho=-0.8752257584770998, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([15, 17, 19, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.13869598, 0.9643001 ]), radius=0.011367236211917367, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 21, 22]), model=ScalarModel(intercept=534.4830529160088, linear_terms=array([ -0.89246836, -63.20417025]), square_terms=array([[1.81314397e-02, 1.25119504e+00],
+ [1.25119504e+00, 8.65432178e+01]]), scale=0.011367236211917367, shift=array([7.13869598, 0.9643001 ])), vector_model=VectorModel(intercepts=array([ 1.52500338, 3.24924761, 3.93209507, 4.90414442,
+ 5.84131877, 7.11596859, 7.37627124, -1.95398176,
+ -5.32763855, -7.27033929, -10.02191597, -12.60049836]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), candidate_index=23, candidate_x=array([7.13048926, 0.97271764]), index=23, x=array([7.13048926, 0.97271764]), fval=533.4954041768699, rho=0.04276465971658145, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([19, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.011756065045185197, relative_step_length=1.034206101291375, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.13048926, 0.97271764]), radius=0.005683618105958683, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([21, 22, 23]), model=ScalarModel(intercept=533.4954041768697, linear_terms=array([0.00978471, 0.64478173]), square_terms=array([[4.94174323e-04, 2.97949841e-02],
+ [2.97949841e-02, 1.81603321e+00]]), scale=0.005683618105958683, shift=array([7.13048926, 0.97271764])), vector_model=VectorModel(intercepts=array([ 1.52500338, 3.24924761, 3.93209507, 4.90414442,
+ 5.84131877, 7.11596859, 7.37627124, -1.95398176,
+ -5.32763855, -7.27033929, -10.02191597, -12.60049836]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), candidate_index=24, candidate_x=array([7.13613898, 0.9706079 ]), index=24, x=array([7.13613898, 0.9706079 ]), fval=533.2478486405716, rho=2.147962831805317, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([21, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.006030784295875672, relative_step_length=1.061081899495151, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.13613898, 0.9706079 ]), radius=0.011367236211917367, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 21, 22, 23, 24]), model=ScalarModel(intercept=533.334653237849, linear_terms=array([ 0.00603185, -0.09455541]), square_terms=array([[1.95693258e-03, 1.18563575e-01],
+ [1.18563575e-01, 7.24180756e+00]]), scale=0.011367236211917367, shift=array([7.13613898, 0.9706079 ])), vector_model=VectorModel(intercepts=array([ 1.52500338, 3.24924761, 3.93209507, 4.90414442,
+ 5.84131877, 7.11596859, 7.37627124, -1.95398176,
+ -5.32763855, -7.27033929, -10.02191597, -12.60049836]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), candidate_index=25, candidate_x=array([7.12477569, 0.97094201]), index=24, x=array([7.13613898, 0.9706079 ]), fval=533.2478486405716, rho=-1.1569477008317235, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 21, 22, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.13613898, 0.9706079 ]), radius=0.005683618105958683, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([21, 22, 23, 24, 25]), model=ScalarModel(intercept=533.3075686464457, linear_terms=array([-0.00388246, -0.05444873]), square_terms=array([[4.74346475e-04, 2.91295366e-02],
+ [2.91295366e-02, 1.81095403e+00]]), scale=0.005683618105958683, shift=array([7.13613898, 0.9706079 ])), vector_model=VectorModel(intercepts=array([ 1.52500338, 3.24924761, 3.93209507, 4.90414442,
+ 5.84131877, 7.11596859, 7.37627124, -1.95398176,
+ -5.32763855, -7.27033929, -10.02191597, -12.60049836]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), candidate_index=26, candidate_x=array([7.14182461, 0.9706872 ]), index=24, x=array([7.13613898, 0.9706079 ]), fval=533.2478486405716, rho=-11.076005963470369, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([21, 22, 23, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.13613898, 0.9706079 ]), radius=0.0028418090529793417, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([21, 23, 24, 25, 26]), model=ScalarModel(intercept=533.3053166006363, linear_terms=array([-0.00015112, -0.02425646]), square_terms=array([[1.01944703e-04, 6.71780488e-03],
+ [6.71780488e-03, 4.51232908e-01]]), scale=0.0028418090529793417, shift=array([7.13613898, 0.9706079 ])), vector_model=VectorModel(intercepts=array([ 1.52500338, 3.24924761, 3.93209507, 4.90414442,
+ 5.84131877, 7.11596859, 7.37627124, -1.95398176,
+ -5.32763855, -7.27033929, -10.02191597, -12.60049836]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), candidate_index=27, candidate_x=array([7.13329976, 0.97080284]), index=24, x=array([7.13613898, 0.9706079 ]), fval=533.2478486405716, rho=-17.652484632017263, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([21, 23, 24, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.13613898, 0.9706079 ]), radius=0.0014209045264896708, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([21, 23, 24, 26, 27]), model=ScalarModel(intercept=533.3025575826287, linear_terms=array([-0.00970311, -0.01838657]), square_terms=array([[2.37642951e-05, 1.50731850e-03],
+ [1.50731850e-03, 1.12591971e-01]]), scale=0.0014209045264896708, shift=array([7.13613898, 0.9706079 ])), vector_model=VectorModel(intercepts=array([ 1.52500338, 3.24924761, 3.93209507, 4.90414442,
+ 5.84131877, 7.11596859, 7.37627124, -1.95398176,
+ -5.32763855, -7.27033929, -10.02191597, -12.60049836]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), candidate_index=28, candidate_x=array([7.13756265, 0.97080438]), index=24, x=array([7.13613898, 0.9706079 ]), fval=533.2478486405716, rho=-3.639125843439522, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([21, 23, 24, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.13613898, 0.9706079 ]), radius=0.0007104522632448354, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([24, 27, 28]), model=ScalarModel(intercept=533.2478486405727, linear_terms=array([0.00394943, 0.11045841]), square_terms=array([[7.94592327e-06, 4.89630637e-04],
+ [4.89630637e-04, 3.03637816e-02]]), scale=0.0007104522632448354, shift=array([7.13613898, 0.9706079 ])), vector_model=VectorModel(intercepts=array([ 1.52500338, 3.24924761, 3.93209507, 4.90414442,
+ 5.84131877, 7.11596859, 7.37627124, -1.95398176,
+ -5.32763855, -7.27033929, -10.02191597, -12.60049836]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7275031175627115, shift=array([7.27503118, 0.95881145])), candidate_index=29, candidate_x=array([7.13621442, 0.96990146]), index=29, x=array([7.13621442, 0.96990146]), fval=533.2440439987661, rho=0.04027969930951135, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([24, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0007104522632448244, relative_step_length=0.9999999999999845, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute params change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 30 entries., 'history': {'params': [{'CRRA': 7.275031175627114, 'DiscFac': 0.9588114544912715}, {'CRRA': 7.919764026762012, 'DiscFac': 1.1}, {'CRRA': 7.919734534674724, 'DiscFac': 0.5}, {'CRRA': 6.630298324492216, 'DiscFac': 0.5}, {'CRRA': 6.630298324492216, 'DiscFac': 0.5}, {'CRRA': 6.630298324492216, 'DiscFac': 1.1}, {'CRRA': 6.630298324492216, 'DiscFac': 1.0996216928325433}, {'CRRA': 7.919764026762012, 'DiscFac': 0.5}, {'CRRA': 7.919764026762012, 'DiscFac': 0.5}, {'CRRA': 6.630298324492216, 'DiscFac': 0.5}, {'CRRA': 7.919764026762012, 'DiscFac': 1.1}, {'CRRA': 6.630298324492216, 'DiscFac': 0.5041051123105564}, {'CRRA': 6.630298324492216, 'DiscFac': 1.1}, {'CRRA': 6.630298324492216, 'DiscFac': 0.8170354927198666}, {'CRRA': 7.597397601194563, 'DiscFac': 0.8375085489978233}, {'CRRA': 7.11384796284339, 'DiscFac': 0.8883252748541935}, {'CRRA': 7.36596366591033, 'DiscFac': 0.9566459256307757}, {'CRRA': 7.229622734980201, 'DiscFac': 0.9628730290577442}, {'CRRA': 7.32047741365065, 'DiscFac': 0.958983045900766}, {'CRRA': 7.184160362566599, 'DiscFac': 0.9636558426011357}, {'CRRA': 7.275043818986826, 'DiscFac': 0.9604804943634533}, {'CRRA': 7.138695978818029, 'DiscFac': 0.9643001040152578}, {'CRRA': 7.115963631557807, 'DiscFac': 0.96461697543051}, {'CRRA': 7.1304892635219534, 'DiscFac': 0.9727176386540811}, {'CRRA': 7.1361389843110565, 'DiscFac': 0.9706078959615811}, {'CRRA': 7.124775694873918, 'DiscFac': 0.9709420085351562}, {'CRRA': 7.1418246131708205, 'DiscFac': 0.9706871956615474}, {'CRRA': 7.133299763644233, 'DiscFac': 0.9708028396190079}, {'CRRA': 7.13756264664845, 'DiscFac': 0.9708043788439022}, {'CRRA': 7.1362144195243555, 'DiscFac': 0.9699014598732163}], 'criterion': [535.8336101105399, 1072.6565456478436, 1120.2316266866671, 1167.8042575540417, 1167.8042575540417, 1109.8840807885217, 1106.1875243019888, 1120.2305032703784, 1120.2305032703784, 1167.8042575540417, 1072.6565456478436, 1166.7745054247036, 1109.8840807885217, 885.8992108302893, 745.988981001382, 657.1309928278861, 536.2548761989075, 534.588843709447, 535.6318540114889, 534.4961590726019, 535.2560003298188, 534.4830529160092, 534.5060837016824, 533.4954041768699, 533.2478486405718, 533.2573202084424, 533.2901960706058, 533.2630440267309, 533.2877597361326, 533.2440439987661], 'runtime': [0.0, 1.4024723219999942, 1.4388733560001583, 1.4760291270001744, 1.5204015250001248, 1.557460337000066, 1.5933073060000424, 1.6330519420000655, 1.6700915129999885, 1.7067589840000892, 1.7568892110000434, 1.798135848000129, 1.8419761540001218, 3.5102549680000266, 4.88248653200003, 6.172515729999986, 7.455305024000154, 8.86595460600006, 10.179171131999965, 11.506471603000136, 12.812378022000075, 14.153470921999997, 15.470118244000105, 16.785496700000067, 18.08746162500006, 19.39189258700003, 20.683552956000085, 21.973715585000036, 23.292128334000154, 24.603098476000014], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]}}], 'exploration_sample': array([[ 7.14177125, 0.9700614 ],
+ [ 7.596875 , 0.93125 ],
+ [ 5.825 , 0.95 ],
+ [16.45625 , 0.9125 ],
+ [17.046875 , 0.63125 ],
+ [ 9.36875 , 0.8375 ],
+ [10.55 , 0.8 ],
+ [11.73125 , 0.7625 ],
+ [15.275 , 0.65 ],
+ [18.81875 , 0.5375 ],
+ [14.09375 , 0.9875 ],
+ [12.9125 , 0.575 ],
+ [17.6375 , 1.025 ],
+ [ 8.1875 , 0.725 ],
+ [12.321875 , 1.08125 ],
+ [ 7.00625 , 0.6125 ],
+ [ 3.4625 , 0.875 ],
+ [ 4.64375 , 0.6875 ],
+ [ 2.871875 , 0.78125 ],
+ [ 2.28125 , 1.0625 ]]), 'exploration_results': array([ 533.15737537, 554.91392947, 580.45087475, 623.67135041,
+ 630.89444653, 637.20876422, 645.36720654, 650.8682765 ,
+ 661.36967475, 665.67712442, 701.74175737, 833.17265466,
+ 899.56232297, 924.72647063, 987.48155993, 1111.46554906,
+ 1124.06873967, 1196.97223495, 1247.86777405, 1292.92183431])}}"
diff --git a/content/tables/min/IndShock_estimate_results.csv b/content/tables/min/IndShock_estimate_results.csv
new file mode 100644
index 0000000..126a30b
--- /dev/null
+++ b/content/tables/min/IndShock_estimate_results.csv
@@ -0,0 +1,4148 @@
+CRRA,6.518738923982261
+DiscFac,0.9740861364280193
+time_to_estimate,232.447092294693
+params,"{'CRRA': 6.518738923982261, 'DiscFac': 0.9740861364280193}"
+criterion,501.1269763500226
+start_criterion,501.1275163802119
+start_params,"{'CRRA': 6.518758193778226, 'DiscFac': 0.9740911850209896}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,Absolute criterion change smaller than tolerance.
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 6.518758193778226, 'DiscFac': 0.9740911850209896}, {'CRRA': 6.930435776304124, 'DiscFac': 0.5}, {'CRRA': 7.096468096962432, 'DiscFac': 0.5}, {'CRRA': 5.941048290594021, 'DiscFac': 0.5}, {'CRRA': 6.705153615535426, 'DiscFac': 0.5}, {'CRRA': 5.941048290594021, 'DiscFac': 1.1}, {'CRRA': 7.096468096962432, 'DiscFac': 1.1}, {'CRRA': 7.096468096962432, 'DiscFac': 0.5}, {'CRRA': 7.096468096962432, 'DiscFac': 0.7833377741815668}, {'CRRA': 5.941048290594021, 'DiscFac': 0.5799959927689777}, {'CRRA': 5.941048290594021, 'DiscFac': 1.0332928909664387}, {'CRRA': 5.941048290594021, 'DiscFac': 0.5}, {'CRRA': 6.2297845747911476, 'DiscFac': 1.1}, {'CRRA': 5.941048290594021, 'DiscFac': 0.8214633948443593}, {'CRRA': 6.807613145370329, 'DiscFac': 0.8543317905352251}, {'CRRA': 6.3743307179821755, 'DiscFac': 0.8955781211319409}, {'CRRA': 6.599493668467294, 'DiscFac': 0.9521187924148061}, {'CRRA': 6.478038657071983, 'DiscFac': 0.9690127400527637}, {'CRRA': 6.539101636686653, 'DiscFac': 0.9722812493535758}, {'CRRA': 6.508570517122245, 'DiscFac': 0.973998315531643}, {'CRRA': 6.523866400568332, 'DiscFac': 0.9752096738990378}, {'CRRA': 6.521296875753758, 'DiscFac': 0.9734910546050374}, {'CRRA': 6.517488876385145, 'DiscFac': 0.974439643595108}, {'CRRA': 6.51861333285585, 'DiscFac': 0.973471288525973}, {'CRRA': 6.518993872594638, 'DiscFac': 0.9743093353778189}, {'CRRA': 6.518624583903896, 'DiscFac': 0.9741816112149284}, {'CRRA': 6.518803789449013, 'DiscFac': 0.9740259687247471}, {'CRRA': 6.518784589267384, 'DiscFac': 0.9741209559930034}, {'CRRA': 6.518738923982261, 'DiscFac': 0.9740861364280193}], 'criterion': [501.1275163802119, 1154.3726351101354, 1148.09766251957, 1195.974792701822, 1163.2375608777152, 1428.5522412431983, 1294.4542058703007, 1148.09766251957, 902.0945418161405, 1173.9905874325736, 648.3248639009156, 1195.974792701822, 1385.7533024422844, 931.9425069323898, 744.4865312872281, 656.740266680918, 513.8743925303191, 501.95725779536633, 501.33148551773866, 501.16451799386607, 501.2133690844172, 501.19054144598135, 501.1597756573809, 501.1801324132359, 501.13805630451577, 501.15422481249345, 501.14233384565057, 501.14511952364694, 501.1269763500226], 'runtime': [0.0, 3.3772133320001103, 3.3739613640000243, 3.508898283999997, 3.5765015290000974, 3.5974512459999914, 3.667596008000146, 3.6805465340000865, 3.726354085000139, 3.8215960679999625, 3.8228244819999873, 3.8050569389999964, 3.8416639150000265, 102.65433508000001, 103.93067918199995, 105.23330888400005, 115.1877147560001, 116.5051563510001, 117.81345196899997, 119.11422845400011, 120.4153765850001, 121.71612788200014, 123.01899637600013, 127.92256343100007, 129.22530063, 130.54040302700014, 131.88101467599995, 133.22392327700004, 134.55956812399995], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]}"
+convergence_report,
+multistart_info,"{'start_parameters': [{'CRRA': 6.518758193778226, 'DiscFac': 0.9740911850209896}, {'CRRA': 6.834517669606002, 'DiscFac': 0.9615397225480846}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 1.078e-06* 1.078e-06*
+relative_params_change 5.967e-06* 5.967e-06*
+absolute_criterion_change 0.00054 0.00054
+absolute_params_change 1.992e-05 1.992e-05
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.), Minimize with 2 free parameters terminated.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 3.829e-05 0.00369
+relative_params_change 0.003188 0.01772
+absolute_criterion_change 0.01919 1.85
+absolute_params_change 0.02136 0.107
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.)], 'exploration_sample': [{'CRRA': 6.518758193778226, 'DiscFac': 0.9740911850209896}, {'CRRA': 7.596874999999999, 'DiscFac': 0.9312500000000001}, {'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 16.45625, 'DiscFac': 0.9125000000000001}, {'CRRA': 9.368749999999999, 'DiscFac': 0.8375}, {'CRRA': 17.046875, 'DiscFac': 0.6312500000000001}, {'CRRA': 10.549999999999999, 'DiscFac': 0.8}, {'CRRA': 11.73125, 'DiscFac': 0.7625000000000001}, {'CRRA': 15.274999999999999, 'DiscFac': 0.65}, {'CRRA': 18.81875, 'DiscFac': 0.5375}, {'CRRA': 14.093749999999998, 'DiscFac': 0.9875}, {'CRRA': 12.9125, 'DiscFac': 0.575}, {'CRRA': 17.6375, 'DiscFac': 1.0250000000000001}, {'CRRA': 8.1875, 'DiscFac': 0.7250000000000001}, {'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 7.00625, 'DiscFac': 0.6125}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 2.871875, 'DiscFac': 0.78125}, {'CRRA': 2.28125, 'DiscFac': 1.0625}], 'exploration_results': array([ 501.12751638, 519.11435204, 538.30979579, 597.0207673 ,
+ 611.52511798, 615.89547778, 622.99770198, 631.34502173,
+ 647.27786212, 656.04258415, 694.37527482, 830.0300439 ,
+ 914.55694912, 917.36098753, 1057.62479346, 1104.333468 ,
+ 1108.21046316, 1193.90258834, 1244.39797507, 2082.87264995])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.6518758193778227, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=501.1275163802119, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=0, candidate_x=array([6.51875819, 0.97409119]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.6518758193778227, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=400.52572423834147, linear_terms=array([ 11.90696049, -154.78556577]), square_terms=array([[ 1.76232264, -45.06920125],
+ [ -45.06920125, 1533.53696351]]), scale=array([0.5777099, 0.3 ]), shift=array([6.51875819, 0.8 ])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=13, candidate_x=array([5.94104829, 0.82146339]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-2.349823853233934, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.32593790968891134, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 4, 5, 6, 8, 10, 12, 13]), model=ScalarModel(intercept=416.48440152199043, linear_terms=array([ 1.35553668, 125.78252937]), square_terms=array([[ 2.02450902, 42.46441287],
+ [ 42.46441287, 911.32712956]]), scale=array([0.28885495, 0.20738188]), shift=array([6.51875819, 0.89261812])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=14, candidate_x=array([6.80761315, 0.85433179]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-1.831049702796678, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 4, 5, 6, 8, 10, 12, 13]), old_indices_discarded=array([ 2, 3, 7, 9, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.16296895484445567, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 5, 6, 8, 10, 12, 13, 14]), model=ScalarModel(intercept=487.99821575861523, linear_terms=array([ 1.00329653, 243.69886722]), square_terms=array([[7.80065934e-03, 6.88926991e-01],
+ [6.88926991e-01, 4.74302269e+02]]), scale=array([0.14442748, 0.13516815]), shift=array([6.51875819, 0.96483185])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=15, candidate_x=array([6.37433072, 0.89557812]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-1.9197336751074499, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 5, 6, 8, 10, 12, 13, 14]), old_indices_discarded=array([ 1, 2, 3, 7, 9, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.08148447742222784, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 14, 15]), model=ScalarModel(intercept=486.0712828893975, linear_terms=array([ 4.15090305, 139.51579954]), square_terms=array([[ 0.79922532, 21.81534971],
+ [ 21.81534971, 596.60341244]]), scale=0.08148447742222784, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=16, candidate_x=array([6.59949367, 0.95211879]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-0.7387791904497933, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.04074223871111392, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 15, 16]), model=ScalarModel(intercept=501.12751638021234, linear_terms=array([ 2.06914883, 12.57107207]), square_terms=array([[ 1.32670528e-02, -4.66031303e-01],
+ [-4.66031303e-01, 1.02473984e+02]]), scale=0.04074223871111392, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=17, candidate_x=array([6.47803866, 0.96901274]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-0.2870768838823704, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.02037111935555696, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17]), model=ScalarModel(intercept=501.1275163802114, linear_terms=array([-0.08268818, 2.18026048]), square_terms=array([[8.70976750e-03, 5.09399469e-01],
+ [5.09399469e-01, 3.01453577e+01]]), scale=0.02037111935555696, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=18, candidate_x=array([6.53910164, 0.97228125]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-1.029320734318488, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.01018555967777848, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 18]), model=ScalarModel(intercept=501.12751638021166, linear_terms=array([0.07240624, 0.1780674 ]), square_terms=array([[1.42712941e-03, 1.04982487e-01],
+ [1.04982487e-01, 7.94326537e+00]]), scale=0.01018555967777848, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=19, candidate_x=array([6.50857052, 0.97399832]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-0.5136015222161269, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.00509277983888924, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 18, 19]), model=ScalarModel(intercept=501.12751638021234, linear_terms=array([-0.01322774, -0.46656276]), square_terms=array([[3.63124415e-04, 2.67088333e-02],
+ [2.67088333e-02, 1.99542800e+00]]), scale=0.00509277983888924, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=20, candidate_x=array([6.5238664 , 0.97520967]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-1.3949488538254706, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.00254638991944462, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 19, 20]), model=ScalarModel(intercept=501.1275163802118, linear_terms=array([-0.0097909 , 0.11523558]), square_terms=array([[9.00461363e-05, 6.68532362e-03],
+ [6.68532362e-03, 5.05921002e-01]]), scale=0.00254638991944462, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=21, candidate_x=array([6.52129688, 0.97349105]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-2.583486438433234, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.00127319495972231, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 20, 21]), model=ScalarModel(intercept=501.1275163802118, linear_terms=array([ 0.01608665, -0.03820876]), square_terms=array([[2.29986891e-05, 1.45911019e-03],
+ [1.45911019e-03, 1.28408539e-01]]), scale=0.00127319495972231, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=22, candidate_x=array([6.51748888, 0.97443964]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-1.4615204029137043, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.000636597479861155, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 21, 22]), model=ScalarModel(intercept=501.1275163802121, linear_terms=array([0.1777905 , 0.69896302]), square_terms=array([[0.00042397, 0.00052726],
+ [0.00052726, 0.0259929 ]]), scale=0.000636597479861155, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=23, candidate_x=array([6.51861333, 0.97347129]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-0.07425018112711534, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.0003182987399305775, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 22, 23]), model=ScalarModel(intercept=501.1275163802119, linear_terms=array([-0.01151491, -0.01627895]), square_terms=array([[6.22359131e-06, 1.80801264e-04],
+ [1.80801264e-04, 8.17893261e-03]]), scale=0.0003182987399305775, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=24, candidate_x=array([6.51899387, 0.97430934]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-0.5965326811513899, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.00015914936996528874, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 23, 24]), model=ScalarModel(intercept=501.12751638021234, linear_terms=array([ 0.01867919, -0.01384997]), square_terms=array([[ 8.14329918e-06, -5.42280863e-05],
+ [-5.42280863e-05, 2.09084340e-03]]), scale=0.00015914936996528874, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=25, candidate_x=array([6.51862458, 0.97418161]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-1.1519829895109042, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=7.957468498264437e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 24, 25]), model=ScalarModel(intercept=501.1275163802119, linear_terms=array([-0.0078519 , 0.01164785]), square_terms=array([[8.32463502e-07, 9.75186147e-06],
+ [9.75186147e-06, 4.73751842e-04]]), scale=7.957468498264437e-05, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=26, candidate_x=array([6.51880379, 0.97402597]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-1.0667311728635465, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=3.9787342491322185e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 25, 26]), model=ScalarModel(intercept=501.1275163802119, linear_terms=array([-0.02639207, -0.02737106]), square_terms=array([[1.67186304e-05, 4.10668348e-05],
+ [4.10668348e-05, 1.96545342e-04]]), scale=3.9787342491322185e-05, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=27, candidate_x=array([6.51878459, 0.97412096]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-0.4643372983952584, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=1.9893671245661093e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 26, 27]), model=ScalarModel(intercept=501.12751638021166, linear_terms=array([0.0102157 , 0.00268268]), square_terms=array([[ 1.17344869e-06, -2.13935530e-06],
+ [-2.13935530e-06, 3.32584990e-05]]), scale=1.9893671245661093e-05, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=28, candidate_x=array([6.51873892, 0.97408614]), index=28, x=array([6.51873892, 0.97408614]), fval=501.1269763500226, rho=0.051066490577917706, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=1.9920173882682364e-05, relative_step_length=1.001332214486406, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 29 entries., 'multistart_info': {'start_parameters': [array([6.51875819, 0.97409119]), array([6.83451767, 0.96153972])], 'local_optima': [{'solution_x': array([6.51873892, 0.97408614]), 'solution_criterion': 501.1269763500226, 'states': [State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.6518758193778227, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=501.1275163802119, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=0, candidate_x=array([6.51875819, 0.97409119]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.6518758193778227, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=400.52572423834147, linear_terms=array([ 11.90696049, -154.78556577]), square_terms=array([[ 1.76232264, -45.06920125],
+ [ -45.06920125, 1533.53696351]]), scale=array([0.5777099, 0.3 ]), shift=array([6.51875819, 0.8 ])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=13, candidate_x=array([5.94104829, 0.82146339]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-2.349823853233934, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.32593790968891134, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 4, 5, 6, 8, 10, 12, 13]), model=ScalarModel(intercept=416.48440152199043, linear_terms=array([ 1.35553668, 125.78252937]), square_terms=array([[ 2.02450902, 42.46441287],
+ [ 42.46441287, 911.32712956]]), scale=array([0.28885495, 0.20738188]), shift=array([6.51875819, 0.89261812])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=14, candidate_x=array([6.80761315, 0.85433179]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-1.831049702796678, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 4, 5, 6, 8, 10, 12, 13]), old_indices_discarded=array([ 2, 3, 7, 9, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.16296895484445567, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 5, 6, 8, 10, 12, 13, 14]), model=ScalarModel(intercept=487.99821575861523, linear_terms=array([ 1.00329653, 243.69886722]), square_terms=array([[7.80065934e-03, 6.88926991e-01],
+ [6.88926991e-01, 4.74302269e+02]]), scale=array([0.14442748, 0.13516815]), shift=array([6.51875819, 0.96483185])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=15, candidate_x=array([6.37433072, 0.89557812]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-1.9197336751074499, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 5, 6, 8, 10, 12, 13, 14]), old_indices_discarded=array([ 1, 2, 3, 7, 9, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.08148447742222784, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 14, 15]), model=ScalarModel(intercept=486.0712828893975, linear_terms=array([ 4.15090305, 139.51579954]), square_terms=array([[ 0.79922532, 21.81534971],
+ [ 21.81534971, 596.60341244]]), scale=0.08148447742222784, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=16, candidate_x=array([6.59949367, 0.95211879]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-0.7387791904497933, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.04074223871111392, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 15, 16]), model=ScalarModel(intercept=501.12751638021234, linear_terms=array([ 2.06914883, 12.57107207]), square_terms=array([[ 1.32670528e-02, -4.66031303e-01],
+ [-4.66031303e-01, 1.02473984e+02]]), scale=0.04074223871111392, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=17, candidate_x=array([6.47803866, 0.96901274]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-0.2870768838823704, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.02037111935555696, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17]), model=ScalarModel(intercept=501.1275163802114, linear_terms=array([-0.08268818, 2.18026048]), square_terms=array([[8.70976750e-03, 5.09399469e-01],
+ [5.09399469e-01, 3.01453577e+01]]), scale=0.02037111935555696, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=18, candidate_x=array([6.53910164, 0.97228125]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-1.029320734318488, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.01018555967777848, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 18]), model=ScalarModel(intercept=501.12751638021166, linear_terms=array([0.07240624, 0.1780674 ]), square_terms=array([[1.42712941e-03, 1.04982487e-01],
+ [1.04982487e-01, 7.94326537e+00]]), scale=0.01018555967777848, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=19, candidate_x=array([6.50857052, 0.97399832]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-0.5136015222161269, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.00509277983888924, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 18, 19]), model=ScalarModel(intercept=501.12751638021234, linear_terms=array([-0.01322774, -0.46656276]), square_terms=array([[3.63124415e-04, 2.67088333e-02],
+ [2.67088333e-02, 1.99542800e+00]]), scale=0.00509277983888924, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=20, candidate_x=array([6.5238664 , 0.97520967]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-1.3949488538254706, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.00254638991944462, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 19, 20]), model=ScalarModel(intercept=501.1275163802118, linear_terms=array([-0.0097909 , 0.11523558]), square_terms=array([[9.00461363e-05, 6.68532362e-03],
+ [6.68532362e-03, 5.05921002e-01]]), scale=0.00254638991944462, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=21, candidate_x=array([6.52129688, 0.97349105]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-2.583486438433234, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.00127319495972231, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 20, 21]), model=ScalarModel(intercept=501.1275163802118, linear_terms=array([ 0.01608665, -0.03820876]), square_terms=array([[2.29986891e-05, 1.45911019e-03],
+ [1.45911019e-03, 1.28408539e-01]]), scale=0.00127319495972231, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=22, candidate_x=array([6.51748888, 0.97443964]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-1.4615204029137043, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.000636597479861155, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 21, 22]), model=ScalarModel(intercept=501.1275163802121, linear_terms=array([0.1777905 , 0.69896302]), square_terms=array([[0.00042397, 0.00052726],
+ [0.00052726, 0.0259929 ]]), scale=0.000636597479861155, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=23, candidate_x=array([6.51861333, 0.97347129]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-0.07425018112711534, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.0003182987399305775, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 22, 23]), model=ScalarModel(intercept=501.1275163802119, linear_terms=array([-0.01151491, -0.01627895]), square_terms=array([[6.22359131e-06, 1.80801264e-04],
+ [1.80801264e-04, 8.17893261e-03]]), scale=0.0003182987399305775, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=24, candidate_x=array([6.51899387, 0.97430934]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-0.5965326811513899, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=0.00015914936996528874, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 23, 24]), model=ScalarModel(intercept=501.12751638021234, linear_terms=array([ 0.01867919, -0.01384997]), square_terms=array([[ 8.14329918e-06, -5.42280863e-05],
+ [-5.42280863e-05, 2.09084340e-03]]), scale=0.00015914936996528874, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=25, candidate_x=array([6.51862458, 0.97418161]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-1.1519829895109042, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=7.957468498264437e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 24, 25]), model=ScalarModel(intercept=501.1275163802119, linear_terms=array([-0.0078519 , 0.01164785]), square_terms=array([[8.32463502e-07, 9.75186147e-06],
+ [9.75186147e-06, 4.73751842e-04]]), scale=7.957468498264437e-05, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=26, candidate_x=array([6.51880379, 0.97402597]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-1.0667311728635465, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=3.9787342491322185e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 25, 26]), model=ScalarModel(intercept=501.1275163802119, linear_terms=array([-0.02639207, -0.02737106]), square_terms=array([[1.67186304e-05, 4.10668348e-05],
+ [4.10668348e-05, 1.96545342e-04]]), scale=3.9787342491322185e-05, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=27, candidate_x=array([6.51878459, 0.97412096]), index=0, x=array([6.51875819, 0.97409119]), fval=501.1275163802119, rho=-0.4643372983952584, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.51875819, 0.97409119]), radius=1.9893671245661093e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 26, 27]), model=ScalarModel(intercept=501.12751638021166, linear_terms=array([0.0102157 , 0.00268268]), square_terms=array([[ 1.17344869e-06, -2.13935530e-06],
+ [-2.13935530e-06, 3.32584990e-05]]), scale=1.9893671245661093e-05, shift=array([6.51875819, 0.97409119])), vector_model=VectorModel(intercepts=array([ 1.4283287 , 3.07288925, 3.75060056, 4.78539882,
+ 5.86452219, 7.39510824, 8.03652346, -0.25397907,
+ -3.91381883, -6.25547607, -9.48322028, -12.43249019]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6518758193778227, shift=array([6.51875819, 0.97409119])), candidate_index=28, candidate_x=array([6.51873892, 0.97408614]), index=28, x=array([6.51873892, 0.97408614]), fval=501.1269763500226, rho=0.051066490577917706, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=1.9920173882682364e-05, relative_step_length=1.001332214486406, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 29 entries., 'history': {'params': [{'CRRA': 6.518758193778226, 'DiscFac': 0.9740911850209896}, {'CRRA': 6.930435776304124, 'DiscFac': 0.5}, {'CRRA': 7.096468096962432, 'DiscFac': 0.5}, {'CRRA': 5.941048290594021, 'DiscFac': 0.5}, {'CRRA': 6.705153615535426, 'DiscFac': 0.5}, {'CRRA': 5.941048290594021, 'DiscFac': 1.1}, {'CRRA': 7.096468096962432, 'DiscFac': 1.1}, {'CRRA': 7.096468096962432, 'DiscFac': 0.5}, {'CRRA': 7.096468096962432, 'DiscFac': 0.7833377741815668}, {'CRRA': 5.941048290594021, 'DiscFac': 0.5799959927689777}, {'CRRA': 5.941048290594021, 'DiscFac': 1.0332928909664387}, {'CRRA': 5.941048290594021, 'DiscFac': 0.5}, {'CRRA': 6.2297845747911476, 'DiscFac': 1.1}, {'CRRA': 5.941048290594021, 'DiscFac': 0.8214633948443593}, {'CRRA': 6.807613145370329, 'DiscFac': 0.8543317905352251}, {'CRRA': 6.3743307179821755, 'DiscFac': 0.8955781211319409}, {'CRRA': 6.599493668467294, 'DiscFac': 0.9521187924148061}, {'CRRA': 6.478038657071983, 'DiscFac': 0.9690127400527637}, {'CRRA': 6.539101636686653, 'DiscFac': 0.9722812493535758}, {'CRRA': 6.508570517122245, 'DiscFac': 0.973998315531643}, {'CRRA': 6.523866400568332, 'DiscFac': 0.9752096738990378}, {'CRRA': 6.521296875753758, 'DiscFac': 0.9734910546050374}, {'CRRA': 6.517488876385145, 'DiscFac': 0.974439643595108}, {'CRRA': 6.51861333285585, 'DiscFac': 0.973471288525973}, {'CRRA': 6.518993872594638, 'DiscFac': 0.9743093353778189}, {'CRRA': 6.518624583903896, 'DiscFac': 0.9741816112149284}, {'CRRA': 6.518803789449013, 'DiscFac': 0.9740259687247471}, {'CRRA': 6.518784589267384, 'DiscFac': 0.9741209559930034}, {'CRRA': 6.518738923982261, 'DiscFac': 0.9740861364280193}], 'criterion': [501.1275163802119, 1154.3726351101354, 1148.09766251957, 1195.974792701822, 1163.2375608777152, 1428.5522412431983, 1294.4542058703007, 1148.09766251957, 902.0945418161405, 1173.9905874325736, 648.3248639009156, 1195.974792701822, 1385.7533024422844, 931.9425069323898, 744.4865312872281, 656.740266680918, 513.8743925303191, 501.95725779536633, 501.33148551773866, 501.16451799386607, 501.2133690844172, 501.19054144598135, 501.1597756573809, 501.1801324132359, 501.13805630451577, 501.15422481249345, 501.14233384565057, 501.14511952364694, 501.1269763500226], 'runtime': [0.0, 3.3772133320001103, 3.3739613640000243, 3.508898283999997, 3.5765015290000974, 3.5974512459999914, 3.667596008000146, 3.6805465340000865, 3.726354085000139, 3.8215960679999625, 3.8228244819999873, 3.8050569389999964, 3.8416639150000265, 102.65433508000001, 103.93067918199995, 105.23330888400005, 115.1877147560001, 116.5051563510001, 117.81345196899997, 119.11422845400011, 120.4153765850001, 121.71612788200014, 123.01899637600013, 127.92256343100007, 129.22530063, 130.54040302700014, 131.88101467599995, 133.22392327700004, 134.55956812399995], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]}, 'multistart_info': {...}}, {'solution_x': array([6.72781445, 0.96918864]), 'solution_criterion': 501.22741344705696, 'states': [State(trustregion=Region(center=array([6.83451767, 0.96153972]), radius=0.6834517669606002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=503.07717547325797, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=0, candidate_x=array([6.83451767, 0.96153972]), index=0, x=array([6.83451767, 0.96153972]), fval=503.07717547325797, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([6.83451767, 0.96153972]), radius=0.6834517669606002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=413.8992904329527, linear_terms=array([ 3.60875948, -209.42031626]), square_terms=array([[9.57697662e-01, 2.89258223e+01],
+ [2.89258223e+01, 1.55794411e+03]]), scale=array([0.60569336, 0.3 ]), shift=array([6.83451767, 0.8 ])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=13, candidate_x=array([6.22882431, 0.84589628]), index=0, x=array([6.83451767, 0.96153972]), fval=503.07717547325797, rho=-2.4211304687396455, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.83451767, 0.96153972]), radius=0.3417258834803001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 5, 6, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=416.8133628718762, linear_terms=array([ 3.60604683, 107.93404847]), square_terms=array([[ 4.65192781, -61.29564518],
+ [-61.29564518, 917.91037936]]), scale=array([0.30284668, 0.22065348]), shift=array([6.83451767, 0.87934652])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=14, candidate_x=array([6.53167099, 0.83866595]), index=0, x=array([6.83451767, 0.96153972]), fval=503.07717547325797, rho=-2.6049587488264394, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 5, 6, 8, 9, 10, 11, 12]), old_indices_discarded=array([ 1, 2, 3, 7, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.83451767, 0.96153972]), radius=0.17086294174015004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 5, 6, 9, 10, 11, 12, 14]), model=ScalarModel(intercept=524.4678705069019, linear_terms=array([ 13.18738807, 324.00592359]), square_terms=array([[ 1.47195805, 23.86015639],
+ [ 23.86015639, 410.31873633]]), scale=array([0.15142334, 0.14494181]), shift=array([6.83451767, 0.95505819])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=15, candidate_x=array([6.98594101, 0.83217728]), index=0, x=array([6.83451767, 0.96153972]), fval=503.07717547325797, rho=-1.939405590528895, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 5, 6, 9, 10, 11, 12, 14]), old_indices_discarded=array([ 1, 2, 3, 7, 8, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.83451767, 0.96153972]), radius=0.08543147087007502, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 14, 15]), model=ScalarModel(intercept=469.91631637649846, linear_terms=array([ 4.71866117, 90.04186292]), square_terms=array([[7.17982688e-02, 2.98681364e+00],
+ [2.98681364e+00, 4.75888607e+02]]), scale=0.08543147087007502, shift=array([6.83451767, 0.96153972])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=16, candidate_x=array([6.748988 , 0.94604573]), index=0, x=array([6.83451767, 0.96153972]), fval=503.07717547325797, rho=-1.2035820648304838, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.83451767, 0.96153972]), radius=0.04271573543503751, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16]), model=ScalarModel(intercept=473.4426351395954, linear_terms=array([-7.76467424, 24.20017485]), square_terms=array([[ 7.81960658, 36.4391773 ],
+ [ 36.4391773 , 179.02782744]]), scale=0.04271573543503751, shift=array([6.83451767, 0.96153972])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=17, candidate_x=array([6.87541772, 0.94833053]), index=0, x=array([6.83451767, 0.96153972]), fval=503.07717547325797, rho=-0.7462850555910217, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.83451767, 0.96153972]), radius=0.021357867717518755, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17]), model=ScalarModel(intercept=503.07717547325836, linear_terms=array([-0.03193367, -8.35020335]), square_terms=array([[7.47370683e-03, 4.61553856e-01],
+ [4.61553856e-01, 2.90280752e+01]]), scale=0.021357867717518755, shift=array([6.83451767, 0.96153972])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=18, candidate_x=array([6.81325981, 0.96799912]), index=18, x=array([6.81325981, 0.96799912]), fval=501.3312531210726, rho=1.3416861895574783, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.022217565698712326, relative_step_length=1.0402520510270041, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.81325981, 0.96799912]), radius=0.04271573543503751, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 16, 17, 18]), model=ScalarModel(intercept=495.7209962643657, linear_terms=array([ 1.34551752, -10.04757394]), square_terms=array([[7.71926809e-03, 2.94803138e-01],
+ [2.94803138e-01, 1.80459140e+02]]), scale=0.04271573543503751, shift=array([6.81325981, 0.96799912])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=19, candidate_x=array([6.770548 , 0.97042897]), index=19, x=array([6.770548 , 0.97042897]), fval=501.32293639999193, rho=0.005077718107259092, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 16, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.042780877979297874, relative_step_length=1.0015250245277747, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.770548 , 0.97042897]), radius=0.021357867717518755, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 18, 19]), model=ScalarModel(intercept=501.25072904738215, linear_terms=array([0.19645285, 2.53503583]), square_terms=array([[4.52533224e-03, 3.61357893e-01],
+ [3.61357893e-01, 3.03038886e+01]]), scale=0.021357867717518755, shift=array([6.770548 , 0.97042897])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=20, candidate_x=array([6.74917044, 0.96890556]), index=20, x=array([6.74917044, 0.96890556]), fval=501.24660583858616, rho=0.28031880647812146, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.021431763444109308, relative_step_length=1.0034598831478827, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.74917044, 0.96890556]), radius=0.04271573543503751, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 16, 17, 18, 19, 20]), model=ScalarModel(intercept=497.70357158348145, linear_terms=array([ -0.5208041 , -15.51687346]), square_terms=array([[6.94479053e-02, 3.57966427e+00],
+ [3.57966427e+00, 1.84953284e+02]]), scale=0.04271573543503751, shift=array([6.74917044, 0.96890556])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=21, candidate_x=array([6.79194745, 0.97165805]), index=20, x=array([6.74917044, 0.96890556]), fval=501.24660583858616, rho=-0.17667678260606623, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 16, 17, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.74917044, 0.96890556]), radius=0.021357867717518755, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 18, 19, 20, 21]), model=ScalarModel(intercept=501.0418468452605, linear_terms=array([ 0.12539853, -0.02256087]), square_terms=array([[4.94613572e-03, 3.80808575e-01],
+ [3.80808575e-01, 3.03057373e+01]]), scale=0.021357867717518755, shift=array([6.74917044, 0.96890556])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=22, candidate_x=array([6.72781445, 0.96918864]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=0.15280707534799082, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 18, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.021357872793329805, relative_step_length=1.0000002376553276, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=0.04271573543503751, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 16, 17, 18, 19, 20, 21, 22]), model=ScalarModel(intercept=499.4402789183877, linear_terms=array([ -1.02052835, -19.09880474]), square_terms=array([[9.93137121e-02, 4.28436157e+00],
+ [4.28436157e+00, 1.86094212e+02]]), scale=0.04271573543503751, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=23, candidate_x=array([6.7706195 , 0.97257651]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.23892563437548955, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 16, 17, 18, 19, 20, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=0.021357867717518755, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 18, 19, 20, 21, 22, 23]), model=ScalarModel(intercept=501.1654021820905, linear_terms=array([0.00141307, 0.0739436 ]), square_terms=array([[6.12116035e-03, 4.27791823e-01],
+ [4.27791823e-01, 3.02363284e+01]]), scale=0.021357867717518755, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=24, candidate_x=array([6.70645798, 0.96943857]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-4.713847073443613, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 18, 19, 20, 21, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=0.010678933858759378, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 19, 20, 22, 23, 24]), model=ScalarModel(intercept=501.21585915665423, linear_terms=array([-0.01975345, 0.03910402]), square_terms=array([[1.80090281e-03, 1.15983380e-01],
+ [1.15983380e-01, 7.55096648e+00]]), scale=0.010678933858759378, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=25, candidate_x=array([6.73849128, 0.96896993]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-1.8944073412337845, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 19, 20, 22, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=0.005339466929379689, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 22, 24, 25]), model=ScalarModel(intercept=501.23004259245243, linear_terms=array([-0.02304652, -2.01666164]), square_terms=array([[4.15899121e-04, 3.00032341e-02],
+ [3.00032341e-02, 2.18603050e+00]]), scale=0.005339466929379689, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=26, candidate_x=array([6.72466986, 0.97414015]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.6243869841590974, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 22, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=0.0026697334646898444, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 25, 26]), model=ScalarModel(intercept=501.2274134470572, linear_terms=array([ 0.00645166, -0.15519734]), square_terms=array([[9.51177458e-05, 7.00242898e-03],
+ [7.00242898e-03, 5.19312476e-01]]), scale=0.0026697334646898444, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=27, candidate_x=array([6.72515553, 0.97000886]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-1.7124434167385763, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=0.0013348667323449222, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 26, 27]), model=ScalarModel(intercept=501.2274134470572, linear_terms=array([-0.0511454 , -0.11212862]), square_terms=array([[1.10301742e-04, 3.05502249e-03],
+ [3.05502249e-03, 1.31450033e-01]]), scale=0.0013348667323449222, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=28, candidate_x=array([6.72891867, 0.96995443]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.591573475356113, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=0.0006674333661724611, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 27, 28]), model=ScalarModel(intercept=501.22741344705673, linear_terms=array([-0.00047063, 0.02530991]), square_terms=array([[5.90718768e-06, 4.24198051e-04],
+ [4.24198051e-04, 3.08887054e-02]]), scale=0.0006674333661724611, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=29, candidate_x=array([6.72826759, 0.96865598]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-8.425657234437928, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=0.00033371668308623055, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 28, 29]), model=ScalarModel(intercept=501.2274134470576, linear_terms=array([ 0.02772457, -0.02766163]), square_terms=array([[4.66536843e-06, 1.60175503e-05],
+ [1.60175503e-05, 7.97518871e-03]]), scale=0.00033371668308623055, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=30, candidate_x=array([6.72754969, 0.96940377]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-1.8297324592636042, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=0.00016685834154311528, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 29, 30]), model=ScalarModel(intercept=501.2274134470567, linear_terms=array([-0.20692064, -0.20165341]), square_terms=array([[0.0001218 , 0.00033401],
+ [0.00033401, 0.00246797]]), scale=0.00016685834154311528, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=31, candidate_x=array([6.72793871, 0.9693 ]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.1732370302450059, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=8.342917077155764e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 30, 31]), model=ScalarModel(intercept=501.22741344705656, linear_terms=array([0.00448848, 0.03202386]), square_terms=array([[6.79766078e-07, 1.06395699e-05],
+ [1.06395699e-05, 4.82739934e-04]]), scale=8.342917077155764e-05, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=32, candidate_x=array([6.72780354, 0.96910593]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-1.6246965293022224, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=4.171458538577882e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 31, 32]), model=ScalarModel(intercept=501.2274134470572, linear_terms=array([ 0.04540299, -0.03215216]), square_terms=array([[ 4.78307591e-06, -8.79441540e-06],
+ [-8.79441540e-06, 1.40505229e-04]]), scale=4.171458538577882e-05, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=33, candidate_x=array([6.72778037, 0.96921271]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.19905068438600984, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 31, 32]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=2.085729269288941e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 32, 33]), model=ScalarModel(intercept=501.22741344705696, linear_terms=array([-0.01463857, -0.01115043]), square_terms=array([[1.18032938e-06, 1.64511500e-06],
+ [1.64511500e-06, 3.41125000e-05]]), scale=2.085729269288941e-05, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=34, candidate_x=array([6.72783105, 0.96920127]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.22252229696055864, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 32, 33]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1.0428646346444705e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 33, 34]), model=ScalarModel(intercept=501.22741344705673, linear_terms=array([-0.00051674, 0.00405539]), square_terms=array([[1.38664159e-08, 2.50676044e-07],
+ [2.50676044e-07, 8.63702623e-06]]), scale=1.0428646346444705e-05, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=35, candidate_x=array([6.72781578, 0.9691783 ]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-1.963280298177103, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 33, 34]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=5.214323173222352e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 34, 35]), model=ScalarModel(intercept=501.2274134470567, linear_terms=array([ 0.00396691, -0.00352958]), square_terms=array([[ 8.84977255e-08, -8.02763637e-08],
+ [-8.02763637e-08, 2.38818005e-06]]), scale=5.214323173222352e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=36, candidate_x=array([6.72781055, 0.96919211]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.023801639447033406, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 34, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=2.607161586611176e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 35, 36]), model=ScalarModel(intercept=501.22741344705673, linear_terms=array([-0.00212338, -0.00229278]), square_terms=array([[1.90160359e-08, 5.69811889e-08],
+ [5.69811889e-08, 6.16908307e-07]]), scale=2.607161586611176e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=37, candidate_x=array([6.72781622, 0.96919056]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.026219671802032652, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1.303580793305588e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 36, 37]), model=ScalarModel(intercept=501.22741344705713, linear_terms=array([4.06519893e-06, 5.19387199e-05]), square_terms=array([[2.89936600e-11, 9.20593272e-10],
+ [9.20593272e-10, 1.30236266e-07]]), scale=1.303580793305588e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=38, candidate_x=array([6.72781435, 0.96918734]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-9.564486075375958, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 36, 37]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 37, 38]), model=ScalarModel(intercept=501.22741344705696, linear_terms=array([ 0.00050204, -0.00042149]), square_terms=array([[ 2.97289942e-09, -6.39499610e-09],
+ [-6.39499610e-09, 8.69411716e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=39, candidate_x=array([6.72781368, 0.96918929]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.03524631676538639, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 37, 38, 39]), model=ScalarModel(intercept=501.22759431747124, linear_terms=array([ 0.00013189, -0.00019106]), square_terms=array([[ 1.93807540e-10, -5.26330437e-10],
+ [-5.26330437e-10, 8.07113297e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=40, candidate_x=array([6.72781388, 0.96918947]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.13479910265165615, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 37, 38, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 37, 38, 39, 40]), model=ScalarModel(intercept=501.22760577987816, linear_terms=array([ 0.00010942, -0.0001753 ]), square_terms=array([[ 1.33121551e-10, -2.35081804e-10],
+ [-2.35081804e-10, 8.03325740e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=41, candidate_x=array([6.72781392, 0.96918949]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.15707565148239513, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 37, 38, 39, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=501.22761025938087, linear_terms=array([ 0.00010088, -0.00016908]), square_terms=array([[ 1.13315328e-10, -1.26487044e-10],
+ [-1.26487044e-10, 8.01849165e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=42, candidate_x=array([6.72781394, 0.9691895 ]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.1672978954959007, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 37, 38, 39, 40, 41]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 37, 38, 39, 40, 41, 42]), model=ScalarModel(intercept=501.2276126857747, linear_terms=array([ 9.63467529e-05, -1.65702026e-04]), square_terms=array([[ 1.03526913e-10, -6.92871011e-11],
+ [-6.92871011e-11, 8.01050563e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=43, candidate_x=array([6.72781395, 0.96918951]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.17321991079148824, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 37, 38, 39, 40, 41, 42]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 37, 38, 39, 40, 41, 42, 43]), model=ScalarModel(intercept=501.22761421797827, linear_terms=array([ 9.35296917e-05, -1.63564492e-04]), square_terms=array([[ 9.76954192e-11, -3.38798435e-11],
+ [-3.38798435e-11, 8.00546807e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=44, candidate_x=array([6.72781395, 0.96918951]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.17709796371999056, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 37, 38, 39, 40, 41, 42, 43]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 37, 38, 39, 40, 41, 42, 43, 44]), model=ScalarModel(intercept=501.2276152773825, linear_terms=array([ 9.16066701e-05, -1.62084960e-04]), square_terms=array([[ 9.38262729e-11, -9.77407261e-12],
+ [-9.77407261e-12, 8.00198778e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=45, candidate_x=array([6.72781396, 0.96918951]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.17983972616620006, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 37, 38, 39, 40, 41, 42, 43, 44]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 38, 39, 40, 41, 42, 43, 44, 45]), model=ScalarModel(intercept=501.22750540733114, linear_terms=array([-0.00026071, -0.00025561]), square_terms=array([[9.13381429e-10, 4.44129408e-09],
+ [4.44129408e-09, 8.23253357e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=46, candidate_x=array([6.72781516, 0.96918934]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.07364815380731068, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 38, 39, 40, 41, 42, 43, 44, 45]), old_indices_discarded=array([37]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 39, 40, 41, 42, 43, 44, 45, 46]), model=ScalarModel(intercept=501.22741310102083, linear_terms=array([6.11971997e-07, 3.88455230e-05]), square_terms=array([[1.42843074e-11, 1.03541877e-09],
+ [1.03541877e-09, 7.57915244e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=47, candidate_x=array([6.72781443, 0.96918764]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-9.857062002123858, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 39, 40, 41, 42, 43, 44, 45, 46]), old_indices_discarded=array([37, 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 40, 41, 42, 43, 44, 45, 46, 47]), model=ScalarModel(intercept=501.22755969669424, linear_terms=array([-4.80059039e-05, -1.70805300e-04]), square_terms=array([[5.49126329e-11, 1.63716710e-09],
+ [1.63716710e-09, 8.02257831e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=48, candidate_x=array([6.72781472, 0.96918961]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.21557648426876538, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 40, 41, 42, 43, 44, 45, 46, 47]), old_indices_discarded=array([37, 38, 39]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 40, 41, 43, 44, 45, 46, 47, 48]), model=ScalarModel(intercept=501.22756442641673, linear_terms=array([-2.32195187e-05, -1.59032170e-04]), square_terms=array([[2.69656250e-11, 1.33837609e-09],
+ [1.33837609e-09, 7.99482457e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=49, candidate_x=array([6.72781459, 0.96918963]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.2447255640790162, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 40, 41, 43, 44, 45, 46, 47, 48]), old_indices_discarded=array([37, 38, 39, 42]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 40, 41, 44, 45, 46, 47, 48, 49]), model=ScalarModel(intercept=501.22756659666624, linear_terms=array([-1.22237542e-05, -1.52682563e-04]), square_terms=array([[1.93861263e-11, 1.20780236e-09],
+ [1.20780236e-09, 7.97999713e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=50, candidate_x=array([6.72781453, 0.96918964]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.2585372755970867, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 40, 41, 44, 45, 46, 47, 48, 49]), old_indices_discarded=array([37, 38, 39, 42, 43]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 40, 44, 45, 46, 47, 48, 49, 50]), model=ScalarModel(intercept=501.22756824156363, linear_terms=array([-7.64989431e-06, -1.48061504e-04]), square_terms=array([[1.71054063e-11, 1.15355291e-09],
+ [1.15355291e-09, 7.96926826e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=51, candidate_x=array([6.7278145 , 0.96918964]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.2674951593884282, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 40, 44, 45, 46, 47, 48, 49, 50]), old_indices_discarded=array([37, 38, 39, 41, 42, 43]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=501.2275681838988, linear_terms=array([-9.72571253e-06, -1.47957510e-04]), square_terms=array([[1.80769873e-11, 1.17756610e-09],
+ [1.17756610e-09, 7.96902744e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=52, candidate_x=array([6.72781451, 0.96918964]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.26729975889890145, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), old_indices_discarded=array([37, 38, 39, 41, 42, 43, 49]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=501.2275681838988, linear_terms=array([-9.72571253e-06, -1.47957510e-04]), square_terms=array([[1.80769873e-11, 1.17756610e-09],
+ [1.17756610e-09, 7.96902744e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=53, candidate_x=array([6.72781451, 0.96918964]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.26729975889890145, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), old_indices_discarded=array([37, 38, 39, 41, 42, 43, 49, 52]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=501.2275681838988, linear_terms=array([-9.72571253e-06, -1.47957510e-04]), square_terms=array([[1.80769873e-11, 1.17756610e-09],
+ [1.17756610e-09, 7.96902744e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=54, candidate_x=array([6.72781451, 0.96918964]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.26729975889890145, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), old_indices_discarded=array([37, 38, 39, 41, 42, 43, 49, 52, 53]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=501.2275681838988, linear_terms=array([-9.72571253e-06, -1.47957510e-04]), square_terms=array([[1.80769873e-11, 1.17756610e-09],
+ [1.17756610e-09, 7.96902744e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=55, candidate_x=array([6.72781451, 0.96918964]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.26729975889890145, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), old_indices_discarded=array([37, 38, 39, 41, 42, 43, 49, 52, 53, 54]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=501.2275681838988, linear_terms=array([-9.72571253e-06, -1.47957510e-04]), square_terms=array([[1.80769873e-11, 1.17756610e-09],
+ [1.17756610e-09, 7.96902744e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=56, candidate_x=array([6.72781451, 0.96918964]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.26729975889890145, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), old_indices_discarded=array([37, 38, 39, 41, 42, 43, 49, 52, 53, 54, 55]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=501.2275681838988, linear_terms=array([-9.72571253e-06, -1.47957510e-04]), square_terms=array([[1.80769873e-11, 1.17756610e-09],
+ [1.17756610e-09, 7.96902744e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=57, candidate_x=array([6.72781451, 0.96918964]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.26729975889890145, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), old_indices_discarded=array([37, 38, 39, 41, 42, 43, 49, 52, 53, 54, 55, 56]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=501.2275681838988, linear_terms=array([-9.72571253e-06, -1.47957510e-04]), square_terms=array([[1.80769873e-11, 1.17756610e-09],
+ [1.17756610e-09, 7.96902744e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=58, candidate_x=array([6.72781451, 0.96918964]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.26729975889890145, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), old_indices_discarded=array([37, 38, 39, 41, 42, 43, 49, 52, 53, 54, 55, 56, 57]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=501.2275681838988, linear_terms=array([-9.72571253e-06, -1.47957510e-04]), square_terms=array([[1.80769873e-11, 1.17756610e-09],
+ [1.17756610e-09, 7.96902744e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=59, candidate_x=array([6.72781451, 0.96918964]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.26729975889890145, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), old_indices_discarded=array([37, 38, 39, 41, 42, 43, 49, 52, 53, 54, 55, 56, 57, 58]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=501.2275681838988, linear_terms=array([-9.72571253e-06, -1.47957510e-04]), square_terms=array([[1.80769873e-11, 1.17756610e-09],
+ [1.17756610e-09, 7.96902744e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=60, candidate_x=array([6.72781451, 0.96918964]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.26729975889890145, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), old_indices_discarded=array([37, 38, 39, 41, 42, 43, 49, 52, 53, 54, 55, 56, 57, 58, 59]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=501.2275681838988, linear_terms=array([-9.72571253e-06, -1.47957510e-04]), square_terms=array([[1.80769873e-11, 1.17756610e-09],
+ [1.17756610e-09, 7.96902744e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=61, candidate_x=array([6.72781451, 0.96918964]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.26729975889890145, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), old_indices_discarded=array([37, 38, 39, 41, 42, 43, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([6.72781445, 0.96918864]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=501.2275681838988, linear_terms=array([-9.72571253e-06, -1.47957510e-04]), square_terms=array([[1.80769873e-11, 1.17756610e-09],
+ [1.17756610e-09, 7.96902744e-08]]), scale=1e-06, shift=array([6.72781445, 0.96918864])), vector_model=VectorModel(intercepts=array([ 1.41100158, 3.00525944, 3.61548053, 4.56961125,
+ 5.5414129 , 6.93581401, 7.42471695, -1.11598091,
+ -4.60429004, -6.78060042, -9.80861909, -12.63059673]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.6834517669606002, shift=array([6.83451767, 0.96153972])), candidate_index=62, candidate_x=array([6.72781451, 0.96918964]), index=22, x=array([6.72781445, 0.96918864]), fval=501.22741344705696, rho=-0.26729975889890145, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 40, 44, 45, 46, 47, 48, 50, 51]), old_indices_discarded=array([37, 38, 39, 41, 42, 43, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'message': None, 'tranquilo_history': History for least_squares function with 63 entries., 'history': {'params': [{'CRRA': 6.834517669606002, 'DiscFac': 0.9615397225480846}, {'CRRA': 6.232086084663773, 'DiscFac': 0.5}, {'CRRA': 7.440211027734749, 'DiscFac': 0.5}, {'CRRA': 6.228824311477254, 'DiscFac': 0.672059084446591}, {'CRRA': 6.875987822481443, 'DiscFac': 0.5}, {'CRRA': 6.346712456775956, 'DiscFac': 1.1}, {'CRRA': 7.265830896301647, 'DiscFac': 1.1}, {'CRRA': 7.440211027734749, 'DiscFac': 0.5}, {'CRRA': 7.440211027734749, 'DiscFac': 0.8733099231201924}, {'CRRA': 6.228824311477254, 'DiscFac': 0.9382417040985247}, {'CRRA': 6.261666659997825, 'DiscFac': 1.1}, {'CRRA': 6.4374174556299835, 'DiscFac': 0.5}, {'CRRA': 6.737921088371717, 'DiscFac': 1.1}, {'CRRA': 6.228824311477254, 'DiscFac': 0.845896281705564}, {'CRRA': 6.5316709905416275, 'DiscFac': 0.8386659483808808}, {'CRRA': 6.985941009138188, 'DiscFac': 0.8321772838611664}, {'CRRA': 6.748988002530141, 'DiscFac': 0.9460457260029117}, {'CRRA': 6.875417721284488, 'DiscFac': 0.9483305322503206}, {'CRRA': 6.813259813450486, 'DiscFac': 0.9679991170435465}, {'CRRA': 6.7705479962367265, 'DiscFac': 0.9704289711498606}, {'CRRA': 6.749170444514891, 'DiscFac': 0.9689055648663936}, {'CRRA': 6.7919474522814784, 'DiscFac': 0.9716580492484522}, {'CRRA': 6.727814447758926, 'DiscFac': 0.9691886422679715}, {'CRRA': 6.770619498892619, 'DiscFac': 0.9725765081663714}, {'CRRA': 6.706457984361015, 'DiscFac': 0.9694385657430048}, {'CRRA': 6.738491281877998, 'DiscFac': 0.9689699315077633}, {'CRRA': 6.724669856523726, 'DiscFac': 0.9741401489967002}, {'CRRA': 6.725155531415344, 'DiscFac': 0.9700088563837943}, {'CRRA': 6.728918671092353, 'DiscFac': 0.969954430361124}, {'CRRA': 6.728267588481123, 'DiscFac': 0.9686559814791883}, {'CRRA': 6.727549694635439, 'DiscFac': 0.9694037695551097}, {'CRRA': 6.727938714678786, 'DiscFac': 0.9692999950352069}, {'CRRA': 6.7278035368561895, 'DiscFac': 0.9691059296405371}, {'CRRA': 6.727780369413924, 'DiscFac': 0.969212713389753}, {'CRRA': 6.727831052864868, 'DiscFac': 0.9692012673952942}, {'CRRA': 6.727815777571107, 'DiscFac': 0.9691782987548263}, {'CRRA': 6.7278105514369075, 'DiscFac': 0.9691921075255329}, {'CRRA': 6.727816217787702, 'DiscFac': 0.9691905565014135}, {'CRRA': 6.727814347704145, 'DiscFac': 0.9691873425326426}, {'CRRA': 6.727813681824573, 'DiscFac': 0.9691892851867587}, {'CRRA': 6.72781387982427, 'DiscFac': 0.9691894653416169}, {'CRRA': 6.7278139184385255, 'DiscFac': 0.9691894906899853}, {'CRRA': 6.7278139355723905, 'DiscFac': 0.9691895011422073}, {'CRRA': 6.727813945288041, 'DiscFac': 0.9691895068621015}, {'CRRA': 6.727813951547942, 'DiscFac': 0.9691895104699405}, {'CRRA': 6.727813955915532, 'DiscFac': 0.969189512951654}, {'CRRA': 6.727815162906959, 'DiscFac': 0.969189341240998}, {'CRRA': 6.727814433023032, 'DiscFac': 0.9691876423765508}, {'CRRA': 6.727814718090595, 'DiscFac': 0.9691896050352272}, {'CRRA': 6.727814591969786, 'DiscFac': 0.9691896318149528}, {'CRRA': 6.72781452729013, 'DiscFac': 0.9691896391003484}, {'CRRA': 6.727814499075899, 'DiscFac': 0.9691896409503876}, {'CRRA': 6.727814513068946, 'DiscFac': 0.9691896401329931}, {'CRRA': 6.727814513068946, 'DiscFac': 0.9691896401329931}, {'CRRA': 6.727814513068946, 'DiscFac': 0.9691896401329931}, {'CRRA': 6.727814513068946, 'DiscFac': 0.9691896401329931}, {'CRRA': 6.727814513068946, 'DiscFac': 0.9691896401329931}, {'CRRA': 6.727814513068946, 'DiscFac': 0.9691896401329931}, {'CRRA': 6.727814513068946, 'DiscFac': 0.9691896401329931}, {'CRRA': 6.727814513068946, 'DiscFac': 0.9691896401329931}, {'CRRA': 6.727814513068946, 'DiscFac': 0.9691896401329931}, {'CRRA': 6.727814513068946, 'DiscFac': 0.9691896401329931}, {'CRRA': 6.727814513068946, 'DiscFac': 0.9691896401329931}], 'criterion': [503.07717547325797, 1183.396120481936, 1135.241738848109, 1114.6788511875075, 1156.4805942455716, 1370.2995606967131, 1281.4007654935178, 1135.241738848109, 641.9040338115028, 548.1597618494977, 1381.3178685506343, 1174.3481812592236, 1326.968853164346, 828.6116665175828, 817.6725897550722, 790.9535501991393, 518.3018295957619, 513.1991117496027, 501.33125312107256, 501.32293639999193, 501.24660583858616, 501.40060082751353, 501.227413447057, 501.6005548841788, 501.2294072381694, 501.26613824146216, 501.80991855578475, 501.28168631848837, 501.2768193518456, 501.31934028190767, 501.2972664904545, 501.2772930652367, 501.2795616476857, 501.2384837718489, 501.23150702222506, 501.235431402987, 501.2275398160492, 501.2274953781697, 501.2279111132738, 501.22743655059514, 501.22744473919346, 501.22744590091395, 501.22744638101045, 501.22744664403876, 501.22744681006, 501.22744692431536, 501.2274403353832, 501.227796023491, 501.2274516872332, 501.22745276931016, 501.2274530372186, 501.2274530949726, 501.227453070787, 501.227453070787, 501.227453070787, 501.227453070787, 501.227453070787, 501.227453070787, 501.227453070787, 501.227453070787, 501.227453070787, 501.227453070787, 501.227453070787], 'runtime': [0.0, 1.3981402189999699, 1.4338040259999616, 1.4712117219999072, 1.5082280209999226, 1.5438190170000325, 1.5798851209999611, 1.6139753939999082, 1.6683153349999884, 1.705962387999989, 1.7468872770000416, 1.7901044699999602, 1.834259080000038, 3.3907214850000855, 4.678230384000017, 5.965887901000087, 7.256648429000052, 8.555633861999922, 9.850647897000044, 11.154472786000042, 12.467322176999915, 13.7927576269999, 15.129388597999878, 16.46352905399999, 17.791390877999902, 19.100807482999926, 20.424202722000018, 21.728083906999927, 23.03281336200007, 24.346482759000082, 25.639335947000063, 26.938558005999994, 28.249169775999917, 29.567452292000098, 30.89406715699988, 32.212094205000085, 33.529800943000055, 34.844091301999924, 36.16356657000006, 37.46958931900008, 38.765836247999914, 40.06039555999996, 41.366433961999974, 42.666288186999964, 43.95999424299998, 45.26542451299997, 46.613004456, 47.92532619200006, 49.25367465799991, 50.57502731799991, 51.888762842999995, 53.19933486700006, 54.510649564999994, 55.91155609499992, 57.281255367000085, 58.806048205000025, 60.160338701, 61.492727951000006, 62.865169901999934, 64.25322807899988, 65.75111744700007, 67.2279566499999, 68.57297918800009], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]}}], 'exploration_sample': array([[ 6.51875819, 0.97409119],
+ [ 7.596875 , 0.93125 ],
+ [ 5.825 , 0.95 ],
+ [16.45625 , 0.9125 ],
+ [ 9.36875 , 0.8375 ],
+ [17.046875 , 0.63125 ],
+ [10.55 , 0.8 ],
+ [11.73125 , 0.7625 ],
+ [15.275 , 0.65 ],
+ [18.81875 , 0.5375 ],
+ [14.09375 , 0.9875 ],
+ [12.9125 , 0.575 ],
+ [17.6375 , 1.025 ],
+ [ 8.1875 , 0.725 ],
+ [12.321875 , 1.08125 ],
+ [ 3.4625 , 0.875 ],
+ [ 7.00625 , 0.6125 ],
+ [ 4.64375 , 0.6875 ],
+ [ 2.871875 , 0.78125 ],
+ [ 2.28125 , 1.0625 ]]), 'exploration_results': array([ 501.12751638, 519.11435204, 538.30979579, 597.0207673 ,
+ 611.52511798, 615.89547778, 622.99770198, 631.34502173,
+ 647.27786212, 656.04258415, 694.37527482, 830.0300439 ,
+ 914.55694912, 917.36098753, 1057.62479346, 1104.333468 ,
+ 1108.21046316, 1193.90258834, 1244.39797507, 2082.87264995])}}"
diff --git a/content/tables/min/PortfolioSub(Labor)Market_estimate_results.csv b/content/tables/min/PortfolioSub(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..686cf98
--- /dev/null
+++ b/content/tables/min/PortfolioSub(Labor)Market_estimate_results.csv
@@ -0,0 +1,8209 @@
+CRRA,14.011832813202263
+DiscFac,1.0891599957368594
+time_to_estimate,168.5236520767212
+params,"{'CRRA': 14.011832813202263, 'DiscFac': 1.0891599957368594}"
+criterion,0.7184205561063591
+start_criterion,1.3213975205794042
+start_params,"{'CRRA': 12.279830990813757, 'DiscFac': 1.0776706629061286}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 13.066309348529067, 'DiscFac': 1.0471576581804647}, {'CRRA': 12.280456956731095, 'DiscFac': 0.5}, {'CRRA': 13.8146011388025, 'DiscFac': 0.5}, {'CRRA': 11.908337832432913, 'DiscFac': 0.5}, {'CRRA': 14.224280864625221, 'DiscFac': 1.1}, {'CRRA': 14.224280864625221, 'DiscFac': 0.5}, {'CRRA': 14.224280864625221, 'DiscFac': 0.5}, {'CRRA': 11.908337832432913, 'DiscFac': 0.8984815709189882}, {'CRRA': 14.224280864625221, 'DiscFac': 0.7709984071009821}, {'CRRA': 14.224280864625221, 'DiscFac': 1.1}, {'CRRA': 11.908337832432913, 'DiscFac': 0.97048629342172}, {'CRRA': 11.908337832432913, 'DiscFac': 0.5298026178234173}, {'CRRA': 11.908337832432913, 'DiscFac': 1.0810817543290407}, {'CRRA': 13.970035730789688, 'DiscFac': 1.1}, {'CRRA': 16.285978762981998, 'DiscFac': 0.5}, {'CRRA': 14.767415996519718, 'DiscFac': 1.1}, {'CRRA': 13.525261720208501, 'DiscFac': 1.1}, {'CRRA': 13.70108525460877, 'DiscFac': 1.1}, {'CRRA': 14.004502508260845, 'DiscFac': 1.1}, {'CRRA': 14.014669911267017, 'DiscFac': 1.0846283754324875}, {'CRRA': 14.159416350779036, 'DiscFac': 1.1}, {'CRRA': 13.942296691511007, 'DiscFac': 1.0550276666138225}, {'CRRA': 13.978483301389012, 'DiscFac': 1.0948775831831337}, {'CRRA': 14.03276321620602, 'DiscFac': 1.1}, {'CRRA': 14.004539765272607, 'DiscFac': 1.0866448127206392}, {'CRRA': 14.011832813202263, 'DiscFac': 1.0891599957368594}, {'CRRA': 14.001571161266073, 'DiscFac': 1.0878989319529746}, {'CRRA': 14.007111788456244, 'DiscFac': 1.0868075274414533}, {'CRRA': 14.01425689913354, 'DiscFac': 1.0881084816327375}, {'CRRA': 14.012737860682646, 'DiscFac': 1.0882480406776058}, {'CRRA': 14.011400509023126, 'DiscFac': 1.0896325011681918}, {'CRRA': 14.012042752624728, 'DiscFac': 1.0889198134746445}, {'CRRA': 14.011942539314644, 'DiscFac': 1.0890441924492742}, {'CRRA': 14.011780591856901, 'DiscFac': 1.0892202712858525}, {'CRRA': 14.011858856106226, 'DiscFac': 1.0891297982825627}, {'CRRA': 14.011845878134611, 'DiscFac': 1.089144935326559}, {'CRRA': 14.011826283455278, 'DiscFac': 1.0891675282952396}, {'CRRA': 14.011836077563515, 'DiscFac': 1.0891562290135464}, {'CRRA': 14.011834445811164, 'DiscFac': 1.0891581127465024}, {'CRRA': 14.011831997029445, 'DiscFac': 1.089160937346145}, {'CRRA': 14.01183215797573, 'DiscFac': 1.0891607511693926}, {'CRRA': 14.011832158043546, 'DiscFac': 1.0891607512281871}, {'CRRA': 14.011832158095237, 'DiscFac': 1.089160751272985}, {'CRRA': 14.011832158029653, 'DiscFac': 1.0891607512160808}, {'CRRA': 14.011832157970844, 'DiscFac': 1.089160751165159}, {'CRRA': 14.011832157981903, 'DiscFac': 1.0891607511747805}, {'CRRA': 14.011832158038635, 'DiscFac': 1.0891607512238868}, {'CRRA': 14.011833468300475, 'DiscFac': 1.0891592401931263}, {'CRRA': 14.011833468288398, 'DiscFac': 1.089159240182655}, {'CRRA': 14.011833468269545, 'DiscFac': 1.0891592401663046}, {'CRRA': 14.011833468287934, 'DiscFac': 1.0891592401822054}, {'CRRA': 14.011833468323973, 'DiscFac': 1.0891592402134855}, {'CRRA': 14.011833468299528, 'DiscFac': 1.089159240192304}, {'CRRA': 14.011833468327906, 'DiscFac': 1.08915924021691}, {'CRRA': 14.011833468334546, 'DiscFac': 1.0891592402226586}, {'CRRA': 14.011832157988263, 'DiscFac': 1.089160751180182}, {'CRRA': 14.011833468316171, 'DiscFac': 1.0891592402066144}, {'CRRA': 14.011833468316171, 'DiscFac': 1.0891592402066144}, {'CRRA': 14.011833468316171, 'DiscFac': 1.0891592402066144}, {'CRRA': 14.011833468316171, 'DiscFac': 1.0891592402066144}, {'CRRA': 14.011833468316171, 'DiscFac': 1.0891592402066144}, {'CRRA': 14.011833468316171, 'DiscFac': 1.0891592402066144}, {'CRRA': 14.011833468316171, 'DiscFac': 1.0891592402066144}, {'CRRA': 14.011833468316171, 'DiscFac': 1.0891592402066144}], 'criterion': [1.4986734884110868, 3.6930800498276546, 3.820662632812437, 3.671505897975399, 1.361435725731372, 3.8638417260142304, 3.8638417260142304, 2.3161149911520624, 2.7171589222312944, 1.361435725731372, 1.755774291009161, 3.5701092462200235, 1.5259328711389366, 1.3630395467044545, 4.135049913310356, 1.7177184763425375, 1.4584461999630762, 1.4570806285179234, 1.6352440012556255, 1.0410129484416906, 1.9127060614796625, 1.6638058936439872, 1.3344198235621072, 2.412229418376727, 1.5644026100530035, 0.718420556106359, 1.3583428907310002, 1.8004694015466847, 1.592846442492335, 1.657972144202744, 1.4401830262828144, 1.6785780028599055, 2.0117679446685552, 1.693975874418422, 2.6363739549773766, 2.3067084438958925, 1.6834365843388674, 1.4756093975418976, 3.003608443738103, 1.7951122669157669, 1.120097338605995, 1.5359621706119526, 2.320478525587398, 1.8102170529001989, 1.813949043295858, 1.5631216198024078, 2.322376472196528, 1.204765008146623, 1.4709947263422103, 1.5893332193734733, 0.9602897636214487, 1.5865626206073609, 1.2876935617679888, 1.393450740856762, 1.5735237105291944, 1.3700688455816392, 1.1742232022873909, 3.5492281048492407, 2.368415509703494, 1.2824516276565534, 2.671298480209609, 1.336285742222334, 1.1746069257095435, 1.0925841020024283], 'runtime': [0.0, 2.2173056839997116, 2.4335195229996316, 2.650656942999831, 2.8830891839998003, 3.1058964579997337, 3.342101177999666, 3.5510437119996823, 3.78188942099996, 4.030340804999923, 4.276771940999879, 4.516578778999701, 4.718500236999716, 6.699993328999881, 8.439053768999656, 10.134882657999697, 11.832450609999796, 13.530497703000037, 15.377237071999843, 17.173570721000033, 18.907639610999922, 20.636314630000015, 22.369553777999954, 24.07437646199969, 25.76552489000005, 27.58931298699963, 29.298179384999912, 31.00593732499965, 32.7445265399997, 34.49970570400001, 36.23148644999992, 38.01005339299991, 39.856888376999905, 41.57462375499972, 43.3560608949997, 45.12837037099962, 46.92190624099976, 48.763203235999754, 50.5171019659997, 52.310331486999985, 54.226219024999864, 55.97341468900004, 57.71188124599985, 59.43016265599999, 61.13717892199975, 62.837184452999736, 64.54695662299991, 66.40381871399995, 68.13384646799977, 69.85902101900001, 71.61205858599988, 73.42455532999975, 75.25045019799973, 76.99171744099976, 78.83135237599981, 80.5315630619998, 82.28934421199983, 84.04364812599988, 85.81372394899972, 87.57166456200002, 89.33697740099979, 91.23287148300005, 93.02459795599998, 94.73499807600001], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]}"
+convergence_report,"{'one_step': {'relative_criterion_change': 0.684756876261355, 'relative_params_change': 0.06688205106671818, 'absolute_criterion_change': 0.49194341584133594, 'absolute_params_change': 0.622157551616937}, 'five_steps': {'relative_criterion_change': 0.684756876261355, 'relative_params_change': 0.06688205106671818, 'absolute_criterion_change': 0.49194341584133594, 'absolute_params_change': 0.622157551616937}}"
+multistart_info,"{'start_parameters': [{'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 13.066309348529067, 'DiscFac': 1.0471576581804647}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute params change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 0.02632 0.2707
+relative_params_change 0.0005553 0.0918
+absolute_criterion_change 0.03186 0.3276
+absolute_params_change 0.0006017 1.071
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.), Minimize with 2 free parameters terminated.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 0.449 1.086
+relative_params_change 0.004166 0.07772
+absolute_criterion_change 0.3226 0.7803
+absolute_params_change 0.005346 0.9465
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.)], 'exploration_sample': [{'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 12.279830990813757, 'DiscFac': 1.0776706629061286}, {'CRRA': 14.093749999999998, 'DiscFac': 0.9875}, {'CRRA': 17.6375, 'DiscFac': 1.0250000000000001}, {'CRRA': 16.45625, 'DiscFac': 0.9125000000000001}, {'CRRA': 11.73125, 'DiscFac': 0.7625000000000001}, {'CRRA': 10.549999999999999, 'DiscFac': 0.8}, {'CRRA': 12.9125, 'DiscFac': 0.575}, {'CRRA': 15.274999999999999, 'DiscFac': 0.65}, {'CRRA': 17.046875, 'DiscFac': 0.6312500000000001}, {'CRRA': 18.81875, 'DiscFac': 0.5375}, {'CRRA': 9.368749999999999, 'DiscFac': 0.8375}, {'CRRA': 8.1875, 'DiscFac': 0.7250000000000001}, {'CRRA': 7.00625, 'DiscFac': 0.6125}, {'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 2.871875, 'DiscFac': 0.78125}, {'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 2.28125, 'DiscFac': 1.0625}], 'exploration_results': array([ 1.25226984, 1.54798499, 1.77139048, 1.79567843, 2.19243348,
+ 2.99563577, 3.4003551 , 3.46407238, 3.67340234, 3.72448066,
+ 4.28414873, 4.65250486, 5.39134448, 6.53886763, 14.94020775,
+ 20.34265339, 25.6087008 , 29.29813793, 75.84976584])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([13.06630935, 1.04715766]), radius=1.3066309348529068, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.4986734884110868, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=0, candidate_x=array([13.06630935, 1.04715766]), index=0, x=array([13.06630935, 1.04715766]), fval=1.4986734884110868, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([13.06630935, 1.04715766]), radius=1.3066309348529068, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.9421677429578261, linear_terms=array([-0.01793274, -1.33112857]), square_terms=array([[ 0.138267 , -0.08997625],
+ [-0.08997625, 1.20215896]]), scale=array([1.15797152, 0.3 ]), shift=array([13.06630935, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=13, candidate_x=array([13.97003573, 1.1 ]), index=13, x=array([13.97003573, 1.1 ]), fval=1.3630395467044545, rho=1.624865077837764, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.905269952601345, relative_step_length=0.6928275831026879, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.97003573, 1.1 ]), radius=2.6132618697058136, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 5, 7, 8, 13, 14]), model=ScalarModel(intercept=2.0166215448177627, linear_terms=array([ 0.021255 , -1.36653809]), square_terms=array([[ 0.39149358, -0.15604643],
+ [-0.15604643, 1.0244866 ]]), scale=array([2.31594303, 0.3 ]), shift=array([13.97003573, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=15, candidate_x=array([14.767416, 1.1 ]), index=13, x=array([13.97003573, 1.1 ]), fval=1.3630395467044545, rho=-15.285002798568934, accepted=False, new_indices=array([14]), old_indices_used=array([ 0, 1, 2, 3, 5, 7, 8, 13]), old_indices_discarded=array([ 4, 6, 9, 10, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.97003573, 1.1 ]), radius=1.3066309348529068, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 6, 8, 9, 13, 15]), model=ScalarModel(intercept=1.9746143000353822, linear_terms=array([-0.10052417, -1.40416662]), square_terms=array([[0.67839848, 0.36109536],
+ [0.36109536, 1.33896529]]), scale=array([1.15797152, 0.3 ]), shift=array([13.97003573, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=16, candidate_x=array([13.52526172, 1.1 ]), index=13, x=array([13.97003573, 1.1 ]), fval=1.3630395467044545, rho=-1.9065172504008432, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 8, 9, 13, 15]), old_indices_discarded=array([ 1, 3, 7, 10, 11, 12, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.97003573, 1.1 ]), radius=0.6533154674264534, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 6, 8, 9, 13, 15, 16]), model=ScalarModel(intercept=1.954246165506243, linear_terms=array([-0.08521947, -1.28163032]), square_terms=array([[0.13451839, 0.14770595],
+ [0.14770595, 1.24681584]]), scale=array([0.57898576, 0.28949288]), shift=array([13.97003573, 0.81050712])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=17, candidate_x=array([13.70108525, 1.1 ]), index=13, x=array([13.97003573, 1.1 ]), fval=1.3630395467044545, rho=-6.4797323723319575, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 6, 8, 9, 13, 15, 16]), old_indices_discarded=array([ 0, 1, 3, 7, 10, 11, 12, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.97003573, 1.1 ]), radius=0.3266577337132267, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 6, 8, 9, 13, 16, 17]), model=ScalarModel(intercept=1.3995906388898938, linear_terms=array([ 0.00041659, -0.32845253]), square_terms=array([[ 0.06002501, -0.00756312],
+ [-0.00756312, 0.31285714]]), scale=array([0.28949288, 0.14474644]), shift=array([13.97003573, 0.95525356])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=18, candidate_x=array([14.00450251, 1.1 ]), index=13, x=array([13.97003573, 1.1 ]), fval=1.3630395467044545, rho=-639.8341190827376, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 6, 8, 9, 13, 16, 17]), old_indices_discarded=array([ 0, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.97003573, 1.1 ]), radius=0.16332886685661335, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 6, 8, 9, 13, 16, 17, 18]), model=ScalarModel(intercept=1.3023441501145478, linear_terms=array([-0.00270162, -0.06663458]), square_terms=array([[ 0.0150264 , -0.00245292],
+ [-0.00245292, 0.0855643 ]]), scale=array([0.14474644, 0.07237322]), shift=array([13.97003573, 1.02762678])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=19, candidate_x=array([14.01466991, 1.08462838]), index=19, x=array([14.01466991, 1.08462838]), fval=1.0410129484416903, rho=114.80417610410284, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 6, 8, 9, 13, 16, 17, 18]), old_indices_discarded=array([ 5, 15]), step_length=0.047206958265994726, relative_step_length=0.2890300972175224, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01466991, 1.08462838]), radius=0.16332886685661335, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 8, 9, 13, 16, 17, 18, 19]), model=ScalarModel(intercept=1.226523862135151, linear_terms=array([-0.01223051, -0.12778069]), square_terms=array([[ 0.01612848, -0.01186675],
+ [-0.01186675, 0.10601771]]), scale=array([0.14474644, 0.08005903]), shift=array([14.01466991, 1.01994097])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=20, candidate_x=array([14.15941635, 1.1 ]), index=19, x=array([14.01466991, 1.08462838]), fval=1.0410129484416903, rho=-39.326073520819115, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 8, 9, 13, 16, 17, 18, 19]), old_indices_discarded=array([ 5, 6, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01466991, 1.08462838]), radius=0.08166443342830668, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 8, 9, 13, 17, 18, 19, 20]), model=ScalarModel(intercept=1.196985077835359, linear_terms=array([0.03516311, 0.00306745]), square_terms=array([[0.01712576, 0.00136586],
+ [0.00136586, 0.06787167]]), scale=array([0.07237322, 0.04387242]), shift=array([14.01466991, 1.05612758])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=21, candidate_x=array([13.94229669, 1.05502767]), index=19, x=array([14.01466991, 1.08462838]), fval=1.0410129484416903, rho=-14.505215148299051, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 8, 9, 13, 17, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01466991, 1.08462838]), radius=0.04083221671415334, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([13, 18, 19, 20, 21]), model=ScalarModel(intercept=1.43364495095228, linear_terms=array([ 0.12922127, -0.32781807]), square_terms=array([[ 0.01853158, -0.06428325],
+ [-0.06428325, 0.32888578]]), scale=array([0.03618661, 0.02577912]), shift=array([14.01466991, 1.07422088])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=22, candidate_x=array([13.9784833 , 1.09487758]), index=19, x=array([14.01466991, 1.08462838]), fval=1.0410129484416903, rho=-2.4451313207154053, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([13, 18, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01466991, 1.08462838]), radius=0.02041610835707667, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([13, 18, 19, 21, 22]), model=ScalarModel(intercept=1.0485149188081042, linear_terms=array([ 0.05139792, -0.29978337]), square_terms=array([[ 0.13343796, -0.19971635],
+ [-0.19971635, 0.34743672]]), scale=array([0.0180933 , 0.01673246]), shift=array([14.01466991, 1.08326754])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=23, candidate_x=array([14.03276322, 1.1 ]), index=19, x=array([14.01466991, 1.08462838]), fval=1.0410129484416903, rho=-7.434794508101175, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([13, 18, 19, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01466991, 1.08462838]), radius=0.010208054178538335, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([13, 18, 19, 22, 23]), model=ScalarModel(intercept=0.9771052862147884, linear_terms=array([ 0.06873397, -0.19272697]), square_terms=array([[0.01343003, 0.04147703],
+ [0.04147703, 1.11994799]]), scale=0.010208054178538335, shift=array([14.01466991, 1.08462838])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=24, candidate_x=array([14.00453977, 1.08664481]), index=19, x=array([14.01466991, 1.08462838]), fval=1.0410129484416903, rho=-6.08966504598221, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([13, 18, 19, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01466991, 1.08462838]), radius=0.005104027089269167, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 19, 23, 24]), model=ScalarModel(intercept=1.2926218223787844, linear_terms=array([-0.00788451, -0.32540669]), square_terms=array([[0.00911385, 0.04354991],
+ [0.04354991, 0.34751248]]), scale=0.005104027089269167, shift=array([14.01466991, 1.08462838])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=25, candidate_x=array([14.01183281, 1.08916 ]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=1.9242451111551888, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 19, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.005346466871872233, relative_step_length=1.0474997053038329, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=0.010208054178538335, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([13, 18, 19, 22, 23, 24, 25]), model=ScalarModel(intercept=0.9530259023191747, linear_terms=array([0.0624839 , 0.22160522]), square_terms=array([[0.01172426, 0.05678182],
+ [0.05678182, 1.28834316]]), scale=0.010208054178538335, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=26, candidate_x=array([14.00157116, 1.08789893]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-9.496915537884778, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([13, 18, 19, 22, 23, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=0.005104027089269167, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 19, 23, 24, 25, 26]), model=ScalarModel(intercept=1.0207789028264391, linear_terms=array([0.01004909, 0.14281032]), square_terms=array([[0.00371043, 0.01053812],
+ [0.01053812, 0.28679693]]), scale=0.005104027089269167, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=27, candidate_x=array([14.00711179, 1.08680753]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-28.050855759385684, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([18, 19, 23, 24, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=0.0025520135446345836, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 24, 25, 26, 27]), model=ScalarModel(intercept=0.8128068799853125, linear_terms=array([-0.07390409, 0.1867271 ]), square_terms=array([[0.02933352, 0.06029508],
+ [0.06029508, 0.51755928]]), scale=0.0025520135446345836, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=28, candidate_x=array([14.0142569 , 1.08810848]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-7.699522645704379, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 24, 25, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=0.0012760067723172918, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 25, 27, 28]), model=ScalarModel(intercept=1.209518867736394, linear_terms=array([-0.11590533, 0.18949222]), square_terms=array([[ 0.01661532, -0.00116286],
+ [-0.00116286, 0.11835795]]), scale=0.0012760067723172918, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=29, candidate_x=array([14.01273786, 1.08824804]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-5.1442338781399215, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 25, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=0.0006380033861586459, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 28, 29]), model=ScalarModel(intercept=0.7184205561063589, linear_terms=array([-0.03991274, -0.41121206]), square_terms=array([[0.06092818, 0.15503069],
+ [0.15503069, 0.64746692]]), scale=0.0006380033861586459, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=30, candidate_x=array([14.01140051, 1.0896325 ]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-4.407812252185182, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=0.00031900169307932295, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 29, 30]), model=ScalarModel(intercept=0.7184205561063571, linear_terms=array([6.47248659, 6.23766009]), square_terms=array([[97.34730406, 93.68589164],
+ [93.68589164, 90.17430137]]), scale=0.00031900169307932295, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=31, candidate_x=array([14.01204275, 1.08891981]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-4.3997935915404245, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=0.00015950084653966148, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 30, 31]), model=ScalarModel(intercept=0.7184205561063558, linear_terms=array([-12.83926554, -11.58895782]), square_terms=array([[403.25856038, 364.41817194],
+ [364.41817194, 329.32570956]]), scale=0.00015950084653966148, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=32, candidate_x=array([14.01194254, 1.08904419]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-6.08668048343243, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=7.975042326983074e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 31, 32]), model=ScalarModel(intercept=0.7184205561063587, linear_terms=array([-0.93030573, -0.99634712]), square_terms=array([[179.36567441, 156.70454335],
+ [156.70454335, 136.99646585]]), scale=7.975042326983074e-05, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=33, candidate_x=array([14.01178059, 1.08922027]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-8.451134213198396, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 31, 32]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=3.987521163491537e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 32, 33]), model=ScalarModel(intercept=0.7184205561063576, linear_terms=array([4.89837172, 4.58388165]), square_terms=array([[126.56088765, 115.62747724],
+ [115.62747724, 105.76020212]]), scale=3.987521163491537e-05, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=34, candidate_x=array([14.01185886, 1.0891298 ]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-13.486068074378037, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 32, 33]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1.9937605817457685e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 33, 34]), model=ScalarModel(intercept=0.7184205561063594, linear_terms=array([-166.8647099 , -144.39771315]), square_terms=array([[108814.42353203, 94175.80730374],
+ [ 94175.80730374, 81506.51063637]]), scale=1.9937605817457685e-05, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=35, candidate_x=array([14.01184588, 1.08914494]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-11.434790160517737, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 33, 34]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=9.968802908728842e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 34, 35]), model=ScalarModel(intercept=0.7184205561063438, linear_terms=array([49.40160575, 42.35987568]), square_terms=array([[9579.24080639, 8238.55673379],
+ [8238.55673379, 7085.71316346]]), scale=9.968802908728842e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=36, candidate_x=array([14.01182628, 1.08916753]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-5.808761681874345, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 34, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=4.984401454364421e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 35, 36]), model=ScalarModel(intercept=0.7184205561063602, linear_terms=array([1020.68556625, 885.19846682]), square_terms=array([[2243098.72305016, 1945290.7676038 ],
+ [1945290.7676038 , 1687021.70004694]]), scale=4.984401454364421e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=37, candidate_x=array([14.01183608, 1.08915623]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-3.089314232147828, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=2.4922007271822106e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 36, 37]), model=ScalarModel(intercept=0.7184205561067002, linear_terms=array([-2013.33218824, -1745.09825308]), square_terms=array([[11129865.24453419, 9647261.01993076],
+ [ 9647261.01993076, 8362153.83138471]]), scale=2.4922007271822106e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=38, candidate_x=array([14.01183445, 1.08915811]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-10.952863948663223, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 36, 37]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1.2461003635911053e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38]), model=ScalarModel(intercept=0.718420556106118, linear_terms=array([959.18947726, 831.12332873]), square_terms=array([[6203721.25062285, 5376023.28185779],
+ [5376023.28185779, 4658756.49633051]]), scale=1.2461003635911053e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=39, candidate_x=array([14.011832 , 1.08916094]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-8.468629779574808, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39]), model=ScalarModel(intercept=1.3029571467125889, linear_terms=array([1271.62989932, 1102.04552777]), square_terms=array([[2496938.18044439, 2164043.06872904],
+ [2164043.06872904, 1875529.98728359]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=40, candidate_x=array([14.01183216, 1.08916075]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-1.124121931196161, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40]), model=ScalarModel(intercept=1.2604794759999813, linear_terms=array([1246.25639581, 1080.03996307]), square_terms=array([[3152891.30365823, 2732523.73682316],
+ [2732523.73682316, 2368202.79679982]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=41, candidate_x=array([14.01183216, 1.08916075]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.8604468453536884, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.2861419090291868, linear_terms=array([1090.09720002, 944.7027741 ]), square_terms=array([[3520795.13786478, 3051353.17786668],
+ [3051353.17786668, 2644503.83384729]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=42, candidate_x=array([14.01183216, 1.08916075]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-7.909430321019699, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41, 42]), model=ScalarModel(intercept=1.4656905572771453, linear_terms=array([1243.82197504, 1077.98706406]), square_terms=array([[3085809.09127438, 2674453.15149168],
+ [2674453.15149168, 2317933.30821108]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=43, candidate_x=array([14.01183216, 1.08916075]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-4.056989488853848, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41, 42]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41, 42, 43]), model=ScalarModel(intercept=1.548557873891164, linear_terms=array([1203.1713828 , 1042.77950053]), square_terms=array([[2438542.31045176, 2113511.47163476],
+ [2113511.47163476, 1831803.66933079]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=44, candidate_x=array([14.01183216, 1.08916075]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-3.506804060939179, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41, 42, 43]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41, 42, 43, 44]), model=ScalarModel(intercept=1.5887250225761516, linear_terms=array([1030.5595738 , 893.18618335]), square_terms=array([[2190616.89147569, 1898642.09058655],
+ [1898642.09058655, 1645582.94584737]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=45, candidate_x=array([14.01183216, 1.08916075]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-3.3350972580818494, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41, 42, 43, 44]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 38, 39, 40, 41, 42, 43, 44, 45]), model=ScalarModel(intercept=1.6019772554697844, linear_terms=array([1292.43082122, 1120.26966461]), square_terms=array([[4990602.23895189, 4326174.44936223],
+ [4326174.44936223, 3750205.81186814]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=46, candidate_x=array([14.01183216, 1.08916075]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-7.026725570983665, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 38, 39, 40, 41, 42, 43, 44, 45]), old_indices_discarded=array([37]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 40, 41, 42, 43, 44, 45, 46]), model=ScalarModel(intercept=0.7528586726265997, linear_terms=array([322.27186607, 280.09974261]), square_terms=array([[4388187.8633596 , 3805228.12048649],
+ [3805228.12048649, 3299714.05118195]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=47, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.122141707078279, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 40, 41, 42, 43, 44, 45, 46]), old_indices_discarded=array([37, 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 40, 41, 42, 43, 44, 45, 46, 47]), model=ScalarModel(intercept=1.2627474977574111, linear_terms=array([2306.59533568, 2000.58111819]), square_terms=array([[19867744.70173672, 17228930.38510248],
+ [17228930.38510248, 14940600.96617165]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=48, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.1809461658185123, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 40, 41, 42, 43, 44, 45, 46, 47]), old_indices_discarded=array([37, 38, 39]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 40, 41, 42, 43, 44, 46, 47, 48]), model=ScalarModel(intercept=1.3487396237890183, linear_terms=array([2294.52073172, 1989.98708101]), square_terms=array([[17079816.273739 , 14810957.61312829],
+ [14810957.61312829, 12843491.01190923]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=49, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.6153658960455575, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 40, 41, 42, 43, 44, 46, 47, 48]), old_indices_discarded=array([37, 38, 39, 45]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 40, 41, 42, 43, 46, 47, 48, 49]), model=ScalarModel(intercept=1.4088347925358962, linear_terms=array([4942.78314754, 4286.39180143]), square_terms=array([[45933245.47083566, 39831868.76801804],
+ [39831868.76801804, 34540946.42122044]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=50, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-0.6308570109424091, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 40, 41, 42, 43, 46, 47, 48, 49]), old_indices_discarded=array([37, 38, 39, 44, 45]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 41, 42, 43, 46, 47, 48, 49, 50]), model=ScalarModel(intercept=1.2465352455569267, linear_terms=array([1103.44013369, 957.31158437]), square_terms=array([[32450404.08701053, 28139523.59651852],
+ [28139523.59651852, 24401323.08846297]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=51, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.800014341621393, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 41, 42, 43, 46, 47, 48, 49, 50]), old_indices_discarded=array([37, 38, 39, 40, 44, 45]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 42, 43, 46, 47, 48, 49, 50, 51]), model=ScalarModel(intercept=1.4358728804192635, linear_terms=array([2094.60340738, 1816.88243966]), square_terms=array([[14783418.16119196, 12820781.31024842],
+ [12820781.31024842, 11118703.03997286]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=52, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-1.5835919778166219, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 42, 43, 46, 47, 48, 49, 50, 51]), old_indices_discarded=array([37, 38, 39, 40, 41, 44, 45]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 42, 43, 46, 47, 48, 49, 51, 52]), model=ScalarModel(intercept=1.4061640964469848, linear_terms=array([1557.86899385, 1351.46173786]), square_terms=array([[15581242.02410638, 13512851.86370382],
+ [13512851.86370382, 11719038.1383182 ]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=53, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.215942126256473, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 42, 43, 46, 47, 48, 49, 51, 52]), old_indices_discarded=array([37, 38, 39, 40, 41, 44, 45, 50]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 46, 47, 48, 49, 51, 52, 53]), model=ScalarModel(intercept=1.4091609269755996, linear_terms=array([2589.78007886, 2246.28082932]), square_terms=array([[39273360.80384912, 34058706.47728051],
+ [34058706.47728051, 29536445.78430764]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=54, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.6309212802317243, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 46, 47, 48, 49, 51, 52, 53]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 50]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 47, 48, 49, 51, 52, 53, 54]), model=ScalarModel(intercept=1.3929420700923119, linear_terms=array([5059.04429947, 4387.21291909]), square_terms=array([[55278423.97255142, 47937597.93307385],
+ [47937597.93307385, 41571613.87351739]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=55, candidate_x=array([14.01183216, 1.08916075]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.8633694811625787, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 47, 48, 49, 51, 52, 53, 54]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 46, 50]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), model=ScalarModel(intercept=1.334891981281938, linear_terms=array([5354.21261732, 4643.13436611]), square_terms=array([[81150053.8400843 , 70371614.45136172],
+ [70371614.45136172, 61024779.24931383]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=56, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-1.9943606061193717, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 46, 50, 51]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), model=ScalarModel(intercept=1.334891981281938, linear_terms=array([5354.21261732, 4643.13436611]), square_terms=array([[81150053.8400843 , 70371614.45136172],
+ [70371614.45136172, 61024779.24931383]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=57, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-12.386174380558238, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 46, 50, 51, 56]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), model=ScalarModel(intercept=1.334891981281938, linear_terms=array([5354.21261732, 4643.13436611]), square_terms=array([[81150053.8400843 , 70371614.45136172],
+ [70371614.45136172, 61024779.24931383]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=58, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-7.219538902024979, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 46, 50, 51, 56, 57]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), model=ScalarModel(intercept=1.334891981281938, linear_terms=array([5354.21261732, 4643.13436611]), square_terms=array([[81150053.8400843 , 70371614.45136172],
+ [70371614.45136172, 61024779.24931383]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=59, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.467913161873645, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 46, 50, 51, 56, 57, 58]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), model=ScalarModel(intercept=1.334891981281938, linear_terms=array([5354.21261732, 4643.13436611]), square_terms=array([[81150053.8400843 , 70371614.45136172],
+ [70371614.45136172, 61024779.24931383]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=60, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-8.544800766349255, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 46, 50, 51, 56, 57, 58, 59]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), model=ScalarModel(intercept=1.334891981281938, linear_terms=array([5354.21261732, 4643.13436611]), square_terms=array([[81150053.8400843 , 70371614.45136172],
+ [70371614.45136172, 61024779.24931383]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=61, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.703463872811527, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 46, 50, 51, 56, 57, 58, 59, 60]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), model=ScalarModel(intercept=1.334891981281938, linear_terms=array([5354.21261732, 4643.13436611]), square_terms=array([[81150053.8400843 , 70371614.45136172],
+ [70371614.45136172, 61024779.24931383]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=62, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-1.996039584693101, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 46, 50, 51, 56, 57, 58, 59, 60, 61]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), model=ScalarModel(intercept=1.334891981281938, linear_terms=array([5354.21261732, 4643.13436611]), square_terms=array([[81150053.8400843 , 70371614.45136172],
+ [70371614.45136172, 61024779.24931383]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=63, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-1.6371494163829006, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 46, 50, 51, 56, 57, 58, 59, 60, 61,
+ 62]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 64 entries., 'multistart_info': {'start_parameters': [array([12.321875, 1.08125 ]), array([13.06630935, 1.04715766])], 'local_optima': [{'solution_x': array([13.39207935, 1.03451876]), 'solution_criterion': 1.210363971947695, 'states': [State(trustregion=Region(center=array([12.321875, 1.08125 ]), radius=1.2321875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.5379709637742367, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=0, candidate_x=array([12.321875, 1.08125 ]), index=0, x=array([12.321875, 1.08125 ]), fval=1.5379709637742367, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([12.321875, 1.08125 ]), radius=1.2321875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.840550854912425, linear_terms=array([ 0.07353749, -1.22696893]), square_terms=array([[ 0.09418262, -0.29229569],
+ [-0.29229569, 1.8372015 ]]), scale=array([1.09199774, 0.3 ]), shift=array([12.321875, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=13, candidate_x=array([13.41387274, 1.0480835 ]), index=13, x=array([13.41387274, 1.0480835 ]), fval=1.3627041528656627, rho=1.064636764428723, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=1.0925012951935644, relative_step_length=0.8866355933602349, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.41387274, 1.0480835 ]), radius=2.464375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 5, 6, 7, 8, 10, 11, 13]), model=ScalarModel(intercept=2.075632376408693, linear_terms=array([ 0.44475858, -1.63923571]), square_terms=array([[ 0.4215093 , -0.69321529],
+ [-0.69321529, 1.7585011 ]]), scale=array([2.18399548, 0.3 ]), shift=array([13.41387274, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=14, candidate_x=array([14.70121879, 1.1 ]), index=13, x=array([13.41387274, 1.0480835 ]), fval=1.3627041528656627, rho=-2.2582007264460318, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 5, 6, 7, 8, 10, 11, 13]), old_indices_discarded=array([ 1, 2, 4, 9, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.41387274, 1.0480835 ]), radius=1.2321875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 6, 8, 9, 13, 14]), model=ScalarModel(intercept=1.8597631456640993, linear_terms=array([-0.16560094, -1.39509672]), square_terms=array([[ 0.25676534, -0.02422231],
+ [-0.02422231, 1.5320715 ]]), scale=array([1.09199774, 0.3 ]), shift=array([13.41387274, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=15, candidate_x=array([14.21315436, 1.07665016]), index=13, x=array([13.41387274, 1.0480835 ]), fval=1.3627041528656627, rho=-3.8933696718720308, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 8, 9, 13, 14]), old_indices_discarded=array([ 1, 3, 7, 10, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.41387274, 1.0480835 ]), radius=0.61609375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 6, 8, 9, 13, 15]), model=ScalarModel(intercept=1.8893357537559765, linear_terms=array([-0.02772496, -1.3695219 ]), square_terms=array([[ 0.04325758, -0.01687608],
+ [-0.01687608, 1.53625408]]), scale=array([0.54599887, 0.29895768]), shift=array([13.41387274, 0.80104232])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=16, candidate_x=array([13.95603404, 1.07081466]), index=13, x=array([13.41387274, 1.0480835 ]), fval=1.3627041528656627, rho=-14.984993379227156, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 8, 9, 13, 15]), old_indices_discarded=array([ 1, 3, 7, 10, 11, 12, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.41387274, 1.0480835 ]), radius=0.308046875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 8, 9, 13, 15, 16, 17]), model=ScalarModel(intercept=1.492059422834581, linear_terms=array([-0.11965999, -0.40798019]), square_terms=array([[0.13418385, 0.01559018],
+ [0.01559018, 0.50991394]]), scale=array([0.27299943, 0.16245797]), shift=array([13.41387274, 0.93754203])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=18, candidate_x=array([13.63272267, 1.06354223]), index=13, x=array([13.41387274, 1.0480835 ]), fval=1.3627041528656627, rho=-10.365637769460031, accepted=False, new_indices=array([17]), old_indices_used=array([ 2, 4, 5, 8, 9, 13, 15, 16]), old_indices_discarded=array([ 0, 6, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.41387274, 1.0480835 ]), radius=0.1540234375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 8, 9, 13, 16, 17, 18]), model=ScalarModel(intercept=1.3794125731198714, linear_terms=array([-0.03649967, -0.14181619]), square_terms=array([[ 0.02646541, -0.02252458],
+ [-0.02252458, 0.15141401]]), scale=array([0.13649972, 0.09420811]), shift=array([13.41387274, 1.00579189])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=19, candidate_x=array([13.55037246, 1.1 ]), index=13, x=array([13.41387274, 1.0480835 ]), fval=1.3627041528656627, rho=-9.94771316924612, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 8, 9, 13, 16, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.41387274, 1.0480835 ]), radius=0.07701171875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 8, 9, 13, 18, 19]), model=ScalarModel(intercept=1.3783908568552679, linear_terms=array([ 0.01021357, -0.00822452]), square_terms=array([[ 0.05843199, -0.08341068],
+ [-0.08341068, 0.18300197]]), scale=array([0.06824986, 0.06008318]), shift=array([13.41387274, 1.03991682])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=20, candidate_x=array([13.39225885, 1.03394448]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=67.64661076310064, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 8, 9, 13, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.025827737562700674, relative_step_length=0.33537412204166234, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.07701171875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 8, 9, 13, 18, 19, 20]), model=ScalarModel(intercept=1.329063512541693, linear_terms=array([ 0.02464634, -0.02431736]), square_terms=array([[ 0.05297532, -0.08788172],
+ [-0.08788172, 0.22588201]]), scale=array([0.06824986, 0.06715269]), shift=array([13.39225885, 1.03284731])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=21, candidate_x=array([13.33708417, 1.01895545]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-106.24217111440103, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 8, 9, 13, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.038505859375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 9, 13, 19, 20, 21]), model=ScalarModel(intercept=1.4558785589476007, linear_terms=array([ 0.03199582, -0.13313381]), square_terms=array([[0.00508526, 0.00270481],
+ [0.00270481, 0.2748186 ]]), scale=0.038505859375, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=22, candidate_x=array([13.3541983 , 1.05118446]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-6.452870384435016, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 9, 13, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.0192529296875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 9, 13, 20, 21, 22]), model=ScalarModel(intercept=1.4157454760310837, linear_terms=array([-0.03025277, -0.32371426]), square_terms=array([[ 0.03408775, -0.09379796],
+ [-0.09379796, 0.50863551]]), scale=0.0192529296875, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=23, candidate_x=array([13.4067861, 1.0466706]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-1.3455197239916337, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 9, 13, 20, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.00962646484375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 9, 13, 20, 22, 23]), model=ScalarModel(intercept=1.2461213821670756, linear_terms=array([-0.01139901, 0.03479926]), square_terms=array([[ 0.01697025, -0.01299824],
+ [-0.01299824, 0.05399418]]), scale=0.00962646484375, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=24, candidate_x=array([13.3943604 , 1.02824614]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-1.2093864369538776, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 9, 13, 20, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.004813232421875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 9, 20, 23, 24]), model=ScalarModel(intercept=1.2552760540332801, linear_terms=array([-0.06136149, 0.10404948]), square_terms=array([[ 0.04088732, -0.04708259],
+ [-0.04708259, 0.0835845 ]]), scale=0.004813232421875, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=25, candidate_x=array([13.39252918, 1.02913885]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-6.467098079073112, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 9, 20, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.0024066162109375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 24, 25]), model=ScalarModel(intercept=1.242220416469452, linear_terms=array([-0.49254682, -0.10435951]), square_terms=array([[3.37854 , 0.8095457 ],
+ [0.8095457 , 0.20786122]]), scale=0.0024066162109375, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=26, candidate_x=array([13.39317718, 1.03157619]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-10.530718088463118, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.00120330810546875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 25, 26]), model=ScalarModel(intercept=1.2422204164694506, linear_terms=array([ 0.01554006, -0.03745233]), square_terms=array([[2.87010276, 0.40232869],
+ [0.40232869, 0.06805038]]), scale=0.00120330810546875, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=27, candidate_x=array([13.39208705, 1.03513547]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-15.4154389784598, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.000601654052734375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 26, 27]), model=ScalarModel(intercept=1.2422204164694508, linear_terms=array([-0.07966419, -0.05262964]), square_terms=array([[9.47883394, 3.05260383],
+ [3.05260383, 0.98903341]]), scale=0.000601654052734375, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=28, candidate_x=array([13.39207935, 1.03451876]), index=28, x=array([13.39207935, 1.03451876]), fval=1.210363971947695, rho=1.3634463837141155, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([20, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0006016745527352553, relative_step_length=1.0000340727379582, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute params change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 29 entries., 'history': {'params': [{'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 11.446536902444704, 'DiscFac': 0.5}, {'CRRA': 13.413872739706319, 'DiscFac': 0.5007652721540578}, {'CRRA': 11.229877260293678, 'DiscFac': 0.59273111228441}, {'CRRA': 13.294070386710855, 'DiscFac': 1.1}, {'CRRA': 13.413872739706319, 'DiscFac': 0.5}, {'CRRA': 12.446098642928627, 'DiscFac': 0.5}, {'CRRA': 11.229877260293678, 'DiscFac': 1.060949564463903}, {'CRRA': 13.413872739706319, 'DiscFac': 0.8026495106859575}, {'CRRA': 13.413872739706319, 'DiscFac': 1.038275200676022}, {'CRRA': 11.53308651761103, 'DiscFac': 1.1}, {'CRRA': 11.354974829891772, 'DiscFac': 0.5}, {'CRRA': 11.681377339711737, 'DiscFac': 1.1}, {'CRRA': 13.413872739706319, 'DiscFac': 1.0480835037137872}, {'CRRA': 14.701218785330024, 'DiscFac': 1.1}, {'CRRA': 14.21315435802697, 'DiscFac': 1.0766501636285937}, {'CRRA': 13.956034038420718, 'DiscFac': 1.0708146638062002}, {'CRRA': 13.6868721746329, 'DiscFac': 0.7750840687872071}, {'CRRA': 13.632722670614632, 'DiscFac': 1.0635422253682307}, {'CRRA': 13.550372457169608, 'DiscFac': 1.1}, {'CRRA': 13.392258852425382, 'DiscFac': 1.0339444830894764}, {'CRRA': 13.33708416842291, 'DiscFac': 1.0189554530363083}, {'CRRA': 13.354198302357199, 'DiscFac': 1.0511844553967804}, {'CRRA': 13.406786102101872, 'DiscFac': 1.0466705954603888}, {'CRRA': 13.39436039500245, 'DiscFac': 1.0282461370567386}, {'CRRA': 13.39252917714216, 'DiscFac': 1.0291388477626453}, {'CRRA': 13.393177182698638, 'DiscFac': 1.03157618641155}, {'CRRA': 13.392087051286135, 'DiscFac': 1.0351354693798418}, {'CRRA': 13.392079350807666, 'DiscFac': 1.0345187577943404}], 'criterion': [1.5379709637742367, 3.734068243164363, 3.8971507996642774, 3.48162912690558, 1.5320563469928077, 3.8998498998090394, 3.8115417722834937, 1.8259926966388675, 2.730724308743347, 1.3758247665922279, 1.9635043655892632, 3.728401962298913, 1.9078459093280093, 1.3627041528656627, 1.5409172470669907, 1.6509602310715887, 1.7297229865297858, 2.8707572108561155, 1.8458865400582627, 1.994324329480671, 1.2422204164694501, 1.9944044399163705, 1.644887349366995, 1.4612222892797884, 1.2561814434631458, 1.6494306735661541, 1.6910974108380283, 1.7595131585211201, 1.210363971947695], 'runtime': [0.0, 2.1171798769996713, 2.334229091999987, 2.552241125999899, 2.774041904999649, 3.0008021479998206, 3.2275494239997897, 3.452168719999918, 3.700895508999565, 3.934799906999615, 4.176183868999942, 4.416520302999743, 4.661239891999685, 6.583933283999613, 8.308958003999578, 10.011778424999648, 11.854665997999746, 13.585073868999643, 15.33595473699961, 17.07348299599971, 18.797986602999572, 20.526268070999777, 22.267324981, 24.16214085699994, 25.933218724999733, 27.691180602999793, 29.469110989, 31.30562459399971, 33.15918486199962], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]}}, {'solution_x': array([14.01183281, 1.08916 ]), 'solution_criterion': 0.7184205561063591, 'states': [State(trustregion=Region(center=array([13.06630935, 1.04715766]), radius=1.3066309348529068, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.4986734884110868, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=0, candidate_x=array([13.06630935, 1.04715766]), index=0, x=array([13.06630935, 1.04715766]), fval=1.4986734884110868, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([13.06630935, 1.04715766]), radius=1.3066309348529068, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.9421677429578261, linear_terms=array([-0.01793274, -1.33112857]), square_terms=array([[ 0.138267 , -0.08997625],
+ [-0.08997625, 1.20215896]]), scale=array([1.15797152, 0.3 ]), shift=array([13.06630935, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=13, candidate_x=array([13.97003573, 1.1 ]), index=13, x=array([13.97003573, 1.1 ]), fval=1.3630395467044545, rho=1.624865077837764, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.905269952601345, relative_step_length=0.6928275831026879, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.97003573, 1.1 ]), radius=2.6132618697058136, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 5, 7, 8, 13, 14]), model=ScalarModel(intercept=2.0166215448177627, linear_terms=array([ 0.021255 , -1.36653809]), square_terms=array([[ 0.39149358, -0.15604643],
+ [-0.15604643, 1.0244866 ]]), scale=array([2.31594303, 0.3 ]), shift=array([13.97003573, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=15, candidate_x=array([14.767416, 1.1 ]), index=13, x=array([13.97003573, 1.1 ]), fval=1.3630395467044545, rho=-15.285002798568934, accepted=False, new_indices=array([14]), old_indices_used=array([ 0, 1, 2, 3, 5, 7, 8, 13]), old_indices_discarded=array([ 4, 6, 9, 10, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.97003573, 1.1 ]), radius=1.3066309348529068, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 6, 8, 9, 13, 15]), model=ScalarModel(intercept=1.9746143000353822, linear_terms=array([-0.10052417, -1.40416662]), square_terms=array([[0.67839848, 0.36109536],
+ [0.36109536, 1.33896529]]), scale=array([1.15797152, 0.3 ]), shift=array([13.97003573, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=16, candidate_x=array([13.52526172, 1.1 ]), index=13, x=array([13.97003573, 1.1 ]), fval=1.3630395467044545, rho=-1.9065172504008432, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 8, 9, 13, 15]), old_indices_discarded=array([ 1, 3, 7, 10, 11, 12, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.97003573, 1.1 ]), radius=0.6533154674264534, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 6, 8, 9, 13, 15, 16]), model=ScalarModel(intercept=1.954246165506243, linear_terms=array([-0.08521947, -1.28163032]), square_terms=array([[0.13451839, 0.14770595],
+ [0.14770595, 1.24681584]]), scale=array([0.57898576, 0.28949288]), shift=array([13.97003573, 0.81050712])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=17, candidate_x=array([13.70108525, 1.1 ]), index=13, x=array([13.97003573, 1.1 ]), fval=1.3630395467044545, rho=-6.4797323723319575, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 6, 8, 9, 13, 15, 16]), old_indices_discarded=array([ 0, 1, 3, 7, 10, 11, 12, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.97003573, 1.1 ]), radius=0.3266577337132267, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 6, 8, 9, 13, 16, 17]), model=ScalarModel(intercept=1.3995906388898938, linear_terms=array([ 0.00041659, -0.32845253]), square_terms=array([[ 0.06002501, -0.00756312],
+ [-0.00756312, 0.31285714]]), scale=array([0.28949288, 0.14474644]), shift=array([13.97003573, 0.95525356])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=18, candidate_x=array([14.00450251, 1.1 ]), index=13, x=array([13.97003573, 1.1 ]), fval=1.3630395467044545, rho=-639.8341190827376, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 6, 8, 9, 13, 16, 17]), old_indices_discarded=array([ 0, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.97003573, 1.1 ]), radius=0.16332886685661335, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 6, 8, 9, 13, 16, 17, 18]), model=ScalarModel(intercept=1.3023441501145478, linear_terms=array([-0.00270162, -0.06663458]), square_terms=array([[ 0.0150264 , -0.00245292],
+ [-0.00245292, 0.0855643 ]]), scale=array([0.14474644, 0.07237322]), shift=array([13.97003573, 1.02762678])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=19, candidate_x=array([14.01466991, 1.08462838]), index=19, x=array([14.01466991, 1.08462838]), fval=1.0410129484416903, rho=114.80417610410284, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 6, 8, 9, 13, 16, 17, 18]), old_indices_discarded=array([ 5, 15]), step_length=0.047206958265994726, relative_step_length=0.2890300972175224, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01466991, 1.08462838]), radius=0.16332886685661335, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 8, 9, 13, 16, 17, 18, 19]), model=ScalarModel(intercept=1.226523862135151, linear_terms=array([-0.01223051, -0.12778069]), square_terms=array([[ 0.01612848, -0.01186675],
+ [-0.01186675, 0.10601771]]), scale=array([0.14474644, 0.08005903]), shift=array([14.01466991, 1.01994097])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=20, candidate_x=array([14.15941635, 1.1 ]), index=19, x=array([14.01466991, 1.08462838]), fval=1.0410129484416903, rho=-39.326073520819115, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 8, 9, 13, 16, 17, 18, 19]), old_indices_discarded=array([ 5, 6, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01466991, 1.08462838]), radius=0.08166443342830668, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 8, 9, 13, 17, 18, 19, 20]), model=ScalarModel(intercept=1.196985077835359, linear_terms=array([0.03516311, 0.00306745]), square_terms=array([[0.01712576, 0.00136586],
+ [0.00136586, 0.06787167]]), scale=array([0.07237322, 0.04387242]), shift=array([14.01466991, 1.05612758])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=21, candidate_x=array([13.94229669, 1.05502767]), index=19, x=array([14.01466991, 1.08462838]), fval=1.0410129484416903, rho=-14.505215148299051, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 8, 9, 13, 17, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01466991, 1.08462838]), radius=0.04083221671415334, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([13, 18, 19, 20, 21]), model=ScalarModel(intercept=1.43364495095228, linear_terms=array([ 0.12922127, -0.32781807]), square_terms=array([[ 0.01853158, -0.06428325],
+ [-0.06428325, 0.32888578]]), scale=array([0.03618661, 0.02577912]), shift=array([14.01466991, 1.07422088])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=22, candidate_x=array([13.9784833 , 1.09487758]), index=19, x=array([14.01466991, 1.08462838]), fval=1.0410129484416903, rho=-2.4451313207154053, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([13, 18, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01466991, 1.08462838]), radius=0.02041610835707667, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([13, 18, 19, 21, 22]), model=ScalarModel(intercept=1.0485149188081042, linear_terms=array([ 0.05139792, -0.29978337]), square_terms=array([[ 0.13343796, -0.19971635],
+ [-0.19971635, 0.34743672]]), scale=array([0.0180933 , 0.01673246]), shift=array([14.01466991, 1.08326754])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=23, candidate_x=array([14.03276322, 1.1 ]), index=19, x=array([14.01466991, 1.08462838]), fval=1.0410129484416903, rho=-7.434794508101175, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([13, 18, 19, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01466991, 1.08462838]), radius=0.010208054178538335, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([13, 18, 19, 22, 23]), model=ScalarModel(intercept=0.9771052862147884, linear_terms=array([ 0.06873397, -0.19272697]), square_terms=array([[0.01343003, 0.04147703],
+ [0.04147703, 1.11994799]]), scale=0.010208054178538335, shift=array([14.01466991, 1.08462838])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=24, candidate_x=array([14.00453977, 1.08664481]), index=19, x=array([14.01466991, 1.08462838]), fval=1.0410129484416903, rho=-6.08966504598221, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([13, 18, 19, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01466991, 1.08462838]), radius=0.005104027089269167, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 19, 23, 24]), model=ScalarModel(intercept=1.2926218223787844, linear_terms=array([-0.00788451, -0.32540669]), square_terms=array([[0.00911385, 0.04354991],
+ [0.04354991, 0.34751248]]), scale=0.005104027089269167, shift=array([14.01466991, 1.08462838])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=25, candidate_x=array([14.01183281, 1.08916 ]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=1.9242451111551888, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 19, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.005346466871872233, relative_step_length=1.0474997053038329, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=0.010208054178538335, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([13, 18, 19, 22, 23, 24, 25]), model=ScalarModel(intercept=0.9530259023191747, linear_terms=array([0.0624839 , 0.22160522]), square_terms=array([[0.01172426, 0.05678182],
+ [0.05678182, 1.28834316]]), scale=0.010208054178538335, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=26, candidate_x=array([14.00157116, 1.08789893]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-9.496915537884778, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([13, 18, 19, 22, 23, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=0.005104027089269167, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 19, 23, 24, 25, 26]), model=ScalarModel(intercept=1.0207789028264391, linear_terms=array([0.01004909, 0.14281032]), square_terms=array([[0.00371043, 0.01053812],
+ [0.01053812, 0.28679693]]), scale=0.005104027089269167, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=27, candidate_x=array([14.00711179, 1.08680753]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-28.050855759385684, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([18, 19, 23, 24, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=0.0025520135446345836, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 24, 25, 26, 27]), model=ScalarModel(intercept=0.8128068799853125, linear_terms=array([-0.07390409, 0.1867271 ]), square_terms=array([[0.02933352, 0.06029508],
+ [0.06029508, 0.51755928]]), scale=0.0025520135446345836, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=28, candidate_x=array([14.0142569 , 1.08810848]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-7.699522645704379, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 24, 25, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=0.0012760067723172918, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 25, 27, 28]), model=ScalarModel(intercept=1.209518867736394, linear_terms=array([-0.11590533, 0.18949222]), square_terms=array([[ 0.01661532, -0.00116286],
+ [-0.00116286, 0.11835795]]), scale=0.0012760067723172918, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=29, candidate_x=array([14.01273786, 1.08824804]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-5.1442338781399215, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 25, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=0.0006380033861586459, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 28, 29]), model=ScalarModel(intercept=0.7184205561063589, linear_terms=array([-0.03991274, -0.41121206]), square_terms=array([[0.06092818, 0.15503069],
+ [0.15503069, 0.64746692]]), scale=0.0006380033861586459, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=30, candidate_x=array([14.01140051, 1.0896325 ]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-4.407812252185182, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=0.00031900169307932295, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 29, 30]), model=ScalarModel(intercept=0.7184205561063571, linear_terms=array([6.47248659, 6.23766009]), square_terms=array([[97.34730406, 93.68589164],
+ [93.68589164, 90.17430137]]), scale=0.00031900169307932295, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=31, candidate_x=array([14.01204275, 1.08891981]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-4.3997935915404245, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=0.00015950084653966148, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 30, 31]), model=ScalarModel(intercept=0.7184205561063558, linear_terms=array([-12.83926554, -11.58895782]), square_terms=array([[403.25856038, 364.41817194],
+ [364.41817194, 329.32570956]]), scale=0.00015950084653966148, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=32, candidate_x=array([14.01194254, 1.08904419]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-6.08668048343243, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=7.975042326983074e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 31, 32]), model=ScalarModel(intercept=0.7184205561063587, linear_terms=array([-0.93030573, -0.99634712]), square_terms=array([[179.36567441, 156.70454335],
+ [156.70454335, 136.99646585]]), scale=7.975042326983074e-05, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=33, candidate_x=array([14.01178059, 1.08922027]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-8.451134213198396, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 31, 32]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=3.987521163491537e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 32, 33]), model=ScalarModel(intercept=0.7184205561063576, linear_terms=array([4.89837172, 4.58388165]), square_terms=array([[126.56088765, 115.62747724],
+ [115.62747724, 105.76020212]]), scale=3.987521163491537e-05, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=34, candidate_x=array([14.01185886, 1.0891298 ]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-13.486068074378037, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 32, 33]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1.9937605817457685e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 33, 34]), model=ScalarModel(intercept=0.7184205561063594, linear_terms=array([-166.8647099 , -144.39771315]), square_terms=array([[108814.42353203, 94175.80730374],
+ [ 94175.80730374, 81506.51063637]]), scale=1.9937605817457685e-05, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=35, candidate_x=array([14.01184588, 1.08914494]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-11.434790160517737, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 33, 34]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=9.968802908728842e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 34, 35]), model=ScalarModel(intercept=0.7184205561063438, linear_terms=array([49.40160575, 42.35987568]), square_terms=array([[9579.24080639, 8238.55673379],
+ [8238.55673379, 7085.71316346]]), scale=9.968802908728842e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=36, candidate_x=array([14.01182628, 1.08916753]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-5.808761681874345, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 34, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=4.984401454364421e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 35, 36]), model=ScalarModel(intercept=0.7184205561063602, linear_terms=array([1020.68556625, 885.19846682]), square_terms=array([[2243098.72305016, 1945290.7676038 ],
+ [1945290.7676038 , 1687021.70004694]]), scale=4.984401454364421e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=37, candidate_x=array([14.01183608, 1.08915623]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-3.089314232147828, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=2.4922007271822106e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 36, 37]), model=ScalarModel(intercept=0.7184205561067002, linear_terms=array([-2013.33218824, -1745.09825308]), square_terms=array([[11129865.24453419, 9647261.01993076],
+ [ 9647261.01993076, 8362153.83138471]]), scale=2.4922007271822106e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=38, candidate_x=array([14.01183445, 1.08915811]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-10.952863948663223, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 36, 37]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1.2461003635911053e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38]), model=ScalarModel(intercept=0.718420556106118, linear_terms=array([959.18947726, 831.12332873]), square_terms=array([[6203721.25062285, 5376023.28185779],
+ [5376023.28185779, 4658756.49633051]]), scale=1.2461003635911053e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=39, candidate_x=array([14.011832 , 1.08916094]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-8.468629779574808, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39]), model=ScalarModel(intercept=1.3029571467125889, linear_terms=array([1271.62989932, 1102.04552777]), square_terms=array([[2496938.18044439, 2164043.06872904],
+ [2164043.06872904, 1875529.98728359]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=40, candidate_x=array([14.01183216, 1.08916075]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-1.124121931196161, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40]), model=ScalarModel(intercept=1.2604794759999813, linear_terms=array([1246.25639581, 1080.03996307]), square_terms=array([[3152891.30365823, 2732523.73682316],
+ [2732523.73682316, 2368202.79679982]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=41, candidate_x=array([14.01183216, 1.08916075]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.8604468453536884, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.2861419090291868, linear_terms=array([1090.09720002, 944.7027741 ]), square_terms=array([[3520795.13786478, 3051353.17786668],
+ [3051353.17786668, 2644503.83384729]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=42, candidate_x=array([14.01183216, 1.08916075]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-7.909430321019699, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41, 42]), model=ScalarModel(intercept=1.4656905572771453, linear_terms=array([1243.82197504, 1077.98706406]), square_terms=array([[3085809.09127438, 2674453.15149168],
+ [2674453.15149168, 2317933.30821108]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=43, candidate_x=array([14.01183216, 1.08916075]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-4.056989488853848, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41, 42]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41, 42, 43]), model=ScalarModel(intercept=1.548557873891164, linear_terms=array([1203.1713828 , 1042.77950053]), square_terms=array([[2438542.31045176, 2113511.47163476],
+ [2113511.47163476, 1831803.66933079]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=44, candidate_x=array([14.01183216, 1.08916075]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-3.506804060939179, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41, 42, 43]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41, 42, 43, 44]), model=ScalarModel(intercept=1.5887250225761516, linear_terms=array([1030.5595738 , 893.18618335]), square_terms=array([[2190616.89147569, 1898642.09058655],
+ [1898642.09058655, 1645582.94584737]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=45, candidate_x=array([14.01183216, 1.08916075]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-3.3350972580818494, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41, 42, 43, 44]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 38, 39, 40, 41, 42, 43, 44, 45]), model=ScalarModel(intercept=1.6019772554697844, linear_terms=array([1292.43082122, 1120.26966461]), square_terms=array([[4990602.23895189, 4326174.44936223],
+ [4326174.44936223, 3750205.81186814]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=46, candidate_x=array([14.01183216, 1.08916075]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-7.026725570983665, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 38, 39, 40, 41, 42, 43, 44, 45]), old_indices_discarded=array([37]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 40, 41, 42, 43, 44, 45, 46]), model=ScalarModel(intercept=0.7528586726265997, linear_terms=array([322.27186607, 280.09974261]), square_terms=array([[4388187.8633596 , 3805228.12048649],
+ [3805228.12048649, 3299714.05118195]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=47, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.122141707078279, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 40, 41, 42, 43, 44, 45, 46]), old_indices_discarded=array([37, 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 40, 41, 42, 43, 44, 45, 46, 47]), model=ScalarModel(intercept=1.2627474977574111, linear_terms=array([2306.59533568, 2000.58111819]), square_terms=array([[19867744.70173672, 17228930.38510248],
+ [17228930.38510248, 14940600.96617165]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=48, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.1809461658185123, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 40, 41, 42, 43, 44, 45, 46, 47]), old_indices_discarded=array([37, 38, 39]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 40, 41, 42, 43, 44, 46, 47, 48]), model=ScalarModel(intercept=1.3487396237890183, linear_terms=array([2294.52073172, 1989.98708101]), square_terms=array([[17079816.273739 , 14810957.61312829],
+ [14810957.61312829, 12843491.01190923]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=49, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.6153658960455575, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 40, 41, 42, 43, 44, 46, 47, 48]), old_indices_discarded=array([37, 38, 39, 45]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 40, 41, 42, 43, 46, 47, 48, 49]), model=ScalarModel(intercept=1.4088347925358962, linear_terms=array([4942.78314754, 4286.39180143]), square_terms=array([[45933245.47083566, 39831868.76801804],
+ [39831868.76801804, 34540946.42122044]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=50, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-0.6308570109424091, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 40, 41, 42, 43, 46, 47, 48, 49]), old_indices_discarded=array([37, 38, 39, 44, 45]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 41, 42, 43, 46, 47, 48, 49, 50]), model=ScalarModel(intercept=1.2465352455569267, linear_terms=array([1103.44013369, 957.31158437]), square_terms=array([[32450404.08701053, 28139523.59651852],
+ [28139523.59651852, 24401323.08846297]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=51, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.800014341621393, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 41, 42, 43, 46, 47, 48, 49, 50]), old_indices_discarded=array([37, 38, 39, 40, 44, 45]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 42, 43, 46, 47, 48, 49, 50, 51]), model=ScalarModel(intercept=1.4358728804192635, linear_terms=array([2094.60340738, 1816.88243966]), square_terms=array([[14783418.16119196, 12820781.31024842],
+ [12820781.31024842, 11118703.03997286]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=52, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-1.5835919778166219, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 42, 43, 46, 47, 48, 49, 50, 51]), old_indices_discarded=array([37, 38, 39, 40, 41, 44, 45]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 42, 43, 46, 47, 48, 49, 51, 52]), model=ScalarModel(intercept=1.4061640964469848, linear_terms=array([1557.86899385, 1351.46173786]), square_terms=array([[15581242.02410638, 13512851.86370382],
+ [13512851.86370382, 11719038.1383182 ]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=53, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.215942126256473, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 42, 43, 46, 47, 48, 49, 51, 52]), old_indices_discarded=array([37, 38, 39, 40, 41, 44, 45, 50]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 46, 47, 48, 49, 51, 52, 53]), model=ScalarModel(intercept=1.4091609269755996, linear_terms=array([2589.78007886, 2246.28082932]), square_terms=array([[39273360.80384912, 34058706.47728051],
+ [34058706.47728051, 29536445.78430764]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=54, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.6309212802317243, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 46, 47, 48, 49, 51, 52, 53]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 50]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 47, 48, 49, 51, 52, 53, 54]), model=ScalarModel(intercept=1.3929420700923119, linear_terms=array([5059.04429947, 4387.21291909]), square_terms=array([[55278423.97255142, 47937597.93307385],
+ [47937597.93307385, 41571613.87351739]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=55, candidate_x=array([14.01183216, 1.08916075]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.8633694811625787, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 47, 48, 49, 51, 52, 53, 54]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 46, 50]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), model=ScalarModel(intercept=1.334891981281938, linear_terms=array([5354.21261732, 4643.13436611]), square_terms=array([[81150053.8400843 , 70371614.45136172],
+ [70371614.45136172, 61024779.24931383]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=56, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-1.9943606061193717, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 46, 50, 51]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), model=ScalarModel(intercept=1.334891981281938, linear_terms=array([5354.21261732, 4643.13436611]), square_terms=array([[81150053.8400843 , 70371614.45136172],
+ [70371614.45136172, 61024779.24931383]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=57, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-12.386174380558238, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 46, 50, 51, 56]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), model=ScalarModel(intercept=1.334891981281938, linear_terms=array([5354.21261732, 4643.13436611]), square_terms=array([[81150053.8400843 , 70371614.45136172],
+ [70371614.45136172, 61024779.24931383]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=58, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-7.219538902024979, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 46, 50, 51, 56, 57]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), model=ScalarModel(intercept=1.334891981281938, linear_terms=array([5354.21261732, 4643.13436611]), square_terms=array([[81150053.8400843 , 70371614.45136172],
+ [70371614.45136172, 61024779.24931383]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=59, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.467913161873645, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 46, 50, 51, 56, 57, 58]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), model=ScalarModel(intercept=1.334891981281938, linear_terms=array([5354.21261732, 4643.13436611]), square_terms=array([[81150053.8400843 , 70371614.45136172],
+ [70371614.45136172, 61024779.24931383]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=60, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-8.544800766349255, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 46, 50, 51, 56, 57, 58, 59]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), model=ScalarModel(intercept=1.334891981281938, linear_terms=array([5354.21261732, 4643.13436611]), square_terms=array([[81150053.8400843 , 70371614.45136172],
+ [70371614.45136172, 61024779.24931383]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=61, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-2.703463872811527, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 46, 50, 51, 56, 57, 58, 59, 60]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), model=ScalarModel(intercept=1.334891981281938, linear_terms=array([5354.21261732, 4643.13436611]), square_terms=array([[81150053.8400843 , 70371614.45136172],
+ [70371614.45136172, 61024779.24931383]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=62, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-1.996039584693101, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 46, 50, 51, 56, 57, 58, 59, 60, 61]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([14.01183281, 1.08916 ]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), model=ScalarModel(intercept=1.334891981281938, linear_terms=array([5354.21261732, 4643.13436611]), square_terms=array([[81150053.8400843 , 70371614.45136172],
+ [70371614.45136172, 61024779.24931383]]), scale=1e-06, shift=array([14.01183281, 1.08916 ])), vector_model=VectorModel(intercepts=array([ 0.01969896, 0.01945701, -0.03259519, 0.00365763, 0.06642872,
+ 0.01584107, 0.01293238, -0.15622707, -0.24807933, -0.37491567,
+ -0.64746253, -0.7797042 , -0.15633981, -0.04042764, 0.05764117,
+ 0.21556169, 0.4030829 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3066309348529068, shift=array([13.06630935, 1.04715766])), candidate_index=63, candidate_x=array([14.01183347, 1.08915924]), index=25, x=array([14.01183281, 1.08916 ]), fval=0.7184205561063591, rho=-1.6371494163829006, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 43, 47, 48, 49, 52, 53, 54, 55]), old_indices_discarded=array([37, 38, 39, 40, 41, 42, 44, 45, 46, 50, 51, 56, 57, 58, 59, 60, 61,
+ 62]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'message': None, 'tranquilo_history': History for least_squares function with 64 entries., 'history': {'params': [{'CRRA': 13.066309348529067, 'DiscFac': 1.0471576581804647}, {'CRRA': 12.280456956731095, 'DiscFac': 0.5}, {'CRRA': 13.8146011388025, 'DiscFac': 0.5}, {'CRRA': 11.908337832432913, 'DiscFac': 0.5}, {'CRRA': 14.224280864625221, 'DiscFac': 1.1}, {'CRRA': 14.224280864625221, 'DiscFac': 0.5}, {'CRRA': 14.224280864625221, 'DiscFac': 0.5}, {'CRRA': 11.908337832432913, 'DiscFac': 0.8984815709189882}, {'CRRA': 14.224280864625221, 'DiscFac': 0.7709984071009821}, {'CRRA': 14.224280864625221, 'DiscFac': 1.1}, {'CRRA': 11.908337832432913, 'DiscFac': 0.97048629342172}, {'CRRA': 11.908337832432913, 'DiscFac': 0.5298026178234173}, {'CRRA': 11.908337832432913, 'DiscFac': 1.0810817543290407}, {'CRRA': 13.970035730789688, 'DiscFac': 1.1}, {'CRRA': 16.285978762981998, 'DiscFac': 0.5}, {'CRRA': 14.767415996519718, 'DiscFac': 1.1}, {'CRRA': 13.525261720208501, 'DiscFac': 1.1}, {'CRRA': 13.70108525460877, 'DiscFac': 1.1}, {'CRRA': 14.004502508260845, 'DiscFac': 1.1}, {'CRRA': 14.014669911267017, 'DiscFac': 1.0846283754324875}, {'CRRA': 14.159416350779036, 'DiscFac': 1.1}, {'CRRA': 13.942296691511007, 'DiscFac': 1.0550276666138225}, {'CRRA': 13.978483301389012, 'DiscFac': 1.0948775831831337}, {'CRRA': 14.03276321620602, 'DiscFac': 1.1}, {'CRRA': 14.004539765272607, 'DiscFac': 1.0866448127206392}, {'CRRA': 14.011832813202263, 'DiscFac': 1.0891599957368594}, {'CRRA': 14.001571161266073, 'DiscFac': 1.0878989319529746}, {'CRRA': 14.007111788456244, 'DiscFac': 1.0868075274414533}, {'CRRA': 14.01425689913354, 'DiscFac': 1.0881084816327375}, {'CRRA': 14.012737860682646, 'DiscFac': 1.0882480406776058}, {'CRRA': 14.011400509023126, 'DiscFac': 1.0896325011681918}, {'CRRA': 14.012042752624728, 'DiscFac': 1.0889198134746445}, {'CRRA': 14.011942539314644, 'DiscFac': 1.0890441924492742}, {'CRRA': 14.011780591856901, 'DiscFac': 1.0892202712858525}, {'CRRA': 14.011858856106226, 'DiscFac': 1.0891297982825627}, {'CRRA': 14.011845878134611, 'DiscFac': 1.089144935326559}, {'CRRA': 14.011826283455278, 'DiscFac': 1.0891675282952396}, {'CRRA': 14.011836077563515, 'DiscFac': 1.0891562290135464}, {'CRRA': 14.011834445811164, 'DiscFac': 1.0891581127465024}, {'CRRA': 14.011831997029445, 'DiscFac': 1.089160937346145}, {'CRRA': 14.01183215797573, 'DiscFac': 1.0891607511693926}, {'CRRA': 14.011832158043546, 'DiscFac': 1.0891607512281871}, {'CRRA': 14.011832158095237, 'DiscFac': 1.089160751272985}, {'CRRA': 14.011832158029653, 'DiscFac': 1.0891607512160808}, {'CRRA': 14.011832157970844, 'DiscFac': 1.089160751165159}, {'CRRA': 14.011832157981903, 'DiscFac': 1.0891607511747805}, {'CRRA': 14.011832158038635, 'DiscFac': 1.0891607512238868}, {'CRRA': 14.011833468300475, 'DiscFac': 1.0891592401931263}, {'CRRA': 14.011833468288398, 'DiscFac': 1.089159240182655}, {'CRRA': 14.011833468269545, 'DiscFac': 1.0891592401663046}, {'CRRA': 14.011833468287934, 'DiscFac': 1.0891592401822054}, {'CRRA': 14.011833468323973, 'DiscFac': 1.0891592402134855}, {'CRRA': 14.011833468299528, 'DiscFac': 1.089159240192304}, {'CRRA': 14.011833468327906, 'DiscFac': 1.08915924021691}, {'CRRA': 14.011833468334546, 'DiscFac': 1.0891592402226586}, {'CRRA': 14.011832157988263, 'DiscFac': 1.089160751180182}, {'CRRA': 14.011833468316171, 'DiscFac': 1.0891592402066144}, {'CRRA': 14.011833468316171, 'DiscFac': 1.0891592402066144}, {'CRRA': 14.011833468316171, 'DiscFac': 1.0891592402066144}, {'CRRA': 14.011833468316171, 'DiscFac': 1.0891592402066144}, {'CRRA': 14.011833468316171, 'DiscFac': 1.0891592402066144}, {'CRRA': 14.011833468316171, 'DiscFac': 1.0891592402066144}, {'CRRA': 14.011833468316171, 'DiscFac': 1.0891592402066144}, {'CRRA': 14.011833468316171, 'DiscFac': 1.0891592402066144}], 'criterion': [1.4986734884110868, 3.6930800498276546, 3.820662632812437, 3.671505897975399, 1.361435725731372, 3.8638417260142304, 3.8638417260142304, 2.3161149911520624, 2.7171589222312944, 1.361435725731372, 1.755774291009161, 3.5701092462200235, 1.5259328711389366, 1.3630395467044545, 4.135049913310356, 1.7177184763425375, 1.4584461999630762, 1.4570806285179234, 1.6352440012556255, 1.0410129484416906, 1.9127060614796625, 1.6638058936439872, 1.3344198235621072, 2.412229418376727, 1.5644026100530035, 0.718420556106359, 1.3583428907310002, 1.8004694015466847, 1.592846442492335, 1.657972144202744, 1.4401830262828144, 1.6785780028599055, 2.0117679446685552, 1.693975874418422, 2.6363739549773766, 2.3067084438958925, 1.6834365843388674, 1.4756093975418976, 3.003608443738103, 1.7951122669157669, 1.120097338605995, 1.5359621706119526, 2.320478525587398, 1.8102170529001989, 1.813949043295858, 1.5631216198024078, 2.322376472196528, 1.204765008146623, 1.4709947263422103, 1.5893332193734733, 0.9602897636214487, 1.5865626206073609, 1.2876935617679888, 1.393450740856762, 1.5735237105291944, 1.3700688455816392, 1.1742232022873909, 3.5492281048492407, 2.368415509703494, 1.2824516276565534, 2.671298480209609, 1.336285742222334, 1.1746069257095435, 1.0925841020024283], 'runtime': [0.0, 2.2173056839997116, 2.4335195229996316, 2.650656942999831, 2.8830891839998003, 3.1058964579997337, 3.342101177999666, 3.5510437119996823, 3.78188942099996, 4.030340804999923, 4.276771940999879, 4.516578778999701, 4.718500236999716, 6.699993328999881, 8.439053768999656, 10.134882657999697, 11.832450609999796, 13.530497703000037, 15.377237071999843, 17.173570721000033, 18.907639610999922, 20.636314630000015, 22.369553777999954, 24.07437646199969, 25.76552489000005, 27.58931298699963, 29.298179384999912, 31.00593732499965, 32.7445265399997, 34.49970570400001, 36.23148644999992, 38.01005339299991, 39.856888376999905, 41.57462375499972, 43.3560608949997, 45.12837037099962, 46.92190624099976, 48.763203235999754, 50.5171019659997, 52.310331486999985, 54.226219024999864, 55.97341468900004, 57.71188124599985, 59.43016265599999, 61.13717892199975, 62.837184452999736, 64.54695662299991, 66.40381871399995, 68.13384646799977, 69.85902101900001, 71.61205858599988, 73.42455532999975, 75.25045019799973, 76.99171744099976, 78.83135237599981, 80.5315630619998, 82.28934421199983, 84.04364812599988, 85.81372394899972, 87.57166456200002, 89.33697740099979, 91.23287148300005, 93.02459795599998, 94.73499807600001], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]}, 'multistart_info': {...}}], 'exploration_sample': array([[12.321875 , 1.08125 ],
+ [12.27983099, 1.07767066],
+ [14.09375 , 0.9875 ],
+ [17.6375 , 1.025 ],
+ [16.45625 , 0.9125 ],
+ [11.73125 , 0.7625 ],
+ [10.55 , 0.8 ],
+ [12.9125 , 0.575 ],
+ [15.275 , 0.65 ],
+ [17.046875 , 0.63125 ],
+ [18.81875 , 0.5375 ],
+ [ 9.36875 , 0.8375 ],
+ [ 8.1875 , 0.725 ],
+ [ 7.00625 , 0.6125 ],
+ [ 5.825 , 0.95 ],
+ [ 4.64375 , 0.6875 ],
+ [ 2.871875 , 0.78125 ],
+ [ 3.4625 , 0.875 ],
+ [ 2.28125 , 1.0625 ]]), 'exploration_results': array([ 1.25226984, 1.54798499, 1.77139048, 1.79567843, 2.19243348,
+ 2.99563577, 3.4003551 , 3.46407238, 3.67340234, 3.72448066,
+ 4.28414873, 4.65250486, 5.39134448, 6.53886763, 14.94020775,
+ 20.34265339, 25.6087008 , 29.29813793, 75.84976584])}}"
diff --git a/content/tables/min/PortfolioSub(Stock)(Labor)Market_estimate_results.csv b/content/tables/min/PortfolioSub(Stock)(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..39ac677
--- /dev/null
+++ b/content/tables/min/PortfolioSub(Stock)(Labor)Market_estimate_results.csv
@@ -0,0 +1,6021 @@
+CRRA,5.573894562325964
+DiscFac,1.0637390075406437
+time_to_estimate,240.28510308265686
+params,"{'CRRA': 5.573894562325964, 'DiscFac': 1.0637390075406437}"
+criterion,1.4220519178994522
+start_criterion,3.7528915666217584
+start_params,"{'CRRA': 5.0, 'DiscFac': 0.95}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,Absolute criterion change smaller than tolerance.
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 5.3827721337329075, 'DiscFac': 0.5}, {'CRRA': 6.341227184076231, 'DiscFac': 0.9843397863096757}, {'CRRA': 5.308772815923768, 'DiscFac': 0.9942847020759833}, {'CRRA': 6.341227184076231, 'DiscFac': 1.099329565298806}, {'CRRA': 6.341227184076231, 'DiscFac': 0.7325487756828386}, {'CRRA': 6.341227184076231, 'DiscFac': 0.661184756844424}, {'CRRA': 5.670357912186334, 'DiscFac': 1.1}, {'CRRA': 6.341227184076231, 'DiscFac': 1.0027250193492325}, {'CRRA': 6.341227184076231, 'DiscFac': 1.0927982791010287}, {'CRRA': 5.308772815923768, 'DiscFac': 1.0118564969416792}, {'CRRA': 5.957814024190954, 'DiscFac': 0.5}, {'CRRA': 6.114808484578101, 'DiscFac': 1.1}, {'CRRA': 5.793348226117784, 'DiscFac': 0.8284226490669568}, {'CRRA': 5.75003997251512, 'DiscFac': 0.8880821392041797}, {'CRRA': 5.693161284486315, 'DiscFac': 1.0118481504711487}, {'CRRA': 5.569384429577121, 'DiscFac': 1.0922008146955873}, {'CRRA': 5.5194785395513035, 'DiscFac': 1.0658390858610285}, {'CRRA': 5.600878088644884, 'DiscFac': 1.1}, {'CRRA': 5.77759213158942, 'DiscFac': 1.0321931747072446}, {'CRRA': 5.545693184498602, 'DiscFac': 1.055901773046547}, {'CRRA': 5.454950141541775, 'DiscFac': 1.0580103701909507}, {'CRRA': 5.551742738556068, 'DiscFac': 1.0610052791857207}, {'CRRA': 5.569955078014674, 'DiscFac': 1.0653960027788554}, {'CRRA': 5.560809192249429, 'DiscFac': 1.0668198165422604}, {'CRRA': 5.574179063160669, 'DiscFac': 1.0637026157965719}, {'CRRA': 5.565030737518938, 'DiscFac': 1.0667766565553518}, {'CRRA': 5.578730259698591, 'DiscFac': 1.0636435394860717}, {'CRRA': 5.571905522822675, 'DiscFac': 1.0633495597956906}, {'CRRA': 5.575317879327959, 'DiscFac': 1.063494000480499}, {'CRRA': 5.574535066002697, 'DiscFac': 1.0641709732701494}, {'CRRA': 5.573894562325964, 'DiscFac': 1.0637390075406437}], 'criterion': [3.0263314834387383, 4.314184027187926, nan, 2.6142787419100317, nan, 4.730311355914472, 4.931838606867419, 1.9543423789678298, nan, nan, 2.1984626089974055, 4.789253019202322, nan, 3.940933836887815, 3.4612490178599495, 2.070351234692411, 1.7490483015806304, 1.4289096777146673, 1.9829352389581485, 1.6954301219950216, 1.4443085463640908, 1.4384944542770688, 1.4260383541426693, 1.42426971311261, 1.427741913899455, 1.4220984404550594, 1.427437660317148, 1.422217891677385, 1.4225162577343387, 1.4221438433511406, 1.4221892061726984, 1.4220519178994522], 'runtime': [0.0, 2.1092147859999386, 2.320780406999802, 2.53563283099993, 2.7502362279997215, 2.9750869179997608, 3.2098066859998653, 3.4356893949998266, 3.6836077269999805, 3.9124819979997483, 4.17926271899978, 4.423696945999836, 4.664147187999788, 6.505867149999631, 8.205766164999659, 9.91364971899975, 11.730312985999717, 13.458470247999685, 15.2081106239998, 16.93993415199975, 18.660550382999645, 20.398841179999636, 22.12600937399975, 23.987055649999547, 25.704666818999613, 27.416890058999797, 29.111133761999554, 30.863144658999772, 32.601477340999736, 34.33676511199974, 36.23110922099977, 38.04281973799971], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]}"
+convergence_report,
+multistart_info,"{'start_parameters': [{'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance., Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Maximum number of criterion evaluations reached.], 'exploration_sample': [{'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 5.0, 'DiscFac': 0.95}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 14.093749999999998, 'DiscFac': 0.9875}, {'CRRA': 9.368749999999999, 'DiscFac': 0.8375}, {'CRRA': 17.6375, 'DiscFac': 1.0250000000000001}, {'CRRA': 8.1875, 'DiscFac': 0.7250000000000001}, {'CRRA': 10.549999999999999, 'DiscFac': 0.8}, {'CRRA': 16.45625, 'DiscFac': 0.9125000000000001}, {'CRRA': 7.00625, 'DiscFac': 0.6125}, {'CRRA': 11.73125, 'DiscFac': 0.7625000000000001}, {'CRRA': 15.274999999999999, 'DiscFac': 0.65}, {'CRRA': 12.9125, 'DiscFac': 0.575}, {'CRRA': 17.046875, 'DiscFac': 0.6312500000000001}, {'CRRA': 18.81875, 'DiscFac': 0.5375}, {'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 2.28125, 'DiscFac': 1.0625}, {'CRRA': 2.871875, 'DiscFac': 0.78125}], 'exploration_results': array([ 3.02633148, 3.30050278, 3.74724591, 3.92461378, 4.45534719,
+ 4.52159416, 4.77507862, 5.06340436, 5.16761845, 5.42393003,
+ 5.50914405, 5.69522002, 6.68407291, 6.73863805, 6.84560996,
+ 7.20052264, 7.72130492, 8.47185488, 10.67451262])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=3.0263314834387383, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=0, candidate_x=array([5.825, 0.95 ]), index=0, x=array([5.825, 0.95 ]), fval=3.0263314834387383, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.1269978152790263, linear_terms=array([-0.51127322, -0.63965657]), square_terms=array([[11.76668356, 13.01143564],
+ [13.01143564, 15.17207492]]), scale=array([0.51622718, 0.3 ]), shift=array([5.825, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=13, candidate_x=array([5.79334823, 0.82842265]), index=0, x=array([5.825, 0.95 ]), fval=3.0263314834387383, rho=-0.5747486887475365, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.29124999999999995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 7, 8, 10, 11, 12, 13]), model=ScalarModel(intercept=1.581609097434704, linear_terms=array([2.65278709, 2.28940689]), square_terms=array([[8.20115491, 7.03588261],
+ [7.03588261, 6.38777128]]), scale=array([0.25811359, 0.2040568 ]), shift=array([5.825 , 0.8959432])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=14, candidate_x=array([5.75003997, 0.88808214]), index=0, x=array([5.825, 0.95 ]), fval=3.0263314834387383, rho=-0.3451917980793785, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 7, 8, 10, 11, 12, 13]), old_indices_discarded=array([1, 4, 5, 6, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.14562499999999998, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 7, 8, 11, 12, 13, 14]), model=ScalarModel(intercept=1.6064049690312896, linear_terms=array([1.823518 , 1.65703042]), square_terms=array([[3.57574989, 3.17459736],
+ [3.17459736, 3.01964201]]), scale=0.14562499999999998, shift=array([5.825, 0.95 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=15, candidate_x=array([5.69316128, 1.01184815]), index=15, x=array([5.69316128, 1.01184815]), fval=2.070351234692411, rho=2.2229628748013988, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 7, 8, 11, 12, 13, 14]), old_indices_discarded=array([ 1, 4, 5, 6, 9, 10]), step_length=0.1456249999999998, relative_step_length=0.9999999999999989, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.69316128, 1.01184815]), radius=0.29124999999999995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 11, 12, 13, 14, 15]), model=ScalarModel(intercept=1.8544790200782664, linear_terms=array([-0.67331221, -1.21592495]), square_terms=array([[1.63171239, 1.52446346],
+ [1.52446346, 2.03881587]]), scale=array([0.25811359, 0.17313272]), shift=array([5.69316128, 0.92686728])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=16, candidate_x=array([5.56938443, 1.09220081]), index=16, x=array([5.56938443, 1.09220081]), fval=1.7490483015806302, rho=4.7314095484198075, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 11, 12, 13, 14, 15]), old_indices_discarded=array([1, 2, 4, 5, 6, 8, 9]), step_length=0.1475712047087003, relative_step_length=0.5066822479268681, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56938443, 1.09220081]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16]), model=ScalarModel(intercept=7.085140584300428, linear_terms=array([ -5.65921381, -14.17503365]), square_terms=array([[ 5.20815903, 7.08665734],
+ [ 7.08665734, 17.08804688]]), scale=array([0.51622718, 0.26201318]), shift=array([5.56938443, 0.83798682])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=17, candidate_x=array([5.51947854, 1.06583909]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=1.7809591946937149, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 8, 9, 11]), step_length=0.05644057588664191, relative_step_length=0.09689369250925652, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 13, 14, 15, 16, 17]), model=ScalarModel(intercept=2.3354605283597563, linear_terms=array([ 1.46424334, -2.36914478]), square_terms=array([[ 1.06094696, -1.63153519],
+ [-1.63153519, 2.58355658]]), scale=array([0.51622718, 0.27519405]), shift=array([5.51947854, 0.82480595])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=18, candidate_x=array([5.60087809, 1.1 ]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-85.51150568657764, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 13, 14, 15, 16, 17]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 10, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.29124999999999995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 14, 15, 16, 17, 18]), model=ScalarModel(intercept=3.1012802436018085, linear_terms=array([-0.92259607, -5.33641639]), square_terms=array([[0.27027798, 1.20759192],
+ [1.20759192, 7.70294614]]), scale=array([0.25811359, 0.14613725]), shift=array([5.51947854, 0.95386275])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=19, candidate_x=array([5.77759213, 1.03219317]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-4.019293806179108, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 14, 15, 16, 17, 18]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 8, 9, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.14562499999999998, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 14, 15, 16, 17, 18, 19]), model=ScalarModel(intercept=1.5213811565094542, linear_terms=array([-0.14355744, -1.03791084]), square_terms=array([[0.06159175, 0.28510759],
+ [0.28510759, 2.13210366]]), scale=array([0.1290568 , 0.08160886]), shift=array([5.51947854, 1.01839114])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=20, candidate_x=array([5.54569318, 1.05590177]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-1.535972006541552, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 14, 15, 16, 17, 18, 19]), old_indices_discarded=array([ 0, 1, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.07281249999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 15, 16, 17, 18, 19, 20]), model=ScalarModel(intercept=1.3026835229178233, linear_terms=array([ 0.01296259, -0.29445874]), square_terms=array([[ 0.00193973, -0.00535854],
+ [-0.00535854, 1.93956479]]), scale=array([0.0645284 , 0.04934466]), shift=array([5.51947854, 1.05065534])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=21, candidate_x=array([5.45495014, 1.05801037]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-0.27578700766971787, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 15, 16, 17, 18, 19, 20]), old_indices_discarded=array([ 0, 13, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.036406249999999994, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 7, 15, 16, 17, 18, 20, 21]), model=ScalarModel(intercept=1.3985870458518956, linear_terms=array([-0.03050627, 0.11095194]), square_terms=array([[0.00179814, 0.01810855],
+ [0.01810855, 0.86143979]]), scale=array([0.0322642, 0.0322642]), shift=array([5.51947854, 1.06583909])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=22, candidate_x=array([5.55174274, 1.06100528]), index=22, x=array([5.55174274, 1.06100528]), fval=1.426038354142669, rho=0.07310801718365617, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 7, 15, 16, 17, 18, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0326242888718403, relative_step_length=0.8961178059217939, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.55174274, 1.06100528]), radius=0.018203124999999997, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 17, 18, 20, 22]), model=ScalarModel(intercept=1.4163790473957398, linear_terms=array([-0.00983569, -0.08333704]), square_terms=array([[2.86954770e-04, 8.05036733e-04],
+ [8.05036733e-04, 3.32811019e-01]]), scale=0.018203124999999997, shift=array([5.55174274, 1.06100528])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=23, candidate_x=array([5.56995508, 1.065396 ]), index=23, x=array([5.56995508, 1.065396 ]), fval=1.42426971311261, rho=0.0887754386245564, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([16, 17, 18, 20, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.01873413361292202, relative_step_length=1.0291712886068751, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56995508, 1.065396 ]), radius=0.009101562499999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 20, 22, 23]), model=ScalarModel(intercept=1.4255871683087975, linear_terms=array([ 0.01282382, -0.01799885]), square_terms=array([[ 0.00027616, -0.00248466],
+ [-0.00248466, 0.08699657]]), scale=0.009101562499999999, shift=array([5.56995508, 1.065396 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=24, candidate_x=array([5.56080919, 1.06681982]), index=23, x=array([5.56995508, 1.065396 ]), fval=1.42426971311261, rho=-0.24612567440050911, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 20, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56995508, 1.065396 ]), radius=0.004550781249999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 23, 24]), model=ScalarModel(intercept=1.42426971311261, linear_terms=array([-4.86697548e-05, 7.42140875e-03]), square_terms=array([[ 7.70644314e-06, -1.20696978e-04],
+ [-1.20696978e-04, 1.96339837e-02]]), scale=0.004550781249999999, shift=array([5.56995508, 1.065396 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=25, candidate_x=array([5.57417906, 1.06370262]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=1.5482217964560738, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.004550781249999896, relative_step_length=0.9999999999999774, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.009101562499999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 18, 20, 22, 23, 24, 25]), model=ScalarModel(intercept=1.4247281558811358, linear_terms=array([ 0.00539427, -0.03219716]), square_terms=array([[ 3.96935302e-05, -1.28952506e-03],
+ [-1.28952506e-03, 8.65974369e-02]]), scale=0.009101562499999999, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=26, candidate_x=array([5.56503074, 1.06677666]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.48986170098858195, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 18, 20, 22, 23, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.004550781249999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 23, 24, 25, 26]), model=ScalarModel(intercept=1.422282780554977, linear_terms=array([-0.00015294, 0.00037013]), square_terms=array([[ 7.13476990e-06, -1.13770520e-04],
+ [-1.13770520e-04, 1.96031452e-02]]), scale=0.004550781249999999, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=27, candidate_x=array([5.57873026, 1.06364354]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.7907220678531115, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 23, 24, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.0022753906249999996, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 26, 27]), model=ScalarModel(intercept=1.4221663020015802, linear_terms=array([5.73401438e-05, 7.45830401e-04]), square_terms=array([[ 1.12265319e-06, -2.59043861e-05],
+ [-2.59043861e-05, 4.91328724e-03]]), scale=0.0022753906249999996, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=28, candidate_x=array([5.57190552, 1.06334956]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-3.5610604492495965, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.0011376953124999998, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 27, 28]), model=ScalarModel(intercept=1.422325827336663, linear_terms=array([-4.61917023e-05, 2.38441492e-04]), square_terms=array([[ 3.55694453e-07, -6.48069226e-06],
+ [-6.48069226e-06, 1.22037302e-03]]), scale=0.0011376953124999998, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=29, candidate_x=array([5.57531788, 1.063494 ]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.6669519353256694, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.0005688476562499999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 28, 29]), model=ScalarModel(intercept=1.422098440455059, linear_terms=array([-4.34744633e-05, -3.03707274e-04]), square_terms=array([[ 8.37764168e-08, -1.07708651e-06],
+ [-1.07708651e-06, 2.98889073e-04]]), scale=0.0005688476562499999, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=30, candidate_x=array([5.57453507, 1.06417097]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.5142705306272952, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.00028442382812499995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 29, 30]), model=ScalarModel(intercept=1.422098440455059, linear_terms=array([ 4.17356026e-06, -1.04084673e-05]), square_terms=array([[ 1.93011592e-08, -1.59744779e-07],
+ [-1.59744779e-07, 7.59670263e-05]]), scale=0.00028442382812499995, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=31, candidate_x=array([5.57389456, 1.06373901]), index=31, x=array([5.57389456, 1.06373901]), fval=1.4220519178994522, rho=9.583354885845637, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([25, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.00028681890451018565, relative_step_length=1.0084208007499749, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 32 entries., 'multistart_info': {'start_parameters': [array([5.825, 0.95 ]), array([7.55033227, 1.06886786])], 'local_optima': [{'solution_x': array([5.57389456, 1.06373901]), 'solution_criterion': 1.4220519178994522, 'states': [State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=3.0263314834387383, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=0, candidate_x=array([5.825, 0.95 ]), index=0, x=array([5.825, 0.95 ]), fval=3.0263314834387383, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.1269978152790263, linear_terms=array([-0.51127322, -0.63965657]), square_terms=array([[11.76668356, 13.01143564],
+ [13.01143564, 15.17207492]]), scale=array([0.51622718, 0.3 ]), shift=array([5.825, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=13, candidate_x=array([5.79334823, 0.82842265]), index=0, x=array([5.825, 0.95 ]), fval=3.0263314834387383, rho=-0.5747486887475365, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.29124999999999995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 7, 8, 10, 11, 12, 13]), model=ScalarModel(intercept=1.581609097434704, linear_terms=array([2.65278709, 2.28940689]), square_terms=array([[8.20115491, 7.03588261],
+ [7.03588261, 6.38777128]]), scale=array([0.25811359, 0.2040568 ]), shift=array([5.825 , 0.8959432])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=14, candidate_x=array([5.75003997, 0.88808214]), index=0, x=array([5.825, 0.95 ]), fval=3.0263314834387383, rho=-0.3451917980793785, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 7, 8, 10, 11, 12, 13]), old_indices_discarded=array([1, 4, 5, 6, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.14562499999999998, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 7, 8, 11, 12, 13, 14]), model=ScalarModel(intercept=1.6064049690312896, linear_terms=array([1.823518 , 1.65703042]), square_terms=array([[3.57574989, 3.17459736],
+ [3.17459736, 3.01964201]]), scale=0.14562499999999998, shift=array([5.825, 0.95 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=15, candidate_x=array([5.69316128, 1.01184815]), index=15, x=array([5.69316128, 1.01184815]), fval=2.070351234692411, rho=2.2229628748013988, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 7, 8, 11, 12, 13, 14]), old_indices_discarded=array([ 1, 4, 5, 6, 9, 10]), step_length=0.1456249999999998, relative_step_length=0.9999999999999989, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.69316128, 1.01184815]), radius=0.29124999999999995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 11, 12, 13, 14, 15]), model=ScalarModel(intercept=1.8544790200782664, linear_terms=array([-0.67331221, -1.21592495]), square_terms=array([[1.63171239, 1.52446346],
+ [1.52446346, 2.03881587]]), scale=array([0.25811359, 0.17313272]), shift=array([5.69316128, 0.92686728])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=16, candidate_x=array([5.56938443, 1.09220081]), index=16, x=array([5.56938443, 1.09220081]), fval=1.7490483015806302, rho=4.7314095484198075, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 11, 12, 13, 14, 15]), old_indices_discarded=array([1, 2, 4, 5, 6, 8, 9]), step_length=0.1475712047087003, relative_step_length=0.5066822479268681, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56938443, 1.09220081]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16]), model=ScalarModel(intercept=7.085140584300428, linear_terms=array([ -5.65921381, -14.17503365]), square_terms=array([[ 5.20815903, 7.08665734],
+ [ 7.08665734, 17.08804688]]), scale=array([0.51622718, 0.26201318]), shift=array([5.56938443, 0.83798682])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=17, candidate_x=array([5.51947854, 1.06583909]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=1.7809591946937149, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 8, 9, 11]), step_length=0.05644057588664191, relative_step_length=0.09689369250925652, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 13, 14, 15, 16, 17]), model=ScalarModel(intercept=2.3354605283597563, linear_terms=array([ 1.46424334, -2.36914478]), square_terms=array([[ 1.06094696, -1.63153519],
+ [-1.63153519, 2.58355658]]), scale=array([0.51622718, 0.27519405]), shift=array([5.51947854, 0.82480595])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=18, candidate_x=array([5.60087809, 1.1 ]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-85.51150568657764, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 13, 14, 15, 16, 17]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 10, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.29124999999999995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 14, 15, 16, 17, 18]), model=ScalarModel(intercept=3.1012802436018085, linear_terms=array([-0.92259607, -5.33641639]), square_terms=array([[0.27027798, 1.20759192],
+ [1.20759192, 7.70294614]]), scale=array([0.25811359, 0.14613725]), shift=array([5.51947854, 0.95386275])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=19, candidate_x=array([5.77759213, 1.03219317]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-4.019293806179108, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 14, 15, 16, 17, 18]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 8, 9, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.14562499999999998, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 14, 15, 16, 17, 18, 19]), model=ScalarModel(intercept=1.5213811565094542, linear_terms=array([-0.14355744, -1.03791084]), square_terms=array([[0.06159175, 0.28510759],
+ [0.28510759, 2.13210366]]), scale=array([0.1290568 , 0.08160886]), shift=array([5.51947854, 1.01839114])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=20, candidate_x=array([5.54569318, 1.05590177]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-1.535972006541552, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 14, 15, 16, 17, 18, 19]), old_indices_discarded=array([ 0, 1, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.07281249999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 15, 16, 17, 18, 19, 20]), model=ScalarModel(intercept=1.3026835229178233, linear_terms=array([ 0.01296259, -0.29445874]), square_terms=array([[ 0.00193973, -0.00535854],
+ [-0.00535854, 1.93956479]]), scale=array([0.0645284 , 0.04934466]), shift=array([5.51947854, 1.05065534])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=21, candidate_x=array([5.45495014, 1.05801037]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-0.27578700766971787, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 15, 16, 17, 18, 19, 20]), old_indices_discarded=array([ 0, 13, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.036406249999999994, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 7, 15, 16, 17, 18, 20, 21]), model=ScalarModel(intercept=1.3985870458518956, linear_terms=array([-0.03050627, 0.11095194]), square_terms=array([[0.00179814, 0.01810855],
+ [0.01810855, 0.86143979]]), scale=array([0.0322642, 0.0322642]), shift=array([5.51947854, 1.06583909])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=22, candidate_x=array([5.55174274, 1.06100528]), index=22, x=array([5.55174274, 1.06100528]), fval=1.426038354142669, rho=0.07310801718365617, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 7, 15, 16, 17, 18, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0326242888718403, relative_step_length=0.8961178059217939, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.55174274, 1.06100528]), radius=0.018203124999999997, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 17, 18, 20, 22]), model=ScalarModel(intercept=1.4163790473957398, linear_terms=array([-0.00983569, -0.08333704]), square_terms=array([[2.86954770e-04, 8.05036733e-04],
+ [8.05036733e-04, 3.32811019e-01]]), scale=0.018203124999999997, shift=array([5.55174274, 1.06100528])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=23, candidate_x=array([5.56995508, 1.065396 ]), index=23, x=array([5.56995508, 1.065396 ]), fval=1.42426971311261, rho=0.0887754386245564, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([16, 17, 18, 20, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.01873413361292202, relative_step_length=1.0291712886068751, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56995508, 1.065396 ]), radius=0.009101562499999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 20, 22, 23]), model=ScalarModel(intercept=1.4255871683087975, linear_terms=array([ 0.01282382, -0.01799885]), square_terms=array([[ 0.00027616, -0.00248466],
+ [-0.00248466, 0.08699657]]), scale=0.009101562499999999, shift=array([5.56995508, 1.065396 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=24, candidate_x=array([5.56080919, 1.06681982]), index=23, x=array([5.56995508, 1.065396 ]), fval=1.42426971311261, rho=-0.24612567440050911, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 20, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56995508, 1.065396 ]), radius=0.004550781249999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 23, 24]), model=ScalarModel(intercept=1.42426971311261, linear_terms=array([-4.86697548e-05, 7.42140875e-03]), square_terms=array([[ 7.70644314e-06, -1.20696978e-04],
+ [-1.20696978e-04, 1.96339837e-02]]), scale=0.004550781249999999, shift=array([5.56995508, 1.065396 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=25, candidate_x=array([5.57417906, 1.06370262]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=1.5482217964560738, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.004550781249999896, relative_step_length=0.9999999999999774, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.009101562499999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 18, 20, 22, 23, 24, 25]), model=ScalarModel(intercept=1.4247281558811358, linear_terms=array([ 0.00539427, -0.03219716]), square_terms=array([[ 3.96935302e-05, -1.28952506e-03],
+ [-1.28952506e-03, 8.65974369e-02]]), scale=0.009101562499999999, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=26, candidate_x=array([5.56503074, 1.06677666]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.48986170098858195, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 18, 20, 22, 23, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.004550781249999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 23, 24, 25, 26]), model=ScalarModel(intercept=1.422282780554977, linear_terms=array([-0.00015294, 0.00037013]), square_terms=array([[ 7.13476990e-06, -1.13770520e-04],
+ [-1.13770520e-04, 1.96031452e-02]]), scale=0.004550781249999999, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=27, candidate_x=array([5.57873026, 1.06364354]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.7907220678531115, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 23, 24, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.0022753906249999996, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 26, 27]), model=ScalarModel(intercept=1.4221663020015802, linear_terms=array([5.73401438e-05, 7.45830401e-04]), square_terms=array([[ 1.12265319e-06, -2.59043861e-05],
+ [-2.59043861e-05, 4.91328724e-03]]), scale=0.0022753906249999996, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=28, candidate_x=array([5.57190552, 1.06334956]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-3.5610604492495965, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.0011376953124999998, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 27, 28]), model=ScalarModel(intercept=1.422325827336663, linear_terms=array([-4.61917023e-05, 2.38441492e-04]), square_terms=array([[ 3.55694453e-07, -6.48069226e-06],
+ [-6.48069226e-06, 1.22037302e-03]]), scale=0.0011376953124999998, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=29, candidate_x=array([5.57531788, 1.063494 ]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.6669519353256694, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.0005688476562499999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 28, 29]), model=ScalarModel(intercept=1.422098440455059, linear_terms=array([-4.34744633e-05, -3.03707274e-04]), square_terms=array([[ 8.37764168e-08, -1.07708651e-06],
+ [-1.07708651e-06, 2.98889073e-04]]), scale=0.0005688476562499999, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=30, candidate_x=array([5.57453507, 1.06417097]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.5142705306272952, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.00028442382812499995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 29, 30]), model=ScalarModel(intercept=1.422098440455059, linear_terms=array([ 4.17356026e-06, -1.04084673e-05]), square_terms=array([[ 1.93011592e-08, -1.59744779e-07],
+ [-1.59744779e-07, 7.59670263e-05]]), scale=0.00028442382812499995, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=31, candidate_x=array([5.57389456, 1.06373901]), index=31, x=array([5.57389456, 1.06373901]), fval=1.4220519178994522, rho=9.583354885845637, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([25, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.00028681890451018565, relative_step_length=1.0084208007499749, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 32 entries., 'history': {'params': [{'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 5.3827721337329075, 'DiscFac': 0.5}, {'CRRA': 6.341227184076231, 'DiscFac': 0.9843397863096757}, {'CRRA': 5.308772815923768, 'DiscFac': 0.9942847020759833}, {'CRRA': 6.341227184076231, 'DiscFac': 1.099329565298806}, {'CRRA': 6.341227184076231, 'DiscFac': 0.7325487756828386}, {'CRRA': 6.341227184076231, 'DiscFac': 0.661184756844424}, {'CRRA': 5.670357912186334, 'DiscFac': 1.1}, {'CRRA': 6.341227184076231, 'DiscFac': 1.0027250193492325}, {'CRRA': 6.341227184076231, 'DiscFac': 1.0927982791010287}, {'CRRA': 5.308772815923768, 'DiscFac': 1.0118564969416792}, {'CRRA': 5.957814024190954, 'DiscFac': 0.5}, {'CRRA': 6.114808484578101, 'DiscFac': 1.1}, {'CRRA': 5.793348226117784, 'DiscFac': 0.8284226490669568}, {'CRRA': 5.75003997251512, 'DiscFac': 0.8880821392041797}, {'CRRA': 5.693161284486315, 'DiscFac': 1.0118481504711487}, {'CRRA': 5.569384429577121, 'DiscFac': 1.0922008146955873}, {'CRRA': 5.5194785395513035, 'DiscFac': 1.0658390858610285}, {'CRRA': 5.600878088644884, 'DiscFac': 1.1}, {'CRRA': 5.77759213158942, 'DiscFac': 1.0321931747072446}, {'CRRA': 5.545693184498602, 'DiscFac': 1.055901773046547}, {'CRRA': 5.454950141541775, 'DiscFac': 1.0580103701909507}, {'CRRA': 5.551742738556068, 'DiscFac': 1.0610052791857207}, {'CRRA': 5.569955078014674, 'DiscFac': 1.0653960027788554}, {'CRRA': 5.560809192249429, 'DiscFac': 1.0668198165422604}, {'CRRA': 5.574179063160669, 'DiscFac': 1.0637026157965719}, {'CRRA': 5.565030737518938, 'DiscFac': 1.0667766565553518}, {'CRRA': 5.578730259698591, 'DiscFac': 1.0636435394860717}, {'CRRA': 5.571905522822675, 'DiscFac': 1.0633495597956906}, {'CRRA': 5.575317879327959, 'DiscFac': 1.063494000480499}, {'CRRA': 5.574535066002697, 'DiscFac': 1.0641709732701494}, {'CRRA': 5.573894562325964, 'DiscFac': 1.0637390075406437}], 'criterion': [3.0263314834387383, 4.314184027187926, nan, 2.6142787419100317, nan, 4.730311355914472, 4.931838606867419, 1.9543423789678298, nan, nan, 2.1984626089974055, 4.789253019202322, nan, 3.940933836887815, 3.4612490178599495, 2.070351234692411, 1.7490483015806304, 1.4289096777146673, 1.9829352389581485, 1.6954301219950216, 1.4443085463640908, 1.4384944542770688, 1.4260383541426693, 1.42426971311261, 1.427741913899455, 1.4220984404550594, 1.427437660317148, 1.422217891677385, 1.4225162577343387, 1.4221438433511406, 1.4221892061726984, 1.4220519178994522], 'runtime': [0.0, 2.1092147859999386, 2.320780406999802, 2.53563283099993, 2.7502362279997215, 2.9750869179997608, 3.2098066859998653, 3.4356893949998266, 3.6836077269999805, 3.9124819979997483, 4.17926271899978, 4.423696945999836, 4.664147187999788, 6.505867149999631, 8.205766164999659, 9.91364971899975, 11.730312985999717, 13.458470247999685, 15.2081106239998, 16.93993415199975, 18.660550382999645, 20.398841179999636, 22.12600937399975, 23.987055649999547, 25.704666818999613, 27.416890058999797, 29.111133761999554, 30.863144658999772, 32.601477340999736, 34.33676511199974, 36.23110922099977, 38.04281973799971], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]}, 'multistart_info': {...}}, {'solution_x': array([7.55033227, 1.06886786]), 'solution_criterion': inf, 'states': [State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.7550332273206521, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=inf, linear_terms=array([nan, nan]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.7550332273206521, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=2.3250640840427264, linear_terms=array([0.42934169, 6.39052049]), square_terms=array([[ 0.57563022, 1.0761891 ],
+ [ 1.0761891 , 24.65080694]]), scale=array([0.66913078, 0.3 ]), shift=array([7.55033227, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.3775166136603261, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 7, 8, 9, 10, 12, 13]), model=ScalarModel(intercept=9.409494862894718, linear_terms=array([0.6730648 , 9.54642652]), square_terms=array([[0.40920183, 0.31552277],
+ [0.31552277, 6.96199281]]), scale=array([0.33456539, 0.18284876]), shift=array([7.55033227, 0.91715124])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 7, 8, 9, 10, 12, 13]), old_indices_discarded=array([ 1, 2, 3, 5, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.18875830683016304, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 7, 9, 10, 12, 13, 14]), model=ScalarModel(intercept=19.22375838635329, linear_terms=array([1.32892629, 5.63610224]), square_terms=array([[0.15092368, 0.22405344],
+ [0.22405344, 0.99645599]]), scale=array([0.16728269, 0.09920742]), shift=array([7.55033227, 1.00079258])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 7, 9, 10, 12, 13, 14]), old_indices_discarded=array([ 1, 2, 3, 5, 8, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.09437915341508152, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 13, 15, 16]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=array([0.08364135, 0.05738674]), shift=array([7.55033227, 1.04261326])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([16]), old_indices_used=array([ 0, 13, 15]), old_indices_discarded=array([14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.04718957670754076, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 18]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=array([0.04182067, 0.03647641]), shift=array([7.55033227, 1.06352359])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([18]), old_indices_used=array([ 0, 17]), old_indices_discarded=array([16]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.02359478835377038, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 19, 20]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=0.02359478835377038, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([20]), old_indices_used=array([ 0, 17, 19]), old_indices_discarded=array([18]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.01179739417688519, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 19, 20, 21, 22]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=0.01179739417688519, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([22]), old_indices_used=array([ 0, 17, 19, 20, 21]), old_indices_discarded=array([18]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.005898697088442595, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 19, 21, 22, 23, 24]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=0.005898697088442595, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([24]), old_indices_used=array([ 0, 17, 19, 21, 22, 23]), old_indices_discarded=array([20]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.0029493485442212974, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 19, 21, 23, 24, 25, 26]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=0.0029493485442212974, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([26]), old_indices_used=array([ 0, 17, 19, 21, 23, 24, 25]), old_indices_discarded=array([22]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.0014746742721106487, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 19, 21, 23, 25, 26, 27, 28]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=0.0014746742721106487, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([28]), old_indices_used=array([ 0, 17, 19, 21, 23, 25, 26, 27]), old_indices_discarded=array([24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.0007373371360553244, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 19, 21, 23, 25, 27, 29, 30]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=0.0007373371360553244, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([30]), old_indices_used=array([ 0, 17, 19, 21, 23, 25, 27, 29]), old_indices_discarded=array([26, 28]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.0003686685680276622, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 19, 21, 23, 25, 27, 29, 31, 32]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=0.0003686685680276622, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([32]), old_indices_used=array([ 0, 19, 21, 23, 25, 27, 29, 31]), old_indices_discarded=array([17, 28, 30]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.0001843342840138311, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 21, 23, 25, 27, 29, 31, 33, 34]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=0.0001843342840138311, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([34]), old_indices_used=array([ 0, 21, 23, 25, 27, 29, 31, 33]), old_indices_discarded=array([17, 19, 30, 32]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=9.216714200691555e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 23, 25, 27, 29, 31, 33, 35, 36]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=9.216714200691555e-05, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([36]), old_indices_used=array([ 0, 23, 25, 27, 29, 31, 33, 35]), old_indices_discarded=array([17, 19, 21, 32, 34]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=4.608357100345777e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 25, 27, 29, 31, 33, 35, 37, 38]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=4.608357100345777e-05, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([38]), old_indices_used=array([ 0, 25, 27, 29, 31, 33, 35, 37]), old_indices_discarded=array([17, 19, 21, 23, 34, 36]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=2.3041785501728886e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 27, 29, 31, 33, 35, 37, 39, 40]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=2.3041785501728886e-05, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([40]), old_indices_used=array([ 0, 27, 29, 31, 33, 35, 37, 39]), old_indices_discarded=array([17, 19, 21, 23, 25, 36, 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1.1520892750864443e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 29, 31, 33, 35, 37, 39, 41, 42]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1.1520892750864443e-05, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([42]), old_indices_used=array([ 0, 29, 31, 33, 35, 37, 39, 41]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 38, 40]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=5.7604463754322216e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 31, 33, 35, 37, 39, 41, 43, 44]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=5.7604463754322216e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([44]), old_indices_used=array([ 0, 31, 33, 35, 37, 39, 41, 43]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 40, 42]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=2.8802231877161108e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 33, 35, 37, 39, 41, 43, 45, 46]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=2.8802231877161108e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([46]), old_indices_used=array([ 0, 33, 35, 37, 39, 41, 43, 45]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 42, 44]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1.4401115938580554e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 35, 37, 39, 41, 43, 45, 47, 48]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1.4401115938580554e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([48]), old_indices_used=array([ 0, 35, 37, 39, 41, 43, 45, 47]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 44, 46]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 37, 39, 41, 43, 45, 47, 49, 50]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([50]), old_indices_used=array([ 0, 37, 39, 41, 43, 45, 47, 49]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 46, 48]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 39, 41, 43, 45, 47, 49, 51, 52]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([52]), old_indices_used=array([ 0, 39, 41, 43, 45, 47, 49, 51]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 46, 48, 50]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 43, 45, 47, 49, 51, 52, 53, 54]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([54]), old_indices_used=array([ 0, 43, 45, 47, 49, 51, 52, 53]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 46, 48, 50]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 45, 47, 49, 51, 52, 53, 55, 56]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([56]), old_indices_used=array([ 0, 45, 47, 49, 51, 52, 53, 55]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 46, 48, 50,
+ 54]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 49, 51, 52, 53, 55, 56, 57, 58]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([58]), old_indices_used=array([ 0, 49, 51, 52, 53, 55, 56, 57]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 50, 54]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 51, 52, 53, 55, 56, 57, 59, 60]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([60]), old_indices_used=array([ 0, 51, 52, 53, 55, 56, 57, 59]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 54, 58]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 53, 55, 56, 57, 59, 61, 62]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([62]), old_indices_used=array([ 0, 52, 53, 55, 56, 57, 59, 61]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 54, 58, 60]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 57, 59, 61, 62, 63, 64]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([64]), old_indices_used=array([ 0, 52, 56, 57, 59, 61, 62, 63]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 58, 60]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 59, 61, 62, 63, 65, 66]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([66]), old_indices_used=array([ 0, 52, 56, 59, 61, 62, 63, 65]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 60, 64]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 63, 65, 66, 67, 68]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([68]), old_indices_used=array([ 0, 52, 56, 62, 63, 65, 66, 67]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 64]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 65, 66, 67, 69, 70]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([70]), old_indices_used=array([ 0, 52, 56, 62, 65, 66, 67, 69]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 68]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 69, 70, 71, 72]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([72]), old_indices_used=array([ 0, 52, 56, 62, 66, 69, 70, 71]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 72, 73, 74]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([74]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 72, 73]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 72, 75, 76]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([76]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 72, 75]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71, 73, 74]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 72, 76, 78]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([78]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 72, 76]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71, 73, 74, 75, 77]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 72, 78, 80]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([80]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 72, 78]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71, 73, 74, 75, 76, 77, 79]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 78, 80, 82]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([82]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 78, 80]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71, 72, 73, 74, 75, 76, 77, 79, 81]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 78, 80, 84]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([84]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 78, 80]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 78, 80, 86]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([86]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 78, 80]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 56, 62, 66, 70, 78, 80, 86, 88]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([88]), old_indices_used=array([ 0, 56, 62, 66, 70, 78, 80, 86]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67,
+ 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 56, 62, 66, 70, 78, 80, 86, 90]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([90]), old_indices_used=array([ 0, 56, 62, 66, 70, 78, 80, 86]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67,
+ 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87, 88,
+ 89]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 56, 62, 66, 70, 78, 80, 86, 92]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([92]), old_indices_used=array([ 0, 56, 62, 66, 70, 78, 80, 86]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67,
+ 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87, 88,
+ 89, 90, 91]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 56, 62, 66, 70, 78, 80, 86, 94]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([94]), old_indices_used=array([ 0, 56, 62, 66, 70, 78, 80, 86]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67,
+ 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87, 88,
+ 89, 90, 91, 92, 93]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 56, 62, 66, 70, 78, 80, 86, 96]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([96]), old_indices_used=array([ 0, 56, 62, 66, 70, 78, 80, 86]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67,
+ 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87, 88,
+ 89, 90, 91, 92, 93, 94, 95]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 56, 62, 66, 70, 78, 80, 86, 98]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([98]), old_indices_used=array([ 0, 56, 62, 66, 70, 78, 80, 86]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67,
+ 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87, 88,
+ 89, 90, 91, 92, 93, 94, 95, 96, 97]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Maximum number of criterion evaluations reached.', 'tranquilo_history': History for least_squares function with 100 entries., 'history': {'params': [{'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 6.881201497543467, 'DiscFac': 0.5324914173423184}, {'CRRA': 8.219463048869576, 'DiscFac': 0.5584020131003072}, {'CRRA': 6.881201497543467, 'DiscFac': 0.5126134008358474}, {'CRRA': 8.219463048869576, 'DiscFac': 1.1}, {'CRRA': 8.219463048869576, 'DiscFac': 0.5072776897840494}, {'CRRA': 7.569182167018681, 'DiscFac': 0.5}, {'CRRA': 6.881201497543467, 'DiscFac': 0.9962729733060268}, {'CRRA': 8.219463048869576, 'DiscFac': 0.7918748475727242}, {'CRRA': 8.219463048869576, 'DiscFac': 1.0852235578167606}, {'CRRA': 6.93149220972855, 'DiscFac': 1.1}, {'CRRA': 6.881201497543467, 'DiscFac': 0.5031308867684463}, {'CRRA': 6.884642155849924, 'DiscFac': 1.1}, {'CRRA': 7.360029784352809, 'DiscFac': 0.7259523277207144}, {'CRRA': 7.258004185304884, 'DiscFac': 0.7343024706551552}, {'CRRA': 7.383049579290757, 'DiscFac': 0.901585164570919}, {'CRRA': 7.6339736201644035, 'DiscFac': 0.9852265115288008}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.508511599727581, 'DiscFac': 1.0755802553977896}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.566876385747435, 'DiscFac': 1.0520450650892463}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.541920876408272, 'DiscFac': 1.0605958023174336}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.554468301294523, 'DiscFac': 1.0646621600908786}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.55243512346204, 'DiscFac': 1.0709358714552508}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.551366279645872, 'DiscFac': 1.0678164333147342}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.549956235462028, 'DiscFac': 1.0682336174702518}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550311192488363, 'DiscFac': 1.0692359238563842}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.55014910403443, 'DiscFac': 1.0688885510616417}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550413214019603, 'DiscFac': 1.0688237748520384}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550345046822539, 'DiscFac': 1.0689121363620864}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550354859768847, 'DiscFac': 1.0688633009564907}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550343577712397, 'DiscFac': 1.0688700808990395}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550330353631747, 'DiscFac': 1.0688624272828449}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550335144118092, 'DiscFac': 1.0688680899005256}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550333613950777, 'DiscFac': 1.0688683841541116}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332222874611, 'DiscFac': 1.0688668597541364}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332372145181, 'DiscFac': 1.0688668633931486}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331278112982, 'DiscFac': 1.0688677595480731}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331278112972, 'DiscFac': 1.0688677595481844}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331727906194, 'DiscFac': 1.0688670202459338}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332587800952, 'DiscFac': 1.0688688077128645}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331708637145, 'DiscFac': 1.0688670331010641}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331447818857, 'DiscFac': 1.0688684230530674}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550333098595546, 'DiscFac': 1.0688672939222863}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550333272782672, 'DiscFac': 1.0688678875988677}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550333272939655, 'DiscFac': 1.0688678353855678}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.5503322501077434, 'DiscFac': 1.068866858753495}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331759993373, 'DiscFac': 1.0688670002254959}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332249867232, 'DiscFac': 1.068866858759081}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331273478922, 'DiscFac': 1.068867881826057}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.55033229654159, 'DiscFac': 1.0688688582143828}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332296309651, 'DiscFac': 1.0688688582197696}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332296310257, 'DiscFac': 1.0688688582197556}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332250101332, 'DiscFac': 1.0688668587536432}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332174267114, 'DiscFac': 1.0688688535801423}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.55033237214568, 'DiscFac': 1.0688668633931981}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.5503323721458235, 'DiscFac': 1.0688668633932124}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332372145812, 'DiscFac': 1.0688668633932112}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332174266841, 'DiscFac': 1.0688688535801154}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332174267176, 'DiscFac': 1.0688688535801485}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}], 'criterion': [nan, 5.5395827111397296, 6.054158174623402, 5.5613444250597865, nan, 6.26999489704744, 6.0387433323182025, nan, nan, nan, nan, 5.571706618549453, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], 'runtime': [0.0, 2.328494080999917, 2.5476781890001803, 2.7613755900001706, 2.9831037750000178, 3.2319878500002233, 3.451330895999945, 3.686206747000142, 3.931726117999915, 4.153793400000268, 4.406197809999867, 4.657425629000045, 4.9140708650002125, 6.904129762000139, 8.62666656600004, 10.469215058999907, 12.175716226000077, 13.898204776000057, 15.646962670999983, 17.379415701000198, 19.11758814399991, 20.84886875300026, 22.704385076000108, 24.402293366999857, 26.127271145000122, 27.857393392000176, 29.59283604400025, 31.405433552999966, 33.34631329700005, 35.294670816000234, 37.08944409000014, 38.88546167000004, 40.620699676000186, 42.32569570800024, 44.12526996899987, 45.82664452400013, 47.76171708999982, 49.54912002099991, 51.321899781999946, 53.14778549999983, 54.992761710000195, 56.88239375400008, 58.73952688700001, 60.59187545700024, 62.36865698700012, 64.15370713699986, 65.92303226400008, 67.73910037399992, 69.61133773600022, 71.49170302699986, 73.45302224199986, 75.3591821949999, 77.18019060000006, 78.9008996030002, 80.67005395200022, 82.49309870800016, 84.26152974200022, 86.17230510900026, 87.94852979500001, 89.70901951499991, 91.44370474200014, 93.1722660270002, 94.87196946899985, 96.69248874000004, 98.75914207799997, 100.71350908700015, 102.51248370900021, 104.27288464599997, 105.99656527800016, 107.74241232099985, 109.45312153199984, 111.20908445099985, 113.08005569700026, 114.87827648099983, 116.77893422199986, 118.6311070050001, 120.48852345700016, 122.23814602399989, 124.22244466700022, 125.95811692500001, 127.85704271700024, 129.64778518799994, 131.51783528299984, 133.36864930799993, 135.20897757800003, 137.17955607500016, 138.93780772699984, 140.6892026380001, 142.4551368309999, 144.1857052280002, 145.95847650199994, 147.76372151700025, 149.73393046899992, 151.55659189200014, 153.36182119000023, 155.12572341299983, 156.85440400300013, 158.59608259800007, 160.32910335399993, 162.09345126300013], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88]}}], 'exploration_sample': array([[ 5.825 , 0.95 ],
+ [12.321875, 1.08125 ],
+ [ 5. , 0.95 ],
+ [ 4.64375 , 0.6875 ],
+ [14.09375 , 0.9875 ],
+ [ 9.36875 , 0.8375 ],
+ [17.6375 , 1.025 ],
+ [ 8.1875 , 0.725 ],
+ [10.55 , 0.8 ],
+ [16.45625 , 0.9125 ],
+ [ 7.00625 , 0.6125 ],
+ [11.73125 , 0.7625 ],
+ [15.275 , 0.65 ],
+ [12.9125 , 0.575 ],
+ [17.046875, 0.63125 ],
+ [18.81875 , 0.5375 ],
+ [ 3.4625 , 0.875 ],
+ [ 2.28125 , 1.0625 ],
+ [ 2.871875, 0.78125 ]]), 'exploration_results': array([ 3.02633148, 3.30050278, 3.74724591, 3.92461378, 4.45534719,
+ 4.52159416, 4.77507862, 5.06340436, 5.16761845, 5.42393003,
+ 5.50914405, 5.69522002, 6.68407291, 6.73863805, 6.84560996,
+ 7.20052264, 7.72130492, 8.47185488, 10.67451262])}}"
diff --git a/content/tables/min/PortfolioSub(Stock)Market_estimate_results.csv b/content/tables/min/PortfolioSub(Stock)Market_estimate_results.csv
new file mode 100644
index 0000000..9dbfeaa
--- /dev/null
+++ b/content/tables/min/PortfolioSub(Stock)Market_estimate_results.csv
@@ -0,0 +1,3518 @@
+CRRA,4.242027288057683
+DiscFac,0.9833806705623286
+time_to_estimate,74.66971564292908
+params,"{'CRRA': 4.242027288057683, 'DiscFac': 0.9833806705623286}"
+criterion,1.5876279609075603
+start_criterion,1.5876292611493417
+start_params,"{'CRRA': 4.242030481097337, 'DiscFac': 0.9833811989466528}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,Absolute criterion change smaller than tolerance.
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 4.242030481097337, 'DiscFac': 0.9833811989466528}, {'CRRA': 3.866090318003359, 'DiscFac': 0.6090124559299177}, {'CRRA': 4.617970644191314, 'DiscFac': 0.7959483679304038}, {'CRRA': 3.866090318003359, 'DiscFac': 0.9003625912366793}, {'CRRA': 4.617861537983963, 'DiscFac': 1.1}, {'CRRA': 4.617970644191314, 'DiscFac': 0.7294749147361314}, {'CRRA': 4.601974218487584, 'DiscFac': 0.6074410358526751}, {'CRRA': 3.8881606530327915, 'DiscFac': 1.1}, {'CRRA': 4.617970644191314, 'DiscFac': 0.9756753153557713}, {'CRRA': 4.314996287442069, 'DiscFac': 1.1}, {'CRRA': 3.866090318003359, 'DiscFac': 1.0956042400456183}, {'CRRA': 4.143320811214283, 'DiscFac': 0.6074410358526751}, {'CRRA': 4.2369258172160285, 'DiscFac': 1.1}, {'CRRA': 4.133318553862013, 'DiscFac': 0.8601172642325396}, {'CRRA': 4.092965500617242, 'DiscFac': 0.9013897613548475}, {'CRRA': 4.153471314030488, 'DiscFac': 0.9250370642369384}, {'CRRA': 4.191228580657776, 'DiscFac': 0.9681871888315208}, {'CRRA': 4.215297697523913, 'DiscFac': 0.9840940747766532}, {'CRRA': 4.256459683327901, 'DiscFac': 0.9812837869229949}, {'CRRA': 4.248648245544559, 'DiscFac': 0.9829155931605158}, {'CRRA': 4.2387021886508345, 'DiscFac': 0.9826511792916172}, {'CRRA': 4.240367669492092, 'DiscFac': 0.9831161999919373}, {'CRRA': 4.2422636524294175, 'DiscFac': 0.9825861648997909}, {'CRRA': 4.242440765395577, 'DiscFac': 0.983211931990717}, {'CRRA': 4.241839441124415, 'DiscFac': 0.9832744285945232}, {'CRRA': 4.242046271580153, 'DiscFac': 0.9834835532858018}, {'CRRA': 4.2420795402716225, 'DiscFac': 0.9833633976969068}, {'CRRA': 4.2420046638999995, 'DiscFac': 0.9833775511549192}, {'CRRA': 4.242029472795148, 'DiscFac': 0.9833941052695937}, {'CRRA': 4.242032758596346, 'DiscFac': 0.9833751400309451}, {'CRRA': 4.242027288057683, 'DiscFac': 0.9833806705623286}], 'criterion': [1.5876292611493417, 4.388075846561168, 3.6057596559345013, 4.1162318084465515, 7.442613271266951, 3.737761393216249, 3.8560302459126334, 9.397193744120152, 1.6226333504067376, 8.063261814400159, 8.8224837848772, 4.09852537527331, 8.261918784924704, 3.9094160894413705, 3.4367411890710167, 2.7266546241051177, 1.673996116569148, 1.5882265039211922, 1.5883233911565737, 1.5877004742936713, 1.587649024825247, 1.5879244359915534, 1.5876776543822713, 1.5878350711177123, 1.5879235559647933, 1.5876752020095402, 1.587693121026412, 1.5876342398304937, 1.5876403856006087, 1.5876417730877617, 1.5876279609075605], 'runtime': [0.0, 1.5780707439998878, 1.7842999229997076, 2.004510731999744, 2.221870129999843, 2.4473023380000996, 2.6690129619996696, 2.90139628299994, 3.1577693979998003, 3.374397773000055, 3.6161538719998134, 3.841147362999891, 4.217604835999737, 5.718130669999937, 6.961544460999903, 8.198964767999769, 9.467069380999874, 10.732859773999735, 11.996178713000063, 13.294657668999662, 14.557964072999766, 15.818718369999715, 17.08274131899998, 18.331843930000105, 19.73133806299984, 20.974915189000058, 22.21207696400006, 23.447582182999668, 24.678527696999936, 25.93378734099997, 27.18556611699978], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}"
+convergence_report,
+multistart_info,"{'start_parameters': [{'CRRA': 4.242030481097337, 'DiscFac': 0.9833811989466528}, {'CRRA': 4.705669260952328, 'DiscFac': 0.9736036985151767}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 8.19e-07* 8.19e-07*
+relative_params_change 9.248e-07* 9.248e-07*
+absolute_criterion_change 1.3e-06* 1.3e-06*
+absolute_params_change 3.236e-06* 3.236e-06*
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.), Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 0.0005557 0.01853
+relative_params_change 0.006672 0.05371
+absolute_criterion_change 0.0008913 0.02972
+absolute_params_change 0.02942 0.2354
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.)], 'exploration_sample': [{'CRRA': 4.242030481097337, 'DiscFac': 0.9833811989466528}, {'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 7.596874999999999, 'DiscFac': 0.9312500000000001}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 9.368749999999999, 'DiscFac': 0.8375}, {'CRRA': 8.1875, 'DiscFac': 0.7250000000000001}, {'CRRA': 10.549999999999999, 'DiscFac': 0.8}, {'CRRA': 11.73125, 'DiscFac': 0.7625000000000001}, {'CRRA': 7.00625, 'DiscFac': 0.6125}, {'CRRA': 15.274999999999999, 'DiscFac': 0.65}, {'CRRA': 12.9125, 'DiscFac': 0.575}, {'CRRA': 17.046875, 'DiscFac': 0.6312500000000001}, {'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 16.45625, 'DiscFac': 0.9125000000000001}, {'CRRA': 14.093749999999998, 'DiscFac': 0.9875}, {'CRRA': 18.81875, 'DiscFac': 0.5375}, {'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 17.6375, 'DiscFac': 1.0250000000000001}, {'CRRA': 2.871875, 'DiscFac': 0.78125}, {'CRRA': 2.28125, 'DiscFac': 1.0625}], 'exploration_results': array([ 1.58762926, 2.04247528, 2.9717037 , 3.76994253, 3.80031518,
+ 4.27735638, 4.32695188, 4.78264529, 5.25346612, 5.79528191,
+ 5.94010747, 6.02403907, 6.09730665, 6.10855726, 6.12270544,
+ 6.45799199, 7.01428788, 7.3683214 , 8.72764877, 13.61935456])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.4242030481097337, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.5876292611493417, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=0, candidate_x=array([4.24203048, 0.9833812 ]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.4242030481097337, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.2321989752905023, linear_terms=array([ 0.07300073, -0.46358574]), square_terms=array([[ 0.18719472, -0.72646991],
+ [-0.72646991, 9.76031967]]), scale=array([0.37594016, 0.24627948]), shift=array([4.24203048, 0.85372052])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=13, candidate_x=array([4.13331855, 0.86011726]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-2.0634711104962373, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.21210152405486685, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 8, 9, 10, 11, 12, 13]), model=ScalarModel(intercept=1.468574209401057, linear_terms=array([-0.04135932, 1.32189612]), square_terms=array([[ 0.08570077, -0.35947045],
+ [-0.35947045, 5.28398255]]), scale=array([0.18797008, 0.15229444]), shift=array([4.24203048, 0.94770556])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=14, candidate_x=array([4.0929655 , 0.90138976]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-2.8926379566531533, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 8, 9, 10, 11, 12, 13]), old_indices_discarded=array([1, 2, 4, 5, 6]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.10605076202743342, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 8, 9, 11, 12, 13, 14]), model=ScalarModel(intercept=1.705979011947692, linear_terms=array([0.02221619, 1.37809979]), square_terms=array([[0.02905312, 0.01775536],
+ [0.01775536, 2.45651662]]), scale=0.10605076202743342, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=15, candidate_x=array([4.15347131, 0.92503706]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-2.945684760282632, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 8, 9, 11, 12, 13, 14]), old_indices_discarded=array([ 2, 4, 5, 6, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.05302538101371671, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 9, 12, 13, 14, 15]), model=ScalarModel(intercept=1.4963636570991579, linear_terms=array([0.04255276, 0.55152192]), square_terms=array([[ 0.05765926, -0.01345445],
+ [-0.01345445, 2.00056259]]), scale=0.05302538101371671, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=16, candidate_x=array([4.19122858, 0.96818719]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.9197330004166955, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 9, 12, 13, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.026512690506858356, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16]), model=ScalarModel(intercept=1.6198931043258744, linear_terms=array([ 0.12625895, -0.12334431]), square_terms=array([[ 0.05941064, -0.10117528],
+ [-0.10117528, 0.73014477]]), scale=0.026512690506858356, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=17, candidate_x=array([4.2152977 , 0.98409407]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.0061308438486284075, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.013256345253429178, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17]), model=ScalarModel(intercept=1.5876292611493403, linear_terms=array([0.00031998, 0.01902441]), square_terms=array([[0.00018057, 0.00326465],
+ [0.00326465, 0.14269986]]), scale=0.013256345253429178, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=18, candidate_x=array([4.25645968, 0.98128379]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.5215615111233285, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.006628172626714589, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 18]), model=ScalarModel(intercept=1.5876292611493423, linear_terms=array([-4.79150438e-05, 1.71571221e-03]), square_terms=array([[4.37165369e-05, 7.87935804e-04],
+ [7.87935804e-04, 3.55635800e-02]]), scale=0.006628172626714589, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=19, candidate_x=array([4.24864825, 0.98291559]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.6241827120081535, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.0033140863133572945, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 18, 19]), model=ScalarModel(intercept=1.587629261149342, linear_terms=array([0.00015398, 0.00208197]), square_terms=array([[9.59461595e-06, 1.69296559e-04],
+ [1.69296559e-04, 8.57310263e-03]]), scale=0.0033140863133572945, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=20, candidate_x=array([4.23870219, 0.98265118]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.054450674157168186, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.0016570431566786472, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 19, 20]), model=ScalarModel(intercept=1.587629261149341, linear_terms=array([3.35543462e-05, 4.23638159e-04]), square_terms=array([[2.59245710e-06, 4.97127724e-05],
+ [4.97127724e-05, 2.31415706e-03]]), scale=0.0016570431566786472, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=21, candidate_x=array([4.24036767, 0.9831162 ]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-4.7194167560134765, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.0008285215783393236, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 20, 21]), model=ScalarModel(intercept=1.5876292611493419, linear_terms=array([-0.00063361, 0.00317707]), square_terms=array([[1.20777869e-06, 1.41359263e-05],
+ [1.41359263e-05, 5.51334270e-04]]), scale=0.0008285215783393236, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=22, candidate_x=array([4.24226365, 0.98258616]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.01625618639906515, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.0004142607891696618, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 21, 22]), model=ScalarModel(intercept=1.5876292611493423, linear_terms=array([-7.76212343e-05, 8.76962771e-05]), square_terms=array([[1.80898809e-07, 3.46928165e-06],
+ [3.46928165e-06, 1.43411455e-04]]), scale=0.0004142607891696618, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=23, candidate_x=array([4.24244077, 0.98321193]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-2.0167065521906635, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.0002071303945848309, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 22, 23]), model=ScalarModel(intercept=1.5876292611493408, linear_terms=array([1.37691140e-04, 9.56134057e-05]), square_terms=array([[6.38229831e-08, 5.06023679e-07],
+ [5.06023679e-07, 3.56393383e-05]]), scale=0.0002071303945848309, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=24, candidate_x=array([4.24183944, 0.98327443]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-1.718223727678988, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.00010356519729241545, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 23, 24]), model=ScalarModel(intercept=1.5876292611493426, linear_terms=array([-3.81689245e-05, -2.11584544e-04]), square_terms=array([[1.65957692e-08, 2.94582741e-07],
+ [2.94582741e-07, 9.72087338e-06]]), scale=0.00010356519729241545, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=25, candidate_x=array([4.24204627, 0.98348355]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.21862202320634433, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=5.1782598646207726e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 24, 25]), model=ScalarModel(intercept=1.587629261149342, linear_terms=array([-9.85177212e-05, 3.63345201e-05]), square_terms=array([[3.27645831e-08, 1.44271153e-07],
+ [1.44271153e-07, 2.08587199e-06]]), scale=5.1782598646207726e-05, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=26, candidate_x=array([4.24207954, 0.9833634 ]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.6039555853617042, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=2.5891299323103863e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 25, 26]), model=ScalarModel(intercept=1.587629261149342, linear_terms=array([3.54855524e-05, 5.09350852e-06]), square_terms=array([[2.65514601e-09, 5.31575830e-09],
+ [5.31575830e-09, 5.31088154e-07]]), scale=2.5891299323103863e-05, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=27, candidate_x=array([4.24200466, 0.98337755]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.1379354940959652, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=1.2945649661551932e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 26, 27]), model=ScalarModel(intercept=1.5876292611493426, linear_terms=array([ 2.91939423e-06, -3.83055954e-05]), square_terms=array([[1.69238935e-10, 2.10204016e-09],
+ [2.10204016e-09, 1.40789466e-07]]), scale=1.2945649661551932e-05, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=28, candidate_x=array([4.24202947, 0.98339411]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.2901011002812644, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=6.472824830775966e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 27, 28]), model=ScalarModel(intercept=1.587629261149341, linear_terms=array([-2.00798138e-06, 5.38965059e-06]), square_terms=array([[6.66454752e-11, 6.05615580e-10],
+ [6.05615580e-10, 3.28444776e-08]]), scale=6.472824830775966e-06, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=29, candidate_x=array([4.24203276, 0.98337514]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-2.1807941427759236, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=3.236412415387983e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 28, 29]), model=ScalarModel(intercept=1.5876292611493419, linear_terms=array([3.17318259e-05, 5.25230008e-06]), square_terms=array([[6.52765022e-09, 1.06773354e-09],
+ [1.06773354e-09, 8.31455570e-09]]), scale=3.236412415387983e-06, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=30, candidate_x=array([4.24202729, 0.98338067]), index=30, x=array([4.24202729, 0.98338067]), fval=1.5876279609075603, rho=0.04042963020560158, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=3.2364629190140795e-06, relative_step_length=1.0000156048178088, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 31 entries., 'multistart_info': {'start_parameters': [array([4.24203048, 0.9833812 ]), array([4.70566926, 0.9736037 ])], 'local_optima': [{'solution_x': array([4.24202729, 0.98338067]), 'solution_criterion': 1.5876279609075603, 'states': [State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.4242030481097337, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.5876292611493417, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=0, candidate_x=array([4.24203048, 0.9833812 ]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.4242030481097337, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.2321989752905023, linear_terms=array([ 0.07300073, -0.46358574]), square_terms=array([[ 0.18719472, -0.72646991],
+ [-0.72646991, 9.76031967]]), scale=array([0.37594016, 0.24627948]), shift=array([4.24203048, 0.85372052])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=13, candidate_x=array([4.13331855, 0.86011726]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-2.0634711104962373, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.21210152405486685, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 8, 9, 10, 11, 12, 13]), model=ScalarModel(intercept=1.468574209401057, linear_terms=array([-0.04135932, 1.32189612]), square_terms=array([[ 0.08570077, -0.35947045],
+ [-0.35947045, 5.28398255]]), scale=array([0.18797008, 0.15229444]), shift=array([4.24203048, 0.94770556])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=14, candidate_x=array([4.0929655 , 0.90138976]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-2.8926379566531533, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 8, 9, 10, 11, 12, 13]), old_indices_discarded=array([1, 2, 4, 5, 6]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.10605076202743342, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 8, 9, 11, 12, 13, 14]), model=ScalarModel(intercept=1.705979011947692, linear_terms=array([0.02221619, 1.37809979]), square_terms=array([[0.02905312, 0.01775536],
+ [0.01775536, 2.45651662]]), scale=0.10605076202743342, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=15, candidate_x=array([4.15347131, 0.92503706]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-2.945684760282632, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 8, 9, 11, 12, 13, 14]), old_indices_discarded=array([ 2, 4, 5, 6, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.05302538101371671, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 9, 12, 13, 14, 15]), model=ScalarModel(intercept=1.4963636570991579, linear_terms=array([0.04255276, 0.55152192]), square_terms=array([[ 0.05765926, -0.01345445],
+ [-0.01345445, 2.00056259]]), scale=0.05302538101371671, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=16, candidate_x=array([4.19122858, 0.96818719]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.9197330004166955, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 9, 12, 13, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.026512690506858356, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16]), model=ScalarModel(intercept=1.6198931043258744, linear_terms=array([ 0.12625895, -0.12334431]), square_terms=array([[ 0.05941064, -0.10117528],
+ [-0.10117528, 0.73014477]]), scale=0.026512690506858356, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=17, candidate_x=array([4.2152977 , 0.98409407]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.0061308438486284075, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.013256345253429178, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17]), model=ScalarModel(intercept=1.5876292611493403, linear_terms=array([0.00031998, 0.01902441]), square_terms=array([[0.00018057, 0.00326465],
+ [0.00326465, 0.14269986]]), scale=0.013256345253429178, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=18, candidate_x=array([4.25645968, 0.98128379]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.5215615111233285, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.006628172626714589, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 18]), model=ScalarModel(intercept=1.5876292611493423, linear_terms=array([-4.79150438e-05, 1.71571221e-03]), square_terms=array([[4.37165369e-05, 7.87935804e-04],
+ [7.87935804e-04, 3.55635800e-02]]), scale=0.006628172626714589, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=19, candidate_x=array([4.24864825, 0.98291559]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.6241827120081535, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.0033140863133572945, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 18, 19]), model=ScalarModel(intercept=1.587629261149342, linear_terms=array([0.00015398, 0.00208197]), square_terms=array([[9.59461595e-06, 1.69296559e-04],
+ [1.69296559e-04, 8.57310263e-03]]), scale=0.0033140863133572945, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=20, candidate_x=array([4.23870219, 0.98265118]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.054450674157168186, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.0016570431566786472, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 19, 20]), model=ScalarModel(intercept=1.587629261149341, linear_terms=array([3.35543462e-05, 4.23638159e-04]), square_terms=array([[2.59245710e-06, 4.97127724e-05],
+ [4.97127724e-05, 2.31415706e-03]]), scale=0.0016570431566786472, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=21, candidate_x=array([4.24036767, 0.9831162 ]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-4.7194167560134765, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.0008285215783393236, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 20, 21]), model=ScalarModel(intercept=1.5876292611493419, linear_terms=array([-0.00063361, 0.00317707]), square_terms=array([[1.20777869e-06, 1.41359263e-05],
+ [1.41359263e-05, 5.51334270e-04]]), scale=0.0008285215783393236, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=22, candidate_x=array([4.24226365, 0.98258616]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.01625618639906515, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.0004142607891696618, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 21, 22]), model=ScalarModel(intercept=1.5876292611493423, linear_terms=array([-7.76212343e-05, 8.76962771e-05]), square_terms=array([[1.80898809e-07, 3.46928165e-06],
+ [3.46928165e-06, 1.43411455e-04]]), scale=0.0004142607891696618, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=23, candidate_x=array([4.24244077, 0.98321193]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-2.0167065521906635, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.0002071303945848309, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 22, 23]), model=ScalarModel(intercept=1.5876292611493408, linear_terms=array([1.37691140e-04, 9.56134057e-05]), square_terms=array([[6.38229831e-08, 5.06023679e-07],
+ [5.06023679e-07, 3.56393383e-05]]), scale=0.0002071303945848309, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=24, candidate_x=array([4.24183944, 0.98327443]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-1.718223727678988, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=0.00010356519729241545, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 23, 24]), model=ScalarModel(intercept=1.5876292611493426, linear_terms=array([-3.81689245e-05, -2.11584544e-04]), square_terms=array([[1.65957692e-08, 2.94582741e-07],
+ [2.94582741e-07, 9.72087338e-06]]), scale=0.00010356519729241545, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=25, candidate_x=array([4.24204627, 0.98348355]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.21862202320634433, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=5.1782598646207726e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 24, 25]), model=ScalarModel(intercept=1.587629261149342, linear_terms=array([-9.85177212e-05, 3.63345201e-05]), square_terms=array([[3.27645831e-08, 1.44271153e-07],
+ [1.44271153e-07, 2.08587199e-06]]), scale=5.1782598646207726e-05, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=26, candidate_x=array([4.24207954, 0.9833634 ]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.6039555853617042, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=2.5891299323103863e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 25, 26]), model=ScalarModel(intercept=1.587629261149342, linear_terms=array([3.54855524e-05, 5.09350852e-06]), square_terms=array([[2.65514601e-09, 5.31575830e-09],
+ [5.31575830e-09, 5.31088154e-07]]), scale=2.5891299323103863e-05, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=27, candidate_x=array([4.24200466, 0.98337755]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.1379354940959652, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=1.2945649661551932e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 26, 27]), model=ScalarModel(intercept=1.5876292611493426, linear_terms=array([ 2.91939423e-06, -3.83055954e-05]), square_terms=array([[1.69238935e-10, 2.10204016e-09],
+ [2.10204016e-09, 1.40789466e-07]]), scale=1.2945649661551932e-05, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=28, candidate_x=array([4.24202947, 0.98339411]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-0.2901011002812644, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=6.472824830775966e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 27, 28]), model=ScalarModel(intercept=1.587629261149341, linear_terms=array([-2.00798138e-06, 5.38965059e-06]), square_terms=array([[6.66454752e-11, 6.05615580e-10],
+ [6.05615580e-10, 3.28444776e-08]]), scale=6.472824830775966e-06, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=29, candidate_x=array([4.24203276, 0.98337514]), index=0, x=array([4.24203048, 0.9833812 ]), fval=1.5876292611493414, rho=-2.1807941427759236, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.24203048, 0.9833812 ]), radius=3.236412415387983e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 28, 29]), model=ScalarModel(intercept=1.5876292611493419, linear_terms=array([3.17318259e-05, 5.25230008e-06]), square_terms=array([[6.52765022e-09, 1.06773354e-09],
+ [1.06773354e-09, 8.31455570e-09]]), scale=3.236412415387983e-06, shift=array([4.24203048, 0.9833812 ])), vector_model=VectorModel(intercepts=array([ 0.07258773, 0.19040179, 0.23875405, 0.27636943, 0.35655762,
+ 0.38659094, 0.46008788, -0.11110168, -0.31032389, -0.33883604,
+ -0.43631436, -0.66907146, -0.20076546, -0.02216249, 0.01729751,
+ 0.01298348, 0.14734387]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4242030481097337, shift=array([4.24203048, 0.9833812 ])), candidate_index=30, candidate_x=array([4.24202729, 0.98338067]), index=30, x=array([4.24202729, 0.98338067]), fval=1.5876279609075603, rho=0.04042963020560158, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=3.2364629190140795e-06, relative_step_length=1.0000156048178088, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 31 entries., 'history': {'params': [{'CRRA': 4.242030481097337, 'DiscFac': 0.9833811989466528}, {'CRRA': 3.866090318003359, 'DiscFac': 0.6090124559299177}, {'CRRA': 4.617970644191314, 'DiscFac': 0.7959483679304038}, {'CRRA': 3.866090318003359, 'DiscFac': 0.9003625912366793}, {'CRRA': 4.617861537983963, 'DiscFac': 1.1}, {'CRRA': 4.617970644191314, 'DiscFac': 0.7294749147361314}, {'CRRA': 4.601974218487584, 'DiscFac': 0.6074410358526751}, {'CRRA': 3.8881606530327915, 'DiscFac': 1.1}, {'CRRA': 4.617970644191314, 'DiscFac': 0.9756753153557713}, {'CRRA': 4.314996287442069, 'DiscFac': 1.1}, {'CRRA': 3.866090318003359, 'DiscFac': 1.0956042400456183}, {'CRRA': 4.143320811214283, 'DiscFac': 0.6074410358526751}, {'CRRA': 4.2369258172160285, 'DiscFac': 1.1}, {'CRRA': 4.133318553862013, 'DiscFac': 0.8601172642325396}, {'CRRA': 4.092965500617242, 'DiscFac': 0.9013897613548475}, {'CRRA': 4.153471314030488, 'DiscFac': 0.9250370642369384}, {'CRRA': 4.191228580657776, 'DiscFac': 0.9681871888315208}, {'CRRA': 4.215297697523913, 'DiscFac': 0.9840940747766532}, {'CRRA': 4.256459683327901, 'DiscFac': 0.9812837869229949}, {'CRRA': 4.248648245544559, 'DiscFac': 0.9829155931605158}, {'CRRA': 4.2387021886508345, 'DiscFac': 0.9826511792916172}, {'CRRA': 4.240367669492092, 'DiscFac': 0.9831161999919373}, {'CRRA': 4.2422636524294175, 'DiscFac': 0.9825861648997909}, {'CRRA': 4.242440765395577, 'DiscFac': 0.983211931990717}, {'CRRA': 4.241839441124415, 'DiscFac': 0.9832744285945232}, {'CRRA': 4.242046271580153, 'DiscFac': 0.9834835532858018}, {'CRRA': 4.2420795402716225, 'DiscFac': 0.9833633976969068}, {'CRRA': 4.2420046638999995, 'DiscFac': 0.9833775511549192}, {'CRRA': 4.242029472795148, 'DiscFac': 0.9833941052695937}, {'CRRA': 4.242032758596346, 'DiscFac': 0.9833751400309451}, {'CRRA': 4.242027288057683, 'DiscFac': 0.9833806705623286}], 'criterion': [1.5876292611493417, 4.388075846561168, 3.6057596559345013, 4.1162318084465515, 7.442613271266951, 3.737761393216249, 3.8560302459126334, 9.397193744120152, 1.6226333504067376, 8.063261814400159, 8.8224837848772, 4.09852537527331, 8.261918784924704, 3.9094160894413705, 3.4367411890710167, 2.7266546241051177, 1.673996116569148, 1.5882265039211922, 1.5883233911565737, 1.5877004742936713, 1.587649024825247, 1.5879244359915534, 1.5876776543822713, 1.5878350711177123, 1.5879235559647933, 1.5876752020095402, 1.587693121026412, 1.5876342398304937, 1.5876403856006087, 1.5876417730877617, 1.5876279609075605], 'runtime': [0.0, 1.5780707439998878, 1.7842999229997076, 2.004510731999744, 2.221870129999843, 2.4473023380000996, 2.6690129619996696, 2.90139628299994, 3.1577693979998003, 3.374397773000055, 3.6161538719998134, 3.841147362999891, 4.217604835999737, 5.718130669999937, 6.961544460999903, 8.198964767999769, 9.467069380999874, 10.732859773999735, 11.996178713000063, 13.294657668999662, 14.557964072999766, 15.818718369999715, 17.08274131899998, 18.331843930000105, 19.73133806299984, 20.974915189000058, 22.21207696400006, 23.447582182999668, 24.678527696999936, 25.93378734099997, 27.18556611699978], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, 'multistart_info': {...}}, {'solution_x': array([4.41166975, 0.97289059]), 'solution_criterion': 1.6040821847466233, 'states': [State(trustregion=Region(center=array([4.70566926, 0.9736037 ]), radius=0.47056692609523276, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.6390079138903415, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.47056692609523276, shift=array([4.70566926, 0.9736037 ])), vector_model=VectorModel(intercepts=array([ 0.07288707, 0.18309385, 0.22476673, 0.25996731, 0.32988729,
+ 0.35819466, 0.41599019, -0.15227637, -0.34109797, -0.37169925,
+ -0.47066338, -0.68560298, -0.28340344, -0.11092285, -0.06597957,
+ -0.07036345, 0.02635592]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.47056692609523276, shift=array([4.70566926, 0.9736037 ])), candidate_index=0, candidate_x=array([4.70566926, 0.9736037 ]), index=0, x=array([4.70566926, 0.9736037 ]), fval=1.6390079138903417, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([4.70566926, 0.9736037 ]), radius=0.47056692609523276, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.492473053118094, linear_terms=array([ 0.107047 , -0.9201738]), square_terms=array([[ 0.06917717, -0.07941803],
+ [-0.07941803, 7.76710116]]), scale=array([0.41702908, 0.27171269]), shift=array([4.70566926, 0.82828731])), vector_model=VectorModel(intercepts=array([ 0.07288707, 0.18309385, 0.22476673, 0.25996731, 0.32988729,
+ 0.35819466, 0.41599019, -0.15227637, -0.34109797, -0.37169925,
+ -0.47066338, -0.68560298, -0.28340344, -0.11092285, -0.06597957,
+ -0.07036345, 0.02635592]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.47056692609523276, shift=array([4.70566926, 0.9736037 ])), candidate_index=13, candidate_x=array([4.28864018, 0.85769906]), index=0, x=array([4.70566926, 0.9736037 ]), fval=1.6390079138903417, rho=-2.666865486673665, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70566926, 0.9736037 ]), radius=0.23528346304761638, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 7, 8, 10, 11, 12, 13]), model=ScalarModel(intercept=1.530544518529208, linear_terms=array([0.16366419, 0.79190679]), square_terms=array([[0.0839977 , 0.35620672],
+ [0.35620672, 2.88305602]]), scale=array([0.20851454, 0.16745542]), shift=array([4.70566926, 0.93254458])), vector_model=VectorModel(intercepts=array([ 0.07288707, 0.18309385, 0.22476673, 0.25996731, 0.32988729,
+ 0.35819466, 0.41599019, -0.15227637, -0.34109797, -0.37169925,
+ -0.47066338, -0.68560298, -0.28340344, -0.11092285, -0.06597957,
+ -0.07036345, 0.02635592]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.47056692609523276, shift=array([4.70566926, 0.9736037 ])), candidate_index=14, candidate_x=array([4.49715472, 0.90723798]), index=0, x=array([4.70566926, 0.9736037 ]), fval=1.6390079138903417, rho=-2.1588885441091272, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 7, 8, 10, 11, 12, 13]), old_indices_discarded=array([1, 4, 5, 6, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70566926, 0.9736037 ]), radius=0.11764173152380819, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 7, 8, 10, 11, 12, 14]), model=ScalarModel(intercept=1.8058690023573885, linear_terms=array([0.09872254, 0.999505 ]), square_terms=array([[0.01598148, 0.09176978],
+ [0.09176978, 1.33557875]]), scale=0.11764173152380819, shift=array([4.70566926, 0.9736037 ])), vector_model=VectorModel(intercepts=array([ 0.07288707, 0.18309385, 0.22476673, 0.25996731, 0.32988729,
+ 0.35819466, 0.41599019, -0.15227637, -0.34109797, -0.37169925,
+ -0.47066338, -0.68560298, -0.28340344, -0.11092285, -0.06597957,
+ -0.07036345, 0.02635592]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.47056692609523276, shift=array([4.70566926, 0.9736037 ])), candidate_index=15, candidate_x=array([4.61557465, 0.89363938]), index=0, x=array([4.70566926, 0.9736037 ]), fval=1.6390079138903417, rho=-2.5859129022462044, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 7, 8, 10, 11, 12, 14]), old_indices_discarded=array([ 1, 4, 5, 6, 9, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70566926, 0.9736037 ]), radius=0.058820865761904095, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 7, 12, 14, 15]), model=ScalarModel(intercept=1.4105176230624716, linear_terms=array([0.01027997, 0.23359302]), square_terms=array([[ 0.00348557, -0.03378164],
+ [-0.03378164, 2.27925639]]), scale=0.058820865761904095, shift=array([4.70566926, 0.9736037 ])), vector_model=VectorModel(intercepts=array([ 0.07288707, 0.18309385, 0.22476673, 0.25996731, 0.32988729,
+ 0.35819466, 0.41599019, -0.15227637, -0.34109797, -0.37169925,
+ -0.47066338, -0.68560298, -0.28340344, -0.11092285, -0.06597957,
+ -0.07036345, 0.02635592]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.47056692609523276, shift=array([4.70566926, 0.9736037 ])), candidate_index=16, candidate_x=array([4.64698105, 0.96673796]), index=16, x=array([4.64698105, 0.96673796]), fval=1.6338056353224137, rho=0.21501331066666685, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 7, 12, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.05908844220887544, relative_step_length=1.0045490055868005, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.64698105, 0.96673796]), radius=0.11764173152380819, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16]), model=ScalarModel(intercept=1.3965777682499785, linear_terms=array([-0.01352403, 0.13524753]), square_terms=array([[2.69139993e-03, 5.41502681e-02],
+ [5.41502681e-02, 7.73767577e+00]]), scale=0.11764173152380819, shift=array([4.64698105, 0.96673796])), vector_model=VectorModel(intercepts=array([ 0.07288707, 0.18309385, 0.22476673, 0.25996731, 0.32988729,
+ 0.35819466, 0.41599019, -0.15227637, -0.34109797, -0.37169925,
+ -0.47066338, -0.68560298, -0.28340344, -0.11092285, -0.06597957,
+ -0.07036345, 0.02635592]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.47056692609523276, shift=array([4.70566926, 0.9736037 ])), candidate_index=17, candidate_x=array([4.76460432, 0.96386305]), index=16, x=array([4.64698105, 0.96673796]), fval=1.6338056353224137, rho=-1.5979696375665045, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 8, 9, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.64698105, 0.96673796]), radius=0.058820865761904095, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 7, 14, 15, 16, 17]), model=ScalarModel(intercept=1.4717023349537506, linear_terms=array([ 0.08706349, -0.10807394]), square_terms=array([[ 0.02620597, -0.09448423],
+ [-0.09448423, 2.2667607 ]]), scale=0.058820865761904095, shift=array([4.64698105, 0.96673796])), vector_model=VectorModel(intercepts=array([ 0.07288707, 0.18309385, 0.22476673, 0.25996731, 0.32988729,
+ 0.35819466, 0.41599019, -0.15227637, -0.34109797, -0.37169925,
+ -0.47066338, -0.68560298, -0.28340344, -0.11092285, -0.06597957,
+ -0.07036345, 0.02635592]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.47056692609523276, shift=array([4.70566926, 0.9736037 ])), candidate_index=18, candidate_x=array([4.58810638, 0.96707929]), index=18, x=array([4.58810638, 0.96707929]), fval=1.6278046306164464, rho=0.08103294434961808, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 7, 14, 15, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.058875663249063084, relative_step_length=1.0009315994664343, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.58810638, 0.96707929]), radius=0.029410432880952048, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 7, 14, 15, 16, 18]), model=ScalarModel(intercept=1.4291838595066357, linear_terms=array([ 0.03752492, -0.03820047]), square_terms=array([[ 0.0076201 , -0.02237745],
+ [-0.02237745, 0.56695435]]), scale=0.029410432880952048, shift=array([4.58810638, 0.96707929])), vector_model=VectorModel(intercepts=array([ 0.07288707, 0.18309385, 0.22476673, 0.25996731, 0.32988729,
+ 0.35819466, 0.41599019, -0.15227637, -0.34109797, -0.37169925,
+ -0.47066338, -0.68560298, -0.28340344, -0.11092285, -0.06597957,
+ -0.07036345, 0.02635592]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.47056692609523276, shift=array([4.70566926, 0.9736037 ])), candidate_index=19, candidate_x=array([4.55864793, 0.96785802]), index=19, x=array([4.55864793, 0.96785802]), fval=1.6239964564991456, rho=0.11206136925459749, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 7, 14, 15, 16, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.02946873701620765, relative_step_length=1.001982430367197, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55864793, 0.96785802]), radius=0.058820865761904095, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 14, 15, 16, 17, 18, 19]), model=ScalarModel(intercept=1.4996938030113813, linear_terms=array([ 0.00556042, -0.16486775]), square_terms=array([[1.92382326e-03, 2.80727972e-02],
+ [2.80727972e-02, 2.21514052e+00]]), scale=0.058820865761904095, shift=array([4.55864793, 0.96785802])), vector_model=VectorModel(intercepts=array([ 0.07288707, 0.18309385, 0.22476673, 0.25996731, 0.32988729,
+ 0.35819466, 0.41599019, -0.15227637, -0.34109797, -0.37169925,
+ -0.47066338, -0.68560298, -0.28340344, -0.11092285, -0.06597957,
+ -0.07036345, 0.02635592]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.47056692609523276, shift=array([4.70566926, 0.9736037 ])), candidate_index=20, candidate_x=array([4.49990481, 0.97296635]), index=20, x=array([4.49990481, 0.97296635]), fval=1.6067575995254133, rho=1.3267755780321275, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 14, 15, 16, 17, 18, 19]), old_indices_discarded=array([10, 13]), step_length=0.05896481776722377, relative_step_length=1.0024472949089591, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.49990481, 0.97296635]), radius=0.11764173152380819, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 14, 15, 16, 18, 19, 20]), model=ScalarModel(intercept=1.4995104360945735, linear_terms=array([-0.01085733, -0.0657724 ]), square_terms=array([[7.49776189e-03, 1.97080849e-01],
+ [1.97080849e-01, 8.88071256e+00]]), scale=0.11764173152380819, shift=array([4.49990481, 0.97296635])), vector_model=VectorModel(intercepts=array([ 0.07288707, 0.18309385, 0.22476673, 0.25996731, 0.32988729,
+ 0.35819466, 0.41599019, -0.15227637, -0.34109797, -0.37169925,
+ -0.47066338, -0.68560298, -0.28340344, -0.11092285, -0.06597957,
+ -0.07036345, 0.02635592]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.47056692609523276, shift=array([4.70566926, 0.9736037 ])), candidate_index=21, candidate_x=array([4.61753611, 0.97122838]), index=20, x=array([4.49990481, 0.97296635]), fval=1.6067575995254133, rho=-1.870644505310413, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 14, 15, 16, 18, 19, 20]), old_indices_discarded=array([ 1, 10, 11, 12, 13, 17]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.49990481, 0.97296635]), radius=0.058820865761904095, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 7, 14, 15, 16, 18, 19, 20, 21]), model=ScalarModel(intercept=1.4447969561223388, linear_terms=array([0.02668056, 0.0144224 ]), square_terms=array([[0.00874209, 0.00227715],
+ [0.00227715, 2.23878271]]), scale=0.058820865761904095, shift=array([4.49990481, 0.97296635])), vector_model=VectorModel(intercepts=array([ 0.07288707, 0.18309385, 0.22476673, 0.25996731, 0.32988729,
+ 0.35819466, 0.41599019, -0.15227637, -0.34109797, -0.37169925,
+ -0.47066338, -0.68560298, -0.28340344, -0.11092285, -0.06597957,
+ -0.07036345, 0.02635592]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.47056692609523276, shift=array([4.70566926, 0.9736037 ])), candidate_index=22, candidate_x=array([4.4410839 , 0.97264979]), index=22, x=array([4.4410839 , 0.97264979]), fval=1.604973510874184, rho=0.0798519025649841, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 7, 14, 15, 16, 18, 19, 20, 21]), old_indices_discarded=array([ 3, 10, 13, 17]), step_length=0.058821763661662356, relative_step_length=1.0000152649871203, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.4410839 , 0.97264979]), radius=0.029410432880952048, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 19, 20, 22]), model=ScalarModel(intercept=1.602208478328355, linear_terms=array([0.00393297, 0.00757983]), square_terms=array([[0.0007409 , 0.01102212],
+ [0.01102212, 0.41731836]]), scale=0.029410432880952048, shift=array([4.4410839 , 0.97264979])), vector_model=VectorModel(intercepts=array([ 0.07288707, 0.18309385, 0.22476673, 0.25996731, 0.32988729,
+ 0.35819466, 0.41599019, -0.15227637, -0.34109797, -0.37169925,
+ -0.47066338, -0.68560298, -0.28340344, -0.11092285, -0.06597957,
+ -0.07036345, 0.02635592]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.47056692609523276, shift=array([4.70566926, 0.9736037 ])), candidate_index=23, candidate_x=array([4.41166975, 0.97289059]), index=23, x=array([4.41166975, 0.97289059]), fval=1.6040821847466233, rho=0.24917368370649054, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 19, 20, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.02941513105367178, relative_step_length=1.0001597451060564, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 24 entries., 'history': {'params': [{'CRRA': 4.705669260952328, 'DiscFac': 0.9736036985151767}, {'CRRA': 4.348419805736947, 'DiscFac': 0.5565746183820434}, {'CRRA': 5.122698341085461, 'DiscFac': 0.9952455070622018}, {'CRRA': 4.288640180819194, 'DiscFac': 1.0042527064713087}, {'CRRA': 5.122698341085461, 'DiscFac': 1.0993927812777562}, {'CRRA': 5.122698341085461, 'DiscFac': 0.7671961303324353}, {'CRRA': 5.122698341085461, 'DiscFac': 0.7025610983806745}, {'CRRA': 4.580743163257176, 'DiscFac': 1.1}, {'CRRA': 5.122698341085461, 'DiscFac': 1.011897177529962}, {'CRRA': 5.122698341085461, 'DiscFac': 1.0934773367869508}, {'CRRA': 4.288640180819194, 'DiscFac': 1.0201676386889809}, {'CRRA': 4.812961771005332, 'DiscFac': 0.5565746183820434}, {'CRRA': 4.939788209869469, 'DiscFac': 1.1}, {'CRRA': 4.288640180819194, 'DiscFac': 0.857699056249198}, {'CRRA': 4.497154720885761, 'DiscFac': 0.9072379817914666}, {'CRRA': 4.615574648093848, 'DiscFac': 0.8936393750333755}, {'CRRA': 4.646981054368028, 'DiscFac': 0.9667379567060097}, {'CRRA': 4.764604315091245, 'DiscFac': 0.9638630454481889}, {'CRRA': 4.588106380558768, 'DiscFac': 0.9670792877335865}, {'CRRA': 4.558647934721004, 'DiscFac': 0.9678580239879953}, {'CRRA': 4.499904809791338, 'DiscFac': 0.9729663512895214}, {'CRRA': 4.6175361067014915, 'DiscFac': 0.9712283831025353}, {'CRRA': 4.441083897973314, 'DiscFac': 0.9726497866598629}, {'CRRA': 4.41166975255344, 'DiscFac': 0.9728905855867018}], 'criterion': [1.6390079138903415, 4.015718277553596, 1.9845234911763256, 1.7766160584712591, 6.747910783998845, 3.613475921409838, 3.7797436371608626, 7.507212460562142, 2.2911072534309, 6.271759430670934, 2.1645488859958806, 3.9152079634746326, 6.985956689331683, 3.6035404962226445, 2.579039548739623, 2.657856939703968, 1.6338056353224137, 1.6569672368755408, 1.6278046306164462, 1.6239964564991458, 1.6067575995254133, 1.6218698633503479, 1.6049735108741838, 1.6040821847466233], 'runtime': [0.0, 1.586177479000071, 1.7946122309999737, 2.004966568999862, 2.247134769999775, 2.469910119999895, 2.7596060769997166, 2.9623845329997494, 3.1731714059997103, 3.55554515599988, 3.812486024000009, 4.016020335000121, 4.243500022999797, 5.687079881000045, 6.939442543000041, 8.20021526399978, 9.451716502999716, 10.713262261999716, 11.968579557999874, 13.200601013999858, 14.450635835999947, 15.687370332999762, 16.921538503999727, 18.303166583999882], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]}}], 'exploration_sample': array([[ 4.24203048, 0.9833812 ],
+ [ 5.825 , 0.95 ],
+ [ 7.596875 , 0.93125 ],
+ [ 4.64375 , 0.6875 ],
+ [ 9.36875 , 0.8375 ],
+ [ 8.1875 , 0.725 ],
+ [10.55 , 0.8 ],
+ [11.73125 , 0.7625 ],
+ [ 7.00625 , 0.6125 ],
+ [15.275 , 0.65 ],
+ [12.9125 , 0.575 ],
+ [17.046875 , 0.63125 ],
+ [ 3.4625 , 0.875 ],
+ [16.45625 , 0.9125 ],
+ [14.09375 , 0.9875 ],
+ [18.81875 , 0.5375 ],
+ [12.321875 , 1.08125 ],
+ [17.6375 , 1.025 ],
+ [ 2.871875 , 0.78125 ],
+ [ 2.28125 , 1.0625 ]]), 'exploration_results': array([ 1.58762926, 2.04247528, 2.9717037 , 3.76994253, 3.80031518,
+ 4.27735638, 4.32695188, 4.78264529, 5.25346612, 5.79528191,
+ 5.94010747, 6.02403907, 6.09730665, 6.10855726, 6.12270544,
+ 6.45799199, 7.01428788, 7.3683214 , 8.72764877, 13.61935456])}}"
diff --git a/content/tables/min/Portfolio_estimate_results.csv b/content/tables/min/Portfolio_estimate_results.csv
new file mode 100644
index 0000000..33b0825
--- /dev/null
+++ b/content/tables/min/Portfolio_estimate_results.csv
@@ -0,0 +1,8433 @@
+CRRA,10.932879562536495
+DiscFac,0.7902625251506934
+time_to_estimate,124.8826515674591
+params,"{'CRRA': 10.932879562536495, 'DiscFac': 0.7902625251506934}"
+criterion,1.313120069801016
+start_criterion,1.8080316873478892
+start_params,"{'CRRA': 10.865980160003074, 'DiscFac': 0.8065707082845225}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 10.93181738096547, 'DiscFac': 0.7904012123192823}, {'CRRA': 9.98513569945267, 'DiscFac': 0.5}, {'CRRA': 11.900624471679874, 'DiscFac': 0.6950450323019065}, {'CRRA': 9.963010290251065, 'DiscFac': 0.7678374491842943}, {'CRRA': 11.801333799766656, 'DiscFac': 1.1}, {'CRRA': 11.567418784043562, 'DiscFac': 0.5}, {'CRRA': 11.900624471679874, 'DiscFac': 0.5149587583222188}, {'CRRA': 9.963010290251065, 'DiscFac': 0.9023157095700898}, {'CRRA': 11.900624471679874, 'DiscFac': 0.9249107259700196}, {'CRRA': 11.605386539875498, 'DiscFac': 1.1}, {'CRRA': 9.963010290251065, 'DiscFac': 1.0761971606112184}, {'CRRA': 10.31019222500428, 'DiscFac': 0.5}, {'CRRA': 10.467150091692616, 'DiscFac': 1.1}, {'CRRA': 10.313766594010541, 'DiscFac': 0.7571697884540697}, {'CRRA': 10.60692056960618, 'DiscFac': 0.7761766081436124}, {'CRRA': 10.658622372642487, 'DiscFac': 0.7829929764198332}, {'CRRA': 11.067998797960243, 'DiscFac': 0.8267347331835817}, {'CRRA': 10.995841933730016, 'DiscFac': 0.7633453309865338}, {'CRRA': 10.897884770662003, 'DiscFac': 0.7861935155400102}, {'CRRA': 10.949895381875248, 'DiscFac': 0.7952194955971845}, {'CRRA': 10.924047725991183, 'DiscFac': 0.7854909988602735}, {'CRRA': 10.92798406235627, 'DiscFac': 0.7929883480042386}, {'CRRA': 10.93258247978467, 'DiscFac': 0.7884078825178001}, {'CRRA': 10.932879562536495, 'DiscFac': 0.7902625251506934}, {'CRRA': 10.935058367807512, 'DiscFac': 0.7897827532100038}, {'CRRA': 10.932052702330445, 'DiscFac': 0.790937793375034}, {'CRRA': 10.932659761230868, 'DiscFac': 0.7907489494817389}, {'CRRA': 10.932794571660883, 'DiscFac': 0.7900095293760058}, {'CRRA': 10.933009962334221, 'DiscFac': 0.7902341795956679}, {'CRRA': 10.9328741446985, 'DiscFac': 0.7903290273421283}, {'CRRA': 10.93287979209049, 'DiscFac': 0.7902291646813695}, {'CRRA': 10.932883290002767, 'DiscFac': 0.790246157191359}, {'CRRA': 10.932879473145423, 'DiscFac': 0.7902708741223307}, {'CRRA': 10.932879183756699, 'DiscFac': 0.7902582421648114}, {'CRRA': 10.932879630300034, 'DiscFac': 0.7902604379193853}, {'CRRA': 10.932879156056119, 'DiscFac': 0.7902634851829811}, {'CRRA': 10.93288011000692, 'DiscFac': 0.7902615785516318}, {'CRRA': 10.93288042424811, 'DiscFac': 0.7902631657084254}, {'CRRA': 10.932879002929695, 'DiscFac': 0.7902616321072823}, {'CRRA': 10.932879465532864, 'DiscFac': 0.7902615253846906}, {'CRRA': 10.932879604298977, 'DiscFac': 0.7902615034543894}, {'CRRA': 10.932879575201603, 'DiscFac': 0.7902615078820546}, {'CRRA': 10.932879627159437, 'DiscFac': 0.7902615254458845}, {'CRRA': 10.932879617531512, 'DiscFac': 0.790261524412203}, {'CRRA': 10.932879213836403, 'DiscFac': 0.7902623704973305}, {'CRRA': 10.93288046989004, 'DiscFac': 0.7902620085506273}, {'CRRA': 10.932880560114189, 'DiscFac': 0.7902625947117828}, {'CRRA': 10.932878574355414, 'DiscFac': 0.7902626784417498}, {'CRRA': 10.932879665832454, 'DiscFac': 0.7902615305000286}, {'CRRA': 10.932879741015936, 'DiscFac': 0.7902615352925063}, {'CRRA': 10.93287911896657, 'DiscFac': 0.7902628841283909}, {'CRRA': 10.932879962808926, 'DiscFac': 0.7902616076476876}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}], 'criterion': [1.3458889917053987, 3.5013975368914125, 2.0544870399045534, 2.0583205370431608, 7.928518636715973, 3.0949777210489353, 2.977979450663434, 1.8547293431252745, 2.560520833667242, 7.980255465003957, 7.257800910691316, 3.370240742037367, 8.442262493714498, 1.9912592716428847, 2.019089156334591, 2.0178028319832544, 1.6938243831412112, 1.9001703519656736, 1.8500371991769882, 1.9043496300348661, 1.5648734488875522, 2.0220891625493262, 2.056746761618319, 1.313120069801016, 1.7055671159469066, 1.714426066440765, 1.7148655082032882, 1.734365060451327, 1.5044032689299713, 1.7193758311250589, 2.076996512359495, 1.666386952903814, 2.21236621642915, 1.5794755638266007, 1.609146514447562, 1.7496090467186187, 1.6267163413494736, 1.860478341277755, 1.782403946270015, 1.8384140470726615, 1.5168006469430917, 1.5410395855713777, 1.8662426102995835, 1.85679196644806, 1.8198121049780793, 1.374450247207118, 1.945431264557298, 1.958406017485213, 1.4304472182131032, 1.7349836163276422, 1.9915415597380837, 1.8523505252482946, 1.58009836942667, 1.907909385987258, 1.499074618283285, 1.7025854850481137, 2.042819605773915, 1.4772770470272307, 1.611390279961764, 1.8252669440693867, 1.7231998087093052, 1.747514679218656, 1.5421913563668752], 'runtime': [0.0, 1.5991356289996475, 1.8317183999997724, 2.050244288999693, 2.272850926999581, 2.50637046599968, 2.733808535999742, 2.9618447449997802, 3.1910537629996725, 3.4207921529996383, 3.654244985999867, 3.8726287939998656, 4.120069384999624, 5.564880780999829, 6.840542034999999, 8.135771727999781, 9.385228970999833, 10.610098139999991, 11.975990930999615, 13.230633034999755, 14.464096289999816, 15.70222302000002, 16.938027464999777, 18.19777668400002, 19.47115740399977, 20.724954730999798, 21.978858447999755, 23.230249808999815, 24.47645916700003, 25.856501904999732, 27.091305654999815, 28.35261020500002, 29.60132561499995, 30.844120104000012, 32.07390429299994, 33.31133374199999, 34.57795225399968, 35.82488827199995, 37.0846473079996, 38.346974862000025, 39.73881639299998, 40.986991440999645, 42.22503214599965, 43.47298248499965, 44.706735875999584, 45.99841694499992, 47.26094472099976, 48.60670753999966, 49.987001859999964, 51.258681004999744, 52.555209741, 54.04953956099962, 55.44855433099974, 56.7507529049999, 58.06916631499962, 59.43368076299976, 60.77706515999989, 62.07723423199968, 63.34290765199967, 64.670839763, 65.9373278019998, 67.22453074699979, 68.6551041509997], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]}"
+convergence_report,"{'one_step': {'relative_criterion_change': 0.05485542570812735, 'relative_params_change': 0.015167018205836458, 'absolute_criterion_change': 0.07203176043482062, 'absolute_params_change': 0.15713861513387023}, 'five_steps': {'relative_criterion_change': 0.05485542570812735, 'relative_params_change': 0.015167018205836458, 'absolute_criterion_change': 0.07203176043482062, 'absolute_params_change': 0.15713861513387023}}"
+multistart_info,"{'start_parameters': [{'CRRA': 10.865980160003074, 'DiscFac': 0.8065707082845226}, {'CRRA': 10.93181738096547, 'DiscFac': 0.7904012123192823}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute params change smaller than tolerance., Minimize with 2 free parameters terminated.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 0.02496 0.02496
+relative_params_change 0.0002006 0.0002006
+absolute_criterion_change 0.03277 0.03277
+absolute_params_change 0.001071 0.001071
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.)], 'exploration_sample': [{'CRRA': 10.865980160003074, 'DiscFac': 0.8065707082845225}, {'CRRA': 10.549999999999999, 'DiscFac': 0.8}, {'CRRA': 11.73125, 'DiscFac': 0.7625000000000001}, {'CRRA': 9.368749999999999, 'DiscFac': 0.8375}, {'CRRA': 7.596874999999999, 'DiscFac': 0.9312500000000001}, {'CRRA': 12.9125, 'DiscFac': 0.575}, {'CRRA': 15.274999999999999, 'DiscFac': 0.65}, {'CRRA': 17.046875, 'DiscFac': 0.6312500000000001}, {'CRRA': 16.45625, 'DiscFac': 0.9125000000000001}, {'CRRA': 18.81875, 'DiscFac': 0.5375}, {'CRRA': 8.1875, 'DiscFac': 0.7250000000000001}, {'CRRA': 14.093749999999998, 'DiscFac': 0.9875}, {'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 17.6375, 'DiscFac': 1.0250000000000001}, {'CRRA': 7.00625, 'DiscFac': 0.6125}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 2.871875, 'DiscFac': 0.78125}, {'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 2.28125, 'DiscFac': 1.0625}], 'exploration_results': array([ 1.66924823, 1.74531296, 2.10648864, 2.17581064,
+ 2.66803924, 2.70500778, 2.87740953, 3.0406658 ,
+ 3.37839016, 3.53882151, 3.99992851, 4.37946561,
+ 4.47403011, 4.90296965, 6.27675034, 21.17347996,
+ 25.72759101, 28.93912422, 124.53209372])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=1.093181738096547, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.3458889917053987, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=0, candidate_x=array([10.93181738, 0.79040121]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=1.093181738096547, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.578420391908886, linear_terms=array([0.14891192, 1.31348888]), square_terms=array([[0.1449613 , 0.39528504],
+ [0.39528504, 7.4338881 ]]), scale=array([0.96880709, 0.3 ]), shift=array([10.93181738, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=13, candidate_x=array([10.31376659, 0.75716979]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-6.26331478829806, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.5465908690482735, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 4, 5, 9, 11, 12, 13]), model=ScalarModel(intercept=1.4934384174300563, linear_terms=array([0.09110483, 0.97391029]), square_terms=array([[0.07683632, 0.49828606],
+ [0.49828606, 8.05555662]]), scale=array([0.48440355, 0.3 ]), shift=array([10.93181738, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=14, candidate_x=array([10.60692057, 0.77617661]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-15.95841495890369, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 4, 5, 9, 11, 12, 13]), old_indices_discarded=array([ 1, 6, 7, 8, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.27329543452413674, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 4, 5, 9, 11, 12, 13, 14]), model=ScalarModel(intercept=1.4377009351183347, linear_terms=array([0.05563635, 0.60920727]), square_terms=array([[0.05625026, 0.42747588],
+ [0.42747588, 6.26064239]]), scale=0.27329543452413674, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=15, candidate_x=array([10.65862237, 0.78299298]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-22.291786361941437, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 4, 5, 9, 11, 12, 13, 14]), old_indices_discarded=array([ 1, 2, 6, 7, 8, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.13664771726206837, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 13, 14, 15]), model=ScalarModel(intercept=1.4837537011748891, linear_terms=array([-0.05367988, -1.03198654]), square_terms=array([[0.0114258 , 0.04908533],
+ [0.04908533, 3.6679078 ]]), scale=0.13664771726206837, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=16, candidate_x=array([11.0679988 , 0.82673473]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-1.937765683248982, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 13, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.06832385863103418, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 14, 15, 16]), model=ScalarModel(intercept=1.3439913923068907, linear_terms=array([-0.10803621, 0.81954671]), square_terms=array([[ 0.03971665, -0.15809735],
+ [-0.15809735, 1.68670716]]), scale=0.06832385863103418, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=17, candidate_x=array([10.99584193, 0.76334533]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-2.549330157587601, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.03416192931551709, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17]), model=ScalarModel(intercept=1.3458889917053982, linear_terms=array([ 0.0608538 , -0.02245367]), square_terms=array([[ 0.02809653, -0.11087423],
+ [-0.11087423, 0.66491919]]), scale=0.03416192931551709, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=18, candidate_x=array([10.89788477, 0.78619352]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-9.632103264169317, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.017080964657758546, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 18]), model=ScalarModel(intercept=1.3458889917053993, linear_terms=array([-0.13137314, -0.39410754]), square_terms=array([[0.02757962, 0.13607199],
+ [0.13607199, 0.82630592]]), scale=0.017080964657758546, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=19, candidate_x=array([10.94989538, 0.7952195 ]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-3.462957753472434, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.008540482328879273, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 18, 19]), model=ScalarModel(intercept=1.3458889917053996, linear_terms=array([-0.35754501, 2.15661366]), square_terms=array([[ 0.16785065, -0.92396784],
+ [-0.92396784, 5.1900445 ]]), scale=0.008540482328879273, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=20, candidate_x=array([10.92404773, 0.785491 ]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-0.46526208667632196, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.0042702411644396365, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 19, 20]), model=ScalarModel(intercept=1.3458889917053993, linear_terms=array([ 0.25557349, -0.55134151]), square_terms=array([[ 0.08776588, -0.21583066],
+ [-0.21583066, 0.53896107]]), scale=0.0042702411644396365, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=21, candidate_x=array([10.92798406, 0.79298835]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-2.1687265198246086, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.0021351205822198183, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 20, 21]), model=ScalarModel(intercept=1.3458889917053984, linear_terms=array([-0.17370195, 0.20138857]), square_terms=array([[ 0.0275573 , -0.025045 ],
+ [-0.025045 , 0.02917958]]), scale=0.0021351205822198183, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=22, candidate_x=array([10.93258248, 0.78840788]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-3.1260969646257797, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.0010675602911099091, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 21, 22]), model=ScalarModel(intercept=1.345888991705398, linear_terms=array([-0.34398925, -0.28030349]), square_terms=array([[0.28335504, 0.35903218],
+ [0.35903218, 0.48284435]]), scale=0.0010675602911099091, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=23, candidate_x=array([10.93287956, 0.79026253]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=0.15760282629103436, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0010711973770310625, relative_step_length=1.003406913830948, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=0.0021351205822198183, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 20, 21, 22, 23]), model=ScalarModel(intercept=1.5210962294884438, linear_terms=array([-0.04387406, 0.04604552]), square_terms=array([[ 0.02819276, -0.03391789],
+ [-0.03391789, 0.04355014]]), scale=0.0021351205822198183, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=24, candidate_x=array([10.93505837, 0.78978275]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-12.434023643552575, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 20, 21, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=0.0010675602911099091, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 22, 23, 24]), model=ScalarModel(intercept=1.369833584189443, linear_terms=array([ 0.0744195, -0.2394611]), square_terms=array([[ 0.00535681, -0.01555128],
+ [-0.01555128, 0.19848642]]), scale=0.0010675602911099091, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=25, candidate_x=array([10.9320527 , 0.79093779]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-2.505424534030739, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 22, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=0.0005337801455549546, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 22, 23, 24, 25]), model=ScalarModel(intercept=1.5161584482121029, linear_terms=array([ 0.01624856, -0.07192904]), square_terms=array([[0.00064543, 0.00043128],
+ [0.00043128, 0.03011791]]), scale=0.0005337801455549546, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=26, candidate_x=array([10.93265976, 0.79074895]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-6.7136422267632225, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 22, 23, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=0.0002668900727774773, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 23, 25, 26]), model=ScalarModel(intercept=1.3394981413224147, linear_terms=array([0.04628427, 0.16322606]), square_terms=array([[ 0.01007514, -0.00071297],
+ [-0.00071297, 0.02561863]]), scale=0.0002668900727774773, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=27, candidate_x=array([10.93279457, 0.79000953]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-2.6718277158994708, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 23, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=0.00013344503638873864, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 26, 27]), model=ScalarModel(intercept=1.3131200698010168, linear_terms=array([-0.3180517 , -0.05793159]), square_terms=array([[0.19286012, 0.04111232],
+ [0.04111232, 0.01117805]]), scale=0.00013344503638873864, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=28, candidate_x=array([10.93300996, 0.79023418]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-0.8909721967707089, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=6.672251819436932e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 27, 28]), model=ScalarModel(intercept=1.3131200698010157, linear_terms=array([ 0.03703733, -0.09483085]), square_terms=array([[ 0.02890229, -0.02508008],
+ [-0.02508008, 0.02873033]]), scale=6.672251819436932e-05, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=29, candidate_x=array([10.93287414, 0.79032903]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-5.007489862080094, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=3.336125909718466e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 28, 29]), model=ScalarModel(intercept=1.3131200698010168, linear_terms=array([0.06225276, 0.15377724]), square_terms=array([[0.02179103, 0.03302971],
+ [0.03302971, 0.06051494]]), scale=3.336125909718466e-05, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=30, candidate_x=array([10.93287979, 0.79022916]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-6.194465468462012, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1.668062954859233e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 29, 30]), model=ScalarModel(intercept=1.3131200698010133, linear_terms=array([-4.48468239, -0.29100783]), square_terms=array([[28.82982817, 1.99741271],
+ [ 1.99741271, 0.14792491]]), scale=1.668062954859233e-05, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=31, candidate_x=array([10.93288329, 0.79024616]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-0.9717036530476211, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=8.340314774296165e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 30, 31]), model=ScalarModel(intercept=1.3131200698010161, linear_terms=array([-0.06790314, -0.13054157]), square_terms=array([[1.40499078, 0.08394391],
+ [0.08394391, 0.03153909]]), scale=8.340314774296165e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=32, candidate_x=array([10.93287947, 0.79027087]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-7.821781123666908, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=4.1701573871480825e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 31, 32]), model=ScalarModel(intercept=1.3131200698010155, linear_terms=array([1.56386222, 0.29859846]), square_terms=array([[5.65675375, 1.02132498],
+ [1.02132498, 0.1883508 ]]), scale=4.1701573871480825e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=33, candidate_x=array([10.93287918, 0.79025824]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-1.15419640927803, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 31, 32]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=2.0850786935740413e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 32, 33]), model=ScalarModel(intercept=1.313120069801016, linear_terms=array([-1.50409802, 0.12482309]), square_terms=array([[ 2.64362560e+01, -6.41713874e-01],
+ [-6.41713874e-01, 2.50102322e-02]]), scale=2.0850786935740413e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=34, candidate_x=array([10.93287963, 0.79026044]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-2.3407718972837506, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 32, 33]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1.0425393467870206e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 33, 34]), model=ScalarModel(intercept=1.3131200698010164, linear_terms=array([ 0.76177466, -0.07146838]), square_terms=array([[ 1.584454 , -0.13548613],
+ [-0.13548613, 0.04113995]]), scale=1.0425393467870206e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=35, candidate_x=array([10.93287916, 0.79026349]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-2.475776174577993, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 33, 34]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 33, 34, 35]), model=ScalarModel(intercept=1.4857371898102218, linear_terms=array([-0.24807612, 0.03429466]), square_terms=array([[0.47720114, 0.04133078],
+ [0.04133078, 0.01274017]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=36, candidate_x=array([10.93288011, 0.79026158]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-2.788154753912562, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 33, 34, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 33, 34, 35, 36]), model=ScalarModel(intercept=1.517236446481693, linear_terms=array([-0.15164444, 0.01637071]), square_terms=array([[ 0.19505026, -0.03220236],
+ [-0.03220236, 0.0128953 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=37, candidate_x=array([10.93288042, 0.79026317]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-8.702070657512285, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 33, 34, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 33, 34, 35, 36, 37]), model=ScalarModel(intercept=1.57422740541263, linear_terms=array([0.06573596, 0.03343249]), square_terms=array([[ 0.11485781, -0.02093627],
+ [-0.02093627, 0.01453458]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=38, candidate_x=array([10.932879 , 0.79026163]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-8.800341902078221, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 33, 34, 35, 36, 37]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 33, 34, 35, 36, 37, 38]), model=ScalarModel(intercept=1.6019203557997321, linear_terms=array([-0.01844312, 0.04730531]), square_terms=array([[ 0.22516243, -0.0435608 ],
+ [-0.0435608 , 0.01787496]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=39, candidate_x=array([10.93287947, 0.79026153]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-13.219230410118247, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 33, 34, 35, 36, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 33, 34, 35, 36, 37, 38, 39]), model=ScalarModel(intercept=1.6259036041677064, linear_terms=array([-0.05981542, 0.05301504]), square_terms=array([[ 0.25444391, -0.04684312],
+ [-0.04684312, 0.01813331]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=40, candidate_x=array([10.9328796, 0.7902615]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-4.528414958794048, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 33, 34, 35, 36, 37, 38, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 33, 34, 35, 36, 37, 38, 39, 40]), model=ScalarModel(intercept=1.6057501860150625, linear_terms=array([-0.0532196, 0.0487717]), square_terms=array([[ 0.25999131, -0.04872255],
+ [-0.04872255, 0.01868625]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=41, candidate_x=array([10.93287958, 0.79026151]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-5.702154494524176, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 33, 34, 35, 36, 37, 38, 39, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.6018240193184852, linear_terms=array([-0.02378513, 0.05708336]), square_terms=array([[ 0.29444838, -0.00233053],
+ [-0.00233053, 0.01939056]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=42, candidate_x=array([10.93287963, 0.79026153]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-11.487815465989993, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([33]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 35, 36, 37, 38, 39, 40, 41, 42]), model=ScalarModel(intercept=1.6243485111120757, linear_terms=array([-0.02810649, 0.05971906]), square_terms=array([[ 0.29737503, -0.00988441],
+ [-0.00988441, 0.02529909]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=43, candidate_x=array([10.93287962, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-11.410424660145699, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 35, 36, 37, 38, 39, 40, 41, 42]), old_indices_discarded=array([33, 34]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 35, 37, 38, 39, 40, 41, 42, 43]), model=ScalarModel(intercept=1.6443204278158488, linear_terms=array([0.05385465, 0.0117093 ]), square_terms=array([[0.14442284, 0.02259497],
+ [0.02259497, 0.02476783]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=44, candidate_x=array([10.93287921, 0.79026237]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-49.21728929801738, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 35, 37, 38, 39, 40, 41, 42, 43]), old_indices_discarded=array([33, 34, 36]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 35, 38, 39, 40, 41, 42, 43, 44]), model=ScalarModel(intercept=1.5565507357227995, linear_terms=array([-0.26618018, -0.05220279]), square_terms=array([[0.33866815, 0.07958103],
+ [0.07958103, 0.03872501]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=45, candidate_x=array([10.93288047, 0.79026201]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-0.5717057116430284, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 35, 38, 39, 40, 41, 42, 43, 44]), old_indices_discarded=array([33, 34, 36, 37]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 35, 39, 40, 41, 42, 43, 44, 45]), model=ScalarModel(intercept=1.559456244590351, linear_terms=array([-0.36358674, -0.08893948]), square_terms=array([[0.11050714, 0.01112043],
+ [0.01112043, 0.02096709]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=46, candidate_x=array([10.93288056, 0.79026259]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-2.01962069824313, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 35, 39, 40, 41, 42, 43, 44, 45]), old_indices_discarded=array([33, 34, 36, 37, 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 35, 39, 40, 41, 42, 43, 44, 46]), model=ScalarModel(intercept=1.6660179525819816, linear_terms=array([0.13065068, 0.03372412]), square_terms=array([[0.085621 , 0.04261103],
+ [0.04261103, 0.03472074]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=47, candidate_x=array([10.93287857, 0.79026268]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-7.317897504266242, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 35, 39, 40, 41, 42, 43, 44, 46]), old_indices_discarded=array([33, 34, 36, 37, 38, 45]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 39, 40, 41, 42, 43, 44, 46, 47]), model=ScalarModel(intercept=1.6922585308061082, linear_terms=array([0.03333883, 0.07393528]), square_terms=array([[0.10317645, 0.02845643],
+ [0.02845643, 0.09306488]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=48, candidate_x=array([10.93287967, 0.79026153]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-4.438606139713224, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 39, 40, 41, 42, 43, 44, 46, 47]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 45]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 39, 41, 42, 43, 44, 46, 47, 48]), model=ScalarModel(intercept=1.6901067692656, linear_terms=array([0.02528777, 0.0593735 ]), square_terms=array([[0.09961485, 0.04514218],
+ [0.04514218, 0.0590593 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=49, candidate_x=array([10.93287974, 0.79026154]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-13.302580193796775, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 39, 41, 42, 43, 44, 46, 47, 48]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 40, 45]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 39, 42, 43, 44, 46, 47, 48, 49]), model=ScalarModel(intercept=1.6904849068902246, linear_terms=array([0.02256157, 0.0044972 ]), square_terms=array([[0.10240727, 0.06368978],
+ [0.06368978, 0.06617034]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=50, candidate_x=array([10.93287912, 0.79026288]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-161.65896670611443, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 39, 42, 43, 44, 46, 47, 48, 49]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 40, 41, 45]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 39, 42, 43, 44, 46, 47, 48, 50]), model=ScalarModel(intercept=1.7393390871878376, linear_terms=array([-0.0178234, 0.0603962]), square_terms=array([[0.11769997, 0.04725408],
+ [0.04725408, 0.05129806]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=51, candidate_x=array([10.93287996, 0.79026161]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-11.031371910072169, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 39, 42, 43, 44, 46, 47, 48, 50]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 40, 41, 45, 49]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=52, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-6.278012112549348, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=53, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-13.986509527807948, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=54, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-4.372733324739296, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52, 53]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=55, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-9.158304617898601, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52, 53, 54]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=56, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-17.158932137117066, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52, 53, 54, 55]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=57, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-3.8601620162788604, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52, 53, 54, 55, 56]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=58, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-7.013843427826989, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52, 53, 54, 55, 56, 57]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=59, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-12.043167120958651, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52, 53, 54, 55, 56, 57,
+ 58]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=60, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-9.643051782063015, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52, 53, 54, 55, 56, 57,
+ 58, 59]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=61, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-10.214817546497091, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52, 53, 54, 55, 56, 57,
+ 58, 59, 60]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=62, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-5.386626230349772, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52, 53, 54, 55, 56, 57,
+ 58, 59, 60, 61]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 63 entries., 'multistart_info': {'start_parameters': [array([10.86598016, 0.80657071]), array([10.93181738, 0.79040121])], 'local_optima': [{'solution_x': array([11.08997132, 0.78642526]), 'solution_criterion': 1.3851518302358365, 'states': [State(trustregion=Region(center=array([10.86598016, 0.80657071]), radius=1.0865980160003075, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.60570154023694, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=0, candidate_x=array([10.86598016, 0.80657071]), index=0, x=array([10.86598016, 0.80657071]), fval=1.60570154023694, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([10.86598016, 0.80657071]), radius=1.0865980160003075, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=2.012005950397412, linear_terms=array([-2.67853742, 6.96363439]), square_terms=array([[ 5.60753851, -9.4803146 ],
+ [-9.4803146 , 23.14691332]]), scale=array([0.96297242, 0.3 ]), shift=array([10.86598016, 0.8 ])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=13, candidate_x=array([10.76906812, 0.69738089]), index=0, x=array([10.86598016, 0.80657071]), fval=1.60570154023694, rho=-0.6071867351564685, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.86598016, 0.80657071]), radius=0.5432990080001537, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 4, 5, 7, 9, 11, 12, 13]), model=ScalarModel(intercept=1.312730166786861, linear_terms=array([-0.08049745, 2.47429902]), square_terms=array([[ 0.97350115, -2.91272547],
+ [-2.91272547, 19.84662536]]), scale=array([0.48148621, 0.3 ]), shift=array([10.86598016, 0.8 ])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=14, candidate_x=array([10.61675167, 0.7398085 ]), index=14, x=array([10.61675167, 0.7398085 ]), fval=1.5725989416315342, rho=0.1156062162695889, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 4, 5, 7, 9, 11, 12, 13]), old_indices_discarded=array([ 1, 2, 6, 8, 10]), step_length=0.2580155700813786, relative_step_length=0.4749052847181079, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.61675167, 0.7398085 ]), radius=0.5432990080001537, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 10, 11, 12, 13, 14]), model=ScalarModel(intercept=1.7060072252219536, linear_terms=array([-0.6654565 , 4.45401626]), square_terms=array([[ 0.47959634, -3.41408907],
+ [-3.41408907, 26.52608177]]), scale=array([0.48148621, 0.3 ]), shift=array([10.61675167, 0.8 ])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=15, candidate_x=array([11.09823788, 0.78823881]), index=15, x=array([11.09823788, 0.78823881]), fval=1.5036097957557228, rho=0.7993173221785217, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 10, 11, 12, 13, 14]), old_indices_discarded=array([2, 4, 5, 6, 8, 9]), step_length=0.48391576236244993, relative_step_length=0.8906987777204132, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([11.09823788, 0.78823881]), radius=1.0865980160003075, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 5, 6, 8, 9, 11, 12, 14, 15]), model=ScalarModel(intercept=1.7439210915386285, linear_terms=array([-2.89573159, 5.42120858]), square_terms=array([[ 12.98144217, -12.32728654],
+ [-12.32728654, 17.37030385]]), scale=array([0.96297242, 0.3 ]), shift=array([11.09823788, 0.8 ])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=16, candidate_x=array([10.88176692, 0.65851171]), index=15, x=array([11.09823788, 0.78823881]), fval=1.5036097957557228, rho=-1.016878706995413, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 5, 6, 8, 9, 11, 12, 14, 15]), old_indices_discarded=array([ 0, 1, 2, 3, 7, 10, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([11.09823788, 0.78823881]), radius=0.5432990080001537, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 9, 13, 14, 15, 16]), model=ScalarModel(intercept=1.557306110651818, linear_terms=array([0.17038603, 0.24819622]), square_terms=array([[0.24274846, 0.95604815],
+ [0.95604815, 6.61926631]]), scale=array([0.48148621, 0.3 ]), shift=array([11.09823788, 0.8 ])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=17, candidate_x=array([10.61675167, 0.83208144]), index=15, x=array([11.09823788, 0.78823881]), fval=1.5036097957557228, rho=-3.2368640596323464, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 9, 13, 14, 15, 16]), old_indices_discarded=array([ 1, 3, 6, 7, 8, 10, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([11.09823788, 0.78823881]), radius=0.27164950400007687, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 5, 9, 13, 14, 15, 16, 17]), model=ScalarModel(intercept=1.568739289295137, linear_terms=array([0.07173661, 0.19417076]), square_terms=array([[0.19072902, 0.7147127 ],
+ [0.7147127 , 4.60482419]]), scale=0.27164950400007687, shift=array([11.09823788, 0.78823881])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=18, candidate_x=array([10.9566258 , 0.79876377]), index=15, x=array([11.09823788, 0.78823881]), fval=1.5036097957557228, rho=-41.50556163366547, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 5, 9, 13, 14, 15, 16, 17]), old_indices_discarded=array([ 1, 2, 3, 6, 7, 8, 10, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([11.09823788, 0.78823881]), radius=0.13582475200003843, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 5, 9, 13, 14, 15, 16, 17, 18]), model=ScalarModel(intercept=1.5730858395002656, linear_terms=array([0.0197939 , 0.02070833]), square_terms=array([[0.05420778, 0.19048857],
+ [0.19048857, 1.14327233]]), scale=0.13582475200003843, shift=array([11.09823788, 0.78823881])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=19, candidate_x=array([10.96397038, 0.80874741]), index=15, x=array([11.09823788, 0.78823881]), fval=1.5036097957557228, rho=-91.28624833781697, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 5, 9, 13, 14, 15, 16, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([11.09823788, 0.78823881]), radius=0.06791237600001922, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 15, 16, 18, 19]), model=ScalarModel(intercept=1.6166183365461033, linear_terms=array([-0.03312745, 0.02079503]), square_terms=array([[0.03282489, 0.03631815],
+ [0.03631815, 0.10700277]]), scale=0.06791237600001922, shift=array([11.09823788, 0.78823881])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=20, candidate_x=array([11.15986206, 0.75962052]), index=15, x=array([11.09823788, 0.78823881]), fval=1.5036097957557228, rho=-5.751836137267117, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 15, 16, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([11.09823788, 0.78823881]), radius=0.03395618800000961, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([15, 18, 19, 20]), model=ScalarModel(intercept=1.5922975311727696, linear_terms=array([-0.00443071, 0.18517255]), square_terms=array([[0.12342037, 0.51867886],
+ [0.51867886, 2.24348617]]), scale=0.03395618800000961, shift=array([11.09823788, 0.78823881])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=21, candidate_x=array([11.13074646, 0.77811337]), index=15, x=array([11.09823788, 0.78823881]), fval=1.5036097957557228, rho=-12.703857404141978, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([15, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([11.09823788, 0.78823881]), radius=0.016978094000004804, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([15, 20, 21]), model=ScalarModel(intercept=1.503609795755723, linear_terms=array([0.57816192, 1.23965064]), square_terms=array([[0.8933243 , 1.69700782],
+ [1.69700782, 3.28017824]]), scale=0.016978094000004804, shift=array([11.09823788, 0.78823881])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=22, candidate_x=array([11.11067398, 0.77556785]), index=15, x=array([11.09823788, 0.78823881]), fval=1.5036097957557228, rho=-0.40259012696691143, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([15, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([11.09823788, 0.78823881]), radius=0.008489047000002402, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([15, 21, 22]), model=ScalarModel(intercept=1.5036097957557222, linear_terms=array([0.11727312, 0.06822205]), square_terms=array([[0.04630344, 0.01610138],
+ [0.01610138, 0.02401498]]), scale=0.008489047000002402, shift=array([11.09823788, 0.78823881])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=23, candidate_x=array([11.08988975, 0.78669845]), index=23, x=array([11.08988975, 0.78669845]), fval=1.4683267814443777, rho=0.3457509136648504, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([15, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.008489047000001648, relative_step_length=0.9999999999999111, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([11.08988975, 0.78669845]), radius=0.016978094000004804, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([15, 20, 21, 22, 23]), model=ScalarModel(intercept=1.4796252720029304, linear_terms=array([0.21929803, 0.44001239]), square_terms=array([[0.0846051 , 0.14062643],
+ [0.14062643, 0.26814978]]), scale=0.016978094000004804, shift=array([11.08988975, 0.78669845])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=24, candidate_x=array([11.09095832, 0.76975402]), index=23, x=array([11.08988975, 0.78669845]), fval=1.4683267814443777, rho=-0.48410314085940204, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([15, 20, 21, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([11.08988975, 0.78669845]), radius=0.008489047000002402, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([15, 21, 22, 23, 24]), model=ScalarModel(intercept=1.4104653304175414, linear_terms=array([0.09962719, 0.00024473]), square_terms=array([[ 0.00885492, -0.00306677],
+ [-0.00306677, 0.0598029 ]]), scale=0.008489047000002402, shift=array([11.08988975, 0.78669845])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=25, candidate_x=array([11.08140247, 0.7865119 ]), index=23, x=array([11.08988975, 0.78669845]), fval=1.4683267814443777, rho=-0.2728962840636467, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([15, 21, 22, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([11.08988975, 0.78669845]), radius=0.004244523500001201, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([15, 23, 24, 25]), model=ScalarModel(intercept=1.4670240737640365, linear_terms=array([-0.00102832, 0.01251112]), square_terms=array([[ 0.00464744, -0.00344607],
+ [-0.00344607, 0.02466967]]), scale=0.004244523500001201, shift=array([11.08988975, 0.78669845])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=26, candidate_x=array([11.08915686, 0.78444348]), index=23, x=array([11.08988975, 0.78669845]), fval=1.4683267814443777, rho=-57.35879915743724, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([15, 23, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([11.08988975, 0.78669845]), radius=0.0021222617500006005, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([15, 23, 25, 26]), model=ScalarModel(intercept=1.47186497521188, linear_terms=array([ 0.00374063, -0.03785401]), square_terms=array([[ 0.00384271, -0.02860211],
+ [-0.02860211, 0.29106429]]), scale=0.0021222617500006005, shift=array([11.08988975, 0.78669845])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=27, candidate_x=array([11.08984693, 0.78697025]), index=23, x=array([11.08988975, 0.78669845]), fval=1.4683267814443777, rho=-225.96597572999758, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([15, 23, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([11.08988975, 0.78669845]), radius=0.0010611308750003003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 26, 27]), model=ScalarModel(intercept=1.4683267814443781, linear_terms=array([-2.59761845, 0.80058814]), square_terms=array([[ 36.36374183, -10.7849313 ],
+ [-10.7849313 , 3.21034205]]), scale=0.0010611308750003003, shift=array([11.08988975, 0.78669845])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=28, candidate_x=array([11.08965803, 0.78566118]), index=23, x=array([11.08988975, 0.78669845]), fval=1.4683267814443777, rho=-1.1204426683076343, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([11.08988975, 0.78669845]), radius=0.0005305654375001501, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 26, 27, 28]), model=ScalarModel(intercept=1.6024888264541408, linear_terms=array([-0.79209944, 0.25560868]), square_terms=array([[ 3.92123701, -1.10832244],
+ [-1.10832244, 0.31522467]]), scale=0.0005305654375001501, shift=array([11.08988975, 0.78669845])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=29, candidate_x=array([11.08984502, 0.78615984]), index=23, x=array([11.08988975, 0.78669845]), fval=1.4683267814443777, rho=-3.0825781724491543, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 26, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([11.08988975, 0.78669845]), radius=0.00026528271875007507, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 27, 28, 29]), model=ScalarModel(intercept=1.7064104189625795, linear_terms=array([-0.1509783 , 0.07350743]), square_terms=array([[ 0.33279773, -0.03210372],
+ [-0.03210372, 0.01109421]]), scale=0.00026528271875007507, shift=array([11.08988975, 0.78669845])), vector_model=VectorModel(intercepts=array([ 9.14475173e-02, 1.43712580e-01, 1.28348065e-01, 2.03001159e-01,
+ 2.98228345e-01, 2.77177265e-01, 2.14543405e-01, -2.49514916e-01,
+ -3.73541087e-01, -4.12281730e-01, -6.11962785e-01, -7.28360979e-01,
+ -1.28618964e-01, -1.70198940e-04, 3.95789503e-02, 1.02427570e-01,
+ 4.27882970e-02]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0865980160003075, shift=array([10.86598016, 0.80657071])), candidate_index=30, candidate_x=array([11.08997132, 0.78642526]), index=30, x=array([11.08997132, 0.78642526]), fval=1.3851518302358365, rho=0.9206794038257172, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([23, 27, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.00028510644603139203, relative_step_length=1.0747267947747212, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute params change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 31 entries., 'history': {'params': [{'CRRA': 10.865980160003074, 'DiscFac': 0.8065707082845226}, {'CRRA': 9.924999899294773, 'DiscFac': 0.5}, {'CRRA': 11.828952578926094, 'DiscFac': 0.6950450323019065}, {'CRRA': 9.903007741080055, 'DiscFac': 0.7678374491842943}, {'CRRA': 11.73025988827056, 'DiscFac': 1.1}, {'CRRA': 11.49775363323564, 'DiscFac': 0.5}, {'CRRA': 11.828952578926094, 'DiscFac': 0.5149587583222188}, {'CRRA': 9.903007741080055, 'DiscFac': 0.9023157095700898}, {'CRRA': 11.828952578926094, 'DiscFac': 0.9249107259700196}, {'CRRA': 11.535492727039749, 'DiscFac': 1.1}, {'CRRA': 9.903007741080055, 'DiscFac': 1.0761971606112184}, {'CRRA': 10.248098761490674, 'DiscFac': 0.5}, {'CRRA': 10.404111344390339, 'DiscFac': 1.1}, {'CRRA': 10.769068120900783, 'DiscFac': 0.6973808948683546}, {'CRRA': 10.616751665859878, 'DiscFac': 0.7398085025725059}, {'CRRA': 11.098237875321388, 'DiscFac': 0.7882388149937388}, {'CRRA': 10.881766919799327, 'DiscFac': 0.6585117070994535}, {'CRRA': 10.616751665859878, 'DiscFac': 0.8320814373949137}, {'CRRA': 10.956625799685291, 'DiscFac': 0.7987637682063111}, {'CRRA': 10.963970377976576, 'DiscFac': 0.8087474086225749}, {'CRRA': 11.159862056378362, 'DiscFac': 0.7596205240273629}, {'CRRA': 11.130746458632386, 'DiscFac': 0.7781133682505939}, {'CRRA': 11.110673976695304, 'DiscFac': 0.7755678549974832}, {'CRRA': 11.089889749513683, 'DiscFac': 0.7866984531963158}, {'CRRA': 11.090958322907564, 'DiscFac': 0.7697540196922152}, {'CRRA': 11.081402470592858, 'DiscFac': 0.7865119040707191}, {'CRRA': 11.08915686366906, 'DiscFac': 0.7844434842496772}, {'CRRA': 11.089846931487553, 'DiscFac': 0.786970253750117}, {'CRRA': 11.089658025655432, 'DiscFac': 0.7856611794307736}, {'CRRA': 11.089845015105098, 'DiscFac': 0.7861598418950035}, {'CRRA': 11.089971318511141, 'DiscFac': 0.7864252642795893}], 'criterion': [1.60570154023694, 3.364516588049179, 2.2460093256819578, 2.3973573098419108, 7.136576775827668, 3.130284192050682, 3.041172212000247, 2.2395413863899223, 2.6986181339882016, 7.169592537107459, nan, 3.2623655927713173, nan, 2.343004314256958, 1.5725989416315342, 1.5036097957557228, 2.270071361260345, 1.7697332407217317, 2.123568828876552, 1.9923745238439772, 1.6744164725539927, 2.1543853417918855, 1.6148101342130623, 1.468326781444378, 1.613780246029665, 1.494317187916595, 1.653858782473598, 2.0245959847457744, 1.59906798471378, 1.8111015107656243, 1.3851518302358365], 'runtime': [0.0, 1.6327866200003882, 1.8475365240001338, 2.0655200300002434, 2.302907059000063, 2.518198828000095, 2.743265822000012, 2.9806444949999786, 3.2149061200002507, 3.4470314150003105, 3.669997980000062, 3.9085582170000635, 4.116039676000128, 5.523987129000034, 6.776009392000105, 8.036902801999986, 9.275208315000327, 10.517056800000319, 11.746176472000116, 13.1169955510004, 14.386697537000146, 15.66907469500029, 16.94663689900017, 18.220539929000097, 19.479593108000245, 20.739585984000314, 21.974729394000406, 23.219446711000273, 24.46398980699996, 25.693592134000028, 27.057525853000243], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}}, {'solution_x': array([10.93287956, 0.79026253]), 'solution_criterion': 1.313120069801016, 'states': [State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=1.093181738096547, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.3458889917053987, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=0, candidate_x=array([10.93181738, 0.79040121]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=1.093181738096547, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.578420391908886, linear_terms=array([0.14891192, 1.31348888]), square_terms=array([[0.1449613 , 0.39528504],
+ [0.39528504, 7.4338881 ]]), scale=array([0.96880709, 0.3 ]), shift=array([10.93181738, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=13, candidate_x=array([10.31376659, 0.75716979]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-6.26331478829806, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.5465908690482735, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 4, 5, 9, 11, 12, 13]), model=ScalarModel(intercept=1.4934384174300563, linear_terms=array([0.09110483, 0.97391029]), square_terms=array([[0.07683632, 0.49828606],
+ [0.49828606, 8.05555662]]), scale=array([0.48440355, 0.3 ]), shift=array([10.93181738, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=14, candidate_x=array([10.60692057, 0.77617661]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-15.95841495890369, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 4, 5, 9, 11, 12, 13]), old_indices_discarded=array([ 1, 6, 7, 8, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.27329543452413674, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 4, 5, 9, 11, 12, 13, 14]), model=ScalarModel(intercept=1.4377009351183347, linear_terms=array([0.05563635, 0.60920727]), square_terms=array([[0.05625026, 0.42747588],
+ [0.42747588, 6.26064239]]), scale=0.27329543452413674, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=15, candidate_x=array([10.65862237, 0.78299298]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-22.291786361941437, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 4, 5, 9, 11, 12, 13, 14]), old_indices_discarded=array([ 1, 2, 6, 7, 8, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.13664771726206837, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 13, 14, 15]), model=ScalarModel(intercept=1.4837537011748891, linear_terms=array([-0.05367988, -1.03198654]), square_terms=array([[0.0114258 , 0.04908533],
+ [0.04908533, 3.6679078 ]]), scale=0.13664771726206837, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=16, candidate_x=array([11.0679988 , 0.82673473]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-1.937765683248982, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 13, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.06832385863103418, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 14, 15, 16]), model=ScalarModel(intercept=1.3439913923068907, linear_terms=array([-0.10803621, 0.81954671]), square_terms=array([[ 0.03971665, -0.15809735],
+ [-0.15809735, 1.68670716]]), scale=0.06832385863103418, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=17, candidate_x=array([10.99584193, 0.76334533]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-2.549330157587601, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.03416192931551709, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17]), model=ScalarModel(intercept=1.3458889917053982, linear_terms=array([ 0.0608538 , -0.02245367]), square_terms=array([[ 0.02809653, -0.11087423],
+ [-0.11087423, 0.66491919]]), scale=0.03416192931551709, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=18, candidate_x=array([10.89788477, 0.78619352]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-9.632103264169317, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.017080964657758546, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 18]), model=ScalarModel(intercept=1.3458889917053993, linear_terms=array([-0.13137314, -0.39410754]), square_terms=array([[0.02757962, 0.13607199],
+ [0.13607199, 0.82630592]]), scale=0.017080964657758546, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=19, candidate_x=array([10.94989538, 0.7952195 ]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-3.462957753472434, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.008540482328879273, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 18, 19]), model=ScalarModel(intercept=1.3458889917053996, linear_terms=array([-0.35754501, 2.15661366]), square_terms=array([[ 0.16785065, -0.92396784],
+ [-0.92396784, 5.1900445 ]]), scale=0.008540482328879273, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=20, candidate_x=array([10.92404773, 0.785491 ]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-0.46526208667632196, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.0042702411644396365, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 19, 20]), model=ScalarModel(intercept=1.3458889917053993, linear_terms=array([ 0.25557349, -0.55134151]), square_terms=array([[ 0.08776588, -0.21583066],
+ [-0.21583066, 0.53896107]]), scale=0.0042702411644396365, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=21, candidate_x=array([10.92798406, 0.79298835]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-2.1687265198246086, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.0021351205822198183, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 20, 21]), model=ScalarModel(intercept=1.3458889917053984, linear_terms=array([-0.17370195, 0.20138857]), square_terms=array([[ 0.0275573 , -0.025045 ],
+ [-0.025045 , 0.02917958]]), scale=0.0021351205822198183, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=22, candidate_x=array([10.93258248, 0.78840788]), index=0, x=array([10.93181738, 0.79040121]), fval=1.3458889917053984, rho=-3.1260969646257797, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93181738, 0.79040121]), radius=0.0010675602911099091, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 21, 22]), model=ScalarModel(intercept=1.345888991705398, linear_terms=array([-0.34398925, -0.28030349]), square_terms=array([[0.28335504, 0.35903218],
+ [0.35903218, 0.48284435]]), scale=0.0010675602911099091, shift=array([10.93181738, 0.79040121])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=23, candidate_x=array([10.93287956, 0.79026253]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=0.15760282629103436, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0010711973770310625, relative_step_length=1.003406913830948, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=0.0021351205822198183, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 20, 21, 22, 23]), model=ScalarModel(intercept=1.5210962294884438, linear_terms=array([-0.04387406, 0.04604552]), square_terms=array([[ 0.02819276, -0.03391789],
+ [-0.03391789, 0.04355014]]), scale=0.0021351205822198183, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=24, candidate_x=array([10.93505837, 0.78978275]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-12.434023643552575, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 20, 21, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=0.0010675602911099091, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 22, 23, 24]), model=ScalarModel(intercept=1.369833584189443, linear_terms=array([ 0.0744195, -0.2394611]), square_terms=array([[ 0.00535681, -0.01555128],
+ [-0.01555128, 0.19848642]]), scale=0.0010675602911099091, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=25, candidate_x=array([10.9320527 , 0.79093779]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-2.505424534030739, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 22, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=0.0005337801455549546, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 22, 23, 24, 25]), model=ScalarModel(intercept=1.5161584482121029, linear_terms=array([ 0.01624856, -0.07192904]), square_terms=array([[0.00064543, 0.00043128],
+ [0.00043128, 0.03011791]]), scale=0.0005337801455549546, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=26, candidate_x=array([10.93265976, 0.79074895]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-6.7136422267632225, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 22, 23, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=0.0002668900727774773, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 23, 25, 26]), model=ScalarModel(intercept=1.3394981413224147, linear_terms=array([0.04628427, 0.16322606]), square_terms=array([[ 0.01007514, -0.00071297],
+ [-0.00071297, 0.02561863]]), scale=0.0002668900727774773, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=27, candidate_x=array([10.93279457, 0.79000953]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-2.6718277158994708, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 23, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=0.00013344503638873864, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 26, 27]), model=ScalarModel(intercept=1.3131200698010168, linear_terms=array([-0.3180517 , -0.05793159]), square_terms=array([[0.19286012, 0.04111232],
+ [0.04111232, 0.01117805]]), scale=0.00013344503638873864, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=28, candidate_x=array([10.93300996, 0.79023418]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-0.8909721967707089, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=6.672251819436932e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 27, 28]), model=ScalarModel(intercept=1.3131200698010157, linear_terms=array([ 0.03703733, -0.09483085]), square_terms=array([[ 0.02890229, -0.02508008],
+ [-0.02508008, 0.02873033]]), scale=6.672251819436932e-05, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=29, candidate_x=array([10.93287414, 0.79032903]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-5.007489862080094, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=3.336125909718466e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 28, 29]), model=ScalarModel(intercept=1.3131200698010168, linear_terms=array([0.06225276, 0.15377724]), square_terms=array([[0.02179103, 0.03302971],
+ [0.03302971, 0.06051494]]), scale=3.336125909718466e-05, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=30, candidate_x=array([10.93287979, 0.79022916]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-6.194465468462012, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1.668062954859233e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 29, 30]), model=ScalarModel(intercept=1.3131200698010133, linear_terms=array([-4.48468239, -0.29100783]), square_terms=array([[28.82982817, 1.99741271],
+ [ 1.99741271, 0.14792491]]), scale=1.668062954859233e-05, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=31, candidate_x=array([10.93288329, 0.79024616]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-0.9717036530476211, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=8.340314774296165e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 30, 31]), model=ScalarModel(intercept=1.3131200698010161, linear_terms=array([-0.06790314, -0.13054157]), square_terms=array([[1.40499078, 0.08394391],
+ [0.08394391, 0.03153909]]), scale=8.340314774296165e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=32, candidate_x=array([10.93287947, 0.79027087]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-7.821781123666908, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=4.1701573871480825e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 31, 32]), model=ScalarModel(intercept=1.3131200698010155, linear_terms=array([1.56386222, 0.29859846]), square_terms=array([[5.65675375, 1.02132498],
+ [1.02132498, 0.1883508 ]]), scale=4.1701573871480825e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=33, candidate_x=array([10.93287918, 0.79025824]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-1.15419640927803, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 31, 32]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=2.0850786935740413e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 32, 33]), model=ScalarModel(intercept=1.313120069801016, linear_terms=array([-1.50409802, 0.12482309]), square_terms=array([[ 2.64362560e+01, -6.41713874e-01],
+ [-6.41713874e-01, 2.50102322e-02]]), scale=2.0850786935740413e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=34, candidate_x=array([10.93287963, 0.79026044]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-2.3407718972837506, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 32, 33]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1.0425393467870206e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 33, 34]), model=ScalarModel(intercept=1.3131200698010164, linear_terms=array([ 0.76177466, -0.07146838]), square_terms=array([[ 1.584454 , -0.13548613],
+ [-0.13548613, 0.04113995]]), scale=1.0425393467870206e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=35, candidate_x=array([10.93287916, 0.79026349]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-2.475776174577993, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 33, 34]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 33, 34, 35]), model=ScalarModel(intercept=1.4857371898102218, linear_terms=array([-0.24807612, 0.03429466]), square_terms=array([[0.47720114, 0.04133078],
+ [0.04133078, 0.01274017]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=36, candidate_x=array([10.93288011, 0.79026158]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-2.788154753912562, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 33, 34, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 33, 34, 35, 36]), model=ScalarModel(intercept=1.517236446481693, linear_terms=array([-0.15164444, 0.01637071]), square_terms=array([[ 0.19505026, -0.03220236],
+ [-0.03220236, 0.0128953 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=37, candidate_x=array([10.93288042, 0.79026317]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-8.702070657512285, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 33, 34, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 33, 34, 35, 36, 37]), model=ScalarModel(intercept=1.57422740541263, linear_terms=array([0.06573596, 0.03343249]), square_terms=array([[ 0.11485781, -0.02093627],
+ [-0.02093627, 0.01453458]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=38, candidate_x=array([10.932879 , 0.79026163]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-8.800341902078221, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 33, 34, 35, 36, 37]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 33, 34, 35, 36, 37, 38]), model=ScalarModel(intercept=1.6019203557997321, linear_terms=array([-0.01844312, 0.04730531]), square_terms=array([[ 0.22516243, -0.0435608 ],
+ [-0.0435608 , 0.01787496]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=39, candidate_x=array([10.93287947, 0.79026153]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-13.219230410118247, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 33, 34, 35, 36, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 33, 34, 35, 36, 37, 38, 39]), model=ScalarModel(intercept=1.6259036041677064, linear_terms=array([-0.05981542, 0.05301504]), square_terms=array([[ 0.25444391, -0.04684312],
+ [-0.04684312, 0.01813331]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=40, candidate_x=array([10.9328796, 0.7902615]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-4.528414958794048, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 33, 34, 35, 36, 37, 38, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 33, 34, 35, 36, 37, 38, 39, 40]), model=ScalarModel(intercept=1.6057501860150625, linear_terms=array([-0.0532196, 0.0487717]), square_terms=array([[ 0.25999131, -0.04872255],
+ [-0.04872255, 0.01868625]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=41, candidate_x=array([10.93287958, 0.79026151]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-5.702154494524176, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 33, 34, 35, 36, 37, 38, 39, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.6018240193184852, linear_terms=array([-0.02378513, 0.05708336]), square_terms=array([[ 0.29444838, -0.00233053],
+ [-0.00233053, 0.01939056]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=42, candidate_x=array([10.93287963, 0.79026153]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-11.487815465989993, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([33]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 35, 36, 37, 38, 39, 40, 41, 42]), model=ScalarModel(intercept=1.6243485111120757, linear_terms=array([-0.02810649, 0.05971906]), square_terms=array([[ 0.29737503, -0.00988441],
+ [-0.00988441, 0.02529909]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=43, candidate_x=array([10.93287962, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-11.410424660145699, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 35, 36, 37, 38, 39, 40, 41, 42]), old_indices_discarded=array([33, 34]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 35, 37, 38, 39, 40, 41, 42, 43]), model=ScalarModel(intercept=1.6443204278158488, linear_terms=array([0.05385465, 0.0117093 ]), square_terms=array([[0.14442284, 0.02259497],
+ [0.02259497, 0.02476783]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=44, candidate_x=array([10.93287921, 0.79026237]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-49.21728929801738, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 35, 37, 38, 39, 40, 41, 42, 43]), old_indices_discarded=array([33, 34, 36]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 35, 38, 39, 40, 41, 42, 43, 44]), model=ScalarModel(intercept=1.5565507357227995, linear_terms=array([-0.26618018, -0.05220279]), square_terms=array([[0.33866815, 0.07958103],
+ [0.07958103, 0.03872501]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=45, candidate_x=array([10.93288047, 0.79026201]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-0.5717057116430284, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 35, 38, 39, 40, 41, 42, 43, 44]), old_indices_discarded=array([33, 34, 36, 37]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 35, 39, 40, 41, 42, 43, 44, 45]), model=ScalarModel(intercept=1.559456244590351, linear_terms=array([-0.36358674, -0.08893948]), square_terms=array([[0.11050714, 0.01112043],
+ [0.01112043, 0.02096709]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=46, candidate_x=array([10.93288056, 0.79026259]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-2.01962069824313, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 35, 39, 40, 41, 42, 43, 44, 45]), old_indices_discarded=array([33, 34, 36, 37, 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 35, 39, 40, 41, 42, 43, 44, 46]), model=ScalarModel(intercept=1.6660179525819816, linear_terms=array([0.13065068, 0.03372412]), square_terms=array([[0.085621 , 0.04261103],
+ [0.04261103, 0.03472074]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=47, candidate_x=array([10.93287857, 0.79026268]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-7.317897504266242, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 35, 39, 40, 41, 42, 43, 44, 46]), old_indices_discarded=array([33, 34, 36, 37, 38, 45]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 39, 40, 41, 42, 43, 44, 46, 47]), model=ScalarModel(intercept=1.6922585308061082, linear_terms=array([0.03333883, 0.07393528]), square_terms=array([[0.10317645, 0.02845643],
+ [0.02845643, 0.09306488]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=48, candidate_x=array([10.93287967, 0.79026153]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-4.438606139713224, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 39, 40, 41, 42, 43, 44, 46, 47]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 45]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 39, 41, 42, 43, 44, 46, 47, 48]), model=ScalarModel(intercept=1.6901067692656, linear_terms=array([0.02528777, 0.0593735 ]), square_terms=array([[0.09961485, 0.04514218],
+ [0.04514218, 0.0590593 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=49, candidate_x=array([10.93287974, 0.79026154]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-13.302580193796775, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 39, 41, 42, 43, 44, 46, 47, 48]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 40, 45]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 39, 42, 43, 44, 46, 47, 48, 49]), model=ScalarModel(intercept=1.6904849068902246, linear_terms=array([0.02256157, 0.0044972 ]), square_terms=array([[0.10240727, 0.06368978],
+ [0.06368978, 0.06617034]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=50, candidate_x=array([10.93287912, 0.79026288]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-161.65896670611443, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 39, 42, 43, 44, 46, 47, 48, 49]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 40, 41, 45]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 39, 42, 43, 44, 46, 47, 48, 50]), model=ScalarModel(intercept=1.7393390871878376, linear_terms=array([-0.0178234, 0.0603962]), square_terms=array([[0.11769997, 0.04725408],
+ [0.04725408, 0.05129806]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=51, candidate_x=array([10.93287996, 0.79026161]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-11.031371910072169, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 39, 42, 43, 44, 46, 47, 48, 50]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 40, 41, 45, 49]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=52, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-6.278012112549348, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=53, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-13.986509527807948, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=54, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-4.372733324739296, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52, 53]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=55, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-9.158304617898601, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52, 53, 54]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=56, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-17.158932137117066, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52, 53, 54, 55]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=57, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-3.8601620162788604, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52, 53, 54, 55, 56]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=58, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-7.013843427826989, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52, 53, 54, 55, 56, 57]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=59, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-12.043167120958651, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52, 53, 54, 55, 56, 57,
+ 58]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=60, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-9.643051782063015, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52, 53, 54, 55, 56, 57,
+ 58, 59]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=61, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-10.214817546497091, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52, 53, 54, 55, 56, 57,
+ 58, 59, 60]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.93287956, 0.79026253]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), model=ScalarModel(intercept=1.7466683376581398, linear_terms=array([0.01459866, 0.06240381]), square_terms=array([[0.11643567, 0.02907633],
+ [0.02907633, 0.0415455 ]]), scale=1e-06, shift=array([10.93287956, 0.79026253])), vector_model=VectorModel(intercepts=array([ 0.07662483, 0.15716087, 0.13244484, 0.17250486, 0.20958337,
+ 0.24388919, 0.24229599, -0.09490357, -0.3115525 , -0.38173414,
+ -0.53749867, -0.71114441, -0.23462165, -0.05952639, -0.00218429,
+ 0.01974005, 0.02225134]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.093181738096547, shift=array([10.93181738, 0.79040121])), candidate_index=62, candidate_x=array([10.93287967, 0.79026152]), index=23, x=array([10.93287956, 0.79026253]), fval=1.313120069801016, rho=-5.386626230349772, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 42, 43, 44, 46, 47, 48, 50, 51]), old_indices_discarded=array([33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 49, 52, 53, 54, 55, 56, 57,
+ 58, 59, 60, 61]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'message': None, 'tranquilo_history': History for least_squares function with 63 entries., 'history': {'params': [{'CRRA': 10.93181738096547, 'DiscFac': 0.7904012123192823}, {'CRRA': 9.98513569945267, 'DiscFac': 0.5}, {'CRRA': 11.900624471679874, 'DiscFac': 0.6950450323019065}, {'CRRA': 9.963010290251065, 'DiscFac': 0.7678374491842943}, {'CRRA': 11.801333799766656, 'DiscFac': 1.1}, {'CRRA': 11.567418784043562, 'DiscFac': 0.5}, {'CRRA': 11.900624471679874, 'DiscFac': 0.5149587583222188}, {'CRRA': 9.963010290251065, 'DiscFac': 0.9023157095700898}, {'CRRA': 11.900624471679874, 'DiscFac': 0.9249107259700196}, {'CRRA': 11.605386539875498, 'DiscFac': 1.1}, {'CRRA': 9.963010290251065, 'DiscFac': 1.0761971606112184}, {'CRRA': 10.31019222500428, 'DiscFac': 0.5}, {'CRRA': 10.467150091692616, 'DiscFac': 1.1}, {'CRRA': 10.313766594010541, 'DiscFac': 0.7571697884540697}, {'CRRA': 10.60692056960618, 'DiscFac': 0.7761766081436124}, {'CRRA': 10.658622372642487, 'DiscFac': 0.7829929764198332}, {'CRRA': 11.067998797960243, 'DiscFac': 0.8267347331835817}, {'CRRA': 10.995841933730016, 'DiscFac': 0.7633453309865338}, {'CRRA': 10.897884770662003, 'DiscFac': 0.7861935155400102}, {'CRRA': 10.949895381875248, 'DiscFac': 0.7952194955971845}, {'CRRA': 10.924047725991183, 'DiscFac': 0.7854909988602735}, {'CRRA': 10.92798406235627, 'DiscFac': 0.7929883480042386}, {'CRRA': 10.93258247978467, 'DiscFac': 0.7884078825178001}, {'CRRA': 10.932879562536495, 'DiscFac': 0.7902625251506934}, {'CRRA': 10.935058367807512, 'DiscFac': 0.7897827532100038}, {'CRRA': 10.932052702330445, 'DiscFac': 0.790937793375034}, {'CRRA': 10.932659761230868, 'DiscFac': 0.7907489494817389}, {'CRRA': 10.932794571660883, 'DiscFac': 0.7900095293760058}, {'CRRA': 10.933009962334221, 'DiscFac': 0.7902341795956679}, {'CRRA': 10.9328741446985, 'DiscFac': 0.7903290273421283}, {'CRRA': 10.93287979209049, 'DiscFac': 0.7902291646813695}, {'CRRA': 10.932883290002767, 'DiscFac': 0.790246157191359}, {'CRRA': 10.932879473145423, 'DiscFac': 0.7902708741223307}, {'CRRA': 10.932879183756699, 'DiscFac': 0.7902582421648114}, {'CRRA': 10.932879630300034, 'DiscFac': 0.7902604379193853}, {'CRRA': 10.932879156056119, 'DiscFac': 0.7902634851829811}, {'CRRA': 10.93288011000692, 'DiscFac': 0.7902615785516318}, {'CRRA': 10.93288042424811, 'DiscFac': 0.7902631657084254}, {'CRRA': 10.932879002929695, 'DiscFac': 0.7902616321072823}, {'CRRA': 10.932879465532864, 'DiscFac': 0.7902615253846906}, {'CRRA': 10.932879604298977, 'DiscFac': 0.7902615034543894}, {'CRRA': 10.932879575201603, 'DiscFac': 0.7902615078820546}, {'CRRA': 10.932879627159437, 'DiscFac': 0.7902615254458845}, {'CRRA': 10.932879617531512, 'DiscFac': 0.790261524412203}, {'CRRA': 10.932879213836403, 'DiscFac': 0.7902623704973305}, {'CRRA': 10.93288046989004, 'DiscFac': 0.7902620085506273}, {'CRRA': 10.932880560114189, 'DiscFac': 0.7902625947117828}, {'CRRA': 10.932878574355414, 'DiscFac': 0.7902626784417498}, {'CRRA': 10.932879665832454, 'DiscFac': 0.7902615305000286}, {'CRRA': 10.932879741015936, 'DiscFac': 0.7902615352925063}, {'CRRA': 10.93287911896657, 'DiscFac': 0.7902628841283909}, {'CRRA': 10.932879962808926, 'DiscFac': 0.7902616076476876}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}, {'CRRA': 10.932879665944185, 'DiscFac': 0.7902615242994809}], 'criterion': [1.3458889917053987, 3.5013975368914125, 2.0544870399045534, 2.0583205370431608, 7.928518636715973, 3.0949777210489353, 2.977979450663434, 1.8547293431252745, 2.560520833667242, 7.980255465003957, 7.257800910691316, 3.370240742037367, 8.442262493714498, 1.9912592716428847, 2.019089156334591, 2.0178028319832544, 1.6938243831412112, 1.9001703519656736, 1.8500371991769882, 1.9043496300348661, 1.5648734488875522, 2.0220891625493262, 2.056746761618319, 1.313120069801016, 1.7055671159469066, 1.714426066440765, 1.7148655082032882, 1.734365060451327, 1.5044032689299713, 1.7193758311250589, 2.076996512359495, 1.666386952903814, 2.21236621642915, 1.5794755638266007, 1.609146514447562, 1.7496090467186187, 1.6267163413494736, 1.860478341277755, 1.782403946270015, 1.8384140470726615, 1.5168006469430917, 1.5410395855713777, 1.8662426102995835, 1.85679196644806, 1.8198121049780793, 1.374450247207118, 1.945431264557298, 1.958406017485213, 1.4304472182131032, 1.7349836163276422, 1.9915415597380837, 1.8523505252482946, 1.58009836942667, 1.907909385987258, 1.499074618283285, 1.7025854850481137, 2.042819605773915, 1.4772770470272307, 1.611390279961764, 1.8252669440693867, 1.7231998087093052, 1.747514679218656, 1.5421913563668752], 'runtime': [0.0, 1.5991356289996475, 1.8317183999997724, 2.050244288999693, 2.272850926999581, 2.50637046599968, 2.733808535999742, 2.9618447449997802, 3.1910537629996725, 3.4207921529996383, 3.654244985999867, 3.8726287939998656, 4.120069384999624, 5.564880780999829, 6.840542034999999, 8.135771727999781, 9.385228970999833, 10.610098139999991, 11.975990930999615, 13.230633034999755, 14.464096289999816, 15.70222302000002, 16.938027464999777, 18.19777668400002, 19.47115740399977, 20.724954730999798, 21.978858447999755, 23.230249808999815, 24.47645916700003, 25.856501904999732, 27.091305654999815, 28.35261020500002, 29.60132561499995, 30.844120104000012, 32.07390429299994, 33.31133374199999, 34.57795225399968, 35.82488827199995, 37.0846473079996, 38.346974862000025, 39.73881639299998, 40.986991440999645, 42.22503214599965, 43.47298248499965, 44.706735875999584, 45.99841694499992, 47.26094472099976, 48.60670753999966, 49.987001859999964, 51.258681004999744, 52.555209741, 54.04953956099962, 55.44855433099974, 56.7507529049999, 58.06916631499962, 59.43368076299976, 60.77706515999989, 62.07723423199968, 63.34290765199967, 64.670839763, 65.9373278019998, 67.22453074699979, 68.6551041509997], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]}, 'multistart_info': {...}}], 'exploration_sample': array([[10.86598016, 0.80657071],
+ [10.55 , 0.8 ],
+ [11.73125 , 0.7625 ],
+ [ 9.36875 , 0.8375 ],
+ [ 7.596875 , 0.93125 ],
+ [12.9125 , 0.575 ],
+ [15.275 , 0.65 ],
+ [17.046875 , 0.63125 ],
+ [16.45625 , 0.9125 ],
+ [18.81875 , 0.5375 ],
+ [ 8.1875 , 0.725 ],
+ [14.09375 , 0.9875 ],
+ [12.321875 , 1.08125 ],
+ [17.6375 , 1.025 ],
+ [ 7.00625 , 0.6125 ],
+ [ 4.64375 , 0.6875 ],
+ [ 2.871875 , 0.78125 ],
+ [ 3.4625 , 0.875 ],
+ [ 2.28125 , 1.0625 ]]), 'exploration_results': array([ 1.66924823, 1.74531296, 2.10648864, 2.17581064,
+ 2.66803924, 2.70500778, 2.87740953, 3.0406658 ,
+ 3.37839016, 3.53882151, 3.99992851, 4.37946561,
+ 4.47403011, 4.90296965, 6.27675034, 21.17347996,
+ 25.72759101, 28.93912422, 124.53209372])}}"
diff --git a/content/tables/min/WarmGlowPortfolioSub(Labor)Market_estimate_results.csv b/content/tables/min/WarmGlowPortfolioSub(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..edb999f
--- /dev/null
+++ b/content/tables/min/WarmGlowPortfolioSub(Labor)Market_estimate_results.csv
@@ -0,0 +1,8207 @@
+CRRA,13.76522943668619
+DiscFac,1.0738842444835321
+time_to_estimate,166.45062899589539
+params,"{'CRRA': 13.76522943668619, 'DiscFac': 1.0738842444835321}"
+criterion,0.6882579284467486
+start_criterion,28.714580565529207
+start_params,"{'CRRA': 5.0, 'DiscFac': 0.95}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 13.597593925796534, 'DiscFac': 1.020747282479346}, {'CRRA': 12.392538539955158, 'DiscFac': 0.6174149114063475}, {'CRRA': 14.80264931163791, 'DiscFac': 0.8326677874318185}, {'CRRA': 12.392538539955158, 'DiscFac': 0.8066232391144652}, {'CRRA': 14.771533894047689, 'DiscFac': 1.1}, {'CRRA': 14.775517168591643, 'DiscFac': 0.5}, {'CRRA': 14.468122155990066, 'DiscFac': 0.5}, {'CRRA': 12.392538539955158, 'DiscFac': 1.0736606786321312}, {'CRRA': 14.80264931163791, 'DiscFac': 0.7851437377134408}, {'CRRA': 14.760718893191527, 'DiscFac': 1.1}, {'CRRA': 12.392538539955158, 'DiscFac': 0.9606688675973344}, {'CRRA': 13.444055859501773, 'DiscFac': 0.5}, {'CRRA': 13.68922978340706, 'DiscFac': 1.1}, {'CRRA': 13.800350112056032, 'DiscFac': 1.1}, {'CRRA': 14.653108579352649, 'DiscFac': 1.1}, {'CRRA': 13.733860806509067, 'DiscFac': 1.1}, {'CRRA': 13.533413460280963, 'DiscFac': 1.0879828070365027}, {'CRRA': 13.654507190717343, 'DiscFac': 1.1}, {'CRRA': 13.741852570001186, 'DiscFac': 1.0555947848542355}, {'CRRA': 13.762692131248489, 'DiscFac': 1.0746702605461693}, {'CRRA': 13.838008092863575, 'DiscFac': 1.0616383225721628}, {'CRRA': 13.725034150440946, 'DiscFac': 1.0803527378804203}, {'CRRA': 13.741370045958632, 'DiscFac': 1.0813751657181843}, {'CRRA': 13.772787944089714, 'DiscFac': 1.070788238644506}, {'CRRA': 13.757620359413389, 'DiscFac': 1.076251839651587}, {'CRRA': 13.76522943668619, 'DiscFac': 1.0738842444835321}, {'CRRA': 13.760176305468253, 'DiscFac': 1.0755211705357692}, {'CRRA': 13.762815908535117, 'DiscFac': 1.074994677092113}, {'CRRA': 13.766465318103393, 'DiscFac': 1.073385240068689}, {'CRRA': 13.765741837404423, 'DiscFac': 1.0734198935341484}, {'CRRA': 13.76498652924187, 'DiscFac': 1.0741464913817635}, {'CRRA': 13.765099214247023, 'DiscFac': 1.073987169470037}, {'CRRA': 13.76529772667114, 'DiscFac': 1.073834078766463}, {'CRRA': 13.765261690170846, 'DiscFac': 1.0738581297466943}, {'CRRA': 13.765213205132117, 'DiscFac': 1.0738971702745834}, {'CRRA': 13.765221385235995, 'DiscFac': 1.0738907865004494}, {'CRRA': 13.76523347183466, 'DiscFac': 1.0738809851467088}, {'CRRA': 13.765227417544464, 'DiscFac': 1.0738858722201654}, {'CRRA': 13.76522842842111, 'DiscFac': 1.0738850599644876}, {'CRRA': 13.76523021512763, 'DiscFac': 1.073883616766271}, {'CRRA': 13.765230214507426, 'DiscFac': 1.073883615997389}, {'CRRA': 13.765230214739557, 'DiscFac': 1.0738836162850556}, {'CRRA': 13.765230214887971, 'DiscFac': 1.0738836164690735}, {'CRRA': 13.765228657845949, 'DiscFac': 1.0738848717058849}, {'CRRA': 13.765230214640988, 'DiscFac': 1.0738836161630856}, {'CRRA': 13.765228657644837, 'DiscFac': 1.0738848714563134}, {'CRRA': 13.765230214734727, 'DiscFac': 1.0738836162788903}, {'CRRA': 13.765228658030406, 'DiscFac': 1.0738848719349061}, {'CRRA': 13.765228658584434, 'DiscFac': 1.0738848726220682}, {'CRRA': 13.765228658553019, 'DiscFac': 1.0738848725830974}, {'CRRA': 13.765230216618574, 'DiscFac': 1.0738836186197498}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}], 'criterion': [1.5919418620501866, 3.256642791598931, 2.4245720174482632, 2.6770326909650377, 1.375271059626373, 3.932115023884988, 3.8900565091396633, 1.3788040584356367, 2.67342734680254, 1.3747875134503535, 1.7273269565534193, 3.784579404744082, 1.3717696200767946, 1.3671976679432574, 1.5932413313061198, 1.7940144542579126, 1.4714362912230357, 1.4586163616235037, 1.4116247061572644, 1.1237511246855783, 1.817413667189244, 1.7640558941311795, 1.2590902699405484, 2.1087642405633775, 1.6806322555078967, 0.6882579284467486, 1.3619794529851408, 1.7708804039433663, 1.487817536704842, 1.6073083741913023, 1.3515606737064714, 1.5988332872617663, 2.1071882633058205, 1.6046549090592486, 2.4392140191496465, 2.0969547685400998, 1.619697166814026, 1.4177027742030972, 2.7375198870821396, 1.648837292228864, 1.2017087559283488, 1.6123653333088765, 2.1559864840618888, 1.6813226057480248, 1.7555339640362284, 1.5641420916511097, 2.121351535271443, 1.195628783451865, 1.366634904655717, 1.7240618907150989, 0.9835036694297299, 1.5576561839970382, 1.389378348605993, 1.323322900002188, 1.4964292964688457, 1.432272428511995, 1.2033755926739262, 3.1657769462342085, 2.197985075310209, 1.2162154879079494, 2.342003085876411, 1.4622856861257032, 1.2041984771527132], 'runtime': [0.0, 2.0825537890000305, 2.304332205999799, 2.5202568370000336, 2.752349718000005, 2.9856617369996457, 3.2192967379996844, 3.4485792460000084, 3.701930288999847, 4.015171013999861, 4.454668695999771, 4.669011841999691, 4.894209664999835, 6.820035805999851, 8.57855164600005, 10.310429240999838, 12.091082415000074, 13.79618391699978, 15.48075700299978, 17.167798326999673, 18.990243108999948, 20.715586998999697, 22.467751674999818, 24.235677248999764, 25.957298829999672, 27.703975633000027, 29.413045380999847, 31.228969932999917, 32.923921876999884, 34.6790341789997, 36.43617003500003, 38.32504238499996, 40.16391709299978, 41.907183702999646, 43.74042012699965, 45.45150464900007, 47.17200287099968, 48.90636308400008, 50.674419703999774, 52.51235168999983, 54.256131906000064, 56.12240377699982, 57.842474824999954, 59.62035617699985, 61.38132491599981, 63.246293440000045, 65.0222065969997, 66.75320940899974, 68.49351131899994, 70.48024981899971, 72.27372107699966, 74.07178742799988, 75.84724168000002, 77.53998098800002, 79.26190303999965, 80.98321577199977, 82.81359508299965, 84.52387710899984, 86.25460904200008, 88.0250253449999, 89.76157718399963, 91.52082204299995, 93.24137594800004], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]}"
+convergence_report,"{'one_step': {'relative_criterion_change': 0.7585906706214464, 'relative_params_change': 0.04559161987110576, 'absolute_criterion_change': 0.5221060435009465, 'absolute_params_change': 0.37522077252389147}, 'five_steps': {'relative_criterion_change': 0.7585906706214464, 'relative_params_change': 0.04559161987110576, 'absolute_criterion_change': 0.5221060435009465, 'absolute_params_change': 0.37522077252389147}}"
+multistart_info,"{'start_parameters': [{'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 13.597593925796534, 'DiscFac': 1.020747282479346}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute params change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 0.02632 0.2707
+relative_params_change 0.0005553 0.0918
+absolute_criterion_change 0.03186 0.3276
+absolute_params_change 0.0006017 1.071
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.), Minimize with 2 free parameters terminated.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 0.6327 0.9982
+relative_params_change 0.0007548 0.07704
+absolute_criterion_change 0.4355 0.687
+absolute_params_change 0.002656 1.007
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.)], 'exploration_sample': [{'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 14.093749999999998, 'DiscFac': 0.9875}, {'CRRA': 17.6375, 'DiscFac': 1.0250000000000001}, {'CRRA': 16.45625, 'DiscFac': 0.9125000000000001}, {'CRRA': 11.73125, 'DiscFac': 0.7625000000000001}, {'CRRA': 10.549999999999999, 'DiscFac': 0.8}, {'CRRA': 12.9125, 'DiscFac': 0.575}, {'CRRA': 15.274999999999999, 'DiscFac': 0.65}, {'CRRA': 17.046875, 'DiscFac': 0.6312500000000001}, {'CRRA': 18.81875, 'DiscFac': 0.5375}, {'CRRA': 9.368749999999999, 'DiscFac': 0.8375}, {'CRRA': 8.1875, 'DiscFac': 0.7250000000000001}, {'CRRA': 7.00625, 'DiscFac': 0.6125}, {'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 2.871875, 'DiscFac': 0.78125}, {'CRRA': 5.0, 'DiscFac': 0.95}, {'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 2.28125, 'DiscFac': 1.0625}], 'exploration_results': array([ 1.25226984, 1.77139048, 1.79567843, 2.19243348, 2.99563577,
+ 3.4003551 , 3.46407238, 3.67340234, 3.72448066, 4.28414873,
+ 4.65250486, 5.39134448, 6.53886763, 14.94020775, 20.34265339,
+ 25.6087008 , 28.43667398, 29.29813793, 75.84976584])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([13.59759393, 1.02074728]), radius=1.3597593925796536, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.5919418620501866, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=0, candidate_x=array([13.59759393, 1.02074728]), index=0, x=array([13.59759393, 1.02074728]), fval=1.591941862050187, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([13.59759393, 1.02074728]), radius=1.3597593925796536, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=2.034809583725369, linear_terms=array([ 0.00692503, -1.51067031]), square_terms=array([[ 0.14904974, -0.03200334],
+ [-0.03200334, 1.29590588]]), scale=array([1.20505539, 0.3 ]), shift=array([13.59759393, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=13, candidate_x=array([13.80035011, 1.1 ]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=2.1596481898710547, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.2176948880908889, relative_step_length=0.16009809476505346, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=1.3597593925796536, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 6, 8, 11, 12, 13]), model=ScalarModel(intercept=1.9544299211503704, linear_terms=array([ 0.19985396, -1.35020304]), square_terms=array([[ 0.11438723, -0.28080018],
+ [-0.28080018, 1.18331746]]), scale=array([1.20505539, 0.3 ]), shift=array([13.80035011, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=14, candidate_x=array([14.65310858, 1.1 ]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-7.892356930659339, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 8, 11, 12, 13]), old_indices_discarded=array([ 1, 3, 7, 9, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.6798796962898268, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 6, 9, 11, 12, 13, 14]), model=ScalarModel(intercept=1.9524600277342483, linear_terms=array([ 0.03980169, -1.41316029]), square_terms=array([[ 0.0307801 , -0.03640509],
+ [-0.03640509, 1.39773428]]), scale=array([0.60252769, 0.3 ]), shift=array([13.80035011, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=15, candidate_x=array([13.73386081, 1.1 ]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-2277.466238878963, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 6, 9, 11, 12, 13, 14]), old_indices_discarded=array([ 1, 3, 5, 7, 8, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.3399398481449134, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 9, 11, 12, 13, 14, 15]), model=ScalarModel(intercept=1.4423114067995801, linear_terms=array([ 0.00970986, -0.30971613]), square_terms=array([[0.01737096, 0.00617437],
+ [0.00617437, 0.34251207]]), scale=array([0.30126385, 0.15063192]), shift=array([13.80035011, 0.94936808])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=16, candidate_x=array([13.53341346, 1.08798281]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-12.490603473802853, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 9, 11, 12, 13, 14, 15]), old_indices_discarded=array([ 1, 2, 3, 5, 7, 8, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.1699699240724567, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 11, 12, 13, 15, 16]), model=ScalarModel(intercept=1.5943095812154688, linear_terms=array([ 0.51822844, -0.07753849]), square_terms=array([[0.53597227, 0.0007038 ],
+ [0.0007038 , 0.05909585]]), scale=array([0.15063192, 0.07531596]), shift=array([13.80035011, 1.02468404])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=17, candidate_x=array([13.65450719, 1.1 ]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-0.36390332196850855, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 11, 12, 13, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.08498496203622835, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 13, 15, 16, 17]), model=ScalarModel(intercept=1.2630637427538014, linear_terms=array([0.0673167 , 0.12201243]), square_terms=array([[0.06493105, 0.0942397 ],
+ [0.0942397 , 0.27245921]]), scale=array([0.07531596, 0.03765798]), shift=array([13.80035011, 1.06234202])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=18, candidate_x=array([13.74185257, 1.05559478]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-0.15043955206760612, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 13, 15, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.042492481018114175, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([12, 13, 15, 17, 18]), model=ScalarModel(intercept=1.494530967111558, linear_terms=array([0.102457 , 0.02803027]), square_terms=array([[0.03812849, 0.01170315],
+ [0.01170315, 0.0472904 ]]), scale=array([0.03765798, 0.01882899]), shift=array([13.80035011, 1.08117101])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=19, candidate_x=array([13.76269213, 1.07467026]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=1.7655548058481516, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([12, 13, 15, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0453841295972527, relative_step_length=1.0680508294610014, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.08498496203622835, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 13, 15, 16, 17, 18, 19]), model=ScalarModel(intercept=1.15503149521224, linear_terms=array([-0.08309304, -0.2101502 ]), square_terms=array([[0.02472817, 0.0671273 ],
+ [0.0671273 , 0.60172359]]), scale=array([0.07531596, 0.05032285]), shift=array([13.76269213, 1.04967715])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=20, candidate_x=array([13.83800809, 1.06163832]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-12.049711039797472, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 13, 15, 16, 17, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.042492481018114175, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 13, 15, 17, 18, 19, 20]), model=ScalarModel(intercept=1.3037825390286737, linear_terms=array([ 0.05958201, -0.15298978]), square_terms=array([[ 0.00838945, -0.02709215],
+ [-0.02709215, 0.33469544]]), scale=array([0.03765798, 0.03149386]), shift=array([13.76269213, 1.06850614])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=21, candidate_x=array([13.72503415, 1.08035274]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-11.530216603469125, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 13, 15, 17, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.021246240509057088, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([12, 13, 15, 18, 19, 20, 21]), model=ScalarModel(intercept=1.339765491859563, linear_terms=array([ 0.01289748, -0.05831618]), square_terms=array([[ 0.00337072, -0.00852184],
+ [-0.00852184, 0.15088885]]), scale=0.021246240509057088, shift=array([13.76269213, 1.07467026])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=22, candidate_x=array([13.74137005, 1.08137517]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-6.962948052081567, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([12, 13, 15, 18, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.010623120254528544, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([13, 15, 18, 19, 21, 22]), model=ScalarModel(intercept=1.0959366501510284, linear_terms=array([-0.07603389, 0.0592279 ]), square_terms=array([[ 0.01482588, -0.01887136],
+ [-0.01887136, 0.05507578]]), scale=0.010623120254528544, shift=array([13.76269213, 1.07467026])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=23, candidate_x=array([13.77278794, 1.07078824]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-12.796215190602183, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([13, 15, 18, 19, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.005311560127264272, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 22, 23]), model=ScalarModel(intercept=1.123751124685578, linear_terms=array([2.35075615, 6.72344032]), square_terms=array([[ 34.95552465, 104.4822096 ],
+ [104.4822096 , 312.38317194]]), scale=0.005311560127264272, shift=array([13.76269213, 1.07467026])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=24, candidate_x=array([13.75762036, 1.07625184]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-3.3674374603538753, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.002655780063632136, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 23, 24]), model=ScalarModel(intercept=1.1237511246855785, linear_terms=array([-0.5780775 , -1.19841878]), square_terms=array([[ 5.94858558, 17.60275441],
+ [17.60275441, 52.66397965]]), scale=0.002655780063632136, shift=array([13.76269213, 1.07467026])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=25, candidate_x=array([13.76522944, 1.07388424]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=2.835499899865532, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([19, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.002656264319473295, relative_step_length=1.0001823403405237, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.005311560127264272, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 22, 23, 24, 25]), model=ScalarModel(intercept=0.9444375568015315, linear_terms=array([0.44532753, 1.19395003]), square_terms=array([[ 20.99849631, 63.51413818],
+ [ 63.51413818, 192.14709976]]), scale=0.005311560127264272, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=26, candidate_x=array([13.76017631, 1.07552117]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-13.438176044734822, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 22, 23, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.002655780063632136, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 23, 24, 25, 26]), model=ScalarModel(intercept=0.7549074447561732, linear_terms=array([-1.08491772, -3.21566214]), square_terms=array([[ 4.95581197, 13.40310954],
+ [13.40310954, 36.80550289]]), scale=0.002655780063632136, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=27, candidate_x=array([13.76281591, 1.07499468]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-5.765434623109165, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 23, 24, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.001327890031816068, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 25, 26, 27]), model=ScalarModel(intercept=0.6663131578299749, linear_terms=array([0.31579992, 1.29406005]), square_terms=array([[ 0.97652328, 3.33987753],
+ [ 3.33987753, 11.68276301]]), scale=0.001327890031816068, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=28, candidate_x=array([13.76646532, 1.07338524]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.097581043735553, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 25, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.000663945015908034, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 25, 27, 28]), model=ScalarModel(intercept=1.0748283427553293, linear_terms=array([0.74775752, 1.86090971]), square_terms=array([[0.94615569, 2.1520877 ],
+ [2.1520877 , 5.00035967]]), scale=0.000663945015908034, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=29, candidate_x=array([13.76574184, 1.07341989]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.41030856971559, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 25, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.000331972507954017, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 28, 29]), model=ScalarModel(intercept=0.688257928446749, linear_terms=array([-0.05009521, -0.4261496 ]), square_terms=array([[0.05474491, 0.13563449],
+ [0.13563449, 0.64186031]]), scale=0.000331972507954017, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=30, candidate_x=array([13.76498653, 1.07414649]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-4.057932281360053, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.0001659862539770085, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 29, 30]), model=ScalarModel(intercept=0.6882579284467485, linear_terms=array([2.51110852, 2.58551584]), square_terms=array([[17.31961069, 17.86076585],
+ [17.86076585, 18.4307605 ]]), scale=0.0001659862539770085, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=31, candidate_x=array([13.76509921, 1.07398717]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-4.996089828139207, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=8.299312698850425e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 30, 31]), model=ScalarModel(intercept=0.6882579284467492, linear_terms=array([-0.83335016, -0.64209979]), square_terms=array([[2.48376422, 2.0304305 ],
+ [2.0304305 , 1.6811628 ]]), scale=8.299312698850425e-05, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=32, candidate_x=array([13.76529773, 1.07383408]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-8.895409172081964, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=4.1496563494252124e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 31, 32]), model=ScalarModel(intercept=0.6882579284467484, linear_terms=array([5.4261937 , 7.07144682]), square_terms=array([[196.90079522, 251.86367885],
+ [251.86367885, 322.26054074]]), scale=4.1496563494252124e-05, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=33, candidate_x=array([13.76526169, 1.07385813]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-6.602379228031406, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 31, 32]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=2.0748281747126062e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 32, 33]), model=ScalarModel(intercept=0.6882579284467489, linear_terms=array([-1.67471137, -2.43734694]), square_terms=array([[44.36150417, 58.4429871 ],
+ [58.4429871 , 77.26404403]]), scale=2.0748281747126062e-05, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=34, candidate_x=array([13.76521321, 1.07389717]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-14.213590995613345, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 32, 33]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1.0374140873563031e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 33, 34]), model=ScalarModel(intercept=0.6882579284467507, linear_terms=array([-32.53614671, -40.36884666]), square_terms=array([[5704.80115467, 7072.67560803],
+ [7072.67560803, 8768.54976842]]), scale=1.0374140873563031e-05, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=35, candidate_x=array([13.76522139, 1.07389079]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-12.888292610975698, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 33, 34]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=5.1870704367815156e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 34, 35]), model=ScalarModel(intercept=0.6882579284467505, linear_terms=array([ 9.69356396, 12.41688657]), square_terms=array([[531.75055055, 673.71090102],
+ [673.71090102, 853.87114041]]), scale=5.1870704367815156e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=36, candidate_x=array([13.76523347, 1.07388099]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-8.167753639507541, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 34, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=2.5935352183907578e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 35, 36]), model=ScalarModel(intercept=0.688257928446749, linear_terms=array([ 96.92131584, 119.52724588]), square_terms=array([[23233.92339938, 28666.34702734],
+ [28666.34702734, 35368.97768226]]), scale=2.5935352183907578e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=37, candidate_x=array([13.76522742, 1.07388587]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-3.151757947924657, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1.2967676091953789e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 36, 37]), model=ScalarModel(intercept=0.6882579284467522, linear_terms=array([-228.72939942, -283.40527822]), square_terms=array([[149814.22087996, 185594.86902726],
+ [185594.86902726, 229921.14598203]]), scale=1.2967676091953789e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=38, candidate_x=array([13.76522843, 1.07388506]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-10.14442032408636, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 36, 37]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38]), model=ScalarModel(intercept=0.6882579284479667, linear_terms=array([110.01063583, 136.7138673 ]), square_terms=array([[204615.15154828, 253921.58304407],
+ [253921.58304407, 315109.6517833 ]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=39, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-8.437462487345263, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39]), model=ScalarModel(intercept=1.1577741715871368, linear_terms=array([242.70494131, 301.06849961]), square_terms=array([[155662.83189264, 193036.2230012 ],
+ [193036.2230012 , 239382.71308459]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=40, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.1629857204623297, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40]), model=ScalarModel(intercept=1.1405666279545543, linear_terms=array([205.50981035, 254.96369968]), square_terms=array([[196975.02816638, 244290.03299938],
+ [244290.03299938, 302970.52114327]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=41, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-5.914600339115848, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.1856833521849348, linear_terms=array([158.29089716, 196.3772247 ]), square_terms=array([[214418.42009996, 265947.86330119],
+ [265947.86330119, 329860.98150686]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=42, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-17.707333949313302, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41, 42]), model=ScalarModel(intercept=1.3049678277178531, linear_terms=array([220.22289196, 273.08372696]), square_terms=array([[208999.40253 , 259169.5243306 ],
+ [259169.5243306 , 321382.95662051]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=43, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-8.647410683350707, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41, 42]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41, 42, 43]), model=ScalarModel(intercept=1.3567974599896127, linear_terms=array([202.98250055, 251.79397558]), square_terms=array([[144095.09085198, 178734.35986993],
+ [178734.35986993, 221700.63899107]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=44, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.117835688525804, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41, 42, 43]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41, 42, 43, 44]), model=ScalarModel(intercept=1.4152002732237223, linear_terms=array([188.23186675, 233.45474242]), square_terms=array([[136071.15256904, 168774.1945395 ],
+ [168774.1945395 , 209337.0286982 ]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=45, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-6.369117061581065, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41, 42, 43, 44]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 38, 39, 40, 41, 42, 43, 44, 45]), model=ScalarModel(intercept=1.4322930669889091, linear_terms=array([165.85163954, 205.76495158]), square_terms=array([[132937.5754333 , 164910.82906923],
+ [164910.82906923, 204574.07883395]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=46, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-12.178849532771347, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 38, 39, 40, 41, 42, 43, 44, 45]), old_indices_discarded=array([37]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 40, 41, 42, 43, 44, 45, 46]), model=ScalarModel(intercept=1.3093308313412153, linear_terms=array([123.65989376, 153.3047285 ]), square_terms=array([[323967.17174465, 401840.36181195],
+ [401840.36181195, 498432.23105826]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=47, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.114033032338547, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 40, 41, 42, 43, 44, 45, 46]), old_indices_discarded=array([37, 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 41, 42, 43, 44, 45, 46, 47]), model=ScalarModel(intercept=1.0590382139587964, linear_terms=array([-280.9809403 , -348.70796313]), square_terms=array([[266181.47955628, 330177.67116074],
+ [330177.67116074, 409560.10325178]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=48, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.8012851877774967, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 41, 42, 43, 44, 45, 46, 47]), old_indices_discarded=array([37, 38, 40]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 41, 42, 43, 44, 45, 47, 48]), model=ScalarModel(intercept=1.220859614346961, linear_terms=array([-138.3649051 , -171.73746763]), square_terms=array([[158556.44632179, 196651.07147605],
+ [196651.07147605, 243898.29439121]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=49, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.513233363014608, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 41, 42, 43, 44, 45, 47, 48]), old_indices_discarded=array([37, 38, 40, 46]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 48, 49]), model=ScalarModel(intercept=1.2282682420444786, linear_terms=array([-238.11010807, -295.51259223]), square_terms=array([[ 74869.56239741, 92919.65993007],
+ [ 92919.65993007, 115321.54114857]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=50, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-0.834182990182004, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 48, 49]), old_indices_discarded=array([37, 38, 40, 41, 46]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=51, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.6081564997863604, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=52, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.1033304004202726, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=53, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-1.9051669620622436, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=54, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.424478532124386, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=55, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.232010752140536, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=56, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-1.5453303195996202, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=57, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.432448004507076, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=58, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-4.5291149894285505, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=59, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-1.5838494401492669, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=60, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-4.961162682124679, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=61, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.3220492039377594, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=62, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-1.5477989368164367, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 63 entries., 'multistart_info': {'start_parameters': [array([12.321875, 1.08125 ]), array([13.59759393, 1.02074728])], 'local_optima': [{'solution_x': array([13.39207935, 1.03451876]), 'solution_criterion': 1.210363971947695, 'states': [State(trustregion=Region(center=array([12.321875, 1.08125 ]), radius=1.2321875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.5379709637742367, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=0, candidate_x=array([12.321875, 1.08125 ]), index=0, x=array([12.321875, 1.08125 ]), fval=1.5379709637742367, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([12.321875, 1.08125 ]), radius=1.2321875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.840550854912425, linear_terms=array([ 0.07353749, -1.22696893]), square_terms=array([[ 0.09418262, -0.29229569],
+ [-0.29229569, 1.8372015 ]]), scale=array([1.09199774, 0.3 ]), shift=array([12.321875, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=13, candidate_x=array([13.41387274, 1.0480835 ]), index=13, x=array([13.41387274, 1.0480835 ]), fval=1.3627041528656627, rho=1.064636764428723, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=1.0925012951935644, relative_step_length=0.8866355933602349, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.41387274, 1.0480835 ]), radius=2.464375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 5, 6, 7, 8, 10, 11, 13]), model=ScalarModel(intercept=2.075632376408693, linear_terms=array([ 0.44475858, -1.63923571]), square_terms=array([[ 0.4215093 , -0.69321529],
+ [-0.69321529, 1.7585011 ]]), scale=array([2.18399548, 0.3 ]), shift=array([13.41387274, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=14, candidate_x=array([14.70121879, 1.1 ]), index=13, x=array([13.41387274, 1.0480835 ]), fval=1.3627041528656627, rho=-2.2582007264460318, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 5, 6, 7, 8, 10, 11, 13]), old_indices_discarded=array([ 1, 2, 4, 9, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.41387274, 1.0480835 ]), radius=1.2321875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 6, 8, 9, 13, 14]), model=ScalarModel(intercept=1.8597631456640993, linear_terms=array([-0.16560094, -1.39509672]), square_terms=array([[ 0.25676534, -0.02422231],
+ [-0.02422231, 1.5320715 ]]), scale=array([1.09199774, 0.3 ]), shift=array([13.41387274, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=15, candidate_x=array([14.21315436, 1.07665016]), index=13, x=array([13.41387274, 1.0480835 ]), fval=1.3627041528656627, rho=-3.8933696718720308, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 8, 9, 13, 14]), old_indices_discarded=array([ 1, 3, 7, 10, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.41387274, 1.0480835 ]), radius=0.61609375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 6, 8, 9, 13, 15]), model=ScalarModel(intercept=1.8893357537559765, linear_terms=array([-0.02772496, -1.3695219 ]), square_terms=array([[ 0.04325758, -0.01687608],
+ [-0.01687608, 1.53625408]]), scale=array([0.54599887, 0.29895768]), shift=array([13.41387274, 0.80104232])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=16, candidate_x=array([13.95603404, 1.07081466]), index=13, x=array([13.41387274, 1.0480835 ]), fval=1.3627041528656627, rho=-14.984993379227156, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 8, 9, 13, 15]), old_indices_discarded=array([ 1, 3, 7, 10, 11, 12, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.41387274, 1.0480835 ]), radius=0.308046875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 8, 9, 13, 15, 16, 17]), model=ScalarModel(intercept=1.492059422834581, linear_terms=array([-0.11965999, -0.40798019]), square_terms=array([[0.13418385, 0.01559018],
+ [0.01559018, 0.50991394]]), scale=array([0.27299943, 0.16245797]), shift=array([13.41387274, 0.93754203])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=18, candidate_x=array([13.63272267, 1.06354223]), index=13, x=array([13.41387274, 1.0480835 ]), fval=1.3627041528656627, rho=-10.365637769460031, accepted=False, new_indices=array([17]), old_indices_used=array([ 2, 4, 5, 8, 9, 13, 15, 16]), old_indices_discarded=array([ 0, 6, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.41387274, 1.0480835 ]), radius=0.1540234375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 8, 9, 13, 16, 17, 18]), model=ScalarModel(intercept=1.3794125731198714, linear_terms=array([-0.03649967, -0.14181619]), square_terms=array([[ 0.02646541, -0.02252458],
+ [-0.02252458, 0.15141401]]), scale=array([0.13649972, 0.09420811]), shift=array([13.41387274, 1.00579189])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=19, candidate_x=array([13.55037246, 1.1 ]), index=13, x=array([13.41387274, 1.0480835 ]), fval=1.3627041528656627, rho=-9.94771316924612, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 8, 9, 13, 16, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.41387274, 1.0480835 ]), radius=0.07701171875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 8, 9, 13, 18, 19]), model=ScalarModel(intercept=1.3783908568552679, linear_terms=array([ 0.01021357, -0.00822452]), square_terms=array([[ 0.05843199, -0.08341068],
+ [-0.08341068, 0.18300197]]), scale=array([0.06824986, 0.06008318]), shift=array([13.41387274, 1.03991682])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=20, candidate_x=array([13.39225885, 1.03394448]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=67.64661076310064, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 8, 9, 13, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.025827737562700674, relative_step_length=0.33537412204166234, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.07701171875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 8, 9, 13, 18, 19, 20]), model=ScalarModel(intercept=1.329063512541693, linear_terms=array([ 0.02464634, -0.02431736]), square_terms=array([[ 0.05297532, -0.08788172],
+ [-0.08788172, 0.22588201]]), scale=array([0.06824986, 0.06715269]), shift=array([13.39225885, 1.03284731])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=21, candidate_x=array([13.33708417, 1.01895545]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-106.24217111440103, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 8, 9, 13, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.038505859375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 9, 13, 19, 20, 21]), model=ScalarModel(intercept=1.4558785589476007, linear_terms=array([ 0.03199582, -0.13313381]), square_terms=array([[0.00508526, 0.00270481],
+ [0.00270481, 0.2748186 ]]), scale=0.038505859375, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=22, candidate_x=array([13.3541983 , 1.05118446]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-6.452870384435016, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 9, 13, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.0192529296875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 9, 13, 20, 21, 22]), model=ScalarModel(intercept=1.4157454760310837, linear_terms=array([-0.03025277, -0.32371426]), square_terms=array([[ 0.03408775, -0.09379796],
+ [-0.09379796, 0.50863551]]), scale=0.0192529296875, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=23, candidate_x=array([13.4067861, 1.0466706]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-1.3455197239916337, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 9, 13, 20, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.00962646484375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 9, 13, 20, 22, 23]), model=ScalarModel(intercept=1.2461213821670756, linear_terms=array([-0.01139901, 0.03479926]), square_terms=array([[ 0.01697025, -0.01299824],
+ [-0.01299824, 0.05399418]]), scale=0.00962646484375, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=24, candidate_x=array([13.3943604 , 1.02824614]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-1.2093864369538776, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 9, 13, 20, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.004813232421875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 9, 20, 23, 24]), model=ScalarModel(intercept=1.2552760540332801, linear_terms=array([-0.06136149, 0.10404948]), square_terms=array([[ 0.04088732, -0.04708259],
+ [-0.04708259, 0.0835845 ]]), scale=0.004813232421875, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=25, candidate_x=array([13.39252918, 1.02913885]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-6.467098079073112, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 9, 20, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.0024066162109375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 24, 25]), model=ScalarModel(intercept=1.242220416469452, linear_terms=array([-0.49254682, -0.10435951]), square_terms=array([[3.37854 , 0.8095457 ],
+ [0.8095457 , 0.20786122]]), scale=0.0024066162109375, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=26, candidate_x=array([13.39317718, 1.03157619]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-10.530718088463118, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.00120330810546875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 25, 26]), model=ScalarModel(intercept=1.2422204164694506, linear_terms=array([ 0.01554006, -0.03745233]), square_terms=array([[2.87010276, 0.40232869],
+ [0.40232869, 0.06805038]]), scale=0.00120330810546875, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=27, candidate_x=array([13.39208705, 1.03513547]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-15.4154389784598, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.000601654052734375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 26, 27]), model=ScalarModel(intercept=1.2422204164694508, linear_terms=array([-0.07966419, -0.05262964]), square_terms=array([[9.47883394, 3.05260383],
+ [3.05260383, 0.98903341]]), scale=0.000601654052734375, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=28, candidate_x=array([13.39207935, 1.03451876]), index=28, x=array([13.39207935, 1.03451876]), fval=1.210363971947695, rho=1.3634463837141155, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([20, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0006016745527352553, relative_step_length=1.0000340727379582, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute params change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 29 entries., 'history': {'params': [{'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 11.446536902444704, 'DiscFac': 0.5}, {'CRRA': 13.413872739706319, 'DiscFac': 0.5007652721540578}, {'CRRA': 11.229877260293678, 'DiscFac': 0.59273111228441}, {'CRRA': 13.294070386710855, 'DiscFac': 1.1}, {'CRRA': 13.413872739706319, 'DiscFac': 0.5}, {'CRRA': 12.446098642928627, 'DiscFac': 0.5}, {'CRRA': 11.229877260293678, 'DiscFac': 1.060949564463903}, {'CRRA': 13.413872739706319, 'DiscFac': 0.8026495106859575}, {'CRRA': 13.413872739706319, 'DiscFac': 1.038275200676022}, {'CRRA': 11.53308651761103, 'DiscFac': 1.1}, {'CRRA': 11.354974829891772, 'DiscFac': 0.5}, {'CRRA': 11.681377339711737, 'DiscFac': 1.1}, {'CRRA': 13.413872739706319, 'DiscFac': 1.0480835037137872}, {'CRRA': 14.701218785330024, 'DiscFac': 1.1}, {'CRRA': 14.21315435802697, 'DiscFac': 1.0766501636285937}, {'CRRA': 13.956034038420718, 'DiscFac': 1.0708146638062002}, {'CRRA': 13.6868721746329, 'DiscFac': 0.7750840687872071}, {'CRRA': 13.632722670614632, 'DiscFac': 1.0635422253682307}, {'CRRA': 13.550372457169608, 'DiscFac': 1.1}, {'CRRA': 13.392258852425382, 'DiscFac': 1.0339444830894764}, {'CRRA': 13.33708416842291, 'DiscFac': 1.0189554530363083}, {'CRRA': 13.354198302357199, 'DiscFac': 1.0511844553967804}, {'CRRA': 13.406786102101872, 'DiscFac': 1.0466705954603888}, {'CRRA': 13.39436039500245, 'DiscFac': 1.0282461370567386}, {'CRRA': 13.39252917714216, 'DiscFac': 1.0291388477626453}, {'CRRA': 13.393177182698638, 'DiscFac': 1.03157618641155}, {'CRRA': 13.392087051286135, 'DiscFac': 1.0351354693798418}, {'CRRA': 13.392079350807666, 'DiscFac': 1.0345187577943404}], 'criterion': [1.5379709637742367, 3.734068243164363, 3.8971507996642774, 3.48162912690558, 1.5320563469928077, 3.8998498998090394, 3.8115417722834937, 1.8259926966388675, 2.730724308743347, 1.3758247665922279, 1.9635043655892632, 3.728401962298913, 1.9078459093280093, 1.3627041528656627, 1.5409172470669907, 1.6509602310715887, 1.7297229865297858, 2.8707572108561155, 1.8458865400582627, 1.994324329480671, 1.2422204164694501, 1.9944044399163705, 1.644887349366995, 1.4612222892797884, 1.2561814434631458, 1.6494306735661541, 1.6910974108380283, 1.7595131585211201, 1.210363971947695], 'runtime': [0.0, 2.22042868599965, 2.425750099999732, 2.6485239849998834, 2.8621597530000145, 3.097255990999656, 3.3421176409997315, 3.5672643819998484, 3.803266117000021, 4.040344493999783, 4.277583272999891, 4.511595182999827, 4.723519666999891, 6.627769710999928, 8.43213522499991, 10.209491180999976, 11.916325045999656, 13.718919149999692, 15.620581142999981, 17.36935593499993, 19.105868442999963, 20.8409989769998, 22.565593603999787, 24.273232193999775, 25.97764465599994, 27.78982337999969, 29.483350799999698, 31.19679195799972, 32.91941399500001], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]}}, {'solution_x': array([13.76522944, 1.07388424]), 'solution_criterion': 0.6882579284467486, 'states': [State(trustregion=Region(center=array([13.59759393, 1.02074728]), radius=1.3597593925796536, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.5919418620501866, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=0, candidate_x=array([13.59759393, 1.02074728]), index=0, x=array([13.59759393, 1.02074728]), fval=1.591941862050187, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([13.59759393, 1.02074728]), radius=1.3597593925796536, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=2.034809583725369, linear_terms=array([ 0.00692503, -1.51067031]), square_terms=array([[ 0.14904974, -0.03200334],
+ [-0.03200334, 1.29590588]]), scale=array([1.20505539, 0.3 ]), shift=array([13.59759393, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=13, candidate_x=array([13.80035011, 1.1 ]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=2.1596481898710547, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.2176948880908889, relative_step_length=0.16009809476505346, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=1.3597593925796536, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 6, 8, 11, 12, 13]), model=ScalarModel(intercept=1.9544299211503704, linear_terms=array([ 0.19985396, -1.35020304]), square_terms=array([[ 0.11438723, -0.28080018],
+ [-0.28080018, 1.18331746]]), scale=array([1.20505539, 0.3 ]), shift=array([13.80035011, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=14, candidate_x=array([14.65310858, 1.1 ]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-7.892356930659339, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 8, 11, 12, 13]), old_indices_discarded=array([ 1, 3, 7, 9, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.6798796962898268, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 6, 9, 11, 12, 13, 14]), model=ScalarModel(intercept=1.9524600277342483, linear_terms=array([ 0.03980169, -1.41316029]), square_terms=array([[ 0.0307801 , -0.03640509],
+ [-0.03640509, 1.39773428]]), scale=array([0.60252769, 0.3 ]), shift=array([13.80035011, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=15, candidate_x=array([13.73386081, 1.1 ]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-2277.466238878963, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 6, 9, 11, 12, 13, 14]), old_indices_discarded=array([ 1, 3, 5, 7, 8, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.3399398481449134, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 9, 11, 12, 13, 14, 15]), model=ScalarModel(intercept=1.4423114067995801, linear_terms=array([ 0.00970986, -0.30971613]), square_terms=array([[0.01737096, 0.00617437],
+ [0.00617437, 0.34251207]]), scale=array([0.30126385, 0.15063192]), shift=array([13.80035011, 0.94936808])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=16, candidate_x=array([13.53341346, 1.08798281]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-12.490603473802853, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 9, 11, 12, 13, 14, 15]), old_indices_discarded=array([ 1, 2, 3, 5, 7, 8, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.1699699240724567, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 11, 12, 13, 15, 16]), model=ScalarModel(intercept=1.5943095812154688, linear_terms=array([ 0.51822844, -0.07753849]), square_terms=array([[0.53597227, 0.0007038 ],
+ [0.0007038 , 0.05909585]]), scale=array([0.15063192, 0.07531596]), shift=array([13.80035011, 1.02468404])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=17, candidate_x=array([13.65450719, 1.1 ]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-0.36390332196850855, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 11, 12, 13, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.08498496203622835, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 13, 15, 16, 17]), model=ScalarModel(intercept=1.2630637427538014, linear_terms=array([0.0673167 , 0.12201243]), square_terms=array([[0.06493105, 0.0942397 ],
+ [0.0942397 , 0.27245921]]), scale=array([0.07531596, 0.03765798]), shift=array([13.80035011, 1.06234202])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=18, candidate_x=array([13.74185257, 1.05559478]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-0.15043955206760612, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 13, 15, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.042492481018114175, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([12, 13, 15, 17, 18]), model=ScalarModel(intercept=1.494530967111558, linear_terms=array([0.102457 , 0.02803027]), square_terms=array([[0.03812849, 0.01170315],
+ [0.01170315, 0.0472904 ]]), scale=array([0.03765798, 0.01882899]), shift=array([13.80035011, 1.08117101])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=19, candidate_x=array([13.76269213, 1.07467026]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=1.7655548058481516, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([12, 13, 15, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0453841295972527, relative_step_length=1.0680508294610014, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.08498496203622835, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 13, 15, 16, 17, 18, 19]), model=ScalarModel(intercept=1.15503149521224, linear_terms=array([-0.08309304, -0.2101502 ]), square_terms=array([[0.02472817, 0.0671273 ],
+ [0.0671273 , 0.60172359]]), scale=array([0.07531596, 0.05032285]), shift=array([13.76269213, 1.04967715])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=20, candidate_x=array([13.83800809, 1.06163832]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-12.049711039797472, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 13, 15, 16, 17, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.042492481018114175, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 13, 15, 17, 18, 19, 20]), model=ScalarModel(intercept=1.3037825390286737, linear_terms=array([ 0.05958201, -0.15298978]), square_terms=array([[ 0.00838945, -0.02709215],
+ [-0.02709215, 0.33469544]]), scale=array([0.03765798, 0.03149386]), shift=array([13.76269213, 1.06850614])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=21, candidate_x=array([13.72503415, 1.08035274]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-11.530216603469125, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 13, 15, 17, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.021246240509057088, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([12, 13, 15, 18, 19, 20, 21]), model=ScalarModel(intercept=1.339765491859563, linear_terms=array([ 0.01289748, -0.05831618]), square_terms=array([[ 0.00337072, -0.00852184],
+ [-0.00852184, 0.15088885]]), scale=0.021246240509057088, shift=array([13.76269213, 1.07467026])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=22, candidate_x=array([13.74137005, 1.08137517]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-6.962948052081567, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([12, 13, 15, 18, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.010623120254528544, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([13, 15, 18, 19, 21, 22]), model=ScalarModel(intercept=1.0959366501510284, linear_terms=array([-0.07603389, 0.0592279 ]), square_terms=array([[ 0.01482588, -0.01887136],
+ [-0.01887136, 0.05507578]]), scale=0.010623120254528544, shift=array([13.76269213, 1.07467026])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=23, candidate_x=array([13.77278794, 1.07078824]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-12.796215190602183, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([13, 15, 18, 19, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.005311560127264272, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 22, 23]), model=ScalarModel(intercept=1.123751124685578, linear_terms=array([2.35075615, 6.72344032]), square_terms=array([[ 34.95552465, 104.4822096 ],
+ [104.4822096 , 312.38317194]]), scale=0.005311560127264272, shift=array([13.76269213, 1.07467026])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=24, candidate_x=array([13.75762036, 1.07625184]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-3.3674374603538753, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.002655780063632136, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 23, 24]), model=ScalarModel(intercept=1.1237511246855785, linear_terms=array([-0.5780775 , -1.19841878]), square_terms=array([[ 5.94858558, 17.60275441],
+ [17.60275441, 52.66397965]]), scale=0.002655780063632136, shift=array([13.76269213, 1.07467026])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=25, candidate_x=array([13.76522944, 1.07388424]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=2.835499899865532, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([19, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.002656264319473295, relative_step_length=1.0001823403405237, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.005311560127264272, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 22, 23, 24, 25]), model=ScalarModel(intercept=0.9444375568015315, linear_terms=array([0.44532753, 1.19395003]), square_terms=array([[ 20.99849631, 63.51413818],
+ [ 63.51413818, 192.14709976]]), scale=0.005311560127264272, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=26, candidate_x=array([13.76017631, 1.07552117]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-13.438176044734822, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 22, 23, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.002655780063632136, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 23, 24, 25, 26]), model=ScalarModel(intercept=0.7549074447561732, linear_terms=array([-1.08491772, -3.21566214]), square_terms=array([[ 4.95581197, 13.40310954],
+ [13.40310954, 36.80550289]]), scale=0.002655780063632136, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=27, candidate_x=array([13.76281591, 1.07499468]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-5.765434623109165, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 23, 24, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.001327890031816068, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 25, 26, 27]), model=ScalarModel(intercept=0.6663131578299749, linear_terms=array([0.31579992, 1.29406005]), square_terms=array([[ 0.97652328, 3.33987753],
+ [ 3.33987753, 11.68276301]]), scale=0.001327890031816068, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=28, candidate_x=array([13.76646532, 1.07338524]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.097581043735553, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 25, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.000663945015908034, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 25, 27, 28]), model=ScalarModel(intercept=1.0748283427553293, linear_terms=array([0.74775752, 1.86090971]), square_terms=array([[0.94615569, 2.1520877 ],
+ [2.1520877 , 5.00035967]]), scale=0.000663945015908034, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=29, candidate_x=array([13.76574184, 1.07341989]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.41030856971559, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 25, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.000331972507954017, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 28, 29]), model=ScalarModel(intercept=0.688257928446749, linear_terms=array([-0.05009521, -0.4261496 ]), square_terms=array([[0.05474491, 0.13563449],
+ [0.13563449, 0.64186031]]), scale=0.000331972507954017, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=30, candidate_x=array([13.76498653, 1.07414649]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-4.057932281360053, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.0001659862539770085, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 29, 30]), model=ScalarModel(intercept=0.6882579284467485, linear_terms=array([2.51110852, 2.58551584]), square_terms=array([[17.31961069, 17.86076585],
+ [17.86076585, 18.4307605 ]]), scale=0.0001659862539770085, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=31, candidate_x=array([13.76509921, 1.07398717]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-4.996089828139207, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=8.299312698850425e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 30, 31]), model=ScalarModel(intercept=0.6882579284467492, linear_terms=array([-0.83335016, -0.64209979]), square_terms=array([[2.48376422, 2.0304305 ],
+ [2.0304305 , 1.6811628 ]]), scale=8.299312698850425e-05, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=32, candidate_x=array([13.76529773, 1.07383408]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-8.895409172081964, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=4.1496563494252124e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 31, 32]), model=ScalarModel(intercept=0.6882579284467484, linear_terms=array([5.4261937 , 7.07144682]), square_terms=array([[196.90079522, 251.86367885],
+ [251.86367885, 322.26054074]]), scale=4.1496563494252124e-05, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=33, candidate_x=array([13.76526169, 1.07385813]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-6.602379228031406, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 31, 32]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=2.0748281747126062e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 32, 33]), model=ScalarModel(intercept=0.6882579284467489, linear_terms=array([-1.67471137, -2.43734694]), square_terms=array([[44.36150417, 58.4429871 ],
+ [58.4429871 , 77.26404403]]), scale=2.0748281747126062e-05, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=34, candidate_x=array([13.76521321, 1.07389717]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-14.213590995613345, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 32, 33]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1.0374140873563031e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 33, 34]), model=ScalarModel(intercept=0.6882579284467507, linear_terms=array([-32.53614671, -40.36884666]), square_terms=array([[5704.80115467, 7072.67560803],
+ [7072.67560803, 8768.54976842]]), scale=1.0374140873563031e-05, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=35, candidate_x=array([13.76522139, 1.07389079]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-12.888292610975698, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 33, 34]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=5.1870704367815156e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 34, 35]), model=ScalarModel(intercept=0.6882579284467505, linear_terms=array([ 9.69356396, 12.41688657]), square_terms=array([[531.75055055, 673.71090102],
+ [673.71090102, 853.87114041]]), scale=5.1870704367815156e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=36, candidate_x=array([13.76523347, 1.07388099]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-8.167753639507541, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 34, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=2.5935352183907578e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 35, 36]), model=ScalarModel(intercept=0.688257928446749, linear_terms=array([ 96.92131584, 119.52724588]), square_terms=array([[23233.92339938, 28666.34702734],
+ [28666.34702734, 35368.97768226]]), scale=2.5935352183907578e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=37, candidate_x=array([13.76522742, 1.07388587]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-3.151757947924657, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1.2967676091953789e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 36, 37]), model=ScalarModel(intercept=0.6882579284467522, linear_terms=array([-228.72939942, -283.40527822]), square_terms=array([[149814.22087996, 185594.86902726],
+ [185594.86902726, 229921.14598203]]), scale=1.2967676091953789e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=38, candidate_x=array([13.76522843, 1.07388506]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-10.14442032408636, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 36, 37]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38]), model=ScalarModel(intercept=0.6882579284479667, linear_terms=array([110.01063583, 136.7138673 ]), square_terms=array([[204615.15154828, 253921.58304407],
+ [253921.58304407, 315109.6517833 ]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=39, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-8.437462487345263, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39]), model=ScalarModel(intercept=1.1577741715871368, linear_terms=array([242.70494131, 301.06849961]), square_terms=array([[155662.83189264, 193036.2230012 ],
+ [193036.2230012 , 239382.71308459]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=40, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.1629857204623297, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40]), model=ScalarModel(intercept=1.1405666279545543, linear_terms=array([205.50981035, 254.96369968]), square_terms=array([[196975.02816638, 244290.03299938],
+ [244290.03299938, 302970.52114327]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=41, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-5.914600339115848, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.1856833521849348, linear_terms=array([158.29089716, 196.3772247 ]), square_terms=array([[214418.42009996, 265947.86330119],
+ [265947.86330119, 329860.98150686]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=42, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-17.707333949313302, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41, 42]), model=ScalarModel(intercept=1.3049678277178531, linear_terms=array([220.22289196, 273.08372696]), square_terms=array([[208999.40253 , 259169.5243306 ],
+ [259169.5243306 , 321382.95662051]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=43, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-8.647410683350707, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41, 42]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41, 42, 43]), model=ScalarModel(intercept=1.3567974599896127, linear_terms=array([202.98250055, 251.79397558]), square_terms=array([[144095.09085198, 178734.35986993],
+ [178734.35986993, 221700.63899107]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=44, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.117835688525804, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41, 42, 43]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41, 42, 43, 44]), model=ScalarModel(intercept=1.4152002732237223, linear_terms=array([188.23186675, 233.45474242]), square_terms=array([[136071.15256904, 168774.1945395 ],
+ [168774.1945395 , 209337.0286982 ]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=45, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-6.369117061581065, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41, 42, 43, 44]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 38, 39, 40, 41, 42, 43, 44, 45]), model=ScalarModel(intercept=1.4322930669889091, linear_terms=array([165.85163954, 205.76495158]), square_terms=array([[132937.5754333 , 164910.82906923],
+ [164910.82906923, 204574.07883395]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=46, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-12.178849532771347, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 38, 39, 40, 41, 42, 43, 44, 45]), old_indices_discarded=array([37]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 40, 41, 42, 43, 44, 45, 46]), model=ScalarModel(intercept=1.3093308313412153, linear_terms=array([123.65989376, 153.3047285 ]), square_terms=array([[323967.17174465, 401840.36181195],
+ [401840.36181195, 498432.23105826]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=47, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.114033032338547, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 40, 41, 42, 43, 44, 45, 46]), old_indices_discarded=array([37, 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 41, 42, 43, 44, 45, 46, 47]), model=ScalarModel(intercept=1.0590382139587964, linear_terms=array([-280.9809403 , -348.70796313]), square_terms=array([[266181.47955628, 330177.67116074],
+ [330177.67116074, 409560.10325178]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=48, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.8012851877774967, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 41, 42, 43, 44, 45, 46, 47]), old_indices_discarded=array([37, 38, 40]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 41, 42, 43, 44, 45, 47, 48]), model=ScalarModel(intercept=1.220859614346961, linear_terms=array([-138.3649051 , -171.73746763]), square_terms=array([[158556.44632179, 196651.07147605],
+ [196651.07147605, 243898.29439121]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=49, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.513233363014608, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 41, 42, 43, 44, 45, 47, 48]), old_indices_discarded=array([37, 38, 40, 46]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 48, 49]), model=ScalarModel(intercept=1.2282682420444786, linear_terms=array([-238.11010807, -295.51259223]), square_terms=array([[ 74869.56239741, 92919.65993007],
+ [ 92919.65993007, 115321.54114857]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=50, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-0.834182990182004, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 48, 49]), old_indices_discarded=array([37, 38, 40, 41, 46]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=51, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.6081564997863604, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=52, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.1033304004202726, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=53, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-1.9051669620622436, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=54, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.424478532124386, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=55, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.232010752140536, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=56, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-1.5453303195996202, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=57, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.432448004507076, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=58, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-4.5291149894285505, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=59, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-1.5838494401492669, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=60, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-4.961162682124679, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=61, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.3220492039377594, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=62, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-1.5477989368164367, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'message': None, 'tranquilo_history': History for least_squares function with 63 entries., 'history': {'params': [{'CRRA': 13.597593925796534, 'DiscFac': 1.020747282479346}, {'CRRA': 12.392538539955158, 'DiscFac': 0.6174149114063475}, {'CRRA': 14.80264931163791, 'DiscFac': 0.8326677874318185}, {'CRRA': 12.392538539955158, 'DiscFac': 0.8066232391144652}, {'CRRA': 14.771533894047689, 'DiscFac': 1.1}, {'CRRA': 14.775517168591643, 'DiscFac': 0.5}, {'CRRA': 14.468122155990066, 'DiscFac': 0.5}, {'CRRA': 12.392538539955158, 'DiscFac': 1.0736606786321312}, {'CRRA': 14.80264931163791, 'DiscFac': 0.7851437377134408}, {'CRRA': 14.760718893191527, 'DiscFac': 1.1}, {'CRRA': 12.392538539955158, 'DiscFac': 0.9606688675973344}, {'CRRA': 13.444055859501773, 'DiscFac': 0.5}, {'CRRA': 13.68922978340706, 'DiscFac': 1.1}, {'CRRA': 13.800350112056032, 'DiscFac': 1.1}, {'CRRA': 14.653108579352649, 'DiscFac': 1.1}, {'CRRA': 13.733860806509067, 'DiscFac': 1.1}, {'CRRA': 13.533413460280963, 'DiscFac': 1.0879828070365027}, {'CRRA': 13.654507190717343, 'DiscFac': 1.1}, {'CRRA': 13.741852570001186, 'DiscFac': 1.0555947848542355}, {'CRRA': 13.762692131248489, 'DiscFac': 1.0746702605461693}, {'CRRA': 13.838008092863575, 'DiscFac': 1.0616383225721628}, {'CRRA': 13.725034150440946, 'DiscFac': 1.0803527378804203}, {'CRRA': 13.741370045958632, 'DiscFac': 1.0813751657181843}, {'CRRA': 13.772787944089714, 'DiscFac': 1.070788238644506}, {'CRRA': 13.757620359413389, 'DiscFac': 1.076251839651587}, {'CRRA': 13.76522943668619, 'DiscFac': 1.0738842444835321}, {'CRRA': 13.760176305468253, 'DiscFac': 1.0755211705357692}, {'CRRA': 13.762815908535117, 'DiscFac': 1.074994677092113}, {'CRRA': 13.766465318103393, 'DiscFac': 1.073385240068689}, {'CRRA': 13.765741837404423, 'DiscFac': 1.0734198935341484}, {'CRRA': 13.76498652924187, 'DiscFac': 1.0741464913817635}, {'CRRA': 13.765099214247023, 'DiscFac': 1.073987169470037}, {'CRRA': 13.76529772667114, 'DiscFac': 1.073834078766463}, {'CRRA': 13.765261690170846, 'DiscFac': 1.0738581297466943}, {'CRRA': 13.765213205132117, 'DiscFac': 1.0738971702745834}, {'CRRA': 13.765221385235995, 'DiscFac': 1.0738907865004494}, {'CRRA': 13.76523347183466, 'DiscFac': 1.0738809851467088}, {'CRRA': 13.765227417544464, 'DiscFac': 1.0738858722201654}, {'CRRA': 13.76522842842111, 'DiscFac': 1.0738850599644876}, {'CRRA': 13.76523021512763, 'DiscFac': 1.073883616766271}, {'CRRA': 13.765230214507426, 'DiscFac': 1.073883615997389}, {'CRRA': 13.765230214739557, 'DiscFac': 1.0738836162850556}, {'CRRA': 13.765230214887971, 'DiscFac': 1.0738836164690735}, {'CRRA': 13.765228657845949, 'DiscFac': 1.0738848717058849}, {'CRRA': 13.765230214640988, 'DiscFac': 1.0738836161630856}, {'CRRA': 13.765228657644837, 'DiscFac': 1.0738848714563134}, {'CRRA': 13.765230214734727, 'DiscFac': 1.0738836162788903}, {'CRRA': 13.765228658030406, 'DiscFac': 1.0738848719349061}, {'CRRA': 13.765228658584434, 'DiscFac': 1.0738848726220682}, {'CRRA': 13.765228658553019, 'DiscFac': 1.0738848725830974}, {'CRRA': 13.765230216618574, 'DiscFac': 1.0738836186197498}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}], 'criterion': [1.5919418620501866, 3.256642791598931, 2.4245720174482632, 2.6770326909650377, 1.375271059626373, 3.932115023884988, 3.8900565091396633, 1.3788040584356367, 2.67342734680254, 1.3747875134503535, 1.7273269565534193, 3.784579404744082, 1.3717696200767946, 1.3671976679432574, 1.5932413313061198, 1.7940144542579126, 1.4714362912230357, 1.4586163616235037, 1.4116247061572644, 1.1237511246855783, 1.817413667189244, 1.7640558941311795, 1.2590902699405484, 2.1087642405633775, 1.6806322555078967, 0.6882579284467486, 1.3619794529851408, 1.7708804039433663, 1.487817536704842, 1.6073083741913023, 1.3515606737064714, 1.5988332872617663, 2.1071882633058205, 1.6046549090592486, 2.4392140191496465, 2.0969547685400998, 1.619697166814026, 1.4177027742030972, 2.7375198870821396, 1.648837292228864, 1.2017087559283488, 1.6123653333088765, 2.1559864840618888, 1.6813226057480248, 1.7555339640362284, 1.5641420916511097, 2.121351535271443, 1.195628783451865, 1.366634904655717, 1.7240618907150989, 0.9835036694297299, 1.5576561839970382, 1.389378348605993, 1.323322900002188, 1.4964292964688457, 1.432272428511995, 1.2033755926739262, 3.1657769462342085, 2.197985075310209, 1.2162154879079494, 2.342003085876411, 1.4622856861257032, 1.2041984771527132], 'runtime': [0.0, 2.0825537890000305, 2.304332205999799, 2.5202568370000336, 2.752349718000005, 2.9856617369996457, 3.2192967379996844, 3.4485792460000084, 3.701930288999847, 4.015171013999861, 4.454668695999771, 4.669011841999691, 4.894209664999835, 6.820035805999851, 8.57855164600005, 10.310429240999838, 12.091082415000074, 13.79618391699978, 15.48075700299978, 17.167798326999673, 18.990243108999948, 20.715586998999697, 22.467751674999818, 24.235677248999764, 25.957298829999672, 27.703975633000027, 29.413045380999847, 31.228969932999917, 32.923921876999884, 34.6790341789997, 36.43617003500003, 38.32504238499996, 40.16391709299978, 41.907183702999646, 43.74042012699965, 45.45150464900007, 47.17200287099968, 48.90636308400008, 50.674419703999774, 52.51235168999983, 54.256131906000064, 56.12240377699982, 57.842474824999954, 59.62035617699985, 61.38132491599981, 63.246293440000045, 65.0222065969997, 66.75320940899974, 68.49351131899994, 70.48024981899971, 72.27372107699966, 74.07178742799988, 75.84724168000002, 77.53998098800002, 79.26190303999965, 80.98321577199977, 82.81359508299965, 84.52387710899984, 86.25460904200008, 88.0250253449999, 89.76157718399963, 91.52082204299995, 93.24137594800004], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]}, 'multistart_info': {...}}], 'exploration_sample': array([[12.321875, 1.08125 ],
+ [14.09375 , 0.9875 ],
+ [17.6375 , 1.025 ],
+ [16.45625 , 0.9125 ],
+ [11.73125 , 0.7625 ],
+ [10.55 , 0.8 ],
+ [12.9125 , 0.575 ],
+ [15.275 , 0.65 ],
+ [17.046875, 0.63125 ],
+ [18.81875 , 0.5375 ],
+ [ 9.36875 , 0.8375 ],
+ [ 8.1875 , 0.725 ],
+ [ 7.00625 , 0.6125 ],
+ [ 5.825 , 0.95 ],
+ [ 4.64375 , 0.6875 ],
+ [ 2.871875, 0.78125 ],
+ [ 5. , 0.95 ],
+ [ 3.4625 , 0.875 ],
+ [ 2.28125 , 1.0625 ]]), 'exploration_results': array([ 1.25226984, 1.77139048, 1.79567843, 2.19243348, 2.99563577,
+ 3.4003551 , 3.46407238, 3.67340234, 3.72448066, 4.28414873,
+ 4.65250486, 5.39134448, 6.53886763, 14.94020775, 20.34265339,
+ 25.6087008 , 28.43667398, 29.29813793, 75.84976584])}}"
diff --git a/content/tables/min/WarmGlowPortfolioSub(Stock)(Labor)Market_estimate_results.csv b/content/tables/min/WarmGlowPortfolioSub(Stock)(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..1a501be
--- /dev/null
+++ b/content/tables/min/WarmGlowPortfolioSub(Stock)(Labor)Market_estimate_results.csv
@@ -0,0 +1,6021 @@
+CRRA,5.573894562325964
+DiscFac,1.0637390075406437
+time_to_estimate,236.7087128162384
+params,"{'CRRA': 5.573894562325964, 'DiscFac': 1.0637390075406437}"
+criterion,1.4220519178994522
+start_criterion,3.7528915666217584
+start_params,"{'CRRA': 5.0, 'DiscFac': 0.95}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,Absolute criterion change smaller than tolerance.
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 5.3827721337329075, 'DiscFac': 0.5}, {'CRRA': 6.341227184076231, 'DiscFac': 0.9843397863096757}, {'CRRA': 5.308772815923768, 'DiscFac': 0.9942847020759833}, {'CRRA': 6.341227184076231, 'DiscFac': 1.099329565298806}, {'CRRA': 6.341227184076231, 'DiscFac': 0.7325487756828386}, {'CRRA': 6.341227184076231, 'DiscFac': 0.661184756844424}, {'CRRA': 5.670357912186334, 'DiscFac': 1.1}, {'CRRA': 6.341227184076231, 'DiscFac': 1.0027250193492325}, {'CRRA': 6.341227184076231, 'DiscFac': 1.0927982791010287}, {'CRRA': 5.308772815923768, 'DiscFac': 1.0118564969416792}, {'CRRA': 5.957814024190954, 'DiscFac': 0.5}, {'CRRA': 6.114808484578101, 'DiscFac': 1.1}, {'CRRA': 5.793348226117784, 'DiscFac': 0.8284226490669568}, {'CRRA': 5.75003997251512, 'DiscFac': 0.8880821392041797}, {'CRRA': 5.693161284486315, 'DiscFac': 1.0118481504711487}, {'CRRA': 5.569384429577121, 'DiscFac': 1.0922008146955873}, {'CRRA': 5.5194785395513035, 'DiscFac': 1.0658390858610285}, {'CRRA': 5.600878088644884, 'DiscFac': 1.1}, {'CRRA': 5.77759213158942, 'DiscFac': 1.0321931747072446}, {'CRRA': 5.545693184498602, 'DiscFac': 1.055901773046547}, {'CRRA': 5.454950141541775, 'DiscFac': 1.0580103701909507}, {'CRRA': 5.551742738556068, 'DiscFac': 1.0610052791857207}, {'CRRA': 5.569955078014674, 'DiscFac': 1.0653960027788554}, {'CRRA': 5.560809192249429, 'DiscFac': 1.0668198165422604}, {'CRRA': 5.574179063160669, 'DiscFac': 1.0637026157965719}, {'CRRA': 5.565030737518938, 'DiscFac': 1.0667766565553518}, {'CRRA': 5.578730259698591, 'DiscFac': 1.0636435394860717}, {'CRRA': 5.571905522822675, 'DiscFac': 1.0633495597956906}, {'CRRA': 5.575317879327959, 'DiscFac': 1.063494000480499}, {'CRRA': 5.574535066002697, 'DiscFac': 1.0641709732701494}, {'CRRA': 5.573894562325964, 'DiscFac': 1.0637390075406437}], 'criterion': [3.0263314834387383, 4.314184027187926, nan, 2.6142787419100317, nan, 4.730311355914472, 4.931838606867419, 1.9543423789678298, nan, nan, 2.1984626089974055, 4.789253019202322, nan, 3.940933836887815, 3.4612490178599495, 2.070351234692411, 1.7490483015806304, 1.4289096777146673, 1.9829352389581485, 1.6954301219950216, 1.4443085463640908, 1.4384944542770688, 1.4260383541426693, 1.42426971311261, 1.427741913899455, 1.4220984404550594, 1.427437660317148, 1.422217891677385, 1.4225162577343387, 1.4221438433511406, 1.4221892061726984, 1.4220519178994522], 'runtime': [0.0, 2.3060040300001674, 2.5296067510003013, 2.746056181000313, 2.955891735000023, 3.1852807540003596, 3.418634059999931, 3.646312295000371, 3.8771810240000377, 4.1162852550000935, 4.332836274000329, 4.594906272000117, 4.8272969570002715, 6.81588306499998, 8.537752602000182, 10.276266272000157, 12.019839181999942, 13.738447911000094, 15.57650557900024, 17.296406226000272, 19.017319258000043, 20.712462229000266, 22.41346721400032, 24.151581480999994, 25.881935801000054, 27.747960174000127, 29.504578251000112, 31.23275424700023, 32.95328207200009, 34.65527811200036, 36.36891135099995, 38.069648728000175], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]}"
+convergence_report,
+multistart_info,"{'start_parameters': [{'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance., Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Maximum number of criterion evaluations reached.], 'exploration_sample': [{'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 5.0, 'DiscFac': 0.95}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 14.093749999999998, 'DiscFac': 0.9875}, {'CRRA': 9.368749999999999, 'DiscFac': 0.8375}, {'CRRA': 17.6375, 'DiscFac': 1.0250000000000001}, {'CRRA': 8.1875, 'DiscFac': 0.7250000000000001}, {'CRRA': 10.549999999999999, 'DiscFac': 0.8}, {'CRRA': 16.45625, 'DiscFac': 0.9125000000000001}, {'CRRA': 7.00625, 'DiscFac': 0.6125}, {'CRRA': 11.73125, 'DiscFac': 0.7625000000000001}, {'CRRA': 15.274999999999999, 'DiscFac': 0.65}, {'CRRA': 12.9125, 'DiscFac': 0.575}, {'CRRA': 17.046875, 'DiscFac': 0.6312500000000001}, {'CRRA': 18.81875, 'DiscFac': 0.5375}, {'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 2.28125, 'DiscFac': 1.0625}, {'CRRA': 2.871875, 'DiscFac': 0.78125}], 'exploration_results': array([ 3.02633148, 3.30050278, 3.74724591, 3.92461378, 4.45534719,
+ 4.52159416, 4.77507862, 5.06340436, 5.16761845, 5.42393003,
+ 5.50914405, 5.69522002, 6.68407291, 6.73863805, 6.84560996,
+ 7.20052264, 7.72130492, 8.47185488, 10.67451262])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=3.0263314834387383, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=0, candidate_x=array([5.825, 0.95 ]), index=0, x=array([5.825, 0.95 ]), fval=3.0263314834387383, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.1269978152790263, linear_terms=array([-0.51127322, -0.63965657]), square_terms=array([[11.76668356, 13.01143564],
+ [13.01143564, 15.17207492]]), scale=array([0.51622718, 0.3 ]), shift=array([5.825, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=13, candidate_x=array([5.79334823, 0.82842265]), index=0, x=array([5.825, 0.95 ]), fval=3.0263314834387383, rho=-0.5747486887475365, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.29124999999999995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 7, 8, 10, 11, 12, 13]), model=ScalarModel(intercept=1.581609097434704, linear_terms=array([2.65278709, 2.28940689]), square_terms=array([[8.20115491, 7.03588261],
+ [7.03588261, 6.38777128]]), scale=array([0.25811359, 0.2040568 ]), shift=array([5.825 , 0.8959432])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=14, candidate_x=array([5.75003997, 0.88808214]), index=0, x=array([5.825, 0.95 ]), fval=3.0263314834387383, rho=-0.3451917980793785, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 7, 8, 10, 11, 12, 13]), old_indices_discarded=array([1, 4, 5, 6, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.14562499999999998, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 7, 8, 11, 12, 13, 14]), model=ScalarModel(intercept=1.6064049690312896, linear_terms=array([1.823518 , 1.65703042]), square_terms=array([[3.57574989, 3.17459736],
+ [3.17459736, 3.01964201]]), scale=0.14562499999999998, shift=array([5.825, 0.95 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=15, candidate_x=array([5.69316128, 1.01184815]), index=15, x=array([5.69316128, 1.01184815]), fval=2.070351234692411, rho=2.2229628748013988, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 7, 8, 11, 12, 13, 14]), old_indices_discarded=array([ 1, 4, 5, 6, 9, 10]), step_length=0.1456249999999998, relative_step_length=0.9999999999999989, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.69316128, 1.01184815]), radius=0.29124999999999995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 11, 12, 13, 14, 15]), model=ScalarModel(intercept=1.8544790200782664, linear_terms=array([-0.67331221, -1.21592495]), square_terms=array([[1.63171239, 1.52446346],
+ [1.52446346, 2.03881587]]), scale=array([0.25811359, 0.17313272]), shift=array([5.69316128, 0.92686728])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=16, candidate_x=array([5.56938443, 1.09220081]), index=16, x=array([5.56938443, 1.09220081]), fval=1.7490483015806302, rho=4.7314095484198075, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 11, 12, 13, 14, 15]), old_indices_discarded=array([1, 2, 4, 5, 6, 8, 9]), step_length=0.1475712047087003, relative_step_length=0.5066822479268681, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56938443, 1.09220081]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16]), model=ScalarModel(intercept=7.085140584300428, linear_terms=array([ -5.65921381, -14.17503365]), square_terms=array([[ 5.20815903, 7.08665734],
+ [ 7.08665734, 17.08804688]]), scale=array([0.51622718, 0.26201318]), shift=array([5.56938443, 0.83798682])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=17, candidate_x=array([5.51947854, 1.06583909]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=1.7809591946937149, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 8, 9, 11]), step_length=0.05644057588664191, relative_step_length=0.09689369250925652, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 13, 14, 15, 16, 17]), model=ScalarModel(intercept=2.3354605283597563, linear_terms=array([ 1.46424334, -2.36914478]), square_terms=array([[ 1.06094696, -1.63153519],
+ [-1.63153519, 2.58355658]]), scale=array([0.51622718, 0.27519405]), shift=array([5.51947854, 0.82480595])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=18, candidate_x=array([5.60087809, 1.1 ]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-85.51150568657764, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 13, 14, 15, 16, 17]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 10, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.29124999999999995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 14, 15, 16, 17, 18]), model=ScalarModel(intercept=3.1012802436018085, linear_terms=array([-0.92259607, -5.33641639]), square_terms=array([[0.27027798, 1.20759192],
+ [1.20759192, 7.70294614]]), scale=array([0.25811359, 0.14613725]), shift=array([5.51947854, 0.95386275])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=19, candidate_x=array([5.77759213, 1.03219317]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-4.019293806179108, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 14, 15, 16, 17, 18]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 8, 9, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.14562499999999998, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 14, 15, 16, 17, 18, 19]), model=ScalarModel(intercept=1.5213811565094542, linear_terms=array([-0.14355744, -1.03791084]), square_terms=array([[0.06159175, 0.28510759],
+ [0.28510759, 2.13210366]]), scale=array([0.1290568 , 0.08160886]), shift=array([5.51947854, 1.01839114])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=20, candidate_x=array([5.54569318, 1.05590177]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-1.535972006541552, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 14, 15, 16, 17, 18, 19]), old_indices_discarded=array([ 0, 1, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.07281249999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 15, 16, 17, 18, 19, 20]), model=ScalarModel(intercept=1.3026835229178233, linear_terms=array([ 0.01296259, -0.29445874]), square_terms=array([[ 0.00193973, -0.00535854],
+ [-0.00535854, 1.93956479]]), scale=array([0.0645284 , 0.04934466]), shift=array([5.51947854, 1.05065534])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=21, candidate_x=array([5.45495014, 1.05801037]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-0.27578700766971787, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 15, 16, 17, 18, 19, 20]), old_indices_discarded=array([ 0, 13, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.036406249999999994, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 7, 15, 16, 17, 18, 20, 21]), model=ScalarModel(intercept=1.3985870458518956, linear_terms=array([-0.03050627, 0.11095194]), square_terms=array([[0.00179814, 0.01810855],
+ [0.01810855, 0.86143979]]), scale=array([0.0322642, 0.0322642]), shift=array([5.51947854, 1.06583909])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=22, candidate_x=array([5.55174274, 1.06100528]), index=22, x=array([5.55174274, 1.06100528]), fval=1.426038354142669, rho=0.07310801718365617, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 7, 15, 16, 17, 18, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0326242888718403, relative_step_length=0.8961178059217939, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.55174274, 1.06100528]), radius=0.018203124999999997, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 17, 18, 20, 22]), model=ScalarModel(intercept=1.4163790473957398, linear_terms=array([-0.00983569, -0.08333704]), square_terms=array([[2.86954770e-04, 8.05036733e-04],
+ [8.05036733e-04, 3.32811019e-01]]), scale=0.018203124999999997, shift=array([5.55174274, 1.06100528])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=23, candidate_x=array([5.56995508, 1.065396 ]), index=23, x=array([5.56995508, 1.065396 ]), fval=1.42426971311261, rho=0.0887754386245564, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([16, 17, 18, 20, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.01873413361292202, relative_step_length=1.0291712886068751, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56995508, 1.065396 ]), radius=0.009101562499999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 20, 22, 23]), model=ScalarModel(intercept=1.4255871683087975, linear_terms=array([ 0.01282382, -0.01799885]), square_terms=array([[ 0.00027616, -0.00248466],
+ [-0.00248466, 0.08699657]]), scale=0.009101562499999999, shift=array([5.56995508, 1.065396 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=24, candidate_x=array([5.56080919, 1.06681982]), index=23, x=array([5.56995508, 1.065396 ]), fval=1.42426971311261, rho=-0.24612567440050911, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 20, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56995508, 1.065396 ]), radius=0.004550781249999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 23, 24]), model=ScalarModel(intercept=1.42426971311261, linear_terms=array([-4.86697548e-05, 7.42140875e-03]), square_terms=array([[ 7.70644314e-06, -1.20696978e-04],
+ [-1.20696978e-04, 1.96339837e-02]]), scale=0.004550781249999999, shift=array([5.56995508, 1.065396 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=25, candidate_x=array([5.57417906, 1.06370262]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=1.5482217964560738, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.004550781249999896, relative_step_length=0.9999999999999774, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.009101562499999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 18, 20, 22, 23, 24, 25]), model=ScalarModel(intercept=1.4247281558811358, linear_terms=array([ 0.00539427, -0.03219716]), square_terms=array([[ 3.96935302e-05, -1.28952506e-03],
+ [-1.28952506e-03, 8.65974369e-02]]), scale=0.009101562499999999, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=26, candidate_x=array([5.56503074, 1.06677666]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.48986170098858195, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 18, 20, 22, 23, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.004550781249999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 23, 24, 25, 26]), model=ScalarModel(intercept=1.422282780554977, linear_terms=array([-0.00015294, 0.00037013]), square_terms=array([[ 7.13476990e-06, -1.13770520e-04],
+ [-1.13770520e-04, 1.96031452e-02]]), scale=0.004550781249999999, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=27, candidate_x=array([5.57873026, 1.06364354]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.7907220678531115, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 23, 24, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.0022753906249999996, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 26, 27]), model=ScalarModel(intercept=1.4221663020015802, linear_terms=array([5.73401438e-05, 7.45830401e-04]), square_terms=array([[ 1.12265319e-06, -2.59043861e-05],
+ [-2.59043861e-05, 4.91328724e-03]]), scale=0.0022753906249999996, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=28, candidate_x=array([5.57190552, 1.06334956]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-3.5610604492495965, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.0011376953124999998, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 27, 28]), model=ScalarModel(intercept=1.422325827336663, linear_terms=array([-4.61917023e-05, 2.38441492e-04]), square_terms=array([[ 3.55694453e-07, -6.48069226e-06],
+ [-6.48069226e-06, 1.22037302e-03]]), scale=0.0011376953124999998, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=29, candidate_x=array([5.57531788, 1.063494 ]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.6669519353256694, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.0005688476562499999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 28, 29]), model=ScalarModel(intercept=1.422098440455059, linear_terms=array([-4.34744633e-05, -3.03707274e-04]), square_terms=array([[ 8.37764168e-08, -1.07708651e-06],
+ [-1.07708651e-06, 2.98889073e-04]]), scale=0.0005688476562499999, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=30, candidate_x=array([5.57453507, 1.06417097]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.5142705306272952, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.00028442382812499995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 29, 30]), model=ScalarModel(intercept=1.422098440455059, linear_terms=array([ 4.17356026e-06, -1.04084673e-05]), square_terms=array([[ 1.93011592e-08, -1.59744779e-07],
+ [-1.59744779e-07, 7.59670263e-05]]), scale=0.00028442382812499995, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=31, candidate_x=array([5.57389456, 1.06373901]), index=31, x=array([5.57389456, 1.06373901]), fval=1.4220519178994522, rho=9.583354885845637, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([25, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.00028681890451018565, relative_step_length=1.0084208007499749, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 32 entries., 'multistart_info': {'start_parameters': [array([5.825, 0.95 ]), array([7.55033227, 1.06886786])], 'local_optima': [{'solution_x': array([5.57389456, 1.06373901]), 'solution_criterion': 1.4220519178994522, 'states': [State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=3.0263314834387383, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=0, candidate_x=array([5.825, 0.95 ]), index=0, x=array([5.825, 0.95 ]), fval=3.0263314834387383, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.1269978152790263, linear_terms=array([-0.51127322, -0.63965657]), square_terms=array([[11.76668356, 13.01143564],
+ [13.01143564, 15.17207492]]), scale=array([0.51622718, 0.3 ]), shift=array([5.825, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=13, candidate_x=array([5.79334823, 0.82842265]), index=0, x=array([5.825, 0.95 ]), fval=3.0263314834387383, rho=-0.5747486887475365, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.29124999999999995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 7, 8, 10, 11, 12, 13]), model=ScalarModel(intercept=1.581609097434704, linear_terms=array([2.65278709, 2.28940689]), square_terms=array([[8.20115491, 7.03588261],
+ [7.03588261, 6.38777128]]), scale=array([0.25811359, 0.2040568 ]), shift=array([5.825 , 0.8959432])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=14, candidate_x=array([5.75003997, 0.88808214]), index=0, x=array([5.825, 0.95 ]), fval=3.0263314834387383, rho=-0.3451917980793785, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 7, 8, 10, 11, 12, 13]), old_indices_discarded=array([1, 4, 5, 6, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.14562499999999998, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 7, 8, 11, 12, 13, 14]), model=ScalarModel(intercept=1.6064049690312896, linear_terms=array([1.823518 , 1.65703042]), square_terms=array([[3.57574989, 3.17459736],
+ [3.17459736, 3.01964201]]), scale=0.14562499999999998, shift=array([5.825, 0.95 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=15, candidate_x=array([5.69316128, 1.01184815]), index=15, x=array([5.69316128, 1.01184815]), fval=2.070351234692411, rho=2.2229628748013988, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 7, 8, 11, 12, 13, 14]), old_indices_discarded=array([ 1, 4, 5, 6, 9, 10]), step_length=0.1456249999999998, relative_step_length=0.9999999999999989, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.69316128, 1.01184815]), radius=0.29124999999999995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 11, 12, 13, 14, 15]), model=ScalarModel(intercept=1.8544790200782664, linear_terms=array([-0.67331221, -1.21592495]), square_terms=array([[1.63171239, 1.52446346],
+ [1.52446346, 2.03881587]]), scale=array([0.25811359, 0.17313272]), shift=array([5.69316128, 0.92686728])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=16, candidate_x=array([5.56938443, 1.09220081]), index=16, x=array([5.56938443, 1.09220081]), fval=1.7490483015806302, rho=4.7314095484198075, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 11, 12, 13, 14, 15]), old_indices_discarded=array([1, 2, 4, 5, 6, 8, 9]), step_length=0.1475712047087003, relative_step_length=0.5066822479268681, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56938443, 1.09220081]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16]), model=ScalarModel(intercept=7.085140584300428, linear_terms=array([ -5.65921381, -14.17503365]), square_terms=array([[ 5.20815903, 7.08665734],
+ [ 7.08665734, 17.08804688]]), scale=array([0.51622718, 0.26201318]), shift=array([5.56938443, 0.83798682])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=17, candidate_x=array([5.51947854, 1.06583909]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=1.7809591946937149, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 8, 9, 11]), step_length=0.05644057588664191, relative_step_length=0.09689369250925652, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 13, 14, 15, 16, 17]), model=ScalarModel(intercept=2.3354605283597563, linear_terms=array([ 1.46424334, -2.36914478]), square_terms=array([[ 1.06094696, -1.63153519],
+ [-1.63153519, 2.58355658]]), scale=array([0.51622718, 0.27519405]), shift=array([5.51947854, 0.82480595])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=18, candidate_x=array([5.60087809, 1.1 ]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-85.51150568657764, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 13, 14, 15, 16, 17]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 10, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.29124999999999995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 14, 15, 16, 17, 18]), model=ScalarModel(intercept=3.1012802436018085, linear_terms=array([-0.92259607, -5.33641639]), square_terms=array([[0.27027798, 1.20759192],
+ [1.20759192, 7.70294614]]), scale=array([0.25811359, 0.14613725]), shift=array([5.51947854, 0.95386275])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=19, candidate_x=array([5.77759213, 1.03219317]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-4.019293806179108, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 14, 15, 16, 17, 18]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 8, 9, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.14562499999999998, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 14, 15, 16, 17, 18, 19]), model=ScalarModel(intercept=1.5213811565094542, linear_terms=array([-0.14355744, -1.03791084]), square_terms=array([[0.06159175, 0.28510759],
+ [0.28510759, 2.13210366]]), scale=array([0.1290568 , 0.08160886]), shift=array([5.51947854, 1.01839114])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=20, candidate_x=array([5.54569318, 1.05590177]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-1.535972006541552, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 14, 15, 16, 17, 18, 19]), old_indices_discarded=array([ 0, 1, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.07281249999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 15, 16, 17, 18, 19, 20]), model=ScalarModel(intercept=1.3026835229178233, linear_terms=array([ 0.01296259, -0.29445874]), square_terms=array([[ 0.00193973, -0.00535854],
+ [-0.00535854, 1.93956479]]), scale=array([0.0645284 , 0.04934466]), shift=array([5.51947854, 1.05065534])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=21, candidate_x=array([5.45495014, 1.05801037]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-0.27578700766971787, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 15, 16, 17, 18, 19, 20]), old_indices_discarded=array([ 0, 13, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.036406249999999994, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 7, 15, 16, 17, 18, 20, 21]), model=ScalarModel(intercept=1.3985870458518956, linear_terms=array([-0.03050627, 0.11095194]), square_terms=array([[0.00179814, 0.01810855],
+ [0.01810855, 0.86143979]]), scale=array([0.0322642, 0.0322642]), shift=array([5.51947854, 1.06583909])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=22, candidate_x=array([5.55174274, 1.06100528]), index=22, x=array([5.55174274, 1.06100528]), fval=1.426038354142669, rho=0.07310801718365617, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 7, 15, 16, 17, 18, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0326242888718403, relative_step_length=0.8961178059217939, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.55174274, 1.06100528]), radius=0.018203124999999997, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 17, 18, 20, 22]), model=ScalarModel(intercept=1.4163790473957398, linear_terms=array([-0.00983569, -0.08333704]), square_terms=array([[2.86954770e-04, 8.05036733e-04],
+ [8.05036733e-04, 3.32811019e-01]]), scale=0.018203124999999997, shift=array([5.55174274, 1.06100528])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=23, candidate_x=array([5.56995508, 1.065396 ]), index=23, x=array([5.56995508, 1.065396 ]), fval=1.42426971311261, rho=0.0887754386245564, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([16, 17, 18, 20, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.01873413361292202, relative_step_length=1.0291712886068751, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56995508, 1.065396 ]), radius=0.009101562499999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 20, 22, 23]), model=ScalarModel(intercept=1.4255871683087975, linear_terms=array([ 0.01282382, -0.01799885]), square_terms=array([[ 0.00027616, -0.00248466],
+ [-0.00248466, 0.08699657]]), scale=0.009101562499999999, shift=array([5.56995508, 1.065396 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=24, candidate_x=array([5.56080919, 1.06681982]), index=23, x=array([5.56995508, 1.065396 ]), fval=1.42426971311261, rho=-0.24612567440050911, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 20, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56995508, 1.065396 ]), radius=0.004550781249999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 23, 24]), model=ScalarModel(intercept=1.42426971311261, linear_terms=array([-4.86697548e-05, 7.42140875e-03]), square_terms=array([[ 7.70644314e-06, -1.20696978e-04],
+ [-1.20696978e-04, 1.96339837e-02]]), scale=0.004550781249999999, shift=array([5.56995508, 1.065396 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=25, candidate_x=array([5.57417906, 1.06370262]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=1.5482217964560738, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.004550781249999896, relative_step_length=0.9999999999999774, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.009101562499999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 18, 20, 22, 23, 24, 25]), model=ScalarModel(intercept=1.4247281558811358, linear_terms=array([ 0.00539427, -0.03219716]), square_terms=array([[ 3.96935302e-05, -1.28952506e-03],
+ [-1.28952506e-03, 8.65974369e-02]]), scale=0.009101562499999999, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=26, candidate_x=array([5.56503074, 1.06677666]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.48986170098858195, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 18, 20, 22, 23, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.004550781249999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 23, 24, 25, 26]), model=ScalarModel(intercept=1.422282780554977, linear_terms=array([-0.00015294, 0.00037013]), square_terms=array([[ 7.13476990e-06, -1.13770520e-04],
+ [-1.13770520e-04, 1.96031452e-02]]), scale=0.004550781249999999, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=27, candidate_x=array([5.57873026, 1.06364354]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.7907220678531115, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 23, 24, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.0022753906249999996, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 26, 27]), model=ScalarModel(intercept=1.4221663020015802, linear_terms=array([5.73401438e-05, 7.45830401e-04]), square_terms=array([[ 1.12265319e-06, -2.59043861e-05],
+ [-2.59043861e-05, 4.91328724e-03]]), scale=0.0022753906249999996, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=28, candidate_x=array([5.57190552, 1.06334956]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-3.5610604492495965, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.0011376953124999998, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 27, 28]), model=ScalarModel(intercept=1.422325827336663, linear_terms=array([-4.61917023e-05, 2.38441492e-04]), square_terms=array([[ 3.55694453e-07, -6.48069226e-06],
+ [-6.48069226e-06, 1.22037302e-03]]), scale=0.0011376953124999998, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=29, candidate_x=array([5.57531788, 1.063494 ]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.6669519353256694, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.0005688476562499999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 28, 29]), model=ScalarModel(intercept=1.422098440455059, linear_terms=array([-4.34744633e-05, -3.03707274e-04]), square_terms=array([[ 8.37764168e-08, -1.07708651e-06],
+ [-1.07708651e-06, 2.98889073e-04]]), scale=0.0005688476562499999, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=30, candidate_x=array([5.57453507, 1.06417097]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.5142705306272952, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.00028442382812499995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 29, 30]), model=ScalarModel(intercept=1.422098440455059, linear_terms=array([ 4.17356026e-06, -1.04084673e-05]), square_terms=array([[ 1.93011592e-08, -1.59744779e-07],
+ [-1.59744779e-07, 7.59670263e-05]]), scale=0.00028442382812499995, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=31, candidate_x=array([5.57389456, 1.06373901]), index=31, x=array([5.57389456, 1.06373901]), fval=1.4220519178994522, rho=9.583354885845637, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([25, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.00028681890451018565, relative_step_length=1.0084208007499749, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 32 entries., 'history': {'params': [{'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 5.3827721337329075, 'DiscFac': 0.5}, {'CRRA': 6.341227184076231, 'DiscFac': 0.9843397863096757}, {'CRRA': 5.308772815923768, 'DiscFac': 0.9942847020759833}, {'CRRA': 6.341227184076231, 'DiscFac': 1.099329565298806}, {'CRRA': 6.341227184076231, 'DiscFac': 0.7325487756828386}, {'CRRA': 6.341227184076231, 'DiscFac': 0.661184756844424}, {'CRRA': 5.670357912186334, 'DiscFac': 1.1}, {'CRRA': 6.341227184076231, 'DiscFac': 1.0027250193492325}, {'CRRA': 6.341227184076231, 'DiscFac': 1.0927982791010287}, {'CRRA': 5.308772815923768, 'DiscFac': 1.0118564969416792}, {'CRRA': 5.957814024190954, 'DiscFac': 0.5}, {'CRRA': 6.114808484578101, 'DiscFac': 1.1}, {'CRRA': 5.793348226117784, 'DiscFac': 0.8284226490669568}, {'CRRA': 5.75003997251512, 'DiscFac': 0.8880821392041797}, {'CRRA': 5.693161284486315, 'DiscFac': 1.0118481504711487}, {'CRRA': 5.569384429577121, 'DiscFac': 1.0922008146955873}, {'CRRA': 5.5194785395513035, 'DiscFac': 1.0658390858610285}, {'CRRA': 5.600878088644884, 'DiscFac': 1.1}, {'CRRA': 5.77759213158942, 'DiscFac': 1.0321931747072446}, {'CRRA': 5.545693184498602, 'DiscFac': 1.055901773046547}, {'CRRA': 5.454950141541775, 'DiscFac': 1.0580103701909507}, {'CRRA': 5.551742738556068, 'DiscFac': 1.0610052791857207}, {'CRRA': 5.569955078014674, 'DiscFac': 1.0653960027788554}, {'CRRA': 5.560809192249429, 'DiscFac': 1.0668198165422604}, {'CRRA': 5.574179063160669, 'DiscFac': 1.0637026157965719}, {'CRRA': 5.565030737518938, 'DiscFac': 1.0667766565553518}, {'CRRA': 5.578730259698591, 'DiscFac': 1.0636435394860717}, {'CRRA': 5.571905522822675, 'DiscFac': 1.0633495597956906}, {'CRRA': 5.575317879327959, 'DiscFac': 1.063494000480499}, {'CRRA': 5.574535066002697, 'DiscFac': 1.0641709732701494}, {'CRRA': 5.573894562325964, 'DiscFac': 1.0637390075406437}], 'criterion': [3.0263314834387383, 4.314184027187926, nan, 2.6142787419100317, nan, 4.730311355914472, 4.931838606867419, 1.9543423789678298, nan, nan, 2.1984626089974055, 4.789253019202322, nan, 3.940933836887815, 3.4612490178599495, 2.070351234692411, 1.7490483015806304, 1.4289096777146673, 1.9829352389581485, 1.6954301219950216, 1.4443085463640908, 1.4384944542770688, 1.4260383541426693, 1.42426971311261, 1.427741913899455, 1.4220984404550594, 1.427437660317148, 1.422217891677385, 1.4225162577343387, 1.4221438433511406, 1.4221892061726984, 1.4220519178994522], 'runtime': [0.0, 2.3060040300001674, 2.5296067510003013, 2.746056181000313, 2.955891735000023, 3.1852807540003596, 3.418634059999931, 3.646312295000371, 3.8771810240000377, 4.1162852550000935, 4.332836274000329, 4.594906272000117, 4.8272969570002715, 6.81588306499998, 8.537752602000182, 10.276266272000157, 12.019839181999942, 13.738447911000094, 15.57650557900024, 17.296406226000272, 19.017319258000043, 20.712462229000266, 22.41346721400032, 24.151581480999994, 25.881935801000054, 27.747960174000127, 29.504578251000112, 31.23275424700023, 32.95328207200009, 34.65527811200036, 36.36891135099995, 38.069648728000175], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]}, 'multistart_info': {...}}, {'solution_x': array([7.55033227, 1.06886786]), 'solution_criterion': inf, 'states': [State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.7550332273206521, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=inf, linear_terms=array([nan, nan]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.7550332273206521, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=2.3250640840427264, linear_terms=array([0.42934169, 6.39052049]), square_terms=array([[ 0.57563022, 1.0761891 ],
+ [ 1.0761891 , 24.65080694]]), scale=array([0.66913078, 0.3 ]), shift=array([7.55033227, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.3775166136603261, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 7, 8, 9, 10, 12, 13]), model=ScalarModel(intercept=9.409494862894718, linear_terms=array([0.6730648 , 9.54642652]), square_terms=array([[0.40920183, 0.31552277],
+ [0.31552277, 6.96199281]]), scale=array([0.33456539, 0.18284876]), shift=array([7.55033227, 0.91715124])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 7, 8, 9, 10, 12, 13]), old_indices_discarded=array([ 1, 2, 3, 5, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.18875830683016304, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 7, 9, 10, 12, 13, 14]), model=ScalarModel(intercept=19.22375838635329, linear_terms=array([1.32892629, 5.63610224]), square_terms=array([[0.15092368, 0.22405344],
+ [0.22405344, 0.99645599]]), scale=array([0.16728269, 0.09920742]), shift=array([7.55033227, 1.00079258])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 7, 9, 10, 12, 13, 14]), old_indices_discarded=array([ 1, 2, 3, 5, 8, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.09437915341508152, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 13, 15, 16]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=array([0.08364135, 0.05738674]), shift=array([7.55033227, 1.04261326])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([16]), old_indices_used=array([ 0, 13, 15]), old_indices_discarded=array([14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.04718957670754076, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 18]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=array([0.04182067, 0.03647641]), shift=array([7.55033227, 1.06352359])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([18]), old_indices_used=array([ 0, 17]), old_indices_discarded=array([16]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.02359478835377038, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 19, 20]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=0.02359478835377038, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([20]), old_indices_used=array([ 0, 17, 19]), old_indices_discarded=array([18]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.01179739417688519, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 19, 20, 21, 22]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=0.01179739417688519, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([22]), old_indices_used=array([ 0, 17, 19, 20, 21]), old_indices_discarded=array([18]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.005898697088442595, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 19, 21, 22, 23, 24]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=0.005898697088442595, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([24]), old_indices_used=array([ 0, 17, 19, 21, 22, 23]), old_indices_discarded=array([20]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.0029493485442212974, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 19, 21, 23, 24, 25, 26]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=0.0029493485442212974, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([26]), old_indices_used=array([ 0, 17, 19, 21, 23, 24, 25]), old_indices_discarded=array([22]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.0014746742721106487, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 19, 21, 23, 25, 26, 27, 28]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=0.0014746742721106487, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([28]), old_indices_used=array([ 0, 17, 19, 21, 23, 25, 26, 27]), old_indices_discarded=array([24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.0007373371360553244, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 19, 21, 23, 25, 27, 29, 30]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=0.0007373371360553244, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([30]), old_indices_used=array([ 0, 17, 19, 21, 23, 25, 27, 29]), old_indices_discarded=array([26, 28]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.0003686685680276622, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 19, 21, 23, 25, 27, 29, 31, 32]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=0.0003686685680276622, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([32]), old_indices_used=array([ 0, 19, 21, 23, 25, 27, 29, 31]), old_indices_discarded=array([17, 28, 30]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.0001843342840138311, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 21, 23, 25, 27, 29, 31, 33, 34]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=0.0001843342840138311, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([34]), old_indices_used=array([ 0, 21, 23, 25, 27, 29, 31, 33]), old_indices_discarded=array([17, 19, 30, 32]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=9.216714200691555e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 23, 25, 27, 29, 31, 33, 35, 36]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=9.216714200691555e-05, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([36]), old_indices_used=array([ 0, 23, 25, 27, 29, 31, 33, 35]), old_indices_discarded=array([17, 19, 21, 32, 34]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=4.608357100345777e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 25, 27, 29, 31, 33, 35, 37, 38]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=4.608357100345777e-05, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([38]), old_indices_used=array([ 0, 25, 27, 29, 31, 33, 35, 37]), old_indices_discarded=array([17, 19, 21, 23, 34, 36]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=2.3041785501728886e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 27, 29, 31, 33, 35, 37, 39, 40]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=2.3041785501728886e-05, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([40]), old_indices_used=array([ 0, 27, 29, 31, 33, 35, 37, 39]), old_indices_discarded=array([17, 19, 21, 23, 25, 36, 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1.1520892750864443e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 29, 31, 33, 35, 37, 39, 41, 42]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1.1520892750864443e-05, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([42]), old_indices_used=array([ 0, 29, 31, 33, 35, 37, 39, 41]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 38, 40]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=5.7604463754322216e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 31, 33, 35, 37, 39, 41, 43, 44]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=5.7604463754322216e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([44]), old_indices_used=array([ 0, 31, 33, 35, 37, 39, 41, 43]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 40, 42]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=2.8802231877161108e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 33, 35, 37, 39, 41, 43, 45, 46]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=2.8802231877161108e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([46]), old_indices_used=array([ 0, 33, 35, 37, 39, 41, 43, 45]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 42, 44]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1.4401115938580554e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 35, 37, 39, 41, 43, 45, 47, 48]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1.4401115938580554e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([48]), old_indices_used=array([ 0, 35, 37, 39, 41, 43, 45, 47]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 44, 46]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 37, 39, 41, 43, 45, 47, 49, 50]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([50]), old_indices_used=array([ 0, 37, 39, 41, 43, 45, 47, 49]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 46, 48]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 39, 41, 43, 45, 47, 49, 51, 52]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([52]), old_indices_used=array([ 0, 39, 41, 43, 45, 47, 49, 51]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 46, 48, 50]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 43, 45, 47, 49, 51, 52, 53, 54]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([54]), old_indices_used=array([ 0, 43, 45, 47, 49, 51, 52, 53]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 46, 48, 50]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 45, 47, 49, 51, 52, 53, 55, 56]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([56]), old_indices_used=array([ 0, 45, 47, 49, 51, 52, 53, 55]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 46, 48, 50,
+ 54]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 49, 51, 52, 53, 55, 56, 57, 58]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([58]), old_indices_used=array([ 0, 49, 51, 52, 53, 55, 56, 57]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 50, 54]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 51, 52, 53, 55, 56, 57, 59, 60]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([60]), old_indices_used=array([ 0, 51, 52, 53, 55, 56, 57, 59]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 54, 58]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 53, 55, 56, 57, 59, 61, 62]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([62]), old_indices_used=array([ 0, 52, 53, 55, 56, 57, 59, 61]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 54, 58, 60]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 57, 59, 61, 62, 63, 64]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([64]), old_indices_used=array([ 0, 52, 56, 57, 59, 61, 62, 63]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 58, 60]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 59, 61, 62, 63, 65, 66]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([66]), old_indices_used=array([ 0, 52, 56, 59, 61, 62, 63, 65]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 60, 64]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 63, 65, 66, 67, 68]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([68]), old_indices_used=array([ 0, 52, 56, 62, 63, 65, 66, 67]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 64]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 65, 66, 67, 69, 70]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([70]), old_indices_used=array([ 0, 52, 56, 62, 65, 66, 67, 69]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 68]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 69, 70, 71, 72]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([72]), old_indices_used=array([ 0, 52, 56, 62, 66, 69, 70, 71]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 72, 73, 74]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([74]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 72, 73]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 72, 75, 76]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([76]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 72, 75]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71, 73, 74]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 72, 76, 78]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([78]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 72, 76]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71, 73, 74, 75, 77]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 72, 78, 80]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([80]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 72, 78]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71, 73, 74, 75, 76, 77, 79]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 78, 80, 82]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([82]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 78, 80]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71, 72, 73, 74, 75, 76, 77, 79, 81]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 78, 80, 84]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([84]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 78, 80]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 78, 80, 86]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([86]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 78, 80]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 56, 62, 66, 70, 78, 80, 86, 88]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([88]), old_indices_used=array([ 0, 56, 62, 66, 70, 78, 80, 86]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67,
+ 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 56, 62, 66, 70, 78, 80, 86, 90]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([90]), old_indices_used=array([ 0, 56, 62, 66, 70, 78, 80, 86]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67,
+ 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87, 88,
+ 89]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 56, 62, 66, 70, 78, 80, 86, 92]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([92]), old_indices_used=array([ 0, 56, 62, 66, 70, 78, 80, 86]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67,
+ 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87, 88,
+ 89, 90, 91]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 56, 62, 66, 70, 78, 80, 86, 94]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([94]), old_indices_used=array([ 0, 56, 62, 66, 70, 78, 80, 86]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67,
+ 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87, 88,
+ 89, 90, 91, 92, 93]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 56, 62, 66, 70, 78, 80, 86, 96]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([96]), old_indices_used=array([ 0, 56, 62, 66, 70, 78, 80, 86]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67,
+ 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87, 88,
+ 89, 90, 91, 92, 93, 94, 95]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 56, 62, 66, 70, 78, 80, 86, 98]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([98]), old_indices_used=array([ 0, 56, 62, 66, 70, 78, 80, 86]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67,
+ 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87, 88,
+ 89, 90, 91, 92, 93, 94, 95, 96, 97]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Maximum number of criterion evaluations reached.', 'tranquilo_history': History for least_squares function with 100 entries., 'history': {'params': [{'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 6.881201497543467, 'DiscFac': 0.5324914173423184}, {'CRRA': 8.219463048869576, 'DiscFac': 0.5584020131003072}, {'CRRA': 6.881201497543467, 'DiscFac': 0.5126134008358474}, {'CRRA': 8.219463048869576, 'DiscFac': 1.1}, {'CRRA': 8.219463048869576, 'DiscFac': 0.5072776897840494}, {'CRRA': 7.569182167018681, 'DiscFac': 0.5}, {'CRRA': 6.881201497543467, 'DiscFac': 0.9962729733060268}, {'CRRA': 8.219463048869576, 'DiscFac': 0.7918748475727242}, {'CRRA': 8.219463048869576, 'DiscFac': 1.0852235578167606}, {'CRRA': 6.93149220972855, 'DiscFac': 1.1}, {'CRRA': 6.881201497543467, 'DiscFac': 0.5031308867684463}, {'CRRA': 6.884642155849924, 'DiscFac': 1.1}, {'CRRA': 7.360029784352809, 'DiscFac': 0.7259523277207144}, {'CRRA': 7.258004185304884, 'DiscFac': 0.7343024706551552}, {'CRRA': 7.383049579290757, 'DiscFac': 0.901585164570919}, {'CRRA': 7.6339736201644035, 'DiscFac': 0.9852265115288008}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.508511599727581, 'DiscFac': 1.0755802553977896}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.566876385747435, 'DiscFac': 1.0520450650892463}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.541920876408272, 'DiscFac': 1.0605958023174336}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.554468301294523, 'DiscFac': 1.0646621600908786}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.55243512346204, 'DiscFac': 1.0709358714552508}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.551366279645872, 'DiscFac': 1.0678164333147342}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.549956235462028, 'DiscFac': 1.0682336174702518}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550311192488363, 'DiscFac': 1.0692359238563842}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.55014910403443, 'DiscFac': 1.0688885510616417}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550413214019603, 'DiscFac': 1.0688237748520384}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550345046822539, 'DiscFac': 1.0689121363620864}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550354859768847, 'DiscFac': 1.0688633009564907}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550343577712397, 'DiscFac': 1.0688700808990395}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550330353631747, 'DiscFac': 1.0688624272828449}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550335144118092, 'DiscFac': 1.0688680899005256}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550333613950777, 'DiscFac': 1.0688683841541116}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332222874611, 'DiscFac': 1.0688668597541364}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332372145181, 'DiscFac': 1.0688668633931486}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331278112982, 'DiscFac': 1.0688677595480731}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331278112972, 'DiscFac': 1.0688677595481844}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331727906194, 'DiscFac': 1.0688670202459338}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332587800952, 'DiscFac': 1.0688688077128645}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331708637145, 'DiscFac': 1.0688670331010641}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331447818857, 'DiscFac': 1.0688684230530674}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550333098595546, 'DiscFac': 1.0688672939222863}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550333272782672, 'DiscFac': 1.0688678875988677}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550333272939655, 'DiscFac': 1.0688678353855678}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.5503322501077434, 'DiscFac': 1.068866858753495}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331759993373, 'DiscFac': 1.0688670002254959}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332249867232, 'DiscFac': 1.068866858759081}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331273478922, 'DiscFac': 1.068867881826057}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.55033229654159, 'DiscFac': 1.0688688582143828}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332296309651, 'DiscFac': 1.0688688582197696}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332296310257, 'DiscFac': 1.0688688582197556}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332250101332, 'DiscFac': 1.0688668587536432}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332174267114, 'DiscFac': 1.0688688535801423}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.55033237214568, 'DiscFac': 1.0688668633931981}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.5503323721458235, 'DiscFac': 1.0688668633932124}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332372145812, 'DiscFac': 1.0688668633932112}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332174266841, 'DiscFac': 1.0688688535801154}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332174267176, 'DiscFac': 1.0688688535801485}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}], 'criterion': [nan, 5.5395827111397296, 6.054158174623402, 5.5613444250597865, nan, 6.26999489704744, 6.0387433323182025, nan, nan, nan, nan, 5.571706618549453, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], 'runtime': [0.0, 2.0689045939998323, 2.2847468909999407, 2.4991615700000693, 2.7264480369999546, 2.945319694999853, 3.176888760000111, 3.4092792669998744, 3.638423572999727, 3.8593010770000546, 4.09172727899977, 4.335288874000071, 4.5809059389998765, 6.524118698000166, 8.26133582500006, 10.024407902999883, 11.789655177999975, 13.718506842999886, 15.437609995999992, 17.172229159999915, 18.911284092999722, 20.621440020000136, 22.361909882999953, 24.161049320000075, 26.043980505000036, 27.847027331999925, 29.573299516000134, 31.292313697999816, 33.00695591299973, 34.70127909799976, 36.39656052800001, 38.26146682999979, 40.02295610100009, 41.750895436000064, 43.577125669, 45.30446627099991, 47.02571206599987, 48.735862649999945, 50.685711786999946, 52.41396979199999, 54.151161857999796, 55.89276694499995, 57.6360429450001, 59.406617219000054, 61.16642162200014, 63.06097458399972, 64.81553162699993, 66.50633503900008, 68.21641194599988, 69.98605268099982, 71.73708066800009, 73.53907410700003, 75.43581316400014, 77.20829202599998, 79.03606317699996, 80.79794364600002, 82.51393223600007, 84.21671423199996, 85.91840468100008, 87.78690426699995, 89.57654560999981, 91.34771572499994, 93.08611498699975, 94.81018499399988, 96.5489137720001, 98.33638863899978, 100.23937853799998, 102.01327974900005, 103.74305110199975, 105.45036639699993, 107.31028750699988, 109.0146936430001, 110.71835162099978, 112.55368735899992, 114.29536159200006, 116.06296606800015, 117.79941131099986, 119.51318087499976, 121.22684948000006, 122.94396284000004, 124.76764745299988, 126.47527799099998, 128.18654766200007, 129.9278474839998, 131.76264301699985, 133.53480244799994, 135.38515177599993, 137.297928168, 139.084985642, 140.84562121599993, 142.59690692699996, 144.3212709459999, 146.09482973000013, 147.85827295599984, 149.75282626699982, 151.50408267500006, 153.26726837299975, 154.97098000200003, 156.69130211999982, 158.39475930900016], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88]}}], 'exploration_sample': array([[ 5.825 , 0.95 ],
+ [12.321875, 1.08125 ],
+ [ 5. , 0.95 ],
+ [ 4.64375 , 0.6875 ],
+ [14.09375 , 0.9875 ],
+ [ 9.36875 , 0.8375 ],
+ [17.6375 , 1.025 ],
+ [ 8.1875 , 0.725 ],
+ [10.55 , 0.8 ],
+ [16.45625 , 0.9125 ],
+ [ 7.00625 , 0.6125 ],
+ [11.73125 , 0.7625 ],
+ [15.275 , 0.65 ],
+ [12.9125 , 0.575 ],
+ [17.046875, 0.63125 ],
+ [18.81875 , 0.5375 ],
+ [ 3.4625 , 0.875 ],
+ [ 2.28125 , 1.0625 ],
+ [ 2.871875, 0.78125 ]]), 'exploration_results': array([ 3.02633148, 3.30050278, 3.74724591, 3.92461378, 4.45534719,
+ 4.52159416, 4.77507862, 5.06340436, 5.16761845, 5.42393003,
+ 5.50914405, 5.69522002, 6.68407291, 6.73863805, 6.84560996,
+ 7.20052264, 7.72130492, 8.47185488, 10.67451262])}}"
diff --git a/content/tables/min/WarmGlowPortfolioSub(Stock)Market_estimate_results.csv b/content/tables/min/WarmGlowPortfolioSub(Stock)Market_estimate_results.csv
new file mode 100644
index 0000000..b87147c
--- /dev/null
+++ b/content/tables/min/WarmGlowPortfolioSub(Stock)Market_estimate_results.csv
@@ -0,0 +1,5941 @@
+CRRA,4.272642056859294
+DiscFac,0.9814607088251204
+time_to_estimate,106.73483872413635
+params,"{'CRRA': 4.272642056859294, 'DiscFac': 0.9814607088251204}"
+criterion,1.5881921698252235
+start_criterion,1.7417506643900147
+start_params,"{'CRRA': 5.0, 'DiscFac': 0.95}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,Absolute criterion change smaller than tolerance.
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 4.707203308184448, 'DiscFac': 0.9723293237231975}, {'CRRA': 4.290038276655113, 'DiscFac': 0.5612839565173267}, {'CRRA': 5.124368339713784, 'DiscFac': 0.7815145778668051}, {'CRRA': 4.290038276655113, 'DiscFac': 0.8852911049439405}, {'CRRA': 5.124368339713784, 'DiscFac': 1.0998082225394454}, {'CRRA': 5.124368339713784, 'DiscFac': 0.6528702672894295}, {'CRRA': 5.088882093668508, 'DiscFac': 0.5551642921938619}, {'CRRA': 4.290038276655113, 'DiscFac': 1.0958487440640778}, {'CRRA': 5.124368339713784, 'DiscFac': 0.9644452739308207}, {'CRRA': 4.815289190462201, 'DiscFac': 1.1}, {'CRRA': 4.290038276655113, 'DiscFac': 1.0869940700172442}, {'CRRA': 4.610395613673098, 'DiscFac': 0.5551642921938619}, {'CRRA': 4.712667209754667, 'DiscFac': 1.1}, {'CRRA': 4.290038276655113, 'DiscFac': 0.8302806857872134}, {'CRRA': 4.49862079241978, 'DiscFac': 0.8632291852888655}, {'CRRA': 4.618262130250856, 'DiscFac': 0.892211907379606}, {'CRRA': 4.649360364309195, 'DiscFac': 0.9610417287955715}, {'CRRA': 4.677179125402864, 'DiscFac': 0.9726952599678501}, {'CRRA': 4.662420411739433, 'DiscFac': 0.9709527874372768}, {'CRRA': 4.633143948980592, 'DiscFac': 0.9673433127210762}, {'CRRA': 4.647708424364658, 'DiscFac': 0.9710769920318861}, {'CRRA': 4.618217430273746, 'DiscFac': 0.9715282984145067}, {'CRRA': 4.559385583543956, 'DiscFac': 0.9740437573449842}, {'CRRA': 4.442362348737134, 'DiscFac': 0.9615159200987019}, {'CRRA': 4.6177820933812335, 'DiscFac': 0.966832786178363}, {'CRRA': 4.530168028631268, 'DiscFac': 0.9705981657398585}, {'CRRA': 4.54468016749636, 'DiscFac': 0.9744118507601772}, {'CRRA': 4.515251965828596, 'DiscFac': 0.974531215771109}, {'CRRA': 4.456469672419852, 'DiscFac': 0.9719249832509226}, {'CRRA': 4.54388800665835, 'DiscFac': 0.9677847513502521}, {'CRRA': 4.5005611019825995, 'DiscFac': 0.9754513255437164}, {'CRRA': 4.529485918905441, 'DiscFac': 0.9678147143724265}, {'CRRA': 4.485839431860874, 'DiscFac': 0.9752072544842302}, {'CRRA': 4.456429538458829, 'DiscFac': 0.9759793251278149}, {'CRRA': 4.397608962906071, 'DiscFac': 0.9774938921710231}, {'CRRA': 4.279965862398321, 'DiscFac': 0.9804443756996974}, {'CRRA': 4.122203844999166, 'DiscFac': 0.937104673702021}, {'CRRA': 4.163432700992639, 'DiscFac': 0.9640546179784433}, {'CRRA': 4.336906613655518, 'DiscFac': 0.9656153058500048}, {'CRRA': 4.249020769576481, 'DiscFac': 0.9761381800429344}, {'CRRA': 4.294680071351096, 'DiscFac': 0.9804072400803372}, {'CRRA': 4.272642056859294, 'DiscFac': 0.9814607088251204}], 'criterion': [1.6380478126416131, 4.03723195367052, 3.5440740950812013, 3.2759678353900803, 6.781083894625252, 3.8713442516298198, 3.996890584141768, 7.627891908022631, 1.7551707114922444, 7.144112642232848, 6.6404717126627215, 3.935564366818633, 7.291412101525699, 3.862333195265191, 3.197857033577577, 2.6761443032128733, 1.6565559654451956, 1.631941462430788, 1.6292672840092992, 1.6313284776792012, 1.6269015883981968, 1.6215771152258682, 1.6122243121836672, 1.6696000135319509, 1.6306703543399446, 1.614669208950377, 1.6100467129384297, 1.6064550393910892, 1.6076695381563089, 1.6233520305796163, 1.6045259070805813, 1.6226940047077765, 1.6029216364692263, 1.599716096343115, 1.5939391812466719, 1.5886714368056305, 2.4007693475753995, 1.7378906646063588, 1.6562535862817716, 1.601747168932624, 1.5887715770723967, 1.5881921698252237], 'runtime': [0.0, 1.6821844799997052, 1.9150985659998696, 2.1253850919997603, 2.3511059309998927, 2.5650789659998736, 2.9549039649996303, 3.1735108909997507, 3.420102272999884, 3.6554864049999196, 3.8900463229997513, 4.125565374999951, 4.354761785999926, 5.818293315999654, 7.186155066999618, 8.53306442999974, 9.823283617000016, 11.099486161999721, 12.398446895999768, 13.630369614999836, 14.879300103999867, 16.134582642999703, 17.520538064999982, 18.790717263999795, 20.063523801999963, 21.335516795999865, 22.614525473999947, 23.88811478999969, 25.139806550999765, 26.40284090499972, 27.666455542999756, 28.90823847599995, 30.15419865199965, 31.539459458999772, 32.79186168299975, 34.119294054999955, 35.38719801199977, 36.70442176400002, 38.07354152799962, 39.34327665000001, 40.64497849999998, 41.9631218479999], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]}"
+convergence_report,"{'one_step': {'relative_criterion_change': 0.00015933602220390196, 'relative_params_change': 0.0066586234867468804, 'absolute_criterion_change': 0.000253056222835335, 'absolute_params_change': 0.02844554200489083}, 'five_steps': {'relative_criterion_change': 0.00015933602220390196, 'relative_params_change': 0.0066586234867468804, 'absolute_criterion_change': 0.000253056222835335, 'absolute_params_change': 0.02844554200489083}}"
+multistart_info,"{'start_parameters': [{'CRRA': 5.0, 'DiscFac': 0.95}, {'CRRA': 4.707203308184448, 'DiscFac': 0.9723293237231975}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 5.482e-05 0.01069
+relative_params_change 0.008558 0.06089
+absolute_criterion_change 8.708e-05 0.01698
+absolute_params_change 0.0362 0.2564
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.), Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 0.0003018 0.01028
+relative_params_change 0.002003 0.05369
+absolute_criterion_change 0.0004793 0.01633
+absolute_params_change 0.007394 0.228
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.)], 'exploration_sample': [{'CRRA': 5.0, 'DiscFac': 0.95}, {'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 7.596874999999999, 'DiscFac': 0.9312500000000001}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 9.368749999999999, 'DiscFac': 0.8375}, {'CRRA': 8.1875, 'DiscFac': 0.7250000000000001}, {'CRRA': 10.549999999999999, 'DiscFac': 0.8}, {'CRRA': 11.73125, 'DiscFac': 0.7625000000000001}, {'CRRA': 7.00625, 'DiscFac': 0.6125}, {'CRRA': 15.274999999999999, 'DiscFac': 0.65}, {'CRRA': 12.9125, 'DiscFac': 0.575}, {'CRRA': 17.046875, 'DiscFac': 0.6312500000000001}, {'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 16.45625, 'DiscFac': 0.9125000000000001}, {'CRRA': 14.093749999999998, 'DiscFac': 0.9875}, {'CRRA': 18.81875, 'DiscFac': 0.5375}, {'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 17.6375, 'DiscFac': 1.0250000000000001}, {'CRRA': 2.871875, 'DiscFac': 0.78125}, {'CRRA': 2.28125, 'DiscFac': 1.0625}], 'exploration_results': array([ 1.74175066, 2.04247528, 2.9717037 , 3.76994253, 3.80031518,
+ 4.27735638, 4.32695188, 4.78264529, 5.25346612, 5.79528191,
+ 5.94010747, 6.02403907, 6.09730665, 6.10855726, 6.12270544,
+ 6.45799199, 7.01428788, 7.3683214 , 8.72764877, 13.61935456])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.4707203308184449, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.6380478126416131, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=0, candidate_x=array([4.70720331, 0.97232932]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.4707203308184449, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.3590354657860904, linear_terms=array([ 0.23079344, -0.53681647]), square_terms=array([[ 0.14552137, -0.45699815],
+ [-0.45699815, 8.05766769]]), scale=array([0.41716503, 0.27241785]), shift=array([4.70720331, 0.82758215])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=13, candidate_x=array([4.29003828, 0.83028069]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=-2.200880078069248, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.23536016540922244, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 4, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.652854750173936, linear_terms=array([0.06969601, 1.57909406]), square_terms=array([[ 0.03163761, -0.06566736],
+ [-0.06566736, 4.02842576]]), scale=array([0.20858252, 0.1681266 ]), shift=array([4.70720331, 0.9318734 ])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=14, candidate_x=array([4.49862079, 0.86322919]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=-1.7600178518411977, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 4, 7, 8, 9, 10, 11, 12]), old_indices_discarded=array([ 1, 2, 5, 6, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.11768008270461122, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 8, 9, 10, 11, 12, 14]), model=ScalarModel(intercept=1.854395217885178, linear_terms=array([0.030548 , 1.44658812]), square_terms=array([[ 0.01441336, -0.05269915],
+ [-0.05269915, 2.1098409 ]]), scale=0.11768008270461122, shift=array([4.70720331, 0.97232932])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=15, candidate_x=array([4.61826213, 0.89221191]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=-1.915374410311117, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 8, 9, 10, 11, 12, 14]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 9, 12, 14, 15]), model=ScalarModel(intercept=1.4384011150252112, linear_terms=array([0.06693427, 0.16511788]), square_terms=array([[ 0.06028812, -0.33441041],
+ [-0.33441041, 2.50134611]]), scale=0.05884004135230561, shift=array([4.70720331, 0.97232932])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=16, candidate_x=array([4.64936036, 0.96104173]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=-0.2167656601879471, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 9, 12, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16]), model=ScalarModel(intercept=1.6372268956710594, linear_terms=array([ 0.1685441 , -0.13872507]), square_terms=array([[ 0.05020446, -0.12669357],
+ [-0.12669357, 0.64471625]]), scale=0.029420020676152805, shift=array([4.70720331, 0.97232932])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=17, candidate_x=array([4.67717913, 0.97269526]), index=17, x=array([4.67717913, 0.97269526]), fval=1.631941462430788, rho=0.04184469522185483, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.03002641272341987, relative_step_length=1.0206115438850998, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.67717913, 0.97269526]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17]), model=ScalarModel(intercept=1.6319414624307902, linear_terms=array([0.00310345, 0.01871238]), square_terms=array([[0.0001745 , 0.00326021],
+ [0.00326021, 0.12782284]]), scale=0.014710010338076403, shift=array([4.67717913, 0.97269526])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=18, candidate_x=array([4.66242041, 0.97095279]), index=18, x=array([4.66242041, 0.97095279]), fval=1.6292672840092994, rho=0.6756001269705089, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.014861219314677702, relative_step_length=1.010279324971642, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.66242041, 0.97095279]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16, 17, 18]), model=ScalarModel(intercept=1.4810088090029692, linear_terms=array([ 0.11958572, -0.03732605]), square_terms=array([[ 0.05065772, -0.12829538],
+ [-0.12829538, 0.65103621]]), scale=0.029420020676152805, shift=array([4.66242041, 0.97095279])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=19, candidate_x=array([4.63314395, 0.96734331]), index=18, x=array([4.66242041, 0.97095279]), fval=1.6292672840092994, rho=-0.020590492456450688, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.66242041, 0.97095279]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17, 18, 19]), model=ScalarModel(intercept=1.6292156586595015, linear_terms=array([0.00188502, 0.00233158]), square_terms=array([[0.00018003, 0.0034169 ],
+ [0.0034169 , 0.12685944]]), scale=0.014710010338076403, shift=array([4.66242041, 0.97095279])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=20, candidate_x=array([4.64770842, 0.97107699]), index=20, x=array([4.64770842, 0.97107699]), fval=1.6269015883981965, rho=1.3143613594368355, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.014712511658342373, relative_step_length=1.0001700420467752, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.64770842, 0.97107699]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16, 17, 18, 19, 20]), model=ScalarModel(intercept=1.5063160859816729, linear_terms=array([ 0.05041148, -0.04272255]), square_terms=array([[ 0.0075054 , -0.03307161],
+ [-0.03307161, 0.58165163]]), scale=0.029420020676152805, shift=array([4.64770842, 0.97107699])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=21, candidate_x=array([4.61821743, 0.9715283 ]), index=21, x=array([4.61821743, 0.9715283 ]), fval=1.6215771152258682, rho=0.11367207027105729, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16, 17, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.029494447103161476, relative_step_length=1.002529788399129, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.61821743, 0.9715283 ]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16, 17, 18, 19, 20, 21]), model=ScalarModel(intercept=1.517081598562027, linear_terms=array([ 0.03194748, -0.0915037 ]), square_terms=array([[0.00517109, 0.00423992],
+ [0.00423992, 2.21259895]]), scale=0.05884004135230561, shift=array([4.61821743, 0.9715283 ])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=22, candidate_x=array([4.55938558, 0.97404376]), index=22, x=array([4.55938558, 0.97404376]), fval=1.6122243121836672, rho=0.2975814223142011, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16, 17, 18, 19, 20, 21]), old_indices_discarded=array([ 9, 14]), step_length=0.058885598606691694, relative_step_length=1.000774255988593, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55938558, 0.97404376]), radius=0.11768008270461122, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 15, 16, 17, 18, 19, 20, 21, 22]), model=ScalarModel(intercept=1.6244940972117774, linear_terms=array([0.00768524, 0.3968281 ]), square_terms=array([[ 0.01794061, -0.11175552],
+ [-0.11175552, 4.76976273]]), scale=0.11768008270461122, shift=array([4.55938558, 0.97404376])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=23, candidate_x=array([4.44236235, 0.96151592]), index=22, x=array([4.55938558, 0.97404376]), fval=1.6122243121836672, rho=-2.222167750707154, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 15, 16, 17, 18, 19, 20, 21, 22]), old_indices_discarded=array([ 0, 1, 3, 4, 7, 8, 9, 10, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55938558, 0.97404376]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([15, 16, 17, 18, 19, 20, 21, 22, 23]), model=ScalarModel(intercept=1.6256896704319683, linear_terms=array([0.0043886 , 0.10549552]), square_terms=array([[0.00419989, 0.0564693 ],
+ [0.0564693 , 1.33147903]]), scale=0.05884004135230561, shift=array([4.55938558, 0.97404376])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=24, candidate_x=array([4.61778209, 0.96683279]), index=22, x=array([4.55938558, 0.97404376]), fval=1.6122243121836672, rho=-5.466651138741908, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([15, 16, 17, 18, 19, 20, 21, 22, 23]), old_indices_discarded=array([ 0, 3, 9, 10, 12, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55938558, 0.97404376]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([15, 16, 18, 19, 20, 21, 22, 23, 24]), model=ScalarModel(intercept=1.6269177150442447, linear_terms=array([0.00261458, 0.05266846]), square_terms=array([[0.00103242, 0.01385775],
+ [0.01385775, 0.33190979]]), scale=0.029420020676152805, shift=array([4.55938558, 0.97404376])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=25, candidate_x=array([4.53016803, 0.97059817]), index=22, x=array([4.55938558, 0.97404376]), fval=1.6122243121836672, rho=-0.5597649420514624, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([15, 16, 18, 19, 20, 21, 22, 23, 24]), old_indices_discarded=array([14, 17]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55938558, 0.97404376]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([21, 22, 24, 25]), model=ScalarModel(intercept=1.6125186187197176, linear_terms=array([0.00192027, 0.00012471]), square_terms=array([[0.00019263, 0.00355747],
+ [0.00355747, 0.13532065]]), scale=0.014710010338076403, shift=array([4.55938558, 0.97404376])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=26, candidate_x=array([4.54468017, 0.97441185]), index=26, x=array([4.54468017, 0.97441185]), fval=1.6100467129384297, rho=1.1664111683806726, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([21, 22, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.01471002222619643, relative_step_length=1.0000008081653073, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.54468017, 0.97441185]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 19, 20, 21, 22, 23, 24, 25, 26]), model=ScalarModel(intercept=1.610617175628848, linear_terms=array([0.00467212, 0.01317766]), square_terms=array([[0.00085989, 0.01539591],
+ [0.01539591, 0.54391644]]), scale=0.029420020676152805, shift=array([4.54468017, 0.97441185])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=27, candidate_x=array([4.51525197, 0.97453122]), index=27, x=array([4.51525197, 0.97453122]), fval=1.6064550393910895, rho=0.8455422416631787, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([16, 19, 20, 21, 22, 23, 24, 25, 26]), old_indices_discarded=array([14, 15, 17, 18]), step_length=0.029428443747579514, relative_step_length=1.000286304062102, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.51525197, 0.97453122]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 19, 21, 22, 23, 24, 25, 26, 27]), model=ScalarModel(intercept=1.6171036489097632, linear_terms=array([0.00432157, 0.08549957]), square_terms=array([[0.00404165, 0.04083728],
+ [0.04083728, 0.9748026 ]]), scale=0.05884004135230561, shift=array([4.51525197, 0.97453122])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=28, candidate_x=array([4.45646967, 0.97192498]), index=27, x=array([4.51525197, 0.97453122]), fval=1.6064550393910895, rho=-0.3653445002297127, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 19, 21, 22, 23, 24, 25, 26, 27]), old_indices_discarded=array([ 0, 3, 7, 10, 12, 13, 15, 16, 17, 18, 20]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.51525197, 0.97453122]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 21, 22, 23, 24, 25, 26, 27, 28]), model=ScalarModel(intercept=1.6158549160636237, linear_terms=array([0.0016874, 0.045421 ]), square_terms=array([[0.00106973, 0.01073937],
+ [0.01073937, 0.24481613]]), scale=0.029420020676152805, shift=array([4.51525197, 0.97453122])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=29, candidate_x=array([4.54388801, 0.96778475]), index=27, x=array([4.51525197, 0.97453122]), fval=1.6064550393910895, rho=-3.9976405851055894, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 21, 22, 23, 24, 25, 26, 27, 28]), old_indices_discarded=array([15, 16, 19, 20]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.51525197, 0.97453122]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 25, 26, 27, 28, 29]), model=ScalarModel(intercept=1.6066876339598914, linear_terms=array([ 0.00156986, -0.00517551]), square_terms=array([[0.00019907, 0.00364165],
+ [0.00364165, 0.13928521]]), scale=0.014710010338076403, shift=array([4.51525197, 0.97453122])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=30, candidate_x=array([4.5005611 , 0.97545133]), index=30, x=array([4.5005611 , 0.97545133]), fval=1.6045259070805813, rho=1.104079170574446, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 25, 26, 27, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.014719649538465622, relative_step_length=1.0006552816869387, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.5005611 , 0.97545133]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 22, 23, 25, 26, 27, 28, 29, 30]), model=ScalarModel(intercept=1.6151275211840224, linear_terms=array([-0.00091945, 0.04982336]), square_terms=array([[0.0018448 , 0.01496444],
+ [0.01496444, 0.24558318]]), scale=0.029420020676152805, shift=array([4.5005611 , 0.97545133])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=31, candidate_x=array([4.52948592, 0.96781471]), index=30, x=array([4.5005611 , 0.97545133]), fval=1.6045259070805813, rho=-2.139770334550352, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 22, 23, 25, 26, 27, 28, 29, 30]), old_indices_discarded=array([15, 19, 21, 24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.5005611 , 0.97545133]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 23, 25, 26, 27, 28, 29, 30, 31]), model=ScalarModel(intercept=1.6052861266606393, linear_terms=array([0.00202734, 0.00619617]), square_terms=array([[0.0002099 , 0.00380383],
+ [0.00380383, 0.14225083]]), scale=0.014710010338076403, shift=array([4.5005611 , 0.97545133])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=32, candidate_x=array([4.48583943, 0.97520725]), index=32, x=array([4.48583943, 0.97520725]), fval=1.6029216364692263, rho=0.8252881334307689, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 23, 25, 26, 27, 28, 29, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.014723693213830385, relative_step_length=1.0009301744485226, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.48583943, 0.97520725]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 26, 27, 28, 29, 30, 31, 32]), model=ScalarModel(intercept=1.603281247362616, linear_terms=array([0.00373974, 0.00024847]), square_terms=array([[0.00085108, 0.01532586],
+ [0.01532586, 0.57103593]]), scale=0.029420020676152805, shift=array([4.48583943, 0.97520725])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=33, candidate_x=array([4.45642954, 0.97597933]), index=33, x=array([4.45642954, 0.97597933]), fval=1.599716096343115, rho=0.9127111762327604, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 26, 27, 28, 29, 30, 31, 32]), old_indices_discarded=array([14, 21, 22, 24]), step_length=0.0294200258837129, relative_step_length=1.0000001770073568, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.45642954, 0.97597933]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 27, 28, 29, 30, 31, 32, 33]), model=ScalarModel(intercept=1.5997771172632202, linear_terms=array([0.00705164, 0.0023645 ]), square_terms=array([[0.00344304, 0.06165063],
+ [0.06165063, 2.29724063]]), scale=0.05884004135230561, shift=array([4.45642954, 0.97597933])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=34, candidate_x=array([4.39760896, 0.97749389]), index=34, x=array([4.39760896, 0.97749389]), fval=1.5939391812466719, rho=0.9480590071850733, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 27, 28, 29, 30, 31, 32, 33]), old_indices_discarded=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26]), step_length=0.05884007156424952, relative_step_length=1.000000513458917, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.39760896, 0.97749389]), radius=0.11768008270461122, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 27, 28, 30, 31, 32, 33, 34]), model=ScalarModel(intercept=1.593889235787229, linear_terms=array([0.01040724, 0.00815608]), square_terms=array([[0.01329919, 0.24024205],
+ [0.24024205, 9.25060511]]), scale=0.11768008270461122, shift=array([4.39760896, 0.97749389])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=35, candidate_x=array([4.27996586, 0.98044438]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=0.7899999841070257, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 27, 28, 30, 31, 32, 33, 34]), old_indices_discarded=array([ 0, 1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 24, 26, 29]), step_length=0.11768009368678081, relative_step_length=1.0000000933222457, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.23536016540922244, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 13, 23, 28, 30, 32, 34, 35]), model=ScalarModel(intercept=1.462227461968244, linear_terms=array([ 0.42418134, -1.67220361]), square_terms=array([[ 0.54111536, -2.08375437],
+ [-2.08375437, 13.44006276]]), scale=array([0.20858252, 0.16406907]), shift=array([4.27996586, 0.93593093])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=36, candidate_x=array([4.12220384, 0.93710467]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-3.916267884563185, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 13, 23, 28, 30, 32, 34, 35]), old_indices_discarded=array([ 0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19,
+ 20, 21, 22, 24, 25, 26, 27, 29, 31, 33]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.11768008270461122, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 13, 23, 33, 34, 35, 36]), model=ScalarModel(intercept=1.4622568288955424, linear_terms=array([0.02225047, 0.92573591]), square_terms=array([[ 0.05426403, -0.13596618],
+ [-0.13596618, 7.70370864]]), scale=0.11768008270461122, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=37, candidate_x=array([4.1634327 , 0.96405462]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-2.181712710002738, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 13, 23, 33, 34, 35, 36]), old_indices_discarded=array([ 0, 1, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26,
+ 27, 28, 29, 30, 31, 32]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 13, 23, 34, 35, 36, 37]), model=ScalarModel(intercept=1.4660466698117092, linear_terms=array([0.01297109, 0.40170174]), square_terms=array([[0.01156038, 0.07971153],
+ [0.07971153, 1.91612895]]), scale=0.05884004135230561, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=38, candidate_x=array([4.33690661, 0.96561531]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-1.6144313618454553, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 13, 23, 34, 35, 36, 37]), old_indices_discarded=array([14, 22, 25, 26, 27, 28, 29, 30, 31, 32, 33]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 34, 35, 37, 38]), model=ScalarModel(intercept=1.470665765480307, linear_terms=array([0.00298517, 0.10703439]), square_terms=array([[0.00144857, 0.00998505],
+ [0.00998505, 0.6595069 ]]), scale=0.029420020676152805, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=39, candidate_x=array([4.24902077, 0.97613818]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-1.3905549963491703, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 34, 35, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([35, 38, 39]), model=ScalarModel(intercept=1.588671436805631, linear_terms=array([-0.00081796, -0.00402187]), square_terms=array([[0.00023222, 0.00443072],
+ [0.00443072, 0.1618569 ]]), scale=0.014710010338076403, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=40, candidate_x=array([4.29468007, 0.98040724]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-0.14254194492005098, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 38, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.007355005169038201, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([35, 39, 40]), model=ScalarModel(intercept=1.5886714368056296, linear_terms=array([-1.01760419e-05, -4.87679307e-03]), square_terms=array([[5.26567689e-05, 9.93842843e-04],
+ [9.93842843e-04, 4.23791006e-02]]), scale=0.007355005169038201, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=41, candidate_x=array([4.27264206, 0.98146071]), index=41, x=array([4.27264206, 0.98146071]), fval=1.5881921698252235, rho=1.2960293054666532, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([35, 39, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.007393988138705295, relative_step_length=1.005300196093838, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 42 entries., 'multistart_info': {'start_parameters': [array([5. , 0.95]), array([4.70720331, 0.97232932])], 'local_optima': [{'solution_x': array([4.24419676, 0.98157843]), 'solution_criterion': 1.5884452260480588, 'states': [State(trustregion=Region(center=array([5. , 0.95]), radius=0.5, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.7417506643900147, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.5, shift=array([5. , 0.95])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=0, candidate_x=array([5. , 0.95]), index=0, x=array([5. , 0.95]), fval=1.7417506643900145, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([5. , 0.95]), radius=0.5, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.525682901381052, linear_terms=array([ 0.35147642, -0.70797287]), square_terms=array([[ 0.17228309, -0.70481542],
+ [-0.70481542, 7.78269567]]), scale=array([0.44311346, 0.29655673]), shift=array([5. , 0.80344327])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=13, candidate_x=array([4.55688654, 0.80356358]), index=0, x=array([5. , 0.95]), fval=1.7417506643900145, rho=-2.1815597578942127, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5. , 0.95]), radius=0.25, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 4, 7, 8, 9, 10, 12, 13]), model=ScalarModel(intercept=1.688619674041434, linear_terms=array([ 0.20628142, -2.78312447]), square_terms=array([[ 0.04634332, -0.54356827],
+ [-0.54356827, 15.6553705 ]]), scale=array([0.22155673, 0.18577837]), shift=array([5. , 0.91422163])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=14, candidate_x=array([4.77844327, 0.94079789]), index=0, x=array([5. , 0.95]), fval=1.7417506643900145, rho=-0.7316148825660728, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 4, 7, 8, 9, 10, 12, 13]), old_indices_discarded=array([ 1, 2, 5, 6, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5. , 0.95]), radius=0.125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 8, 9, 10, 12, 13, 14]), model=ScalarModel(intercept=1.5012663356887093, linear_terms=array([ 0.08935364, -0.18990169]), square_terms=array([[ 0.02022595, -0.24678211],
+ [-0.24678211, 7.22788319]]), scale=0.125, shift=array([5. , 0.95])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=15, candidate_x=array([4.87496272, 0.94902461]), index=15, x=array([4.87496272, 0.94902461]), fval=1.735141592048766, rho=0.08314799811163025, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 8, 9, 10, 12, 13, 14]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 11]), step_length=0.12504108299697955, relative_step_length=1.0003286639758364, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.87496272, 0.94902461]), radius=0.0625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 7, 9, 12, 14, 15]), model=ScalarModel(intercept=1.7089526132207769, linear_terms=array([ 0.02648415, -0.90309879]), square_terms=array([[ 2.01607285e-03, -3.09418837e-02],
+ [-3.09418837e-02, 2.59137456e+00]]), scale=0.0625, shift=array([4.87496272, 0.94902461])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=16, candidate_x=array([4.81232469, 0.96994443]), index=16, x=array([4.81232469, 0.96994443]), fval=1.661854396005139, rho=0.4254203441355506, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 7, 9, 12, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.06603909233959604, relative_step_length=1.0566254774335366, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.81232469, 0.96994443]), radius=0.125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 9, 10, 12, 14, 15, 16]), model=ScalarModel(intercept=1.4777704337859343, linear_terms=array([0.05201615, 0.40259425]), square_terms=array([[ 0.02293557, -0.32021801],
+ [-0.32021801, 9.48068192]]), scale=0.125, shift=array([4.81232469, 0.96994443])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=17, candidate_x=array([4.6875834 , 0.96047652]), index=17, x=array([4.6875834 , 0.96047652]), fval=1.6605566084700965, rho=0.019087760659877613, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 9, 10, 12, 14, 15, 16]), old_indices_discarded=array([ 1, 11, 13]), step_length=0.12510008504138495, relative_step_length=1.0008006803310796, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.6875834 , 0.96047652]), radius=0.0625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 12, 13, 14, 15, 16, 17]), model=ScalarModel(intercept=1.4081104203383767, linear_terms=array([0.02058664, 0.27473715]), square_terms=array([[ 0.02001168, -0.16820066],
+ [-0.16820066, 1.89038505]]), scale=0.0625, shift=array([4.6875834 , 0.96047652])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=18, candidate_x=array([4.62612848, 0.94622607]), index=17, x=array([4.6875834 , 0.96047652]), fval=1.6605566084700965, rho=-2.0577598152094736, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 12, 13, 14, 15, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.6875834 , 0.96047652]), radius=0.03125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 16, 17, 18]), model=ScalarModel(intercept=1.6564086025715405, linear_terms=array([-0.00040164, -0.13821286]), square_terms=array([[0.0010511 , 0.01749125],
+ [0.01749125, 0.49318606]]), scale=0.03125, shift=array([4.6875834 , 0.96047652])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=19, candidate_x=array([4.65669195, 0.970249 ]), index=19, x=array([4.65669195, 0.970249 ]), fval=1.6291014270431563, rho=1.332667694520173, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 16, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.03240034924580121, relative_step_length=1.0368111758656386, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65669195, 0.970249 ]), radius=0.0625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 13, 14, 16, 17, 18, 19]), model=ScalarModel(intercept=1.4667362991629962, linear_terms=array([0.03429873, 0.35050851]), square_terms=array([[ 0.07672055, -0.32331271],
+ [-0.32331271, 1.74181997]]), scale=0.0625, shift=array([4.65669195, 0.970249 ])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=20, candidate_x=array([4.59740369, 0.94773026]), index=19, x=array([4.65669195, 0.970249 ]), fval=1.6291014270431563, rho=-1.221321739629065, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 13, 14, 16, 17, 18, 19]), old_indices_discarded=array([15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65669195, 0.970249 ]), radius=0.03125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 14, 16, 17, 18, 19, 20]), model=ScalarModel(intercept=1.476547966942911, linear_terms=array([0.03370192, 0.03763453]), square_terms=array([[ 0.00506063, -0.03670318],
+ [-0.03670318, 0.56722334]]), scale=0.03125, shift=array([4.65669195, 0.970249 ])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=21, candidate_x=array([4.62562764, 0.9663926 ]), index=19, x=array([4.65669195, 0.970249 ]), fval=1.6291014270431563, rho=-0.08905240689766346, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 14, 16, 17, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65669195, 0.970249 ]), radius=0.015625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([17, 18, 19, 20, 21]), model=ScalarModel(intercept=1.6322981269191386, linear_terms=array([0.00381601, 0.00635055]), square_terms=array([[0.00024779, 0.00408403],
+ [0.00408403, 0.13797549]]), scale=0.015625, shift=array([4.65669195, 0.970249 ])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=22, candidate_x=array([4.64105275, 0.96999908]), index=22, x=array([4.64105275, 0.96999908]), fval=1.6271336788414648, rho=0.5298332001777031, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([17, 18, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.015641195495581482, relative_step_length=1.0010365117172149, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.64105275, 0.96999908]), radius=0.03125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 14, 17, 18, 19, 20, 21, 22]), model=ScalarModel(intercept=1.4934936330221924, linear_terms=array([0.03884984, 0.00088909]), square_terms=array([[ 0.00687594, -0.04632293],
+ [-0.04632293, 0.56349202]]), scale=0.03125, shift=array([4.64105275, 0.96999908])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=23, candidate_x=array([4.60989908, 0.96754444]), index=22, x=array([4.64105275, 0.96999908]), fval=1.6271336788414648, rho=-0.036286714935296296, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 14, 17, 18, 19, 20, 21, 22]), old_indices_discarded=array([10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.64105275, 0.96999908]), radius=0.015625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([17, 18, 19, 20, 21, 22, 23]), model=ScalarModel(intercept=1.629077033113828, linear_terms=array([0.00316852, 0.0009159 ]), square_terms=array([[0.00023897, 0.00406143],
+ [0.00406143, 0.13846122]]), scale=0.015625, shift=array([4.64105275, 0.96999908])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=24, candidate_x=array([4.62543122, 0.97034637]), index=24, x=array([4.62543122, 0.97034637]), fval=1.6244654953135362, rho=0.8651468419534107, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([17, 18, 19, 20, 21, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.015625394514317673, relative_step_length=1.000025248916331, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.62543122, 0.97034637]), radius=0.03125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 17, 18, 19, 20, 21, 22, 23, 24]), model=ScalarModel(intercept=1.637881414293269, linear_terms=array([0.00458585, 0.02180017]), square_terms=array([[0.00098328, 0.01001956],
+ [0.01001956, 0.27420015]]), scale=0.03125, shift=array([4.62543122, 0.97034637])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=25, candidate_x=array([4.59411882, 0.96902136]), index=25, x=array([4.59411882, 0.96902136]), fval=1.6230082503264982, rho=0.3347231805015842, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 17, 18, 19, 20, 21, 22, 23, 24]), old_indices_discarded=array([ 7, 10, 14]), step_length=0.03134042190113058, relative_step_length=1.0028935008361786, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.59411882, 0.96902136]), radius=0.0625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([17, 18, 19, 20, 21, 22, 23, 24, 25]), model=ScalarModel(intercept=1.6217895613926379, linear_terms=array([ 0.00847952, -0.07819746]), square_terms=array([[0.0037041 , 0.06389573],
+ [0.06389573, 2.22309204]]), scale=0.0625, shift=array([4.59411882, 0.96902136])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=26, candidate_x=array([4.53171043, 0.97299769]), index=26, x=array([4.53171043, 0.97299769]), fval=1.6090597971175158, rho=1.2503670663900857, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([17, 18, 19, 20, 21, 22, 23, 24, 25]), old_indices_discarded=array([ 3, 7, 10, 13, 14, 15, 16]), step_length=0.06253494026175699, relative_step_length=1.0005590441881118, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.53171043, 0.97299769]), radius=0.125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 18, 20, 21, 22, 23, 24, 25, 26]), model=ScalarModel(intercept=1.6102616360135478, linear_terms=array([0.03712606, 0.18206296]), square_terms=array([[ 0.01015217, -0.01895962],
+ [-0.01895962, 4.60594093]]), scale=0.125, shift=array([4.53171043, 0.97299769])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=27, candidate_x=array([4.40674873, 0.96757506]), index=26, x=array([4.53171043, 0.97299769]), fval=1.6090597971175158, rho=-0.5639375590226261, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 18, 20, 21, 22, 23, 24, 25, 26]), old_indices_discarded=array([ 0, 1, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.53171043, 0.97299769]), radius=0.0625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 18, 20, 21, 22, 23, 24, 25, 26]), model=ScalarModel(intercept=1.6102616360135507, linear_terms=array([0.01856303, 0.09103148]), square_terms=array([[ 0.00253804, -0.00473991],
+ [-0.00473991, 1.15148523]]), scale=0.0625, shift=array([4.53171043, 0.97299769])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=28, candidate_x=array([4.46924045, 0.96787265]), index=26, x=array([4.53171043, 0.97299769]), fval=1.6090597971175158, rho=-0.6660251871790788, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 18, 20, 21, 22, 23, 24, 25, 26]), old_indices_discarded=array([ 7, 10, 13, 14, 16, 17, 19, 27]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.53171043, 0.97299769]), radius=0.03125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 20, 21, 22, 23, 24, 25, 26, 28]), model=ScalarModel(intercept=1.6130550857976087, linear_terms=array([0.00349422, 0.00036862]), square_terms=array([[0.00092013, 0.01618579],
+ [0.01618579, 0.55845701]]), scale=0.03125, shift=array([4.53171043, 0.97299769])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=29, candidate_x=array([4.50047281, 0.97387764]), index=29, x=array([4.50047281, 0.97387764]), fval=1.605426494943335, rho=1.1155576394171702, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 20, 21, 22, 23, 24, 25, 26, 28]), old_indices_discarded=array([ 3, 7, 10, 19, 27]), step_length=0.03125001041288541, relative_step_length=1.000000333212333, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.50047281, 0.97387764]), radius=0.0625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 20, 23, 24, 25, 26, 27, 28, 29]), model=ScalarModel(intercept=1.6183556456638188, linear_terms=array([0.00684669, 0.05973239]), square_terms=array([[0.00278798, 0.03172634],
+ [0.03172634, 1.10937006]]), scale=0.0625, shift=array([4.50047281, 0.97387764])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=30, candidate_x=array([4.43792976, 0.97230568]), index=29, x=array([4.50047281, 0.97387764]), fval=1.605426494943335, rho=-0.07150461942939365, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 20, 23, 24, 25, 26, 27, 28, 29]), old_indices_discarded=array([ 7, 10, 13, 14, 16, 17, 18, 19, 21, 22]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.50047281, 0.97387764]), radius=0.03125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 20, 23, 25, 26, 27, 28, 29, 30]), model=ScalarModel(intercept=1.6184027642815897, linear_terms=array([0.0045845 , 0.03080401]), square_terms=array([[0.00058656, 0.00613405],
+ [0.00613405, 0.27515297]]), scale=0.03125, shift=array([4.50047281, 0.97387764])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=31, candidate_x=array([4.46916051, 0.97111184]), index=29, x=array([4.50047281, 0.97387764]), fval=1.605426494943335, rho=-0.9123426176285044, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 20, 23, 25, 26, 27, 28, 29, 30]), old_indices_discarded=array([10, 18, 21, 22, 24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.50047281, 0.97387764]), radius=0.015625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([26, 28, 29, 30, 31]), model=ScalarModel(intercept=1.605617847169665, linear_terms=array([ 0.00128156, -0.01188114]), square_terms=array([[0.0002254 , 0.0042768 ],
+ [0.0042768 , 0.16410452]]), scale=0.015625, shift=array([4.50047281, 0.97387764])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=32, candidate_x=array([4.48488283, 0.97540147]), index=32, x=array([4.48488283, 0.97540147]), fval=1.602773679862558, rho=1.352823852288151, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([26, 28, 29, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.015664272945244032, relative_step_length=1.002513468495618, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.48488283, 0.97540147]), radius=0.03125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 25, 26, 27, 28, 29, 30, 31, 32]), model=ScalarModel(intercept=1.6062136335670387, linear_terms=array([0.00290969, 0.01676498]), square_terms=array([[0.00098405, 0.01747478],
+ [0.01747478, 0.58451439]]), scale=0.03125, shift=array([4.48488283, 0.97540147])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=33, candidate_x=array([4.45362123, 0.97543964]), index=33, x=array([4.45362123, 0.97543964]), fval=1.6000006424542228, rho=1.1464442943410598, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([20, 25, 26, 27, 28, 29, 30, 31, 32]), old_indices_discarded=array([ 3, 10, 18, 21, 23, 24]), step_length=0.03126162127554899, relative_step_length=1.0003718808175677, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.45362123, 0.97543964]), radius=0.0625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 26, 27, 28, 29, 30, 31, 32, 33]), model=ScalarModel(intercept=1.600137490679293, linear_terms=array([ 0.00511285, -0.03923899]), square_terms=array([[0.00379447, 0.07073241],
+ [0.07073241, 2.64617384]]), scale=0.0625, shift=array([4.45362123, 0.97543964])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=34, candidate_x=array([4.39116976, 0.97803159]), index=34, x=array([4.39116976, 0.97803159]), fval=1.5931176392366255, rho=1.252038327370141, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([25, 26, 27, 28, 29, 30, 31, 32, 33]), old_indices_discarded=array([ 3, 7, 10, 13, 17, 18, 19, 20, 21, 22, 23, 24]), step_length=0.06250524058317128, relative_step_length=1.0000838493307405, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.39116976, 0.97803159]), radius=0.125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([26, 27, 28, 29, 30, 31, 32, 33, 34]), model=ScalarModel(intercept=1.5937058126689254, linear_terms=array([ 0.00822615, -0.00037724]), square_terms=array([[0.0117151 , 0.21696693],
+ [0.21696693, 8.44873327]]), scale=array([0.11077837, 0.11077837]), shift=array([4.39116976, 0.97803159])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=35, candidate_x=array([4.28039139, 0.98088137]), index=35, x=array([4.28039139, 0.98088137]), fval=1.5885323102852085, rho=0.8879072804147917, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([26, 27, 28, 29, 30, 31, 32, 33, 34]), old_indices_discarded=array([ 0, 1, 3, 7, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
+ 24, 25]), step_length=0.11081501499978337, relative_step_length=0.886520119998267, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.28039139, 0.98088137]), radius=0.25, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([27, 28, 29, 30, 31, 32, 33, 34, 35]), model=ScalarModel(intercept=2.4915220788407786, linear_terms=array([-0.18994999, -6.03058366]), square_terms=array([[ 0.04649406, 0.64815023],
+ [ 0.64815023, 20.13386188]]), scale=array([0.22155673, 0.17033768]), shift=array([4.28039139, 0.92966232])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=36, candidate_x=array([4.24419676, 0.98157843]), index=36, x=array([4.24419676, 0.98157843]), fval=1.5884452260480588, rho=0.24482639004035095, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([27, 28, 29, 30, 31, 32, 33, 34, 35]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]), step_length=0.03620134303934806, relative_step_length=0.14480537215739225, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 37 entries., 'history': {'params': [{'CRRA': 5.0, 'DiscFac': 0.95}, {'CRRA': 4.603823840691037, 'DiscFac': 0.5068865372736209}, {'CRRA': 5.443113462726379, 'DiscFac': 0.7406051122511741}, {'CRRA': 4.556886537273621, 'DiscFac': 0.8646304564170145}, {'CRRA': 5.442032378301953, 'DiscFac': 1.1}, {'CRRA': 5.443113462726379, 'DiscFac': 0.6604052474305999}, {'CRRA': 5.383311967473204, 'DiscFac': 0.5068865372736209}, {'CRRA': 4.615280947896822, 'DiscFac': 1.1}, {'CRRA': 5.443113462726379, 'DiscFac': 0.9631647529578035}, {'CRRA': 5.0642377360035, 'DiscFac': 1.1}, {'CRRA': 4.5660095036542545, 'DiscFac': 1.1}, {'CRRA': 4.840048628235497, 'DiscFac': 0.5068865372736209}, {'CRRA': 4.95541202464738, 'DiscFac': 1.1}, {'CRRA': 4.556886537273621, 'DiscFac': 0.8035635821242174}, {'CRRA': 4.778443268636811, 'DiscFac': 0.9407978875845346}, {'CRRA': 4.8749627213204, 'DiscFac': 0.9490246142006636}, {'CRRA': 4.812324688882327, 'DiscFac': 0.9699444279982233}, {'CRRA': 4.687583396599861, 'DiscFac': 0.9604765202535239}, {'CRRA': 4.626128479286402, 'DiscFac': 0.946226071758053}, {'CRRA': 4.656691952561139, 'DiscFac': 0.9702489977517027}, {'CRRA': 4.597403685467404, 'DiscFac': 0.9477302643719333}, {'CRRA': 4.625627639967706, 'DiscFac': 0.9663926019361737}, {'CRRA': 4.6410527537280055, 'DiscFac': 0.9699990849894794}, {'CRRA': 4.609899081445102, 'DiscFac': 0.9675444366283784}, {'CRRA': 4.625431219063062, 'DiscFac': 0.9703463722481418}, {'CRRA': 4.5941188192709905, 'DiscFac': 0.9690213574548799}, {'CRRA': 4.531710425908779, 'DiscFac': 0.9729976863508547}, {'CRRA': 4.406748728175175, 'DiscFac': 0.9675750585318469}, {'CRRA': 4.469240449285124, 'DiscFac': 0.967872651576081}, {'CRRA': 4.500472807159075, 'DiscFac': 0.9738776441075655}, {'CRRA': 4.437929755816321, 'DiscFac': 0.9723056777025434}, {'CRRA': 4.4691605102819025, 'DiscFac': 0.9711118354625233}, {'CRRA': 4.484882829924515, 'DiscFac': 0.97540147373354}, {'CRRA': 4.453621231948722, 'DiscFac': 0.975439641465286}, {'CRRA': 4.391169755515086, 'DiscFac': 0.9780315889221493}, {'CRRA': 4.280391389833491, 'DiscFac': 0.9808813689692787}, {'CRRA': 4.244196758458669, 'DiscFac': 0.9815784324479652}], 'criterion': [1.7417506643900147, 4.044033650416693, 3.839031029560868, 3.1102149818384577, 6.555802687424725, 4.0350466510932055, 4.2398084240369, 7.4472212637056545, 1.8876150324857537, 6.854025692395922, 7.533785215831105, 4.0304942260079715, 6.9687146628227685, 3.6306244874617524, 1.813179054752377, 1.735141592048766, 1.6618543960051388, 1.6605566084700965, 1.787689373026589, 1.6291014270431563, 1.777798122456165, 1.632292085466769, 1.6271336788414652, 1.6284861630783356, 1.6244654953135362, 1.6230082503264982, 1.6090597971175158, 1.629602934753117, 1.6232248781797074, 1.605426494943335, 1.6058418258921947, 1.6103566711611732, 1.602773679862558, 1.600000642454223, 1.5931176392366253, 1.5885323102852085, 1.5884452260480586], 'runtime': [0.0, 1.6573489120000886, 1.8980423070001962, 2.150231590000203, 2.373712593000164, 2.599337934000232, 2.8330090170002222, 3.043642430000091, 3.288450333000128, 3.509146449000127, 3.7571936809999897, 4.027816445000099, 4.233261417999984, 5.640783099000146, 6.89868973800003, 8.127792537000005, 9.485735503000342, 10.743957478000084, 12.117308977999983, 13.37196219200041, 14.630474981000134, 15.913594054999976, 17.21643300300002, 18.4790148510001, 19.735624699000255, 20.99211075600033, 22.247556268000153, 23.510576062000382, 24.75262762400007, 26.13834114800011, 27.398869630000263, 28.642764694000107, 29.889699067000038, 31.119459402000302, 32.381643047000125, 33.65092054300021, 34.95086586100024], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]}}, {'solution_x': array([4.27264206, 0.98146071]), 'solution_criterion': 1.5881921698252235, 'states': [State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.4707203308184449, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.6380478126416131, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=0, candidate_x=array([4.70720331, 0.97232932]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.4707203308184449, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.3590354657860904, linear_terms=array([ 0.23079344, -0.53681647]), square_terms=array([[ 0.14552137, -0.45699815],
+ [-0.45699815, 8.05766769]]), scale=array([0.41716503, 0.27241785]), shift=array([4.70720331, 0.82758215])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=13, candidate_x=array([4.29003828, 0.83028069]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=-2.200880078069248, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.23536016540922244, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 4, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.652854750173936, linear_terms=array([0.06969601, 1.57909406]), square_terms=array([[ 0.03163761, -0.06566736],
+ [-0.06566736, 4.02842576]]), scale=array([0.20858252, 0.1681266 ]), shift=array([4.70720331, 0.9318734 ])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=14, candidate_x=array([4.49862079, 0.86322919]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=-1.7600178518411977, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 4, 7, 8, 9, 10, 11, 12]), old_indices_discarded=array([ 1, 2, 5, 6, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.11768008270461122, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 8, 9, 10, 11, 12, 14]), model=ScalarModel(intercept=1.854395217885178, linear_terms=array([0.030548 , 1.44658812]), square_terms=array([[ 0.01441336, -0.05269915],
+ [-0.05269915, 2.1098409 ]]), scale=0.11768008270461122, shift=array([4.70720331, 0.97232932])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=15, candidate_x=array([4.61826213, 0.89221191]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=-1.915374410311117, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 8, 9, 10, 11, 12, 14]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 9, 12, 14, 15]), model=ScalarModel(intercept=1.4384011150252112, linear_terms=array([0.06693427, 0.16511788]), square_terms=array([[ 0.06028812, -0.33441041],
+ [-0.33441041, 2.50134611]]), scale=0.05884004135230561, shift=array([4.70720331, 0.97232932])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=16, candidate_x=array([4.64936036, 0.96104173]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=-0.2167656601879471, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 9, 12, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16]), model=ScalarModel(intercept=1.6372268956710594, linear_terms=array([ 0.1685441 , -0.13872507]), square_terms=array([[ 0.05020446, -0.12669357],
+ [-0.12669357, 0.64471625]]), scale=0.029420020676152805, shift=array([4.70720331, 0.97232932])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=17, candidate_x=array([4.67717913, 0.97269526]), index=17, x=array([4.67717913, 0.97269526]), fval=1.631941462430788, rho=0.04184469522185483, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.03002641272341987, relative_step_length=1.0206115438850998, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.67717913, 0.97269526]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17]), model=ScalarModel(intercept=1.6319414624307902, linear_terms=array([0.00310345, 0.01871238]), square_terms=array([[0.0001745 , 0.00326021],
+ [0.00326021, 0.12782284]]), scale=0.014710010338076403, shift=array([4.67717913, 0.97269526])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=18, candidate_x=array([4.66242041, 0.97095279]), index=18, x=array([4.66242041, 0.97095279]), fval=1.6292672840092994, rho=0.6756001269705089, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.014861219314677702, relative_step_length=1.010279324971642, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.66242041, 0.97095279]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16, 17, 18]), model=ScalarModel(intercept=1.4810088090029692, linear_terms=array([ 0.11958572, -0.03732605]), square_terms=array([[ 0.05065772, -0.12829538],
+ [-0.12829538, 0.65103621]]), scale=0.029420020676152805, shift=array([4.66242041, 0.97095279])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=19, candidate_x=array([4.63314395, 0.96734331]), index=18, x=array([4.66242041, 0.97095279]), fval=1.6292672840092994, rho=-0.020590492456450688, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.66242041, 0.97095279]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17, 18, 19]), model=ScalarModel(intercept=1.6292156586595015, linear_terms=array([0.00188502, 0.00233158]), square_terms=array([[0.00018003, 0.0034169 ],
+ [0.0034169 , 0.12685944]]), scale=0.014710010338076403, shift=array([4.66242041, 0.97095279])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=20, candidate_x=array([4.64770842, 0.97107699]), index=20, x=array([4.64770842, 0.97107699]), fval=1.6269015883981965, rho=1.3143613594368355, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.014712511658342373, relative_step_length=1.0001700420467752, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.64770842, 0.97107699]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16, 17, 18, 19, 20]), model=ScalarModel(intercept=1.5063160859816729, linear_terms=array([ 0.05041148, -0.04272255]), square_terms=array([[ 0.0075054 , -0.03307161],
+ [-0.03307161, 0.58165163]]), scale=0.029420020676152805, shift=array([4.64770842, 0.97107699])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=21, candidate_x=array([4.61821743, 0.9715283 ]), index=21, x=array([4.61821743, 0.9715283 ]), fval=1.6215771152258682, rho=0.11367207027105729, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16, 17, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.029494447103161476, relative_step_length=1.002529788399129, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.61821743, 0.9715283 ]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16, 17, 18, 19, 20, 21]), model=ScalarModel(intercept=1.517081598562027, linear_terms=array([ 0.03194748, -0.0915037 ]), square_terms=array([[0.00517109, 0.00423992],
+ [0.00423992, 2.21259895]]), scale=0.05884004135230561, shift=array([4.61821743, 0.9715283 ])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=22, candidate_x=array([4.55938558, 0.97404376]), index=22, x=array([4.55938558, 0.97404376]), fval=1.6122243121836672, rho=0.2975814223142011, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16, 17, 18, 19, 20, 21]), old_indices_discarded=array([ 9, 14]), step_length=0.058885598606691694, relative_step_length=1.000774255988593, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55938558, 0.97404376]), radius=0.11768008270461122, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 15, 16, 17, 18, 19, 20, 21, 22]), model=ScalarModel(intercept=1.6244940972117774, linear_terms=array([0.00768524, 0.3968281 ]), square_terms=array([[ 0.01794061, -0.11175552],
+ [-0.11175552, 4.76976273]]), scale=0.11768008270461122, shift=array([4.55938558, 0.97404376])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=23, candidate_x=array([4.44236235, 0.96151592]), index=22, x=array([4.55938558, 0.97404376]), fval=1.6122243121836672, rho=-2.222167750707154, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 15, 16, 17, 18, 19, 20, 21, 22]), old_indices_discarded=array([ 0, 1, 3, 4, 7, 8, 9, 10, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55938558, 0.97404376]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([15, 16, 17, 18, 19, 20, 21, 22, 23]), model=ScalarModel(intercept=1.6256896704319683, linear_terms=array([0.0043886 , 0.10549552]), square_terms=array([[0.00419989, 0.0564693 ],
+ [0.0564693 , 1.33147903]]), scale=0.05884004135230561, shift=array([4.55938558, 0.97404376])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=24, candidate_x=array([4.61778209, 0.96683279]), index=22, x=array([4.55938558, 0.97404376]), fval=1.6122243121836672, rho=-5.466651138741908, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([15, 16, 17, 18, 19, 20, 21, 22, 23]), old_indices_discarded=array([ 0, 3, 9, 10, 12, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55938558, 0.97404376]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([15, 16, 18, 19, 20, 21, 22, 23, 24]), model=ScalarModel(intercept=1.6269177150442447, linear_terms=array([0.00261458, 0.05266846]), square_terms=array([[0.00103242, 0.01385775],
+ [0.01385775, 0.33190979]]), scale=0.029420020676152805, shift=array([4.55938558, 0.97404376])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=25, candidate_x=array([4.53016803, 0.97059817]), index=22, x=array([4.55938558, 0.97404376]), fval=1.6122243121836672, rho=-0.5597649420514624, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([15, 16, 18, 19, 20, 21, 22, 23, 24]), old_indices_discarded=array([14, 17]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55938558, 0.97404376]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([21, 22, 24, 25]), model=ScalarModel(intercept=1.6125186187197176, linear_terms=array([0.00192027, 0.00012471]), square_terms=array([[0.00019263, 0.00355747],
+ [0.00355747, 0.13532065]]), scale=0.014710010338076403, shift=array([4.55938558, 0.97404376])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=26, candidate_x=array([4.54468017, 0.97441185]), index=26, x=array([4.54468017, 0.97441185]), fval=1.6100467129384297, rho=1.1664111683806726, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([21, 22, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.01471002222619643, relative_step_length=1.0000008081653073, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.54468017, 0.97441185]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 19, 20, 21, 22, 23, 24, 25, 26]), model=ScalarModel(intercept=1.610617175628848, linear_terms=array([0.00467212, 0.01317766]), square_terms=array([[0.00085989, 0.01539591],
+ [0.01539591, 0.54391644]]), scale=0.029420020676152805, shift=array([4.54468017, 0.97441185])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=27, candidate_x=array([4.51525197, 0.97453122]), index=27, x=array([4.51525197, 0.97453122]), fval=1.6064550393910895, rho=0.8455422416631787, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([16, 19, 20, 21, 22, 23, 24, 25, 26]), old_indices_discarded=array([14, 15, 17, 18]), step_length=0.029428443747579514, relative_step_length=1.000286304062102, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.51525197, 0.97453122]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 19, 21, 22, 23, 24, 25, 26, 27]), model=ScalarModel(intercept=1.6171036489097632, linear_terms=array([0.00432157, 0.08549957]), square_terms=array([[0.00404165, 0.04083728],
+ [0.04083728, 0.9748026 ]]), scale=0.05884004135230561, shift=array([4.51525197, 0.97453122])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=28, candidate_x=array([4.45646967, 0.97192498]), index=27, x=array([4.51525197, 0.97453122]), fval=1.6064550393910895, rho=-0.3653445002297127, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 19, 21, 22, 23, 24, 25, 26, 27]), old_indices_discarded=array([ 0, 3, 7, 10, 12, 13, 15, 16, 17, 18, 20]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.51525197, 0.97453122]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 21, 22, 23, 24, 25, 26, 27, 28]), model=ScalarModel(intercept=1.6158549160636237, linear_terms=array([0.0016874, 0.045421 ]), square_terms=array([[0.00106973, 0.01073937],
+ [0.01073937, 0.24481613]]), scale=0.029420020676152805, shift=array([4.51525197, 0.97453122])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=29, candidate_x=array([4.54388801, 0.96778475]), index=27, x=array([4.51525197, 0.97453122]), fval=1.6064550393910895, rho=-3.9976405851055894, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 21, 22, 23, 24, 25, 26, 27, 28]), old_indices_discarded=array([15, 16, 19, 20]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.51525197, 0.97453122]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 25, 26, 27, 28, 29]), model=ScalarModel(intercept=1.6066876339598914, linear_terms=array([ 0.00156986, -0.00517551]), square_terms=array([[0.00019907, 0.00364165],
+ [0.00364165, 0.13928521]]), scale=0.014710010338076403, shift=array([4.51525197, 0.97453122])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=30, candidate_x=array([4.5005611 , 0.97545133]), index=30, x=array([4.5005611 , 0.97545133]), fval=1.6045259070805813, rho=1.104079170574446, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 25, 26, 27, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.014719649538465622, relative_step_length=1.0006552816869387, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.5005611 , 0.97545133]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 22, 23, 25, 26, 27, 28, 29, 30]), model=ScalarModel(intercept=1.6151275211840224, linear_terms=array([-0.00091945, 0.04982336]), square_terms=array([[0.0018448 , 0.01496444],
+ [0.01496444, 0.24558318]]), scale=0.029420020676152805, shift=array([4.5005611 , 0.97545133])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=31, candidate_x=array([4.52948592, 0.96781471]), index=30, x=array([4.5005611 , 0.97545133]), fval=1.6045259070805813, rho=-2.139770334550352, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 22, 23, 25, 26, 27, 28, 29, 30]), old_indices_discarded=array([15, 19, 21, 24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.5005611 , 0.97545133]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 23, 25, 26, 27, 28, 29, 30, 31]), model=ScalarModel(intercept=1.6052861266606393, linear_terms=array([0.00202734, 0.00619617]), square_terms=array([[0.0002099 , 0.00380383],
+ [0.00380383, 0.14225083]]), scale=0.014710010338076403, shift=array([4.5005611 , 0.97545133])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=32, candidate_x=array([4.48583943, 0.97520725]), index=32, x=array([4.48583943, 0.97520725]), fval=1.6029216364692263, rho=0.8252881334307689, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 23, 25, 26, 27, 28, 29, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.014723693213830385, relative_step_length=1.0009301744485226, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.48583943, 0.97520725]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 26, 27, 28, 29, 30, 31, 32]), model=ScalarModel(intercept=1.603281247362616, linear_terms=array([0.00373974, 0.00024847]), square_terms=array([[0.00085108, 0.01532586],
+ [0.01532586, 0.57103593]]), scale=0.029420020676152805, shift=array([4.48583943, 0.97520725])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=33, candidate_x=array([4.45642954, 0.97597933]), index=33, x=array([4.45642954, 0.97597933]), fval=1.599716096343115, rho=0.9127111762327604, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 26, 27, 28, 29, 30, 31, 32]), old_indices_discarded=array([14, 21, 22, 24]), step_length=0.0294200258837129, relative_step_length=1.0000001770073568, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.45642954, 0.97597933]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 27, 28, 29, 30, 31, 32, 33]), model=ScalarModel(intercept=1.5997771172632202, linear_terms=array([0.00705164, 0.0023645 ]), square_terms=array([[0.00344304, 0.06165063],
+ [0.06165063, 2.29724063]]), scale=0.05884004135230561, shift=array([4.45642954, 0.97597933])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=34, candidate_x=array([4.39760896, 0.97749389]), index=34, x=array([4.39760896, 0.97749389]), fval=1.5939391812466719, rho=0.9480590071850733, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 27, 28, 29, 30, 31, 32, 33]), old_indices_discarded=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26]), step_length=0.05884007156424952, relative_step_length=1.000000513458917, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.39760896, 0.97749389]), radius=0.11768008270461122, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 27, 28, 30, 31, 32, 33, 34]), model=ScalarModel(intercept=1.593889235787229, linear_terms=array([0.01040724, 0.00815608]), square_terms=array([[0.01329919, 0.24024205],
+ [0.24024205, 9.25060511]]), scale=0.11768008270461122, shift=array([4.39760896, 0.97749389])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=35, candidate_x=array([4.27996586, 0.98044438]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=0.7899999841070257, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 27, 28, 30, 31, 32, 33, 34]), old_indices_discarded=array([ 0, 1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 24, 26, 29]), step_length=0.11768009368678081, relative_step_length=1.0000000933222457, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.23536016540922244, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 13, 23, 28, 30, 32, 34, 35]), model=ScalarModel(intercept=1.462227461968244, linear_terms=array([ 0.42418134, -1.67220361]), square_terms=array([[ 0.54111536, -2.08375437],
+ [-2.08375437, 13.44006276]]), scale=array([0.20858252, 0.16406907]), shift=array([4.27996586, 0.93593093])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=36, candidate_x=array([4.12220384, 0.93710467]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-3.916267884563185, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 13, 23, 28, 30, 32, 34, 35]), old_indices_discarded=array([ 0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19,
+ 20, 21, 22, 24, 25, 26, 27, 29, 31, 33]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.11768008270461122, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 13, 23, 33, 34, 35, 36]), model=ScalarModel(intercept=1.4622568288955424, linear_terms=array([0.02225047, 0.92573591]), square_terms=array([[ 0.05426403, -0.13596618],
+ [-0.13596618, 7.70370864]]), scale=0.11768008270461122, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=37, candidate_x=array([4.1634327 , 0.96405462]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-2.181712710002738, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 13, 23, 33, 34, 35, 36]), old_indices_discarded=array([ 0, 1, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26,
+ 27, 28, 29, 30, 31, 32]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 13, 23, 34, 35, 36, 37]), model=ScalarModel(intercept=1.4660466698117092, linear_terms=array([0.01297109, 0.40170174]), square_terms=array([[0.01156038, 0.07971153],
+ [0.07971153, 1.91612895]]), scale=0.05884004135230561, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=38, candidate_x=array([4.33690661, 0.96561531]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-1.6144313618454553, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 13, 23, 34, 35, 36, 37]), old_indices_discarded=array([14, 22, 25, 26, 27, 28, 29, 30, 31, 32, 33]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 34, 35, 37, 38]), model=ScalarModel(intercept=1.470665765480307, linear_terms=array([0.00298517, 0.10703439]), square_terms=array([[0.00144857, 0.00998505],
+ [0.00998505, 0.6595069 ]]), scale=0.029420020676152805, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=39, candidate_x=array([4.24902077, 0.97613818]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-1.3905549963491703, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 34, 35, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([35, 38, 39]), model=ScalarModel(intercept=1.588671436805631, linear_terms=array([-0.00081796, -0.00402187]), square_terms=array([[0.00023222, 0.00443072],
+ [0.00443072, 0.1618569 ]]), scale=0.014710010338076403, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=40, candidate_x=array([4.29468007, 0.98040724]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-0.14254194492005098, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 38, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.007355005169038201, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([35, 39, 40]), model=ScalarModel(intercept=1.5886714368056296, linear_terms=array([-1.01760419e-05, -4.87679307e-03]), square_terms=array([[5.26567689e-05, 9.93842843e-04],
+ [9.93842843e-04, 4.23791006e-02]]), scale=0.007355005169038201, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=41, candidate_x=array([4.27264206, 0.98146071]), index=41, x=array([4.27264206, 0.98146071]), fval=1.5881921698252235, rho=1.2960293054666532, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([35, 39, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.007393988138705295, relative_step_length=1.005300196093838, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 42 entries., 'history': {'params': [{'CRRA': 4.707203308184448, 'DiscFac': 0.9723293237231975}, {'CRRA': 4.290038276655113, 'DiscFac': 0.5612839565173267}, {'CRRA': 5.124368339713784, 'DiscFac': 0.7815145778668051}, {'CRRA': 4.290038276655113, 'DiscFac': 0.8852911049439405}, {'CRRA': 5.124368339713784, 'DiscFac': 1.0998082225394454}, {'CRRA': 5.124368339713784, 'DiscFac': 0.6528702672894295}, {'CRRA': 5.088882093668508, 'DiscFac': 0.5551642921938619}, {'CRRA': 4.290038276655113, 'DiscFac': 1.0958487440640778}, {'CRRA': 5.124368339713784, 'DiscFac': 0.9644452739308207}, {'CRRA': 4.815289190462201, 'DiscFac': 1.1}, {'CRRA': 4.290038276655113, 'DiscFac': 1.0869940700172442}, {'CRRA': 4.610395613673098, 'DiscFac': 0.5551642921938619}, {'CRRA': 4.712667209754667, 'DiscFac': 1.1}, {'CRRA': 4.290038276655113, 'DiscFac': 0.8302806857872134}, {'CRRA': 4.49862079241978, 'DiscFac': 0.8632291852888655}, {'CRRA': 4.618262130250856, 'DiscFac': 0.892211907379606}, {'CRRA': 4.649360364309195, 'DiscFac': 0.9610417287955715}, {'CRRA': 4.677179125402864, 'DiscFac': 0.9726952599678501}, {'CRRA': 4.662420411739433, 'DiscFac': 0.9709527874372768}, {'CRRA': 4.633143948980592, 'DiscFac': 0.9673433127210762}, {'CRRA': 4.647708424364658, 'DiscFac': 0.9710769920318861}, {'CRRA': 4.618217430273746, 'DiscFac': 0.9715282984145067}, {'CRRA': 4.559385583543956, 'DiscFac': 0.9740437573449842}, {'CRRA': 4.442362348737134, 'DiscFac': 0.9615159200987019}, {'CRRA': 4.6177820933812335, 'DiscFac': 0.966832786178363}, {'CRRA': 4.530168028631268, 'DiscFac': 0.9705981657398585}, {'CRRA': 4.54468016749636, 'DiscFac': 0.9744118507601772}, {'CRRA': 4.515251965828596, 'DiscFac': 0.974531215771109}, {'CRRA': 4.456469672419852, 'DiscFac': 0.9719249832509226}, {'CRRA': 4.54388800665835, 'DiscFac': 0.9677847513502521}, {'CRRA': 4.5005611019825995, 'DiscFac': 0.9754513255437164}, {'CRRA': 4.529485918905441, 'DiscFac': 0.9678147143724265}, {'CRRA': 4.485839431860874, 'DiscFac': 0.9752072544842302}, {'CRRA': 4.456429538458829, 'DiscFac': 0.9759793251278149}, {'CRRA': 4.397608962906071, 'DiscFac': 0.9774938921710231}, {'CRRA': 4.279965862398321, 'DiscFac': 0.9804443756996974}, {'CRRA': 4.122203844999166, 'DiscFac': 0.937104673702021}, {'CRRA': 4.163432700992639, 'DiscFac': 0.9640546179784433}, {'CRRA': 4.336906613655518, 'DiscFac': 0.9656153058500048}, {'CRRA': 4.249020769576481, 'DiscFac': 0.9761381800429344}, {'CRRA': 4.294680071351096, 'DiscFac': 0.9804072400803372}, {'CRRA': 4.272642056859294, 'DiscFac': 0.9814607088251204}], 'criterion': [1.6380478126416131, 4.03723195367052, 3.5440740950812013, 3.2759678353900803, 6.781083894625252, 3.8713442516298198, 3.996890584141768, 7.627891908022631, 1.7551707114922444, 7.144112642232848, 6.6404717126627215, 3.935564366818633, 7.291412101525699, 3.862333195265191, 3.197857033577577, 2.6761443032128733, 1.6565559654451956, 1.631941462430788, 1.6292672840092992, 1.6313284776792012, 1.6269015883981968, 1.6215771152258682, 1.6122243121836672, 1.6696000135319509, 1.6306703543399446, 1.614669208950377, 1.6100467129384297, 1.6064550393910892, 1.6076695381563089, 1.6233520305796163, 1.6045259070805813, 1.6226940047077765, 1.6029216364692263, 1.599716096343115, 1.5939391812466719, 1.5886714368056305, 2.4007693475753995, 1.7378906646063588, 1.6562535862817716, 1.601747168932624, 1.5887715770723967, 1.5881921698252237], 'runtime': [0.0, 1.6821844799997052, 1.9150985659998696, 2.1253850919997603, 2.3511059309998927, 2.5650789659998736, 2.9549039649996303, 3.1735108909997507, 3.420102272999884, 3.6554864049999196, 3.8900463229997513, 4.125565374999951, 4.354761785999926, 5.818293315999654, 7.186155066999618, 8.53306442999974, 9.823283617000016, 11.099486161999721, 12.398446895999768, 13.630369614999836, 14.879300103999867, 16.134582642999703, 17.520538064999982, 18.790717263999795, 20.063523801999963, 21.335516795999865, 22.614525473999947, 23.88811478999969, 25.139806550999765, 26.40284090499972, 27.666455542999756, 28.90823847599995, 30.15419865199965, 31.539459458999772, 32.79186168299975, 34.119294054999955, 35.38719801199977, 36.70442176400002, 38.07354152799962, 39.34327665000001, 40.64497849999998, 41.9631218479999], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]}, 'multistart_info': {...}}], 'exploration_sample': array([[ 5. , 0.95 ],
+ [ 5.825 , 0.95 ],
+ [ 7.596875, 0.93125 ],
+ [ 4.64375 , 0.6875 ],
+ [ 9.36875 , 0.8375 ],
+ [ 8.1875 , 0.725 ],
+ [10.55 , 0.8 ],
+ [11.73125 , 0.7625 ],
+ [ 7.00625 , 0.6125 ],
+ [15.275 , 0.65 ],
+ [12.9125 , 0.575 ],
+ [17.046875, 0.63125 ],
+ [ 3.4625 , 0.875 ],
+ [16.45625 , 0.9125 ],
+ [14.09375 , 0.9875 ],
+ [18.81875 , 0.5375 ],
+ [12.321875, 1.08125 ],
+ [17.6375 , 1.025 ],
+ [ 2.871875, 0.78125 ],
+ [ 2.28125 , 1.0625 ]]), 'exploration_results': array([ 1.74175066, 2.04247528, 2.9717037 , 3.76994253, 3.80031518,
+ 4.27735638, 4.32695188, 4.78264529, 5.25346612, 5.79528191,
+ 5.94010747, 6.02403907, 6.09730665, 6.10855726, 6.12270544,
+ 6.45799199, 7.01428788, 7.3683214 , 8.72764877, 13.61935456])}}"
diff --git a/content/tables/min/WarmGlowPortfolio_estimate_results.csv b/content/tables/min/WarmGlowPortfolio_estimate_results.csv
new file mode 100644
index 0000000..b21ab12
--- /dev/null
+++ b/content/tables/min/WarmGlowPortfolio_estimate_results.csv
@@ -0,0 +1,36082 @@
+CRRA,7.1639015143593845
+BeqFac,20.000633171274284
+BeqShift,19.79517609692503
+time_to_estimate,602.1032071113586
+params,"{'CRRA': 7.1639015143593845, 'BeqFac': 20.000633171274284, 'BeqShift': 19.79517609692503}"
+criterion,2.1803868818934804
+start_criterion,2.1256418965625494
+start_params,"{'CRRA': 9.370461268457287, 'BeqFac': 67.92926162554892, 'BeqShift': 52.186320909731975}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,3
+message,
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 15.274999999999999, 'BeqFac': 32.5, 'BeqShift': 17.5}, {'CRRA': 16.182801876545053, 'BeqFac': 34.12985962684907, 'BeqShift': 14.838806029296492}, {'CRRA': 13.186582363135361, 'BeqFac': 34.02077261426837, 'BeqShift': 15.528132248419263}, {'CRRA': 12.513036682476873, 'BeqFac': 33.918552234352525, 'BeqShift': 18.46008759551934}, {'CRRA': 14.964467470070502, 'BeqFac': 29.264926378967182, 'BeqShift': 17.480811087753608}, {'CRRA': 14.788665706354442, 'BeqFac': 31.288903828741553, 'BeqShift': 20.476445030365486}, {'CRRA': 12.414183952944587, 'BeqFac': 30.9809878511744, 'BeqShift': 17.766145893506714}, {'CRRA': 16.727864072104055, 'BeqFac': 35.39614277769824, 'BeqShift': 17.24693281687355}, {'CRRA': 17.869684634701613, 'BeqFac': 31.663181409674287, 'BeqShift': 15.730862839311593}, {'CRRA': 14.844584771190268, 'BeqFac': 34.725889629975136, 'BeqShift': 19.828660148234995}, {'CRRA': 14.481092007067529, 'BeqFac': 30.94572930389933, 'BeqShift': 14.758385019372582}, {'CRRA': 17.605397582957753, 'BeqFac': 30.47841497651106, 'BeqShift': 18.522223604770446}, {'CRRA': 17.78858044851097, 'BeqFac': 33.36108796478573, 'BeqShift': 19.37161450244556}, {'CRRA': 12.041973154302461, 'BeqFac': 32.272306263268455, 'BeqShift': 17.25876779391579}, {'CRRA': 5.646789673804694, 'BeqFac': 31.22095246876892, 'BeqShift': 17.755037327092985}, {'CRRA': 1.1, 'BeqFac': 36.546550321835426, 'BeqShift': 25.63880507552178}, {'CRRA': 7.559593529411149, 'BeqFac': 25.981978618215397, 'BeqShift': 12.903193018563181}, {'CRRA': 7.162435395579225, 'BeqFac': 20.0, 'BeqShift': 19.797735033320873}, {'CRRA': 7.104176267448587, 'BeqFac': 20.0, 'BeqShift': 18.331508221369553}, {'CRRA': 4.475514432137514, 'BeqFac': 27.116229841868826, 'BeqShift': 9.319787332213822}, {'CRRA': 2.5693570342673224, 'BeqFac': 25.238973850553524, 'BeqShift': 14.558761182767348}, {'CRRA': 6.810760723581704, 'BeqFac': 20.0, 'BeqShift': 17.17824810804411}, {'CRRA': 5.852691932940843, 'BeqFac': 20.07758271241703, 'BeqShift': 20.703967632718857}, {'CRRA': 5.925653154103373, 'BeqFac': 21.137923065439885, 'BeqShift': 21.107478495959253}, {'CRRA': 8.394508842925, 'BeqFac': 21.28958139192138, 'BeqShift': 18.487991570682492}, {'CRRA': 8.44603081706409, 'BeqFac': 20.0, 'BeqShift': 18.963966642656835}, {'CRRA': 5.856112670048812, 'BeqFac': 21.292264441098254, 'BeqShift': 18.487991570682492}, {'CRRA': 8.183625589575518, 'BeqFac': 21.29498020807904, 'BeqShift': 21.107478495959253}, {'CRRA': 6.934504625079032, 'BeqFac': 20.01170679288317, 'BeqShift': 21.107478495959253}, {'CRRA': 8.472178858217607, 'BeqFac': 20.033079859129966, 'BeqShift': 21.089190494846004}, {'CRRA': 7.7691211791621635, 'BeqFac': 21.30974346263838, 'BeqShift': 19.985816414441096}, {'CRRA': 8.472178858217607, 'BeqFac': 20.507497948357408, 'BeqShift': 18.545650692041647}, {'CRRA': 5.852691932940843, 'BeqFac': 20.743256415927384, 'BeqShift': 19.125688821205877}, {'CRRA': 8.472178858217607, 'BeqFac': 20.68617043682625, 'BeqShift': 20.53784235512794}, {'CRRA': 5.852691932940843, 'BeqFac': 20.93951727220174, 'BeqShift': 21.107478495959253}, {'CRRA': 6.507563664260034, 'BeqFac': 20.0, 'BeqShift': 20.452606764640063}, {'CRRA': 6.83499952991963, 'BeqFac': 20.0, 'BeqShift': 20.125170898980468}, {'CRRA': 7.06364362963422, 'BeqFac': 20.141927740405336, 'BeqShift': 19.634017100491075}, {'CRRA': 7.326153328409022, 'BeqFac': 20.00037409874898, 'BeqShift': 19.651101390125355}, {'CRRA': 6.998717462749427, 'BeqFac': 20.15293585825013, 'BeqShift': 19.76255576011568}, {'CRRA': 7.001948833890493, 'BeqFac': 20.0, 'BeqShift': 19.677181797946126}, {'CRRA': 7.3196911343281865, 'BeqFac': 20.103928157632524, 'BeqShift': 19.634017100491075}, {'CRRA': 7.094716123498734, 'BeqFac': 20.163717932829798, 'BeqShift': 19.96145296615067}, {'CRRA': 7.319338495891002, 'BeqFac': 20.15809732003258, 'BeqShift': 19.96145296615067}, {'CRRA': 7.326153328409022, 'BeqFac': 20.162580462479426, 'BeqShift': 19.70600145770026}, {'CRRA': 6.998717462749427, 'BeqFac': 20.0028634996421, 'BeqShift': 19.954305374887397}, {'CRRA': 7.326153328409022, 'BeqFac': 20.0, 'BeqShift': 19.96145296615067}, {'CRRA': 7.326153328409022, 'BeqFac': 20.03151324309369, 'BeqShift': 19.96145296615067}, {'CRRA': 6.998717462749427, 'BeqFac': 20.103601752038916, 'BeqShift': 19.925613167797213}, {'CRRA': 6.998717462749427, 'BeqFac': 20.0, 'BeqShift': 19.96145296615067}, {'CRRA': 7.080576429164326, 'BeqFac': 20.0, 'BeqShift': 19.715876066905974}, {'CRRA': 7.121505912371775, 'BeqFac': 20.0, 'BeqShift': 19.756805550113423}, {'CRRA': 7.14204067197887, 'BeqFac': 20.01287333106645, 'BeqShift': 19.777270291717148}, {'CRRA': 7.181700480846919, 'BeqFac': 20.000491730276497, 'BeqShift': 19.818199774924597}, {'CRRA': 7.173499719380777, 'BeqFac': 20.0, 'BeqShift': 19.777311534260843}, {'CRRA': 7.143968065979087, 'BeqFac': 20.0, 'BeqShift': 19.782848990447388}, {'CRRA': 7.1829001371829495, 'BeqFac': 20.019585836576145, 'BeqShift': 19.811259486774215}, {'CRRA': 7.173734815359353, 'BeqFac': 20.020464741603725, 'BeqShift': 19.778491109597535}, {'CRRA': 7.1419706539755, 'BeqFac': 20.020342246044443, 'BeqShift': 19.784635478145013}, {'CRRA': 7.1419706539755, 'BeqFac': 20.01955357282575, 'BeqShift': 19.81781198112899}, {'CRRA': 7.181040357052529, 'BeqFac': 20.0, 'BeqShift': 19.79686228492614}, {'CRRA': 7.143623930013135, 'BeqFac': 20.0, 'BeqShift': 19.816804484431263}, {'CRRA': 7.171272290518652, 'BeqFac': 20.01964011756441, 'BeqShift': 19.818199774924597}, {'CRRA': 7.181554792623697, 'BeqFac': 20.014048098881094, 'BeqShift': 19.777270291717148}, {'CRRA': 7.1419706539755, 'BeqFac': 20.0, 'BeqShift': 19.777270291717148}, {'CRRA': 7.172667766381087, 'BeqFac': 20.0, 'BeqShift': 19.807967404122735}, {'CRRA': 7.157319210178294, 'BeqFac': 20.005116185400933, 'BeqShift': 19.79261884791994}, {'CRRA': 7.164653475504358, 'BeqFac': 20.002558092700465, 'BeqShift': 19.79568303885475}, {'CRRA': 7.160117120125059, 'BeqFac': 20.001282249271082, 'BeqShift': 19.795176940620408}, {'CRRA': 7.159964205122328, 'BeqFac': 20.0, 'BeqShift': 19.795273143283936}, {'CRRA': 7.161532722229706, 'BeqFac': 20.002558092700465, 'BeqShift': 19.800293126021337}, {'CRRA': 7.159877302878759, 'BeqFac': 20.000358479209176, 'BeqShift': 19.797942561941547}, {'CRRA': 7.16499348827969, 'BeqFac': 20.0, 'BeqShift': 19.795176940620408}, {'CRRA': 7.164513663974864, 'BeqFac': 20.000160193152734, 'BeqShift': 19.800293126021337}, {'CRRA': 7.16499348827969, 'BeqFac': 20.001664913878862, 'BeqShift': 19.79750680231172}, {'CRRA': 7.160809405993526, 'BeqFac': 20.002558092700465, 'BeqShift': 19.79525224084456}, {'CRRA': 7.15999169371701, 'BeqFac': 20.000247646937908, 'BeqShift': 19.800293126021337}, {'CRRA': 7.159877302878759, 'BeqFac': 20.00249194255367, 'BeqShift': 19.798919564968763}, {'CRRA': 7.16499348827969, 'BeqFac': 20.00255663871507, 'BeqShift': 19.800061699007433}, {'CRRA': 7.1639021811460895, 'BeqFac': 20.00063328199441, 'BeqShift': 19.795176940620408}, {'CRRA': 7.169018366547021, 'BeqFac': 20.000064999982364, 'BeqShift': 19.790060755219475}, {'CRRA': 7.161344088445624, 'BeqFac': 20.0, 'BeqShift': 19.797735033320873}, {'CRRA': 7.166460273846555, 'BeqFac': 20.0, 'BeqShift': 19.79564528614256}, {'CRRA': 7.163064461739323, 'BeqFac': 20.001912328344645, 'BeqShift': 19.79513384102948}, {'CRRA': 7.163262657970973, 'BeqFac': 20.0, 'BeqShift': 19.795816463795525}, {'CRRA': 7.164217004255594, 'BeqFac': 20.000385363484497, 'BeqShift': 19.79521086032531}, {'CRRA': 7.164096545471967, 'BeqFac': 20.00067180477727, 'BeqShift': 19.795186261715}, {'CRRA': 7.164023707340419, 'BeqFac': 20.00066440574548, 'BeqShift': 19.79502328166366}, {'CRRA': 7.163982498130716, 'BeqFac': 20.000480812238173, 'BeqShift': 19.795078703487963}, {'CRRA': 7.16382178974572, 'BeqFac': 20.000597846008507, 'BeqShift': 19.794999092672917}, {'CRRA': 7.16370872649278, 'BeqFac': 20.000663521111473, 'BeqShift': 19.79514517158375}, {'CRRA': 7.163961894616199, 'BeqFac': 20.000820241710436, 'BeqShift': 19.795205728549274}, {'CRRA': 7.163951158682439, 'BeqFac': 20.000494558425927, 'BeqShift': 19.795310002077102}, {'CRRA': 7.163811384018704, 'BeqFac': 20.000459010676405, 'BeqShift': 19.79514985246513}, {'CRRA': 7.16385650799105, 'BeqFac': 20.000783522168174, 'BeqShift': 19.795055737353643}, {'CRRA': 7.163803473797779, 'BeqFac': 20.000759869728515, 'BeqShift': 19.795293477240154}, {'CRRA': 7.163775125575999, 'BeqFac': 20.000569554622412, 'BeqShift': 19.795315302764596}, {'CRRA': 7.1639944520980885, 'BeqFac': 20.000664832354538, 'BeqShift': 19.795349680381236}, {'CRRA': 7.163751992373234, 'BeqFac': 20.000760246901173, 'BeqShift': 19.79520285632485}, {'CRRA': 7.163925068772202, 'BeqFac': 20.000727784788914, 'BeqShift': 19.795157383701017}, {'CRRA': 7.163914997538436, 'BeqFac': 20.000680851494216, 'BeqShift': 19.795182611286055}, {'CRRA': 7.1639114232721495, 'BeqFac': 20.000635159364233, 'BeqShift': 19.795199872628753}, {'CRRA': 7.163885204160897, 'BeqFac': 20.00065130915455, 'BeqShift': 19.795178214154674}, {'CRRA': 7.1638914566964145, 'BeqFac': 20.000632401662962, 'BeqShift': 19.79515460164966}, {'CRRA': 7.163880376147532, 'BeqFac': 20.000632532070163, 'BeqShift': 19.795188721879676}, {'CRRA': 7.163888841076567, 'BeqFac': 20.00065391230709, 'BeqShift': 19.79518029489562}, {'CRRA': 7.163880731505007, 'BeqFac': 20.000637978735217, 'BeqShift': 19.795188458951085}, {'CRRA': 7.163913747460303, 'BeqFac': 20.000616693186632, 'BeqShift': 19.795162593138038}, {'CRRA': 7.163899201725449, 'BeqFac': 20.00061321943721, 'BeqShift': 19.795162677546767}, {'CRRA': 7.163909194327857, 'BeqFac': 20.00064821908534, 'BeqShift': 19.795158433405206}, {'CRRA': 7.1638854346870735, 'BeqFac': 20.00063977876056, 'BeqShift': 19.795159847740067}, {'CRRA': 7.163881339043696, 'BeqFac': 20.00062004022952, 'BeqShift': 19.79517468654658}, {'CRRA': 7.16390973103596, 'BeqFac': 20.000645257800755, 'BeqShift': 19.795197297379573}, {'CRRA': 7.163919726049716, 'BeqFac': 20.00065074964088, 'BeqShift': 19.795175570911695}, {'CRRA': 7.163909213102567, 'BeqFac': 20.00062330436833, 'BeqShift': 19.795174771940978}, {'CRRA': 7.163907604187158, 'BeqFac': 20.00063536356951, 'BeqShift': 19.795179105383042}, {'CRRA': 7.163900700832957, 'BeqFac': 20.00063324136908, 'BeqShift': 19.795174217834997}, {'CRRA': 7.163903955141367, 'BeqFac': 20.000635781731372, 'BeqShift': 19.795177399743114}, {'CRRA': 7.163901146027562, 'BeqFac': 20.000633947980603, 'BeqShift': 19.79517978518185}, {'CRRA': 7.163900570016392, 'BeqFac': 20.000635896296245, 'BeqShift': 19.79517652082902}, {'CRRA': 7.163899630286651, 'BeqFac': 20.000631692102814, 'BeqShift': 19.79517618438062}, {'CRRA': 7.163899752814149, 'BeqFac': 20.000631446636376, 'BeqShift': 19.795177524745952}, {'CRRA': 7.16390086591286, 'BeqFac': 20.000632984202614, 'BeqShift': 19.79517973132272}, {'CRRA': 7.16390415064239, 'BeqFac': 20.000633787267674, 'BeqShift': 19.795174601321147}, {'CRRA': 7.163902541137623, 'BeqFac': 20.000631428218405, 'BeqShift': 19.795174482886004}, {'CRRA': 7.163901113564961, 'BeqFac': 20.00063160358454, 'BeqShift': 19.795174563700417}, {'CRRA': 7.163902496713463, 'BeqFac': 20.00063636297429, 'BeqShift': 19.795176820129765}, {'CRRA': 7.163905065126601, 'BeqFac': 20.000633398456024, 'BeqShift': 19.7951758111821}, {'CRRA': 7.1639007459303325, 'BeqFac': 20.000635884878065, 'BeqShift': 19.795177819079395}, {'CRRA': 7.163903142717981, 'BeqFac': 20.000632236870768, 'BeqShift': 19.7951775608869}, {'CRRA': 7.163901510418178, 'BeqFac': 20.000634016817976, 'BeqShift': 19.79517683983155}, {'CRRA': 7.163901451210496, 'BeqFac': 20.000633965481903, 'BeqShift': 19.795176946855463}, {'CRRA': 7.163901535197764, 'BeqFac': 20.000633599837798, 'BeqShift': 19.795176196261497}, {'CRRA': 7.163901490373312, 'BeqFac': 20.000634004677494, 'BeqShift': 19.79517696432972}, {'CRRA': 7.163901547712465, 'BeqFac': 20.00063405178731, 'BeqShift': 19.795177019238082}, {'CRRA': 7.163901518809783, 'BeqFac': 20.000634025214705, 'BeqShift': 19.795177035141368}, {'CRRA': 7.163901645878996, 'BeqFac': 20.00063412032794, 'BeqShift': 19.795177043993665}, {'CRRA': 7.163901294040248, 'BeqFac': 20.00063368152116, 'BeqShift': 19.795177171751547}, {'CRRA': 7.163901234004656, 'BeqFac': 20.000633591980925, 'BeqShift': 19.795177023273084}, {'CRRA': 7.163902001003131, 'BeqFac': 20.000634111766654, 'BeqShift': 19.7951763402221}, {'CRRA': 7.1639015143593845, 'BeqFac': 20.000633171274284, 'BeqShift': 19.79517609692503}, {'CRRA': 7.1639008650055525, 'BeqFac': 20.00063296800616, 'BeqShift': 19.795175364107404}, {'CRRA': 7.163902139094802, 'BeqFac': 20.000633350597944, 'BeqShift': 19.795176866887157}, {'CRRA': 7.163902278369378, 'BeqFac': 20.000633246744954, 'BeqShift': 19.79517673770027}, {'CRRA': 7.163902270477919, 'BeqFac': 20.00063324935299, 'BeqShift': 19.795176746685353}, {'CRRA': 7.16390228229157, 'BeqFac': 20.000633049938926, 'BeqShift': 19.795176725858962}, {'CRRA': 7.163901176157773, 'BeqFac': 20.00063264303827, 'BeqShift': 19.795175308884883}, {'CRRA': 7.1639012243988605, 'BeqFac': 20.000632730209208, 'BeqShift': 19.795175239034943}, {'CRRA': 7.163901304848006, 'BeqFac': 20.000632398440953, 'BeqShift': 19.795175480926908}, {'CRRA': 7.163902033737891, 'BeqFac': 20.00063338401652, 'BeqShift': 19.795176924564267}, {'CRRA': 7.163900863291982, 'BeqFac': 20.00063306827834, 'BeqShift': 19.795175344925646}, {'CRRA': 7.163901972460742, 'BeqFac': 20.000633511984724, 'BeqShift': 19.79517691793632}, {'CRRA': 7.163902086734356, 'BeqFac': 20.00063374746687, 'BeqShift': 19.795176680353684}, {'CRRA': 7.163902089228966, 'BeqFac': 20.00063374792789, 'BeqShift': 19.79517667743824}, {'CRRA': 7.163902082265527, 'BeqFac': 20.000633746413552, 'BeqShift': 19.795176685735218}, {'CRRA': 7.1639020890361875, 'BeqFac': 20.000633748271184, 'BeqShift': 19.795176677287976}, {'CRRA': 7.163902087625799, 'BeqFac': 20.000633748159135, 'BeqShift': 19.79517667879227}, {'CRRA': 7.16390208804323, 'BeqFac': 20.000633748208553, 'BeqShift': 19.795176678331682}, {'CRRA': 7.163902088056392, 'BeqFac': 20.000633748449474, 'BeqShift': 19.79517667807952}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}], 'criterion': [9708.18018836299, 2127.4073357822235, 1582.3414040809714, 1461.223588872245, 1905.1367620772523, 1873.0926117107656, 1443.3547433369567, 2226.011118185237, 2434.368142087414, 1883.3409281250472, 1816.9881761663148, 2385.834972841766, 2419.4685314960425, 1376.8902513722257, 178.39169439929836, 4326.5919069340525, 25.03076336270686, 5.380788575651525, 2432.8277466746613, 15.371342712720235, 11243.58403849896, 3167.5830827121936, 440.59964004884046, 450.25568148036575, 848.0494167477046, 857.5104154889324, 441.04107460042025, 809.456682002191, 597.0348891119568, 862.3038025127908, 736.014915544027, 862.3038025127908, 440.59964004884046, 862.3038025127908, 440.59964004884046, 11.86408363285183, 293.703579262664, 739.1355977028069, 791.8858288702991, 726.5266137241042, 727.1463706245476, 790.6088298635653, 745.1625679228945, 790.5397143773652, 791.8858288702991, 726.5266137241042, 791.8858288702991, 791.8858288702991, 726.5266137241042, 726.5266137241042, 22.69251186188246, 48.554076441098985, 101.94687708276342, 102.94033103934424, 102.73665278138273, 101.99503428357619, 102.97094152855944, 102.74237213661318, 101.94512499094861, 101.94512499094861, 102.92393187864472, 101.98643618697619, 102.68144732754381, 102.93670304074945, 101.94512499094861, 1263.105422800911, 274.90567045470783, 3.1485180769564045, 3.153104959164577, 3.153255618793179, 3.1516931288079357, 3.1533415528787336, 3.148174538820802, 3.1486593890894574, 3.148174538820802, 3.1524235904739664, 3.153228503491106, 3.1533415528787336, 3.148174538820802, 3.149270474181912, 50880.936990104405, 127.04482270273118, 124.15443127425131, 1195.9722699594292, 184.28386461351897, 1856.1779125297833, 444.1285295892942, 444.12044148408086, 444.11587024379645, 444.09804343944035, 444.0855019267152, 444.1135847523309, 444.1123938466262, 444.0968891802895, 444.10189458319354, 444.09601173698684, 444.09286720937524, 444.1171962670315, 444.0903011652073, 4.747348674931585, 691.3314151997803, 2164.461028350728, 2164.447044226011, 2164.4503490085654, 2164.444492377498, 2164.4489665203223, 2164.4446802017733, 2164.462273604882, 2164.4544802932633, 2164.459834126683, 2164.447166070698, 2164.4450013165015, 2164.460121684136, 2164.465476817003, 3892.534173759298, 375.51457484549917, 383.4959448754387, 383.496272644513, 383.49598971476905, 383.49593169979437, 383.4958370516466, 383.49584939242726, 383.4959615020264, 383.4962923350778, 383.4961302281509, 383.49598644518517, 383.49612575380587, 383.49638444058814, 383.4959494175749, 111147382.89382327, 3372.7391798850604, 17.600020281062047, 7.942621322397016, 2224.2254516957273, 2825.4274256309336, 104.14322389528552, 29.823220371548697, 2103.1813623801913, 622.7944963072717, 1134.543280395802, 2.1803868818934804, 262.3655738445109, 191.286016777703, 5.916194286861932, 500.77044255483986, 1852.0964401209383, 17.753589883760178, 129.51216440507102, 1.019472730303481e+19, 575.0640017002784, 1289.1011826722831, 1.8499976567687736e+25, 6.5411961083442876, 68.19833286882213, 82.63785306124566, 247.05430206014466, 99.36164539798304, 86.40891294802408, 33.494883409429214, 25.497167941158907, 13.775289216140994, 360.23434597752595, 31.81109393523974, 402.0598618561866, 586646.0332398285, 456.0502404154126, 78.42953249929089, 40.92400750108717, 139.16885298873518, 37.58166734316758, 116.26525498503197, 20.95354640558365, 228.48970395518626, 44.583756274766486, 691.2409585122559, 408.162579799815, 13.866922745657968, 1631.7901250610225, 495.8999338340835, 776.8114217096505, 102.31123616736028, 3.6047969320955464, 168.975273139102, 13.45147255593248, 154.5357134013273, 43.81663863745028, 27.340695118313434, 14269.196817257707, 411.4637127672129, 1180.363035406602, 393.25552149790667, 222.9327873322111, 54793.626263046746, 44.26398212344213, 38.804060589292256, 3036.4769940014653, 569.8239014570051, 1613.8252140321222], 'runtime': [0.0, 2.564920730990707, 2.798703933993238, 3.1651332859910326, 3.392386044986779, 3.689730869999039, 3.9505523549887585, 4.234810522990301, 4.500874940989888, 4.780924023987609, 5.02642052200099, 5.217952605991741, 5.521983869999531, 21.599289716992644, 22.822228908989928, 132.84122170199407, 134.02037017399562, 135.24658499499492, 136.41414783599612, 137.95988153098733, 139.3447518019966, 140.59826148599677, 142.1505370199884, 142.3842561559868, 142.6109579289914, 142.84750575099315, 143.08698043799086, 143.38919233999331, 143.6013988739869, 143.89165096399665, 144.1163940409897, 144.36573110999598, 144.62318312798743, 144.87083578399324, 146.23607910898863, 147.54143147698778, 148.78414471998985, 150.5000691539899, 150.7343672959978, 151.12818939199497, 151.3557800899871, 151.6179073289968, 151.87498457499896, 152.13674818699656, 152.36208865499066, 152.61877021599503, 152.84142053299, 153.10623213199142, 153.32213671298814, 154.65673531799985, 155.84996620599122, 157.09574678399076, 158.77136708199396, 159.0126694819919, 159.23412465098954, 159.4805195730005, 159.7162743319932, 159.96412599500036, 160.20477255999867, 160.46143607399426, 160.6844813409989, 160.92615884800034, 161.19281429199327, 161.41870444099186, 162.72945166999125, 163.94866196499788, 165.30335740599548, 166.95702894199349, 167.21828740999626, 167.4298754659976, 167.67958527799055, 167.89863451498968, 168.14558964199387, 168.37269707699306, 168.63535474200035, 168.87364792499284, 169.13882910298707, 169.3663937419915, 169.60564328799956, 170.93904481999925, 172.1675194829877, 173.4274886619969, 174.68223219399806, 175.895383828989, 177.0783629439975, 178.4540413729992, 180.0835780109919, 180.30773322899768, 180.54889063299925, 180.75701277999906, 181.00318939199497, 181.2467296179966, 181.50297457199486, 181.72635188399, 181.954221107997, 182.21457945198927, 182.4592209859984, 182.69928541198897, 183.9555624749919, 185.14021240599686, 186.28312616799667, 187.88076567799726, 188.09669516299618, 188.33630162999907, 188.55342401399685, 188.82251287599502, 189.02427077099856, 189.2572169569903, 189.4931155069935, 189.92666710999038, 190.17369320399303, 190.38967828398745, 190.63942554299138, 191.88179818699427, 193.1002534989966, 194.28871422199882, 195.8853163879976, 196.10974400099076, 196.32687774399528, 196.56554663299175, 196.79175636799482, 197.05143728699477, 197.2798880009941, 197.53316095899208, 197.76679680300003, 198.0134215859871, 198.25152757999604, 198.4900327209907, 199.72407267800008, 200.9295295639895, 202.13417881498754, 203.514133448989, 204.74701208599436, 205.97110528699704, 207.13830728099856, 208.33350794599392, 209.51064565499837, 210.69716991198948, 211.91714694300026, 213.163164728001, 214.32162758900085, 215.52415094499884, 216.82645558498916, 218.06405381399964, 219.34650398499798, 220.64403396499984, 221.85833923598693, 223.10505214698787, 224.26538995699957, 225.48333885899046, 226.68124185600027, 227.92267440298747, 229.1563655989885, 230.55800399999134, 231.70709491499292, 232.90045834299235, 234.11370993198943, 235.3742303649924, 236.64075460098684, 237.92371344899584, 239.1736174099933, 240.36531390699383, 241.55425495099917, 242.73867187199357, 244.13489988198853, 245.3553574749967, 246.551725265992, 247.74623769099708, 248.93375714299327, 250.1551315169927, 251.32952850598667, 252.56712182099, 253.78058019198943, 254.96371243998874, 256.11194644198986, 257.37866412299627, 258.5176068049914, 259.6738776969869, 260.77702351599874, 261.9118929739925, 263.0288178349874, 264.117916512987, 265.2085039419908, 266.2923197999917, 267.37747748299444, 268.4661660409911, 269.7096656089998, 270.85161694498674, 271.97389261498756, 273.07656889899226, 274.1595409739966, 275.26785371798906, 276.3656064319948, 277.4870640129957, 278.5980592269916, 279.722612913989, 280.81513271199947, 282.03581598299206], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 17, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 21, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 25, 26, 27, 28, 29, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 32, 33, 34, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 36, 37, 38, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109]}"
+convergence_report,
+multistart_info,"{'start_parameters': [{'CRRA': 15.274999999999999, 'BeqFac': 32.5, 'BeqShift': 17.5}, {'CRRA': 5.59950516069428, 'BeqFac': 33.20816964942985, 'BeqShift': 22.523305681988035}, {'CRRA': 9.19422435335419, 'BeqFac': 23.72793018208616, 'BeqShift': 26.198036832516518}], 'local_optima': [Minimize with 3 free parameters terminated.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 0.4439 1.468
+relative_params_change 0.0003056 0.0003056
+absolute_criterion_change 0.9678 3.2
+absolute_params_change 0.005363 0.005363
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.), Minimize with 3 free parameters terminated.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 1.405 17.75
+relative_params_change 0.003117 0.003984
+absolute_criterion_change 4.239 53.57
+absolute_params_change 0.05189 0.06976
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.), Minimize with 3 free parameters terminated.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 0.02464 2.477
+relative_params_change 3.439e-07* 2.186
+absolute_criterion_change 0.2897 29.12
+absolute_params_change 1.353e-06* 8.505
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.)], 'exploration_sample': [{'CRRA': 15.274999999999999, 'BeqFac': 32.5, 'BeqShift': 17.5}, {'CRRA': 3.4625, 'BeqFac': 51.25, 'BeqShift': 26.25}, {'CRRA': 18.228125, 'BeqFac': 40.3125, 'BeqShift': 54.6875}, {'CRRA': 4.64375, 'BeqFac': 35.625, 'BeqShift': 65.625}, {'CRRA': 2.871875, 'BeqFac': 43.4375, 'BeqShift': 32.8125}, {'CRRA': 17.6375, 'BeqFac': 63.75, 'BeqShift': 8.75}, {'CRRA': 15.865624999999998, 'BeqFac': 59.0625, 'BeqShift': 45.9375}, {'CRRA': 12.321874999999999, 'BeqFac': 68.4375, 'BeqShift': 67.8125}, {'CRRA': 2.28125, 'BeqFac': 66.875, 'BeqShift': 39.375}, {'CRRA': 9.959375, 'BeqFac': 24.6875, 'BeqShift': 59.0625}, {'CRRA': 8.778125, 'BeqFac': 65.3125, 'BeqShift': 19.6875}, {'CRRA': 9.368749999999999, 'BeqFac': 48.125, 'BeqShift': 13.125}, {'CRRA': 9.370461268457287, 'BeqFac': 67.92926162554892, 'BeqShift': 52.186320909731975}, {'CRRA': 8.1875, 'BeqFac': 38.75, 'BeqShift': 43.75}, {'CRRA': 18.81875, 'BeqFac': 23.125, 'BeqShift': 48.125}, {'CRRA': 13.503124999999999, 'BeqFac': 52.8125, 'BeqShift': 2.1875}, {'CRRA': 14.093749999999998, 'BeqFac': 60.625, 'BeqShift': 30.625}, {'CRRA': 4.053125, 'BeqFac': 27.8125, 'BeqShift': 37.1875}, {'CRRA': 6.415625, 'BeqFac': 34.0625, 'BeqShift': 10.9375}, {'CRRA': 16.45625, 'BeqFac': 54.375, 'BeqShift': 56.875}, {'CRRA': 11.73125, 'BeqFac': 41.875, 'BeqShift': 4.375}, {'CRRA': 17.046875, 'BeqFac': 30.9375, 'BeqShift': 15.3125}, {'CRRA': 19.409375, 'BeqFac': 49.6875, 'BeqShift': 24.0625}, {'CRRA': 10.549999999999999, 'BeqFac': 45.0, 'BeqShift': 35.0}, {'CRRA': 5.824999999999999, 'BeqFac': 57.5, 'BeqShift': 52.5}, {'CRRA': 5.234375, 'BeqFac': 62.1875, 'BeqShift': 6.5625}, {'CRRA': 12.9125, 'BeqFac': 26.25, 'BeqShift': 61.25}, {'CRRA': 7.596874999999999, 'BeqFac': 55.9375, 'BeqShift': 50.3125}, {'CRRA': 14.684375, 'BeqFac': 37.1875, 'BeqShift': 41.5625}, {'CRRA': 7.00625, 'BeqFac': 29.375, 'BeqShift': 21.875}], 'exploration_results': array([2.67005783e+00, 8.75572079e+00, 9.08018789e+00, 1.68017528e+01,
+ 8.75438745e+01, 9.36743973e+01, 1.00926173e+02, 1.11632625e+02,
+ 1.67068273e+02, 1.92242089e+02, 2.22066462e+02, 2.49895626e+02,
+ 2.52480098e+02, 2.54721262e+02, 4.14506851e+02, 5.22787380e+02,
+ 5.52488706e+02, 5.75590886e+02, 5.94674677e+02, 7.00919594e+02,
+ 1.05281575e+03, 1.07231128e+03, 1.16623114e+03, 1.53593807e+03,
+ 1.67568095e+03, 3.00665721e+03, 2.61981847e+04, 2.87556210e+04,
+ 2.84698965e+14, 1.93307363e+21])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([15.275, 32.5 , 17.5 ]), radius=3.25, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=[0], model=ScalarModel(intercept=9708.18018836299, linear_terms=array([0., 0., 0.]), square_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=0, candidate_x=array([15.275, 32.5 , 17.5 ]), index=0, x=array([15.275, 32.5 , 17.5 ]), fval=9708.18018836299, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([15.275, 32.5 , 17.5 ]), radius=3.25, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=2259.7688438029236, linear_terms=array([647.86205946, -4.48419331, -1.44228675]), square_terms=array([[ 1.01959666e+02, -7.34961644e-01, -1.68340779e-01],
+ [-7.34961644e-01, 8.34236738e-03, 1.00354165e-03],
+ [-1.68340779e-01, 1.00354165e-03, 6.39222852e-04]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=13, candidate_x=array([12.04197315, 32.27230626, 17.25876779]), index=13, x=array([12.04197315, 32.27230626, 17.25876779]), fval=1376.8902513722257, rho=14.033483495736657, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=3.2499999999999996, relative_step_length=0.9999999999999999, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([12.04197315, 32.27230626, 17.25876779]), radius=6.5, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13]), model=ScalarModel(intercept=1766.37632842139, linear_terms=array([980.46682861, 1.90859118, 96.28097288]), square_terms=array([[3.07917700e+02, 5.50255113e-01, 2.80030675e+01],
+ [5.50255113e-01, 1.53562722e-03, 8.26054450e-02],
+ [2.80030675e+01, 8.26054450e-02, 4.67410826e+00]]), scale=6.5, shift=array([12.04197315, 32.27230626, 17.25876779])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=14, candidate_x=array([ 5.64678967, 31.22095247, 17.75503733]), index=14, x=array([ 5.64678967, 31.22095247, 17.75503733]), fval=178.39169439929836, rho=1.4785622710779918, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13]), old_indices_discarded=array([3, 6]), step_length=6.500000000000001, relative_step_length=1.0000000000000002, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 5.64678967, 31.22095247, 17.75503733]), radius=13.0, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14]), model=ScalarModel(intercept=692.0459045048258, linear_terms=array([1217.55570068, 214.68722042, -221.65856736]), square_terms=array([[1148.07591431, 206.05732021, -211.64568893],
+ [ 206.05732021, 59.9966223 , -51.99817385],
+ [-211.64568893, -51.99817385, 48.43315934]]), scale=array([ 7.51236869, 10.4779477 , 10.4779477 ]), shift=array([ 8.61236869, 31.22095247, 17.75503733])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=15, candidate_x=array([ 1.1 , 36.54655032, 25.63880508]), index=14, x=array([ 5.64678967, 31.22095247, 17.75503733]), fval=178.39169439929836, rho=-16.33760307705752, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14]), old_indices_discarded=array([ 1, 3, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 5.64678967, 31.22095247, 17.75503733]), radius=6.5, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15]), model=ScalarModel(intercept=677.4797177796477, linear_terms=array([485.45398728, 660.10677774, 800.1965352 ]), square_terms=array([[363.15504018, 269.02710105, 359.25693598],
+ [269.02710105, 348.83745898, 426.36258887],
+ [359.25693598, 426.36258887, 527.87575972]]), scale=array([4.89288176, 5.23897385, 5.23897385]), shift=array([ 5.99288176, 31.22095247, 17.75503733])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=16, candidate_x=array([ 7.55959353, 25.98197862, 12.90319302]), index=16, x=array([ 7.55959353, 25.98197862, 12.90319302]), fval=25.030763362706857, rho=0.2596199314702299, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15]), old_indices_discarded=array([ 7, 8, 11, 12]), step_length=7.392297260731579, relative_step_length=1.137276501651012, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.55959353, 25.98197862, 12.90319302]), radius=13.0, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 8, 10, 11, 13, 14, 16]), model=ScalarModel(intercept=261.90225255254296, linear_terms=array([962.0253052 , 493.16192276, 408.65716602]), square_terms=array([[1906.08794904, 954.07933326, 811.01826306],
+ [ 954.07933326, 494.80523489, 423.83188019],
+ [ 811.01826306, 423.83188019, 373.27867792]]), scale=array([ 8.46877062, 8.22996316, 10.4779477 ]), shift=array([ 9.56877062, 28.22996316, 12.90319302])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=17, candidate_x=array([ 7.1624354 , 20. , 19.79773503]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=0.8593132372983503, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 3, 4, 5, 8, 10, 11, 13, 14, 16]), old_indices_discarded=array([ 6, 7, 9, 12, 15]), step_length=9.136548164668868, relative_step_length=0.7028113972822206, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=26.0, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 2, 4, 5, 7, 8, 9, 10, 14, 15, 16, 17]), model=ScalarModel(intercept=1706.5389199845777, linear_terms=array([1604.74042928, 2391.99983507, 4265.81333244]), square_terms=array([[1007.7863177 , 1055.24348392, 1813.41707919],
+ [1055.24348392, 1700.21505143, 3046.87182227],
+ [1813.41707919, 3046.87182227, 5556.22495603]]), scale=array([ 9.45 , 10.4779477 , 20.37681522]), shift=array([10.55 , 30.4779477 , 20.37681522])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=18, candidate_x=array([ 7.10417627, 20. , 18.33150822]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-159.6207679963704, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 7, 8, 9, 10, 14, 15, 16, 17]), old_indices_discarded=array([ 1, 3, 6, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=13.0, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 3, 4, 5, 6, 10, 11, 13, 14, 16, 17, 18]), model=ScalarModel(intercept=815.1067318894197, linear_terms=array([1844.60433686, 18.11987851, 515.72856145]), square_terms=array([[2294.60924242, 77.49741048, 514.31904599],
+ [ 77.49741048, 45.16448203, -11.56305992],
+ [ 514.31904599, -11.56305992, 193.75408052]]), scale=array([ 8.27019155, 5.23897385, 10.4779477 ]), shift=array([ 9.37019155, 25.23897385, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=19, candidate_x=array([ 4.47551443, 27.11622984, 9.31978733]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-0.023692039569131726, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 4, 5, 6, 10, 11, 13, 14, 16, 17, 18]), old_indices_discarded=array([ 1, 2, 7, 8, 9, 12, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=6.5, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 3, 4, 5, 6, 10, 11, 13, 14, 16, 17, 18, 19]), model=ScalarModel(intercept=484.1188527591362, linear_terms=array([658.6459428 , -43.47045208, 227.23436185]), square_terms=array([[590.219423 , 1.88511509, 143.07780511],
+ [ 1.88511509, 13.13263707, -11.10797116],
+ [143.07780511, -11.10797116, 55.60762776]]), scale=array([5.23897385, 2.61948693, 5.23897385]), shift=array([ 7.1624354 , 22.61948693, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=20, candidate_x=array([ 2.56935703, 25.23897385, 14.55876118]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-22.38273160728857, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 4, 5, 6, 10, 11, 13, 14, 16, 17, 18, 19]), old_indices_discarded=array([ 0, 1, 2, 7, 8, 9, 12, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=3.25, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 4, 5, 6, 10, 11, 13, 14, 16, 17, 18, 19, 20]), model=ScalarModel(intercept=884.2383868264043, linear_terms=array([ 8.99439314, 21.29261421, 198.29134814]), square_terms=array([[260.93548287, -21.1249285 , -4.91211885],
+ [-21.1249285 , 6.9888845 , 3.13315378],
+ [ -4.91211885, 3.13315378, 23.03547375]]), scale=array([2.61948693, 1.30974346, 2.61948693]), shift=array([ 7.1624354 , 21.30974346, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=21, candidate_x=array([ 6.81076072, 20. , 17.17824811]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-17.001818853185803, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 5, 6, 10, 11, 13, 14, 16, 17, 18, 19, 20]), old_indices_discarded=array([0, 2, 3]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=1.625, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]), model=ScalarModel(intercept=662.8558222316585, linear_terms=array([ 167.53697536, -60.74574035, -277.12284568]), square_terms=array([[ 24.15136957, 1.06167401, -24.16426208],
+ [ 1.06167401, 30.9109391 , 48.37171304],
+ [-24.16426208, 48.37171304, 103.81549281]]), scale=array([1.30974346, 0.65487173, 1.30974346]), shift=array([ 7.1624354 , 20.65487173, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=34, candidate_x=array([ 5.85269193, 20.93951727, 21.1074785 ]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-0.999048610746928, accepted=False, new_indices=array([22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]), old_indices_used=array([17, 18, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=0.8125, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 18, 22, 25, 27, 28, 29, 30, 31, 32, 33, 34]), model=ScalarModel(intercept=609.8099629901734, linear_terms=array([ 94.67384574, 31.10858385, -74.95699738]), square_terms=array([[ 8.85216808, 4.31919452, -1.78336972],
+ [ 4.31919452, 3.36394846, 3.61224857],
+ [-1.78336972, 3.61224857, 16.59909329]]), scale=array([0.65487173, 0.32743587, 0.65487173]), shift=array([ 7.1624354 , 20.32743587, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=35, candidate_x=array([ 6.50756366, 20. , 20.45260676]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-0.041986202064252603, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([17, 18, 22, 25, 27, 28, 29, 30, 31, 32, 33, 34]), old_indices_discarded=array([21, 23, 24, 26]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=0.40625, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 18, 22, 25, 28, 29, 30, 31, 32, 33, 35]), model=ScalarModel(intercept=493.1940324674429, linear_terms=array([ 62.03610694, 17.85268999, -53.06971353]), square_terms=array([[ 4.41565547, 2.17810792, -1.9079943 ],
+ [ 2.17810792, 2.67166924, 2.29193019],
+ [-1.9079943 , 2.29193019, 7.39791551]]), scale=array([0.32743587, 0.16371793, 0.32743587]), shift=array([ 7.1624354 , 20.16371793, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=36, candidate_x=array([ 6.83499953, 20. , 20.1251709 ]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-2.684448196844913, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([17, 18, 22, 25, 28, 29, 30, 31, 32, 33, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=0.203125, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]), model=ScalarModel(intercept=643.5563297058364, linear_terms=array([125.26646815, 153.49933731, -62.23619275]), square_terms=array([[12.35350864, 15.16303218, -6.12910168],
+ [15.16303218, 18.75118478, -7.53831895],
+ [-6.12910168, -7.53831895, 3.05715327]]), scale=array([0.16371793, 0.08185897, 0.16371793]), shift=array([ 7.1624354 , 20.08185897, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=49, candidate_x=array([ 6.99871746, 20. , 19.96145297]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-4.776847999912698, accepted=False, new_indices=array([37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]), old_indices_used=array([17, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=0.1015625, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 37, 38, 39, 40, 42, 44, 45, 46, 47, 48, 49]), model=ScalarModel(intercept=597.5035131448108, linear_terms=array([12.29112574, 59.97734958, 28.54381456]), square_terms=array([[0.13605883, 0.62126555, 0.29568688],
+ [0.62126555, 3.03130454, 1.44263481],
+ [0.29568688, 1.44263481, 0.68656758]]), scale=array([0.08185897, 0.04092948, 0.08185897]), shift=array([ 7.1624354 , 20.04092948, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=50, candidate_x=array([ 7.08057643, 20. , 19.71587607]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-0.4548052006473583, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([17, 37, 38, 39, 40, 42, 44, 45, 46, 47, 48, 49]), old_indices_discarded=array([36, 41, 43]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=0.05078125, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 37, 38, 39, 40, 42, 45, 46, 47, 48, 49, 50]), model=ScalarModel(intercept=467.07942650043293, linear_terms=array([15.4700105 , 45.12352048, 30.63632835]), square_terms=array([[0.2594729 , 0.75325932, 0.51172081],
+ [0.75325932, 2.20095821, 1.49553934],
+ [0.51172081, 1.49553934, 1.01662207]]), scale=array([0.04092948, 0.02046474, 0.04092948]), shift=array([ 7.1624354 , 20.02046474, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=51, candidate_x=array([ 7.12150591, 20. , 19.75680555]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-1.010900029487394, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([17, 37, 38, 39, 40, 42, 45, 46, 47, 48, 49, 50]), old_indices_discarded=array([41, 44]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=0.025390625, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]), model=ScalarModel(intercept=88.21987111533616, linear_terms=array([12.00544324, 17.50539215, 8.28407754]), square_terms=array([[0.95090805, 1.22060239, 0.69466443],
+ [1.22060239, 1.79866532, 0.83906052],
+ [0.69466443, 0.83906052, 0.51944581]]), scale=array([0.02046474, 0.01023237, 0.02046474]), shift=array([ 7.1624354 , 20.01023237, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=64, candidate_x=array([ 7.14197065, 20. , 19.77727029]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-5.7478715178549775, accepted=False, new_indices=array([52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]), old_indices_used=array([17, 50, 51]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=0.0126953125, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64]), model=ScalarModel(intercept=84.58012860198028, linear_terms=array([-0.54227116, 6.91935277, -1.7243281 ]), square_terms=array([[ 0.00194074, -0.02395723, 0.00597025],
+ [-0.02395723, 0.30042715, -0.07486759],
+ [ 0.00597025, -0.07486759, 0.01865729]]), scale=array([0.01023237, 0.00511619, 0.01023237]), shift=array([ 7.1624354 , 20.00511619, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=65, candidate_x=array([ 7.17266777, 20. , 19.8079674 ]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-584.578948022652, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([17, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64]), old_indices_discarded=array([51, 58, 59]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=0.00634765625, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65]), model=ScalarModel(intercept=120.99713330758722, linear_terms=array([ 9.3228801 , -8.25639498, 6.50950229]), square_terms=array([[ 0.69354349, -0.78419684, 0.52094914],
+ [-0.78419684, 0.93486597, -0.59942138],
+ [ 0.52094914, -0.59942138, 0.39354307]]), scale=array([0.00511619, 0.00255809, 0.00511619]), shift=array([ 7.1624354 , 20.00255809, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=66, candidate_x=array([ 7.15731921, 20.00511619, 19.79261885]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-9.015096016924423, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([17, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65]), old_indices_discarded=array([52, 58]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=0.003173828125, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78]), model=ScalarModel(intercept=9.037703419347565, linear_terms=array([12.28255378, 11.89146076, 12.99534457]), square_terms=array([[14.3956872 , 10.37286243, 15.29985513],
+ [10.37286243, 13.76919232, 10.88737584],
+ [15.29985513, 10.88737584, 16.26429879]]), scale=array([0.00255809, 0.00127905, 0.00255809]), shift=array([ 7.1624354 , 20.00127905, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=79, candidate_x=array([ 7.16390218, 20.00063328, 19.79517694]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=2.2890951828159207, accepted=True, new_indices=array([67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78]), old_indices_used=array([17, 65, 66]), old_indices_discarded=array([], dtype=int64), step_length=0.0030160146299011625, relative_step_length=0.9502766095442432, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=0.00634765625, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79]), model=ScalarModel(intercept=3.2875090605907724, linear_terms=array([-0.05930827, 0.54612936, -0.12072921]), square_terms=array([[ 0.0064547 , -0.06411034, 0.01417297],
+ [-0.06411034, 0.63732354, -0.14089414],
+ [ 0.01417297, -0.14089414, 0.03114769]]), scale=array([0.00511619, 0.00287473, 0.00511619]), shift=array([ 7.16390218, 20.00287473, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=80, candidate_x=array([ 7.16901837, 20.000065 , 19.79006076]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-8111360.407945269, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([17, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79]), old_indices_discarded=array([52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 72, 76]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=0.003173828125, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 81]), model=ScalarModel(intercept=3.4716016365323457, linear_terms=array([ 0.9491527 , 1.56568922, -1.10876911]), square_terms=array([[ 1.22265995, 1.92559577, -1.38952087],
+ [ 1.92559577, 3.07987668, -2.20772273],
+ [-1.38952087, -2.20772273, 1.5870718 ]]), scale=array([0.00255809, 0.00159569, 0.00255809]), shift=array([ 7.16390218, 20.00159569, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=82, candidate_x=array([ 7.16646027, 20. , 19.79564529]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-3631.0044723440474, accepted=False, new_indices=array([81]), old_indices_used=array([17, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79]), old_indices_discarded=array([65, 66, 70, 76, 77, 80]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=0.0015869140625, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 67, 68, 69, 71, 72, 73, 74, 75, 79, 81, 82]), model=ScalarModel(intercept=6.914662538571903, linear_terms=array([ 1.99847112, -6.49512232, -1.10652104]), square_terms=array([[ 0.62198204, -1.60467768, -0.40293571],
+ [-1.60467768, 5.35173471, 0.85243213],
+ [-0.40293571, 0.85243213, 0.2913152 ]]), scale=array([0.00127905, 0.00095616, 0.00127905]), shift=array([ 7.16390218, 20.00095616, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=83, candidate_x=array([ 7.16306446, 20.00191233, 19.79513384]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-185.15284377140324, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([17, 67, 68, 69, 71, 72, 73, 74, 75, 79, 81, 82]), old_indices_discarded=array([70, 76, 77, 78, 80]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=0.00079345703125, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 67, 68, 72, 74, 75, 79, 81, 82, 83]), model=ScalarModel(intercept=42.36327867694456, linear_terms=array([ 0.34899265, 1.28951827, -8.35408821]), square_terms=array([[ 0.10276649, -0.24683455, -0.01550287],
+ [-0.24683455, 0.90701278, -0.34568477],
+ [-0.01550287, -0.34568477, 0.98277017]]), scale=array([0.00063952, 0.0006364 , 0.00063952]), shift=array([ 7.16390218, 20.0006364 , 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=84, candidate_x=array([ 7.16326266, 20. , 19.79581646]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-20.408016188852258, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([17, 67, 68, 72, 74, 75, 79, 81, 82, 83]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=0.000396728515625, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([72, 79, 83, 84]), model=ScalarModel(intercept=3.149270474181909, linear_terms=array([-2.00267906, -3.45044244, -8.44442785]), square_terms=array([[ 253.68573931, 437.16229348, 864.06740175],
+ [ 437.16229348, 753.33706731, 1488.99815541],
+ [ 864.06740175, 1488.99815541, 2962.05266508]]), scale=0.000396728515625, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=85, candidate_x=array([ 7.164217 , 20.00038536, 19.79521086]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-23859.686439157158, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([72, 79, 83, 84]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=0.0001983642578125, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([79, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97]), model=ScalarModel(intercept=409.4248862831494, linear_terms=array([ 154.3794472 , -122.49214324, 16.48703875]), square_terms=array([[ 55.20174253, -43.80146163, 5.98975964],
+ [-43.80146163, 34.75557032, -4.75275597],
+ [ 5.98975964, -4.75275597, 0.65011236]]), scale=0.0001983642578125, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=98, candidate_x=array([ 7.16375199, 20.00076025, 19.79520286]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-2.9405754845705365, accepted=False, new_indices=array([86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97]), old_indices_used=array([79, 85]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=9.918212890625e-05, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([79, 86, 87, 88, 89, 90, 91, 92, 93, 96, 97, 98]), model=ScalarModel(intercept=372.52328272933823, linear_terms=array([-1.5440193 , -6.03635531, 1.32894204]), square_terms=array([[ 0.00322691, 0.0126156 , -0.0027774 ],
+ [ 0.0126156 , 0.04932063, -0.01085825],
+ [-0.0027774 , -0.01085825, 0.00239051]]), scale=9.918212890625e-05, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=99, candidate_x=array([ 7.16392507, 20.00072778, 19.79515738]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-0.2519654145006399, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([79, 86, 87, 88, 89, 90, 91, 92, 93, 96, 97, 98]), old_indices_discarded=array([85, 94, 95]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=4.9591064453125e-05, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([79, 86, 87, 88, 89, 90, 91, 92, 93, 96, 98, 99]), model=ScalarModel(intercept=303.4656246485257, linear_terms=array([ -9.12457633, -26.03785178, -4.96284633]), square_terms=array([[0.13878092, 0.39640142, 0.07526252],
+ [0.39640142, 1.13279931, 0.21464875],
+ [0.07526252, 0.21464875, 0.0410058 ]]), scale=4.9591064453125e-05, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=100, candidate_x=array([ 7.163915 , 20.00068085, 19.79518261]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-25.252549825662328, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([79, 86, 87, 88, 89, 90, 91, 92, 93, 96, 98, 99]), old_indices_discarded=array([94, 95, 97]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=2.47955322265625e-05, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,
+ 111, 112]), model=ScalarModel(intercept=1702.133424642421, linear_terms=array([-581.38715069, -577.8645001 , 171.4450452 ]), square_terms=array([[100.49756574, 99.53991592, -28.24461132],
+ [ 99.53991592, 98.78458484, -28.47993931],
+ [-28.24461132, -28.47993931, 9.80035071]]), scale=2.47955322265625e-05, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=113, candidate_x=array([ 7.16391973, 20.00065075, 19.79517557]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-2.9752902079392887, accepted=False, new_indices=array([101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112]), old_indices_used=array([ 79, 99, 100]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1.239776611328125e-05, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113]), model=ScalarModel(intercept=1704.6108269350493, linear_terms=array([-132.86400069, 131.09614373, 9.91441014]), square_terms=array([[ 5.18754766, -5.11852475, -0.38709875],
+ [-5.11852475, 5.05042022, 0.38194821],
+ [-0.38709875, 0.38194821, 0.0288856 ]]), scale=1.239776611328125e-05, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=114, candidate_x=array([ 7.16390921, 20.0006233 , 19.79517477]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-21.88734107298974, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113]), old_indices_discarded=array([100, 108, 109]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=6.198883056640625e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 101, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114]), model=ScalarModel(intercept=1896.0020661747296, linear_terms=array([-10.38360719, -3.44394878, -4.06363502]), square_terms=array([[ 0.84034395, -1.42158815, 0.07373786],
+ [-1.42158815, 2.52549627, -0.1066395 ],
+ [ 0.07373786, -0.1066395 , 0.00918635]]), scale=6.198883056640625e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=115, candidate_x=array([ 7.1639076 , 20.00063536, 19.79517911]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-32.093120593372916, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 101, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114]), old_indices_discarded=array([104, 108, 109]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=3.0994415283203125e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,
+ 126, 127]), model=ScalarModel(intercept=362.49920227111835, linear_terms=array([ 151.37500415, -277.59157668, 9.34465185]), square_terms=array([[ 69.56882924, -92.22502774, 18.23571457],
+ [-92.22502774, 141.32749917, -17.24723873],
+ [ 18.23571457, -17.24723873, 7.367279 ]]), scale=3.0994415283203125e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=128, candidate_x=array([ 7.16390075, 20.00063588, 19.79517782]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-1.780562079306289, accepted=False, new_indices=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127]), old_indices_used=array([ 79, 114, 115]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1.5497207641601562e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 117, 118, 120, 121, 122, 123, 124, 126, 127, 128]), model=ScalarModel(intercept=312.7957959520835, linear_terms=array([-20.85653595, 22.81191816, -16.16361746]), square_terms=array([[ 0.70240123, -0.76825411, 0.54435429],
+ [-0.76825411, 0.84028095, -0.59538964],
+ [ 0.54435429, -0.59538964, 0.42186941]]), scale=1.5497207641601562e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=129, candidate_x=array([ 7.16390314, 20.00063224, 19.79517756]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-3286706.3060654122, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 117, 118, 120, 121, 122, 123, 124, 126, 127, 128]), old_indices_discarded=array([115, 119, 125]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 117, 118, 120, 121, 123, 124, 126, 127, 128, 129]), model=ScalarModel(intercept=1966677.9213908487, linear_terms=array([ 1982169.87760891, -2327986.38275526, 2180268.94098183]), square_terms=array([[ 999057.53603024, -1173358.15927181, 1098906.70281201],
+ [-1173358.15927181, 1378068.16218636, -1290627.54099859],
+ [ 1098906.70281201, -1290627.54099859, 1208735.18026512]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=130, candidate_x=array([ 7.16390151, 20.00063402, 19.79517684]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-0.001765293393384812, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 117, 118, 120, 121, 123, 124, 126, 127, 128, 129]), old_indices_discarded=array([119, 122, 125]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 117, 118, 120, 121, 123, 124, 126, 128, 129, 130]), model=ScalarModel(intercept=3152557.328580643, linear_terms=array([ 3869410.42492752, -3436868.5079822 , 2869930.14508261]), square_terms=array([[ 2374977.57300445, -2109491.11259231, 1761504.95300894],
+ [-2109491.11259231, 1873682.01141233, -1564595.41119424],
+ [ 1761504.95300894, -1564595.41119424, 1306496.68809204]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=131, candidate_x=array([ 7.16390145, 20.00063397, 19.79517695]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-4.741896906611787e-06, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 117, 118, 120, 121, 123, 124, 126, 128, 129, 130]), old_indices_discarded=array([119, 122, 125, 127]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 117, 118, 120, 121, 123, 124, 128, 129, 130, 131]), model=ScalarModel(intercept=2909956.9751187437, linear_terms=array([ 3807346.69447191, -3791013.62191393, 2894878.48656925]), square_terms=array([[ 2491072.39838586, -2480388.23443487, 1894060.56814175],
+ [-2480388.23443487, 2469749.97884378, -1885936.9214611 ],
+ [ 1894060.56814175, -1885936.9214611 , 1440128.97043293]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=132, candidate_x=array([ 7.16390154, 20.0006336 , 19.7951762 ]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-1.6474436913933878e-06, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 117, 118, 120, 121, 123, 124, 128, 129, 130, 131]), old_indices_discarded=array([119, 122, 125, 126, 127]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 117, 118, 120, 121, 123, 128, 129, 130, 131, 132]), model=ScalarModel(intercept=4089081.040416187, linear_terms=array([ 5155924.19991846, -5538729.21748143, 2845115.72965128]), square_terms=array([[ 3250814.50419527, -3492176.22121422, 1793836.91746412],
+ [-3492176.22121422, 3751458.28539241, -1927022.96505448],
+ [ 1793836.91746412, -1927022.96505448, 989860.35341853]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=133, candidate_x=array([ 7.16390149, 20.000634 , 19.79517696]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-0.0005470060686872831, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 117, 118, 120, 121, 123, 128, 129, 130, 131, 132]), old_indices_discarded=array([119, 122, 124, 125, 126, 127]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 117, 118, 120, 123, 128, 129, 130, 131, 132, 133]), model=ScalarModel(intercept=5195246.093561055, linear_terms=array([ 5301214.50006145, -7521834.23709252, 3733642.74525079]), square_terms=array([[ 2704884.7786333 , -3837934.84322383, 1905034.08672897],
+ [-3837934.84322383, 5445608.88243351, -2703034.34274292],
+ [ 1905034.08672897, -2703034.34274292, 1341705.2836381 ]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=134, candidate_x=array([ 7.16390155, 20.00063405, 19.79517702]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-0.0005554090804212891, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 117, 118, 120, 123, 128, 129, 130, 131, 132, 133]), old_indices_discarded=array([119, 121, 122, 124, 125, 126, 127]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 118, 120, 123, 128, 129, 130, 131, 132, 133, 134]), model=ScalarModel(intercept=5407827.24233245, linear_terms=array([ 5856843.30938323, -7239837.28779919, 3849039.17416538]), square_terms=array([[ 3171858.2046186 , -3920880.23907417, 2084484.36170119],
+ [-3920880.23907417, 4846788.30799009, -2576724.38125698],
+ [ 2084484.36170119, -2576724.38125698, 1369884.36239265]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=135, candidate_x=array([ 7.16390152, 20.00063403, 19.79517704]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-1.928426446818749e-05, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 118, 120, 123, 128, 129, 130, 131, 132, 133, 134]), old_indices_discarded=array([117, 119, 121, 122, 124, 125, 126, 127]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 118, 123, 128, 129, 130, 131, 132, 133, 134, 135]), model=ScalarModel(intercept=6094788.731321572, linear_terms=array([ 4302990.51226894, -10048635.49218802, 3883978.83228368]), square_terms=array([[ 1519080.50869076, -3547494.42385378, 1371150.83316013],
+ [-3547494.42385378, 8284451.33353941, -3202036.38855574],
+ [ 1371150.83316013, -3202036.38855574, 1237628.07916329]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=136, candidate_x=array([ 7.16390165, 20.00063412, 19.79517704]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-4.481551490103867e-06, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 118, 123, 128, 129, 130, 131, 132, 133, 134, 135]), old_indices_discarded=array([117, 119, 120, 121, 122, 124, 125, 126, 127]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 118, 128, 129, 130, 131, 132, 133, 134, 135, 136]), model=ScalarModel(intercept=10167950.19334516, linear_terms=array([19621646.47134445, -4202749.45346917, 1123472.87100483]), square_terms=array([[18933167.8358248 , -4055345.31124507, 1084036.5360604 ],
+ [-4055345.31124507, 868644.65306657, -232196.30665896],
+ [ 1084036.5360604 , -232196.30665896, 62069.75922986]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=137, candidate_x=array([ 7.16390129, 20.00063368, 19.79517717]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-0.00020768656010262149, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 118, 128, 129, 130, 131, 132, 133, 134, 135, 136]), old_indices_discarded=array([117, 119, 120, 121, 122, 123, 124, 125, 126, 127]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137]), model=ScalarModel(intercept=10118661.2674104, linear_terms=array([19789114.66712068, -4034193.73541403, 1089109.83129782]), square_terms=array([[19357880.04093347, -3941526.68477494, 1062128.28011787],
+ [-3941526.68477494, 805822.9107165 , -218495.92895751],
+ [ 1062128.28011787, -218495.92895751, 59799.23947604]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=138, candidate_x=array([ 7.16390123, 20.00063359, 19.79517702]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-6.126940168947411e-05, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137]), old_indices_discarded=array([117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138]), model=ScalarModel(intercept=11293376.427994678, linear_terms=array([ 13650216.53157232, -22436738.85403914, 2515396.03244459]), square_terms=array([[ 8251740.74039967, -13559790.76171163, 1519297.66929413],
+ [-13559790.76171163, 22287866.23071835, -2498636.39795383],
+ [ 1519297.66929413, -2498636.39795383, 280480.81910675]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=139, candidate_x=array([ 7.163902 , 20.00063411, 19.79517634]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-0.00010018265887465266, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138]), old_indices_discarded=array([117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139]), model=ScalarModel(intercept=10218577.993350446, linear_terms=array([ 17949717.55164826, -13974712.41459382, 11871089.50379769]), square_terms=array([[ 15765758.04465271, -12274619.17327415, 10425886.58130483],
+ [-12274619.17327415, 9556908.9644796 , -8117049.85710465],
+ [ 10425886.58130483, -8117049.85710465, 6895673.46093131]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=140, candidate_x=array([ 7.16390151, 20.00063317, 19.7951761 ]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=9.48161497575201e-08, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128]), step_length=1.081057513697022e-06, relative_step_length=1.081057513697022, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140]), model=ScalarModel(intercept=6.0930798071242815, linear_terms=array([-21.84479584, 49.07304372, 9.72983067]), square_terms=array([[ 650.16413755, -765.21136054, -392.99328946],
+ [-765.21136054, 1446.63380506, 344.43400865],
+ [-392.99328946, 344.43400865, 266.64882112]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=141, candidate_x=array([ 7.16390087, 20.00063297, 19.79517536]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-243.8492020117, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
+ 129]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141]), model=ScalarModel(intercept=27.592785058219068, linear_terms=array([-171.02472625, 260.80975048, 21.80290652]), square_terms=array([[ 978.41558524, -1193.05074188, -293.88967339],
+ [-1193.05074188, 1992.4019978 , 165.26330583],
+ [ -293.88967339, 165.26330583, 171.65098848]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=142, candidate_x=array([ 7.16390214, 20.00063335, 19.79517687]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-8.737005153089251, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
+ 129, 136]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 130, 131, 132, 133, 135, 137, 138, 139, 140, 141, 142]), model=ScalarModel(intercept=56.64738110732581, linear_terms=array([-215.95010568, 318.06499395, 60.6479783 ]), square_terms=array([[ 558.72269694, -615.9745186 , -250.72369234],
+ [-615.9745186 , 1154.0238208 , 108.03291577],
+ [-250.72369234, 108.03291577, 197.46110437]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=143, candidate_x=array([ 7.16390228, 20.00063325, 19.79517674]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-0.07739787499245084, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 130, 131, 132, 133, 135, 137, 138, 139, 140, 141, 142]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
+ 129, 134, 136]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 130, 131, 132, 133, 137, 138, 139, 140, 141, 142, 143]), model=ScalarModel(intercept=45.9571000076232, linear_terms=array([-213.25070831, 343.17176686, 78.0785831 ]), square_terms=array([[ 653.0760004 , -838.16616987, -327.1183959 ],
+ [-838.16616987, 1637.01542451, 254.44126917],
+ [-327.1183959 , 254.44126917, 233.86458875]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=144, candidate_x=array([ 7.16390227, 20.00063325, 19.79517675]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-12.477836683060026, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 130, 131, 132, 133, 137, 138, 139, 140, 141, 142, 143]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
+ 129, 134, 135, 136]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 130, 131, 132, 133, 138, 139, 140, 141, 142, 143, 144]), model=ScalarModel(intercept=72.79108546198056, linear_terms=array([-93.52989921, 428.00135923, 1.58547442]), square_terms=array([[ 165.65189712, -282.52778782, -104.91966983],
+ [-282.52778782, 1555.5908478 , -32.30611941],
+ [-104.91966983, -32.30611941, 122.49050695]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=145, candidate_x=array([ 7.16390228, 20.00063305, 19.79517673]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-30.76961170675236, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 130, 131, 132, 133, 138, 139, 140, 141, 142, 143, 144]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
+ 129, 134, 135, 136, 137]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 130, 131, 132, 138, 139, 140, 141, 142, 143, 144, 145]), model=ScalarModel(intercept=158.1691762407632, linear_terms=array([ 48.1116786 , 343.79438008, 19.5531909 ]), square_terms=array([[ 34.07324276, 91.00834205, -20.99260056],
+ [ 91.00834205, 623.12095869, -30.5041743 ],
+ [-20.99260056, -30.5041743 , 39.31606679]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=146, candidate_x=array([ 7.16390118, 20.00063264, 19.79517531]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-0.13633585966259545, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 130, 131, 132, 138, 139, 140, 141, 142, 143, 144, 145]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
+ 129, 133, 134, 135, 136, 137]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 130, 132, 138, 139, 140, 141, 142, 143, 144, 145, 146]), model=ScalarModel(intercept=178.40586751372118, linear_terms=array([-125.81297649, 495.22099661, 156.90684634]), square_terms=array([[ 79.88578502, -177.94534534, -85.84738757],
+ [-177.94534534, 890.10726586, 174.17339374],
+ [ -85.84738757, 174.17339374, 111.48133846]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=147, candidate_x=array([ 7.16390122, 20.00063273, 19.79517524]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-0.7773680025893649, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 130, 132, 138, 139, 140, 141, 142, 143, 144, 145, 146]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
+ 129, 131, 133, 134, 135, 136, 137]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 132, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147]), model=ScalarModel(intercept=161.58000401068898, linear_terms=array([ 74.29264756, 202.7286699 , 14.79820423]), square_terms=array([[ 61.58454557, 91.07236719, -33.58102571],
+ [ 91.07236719, 222.93623034, -51.5806932 ],
+ [-33.58102571, -51.5806932 , 44.35153617]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=148, candidate_x=array([ 7.1639013 , 20.0006324 , 19.79517548]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-8.555731166339806e+16, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 132, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
+ 129, 130, 131, 133, 134, 135, 136, 137]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 132, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148]), model=ScalarModel(intercept=4101778447507161.0, linear_terms=array([-1.03965255e+17, -3.52561859e+17, 1.45948334e+17]), square_terms=array([[ 1.31757167e+18, 4.46808426e+18, -1.84963132e+18],
+ [ 4.46808426e+18, 1.51519476e+19, -6.27237875e+18],
+ [-1.84963132e+18, -6.27237875e+18, 2.59654642e+18]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=149, candidate_x=array([ 7.16390203, 20.00063338, 19.79517692]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.3966720234081438e-13, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 132, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
+ 129, 130, 131, 133, 134, 135, 136, 137, 139]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149]), model=ScalarModel(intercept=5129799127529167.0, linear_terms=array([-1.15321202e+17, -3.99341213e+17, 1.68180987e+17]), square_terms=array([[ 1.29624760e+18, 4.48872436e+18, -1.89040867e+18],
+ [ 4.48872436e+18, 1.55438254e+19, -6.54622116e+18],
+ [-1.89040867e+18, -6.54622116e+18, 2.75691538e+18]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=150, candidate_x=array([ 7.16390086, 20.00063307, 19.79517534]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.508715767999838e-13, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 139]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150]), model=ScalarModel(intercept=3.0190189990289532e+16, linear_terms=array([-6.83378588e+17, -1.15964151e+18, 7.88971623e+17]), square_terms=array([[ 7.73440469e+18, 1.31246967e+19, -8.92949521e+18],
+ [ 1.31246967e+19, 2.22716125e+19, -1.51526745e+19],
+ [-8.92949521e+18, -1.51526745e+19, 1.03092465e+19]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=151, candidate_x=array([ 7.16390197, 20.00063351, 19.79517692]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-612781152.021524, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151]), model=ScalarModel(intercept=2.8127875992570325e+23, linear_terms=array([-3.36299649e+24, -1.04024485e+24, 3.36239476e+24]), square_terms=array([[ 2.01041582e+25, 6.21863481e+24, -2.01005611e+25],
+ [ 6.21863481e+24, 1.92355325e+24, -6.21752214e+24],
+ [-2.01005611e+25, -6.21752214e+24, 2.00969646e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=152, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.5503514121117797e-23, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 148]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 141, 143, 144, 145, 146, 147, 149, 150, 151, 152]), model=ScalarModel(intercept=3.702831981081598e+23, linear_terms=array([-4.14280356e+24, -1.47610520e+24, 4.29310773e+24]), square_terms=array([[ 2.31752635e+25, 8.25748225e+24, -2.40160802e+25],
+ [ 8.25748225e+24, 2.94218934e+24, -8.55707019e+24],
+ [-2.40160802e+25, -8.55707019e+24, 2.48874025e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=153, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.7829041750839415e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 141, 143, 144, 145, 146, 147, 149, 150, 151, 152]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 142, 148]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 141, 143, 144, 145, 146, 149, 150, 151, 152, 153]), model=ScalarModel(intercept=3.053174507626802e+23, linear_terms=array([-4.86449518e+24, -1.43254100e+24, 5.05400372e+24]), square_terms=array([[ 3.87519830e+25, 1.14120381e+25, -4.02616632e+25],
+ [ 1.14120381e+25, 3.36072128e+24, -1.18566225e+25],
+ [-4.02616632e+25, -1.18566225e+25, 4.18301567e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=154, candidate_x=array([ 7.16390208, 20.00063375, 19.79517669]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.635206929082794e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 141, 143, 144, 145, 146, 149, 150, 151, 152, 153]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 142, 147,
+ 148]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 141, 143, 144, 145, 149, 150, 151, 152, 153, 154]), model=ScalarModel(intercept=1.3165225224339103e+23, linear_terms=array([-3.94903169e+24, -6.59701470e+23, 4.11252592e+24]), square_terms=array([[ 5.92274383e+25, 9.89417943e+24, -6.16795189e+25],
+ [ 9.89417943e+24, 1.65286208e+24, -1.03038093e+25],
+ [-6.16795189e+25, -1.03038093e+25, 6.42331184e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=155, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.8600055145753386e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 141, 143, 144, 145, 149, 150, 151, 152, 153, 154]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 142, 146,
+ 147, 148]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 141, 144, 145, 149, 150, 151, 152, 153, 154, 155]), model=ScalarModel(intercept=1.1685415794506962e+23, linear_terms=array([-3.85477677e+24, -5.67533621e+23, 3.95881832e+24]), square_terms=array([[ 6.35805529e+25, 9.36087965e+24, -6.52966106e+25],
+ [ 9.36087965e+24, 1.37818977e+24, -9.61353253e+24],
+ [-6.52966106e+25, -9.61353253e+24, 6.70589853e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=156, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-8.3164570457479575e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 141, 144, 145, 149, 150, 151, 152, 153, 154, 155]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 142, 143,
+ 146, 147, 148]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 145, 149, 150, 151, 152, 153, 154, 155, 156]), model=ScalarModel(intercept=9.948011239226273e+22, linear_terms=array([-3.54483226e+24, -5.11224593e+23, 3.66283269e+24]), square_terms=array([[ 6.31575269e+25, 9.10838049e+24, -6.52599156e+25],
+ [ 9.10838049e+24, 1.31358207e+24, -9.41158040e+24],
+ [-6.52599156e+25, -9.41158040e+24, 6.74322886e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=157, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-8.466870818811063e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 145, 149, 150, 151, 152, 153, 154, 155, 156]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 146, 147, 148]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 154, 155, 156, 157]), model=ScalarModel(intercept=5.253879345852958e+22, linear_terms=array([-2.80555073e+24, -1.97952455e+23, 2.78533770e+24]), square_terms=array([[ 7.49076481e+25, 5.28529130e+24, -7.43679643e+25],
+ [ 5.28529130e+24, 3.72916582e+23, -5.24721259e+24],
+ [-7.43679643e+25, -5.24721259e+24, 7.38321686e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=158, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-5.960261830596255e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 154, 155, 156, 157]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=159, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-4.488216908013054e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=160, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.231887693719641e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=161, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-6.892134163413808e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=162, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-5.703576323643708e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=163, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-7.697228087295629e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=164, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.129223134473034e-17, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=165, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-8.736481873243292e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=166, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.467709902630676e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=167, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-7.457709222328931e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=168, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.6368731954069733e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=169, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-6.814346505538112e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=170, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.1960048115881595e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=171, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-3.613621098765295e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=172, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-4.356198656870862e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=173, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-8.162169511395309e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=174, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.3263637465119144e-20, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=175, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-7.814698512522029e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=176, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.2495261128253335e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=177, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-3.1368146236686046e-20, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=178, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-9.503543447163866e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=179, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.4910772199424336e-20, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=180, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.9274057153706326e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=181, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.741828408909048e-23, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=182, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-3.2106131063586103e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=183, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.1695566452893244e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=184, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.9326678960201007e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=185, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-8.0145080335315165e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=186, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-4.843075060425077e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=187, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.746239466200576e-19, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=188, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-7.878241592341733e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=189, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.2678684808145598e-20, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187, 188]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=190, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-7.527754483029696e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=191, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-4.249234290390502e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=192, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.0546734267085517e-18, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=193, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-8.10061660025069e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
+ 192]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=194, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-7.049643394141765e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
+ 192, 193]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=195, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-5.840678137083194e-20, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
+ 192, 193, 194]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=196, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.0926496300515652e-20, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
+ 192, 193, 194, 195]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=197, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-3.102234199713035e-20, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
+ 192, 193, 194, 195, 196]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 198 entries., 'multistart_info': {'start_parameters': [array([15.275, 32.5 , 17.5 ]), array([ 5.59950516, 33.20816965, 22.52330568]), array([ 9.19422435, 23.72793018, 26.19803683])], 'local_optima': [{'solution_x': array([ 7.16390151, 20.00063317, 19.7951761 ]), 'solution_criterion': 2.1803868818934804, 'states': [State(trustregion=Region(center=array([15.275, 32.5 , 17.5 ]), radius=3.25, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=[0], model=ScalarModel(intercept=9708.18018836299, linear_terms=array([0., 0., 0.]), square_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=0, candidate_x=array([15.275, 32.5 , 17.5 ]), index=0, x=array([15.275, 32.5 , 17.5 ]), fval=9708.18018836299, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([15.275, 32.5 , 17.5 ]), radius=3.25, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=2259.7688438029236, linear_terms=array([647.86205946, -4.48419331, -1.44228675]), square_terms=array([[ 1.01959666e+02, -7.34961644e-01, -1.68340779e-01],
+ [-7.34961644e-01, 8.34236738e-03, 1.00354165e-03],
+ [-1.68340779e-01, 1.00354165e-03, 6.39222852e-04]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=13, candidate_x=array([12.04197315, 32.27230626, 17.25876779]), index=13, x=array([12.04197315, 32.27230626, 17.25876779]), fval=1376.8902513722257, rho=14.033483495736657, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=3.2499999999999996, relative_step_length=0.9999999999999999, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([12.04197315, 32.27230626, 17.25876779]), radius=6.5, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13]), model=ScalarModel(intercept=1766.37632842139, linear_terms=array([980.46682861, 1.90859118, 96.28097288]), square_terms=array([[3.07917700e+02, 5.50255113e-01, 2.80030675e+01],
+ [5.50255113e-01, 1.53562722e-03, 8.26054450e-02],
+ [2.80030675e+01, 8.26054450e-02, 4.67410826e+00]]), scale=6.5, shift=array([12.04197315, 32.27230626, 17.25876779])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=14, candidate_x=array([ 5.64678967, 31.22095247, 17.75503733]), index=14, x=array([ 5.64678967, 31.22095247, 17.75503733]), fval=178.39169439929836, rho=1.4785622710779918, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13]), old_indices_discarded=array([3, 6]), step_length=6.500000000000001, relative_step_length=1.0000000000000002, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 5.64678967, 31.22095247, 17.75503733]), radius=13.0, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14]), model=ScalarModel(intercept=692.0459045048258, linear_terms=array([1217.55570068, 214.68722042, -221.65856736]), square_terms=array([[1148.07591431, 206.05732021, -211.64568893],
+ [ 206.05732021, 59.9966223 , -51.99817385],
+ [-211.64568893, -51.99817385, 48.43315934]]), scale=array([ 7.51236869, 10.4779477 , 10.4779477 ]), shift=array([ 8.61236869, 31.22095247, 17.75503733])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=15, candidate_x=array([ 1.1 , 36.54655032, 25.63880508]), index=14, x=array([ 5.64678967, 31.22095247, 17.75503733]), fval=178.39169439929836, rho=-16.33760307705752, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14]), old_indices_discarded=array([ 1, 3, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 5.64678967, 31.22095247, 17.75503733]), radius=6.5, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15]), model=ScalarModel(intercept=677.4797177796477, linear_terms=array([485.45398728, 660.10677774, 800.1965352 ]), square_terms=array([[363.15504018, 269.02710105, 359.25693598],
+ [269.02710105, 348.83745898, 426.36258887],
+ [359.25693598, 426.36258887, 527.87575972]]), scale=array([4.89288176, 5.23897385, 5.23897385]), shift=array([ 5.99288176, 31.22095247, 17.75503733])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=16, candidate_x=array([ 7.55959353, 25.98197862, 12.90319302]), index=16, x=array([ 7.55959353, 25.98197862, 12.90319302]), fval=25.030763362706857, rho=0.2596199314702299, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15]), old_indices_discarded=array([ 7, 8, 11, 12]), step_length=7.392297260731579, relative_step_length=1.137276501651012, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.55959353, 25.98197862, 12.90319302]), radius=13.0, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 8, 10, 11, 13, 14, 16]), model=ScalarModel(intercept=261.90225255254296, linear_terms=array([962.0253052 , 493.16192276, 408.65716602]), square_terms=array([[1906.08794904, 954.07933326, 811.01826306],
+ [ 954.07933326, 494.80523489, 423.83188019],
+ [ 811.01826306, 423.83188019, 373.27867792]]), scale=array([ 8.46877062, 8.22996316, 10.4779477 ]), shift=array([ 9.56877062, 28.22996316, 12.90319302])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=17, candidate_x=array([ 7.1624354 , 20. , 19.79773503]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=0.8593132372983503, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 3, 4, 5, 8, 10, 11, 13, 14, 16]), old_indices_discarded=array([ 6, 7, 9, 12, 15]), step_length=9.136548164668868, relative_step_length=0.7028113972822206, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=26.0, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 2, 4, 5, 7, 8, 9, 10, 14, 15, 16, 17]), model=ScalarModel(intercept=1706.5389199845777, linear_terms=array([1604.74042928, 2391.99983507, 4265.81333244]), square_terms=array([[1007.7863177 , 1055.24348392, 1813.41707919],
+ [1055.24348392, 1700.21505143, 3046.87182227],
+ [1813.41707919, 3046.87182227, 5556.22495603]]), scale=array([ 9.45 , 10.4779477 , 20.37681522]), shift=array([10.55 , 30.4779477 , 20.37681522])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=18, candidate_x=array([ 7.10417627, 20. , 18.33150822]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-159.6207679963704, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 7, 8, 9, 10, 14, 15, 16, 17]), old_indices_discarded=array([ 1, 3, 6, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=13.0, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 3, 4, 5, 6, 10, 11, 13, 14, 16, 17, 18]), model=ScalarModel(intercept=815.1067318894197, linear_terms=array([1844.60433686, 18.11987851, 515.72856145]), square_terms=array([[2294.60924242, 77.49741048, 514.31904599],
+ [ 77.49741048, 45.16448203, -11.56305992],
+ [ 514.31904599, -11.56305992, 193.75408052]]), scale=array([ 8.27019155, 5.23897385, 10.4779477 ]), shift=array([ 9.37019155, 25.23897385, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=19, candidate_x=array([ 4.47551443, 27.11622984, 9.31978733]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-0.023692039569131726, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 4, 5, 6, 10, 11, 13, 14, 16, 17, 18]), old_indices_discarded=array([ 1, 2, 7, 8, 9, 12, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=6.5, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 3, 4, 5, 6, 10, 11, 13, 14, 16, 17, 18, 19]), model=ScalarModel(intercept=484.1188527591362, linear_terms=array([658.6459428 , -43.47045208, 227.23436185]), square_terms=array([[590.219423 , 1.88511509, 143.07780511],
+ [ 1.88511509, 13.13263707, -11.10797116],
+ [143.07780511, -11.10797116, 55.60762776]]), scale=array([5.23897385, 2.61948693, 5.23897385]), shift=array([ 7.1624354 , 22.61948693, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=20, candidate_x=array([ 2.56935703, 25.23897385, 14.55876118]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-22.38273160728857, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 4, 5, 6, 10, 11, 13, 14, 16, 17, 18, 19]), old_indices_discarded=array([ 0, 1, 2, 7, 8, 9, 12, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=3.25, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 4, 5, 6, 10, 11, 13, 14, 16, 17, 18, 19, 20]), model=ScalarModel(intercept=884.2383868264043, linear_terms=array([ 8.99439314, 21.29261421, 198.29134814]), square_terms=array([[260.93548287, -21.1249285 , -4.91211885],
+ [-21.1249285 , 6.9888845 , 3.13315378],
+ [ -4.91211885, 3.13315378, 23.03547375]]), scale=array([2.61948693, 1.30974346, 2.61948693]), shift=array([ 7.1624354 , 21.30974346, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=21, candidate_x=array([ 6.81076072, 20. , 17.17824811]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-17.001818853185803, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 5, 6, 10, 11, 13, 14, 16, 17, 18, 19, 20]), old_indices_discarded=array([0, 2, 3]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=1.625, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]), model=ScalarModel(intercept=662.8558222316585, linear_terms=array([ 167.53697536, -60.74574035, -277.12284568]), square_terms=array([[ 24.15136957, 1.06167401, -24.16426208],
+ [ 1.06167401, 30.9109391 , 48.37171304],
+ [-24.16426208, 48.37171304, 103.81549281]]), scale=array([1.30974346, 0.65487173, 1.30974346]), shift=array([ 7.1624354 , 20.65487173, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=34, candidate_x=array([ 5.85269193, 20.93951727, 21.1074785 ]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-0.999048610746928, accepted=False, new_indices=array([22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]), old_indices_used=array([17, 18, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=0.8125, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 18, 22, 25, 27, 28, 29, 30, 31, 32, 33, 34]), model=ScalarModel(intercept=609.8099629901734, linear_terms=array([ 94.67384574, 31.10858385, -74.95699738]), square_terms=array([[ 8.85216808, 4.31919452, -1.78336972],
+ [ 4.31919452, 3.36394846, 3.61224857],
+ [-1.78336972, 3.61224857, 16.59909329]]), scale=array([0.65487173, 0.32743587, 0.65487173]), shift=array([ 7.1624354 , 20.32743587, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=35, candidate_x=array([ 6.50756366, 20. , 20.45260676]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-0.041986202064252603, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([17, 18, 22, 25, 27, 28, 29, 30, 31, 32, 33, 34]), old_indices_discarded=array([21, 23, 24, 26]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=0.40625, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 18, 22, 25, 28, 29, 30, 31, 32, 33, 35]), model=ScalarModel(intercept=493.1940324674429, linear_terms=array([ 62.03610694, 17.85268999, -53.06971353]), square_terms=array([[ 4.41565547, 2.17810792, -1.9079943 ],
+ [ 2.17810792, 2.67166924, 2.29193019],
+ [-1.9079943 , 2.29193019, 7.39791551]]), scale=array([0.32743587, 0.16371793, 0.32743587]), shift=array([ 7.1624354 , 20.16371793, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=36, candidate_x=array([ 6.83499953, 20. , 20.1251709 ]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-2.684448196844913, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([17, 18, 22, 25, 28, 29, 30, 31, 32, 33, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=0.203125, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]), model=ScalarModel(intercept=643.5563297058364, linear_terms=array([125.26646815, 153.49933731, -62.23619275]), square_terms=array([[12.35350864, 15.16303218, -6.12910168],
+ [15.16303218, 18.75118478, -7.53831895],
+ [-6.12910168, -7.53831895, 3.05715327]]), scale=array([0.16371793, 0.08185897, 0.16371793]), shift=array([ 7.1624354 , 20.08185897, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=49, candidate_x=array([ 6.99871746, 20. , 19.96145297]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-4.776847999912698, accepted=False, new_indices=array([37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]), old_indices_used=array([17, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=0.1015625, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 37, 38, 39, 40, 42, 44, 45, 46, 47, 48, 49]), model=ScalarModel(intercept=597.5035131448108, linear_terms=array([12.29112574, 59.97734958, 28.54381456]), square_terms=array([[0.13605883, 0.62126555, 0.29568688],
+ [0.62126555, 3.03130454, 1.44263481],
+ [0.29568688, 1.44263481, 0.68656758]]), scale=array([0.08185897, 0.04092948, 0.08185897]), shift=array([ 7.1624354 , 20.04092948, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=50, candidate_x=array([ 7.08057643, 20. , 19.71587607]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-0.4548052006473583, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([17, 37, 38, 39, 40, 42, 44, 45, 46, 47, 48, 49]), old_indices_discarded=array([36, 41, 43]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=0.05078125, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 37, 38, 39, 40, 42, 45, 46, 47, 48, 49, 50]), model=ScalarModel(intercept=467.07942650043293, linear_terms=array([15.4700105 , 45.12352048, 30.63632835]), square_terms=array([[0.2594729 , 0.75325932, 0.51172081],
+ [0.75325932, 2.20095821, 1.49553934],
+ [0.51172081, 1.49553934, 1.01662207]]), scale=array([0.04092948, 0.02046474, 0.04092948]), shift=array([ 7.1624354 , 20.02046474, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=51, candidate_x=array([ 7.12150591, 20. , 19.75680555]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-1.010900029487394, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([17, 37, 38, 39, 40, 42, 45, 46, 47, 48, 49, 50]), old_indices_discarded=array([41, 44]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=0.025390625, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]), model=ScalarModel(intercept=88.21987111533616, linear_terms=array([12.00544324, 17.50539215, 8.28407754]), square_terms=array([[0.95090805, 1.22060239, 0.69466443],
+ [1.22060239, 1.79866532, 0.83906052],
+ [0.69466443, 0.83906052, 0.51944581]]), scale=array([0.02046474, 0.01023237, 0.02046474]), shift=array([ 7.1624354 , 20.01023237, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=64, candidate_x=array([ 7.14197065, 20. , 19.77727029]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-5.7478715178549775, accepted=False, new_indices=array([52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]), old_indices_used=array([17, 50, 51]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=0.0126953125, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64]), model=ScalarModel(intercept=84.58012860198028, linear_terms=array([-0.54227116, 6.91935277, -1.7243281 ]), square_terms=array([[ 0.00194074, -0.02395723, 0.00597025],
+ [-0.02395723, 0.30042715, -0.07486759],
+ [ 0.00597025, -0.07486759, 0.01865729]]), scale=array([0.01023237, 0.00511619, 0.01023237]), shift=array([ 7.1624354 , 20.00511619, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=65, candidate_x=array([ 7.17266777, 20. , 19.8079674 ]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-584.578948022652, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([17, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64]), old_indices_discarded=array([51, 58, 59]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=0.00634765625, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65]), model=ScalarModel(intercept=120.99713330758722, linear_terms=array([ 9.3228801 , -8.25639498, 6.50950229]), square_terms=array([[ 0.69354349, -0.78419684, 0.52094914],
+ [-0.78419684, 0.93486597, -0.59942138],
+ [ 0.52094914, -0.59942138, 0.39354307]]), scale=array([0.00511619, 0.00255809, 0.00511619]), shift=array([ 7.1624354 , 20.00255809, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=66, candidate_x=array([ 7.15731921, 20.00511619, 19.79261885]), index=17, x=array([ 7.1624354 , 20. , 19.79773503]), fval=5.380788575651525, rho=-9.015096016924423, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([17, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65]), old_indices_discarded=array([52, 58]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.1624354 , 20. , 19.79773503]), radius=0.003173828125, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78]), model=ScalarModel(intercept=9.037703419347565, linear_terms=array([12.28255378, 11.89146076, 12.99534457]), square_terms=array([[14.3956872 , 10.37286243, 15.29985513],
+ [10.37286243, 13.76919232, 10.88737584],
+ [15.29985513, 10.88737584, 16.26429879]]), scale=array([0.00255809, 0.00127905, 0.00255809]), shift=array([ 7.1624354 , 20.00127905, 19.79773503])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=79, candidate_x=array([ 7.16390218, 20.00063328, 19.79517694]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=2.2890951828159207, accepted=True, new_indices=array([67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78]), old_indices_used=array([17, 65, 66]), old_indices_discarded=array([], dtype=int64), step_length=0.0030160146299011625, relative_step_length=0.9502766095442432, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=0.00634765625, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79]), model=ScalarModel(intercept=3.2875090605907724, linear_terms=array([-0.05930827, 0.54612936, -0.12072921]), square_terms=array([[ 0.0064547 , -0.06411034, 0.01417297],
+ [-0.06411034, 0.63732354, -0.14089414],
+ [ 0.01417297, -0.14089414, 0.03114769]]), scale=array([0.00511619, 0.00287473, 0.00511619]), shift=array([ 7.16390218, 20.00287473, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=80, candidate_x=array([ 7.16901837, 20.000065 , 19.79006076]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-8111360.407945269, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([17, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79]), old_indices_discarded=array([52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 72, 76]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=0.003173828125, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79, 81]), model=ScalarModel(intercept=3.4716016365323457, linear_terms=array([ 0.9491527 , 1.56568922, -1.10876911]), square_terms=array([[ 1.22265995, 1.92559577, -1.38952087],
+ [ 1.92559577, 3.07987668, -2.20772273],
+ [-1.38952087, -2.20772273, 1.5870718 ]]), scale=array([0.00255809, 0.00159569, 0.00255809]), shift=array([ 7.16390218, 20.00159569, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=82, candidate_x=array([ 7.16646027, 20. , 19.79564529]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-3631.0044723440474, accepted=False, new_indices=array([81]), old_indices_used=array([17, 67, 68, 69, 71, 72, 73, 74, 75, 78, 79]), old_indices_discarded=array([65, 66, 70, 76, 77, 80]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=0.0015869140625, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 67, 68, 69, 71, 72, 73, 74, 75, 79, 81, 82]), model=ScalarModel(intercept=6.914662538571903, linear_terms=array([ 1.99847112, -6.49512232, -1.10652104]), square_terms=array([[ 0.62198204, -1.60467768, -0.40293571],
+ [-1.60467768, 5.35173471, 0.85243213],
+ [-0.40293571, 0.85243213, 0.2913152 ]]), scale=array([0.00127905, 0.00095616, 0.00127905]), shift=array([ 7.16390218, 20.00095616, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=83, candidate_x=array([ 7.16306446, 20.00191233, 19.79513384]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-185.15284377140324, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([17, 67, 68, 69, 71, 72, 73, 74, 75, 79, 81, 82]), old_indices_discarded=array([70, 76, 77, 78, 80]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=0.00079345703125, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([17, 67, 68, 72, 74, 75, 79, 81, 82, 83]), model=ScalarModel(intercept=42.36327867694456, linear_terms=array([ 0.34899265, 1.28951827, -8.35408821]), square_terms=array([[ 0.10276649, -0.24683455, -0.01550287],
+ [-0.24683455, 0.90701278, -0.34568477],
+ [-0.01550287, -0.34568477, 0.98277017]]), scale=array([0.00063952, 0.0006364 , 0.00063952]), shift=array([ 7.16390218, 20.0006364 , 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=84, candidate_x=array([ 7.16326266, 20. , 19.79581646]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-20.408016188852258, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([17, 67, 68, 72, 74, 75, 79, 81, 82, 83]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=0.000396728515625, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([72, 79, 83, 84]), model=ScalarModel(intercept=3.149270474181909, linear_terms=array([-2.00267906, -3.45044244, -8.44442785]), square_terms=array([[ 253.68573931, 437.16229348, 864.06740175],
+ [ 437.16229348, 753.33706731, 1488.99815541],
+ [ 864.06740175, 1488.99815541, 2962.05266508]]), scale=0.000396728515625, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=85, candidate_x=array([ 7.164217 , 20.00038536, 19.79521086]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-23859.686439157158, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([72, 79, 83, 84]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=0.0001983642578125, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([79, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97]), model=ScalarModel(intercept=409.4248862831494, linear_terms=array([ 154.3794472 , -122.49214324, 16.48703875]), square_terms=array([[ 55.20174253, -43.80146163, 5.98975964],
+ [-43.80146163, 34.75557032, -4.75275597],
+ [ 5.98975964, -4.75275597, 0.65011236]]), scale=0.0001983642578125, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=98, candidate_x=array([ 7.16375199, 20.00076025, 19.79520286]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-2.9405754845705365, accepted=False, new_indices=array([86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97]), old_indices_used=array([79, 85]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=9.918212890625e-05, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([79, 86, 87, 88, 89, 90, 91, 92, 93, 96, 97, 98]), model=ScalarModel(intercept=372.52328272933823, linear_terms=array([-1.5440193 , -6.03635531, 1.32894204]), square_terms=array([[ 0.00322691, 0.0126156 , -0.0027774 ],
+ [ 0.0126156 , 0.04932063, -0.01085825],
+ [-0.0027774 , -0.01085825, 0.00239051]]), scale=9.918212890625e-05, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=99, candidate_x=array([ 7.16392507, 20.00072778, 19.79515738]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-0.2519654145006399, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([79, 86, 87, 88, 89, 90, 91, 92, 93, 96, 97, 98]), old_indices_discarded=array([85, 94, 95]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=4.9591064453125e-05, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([79, 86, 87, 88, 89, 90, 91, 92, 93, 96, 98, 99]), model=ScalarModel(intercept=303.4656246485257, linear_terms=array([ -9.12457633, -26.03785178, -4.96284633]), square_terms=array([[0.13878092, 0.39640142, 0.07526252],
+ [0.39640142, 1.13279931, 0.21464875],
+ [0.07526252, 0.21464875, 0.0410058 ]]), scale=4.9591064453125e-05, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=100, candidate_x=array([ 7.163915 , 20.00068085, 19.79518261]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-25.252549825662328, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([79, 86, 87, 88, 89, 90, 91, 92, 93, 96, 98, 99]), old_indices_discarded=array([94, 95, 97]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=2.47955322265625e-05, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,
+ 111, 112]), model=ScalarModel(intercept=1702.133424642421, linear_terms=array([-581.38715069, -577.8645001 , 171.4450452 ]), square_terms=array([[100.49756574, 99.53991592, -28.24461132],
+ [ 99.53991592, 98.78458484, -28.47993931],
+ [-28.24461132, -28.47993931, 9.80035071]]), scale=2.47955322265625e-05, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=113, candidate_x=array([ 7.16391973, 20.00065075, 19.79517557]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-2.9752902079392887, accepted=False, new_indices=array([101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112]), old_indices_used=array([ 79, 99, 100]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1.239776611328125e-05, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113]), model=ScalarModel(intercept=1704.6108269350493, linear_terms=array([-132.86400069, 131.09614373, 9.91441014]), square_terms=array([[ 5.18754766, -5.11852475, -0.38709875],
+ [-5.11852475, 5.05042022, 0.38194821],
+ [-0.38709875, 0.38194821, 0.0288856 ]]), scale=1.239776611328125e-05, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=114, candidate_x=array([ 7.16390921, 20.0006233 , 19.79517477]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-21.88734107298974, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113]), old_indices_discarded=array([100, 108, 109]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=6.198883056640625e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 101, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114]), model=ScalarModel(intercept=1896.0020661747296, linear_terms=array([-10.38360719, -3.44394878, -4.06363502]), square_terms=array([[ 0.84034395, -1.42158815, 0.07373786],
+ [-1.42158815, 2.52549627, -0.1066395 ],
+ [ 0.07373786, -0.1066395 , 0.00918635]]), scale=6.198883056640625e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=115, candidate_x=array([ 7.1639076 , 20.00063536, 19.79517911]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-32.093120593372916, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 101, 102, 103, 105, 106, 107, 110, 111, 112, 113, 114]), old_indices_discarded=array([104, 108, 109]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=3.0994415283203125e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,
+ 126, 127]), model=ScalarModel(intercept=362.49920227111835, linear_terms=array([ 151.37500415, -277.59157668, 9.34465185]), square_terms=array([[ 69.56882924, -92.22502774, 18.23571457],
+ [-92.22502774, 141.32749917, -17.24723873],
+ [ 18.23571457, -17.24723873, 7.367279 ]]), scale=3.0994415283203125e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=128, candidate_x=array([ 7.16390075, 20.00063588, 19.79517782]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-1.780562079306289, accepted=False, new_indices=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127]), old_indices_used=array([ 79, 114, 115]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1.5497207641601562e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 117, 118, 120, 121, 122, 123, 124, 126, 127, 128]), model=ScalarModel(intercept=312.7957959520835, linear_terms=array([-20.85653595, 22.81191816, -16.16361746]), square_terms=array([[ 0.70240123, -0.76825411, 0.54435429],
+ [-0.76825411, 0.84028095, -0.59538964],
+ [ 0.54435429, -0.59538964, 0.42186941]]), scale=1.5497207641601562e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=129, candidate_x=array([ 7.16390314, 20.00063224, 19.79517756]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-3286706.3060654122, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 117, 118, 120, 121, 122, 123, 124, 126, 127, 128]), old_indices_discarded=array([115, 119, 125]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 117, 118, 120, 121, 123, 124, 126, 127, 128, 129]), model=ScalarModel(intercept=1966677.9213908487, linear_terms=array([ 1982169.87760891, -2327986.38275526, 2180268.94098183]), square_terms=array([[ 999057.53603024, -1173358.15927181, 1098906.70281201],
+ [-1173358.15927181, 1378068.16218636, -1290627.54099859],
+ [ 1098906.70281201, -1290627.54099859, 1208735.18026512]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=130, candidate_x=array([ 7.16390151, 20.00063402, 19.79517684]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-0.001765293393384812, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 117, 118, 120, 121, 123, 124, 126, 127, 128, 129]), old_indices_discarded=array([119, 122, 125]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 117, 118, 120, 121, 123, 124, 126, 128, 129, 130]), model=ScalarModel(intercept=3152557.328580643, linear_terms=array([ 3869410.42492752, -3436868.5079822 , 2869930.14508261]), square_terms=array([[ 2374977.57300445, -2109491.11259231, 1761504.95300894],
+ [-2109491.11259231, 1873682.01141233, -1564595.41119424],
+ [ 1761504.95300894, -1564595.41119424, 1306496.68809204]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=131, candidate_x=array([ 7.16390145, 20.00063397, 19.79517695]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-4.741896906611787e-06, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 117, 118, 120, 121, 123, 124, 126, 128, 129, 130]), old_indices_discarded=array([119, 122, 125, 127]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 117, 118, 120, 121, 123, 124, 128, 129, 130, 131]), model=ScalarModel(intercept=2909956.9751187437, linear_terms=array([ 3807346.69447191, -3791013.62191393, 2894878.48656925]), square_terms=array([[ 2491072.39838586, -2480388.23443487, 1894060.56814175],
+ [-2480388.23443487, 2469749.97884378, -1885936.9214611 ],
+ [ 1894060.56814175, -1885936.9214611 , 1440128.97043293]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=132, candidate_x=array([ 7.16390154, 20.0006336 , 19.7951762 ]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-1.6474436913933878e-06, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 117, 118, 120, 121, 123, 124, 128, 129, 130, 131]), old_indices_discarded=array([119, 122, 125, 126, 127]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 117, 118, 120, 121, 123, 128, 129, 130, 131, 132]), model=ScalarModel(intercept=4089081.040416187, linear_terms=array([ 5155924.19991846, -5538729.21748143, 2845115.72965128]), square_terms=array([[ 3250814.50419527, -3492176.22121422, 1793836.91746412],
+ [-3492176.22121422, 3751458.28539241, -1927022.96505448],
+ [ 1793836.91746412, -1927022.96505448, 989860.35341853]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=133, candidate_x=array([ 7.16390149, 20.000634 , 19.79517696]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-0.0005470060686872831, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 117, 118, 120, 121, 123, 128, 129, 130, 131, 132]), old_indices_discarded=array([119, 122, 124, 125, 126, 127]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 117, 118, 120, 123, 128, 129, 130, 131, 132, 133]), model=ScalarModel(intercept=5195246.093561055, linear_terms=array([ 5301214.50006145, -7521834.23709252, 3733642.74525079]), square_terms=array([[ 2704884.7786333 , -3837934.84322383, 1905034.08672897],
+ [-3837934.84322383, 5445608.88243351, -2703034.34274292],
+ [ 1905034.08672897, -2703034.34274292, 1341705.2836381 ]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=134, candidate_x=array([ 7.16390155, 20.00063405, 19.79517702]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-0.0005554090804212891, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 117, 118, 120, 123, 128, 129, 130, 131, 132, 133]), old_indices_discarded=array([119, 121, 122, 124, 125, 126, 127]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 118, 120, 123, 128, 129, 130, 131, 132, 133, 134]), model=ScalarModel(intercept=5407827.24233245, linear_terms=array([ 5856843.30938323, -7239837.28779919, 3849039.17416538]), square_terms=array([[ 3171858.2046186 , -3920880.23907417, 2084484.36170119],
+ [-3920880.23907417, 4846788.30799009, -2576724.38125698],
+ [ 2084484.36170119, -2576724.38125698, 1369884.36239265]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=135, candidate_x=array([ 7.16390152, 20.00063403, 19.79517704]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-1.928426446818749e-05, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 118, 120, 123, 128, 129, 130, 131, 132, 133, 134]), old_indices_discarded=array([117, 119, 121, 122, 124, 125, 126, 127]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 118, 123, 128, 129, 130, 131, 132, 133, 134, 135]), model=ScalarModel(intercept=6094788.731321572, linear_terms=array([ 4302990.51226894, -10048635.49218802, 3883978.83228368]), square_terms=array([[ 1519080.50869076, -3547494.42385378, 1371150.83316013],
+ [-3547494.42385378, 8284451.33353941, -3202036.38855574],
+ [ 1371150.83316013, -3202036.38855574, 1237628.07916329]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=136, candidate_x=array([ 7.16390165, 20.00063412, 19.79517704]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-4.481551490103867e-06, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 118, 123, 128, 129, 130, 131, 132, 133, 134, 135]), old_indices_discarded=array([117, 119, 120, 121, 122, 124, 125, 126, 127]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 118, 128, 129, 130, 131, 132, 133, 134, 135, 136]), model=ScalarModel(intercept=10167950.19334516, linear_terms=array([19621646.47134445, -4202749.45346917, 1123472.87100483]), square_terms=array([[18933167.8358248 , -4055345.31124507, 1084036.5360604 ],
+ [-4055345.31124507, 868644.65306657, -232196.30665896],
+ [ 1084036.5360604 , -232196.30665896, 62069.75922986]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=137, candidate_x=array([ 7.16390129, 20.00063368, 19.79517717]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-0.00020768656010262149, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 118, 128, 129, 130, 131, 132, 133, 134, 135, 136]), old_indices_discarded=array([117, 119, 120, 121, 122, 123, 124, 125, 126, 127]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137]), model=ScalarModel(intercept=10118661.2674104, linear_terms=array([19789114.66712068, -4034193.73541403, 1089109.83129782]), square_terms=array([[19357880.04093347, -3941526.68477494, 1062128.28011787],
+ [-3941526.68477494, 805822.9107165 , -218495.92895751],
+ [ 1062128.28011787, -218495.92895751, 59799.23947604]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=138, candidate_x=array([ 7.16390123, 20.00063359, 19.79517702]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-6.126940168947411e-05, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137]), old_indices_discarded=array([117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 116, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138]), model=ScalarModel(intercept=11293376.427994678, linear_terms=array([ 13650216.53157232, -22436738.85403914, 2515396.03244459]), square_terms=array([[ 8251740.74039967, -13559790.76171163, 1519297.66929413],
+ [-13559790.76171163, 22287866.23071835, -2498636.39795383],
+ [ 1519297.66929413, -2498636.39795383, 280480.81910675]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=139, candidate_x=array([ 7.163902 , 20.00063411, 19.79517634]), index=79, x=array([ 7.16390218, 20.00063328, 19.79517694]), fval=3.149270474181912, rho=-0.00010018265887465266, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 116, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138]), old_indices_discarded=array([117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390218, 20.00063328, 19.79517694]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139]), model=ScalarModel(intercept=10218577.993350446, linear_terms=array([ 17949717.55164826, -13974712.41459382, 11871089.50379769]), square_terms=array([[ 15765758.04465271, -12274619.17327415, 10425886.58130483],
+ [-12274619.17327415, 9556908.9644796 , -8117049.85710465],
+ [ 10425886.58130483, -8117049.85710465, 6895673.46093131]]), scale=1e-06, shift=array([ 7.16390218, 20.00063328, 19.79517694])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=140, candidate_x=array([ 7.16390151, 20.00063317, 19.7951761 ]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=9.48161497575201e-08, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128]), step_length=1.081057513697022e-06, relative_step_length=1.081057513697022, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140]), model=ScalarModel(intercept=6.0930798071242815, linear_terms=array([-21.84479584, 49.07304372, 9.72983067]), square_terms=array([[ 650.16413755, -765.21136054, -392.99328946],
+ [-765.21136054, 1446.63380506, 344.43400865],
+ [-392.99328946, 344.43400865, 266.64882112]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=141, candidate_x=array([ 7.16390087, 20.00063297, 19.79517536]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-243.8492020117, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
+ 129]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141]), model=ScalarModel(intercept=27.592785058219068, linear_terms=array([-171.02472625, 260.80975048, 21.80290652]), square_terms=array([[ 978.41558524, -1193.05074188, -293.88967339],
+ [-1193.05074188, 1992.4019978 , 165.26330583],
+ [ -293.88967339, 165.26330583, 171.65098848]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=142, candidate_x=array([ 7.16390214, 20.00063335, 19.79517687]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-8.737005153089251, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
+ 129, 136]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 130, 131, 132, 133, 135, 137, 138, 139, 140, 141, 142]), model=ScalarModel(intercept=56.64738110732581, linear_terms=array([-215.95010568, 318.06499395, 60.6479783 ]), square_terms=array([[ 558.72269694, -615.9745186 , -250.72369234],
+ [-615.9745186 , 1154.0238208 , 108.03291577],
+ [-250.72369234, 108.03291577, 197.46110437]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=143, candidate_x=array([ 7.16390228, 20.00063325, 19.79517674]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-0.07739787499245084, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 130, 131, 132, 133, 135, 137, 138, 139, 140, 141, 142]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
+ 129, 134, 136]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 130, 131, 132, 133, 137, 138, 139, 140, 141, 142, 143]), model=ScalarModel(intercept=45.9571000076232, linear_terms=array([-213.25070831, 343.17176686, 78.0785831 ]), square_terms=array([[ 653.0760004 , -838.16616987, -327.1183959 ],
+ [-838.16616987, 1637.01542451, 254.44126917],
+ [-327.1183959 , 254.44126917, 233.86458875]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=144, candidate_x=array([ 7.16390227, 20.00063325, 19.79517675]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-12.477836683060026, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 130, 131, 132, 133, 137, 138, 139, 140, 141, 142, 143]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
+ 129, 134, 135, 136]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 130, 131, 132, 133, 138, 139, 140, 141, 142, 143, 144]), model=ScalarModel(intercept=72.79108546198056, linear_terms=array([-93.52989921, 428.00135923, 1.58547442]), square_terms=array([[ 165.65189712, -282.52778782, -104.91966983],
+ [-282.52778782, 1555.5908478 , -32.30611941],
+ [-104.91966983, -32.30611941, 122.49050695]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=145, candidate_x=array([ 7.16390228, 20.00063305, 19.79517673]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-30.76961170675236, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 130, 131, 132, 133, 138, 139, 140, 141, 142, 143, 144]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
+ 129, 134, 135, 136, 137]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 130, 131, 132, 138, 139, 140, 141, 142, 143, 144, 145]), model=ScalarModel(intercept=158.1691762407632, linear_terms=array([ 48.1116786 , 343.79438008, 19.5531909 ]), square_terms=array([[ 34.07324276, 91.00834205, -20.99260056],
+ [ 91.00834205, 623.12095869, -30.5041743 ],
+ [-20.99260056, -30.5041743 , 39.31606679]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=146, candidate_x=array([ 7.16390118, 20.00063264, 19.79517531]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-0.13633585966259545, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 130, 131, 132, 138, 139, 140, 141, 142, 143, 144, 145]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
+ 129, 133, 134, 135, 136, 137]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 130, 132, 138, 139, 140, 141, 142, 143, 144, 145, 146]), model=ScalarModel(intercept=178.40586751372118, linear_terms=array([-125.81297649, 495.22099661, 156.90684634]), square_terms=array([[ 79.88578502, -177.94534534, -85.84738757],
+ [-177.94534534, 890.10726586, 174.17339374],
+ [ -85.84738757, 174.17339374, 111.48133846]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=147, candidate_x=array([ 7.16390122, 20.00063273, 19.79517524]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-0.7773680025893649, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 130, 132, 138, 139, 140, 141, 142, 143, 144, 145, 146]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
+ 129, 131, 133, 134, 135, 136, 137]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 132, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147]), model=ScalarModel(intercept=161.58000401068898, linear_terms=array([ 74.29264756, 202.7286699 , 14.79820423]), square_terms=array([[ 61.58454557, 91.07236719, -33.58102571],
+ [ 91.07236719, 222.93623034, -51.5806932 ],
+ [-33.58102571, -51.5806932 , 44.35153617]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=148, candidate_x=array([ 7.1639013 , 20.0006324 , 19.79517548]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-8.555731166339806e+16, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 132, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
+ 129, 130, 131, 133, 134, 135, 136, 137]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 79, 132, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148]), model=ScalarModel(intercept=4101778447507161.0, linear_terms=array([-1.03965255e+17, -3.52561859e+17, 1.45948334e+17]), square_terms=array([[ 1.31757167e+18, 4.46808426e+18, -1.84963132e+18],
+ [ 4.46808426e+18, 1.51519476e+19, -6.27237875e+18],
+ [-1.84963132e+18, -6.27237875e+18, 2.59654642e+18]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=149, candidate_x=array([ 7.16390203, 20.00063338, 19.79517692]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.3966720234081438e-13, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 79, 132, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148]), old_indices_discarded=array([116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
+ 129, 130, 131, 133, 134, 135, 136, 137, 139]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149]), model=ScalarModel(intercept=5129799127529167.0, linear_terms=array([-1.15321202e+17, -3.99341213e+17, 1.68180987e+17]), square_terms=array([[ 1.29624760e+18, 4.48872436e+18, -1.89040867e+18],
+ [ 4.48872436e+18, 1.55438254e+19, -6.54622116e+18],
+ [-1.89040867e+18, -6.54622116e+18, 2.75691538e+18]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=150, candidate_x=array([ 7.16390086, 20.00063307, 19.79517534]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.508715767999838e-13, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 139]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150]), model=ScalarModel(intercept=3.0190189990289532e+16, linear_terms=array([-6.83378588e+17, -1.15964151e+18, 7.88971623e+17]), square_terms=array([[ 7.73440469e+18, 1.31246967e+19, -8.92949521e+18],
+ [ 1.31246967e+19, 2.22716125e+19, -1.51526745e+19],
+ [-8.92949521e+18, -1.51526745e+19, 1.03092465e+19]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=151, candidate_x=array([ 7.16390197, 20.00063351, 19.79517692]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-612781152.021524, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151]), model=ScalarModel(intercept=2.8127875992570325e+23, linear_terms=array([-3.36299649e+24, -1.04024485e+24, 3.36239476e+24]), square_terms=array([[ 2.01041582e+25, 6.21863481e+24, -2.01005611e+25],
+ [ 6.21863481e+24, 1.92355325e+24, -6.21752214e+24],
+ [-2.01005611e+25, -6.21752214e+24, 2.00969646e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=152, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.5503514121117797e-23, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 148]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 141, 143, 144, 145, 146, 147, 149, 150, 151, 152]), model=ScalarModel(intercept=3.702831981081598e+23, linear_terms=array([-4.14280356e+24, -1.47610520e+24, 4.29310773e+24]), square_terms=array([[ 2.31752635e+25, 8.25748225e+24, -2.40160802e+25],
+ [ 8.25748225e+24, 2.94218934e+24, -8.55707019e+24],
+ [-2.40160802e+25, -8.55707019e+24, 2.48874025e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=153, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.7829041750839415e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 141, 143, 144, 145, 146, 147, 149, 150, 151, 152]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 142, 148]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 141, 143, 144, 145, 146, 149, 150, 151, 152, 153]), model=ScalarModel(intercept=3.053174507626802e+23, linear_terms=array([-4.86449518e+24, -1.43254100e+24, 5.05400372e+24]), square_terms=array([[ 3.87519830e+25, 1.14120381e+25, -4.02616632e+25],
+ [ 1.14120381e+25, 3.36072128e+24, -1.18566225e+25],
+ [-4.02616632e+25, -1.18566225e+25, 4.18301567e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=154, candidate_x=array([ 7.16390208, 20.00063375, 19.79517669]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.635206929082794e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 141, 143, 144, 145, 146, 149, 150, 151, 152, 153]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 142, 147,
+ 148]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 141, 143, 144, 145, 149, 150, 151, 152, 153, 154]), model=ScalarModel(intercept=1.3165225224339103e+23, linear_terms=array([-3.94903169e+24, -6.59701470e+23, 4.11252592e+24]), square_terms=array([[ 5.92274383e+25, 9.89417943e+24, -6.16795189e+25],
+ [ 9.89417943e+24, 1.65286208e+24, -1.03038093e+25],
+ [-6.16795189e+25, -1.03038093e+25, 6.42331184e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=155, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.8600055145753386e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 141, 143, 144, 145, 149, 150, 151, 152, 153, 154]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 142, 146,
+ 147, 148]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 141, 144, 145, 149, 150, 151, 152, 153, 154, 155]), model=ScalarModel(intercept=1.1685415794506962e+23, linear_terms=array([-3.85477677e+24, -5.67533621e+23, 3.95881832e+24]), square_terms=array([[ 6.35805529e+25, 9.36087965e+24, -6.52966106e+25],
+ [ 9.36087965e+24, 1.37818977e+24, -9.61353253e+24],
+ [-6.52966106e+25, -9.61353253e+24, 6.70589853e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=156, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-8.3164570457479575e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 141, 144, 145, 149, 150, 151, 152, 153, 154, 155]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 142, 143,
+ 146, 147, 148]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 145, 149, 150, 151, 152, 153, 154, 155, 156]), model=ScalarModel(intercept=9.948011239226273e+22, linear_terms=array([-3.54483226e+24, -5.11224593e+23, 3.66283269e+24]), square_terms=array([[ 6.31575269e+25, 9.10838049e+24, -6.52599156e+25],
+ [ 9.10838049e+24, 1.31358207e+24, -9.41158040e+24],
+ [-6.52599156e+25, -9.41158040e+24, 6.74322886e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=157, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-8.466870818811063e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 145, 149, 150, 151, 152, 153, 154, 155, 156]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 146, 147, 148]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 154, 155, 156, 157]), model=ScalarModel(intercept=5.253879345852958e+22, linear_terms=array([-2.80555073e+24, -1.97952455e+23, 2.78533770e+24]), square_terms=array([[ 7.49076481e+25, 5.28529130e+24, -7.43679643e+25],
+ [ 5.28529130e+24, 3.72916582e+23, -5.24721259e+24],
+ [-7.43679643e+25, -5.24721259e+24, 7.38321686e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=158, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-5.960261830596255e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 154, 155, 156, 157]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=159, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-4.488216908013054e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=160, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.231887693719641e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=161, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-6.892134163413808e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=162, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-5.703576323643708e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=163, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-7.697228087295629e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=164, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.129223134473034e-17, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=165, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-8.736481873243292e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=166, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.467709902630676e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=167, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-7.457709222328931e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=168, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.6368731954069733e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=169, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-6.814346505538112e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=170, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.1960048115881595e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=171, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-3.613621098765295e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=172, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-4.356198656870862e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=173, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-8.162169511395309e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=174, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.3263637465119144e-20, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=175, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-7.814698512522029e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=176, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.2495261128253335e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=177, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-3.1368146236686046e-20, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=178, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-9.503543447163866e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=179, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.4910772199424336e-20, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=180, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.9274057153706326e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=181, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.741828408909048e-23, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=182, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-3.2106131063586103e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=183, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.1695566452893244e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=184, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.9326678960201007e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=185, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-8.0145080335315165e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=186, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-4.843075060425077e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=187, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.746239466200576e-19, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=188, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-7.878241592341733e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=189, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-2.2678684808145598e-20, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187, 188]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=190, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-7.527754483029696e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=191, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-4.249234290390502e-21, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=192, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.0546734267085517e-18, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=193, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-8.10061660025069e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
+ 192]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=194, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-7.049643394141765e-22, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
+ 192, 193]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=195, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-5.840678137083194e-20, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
+ 192, 193, 194]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=196, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-1.0926496300515652e-20, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
+ 192, 193, 194, 195]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 7.16390151, 20.00063317, 19.7951761 ]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), model=ScalarModel(intercept=5.1951101154837486e+22, linear_terms=array([-2.78335315e+24, -1.85893328e+23, 2.76329723e+24]), square_terms=array([[ 7.45610256e+25, 4.97974796e+24, -7.40237636e+25],
+ [ 4.97974796e+24, 3.32585148e+23, -4.94386555e+24],
+ [-7.40237636e+25, -4.94386555e+24, 7.34903730e+25]]), scale=1e-06, shift=array([ 7.16390151, 20.00063317, 19.7951761 ])), vector_model=VectorModel(intercepts=array([ 0.13032265, 0.31691491, 0.69793062, 1.21943985,
+ 2.25579301, 2.26833552, 3.48589063, 19.75228859,
+ 25.30885482, 42.90746683, 45.21097246, 39.93712747,
+ -2.17828031, -3.51987617, -17.51962784, -35.38825166,
+ -39.95691643]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.25, shift=array([15.275, 32.5 , 17.5 ])), candidate_index=197, candidate_x=array([ 7.16390209, 20.00063375, 19.79517668]), index=140, x=array([ 7.16390151, 20.00063317, 19.7951761 ]), fval=2.1803868818934804, rho=-3.102234199713035e-20, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([132, 140, 144, 149, 150, 151, 152, 153, 155, 156, 157, 158]), old_indices_discarded=array([ 79, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+ 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142,
+ 143, 145, 146, 147, 148, 154, 159, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
+ 192, 193, 194, 195, 196]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'message': None, 'tranquilo_history': History for least_squares function with 198 entries., 'history': {'params': [{'CRRA': 15.274999999999999, 'BeqFac': 32.5, 'BeqShift': 17.5}, {'CRRA': 16.182801876545053, 'BeqFac': 34.12985962684907, 'BeqShift': 14.838806029296492}, {'CRRA': 13.186582363135361, 'BeqFac': 34.02077261426837, 'BeqShift': 15.528132248419263}, {'CRRA': 12.513036682476873, 'BeqFac': 33.918552234352525, 'BeqShift': 18.46008759551934}, {'CRRA': 14.964467470070502, 'BeqFac': 29.264926378967182, 'BeqShift': 17.480811087753608}, {'CRRA': 14.788665706354442, 'BeqFac': 31.288903828741553, 'BeqShift': 20.476445030365486}, {'CRRA': 12.414183952944587, 'BeqFac': 30.9809878511744, 'BeqShift': 17.766145893506714}, {'CRRA': 16.727864072104055, 'BeqFac': 35.39614277769824, 'BeqShift': 17.24693281687355}, {'CRRA': 17.869684634701613, 'BeqFac': 31.663181409674287, 'BeqShift': 15.730862839311593}, {'CRRA': 14.844584771190268, 'BeqFac': 34.725889629975136, 'BeqShift': 19.828660148234995}, {'CRRA': 14.481092007067529, 'BeqFac': 30.94572930389933, 'BeqShift': 14.758385019372582}, {'CRRA': 17.605397582957753, 'BeqFac': 30.47841497651106, 'BeqShift': 18.522223604770446}, {'CRRA': 17.78858044851097, 'BeqFac': 33.36108796478573, 'BeqShift': 19.37161450244556}, {'CRRA': 12.041973154302461, 'BeqFac': 32.272306263268455, 'BeqShift': 17.25876779391579}, {'CRRA': 5.646789673804694, 'BeqFac': 31.22095246876892, 'BeqShift': 17.755037327092985}, {'CRRA': 1.1, 'BeqFac': 36.546550321835426, 'BeqShift': 25.63880507552178}, {'CRRA': 7.559593529411149, 'BeqFac': 25.981978618215397, 'BeqShift': 12.903193018563181}, {'CRRA': 7.162435395579225, 'BeqFac': 20.0, 'BeqShift': 19.797735033320873}, {'CRRA': 7.104176267448587, 'BeqFac': 20.0, 'BeqShift': 18.331508221369553}, {'CRRA': 4.475514432137514, 'BeqFac': 27.116229841868826, 'BeqShift': 9.319787332213822}, {'CRRA': 2.5693570342673224, 'BeqFac': 25.238973850553524, 'BeqShift': 14.558761182767348}, {'CRRA': 6.810760723581704, 'BeqFac': 20.0, 'BeqShift': 17.17824810804411}, {'CRRA': 5.852691932940843, 'BeqFac': 20.07758271241703, 'BeqShift': 20.703967632718857}, {'CRRA': 5.925653154103373, 'BeqFac': 21.137923065439885, 'BeqShift': 21.107478495959253}, {'CRRA': 8.394508842925, 'BeqFac': 21.28958139192138, 'BeqShift': 18.487991570682492}, {'CRRA': 8.44603081706409, 'BeqFac': 20.0, 'BeqShift': 18.963966642656835}, {'CRRA': 5.856112670048812, 'BeqFac': 21.292264441098254, 'BeqShift': 18.487991570682492}, {'CRRA': 8.183625589575518, 'BeqFac': 21.29498020807904, 'BeqShift': 21.107478495959253}, {'CRRA': 6.934504625079032, 'BeqFac': 20.01170679288317, 'BeqShift': 21.107478495959253}, {'CRRA': 8.472178858217607, 'BeqFac': 20.033079859129966, 'BeqShift': 21.089190494846004}, {'CRRA': 7.7691211791621635, 'BeqFac': 21.30974346263838, 'BeqShift': 19.985816414441096}, {'CRRA': 8.472178858217607, 'BeqFac': 20.507497948357408, 'BeqShift': 18.545650692041647}, {'CRRA': 5.852691932940843, 'BeqFac': 20.743256415927384, 'BeqShift': 19.125688821205877}, {'CRRA': 8.472178858217607, 'BeqFac': 20.68617043682625, 'BeqShift': 20.53784235512794}, {'CRRA': 5.852691932940843, 'BeqFac': 20.93951727220174, 'BeqShift': 21.107478495959253}, {'CRRA': 6.507563664260034, 'BeqFac': 20.0, 'BeqShift': 20.452606764640063}, {'CRRA': 6.83499952991963, 'BeqFac': 20.0, 'BeqShift': 20.125170898980468}, {'CRRA': 7.06364362963422, 'BeqFac': 20.141927740405336, 'BeqShift': 19.634017100491075}, {'CRRA': 7.326153328409022, 'BeqFac': 20.00037409874898, 'BeqShift': 19.651101390125355}, {'CRRA': 6.998717462749427, 'BeqFac': 20.15293585825013, 'BeqShift': 19.76255576011568}, {'CRRA': 7.001948833890493, 'BeqFac': 20.0, 'BeqShift': 19.677181797946126}, {'CRRA': 7.3196911343281865, 'BeqFac': 20.103928157632524, 'BeqShift': 19.634017100491075}, {'CRRA': 7.094716123498734, 'BeqFac': 20.163717932829798, 'BeqShift': 19.96145296615067}, {'CRRA': 7.319338495891002, 'BeqFac': 20.15809732003258, 'BeqShift': 19.96145296615067}, {'CRRA': 7.326153328409022, 'BeqFac': 20.162580462479426, 'BeqShift': 19.70600145770026}, {'CRRA': 6.998717462749427, 'BeqFac': 20.0028634996421, 'BeqShift': 19.954305374887397}, {'CRRA': 7.326153328409022, 'BeqFac': 20.0, 'BeqShift': 19.96145296615067}, {'CRRA': 7.326153328409022, 'BeqFac': 20.03151324309369, 'BeqShift': 19.96145296615067}, {'CRRA': 6.998717462749427, 'BeqFac': 20.103601752038916, 'BeqShift': 19.925613167797213}, {'CRRA': 6.998717462749427, 'BeqFac': 20.0, 'BeqShift': 19.96145296615067}, {'CRRA': 7.080576429164326, 'BeqFac': 20.0, 'BeqShift': 19.715876066905974}, {'CRRA': 7.121505912371775, 'BeqFac': 20.0, 'BeqShift': 19.756805550113423}, {'CRRA': 7.14204067197887, 'BeqFac': 20.01287333106645, 'BeqShift': 19.777270291717148}, {'CRRA': 7.181700480846919, 'BeqFac': 20.000491730276497, 'BeqShift': 19.818199774924597}, {'CRRA': 7.173499719380777, 'BeqFac': 20.0, 'BeqShift': 19.777311534260843}, {'CRRA': 7.143968065979087, 'BeqFac': 20.0, 'BeqShift': 19.782848990447388}, {'CRRA': 7.1829001371829495, 'BeqFac': 20.019585836576145, 'BeqShift': 19.811259486774215}, {'CRRA': 7.173734815359353, 'BeqFac': 20.020464741603725, 'BeqShift': 19.778491109597535}, {'CRRA': 7.1419706539755, 'BeqFac': 20.020342246044443, 'BeqShift': 19.784635478145013}, {'CRRA': 7.1419706539755, 'BeqFac': 20.01955357282575, 'BeqShift': 19.81781198112899}, {'CRRA': 7.181040357052529, 'BeqFac': 20.0, 'BeqShift': 19.79686228492614}, {'CRRA': 7.143623930013135, 'BeqFac': 20.0, 'BeqShift': 19.816804484431263}, {'CRRA': 7.171272290518652, 'BeqFac': 20.01964011756441, 'BeqShift': 19.818199774924597}, {'CRRA': 7.181554792623697, 'BeqFac': 20.014048098881094, 'BeqShift': 19.777270291717148}, {'CRRA': 7.1419706539755, 'BeqFac': 20.0, 'BeqShift': 19.777270291717148}, {'CRRA': 7.172667766381087, 'BeqFac': 20.0, 'BeqShift': 19.807967404122735}, {'CRRA': 7.157319210178294, 'BeqFac': 20.005116185400933, 'BeqShift': 19.79261884791994}, {'CRRA': 7.164653475504358, 'BeqFac': 20.002558092700465, 'BeqShift': 19.79568303885475}, {'CRRA': 7.160117120125059, 'BeqFac': 20.001282249271082, 'BeqShift': 19.795176940620408}, {'CRRA': 7.159964205122328, 'BeqFac': 20.0, 'BeqShift': 19.795273143283936}, {'CRRA': 7.161532722229706, 'BeqFac': 20.002558092700465, 'BeqShift': 19.800293126021337}, {'CRRA': 7.159877302878759, 'BeqFac': 20.000358479209176, 'BeqShift': 19.797942561941547}, {'CRRA': 7.16499348827969, 'BeqFac': 20.0, 'BeqShift': 19.795176940620408}, {'CRRA': 7.164513663974864, 'BeqFac': 20.000160193152734, 'BeqShift': 19.800293126021337}, {'CRRA': 7.16499348827969, 'BeqFac': 20.001664913878862, 'BeqShift': 19.79750680231172}, {'CRRA': 7.160809405993526, 'BeqFac': 20.002558092700465, 'BeqShift': 19.79525224084456}, {'CRRA': 7.15999169371701, 'BeqFac': 20.000247646937908, 'BeqShift': 19.800293126021337}, {'CRRA': 7.159877302878759, 'BeqFac': 20.00249194255367, 'BeqShift': 19.798919564968763}, {'CRRA': 7.16499348827969, 'BeqFac': 20.00255663871507, 'BeqShift': 19.800061699007433}, {'CRRA': 7.1639021811460895, 'BeqFac': 20.00063328199441, 'BeqShift': 19.795176940620408}, {'CRRA': 7.169018366547021, 'BeqFac': 20.000064999982364, 'BeqShift': 19.790060755219475}, {'CRRA': 7.161344088445624, 'BeqFac': 20.0, 'BeqShift': 19.797735033320873}, {'CRRA': 7.166460273846555, 'BeqFac': 20.0, 'BeqShift': 19.79564528614256}, {'CRRA': 7.163064461739323, 'BeqFac': 20.001912328344645, 'BeqShift': 19.79513384102948}, {'CRRA': 7.163262657970973, 'BeqFac': 20.0, 'BeqShift': 19.795816463795525}, {'CRRA': 7.164217004255594, 'BeqFac': 20.000385363484497, 'BeqShift': 19.79521086032531}, {'CRRA': 7.164096545471967, 'BeqFac': 20.00067180477727, 'BeqShift': 19.795186261715}, {'CRRA': 7.164023707340419, 'BeqFac': 20.00066440574548, 'BeqShift': 19.79502328166366}, {'CRRA': 7.163982498130716, 'BeqFac': 20.000480812238173, 'BeqShift': 19.795078703487963}, {'CRRA': 7.16382178974572, 'BeqFac': 20.000597846008507, 'BeqShift': 19.794999092672917}, {'CRRA': 7.16370872649278, 'BeqFac': 20.000663521111473, 'BeqShift': 19.79514517158375}, {'CRRA': 7.163961894616199, 'BeqFac': 20.000820241710436, 'BeqShift': 19.795205728549274}, {'CRRA': 7.163951158682439, 'BeqFac': 20.000494558425927, 'BeqShift': 19.795310002077102}, {'CRRA': 7.163811384018704, 'BeqFac': 20.000459010676405, 'BeqShift': 19.79514985246513}, {'CRRA': 7.16385650799105, 'BeqFac': 20.000783522168174, 'BeqShift': 19.795055737353643}, {'CRRA': 7.163803473797779, 'BeqFac': 20.000759869728515, 'BeqShift': 19.795293477240154}, {'CRRA': 7.163775125575999, 'BeqFac': 20.000569554622412, 'BeqShift': 19.795315302764596}, {'CRRA': 7.1639944520980885, 'BeqFac': 20.000664832354538, 'BeqShift': 19.795349680381236}, {'CRRA': 7.163751992373234, 'BeqFac': 20.000760246901173, 'BeqShift': 19.79520285632485}, {'CRRA': 7.163925068772202, 'BeqFac': 20.000727784788914, 'BeqShift': 19.795157383701017}, {'CRRA': 7.163914997538436, 'BeqFac': 20.000680851494216, 'BeqShift': 19.795182611286055}, {'CRRA': 7.1639114232721495, 'BeqFac': 20.000635159364233, 'BeqShift': 19.795199872628753}, {'CRRA': 7.163885204160897, 'BeqFac': 20.00065130915455, 'BeqShift': 19.795178214154674}, {'CRRA': 7.1638914566964145, 'BeqFac': 20.000632401662962, 'BeqShift': 19.79515460164966}, {'CRRA': 7.163880376147532, 'BeqFac': 20.000632532070163, 'BeqShift': 19.795188721879676}, {'CRRA': 7.163888841076567, 'BeqFac': 20.00065391230709, 'BeqShift': 19.79518029489562}, {'CRRA': 7.163880731505007, 'BeqFac': 20.000637978735217, 'BeqShift': 19.795188458951085}, {'CRRA': 7.163913747460303, 'BeqFac': 20.000616693186632, 'BeqShift': 19.795162593138038}, {'CRRA': 7.163899201725449, 'BeqFac': 20.00061321943721, 'BeqShift': 19.795162677546767}, {'CRRA': 7.163909194327857, 'BeqFac': 20.00064821908534, 'BeqShift': 19.795158433405206}, {'CRRA': 7.1638854346870735, 'BeqFac': 20.00063977876056, 'BeqShift': 19.795159847740067}, {'CRRA': 7.163881339043696, 'BeqFac': 20.00062004022952, 'BeqShift': 19.79517468654658}, {'CRRA': 7.16390973103596, 'BeqFac': 20.000645257800755, 'BeqShift': 19.795197297379573}, {'CRRA': 7.163919726049716, 'BeqFac': 20.00065074964088, 'BeqShift': 19.795175570911695}, {'CRRA': 7.163909213102567, 'BeqFac': 20.00062330436833, 'BeqShift': 19.795174771940978}, {'CRRA': 7.163907604187158, 'BeqFac': 20.00063536356951, 'BeqShift': 19.795179105383042}, {'CRRA': 7.163900700832957, 'BeqFac': 20.00063324136908, 'BeqShift': 19.795174217834997}, {'CRRA': 7.163903955141367, 'BeqFac': 20.000635781731372, 'BeqShift': 19.795177399743114}, {'CRRA': 7.163901146027562, 'BeqFac': 20.000633947980603, 'BeqShift': 19.79517978518185}, {'CRRA': 7.163900570016392, 'BeqFac': 20.000635896296245, 'BeqShift': 19.79517652082902}, {'CRRA': 7.163899630286651, 'BeqFac': 20.000631692102814, 'BeqShift': 19.79517618438062}, {'CRRA': 7.163899752814149, 'BeqFac': 20.000631446636376, 'BeqShift': 19.795177524745952}, {'CRRA': 7.16390086591286, 'BeqFac': 20.000632984202614, 'BeqShift': 19.79517973132272}, {'CRRA': 7.16390415064239, 'BeqFac': 20.000633787267674, 'BeqShift': 19.795174601321147}, {'CRRA': 7.163902541137623, 'BeqFac': 20.000631428218405, 'BeqShift': 19.795174482886004}, {'CRRA': 7.163901113564961, 'BeqFac': 20.00063160358454, 'BeqShift': 19.795174563700417}, {'CRRA': 7.163902496713463, 'BeqFac': 20.00063636297429, 'BeqShift': 19.795176820129765}, {'CRRA': 7.163905065126601, 'BeqFac': 20.000633398456024, 'BeqShift': 19.7951758111821}, {'CRRA': 7.1639007459303325, 'BeqFac': 20.000635884878065, 'BeqShift': 19.795177819079395}, {'CRRA': 7.163903142717981, 'BeqFac': 20.000632236870768, 'BeqShift': 19.7951775608869}, {'CRRA': 7.163901510418178, 'BeqFac': 20.000634016817976, 'BeqShift': 19.79517683983155}, {'CRRA': 7.163901451210496, 'BeqFac': 20.000633965481903, 'BeqShift': 19.795176946855463}, {'CRRA': 7.163901535197764, 'BeqFac': 20.000633599837798, 'BeqShift': 19.795176196261497}, {'CRRA': 7.163901490373312, 'BeqFac': 20.000634004677494, 'BeqShift': 19.79517696432972}, {'CRRA': 7.163901547712465, 'BeqFac': 20.00063405178731, 'BeqShift': 19.795177019238082}, {'CRRA': 7.163901518809783, 'BeqFac': 20.000634025214705, 'BeqShift': 19.795177035141368}, {'CRRA': 7.163901645878996, 'BeqFac': 20.00063412032794, 'BeqShift': 19.795177043993665}, {'CRRA': 7.163901294040248, 'BeqFac': 20.00063368152116, 'BeqShift': 19.795177171751547}, {'CRRA': 7.163901234004656, 'BeqFac': 20.000633591980925, 'BeqShift': 19.795177023273084}, {'CRRA': 7.163902001003131, 'BeqFac': 20.000634111766654, 'BeqShift': 19.7951763402221}, {'CRRA': 7.1639015143593845, 'BeqFac': 20.000633171274284, 'BeqShift': 19.79517609692503}, {'CRRA': 7.1639008650055525, 'BeqFac': 20.00063296800616, 'BeqShift': 19.795175364107404}, {'CRRA': 7.163902139094802, 'BeqFac': 20.000633350597944, 'BeqShift': 19.795176866887157}, {'CRRA': 7.163902278369378, 'BeqFac': 20.000633246744954, 'BeqShift': 19.79517673770027}, {'CRRA': 7.163902270477919, 'BeqFac': 20.00063324935299, 'BeqShift': 19.795176746685353}, {'CRRA': 7.16390228229157, 'BeqFac': 20.000633049938926, 'BeqShift': 19.795176725858962}, {'CRRA': 7.163901176157773, 'BeqFac': 20.00063264303827, 'BeqShift': 19.795175308884883}, {'CRRA': 7.1639012243988605, 'BeqFac': 20.000632730209208, 'BeqShift': 19.795175239034943}, {'CRRA': 7.163901304848006, 'BeqFac': 20.000632398440953, 'BeqShift': 19.795175480926908}, {'CRRA': 7.163902033737891, 'BeqFac': 20.00063338401652, 'BeqShift': 19.795176924564267}, {'CRRA': 7.163900863291982, 'BeqFac': 20.00063306827834, 'BeqShift': 19.795175344925646}, {'CRRA': 7.163901972460742, 'BeqFac': 20.000633511984724, 'BeqShift': 19.79517691793632}, {'CRRA': 7.163902086734356, 'BeqFac': 20.00063374746687, 'BeqShift': 19.795176680353684}, {'CRRA': 7.163902089228966, 'BeqFac': 20.00063374792789, 'BeqShift': 19.79517667743824}, {'CRRA': 7.163902082265527, 'BeqFac': 20.000633746413552, 'BeqShift': 19.795176685735218}, {'CRRA': 7.1639020890361875, 'BeqFac': 20.000633748271184, 'BeqShift': 19.795176677287976}, {'CRRA': 7.163902087625799, 'BeqFac': 20.000633748159135, 'BeqShift': 19.79517667879227}, {'CRRA': 7.16390208804323, 'BeqFac': 20.000633748208553, 'BeqShift': 19.795176678331682}, {'CRRA': 7.163902088056392, 'BeqFac': 20.000633748449474, 'BeqShift': 19.79517667807952}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}, {'CRRA': 7.163902089061518, 'BeqFac': 20.00063374850615, 'BeqShift': 19.795176677029186}], 'criterion': [9708.18018836299, 2127.4073357822235, 1582.3414040809714, 1461.223588872245, 1905.1367620772523, 1873.0926117107656, 1443.3547433369567, 2226.011118185237, 2434.368142087414, 1883.3409281250472, 1816.9881761663148, 2385.834972841766, 2419.4685314960425, 1376.8902513722257, 178.39169439929836, 4326.5919069340525, 25.03076336270686, 5.380788575651525, 2432.8277466746613, 15.371342712720235, 11243.58403849896, 3167.5830827121936, 440.59964004884046, 450.25568148036575, 848.0494167477046, 857.5104154889324, 441.04107460042025, 809.456682002191, 597.0348891119568, 862.3038025127908, 736.014915544027, 862.3038025127908, 440.59964004884046, 862.3038025127908, 440.59964004884046, 11.86408363285183, 293.703579262664, 739.1355977028069, 791.8858288702991, 726.5266137241042, 727.1463706245476, 790.6088298635653, 745.1625679228945, 790.5397143773652, 791.8858288702991, 726.5266137241042, 791.8858288702991, 791.8858288702991, 726.5266137241042, 726.5266137241042, 22.69251186188246, 48.554076441098985, 101.94687708276342, 102.94033103934424, 102.73665278138273, 101.99503428357619, 102.97094152855944, 102.74237213661318, 101.94512499094861, 101.94512499094861, 102.92393187864472, 101.98643618697619, 102.68144732754381, 102.93670304074945, 101.94512499094861, 1263.105422800911, 274.90567045470783, 3.1485180769564045, 3.153104959164577, 3.153255618793179, 3.1516931288079357, 3.1533415528787336, 3.148174538820802, 3.1486593890894574, 3.148174538820802, 3.1524235904739664, 3.153228503491106, 3.1533415528787336, 3.148174538820802, 3.149270474181912, 50880.936990104405, 127.04482270273118, 124.15443127425131, 1195.9722699594292, 184.28386461351897, 1856.1779125297833, 444.1285295892942, 444.12044148408086, 444.11587024379645, 444.09804343944035, 444.0855019267152, 444.1135847523309, 444.1123938466262, 444.0968891802895, 444.10189458319354, 444.09601173698684, 444.09286720937524, 444.1171962670315, 444.0903011652073, 4.747348674931585, 691.3314151997803, 2164.461028350728, 2164.447044226011, 2164.4503490085654, 2164.444492377498, 2164.4489665203223, 2164.4446802017733, 2164.462273604882, 2164.4544802932633, 2164.459834126683, 2164.447166070698, 2164.4450013165015, 2164.460121684136, 2164.465476817003, 3892.534173759298, 375.51457484549917, 383.4959448754387, 383.496272644513, 383.49598971476905, 383.49593169979437, 383.4958370516466, 383.49584939242726, 383.4959615020264, 383.4962923350778, 383.4961302281509, 383.49598644518517, 383.49612575380587, 383.49638444058814, 383.4959494175749, 111147382.89382327, 3372.7391798850604, 17.600020281062047, 7.942621322397016, 2224.2254516957273, 2825.4274256309336, 104.14322389528552, 29.823220371548697, 2103.1813623801913, 622.7944963072717, 1134.543280395802, 2.1803868818934804, 262.3655738445109, 191.286016777703, 5.916194286861932, 500.77044255483986, 1852.0964401209383, 17.753589883760178, 129.51216440507102, 1.019472730303481e+19, 575.0640017002784, 1289.1011826722831, 1.8499976567687736e+25, 6.5411961083442876, 68.19833286882213, 82.63785306124566, 247.05430206014466, 99.36164539798304, 86.40891294802408, 33.494883409429214, 25.497167941158907, 13.775289216140994, 360.23434597752595, 31.81109393523974, 402.0598618561866, 586646.0332398285, 456.0502404154126, 78.42953249929089, 40.92400750108717, 139.16885298873518, 37.58166734316758, 116.26525498503197, 20.95354640558365, 228.48970395518626, 44.583756274766486, 691.2409585122559, 408.162579799815, 13.866922745657968, 1631.7901250610225, 495.8999338340835, 776.8114217096505, 102.31123616736028, 3.6047969320955464, 168.975273139102, 13.45147255593248, 154.5357134013273, 43.81663863745028, 27.340695118313434, 14269.196817257707, 411.4637127672129, 1180.363035406602, 393.25552149790667, 222.9327873322111, 54793.626263046746, 44.26398212344213, 38.804060589292256, 3036.4769940014653, 569.8239014570051, 1613.8252140321222], 'runtime': [0.0, 2.564920730990707, 2.798703933993238, 3.1651332859910326, 3.392386044986779, 3.689730869999039, 3.9505523549887585, 4.234810522990301, 4.500874940989888, 4.780924023987609, 5.02642052200099, 5.217952605991741, 5.521983869999531, 21.599289716992644, 22.822228908989928, 132.84122170199407, 134.02037017399562, 135.24658499499492, 136.41414783599612, 137.95988153098733, 139.3447518019966, 140.59826148599677, 142.1505370199884, 142.3842561559868, 142.6109579289914, 142.84750575099315, 143.08698043799086, 143.38919233999331, 143.6013988739869, 143.89165096399665, 144.1163940409897, 144.36573110999598, 144.62318312798743, 144.87083578399324, 146.23607910898863, 147.54143147698778, 148.78414471998985, 150.5000691539899, 150.7343672959978, 151.12818939199497, 151.3557800899871, 151.6179073289968, 151.87498457499896, 152.13674818699656, 152.36208865499066, 152.61877021599503, 152.84142053299, 153.10623213199142, 153.32213671298814, 154.65673531799985, 155.84996620599122, 157.09574678399076, 158.77136708199396, 159.0126694819919, 159.23412465098954, 159.4805195730005, 159.7162743319932, 159.96412599500036, 160.20477255999867, 160.46143607399426, 160.6844813409989, 160.92615884800034, 161.19281429199327, 161.41870444099186, 162.72945166999125, 163.94866196499788, 165.30335740599548, 166.95702894199349, 167.21828740999626, 167.4298754659976, 167.67958527799055, 167.89863451498968, 168.14558964199387, 168.37269707699306, 168.63535474200035, 168.87364792499284, 169.13882910298707, 169.3663937419915, 169.60564328799956, 170.93904481999925, 172.1675194829877, 173.4274886619969, 174.68223219399806, 175.895383828989, 177.0783629439975, 178.4540413729992, 180.0835780109919, 180.30773322899768, 180.54889063299925, 180.75701277999906, 181.00318939199497, 181.2467296179966, 181.50297457199486, 181.72635188399, 181.954221107997, 182.21457945198927, 182.4592209859984, 182.69928541198897, 183.9555624749919, 185.14021240599686, 186.28312616799667, 187.88076567799726, 188.09669516299618, 188.33630162999907, 188.55342401399685, 188.82251287599502, 189.02427077099856, 189.2572169569903, 189.4931155069935, 189.92666710999038, 190.17369320399303, 190.38967828398745, 190.63942554299138, 191.88179818699427, 193.1002534989966, 194.28871422199882, 195.8853163879976, 196.10974400099076, 196.32687774399528, 196.56554663299175, 196.79175636799482, 197.05143728699477, 197.2798880009941, 197.53316095899208, 197.76679680300003, 198.0134215859871, 198.25152757999604, 198.4900327209907, 199.72407267800008, 200.9295295639895, 202.13417881498754, 203.514133448989, 204.74701208599436, 205.97110528699704, 207.13830728099856, 208.33350794599392, 209.51064565499837, 210.69716991198948, 211.91714694300026, 213.163164728001, 214.32162758900085, 215.52415094499884, 216.82645558498916, 218.06405381399964, 219.34650398499798, 220.64403396499984, 221.85833923598693, 223.10505214698787, 224.26538995699957, 225.48333885899046, 226.68124185600027, 227.92267440298747, 229.1563655989885, 230.55800399999134, 231.70709491499292, 232.90045834299235, 234.11370993198943, 235.3742303649924, 236.64075460098684, 237.92371344899584, 239.1736174099933, 240.36531390699383, 241.55425495099917, 242.73867187199357, 244.13489988198853, 245.3553574749967, 246.551725265992, 247.74623769099708, 248.93375714299327, 250.1551315169927, 251.32952850598667, 252.56712182099, 253.78058019198943, 254.96371243998874, 256.11194644198986, 257.37866412299627, 258.5176068049914, 259.6738776969869, 260.77702351599874, 261.9118929739925, 263.0288178349874, 264.117916512987, 265.2085039419908, 266.2923197999917, 267.37747748299444, 268.4661660409911, 269.7096656089998, 270.85161694498674, 271.97389261498756, 273.07656889899226, 274.1595409739966, 275.26785371798906, 276.3656064319948, 277.4870640129957, 278.5980592269916, 279.722612913989, 280.81513271199947, 282.03581598299206], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 17, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 21, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 25, 26, 27, 28, 29, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 32, 33, 34, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 36, 37, 38, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109]}, 'multistart_info': {...}}, {'solution_x': array([ 4.83058632, 34.63918997, 22.31960799]), 'solution_criterion': 3.0183214872941457, 'states': [State(trustregion=Region(center=array([ 5.59950516, 33.20816965, 22.52330568]), radius=3.320816964942985, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=[0], model=ScalarModel(intercept=63.25280423503216, linear_terms=array([0., 0., 0.]), square_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=0, candidate_x=array([ 5.59950516, 33.20816965, 22.52330568]), index=0, x=array([ 5.59950516, 33.20816965, 22.52330568]), fval=63.25280423503216, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([ 5.59950516, 33.20816965, 22.52330568]), radius=3.320816964942985, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1738.9322902974552, linear_terms=array([ 637.73598295, -514.32586267, 171.96775116]), square_terms=array([[2536.20577132, 848.0882782 , -184.60913629],
+ [ 848.0882782 , 474.1118212 , -123.58587265],
+ [-184.60913629, -123.58587265, 34.40592978]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=13, candidate_x=array([ 4.08258206, 36.03725526, 21.6602538 ]), index=0, x=array([ 5.59950516, 33.20816965, 22.52330568]), fval=63.25280423503216, rho=-1.2501986187443621, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 5.59950516, 33.20816965, 22.52330568]), radius=1.6604084824714924, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1879.7068510646307, linear_terms=array([ 201.13656089, -559.46196149, 98.65540935]), square_terms=array([[663.11387035, 377.50323065, -46.81601658],
+ [377.50323065, 367.40566774, -53.48166838],
+ [-46.81601658, -53.48166838, 8.10657806]]), scale=1.6604084824714924, shift=array([ 5.59950516, 33.20816965, 22.52330568])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=14, candidate_x=array([ 4.81523416, 34.65058229, 22.26650085]), index=14, x=array([ 4.81523416, 34.65058229, 22.26650085]), fval=56.5879301809914, rho=0.012464587547102888, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_discarded=array([ 4, 13]), step_length=1.6618014164407677, relative_step_length=1.0008389104151059, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.81523416, 34.65058229, 22.26650085]), radius=0.8302042412357462, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 1, 2, 3, 6, 7, 9, 10, 12, 13, 14]), model=ScalarModel(intercept=1137.6335628187985, linear_terms=array([ 70.32499401, -287.06450292, 174.45432527]), square_terms=array([[ 123.98449647, 153.13258918, -68.74283119],
+ [ 153.13258918, 273.74879705, -136.67164545],
+ [ -68.74283119, -136.67164545, 70.44799316]]), scale=0.8302042412357462, shift=array([ 4.81523416, 34.65058229, 22.26650085])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=15, candidate_x=array([ 4.31267212, 35.19700986, 21.89289403]), index=14, x=array([ 4.81523416, 34.65058229, 22.26650085]), fval=56.5879301809914, rho=-0.3367116053485306, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 3, 6, 7, 9, 10, 12, 13, 14]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.81523416, 34.65058229, 22.26650085]), radius=0.4151021206178731, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 13, 14, 15]), model=ScalarModel(intercept=56.58793018099136, linear_terms=array([ 265.41080256, 98.55843495, -262.17519741]), square_terms=array([[ 1462.09662561, 523.49975844, -1443.39844537],
+ [ 523.49975844, 199.24211272, -472.68244211],
+ [-1443.39844537, -472.68244211, 1595.29471338]]), scale=0.4151021206178731, shift=array([ 4.81523416, 34.65058229, 22.26650085])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=16, candidate_x=array([ 4.96915675, 34.27091571, 22.36133272]), index=14, x=array([ 4.81523416, 34.65058229, 22.26650085]), fval=56.5879301809914, rho=-16.92691969499092, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 13, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.81523416, 34.65058229, 22.26650085]), radius=0.20755106030893655, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]), model=ScalarModel(intercept=102.55665361166439, linear_terms=array([ 0.24456618, -30.69942108, -7.28937776]), square_terms=array([[3.0914653 , 2.69353108, 2.90275506],
+ [2.69353108, 8.32364032, 3.83059325],
+ [2.90275506, 3.83059325, 3.03106463]]), scale=0.20755106030893655, shift=array([ 4.81523416, 34.65058229, 22.26650085])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=29, candidate_x=array([ 4.82135303, 34.85802507, 22.26376349]), index=14, x=array([ 4.81523416, 34.65058229, 22.26650085]), fval=56.5879301809914, rho=-1.654099673305161, accepted=False, new_indices=array([17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]), old_indices_used=array([14, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.81523416, 34.65058229, 22.26650085]), radius=0.10377553015446828, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29]), model=ScalarModel(intercept=88.00300194582924, linear_terms=array([ 1.87452601, 1.70008334, -0.86411791]), square_terms=array([[ 0.02812359, 0.00895608, -0.0045541 ],
+ [ 0.00895608, 0.03566506, -0.01812731],
+ [-0.0045541 , -0.01812731, 0.00921349]]), scale=0.10377553015446828, shift=array([ 4.81523416, 34.65058229, 22.26650085])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=30, candidate_x=array([ 4.74062215, 34.58778156, 22.30197586]), index=14, x=array([ 4.81523416, 34.65058229, 22.26650085]), fval=56.5879301809914, rho=-26.647139406893153, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29]), old_indices_discarded=array([16, 18, 27]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.81523416, 34.65058229, 22.26650085]), radius=0.05188776507723414, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30]), model=ScalarModel(intercept=84.81216413173142, linear_terms=array([ 1.54792468, 1.87889818, -0.2854403 ]), square_terms=array([[ 0.0777606 , 0.15574839, -0.05933231],
+ [ 0.15574839, 0.325997 , -0.12771405],
+ [-0.05933231, -0.12771405, 0.05169637]]), scale=0.05188776507723414, shift=array([ 4.81523416, 34.65058229, 22.26650085])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=31, candidate_x=array([ 4.77182839, 34.62662963, 22.28181586]), index=14, x=array([ 4.81523416, 34.65058229, 22.26650085]), fval=56.5879301809914, rho=-16.125231382485953, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30]), old_indices_discarded=array([18, 27, 28]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.81523416, 34.65058229, 22.26650085]), radius=0.02594388253861707, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]), model=ScalarModel(intercept=8.425529865686203, linear_terms=array([-4.03133958, -3.51355238, 0.87580499]), square_terms=array([[ 4.53464792, 4.99965002, -1.29362051],
+ [ 4.99965002, 5.95251895, -1.53646317],
+ [-1.29362051, -1.53646317, 0.39736665]]), scale=0.02594388253861707, shift=array([ 4.81523416, 34.65058229, 22.26650085])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=44, candidate_x=array([ 4.84091328, 34.64556166, 22.26915905]), index=44, x=array([ 4.84091328, 34.64556166, 22.26915905]), fval=7.257632383034647, rho=25.374671725112716, accepted=True, new_indices=array([32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]), old_indices_used=array([14, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.026299994604658174, relative_step_length=1.0137262441545145, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.84091328, 34.64556166, 22.26915905]), radius=0.05188776507723414, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 44]), model=ScalarModel(intercept=7.710022897762696, linear_terms=array([-0.08749926, -0.17988458, -0.58476935]), square_terms=array([[0.00707312, 0.01342336, 0.04361516],
+ [0.01342336, 0.03447529, 0.11204139],
+ [0.04361516, 0.11204139, 0.36412419]]), scale=0.05188776507723414, shift=array([ 4.84091328, 34.64556166, 22.26915905])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=45, candidate_x=array([ 4.83058632, 34.63918997, 22.31960799]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=11.214111360600214, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 44]), old_indices_discarded=array([17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 43]), step_length=0.051887765077235325, relative_step_length=1.0000000000000229, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=0.10377553015446828, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 45]), model=ScalarModel(intercept=5.1028231928744905, linear_terms=array([-26.28822028, -24.31696091, -3.62868329]), square_terms=array([[132.09940253, 125.07360549, 4.11531669],
+ [125.07360549, 121.16408736, 3.28363144],
+ [ 4.11531669, 3.28363144, 7.61315635]]), scale=0.10377553015446828, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=46, candidate_x=array([ 4.90983623, 34.57699904, 22.34452989]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-19.21143158977517, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 45]), old_indices_discarded=array([16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 36, 39,
+ 40, 44]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=0.05188776507723414, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 32, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45]), model=ScalarModel(intercept=3.3919024105814097, linear_terms=array([-0.61990033, 0.15922491, -1.93201314]), square_terms=array([[ 1.63578664e+00, 1.25464703e-01, 2.38637875e+00],
+ [ 1.25464703e-01, 4.46823892e-02, -1.57624960e-04],
+ [ 2.38637875e+00, -1.57624960e-04, 4.44489487e+00]]), scale=0.05188776507723414, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=47, candidate_x=array([ 4.79769111, 34.61563432, 22.35867377]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-4126.315809697995, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 32, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45]), old_indices_discarded=array([17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 35, 36, 41,
+ 46]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=0.02594388253861707, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 32, 33, 37, 38, 39, 40, 42, 43, 44, 45, 47]), model=ScalarModel(intercept=255.83916704160765, linear_terms=array([-129.29407712, -171.44028562, 270.93765187]), square_terms=array([[ 33.32665661, 43.99949941, -68.86914387],
+ [ 43.99949941, 58.32841393, -92.05187969],
+ [-68.86914387, -92.05187969, 147.66627398]]), scale=0.02594388253861707, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=48, candidate_x=array([ 4.84723005, 34.65820212, 22.31372499]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-0.04311791290893592, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 32, 33, 37, 38, 39, 40, 42, 43, 44, 45, 47]), old_indices_discarded=array([30, 31, 34, 35, 36, 41, 46]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=0.012971941269308535, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 32, 37, 38, 39, 40, 42, 43, 44, 45, 47, 48]), model=ScalarModel(intercept=212.53705772128382, linear_terms=array([ -66.78460374, -141.017266 , 110.01683489]), square_terms=array([[ 10.86415532, 22.75848143, -17.58360054],
+ [ 22.75848143, 48.08501267, -37.46742148],
+ [-17.58360054, -37.46742148, 29.49138067]]), scale=0.012971941269308535, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=49, candidate_x=array([ 4.83756393, 34.6499391 , 22.31759787]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-1.3172541747440112, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 32, 37, 38, 39, 40, 42, 43, 44, 45, 47, 48]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=0.006485970634654267, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([32, 45, 48, 49]), model=ScalarModel(intercept=3.018321487294142, linear_terms=array([-51.6309859 , 53.09723824, 21.42047732]), square_terms=array([[ 1259.75551682, -1288.55190349, -527.06004607],
+ [-1288.55190349, 1318.63578196, 539.02519512],
+ [ -527.06004607, 539.02519512, 220.83039203]]), scale=0.006485970634654267, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=50, candidate_x=array([ 4.82609383, 34.63451224, 22.31967198]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-748.8050397710565, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([32, 45, 48, 49]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=0.0032429853173271336, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([45, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]), model=ScalarModel(intercept=35.280976118756065, linear_terms=array([-22.62635969, 4.59771342, -15.40786157]), square_terms=array([[ 9.11131613, -1.11412374, 5.8055456 ],
+ [-1.11412374, 0.81930227, -1.08047018],
+ [ 5.8055456 , -1.08047018, 3.90021764]]), scale=0.0032429853173271336, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=63, candidate_x=array([ 4.83348381, 34.63782316, 22.32011131]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-0.689497860601135, accepted=False, new_indices=array([51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]), old_indices_used=array([45, 49, 50]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=0.0016214926586635668, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63]), model=ScalarModel(intercept=14.458502574411634, linear_terms=array([0.44212149, 0.09469797, 0.30671067]), square_terms=array([[0.00816496, 0.00174621, 0.00565566],
+ [0.00174621, 0.0003735 , 0.00120971],
+ [0.00565566, 0.00120971, 0.00391802]]), scale=0.0016214926586635668, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=64, candidate_x=array([ 4.82917149, 34.63903383, 22.31883139]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-80.39166287234195, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63]), old_indices_discarded=array([50, 60, 62]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=0.0008107463293317834, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([45, 51, 52, 54, 55, 56, 57, 58, 59, 61, 63, 64]), model=ScalarModel(intercept=16.21161846956855, linear_terms=array([-0.59347672, -0.06494373, -0.2486963 ]), square_terms=array([[0.03184265, 0.00645175, 0.01742911],
+ [0.00645175, 0.00148159, 0.00377096],
+ [0.01742911, 0.00377096, 0.00986904]]), scale=0.0008107463293317834, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=65, candidate_x=array([ 4.83136158, 34.63920621, 22.31984469]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-1880.8294104918614, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([45, 51, 52, 54, 55, 56, 57, 58, 59, 61, 63, 64]), old_indices_discarded=array([53, 60, 62]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=0.0004053731646658917, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([45, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77]), model=ScalarModel(intercept=573359.9858396426, linear_terms=array([ 85934.38542834, 21836.6790034 , 139871.57594852]), square_terms=array([[ 6450.05229925, 1633.73200911, 10476.72828464],
+ [ 1633.73200911, 416.55848514, 2664.96839106],
+ [10476.72828464, 2664.96839106, 17063.79537923]]), scale=0.0004053731646658917, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=78, candidate_x=array([ 4.83046581, 34.63921334, 22.31922165]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-6.081800900080603, accepted=False, new_indices=array([66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77]), old_indices_used=array([45, 64, 65]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=0.00020268658233294585, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([45, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77]), model=ScalarModel(intercept=693844.6762871033, linear_terms=array([106539.81260479, 18356.42084247, 37181.69271673]), square_terms=array([[8179.63006099, 1409.31939507, 2854.63487107],
+ [1409.31939507, 242.82053665, 491.84308381],
+ [2854.63487107, 491.84308381, 996.24860069]]), scale=0.00020268658233294585, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=79, candidate_x=array([ 4.83039476, 34.63914672, 22.31955784]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-0.0008442138142268857, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([45, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77]), old_indices_discarded=array([65, 66, 78]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=0.00010134329116647293, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([45, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 79]), model=ScalarModel(intercept=536334.2220140784, linear_terms=array([135436.78332567, 15763.24756326, 48822.54325609]), square_terms=array([[17102.43983751, 1990.45571856, 6165.11923135],
+ [ 1990.45571856, 231.66014482, 717.5233809 ],
+ [ 6165.11923135, 717.5233809 , 2222.41377393]]), scale=0.00010134329116647293, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=80, candidate_x=array([ 4.83048932, 34.63916977, 22.31958674]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-0.004138847220591223, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([45, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 79]), old_indices_discarded=array([66, 76, 78]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=5.067164558323646e-05, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([45, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92]), model=ScalarModel(intercept=11.243639413360615, linear_terms=array([-13.92203366, -2.61899233, -2.04423056]), square_terms=array([[16.42336672, 3.18437574, 2.63469694],
+ [ 3.18437574, 0.61909245, 0.51481329],
+ [ 2.63469694, 0.51481329, 0.43211101]]), scale=5.067164558323646e-05, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=93, candidate_x=array([ 4.83063345, 34.63918517, 22.31958274]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-0.8656858141497034, accepted=False, new_indices=array([81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92]), old_indices_used=array([45, 79, 80]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=2.533582279161823e-05, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([45, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92]), model=ScalarModel(intercept=7.488668699545206, linear_terms=array([ 0.03941606, -0.0672173 , 0.0855293 ]), square_terms=array([[ 0.00016657, -0.00028402, 0.00036139],
+ [-0.00028402, 0.00048427, -0.0006162 ],
+ [ 0.00036139, -0.0006162 , 0.00078407]]), scale=2.533582279161823e-05, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=94, candidate_x=array([ 4.83057736, 34.63920417, 22.31958902]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-382.8969120413216, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([45, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92]), old_indices_discarded=array([80, 90, 93]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1.2667911395809116e-05, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([45, 81, 82, 83, 84, 85, 86, 87, 88, 91, 92, 94]), model=ScalarModel(intercept=8.724190017902103, linear_terms=array([-0.2293039 , 0.39330911, -0.47128085]), square_terms=array([[ 0.00880265, -0.01499616, 0.02036435],
+ [-0.01499616, 0.0255484 , -0.03467055],
+ [ 0.02036435, -0.03467055, 0.04759741]]), scale=1.2667911395809116e-05, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=95, candidate_x=array([ 4.83059244, 34.6391809 , 22.31961437]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-184.37378885036577, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([45, 81, 82, 83, 84, 85, 86, 87, 88, 91, 92, 94]), old_indices_discarded=array([89, 90, 93]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=6.333955697904558e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105,
+ 106, 107]), model=ScalarModel(intercept=9.75282957705143, linear_terms=array([ 1.53371876, -2.11654614, -2.14134314]), square_terms=array([[ 0.43150585, -0.38890678, -0.00062159],
+ [-0.38890678, 0.42890646, 0.21443485],
+ [-0.00062159, 0.21443485, 0.58842666]]), scale=6.333955697904558e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=108, candidate_x=array([ 4.83058274, 34.63919236, 22.31961264]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-1.4244332133611546, accepted=False, new_indices=array([ 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107]), old_indices_used=array([45, 94, 95]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=3.166977848952279e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 96, 97, 98, 99, 100, 101, 103, 105, 106, 107, 108]), model=ScalarModel(intercept=6.475910313781814, linear_terms=array([-0.11999534, 0.13564877, -0.15186343]), square_terms=array([[ 0.00190926, -0.00215834, 0.00241634],
+ [-0.00215834, 0.00243992, -0.00273157],
+ [ 0.00241634, -0.00273157, 0.00305809]]), scale=3.166977848952279e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=109, candidate_x=array([ 4.83058801, 34.6391883 , 22.31961009]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-3.9036805267881918, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 96, 97, 98, 99, 100, 101, 103, 105, 106, 107, 108]), old_indices_discarded=array([ 95, 102, 104]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1.5834889244761395e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 96, 97, 98, 99, 100, 101, 105, 106, 107, 108, 109]), model=ScalarModel(intercept=5.780693562445876, linear_terms=array([-0.3007814 , 0.265647 , -0.39655441]), square_terms=array([[ 0.02278011, -0.01807373, 0.02781181],
+ [-0.01807373, 0.01466205, -0.02241604],
+ [ 0.02781181, -0.02241604, 0.03433527]]), scale=1.5834889244761395e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=110, candidate_x=array([ 4.83058693, 34.63918912, 22.31960918]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-3072702.3746478027, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 96, 97, 98, 99, 100, 101, 105, 106, 107, 108, 109]), old_indices_discarded=array([102, 103, 104]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120,
+ 121, 122]), model=ScalarModel(intercept=2905.589876345516, linear_terms=array([ -163.5001358 , -6921.26517846, 12156.79476445]), square_terms=array([[ 4.78623031e+00, 1.92090220e+02, -3.37510004e+02],
+ [ 1.92090220e+02, 8.29908844e+03, -1.45750313e+04],
+ [-3.37510004e+02, -1.45750313e+04, 2.55970452e+04]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=123, candidate_x=array([ 4.8305873 , 34.63918998, 22.31960753]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-0.005716556644859881, accepted=False, new_indices=array([111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122]), old_indices_used=array([ 45, 109, 110]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122]), model=ScalarModel(intercept=17.21594847787898, linear_terms=array([ 0.13153578, 0.87294707, -0.71063048]), square_terms=array([[ 0.00057567, 0.00382046, -0.00311008],
+ [ 0.00382046, 0.02535469, -0.02064022],
+ [-0.00311008, -0.02064022, 0.01680235]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=124, candidate_x=array([ 4.83058632, 34.63918911, 22.3196085 ]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-21.175943627388293, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122]), old_indices_discarded=array([109, 110, 111, 123]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=125, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-12.488434970505054, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=126, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-152.49966581145316, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=127, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-276.4744983044534, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=128, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-279.2792479722812, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=129, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-147213.25637248074, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=130, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-29.75786112815023, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=131, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-186.8102808063543, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=132, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-5.5877123448703605, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=133, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-34380.61955960225, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=134, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-9.570675814779005, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=135, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-2.0259928482247536, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=136, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-1.7480097451805614, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=137, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-130.07785107118832, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=138, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-11.876484262601345, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=139, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-347.7560290166803, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=140, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-7366.913568207453, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=141, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-140.18717082743464, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=142, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-5029.032357173144, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=143, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-1179825.8005199854, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=144, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-0.16465557550060922, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=145, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-1207.8743631200698, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=146, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-329.14692300769946, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=147, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-43.08465532783049, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=148, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-204.84457768724948, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=149, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-230.64915327512287, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=150, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-194.5314456197136, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=151, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-13.712630596768875, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=152, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-455.69076193809946, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=153, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-606.2619439676403, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=154, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-3013.8157983485034, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=155, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-22.262142573665894, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=156, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-93833.06018937167, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=157, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-6342.735467627952, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=158, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-164.4013449833634, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=159, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-15.977344867360731, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=160, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-370.69887869703985, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=161, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-1913.1104060264413, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=162, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-959.0182292080507, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=163, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-16.190372079690388, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=164, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-278.1150928647548, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=165, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-578.6788503010521, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=166, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-106.19447166785352, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=167, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-3501.857599688833, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=168, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-246.0221989655463, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=169, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-229.42999024466653, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=170, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-646.8494243250389, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=171, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-337.5940343545942, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=172, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-643.0660012090792, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=173, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-64.37964669911248, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=174, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-16269.278967394092, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=175, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-325.1959436198726, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=176, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-13.846445685609284, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=177, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-3397.58787312439, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=178, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-21.927067642988433, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=179, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-726.8091069888011, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=180, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-363.1425308308542, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=181, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-7.465469538091546, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179, 180]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=182, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-254.56942603445677, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179, 180, 181]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=183, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-15.328851273227288, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=184, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-7.920816486223436, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=185, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-235.2301165980379, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=186, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-16962.953886034138, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184,
+ 185]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=187, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-2.288192690158908, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184,
+ 185, 186]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=188, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-20.716336446817078, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184,
+ 185, 186, 187]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=189, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-2.475137359561921, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184,
+ 185, 186, 187, 188]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=190, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-54.4506027468829, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184,
+ 185, 186, 187, 188, 189]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=191, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-177.08100264407025, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184,
+ 185, 186, 187, 188, 189, 190]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=192, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-9.464522963077707, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184,
+ 185, 186, 187, 188, 189, 190, 191]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=193, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-378.9037411793697, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184,
+ 185, 186, 187, 188, 189, 190, 191, 192]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=194, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-1419.778705959862, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184,
+ 185, 186, 187, 188, 189, 190, 191, 192, 193]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=195, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-258.55297426506917, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184,
+ 185, 186, 187, 188, 189, 190, 191, 192, 193, 194]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 4.83058632, 34.63918997, 22.31960799]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), model=ScalarModel(intercept=17.132527360265524, linear_terms=array([ 0.42668321, 0.12293269, -0.94523972]), square_terms=array([[ 0.05448517, 0.20990801, -0.23761158],
+ [ 0.20990801, 0.89488618, -0.96730617],
+ [-0.23761158, -0.96730617, 1.06746858]]), scale=1e-06, shift=array([ 4.83058632, 34.63918997, 22.31960799])), vector_model=VectorModel(intercepts=array([ 0.09164835, 0.3053691 , 0.36172947, 0.71108937, 0.65589061,
+ 0.95241018, 1.10472729, 2.053939 , 1.42482451, 1.60528395,
+ 4.59503367, 5.46554822, -0.18944004, 0.06641896, 0.1105076 ,
+ -0.19039482, -0.23647059]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=3.320816964942985, shift=array([ 5.59950516, 33.20816965, 22.52330568])), candidate_index=196, candidate_x=array([ 4.8305858 , 34.63919046, 22.31960876]), index=45, x=array([ 4.83058632, 34.63918997, 22.31960799]), fval=3.0183214872941457, rho=-255.5609825834806, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 45, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 124]), old_indices_discarded=array([109, 110, 111, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132,
+ 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
+ 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184,
+ 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'message': None, 'tranquilo_history': History for least_squares function with 197 entries., 'history': {'params': [{'CRRA': 5.59950516069428, 'BeqFac': 33.20816964942985, 'BeqShift': 22.523305681988035}, {'CRRA': 6.527087890675169, 'BeqFac': 34.87354364921939, 'BeqShift': 19.804124732783052}, {'CRRA': 3.4655812473446725, 'BeqFac': 34.762079648593875, 'BeqShift': 20.508471256734715}, {'CRRA': 2.777359117192433, 'BeqFac': 34.65763190342851, 'BeqShift': 23.504313428151708}, {'CRRA': 5.2822061780615, 'BeqFac': 29.902604306794366, 'BeqShift': 22.50369864650292}, {'CRRA': 5.102573722856825, 'BeqFac': 31.97068389198599, 'BeqShift': 25.564606959544328}, {'CRRA': 2.6763524029580528, 'BeqFac': 31.65605847596076, 'BeqShift': 22.795250850697883}, {'CRRA': 7.084026901740218, 'BeqFac': 36.167418901453665, 'BeqShift': 22.264724206604452}, {'CRRA': 8.250727546415515, 'BeqFac': 32.35311691978883, 'BeqShift': 20.71561931382646}, {'CRRA': 5.159711254909304, 'BeqFac': 35.48256104798742, 'BeqShift': 24.90270695147893}, {'CRRA': 4.78829804329921, 'BeqFac': 31.620031650745283, 'BeqShift': 19.721951362292845}, {'CRRA': 7.980681723324505, 'BeqFac': 31.142534621098545, 'BeqShift': 23.567803370814765}, {'CRRA': 8.167856113360198, 'BeqFac': 34.08802057920483, 'BeqShift': 24.435702356312508}, {'CRRA': 4.082582064498352, 'BeqFac': 36.037255264304235, 'BeqShift': 21.660253795499944}, {'CRRA': 4.815234160371114, 'BeqFac': 34.6505822900531, 'BeqShift': 22.266500853554266}, {'CRRA': 4.3126721163962545, 'BeqFac': 35.19700985883824, 'BeqShift': 21.892894033609934}, {'CRRA': 4.969156746717875, 'BeqFac': 34.27091570516375, 'BeqShift': 22.361332717153104}, {'CRRA': 4.661517122589534, 'BeqFac': 34.53997345831572, 'BeqShift': 22.351437307875784}, {'CRRA': 4.83617811822322, 'BeqFac': 34.54198840032172, 'BeqShift': 22.44213160364622}, {'CRRA': 4.995245368922937, 'BeqFac': 34.59610940462284, 'BeqShift': 22.35428531791999}, {'CRRA': 4.775189335592106, 'BeqFac': 34.85416151392943, 'BeqShift': 22.271918809782868}, {'CRRA': 4.992125426490409, 'BeqFac': 34.64485702574826, 'BeqShift': 22.158084323658144}, {'CRRA': 4.771810688145336, 'BeqFac': 34.72741171510497, 'BeqShift': 22.454354743962263}, {'CRRA': 4.951372416383443, 'BeqFac': 34.78833024629402, 'BeqShift': 22.341128719909513}, {'CRRA': 4.698360594130343, 'BeqFac': 34.6690151854609, 'BeqShift': 22.09597742256482}, {'CRRA': 4.6222614587739175, 'BeqFac': 34.72559971229907, 'BeqShift': 22.28103926588894}, {'CRRA': 4.883250251624044, 'BeqFac': 34.500738979078015, 'BeqShift': 22.140016719679455}, {'CRRA': 4.858879895208447, 'BeqFac': 34.772140724169915, 'BeqShift': 22.104032273327373}, {'CRRA': 4.718995965836848, 'BeqFac': 34.48272181251941, 'BeqShift': 22.191410823388406}, {'CRRA': 4.821353034710189, 'BeqFac': 34.8580250746317, 'BeqShift': 22.263763493792755}, {'CRRA': 4.74062214546036, 'BeqFac': 34.587781558742414, 'BeqShift': 22.30197585935612}, {'CRRA': 4.771828393736606, 'BeqFac': 34.62662962633261, 'BeqShift': 22.281815862149557}, {'CRRA': 4.81842184421776, 'BeqFac': 34.63951297699756, 'BeqShift': 22.28974723007513}, {'CRRA': 4.815934002279946, 'BeqFac': 34.67650981064957, 'BeqShift': 22.265901739041077}, {'CRRA': 4.832685266510539, 'BeqFac': 34.64093573091753, 'BeqShift': 22.24990302741552}, {'CRRA': 4.80145917779637, 'BeqFac': 34.650069178593775, 'BeqShift': 22.244521963389534}, {'CRRA': 4.797686410731281, 'BeqFac': 34.65748452593662, 'BeqShift': 22.24868174404892}, {'CRRA': 4.8320395455286675, 'BeqFac': 34.63326646466192, 'BeqShift': 22.27603113486732}, {'CRRA': 4.792925433856983, 'BeqFac': 34.660379959784294, 'BeqShift': 22.275412162679963}, {'CRRA': 4.793055245944364, 'BeqFac': 34.64272193028705, 'BeqShift': 22.277427680192257}, {'CRRA': 4.831216082481881, 'BeqFac': 34.63097938693239, 'BeqShift': 22.260722497727322}, {'CRRA': 4.800140556297302, 'BeqFac': 34.66951887513596, 'BeqShift': 22.25719097156574}, {'CRRA': 4.810245413308203, 'BeqFac': 34.664015095406256, 'BeqShift': 22.28812854839824}, {'CRRA': 4.840610562712648, 'BeqFac': 34.655505731952005, 'BeqShift': 22.268710596807743}, {'CRRA': 4.840913275414924, 'BeqFac': 34.645561655577524, 'BeqShift': 22.2691590477222}, {'CRRA': 4.830586324830639, 'BeqFac': 34.639189974517066, 'BeqShift': 22.319607991584327}, {'CRRA': 4.909836229300864, 'BeqFac': 34.5769990384727, 'BeqShift': 22.344529885056264}, {'CRRA': 4.797691113104938, 'BeqFac': 34.61563432298489, 'BeqShift': 22.358673765590343}, {'CRRA': 4.847230045920689, 'BeqFac': 34.65820212399296, 'BeqShift': 22.313724985400373}, {'CRRA': 4.83756393392321, 'BeqFac': 34.649939097527245, 'BeqShift': 22.317597870653202}, {'CRRA': 4.826093830149659, 'BeqFac': 34.634512238683854, 'BeqShift': 22.319671976657855}, {'CRRA': 4.831672078964775, 'BeqFac': 34.64162430067414, 'BeqShift': 22.32145519159775}, {'CRRA': 4.831182995661319, 'BeqFac': 34.64111049424616, 'BeqShift': 22.317063872550484}, {'CRRA': 4.833365893170177, 'BeqFac': 34.637519365037235, 'BeqShift': 22.31961218445176}, {'CRRA': 4.83060326176875, 'BeqFac': 34.63594732327029, 'BeqShift': 22.319564634920837}, {'CRRA': 4.833447313681161, 'BeqFac': 34.64065664311073, 'BeqShift': 22.31918304476184}, {'CRRA': 4.8288322913868305, 'BeqFac': 34.638419011045606, 'BeqShift': 22.316991517664704}, {'CRRA': 4.8292678448206185, 'BeqFac': 34.642123495938826, 'BeqShift': 22.319192039303836}, {'CRRA': 4.82870052616202, 'BeqFac': 34.64020642888407, 'BeqShift': 22.322042645085265}, {'CRRA': 4.829253960432754, 'BeqFac': 34.637398559696194, 'BeqShift': 22.32196013779985}, {'CRRA': 4.827385664945913, 'BeqFac': 34.63940791237789, 'BeqShift': 22.31913340422722}, {'CRRA': 4.832227598093965, 'BeqFac': 34.63855937335995, 'BeqShift': 22.322332971955657}, {'CRRA': 4.8317197743499385, 'BeqFac': 34.63782207129937, 'BeqShift': 22.316894859309148}, {'CRRA': 4.833483811153831, 'BeqFac': 34.63782315601966, 'BeqShift': 22.320111314512918}, {'CRRA': 4.829171494577458, 'BeqFac': 34.639033831942385, 'BeqShift': 22.318831387893148}, {'CRRA': 4.8313615787155015, 'BeqFac': 34.63920621219768, 'BeqShift': 22.319844692581913}, {'CRRA': 4.830536906291399, 'BeqFac': 34.63879111264935, 'BeqShift': 22.319660853868566}, {'CRRA': 4.830461201662815, 'BeqFac': 34.63949374528124, 'BeqShift': 22.319370515441662}, {'CRRA': 4.830851426530978, 'BeqFac': 34.63908469843363, 'BeqShift': 22.319319954369085}, {'CRRA': 4.830838739721595, 'BeqFac': 34.638979905891645, 'BeqShift': 22.319370325225602}, {'CRRA': 4.830627113222572, 'BeqFac': 34.639425879755926, 'BeqShift': 22.319935119125194}, {'CRRA': 4.830785020620805, 'BeqFac': 34.63951091101126, 'BeqShift': 22.31975579940651}, {'CRRA': 4.830306417904136, 'BeqFac': 34.638979378157345, 'BeqShift': 22.319812022680974}, {'CRRA': 4.830703587161909, 'BeqFac': 34.63880856982468, 'BeqShift': 22.319679457722636}, {'CRRA': 4.830750463483857, 'BeqFac': 34.63953434146416, 'BeqShift': 22.31974509486984}, {'CRRA': 4.830754180277489, 'BeqFac': 34.639438941498355, 'BeqShift': 22.319335654671992}, {'CRRA': 4.830931819169565, 'BeqFac': 34.63898589783162, 'BeqShift': 22.319550426222705}, {'CRRA': 4.830562360023026, 'BeqFac': 34.63926713795964, 'BeqShift': 22.320005230673235}, {'CRRA': 4.830465813879008, 'BeqFac': 34.63921334456952, 'BeqShift': 22.31922165189724}, {'CRRA': 4.830394762817193, 'BeqFac': 34.639146718427085, 'BeqShift': 22.31955784423802}, {'CRRA': 4.830489315665654, 'BeqFac': 34.63916977321831, 'BeqShift': 22.319586740887818}, {'CRRA': 4.830634609177447, 'BeqFac': 34.63918124767969, 'BeqShift': 22.319620643850087}, {'CRRA': 4.830590337068442, 'BeqFac': 34.639151096672116, 'BeqShift': 22.319640241092632}, {'CRRA': 4.830560085393675, 'BeqFac': 34.63915433468138, 'BeqShift': 22.319583315488078}, {'CRRA': 4.830592162582521, 'BeqFac': 34.639179306513135, 'BeqShift': 22.31955880083305}, {'CRRA': 4.830604006402119, 'BeqFac': 34.63920096557835, 'BeqShift': 22.31965418870835}, {'CRRA': 4.830627310795294, 'BeqFac': 34.639210883520605, 'BeqShift': 22.319586764716014}, {'CRRA': 4.830544437619463, 'BeqFac': 34.63921470750365, 'BeqShift': 22.319593801567393}, {'CRRA': 4.830550369193031, 'BeqFac': 34.63916655239044, 'BeqShift': 22.319634939901057}, {'CRRA': 4.830610279741669, 'BeqFac': 34.63914761386479, 'BeqShift': 22.319593872340622}, {'CRRA': 4.830578790246585, 'BeqFac': 34.63922356145697, 'BeqShift': 22.319570806060568}, {'CRRA': 4.830556902631579, 'BeqFac': 34.63921464429289, 'BeqShift': 22.319641057458416}, {'CRRA': 4.83059832273513, 'BeqFac': 34.63923785894628, 'BeqShift': 22.319619426066946}, {'CRRA': 4.8306334456305855, 'BeqFac': 34.6391851661435, 'BeqShift': 22.319582744616795}, {'CRRA': 4.830577362956038, 'BeqFac': 34.63920416955518, 'BeqShift': 22.319589015557}, {'CRRA': 4.830592440003041, 'BeqFac': 34.639180896668485, 'BeqShift': 22.3196143691474}, {'CRRA': 4.83058668165319, 'BeqFac': 34.639194333092355, 'BeqShift': 22.31960340960944}, {'CRRA': 4.830592165070809, 'BeqFac': 34.63919038710263, 'BeqShift': 22.31960557490009}, {'CRRA': 4.83058612952734, 'BeqFac': 34.639185018571574, 'BeqShift': 22.31960405211029}, {'CRRA': 4.830585937586569, 'BeqFac': 34.63919605809526, 'BeqShift': 22.319606271377022}, {'CRRA': 4.830587262619183, 'BeqFac': 34.63919012699177, 'BeqShift': 22.319601729292504}, {'CRRA': 4.830588541951697, 'BeqFac': 34.6391954118053, 'BeqShift': 22.319610366298143}, {'CRRA': 4.8305815467728115, 'BeqFac': 34.63918584202597, 'BeqShift': 22.319607531502253}, {'CRRA': 4.8305828066427265, 'BeqFac': 34.63918747333176, 'BeqShift': 22.31961262682118}, {'CRRA': 4.8305894303730526, 'BeqFac': 34.639186126716844, 'BeqShift': 22.31960403317119}, {'CRRA': 4.8305881785784495, 'BeqFac': 34.63918509733836, 'BeqShift': 22.319604400520177}, {'CRRA': 4.83058145373213, 'BeqFac': 34.63918914533638, 'BeqShift': 22.319611954393114}, {'CRRA': 4.830589466116497, 'BeqFac': 34.63919531414914, 'BeqShift': 22.319606672627454}, {'CRRA': 4.83058274277746, 'BeqFac': 34.63919235974145, 'BeqShift': 22.319612639013126}, {'CRRA': 4.83058800674131, 'BeqFac': 34.639188303724254, 'BeqShift': 22.319610091435884}, {'CRRA': 4.83058692533557, 'BeqFac': 34.63918911961465, 'BeqShift': 22.319609181530904}, {'CRRA': 4.830585909578713, 'BeqFac': 34.639189177115334, 'BeqShift': 22.31960842943855}, {'CRRA': 4.830587298889956, 'BeqFac': 34.63918979988771, 'BeqShift': 22.31960813550457}, {'CRRA': 4.830586674570796, 'BeqFac': 34.639190866936936, 'BeqShift': 22.319607706507856}, {'CRRA': 4.830587041597095, 'BeqFac': 34.63919012088811, 'BeqShift': 22.319607309806237}, {'CRRA': 4.830586075655799, 'BeqFac': 34.6391902528647, 'BeqShift': 22.319607063988244}, {'CRRA': 4.830585512590438, 'BeqFac': 34.63919052752224, 'BeqShift': 22.319607805974155}, {'CRRA': 4.830586065644048, 'BeqFac': 34.63919080739765, 'BeqShift': 22.31960848059583}, {'CRRA': 4.830586720994996, 'BeqFac': 34.63918907656472, 'BeqShift': 22.319607799919556}, {'CRRA': 4.830586135811016, 'BeqFac': 34.639189341676776, 'BeqShift': 22.319607240728317}, {'CRRA': 4.830585381328568, 'BeqFac': 34.63918965103341, 'BeqShift': 22.319607919736107}, {'CRRA': 4.830586938139377, 'BeqFac': 34.639190400098755, 'BeqShift': 22.319608656965883}, {'CRRA': 4.8305859081088185, 'BeqFac': 34.639189995059034, 'BeqShift': 22.31960890038626}, {'CRRA': 4.830587300556216, 'BeqFac': 34.63918997934548, 'BeqShift': 22.31960753232274}, {'CRRA': 4.830586321306908, 'BeqFac': 34.63918911059587, 'BeqShift': 22.31960849519901}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}, {'CRRA': 4.830585804770157, 'BeqFac': 34.63919045999916, 'BeqShift': 22.319608761239547}], 'criterion': [63.25280423503216, 2016.7194331945398, 755.5271712527378, 966.82112966418, 1316.5992927516743, 1239.3821625383034, 21433.396114948242, 2459.4428956471243, 3929.076167146027, 1263.0826985061578, 1115.3526664266221, 3496.2767870899547, 3788.2481242731715, 889.57029756193, 56.5879301809914, 144.17768610500212, 516.8236275323981, 96.38002592153376, 100.61098277936063, 104.63781918053935, 99.10606883677849, 104.55945806215512, 99.02236728297116, 103.503044271213, 97.24739556926671, 95.47939682909086, 101.78542963278947, 101.16407668462868, 97.7511216092791, 100.24495846027231, 127.17215425749272, 90.2911768436975, 7.264069424560348, 7.2648593675775786, 7.259788349734319, 7.268981854345684, 7.270136038114373, 7.2599286603899635, 7.271853017808232, 7.271799703217732, 7.260183696126078, 7.269403226189506, 7.266323953446233, 7.257731714437967, 7.257632383034647, 3.0183214872941457, 57.50053094319797, 2658.9104735269107, 11.542790092743564, 180.8072417823783, 828.1023919958302, 16.452274584272004, 16.45044726412806, 16.458453328132993, 16.44825299206618, 16.458757955334136, 16.441526347521435, 16.44319980853526, 16.441013727660035, 16.443147074205307, 16.436148891387955, 16.45429885934547, 16.45244917282884, 16.458894512114643, 46.08116876620308, 1171.792773637729, 892696.3454487493, 892579.7461508183, 893180.998793473, 893161.4420398694, 892835.3094513449, 893078.640675662, 892350.012582065, 892953.1419775651, 893025.3809149987, 893031.1090519505, 893304.9385114993, 892735.5538529396, 892586.8492034319, 95.15760302176182, 555.5055668232087, 8.211769188644467, 8.21174048666215, 8.211720876169633, 8.211741670092236, 8.211749348249727, 8.211764456811512, 8.211710733193486, 8.211714578023962, 8.211753415251659, 8.21173300130996, 8.211718813051284, 8.211745663590033, 8.211768434264435, 47.03055066176414, 112.45127532349125, 7.0572245625265335, 7.057231375882037, 7.05722387649163, 7.057223637998633, 7.05722528439711, 7.057226874013868, 7.057218182279528, 7.057219747703459, 7.057227977910672, 7.057226422509255, 7.057218066673957, 7.057228022323217, 7.057219668349004, 3.925111158122592, 1601781.3661075588, 19.537882139922466, 19.537890049308213, 19.537886495042027, 19.537888584532123, 19.53788308540318, 19.537879879858384, 19.537883028406316, 19.53788675933564, 19.537883427868557, 19.53787913258182, 19.537887995544946, 19.537882131554174, 19.537890058793646, 26.140650263715266, 12.76005319707034, 121.97724898096271, 218.68508785458016, 220.87296158268092, 114838.22794465194, 26.231246089286415, 148.74159590410912, 7.377073778008926, 26821.973022901242, 10.484025259545934, 4.598717975720803, 4.381874406762533, 104.48688256100354, 12.2826947746511, 274.28897654845736, 5749.654763930543, 112.37276106109464, 3925.9665611243076, 920338.2276637995, 3.1467627567433687, 945.2330995938448, 259.7727526559976, 36.62694850926997, 162.80943404420154, 182.93855773787567, 154.7645696615381, 13.714999543791102, 358.4845713343659, 475.93916528628847, 2353.976227705122, 20.384133996999598, 73198.45874545039, 4950.7341383727535, 131.26127581558313, 15.481613124717255, 292.18578161423636, 1495.3597037907705, 751.1103214692307, 15.647787185301974, 219.96485045803854, 454.42269033485087, 85.85640764404341, 2734.6782374479103, 194.9304596080409, 181.98753711910052, 507.59984537562053, 266.36200844812885, 504.64854739254315, 53.23832480990171, 12694.036146072904, 256.69075068553707, 13.819383375494745, 2653.341568438419, 20.12275536268384, 569.9732154535297, 286.2913750058844, 8.84183752428028, 201.59781169535333, 14.975749049316537, 9.197035578643602, 186.5119851344679, 13235.144376780123, 4.803249650065982, 19.178312082672047, 4.949077755685153, 45.49307229862689, 141.15217274495384, 10.401219639470716, 298.5860686964242, 1110.5312543231726, 204.70521932547132, 202.37128554523733], 'runtime': [0.0, 1.4654793530062307, 1.6998984990059398, 1.927162784995744, 2.157958169002086, 2.403247194000869, 2.640087427003891, 2.8653247890033526, 3.1143313969951123, 3.3429873020068044, 3.5554917239933275, 3.7768624229938723, 4.007604708996951, 5.216325390996644, 6.311779084993759, 7.408536471994012, 8.500415960006649, 10.090003891004017, 10.317094929996529, 10.54282009799499, 10.759413892999873, 10.981839137995848, 11.202659981005127, 11.449713684996823, 11.693010164002771, 11.931081992006511, 12.196376958992914, 12.403596875999938, 12.643774608004605, 13.959369085001526, 15.112816516004386, 16.214131935004843, 17.65470412299328, 17.874841519005713, 18.095436087998678, 18.3193268180039, 18.59146513399901, 18.842738631006796, 19.071228967004572, 19.296824660996208, 19.526708788995165, 19.780122294003377, 20.004276609994122, 20.250879165992956, 21.5991976899968, 22.845331032993272, 23.963186695997138, 25.129930837996653, 26.246388325002044, 27.43505541399645, 28.634720104004373, 30.147964559000684, 30.38330626100651, 30.595268852004665, 30.831982172996504, 31.05811100899882, 31.280730144993868, 31.516762828992796, 31.770743504006532, 31.98871085900464, 32.246600152997416, 32.44566441999632, 32.690080543005024, 33.9323751500051, 35.17426756500208, 36.360834384002374, 37.90780688700033, 38.14168815499579, 38.36009988999285, 38.60155010900053, 38.852264435001416, 39.09241154100164, 39.312498515006155, 39.57522154200706, 39.780917822004994, 40.02073211800598, 40.277099066996016, 40.484346537996316, 41.678455802000826, 42.816242874003365, 43.91951750300359, 45.51147121700342, 45.766756227007136, 45.992445836993284, 46.253040583003894, 46.50819116500497, 46.78120494300674, 47.153453767998144, 47.39326986699598, 47.62962349799636, 47.863803989006556, 48.09981718599738, 48.331331124994904, 49.55203032300051, 50.66129821499635, 51.76965027599363, 53.292020987006254, 53.50851082400186, 53.738180732005276, 53.9578813650005, 54.197414144000504, 54.40429963999486, 54.683107657998335, 54.90290353599994, 55.14651325599698, 55.38707320000685, 55.59375387200271, 55.826777131995186, 57.01134315399395, 58.145343602998764, 59.254296158993384, 60.879741975004436, 61.12646808799764, 61.3240013379982, 61.541352821994224, 61.779517927003326, 62.017958954005735, 62.23622067499673, 62.47270244600077, 62.71214441600023, 62.9589582960034, 63.17405894100375, 63.46608779899543, 64.65016627899604, 65.75848158900044, 66.86886960800621, 67.99067636599648, 69.11703170700639, 70.24055224300537, 71.35731321900676, 72.57846324300044, 73.68618142200285, 74.80246533900208, 75.95270018299925, 77.04720034799539, 78.12634801199601, 79.20311382699583, 80.28664051300439, 81.41689652300556, 82.5578566740005, 83.71358656299708, 84.99515652000264, 86.09503832299379, 87.20429020900337, 88.30182652600342, 89.41393273300491, 90.5232911130006, 91.68039846200554, 92.82591913000215, 94.03497500999947, 95.12888362299418, 96.20487269299338, 97.43907481599308, 98.57956168000237, 99.71978839900112, 100.88302639700123, 102.00102460899507, 103.10849558700284, 104.2046064860042, 105.30728204299521, 106.38380164999398, 107.52162871300243, 108.66658582800301, 109.90052012000524, 110.99714955300442, 112.07928463899589, 113.15603959999862, 114.26948848899337, 115.45569343199895, 116.60013300299761, 117.74198842099577, 118.82939374000125, 119.94033302599564, 121.06477962200006, 122.31957224900543, 123.4318478560017, 124.56119021199993, 125.68974022599286, 126.78009406999627, 127.86893014999805, 128.94660194100288, 130.04201147900312, 131.14920734299812, 132.32087097800104, 133.4511845060042, 134.70622068599914, 135.8065559520037, 136.9057286699972, 137.99837538300199, 139.10752398500335, 140.2288636739977, 141.35019971999282, 142.475338172997, 143.57510785800696, 144.66318484999647, 145.7523611219949, 146.959097939005], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 20, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 24, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 28, 29, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 31, 32, 33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108]}}, {'solution_x': array([ 2.37087515, 20.00000073, 21.73049362]), 'solution_criterion': 11.756137406922145, 'states': [State(trustregion=Region(center=array([ 9.19422435, 23.72793018, 26.19803683]), radius=2.619803683251652, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=[0], model=ScalarModel(intercept=2297.947918294926, linear_terms=array([0., 0., 0.]), square_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=0, candidate_x=array([ 9.19422435, 23.72793018, 26.19803683]), index=0, x=array([ 9.19422435, 23.72793018, 26.19803683]), fval=2297.9479182949253, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([ 9.19422435, 23.72793018, 26.19803683]), radius=2.619803683251652, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=100.26050157418467, linear_terms=array([37.06019542, -0.69514083, -0.08765834]), square_terms=array([[ 7.25254547e+00, -1.33762405e-01, -1.69557954e-02],
+ [-1.33762405e-01, 3.61609220e-03, 3.68160540e-04],
+ [-1.69557954e-02, 3.68160540e-04, 4.83540914e-05]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=13, candidate_x=array([ 6.5939768 , 23.52218198, 25.95359527]), index=13, x=array([ 6.5939768 , 23.52218198, 25.95359527]), fval=33.12471405413484, rho=68.29897990654418, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=2.6198036832516514, relative_step_length=0.9999999999999998, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 6.5939768 , 23.52218198, 25.95359527]), radius=5.239607366503304, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13]), model=ScalarModel(intercept=83.41240922922843, linear_terms=array([32.90943596, 0.51070103, 13.62422726]), square_terms=array([[8.71743028e+00, 8.16585438e-02, 2.13042388e+00],
+ [8.16585438e-02, 1.99924819e-03, 5.46687582e-02],
+ [2.13042388e+00, 5.46687582e-02, 1.50706463e+00]]), scale=array([4.22310246, 3.87264222, 4.22310246]), shift=array([ 6.5939768 , 23.87264222, 25.95359527])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=14, candidate_x=array([ 2.37087434, 20. , 21.73049281]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=0.5320516376789097, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13]), old_indices_discarded=array([3, 6]), step_length=6.933610505122874, relative_step_length=1.323307267153126, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=10.479214733006607, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 13, 14]), model=ScalarModel(intercept=44.50496314923179, linear_terms=array([65.70991029, 41.75092932, 39.1733236 ]), square_terms=array([[57.63293807, 36.93102134, 36.21001134],
+ [36.93102134, 26.43360508, 24.81874651],
+ [36.21001134, 24.81874651, 24.73828495]]), scale=array([4.85853963, 4.22310246, 8.44620492]), shift=array([ 5.95853963, 24.22310246, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=15, candidate_x=array([ 1.1 , 20. , 29.19242789]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-173.68758979296302, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 13, 14]), old_indices_discarded=array([ 7, 9, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=5.239607366503304, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 8, 10, 13, 14, 15]), model=ScalarModel(intercept=10.906783695641735, linear_terms=array([-5.14268566, -4.62067229, 35.98636178]), square_terms=array([[ 5.47903335, 1.35695895, 3.89871611],
+ [ 1.35695895, 1.26555183, -10.61404546],
+ [ 3.89871611, -10.61404546, 168.99666982]]), scale=array([2.7469884 , 2.11155123, 4.22310246]), shift=array([ 3.8469884 , 22.11155123, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=16, candidate_x=array([ 6.07505484, 24.22310246, 21.01743559]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-1.854911036794817, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 3, 4, 5, 6, 8, 10, 13, 14, 15]), old_indices_discarded=array([ 7, 9, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=2.619803683251652, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 10, 13, 14, 15, 16]), model=ScalarModel(intercept=27.2558666015496, linear_terms=array([-7.24046898, -0.90524841, 32.66340924]), square_terms=array([[ 3.07518716, 0.31830874, -1.06784929],
+ [ 0.31830874, 0.07044404, -0.23846621],
+ [-1.06784929, -0.23846621, 29.16861809]]), scale=array([1.69121279, 1.05577561, 2.11155123]), shift=array([ 2.79121279, 21.05577561, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=17, candidate_x=array([ 4.48242557, 22.11155123, 19.61894158]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-3.1524863730951305, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 3, 4, 5, 6, 10, 13, 14, 15, 16]), old_indices_discarded=array([ 7, 8, 9, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1.309901841625826, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]), model=ScalarModel(intercept=2.4261871177333903e+19, linear_terms=array([ 9.65423539e+18, -5.62332023e+19, -5.35048273e+19]), square_terms=array([[ 1.92079711e+18, -1.11881016e+19, -1.06452668e+19],
+ [-1.11881016e+19, 6.51675430e+19, 6.20056837e+19],
+ [-1.06452668e+19, 6.20056837e+19, 5.89972345e+19]]), scale=array([1.05577561, 0.52788781, 1.05577561]), shift=array([ 2.37087434, 20.52788781, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=31, candidate_x=array([ 2.37087434, 20. , 21.73049281]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-inf, accepted=False, new_indices=array([18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]), old_indices_used=array([14, 17]), old_indices_discarded=array([16]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=0.654950920812913, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 18, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32]), model=ScalarModel(intercept=3.3594559037494202e+19, linear_terms=array([ 2.19635198e+19, -3.00220401e+19, -5.06028873e+19]), square_terms=array([[ 7.17967763e+18, -9.81393577e+18, -1.65416300e+19],
+ [-9.81393577e+18, 1.34147162e+19, 2.26108334e+19],
+ [-1.65416300e+19, 2.26108334e+19, 3.81111154e+19]]), scale=array([0.52788781, 0.2639439 , 0.52788781]), shift=array([ 2.37087434, 20.2639439 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=33, candidate_x=array([ 2.37087434, 20. , 21.73049281]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-inf, accepted=False, new_indices=array([32]), old_indices_used=array([14, 18, 21, 23, 24, 25, 26, 27, 28, 29, 31]), old_indices_discarded=array([19, 20, 22, 30]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=0.3274754604064565, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 18, 21, 24, 25, 26, 27, 28, 31, 32, 33, 34]), model=ScalarModel(intercept=3.363932925720873e+19, linear_terms=array([ 1.00235331e+19, -2.75760562e+19, -3.42024531e+19]), square_terms=array([[ 1.49335937e+18, -4.10842780e+18, -5.09566372e+18],
+ [-4.10842780e+18, 1.13028246e+19, 1.40188403e+19],
+ [-5.09566372e+18, 1.40188403e+19, 1.73875019e+19]]), scale=array([0.2639439 , 0.13197195, 0.2639439 ]), shift=array([ 2.37087434, 20.13197195, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=35, candidate_x=array([ 2.37087434, 20. , 21.73049281]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-inf, accepted=False, new_indices=array([34]), old_indices_used=array([14, 18, 21, 24, 25, 26, 27, 28, 31, 32, 33]), old_indices_discarded=array([20, 23, 29]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=0.16373773020322824, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 32, 33, 34, 35]), model=ScalarModel(intercept=477.0414925228909, linear_terms=array([-110.1280758 , 0.66900057, -110.1280758 ]), square_terms=array([[ 198.25105608, -182.67462907, 198.25105608],
+ [-182.67462907, 186.09153708, -182.67462907],
+ [ 198.25105608, -182.67462907, 198.25105608]]), scale=array([0.13197195, 0.06598598, 0.13197195]), shift=array([ 2.37087434, 20.06598598, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=36, candidate_x=array([ 2.46833093, 20.13197195, 21.8279494 ]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.0832247735759539, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 32, 33, 34, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=0.08186886510161412, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 36]), model=ScalarModel(intercept=271.84248362984164, linear_terms=array([ 111.120125 , -242.73580571, 111.120125 ]), square_terms=array([[ 22.88930086, -49.12851094, 22.88930086],
+ [-49.12851094, 109.6799423 , -49.12851094],
+ [ 22.88930086, -49.12851094, 22.88930086]]), scale=array([0.06598598, 0.03299299, 0.06598598]), shift=array([ 2.37087434, 20.03299299, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=37, candidate_x=array([ 2.30488837, 20.06598598, 21.66450683]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.2763500369515362, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=0.04093443255080706, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 36, 37]), model=ScalarModel(intercept=448.2997251299957, linear_terms=array([ 13.51018221, -113.19471257, 13.51018221]), square_terms=array([[ 1.11193747, -2.74441617, 1.11193747],
+ [-2.74441617, 15.84764559, -2.74441617],
+ [ 1.11193747, -2.74441617, 1.11193747]]), scale=array([0.03299299, 0.01649649, 0.03299299]), shift=array([ 2.37087434, 20.01649649, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=38, candidate_x=array([ 2.33788135, 20.03299299, 21.69749982]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-31.61396054630143, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 36, 37]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=0.02046721627540353, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 38]), model=ScalarModel(intercept=621.0374982677207, linear_terms=array([-664.54558743, 87.01617833, -664.54558743]), square_terms=array([[371.72530858, -78.90502972, 371.72530858],
+ [-78.90502972, 70.79388111, -78.90502972],
+ [371.72530858, -78.90502972, 371.72530858]]), scale=array([0.01649649, 0.00824825, 0.01649649]), shift=array([ 2.37087434, 20.00824825, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=39, candidate_x=array([ 2.38737084, 20.01649649, 21.7469893 ]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.03639823730646944, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=0.010233608137701765, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 39]), model=ScalarModel(intercept=242.2411195143268, linear_terms=array([ 113.15578238, -258.17067427, 113.15578238]), square_terms=array([[ 26.53845598, -60.07887042, 26.53845598],
+ [-60.07887042, 138.01293342, -60.07887042],
+ [ 26.53845598, -60.07887042, 26.53845598]]), scale=array([0.00824825, 0.00412412, 0.00824825]), shift=array([ 2.37087434, 20.00412412, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=40, candidate_x=array([ 2.36262609, 20.00824825, 21.72224456]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.0191684141238219, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=0.005116804068850882, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 40]), model=ScalarModel(intercept=226.57591976552314, linear_terms=array([ -94.23490548, -264.68202856, -94.23490548]), square_terms=array([[ 20.02710168, 54.18070212, 20.02710168],
+ [ 54.18070212, 156.32062432, 54.18070212],
+ [ 20.02710168, 54.18070212, 20.02710168]]), scale=array([0.00412412, 0.00206206, 0.00412412]), shift=array([ 2.37087434, 20.00206206, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=41, candidate_x=array([ 2.37499847, 20.00412412, 21.73461693]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.10075249336197004, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=0.002558402034425441, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 41]), model=ScalarModel(intercept=253.24442496833092, linear_terms=array([ 126.81780503, -252.85323987, 126.81780503]), square_terms=array([[ 31.85589037, -63.10602428, 31.85589037],
+ [-63.10602428, 126.64119131, -63.10602428],
+ [ 31.85589037, -63.10602428, 31.85589037]]), scale=array([0.00206206, 0.00103103, 0.00206206]), shift=array([ 2.37087434, 20.00103103, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=42, candidate_x=array([ 2.36881228, 20.00206206, 21.72843075]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.013718384175306502, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 41]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=0.0012792010172127206, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 42]), model=ScalarModel(intercept=233.50624137395988, linear_terms=array([-102.51249958, -261.98748359, -102.51249958]), square_terms=array([[ 22.72164666, 57.06920626, 22.72164666],
+ [ 57.06920626, 147.84907107, 57.06920626],
+ [ 22.72164666, 57.06920626, 22.72164666]]), scale=array([0.00103103, 0.00051552, 0.00103103]), shift=array([ 2.37087434, 20.00051552, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=43, candidate_x=array([ 2.37190537, 20.00103103, 21.73152384]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.001953970836227018, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 42]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=0.0006396005086063603, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 43]), model=ScalarModel(intercept=230.79673086872896, linear_terms=array([ 99.17735108, -263.23875958, 99.17735108]), square_terms=array([[ 21.47037066, -56.23660975, 21.47037066],
+ [-56.23660975, 150.76554008, -56.23660975],
+ [ 21.47037066, -56.23660975, 21.47037066]]), scale=array([0.00051552, 0.00025776, 0.00051552]), shift=array([ 2.37087434, 20.00025776, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=44, candidate_x=array([ 2.37035883, 20.00051552, 21.7299773 ]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.6217458221067561, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 43]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=0.00031980025430318015, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 44]), model=ScalarModel(intercept=298.2994662140243, linear_terms=array([-184.59214347, -227.4146455 , -184.59214346]), square_terms=array([[57.29448475, 70.00317397, 57.29448475],
+ [70.00317397, 87.40829756, 70.00317397],
+ [57.29448475, 70.00317397, 57.29448475]]), scale=array([0.00025776, 0.00012888, 0.00025776]), shift=array([ 2.37087434, 20.00012888, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=45, candidate_x=array([ 2.3711321 , 20.00025776, 21.73075057]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-1.6957569969388382, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 44]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=0.00015990012715159008, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 45]), model=ScalarModel(intercept=349.0717013886536, linear_terms=array([ 253.16334536, -191.81671206, 253.16334536]), square_terms=array([[ 92.89241819, -67.37850898, 92.89241819],
+ [-67.37850898, 57.0596941 , -67.37850898],
+ [ 92.89241819, -67.37850898, 92.89241819]]), scale=array([1.28878859e-04, 6.44394296e-05, 1.28878859e-04]), shift=array([ 2.37087434, 20.00006444, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=46, candidate_x=array([ 2.37074546, 20.00012888, 21.73036393]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.6665865009537364, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 45]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=7.995006357579504e-05, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 46]), model=ScalarModel(intercept=295.1199483327354, linear_terms=array([-181.09588577, -228.04812512, -181.09588577]), square_terms=array([[56.66100513, 67.77387552, 56.66100513],
+ [67.77387552, 92.50037408, 67.77387552],
+ [56.66100513, 67.77387552, 56.66100513]]), scale=array([6.44394296e-05, 3.22197148e-05, 6.44394296e-05]), shift=array([ 2.37087434, 20.00003222, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=47, candidate_x=array([ 2.37093878, 20.00006444, 21.73055725]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.34436100069431036, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 46]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=3.997503178789752e-05, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 47]), model=ScalarModel(intercept=278.139782144658, linear_terms=array([ 158.42617279, -239.42721869, 158.4261728 ]), square_terms=array([[ 45.28191155, -67.86234968, 45.28191156],
+ [-67.86234968, 103.70251932, -67.86234968],
+ [ 45.28191156, -67.86234968, 45.28191156]]), scale=array([3.22197148e-05, 1.61098574e-05, 3.22197148e-05]), shift=array([ 2.37087434, 20.00001611, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=48, candidate_x=array([ 2.37084212, 20.00003222, 21.73046059]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.2220948610734762, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 47]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1.998751589394876e-05, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 48]), model=ScalarModel(intercept=265.9264447321679, linear_terms=array([-142.89991076, -246.05306797, -142.89991075]), square_terms=array([[ 38.65606229, 65.5877862 , 38.65606228],
+ [ 65.5877862 , 114.87749558, 65.58778619],
+ [ 38.65606228, 65.58778619, 38.65606228]]), scale=array([1.61098574e-05, 8.05492870e-06, 1.61098574e-05]), shift=array([ 2.37087434, 20.00000805, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=49, candidate_x=array([ 2.37089045, 20.00001611, 21.73050892]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.04333403303221649, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 48]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=9.99375794697438e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 49]), model=ScalarModel(intercept=241.87813971779562, linear_terms=array([ 112.76957371, -258.21713197, 112.76957374]), square_terms=array([[ 26.49199827, -59.78557716, 26.49199828],
+ [-59.78557716, 138.64597762, -59.78557717],
+ [ 26.49199828, -59.78557717, 26.49199828]]), scale=array([8.05492870e-06, 4.02746435e-06, 8.05492870e-06]), shift=array([ 2.37087434, 20.00000403, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=50, candidate_x=array([ 2.37086629, 20.00000805, 21.73048476]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.17937716597230402, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 49]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=4.99687897348719e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 50]), model=ScalarModel(intercept=255.3651040250473, linear_terms=array([-129.92224896, -250.88571014, -129.92224895]), square_terms=array([[ 33.82342011, 62.27540875, 33.82342011],
+ [ 62.27540875, 126.33489265, 62.27540875],
+ [ 33.82342011, 62.27540875, 33.8234201 ]]), scale=array([4.02746435e-06, 2.01373217e-06, 4.02746435e-06]), shift=array([ 2.37087434, 20.00000201, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=51, candidate_x=array([ 2.37087837, 20.00000403, 21.73049684]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.013358822336666154, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 50]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=2.498439486743595e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 51]), model=ScalarModel(intercept=235.04949472360025, linear_terms=array([ 104.36184433, -261.37530077, 104.36184434]), square_terms=array([[ 23.33382947, -57.69418538, 23.33382947],
+ [-57.69418538, 145.98692999, -57.69418539],
+ [ 23.33382947, -57.69418539, 23.33382947]]), scale=array([2.01373218e-06, 1.00686609e-06, 2.01373217e-06]), shift=array([ 2.37087434, 20.00000101, 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=52, candidate_x=array([ 2.37087233, 20.00000201, 21.7304908 ]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.6400204053299711, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 51]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1.2492197433717975e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 52]), model=ScalarModel(intercept=295.05562767587946, linear_terms=array([-180.82961107, -228.45203392, -180.82961071]), square_terms=array([[56.25709655, 68.3154182 , 56.25709643],
+ [68.3154182 , 91.82119779, 68.31541807],
+ [56.25709643, 68.31541807, 56.25709632]]), scale=array([1.00686609e-06, 5.03433045e-07, 1.00686609e-06]), shift=array([ 2.37087434, 20.0000005 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=53, candidate_x=array([ 2.37087535, 20.00000101, 21.73049382]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.19120017678857876, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 52]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 52, 53]), model=ScalarModel(intercept=424.1064894029128, linear_terms=array([ -87.20054386, -132.24887854, -87.20054353]), square_terms=array([[ 9.68177678, 14.23601697, 9.68177675],
+ [14.23601697, 26.12578509, 14.23601692],
+ [ 9.68177675, 14.23601692, 9.68177672]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=54, candidate_x=array([ 2.37087515, 20.00000081, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.5215166453383736, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 52, 53]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 52, 53, 54]), model=ScalarModel(intercept=445.9417630775248, linear_terms=array([ 5.75703556e+10, -1.11069944e+02, -5.75703557e+10]), square_terms=array([[ 5.46757338e+19, 1.22421661e+10, -5.46757338e+19],
+ [ 1.22421661e+10, 2.48131435e+01, -1.22421661e+10],
+ [-5.46757338e+19, -1.22421661e+10, 5.46757338e+19]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=55, candidate_x=array([ 2.37087436, 20.00000081, 21.73049283]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-1.941418167288205, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 52, 53, 54]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 52, 53, 54, 55]), model=ScalarModel(intercept=409.13139263869965, linear_terms=array([-7.39218116e+10, -1.54648459e+02, 7.39218114e+10]), square_terms=array([[ 9.17833171e+18, 1.29829573e+10, -9.17833169e+18],
+ [ 1.29829573e+10, 3.16230006e+01, -1.29829573e+10],
+ [-9.17833169e+18, -1.29829573e+10, 9.17833168e+18]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=56, candidate_x=array([ 2.37087438, 20.00000005, 21.73049285]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.36845006478001474, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 52, 53, 54, 55]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 53, 54, 55, 56, 57]), model=ScalarModel(intercept=501.14538776236594, linear_terms=array([ -84.08929981, 31.1850679 , -363.06062798]), square_terms=array([[ 21.85481248, -11.80642721, 24.31035695],
+ [-11.80642721, 12.9280665 , -15.62940075],
+ [ 24.31035695, -15.62940075, 147.22202613]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=58, candidate_x=array([ 2.37087515, 20.00000029, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.0815218060685389, accepted=False, new_indices=array([57]), old_indices_used=array([14, 31, 33, 35, 53, 54, 55, 56]), old_indices_discarded=array([52]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 52, 53, 54, 55, 56, 57, 58]), model=ScalarModel(intercept=356.6704598452743, linear_terms=array([ -26.72128155, -89.65509948, -146.30616139]), square_terms=array([[12.08117351, -0.77017034, -4.38148806],
+ [-0.77017034, 14.99003215, 22.18672613],
+ [-4.38148806, 22.18672613, 39.1909691 ]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=59, candidate_x=array([ 2.37087515, 20.00000081, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.2618921972472195, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 52, 53, 54, 55, 56, 57, 58]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 52, 53, 54, 55, 56, 57, 58, 59]), model=ScalarModel(intercept=351.148081360273, linear_terms=array([ -35.1167242 , -95.29965743, -149.07124656]), square_terms=array([[12.54482426, 0.61705407, -2.2572167 ],
+ [ 0.61705407, 16.81478369, 24.27893306],
+ [-2.2572167 , 24.27893306, 41.10780289]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=60, candidate_x=array([ 2.37087515, 20.00000081, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.033155748772052795, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 52, 53, 54, 55, 56, 57, 58, 59]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 53, 54, 55, 56, 57, 58, 59, 60]), model=ScalarModel(intercept=516.1076661248227, linear_terms=array([-194.19152906, 62.74519026, -488.237379 ]), square_terms=array([[ 47.79040518, -15.43736222, 82.78502441],
+ [-15.43736222, 9.17587332, -29.30794943],
+ [ 82.78502441, -29.30794943, 245.54478983]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=61, candidate_x=array([ 2.37087515, 20. , 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.3801346810958362, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 53, 54, 55, 56, 57, 58, 59, 60]), old_indices_discarded=array([52]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 54, 55, 56, 57, 58, 59, 60, 61]), model=ScalarModel(intercept=473.51062941845674, linear_terms=array([-164.87385972, -14.41134481, -417.27822846]), square_terms=array([[ 39.98513719, 0.55097883, 63.42041821],
+ [ 0.55097883, 5.91526277, 7.81306573],
+ [ 63.42041821, 7.81306573, 198.42563462]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=62, candidate_x=array([ 2.37087515, 20.00000081, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.128244049831315, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 54, 55, 56, 57, 58, 59, 60, 61]), old_indices_discarded=array([52, 53]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 59, 60, 61, 62]), model=ScalarModel(intercept=443.69033818289523, linear_terms=array([-193.42066022, -59.89510776, -416.94838156]), square_terms=array([[ 57.90169221, 13.44922767, 83.77520336],
+ [ 13.44922767, 9.2874354 , 30.23675435],
+ [ 83.77520336, 30.23675435, 211.34052244]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=63, candidate_x=array([ 2.37087515, 20.00000081, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-3.9777236520634274, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 59, 60, 61, 62]), old_indices_discarded=array([52, 53, 54]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 60, 61, 62, 63]), model=ScalarModel(intercept=535.576767984977, linear_terms=array([ -97.89731528, 84.38555803, -412.56948936]), square_terms=array([[ 20.93665885, -9.50656638, 31.04052367],
+ [ -9.50656638, 11.793667 , -28.53462045],
+ [ 31.04052367, -28.53462045, 176.50735919]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=64, candidate_x=array([ 2.37087515, 20. , 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.47465132596125886, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 60, 61, 62, 63]), old_indices_discarded=array([52, 53, 54, 59]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 62, 63, 64]), model=ScalarModel(intercept=585.1854246849198, linear_terms=array([ -29.16354217, 168.15606446, -394.0351885 ]), square_terms=array([[ 13.11347515, -5.54722514, 4.01863068],
+ [ -5.54722514, 30.26242113, -49.8217088 ],
+ [ 4.01863068, -49.8217088 , 149.98568159]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=65, candidate_x=array([ 2.37087515, 20. , 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.04112365805904157, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 62, 63, 64]), old_indices_discarded=array([52, 53, 54, 59, 60]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 63, 64, 65]), model=ScalarModel(intercept=729.4360072561536, linear_terms=array([ 42.4117129 , 423.41168593, -475.43140074]), square_terms=array([[ 8.90733754, 10.83130713, -19.30882008],
+ [ 10.83130713, 133.81382416, -127.27893762],
+ [ -19.30882008, -127.27893762, 174.66578573]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=66, candidate_x=array([ 2.37087354, 20. , 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-2.461710999731728, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 63, 64, 65]), old_indices_discarded=array([52, 53, 54, 59, 60, 62]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=67, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-1.6553713408010533, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=68, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.7540602889098412, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=69, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.061125580289719594, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=70, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.06532512310250917, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=71, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.47280209243992, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=72, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.024442457040122, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=73, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.024571637509344275, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=74, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.005836622789095961, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=75, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.1297462241627297, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=76, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.015031585164624455, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=77, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.00338307256818253, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=78, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.25869364015387636, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=79, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-1.182842525767478, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=80, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-7.539808399266354, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=81, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.4418446509103326, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=82, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.424421831014966, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=83, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.0036850229799617385, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81, 82]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=84, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.24529686217820842, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81, 82, 83]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=85, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.026137866320147158, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81, 82, 83, 84]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=86, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.39466654325688577, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81, 82, 83, 84, 85]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=87, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.0077263075029894365, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=88, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.16408388680603278, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=89, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-4.943538348296387, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=90, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-5.5841501683910435, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=91, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.018520133896377446, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=92, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.023172579334719116, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=93, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-4.441450796229228, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=94, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.6886838766343455, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=95, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.05286949222725649, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,
+ 94]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=96, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.02990045155060646, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,
+ 94, 95]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=97, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.44134998711883394, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,
+ 94, 95, 96]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=98, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.041776676355851056, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,
+ 94, 95, 96, 97]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=99, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-8.622278625552317, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,
+ 94, 95, 96, 97, 98]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=100, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.14303277179246268, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
+ 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,
+ 94, 95, 96, 97, 98, 99]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=101, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.5795760967513636, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([ 52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72,
+ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
+ 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
+ 99, 100]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=102, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.8376737833907797, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([ 52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72,
+ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
+ 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
+ 99, 100, 101]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=103, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-1.0439872980513505, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([ 52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72,
+ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
+ 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
+ 99, 100, 101, 102]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=104, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.0004808821529855039, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([ 52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72,
+ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
+ 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
+ 99, 100, 101, 102, 103]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=105, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.07535411947688962, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([ 52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72,
+ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
+ 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
+ 99, 100, 101, 102, 103, 104]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=106, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.014145107259658202, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([ 52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72,
+ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
+ 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
+ 99, 100, 101, 102, 103, 104, 105]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=107, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.006143686000683, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([ 52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72,
+ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
+ 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
+ 99, 100, 101, 102, 103, 104, 105, 106]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=108, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.021129593286595368, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([ 52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72,
+ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
+ 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
+ 99, 100, 101, 102, 103, 104, 105, 106, 107]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=109, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.7547690309398593, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([ 52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72,
+ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
+ 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
+ 99, 100, 101, 102, 103, 104, 105, 106, 107, 108]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=110, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.012205792055661559, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([ 52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72,
+ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
+ 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
+ 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=111, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-15.358281045919652, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([ 52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72,
+ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
+ 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
+ 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=112, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.032827058736785444, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([ 52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72,
+ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
+ 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
+ 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=113, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.9610529330597521, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([ 52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72,
+ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
+ 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
+ 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
+ 112]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=114, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=14, x=array([ 2.37087434, 20. , 21.73049281]), fval=12.045808442600055, rho=-0.07799742625114468, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([ 52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72,
+ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
+ 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
+ 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
+ 112, 113]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087434, 20. , 21.73049281]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), model=ScalarModel(intercept=451.7370091193714, linear_terms=array([-264.53267531, -46.43413422, -309.63787143]), square_terms=array([[ 87.48133676, 11.80018515, 85.15460541],
+ [ 11.80018515, 10.5812482 , 26.07026295],
+ [ 85.15460541, 26.07026295, 124.00007562]]), scale=array([8.05995977e-07, 4.02997989e-07, 8.05995978e-07]), shift=array([ 2.37087434, 20.0000004 , 21.73049281])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=115, candidate_x=array([ 2.37087515, 20.00000073, 21.73049362]), index=115, x=array([ 2.37087515, 20.00000073, 21.73049362]), fval=11.756137406922145, rho=0.0006606474161967634, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 33, 35, 55, 56, 57, 58, 61, 64, 65, 66]), old_indices_discarded=array([ 52, 53, 54, 59, 60, 62, 63, 67, 68, 69, 70, 71, 72,
+ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
+ 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
+ 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
+ 112, 113, 114]), step_length=1.353117159265239e-06, relative_step_length=1.353117159265239, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087515, 20.00000073, 21.73049362]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 53, 54, 58, 61, 67, 109, 110, 111, 112, 113, 114, 115]), model=ScalarModel(intercept=370.7204838293079, linear_terms=array([-1094.72884749, 459.67117107, -1094.72885415]), square_terms=array([[2175.78198969, -869.80965458, 2175.78200292],
+ [-869.80965458, 358.74121025, -869.80965987],
+ [2175.78200292, -869.80965987, 2175.78201616]]), scale=array([8.05995977e-07, 7.67575489e-07, 8.05995978e-07]), shift=array([ 2.37087515, 20.00000077, 21.73049362])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=116, candidate_x=array([ 2.37087519, 20. , 21.73049366]), index=115, x=array([ 2.37087515, 20.00000073, 21.73049362]), fval=11.756137406922145, rho=-0.11600478480939747, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 53, 54, 58, 61, 67, 109, 110, 111, 112, 113, 114, 115]), old_indices_discarded=array([ 14, 31, 33, 35, 52, 55, 56, 57, 59, 60, 62, 63, 64,
+ 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
+ 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
+ 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
+ 105, 106, 107, 108]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087515, 20.00000073, 21.73049362]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 53, 54, 58, 61, 67, 111, 112, 113, 114, 115, 116, 117]), model=ScalarModel(intercept=472.2457577259905, linear_terms=array([-1771.42817561, 582.46342442, -1126.59648447]), square_terms=array([[ 3724.50782271, -1169.66846912, 2438.6264139 ],
+ [-1169.66846912, 380.58982332, -755.70634162],
+ [ 2438.6264139 , -755.70634162, 1610.13543409]]), scale=array([8.05995977e-07, 7.67575489e-07, 8.05995978e-07]), shift=array([ 2.37087515, 20.00000077, 21.73049362])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=118, candidate_x=array([ 2.3708758 , 20. , 21.73049281]), index=115, x=array([ 2.37087515, 20.00000073, 21.73049362]), fval=11.756137406922145, rho=-0.048592154387170204, accepted=False, new_indices=array([117]), old_indices_used=array([ 53, 54, 58, 61, 67, 111, 112, 113, 114, 115, 116]), old_indices_discarded=array([ 14, 31, 33, 35, 52, 55, 56, 57, 59, 60, 62, 63, 64,
+ 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
+ 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
+ 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
+ 105, 106, 107, 108, 109, 110]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087515, 20.00000073, 21.73049362]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 53, 54, 58, 61, 67, 111, 112, 113, 114, 115, 116, 119]), model=ScalarModel(intercept=472.24575767907174, linear_terms=array([ -799.17359855, 582.46342403, -2098.8510545 ]), square_terms=array([[ 911.06043817, -544.93273449, 2090.57600668],
+ [ -544.93273449, 380.58982284, -1380.44207059],
+ [ 2090.57600668, -1380.44207059, 5119.68358811]]), scale=array([8.05995977e-07, 7.67575489e-07, 8.05995978e-07]), shift=array([ 2.37087515, 20.00000077, 21.73049362])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=120, candidate_x=array([ 2.37087434, 20.00000097, 21.73049433]), index=115, x=array([ 2.37087515, 20.00000073, 21.73049362]), fval=11.756137406922145, rho=-0.1261316666099927, accepted=False, new_indices=array([119]), old_indices_used=array([ 53, 54, 58, 61, 67, 111, 112, 113, 114, 115, 116]), old_indices_discarded=array([ 14, 31, 33, 35, 52, 55, 56, 57, 59, 60, 62, 63, 64,
+ 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
+ 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
+ 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
+ 105, 106, 107, 108, 109, 110, 117, 118]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087515, 20.00000073, 21.73049362]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 53, 54, 58, 61, 67, 111, 112, 113, 114, 115, 116, 121]), model=ScalarModel(intercept=472.2457576856781, linear_terms=array([ -934.4558521 , 582.46342408, -1963.56880192]), square_terms=array([[ 1174.96627728, -631.76122714, 2262.60439058],
+ [ -631.76122714, 380.58982291, -1293.61357875],
+ [ 2262.60439058, -1293.61357875, 4511.72098743]]), scale=array([8.05995977e-07, 7.67575489e-07, 8.05995978e-07]), shift=array([ 2.37087515, 20.00000077, 21.73049362])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=122, candidate_x=array([ 2.37087434, 20.00000057, 21.73049431]), index=115, x=array([ 2.37087515, 20.00000073, 21.73049362]), fval=11.756137406922145, rho=-0.12429101752371993, accepted=False, new_indices=array([121]), old_indices_used=array([ 53, 54, 58, 61, 67, 111, 112, 113, 114, 115, 116]), old_indices_discarded=array([ 14, 31, 33, 35, 52, 55, 56, 57, 59, 60, 62, 63, 64,
+ 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
+ 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
+ 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
+ 105, 106, 107, 108, 109, 110, 117, 118, 119, 120]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087515, 20.00000073, 21.73049362]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 53, 54, 58, 61, 67, 111, 112, 113, 114, 115, 116, 123]), model=ScalarModel(intercept=472.2457577302039, linear_terms=array([-1855.88530491, 582.46342446, -1042.13935579]), square_terms=array([[ 4099.56827523, -1232.09777669, 2359.47596086],
+ [-1232.09777669, 380.58982337, -693.27703461],
+ [ 2359.47596086, -693.27703461, 1393.37589187]]), scale=array([8.05995977e-07, 7.67575489e-07, 8.05995978e-07]), shift=array([ 2.37087515, 20.00000077, 21.73049362])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=124, candidate_x=array([ 2.3708754 , 20. , 21.73049339]), index=115, x=array([ 2.37087515, 20.00000073, 21.73049362]), fval=11.756137406922145, rho=-0.5010378290109341, accepted=False, new_indices=array([123]), old_indices_used=array([ 53, 54, 58, 61, 67, 111, 112, 113, 114, 115, 116]), old_indices_discarded=array([ 14, 31, 33, 35, 52, 55, 56, 57, 59, 60, 62, 63, 64,
+ 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
+ 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
+ 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
+ 105, 106, 107, 108, 109, 110, 117, 118, 119, 120, 121, 122]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087515, 20.00000073, 21.73049362]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 53, 54, 58, 61, 67, 111, 112, 113, 114, 115, 116, 124]), model=ScalarModel(intercept=472.2457577110828, linear_terms=array([-1503.1354658 , 582.46342428, -1394.88919231]), square_terms=array([[ 3840.39505035, -1067.33700315, 1920.71354028],
+ [-1067.33700315, 380.58982318, -858.03780647],
+ [ 1920.71354028, -858.03780647, 2530.07394741]]), scale=array([8.05995977e-07, 7.67575489e-07, 8.05995978e-07]), shift=array([ 2.37087515, 20.00000077, 21.73049362])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=125, candidate_x=array([ 2.37087516, 20. , 21.73049378]), index=115, x=array([ 2.37087515, 20.00000073, 21.73049362]), fval=11.756137406922145, rho=-1.3326411594473715, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 53, 54, 58, 61, 67, 111, 112, 113, 114, 115, 116, 124]), old_indices_discarded=array([ 14, 31, 33, 35, 52, 55, 56, 57, 59, 60, 62, 63, 64,
+ 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
+ 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
+ 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
+ 105, 106, 107, 108, 109, 110, 117, 118, 119, 120, 121, 122, 123]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087515, 20.00000073, 21.73049362]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 53, 54, 58, 61, 67, 112, 113, 114, 115, 116, 124, 125]), model=ScalarModel(intercept=125.54288031846134, linear_terms=array([-205.06586597, -29.20702748, 307.03576397]), square_terms=array([[1302.11506309, -67.59014548, -611.12372691],
+ [ -67.59014548, 12.99506397, -29.91064177],
+ [-611.12372691, -29.91064177, 958.84350696]]), scale=array([8.05995977e-07, 7.67575489e-07, 8.05995978e-07]), shift=array([ 2.37087515, 20.00000077, 21.73049362])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=126, candidate_x=array([ 2.37087523, 20.00000154, 21.73049344]), index=115, x=array([ 2.37087515, 20.00000073, 21.73049362]), fval=11.756137406922145, rho=-1.3413362497924857, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 53, 54, 58, 61, 67, 112, 113, 114, 115, 116, 124, 125]), old_indices_discarded=array([ 14, 31, 33, 35, 52, 55, 56, 57, 59, 60, 62, 63, 64,
+ 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
+ 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
+ 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
+ 105, 106, 107, 108, 109, 110, 111, 117, 118, 119, 120, 121, 122,
+ 123]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087515, 20.00000073, 21.73049362]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 53, 54, 58, 61, 67, 113, 114, 115, 116, 124, 125, 126]), model=ScalarModel(intercept=159.86448961964712, linear_terms=array([-3.19375265e+02, -2.16838153e-01, 2.77071283e+02]), square_terms=array([[1517.88460648, -89.43869485, -667.91811107],
+ [ -89.43869485, 7.37464961, 24.32058136],
+ [-667.91811107, 24.32058136, 720.38890803]]), scale=array([8.05995977e-07, 7.67575489e-07, 8.05995978e-07]), shift=array([ 2.37087515, 20.00000077, 21.73049362])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=127, candidate_x=array([ 2.37087526, 20.00000154, 21.73049339]), index=115, x=array([ 2.37087515, 20.00000073, 21.73049362]), fval=11.756137406922145, rho=-0.8219103470171241, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 53, 54, 58, 61, 67, 113, 114, 115, 116, 124, 125, 126]), old_indices_discarded=array([ 14, 31, 33, 35, 52, 55, 56, 57, 59, 60, 62, 63, 64,
+ 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
+ 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
+ 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
+ 105, 106, 107, 108, 109, 110, 111, 112, 117, 118, 119, 120, 121,
+ 122, 123]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087515, 20.00000073, 21.73049362]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 53, 54, 58, 61, 67, 114, 115, 116, 124, 125, 126, 127]), model=ScalarModel(intercept=139.58227868969684, linear_terms=array([-263.30607197, 1.38638456, 264.35034989]), square_terms=array([[1695.98255035, -138.50016267, -484.24661959],
+ [-138.50016267, 13.98136202, 34.22679802],
+ [-484.24661959, 34.22679802, 542.89628989]]), scale=array([8.05995977e-07, 7.67575489e-07, 8.05995978e-07]), shift=array([ 2.37087515, 20.00000077, 21.73049362])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=128, candidate_x=array([ 2.37087523, 20.00000154, 21.73049325]), index=115, x=array([ 2.37087515, 20.00000073, 21.73049362]), fval=11.756137406922145, rho=-2.2629504843279746, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 53, 54, 58, 61, 67, 114, 115, 116, 124, 125, 126, 127]), old_indices_discarded=array([ 14, 31, 33, 35, 52, 55, 56, 57, 59, 60, 62, 63, 64,
+ 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
+ 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
+ 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
+ 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 118, 119, 120,
+ 121, 122, 123]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087515, 20.00000073, 21.73049362]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 53, 54, 58, 61, 67, 115, 116, 124, 125, 126, 127, 128]), model=ScalarModel(intercept=173.42969587153058, linear_terms=array([-483.57301898, 23.49166899, 158.48741377]), square_terms=array([[2318.92230921, -199.32274828, -265.82198257],
+ [-199.32274828, 19.69593245, 26.17483426],
+ [-265.82198257, 26.17483426, 193.00335613]]), scale=array([8.05995977e-07, 7.67575489e-07, 8.05995978e-07]), shift=array([ 2.37087515, 20.00000077, 21.73049362])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=129, candidate_x=array([ 2.37087532, 20.00000154, 21.73049309]), index=115, x=array([ 2.37087515, 20.00000073, 21.73049362]), fval=11.756137406922145, rho=-0.21318020292995732, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 53, 54, 58, 61, 67, 115, 116, 124, 125, 126, 127, 128]), old_indices_discarded=array([ 14, 31, 33, 35, 52, 55, 56, 57, 59, 60, 62, 63, 64,
+ 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
+ 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
+ 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
+ 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 119,
+ 120, 121, 122, 123]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087515, 20.00000073, 21.73049362]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 53, 54, 58, 61, 115, 116, 124, 125, 126, 127, 128, 129]), model=ScalarModel(intercept=120.94243842924351, linear_terms=array([-145.48858459, 2.60189724, 123.25481468]), square_terms=array([[ 1.26652715e+03, -1.31792266e+02, 1.40126061e+01],
+ [-1.31792266e+02, 1.56276595e+01, -3.33895073e-01],
+ [ 1.40126061e+01, -3.33895073e-01, 1.35381828e+02]]), scale=array([8.05995977e-07, 7.67575489e-07, 8.05995978e-07]), shift=array([ 2.37087515, 20.00000077, 21.73049362])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=130, candidate_x=array([ 2.37087533, 20.00000154, 21.73049287]), index=115, x=array([ 2.37087515, 20.00000073, 21.73049362]), fval=11.756137406922145, rho=-1.0516327090971314, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 53, 54, 58, 61, 115, 116, 124, 125, 126, 127, 128, 129]), old_indices_discarded=array([ 14, 31, 33, 35, 52, 55, 56, 57, 59, 60, 62, 63, 64,
+ 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
+ 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
+ 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
+ 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118,
+ 119, 120, 121, 122, 123]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087515, 20.00000073, 21.73049362]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 53, 54, 58, 61, 115, 116, 124, 125, 126, 127, 128, 129]), model=ScalarModel(intercept=120.94243842924351, linear_terms=array([-145.48858459, 2.60189724, 123.25481468]), square_terms=array([[ 1.26652715e+03, -1.31792266e+02, 1.40126061e+01],
+ [-1.31792266e+02, 1.56276595e+01, -3.33895073e-01],
+ [ 1.40126061e+01, -3.33895073e-01, 1.35381828e+02]]), scale=array([8.05995977e-07, 7.67575489e-07, 8.05995978e-07]), shift=array([ 2.37087515, 20.00000077, 21.73049362])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=131, candidate_x=array([ 2.37087533, 20.00000154, 21.73049287]), index=115, x=array([ 2.37087515, 20.00000073, 21.73049362]), fval=11.756137406922145, rho=-7.7818519882346475, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 53, 54, 58, 61, 115, 116, 124, 125, 126, 127, 128, 129]), old_indices_discarded=array([ 14, 31, 33, 35, 52, 55, 56, 57, 59, 60, 62, 63, 64,
+ 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
+ 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
+ 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
+ 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118,
+ 119, 120, 121, 122, 123, 130]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([ 2.37087515, 20.00000073, 21.73049362]), radius=1e-06, bounds=Bounds(lower=array([ 1.1, 20. , 0. ]), upper=array([20., 70., 70.]))), model_indices=array([ 53, 54, 58, 61, 115, 116, 124, 125, 126, 127, 128, 129]), model=ScalarModel(intercept=120.94243842924351, linear_terms=array([-145.48858459, 2.60189724, 123.25481468]), square_terms=array([[ 1.26652715e+03, -1.31792266e+02, 1.40126061e+01],
+ [-1.31792266e+02, 1.56276595e+01, -3.33895073e-01],
+ [ 1.40126061e+01, -3.33895073e-01, 1.35381828e+02]]), scale=array([8.05995977e-07, 7.67575489e-07, 8.05995978e-07]), shift=array([ 2.37087515, 20.00000077, 21.73049362])), vector_model=VectorModel(intercepts=array([ 0.11142765, 0.23890431, 0.37634247, 0.94584628, 1.48540315,
+ 2.36666015, 3.46158235, 18.13126853, 24.97314971, 23.20240451,
+ 21.32454671, 16.86409763, -1.87943795, -3.41061996, -3.47037143,
+ -3.58779023, -2.66177004]), linear_terms=array([[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]), square_terms=array([[[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]],
+
+ [[0., 0., 0.],
+ [0., 0., 0.],
+ [0., 0., 0.]]]), scale=2.619803683251652, shift=array([ 9.19422435, 23.72793018, 26.19803683])), candidate_index=132, candidate_x=array([ 2.37087533, 20.00000154, 21.73049287]), index=115, x=array([ 2.37087515, 20.00000073, 21.73049362]), fval=11.756137406922145, rho=-0.15305855421607284, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 53, 54, 58, 61, 115, 116, 124, 125, 126, 127, 128, 129]), old_indices_discarded=array([ 14, 31, 33, 35, 52, 55, 56, 57, 59, 60, 62, 63, 64,
+ 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
+ 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
+ 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
+ 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118,
+ 119, 120, 121, 122, 123, 130, 131]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'message': None, 'tranquilo_history': History for least_squares function with 133 entries., 'history': {'params': [{'CRRA': 9.19422435335419, 'BeqFac': 23.72793018208616, 'BeqShift': 26.198036832516518}, {'CRRA': 9.925997491765111, 'BeqFac': 25.041749337040727, 'BeqShift': 24.05286582750232}, {'CRRA': 7.510764594207826, 'BeqFac': 24.95381501170109, 'BeqShift': 24.608527171446866}, {'CRRA': 6.967823838814795, 'BeqFac': 24.871415833914345, 'BeqShift': 26.971957146050606}, {'CRRA': 8.94390611776073, 'BeqFac': 21.12015855501784, 'BeqShift': 26.182568776214765}, {'CRRA': 8.802193469112892, 'BeqFac': 22.751673502013894, 'BeqShift': 28.597329648992694}, {'CRRA': 6.888139301913823, 'BeqFac': 22.503464452117754, 'BeqShift': 26.4125752916215}, {'CRRA': 10.365368552542561, 'BeqFac': 26.0624918793897, 'BeqShift': 25.994041036065813}, {'CRRA': 11.285782618851961, 'BeqFac': 23.05337620511731, 'BeqShift': 24.771946971055332}, {'CRRA': 8.847269460503934, 'BeqFac': 25.522205213200163, 'BeqShift': 28.07515450432802}, {'CRRA': 8.554260327493449, 'BeqFac': 22.475042768420114, 'BeqShift': 23.98803897888402}, {'CRRA': 11.072742559899872, 'BeqFac': 22.098343754226864, 'BeqShift': 27.02204457555787}, {'CRRA': 11.220405066326002, 'BeqFac': 24.422047542624412, 'BeqShift': 27.706733007019313}, {'CRRA': 6.593976800225304, 'BeqFac': 23.522181978078205, 'BeqShift': 25.95359526941061}, {'CRRA': 2.3708743417209304, 'BeqFac': 20.0, 'BeqShift': 21.730492810906235}, {'CRRA': 1.1, 'BeqFac': 20.0, 'BeqShift': 29.192427887336788}, {'CRRA': 6.0750548422191635, 'BeqFac': 24.223102458504375, 'BeqShift': 21.01743558603621}, {'CRRA': 4.482425570973117, 'BeqFac': 22.111551229252186, 'BeqShift': 19.61894158165405}, {'CRRA': 1.3150987270948367, 'BeqFac': 20.131106237439262, 'BeqShift': 22.710400878450976}, {'CRRA': 1.3618878687767213, 'BeqFac': 20.968447946837813, 'BeqShift': 22.786268425532327}, {'CRRA': 2.991082827195077, 'BeqFac': 21.055775614626093, 'BeqShift': 20.67471719628014}, {'CRRA': 3.426649956347024, 'BeqFac': 20.502301736206174, 'BeqShift': 20.705407323749927}, {'CRRA': 1.487695496102353, 'BeqFac': 21.055775614626093, 'BeqShift': 20.784646766272402}, {'CRRA': 2.8609122033451957, 'BeqFac': 21.055775614626093, 'BeqShift': 22.77860246849835}, {'CRRA': 2.0033819001783573, 'BeqFac': 20.00499915959486, 'BeqShift': 22.786268425532327}, {'CRRA': 3.3706483980507014, 'BeqFac': 20.0, 'BeqShift': 22.56801590286262}, {'CRRA': 3.2282509352151605, 'BeqFac': 21.055775614626093, 'BeqShift': 21.842262691294877}, {'CRRA': 2.786828284664844, 'BeqFac': 20.0, 'BeqShift': 20.677782337251422}, {'CRRA': 1.3150987270948367, 'BeqFac': 20.413241599479193, 'BeqShift': 20.718364124536546}, {'CRRA': 3.426649956347024, 'BeqFac': 20.5718323968408, 'BeqShift': 22.780837896180195}, {'CRRA': 1.3150987270948367, 'BeqFac': 21.055775614626093, 'BeqShift': 22.786268425532327}, {'CRRA': 2.3708743417209304, 'BeqFac': 20.0, 'BeqShift': 21.730492810906235}, {'CRRA': 2.898762149033977, 'BeqFac': 20.0, 'BeqShift': 22.25838061821928}, {'CRRA': 2.3708743417209304, 'BeqFac': 20.0, 'BeqShift': 21.730492810906235}, {'CRRA': 2.6348182453774536, 'BeqFac': 20.263943903656525, 'BeqShift': 21.99443671456276}, {'CRRA': 2.3708743417209304, 'BeqFac': 20.0, 'BeqShift': 21.730492810906235}, {'CRRA': 2.468330933447202, 'BeqFac': 20.131971951828262, 'BeqShift': 21.827949402632505}, {'CRRA': 2.3048883658067996, 'BeqFac': 20.06598597591413, 'BeqShift': 21.664506834992103}, {'CRRA': 2.3378813537638647, 'BeqFac': 20.032992987957066, 'BeqShift': 21.69749982294917}, {'CRRA': 2.387370835699463, 'BeqFac': 20.016496493978533, 'BeqShift': 21.746989304884767}, {'CRRA': 2.362626094731664, 'BeqFac': 20.008248246989265, 'BeqShift': 21.72224456391697}, {'CRRA': 2.3749984652155636, 'BeqFac': 20.004124123494634, 'BeqShift': 21.73461693440087}, {'CRRA': 2.3688122799736138, 'BeqFac': 20.002062061747317, 'BeqShift': 21.728430749158917}, {'CRRA': 2.3719053725945884, 'BeqFac': 20.00103103087366, 'BeqShift': 21.731523841779893}, {'CRRA': 2.370358826284101, 'BeqFac': 20.000515515436827, 'BeqShift': 21.729977295469407}, {'CRRA': 2.371132099439345, 'BeqFac': 20.000257757718416, 'BeqShift': 21.73075056862465}, {'CRRA': 2.370745462861723, 'BeqFac': 20.000128878859208, 'BeqShift': 21.730363932047027}, {'CRRA': 2.370938781150534, 'BeqFac': 20.000064439429604, 'BeqShift': 21.73055725033584}, {'CRRA': 2.3708421220061284, 'BeqFac': 20.0000322197148, 'BeqShift': 21.730460591191434}, {'CRRA': 2.3708904515783313, 'BeqFac': 20.000016109857402, 'BeqShift': 21.730508920763636}, {'CRRA': 2.37086628679223, 'BeqFac': 20.0000080549287, 'BeqShift': 21.730484755977535}, {'CRRA': 2.3708783691852804, 'BeqFac': 20.00000402746435, 'BeqShift': 21.730496838370584}, {'CRRA': 2.370872327988755, 'BeqFac': 20.000002013732175, 'BeqShift': 21.73049079717406}, {'CRRA': 2.3708753485870178, 'BeqFac': 20.00000100686609, 'BeqShift': 21.730493817772324}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000805995978, 'BeqShift': 21.730493616902212}, {'CRRA': 2.370874363485218, 'BeqFac': 20.000000805995978, 'BeqShift': 21.730492832670524}, {'CRRA': 2.3708743785103583, 'BeqFac': 20.0000000468044, 'BeqShift': 21.730492847695654}, {'CRRA': 2.3708735357249533, 'BeqFac': 20.000000337566487, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000286125434, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000805995978, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000805995978, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.0, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000805995978, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000805995978, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.0, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.0, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708735357249533, 'BeqFac': 20.0, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751477169074, 'BeqFac': 20.000000729155, 'BeqShift': 21.730493616902212}, {'CRRA': 2.3708751893764037, 'BeqFac': 20.0, 'BeqShift': 21.73049365856171}, {'CRRA': 2.3708759537128796, 'BeqFac': 20.00000068977574, 'BeqShift': 21.730492810906235}, {'CRRA': 2.3708757962941003, 'BeqFac': 20.0, 'BeqShift': 21.730492810906235}, {'CRRA': 2.3708743417209304, 'BeqFac': 20.000001507611632, 'BeqShift': 21.730494422898186}, {'CRRA': 2.3708743417209304, 'BeqFac': 20.00000097074634, 'BeqShift': 21.73049433397103}, {'CRRA': 2.3708743417209304, 'BeqFac': 20.000001200286892, 'BeqShift': 21.73049442289819}, {'CRRA': 2.3708743417209304, 'BeqFac': 20.000000570619434, 'BeqShift': 21.730494312588068}, {'CRRA': 2.3708759537128845, 'BeqFac': 20.000000900949157, 'BeqShift': 21.730492810906235}, {'CRRA': 2.3708754034258503, 'BeqFac': 20.0, 'BeqShift': 21.730493385695773}, {'CRRA': 2.3708751572733884, 'BeqFac': 20.0, 'BeqShift': 21.73049378067007}, {'CRRA': 2.370875232527211, 'BeqFac': 20.00000153515098, 'BeqShift': 21.730493438007382}, {'CRRA': 2.3708752637568935, 'BeqFac': 20.00000153515098, 'BeqShift': 21.7304933872826}, {'CRRA': 2.370875234106017, 'BeqFac': 20.00000153515098, 'BeqShift': 21.7304932506843}, {'CRRA': 2.3708753246002576, 'BeqFac': 20.00000153515098, 'BeqShift': 21.73049308935933}, {'CRRA': 2.37087533248183, 'BeqFac': 20.00000153515098, 'BeqShift': 21.730492865968305}, {'CRRA': 2.37087533248183, 'BeqFac': 20.00000153515098, 'BeqShift': 21.730492865968305}, {'CRRA': 2.37087533248183, 'BeqFac': 20.00000153515098, 'BeqShift': 21.730492865968305}], 'criterion': [2297.947918294926, 64.99011345180561, 40.87561653325209, 36.16294688237441, 54.69657217805607, 53.259802514410346, 35.505088061033085, 69.73867265745196, 79.82621063571987, 53.71233802105777, 50.775772415530284, 77.47400169142021, 79.09802271295953, 33.124714054134834, 12.045808442600055, 720.4183405354968, 43.954592873906996, 93.82606195645025, 25444.75019996413, 23312.875251828493, 21823190215672.566, 251936922.26846117, 18959.179242969112, 2.6431508938805533e+17, 11433.88140261321, 535032715.75521207, 6958975097.917485, 2.8208064275175094e+21, 25444.75019996413, 251936922.26846117, 25444.75019996413, 3916.360573781235, 7493.824481106054, 864.4243905757406, 269.861007650209, 18.0002341982145, 29.929678796054112, 167.8177575935725, 7779.50367332787, 32.77162941464599, 22.9606534693881, 69.4161179530632, 19.85730689647201, 13.158435117217673, 366.07923293515745, 977.6408078576342, 391.6123342835117, 208.13125043943802, 138.5106778993998, 36.72099815193273, 114.18644226263805, 19.652565819773905, 376.4851143253473, 120.91868051542622, 215.9918063931106, 530.8235413540725, 166.4470506756295, 278.12996090369296, 37.65374560627886, 93.14504929255165, 22.83210962931372, 167.22855974552084, 65.9063766205323, 1873.9266214645716, 174.69129615365773, 23.65343745757689, 673.3536655635663, 737.8688707378401, 342.6751570133701, 38.8472606466647, 40.6886148790896, 219.35316851099148, 22.762980222495784, 22.819621389011495, 14.604965606813007, 68.93503892635715, 18.636638491681257, 13.52916872006929, 125.47401966312736, 530.6813333575915, 3317.990937845794, 205.7794014304537, 198.1400976811488, 13.66156352909917, 119.59999600721261, 23.506358535953918, 185.09343343867454, 15.433526976702947, 83.99091602023178, 2179.6163432798744, 2460.502463235671, 20.166246417732363, 22.206182782454352, 1959.4683223498062, 314.0098620489701, 35.22725166597501, 25.156121985886102, 205.56250847169417, 30.363435682931257, 3792.616682004261, 74.76073038920299, 266.1698753565712, 379.33678157912647, 469.79811995856517, 12.256658629672986, 45.085982817499215, 18.24794859970312, 14.739602201671818, 21.31040408124882, 342.9859158732861, 17.39762597696192, 6746.120698820966, 26.439337985614458, 433.4342701781385, 46.24498138790284, 11.756137406922145, 43.00397762394287, 40.98534106946312, 32.56539241768727, 30.28220179104611, 66.12033722458199, 39.593306568527865, 65.08326767233461, 58.824734405215985, 218.38632922310137, 572.2845048855155, 104.69380391228486, 68.39391600335986, 194.9108727746633, 33.2608926493486, 94.32720840770244, 622.7639992579918, 23.773839631401774], 'runtime': [0.0, 1.531540757001494, 1.7446069440047722, 1.9818854210025165, 2.2032348130014725, 2.4349769380060025, 2.6862391010072315, 2.921937353006797, 3.141463513005874, 3.372114406010951, 3.5990292350033997, 3.842889934006962, 4.068840574007481, 5.246207051008241, 6.403982973002712, 7.515320338003221, 8.602419834001921, 9.745891860002303, 11.537124709007912, 11.761462208000012, 12.000921787010157, 12.215365361000295, 12.450962841001456, 12.700956501008477, 12.973904491009307, 13.163735335998354, 13.438348518000566, 13.704000409998116, 13.95039904800069, 14.190222073011682, 15.486656841007061, 16.639023265001015, 17.739882050998858, 18.818515678009135, 19.987151720008114, 21.15389138100727, 22.34706492901023, 23.60477162100142, 24.737448086001677, 25.860278396008653, 26.969551453003078, 28.07087930200214, 29.190596437008935, 30.321699036008795, 31.487763700002688, 32.61449675699987, 33.841346729997895, 34.953202314005466, 36.238214584009256, 37.383969967006124, 38.53240669200022, 39.659853691002354, 40.78432026501105, 41.894050966002396, 43.000854628000525, 44.101246555001126, 45.191892453003675, 46.2990598410106, 47.429732076008804, 48.66882280400023, 49.75891807100561, 50.894283187008114, 52.00118647101044, 53.167758215000504, 54.27785296700313, 55.48942983199959, 56.69936501899792, 57.85430910201103, 58.9471009990084, 60.058409065997694, 61.28997952499776, 62.39849890100595, 63.51024316500116, 64.62314150801103, 65.69684753099864, 66.77204021900252, 67.85180613200646, 68.9418623810052, 70.14538364500913, 71.25994144000288, 72.36684856000647, 73.65957531800086, 74.76718239800539, 75.88990073199966, 77.0105964490067, 78.14409331000934, 79.302194229007, 80.45069756900193, 81.54316486199968, 82.64715493199765, 83.75891539501026, 84.85955931300123, 86.22466463899764, 87.5057547250035, 88.63955249500577, 89.75619077200827, 90.8680302950088, 91.99946188500326, 93.14120374400227, 94.33521174400812, 95.44936906899966, 96.55632648000028, 97.66689396700531, 98.89055271800316, 99.97947278500942, 101.05698853600188, 102.16168705699965, 103.48215242401056, 104.6901231110096, 105.82171133199881, 106.94997002300806, 108.04335205099778, 109.17399496800499, 110.28975366600207, 111.67173536701011, 112.82406070199795, 113.98356700500881, 115.09632140600297, 116.20375509800215, 117.31938504900609, 118.42500558499887, 119.63403375999769, 120.83672694199777, 122.06495981600892, 123.28064923299826, 124.72377952100942, 125.90866964300221, 127.05489064700669, 128.225060028999, 129.32672572101, 130.46409657099866, 131.672374768008, 132.75610021001194], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110]}}], 'exploration_sample': array([[15.275 , 32.5 , 17.5 ],
+ [ 3.4625 , 51.25 , 26.25 ],
+ [18.228125 , 40.3125 , 54.6875 ],
+ [ 4.64375 , 35.625 , 65.625 ],
+ [ 2.871875 , 43.4375 , 32.8125 ],
+ [17.6375 , 63.75 , 8.75 ],
+ [15.865625 , 59.0625 , 45.9375 ],
+ [12.321875 , 68.4375 , 67.8125 ],
+ [ 2.28125 , 66.875 , 39.375 ],
+ [ 9.959375 , 24.6875 , 59.0625 ],
+ [ 8.778125 , 65.3125 , 19.6875 ],
+ [ 9.36875 , 48.125 , 13.125 ],
+ [ 9.37046127, 67.92926163, 52.18632091],
+ [ 8.1875 , 38.75 , 43.75 ],
+ [18.81875 , 23.125 , 48.125 ],
+ [13.503125 , 52.8125 , 2.1875 ],
+ [14.09375 , 60.625 , 30.625 ],
+ [ 4.053125 , 27.8125 , 37.1875 ],
+ [ 6.415625 , 34.0625 , 10.9375 ],
+ [16.45625 , 54.375 , 56.875 ],
+ [11.73125 , 41.875 , 4.375 ],
+ [17.046875 , 30.9375 , 15.3125 ],
+ [19.409375 , 49.6875 , 24.0625 ],
+ [10.55 , 45. , 35. ],
+ [ 5.825 , 57.5 , 52.5 ],
+ [ 5.234375 , 62.1875 , 6.5625 ],
+ [12.9125 , 26.25 , 61.25 ],
+ [ 7.596875 , 55.9375 , 50.3125 ],
+ [14.684375 , 37.1875 , 41.5625 ],
+ [ 7.00625 , 29.375 , 21.875 ]]), 'exploration_results': array([2.67005783e+00, 8.75572079e+00, 9.08018789e+00, 1.68017528e+01,
+ 8.75438745e+01, 9.36743973e+01, 1.00926173e+02, 1.11632625e+02,
+ 1.67068273e+02, 1.92242089e+02, 2.22066462e+02, 2.49895626e+02,
+ 2.52480098e+02, 2.54721262e+02, 4.14506851e+02, 5.22787380e+02,
+ 5.52488706e+02, 5.75590886e+02, 5.94674677e+02, 7.00919594e+02,
+ 1.05281575e+03, 1.07231128e+03, 1.16623114e+03, 1.53593807e+03,
+ 1.67568095e+03, 3.00665721e+03, 2.61981847e+04, 2.87556210e+04,
+ 2.84698965e+14, 1.93307363e+21])}}"
diff --git a/content/tables/min/WarmGlowSub(Labor)Market_estimate_results.csv b/content/tables/min/WarmGlowSub(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..561ccb4
--- /dev/null
+++ b/content/tables/min/WarmGlowSub(Labor)Market_estimate_results.csv
@@ -0,0 +1,5725 @@
+CRRA,3.936588728006248
+DiscFac,1.0540085907678047
+time_to_estimate,161.71836709976196
+params,"{'CRRA': 3.936588728006248, 'DiscFac': 1.0540085907678047}"
+criterion,329.7103025044588
+start_criterion,1021.8221189664621
+start_params,"{'CRRA': 5.0, 'DiscFac': 0.95}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,Absolute params change smaller than tolerance.
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 2.28125, 'DiscFac': 1.0625}, {'CRRA': 2.1080599021593467, 'DiscFac': 0.8603294826310895}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.0537994279097354}, {'CRRA': 2.0790794826310894, 'DiscFac': 1.057771933087904}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.0997321942805047}, {'CRRA': 2.4834205173689106, 'DiscFac': 0.9532212916001106}, {'CRRA': 2.4834205173689106, 'DiscFac': 0.9247148727392314}, {'CRRA': 2.220687379772545, 'DiscFac': 1.1}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.061143425100633}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.097123266376995}, {'CRRA': 2.0790794826310894, 'DiscFac': 1.0647910016988402}, {'CRRA': 2.3332640759975307, 'DiscFac': 0.8603294826310895}, {'CRRA': 2.394747958016102, 'DiscFac': 1.1}, {'CRRA': 2.4834205173689106, 'DiscFac': 0.9899428036653586}, {'CRRA': 2.07907948263109, 'DiscFac': 0.9485587811919458}, {'CRRA': 2.28125, 'DiscFac': 0.96099455546875}, {'CRRA': 2.3823352586844555, 'DiscFac': 0.9607313480539168}, {'CRRA': 2.4282698628957866, 'DiscFac': 1.0081333352714825}, {'CRRA': 2.5293551215802417, 'DiscFac': 1.0142151123588048}, {'CRRA': 2.327184604211331, 'DiscFac': 1.0042800166741386}, {'CRRA': 2.6304403802646967, 'DiscFac': 1.011840268982357}, {'CRRA': 2.471991127423394, 'DiscFac': 1.009320111112641}, {'CRRA': 2.5015367392175882, 'DiscFac': 1.0216177504748765}, {'CRRA': 2.558511717535144, 'DiscFac': 1.0276161614272141}, {'CRRA': 2.457426458850689, 'DiscFac': 1.0215305331751778}, {'CRRA': 2.501336747071488, 'DiscFac': 1.032691442390799}, {'CRRA': 2.400251488387033, 'DiscFac': 1.0200750916944055}, {'CRRA': 2.4443399820357583, 'DiscFac': 1.0306581001930368}, {'CRRA': 2.529847972449796, 'DiscFac': 1.0332493498533561}, {'CRRA': 2.4728518520027922, 'DiscFac': 1.030689880241442}, {'CRRA': 2.501298804864475, 'DiscFac': 1.0339816077574975}, {'CRRA': 2.4870436609694155, 'DiscFac': 1.0336762542833158}, {'CRRA': 2.508428915804454, 'DiscFac': 1.0344991822092973}, {'CRRA': 2.522685008079987, 'DiscFac': 1.034865842524518}, {'CRRA': 2.551190128144725, 'DiscFac': 1.035758034361826}, {'CRRA': 2.6082170741394894, 'DiscFac': 1.0364618559042662}, {'CRRA': 2.7093023328239445, 'DiscFac': 1.0367805544622455}, {'CRRA': 2.911472850192855, 'DiscFac': 1.0408124327854944}, {'CRRA': 2.5071318154550344, 'DiscFac': 1.0202514750960077}, {'CRRA': 3.1136433675617656, 'DiscFac': 1.0432969594038992}, {'CRRA': 3.5179844022995868, 'DiscFac': 1.0489010582495062}, {'CRRA': 4.326666471775228, 'DiscFac': 1.0600035453861216}, {'CRRA': 3.6695953173282456, 'DiscFac': 1.0400304624642023}, {'CRRA': 3.7201549196684973, 'DiscFac': 1.0429564711070365}, {'CRRA': 3.619069660984042, 'DiscFac': 1.0505916418459438}, {'CRRA': 3.8212401783529524, 'DiscFac': 1.045418168161877}, {'CRRA': 3.720154919668497, 'DiscFac': 1.0516844930147706}, {'CRRA': 3.9223254370374074, 'DiscFac': 1.0528478154975809}, {'CRRA': 4.0234106957218625, 'DiscFac': 1.0519377270409527}, {'CRRA': 3.972868066379635, 'DiscFac': 1.0513925274659786}, {'CRRA': 3.9510227312473494, 'DiscFac': 1.044184367781091}, {'CRRA': 3.936570381499215, 'DiscFac': 1.0539560047246967}, {'CRRA': 3.9650916064968427, 'DiscFac': 1.0532271335050025}, {'CRRA': 3.950880843359089, 'DiscFac': 1.0576517158357353}, {'CRRA': 3.942717863080446, 'DiscFac': 1.0576496711573096}, {'CRRA': 3.939514938794341, 'DiscFac': 1.0559647128707559}, {'CRRA': 3.934826911150665, 'DiscFac': 1.0534504975078616}, {'CRRA': 3.9364198915079336, 'DiscFac': 1.054834318815751}, {'CRRA': 3.9364773937214226, 'DiscFac': 1.0543917500553501}, {'CRRA': 3.9367871060935027, 'DiscFac': 1.053904423427387}, {'CRRA': 3.9365307235799625, 'DiscFac': 1.0538519144060265}, {'CRRA': 3.936588728006248, 'DiscFac': 1.0540085907678047}], 'criterion': [935.1742875807975, 1216.3667380409247, 537.8019291484245, 977.1749661237271, 2745.528105187298, 1104.5340573739804, 1160.7836080321674, 3634.6960133978646, 712.1801444821974, 2548.614474702864, 1315.7509613360983, 1211.6501625971741, 3027.4173047684917, 829.2721531871346, 1130.9599480882032, 1082.1793984220099, 1079.4130249190662, 587.2414223119063, 515.4916303449894, 635.2341462339416, 549.723374235226, 573.7335598306056, 435.1912542062541, 391.26096822653744, 434.0675583086433, 369.99789296880266, 445.1353337699835, 376.6905626309715, 368.0234155462132, 376.192011530031, 367.923628769737, 368.91309740946303, 367.07558654605555, 366.07487118769455, 364.011321961592, 360.46133848486267, 356.02846339667883, 346.25080137140253, 448.3611711226967, 339.6154241917441, 332.1534899338143, nan, 355.96913835725707, 345.58998031666033, 331.264805944376, 340.25945935892037, 330.6429285017878, 329.8974806948583, nan, 331.2336481029307, 348.15397411998606, 329.71144182431374, nan, nan, nan, nan, 329.79512799746055, nan, 329.83396840591786, 329.71310846190204, 329.72030476716975, 329.71030250445887], 'runtime': [0.0, 1.9218434060003347, 1.9573878740002328, 1.9930188299999827, 2.0296304660000715, 2.067346479000207, 2.104832086999977, 2.1473167859999194, 2.1956436190002933, 2.226860226000099, 2.2686677520000558, 2.3080797679999705, 2.35938854799997, 4.7379500380002355, 6.5540031410000665, 8.301995650000208, 10.023663359000238, 11.769620493000275, 13.528613295000014, 15.398279455000193, 17.119948382000075, 18.82712327900026, 20.693633022000085, 22.432113200999993, 24.168750933999945, 25.953714025999943, 27.702613398000267, 29.59289010900011, 31.293931536999935, 33.03048518100013, 34.752097221999975, 36.46265411000013, 38.206760251000105, 39.978110974000174, 41.712195129000065, 43.46177701100032, 45.15451058100007, 46.84149160200013, 48.520592077999936, 50.23075040599997, 51.918374385000334, 53.72429173699993, 55.465167314000155, 57.19107925900016, 58.92002409399993, 60.734104887000285, 62.52712700100028, 64.3429545869999, 66.05636371500032, 67.74632934100009, 69.43303644900016, 71.1167774710002, 72.81955898000024, 74.59246622499995, 76.29678089400022, 78.05459004900013, 79.9560147420002, 81.65282278299992, 83.3562907569999, 85.056695794, 86.74315362900006, 88.47902612000007], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]}"
+convergence_report,
+multistart_info,"{'start_parameters': [{'CRRA': 2.28125, 'DiscFac': 1.0625}, {'CRRA': 4.489691583904104, 'DiscFac': 1.0235451798335713}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute params change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 0.02247 0.09591
+relative_params_change 0.1151 0.2751
+absolute_criterion_change 7.462 31.86
+absolute_params_change 0.4044 0.9669
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.), Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute params change smaller than tolerance.], 'exploration_sample': [{'CRRA': 2.28125, 'DiscFac': 1.0625}, {'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 5.0, 'DiscFac': 0.95}, {'CRRA': 7.00625, 'DiscFac': 0.6125}, {'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 2.871875, 'DiscFac': 0.78125}], 'exploration_results': array([ 935.17428758, 989.46212984, 1021.90990852, 1165.31803535,
+ 1180.04944214, 1208.05004997, 1224.63960931])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([2.28125, 1.0625 ]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=935.1742875807975, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=0, candidate_x=array([2.28125, 1.0625 ]), index=0, x=array([2.28125, 1.0625 ]), fval=935.1742875807975, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([2.28125, 1.0625 ]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=333.1005357914007, linear_terms=array([-24.01754028, 166.39586956]), square_terms=array([[ 60.10322182, -468.33150346],
+ [-468.33150346, 3700.3788175 ]]), scale=array([0.20217052, 0.11983526]), shift=array([2.28125 , 0.98016474])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=13, candidate_x=array([2.48342052, 0.9899428 ]), index=13, x=array([2.48342052, 0.9899428 ]), fval=829.2721531871346, rho=0.10653913517498895, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.2147963333792192, relative_step_length=0.9415729682376731, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.48342052, 0.9899428 ]), radius=0.45625000000000004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 4, 6, 7, 10, 11, 12, 13]), model=ScalarModel(intercept=3277.1989353654108, linear_terms=array([ 1749.78382663, -10077.56167375]), square_terms=array([[ 518.50147771, -2980.39041426],
+ [-2980.39041426, 17260.04607903]]), scale=array([0.40434103, 0.25719912]), shift=array([2.48342052, 0.84280088])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=14, candidate_x=array([2.07907948, 0.94855878]), index=13, x=array([2.48342052, 0.9899428 ]), fval=829.2721531871346, rho=-33.898298283027614, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 4, 6, 7, 10, 11, 12, 13]), old_indices_discarded=array([2, 3, 5, 8, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.48342052, 0.9899428 ]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 6, 8, 11, 12, 13]), model=ScalarModel(intercept=909.1049351354964, linear_terms=array([ 850.56844724, -2801.95801874]), square_terms=array([[ 618.64306394, -2054.1553554 ],
+ [-2054.1553554 , 6823.68157553]]), scale=array([0.20217052, 0.15611386]), shift=array([2.48342052, 0.94388614])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=15, candidate_x=array([2.28125 , 0.96099456]), index=13, x=array([2.48342052, 0.9899428 ]), fval=829.2721531871346, rho=-4.8131725801419085, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 8, 11, 12, 13]), old_indices_discarded=array([ 1, 3, 7, 9, 10, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.48342052, 0.9899428 ]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 6, 8, 9, 11, 12, 13]), model=ScalarModel(intercept=407.0733157580378, linear_terms=array([ 371.37021805, -753.18309546]), square_terms=array([[ 908.88036637, -1868.93763984],
+ [-1868.93763984, 3861.03103683]]), scale=array([0.10108526, 0.10108526]), shift=array([2.48342052, 0.9899428 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=16, candidate_x=array([2.38233526, 0.96073135]), index=13, x=array([2.48342052, 0.9899428 ]), fval=829.2721531871346, rho=-3.201003676303562, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 6, 8, 9, 11, 12, 13]), old_indices_discarded=array([ 0, 1, 3, 7, 10, 14, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.48342052, 0.9899428 ]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 6, 8, 9, 12, 13, 16]), model=ScalarModel(intercept=439.60724813400134, linear_terms=array([ 29.06098493, -581.19536117]), square_terms=array([[ 4.7075158 , -74.8572189 ],
+ [ -74.8572189 , 1594.56453251]]), scale=0.057031250000000006, shift=array([2.48342052, 0.9899428 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=17, candidate_x=array([2.42826986, 1.00813334]), index=17, x=array([2.42826986, 1.00813334]), fval=587.2414223119063, rho=2.2603078820668574, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 6, 8, 9, 12, 13, 16]), old_indices_discarded=array([ 0, 7, 11, 15]), step_length=0.05807314464472628, relative_step_length=1.0182688376061593, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.42826986, 1.00813334]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 6, 8, 12, 13, 16, 17]), model=ScalarModel(intercept=362.9312431568839, linear_terms=array([ -1.43610402, -455.95002481]), square_terms=array([[ 3.41974498e+00, -3.77425452e+01],
+ [-3.77425452e+01, 4.45506833e+03]]), scale=array([0.10108526, 0.09647596]), shift=array([2.42826986, 1.00352404])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=18, candidate_x=array([2.52935512, 1.01421511]), index=18, x=array([2.52935512, 1.01421511]), fval=515.4916303449894, rho=6.91127251824898, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 6, 8, 12, 13, 16, 17]), old_indices_discarded=array([ 0, 1, 3, 7, 9, 10, 11, 14, 15]), step_length=0.10126804795118288, relative_step_length=0.8878294614898224, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.52935512, 1.01421511]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 5, 6, 8, 12, 13, 16, 17, 18]), model=ScalarModel(intercept=1359.9712425796195, linear_terms=array([ 530.39350929, -4516.74879736]), square_terms=array([[ 139.52777984, -1134.4366891 ],
+ [-1134.4366891 , 10091.18405894]]), scale=array([0.20217052, 0.1439777 ]), shift=array([2.52935512, 0.9560223 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=19, candidate_x=array([2.3271846 , 1.00428002]), index=18, x=array([2.52935512, 1.01421511]), fval=515.4916303449894, rho=-4.58101497389655, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 5, 6, 8, 12, 13, 16, 17, 18]), old_indices_discarded=array([ 0, 1, 2, 3, 7, 9, 10, 11, 14, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.52935512, 1.01421511]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 6, 8, 9, 13, 17, 18]), model=ScalarModel(intercept=356.13502417264516, linear_terms=array([ -21.86571545, -371.31406634]), square_terms=array([[ 5.32733963, 144.20725695],
+ [ 144.20725695, 4022.4388802 ]]), scale=array([0.10108526, 0.09343507]), shift=array([2.52935512, 1.00656493])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=20, candidate_x=array([2.63044038, 1.01184027]), index=18, x=array([2.52935512, 1.01421511]), fval=515.4916303449894, rho=-3.937360051298474, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 6, 8, 9, 13, 17, 18]), old_indices_discarded=array([ 0, 1, 3, 7, 10, 11, 12, 14, 15, 16, 19]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.52935512, 1.01421511]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 6, 8, 9, 13, 18, 20]), model=ScalarModel(intercept=363.9485394385331, linear_terms=array([ 63.83466939, -205.61803243]), square_terms=array([[ 76.34919354, -329.30910554],
+ [-329.30910554, 1448.28366523]]), scale=0.057031250000000006, shift=array([2.52935512, 1.01421511])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=21, candidate_x=array([2.47199113, 1.00932011]), index=18, x=array([2.52935512, 1.01421511]), fval=515.4916303449894, rho=-1.876806075442851, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 6, 8, 9, 13, 18, 20]), old_indices_discarded=array([ 0, 11, 12, 15, 16, 17, 19]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.52935512, 1.01421511]), radius=0.028515625000000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 6, 8, 9, 13, 18, 21]), model=ScalarModel(intercept=437.8465274491715, linear_terms=array([ 100.6571281 , -233.15172692]), square_terms=array([[ 50.52435959, -135.50013132],
+ [-135.50013132, 372.32698017]]), scale=0.028515625000000003, shift=array([2.52935512, 1.01421511])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=22, candidate_x=array([2.50153674, 1.02161775]), index=22, x=array([2.50153674, 1.02161775]), fval=435.1912542062541, rho=0.9143899853131772, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 6, 8, 9, 13, 18, 21]), old_indices_discarded=array([17, 20]), step_length=0.02878648030503738, relative_step_length=1.0094984874095299, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.50153674, 1.02161775]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 5, 8, 9, 13, 17, 18, 21, 22]), model=ScalarModel(intercept=362.50552881448345, linear_terms=array([ 0.21162612, -185.90090938]), square_terms=array([[ 2.37422818e-01, -1.88009021e+01],
+ [-1.88009021e+01, 1.94454231e+03]]), scale=0.057031250000000006, shift=array([2.50153674, 1.02161775])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=23, candidate_x=array([2.55851172, 1.02761616]), index=23, x=array([2.55851172, 1.02761616]), fval=391.26096822653744, rho=4.206827026062353, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 5, 8, 9, 13, 17, 18, 21, 22]), old_indices_discarded=array([ 0, 4, 6, 11, 12, 15, 16, 19, 20]), step_length=0.05728986898430706, relative_step_length=1.0045346890399045, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.55851172, 1.02761616]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 5, 8, 13, 18, 20, 21, 22, 23]), model=ScalarModel(intercept=475.91436029922244, linear_terms=array([ 146.37643596, -1002.24191137]), square_terms=array([[ 75.34609329, -574.12412706],
+ [-574.12412706, 4492.7084406 ]]), scale=array([0.10108526, 0.08673455]), shift=array([2.55851172, 1.01326545])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=24, candidate_x=array([2.45742646, 1.02153053]), index=23, x=array([2.55851172, 1.02761616]), fval=391.26096822653744, rho=-1.7281556396495996, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 5, 8, 13, 18, 20, 21, 22, 23]), old_indices_discarded=array([ 0, 1, 2, 3, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.55851172, 1.02761616]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 13, 18, 20, 21, 22, 23, 24]), model=ScalarModel(intercept=376.95231493068496, linear_terms=array([ 7.67927515, -262.62815684]), square_terms=array([[ 1.43467190e+00, -5.72964126e+01],
+ [-5.72964126e+01, 2.30456392e+03]]), scale=0.057031250000000006, shift=array([2.55851172, 1.02761616])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=25, candidate_x=array([2.50133675, 1.03269144]), index=25, x=array([2.50133675, 1.03269144]), fval=369.99789296880266, rho=1.3196944736104015, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 13, 18, 20, 21, 22, 23, 24]), old_indices_discarded=array([ 0, 4, 5, 6, 9, 11, 12, 15, 16, 17, 19]), step_length=0.05739978853949947, relative_step_length=1.0064620456241002, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.50133675, 1.03269144]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 6, 8, 13, 17, 18, 23, 24, 25]), model=ScalarModel(intercept=376.9565890121687, linear_terms=array([ 26.48679953, -345.52089772]), square_terms=array([[ 14.62220936, -198.46876477],
+ [-198.46876477, 2898.25266642]]), scale=array([0.10108526, 0.08419691]), shift=array([2.50133675, 1.01580309])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=26, candidate_x=array([2.40025149, 1.02007509]), index=25, x=array([2.50133675, 1.03269144]), fval=369.99789296880266, rho=-6.312050224003466, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 6, 8, 13, 17, 18, 23, 24, 25]), old_indices_discarded=array([ 0, 1, 2, 3, 5, 7, 9, 10, 11, 12, 14, 15, 16, 19, 20, 21, 22]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.50133675, 1.03269144]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 13, 18, 21, 22, 23, 24, 25]), model=ScalarModel(intercept=362.22667160322885, linear_terms=array([ 4.61005975, -18.04304404]), square_terms=array([[ 4.46594012, -100.28453856],
+ [-100.28453856, 2301.28686072]]), scale=0.057031250000000006, shift=array([2.50133675, 1.03269144])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=27, candidate_x=array([2.44433998, 1.0306581 ]), index=25, x=array([2.50133675, 1.03269144]), fval=369.99789296880266, rho=-1.740901072399487, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 13, 18, 21, 22, 23, 24, 25]), old_indices_discarded=array([ 0, 4, 5, 6, 9, 11, 12, 15, 16, 17, 19, 20, 26]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.50133675, 1.03269144]), radius=0.028515625000000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 13, 18, 21, 22, 24, 25, 27]), model=ScalarModel(intercept=361.65660924410525, linear_terms=array([-1.30104938, -4.97478383]), square_terms=array([[ 7.96168857e-02, -6.28732324e+00],
+ [-6.28732324e+00, 5.74231721e+02]]), scale=0.028515625000000003, shift=array([2.50133675, 1.03269144])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=28, candidate_x=array([2.52984797, 1.03324935]), index=28, x=array([2.52984797, 1.03324935]), fval=368.0234155462132, rho=1.4396777758036234, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 13, 18, 21, 22, 24, 25, 27]), old_indices_discarded=array([ 4, 5, 6, 9, 12, 16, 17, 20, 23, 26]), step_length=0.02851668342057767, relative_step_length=1.0000371172147784, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.52984797, 1.03324935]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 13, 18, 21, 22, 23, 25, 28]), model=ScalarModel(intercept=366.55770728049407, linear_terms=array([ 14.5612219 , -63.39484606]), square_terms=array([[ 12.58220499, -165.74806918],
+ [-165.74806918, 2268.97440442]]), scale=0.057031250000000006, shift=array([2.52984797, 1.03324935])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=29, candidate_x=array([2.47285185, 1.03068988]), index=28, x=array([2.52984797, 1.03324935]), fval=368.0234155462132, rho=-0.7726027898783459, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 13, 18, 21, 22, 23, 25, 28]), old_indices_discarded=array([ 0, 4, 5, 6, 9, 11, 12, 15, 16, 17, 19, 20, 24, 26, 27]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.52984797, 1.03324935]), radius=0.028515625000000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 18, 21, 22, 23, 25, 28, 29]), model=ScalarModel(intercept=365.0305729249685, linear_terms=array([ 1.44330514, -37.34903706]), square_terms=array([[ 5.87745365e-01, -1.98667496e+01],
+ [-1.98667496e+01, 6.79541800e+02]]), scale=0.028515625000000003, shift=array([2.52984797, 1.03324935])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=30, candidate_x=array([2.5012988 , 1.03398161]), index=30, x=array([2.5012988 , 1.03398161]), fval=367.923628769737, rho=0.07258712397424556, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 18, 21, 22, 23, 25, 28, 29]), old_indices_discarded=array([ 4, 5, 6, 9, 13, 17, 20, 24, 26, 27]), step_length=0.02855855688673584, relative_step_length=1.0015055565759416, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.5012988 , 1.03398161]), radius=0.014257812500000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 18, 21, 22, 25, 28, 29, 30]), model=ScalarModel(intercept=364.1222320916586, linear_terms=array([ 0.32732752, -1.55141702]), square_terms=array([[ 1.61489154e-01, -5.18747063e+00],
+ [-5.18747063e+00, 1.69455215e+02]]), scale=0.014257812500000001, shift=array([2.5012988 , 1.03398161])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=31, candidate_x=array([2.48704366, 1.03367625]), index=30, x=array([2.5012988 , 1.03398161]), fval=367.923628769737, rho=-3.4652427297692596, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 18, 21, 22, 25, 28, 29, 30]), old_indices_discarded=array([ 4, 9, 13, 23, 24, 27]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.5012988 , 1.03398161]), radius=0.007128906250000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 18, 22, 25, 28, 29, 30, 31]), model=ScalarModel(intercept=365.04854475169265, linear_terms=array([-0.75068331, -3.51804325]), square_terms=array([[2.82154940e-03, 1.06048737e-01],
+ [1.06048737e-01, 4.62554460e+01]]), scale=0.007128906250000001, shift=array([2.5012988 , 1.03398161])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=32, candidate_x=array([2.50842892, 1.03449918]), index=32, x=array([2.50842892, 1.03449918]), fval=367.07558654605555, rho=0.9689609326985643, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 18, 22, 25, 28, 29, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.007148871612329106, relative_step_length=1.0028006206883566, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.50842892, 1.03449918]), radius=0.014257812500000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 18, 22, 25, 28, 29, 30, 31, 32]), model=ScalarModel(intercept=365.01877144878074, linear_terms=array([-1.23284448, -3.51419515]), square_terms=array([[ 9.05393247e-03, -8.87054726e-01],
+ [-8.87054726e-01, 1.69894400e+02]]), scale=0.014257812500000001, shift=array([2.50842892, 1.03449918])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=33, candidate_x=array([2.52268501, 1.03486584]), index=33, x=array([2.52268501, 1.03486584]), fval=366.07487118769455, rho=0.7786619814704517, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 18, 22, 25, 28, 29, 30, 31, 32]), old_indices_discarded=array([ 4, 8, 9, 13, 21, 23, 24, 27]), step_length=0.014260806665657823, relative_step_length=1.0002100017557267, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.52268501, 1.03486584]), radius=0.028515625000000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 22, 23, 25, 28, 30, 31, 32, 33]), model=ScalarModel(intercept=366.89662617731534, linear_terms=array([-1.15714064, -8.80524388]), square_terms=array([[ 1.43053818e-01, -8.85407788e+00],
+ [-8.85407788e+00, 5.63019267e+02]]), scale=0.028515625000000003, shift=array([2.52268501, 1.03486584])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=34, candidate_x=array([2.55119013, 1.03575803]), index=34, x=array([2.55119013, 1.03575803]), fval=364.01132196159205, rho=1.514996115362972, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 22, 23, 25, 28, 30, 31, 32, 33]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 13, 17, 20, 21, 24, 26, 27, 29]), step_length=0.02851907916079509, relative_step_length=1.0001211322141839, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.55119013, 1.03575803]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 22, 23, 25, 28, 30, 32, 33, 34]), model=ScalarModel(intercept=364.9072282243883, linear_terms=array([-3.26192872, 2.61273054]), square_terms=array([[ 4.37832370e-01, -3.06121074e+01],
+ [-3.06121074e+01, 2.26542364e+03]]), scale=0.057031250000000006, shift=array([2.55119013, 1.03575803])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=35, candidate_x=array([2.60821707, 1.03646186]), index=35, x=array([2.60821707, 1.03646186]), fval=360.46133848486267, rho=1.1039196224950625, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 22, 23, 25, 28, 30, 32, 33, 34]), old_indices_discarded=array([ 0, 2, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24,
+ 26, 27, 29, 31]), step_length=0.05703128908111204, relative_step_length=1.000000685257855, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.60821707, 1.03646186]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 20, 22, 23, 28, 30, 33, 34, 35]), model=ScalarModel(intercept=472.7497163528278, linear_terms=array([ 1.61862158, -1001.29687401]), square_terms=array([[ 4.18155924e-01, -3.73402550e+01],
+ [-3.73402550e+01, 4.47783593e+03]]), scale=array([0.10108526, 0.0823117 ]), shift=array([2.60821707, 1.0176883 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=36, candidate_x=array([2.70930233, 1.03678055]), index=36, x=array([2.70930233, 1.03678055]), fval=356.02846339667883, rho=0.6594198389402943, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 20, 22, 23, 28, 30, 33, 34, 35]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 19, 21, 24, 25, 26, 27, 29, 31, 32]), step_length=0.10108576107481237, relative_step_length=0.8862313299709578, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.70930233, 1.03678055]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 8, 18, 20, 22, 31, 33, 34, 35, 36]), model=ScalarModel(intercept=2328.858771992395, linear_terms=array([ 176.48815546, -7465.59201409]), square_terms=array([[ 8.96681086e+00, -3.52247560e+02],
+ [-3.52247560e+02, 1.41126999e+04]]), scale=array([0.20217052, 0.13269498]), shift=array([2.70930233, 0.96730502])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=37, candidate_x=array([2.91147285, 1.04081243]), index=37, x=array([2.91147285, 1.04081243]), fval=346.25080137140253, rho=0.9806695703894485, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 8, 18, 20, 22, 31, 33, 34, 35, 36]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17,
+ 19, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32]), step_length=0.20221071716411682, relative_step_length=0.8864031437331147, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.91147285, 1.04081243]), radius=0.45625000000000004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 6, 8, 13, 24, 34, 35, 36, 37]), model=ScalarModel(intercept=6481.986941233925, linear_terms=array([ 1729.55658056, -16063.43402533]), square_terms=array([[ 247.29559738, -2255.09046193],
+ [-2255.09046193, 21052.2958623 ]]), scale=array([0.40434103, 0.2317643 ]), shift=array([2.91147285, 0.8682357 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=38, candidate_x=array([2.50713182, 1.02025148]), index=37, x=array([2.91147285, 1.04081243]), fval=346.25080137140253, rho=-10.676742898485362, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 6, 8, 13, 24, 34, 35, 36, 37]), old_indices_discarded=array([ 0, 1, 2, 3, 5, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20,
+ 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.91147285, 1.04081243]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 20, 23, 28, 33, 34, 35, 36, 37]), model=ScalarModel(intercept=1962.758747734596, linear_terms=array([ 112.45080748, -5929.7591617 ]), square_terms=array([[ 4.95927050e+00, -2.25104290e+02],
+ [-2.25104290e+02, 1.08726025e+04]]), scale=array([0.20217052, 0.13067904]), shift=array([2.91147285, 0.96932096])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=39, candidate_x=array([3.11364337, 1.04329696]), index=39, x=array([3.11364337, 1.04329696]), fval=339.6154241917441, rho=0.6515510774987106, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 20, 23, 28, 33, 34, 35, 36, 37]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 38]), step_length=0.20218578329281842, relative_step_length=0.8862938445712587, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.11364337, 1.04329696]), radius=0.45625000000000004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 20, 23, 28, 34, 35, 36, 37, 39]), model=ScalarModel(intercept=9922.820348705192, linear_terms=array([ 584.39718757, -25402.16735429]), square_terms=array([[ 1.99722647e+01, -7.98222990e+02],
+ [-7.98222990e+02, 3.36621511e+04]]), scale=array([0.40434103, 0.23052204]), shift=array([3.11364337, 0.86947796])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=40, candidate_x=array([3.5179844 , 1.04890106]), index=40, x=array([3.5179844 , 1.04890106]), fval=332.1534899338143, rho=0.42779959920249483, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 20, 23, 28, 34, 35, 36, 37, 39]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 33, 38]), step_length=0.404379868807441, relative_step_length=0.8863120412217883, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.5179844 , 1.04890106]), radius=0.9125000000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 23, 28, 34, 35, 36, 37, 39, 40]), model=ScalarModel(intercept=19431.021025825365, linear_terms=array([ 1658.92998002, -46026.40383004]), square_terms=array([[ 77.68471224, -2030.75914914],
+ [-2030.75914914, 55449.81654902]]), scale=array([0.80868207, 0.3 ]), shift=array([3.5179844, 0.8 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=40, candidate_x=array([3.5179844 , 1.04890106]), index=40, x=array([3.5179844 , 1.04890106]), fval=332.1534899338143, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 23, 28, 34, 35, 36, 37, 39, 40]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 18, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 33, 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.5179844 , 1.04890106]), radius=0.45625000000000004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 23, 34, 35, 36, 37, 39, 40, 41]), model=ScalarModel(intercept=7298.848379344904, linear_terms=array([ 94.97700137, -19092.84480929]), square_terms=array([[ 30.43275754, -144.42092896],
+ [ -144.42092896, 25991.90536408]]), scale=array([0.40434103, 0.22771999]), shift=array([3.5179844 , 0.87228001])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=42, candidate_x=array([3.66959532, 1.04003046]), index=40, x=array([3.5179844 , 1.04890106]), fval=332.1534899338143, rho=-0.9936039728659589, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 23, 34, 35, 36, 37, 39, 40, 41]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.5179844 , 1.04890106]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 23, 35, 36, 37, 39, 40, 41, 42]), model=ScalarModel(intercept=1727.5592545498296, linear_terms=array([ 13.85204754, -5264.93521515]), square_terms=array([[ 4.38377190e+00, -4.40679296e+01],
+ [-4.40679296e+01, 9.66076416e+03]]), scale=array([0.20217052, 0.12663473]), shift=array([3.5179844 , 0.97336527])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=43, candidate_x=array([3.72015492, 1.04295647]), index=40, x=array([3.5179844 , 1.04890106]), fval=332.1534899338143, rho=-0.6433159047575661, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 23, 35, 36, 37, 39, 40, 41, 42]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 12, 13, 16, 17, 18, 21, 22, 24, 25, 26, 27,
+ 28, 29, 30, 31, 32, 33, 34, 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.5179844 , 1.04890106]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([39, 40, 42, 43]), model=ScalarModel(intercept=466.89452123574836, linear_terms=array([ 12.25710368, -808.14619285]), square_terms=array([[ 7.62584626e-01, -4.20205065e+01],
+ [-4.20205065e+01, 2.42435898e+03]]), scale=array([0.10108526, 0.0760921 ]), shift=array([3.5179844, 1.0239079])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=44, candidate_x=array([3.61906966, 1.05059164]), index=44, x=array([3.61906966, 1.05059164]), fval=331.264805944376, rho=0.5043642670342623, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([39, 40, 42, 43]), old_indices_discarded=array([], dtype=int64), step_length=0.10109939463814678, relative_step_length=0.8863508571015607, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.61906966, 1.05059164]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 36, 37, 39, 40, 41, 42, 43, 44]), model=ScalarModel(intercept=1710.5748133970885, linear_terms=array([ 9.66477497, -5032.5737487 ]), square_terms=array([[ 4.20712319e+00, -3.76943990e+01],
+ [-3.76943990e+01, 8.95671426e+03]]), scale=array([0.20217052, 0.12578944]), shift=array([3.61906966, 0.97421056])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=45, candidate_x=array([3.82124018, 1.04541817]), index=44, x=array([3.61906966, 1.05059164]), fval=331.264805944376, rho=-0.4811149565431463, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 36, 37, 39, 40, 41, 42, 43, 44]), old_indices_discarded=array([ 2, 4, 5, 8, 9, 13, 18, 22, 23, 25, 28, 30, 31, 32, 33, 34, 35,
+ 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.61906966, 1.05059164]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([39, 40, 42, 43, 44, 45]), model=ScalarModel(intercept=469.5023206480024, linear_terms=array([ 12.44644701, -812.3012272 ]), square_terms=array([[ 7.39423845e-01, -4.10646083e+01],
+ [-4.10646083e+01, 2.38432798e+03]]), scale=array([0.10108526, 0.07524681]), shift=array([3.61906966, 1.02475319])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=46, candidate_x=array([3.72015492, 1.05168449]), index=46, x=array([3.72015492, 1.05168449]), fval=330.6429285017878, rho=0.40481975074141474, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([39, 40, 42, 43, 44, 45]), old_indices_discarded=array([], dtype=int64), step_length=0.10109116601850233, relative_step_length=0.8862787157786505, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.72015492, 1.05168449]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([37, 39, 40, 41, 42, 43, 44, 45, 46]), model=ScalarModel(intercept=2776.289476462935, linear_terms=array([ 72.38826402, -8031.03712542]), square_terms=array([[ 2.33438275e+00, -1.31600939e+02],
+ [-1.31600939e+02, 1.30913375e+04]]), scale=array([0.20217052, 0.12524301]), shift=array([3.72015492, 0.97475699])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=47, candidate_x=array([3.92232544, 1.05284782]), index=47, x=array([3.92232544, 1.05284782]), fval=329.8974806948583, rho=0.09505847922825468, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([37, 39, 40, 41, 42, 43, 44, 45, 46]), old_indices_discarded=array([20, 35, 36]), step_length=0.2021738643158704, relative_step_length=0.8862415970010756, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.92232544, 1.05284782]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 41, 42, 43, 44, 45, 46, 47]), model=ScalarModel(intercept=499.52315975920084, linear_terms=array([ -9.18218289, -1086.97670374]), square_terms=array([[9.74549599e-01, 5.75390675e+00],
+ [5.75390675e+00, 3.07558611e+03]]), scale=array([0.10108526, 0.07411872]), shift=array([3.92232544, 1.02588128])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=47, candidate_x=array([3.92232544, 1.05284782]), index=47, x=array([3.92232544, 1.05284782]), fval=329.8974806948583, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([40, 41, 42, 43, 44, 45, 46, 47]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.92232544, 1.05284782]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([42, 43, 45, 46, 47, 48]), model=ScalarModel(intercept=307.9096219725444, linear_terms=array([-7.14761267, 5.65340426]), square_terms=array([[ 4.92479867e-01, -1.03584540e+01],
+ [-1.03584540e+01, 9.57884707e+02]]), scale=array([0.05054263, 0.04884741]), shift=array([3.92232544, 1.05115259])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=49, candidate_x=array([3.97286807, 1.05139253]), index=47, x=array([3.92232544, 1.05284782]), fval=329.8974806948583, rho=-0.17384512797919074, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([42, 43, 45, 46, 47, 48]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.92232544, 1.05284782]), radius=0.028515625000000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([45, 47, 48, 49]), model=ScalarModel(intercept=334.33247447888357, linear_terms=array([ -8.61214154, 115.74225681]), square_terms=array([[ 0.4246031 , -7.42917186],
+ [ -7.42917186, 350.46509675]]), scale=0.028515625000000003, shift=array([3.92232544, 1.05284782])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=50, candidate_x=array([3.95102273, 1.04418437]), index=47, x=array([3.92232544, 1.05284782]), fval=329.8974806948583, rho=-0.7253227658517244, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([45, 47, 48, 49]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.92232544, 1.05284782]), radius=0.014257812500000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([47, 49, 50]), model=ScalarModel(intercept=329.8974806948583, linear_terms=array([ 2.23564875e-03, -4.95582209e+00]), square_terms=array([[ 1.24945118e-02, -9.61026201e-01],
+ [-9.61026201e-01, 7.60541785e+01]]), scale=0.014257812500000001, shift=array([3.92232544, 1.05284782])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=51, candidate_x=array([3.93657038, 1.053956 ]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=0.8394434658153274, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([47, 49, 50]), old_indices_discarded=array([], dtype=int64), step_length=0.014287985375240203, relative_step_length=1.002116234537395, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=0.028515625000000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([45, 47, 48, 49, 50, 51]), model=ScalarModel(intercept=322.6539815389261, linear_terms=array([-5.69111829, 10.03281839]), square_terms=array([[ 2.14196085e-01, -2.08885521e+00],
+ [-2.08885521e+00, 3.05353159e+02]]), scale=0.028515625000000003, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=51, candidate_x=array([3.93657038, 1.053956 ]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([45, 47, 48, 49, 50, 51]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=0.014257812500000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([47, 49, 50, 51, 52]), model=ScalarModel(intercept=321.03895339166985, linear_terms=array([ -6.96284555, -26.26307215]), square_terms=array([[ 0.325053 , 1.33117126],
+ [ 1.33117126, 89.89828657]]), scale=0.014257812500000001, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=51, candidate_x=array([3.93657038, 1.053956 ]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([47, 49, 50, 51, 52]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=0.007128906250000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([47, 50, 51, 52, 53]), model=ScalarModel(intercept=317.80178265489246, linear_terms=array([ -7.99322872, -18.49913967]), square_terms=array([[ 0.46249261, 1.5242433 ],
+ [ 1.5242433 , 25.27614788]]), scale=0.007128906250000001, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=51, candidate_x=array([3.93657038, 1.053956 ]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([47, 50, 51, 52, 53]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=0.0035644531250000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([47, 50, 51, 53, 54]), model=ScalarModel(intercept=315.91078800295094, linear_terms=array([ -3.58652841, -10.16878723]), square_terms=array([[0.09555102, 0.39266515],
+ [0.39266515, 6.63786641]]), scale=0.0035644531250000003, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=51, candidate_x=array([3.93657038, 1.053956 ]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([47, 50, 51, 53, 54]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=0.0017822265625000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([51, 54, 55]), model=ScalarModel(intercept=329.7114418243134, linear_terms=array([ 355.90719429, -673.90758745]), square_terms=array([[ 808.1789343 , -1536.25082243],
+ [-1536.25082243, 2921.44848597]]), scale=0.0017822265625000002, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=56, candidate_x=array([3.93482691, 1.0534505 ]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=-0.0010584685326253944, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([51, 54, 55]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=0.0008911132812500001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([51, 55, 56]), model=ScalarModel(intercept=329.7114418243141, linear_terms=array([ 3.57892155, -12.40742816]), square_terms=array([[ 0.0845807 , -0.32614624],
+ [-0.32614624, 1.5384448 ]]), scale=0.0008911132812500001, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=51, candidate_x=array([3.93657038, 1.053956 ]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([51, 55, 56]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=0.00044555664062500004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([51, 56, 57]), model=ScalarModel(intercept=329.71144182431374, linear_terms=array([ 2.48192071, -8.59197548]), square_terms=array([[ 0.04013635, -0.14963807],
+ [-0.14963807, 0.6284637 ]]), scale=0.00044555664062500004, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=58, candidate_x=array([3.93647739, 1.05439175]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=-0.014265866438797504, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([51, 56, 57]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=0.00022277832031250002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([51, 57, 58]), model=ScalarModel(intercept=329.7114418243142, linear_terms=array([-110.72328776, -23.58526244]), square_terms=array([[77.87101078, 16.84361429],
+ [16.84361429, 3.66271023]]), scale=0.00022277832031250002, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=59, candidate_x=array([3.93678711, 1.05390442]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=-2.411878603086549e-05, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([51, 57, 58]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=0.00011138916015625001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([51, 58, 59]), model=ScalarModel(intercept=329.7114418243135, linear_terms=array([0.00598092, 0.02278487]), square_terms=array([[ 7.75238359e-07, -4.85669807e-05],
+ [-4.85669807e-05, 4.99611280e-03]]), scale=0.00011138916015625001, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=60, candidate_x=array([3.93653072, 1.05385191]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=-0.4169625588003394, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([51, 58, 59]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=5.5694580078125005e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([51, 59, 60]), model=ScalarModel(intercept=329.71144182431397, linear_terms=array([-0.00053022, -0.0034001 ]), square_terms=array([[ 1.75578404e-07, -1.43330845e-05],
+ [-1.43330845e-05, 1.23093573e-03]]), scale=5.5694580078125005e-05, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=61, candidate_x=array([3.93658873, 1.05400859]), index=61, x=array([3.93658873, 1.05400859]), fval=329.7103025044588, rho=0.4010623225221273, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([51, 59, 60]), old_indices_discarded=array([], dtype=int64), step_length=5.569458007806218e-05, relative_step_length=0.999999999998872, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 62 entries., 'multistart_info': {'start_parameters': [array([2.28125, 1.0625 ]), array([4.48969158, 1.02354518])], 'local_optima': [{'solution_x': array([3.93658873, 1.05400859]), 'solution_criterion': 329.7103025044588, 'states': [State(trustregion=Region(center=array([2.28125, 1.0625 ]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=935.1742875807975, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=0, candidate_x=array([2.28125, 1.0625 ]), index=0, x=array([2.28125, 1.0625 ]), fval=935.1742875807975, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([2.28125, 1.0625 ]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=333.1005357914007, linear_terms=array([-24.01754028, 166.39586956]), square_terms=array([[ 60.10322182, -468.33150346],
+ [-468.33150346, 3700.3788175 ]]), scale=array([0.20217052, 0.11983526]), shift=array([2.28125 , 0.98016474])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=13, candidate_x=array([2.48342052, 0.9899428 ]), index=13, x=array([2.48342052, 0.9899428 ]), fval=829.2721531871346, rho=0.10653913517498895, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.2147963333792192, relative_step_length=0.9415729682376731, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.48342052, 0.9899428 ]), radius=0.45625000000000004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 4, 6, 7, 10, 11, 12, 13]), model=ScalarModel(intercept=3277.1989353654108, linear_terms=array([ 1749.78382663, -10077.56167375]), square_terms=array([[ 518.50147771, -2980.39041426],
+ [-2980.39041426, 17260.04607903]]), scale=array([0.40434103, 0.25719912]), shift=array([2.48342052, 0.84280088])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=14, candidate_x=array([2.07907948, 0.94855878]), index=13, x=array([2.48342052, 0.9899428 ]), fval=829.2721531871346, rho=-33.898298283027614, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 4, 6, 7, 10, 11, 12, 13]), old_indices_discarded=array([2, 3, 5, 8, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.48342052, 0.9899428 ]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 6, 8, 11, 12, 13]), model=ScalarModel(intercept=909.1049351354964, linear_terms=array([ 850.56844724, -2801.95801874]), square_terms=array([[ 618.64306394, -2054.1553554 ],
+ [-2054.1553554 , 6823.68157553]]), scale=array([0.20217052, 0.15611386]), shift=array([2.48342052, 0.94388614])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=15, candidate_x=array([2.28125 , 0.96099456]), index=13, x=array([2.48342052, 0.9899428 ]), fval=829.2721531871346, rho=-4.8131725801419085, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 8, 11, 12, 13]), old_indices_discarded=array([ 1, 3, 7, 9, 10, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.48342052, 0.9899428 ]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 6, 8, 9, 11, 12, 13]), model=ScalarModel(intercept=407.0733157580378, linear_terms=array([ 371.37021805, -753.18309546]), square_terms=array([[ 908.88036637, -1868.93763984],
+ [-1868.93763984, 3861.03103683]]), scale=array([0.10108526, 0.10108526]), shift=array([2.48342052, 0.9899428 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=16, candidate_x=array([2.38233526, 0.96073135]), index=13, x=array([2.48342052, 0.9899428 ]), fval=829.2721531871346, rho=-3.201003676303562, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 6, 8, 9, 11, 12, 13]), old_indices_discarded=array([ 0, 1, 3, 7, 10, 14, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.48342052, 0.9899428 ]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 6, 8, 9, 12, 13, 16]), model=ScalarModel(intercept=439.60724813400134, linear_terms=array([ 29.06098493, -581.19536117]), square_terms=array([[ 4.7075158 , -74.8572189 ],
+ [ -74.8572189 , 1594.56453251]]), scale=0.057031250000000006, shift=array([2.48342052, 0.9899428 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=17, candidate_x=array([2.42826986, 1.00813334]), index=17, x=array([2.42826986, 1.00813334]), fval=587.2414223119063, rho=2.2603078820668574, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 6, 8, 9, 12, 13, 16]), old_indices_discarded=array([ 0, 7, 11, 15]), step_length=0.05807314464472628, relative_step_length=1.0182688376061593, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.42826986, 1.00813334]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 6, 8, 12, 13, 16, 17]), model=ScalarModel(intercept=362.9312431568839, linear_terms=array([ -1.43610402, -455.95002481]), square_terms=array([[ 3.41974498e+00, -3.77425452e+01],
+ [-3.77425452e+01, 4.45506833e+03]]), scale=array([0.10108526, 0.09647596]), shift=array([2.42826986, 1.00352404])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=18, candidate_x=array([2.52935512, 1.01421511]), index=18, x=array([2.52935512, 1.01421511]), fval=515.4916303449894, rho=6.91127251824898, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 6, 8, 12, 13, 16, 17]), old_indices_discarded=array([ 0, 1, 3, 7, 9, 10, 11, 14, 15]), step_length=0.10126804795118288, relative_step_length=0.8878294614898224, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.52935512, 1.01421511]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 5, 6, 8, 12, 13, 16, 17, 18]), model=ScalarModel(intercept=1359.9712425796195, linear_terms=array([ 530.39350929, -4516.74879736]), square_terms=array([[ 139.52777984, -1134.4366891 ],
+ [-1134.4366891 , 10091.18405894]]), scale=array([0.20217052, 0.1439777 ]), shift=array([2.52935512, 0.9560223 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=19, candidate_x=array([2.3271846 , 1.00428002]), index=18, x=array([2.52935512, 1.01421511]), fval=515.4916303449894, rho=-4.58101497389655, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 5, 6, 8, 12, 13, 16, 17, 18]), old_indices_discarded=array([ 0, 1, 2, 3, 7, 9, 10, 11, 14, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.52935512, 1.01421511]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 6, 8, 9, 13, 17, 18]), model=ScalarModel(intercept=356.13502417264516, linear_terms=array([ -21.86571545, -371.31406634]), square_terms=array([[ 5.32733963, 144.20725695],
+ [ 144.20725695, 4022.4388802 ]]), scale=array([0.10108526, 0.09343507]), shift=array([2.52935512, 1.00656493])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=20, candidate_x=array([2.63044038, 1.01184027]), index=18, x=array([2.52935512, 1.01421511]), fval=515.4916303449894, rho=-3.937360051298474, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 6, 8, 9, 13, 17, 18]), old_indices_discarded=array([ 0, 1, 3, 7, 10, 11, 12, 14, 15, 16, 19]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.52935512, 1.01421511]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 6, 8, 9, 13, 18, 20]), model=ScalarModel(intercept=363.9485394385331, linear_terms=array([ 63.83466939, -205.61803243]), square_terms=array([[ 76.34919354, -329.30910554],
+ [-329.30910554, 1448.28366523]]), scale=0.057031250000000006, shift=array([2.52935512, 1.01421511])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=21, candidate_x=array([2.47199113, 1.00932011]), index=18, x=array([2.52935512, 1.01421511]), fval=515.4916303449894, rho=-1.876806075442851, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 6, 8, 9, 13, 18, 20]), old_indices_discarded=array([ 0, 11, 12, 15, 16, 17, 19]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.52935512, 1.01421511]), radius=0.028515625000000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 6, 8, 9, 13, 18, 21]), model=ScalarModel(intercept=437.8465274491715, linear_terms=array([ 100.6571281 , -233.15172692]), square_terms=array([[ 50.52435959, -135.50013132],
+ [-135.50013132, 372.32698017]]), scale=0.028515625000000003, shift=array([2.52935512, 1.01421511])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=22, candidate_x=array([2.50153674, 1.02161775]), index=22, x=array([2.50153674, 1.02161775]), fval=435.1912542062541, rho=0.9143899853131772, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 6, 8, 9, 13, 18, 21]), old_indices_discarded=array([17, 20]), step_length=0.02878648030503738, relative_step_length=1.0094984874095299, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.50153674, 1.02161775]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 5, 8, 9, 13, 17, 18, 21, 22]), model=ScalarModel(intercept=362.50552881448345, linear_terms=array([ 0.21162612, -185.90090938]), square_terms=array([[ 2.37422818e-01, -1.88009021e+01],
+ [-1.88009021e+01, 1.94454231e+03]]), scale=0.057031250000000006, shift=array([2.50153674, 1.02161775])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=23, candidate_x=array([2.55851172, 1.02761616]), index=23, x=array([2.55851172, 1.02761616]), fval=391.26096822653744, rho=4.206827026062353, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 5, 8, 9, 13, 17, 18, 21, 22]), old_indices_discarded=array([ 0, 4, 6, 11, 12, 15, 16, 19, 20]), step_length=0.05728986898430706, relative_step_length=1.0045346890399045, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.55851172, 1.02761616]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 5, 8, 13, 18, 20, 21, 22, 23]), model=ScalarModel(intercept=475.91436029922244, linear_terms=array([ 146.37643596, -1002.24191137]), square_terms=array([[ 75.34609329, -574.12412706],
+ [-574.12412706, 4492.7084406 ]]), scale=array([0.10108526, 0.08673455]), shift=array([2.55851172, 1.01326545])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=24, candidate_x=array([2.45742646, 1.02153053]), index=23, x=array([2.55851172, 1.02761616]), fval=391.26096822653744, rho=-1.7281556396495996, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 5, 8, 13, 18, 20, 21, 22, 23]), old_indices_discarded=array([ 0, 1, 2, 3, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.55851172, 1.02761616]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 13, 18, 20, 21, 22, 23, 24]), model=ScalarModel(intercept=376.95231493068496, linear_terms=array([ 7.67927515, -262.62815684]), square_terms=array([[ 1.43467190e+00, -5.72964126e+01],
+ [-5.72964126e+01, 2.30456392e+03]]), scale=0.057031250000000006, shift=array([2.55851172, 1.02761616])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=25, candidate_x=array([2.50133675, 1.03269144]), index=25, x=array([2.50133675, 1.03269144]), fval=369.99789296880266, rho=1.3196944736104015, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 13, 18, 20, 21, 22, 23, 24]), old_indices_discarded=array([ 0, 4, 5, 6, 9, 11, 12, 15, 16, 17, 19]), step_length=0.05739978853949947, relative_step_length=1.0064620456241002, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.50133675, 1.03269144]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 6, 8, 13, 17, 18, 23, 24, 25]), model=ScalarModel(intercept=376.9565890121687, linear_terms=array([ 26.48679953, -345.52089772]), square_terms=array([[ 14.62220936, -198.46876477],
+ [-198.46876477, 2898.25266642]]), scale=array([0.10108526, 0.08419691]), shift=array([2.50133675, 1.01580309])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=26, candidate_x=array([2.40025149, 1.02007509]), index=25, x=array([2.50133675, 1.03269144]), fval=369.99789296880266, rho=-6.312050224003466, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 6, 8, 13, 17, 18, 23, 24, 25]), old_indices_discarded=array([ 0, 1, 2, 3, 5, 7, 9, 10, 11, 12, 14, 15, 16, 19, 20, 21, 22]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.50133675, 1.03269144]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 13, 18, 21, 22, 23, 24, 25]), model=ScalarModel(intercept=362.22667160322885, linear_terms=array([ 4.61005975, -18.04304404]), square_terms=array([[ 4.46594012, -100.28453856],
+ [-100.28453856, 2301.28686072]]), scale=0.057031250000000006, shift=array([2.50133675, 1.03269144])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=27, candidate_x=array([2.44433998, 1.0306581 ]), index=25, x=array([2.50133675, 1.03269144]), fval=369.99789296880266, rho=-1.740901072399487, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 13, 18, 21, 22, 23, 24, 25]), old_indices_discarded=array([ 0, 4, 5, 6, 9, 11, 12, 15, 16, 17, 19, 20, 26]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.50133675, 1.03269144]), radius=0.028515625000000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 13, 18, 21, 22, 24, 25, 27]), model=ScalarModel(intercept=361.65660924410525, linear_terms=array([-1.30104938, -4.97478383]), square_terms=array([[ 7.96168857e-02, -6.28732324e+00],
+ [-6.28732324e+00, 5.74231721e+02]]), scale=0.028515625000000003, shift=array([2.50133675, 1.03269144])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=28, candidate_x=array([2.52984797, 1.03324935]), index=28, x=array([2.52984797, 1.03324935]), fval=368.0234155462132, rho=1.4396777758036234, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 13, 18, 21, 22, 24, 25, 27]), old_indices_discarded=array([ 4, 5, 6, 9, 12, 16, 17, 20, 23, 26]), step_length=0.02851668342057767, relative_step_length=1.0000371172147784, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.52984797, 1.03324935]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 13, 18, 21, 22, 23, 25, 28]), model=ScalarModel(intercept=366.55770728049407, linear_terms=array([ 14.5612219 , -63.39484606]), square_terms=array([[ 12.58220499, -165.74806918],
+ [-165.74806918, 2268.97440442]]), scale=0.057031250000000006, shift=array([2.52984797, 1.03324935])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=29, candidate_x=array([2.47285185, 1.03068988]), index=28, x=array([2.52984797, 1.03324935]), fval=368.0234155462132, rho=-0.7726027898783459, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 13, 18, 21, 22, 23, 25, 28]), old_indices_discarded=array([ 0, 4, 5, 6, 9, 11, 12, 15, 16, 17, 19, 20, 24, 26, 27]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.52984797, 1.03324935]), radius=0.028515625000000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 18, 21, 22, 23, 25, 28, 29]), model=ScalarModel(intercept=365.0305729249685, linear_terms=array([ 1.44330514, -37.34903706]), square_terms=array([[ 5.87745365e-01, -1.98667496e+01],
+ [-1.98667496e+01, 6.79541800e+02]]), scale=0.028515625000000003, shift=array([2.52984797, 1.03324935])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=30, candidate_x=array([2.5012988 , 1.03398161]), index=30, x=array([2.5012988 , 1.03398161]), fval=367.923628769737, rho=0.07258712397424556, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 18, 21, 22, 23, 25, 28, 29]), old_indices_discarded=array([ 4, 5, 6, 9, 13, 17, 20, 24, 26, 27]), step_length=0.02855855688673584, relative_step_length=1.0015055565759416, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.5012988 , 1.03398161]), radius=0.014257812500000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 18, 21, 22, 25, 28, 29, 30]), model=ScalarModel(intercept=364.1222320916586, linear_terms=array([ 0.32732752, -1.55141702]), square_terms=array([[ 1.61489154e-01, -5.18747063e+00],
+ [-5.18747063e+00, 1.69455215e+02]]), scale=0.014257812500000001, shift=array([2.5012988 , 1.03398161])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=31, candidate_x=array([2.48704366, 1.03367625]), index=30, x=array([2.5012988 , 1.03398161]), fval=367.923628769737, rho=-3.4652427297692596, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 18, 21, 22, 25, 28, 29, 30]), old_indices_discarded=array([ 4, 9, 13, 23, 24, 27]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.5012988 , 1.03398161]), radius=0.007128906250000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 18, 22, 25, 28, 29, 30, 31]), model=ScalarModel(intercept=365.04854475169265, linear_terms=array([-0.75068331, -3.51804325]), square_terms=array([[2.82154940e-03, 1.06048737e-01],
+ [1.06048737e-01, 4.62554460e+01]]), scale=0.007128906250000001, shift=array([2.5012988 , 1.03398161])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=32, candidate_x=array([2.50842892, 1.03449918]), index=32, x=array([2.50842892, 1.03449918]), fval=367.07558654605555, rho=0.9689609326985643, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 18, 22, 25, 28, 29, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.007148871612329106, relative_step_length=1.0028006206883566, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.50842892, 1.03449918]), radius=0.014257812500000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 18, 22, 25, 28, 29, 30, 31, 32]), model=ScalarModel(intercept=365.01877144878074, linear_terms=array([-1.23284448, -3.51419515]), square_terms=array([[ 9.05393247e-03, -8.87054726e-01],
+ [-8.87054726e-01, 1.69894400e+02]]), scale=0.014257812500000001, shift=array([2.50842892, 1.03449918])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=33, candidate_x=array([2.52268501, 1.03486584]), index=33, x=array([2.52268501, 1.03486584]), fval=366.07487118769455, rho=0.7786619814704517, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 18, 22, 25, 28, 29, 30, 31, 32]), old_indices_discarded=array([ 4, 8, 9, 13, 21, 23, 24, 27]), step_length=0.014260806665657823, relative_step_length=1.0002100017557267, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.52268501, 1.03486584]), radius=0.028515625000000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 22, 23, 25, 28, 30, 31, 32, 33]), model=ScalarModel(intercept=366.89662617731534, linear_terms=array([-1.15714064, -8.80524388]), square_terms=array([[ 1.43053818e-01, -8.85407788e+00],
+ [-8.85407788e+00, 5.63019267e+02]]), scale=0.028515625000000003, shift=array([2.52268501, 1.03486584])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=34, candidate_x=array([2.55119013, 1.03575803]), index=34, x=array([2.55119013, 1.03575803]), fval=364.01132196159205, rho=1.514996115362972, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 22, 23, 25, 28, 30, 31, 32, 33]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 13, 17, 20, 21, 24, 26, 27, 29]), step_length=0.02851907916079509, relative_step_length=1.0001211322141839, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.55119013, 1.03575803]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 22, 23, 25, 28, 30, 32, 33, 34]), model=ScalarModel(intercept=364.9072282243883, linear_terms=array([-3.26192872, 2.61273054]), square_terms=array([[ 4.37832370e-01, -3.06121074e+01],
+ [-3.06121074e+01, 2.26542364e+03]]), scale=0.057031250000000006, shift=array([2.55119013, 1.03575803])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=35, candidate_x=array([2.60821707, 1.03646186]), index=35, x=array([2.60821707, 1.03646186]), fval=360.46133848486267, rho=1.1039196224950625, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 22, 23, 25, 28, 30, 32, 33, 34]), old_indices_discarded=array([ 0, 2, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24,
+ 26, 27, 29, 31]), step_length=0.05703128908111204, relative_step_length=1.000000685257855, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.60821707, 1.03646186]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 20, 22, 23, 28, 30, 33, 34, 35]), model=ScalarModel(intercept=472.7497163528278, linear_terms=array([ 1.61862158, -1001.29687401]), square_terms=array([[ 4.18155924e-01, -3.73402550e+01],
+ [-3.73402550e+01, 4.47783593e+03]]), scale=array([0.10108526, 0.0823117 ]), shift=array([2.60821707, 1.0176883 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=36, candidate_x=array([2.70930233, 1.03678055]), index=36, x=array([2.70930233, 1.03678055]), fval=356.02846339667883, rho=0.6594198389402943, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 20, 22, 23, 28, 30, 33, 34, 35]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 19, 21, 24, 25, 26, 27, 29, 31, 32]), step_length=0.10108576107481237, relative_step_length=0.8862313299709578, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.70930233, 1.03678055]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 8, 18, 20, 22, 31, 33, 34, 35, 36]), model=ScalarModel(intercept=2328.858771992395, linear_terms=array([ 176.48815546, -7465.59201409]), square_terms=array([[ 8.96681086e+00, -3.52247560e+02],
+ [-3.52247560e+02, 1.41126999e+04]]), scale=array([0.20217052, 0.13269498]), shift=array([2.70930233, 0.96730502])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=37, candidate_x=array([2.91147285, 1.04081243]), index=37, x=array([2.91147285, 1.04081243]), fval=346.25080137140253, rho=0.9806695703894485, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 8, 18, 20, 22, 31, 33, 34, 35, 36]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17,
+ 19, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32]), step_length=0.20221071716411682, relative_step_length=0.8864031437331147, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.91147285, 1.04081243]), radius=0.45625000000000004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 6, 8, 13, 24, 34, 35, 36, 37]), model=ScalarModel(intercept=6481.986941233925, linear_terms=array([ 1729.55658056, -16063.43402533]), square_terms=array([[ 247.29559738, -2255.09046193],
+ [-2255.09046193, 21052.2958623 ]]), scale=array([0.40434103, 0.2317643 ]), shift=array([2.91147285, 0.8682357 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=38, candidate_x=array([2.50713182, 1.02025148]), index=37, x=array([2.91147285, 1.04081243]), fval=346.25080137140253, rho=-10.676742898485362, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 6, 8, 13, 24, 34, 35, 36, 37]), old_indices_discarded=array([ 0, 1, 2, 3, 5, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20,
+ 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.91147285, 1.04081243]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 20, 23, 28, 33, 34, 35, 36, 37]), model=ScalarModel(intercept=1962.758747734596, linear_terms=array([ 112.45080748, -5929.7591617 ]), square_terms=array([[ 4.95927050e+00, -2.25104290e+02],
+ [-2.25104290e+02, 1.08726025e+04]]), scale=array([0.20217052, 0.13067904]), shift=array([2.91147285, 0.96932096])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=39, candidate_x=array([3.11364337, 1.04329696]), index=39, x=array([3.11364337, 1.04329696]), fval=339.6154241917441, rho=0.6515510774987106, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 20, 23, 28, 33, 34, 35, 36, 37]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 38]), step_length=0.20218578329281842, relative_step_length=0.8862938445712587, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.11364337, 1.04329696]), radius=0.45625000000000004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 20, 23, 28, 34, 35, 36, 37, 39]), model=ScalarModel(intercept=9922.820348705192, linear_terms=array([ 584.39718757, -25402.16735429]), square_terms=array([[ 1.99722647e+01, -7.98222990e+02],
+ [-7.98222990e+02, 3.36621511e+04]]), scale=array([0.40434103, 0.23052204]), shift=array([3.11364337, 0.86947796])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=40, candidate_x=array([3.5179844 , 1.04890106]), index=40, x=array([3.5179844 , 1.04890106]), fval=332.1534899338143, rho=0.42779959920249483, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 20, 23, 28, 34, 35, 36, 37, 39]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 33, 38]), step_length=0.404379868807441, relative_step_length=0.8863120412217883, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.5179844 , 1.04890106]), radius=0.9125000000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 23, 28, 34, 35, 36, 37, 39, 40]), model=ScalarModel(intercept=19431.021025825365, linear_terms=array([ 1658.92998002, -46026.40383004]), square_terms=array([[ 77.68471224, -2030.75914914],
+ [-2030.75914914, 55449.81654902]]), scale=array([0.80868207, 0.3 ]), shift=array([3.5179844, 0.8 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=40, candidate_x=array([3.5179844 , 1.04890106]), index=40, x=array([3.5179844 , 1.04890106]), fval=332.1534899338143, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 23, 28, 34, 35, 36, 37, 39, 40]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 18, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 33, 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.5179844 , 1.04890106]), radius=0.45625000000000004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 23, 34, 35, 36, 37, 39, 40, 41]), model=ScalarModel(intercept=7298.848379344904, linear_terms=array([ 94.97700137, -19092.84480929]), square_terms=array([[ 30.43275754, -144.42092896],
+ [ -144.42092896, 25991.90536408]]), scale=array([0.40434103, 0.22771999]), shift=array([3.5179844 , 0.87228001])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=42, candidate_x=array([3.66959532, 1.04003046]), index=40, x=array([3.5179844 , 1.04890106]), fval=332.1534899338143, rho=-0.9936039728659589, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 23, 34, 35, 36, 37, 39, 40, 41]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.5179844 , 1.04890106]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 23, 35, 36, 37, 39, 40, 41, 42]), model=ScalarModel(intercept=1727.5592545498296, linear_terms=array([ 13.85204754, -5264.93521515]), square_terms=array([[ 4.38377190e+00, -4.40679296e+01],
+ [-4.40679296e+01, 9.66076416e+03]]), scale=array([0.20217052, 0.12663473]), shift=array([3.5179844 , 0.97336527])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=43, candidate_x=array([3.72015492, 1.04295647]), index=40, x=array([3.5179844 , 1.04890106]), fval=332.1534899338143, rho=-0.6433159047575661, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 23, 35, 36, 37, 39, 40, 41, 42]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 12, 13, 16, 17, 18, 21, 22, 24, 25, 26, 27,
+ 28, 29, 30, 31, 32, 33, 34, 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.5179844 , 1.04890106]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([39, 40, 42, 43]), model=ScalarModel(intercept=466.89452123574836, linear_terms=array([ 12.25710368, -808.14619285]), square_terms=array([[ 7.62584626e-01, -4.20205065e+01],
+ [-4.20205065e+01, 2.42435898e+03]]), scale=array([0.10108526, 0.0760921 ]), shift=array([3.5179844, 1.0239079])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=44, candidate_x=array([3.61906966, 1.05059164]), index=44, x=array([3.61906966, 1.05059164]), fval=331.264805944376, rho=0.5043642670342623, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([39, 40, 42, 43]), old_indices_discarded=array([], dtype=int64), step_length=0.10109939463814678, relative_step_length=0.8863508571015607, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.61906966, 1.05059164]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 36, 37, 39, 40, 41, 42, 43, 44]), model=ScalarModel(intercept=1710.5748133970885, linear_terms=array([ 9.66477497, -5032.5737487 ]), square_terms=array([[ 4.20712319e+00, -3.76943990e+01],
+ [-3.76943990e+01, 8.95671426e+03]]), scale=array([0.20217052, 0.12578944]), shift=array([3.61906966, 0.97421056])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=45, candidate_x=array([3.82124018, 1.04541817]), index=44, x=array([3.61906966, 1.05059164]), fval=331.264805944376, rho=-0.4811149565431463, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 36, 37, 39, 40, 41, 42, 43, 44]), old_indices_discarded=array([ 2, 4, 5, 8, 9, 13, 18, 22, 23, 25, 28, 30, 31, 32, 33, 34, 35,
+ 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.61906966, 1.05059164]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([39, 40, 42, 43, 44, 45]), model=ScalarModel(intercept=469.5023206480024, linear_terms=array([ 12.44644701, -812.3012272 ]), square_terms=array([[ 7.39423845e-01, -4.10646083e+01],
+ [-4.10646083e+01, 2.38432798e+03]]), scale=array([0.10108526, 0.07524681]), shift=array([3.61906966, 1.02475319])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=46, candidate_x=array([3.72015492, 1.05168449]), index=46, x=array([3.72015492, 1.05168449]), fval=330.6429285017878, rho=0.40481975074141474, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([39, 40, 42, 43, 44, 45]), old_indices_discarded=array([], dtype=int64), step_length=0.10109116601850233, relative_step_length=0.8862787157786505, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.72015492, 1.05168449]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([37, 39, 40, 41, 42, 43, 44, 45, 46]), model=ScalarModel(intercept=2776.289476462935, linear_terms=array([ 72.38826402, -8031.03712542]), square_terms=array([[ 2.33438275e+00, -1.31600939e+02],
+ [-1.31600939e+02, 1.30913375e+04]]), scale=array([0.20217052, 0.12524301]), shift=array([3.72015492, 0.97475699])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=47, candidate_x=array([3.92232544, 1.05284782]), index=47, x=array([3.92232544, 1.05284782]), fval=329.8974806948583, rho=0.09505847922825468, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([37, 39, 40, 41, 42, 43, 44, 45, 46]), old_indices_discarded=array([20, 35, 36]), step_length=0.2021738643158704, relative_step_length=0.8862415970010756, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.92232544, 1.05284782]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 41, 42, 43, 44, 45, 46, 47]), model=ScalarModel(intercept=499.52315975920084, linear_terms=array([ -9.18218289, -1086.97670374]), square_terms=array([[9.74549599e-01, 5.75390675e+00],
+ [5.75390675e+00, 3.07558611e+03]]), scale=array([0.10108526, 0.07411872]), shift=array([3.92232544, 1.02588128])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=47, candidate_x=array([3.92232544, 1.05284782]), index=47, x=array([3.92232544, 1.05284782]), fval=329.8974806948583, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([40, 41, 42, 43, 44, 45, 46, 47]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.92232544, 1.05284782]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([42, 43, 45, 46, 47, 48]), model=ScalarModel(intercept=307.9096219725444, linear_terms=array([-7.14761267, 5.65340426]), square_terms=array([[ 4.92479867e-01, -1.03584540e+01],
+ [-1.03584540e+01, 9.57884707e+02]]), scale=array([0.05054263, 0.04884741]), shift=array([3.92232544, 1.05115259])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=49, candidate_x=array([3.97286807, 1.05139253]), index=47, x=array([3.92232544, 1.05284782]), fval=329.8974806948583, rho=-0.17384512797919074, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([42, 43, 45, 46, 47, 48]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.92232544, 1.05284782]), radius=0.028515625000000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([45, 47, 48, 49]), model=ScalarModel(intercept=334.33247447888357, linear_terms=array([ -8.61214154, 115.74225681]), square_terms=array([[ 0.4246031 , -7.42917186],
+ [ -7.42917186, 350.46509675]]), scale=0.028515625000000003, shift=array([3.92232544, 1.05284782])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=50, candidate_x=array([3.95102273, 1.04418437]), index=47, x=array([3.92232544, 1.05284782]), fval=329.8974806948583, rho=-0.7253227658517244, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([45, 47, 48, 49]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.92232544, 1.05284782]), radius=0.014257812500000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([47, 49, 50]), model=ScalarModel(intercept=329.8974806948583, linear_terms=array([ 2.23564875e-03, -4.95582209e+00]), square_terms=array([[ 1.24945118e-02, -9.61026201e-01],
+ [-9.61026201e-01, 7.60541785e+01]]), scale=0.014257812500000001, shift=array([3.92232544, 1.05284782])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=51, candidate_x=array([3.93657038, 1.053956 ]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=0.8394434658153274, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([47, 49, 50]), old_indices_discarded=array([], dtype=int64), step_length=0.014287985375240203, relative_step_length=1.002116234537395, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=0.028515625000000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([45, 47, 48, 49, 50, 51]), model=ScalarModel(intercept=322.6539815389261, linear_terms=array([-5.69111829, 10.03281839]), square_terms=array([[ 2.14196085e-01, -2.08885521e+00],
+ [-2.08885521e+00, 3.05353159e+02]]), scale=0.028515625000000003, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=51, candidate_x=array([3.93657038, 1.053956 ]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([45, 47, 48, 49, 50, 51]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=0.014257812500000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([47, 49, 50, 51, 52]), model=ScalarModel(intercept=321.03895339166985, linear_terms=array([ -6.96284555, -26.26307215]), square_terms=array([[ 0.325053 , 1.33117126],
+ [ 1.33117126, 89.89828657]]), scale=0.014257812500000001, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=51, candidate_x=array([3.93657038, 1.053956 ]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([47, 49, 50, 51, 52]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=0.007128906250000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([47, 50, 51, 52, 53]), model=ScalarModel(intercept=317.80178265489246, linear_terms=array([ -7.99322872, -18.49913967]), square_terms=array([[ 0.46249261, 1.5242433 ],
+ [ 1.5242433 , 25.27614788]]), scale=0.007128906250000001, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=51, candidate_x=array([3.93657038, 1.053956 ]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([47, 50, 51, 52, 53]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=0.0035644531250000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([47, 50, 51, 53, 54]), model=ScalarModel(intercept=315.91078800295094, linear_terms=array([ -3.58652841, -10.16878723]), square_terms=array([[0.09555102, 0.39266515],
+ [0.39266515, 6.63786641]]), scale=0.0035644531250000003, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=51, candidate_x=array([3.93657038, 1.053956 ]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([47, 50, 51, 53, 54]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=0.0017822265625000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([51, 54, 55]), model=ScalarModel(intercept=329.7114418243134, linear_terms=array([ 355.90719429, -673.90758745]), square_terms=array([[ 808.1789343 , -1536.25082243],
+ [-1536.25082243, 2921.44848597]]), scale=0.0017822265625000002, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=56, candidate_x=array([3.93482691, 1.0534505 ]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=-0.0010584685326253944, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([51, 54, 55]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=0.0008911132812500001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([51, 55, 56]), model=ScalarModel(intercept=329.7114418243141, linear_terms=array([ 3.57892155, -12.40742816]), square_terms=array([[ 0.0845807 , -0.32614624],
+ [-0.32614624, 1.5384448 ]]), scale=0.0008911132812500001, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=51, candidate_x=array([3.93657038, 1.053956 ]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([51, 55, 56]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=0.00044555664062500004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([51, 56, 57]), model=ScalarModel(intercept=329.71144182431374, linear_terms=array([ 2.48192071, -8.59197548]), square_terms=array([[ 0.04013635, -0.14963807],
+ [-0.14963807, 0.6284637 ]]), scale=0.00044555664062500004, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=58, candidate_x=array([3.93647739, 1.05439175]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=-0.014265866438797504, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([51, 56, 57]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=0.00022277832031250002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([51, 57, 58]), model=ScalarModel(intercept=329.7114418243142, linear_terms=array([-110.72328776, -23.58526244]), square_terms=array([[77.87101078, 16.84361429],
+ [16.84361429, 3.66271023]]), scale=0.00022277832031250002, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=59, candidate_x=array([3.93678711, 1.05390442]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=-2.411878603086549e-05, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([51, 57, 58]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=0.00011138916015625001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([51, 58, 59]), model=ScalarModel(intercept=329.7114418243135, linear_terms=array([0.00598092, 0.02278487]), square_terms=array([[ 7.75238359e-07, -4.85669807e-05],
+ [-4.85669807e-05, 4.99611280e-03]]), scale=0.00011138916015625001, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=60, candidate_x=array([3.93653072, 1.05385191]), index=51, x=array([3.93657038, 1.053956 ]), fval=329.71144182431374, rho=-0.4169625588003394, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([51, 58, 59]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.93657038, 1.053956 ]), radius=5.5694580078125005e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([51, 59, 60]), model=ScalarModel(intercept=329.71144182431397, linear_terms=array([-0.00053022, -0.0034001 ]), square_terms=array([[ 1.75578404e-07, -1.43330845e-05],
+ [-1.43330845e-05, 1.23093573e-03]]), scale=5.5694580078125005e-05, shift=array([3.93657038, 1.053956 ])), vector_model=VectorModel(intercepts=array([ 1.18237758, 2.88046011, 4.19639954, 6.20021635,
+ 8.47356014, 11.34931212, 13.85093767, 14.46284022,
+ 10.78229684, 5.37335013, -4.05030559, -10.30828054]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=61, candidate_x=array([3.93658873, 1.05400859]), index=61, x=array([3.93658873, 1.05400859]), fval=329.7103025044588, rho=0.4010623225221273, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([51, 59, 60]), old_indices_discarded=array([], dtype=int64), step_length=5.569458007806218e-05, relative_step_length=0.999999999998872, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute params change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 62 entries., 'history': {'params': [{'CRRA': 2.28125, 'DiscFac': 1.0625}, {'CRRA': 2.1080599021593467, 'DiscFac': 0.8603294826310895}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.0537994279097354}, {'CRRA': 2.0790794826310894, 'DiscFac': 1.057771933087904}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.0997321942805047}, {'CRRA': 2.4834205173689106, 'DiscFac': 0.9532212916001106}, {'CRRA': 2.4834205173689106, 'DiscFac': 0.9247148727392314}, {'CRRA': 2.220687379772545, 'DiscFac': 1.1}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.061143425100633}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.097123266376995}, {'CRRA': 2.0790794826310894, 'DiscFac': 1.0647910016988402}, {'CRRA': 2.3332640759975307, 'DiscFac': 0.8603294826310895}, {'CRRA': 2.394747958016102, 'DiscFac': 1.1}, {'CRRA': 2.4834205173689106, 'DiscFac': 0.9899428036653586}, {'CRRA': 2.07907948263109, 'DiscFac': 0.9485587811919458}, {'CRRA': 2.28125, 'DiscFac': 0.96099455546875}, {'CRRA': 2.3823352586844555, 'DiscFac': 0.9607313480539168}, {'CRRA': 2.4282698628957866, 'DiscFac': 1.0081333352714825}, {'CRRA': 2.5293551215802417, 'DiscFac': 1.0142151123588048}, {'CRRA': 2.327184604211331, 'DiscFac': 1.0042800166741386}, {'CRRA': 2.6304403802646967, 'DiscFac': 1.011840268982357}, {'CRRA': 2.471991127423394, 'DiscFac': 1.009320111112641}, {'CRRA': 2.5015367392175882, 'DiscFac': 1.0216177504748765}, {'CRRA': 2.558511717535144, 'DiscFac': 1.0276161614272141}, {'CRRA': 2.457426458850689, 'DiscFac': 1.0215305331751778}, {'CRRA': 2.501336747071488, 'DiscFac': 1.032691442390799}, {'CRRA': 2.400251488387033, 'DiscFac': 1.0200750916944055}, {'CRRA': 2.4443399820357583, 'DiscFac': 1.0306581001930368}, {'CRRA': 2.529847972449796, 'DiscFac': 1.0332493498533561}, {'CRRA': 2.4728518520027922, 'DiscFac': 1.030689880241442}, {'CRRA': 2.501298804864475, 'DiscFac': 1.0339816077574975}, {'CRRA': 2.4870436609694155, 'DiscFac': 1.0336762542833158}, {'CRRA': 2.508428915804454, 'DiscFac': 1.0344991822092973}, {'CRRA': 2.522685008079987, 'DiscFac': 1.034865842524518}, {'CRRA': 2.551190128144725, 'DiscFac': 1.035758034361826}, {'CRRA': 2.6082170741394894, 'DiscFac': 1.0364618559042662}, {'CRRA': 2.7093023328239445, 'DiscFac': 1.0367805544622455}, {'CRRA': 2.911472850192855, 'DiscFac': 1.0408124327854944}, {'CRRA': 2.5071318154550344, 'DiscFac': 1.0202514750960077}, {'CRRA': 3.1136433675617656, 'DiscFac': 1.0432969594038992}, {'CRRA': 3.5179844022995868, 'DiscFac': 1.0489010582495062}, {'CRRA': 4.326666471775228, 'DiscFac': 1.0600035453861216}, {'CRRA': 3.6695953173282456, 'DiscFac': 1.0400304624642023}, {'CRRA': 3.7201549196684973, 'DiscFac': 1.0429564711070365}, {'CRRA': 3.619069660984042, 'DiscFac': 1.0505916418459438}, {'CRRA': 3.8212401783529524, 'DiscFac': 1.045418168161877}, {'CRRA': 3.720154919668497, 'DiscFac': 1.0516844930147706}, {'CRRA': 3.9223254370374074, 'DiscFac': 1.0528478154975809}, {'CRRA': 4.0234106957218625, 'DiscFac': 1.0519377270409527}, {'CRRA': 3.972868066379635, 'DiscFac': 1.0513925274659786}, {'CRRA': 3.9510227312473494, 'DiscFac': 1.044184367781091}, {'CRRA': 3.936570381499215, 'DiscFac': 1.0539560047246967}, {'CRRA': 3.9650916064968427, 'DiscFac': 1.0532271335050025}, {'CRRA': 3.950880843359089, 'DiscFac': 1.0576517158357353}, {'CRRA': 3.942717863080446, 'DiscFac': 1.0576496711573096}, {'CRRA': 3.939514938794341, 'DiscFac': 1.0559647128707559}, {'CRRA': 3.934826911150665, 'DiscFac': 1.0534504975078616}, {'CRRA': 3.9364198915079336, 'DiscFac': 1.054834318815751}, {'CRRA': 3.9364773937214226, 'DiscFac': 1.0543917500553501}, {'CRRA': 3.9367871060935027, 'DiscFac': 1.053904423427387}, {'CRRA': 3.9365307235799625, 'DiscFac': 1.0538519144060265}, {'CRRA': 3.936588728006248, 'DiscFac': 1.0540085907678047}], 'criterion': [935.1742875807975, 1216.3667380409247, 537.8019291484245, 977.1749661237271, 2745.528105187298, 1104.5340573739804, 1160.7836080321674, 3634.6960133978646, 712.1801444821974, 2548.614474702864, 1315.7509613360983, 1211.6501625971741, 3027.4173047684917, 829.2721531871346, 1130.9599480882032, 1082.1793984220099, 1079.4130249190662, 587.2414223119063, 515.4916303449894, 635.2341462339416, 549.723374235226, 573.7335598306056, 435.1912542062541, 391.26096822653744, 434.0675583086433, 369.99789296880266, 445.1353337699835, 376.6905626309715, 368.0234155462132, 376.192011530031, 367.923628769737, 368.91309740946303, 367.07558654605555, 366.07487118769455, 364.011321961592, 360.46133848486267, 356.02846339667883, 346.25080137140253, 448.3611711226967, 339.6154241917441, 332.1534899338143, nan, 355.96913835725707, 345.58998031666033, 331.264805944376, 340.25945935892037, 330.6429285017878, 329.8974806948583, nan, 331.2336481029307, 348.15397411998606, 329.71144182431374, nan, nan, nan, nan, 329.79512799746055, nan, 329.83396840591786, 329.71310846190204, 329.72030476716975, 329.71030250445887], 'runtime': [0.0, 1.9218434060003347, 1.9573878740002328, 1.9930188299999827, 2.0296304660000715, 2.067346479000207, 2.104832086999977, 2.1473167859999194, 2.1956436190002933, 2.226860226000099, 2.2686677520000558, 2.3080797679999705, 2.35938854799997, 4.7379500380002355, 6.5540031410000665, 8.301995650000208, 10.023663359000238, 11.769620493000275, 13.528613295000014, 15.398279455000193, 17.119948382000075, 18.82712327900026, 20.693633022000085, 22.432113200999993, 24.168750933999945, 25.953714025999943, 27.702613398000267, 29.59289010900011, 31.293931536999935, 33.03048518100013, 34.752097221999975, 36.46265411000013, 38.206760251000105, 39.978110974000174, 41.712195129000065, 43.46177701100032, 45.15451058100007, 46.84149160200013, 48.520592077999936, 50.23075040599997, 51.918374385000334, 53.72429173699993, 55.465167314000155, 57.19107925900016, 58.92002409399993, 60.734104887000285, 62.52712700100028, 64.3429545869999, 66.05636371500032, 67.74632934100009, 69.43303644900016, 71.1167774710002, 72.81955898000024, 74.59246622499995, 76.29678089400022, 78.05459004900013, 79.9560147420002, 81.65282278299992, 83.3562907569999, 85.056695794, 86.74315362900006, 88.47902612000007], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]}, 'multistart_info': {...}}, {'solution_x': array([4.12313163, 1.04215251]), 'solution_criterion': 362.70327585316227, 'states': [State(trustregion=Region(center=array([4.48969158, 1.02354518]), radius=0.44896915839041046, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=inf, linear_terms=array([nan, nan]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), vector_model=VectorModel(intercepts=array([ -0.05745288, -0.07803936, -0.39242693, -0.13914907,
+ 0.02524866, 0.33134428, -0.07416937, -4.6503072 ,
+ -6.54897699, -8.06242487, inf, -15.42808523]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), candidate_index=0, candidate_x=array([4.48969158, 1.02354518]), index=0, x=array([4.48969158, 1.02354518]), fval=inf, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([4.48969158, 1.02354518]), radius=0.44896915839041046, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=507.39333705901424, linear_terms=array([-129.6491953 , -770.96921848]), square_terms=array([[ 38.52343998, 177.08108225],
+ [ 177.08108225, 1266.61890077]]), scale=array([0.39788856, 0.23717169]), shift=array([4.48969158, 0.86282831])), vector_model=VectorModel(intercepts=array([ -0.05745288, -0.07803936, -0.39242693, -0.13914907,
+ 0.02524866, 0.33134428, -0.07416937, -4.6503072 ,
+ -6.54897699, -8.06242487, inf, -15.42808523]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), candidate_index=13, candidate_x=array([4.88758014, 0.9740326 ]), index=13, x=array([4.88758014, 0.9740326 ]), fval=905.6533779307806, rho=inf, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.4009573535569566, relative_step_length=0.8930621314711684, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.88758014, 0.9740326 ]), radius=0.8979383167808209, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 4, 6, 7, 10, 11, 12, 13]), model=ScalarModel(intercept=686.755906097821, linear_terms=array([ 23.77518092, -1230.19278225]), square_terms=array([[ 10.09518421, -22.78009116],
+ [ -22.78009116, 1899.11691324]]), scale=array([0.79577711, 0.3 ]), shift=array([4.88758014, 0.8 ])), vector_model=VectorModel(intercepts=array([ -0.05745288, -0.07803936, -0.39242693, -0.13914907,
+ 0.02524866, 0.33134428, -0.07416937, -4.6503072 ,
+ -6.54897699, -8.06242487, inf, -15.42808523]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), candidate_index=14, candidate_x=array([4.15686528, 0.99102697]), index=14, x=array([4.15686528, 0.99102697]), fval=795.0937908039798, rho=13.025375501482692, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 4, 6, 7, 10, 11, 12, 13]), old_indices_discarded=array([2, 3, 5, 8, 9]), step_length=0.730912458727012, relative_step_length=0.8139896082699649, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.15686528, 0.99102697]), radius=1.7958766335616418, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 4, 6, 7, 8, 11, 12, 14]), model=ScalarModel(intercept=877.9219390852705, linear_terms=array([ -846.09300603, -1209.71993244]), square_terms=array([[ 809.65248847, 860.74128516],
+ [ 860.74128516, 1441.57047605]]), scale=array([1.59155423, 0.3 ]), shift=array([4.15686528, 0.8 ])), vector_model=VectorModel(intercepts=array([ -0.05745288, -0.07803936, -0.39242693, -0.13914907,
+ 0.02524866, 0.33134428, -0.07416937, -4.6503072 ,
+ -6.54897699, -8.06242487, inf, -15.42808523]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), candidate_index=15, candidate_x=array([4.82308795, 0.9767686 ]), index=14, x=array([4.15686528, 0.99102697]), fval=795.0937908039798, rho=-1.7076109743560726, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 4, 6, 7, 8, 11, 12, 14]), old_indices_discarded=array([ 2, 3, 5, 9, 10, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.15686528, 0.99102697]), radius=0.8979383167808209, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 4, 6, 7, 11, 12, 14, 15]), model=ScalarModel(intercept=834.1486406992972, linear_terms=array([ -123.38740148, -1156.74663813]), square_terms=array([[ 21.079421 , 151.84787199],
+ [ 151.84787199, 1419.49099714]]), scale=array([0.79577711, 0.3 ]), shift=array([4.15686528, 0.8 ])), vector_model=VectorModel(intercepts=array([ -0.05745288, -0.07803936, -0.39242693, -0.13914907,
+ 0.02524866, 0.33134428, -0.07416937, -4.6503072 ,
+ -6.54897699, -8.06242487, inf, -15.42808523]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), candidate_index=14, candidate_x=array([4.15686528, 0.99102697]), index=14, x=array([4.15686528, 0.99102697]), fval=795.0937908039798, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 4, 6, 7, 11, 12, 14, 15]), old_indices_discarded=array([ 2, 3, 5, 8, 9, 10, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.15686528, 0.99102697]), radius=0.44896915839041046, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 10, 11, 12, 14, 16]), model=ScalarModel(intercept=802.6351883847453, linear_terms=array([ -890.8858697 , -1153.28834488]), square_terms=array([[ 807.48784349, 994.25447279],
+ [ 994.25447279, 1287.55389773]]), scale=array([0.39788856, 0.25343079]), shift=array([4.15686528, 0.84656921])), vector_model=VectorModel(intercepts=array([ -0.05745288, -0.07803936, -0.39242693, -0.13914907,
+ 0.02524866, 0.33134428, -0.07416937, -4.6503072 ,
+ -6.54897699, -8.06242487, inf, -15.42808523]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), candidate_index=14, candidate_x=array([4.15686528, 0.99102697]), index=14, x=array([4.15686528, 0.99102697]), fval=795.0937908039798, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 10, 11, 12, 14, 16]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 13, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.15686528, 0.99102697]), radius=0.22448457919520523, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 10, 12, 14, 16, 17]), model=ScalarModel(intercept=355.90446462246524, linear_terms=array([-185.55157098, -261.96418948]), square_terms=array([[388.31026539, 380.60290036],
+ [380.60290036, 467.61231213]]), scale=array([0.19894428, 0.15395865]), shift=array([4.15686528, 0.94604135])), vector_model=VectorModel(intercepts=array([ -0.05745288, -0.07803936, -0.39242693, -0.13914907,
+ 0.02524866, 0.33134428, -0.07416937, -4.6503072 ,
+ -6.54897699, -8.06242487, inf, -15.42808523]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), candidate_index=14, candidate_x=array([4.15686528, 0.99102697]), index=14, x=array([4.15686528, 0.99102697]), fval=795.0937908039798, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 10, 12, 14, 16, 17]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 11, 13, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.15686528, 0.99102697]), radius=0.11224228959760262, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 10, 14, 16, 17, 18]), model=ScalarModel(intercept=281.97127524158844, linear_terms=array([-10.58864881, -15.3664489 ]), square_terms=array([[ 39.25876782, 60.3995863 ],
+ [ 60.3995863 , 256.97832576]]), scale=array([0.09947214, 0.09947214]), shift=array([4.15686528, 0.99102697])), vector_model=VectorModel(intercepts=array([ -0.05745288, -0.07803936, -0.39242693, -0.13914907,
+ 0.02524866, 0.33134428, -0.07416937, -4.6503072 ,
+ -6.54897699, -8.06242487, inf, -15.42808523]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), candidate_index=19, candidate_x=array([4.18455645, 0.99046661]), index=14, x=array([4.15686528, 0.99102697]), fval=795.0937908039798, rho=-3.1629480300683412, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 10, 14, 16, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.15686528, 0.99102697]), radius=0.05612114479880131, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 14, 16, 17, 18, 19]), model=ScalarModel(intercept=906.0798218881114, linear_terms=array([ -76.83534399, -1362.9872284 ]), square_terms=array([[ 52.02179127, 136.40322135],
+ [ 136.40322135, 1574.02617223]]), scale=0.05612114479880131, shift=array([4.15686528, 0.99102697])), vector_model=VectorModel(intercepts=array([ -0.05745288, -0.07803936, -0.39242693, -0.13914907,
+ 0.02524866, 0.33134428, -0.07416937, -4.6503072 ,
+ -6.54897699, -8.06242487, inf, -15.42808523]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), candidate_index=20, candidate_x=array([4.12321979, 1.04172302]), index=20, x=array([4.12321979, 1.04172302]), fval=364.74200004612067, rho=0.7084231872172889, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 14, 16, 17, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.06084494726048229, relative_step_length=1.0841715271243342, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.12321979, 1.04172302]), radius=0.11224228959760262, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 14, 16, 17, 18, 19, 20]), model=ScalarModel(intercept=417.8674481290178, linear_terms=array([ -72.75630392, -934.97901545]), square_terms=array([[ 166.69387998, 359.68989571],
+ [ 359.68989571, 3159.9121006 ]]), scale=array([0.09947214, 0.07887456]), shift=array([4.12321979, 1.02112544])), vector_model=VectorModel(intercepts=array([ -0.05745288, -0.07803936, -0.39242693, -0.13914907,
+ 0.02524866, 0.33134428, -0.07416937, -4.6503072 ,
+ -6.54897699, -8.06242487, inf, -15.42808523]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), candidate_index=20, candidate_x=array([4.12321979, 1.04172302]), index=20, x=array([4.12321979, 1.04172302]), fval=364.74200004612067, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 14, 16, 17, 18, 19, 20]), old_indices_discarded=array([0, 1]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.12321979, 1.04172302]), radius=0.05612114479880131, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 10, 14, 16, 17, 18, 19, 20, 21]), model=ScalarModel(intercept=271.4826047071052, linear_terms=array([ 2.57781613e-02, -8.01464716e+01]), square_terms=array([[ 82.1216678 , 348.28602694],
+ [ 348.28602694, 1871.02846271]]), scale=0.05612114479880131, shift=array([4.12321979, 1.04172302])), vector_model=VectorModel(intercepts=array([ -0.05745288, -0.07803936, -0.39242693, -0.13914907,
+ 0.02524866, 0.33134428, -0.07416937, -4.6503072 ,
+ -6.54897699, -8.06242487, inf, -15.42808523]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), candidate_index=20, candidate_x=array([4.12321979, 1.04172302]), index=20, x=array([4.12321979, 1.04172302]), fval=364.74200004612067, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 10, 14, 16, 17, 18, 19, 20, 21]), old_indices_discarded=array([7]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.12321979, 1.04172302]), radius=0.028060572399400654, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 10, 14, 16, 17, 18, 20, 21, 22]), model=ScalarModel(intercept=276.61199866631875, linear_terms=array([24.33108097, 13.3713441 ]), square_terms=array([[ 41.70814373, 135.60752599],
+ [135.60752599, 597.75730523]]), scale=0.028060572399400654, shift=array([4.12321979, 1.04172302])), vector_model=VectorModel(intercepts=array([ -0.05745288, -0.07803936, -0.39242693, -0.13914907,
+ 0.02524866, 0.33134428, -0.07416937, -4.6503072 ,
+ -6.54897699, -8.06242487, inf, -15.42808523]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), candidate_index=20, candidate_x=array([4.12321979, 1.04172302]), index=20, x=array([4.12321979, 1.04172302]), fval=364.74200004612067, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 10, 14, 16, 17, 18, 20, 21, 22]), old_indices_discarded=array([19]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.12321979, 1.04172302]), radius=0.014030286199700327, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 10, 16, 17, 18, 20, 21, 22, 23]), model=ScalarModel(intercept=306.85859443188605, linear_terms=array([ 1.56571216, -65.3804636 ]), square_terms=array([[ 2.36957569, 12.24822425],
+ [ 12.24822425, 138.18295439]]), scale=0.014030286199700327, shift=array([4.12321979, 1.04172302])), vector_model=VectorModel(intercepts=array([ -0.05745288, -0.07803936, -0.39242693, -0.13914907,
+ 0.02524866, 0.33134428, -0.07416937, -4.6503072 ,
+ -6.54897699, -8.06242487, inf, -15.42808523]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), candidate_index=20, candidate_x=array([4.12321979, 1.04172302]), index=20, x=array([4.12321979, 1.04172302]), fval=364.74200004612067, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 10, 16, 17, 18, 20, 21, 22, 23]), old_indices_discarded=array([14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.12321979, 1.04172302]), radius=0.0070151430998501635, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([10, 16, 20, 21, 23, 24]), model=ScalarModel(intercept=362.8443775661224, linear_terms=array([ 8.30878814, -56.32998775]), square_terms=array([[ 0.32352117, -1.61968507],
+ [-1.61968507, 20.37618288]]), scale=0.0070151430998501635, shift=array([4.12321979, 1.04172302])), vector_model=VectorModel(intercepts=array([ -0.05745288, -0.07803936, -0.39242693, -0.13914907,
+ 0.02524866, 0.33134428, -0.07416937, -4.6503072 ,
+ -6.54897699, -8.06242487, inf, -15.42808523]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), candidate_index=20, candidate_x=array([4.12321979, 1.04172302]), index=20, x=array([4.12321979, 1.04172302]), fval=364.74200004612067, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([10, 16, 20, 21, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.12321979, 1.04172302]), radius=0.0035075715499250817, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 24, 25]), model=ScalarModel(intercept=364.74200004612055, linear_terms=array([ -3.76400645, -122.31179392]), square_terms=array([[ 0.07571485, 2.09685015],
+ [ 2.09685015, 64.83025253]]), scale=0.0035075715499250817, shift=array([4.12321979, 1.04172302])), vector_model=VectorModel(intercepts=array([ -0.05745288, -0.07803936, -0.39242693, -0.13914907,
+ 0.02524866, 0.33134428, -0.07416937, -4.6503072 ,
+ -6.54897699, -8.06242487, inf, -15.42808523]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), candidate_index=20, candidate_x=array([4.12321979, 1.04172302]), index=20, x=array([4.12321979, 1.04172302]), fval=364.74200004612067, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.12321979, 1.04172302]), radius=0.0017537857749625409, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 25, 26]), model=ScalarModel(intercept=364.7420000461203, linear_terms=array([185.22691648, -73.8972249 ]), square_terms=array([[170.28223502, -62.62719362],
+ [-62.62719362, 24.01873476]]), scale=0.0017537857749625409, shift=array([4.12321979, 1.04172302])), vector_model=VectorModel(intercepts=array([ -0.05745288, -0.07803936, -0.39242693, -0.13914907,
+ 0.02524866, 0.33134428, -0.07416937, -4.6503072 ,
+ -6.54897699, -8.06242487, inf, -15.42808523]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), candidate_index=20, candidate_x=array([4.12321979, 1.04172302]), index=20, x=array([4.12321979, 1.04172302]), fval=364.74200004612067, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.12321979, 1.04172302]), radius=0.0008768928874812704, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 26, 27]), model=ScalarModel(intercept=364.7420000461203, linear_terms=array([168.71037261, -18.02723412]), square_terms=array([[141.03645987, -12.71002096],
+ [-12.71002096, 1.38234992]]), scale=0.0008768928874812704, shift=array([4.12321979, 1.04172302])), vector_model=VectorModel(intercepts=array([ -0.05745288, -0.07803936, -0.39242693, -0.13914907,
+ 0.02524866, 0.33134428, -0.07416937, -4.6503072 ,
+ -6.54897699, -8.06242487, inf, -15.42808523]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), candidate_index=28, candidate_x=array([4.12238657, 1.04144974]), index=20, x=array([4.12321979, 1.04172302]), fval=364.74200004612067, rho=-0.012951244495601396, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.12321979, 1.04172302]), radius=0.0004384464437406352, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 27, 28]), model=ScalarModel(intercept=364.7420000461208, linear_terms=array([ 1.56893669, -6.7344342 ]), square_terms=array([[ 0.01166578, -0.0412127 ],
+ [-0.0412127 , 0.19845266]]), scale=0.0004384464437406352, shift=array([4.12321979, 1.04172302])), vector_model=VectorModel(intercepts=array([ -0.05745288, -0.07803936, -0.39242693, -0.13914907,
+ 0.02524866, 0.33134428, -0.07416937, -4.6503072 ,
+ -6.54897699, -8.06242487, inf, -15.42808523]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.44896915839041046, shift=array([4.48969158, 1.02354518])), candidate_index=29, candidate_x=array([4.12313163, 1.04215251]), index=29, x=array([4.12313163, 1.04215251]), fval=362.70327585316227, rho=0.29942496732236035, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([20, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.00043844644374061765, relative_step_length=0.9999999999999599, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute params change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 30 entries., 'history': {'params': [{'CRRA': 4.489691583904104, 'DiscFac': 1.0235451798335713}, {'CRRA': 4.148838926505437, 'DiscFac': 0.6256566229701255}, {'CRRA': 4.88758014076755, 'DiscFac': 1.0085622394168912}, {'CRRA': 4.091803027040658, 'DiscFac': 1.0164244142983376}, {'CRRA': 4.88758014076755, 'DiscFac': 1.099469972899596}, {'CRRA': 4.88758014076755, 'DiscFac': 0.8095032422727262}, {'CRRA': 4.88758014076755, 'DiscFac': 0.7530848261156642}, {'CRRA': 4.370499261127387, 'DiscFac': 1.1}, {'CRRA': 4.88758014076755, 'DiscFac': 1.0230970952959988}, {'CRRA': 4.88758014076755, 'DiscFac': 1.094306518980592}, {'CRRA': 4.091803027040658, 'DiscFac': 1.030316188493455}, {'CRRA': 4.592059653712614, 'DiscFac': 0.6256566229701255}, {'CRRA': 4.713065097063642, 'DiscFac': 1.1}, {'CRRA': 4.88758014076755, 'DiscFac': 0.9740325987200549}, {'CRRA': 4.156865275992871, 'DiscFac': 0.9910269718973239}, {'CRRA': 4.823087954290904, 'DiscFac': 0.9767686041716913}, {'CRRA': 4.0986439359814515, 'DiscFac': 1.0468186695947106}, {'CRRA': 4.159988799689999, 'DiscFac': 1.0720360527765176}, {'CRRA': 4.086768308814167, 'DiscFac': 1.0764443212984682}, {'CRRA': 4.184556452027686, 'DiscFac': 0.9904666054461131}, {'CRRA': 4.12321979390894, 'DiscFac': 1.0417230185131179}, {'CRRA': 4.096584746432777, 'DiscFac': 1.0468674920513872}, {'CRRA': 4.068538483259733, 'DiscFac': 1.0543538205150842}, {'CRRA': 4.095701700856493, 'DiscFac': 1.0472429398263814}, {'CRRA': 4.109922480523975, 'DiscFac': 1.0492056481639367}, {'CRRA': 4.123696391831634, 'DiscFac': 1.0487219532271626}, {'CRRA': 4.122373413553136, 'DiscFac': 1.0451269424945184}, {'CRRA': 4.122194866474128, 'DiscFac': 1.043146144754121}, {'CRRA': 4.122386571705684, 'DiscFac': 1.0414497386270734}, {'CRRA': 4.123131625916622, 'DiscFac': 1.042152508546948}], 'criterion': [nan, 1226.4490465556805, nan, 553.6435505558949, nan, 1171.6637343332839, 1188.9230246157163, nan, nan, nan, 434.3714550376725, 1217.936942397526, nan, 905.6533779307806, 795.0937908039798, 889.762531741871, nan, nan, nan, 799.618570882734, 364.74200004612067, nan, nan, nan, nan, nan, nan, nan, 365.968710281642, 362.70327585316227], 'runtime': [0.0, 1.8893596660000185, 1.9254749279998578, 1.9607912299998134, 1.9952709869999126, 2.031054889999723, 2.068451605000064, 2.1080323689998295, 2.145541043999856, 2.182866938999723, 2.2252518159998544, 2.255448136999803, 2.292968175999704, 4.501134815999649, 6.416764320999846, 8.185432758999923, 9.948060636999799, 11.645774880999852, 13.325634909999735, 14.999888390999786, 16.89481569999998, 18.722493776999727, 20.67351689299994, 22.545289429999684, 24.252850029, 25.96147833899977, 27.657194549999986, 29.387423359999957, 31.07909649899966, 32.79469605799977], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]}}], 'exploration_sample': array([[2.28125 , 1.0625 ],
+ [5.825 , 0.95 ],
+ [5. , 0.95 ],
+ [7.00625 , 0.6125 ],
+ [3.4625 , 0.875 ],
+ [4.64375 , 0.6875 ],
+ [2.871875, 0.78125 ]]), 'exploration_results': array([ 935.17428758, 989.46212984, 1021.90990852, 1165.31803535,
+ 1180.04944214, 1208.05004997, 1224.63960931])}}"
diff --git a/content/tables/min/WarmGlowSub(Stock)(Labor)Market_estimate_results.csv b/content/tables/min/WarmGlowSub(Stock)(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..91c3f77
--- /dev/null
+++ b/content/tables/min/WarmGlowSub(Stock)(Labor)Market_estimate_results.csv
@@ -0,0 +1,4623 @@
+CRRA,4.6561465823330614
+DiscFac,1.0762986516574313
+time_to_estimate,136.76599597930908
+params,"{'CRRA': 4.6561465823330614, 'DiscFac': 1.0762986516574313}"
+criterion,324.50808131884514
+start_criterion,1061.7656193736902
+start_params,"{'CRRA': 5.0, 'DiscFac': 0.95}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,Absolute criterion change smaller than tolerance.
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 2.28125, 'DiscFac': 1.0625}, {'CRRA': 2.1080599021593467, 'DiscFac': 0.8603294826310895}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.0537994279097354}, {'CRRA': 2.0790794826310894, 'DiscFac': 1.057771933087904}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.0997321942805047}, {'CRRA': 2.4834205173689106, 'DiscFac': 0.9532212916001106}, {'CRRA': 2.4834205173689106, 'DiscFac': 0.9247148727392314}, {'CRRA': 2.220687379772545, 'DiscFac': 1.1}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.061143425100633}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.097123266376995}, {'CRRA': 2.0790794826310894, 'DiscFac': 1.0647910016988402}, {'CRRA': 2.3332640759975307, 'DiscFac': 0.8603294826310895}, {'CRRA': 2.394747958016102, 'DiscFac': 1.1}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.0109704370801267}, {'CRRA': 2.382335258684455, 'DiscFac': 1.0476834403560513}, {'CRRA': 2.1801647413155445, 'DiscFac': 0.9647165064215529}, {'CRRA': 2.48342051736891, 'DiscFac': 1.0347177543831159}, {'CRRA': 2.432877888026683, 'DiscFac': 1.0455642528505245}, {'CRRA': 2.533963146711138, 'DiscFac': 1.0405222480655252}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.0465256644325633}, {'CRRA': 2.3823352586844555, 'DiscFac': 1.033564664572611}, {'CRRA': 2.5339631467111383, 'DiscFac': 1.047469944628167}, {'CRRA': 2.6350484053955934, 'DiscFac': 1.0428685385969303}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.0463589722083482}, {'CRRA': 2.5054215502834296, 'DiscFac': 1.0475071778724756}, {'CRRA': 2.5196979549221816, 'DiscFac': 1.0474502989833212}, {'CRRA': 2.5410765204759427, 'DiscFac': 1.0485469431138206}, {'CRRA': 2.5553265167200228, 'DiscFac': 1.0491997883920992}, {'CRRA': 2.583842487058223, 'DiscFac': 1.0493972612466624}, {'CRRA': 2.6343851164004506, 'DiscFac': 1.0499149483606702}, {'CRRA': 2.7354703750849056, 'DiscFac': 1.0514149796124799}, {'CRRA': 2.937640892453816, 'DiscFac': 1.0544155720791926}, {'CRRA': 3.341981927191637, 'DiscFac': 1.0616360120621342}, {'CRRA': 4.150663996667278, 'DiscFac': 1.085446070296119}, {'CRRA': 3.746322961929458, 'DiscFac': 1.0660934014490961}, {'CRRA': 4.5550050314051, 'DiscFac': 1.0761847385700731}, {'CRRA': 6.172369170356384, 'DiscFac': 1.0972678112700958}, {'CRRA': 3.7463229619294585, 'DiscFac': 1.0483494241971596}, {'CRRA': 4.474340324764396, 'DiscFac': 1.053485161647703}, {'CRRA': 4.75717554877401, 'DiscFac': 1.0764850403494255}, {'CRRA': 4.656090290089556, 'DiscFac': 1.0762985807282335}, {'CRRA': 4.706632919431783, 'DiscFac': 1.069696017703279}, {'CRRA': 4.68136160476067, 'DiscFac': 1.0832949257173223}, {'CRRA': 4.670456130935367, 'DiscFac': 1.0824152990387697}, {'CRRA': 4.6498535218331565, 'DiscFac': 1.0798882535131364}, {'CRRA': 4.658926719589502, 'DiscFac': 1.0784666951442767}, {'CRRA': 4.6578790211563765, 'DiscFac': 1.0757221459705013}, {'CRRA': 4.65520301478792, 'DiscFac': 1.0759821254367556}, {'CRRA': 4.656534705087294, 'DiscFac': 1.0764167570708383}, {'CRRA': 4.656029646033997, 'DiscFac': 1.0765129460204956}, {'CRRA': 4.656080386488486, 'DiscFac': 1.0761876327057809}, {'CRRA': 4.6561465823330614, 'DiscFac': 1.0762986516574313}], 'criterion': [539.4929192700604, 1221.8675258714557, 404.7045013140681, 556.5981636048194, 1418.2180360595958, 1134.4079728308398, 1175.1490350385895, 1830.3844633609278, 454.37828850926013, 1316.6223528136734, 692.7723876600156, 1217.1599081251106, 1550.0771663964833, 713.5134538090916, 401.2841593554285, 1114.6909165038717, 446.76005820979447, 397.62883382383677, 410.77183910073745, 393.7396485524217, 452.8256804660464, 390.1399050831211, 399.8443617809469, 393.9257331434714, 391.8213338797376, 390.9412217644086, 389.277834841791, 388.2655022854925, 386.3917605626402, 382.93906954428303, 376.31868391130615, 365.062918550816, 346.7329948411579, 368.2369752259499, 334.90086244002987, 325.2668555198778, nan, 390.1447848010262, 382.7525586574866, nan, 324.50875500144707, 329.99954100363095, nan, nan, 327.0902292511706, 325.4438253771558, 324.5641619351112, 324.53943466025123, 324.5344057526708, 324.5566121642871, 324.5174940975544, 324.50808131884514], 'runtime': [0.0, 1.8009274670002924, 1.8349953599999935, 1.8716977379999662, 1.9064695870001742, 1.9587920620001569, 1.988055123000322, 2.0242426620002334, 2.0628871050003, 2.1053071480000654, 2.1416214290002245, 2.1893475360002412, 2.2281548040000416, 4.36073855099994, 6.131201134000094, 7.8724270480001906, 9.600155464000181, 11.310955472999922, 13.038677657000335, 14.74292541900013, 16.4423814390002, 18.136036501000035, 19.83283611500019, 21.537421882000217, 23.253812039999957, 25.083194824000202, 26.778671699999904, 28.46434648500008, 30.143333340000027, 31.836918702000276, 33.52446875500027, 35.22875840500001, 36.934571169000264, 38.67663603100027, 40.39671845900011, 42.13699109700019, 43.857527524000034, 45.570228391, 47.2664019140002, 49.09642402999998, 50.78836033000016, 52.4552653300002, 54.15450059300019, 55.86215718199992, 57.58588246599993, 59.26718887700008, 60.95021729000018, 62.6536614659999, 64.33571088600002, 66.06470411600003, 67.73840497099991, 69.41452023800002], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]}"
+convergence_report,
+multistart_info,"{'start_parameters': [{'CRRA': 2.28125, 'DiscFac': 1.0625}, {'CRRA': 5.517465994239721, 'DiscFac': 1.033814885188935}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 0.02962 0.1773
+relative_params_change 0.1778 0.4224
+absolute_criterion_change 9.634 57.67
+absolute_params_change 0.8087 1.921
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.), Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute params change smaller than tolerance.], 'exploration_sample': [{'CRRA': 2.28125, 'DiscFac': 1.0625}, {'CRRA': 7.596874999999999, 'DiscFac': 0.9312500000000001}, {'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 5.0, 'DiscFac': 0.95}, {'CRRA': 8.1875, 'DiscFac': 0.7250000000000001}, {'CRRA': 7.00625, 'DiscFac': 0.6125}, {'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 2.871875, 'DiscFac': 0.78125}], 'exploration_results': array([ 539.49291927, 1005.15883524, 1029.6319182 , 1061.73760943,
+ 1115.48338813, 1167.602755 , 1188.73516988, 1211.80249333,
+ 1228.66192563])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([2.28125, 1.0625 ]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=539.4929192700604, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=0, candidate_x=array([2.28125, 1.0625 ]), index=0, x=array([2.28125, 1.0625 ]), fval=539.4929192700604, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([2.28125, 1.0625 ]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=369.28064669953756, linear_terms=array([ 23.20797239, -331.32409918]), square_terms=array([[ 30.60434353, -262.86738644],
+ [-262.86738644, 2311.42613793]]), scale=array([0.20217052, 0.11983526]), shift=array([2.28125 , 0.98016474])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=13, candidate_x=array([2.48342052, 1.01097044]), index=0, x=array([2.28125, 1.0625 ]), fval=539.4929192700604, rho=-0.4891062139230318, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.28125, 1.0625 ]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 4, 7, 8, 9, 10, 12]), model=ScalarModel(intercept=509.6122393186843, linear_terms=array([ 19.08883257, -858.76997919]), square_terms=array([[ 5.03729945, -139.92580294],
+ [-139.92580294, 4076.45926807]]), scale=array([0.10108526, 0.06929263]), shift=array([2.28125 , 1.03070737])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=14, candidate_x=array([2.38233526, 1.04768344]), index=14, x=array([2.38233526, 1.04768344]), fval=401.2841593554285, rho=1.0178589872619395, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 4, 7, 8, 9, 10, 12]), old_indices_discarded=array([ 1, 5, 6, 11, 13]), step_length=0.10216535598227945, relative_step_length=0.8956962716254636, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.38233526, 1.04768344]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 7, 8, 11, 12, 13, 14]), model=ScalarModel(intercept=435.28307937263514, linear_terms=array([ 234.63528144, -687.02908869]), square_terms=array([[ 278.9237627 , -852.19265508],
+ [-852.19265508, 2613.94453482]]), scale=array([0.20217052, 0.12724354]), shift=array([2.38233526, 0.97275646])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=15, candidate_x=array([2.18016474, 0.96471651]), index=14, x=array([2.38233526, 1.04768344]), fval=401.2841593554285, rho=-4.787419416129048, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 7, 8, 11, 12, 13, 14]), old_indices_discarded=array([ 1, 2, 3, 5, 9, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.38233526, 1.04768344]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 8, 9, 12, 13, 14]), model=ScalarModel(intercept=397.48435278501233, linear_terms=array([ -19.88002875, -373.31052501]), square_terms=array([[1.48512547e+00, 1.03320709e+01],
+ [1.03320709e+01, 2.43818178e+03]]), scale=array([0.10108526, 0.07670091]), shift=array([2.38233526, 1.02329909])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=16, candidate_x=array([2.48342052, 1.03471775]), index=14, x=array([2.38233526, 1.04768344]), fval=401.2841593554285, rho=-0.8971627859072555, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 8, 9, 12, 13, 14]), old_indices_discarded=array([ 1, 3, 6, 7, 10, 11, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.38233526, 1.04768344]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 8, 9, 12, 13, 14, 16]), model=ScalarModel(intercept=393.8792118849582, linear_terms=array([ -8.62705232, 104.33160222]), square_terms=array([[ 6.22696152e-01, -2.71796860e+01],
+ [-2.71796860e+01, 1.84007347e+03]]), scale=array([0.05054263, 0.05054263]), shift=array([2.38233526, 1.04768344])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=17, candidate_x=array([2.43287789, 1.04556425]), index=17, x=array([2.43287789, 1.04556425]), fval=397.62883382383677, rho=0.3679927833871514, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 8, 9, 12, 13, 14, 16]), old_indices_discarded=array([ 5, 6, 7, 11, 15]), step_length=0.05058703723790713, relative_step_length=0.8870055844454948, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.43287789, 1.04556425]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 8, 12, 13, 14, 16, 17]), model=ScalarModel(intercept=414.4434968026508, linear_terms=array([ 9.86021543, -471.90609025]), square_terms=array([[ 3.74635264, -92.83139049],
+ [ -92.83139049, 2401.95091869]]), scale=array([0.10108526, 0.0777605 ]), shift=array([2.43287789, 1.0222395 ])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=18, candidate_x=array([2.53396315, 1.04052225]), index=17, x=array([2.43287789, 1.04556425]), fval=397.62883382383677, rho=-0.6210906230657142, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 8, 12, 13, 14, 16, 17]), old_indices_discarded=array([ 0, 1, 3, 6, 7, 9, 10, 11, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.43287789, 1.04556425]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 8, 9, 12, 13, 14, 16, 17]), model=ScalarModel(intercept=385.9217089848088, linear_terms=array([ -7.31126247, -14.99370301]), square_terms=array([[ 3.54256234e-01, -2.03158571e+01],
+ [-2.03158571e+01, 1.85626847e+03]]), scale=array([0.05054263, 0.05054263]), shift=array([2.43287789, 1.04556425])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=19, candidate_x=array([2.48342052, 1.04652566]), index=19, x=array([2.48342052, 1.04652566]), fval=393.7396485524217, rho=0.5206433882198473, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 8, 9, 12, 13, 14, 16, 17]), old_indices_discarded=array([ 0, 5, 6, 7, 11, 15, 18]), step_length=0.05055177240271502, relative_step_length=0.8863872421297976, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.48342052, 1.04652566]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 5, 8, 12, 13, 14, 17, 18, 19]), model=ScalarModel(intercept=421.2323159643066, linear_terms=array([ 41.05412659, -502.6472471 ]), square_terms=array([[ 13.73189863, -177.79563733],
+ [-177.79563733, 2314.95736687]]), scale=array([0.10108526, 0.0772798 ]), shift=array([2.48342052, 1.0227202 ])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=20, candidate_x=array([2.38233526, 1.03356466]), index=19, x=array([2.48342052, 1.04652566]), fval=393.7396485524217, rho=-4.933047820071923, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 5, 8, 12, 13, 14, 17, 18, 19]), old_indices_discarded=array([ 0, 1, 2, 3, 6, 7, 9, 10, 11, 15, 16]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.48342052, 1.04652566]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 8, 9, 13, 16, 17, 18, 19]), model=ScalarModel(intercept=382.0647107078109, linear_terms=array([ -4.3670562 , -11.49855929]), square_terms=array([[ 3.75364769e-01, -2.23406779e+01],
+ [-2.23406779e+01, 1.81124631e+03]]), scale=array([0.05054263, 0.05054263]), shift=array([2.48342052, 1.04652566])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=21, candidate_x=array([2.53396315, 1.04746994]), index=21, x=array([2.53396315, 1.04746994]), fval=390.1399050831211, rho=0.8007472184276522, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 8, 9, 13, 16, 17, 18, 19]), old_indices_discarded=array([ 0, 5, 6, 7, 11, 12, 14, 20]), step_length=0.05055144949369534, relative_step_length=0.886381580163425, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.53396315, 1.04746994]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 8, 13, 16, 17, 19, 21]), model=ScalarModel(intercept=426.84646205225044, linear_terms=array([ 1.15989452, -480.3723676 ]), square_terms=array([[ 7.00906111e-01, -3.46047728e+01],
+ [-3.46047728e+01, 2.01025586e+03]]), scale=array([0.10108526, 0.07680766]), shift=array([2.53396315, 1.02319234])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=22, candidate_x=array([2.63504841, 1.04286854]), index=21, x=array([2.53396315, 1.04746994]), fval=390.1399050831211, rho=-0.7444906283211007, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 8, 13, 16, 17, 19, 21]), old_indices_discarded=array([ 0, 1, 3, 6, 7, 9, 10, 11, 12, 14, 15, 18, 20]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.53396315, 1.04746994]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 8, 9, 13, 16, 18, 19, 21]), model=ScalarModel(intercept=388.9970240954775, linear_terms=array([ 12.00200522, -46.69029483]), square_terms=array([[ 4.53977618, -86.02708251],
+ [ -86.02708251, 1789.58959189]]), scale=array([0.05054263, 0.05054263]), shift=array([2.53396315, 1.04746994])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=23, candidate_x=array([2.48342052, 1.04635897]), index=21, x=array([2.53396315, 1.04746994]), fval=390.1399050831211, rho=-0.3724578812009339, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 8, 9, 13, 16, 18, 19, 21]), old_indices_discarded=array([ 0, 5, 6, 11, 12, 14, 17, 20, 22]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.53396315, 1.04746994]), radius=0.028515625000000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 9, 13, 16, 18, 19, 21, 23]), model=ScalarModel(intercept=389.4436319427866, linear_terms=array([ 5.02814649, -23.66664595]), square_terms=array([[ 1.01446646, -22.91801796],
+ [-22.91801796, 553.38241538]]), scale=0.028515625000000003, shift=array([2.53396315, 1.04746994])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=24, candidate_x=array([2.50542155, 1.04750718]), index=21, x=array([2.53396315, 1.04746994]), fval=390.1399050831211, rho=-0.37158262078118054, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 9, 13, 16, 18, 19, 21, 23]), old_indices_discarded=array([ 4, 5, 6, 17, 22]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.53396315, 1.04746994]), radius=0.014257812500000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 13, 16, 18, 19, 21, 23, 24]), model=ScalarModel(intercept=392.4947159374246, linear_terms=array([ 1.27932535, -3.76638647]), square_terms=array([[ 0.1356221 , -3.92705052],
+ [ -3.92705052, 116.92844993]]), scale=0.014257812500000001, shift=array([2.53396315, 1.04746994])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=25, candidate_x=array([2.51969795, 1.0474503 ]), index=21, x=array([2.53396315, 1.04746994]), fval=390.1399050831211, rho=-0.6610327156620669, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 13, 16, 18, 19, 21, 23, 24]), old_indices_discarded=array([9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.53396315, 1.04746994]), radius=0.007128906250000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 21, 24, 25]), model=ScalarModel(intercept=390.1270373870984, linear_terms=array([-0.40666892, -4.67642507]), square_terms=array([[ 8.24163964e-03, -5.14376616e-01],
+ [-5.14376616e-01, 3.38745244e+01]]), scale=0.007128906250000001, shift=array([2.53396315, 1.04746994])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=26, candidate_x=array([2.54107652, 1.04854694]), index=26, x=array([2.54107652, 1.04854694]), fval=389.277834841791, rho=1.0787463888831172, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 21, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.007194443137304451, relative_step_length=1.0091931195342132, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.54107652, 1.04854694]), radius=0.014257812500000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 18, 19, 21, 23, 24, 25, 26]), model=ScalarModel(intercept=388.3114278890381, linear_terms=array([-0.97062407, -4.79051289]), square_terms=array([[ 3.23021015e-02, -2.12345521e+00],
+ [-2.12345521e+00, 1.49936025e+02]]), scale=0.014257812500000001, shift=array([2.54107652, 1.04854694])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=27, candidate_x=array([2.55532652, 1.04919979]), index=27, x=array([2.55532652, 1.04919979]), fval=388.2655022854925, rho=0.9093009321394735, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 18, 19, 21, 23, 24, 25, 26]), old_indices_discarded=array([13, 16]), step_length=0.014264943039271727, relative_step_length=1.0005001145352224, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.55532652, 1.04919979]), radius=0.028515625000000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 18, 19, 21, 23, 24, 25, 26, 27]), model=ScalarModel(intercept=388.15196116706716, linear_terms=array([-1.87600935, 4.8110453 ]), square_terms=array([[ 1.41233061e-01, -8.75463669e+00],
+ [-8.75463669e+00, 5.67685407e+02]]), scale=0.028515625000000003, shift=array([2.55532652, 1.04919979])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=28, candidate_x=array([2.58384249, 1.04939726]), index=28, x=array([2.58384249, 1.04939726]), fval=386.39176056264023, rho=1.030030940972948, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 18, 19, 21, 23, 24, 25, 26, 27]), old_indices_discarded=array([ 4, 5, 8, 9, 13, 16, 17, 22]), step_length=0.028516654078930722, relative_step_length=1.0000360882474335, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.58384249, 1.04939726]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 19, 21, 22, 24, 25, 26, 27, 28]), model=ScalarModel(intercept=386.5853634477402, linear_terms=array([-3.2942653 , 6.19453001]), square_terms=array([[ 3.46423682e-01, -2.34674124e+01],
+ [-2.34674124e+01, 1.68637941e+03]]), scale=array([0.05054263, 0.05054263]), shift=array([2.58384249, 1.04939726])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=29, candidate_x=array([2.63438512, 1.04991495]), index=29, x=array([2.63438512, 1.04991495]), fval=382.93906954428303, rho=1.0757679087893275, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 19, 21, 22, 24, 25, 26, 27, 28]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 12, 13, 14, 16, 17, 20, 23]), step_length=0.05054528049950689, relative_step_length=0.8862734114982029, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.63438512, 1.04991495]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 21, 22, 24, 25, 26, 27, 28, 29]), model=ScalarModel(intercept=597.5812627596855, linear_terms=array([ 17.62359378, -1267.78086801]), square_terms=array([[ 1.43464082e+00, -7.12704676e+01],
+ [-7.12704676e+01, 3.74858881e+03]]), scale=array([0.10108526, 0.07558516]), shift=array([2.63438512, 1.02441484])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=30, candidate_x=array([2.73547038, 1.05141498]), index=30, x=array([2.73547038, 1.05141498]), fval=376.31868391130615, rho=1.0277337960420385, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 21, 22, 24, 25, 26, 27, 28, 29]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 19, 20, 23]), step_length=0.10109638775475414, relative_step_length=0.8863244953841458, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.73547038, 1.05141498]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 21, 22, 25, 26, 27, 28, 29, 30]), model=ScalarModel(intercept=2307.7763833225085, linear_terms=array([ 134.13086451, -6300.49433818]), square_terms=array([[ 5.93425604e+00, -2.40087569e+02],
+ [-2.40087569e+02, 1.02770928e+04]]), scale=array([0.20217052, 0.12537777]), shift=array([2.73547038, 0.97462223])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=31, candidate_x=array([2.93764089, 1.05441557]), index=31, x=array([2.93764089, 1.05441557]), fval=365.062918550816, rho=0.8727682132841054, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 21, 22, 25, 26, 27, 28, 29, 30]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 19, 20, 23, 24]), step_length=0.20219278337360178, relative_step_length=0.8863245298568844, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.93764089, 1.05441557]), radius=0.45625000000000004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 8, 9, 16, 18, 24, 28, 29, 30, 31]), model=ScalarModel(intercept=12865.218421931559, linear_terms=array([ 855.20260599, -31193.62316319]), square_terms=array([[ 3.13263792e+01, -1.09220775e+03],
+ [-1.09220775e+03, 3.89236743e+04]]), scale=array([0.40434103, 0.22496273]), shift=array([2.93764089, 0.87503727])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=32, candidate_x=array([3.34198193, 1.06163601]), index=32, x=array([3.34198193, 1.06163601]), fval=346.7329948411579, rho=0.9130421801358641, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 8, 9, 16, 18, 24, 28, 29, 30, 31]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20,
+ 21, 22, 23, 25, 26, 27]), step_length=0.40440549838794076, relative_step_length=0.8863682156448016, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.34198193, 1.06163601]), radius=0.9125000000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 6, 13, 17, 28, 29, 30, 31, 32]), model=ScalarModel(intercept=7965.115933100144, linear_terms=array([ 1401.52538742, -17482.46466521]), square_terms=array([[ 132.13425913, -1621.72179802],
+ [-1621.72179802, 20078.24431782]]), scale=array([0.80868207, 0.3 ]), shift=array([3.34198193, 0.8 ])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=33, candidate_x=array([4.150664 , 1.08544607]), index=32, x=array([3.34198193, 1.06163601]), fval=346.7329948411579, rho=-2.1544952554641625, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 6, 13, 17, 28, 29, 30, 31, 32]), old_indices_discarded=array([ 0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 20,
+ 21, 22, 23, 24, 25, 26, 27]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.34198193, 1.06163601]), radius=0.45625000000000004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([21, 22, 26, 27, 28, 29, 30, 31, 32]), model=ScalarModel(intercept=10898.29333061804, linear_terms=array([ 657.86330033, -25725.95620283]), square_terms=array([[ 2.28531456e+01, -8.27401705e+02],
+ [-8.27401705e+02, 3.13565250e+04]]), scale=array([0.40434103, 0.22135251]), shift=array([3.34198193, 0.87864749])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=34, candidate_x=array([3.74632296, 1.0660934 ]), index=34, x=array([3.74632296, 1.0660934 ]), fval=334.90086244002987, rho=0.5616369864914499, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([21, 22, 26, 27, 28, 29, 30, 31, 32]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 18, 19, 20, 23, 24, 25, 33]), step_length=0.4043656027569591, relative_step_length=0.8862807731659377, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.74632296, 1.0660934 ]), radius=0.9125000000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 27, 28, 29, 30, 31, 32, 33, 34]), model=ScalarModel(intercept=16391.3697228818, linear_terms=array([ 1360.7428243 , -36399.16797702]), square_terms=array([[ 63.68375989, -1580.10411546],
+ [-1580.10411546, 41254.20429359]]), scale=array([0.80868207, 0.3 ]), shift=array([3.74632296, 0.8 ])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=35, candidate_x=array([4.55500503, 1.07618474]), index=35, x=array([4.55500503, 1.07618474]), fval=325.2668555198778, rho=0.29852083892327547, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 27, 28, 29, 30, 31, 32, 33, 34]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 18, 19, 20, 21, 23, 24, 25, 26]), step_length=0.8087450306346845, relative_step_length=0.8862959239832158, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55500503, 1.07618474]), radius=1.8250000000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 28, 29, 30, 31, 32, 33, 34, 35]), model=ScalarModel(intercept=14968.578144708577, linear_terms=array([ 2168.15459365, -31802.26159431]), square_terms=array([[ 175.52773738, -2402.58546272],
+ [-2402.58546272, 34519.22383816]]), scale=array([1.61736414, 0.3 ]), shift=array([4.55500503, 0.8 ])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=35, candidate_x=array([4.55500503, 1.07618474]), index=35, x=array([4.55500503, 1.07618474]), fval=325.2668555198778, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 28, 29, 30, 31, 32, 33, 34, 35]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 18, 19, 20, 21, 23, 24, 25, 26, 27]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55500503, 1.07618474]), radius=0.9125000000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 29, 30, 31, 32, 33, 34, 35, 36]), model=ScalarModel(intercept=4358.048308908504, linear_terms=array([ 710.92585749, -8891.08879205]), square_terms=array([[ 105.26910053, -721.38451611],
+ [-721.38451611, 9868.80195397]]), scale=array([0.80868207, 0.3 ]), shift=array([4.55500503, 0.8 ])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=37, candidate_x=array([3.74632296, 1.04834942]), index=35, x=array([4.55500503, 1.07618474]), fval=325.2668555198778, rho=-1.7700435194524402, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 29, 30, 31, 32, 33, 34, 35, 36]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55500503, 1.07618474]), radius=0.45625000000000004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 30, 31, 32, 33, 34, 35, 36, 37]), model=ScalarModel(intercept=3032.083850662671, linear_terms=array([ -31.18380912, -6979.28199582]), square_terms=array([[ 12.72294677, 43.08307281],
+ [ 43.08307281, 8927.68085089]]), scale=array([0.40434103, 0.21407815]), shift=array([4.55500503, 0.88592185])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=38, candidate_x=array([4.47434032, 1.05348516]), index=35, x=array([4.55500503, 1.07618474]), fval=325.2668555198778, rho=-1.1194335774644109, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 30, 31, 32, 33, 34, 35, 36, 37]), old_indices_discarded=array([ 0, 2, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21,
+ 23, 24, 25, 26, 27, 28, 29]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55500503, 1.07618474]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([33, 34, 35, 37, 38]), model=ScalarModel(intercept=1511.3714089512966, linear_terms=array([ 53.97025663, -3068.72012489]), square_terms=array([[ 1.41838555e+00, -7.33292095e+01],
+ [-7.33292095e+01, 3.96778551e+03]]), scale=array([0.20217052, 0.11299289]), shift=array([4.55500503, 0.98700711])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=35, candidate_x=array([4.55500503, 1.07618474]), index=35, x=array([4.55500503, 1.07618474]), fval=325.2668555198778, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([33, 34, 35, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55500503, 1.07618474]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([33, 35, 38, 39]), model=ScalarModel(intercept=550.1980177751707, linear_terms=array([ -21.34314356, -861.36430433]), square_terms=array([[ 3.79220296, 8.8597605 ],
+ [ 8.8597605 , 1373.95414632]]), scale=array([0.10108526, 0.06245026]), shift=array([4.55500503, 1.03754974])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=40, candidate_x=array([4.65609029, 1.07629858]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=0.054273262543122716, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([33, 35, 38, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.10108532278892056, relative_step_length=0.886227487464509, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([35, 38, 39, 40]), model=ScalarModel(intercept=297.5496123744371, linear_terms=array([-13.8623804, -56.2490704]), square_terms=array([[ 2.70771094, -8.34250059],
+ [ -8.34250059, 351.68012528]]), scale=array([0.05054263, 0.03712202]), shift=array([4.65609029, 1.06287798])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=41, candidate_x=array([4.70663292, 1.06969602]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-0.2603849652107475, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 38, 39, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.028515625000000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([35, 39, 40, 41]), model=ScalarModel(intercept=314.0366355784512, linear_terms=array([ -4.77698475, -80.97859446]), square_terms=array([[1.67269568e-01, 2.07585986e+00],
+ [2.07585986e+00, 2.48293104e+02]]), scale=array([0.02527131, 0.02448637]), shift=array([4.65609029, 1.07551363])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=40, candidate_x=array([4.65609029, 1.07629858]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 39, 40, 41]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.014257812500000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 41, 42]), model=ScalarModel(intercept=324.50875500144684, linear_terms=array([ -4.87203941, -34.71671033]), square_terms=array([[ 0.15185929, 1.32260597],
+ [ 1.32260597, 73.69648928]]), scale=0.014257812500000001, shift=array([4.65609029, 1.07629858])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=40, candidate_x=array([4.65609029, 1.07629858]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([40, 41, 42]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.007128906250000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 42, 43]), model=ScalarModel(intercept=324.50875500144696, linear_terms=array([ 18.41374889, -220.21494744]), square_terms=array([[ 2.41113424, -30.02159224],
+ [-30.02159224, 383.81830261]]), scale=0.007128906250000001, shift=array([4.65609029, 1.07629858])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=44, candidate_x=array([4.64985352, 1.07988825]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-0.040216525204197696, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([40, 42, 43]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.0035644531250000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 43, 44]), model=ScalarModel(intercept=324.50875500144764, linear_terms=array([-3.32369605, -5.03665033]), square_terms=array([[0.07385999, 0.19295634],
+ [0.19295634, 4.07255454]]), scale=0.0035644531250000003, shift=array([4.65609029, 1.07629858])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=45, candidate_x=array([4.65892672, 1.0784667 ]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-0.1932652041870447, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([40, 43, 44]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.0017822265625000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 44, 45]), model=ScalarModel(intercept=324.5087550014469, linear_terms=array([-0.03797236, 0.30302842]), square_terms=array([[ 1.16167799e-04, -9.67679355e-03],
+ [-9.67679355e-03, 8.72278531e-01]]), scale=0.0017822265625000002, shift=array([4.65609029, 1.07629858])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=46, candidate_x=array([4.65787902, 1.07572215]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-0.6346975789894941, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([40, 44, 45]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.0008911132812500001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 45, 46]), model=ScalarModel(intercept=324.50875500144684, linear_terms=array([0.03083558, 0.08633504]), square_terms=array([[ 3.80279615e-05, -2.70035490e-03],
+ [-2.70035490e-03, 2.18789898e-01]]), scale=0.0008911132812500001, shift=array([4.65609029, 1.07629858])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=47, candidate_x=array([4.65520301, 1.07598213]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-0.6325408571369623, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([40, 45, 46]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.00044555664062500004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 46, 47]), model=ScalarModel(intercept=324.5087550014472, linear_terms=array([-0.00336429, -0.01511503]), square_terms=array([[ 5.78841731e-06, -5.46592851e-04],
+ [-5.46592851e-04, 5.55307507e-02]]), scale=0.00044555664062500004, shift=array([4.65609029, 1.07629858])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=48, candidate_x=array([4.65653471, 1.07641676]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-4.619141553298749, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([40, 46, 47]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.00022277832031250002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 47, 48]), model=ScalarModel(intercept=324.50875500144707, linear_terms=array([ 0.05986855, -0.18013296]), square_terms=array([[ 3.60665718e-05, -3.86428183e-04],
+ [-3.86428183e-04, 1.50111980e-02]]), scale=0.00022277832031250002, shift=array([4.65609029, 1.07629858])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=49, candidate_x=array([4.65602965, 1.07651295]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-0.26212236296537095, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([40, 47, 48]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.00011138916015625001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 48, 49]), model=ScalarModel(intercept=324.5087550014472, linear_terms=array([0.00021849, 0.02168299]), square_terms=array([[ 3.31928202e-07, -2.78076427e-05],
+ [-2.78076427e-05, 3.35816501e-03]]), scale=0.00011138916015625001, shift=array([4.65609029, 1.07629858])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=50, candidate_x=array([4.65608039, 1.07618763]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-0.43797987064481597, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([40, 48, 49]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=5.5694580078125005e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 49, 50]), model=ScalarModel(intercept=324.5087550014474, linear_terms=array([-3.85122473e-02, -8.45473122e-05]), square_terms=array([[1.57897714e-05, 3.45728674e-05],
+ [3.45728674e-05, 8.61778960e-04]]), scale=5.5694580078125005e-05, shift=array([4.65609029, 1.07629858])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=51, candidate_x=array([4.65614658, 1.07629865]), index=51, x=array([4.65614658, 1.07629865]), fval=324.50808131884514, rho=0.01731052112460427, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([40, 49, 50]), old_indices_discarded=array([], dtype=int64), step_length=5.629228819166208e-05, relative_step_length=1.01073189011747, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 52 entries., 'multistart_info': {'start_parameters': [array([2.28125, 1.0625 ]), array([5.51746599, 1.03381489])], 'local_optima': [{'solution_x': array([4.65614658, 1.07629865]), 'solution_criterion': 324.50808131884514, 'states': [State(trustregion=Region(center=array([2.28125, 1.0625 ]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=539.4929192700604, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=0, candidate_x=array([2.28125, 1.0625 ]), index=0, x=array([2.28125, 1.0625 ]), fval=539.4929192700604, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([2.28125, 1.0625 ]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=369.28064669953756, linear_terms=array([ 23.20797239, -331.32409918]), square_terms=array([[ 30.60434353, -262.86738644],
+ [-262.86738644, 2311.42613793]]), scale=array([0.20217052, 0.11983526]), shift=array([2.28125 , 0.98016474])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=13, candidate_x=array([2.48342052, 1.01097044]), index=0, x=array([2.28125, 1.0625 ]), fval=539.4929192700604, rho=-0.4891062139230318, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.28125, 1.0625 ]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 4, 7, 8, 9, 10, 12]), model=ScalarModel(intercept=509.6122393186843, linear_terms=array([ 19.08883257, -858.76997919]), square_terms=array([[ 5.03729945, -139.92580294],
+ [-139.92580294, 4076.45926807]]), scale=array([0.10108526, 0.06929263]), shift=array([2.28125 , 1.03070737])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=14, candidate_x=array([2.38233526, 1.04768344]), index=14, x=array([2.38233526, 1.04768344]), fval=401.2841593554285, rho=1.0178589872619395, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 4, 7, 8, 9, 10, 12]), old_indices_discarded=array([ 1, 5, 6, 11, 13]), step_length=0.10216535598227945, relative_step_length=0.8956962716254636, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.38233526, 1.04768344]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 7, 8, 11, 12, 13, 14]), model=ScalarModel(intercept=435.28307937263514, linear_terms=array([ 234.63528144, -687.02908869]), square_terms=array([[ 278.9237627 , -852.19265508],
+ [-852.19265508, 2613.94453482]]), scale=array([0.20217052, 0.12724354]), shift=array([2.38233526, 0.97275646])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=15, candidate_x=array([2.18016474, 0.96471651]), index=14, x=array([2.38233526, 1.04768344]), fval=401.2841593554285, rho=-4.787419416129048, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 7, 8, 11, 12, 13, 14]), old_indices_discarded=array([ 1, 2, 3, 5, 9, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.38233526, 1.04768344]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 8, 9, 12, 13, 14]), model=ScalarModel(intercept=397.48435278501233, linear_terms=array([ -19.88002875, -373.31052501]), square_terms=array([[1.48512547e+00, 1.03320709e+01],
+ [1.03320709e+01, 2.43818178e+03]]), scale=array([0.10108526, 0.07670091]), shift=array([2.38233526, 1.02329909])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=16, candidate_x=array([2.48342052, 1.03471775]), index=14, x=array([2.38233526, 1.04768344]), fval=401.2841593554285, rho=-0.8971627859072555, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 8, 9, 12, 13, 14]), old_indices_discarded=array([ 1, 3, 6, 7, 10, 11, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.38233526, 1.04768344]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 8, 9, 12, 13, 14, 16]), model=ScalarModel(intercept=393.8792118849582, linear_terms=array([ -8.62705232, 104.33160222]), square_terms=array([[ 6.22696152e-01, -2.71796860e+01],
+ [-2.71796860e+01, 1.84007347e+03]]), scale=array([0.05054263, 0.05054263]), shift=array([2.38233526, 1.04768344])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=17, candidate_x=array([2.43287789, 1.04556425]), index=17, x=array([2.43287789, 1.04556425]), fval=397.62883382383677, rho=0.3679927833871514, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 8, 9, 12, 13, 14, 16]), old_indices_discarded=array([ 5, 6, 7, 11, 15]), step_length=0.05058703723790713, relative_step_length=0.8870055844454948, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.43287789, 1.04556425]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 8, 12, 13, 14, 16, 17]), model=ScalarModel(intercept=414.4434968026508, linear_terms=array([ 9.86021543, -471.90609025]), square_terms=array([[ 3.74635264, -92.83139049],
+ [ -92.83139049, 2401.95091869]]), scale=array([0.10108526, 0.0777605 ]), shift=array([2.43287789, 1.0222395 ])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=18, candidate_x=array([2.53396315, 1.04052225]), index=17, x=array([2.43287789, 1.04556425]), fval=397.62883382383677, rho=-0.6210906230657142, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 8, 12, 13, 14, 16, 17]), old_indices_discarded=array([ 0, 1, 3, 6, 7, 9, 10, 11, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.43287789, 1.04556425]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 8, 9, 12, 13, 14, 16, 17]), model=ScalarModel(intercept=385.9217089848088, linear_terms=array([ -7.31126247, -14.99370301]), square_terms=array([[ 3.54256234e-01, -2.03158571e+01],
+ [-2.03158571e+01, 1.85626847e+03]]), scale=array([0.05054263, 0.05054263]), shift=array([2.43287789, 1.04556425])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=19, candidate_x=array([2.48342052, 1.04652566]), index=19, x=array([2.48342052, 1.04652566]), fval=393.7396485524217, rho=0.5206433882198473, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 8, 9, 12, 13, 14, 16, 17]), old_indices_discarded=array([ 0, 5, 6, 7, 11, 15, 18]), step_length=0.05055177240271502, relative_step_length=0.8863872421297976, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.48342052, 1.04652566]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 5, 8, 12, 13, 14, 17, 18, 19]), model=ScalarModel(intercept=421.2323159643066, linear_terms=array([ 41.05412659, -502.6472471 ]), square_terms=array([[ 13.73189863, -177.79563733],
+ [-177.79563733, 2314.95736687]]), scale=array([0.10108526, 0.0772798 ]), shift=array([2.48342052, 1.0227202 ])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=20, candidate_x=array([2.38233526, 1.03356466]), index=19, x=array([2.48342052, 1.04652566]), fval=393.7396485524217, rho=-4.933047820071923, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 5, 8, 12, 13, 14, 17, 18, 19]), old_indices_discarded=array([ 0, 1, 2, 3, 6, 7, 9, 10, 11, 15, 16]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.48342052, 1.04652566]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 8, 9, 13, 16, 17, 18, 19]), model=ScalarModel(intercept=382.0647107078109, linear_terms=array([ -4.3670562 , -11.49855929]), square_terms=array([[ 3.75364769e-01, -2.23406779e+01],
+ [-2.23406779e+01, 1.81124631e+03]]), scale=array([0.05054263, 0.05054263]), shift=array([2.48342052, 1.04652566])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=21, candidate_x=array([2.53396315, 1.04746994]), index=21, x=array([2.53396315, 1.04746994]), fval=390.1399050831211, rho=0.8007472184276522, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 8, 9, 13, 16, 17, 18, 19]), old_indices_discarded=array([ 0, 5, 6, 7, 11, 12, 14, 20]), step_length=0.05055144949369534, relative_step_length=0.886381580163425, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.53396315, 1.04746994]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 8, 13, 16, 17, 19, 21]), model=ScalarModel(intercept=426.84646205225044, linear_terms=array([ 1.15989452, -480.3723676 ]), square_terms=array([[ 7.00906111e-01, -3.46047728e+01],
+ [-3.46047728e+01, 2.01025586e+03]]), scale=array([0.10108526, 0.07680766]), shift=array([2.53396315, 1.02319234])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=22, candidate_x=array([2.63504841, 1.04286854]), index=21, x=array([2.53396315, 1.04746994]), fval=390.1399050831211, rho=-0.7444906283211007, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 8, 13, 16, 17, 19, 21]), old_indices_discarded=array([ 0, 1, 3, 6, 7, 9, 10, 11, 12, 14, 15, 18, 20]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.53396315, 1.04746994]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 8, 9, 13, 16, 18, 19, 21]), model=ScalarModel(intercept=388.9970240954775, linear_terms=array([ 12.00200522, -46.69029483]), square_terms=array([[ 4.53977618, -86.02708251],
+ [ -86.02708251, 1789.58959189]]), scale=array([0.05054263, 0.05054263]), shift=array([2.53396315, 1.04746994])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=23, candidate_x=array([2.48342052, 1.04635897]), index=21, x=array([2.53396315, 1.04746994]), fval=390.1399050831211, rho=-0.3724578812009339, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 8, 9, 13, 16, 18, 19, 21]), old_indices_discarded=array([ 0, 5, 6, 11, 12, 14, 17, 20, 22]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.53396315, 1.04746994]), radius=0.028515625000000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 9, 13, 16, 18, 19, 21, 23]), model=ScalarModel(intercept=389.4436319427866, linear_terms=array([ 5.02814649, -23.66664595]), square_terms=array([[ 1.01446646, -22.91801796],
+ [-22.91801796, 553.38241538]]), scale=0.028515625000000003, shift=array([2.53396315, 1.04746994])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=24, candidate_x=array([2.50542155, 1.04750718]), index=21, x=array([2.53396315, 1.04746994]), fval=390.1399050831211, rho=-0.37158262078118054, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 9, 13, 16, 18, 19, 21, 23]), old_indices_discarded=array([ 4, 5, 6, 17, 22]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.53396315, 1.04746994]), radius=0.014257812500000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 13, 16, 18, 19, 21, 23, 24]), model=ScalarModel(intercept=392.4947159374246, linear_terms=array([ 1.27932535, -3.76638647]), square_terms=array([[ 0.1356221 , -3.92705052],
+ [ -3.92705052, 116.92844993]]), scale=0.014257812500000001, shift=array([2.53396315, 1.04746994])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=25, candidate_x=array([2.51969795, 1.0474503 ]), index=21, x=array([2.53396315, 1.04746994]), fval=390.1399050831211, rho=-0.6610327156620669, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 13, 16, 18, 19, 21, 23, 24]), old_indices_discarded=array([9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.53396315, 1.04746994]), radius=0.007128906250000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 21, 24, 25]), model=ScalarModel(intercept=390.1270373870984, linear_terms=array([-0.40666892, -4.67642507]), square_terms=array([[ 8.24163964e-03, -5.14376616e-01],
+ [-5.14376616e-01, 3.38745244e+01]]), scale=0.007128906250000001, shift=array([2.53396315, 1.04746994])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=26, candidate_x=array([2.54107652, 1.04854694]), index=26, x=array([2.54107652, 1.04854694]), fval=389.277834841791, rho=1.0787463888831172, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 21, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.007194443137304451, relative_step_length=1.0091931195342132, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.54107652, 1.04854694]), radius=0.014257812500000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 8, 18, 19, 21, 23, 24, 25, 26]), model=ScalarModel(intercept=388.3114278890381, linear_terms=array([-0.97062407, -4.79051289]), square_terms=array([[ 3.23021015e-02, -2.12345521e+00],
+ [-2.12345521e+00, 1.49936025e+02]]), scale=0.014257812500000001, shift=array([2.54107652, 1.04854694])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=27, candidate_x=array([2.55532652, 1.04919979]), index=27, x=array([2.55532652, 1.04919979]), fval=388.2655022854925, rho=0.9093009321394735, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 8, 18, 19, 21, 23, 24, 25, 26]), old_indices_discarded=array([13, 16]), step_length=0.014264943039271727, relative_step_length=1.0005001145352224, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.55532652, 1.04919979]), radius=0.028515625000000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 18, 19, 21, 23, 24, 25, 26, 27]), model=ScalarModel(intercept=388.15196116706716, linear_terms=array([-1.87600935, 4.8110453 ]), square_terms=array([[ 1.41233061e-01, -8.75463669e+00],
+ [-8.75463669e+00, 5.67685407e+02]]), scale=0.028515625000000003, shift=array([2.55532652, 1.04919979])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=28, candidate_x=array([2.58384249, 1.04939726]), index=28, x=array([2.58384249, 1.04939726]), fval=386.39176056264023, rho=1.030030940972948, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 18, 19, 21, 23, 24, 25, 26, 27]), old_indices_discarded=array([ 4, 5, 8, 9, 13, 16, 17, 22]), step_length=0.028516654078930722, relative_step_length=1.0000360882474335, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.58384249, 1.04939726]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 19, 21, 22, 24, 25, 26, 27, 28]), model=ScalarModel(intercept=386.5853634477402, linear_terms=array([-3.2942653 , 6.19453001]), square_terms=array([[ 3.46423682e-01, -2.34674124e+01],
+ [-2.34674124e+01, 1.68637941e+03]]), scale=array([0.05054263, 0.05054263]), shift=array([2.58384249, 1.04939726])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=29, candidate_x=array([2.63438512, 1.04991495]), index=29, x=array([2.63438512, 1.04991495]), fval=382.93906954428303, rho=1.0757679087893275, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 19, 21, 22, 24, 25, 26, 27, 28]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 12, 13, 14, 16, 17, 20, 23]), step_length=0.05054528049950689, relative_step_length=0.8862734114982029, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.63438512, 1.04991495]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 21, 22, 24, 25, 26, 27, 28, 29]), model=ScalarModel(intercept=597.5812627596855, linear_terms=array([ 17.62359378, -1267.78086801]), square_terms=array([[ 1.43464082e+00, -7.12704676e+01],
+ [-7.12704676e+01, 3.74858881e+03]]), scale=array([0.10108526, 0.07558516]), shift=array([2.63438512, 1.02441484])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=30, candidate_x=array([2.73547038, 1.05141498]), index=30, x=array([2.73547038, 1.05141498]), fval=376.31868391130615, rho=1.0277337960420385, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 21, 22, 24, 25, 26, 27, 28, 29]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 19, 20, 23]), step_length=0.10109638775475414, relative_step_length=0.8863244953841458, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.73547038, 1.05141498]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 21, 22, 25, 26, 27, 28, 29, 30]), model=ScalarModel(intercept=2307.7763833225085, linear_terms=array([ 134.13086451, -6300.49433818]), square_terms=array([[ 5.93425604e+00, -2.40087569e+02],
+ [-2.40087569e+02, 1.02770928e+04]]), scale=array([0.20217052, 0.12537777]), shift=array([2.73547038, 0.97462223])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=31, candidate_x=array([2.93764089, 1.05441557]), index=31, x=array([2.93764089, 1.05441557]), fval=365.062918550816, rho=0.8727682132841054, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 21, 22, 25, 26, 27, 28, 29, 30]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 19, 20, 23, 24]), step_length=0.20219278337360178, relative_step_length=0.8863245298568844, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([2.93764089, 1.05441557]), radius=0.45625000000000004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 8, 9, 16, 18, 24, 28, 29, 30, 31]), model=ScalarModel(intercept=12865.218421931559, linear_terms=array([ 855.20260599, -31193.62316319]), square_terms=array([[ 3.13263792e+01, -1.09220775e+03],
+ [-1.09220775e+03, 3.89236743e+04]]), scale=array([0.40434103, 0.22496273]), shift=array([2.93764089, 0.87503727])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=32, candidate_x=array([3.34198193, 1.06163601]), index=32, x=array([3.34198193, 1.06163601]), fval=346.7329948411579, rho=0.9130421801358641, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 8, 9, 16, 18, 24, 28, 29, 30, 31]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20,
+ 21, 22, 23, 25, 26, 27]), step_length=0.40440549838794076, relative_step_length=0.8863682156448016, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.34198193, 1.06163601]), radius=0.9125000000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 6, 13, 17, 28, 29, 30, 31, 32]), model=ScalarModel(intercept=7965.115933100144, linear_terms=array([ 1401.52538742, -17482.46466521]), square_terms=array([[ 132.13425913, -1621.72179802],
+ [-1621.72179802, 20078.24431782]]), scale=array([0.80868207, 0.3 ]), shift=array([3.34198193, 0.8 ])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=33, candidate_x=array([4.150664 , 1.08544607]), index=32, x=array([3.34198193, 1.06163601]), fval=346.7329948411579, rho=-2.1544952554641625, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 6, 13, 17, 28, 29, 30, 31, 32]), old_indices_discarded=array([ 0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 20,
+ 21, 22, 23, 24, 25, 26, 27]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.34198193, 1.06163601]), radius=0.45625000000000004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([21, 22, 26, 27, 28, 29, 30, 31, 32]), model=ScalarModel(intercept=10898.29333061804, linear_terms=array([ 657.86330033, -25725.95620283]), square_terms=array([[ 2.28531456e+01, -8.27401705e+02],
+ [-8.27401705e+02, 3.13565250e+04]]), scale=array([0.40434103, 0.22135251]), shift=array([3.34198193, 0.87864749])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=34, candidate_x=array([3.74632296, 1.0660934 ]), index=34, x=array([3.74632296, 1.0660934 ]), fval=334.90086244002987, rho=0.5616369864914499, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([21, 22, 26, 27, 28, 29, 30, 31, 32]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 18, 19, 20, 23, 24, 25, 33]), step_length=0.4043656027569591, relative_step_length=0.8862807731659377, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.74632296, 1.0660934 ]), radius=0.9125000000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 27, 28, 29, 30, 31, 32, 33, 34]), model=ScalarModel(intercept=16391.3697228818, linear_terms=array([ 1360.7428243 , -36399.16797702]), square_terms=array([[ 63.68375989, -1580.10411546],
+ [-1580.10411546, 41254.20429359]]), scale=array([0.80868207, 0.3 ]), shift=array([3.74632296, 0.8 ])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=35, candidate_x=array([4.55500503, 1.07618474]), index=35, x=array([4.55500503, 1.07618474]), fval=325.2668555198778, rho=0.29852083892327547, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 27, 28, 29, 30, 31, 32, 33, 34]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 18, 19, 20, 21, 23, 24, 25, 26]), step_length=0.8087450306346845, relative_step_length=0.8862959239832158, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55500503, 1.07618474]), radius=1.8250000000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 28, 29, 30, 31, 32, 33, 34, 35]), model=ScalarModel(intercept=14968.578144708577, linear_terms=array([ 2168.15459365, -31802.26159431]), square_terms=array([[ 175.52773738, -2402.58546272],
+ [-2402.58546272, 34519.22383816]]), scale=array([1.61736414, 0.3 ]), shift=array([4.55500503, 0.8 ])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=35, candidate_x=array([4.55500503, 1.07618474]), index=35, x=array([4.55500503, 1.07618474]), fval=325.2668555198778, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 28, 29, 30, 31, 32, 33, 34, 35]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 18, 19, 20, 21, 23, 24, 25, 26, 27]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55500503, 1.07618474]), radius=0.9125000000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 29, 30, 31, 32, 33, 34, 35, 36]), model=ScalarModel(intercept=4358.048308908504, linear_terms=array([ 710.92585749, -8891.08879205]), square_terms=array([[ 105.26910053, -721.38451611],
+ [-721.38451611, 9868.80195397]]), scale=array([0.80868207, 0.3 ]), shift=array([4.55500503, 0.8 ])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=37, candidate_x=array([3.74632296, 1.04834942]), index=35, x=array([4.55500503, 1.07618474]), fval=325.2668555198778, rho=-1.7700435194524402, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 29, 30, 31, 32, 33, 34, 35, 36]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55500503, 1.07618474]), radius=0.45625000000000004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 30, 31, 32, 33, 34, 35, 36, 37]), model=ScalarModel(intercept=3032.083850662671, linear_terms=array([ -31.18380912, -6979.28199582]), square_terms=array([[ 12.72294677, 43.08307281],
+ [ 43.08307281, 8927.68085089]]), scale=array([0.40434103, 0.21407815]), shift=array([4.55500503, 0.88592185])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=38, candidate_x=array([4.47434032, 1.05348516]), index=35, x=array([4.55500503, 1.07618474]), fval=325.2668555198778, rho=-1.1194335774644109, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 30, 31, 32, 33, 34, 35, 36, 37]), old_indices_discarded=array([ 0, 2, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21,
+ 23, 24, 25, 26, 27, 28, 29]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55500503, 1.07618474]), radius=0.22812500000000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([33, 34, 35, 37, 38]), model=ScalarModel(intercept=1511.3714089512966, linear_terms=array([ 53.97025663, -3068.72012489]), square_terms=array([[ 1.41838555e+00, -7.33292095e+01],
+ [-7.33292095e+01, 3.96778551e+03]]), scale=array([0.20217052, 0.11299289]), shift=array([4.55500503, 0.98700711])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=35, candidate_x=array([4.55500503, 1.07618474]), index=35, x=array([4.55500503, 1.07618474]), fval=325.2668555198778, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([33, 34, 35, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55500503, 1.07618474]), radius=0.11406250000000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([33, 35, 38, 39]), model=ScalarModel(intercept=550.1980177751707, linear_terms=array([ -21.34314356, -861.36430433]), square_terms=array([[ 3.79220296, 8.8597605 ],
+ [ 8.8597605 , 1373.95414632]]), scale=array([0.10108526, 0.06245026]), shift=array([4.55500503, 1.03754974])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=40, candidate_x=array([4.65609029, 1.07629858]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=0.054273262543122716, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([33, 35, 38, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.10108532278892056, relative_step_length=0.886227487464509, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.057031250000000006, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([35, 38, 39, 40]), model=ScalarModel(intercept=297.5496123744371, linear_terms=array([-13.8623804, -56.2490704]), square_terms=array([[ 2.70771094, -8.34250059],
+ [ -8.34250059, 351.68012528]]), scale=array([0.05054263, 0.03712202]), shift=array([4.65609029, 1.06287798])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=41, candidate_x=array([4.70663292, 1.06969602]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-0.2603849652107475, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 38, 39, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.028515625000000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([35, 39, 40, 41]), model=ScalarModel(intercept=314.0366355784512, linear_terms=array([ -4.77698475, -80.97859446]), square_terms=array([[1.67269568e-01, 2.07585986e+00],
+ [2.07585986e+00, 2.48293104e+02]]), scale=array([0.02527131, 0.02448637]), shift=array([4.65609029, 1.07551363])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=40, candidate_x=array([4.65609029, 1.07629858]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 39, 40, 41]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.014257812500000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 41, 42]), model=ScalarModel(intercept=324.50875500144684, linear_terms=array([ -4.87203941, -34.71671033]), square_terms=array([[ 0.15185929, 1.32260597],
+ [ 1.32260597, 73.69648928]]), scale=0.014257812500000001, shift=array([4.65609029, 1.07629858])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=40, candidate_x=array([4.65609029, 1.07629858]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([40, 41, 42]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.007128906250000001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 42, 43]), model=ScalarModel(intercept=324.50875500144696, linear_terms=array([ 18.41374889, -220.21494744]), square_terms=array([[ 2.41113424, -30.02159224],
+ [-30.02159224, 383.81830261]]), scale=0.007128906250000001, shift=array([4.65609029, 1.07629858])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=44, candidate_x=array([4.64985352, 1.07988825]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-0.040216525204197696, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([40, 42, 43]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.0035644531250000003, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 43, 44]), model=ScalarModel(intercept=324.50875500144764, linear_terms=array([-3.32369605, -5.03665033]), square_terms=array([[0.07385999, 0.19295634],
+ [0.19295634, 4.07255454]]), scale=0.0035644531250000003, shift=array([4.65609029, 1.07629858])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=45, candidate_x=array([4.65892672, 1.0784667 ]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-0.1932652041870447, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([40, 43, 44]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.0017822265625000002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 44, 45]), model=ScalarModel(intercept=324.5087550014469, linear_terms=array([-0.03797236, 0.30302842]), square_terms=array([[ 1.16167799e-04, -9.67679355e-03],
+ [-9.67679355e-03, 8.72278531e-01]]), scale=0.0017822265625000002, shift=array([4.65609029, 1.07629858])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=46, candidate_x=array([4.65787902, 1.07572215]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-0.6346975789894941, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([40, 44, 45]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.0008911132812500001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 45, 46]), model=ScalarModel(intercept=324.50875500144684, linear_terms=array([0.03083558, 0.08633504]), square_terms=array([[ 3.80279615e-05, -2.70035490e-03],
+ [-2.70035490e-03, 2.18789898e-01]]), scale=0.0008911132812500001, shift=array([4.65609029, 1.07629858])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=47, candidate_x=array([4.65520301, 1.07598213]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-0.6325408571369623, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([40, 45, 46]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.00044555664062500004, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 46, 47]), model=ScalarModel(intercept=324.5087550014472, linear_terms=array([-0.00336429, -0.01511503]), square_terms=array([[ 5.78841731e-06, -5.46592851e-04],
+ [-5.46592851e-04, 5.55307507e-02]]), scale=0.00044555664062500004, shift=array([4.65609029, 1.07629858])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=48, candidate_x=array([4.65653471, 1.07641676]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-4.619141553298749, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([40, 46, 47]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.00022277832031250002, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 47, 48]), model=ScalarModel(intercept=324.50875500144707, linear_terms=array([ 0.05986855, -0.18013296]), square_terms=array([[ 3.60665718e-05, -3.86428183e-04],
+ [-3.86428183e-04, 1.50111980e-02]]), scale=0.00022277832031250002, shift=array([4.65609029, 1.07629858])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=49, candidate_x=array([4.65602965, 1.07651295]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-0.26212236296537095, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([40, 47, 48]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=0.00011138916015625001, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 48, 49]), model=ScalarModel(intercept=324.5087550014472, linear_terms=array([0.00021849, 0.02168299]), square_terms=array([[ 3.31928202e-07, -2.78076427e-05],
+ [-2.78076427e-05, 3.35816501e-03]]), scale=0.00011138916015625001, shift=array([4.65609029, 1.07629858])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=50, candidate_x=array([4.65608039, 1.07618763]), index=40, x=array([4.65609029, 1.07629858]), fval=324.50875500144707, rho=-0.43797987064481597, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([40, 48, 49]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65609029, 1.07629858]), radius=5.5694580078125005e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([40, 49, 50]), model=ScalarModel(intercept=324.5087550014474, linear_terms=array([-3.85122473e-02, -8.45473122e-05]), square_terms=array([[1.57897714e-05, 3.45728674e-05],
+ [3.45728674e-05, 8.61778960e-04]]), scale=5.5694580078125005e-05, shift=array([4.65609029, 1.07629858])), vector_model=VectorModel(intercepts=array([ 1.06075516, 2.58156846, 3.64128145, 5.24819755,
+ 6.92536426, 8.95136781, 10.32540209, 7.6435337 ,
+ 4.01190161, -0.21040033, -6.53830743, -11.78500893]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.22812500000000002, shift=array([2.28125, 1.0625 ])), candidate_index=51, candidate_x=array([4.65614658, 1.07629865]), index=51, x=array([4.65614658, 1.07629865]), fval=324.50808131884514, rho=0.01731052112460427, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([40, 49, 50]), old_indices_discarded=array([], dtype=int64), step_length=5.629228819166208e-05, relative_step_length=1.01073189011747, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 52 entries., 'history': {'params': [{'CRRA': 2.28125, 'DiscFac': 1.0625}, {'CRRA': 2.1080599021593467, 'DiscFac': 0.8603294826310895}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.0537994279097354}, {'CRRA': 2.0790794826310894, 'DiscFac': 1.057771933087904}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.0997321942805047}, {'CRRA': 2.4834205173689106, 'DiscFac': 0.9532212916001106}, {'CRRA': 2.4834205173689106, 'DiscFac': 0.9247148727392314}, {'CRRA': 2.220687379772545, 'DiscFac': 1.1}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.061143425100633}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.097123266376995}, {'CRRA': 2.0790794826310894, 'DiscFac': 1.0647910016988402}, {'CRRA': 2.3332640759975307, 'DiscFac': 0.8603294826310895}, {'CRRA': 2.394747958016102, 'DiscFac': 1.1}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.0109704370801267}, {'CRRA': 2.382335258684455, 'DiscFac': 1.0476834403560513}, {'CRRA': 2.1801647413155445, 'DiscFac': 0.9647165064215529}, {'CRRA': 2.48342051736891, 'DiscFac': 1.0347177543831159}, {'CRRA': 2.432877888026683, 'DiscFac': 1.0455642528505245}, {'CRRA': 2.533963146711138, 'DiscFac': 1.0405222480655252}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.0465256644325633}, {'CRRA': 2.3823352586844555, 'DiscFac': 1.033564664572611}, {'CRRA': 2.5339631467111383, 'DiscFac': 1.047469944628167}, {'CRRA': 2.6350484053955934, 'DiscFac': 1.0428685385969303}, {'CRRA': 2.4834205173689106, 'DiscFac': 1.0463589722083482}, {'CRRA': 2.5054215502834296, 'DiscFac': 1.0475071778724756}, {'CRRA': 2.5196979549221816, 'DiscFac': 1.0474502989833212}, {'CRRA': 2.5410765204759427, 'DiscFac': 1.0485469431138206}, {'CRRA': 2.5553265167200228, 'DiscFac': 1.0491997883920992}, {'CRRA': 2.583842487058223, 'DiscFac': 1.0493972612466624}, {'CRRA': 2.6343851164004506, 'DiscFac': 1.0499149483606702}, {'CRRA': 2.7354703750849056, 'DiscFac': 1.0514149796124799}, {'CRRA': 2.937640892453816, 'DiscFac': 1.0544155720791926}, {'CRRA': 3.341981927191637, 'DiscFac': 1.0616360120621342}, {'CRRA': 4.150663996667278, 'DiscFac': 1.085446070296119}, {'CRRA': 3.746322961929458, 'DiscFac': 1.0660934014490961}, {'CRRA': 4.5550050314051, 'DiscFac': 1.0761847385700731}, {'CRRA': 6.172369170356384, 'DiscFac': 1.0972678112700958}, {'CRRA': 3.7463229619294585, 'DiscFac': 1.0483494241971596}, {'CRRA': 4.474340324764396, 'DiscFac': 1.053485161647703}, {'CRRA': 4.75717554877401, 'DiscFac': 1.0764850403494255}, {'CRRA': 4.656090290089556, 'DiscFac': 1.0762985807282335}, {'CRRA': 4.706632919431783, 'DiscFac': 1.069696017703279}, {'CRRA': 4.68136160476067, 'DiscFac': 1.0832949257173223}, {'CRRA': 4.670456130935367, 'DiscFac': 1.0824152990387697}, {'CRRA': 4.6498535218331565, 'DiscFac': 1.0798882535131364}, {'CRRA': 4.658926719589502, 'DiscFac': 1.0784666951442767}, {'CRRA': 4.6578790211563765, 'DiscFac': 1.0757221459705013}, {'CRRA': 4.65520301478792, 'DiscFac': 1.0759821254367556}, {'CRRA': 4.656534705087294, 'DiscFac': 1.0764167570708383}, {'CRRA': 4.656029646033997, 'DiscFac': 1.0765129460204956}, {'CRRA': 4.656080386488486, 'DiscFac': 1.0761876327057809}, {'CRRA': 4.6561465823330614, 'DiscFac': 1.0762986516574313}], 'criterion': [539.4929192700604, 1221.8675258714557, 404.7045013140681, 556.5981636048194, 1418.2180360595958, 1134.4079728308398, 1175.1490350385895, 1830.3844633609278, 454.37828850926013, 1316.6223528136734, 692.7723876600156, 1217.1599081251106, 1550.0771663964833, 713.5134538090916, 401.2841593554285, 1114.6909165038717, 446.76005820979447, 397.62883382383677, 410.77183910073745, 393.7396485524217, 452.8256804660464, 390.1399050831211, 399.8443617809469, 393.9257331434714, 391.8213338797376, 390.9412217644086, 389.277834841791, 388.2655022854925, 386.3917605626402, 382.93906954428303, 376.31868391130615, 365.062918550816, 346.7329948411579, 368.2369752259499, 334.90086244002987, 325.2668555198778, nan, 390.1447848010262, 382.7525586574866, nan, 324.50875500144707, 329.99954100363095, nan, nan, 327.0902292511706, 325.4438253771558, 324.5641619351112, 324.53943466025123, 324.5344057526708, 324.5566121642871, 324.5174940975544, 324.50808131884514], 'runtime': [0.0, 1.8009274670002924, 1.8349953599999935, 1.8716977379999662, 1.9064695870001742, 1.9587920620001569, 1.988055123000322, 2.0242426620002334, 2.0628871050003, 2.1053071480000654, 2.1416214290002245, 2.1893475360002412, 2.2281548040000416, 4.36073855099994, 6.131201134000094, 7.8724270480001906, 9.600155464000181, 11.310955472999922, 13.038677657000335, 14.74292541900013, 16.4423814390002, 18.136036501000035, 19.83283611500019, 21.537421882000217, 23.253812039999957, 25.083194824000202, 26.778671699999904, 28.46434648500008, 30.143333340000027, 31.836918702000276, 33.52446875500027, 35.22875840500001, 36.934571169000264, 38.67663603100027, 40.39671845900011, 42.13699109700019, 43.857527524000034, 45.570228391, 47.2664019140002, 49.09642402999998, 50.78836033000016, 52.4552653300002, 54.15450059300019, 55.86215718199992, 57.58588246599993, 59.26718887700008, 60.95021729000018, 62.6536614659999, 64.33571088600002, 66.06470411600003, 67.73840497099991, 69.41452023800002], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]}, 'multistart_info': {...}}, {'solution_x': array([5.02957273, 1.06006204]), 'solution_criterion': 366.87528253519326, 'states': [State(trustregion=Region(center=array([5.51746599, 1.03381489]), radius=0.5517465994239722, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=538.62727091007, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.5517465994239722, shift=array([5.51746599, 1.03381489])), vector_model=VectorModel(intercepts=array([ -0.02225619, -0.05624546, -0.37762923, -0.15484397,
+ -0.06288249, 0.11478383, -0.47188773, -5.53607639,
+ -7.36495864, -8.65695488, -11.81735926, -15.45100705]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5517465994239722, shift=array([5.51746599, 1.03381489])), candidate_index=0, candidate_x=array([5.51746599, 1.03381489]), index=0, x=array([5.51746599, 1.03381489]), fval=538.62727091007, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([5.51746599, 1.03381489]), radius=0.5517465994239722, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=582.6078887485191, linear_terms=array([-216.2510392 , -768.86823664]), square_terms=array([[ 239.490335 , 590.09435922],
+ [ 590.09435922, 1589.28943599]]), scale=array([0.48897269, 0.2775789 ]), shift=array([5.51746599, 0.8224211 ])), vector_model=VectorModel(intercepts=array([ -0.02225619, -0.05624546, -0.37762923, -0.15484397,
+ -0.06288249, 0.11478383, -0.47188773, -5.53607639,
+ -7.36495864, -8.65695488, -11.81735926, -15.45100705]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5517465994239722, shift=array([5.51746599, 1.03381489])), candidate_index=13, candidate_x=array([5.0284933 , 1.05977204]), index=13, x=array([5.0284933 , 1.05977204]), fval=368.13340247051497, rho=1.416690089127547, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.4896611765678174, relative_step_length=0.8874747521398909, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.0284933 , 1.05977204]), radius=1.1034931988479444, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 1, 3, 5, 6, 8, 9, 11, 12, 13]), model=ScalarModel(intercept=863.4633567555443, linear_terms=array([ -802.62589687, -1318.68077647]), square_terms=array([[ 605.61143899, 934.48627974],
+ [ 934.48627974, 1519.95136338]]), scale=array([0.97794538, 0.3 ]), shift=array([5.0284933, 0.8 ])), vector_model=VectorModel(intercepts=array([ -0.02225619, -0.05624546, -0.37762923, -0.15484397,
+ -0.06288249, 0.11478383, -0.47188773, -5.53607639,
+ -7.36495864, -8.65695488, -11.81735926, -15.45100705]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5517465994239722, shift=array([5.51746599, 1.03381489])), candidate_index=13, candidate_x=array([5.0284933 , 1.05977204]), index=13, x=array([5.0284933 , 1.05977204]), fval=368.13340247051497, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 3, 5, 6, 8, 9, 11, 12, 13]), old_indices_discarded=array([ 0, 2, 4, 7, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.0284933 , 1.05977204]), radius=0.5517465994239722, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 10, 11, 12, 13, 14]), model=ScalarModel(intercept=755.3726597466226, linear_terms=array([ -757.78542757, -1232.73604211]), square_terms=array([[ 944.94723339, 986.64238952],
+ [ 986.64238952, 1511.31969274]]), scale=array([0.48897269, 0.26460033]), shift=array([5.0284933 , 0.83539967])), vector_model=VectorModel(intercepts=array([ -0.02225619, -0.05624546, -0.37762923, -0.15484397,
+ -0.06288249, 0.11478383, -0.47188773, -5.53607639,
+ -7.36495864, -8.65695488, -11.81735926, -15.45100705]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5517465994239722, shift=array([5.51746599, 1.03381489])), candidate_index=13, candidate_x=array([5.0284933 , 1.05977204]), index=13, x=array([5.0284933 , 1.05977204]), fval=368.13340247051497, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 10, 11, 12, 13, 14]), old_indices_discarded=array([2, 4, 5, 6, 8, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.0284933 , 1.05977204]), radius=0.2758732997119861, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 10, 12, 13, 14, 15]), model=ScalarModel(intercept=344.4262998626739, linear_terms=array([-103.33496267, -358.05574996]), square_terms=array([[233.09976544, 195.08421045],
+ [195.08421045, 660.9008632 ]]), scale=array([0.24448635, 0.14235715]), shift=array([5.0284933 , 0.95764285])), vector_model=VectorModel(intercepts=array([ -0.02225619, -0.05624546, -0.37762923, -0.15484397,
+ -0.06288249, 0.11478383, -0.47188773, -5.53607639,
+ -7.36495864, -8.65695488, -11.81735926, -15.45100705]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5517465994239722, shift=array([5.51746599, 1.03381489])), candidate_index=16, candidate_x=array([5.02521195, 1.03533155]), index=13, x=array([5.0284933 , 1.05977204]), fval=368.13340247051497, rho=-14.848611905351168, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 10, 12, 13, 14, 15]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.0284933 , 1.05977204]), radius=0.13793664985599305, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 10, 13, 14, 15, 16]), model=ScalarModel(intercept=297.24961226552693, linear_terms=array([ 52.07074594, -103.62885495]), square_terms=array([[ 31.29738499, -61.65107113],
+ [-61.65107113, 132.96113088]]), scale=array([0.12224317, 0.08123557]), shift=array([5.0284933 , 1.01876443])), vector_model=VectorModel(intercepts=array([ -0.02225619, -0.05624546, -0.37762923, -0.15484397,
+ -0.06288249, 0.11478383, -0.47188773, -5.53607639,
+ -7.36495864, -8.65695488, -11.81735926, -15.45100705]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5517465994239722, shift=array([5.51746599, 1.03381489])), candidate_index=17, candidate_x=array([4.90625013, 1.0444117 ]), index=13, x=array([5.0284933 , 1.05977204]), fval=368.13340247051497, rho=-10.838318991970116, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 10, 13, 14, 15, 16]), old_indices_discarded=array([11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.0284933 , 1.05977204]), radius=0.06896832492799652, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 13, 14, 15, 16, 17]), model=ScalarModel(intercept=293.56988094891074, linear_terms=array([ 29.67365192, -97.46367199]), square_terms=array([[ 11.19394409, -40.20717012],
+ [-40.20717012, 146.04835721]]), scale=array([0.06112159, 0.05067477]), shift=array([5.0284933 , 1.04932523])), vector_model=VectorModel(intercepts=array([ -0.02225619, -0.05624546, -0.37762923, -0.15484397,
+ -0.06288249, 0.11478383, -0.47188773, -5.53607639,
+ -7.36495864, -8.65695488, -11.81735926, -15.45100705]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5517465994239722, shift=array([5.51746599, 1.03381489])), candidate_index=13, candidate_x=array([5.0284933 , 1.05977204]), index=13, x=array([5.0284933 , 1.05977204]), fval=368.13340247051497, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 13, 14, 15, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.0284933 , 1.05977204]), radius=0.03448416246399826, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 7, 10, 13, 15, 16, 17, 18]), model=ScalarModel(intercept=260.788742057204, linear_terms=array([ 1.71724763, -32.27030502]), square_terms=array([[ 1.78754012, 15.57016339],
+ [ 15.57016339, 211.22032532]]), scale=0.03448416246399826, shift=array([5.0284933 , 1.05977204])), vector_model=VectorModel(intercepts=array([ -0.02225619, -0.05624546, -0.37762923, -0.15484397,
+ -0.06288249, 0.11478383, -0.47188773, -5.53607639,
+ -7.36495864, -8.65695488, -11.81735926, -15.45100705]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5517465994239722, shift=array([5.51746599, 1.03381489])), candidate_index=13, candidate_x=array([5.0284933 , 1.05977204]), index=13, x=array([5.0284933 , 1.05977204]), fval=368.13340247051497, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 7, 10, 13, 15, 16, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.0284933 , 1.05977204]), radius=0.01724208123199913, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 7, 13, 15, 16, 18, 19]), model=ScalarModel(intercept=327.468372759335, linear_terms=array([ 7.64746385, -98.50375161]), square_terms=array([[ 0.41227786, -1.77258536],
+ [ -1.77258536, 105.83658586]]), scale=0.01724208123199913, shift=array([5.0284933 , 1.05977204])), vector_model=VectorModel(intercepts=array([ -0.02225619, -0.05624546, -0.37762923, -0.15484397,
+ -0.06288249, 0.11478383, -0.47188773, -5.53607639,
+ -7.36495864, -8.65695488, -11.81735926, -15.45100705]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5517465994239722, shift=array([5.51746599, 1.03381489])), candidate_index=13, candidate_x=array([5.0284933 , 1.05977204]), index=13, x=array([5.0284933 , 1.05977204]), fval=368.13340247051497, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 7, 13, 15, 16, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.0284933 , 1.05977204]), radius=0.008621040615999566, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 7, 13, 16, 19, 20]), model=ScalarModel(intercept=322.9788723346509, linear_terms=array([ 8.24259191, -44.7820302 ]), square_terms=array([[ 2.12879495, 2.3481151 ],
+ [ 2.3481151 , 26.74049239]]), scale=0.008621040615999566, shift=array([5.0284933 , 1.05977204])), vector_model=VectorModel(intercepts=array([ -0.02225619, -0.05624546, -0.37762923, -0.15484397,
+ -0.06288249, 0.11478383, -0.47188773, -5.53607639,
+ -7.36495864, -8.65695488, -11.81735926, -15.45100705]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5517465994239722, shift=array([5.51746599, 1.03381489])), candidate_index=13, candidate_x=array([5.0284933 , 1.05977204]), index=13, x=array([5.0284933 , 1.05977204]), fval=368.13340247051497, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 7, 13, 16, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.0284933 , 1.05977204]), radius=0.004310520307999783, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([13, 20, 21]), model=ScalarModel(intercept=368.133402470515, linear_terms=array([-199.44712466, -237.14896958]), square_terms=array([[274.86171608, 278.30241889],
+ [278.30241889, 292.02907544]]), scale=0.004310520307999783, shift=array([5.0284933 , 1.05977204])), vector_model=VectorModel(intercepts=array([ -0.02225619, -0.05624546, -0.37762923, -0.15484397,
+ -0.06288249, 0.11478383, -0.47188773, -5.53607639,
+ -7.36495864, -8.65695488, -11.81735926, -15.45100705]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5517465994239722, shift=array([5.51746599, 1.03381489])), candidate_index=13, candidate_x=array([5.0284933 , 1.05977204]), index=13, x=array([5.0284933 , 1.05977204]), fval=368.13340247051497, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([13, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.0284933 , 1.05977204]), radius=0.0021552601539998914, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([13, 21, 22]), model=ScalarModel(intercept=368.13340247051474, linear_terms=array([-193.38087729, -166.42544912]), square_terms=array([[189.10001475, 156.36395405],
+ [156.36395405, 130.2657415 ]]), scale=0.0021552601539998914, shift=array([5.0284933 , 1.05977204])), vector_model=VectorModel(intercepts=array([ -0.02225619, -0.05624546, -0.37762923, -0.15484397,
+ -0.06288249, 0.11478383, -0.47188773, -5.53607639,
+ -7.36495864, -8.65695488, -11.81735926, -15.45100705]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5517465994239722, shift=array([5.51746599, 1.03381489])), candidate_index=13, candidate_x=array([5.0284933 , 1.05977204]), index=13, x=array([5.0284933 , 1.05977204]), fval=368.13340247051497, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([13, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.0284933 , 1.05977204]), radius=0.0010776300769999457, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([13, 22, 23]), model=ScalarModel(intercept=368.1334024705151, linear_terms=array([-121.77128912, -89.46990361]), square_terms=array([[74.83904246, 53.02348565],
+ [53.02348565, 37.80260569]]), scale=0.0010776300769999457, shift=array([5.0284933 , 1.05977204])), vector_model=VectorModel(intercepts=array([ -0.02225619, -0.05624546, -0.37762923, -0.15484397,
+ -0.06288249, 0.11478383, -0.47188773, -5.53607639,
+ -7.36495864, -8.65695488, -11.81735926, -15.45100705]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5517465994239722, shift=array([5.51746599, 1.03381489])), candidate_index=24, candidate_x=array([5.02957073, 1.05979264]), index=24, x=array([5.02957073, 1.05979264]), fval=368.0789159332997, rho=0.0006407679428498435, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([13, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0010776300769999947, relative_step_length=1.0000000000000455, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.02957073, 1.05979264]), radius=0.0005388150384999728, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([13, 23, 24]), model=ScalarModel(intercept=368.07891593329987, linear_terms=array([ 0.09596626, -6.44397386]), square_terms=array([[ 4.07596002e-05, -2.52111338e-03],
+ [-2.52111338e-03, 1.75132715e-01]]), scale=0.0005388150384999728, shift=array([5.02957073, 1.05979264])), vector_model=VectorModel(intercepts=array([ -0.02225619, -0.05624546, -0.37762923, -0.15484397,
+ -0.06288249, 0.11478383, -0.47188773, -5.53607639,
+ -7.36495864, -8.65695488, -11.81735926, -15.45100705]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5517465994239722, shift=array([5.51746599, 1.03381489])), candidate_index=24, candidate_x=array([5.02957073, 1.05979264]), index=24, x=array([5.02957073, 1.05979264]), fval=368.0789159332997, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([13, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.02957073, 1.05979264]), radius=0.0002694075192499864, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([13, 24, 25]), model=ScalarModel(intercept=368.07891593329975, linear_terms=array([ 0.19218091, -10.76387371]), square_terms=array([[ 1.78044414e-04, -9.52846298e-03],
+ [-9.52846298e-03, 5.15403084e-01]]), scale=0.0002694075192499864, shift=array([5.02957073, 1.05979264])), vector_model=VectorModel(intercepts=array([ -0.02225619, -0.05624546, -0.37762923, -0.15484397,
+ -0.06288249, 0.11478383, -0.47188773, -5.53607639,
+ -7.36495864, -8.65695488, -11.81735926, -15.45100705]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5517465994239722, shift=array([5.51746599, 1.03381489])), candidate_index=26, candidate_x=array([5.02957273, 1.06006204]), index=26, x=array([5.02957273, 1.06006204]), fval=366.87528253519326, rho=0.11458219192083548, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([13, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.00026940751925008617, relative_step_length=1.0000000000003701, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute params change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 27 entries., 'history': {'params': [{'CRRA': 5.517465994239721, 'DiscFac': 1.033814885188935}, {'CRRA': 5.0284933018032, 'DiscFac': 0.6725853496580942}, {'CRRA': 6.006438686676242, 'DiscFac': 0.8721525193681212}, {'CRRA': 5.0284933018032, 'DiscFac': 0.8598585044827023}, {'CRRA': 6.003150985497998, 'DiscFac': 1.1}, {'CRRA': 6.003723415402228, 'DiscFac': 0.5448421927524136}, {'CRRA': 5.875570018368002, 'DiscFac': 0.5448421927524136}, {'CRRA': 5.0284933018032, 'DiscFac': 1.0841298140700542}, {'CRRA': 6.006438686676242, 'DiscFac': 0.8560223071219775}, {'CRRA': 6.006438686676242, 'DiscFac': 1.0787353944401201}, {'CRRA': 5.0284933018032, 'DiscFac': 0.9539233627068902}, {'CRRA': 5.4793182749825435, 'DiscFac': 0.5448421927524136}, {'CRRA': 5.58224025873283, 'DiscFac': 1.1}, {'CRRA': 5.0284933018032, 'DiscFac': 1.0597720400630486}, {'CRRA': 4.815564277393826, 'DiscFac': 1.1}, {'CRRA': 4.9521194074901675, 'DiscFac': 1.07820661289853}, {'CRRA': 5.025211948819775, 'DiscFac': 1.0353315513948331}, {'CRRA': 4.90625012869407, 'DiscFac': 1.0444116961562104}, {'CRRA': 4.967371715248635, 'DiscFac': 1.0691916621218414}, {'CRRA': 4.994506081339591, 'DiscFac': 1.0674206694925654}, {'CRRA': 5.017310168631569, 'DiscFac': 1.074381214376818}, {'CRRA': 5.024570962217909, 'DiscFac': 1.0674491224177174}, {'CRRA': 5.027444881430467, 'DiscFac': 1.063974456905384}, {'CRRA': 5.028845694420258, 'DiscFac': 1.0619974969043793}, {'CRRA': 5.029570734965658, 'DiscFac': 1.05979264014295}, {'CRRA': 5.029570348293394, 'DiscFac': 1.0603314550427054}, {'CRRA': 5.029572726871201, 'DiscFac': 1.060062040298371}], 'criterion': [538.62727091007, 1207.3436736673395, 1123.9803553992947, 1153.7734293359576, nan, 1201.89122143663, 1205.5170771601368, nan, 1131.9637387201965, nan, 1049.373832121595, 1216.205567519383, nan, 368.13340247051497, nan, nan, 519.7482497133558, 451.3450004894141, nan, nan, nan, nan, nan, nan, 368.07891593329975, nan, 366.87528253519326], 'runtime': [0.0, 1.8393604930001857, 1.8744840399999703, 2.039817265000238, 2.0769789700002548, 2.1107370730001094, 2.1483123210000485, 2.184727404000114, 2.22076628800005, 2.2565912400000343, 2.298254896000344, 2.3342033870003434, 2.3783006880003086, 4.538819075999982, 6.2668982250002045, 7.9595935800002735, 9.7146636880002, 11.55998853400024, 13.313542281000082, 15.018736404000265, 16.70739796700036, 18.446162047000144, 20.202962799000034, 21.98702071600019, 23.762159325000084, 25.538437361999968, 27.283528622000176], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]}}], 'exploration_sample': array([[2.28125 , 1.0625 ],
+ [7.596875, 0.93125 ],
+ [5.825 , 0.95 ],
+ [5. , 0.95 ],
+ [8.1875 , 0.725 ],
+ [7.00625 , 0.6125 ],
+ [3.4625 , 0.875 ],
+ [4.64375 , 0.6875 ],
+ [2.871875, 0.78125 ]]), 'exploration_results': array([ 539.49291927, 1005.15883524, 1029.6319182 , 1061.73760943,
+ 1115.48338813, 1167.602755 , 1188.73516988, 1211.80249333,
+ 1228.66192563])}}"
diff --git a/content/tables/min/WarmGlowSub(Stock)Market_estimate_results.csv b/content/tables/min/WarmGlowSub(Stock)Market_estimate_results.csv
new file mode 100644
index 0000000..4267bd8
--- /dev/null
+++ b/content/tables/min/WarmGlowSub(Stock)Market_estimate_results.csv
@@ -0,0 +1,5854 @@
+CRRA,3.632033659027645
+DiscFac,1.0045131333350326
+time_to_estimate,127.7090654373169
+params,"{'CRRA': 3.632033659027645, 'DiscFac': 1.0045131333350326}"
+criterion,506.5420877431311
+start_criterion,nan
+start_params,"{'CRRA': 5.0, 'DiscFac': 0.95}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 3.2062782538015053, 'DiscFac': 0.5681439270619826}, {'CRRA': 3.7693560729380176, 'DiscFac': 0.5931914643258382}, {'CRRA': 3.1556439270619823, 'DiscFac': 0.7823187305648491}, {'CRRA': 3.7693560729380176, 'DiscFac': 0.9758796723452919}, {'CRRA': 3.714766521848815, 'DiscFac': 0.5681439270619826}, {'CRRA': 3.768715210658644, 'DiscFac': 0.5681439270619826}, {'CRRA': 3.1673286626320794, 'DiscFac': 1.1}, {'CRRA': 3.7693560729380176, 'DiscFac': 1.0908579040628261}, {'CRRA': 3.7693560729380176, 'DiscFac': 1.0877513222446453}, {'CRRA': 3.252410164125509, 'DiscFac': 1.1}, {'CRRA': 3.1556439270619823, 'DiscFac': 0.5770816471886374}, {'CRRA': 3.1556439270619823, 'DiscFac': 1.0962012275916377}, {'CRRA': 3.1556439270619823, 'DiscFac': 0.8201933907462482}, {'CRRA': 3.2920493494325482, 'DiscFac': 0.9108273227394859}, {'CRRA': 3.160571139998799, 'DiscFac': 0.807765310815706}, {'CRRA': 3.1322566785634134, 'DiscFac': 0.8442047442731109}, {'CRRA': 3.206006823747242, 'DiscFac': 0.9012372812986622}, {'CRRA': 3.324122769792849, 'DiscFac': 0.94050444244772}, {'CRRA': 3.2391386660046924, 'DiscFac': 0.9219394382392962}, {'CRRA': 3.3494377971872664, 'DiscFac': 0.9782059786083586}, {'CRRA': 3.2615524258410584, 'DiscFac': 0.9691159577848923}, {'CRRA': 3.393356772129813, 'DiscFac': 0.9850173754868813}, {'CRRA': 3.3071340001020997, 'DiscFac': 0.9947529704388474}, {'CRRA': 3.153705963633091, 'DiscFac': 0.9805743660572339}, {'CRRA': 3.2206552956753014, 'DiscFac': 0.9888399406371133}, {'CRRA': 3.2636519253036167, 'DiscFac': 0.9986319288051465}, {'CRRA': 3.1770929869388467, 'DiscFac': 0.9972962995518269}, {'CRRA': 3.220321553588347, 'DiscFac': 1.0049324766653562}, {'CRRA': 3.3068310482149306, 'DiscFac': 1.0018892497690481}, {'CRRA': 3.2635882377878542, 'DiscFac': 1.0038023212563407}, {'CRRA': 3.285223043221307, 'DiscFac': 1.0031952364206311}, {'CRRA': 3.2744242916987343, 'DiscFac': 1.0051837032280118}, {'CRRA': 3.2960635099891156, 'DiscFac': 1.0049368799733744}, {'CRRA': 3.252783409408292, 'DiscFac': 1.005255892189942}, {'CRRA': 3.2744230491467303, 'DiscFac': 1.0050265965005287}, {'CRRA': 3.306894788312111, 'DiscFac': 1.0060172815625936}, {'CRRA': 3.3285348963930543, 'DiscFac': 1.00585693973777}, {'CRRA': 3.371805463305033, 'DiscFac': 1.0047370147727912}, {'CRRA': 3.2852571310808356, 'DiscFac': 1.0029990925336685}, {'CRRA': 3.328535543055655, 'DiscFac': 1.0034946206049273}, {'CRRA': 3.3934458921129007, 'DiscFac': 1.0045945365434035}, {'CRRA': 3.436724625994451, 'DiscFac': 1.0041260693346616}, {'CRRA': 3.3501610123982255, 'DiscFac': 1.003126037510235}, {'CRRA': 3.3934405906216933, 'DiscFac': 1.0030475724468668}, {'CRRA': 3.4583654332417573, 'DiscFac': 1.0040415193999346}, {'CRRA': 3.5004872714879105, 'DiscFac': 0.9897526217726479}, {'CRRA': 3.4800087257471155, 'DiscFac': 1.0041929153363525}, {'CRRA': 3.5232882324430506, 'DiscFac': 1.003801085804102}, {'CRRA': 3.609557853803056, 'DiscFac': 0.9920242278585506}, {'CRRA': 3.566567668205597, 'DiscFac': 1.0033991492985908}, {'CRRA': 3.4800962789711423, 'DiscFac': 0.9950521150234775}, {'CRRA': 3.5233576120652317, 'DiscFac': 0.9959407701024888}, {'CRRA': 3.5882132469444326, 'DiscFac': 1.0036923734943635}, {'CRRA': 3.6314925157301436, 'DiscFac': 1.0032735665368495}, {'CRRA': 3.7180390378033135, 'DiscFac': 1.001577761816608}, {'CRRA': 3.6748818878252374, 'DiscFac': 1.0067504600642396}, {'CRRA': 3.6532315306052783, 'DiscFac': 1.0062108341092992}, {'CRRA': 3.6424186953925117, 'DiscFac': 1.0058218568602928}, {'CRRA': 3.6358209164977016, 'DiscFac': 1.0000278405094685}, {'CRRA': 3.6337900895987514, 'DiscFac': 1.0047013627340162}, {'CRRA': 3.632033659027645, 'DiscFac': 1.0045131333350326}, {'CRRA': 3.6326709899857446, 'DiscFac': 1.0042869702771626}], 'criterion': [1093.6287094958684, 1245.8554091061123, 1228.437199283229, 1196.2513338061253, 565.8944718863357, 1233.6495058027178, 1232.384369245551, nan, nan, nan, nan, 1245.6273609138634, nan, 1178.0531105990904, 1000.7509434811079, 1184.8727376133124, 1162.300118973653, 1052.3986832064866, 827.2850544940472, 955.1473772312156, 589.2387386757741, 649.1795468814067, 555.0773535680186, 527.5324137105392, 594.1974555608165, 550.7345811743, 519.9309270334896, 526.019227462011, 513.1513126909756, 513.8507302331603, 513.0194722961687, 513.0648520982796, 512.0809014214674, 511.7979374568167, 512.3793529360063, 512.1816475873786, 511.21798874189403, 510.83913420009407, 510.59082554232384, 513.206656921827, 511.9848725771735, 510.27441229833755, 509.73756488700667, 511.8350218971264, 511.1217913384364, 509.3715980078564, 532.8031876140645, 508.9279337370762, 508.3645034963132, 522.3950926634641, 507.8890405609745, 520.1419585533414, 517.012345192252, 507.4336026486255, 506.99784644540586, nan, nan, nan, nan, 508.9720174810991, nan, 506.5420877431311, 506.6849493107312], 'runtime': [0.0, 1.3804252599998108, 1.4150906029999533, 1.4489653229998112, 1.488080220000029, 1.5404481979999218, 1.5700747070000034, 1.611183871999856, 1.6490961620002054, 1.6923267430001943, 1.7307125020001877, 1.7700176570001531, 1.8183009529998344, 3.5063388779999514, 4.789909709999847, 6.110572930000217, 7.373552889000166, 8.65480244299988, 9.997954282000137, 11.292315917999986, 12.581388307999987, 13.893260515999827, 15.192520904000048, 16.508465176999835, 17.83462647999977, 19.14974713699985, 20.485998517000098, 21.850103854999816, 23.2152417100001, 24.547226562000105, 25.87641709599984, 27.20560083700002, 28.524041861000114, 29.84154418900016, 31.16551884699993, 32.48429570400003, 33.79176999499987, 35.09562726000013, 36.45809206500007, 37.80630384899996, 39.149301641999955, 40.46359727900017, 41.79980468799977, 43.11513492699987, 44.429547774000184, 45.73663632199987, 47.042997473000014, 48.38298036600008, 49.69725927399986, 51.02970168999991, 52.40143981099982, 53.727951674999986, 55.20516782000004, 56.5488178720002, 57.90847202099985, 59.24165819200016, 60.596691159999864, 61.908351636000134, 63.24388750400021, 64.57625644300015, 65.95520391699984, 67.28008590299987, 68.63086242999998], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]}"
+convergence_report,
+multistart_info,"{'start_parameters': [{'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 3.9283585146612063, 'DiscFac': 0.9116621363063967}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 0.9326 0.9326
+relative_params_change 0.1316 0.1316
+absolute_criterion_change 527.7 527.7
+absolute_params_change 0.323 0.323
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.), Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute params change smaller than tolerance.], 'exploration_sample': [{'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 2.871875, 'DiscFac': 0.78125}, {'CRRA': 2.28125, 'DiscFac': 1.0625}], 'exploration_results': array([1093.6287095 , 1183.94834133, 1205.66501897, 1353.72863006])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([3.4625, 0.875 ]), radius=0.34625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1093.6287094958684, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.34625, shift=array([3.4625, 0.875 ])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=0, candidate_x=array([3.4625, 0.875 ]), index=0, x=array([3.4625, 0.875 ]), fval=1093.6287094958684, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([3.4625, 0.875 ]), radius=0.34625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=651.4449578029853, linear_terms=array([281.18601875, 919.56705343]), square_terms=array([[ 186.56083108, 697.51852997],
+ [ 697.51852997, 4254.6830109 ]]), scale=array([0.30685607, 0.26592804]), shift=array([3.4625 , 0.83407196])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=13, candidate_x=array([3.15564393, 0.82019339]), index=0, x=array([3.4625, 0.875 ]), fval=1093.6287094958684, rho=-0.21893278324197663, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.4625, 0.875 ]), radius=0.173125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 4, 7, 8, 9, 10, 12, 13]), model=ScalarModel(intercept=697.61707876083, linear_terms=array([ 86.6112369 , -859.52858173]), square_terms=array([[ 88.19328217, 426.09698529],
+ [ 426.09698529, 6091.26225323]]), scale=0.173125, shift=array([3.4625, 0.875 ])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=14, candidate_x=array([3.29204935, 0.91082732]), index=14, x=array([3.29204935, 0.91082732]), fval=1000.7509434811079, rho=0.525364637884901, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 4, 7, 8, 9, 10, 12, 13]), old_indices_discarded=array([ 1, 2, 5, 6, 11]), step_length=0.17417526039465764, relative_step_length=1.0060664860341235, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.29204935, 0.91082732]), radius=0.34625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 10, 11, 12, 13, 14]), model=ScalarModel(intercept=823.8622722142668, linear_terms=array([ 80.18328931, -88.8613507 ]), square_terms=array([[ 762.08731871, -1381.66492468],
+ [-1381.66492468, 2821.90772929]]), scale=array([0.30685607, 0.24801438]), shift=array([3.29204935, 0.85198562])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=15, candidate_x=array([3.16057114, 0.80776531]), index=14, x=array([3.29204935, 0.91082732]), fval=1000.7509434811079, rho=-2.7239526213953136, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 10, 11, 12, 13, 14]), old_indices_discarded=array([2, 4, 5, 6, 8, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.29204935, 0.91082732]), radius=0.173125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 10, 12, 13, 14, 15]), model=ScalarModel(intercept=859.1595008143797, linear_terms=array([-49.00694728, 377.59149803]), square_terms=array([[ 99.87726874, -357.72244111],
+ [-357.72244111, 1848.37553732]]), scale=0.173125, shift=array([3.29204935, 0.91082732])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=16, candidate_x=array([3.13225668, 0.84420474]), index=14, x=array([3.29204935, 0.91082732]), fval=1000.7509434811079, rho=-3.384890709638498, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 10, 12, 13, 14, 15]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.29204935, 0.91082732]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16]), model=ScalarModel(intercept=827.6928291025154, linear_terms=array([ 5.35234931, 50.7864861 ]), square_terms=array([[ 10.55179511, -63.25662137],
+ [ -63.25662137, 1024.07313652]]), scale=0.0865625, shift=array([3.29204935, 0.91082732])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=17, candidate_x=array([3.20600682, 0.90123728]), index=14, x=array([3.29204935, 0.91082732]), fval=1000.7509434811079, rho=-8.050741085388342, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16]), old_indices_discarded=array([ 1, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.29204935, 0.91082732]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 10, 13, 14, 15, 16, 17]), model=ScalarModel(intercept=964.3969823484208, linear_terms=array([ 5.87336302, -56.20626673]), square_terms=array([[ 1.90128134, -13.33600414],
+ [-13.33600414, 93.87172932]]), scale=0.04328125, shift=array([3.29204935, 0.91082732])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=18, candidate_x=array([3.32412277, 0.94050444]), index=18, x=array([3.32412277, 0.94050444]), fval=827.2850544940472, rho=9.440779127990067, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 10, 13, 14, 15, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0436970906100786, relative_step_length=1.0096078696913466, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.32412277, 0.94050444]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 7, 10, 13, 14, 15, 16, 17, 18]), model=ScalarModel(intercept=754.9629712965816, linear_terms=array([-11.33853356, 149.73382686]), square_terms=array([[ 19.81434331, -166.92704745],
+ [-166.92704745, 1457.19103375]]), scale=0.0865625, shift=array([3.32412277, 0.94050444])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=19, candidate_x=array([3.23913867, 0.92193944]), index=18, x=array([3.32412277, 0.94050444]), fval=827.2850544940472, rho=-9.785116917650237, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 7, 10, 13, 14, 15, 16, 17, 18]), old_indices_discarded=array([ 1, 3, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.32412277, 0.94050444]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 10, 13, 14, 15, 16, 17, 18, 19]), model=ScalarModel(intercept=832.6203197168809, linear_terms=array([ 11.43225451, -88.93217292]), square_terms=array([[ 1.89207866, -14.51433349],
+ [-14.51433349, 111.66139431]]), scale=0.04328125, shift=array([3.32412277, 0.94050444])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=20, candidate_x=array([3.3494378 , 0.97820598]), index=20, x=array([3.3494378 , 0.97820598]), fval=589.2387386757741, rho=6.707721298454917, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 10, 13, 14, 15, 16, 17, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.045412073734327936, relative_step_length=1.0492320285187682, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.3494378 , 0.97820598]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 7, 10, 12, 14, 17, 18, 19, 20]), model=ScalarModel(intercept=710.921693371805, linear_terms=array([202.27752122, 780.08362564]), square_terms=array([[ 118.12834448, 487.07344 ],
+ [ 487.07344 , 2688.6689297 ]]), scale=0.0865625, shift=array([3.3494378 , 0.97820598])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=21, candidate_x=array([3.26155243, 0.96911596]), index=20, x=array([3.3494378 , 0.97820598]), fval=589.2387386757741, rho=-0.37545420554346837, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 7, 10, 12, 14, 17, 18, 19, 20]), old_indices_discarded=array([ 3, 4, 13, 15, 16]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.3494378 , 0.97820598]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 10, 14, 17, 18, 19, 20, 21]), model=ScalarModel(intercept=549.8023854149372, linear_terms=array([ -7.52264096, -60.41063775]), square_terms=array([[ 1.47685727, 19.34913644],
+ [ 19.34913644, 256.1673533 ]]), scale=0.04328125, shift=array([3.3494378 , 0.97820598])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=22, candidate_x=array([3.39335677, 0.98501738]), index=22, x=array([3.39335677, 0.98501738]), fval=555.0773535680186, rho=3.376269726696847, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 10, 14, 17, 18, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.04444402645396528, relative_step_length=1.0268655931602086, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.39335677, 0.98501738]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 10, 14, 17, 18, 19, 20, 21, 22]), model=ScalarModel(intercept=509.93359583487626, linear_terms=array([ -2.87140025, -77.0340883 ]), square_terms=array([[ 1.94049629, 45.43808551],
+ [ 45.43808551, 1087.04904653]]), scale=0.0865625, shift=array([3.39335677, 0.98501738])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=23, candidate_x=array([3.307134 , 0.99475297]), index=23, x=array([3.307134 , 0.99475297]), fval=527.5324137105392, rho=9.012522247815982, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 10, 14, 17, 18, 19, 20, 21, 22]), old_indices_discarded=array([ 3, 4, 7, 8, 9, 12, 13, 15, 16]), step_length=0.08677066454287263, relative_step_length=1.0024047889429328, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.307134 , 0.99475297]), radius=0.173125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([10, 14, 17, 18, 19, 20, 21, 22, 23]), model=ScalarModel(intercept=560.8180421345091, linear_terms=array([ 171.84978397, -706.76473204]), square_terms=array([[ 74.62650725, -461.02969905],
+ [-461.02969905, 3206.52608661]]), scale=array([0.15342804, 0.12933753]), shift=array([3.307134 , 0.97066247])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=24, candidate_x=array([3.15370596, 0.98057437]), index=23, x=array([3.307134 , 0.99475297]), fval=527.5324137105392, rho=-0.9813470262140938, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([10, 14, 17, 18, 19, 20, 21, 22, 23]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.307134 , 0.99475297]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([10, 14, 17, 18, 19, 20, 21, 22, 23]), model=ScalarModel(intercept=484.79762730862103, linear_terms=array([ 48.50792314, -73.29564765]), square_terms=array([[ 23.75435503, -174.08413125],
+ [-174.08413125, 1436.30017384]]), scale=0.0865625, shift=array([3.307134 , 0.99475297])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=25, candidate_x=array([3.2206553 , 0.98883994]), index=23, x=array([3.307134 , 0.99475297]), fval=527.5324137105392, rho=-0.5781888323147932, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([10, 14, 17, 18, 19, 20, 21, 22, 23]), old_indices_discarded=array([ 0, 3, 7, 12, 13, 15, 16, 24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.307134 , 0.99475297]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([10, 14, 18, 19, 20, 21, 22, 23, 25]), model=ScalarModel(intercept=497.9928888365399, linear_terms=array([ 10.19808053, -47.847162 ]), square_terms=array([[ 0.75061409, -15.01172448],
+ [-15.01172448, 357.53799767]]), scale=0.04328125, shift=array([3.307134 , 0.99475297])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=26, candidate_x=array([3.26365193, 0.99863193]), index=26, x=array([3.26365193, 0.99863193]), fval=519.9309270334896, rho=0.6687184257598502, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([10, 14, 18, 19, 20, 21, 22, 23, 25]), old_indices_discarded=array([ 0, 7, 12, 17, 24]), step_length=0.04365474941845791, relative_step_length=1.008629589451735, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.26365193, 0.99863193]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([10, 14, 18, 19, 20, 21, 23, 25, 26]), model=ScalarModel(intercept=477.3301617595189, linear_terms=array([ 13.68073618, -18.67221002]), square_terms=array([[ 1.51452177, -42.17862452],
+ [ -42.17862452, 1510.52712184]]), scale=0.0865625, shift=array([3.26365193, 0.99863193])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=27, candidate_x=array([3.17709299, 0.9972963 ]), index=26, x=array([3.26365193, 0.99863193]), fval=519.9309270334896, rho=-0.4645488387784232, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([10, 14, 18, 19, 20, 21, 23, 25, 26]), old_indices_discarded=array([ 0, 3, 7, 12, 13, 15, 16, 17, 22, 24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.26365193, 0.99863193]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 18, 19, 20, 21, 23, 25, 26, 27]), model=ScalarModel(intercept=532.5926218735569, linear_terms=array([ 3.02001572, -34.91119764]), square_terms=array([[ 3.06576932e-02, -1.71386354e+00],
+ [-1.71386354e+00, 2.25297083e+02]]), scale=0.04328125, shift=array([3.26365193, 0.99863193])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=28, candidate_x=array([3.22032155, 1.00493248]), index=28, x=array([3.22032155, 1.00493248]), fval=513.1513126909756, rho=1.2432267791250464, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 18, 19, 20, 21, 23, 25, 26, 27]), old_indices_discarded=array([ 7, 10, 12, 13, 16, 17, 22, 24]), step_length=0.043786048192572063, relative_step_length=1.011663207337405, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.22032155, 1.00493248]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([10, 19, 21, 23, 24, 25, 26, 27, 28]), model=ScalarModel(intercept=480.1639722811906, linear_terms=array([-9.58819386, -6.16098806]), square_terms=array([[ 2.95376033, 73.23574637],
+ [ 73.23574637, 1897.40328086]]), scale=0.0865625, shift=array([3.22032155, 1.00493248])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=29, candidate_x=array([3.30683105, 1.00188925]), index=28, x=array([3.22032155, 1.00493248]), fval=513.1513126909756, rho=-0.07527732047828518, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([10, 19, 21, 23, 24, 25, 26, 27, 28]), old_indices_discarded=array([ 0, 3, 7, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.22032155, 1.00493248]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 21, 23, 24, 25, 26, 27, 28, 29]), model=ScalarModel(intercept=523.4679173240145, linear_terms=array([-2.59748377, -0.7171113 ]), square_terms=array([[2.31661478e-01, 7.66177350e+00],
+ [7.66177350e+00, 2.63292238e+02]]), scale=0.04328125, shift=array([3.22032155, 1.00493248])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=30, candidate_x=array([3.26358824, 1.00380232]), index=30, x=array([3.26358824, 1.00380232]), fval=513.0194722961687, rho=0.0512525527783304, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([19, 21, 23, 24, 25, 26, 27, 28, 29]), old_indices_discarded=array([ 7, 10, 12, 13, 14, 15, 16, 17, 18, 20, 22]), step_length=0.043281441899137574, relative_step_length=1.0000044337706877, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.26358824, 1.00380232]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 21, 23, 25, 26, 27, 28, 29, 30]), model=ScalarModel(intercept=519.3234950395965, linear_terms=array([-0.34493884, 1.06441875]), square_terms=array([[1.02321587e-02, 8.19381474e-01],
+ [8.19381474e-01, 6.67857826e+01]]), scale=0.021640625, shift=array([3.26358824, 1.00380232])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=31, candidate_x=array([3.28522304, 1.00319524]), index=30, x=array([3.26358824, 1.00380232]), fval=513.0194722961687, rho=-0.12388915381056541, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 21, 23, 25, 26, 27, 28, 29, 30]), old_indices_discarded=array([10, 14, 18, 20]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.26358824, 1.00380232]), radius=0.0108203125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([21, 23, 25, 26, 28, 29, 30, 31]), model=ScalarModel(intercept=514.1646995371159, linear_terms=array([-0.15345129, -3.50288081]), square_terms=array([[3.05251315e-03, 2.75003243e-01],
+ [2.75003243e-01, 2.51655902e+01]]), scale=0.0108203125, shift=array([3.26358824, 1.00380232])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=32, candidate_x=array([3.27442429, 1.0051837 ]), index=32, x=array([3.27442429, 1.0051837 ]), fval=512.0809014214674, rho=2.6136687240628853, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([21, 23, 25, 26, 28, 29, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.010923748464293592, relative_step_length=1.0095594248589024, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.27442429, 1.0051837 ]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([21, 23, 25, 26, 28, 29, 30, 31, 32]), model=ScalarModel(intercept=513.4928941324267, linear_terms=array([-0.24707091, 0.03226047]), square_terms=array([[1.26987208e-02, 1.12599639e+00],
+ [1.12599639e+00, 1.01298380e+02]]), scale=0.021640625, shift=array([3.27442429, 1.0051837 ])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=33, candidate_x=array([3.29606351, 1.00493688]), index=33, x=array([3.29606351, 1.00493688]), fval=511.79793745681667, rho=1.1440872753091216, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([21, 23, 25, 26, 28, 29, 30, 31, 32]), old_indices_discarded=array([10, 14, 18, 19, 20, 27]), step_length=0.021640625913725366, relative_step_length=1.0000000422226885, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.29606351, 1.00493688]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 21, 23, 26, 29, 30, 31, 32, 33]), model=ScalarModel(intercept=513.3709874050701, linear_terms=array([ 1.13482224, -0.44884792]), square_terms=array([[2.17777822e-02, 2.50633392e+00],
+ [2.50633392e+00, 3.99796932e+02]]), scale=0.04328125, shift=array([3.29606351, 1.00493688])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=34, candidate_x=array([3.25278341, 1.00525589]), index=33, x=array([3.29606351, 1.00493688]), fval=511.79793745681667, rho=-0.512339270174138, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 21, 23, 26, 29, 30, 31, 32, 33]), old_indices_discarded=array([ 0, 7, 10, 12, 14, 17, 18, 19, 22, 24, 25, 27, 28]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.29606351, 1.00493688]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([21, 23, 26, 29, 30, 31, 32, 33, 34]), model=ScalarModel(intercept=513.2806219743039, linear_terms=array([ 0.40201888, -0.14468052]), square_terms=array([[2.11787355e-03, 2.74550213e-01],
+ [2.74550213e-01, 1.00721574e+02]]), scale=0.021640625, shift=array([3.29606351, 1.00493688])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=35, candidate_x=array([3.27442305, 1.0050266 ]), index=33, x=array([3.29606351, 1.00493688]), fval=511.79793745681667, rho=-0.9549081380658717, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([21, 23, 26, 29, 30, 31, 32, 33, 34]), old_indices_discarded=array([10, 14, 18, 19, 20, 22, 25, 28]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.29606351, 1.00493688]), radius=0.0108203125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 26, 29, 30, 31, 32, 33, 34, 35]), model=ScalarModel(intercept=511.8797516145538, linear_terms=array([-0.15742971, -3.27449424]), square_terms=array([[2.83081088e-03, 2.88272590e-01],
+ [2.88272590e-01, 2.97786495e+01]]), scale=0.0108203125, shift=array([3.29606351, 1.00493688])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=36, candidate_x=array([3.30689479, 1.00601728]), index=36, x=array([3.30689479, 1.00601728]), fval=511.21798874189403, rho=1.8960681633469345, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([23, 26, 29, 30, 31, 32, 33, 34, 35]), old_indices_discarded=array([21]), step_length=0.010885029063083678, relative_step_length=1.005981025324701, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.30689479, 1.00601728]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 26, 29, 30, 31, 32, 33, 35, 36]), model=ScalarModel(intercept=511.4227564263899, linear_terms=array([-0.3250255 , -0.31495259]), square_terms=array([[1.22560006e-02, 1.19816348e+00],
+ [1.19816348e+00, 1.18877538e+02]]), scale=0.021640625, shift=array([3.30689479, 1.00601728])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=37, candidate_x=array([3.3285349 , 1.00585694]), index=37, x=array([3.3285349 , 1.00585694]), fval=510.83913420009407, rho=1.1759433626717288, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([23, 26, 29, 30, 31, 32, 33, 35, 36]), old_indices_discarded=array([14, 18, 19, 20, 21, 22, 25, 28, 34]), step_length=0.02164070209710628, relative_step_length=1.0000035626099653, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.3285349 , 1.00585694]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 23, 29, 31, 32, 33, 35, 36, 37]), model=ScalarModel(intercept=510.92606818398167, linear_terms=array([-1.25261185, 5.63856144]), square_terms=array([[6.91279361e-02, 5.32869751e+00],
+ [5.32869751e+00, 4.22474316e+02]]), scale=0.04328125, shift=array([3.3285349 , 1.00585694])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=38, candidate_x=array([3.37180546, 1.00473701]), index=38, x=array([3.37180546, 1.00473701]), fval=510.59082554232384, rho=0.18257009624743023, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([20, 23, 29, 31, 32, 33, 35, 36, 37]), old_indices_discarded=array([ 0, 7, 10, 12, 14, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 30, 34]), step_length=0.0432850573848669, relative_step_length=1.0000879684590185, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.37180546, 1.00473701]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 20, 22, 23, 29, 33, 36, 37, 38]), model=ScalarModel(intercept=516.8290415340703, linear_terms=array([ 5.75246416, 11.16476668]), square_terms=array([[ 2.64009594e-01, -1.44214956e+01],
+ [-1.44214956e+01, 1.26850502e+03]]), scale=0.0865625, shift=array([3.37180546, 1.00473701])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=39, candidate_x=array([3.28525713, 1.00299909]), index=38, x=array([3.37180546, 1.00473701]), fval=510.59082554232384, rho=-0.44505466092410517, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([18, 20, 22, 23, 29, 33, 36, 37, 38]), old_indices_discarded=array([ 0, 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 21, 24, 25,
+ 26, 27, 28, 30, 31, 32, 34, 35]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.37180546, 1.00473701]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 20, 22, 23, 29, 33, 36, 37, 38]), model=ScalarModel(intercept=516.8290415340703, linear_terms=array([2.87623208, 5.58238334]), square_terms=array([[ 6.60023984e-02, -3.60537390e+00],
+ [-3.60537390e+00, 3.17126254e+02]]), scale=0.04328125, shift=array([3.37180546, 1.00473701])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=40, candidate_x=array([3.32853554, 1.00349462]), index=38, x=array([3.37180546, 1.00473701]), fval=510.59082554232384, rho=-0.468500568265753, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([18, 20, 22, 23, 29, 33, 36, 37, 38]), old_indices_discarded=array([ 0, 10, 14, 17, 19, 21, 25, 26, 27, 28, 30, 31, 32, 34, 35, 39]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.37180546, 1.00473701]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 22, 23, 29, 33, 36, 37, 38, 40]), model=ScalarModel(intercept=510.83094836315786, linear_terms=array([-0.31356388, -0.52607831]), square_terms=array([[1.43542942e-02, 1.22048177e+00],
+ [1.22048177e+00, 1.05162098e+02]]), scale=0.021640625, shift=array([3.37180546, 1.00473701])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=41, candidate_x=array([3.39344589, 1.00459454]), index=41, x=array([3.39344589, 1.00459454]), fval=510.27441229833755, rho=1.0250640374729652, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([20, 22, 23, 29, 33, 36, 37, 38, 40]), old_indices_discarded=array([18, 31, 32, 35, 39]), step_length=0.021640897833367097, relative_step_length=1.0000126074624507, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.39344589, 1.00459454]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 22, 23, 29, 36, 37, 38, 40, 41]), model=ScalarModel(intercept=510.388199569147, linear_terms=array([-0.70976972, -0.38780663]), square_terms=array([[5.87854987e-02, 4.93351716e+00],
+ [4.93351716e+00, 4.19243045e+02]]), scale=0.04328125, shift=array([3.39344589, 1.00459454])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=42, candidate_x=array([3.43672463, 1.00412607]), index=42, x=array([3.43672463, 1.00412607]), fval=509.73756488700667, rho=0.7615075639324983, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([20, 22, 23, 29, 36, 37, 38, 40, 41]), old_indices_discarded=array([ 0, 10, 14, 17, 18, 19, 21, 25, 26, 28, 30, 31, 32, 33, 34, 35, 39]), step_length=0.04328126925028541, relative_step_length=1.0000004447719373, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.43672463, 1.00412607]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 20, 22, 36, 37, 38, 40, 41, 42]), model=ScalarModel(intercept=513.6632160611562, linear_terms=array([ 1.66952951, 16.46923676]), square_terms=array([[2.01619093e-02, 1.39077252e+00],
+ [1.39077252e+00, 1.30355320e+03]]), scale=0.0865625, shift=array([3.43672463, 1.00412607])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=43, candidate_x=array([3.35016101, 1.00312604]), index=42, x=array([3.43672463, 1.00412607]), fval=509.73756488700667, rho=-1.2008268877931576, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([18, 20, 22, 36, 37, 38, 40, 41, 42]), old_indices_discarded=array([ 0, 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 21, 23, 24,
+ 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 39]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.43672463, 1.00412607]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 20, 22, 37, 38, 40, 41, 42, 43]), model=ScalarModel(intercept=513.482630783711, linear_terms=array([0.65403347, 8.91106369]), square_terms=array([[5.63212301e-03, 7.99992087e-01],
+ [7.99992087e-01, 3.24875610e+02]]), scale=0.04328125, shift=array([3.43672463, 1.00412607])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=44, candidate_x=array([3.39344059, 1.00304757]), index=42, x=array([3.43672463, 1.00412607]), fval=509.73756488700667, rho=-1.839477153136199, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([18, 20, 22, 37, 38, 40, 41, 42, 43]), old_indices_discarded=array([ 0, 10, 14, 19, 21, 23, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.43672463, 1.00412607]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 22, 38, 40, 41, 42, 43, 44]), model=ScalarModel(intercept=510.12883784081237, linear_terms=array([-0.25127194, -0.58488428]), square_terms=array([[9.67696849e-03, 9.89759993e-01],
+ [9.89759993e-01, 1.03384944e+02]]), scale=0.021640625, shift=array([3.43672463, 1.00412607])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=45, candidate_x=array([3.45836543, 1.00404152]), index=45, x=array([3.45836543, 1.00404152]), fval=509.3715980078564, rho=1.4802790196268736, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([20, 22, 38, 40, 41, 42, 43, 44]), old_indices_discarded=array([], dtype=int64), step_length=0.021640972413607785, relative_step_length=1.0000160537696017, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.45836543, 1.00404152]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 20, 22, 38, 41, 42, 43, 44, 45]), model=ScalarModel(intercept=506.56672858420234, linear_terms=array([-4.47747831, 43.24748363]), square_terms=array([[ 1.64747112, 16.06601525],
+ [ 16.06601525, 169.95443376]]), scale=0.04328125, shift=array([3.45836543, 1.00404152])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=46, candidate_x=array([3.50048727, 0.98975262]), index=45, x=array([3.45836543, 1.00404152]), fval=509.3715980078564, rho=-1.7034780941746406, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 20, 22, 38, 41, 42, 43, 44, 45]), old_indices_discarded=array([14, 18, 21, 23, 26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.45836543, 1.00404152]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 38, 41, 42, 44, 45, 46]), model=ScalarModel(intercept=509.90462027267597, linear_terms=array([-0.12472648, -1.80799561]), square_terms=array([[1.12107334e-02, 1.07164529e+00],
+ [1.07164529e+00, 1.05129465e+02]]), scale=0.021640625, shift=array([3.45836543, 1.00404152])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=47, candidate_x=array([3.48000873, 1.00419292]), index=47, x=array([3.48000873, 1.00419292]), fval=508.9279337370762, rho=3.6451687787620792, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 38, 41, 42, 44, 45, 46]), old_indices_discarded=array([], dtype=int64), step_length=0.021643822010034636, relative_step_length=1.0001477318716365, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.48000873, 1.00419292]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 38, 41, 42, 43, 44, 45, 46, 47]), model=ScalarModel(intercept=509.4211138668626, linear_terms=array([-0.43693822, -0.49379518]), square_terms=array([[4.49138891e-02, 4.30131411e+00],
+ [4.30131411e+00, 4.20126086e+02]]), scale=0.04328125, shift=array([3.48000873, 1.00419292])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=48, candidate_x=array([3.52328823, 1.00380109]), index=48, x=array([3.52328823, 1.00380109]), fval=508.3645034963132, rho=1.3050907569087495, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 38, 41, 42, 43, 44, 45, 46, 47]), old_indices_discarded=array([ 0, 14, 18, 20, 23, 29, 31, 32, 33, 35, 36, 37, 39, 40]), step_length=0.04328128036721916, relative_step_length=1.0000007016252803, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.52328823, 1.00380109]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 22, 41, 42, 44, 45, 46, 47, 48]), model=ScalarModel(intercept=510.9361846246444, linear_terms=array([-2.56354502, 68.23315716]), square_terms=array([[5.02760540e-01, 1.72586847e+01],
+ [1.72586847e+01, 6.23529154e+02]]), scale=0.0865625, shift=array([3.52328823, 1.00380109])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=49, candidate_x=array([3.60955785, 0.99202423]), index=48, x=array([3.52328823, 1.00380109]), fval=508.3645034963132, rho=-1.7199045949987042, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 22, 41, 42, 44, 45, 46, 47, 48]), old_indices_discarded=array([ 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23,
+ 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
+ 43]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.52328823, 1.00380109]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 41, 42, 44, 45, 46, 47, 48, 49]), model=ScalarModel(intercept=509.1888444032537, linear_terms=array([-0.2211104 , -0.64677861]), square_terms=array([[5.00518952e-02, 4.53096392e+00],
+ [4.53096392e+00, 4.18022502e+02]]), scale=0.04328125, shift=array([3.52328823, 1.00380109])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=50, candidate_x=array([3.56656767, 1.00339915]), index=50, x=array([3.56656767, 1.00339915]), fval=507.88904056097454, rho=2.2205332256943504, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 41, 42, 44, 45, 46, 47, 48, 49]), old_indices_discarded=array([ 0, 18, 20, 23, 36, 37, 38, 40, 43]), step_length=0.04328130211625866, relative_step_length=1.000001204130164, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.56656767, 1.00339915]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 41, 42, 45, 46, 47, 48, 49, 50]), model=ScalarModel(intercept=514.5638756314247, linear_terms=array([ 3.48562996, 53.35987525]), square_terms=array([[ 1.37261425e-01, -7.23686414e+00],
+ [-7.23686414e+00, 6.24285840e+02]]), scale=0.0865625, shift=array([3.56656767, 1.00339915])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=51, candidate_x=array([3.48009628, 0.99505212]), index=50, x=array([3.56656767, 1.00339915]), fval=507.88904056097454, rho=-1.9285165450030315, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 41, 42, 45, 46, 47, 48, 49, 50]), old_indices_discarded=array([ 4, 7, 8, 9, 10, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
+ 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.56656767, 1.00339915]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 42, 45, 46, 47, 48, 49, 50, 51]), model=ScalarModel(intercept=515.3264858581856, linear_terms=array([ 1.71158 , 25.56690401]), square_terms=array([[ 2.71276458e-02, -1.52375230e+00],
+ [-1.52375230e+00, 1.55243251e+02]]), scale=0.04328125, shift=array([3.56656767, 1.00339915])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=52, candidate_x=array([3.52335761, 0.99594077]), index=50, x=array([3.56656767, 1.00339915]), fval=507.88904056097454, rho=-2.248134988786441, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 42, 45, 46, 47, 48, 49, 50, 51]), old_indices_discarded=array([ 4, 22, 38, 41, 44]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.56656767, 1.00339915]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([46, 47, 48, 49, 50, 51, 52]), model=ScalarModel(intercept=508.17663344776184, linear_terms=array([-0.18431719, -2.63810816]), square_terms=array([[1.45940369e-02, 1.22560823e+00],
+ [1.22560823e+00, 1.04071984e+02]]), scale=0.021640625, shift=array([3.56656767, 1.00339915])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=53, candidate_x=array([3.58821325, 1.00369237]), index=53, x=array([3.58821325, 1.00369237]), fval=507.4336026486255, rho=2.4401860410878675, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([46, 47, 48, 49, 50, 51, 52]), old_indices_discarded=array([], dtype=int64), step_length=0.021647564744518292, relative_step_length=1.0003206813351413, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.58821325, 1.00369237]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([45, 46, 47, 48, 49, 50, 51, 52, 53]), model=ScalarModel(intercept=507.76912581454695, linear_terms=array([-0.42677272, -0.59726462]), square_terms=array([[5.22032739e-02, 4.63172328e+00],
+ [4.63172328e+00, 4.16496389e+02]]), scale=0.04328125, shift=array([3.58821325, 1.00369237])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=54, candidate_x=array([3.63149252, 1.00327357]), index=54, x=array([3.63149252, 1.00327357]), fval=506.99784644540586, rho=1.037040511159352, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([45, 46, 47, 48, 49, 50, 51, 52, 53]), old_indices_discarded=array([ 0, 4, 8, 9, 22, 41, 42, 44]), step_length=0.0432812951041612, relative_step_length=1.0000010421178038, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.63149252, 1.00327357]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 46, 47, 48, 49, 50, 52, 53, 54]), model=ScalarModel(intercept=507.0456308378341, linear_terms=array([-1.09355637, 5.86222255]), square_terms=array([[3.81131556e-01, 2.40396513e+01],
+ [2.40396513e+01, 1.52493360e+03]]), scale=0.0865625, shift=array([3.63149252, 1.00327357])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=54, candidate_x=array([3.63149252, 1.00327357]), index=54, x=array([3.63149252, 1.00327357]), fval=506.99784644540586, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 46, 47, 48, 49, 50, 52, 53, 54]), old_indices_discarded=array([ 0, 2, 8, 9, 10, 14, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30,
+ 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 51]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.63149252, 1.00327357]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 46, 48, 49, 50, 52, 53, 54, 55]), model=ScalarModel(intercept=483.6460160115828, linear_terms=array([ -8.37903947, -46.37591995]), square_terms=array([[ 0.605033 , 11.49832029],
+ [ 11.49832029, 426.97587575]]), scale=0.04328125, shift=array([3.63149252, 1.00327357])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=54, candidate_x=array([3.63149252, 1.00327357]), index=54, x=array([3.63149252, 1.00327357]), fval=506.99784644540586, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 46, 48, 49, 50, 52, 53, 54, 55]), old_indices_discarded=array([ 0, 8, 9, 42, 45, 47, 51]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.63149252, 1.00327357]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([49, 50, 53, 54, 55, 56]), model=ScalarModel(intercept=489.81991575860064, linear_terms=array([ -7.9974817 , -19.32900869]), square_terms=array([[ 0.42136964, 3.37341025],
+ [ 3.37341025, 110.35741782]]), scale=0.021640625, shift=array([3.63149252, 1.00327357])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=54, candidate_x=array([3.63149252, 1.00327357]), index=54, x=array([3.63149252, 1.00327357]), fval=506.99784644540586, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([49, 50, 53, 54, 55, 56]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.63149252, 1.00327357]), radius=0.0108203125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([49, 53, 54, 56, 57]), model=ScalarModel(intercept=488.20806659594507, linear_terms=array([-5.57735135, -8.72033931]), square_terms=array([[ 0.19829904, 1.06047186],
+ [ 1.06047186, 27.40287752]]), scale=0.0108203125, shift=array([3.63149252, 1.00327357])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=54, candidate_x=array([3.63149252, 1.00327357]), index=54, x=array([3.63149252, 1.00327357]), fval=506.99784644540586, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([49, 53, 54, 56, 57]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.63149252, 1.00327357]), radius=0.00541015625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([49, 54, 57, 58]), model=ScalarModel(intercept=494.0113764663675, linear_terms=array([-11.65580487, 15.6297121 ]), square_terms=array([[ 0.78526236, -0.48868618],
+ [-0.48868618, 6.38068787]]), scale=0.00541015625, shift=array([3.63149252, 1.00327357])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=59, candidate_x=array([3.63582092, 1.00002784]), index=54, x=array([3.63149252, 1.00327357]), fval=506.99784644540586, rho=-0.11566595855501426, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([49, 54, 57, 58]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.63149252, 1.00327357]), radius=0.002705078125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([54, 58, 59]), model=ScalarModel(intercept=506.997846445406, linear_terms=array([-4.77796857, -7.07581725]), square_terms=array([[0.11698178, 0.26813838],
+ [0.26813838, 2.07607229]]), scale=0.002705078125, shift=array([3.63149252, 1.00327357])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=54, candidate_x=array([3.63149252, 1.00327357]), index=54, x=array([3.63149252, 1.00327357]), fval=506.99784644540586, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([54, 58, 59]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.63149252, 1.00327357]), radius=0.0013525390625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([54, 59, 60]), model=ScalarModel(intercept=506.99784644540597, linear_terms=array([ -8.71304558, -11.97148297]), square_terms=array([[0.3825836 , 0.59999497],
+ [0.59999497, 1.3121182 ]]), scale=0.0013525390625, shift=array([3.63149252, 1.00327357])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=61, candidate_x=array([3.63203366, 1.00451313]), index=61, x=array([3.63203366, 1.00451313]), fval=506.5420877431311, rho=0.03337442243196882, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([54, 59, 60]), old_indices_discarded=array([], dtype=int64), step_length=0.0013525390625000859, relative_step_length=1.0000000000000635, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.63203366, 1.00451313]), radius=0.00067626953125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([54, 60, 61]), model=ScalarModel(intercept=506.54208774313054, linear_terms=array([-9.21303399, 3.86970875]), square_terms=array([[ 0.44560218, -0.146486 ],
+ [-0.146486 , 0.1480837 ]]), scale=0.00067626953125, shift=array([3.63203366, 1.00451313])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=62, candidate_x=array([3.63267099, 1.00428697]), index=61, x=array([3.63203366, 1.00451313]), fval=506.5420877431311, rho=-0.01469109283770332, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([54, 60, 61]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 63 entries., 'multistart_info': {'start_parameters': [array([3.4625, 0.875 ]), array([3.92835851, 0.91166214])], 'local_optima': [{'solution_x': array([3.63203366, 1.00451313]), 'solution_criterion': 506.5420877431311, 'states': [State(trustregion=Region(center=array([3.4625, 0.875 ]), radius=0.34625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1093.6287094958684, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.34625, shift=array([3.4625, 0.875 ])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=0, candidate_x=array([3.4625, 0.875 ]), index=0, x=array([3.4625, 0.875 ]), fval=1093.6287094958684, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([3.4625, 0.875 ]), radius=0.34625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=651.4449578029853, linear_terms=array([281.18601875, 919.56705343]), square_terms=array([[ 186.56083108, 697.51852997],
+ [ 697.51852997, 4254.6830109 ]]), scale=array([0.30685607, 0.26592804]), shift=array([3.4625 , 0.83407196])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=13, candidate_x=array([3.15564393, 0.82019339]), index=0, x=array([3.4625, 0.875 ]), fval=1093.6287094958684, rho=-0.21893278324197663, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.4625, 0.875 ]), radius=0.173125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 4, 7, 8, 9, 10, 12, 13]), model=ScalarModel(intercept=697.61707876083, linear_terms=array([ 86.6112369 , -859.52858173]), square_terms=array([[ 88.19328217, 426.09698529],
+ [ 426.09698529, 6091.26225323]]), scale=0.173125, shift=array([3.4625, 0.875 ])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=14, candidate_x=array([3.29204935, 0.91082732]), index=14, x=array([3.29204935, 0.91082732]), fval=1000.7509434811079, rho=0.525364637884901, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 4, 7, 8, 9, 10, 12, 13]), old_indices_discarded=array([ 1, 2, 5, 6, 11]), step_length=0.17417526039465764, relative_step_length=1.0060664860341235, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.29204935, 0.91082732]), radius=0.34625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 10, 11, 12, 13, 14]), model=ScalarModel(intercept=823.8622722142668, linear_terms=array([ 80.18328931, -88.8613507 ]), square_terms=array([[ 762.08731871, -1381.66492468],
+ [-1381.66492468, 2821.90772929]]), scale=array([0.30685607, 0.24801438]), shift=array([3.29204935, 0.85198562])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=15, candidate_x=array([3.16057114, 0.80776531]), index=14, x=array([3.29204935, 0.91082732]), fval=1000.7509434811079, rho=-2.7239526213953136, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 10, 11, 12, 13, 14]), old_indices_discarded=array([2, 4, 5, 6, 8, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.29204935, 0.91082732]), radius=0.173125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 10, 12, 13, 14, 15]), model=ScalarModel(intercept=859.1595008143797, linear_terms=array([-49.00694728, 377.59149803]), square_terms=array([[ 99.87726874, -357.72244111],
+ [-357.72244111, 1848.37553732]]), scale=0.173125, shift=array([3.29204935, 0.91082732])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=16, candidate_x=array([3.13225668, 0.84420474]), index=14, x=array([3.29204935, 0.91082732]), fval=1000.7509434811079, rho=-3.384890709638498, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 10, 12, 13, 14, 15]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.29204935, 0.91082732]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16]), model=ScalarModel(intercept=827.6928291025154, linear_terms=array([ 5.35234931, 50.7864861 ]), square_terms=array([[ 10.55179511, -63.25662137],
+ [ -63.25662137, 1024.07313652]]), scale=0.0865625, shift=array([3.29204935, 0.91082732])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=17, candidate_x=array([3.20600682, 0.90123728]), index=14, x=array([3.29204935, 0.91082732]), fval=1000.7509434811079, rho=-8.050741085388342, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16]), old_indices_discarded=array([ 1, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.29204935, 0.91082732]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 10, 13, 14, 15, 16, 17]), model=ScalarModel(intercept=964.3969823484208, linear_terms=array([ 5.87336302, -56.20626673]), square_terms=array([[ 1.90128134, -13.33600414],
+ [-13.33600414, 93.87172932]]), scale=0.04328125, shift=array([3.29204935, 0.91082732])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=18, candidate_x=array([3.32412277, 0.94050444]), index=18, x=array([3.32412277, 0.94050444]), fval=827.2850544940472, rho=9.440779127990067, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 10, 13, 14, 15, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0436970906100786, relative_step_length=1.0096078696913466, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.32412277, 0.94050444]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 7, 10, 13, 14, 15, 16, 17, 18]), model=ScalarModel(intercept=754.9629712965816, linear_terms=array([-11.33853356, 149.73382686]), square_terms=array([[ 19.81434331, -166.92704745],
+ [-166.92704745, 1457.19103375]]), scale=0.0865625, shift=array([3.32412277, 0.94050444])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=19, candidate_x=array([3.23913867, 0.92193944]), index=18, x=array([3.32412277, 0.94050444]), fval=827.2850544940472, rho=-9.785116917650237, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 7, 10, 13, 14, 15, 16, 17, 18]), old_indices_discarded=array([ 1, 3, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.32412277, 0.94050444]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 10, 13, 14, 15, 16, 17, 18, 19]), model=ScalarModel(intercept=832.6203197168809, linear_terms=array([ 11.43225451, -88.93217292]), square_terms=array([[ 1.89207866, -14.51433349],
+ [-14.51433349, 111.66139431]]), scale=0.04328125, shift=array([3.32412277, 0.94050444])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=20, candidate_x=array([3.3494378 , 0.97820598]), index=20, x=array([3.3494378 , 0.97820598]), fval=589.2387386757741, rho=6.707721298454917, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 10, 13, 14, 15, 16, 17, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.045412073734327936, relative_step_length=1.0492320285187682, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.3494378 , 0.97820598]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 7, 10, 12, 14, 17, 18, 19, 20]), model=ScalarModel(intercept=710.921693371805, linear_terms=array([202.27752122, 780.08362564]), square_terms=array([[ 118.12834448, 487.07344 ],
+ [ 487.07344 , 2688.6689297 ]]), scale=0.0865625, shift=array([3.3494378 , 0.97820598])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=21, candidate_x=array([3.26155243, 0.96911596]), index=20, x=array([3.3494378 , 0.97820598]), fval=589.2387386757741, rho=-0.37545420554346837, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 7, 10, 12, 14, 17, 18, 19, 20]), old_indices_discarded=array([ 3, 4, 13, 15, 16]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.3494378 , 0.97820598]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 10, 14, 17, 18, 19, 20, 21]), model=ScalarModel(intercept=549.8023854149372, linear_terms=array([ -7.52264096, -60.41063775]), square_terms=array([[ 1.47685727, 19.34913644],
+ [ 19.34913644, 256.1673533 ]]), scale=0.04328125, shift=array([3.3494378 , 0.97820598])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=22, candidate_x=array([3.39335677, 0.98501738]), index=22, x=array([3.39335677, 0.98501738]), fval=555.0773535680186, rho=3.376269726696847, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 10, 14, 17, 18, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.04444402645396528, relative_step_length=1.0268655931602086, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.39335677, 0.98501738]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 10, 14, 17, 18, 19, 20, 21, 22]), model=ScalarModel(intercept=509.93359583487626, linear_terms=array([ -2.87140025, -77.0340883 ]), square_terms=array([[ 1.94049629, 45.43808551],
+ [ 45.43808551, 1087.04904653]]), scale=0.0865625, shift=array([3.39335677, 0.98501738])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=23, candidate_x=array([3.307134 , 0.99475297]), index=23, x=array([3.307134 , 0.99475297]), fval=527.5324137105392, rho=9.012522247815982, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 10, 14, 17, 18, 19, 20, 21, 22]), old_indices_discarded=array([ 3, 4, 7, 8, 9, 12, 13, 15, 16]), step_length=0.08677066454287263, relative_step_length=1.0024047889429328, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.307134 , 0.99475297]), radius=0.173125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([10, 14, 17, 18, 19, 20, 21, 22, 23]), model=ScalarModel(intercept=560.8180421345091, linear_terms=array([ 171.84978397, -706.76473204]), square_terms=array([[ 74.62650725, -461.02969905],
+ [-461.02969905, 3206.52608661]]), scale=array([0.15342804, 0.12933753]), shift=array([3.307134 , 0.97066247])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=24, candidate_x=array([3.15370596, 0.98057437]), index=23, x=array([3.307134 , 0.99475297]), fval=527.5324137105392, rho=-0.9813470262140938, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([10, 14, 17, 18, 19, 20, 21, 22, 23]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.307134 , 0.99475297]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([10, 14, 17, 18, 19, 20, 21, 22, 23]), model=ScalarModel(intercept=484.79762730862103, linear_terms=array([ 48.50792314, -73.29564765]), square_terms=array([[ 23.75435503, -174.08413125],
+ [-174.08413125, 1436.30017384]]), scale=0.0865625, shift=array([3.307134 , 0.99475297])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=25, candidate_x=array([3.2206553 , 0.98883994]), index=23, x=array([3.307134 , 0.99475297]), fval=527.5324137105392, rho=-0.5781888323147932, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([10, 14, 17, 18, 19, 20, 21, 22, 23]), old_indices_discarded=array([ 0, 3, 7, 12, 13, 15, 16, 24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.307134 , 0.99475297]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([10, 14, 18, 19, 20, 21, 22, 23, 25]), model=ScalarModel(intercept=497.9928888365399, linear_terms=array([ 10.19808053, -47.847162 ]), square_terms=array([[ 0.75061409, -15.01172448],
+ [-15.01172448, 357.53799767]]), scale=0.04328125, shift=array([3.307134 , 0.99475297])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=26, candidate_x=array([3.26365193, 0.99863193]), index=26, x=array([3.26365193, 0.99863193]), fval=519.9309270334896, rho=0.6687184257598502, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([10, 14, 18, 19, 20, 21, 22, 23, 25]), old_indices_discarded=array([ 0, 7, 12, 17, 24]), step_length=0.04365474941845791, relative_step_length=1.008629589451735, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.26365193, 0.99863193]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([10, 14, 18, 19, 20, 21, 23, 25, 26]), model=ScalarModel(intercept=477.3301617595189, linear_terms=array([ 13.68073618, -18.67221002]), square_terms=array([[ 1.51452177, -42.17862452],
+ [ -42.17862452, 1510.52712184]]), scale=0.0865625, shift=array([3.26365193, 0.99863193])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=27, candidate_x=array([3.17709299, 0.9972963 ]), index=26, x=array([3.26365193, 0.99863193]), fval=519.9309270334896, rho=-0.4645488387784232, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([10, 14, 18, 19, 20, 21, 23, 25, 26]), old_indices_discarded=array([ 0, 3, 7, 12, 13, 15, 16, 17, 22, 24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.26365193, 0.99863193]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 18, 19, 20, 21, 23, 25, 26, 27]), model=ScalarModel(intercept=532.5926218735569, linear_terms=array([ 3.02001572, -34.91119764]), square_terms=array([[ 3.06576932e-02, -1.71386354e+00],
+ [-1.71386354e+00, 2.25297083e+02]]), scale=0.04328125, shift=array([3.26365193, 0.99863193])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=28, candidate_x=array([3.22032155, 1.00493248]), index=28, x=array([3.22032155, 1.00493248]), fval=513.1513126909756, rho=1.2432267791250464, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 18, 19, 20, 21, 23, 25, 26, 27]), old_indices_discarded=array([ 7, 10, 12, 13, 16, 17, 22, 24]), step_length=0.043786048192572063, relative_step_length=1.011663207337405, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.22032155, 1.00493248]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([10, 19, 21, 23, 24, 25, 26, 27, 28]), model=ScalarModel(intercept=480.1639722811906, linear_terms=array([-9.58819386, -6.16098806]), square_terms=array([[ 2.95376033, 73.23574637],
+ [ 73.23574637, 1897.40328086]]), scale=0.0865625, shift=array([3.22032155, 1.00493248])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=29, candidate_x=array([3.30683105, 1.00188925]), index=28, x=array([3.22032155, 1.00493248]), fval=513.1513126909756, rho=-0.07527732047828518, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([10, 19, 21, 23, 24, 25, 26, 27, 28]), old_indices_discarded=array([ 0, 3, 7, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.22032155, 1.00493248]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 21, 23, 24, 25, 26, 27, 28, 29]), model=ScalarModel(intercept=523.4679173240145, linear_terms=array([-2.59748377, -0.7171113 ]), square_terms=array([[2.31661478e-01, 7.66177350e+00],
+ [7.66177350e+00, 2.63292238e+02]]), scale=0.04328125, shift=array([3.22032155, 1.00493248])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=30, candidate_x=array([3.26358824, 1.00380232]), index=30, x=array([3.26358824, 1.00380232]), fval=513.0194722961687, rho=0.0512525527783304, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([19, 21, 23, 24, 25, 26, 27, 28, 29]), old_indices_discarded=array([ 7, 10, 12, 13, 14, 15, 16, 17, 18, 20, 22]), step_length=0.043281441899137574, relative_step_length=1.0000044337706877, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.26358824, 1.00380232]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 21, 23, 25, 26, 27, 28, 29, 30]), model=ScalarModel(intercept=519.3234950395965, linear_terms=array([-0.34493884, 1.06441875]), square_terms=array([[1.02321587e-02, 8.19381474e-01],
+ [8.19381474e-01, 6.67857826e+01]]), scale=0.021640625, shift=array([3.26358824, 1.00380232])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=31, candidate_x=array([3.28522304, 1.00319524]), index=30, x=array([3.26358824, 1.00380232]), fval=513.0194722961687, rho=-0.12388915381056541, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 21, 23, 25, 26, 27, 28, 29, 30]), old_indices_discarded=array([10, 14, 18, 20]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.26358824, 1.00380232]), radius=0.0108203125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([21, 23, 25, 26, 28, 29, 30, 31]), model=ScalarModel(intercept=514.1646995371159, linear_terms=array([-0.15345129, -3.50288081]), square_terms=array([[3.05251315e-03, 2.75003243e-01],
+ [2.75003243e-01, 2.51655902e+01]]), scale=0.0108203125, shift=array([3.26358824, 1.00380232])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=32, candidate_x=array([3.27442429, 1.0051837 ]), index=32, x=array([3.27442429, 1.0051837 ]), fval=512.0809014214674, rho=2.6136687240628853, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([21, 23, 25, 26, 28, 29, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.010923748464293592, relative_step_length=1.0095594248589024, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.27442429, 1.0051837 ]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([21, 23, 25, 26, 28, 29, 30, 31, 32]), model=ScalarModel(intercept=513.4928941324267, linear_terms=array([-0.24707091, 0.03226047]), square_terms=array([[1.26987208e-02, 1.12599639e+00],
+ [1.12599639e+00, 1.01298380e+02]]), scale=0.021640625, shift=array([3.27442429, 1.0051837 ])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=33, candidate_x=array([3.29606351, 1.00493688]), index=33, x=array([3.29606351, 1.00493688]), fval=511.79793745681667, rho=1.1440872753091216, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([21, 23, 25, 26, 28, 29, 30, 31, 32]), old_indices_discarded=array([10, 14, 18, 19, 20, 27]), step_length=0.021640625913725366, relative_step_length=1.0000000422226885, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.29606351, 1.00493688]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 21, 23, 26, 29, 30, 31, 32, 33]), model=ScalarModel(intercept=513.3709874050701, linear_terms=array([ 1.13482224, -0.44884792]), square_terms=array([[2.17777822e-02, 2.50633392e+00],
+ [2.50633392e+00, 3.99796932e+02]]), scale=0.04328125, shift=array([3.29606351, 1.00493688])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=34, candidate_x=array([3.25278341, 1.00525589]), index=33, x=array([3.29606351, 1.00493688]), fval=511.79793745681667, rho=-0.512339270174138, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 21, 23, 26, 29, 30, 31, 32, 33]), old_indices_discarded=array([ 0, 7, 10, 12, 14, 17, 18, 19, 22, 24, 25, 27, 28]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.29606351, 1.00493688]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([21, 23, 26, 29, 30, 31, 32, 33, 34]), model=ScalarModel(intercept=513.2806219743039, linear_terms=array([ 0.40201888, -0.14468052]), square_terms=array([[2.11787355e-03, 2.74550213e-01],
+ [2.74550213e-01, 1.00721574e+02]]), scale=0.021640625, shift=array([3.29606351, 1.00493688])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=35, candidate_x=array([3.27442305, 1.0050266 ]), index=33, x=array([3.29606351, 1.00493688]), fval=511.79793745681667, rho=-0.9549081380658717, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([21, 23, 26, 29, 30, 31, 32, 33, 34]), old_indices_discarded=array([10, 14, 18, 19, 20, 22, 25, 28]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.29606351, 1.00493688]), radius=0.0108203125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 26, 29, 30, 31, 32, 33, 34, 35]), model=ScalarModel(intercept=511.8797516145538, linear_terms=array([-0.15742971, -3.27449424]), square_terms=array([[2.83081088e-03, 2.88272590e-01],
+ [2.88272590e-01, 2.97786495e+01]]), scale=0.0108203125, shift=array([3.29606351, 1.00493688])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=36, candidate_x=array([3.30689479, 1.00601728]), index=36, x=array([3.30689479, 1.00601728]), fval=511.21798874189403, rho=1.8960681633469345, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([23, 26, 29, 30, 31, 32, 33, 34, 35]), old_indices_discarded=array([21]), step_length=0.010885029063083678, relative_step_length=1.005981025324701, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.30689479, 1.00601728]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 26, 29, 30, 31, 32, 33, 35, 36]), model=ScalarModel(intercept=511.4227564263899, linear_terms=array([-0.3250255 , -0.31495259]), square_terms=array([[1.22560006e-02, 1.19816348e+00],
+ [1.19816348e+00, 1.18877538e+02]]), scale=0.021640625, shift=array([3.30689479, 1.00601728])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=37, candidate_x=array([3.3285349 , 1.00585694]), index=37, x=array([3.3285349 , 1.00585694]), fval=510.83913420009407, rho=1.1759433626717288, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([23, 26, 29, 30, 31, 32, 33, 35, 36]), old_indices_discarded=array([14, 18, 19, 20, 21, 22, 25, 28, 34]), step_length=0.02164070209710628, relative_step_length=1.0000035626099653, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.3285349 , 1.00585694]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 23, 29, 31, 32, 33, 35, 36, 37]), model=ScalarModel(intercept=510.92606818398167, linear_terms=array([-1.25261185, 5.63856144]), square_terms=array([[6.91279361e-02, 5.32869751e+00],
+ [5.32869751e+00, 4.22474316e+02]]), scale=0.04328125, shift=array([3.3285349 , 1.00585694])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=38, candidate_x=array([3.37180546, 1.00473701]), index=38, x=array([3.37180546, 1.00473701]), fval=510.59082554232384, rho=0.18257009624743023, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([20, 23, 29, 31, 32, 33, 35, 36, 37]), old_indices_discarded=array([ 0, 7, 10, 12, 14, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 30, 34]), step_length=0.0432850573848669, relative_step_length=1.0000879684590185, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.37180546, 1.00473701]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 20, 22, 23, 29, 33, 36, 37, 38]), model=ScalarModel(intercept=516.8290415340703, linear_terms=array([ 5.75246416, 11.16476668]), square_terms=array([[ 2.64009594e-01, -1.44214956e+01],
+ [-1.44214956e+01, 1.26850502e+03]]), scale=0.0865625, shift=array([3.37180546, 1.00473701])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=39, candidate_x=array([3.28525713, 1.00299909]), index=38, x=array([3.37180546, 1.00473701]), fval=510.59082554232384, rho=-0.44505466092410517, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([18, 20, 22, 23, 29, 33, 36, 37, 38]), old_indices_discarded=array([ 0, 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 21, 24, 25,
+ 26, 27, 28, 30, 31, 32, 34, 35]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.37180546, 1.00473701]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 20, 22, 23, 29, 33, 36, 37, 38]), model=ScalarModel(intercept=516.8290415340703, linear_terms=array([2.87623208, 5.58238334]), square_terms=array([[ 6.60023984e-02, -3.60537390e+00],
+ [-3.60537390e+00, 3.17126254e+02]]), scale=0.04328125, shift=array([3.37180546, 1.00473701])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=40, candidate_x=array([3.32853554, 1.00349462]), index=38, x=array([3.37180546, 1.00473701]), fval=510.59082554232384, rho=-0.468500568265753, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([18, 20, 22, 23, 29, 33, 36, 37, 38]), old_indices_discarded=array([ 0, 10, 14, 17, 19, 21, 25, 26, 27, 28, 30, 31, 32, 34, 35, 39]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.37180546, 1.00473701]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 22, 23, 29, 33, 36, 37, 38, 40]), model=ScalarModel(intercept=510.83094836315786, linear_terms=array([-0.31356388, -0.52607831]), square_terms=array([[1.43542942e-02, 1.22048177e+00],
+ [1.22048177e+00, 1.05162098e+02]]), scale=0.021640625, shift=array([3.37180546, 1.00473701])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=41, candidate_x=array([3.39344589, 1.00459454]), index=41, x=array([3.39344589, 1.00459454]), fval=510.27441229833755, rho=1.0250640374729652, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([20, 22, 23, 29, 33, 36, 37, 38, 40]), old_indices_discarded=array([18, 31, 32, 35, 39]), step_length=0.021640897833367097, relative_step_length=1.0000126074624507, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.39344589, 1.00459454]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 22, 23, 29, 36, 37, 38, 40, 41]), model=ScalarModel(intercept=510.388199569147, linear_terms=array([-0.70976972, -0.38780663]), square_terms=array([[5.87854987e-02, 4.93351716e+00],
+ [4.93351716e+00, 4.19243045e+02]]), scale=0.04328125, shift=array([3.39344589, 1.00459454])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=42, candidate_x=array([3.43672463, 1.00412607]), index=42, x=array([3.43672463, 1.00412607]), fval=509.73756488700667, rho=0.7615075639324983, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([20, 22, 23, 29, 36, 37, 38, 40, 41]), old_indices_discarded=array([ 0, 10, 14, 17, 18, 19, 21, 25, 26, 28, 30, 31, 32, 33, 34, 35, 39]), step_length=0.04328126925028541, relative_step_length=1.0000004447719373, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.43672463, 1.00412607]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 20, 22, 36, 37, 38, 40, 41, 42]), model=ScalarModel(intercept=513.6632160611562, linear_terms=array([ 1.66952951, 16.46923676]), square_terms=array([[2.01619093e-02, 1.39077252e+00],
+ [1.39077252e+00, 1.30355320e+03]]), scale=0.0865625, shift=array([3.43672463, 1.00412607])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=43, candidate_x=array([3.35016101, 1.00312604]), index=42, x=array([3.43672463, 1.00412607]), fval=509.73756488700667, rho=-1.2008268877931576, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([18, 20, 22, 36, 37, 38, 40, 41, 42]), old_indices_discarded=array([ 0, 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 21, 23, 24,
+ 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 39]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.43672463, 1.00412607]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 20, 22, 37, 38, 40, 41, 42, 43]), model=ScalarModel(intercept=513.482630783711, linear_terms=array([0.65403347, 8.91106369]), square_terms=array([[5.63212301e-03, 7.99992087e-01],
+ [7.99992087e-01, 3.24875610e+02]]), scale=0.04328125, shift=array([3.43672463, 1.00412607])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=44, candidate_x=array([3.39344059, 1.00304757]), index=42, x=array([3.43672463, 1.00412607]), fval=509.73756488700667, rho=-1.839477153136199, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([18, 20, 22, 37, 38, 40, 41, 42, 43]), old_indices_discarded=array([ 0, 10, 14, 19, 21, 23, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.43672463, 1.00412607]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 22, 38, 40, 41, 42, 43, 44]), model=ScalarModel(intercept=510.12883784081237, linear_terms=array([-0.25127194, -0.58488428]), square_terms=array([[9.67696849e-03, 9.89759993e-01],
+ [9.89759993e-01, 1.03384944e+02]]), scale=0.021640625, shift=array([3.43672463, 1.00412607])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=45, candidate_x=array([3.45836543, 1.00404152]), index=45, x=array([3.45836543, 1.00404152]), fval=509.3715980078564, rho=1.4802790196268736, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([20, 22, 38, 40, 41, 42, 43, 44]), old_indices_discarded=array([], dtype=int64), step_length=0.021640972413607785, relative_step_length=1.0000160537696017, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.45836543, 1.00404152]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 20, 22, 38, 41, 42, 43, 44, 45]), model=ScalarModel(intercept=506.56672858420234, linear_terms=array([-4.47747831, 43.24748363]), square_terms=array([[ 1.64747112, 16.06601525],
+ [ 16.06601525, 169.95443376]]), scale=0.04328125, shift=array([3.45836543, 1.00404152])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=46, candidate_x=array([3.50048727, 0.98975262]), index=45, x=array([3.45836543, 1.00404152]), fval=509.3715980078564, rho=-1.7034780941746406, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 20, 22, 38, 41, 42, 43, 44, 45]), old_indices_discarded=array([14, 18, 21, 23, 26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.45836543, 1.00404152]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 38, 41, 42, 44, 45, 46]), model=ScalarModel(intercept=509.90462027267597, linear_terms=array([-0.12472648, -1.80799561]), square_terms=array([[1.12107334e-02, 1.07164529e+00],
+ [1.07164529e+00, 1.05129465e+02]]), scale=0.021640625, shift=array([3.45836543, 1.00404152])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=47, candidate_x=array([3.48000873, 1.00419292]), index=47, x=array([3.48000873, 1.00419292]), fval=508.9279337370762, rho=3.6451687787620792, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 38, 41, 42, 44, 45, 46]), old_indices_discarded=array([], dtype=int64), step_length=0.021643822010034636, relative_step_length=1.0001477318716365, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.48000873, 1.00419292]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 38, 41, 42, 43, 44, 45, 46, 47]), model=ScalarModel(intercept=509.4211138668626, linear_terms=array([-0.43693822, -0.49379518]), square_terms=array([[4.49138891e-02, 4.30131411e+00],
+ [4.30131411e+00, 4.20126086e+02]]), scale=0.04328125, shift=array([3.48000873, 1.00419292])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=48, candidate_x=array([3.52328823, 1.00380109]), index=48, x=array([3.52328823, 1.00380109]), fval=508.3645034963132, rho=1.3050907569087495, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 38, 41, 42, 43, 44, 45, 46, 47]), old_indices_discarded=array([ 0, 14, 18, 20, 23, 29, 31, 32, 33, 35, 36, 37, 39, 40]), step_length=0.04328128036721916, relative_step_length=1.0000007016252803, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.52328823, 1.00380109]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 22, 41, 42, 44, 45, 46, 47, 48]), model=ScalarModel(intercept=510.9361846246444, linear_terms=array([-2.56354502, 68.23315716]), square_terms=array([[5.02760540e-01, 1.72586847e+01],
+ [1.72586847e+01, 6.23529154e+02]]), scale=0.0865625, shift=array([3.52328823, 1.00380109])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=49, candidate_x=array([3.60955785, 0.99202423]), index=48, x=array([3.52328823, 1.00380109]), fval=508.3645034963132, rho=-1.7199045949987042, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 22, 41, 42, 44, 45, 46, 47, 48]), old_indices_discarded=array([ 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23,
+ 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
+ 43]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.52328823, 1.00380109]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 41, 42, 44, 45, 46, 47, 48, 49]), model=ScalarModel(intercept=509.1888444032537, linear_terms=array([-0.2211104 , -0.64677861]), square_terms=array([[5.00518952e-02, 4.53096392e+00],
+ [4.53096392e+00, 4.18022502e+02]]), scale=0.04328125, shift=array([3.52328823, 1.00380109])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=50, candidate_x=array([3.56656767, 1.00339915]), index=50, x=array([3.56656767, 1.00339915]), fval=507.88904056097454, rho=2.2205332256943504, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 41, 42, 44, 45, 46, 47, 48, 49]), old_indices_discarded=array([ 0, 18, 20, 23, 36, 37, 38, 40, 43]), step_length=0.04328130211625866, relative_step_length=1.000001204130164, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.56656767, 1.00339915]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 41, 42, 45, 46, 47, 48, 49, 50]), model=ScalarModel(intercept=514.5638756314247, linear_terms=array([ 3.48562996, 53.35987525]), square_terms=array([[ 1.37261425e-01, -7.23686414e+00],
+ [-7.23686414e+00, 6.24285840e+02]]), scale=0.0865625, shift=array([3.56656767, 1.00339915])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=51, candidate_x=array([3.48009628, 0.99505212]), index=50, x=array([3.56656767, 1.00339915]), fval=507.88904056097454, rho=-1.9285165450030315, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 41, 42, 45, 46, 47, 48, 49, 50]), old_indices_discarded=array([ 4, 7, 8, 9, 10, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
+ 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.56656767, 1.00339915]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 42, 45, 46, 47, 48, 49, 50, 51]), model=ScalarModel(intercept=515.3264858581856, linear_terms=array([ 1.71158 , 25.56690401]), square_terms=array([[ 2.71276458e-02, -1.52375230e+00],
+ [-1.52375230e+00, 1.55243251e+02]]), scale=0.04328125, shift=array([3.56656767, 1.00339915])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=52, candidate_x=array([3.52335761, 0.99594077]), index=50, x=array([3.56656767, 1.00339915]), fval=507.88904056097454, rho=-2.248134988786441, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 42, 45, 46, 47, 48, 49, 50, 51]), old_indices_discarded=array([ 4, 22, 38, 41, 44]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.56656767, 1.00339915]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([46, 47, 48, 49, 50, 51, 52]), model=ScalarModel(intercept=508.17663344776184, linear_terms=array([-0.18431719, -2.63810816]), square_terms=array([[1.45940369e-02, 1.22560823e+00],
+ [1.22560823e+00, 1.04071984e+02]]), scale=0.021640625, shift=array([3.56656767, 1.00339915])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=53, candidate_x=array([3.58821325, 1.00369237]), index=53, x=array([3.58821325, 1.00369237]), fval=507.4336026486255, rho=2.4401860410878675, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([46, 47, 48, 49, 50, 51, 52]), old_indices_discarded=array([], dtype=int64), step_length=0.021647564744518292, relative_step_length=1.0003206813351413, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.58821325, 1.00369237]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([45, 46, 47, 48, 49, 50, 51, 52, 53]), model=ScalarModel(intercept=507.76912581454695, linear_terms=array([-0.42677272, -0.59726462]), square_terms=array([[5.22032739e-02, 4.63172328e+00],
+ [4.63172328e+00, 4.16496389e+02]]), scale=0.04328125, shift=array([3.58821325, 1.00369237])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=54, candidate_x=array([3.63149252, 1.00327357]), index=54, x=array([3.63149252, 1.00327357]), fval=506.99784644540586, rho=1.037040511159352, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([45, 46, 47, 48, 49, 50, 51, 52, 53]), old_indices_discarded=array([ 0, 4, 8, 9, 22, 41, 42, 44]), step_length=0.0432812951041612, relative_step_length=1.0000010421178038, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.63149252, 1.00327357]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 46, 47, 48, 49, 50, 52, 53, 54]), model=ScalarModel(intercept=507.0456308378341, linear_terms=array([-1.09355637, 5.86222255]), square_terms=array([[3.81131556e-01, 2.40396513e+01],
+ [2.40396513e+01, 1.52493360e+03]]), scale=0.0865625, shift=array([3.63149252, 1.00327357])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=54, candidate_x=array([3.63149252, 1.00327357]), index=54, x=array([3.63149252, 1.00327357]), fval=506.99784644540586, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 46, 47, 48, 49, 50, 52, 53, 54]), old_indices_discarded=array([ 0, 2, 8, 9, 10, 14, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30,
+ 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 51]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.63149252, 1.00327357]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 46, 48, 49, 50, 52, 53, 54, 55]), model=ScalarModel(intercept=483.6460160115828, linear_terms=array([ -8.37903947, -46.37591995]), square_terms=array([[ 0.605033 , 11.49832029],
+ [ 11.49832029, 426.97587575]]), scale=0.04328125, shift=array([3.63149252, 1.00327357])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=54, candidate_x=array([3.63149252, 1.00327357]), index=54, x=array([3.63149252, 1.00327357]), fval=506.99784644540586, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 46, 48, 49, 50, 52, 53, 54, 55]), old_indices_discarded=array([ 0, 8, 9, 42, 45, 47, 51]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.63149252, 1.00327357]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([49, 50, 53, 54, 55, 56]), model=ScalarModel(intercept=489.81991575860064, linear_terms=array([ -7.9974817 , -19.32900869]), square_terms=array([[ 0.42136964, 3.37341025],
+ [ 3.37341025, 110.35741782]]), scale=0.021640625, shift=array([3.63149252, 1.00327357])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=54, candidate_x=array([3.63149252, 1.00327357]), index=54, x=array([3.63149252, 1.00327357]), fval=506.99784644540586, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([49, 50, 53, 54, 55, 56]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.63149252, 1.00327357]), radius=0.0108203125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([49, 53, 54, 56, 57]), model=ScalarModel(intercept=488.20806659594507, linear_terms=array([-5.57735135, -8.72033931]), square_terms=array([[ 0.19829904, 1.06047186],
+ [ 1.06047186, 27.40287752]]), scale=0.0108203125, shift=array([3.63149252, 1.00327357])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=54, candidate_x=array([3.63149252, 1.00327357]), index=54, x=array([3.63149252, 1.00327357]), fval=506.99784644540586, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([49, 53, 54, 56, 57]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.63149252, 1.00327357]), radius=0.00541015625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([49, 54, 57, 58]), model=ScalarModel(intercept=494.0113764663675, linear_terms=array([-11.65580487, 15.6297121 ]), square_terms=array([[ 0.78526236, -0.48868618],
+ [-0.48868618, 6.38068787]]), scale=0.00541015625, shift=array([3.63149252, 1.00327357])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=59, candidate_x=array([3.63582092, 1.00002784]), index=54, x=array([3.63149252, 1.00327357]), fval=506.99784644540586, rho=-0.11566595855501426, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([49, 54, 57, 58]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.63149252, 1.00327357]), radius=0.002705078125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([54, 58, 59]), model=ScalarModel(intercept=506.997846445406, linear_terms=array([-4.77796857, -7.07581725]), square_terms=array([[0.11698178, 0.26813838],
+ [0.26813838, 2.07607229]]), scale=0.002705078125, shift=array([3.63149252, 1.00327357])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=54, candidate_x=array([3.63149252, 1.00327357]), index=54, x=array([3.63149252, 1.00327357]), fval=506.99784644540586, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([54, 58, 59]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.63149252, 1.00327357]), radius=0.0013525390625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([54, 59, 60]), model=ScalarModel(intercept=506.99784644540597, linear_terms=array([ -8.71304558, -11.97148297]), square_terms=array([[0.3825836 , 0.59999497],
+ [0.59999497, 1.3121182 ]]), scale=0.0013525390625, shift=array([3.63149252, 1.00327357])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=61, candidate_x=array([3.63203366, 1.00451313]), index=61, x=array([3.63203366, 1.00451313]), fval=506.5420877431311, rho=0.03337442243196882, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([54, 59, 60]), old_indices_discarded=array([], dtype=int64), step_length=0.0013525390625000859, relative_step_length=1.0000000000000635, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.63203366, 1.00451313]), radius=0.00067626953125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([54, 60, 61]), model=ScalarModel(intercept=506.54208774313054, linear_terms=array([-9.21303399, 3.86970875]), square_terms=array([[ 0.44560218, -0.146486 ],
+ [-0.146486 , 0.1480837 ]]), scale=0.00067626953125, shift=array([3.63203366, 1.00451313])), vector_model=VectorModel(intercepts=array([ 0.17006451, 0.02956994, -0.9361252 , -1.61351554,
+ -2.52174659, -3.40422327, -5.21498224, -12.83276861,
+ -13.72721231, -13.55879483, -14.8535869 , -16.95254847]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=62, candidate_x=array([3.63267099, 1.00428697]), index=61, x=array([3.63203366, 1.00451313]), fval=506.5420877431311, rho=-0.01469109283770332, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([54, 60, 61]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'message': None, 'tranquilo_history': History for least_squares function with 63 entries., 'history': {'params': [{'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 3.2062782538015053, 'DiscFac': 0.5681439270619826}, {'CRRA': 3.7693560729380176, 'DiscFac': 0.5931914643258382}, {'CRRA': 3.1556439270619823, 'DiscFac': 0.7823187305648491}, {'CRRA': 3.7693560729380176, 'DiscFac': 0.9758796723452919}, {'CRRA': 3.714766521848815, 'DiscFac': 0.5681439270619826}, {'CRRA': 3.768715210658644, 'DiscFac': 0.5681439270619826}, {'CRRA': 3.1673286626320794, 'DiscFac': 1.1}, {'CRRA': 3.7693560729380176, 'DiscFac': 1.0908579040628261}, {'CRRA': 3.7693560729380176, 'DiscFac': 1.0877513222446453}, {'CRRA': 3.252410164125509, 'DiscFac': 1.1}, {'CRRA': 3.1556439270619823, 'DiscFac': 0.5770816471886374}, {'CRRA': 3.1556439270619823, 'DiscFac': 1.0962012275916377}, {'CRRA': 3.1556439270619823, 'DiscFac': 0.8201933907462482}, {'CRRA': 3.2920493494325482, 'DiscFac': 0.9108273227394859}, {'CRRA': 3.160571139998799, 'DiscFac': 0.807765310815706}, {'CRRA': 3.1322566785634134, 'DiscFac': 0.8442047442731109}, {'CRRA': 3.206006823747242, 'DiscFac': 0.9012372812986622}, {'CRRA': 3.324122769792849, 'DiscFac': 0.94050444244772}, {'CRRA': 3.2391386660046924, 'DiscFac': 0.9219394382392962}, {'CRRA': 3.3494377971872664, 'DiscFac': 0.9782059786083586}, {'CRRA': 3.2615524258410584, 'DiscFac': 0.9691159577848923}, {'CRRA': 3.393356772129813, 'DiscFac': 0.9850173754868813}, {'CRRA': 3.3071340001020997, 'DiscFac': 0.9947529704388474}, {'CRRA': 3.153705963633091, 'DiscFac': 0.9805743660572339}, {'CRRA': 3.2206552956753014, 'DiscFac': 0.9888399406371133}, {'CRRA': 3.2636519253036167, 'DiscFac': 0.9986319288051465}, {'CRRA': 3.1770929869388467, 'DiscFac': 0.9972962995518269}, {'CRRA': 3.220321553588347, 'DiscFac': 1.0049324766653562}, {'CRRA': 3.3068310482149306, 'DiscFac': 1.0018892497690481}, {'CRRA': 3.2635882377878542, 'DiscFac': 1.0038023212563407}, {'CRRA': 3.285223043221307, 'DiscFac': 1.0031952364206311}, {'CRRA': 3.2744242916987343, 'DiscFac': 1.0051837032280118}, {'CRRA': 3.2960635099891156, 'DiscFac': 1.0049368799733744}, {'CRRA': 3.252783409408292, 'DiscFac': 1.005255892189942}, {'CRRA': 3.2744230491467303, 'DiscFac': 1.0050265965005287}, {'CRRA': 3.306894788312111, 'DiscFac': 1.0060172815625936}, {'CRRA': 3.3285348963930543, 'DiscFac': 1.00585693973777}, {'CRRA': 3.371805463305033, 'DiscFac': 1.0047370147727912}, {'CRRA': 3.2852571310808356, 'DiscFac': 1.0029990925336685}, {'CRRA': 3.328535543055655, 'DiscFac': 1.0034946206049273}, {'CRRA': 3.3934458921129007, 'DiscFac': 1.0045945365434035}, {'CRRA': 3.436724625994451, 'DiscFac': 1.0041260693346616}, {'CRRA': 3.3501610123982255, 'DiscFac': 1.003126037510235}, {'CRRA': 3.3934405906216933, 'DiscFac': 1.0030475724468668}, {'CRRA': 3.4583654332417573, 'DiscFac': 1.0040415193999346}, {'CRRA': 3.5004872714879105, 'DiscFac': 0.9897526217726479}, {'CRRA': 3.4800087257471155, 'DiscFac': 1.0041929153363525}, {'CRRA': 3.5232882324430506, 'DiscFac': 1.003801085804102}, {'CRRA': 3.609557853803056, 'DiscFac': 0.9920242278585506}, {'CRRA': 3.566567668205597, 'DiscFac': 1.0033991492985908}, {'CRRA': 3.4800962789711423, 'DiscFac': 0.9950521150234775}, {'CRRA': 3.5233576120652317, 'DiscFac': 0.9959407701024888}, {'CRRA': 3.5882132469444326, 'DiscFac': 1.0036923734943635}, {'CRRA': 3.6314925157301436, 'DiscFac': 1.0032735665368495}, {'CRRA': 3.7180390378033135, 'DiscFac': 1.001577761816608}, {'CRRA': 3.6748818878252374, 'DiscFac': 1.0067504600642396}, {'CRRA': 3.6532315306052783, 'DiscFac': 1.0062108341092992}, {'CRRA': 3.6424186953925117, 'DiscFac': 1.0058218568602928}, {'CRRA': 3.6358209164977016, 'DiscFac': 1.0000278405094685}, {'CRRA': 3.6337900895987514, 'DiscFac': 1.0047013627340162}, {'CRRA': 3.632033659027645, 'DiscFac': 1.0045131333350326}, {'CRRA': 3.6326709899857446, 'DiscFac': 1.0042869702771626}], 'criterion': [1093.6287094958684, 1245.8554091061123, 1228.437199283229, 1196.2513338061253, 565.8944718863357, 1233.6495058027178, 1232.384369245551, nan, nan, nan, nan, 1245.6273609138634, nan, 1178.0531105990904, 1000.7509434811079, 1184.8727376133124, 1162.300118973653, 1052.3986832064866, 827.2850544940472, 955.1473772312156, 589.2387386757741, 649.1795468814067, 555.0773535680186, 527.5324137105392, 594.1974555608165, 550.7345811743, 519.9309270334896, 526.019227462011, 513.1513126909756, 513.8507302331603, 513.0194722961687, 513.0648520982796, 512.0809014214674, 511.7979374568167, 512.3793529360063, 512.1816475873786, 511.21798874189403, 510.83913420009407, 510.59082554232384, 513.206656921827, 511.9848725771735, 510.27441229833755, 509.73756488700667, 511.8350218971264, 511.1217913384364, 509.3715980078564, 532.8031876140645, 508.9279337370762, 508.3645034963132, 522.3950926634641, 507.8890405609745, 520.1419585533414, 517.012345192252, 507.4336026486255, 506.99784644540586, nan, nan, nan, nan, 508.9720174810991, nan, 506.5420877431311, 506.6849493107312], 'runtime': [0.0, 1.3804252599998108, 1.4150906029999533, 1.4489653229998112, 1.488080220000029, 1.5404481979999218, 1.5700747070000034, 1.611183871999856, 1.6490961620002054, 1.6923267430001943, 1.7307125020001877, 1.7700176570001531, 1.8183009529998344, 3.5063388779999514, 4.789909709999847, 6.110572930000217, 7.373552889000166, 8.65480244299988, 9.997954282000137, 11.292315917999986, 12.581388307999987, 13.893260515999827, 15.192520904000048, 16.508465176999835, 17.83462647999977, 19.14974713699985, 20.485998517000098, 21.850103854999816, 23.2152417100001, 24.547226562000105, 25.87641709599984, 27.20560083700002, 28.524041861000114, 29.84154418900016, 31.16551884699993, 32.48429570400003, 33.79176999499987, 35.09562726000013, 36.45809206500007, 37.80630384899996, 39.149301641999955, 40.46359727900017, 41.79980468799977, 43.11513492699987, 44.429547774000184, 45.73663632199987, 47.042997473000014, 48.38298036600008, 49.69725927399986, 51.02970168999991, 52.40143981099982, 53.727951674999986, 55.20516782000004, 56.5488178720002, 57.90847202099985, 59.24165819200016, 60.596691159999864, 61.908351636000134, 63.24388750400021, 64.57625644300015, 65.95520391699984, 67.28008590299987, 68.63086242999998], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]}, 'multistart_info': {...}}, {'solution_x': array([4.10526572, 0.95863073]), 'solution_criterion': 612.1663712949527, 'states': [State(trustregion=Region(center=array([3.92835851, 0.91166214]), radius=0.39283585146612066, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=885.1490295235632, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=0, candidate_x=array([3.92835851, 0.91166214]), index=0, x=array([3.92835851, 0.91166214]), fval=885.1490295235632, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([3.92835851, 0.91166214]), radius=0.39283585146612066, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=669.2593342626839, linear_terms=array([ -19.40036107, -233.98381695]), square_terms=array([[ 5.88961117, -80.56527795],
+ [ -80.56527795, 1388.61184176]]), scale=array([0.34814171, 0.26823979]), shift=array([3.92835851, 0.83176021])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=13, candidate_x=array([4.27650022, 0.89252203]), index=0, x=array([3.92835851, 0.91166214]), fval=885.1490295235632, rho=-0.707967574473294, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.92835851, 0.91166214]), radius=0.19641792573306033, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 4, 6, 7, 9, 12, 13]), model=ScalarModel(intercept=657.2925840656167, linear_terms=array([-20.28407152, -75.65695065]), square_terms=array([[ 2.71090442, -37.96259287],
+ [-37.96259287, 716.56491221]]), scale=array([0.17407085, 0.17407085]), shift=array([3.92835851, 0.91166214])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=14, candidate_x=array([4.10242937, 0.93926306]), index=14, x=array([4.10242937, 0.93926306]), fval=709.5920774337976, rho=6.284152384779159, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 4, 6, 7, 9, 12, 13]), old_indices_discarded=array([ 1, 5, 8, 10, 11]), step_length=0.17624549117969177, relative_step_length=0.8972984035032338, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.10242937, 0.93926306]), radius=0.39283585146612066, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 8, 9, 12, 13, 14]), model=ScalarModel(intercept=703.0395545815431, linear_terms=array([-160.81523137, -813.85973953]), square_terms=array([[ 23.80260467, 130.21587045],
+ [ 130.21587045, 1976.08778378]]), scale=array([0.34814171, 0.25443933]), shift=array([4.10242937, 0.84556067])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=14, candidate_x=array([4.10242937, 0.93926306]), index=14, x=array([4.10242937, 0.93926306]), fval=709.5920774337976, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 8, 9, 12, 13, 14]), old_indices_discarded=array([ 1, 3, 6, 7, 10, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.10242937, 0.93926306]), radius=0.19641792573306033, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 8, 9, 12, 13, 14, 15]), model=ScalarModel(intercept=573.1710443089172, linear_terms=array([ -70.2999988 , -362.33652641]), square_terms=array([[ 6.7024952 , 36.51035483],
+ [ 36.51035483, 1758.79957809]]), scale=array([0.17407085, 0.1674039 ]), shift=array([4.10242937, 0.9325961 ])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=14, candidate_x=array([4.10242937, 0.93926306]), index=14, x=array([4.10242937, 0.93926306]), fval=709.5920774337976, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 8, 9, 12, 13, 14, 15]), old_indices_discarded=array([ 1, 3, 5, 6, 7, 10, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.10242937, 0.93926306]), radius=0.09820896286653016, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 8, 9, 13, 14, 15, 16]), model=ScalarModel(intercept=592.6543914686597, linear_terms=array([ -74.26778817, -252.56460606]), square_terms=array([[ 10.82595238, 61.08368861],
+ [ 61.08368861, 515.52510087]]), scale=0.09820896286653016, shift=array([4.10242937, 0.93926306])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=14, candidate_x=array([4.10242937, 0.93926306]), index=14, x=array([4.10242937, 0.93926306]), fval=709.5920774337976, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 8, 9, 13, 14, 15, 16]), old_indices_discarded=array([ 5, 6, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.10242937, 0.93926306]), radius=0.04910448143326508, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 8, 9, 13, 14, 16, 17]), model=ScalarModel(intercept=647.7854134729351, linear_terms=array([ -28.30343399, -165.4032875 ]), square_terms=array([[ 1.18820393, 8.18165452],
+ [ 8.18165452, 231.06687257]]), scale=0.04910448143326508, shift=array([4.10242937, 0.93926306])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=14, candidate_x=array([4.10242937, 0.93926306]), index=14, x=array([4.10242937, 0.93926306]), fval=709.5920774337976, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 8, 9, 13, 14, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.10242937, 0.93926306]), radius=0.02455224071663254, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 17, 18]), model=ScalarModel(intercept=709.5920774337975, linear_terms=array([ -25.35221022, -575.03625503]), square_terms=array([[ 13.95957634, -31.10967033],
+ [-31.10967033, 572.70300511]]), scale=0.02455224071663254, shift=array([4.10242937, 0.93926306])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=14, candidate_x=array([4.10242937, 0.93926306]), index=14, x=array([4.10242937, 0.93926306]), fval=709.5920774337976, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.10242937, 0.93926306]), radius=0.01227612035831627, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 18, 19]), model=ScalarModel(intercept=709.5920774337985, linear_terms=array([ 32.20028076, -282.80159432]), square_terms=array([[ 22.82924084, -54.81188866],
+ [-54.81188866, 193.24414789]]), scale=0.01227612035831627, shift=array([4.10242937, 0.93926306])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=20, candidate_x=array([4.10608546, 0.95098211]), index=20, x=array([4.10608546, 0.95098211]), fval=648.6690709013858, rho=0.32596998290269796, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.012276120358316323, relative_step_length=1.0000000000000042, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.10608546, 0.95098211]), radius=0.02455224071663254, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 17, 18, 19, 20]), model=ScalarModel(intercept=634.8446467033286, linear_terms=array([ -45.92106717, -141.73701279]), square_terms=array([[ 9.00323906, 2.41866819],
+ [ 2.41866819, 76.65075564]]), scale=0.02455224071663254, shift=array([4.10608546, 0.95098211])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=20, candidate_x=array([4.10608546, 0.95098211]), index=20, x=array([4.10608546, 0.95098211]), fval=648.6690709013858, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 17, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.10608546, 0.95098211]), radius=0.01227612035831627, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 18, 19, 20, 21]), model=ScalarModel(intercept=616.6512546416332, linear_terms=array([ 14.81758717, -126.85375063]), square_terms=array([[ 5.00889551, -8.40865233],
+ [-8.40865233, 42.10350276]]), scale=0.01227612035831627, shift=array([4.10608546, 0.95098211])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=20, candidate_x=array([4.10608546, 0.95098211]), index=20, x=array([4.10608546, 0.95098211]), fval=648.6690709013858, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 18, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.10608546, 0.95098211]), radius=0.006138060179158135, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 19, 20, 21, 22]), model=ScalarModel(intercept=626.3886121528963, linear_terms=array([ 31.9745401 , -61.83962378]), square_terms=array([[ 6.31182423, -5.30340037],
+ [-5.30340037, 9.14042468]]), scale=0.006138060179158135, shift=array([4.10608546, 0.95098211])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=23, candidate_x=array([4.10440383, 0.95688532]), index=23, x=array([4.10440383, 0.95688532]), fval=620.2878620321094, rho=0.45503025929577373, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 19, 20, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.006138060179158198, relative_step_length=1.0000000000000102, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.10440383, 0.95688532]), radius=0.01227612035831627, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 18, 19, 20, 21, 22, 23]), model=ScalarModel(intercept=570.2820883152913, linear_terms=array([ -0.63687268, -115.46232547]), square_terms=array([[ 3.19576866, -3.44091438],
+ [-3.44091438, 39.37098378]]), scale=0.01227612035831627, shift=array([4.10440383, 0.95688532])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=23, candidate_x=array([4.10440383, 0.95688532]), index=23, x=array([4.10440383, 0.95688532]), fval=620.2878620321094, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 18, 19, 20, 21, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.10440383, 0.95688532]), radius=0.006138060179158135, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 19, 20, 21, 22, 23, 24]), model=ScalarModel(intercept=565.2350874755684, linear_terms=array([ 13.42917918, -58.85087105]), square_terms=array([[ 5.65506944, -3.96090155],
+ [-3.96090155, 10.02210554]]), scale=0.006138060179158135, shift=array([4.10440383, 0.95688532])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=23, candidate_x=array([4.10440383, 0.95688532]), index=23, x=array([4.10440383, 0.95688532]), fval=620.2878620321094, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 19, 20, 21, 22, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.10440383, 0.95688532]), radius=0.0030690300895790676, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 20, 22, 23, 24, 25]), model=ScalarModel(intercept=609.5532012768604, linear_terms=array([ -2.61634829, -25.9125239 ]), square_terms=array([[0.08806229, 0.05943089],
+ [0.05943089, 1.75672425]]), scale=0.0030690300895790676, shift=array([4.10440383, 0.95688532])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=23, candidate_x=array([4.10440383, 0.95688532]), index=23, x=array([4.10440383, 0.95688532]), fval=620.2878620321094, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 20, 22, 23, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.10440383, 0.95688532]), radius=0.0015345150447895338, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 22, 23, 25, 26]), model=ScalarModel(intercept=607.3049943215983, linear_terms=array([ -1.17893353, -11.37519598]), square_terms=array([[0.00320547, 0.0303136 ],
+ [0.0303136 , 0.38382998]]), scale=0.0015345150447895338, shift=array([4.10440383, 0.95688532])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=27, candidate_x=array([4.10452951, 0.95841468]), index=27, x=array([4.10452951, 0.95841468]), fval=613.2288018488726, rho=0.6280065830504951, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([20, 22, 23, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0015345150447895392, relative_step_length=1.0000000000000036, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.10452951, 0.95841468]), radius=0.0030690300895790676, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 20, 22, 23, 24, 25, 26, 27]), model=ScalarModel(intercept=595.6643413349246, linear_terms=array([ -3.45218014, -26.63767134]), square_terms=array([[0.07749722, 0.13329762],
+ [0.13329762, 1.87298856]]), scale=0.0030690300895790676, shift=array([4.10452951, 0.95841468])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=27, candidate_x=array([4.10452951, 0.95841468]), index=27, x=array([4.10452951, 0.95841468]), fval=613.2288018488726, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 20, 22, 23, 24, 25, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.10452951, 0.95841468]), radius=0.0015345150447895338, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 22, 23, 25, 26, 27, 28]), model=ScalarModel(intercept=595.907158344846, linear_terms=array([ -3.08249489, -12.20590735]), square_terms=array([[0.02934606, 0.08729316],
+ [0.08729316, 0.44531894]]), scale=0.0015345150447895338, shift=array([4.10452951, 0.95841468])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=27, candidate_x=array([4.10452951, 0.95841468]), index=27, x=array([4.10452951, 0.95841468]), fval=613.2288018488726, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 22, 23, 25, 26, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.10452951, 0.95841468]), radius=0.0007672575223947669, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 26, 27, 28, 29]), model=ScalarModel(intercept=604.9203462717749, linear_terms=array([-18.68076427, -6.90750075]), square_terms=array([[1.2707043 , 0.2933156 ],
+ [0.2933156 , 0.13226964]]), scale=0.0007672575223947669, shift=array([4.10452951, 0.95841468])), vector_model=VectorModel(intercepts=array([ 0.49652143, 0.84772779, 0.35898903, 0.18625493,
+ -0.21246767, -0.548112 , -1.96085423, -10.76245674,
+ -12.3146449 , -12.62045897, -14.08604359, -15.95795125]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.39283585146612066, shift=array([3.92835851, 0.91166214])), candidate_index=30, candidate_x=array([4.10526572, 0.95863073]), index=30, x=array([4.10526572, 0.95863073]), fval=612.1663712949527, rho=0.05533358464722446, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([23, 26, 27, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0007672575223946103, relative_step_length=0.9999999999997959, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute params change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 31 entries., 'history': {'params': [{'CRRA': 3.9283585146612063, 'DiscFac': 0.9116621363063967}, {'CRRA': 3.58021680580877, 'DiscFac': 0.5640908738961512}, {'CRRA': 4.276500223513643, 'DiscFac': 0.7473801239067223}, {'CRRA': 3.58021680580877, 'DiscFac': 0.8703686602196827}, {'CRRA': 4.276500223513643, 'DiscFac': 0.9642710795378783}, {'CRRA': 4.276500223513643, 'DiscFac': 0.6027326498042208}, {'CRRA': 3.9574335869652093, 'DiscFac': 0.5635204274539602}, {'CRRA': 3.58021680580877, 'DiscFac': 1.0819158438847456}, {'CRRA': 4.276500223513643, 'DiscFac': 1.097682967347001}, {'CRRA': 4.276500223513643, 'DiscFac': 1.053710114882074}, {'CRRA': 3.58021680580877, 'DiscFac': 1.0940747949541754}, {'CRRA': 3.7311830324920114, 'DiscFac': 0.5635204274539602}, {'CRRA': 3.7690658533787085, 'DiscFac': 1.1}, {'CRRA': 4.276500223513643, 'DiscFac': 0.8925220331576068}, {'CRRA': 4.1024293690874245, 'DiscFac': 0.9392630565899157}, {'CRRA': 4.450571077939861, 'DiscFac': 0.9335860575541611}, {'CRRA': 4.276500223513643, 'DiscFac': 0.963608487127061}, {'CRRA': 4.2050881969414124, 'DiscFac': 0.972601738111027}, {'CRRA': 4.142133526792268, 'DiscFac': 0.9694062696783321}, {'CRRA': 4.114779365849994, 'DiscFac': 0.9610994250037553}, {'CRRA': 4.106085457101602, 'DiscFac': 0.9509821073827255}, {'CRRA': 4.107824517137357, 'DiscFac': 0.9754726809652186}, {'CRRA': 4.107403747175251, 'DiscFac': 0.9631872391859296}, {'CRRA': 4.104403827709157, 'DiscFac': 0.9568853188264594}, {'CRRA': 4.106739391371688, 'DiscFac': 0.9689372179892525}, {'CRRA': 4.103838108958621, 'DiscFac': 0.9629972534676561}, {'CRRA': 4.104602246127849, 'DiscFac': 0.9599479281423641}, {'CRRA': 4.104529507007806, 'DiscFac': 0.9584146785410382}, {'CRRA': 4.10479485740129, 'DiscFac': 0.9614722159258333}, {'CRRA': 4.10485727203945, 'DiscFac': 0.9599137804410828}, {'CRRA': 4.105265716135248, 'DiscFac': 0.958630734613255}], 'criterion': [885.1490295235632, 1237.3831227272105, 1173.4747124052076, 1091.2858399384895, nan, 1214.2023923754682, 1228.6185193350634, nan, nan, nan, nan, 1233.935273500313, nan, 916.291791025054, 709.5920774337976, nan, nan, nan, nan, nan, 648.6690709013858, nan, nan, 620.2878620321094, nan, nan, nan, 613.2288018488726, nan, nan, 612.1663712949527], 'runtime': [0.0, 1.4403331720000097, 1.4767484219996732, 1.512743013999625, 1.5560416649996114, 1.5917235949996211, 1.6404006269999627, 1.6671121529998345, 1.705849116999616, 1.7473428230000536, 1.7893147419999877, 1.832734428999629, 1.878267821999998, 3.587017901999843, 4.94060757699981, 6.261645380999653, 7.591948510999828, 8.923523973999636, 10.256098466999902, 11.575847744999919, 12.899013525999635, 14.1988267429997, 15.56263835899972, 16.87367188600001, 18.229436776000057, 19.58007070099984, 20.950962564999827, 22.30214271299974, 23.663406628999837, 25.00892779900005, 26.44043202900002], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}}], 'exploration_sample': array([[3.4625 , 0.875 ],
+ [4.64375 , 0.6875 ],
+ [2.871875, 0.78125 ],
+ [2.28125 , 1.0625 ]]), 'exploration_results': array([1093.6287095 , 1183.94834133, 1205.66501897, 1353.72863006])}}"
diff --git a/content/tables/min/WarmGlow_estimate_results.csv b/content/tables/min/WarmGlow_estimate_results.csv
new file mode 100644
index 0000000..aaa9d20
--- /dev/null
+++ b/content/tables/min/WarmGlow_estimate_results.csv
@@ -0,0 +1,2964 @@
+CRRA,3.2492019027639434
+DiscFac,0.9947689143590757
+time_to_estimate,92.65805292129517
+params,"{'CRRA': 3.2492019027639434, 'DiscFac': 0.9947689143590757}"
+criterion,483.3042437482078
+start_criterion,nan
+start_params,"{'CRRA': 5.0, 'DiscFac': 0.95}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,Absolute params change smaller than tolerance.
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 3.787666272489316, 'DiscFac': 0.8916692958468136}, {'CRRA': 3.4522702301564188, 'DiscFac': 0.5559961123158821}, {'CRRA': 4.123339456020248, 'DiscFac': 0.9023086310261734}, {'CRRA': 3.4519930889583845, 'DiscFac': 0.9621907100872018}, {'CRRA': 4.123339456020248, 'DiscFac': 1.089750383978294}, {'CRRA': 4.123339456020248, 'DiscFac': 0.6017993841903007}, {'CRRA': 4.123339456020248, 'DiscFac': 0.5569865537153984}, {'CRRA': 3.4683844729376645, 'DiscFac': 1.1}, {'CRRA': 4.123339456020248, 'DiscFac': 1.045584977176946}, {'CRRA': 4.10451029867194, 'DiscFac': 1.1}, {'CRRA': 3.4519930889583845, 'DiscFac': 1.054282457648922}, {'CRRA': 3.7954582435001956, 'DiscFac': 0.5559961123158821}, {'CRRA': 3.8035398561153393, 'DiscFac': 1.1}, {'CRRA': 3.4519930889583845, 'DiscFac': 0.864627335810008}, {'CRRA': 3.592010414630564, 'DiscFac': 0.894292791173227}, {'CRRA': 3.6888912528562816, 'DiscFac': 0.8878074252872034}, {'CRRA': 3.823561879152503, 'DiscFac': 0.9246859419813435}, {'CRRA': 3.730859920510897, 'DiscFac': 0.947729381130338}, {'CRRA': 3.563023328745431, 'DiscFac': 0.9551359206790517}, {'CRRA': 3.2477863535466858, 'DiscFac': 0.9938493219885415}, {'CRRA': 3.1978636230600257, 'DiscFac': 1.0105906789642098}, {'CRRA': 3.3468786473767884, 'DiscFac': 0.9769704795680376}, {'CRRA': 3.3483016413066986, 'DiscFac': 0.9803419003819871}, {'CRRA': 3.341936549287567, 'DiscFac': 0.9837374224736428}, {'CRRA': 3.2009950294051723, 'DiscFac': 1.001074240849349}, {'CRRA': 3.2710390033805554, 'DiscFac': 0.9991449061243276}, {'CRRA': 3.257841194054621, 'DiscFac': 1.0003218222323884}, {'CRRA': 3.245971813012713, 'DiscFac': 0.9994825157389511}, {'CRRA': 3.248525695788145, 'DiscFac': 0.996714584689371}, {'CRRA': 3.2492547111506704, 'DiscFac': 0.9940310230356313}, {'CRRA': 3.2492019027639434, 'DiscFac': 0.9947689143590757}], 'criterion': [960.8060529870695, 1240.2921504697779, 850.859898892532, 596.4110585596852, nan, 1216.050562892, 1223.9931083911201, nan, nan, nan, nan, 1231.906846531173, nan, 1096.360653117792, 981.7508031032233, 993.7795220807161, 776.1278971480874, 648.6747263507989, 625.5055756735769, 484.1337317628459, nan, 528.5042475772016, 514.6948394166868, 503.03465345715216, nan, nan, nan, nan, nan, 483.968970933012, 483.3042437482078], 'runtime': [0.0, 1.4134274120001464, 1.4513098170000376, 1.4883478880001348, 1.5293199889997595, 1.5646587159999399, 1.618685972000094, 1.649523740999939, 1.6883285939998132, 1.7261191950001376, 1.7632402599997476, 1.8103470779997224, 1.8507548039997346, 3.590426523000133, 4.847393539999757, 6.175072521999937, 7.528106565000144, 8.883646622000015, 10.280463337000128, 11.652836511999794, 13.009232939999947, 14.359365203999914, 15.72169381699996, 17.094576741999845, 18.500274525999885, 19.861051937999946, 21.18866636199982, 22.520675393000147, 23.882492001999708, 25.24515795699972, 26.623506488999737], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}"
+convergence_report,"{'one_step': {'relative_criterion_change': 0.08786861410107832, 'relative_params_change': 0.059574135069656635, 'absolute_criterion_change': 42.46727408732477, 'absolute_params_change': 0.18479425470330055}, 'five_steps': {'relative_criterion_change': 0.08786861410107832, 'relative_params_change': 0.059574135069656635, 'absolute_criterion_change': 42.46727408732477, 'absolute_params_change': 0.18479425470330055}}"
+multistart_info,"{'start_parameters': [{'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 3.787666272489316, 'DiscFac': 0.8916692958468136}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute params change smaller than tolerance., Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute params change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 0.4266 0.611
+relative_params_change 0.2042 0.2042
+absolute_criterion_change 254.4 364.4
+absolute_params_change 0.674 0.674
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.)], 'exploration_sample': [{'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 2.871875, 'DiscFac': 0.78125}, {'CRRA': 2.28125, 'DiscFac': 1.0625}], 'exploration_results': array([1069.96402275, 1180.14464257, 1201.13045726, 2198.69465259])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([3.78766627, 0.8916693 ]), radius=0.3787666272489316, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=960.8060529870695, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=0, candidate_x=array([3.78766627, 0.8916693 ]), index=0, x=array([3.78766627, 0.8916693 ]), fval=960.8060529870695, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([3.78766627, 0.8916693 ]), radius=0.3787666272489316, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=874.7353270796168, linear_terms=array([ 873.49602125, 1350.09023191]), square_terms=array([[ 985.59998281, 2047.15687 ],
+ [2047.15687 , 5176.28198934]]), scale=array([0.33567318, 0.27200194]), shift=array([3.78766627, 0.82799806])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=13, candidate_x=array([3.45199309, 0.86462734]), index=0, x=array([3.78766627, 0.8916693 ]), fval=960.8060529870695, rho=-0.15308542515227241, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.78766627, 0.8916693 ]), radius=0.1893833136244658, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 8, 9, 10, 11, 12, 13]), model=ScalarModel(intercept=808.6912637597069, linear_terms=array([350.32639779, 685.42785942]), square_terms=array([[ 234.14892793, 697.30904451],
+ [ 697.30904451, 2410.5795072 ]]), scale=0.1893833136244658, shift=array([3.78766627, 0.8916693 ])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=14, candidate_x=array([3.59201041, 0.89429279]), index=0, x=array([3.78766627, 0.8916693 ]), fval=960.8060529870695, rho=-0.08829078860833003, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 8, 9, 10, 11, 12, 13]), old_indices_discarded=array([1, 4, 5, 6, 7]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.78766627, 0.8916693 ]), radius=0.0946916568122329, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 8, 10, 11, 12, 13, 14]), model=ScalarModel(intercept=730.9325872858446, linear_terms=array([106.27869552, 159.7730584 ]), square_terms=array([[ 42.38597082, 131.40554341],
+ [131.40554341, 502.25747585]]), scale=0.0946916568122329, shift=array([3.78766627, 0.8916693 ])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=15, candidate_x=array([3.68889125, 0.88780743]), index=0, x=array([3.78766627, 0.8916693 ]), fval=960.8060529870695, rho=-0.373384654091654, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 8, 10, 11, 12, 13, 14]), old_indices_discarded=array([4, 5, 7, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.78766627, 0.8916693 ]), radius=0.04734582840611645, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 14, 15]), model=ScalarModel(intercept=965.5477767842316, linear_terms=array([ -5.90849634, -72.44081687]), square_terms=array([[ 0.10420462, 2.89237224],
+ [ 2.89237224, 95.70682949]]), scale=0.04734582840611645, shift=array([3.78766627, 0.8916693 ])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=16, candidate_x=array([3.82356188, 0.92468594]), index=16, x=array([3.82356188, 0.92468594]), fval=776.1278971480874, rho=6.122051811394392, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.04877082631749214, relative_step_length=1.0300976444883916, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.82356188, 0.92468594]), radius=0.0946916568122329, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 8, 9, 12, 14, 15, 16]), model=ScalarModel(intercept=828.8020397225383, linear_terms=array([ -4.39761005, -143.69587127]), square_terms=array([[ 10.86877388, 86.76352764],
+ [ 86.76352764, 933.32116784]]), scale=0.0946916568122329, shift=array([3.82356188, 0.92468594])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=17, candidate_x=array([3.73085992, 0.94772938]), index=17, x=array([3.73085992, 0.94772938]), fval=648.6747263507989, rho=6.893178067282503, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 8, 9, 12, 14, 15, 16]), old_indices_discarded=array([ 3, 5, 7, 10, 11, 13]), step_length=0.09552305074589823, relative_step_length=1.0087800125338806, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.73085992, 0.94772938]), radius=0.1893833136244658, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 10, 12, 13, 14, 15, 16, 17]), model=ScalarModel(intercept=720.6246885108825, linear_terms=array([ 145.98231008, -194.8708089 ]), square_terms=array([[ 53.34554651, 318.31554452],
+ [ 318.31554452, 5407.49764562]]), scale=array([0.16783659, 0.16005361]), shift=array([3.73085992, 0.93994639])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=18, candidate_x=array([3.56302333, 0.95513592]), index=18, x=array([3.56302333, 0.95513592]), fval=625.5055756735769, rho=0.16481323155383745, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 10, 12, 13, 14, 15, 16, 17]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 7, 8, 9, 11]), step_length=0.1679999356057445, relative_step_length=0.8870894293194009, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.56302333, 0.95513592]), radius=0.3787666272489316, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 12, 13, 14, 15, 16, 17, 18]), model=ScalarModel(intercept=1699.230811865631, linear_terms=array([ -733.78876689, -5525.46893289]), square_terms=array([[ 801.51635682, 2663.03790063],
+ [ 2663.03790063, 14379.03531788]]), scale=array([0.33567318, 0.24026863]), shift=array([3.56302333, 0.85973137])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=19, candidate_x=array([3.24778635, 0.99384932]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=1.030886182642824, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 12, 13, 14, 15, 16, 17, 18]), old_indices_discarded=array([ 0, 1, 2, 4, 5, 6, 8, 9, 10, 11]), step_length=0.3176052234668127, relative_step_length=0.8385248346023826, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.7575332544978632, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 1, 3, 7, 11, 12, 13, 14, 16, 19]), model=ScalarModel(intercept=1209.299534643605, linear_terms=array([-2242.238234 , -2587.12158589]), square_terms=array([[4221.05213969, 3641.36424949],
+ [3641.36424949, 4071.26438615]]), scale=array([0.67134637, 0.3 ]), shift=array([3.24778635, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=19, candidate_x=array([3.24778635, 0.99384932]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 3, 7, 11, 12, 13, 14, 16, 19]), old_indices_discarded=array([ 0, 2, 4, 5, 6, 8, 9, 10, 15, 17, 18]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.3787666272489316, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 13, 14, 15, 18, 19, 20]), model=ScalarModel(intercept=2124.417481740468, linear_terms=array([ -942.92590417, -7426.11137923]), square_terms=array([[ 377.95674671, 1876.28626265],
+ [ 1876.28626265, 15509.99841478]]), scale=array([0.33567318, 0.22091193]), shift=array([3.24778635, 0.87908807])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=21, candidate_x=array([3.34687865, 0.97697048]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=-2.284718989594501, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 13, 14, 15, 18, 19, 20]), old_indices_discarded=array([ 0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 16, 17]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.1893833136244658, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 13, 14, 18, 19, 20, 21]), model=ScalarModel(intercept=477.7179817875052, linear_terms=array([ -163.3710089 , -1175.98868957]), square_terms=array([[ 127.74286605, 686.46717998],
+ [ 686.46717998, 6044.38085127]]), scale=array([0.16783659, 0.13699363]), shift=array([3.24778635, 0.96300637])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=22, candidate_x=array([3.34830164, 0.9803419 ]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=-2.6000951258679503, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 13, 14, 18, 19, 20, 21]), old_indices_discarded=array([ 0, 1, 2, 4, 8, 9, 11, 12, 15, 16, 17]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.0946916568122329, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 13, 18, 19, 20, 21, 22]), model=ScalarModel(intercept=374.72280604462765, linear_terms=array([-14.1761097, 29.2396918]), square_terms=array([[ 46.90834448, 284.30156756],
+ [ 284.30156756, 2940.59930772]]), scale=0.0946916568122329, shift=array([3.24778635, 0.99384932])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=23, candidate_x=array([3.34193655, 0.98373742]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=-2.5369146064038564, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 13, 18, 19, 20, 21, 22]), old_indices_discarded=array([14, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.04734582840611645, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 10, 19, 20, 21, 22, 23]), model=ScalarModel(intercept=441.2649652868354, linear_terms=array([ -2.43397956, -116.38232897]), square_terms=array([[ 4.67788775, 43.93335349],
+ [ 43.93335349, 1049.51019283]]), scale=0.04734582840611645, shift=array([3.24778635, 0.99384932])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=19, candidate_x=array([3.24778635, 0.99384932]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 10, 19, 20, 21, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.023672914203058226, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 20, 21, 22, 23, 24]), model=ScalarModel(intercept=456.6727886617666, linear_terms=array([ -11.56483252, -141.69457592]), square_terms=array([[ 3.5660652 , 34.18551936],
+ [ 34.18551936, 482.88971038]]), scale=0.023672914203058226, shift=array([3.24778635, 0.99384932])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=19, candidate_x=array([3.24778635, 0.99384932]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 20, 21, 22, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.011836457101529113, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 20, 24, 25]), model=ScalarModel(intercept=424.46586880900963, linear_terms=array([ -5.90684488, -111.62112051]), square_terms=array([[ 0.42710782, 7.90575832],
+ [ 7.90575832, 190.40627925]]), scale=0.011836457101529113, shift=array([3.24778635, 0.99384932])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=19, candidate_x=array([3.24778635, 0.99384932]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 20, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.0059182285507645566, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 25, 26]), model=ScalarModel(intercept=484.1337317628462, linear_terms=array([ -16.06805906, -176.33191042]), square_terms=array([[ 1.26390583, 14.22749645],
+ [ 14.22749645, 169.71406618]]), scale=0.0059182285507645566, shift=array([3.24778635, 0.99384932])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=19, candidate_x=array([3.24778635, 0.99384932]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.0029591142753822783, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 26, 27]), model=ScalarModel(intercept=484.13373176284574, linear_terms=array([ 8.10776251, -113.24175874]), square_terms=array([[ 0.32512291, -4.57313309],
+ [-4.57313309, 67.6659022 ]]), scale=0.0029591142753822783, shift=array([3.24778635, 0.99384932])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=19, candidate_x=array([3.24778635, 0.99384932]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.0014795571376911391, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 27, 28]), model=ScalarModel(intercept=484.1337317628462, linear_terms=array([-97.84517191, -89.44417119]), square_terms=array([[47.12079293, 43.46749574],
+ [43.46749574, 40.77539384]]), scale=0.0014795571376911391, shift=array([3.24778635, 0.99384932])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=29, candidate_x=array([3.24925471, 0.99403102]), index=29, x=array([3.24925471, 0.99403102]), fval=483.968970933012, rho=0.0020782488349921106, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([19, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0014795571376912547, relative_step_length=1.0000000000000782, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24925471, 0.99403102]), radius=0.0007397785688455696, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 28, 29]), model=ScalarModel(intercept=483.968970933012, linear_terms=array([ 0.5408325 , -5.01774165]), square_terms=array([[ 0.00141837, -0.01343874],
+ [-0.01343874, 0.31696815]]), scale=0.0007397785688455696, shift=array([3.24925471, 0.99403102])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=30, candidate_x=array([3.2492019 , 0.99476891]), index=30, x=array([3.2492019 , 0.99476891]), fval=483.3042437482078, rho=0.1360776516278881, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([19, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0007397785688455717, relative_step_length=1.0000000000000029, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 31 entries., 'multistart_info': {'start_parameters': [array([3.4625, 0.875 ]), array([3.78766627, 0.8916693 ])], 'local_optima': [{'solution_x': array([3.43306478, 0.97623899]), 'solution_criterion': 525.7715178355326, 'states': [State(trustregion=Region(center=array([3.4625, 0.875 ]), radius=0.34625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1069.9640227451446, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.34625, shift=array([3.4625, 0.875 ])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=0, candidate_x=array([3.4625, 0.875 ]), index=0, x=array([3.4625, 0.875 ]), fval=1069.9640227451446, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([3.4625, 0.875 ]), radius=0.34625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1144.7511726574812, linear_terms=array([ 449.16579325, 1001.63970094]), square_terms=array([[ 416.11481305, 908.53755792],
+ [ 908.53755792, 2817.29885557]]), scale=array([0.30685607, 0.26592804]), shift=array([3.4625 , 0.83407196])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=13, candidate_x=array([3.15564393, 0.82528395]), index=0, x=array([3.4625, 0.875 ]), fval=1069.9640227451446, rho=-0.22575496413768242, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.4625, 0.875 ]), radius=0.173125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 4, 7, 8, 9, 10, 12, 13]), model=ScalarModel(intercept=1086.9499711683493, linear_terms=array([264.6525083 , 309.56375141]), square_terms=array([[ 258.19170206, 645.97073698],
+ [ 645.97073698, 3178.90944329]]), scale=0.173125, shift=array([3.4625, 0.875 ])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=14, candidate_x=array([3.28999947, 0.8927801 ]), index=14, x=array([3.28999947, 0.8927801 ]), fval=1036.0802202087962, rho=0.22135144551125624, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 4, 7, 8, 9, 10, 12, 13]), old_indices_discarded=array([ 1, 2, 5, 6, 11]), step_length=0.17341443223181693, relative_step_length=1.0016718107252964, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.28999947, 0.8927801 ]), radius=0.34625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 10, 11, 12, 13, 14]), model=ScalarModel(intercept=981.9299518820028, linear_terms=array([ 92.88342123, -198.31600617]), square_terms=array([[ 673.07971505, -1016.35064949],
+ [-1016.35064949, 1537.99538979]]), scale=array([0.30685607, 0.25703799]), shift=array([3.28999947, 0.84296201])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=14, candidate_x=array([3.28999947, 0.8927801 ]), index=14, x=array([3.28999947, 0.8927801 ]), fval=1036.0802202087962, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 10, 11, 12, 13, 14]), old_indices_discarded=array([2, 4, 5, 6, 8, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.28999947, 0.8927801 ]), radius=0.173125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 10, 12, 13, 14, 15]), model=ScalarModel(intercept=969.8153066839036, linear_terms=array([-69.46896655, 146.71728994]), square_terms=array([[ 33.35620996, -170.9070801 ],
+ [-170.9070801 , 912.29598504]]), scale=0.173125, shift=array([3.28999947, 0.8927801 ])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=16, candidate_x=array([3.46524131, 0.89755798]), index=16, x=array([3.46524131, 0.89755798]), fval=988.3435182697583, rho=0.8904811108198745, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 10, 12, 13, 14, 15]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 11]), step_length=0.17530696401757798, relative_step_length=1.0126034022675985, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.46524131, 0.89755798]), radius=0.34625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 4, 9, 10, 13, 14, 15, 16]), model=ScalarModel(intercept=1090.1393984252868, linear_terms=array([ -31.27559889, -1619.41763547]), square_terms=array([[ 159.31076854, 538.37461974],
+ [ 538.37461974, 7188.13411139]]), scale=array([0.30685607, 0.25464904]), shift=array([3.46524131, 0.84535096])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=17, candidate_x=array([3.23310263, 0.91714951]), index=17, x=array([3.23310263, 0.91714951]), fval=929.1268307173862, rho=1.6668598892956832, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 4, 9, 10, 13, 14, 15, 16]), old_indices_discarded=array([ 1, 2, 5, 6, 7, 8, 11, 12]), step_length=0.23296393669926482, relative_step_length=0.6728200337884904, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.23310263, 0.91714951]), radius=0.6925, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 4, 6, 8, 12, 15, 17]), model=ScalarModel(intercept=914.9614856430516, linear_terms=array([-369.51480627, -760.34494131]), square_terms=array([[1112.09805767, 1547.08881929],
+ [1547.08881929, 2687.3703418 ]]), scale=array([0.61371215, 0.3 ]), shift=array([3.23310263, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=18, candidate_x=array([3.04408312, 0.93807237]), index=18, x=array([3.04408312, 0.93807237]), fval=826.8463175953099, rho=3.926219426473953, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 4, 6, 8, 12, 15, 17]), old_indices_discarded=array([ 2, 5, 7, 9, 10, 11, 13, 14, 16]), step_length=0.1901739765043008, relative_step_length=0.27461946065603005, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.04408312, 0.93807237]), radius=0.6925, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 10, 14, 15, 17, 18]), model=ScalarModel(intercept=1023.1832806367438, linear_terms=array([-164.64803316, -933.7815826 ]), square_terms=array([[ 22.05432563, -19.89084209],
+ [ -19.89084209, 2342.07776399]]), scale=array([0.61371215, 0.3 ]), shift=array([3.04408312, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=19, candidate_x=array([3.65779526, 0.92215723]), index=19, x=array([3.65779526, 0.92215723]), fval=820.069252724014, rho=0.040808195473632104, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 10, 14, 15, 17, 18]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 11, 12, 13, 16]), step_length=0.6139184715764755, relative_step_length=0.8865248687024917, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.65779526, 0.92215723]), radius=0.34625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 8, 9, 15, 16, 19]), model=ScalarModel(intercept=764.8274038991793, linear_terms=array([233.00958338, 111.77321685]), square_terms=array([[2719.46308331, 2358.66329209],
+ [2358.66329209, 2092.74157235]]), scale=array([0.30685607, 0.24234942]), shift=array([3.65779526, 0.85765058])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=19, candidate_x=array([3.65779526, 0.92215723]), index=19, x=array([3.65779526, 0.92215723]), fval=820.069252724014, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 8, 9, 15, 16, 19]), old_indices_discarded=array([ 1, 3, 6, 7, 10, 11, 12, 13, 14, 17, 18]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.65779526, 0.92215723]), radius=0.173125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 8, 9, 15, 16, 19, 20]), model=ScalarModel(intercept=1143.969631411414, linear_terms=array([ 974.12770479, 1356.59865903]), square_terms=array([[1070.60848213, 1603.16173076],
+ [1603.16173076, 2679.55654902]]), scale=0.173125, shift=array([3.65779526, 0.92215723])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=21, candidate_x=array([3.4810213 , 0.93997173]), index=21, x=array([3.4810213 , 0.93997173]), fval=735.6146704571191, rho=0.1871717652839075, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 8, 9, 15, 16, 19, 20]), old_indices_discarded=array([ 1, 3, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18]), step_length=0.177669328044831, relative_step_length=1.0262488262517313, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.4810213 , 0.93997173]), radius=0.34625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 8, 10, 13, 15, 17, 19, 20, 21]), model=ScalarModel(intercept=1052.2838042107119, linear_terms=array([ -224.99208977, -2540.23365723]), square_terms=array([[ 215.06317243, 892.6934914 ],
+ [ 892.6934914 , 8177.43986672]]), scale=array([0.30685607, 0.23344217]), shift=array([3.4810213 , 0.86655783])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=22, candidate_x=array([3.34453238, 0.95040927]), index=22, x=array([3.34453238, 0.95040927]), fval=686.0263608994728, rho=4.240156738562875, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 8, 10, 13, 15, 17, 19, 20, 21]), old_indices_discarded=array([ 0, 1, 2, 3, 5, 6, 7, 9, 11, 12, 14, 16, 18]), step_length=0.13688742461719516, relative_step_length=0.3953427425767369, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.34453238, 0.95040927]), radius=0.34625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 12, 15, 17, 18, 19, 20, 22]), model=ScalarModel(intercept=993.9676127670127, linear_terms=array([ -18.11531437, -1795.38622931]), square_terms=array([[ 7.21241047, -110.90483964],
+ [-110.90483964, 4497.78771025]]), scale=array([0.30685607, 0.2282234 ]), shift=array([3.34453238, 0.8717766 ])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=22, candidate_x=array([3.34453238, 0.95040927]), index=22, x=array([3.34453238, 0.95040927]), fval=686.0263608994728, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 12, 15, 17, 18, 19, 20, 22]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 21]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.34453238, 0.95040927]), radius=0.173125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 10, 13, 14, 16, 17, 20, 21, 22]), model=ScalarModel(intercept=694.5285134193795, linear_terms=array([ 18.42946457, -260.61575238]), square_terms=array([[ 16.8071809 , -199.68326366],
+ [-199.68326366, 2388.44859099]]), scale=array([0.15342804, 0.15150938]), shift=array([3.34453238, 0.94849062])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=22, candidate_x=array([3.34453238, 0.95040927]), index=22, x=array([3.34453238, 0.95040927]), fval=686.0263608994728, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 10, 13, 14, 16, 17, 20, 21, 22]), old_indices_discarded=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 18, 19, 23]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.34453238, 0.95040927]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 10, 14, 16, 17, 20, 21, 22, 24]), model=ScalarModel(intercept=613.8256355640807, linear_terms=array([ -33.04326989, -329.58101587]), square_terms=array([[ 2.25709624, 2.24823194],
+ [ 2.24823194, 1241.2576458 ]]), scale=0.0865625, shift=array([3.34453238, 0.95040927])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=25, candidate_x=array([3.43109342, 0.97269438]), index=25, x=array([3.43109342, 0.97269438]), fval=542.0913678929571, rho=1.9178442391178265, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 10, 14, 16, 17, 20, 21, 22, 24]), old_indices_discarded=array([ 1, 3, 4, 7, 11, 12, 13, 15, 18, 19, 23]), step_length=0.08938365884857186, relative_step_length=1.0325910047488445, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.43109342, 0.97269438]), radius=0.173125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 14, 15, 16, 20, 21, 22, 24, 25]), model=ScalarModel(intercept=471.34423653235615, linear_terms=array([-165.73687498, -445.61811571]), square_terms=array([[ 48.87440154, 239.81531061],
+ [ 239.81531061, 3437.88931188]]), scale=array([0.15342804, 0.14036683]), shift=array([3.43109342, 0.95963317])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=25, candidate_x=array([3.43109342, 0.97269438]), index=25, x=array([3.43109342, 0.97269438]), fval=542.0913678929571, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 15, 16, 20, 21, 22, 24, 25]), old_indices_discarded=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 18, 19, 23]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.43109342, 0.97269438]), radius=0.0865625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 14, 16, 20, 21, 22, 24, 25, 26]), model=ScalarModel(intercept=465.39512295126724, linear_terms=array([ -49.12355559, -113.5362643 ]), square_terms=array([[ 11.48227515, -14.677596 ],
+ [ -14.677596 , 1195.45030439]]), scale=0.0865625, shift=array([3.43109342, 0.97269438])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=25, candidate_x=array([3.43109342, 0.97269438]), index=25, x=array([3.43109342, 0.97269438]), fval=542.0913678929571, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 14, 16, 20, 21, 22, 24, 25, 26]), old_indices_discarded=array([ 3, 4, 7, 8, 9, 10, 12, 13, 15, 17, 18, 19, 23]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.43109342, 0.97269438]), radius=0.04328125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 20, 21, 22, 24, 25, 26, 27]), model=ScalarModel(intercept=457.82639585630363, linear_terms=array([-47.71090329, -78.74164566]), square_terms=array([[ 9.31587254, 2.82729766],
+ [ 2.82729766, 323.54173297]]), scale=0.04328125, shift=array([3.43109342, 0.97269438])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=25, candidate_x=array([3.43109342, 0.97269438]), index=25, x=array([3.43109342, 0.97269438]), fval=542.0913678929571, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 20, 21, 22, 24, 25, 26, 27]), old_indices_discarded=array([14, 15, 17]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.43109342, 0.97269438]), radius=0.021640625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 21, 22, 24, 25, 27, 28]), model=ScalarModel(intercept=432.6263473108661, linear_terms=array([-29.49101772, -75.85947069]), square_terms=array([[ 4.31813867, 12.63417219],
+ [12.63417219, 58.1872736 ]]), scale=0.021640625, shift=array([3.43109342, 0.97269438])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=25, candidate_x=array([3.43109342, 0.97269438]), index=25, x=array([3.43109342, 0.97269438]), fval=542.0913678929571, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 21, 22, 24, 25, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.43109342, 0.97269438]), radius=0.0108203125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 28, 29]), model=ScalarModel(intercept=542.0913678929574, linear_terms=array([ -17.54329943, -487.32084576]), square_terms=array([[ 0.71548366, 19.50465628],
+ [ 19.50465628, 542.78547871]]), scale=0.0108203125, shift=array([3.43109342, 0.97269438])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=25, candidate_x=array([3.43109342, 0.97269438]), index=25, x=array([3.43109342, 0.97269438]), fval=542.0913678929571, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.43109342, 0.97269438]), radius=0.00541015625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 29, 30]), model=ScalarModel(intercept=542.091367892957, linear_terms=array([ -16.1050769 , -171.56977378]), square_terms=array([[ 3.3363276 , -4.86035388],
+ [ -4.86035388, 112.7182827 ]]), scale=0.00541015625, shift=array([3.43109342, 0.97269438])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=25, candidate_x=array([3.43109342, 0.97269438]), index=25, x=array([3.43109342, 0.97269438]), fval=542.0913678929571, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.43109342, 0.97269438]), radius=0.002705078125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 30, 31]), model=ScalarModel(intercept=542.0913678929522, linear_terms=array([ 320.8067255 , -309.07107234]), square_terms=array([[ 393.7717483 , -367.10671651],
+ [-367.10671651, 343.89444956]]), scale=0.002705078125, shift=array([3.43109342, 0.97269438])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=32, candidate_x=array([3.43141632, 0.97541122]), index=32, x=array([3.43141632, 0.97541122]), fval=529.4975197602532, rho=0.09003252457637405, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([25, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.0027359652279750723, relative_step_length=1.0114181925799546, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.43141632, 0.97541122]), radius=0.0013525390625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 31, 32]), model=ScalarModel(intercept=529.497519760253, linear_terms=array([-23.33593094, -3.11168899]), square_terms=array([[ 2.08911234, -0.0421325 ],
+ [-0.0421325 , 0.36323846]]), scale=0.0013525390625, shift=array([3.43141632, 0.97541122])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=33, candidate_x=array([3.43274923, 0.97564085]), index=33, x=array([3.43274923, 0.97564085]), fval=528.463157856543, rho=0.04594547963735093, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([25, 31, 32]), old_indices_discarded=array([], dtype=int64), step_length=0.001352539062500074, relative_step_length=1.0000000000000546, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.43274923, 0.97564085]), radius=0.00067626953125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 31, 32, 33]), model=ScalarModel(intercept=517.7498267227711, linear_terms=array([-2.91683374, -5.02472898]), square_terms=array([[0.03556137, 0.04085035],
+ [0.04085035, 0.13458002]]), scale=0.00067626953125, shift=array([3.43274923, 0.97564085])), vector_model=VectorModel(intercepts=array([ 0.19831535, 0.09313108, -0.83564003, -1.46504524,
+ -2.31136791, -3.11563805, -4.84487237, -12.59469794,
+ -13.59264665, -13.47998451, -14.80009701, -16.86444915]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.34625, shift=array([3.4625, 0.875 ])), candidate_index=34, candidate_x=array([3.43306478, 0.97623899]), index=34, x=array([3.43306478, 0.97623899]), fval=525.7715178355326, rho=0.46959425776937647, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([25, 31, 32, 33]), old_indices_discarded=array([], dtype=int64), step_length=0.0006762695312499009, relative_step_length=0.9999999999998535, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute params change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 35 entries., 'history': {'params': [{'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 3.2062782538015053, 'DiscFac': 0.5681439270619826}, {'CRRA': 3.7693560729380176, 'DiscFac': 0.5931914643258382}, {'CRRA': 3.1556439270619823, 'DiscFac': 0.7823187305648491}, {'CRRA': 3.7693560729380176, 'DiscFac': 0.9758796723452919}, {'CRRA': 3.714766521848815, 'DiscFac': 0.5681439270619826}, {'CRRA': 3.768715210658644, 'DiscFac': 0.5681439270619826}, {'CRRA': 3.1673286626320794, 'DiscFac': 1.1}, {'CRRA': 3.7693560729380176, 'DiscFac': 1.0908579040628261}, {'CRRA': 3.7693560729380176, 'DiscFac': 1.0877513222446453}, {'CRRA': 3.252410164125509, 'DiscFac': 1.1}, {'CRRA': 3.1556439270619823, 'DiscFac': 0.5770816471886374}, {'CRRA': 3.1556439270619823, 'DiscFac': 1.0962012275916377}, {'CRRA': 3.1556439270619823, 'DiscFac': 0.8252839465842436}, {'CRRA': 3.289999468577069, 'DiscFac': 0.8927801002553378}, {'CRRA': 3.5968555415150867, 'DiscFac': 1.0459635787609052}, {'CRRA': 3.4652413113540463, 'DiscFac': 0.8975579840117248}, {'CRRA': 3.2331026288732687, 'DiscFac': 0.9171495102031111}, {'CRRA': 3.0440831185718458, 'DiscFac': 0.938072370066634}, {'CRRA': 3.6577952644478806, 'DiscFac': 0.92215722799915}, {'CRRA': 3.3653586559904367, 'DiscFac': 1.1}, {'CRRA': 3.4810213027105337, 'DiscFac': 0.9399717327518722}, {'CRRA': 3.3445323843140864, 'DiscFac': 0.9504092694965378}, {'CRRA': 3.651388457252104, 'DiscFac': 0.9685042031492587}, {'CRRA': 3.497960420783095, 'DiscFac': 0.9776893275109111}, {'CRRA': 3.4310934173354712, 'DiscFac': 0.9726943773362724}, {'CRRA': 3.58452145380448, 'DiscFac': 0.9680359678034565}, {'CRRA': 3.5175021822758157, 'DiscFac': 0.98168134268655}, {'CRRA': 3.474329010839404, 'DiscFac': 0.9817864202662736}, {'CRRA': 3.45029457409169, 'DiscFac': 0.9826759718789159}, {'CRRA': 3.4375318106515547, 'DiscFac': 0.9821769401859919}, {'CRRA': 3.4332963694563454, 'DiscFac': 0.9776357124395162}, {'CRRA': 3.4314163248948115, 'DiscFac': 0.9754112204375224}, {'CRRA': 3.432749228301357, 'DiscFac': 0.9756408514990265}, {'CRRA': 3.433064782027478, 'DiscFac': 0.9762389872067286}], 'criterion': [1069.9640227451446, 1244.3298971500162, 1226.5421007714456, 1191.286173380369, nan, 1231.9524061957363, 1230.6706731796571, nan, nan, nan, nan, 1244.0465360885119, nan, 1167.0775970509253, 1036.0802202087962, nan, 988.3435182697583, 929.1268307173862, 826.8463175953099, 820.069252724014, nan, 735.6146704571191, 686.0263608994728, nan, nan, 542.0913678929571, nan, nan, nan, nan, nan, nan, 529.4975197602532, 528.463157856543, 525.7715178355324], 'runtime': [0.0, 1.3758044689998314, 1.413166019000073, 1.450372014000095, 1.4901158120001128, 1.5275990700001785, 1.566224205999788, 1.6088701240000773, 1.660037814000134, 1.7080276450001293, 1.7480243569998493, 1.7830429380001078, 1.833127973000046, 3.5538185199998225, 4.906300348000059, 6.397096256000168, 7.712492638000185, 9.033586699999887, 10.39521713000022, 11.781403720000071, 13.08517515299991, 14.35830572399982, 15.704053339999973, 17.04109623300019, 18.378649157999916, 19.727340636999998, 21.087047272999826, 22.439453767000032, 23.89063155599979, 25.39004603000012, 26.822535380999852, 28.215571246999843, 29.700003812999967, 31.094090435, 32.42183091600009], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]}}, {'solution_x': array([3.2492019 , 0.99476891]), 'solution_criterion': 483.3042437482078, 'states': [State(trustregion=Region(center=array([3.78766627, 0.8916693 ]), radius=0.3787666272489316, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=960.8060529870695, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=0, candidate_x=array([3.78766627, 0.8916693 ]), index=0, x=array([3.78766627, 0.8916693 ]), fval=960.8060529870695, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([3.78766627, 0.8916693 ]), radius=0.3787666272489316, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=874.7353270796168, linear_terms=array([ 873.49602125, 1350.09023191]), square_terms=array([[ 985.59998281, 2047.15687 ],
+ [2047.15687 , 5176.28198934]]), scale=array([0.33567318, 0.27200194]), shift=array([3.78766627, 0.82799806])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=13, candidate_x=array([3.45199309, 0.86462734]), index=0, x=array([3.78766627, 0.8916693 ]), fval=960.8060529870695, rho=-0.15308542515227241, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.78766627, 0.8916693 ]), radius=0.1893833136244658, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 8, 9, 10, 11, 12, 13]), model=ScalarModel(intercept=808.6912637597069, linear_terms=array([350.32639779, 685.42785942]), square_terms=array([[ 234.14892793, 697.30904451],
+ [ 697.30904451, 2410.5795072 ]]), scale=0.1893833136244658, shift=array([3.78766627, 0.8916693 ])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=14, candidate_x=array([3.59201041, 0.89429279]), index=0, x=array([3.78766627, 0.8916693 ]), fval=960.8060529870695, rho=-0.08829078860833003, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 8, 9, 10, 11, 12, 13]), old_indices_discarded=array([1, 4, 5, 6, 7]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.78766627, 0.8916693 ]), radius=0.0946916568122329, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 8, 10, 11, 12, 13, 14]), model=ScalarModel(intercept=730.9325872858446, linear_terms=array([106.27869552, 159.7730584 ]), square_terms=array([[ 42.38597082, 131.40554341],
+ [131.40554341, 502.25747585]]), scale=0.0946916568122329, shift=array([3.78766627, 0.8916693 ])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=15, candidate_x=array([3.68889125, 0.88780743]), index=0, x=array([3.78766627, 0.8916693 ]), fval=960.8060529870695, rho=-0.373384654091654, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 8, 10, 11, 12, 13, 14]), old_indices_discarded=array([4, 5, 7, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.78766627, 0.8916693 ]), radius=0.04734582840611645, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 14, 15]), model=ScalarModel(intercept=965.5477767842316, linear_terms=array([ -5.90849634, -72.44081687]), square_terms=array([[ 0.10420462, 2.89237224],
+ [ 2.89237224, 95.70682949]]), scale=0.04734582840611645, shift=array([3.78766627, 0.8916693 ])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=16, candidate_x=array([3.82356188, 0.92468594]), index=16, x=array([3.82356188, 0.92468594]), fval=776.1278971480874, rho=6.122051811394392, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.04877082631749214, relative_step_length=1.0300976444883916, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.82356188, 0.92468594]), radius=0.0946916568122329, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 8, 9, 12, 14, 15, 16]), model=ScalarModel(intercept=828.8020397225383, linear_terms=array([ -4.39761005, -143.69587127]), square_terms=array([[ 10.86877388, 86.76352764],
+ [ 86.76352764, 933.32116784]]), scale=0.0946916568122329, shift=array([3.82356188, 0.92468594])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=17, candidate_x=array([3.73085992, 0.94772938]), index=17, x=array([3.73085992, 0.94772938]), fval=648.6747263507989, rho=6.893178067282503, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 8, 9, 12, 14, 15, 16]), old_indices_discarded=array([ 3, 5, 7, 10, 11, 13]), step_length=0.09552305074589823, relative_step_length=1.0087800125338806, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.73085992, 0.94772938]), radius=0.1893833136244658, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 10, 12, 13, 14, 15, 16, 17]), model=ScalarModel(intercept=720.6246885108825, linear_terms=array([ 145.98231008, -194.8708089 ]), square_terms=array([[ 53.34554651, 318.31554452],
+ [ 318.31554452, 5407.49764562]]), scale=array([0.16783659, 0.16005361]), shift=array([3.73085992, 0.93994639])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=18, candidate_x=array([3.56302333, 0.95513592]), index=18, x=array([3.56302333, 0.95513592]), fval=625.5055756735769, rho=0.16481323155383745, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 10, 12, 13, 14, 15, 16, 17]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 7, 8, 9, 11]), step_length=0.1679999356057445, relative_step_length=0.8870894293194009, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.56302333, 0.95513592]), radius=0.3787666272489316, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 12, 13, 14, 15, 16, 17, 18]), model=ScalarModel(intercept=1699.230811865631, linear_terms=array([ -733.78876689, -5525.46893289]), square_terms=array([[ 801.51635682, 2663.03790063],
+ [ 2663.03790063, 14379.03531788]]), scale=array([0.33567318, 0.24026863]), shift=array([3.56302333, 0.85973137])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=19, candidate_x=array([3.24778635, 0.99384932]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=1.030886182642824, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 12, 13, 14, 15, 16, 17, 18]), old_indices_discarded=array([ 0, 1, 2, 4, 5, 6, 8, 9, 10, 11]), step_length=0.3176052234668127, relative_step_length=0.8385248346023826, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.7575332544978632, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 1, 3, 7, 11, 12, 13, 14, 16, 19]), model=ScalarModel(intercept=1209.299534643605, linear_terms=array([-2242.238234 , -2587.12158589]), square_terms=array([[4221.05213969, 3641.36424949],
+ [3641.36424949, 4071.26438615]]), scale=array([0.67134637, 0.3 ]), shift=array([3.24778635, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=19, candidate_x=array([3.24778635, 0.99384932]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 3, 7, 11, 12, 13, 14, 16, 19]), old_indices_discarded=array([ 0, 2, 4, 5, 6, 8, 9, 10, 15, 17, 18]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.3787666272489316, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 13, 14, 15, 18, 19, 20]), model=ScalarModel(intercept=2124.417481740468, linear_terms=array([ -942.92590417, -7426.11137923]), square_terms=array([[ 377.95674671, 1876.28626265],
+ [ 1876.28626265, 15509.99841478]]), scale=array([0.33567318, 0.22091193]), shift=array([3.24778635, 0.87908807])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=21, candidate_x=array([3.34687865, 0.97697048]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=-2.284718989594501, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 13, 14, 15, 18, 19, 20]), old_indices_discarded=array([ 0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 16, 17]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.1893833136244658, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 13, 14, 18, 19, 20, 21]), model=ScalarModel(intercept=477.7179817875052, linear_terms=array([ -163.3710089 , -1175.98868957]), square_terms=array([[ 127.74286605, 686.46717998],
+ [ 686.46717998, 6044.38085127]]), scale=array([0.16783659, 0.13699363]), shift=array([3.24778635, 0.96300637])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=22, candidate_x=array([3.34830164, 0.9803419 ]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=-2.6000951258679503, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 13, 14, 18, 19, 20, 21]), old_indices_discarded=array([ 0, 1, 2, 4, 8, 9, 11, 12, 15, 16, 17]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.0946916568122329, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 13, 18, 19, 20, 21, 22]), model=ScalarModel(intercept=374.72280604462765, linear_terms=array([-14.1761097, 29.2396918]), square_terms=array([[ 46.90834448, 284.30156756],
+ [ 284.30156756, 2940.59930772]]), scale=0.0946916568122329, shift=array([3.24778635, 0.99384932])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=23, candidate_x=array([3.34193655, 0.98373742]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=-2.5369146064038564, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 13, 18, 19, 20, 21, 22]), old_indices_discarded=array([14, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.04734582840611645, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 10, 19, 20, 21, 22, 23]), model=ScalarModel(intercept=441.2649652868354, linear_terms=array([ -2.43397956, -116.38232897]), square_terms=array([[ 4.67788775, 43.93335349],
+ [ 43.93335349, 1049.51019283]]), scale=0.04734582840611645, shift=array([3.24778635, 0.99384932])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=19, candidate_x=array([3.24778635, 0.99384932]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 10, 19, 20, 21, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.023672914203058226, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 20, 21, 22, 23, 24]), model=ScalarModel(intercept=456.6727886617666, linear_terms=array([ -11.56483252, -141.69457592]), square_terms=array([[ 3.5660652 , 34.18551936],
+ [ 34.18551936, 482.88971038]]), scale=0.023672914203058226, shift=array([3.24778635, 0.99384932])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=19, candidate_x=array([3.24778635, 0.99384932]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 20, 21, 22, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.011836457101529113, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 20, 24, 25]), model=ScalarModel(intercept=424.46586880900963, linear_terms=array([ -5.90684488, -111.62112051]), square_terms=array([[ 0.42710782, 7.90575832],
+ [ 7.90575832, 190.40627925]]), scale=0.011836457101529113, shift=array([3.24778635, 0.99384932])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=19, candidate_x=array([3.24778635, 0.99384932]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 20, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.0059182285507645566, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 25, 26]), model=ScalarModel(intercept=484.1337317628462, linear_terms=array([ -16.06805906, -176.33191042]), square_terms=array([[ 1.26390583, 14.22749645],
+ [ 14.22749645, 169.71406618]]), scale=0.0059182285507645566, shift=array([3.24778635, 0.99384932])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=19, candidate_x=array([3.24778635, 0.99384932]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.0029591142753822783, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 26, 27]), model=ScalarModel(intercept=484.13373176284574, linear_terms=array([ 8.10776251, -113.24175874]), square_terms=array([[ 0.32512291, -4.57313309],
+ [-4.57313309, 67.6659022 ]]), scale=0.0029591142753822783, shift=array([3.24778635, 0.99384932])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=19, candidate_x=array([3.24778635, 0.99384932]), index=19, x=array([3.24778635, 0.99384932]), fval=484.1337317628459, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24778635, 0.99384932]), radius=0.0014795571376911391, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 27, 28]), model=ScalarModel(intercept=484.1337317628462, linear_terms=array([-97.84517191, -89.44417119]), square_terms=array([[47.12079293, 43.46749574],
+ [43.46749574, 40.77539384]]), scale=0.0014795571376911391, shift=array([3.24778635, 0.99384932])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=29, candidate_x=array([3.24925471, 0.99403102]), index=29, x=array([3.24925471, 0.99403102]), fval=483.968970933012, rho=0.0020782488349921106, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([19, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0014795571376912547, relative_step_length=1.0000000000000782, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([3.24925471, 0.99403102]), radius=0.0007397785688455696, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 28, 29]), model=ScalarModel(intercept=483.968970933012, linear_terms=array([ 0.5408325 , -5.01774165]), square_terms=array([[ 0.00141837, -0.01343874],
+ [-0.01343874, 0.31696815]]), scale=0.0007397785688455696, shift=array([3.24925471, 0.99403102])), vector_model=VectorModel(intercepts=array([ 0.35338954, 0.47806807, -0.22056614, -0.58388504,
+ -1.16360651, -1.67357266, -3.18317315, -11.54070577,
+ -12.88671729, -13.03004323, -14.43344133, -16.38334533]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.3787666272489316, shift=array([3.78766627, 0.8916693 ])), candidate_index=30, candidate_x=array([3.2492019 , 0.99476891]), index=30, x=array([3.2492019 , 0.99476891]), fval=483.3042437482078, rho=0.1360776516278881, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([19, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0007397785688455717, relative_step_length=1.0000000000000029, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute params change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 31 entries., 'history': {'params': [{'CRRA': 3.787666272489316, 'DiscFac': 0.8916692958468136}, {'CRRA': 3.4522702301564188, 'DiscFac': 0.5559961123158821}, {'CRRA': 4.123339456020248, 'DiscFac': 0.9023086310261734}, {'CRRA': 3.4519930889583845, 'DiscFac': 0.9621907100872018}, {'CRRA': 4.123339456020248, 'DiscFac': 1.089750383978294}, {'CRRA': 4.123339456020248, 'DiscFac': 0.6017993841903007}, {'CRRA': 4.123339456020248, 'DiscFac': 0.5569865537153984}, {'CRRA': 3.4683844729376645, 'DiscFac': 1.1}, {'CRRA': 4.123339456020248, 'DiscFac': 1.045584977176946}, {'CRRA': 4.10451029867194, 'DiscFac': 1.1}, {'CRRA': 3.4519930889583845, 'DiscFac': 1.054282457648922}, {'CRRA': 3.7954582435001956, 'DiscFac': 0.5559961123158821}, {'CRRA': 3.8035398561153393, 'DiscFac': 1.1}, {'CRRA': 3.4519930889583845, 'DiscFac': 0.864627335810008}, {'CRRA': 3.592010414630564, 'DiscFac': 0.894292791173227}, {'CRRA': 3.6888912528562816, 'DiscFac': 0.8878074252872034}, {'CRRA': 3.823561879152503, 'DiscFac': 0.9246859419813435}, {'CRRA': 3.730859920510897, 'DiscFac': 0.947729381130338}, {'CRRA': 3.563023328745431, 'DiscFac': 0.9551359206790517}, {'CRRA': 3.2477863535466858, 'DiscFac': 0.9938493219885415}, {'CRRA': 3.1978636230600257, 'DiscFac': 1.0105906789642098}, {'CRRA': 3.3468786473767884, 'DiscFac': 0.9769704795680376}, {'CRRA': 3.3483016413066986, 'DiscFac': 0.9803419003819871}, {'CRRA': 3.341936549287567, 'DiscFac': 0.9837374224736428}, {'CRRA': 3.2009950294051723, 'DiscFac': 1.001074240849349}, {'CRRA': 3.2710390033805554, 'DiscFac': 0.9991449061243276}, {'CRRA': 3.257841194054621, 'DiscFac': 1.0003218222323884}, {'CRRA': 3.245971813012713, 'DiscFac': 0.9994825157389511}, {'CRRA': 3.248525695788145, 'DiscFac': 0.996714584689371}, {'CRRA': 3.2492547111506704, 'DiscFac': 0.9940310230356313}, {'CRRA': 3.2492019027639434, 'DiscFac': 0.9947689143590757}], 'criterion': [960.8060529870695, 1240.2921504697779, 850.859898892532, 596.4110585596852, nan, 1216.050562892, 1223.9931083911201, nan, nan, nan, nan, 1231.906846531173, nan, 1096.360653117792, 981.7508031032233, 993.7795220807161, 776.1278971480874, 648.6747263507989, 625.5055756735769, 484.1337317628459, nan, 528.5042475772016, 514.6948394166868, 503.03465345715216, nan, nan, nan, nan, nan, 483.968970933012, 483.3042437482078], 'runtime': [0.0, 1.4134274120001464, 1.4513098170000376, 1.4883478880001348, 1.5293199889997595, 1.5646587159999399, 1.618685972000094, 1.649523740999939, 1.6883285939998132, 1.7261191950001376, 1.7632402599997476, 1.8103470779997224, 1.8507548039997346, 3.590426523000133, 4.847393539999757, 6.175072521999937, 7.528106565000144, 8.883646622000015, 10.280463337000128, 11.652836511999794, 13.009232939999947, 14.359365203999914, 15.72169381699996, 17.094576741999845, 18.500274525999885, 19.861051937999946, 21.18866636199982, 22.520675393000147, 23.882492001999708, 25.24515795699972, 26.623506488999737], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]}, 'multistart_info': {...}}], 'exploration_sample': array([[3.4625 , 0.875 ],
+ [4.64375 , 0.6875 ],
+ [2.871875, 0.78125 ],
+ [2.28125 , 1.0625 ]]), 'exploration_results': array([1069.96402275, 1180.14464257, 1201.13045726, 2198.69465259])}}"
diff --git a/content/tables/min/WealthPortfolioSub(Labor)Market_estimate_results.csv b/content/tables/min/WealthPortfolioSub(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..9444b84
--- /dev/null
+++ b/content/tables/min/WealthPortfolioSub(Labor)Market_estimate_results.csv
@@ -0,0 +1,8207 @@
+CRRA,13.76522943668619
+DiscFac,1.0738842444835321
+time_to_estimate,165.19665384292603
+params,"{'CRRA': 13.76522943668619, 'DiscFac': 1.0738842444835321}"
+criterion,0.6882579284467486
+start_criterion,28.714580565529207
+start_params,"{'CRRA': 5.0, 'DiscFac': 0.95}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 13.597593925796534, 'DiscFac': 1.020747282479346}, {'CRRA': 12.392538539955158, 'DiscFac': 0.6174149114063475}, {'CRRA': 14.80264931163791, 'DiscFac': 0.8326677874318185}, {'CRRA': 12.392538539955158, 'DiscFac': 0.8066232391144652}, {'CRRA': 14.771533894047689, 'DiscFac': 1.1}, {'CRRA': 14.775517168591643, 'DiscFac': 0.5}, {'CRRA': 14.468122155990066, 'DiscFac': 0.5}, {'CRRA': 12.392538539955158, 'DiscFac': 1.0736606786321312}, {'CRRA': 14.80264931163791, 'DiscFac': 0.7851437377134408}, {'CRRA': 14.760718893191527, 'DiscFac': 1.1}, {'CRRA': 12.392538539955158, 'DiscFac': 0.9606688675973344}, {'CRRA': 13.444055859501773, 'DiscFac': 0.5}, {'CRRA': 13.68922978340706, 'DiscFac': 1.1}, {'CRRA': 13.800350112056032, 'DiscFac': 1.1}, {'CRRA': 14.653108579352649, 'DiscFac': 1.1}, {'CRRA': 13.733860806509067, 'DiscFac': 1.1}, {'CRRA': 13.533413460280963, 'DiscFac': 1.0879828070365027}, {'CRRA': 13.654507190717343, 'DiscFac': 1.1}, {'CRRA': 13.741852570001186, 'DiscFac': 1.0555947848542355}, {'CRRA': 13.762692131248489, 'DiscFac': 1.0746702605461693}, {'CRRA': 13.838008092863575, 'DiscFac': 1.0616383225721628}, {'CRRA': 13.725034150440946, 'DiscFac': 1.0803527378804203}, {'CRRA': 13.741370045958632, 'DiscFac': 1.0813751657181843}, {'CRRA': 13.772787944089714, 'DiscFac': 1.070788238644506}, {'CRRA': 13.757620359413389, 'DiscFac': 1.076251839651587}, {'CRRA': 13.76522943668619, 'DiscFac': 1.0738842444835321}, {'CRRA': 13.760176305468253, 'DiscFac': 1.0755211705357692}, {'CRRA': 13.762815908535117, 'DiscFac': 1.074994677092113}, {'CRRA': 13.766465318103393, 'DiscFac': 1.073385240068689}, {'CRRA': 13.765741837404423, 'DiscFac': 1.0734198935341484}, {'CRRA': 13.76498652924187, 'DiscFac': 1.0741464913817635}, {'CRRA': 13.765099214247023, 'DiscFac': 1.073987169470037}, {'CRRA': 13.76529772667114, 'DiscFac': 1.073834078766463}, {'CRRA': 13.765261690170846, 'DiscFac': 1.0738581297466943}, {'CRRA': 13.765213205132117, 'DiscFac': 1.0738971702745834}, {'CRRA': 13.765221385235995, 'DiscFac': 1.0738907865004494}, {'CRRA': 13.76523347183466, 'DiscFac': 1.0738809851467088}, {'CRRA': 13.765227417544464, 'DiscFac': 1.0738858722201654}, {'CRRA': 13.76522842842111, 'DiscFac': 1.0738850599644876}, {'CRRA': 13.76523021512763, 'DiscFac': 1.073883616766271}, {'CRRA': 13.765230214507426, 'DiscFac': 1.073883615997389}, {'CRRA': 13.765230214739557, 'DiscFac': 1.0738836162850556}, {'CRRA': 13.765230214887971, 'DiscFac': 1.0738836164690735}, {'CRRA': 13.765228657845949, 'DiscFac': 1.0738848717058849}, {'CRRA': 13.765230214640988, 'DiscFac': 1.0738836161630856}, {'CRRA': 13.765228657644837, 'DiscFac': 1.0738848714563134}, {'CRRA': 13.765230214734727, 'DiscFac': 1.0738836162788903}, {'CRRA': 13.765228658030406, 'DiscFac': 1.0738848719349061}, {'CRRA': 13.765228658584434, 'DiscFac': 1.0738848726220682}, {'CRRA': 13.765228658553019, 'DiscFac': 1.0738848725830974}, {'CRRA': 13.765230216618574, 'DiscFac': 1.0738836186197498}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}], 'criterion': [1.5919418620501866, 3.256642791598931, 2.4245720174482632, 2.6770326909650377, 1.375271059626373, 3.932115023884988, 3.8900565091396633, 1.3788040584356367, 2.67342734680254, 1.3747875134503535, 1.7273269565534193, 3.784579404744082, 1.3717696200767946, 1.3671976679432574, 1.5932413313061198, 1.7940144542579126, 1.4714362912230357, 1.4586163616235037, 1.4116247061572644, 1.1237511246855783, 1.817413667189244, 1.7640558941311795, 1.2590902699405484, 2.1087642405633775, 1.6806322555078967, 0.6882579284467486, 1.3619794529851408, 1.7708804039433663, 1.487817536704842, 1.6073083741913023, 1.3515606737064714, 1.5988332872617663, 2.1071882633058205, 1.6046549090592486, 2.4392140191496465, 2.0969547685400998, 1.619697166814026, 1.4177027742030972, 2.7375198870821396, 1.648837292228864, 1.2017087559283488, 1.6123653333088765, 2.1559864840618888, 1.6813226057480248, 1.7555339640362284, 1.5641420916511097, 2.121351535271443, 1.195628783451865, 1.366634904655717, 1.7240618907150989, 0.9835036694297299, 1.5576561839970382, 1.389378348605993, 1.323322900002188, 1.4964292964688457, 1.432272428511995, 1.2033755926739262, 3.1657769462342085, 2.197985075310209, 1.2162154879079494, 2.342003085876411, 1.4622856861257032, 1.2041984771527132], 'runtime': [0.0, 2.0959708729997146, 2.319453641000109, 2.530794336999861, 2.7641818269994474, 2.9907601049999357, 3.247736452999561, 3.470891711999684, 3.6835053400000106, 3.9246623110002474, 4.152454041000055, 4.384807880999688, 4.596234226999513, 6.502221419999842, 8.399830567000208, 10.140461093999875, 11.878436920999775, 13.582565646000148, 15.297765229000106, 17.038238051000008, 18.749509088000195, 20.598889396999766, 22.321903571999428, 24.043425724999906, 25.73815736799952, 27.4287797019997, 29.126953945999958, 30.835123793999628, 32.67733082199993, 34.38814910400015, 36.11709095999959, 37.83038476299953, 39.557416933999775, 41.28646993300026, 43.04241953099972, 44.77638568899965, 46.610105842999474, 48.309058674999505, 50.002209946999756, 51.68927304099998, 53.389748636999684, 55.07344832600029, 56.79775497099945, 58.6573964600002, 60.38401259799957, 62.08020242099974, 63.793128000999786, 65.52371880499959, 67.23712577999959, 68.96224358600011, 70.82533353899998, 72.57404010899972, 74.30988537800022, 76.06118913799946, 77.77554541300015, 79.50649890000022, 81.24803584599977, 83.17606934800006, 85.03626549899946, 86.74029938300009, 88.45210760499958, 90.18602291600018, 91.91770858499967], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]}"
+convergence_report,"{'one_step': {'relative_criterion_change': 0.7585906706214464, 'relative_params_change': 0.04559161987110576, 'absolute_criterion_change': 0.5221060435009465, 'absolute_params_change': 0.37522077252389147}, 'five_steps': {'relative_criterion_change': 0.7585906706214464, 'relative_params_change': 0.04559161987110576, 'absolute_criterion_change': 0.5221060435009465, 'absolute_params_change': 0.37522077252389147}}"
+multistart_info,"{'start_parameters': [{'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 13.597593925796534, 'DiscFac': 1.020747282479346}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute params change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 0.02632 0.2707
+relative_params_change 0.0005553 0.0918
+absolute_criterion_change 0.03186 0.3276
+absolute_params_change 0.0006017 1.071
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.), Minimize with 2 free parameters terminated.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 0.6327 0.9982
+relative_params_change 0.0007548 0.07704
+absolute_criterion_change 0.4355 0.687
+absolute_params_change 0.002656 1.007
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.)], 'exploration_sample': [{'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 14.093749999999998, 'DiscFac': 0.9875}, {'CRRA': 17.6375, 'DiscFac': 1.0250000000000001}, {'CRRA': 16.45625, 'DiscFac': 0.9125000000000001}, {'CRRA': 11.73125, 'DiscFac': 0.7625000000000001}, {'CRRA': 10.549999999999999, 'DiscFac': 0.8}, {'CRRA': 12.9125, 'DiscFac': 0.575}, {'CRRA': 15.274999999999999, 'DiscFac': 0.65}, {'CRRA': 17.046875, 'DiscFac': 0.6312500000000001}, {'CRRA': 18.81875, 'DiscFac': 0.5375}, {'CRRA': 9.368749999999999, 'DiscFac': 0.8375}, {'CRRA': 8.1875, 'DiscFac': 0.7250000000000001}, {'CRRA': 7.00625, 'DiscFac': 0.6125}, {'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 2.871875, 'DiscFac': 0.78125}, {'CRRA': 5.0, 'DiscFac': 0.95}, {'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 2.28125, 'DiscFac': 1.0625}], 'exploration_results': array([ 1.25226984, 1.77139048, 1.79567843, 2.19243348, 2.99563577,
+ 3.4003551 , 3.46407238, 3.67340234, 3.72448066, 4.28414873,
+ 4.65250486, 5.39134448, 6.53886763, 14.94020775, 20.34265339,
+ 25.6087008 , 28.43667398, 29.29813793, 75.84976584])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([13.59759393, 1.02074728]), radius=1.3597593925796536, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.5919418620501866, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=0, candidate_x=array([13.59759393, 1.02074728]), index=0, x=array([13.59759393, 1.02074728]), fval=1.591941862050187, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([13.59759393, 1.02074728]), radius=1.3597593925796536, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=2.034809583725369, linear_terms=array([ 0.00692503, -1.51067031]), square_terms=array([[ 0.14904974, -0.03200334],
+ [-0.03200334, 1.29590588]]), scale=array([1.20505539, 0.3 ]), shift=array([13.59759393, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=13, candidate_x=array([13.80035011, 1.1 ]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=2.1596481898710547, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.2176948880908889, relative_step_length=0.16009809476505346, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=1.3597593925796536, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 6, 8, 11, 12, 13]), model=ScalarModel(intercept=1.9544299211503704, linear_terms=array([ 0.19985396, -1.35020304]), square_terms=array([[ 0.11438723, -0.28080018],
+ [-0.28080018, 1.18331746]]), scale=array([1.20505539, 0.3 ]), shift=array([13.80035011, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=14, candidate_x=array([14.65310858, 1.1 ]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-7.892356930659339, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 8, 11, 12, 13]), old_indices_discarded=array([ 1, 3, 7, 9, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.6798796962898268, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 6, 9, 11, 12, 13, 14]), model=ScalarModel(intercept=1.9524600277342483, linear_terms=array([ 0.03980169, -1.41316029]), square_terms=array([[ 0.0307801 , -0.03640509],
+ [-0.03640509, 1.39773428]]), scale=array([0.60252769, 0.3 ]), shift=array([13.80035011, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=15, candidate_x=array([13.73386081, 1.1 ]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-2277.466238878963, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 6, 9, 11, 12, 13, 14]), old_indices_discarded=array([ 1, 3, 5, 7, 8, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.3399398481449134, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 9, 11, 12, 13, 14, 15]), model=ScalarModel(intercept=1.4423114067995801, linear_terms=array([ 0.00970986, -0.30971613]), square_terms=array([[0.01737096, 0.00617437],
+ [0.00617437, 0.34251207]]), scale=array([0.30126385, 0.15063192]), shift=array([13.80035011, 0.94936808])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=16, candidate_x=array([13.53341346, 1.08798281]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-12.490603473802853, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 9, 11, 12, 13, 14, 15]), old_indices_discarded=array([ 1, 2, 3, 5, 7, 8, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.1699699240724567, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 11, 12, 13, 15, 16]), model=ScalarModel(intercept=1.5943095812154688, linear_terms=array([ 0.51822844, -0.07753849]), square_terms=array([[0.53597227, 0.0007038 ],
+ [0.0007038 , 0.05909585]]), scale=array([0.15063192, 0.07531596]), shift=array([13.80035011, 1.02468404])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=17, candidate_x=array([13.65450719, 1.1 ]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-0.36390332196850855, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 11, 12, 13, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.08498496203622835, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 13, 15, 16, 17]), model=ScalarModel(intercept=1.2630637427538014, linear_terms=array([0.0673167 , 0.12201243]), square_terms=array([[0.06493105, 0.0942397 ],
+ [0.0942397 , 0.27245921]]), scale=array([0.07531596, 0.03765798]), shift=array([13.80035011, 1.06234202])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=18, candidate_x=array([13.74185257, 1.05559478]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-0.15043955206760612, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 13, 15, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.042492481018114175, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([12, 13, 15, 17, 18]), model=ScalarModel(intercept=1.494530967111558, linear_terms=array([0.102457 , 0.02803027]), square_terms=array([[0.03812849, 0.01170315],
+ [0.01170315, 0.0472904 ]]), scale=array([0.03765798, 0.01882899]), shift=array([13.80035011, 1.08117101])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=19, candidate_x=array([13.76269213, 1.07467026]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=1.7655548058481516, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([12, 13, 15, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0453841295972527, relative_step_length=1.0680508294610014, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.08498496203622835, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 13, 15, 16, 17, 18, 19]), model=ScalarModel(intercept=1.15503149521224, linear_terms=array([-0.08309304, -0.2101502 ]), square_terms=array([[0.02472817, 0.0671273 ],
+ [0.0671273 , 0.60172359]]), scale=array([0.07531596, 0.05032285]), shift=array([13.76269213, 1.04967715])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=20, candidate_x=array([13.83800809, 1.06163832]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-12.049711039797472, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 13, 15, 16, 17, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.042492481018114175, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 13, 15, 17, 18, 19, 20]), model=ScalarModel(intercept=1.3037825390286737, linear_terms=array([ 0.05958201, -0.15298978]), square_terms=array([[ 0.00838945, -0.02709215],
+ [-0.02709215, 0.33469544]]), scale=array([0.03765798, 0.03149386]), shift=array([13.76269213, 1.06850614])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=21, candidate_x=array([13.72503415, 1.08035274]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-11.530216603469125, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 13, 15, 17, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.021246240509057088, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([12, 13, 15, 18, 19, 20, 21]), model=ScalarModel(intercept=1.339765491859563, linear_terms=array([ 0.01289748, -0.05831618]), square_terms=array([[ 0.00337072, -0.00852184],
+ [-0.00852184, 0.15088885]]), scale=0.021246240509057088, shift=array([13.76269213, 1.07467026])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=22, candidate_x=array([13.74137005, 1.08137517]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-6.962948052081567, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([12, 13, 15, 18, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.010623120254528544, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([13, 15, 18, 19, 21, 22]), model=ScalarModel(intercept=1.0959366501510284, linear_terms=array([-0.07603389, 0.0592279 ]), square_terms=array([[ 0.01482588, -0.01887136],
+ [-0.01887136, 0.05507578]]), scale=0.010623120254528544, shift=array([13.76269213, 1.07467026])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=23, candidate_x=array([13.77278794, 1.07078824]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-12.796215190602183, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([13, 15, 18, 19, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.005311560127264272, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 22, 23]), model=ScalarModel(intercept=1.123751124685578, linear_terms=array([2.35075615, 6.72344032]), square_terms=array([[ 34.95552465, 104.4822096 ],
+ [104.4822096 , 312.38317194]]), scale=0.005311560127264272, shift=array([13.76269213, 1.07467026])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=24, candidate_x=array([13.75762036, 1.07625184]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-3.3674374603538753, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.002655780063632136, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 23, 24]), model=ScalarModel(intercept=1.1237511246855785, linear_terms=array([-0.5780775 , -1.19841878]), square_terms=array([[ 5.94858558, 17.60275441],
+ [17.60275441, 52.66397965]]), scale=0.002655780063632136, shift=array([13.76269213, 1.07467026])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=25, candidate_x=array([13.76522944, 1.07388424]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=2.835499899865532, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([19, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.002656264319473295, relative_step_length=1.0001823403405237, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.005311560127264272, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 22, 23, 24, 25]), model=ScalarModel(intercept=0.9444375568015315, linear_terms=array([0.44532753, 1.19395003]), square_terms=array([[ 20.99849631, 63.51413818],
+ [ 63.51413818, 192.14709976]]), scale=0.005311560127264272, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=26, candidate_x=array([13.76017631, 1.07552117]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-13.438176044734822, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 22, 23, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.002655780063632136, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 23, 24, 25, 26]), model=ScalarModel(intercept=0.7549074447561732, linear_terms=array([-1.08491772, -3.21566214]), square_terms=array([[ 4.95581197, 13.40310954],
+ [13.40310954, 36.80550289]]), scale=0.002655780063632136, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=27, candidate_x=array([13.76281591, 1.07499468]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-5.765434623109165, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 23, 24, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.001327890031816068, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 25, 26, 27]), model=ScalarModel(intercept=0.6663131578299749, linear_terms=array([0.31579992, 1.29406005]), square_terms=array([[ 0.97652328, 3.33987753],
+ [ 3.33987753, 11.68276301]]), scale=0.001327890031816068, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=28, candidate_x=array([13.76646532, 1.07338524]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.097581043735553, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 25, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.000663945015908034, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 25, 27, 28]), model=ScalarModel(intercept=1.0748283427553293, linear_terms=array([0.74775752, 1.86090971]), square_terms=array([[0.94615569, 2.1520877 ],
+ [2.1520877 , 5.00035967]]), scale=0.000663945015908034, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=29, candidate_x=array([13.76574184, 1.07341989]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.41030856971559, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 25, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.000331972507954017, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 28, 29]), model=ScalarModel(intercept=0.688257928446749, linear_terms=array([-0.05009521, -0.4261496 ]), square_terms=array([[0.05474491, 0.13563449],
+ [0.13563449, 0.64186031]]), scale=0.000331972507954017, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=30, candidate_x=array([13.76498653, 1.07414649]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-4.057932281360053, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.0001659862539770085, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 29, 30]), model=ScalarModel(intercept=0.6882579284467485, linear_terms=array([2.51110852, 2.58551584]), square_terms=array([[17.31961069, 17.86076585],
+ [17.86076585, 18.4307605 ]]), scale=0.0001659862539770085, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=31, candidate_x=array([13.76509921, 1.07398717]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-4.996089828139207, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=8.299312698850425e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 30, 31]), model=ScalarModel(intercept=0.6882579284467492, linear_terms=array([-0.83335016, -0.64209979]), square_terms=array([[2.48376422, 2.0304305 ],
+ [2.0304305 , 1.6811628 ]]), scale=8.299312698850425e-05, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=32, candidate_x=array([13.76529773, 1.07383408]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-8.895409172081964, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=4.1496563494252124e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 31, 32]), model=ScalarModel(intercept=0.6882579284467484, linear_terms=array([5.4261937 , 7.07144682]), square_terms=array([[196.90079522, 251.86367885],
+ [251.86367885, 322.26054074]]), scale=4.1496563494252124e-05, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=33, candidate_x=array([13.76526169, 1.07385813]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-6.602379228031406, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 31, 32]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=2.0748281747126062e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 32, 33]), model=ScalarModel(intercept=0.6882579284467489, linear_terms=array([-1.67471137, -2.43734694]), square_terms=array([[44.36150417, 58.4429871 ],
+ [58.4429871 , 77.26404403]]), scale=2.0748281747126062e-05, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=34, candidate_x=array([13.76521321, 1.07389717]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-14.213590995613345, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 32, 33]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1.0374140873563031e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 33, 34]), model=ScalarModel(intercept=0.6882579284467507, linear_terms=array([-32.53614671, -40.36884666]), square_terms=array([[5704.80115467, 7072.67560803],
+ [7072.67560803, 8768.54976842]]), scale=1.0374140873563031e-05, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=35, candidate_x=array([13.76522139, 1.07389079]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-12.888292610975698, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 33, 34]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=5.1870704367815156e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 34, 35]), model=ScalarModel(intercept=0.6882579284467505, linear_terms=array([ 9.69356396, 12.41688657]), square_terms=array([[531.75055055, 673.71090102],
+ [673.71090102, 853.87114041]]), scale=5.1870704367815156e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=36, candidate_x=array([13.76523347, 1.07388099]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-8.167753639507541, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 34, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=2.5935352183907578e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 35, 36]), model=ScalarModel(intercept=0.688257928446749, linear_terms=array([ 96.92131584, 119.52724588]), square_terms=array([[23233.92339938, 28666.34702734],
+ [28666.34702734, 35368.97768226]]), scale=2.5935352183907578e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=37, candidate_x=array([13.76522742, 1.07388587]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-3.151757947924657, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1.2967676091953789e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 36, 37]), model=ScalarModel(intercept=0.6882579284467522, linear_terms=array([-228.72939942, -283.40527822]), square_terms=array([[149814.22087996, 185594.86902726],
+ [185594.86902726, 229921.14598203]]), scale=1.2967676091953789e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=38, candidate_x=array([13.76522843, 1.07388506]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-10.14442032408636, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 36, 37]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38]), model=ScalarModel(intercept=0.6882579284479667, linear_terms=array([110.01063583, 136.7138673 ]), square_terms=array([[204615.15154828, 253921.58304407],
+ [253921.58304407, 315109.6517833 ]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=39, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-8.437462487345263, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39]), model=ScalarModel(intercept=1.1577741715871368, linear_terms=array([242.70494131, 301.06849961]), square_terms=array([[155662.83189264, 193036.2230012 ],
+ [193036.2230012 , 239382.71308459]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=40, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.1629857204623297, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40]), model=ScalarModel(intercept=1.1405666279545543, linear_terms=array([205.50981035, 254.96369968]), square_terms=array([[196975.02816638, 244290.03299938],
+ [244290.03299938, 302970.52114327]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=41, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-5.914600339115848, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.1856833521849348, linear_terms=array([158.29089716, 196.3772247 ]), square_terms=array([[214418.42009996, 265947.86330119],
+ [265947.86330119, 329860.98150686]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=42, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-17.707333949313302, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41, 42]), model=ScalarModel(intercept=1.3049678277178531, linear_terms=array([220.22289196, 273.08372696]), square_terms=array([[208999.40253 , 259169.5243306 ],
+ [259169.5243306 , 321382.95662051]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=43, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-8.647410683350707, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41, 42]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41, 42, 43]), model=ScalarModel(intercept=1.3567974599896127, linear_terms=array([202.98250055, 251.79397558]), square_terms=array([[144095.09085198, 178734.35986993],
+ [178734.35986993, 221700.63899107]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=44, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.117835688525804, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41, 42, 43]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41, 42, 43, 44]), model=ScalarModel(intercept=1.4152002732237223, linear_terms=array([188.23186675, 233.45474242]), square_terms=array([[136071.15256904, 168774.1945395 ],
+ [168774.1945395 , 209337.0286982 ]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=45, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-6.369117061581065, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41, 42, 43, 44]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 38, 39, 40, 41, 42, 43, 44, 45]), model=ScalarModel(intercept=1.4322930669889091, linear_terms=array([165.85163954, 205.76495158]), square_terms=array([[132937.5754333 , 164910.82906923],
+ [164910.82906923, 204574.07883395]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=46, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-12.178849532771347, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 38, 39, 40, 41, 42, 43, 44, 45]), old_indices_discarded=array([37]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 40, 41, 42, 43, 44, 45, 46]), model=ScalarModel(intercept=1.3093308313412153, linear_terms=array([123.65989376, 153.3047285 ]), square_terms=array([[323967.17174465, 401840.36181195],
+ [401840.36181195, 498432.23105826]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=47, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.114033032338547, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 40, 41, 42, 43, 44, 45, 46]), old_indices_discarded=array([37, 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 41, 42, 43, 44, 45, 46, 47]), model=ScalarModel(intercept=1.0590382139587964, linear_terms=array([-280.9809403 , -348.70796313]), square_terms=array([[266181.47955628, 330177.67116074],
+ [330177.67116074, 409560.10325178]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=48, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.8012851877774967, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 41, 42, 43, 44, 45, 46, 47]), old_indices_discarded=array([37, 38, 40]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 41, 42, 43, 44, 45, 47, 48]), model=ScalarModel(intercept=1.220859614346961, linear_terms=array([-138.3649051 , -171.73746763]), square_terms=array([[158556.44632179, 196651.07147605],
+ [196651.07147605, 243898.29439121]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=49, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.513233363014608, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 41, 42, 43, 44, 45, 47, 48]), old_indices_discarded=array([37, 38, 40, 46]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 48, 49]), model=ScalarModel(intercept=1.2282682420444786, linear_terms=array([-238.11010807, -295.51259223]), square_terms=array([[ 74869.56239741, 92919.65993007],
+ [ 92919.65993007, 115321.54114857]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=50, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-0.834182990182004, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 48, 49]), old_indices_discarded=array([37, 38, 40, 41, 46]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=51, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.6081564997863604, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=52, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.1033304004202726, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=53, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-1.9051669620622436, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=54, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.424478532124386, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=55, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.232010752140536, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=56, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-1.5453303195996202, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=57, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.432448004507076, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=58, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-4.5291149894285505, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=59, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-1.5838494401492669, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=60, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-4.961162682124679, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=61, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.3220492039377594, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=62, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-1.5477989368164367, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 63 entries., 'multistart_info': {'start_parameters': [array([12.321875, 1.08125 ]), array([13.59759393, 1.02074728])], 'local_optima': [{'solution_x': array([13.39207935, 1.03451876]), 'solution_criterion': 1.210363971947695, 'states': [State(trustregion=Region(center=array([12.321875, 1.08125 ]), radius=1.2321875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.5379709637742367, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=0, candidate_x=array([12.321875, 1.08125 ]), index=0, x=array([12.321875, 1.08125 ]), fval=1.5379709637742367, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([12.321875, 1.08125 ]), radius=1.2321875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.840550854912425, linear_terms=array([ 0.07353749, -1.22696893]), square_terms=array([[ 0.09418262, -0.29229569],
+ [-0.29229569, 1.8372015 ]]), scale=array([1.09199774, 0.3 ]), shift=array([12.321875, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=13, candidate_x=array([13.41387274, 1.0480835 ]), index=13, x=array([13.41387274, 1.0480835 ]), fval=1.3627041528656627, rho=1.064636764428723, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=1.0925012951935644, relative_step_length=0.8866355933602349, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.41387274, 1.0480835 ]), radius=2.464375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 5, 6, 7, 8, 10, 11, 13]), model=ScalarModel(intercept=2.075632376408693, linear_terms=array([ 0.44475858, -1.63923571]), square_terms=array([[ 0.4215093 , -0.69321529],
+ [-0.69321529, 1.7585011 ]]), scale=array([2.18399548, 0.3 ]), shift=array([13.41387274, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=14, candidate_x=array([14.70121879, 1.1 ]), index=13, x=array([13.41387274, 1.0480835 ]), fval=1.3627041528656627, rho=-2.2582007264460318, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 5, 6, 7, 8, 10, 11, 13]), old_indices_discarded=array([ 1, 2, 4, 9, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.41387274, 1.0480835 ]), radius=1.2321875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 6, 8, 9, 13, 14]), model=ScalarModel(intercept=1.8597631456640993, linear_terms=array([-0.16560094, -1.39509672]), square_terms=array([[ 0.25676534, -0.02422231],
+ [-0.02422231, 1.5320715 ]]), scale=array([1.09199774, 0.3 ]), shift=array([13.41387274, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=15, candidate_x=array([14.21315436, 1.07665016]), index=13, x=array([13.41387274, 1.0480835 ]), fval=1.3627041528656627, rho=-3.8933696718720308, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 8, 9, 13, 14]), old_indices_discarded=array([ 1, 3, 7, 10, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.41387274, 1.0480835 ]), radius=0.61609375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 6, 8, 9, 13, 15]), model=ScalarModel(intercept=1.8893357537559765, linear_terms=array([-0.02772496, -1.3695219 ]), square_terms=array([[ 0.04325758, -0.01687608],
+ [-0.01687608, 1.53625408]]), scale=array([0.54599887, 0.29895768]), shift=array([13.41387274, 0.80104232])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=16, candidate_x=array([13.95603404, 1.07081466]), index=13, x=array([13.41387274, 1.0480835 ]), fval=1.3627041528656627, rho=-14.984993379227156, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 8, 9, 13, 15]), old_indices_discarded=array([ 1, 3, 7, 10, 11, 12, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.41387274, 1.0480835 ]), radius=0.308046875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 8, 9, 13, 15, 16, 17]), model=ScalarModel(intercept=1.492059422834581, linear_terms=array([-0.11965999, -0.40798019]), square_terms=array([[0.13418385, 0.01559018],
+ [0.01559018, 0.50991394]]), scale=array([0.27299943, 0.16245797]), shift=array([13.41387274, 0.93754203])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=18, candidate_x=array([13.63272267, 1.06354223]), index=13, x=array([13.41387274, 1.0480835 ]), fval=1.3627041528656627, rho=-10.365637769460031, accepted=False, new_indices=array([17]), old_indices_used=array([ 2, 4, 5, 8, 9, 13, 15, 16]), old_indices_discarded=array([ 0, 6, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.41387274, 1.0480835 ]), radius=0.1540234375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 2, 4, 5, 8, 9, 13, 16, 17, 18]), model=ScalarModel(intercept=1.3794125731198714, linear_terms=array([-0.03649967, -0.14181619]), square_terms=array([[ 0.02646541, -0.02252458],
+ [-0.02252458, 0.15141401]]), scale=array([0.13649972, 0.09420811]), shift=array([13.41387274, 1.00579189])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=19, candidate_x=array([13.55037246, 1.1 ]), index=13, x=array([13.41387274, 1.0480835 ]), fval=1.3627041528656627, rho=-9.94771316924612, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 2, 4, 5, 8, 9, 13, 16, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.41387274, 1.0480835 ]), radius=0.07701171875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 8, 9, 13, 18, 19]), model=ScalarModel(intercept=1.3783908568552679, linear_terms=array([ 0.01021357, -0.00822452]), square_terms=array([[ 0.05843199, -0.08341068],
+ [-0.08341068, 0.18300197]]), scale=array([0.06824986, 0.06008318]), shift=array([13.41387274, 1.03991682])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=20, candidate_x=array([13.39225885, 1.03394448]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=67.64661076310064, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 8, 9, 13, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.025827737562700674, relative_step_length=0.33537412204166234, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.07701171875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 8, 9, 13, 18, 19, 20]), model=ScalarModel(intercept=1.329063512541693, linear_terms=array([ 0.02464634, -0.02431736]), square_terms=array([[ 0.05297532, -0.08788172],
+ [-0.08788172, 0.22588201]]), scale=array([0.06824986, 0.06715269]), shift=array([13.39225885, 1.03284731])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=21, candidate_x=array([13.33708417, 1.01895545]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-106.24217111440103, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 8, 9, 13, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.038505859375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 4, 9, 13, 19, 20, 21]), model=ScalarModel(intercept=1.4558785589476007, linear_terms=array([ 0.03199582, -0.13313381]), square_terms=array([[0.00508526, 0.00270481],
+ [0.00270481, 0.2748186 ]]), scale=0.038505859375, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=22, candidate_x=array([13.3541983 , 1.05118446]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-6.452870384435016, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 4, 9, 13, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.0192529296875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 9, 13, 20, 21, 22]), model=ScalarModel(intercept=1.4157454760310837, linear_terms=array([-0.03025277, -0.32371426]), square_terms=array([[ 0.03408775, -0.09379796],
+ [-0.09379796, 0.50863551]]), scale=0.0192529296875, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=23, candidate_x=array([13.4067861, 1.0466706]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-1.3455197239916337, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 9, 13, 20, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.00962646484375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 9, 13, 20, 22, 23]), model=ScalarModel(intercept=1.2461213821670756, linear_terms=array([-0.01139901, 0.03479926]), square_terms=array([[ 0.01697025, -0.01299824],
+ [-0.01299824, 0.05399418]]), scale=0.00962646484375, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=24, candidate_x=array([13.3943604 , 1.02824614]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-1.2093864369538776, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 9, 13, 20, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.004813232421875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 9, 20, 23, 24]), model=ScalarModel(intercept=1.2552760540332801, linear_terms=array([-0.06136149, 0.10404948]), square_terms=array([[ 0.04088732, -0.04708259],
+ [-0.04708259, 0.0835845 ]]), scale=0.004813232421875, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=25, candidate_x=array([13.39252918, 1.02913885]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-6.467098079073112, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 9, 20, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.0024066162109375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 24, 25]), model=ScalarModel(intercept=1.242220416469452, linear_terms=array([-0.49254682, -0.10435951]), square_terms=array([[3.37854 , 0.8095457 ],
+ [0.8095457 , 0.20786122]]), scale=0.0024066162109375, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=26, candidate_x=array([13.39317718, 1.03157619]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-10.530718088463118, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.00120330810546875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 25, 26]), model=ScalarModel(intercept=1.2422204164694506, linear_terms=array([ 0.01554006, -0.03745233]), square_terms=array([[2.87010276, 0.40232869],
+ [0.40232869, 0.06805038]]), scale=0.00120330810546875, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=27, candidate_x=array([13.39208705, 1.03513547]), index=20, x=array([13.39225885, 1.03394448]), fval=1.2422204164694501, rho=-15.4154389784598, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([20, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.39225885, 1.03394448]), radius=0.000601654052734375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 26, 27]), model=ScalarModel(intercept=1.2422204164694508, linear_terms=array([-0.07966419, -0.05262964]), square_terms=array([[9.47883394, 3.05260383],
+ [3.05260383, 0.98903341]]), scale=0.000601654052734375, shift=array([13.39225885, 1.03394448])), vector_model=VectorModel(intercepts=array([ 0.01938559, 0.01236126, -0.02541336, 0.06675187, 0.19101415,
+ 0.15552265, 0.10788637, 0.02151982, -0.00180687, -0.01933219,
+ -0.56991473, -0.81302909, -0.20768953, -0.13461208, -0.09577825,
+ 0.25047508, 0.58326817]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.2321875, shift=array([12.321875, 1.08125 ])), candidate_index=28, candidate_x=array([13.39207935, 1.03451876]), index=28, x=array([13.39207935, 1.03451876]), fval=1.210363971947695, rho=1.3634463837141155, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([20, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0006016745527352553, relative_step_length=1.0000340727379582, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute params change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 29 entries., 'history': {'params': [{'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 11.446536902444704, 'DiscFac': 0.5}, {'CRRA': 13.413872739706319, 'DiscFac': 0.5007652721540578}, {'CRRA': 11.229877260293678, 'DiscFac': 0.59273111228441}, {'CRRA': 13.294070386710855, 'DiscFac': 1.1}, {'CRRA': 13.413872739706319, 'DiscFac': 0.5}, {'CRRA': 12.446098642928627, 'DiscFac': 0.5}, {'CRRA': 11.229877260293678, 'DiscFac': 1.060949564463903}, {'CRRA': 13.413872739706319, 'DiscFac': 0.8026495106859575}, {'CRRA': 13.413872739706319, 'DiscFac': 1.038275200676022}, {'CRRA': 11.53308651761103, 'DiscFac': 1.1}, {'CRRA': 11.354974829891772, 'DiscFac': 0.5}, {'CRRA': 11.681377339711737, 'DiscFac': 1.1}, {'CRRA': 13.413872739706319, 'DiscFac': 1.0480835037137872}, {'CRRA': 14.701218785330024, 'DiscFac': 1.1}, {'CRRA': 14.21315435802697, 'DiscFac': 1.0766501636285937}, {'CRRA': 13.956034038420718, 'DiscFac': 1.0708146638062002}, {'CRRA': 13.6868721746329, 'DiscFac': 0.7750840687872071}, {'CRRA': 13.632722670614632, 'DiscFac': 1.0635422253682307}, {'CRRA': 13.550372457169608, 'DiscFac': 1.1}, {'CRRA': 13.392258852425382, 'DiscFac': 1.0339444830894764}, {'CRRA': 13.33708416842291, 'DiscFac': 1.0189554530363083}, {'CRRA': 13.354198302357199, 'DiscFac': 1.0511844553967804}, {'CRRA': 13.406786102101872, 'DiscFac': 1.0466705954603888}, {'CRRA': 13.39436039500245, 'DiscFac': 1.0282461370567386}, {'CRRA': 13.39252917714216, 'DiscFac': 1.0291388477626453}, {'CRRA': 13.393177182698638, 'DiscFac': 1.03157618641155}, {'CRRA': 13.392087051286135, 'DiscFac': 1.0351354693798418}, {'CRRA': 13.392079350807666, 'DiscFac': 1.0345187577943404}], 'criterion': [1.5379709637742367, 3.734068243164363, 3.8971507996642774, 3.48162912690558, 1.5320563469928077, 3.8998498998090394, 3.8115417722834937, 1.8259926966388675, 2.730724308743347, 1.3758247665922279, 1.9635043655892632, 3.728401962298913, 1.9078459093280093, 1.3627041528656627, 1.5409172470669907, 1.6509602310715887, 1.7297229865297858, 2.8707572108561155, 1.8458865400582627, 1.994324329480671, 1.2422204164694501, 1.9944044399163705, 1.644887349366995, 1.4612222892797884, 1.2561814434631458, 1.6494306735661541, 1.6910974108380283, 1.7595131585211201, 1.210363971947695], 'runtime': [0.0, 2.1204563219998818, 2.331665822999639, 2.536224630999641, 2.755777202999525, 2.971758468000189, 3.3559303909996743, 3.575310739000088, 3.8086757820001367, 4.04462000500007, 4.27479858300012, 4.535961618999863, 4.753353328999765, 6.694900743999824, 8.43436211900007, 10.185088766000263, 11.914951880999979, 13.661371774000145, 15.399958586999674, 17.285061962999862, 19.012250058000063, 20.737749416000042, 22.471454143999836, 24.185002413999428, 25.901550894999673, 27.646235385000182, 29.519770590000007, 31.256006994000018, 32.98849752499973], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]}}, {'solution_x': array([13.76522944, 1.07388424]), 'solution_criterion': 0.6882579284467486, 'states': [State(trustregion=Region(center=array([13.59759393, 1.02074728]), radius=1.3597593925796536, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.5919418620501866, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=0, candidate_x=array([13.59759393, 1.02074728]), index=0, x=array([13.59759393, 1.02074728]), fval=1.591941862050187, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([13.59759393, 1.02074728]), radius=1.3597593925796536, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=2.034809583725369, linear_terms=array([ 0.00692503, -1.51067031]), square_terms=array([[ 0.14904974, -0.03200334],
+ [-0.03200334, 1.29590588]]), scale=array([1.20505539, 0.3 ]), shift=array([13.59759393, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=13, candidate_x=array([13.80035011, 1.1 ]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=2.1596481898710547, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.2176948880908889, relative_step_length=0.16009809476505346, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=1.3597593925796536, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 5, 6, 8, 11, 12, 13]), model=ScalarModel(intercept=1.9544299211503704, linear_terms=array([ 0.19985396, -1.35020304]), square_terms=array([[ 0.11438723, -0.28080018],
+ [-0.28080018, 1.18331746]]), scale=array([1.20505539, 0.3 ]), shift=array([13.80035011, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=14, candidate_x=array([14.65310858, 1.1 ]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-7.892356930659339, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 5, 6, 8, 11, 12, 13]), old_indices_discarded=array([ 1, 3, 7, 9, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.6798796962898268, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 4, 6, 9, 11, 12, 13, 14]), model=ScalarModel(intercept=1.9524600277342483, linear_terms=array([ 0.03980169, -1.41316029]), square_terms=array([[ 0.0307801 , -0.03640509],
+ [-0.03640509, 1.39773428]]), scale=array([0.60252769, 0.3 ]), shift=array([13.80035011, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=15, candidate_x=array([13.73386081, 1.1 ]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-2277.466238878963, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 4, 6, 9, 11, 12, 13, 14]), old_indices_discarded=array([ 1, 3, 5, 7, 8, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.3399398481449134, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 9, 11, 12, 13, 14, 15]), model=ScalarModel(intercept=1.4423114067995801, linear_terms=array([ 0.00970986, -0.30971613]), square_terms=array([[0.01737096, 0.00617437],
+ [0.00617437, 0.34251207]]), scale=array([0.30126385, 0.15063192]), shift=array([13.80035011, 0.94936808])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=16, candidate_x=array([13.53341346, 1.08798281]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-12.490603473802853, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 9, 11, 12, 13, 14, 15]), old_indices_discarded=array([ 1, 2, 3, 5, 7, 8, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.1699699240724567, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 11, 12, 13, 15, 16]), model=ScalarModel(intercept=1.5943095812154688, linear_terms=array([ 0.51822844, -0.07753849]), square_terms=array([[0.53597227, 0.0007038 ],
+ [0.0007038 , 0.05909585]]), scale=array([0.15063192, 0.07531596]), shift=array([13.80035011, 1.02468404])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=17, candidate_x=array([13.65450719, 1.1 ]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-0.36390332196850855, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 11, 12, 13, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.08498496203622835, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 13, 15, 16, 17]), model=ScalarModel(intercept=1.2630637427538014, linear_terms=array([0.0673167 , 0.12201243]), square_terms=array([[0.06493105, 0.0942397 ],
+ [0.0942397 , 0.27245921]]), scale=array([0.07531596, 0.03765798]), shift=array([13.80035011, 1.06234202])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=18, candidate_x=array([13.74185257, 1.05559478]), index=13, x=array([13.80035011, 1.1 ]), fval=1.3671976679432574, rho=-0.15043955206760612, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 13, 15, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.80035011, 1.1 ]), radius=0.042492481018114175, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([12, 13, 15, 17, 18]), model=ScalarModel(intercept=1.494530967111558, linear_terms=array([0.102457 , 0.02803027]), square_terms=array([[0.03812849, 0.01170315],
+ [0.01170315, 0.0472904 ]]), scale=array([0.03765798, 0.01882899]), shift=array([13.80035011, 1.08117101])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=19, candidate_x=array([13.76269213, 1.07467026]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=1.7655548058481516, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([12, 13, 15, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0453841295972527, relative_step_length=1.0680508294610014, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.08498496203622835, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 13, 15, 16, 17, 18, 19]), model=ScalarModel(intercept=1.15503149521224, linear_terms=array([-0.08309304, -0.2101502 ]), square_terms=array([[0.02472817, 0.0671273 ],
+ [0.0671273 , 0.60172359]]), scale=array([0.07531596, 0.05032285]), shift=array([13.76269213, 1.04967715])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=20, candidate_x=array([13.83800809, 1.06163832]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-12.049711039797472, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 13, 15, 16, 17, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.042492481018114175, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 13, 15, 17, 18, 19, 20]), model=ScalarModel(intercept=1.3037825390286737, linear_terms=array([ 0.05958201, -0.15298978]), square_terms=array([[ 0.00838945, -0.02709215],
+ [-0.02709215, 0.33469544]]), scale=array([0.03765798, 0.03149386]), shift=array([13.76269213, 1.06850614])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=21, candidate_x=array([13.72503415, 1.08035274]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-11.530216603469125, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 13, 15, 17, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.021246240509057088, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([12, 13, 15, 18, 19, 20, 21]), model=ScalarModel(intercept=1.339765491859563, linear_terms=array([ 0.01289748, -0.05831618]), square_terms=array([[ 0.00337072, -0.00852184],
+ [-0.00852184, 0.15088885]]), scale=0.021246240509057088, shift=array([13.76269213, 1.07467026])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=22, candidate_x=array([13.74137005, 1.08137517]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-6.962948052081567, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([12, 13, 15, 18, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.010623120254528544, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([13, 15, 18, 19, 21, 22]), model=ScalarModel(intercept=1.0959366501510284, linear_terms=array([-0.07603389, 0.0592279 ]), square_terms=array([[ 0.01482588, -0.01887136],
+ [-0.01887136, 0.05507578]]), scale=0.010623120254528544, shift=array([13.76269213, 1.07467026])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=23, candidate_x=array([13.77278794, 1.07078824]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-12.796215190602183, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([13, 15, 18, 19, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.005311560127264272, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 22, 23]), model=ScalarModel(intercept=1.123751124685578, linear_terms=array([2.35075615, 6.72344032]), square_terms=array([[ 34.95552465, 104.4822096 ],
+ [104.4822096 , 312.38317194]]), scale=0.005311560127264272, shift=array([13.76269213, 1.07467026])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=24, candidate_x=array([13.75762036, 1.07625184]), index=19, x=array([13.76269213, 1.07467026]), fval=1.123751124685578, rho=-3.3674374603538753, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76269213, 1.07467026]), radius=0.002655780063632136, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 23, 24]), model=ScalarModel(intercept=1.1237511246855785, linear_terms=array([-0.5780775 , -1.19841878]), square_terms=array([[ 5.94858558, 17.60275441],
+ [17.60275441, 52.66397965]]), scale=0.002655780063632136, shift=array([13.76269213, 1.07467026])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=25, candidate_x=array([13.76522944, 1.07388424]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=2.835499899865532, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([19, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.002656264319473295, relative_step_length=1.0001823403405237, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.005311560127264272, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 22, 23, 24, 25]), model=ScalarModel(intercept=0.9444375568015315, linear_terms=array([0.44532753, 1.19395003]), square_terms=array([[ 20.99849631, 63.51413818],
+ [ 63.51413818, 192.14709976]]), scale=0.005311560127264272, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=26, candidate_x=array([13.76017631, 1.07552117]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-13.438176044734822, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 22, 23, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.002655780063632136, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 23, 24, 25, 26]), model=ScalarModel(intercept=0.7549074447561732, linear_terms=array([-1.08491772, -3.21566214]), square_terms=array([[ 4.95581197, 13.40310954],
+ [13.40310954, 36.80550289]]), scale=0.002655780063632136, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=27, candidate_x=array([13.76281591, 1.07499468]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-5.765434623109165, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 23, 24, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.001327890031816068, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 25, 26, 27]), model=ScalarModel(intercept=0.6663131578299749, linear_terms=array([0.31579992, 1.29406005]), square_terms=array([[ 0.97652328, 3.33987753],
+ [ 3.33987753, 11.68276301]]), scale=0.001327890031816068, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=28, candidate_x=array([13.76646532, 1.07338524]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.097581043735553, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 25, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.000663945015908034, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([19, 25, 27, 28]), model=ScalarModel(intercept=1.0748283427553293, linear_terms=array([0.74775752, 1.86090971]), square_terms=array([[0.94615569, 2.1520877 ],
+ [2.1520877 , 5.00035967]]), scale=0.000663945015908034, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=29, candidate_x=array([13.76574184, 1.07341989]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.41030856971559, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([19, 25, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.000331972507954017, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 28, 29]), model=ScalarModel(intercept=0.688257928446749, linear_terms=array([-0.05009521, -0.4261496 ]), square_terms=array([[0.05474491, 0.13563449],
+ [0.13563449, 0.64186031]]), scale=0.000331972507954017, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=30, candidate_x=array([13.76498653, 1.07414649]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-4.057932281360053, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=0.0001659862539770085, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 29, 30]), model=ScalarModel(intercept=0.6882579284467485, linear_terms=array([2.51110852, 2.58551584]), square_terms=array([[17.31961069, 17.86076585],
+ [17.86076585, 18.4307605 ]]), scale=0.0001659862539770085, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=31, candidate_x=array([13.76509921, 1.07398717]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-4.996089828139207, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=8.299312698850425e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 30, 31]), model=ScalarModel(intercept=0.6882579284467492, linear_terms=array([-0.83335016, -0.64209979]), square_terms=array([[2.48376422, 2.0304305 ],
+ [2.0304305 , 1.6811628 ]]), scale=8.299312698850425e-05, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=32, candidate_x=array([13.76529773, 1.07383408]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-8.895409172081964, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=4.1496563494252124e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 31, 32]), model=ScalarModel(intercept=0.6882579284467484, linear_terms=array([5.4261937 , 7.07144682]), square_terms=array([[196.90079522, 251.86367885],
+ [251.86367885, 322.26054074]]), scale=4.1496563494252124e-05, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=33, candidate_x=array([13.76526169, 1.07385813]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-6.602379228031406, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 31, 32]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=2.0748281747126062e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 32, 33]), model=ScalarModel(intercept=0.6882579284467489, linear_terms=array([-1.67471137, -2.43734694]), square_terms=array([[44.36150417, 58.4429871 ],
+ [58.4429871 , 77.26404403]]), scale=2.0748281747126062e-05, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=34, candidate_x=array([13.76521321, 1.07389717]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-14.213590995613345, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 32, 33]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1.0374140873563031e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 33, 34]), model=ScalarModel(intercept=0.6882579284467507, linear_terms=array([-32.53614671, -40.36884666]), square_terms=array([[5704.80115467, 7072.67560803],
+ [7072.67560803, 8768.54976842]]), scale=1.0374140873563031e-05, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=35, candidate_x=array([13.76522139, 1.07389079]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-12.888292610975698, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 33, 34]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=5.1870704367815156e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 34, 35]), model=ScalarModel(intercept=0.6882579284467505, linear_terms=array([ 9.69356396, 12.41688657]), square_terms=array([[531.75055055, 673.71090102],
+ [673.71090102, 853.87114041]]), scale=5.1870704367815156e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=36, candidate_x=array([13.76523347, 1.07388099]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-8.167753639507541, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 34, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=2.5935352183907578e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 35, 36]), model=ScalarModel(intercept=0.688257928446749, linear_terms=array([ 96.92131584, 119.52724588]), square_terms=array([[23233.92339938, 28666.34702734],
+ [28666.34702734, 35368.97768226]]), scale=2.5935352183907578e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=37, candidate_x=array([13.76522742, 1.07388587]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-3.151757947924657, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1.2967676091953789e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 36, 37]), model=ScalarModel(intercept=0.6882579284467522, linear_terms=array([-228.72939942, -283.40527822]), square_terms=array([[149814.22087996, 185594.86902726],
+ [185594.86902726, 229921.14598203]]), scale=1.2967676091953789e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=38, candidate_x=array([13.76522843, 1.07388506]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-10.14442032408636, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 36, 37]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38]), model=ScalarModel(intercept=0.6882579284479667, linear_terms=array([110.01063583, 136.7138673 ]), square_terms=array([[204615.15154828, 253921.58304407],
+ [253921.58304407, 315109.6517833 ]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=39, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-8.437462487345263, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39]), model=ScalarModel(intercept=1.1577741715871368, linear_terms=array([242.70494131, 301.06849961]), square_terms=array([[155662.83189264, 193036.2230012 ],
+ [193036.2230012 , 239382.71308459]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=40, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.1629857204623297, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40]), model=ScalarModel(intercept=1.1405666279545543, linear_terms=array([205.50981035, 254.96369968]), square_terms=array([[196975.02816638, 244290.03299938],
+ [244290.03299938, 302970.52114327]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=41, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-5.914600339115848, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.1856833521849348, linear_terms=array([158.29089716, 196.3772247 ]), square_terms=array([[214418.42009996, 265947.86330119],
+ [265947.86330119, 329860.98150686]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=42, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-17.707333949313302, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41, 42]), model=ScalarModel(intercept=1.3049678277178531, linear_terms=array([220.22289196, 273.08372696]), square_terms=array([[208999.40253 , 259169.5243306 ],
+ [259169.5243306 , 321382.95662051]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=43, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-8.647410683350707, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41, 42]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41, 42, 43]), model=ScalarModel(intercept=1.3567974599896127, linear_terms=array([202.98250055, 251.79397558]), square_terms=array([[144095.09085198, 178734.35986993],
+ [178734.35986993, 221700.63899107]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=44, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.117835688525804, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41, 42, 43]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 37, 38, 39, 40, 41, 42, 43, 44]), model=ScalarModel(intercept=1.4152002732237223, linear_terms=array([188.23186675, 233.45474242]), square_terms=array([[136071.15256904, 168774.1945395 ],
+ [168774.1945395 , 209337.0286982 ]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=45, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-6.369117061581065, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 37, 38, 39, 40, 41, 42, 43, 44]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 38, 39, 40, 41, 42, 43, 44, 45]), model=ScalarModel(intercept=1.4322930669889091, linear_terms=array([165.85163954, 205.76495158]), square_terms=array([[132937.5754333 , 164910.82906923],
+ [164910.82906923, 204574.07883395]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=46, candidate_x=array([13.76523021, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-12.178849532771347, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 38, 39, 40, 41, 42, 43, 44, 45]), old_indices_discarded=array([37]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 40, 41, 42, 43, 44, 45, 46]), model=ScalarModel(intercept=1.3093308313412153, linear_terms=array([123.65989376, 153.3047285 ]), square_terms=array([[323967.17174465, 401840.36181195],
+ [401840.36181195, 498432.23105826]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=47, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.114033032338547, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 40, 41, 42, 43, 44, 45, 46]), old_indices_discarded=array([37, 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 41, 42, 43, 44, 45, 46, 47]), model=ScalarModel(intercept=1.0590382139587964, linear_terms=array([-280.9809403 , -348.70796313]), square_terms=array([[266181.47955628, 330177.67116074],
+ [330177.67116074, 409560.10325178]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=48, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.8012851877774967, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 41, 42, 43, 44, 45, 46, 47]), old_indices_discarded=array([37, 38, 40]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 41, 42, 43, 44, 45, 47, 48]), model=ScalarModel(intercept=1.220859614346961, linear_terms=array([-138.3649051 , -171.73746763]), square_terms=array([[158556.44632179, 196651.07147605],
+ [196651.07147605, 243898.29439121]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=49, candidate_x=array([13.76522866, 1.07388487]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.513233363014608, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 41, 42, 43, 44, 45, 47, 48]), old_indices_discarded=array([37, 38, 40, 46]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 48, 49]), model=ScalarModel(intercept=1.2282682420444786, linear_terms=array([-238.11010807, -295.51259223]), square_terms=array([[ 74869.56239741, 92919.65993007],
+ [ 92919.65993007, 115321.54114857]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=50, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-0.834182990182004, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 48, 49]), old_indices_discarded=array([37, 38, 40, 41, 46]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=51, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.6081564997863604, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=52, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.1033304004202726, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=53, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-1.9051669620622436, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=54, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.424478532124386, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=55, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.232010752140536, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=56, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-1.5453303195996202, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=57, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-7.432448004507076, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=58, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-4.5291149894285505, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=59, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-1.5838494401492669, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=60, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-4.961162682124679, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=61, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-2.3220492039377594, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([13.76522944, 1.07388424]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), model=ScalarModel(intercept=1.2399950339941943, linear_terms=array([-189.67214848, -235.48113278]), square_terms=array([[ 69951.25959547, 86896.16232258],
+ [ 86896.16232258, 107945.82494064]]), scale=1e-06, shift=array([13.76522944, 1.07388424])), vector_model=VectorModel(intercepts=array([ 0.02005503, 0.0186307 , -0.03444429, -0.01075204, 0.03631109,
+ -0.01858382, -0.035244 , -0.23998362, -0.32929702, -0.43943744,
+ -0.66654897, -0.8036659 , -0.15079765, -0.04159839, 0.02704146,
+ 0.12955665, 0.30935043]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.3597593925796536, shift=array([13.59759393, 1.02074728])), candidate_index=62, candidate_x=array([13.76523022, 1.07388362]), index=25, x=array([13.76522944, 1.07388424]), fval=0.6882579284467486, rho=-1.5477989368164367, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 39, 42, 43, 44, 45, 47, 49, 50]), old_indices_discarded=array([37, 38, 40, 41, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'message': None, 'tranquilo_history': History for least_squares function with 63 entries., 'history': {'params': [{'CRRA': 13.597593925796534, 'DiscFac': 1.020747282479346}, {'CRRA': 12.392538539955158, 'DiscFac': 0.6174149114063475}, {'CRRA': 14.80264931163791, 'DiscFac': 0.8326677874318185}, {'CRRA': 12.392538539955158, 'DiscFac': 0.8066232391144652}, {'CRRA': 14.771533894047689, 'DiscFac': 1.1}, {'CRRA': 14.775517168591643, 'DiscFac': 0.5}, {'CRRA': 14.468122155990066, 'DiscFac': 0.5}, {'CRRA': 12.392538539955158, 'DiscFac': 1.0736606786321312}, {'CRRA': 14.80264931163791, 'DiscFac': 0.7851437377134408}, {'CRRA': 14.760718893191527, 'DiscFac': 1.1}, {'CRRA': 12.392538539955158, 'DiscFac': 0.9606688675973344}, {'CRRA': 13.444055859501773, 'DiscFac': 0.5}, {'CRRA': 13.68922978340706, 'DiscFac': 1.1}, {'CRRA': 13.800350112056032, 'DiscFac': 1.1}, {'CRRA': 14.653108579352649, 'DiscFac': 1.1}, {'CRRA': 13.733860806509067, 'DiscFac': 1.1}, {'CRRA': 13.533413460280963, 'DiscFac': 1.0879828070365027}, {'CRRA': 13.654507190717343, 'DiscFac': 1.1}, {'CRRA': 13.741852570001186, 'DiscFac': 1.0555947848542355}, {'CRRA': 13.762692131248489, 'DiscFac': 1.0746702605461693}, {'CRRA': 13.838008092863575, 'DiscFac': 1.0616383225721628}, {'CRRA': 13.725034150440946, 'DiscFac': 1.0803527378804203}, {'CRRA': 13.741370045958632, 'DiscFac': 1.0813751657181843}, {'CRRA': 13.772787944089714, 'DiscFac': 1.070788238644506}, {'CRRA': 13.757620359413389, 'DiscFac': 1.076251839651587}, {'CRRA': 13.76522943668619, 'DiscFac': 1.0738842444835321}, {'CRRA': 13.760176305468253, 'DiscFac': 1.0755211705357692}, {'CRRA': 13.762815908535117, 'DiscFac': 1.074994677092113}, {'CRRA': 13.766465318103393, 'DiscFac': 1.073385240068689}, {'CRRA': 13.765741837404423, 'DiscFac': 1.0734198935341484}, {'CRRA': 13.76498652924187, 'DiscFac': 1.0741464913817635}, {'CRRA': 13.765099214247023, 'DiscFac': 1.073987169470037}, {'CRRA': 13.76529772667114, 'DiscFac': 1.073834078766463}, {'CRRA': 13.765261690170846, 'DiscFac': 1.0738581297466943}, {'CRRA': 13.765213205132117, 'DiscFac': 1.0738971702745834}, {'CRRA': 13.765221385235995, 'DiscFac': 1.0738907865004494}, {'CRRA': 13.76523347183466, 'DiscFac': 1.0738809851467088}, {'CRRA': 13.765227417544464, 'DiscFac': 1.0738858722201654}, {'CRRA': 13.76522842842111, 'DiscFac': 1.0738850599644876}, {'CRRA': 13.76523021512763, 'DiscFac': 1.073883616766271}, {'CRRA': 13.765230214507426, 'DiscFac': 1.073883615997389}, {'CRRA': 13.765230214739557, 'DiscFac': 1.0738836162850556}, {'CRRA': 13.765230214887971, 'DiscFac': 1.0738836164690735}, {'CRRA': 13.765228657845949, 'DiscFac': 1.0738848717058849}, {'CRRA': 13.765230214640988, 'DiscFac': 1.0738836161630856}, {'CRRA': 13.765228657644837, 'DiscFac': 1.0738848714563134}, {'CRRA': 13.765230214734727, 'DiscFac': 1.0738836162788903}, {'CRRA': 13.765228658030406, 'DiscFac': 1.0738848719349061}, {'CRRA': 13.765228658584434, 'DiscFac': 1.0738848726220682}, {'CRRA': 13.765228658553019, 'DiscFac': 1.0738848725830974}, {'CRRA': 13.765230216618574, 'DiscFac': 1.0738836186197498}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}, {'CRRA': 13.765230216717889, 'DiscFac': 1.073883618741515}], 'criterion': [1.5919418620501866, 3.256642791598931, 2.4245720174482632, 2.6770326909650377, 1.375271059626373, 3.932115023884988, 3.8900565091396633, 1.3788040584356367, 2.67342734680254, 1.3747875134503535, 1.7273269565534193, 3.784579404744082, 1.3717696200767946, 1.3671976679432574, 1.5932413313061198, 1.7940144542579126, 1.4714362912230357, 1.4586163616235037, 1.4116247061572644, 1.1237511246855783, 1.817413667189244, 1.7640558941311795, 1.2590902699405484, 2.1087642405633775, 1.6806322555078967, 0.6882579284467486, 1.3619794529851408, 1.7708804039433663, 1.487817536704842, 1.6073083741913023, 1.3515606737064714, 1.5988332872617663, 2.1071882633058205, 1.6046549090592486, 2.4392140191496465, 2.0969547685400998, 1.619697166814026, 1.4177027742030972, 2.7375198870821396, 1.648837292228864, 1.2017087559283488, 1.6123653333088765, 2.1559864840618888, 1.6813226057480248, 1.7555339640362284, 1.5641420916511097, 2.121351535271443, 1.195628783451865, 1.366634904655717, 1.7240618907150989, 0.9835036694297299, 1.5576561839970382, 1.389378348605993, 1.323322900002188, 1.4964292964688457, 1.432272428511995, 1.2033755926739262, 3.1657769462342085, 2.197985075310209, 1.2162154879079494, 2.342003085876411, 1.4622856861257032, 1.2041984771527132], 'runtime': [0.0, 2.0959708729997146, 2.319453641000109, 2.530794336999861, 2.7641818269994474, 2.9907601049999357, 3.247736452999561, 3.470891711999684, 3.6835053400000106, 3.9246623110002474, 4.152454041000055, 4.384807880999688, 4.596234226999513, 6.502221419999842, 8.399830567000208, 10.140461093999875, 11.878436920999775, 13.582565646000148, 15.297765229000106, 17.038238051000008, 18.749509088000195, 20.598889396999766, 22.321903571999428, 24.043425724999906, 25.73815736799952, 27.4287797019997, 29.126953945999958, 30.835123793999628, 32.67733082199993, 34.38814910400015, 36.11709095999959, 37.83038476299953, 39.557416933999775, 41.28646993300026, 43.04241953099972, 44.77638568899965, 46.610105842999474, 48.309058674999505, 50.002209946999756, 51.68927304099998, 53.389748636999684, 55.07344832600029, 56.79775497099945, 58.6573964600002, 60.38401259799957, 62.08020242099974, 63.793128000999786, 65.52371880499959, 67.23712577999959, 68.96224358600011, 70.82533353899998, 72.57404010899972, 74.30988537800022, 76.06118913799946, 77.77554541300015, 79.50649890000022, 81.24803584599977, 83.17606934800006, 85.03626549899946, 86.74029938300009, 88.45210760499958, 90.18602291600018, 91.91770858499967], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]}, 'multistart_info': {...}}], 'exploration_sample': array([[12.321875, 1.08125 ],
+ [14.09375 , 0.9875 ],
+ [17.6375 , 1.025 ],
+ [16.45625 , 0.9125 ],
+ [11.73125 , 0.7625 ],
+ [10.55 , 0.8 ],
+ [12.9125 , 0.575 ],
+ [15.275 , 0.65 ],
+ [17.046875, 0.63125 ],
+ [18.81875 , 0.5375 ],
+ [ 9.36875 , 0.8375 ],
+ [ 8.1875 , 0.725 ],
+ [ 7.00625 , 0.6125 ],
+ [ 5.825 , 0.95 ],
+ [ 4.64375 , 0.6875 ],
+ [ 2.871875, 0.78125 ],
+ [ 5. , 0.95 ],
+ [ 3.4625 , 0.875 ],
+ [ 2.28125 , 1.0625 ]]), 'exploration_results': array([ 1.25226984, 1.77139048, 1.79567843, 2.19243348, 2.99563577,
+ 3.4003551 , 3.46407238, 3.67340234, 3.72448066, 4.28414873,
+ 4.65250486, 5.39134448, 6.53886763, 14.94020775, 20.34265339,
+ 25.6087008 , 28.43667398, 29.29813793, 75.84976584])}}"
diff --git a/content/tables/min/WealthPortfolioSub(Stock)(Labor)Market_estimate_results.csv b/content/tables/min/WealthPortfolioSub(Stock)(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..5cae110
--- /dev/null
+++ b/content/tables/min/WealthPortfolioSub(Stock)(Labor)Market_estimate_results.csv
@@ -0,0 +1,6021 @@
+CRRA,5.573894562325964
+DiscFac,1.0637390075406437
+time_to_estimate,235.58063197135925
+params,"{'CRRA': 5.573894562325964, 'DiscFac': 1.0637390075406437}"
+criterion,1.4220519178994522
+start_criterion,3.7528915666217584
+start_params,"{'CRRA': 5.0, 'DiscFac': 0.95}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,Absolute criterion change smaller than tolerance.
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 5.3827721337329075, 'DiscFac': 0.5}, {'CRRA': 6.341227184076231, 'DiscFac': 0.9843397863096757}, {'CRRA': 5.308772815923768, 'DiscFac': 0.9942847020759833}, {'CRRA': 6.341227184076231, 'DiscFac': 1.099329565298806}, {'CRRA': 6.341227184076231, 'DiscFac': 0.7325487756828386}, {'CRRA': 6.341227184076231, 'DiscFac': 0.661184756844424}, {'CRRA': 5.670357912186334, 'DiscFac': 1.1}, {'CRRA': 6.341227184076231, 'DiscFac': 1.0027250193492325}, {'CRRA': 6.341227184076231, 'DiscFac': 1.0927982791010287}, {'CRRA': 5.308772815923768, 'DiscFac': 1.0118564969416792}, {'CRRA': 5.957814024190954, 'DiscFac': 0.5}, {'CRRA': 6.114808484578101, 'DiscFac': 1.1}, {'CRRA': 5.793348226117784, 'DiscFac': 0.8284226490669568}, {'CRRA': 5.75003997251512, 'DiscFac': 0.8880821392041797}, {'CRRA': 5.693161284486315, 'DiscFac': 1.0118481504711487}, {'CRRA': 5.569384429577121, 'DiscFac': 1.0922008146955873}, {'CRRA': 5.5194785395513035, 'DiscFac': 1.0658390858610285}, {'CRRA': 5.600878088644884, 'DiscFac': 1.1}, {'CRRA': 5.77759213158942, 'DiscFac': 1.0321931747072446}, {'CRRA': 5.545693184498602, 'DiscFac': 1.055901773046547}, {'CRRA': 5.454950141541775, 'DiscFac': 1.0580103701909507}, {'CRRA': 5.551742738556068, 'DiscFac': 1.0610052791857207}, {'CRRA': 5.569955078014674, 'DiscFac': 1.0653960027788554}, {'CRRA': 5.560809192249429, 'DiscFac': 1.0668198165422604}, {'CRRA': 5.574179063160669, 'DiscFac': 1.0637026157965719}, {'CRRA': 5.565030737518938, 'DiscFac': 1.0667766565553518}, {'CRRA': 5.578730259698591, 'DiscFac': 1.0636435394860717}, {'CRRA': 5.571905522822675, 'DiscFac': 1.0633495597956906}, {'CRRA': 5.575317879327959, 'DiscFac': 1.063494000480499}, {'CRRA': 5.574535066002697, 'DiscFac': 1.0641709732701494}, {'CRRA': 5.573894562325964, 'DiscFac': 1.0637390075406437}], 'criterion': [3.0263314834387383, 4.314184027187926, nan, 2.6142787419100317, nan, 4.730311355914472, 4.931838606867419, 1.9543423789678298, nan, nan, 2.1984626089974055, 4.789253019202322, nan, 3.940933836887815, 3.4612490178599495, 2.070351234692411, 1.7490483015806304, 1.4289096777146673, 1.9829352389581485, 1.6954301219950216, 1.4443085463640908, 1.4384944542770688, 1.4260383541426693, 1.42426971311261, 1.427741913899455, 1.4220984404550594, 1.427437660317148, 1.422217891677385, 1.4225162577343387, 1.4221438433511406, 1.4221892061726984, 1.4220519178994522], 'runtime': [0.0, 2.075601254000503, 2.3004396590004035, 2.512775510999745, 2.727538692000053, 3.093790787999751, 3.3206908180000028, 3.5342638620004436, 3.778585648000444, 4.001509642000201, 4.260968579999826, 4.507971130000442, 4.722957699999824, 6.59312373099965, 8.327218147000167, 10.04041867900014, 11.774315939999724, 13.478361817000405, 15.181451481000295, 17.012758128000314, 18.715239236000343, 20.42677367000033, 22.141106265000417, 23.86589965300027, 25.620126351999716, 27.356191783999748, 29.185643632999927, 30.88528100500025, 32.59903886000029, 34.286631453000155, 35.98912276600004, 37.70891717300037], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]}"
+convergence_report,
+multistart_info,"{'start_parameters': [{'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance., Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Maximum number of criterion evaluations reached.], 'exploration_sample': [{'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 5.0, 'DiscFac': 0.95}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 14.093749999999998, 'DiscFac': 0.9875}, {'CRRA': 9.368749999999999, 'DiscFac': 0.8375}, {'CRRA': 17.6375, 'DiscFac': 1.0250000000000001}, {'CRRA': 8.1875, 'DiscFac': 0.7250000000000001}, {'CRRA': 10.549999999999999, 'DiscFac': 0.8}, {'CRRA': 16.45625, 'DiscFac': 0.9125000000000001}, {'CRRA': 7.00625, 'DiscFac': 0.6125}, {'CRRA': 11.73125, 'DiscFac': 0.7625000000000001}, {'CRRA': 15.274999999999999, 'DiscFac': 0.65}, {'CRRA': 12.9125, 'DiscFac': 0.575}, {'CRRA': 17.046875, 'DiscFac': 0.6312500000000001}, {'CRRA': 18.81875, 'DiscFac': 0.5375}, {'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 2.28125, 'DiscFac': 1.0625}, {'CRRA': 2.871875, 'DiscFac': 0.78125}], 'exploration_results': array([ 3.02633148, 3.30050278, 3.74724591, 3.92461378, 4.45534719,
+ 4.52159416, 4.77507862, 5.06340436, 5.16761845, 5.42393003,
+ 5.50914405, 5.69522002, 6.68407291, 6.73863805, 6.84560996,
+ 7.20052264, 7.72130492, 8.47185488, 10.67451262])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=3.0263314834387383, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=0, candidate_x=array([5.825, 0.95 ]), index=0, x=array([5.825, 0.95 ]), fval=3.0263314834387383, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.1269978152790263, linear_terms=array([-0.51127322, -0.63965657]), square_terms=array([[11.76668356, 13.01143564],
+ [13.01143564, 15.17207492]]), scale=array([0.51622718, 0.3 ]), shift=array([5.825, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=13, candidate_x=array([5.79334823, 0.82842265]), index=0, x=array([5.825, 0.95 ]), fval=3.0263314834387383, rho=-0.5747486887475365, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.29124999999999995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 7, 8, 10, 11, 12, 13]), model=ScalarModel(intercept=1.581609097434704, linear_terms=array([2.65278709, 2.28940689]), square_terms=array([[8.20115491, 7.03588261],
+ [7.03588261, 6.38777128]]), scale=array([0.25811359, 0.2040568 ]), shift=array([5.825 , 0.8959432])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=14, candidate_x=array([5.75003997, 0.88808214]), index=0, x=array([5.825, 0.95 ]), fval=3.0263314834387383, rho=-0.3451917980793785, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 7, 8, 10, 11, 12, 13]), old_indices_discarded=array([1, 4, 5, 6, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.14562499999999998, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 7, 8, 11, 12, 13, 14]), model=ScalarModel(intercept=1.6064049690312896, linear_terms=array([1.823518 , 1.65703042]), square_terms=array([[3.57574989, 3.17459736],
+ [3.17459736, 3.01964201]]), scale=0.14562499999999998, shift=array([5.825, 0.95 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=15, candidate_x=array([5.69316128, 1.01184815]), index=15, x=array([5.69316128, 1.01184815]), fval=2.070351234692411, rho=2.2229628748013988, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 7, 8, 11, 12, 13, 14]), old_indices_discarded=array([ 1, 4, 5, 6, 9, 10]), step_length=0.1456249999999998, relative_step_length=0.9999999999999989, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.69316128, 1.01184815]), radius=0.29124999999999995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 11, 12, 13, 14, 15]), model=ScalarModel(intercept=1.8544790200782664, linear_terms=array([-0.67331221, -1.21592495]), square_terms=array([[1.63171239, 1.52446346],
+ [1.52446346, 2.03881587]]), scale=array([0.25811359, 0.17313272]), shift=array([5.69316128, 0.92686728])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=16, candidate_x=array([5.56938443, 1.09220081]), index=16, x=array([5.56938443, 1.09220081]), fval=1.7490483015806302, rho=4.7314095484198075, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 11, 12, 13, 14, 15]), old_indices_discarded=array([1, 2, 4, 5, 6, 8, 9]), step_length=0.1475712047087003, relative_step_length=0.5066822479268681, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56938443, 1.09220081]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16]), model=ScalarModel(intercept=7.085140584300428, linear_terms=array([ -5.65921381, -14.17503365]), square_terms=array([[ 5.20815903, 7.08665734],
+ [ 7.08665734, 17.08804688]]), scale=array([0.51622718, 0.26201318]), shift=array([5.56938443, 0.83798682])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=17, candidate_x=array([5.51947854, 1.06583909]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=1.7809591946937149, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 8, 9, 11]), step_length=0.05644057588664191, relative_step_length=0.09689369250925652, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 13, 14, 15, 16, 17]), model=ScalarModel(intercept=2.3354605283597563, linear_terms=array([ 1.46424334, -2.36914478]), square_terms=array([[ 1.06094696, -1.63153519],
+ [-1.63153519, 2.58355658]]), scale=array([0.51622718, 0.27519405]), shift=array([5.51947854, 0.82480595])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=18, candidate_x=array([5.60087809, 1.1 ]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-85.51150568657764, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 13, 14, 15, 16, 17]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 10, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.29124999999999995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 14, 15, 16, 17, 18]), model=ScalarModel(intercept=3.1012802436018085, linear_terms=array([-0.92259607, -5.33641639]), square_terms=array([[0.27027798, 1.20759192],
+ [1.20759192, 7.70294614]]), scale=array([0.25811359, 0.14613725]), shift=array([5.51947854, 0.95386275])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=19, candidate_x=array([5.77759213, 1.03219317]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-4.019293806179108, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 14, 15, 16, 17, 18]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 8, 9, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.14562499999999998, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 14, 15, 16, 17, 18, 19]), model=ScalarModel(intercept=1.5213811565094542, linear_terms=array([-0.14355744, -1.03791084]), square_terms=array([[0.06159175, 0.28510759],
+ [0.28510759, 2.13210366]]), scale=array([0.1290568 , 0.08160886]), shift=array([5.51947854, 1.01839114])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=20, candidate_x=array([5.54569318, 1.05590177]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-1.535972006541552, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 14, 15, 16, 17, 18, 19]), old_indices_discarded=array([ 0, 1, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.07281249999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 15, 16, 17, 18, 19, 20]), model=ScalarModel(intercept=1.3026835229178233, linear_terms=array([ 0.01296259, -0.29445874]), square_terms=array([[ 0.00193973, -0.00535854],
+ [-0.00535854, 1.93956479]]), scale=array([0.0645284 , 0.04934466]), shift=array([5.51947854, 1.05065534])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=21, candidate_x=array([5.45495014, 1.05801037]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-0.27578700766971787, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 15, 16, 17, 18, 19, 20]), old_indices_discarded=array([ 0, 13, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.036406249999999994, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 7, 15, 16, 17, 18, 20, 21]), model=ScalarModel(intercept=1.3985870458518956, linear_terms=array([-0.03050627, 0.11095194]), square_terms=array([[0.00179814, 0.01810855],
+ [0.01810855, 0.86143979]]), scale=array([0.0322642, 0.0322642]), shift=array([5.51947854, 1.06583909])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=22, candidate_x=array([5.55174274, 1.06100528]), index=22, x=array([5.55174274, 1.06100528]), fval=1.426038354142669, rho=0.07310801718365617, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 7, 15, 16, 17, 18, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0326242888718403, relative_step_length=0.8961178059217939, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.55174274, 1.06100528]), radius=0.018203124999999997, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 17, 18, 20, 22]), model=ScalarModel(intercept=1.4163790473957398, linear_terms=array([-0.00983569, -0.08333704]), square_terms=array([[2.86954770e-04, 8.05036733e-04],
+ [8.05036733e-04, 3.32811019e-01]]), scale=0.018203124999999997, shift=array([5.55174274, 1.06100528])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=23, candidate_x=array([5.56995508, 1.065396 ]), index=23, x=array([5.56995508, 1.065396 ]), fval=1.42426971311261, rho=0.0887754386245564, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([16, 17, 18, 20, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.01873413361292202, relative_step_length=1.0291712886068751, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56995508, 1.065396 ]), radius=0.009101562499999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 20, 22, 23]), model=ScalarModel(intercept=1.4255871683087975, linear_terms=array([ 0.01282382, -0.01799885]), square_terms=array([[ 0.00027616, -0.00248466],
+ [-0.00248466, 0.08699657]]), scale=0.009101562499999999, shift=array([5.56995508, 1.065396 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=24, candidate_x=array([5.56080919, 1.06681982]), index=23, x=array([5.56995508, 1.065396 ]), fval=1.42426971311261, rho=-0.24612567440050911, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 20, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56995508, 1.065396 ]), radius=0.004550781249999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 23, 24]), model=ScalarModel(intercept=1.42426971311261, linear_terms=array([-4.86697548e-05, 7.42140875e-03]), square_terms=array([[ 7.70644314e-06, -1.20696978e-04],
+ [-1.20696978e-04, 1.96339837e-02]]), scale=0.004550781249999999, shift=array([5.56995508, 1.065396 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=25, candidate_x=array([5.57417906, 1.06370262]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=1.5482217964560738, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.004550781249999896, relative_step_length=0.9999999999999774, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.009101562499999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 18, 20, 22, 23, 24, 25]), model=ScalarModel(intercept=1.4247281558811358, linear_terms=array([ 0.00539427, -0.03219716]), square_terms=array([[ 3.96935302e-05, -1.28952506e-03],
+ [-1.28952506e-03, 8.65974369e-02]]), scale=0.009101562499999999, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=26, candidate_x=array([5.56503074, 1.06677666]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.48986170098858195, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 18, 20, 22, 23, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.004550781249999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 23, 24, 25, 26]), model=ScalarModel(intercept=1.422282780554977, linear_terms=array([-0.00015294, 0.00037013]), square_terms=array([[ 7.13476990e-06, -1.13770520e-04],
+ [-1.13770520e-04, 1.96031452e-02]]), scale=0.004550781249999999, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=27, candidate_x=array([5.57873026, 1.06364354]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.7907220678531115, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 23, 24, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.0022753906249999996, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 26, 27]), model=ScalarModel(intercept=1.4221663020015802, linear_terms=array([5.73401438e-05, 7.45830401e-04]), square_terms=array([[ 1.12265319e-06, -2.59043861e-05],
+ [-2.59043861e-05, 4.91328724e-03]]), scale=0.0022753906249999996, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=28, candidate_x=array([5.57190552, 1.06334956]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-3.5610604492495965, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.0011376953124999998, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 27, 28]), model=ScalarModel(intercept=1.422325827336663, linear_terms=array([-4.61917023e-05, 2.38441492e-04]), square_terms=array([[ 3.55694453e-07, -6.48069226e-06],
+ [-6.48069226e-06, 1.22037302e-03]]), scale=0.0011376953124999998, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=29, candidate_x=array([5.57531788, 1.063494 ]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.6669519353256694, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.0005688476562499999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 28, 29]), model=ScalarModel(intercept=1.422098440455059, linear_terms=array([-4.34744633e-05, -3.03707274e-04]), square_terms=array([[ 8.37764168e-08, -1.07708651e-06],
+ [-1.07708651e-06, 2.98889073e-04]]), scale=0.0005688476562499999, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=30, candidate_x=array([5.57453507, 1.06417097]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.5142705306272952, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.00028442382812499995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 29, 30]), model=ScalarModel(intercept=1.422098440455059, linear_terms=array([ 4.17356026e-06, -1.04084673e-05]), square_terms=array([[ 1.93011592e-08, -1.59744779e-07],
+ [-1.59744779e-07, 7.59670263e-05]]), scale=0.00028442382812499995, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=31, candidate_x=array([5.57389456, 1.06373901]), index=31, x=array([5.57389456, 1.06373901]), fval=1.4220519178994522, rho=9.583354885845637, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([25, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.00028681890451018565, relative_step_length=1.0084208007499749, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 32 entries., 'multistart_info': {'start_parameters': [array([5.825, 0.95 ]), array([7.55033227, 1.06886786])], 'local_optima': [{'solution_x': array([5.57389456, 1.06373901]), 'solution_criterion': 1.4220519178994522, 'states': [State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=3.0263314834387383, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=0, candidate_x=array([5.825, 0.95 ]), index=0, x=array([5.825, 0.95 ]), fval=3.0263314834387383, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.1269978152790263, linear_terms=array([-0.51127322, -0.63965657]), square_terms=array([[11.76668356, 13.01143564],
+ [13.01143564, 15.17207492]]), scale=array([0.51622718, 0.3 ]), shift=array([5.825, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=13, candidate_x=array([5.79334823, 0.82842265]), index=0, x=array([5.825, 0.95 ]), fval=3.0263314834387383, rho=-0.5747486887475365, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.29124999999999995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 7, 8, 10, 11, 12, 13]), model=ScalarModel(intercept=1.581609097434704, linear_terms=array([2.65278709, 2.28940689]), square_terms=array([[8.20115491, 7.03588261],
+ [7.03588261, 6.38777128]]), scale=array([0.25811359, 0.2040568 ]), shift=array([5.825 , 0.8959432])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=14, candidate_x=array([5.75003997, 0.88808214]), index=0, x=array([5.825, 0.95 ]), fval=3.0263314834387383, rho=-0.3451917980793785, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 7, 8, 10, 11, 12, 13]), old_indices_discarded=array([1, 4, 5, 6, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.825, 0.95 ]), radius=0.14562499999999998, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 2, 3, 7, 8, 11, 12, 13, 14]), model=ScalarModel(intercept=1.6064049690312896, linear_terms=array([1.823518 , 1.65703042]), square_terms=array([[3.57574989, 3.17459736],
+ [3.17459736, 3.01964201]]), scale=0.14562499999999998, shift=array([5.825, 0.95 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=15, candidate_x=array([5.69316128, 1.01184815]), index=15, x=array([5.69316128, 1.01184815]), fval=2.070351234692411, rho=2.2229628748013988, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 2, 3, 7, 8, 11, 12, 13, 14]), old_indices_discarded=array([ 1, 4, 5, 6, 9, 10]), step_length=0.1456249999999998, relative_step_length=0.9999999999999989, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.69316128, 1.01184815]), radius=0.29124999999999995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 11, 12, 13, 14, 15]), model=ScalarModel(intercept=1.8544790200782664, linear_terms=array([-0.67331221, -1.21592495]), square_terms=array([[1.63171239, 1.52446346],
+ [1.52446346, 2.03881587]]), scale=array([0.25811359, 0.17313272]), shift=array([5.69316128, 0.92686728])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=16, candidate_x=array([5.56938443, 1.09220081]), index=16, x=array([5.56938443, 1.09220081]), fval=1.7490483015806302, rho=4.7314095484198075, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 11, 12, 13, 14, 15]), old_indices_discarded=array([1, 2, 4, 5, 6, 8, 9]), step_length=0.1475712047087003, relative_step_length=0.5066822479268681, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56938443, 1.09220081]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16]), model=ScalarModel(intercept=7.085140584300428, linear_terms=array([ -5.65921381, -14.17503365]), square_terms=array([[ 5.20815903, 7.08665734],
+ [ 7.08665734, 17.08804688]]), scale=array([0.51622718, 0.26201318]), shift=array([5.56938443, 0.83798682])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=17, candidate_x=array([5.51947854, 1.06583909]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=1.7809591946937149, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 8, 9, 11]), step_length=0.05644057588664191, relative_step_length=0.09689369250925652, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.5824999999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 13, 14, 15, 16, 17]), model=ScalarModel(intercept=2.3354605283597563, linear_terms=array([ 1.46424334, -2.36914478]), square_terms=array([[ 1.06094696, -1.63153519],
+ [-1.63153519, 2.58355658]]), scale=array([0.51622718, 0.27519405]), shift=array([5.51947854, 0.82480595])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=18, candidate_x=array([5.60087809, 1.1 ]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-85.51150568657764, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 13, 14, 15, 16, 17]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 10, 11, 12]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.29124999999999995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 10, 14, 15, 16, 17, 18]), model=ScalarModel(intercept=3.1012802436018085, linear_terms=array([-0.92259607, -5.33641639]), square_terms=array([[0.27027798, 1.20759192],
+ [1.20759192, 7.70294614]]), scale=array([0.25811359, 0.14613725]), shift=array([5.51947854, 0.95386275])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=19, candidate_x=array([5.77759213, 1.03219317]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-4.019293806179108, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 10, 14, 15, 16, 17, 18]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 8, 9, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.14562499999999998, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 14, 15, 16, 17, 18, 19]), model=ScalarModel(intercept=1.5213811565094542, linear_terms=array([-0.14355744, -1.03791084]), square_terms=array([[0.06159175, 0.28510759],
+ [0.28510759, 2.13210366]]), scale=array([0.1290568 , 0.08160886]), shift=array([5.51947854, 1.01839114])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=20, candidate_x=array([5.54569318, 1.05590177]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-1.535972006541552, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 14, 15, 16, 17, 18, 19]), old_indices_discarded=array([ 0, 1, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.07281249999999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 15, 16, 17, 18, 19, 20]), model=ScalarModel(intercept=1.3026835229178233, linear_terms=array([ 0.01296259, -0.29445874]), square_terms=array([[ 0.00193973, -0.00535854],
+ [-0.00535854, 1.93956479]]), scale=array([0.0645284 , 0.04934466]), shift=array([5.51947854, 1.05065534])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=21, candidate_x=array([5.45495014, 1.05801037]), index=17, x=array([5.51947854, 1.06583909]), fval=1.4289096777146673, rho=-0.27578700766971787, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 15, 16, 17, 18, 19, 20]), old_indices_discarded=array([ 0, 13, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.51947854, 1.06583909]), radius=0.036406249999999994, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 7, 15, 16, 17, 18, 20, 21]), model=ScalarModel(intercept=1.3985870458518956, linear_terms=array([-0.03050627, 0.11095194]), square_terms=array([[0.00179814, 0.01810855],
+ [0.01810855, 0.86143979]]), scale=array([0.0322642, 0.0322642]), shift=array([5.51947854, 1.06583909])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=22, candidate_x=array([5.55174274, 1.06100528]), index=22, x=array([5.55174274, 1.06100528]), fval=1.426038354142669, rho=0.07310801718365617, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 7, 15, 16, 17, 18, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0326242888718403, relative_step_length=0.8961178059217939, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.55174274, 1.06100528]), radius=0.018203124999999997, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 17, 18, 20, 22]), model=ScalarModel(intercept=1.4163790473957398, linear_terms=array([-0.00983569, -0.08333704]), square_terms=array([[2.86954770e-04, 8.05036733e-04],
+ [8.05036733e-04, 3.32811019e-01]]), scale=0.018203124999999997, shift=array([5.55174274, 1.06100528])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=23, candidate_x=array([5.56995508, 1.065396 ]), index=23, x=array([5.56995508, 1.065396 ]), fval=1.42426971311261, rho=0.0887754386245564, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([16, 17, 18, 20, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.01873413361292202, relative_step_length=1.0291712886068751, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56995508, 1.065396 ]), radius=0.009101562499999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 20, 22, 23]), model=ScalarModel(intercept=1.4255871683087975, linear_terms=array([ 0.01282382, -0.01799885]), square_terms=array([[ 0.00027616, -0.00248466],
+ [-0.00248466, 0.08699657]]), scale=0.009101562499999999, shift=array([5.56995508, 1.065396 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=24, candidate_x=array([5.56080919, 1.06681982]), index=23, x=array([5.56995508, 1.065396 ]), fval=1.42426971311261, rho=-0.24612567440050911, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 20, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.56995508, 1.065396 ]), radius=0.004550781249999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 23, 24]), model=ScalarModel(intercept=1.42426971311261, linear_terms=array([-4.86697548e-05, 7.42140875e-03]), square_terms=array([[ 7.70644314e-06, -1.20696978e-04],
+ [-1.20696978e-04, 1.96339837e-02]]), scale=0.004550781249999999, shift=array([5.56995508, 1.065396 ])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=25, candidate_x=array([5.57417906, 1.06370262]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=1.5482217964560738, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.004550781249999896, relative_step_length=0.9999999999999774, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.009101562499999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 18, 20, 22, 23, 24, 25]), model=ScalarModel(intercept=1.4247281558811358, linear_terms=array([ 0.00539427, -0.03219716]), square_terms=array([[ 3.96935302e-05, -1.28952506e-03],
+ [-1.28952506e-03, 8.65974369e-02]]), scale=0.009101562499999999, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=26, candidate_x=array([5.56503074, 1.06677666]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.48986170098858195, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 18, 20, 22, 23, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.004550781249999999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 23, 24, 25, 26]), model=ScalarModel(intercept=1.422282780554977, linear_terms=array([-0.00015294, 0.00037013]), square_terms=array([[ 7.13476990e-06, -1.13770520e-04],
+ [-1.13770520e-04, 1.96031452e-02]]), scale=0.004550781249999999, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=27, candidate_x=array([5.57873026, 1.06364354]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.7907220678531115, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([22, 23, 24, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.0022753906249999996, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 26, 27]), model=ScalarModel(intercept=1.4221663020015802, linear_terms=array([5.73401438e-05, 7.45830401e-04]), square_terms=array([[ 1.12265319e-06, -2.59043861e-05],
+ [-2.59043861e-05, 4.91328724e-03]]), scale=0.0022753906249999996, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=28, candidate_x=array([5.57190552, 1.06334956]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-3.5610604492495965, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.0011376953124999998, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 27, 28]), model=ScalarModel(intercept=1.422325827336663, linear_terms=array([-4.61917023e-05, 2.38441492e-04]), square_terms=array([[ 3.55694453e-07, -6.48069226e-06],
+ [-6.48069226e-06, 1.22037302e-03]]), scale=0.0011376953124999998, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=29, candidate_x=array([5.57531788, 1.063494 ]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.6669519353256694, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.0005688476562499999, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 28, 29]), model=ScalarModel(intercept=1.422098440455059, linear_terms=array([-4.34744633e-05, -3.03707274e-04]), square_terms=array([[ 8.37764168e-08, -1.07708651e-06],
+ [-1.07708651e-06, 2.98889073e-04]]), scale=0.0005688476562499999, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=30, candidate_x=array([5.57453507, 1.06417097]), index=25, x=array([5.57417906, 1.06370262]), fval=1.4220984404550594, rho=-0.5142705306272952, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([25, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5.57417906, 1.06370262]), radius=0.00028442382812499995, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 29, 30]), model=ScalarModel(intercept=1.422098440455059, linear_terms=array([ 4.17356026e-06, -1.04084673e-05]), square_terms=array([[ 1.93011592e-08, -1.59744779e-07],
+ [-1.59744779e-07, 7.59670263e-05]]), scale=0.00028442382812499995, shift=array([5.57417906, 1.06370262])), vector_model=VectorModel(intercepts=array([ 0.00324884, -0.00957298, -0.05934558, -0.09479157, -0.12292514,
+ -0.183175 , -0.23977682, -0.60774252, -0.67504492, -0.66762796,
+ -0.75647431, -0.92995825, -0.00230267, 0.07861212, 0.05982638,
+ 0.19899139, 0.38776794]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5824999999999999, shift=array([5.825, 0.95 ])), candidate_index=31, candidate_x=array([5.57389456, 1.06373901]), index=31, x=array([5.57389456, 1.06373901]), fval=1.4220519178994522, rho=9.583354885845637, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([25, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.00028681890451018565, relative_step_length=1.0084208007499749, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 32 entries., 'history': {'params': [{'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 5.3827721337329075, 'DiscFac': 0.5}, {'CRRA': 6.341227184076231, 'DiscFac': 0.9843397863096757}, {'CRRA': 5.308772815923768, 'DiscFac': 0.9942847020759833}, {'CRRA': 6.341227184076231, 'DiscFac': 1.099329565298806}, {'CRRA': 6.341227184076231, 'DiscFac': 0.7325487756828386}, {'CRRA': 6.341227184076231, 'DiscFac': 0.661184756844424}, {'CRRA': 5.670357912186334, 'DiscFac': 1.1}, {'CRRA': 6.341227184076231, 'DiscFac': 1.0027250193492325}, {'CRRA': 6.341227184076231, 'DiscFac': 1.0927982791010287}, {'CRRA': 5.308772815923768, 'DiscFac': 1.0118564969416792}, {'CRRA': 5.957814024190954, 'DiscFac': 0.5}, {'CRRA': 6.114808484578101, 'DiscFac': 1.1}, {'CRRA': 5.793348226117784, 'DiscFac': 0.8284226490669568}, {'CRRA': 5.75003997251512, 'DiscFac': 0.8880821392041797}, {'CRRA': 5.693161284486315, 'DiscFac': 1.0118481504711487}, {'CRRA': 5.569384429577121, 'DiscFac': 1.0922008146955873}, {'CRRA': 5.5194785395513035, 'DiscFac': 1.0658390858610285}, {'CRRA': 5.600878088644884, 'DiscFac': 1.1}, {'CRRA': 5.77759213158942, 'DiscFac': 1.0321931747072446}, {'CRRA': 5.545693184498602, 'DiscFac': 1.055901773046547}, {'CRRA': 5.454950141541775, 'DiscFac': 1.0580103701909507}, {'CRRA': 5.551742738556068, 'DiscFac': 1.0610052791857207}, {'CRRA': 5.569955078014674, 'DiscFac': 1.0653960027788554}, {'CRRA': 5.560809192249429, 'DiscFac': 1.0668198165422604}, {'CRRA': 5.574179063160669, 'DiscFac': 1.0637026157965719}, {'CRRA': 5.565030737518938, 'DiscFac': 1.0667766565553518}, {'CRRA': 5.578730259698591, 'DiscFac': 1.0636435394860717}, {'CRRA': 5.571905522822675, 'DiscFac': 1.0633495597956906}, {'CRRA': 5.575317879327959, 'DiscFac': 1.063494000480499}, {'CRRA': 5.574535066002697, 'DiscFac': 1.0641709732701494}, {'CRRA': 5.573894562325964, 'DiscFac': 1.0637390075406437}], 'criterion': [3.0263314834387383, 4.314184027187926, nan, 2.6142787419100317, nan, 4.730311355914472, 4.931838606867419, 1.9543423789678298, nan, nan, 2.1984626089974055, 4.789253019202322, nan, 3.940933836887815, 3.4612490178599495, 2.070351234692411, 1.7490483015806304, 1.4289096777146673, 1.9829352389581485, 1.6954301219950216, 1.4443085463640908, 1.4384944542770688, 1.4260383541426693, 1.42426971311261, 1.427741913899455, 1.4220984404550594, 1.427437660317148, 1.422217891677385, 1.4225162577343387, 1.4221438433511406, 1.4221892061726984, 1.4220519178994522], 'runtime': [0.0, 2.075601254000503, 2.3004396590004035, 2.512775510999745, 2.727538692000053, 3.093790787999751, 3.3206908180000028, 3.5342638620004436, 3.778585648000444, 4.001509642000201, 4.260968579999826, 4.507971130000442, 4.722957699999824, 6.59312373099965, 8.327218147000167, 10.04041867900014, 11.774315939999724, 13.478361817000405, 15.181451481000295, 17.012758128000314, 18.715239236000343, 20.42677367000033, 22.141106265000417, 23.86589965300027, 25.620126351999716, 27.356191783999748, 29.185643632999927, 30.88528100500025, 32.59903886000029, 34.286631453000155, 35.98912276600004, 37.70891717300037], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]}, 'multistart_info': {...}}, {'solution_x': array([7.55033227, 1.06886786]), 'solution_criterion': inf, 'states': [State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.7550332273206521, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=inf, linear_terms=array([nan, nan]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.7550332273206521, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=2.3250640840427264, linear_terms=array([0.42934169, 6.39052049]), square_terms=array([[ 0.57563022, 1.0761891 ],
+ [ 1.0761891 , 24.65080694]]), scale=array([0.66913078, 0.3 ]), shift=array([7.55033227, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.3775166136603261, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 7, 8, 9, 10, 12, 13]), model=ScalarModel(intercept=9.409494862894718, linear_terms=array([0.6730648 , 9.54642652]), square_terms=array([[0.40920183, 0.31552277],
+ [0.31552277, 6.96199281]]), scale=array([0.33456539, 0.18284876]), shift=array([7.55033227, 0.91715124])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 7, 8, 9, 10, 12, 13]), old_indices_discarded=array([ 1, 2, 3, 5, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.18875830683016304, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 4, 6, 7, 9, 10, 12, 13, 14]), model=ScalarModel(intercept=19.22375838635329, linear_terms=array([1.32892629, 5.63610224]), square_terms=array([[0.15092368, 0.22405344],
+ [0.22405344, 0.99645599]]), scale=array([0.16728269, 0.09920742]), shift=array([7.55033227, 1.00079258])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 4, 6, 7, 9, 10, 12, 13, 14]), old_indices_discarded=array([ 1, 2, 3, 5, 8, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.09437915341508152, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 13, 15, 16]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=array([0.08364135, 0.05738674]), shift=array([7.55033227, 1.04261326])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([16]), old_indices_used=array([ 0, 13, 15]), old_indices_discarded=array([14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.04718957670754076, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 18]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=array([0.04182067, 0.03647641]), shift=array([7.55033227, 1.06352359])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([18]), old_indices_used=array([ 0, 17]), old_indices_discarded=array([16]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.02359478835377038, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 19, 20]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=0.02359478835377038, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([20]), old_indices_used=array([ 0, 17, 19]), old_indices_discarded=array([18]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.01179739417688519, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 19, 20, 21, 22]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=0.01179739417688519, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([22]), old_indices_used=array([ 0, 17, 19, 20, 21]), old_indices_discarded=array([18]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.005898697088442595, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 19, 21, 22, 23, 24]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=0.005898697088442595, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([24]), old_indices_used=array([ 0, 17, 19, 21, 22, 23]), old_indices_discarded=array([20]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.0029493485442212974, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 19, 21, 23, 24, 25, 26]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=0.0029493485442212974, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([26]), old_indices_used=array([ 0, 17, 19, 21, 23, 24, 25]), old_indices_discarded=array([22]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.0014746742721106487, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 19, 21, 23, 25, 26, 27, 28]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=0.0014746742721106487, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([28]), old_indices_used=array([ 0, 17, 19, 21, 23, 25, 26, 27]), old_indices_discarded=array([24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.0007373371360553244, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 17, 19, 21, 23, 25, 27, 29, 30]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=0.0007373371360553244, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([30]), old_indices_used=array([ 0, 17, 19, 21, 23, 25, 27, 29]), old_indices_discarded=array([26, 28]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.0003686685680276622, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 19, 21, 23, 25, 27, 29, 31, 32]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=0.0003686685680276622, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([32]), old_indices_used=array([ 0, 19, 21, 23, 25, 27, 29, 31]), old_indices_discarded=array([17, 28, 30]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=0.0001843342840138311, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 21, 23, 25, 27, 29, 31, 33, 34]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=0.0001843342840138311, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([34]), old_indices_used=array([ 0, 21, 23, 25, 27, 29, 31, 33]), old_indices_discarded=array([17, 19, 30, 32]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=9.216714200691555e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 23, 25, 27, 29, 31, 33, 35, 36]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=9.216714200691555e-05, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([36]), old_indices_used=array([ 0, 23, 25, 27, 29, 31, 33, 35]), old_indices_discarded=array([17, 19, 21, 32, 34]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=4.608357100345777e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 25, 27, 29, 31, 33, 35, 37, 38]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=4.608357100345777e-05, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([38]), old_indices_used=array([ 0, 25, 27, 29, 31, 33, 35, 37]), old_indices_discarded=array([17, 19, 21, 23, 34, 36]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=2.3041785501728886e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 27, 29, 31, 33, 35, 37, 39, 40]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=2.3041785501728886e-05, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([40]), old_indices_used=array([ 0, 27, 29, 31, 33, 35, 37, 39]), old_indices_discarded=array([17, 19, 21, 23, 25, 36, 38]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1.1520892750864443e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 29, 31, 33, 35, 37, 39, 41, 42]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1.1520892750864443e-05, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([42]), old_indices_used=array([ 0, 29, 31, 33, 35, 37, 39, 41]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 38, 40]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=5.7604463754322216e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 31, 33, 35, 37, 39, 41, 43, 44]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=5.7604463754322216e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([44]), old_indices_used=array([ 0, 31, 33, 35, 37, 39, 41, 43]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 40, 42]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=2.8802231877161108e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 33, 35, 37, 39, 41, 43, 45, 46]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=2.8802231877161108e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([46]), old_indices_used=array([ 0, 33, 35, 37, 39, 41, 43, 45]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 42, 44]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1.4401115938580554e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 35, 37, 39, 41, 43, 45, 47, 48]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1.4401115938580554e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([48]), old_indices_used=array([ 0, 35, 37, 39, 41, 43, 45, 47]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 44, 46]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 37, 39, 41, 43, 45, 47, 49, 50]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([50]), old_indices_used=array([ 0, 37, 39, 41, 43, 45, 47, 49]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 46, 48]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 39, 41, 43, 45, 47, 49, 51, 52]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([52]), old_indices_used=array([ 0, 39, 41, 43, 45, 47, 49, 51]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 46, 48, 50]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 43, 45, 47, 49, 51, 52, 53, 54]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([54]), old_indices_used=array([ 0, 43, 45, 47, 49, 51, 52, 53]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 46, 48, 50]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 45, 47, 49, 51, 52, 53, 55, 56]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([56]), old_indices_used=array([ 0, 45, 47, 49, 51, 52, 53, 55]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 46, 48, 50,
+ 54]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 49, 51, 52, 53, 55, 56, 57, 58]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([58]), old_indices_used=array([ 0, 49, 51, 52, 53, 55, 56, 57]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 50, 54]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 51, 52, 53, 55, 56, 57, 59, 60]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([60]), old_indices_used=array([ 0, 51, 52, 53, 55, 56, 57, 59]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 54, 58]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 53, 55, 56, 57, 59, 61, 62]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([62]), old_indices_used=array([ 0, 52, 53, 55, 56, 57, 59, 61]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 54, 58, 60]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 57, 59, 61, 62, 63, 64]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([64]), old_indices_used=array([ 0, 52, 56, 57, 59, 61, 62, 63]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 58, 60]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 59, 61, 62, 63, 65, 66]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([66]), old_indices_used=array([ 0, 52, 56, 59, 61, 62, 63, 65]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 60, 64]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 63, 65, 66, 67, 68]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([68]), old_indices_used=array([ 0, 52, 56, 62, 63, 65, 66, 67]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 64]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 65, 66, 67, 69, 70]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([70]), old_indices_used=array([ 0, 52, 56, 62, 65, 66, 67, 69]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 68]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 69, 70, 71, 72]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([72]), old_indices_used=array([ 0, 52, 56, 62, 66, 69, 70, 71]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 72, 73, 74]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([74]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 72, 73]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 72, 75, 76]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([76]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 72, 75]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71, 73, 74]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 72, 76, 78]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([78]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 72, 76]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71, 73, 74, 75, 77]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 72, 78, 80]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([80]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 72, 78]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71, 73, 74, 75, 76, 77, 79]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 78, 80, 82]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([82]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 78, 80]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71, 72, 73, 74, 75, 76, 77, 79, 81]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 78, 80, 84]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([84]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 78, 80]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 52, 56, 62, 66, 70, 78, 80, 86]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([86]), old_indices_used=array([ 0, 52, 56, 62, 66, 70, 78, 80]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68,
+ 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 56, 62, 66, 70, 78, 80, 86, 88]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([88]), old_indices_used=array([ 0, 56, 62, 66, 70, 78, 80, 86]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67,
+ 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 56, 62, 66, 70, 78, 80, 86, 90]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([90]), old_indices_used=array([ 0, 56, 62, 66, 70, 78, 80, 86]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67,
+ 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87, 88,
+ 89]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 56, 62, 66, 70, 78, 80, 86, 92]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, -inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([92]), old_indices_used=array([ 0, 56, 62, 66, 70, 78, 80, 86]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67,
+ 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87, 88,
+ 89, 90, 91]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 56, 62, 66, 70, 78, 80, 86, 94]), model=ScalarModel(intercept=inf, linear_terms=array([inf, inf]), square_terms=array([[inf, inf],
+ [inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([94]), old_indices_used=array([ 0, 56, 62, 66, 70, 78, 80, 86]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67,
+ 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87, 88,
+ 89, 90, 91, 92, 93]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 56, 62, 66, 70, 78, 80, 86, 96]), model=ScalarModel(intercept=inf, linear_terms=array([ inf, -inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([96]), old_indices_used=array([ 0, 56, 62, 66, 70, 78, 80, 86]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67,
+ 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87, 88,
+ 89, 90, 91, 92, 93, 94, 95]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([7.55033227, 1.06886786]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 56, 62, 66, 70, 78, 80, 86, 98]), model=ScalarModel(intercept=inf, linear_terms=array([-inf, inf]), square_terms=array([[ inf, -inf],
+ [-inf, inf]]), scale=1e-06, shift=array([7.55033227, 1.06886786])), vector_model=VectorModel(intercepts=array([ 0.015868 , inf, inf, inf, inf,
+ inf, inf, inf, inf, inf,
+ inf, -0.74132942, inf, inf, inf,
+ inf, 0.15441146]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.7550332273206521, shift=array([7.55033227, 1.06886786])), candidate_index=0, candidate_x=array([7.55033227, 1.06886786]), index=0, x=array([7.55033227, 1.06886786]), fval=inf, rho=-inf, accepted=False, new_indices=array([98]), old_indices_used=array([ 0, 56, 62, 66, 70, 78, 80, 86]), old_indices_discarded=array([17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67,
+ 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87, 88,
+ 89, 90, 91, 92, 93, 94, 95, 96, 97]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Maximum number of criterion evaluations reached.', 'tranquilo_history': History for least_squares function with 100 entries., 'history': {'params': [{'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 6.881201497543467, 'DiscFac': 0.5324914173423184}, {'CRRA': 8.219463048869576, 'DiscFac': 0.5584020131003072}, {'CRRA': 6.881201497543467, 'DiscFac': 0.5126134008358474}, {'CRRA': 8.219463048869576, 'DiscFac': 1.1}, {'CRRA': 8.219463048869576, 'DiscFac': 0.5072776897840494}, {'CRRA': 7.569182167018681, 'DiscFac': 0.5}, {'CRRA': 6.881201497543467, 'DiscFac': 0.9962729733060268}, {'CRRA': 8.219463048869576, 'DiscFac': 0.7918748475727242}, {'CRRA': 8.219463048869576, 'DiscFac': 1.0852235578167606}, {'CRRA': 6.93149220972855, 'DiscFac': 1.1}, {'CRRA': 6.881201497543467, 'DiscFac': 0.5031308867684463}, {'CRRA': 6.884642155849924, 'DiscFac': 1.1}, {'CRRA': 7.360029784352809, 'DiscFac': 0.7259523277207144}, {'CRRA': 7.258004185304884, 'DiscFac': 0.7343024706551552}, {'CRRA': 7.383049579290757, 'DiscFac': 0.901585164570919}, {'CRRA': 7.6339736201644035, 'DiscFac': 0.9852265115288008}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.508511599727581, 'DiscFac': 1.0755802553977896}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.566876385747435, 'DiscFac': 1.0520450650892463}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.541920876408272, 'DiscFac': 1.0605958023174336}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.554468301294523, 'DiscFac': 1.0646621600908786}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.55243512346204, 'DiscFac': 1.0709358714552508}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.551366279645872, 'DiscFac': 1.0678164333147342}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.549956235462028, 'DiscFac': 1.0682336174702518}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550311192488363, 'DiscFac': 1.0692359238563842}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.55014910403443, 'DiscFac': 1.0688885510616417}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550413214019603, 'DiscFac': 1.0688237748520384}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550345046822539, 'DiscFac': 1.0689121363620864}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550354859768847, 'DiscFac': 1.0688633009564907}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550343577712397, 'DiscFac': 1.0688700808990395}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550330353631747, 'DiscFac': 1.0688624272828449}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550335144118092, 'DiscFac': 1.0688680899005256}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550333613950777, 'DiscFac': 1.0688683841541116}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332222874611, 'DiscFac': 1.0688668597541364}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332372145181, 'DiscFac': 1.0688668633931486}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331278112982, 'DiscFac': 1.0688677595480731}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331278112972, 'DiscFac': 1.0688677595481844}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331727906194, 'DiscFac': 1.0688670202459338}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332587800952, 'DiscFac': 1.0688688077128645}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331708637145, 'DiscFac': 1.0688670331010641}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331447818857, 'DiscFac': 1.0688684230530674}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550333098595546, 'DiscFac': 1.0688672939222863}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550333272782672, 'DiscFac': 1.0688678875988677}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550333272939655, 'DiscFac': 1.0688678353855678}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.5503322501077434, 'DiscFac': 1.068866858753495}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331759993373, 'DiscFac': 1.0688670002254959}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332249867232, 'DiscFac': 1.068866858759081}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550331273478922, 'DiscFac': 1.068867881826057}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.55033229654159, 'DiscFac': 1.0688688582143828}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332296309651, 'DiscFac': 1.0688688582197696}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332296310257, 'DiscFac': 1.0688688582197556}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332250101332, 'DiscFac': 1.0688668587536432}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332174267114, 'DiscFac': 1.0688688535801423}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.55033237214568, 'DiscFac': 1.0688668633931981}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.5503323721458235, 'DiscFac': 1.0688668633932124}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332372145812, 'DiscFac': 1.0688668633932112}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332174266841, 'DiscFac': 1.0688688535801154}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}, {'CRRA': 7.550332174267176, 'DiscFac': 1.0688688535801485}, {'CRRA': 7.5503322732065214, 'DiscFac': 1.0688678584866826}], 'criterion': [nan, 5.5395827111397296, 6.054158174623402, 5.5613444250597865, nan, 6.26999489704744, 6.0387433323182025, nan, nan, nan, nan, 5.571706618549453, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], 'runtime': [0.0, 2.208003130999714, 2.4108274589998473, 2.6445564219993685, 2.861070712999208, 3.0903511259994048, 3.3147837339993202, 3.5445771449994936, 3.763165709999157, 4.011760434999815, 4.254563144999338, 4.481855996999911, 4.734949446999963, 6.675738173999889, 8.416725412999767, 10.15450823699939, 11.883843522999996, 13.624447997999596, 15.448351131999516, 17.171726831999877, 18.88588633799918, 20.59283455899913, 22.43239950899988, 24.520430089, 26.3628967249997, 28.565140177999638, 30.343838971999503, 32.09905305399934, 33.847234142999696, 35.59349253599976, 37.29427836799914, 38.98703113099964, 40.82964572799938, 42.576055502999225, 44.29262355499941, 46.017979343999286, 47.73866828999962, 49.43964796899945, 51.183157880999715, 53.015724850999504, 54.71051612499923, 56.412946336999994, 58.13829104699926, 59.860055269999975, 61.558349431999886, 63.287416894999296, 65.13462926899956, 66.84517105899977, 68.56712897499983, 70.26700060699932, 71.96833215499919, 73.73193814099977, 75.56138586099951, 77.46366084499914, 79.22617003699997, 80.9957298469999, 82.7311454009996, 84.47368552699936, 86.21652899799938, 87.92976052999984, 89.79720195199934, 91.55993134299933, 93.31182523299958, 95.08997003399963, 96.81811396099965, 98.61492505799924, 100.3684951639998, 102.22739970999919, 103.94773307499963, 105.69449496999914, 107.46558442999958, 109.16500168999937, 110.86308380299943, 112.61978389399974, 114.47552693799935, 116.21721567699933, 117.93670399699931, 119.68790375899971, 121.4288536539998, 123.14456135699947, 124.85203158899913, 126.56781216999934, 128.38843487799932, 130.10438197299936, 131.83267793599953, 133.55169217000002, 135.25045203299942, 136.96302765499968, 138.67373905899967, 140.50321614399945, 142.19887414299956, 143.88603324799988, 145.59989389599923, 147.33349493199967, 149.06226304499978, 150.77150221800002, 152.6252947109997, 154.3393833299997, 156.03193448599995, 157.7520206069994], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88]}}], 'exploration_sample': array([[ 5.825 , 0.95 ],
+ [12.321875, 1.08125 ],
+ [ 5. , 0.95 ],
+ [ 4.64375 , 0.6875 ],
+ [14.09375 , 0.9875 ],
+ [ 9.36875 , 0.8375 ],
+ [17.6375 , 1.025 ],
+ [ 8.1875 , 0.725 ],
+ [10.55 , 0.8 ],
+ [16.45625 , 0.9125 ],
+ [ 7.00625 , 0.6125 ],
+ [11.73125 , 0.7625 ],
+ [15.275 , 0.65 ],
+ [12.9125 , 0.575 ],
+ [17.046875, 0.63125 ],
+ [18.81875 , 0.5375 ],
+ [ 3.4625 , 0.875 ],
+ [ 2.28125 , 1.0625 ],
+ [ 2.871875, 0.78125 ]]), 'exploration_results': array([ 3.02633148, 3.30050278, 3.74724591, 3.92461378, 4.45534719,
+ 4.52159416, 4.77507862, 5.06340436, 5.16761845, 5.42393003,
+ 5.50914405, 5.69522002, 6.68407291, 6.73863805, 6.84560996,
+ 7.20052264, 7.72130492, 8.47185488, 10.67451262])}}"
diff --git a/content/tables/min/WealthPortfolioSub(Stock)Market_estimate_results.csv b/content/tables/min/WealthPortfolioSub(Stock)Market_estimate_results.csv
new file mode 100644
index 0000000..6624a23
--- /dev/null
+++ b/content/tables/min/WealthPortfolioSub(Stock)Market_estimate_results.csv
@@ -0,0 +1,5941 @@
+CRRA,4.272642056859294
+DiscFac,0.9814607088251204
+time_to_estimate,105.39929842948914
+params,"{'CRRA': 4.272642056859294, 'DiscFac': 0.9814607088251204}"
+criterion,1.5881921698252235
+start_criterion,1.7417506643900147
+start_params,"{'CRRA': 5.0, 'DiscFac': 0.95}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,Absolute criterion change smaller than tolerance.
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 4.707203308184448, 'DiscFac': 0.9723293237231975}, {'CRRA': 4.290038276655113, 'DiscFac': 0.5612839565173267}, {'CRRA': 5.124368339713784, 'DiscFac': 0.7815145778668051}, {'CRRA': 4.290038276655113, 'DiscFac': 0.8852911049439405}, {'CRRA': 5.124368339713784, 'DiscFac': 1.0998082225394454}, {'CRRA': 5.124368339713784, 'DiscFac': 0.6528702672894295}, {'CRRA': 5.088882093668508, 'DiscFac': 0.5551642921938619}, {'CRRA': 4.290038276655113, 'DiscFac': 1.0958487440640778}, {'CRRA': 5.124368339713784, 'DiscFac': 0.9644452739308207}, {'CRRA': 4.815289190462201, 'DiscFac': 1.1}, {'CRRA': 4.290038276655113, 'DiscFac': 1.0869940700172442}, {'CRRA': 4.610395613673098, 'DiscFac': 0.5551642921938619}, {'CRRA': 4.712667209754667, 'DiscFac': 1.1}, {'CRRA': 4.290038276655113, 'DiscFac': 0.8302806857872134}, {'CRRA': 4.49862079241978, 'DiscFac': 0.8632291852888655}, {'CRRA': 4.618262130250856, 'DiscFac': 0.892211907379606}, {'CRRA': 4.649360364309195, 'DiscFac': 0.9610417287955715}, {'CRRA': 4.677179125402864, 'DiscFac': 0.9726952599678501}, {'CRRA': 4.662420411739433, 'DiscFac': 0.9709527874372768}, {'CRRA': 4.633143948980592, 'DiscFac': 0.9673433127210762}, {'CRRA': 4.647708424364658, 'DiscFac': 0.9710769920318861}, {'CRRA': 4.618217430273746, 'DiscFac': 0.9715282984145067}, {'CRRA': 4.559385583543956, 'DiscFac': 0.9740437573449842}, {'CRRA': 4.442362348737134, 'DiscFac': 0.9615159200987019}, {'CRRA': 4.6177820933812335, 'DiscFac': 0.966832786178363}, {'CRRA': 4.530168028631268, 'DiscFac': 0.9705981657398585}, {'CRRA': 4.54468016749636, 'DiscFac': 0.9744118507601772}, {'CRRA': 4.515251965828596, 'DiscFac': 0.974531215771109}, {'CRRA': 4.456469672419852, 'DiscFac': 0.9719249832509226}, {'CRRA': 4.54388800665835, 'DiscFac': 0.9677847513502521}, {'CRRA': 4.5005611019825995, 'DiscFac': 0.9754513255437164}, {'CRRA': 4.529485918905441, 'DiscFac': 0.9678147143724265}, {'CRRA': 4.485839431860874, 'DiscFac': 0.9752072544842302}, {'CRRA': 4.456429538458829, 'DiscFac': 0.9759793251278149}, {'CRRA': 4.397608962906071, 'DiscFac': 0.9774938921710231}, {'CRRA': 4.279965862398321, 'DiscFac': 0.9804443756996974}, {'CRRA': 4.122203844999166, 'DiscFac': 0.937104673702021}, {'CRRA': 4.163432700992639, 'DiscFac': 0.9640546179784433}, {'CRRA': 4.336906613655518, 'DiscFac': 0.9656153058500048}, {'CRRA': 4.249020769576481, 'DiscFac': 0.9761381800429344}, {'CRRA': 4.294680071351096, 'DiscFac': 0.9804072400803372}, {'CRRA': 4.272642056859294, 'DiscFac': 0.9814607088251204}], 'criterion': [1.6380478126416131, 4.03723195367052, 3.5440740950812013, 3.2759678353900803, 6.781083894625252, 3.8713442516298198, 3.996890584141768, 7.627891908022631, 1.7551707114922444, 7.144112642232848, 6.6404717126627215, 3.935564366818633, 7.291412101525699, 3.862333195265191, 3.197857033577577, 2.6761443032128733, 1.6565559654451956, 1.631941462430788, 1.6292672840092992, 1.6313284776792012, 1.6269015883981968, 1.6215771152258682, 1.6122243121836672, 1.6696000135319509, 1.6306703543399446, 1.614669208950377, 1.6100467129384297, 1.6064550393910892, 1.6076695381563089, 1.6233520305796163, 1.6045259070805813, 1.6226940047077765, 1.6029216364692263, 1.599716096343115, 1.5939391812466719, 1.5886714368056305, 2.4007693475753995, 1.7378906646063588, 1.6562535862817716, 1.601747168932624, 1.5887715770723967, 1.5881921698252237], 'runtime': [0.0, 1.6408778029999667, 1.879227850999996, 2.101594065000427, 2.313481502000286, 2.55059718099983, 2.782204840999839, 3.0194256559998394, 3.235137909000514, 3.449739153000337, 3.6794994500005487, 3.8966444010002306, 4.28813861800063, 5.764485786000478, 7.000034329999835, 8.24761119699997, 9.516164548999768, 10.76685041500059, 12.019717905000107, 13.265578907999952, 14.518897724000453, 15.760440533999827, 16.995802637999986, 18.22653636799987, 19.587672147000376, 20.82062521500029, 22.057747867000217, 23.28416549299982, 24.62205672500022, 25.949533355999847, 27.21613684300064, 28.504664697999942, 29.771321367999917, 31.040138887000467, 32.30792920600015, 33.793730317000154, 35.13760062700021, 36.411630069999774, 37.71618604300056, 39.015112086000045, 40.31985881299988, 41.661046635000275], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]}"
+convergence_report,"{'one_step': {'relative_criterion_change': 0.00015933602220390196, 'relative_params_change': 0.0066586234867468804, 'absolute_criterion_change': 0.000253056222835335, 'absolute_params_change': 0.02844554200489083}, 'five_steps': {'relative_criterion_change': 0.00015933602220390196, 'relative_params_change': 0.0066586234867468804, 'absolute_criterion_change': 0.000253056222835335, 'absolute_params_change': 0.02844554200489083}}"
+multistart_info,"{'start_parameters': [{'CRRA': 5.0, 'DiscFac': 0.95}, {'CRRA': 4.707203308184448, 'DiscFac': 0.9723293237231975}], 'local_optima': [Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 5.482e-05 0.01069
+relative_params_change 0.008558 0.06089
+absolute_criterion_change 8.708e-05 0.01698
+absolute_params_change 0.0362 0.2564
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.), Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute criterion change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 0.0003018 0.01028
+relative_params_change 0.002003 0.05369
+absolute_criterion_change 0.0004793 0.01633
+absolute_params_change 0.007394 0.228
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.)], 'exploration_sample': [{'CRRA': 5.0, 'DiscFac': 0.95}, {'CRRA': 5.824999999999999, 'DiscFac': 0.9500000000000001}, {'CRRA': 7.596874999999999, 'DiscFac': 0.9312500000000001}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 9.368749999999999, 'DiscFac': 0.8375}, {'CRRA': 8.1875, 'DiscFac': 0.7250000000000001}, {'CRRA': 10.549999999999999, 'DiscFac': 0.8}, {'CRRA': 11.73125, 'DiscFac': 0.7625000000000001}, {'CRRA': 7.00625, 'DiscFac': 0.6125}, {'CRRA': 15.274999999999999, 'DiscFac': 0.65}, {'CRRA': 12.9125, 'DiscFac': 0.575}, {'CRRA': 17.046875, 'DiscFac': 0.6312500000000001}, {'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 16.45625, 'DiscFac': 0.9125000000000001}, {'CRRA': 14.093749999999998, 'DiscFac': 0.9875}, {'CRRA': 18.81875, 'DiscFac': 0.5375}, {'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 17.6375, 'DiscFac': 1.0250000000000001}, {'CRRA': 2.871875, 'DiscFac': 0.78125}, {'CRRA': 2.28125, 'DiscFac': 1.0625}], 'exploration_results': array([ 1.74175066, 2.04247528, 2.9717037 , 3.76994253, 3.80031518,
+ 4.27735638, 4.32695188, 4.78264529, 5.25346612, 5.79528191,
+ 5.94010747, 6.02403907, 6.09730665, 6.10855726, 6.12270544,
+ 6.45799199, 7.01428788, 7.3683214 , 8.72764877, 13.61935456])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.4707203308184449, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.6380478126416131, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=0, candidate_x=array([4.70720331, 0.97232932]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.4707203308184449, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.3590354657860904, linear_terms=array([ 0.23079344, -0.53681647]), square_terms=array([[ 0.14552137, -0.45699815],
+ [-0.45699815, 8.05766769]]), scale=array([0.41716503, 0.27241785]), shift=array([4.70720331, 0.82758215])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=13, candidate_x=array([4.29003828, 0.83028069]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=-2.200880078069248, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.23536016540922244, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 4, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.652854750173936, linear_terms=array([0.06969601, 1.57909406]), square_terms=array([[ 0.03163761, -0.06566736],
+ [-0.06566736, 4.02842576]]), scale=array([0.20858252, 0.1681266 ]), shift=array([4.70720331, 0.9318734 ])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=14, candidate_x=array([4.49862079, 0.86322919]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=-1.7600178518411977, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 4, 7, 8, 9, 10, 11, 12]), old_indices_discarded=array([ 1, 2, 5, 6, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.11768008270461122, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 8, 9, 10, 11, 12, 14]), model=ScalarModel(intercept=1.854395217885178, linear_terms=array([0.030548 , 1.44658812]), square_terms=array([[ 0.01441336, -0.05269915],
+ [-0.05269915, 2.1098409 ]]), scale=0.11768008270461122, shift=array([4.70720331, 0.97232932])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=15, candidate_x=array([4.61826213, 0.89221191]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=-1.915374410311117, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 8, 9, 10, 11, 12, 14]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 9, 12, 14, 15]), model=ScalarModel(intercept=1.4384011150252112, linear_terms=array([0.06693427, 0.16511788]), square_terms=array([[ 0.06028812, -0.33441041],
+ [-0.33441041, 2.50134611]]), scale=0.05884004135230561, shift=array([4.70720331, 0.97232932])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=16, candidate_x=array([4.64936036, 0.96104173]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=-0.2167656601879471, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 9, 12, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16]), model=ScalarModel(intercept=1.6372268956710594, linear_terms=array([ 0.1685441 , -0.13872507]), square_terms=array([[ 0.05020446, -0.12669357],
+ [-0.12669357, 0.64471625]]), scale=0.029420020676152805, shift=array([4.70720331, 0.97232932])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=17, candidate_x=array([4.67717913, 0.97269526]), index=17, x=array([4.67717913, 0.97269526]), fval=1.631941462430788, rho=0.04184469522185483, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.03002641272341987, relative_step_length=1.0206115438850998, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.67717913, 0.97269526]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17]), model=ScalarModel(intercept=1.6319414624307902, linear_terms=array([0.00310345, 0.01871238]), square_terms=array([[0.0001745 , 0.00326021],
+ [0.00326021, 0.12782284]]), scale=0.014710010338076403, shift=array([4.67717913, 0.97269526])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=18, candidate_x=array([4.66242041, 0.97095279]), index=18, x=array([4.66242041, 0.97095279]), fval=1.6292672840092994, rho=0.6756001269705089, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.014861219314677702, relative_step_length=1.010279324971642, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.66242041, 0.97095279]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16, 17, 18]), model=ScalarModel(intercept=1.4810088090029692, linear_terms=array([ 0.11958572, -0.03732605]), square_terms=array([[ 0.05065772, -0.12829538],
+ [-0.12829538, 0.65103621]]), scale=0.029420020676152805, shift=array([4.66242041, 0.97095279])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=19, candidate_x=array([4.63314395, 0.96734331]), index=18, x=array([4.66242041, 0.97095279]), fval=1.6292672840092994, rho=-0.020590492456450688, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.66242041, 0.97095279]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17, 18, 19]), model=ScalarModel(intercept=1.6292156586595015, linear_terms=array([0.00188502, 0.00233158]), square_terms=array([[0.00018003, 0.0034169 ],
+ [0.0034169 , 0.12685944]]), scale=0.014710010338076403, shift=array([4.66242041, 0.97095279])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=20, candidate_x=array([4.64770842, 0.97107699]), index=20, x=array([4.64770842, 0.97107699]), fval=1.6269015883981965, rho=1.3143613594368355, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.014712511658342373, relative_step_length=1.0001700420467752, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.64770842, 0.97107699]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16, 17, 18, 19, 20]), model=ScalarModel(intercept=1.5063160859816729, linear_terms=array([ 0.05041148, -0.04272255]), square_terms=array([[ 0.0075054 , -0.03307161],
+ [-0.03307161, 0.58165163]]), scale=0.029420020676152805, shift=array([4.64770842, 0.97107699])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=21, candidate_x=array([4.61821743, 0.9715283 ]), index=21, x=array([4.61821743, 0.9715283 ]), fval=1.6215771152258682, rho=0.11367207027105729, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16, 17, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.029494447103161476, relative_step_length=1.002529788399129, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.61821743, 0.9715283 ]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16, 17, 18, 19, 20, 21]), model=ScalarModel(intercept=1.517081598562027, linear_terms=array([ 0.03194748, -0.0915037 ]), square_terms=array([[0.00517109, 0.00423992],
+ [0.00423992, 2.21259895]]), scale=0.05884004135230561, shift=array([4.61821743, 0.9715283 ])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=22, candidate_x=array([4.55938558, 0.97404376]), index=22, x=array([4.55938558, 0.97404376]), fval=1.6122243121836672, rho=0.2975814223142011, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16, 17, 18, 19, 20, 21]), old_indices_discarded=array([ 9, 14]), step_length=0.058885598606691694, relative_step_length=1.000774255988593, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55938558, 0.97404376]), radius=0.11768008270461122, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 15, 16, 17, 18, 19, 20, 21, 22]), model=ScalarModel(intercept=1.6244940972117774, linear_terms=array([0.00768524, 0.3968281 ]), square_terms=array([[ 0.01794061, -0.11175552],
+ [-0.11175552, 4.76976273]]), scale=0.11768008270461122, shift=array([4.55938558, 0.97404376])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=23, candidate_x=array([4.44236235, 0.96151592]), index=22, x=array([4.55938558, 0.97404376]), fval=1.6122243121836672, rho=-2.222167750707154, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 15, 16, 17, 18, 19, 20, 21, 22]), old_indices_discarded=array([ 0, 1, 3, 4, 7, 8, 9, 10, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55938558, 0.97404376]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([15, 16, 17, 18, 19, 20, 21, 22, 23]), model=ScalarModel(intercept=1.6256896704319683, linear_terms=array([0.0043886 , 0.10549552]), square_terms=array([[0.00419989, 0.0564693 ],
+ [0.0564693 , 1.33147903]]), scale=0.05884004135230561, shift=array([4.55938558, 0.97404376])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=24, candidate_x=array([4.61778209, 0.96683279]), index=22, x=array([4.55938558, 0.97404376]), fval=1.6122243121836672, rho=-5.466651138741908, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([15, 16, 17, 18, 19, 20, 21, 22, 23]), old_indices_discarded=array([ 0, 3, 9, 10, 12, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55938558, 0.97404376]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([15, 16, 18, 19, 20, 21, 22, 23, 24]), model=ScalarModel(intercept=1.6269177150442447, linear_terms=array([0.00261458, 0.05266846]), square_terms=array([[0.00103242, 0.01385775],
+ [0.01385775, 0.33190979]]), scale=0.029420020676152805, shift=array([4.55938558, 0.97404376])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=25, candidate_x=array([4.53016803, 0.97059817]), index=22, x=array([4.55938558, 0.97404376]), fval=1.6122243121836672, rho=-0.5597649420514624, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([15, 16, 18, 19, 20, 21, 22, 23, 24]), old_indices_discarded=array([14, 17]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55938558, 0.97404376]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([21, 22, 24, 25]), model=ScalarModel(intercept=1.6125186187197176, linear_terms=array([0.00192027, 0.00012471]), square_terms=array([[0.00019263, 0.00355747],
+ [0.00355747, 0.13532065]]), scale=0.014710010338076403, shift=array([4.55938558, 0.97404376])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=26, candidate_x=array([4.54468017, 0.97441185]), index=26, x=array([4.54468017, 0.97441185]), fval=1.6100467129384297, rho=1.1664111683806726, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([21, 22, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.01471002222619643, relative_step_length=1.0000008081653073, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.54468017, 0.97441185]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 19, 20, 21, 22, 23, 24, 25, 26]), model=ScalarModel(intercept=1.610617175628848, linear_terms=array([0.00467212, 0.01317766]), square_terms=array([[0.00085989, 0.01539591],
+ [0.01539591, 0.54391644]]), scale=0.029420020676152805, shift=array([4.54468017, 0.97441185])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=27, candidate_x=array([4.51525197, 0.97453122]), index=27, x=array([4.51525197, 0.97453122]), fval=1.6064550393910895, rho=0.8455422416631787, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([16, 19, 20, 21, 22, 23, 24, 25, 26]), old_indices_discarded=array([14, 15, 17, 18]), step_length=0.029428443747579514, relative_step_length=1.000286304062102, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.51525197, 0.97453122]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 19, 21, 22, 23, 24, 25, 26, 27]), model=ScalarModel(intercept=1.6171036489097632, linear_terms=array([0.00432157, 0.08549957]), square_terms=array([[0.00404165, 0.04083728],
+ [0.04083728, 0.9748026 ]]), scale=0.05884004135230561, shift=array([4.51525197, 0.97453122])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=28, candidate_x=array([4.45646967, 0.97192498]), index=27, x=array([4.51525197, 0.97453122]), fval=1.6064550393910895, rho=-0.3653445002297127, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 19, 21, 22, 23, 24, 25, 26, 27]), old_indices_discarded=array([ 0, 3, 7, 10, 12, 13, 15, 16, 17, 18, 20]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.51525197, 0.97453122]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 21, 22, 23, 24, 25, 26, 27, 28]), model=ScalarModel(intercept=1.6158549160636237, linear_terms=array([0.0016874, 0.045421 ]), square_terms=array([[0.00106973, 0.01073937],
+ [0.01073937, 0.24481613]]), scale=0.029420020676152805, shift=array([4.51525197, 0.97453122])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=29, candidate_x=array([4.54388801, 0.96778475]), index=27, x=array([4.51525197, 0.97453122]), fval=1.6064550393910895, rho=-3.9976405851055894, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 21, 22, 23, 24, 25, 26, 27, 28]), old_indices_discarded=array([15, 16, 19, 20]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.51525197, 0.97453122]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 25, 26, 27, 28, 29]), model=ScalarModel(intercept=1.6066876339598914, linear_terms=array([ 0.00156986, -0.00517551]), square_terms=array([[0.00019907, 0.00364165],
+ [0.00364165, 0.13928521]]), scale=0.014710010338076403, shift=array([4.51525197, 0.97453122])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=30, candidate_x=array([4.5005611 , 0.97545133]), index=30, x=array([4.5005611 , 0.97545133]), fval=1.6045259070805813, rho=1.104079170574446, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 25, 26, 27, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.014719649538465622, relative_step_length=1.0006552816869387, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.5005611 , 0.97545133]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 22, 23, 25, 26, 27, 28, 29, 30]), model=ScalarModel(intercept=1.6151275211840224, linear_terms=array([-0.00091945, 0.04982336]), square_terms=array([[0.0018448 , 0.01496444],
+ [0.01496444, 0.24558318]]), scale=0.029420020676152805, shift=array([4.5005611 , 0.97545133])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=31, candidate_x=array([4.52948592, 0.96781471]), index=30, x=array([4.5005611 , 0.97545133]), fval=1.6045259070805813, rho=-2.139770334550352, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 22, 23, 25, 26, 27, 28, 29, 30]), old_indices_discarded=array([15, 19, 21, 24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.5005611 , 0.97545133]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 23, 25, 26, 27, 28, 29, 30, 31]), model=ScalarModel(intercept=1.6052861266606393, linear_terms=array([0.00202734, 0.00619617]), square_terms=array([[0.0002099 , 0.00380383],
+ [0.00380383, 0.14225083]]), scale=0.014710010338076403, shift=array([4.5005611 , 0.97545133])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=32, candidate_x=array([4.48583943, 0.97520725]), index=32, x=array([4.48583943, 0.97520725]), fval=1.6029216364692263, rho=0.8252881334307689, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 23, 25, 26, 27, 28, 29, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.014723693213830385, relative_step_length=1.0009301744485226, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.48583943, 0.97520725]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 26, 27, 28, 29, 30, 31, 32]), model=ScalarModel(intercept=1.603281247362616, linear_terms=array([0.00373974, 0.00024847]), square_terms=array([[0.00085108, 0.01532586],
+ [0.01532586, 0.57103593]]), scale=0.029420020676152805, shift=array([4.48583943, 0.97520725])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=33, candidate_x=array([4.45642954, 0.97597933]), index=33, x=array([4.45642954, 0.97597933]), fval=1.599716096343115, rho=0.9127111762327604, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 26, 27, 28, 29, 30, 31, 32]), old_indices_discarded=array([14, 21, 22, 24]), step_length=0.0294200258837129, relative_step_length=1.0000001770073568, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.45642954, 0.97597933]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 27, 28, 29, 30, 31, 32, 33]), model=ScalarModel(intercept=1.5997771172632202, linear_terms=array([0.00705164, 0.0023645 ]), square_terms=array([[0.00344304, 0.06165063],
+ [0.06165063, 2.29724063]]), scale=0.05884004135230561, shift=array([4.45642954, 0.97597933])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=34, candidate_x=array([4.39760896, 0.97749389]), index=34, x=array([4.39760896, 0.97749389]), fval=1.5939391812466719, rho=0.9480590071850733, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 27, 28, 29, 30, 31, 32, 33]), old_indices_discarded=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26]), step_length=0.05884007156424952, relative_step_length=1.000000513458917, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.39760896, 0.97749389]), radius=0.11768008270461122, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 27, 28, 30, 31, 32, 33, 34]), model=ScalarModel(intercept=1.593889235787229, linear_terms=array([0.01040724, 0.00815608]), square_terms=array([[0.01329919, 0.24024205],
+ [0.24024205, 9.25060511]]), scale=0.11768008270461122, shift=array([4.39760896, 0.97749389])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=35, candidate_x=array([4.27996586, 0.98044438]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=0.7899999841070257, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 27, 28, 30, 31, 32, 33, 34]), old_indices_discarded=array([ 0, 1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 24, 26, 29]), step_length=0.11768009368678081, relative_step_length=1.0000000933222457, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.23536016540922244, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 13, 23, 28, 30, 32, 34, 35]), model=ScalarModel(intercept=1.462227461968244, linear_terms=array([ 0.42418134, -1.67220361]), square_terms=array([[ 0.54111536, -2.08375437],
+ [-2.08375437, 13.44006276]]), scale=array([0.20858252, 0.16406907]), shift=array([4.27996586, 0.93593093])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=36, candidate_x=array([4.12220384, 0.93710467]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-3.916267884563185, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 13, 23, 28, 30, 32, 34, 35]), old_indices_discarded=array([ 0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19,
+ 20, 21, 22, 24, 25, 26, 27, 29, 31, 33]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.11768008270461122, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 13, 23, 33, 34, 35, 36]), model=ScalarModel(intercept=1.4622568288955424, linear_terms=array([0.02225047, 0.92573591]), square_terms=array([[ 0.05426403, -0.13596618],
+ [-0.13596618, 7.70370864]]), scale=0.11768008270461122, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=37, candidate_x=array([4.1634327 , 0.96405462]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-2.181712710002738, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 13, 23, 33, 34, 35, 36]), old_indices_discarded=array([ 0, 1, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26,
+ 27, 28, 29, 30, 31, 32]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 13, 23, 34, 35, 36, 37]), model=ScalarModel(intercept=1.4660466698117092, linear_terms=array([0.01297109, 0.40170174]), square_terms=array([[0.01156038, 0.07971153],
+ [0.07971153, 1.91612895]]), scale=0.05884004135230561, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=38, candidate_x=array([4.33690661, 0.96561531]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-1.6144313618454553, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 13, 23, 34, 35, 36, 37]), old_indices_discarded=array([14, 22, 25, 26, 27, 28, 29, 30, 31, 32, 33]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 34, 35, 37, 38]), model=ScalarModel(intercept=1.470665765480307, linear_terms=array([0.00298517, 0.10703439]), square_terms=array([[0.00144857, 0.00998505],
+ [0.00998505, 0.6595069 ]]), scale=0.029420020676152805, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=39, candidate_x=array([4.24902077, 0.97613818]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-1.3905549963491703, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 34, 35, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([35, 38, 39]), model=ScalarModel(intercept=1.588671436805631, linear_terms=array([-0.00081796, -0.00402187]), square_terms=array([[0.00023222, 0.00443072],
+ [0.00443072, 0.1618569 ]]), scale=0.014710010338076403, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=40, candidate_x=array([4.29468007, 0.98040724]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-0.14254194492005098, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 38, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.007355005169038201, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([35, 39, 40]), model=ScalarModel(intercept=1.5886714368056296, linear_terms=array([-1.01760419e-05, -4.87679307e-03]), square_terms=array([[5.26567689e-05, 9.93842843e-04],
+ [9.93842843e-04, 4.23791006e-02]]), scale=0.007355005169038201, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=41, candidate_x=array([4.27264206, 0.98146071]), index=41, x=array([4.27264206, 0.98146071]), fval=1.5881921698252235, rho=1.2960293054666532, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([35, 39, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.007393988138705295, relative_step_length=1.005300196093838, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 42 entries., 'multistart_info': {'start_parameters': [array([5. , 0.95]), array([4.70720331, 0.97232932])], 'local_optima': [{'solution_x': array([4.24419676, 0.98157843]), 'solution_criterion': 1.5884452260480588, 'states': [State(trustregion=Region(center=array([5. , 0.95]), radius=0.5, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.7417506643900147, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.5, shift=array([5. , 0.95])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=0, candidate_x=array([5. , 0.95]), index=0, x=array([5. , 0.95]), fval=1.7417506643900145, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([5. , 0.95]), radius=0.5, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.525682901381052, linear_terms=array([ 0.35147642, -0.70797287]), square_terms=array([[ 0.17228309, -0.70481542],
+ [-0.70481542, 7.78269567]]), scale=array([0.44311346, 0.29655673]), shift=array([5. , 0.80344327])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=13, candidate_x=array([4.55688654, 0.80356358]), index=0, x=array([5. , 0.95]), fval=1.7417506643900145, rho=-2.1815597578942127, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5. , 0.95]), radius=0.25, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 4, 7, 8, 9, 10, 12, 13]), model=ScalarModel(intercept=1.688619674041434, linear_terms=array([ 0.20628142, -2.78312447]), square_terms=array([[ 0.04634332, -0.54356827],
+ [-0.54356827, 15.6553705 ]]), scale=array([0.22155673, 0.18577837]), shift=array([5. , 0.91422163])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=14, candidate_x=array([4.77844327, 0.94079789]), index=0, x=array([5. , 0.95]), fval=1.7417506643900145, rho=-0.7316148825660728, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 4, 7, 8, 9, 10, 12, 13]), old_indices_discarded=array([ 1, 2, 5, 6, 11]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([5. , 0.95]), radius=0.125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 8, 9, 10, 12, 13, 14]), model=ScalarModel(intercept=1.5012663356887093, linear_terms=array([ 0.08935364, -0.18990169]), square_terms=array([[ 0.02022595, -0.24678211],
+ [-0.24678211, 7.22788319]]), scale=0.125, shift=array([5. , 0.95])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=15, candidate_x=array([4.87496272, 0.94902461]), index=15, x=array([4.87496272, 0.94902461]), fval=1.735141592048766, rho=0.08314799811163025, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 8, 9, 10, 12, 13, 14]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 11]), step_length=0.12504108299697955, relative_step_length=1.0003286639758364, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.87496272, 0.94902461]), radius=0.0625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 7, 9, 12, 14, 15]), model=ScalarModel(intercept=1.7089526132207769, linear_terms=array([ 0.02648415, -0.90309879]), square_terms=array([[ 2.01607285e-03, -3.09418837e-02],
+ [-3.09418837e-02, 2.59137456e+00]]), scale=0.0625, shift=array([4.87496272, 0.94902461])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=16, candidate_x=array([4.81232469, 0.96994443]), index=16, x=array([4.81232469, 0.96994443]), fval=1.661854396005139, rho=0.4254203441355506, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 7, 9, 12, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.06603909233959604, relative_step_length=1.0566254774335366, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.81232469, 0.96994443]), radius=0.125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 9, 10, 12, 14, 15, 16]), model=ScalarModel(intercept=1.4777704337859343, linear_terms=array([0.05201615, 0.40259425]), square_terms=array([[ 0.02293557, -0.32021801],
+ [-0.32021801, 9.48068192]]), scale=0.125, shift=array([4.81232469, 0.96994443])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=17, candidate_x=array([4.6875834 , 0.96047652]), index=17, x=array([4.6875834 , 0.96047652]), fval=1.6605566084700965, rho=0.019087760659877613, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 9, 10, 12, 14, 15, 16]), old_indices_discarded=array([ 1, 11, 13]), step_length=0.12510008504138495, relative_step_length=1.0008006803310796, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.6875834 , 0.96047652]), radius=0.0625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 12, 13, 14, 15, 16, 17]), model=ScalarModel(intercept=1.4081104203383767, linear_terms=array([0.02058664, 0.27473715]), square_terms=array([[ 0.02001168, -0.16820066],
+ [-0.16820066, 1.89038505]]), scale=0.0625, shift=array([4.6875834 , 0.96047652])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=18, candidate_x=array([4.62612848, 0.94622607]), index=17, x=array([4.6875834 , 0.96047652]), fval=1.6605566084700965, rho=-2.0577598152094736, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 12, 13, 14, 15, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.6875834 , 0.96047652]), radius=0.03125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 16, 17, 18]), model=ScalarModel(intercept=1.6564086025715405, linear_terms=array([-0.00040164, -0.13821286]), square_terms=array([[0.0010511 , 0.01749125],
+ [0.01749125, 0.49318606]]), scale=0.03125, shift=array([4.6875834 , 0.96047652])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=19, candidate_x=array([4.65669195, 0.970249 ]), index=19, x=array([4.65669195, 0.970249 ]), fval=1.6291014270431563, rho=1.332667694520173, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([14, 16, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.03240034924580121, relative_step_length=1.0368111758656386, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65669195, 0.970249 ]), radius=0.0625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 13, 14, 16, 17, 18, 19]), model=ScalarModel(intercept=1.4667362991629962, linear_terms=array([0.03429873, 0.35050851]), square_terms=array([[ 0.07672055, -0.32331271],
+ [-0.32331271, 1.74181997]]), scale=0.0625, shift=array([4.65669195, 0.970249 ])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=20, candidate_x=array([4.59740369, 0.94773026]), index=19, x=array([4.65669195, 0.970249 ]), fval=1.6291014270431563, rho=-1.221321739629065, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 13, 14, 16, 17, 18, 19]), old_indices_discarded=array([15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65669195, 0.970249 ]), radius=0.03125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 14, 16, 17, 18, 19, 20]), model=ScalarModel(intercept=1.476547966942911, linear_terms=array([0.03370192, 0.03763453]), square_terms=array([[ 0.00506063, -0.03670318],
+ [-0.03670318, 0.56722334]]), scale=0.03125, shift=array([4.65669195, 0.970249 ])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=21, candidate_x=array([4.62562764, 0.9663926 ]), index=19, x=array([4.65669195, 0.970249 ]), fval=1.6291014270431563, rho=-0.08905240689766346, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 14, 16, 17, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.65669195, 0.970249 ]), radius=0.015625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([17, 18, 19, 20, 21]), model=ScalarModel(intercept=1.6322981269191386, linear_terms=array([0.00381601, 0.00635055]), square_terms=array([[0.00024779, 0.00408403],
+ [0.00408403, 0.13797549]]), scale=0.015625, shift=array([4.65669195, 0.970249 ])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=22, candidate_x=array([4.64105275, 0.96999908]), index=22, x=array([4.64105275, 0.96999908]), fval=1.6271336788414648, rho=0.5298332001777031, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([17, 18, 19, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.015641195495581482, relative_step_length=1.0010365117172149, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.64105275, 0.96999908]), radius=0.03125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 14, 17, 18, 19, 20, 21, 22]), model=ScalarModel(intercept=1.4934936330221924, linear_terms=array([0.03884984, 0.00088909]), square_terms=array([[ 0.00687594, -0.04632293],
+ [-0.04632293, 0.56349202]]), scale=0.03125, shift=array([4.64105275, 0.96999908])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=23, candidate_x=array([4.60989908, 0.96754444]), index=22, x=array([4.64105275, 0.96999908]), fval=1.6271336788414648, rho=-0.036286714935296296, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 14, 17, 18, 19, 20, 21, 22]), old_indices_discarded=array([10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.64105275, 0.96999908]), radius=0.015625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([17, 18, 19, 20, 21, 22, 23]), model=ScalarModel(intercept=1.629077033113828, linear_terms=array([0.00316852, 0.0009159 ]), square_terms=array([[0.00023897, 0.00406143],
+ [0.00406143, 0.13846122]]), scale=0.015625, shift=array([4.64105275, 0.96999908])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=24, candidate_x=array([4.62543122, 0.97034637]), index=24, x=array([4.62543122, 0.97034637]), fval=1.6244654953135362, rho=0.8651468419534107, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([17, 18, 19, 20, 21, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.015625394514317673, relative_step_length=1.000025248916331, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.62543122, 0.97034637]), radius=0.03125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 17, 18, 19, 20, 21, 22, 23, 24]), model=ScalarModel(intercept=1.637881414293269, linear_terms=array([0.00458585, 0.02180017]), square_terms=array([[0.00098328, 0.01001956],
+ [0.01001956, 0.27420015]]), scale=0.03125, shift=array([4.62543122, 0.97034637])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=25, candidate_x=array([4.59411882, 0.96902136]), index=25, x=array([4.59411882, 0.96902136]), fval=1.6230082503264982, rho=0.3347231805015842, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 17, 18, 19, 20, 21, 22, 23, 24]), old_indices_discarded=array([ 7, 10, 14]), step_length=0.03134042190113058, relative_step_length=1.0028935008361786, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.59411882, 0.96902136]), radius=0.0625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([17, 18, 19, 20, 21, 22, 23, 24, 25]), model=ScalarModel(intercept=1.6217895613926379, linear_terms=array([ 0.00847952, -0.07819746]), square_terms=array([[0.0037041 , 0.06389573],
+ [0.06389573, 2.22309204]]), scale=0.0625, shift=array([4.59411882, 0.96902136])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=26, candidate_x=array([4.53171043, 0.97299769]), index=26, x=array([4.53171043, 0.97299769]), fval=1.6090597971175158, rho=1.2503670663900857, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([17, 18, 19, 20, 21, 22, 23, 24, 25]), old_indices_discarded=array([ 3, 7, 10, 13, 14, 15, 16]), step_length=0.06253494026175699, relative_step_length=1.0005590441881118, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.53171043, 0.97299769]), radius=0.125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 18, 20, 21, 22, 23, 24, 25, 26]), model=ScalarModel(intercept=1.6102616360135478, linear_terms=array([0.03712606, 0.18206296]), square_terms=array([[ 0.01015217, -0.01895962],
+ [-0.01895962, 4.60594093]]), scale=0.125, shift=array([4.53171043, 0.97299769])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=27, candidate_x=array([4.40674873, 0.96757506]), index=26, x=array([4.53171043, 0.97299769]), fval=1.6090597971175158, rho=-0.5639375590226261, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 18, 20, 21, 22, 23, 24, 25, 26]), old_indices_discarded=array([ 0, 1, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.53171043, 0.97299769]), radius=0.0625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 18, 20, 21, 22, 23, 24, 25, 26]), model=ScalarModel(intercept=1.6102616360135507, linear_terms=array([0.01856303, 0.09103148]), square_terms=array([[ 0.00253804, -0.00473991],
+ [-0.00473991, 1.15148523]]), scale=0.0625, shift=array([4.53171043, 0.97299769])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=28, candidate_x=array([4.46924045, 0.96787265]), index=26, x=array([4.53171043, 0.97299769]), fval=1.6090597971175158, rho=-0.6660251871790788, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 18, 20, 21, 22, 23, 24, 25, 26]), old_indices_discarded=array([ 7, 10, 13, 14, 16, 17, 19, 27]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.53171043, 0.97299769]), radius=0.03125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([18, 20, 21, 22, 23, 24, 25, 26, 28]), model=ScalarModel(intercept=1.6130550857976087, linear_terms=array([0.00349422, 0.00036862]), square_terms=array([[0.00092013, 0.01618579],
+ [0.01618579, 0.55845701]]), scale=0.03125, shift=array([4.53171043, 0.97299769])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=29, candidate_x=array([4.50047281, 0.97387764]), index=29, x=array([4.50047281, 0.97387764]), fval=1.605426494943335, rho=1.1155576394171702, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([18, 20, 21, 22, 23, 24, 25, 26, 28]), old_indices_discarded=array([ 3, 7, 10, 19, 27]), step_length=0.03125001041288541, relative_step_length=1.000000333212333, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.50047281, 0.97387764]), radius=0.0625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 20, 23, 24, 25, 26, 27, 28, 29]), model=ScalarModel(intercept=1.6183556456638188, linear_terms=array([0.00684669, 0.05973239]), square_terms=array([[0.00278798, 0.03172634],
+ [0.03172634, 1.10937006]]), scale=0.0625, shift=array([4.50047281, 0.97387764])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=30, candidate_x=array([4.43792976, 0.97230568]), index=29, x=array([4.50047281, 0.97387764]), fval=1.605426494943335, rho=-0.07150461942939365, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 20, 23, 24, 25, 26, 27, 28, 29]), old_indices_discarded=array([ 7, 10, 13, 14, 16, 17, 18, 19, 21, 22]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.50047281, 0.97387764]), radius=0.03125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 20, 23, 25, 26, 27, 28, 29, 30]), model=ScalarModel(intercept=1.6184027642815897, linear_terms=array([0.0045845 , 0.03080401]), square_terms=array([[0.00058656, 0.00613405],
+ [0.00613405, 0.27515297]]), scale=0.03125, shift=array([4.50047281, 0.97387764])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=31, candidate_x=array([4.46916051, 0.97111184]), index=29, x=array([4.50047281, 0.97387764]), fval=1.605426494943335, rho=-0.9123426176285044, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 20, 23, 25, 26, 27, 28, 29, 30]), old_indices_discarded=array([10, 18, 21, 22, 24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.50047281, 0.97387764]), radius=0.015625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([26, 28, 29, 30, 31]), model=ScalarModel(intercept=1.605617847169665, linear_terms=array([ 0.00128156, -0.01188114]), square_terms=array([[0.0002254 , 0.0042768 ],
+ [0.0042768 , 0.16410452]]), scale=0.015625, shift=array([4.50047281, 0.97387764])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=32, candidate_x=array([4.48488283, 0.97540147]), index=32, x=array([4.48488283, 0.97540147]), fval=1.602773679862558, rho=1.352823852288151, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([26, 28, 29, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.015664272945244032, relative_step_length=1.002513468495618, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.48488283, 0.97540147]), radius=0.03125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([20, 25, 26, 27, 28, 29, 30, 31, 32]), model=ScalarModel(intercept=1.6062136335670387, linear_terms=array([0.00290969, 0.01676498]), square_terms=array([[0.00098405, 0.01747478],
+ [0.01747478, 0.58451439]]), scale=0.03125, shift=array([4.48488283, 0.97540147])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=33, candidate_x=array([4.45362123, 0.97543964]), index=33, x=array([4.45362123, 0.97543964]), fval=1.6000006424542228, rho=1.1464442943410598, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([20, 25, 26, 27, 28, 29, 30, 31, 32]), old_indices_discarded=array([ 3, 10, 18, 21, 23, 24]), step_length=0.03126162127554899, relative_step_length=1.0003718808175677, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.45362123, 0.97543964]), radius=0.0625, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([25, 26, 27, 28, 29, 30, 31, 32, 33]), model=ScalarModel(intercept=1.600137490679293, linear_terms=array([ 0.00511285, -0.03923899]), square_terms=array([[0.00379447, 0.07073241],
+ [0.07073241, 2.64617384]]), scale=0.0625, shift=array([4.45362123, 0.97543964])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=34, candidate_x=array([4.39116976, 0.97803159]), index=34, x=array([4.39116976, 0.97803159]), fval=1.5931176392366255, rho=1.252038327370141, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([25, 26, 27, 28, 29, 30, 31, 32, 33]), old_indices_discarded=array([ 3, 7, 10, 13, 17, 18, 19, 20, 21, 22, 23, 24]), step_length=0.06250524058317128, relative_step_length=1.0000838493307405, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.39116976, 0.97803159]), radius=0.125, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([26, 27, 28, 29, 30, 31, 32, 33, 34]), model=ScalarModel(intercept=1.5937058126689254, linear_terms=array([ 0.00822615, -0.00037724]), square_terms=array([[0.0117151 , 0.21696693],
+ [0.21696693, 8.44873327]]), scale=array([0.11077837, 0.11077837]), shift=array([4.39116976, 0.97803159])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=35, candidate_x=array([4.28039139, 0.98088137]), index=35, x=array([4.28039139, 0.98088137]), fval=1.5885323102852085, rho=0.8879072804147917, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([26, 27, 28, 29, 30, 31, 32, 33, 34]), old_indices_discarded=array([ 0, 1, 3, 7, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
+ 24, 25]), step_length=0.11081501499978337, relative_step_length=0.886520119998267, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.28039139, 0.98088137]), radius=0.25, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([27, 28, 29, 30, 31, 32, 33, 34, 35]), model=ScalarModel(intercept=2.4915220788407786, linear_terms=array([-0.18994999, -6.03058366]), square_terms=array([[ 0.04649406, 0.64815023],
+ [ 0.64815023, 20.13386188]]), scale=array([0.22155673, 0.17033768]), shift=array([4.28039139, 0.92966232])), vector_model=VectorModel(intercepts=array([ 0.06627514, 0.16052249, 0.18679036, 0.20889914, 0.25790787,
+ 0.27002423, 0.29431582, -0.27833955, -0.43778171, -0.45868004,
+ -0.54906886, -0.73404126, -0.27030478, -0.09133963, -0.04732048,
+ -0.05732014, -0.01646955]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.5, shift=array([5. , 0.95])), candidate_index=36, candidate_x=array([4.24419676, 0.98157843]), index=36, x=array([4.24419676, 0.98157843]), fval=1.5884452260480588, rho=0.24482639004035095, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([27, 28, 29, 30, 31, 32, 33, 34, 35]), old_indices_discarded=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]), step_length=0.03620134303934806, relative_step_length=0.14480537215739225, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 37 entries., 'history': {'params': [{'CRRA': 5.0, 'DiscFac': 0.95}, {'CRRA': 4.603823840691037, 'DiscFac': 0.5068865372736209}, {'CRRA': 5.443113462726379, 'DiscFac': 0.7406051122511741}, {'CRRA': 4.556886537273621, 'DiscFac': 0.8646304564170145}, {'CRRA': 5.442032378301953, 'DiscFac': 1.1}, {'CRRA': 5.443113462726379, 'DiscFac': 0.6604052474305999}, {'CRRA': 5.383311967473204, 'DiscFac': 0.5068865372736209}, {'CRRA': 4.615280947896822, 'DiscFac': 1.1}, {'CRRA': 5.443113462726379, 'DiscFac': 0.9631647529578035}, {'CRRA': 5.0642377360035, 'DiscFac': 1.1}, {'CRRA': 4.5660095036542545, 'DiscFac': 1.1}, {'CRRA': 4.840048628235497, 'DiscFac': 0.5068865372736209}, {'CRRA': 4.95541202464738, 'DiscFac': 1.1}, {'CRRA': 4.556886537273621, 'DiscFac': 0.8035635821242174}, {'CRRA': 4.778443268636811, 'DiscFac': 0.9407978875845346}, {'CRRA': 4.8749627213204, 'DiscFac': 0.9490246142006636}, {'CRRA': 4.812324688882327, 'DiscFac': 0.9699444279982233}, {'CRRA': 4.687583396599861, 'DiscFac': 0.9604765202535239}, {'CRRA': 4.626128479286402, 'DiscFac': 0.946226071758053}, {'CRRA': 4.656691952561139, 'DiscFac': 0.9702489977517027}, {'CRRA': 4.597403685467404, 'DiscFac': 0.9477302643719333}, {'CRRA': 4.625627639967706, 'DiscFac': 0.9663926019361737}, {'CRRA': 4.6410527537280055, 'DiscFac': 0.9699990849894794}, {'CRRA': 4.609899081445102, 'DiscFac': 0.9675444366283784}, {'CRRA': 4.625431219063062, 'DiscFac': 0.9703463722481418}, {'CRRA': 4.5941188192709905, 'DiscFac': 0.9690213574548799}, {'CRRA': 4.531710425908779, 'DiscFac': 0.9729976863508547}, {'CRRA': 4.406748728175175, 'DiscFac': 0.9675750585318469}, {'CRRA': 4.469240449285124, 'DiscFac': 0.967872651576081}, {'CRRA': 4.500472807159075, 'DiscFac': 0.9738776441075655}, {'CRRA': 4.437929755816321, 'DiscFac': 0.9723056777025434}, {'CRRA': 4.4691605102819025, 'DiscFac': 0.9711118354625233}, {'CRRA': 4.484882829924515, 'DiscFac': 0.97540147373354}, {'CRRA': 4.453621231948722, 'DiscFac': 0.975439641465286}, {'CRRA': 4.391169755515086, 'DiscFac': 0.9780315889221493}, {'CRRA': 4.280391389833491, 'DiscFac': 0.9808813689692787}, {'CRRA': 4.244196758458669, 'DiscFac': 0.9815784324479652}], 'criterion': [1.7417506643900147, 4.044033650416693, 3.839031029560868, 3.1102149818384577, 6.555802687424725, 4.0350466510932055, 4.2398084240369, 7.4472212637056545, 1.8876150324857537, 6.854025692395922, 7.533785215831105, 4.0304942260079715, 6.9687146628227685, 3.6306244874617524, 1.813179054752377, 1.735141592048766, 1.6618543960051388, 1.6605566084700965, 1.787689373026589, 1.6291014270431563, 1.777798122456165, 1.632292085466769, 1.6271336788414652, 1.6284861630783356, 1.6244654953135362, 1.6230082503264982, 1.6090597971175158, 1.629602934753117, 1.6232248781797074, 1.605426494943335, 1.6058418258921947, 1.6103566711611732, 1.602773679862558, 1.600000642454223, 1.5931176392366253, 1.5885323102852085, 1.5884452260480586], 'runtime': [0.0, 1.754904295000415, 1.969308999000532, 2.1929697160003343, 2.4056695530007346, 2.632373710000138, 2.8428072560000146, 3.0672803370007387, 3.311266448999959, 3.5385717890003434, 3.770656087000134, 3.990151896000498, 4.219398474000627, 5.635898851000093, 6.890969508000126, 8.178759544000059, 9.445073765000416, 10.732653016000768, 12.000607710000622, 13.278257793000193, 14.677387555000678, 15.938325161000648, 17.203234863000034, 18.461338497000725, 19.715877700999954, 20.970881133000148, 22.232705680000436, 23.490918587000124, 24.753086395000537, 26.014743489000466, 27.270753597000294, 28.668527032000384, 29.95916027400017, 31.22310450600071, 32.490169482000056, 33.73689335400013, 34.99676206100048], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]}}, {'solution_x': array([4.27264206, 0.98146071]), 'solution_criterion': 1.5881921698252235, 'states': [State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.4707203308184449, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.6380478126416131, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=0, candidate_x=array([4.70720331, 0.97232932]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.4707203308184449, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.3590354657860904, linear_terms=array([ 0.23079344, -0.53681647]), square_terms=array([[ 0.14552137, -0.45699815],
+ [-0.45699815, 8.05766769]]), scale=array([0.41716503, 0.27241785]), shift=array([4.70720331, 0.82758215])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=13, candidate_x=array([4.29003828, 0.83028069]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=-2.200880078069248, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.23536016540922244, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 4, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.652854750173936, linear_terms=array([0.06969601, 1.57909406]), square_terms=array([[ 0.03163761, -0.06566736],
+ [-0.06566736, 4.02842576]]), scale=array([0.20858252, 0.1681266 ]), shift=array([4.70720331, 0.9318734 ])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=14, candidate_x=array([4.49862079, 0.86322919]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=-1.7600178518411977, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 4, 7, 8, 9, 10, 11, 12]), old_indices_discarded=array([ 1, 2, 5, 6, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.11768008270461122, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 7, 8, 9, 10, 11, 12, 14]), model=ScalarModel(intercept=1.854395217885178, linear_terms=array([0.030548 , 1.44658812]), square_terms=array([[ 0.01441336, -0.05269915],
+ [-0.05269915, 2.1098409 ]]), scale=0.11768008270461122, shift=array([4.70720331, 0.97232932])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=15, candidate_x=array([4.61826213, 0.89221191]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=-1.915374410311117, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 7, 8, 9, 10, 11, 12, 14]), old_indices_discarded=array([ 1, 2, 4, 5, 6, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 9, 12, 14, 15]), model=ScalarModel(intercept=1.4384011150252112, linear_terms=array([0.06693427, 0.16511788]), square_terms=array([[ 0.06028812, -0.33441041],
+ [-0.33441041, 2.50134611]]), scale=0.05884004135230561, shift=array([4.70720331, 0.97232932])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=16, candidate_x=array([4.64936036, 0.96104173]), index=0, x=array([4.70720331, 0.97232932]), fval=1.6380478126416131, rho=-0.2167656601879471, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 9, 12, 14, 15]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.70720331, 0.97232932]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16]), model=ScalarModel(intercept=1.6372268956710594, linear_terms=array([ 0.1685441 , -0.13872507]), square_terms=array([[ 0.05020446, -0.12669357],
+ [-0.12669357, 0.64471625]]), scale=0.029420020676152805, shift=array([4.70720331, 0.97232932])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=17, candidate_x=array([4.67717913, 0.97269526]), index=17, x=array([4.67717913, 0.97269526]), fval=1.631941462430788, rho=0.04184469522185483, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.03002641272341987, relative_step_length=1.0206115438850998, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.67717913, 0.97269526]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17]), model=ScalarModel(intercept=1.6319414624307902, linear_terms=array([0.00310345, 0.01871238]), square_terms=array([[0.0001745 , 0.00326021],
+ [0.00326021, 0.12782284]]), scale=0.014710010338076403, shift=array([4.67717913, 0.97269526])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=18, candidate_x=array([4.66242041, 0.97095279]), index=18, x=array([4.66242041, 0.97095279]), fval=1.6292672840092994, rho=0.6756001269705089, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.014861219314677702, relative_step_length=1.010279324971642, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.66242041, 0.97095279]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16, 17, 18]), model=ScalarModel(intercept=1.4810088090029692, linear_terms=array([ 0.11958572, -0.03732605]), square_terms=array([[ 0.05065772, -0.12829538],
+ [-0.12829538, 0.65103621]]), scale=0.029420020676152805, shift=array([4.66242041, 0.97095279])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=19, candidate_x=array([4.63314395, 0.96734331]), index=18, x=array([4.66242041, 0.97095279]), fval=1.6292672840092994, rho=-0.020590492456450688, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.66242041, 0.97095279]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 16, 17, 18, 19]), model=ScalarModel(intercept=1.6292156586595015, linear_terms=array([0.00188502, 0.00233158]), square_terms=array([[0.00018003, 0.0034169 ],
+ [0.0034169 , 0.12685944]]), scale=0.014710010338076403, shift=array([4.66242041, 0.97095279])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=20, candidate_x=array([4.64770842, 0.97107699]), index=20, x=array([4.64770842, 0.97107699]), fval=1.6269015883981965, rho=1.3143613594368355, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 16, 17, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.014712511658342373, relative_step_length=1.0001700420467752, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.64770842, 0.97107699]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16, 17, 18, 19, 20]), model=ScalarModel(intercept=1.5063160859816729, linear_terms=array([ 0.05041148, -0.04272255]), square_terms=array([[ 0.0075054 , -0.03307161],
+ [-0.03307161, 0.58165163]]), scale=0.029420020676152805, shift=array([4.64770842, 0.97107699])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=21, candidate_x=array([4.61821743, 0.9715283 ]), index=21, x=array([4.61821743, 0.9715283 ]), fval=1.6215771152258682, rho=0.11367207027105729, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16, 17, 18, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.029494447103161476, relative_step_length=1.002529788399129, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.61821743, 0.9715283 ]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 12, 15, 16, 17, 18, 19, 20, 21]), model=ScalarModel(intercept=1.517081598562027, linear_terms=array([ 0.03194748, -0.0915037 ]), square_terms=array([[0.00517109, 0.00423992],
+ [0.00423992, 2.21259895]]), scale=0.05884004135230561, shift=array([4.61821743, 0.9715283 ])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=22, candidate_x=array([4.55938558, 0.97404376]), index=22, x=array([4.55938558, 0.97404376]), fval=1.6122243121836672, rho=0.2975814223142011, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 12, 15, 16, 17, 18, 19, 20, 21]), old_indices_discarded=array([ 9, 14]), step_length=0.058885598606691694, relative_step_length=1.000774255988593, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55938558, 0.97404376]), radius=0.11768008270461122, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 15, 16, 17, 18, 19, 20, 21, 22]), model=ScalarModel(intercept=1.6244940972117774, linear_terms=array([0.00768524, 0.3968281 ]), square_terms=array([[ 0.01794061, -0.11175552],
+ [-0.11175552, 4.76976273]]), scale=0.11768008270461122, shift=array([4.55938558, 0.97404376])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=23, candidate_x=array([4.44236235, 0.96151592]), index=22, x=array([4.55938558, 0.97404376]), fval=1.6122243121836672, rho=-2.222167750707154, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 15, 16, 17, 18, 19, 20, 21, 22]), old_indices_discarded=array([ 0, 1, 3, 4, 7, 8, 9, 10, 11, 12, 13]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55938558, 0.97404376]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([15, 16, 17, 18, 19, 20, 21, 22, 23]), model=ScalarModel(intercept=1.6256896704319683, linear_terms=array([0.0043886 , 0.10549552]), square_terms=array([[0.00419989, 0.0564693 ],
+ [0.0564693 , 1.33147903]]), scale=0.05884004135230561, shift=array([4.55938558, 0.97404376])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=24, candidate_x=array([4.61778209, 0.96683279]), index=22, x=array([4.55938558, 0.97404376]), fval=1.6122243121836672, rho=-5.466651138741908, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([15, 16, 17, 18, 19, 20, 21, 22, 23]), old_indices_discarded=array([ 0, 3, 9, 10, 12, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55938558, 0.97404376]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([15, 16, 18, 19, 20, 21, 22, 23, 24]), model=ScalarModel(intercept=1.6269177150442447, linear_terms=array([0.00261458, 0.05266846]), square_terms=array([[0.00103242, 0.01385775],
+ [0.01385775, 0.33190979]]), scale=0.029420020676152805, shift=array([4.55938558, 0.97404376])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=25, candidate_x=array([4.53016803, 0.97059817]), index=22, x=array([4.55938558, 0.97404376]), fval=1.6122243121836672, rho=-0.5597649420514624, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([15, 16, 18, 19, 20, 21, 22, 23, 24]), old_indices_discarded=array([14, 17]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.55938558, 0.97404376]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([21, 22, 24, 25]), model=ScalarModel(intercept=1.6125186187197176, linear_terms=array([0.00192027, 0.00012471]), square_terms=array([[0.00019263, 0.00355747],
+ [0.00355747, 0.13532065]]), scale=0.014710010338076403, shift=array([4.55938558, 0.97404376])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=26, candidate_x=array([4.54468017, 0.97441185]), index=26, x=array([4.54468017, 0.97441185]), fval=1.6100467129384297, rho=1.1664111683806726, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([21, 22, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.01471002222619643, relative_step_length=1.0000008081653073, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.54468017, 0.97441185]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 19, 20, 21, 22, 23, 24, 25, 26]), model=ScalarModel(intercept=1.610617175628848, linear_terms=array([0.00467212, 0.01317766]), square_terms=array([[0.00085989, 0.01539591],
+ [0.01539591, 0.54391644]]), scale=0.029420020676152805, shift=array([4.54468017, 0.97441185])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=27, candidate_x=array([4.51525197, 0.97453122]), index=27, x=array([4.51525197, 0.97453122]), fval=1.6064550393910895, rho=0.8455422416631787, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([16, 19, 20, 21, 22, 23, 24, 25, 26]), old_indices_discarded=array([14, 15, 17, 18]), step_length=0.029428443747579514, relative_step_length=1.000286304062102, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.51525197, 0.97453122]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 19, 21, 22, 23, 24, 25, 26, 27]), model=ScalarModel(intercept=1.6171036489097632, linear_terms=array([0.00432157, 0.08549957]), square_terms=array([[0.00404165, 0.04083728],
+ [0.04083728, 0.9748026 ]]), scale=0.05884004135230561, shift=array([4.51525197, 0.97453122])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=28, candidate_x=array([4.45646967, 0.97192498]), index=27, x=array([4.51525197, 0.97453122]), fval=1.6064550393910895, rho=-0.3653445002297127, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 19, 21, 22, 23, 24, 25, 26, 27]), old_indices_discarded=array([ 0, 3, 7, 10, 12, 13, 15, 16, 17, 18, 20]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.51525197, 0.97453122]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 21, 22, 23, 24, 25, 26, 27, 28]), model=ScalarModel(intercept=1.6158549160636237, linear_terms=array([0.0016874, 0.045421 ]), square_terms=array([[0.00106973, 0.01073937],
+ [0.01073937, 0.24481613]]), scale=0.029420020676152805, shift=array([4.51525197, 0.97453122])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=29, candidate_x=array([4.54388801, 0.96778475]), index=27, x=array([4.51525197, 0.97453122]), fval=1.6064550393910895, rho=-3.9976405851055894, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 21, 22, 23, 24, 25, 26, 27, 28]), old_indices_discarded=array([15, 16, 19, 20]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.51525197, 0.97453122]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 25, 26, 27, 28, 29]), model=ScalarModel(intercept=1.6066876339598914, linear_terms=array([ 0.00156986, -0.00517551]), square_terms=array([[0.00019907, 0.00364165],
+ [0.00364165, 0.13928521]]), scale=0.014710010338076403, shift=array([4.51525197, 0.97453122])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=30, candidate_x=array([4.5005611 , 0.97545133]), index=30, x=array([4.5005611 , 0.97545133]), fval=1.6045259070805813, rho=1.104079170574446, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 25, 26, 27, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.014719649538465622, relative_step_length=1.0006552816869387, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.5005611 , 0.97545133]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 22, 23, 25, 26, 27, 28, 29, 30]), model=ScalarModel(intercept=1.6151275211840224, linear_terms=array([-0.00091945, 0.04982336]), square_terms=array([[0.0018448 , 0.01496444],
+ [0.01496444, 0.24558318]]), scale=0.029420020676152805, shift=array([4.5005611 , 0.97545133])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=31, candidate_x=array([4.52948592, 0.96781471]), index=30, x=array([4.5005611 , 0.97545133]), fval=1.6045259070805813, rho=-2.139770334550352, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 22, 23, 25, 26, 27, 28, 29, 30]), old_indices_discarded=array([15, 19, 21, 24]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.5005611 , 0.97545133]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([22, 23, 25, 26, 27, 28, 29, 30, 31]), model=ScalarModel(intercept=1.6052861266606393, linear_terms=array([0.00202734, 0.00619617]), square_terms=array([[0.0002099 , 0.00380383],
+ [0.00380383, 0.14225083]]), scale=0.014710010338076403, shift=array([4.5005611 , 0.97545133])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=32, candidate_x=array([4.48583943, 0.97520725]), index=32, x=array([4.48583943, 0.97520725]), fval=1.6029216364692263, rho=0.8252881334307689, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([22, 23, 25, 26, 27, 28, 29, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.014723693213830385, relative_step_length=1.0009301744485226, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.48583943, 0.97520725]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 26, 27, 28, 29, 30, 31, 32]), model=ScalarModel(intercept=1.603281247362616, linear_terms=array([0.00373974, 0.00024847]), square_terms=array([[0.00085108, 0.01532586],
+ [0.01532586, 0.57103593]]), scale=0.029420020676152805, shift=array([4.48583943, 0.97520725])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=33, candidate_x=array([4.45642954, 0.97597933]), index=33, x=array([4.45642954, 0.97597933]), fval=1.599716096343115, rho=0.9127111762327604, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 26, 27, 28, 29, 30, 31, 32]), old_indices_discarded=array([14, 21, 22, 24]), step_length=0.0294200258837129, relative_step_length=1.0000001770073568, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.45642954, 0.97597933]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 27, 28, 29, 30, 31, 32, 33]), model=ScalarModel(intercept=1.5997771172632202, linear_terms=array([0.00705164, 0.0023645 ]), square_terms=array([[0.00344304, 0.06165063],
+ [0.06165063, 2.29724063]]), scale=0.05884004135230561, shift=array([4.45642954, 0.97597933])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=34, candidate_x=array([4.39760896, 0.97749389]), index=34, x=array([4.39760896, 0.97749389]), fval=1.5939391812466719, rho=0.9480590071850733, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 27, 28, 29, 30, 31, 32, 33]), old_indices_discarded=array([ 0, 3, 7, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26]), step_length=0.05884007156424952, relative_step_length=1.000000513458917, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.39760896, 0.97749389]), radius=0.11768008270461122, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([23, 25, 27, 28, 30, 31, 32, 33, 34]), model=ScalarModel(intercept=1.593889235787229, linear_terms=array([0.01040724, 0.00815608]), square_terms=array([[0.01329919, 0.24024205],
+ [0.24024205, 9.25060511]]), scale=0.11768008270461122, shift=array([4.39760896, 0.97749389])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=35, candidate_x=array([4.27996586, 0.98044438]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=0.7899999841070257, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([23, 25, 27, 28, 30, 31, 32, 33, 34]), old_indices_discarded=array([ 0, 1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 24, 26, 29]), step_length=0.11768009368678081, relative_step_length=1.0000000933222457, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.23536016540922244, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 13, 23, 28, 30, 32, 34, 35]), model=ScalarModel(intercept=1.462227461968244, linear_terms=array([ 0.42418134, -1.67220361]), square_terms=array([[ 0.54111536, -2.08375437],
+ [-2.08375437, 13.44006276]]), scale=array([0.20858252, 0.16406907]), shift=array([4.27996586, 0.93593093])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=36, candidate_x=array([4.12220384, 0.93710467]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-3.916267884563185, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 13, 23, 28, 30, 32, 34, 35]), old_indices_discarded=array([ 0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19,
+ 20, 21, 22, 24, 25, 26, 27, 29, 31, 33]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.11768008270461122, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 13, 23, 33, 34, 35, 36]), model=ScalarModel(intercept=1.4622568288955424, linear_terms=array([0.02225047, 0.92573591]), square_terms=array([[ 0.05426403, -0.13596618],
+ [-0.13596618, 7.70370864]]), scale=0.11768008270461122, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=37, candidate_x=array([4.1634327 , 0.96405462]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-2.181712710002738, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 13, 23, 33, 34, 35, 36]), old_indices_discarded=array([ 0, 1, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26,
+ 27, 28, 29, 30, 31, 32]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.05884004135230561, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 13, 23, 34, 35, 36, 37]), model=ScalarModel(intercept=1.4660466698117092, linear_terms=array([0.01297109, 0.40170174]), square_terms=array([[0.01156038, 0.07971153],
+ [0.07971153, 1.91612895]]), scale=0.05884004135230561, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=38, candidate_x=array([4.33690661, 0.96561531]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-1.6144313618454553, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 13, 23, 34, 35, 36, 37]), old_indices_discarded=array([14, 22, 25, 26, 27, 28, 29, 30, 31, 32, 33]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.029420020676152805, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 34, 35, 37, 38]), model=ScalarModel(intercept=1.470665765480307, linear_terms=array([0.00298517, 0.10703439]), square_terms=array([[0.00144857, 0.00998505],
+ [0.00998505, 0.6595069 ]]), scale=0.029420020676152805, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=39, candidate_x=array([4.24902077, 0.97613818]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-1.3905549963491703, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 34, 35, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.014710010338076403, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([35, 38, 39]), model=ScalarModel(intercept=1.588671436805631, linear_terms=array([-0.00081796, -0.00402187]), square_terms=array([[0.00023222, 0.00443072],
+ [0.00443072, 0.1618569 ]]), scale=0.014710010338076403, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=40, candidate_x=array([4.29468007, 0.98040724]), index=35, x=array([4.27996586, 0.98044438]), fval=1.5886714368056303, rho=-0.14254194492005098, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([35, 38, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([4.27996586, 0.98044438]), radius=0.007355005169038201, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([35, 39, 40]), model=ScalarModel(intercept=1.5886714368056296, linear_terms=array([-1.01760419e-05, -4.87679307e-03]), square_terms=array([[5.26567689e-05, 9.93842843e-04],
+ [9.93842843e-04, 4.23791006e-02]]), scale=0.007355005169038201, shift=array([4.27996586, 0.98044438])), vector_model=VectorModel(intercepts=array([ 0.07234168, 0.18160918, 0.2222667 , 0.25651309, 0.32507299,
+ 0.35207246, 0.40774796, -0.16115678, -0.34789505, -0.37798502,
+ -0.47569841, -0.68890744, -0.27909687, -0.10567612, -0.06095636,
+ -0.0660279 , 0.02915204]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=0.4707203308184449, shift=array([4.70720331, 0.97232932])), candidate_index=41, candidate_x=array([4.27264206, 0.98146071]), index=41, x=array([4.27264206, 0.98146071]), fval=1.5881921698252235, rho=1.2960293054666532, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([35, 39, 40]), old_indices_discarded=array([], dtype=int64), step_length=0.007393988138705295, relative_step_length=1.005300196093838, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute criterion change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 42 entries., 'history': {'params': [{'CRRA': 4.707203308184448, 'DiscFac': 0.9723293237231975}, {'CRRA': 4.290038276655113, 'DiscFac': 0.5612839565173267}, {'CRRA': 5.124368339713784, 'DiscFac': 0.7815145778668051}, {'CRRA': 4.290038276655113, 'DiscFac': 0.8852911049439405}, {'CRRA': 5.124368339713784, 'DiscFac': 1.0998082225394454}, {'CRRA': 5.124368339713784, 'DiscFac': 0.6528702672894295}, {'CRRA': 5.088882093668508, 'DiscFac': 0.5551642921938619}, {'CRRA': 4.290038276655113, 'DiscFac': 1.0958487440640778}, {'CRRA': 5.124368339713784, 'DiscFac': 0.9644452739308207}, {'CRRA': 4.815289190462201, 'DiscFac': 1.1}, {'CRRA': 4.290038276655113, 'DiscFac': 1.0869940700172442}, {'CRRA': 4.610395613673098, 'DiscFac': 0.5551642921938619}, {'CRRA': 4.712667209754667, 'DiscFac': 1.1}, {'CRRA': 4.290038276655113, 'DiscFac': 0.8302806857872134}, {'CRRA': 4.49862079241978, 'DiscFac': 0.8632291852888655}, {'CRRA': 4.618262130250856, 'DiscFac': 0.892211907379606}, {'CRRA': 4.649360364309195, 'DiscFac': 0.9610417287955715}, {'CRRA': 4.677179125402864, 'DiscFac': 0.9726952599678501}, {'CRRA': 4.662420411739433, 'DiscFac': 0.9709527874372768}, {'CRRA': 4.633143948980592, 'DiscFac': 0.9673433127210762}, {'CRRA': 4.647708424364658, 'DiscFac': 0.9710769920318861}, {'CRRA': 4.618217430273746, 'DiscFac': 0.9715282984145067}, {'CRRA': 4.559385583543956, 'DiscFac': 0.9740437573449842}, {'CRRA': 4.442362348737134, 'DiscFac': 0.9615159200987019}, {'CRRA': 4.6177820933812335, 'DiscFac': 0.966832786178363}, {'CRRA': 4.530168028631268, 'DiscFac': 0.9705981657398585}, {'CRRA': 4.54468016749636, 'DiscFac': 0.9744118507601772}, {'CRRA': 4.515251965828596, 'DiscFac': 0.974531215771109}, {'CRRA': 4.456469672419852, 'DiscFac': 0.9719249832509226}, {'CRRA': 4.54388800665835, 'DiscFac': 0.9677847513502521}, {'CRRA': 4.5005611019825995, 'DiscFac': 0.9754513255437164}, {'CRRA': 4.529485918905441, 'DiscFac': 0.9678147143724265}, {'CRRA': 4.485839431860874, 'DiscFac': 0.9752072544842302}, {'CRRA': 4.456429538458829, 'DiscFac': 0.9759793251278149}, {'CRRA': 4.397608962906071, 'DiscFac': 0.9774938921710231}, {'CRRA': 4.279965862398321, 'DiscFac': 0.9804443756996974}, {'CRRA': 4.122203844999166, 'DiscFac': 0.937104673702021}, {'CRRA': 4.163432700992639, 'DiscFac': 0.9640546179784433}, {'CRRA': 4.336906613655518, 'DiscFac': 0.9656153058500048}, {'CRRA': 4.249020769576481, 'DiscFac': 0.9761381800429344}, {'CRRA': 4.294680071351096, 'DiscFac': 0.9804072400803372}, {'CRRA': 4.272642056859294, 'DiscFac': 0.9814607088251204}], 'criterion': [1.6380478126416131, 4.03723195367052, 3.5440740950812013, 3.2759678353900803, 6.781083894625252, 3.8713442516298198, 3.996890584141768, 7.627891908022631, 1.7551707114922444, 7.144112642232848, 6.6404717126627215, 3.935564366818633, 7.291412101525699, 3.862333195265191, 3.197857033577577, 2.6761443032128733, 1.6565559654451956, 1.631941462430788, 1.6292672840092992, 1.6313284776792012, 1.6269015883981968, 1.6215771152258682, 1.6122243121836672, 1.6696000135319509, 1.6306703543399446, 1.614669208950377, 1.6100467129384297, 1.6064550393910892, 1.6076695381563089, 1.6233520305796163, 1.6045259070805813, 1.6226940047077765, 1.6029216364692263, 1.599716096343115, 1.5939391812466719, 1.5886714368056305, 2.4007693475753995, 1.7378906646063588, 1.6562535862817716, 1.601747168932624, 1.5887715770723967, 1.5881921698252237], 'runtime': [0.0, 1.6408778029999667, 1.879227850999996, 2.101594065000427, 2.313481502000286, 2.55059718099983, 2.782204840999839, 3.0194256559998394, 3.235137909000514, 3.449739153000337, 3.6794994500005487, 3.8966444010002306, 4.28813861800063, 5.764485786000478, 7.000034329999835, 8.24761119699997, 9.516164548999768, 10.76685041500059, 12.019717905000107, 13.265578907999952, 14.518897724000453, 15.760440533999827, 16.995802637999986, 18.22653636799987, 19.587672147000376, 20.82062521500029, 22.057747867000217, 23.28416549299982, 24.62205672500022, 25.949533355999847, 27.21613684300064, 28.504664697999942, 29.771321367999917, 31.040138887000467, 32.30792920600015, 33.793730317000154, 35.13760062700021, 36.411630069999774, 37.71618604300056, 39.015112086000045, 40.31985881299988, 41.661046635000275], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]}, 'multistart_info': {...}}], 'exploration_sample': array([[ 5. , 0.95 ],
+ [ 5.825 , 0.95 ],
+ [ 7.596875, 0.93125 ],
+ [ 4.64375 , 0.6875 ],
+ [ 9.36875 , 0.8375 ],
+ [ 8.1875 , 0.725 ],
+ [10.55 , 0.8 ],
+ [11.73125 , 0.7625 ],
+ [ 7.00625 , 0.6125 ],
+ [15.275 , 0.65 ],
+ [12.9125 , 0.575 ],
+ [17.046875, 0.63125 ],
+ [ 3.4625 , 0.875 ],
+ [16.45625 , 0.9125 ],
+ [14.09375 , 0.9875 ],
+ [18.81875 , 0.5375 ],
+ [12.321875, 1.08125 ],
+ [17.6375 , 1.025 ],
+ [ 2.871875, 0.78125 ],
+ [ 2.28125 , 1.0625 ]]), 'exploration_results': array([ 1.74175066, 2.04247528, 2.9717037 , 3.76994253, 3.80031518,
+ 4.27735638, 4.32695188, 4.78264529, 5.25346612, 5.79528191,
+ 5.94010747, 6.02403907, 6.09730665, 6.10855726, 6.12270544,
+ 6.45799199, 7.01428788, 7.3683214 , 8.72764877, 13.61935456])}}"
diff --git a/content/tables/min/WealthPortfolio_estimate_results.csv b/content/tables/min/WealthPortfolio_estimate_results.csv
new file mode 100644
index 0000000..84e4e27
--- /dev/null
+++ b/content/tables/min/WealthPortfolio_estimate_results.csv
@@ -0,0 +1,7307 @@
+CRRA,10.219768718617258
+DiscFac,0.8035952003147214
+time_to_estimate,134.71642017364502
+params,"{'CRRA': 10.219768718617258, 'DiscFac': 0.8035952003147214}"
+criterion,1.4324246742584341
+start_criterion,18.424123431628693
+start_params,"{'CRRA': 5.0, 'DiscFac': 0.95}"
+algorithm,multistart_tranquilo_ls
+direction,minimize
+n_free,2
+message,Absolute params change smaller than tolerance.
+success,
+n_criterion_evaluations,
+n_derivative_evaluations,
+n_iterations,
+history,"{'params': [{'CRRA': 10.796287222045608, 'DiscFac': 0.7512189549688916}, {'CRRA': 9.83949117893577, 'DiscFac': 0.540401632080349}, {'CRRA': 11.753083265155446, 'DiscFac': 0.7276940506351226}, {'CRRA': 9.83949117893577, 'DiscFac': 0.855439124212817}, {'CRRA': 11.753083265155446, 'DiscFac': 0.953923601537897}, {'CRRA': 11.727032790520497, 'DiscFac': 0.5}, {'CRRA': 11.709718520536603, 'DiscFac': 0.5}, {'CRRA': 9.83949117893577, 'DiscFac': 1.0362179395826956}, {'CRRA': 11.537716692481002, 'DiscFac': 1.1}, {'CRRA': 11.736268238617884, 'DiscFac': 1.1}, {'CRRA': 10.079195559091445, 'DiscFac': 1.1}, {'CRRA': 10.462366881566767, 'DiscFac': 0.5}, {'CRRA': 10.702528806860887, 'DiscFac': 1.1}, {'CRRA': 9.83949117893577, 'DiscFac': 0.7985554402937353}, {'CRRA': 9.161006721240817, 'DiscFac': 0.8038620148386444}, {'CRRA': 10.07007058449546, 'DiscFac': 0.8203867919740195}, {'CRRA': 10.219769663854269, 'DiscFac': 0.8035948739299863}, {'CRRA': 10.124019594791632, 'DiscFac': 0.8192620732613634}, {'CRRA': 9.74137164229935, 'DiscFac': 0.8705896908843451}, {'CRRA': 9.953799298216243, 'DiscFac': 0.8530025752698449}, {'CRRA': 10.354128525305132, 'DiscFac': 0.7909391290726444}, {'CRRA': 10.257534971759856, 'DiscFac': 0.8612238655609539}, {'CRRA': 10.249047845040932, 'DiscFac': 0.7865062603624867}, {'CRRA': 10.20282573607525, 'DiscFac': 0.8070577731924602}, {'CRRA': 10.211651148841334, 'DiscFac': 0.8064757372422714}, {'CRRA': 10.215819204260216, 'DiscFac': 0.8018425194103768}, {'CRRA': 10.220334974093092, 'DiscFac': 0.801522538105995}, {'CRRA': 10.22070105396213, 'DiscFac': 0.8030310894013778}, {'CRRA': 10.219237900858886, 'DiscFac': 0.8035678660193153}, {'CRRA': 10.219734769165171, 'DiscFac': 0.8038561351517777}, {'CRRA': 10.219793499159207, 'DiscFac': 0.8034652566295468}, {'CRRA': 10.219774863413532, 'DiscFac': 0.8035290382486371}, {'CRRA': 10.219797131091756, 'DiscFac': 0.8035736390078726}, {'CRRA': 10.21975507632272, 'DiscFac': 0.8036025283990935}, {'CRRA': 10.219766928277888, 'DiscFac': 0.8036027336977617}, {'CRRA': 10.219770309843383, 'DiscFac': 0.803590806451168}, {'CRRA': 10.219769938833513, 'DiscFac': 0.8035970244691708}, {'CRRA': 10.219768993697665, 'DiscFac': 0.8035956660923393}, {'CRRA': 10.219768718617258, 'DiscFac': 0.8035952003147214}], 'criterion': [1.944688071402379, 3.2418713124374086, 1.6847743076786055, 1.128338026536752, 1.9993245469826628, 3.0338592297352878, 3.03501149174734, 3.1984431617624467, 5.804856136080152, 5.812504133071434, 5.885079951568567, 3.234806234254797, 5.816470157774893, 1.562893311281306, 2.583280694198379, 2.1156170561319314, 1.466665976719959, 1.766356958631806, 1.9942161012956399, 1.8237311899758983, 1.6385017088168858, 1.7355045639194775, 1.6896331400087274, 1.682413353250237, 2.1295535775079775, 1.4935626587985393, 1.552676549651821, 2.001136860398742, 1.8239410801778175, 1.8374330022860998, 1.588232033050871, 1.9076652660001112, 1.8025300432662208, 1.9153439826519716, 1.9890830431798012, 2.2067830967199793, 2.3817732744926454, 1.9629904816911659, 1.4324246742584341], 'runtime': [0.0, 1.5777012819999072, 1.7944821000000957, 2.1437941620001766, 2.3618136989998675, 2.5728053900002124, 2.7940112040000713, 3.0210618639998756, 3.2580944800001816, 3.4653453969999646, 3.728331842999978, 3.975551980000091, 4.155800905999968, 5.559656017000179, 6.802116995000233, 8.06469720899986, 9.325519093999901, 10.57778590199996, 11.829665229000057, 13.080631366000034, 14.326657801000238, 15.71577292200027, 16.999908634999883, 18.272807574000126, 19.582853569000235, 20.83235119500023, 22.094798552000157, 23.35142596600008, 24.604288662000272, 25.87174642700029, 27.11416403300018, 28.383461697000257, 29.77518187900023, 31.048289716, 32.33646260100022, 33.61736069900007, 34.86628536700027, 36.13524358199993, 37.38796032500022], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]}"
+convergence_report,"{'one_step': {'relative_criterion_change': 0.09400888657621548, 'relative_params_change': 0.07336751265176697, 'absolute_criterion_change': 0.13466064873133354, 'absolute_params_change': 0.19765619590330294}, 'five_steps': {'relative_criterion_change': 0.09400888657621548, 'relative_params_change': 0.07336751265176697, 'absolute_criterion_change': 0.13466064873133354, 'absolute_params_change': 0.19765619590330294}}"
+multistart_info,"{'start_parameters': [{'CRRA': 10.549999999999999, 'DiscFac': 0.8}, {'CRRA': 10.796287222045608, 'DiscFac': 0.7512189549688916}], 'local_optima': [Minimize with 2 free parameters terminated., Minimize with 2 free parameters terminated.
+
+The tranquilo_ls algorithm reported: Absolute params change smaller than tolerance.
+
+Independent of the convergence criteria used by tranquilo_ls, the strength of convergence can be assessed by the following criteria:
+
+ one_step five_steps
+relative_criterion_change 0.4931 0.7235
+relative_params_change 0.2452 0.2452
+absolute_criterion_change 0.5564 0.8164
+absolute_params_change 1.918 1.918
+
+(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. Change refers to a change between accepted steps. The first column only considers the last step. The second column considers the last five steps.)], 'exploration_sample': [{'CRRA': 10.549999999999999, 'DiscFac': 0.8}, {'CRRA': 11.73125, 'DiscFac': 0.7625000000000001}, {'CRRA': 9.368749999999999, 'DiscFac': 0.8375}, {'CRRA': 7.596874999999999, 'DiscFac': 0.9312500000000001}, {'CRRA': 12.9125, 'DiscFac': 0.575}, {'CRRA': 15.274999999999999, 'DiscFac': 0.65}, {'CRRA': 17.046875, 'DiscFac': 0.6312500000000001}, {'CRRA': 16.45625, 'DiscFac': 0.9125000000000001}, {'CRRA': 18.81875, 'DiscFac': 0.5375}, {'CRRA': 8.1875, 'DiscFac': 0.7250000000000001}, {'CRRA': 14.093749999999998, 'DiscFac': 0.9875}, {'CRRA': 12.321874999999999, 'DiscFac': 1.08125}, {'CRRA': 17.6375, 'DiscFac': 1.0250000000000001}, {'CRRA': 7.00625, 'DiscFac': 0.6125}, {'CRRA': 5.0, 'DiscFac': 0.95}, {'CRRA': 4.64375, 'DiscFac': 0.6875}, {'CRRA': 2.871875, 'DiscFac': 0.78125}, {'CRRA': 3.4625, 'DiscFac': 0.875}, {'CRRA': 2.28125, 'DiscFac': 1.0625}], 'exploration_results': array([ 1.74531296, 2.10648864, 2.17581064, 2.66803924,
+ 2.70500778, 2.87740953, 3.0406658 , 3.37839016,
+ 3.53882151, 3.99992851, 4.37946561, 4.47403011,
+ 4.90296965, 6.27675034, 11.07528266, 21.17347996,
+ 25.72759101, 28.93912422, 124.53209372])}"
+algorithm_output,"{'states': [State(trustregion=Region(center=array([10.79628722, 0.75121895]), radius=1.0796287222045609, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.944688071402379, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=0, candidate_x=array([10.79628722, 0.75121895]), index=0, x=array([10.79628722, 0.75121895]), fval=1.9446880714023793, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([10.79628722, 0.75121895]), radius=1.0796287222045609, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.1166657271561815, linear_terms=array([0.15864049, 0.42371729]), square_terms=array([[0.12859729, 0.39267237],
+ [0.39267237, 6.44727637]]), scale=array([0.95679604, 0.3 ]), shift=array([10.79628722, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=13, candidate_x=array([9.83949118, 0.79855544]), index=13, x=array([9.83949118, 0.79855544]), fval=1.562893311281306, rho=3.4473155571582184, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.9579662890486034, relative_step_length=0.8873108591372714, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.83949118, 0.79855544]), radius=2.1592574444091217, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 7, 9, 10, 11, 12, 13]), model=ScalarModel(intercept=1.0106711225618554, linear_terms=array([ 0.11328771, -0.02543314]), square_terms=array([[0.32696172, 0.20507785],
+ [0.20507785, 7.62392319]]), scale=array([1.91359209, 0.3 ]), shift=array([9.83949118, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=14, candidate_x=array([9.16100672, 0.80386201]), index=13, x=array([9.83949118, 0.79855544]), fval=1.562893311281306, rho=-49.876600074089325, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 7, 9, 10, 11, 12, 13]), old_indices_discarded=array([3, 4, 5, 6, 8]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.83949118, 0.79855544]), radius=1.0796287222045609, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 10, 11, 12, 13, 14]), model=ScalarModel(intercept=1.1504720878409067, linear_terms=array([-0.3363689 , -0.93678951]), square_terms=array([[0.87155521, 1.8590239 ],
+ [1.8590239 , 7.19261499]]), scale=array([0.95679604, 0.3 ]), shift=array([9.83949118, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=15, candidate_x=array([10.07007058, 0.82038679]), index=13, x=array([9.83949118, 0.79855544]), fval=1.562893311281306, rho=-7.182390452169847, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 10, 11, 12, 13, 14]), old_indices_discarded=array([2, 4, 5, 6, 8, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.83949118, 0.79855544]), radius=0.5398143611022804, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 1, 3, 7, 10, 11, 12, 13, 14, 15]), model=ScalarModel(intercept=1.1802551636376832, linear_terms=array([-0.4094047 , -1.11949307]), square_terms=array([[0.49537366, 1.3045479 ],
+ [1.3045479 , 6.88548901]]), scale=array([0.47839802, 0.3 ]), shift=array([9.83949118, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=16, candidate_x=array([10.21976966, 0.80359487]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=0.550198540728198, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 3, 7, 10, 11, 12, 13, 14, 15]), old_indices_discarded=array([0, 2, 4, 5, 6, 8, 9]), step_length=0.3803118746282886, relative_step_length=0.7045234473786621, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=1.0796287222045609, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 10, 11, 12, 14, 16]), model=ScalarModel(intercept=1.0866939087775023, linear_terms=array([-0.0322572 , -0.30854104]), square_terms=array([[0.67079418, 1.5479022 ],
+ [1.5479022 , 7.21799651]]), scale=array([0.95679604, 0.3 ]), shift=array([10.21976966, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=17, candidate_x=array([10.12401959, 0.81926207]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-58.62290797866045, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 10, 11, 12, 14, 16]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 13, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.5398143611022804, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 1, 3, 7, 10, 11, 13, 15, 16, 17]), model=ScalarModel(intercept=1.104977886008402, linear_terms=array([-0.03432906, -0.69995447]), square_terms=array([[0.1703626 , 0.8790954 ],
+ [0.8790954 , 6.71082357]]), scale=array([0.47839802, 0.3 ]), shift=array([10.21976966, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=18, candidate_x=array([9.74137164, 0.87058969]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-9.039838744462836, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 3, 7, 10, 11, 13, 15, 16, 17]), old_indices_discarded=array([ 0, 2, 4, 5, 6, 8, 9, 12, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.2699071805511402, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 1, 3, 7, 10, 11, 13, 15, 16, 17]), model=ScalarModel(intercept=1.0970721967169264, linear_terms=array([-0.01342485, -0.55739364]), square_terms=array([[0.0542281 , 0.44622537],
+ [0.44622537, 5.43203036]]), scale=0.2699071805511402, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=19, candidate_x=array([9.9537993 , 0.85300258]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-6.872342914984419, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 3, 7, 10, 11, 13, 15, 16, 17]), old_indices_discarded=array([ 0, 12, 14, 18]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.1349535902755701, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 11, 13, 15, 16, 17, 19]), model=ScalarModel(intercept=1.0951311953171219, linear_terms=array([-0.07434461, -0.27707976]), square_terms=array([[0.12562853, 0.47234431],
+ [0.47234431, 2.1286064 ]]), scale=0.1349535902755701, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=20, candidate_x=array([10.35412853, 0.79093913]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-8.377479158857502, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 11, 13, 15, 16, 17, 19]), old_indices_discarded=array([ 0, 1, 12, 18]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.06747679513778505, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([10, 15, 16, 17, 19, 20]), model=ScalarModel(intercept=1.674917371962548, linear_terms=array([-0.17510758, -0.97660578]), square_terms=array([[0.02516315, 0.13418318],
+ [0.13418318, 0.97261011]]), scale=0.06747679513778505, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=21, candidate_x=array([10.25753497, 0.86122387]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-0.5278763601515147, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([10, 15, 16, 17, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.03373839756889253, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([15, 16, 17, 20, 21]), model=ScalarModel(intercept=1.6512778708853884, linear_terms=array([-0.03985835, 0.03411712]), square_terms=array([[0.00599018, 0.00998315],
+ [0.00998315, 0.03869545]]), scale=0.03373839756889253, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=22, candidate_x=array([10.24904785, 0.78650626]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-4.546783753534983, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([15, 16, 17, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.016869198784446263, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 21, 22]), model=ScalarModel(intercept=1.4666659767199604, linear_terms=array([ 0.09249895, -0.02335073]), square_terms=array([[ 0.01468019, -0.0030654 ],
+ [-0.0030654 , 0.02196767]]), scale=0.016869198784446263, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=23, candidate_x=array([10.20282574, 0.80705777]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-2.4186395681883326, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.008434599392223132, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 22, 23]), model=ScalarModel(intercept=1.4666659767199597, linear_terms=array([0.34812163, 0.50552679]), square_terms=array([[0.78561087, 1.27785522],
+ [1.27785522, 2.09150806]]), scale=0.008434599392223132, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=24, candidate_x=array([10.21165115, 0.80647574]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-6.862307716483873, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.004217299696111566, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 23, 24]), model=ScalarModel(intercept=1.4666659767199592, linear_terms=array([0.55084332, 2.09635603]), square_terms=array([[0.23949622, 0.71845366],
+ [0.71845366, 3.39566675]]), scale=0.004217299696111566, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=25, candidate_x=array([10.2158192 , 0.80184252]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-0.037924939882139255, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.002108649848055783, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 24, 25]), model=ScalarModel(intercept=1.4666659767199588, linear_terms=array([-0.04544986, 0.1439351 ]), square_terms=array([[ 0.03369853, -0.00374743],
+ [-0.00374743, 0.02333965]]), scale=0.002108649848055783, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=26, candidate_x=array([10.22033497, 0.80152254]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-0.6136103055014882, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.0010543249240278915, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 25, 26]), model=ScalarModel(intercept=1.466665976719959, linear_terms=array([-0.07066043, 0.18003202]), square_terms=array([[ 0.01861073, -0.05858304],
+ [-0.05858304, 0.21397908]]), scale=0.0010543249240278915, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=27, candidate_x=array([10.22070105, 0.80303109]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-5.736976120905478, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.0005271624620139457, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 26, 27]), model=ScalarModel(intercept=1.466665976719959, linear_terms=array([0.34456294, 0.19364665]), square_terms=array([[0.25192343, 0.18068867],
+ [0.18068867, 0.14166455]]), scale=0.0005271624620139457, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=28, candidate_x=array([10.2192379 , 0.80356787]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-1.6254756702487918, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.00026358123100697286, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 27, 28]), model=ScalarModel(intercept=1.4666659767199586, linear_terms=array([-0.11867755, -0.3838503 ]), square_terms=array([[0.03057504, 0.07332091],
+ [0.07332091, 0.21686367]]), scale=0.00026358123100697286, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=29, candidate_x=array([10.21973477, 0.80385614]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-1.385618786964724, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.00013179061550348643, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 28, 29]), model=ScalarModel(intercept=1.466665976719959, linear_terms=array([-0.0761264 , 0.13860902]), square_terms=array([[ 0.01125216, -0.016678 ],
+ [-0.016678 , 0.03393693]]), scale=0.00013179061550348643, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=30, candidate_x=array([10.2197935 , 0.80346526]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-0.9313463730632265, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=6.589530775174322e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 29, 30]), model=ScalarModel(intercept=1.466665976719959, linear_terms=array([1.88031026, 0.32552717]), square_terms=array([[27.70522767, 4.07358483],
+ [ 4.07358483, 0.60357257]]), scale=6.589530775174322e-05, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=31, candidate_x=array([10.21977486, 0.80352904]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-3.990389150994559, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=3.294765387587161e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 30, 31]), model=ScalarModel(intercept=1.4666659767199595, linear_terms=array([-1.6196538 , -0.30795927]), square_terms=array([[2.28612575, 0.4440688 ],
+ [0.4440688 , 0.09657711]]), scale=3.294765387587161e-05, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=32, candidate_x=array([10.21979713, 0.80357364]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-0.5832167758400026, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=1.6473826937935804e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 31, 32]), model=ScalarModel(intercept=1.4666659767199592, linear_terms=array([ 0.11595344, -0.08086352]), square_terms=array([[ 0.01665732, -0.00335936],
+ [-0.00335936, 0.00953888]]), scale=1.6473826937935804e-05, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=33, candidate_x=array([10.21975508, 0.80360253]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-3.4170199522091034, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 31, 32]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=8.236913468967902e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 32, 33]), model=ScalarModel(intercept=1.4666659767199604, linear_terms=array([-0.81016988, -1.16337389]), square_terms=array([[0.82069046, 1.14256831],
+ [1.14256831, 1.59421614]]), scale=8.236913468967902e-06, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=34, candidate_x=array([10.21976693, 0.80360273]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-1.2090736872147105, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 32, 33]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=4.118456734483951e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 33, 34]), model=ScalarModel(intercept=1.46666597671996, linear_terms=array([0.01519349, 0.21926015]), square_terms=array([[0.01579161, 0.02024966],
+ [0.02024966, 0.07482116]]), scale=4.118456734483951e-06, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=35, candidate_x=array([10.21977031, 0.80359081]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-4.097750160431341, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 33, 34]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=2.0592283672419755e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 34, 35]), model=ScalarModel(intercept=1.4666659767199617, linear_terms=array([-2.08194623, -0.61763116]), square_terms=array([[4.72050345, 1.38963014],
+ [1.38963014, 0.41114603]]), scale=2.0592283672419755e-06, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=36, candidate_x=array([10.21976994, 0.80359702]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-1.97671703577029, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 34, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=1.0296141836209878e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 35, 36]), model=ScalarModel(intercept=1.4666659767199595, linear_terms=array([1.53654606, 0.10054103]), square_terms=array([[2.60301811, 0.23722528],
+ [0.23722528, 0.03189878]]), scale=1.0296141836209878e-06, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=37, candidate_x=array([10.21976899, 0.80359567]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-1.0324383710298721, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 35, 36, 37]), model=ScalarModel(intercept=1.9297740244997519, linear_terms=array([0.31993793, 0.03103716]), square_terms=array([[0.23625668, 0.05453936],
+ [0.05453936, 0.0175204 ]]), scale=1e-06, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=38, candidate_x=array([10.21976872, 0.8035952 ]), index=38, x=array([10.21976872, 0.8035952 ]), fval=1.4324246742584341, rho=0.16897984080632025, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([16, 35, 36, 37]), old_indices_discarded=array([], dtype=int64), step_length=1.000000000616104e-06, relative_step_length=1.000000000616104, n_evals_per_point=1, n_evals_acceptance=1)], 'tranquilo_history': History for least_squares function with 39 entries., 'multistart_info': {'start_parameters': [array([10.55, 0.8 ]), array([10.79628722, 0.75121895])], 'local_optima': [{'solution_x': array([10.40901296, 0.74654619]), 'solution_criterion': 1.5670853229897677, 'states': [State(trustregion=Region(center=array([10.55, 0.8 ]), radius=1.055, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.6868651526889202, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=1.055, shift=array([10.55, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=0, candidate_x=array([10.55, 0.8 ]), index=0, x=array([10.55, 0.8 ]), fval=1.6868651526889202, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([10.55, 0.8 ]), radius=1.055, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=2.172475475004818, linear_terms=array([-3.06768242, 7.37838732]), square_terms=array([[ 5.89192825, -9.81990682],
+ [-9.81990682, 23.83753099]]), scale=array([0.93496941, 0.3 ]), shift=array([10.55, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=13, candidate_x=array([10.56425016, 0.70902515]), index=0, x=array([10.55, 0.8 ]), fval=1.6868651526889202, rho=-0.579095543410949, accepted=False, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.55, 0.8 ]), radius=0.5275, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 4, 5, 7, 9, 11, 12, 13]), model=ScalarModel(intercept=1.3564143731732783, linear_terms=array([-0.22664928, 2.72100223]), square_terms=array([[ 1.02657184, -3.00960458],
+ [-3.00960458, 20.36519941]]), scale=array([0.4674847, 0.3 ]), shift=array([10.55, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=14, candidate_x=array([10.40901296, 0.74654619]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=0.5752118096707121, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 4, 5, 7, 9, 11, 12, 13]), old_indices_discarded=array([ 1, 2, 6, 8, 10]), step_length=0.15078015509665216, relative_step_length=0.28583915658133113, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=0.5275, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 5, 7, 11, 12, 13, 14]), model=ScalarModel(intercept=2.2186195186006907, linear_terms=array([-0.03492591, 5.27226538]), square_terms=array([[ 0.03016114, 0.50387828],
+ [ 0.50387828, 18.19431406]]), scale=array([0.4674847, 0.3 ]), shift=array([10.40901296, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=15, candidate_x=array([10.87649766, 0.70475909]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-1.087385870869101, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 5, 7, 11, 12, 13, 14]), old_indices_discarded=array([ 2, 4, 6, 8, 9, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=0.26375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 3, 5, 7, 11, 12, 13, 14, 15]), model=ScalarModel(intercept=1.4849181995959484, linear_terms=array([-0.06535588, 0.79069515]), square_terms=array([[ 0.03517026, 0.64745615],
+ [ 0.64745615, 14.1194396 ]]), scale=array([0.23374235, 0.23374235]), shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=16, candidate_x=array([10.64275531, 0.7227381 ]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-3.066390151321379, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 3, 5, 7, 11, 12, 13, 14, 15]), old_indices_discarded=array([ 1, 2, 4, 6, 8, 9, 10]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=0.131875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 11, 12, 13, 14, 15, 16]), model=ScalarModel(intercept=1.5308731644099367, linear_terms=array([-0.07931731, 0.33477336]), square_terms=array([[ 0.19786976, -0.83656028],
+ [-0.83656028, 4.04156084]]), scale=0.131875, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=17, candidate_x=array([10.46250218, 0.74669433]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-37.68009420439774, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 11, 12, 13, 14, 15, 16]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=0.0659375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 13, 14, 16, 17]), model=ScalarModel(intercept=1.8210738824685948, linear_terms=array([ 0.04141921, -0.36867745]), square_terms=array([[0.00231821, 0.00050224],
+ [0.00050224, 0.14215612]]), scale=0.0659375, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=18, candidate_x=array([10.38953189, 0.80954018]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-2.287505253473278, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 13, 14, 16, 17]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=0.03296875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 13, 14, 17, 18]), model=ScalarModel(intercept=1.9990687605934945, linear_terms=array([-0.00410445, -0.08034146]), square_terms=array([[0.00246655, 0.00142731],
+ [0.00142731, 0.01153139]]), scale=0.03296875, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=19, candidate_x=array([10.40807021, 0.77950146]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-8.090031402878106, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 13, 14, 17, 18]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=0.016484375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 17, 18, 19]), model=ScalarModel(intercept=1.6018545925627217, linear_terms=array([0.14404542, 0.18737263]), square_terms=array([[0.0209416 , 0.02346753],
+ [0.02346753, 0.03350994]]), scale=0.016484375, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=20, candidate_x=array([10.40403559, 0.73083122]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-2.1118049412822777, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 17, 18, 19]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=0.0082421875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 19, 20]), model=ScalarModel(intercept=1.5670853229897672, linear_terms=array([-0.92720459, 0.10061614]), square_terms=array([[ 0.45455894, -0.04067308],
+ [-0.04067308, 0.00907431]]), scale=0.0082421875, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=21, candidate_x=array([10.41713015, 0.74797616]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-1.2476591249008868, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=0.00412109375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 20, 21]), model=ScalarModel(intercept=1.5670853229897683, linear_terms=array([ 0.39417543, -0.22137413]), square_terms=array([[ 0.09471189, -0.04987683],
+ [-0.04987683, 0.02932098]]), scale=0.00412109375, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=22, candidate_x=array([10.40495761, 0.74727938]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-0.727449526160159, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=0.002060546875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 21, 22]), model=ScalarModel(intercept=1.5670853229897677, linear_terms=array([0.02911534, 0.84280919]), square_terms=array([[0.00313936, 0.00795999],
+ [0.00795999, 0.43720739]]), scale=0.002060546875, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=23, candidate_x=array([10.40947419, 0.74453793]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-0.43415349348557064, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=0.0010302734375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 22, 23]), model=ScalarModel(intercept=1.567085322989767, linear_terms=array([-0.08440957, -0.12599638]), square_terms=array([[0.00693663, 0.01229075],
+ [0.01229075, 0.03504717]]), scale=0.0010302734375, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=24, candidate_x=array([10.40925382, 0.74754792]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-3.1399010955164215, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=0.00051513671875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 23, 24]), model=ScalarModel(intercept=1.567085322989768, linear_terms=array([0.42378897, 0.04402589]), square_terms=array([[0.40082299, 0.04700393],
+ [0.04700393, 0.00789005]]), scale=0.00051513671875, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=25, candidate_x=array([10.40852437, 0.74670942]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-0.6361517377084711, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=0.000257568359375, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 24, 25]), model=ScalarModel(intercept=1.5670853229897677, linear_terms=array([-0.03060636, 0.08032196]), square_terms=array([[0.01876797, 0.00333634],
+ [0.00333634, 0.01072747]]), scale=0.000257568359375, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=26, candidate_x=array([10.40911054, 0.74628852]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-6.353147964522871, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=0.0001287841796875, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 25, 26]), model=ScalarModel(intercept=1.567085322989769, linear_terms=array([-0.10737809, -0.23545226]), square_terms=array([[0.01593444, 0.03453719],
+ [0.03453719, 0.10371827]]), scale=0.0001287841796875, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=27, candidate_x=array([10.40901578, 0.74667495]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-4.300108244331453, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=6.439208984375e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 26, 27]), model=ScalarModel(intercept=1.5670853229897677, linear_terms=array([0.98091845, 0.27409435]), square_terms=array([[1.23510289, 0.32351996],
+ [0.32351996, 0.08786033]]), scale=6.439208984375e-05, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=28, candidate_x=array([10.40897716, 0.74648983]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-0.7382017964627403, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=3.2196044921875e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 27, 28]), model=ScalarModel(intercept=1.567085322989768, linear_terms=array([-0.48972833, 0.15851916]), square_terms=array([[ 0.19760594, -0.06953882],
+ [-0.06953882, 0.02860858]]), scale=3.2196044921875e-05, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=29, candidate_x=array([10.40904513, 0.74654756]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-1.5783827078362191, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1.60980224609375e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 28, 29]), model=ScalarModel(intercept=1.5670853229897699, linear_terms=array([ 0.25155862, -0.23606302]), square_terms=array([[ 0.06869985, -0.05533087],
+ [-0.05533087, 0.04757193]]), scale=1.60980224609375e-05, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=30, candidate_x=array([10.40900842, 0.74656164]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-0.6777473813858229, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=8.04901123046875e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 29, 30]), model=ScalarModel(intercept=1.567085322989768, linear_terms=array([0.1162891 , 0.10579006]), square_terms=array([[0.01474709, 0.01446714],
+ [0.01446714, 0.02746594]]), scale=8.04901123046875e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=31, candidate_x=array([10.40900552, 0.74654313]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-0.772064324491312, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=4.024505615234375e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 30, 31]), model=ScalarModel(intercept=1.5670853229897679, linear_terms=array([-0.05644122, 0.01923886]), square_terms=array([[ 0.01059559, -0.00332368],
+ [-0.00332368, 0.00219334]]), scale=4.024505615234375e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=32, candidate_x=array([10.40901694, 0.74654561]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-8.593574734365282, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=2.0122528076171874e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 31, 32]), model=ScalarModel(intercept=1.56708532298977, linear_terms=array([ 0.14595958, -0.41318107]), square_terms=array([[ 0.01262979, -0.03230522],
+ [-0.03230522, 0.09453929]]), scale=2.0122528076171874e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=33, candidate_x=array([10.40901275, 0.74654819]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-1.78884728049783, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 31, 32]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1.0061264038085937e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 32, 33]), model=ScalarModel(intercept=1.5670853229897699, linear_terms=array([0.1437609 , 0.27985127]), square_terms=array([[0.01182457, 0.02571025],
+ [0.02571025, 0.07867304]]), scale=1.0061264038085937e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=34, candidate_x=array([10.40901279, 0.7465452 ]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-2.628720210655291, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 32, 33]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 32, 33, 34]), model=ScalarModel(intercept=1.96805461169286, linear_terms=array([0.00985 , 0.0380479]), square_terms=array([[0.00233627, 0.00164559],
+ [0.00164559, 0.02090977]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=35, candidate_x=array([10.40901299, 0.74654519]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-16.005614250606882, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 32, 33, 34]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 32, 33, 34, 35]), model=ScalarModel(intercept=1.982165461005107, linear_terms=array([0.00665481, 0.03054179]), square_terms=array([[ 0.00131356, -0.00026886],
+ [-0.00026886, 0.01738689]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=36, candidate_x=array([10.4090125, 0.7465453]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-26.756224181270007, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 32, 33, 34, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 32, 33, 34, 35, 36]), model=ScalarModel(intercept=2.012301373023884, linear_terms=array([-0.00925313, 0.0204173 ]), square_terms=array([[ 0.00370906, -0.002292 ],
+ [-0.002292 , 0.00686131]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=37, candidate_x=array([10.40901312, 0.74654521]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-35.713815613380326, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 32, 33, 34, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 32, 33, 34, 35, 36, 37]), model=ScalarModel(intercept=2.035292093461189, linear_terms=array([-0.01518771, 0.005448 ]), square_terms=array([[ 0.00395514, -0.00241608],
+ [-0.00241608, 0.00360263]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=38, candidate_x=array([10.40901395, 0.74654606]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-48.45300102560295, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 32, 33, 34, 35, 36, 37]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 32, 33, 34, 35, 36, 37, 38]), model=ScalarModel(intercept=2.0567741681984857, linear_terms=array([-0.00879561, 0.01102369]), square_terms=array([[ 0.00418854, -0.0023533 ],
+ [-0.0023533 , 0.00350692]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=39, candidate_x=array([10.40901324, 0.74654523]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-28.66323392285164, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 32, 33, 34, 35, 36, 37, 38]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 32, 33, 34, 35, 36, 37, 38, 39]), model=ScalarModel(intercept=2.0391623638797762, linear_terms=array([-0.00455657, 0.02579054]), square_terms=array([[ 0.00406815, -0.00257527],
+ [-0.00257527, 0.00352134]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=40, candidate_x=array([10.40901303, 0.7465452 ]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-28.336961624262585, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 32, 33, 34, 35, 36, 37, 38, 39]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 33, 34, 35, 36, 37, 38, 39, 40]), model=ScalarModel(intercept=2.0520819972922597, linear_terms=array([0.03292117, 0.01335152]), square_terms=array([[ 0.07134015, -0.01126546],
+ [-0.01126546, 0.0051156 ]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=41, candidate_x=array([10.40901246, 0.74654527]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-36.21666740698437, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 33, 34, 35, 36, 37, 38, 39, 40]), old_indices_discarded=array([32]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=42, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-0.44253639924988974, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=43, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-1.4629311533965808, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=44, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-1.461352187426044, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=45, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-1.2607478121108033, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43, 44]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=46, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-1.4404861758120324, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43, 44, 45]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=47, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-0.7730861760920995, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43, 44, 45, 46]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=48, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-1.279492841679456, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43, 44, 45, 46, 47]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=49, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-2.616213423530704, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43, 44, 45, 46, 47, 48]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=50, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-1.106083915204873, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43, 44, 45, 46, 47, 48, 49]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=51, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-2.078847596507147, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43, 44, 45, 46, 47, 48, 49, 50]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=52, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-0.586870286673416, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=53, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-1.1579248588982605, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=54, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-1.4053425253912992, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=55, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-0.461373474381888, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=56, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-1.4920349365482943, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=57, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-1.8579085249495129, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=58, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-1.9989303661421511, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ 57]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=59, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-0.6068514051294067, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ 57, 58]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=60, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-0.6537484219738521, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ 57, 58, 59]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=61, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-1.8703211413601208, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ 57, 58, 59, 60]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.40901296, 0.74654619]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), model=ScalarModel(intercept=1.7695420783172529, linear_terms=array([ 0.10859855, -0.34577159]), square_terms=array([[ 0.1407482 , -0.041069 ],
+ [-0.041069 , 0.06233794]]), scale=1e-06, shift=array([10.40901296, 0.74654619])), vector_model=VectorModel(intercepts=array([ 0.08924907, 0.13653644, 0.11708387, 0.18796095, 0.2782384 ,
+ 0.2501 , 0.18052122, -0.28781532, -0.4052013 , -0.43977086,
+ -0.63052455, -0.74213611, -0.06760469, 0.05962485, 0.09935991,
+ 0.1539211 , 0.09068669]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.055, shift=array([10.55, 0.8 ])), candidate_index=62, candidate_x=array([10.4090128 , 0.74654725]), index=14, x=array([10.40901296, 0.74654619]), fval=1.5670853229897677, rho=-1.9544241287731186, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([14, 34, 35, 36, 37, 38, 39, 40, 41]), old_indices_discarded=array([32, 33, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
+ 57, 58, 59, 60, 61]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1)], 'message': None, 'tranquilo_history': History for least_squares function with 63 entries., 'history': {'params': [{'CRRA': 10.549999999999999, 'DiscFac': 0.8}, {'CRRA': 9.63638322504817, 'DiscFac': 0.5}, {'CRRA': 11.484969406352658, 'DiscFac': 0.6950450323019065}, {'CRRA': 9.61503059364734, 'DiscFac': 0.7678374491842943}, {'CRRA': 11.38914667604357, 'DiscFac': 1.1}, {'CRRA': 11.163401648489817, 'DiscFac': 0.5}, {'CRRA': 11.484969406352658, 'DiscFac': 0.5149587583222188}, {'CRRA': 9.61503059364734, 'DiscFac': 0.9023157095700898}, {'CRRA': 11.484969406352658, 'DiscFac': 0.9249107259700196}, {'CRRA': 11.200043298278478, 'DiscFac': 1.1}, {'CRRA': 9.61503059364734, 'DiscFac': 1.0761971606112184}, {'CRRA': 9.950086447948753, 'DiscFac': 0.5}, {'CRRA': 10.101562221450532, 'DiscFac': 1.1}, {'CRRA': 10.564250156459297, 'DiscFac': 0.7090251531772338}, {'CRRA': 10.409012959102874, 'DiscFac': 0.7465461931192647}, {'CRRA': 10.876497662279204, 'DiscFac': 0.7047590861326258}, {'CRRA': 10.642755310691038, 'DiscFac': 0.7227381046302934}, {'CRRA': 10.462502180874958, 'DiscFac': 0.7466943341716599}, {'CRRA': 10.38953188970115, 'DiscFac': 0.8095401756986763}, {'CRRA': 10.408070205237287, 'DiscFac': 0.7795014611611336}, {'CRRA': 10.4040355874886, 'DiscFac': 0.7308312196559069}, {'CRRA': 10.417130154422681, 'DiscFac': 0.747976156379369}, {'CRRA': 10.404957610514645, 'DiscFac': 0.7472793789921746}, {'CRRA': 10.409474193583677, 'DiscFac': 0.7445379311398929}, {'CRRA': 10.409253822053858, 'DiscFac': 0.7475479158328248}, {'CRRA': 10.408524366008656, 'DiscFac': 0.7467094188135867}, {'CRRA': 10.409110541725639, 'DiscFac': 0.7462885248308881}, {'CRRA': 10.409015779571916, 'DiscFac': 0.746674946410066}, {'CRRA': 10.40897715624413, 'DiscFac': 0.7464898274963927}, {'CRRA': 10.409045126245324, 'DiscFac': 0.7465475570309847}, {'CRRA': 10.40900842243169, 'DiscFac': 0.7465616386668991}, {'CRRA': 10.409005516890739, 'DiscFac': 0.7465431271674827}, {'CRRA': 10.409016941668808, 'DiscFac': 0.746545613624632}, {'CRRA': 10.409012751436636, 'DiscFac': 0.7465481946277197}, {'CRRA': 10.409012793190314, 'DiscFac': 0.7465452007668258}, {'CRRA': 10.409012994814509, 'DiscFac': 0.7465451937571286}, {'CRRA': 10.40901250377754, 'DiscFac': 0.7465453027941333}, {'CRRA': 10.409013120562676, 'DiscFac': 0.746545206239975}, {'CRRA': 10.40901395086077, 'DiscFac': 0.7465460649932386}, {'CRRA': 10.409013237022553, 'DiscFac': 0.7465452325149485}, {'CRRA': 10.409013029034007, 'DiscFac': 0.7465451955674433}, {'CRRA': 10.409012459662202, 'DiscFac': 0.7465452689965956}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}, {'CRRA': 10.409012795901457, 'DiscFac': 0.746547245567204}], 'criterion': [1.6868651526889202, 3.480954810398765, 2.260747559060673, 2.547064697902489, 7.201068198931124, 3.1374502174308607, 3.04718354024147, 2.2726253377532757, 2.6167408436253154, 7.248582175621294, nan, 3.35531403379345, nan, 2.3482639785020627, 1.5670853229897677, 1.8782161107854296, 1.9381583965975022, 2.1661134795734647, 2.252475403554537, 2.169550364419683, 1.9877223462125706, 2.4180660994828416, 1.8378556329835718, 1.831447290013706, 1.952317800514757, 1.7079561039421265, 2.116622145489497, 2.363263932071929, 1.8647988231500747, 2.177706791247176, 1.741810037600067, 1.670871866530857, 2.022020451107534, 2.239492398151853, 2.242974833636936, 2.0038394495196488, 2.19061092596412, 2.2059570504476955, 2.2201773356962358, 1.8716559724385615, 2.2501305988559293, 2.3963808892551435, 1.7167411241578778, 2.061815551252246, 2.061281580673241, 1.9934417181070936, 2.054225167481986, 1.8285255824829145, 1.9997808631418785, 2.451829530672815, 1.9411378862811177, 2.270104561834346, 1.7655515804156885, 1.9586693209267092, 2.0423403797705073, 1.7231113969203478, 2.071657792459919, 2.1953879649186074, 2.2430783620512718, 1.7723087427549555, 1.788168253159402, 2.1995856310465705, 2.228027359192002], 'runtime': [0.0, 1.548035617000096, 1.7706701030001568, 2.175527643999885, 2.369177665999814, 2.5780295579997983, 2.807724123999833, 3.0578825849997884, 3.299887348000084, 3.517860224999822, 3.76492465299998, 4.007786183000007, 4.231809564999821, 5.73909286099979, 6.998317922999831, 8.28311824299999, 9.563867048999782, 10.848034388000087, 12.118733595999856, 13.392496591000054, 14.637045336000028, 16.033339606000027, 17.29637475699974, 18.56108014099982, 19.842127349999828, 21.095277582000108, 22.36889674599979, 23.63730706499973, 24.90452130499989, 26.15778013499994, 27.43728819199987, 28.688186958999722, 30.074051864000012, 31.343612913000015, 32.61149956899999, 33.86588144899997, 35.13064319099976, 36.40976097700013, 37.67580123200014, 38.95083778199978, 40.232212278000134, 41.48458159799975, 42.75722282900006, 44.17787447899991, 45.44237833199986, 46.70472883100001, 47.99600974899977, 49.26336670699993, 50.559864884000035, 51.80886392299999, 53.06836768899984, 54.30641792100005, 55.544880465000006, 56.80591562900008, 58.18713674199989, 59.433403120000094, 60.70174341499978, 61.98524475600016, 63.23637061599993, 64.47893447099977, 65.72109696899997, 66.99796079399994, 68.28493842099988], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]}}, {'solution_x': array([10.21976872, 0.8035952 ]), 'solution_criterion': 1.4324246742584341, 'states': [State(trustregion=Region(center=array([10.79628722, 0.75121895]), radius=1.0796287222045609, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=[0], model=ScalarModel(intercept=1.944688071402379, linear_terms=array([0., 0.]), square_terms=array([[0., 0.],
+ [0., 0.]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=0, candidate_x=array([10.79628722, 0.75121895]), index=0, x=array([10.79628722, 0.75121895]), fval=1.9446880714023793, rho=nan, accepted=True, new_indices=[0], old_indices_used=[], old_indices_discarded=[], step_length=None, relative_step_length=None, n_evals_per_point=None, n_evals_acceptance=None), State(trustregion=Region(center=array([10.79628722, 0.75121895]), radius=1.0796287222045609, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), model=ScalarModel(intercept=1.1166657271561815, linear_terms=array([0.15864049, 0.42371729]), square_terms=array([[0.12859729, 0.39267237],
+ [0.39267237, 6.44727637]]), scale=array([0.95679604, 0.3 ]), shift=array([10.79628722, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=13, candidate_x=array([9.83949118, 0.79855544]), index=13, x=array([9.83949118, 0.79855544]), fval=1.562893311281306, rho=3.4473155571582184, accepted=True, new_indices=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), old_indices_used=array([0]), old_indices_discarded=array([], dtype=int64), step_length=0.9579662890486034, relative_step_length=0.8873108591372714, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.83949118, 0.79855544]), radius=2.1592574444091217, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 2, 7, 9, 10, 11, 12, 13]), model=ScalarModel(intercept=1.0106711225618554, linear_terms=array([ 0.11328771, -0.02543314]), square_terms=array([[0.32696172, 0.20507785],
+ [0.20507785, 7.62392319]]), scale=array([1.91359209, 0.3 ]), shift=array([9.83949118, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=14, candidate_x=array([9.16100672, 0.80386201]), index=13, x=array([9.83949118, 0.79855544]), fval=1.562893311281306, rho=-49.876600074089325, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 2, 7, 9, 10, 11, 12, 13]), old_indices_discarded=array([3, 4, 5, 6, 8]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.83949118, 0.79855544]), radius=1.0796287222045609, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 10, 11, 12, 13, 14]), model=ScalarModel(intercept=1.1504720878409067, linear_terms=array([-0.3363689 , -0.93678951]), square_terms=array([[0.87155521, 1.8590239 ],
+ [1.8590239 , 7.19261499]]), scale=array([0.95679604, 0.3 ]), shift=array([9.83949118, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=15, candidate_x=array([10.07007058, 0.82038679]), index=13, x=array([9.83949118, 0.79855544]), fval=1.562893311281306, rho=-7.182390452169847, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 10, 11, 12, 13, 14]), old_indices_discarded=array([2, 4, 5, 6, 8, 9]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([9.83949118, 0.79855544]), radius=0.5398143611022804, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 1, 3, 7, 10, 11, 12, 13, 14, 15]), model=ScalarModel(intercept=1.1802551636376832, linear_terms=array([-0.4094047 , -1.11949307]), square_terms=array([[0.49537366, 1.3045479 ],
+ [1.3045479 , 6.88548901]]), scale=array([0.47839802, 0.3 ]), shift=array([9.83949118, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=16, candidate_x=array([10.21976966, 0.80359487]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=0.550198540728198, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 3, 7, 10, 11, 12, 13, 14, 15]), old_indices_discarded=array([0, 2, 4, 5, 6, 8, 9]), step_length=0.3803118746282886, relative_step_length=0.7045234473786621, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=1.0796287222045609, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 0, 1, 3, 7, 10, 11, 12, 14, 16]), model=ScalarModel(intercept=1.0866939087775023, linear_terms=array([-0.0322572 , -0.30854104]), square_terms=array([[0.67079418, 1.5479022 ],
+ [1.5479022 , 7.21799651]]), scale=array([0.95679604, 0.3 ]), shift=array([10.21976966, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=17, candidate_x=array([10.12401959, 0.81926207]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-58.62290797866045, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 0, 1, 3, 7, 10, 11, 12, 14, 16]), old_indices_discarded=array([ 2, 4, 5, 6, 8, 9, 13, 15]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.5398143611022804, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 1, 3, 7, 10, 11, 13, 15, 16, 17]), model=ScalarModel(intercept=1.104977886008402, linear_terms=array([-0.03432906, -0.69995447]), square_terms=array([[0.1703626 , 0.8790954 ],
+ [0.8790954 , 6.71082357]]), scale=array([0.47839802, 0.3 ]), shift=array([10.21976966, 0.8 ])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=18, candidate_x=array([9.74137164, 0.87058969]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-9.039838744462836, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 3, 7, 10, 11, 13, 15, 16, 17]), old_indices_discarded=array([ 0, 2, 4, 5, 6, 8, 9, 12, 14]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.2699071805511402, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 1, 3, 7, 10, 11, 13, 15, 16, 17]), model=ScalarModel(intercept=1.0970721967169264, linear_terms=array([-0.01342485, -0.55739364]), square_terms=array([[0.0542281 , 0.44622537],
+ [0.44622537, 5.43203036]]), scale=0.2699071805511402, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=19, candidate_x=array([9.9537993 , 0.85300258]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-6.872342914984419, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 1, 3, 7, 10, 11, 13, 15, 16, 17]), old_indices_discarded=array([ 0, 12, 14, 18]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.1349535902755701, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([ 3, 7, 10, 11, 13, 15, 16, 17, 19]), model=ScalarModel(intercept=1.0951311953171219, linear_terms=array([-0.07434461, -0.27707976]), square_terms=array([[0.12562853, 0.47234431],
+ [0.47234431, 2.1286064 ]]), scale=0.1349535902755701, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=20, candidate_x=array([10.35412853, 0.79093913]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-8.377479158857502, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([ 3, 7, 10, 11, 13, 15, 16, 17, 19]), old_indices_discarded=array([ 0, 1, 12, 18]), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.06747679513778505, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([10, 15, 16, 17, 19, 20]), model=ScalarModel(intercept=1.674917371962548, linear_terms=array([-0.17510758, -0.97660578]), square_terms=array([[0.02516315, 0.13418318],
+ [0.13418318, 0.97261011]]), scale=0.06747679513778505, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=21, candidate_x=array([10.25753497, 0.86122387]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-0.5278763601515147, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([10, 15, 16, 17, 19, 20]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.03373839756889253, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([15, 16, 17, 20, 21]), model=ScalarModel(intercept=1.6512778708853884, linear_terms=array([-0.03985835, 0.03411712]), square_terms=array([[0.00599018, 0.00998315],
+ [0.00998315, 0.03869545]]), scale=0.03373839756889253, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=22, candidate_x=array([10.24904785, 0.78650626]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-4.546783753534983, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([15, 16, 17, 20, 21]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.016869198784446263, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 21, 22]), model=ScalarModel(intercept=1.4666659767199604, linear_terms=array([ 0.09249895, -0.02335073]), square_terms=array([[ 0.01468019, -0.0030654 ],
+ [-0.0030654 , 0.02196767]]), scale=0.016869198784446263, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=23, candidate_x=array([10.20282574, 0.80705777]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-2.4186395681883326, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 21, 22]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.008434599392223132, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 22, 23]), model=ScalarModel(intercept=1.4666659767199597, linear_terms=array([0.34812163, 0.50552679]), square_terms=array([[0.78561087, 1.27785522],
+ [1.27785522, 2.09150806]]), scale=0.008434599392223132, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=24, candidate_x=array([10.21165115, 0.80647574]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-6.862307716483873, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 22, 23]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.004217299696111566, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 23, 24]), model=ScalarModel(intercept=1.4666659767199592, linear_terms=array([0.55084332, 2.09635603]), square_terms=array([[0.23949622, 0.71845366],
+ [0.71845366, 3.39566675]]), scale=0.004217299696111566, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=25, candidate_x=array([10.2158192 , 0.80184252]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-0.037924939882139255, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 23, 24]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.002108649848055783, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 24, 25]), model=ScalarModel(intercept=1.4666659767199588, linear_terms=array([-0.04544986, 0.1439351 ]), square_terms=array([[ 0.03369853, -0.00374743],
+ [-0.00374743, 0.02333965]]), scale=0.002108649848055783, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=26, candidate_x=array([10.22033497, 0.80152254]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-0.6136103055014882, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 24, 25]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.0010543249240278915, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 25, 26]), model=ScalarModel(intercept=1.466665976719959, linear_terms=array([-0.07066043, 0.18003202]), square_terms=array([[ 0.01861073, -0.05858304],
+ [-0.05858304, 0.21397908]]), scale=0.0010543249240278915, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=27, candidate_x=array([10.22070105, 0.80303109]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-5.736976120905478, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 25, 26]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.0005271624620139457, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 26, 27]), model=ScalarModel(intercept=1.466665976719959, linear_terms=array([0.34456294, 0.19364665]), square_terms=array([[0.25192343, 0.18068867],
+ [0.18068867, 0.14166455]]), scale=0.0005271624620139457, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=28, candidate_x=array([10.2192379 , 0.80356787]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-1.6254756702487918, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 26, 27]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.00026358123100697286, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 27, 28]), model=ScalarModel(intercept=1.4666659767199586, linear_terms=array([-0.11867755, -0.3838503 ]), square_terms=array([[0.03057504, 0.07332091],
+ [0.07332091, 0.21686367]]), scale=0.00026358123100697286, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=29, candidate_x=array([10.21973477, 0.80385614]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-1.385618786964724, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 27, 28]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=0.00013179061550348643, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 28, 29]), model=ScalarModel(intercept=1.466665976719959, linear_terms=array([-0.0761264 , 0.13860902]), square_terms=array([[ 0.01125216, -0.016678 ],
+ [-0.016678 , 0.03393693]]), scale=0.00013179061550348643, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=30, candidate_x=array([10.2197935 , 0.80346526]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-0.9313463730632265, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 28, 29]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=6.589530775174322e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 29, 30]), model=ScalarModel(intercept=1.466665976719959, linear_terms=array([1.88031026, 0.32552717]), square_terms=array([[27.70522767, 4.07358483],
+ [ 4.07358483, 0.60357257]]), scale=6.589530775174322e-05, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=31, candidate_x=array([10.21977486, 0.80352904]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-3.990389150994559, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 29, 30]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=3.294765387587161e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 30, 31]), model=ScalarModel(intercept=1.4666659767199595, linear_terms=array([-1.6196538 , -0.30795927]), square_terms=array([[2.28612575, 0.4440688 ],
+ [0.4440688 , 0.09657711]]), scale=3.294765387587161e-05, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=32, candidate_x=array([10.21979713, 0.80357364]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-0.5832167758400026, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 30, 31]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=1.6473826937935804e-05, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 31, 32]), model=ScalarModel(intercept=1.4666659767199592, linear_terms=array([ 0.11595344, -0.08086352]), square_terms=array([[ 0.01665732, -0.00335936],
+ [-0.00335936, 0.00953888]]), scale=1.6473826937935804e-05, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=33, candidate_x=array([10.21975508, 0.80360253]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-3.4170199522091034, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 31, 32]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=8.236913468967902e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 32, 33]), model=ScalarModel(intercept=1.4666659767199604, linear_terms=array([-0.81016988, -1.16337389]), square_terms=array([[0.82069046, 1.14256831],
+ [1.14256831, 1.59421614]]), scale=8.236913468967902e-06, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=34, candidate_x=array([10.21976693, 0.80360273]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-1.2090736872147105, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 32, 33]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=4.118456734483951e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 33, 34]), model=ScalarModel(intercept=1.46666597671996, linear_terms=array([0.01519349, 0.21926015]), square_terms=array([[0.01579161, 0.02024966],
+ [0.02024966, 0.07482116]]), scale=4.118456734483951e-06, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=35, candidate_x=array([10.21977031, 0.80359081]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-4.097750160431341, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 33, 34]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=2.0592283672419755e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 34, 35]), model=ScalarModel(intercept=1.4666659767199617, linear_terms=array([-2.08194623, -0.61763116]), square_terms=array([[4.72050345, 1.38963014],
+ [1.38963014, 0.41114603]]), scale=2.0592283672419755e-06, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=36, candidate_x=array([10.21976994, 0.80359702]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-1.97671703577029, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 34, 35]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=1.0296141836209878e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 35, 36]), model=ScalarModel(intercept=1.4666659767199595, linear_terms=array([1.53654606, 0.10054103]), square_terms=array([[2.60301811, 0.23722528],
+ [0.23722528, 0.03189878]]), scale=1.0296141836209878e-06, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=37, candidate_x=array([10.21976899, 0.80359567]), index=16, x=array([10.21976966, 0.80359487]), fval=1.466665976719959, rho=-1.0324383710298721, accepted=False, new_indices=array([], dtype=int64), old_indices_used=array([16, 35, 36]), old_indices_discarded=array([], dtype=int64), step_length=0.0, relative_step_length=0.0, n_evals_per_point=1, n_evals_acceptance=1), State(trustregion=Region(center=array([10.21976966, 0.80359487]), radius=1e-06, bounds=Bounds(lower=array([1.1, 0.5]), upper=array([20. , 1.1]))), model_indices=array([16, 35, 36, 37]), model=ScalarModel(intercept=1.9297740244997519, linear_terms=array([0.31993793, 0.03103716]), square_terms=array([[0.23625668, 0.05453936],
+ [0.05453936, 0.0175204 ]]), scale=1e-06, shift=array([10.21976966, 0.80359487])), vector_model=VectorModel(intercepts=array([ 0.06389705, 0.12779359, 0.18470431, 0.26320125, 0.26215047,
+ 0.28488454, 0.21775791, -0.25498137, -0.46507275, -0.51575513,
+ -0.62576956, -0.79590416, -0.14927533, 0.0536062 , 0.10945384,
+ 0.08712913, 0.080573 ]), linear_terms=array([[0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.],
+ [0., 0.]]), square_terms=array([[[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]],
+
+ [[0., 0.],
+ [0., 0.]]]), scale=1.0796287222045609, shift=array([10.79628722, 0.75121895])), candidate_index=38, candidate_x=array([10.21976872, 0.8035952 ]), index=38, x=array([10.21976872, 0.8035952 ]), fval=1.4324246742584341, rho=0.16897984080632025, accepted=True, new_indices=array([], dtype=int64), old_indices_used=array([16, 35, 36, 37]), old_indices_discarded=array([], dtype=int64), step_length=1.000000000616104e-06, relative_step_length=1.000000000616104, n_evals_per_point=1, n_evals_acceptance=1)], 'message': 'Absolute params change smaller than tolerance.', 'tranquilo_history': History for least_squares function with 39 entries., 'history': {'params': [{'CRRA': 10.796287222045608, 'DiscFac': 0.7512189549688916}, {'CRRA': 9.83949117893577, 'DiscFac': 0.540401632080349}, {'CRRA': 11.753083265155446, 'DiscFac': 0.7276940506351226}, {'CRRA': 9.83949117893577, 'DiscFac': 0.855439124212817}, {'CRRA': 11.753083265155446, 'DiscFac': 0.953923601537897}, {'CRRA': 11.727032790520497, 'DiscFac': 0.5}, {'CRRA': 11.709718520536603, 'DiscFac': 0.5}, {'CRRA': 9.83949117893577, 'DiscFac': 1.0362179395826956}, {'CRRA': 11.537716692481002, 'DiscFac': 1.1}, {'CRRA': 11.736268238617884, 'DiscFac': 1.1}, {'CRRA': 10.079195559091445, 'DiscFac': 1.1}, {'CRRA': 10.462366881566767, 'DiscFac': 0.5}, {'CRRA': 10.702528806860887, 'DiscFac': 1.1}, {'CRRA': 9.83949117893577, 'DiscFac': 0.7985554402937353}, {'CRRA': 9.161006721240817, 'DiscFac': 0.8038620148386444}, {'CRRA': 10.07007058449546, 'DiscFac': 0.8203867919740195}, {'CRRA': 10.219769663854269, 'DiscFac': 0.8035948739299863}, {'CRRA': 10.124019594791632, 'DiscFac': 0.8192620732613634}, {'CRRA': 9.74137164229935, 'DiscFac': 0.8705896908843451}, {'CRRA': 9.953799298216243, 'DiscFac': 0.8530025752698449}, {'CRRA': 10.354128525305132, 'DiscFac': 0.7909391290726444}, {'CRRA': 10.257534971759856, 'DiscFac': 0.8612238655609539}, {'CRRA': 10.249047845040932, 'DiscFac': 0.7865062603624867}, {'CRRA': 10.20282573607525, 'DiscFac': 0.8070577731924602}, {'CRRA': 10.211651148841334, 'DiscFac': 0.8064757372422714}, {'CRRA': 10.215819204260216, 'DiscFac': 0.8018425194103768}, {'CRRA': 10.220334974093092, 'DiscFac': 0.801522538105995}, {'CRRA': 10.22070105396213, 'DiscFac': 0.8030310894013778}, {'CRRA': 10.219237900858886, 'DiscFac': 0.8035678660193153}, {'CRRA': 10.219734769165171, 'DiscFac': 0.8038561351517777}, {'CRRA': 10.219793499159207, 'DiscFac': 0.8034652566295468}, {'CRRA': 10.219774863413532, 'DiscFac': 0.8035290382486371}, {'CRRA': 10.219797131091756, 'DiscFac': 0.8035736390078726}, {'CRRA': 10.21975507632272, 'DiscFac': 0.8036025283990935}, {'CRRA': 10.219766928277888, 'DiscFac': 0.8036027336977617}, {'CRRA': 10.219770309843383, 'DiscFac': 0.803590806451168}, {'CRRA': 10.219769938833513, 'DiscFac': 0.8035970244691708}, {'CRRA': 10.219768993697665, 'DiscFac': 0.8035956660923393}, {'CRRA': 10.219768718617258, 'DiscFac': 0.8035952003147214}], 'criterion': [1.944688071402379, 3.2418713124374086, 1.6847743076786055, 1.128338026536752, 1.9993245469826628, 3.0338592297352878, 3.03501149174734, 3.1984431617624467, 5.804856136080152, 5.812504133071434, 5.885079951568567, 3.234806234254797, 5.816470157774893, 1.562893311281306, 2.583280694198379, 2.1156170561319314, 1.466665976719959, 1.766356958631806, 1.9942161012956399, 1.8237311899758983, 1.6385017088168858, 1.7355045639194775, 1.6896331400087274, 1.682413353250237, 2.1295535775079775, 1.4935626587985393, 1.552676549651821, 2.001136860398742, 1.8239410801778175, 1.8374330022860998, 1.588232033050871, 1.9076652660001112, 1.8025300432662208, 1.9153439826519716, 1.9890830431798012, 2.2067830967199793, 2.3817732744926454, 1.9629904816911659, 1.4324246742584341], 'runtime': [0.0, 1.5777012819999072, 1.7944821000000957, 2.1437941620001766, 2.3618136989998675, 2.5728053900002124, 2.7940112040000713, 3.0210618639998756, 3.2580944800001816, 3.4653453969999646, 3.728331842999978, 3.975551980000091, 4.155800905999968, 5.559656017000179, 6.802116995000233, 8.06469720899986, 9.325519093999901, 10.57778590199996, 11.829665229000057, 13.080631366000034, 14.326657801000238, 15.71577292200027, 16.999908634999883, 18.272807574000126, 19.582853569000235, 20.83235119500023, 22.094798552000157, 23.35142596600008, 24.604288662000272, 25.87174642700029, 27.11416403300018, 28.383461697000257, 29.77518187900023, 31.048289716, 32.33646260100022, 33.61736069900007, 34.86628536700027, 36.13524358199993, 37.38796032500022], 'batches': [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]}, 'multistart_info': {...}}], 'exploration_sample': array([[10.55 , 0.8 ],
+ [11.73125 , 0.7625 ],
+ [ 9.36875 , 0.8375 ],
+ [ 7.596875, 0.93125 ],
+ [12.9125 , 0.575 ],
+ [15.275 , 0.65 ],
+ [17.046875, 0.63125 ],
+ [16.45625 , 0.9125 ],
+ [18.81875 , 0.5375 ],
+ [ 8.1875 , 0.725 ],
+ [14.09375 , 0.9875 ],
+ [12.321875, 1.08125 ],
+ [17.6375 , 1.025 ],
+ [ 7.00625 , 0.6125 ],
+ [ 5. , 0.95 ],
+ [ 4.64375 , 0.6875 ],
+ [ 2.871875, 0.78125 ],
+ [ 3.4625 , 0.875 ],
+ [ 2.28125 , 1.0625 ]]), 'exploration_results': array([ 1.74531296, 2.10648864, 2.17581064, 2.66803924,
+ 2.70500778, 2.87740953, 3.0406658 , 3.37839016,
+ 3.53882151, 3.99992851, 4.37946561, 4.47403011,
+ 4.90296965, 6.27675034, 11.07528266, 21.17347996,
+ 25.72759101, 28.93912422, 124.53209372])}}"
diff --git a/content/tables/msm/IndShockSub(Labor)Market_estimate_results.csv b/content/tables/msm/IndShockSub(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..9c11bab
--- /dev/null
+++ b/content/tables/msm/IndShockSub(Labor)Market_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,10.120536495469759
+DiscFac,1.072981697525726
+time_to_estimate,531.695109128952
+_params,"{'CRRA': 10.120536495469759, 'DiscFac': 1.072981697525726}"
+_internal_estimates,"InternalParams(values=array([10.1205365, 1.0729817]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([10.1205365, 1.0729817]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2019.14915854), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(500.34239184), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(518.82380586), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(591.66555413), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(294.07884176), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(116.40562412), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(69.87620894), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.46773596), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.70517538), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(7.88396527), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90060184), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.55717516)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7fa41c900700>, params_from_internal=._params_from_internal at 0x7fa41c901fc0>, derivative_to_internal=._derivative_to_internal at 0x7fa41c901510>, func_to_internal=._func_to_internal at 0x7fa41c900ee0>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.95258112e-04 2.66601431e-05 2.79286974e-05 7.46706608e-06
+ -3.57660861e-05 2.67259515e-05 1.10371975e-04 2.29478720e-04
+ -1.74583374e-04 9.18609805e-05 -9.28899552e-04 -1.50543778e-04]
+ [ 2.66601431e-05 1.99863137e-03 8.85890234e-05 9.17921130e-05
+ -9.23337837e-05 -2.83576297e-04 1.48966314e-04 1.80715547e-04
+ -3.10963397e-04 3.47758778e-04 5.28959433e-04 5.19875724e-04]
+ [ 2.79286974e-05 8.85890234e-05 1.92743661e-03 4.84543237e-05
+ 8.64878494e-05 -1.21376982e-04 -2.12383559e-04 -3.48906145e-05
+ 4.13284621e-04 3.32697621e-04 -4.47332935e-04 5.68592373e-04]
+ [ 7.46706608e-06 9.17921130e-05 4.84543237e-05 1.69014402e-03
+ -1.64277002e-05 -4.40250202e-05 -1.69566236e-04 -7.30430953e-04
+ 6.17674185e-05 -3.77973815e-04 -1.25740378e-03 -1.67437857e-03]
+ [-3.57660861e-05 -9.23337837e-05 8.64878494e-05 -1.64277002e-05
+ 3.40044865e-03 2.31358468e-04 -1.98388371e-04 -9.90302591e-04
+ 3.40008787e-04 -3.99570271e-04 -8.07415962e-04 -6.44898143e-03]
+ [ 2.67259515e-05 -2.83576297e-04 -1.21376982e-04 -4.40250202e-05
+ 2.31358468e-04 8.59065022e-03 -5.28504370e-04 9.67901647e-04
+ -6.38169315e-04 -4.22552263e-04 3.24001952e-03 -3.14657898e-03]
+ [ 1.10371975e-04 1.48966314e-04 -2.12383559e-04 -1.69566236e-04
+ -1.98388371e-04 -5.28504370e-04 1.43110225e-02 2.57065708e-04
+ -1.09391854e-03 1.90605756e-03 -6.99390334e-04 7.40307679e-03]
+ [ 2.29478720e-04 1.80715547e-04 -3.48906145e-05 -7.30430953e-04
+ -9.90302591e-04 9.67901647e-04 2.57065708e-04 6.07248017e-02
+ 2.56350149e-03 6.21389768e-04 -2.22168627e-03 -1.42343182e-02]
+ [-1.74583374e-04 -3.10963397e-04 4.13284621e-04 6.17674185e-05
+ 3.40008787e-04 -6.38169315e-04 -1.09391854e-03 2.56350149e-03
+ 5.98616882e-02 -9.63153128e-04 7.46109287e-03 1.60977374e-02]
+ [ 9.18609805e-05 3.47758778e-04 3.32697621e-04 -3.77973815e-04
+ -3.99570271e-04 -4.22552263e-04 1.90605756e-03 6.21389768e-04
+ -9.63153128e-04 1.26839727e-01 -5.50753961e-03 1.82934775e-03]
+ [-9.28899552e-04 5.28959433e-04 -4.47332935e-04 -1.25740378e-03
+ -8.07415962e-04 3.24001952e-03 -6.99390334e-04 -2.22168627e-03
+ 7.46109287e-03 -5.50753961e-03 5.26149129e-01 -2.79455237e-02]
+ [-1.50543778e-04 5.19875724e-04 5.68592373e-04 -1.67437857e-03
+ -6.44898143e-03 -3.14657898e-03 7.40307679e-03 -1.42343182e-02
+ 1.60977374e-02 1.82934775e-03 -2.79455237e-02 1.79476773e+00]]"
+_internal_weights,"[[2.01914916e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.00342392e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.18823806e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 5.91665554e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.94078842e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.16405624e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.98762089e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.64677360e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.67051754e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 7.88396527e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90060184e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.57175161e-01]]"
+_internal_jacobian,"[[ 3.38245173e-02 5.22841064e-01]
+ [ 1.94717485e-02 4.82486194e+00]
+ [-3.32873492e-02 1.23320199e+01]
+ [-6.88370974e-02 1.80222932e+01]
+ [-1.30902443e-01 3.03890244e+01]
+ [-1.73047662e-01 3.78741494e+01]
+ [-2.38381266e-01 5.28040983e+01]
+ [-2.84591888e-01 7.72977920e+01]
+ [-2.93104267e-01 6.85922454e+01]
+ [-1.35680294e-01 7.32566208e+01]
+ [-1.14842010e-01 2.64659552e+01]
+ [-4.66412482e-02 1.57010613e+01]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(0.03382452), 'DiscFac': array(0.52284106)}, '(30,35]': {'CRRA': array(0.01947175), 'DiscFac': array(4.82486194)}, '(35,40]': {'CRRA': array(-0.03328735), 'DiscFac': array(12.33201988)}, '(40,45]': {'CRRA': array(-0.0688371), 'DiscFac': array(18.02229324)}, '(45,50]': {'CRRA': array(-0.13090244), 'DiscFac': array(30.38902444)}, '(50,55]': {'CRRA': array(-0.17304766), 'DiscFac': array(37.87414937)}, '(55,60]': {'CRRA': array(-0.23838127), 'DiscFac': array(52.80409826)}, '(70,75]': {'CRRA': array(-0.28459189), 'DiscFac': array(77.29779196)}, '(75,80]': {'CRRA': array(-0.29310427), 'DiscFac': array(68.59224542)}, '(80,85]': {'CRRA': array(-0.13568029), 'DiscFac': array(73.25662082)}, '(85,90]': {'CRRA': array(-0.11484201), 'DiscFac': array(26.46595524)}, '(90,95]': {'CRRA': array(-0.04664125), 'DiscFac': array(15.70106134)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/IndShockSub(Stock)(Labor)Market_estimate_results.csv b/content/tables/msm/IndShockSub(Stock)(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..2472700
--- /dev/null
+++ b/content/tables/msm/IndShockSub(Stock)(Labor)Market_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,10.637291414951322
+DiscFac,1.0751692278351839
+time_to_estimate,516.5506954193115
+_params,"{'CRRA': 10.637291414951322, 'DiscFac': 1.0751692278351839}"
+_internal_estimates,"InternalParams(values=array([10.63729141, 1.07516923]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([10.63729141, 1.07516923]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2019.14915854), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(500.34239184), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(518.82380586), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(591.66555413), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(294.07884176), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(116.40562412), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(69.87620894), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.46773596), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.70517538), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(7.88396527), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90060184), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.55717516)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7f3311678670>, params_from_internal=._params_from_internal at 0x7f331167aa70>, derivative_to_internal=._derivative_to_internal at 0x7f3311679b40>, func_to_internal=._func_to_internal at 0x7f331167b640>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.95258112e-04 2.66601431e-05 2.79286974e-05 7.46706608e-06
+ -3.57660861e-05 2.67259515e-05 1.10371975e-04 2.29478720e-04
+ -1.74583374e-04 9.18609805e-05 -9.28899552e-04 -1.50543778e-04]
+ [ 2.66601431e-05 1.99863137e-03 8.85890234e-05 9.17921130e-05
+ -9.23337837e-05 -2.83576297e-04 1.48966314e-04 1.80715547e-04
+ -3.10963397e-04 3.47758778e-04 5.28959433e-04 5.19875724e-04]
+ [ 2.79286974e-05 8.85890234e-05 1.92743661e-03 4.84543237e-05
+ 8.64878494e-05 -1.21376982e-04 -2.12383559e-04 -3.48906145e-05
+ 4.13284621e-04 3.32697621e-04 -4.47332935e-04 5.68592373e-04]
+ [ 7.46706608e-06 9.17921130e-05 4.84543237e-05 1.69014402e-03
+ -1.64277002e-05 -4.40250202e-05 -1.69566236e-04 -7.30430953e-04
+ 6.17674185e-05 -3.77973815e-04 -1.25740378e-03 -1.67437857e-03]
+ [-3.57660861e-05 -9.23337837e-05 8.64878494e-05 -1.64277002e-05
+ 3.40044865e-03 2.31358468e-04 -1.98388371e-04 -9.90302591e-04
+ 3.40008787e-04 -3.99570271e-04 -8.07415962e-04 -6.44898143e-03]
+ [ 2.67259515e-05 -2.83576297e-04 -1.21376982e-04 -4.40250202e-05
+ 2.31358468e-04 8.59065022e-03 -5.28504370e-04 9.67901647e-04
+ -6.38169315e-04 -4.22552263e-04 3.24001952e-03 -3.14657898e-03]
+ [ 1.10371975e-04 1.48966314e-04 -2.12383559e-04 -1.69566236e-04
+ -1.98388371e-04 -5.28504370e-04 1.43110225e-02 2.57065708e-04
+ -1.09391854e-03 1.90605756e-03 -6.99390334e-04 7.40307679e-03]
+ [ 2.29478720e-04 1.80715547e-04 -3.48906145e-05 -7.30430953e-04
+ -9.90302591e-04 9.67901647e-04 2.57065708e-04 6.07248017e-02
+ 2.56350149e-03 6.21389768e-04 -2.22168627e-03 -1.42343182e-02]
+ [-1.74583374e-04 -3.10963397e-04 4.13284621e-04 6.17674185e-05
+ 3.40008787e-04 -6.38169315e-04 -1.09391854e-03 2.56350149e-03
+ 5.98616882e-02 -9.63153128e-04 7.46109287e-03 1.60977374e-02]
+ [ 9.18609805e-05 3.47758778e-04 3.32697621e-04 -3.77973815e-04
+ -3.99570271e-04 -4.22552263e-04 1.90605756e-03 6.21389768e-04
+ -9.63153128e-04 1.26839727e-01 -5.50753961e-03 1.82934775e-03]
+ [-9.28899552e-04 5.28959433e-04 -4.47332935e-04 -1.25740378e-03
+ -8.07415962e-04 3.24001952e-03 -6.99390334e-04 -2.22168627e-03
+ 7.46109287e-03 -5.50753961e-03 5.26149129e-01 -2.79455237e-02]
+ [-1.50543778e-04 5.19875724e-04 5.68592373e-04 -1.67437857e-03
+ -6.44898143e-03 -3.14657898e-03 7.40307679e-03 -1.42343182e-02
+ 1.60977374e-02 1.82934775e-03 -2.79455237e-02 1.79476773e+00]]"
+_internal_weights,"[[2.01914916e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.00342392e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.18823806e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 5.91665554e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.94078842e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.16405624e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.98762089e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.64677360e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.67051754e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 7.88396527e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90060184e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.57175161e-01]]"
+_internal_jacobian,"[[ 3.85237509e-02 9.79748603e-01]
+ [ 1.58716847e-02 5.66025615e+00]
+ [-2.57477083e-02 1.37917850e+01]
+ [-5.40290614e-02 2.22123167e+01]
+ [-9.71003540e-02 3.00629482e+01]
+ [-1.27755650e-01 3.94180813e+01]
+ [-1.46102949e-01 4.97039714e+01]
+ [-1.76729862e-01 7.71706617e+01]
+ [-7.86052360e-02 6.71877646e+01]
+ [-2.31847984e-02 5.99669689e+01]
+ [-8.61482781e-02 2.42907091e+01]
+ [-3.20369453e-02 1.63731166e+01]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(0.03852375), 'DiscFac': array(0.9797486)}, '(30,35]': {'CRRA': array(0.01587168), 'DiscFac': array(5.66025615)}, '(35,40]': {'CRRA': array(-0.02574771), 'DiscFac': array(13.79178499)}, '(40,45]': {'CRRA': array(-0.05402906), 'DiscFac': array(22.21231674)}, '(45,50]': {'CRRA': array(-0.09710035), 'DiscFac': array(30.06294819)}, '(50,55]': {'CRRA': array(-0.12775565), 'DiscFac': array(39.41808128)}, '(55,60]': {'CRRA': array(-0.14610295), 'DiscFac': array(49.70397145)}, '(70,75]': {'CRRA': array(-0.17672986), 'DiscFac': array(77.17066173)}, '(75,80]': {'CRRA': array(-0.07860524), 'DiscFac': array(67.18776461)}, '(80,85]': {'CRRA': array(-0.0231848), 'DiscFac': array(59.96696888)}, '(85,90]': {'CRRA': array(-0.08614828), 'DiscFac': array(24.29070912)}, '(90,95]': {'CRRA': array(-0.03203695), 'DiscFac': array(16.37311659)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/IndShockSub(Stock)Market_estimate_results.csv b/content/tables/msm/IndShockSub(Stock)Market_estimate_results.csv
new file mode 100644
index 0000000..7c8248a
--- /dev/null
+++ b/content/tables/msm/IndShockSub(Stock)Market_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,1.6899139270900547
+DiscFac,0.9795091538349516
+time_to_estimate,515.8025386333466
+_params,"{'CRRA': 1.6899139270900547, 'DiscFac': 0.9795091538349516}"
+_internal_estimates,"InternalParams(values=array([1.68991393, 0.97950915]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([1.68991393, 0.97950915]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2019.14915854), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(500.34239184), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(518.82380586), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(591.66555413), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(294.07884176), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(116.40562412), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(69.87620894), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.46773596), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.70517538), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(7.88396527), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90060184), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.55717516)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7fab2c527d90>, params_from_internal=._params_from_internal at 0x7fab2c5276d0>, derivative_to_internal=._derivative_to_internal at 0x7fab17ca1c60>, func_to_internal=._func_to_internal at 0x7fab2c2b4670>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.95258112e-04 2.66601431e-05 2.79286974e-05 7.46706608e-06
+ -3.57660861e-05 2.67259515e-05 1.10371975e-04 2.29478720e-04
+ -1.74583374e-04 9.18609805e-05 -9.28899552e-04 -1.50543778e-04]
+ [ 2.66601431e-05 1.99863137e-03 8.85890234e-05 9.17921130e-05
+ -9.23337837e-05 -2.83576297e-04 1.48966314e-04 1.80715547e-04
+ -3.10963397e-04 3.47758778e-04 5.28959433e-04 5.19875724e-04]
+ [ 2.79286974e-05 8.85890234e-05 1.92743661e-03 4.84543237e-05
+ 8.64878494e-05 -1.21376982e-04 -2.12383559e-04 -3.48906145e-05
+ 4.13284621e-04 3.32697621e-04 -4.47332935e-04 5.68592373e-04]
+ [ 7.46706608e-06 9.17921130e-05 4.84543237e-05 1.69014402e-03
+ -1.64277002e-05 -4.40250202e-05 -1.69566236e-04 -7.30430953e-04
+ 6.17674185e-05 -3.77973815e-04 -1.25740378e-03 -1.67437857e-03]
+ [-3.57660861e-05 -9.23337837e-05 8.64878494e-05 -1.64277002e-05
+ 3.40044865e-03 2.31358468e-04 -1.98388371e-04 -9.90302591e-04
+ 3.40008787e-04 -3.99570271e-04 -8.07415962e-04 -6.44898143e-03]
+ [ 2.67259515e-05 -2.83576297e-04 -1.21376982e-04 -4.40250202e-05
+ 2.31358468e-04 8.59065022e-03 -5.28504370e-04 9.67901647e-04
+ -6.38169315e-04 -4.22552263e-04 3.24001952e-03 -3.14657898e-03]
+ [ 1.10371975e-04 1.48966314e-04 -2.12383559e-04 -1.69566236e-04
+ -1.98388371e-04 -5.28504370e-04 1.43110225e-02 2.57065708e-04
+ -1.09391854e-03 1.90605756e-03 -6.99390334e-04 7.40307679e-03]
+ [ 2.29478720e-04 1.80715547e-04 -3.48906145e-05 -7.30430953e-04
+ -9.90302591e-04 9.67901647e-04 2.57065708e-04 6.07248017e-02
+ 2.56350149e-03 6.21389768e-04 -2.22168627e-03 -1.42343182e-02]
+ [-1.74583374e-04 -3.10963397e-04 4.13284621e-04 6.17674185e-05
+ 3.40008787e-04 -6.38169315e-04 -1.09391854e-03 2.56350149e-03
+ 5.98616882e-02 -9.63153128e-04 7.46109287e-03 1.60977374e-02]
+ [ 9.18609805e-05 3.47758778e-04 3.32697621e-04 -3.77973815e-04
+ -3.99570271e-04 -4.22552263e-04 1.90605756e-03 6.21389768e-04
+ -9.63153128e-04 1.26839727e-01 -5.50753961e-03 1.82934775e-03]
+ [-9.28899552e-04 5.28959433e-04 -4.47332935e-04 -1.25740378e-03
+ -8.07415962e-04 3.24001952e-03 -6.99390334e-04 -2.22168627e-03
+ 7.46109287e-03 -5.50753961e-03 5.26149129e-01 -2.79455237e-02]
+ [-1.50543778e-04 5.19875724e-04 5.68592373e-04 -1.67437857e-03
+ -6.44898143e-03 -3.14657898e-03 7.40307679e-03 -1.42343182e-02
+ 1.60977374e-02 1.82934775e-03 -2.79455237e-02 1.79476773e+00]]"
+_internal_weights,"[[2.01914916e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.00342392e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.18823806e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 5.91665554e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.94078842e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.16405624e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.98762089e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.64677360e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.67051754e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 7.88396527e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90060184e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.57175161e-01]]"
+_internal_jacobian,"[[ 0.5733547 23.30015286]
+ [ 0.86204412 47.50225817]
+ [ 1.51241309 88.42767678]
+ [ 1.83439217 117.05231415]
+ [ 2.69013815 170.64007089]
+ [ 2.22069696 142.56818509]
+ [ 3.24635465 203.45744555]
+ [ 3.22798763 192.51516047]
+ [ 2.95270076 168.86416448]
+ [ 2.56772368 122.84053365]
+ [ 1.68657561 75.4871039 ]
+ [ 0.81142169 47.51667733]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(0.5733547), 'DiscFac': array(23.30015286)}, '(30,35]': {'CRRA': array(0.86204412), 'DiscFac': array(47.50225817)}, '(35,40]': {'CRRA': array(1.51241309), 'DiscFac': array(88.42767678)}, '(40,45]': {'CRRA': array(1.83439217), 'DiscFac': array(117.05231415)}, '(45,50]': {'CRRA': array(2.69013815), 'DiscFac': array(170.64007089)}, '(50,55]': {'CRRA': array(2.22069696), 'DiscFac': array(142.56818509)}, '(55,60]': {'CRRA': array(3.24635465), 'DiscFac': array(203.45744555)}, '(70,75]': {'CRRA': array(3.22798763), 'DiscFac': array(192.51516047)}, '(75,80]': {'CRRA': array(2.95270076), 'DiscFac': array(168.86416448)}, '(80,85]': {'CRRA': array(2.56772368), 'DiscFac': array(122.84053365)}, '(85,90]': {'CRRA': array(1.68657561), 'DiscFac': array(75.4871039)}, '(90,95]': {'CRRA': array(0.81142169), 'DiscFac': array(47.51667733)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/IndShock_estimate_results.csv b/content/tables/msm/IndShock_estimate_results.csv
new file mode 100644
index 0000000..9ed5730
--- /dev/null
+++ b/content/tables/msm/IndShock_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,1.7276875282656314
+DiscFac,0.9707284652948673
+time_to_estimate,521.7721037864685
+_params,"{'CRRA': 1.7276875282656314, 'DiscFac': 0.9707284652948673}"
+_internal_estimates,"InternalParams(values=array([1.72768753, 0.97072847]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([1.72768753, 0.97072847]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2019.14915854), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(500.34239184), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(518.82380586), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(591.66555413), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(294.07884176), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(116.40562412), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(69.87620894), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.46773596), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.70517538), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(7.88396527), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90060184), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.55717516)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7f311b630c10>, params_from_internal=._params_from_internal at 0x7f311b632cb0>, derivative_to_internal=._derivative_to_internal at 0x7f311b631cf0>, func_to_internal=._func_to_internal at 0x7f311b6312d0>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.95258112e-04 2.66601431e-05 2.79286974e-05 7.46706608e-06
+ -3.57660861e-05 2.67259515e-05 1.10371975e-04 2.29478720e-04
+ -1.74583374e-04 9.18609805e-05 -9.28899552e-04 -1.50543778e-04]
+ [ 2.66601431e-05 1.99863137e-03 8.85890234e-05 9.17921130e-05
+ -9.23337837e-05 -2.83576297e-04 1.48966314e-04 1.80715547e-04
+ -3.10963397e-04 3.47758778e-04 5.28959433e-04 5.19875724e-04]
+ [ 2.79286974e-05 8.85890234e-05 1.92743661e-03 4.84543237e-05
+ 8.64878494e-05 -1.21376982e-04 -2.12383559e-04 -3.48906145e-05
+ 4.13284621e-04 3.32697621e-04 -4.47332935e-04 5.68592373e-04]
+ [ 7.46706608e-06 9.17921130e-05 4.84543237e-05 1.69014402e-03
+ -1.64277002e-05 -4.40250202e-05 -1.69566236e-04 -7.30430953e-04
+ 6.17674185e-05 -3.77973815e-04 -1.25740378e-03 -1.67437857e-03]
+ [-3.57660861e-05 -9.23337837e-05 8.64878494e-05 -1.64277002e-05
+ 3.40044865e-03 2.31358468e-04 -1.98388371e-04 -9.90302591e-04
+ 3.40008787e-04 -3.99570271e-04 -8.07415962e-04 -6.44898143e-03]
+ [ 2.67259515e-05 -2.83576297e-04 -1.21376982e-04 -4.40250202e-05
+ 2.31358468e-04 8.59065022e-03 -5.28504370e-04 9.67901647e-04
+ -6.38169315e-04 -4.22552263e-04 3.24001952e-03 -3.14657898e-03]
+ [ 1.10371975e-04 1.48966314e-04 -2.12383559e-04 -1.69566236e-04
+ -1.98388371e-04 -5.28504370e-04 1.43110225e-02 2.57065708e-04
+ -1.09391854e-03 1.90605756e-03 -6.99390334e-04 7.40307679e-03]
+ [ 2.29478720e-04 1.80715547e-04 -3.48906145e-05 -7.30430953e-04
+ -9.90302591e-04 9.67901647e-04 2.57065708e-04 6.07248017e-02
+ 2.56350149e-03 6.21389768e-04 -2.22168627e-03 -1.42343182e-02]
+ [-1.74583374e-04 -3.10963397e-04 4.13284621e-04 6.17674185e-05
+ 3.40008787e-04 -6.38169315e-04 -1.09391854e-03 2.56350149e-03
+ 5.98616882e-02 -9.63153128e-04 7.46109287e-03 1.60977374e-02]
+ [ 9.18609805e-05 3.47758778e-04 3.32697621e-04 -3.77973815e-04
+ -3.99570271e-04 -4.22552263e-04 1.90605756e-03 6.21389768e-04
+ -9.63153128e-04 1.26839727e-01 -5.50753961e-03 1.82934775e-03]
+ [-9.28899552e-04 5.28959433e-04 -4.47332935e-04 -1.25740378e-03
+ -8.07415962e-04 3.24001952e-03 -6.99390334e-04 -2.22168627e-03
+ 7.46109287e-03 -5.50753961e-03 5.26149129e-01 -2.79455237e-02]
+ [-1.50543778e-04 5.19875724e-04 5.68592373e-04 -1.67437857e-03
+ -6.44898143e-03 -3.14657898e-03 7.40307679e-03 -1.42343182e-02
+ 1.60977374e-02 1.82934775e-03 -2.79455237e-02 1.79476773e+00]]"
+_internal_weights,"[[2.01914916e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.00342392e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.18823806e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 5.91665554e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.94078842e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.16405624e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.98762089e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.64677360e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.67051754e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 7.88396527e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90060184e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.57175161e-01]]"
+_internal_jacobian,"[[ 0.25091248 12.18909018]
+ [ 0.75488419 42.79812654]
+ [ 0.96405127 62.05600204]
+ [ 1.3439964 92.13445197]
+ [ 2.02520225 142.30890094]
+ [ 2.439634 172.36113605]
+ [ 3.41365907 230.75908878]
+ [ 3.19943685 203.86511346]
+ [ 1.08118883 74.62108544]
+ [ 1.99009032 110.88288514]
+ [ 0.95896302 57.33195063]
+ [ 0.85359993 51.8164894 ]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(0.25091248), 'DiscFac': array(12.18909018)}, '(30,35]': {'CRRA': array(0.75488419), 'DiscFac': array(42.79812654)}, '(35,40]': {'CRRA': array(0.96405127), 'DiscFac': array(62.05600204)}, '(40,45]': {'CRRA': array(1.3439964), 'DiscFac': array(92.13445197)}, '(45,50]': {'CRRA': array(2.02520225), 'DiscFac': array(142.30890094)}, '(50,55]': {'CRRA': array(2.439634), 'DiscFac': array(172.36113605)}, '(55,60]': {'CRRA': array(3.41365907), 'DiscFac': array(230.75908878)}, '(70,75]': {'CRRA': array(3.19943685), 'DiscFac': array(203.86511346)}, '(75,80]': {'CRRA': array(1.08118883), 'DiscFac': array(74.62108544)}, '(80,85]': {'CRRA': array(1.99009032), 'DiscFac': array(110.88288514)}, '(85,90]': {'CRRA': array(0.95896302), 'DiscFac': array(57.33195063)}, '(90,95]': {'CRRA': array(0.85359993), 'DiscFac': array(51.8164894)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/PortfolioSub(Labor)Market_estimate_results.csv b/content/tables/msm/PortfolioSub(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..ba56efd
--- /dev/null
+++ b/content/tables/msm/PortfolioSub(Labor)Market_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,16.035365501911656
+DiscFac,1.0173759669425746
+time_to_estimate,719.5181894302368
+_params,"{'CRRA': 16.035365501911656, 'DiscFac': 1.0173759669425746}"
+_internal_estimates,"InternalParams(values=array([16.0353655 , 1.01737597]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([16.0353655 , 1.01737597]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2158.28167807), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(514.72491632), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(567.49891065), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(605.53346513), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(279.92614085), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(130.94785271), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(61.05068109), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.37164118), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.68863935), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(8.15237029), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90282463), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.56618589)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7fe67e87a950>, params_from_internal=._params_from_internal at 0x7fe67e87a680>, derivative_to_internal=._derivative_to_internal at 0x7fe67e87add0>, func_to_internal=._func_to_internal at 0x7fe67e87b400>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.63331552e-04 -8.29455113e-06 2.62343723e-06 1.27222785e-05
+ -6.70714064e-05 3.51434321e-05 4.95550858e-05 -1.59011871e-04
+ 6.46025432e-05 -7.75378886e-06 -9.90751500e-04 1.05939616e-03]
+ [-8.29455113e-06 1.94278530e-03 6.21427749e-05 1.33977556e-04
+ 4.05035336e-05 3.24097529e-05 -9.09560608e-06 -3.48865507e-04
+ -4.45091936e-04 -9.40023292e-04 4.15494682e-04 -4.44444208e-03]
+ [ 2.62343723e-06 6.21427749e-05 1.76211792e-03 -9.07845887e-05
+ -3.11748414e-05 -7.20625366e-05 1.23099100e-04 1.21619646e-04
+ 2.42370531e-04 -4.53895101e-04 4.77856997e-04 -2.15951955e-03]
+ [ 1.27222785e-05 1.33977556e-04 -9.07845887e-05 1.65143639e-03
+ -2.53506647e-04 -1.19096295e-04 5.24085619e-05 -2.00215176e-06
+ -8.96273332e-05 4.13045513e-05 3.57275514e-04 -2.29200628e-05]
+ [-6.70714064e-05 4.05035336e-05 -3.11748414e-05 -2.53506647e-04
+ 3.57237090e-03 1.96792266e-04 1.02791978e-04 -6.06222612e-04
+ -8.16268084e-04 1.18356570e-03 -1.21385564e-03 -1.39621761e-03]
+ [ 3.51434321e-05 3.24097529e-05 -7.20625366e-05 -1.19096295e-04
+ 1.96792266e-04 7.63662771e-03 1.87644341e-04 -6.91727595e-04
+ -8.41433602e-04 7.97137838e-04 -3.67034802e-03 7.47381063e-05]
+ [ 4.95550858e-05 -9.09560608e-06 1.23099100e-04 5.24085619e-05
+ 1.02791978e-04 1.87644341e-04 1.63798336e-02 4.49609135e-04
+ 3.74504692e-04 -4.32072461e-04 -1.26483119e-03 2.21734482e-03]
+ [-1.59011871e-04 -3.48865507e-04 1.21619646e-04 -2.00215176e-06
+ -6.06222612e-04 -6.91727595e-04 4.49609135e-04 6.10812312e-02
+ -7.03144448e-04 9.30021499e-04 1.02943264e-02 1.34912486e-02]
+ [ 6.46025432e-05 -4.45091936e-04 2.42370531e-04 -8.96273332e-05
+ -8.16268084e-04 -8.41433602e-04 3.74504692e-04 -7.03144448e-04
+ 5.99210025e-02 1.09220053e-03 -1.79592505e-03 -1.15555069e-02]
+ [-7.75378886e-06 -9.40023292e-04 -4.53895101e-04 4.13045513e-05
+ 1.18356570e-03 7.97137838e-04 -4.32072461e-04 9.30021499e-04
+ 1.09220053e-03 1.22663712e-01 -1.08608497e-02 1.60128201e-02]
+ [-9.90751500e-04 4.15494682e-04 4.77856997e-04 3.57275514e-04
+ -1.21385564e-03 -3.67034802e-03 -1.26483119e-03 1.02943264e-02
+ -1.79592505e-03 -1.08608497e-02 5.25534506e-01 -2.55742896e-02]
+ [ 1.05939616e-03 -4.44444208e-03 -2.15951955e-03 -2.29200628e-05
+ -1.39621761e-03 7.47381063e-05 2.21734482e-03 1.34912486e-02
+ -1.15555069e-02 1.60128201e-02 -2.55742896e-02 1.76620438e+00]]"
+_internal_weights,"[[2.15828168e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.14724916e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.67498911e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 6.05533465e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.79926141e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.30947853e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.10506811e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.63716412e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.66886394e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 8.15237029e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90282463e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.66185892e-01]]"
+_internal_jacobian,"[[-6.75789971e+04 -5.66144143e+05]
+ [ 6.29166713e+04 -3.30480144e+05]
+ [ 7.12398340e+05 7.42092247e+06]
+ [ 1.05772970e+06 2.21302009e+07]
+ [ 1.41059020e+06 5.65295699e+07]
+ [ 2.64517035e+06 7.57868010e+07]
+ [ 5.39494381e+06 1.07998281e+08]
+ [ 5.73687811e+06 7.39125144e+07]
+ [ 4.25925073e+06 6.80562913e+07]
+ [ 2.53921040e+06 7.53441428e+07]
+ [ 3.58479523e+05 5.30664799e+07]
+ [ 8.23300559e+05 1.08868225e+07]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(-67578.99709662), 'DiscFac': array(-566144.14307097)}, '(30,35]': {'CRRA': array(62916.67127415), 'DiscFac': array(-330480.14385649)}, '(35,40]': {'CRRA': array(712398.34009049), 'DiscFac': array(7420922.46546151)}, '(40,45]': {'CRRA': array(1057729.70216717), 'DiscFac': array(22130200.88671936)}, '(45,50]': {'CRRA': array(1410590.19535983), 'DiscFac': array(56529569.89179237)}, '(50,55]': {'CRRA': array(2645170.35358017), 'DiscFac': array(75786801.04619929)}, '(55,60]': {'CRRA': array(5394943.80771548), 'DiscFac': array(1.07998281e+08)}, '(70,75]': {'CRRA': array(5736878.11204669), 'DiscFac': array(73912514.35359986)}, '(75,80]': {'CRRA': array(4259250.72813986), 'DiscFac': array(68056291.28537746)}, '(80,85]': {'CRRA': array(2539210.40317956), 'DiscFac': array(75344142.78431329)}, '(85,90]': {'CRRA': array(358479.52323137), 'DiscFac': array(53066479.86708646)}, '(90,95]': {'CRRA': array(823300.55903608), 'DiscFac': array(10886822.51310813)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/PortfolioSub(Stock)(Labor)Market_estimate_results.csv b/content/tables/msm/PortfolioSub(Stock)(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..55b19d7
--- /dev/null
+++ b/content/tables/msm/PortfolioSub(Stock)(Labor)Market_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,10.415127453154128
+DiscFac,1.0468359228606232
+time_to_estimate,581.8424572944641
+_params,"{'CRRA': 10.415127453154128, 'DiscFac': 1.0468359228606232}"
+_internal_estimates,"InternalParams(values=array([10.41512745, 1.04683592]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([10.41512745, 1.04683592]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2158.28167807), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(514.72491632), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(567.49891065), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(605.53346513), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(279.92614085), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(130.94785271), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(61.05068109), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.37164118), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.68863935), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(8.15237029), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90282463), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.56618589)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7f9853e03370>, params_from_internal=._params_from_internal at 0x7f9853e03250>, derivative_to_internal=._derivative_to_internal at 0x7f9853e03760>, func_to_internal=._func_to_internal at 0x7f98462eacb0>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.63331552e-04 -8.29455113e-06 2.62343723e-06 1.27222785e-05
+ -6.70714064e-05 3.51434321e-05 4.95550858e-05 -1.59011871e-04
+ 6.46025432e-05 -7.75378886e-06 -9.90751500e-04 1.05939616e-03]
+ [-8.29455113e-06 1.94278530e-03 6.21427749e-05 1.33977556e-04
+ 4.05035336e-05 3.24097529e-05 -9.09560608e-06 -3.48865507e-04
+ -4.45091936e-04 -9.40023292e-04 4.15494682e-04 -4.44444208e-03]
+ [ 2.62343723e-06 6.21427749e-05 1.76211792e-03 -9.07845887e-05
+ -3.11748414e-05 -7.20625366e-05 1.23099100e-04 1.21619646e-04
+ 2.42370531e-04 -4.53895101e-04 4.77856997e-04 -2.15951955e-03]
+ [ 1.27222785e-05 1.33977556e-04 -9.07845887e-05 1.65143639e-03
+ -2.53506647e-04 -1.19096295e-04 5.24085619e-05 -2.00215176e-06
+ -8.96273332e-05 4.13045513e-05 3.57275514e-04 -2.29200628e-05]
+ [-6.70714064e-05 4.05035336e-05 -3.11748414e-05 -2.53506647e-04
+ 3.57237090e-03 1.96792266e-04 1.02791978e-04 -6.06222612e-04
+ -8.16268084e-04 1.18356570e-03 -1.21385564e-03 -1.39621761e-03]
+ [ 3.51434321e-05 3.24097529e-05 -7.20625366e-05 -1.19096295e-04
+ 1.96792266e-04 7.63662771e-03 1.87644341e-04 -6.91727595e-04
+ -8.41433602e-04 7.97137838e-04 -3.67034802e-03 7.47381063e-05]
+ [ 4.95550858e-05 -9.09560608e-06 1.23099100e-04 5.24085619e-05
+ 1.02791978e-04 1.87644341e-04 1.63798336e-02 4.49609135e-04
+ 3.74504692e-04 -4.32072461e-04 -1.26483119e-03 2.21734482e-03]
+ [-1.59011871e-04 -3.48865507e-04 1.21619646e-04 -2.00215176e-06
+ -6.06222612e-04 -6.91727595e-04 4.49609135e-04 6.10812312e-02
+ -7.03144448e-04 9.30021499e-04 1.02943264e-02 1.34912486e-02]
+ [ 6.46025432e-05 -4.45091936e-04 2.42370531e-04 -8.96273332e-05
+ -8.16268084e-04 -8.41433602e-04 3.74504692e-04 -7.03144448e-04
+ 5.99210025e-02 1.09220053e-03 -1.79592505e-03 -1.15555069e-02]
+ [-7.75378886e-06 -9.40023292e-04 -4.53895101e-04 4.13045513e-05
+ 1.18356570e-03 7.97137838e-04 -4.32072461e-04 9.30021499e-04
+ 1.09220053e-03 1.22663712e-01 -1.08608497e-02 1.60128201e-02]
+ [-9.90751500e-04 4.15494682e-04 4.77856997e-04 3.57275514e-04
+ -1.21385564e-03 -3.67034802e-03 -1.26483119e-03 1.02943264e-02
+ -1.79592505e-03 -1.08608497e-02 5.25534506e-01 -2.55742896e-02]
+ [ 1.05939616e-03 -4.44444208e-03 -2.15951955e-03 -2.29200628e-05
+ -1.39621761e-03 7.47381063e-05 2.21734482e-03 1.34912486e-02
+ -1.15555069e-02 1.60128201e-02 -2.55742896e-02 1.76620438e+00]]"
+_internal_weights,"[[2.15828168e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.14724916e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.67498911e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 6.05533465e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.79926141e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.30947853e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.10506811e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.63716412e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.66886394e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 8.15237029e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90282463e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.66185892e-01]]"
+_internal_jacobian,"[[ 2.45508000e-02 9.19173253e-01]
+ [ 2.52863906e-02 4.55307829e+00]
+ [-1.58254440e-02 1.40770057e+01]
+ [-2.52771170e-02 2.25056670e+01]
+ [-6.77132098e-02 2.79471917e+01]
+ [-8.78590871e-02 4.04845393e+01]
+ [-1.57792415e-01 5.13961890e+01]
+ [-6.86590492e-02 6.36205535e+01]
+ [-2.50102178e-02 6.22827743e+01]
+ [-1.89529692e-02 6.27339073e+01]
+ [-1.37068248e-01 4.19839510e+01]
+ [-1.33125465e-01 2.67369271e+01]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(0.0245508), 'DiscFac': array(0.91917325)}, '(30,35]': {'CRRA': array(0.02528639), 'DiscFac': array(4.55307829)}, '(35,40]': {'CRRA': array(-0.01582544), 'DiscFac': array(14.07700567)}, '(40,45]': {'CRRA': array(-0.02527712), 'DiscFac': array(22.50566702)}, '(45,50]': {'CRRA': array(-0.06771321), 'DiscFac': array(27.94719174)}, '(50,55]': {'CRRA': array(-0.08785909), 'DiscFac': array(40.48453928)}, '(55,60]': {'CRRA': array(-0.15779242), 'DiscFac': array(51.39618903)}, '(70,75]': {'CRRA': array(-0.06865905), 'DiscFac': array(63.62055351)}, '(75,80]': {'CRRA': array(-0.02501022), 'DiscFac': array(62.28277428)}, '(80,85]': {'CRRA': array(-0.01895297), 'DiscFac': array(62.73390727)}, '(85,90]': {'CRRA': array(-0.13706825), 'DiscFac': array(41.98395098)}, '(90,95]': {'CRRA': array(-0.13312547), 'DiscFac': array(26.73692707)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/PortfolioSub(Stock)Market_estimate_results.csv b/content/tables/msm/PortfolioSub(Stock)Market_estimate_results.csv
new file mode 100644
index 0000000..5525f0d
--- /dev/null
+++ b/content/tables/msm/PortfolioSub(Stock)Market_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,2.0278733469356074
+DiscFac,0.947507160328444
+time_to_estimate,485.0004813671112
+_params,"{'CRRA': 2.0278733469356074, 'DiscFac': 0.947507160328444}"
+_internal_estimates,"InternalParams(values=array([2.02787335, 0.94750716]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([2.02787335, 0.94750716]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2158.28167807), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(514.72491632), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(567.49891065), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(605.53346513), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(279.92614085), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(130.94785271), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(61.05068109), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.37164118), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.68863935), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(8.15237029), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90282463), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.56618589)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7f71560724d0>, params_from_internal=._params_from_internal at 0x7f7156071e10>, derivative_to_internal=._derivative_to_internal at 0x7f7156071c60>, func_to_internal=._func_to_internal at 0x7f7155da8ca0>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.63331552e-04 -8.29455113e-06 2.62343723e-06 1.27222785e-05
+ -6.70714064e-05 3.51434321e-05 4.95550858e-05 -1.59011871e-04
+ 6.46025432e-05 -7.75378886e-06 -9.90751500e-04 1.05939616e-03]
+ [-8.29455113e-06 1.94278530e-03 6.21427749e-05 1.33977556e-04
+ 4.05035336e-05 3.24097529e-05 -9.09560608e-06 -3.48865507e-04
+ -4.45091936e-04 -9.40023292e-04 4.15494682e-04 -4.44444208e-03]
+ [ 2.62343723e-06 6.21427749e-05 1.76211792e-03 -9.07845887e-05
+ -3.11748414e-05 -7.20625366e-05 1.23099100e-04 1.21619646e-04
+ 2.42370531e-04 -4.53895101e-04 4.77856997e-04 -2.15951955e-03]
+ [ 1.27222785e-05 1.33977556e-04 -9.07845887e-05 1.65143639e-03
+ -2.53506647e-04 -1.19096295e-04 5.24085619e-05 -2.00215176e-06
+ -8.96273332e-05 4.13045513e-05 3.57275514e-04 -2.29200628e-05]
+ [-6.70714064e-05 4.05035336e-05 -3.11748414e-05 -2.53506647e-04
+ 3.57237090e-03 1.96792266e-04 1.02791978e-04 -6.06222612e-04
+ -8.16268084e-04 1.18356570e-03 -1.21385564e-03 -1.39621761e-03]
+ [ 3.51434321e-05 3.24097529e-05 -7.20625366e-05 -1.19096295e-04
+ 1.96792266e-04 7.63662771e-03 1.87644341e-04 -6.91727595e-04
+ -8.41433602e-04 7.97137838e-04 -3.67034802e-03 7.47381063e-05]
+ [ 4.95550858e-05 -9.09560608e-06 1.23099100e-04 5.24085619e-05
+ 1.02791978e-04 1.87644341e-04 1.63798336e-02 4.49609135e-04
+ 3.74504692e-04 -4.32072461e-04 -1.26483119e-03 2.21734482e-03]
+ [-1.59011871e-04 -3.48865507e-04 1.21619646e-04 -2.00215176e-06
+ -6.06222612e-04 -6.91727595e-04 4.49609135e-04 6.10812312e-02
+ -7.03144448e-04 9.30021499e-04 1.02943264e-02 1.34912486e-02]
+ [ 6.46025432e-05 -4.45091936e-04 2.42370531e-04 -8.96273332e-05
+ -8.16268084e-04 -8.41433602e-04 3.74504692e-04 -7.03144448e-04
+ 5.99210025e-02 1.09220053e-03 -1.79592505e-03 -1.15555069e-02]
+ [-7.75378886e-06 -9.40023292e-04 -4.53895101e-04 4.13045513e-05
+ 1.18356570e-03 7.97137838e-04 -4.32072461e-04 9.30021499e-04
+ 1.09220053e-03 1.22663712e-01 -1.08608497e-02 1.60128201e-02]
+ [-9.90751500e-04 4.15494682e-04 4.77856997e-04 3.57275514e-04
+ -1.21385564e-03 -3.67034802e-03 -1.26483119e-03 1.02943264e-02
+ -1.79592505e-03 -1.08608497e-02 5.25534506e-01 -2.55742896e-02]
+ [ 1.05939616e-03 -4.44444208e-03 -2.15951955e-03 -2.29200628e-05
+ -1.39621761e-03 7.47381063e-05 2.21734482e-03 1.34912486e-02
+ -1.15555069e-02 1.60128201e-02 -2.55742896e-02 1.76620438e+00]]"
+_internal_weights,"[[2.15828168e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.14724916e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.67498911e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 6.05533465e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.79926141e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.30947853e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.10506811e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.63716412e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.66886394e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 8.15237029e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90282463e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.66185892e-01]]"
+_internal_jacobian,"[[1.58426391e-01 9.30633336e+00]
+ [4.79799720e-01 3.19459570e+01]
+ [9.83545418e-01 7.15172001e+01]
+ [9.28554113e-01 6.92450715e+01]
+ [1.69530355e+00 1.07555921e+02]
+ [2.24775452e+00 1.54922589e+02]
+ [1.85099046e+00 1.61364165e+02]
+ [1.67126975e+00 1.16881362e+02]
+ [1.53980004e+00 9.38780251e+01]
+ [8.53797174e-01 7.65865839e+01]
+ [8.89426878e-01 6.89719139e+01]
+ [0.00000000e+00 0.00000000e+00]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(0.15842639), 'DiscFac': array(9.30633336)}, '(30,35]': {'CRRA': array(0.47979972), 'DiscFac': array(31.94595695)}, '(35,40]': {'CRRA': array(0.98354542), 'DiscFac': array(71.5172001)}, '(40,45]': {'CRRA': array(0.92855411), 'DiscFac': array(69.24507154)}, '(45,50]': {'CRRA': array(1.69530355), 'DiscFac': array(107.55592114)}, '(50,55]': {'CRRA': array(2.24775452), 'DiscFac': array(154.92258895)}, '(55,60]': {'CRRA': array(1.85099046), 'DiscFac': array(161.36416494)}, '(70,75]': {'CRRA': array(1.67126975), 'DiscFac': array(116.88136164)}, '(75,80]': {'CRRA': array(1.53980004), 'DiscFac': array(93.87802506)}, '(80,85]': {'CRRA': array(0.85379717), 'DiscFac': array(76.58658385)}, '(85,90]': {'CRRA': array(0.88942688), 'DiscFac': array(68.97191388)}, '(90,95]': {'CRRA': array(0.), 'DiscFac': array(0.)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/Portfolio_estimate_results.csv b/content/tables/msm/Portfolio_estimate_results.csv
new file mode 100644
index 0000000..6b90a19
--- /dev/null
+++ b/content/tables/msm/Portfolio_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,7.83791147453966
+DiscFac,0.7386432774278726
+time_to_estimate,583.6027400493622
+_params,"{'CRRA': 7.83791147453966, 'DiscFac': 0.7386432774278726}"
+_internal_estimates,"InternalParams(values=array([7.83791147, 0.73864328]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([7.83791147, 0.73864328]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2158.28167807), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(514.72491632), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(567.49891065), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(605.53346513), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(279.92614085), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(130.94785271), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(61.05068109), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.37164118), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.68863935), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(8.15237029), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90282463), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.56618589)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7fa0b32fce50>, params_from_internal=._params_from_internal at 0x7fa0b32ff5b0>, derivative_to_internal=._derivative_to_internal at 0x7fa0b32ff6d0>, func_to_internal=._func_to_internal at 0x7fa0b32ff640>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.63331552e-04 -8.29455113e-06 2.62343723e-06 1.27222785e-05
+ -6.70714064e-05 3.51434321e-05 4.95550858e-05 -1.59011871e-04
+ 6.46025432e-05 -7.75378886e-06 -9.90751500e-04 1.05939616e-03]
+ [-8.29455113e-06 1.94278530e-03 6.21427749e-05 1.33977556e-04
+ 4.05035336e-05 3.24097529e-05 -9.09560608e-06 -3.48865507e-04
+ -4.45091936e-04 -9.40023292e-04 4.15494682e-04 -4.44444208e-03]
+ [ 2.62343723e-06 6.21427749e-05 1.76211792e-03 -9.07845887e-05
+ -3.11748414e-05 -7.20625366e-05 1.23099100e-04 1.21619646e-04
+ 2.42370531e-04 -4.53895101e-04 4.77856997e-04 -2.15951955e-03]
+ [ 1.27222785e-05 1.33977556e-04 -9.07845887e-05 1.65143639e-03
+ -2.53506647e-04 -1.19096295e-04 5.24085619e-05 -2.00215176e-06
+ -8.96273332e-05 4.13045513e-05 3.57275514e-04 -2.29200628e-05]
+ [-6.70714064e-05 4.05035336e-05 -3.11748414e-05 -2.53506647e-04
+ 3.57237090e-03 1.96792266e-04 1.02791978e-04 -6.06222612e-04
+ -8.16268084e-04 1.18356570e-03 -1.21385564e-03 -1.39621761e-03]
+ [ 3.51434321e-05 3.24097529e-05 -7.20625366e-05 -1.19096295e-04
+ 1.96792266e-04 7.63662771e-03 1.87644341e-04 -6.91727595e-04
+ -8.41433602e-04 7.97137838e-04 -3.67034802e-03 7.47381063e-05]
+ [ 4.95550858e-05 -9.09560608e-06 1.23099100e-04 5.24085619e-05
+ 1.02791978e-04 1.87644341e-04 1.63798336e-02 4.49609135e-04
+ 3.74504692e-04 -4.32072461e-04 -1.26483119e-03 2.21734482e-03]
+ [-1.59011871e-04 -3.48865507e-04 1.21619646e-04 -2.00215176e-06
+ -6.06222612e-04 -6.91727595e-04 4.49609135e-04 6.10812312e-02
+ -7.03144448e-04 9.30021499e-04 1.02943264e-02 1.34912486e-02]
+ [ 6.46025432e-05 -4.45091936e-04 2.42370531e-04 -8.96273332e-05
+ -8.16268084e-04 -8.41433602e-04 3.74504692e-04 -7.03144448e-04
+ 5.99210025e-02 1.09220053e-03 -1.79592505e-03 -1.15555069e-02]
+ [-7.75378886e-06 -9.40023292e-04 -4.53895101e-04 4.13045513e-05
+ 1.18356570e-03 7.97137838e-04 -4.32072461e-04 9.30021499e-04
+ 1.09220053e-03 1.22663712e-01 -1.08608497e-02 1.60128201e-02]
+ [-9.90751500e-04 4.15494682e-04 4.77856997e-04 3.57275514e-04
+ -1.21385564e-03 -3.67034802e-03 -1.26483119e-03 1.02943264e-02
+ -1.79592505e-03 -1.08608497e-02 5.25534506e-01 -2.55742896e-02]
+ [ 1.05939616e-03 -4.44444208e-03 -2.15951955e-03 -2.29200628e-05
+ -1.39621761e-03 7.47381063e-05 2.21734482e-03 1.34912486e-02
+ -1.15555069e-02 1.60128201e-02 -2.55742896e-02 1.76620438e+00]]"
+_internal_weights,"[[2.15828168e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.14724916e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.67498911e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 6.05533465e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.79926141e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.30947853e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.10506811e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.63716412e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.66886394e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 8.15237029e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90282463e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.66185892e-01]]"
+_internal_jacobian,"[[-2.34705020e+05 -1.00528703e+05]
+ [ 2.44463627e+05 -5.55678286e+06]
+ [ 2.41929927e+06 1.12304799e+07]
+ [ 2.34569133e+06 3.01456612e+07]
+ [ 2.65563058e+06 6.97066525e+07]
+ [ 5.09401864e+06 8.36824455e+07]
+ [ 9.60353716e+06 1.12967147e+08]
+ [ 3.09730899e+06 1.24552119e+07]
+ [ 1.30019256e+06 1.34424316e+07]
+ [ 6.40281296e+05 3.09376942e+07]
+ [ 8.82875621e+05 3.69373103e+07]
+ [ 1.48141627e+06 1.61413417e+07]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(-234705.02029318), 'DiscFac': array(-100528.70276101)}, '(30,35]': {'CRRA': array(244463.62664144), 'DiscFac': array(-5556782.86050192)}, '(35,40]': {'CRRA': array(2419299.27417574), 'DiscFac': array(11230479.89919278)}, '(40,45]': {'CRRA': array(2345691.33394964), 'DiscFac': array(30145661.20090678)}, '(45,50]': {'CRRA': array(2655630.57799375), 'DiscFac': array(69706652.46644892)}, '(50,55]': {'CRRA': array(5094018.64085281), 'DiscFac': array(83682445.48172842)}, '(55,60]': {'CRRA': array(9603537.16310164), 'DiscFac': array(1.12967147e+08)}, '(70,75]': {'CRRA': array(3097308.99225454), 'DiscFac': array(12455211.88175488)}, '(75,80]': {'CRRA': array(1300192.55714479), 'DiscFac': array(13442431.61321701)}, '(80,85]': {'CRRA': array(640281.29624133), 'DiscFac': array(30937694.18392828)}, '(85,90]': {'CRRA': array(882875.62144124), 'DiscFac': array(36937310.30523588)}, '(90,95]': {'CRRA': array(1481416.26824558), 'DiscFac': array(16141341.69088265)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/WarmGlowPortfolioSub(Labor)Market_estimate_results.csv b/content/tables/msm/WarmGlowPortfolioSub(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..a8039a0
--- /dev/null
+++ b/content/tables/msm/WarmGlowPortfolioSub(Labor)Market_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,16.108511883223933
+DiscFac,1.0084067716800273
+time_to_estimate,715.5001871585846
+_params,"{'CRRA': 16.108511883223933, 'DiscFac': 1.0084067716800273}"
+_internal_estimates,"InternalParams(values=array([16.10851188, 1.00840677]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([16.10851188, 1.00840677]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2158.28167807), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(514.72491632), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(567.49891065), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(605.53346513), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(279.92614085), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(130.94785271), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(61.05068109), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.37164118), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.68863935), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(8.15237029), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90282463), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.56618589)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7f68b6537490>, params_from_internal=._params_from_internal at 0x7f68b65370a0>, derivative_to_internal=._derivative_to_internal at 0x7f68b6537370>, func_to_internal=._func_to_internal at 0x7f68b6536320>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.63331552e-04 -8.29455113e-06 2.62343723e-06 1.27222785e-05
+ -6.70714064e-05 3.51434321e-05 4.95550858e-05 -1.59011871e-04
+ 6.46025432e-05 -7.75378886e-06 -9.90751500e-04 1.05939616e-03]
+ [-8.29455113e-06 1.94278530e-03 6.21427749e-05 1.33977556e-04
+ 4.05035336e-05 3.24097529e-05 -9.09560608e-06 -3.48865507e-04
+ -4.45091936e-04 -9.40023292e-04 4.15494682e-04 -4.44444208e-03]
+ [ 2.62343723e-06 6.21427749e-05 1.76211792e-03 -9.07845887e-05
+ -3.11748414e-05 -7.20625366e-05 1.23099100e-04 1.21619646e-04
+ 2.42370531e-04 -4.53895101e-04 4.77856997e-04 -2.15951955e-03]
+ [ 1.27222785e-05 1.33977556e-04 -9.07845887e-05 1.65143639e-03
+ -2.53506647e-04 -1.19096295e-04 5.24085619e-05 -2.00215176e-06
+ -8.96273332e-05 4.13045513e-05 3.57275514e-04 -2.29200628e-05]
+ [-6.70714064e-05 4.05035336e-05 -3.11748414e-05 -2.53506647e-04
+ 3.57237090e-03 1.96792266e-04 1.02791978e-04 -6.06222612e-04
+ -8.16268084e-04 1.18356570e-03 -1.21385564e-03 -1.39621761e-03]
+ [ 3.51434321e-05 3.24097529e-05 -7.20625366e-05 -1.19096295e-04
+ 1.96792266e-04 7.63662771e-03 1.87644341e-04 -6.91727595e-04
+ -8.41433602e-04 7.97137838e-04 -3.67034802e-03 7.47381063e-05]
+ [ 4.95550858e-05 -9.09560608e-06 1.23099100e-04 5.24085619e-05
+ 1.02791978e-04 1.87644341e-04 1.63798336e-02 4.49609135e-04
+ 3.74504692e-04 -4.32072461e-04 -1.26483119e-03 2.21734482e-03]
+ [-1.59011871e-04 -3.48865507e-04 1.21619646e-04 -2.00215176e-06
+ -6.06222612e-04 -6.91727595e-04 4.49609135e-04 6.10812312e-02
+ -7.03144448e-04 9.30021499e-04 1.02943264e-02 1.34912486e-02]
+ [ 6.46025432e-05 -4.45091936e-04 2.42370531e-04 -8.96273332e-05
+ -8.16268084e-04 -8.41433602e-04 3.74504692e-04 -7.03144448e-04
+ 5.99210025e-02 1.09220053e-03 -1.79592505e-03 -1.15555069e-02]
+ [-7.75378886e-06 -9.40023292e-04 -4.53895101e-04 4.13045513e-05
+ 1.18356570e-03 7.97137838e-04 -4.32072461e-04 9.30021499e-04
+ 1.09220053e-03 1.22663712e-01 -1.08608497e-02 1.60128201e-02]
+ [-9.90751500e-04 4.15494682e-04 4.77856997e-04 3.57275514e-04
+ -1.21385564e-03 -3.67034802e-03 -1.26483119e-03 1.02943264e-02
+ -1.79592505e-03 -1.08608497e-02 5.25534506e-01 -2.55742896e-02]
+ [ 1.05939616e-03 -4.44444208e-03 -2.15951955e-03 -2.29200628e-05
+ -1.39621761e-03 7.47381063e-05 2.21734482e-03 1.34912486e-02
+ -1.15555069e-02 1.60128201e-02 -2.55742896e-02 1.76620438e+00]]"
+_internal_weights,"[[2.15828168e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.14724916e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.67498911e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 6.05533465e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.79926141e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.30947853e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.10506811e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.63716412e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.66886394e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 8.15237029e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90282463e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.66185892e-01]]"
+_internal_jacobian,"[[-6.66945202e+04 -5.65512534e+05]
+ [ 6.03851628e+04 -3.47902728e+05]
+ [ 6.70099918e+05 7.03193003e+06]
+ [ 9.90796713e+05 2.13007843e+07]
+ [ 1.32534381e+06 5.49819123e+07]
+ [ 2.52322927e+06 7.36830733e+07]
+ [ 5.17062111e+06 1.04985588e+08]
+ [ 5.42306783e+06 7.05251398e+07]
+ [ 3.97954327e+06 6.46908411e+07]
+ [ 2.34747254e+06 7.21476499e+07]
+ [ 3.61285478e+05 5.17026380e+07]
+ [ 7.73627749e+05 9.96169823e+06]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(-66694.52024247), 'DiscFac': array(-565512.5335048)}, '(30,35]': {'CRRA': array(60385.16275463), 'DiscFac': array(-347902.72760634)}, '(35,40]': {'CRRA': array(670099.91772833), 'DiscFac': array(7031930.02942947)}, '(40,45]': {'CRRA': array(990796.71302322), 'DiscFac': array(21300784.27947865)}, '(45,50]': {'CRRA': array(1325343.81337981), 'DiscFac': array(54981912.31926441)}, '(50,55]': {'CRRA': array(2523229.267605), 'DiscFac': array(73683073.26230405)}, '(55,60]': {'CRRA': array(5170621.11464229), 'DiscFac': array(1.04985588e+08)}, '(70,75]': {'CRRA': array(5423067.83271693), 'DiscFac': array(70525139.75333104)}, '(75,80]': {'CRRA': array(3979543.27149752), 'DiscFac': array(64690841.07529136)}, '(80,85]': {'CRRA': array(2347472.53970107), 'DiscFac': array(72147649.90878029)}, '(85,90]': {'CRRA': array(361285.47766543), 'DiscFac': array(51702637.98911797)}, '(90,95]': {'CRRA': array(773627.74936255), 'DiscFac': array(9961698.22756919)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/WarmGlowPortfolioSub(Stock)(Labor)Market_estimate_results.csv b/content/tables/msm/WarmGlowPortfolioSub(Stock)(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..4a7c91c
--- /dev/null
+++ b/content/tables/msm/WarmGlowPortfolioSub(Stock)(Labor)Market_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,10.469331918692177
+DiscFac,1.046944960051022
+time_to_estimate,585.425628900528
+_params,"{'CRRA': 10.469331918692177, 'DiscFac': 1.046944960051022}"
+_internal_estimates,"InternalParams(values=array([10.46933192, 1.04694496]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([10.46933192, 1.04694496]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2158.28167807), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(514.72491632), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(567.49891065), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(605.53346513), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(279.92614085), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(130.94785271), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(61.05068109), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.37164118), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.68863935), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(8.15237029), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90282463), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.56618589)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7f3b77f90550>, params_from_internal=._params_from_internal at 0x7f3b77f91000>, derivative_to_internal=._derivative_to_internal at 0x7f3b77f930a0>, func_to_internal=._func_to_internal at 0x7f3b77f93010>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.63331552e-04 -8.29455113e-06 2.62343723e-06 1.27222785e-05
+ -6.70714064e-05 3.51434321e-05 4.95550858e-05 -1.59011871e-04
+ 6.46025432e-05 -7.75378886e-06 -9.90751500e-04 1.05939616e-03]
+ [-8.29455113e-06 1.94278530e-03 6.21427749e-05 1.33977556e-04
+ 4.05035336e-05 3.24097529e-05 -9.09560608e-06 -3.48865507e-04
+ -4.45091936e-04 -9.40023292e-04 4.15494682e-04 -4.44444208e-03]
+ [ 2.62343723e-06 6.21427749e-05 1.76211792e-03 -9.07845887e-05
+ -3.11748414e-05 -7.20625366e-05 1.23099100e-04 1.21619646e-04
+ 2.42370531e-04 -4.53895101e-04 4.77856997e-04 -2.15951955e-03]
+ [ 1.27222785e-05 1.33977556e-04 -9.07845887e-05 1.65143639e-03
+ -2.53506647e-04 -1.19096295e-04 5.24085619e-05 -2.00215176e-06
+ -8.96273332e-05 4.13045513e-05 3.57275514e-04 -2.29200628e-05]
+ [-6.70714064e-05 4.05035336e-05 -3.11748414e-05 -2.53506647e-04
+ 3.57237090e-03 1.96792266e-04 1.02791978e-04 -6.06222612e-04
+ -8.16268084e-04 1.18356570e-03 -1.21385564e-03 -1.39621761e-03]
+ [ 3.51434321e-05 3.24097529e-05 -7.20625366e-05 -1.19096295e-04
+ 1.96792266e-04 7.63662771e-03 1.87644341e-04 -6.91727595e-04
+ -8.41433602e-04 7.97137838e-04 -3.67034802e-03 7.47381063e-05]
+ [ 4.95550858e-05 -9.09560608e-06 1.23099100e-04 5.24085619e-05
+ 1.02791978e-04 1.87644341e-04 1.63798336e-02 4.49609135e-04
+ 3.74504692e-04 -4.32072461e-04 -1.26483119e-03 2.21734482e-03]
+ [-1.59011871e-04 -3.48865507e-04 1.21619646e-04 -2.00215176e-06
+ -6.06222612e-04 -6.91727595e-04 4.49609135e-04 6.10812312e-02
+ -7.03144448e-04 9.30021499e-04 1.02943264e-02 1.34912486e-02]
+ [ 6.46025432e-05 -4.45091936e-04 2.42370531e-04 -8.96273332e-05
+ -8.16268084e-04 -8.41433602e-04 3.74504692e-04 -7.03144448e-04
+ 5.99210025e-02 1.09220053e-03 -1.79592505e-03 -1.15555069e-02]
+ [-7.75378886e-06 -9.40023292e-04 -4.53895101e-04 4.13045513e-05
+ 1.18356570e-03 7.97137838e-04 -4.32072461e-04 9.30021499e-04
+ 1.09220053e-03 1.22663712e-01 -1.08608497e-02 1.60128201e-02]
+ [-9.90751500e-04 4.15494682e-04 4.77856997e-04 3.57275514e-04
+ -1.21385564e-03 -3.67034802e-03 -1.26483119e-03 1.02943264e-02
+ -1.79592505e-03 -1.08608497e-02 5.25534506e-01 -2.55742896e-02]
+ [ 1.05939616e-03 -4.44444208e-03 -2.15951955e-03 -2.29200628e-05
+ -1.39621761e-03 7.47381063e-05 2.21734482e-03 1.34912486e-02
+ -1.15555069e-02 1.60128201e-02 -2.55742896e-02 1.76620438e+00]]"
+_internal_weights,"[[2.15828168e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.14724916e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.67498911e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 6.05533465e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.79926141e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.30947853e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.10506811e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.63716412e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.66886394e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 8.15237029e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90282463e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.66185892e-01]]"
+_internal_jacobian,"[[ 2.97688580e-02 8.27829564e-01]
+ [ 1.46431320e-02 5.91119689e+00]
+ [-1.33829969e-02 1.35300076e+01]
+ [-2.21138519e-02 2.14690546e+01]
+ [-1.01695975e-01 3.02578136e+01]
+ [-5.54529723e-02 3.86390561e+01]
+ [-1.44950937e-01 5.23620862e+01]
+ [-1.02393628e-01 7.24154220e+01]
+ [-4.03851849e-02 6.28450279e+01]
+ [-1.45217140e-02 5.95930650e+01]
+ [-1.14146800e-01 4.19405565e+01]
+ [-1.03743462e-01 2.51786525e+01]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(0.02976886), 'DiscFac': array(0.82782956)}, '(30,35]': {'CRRA': array(0.01464313), 'DiscFac': array(5.91119689)}, '(35,40]': {'CRRA': array(-0.013383), 'DiscFac': array(13.53000756)}, '(40,45]': {'CRRA': array(-0.02211385), 'DiscFac': array(21.46905464)}, '(45,50]': {'CRRA': array(-0.10169598), 'DiscFac': array(30.25781359)}, '(50,55]': {'CRRA': array(-0.05545297), 'DiscFac': array(38.63905612)}, '(55,60]': {'CRRA': array(-0.14495094), 'DiscFac': array(52.36208621)}, '(70,75]': {'CRRA': array(-0.10239363), 'DiscFac': array(72.41542198)}, '(75,80]': {'CRRA': array(-0.04038518), 'DiscFac': array(62.84502787)}, '(80,85]': {'CRRA': array(-0.01452171), 'DiscFac': array(59.59306501)}, '(85,90]': {'CRRA': array(-0.1141468), 'DiscFac': array(41.94055651)}, '(90,95]': {'CRRA': array(-0.10374346), 'DiscFac': array(25.17865248)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/WarmGlowPortfolioSub(Stock)Market_estimate_results.csv b/content/tables/msm/WarmGlowPortfolioSub(Stock)Market_estimate_results.csv
new file mode 100644
index 0000000..3bf08da
--- /dev/null
+++ b/content/tables/msm/WarmGlowPortfolioSub(Stock)Market_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,2.0278733469356074
+DiscFac,0.947507160328444
+time_to_estimate,482.8548994064331
+_params,"{'CRRA': 2.0278733469356074, 'DiscFac': 0.947507160328444}"
+_internal_estimates,"InternalParams(values=array([2.02787335, 0.94750716]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([2.02787335, 0.94750716]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2158.28167807), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(514.72491632), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(567.49891065), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(605.53346513), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(279.92614085), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(130.94785271), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(61.05068109), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.37164118), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.68863935), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(8.15237029), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90282463), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.56618589)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7fb0245509d0>, params_from_internal=._params_from_internal at 0x7fb024551000>, derivative_to_internal=._derivative_to_internal at 0x7fb00ee11ab0>, func_to_internal=._func_to_internal at 0x7fb00ee124d0>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.63331552e-04 -8.29455113e-06 2.62343723e-06 1.27222785e-05
+ -6.70714064e-05 3.51434321e-05 4.95550858e-05 -1.59011871e-04
+ 6.46025432e-05 -7.75378886e-06 -9.90751500e-04 1.05939616e-03]
+ [-8.29455113e-06 1.94278530e-03 6.21427749e-05 1.33977556e-04
+ 4.05035336e-05 3.24097529e-05 -9.09560608e-06 -3.48865507e-04
+ -4.45091936e-04 -9.40023292e-04 4.15494682e-04 -4.44444208e-03]
+ [ 2.62343723e-06 6.21427749e-05 1.76211792e-03 -9.07845887e-05
+ -3.11748414e-05 -7.20625366e-05 1.23099100e-04 1.21619646e-04
+ 2.42370531e-04 -4.53895101e-04 4.77856997e-04 -2.15951955e-03]
+ [ 1.27222785e-05 1.33977556e-04 -9.07845887e-05 1.65143639e-03
+ -2.53506647e-04 -1.19096295e-04 5.24085619e-05 -2.00215176e-06
+ -8.96273332e-05 4.13045513e-05 3.57275514e-04 -2.29200628e-05]
+ [-6.70714064e-05 4.05035336e-05 -3.11748414e-05 -2.53506647e-04
+ 3.57237090e-03 1.96792266e-04 1.02791978e-04 -6.06222612e-04
+ -8.16268084e-04 1.18356570e-03 -1.21385564e-03 -1.39621761e-03]
+ [ 3.51434321e-05 3.24097529e-05 -7.20625366e-05 -1.19096295e-04
+ 1.96792266e-04 7.63662771e-03 1.87644341e-04 -6.91727595e-04
+ -8.41433602e-04 7.97137838e-04 -3.67034802e-03 7.47381063e-05]
+ [ 4.95550858e-05 -9.09560608e-06 1.23099100e-04 5.24085619e-05
+ 1.02791978e-04 1.87644341e-04 1.63798336e-02 4.49609135e-04
+ 3.74504692e-04 -4.32072461e-04 -1.26483119e-03 2.21734482e-03]
+ [-1.59011871e-04 -3.48865507e-04 1.21619646e-04 -2.00215176e-06
+ -6.06222612e-04 -6.91727595e-04 4.49609135e-04 6.10812312e-02
+ -7.03144448e-04 9.30021499e-04 1.02943264e-02 1.34912486e-02]
+ [ 6.46025432e-05 -4.45091936e-04 2.42370531e-04 -8.96273332e-05
+ -8.16268084e-04 -8.41433602e-04 3.74504692e-04 -7.03144448e-04
+ 5.99210025e-02 1.09220053e-03 -1.79592505e-03 -1.15555069e-02]
+ [-7.75378886e-06 -9.40023292e-04 -4.53895101e-04 4.13045513e-05
+ 1.18356570e-03 7.97137838e-04 -4.32072461e-04 9.30021499e-04
+ 1.09220053e-03 1.22663712e-01 -1.08608497e-02 1.60128201e-02]
+ [-9.90751500e-04 4.15494682e-04 4.77856997e-04 3.57275514e-04
+ -1.21385564e-03 -3.67034802e-03 -1.26483119e-03 1.02943264e-02
+ -1.79592505e-03 -1.08608497e-02 5.25534506e-01 -2.55742896e-02]
+ [ 1.05939616e-03 -4.44444208e-03 -2.15951955e-03 -2.29200628e-05
+ -1.39621761e-03 7.47381063e-05 2.21734482e-03 1.34912486e-02
+ -1.15555069e-02 1.60128201e-02 -2.55742896e-02 1.76620438e+00]]"
+_internal_weights,"[[2.15828168e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.14724916e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.67498911e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 6.05533465e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.79926141e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.30947853e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.10506811e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.63716412e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.66886394e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 8.15237029e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90282463e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.66185892e-01]]"
+_internal_jacobian,"[[1.58426391e-01 9.30633336e+00]
+ [4.79799720e-01 3.19459570e+01]
+ [9.83545418e-01 7.15172001e+01]
+ [9.28554113e-01 6.92450715e+01]
+ [1.69530355e+00 1.07555921e+02]
+ [2.24775452e+00 1.54922589e+02]
+ [1.85099046e+00 1.61364165e+02]
+ [1.67126975e+00 1.16881362e+02]
+ [1.53980004e+00 9.38780251e+01]
+ [8.53797174e-01 7.65865839e+01]
+ [8.89426878e-01 6.89719139e+01]
+ [0.00000000e+00 0.00000000e+00]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(0.15842639), 'DiscFac': array(9.30633336)}, '(30,35]': {'CRRA': array(0.47979972), 'DiscFac': array(31.94595695)}, '(35,40]': {'CRRA': array(0.98354542), 'DiscFac': array(71.5172001)}, '(40,45]': {'CRRA': array(0.92855411), 'DiscFac': array(69.24507154)}, '(45,50]': {'CRRA': array(1.69530355), 'DiscFac': array(107.55592114)}, '(50,55]': {'CRRA': array(2.24775452), 'DiscFac': array(154.92258895)}, '(55,60]': {'CRRA': array(1.85099046), 'DiscFac': array(161.36416494)}, '(70,75]': {'CRRA': array(1.67126975), 'DiscFac': array(116.88136164)}, '(75,80]': {'CRRA': array(1.53980004), 'DiscFac': array(93.87802506)}, '(80,85]': {'CRRA': array(0.85379717), 'DiscFac': array(76.58658385)}, '(85,90]': {'CRRA': array(0.88942688), 'DiscFac': array(68.97191388)}, '(90,95]': {'CRRA': array(0.), 'DiscFac': array(0.)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/WarmGlowPortfolio_estimate_results.csv b/content/tables/msm/WarmGlowPortfolio_estimate_results.csv
new file mode 100644
index 0000000..a6e337c
--- /dev/null
+++ b/content/tables/msm/WarmGlowPortfolio_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,8.0340535845575
+DiscFac,0.7317513481626051
+time_to_estimate,586.0827894210815
+_params,"{'CRRA': 8.0340535845575, 'DiscFac': 0.7317513481626051}"
+_internal_estimates,"InternalParams(values=array([8.03405358, 0.73175135]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([8.03405358, 0.73175135]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2158.28167807), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(514.72491632), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(567.49891065), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(605.53346513), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(279.92614085), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(130.94785271), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(61.05068109), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.37164118), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.68863935), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(8.15237029), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90282463), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.56618589)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7f1d03bdee60>, params_from_internal=._params_from_internal at 0x7f1d02903400>, derivative_to_internal=._derivative_to_internal at 0x7f1d02903130>, func_to_internal=._func_to_internal at 0x7f1d029035b0>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.63331552e-04 -8.29455113e-06 2.62343723e-06 1.27222785e-05
+ -6.70714064e-05 3.51434321e-05 4.95550858e-05 -1.59011871e-04
+ 6.46025432e-05 -7.75378886e-06 -9.90751500e-04 1.05939616e-03]
+ [-8.29455113e-06 1.94278530e-03 6.21427749e-05 1.33977556e-04
+ 4.05035336e-05 3.24097529e-05 -9.09560608e-06 -3.48865507e-04
+ -4.45091936e-04 -9.40023292e-04 4.15494682e-04 -4.44444208e-03]
+ [ 2.62343723e-06 6.21427749e-05 1.76211792e-03 -9.07845887e-05
+ -3.11748414e-05 -7.20625366e-05 1.23099100e-04 1.21619646e-04
+ 2.42370531e-04 -4.53895101e-04 4.77856997e-04 -2.15951955e-03]
+ [ 1.27222785e-05 1.33977556e-04 -9.07845887e-05 1.65143639e-03
+ -2.53506647e-04 -1.19096295e-04 5.24085619e-05 -2.00215176e-06
+ -8.96273332e-05 4.13045513e-05 3.57275514e-04 -2.29200628e-05]
+ [-6.70714064e-05 4.05035336e-05 -3.11748414e-05 -2.53506647e-04
+ 3.57237090e-03 1.96792266e-04 1.02791978e-04 -6.06222612e-04
+ -8.16268084e-04 1.18356570e-03 -1.21385564e-03 -1.39621761e-03]
+ [ 3.51434321e-05 3.24097529e-05 -7.20625366e-05 -1.19096295e-04
+ 1.96792266e-04 7.63662771e-03 1.87644341e-04 -6.91727595e-04
+ -8.41433602e-04 7.97137838e-04 -3.67034802e-03 7.47381063e-05]
+ [ 4.95550858e-05 -9.09560608e-06 1.23099100e-04 5.24085619e-05
+ 1.02791978e-04 1.87644341e-04 1.63798336e-02 4.49609135e-04
+ 3.74504692e-04 -4.32072461e-04 -1.26483119e-03 2.21734482e-03]
+ [-1.59011871e-04 -3.48865507e-04 1.21619646e-04 -2.00215176e-06
+ -6.06222612e-04 -6.91727595e-04 4.49609135e-04 6.10812312e-02
+ -7.03144448e-04 9.30021499e-04 1.02943264e-02 1.34912486e-02]
+ [ 6.46025432e-05 -4.45091936e-04 2.42370531e-04 -8.96273332e-05
+ -8.16268084e-04 -8.41433602e-04 3.74504692e-04 -7.03144448e-04
+ 5.99210025e-02 1.09220053e-03 -1.79592505e-03 -1.15555069e-02]
+ [-7.75378886e-06 -9.40023292e-04 -4.53895101e-04 4.13045513e-05
+ 1.18356570e-03 7.97137838e-04 -4.32072461e-04 9.30021499e-04
+ 1.09220053e-03 1.22663712e-01 -1.08608497e-02 1.60128201e-02]
+ [-9.90751500e-04 4.15494682e-04 4.77856997e-04 3.57275514e-04
+ -1.21385564e-03 -3.67034802e-03 -1.26483119e-03 1.02943264e-02
+ -1.79592505e-03 -1.08608497e-02 5.25534506e-01 -2.55742896e-02]
+ [ 1.05939616e-03 -4.44444208e-03 -2.15951955e-03 -2.29200628e-05
+ -1.39621761e-03 7.47381063e-05 2.21734482e-03 1.34912486e-02
+ -1.15555069e-02 1.60128201e-02 -2.55742896e-02 1.76620438e+00]]"
+_internal_weights,"[[2.15828168e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.14724916e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.67498911e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 6.05533465e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.79926141e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.30947853e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.10506811e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.63716412e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.66886394e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 8.15237029e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90282463e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.66185892e-01]]"
+_internal_jacobian,"[[-2.24861441e+05 -9.19876626e+04]
+ [ 2.29511065e+05 -5.51183873e+06]
+ [ 2.29414984e+06 1.10058949e+07]
+ [ 2.21899778e+06 2.95875343e+07]
+ [ 2.50110785e+06 6.83594978e+07]
+ [ 4.81342966e+06 8.18434528e+07]
+ [ 9.09069022e+06 1.10398653e+08]
+ [ 2.90636497e+06 1.18896647e+07]
+ [ 1.21547935e+06 1.28005273e+07]
+ [ 6.07281973e+05 2.99218101e+07]
+ [ 8.44129542e+05 3.57320413e+07]
+ [ 1.41162350e+06 1.57444923e+07]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(-224861.44085805), 'DiscFac': array(-91987.66264161)}, '(30,35]': {'CRRA': array(229511.06510046), 'DiscFac': array(-5511838.72570578)}, '(35,40]': {'CRRA': array(2294149.84114426), 'DiscFac': array(11005894.92512332)}, '(40,45]': {'CRRA': array(2218997.78277701), 'DiscFac': array(29587534.34875737)}, '(45,50]': {'CRRA': array(2501107.84565421), 'DiscFac': array(68359497.84423001)}, '(50,55]': {'CRRA': array(4813429.65804379), 'DiscFac': array(81843452.7696178)}, '(55,60]': {'CRRA': array(9090690.21960198), 'DiscFac': array(1.10398653e+08)}, '(70,75]': {'CRRA': array(2906364.96737909), 'DiscFac': array(11889664.73844956)}, '(75,80]': {'CRRA': array(1215479.35301099), 'DiscFac': array(12800527.31245555)}, '(80,85]': {'CRRA': array(607281.97284519), 'DiscFac': array(29921810.06221741)}, '(85,90]': {'CRRA': array(844129.54174849), 'DiscFac': array(35732041.34837789)}, '(90,95]': {'CRRA': array(1411623.49829079), 'DiscFac': array(15744492.29182508)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/WarmGlowSub(Labor)Market_estimate_results.csv b/content/tables/msm/WarmGlowSub(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..da9d748
--- /dev/null
+++ b/content/tables/msm/WarmGlowSub(Labor)Market_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,4.35190478146457
+DiscFac,1.0300700571491297
+time_to_estimate,680.600419998169
+_params,"{'CRRA': 4.35190478146457, 'DiscFac': 1.0300700571491297}"
+_internal_estimates,"InternalParams(values=array([4.35190478, 1.03007006]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([4.35190478, 1.03007006]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2019.14915854), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(500.34239184), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(518.82380586), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(591.66555413), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(294.07884176), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(116.40562412), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(69.87620894), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.46773596), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.70517538), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(7.88396527), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90060184), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.55717516)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7f047cfe75b0>, params_from_internal=._params_from_internal at 0x7f047cfe67a0>, derivative_to_internal=._derivative_to_internal at 0x7f047cfe4f70>, func_to_internal=._func_to_internal at 0x7f047cfe7490>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.95258112e-04 2.66601431e-05 2.79286974e-05 7.46706608e-06
+ -3.57660861e-05 2.67259515e-05 1.10371975e-04 2.29478720e-04
+ -1.74583374e-04 9.18609805e-05 -9.28899552e-04 -1.50543778e-04]
+ [ 2.66601431e-05 1.99863137e-03 8.85890234e-05 9.17921130e-05
+ -9.23337837e-05 -2.83576297e-04 1.48966314e-04 1.80715547e-04
+ -3.10963397e-04 3.47758778e-04 5.28959433e-04 5.19875724e-04]
+ [ 2.79286974e-05 8.85890234e-05 1.92743661e-03 4.84543237e-05
+ 8.64878494e-05 -1.21376982e-04 -2.12383559e-04 -3.48906145e-05
+ 4.13284621e-04 3.32697621e-04 -4.47332935e-04 5.68592373e-04]
+ [ 7.46706608e-06 9.17921130e-05 4.84543237e-05 1.69014402e-03
+ -1.64277002e-05 -4.40250202e-05 -1.69566236e-04 -7.30430953e-04
+ 6.17674185e-05 -3.77973815e-04 -1.25740378e-03 -1.67437857e-03]
+ [-3.57660861e-05 -9.23337837e-05 8.64878494e-05 -1.64277002e-05
+ 3.40044865e-03 2.31358468e-04 -1.98388371e-04 -9.90302591e-04
+ 3.40008787e-04 -3.99570271e-04 -8.07415962e-04 -6.44898143e-03]
+ [ 2.67259515e-05 -2.83576297e-04 -1.21376982e-04 -4.40250202e-05
+ 2.31358468e-04 8.59065022e-03 -5.28504370e-04 9.67901647e-04
+ -6.38169315e-04 -4.22552263e-04 3.24001952e-03 -3.14657898e-03]
+ [ 1.10371975e-04 1.48966314e-04 -2.12383559e-04 -1.69566236e-04
+ -1.98388371e-04 -5.28504370e-04 1.43110225e-02 2.57065708e-04
+ -1.09391854e-03 1.90605756e-03 -6.99390334e-04 7.40307679e-03]
+ [ 2.29478720e-04 1.80715547e-04 -3.48906145e-05 -7.30430953e-04
+ -9.90302591e-04 9.67901647e-04 2.57065708e-04 6.07248017e-02
+ 2.56350149e-03 6.21389768e-04 -2.22168627e-03 -1.42343182e-02]
+ [-1.74583374e-04 -3.10963397e-04 4.13284621e-04 6.17674185e-05
+ 3.40008787e-04 -6.38169315e-04 -1.09391854e-03 2.56350149e-03
+ 5.98616882e-02 -9.63153128e-04 7.46109287e-03 1.60977374e-02]
+ [ 9.18609805e-05 3.47758778e-04 3.32697621e-04 -3.77973815e-04
+ -3.99570271e-04 -4.22552263e-04 1.90605756e-03 6.21389768e-04
+ -9.63153128e-04 1.26839727e-01 -5.50753961e-03 1.82934775e-03]
+ [-9.28899552e-04 5.28959433e-04 -4.47332935e-04 -1.25740378e-03
+ -8.07415962e-04 3.24001952e-03 -6.99390334e-04 -2.22168627e-03
+ 7.46109287e-03 -5.50753961e-03 5.26149129e-01 -2.79455237e-02]
+ [-1.50543778e-04 5.19875724e-04 5.68592373e-04 -1.67437857e-03
+ -6.44898143e-03 -3.14657898e-03 7.40307679e-03 -1.42343182e-02
+ 1.60977374e-02 1.82934775e-03 -2.79455237e-02 1.79476773e+00]]"
+_internal_weights,"[[2.01914916e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.00342392e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.18823806e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 5.91665554e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.94078842e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.16405624e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.98762089e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.64677360e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.67051754e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 7.88396527e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90060184e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.57175161e-01]]"
+_internal_jacobian,"[[-2.05889979e-02 5.46821737e+00]
+ [-1.48984593e-01 1.73095762e+01]
+ [-3.32137256e-01 3.77074936e+01]
+ [-4.10694675e-01 4.64643477e+01]
+ [-6.14472208e-01 7.02622568e+01]
+ [-7.17288463e-01 8.69613333e+01]
+ [-9.54007210e-01 1.20685290e+02]
+ [-9.20646677e-01 1.57186283e+02]
+ [-7.81608685e-01 1.63331193e+02]
+ [-5.39639473e-01 1.18362110e+02]
+ [-2.64166642e-01 8.14630720e+01]
+ [-4.53193824e-01 5.12915092e+01]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(-0.020589), 'DiscFac': array(5.46821737)}, '(30,35]': {'CRRA': array(-0.14898459), 'DiscFac': array(17.30957622)}, '(35,40]': {'CRRA': array(-0.33213726), 'DiscFac': array(37.70749355)}, '(40,45]': {'CRRA': array(-0.41069467), 'DiscFac': array(46.46434766)}, '(45,50]': {'CRRA': array(-0.61447221), 'DiscFac': array(70.26225682)}, '(50,55]': {'CRRA': array(-0.71728846), 'DiscFac': array(86.96133331)}, '(55,60]': {'CRRA': array(-0.95400721), 'DiscFac': array(120.68529036)}, '(70,75]': {'CRRA': array(-0.92064668), 'DiscFac': array(157.18628335)}, '(75,80]': {'CRRA': array(-0.78160869), 'DiscFac': array(163.33119252)}, '(80,85]': {'CRRA': array(-0.53963947), 'DiscFac': array(118.36211026)}, '(85,90]': {'CRRA': array(-0.26416664), 'DiscFac': array(81.46307204)}, '(90,95]': {'CRRA': array(-0.45319382), 'DiscFac': array(51.29150922)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/WarmGlowSub(Stock)(Labor)Market_estimate_results.csv b/content/tables/msm/WarmGlowSub(Stock)(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..83850d9
--- /dev/null
+++ b/content/tables/msm/WarmGlowSub(Stock)(Labor)Market_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,5.377015810961057
+DiscFac,1.0436200866981735
+time_to_estimate,703.9654734134674
+_params,"{'CRRA': 5.377015810961057, 'DiscFac': 1.0436200866981735}"
+_internal_estimates,"InternalParams(values=array([5.37701581, 1.04362009]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([5.37701581, 1.04362009]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2019.14915854), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(500.34239184), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(518.82380586), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(591.66555413), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(294.07884176), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(116.40562412), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(69.87620894), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.46773596), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.70517538), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(7.88396527), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90060184), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.55717516)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7f63b97f9c60>, params_from_internal=._params_from_internal at 0x7f63b97f9cf0>, derivative_to_internal=._derivative_to_internal at 0x7f63b97f9d80>, func_to_internal=._func_to_internal at 0x7f63b97f9e10>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.95258112e-04 2.66601431e-05 2.79286974e-05 7.46706608e-06
+ -3.57660861e-05 2.67259515e-05 1.10371975e-04 2.29478720e-04
+ -1.74583374e-04 9.18609805e-05 -9.28899552e-04 -1.50543778e-04]
+ [ 2.66601431e-05 1.99863137e-03 8.85890234e-05 9.17921130e-05
+ -9.23337837e-05 -2.83576297e-04 1.48966314e-04 1.80715547e-04
+ -3.10963397e-04 3.47758778e-04 5.28959433e-04 5.19875724e-04]
+ [ 2.79286974e-05 8.85890234e-05 1.92743661e-03 4.84543237e-05
+ 8.64878494e-05 -1.21376982e-04 -2.12383559e-04 -3.48906145e-05
+ 4.13284621e-04 3.32697621e-04 -4.47332935e-04 5.68592373e-04]
+ [ 7.46706608e-06 9.17921130e-05 4.84543237e-05 1.69014402e-03
+ -1.64277002e-05 -4.40250202e-05 -1.69566236e-04 -7.30430953e-04
+ 6.17674185e-05 -3.77973815e-04 -1.25740378e-03 -1.67437857e-03]
+ [-3.57660861e-05 -9.23337837e-05 8.64878494e-05 -1.64277002e-05
+ 3.40044865e-03 2.31358468e-04 -1.98388371e-04 -9.90302591e-04
+ 3.40008787e-04 -3.99570271e-04 -8.07415962e-04 -6.44898143e-03]
+ [ 2.67259515e-05 -2.83576297e-04 -1.21376982e-04 -4.40250202e-05
+ 2.31358468e-04 8.59065022e-03 -5.28504370e-04 9.67901647e-04
+ -6.38169315e-04 -4.22552263e-04 3.24001952e-03 -3.14657898e-03]
+ [ 1.10371975e-04 1.48966314e-04 -2.12383559e-04 -1.69566236e-04
+ -1.98388371e-04 -5.28504370e-04 1.43110225e-02 2.57065708e-04
+ -1.09391854e-03 1.90605756e-03 -6.99390334e-04 7.40307679e-03]
+ [ 2.29478720e-04 1.80715547e-04 -3.48906145e-05 -7.30430953e-04
+ -9.90302591e-04 9.67901647e-04 2.57065708e-04 6.07248017e-02
+ 2.56350149e-03 6.21389768e-04 -2.22168627e-03 -1.42343182e-02]
+ [-1.74583374e-04 -3.10963397e-04 4.13284621e-04 6.17674185e-05
+ 3.40008787e-04 -6.38169315e-04 -1.09391854e-03 2.56350149e-03
+ 5.98616882e-02 -9.63153128e-04 7.46109287e-03 1.60977374e-02]
+ [ 9.18609805e-05 3.47758778e-04 3.32697621e-04 -3.77973815e-04
+ -3.99570271e-04 -4.22552263e-04 1.90605756e-03 6.21389768e-04
+ -9.63153128e-04 1.26839727e-01 -5.50753961e-03 1.82934775e-03]
+ [-9.28899552e-04 5.28959433e-04 -4.47332935e-04 -1.25740378e-03
+ -8.07415962e-04 3.24001952e-03 -6.99390334e-04 -2.22168627e-03
+ 7.46109287e-03 -5.50753961e-03 5.26149129e-01 -2.79455237e-02]
+ [-1.50543778e-04 5.19875724e-04 5.68592373e-04 -1.67437857e-03
+ -6.44898143e-03 -3.14657898e-03 7.40307679e-03 -1.42343182e-02
+ 1.60977374e-02 1.82934775e-03 -2.79455237e-02 1.79476773e+00]]"
+_internal_weights,"[[2.01914916e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.00342392e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.18823806e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 5.91665554e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.94078842e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.16405624e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.98762089e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.64677360e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.67051754e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 7.88396527e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90060184e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.57175161e-01]]"
+_internal_jacobian,"[[ 1.45639294e-02 4.52339405e+00]
+ [-6.62111793e-02 1.45768684e+01]
+ [-1.95336387e-01 3.07011541e+01]
+ [-2.79855117e-01 4.46815547e+01]
+ [-3.65778202e-01 5.98648820e+01]
+ [-4.56818085e-01 7.75674437e+01]
+ [-4.96739603e-01 9.16333181e+01]
+ [-5.04330460e-01 1.41250137e+02]
+ [-4.46535591e-01 1.17491151e+02]
+ [-2.73181204e-01 9.55011238e+01]
+ [-3.70252107e-01 5.92618519e+01]
+ [-2.18445157e-01 3.15404650e+01]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(0.01456393), 'DiscFac': array(4.52339405)}, '(30,35]': {'CRRA': array(-0.06621118), 'DiscFac': array(14.57686844)}, '(35,40]': {'CRRA': array(-0.19533639), 'DiscFac': array(30.70115407)}, '(40,45]': {'CRRA': array(-0.27985512), 'DiscFac': array(44.68155469)}, '(45,50]': {'CRRA': array(-0.3657782), 'DiscFac': array(59.86488197)}, '(50,55]': {'CRRA': array(-0.45681808), 'DiscFac': array(77.5674437)}, '(55,60]': {'CRRA': array(-0.4967396), 'DiscFac': array(91.63331811)}, '(70,75]': {'CRRA': array(-0.50433046), 'DiscFac': array(141.25013734)}, '(75,80]': {'CRRA': array(-0.44653559), 'DiscFac': array(117.49115137)}, '(80,85]': {'CRRA': array(-0.2731812), 'DiscFac': array(95.50112381)}, '(85,90]': {'CRRA': array(-0.37025211), 'DiscFac': array(59.26185186)}, '(90,95]': {'CRRA': array(-0.21844516), 'DiscFac': array(31.540465)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/WarmGlowSub(Stock)Market_estimate_results.csv b/content/tables/msm/WarmGlowSub(Stock)Market_estimate_results.csv
new file mode 100644
index 0000000..b3fb863
--- /dev/null
+++ b/content/tables/msm/WarmGlowSub(Stock)Market_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,1.6065655986698697
+DiscFac,0.9790270061791481
+time_to_estimate,472.92487931251526
+_params,"{'CRRA': 1.6065655986698697, 'DiscFac': 0.9790270061791481}"
+_internal_estimates,"InternalParams(values=array([1.6065656 , 0.97902701]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([1.6065656 , 0.97902701]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2019.14915854), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(500.34239184), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(518.82380586), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(591.66555413), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(294.07884176), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(116.40562412), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(69.87620894), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.46773596), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.70517538), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(7.88396527), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90060184), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.55717516)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7fb57104ce50>, params_from_internal=._params_from_internal at 0x7fb57104de10>, derivative_to_internal=._derivative_to_internal at 0x7fb57104fd90>, func_to_internal=._func_to_internal at 0x7fb57104d5a0>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.95258112e-04 2.66601431e-05 2.79286974e-05 7.46706608e-06
+ -3.57660861e-05 2.67259515e-05 1.10371975e-04 2.29478720e-04
+ -1.74583374e-04 9.18609805e-05 -9.28899552e-04 -1.50543778e-04]
+ [ 2.66601431e-05 1.99863137e-03 8.85890234e-05 9.17921130e-05
+ -9.23337837e-05 -2.83576297e-04 1.48966314e-04 1.80715547e-04
+ -3.10963397e-04 3.47758778e-04 5.28959433e-04 5.19875724e-04]
+ [ 2.79286974e-05 8.85890234e-05 1.92743661e-03 4.84543237e-05
+ 8.64878494e-05 -1.21376982e-04 -2.12383559e-04 -3.48906145e-05
+ 4.13284621e-04 3.32697621e-04 -4.47332935e-04 5.68592373e-04]
+ [ 7.46706608e-06 9.17921130e-05 4.84543237e-05 1.69014402e-03
+ -1.64277002e-05 -4.40250202e-05 -1.69566236e-04 -7.30430953e-04
+ 6.17674185e-05 -3.77973815e-04 -1.25740378e-03 -1.67437857e-03]
+ [-3.57660861e-05 -9.23337837e-05 8.64878494e-05 -1.64277002e-05
+ 3.40044865e-03 2.31358468e-04 -1.98388371e-04 -9.90302591e-04
+ 3.40008787e-04 -3.99570271e-04 -8.07415962e-04 -6.44898143e-03]
+ [ 2.67259515e-05 -2.83576297e-04 -1.21376982e-04 -4.40250202e-05
+ 2.31358468e-04 8.59065022e-03 -5.28504370e-04 9.67901647e-04
+ -6.38169315e-04 -4.22552263e-04 3.24001952e-03 -3.14657898e-03]
+ [ 1.10371975e-04 1.48966314e-04 -2.12383559e-04 -1.69566236e-04
+ -1.98388371e-04 -5.28504370e-04 1.43110225e-02 2.57065708e-04
+ -1.09391854e-03 1.90605756e-03 -6.99390334e-04 7.40307679e-03]
+ [ 2.29478720e-04 1.80715547e-04 -3.48906145e-05 -7.30430953e-04
+ -9.90302591e-04 9.67901647e-04 2.57065708e-04 6.07248017e-02
+ 2.56350149e-03 6.21389768e-04 -2.22168627e-03 -1.42343182e-02]
+ [-1.74583374e-04 -3.10963397e-04 4.13284621e-04 6.17674185e-05
+ 3.40008787e-04 -6.38169315e-04 -1.09391854e-03 2.56350149e-03
+ 5.98616882e-02 -9.63153128e-04 7.46109287e-03 1.60977374e-02]
+ [ 9.18609805e-05 3.47758778e-04 3.32697621e-04 -3.77973815e-04
+ -3.99570271e-04 -4.22552263e-04 1.90605756e-03 6.21389768e-04
+ -9.63153128e-04 1.26839727e-01 -5.50753961e-03 1.82934775e-03]
+ [-9.28899552e-04 5.28959433e-04 -4.47332935e-04 -1.25740378e-03
+ -8.07415962e-04 3.24001952e-03 -6.99390334e-04 -2.22168627e-03
+ 7.46109287e-03 -5.50753961e-03 5.26149129e-01 -2.79455237e-02]
+ [-1.50543778e-04 5.19875724e-04 5.68592373e-04 -1.67437857e-03
+ -6.44898143e-03 -3.14657898e-03 7.40307679e-03 -1.42343182e-02
+ 1.60977374e-02 1.82934775e-03 -2.79455237e-02 1.79476773e+00]]"
+_internal_weights,"[[2.01914916e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.00342392e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.18823806e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 5.91665554e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.94078842e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.16405624e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.98762089e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.64677360e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.67051754e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 7.88396527e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90060184e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.57175161e-01]]"
+_internal_jacobian,"[[2.51339302e-01 1.25161824e+01]
+ [6.91024677e-01 4.11977382e+01]
+ [1.06112960e+00 7.01364273e+01]
+ [2.01196744e+00 1.18062163e+02]
+ [1.95906455e+00 1.29991022e+02]
+ [2.89635545e+00 1.86078870e+02]
+ [4.08859681e+00 2.57726092e+02]
+ [2.96738665e+00 1.85505053e+02]
+ [1.39566959e+00 8.49439513e+01]
+ [1.78923564e+00 9.93353854e+01]
+ [9.79240590e-01 5.10985338e+01]
+ [1.00519672e+00 6.03845002e+01]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(0.2513393), 'DiscFac': array(12.51618244)}, '(30,35]': {'CRRA': array(0.69102468), 'DiscFac': array(41.19773815)}, '(35,40]': {'CRRA': array(1.0611296), 'DiscFac': array(70.13642731)}, '(40,45]': {'CRRA': array(2.01196744), 'DiscFac': array(118.06216257)}, '(45,50]': {'CRRA': array(1.95906455), 'DiscFac': array(129.99102245)}, '(50,55]': {'CRRA': array(2.89635545), 'DiscFac': array(186.07887013)}, '(55,60]': {'CRRA': array(4.08859681), 'DiscFac': array(257.72609241)}, '(70,75]': {'CRRA': array(2.96738665), 'DiscFac': array(185.50505338)}, '(75,80]': {'CRRA': array(1.39566959), 'DiscFac': array(84.94395126)}, '(80,85]': {'CRRA': array(1.78923564), 'DiscFac': array(99.33538543)}, '(85,90]': {'CRRA': array(0.97924059), 'DiscFac': array(51.09853381)}, '(90,95]': {'CRRA': array(1.00519672), 'DiscFac': array(60.38450023)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/WarmGlow_estimate_results.csv b/content/tables/msm/WarmGlow_estimate_results.csv
new file mode 100644
index 0000000..df445a7
--- /dev/null
+++ b/content/tables/msm/WarmGlow_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,1.7007109953786266
+DiscFac,0.9696762813125013
+time_to_estimate,519.7153921127319
+_params,"{'CRRA': 1.7007109953786266, 'DiscFac': 0.9696762813125013}"
+_internal_estimates,"InternalParams(values=array([1.700711 , 0.96967628]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([1.700711 , 0.96967628]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2019.14915854), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(500.34239184), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(518.82380586), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(591.66555413), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(294.07884176), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(116.40562412), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(69.87620894), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.46773596), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.70517538), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(7.88396527), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90060184), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.55717516)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7f80642a1090>, params_from_internal=._params_from_internal at 0x7f8075f8b2e0>, derivative_to_internal=._derivative_to_internal at 0x7f80757f16c0>, func_to_internal=._func_to_internal at 0x7f80757f17e0>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.95258112e-04 2.66601431e-05 2.79286974e-05 7.46706608e-06
+ -3.57660861e-05 2.67259515e-05 1.10371975e-04 2.29478720e-04
+ -1.74583374e-04 9.18609805e-05 -9.28899552e-04 -1.50543778e-04]
+ [ 2.66601431e-05 1.99863137e-03 8.85890234e-05 9.17921130e-05
+ -9.23337837e-05 -2.83576297e-04 1.48966314e-04 1.80715547e-04
+ -3.10963397e-04 3.47758778e-04 5.28959433e-04 5.19875724e-04]
+ [ 2.79286974e-05 8.85890234e-05 1.92743661e-03 4.84543237e-05
+ 8.64878494e-05 -1.21376982e-04 -2.12383559e-04 -3.48906145e-05
+ 4.13284621e-04 3.32697621e-04 -4.47332935e-04 5.68592373e-04]
+ [ 7.46706608e-06 9.17921130e-05 4.84543237e-05 1.69014402e-03
+ -1.64277002e-05 -4.40250202e-05 -1.69566236e-04 -7.30430953e-04
+ 6.17674185e-05 -3.77973815e-04 -1.25740378e-03 -1.67437857e-03]
+ [-3.57660861e-05 -9.23337837e-05 8.64878494e-05 -1.64277002e-05
+ 3.40044865e-03 2.31358468e-04 -1.98388371e-04 -9.90302591e-04
+ 3.40008787e-04 -3.99570271e-04 -8.07415962e-04 -6.44898143e-03]
+ [ 2.67259515e-05 -2.83576297e-04 -1.21376982e-04 -4.40250202e-05
+ 2.31358468e-04 8.59065022e-03 -5.28504370e-04 9.67901647e-04
+ -6.38169315e-04 -4.22552263e-04 3.24001952e-03 -3.14657898e-03]
+ [ 1.10371975e-04 1.48966314e-04 -2.12383559e-04 -1.69566236e-04
+ -1.98388371e-04 -5.28504370e-04 1.43110225e-02 2.57065708e-04
+ -1.09391854e-03 1.90605756e-03 -6.99390334e-04 7.40307679e-03]
+ [ 2.29478720e-04 1.80715547e-04 -3.48906145e-05 -7.30430953e-04
+ -9.90302591e-04 9.67901647e-04 2.57065708e-04 6.07248017e-02
+ 2.56350149e-03 6.21389768e-04 -2.22168627e-03 -1.42343182e-02]
+ [-1.74583374e-04 -3.10963397e-04 4.13284621e-04 6.17674185e-05
+ 3.40008787e-04 -6.38169315e-04 -1.09391854e-03 2.56350149e-03
+ 5.98616882e-02 -9.63153128e-04 7.46109287e-03 1.60977374e-02]
+ [ 9.18609805e-05 3.47758778e-04 3.32697621e-04 -3.77973815e-04
+ -3.99570271e-04 -4.22552263e-04 1.90605756e-03 6.21389768e-04
+ -9.63153128e-04 1.26839727e-01 -5.50753961e-03 1.82934775e-03]
+ [-9.28899552e-04 5.28959433e-04 -4.47332935e-04 -1.25740378e-03
+ -8.07415962e-04 3.24001952e-03 -6.99390334e-04 -2.22168627e-03
+ 7.46109287e-03 -5.50753961e-03 5.26149129e-01 -2.79455237e-02]
+ [-1.50543778e-04 5.19875724e-04 5.68592373e-04 -1.67437857e-03
+ -6.44898143e-03 -3.14657898e-03 7.40307679e-03 -1.42343182e-02
+ 1.60977374e-02 1.82934775e-03 -2.79455237e-02 1.79476773e+00]]"
+_internal_weights,"[[2.01914916e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.00342392e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.18823806e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 5.91665554e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.94078842e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.16405624e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.98762089e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.64677360e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.67051754e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 7.88396527e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90060184e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.57175161e-01]]"
+_internal_jacobian,"[[1.86793312e-01 9.09662924e+00]
+ [6.54085871e-01 3.72834122e+01]
+ [7.33733301e-01 5.24030087e+01]
+ [1.55055969e+00 1.06671639e+02]
+ [1.91030507e+00 1.38892313e+02]
+ [2.11666937e+00 1.51937920e+02]
+ [2.79916155e+00 1.90915539e+02]
+ [3.07594320e+00 2.11259094e+02]
+ [1.62745814e+00 1.06078351e+02]
+ [1.01635111e+00 5.88717801e+01]
+ [1.61912191e+00 8.49557372e+01]
+ [1.15628495e+00 7.67281456e+01]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(0.18679331), 'DiscFac': array(9.09662924)}, '(30,35]': {'CRRA': array(0.65408587), 'DiscFac': array(37.28341216)}, '(35,40]': {'CRRA': array(0.7337333), 'DiscFac': array(52.40300867)}, '(40,45]': {'CRRA': array(1.55055969), 'DiscFac': array(106.67163877)}, '(45,50]': {'CRRA': array(1.91030507), 'DiscFac': array(138.8923129)}, '(50,55]': {'CRRA': array(2.11666937), 'DiscFac': array(151.93791981)}, '(55,60]': {'CRRA': array(2.79916155), 'DiscFac': array(190.91553947)}, '(70,75]': {'CRRA': array(3.0759432), 'DiscFac': array(211.25909383)}, '(75,80]': {'CRRA': array(1.62745814), 'DiscFac': array(106.07835094)}, '(80,85]': {'CRRA': array(1.01635111), 'DiscFac': array(58.87178007)}, '(85,90]': {'CRRA': array(1.61912191), 'DiscFac': array(84.95573723)}, '(90,95]': {'CRRA': array(1.15628495), 'DiscFac': array(76.72814562)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/WealthPortfolioSub(Labor)Market_estimate_results.csv b/content/tables/msm/WealthPortfolioSub(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..db4ccf6
--- /dev/null
+++ b/content/tables/msm/WealthPortfolioSub(Labor)Market_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,15.796329213228365
+DiscFac,1.01881362645317
+time_to_estimate,720.8615710735321
+_params,"{'CRRA': 15.796329213228365, 'DiscFac': 1.01881362645317}"
+_internal_estimates,"InternalParams(values=array([15.79632921, 1.01881363]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([15.79632921, 1.01881363]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2158.28167807), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(514.72491632), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(567.49891065), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(605.53346513), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(279.92614085), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(130.94785271), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(61.05068109), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.37164118), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.68863935), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(8.15237029), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90282463), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.56618589)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7fcf32d41a20>, params_from_internal=._params_from_internal at 0x7fcf32d41480>, derivative_to_internal=._derivative_to_internal at 0x7fcf32d41090>, func_to_internal=._func_to_internal at 0x7fcf32d405e0>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.63331552e-04 -8.29455113e-06 2.62343723e-06 1.27222785e-05
+ -6.70714064e-05 3.51434321e-05 4.95550858e-05 -1.59011871e-04
+ 6.46025432e-05 -7.75378886e-06 -9.90751500e-04 1.05939616e-03]
+ [-8.29455113e-06 1.94278530e-03 6.21427749e-05 1.33977556e-04
+ 4.05035336e-05 3.24097529e-05 -9.09560608e-06 -3.48865507e-04
+ -4.45091936e-04 -9.40023292e-04 4.15494682e-04 -4.44444208e-03]
+ [ 2.62343723e-06 6.21427749e-05 1.76211792e-03 -9.07845887e-05
+ -3.11748414e-05 -7.20625366e-05 1.23099100e-04 1.21619646e-04
+ 2.42370531e-04 -4.53895101e-04 4.77856997e-04 -2.15951955e-03]
+ [ 1.27222785e-05 1.33977556e-04 -9.07845887e-05 1.65143639e-03
+ -2.53506647e-04 -1.19096295e-04 5.24085619e-05 -2.00215176e-06
+ -8.96273332e-05 4.13045513e-05 3.57275514e-04 -2.29200628e-05]
+ [-6.70714064e-05 4.05035336e-05 -3.11748414e-05 -2.53506647e-04
+ 3.57237090e-03 1.96792266e-04 1.02791978e-04 -6.06222612e-04
+ -8.16268084e-04 1.18356570e-03 -1.21385564e-03 -1.39621761e-03]
+ [ 3.51434321e-05 3.24097529e-05 -7.20625366e-05 -1.19096295e-04
+ 1.96792266e-04 7.63662771e-03 1.87644341e-04 -6.91727595e-04
+ -8.41433602e-04 7.97137838e-04 -3.67034802e-03 7.47381063e-05]
+ [ 4.95550858e-05 -9.09560608e-06 1.23099100e-04 5.24085619e-05
+ 1.02791978e-04 1.87644341e-04 1.63798336e-02 4.49609135e-04
+ 3.74504692e-04 -4.32072461e-04 -1.26483119e-03 2.21734482e-03]
+ [-1.59011871e-04 -3.48865507e-04 1.21619646e-04 -2.00215176e-06
+ -6.06222612e-04 -6.91727595e-04 4.49609135e-04 6.10812312e-02
+ -7.03144448e-04 9.30021499e-04 1.02943264e-02 1.34912486e-02]
+ [ 6.46025432e-05 -4.45091936e-04 2.42370531e-04 -8.96273332e-05
+ -8.16268084e-04 -8.41433602e-04 3.74504692e-04 -7.03144448e-04
+ 5.99210025e-02 1.09220053e-03 -1.79592505e-03 -1.15555069e-02]
+ [-7.75378886e-06 -9.40023292e-04 -4.53895101e-04 4.13045513e-05
+ 1.18356570e-03 7.97137838e-04 -4.32072461e-04 9.30021499e-04
+ 1.09220053e-03 1.22663712e-01 -1.08608497e-02 1.60128201e-02]
+ [-9.90751500e-04 4.15494682e-04 4.77856997e-04 3.57275514e-04
+ -1.21385564e-03 -3.67034802e-03 -1.26483119e-03 1.02943264e-02
+ -1.79592505e-03 -1.08608497e-02 5.25534506e-01 -2.55742896e-02]
+ [ 1.05939616e-03 -4.44444208e-03 -2.15951955e-03 -2.29200628e-05
+ -1.39621761e-03 7.47381063e-05 2.21734482e-03 1.34912486e-02
+ -1.15555069e-02 1.60128201e-02 -2.55742896e-02 1.76620438e+00]]"
+_internal_weights,"[[2.15828168e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.14724916e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.67498911e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 6.05533465e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.79926141e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.30947853e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.10506811e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.63716412e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.66886394e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 8.15237029e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90282463e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.66185892e-01]]"
+_internal_jacobian,"[[-6.87525158e+04 -5.74393611e+05]
+ [ 6.52482168e+04 -3.32957696e+05]
+ [ 7.37672823e+05 7.57380924e+06]
+ [ 1.09869909e+06 2.26145746e+07]
+ [ 1.46705120e+06 5.76436287e+07]
+ [ 2.74639787e+06 7.73200724e+07]
+ [ 5.59448326e+06 1.10187439e+08]
+ [ 5.96323375e+06 7.56565489e+07]
+ [ 4.43512321e+06 6.97784356e+07]
+ [ 2.65389276e+06 7.71788123e+07]
+ [ 3.66575867e+05 5.42830376e+07]
+ [ 8.52088408e+05 1.12601560e+07]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(-68752.51579378), 'DiscFac': array(-574393.6108013)}, '(30,35]': {'CRRA': array(65248.21682618), 'DiscFac': array(-332957.69632734)}, '(35,40]': {'CRRA': array(737672.82315978), 'DiscFac': array(7573809.23941928)}, '(40,45]': {'CRRA': array(1098699.08952011), 'DiscFac': array(22614574.62081938)}, '(45,50]': {'CRRA': array(1467051.20099021), 'DiscFac': array(57643628.72897539)}, '(50,55]': {'CRRA': array(2746397.87222362), 'DiscFac': array(77320072.38929991)}, '(55,60]': {'CRRA': array(5594483.26115322), 'DiscFac': array(1.10187439e+08)}, '(70,75]': {'CRRA': array(5963233.74826386), 'DiscFac': array(75656548.91590396)}, '(75,80]': {'CRRA': array(4435123.21199968), 'DiscFac': array(69778435.57071303)}, '(80,85]': {'CRRA': array(2653892.76373984), 'DiscFac': array(77178812.33691593)}, '(85,90]': {'CRRA': array(366575.86700859), 'DiscFac': array(54283037.56225435)}, '(90,95]': {'CRRA': array(852088.40803855), 'DiscFac': array(11260155.96864601)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/WealthPortfolioSub(Stock)(Labor)Market_estimate_results.csv b/content/tables/msm/WealthPortfolioSub(Stock)(Labor)Market_estimate_results.csv
new file mode 100644
index 0000000..93b052a
--- /dev/null
+++ b/content/tables/msm/WealthPortfolioSub(Stock)(Labor)Market_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,10.516758257492437
+DiscFac,1.0471170203613893
+time_to_estimate,609.2074275016785
+_params,"{'CRRA': 10.516758257492437, 'DiscFac': 1.0471170203613893}"
+_internal_estimates,"InternalParams(values=array([10.51675826, 1.04711702]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([10.51675826, 1.04711702]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2158.28167807), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(514.72491632), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(567.49891065), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(605.53346513), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(279.92614085), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(130.94785271), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(61.05068109), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.37164118), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.68863935), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(8.15237029), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90282463), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.56618589)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7f999bba6d40>, params_from_internal=._params_from_internal at 0x7f999bba7be0>, derivative_to_internal=._derivative_to_internal at 0x7f999ba23130>, func_to_internal=._func_to_internal at 0x7f999ba21510>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.63331552e-04 -8.29455113e-06 2.62343723e-06 1.27222785e-05
+ -6.70714064e-05 3.51434321e-05 4.95550858e-05 -1.59011871e-04
+ 6.46025432e-05 -7.75378886e-06 -9.90751500e-04 1.05939616e-03]
+ [-8.29455113e-06 1.94278530e-03 6.21427749e-05 1.33977556e-04
+ 4.05035336e-05 3.24097529e-05 -9.09560608e-06 -3.48865507e-04
+ -4.45091936e-04 -9.40023292e-04 4.15494682e-04 -4.44444208e-03]
+ [ 2.62343723e-06 6.21427749e-05 1.76211792e-03 -9.07845887e-05
+ -3.11748414e-05 -7.20625366e-05 1.23099100e-04 1.21619646e-04
+ 2.42370531e-04 -4.53895101e-04 4.77856997e-04 -2.15951955e-03]
+ [ 1.27222785e-05 1.33977556e-04 -9.07845887e-05 1.65143639e-03
+ -2.53506647e-04 -1.19096295e-04 5.24085619e-05 -2.00215176e-06
+ -8.96273332e-05 4.13045513e-05 3.57275514e-04 -2.29200628e-05]
+ [-6.70714064e-05 4.05035336e-05 -3.11748414e-05 -2.53506647e-04
+ 3.57237090e-03 1.96792266e-04 1.02791978e-04 -6.06222612e-04
+ -8.16268084e-04 1.18356570e-03 -1.21385564e-03 -1.39621761e-03]
+ [ 3.51434321e-05 3.24097529e-05 -7.20625366e-05 -1.19096295e-04
+ 1.96792266e-04 7.63662771e-03 1.87644341e-04 -6.91727595e-04
+ -8.41433602e-04 7.97137838e-04 -3.67034802e-03 7.47381063e-05]
+ [ 4.95550858e-05 -9.09560608e-06 1.23099100e-04 5.24085619e-05
+ 1.02791978e-04 1.87644341e-04 1.63798336e-02 4.49609135e-04
+ 3.74504692e-04 -4.32072461e-04 -1.26483119e-03 2.21734482e-03]
+ [-1.59011871e-04 -3.48865507e-04 1.21619646e-04 -2.00215176e-06
+ -6.06222612e-04 -6.91727595e-04 4.49609135e-04 6.10812312e-02
+ -7.03144448e-04 9.30021499e-04 1.02943264e-02 1.34912486e-02]
+ [ 6.46025432e-05 -4.45091936e-04 2.42370531e-04 -8.96273332e-05
+ -8.16268084e-04 -8.41433602e-04 3.74504692e-04 -7.03144448e-04
+ 5.99210025e-02 1.09220053e-03 -1.79592505e-03 -1.15555069e-02]
+ [-7.75378886e-06 -9.40023292e-04 -4.53895101e-04 4.13045513e-05
+ 1.18356570e-03 7.97137838e-04 -4.32072461e-04 9.30021499e-04
+ 1.09220053e-03 1.22663712e-01 -1.08608497e-02 1.60128201e-02]
+ [-9.90751500e-04 4.15494682e-04 4.77856997e-04 3.57275514e-04
+ -1.21385564e-03 -3.67034802e-03 -1.26483119e-03 1.02943264e-02
+ -1.79592505e-03 -1.08608497e-02 5.25534506e-01 -2.55742896e-02]
+ [ 1.05939616e-03 -4.44444208e-03 -2.15951955e-03 -2.29200628e-05
+ -1.39621761e-03 7.47381063e-05 2.21734482e-03 1.34912486e-02
+ -1.15555069e-02 1.60128201e-02 -2.55742896e-02 1.76620438e+00]]"
+_internal_weights,"[[2.15828168e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.14724916e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.67498911e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 6.05533465e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.79926141e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.30947853e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.10506811e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.63716412e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.66886394e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 8.15237029e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90282463e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.66185892e-01]]"
+_internal_jacobian,"[[ 2.75382775e-02 8.02546379e-01]
+ [ 3.01312663e-02 3.97638493e+00]
+ [ 2.89575380e-03 1.48684968e+01]
+ [-6.82632685e-02 2.69599504e+01]
+ [-7.04058092e-02 3.19420206e+01]
+ [-4.45996580e-02 3.56904723e+01]
+ [-1.10115830e-01 4.44026696e+01]
+ [-2.61974131e-02 6.57280058e+01]
+ [-1.52268572e-02 6.40434361e+01]
+ [-4.87298427e-02 6.10973217e+01]
+ [-9.14214649e-02 4.47224244e+01]
+ [-1.25031612e-01 2.38541005e+01]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(0.02753828), 'DiscFac': array(0.80254638)}, '(30,35]': {'CRRA': array(0.03013127), 'DiscFac': array(3.97638493)}, '(35,40]': {'CRRA': array(0.00289575), 'DiscFac': array(14.86849675)}, '(40,45]': {'CRRA': array(-0.06826327), 'DiscFac': array(26.95995037)}, '(45,50]': {'CRRA': array(-0.07040581), 'DiscFac': array(31.94202063)}, '(50,55]': {'CRRA': array(-0.04459966), 'DiscFac': array(35.69047234)}, '(55,60]': {'CRRA': array(-0.11011583), 'DiscFac': array(44.4026696)}, '(70,75]': {'CRRA': array(-0.02619741), 'DiscFac': array(65.72800577)}, '(75,80]': {'CRRA': array(-0.01522686), 'DiscFac': array(64.04343606)}, '(80,85]': {'CRRA': array(-0.04872984), 'DiscFac': array(61.09732165)}, '(85,90]': {'CRRA': array(-0.09142146), 'DiscFac': array(44.72242437)}, '(90,95]': {'CRRA': array(-0.12503161), 'DiscFac': array(23.85410053)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/WealthPortfolioSub(Stock)Market_estimate_results.csv b/content/tables/msm/WealthPortfolioSub(Stock)Market_estimate_results.csv
new file mode 100644
index 0000000..f1aa708
--- /dev/null
+++ b/content/tables/msm/WealthPortfolioSub(Stock)Market_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,6.628337898636361
+DiscFac,0.7815105267511713
+time_to_estimate,584.865697145462
+_params,"{'CRRA': 6.628337898636361, 'DiscFac': 0.7815105267511713}"
+_internal_estimates,"InternalParams(values=array([6.6283379 , 0.78151053]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([6.6283379 , 0.78151053]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2158.28167807), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(514.72491632), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(567.49891065), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(605.53346513), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(279.92614085), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(130.94785271), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(61.05068109), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.37164118), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.68863935), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(8.15237029), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90282463), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.56618589)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7fb0d1d83520>, params_from_internal=._params_from_internal at 0x7fb0d1d828c0>, derivative_to_internal=._derivative_to_internal at 0x7fb0d1d83640>, func_to_internal=._func_to_internal at 0x7fb0d1d83be0>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.63331552e-04 -8.29455113e-06 2.62343723e-06 1.27222785e-05
+ -6.70714064e-05 3.51434321e-05 4.95550858e-05 -1.59011871e-04
+ 6.46025432e-05 -7.75378886e-06 -9.90751500e-04 1.05939616e-03]
+ [-8.29455113e-06 1.94278530e-03 6.21427749e-05 1.33977556e-04
+ 4.05035336e-05 3.24097529e-05 -9.09560608e-06 -3.48865507e-04
+ -4.45091936e-04 -9.40023292e-04 4.15494682e-04 -4.44444208e-03]
+ [ 2.62343723e-06 6.21427749e-05 1.76211792e-03 -9.07845887e-05
+ -3.11748414e-05 -7.20625366e-05 1.23099100e-04 1.21619646e-04
+ 2.42370531e-04 -4.53895101e-04 4.77856997e-04 -2.15951955e-03]
+ [ 1.27222785e-05 1.33977556e-04 -9.07845887e-05 1.65143639e-03
+ -2.53506647e-04 -1.19096295e-04 5.24085619e-05 -2.00215176e-06
+ -8.96273332e-05 4.13045513e-05 3.57275514e-04 -2.29200628e-05]
+ [-6.70714064e-05 4.05035336e-05 -3.11748414e-05 -2.53506647e-04
+ 3.57237090e-03 1.96792266e-04 1.02791978e-04 -6.06222612e-04
+ -8.16268084e-04 1.18356570e-03 -1.21385564e-03 -1.39621761e-03]
+ [ 3.51434321e-05 3.24097529e-05 -7.20625366e-05 -1.19096295e-04
+ 1.96792266e-04 7.63662771e-03 1.87644341e-04 -6.91727595e-04
+ -8.41433602e-04 7.97137838e-04 -3.67034802e-03 7.47381063e-05]
+ [ 4.95550858e-05 -9.09560608e-06 1.23099100e-04 5.24085619e-05
+ 1.02791978e-04 1.87644341e-04 1.63798336e-02 4.49609135e-04
+ 3.74504692e-04 -4.32072461e-04 -1.26483119e-03 2.21734482e-03]
+ [-1.59011871e-04 -3.48865507e-04 1.21619646e-04 -2.00215176e-06
+ -6.06222612e-04 -6.91727595e-04 4.49609135e-04 6.10812312e-02
+ -7.03144448e-04 9.30021499e-04 1.02943264e-02 1.34912486e-02]
+ [ 6.46025432e-05 -4.45091936e-04 2.42370531e-04 -8.96273332e-05
+ -8.16268084e-04 -8.41433602e-04 3.74504692e-04 -7.03144448e-04
+ 5.99210025e-02 1.09220053e-03 -1.79592505e-03 -1.15555069e-02]
+ [-7.75378886e-06 -9.40023292e-04 -4.53895101e-04 4.13045513e-05
+ 1.18356570e-03 7.97137838e-04 -4.32072461e-04 9.30021499e-04
+ 1.09220053e-03 1.22663712e-01 -1.08608497e-02 1.60128201e-02]
+ [-9.90751500e-04 4.15494682e-04 4.77856997e-04 3.57275514e-04
+ -1.21385564e-03 -3.67034802e-03 -1.26483119e-03 1.02943264e-02
+ -1.79592505e-03 -1.08608497e-02 5.25534506e-01 -2.55742896e-02]
+ [ 1.05939616e-03 -4.44444208e-03 -2.15951955e-03 -2.29200628e-05
+ -1.39621761e-03 7.47381063e-05 2.21734482e-03 1.34912486e-02
+ -1.15555069e-02 1.60128201e-02 -2.55742896e-02 1.76620438e+00]]"
+_internal_weights,"[[2.15828168e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.14724916e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.67498911e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 6.05533465e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.79926141e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.30947853e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.10506811e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.63716412e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.66886394e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 8.15237029e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90282463e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.66185892e-01]]"
+_internal_jacobian,"[[ 0.29880928 5.29952433]
+ [ 0.46290612 8.65212718]
+ [ 0.78795209 16.60610309]
+ [ 1.05096462 21.30113092]
+ [ 1.42476794 31.60133183]
+ [ 1.5139052 35.01810275]
+ [ 1.74657078 41.1735208 ]
+ [ 1.11383302 26.41660313]
+ [ 1.0349981 23.94103374]
+ [ 0.5605712 12.04910986]
+ [ 0.43692766 9.2612203 ]
+ [ 0.46235413 7.5390286 ]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(0.29880928), 'DiscFac': array(5.29952433)}, '(30,35]': {'CRRA': array(0.46290612), 'DiscFac': array(8.65212718)}, '(35,40]': {'CRRA': array(0.78795209), 'DiscFac': array(16.60610309)}, '(40,45]': {'CRRA': array(1.05096462), 'DiscFac': array(21.30113092)}, '(45,50]': {'CRRA': array(1.42476794), 'DiscFac': array(31.60133183)}, '(50,55]': {'CRRA': array(1.5139052), 'DiscFac': array(35.01810275)}, '(55,60]': {'CRRA': array(1.74657078), 'DiscFac': array(41.1735208)}, '(70,75]': {'CRRA': array(1.11383302), 'DiscFac': array(26.41660313)}, '(75,80]': {'CRRA': array(1.0349981), 'DiscFac': array(23.94103374)}, '(80,85]': {'CRRA': array(0.5605712), 'DiscFac': array(12.04910986)}, '(85,90]': {'CRRA': array(0.43692766), 'DiscFac': array(9.2612203)}, '(90,95]': {'CRRA': array(0.46235413), 'DiscFac': array(7.5390286)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/msm/WealthPortfolio_estimate_results.csv b/content/tables/msm/WealthPortfolio_estimate_results.csv
new file mode 100644
index 0000000..c323762
--- /dev/null
+++ b/content/tables/msm/WealthPortfolio_estimate_results.csv
@@ -0,0 +1,97 @@
+CRRA,4.570611372168379
+DiscFac,0.8612819679031366
+time_to_estimate,586.6631124019623
+_params,"{'CRRA': 4.570611372168379, 'DiscFac': 0.8612819679031366}"
+_internal_estimates,"InternalParams(values=array([4.57061137, 0.86128197]), lower_bounds=array([1.1, 0.5]), upper_bounds=array([20. , 1.1]), soft_lower_bounds=None, soft_upper_bounds=None, names=['CRRA', 'DiscFac'], free_mask=array([ True, True]))"
+_free_estimates,"FreeParams(values=array([4.57061137, 0.86128197]), free_mask=array([ True, True]), free_names=['CRRA', 'DiscFac'], all_names=['CRRA', 'DiscFac'])"
+_weights,"{'(25,30]': {'(25,30]': array(2158.28167807), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(30,35]': {'(25,30]': array(0.), '(30,35]': array(514.72491632), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(35,40]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(567.49891065), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(40,45]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(605.53346513), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(45,50]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(279.92614085), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(50,55]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(130.94785271), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(55,60]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(61.05068109), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(70,75]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(16.37164118), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(75,80]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(16.68863935), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.)}, '(80,85]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(8.15237029), '(85,90]': array(0.), '(90,95]': array(0.)}, '(85,90]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(1.90282463), '(90,95]': array(0.)}, '(90,95]': {'(25,30]': array(0.), '(30,35]': array(0.), '(35,40]': array(0.), '(40,45]': array(0.), '(45,50]': array(0.), '(50,55]': array(0.), '(55,60]': array(0.), '(70,75]': array(0.), '(75,80]': array(0.), '(80,85]': array(0.), '(85,90]': array(0.), '(90,95]': array(0.56618589)}}"
+_converter,"Converter(params_to_internal=._params_to_internal at 0x7fc254e53eb0>, params_from_internal=._params_from_internal at 0x7fc254e53490>, derivative_to_internal=._derivative_to_internal at 0x7fc254e52710>, func_to_internal=._func_to_internal at 0x7fc254e536d0>, has_transforming_constraints=False)"
+_internal_moments_cov,"[[ 4.63331552e-04 -8.29455113e-06 2.62343723e-06 1.27222785e-05
+ -6.70714064e-05 3.51434321e-05 4.95550858e-05 -1.59011871e-04
+ 6.46025432e-05 -7.75378886e-06 -9.90751500e-04 1.05939616e-03]
+ [-8.29455113e-06 1.94278530e-03 6.21427749e-05 1.33977556e-04
+ 4.05035336e-05 3.24097529e-05 -9.09560608e-06 -3.48865507e-04
+ -4.45091936e-04 -9.40023292e-04 4.15494682e-04 -4.44444208e-03]
+ [ 2.62343723e-06 6.21427749e-05 1.76211792e-03 -9.07845887e-05
+ -3.11748414e-05 -7.20625366e-05 1.23099100e-04 1.21619646e-04
+ 2.42370531e-04 -4.53895101e-04 4.77856997e-04 -2.15951955e-03]
+ [ 1.27222785e-05 1.33977556e-04 -9.07845887e-05 1.65143639e-03
+ -2.53506647e-04 -1.19096295e-04 5.24085619e-05 -2.00215176e-06
+ -8.96273332e-05 4.13045513e-05 3.57275514e-04 -2.29200628e-05]
+ [-6.70714064e-05 4.05035336e-05 -3.11748414e-05 -2.53506647e-04
+ 3.57237090e-03 1.96792266e-04 1.02791978e-04 -6.06222612e-04
+ -8.16268084e-04 1.18356570e-03 -1.21385564e-03 -1.39621761e-03]
+ [ 3.51434321e-05 3.24097529e-05 -7.20625366e-05 -1.19096295e-04
+ 1.96792266e-04 7.63662771e-03 1.87644341e-04 -6.91727595e-04
+ -8.41433602e-04 7.97137838e-04 -3.67034802e-03 7.47381063e-05]
+ [ 4.95550858e-05 -9.09560608e-06 1.23099100e-04 5.24085619e-05
+ 1.02791978e-04 1.87644341e-04 1.63798336e-02 4.49609135e-04
+ 3.74504692e-04 -4.32072461e-04 -1.26483119e-03 2.21734482e-03]
+ [-1.59011871e-04 -3.48865507e-04 1.21619646e-04 -2.00215176e-06
+ -6.06222612e-04 -6.91727595e-04 4.49609135e-04 6.10812312e-02
+ -7.03144448e-04 9.30021499e-04 1.02943264e-02 1.34912486e-02]
+ [ 6.46025432e-05 -4.45091936e-04 2.42370531e-04 -8.96273332e-05
+ -8.16268084e-04 -8.41433602e-04 3.74504692e-04 -7.03144448e-04
+ 5.99210025e-02 1.09220053e-03 -1.79592505e-03 -1.15555069e-02]
+ [-7.75378886e-06 -9.40023292e-04 -4.53895101e-04 4.13045513e-05
+ 1.18356570e-03 7.97137838e-04 -4.32072461e-04 9.30021499e-04
+ 1.09220053e-03 1.22663712e-01 -1.08608497e-02 1.60128201e-02]
+ [-9.90751500e-04 4.15494682e-04 4.77856997e-04 3.57275514e-04
+ -1.21385564e-03 -3.67034802e-03 -1.26483119e-03 1.02943264e-02
+ -1.79592505e-03 -1.08608497e-02 5.25534506e-01 -2.55742896e-02]
+ [ 1.05939616e-03 -4.44444208e-03 -2.15951955e-03 -2.29200628e-05
+ -1.39621761e-03 7.47381063e-05 2.21734482e-03 1.34912486e-02
+ -1.15555069e-02 1.60128201e-02 -2.55742896e-02 1.76620438e+00]]"
+_internal_weights,"[[2.15828168e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 5.14724916e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 5.67498911e+02 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 6.05533465e+02
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 2.79926141e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 1.30947853e+02 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 6.10506811e+01 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.63716412e+01
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 1.66886394e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 8.15237029e+00 0.00000000e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 1.90282463e+00 0.00000000e+00]
+ [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
+ 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.66185892e-01]]"
+_internal_jacobian,"[[-3.46847046e+05 9.25972803e+04]
+ [ 4.02465617e+05 -4.31401309e+06]
+ [ 4.89290578e+06 1.10009181e+07]
+ [ 6.52886641e+06 3.44646704e+07]
+ [ 8.94576912e+06 9.40326021e+07]
+ [ 1.71128865e+07 1.28715022e+08]
+ [ 3.15966137e+07 1.89704877e+08]
+ [ 1.30791501e+07 3.39933168e+07]
+ [ 5.49346622e+06 3.94147977e+07]
+ [ 2.52710350e+06 6.77960627e+07]
+ [ 2.30949007e+06 7.37448130e+07]
+ [ 2.85707886e+06 2.58745006e+07]]"
+_empirical_moments,"{'(25,30]': 0.5574998121910544, '(30,35]': 0.9675607353906764, '(35,40]': 2.168068545096722, '(40,45]': 3.234950933121561, '(45,50]': 4.688547995398578, '(50,55]': 6.142846523177507, '(55,60]': 8.209944114318054, '(70,75]': 13.905111816750804, '(75,80]': 14.562181663837016, '(80,85]': 14.358754447244063, '(85,90]': 15.71527224435591, '(90,95]': 17.99554082928189}"
+_has_constraints,False
+_jacobian,"{'(25,30]': {'CRRA': array(-346847.04597687), 'DiscFac': array(92597.28034004)}, '(30,35]': {'CRRA': array(402465.61683345), 'DiscFac': array(-4314013.08571286)}, '(35,40]': {'CRRA': array(4892905.77563128), 'DiscFac': array(11000918.07854996)}, '(40,45]': {'CRRA': array(6528866.41488908), 'DiscFac': array(34464670.39935617)}, '(45,50]': {'CRRA': array(8945769.11977064), 'DiscFac': array(94032602.0866464)}, '(50,55]': {'CRRA': array(17112886.48638538), 'DiscFac': array(1.28715022e+08)}, '(55,60]': {'CRRA': array(31596613.66590362), 'DiscFac': array(1.89704877e+08)}, '(70,75]': {'CRRA': array(13079150.10841221), 'DiscFac': array(33993316.77791537)}, '(75,80]': {'CRRA': array(5493466.22090993), 'DiscFac': array(39414797.73483838)}, '(80,85]': {'CRRA': array(2527103.49691757), 'DiscFac': array(67796062.74984673)}, '(85,90]': {'CRRA': array(2309490.06664654), 'DiscFac': array(73744812.9947672)}, '(90,95]': {'CRRA': array(2857078.85766507), 'DiscFac': array(25874500.62208251)}}"
+_no_jacobian_reason,
+_cache,{}
diff --git a/content/tables/parameters.tex b/content/tables/parameters.tex
new file mode 100644
index 0000000..9d52ab1
--- /dev/null
+++ b/content/tables/parameters.tex
@@ -0,0 +1,9 @@
+\begin{tabular}{lrrlll}
+\toprule
+Name & criterion & CRRA & WealthShare & BeqFac & BeqShift \\
+\midrule
+Portfolio & 0.642000 & 9.252000 & & & \\
+WarmGlowPortfolio & 0.641000 & 9.207000 & & 23.051000 & 45.643000 \\
+WealthPortfolio & 0.242000 & 5.336000 & 0.171000 & & \\
+\bottomrule
+\end{tabular}
diff --git a/docs/conf.py b/docs/conf.py
new file mode 100644
index 0000000..ba2680a
--- /dev/null
+++ b/docs/conf.py
@@ -0,0 +1,64 @@
+from __future__ import annotations
+
+import importlib.metadata
+from typing import Any
+
+project = "estimark"
+copyright = "2024, Alan Lujan"
+author = "Alan Lujan"
+version = release = importlib.metadata.version("estimark")
+
+extensions = [
+ "myst_parser",
+ "sphinx.ext.autodoc",
+ "sphinx.ext.intersphinx",
+ "sphinx.ext.mathjax",
+ "sphinx.ext.napoleon",
+ "sphinx_autodoc_typehints",
+ "sphinx_copybutton",
+]
+
+source_suffix = [".rst", ".md"]
+exclude_patterns = [
+ "_build",
+ "**.ipynb_checkpoints",
+ "Thumbs.db",
+ ".DS_Store",
+ ".env",
+ ".venv",
+]
+
+html_theme = "furo"
+
+html_theme_options: dict[str, Any] = {
+ "footer_icons": [
+ {
+ "name": "GitHub",
+ "url": "https://github.com/econ-ark/EstimatingMicroDSOPs",
+ "html": """
+
+ """,
+ "class": "",
+ },
+ ],
+ "source_repository": "https://github.com/econ-ark/EstimatingMicroDSOPs",
+ "source_branch": "main",
+ "source_directory": "docs/",
+}
+
+myst_enable_extensions = [
+ "colon_fence",
+]
+
+intersphinx_mapping = {
+ "python": ("https://docs.python.org/3", None),
+}
+
+nitpick_ignore = [
+ ("py:class", "_io.StringIO"),
+ ("py:class", "_io.BytesIO"),
+]
+
+always_document_param_types = True
diff --git a/docs/index.md b/docs/index.md
new file mode 100644
index 0000000..06be69e
--- /dev/null
+++ b/docs/index.md
@@ -0,0 +1,17 @@
+# estimark
+
+```{toctree}
+:maxdepth: 2
+:hidden:
+
+```
+
+```{include} ../README.md
+:start-after:
+```
+
+## Indices and tables
+
+- {ref}`genindex`
+- {ref}`modindex`
+- {ref}`search`
diff --git a/environment.yml b/environment.yml
index 8c99ff8..4bd9a17 100644
--- a/environment.yml
+++ b/environment.yml
@@ -3,6 +3,22 @@ channels:
- conda-forge
- defaults
dependencies:
- - python
+ - python=3.12
+ - estimagic=0.4.7
+ - jupyter
+ - statsmodels
+ - jupyterlab
+ - black
+ - ruff
+ - nbqa
+ - dask
+ - openpyxl
- nodejs
- mystmd
+ - pip
+ - pip:
+ - git+https://github.com/econ-ark/HARK@master
+ - DFO-LS
+ - tranquilo
+ - black[jupyter]
+ - -e .
diff --git a/noxfile.py b/noxfile.py
new file mode 100644
index 0000000..8c927ef
--- /dev/null
+++ b/noxfile.py
@@ -0,0 +1,107 @@
+from __future__ import annotations
+
+import argparse
+import shutil
+from pathlib import Path
+
+import nox
+
+DIR = Path(__file__).parent.resolve()
+
+nox.needs_version = ">=2024.3.2"
+nox.options.sessions = ["lint", "pylint", "tests"]
+nox.options.default_venv_backend = "uv|virtualenv"
+
+
+@nox.session
+def lint(session: nox.Session) -> None:
+ """
+ Run the linter.
+ """
+ session.install("pre-commit")
+ session.run(
+ "pre-commit", "run", "--all-files", "--show-diff-on-failure", *session.posargs
+ )
+
+
+@nox.session
+def pylint(session: nox.Session) -> None:
+ """
+ Run PyLint.
+ """
+ # This needs to be installed into the package environment, and is slower
+ # than a pre-commit check
+ session.install(".", "pylint>=3.2")
+ session.run("pylint", "estimark", *session.posargs)
+
+
+@nox.session
+def tests(session: nox.Session) -> None:
+ """
+ Run the unit and regular tests.
+ """
+ session.install(".[test]")
+ session.run("pytest", *session.posargs)
+
+
+@nox.session(reuse_venv=True)
+def docs(session: nox.Session) -> None:
+ """
+ Build the docs. Pass --non-interactive to avoid serving. First positional argument is the target directory.
+ """
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "-b", dest="builder", default="html", help="Build target (default: html)"
+ )
+ parser.add_argument("output", nargs="?", help="Output directory")
+ args, posargs = parser.parse_known_args(session.posargs)
+ serve = args.builder == "html" and session.interactive
+
+ session.install("-e.[docs]", "sphinx-autobuild")
+
+ shared_args = (
+ "-n", # nitpicky mode
+ "-T", # full tracebacks
+ f"-b={args.builder}",
+ "docs",
+ args.output or f"docs/_build/{args.builder}",
+ *posargs,
+ )
+
+ if serve:
+ session.run("sphinx-autobuild", "--open-browser", *shared_args)
+ else:
+ session.run("sphinx-build", "--keep-going", *shared_args)
+
+
+@nox.session
+def build_api_docs(session: nox.Session) -> None:
+ """
+ Build (regenerate) API docs.
+ """
+
+ session.install("sphinx")
+ session.run(
+ "sphinx-apidoc",
+ "-o",
+ "docs/api/",
+ "--module-first",
+ "--no-toc",
+ "--force",
+ "src/estimark",
+ )
+
+
+@nox.session
+def build(session: nox.Session) -> None:
+ """
+ Build an SDist and wheel.
+ """
+
+ build_path = DIR.joinpath("build")
+ if build_path.exists():
+ shutil.rmtree(build_path)
+
+ session.install("build")
+ session.run("python", "-m", "build")
diff --git a/pyproject.toml b/pyproject.toml
new file mode 100644
index 0000000..2cce21e
--- /dev/null
+++ b/pyproject.toml
@@ -0,0 +1,157 @@
+[build-system]
+requires = ["hatchling", "hatch-vcs"]
+build-backend = "hatchling.build"
+
+
+[project]
+name = "estimark"
+authors = [
+ { name = "Alan Lujan", email = "alanlujan91@gmail.com" },
+]
+description = "Estimating Microeconomic Dynamic Stochastic Optimization Problems"
+readme = "README.md"
+license.file = "LICENSE"
+requires-python = ">=3.8"
+classifiers = [
+ "Development Status :: 1 - Planning",
+ "Intended Audience :: Science/Research",
+ "Intended Audience :: Developers",
+ "License :: OSI Approved :: MIT License",
+ "Operating System :: OS Independent",
+ "Programming Language :: Python",
+ "Programming Language :: Python :: 3",
+ "Programming Language :: Python :: 3 :: Only",
+ "Programming Language :: Python :: 3.8",
+ "Programming Language :: Python :: 3.9",
+ "Programming Language :: Python :: 3.10",
+ "Programming Language :: Python :: 3.11",
+ "Programming Language :: Python :: 3.12",
+ "Programming Language :: Python :: 3.13",
+ "Topic :: Scientific/Engineering",
+ "Typing :: Typed",
+]
+dynamic = ["version"]
+dependencies = []
+
+[project.optional-dependencies]
+test = [
+ "pytest >=6",
+ "pytest-cov >=3",
+]
+dev = [
+ "pytest >=6",
+ "pytest-cov >=3",
+]
+docs = [
+ "sphinx>=7.0",
+ "myst_parser>=0.13",
+ "sphinx_copybutton",
+ "sphinx_autodoc_typehints",
+ "furo>=2023.08.17",
+]
+
+[project.urls]
+Homepage = "https://github.com/econ-ark/EstimatingMicroDSOPs"
+"Bug Tracker" = "https://github.com/econ-ark/EstimatingMicroDSOPs/issues"
+Discussions = "https://github.com/econ-ark/EstimatingMicroDSOPs/discussions"
+Changelog = "https://github.com/econ-ark/EstimatingMicroDSOPs/releases"
+
+
+[tool.hatch]
+version.source = "vcs"
+build.hooks.vcs.version-file = "src/estimark/_version.py"
+
+[tool.hatch.envs.default]
+features = ["test"]
+scripts.test = "pytest {args}"
+
+
+[tool.pytest.ini_options]
+minversion = "6.0"
+addopts = ["-ra", "--showlocals", "--strict-markers", "--strict-config"]
+xfail_strict = true
+filterwarnings = [
+ "error",
+]
+log_cli_level = "INFO"
+testpaths = [
+ "tests",
+]
+
+
+[tool.coverage]
+run.source = ["estimark"]
+report.exclude_also = [
+ '\.\.\.',
+ 'if typing.TYPE_CHECKING:',
+]
+
+[tool.mypy]
+files = ["src", "tests"]
+python_version = "3.8"
+warn_unused_configs = true
+strict = true
+enable_error_code = ["ignore-without-code", "redundant-expr", "truthy-bool"]
+warn_unreachable = true
+disallow_untyped_defs = false
+disallow_incomplete_defs = false
+
+[[tool.mypy.overrides]]
+module = "estimark.*"
+disallow_untyped_defs = true
+disallow_incomplete_defs = true
+
+
+[tool.ruff]
+
+[tool.ruff.lint]
+extend-select = [
+ "B", # flake8-bugbear
+ "I", # isort
+ "ARG", # flake8-unused-arguments
+ "C4", # flake8-comprehensions
+ "EM", # flake8-errmsg
+ "ICN", # flake8-import-conventions
+ "G", # flake8-logging-format
+ "PGH", # pygrep-hooks
+ "PIE", # flake8-pie
+ "PL", # pylint
+ "PT", # flake8-pytest-style
+ "PTH", # flake8-use-pathlib
+ "RET", # flake8-return
+ "RUF", # Ruff-specific
+ "SIM", # flake8-simplify
+ "T20", # flake8-print
+ "UP", # pyupgrade
+ "YTT", # flake8-2020
+ "EXE", # flake8-executable
+ "NPY", # NumPy specific rules
+ "PD", # pandas-vet
+]
+ignore = [
+ "PLR09", # Too many <...>
+ "PLR2004", # Magic value used in comparison
+ "ISC001", # Conflicts with formatter
+]
+isort.required-imports = ["from __future__ import annotations"]
+# Uncomment if using a _compat.typing backport
+# typing-modules = ["estimark._compat.typing"]
+
+[tool.ruff.lint.per-file-ignores]
+"tests/**" = ["T20"]
+"noxfile.py" = ["T20"]
+
+
+[tool.pylint]
+py-version = "3.8"
+ignore-paths = [".*/_version.py"]
+reports.output-format = "colorized"
+similarities.ignore-imports = "yes"
+messages_control.disable = [
+ "design",
+ "fixme",
+ "line-too-long",
+ "missing-module-docstring",
+ "missing-function-docstring",
+ "wrong-import-position",
+]
diff --git a/reproduce.sh b/reproduce.sh
new file mode 100644
index 0000000..6a8f990
--- /dev/null
+++ b/reproduce.sh
@@ -0,0 +1,22 @@
+#!/bin/bash
+
+# Check if conda is available
+if ! command -v conda >/dev/null 2>&1; then
+ echo "Conda is not available. Please install Anaconda or Miniconda."
+ exit 1
+fi
+
+# Check if the environment exists
+if conda env list | grep -q 'estimatingmicrodsops'; then
+ echo "Environment 'estimatingmicrodsops' already exists. Updating it..."
+ conda env update -q -f environment.yml
+else
+ echo "Creating environment using conda..."
+ conda env create -q -f environment.yml
+fi
+
+# Activate the environment
+conda activate estimatingmicrodsops
+
+# Execute script to reproduce figures
+ipython src/run_all.py
diff --git a/src/README.md b/src/README.md
new file mode 100644
index 0000000..04a6889
--- /dev/null
+++ b/src/README.md
@@ -0,0 +1,9 @@
+# Description
+
+1. The "Stata" directory is a clone of the corresponding directory in the
+ original online version of the `SolvingMicoDSOPs` project, available at
+ http://econ.jhu.edu/people/ccarroll/Topics/EstimatingMicroDSOPs.zip
+ - That directory is being added here to clarify the origin of the SCFdata.txt
+ file
+1. Original Matlab and Mathematica code to solve the model here is also
+ available in that zip archive
diff --git a/src/data/Cagetti2003.csv b/src/data/Cagetti2003.csv
new file mode 100644
index 0000000..3d5af6f
--- /dev/null
+++ b/src/data/Cagetti2003.csv
@@ -0,0 +1,65 @@
+1.064914
+1.057997
+1.051422
+1.045179
+1.039259
+1.033653
+1.028352
+1.023348
+1.018632
+1.014198
+1.010037
+1.006143
+1.002509
+0.9991282
+0.9959943
+0.9931012
+0.9904431
+0.9880143
+0.9858095
+0.9838233
+0.9820506
+0.9804866
+0.9791264
+0.9779656
+0.9769995
+0.9762239
+0.9756346
+0.9752274
+0.9749984
+0.9749437
+0.9750595
+0.9753422
+0.9757881
+0.9763936
+0.9771553
+0.9780698
+0.9791338
+0.9803439
+0.981697
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
+0.9902111
diff --git a/src/data/S&P Target Date glidepath.xlsx b/src/data/S&P Target Date glidepath.xlsx
new file mode 100644
index 0000000..7c3ea4f
Binary files /dev/null and b/src/data/S&P Target Date glidepath.xlsx differ
diff --git a/src/data/SCFdata.csv b/src/data/SCFdata.csv
new file mode 100644
index 0000000..9dbb1a4
--- /dev/null
+++ b/src/data/SCFdata.csv
@@ -0,0 +1,232521 @@
+wave,age,age_group,education,networth,norminc,wealth_income_ratio,weight,monetary_year
+1995,75,"(70,75]",NoHS,181.91076514816453,37.660216567282355,4.83031649122807,9277.705170483694,2019
+1995,75,"(70,75]",NoHS,137.58949137549757,37.660216567282355,3.653443976608187,9351.1564893363,2019
+1995,75,"(70,75]",NoHS,126.57691287041133,37.660216567282355,3.361024561403509,9482.938263724354,2019
+1995,75,"(70,75]",NoHS,171.24656346749228,37.660216567282355,4.547147602339182,9727.445111562256,2019
+1995,75,"(70,75]",NoHS,121.73834586466165,37.660216567282355,3.2325450292397657,9463.613960123936,2019
+1995,28,"(25,30]",HS,17.4769040247678,97.12371641035975,0.1799447619047619,5735.955306189789,2019
+1995,28,"(25,30]",HS,17.4769040247678,97.12371641035975,0.1799447619047619,5796.570111975299,2019
+1995,28,"(25,30]",HS,17.4769040247678,97.12371641035975,0.1799447619047619,5743.952054036549,2019
+1995,28,"(25,30]",HS,17.4769040247678,97.12371641035975,0.1799447619047619,5834.228926576995,2019
+1995,28,"(25,30]",HS,17.4769040247678,97.12371641035975,0.1799447619047619,5752.5956025889955,2019
+1995,28,"(25,30]",HS,1.7418841220698806,35.67809990584644,0.048822222222222225,4037.5711866674988,2019
+1995,28,"(25,30]",HS,1.7418841220698806,35.67809990584644,0.048822222222222225,3975.3251921990814,2019
+1995,28,"(25,30]",HS,1.7418841220698806,35.67809990584644,0.048822222222222225,3984.8105688988007,2019
+1995,28,"(25,30]",HS,1.7418841220698806,35.67809990584644,0.048822222222222225,3959.32302871551,2019
+1995,28,"(25,30]",HS,1.7418841220698806,35.67809990584644,0.048822222222222225,3975.6296372467914,2019
+1995,45,"(40,45]",HS,84.48137992038922,39.642333228718265,2.1310900000000004,5269.555968246342,2019
+1995,45,"(40,45]",HS,84.48137992038922,15.262298293056533,5.535298701298702,5153.81852694941,2019
+1995,45,"(40,45]",HS,84.48137992038922,23.785399937230956,3.5518166666666673,5195.408129236117,2019
+1995,45,"(40,45]",HS,84.48137992038922,16.25335662377449,5.197780487804878,5380.785579427941,2019
+1995,45,"(40,45]",HS,84.48137992038922,21.803283275795042,3.874709090909092,5258.397646584268,2019
+1995,79,"(75,80]",NoHS,137.2217602830606,33.69598324441053,4.072347712418301,10719.179612926002,2019
+1995,79,"(75,80]",NoHS,137.2217602830606,33.69598324441053,4.072347712418301,10804.043042526266,2019
+1995,79,"(75,80]",NoHS,137.2217602830606,33.69598324441053,4.072347712418301,10956.29971412968,2019
+1995,79,"(75,80]",NoHS,137.2217602830606,33.69598324441053,4.072347712418301,11238.795522134347,2019
+1995,79,"(75,80]",NoHS,137.2217602830606,33.69598324441053,4.072347712418301,10933.97299891496,2019
+1995,38,"(35,40]",HS,181.75593100398055,25.76751659866687,7.053684444444445,4145.606706238671,2019
+1995,38,"(35,40]",HS,181.89141088014154,25.76751659866687,7.058942222222223,4111.195762635271,2019
+1995,38,"(35,40]",HS,181.87205661211854,25.76751659866687,7.058191111111112,4091.7468200548074,2019
+1995,38,"(35,40]",HS,181.67851393188855,25.76751659866687,7.050680000000001,4017.4208616392048,2019
+1995,38,"(35,40]",HS,181.85270234409555,25.76751659866687,7.0574400000000015,4095.986098884229,2019
+1995,31,"(30,35]",College,623.9816010614772,93.15948308748793,6.697993380614657,3676.2990280476106,2019
+1995,31,"(30,35]",College,623.9816010614772,93.15948308748793,6.697993380614657,3822.532450585912,2019
+1995,31,"(30,35]",College,623.9816010614772,93.15948308748793,6.697993380614657,3779.5824620660483,2019
+1995,31,"(30,35]",College,623.9816010614772,93.15948308748793,6.697993380614657,3570.0898749281578,2019
+1995,31,"(30,35]",College,623.9816010614772,93.15948308748793,6.697993380614657,3803.353075778449,2019
+1995,54,"(50,55]",College,453271.07340114994,5212.9668195764525,86.95069220447823,23.77978164443807,2019
+1995,54,"(50,55]",College,451325.50496240606,5728.317151549789,78.78849809150329,25.70395045405458,2019
+1995,54,"(50,55]",College,452772.5848739496,6382.415649823641,70.94062964803312,25.113774094689507,2019
+1995,54,"(50,55]",College,447596.9632905794,5807.601818007226,77.07087664012134,22.197837107810393,2019
+1995,54,"(50,55]",College,449114.8217602831,5629.211318477993,79.78290320813774,23.92156353176672,2019
+1995,35,"(30,35]",HS,236.60592658115877,134.7839329776421,1.7554460784313723,4791.751547585758,2019
+1995,35,"(30,35]",HS,223.0579389650597,134.7839329776421,1.6549297385620914,4725.827130187653,2019
+1995,35,"(30,35]",HS,228.8642193719593,134.7839329776421,1.6980081699346403,4721.838298178978,2019
+1995,35,"(30,35]",HS,232.73507297655905,134.7839329776421,1.7267271241830064,4772.3404511322815,2019
+1995,35,"(30,35]",HS,223.0579389650597,134.7839329776421,1.6549297385620914,4738.9544748797625,2019
+1995,42,"(40,45]",NoHS,0,25.76751659866687,0,7348.588938650306,2019
+1995,42,"(40,45]",NoHS,0,21.803283275795042,0,7379.304635934879,2019
+1995,42,"(40,45]",NoHS,0,25.76751659866687,0,7380.902191666666,2019
+1995,42,"(40,45]",NoHS,0,21.803283275795042,0,7365.6260929298805,2019
+1995,42,"(40,45]",NoHS,0,21.803283275795042,0,7384.2438265345245,2019
+1995,28,"(25,30]",HS,47.127642636001774,37.660216567282355,1.2513906432748538,5180.222890192279,2019
+1995,28,"(25,30]",HS,46.15992923485184,37.660216567282355,1.2256947368421052,5133.984151457576,2019
+1995,28,"(25,30]",HS,48.48244139761168,37.660216567282355,1.2873649122807018,5203.824257161518,2019
+1995,28,"(25,30]",HS,49.06306943830164,37.660216567282355,1.302782456140351,5141.45750427555,2019
+1995,28,"(25,30]",HS,47.127642636001774,37.660216567282355,1.2513906432748538,5187.154139302199,2019
+1995,26,"(25,30]",HS,8.709420610349403,69.37408315025698,0.12554285714285712,6477.177796116199,2019
+1995,26,"(25,30]",HS,8.709420610349403,45.588683213026,0.19104347826086956,6477.25898897982,2019
+1995,26,"(25,30]",HS,8.728774878372402,49.55291653589783,0.1761505777777778,6475.213694892149,2019
+1995,26,"(25,30]",HS,8.709420610349403,31.713866582974614,0.274625,6505.271230520834,2019
+1995,26,"(25,30]",HS,8.709420610349403,51.53503319733374,0.169,6492.045446084056,2019
+1995,80,"(75,80]",NoHS,15.793082706766919,13.081969965477029,1.2072404040404041,6830.866613670248,2019
+1995,80,"(75,80]",NoHS,15.793082706766919,13.081969965477029,1.2072404040404041,6808.334131076638,2019
+1995,80,"(75,80]",NoHS,15.793082706766919,13.081969965477029,1.2072404040404041,6824.187021516547,2019
+1995,80,"(75,80]",NoHS,15.793082706766919,13.081969965477029,1.2072404040404041,6837.55037417363,2019
+1995,80,"(75,80]",NoHS,15.793082706766919,13.081969965477029,1.2072404040404041,6824.413640267087,2019
+1995,37,"(35,40]",HS,936.0691729323308,225.9612994036941,4.1426083820662765,737.7158388119253,2019
+1995,37,"(35,40]",HS,936.0691729323308,225.9612994036941,4.1426083820662765,627.6125001177187,2019
+1995,37,"(35,40]",HS,936.0691729323308,225.9612994036941,4.1426083820662765,626.0515761273426,2019
+1995,37,"(35,40]",HS,936.0691729323308,225.9612994036941,4.1426083820662765,637.7092366748972,2019
+1995,37,"(35,40]",HS,936.0691729323308,225.9612994036941,4.1426083820662765,620.3739103693741,2019
+1995,34,"(30,35]",HS,11.477080937638213,95.14159974892382,0.12063157407407409,3680.7151511207026,2019
+1995,34,"(30,35]",HS,11.477080937638213,95.14159974892382,0.12063157407407409,3623.970696510707,2019
+1995,34,"(30,35]",HS,11.477080937638213,95.14159974892382,0.12063157407407409,3632.61771921783,2019
+1995,34,"(30,35]",HS,11.477080937638213,95.14159974892382,0.12063157407407409,3609.382865643679,2019
+1995,34,"(30,35]",HS,11.477080937638213,95.14159974892382,0.12063157407407409,3624.2482335368013,2019
+1995,45,"(40,45]",College,45078.79982308712,4776.901154060551,9.436829100968188,26.67063875864351,2019
+1995,45,"(40,45]",College,49506.47571870854,4737.258820831833,10.450447735936773,29.977656489646268,2019
+1995,45,"(40,45]",HS,120632.96555506413,4281.371988701573,28.1762402037037,16.319656525418374,2019
+1995,45,"(40,45]",HS,45508.61940734188,1595.6039124559102,28.521250826777084,15.662491458507068,2019
+1995,45,"(40,45]",College,55085.730561698365,3329.955991212334,16.542480052910054,15.641322762962897,2019
+1995,38,"(35,40]",NoHS,0,7.135619981169288,0,6685.118581216999,2019
+1995,38,"(35,40]",NoHS,0,7.135619981169288,0,6732.434293828458,2019
+1995,38,"(35,40]",NoHS,0,7.135619981169288,0,6734.767514039109,2019
+1995,38,"(35,40]",NoHS,0,7.135619981169288,0,6718.41060197757,2019
+1995,38,"(35,40]",NoHS,0,7.135619981169288,0,6739.931005709962,2019
+1995,71,"(70,75]",College,586.4343210968598,49.55291653589783,11.834506666666666,4083.6297956470057,2019
+1995,71,"(70,75]",College,586.4343210968598,49.55291653589783,11.834506666666666,4245.468338781795,2019
+1995,71,"(70,75]",College,586.4343210968598,49.55291653589783,11.834506666666666,4197.472924943404,2019
+1995,71,"(70,75]",College,586.4343210968598,49.55291653589783,11.834506666666666,3979.162032834228,2019
+1995,71,"(70,75]",College,586.4343210968598,49.55291653589783,11.834506666666666,4218.809870339818,2019
+1995,78,"(75,80]",NoHS,-7.548164528969482,10.30700663946675,-0.7323333333333333,11599.438839415196,2019
+1995,78,"(75,80]",NoHS,-7.161079168509509,10.30700663946675,-0.6947777777777778,11622.467146067833,2019
+1995,78,"(75,80]",NoHS,-7.838478549314463,10.30700663946675,-0.7605,11593.965885244126,2019
+1995,78,"(75,80]",NoHS,-7.161079168509509,10.30700663946675,-0.6947777777777778,11610.753071386076,2019
+1995,78,"(75,80]",NoHS,-7.548164528969482,10.30700663946675,-0.7323333333333333,11688.57899193343,2019
+1995,74,"(70,75]",College,2104.950835913313,665.9911982424668,3.1606286111111115,216.08429890135386,2019
+1995,74,"(70,75]",College,2405.406492702344,1038.6291305924187,2.3159436047497874,179.3450496043945,2019
+1995,74,"(70,75]",College,2080.8354179566563,499.4933986818502,4.165891728395062,179.8032821281527,2019
+1995,74,"(70,75]",College,2178.8163998230875,1038.6291305924187,2.097780945716709,186.75267491761838,2019
+1995,74,"(70,75]",College,2992.6246616541353,832.4889978030835,3.5947918465608466,257.88328364357784,2019
+1995,35,"(30,35]",HS,521.5975232198142,124.87334967046255,4.177012345679012,2709.314852702442,2019
+1995,35,"(30,35]",HS,530.3069438301637,124.87334967046255,4.246758377425045,2823.2553308027564,2019
+1995,35,"(30,35]",HS,521.3459177355153,124.87334967046255,4.17499746031746,2787.9053354004673,2019
+1995,35,"(30,35]",HS,521.9459000442282,124.87334967046255,4.179802186948853,2637.055747248165,2019
+1995,35,"(30,35]",HS,522.1007341884122,124.87334967046255,4.181042116402116,2806.7037331423935,2019
+1995,72,"(70,75]",College,9371.143034055729,317.1386658297461,29.54903972222223,904.3492873906249,2019
+1995,72,"(70,75]",College,9359.53047324193,317.1386658297461,29.512423055555562,719.2049706976461,2019
+1995,72,"(70,75]",College,9313.080229986732,317.1386658297461,29.36595638888889,703.471684357941,2019
+1995,72,"(70,75]",College,9301.467669172931,317.1386658297461,29.32933972222222,702.2822173815273,2019
+1995,72,"(70,75]",College,9301.467669172931,317.1386658297461,29.32933972222222,721.9559052961025,2019
+1995,27,"(25,30]",HS,81.86855373728439,83.24889978030835,0.9834190476190477,5226.891570325179,2019
+1995,27,"(25,30]",HS,81.86855373728439,83.24889978030835,0.9834190476190477,5180.236266328034,2019
+1995,27,"(25,30]",HS,81.86855373728439,83.24889978030835,0.9834190476190477,5250.705562246885,2019
+1995,27,"(25,30]",HS,81.86855373728439,83.24889978030835,0.9834190476190477,5187.776946656731,2019
+1995,27,"(25,30]",HS,81.86855373728439,83.24889978030835,0.9834190476190477,5233.885263128061,2019
+1995,48,"(45,50]",College,560.8866873065016,154.60509959200127,3.6278666666666664,551.754465596221,2019
+1995,48,"(45,50]",College,561.2737726669616,170.46203288348855,3.2926614987080107,537.8012562262128,2019
+1995,48,"(45,50]",College,503.2109685979655,162.53356623774488,3.0960433604336046,553.1363086819907,2019
+1995,48,"(45,50]",College,509.98496240601503,172.44414954492444,2.9573920817369093,516.184427493494,2019
+1995,48,"(45,50]",College,574.8217602830606,174.42626620636034,3.2955000000000005,557.6827994673494,2019
+1995,32,"(30,35]",HS,44.030959752321976,33.69598324441053,1.3067124183006533,6678.839376220647,2019
+1995,32,"(30,35]",HS,59.64985404688191,29.731749921538697,2.006267851851852,6644.733604264426,2019
+1995,32,"(30,35]",HS,42.01811587793012,29.731749921538697,1.4132405925925928,6713.929075911401,2019
+1995,32,"(30,35]",HS,63.90779301194162,29.731749921538697,2.149479703703704,6672.764953963231,2019
+1995,32,"(30,35]",HS,32.41839893852278,33.69598324441053,0.9620849673202614,6756.474412853587,2019
+1995,47,"(45,50]",HS,69.79149049093321,158.56933291487306,0.44013233333333335,7533.785031753665,2019
+1995,47,"(45,50]",HS,69.79149049093321,158.56933291487306,0.44013233333333335,7437.560326049497,2019
+1995,47,"(45,50]",HS,69.79149049093321,158.56933291487306,0.44013233333333335,7474.280387569217,2019
+1995,47,"(45,50]",HS,69.79149049093321,158.56933291487306,0.44013233333333335,7837.095122664832,2019
+1995,47,"(45,50]",HS,69.79149049093321,158.56933291487306,0.44013233333333335,7596.447084457638,2019
+1995,43,"(40,45]",College,466.534630694383,168.47991622205262,2.769081568627451,3615.1013244916794,2019
+1995,43,"(40,45]",College,433.6323750552853,168.47991622205262,2.5737926797385624,3750.8360708528717,2019
+1995,43,"(40,45]",College,373.6341441839894,168.47991622205262,2.2176776470588235,3698.664370262216,2019
+1995,43,"(40,45]",College,379.440424590889,168.47991622205262,2.252140392156863,3512.4516606464704,2019
+1995,43,"(40,45]",College,391.0529854046882,168.47991622205262,2.3210658823529413,3727.501694822903,2019
+1995,48,"(45,50]",College,330.7063777089783,109.01641637897524,3.0335465858585855,10500.501963218001,2019
+1995,48,"(45,50]",College,349.0348695267581,109.01641637897524,3.2016725656565654,10336.66577854784,2019
+1995,48,"(45,50]",College,381.5887483414419,109.01641637897524,3.5002870303030305,10092.03084324297,2019
+1995,48,"(45,50]",College,315.2616718266254,109.01641637897524,2.8918733737373734,10558.78761822826,2019
+1995,48,"(45,50]",College,372.1245112781955,109.01641637897524,3.413472242424242,10372.234183791057,2019
+1995,44,"(40,45]",HS,110.70641309155242,77.30254979600063,1.4321185185185183,6747.298196170328,2019
+1995,44,"(40,45]",HS,122.31897390535161,77.30254979600063,1.5823407407407404,6790.917498330657,2019
+1995,44,"(40,45]",HS,110.31932773109243,77.30254979600063,1.4271111111111108,6780.892380244198,2019
+1995,44,"(40,45]",HS,107.80327288810261,77.30254979600063,1.3945629629629628,6988.2436287067785,2019
+1995,44,"(40,45]",HS,111.86766917293234,77.30254979600063,1.4471407407407406,6843.980825625365,2019
+1995,40,"(35,40]",HS,32.70871295886776,112.98064970184706,0.28950721247563355,9771.793201549643,2019
+1995,40,"(35,40]",HS,32.70871295886776,112.98064970184706,0.28950721247563355,9891.69400042872,2019
+1995,40,"(35,40]",HS,32.70871295886776,112.98064970184706,0.28950721247563355,9770.31678920682,2019
+1995,40,"(35,40]",HS,32.70871295886776,112.98064970184706,0.28950721247563355,10094.582407256761,2019
+1995,40,"(35,40]",HS,32.70871295886776,112.98064970184706,0.28950721247563355,9843.167411518161,2019
+1995,61,"(60,65]",HS,836.8785493144626,55.499266520205566,15.079092063492064,4981.8660279339965,2019
+1995,61,"(60,65]",HS,592.3373728438744,55.499266520205566,10.672886507936509,5177.8716679201825,2019
+1995,61,"(60,65]",HS,993.2223264042459,55.499266520205566,17.896134285714286,5121.142272609448,2019
+1995,61,"(60,65]",HS,708.9468376824414,55.499266520205566,12.773985714285715,4856.436039995452,2019
+1995,61,"(60,65]",HS,780.3640866873066,55.499266520205566,14.060800000000002,5130.136785100445,2019
+1995,55,"(50,55]",HS,52826.68104378594,1611.4608457473976,32.78185826431598,229.55644387083765,2019
+1995,55,"(50,55]",HS,53253.365236620964,1532.176179289961,34.756685266637916,203.52311590468244,2019
+1995,55,"(50,55]",HS,53473.84905793896,1603.5323791016538,33.34753308062079,224.40343369270562,2019
+1995,55,"(50,55]",HS,52990.979425033176,1635.2462456846283,32.405504409427614,226.92318413262643,2019
+1995,55,"(50,55]",HS,52421.98329942504,1676.8706955747825,31.26179224060941,217.07099392870268,2019
+1995,49,"(45,50]",NoHS,44.51481645289695,35.67809990584644,1.2476790123456791,5856.202747668449,2019
+1995,49,"(45,50]",NoHS,44.51481645289695,35.67809990584644,1.2476790123456791,5685.491200378901,2019
+1995,49,"(45,50]",NoHS,44.70835913312693,35.67809990584644,1.2531037037037036,5718.62170268203,2019
+1995,49,"(45,50]",NoHS,44.51481645289695,35.67809990584644,1.2476790123456791,5879.238797105387,2019
+1995,49,"(45,50]",NoHS,44.70835913312693,35.67809990584644,1.2531037037037036,5774.510939698126,2019
+1995,31,"(30,35]",HS,90.96505970809376,59.46349984307739,1.529762962962963,4112.958612198729,2019
+1995,31,"(30,35]",HS,90.96505970809376,59.46349984307739,1.529762962962963,4050.667720919314,2019
+1995,31,"(30,35]",HS,90.96505970809376,59.46349984307739,1.529762962962963,4075.7328944207306,2019
+1995,31,"(30,35]",HS,90.96505970809376,59.46349984307739,1.529762962962963,4025.2306803155107,2019
+1995,31,"(30,35]",HS,90.96505970809376,59.46349984307739,1.529762962962963,4071.2869126839532,2019
+1995,64,"(60,65]",HS,1480.0982927908005,124.87334967046255,11.852795626102292,2910.4511585059113,2019
+1995,64,"(60,65]",HS,1460.7440247678019,124.87334967046255,11.697804444444444,2385.4491703869403,2019
+1995,64,"(60,65]",HS,1416.229208314905,124.87334967046255,11.341324726631393,2457.6900987155486,2019
+1995,64,"(60,65]",HS,1410.4229279080052,124.87334967046255,11.294827372134037,2418.645868251261,2019
+1995,64,"(60,65]",HS,1433.6480495356038,124.87334967046255,11.480816790123457,2445.065217858957,2019
+1995,65,"(60,65]",College,3831.1773551525876,257.6751659866688,14.868244444444441,1278.6106373686512,2019
+1995,65,"(60,65]",College,3831.1773551525876,257.6751659866688,14.868244444444441,1162.510707187475,2019
+1995,65,"(60,65]",College,3831.1773551525876,257.6751659866688,14.868244444444441,1147.7598394657457,2019
+1995,65,"(60,65]",College,3831.1773551525876,257.6751659866688,14.868244444444441,1063.817328019688,2019
+1995,65,"(60,65]",College,3831.1773551525876,257.6751659866688,14.868244444444441,1163.78057426057,2019
+1995,49,"(45,50]",HS,461.59929234851836,210.1043661122068,2.197,4329.669264426678,2019
+1995,49,"(45,50]",HS,461.59929234851836,210.1043661122068,2.197,4509.989055086205,2019
+1995,49,"(45,50]",HS,461.59929234851836,210.1043661122068,2.197,4456.18353790634,2019
+1995,49,"(45,50]",HS,461.59929234851836,210.1043661122068,2.197,4228.715915403247,2019
+1995,49,"(45,50]",HS,461.59929234851836,210.1043661122068,2.197,4468.369858052209,2019
+1995,62,"(60,65]",HS,158974.0221141088,19067.962283013487,8.337231831831831,20.12365416564478,2019
+1995,62,"(60,65]",HS,154735.4374170721,14647.8421280114,10.563701879416628,21.728651686078898,2019
+1995,62,"(60,65]",HS,173872.9376382132,19067.962283013487,9.11859039039039,21.279309952668655,2019
+1995,62,"(60,65]",HS,173108.44405130474,18612.075450883225,9.300867305644303,18.687207744553895,2019
+1995,62,"(60,65]",HS,178558.60592658113,16907.45512204834,10.560939221049887,20.149174934146174,2019
+1995,53,"(50,55]",HS,197.12321981424148,85.23101644174427,2.312810852713178,6613.324296502631,2019
+1995,53,"(50,55]",HS,190.50406015037595,77.30254979600063,2.464395555555555,6461.085744424197,2019
+1995,53,"(50,55]",HS,227.6836090225564,83.24889978030835,2.734974391534392,6546.63130894321,2019
+1995,53,"(50,55]",HS,221.7418487394958,69.37408315025698,3.1963211428571423,6733.272406782783,2019
+1995,53,"(50,55]",HS,206.06489164086688,77.30254979600063,2.665693333333333,6596.632059994362,2019
+1995,26,"(25,30]",College,143.99575409111014,83.24889978030835,1.7297015873015877,4504.45086414715,2019
+1995,26,"(25,30]",College,191.80079610791685,130.8196996547703,1.4661461279461279,4414.43661449887,2019
+1995,26,"(25,30]",College,621.6590888987174,95.14159974892382,6.534040740740742,2963.1375400413717,2019
+1995,26,"(25,30]",College,184.63971693940735,75.32043313456471,2.4513894736842103,4388.470558759998,2019
+1995,26,"(25,30]",College,181.93011941618752,53.517149858769656,3.3994732510288066,4420.365416869883,2019
+1995,53,"(50,55]",NoHS,435.8581158779301,69.37408315025698,6.282722539682538,3719.1861563986286,2019
+1995,53,"(50,55]",NoHS,761.0098186643079,69.37408315025698,10.969655873015872,3875.1419022492946,2019
+1995,53,"(50,55]",NoHS,478.4375055285272,69.37408315025698,6.896487619047617,3827.1608438367452,2019
+1995,53,"(50,55]",NoHS,435.8581158779301,69.37408315025698,6.282722539682538,3631.277359961436,2019
+1995,53,"(50,55]",NoHS,592.6276868642194,69.37408315025698,8.542493968253966,3838.2506327557726,2019
+1995,26,"(25,30]",HS,4.451481645289695,77.30254979600063,0.05758518518518517,5872.830813415494,2019
+1995,26,"(25,30]",HS,4.451481645289695,77.30254979600063,0.05758518518518517,5782.29118515261,2019
+1995,26,"(25,30]",HS,4.451481645289695,77.30254979600063,0.05758518518518517,5796.088096707483,2019
+1995,26,"(25,30]",HS,4.451481645289695,77.30254979600063,0.05758518518518517,5759.0153110087795,2019
+1995,26,"(25,30]",HS,4.451481645289695,77.30254979600063,0.05758518518518517,5782.734014312645,2019
+1995,66,"(65,70]",HS,2326.7701017249005,103.07006639466748,22.57464444444445,869.3278113949531,2019
+1995,66,"(65,70]",HS,1616.0813799203893,47.57079987446191,33.972129629629634,725.3152195338992,2019
+1995,66,"(65,70]",HS,3741.180008845644,39.642333228718265,94.37335555555556,1028.5967341346372,2019
+1995,66,"(65,70]",HS,1871.5577178239719,101.08794973323158,18.514152505446624,741.1729421438745,2019
+1995,66,"(65,70]",HS,2044.19778858912,152.62298293056534,13.393774314574314,720.4371743512843,2019
+1995,45,"(40,45]",College,167.60796107916852,97.12371641035975,1.7257160997732428,6412.92053361999,2019
+1995,45,"(40,45]",College,174.38195488721806,97.12371641035975,1.7954621315192745,6265.295270913807,2019
+1995,45,"(40,45]",College,174.38195488721806,97.12371641035975,1.7954621315192745,6348.248545646491,2019
+1995,45,"(40,45]",College,175.93029632905797,97.12371641035975,1.8114040816326533,6529.23385274624,2019
+1995,45,"(40,45]",College,193.34913754975673,97.12371641035975,1.990751020408163,6396.734122451175,2019
+1995,36,"(35,40]",HS,188.46218487394958,95.14159974892382,1.980859953703704,6254.848322287629,2019
+1995,36,"(35,40]",HS,186.9138434321097,95.14159974892382,1.96458587962963,6295.284080572593,2019
+1995,36,"(35,40]",HS,187.30092879256966,95.14159974892382,1.9686543981481486,6285.990643226155,2019
+1995,36,"(35,40]",HS,187.30092879256966,95.14159974892382,1.9686543981481486,6478.208412600352,2019
+1995,36,"(35,40]",HS,186.9138434321097,95.14159974892382,1.96458587962963,6344.4745941759,2019
+1995,55,"(50,55]",College,2226.1279080053073,529.2251486033888,4.206391011235955,1270.199371450602,2019
+1995,55,"(50,55]",College,1033.130827067669,798.793014558673,1.2933648745519712,817.3203449793548,2019
+1995,55,"(50,55]",College,3055.2647501105703,370.6558156885158,8.24286203208556,1131.2888703268216,2019
+1995,55,"(50,55]",College,1975.1030517470147,993.0404473793926,1.9889452206697715,825.0986020843229,2019
+1995,55,"(50,55]",College,1402.9134719150818,592.652881769338,2.367175652173913,792.0423624351126,2019
+1995,51,"(50,55]",College,42970.34586466166,4420.120155002088,9.721533432984552,49.32655666747572,2019
+1995,51,"(50,55]",College,44054.76550199027,4340.83548854465,10.148913871131406,56.1834291515572,2019
+1995,51,"(50,55]",College,43137.37319770014,4340.83548854465,9.937573840690007,50.2223013745205,2019
+1995,51,"(50,55]",College,43082.600619195044,4340.83548854465,9.92495585996956,59.872787310026354,2019
+1995,51,"(50,55]",College,45531.49615214507,4539.047154688242,10.031069209121785,48.09579076282491,2019
+1995,24,"(20,25]",HS,198.6715612560814,33.69598324441053,5.896001307189542,4624.44891748074,2019
+1995,24,"(20,25]",HS,198.6715612560814,33.69598324441053,5.896001307189542,4589.716002877169,2019
+1995,24,"(20,25]",HS,198.6715612560814,33.69598324441053,5.896001307189542,4638.367595261354,2019
+1995,24,"(20,25]",HS,198.6715612560814,33.69598324441053,5.896001307189542,4577.041788170105,2019
+1995,24,"(20,25]",HS,198.6715612560814,33.69598324441053,5.896001307189542,4570.690042768809,2019
+1995,31,"(30,35]",HS,-10.606138876603273,63.42773316594923,-0.16721611111111112,6341.065719917808,2019
+1995,31,"(30,35]",HS,-10.606138876603273,63.42773316594923,-0.16721611111111112,6371.32462681868,2019
+1995,31,"(30,35]",HS,-11.941583370190182,63.42773316594923,-0.18827069444444444,6382.486008354883,2019
+1995,31,"(30,35]",HS,-11.786749226006192,63.42773316594923,-0.18582958333333333,6466.421423332566,2019
+1995,31,"(30,35]",HS,-12.522211410880141,63.42773316594923,-0.1974248611111111,6403.812631100761,2019
+1995,47,"(45,50]",HS,636.7941264927024,61.44561650451331,10.36354035842294,4470.3835147326445,2019
+1995,47,"(45,50]",HS,634.0845289694826,61.44561650451331,10.319442867383513,4656.563698555792,2019
+1995,47,"(45,50]",HS,633.6974436090226,61.44561650451331,10.313143225806453,4601.0095020773715,2019
+1995,47,"(45,50]",HS,630.9684918177797,61.44561650451331,10.268730752688173,4366.149181884326,2019
+1995,47,"(45,50]",HS,631.6458911985846,61.44561650451331,10.279755125448029,4613.591877625765,2019
+1995,60,"(55,60]",NoHS,375.70505086245026,105.0521830561034,3.576365953878407,9541.078032966501,2019
+1995,60,"(55,60]",NoHS,316.343575409111,178.3904995292322,1.7733207555555555,9744.80961676731,2019
+1995,60,"(55,60]",NoHS,394.82706766917295,110.99853304041113,3.5570476190476197,9474.21581368341,2019
+1995,60,"(55,60]",NoHS,395.3883414418399,218.03283275795047,1.8134348686868684,9770.54990738171,2019
+1995,60,"(55,60]",NoHS,327.06777532065456,206.14013278933496,1.5866283333333335,9544.876815801565,2019
+1995,37,"(35,40]",College,6.386908447589563,79.28466645743653,0.08055666666666668,5210.292393008128,2019
+1995,37,"(35,40]",College,6.386908447589563,79.28466645743653,0.08055666666666668,5272.9926442195665,2019
+1995,37,"(35,40]",College,6.386908447589563,79.28466645743653,0.08055666666666668,5244.7269171004755,2019
+1995,37,"(35,40]",College,6.386908447589563,79.28466645743653,0.08055666666666668,5250.76201707688,2019
+1995,37,"(35,40]",College,6.386908447589563,79.28466645743653,0.08055666666666668,5279.868508127638,2019
+1995,47,"(45,50]",College,1002.5510835913312,220.01494941938637,4.55674074074074,1520.8450673217624,2019
+1995,47,"(45,50]",College,1002.5510835913312,220.01494941938637,4.55674074074074,1465.3657390270325,2019
+1995,47,"(45,50]",College,1002.5510835913312,220.01494941938637,4.55674074074074,1581.599352895676,2019
+1995,47,"(45,50]",College,1002.5510835913312,220.01494941938637,4.55674074074074,1416.1934913731977,2019
+1995,47,"(45,50]",College,1002.5510835913312,220.01494941938637,4.55674074074074,1540.350955823535,2019
+1995,47,"(45,50]",HS,1.8386554621848739,118.92699968615479,0.01546037037037037,6940.6847443136885,2019
+1995,47,"(45,50]",HS,1.8386554621848739,118.92699968615479,0.01546037037037037,6738.359947341371,2019
+1995,47,"(45,50]",HS,2.032198142414861,118.92699968615479,0.01708777777777778,6777.62572788463,2019
+1995,47,"(45,50]",HS,1.8386554621848739,118.92699968615479,0.01546037037037037,6967.986728856464,2019
+1995,47,"(45,50]",HS,1.8386554621848739,118.92699968615479,0.01546037037037037,6843.864823667881,2019
+1995,59,"(55,60]",College,5408.085696594428,887.9882643232891,6.090267083333335,237.26008743553803,2019
+1995,59,"(55,60]",College,4668.7333038478555,880.0597976775455,5.305018268268269,214.0695355280252,2019
+1995,59,"(55,60]",College,5504.837682441398,1213.0553967987792,4.53799364560639,210.89775718369992,2019
+1995,59,"(55,60]",College,5655.800973020788,1238.8229133974455,4.565463644444446,217.59064721785526,2019
+1995,59,"(55,60]",College,5996.436090225565,665.9911982424668,9.003776785714289,213.9189779045612,2019
+1995,24,"(20,25]",HS,-22.838036267138435,35.67809990584644,-0.6401135802469137,6318.354630756918,2019
+1995,24,"(20,25]",HS,-26.76695267580717,35.67809990584644,-0.7502348148148149,6323.888282637928,2019
+1995,24,"(20,25]",HS,-20.96067226890756,35.67809990584644,-0.5874940740740741,6364.404806290318,2019
+1995,24,"(20,25]",HS,-20.902609464838566,35.67809990584644,-0.5858666666666666,6318.2764175098655,2019
+1995,24,"(20,25]",HS,-26.708889871738172,35.67809990584644,-0.7486074074074075,6286.494448938229,2019
+1995,45,"(40,45]",HS,234.57372843874393,218.03283275795047,1.0758642424242424,3605.6393205566733,2019
+1995,45,"(40,45]",HS,234.57372843874393,218.03283275795047,1.0758642424242424,3756.4109891489634,2019
+1995,45,"(40,45]",HS,234.57372843874393,218.03283275795047,1.0758642424242424,3709.617820075925,2019
+1995,45,"(40,45]",HS,234.57372843874393,218.03283275795047,1.0758642424242424,3519.182808290764,2019
+1995,45,"(40,45]",HS,234.57372843874393,218.03283275795047,1.0758642424242424,3722.32960416254,2019
+1995,83,"(80,85]",NoHS,0,9.117736642605202,0,9527.856231966112,2019
+1995,83,"(80,85]",NoHS,0,10.505218305610338,0,9493.827212545919,2019
+1995,83,"(80,85]",NoHS,0,21.803283275795042,0,9520.283036994064,2019
+1995,83,"(80,85]",NoHS,0,14.469451628482167,0,9540.303956238124,2019
+1995,83,"(80,85]",NoHS,0,8.523101644174426,0,9519.052237866183,2019
+1995,30,"(25,30]",HS,401.6010614772225,142.71239962338575,2.814058641975309,4055.955760668997,2019
+1995,30,"(25,30]",HS,401.6010614772225,142.71239962338575,2.814058641975309,3974.9039686938254,2019
+1995,30,"(25,30]",HS,401.6010614772225,142.71239962338575,2.814058641975309,4003.8138889558227,2019
+1995,30,"(25,30]",HS,401.6010614772225,142.71239962338575,2.814058641975309,3951.523277787818,2019
+1995,30,"(25,30]",HS,401.6010614772225,142.71239962338575,2.814058641975309,3980.242457414388,2019
+1995,69,"(65,70]",HS,9.77390535161433,15.460509959200122,0.6321851851851852,6915.041508885644,2019
+1995,69,"(65,70]",HS,9.77390535161433,15.460509959200122,0.6321851851851852,6928.027067484834,2019
+1995,69,"(65,70]",HS,9.77390535161433,15.460509959200122,0.6321851851851852,6907.5779889117675,2019
+1995,69,"(65,70]",HS,9.77390535161433,15.460509959200122,0.6321851851851852,6920.76589700972,2019
+1995,69,"(65,70]",HS,9.77390535161433,15.460509959200122,0.6321851851851852,6961.607912943912,2019
+1995,35,"(30,35]",College,285.37868199911543,154.60509959200127,1.8458555555555551,10776.503103399735,2019
+1995,35,"(30,35]",College,284.9915966386555,154.60509959200127,1.8433518518518517,10784.721893010515,2019
+1995,35,"(30,35]",College,284.9915966386555,154.60509959200127,1.8433518518518517,10478.450643885955,2019
+1995,35,"(30,35]",College,285.5722246793454,154.60509959200127,1.847107407407407,10765.533054409882,2019
+1995,35,"(30,35]",College,285.7657673595754,154.60509959200127,1.848359259259259,10664.36037022802,2019
+1995,65,"(60,65]",College,1126.6312958867757,69.37408315025698,16.239945015873012,742.368319698571,2019
+1995,65,"(60,65]",College,1126.6312958867757,69.37408315025698,16.239945015873012,723.2780936771694,2019
+1995,65,"(60,65]",College,1126.6312958867757,69.37408315025698,16.239945015873012,739.9043736338573,2019
+1995,65,"(60,65]",College,1126.6312958867757,69.37408315025698,16.239945015873012,691.3112522770805,2019
+1995,65,"(60,65]",College,1126.6312958867757,69.37408315025698,16.239945015873012,746.2251284576398,2019
+1995,37,"(35,40]",HS,28.837859354268026,134.7839329776421,0.21395620915032681,7499.440683340981,2019
+1995,37,"(35,40]",HS,28.837859354268026,134.7839329776421,0.21395620915032681,7591.459508395143,2019
+1995,37,"(35,40]",HS,28.837859354268026,134.7839329776421,0.21395620915032681,7498.307598904915,2019
+1995,37,"(35,40]",HS,28.837859354268026,134.7839329776421,0.21395620915032681,7747.1678355119175,2019
+1995,37,"(35,40]",HS,28.837859354268026,134.7839329776421,0.21395620915032681,7554.217390434448,2019
+1995,26,"(25,30]",HS,339.0867757629367,55.499266520205566,6.109752380952381,5260.530468517621,2019
+1995,26,"(25,30]",HS,339.0867757629367,63.42773316594923,5.346033333333333,5187.9617925437105,2019
+1995,26,"(25,30]",HS,335.21592215833704,81.26678311887244,4.124882384823849,5264.207651990345,2019
+1995,26,"(25,30]",HS,336.18363555948696,29.731749921538697,11.307226666666669,5197.592710451672,2019
+1995,26,"(25,30]",HS,339.0867757629367,51.53503319733374,6.579733333333333,5222.1482418404275,2019
+1995,43,"(40,45]",College,202.87143741707212,81.26678311887244,2.4963635772357726,7368.495814086047,2019
+1995,43,"(40,45]",College,206.31649712516585,73.3383164731288,2.8132156156156154,7319.369302456815,2019
+1995,43,"(40,45]",College,193.00076072534276,65.40984982738514,2.9506375757575753,7374.209644528775,2019
+1995,43,"(40,45]",College,166.6402476780186,75.32043313456471,2.212417543859649,7194.656009085093,2019
+1995,43,"(40,45]",College,187.8331711632021,69.37408315025698,2.7075409523809517,7339.781740175965,2019
+1995,49,"(45,50]",HS,-10.644847412649272,79.28466645743653,-0.13426111111111114,5169.564903530292,2019
+1995,49,"(45,50]",HS,-10.644847412649272,79.28466645743653,-0.13426111111111114,5150.120731995399,2019
+1995,49,"(45,50]",HS,-10.644847412649272,79.28466645743653,-0.13426111111111114,5156.716098660969,2019
+1995,49,"(45,50]",HS,-10.644847412649272,79.28466645743653,-0.13426111111111114,5251.484662527624,2019
+1995,49,"(45,50]",HS,-10.644847412649272,79.28466645743653,-0.13426111111111114,5223.070197696627,2019
+1995,26,"(25,30]",HS,0.2709597523219814,9.910583307179566,0.02734044444444444,5286.458143748046,2019
+1995,26,"(25,30]",HS,0.2709597523219814,16.055144957630898,0.016876817558299038,5273.321019189217,2019
+1995,26,"(25,30]",HS,0.2709597523219814,11.892699968615478,0.022783703703703702,5271.200934623392,2019
+1995,26,"(25,30]",HS,0.2709597523219814,17.046203288348853,0.015895607235142117,5294.371773984658,2019
+1995,26,"(25,30]",HS,0.2709597523219814,19.821166614359132,0.01367022222222222,5285.879523284061,2019
+1995,50,"(45,50]",College,4553.188323750553,138.74816630051396,32.81620539682539,266.2710057351491,2019
+1995,50,"(45,50]",College,3980.3987616099075,261.6393993095406,15.213300336700337,240.05148966087395,2019
+1995,50,"(45,50]",College,5485.889854046883,352.8167657355925,15.548835505617982,236.81406969648947,2019
+1995,50,"(45,50]",College,16287.584254754534,255.69304932523286,63.69975366063737,244.2358740114048,2019
+1995,50,"(45,50]",College,4048.0999911543563,313.17443250687427,12.92602323488045,240.5642051289903,2019
+1995,42,"(40,45]",HS,197.1812826183105,97.12371641035975,2.030207346938776,4753.794498352112,2019
+1995,42,"(40,45]",HS,196.63936311366652,138.74816630051396,1.4172393650793649,4788.686833370382,2019
+1995,42,"(40,45]",HS,196.40711189739054,91.177366426052,2.154121352657005,4786.238901675793,2019
+1995,42,"(40,45]",HS,194.51039363113665,57.48138318164148,3.383885057471264,4759.608534800698,2019
+1995,42,"(40,45]",HS,193.15559486952677,107.03429971753931,1.8046139917695474,4801.003319873269,2019
+1995,24,"(20,25]",HS,4.722441397611677,55.499266520205566,0.08509015873015875,3849.4399941765782,2019
+1995,24,"(20,25]",HS,5.8256346749226005,55.499266520205566,0.10496777777777778,3814.245310803265,2019
+1995,24,"(20,25]",HS,6.174011499336577,55.499266520205566,0.11124492063492064,3807.9106368417015,2019
+1995,24,"(20,25]",HS,5.9611145510835915,55.499266520205566,0.1074088888888889,3781.3814055473376,2019
+1995,24,"(20,25]",HS,6.115948695267581,55.499266520205566,0.11019873015873018,3773.8567411340155,2019
+1995,33,"(30,35]",NoHS,5.8256346749226005,49.55291653589783,0.11756391111111111,4755.799284858331,2019
+1995,33,"(30,35]",NoHS,5.8256346749226005,49.55291653589783,0.11756391111111111,4778.493465009746,2019
+1995,33,"(30,35]",NoHS,5.8256346749226005,49.55291653589783,0.11756391111111111,4786.864501152957,2019
+1995,33,"(30,35]",NoHS,5.8256346749226005,49.55291653589783,0.11756391111111111,4849.816062318971,2019
+1995,33,"(30,35]",NoHS,5.8256346749226005,49.55291653589783,0.11756391111111111,4802.859468195277,2019
+1995,28,"(25,30]",HS,1.4128615656789032,0,Inf,8009.760666663502,2019
+1995,28,"(25,30]",HS,1.4128615656789032,0,Inf,7988.956919338829,2019
+1995,28,"(25,30]",HS,1.4128615656789032,0,Inf,7985.137574948142,2019
+1995,28,"(25,30]",HS,1.4128615656789032,0,Inf,8018.944668836191,2019
+1995,28,"(25,30]",HS,1.4128615656789032,0,Inf,8011.597704952738,2019
+1995,41,"(40,45]",College,996.1254666076957,0,Inf,2767.032702915933,2019
+1995,41,"(40,45]",College,996.1254666076957,0,Inf,2880.878610728864,2019
+1995,41,"(40,45]",College,996.1254666076957,0,Inf,2840.1020113136356,2019
+1995,41,"(40,45]",College,996.1254666076957,0,Inf,2697.7657755526875,2019
+1995,41,"(40,45]",College,996.1254666076957,0,Inf,2858.8682741937564,2019
+1995,65,"(60,65]",College,39355.394391862006,1032.6827806081108,38.109858255491574,40.672002971836505,2019
+1995,65,"(60,65]",College,39441.23057054401,1010.8794973323157,39.01674796514161,45.73272698153342,2019
+1995,65,"(60,65]",College,39776.736806722685,1058.4502972067776,37.580164993757805,41.04553817903476,2019
+1995,65,"(60,65]",College,39961.89908889872,1088.1820471283163,36.72354197935641,49.46523555226078,2019
+1995,65,"(60,65]",College,38809.95241043786,989.0762140565207,39.23858632821198,39.89506190918424,2019
+1995,64,"(60,65]",College,38119.953401149935,1494.5159627226788,25.50655486590038,29.13086789985025,2019
+1995,64,"(60,65]",College,38143.08175143742,1341.8929797921132,28.42483143279173,34.80357104242785,2019
+1995,64,"(60,65]",College,37751.10943830164,1290.3579465947796,29.256307939921488,30.511924957576007,2019
+1995,64,"(60,65]",College,38759.14745687749,1454.8736294939604,26.64090314865274,33.711852140461836,2019
+1995,64,"(60,65]",College,37873.78646616542,1520.2834793213456,24.912318644067796,29.389843512096775,2019
+1995,79,"(75,80]",NoHS,125.80274214949138,14.073028296194984,8.93928012519562,10062.19445261443,2019
+1995,79,"(75,80]",NoHS,125.80274214949138,14.073028296194984,8.93928012519562,10158.456700990599,2019
+1995,79,"(75,80]",NoHS,125.80274214949138,14.073028296194984,8.93928012519562,9929.869355293513,2019
+1995,79,"(75,80]",NoHS,125.80274214949138,14.073028296194984,8.93928012519562,10049.336480109485,2019
+1995,79,"(75,80]",NoHS,125.80274214949138,14.073028296194984,8.93928012519562,10054.408496045033,2019
+1995,36,"(35,40]",College,585.6214418398938,168.47991622205262,3.475912470588235,4803.861579684569,2019
+1995,36,"(35,40]",College,797.3958425475454,267.5857492938483,2.97996378600823,5000.94731836031,2019
+1995,36,"(35,40]",College,899.0057496682884,499.4933986818502,1.7998350970017636,4929.7877611307495,2019
+1995,36,"(35,40]",College,589.0084387439186,142.71239962338575,4.127240802469136,4681.968362150078,2019
+1995,36,"(35,40]",College,484.32120300751876,176.40838286779626,2.7454545817727842,4964.979615194968,2019
+1995,26,"(25,30]",HS,0.7354621848739495,13.676604963907801,0.05377520128824476,5637.382461102048,2019
+1995,26,"(25,30]",HS,0.19354268022998675,6.937408315025696,0.027898412698412704,5636.818761783061,2019
+1995,26,"(25,30]",HS,0.19354268022998675,12.289123300902663,0.01574910394265233,5634.610198792518,2019
+1995,26,"(25,30]",HS,0.19354268022998675,17.24441495449245,0.011223499361430394,5659.852732688505,2019
+1995,26,"(25,30]",HS,0.3483768244139761,9.514159974892383,0.036616666666666665,5652.237010557975,2019
+1995,71,"(70,75]",HS,238.44458204334367,29.731749921538697,8.019863703703704,7010.031890913915,2019
+1995,71,"(70,75]",HS,235.92852720035384,31.713866582974614,7.4392861111111115,6970.905892457838,2019
+1995,71,"(70,75]",HS,260.50844758956214,31.713866582974614,8.21433888888889,7045.602607364266,2019
+1995,71,"(70,75]",HS,223.73533834586468,33.69598324441053,6.6398222222222225,7054.831729543102,2019
+1995,71,"(70,75]",HS,243.4766917293233,33.69598324441053,7.225688888888889,6905.015201631795,2019
+1995,71,"(70,75]",College,14662.986996904025,519.3145652962094,28.235270059372343,22.912149894566873,2019
+1995,71,"(70,75]",College,14662.986996904025,519.3145652962094,28.235270059372343,20.120435579797295,2019
+1995,71,"(70,75]",College,14662.986996904025,519.3145652962094,28.235270059372343,20.973505920242754,2019
+1995,71,"(70,75]",College,14662.986996904025,519.3145652962094,28.235270059372343,20.498943767727734,2019
+1995,71,"(70,75]",College,14662.986996904025,519.3145652962094,28.235270059372343,21.266240005160498,2019
+1995,26,"(25,30]",HS,20.244564352056614,49.55291653589783,0.4085443555555556,6435.293021369728,2019
+1995,26,"(25,30]",HS,15.289871738168952,49.55291653589783,0.30855644444444447,6351.300512088057,2019
+1995,26,"(25,30]",HS,14.922140645731977,49.55291653589783,0.3011354666666667,6456.119899191933,2019
+1995,26,"(25,30]",HS,11.980291906236179,49.55291653589783,0.24176764444444446,6405.313021849953,2019
+1995,26,"(25,30]",HS,13.025422379478107,49.55291653589783,0.26285884444444446,6369.002781104376,2019
+1995,49,"(45,50]",HS,125.76403361344539,101.08794973323158,1.2441050980392157,6355.662307947138,2019
+1995,49,"(45,50]",HS,124.79632021229544,101.08794973323158,1.2345321132897602,6209.355128096141,2019
+1995,49,"(45,50]",HS,127.50591773551527,101.08794973323158,1.2613364705882353,6291.567748504473,2019
+1995,49,"(45,50]",HS,126.53820433436532,101.08794973323158,1.2517634858387798,6470.937115175357,2019
+1995,49,"(45,50]",HS,127.11883237505528,101.08794973323158,1.257507276688453,6339.620418323331,2019
+1995,23,"(20,25]",College,-18.134949137549757,39.642333228718265,-0.4574642222222222,5650.188554575969,2019
+1995,23,"(20,25]",College,-18.134949137549757,39.642333228718265,-0.4574642222222222,5746.281189170282,2019
+1995,23,"(20,25]",College,-18.134949137549757,39.642333228718265,-0.4574642222222222,5671.13119238782,2019
+1995,23,"(20,25]",College,-18.134949137549757,39.642333228718265,-0.4574642222222222,5756.9550066710535,2019
+1995,23,"(20,25]",College,-18.134949137549757,39.642333228718265,-0.4574642222222222,5641.871054641107,2019
+1995,30,"(25,30]",HS,102.86793454223795,33.69598324441053,3.052824836601307,6967.39998504883,2019
+1995,30,"(25,30]",HS,87.38452012383901,35.67809990584644,2.4492481481481483,7012.678370998688,2019
+1995,30,"(25,30]",HS,87.38452012383901,31.713866582974614,2.7554041666666667,7042.770177068286,2019
+1995,30,"(25,30]",HS,93.19080053073861,35.67809990584644,2.611988888888889,7021.726113009225,2019
+1995,30,"(25,30]",HS,66.09482529854047,39.642333228718265,1.667278888888889,7167.128281401213,2019
+1995,57,"(55,60]",College,5787.797080937638,75.32043313456471,76.84232339181287,18.587856887892674,2019
+1995,57,"(55,60]",College,5787.700309597523,313.17443250687427,18.48075611814346,17.327646214138458,2019
+1995,57,"(55,60]",College,5787.700309597523,237.85399937230957,24.33299555555556,17.569625567095052,2019
+1995,57,"(55,60]",College,5787.700309597523,162.53356623774488,35.609261788617886,15.745584345175448,2019
+1995,57,"(55,60]",College,5787.700309597523,148.65874960769352,38.93279288888888,17.68598544662984,2019
+1995,51,"(50,55]",NoHS,353.4089340999558,69.37408315025698,5.094250158730158,6038.227286090581,2019
+1995,51,"(50,55]",NoHS,353.4089340999558,69.37408315025698,5.094250158730158,5982.41249359413,2019
+1995,51,"(50,55]",NoHS,353.4089340999558,69.37408315025698,5.094250158730158,6013.465856162546,2019
+1995,51,"(50,55]",NoHS,353.4089340999558,69.37408315025698,5.094250158730158,6303.989186025271,2019
+1995,51,"(50,55]",NoHS,353.4089340999558,69.37408315025698,5.094250158730158,6106.596098105198,2019
+1995,49,"(45,50]",College,547.0290314020344,208.12224945077088,2.628402455026455,2615.937687525622,2019
+1995,49,"(45,50]",College,325.4033082706767,138.74816630051396,2.345280063492063,3990.9133896341687,2019
+1995,49,"(45,50]",College,355.51854931446263,176.40838286779626,2.015315505617978,4018.0489003049674,2019
+1995,49,"(45,50]",College,327.86130030959754,321.1028991526179,1.021047462277092,3986.030586017864,2019
+1995,49,"(45,50]",College,371.56323750552855,85.23101644174427,4.359483824289406,4032.3178634056253,2019
+1995,54,"(50,55]",College,297.86218487394956,73.3383164731288,4.06148108108108,10688.200893862047,2019
+1995,54,"(50,55]",College,236.27690402476782,75.32043313456471,3.1369562573099414,10442.158789248255,2019
+1995,54,"(50,55]",College,310.2489164086687,71.35619981169287,4.34789012345679,10486.008300293026,2019
+1995,54,"(50,55]",College,269.9533303847855,79.28466645743653,3.4048617777777777,10882.056425820663,2019
+1995,54,"(50,55]",College,229.92870411322423,77.30254979600063,2.9743999999999993,10661.223541902671,2019
+1995,71,"(70,75]",HS,270.05010172490046,27.749633260102783,9.731663809523809,7853.832023762516,2019
+1995,71,"(70,75]",HS,270.05010172490046,27.749633260102783,9.731663809523809,7809.996414393269,2019
+1995,71,"(70,75]",HS,270.05010172490046,27.749633260102783,9.731663809523809,7893.684400515327,2019
+1995,71,"(70,75]",HS,270.05010172490046,27.749633260102783,9.731663809523809,7904.024435546169,2019
+1995,71,"(70,75]",HS,270.05010172490046,27.749633260102783,9.731663809523809,7736.174436728928,2019
+1995,57,"(55,60]",NoHS,34.702202565236625,29.731749921538697,1.1671765925925928,7255.533939389306,2019
+1995,57,"(55,60]",NoHS,34.721556833259626,29.731749921538697,1.167827555555556,7137.2212800203315,2019
+1995,57,"(55,60]",NoHS,34.721556833259626,29.731749921538697,1.167827555555556,7164.6184854197345,2019
+1995,57,"(55,60]",NoHS,34.68284829721362,29.731749921538697,1.1665256296296296,7197.443020968919,2019
+1995,57,"(55,60]",NoHS,34.798973905351616,29.731749921538697,1.1704314074074076,7098.697278727175,2019
+1995,36,"(35,40]",HS,75.28810260946484,65.40984982738514,1.1510208754208753,6254.848322287629,2019
+1995,36,"(35,40]",HS,75.28810260946484,65.40984982738514,1.1510208754208753,6295.284080572593,2019
+1995,36,"(35,40]",HS,75.28810260946484,65.40984982738514,1.1510208754208753,6285.990643226155,2019
+1995,36,"(35,40]",HS,75.28810260946484,65.40984982738514,1.1510208754208753,6478.208412600352,2019
+1995,36,"(35,40]",HS,75.28810260946484,65.40984982738514,1.1510208754208753,6344.4745941759,2019
+1995,56,"(55,60]",HS,707.3984962406015,166.4977995606167,4.248695767195768,694.7858673150915,2019
+1995,56,"(55,60]",HS,708.3662096417515,180.3726161906681,3.9272380952380956,678.8035226812748,2019
+1995,56,"(55,60]",HS,708.7532950022115,190.28319949784765,3.724728703703705,697.454993277029,2019
+1995,56,"(55,60]",HS,708.3662096417515,190.28319949784765,3.7226944444444454,655.9639206253643,2019
+1995,56,"(55,60]",HS,706.4307828394516,178.3904995292322,3.960024691358025,704.7251857434637,2019
+1995,42,"(40,45]",HS,73.50750995134895,99.10583307179566,0.7417071999999999,6322.202894315495,2019
+1995,42,"(40,45]",HS,77.3203007518797,99.10583307179566,0.7801791111111112,6399.776903718791,2019
+1995,42,"(40,45]",HS,77.28159221583371,99.10583307179566,0.7797885333333334,6321.247677786201,2019
+1995,42,"(40,45]",HS,73.25590446704997,99.10583307179566,0.7391684444444444,6531.042644449763,2019
+1995,42,"(40,45]",HS,77.37836355594871,99.10583307179566,0.780764977777778,6368.3809322186,2019
+1995,24,"(20,25]",College,-58.895037593984966,95.14159974892382,-0.6190250925925928,6906.283569085225,2019
+1995,24,"(20,25]",College,-55.604812030075195,95.14159974892382,-0.5844426851851854,7023.73858443535,2019
+1995,24,"(20,25]",College,-34.31511720477665,95.14159974892382,-0.36067416666666674,6931.881970628152,2019
+1995,24,"(20,25]",College,-58.70149491375498,95.14159974892382,-0.6169908333333335,7036.785301321515,2019
+1995,24,"(20,25]",College,-58.93374613003096,95.14159974892382,-0.6194319444444445,6896.117003389025,2019
+1995,22,"(20,25]",HS,-2.903140203449801,59.46349984307739,-0.048822222222222225,4758.421046395997,2019
+1995,22,"(20,25]",HS,-2.903140203449801,59.46349984307739,-0.048822222222222225,4744.688790034454,2019
+1995,22,"(20,25]",HS,-2.903140203449801,59.46349984307739,-0.048822222222222225,4771.719001585718,2019
+1995,22,"(20,25]",HS,-2.903140203449801,59.46349984307739,-0.048822222222222225,4740.423767647543,2019
+1995,22,"(20,25]",HS,-2.903140203449801,59.46349984307739,-0.048822222222222225,4719.044368247443,2019
+1995,82,"(80,85]",College,8157.43688633348,79.28466645743653,102.88795111111111,1093.228818257708,2019
+1995,82,"(80,85]",College,8002.796284829722,79.28466645743653,100.93750333333334,864.5792655207109,2019
+1995,82,"(80,85]",College,7759.319593100398,79.28466645743653,97.86658555555556,849.5861277462957,2019
+1995,82,"(80,85]",College,9010.185935426802,79.28466645743653,113.64348666666666,848.5908612542751,2019
+1995,82,"(80,85]",College,7575.26050420168,79.28466645743653,95.54508888888888,872.1520492496089,2019
+1995,38,"(35,40]",College,1.2193188854489165,69.37408315025698,0.017575999999999998,6602.768579178543,2019
+1995,38,"(35,40]",College,1.5870499778858913,69.37408315025698,0.02287669841269841,6682.225779922407,2019
+1995,38,"(35,40]",College,1.5870499778858913,69.37408315025698,0.02287669841269841,6646.40589865432,2019
+1995,38,"(35,40]",College,1.6064042459088899,69.37408315025698,0.023155682539682535,6654.053908687287,2019
+1995,38,"(35,40]",College,1.2193188854489165,69.37408315025698,0.017575999999999998,6690.939252169733,2019
+1995,57,"(55,60]",HS,7939.1207430340555,713.5619981169287,11.126041975308642,1188.7853354447086,2019
+1995,57,"(55,60]",HS,8717.162317558601,1296.3042965790871,6.724626571525654,1076.2147690908675,2019
+1995,57,"(55,60]",HS,8779.0959752322,776.989731282878,11.298857142857145,1066.3851972831017,2019
+1995,57,"(55,60]",HS,8633.93896505971,1189.2699968615482,7.259864444444444,1086.580919337507,2019
+1995,57,"(55,60]",HS,8376.527200353825,1448.9272795096529,5.781192278461771,1074.2817912139433,2019
+1995,35,"(30,35]",HS,13.354444935869086,35.67809990584644,0.37430370370370375,4205.906434302879,2019
+1995,35,"(30,35]",HS,11.012578505086246,31.713866582974614,0.3472480555555556,4170.994967931945,2019
+1995,35,"(30,35]",HS,12.40608580274215,31.713866582974614,0.3911880555555555,4151.263131668639,2019
+1995,35,"(30,35]",HS,13.373799203892084,31.713866582974614,0.4217019444444444,4075.856068508145,2019
+1995,35,"(30,35]",HS,12.69639982308713,31.713866582974614,0.4003422222222222,4155.5640727296,2019
+1995,58,"(55,60]",College,1187.9649712516587,120.90911634759071,9.82527213114754,5451.266831553348,2019
+1995,58,"(55,60]",College,1187.9649712516587,120.90911634759071,9.82527213114754,5666.654504795214,2019
+1995,58,"(55,60]",College,1187.9649712516587,120.90911634759071,9.82527213114754,5601.583037117679,2019
+1995,58,"(55,60]",College,1187.9649712516587,120.90911634759071,9.82527213114754,5310.419480822671,2019
+1995,58,"(55,60]",College,1187.9649712516587,120.90911634759071,9.82527213114754,5615.293946253031,2019
+1995,64,"(60,65]",HS,139.21524988942946,89.1952497646161,1.5607921975308643,6732.9703638667215,2019
+1995,64,"(60,65]",HS,160.54365325077399,89.1952497646161,1.7999125925925925,6592.459183857715,2019
+1995,64,"(60,65]",HS,276.70796992481206,89.1952497646161,3.102272493827161,6650.029600212305,2019
+1995,64,"(60,65]",HS,147.03437417072092,89.1952497646161,1.6484552098765433,6635.690967135017,2019
+1995,64,"(60,65]",HS,148.73754975674478,89.1952497646161,1.66755012345679,6565.179017007266,2019
+1995,26,"(25,30]",HS,23.22512162759841,1.783904995292322,13.01925925925926,6821.638218929768,2019
+1995,26,"(25,30]",HS,23.22512162759841,1.783904995292322,13.01925925925926,6826.139585867311,2019
+1995,26,"(25,30]",HS,23.22512162759841,1.783904995292322,13.01925925925926,6824.690111948099,2019
+1995,26,"(25,30]",HS,23.22512162759841,1.783904995292322,13.01925925925926,6807.415677579488,2019
+1995,26,"(25,30]",HS,23.22512162759841,1.783904995292322,13.01925925925926,6837.773633220693,2019
+1995,67,"(65,70]",NoHS,93.2314444935869,23.785399937230956,3.9196921111111114,8517.736169086353,2019
+1995,67,"(65,70]",NoHS,93.30886156567891,23.785399937230956,3.9229469259259266,8395.2610834493,2019
+1995,67,"(65,70]",NoHS,93.3282158337019,23.785399937230956,3.9237606296296303,8430.220369279534,2019
+1995,67,"(65,70]",NoHS,93.21209022556391,23.785399937230956,3.918878407407408,8858.829364747395,2019
+1995,67,"(65,70]",NoHS,93.2314444935869,23.785399937230956,3.9196921111111114,8623.392731208469,2019
+1995,53,"(50,55]",NoHS,5.999823087129589,35.67809990584644,0.16816543209876544,4814.526631381628,2019
+1995,53,"(50,55]",NoHS,5.999823087129589,35.67809990584644,0.16816543209876544,4729.723991348795,2019
+1995,53,"(50,55]",NoHS,5.999823087129589,35.67809990584644,0.16816543209876544,4773.704078708015,2019
+1995,53,"(50,55]",NoHS,5.999823087129589,35.67809990584644,0.16816543209876544,4769.601164674685,2019
+1995,53,"(50,55]",NoHS,5.999823087129589,35.67809990584644,0.16816543209876544,4797.756094882703,2019
+1995,41,"(40,45]",College,2574.3111897390536,551.028431879184,4.671830055955235,1946.846346312655,2019
+1995,41,"(40,45]",College,2563.279256965944,551.028431879184,4.651809432454035,1742.7376726015293,2019
+1995,41,"(40,45]",College,2558.827775320655,551.028431879184,4.6437309352517975,1741.491720002914,2019
+1995,41,"(40,45]",College,2578.7626713843433,551.028431879184,4.679908553157473,1758.4790691307094,2019
+1995,41,"(40,45]",College,2570.440336134454,551.028431879184,4.664805275779376,1755.7460873428959,2019
+1995,67,"(65,70]",NoHS,30.96682883679788,0,Inf,7025.452419050553,2019
+1995,67,"(65,70]",NoHS,21.289694825298543,0,Inf,7028.936038399191,2019
+1995,67,"(65,70]",NoHS,36.77310924369748,0,Inf,6995.530655968423,2019
+1995,67,"(65,70]",NoHS,30.96682883679788,0,Inf,7052.996316738613,2019
+1995,67,"(65,70]",NoHS,17.418841220698805,0,Inf,7054.092511330595,2019
+1995,58,"(55,60]",HS,1468.2147722246793,120.90911634759071,12.14312714025501,2588.651617686124,2019
+1995,58,"(55,60]",HS,1469.3760283060594,124.87334967046255,11.766930511463846,2215.047648416433,2019
+1995,58,"(55,60]",HS,1469.7631136665193,126.85546633189846,11.58612361111111,2286.3345877468482,2019
+1995,58,"(55,60]",HS,1484.0852720035382,136.76604963907803,10.85126956521739,2216.803625021378,2019
+1995,58,"(55,60]",HS,1470.1501990269794,107.03429971753931,13.73531851851852,2286.0470496267058,2019
+1995,54,"(50,55]",College,399.02694383016365,138.74816630051396,2.8759078730158723,5672.778484560107,2019
+1995,54,"(50,55]",College,409.20728881026093,101.08794973323158,4.048032331154684,5652.760416605709,2019
+1995,54,"(50,55]",College,396.08509509066783,109.01641637897524,3.63326101010101,5620.677257412993,2019
+1995,54,"(50,55]",College,438.52900486510396,103.07006639466748,4.254668888888889,3094.160476136195,2019
+1995,54,"(50,55]",College,319.3454223794781,112.98064970184706,2.8265497076023394,5697.276391459919,2019
+1995,86,"(85,90]",HS,882.5546218487394,124.87334967046255,7.067597883597883,1237.6601776514176,2019
+1995,86,"(85,90]",HS,882.5546218487394,124.87334967046255,7.067597883597883,1225.5967814959388,2019
+1995,86,"(85,90]",HS,882.5546218487394,124.87334967046255,7.067597883597883,1244.448438186811,2019
+1995,86,"(85,90]",HS,882.5546218487394,124.87334967046255,7.067597883597883,1065.0597257621844,2019
+1995,86,"(85,90]",HS,882.5546218487394,124.87334967046255,7.067597883597883,1240.9680581734483,2019
+1995,46,"(45,50]",NoHS,-0.5806280406899602,8.126678311887245,-0.07144715447154472,4948.301934921083,2019
+1995,46,"(45,50]",NoHS,-0.5806280406899602,7.5320433134564695,-0.07708771929824562,4986.005926225249,2019
+1995,46,"(45,50]",NoHS,-0.5806280406899602,6.144561650451331,-0.09449462365591398,4993.820086982258,2019
+1995,46,"(45,50]",NoHS,-0.5806280406899602,8.126678311887245,-0.07144715447154472,4977.590607496895,2019
+1995,46,"(45,50]",NoHS,-0.5806280406899602,6.144561650451331,-0.09449462365591398,4980.182414520095,2019
+1995,53,"(50,55]",College,147.90531623175588,73.3383164731288,2.0167536336336336,9695.409656294147,2019
+1995,53,"(50,55]",College,147.90531623175588,73.3383164731288,2.0167536336336336,9661.196550692783,2019
+1995,53,"(50,55]",College,147.90531623175588,73.3383164731288,2.0167536336336336,9606.362861648142,2019
+1995,53,"(50,55]",College,147.90531623175588,73.3383164731288,2.0167536336336336,10095.9716920939,2019
+1995,53,"(50,55]",College,147.90531623175588,73.3383164731288,2.0167536336336336,9737.279305137632,2019
+1995,39,"(35,40]",College,352.2476780185758,158.56933291487306,2.221411111111111,9212.680281367404,2019
+1995,39,"(35,40]",College,352.2476780185758,158.56933291487306,2.221411111111111,9318.939636734833,2019
+1995,39,"(35,40]",College,352.2476780185758,158.56933291487306,2.221411111111111,9203.372621455394,2019
+1995,39,"(35,40]",College,352.2476780185758,158.56933291487306,2.221411111111111,9513.710632361064,2019
+1995,39,"(35,40]",College,352.2476780185758,158.56933291487306,2.221411111111111,9278.161261042715,2019
+1995,39,"(35,40]",NoHS,37.35373728438744,69.37408315025698,0.538439365079365,5791.100023770284,2019
+1995,39,"(35,40]",NoHS,37.35373728438744,69.37408315025698,0.538439365079365,5894.595267355017,2019
+1995,39,"(35,40]",NoHS,37.35373728438744,69.37408315025698,0.538439365079365,5799.616553604613,2019
+1995,39,"(35,40]",NoHS,37.35373728438744,69.37408315025698,0.538439365079365,5820.995484977611,2019
+1995,39,"(35,40]",NoHS,37.35373728438744,69.37408315025698,0.538439365079365,5827.788756211263,2019
+1995,68,"(65,70]",NoHS,2854.754533392304,99.10583307179566,28.80511111111111,127.47364052247887,2019
+1995,68,"(65,70]",NoHS,2854.754533392304,99.10583307179566,28.80511111111111,104.72539974220119,2019
+1995,68,"(65,70]",NoHS,2854.754533392304,99.10583307179566,28.80511111111111,106.19922372263537,2019
+1995,68,"(65,70]",NoHS,2854.754533392304,99.10583307179566,28.80511111111111,109.24437389082705,2019
+1995,68,"(65,70]",NoHS,2854.754533392304,99.10583307179566,28.80511111111111,105.81752425362265,2019
+1995,45,"(40,45]",HS,120.42225563909774,63.42773316594923,1.8985741666666665,5672.778484560107,2019
+1995,45,"(40,45]",HS,103.70016806722688,61.44561650451331,1.6876739784946235,5652.760416605709,2019
+1995,45,"(40,45]",HS,106.85491375497567,71.35619981169287,1.497486049382716,5620.677257412993,2019
+1995,45,"(40,45]",HS,74.70747456877488,69.37408315025698,1.07687873015873,6041.096377755361,2019
+1995,45,"(40,45]",HS,85.83617868199912,77.30254979600063,1.1103925925925924,5808.249556133171,2019
+1995,67,"(65,70]",College,30499.22972136223,2933.5326589251517,10.396758198198198,25.789700558778968,2019
+1995,67,"(65,70]",College,23312.022291021673,2715.4998261672013,8.584799772911598,29.006837610298703,2019
+1995,67,"(65,70]",College,26283.87014595312,3032.6384919969473,8.666997472766885,26.41760328863169,2019
+1995,67,"(65,70]",College,32214.017868199913,2656.036326324124,12.128605903814263,31.32761253462964,2019
+1995,67,"(65,70]",College,24439.408403361344,2755.14215939592,8.870470919264587,15.093381937043588,2019
+1995,52,"(50,55]",College,468181.09827509953,4776.901154060551,98.00937536191795,4.756923591685615,2019
+1995,52,"(50,55]",College,505676.12171605485,4400.298988387727,114.91858236236237,3.7928562004130293,2019
+1995,52,"(50,55]",College,493954.01574524544,4657.974154374397,106.0448167754137,5.148934604028179,2019
+1995,52,"(50,55]",College,483958.11693940737,4519.225988073882,107.08871789473686,3.539786476402375,2019
+1995,52,"(50,55]",College,471718.0907563025,4102.981489172341,114.96958784755769,3.8741007175455637,2019
+1995,36,"(35,40]",HS,-37.35373728438744,10.108794973323159,-3.69517211328976,7135.2158237302165,2019
+1995,36,"(35,40]",HS,-37.35373728438744,10.108794973323159,-3.69517211328976,7230.219450925053,2019
+1995,36,"(35,40]",HS,-37.35373728438744,10.108794973323159,-3.69517211328976,7195.917718847588,2019
+1995,36,"(35,40]",HS,-37.35373728438744,10.108794973323159,-3.69517211328976,7197.434546558352,2019
+1995,36,"(35,40]",HS,-37.35373728438744,10.108794973323159,-3.69517211328976,7236.660524686985,2019
+1995,73,"(70,75]",NoHS,291135.3961256081,146.6766329462576,1984.879188168168,3.154252019260004,2019
+1995,73,"(70,75]",NoHS,287875.26644847414,109.01641637897524,2640.659783272727,2.515666217215731,2019
+1995,73,"(70,75]",NoHS,312646.0005661212,122.89123300902662,2544.0870997132615,3.411751280295482,2019
+1995,73,"(70,75]",NoHS,803240.05731977,109.01641637897524,7368.0651410101,2.359839939682467,2019
+1995,73,"(70,75]",NoHS,827051.4390800531,142.71239962338575,5795.23181771605,2.586157069102154,2019
+1995,32,"(30,35]",HS,227.37394073418844,118.92699968615479,1.9118782222222226,6914.70112340031,2019
+1995,32,"(30,35]",HS,224.06436090225563,118.92699968615479,1.8840495555555556,6949.614326373334,2019
+1995,32,"(30,35]",HS,228.61261388766033,118.92699968615479,1.9222936296296298,6988.193427028935,2019
+1995,32,"(30,35]",HS,223.6772755417957,118.92699968615479,1.880794740740741,7037.377610378479,2019
+1995,32,"(30,35]",HS,223.85146395400267,118.92699968615479,1.8822594074074077,7020.069603132513,2019
+1995,40,"(35,40]",College,437.967731092437,188.30108283641175,2.325890666666667,4112.660436189095,2019
+1995,40,"(35,40]",College,437.716125608138,188.30108283641175,2.3245544795321638,4286.101039827577,2019
+1995,40,"(35,40]",College,438.31610791685097,188.30108283641175,2.327740771929825,4232.7567261803415,2019
+1995,40,"(35,40]",College,437.967731092437,188.30108283641175,2.325890666666667,4004.3741153436567,2019
+1995,40,"(35,40]",College,438.9935072976559,188.30108283641175,2.3313381988304096,4259.050760247628,2019
+1995,81,"(80,85]",NoHS,2.903140203449801,11.298064970184706,0.2569590643274854,9083.3284253707,2019
+1995,81,"(80,85]",NoHS,2.903140203449801,11.298064970184706,0.2569590643274854,8858.828549535345,2019
+1995,81,"(80,85]",NoHS,2.903140203449801,11.298064970184706,0.2569590643274854,9088.022373822152,2019
+1995,81,"(80,85]",NoHS,2.903140203449801,11.298064970184706,0.2569590643274854,8847.669043667498,2019
+1995,81,"(80,85]",NoHS,2.903140203449801,11.298064970184706,0.2569590643274854,8853.947582629613,2019
+1995,55,"(50,55]",College,9786.29208314905,1056.4681805453417,9.263215176151762,16.304811167009973,2019
+1995,55,"(50,55]",College,8415.622821760284,1337.9287464692413,6.2900381234567915,14.310677741060033,2019
+1995,55,"(50,55]",College,7873.296877487837,1177.3772968929327,6.6871485447063215,15.157725321012794,2019
+1995,55,"(50,55]",College,9136.714462627157,1104.0389804198037,8.27571727508478,14.572294244021856,2019
+1995,55,"(50,55]",College,10478.594250331711,1222.9659801059584,8.568181307401405,15.103432674028927,2019
+1995,54,"(50,55]",HS,149.12463511720478,33.69598324441053,4.425590849673203,7675.712655468863,2019
+1995,54,"(50,55]",HS,149.12463511720478,33.69598324441053,4.425590849673203,7604.761648024301,2019
+1995,54,"(50,55]",HS,149.12463511720478,33.69598324441053,4.425590849673203,7644.236261477548,2019
+1995,54,"(50,55]",HS,149.12463511720478,33.69598324441053,4.425590849673203,8013.545579275694,2019
+1995,54,"(50,55]",HS,149.12463511720478,33.69598324441053,4.425590849673203,7762.622162308534,2019
+1995,38,"(35,40]",NoHS,239.6058381247236,69.37408315025698,3.4538234920634916,6085.798376278672,2019
+1995,38,"(35,40]",NoHS,239.6058381247236,69.37408315025698,3.4538234920634916,6125.1412762875125,2019
+1995,38,"(35,40]",NoHS,239.6058381247236,69.37408315025698,3.4538234920634916,6116.099012910563,2019
+1995,38,"(35,40]",NoHS,239.6058381247236,69.37408315025698,3.4538234920634916,6303.121707702556,2019
+1995,38,"(35,40]",NoHS,239.6058381247236,69.37408315025698,3.4538234920634916,6173.002316618199,2019
+1995,33,"(30,35]",HS,51.48235294117647,89.1952497646161,0.5771871604938272,4640.21709559603,2019
+1995,33,"(30,35]",HS,51.288810260946484,89.1952497646161,0.5750172839506174,4591.235995161975,2019
+1995,33,"(30,35]",HS,51.288810260946484,89.1952497646161,0.5750172839506174,4597.232737626257,2019
+1995,33,"(30,35]",HS,51.288810260946484,89.1952497646161,0.5750172839506174,4570.925499463068,2019
+1995,33,"(30,35]",HS,51.288810260946484,89.1952497646161,0.5750172839506174,4608.770453458999,2019
+1995,51,"(50,55]",College,1055.2914639540027,267.5857492938483,3.9437506172839503,3737.321948574617,2019
+1995,51,"(50,55]",College,1055.2914639540027,267.5857492938483,3.9437506172839503,3894.455705425577,2019
+1995,51,"(50,55]",College,1055.2914639540027,267.5857492938483,3.9437506172839503,3848.1619646407626,2019
+1995,51,"(50,55]",College,1055.2914639540027,267.5857492938483,3.9437506172839503,3649.5226111074735,2019
+1995,51,"(50,55]",College,1055.2914639540027,267.5857492938483,3.9437506172839503,3860.6096650091567,2019
+1995,40,"(35,40]",HS,173.7045555064131,130.8196996547703,1.3278164983164982,5368.536454608944,2019
+1995,40,"(35,40]",HS,182.97524988942945,39.642333228718265,4.615652888888889,5294.676690692571,2019
+1995,40,"(35,40]",HS,280.4626979212738,116.94488302471889,2.3982468549905835,5290.207721498901,2019
+1995,40,"(35,40]",HS,171.80783724015922,69.37408315025698,2.4765420952380945,5346.788837292071,2019
+1995,40,"(35,40]",HS,155.20187527642636,99.10583307179566,1.5660216000000002,5309.3841787231895,2019
+1995,46,"(45,50]",HS,-5.999823087129589,33.69598324441053,-0.17805751633986927,5979.518622112713,2019
+1995,46,"(45,50]",HS,-5.999823087129589,33.69598324441053,-0.17805751633986927,6003.110908128496,2019
+1995,46,"(45,50]",HS,-5.999823087129589,33.69598324441053,-0.17805751633986927,6008.734700386619,2019
+1995,46,"(45,50]",HS,-5.999823087129589,33.69598324441053,-0.17805751633986927,5994.332648069947,2019
+1995,46,"(45,50]",HS,-5.999823087129589,33.69598324441053,-0.17805751633986927,5996.458114861656,2019
+1995,52,"(50,55]",HS,19566.19725785051,743.2937480384675,26.323640296296297,21.37930316291056,2019
+1995,52,"(50,55]",HS,19761.675364882798,743.2937480384675,26.586629333333338,23.814430115263647,2019
+1995,52,"(50,55]",HS,19554.58469703671,743.2937480384675,26.308017185185186,21.59007452559501,2019
+1995,52,"(50,55]",HS,19554.58469703671,743.2937480384675,26.308017185185186,25.778823899766866,2019
+1995,52,"(50,55]",HS,19554.58469703671,743.2937480384675,26.308017185185186,20.9070008654844,2019
+1995,52,"(50,55]",HS,1254.543653250774,105.0521830561034,11.942099790356394,3560.3112844892175,2019
+1995,52,"(50,55]",HS,1036.421052631579,118.92699968615479,8.714766666666668,3709.187537865423,2019
+1995,52,"(50,55]",HS,1057.7107474568775,105.0521830561034,10.068431865828092,3662.9826257606715,2019
+1995,52,"(50,55]",HS,834.5560371517029,105.0521830561034,7.94420461215933,3474.941654065293,2019
+1995,52,"(50,55]",HS,1189.7068553737286,120.90911634759071,9.839678688524591,3675.534604565524,2019
+1995,48,"(45,50]",College,55706.2283945157,7769.89731282878,7.169493514739229,21.771475130045456,2019
+1995,48,"(45,50]",College,54628.58275099514,7730.254979600062,7.066853925925926,22.139802728840415,2019
+1995,48,"(45,50]",College,55646.1333923043,7730.254979600062,7.198486148148149,22.15857878751236,2019
+1995,48,"(45,50]",College,58644.98045112782,6957.229481640055,8.429358353909466,21.31865848034735,2019
+1995,48,"(45,50]",College,55975.05917735516,6977.050648254415,8.022739406565657,21.252088163683666,2019
+1995,76,"(75,80]",HS,93.67465723131359,53.517149858769656,1.7503670781893006,9593.514613289912,2019
+1995,76,"(75,80]",HS,109.00323750552853,23.785399937230956,4.58277925925926,9272.163097325098,2019
+1995,76,"(75,80]",HS,333.4740380362672,29.731749921538697,11.216091851851855,9511.60852397735,2019
+1995,76,"(75,80]",HS,132.38319327731094,13.47839329776421,9.821882352941177,9544.439476646297,2019
+1995,76,"(75,80]",HS,92.35856700574968,23.785399937230956,3.882994074074075,9640.315326223743,2019
+1995,26,"(25,30]",College,122.89960194604157,51.53503319733374,2.384777777777778,7051.184800708057,2019
+1995,26,"(25,30]",College,118.64166298098188,51.53503319733374,2.302155555555556,6944.39437872101,2019
+1995,26,"(25,30]",College,120.77063246351172,51.53503319733374,2.343466666666667,6987.365676777864,2019
+1995,26,"(25,30]",College,118.64166298098188,51.53503319733374,2.302155555555556,6900.785558163336,2019
+1995,26,"(25,30]",College,118.64166298098188,51.53503319733374,2.302155555555556,6979.7435629171505,2019
+1995,55,"(50,55]",HS,42.44584520123839,19.821166614359132,2.1414403111111113,8340.016789553936,2019
+1995,55,"(50,55]",HS,42.44584520123839,19.821166614359132,2.1414403111111113,8165.967961612543,2019
+1995,55,"(50,55]",HS,42.44584520123839,19.821166614359132,2.1414403111111113,8237.27946501015,2019
+1995,55,"(50,55]",HS,42.44584520123839,19.821166614359132,2.1414403111111113,8219.518442141913,2019
+1995,55,"(50,55]",HS,42.44584520123839,19.821166614359132,2.1414403111111113,8132.176479211909,2019
+1995,44,"(40,45]",HS,107.31941618752765,83.24889978030835,1.2891391534391536,6398.809144405828,2019
+1995,44,"(40,45]",HS,107.31941618752765,83.24889978030835,1.2891391534391536,6350.625361074989,2019
+1995,44,"(40,45]",HS,107.31941618752765,83.24889978030835,1.2891391534391536,6392.029560599829,2019
+1995,44,"(40,45]",HS,107.31941618752765,83.24889978030835,1.2891391534391536,6463.052028085064,2019
+1995,44,"(40,45]",HS,107.31941618752765,83.24889978030835,1.2891391534391536,6401.632497142427,2019
+1995,24,"(20,25]",HS,58.83697478991596,99.10583307179566,0.5936782222222222,5483.905872392761,2019
+1995,24,"(20,25]",HS,271.7339230429014,99.10583307179566,2.7418560000000003,3420.778385724716,2019
+1995,24,"(20,25]",HS,58.83697478991596,99.10583307179566,0.5936782222222222,5516.866826415601,2019
+1995,24,"(20,25]",HS,58.83697478991596,99.10583307179566,0.5936782222222222,5450.4182548885,2019
+1995,24,"(20,25]",HS,58.83697478991596,99.10583307179566,0.5936782222222222,5466.233009019733,2019
+1995,69,"(65,70]",NoHS,30.96876426360018,35.67809990584644,0.868004864197531,6191.057657029478,2019
+1995,69,"(65,70]",NoHS,30.96876426360018,35.67809990584644,0.868004864197531,6012.094857645288,2019
+1995,69,"(65,70]",NoHS,30.96876426360018,35.67809990584644,0.868004864197531,5989.4809859757,2019
+1995,69,"(65,70]",NoHS,30.96876426360018,35.67809990584644,0.868004864197531,6334.643148214812,2019
+1995,69,"(65,70]",NoHS,30.96876426360018,35.67809990584644,0.868004864197531,6092.928576560677,2019
+1995,28,"(25,30]",HS,40.60525431225121,97.12371641035975,0.418077641723356,5989.61722249606,2019
+1995,28,"(25,30]",HS,41.960053073861125,97.12371641035975,0.43202684807256236,5956.904829474124,2019
+1995,28,"(25,30]",HS,41.57296771340115,97.12371641035975,0.42804136054421765,6019.371675729066,2019
+1995,28,"(25,30]",HS,40.99233967271119,97.12371641035975,0.4220631292517007,5979.178324830511,2019
+1995,28,"(25,30]",HS,40.60525431225121,97.12371641035975,0.418077641723356,5985.514380739758,2019
+1995,55,"(50,55]",HS,1368.6564175143742,105.0521830561034,13.028348176100629,358.51909963948464,2019
+1995,55,"(50,55]",HS,1144.8049535603714,118.92699968615479,9.626114814814814,366.63871587561437,2019
+1995,55,"(50,55]",HS,1211.5384697036711,124.87334967046255,9.70213798941799,362.22322480966335,2019
+1995,55,"(50,55]",HS,1173.1202476780186,107.03429971753931,10.960227242798354,352.61955990610693,2019
+1995,55,"(50,55]",HS,1368.4435205661212,105.0521830561034,13.026321593291405,357.9894701158166,2019
+1995,61,"(60,65]",NoHS,160.446881910659,49.55291653589783,3.2378897777777778,6732.9703638667215,2019
+1995,61,"(60,65]",NoHS,184.13650597080937,49.55291653589783,3.7159569777777777,6592.459183857715,2019
+1995,61,"(60,65]",NoHS,176.8980097302079,18.235473285210404,9.700763285024154,6650.029600212305,2019
+1995,61,"(60,65]",NoHS,187.89123396727112,33.69598324441053,5.576072156862745,6635.690967135017,2019
+1995,61,"(60,65]",NoHS,252.18611233967272,35.67809990584644,7.068372839506173,6565.179017007266,2019
+1995,59,"(55,60]",HS,7329.074214949138,291.37114923107936,25.153740287225993,361.46390417986896,2019
+1995,59,"(55,60]",HS,3419.3185316231757,303.2638491996948,11.275061437908494,317.9516721333613,2019
+1995,59,"(55,60]",HS,3429.189208314905,1028.718547285239,3.33345716120745,331.6369964346263,2019
+1995,59,"(55,60]",HS,4398.257408226448,178.3904995292322,24.65522222222222,322.00100484035227,2019
+1995,59,"(55,60]",HS,5073.3342768686425,297.31749921538704,17.063692148148146,323.3848660104022,2019
+1995,47,"(45,50]",HS,48.38567005749668,33.69598324441053,1.4359477124183007,7225.8307839946865,2019
+1995,47,"(45,50]",HS,48.38567005749668,33.69598324441053,1.4359477124183007,7125.335505008035,2019
+1995,47,"(45,50]",HS,48.38567005749668,33.69598324441053,1.4359477124183007,7196.668383302082,2019
+1995,47,"(45,50]",HS,48.38567005749668,33.69598324441053,1.4359477124183007,7185.493206128119,2019
+1995,47,"(45,50]",HS,48.38567005749668,33.69598324441053,1.4359477124183007,7224.132535714038,2019
+1995,70,"(65,70]",HS,3741.180008845644,1585.6933291487305,2.359333888888889,870.8618251077384,2019
+1995,70,"(65,70]",HS,4423.417956656347,1585.6933291487305,2.7895797222222227,783.7811884836271,2019
+1995,70,"(65,70]",HS,7385.008049535603,1585.6933291487305,4.657273833333333,783.387656296918,2019
+1995,70,"(65,70]",HS,3925.045555064131,1585.6933291487305,2.475286666666667,717.1117330971684,2019
+1995,70,"(65,70]",HS,4084.5053693056175,1585.6933291487305,2.5758482388888893,780.0094981827734,2019
+1995,45,"(40,45]",College,3255.658841220699,973.2192807650334,3.3452469608508713,330.65303643564556,2019
+1995,45,"(40,45]",College,3366.03623175586,973.2192807650334,3.458661679112921,299.3902550409693,2019
+1995,45,"(40,45]",College,3182.112622733304,973.2192807650334,3.2696769223806292,294.5414296037564,2019
+1995,45,"(40,45]",College,3255.658841220699,973.2192807650334,3.3452469608508713,275.550979791778,2019
+1995,45,"(40,45]",College,3182.1706855373727,973.2192807650334,3.269736582937316,296.38648586369976,2019
+1995,32,"(30,35]",HS,202.05855816010617,164.5156828991808,1.2282024096385544,6476.800423859633,2019
+1995,32,"(30,35]",HS,202.05855816010617,164.5156828991808,1.2282024096385544,6418.98841673487,2019
+1995,32,"(30,35]",HS,202.05855816010617,164.5156828991808,1.2282024096385544,6506.309066022394,2019
+1995,32,"(30,35]",HS,202.05855816010617,164.5156828991808,1.2282024096385544,6428.332303228779,2019
+1995,32,"(30,35]",HS,202.05855816010617,164.5156828991808,1.2282024096385544,6485.466521462886,2019
+1995,49,"(45,50]",HS,51.0952675807165,109.01641637897524,0.46869333333333335,5856.202747668449,2019
+1995,49,"(45,50]",HS,51.0952675807165,109.01641637897524,0.46869333333333335,5685.491200378901,2019
+1995,49,"(45,50]",HS,51.0952675807165,109.01641637897524,0.46869333333333335,5718.62170268203,2019
+1995,49,"(45,50]",HS,51.0952675807165,109.01641637897524,0.46869333333333335,5879.238797105387,2019
+1995,49,"(45,50]",HS,51.0952675807165,109.01641637897524,0.46869333333333335,5774.510939698126,2019
+1995,46,"(45,50]",HS,0,9.514159974892383,0,5030.844998596352,2019
+1995,46,"(45,50]",HS,0,9.514159974892383,0,5050.694277712071,2019
+1995,46,"(45,50]",HS,0,9.514159974892383,0,5055.425833702264,2019
+1995,46,"(45,50]",HS,0,9.514159974892383,0,5043.308722368432,2019
+1995,46,"(45,50]",HS,0,9.514159974892383,0,5045.096975680196,2019
+1995,46,"(45,50]",HS,3073.2642193719594,188.30108283641175,16.32101192982456,1074.9069631793623,2019
+1995,46,"(45,50]",HS,1137.837417072092,188.30108283641175,6.042649356725146,377.56005285500277,2019
+1995,46,"(45,50]",HS,3073.2642193719594,188.30108283641175,16.32101192982456,958.5594911749733,2019
+1995,46,"(45,50]",HS,750.7520566121185,188.30108283641175,3.986976842105263,361.47998430427157,2019
+1995,46,"(45,50]",HS,768.1708978328173,188.30108283641175,4.079482105263158,366.9212522690124,2019
+1995,28,"(25,30]",College,-6.483679787704555,37.660216567282355,-0.17216257309941518,5079.77573115654,2019
+1995,28,"(25,30]",College,-8.03202122954445,27.749633260102783,-0.2894460317460318,5033.044897159287,2019
+1995,28,"(25,30]",College,-23.302538699690402,69.37408315025698,-0.3358968888888888,5082.235979209092,2019
+1995,28,"(25,30]",College,-12.328668730650156,69.37408315025698,-0.17771288888888886,5051.805849022085,2019
+1995,28,"(25,30]",College,-11.283538257408226,65.40984982738514,-0.17250518518518518,5059.802938808297,2019
+1995,41,"(40,45]",HS,368.3117204776647,71.35619981169287,5.161593827160494,5902.339790192642,2019
+1995,41,"(40,45]",HS,349.1509951348961,85.23101644174427,4.096525064599484,5821.136015729386,2019
+1995,41,"(40,45]",HS,295.5396727111897,79.28466645743653,3.7275766666666668,5816.222688807612,2019
+1995,41,"(40,45]",HS,309.8618310482088,81.26678311887244,3.81289647696477,5878.429767765382,2019
+1995,41,"(40,45]",HS,360.1829279080053,87.21313310318017,4.129916161616162,5837.305896021875,2019
+1995,33,"(30,35]",HS,-15.48341441839894,14.271239962338576,-1.0849382716049383,7128.469827085665,2019
+1995,33,"(30,35]",HS,-15.48341441839894,14.271239962338576,-1.0849382716049383,7129.323523496045,2019
+1995,33,"(30,35]",HS,-15.48341441839894,14.271239962338576,-1.0849382716049383,7130.642052702604,2019
+1995,33,"(30,35]",HS,-15.48341441839894,14.271239962338576,-1.0849382716049383,7160.443924283229,2019
+1995,33,"(30,35]",HS,-15.48341441839894,14.271239962338576,-1.0849382716049383,7151.58026458103,2019
+1995,69,"(65,70]",HS,28.45077399380805,57.48138318164148,0.49495632183908045,9558.409392963935,2019
+1995,69,"(65,70]",HS,28.45077399380805,47.57079987446191,0.5980722222222223,9608.923135397312,2019
+1995,69,"(65,70]",HS,29.41848739495798,59.46349984307739,0.49473185185185187,9468.804088212866,2019
+1995,69,"(65,70]",HS,28.45077399380805,14.667663294625758,1.9396936936936937,10167.481134484684,2019
+1995,69,"(65,70]",HS,28.45077399380805,25.76751659866687,1.1041333333333334,9743.357354075288,2019
+1995,39,"(35,40]",College,41.940698805838124,109.01641637897524,0.38471911111111107,2917.0635247652,2019
+1995,39,"(35,40]",College,54.77257850508625,101.08794973323158,0.5418309368191722,3020.268364795008,2019
+1995,39,"(35,40]",College,92.70694383016364,116.94488302471889,0.7927404896421845,2897.4464823358658,2019
+1995,39,"(35,40]",College,58.44988942945599,103.07006639466748,0.567088888888889,2943.8674003331753,2019
+1995,39,"(35,40]",College,118.71908005307387,101.08794973323158,1.1744137690631808,2940.710831830039,2019
+1995,68,"(65,70]",HS,1861.6870411322425,134.7839329776421,13.812381045751634,259.9891743952831,2019
+1995,68,"(65,70]",HS,1860.9128704113225,134.7839329776421,13.806637254901961,218.29339250010702,2019
+1995,68,"(65,70]",HS,1860.9128704113225,134.7839329776421,13.806637254901961,221.78108339759692,2019
+1995,68,"(65,70]",HS,1861.8805838124724,134.7839329776421,13.813816993464052,224.05755629234008,2019
+1995,68,"(65,70]",HS,1861.8805838124724,134.7839329776421,13.813816993464052,214.76107641729587,2019
+1995,52,"(50,55]",NoHS,632.9813356921716,99.10583307179566,6.386923111111111,3320.7019300114735,2019
+1995,52,"(50,55]",NoHS,632.8845643520566,99.10583307179566,6.385946666666667,3459.9481318590756,2019
+1995,52,"(50,55]",NoHS,632.8845643520566,99.10583307179566,6.385946666666667,3417.107901073524,2019
+1995,52,"(50,55]",NoHS,632.8845643520566,99.10583307179566,6.385946666666667,3242.2119330825108,2019
+1995,52,"(50,55]",NoHS,632.7877930119416,99.10583307179566,6.384970222222223,3427.0094983365366,2019
+1995,46,"(45,50]",NoHS,0.03870853604599735,19.821166614359132,0.001952888888888889,5795.718450193231,2019
+1995,46,"(45,50]",NoHS,0.03870853604599735,14.865874960769348,0.002603851851851852,5715.112861716074,2019
+1995,46,"(45,50]",NoHS,0.03870853604599735,19.821166614359132,0.001952888888888889,5772.3277746019285,2019
+1995,46,"(45,50]",NoHS,0.03870853604599735,7.9284666457436535,0.004882222222222222,5763.364351229936,2019
+1995,46,"(45,50]",NoHS,0.03870853604599735,8.126678311887245,0.004763143631436314,5794.356313549377,2019
+1995,80,"(75,80]",NoHS,0,9.315948308748792,0,9337.034699899323,2019
+1995,80,"(75,80]",NoHS,0,9.315948308748792,0,9305.188101151269,2019
+1995,80,"(75,80]",NoHS,0,9.315948308748792,0,9326.145317374732,2019
+1995,80,"(75,80]",NoHS,0,9.315948308748792,0,9342.901014959953,2019
+1995,80,"(75,80]",NoHS,0,9.315948308748792,0,9331.374978824877,2019
+1995,42,"(40,45]",HS,195.86519239274656,116.94488302471889,1.6748504708097927,4308.605632247049,2019
+1995,42,"(40,45]",HS,195.86519239274656,116.94488302471889,1.6748504708097927,4486.358508654832,2019
+1995,42,"(40,45]",HS,195.86519239274656,116.94488302471889,1.6748504708097927,4425.072856093722,2019
+1995,42,"(40,45]",HS,195.86519239274656,116.94488302471889,1.6748504708097927,4201.368119635926,2019
+1995,42,"(40,45]",HS,195.86519239274656,116.94488302471889,1.6748504708097927,4455.809002907298,2019
+1995,64,"(60,65]",College,46765.717823971696,3329.955991212334,14.04394470899471,358.8855188270553,2019
+1995,64,"(60,65]",College,47489.76099071208,2854.247992467715,16.63827429012346,384.69960958644975,2019
+1995,64,"(60,65]",College,46774.040159221586,3052.4596586113066,15.323393391053392,347.4792785483766,2019
+1995,64,"(60,65]",College,46411.14763379036,2854.247992467715,16.260376728395062,428.6108282243028,2019
+1995,64,"(60,65]",College,46268.70022114109,3329.955991212334,13.894688201058202,339.46998026009686,2019
+1995,45,"(40,45]",HS,96.92617425917736,130.8196996547703,0.7409142087542087,6596.146834195242,2019
+1995,45,"(40,45]",HS,116.31915081822203,109.01641637897524,1.0669874747474748,6444.303706849182,2019
+1995,45,"(40,45]",HS,111.51929234851836,124.87334967046255,0.8930591887125221,6529.627075140672,2019
+1995,45,"(40,45]",HS,95.55202122954445,118.92699968615479,0.8034510370370371,6715.78339100383,2019
+1995,45,"(40,45]",HS,115.93206545776206,124.87334967046255,0.9283971781305115,6579.497954136862,2019
+1995,41,"(40,45]",College,21.289694825298543,39.642333228718265,0.5370444444444445,5791.100023770284,2019
+1995,41,"(40,45]",College,21.289694825298543,39.642333228718265,0.5370444444444445,5894.595267355017,2019
+1995,41,"(40,45]",College,21.289694825298543,39.642333228718265,0.5370444444444445,5799.616553604613,2019
+1995,41,"(40,45]",College,21.289694825298543,39.642333228718265,0.5370444444444445,5820.995484977611,2019
+1995,41,"(40,45]",College,21.289694825298543,39.642333228718265,0.5370444444444445,5827.788756211263,2019
+1995,41,"(40,45]",College,132.36383900928791,107.03429971753931,1.2366488065843622,8719.319025366818,2019
+1995,41,"(40,45]",College,132.36383900928791,107.03429971753931,1.2366488065843622,8599.359544757872,2019
+1995,41,"(40,45]",College,132.36383900928791,107.03429971753931,1.2366488065843622,8592.10125966591,2019
+1995,41,"(40,45]",College,132.36383900928791,107.03429971753931,1.2366488065843622,8683.997589994136,2019
+1995,41,"(40,45]",College,132.36383900928791,107.03429971753931,1.2366488065843622,8623.246740325038,2019
+1995,75,"(70,75]",College,2525.731977001327,180.3726161906681,14.002857142857144,3288.153747139254,2019
+1995,75,"(70,75]",College,3954.076957098629,180.3726161906681,21.921714285714287,791.187694433312,2019
+1995,75,"(70,75]",College,2521.919186200796,180.3726161906681,13.981718730158729,2903.9989260460375,2019
+1995,75,"(70,75]",College,3686.9880583812474,180.3726161906681,20.440952380952382,776.7721092308531,2019
+1995,75,"(70,75]",College,2597.342768686422,180.3726161906681,14.399873015873016,2913.056035691457,2019
+1995,59,"(55,60]",College,127131.9789551526,0,Inf,16.02230168339801,2019
+1995,59,"(55,60]",College,127134.89254666076,0,Inf,16.273983288970626,2019
+1995,59,"(55,60]",College,155344.85609270234,0,Inf,16.319656525418374,2019
+1995,59,"(55,60]",College,140630.1777167625,0,Inf,15.662491458507068,2019
+1995,59,"(55,60]",College,121228.1646499779,0,Inf,15.641322762962897,2019
+1995,45,"(40,45]",College,-58.062804068996016,495.5291653589783,-0.11717333333333334,1014.5503242665357,2019
+1995,45,"(40,45]",College,-70.44953560371516,495.5291653589783,-0.14217031111111111,968.41316341382,2019
+1995,45,"(40,45]",College,-68.12702344095533,495.5291653589783,-0.13748337777777778,994.0674768289158,2019
+1995,45,"(40,45]",College,-59.99823087129589,495.5291653589783,-0.12107911111111112,977.6345075742298,2019
+1995,45,"(40,45]",College,-59.99823087129589,495.5291653589783,-0.12107911111111112,1012.9594912120353,2019
+1995,69,"(65,70]",NoHS,0,11.496276636328297,0,10045.233329794788,2019
+1995,69,"(65,70]",NoHS,0,11.496276636328297,0,10102.064578533831,2019
+1995,69,"(65,70]",NoHS,0,11.496276636328297,0,10079.357249167806,2019
+1995,69,"(65,70]",NoHS,0,11.496276636328297,0,10091.592870641583,2019
+1995,69,"(65,70]",NoHS,0,11.496276636328297,0,10145.843120214706,2019
+1995,52,"(50,55]",College,102.67439186200797,65.40984982738514,1.5697084175084175,7360.066439091361,2019
+1995,52,"(50,55]",College,102.67439186200797,65.40984982738514,1.5697084175084175,7334.094279147585,2019
+1995,52,"(50,55]",College,102.67439186200797,65.40984982738514,1.5697084175084175,7292.4684367359605,2019
+1995,52,"(50,55]",College,102.67439186200797,65.40984982738514,1.5697084175084175,7664.144688590592,2019
+1995,52,"(50,55]",College,102.67439186200797,65.40984982738514,1.5697084175084175,7391.850902893714,2019
+1995,53,"(50,55]",College,18124.304290137108,0,Inf,16.81877852658544,2019
+1995,53,"(50,55]",College,15658.570544007076,0,Inf,9.442638486713797,2019
+1995,53,"(50,55]",College,15699.214506855375,0,Inf,9.857506770750025,2019
+1995,53,"(50,55]",College,12213.510835913314,0,Inf,9.448987582288042,2019
+1995,53,"(50,55]",College,16664.992481203008,0,Inf,9.806201507892347,2019
+1995,56,"(55,60]",College,1950.9102167182664,309.21019918400253,6.309333333333332,1079.0108349100847,2019
+1995,56,"(55,60]",College,1950.9102167182664,309.21019918400253,6.309333333333332,916.5197927789588,2019
+1995,56,"(55,60]",College,1950.9102167182664,309.21019918400253,6.309333333333332,911.1578014604966,2019
+1995,56,"(55,60]",College,1950.9102167182664,309.21019918400253,6.309333333333332,926.136673622232,2019
+1995,56,"(55,60]",College,1950.9102167182664,309.21019918400253,6.309333333333332,890.6972313260474,2019
+1995,47,"(45,50]",HS,159.65335692171607,122.89123300902662,1.2991435842293908,5840.338344322328,2019
+1995,47,"(45,50]",HS,181.48497125165858,110.99853304041113,1.6350213492063495,5705.893908615763,2019
+1995,47,"(45,50]",HS,201.4005130473242,130.8196996547703,1.5395274074074075,5781.440640977179,2019
+1995,47,"(45,50]",HS,185.41388766032728,126.85546633189846,1.4616152777777776,5946.266545691289,2019
+1995,47,"(45,50]",HS,161.24040689960196,110.99853304041113,1.4526354761904765,5825.597148433405,2019
+1995,67,"(65,70]",HS,1589.1789473684212,41.624449890154175,38.17897777777778,659.1799254697008,2019
+1995,67,"(65,70]",HS,658.0451127819549,85.23101644174427,7.720723514211886,305.272581632955,2019
+1995,67,"(65,70]",HS,706.1404688191066,67.39196648882105,10.478110457516339,303.15319415304054,2019
+1995,67,"(65,70]",HS,692.9989208314905,43.606566551590085,15.892077171717174,268.89429135892823,2019
+1995,67,"(65,70]",HS,529.6488987173816,69.37408315025698,7.634679619047616,840.400196172098,2019
+1995,61,"(60,65]",NoHS,371.40840336134454,69.37408315025698,5.353705396825395,7637.046243951775,2019
+1995,61,"(60,65]",NoHS,372.76320212295445,79.28466645743653,4.70158,7524.886683786246,2019
+1995,61,"(60,65]",NoHS,397.3431225121628,65.40984982738514,6.074668013468013,7646.542299356409,2019
+1995,61,"(60,65]",NoHS,371.21486068111454,67.39196648882105,5.508295424836601,7633.192918674412,2019
+1995,61,"(60,65]",NoHS,381.27908005307387,61.44561650451331,6.205146953405018,7533.011446212402,2019
+1995,52,"(50,55]",HS,322.0163113666519,49.55291653589783,6.498433066666666,6412.92053361999,2019
+1995,52,"(50,55]",HS,360.53130473241924,49.55291653589783,7.275682844444444,6265.295270913807,2019
+1995,52,"(50,55]",HS,351.0090048651039,49.55291653589783,7.083518577777777,6348.248545646491,2019
+1995,52,"(50,55]",HS,339.0480672268908,49.55291653589783,6.842141511111112,6529.23385274624,2019
+1995,52,"(50,55]",HS,342.3382927908005,49.55291653589783,6.908539733333333,6396.734122451175,2019
+1995,75,"(70,75]",HS,330.57089783281737,77.30254979600063,4.276325925925925,7439.24015753318,2019
+1995,75,"(70,75]",HS,326.7000442282176,77.30254979600063,4.226251851851851,7305.3406258115165,2019
+1995,75,"(70,75]",HS,330.95798319327736,77.30254979600063,4.281333333333333,7493.994598420361,2019
+1995,75,"(70,75]",HS,326.5065015479876,77.30254979600063,4.223748148148148,7519.861409627096,2019
+1995,75,"(70,75]",HS,329.02255639097746,77.30254979600063,4.256296296296296,7450.28126721463,2019
+1995,50,"(45,50]",College,2771.976329057939,479.67223206749105,5.778896804407713,277.34946808334814,2019
+1995,50,"(45,50]",College,2771.9376205218928,479.67223206749105,5.778816106519742,249.94277524294117,2019
+1995,50,"(45,50]",College,2771.72472357364,479.67223206749105,5.778372268135904,246.72131739269997,2019
+1995,50,"(45,50]",College,2771.72472357364,479.67223206749105,5.778372268135904,253.925783355356,2019
+1995,50,"(45,50]",College,2771.9376205218928,479.67223206749105,5.778816106519742,250.08450611017832,2019
+1995,62,"(60,65]",College,27126.94206103494,1082.2356971440086,25.065650793650796,16.170793352358178,2019
+1995,62,"(60,65]",College,52419.09951348961,1228.9123300902666,42.65487311827956,30.25196750701324,2019
+1995,62,"(60,65]",College,38375.642636001765,1238.8229133974455,30.977504711111116,27.017913457932462,2019
+1995,62,"(60,65]",College,39091.75055285272,1240.8050300588818,31.505151579694708,32.50928079558099,2019
+1995,62,"(60,65]",College,52693.93011941619,1242.7871467203177,42.39980294169768,26.21126919383388,2019
+1995,62,"(60,65]",College,1450.0217602830605,142.71239962338575,10.160446913580246,78.64028832919618,2019
+1995,62,"(60,65]",College,5262.231932773109,156.58721625343713,33.60575696202532,24.089953492443897,2019
+1995,62,"(60,65]",College,5806.667492260062,105.0521830561034,55.2741249475891,24.891069016712574,2019
+1995,62,"(60,65]",College,1906.9760283060593,243.80034935661735,7.8218757000903345,148.18884799591746,2019
+1995,62,"(60,65]",College,3231.5821318000885,170.46203288348855,18.95778242894057,24.737317829302153,2019
+1995,77,"(75,80]",College,288.30117647058825,18.631896617497585,15.473528132387708,12253.666756392387,2019
+1995,77,"(75,80]",College,285.68835028748344,43.606566551590085,6.551498383838386,12279.847334501615,2019
+1995,77,"(75,80]",College,294.8429190623618,49.55291653589783,5.950061866666667,12588.992968698618,2019
+1995,77,"(75,80]",College,316.6551791242813,39.642333228718265,7.987803777777778,12880.962912583343,2019
+1995,77,"(75,80]",College,305.04261831048206,18.631896617497585,16.37206477541371,12586.378568687674,2019
+1995,46,"(45,50]",HS,128.4736311366652,89.1952497646161,1.4403640493827163,7993.378926058584,2019
+1995,46,"(45,50]",HS,128.4736311366652,89.1952497646161,1.4403640493827163,7963.8055678147775,2019
+1995,46,"(45,50]",HS,128.4736311366652,89.1952497646161,1.4403640493827163,7875.335500357784,2019
+1995,46,"(45,50]",HS,128.4736311366652,89.1952497646161,1.4403640493827163,8340.627167700522,2019
+1995,46,"(45,50]",HS,128.4736311366652,89.1952497646161,1.4403640493827163,7979.714857168615,2019
+1995,28,"(25,30]",HS,29.80557275541796,59.46349984307739,0.5012414814814815,6112.029608738892,2019
+1995,28,"(25,30]",HS,45.3083414418399,59.46349984307739,0.7619521481481483,6055.80266956903,2019
+1995,28,"(25,30]",HS,53.824219371959316,59.46349984307739,0.9051640000000002,6114.989800239044,2019
+1995,28,"(25,30]",HS,29.399133126934984,59.46349984307739,0.4944063703703704,6078.376007319012,2019
+1995,28,"(25,30]",HS,32.495816010614774,59.46349984307739,0.5464834074074075,6087.998174151552,2019
+1995,30,"(25,30]",College,96.1907120743034,81.26678311887244,1.1836411924119241,7796.401728924958,2019
+1995,30,"(25,30]",College,96.1907120743034,67.39196648882105,1.4273320261437907,7812.785371778396,2019
+1995,30,"(25,30]",College,96.1907120743034,95.14159974892382,1.011026851851852,7856.095705504468,2019
+1995,30,"(25,30]",College,96.1907120743034,77.30254979600063,1.2443407407407405,7993.4979188457855,2019
+1995,30,"(25,30]",College,96.1907120743034,81.26678311887244,1.1836411924119241,7862.38037300289,2019
+1995,28,"(25,30]",College,21.096152145068555,95.14159974892382,0.2217342592592593,7051.184800708057,2019
+1995,28,"(25,30]",College,21.096152145068555,95.14159974892382,0.2217342592592593,6944.39437872101,2019
+1995,28,"(25,30]",College,21.096152145068555,95.14159974892382,0.2217342592592593,6987.365676777864,2019
+1995,28,"(25,30]",College,21.096152145068555,95.14159974892382,0.2217342592592593,6900.785558163336,2019
+1995,28,"(25,30]",College,21.096152145068555,95.14159974892382,0.2217342592592593,6979.7435629171505,2019
+1995,62,"(60,65]",HS,4486.512870411322,69.37408315025698,64.67131047619046,2221.4835310605804,2019
+1995,62,"(60,65]",HS,4486.222556390978,69.37408315025698,64.6671257142857,2091.511688738291,2019
+1995,62,"(60,65]",HS,4484.480672268907,69.37408315025698,64.64201714285713,1968.8953776587157,2019
+1995,62,"(60,65]",HS,4485.641928350287,69.37408315025698,64.65875619047617,1973.6843797778442,2019
+1995,62,"(60,65]",HS,4486.512870411322,69.37408315025698,64.67131047619046,2176.250726639791,2019
+1995,50,"(45,50]",College,50929.24666961522,4321.014321930291,11.786410059123344,18.424123599782696,2019
+1995,50,"(45,50]",College,54611.78324635117,4380.477821773369,12.467083607843135,18.715724758082384,2019
+1995,50,"(45,50]",College,51068.59739938081,3151.5654916831027,16.204199955276028,18.77532482183993,2019
+1995,50,"(45,50]",College,51413.10337019018,10366.470139309826,4.959557369024857,17.94707285770976,2019
+1995,50,"(45,50]",College,52675.001645289696,7690.6126463713445,6.849259489117983,17.90067114790862,2019
+1995,54,"(50,55]",HS,138.18947368421053,75.32043313456471,1.8346877192982456,6703.165382965453,2019
+1995,54,"(50,55]",HS,154.05997346306944,63.42773316594923,2.4289055555555557,6544.0967738866875,2019
+1995,54,"(50,55]",HS,142.25386996904024,79.28466645743653,1.7942166666666666,6629.864104467521,2019
+1995,54,"(50,55]",HS,131.60902255639098,69.37408315025698,1.8970920634920632,6822.383808421408,2019
+1995,54,"(50,55]",HS,149.80203449800976,75.32043313456471,1.988863157894737,6684.9426991610035,2019
+1995,39,"(35,40]",HS,305.79743476337904,253.7109326637969,1.205298611111111,4791.751547585758,2019
+1995,39,"(35,40]",HS,307.15223352498896,253.7109326637969,1.2106385416666667,4725.827130187653,2019
+1995,39,"(35,40]",HS,307.9264042459089,253.7109326637969,1.2136899305555555,4721.838298178978,2019
+1995,39,"(35,40]",HS,301.92658115877936,253.7109326637969,1.1900416666666669,4772.3404511322815,2019
+1995,39,"(35,40]",HS,273.8628925254312,253.7109326637969,1.0794288194444444,4738.9544748797625,2019
+1995,68,"(65,70]",College,6813.282972136223,792.8466645743653,8.593443444444445,241.58361433093108,2019
+1995,68,"(65,70]",College,7101.661565678903,792.8466645743653,8.957169,212.71110241217744,2019
+1995,68,"(65,70]",College,6813.282972136223,792.8466645743653,8.593443444444445,212.4020132432484,2019
+1995,68,"(65,70]",College,6979.729677134012,792.8466645743653,8.803379000000001,218.1978568405982,2019
+1995,68,"(65,70]",College,6869.41034940292,792.8466645743653,8.664235666666668,217.2155422795112,2019
+1995,68,"(65,70]",NoHS,11.806103494029191,1.1298064970184705,10.449668615984407,7546.397836576948,2019
+1995,68,"(65,70]",NoHS,11.806103494029191,1.1298064970184705,10.449668615984407,7559.718233718083,2019
+1995,68,"(65,70]",NoHS,11.806103494029191,1.1298064970184705,10.449668615984407,7536.8312653138755,2019
+1995,68,"(65,70]",NoHS,11.806103494029191,1.1298064970184705,10.449668615984407,7550.002672941048,2019
+1995,68,"(65,70]",NoHS,11.806103494029191,1.1298064970184705,10.449668615984407,7599.790084629511,2019
+1995,20,"(15,20]",HS,3.774082264484741,21.803283275795042,0.17309696969696972,5754.970682342805,2019
+1995,20,"(15,20]",HS,3.774082264484741,21.803283275795042,0.17309696969696972,5809.827336611374,2019
+1995,20,"(15,20]",HS,3.774082264484741,21.803283275795042,0.17309696969696972,5766.906545977137,2019
+1995,20,"(15,20]",HS,3.774082264484741,21.803283275795042,0.17309696969696972,5879.59212431681,2019
+1995,20,"(15,20]",HS,3.774082264484741,21.803283275795042,0.17309696969696972,5773.6261220430115,2019
+1995,24,"(20,25]",HS,-13.354444935869086,83.24889978030835,-0.16041587301587304,4301.180803150197,2019
+1995,24,"(20,25]",HS,-13.354444935869086,83.24889978030835,-0.16041587301587304,4349.244033985841,2019
+1995,24,"(20,25]",HS,-13.354444935869086,83.24889978030835,-0.16041587301587304,4339.273474224081,2019
+1995,24,"(20,25]",HS,-13.354444935869086,83.24889978030835,-0.16041587301587304,4393.813671115018,2019
+1995,24,"(20,25]",HS,-13.354444935869086,83.24889978030835,-0.16041587301587304,4324.801606825953,2019
+1995,83,"(80,85]",HS,177.9237859354268,17.046203288348853,10.437736950904393,4088.7333001475126,2019
+1995,83,"(80,85]",HS,177.9237859354268,53.517149858769656,3.3246125102880657,4083.219813511624,2019
+1995,83,"(80,85]",HS,178.00120300751882,71.35619981169287,2.494544320987655,4268.31920667831,2019
+1995,83,"(80,85]",HS,177.9624944714728,19.424743282071947,9.161639455782314,4075.3427505059385,2019
+1995,83,"(80,85]",HS,177.9624944714728,45.588683213026,3.9036550724637684,4077.3212244620017,2019
+1995,38,"(35,40]",College,1021.90535161433,475.70799874461915,2.148177777777778,62.129868422770116,2019
+1995,38,"(35,40]",College,1021.90535161433,475.70799874461915,2.148177777777778,61.372673569797975,2019
+1995,38,"(35,40]",College,1021.90535161433,475.70799874461915,2.148177777777778,64.56321234736407,2019
+1995,38,"(35,40]",College,1021.90535161433,475.70799874461915,2.148177777777778,60.27567975872804,2019
+1995,38,"(35,40]",College,1021.90535161433,475.70799874461915,2.148177777777778,62.18628979913787,2019
+1995,28,"(25,30]",College,15.870499778858912,99.10583307179566,0.1601368888888889,7757.4618706214915,2019
+1995,28,"(25,30]",College,15.870499778858912,99.10583307179566,0.1601368888888889,7839.438981595286,2019
+1995,28,"(25,30]",College,15.870499778858912,99.10583307179566,0.1601368888888889,7768.276889776767,2019
+1995,28,"(25,30]",College,15.870499778858912,99.10583307179566,0.1601368888888889,7890.369786103159,2019
+1995,28,"(25,30]",College,15.870499778858912,99.10583307179566,0.1601368888888889,7779.966659787713,2019
+1995,78,"(75,80]",NoHS,220.1935072976559,15.856933291487307,13.886260555555555,10881.618821137885,2019
+1995,78,"(75,80]",NoHS,220.1935072976559,15.856933291487307,13.886260555555555,10866.027251576248,2019
+1995,78,"(75,80]",NoHS,220.1935072976559,15.856933291487307,13.886260555555555,11136.768782692978,2019
+1995,78,"(75,80]",NoHS,220.1935072976559,15.856933291487307,13.886260555555555,11397.554147224018,2019
+1995,78,"(75,80]",NoHS,220.1935072976559,15.856933291487307,13.886260555555555,11143.863581841943,2019
+1995,48,"(45,50]",College,53134.04617425918,3369.5983244410527,15.76865877124183,29.134863038293133,2019
+1995,48,"(45,50]",College,53050.43573639982,3825.485156571313,13.867636016119745,31.454882236039868,2019
+1995,48,"(45,50]",College,52963.53507297656,3686.736990270799,14.36596513739546,30.792798824717227,2019
+1995,48,"(45,50]",College,52720.25192392746,3904.769823028749,13.501500552735475,27.150617053739172,2019
+1995,48,"(45,50]",College,52959.66421937196,3845.3063231856722,13.772547560137456,29.310923393812413,2019
+1995,67,"(65,70]",HS,18.38849004865104,25.76751659866687,0.7136306666666667,6545.263226404768,2019
+1995,67,"(65,70]",HS,18.38849004865104,25.76751659866687,0.7136306666666667,6442.929467513631,2019
+1995,67,"(65,70]",HS,18.38849004865104,25.76751659866687,0.7136306666666667,6445.4039953102165,2019
+1995,67,"(65,70]",HS,18.38849004865104,25.76751659866687,0.7136306666666667,6657.509097815637,2019
+1995,67,"(65,70]",HS,18.38849004865104,25.76751659866687,0.7136306666666667,6495.812521356577,2019
+1995,62,"(60,65]",College,123194.19325961964,8978.988476304688,13.720275238655873,15.493080852566397,2019
+1995,51,"(50,55]",College,117109.38558160108,25172.881600236098,4.6522042029746284,15.74695442583797,2019
+1995,51,"(50,55]",College,129064.63306501549,37957.53406649774,3.4002375612416595,16.014187234236402,2019
+1995,60,"(55,60]",College,129017.25381689517,15183.013626599097,8.497473360023207,15.155013242805222,2019
+1995,57,"(55,60]",College,118377.28367978771,18651.717784111945,6.34672286220333,15.093381937043588,2019
+1995,47,"(45,50]",HS,1765.3995577178239,148.65874960769352,11.875517333333331,197.90387625794182,2019
+1995,47,"(45,50]",HS,2643.096258292791,182.354732852104,14.494256425120774,17.960116536448833,2019
+1995,47,"(45,50]",HS,2525.17070322866,414.2623822401059,6.0955829239766075,18.428422322639,2019
+1995,47,"(45,50]",HS,1618.907103051747,303.2638491996948,5.338279215686273,160.40209417786315,2019
+1995,47,"(45,50]",HS,3270.484210526316,380.5663989956953,8.593728240740743,25.854962953686528,2019
+1995,36,"(35,40]",College,1006.421937195931,317.1386658297461,3.1734444444444447,1634.6574386235498,2019
+1995,36,"(35,40]",College,1006.421937195931,317.1386658297461,3.1734444444444447,1323.5625968929628,2019
+1995,36,"(35,40]",College,1006.421937195931,317.1386658297461,3.1734444444444447,1371.4333728929855,2019
+1995,36,"(35,40]",College,1006.421937195931,317.1386658297461,3.1734444444444447,1328.400333349714,2019
+1995,36,"(35,40]",College,1006.421937195931,317.1386658297461,3.1734444444444447,1356.7915126125458,2019
+1995,82,"(80,85]",College,336.7642636001769,59.46349984307739,5.663377777777778,12135.486366658686,2019
+1995,82,"(80,85]",College,336.7642636001769,59.46349984307739,5.663377777777778,12253.439880917043,2019
+1995,82,"(80,85]",College,336.7642636001769,59.46349984307739,5.663377777777778,12215.05233426444,2019
+1995,82,"(80,85]",College,336.7642636001769,59.46349984307739,5.663377777777778,12489.044305154273,2019
+1995,82,"(80,85]",College,336.7642636001769,59.46349984307739,5.663377777777778,12299.655740646007,2019
+1995,64,"(60,65]",HS,6729.866076957098,178.3904995292322,37.72547358024691,2221.4835310605804,2019
+1995,64,"(60,65]",HS,6730.833790358249,178.3904995292322,37.73089827160494,2091.511688738291,2019
+1995,64,"(60,65]",HS,6729.866076957098,178.3904995292322,37.72547358024691,1968.8953776587157,2019
+1995,64,"(60,65]",HS,6730.833790358249,178.3904995292322,37.73089827160494,1973.6843797778442,2019
+1995,64,"(60,65]",HS,6729.866076957098,178.3904995292322,37.72547358024691,2217.755115589546,2019
+1995,48,"(45,50]",HS,48.69533834586466,39.642333228718265,1.2283671111111112,9370.09334016221,2019
+1995,48,"(45,50]",HS,20.360689960194602,33.69598324441053,0.6042467973856208,9355.040818962978,2019
+1995,48,"(45,50]",HS,24.250897832817337,31.713866582974614,0.7646780555555555,9346.715778781625,2019
+1995,48,"(45,50]",HS,36.386023883237506,39.642333228718265,0.9178577777777778,9315.88117763594,2019
+1995,48,"(45,50]",HS,36.09570986289253,39.642333228718265,0.9105344444444445,9327.604111210978,2019
+1995,76,"(75,80]",NoHS,141.28615656789032,39.642333228718265,3.5640222222222224,8583.738640592097,2019
+1995,76,"(75,80]",NoHS,141.28615656789032,39.642333228718265,3.5640222222222224,8429.239180962133,2019
+1995,76,"(75,80]",NoHS,141.28615656789032,39.642333228718265,3.5640222222222224,8646.916841595787,2019
+1995,76,"(75,80]",NoHS,141.28615656789032,39.642333228718265,3.5640222222222224,8676.763162209498,2019
+1995,76,"(75,80]",NoHS,141.28615656789032,39.642333228718265,3.5640222222222224,8596.478382528208,2019
+1995,31,"(30,35]",College,96.57779743476338,140.73028296194985,0.6862616588419405,7902.305156856039,2019
+1995,31,"(30,35]",College,100.06156567890314,156.58721625343713,0.6390149085794655,7988.016299944078,2019
+1995,31,"(30,35]",College,93.48111455108359,136.76604963907803,0.6835111111111111,7945.527423498356,2019
+1995,31,"(30,35]",College,110.7644758956214,168.47991622205262,0.6574343006535948,8021.714397059634,2019
+1995,31,"(30,35]",College,122.41574524546661,134.7839329776421,0.9082369281045751,7967.159754107895,2019
+1995,48,"(45,50]",HS,14.70924369747899,16.649779956061675,0.8834497354497353,6834.557515410966,2019
+1995,48,"(45,50]",HS,14.70924369747899,14.667663294625758,1.0028348348348348,6697.2133900676445,2019
+1995,48,"(45,50]",HS,14.70924369747899,15.262298293056533,0.9637633477633476,6714.77256699437,2019
+1995,48,"(45,50]",HS,14.70924369747899,19.622954948215543,0.7495937149270482,6701.589618749786,2019
+1995,48,"(45,50]",HS,14.70924369747899,14.865874960769348,0.9894637037037037,6754.683177805078,2019
+1995,32,"(30,35]",NoHS,-3.870853604599735,2.774963326010279,-1.394920634920635,5637.382461102048,2019
+1995,32,"(30,35]",NoHS,-3.870853604599735,2.774963326010279,-1.394920634920635,5636.818761783061,2019
+1995,32,"(30,35]",NoHS,-3.870853604599735,2.774963326010279,-1.394920634920635,5634.610198792518,2019
+1995,32,"(30,35]",NoHS,-3.870853604599735,2.774963326010279,-1.394920634920635,5659.852732688505,2019
+1995,32,"(30,35]",NoHS,-3.870853604599735,2.774963326010279,-1.394920634920635,5652.237010557975,2019
+1995,40,"(35,40]",College,22.64449358690845,75.32043313456471,0.3006421052631579,6082.901477399793,2019
+1995,40,"(35,40]",College,22.64449358690845,75.32043313456471,0.3006421052631579,6070.502446906097,2019
+1995,40,"(35,40]",College,22.64449358690845,75.32043313456471,0.3006421052631579,6086.312358055035,2019
+1995,40,"(35,40]",College,22.64449358690845,75.32043313456471,0.3006421052631579,5978.2129878084115,2019
+1995,40,"(35,40]",College,22.64449358690845,75.32043313456471,0.3006421052631579,6079.73283596631,2019
+1995,50,"(45,50]",HS,42.96647501105706,160.55144957630895,0.26761810699588484,6375.827688525445,2019
+1995,50,"(45,50]",HS,43.160017691287045,160.55144957630895,0.26882359396433475,6228.046675400796,2019
+1995,50,"(45,50]",HS,43.35356037151703,160.55144957630895,0.27002908093278466,6293.470689914128,2019
+1995,50,"(45,50]",HS,44.78577620521893,160.55144957630895,0.2789496844993142,6211.385969206773,2019
+1995,50,"(45,50]",HS,42.96647501105706,160.55144957630895,0.26761810699588484,6340.530331521919,2019
+1995,70,"(65,70]",College,11320.698452012384,396.42333228718263,28.557094222222226,168.4091443765248,2019
+1995,70,"(65,70]",College,11320.698452012384,396.42333228718263,28.557094222222226,146.93318372127163,2019
+1995,70,"(65,70]",College,11320.698452012384,396.42333228718263,28.557094222222226,148.0596774186919,2019
+1995,70,"(65,70]",College,11320.698452012384,396.42333228718263,28.557094222222226,151.61737593428026,2019
+1995,70,"(65,70]",College,11320.698452012384,396.42333228718263,28.557094222222226,151.9768634696057,2019
+1995,31,"(30,35]",NoHS,3.6773109243697477,12.289123300902663,0.29923297491039424,5151.797966882892,2019
+1995,31,"(30,35]",NoHS,3.6773109243697477,12.289123300902663,0.29923297491039424,5155.777626765935,2019
+1995,31,"(30,35]",NoHS,3.6773109243697477,12.289123300902663,0.29923297491039424,5155.0749808365435,2019
+1995,31,"(30,35]",NoHS,3.6773109243697477,12.289123300902663,0.29923297491039424,5142.856066314639,2019
+1995,31,"(30,35]",NoHS,3.6773109243697477,12.289123300902663,0.29923297491039424,5162.234487183998,2019
+1995,56,"(55,60]",College,20261.01547987616,1982.116661435913,10.221908666666668,31.389370455232488,2019
+1995,56,"(55,60]",College,19777.158779301193,1982.116661435913,9.977797555555556,35.321758676197376,2019
+1995,56,"(55,60]",College,19332.01061477222,1982.116661435913,9.753215333333333,31.632130366575844,2019
+1995,56,"(55,60]",College,20744.87218045113,1982.116661435913,10.46601977777778,38.24224077620008,2019
+1995,56,"(55,60]",College,19777.158779301193,1982.116661435913,9.977797555555556,31.19341691349294,2019
+1995,35,"(30,35]",HS,55.81770897832817,51.53503319733374,1.0831022222222222,6283.903473801298,2019
+1995,35,"(30,35]",HS,55.81770897832817,51.53503319733374,1.0831022222222222,6236.584943646625,2019
+1995,35,"(30,35]",HS,55.81770897832817,51.53503319733374,1.0831022222222222,6277.245633370675,2019
+1995,35,"(30,35]",HS,55.81770897832817,51.53503319733374,1.0831022222222222,6346.992725380535,2019
+1995,35,"(30,35]",HS,55.81770897832817,51.53503319733374,1.0831022222222222,6286.676126597916,2019
+1995,60,"(55,60]",College,4932.822291021672,150.64086626912942,32.7455783625731,17.018031115952343,2019
+1995,60,"(55,60]",College,6322.168421052632,321.1028991526179,19.68891728395062,14.924969203543165,2019
+1995,60,"(55,60]",College,8677.11833701902,610.4919317222614,14.21332189033189,15.502167492933344,2019
+1995,60,"(55,60]",College,9697.204387439186,178.3904995292322,54.35942167901234,15.121956864445616,2019
+1995,60,"(55,60]",College,12193.169500221142,180.3726161906681,67.5998926984127,15.712355986859876,2019
+1995,54,"(50,55]",College,950.6816452896948,338.9419491055412,2.80485094217024,4442.617146198076,2019
+1995,54,"(50,55]",College,799.7183547103052,251.72881600236096,3.17690428696413,4627.640930893315,2019
+1995,54,"(50,55]",College,592.6276868642194,85.23101644174427,6.9531927648578815,4572.431791676306,2019
+1995,54,"(50,55]",College,733.9138434321097,275.514215939592,2.663796642685851,4339.03023182969,2019
+1995,54,"(50,55]",College,549.4676691729322,85.23101644174427,6.446804134366924,4584.936015791974,2019
+1995,51,"(50,55]",College,51963.82906678461,1730.3878454335522,30.03016300878198,31.389370455232488,2019
+1995,51,"(50,55]",College,52163.77800973021,1946.4385615300669,26.799601611224258,35.321758676197376,2019
+1995,51,"(50,55]",College,38216.14411322424,1857.2433117654507,20.57681073402111,31.632130366575844,2019
+1995,51,"(50,55]",College,44945.8166475011,1952.3849115143746,23.020981355893962,18.500026606151643,2019
+1995,51,"(50,55]",College,61025.9231490491,1504.4265460298584,40.5642424418094,31.19341691349294,2019
+1995,62,"(60,65]",HS,273.0887218045113,77.30254979600063,3.5327259259259254,10163.7484066934,2019
+1995,62,"(60,65]",HS,251.79902697921275,77.30254979600063,3.257318518518518,10014.481070276439,2019
+1995,62,"(60,65]",HS,551.7901813356922,77.30254979600063,7.138059259259258,5601.583037117679,2019
+1995,62,"(60,65]",HS,276.959575409111,77.30254979600063,3.582799999999999,10158.620216108027,2019
+1995,62,"(60,65]",HS,551.7901813356922,77.30254979600063,7.138059259259258,5615.293946253031,2019
+1995,38,"(35,40]",College,2883.0117647058823,372.6379323499517,7.736764066193853,2221.4835310605804,2019
+1995,38,"(35,40]",College,1376.0884564352057,152.62298293056534,9.01625974025974,1042.2426880788937,2019
+1995,38,"(35,40]",College,538.2421937195932,93.15948308748793,5.77764255319149,1143.0348674298684,2019
+1995,38,"(35,40]",College,1601.1785935426801,95.14159974892382,16.829426851851853,1934.5252027286194,2019
+1995,38,"(35,40]",College,965.2941176470588,89.1952497646161,10.82225925925926,1093.968042776318,2019
+1995,26,"(25,30]",College,80.61246174259178,57.48138318164148,1.4024099157088123,7609.140605598188,2019
+1995,26,"(25,30]",College,80.61246174259178,57.48138318164148,1.4024099157088123,7535.737813744762,2019
+1995,26,"(25,30]",College,80.61246174259178,57.48138318164148,1.4024099157088123,7637.239539988479,2019
+1995,26,"(25,30]",College,80.61246174259178,57.48138318164148,1.4024099157088123,7549.588166152282,2019
+1995,26,"(25,30]",College,80.61246174259178,57.48138318164148,1.4024099157088123,7617.836181784485,2019
+1995,72,"(70,75]",NoHS,188.3170278637771,25.76751659866687,7.308311111111112,7968.069569399,2019
+1995,72,"(70,75]",NoHS,188.3170278637771,25.76751659866687,7.308311111111112,7923.596351228,2019
+1995,72,"(70,75]",NoHS,188.3170278637771,25.76751659866687,7.308311111111112,8008.5016170302115,2019
+1995,72,"(70,75]",NoHS,188.3170278637771,25.76751659866687,7.308311111111112,8018.992052556011,2019
+1995,72,"(70,75]",NoHS,188.3170278637771,25.76751659866687,7.308311111111112,7848.700599447159,2019
+1995,27,"(25,30]",College,57.19186200796108,91.177366426052,0.6272594202898552,6140.459291312444,2019
+1995,27,"(25,30]",College,57.48217602830606,91.177366426052,0.6304434782608695,6149.481878830066,2019
+1995,27,"(25,30]",College,57.19186200796108,91.177366426052,0.6272594202898552,6182.058771425408,2019
+1995,27,"(25,30]",College,57.24992481203008,91.177366426052,0.6278962318840581,6226.932948498366,2019
+1995,27,"(25,30]",College,57.288633348076075,91.177366426052,0.62832077294686,6215.504925854202,2019
+1995,50,"(45,50]",College,647.2067226890756,75.32043313456471,8.592711111111111,657.6513068806292,2019
+1995,50,"(45,50]",College,647.2067226890756,75.32043313456471,8.592711111111111,641.268382430984,2019
+1995,50,"(45,50]",College,647.2067226890756,75.32043313456471,8.592711111111111,659.6743871484637,2019
+1995,50,"(45,50]",College,647.2067226890756,75.32043313456471,8.592711111111111,615.7125435311016,2019
+1995,50,"(45,50]",College,647.2067226890756,75.32043313456471,8.592711111111111,664.7364387010095,2019
+1995,45,"(40,45]",HS,247.05723131357806,138.74816630051396,1.7806161904761901,6226.92188520954,2019
+1995,45,"(40,45]",HS,250.6377708978328,138.74816630051396,1.8064222222222217,6169.362880480588,2019
+1995,45,"(40,45]",HS,288.1850508624503,138.74816630051396,2.077036825396825,3615.0788913299234,2019
+1995,45,"(40,45]",HS,242.2186643078284,138.74816630051396,1.7457431746031742,6500.988844360003,2019
+1995,45,"(40,45]",HS,243.4766917293233,138.74816630051396,1.7548101587301583,6297.427222559177,2019
+1995,23,"(20,25]",HS,23.20576735957541,35.67809990584644,0.6504204938271606,3748.567856031048,2019
+1995,23,"(20,25]",HS,23.20576735957541,17.83904995292322,1.3008409876543212,3732.6330062111047,2019
+1995,23,"(20,25]",HS,23.08964175143742,33.69598324441053,0.6852342483660131,3722.4191466077705,2019
+1995,23,"(20,25]",HS,23.22512162759841,12.289123300902663,1.8898924731182796,3698.99212375689,2019
+1995,23,"(20,25]",HS,23.08964175143742,8.721313310318019,2.6474959595959597,3706.9291353612316,2019
+1995,46,"(45,50]",HS,7.74170720919947,35.67809990584644,0.21698765432098768,6680.464432682738,2019
+1995,46,"(45,50]",HS,30.386200796107918,35.67809990584644,0.8516765432098766,6521.613594072795,2019
+1995,46,"(45,50]",HS,4.838567005749669,35.67809990584644,0.13561728395061728,6534.099702884349,2019
+1995,46,"(45,50]",HS,7.161079168509509,35.67809990584644,0.2007135802469136,6525.799982980896,2019
+1995,46,"(45,50]",HS,7.74170720919947,35.67809990584644,0.21698765432098768,6580.939398330474,2019
+1995,72,"(70,75]",College,14634.245908889872,87.21313310318017,167.79864898989902,870.8618251077384,2019
+1995,72,"(70,75]",College,11136.3296948253,168.47991622205262,66.09885584313726,783.7811884836271,2019
+1995,72,"(70,75]",College,17404.6158337019,259.6572826481047,67.02918422391856,783.387656296918,2019
+1995,72,"(70,75]",College,3985.914727996462,87.21313310318017,45.70314797979799,717.1117330971684,2019
+1995,72,"(70,75]",College,2496.6038036267137,202.17589946646316,12.348671677559912,543.1002595241664,2019
+1995,53,"(50,55]",College,2441.9279964617426,891.9524976461611,2.737733234567901,773.609524243652,2019
+1995,53,"(50,55]",College,2530.9576293675364,891.9524976461611,2.837547555555555,616.0094807165456,2019
+1995,53,"(50,55]",College,2232.901901813357,891.9524976461611,2.5033865679012344,601.4508901466305,2019
+1995,53,"(50,55]",College,2258.062450243255,891.9524976461611,2.531594962962963,601.4470109623701,2019
+1995,53,"(50,55]",College,2519.3450685537373,891.9524976461611,2.824528296296296,616.4396713117915,2019
+1995,47,"(45,50]",College,1415.861477222468,1506.408662691294,0.9398920175438598,2151.391005010393,2019
+1995,47,"(45,50]",College,1324.5093321539143,1284.4115966104716,1.0312187585733885,3670.5501693721003,2019
+1995,47,"(45,50]",College,1327.993100398054,1581.7290958258588,0.8395831523252575,3624.8265584140195,2019
+1995,47,"(45,50]",College,1414.7002211410882,1381.5353130208314,1.0240058345289338,1844.9522146137945,2019
+1995,47,"(45,50]",College,1300.5100398053958,1209.091163475907,1.0756095810564663,3637.247787445382,2019
+1995,55,"(50,55]",NoHS,336.8416806722689,126.85546633189846,2.655318611111111,11217.926315816807,2019
+1995,55,"(50,55]",NoHS,66.67545333923043,134.7839329776421,0.49468398692810456,11045.139886349927,2019
+1995,55,"(50,55]",NoHS,87.67483414418399,214.06859943507862,0.4095641975308642,11222.222793644696,2019
+1995,55,"(50,55]",NoHS,80.70729765590447,235.87188271087368,0.3421658263305322,11208.390399193158,2019
+1995,55,"(50,55]",NoHS,317.99062361786815,89.1952497646161,3.565107160493827,11062.953907221516,2019
+1995,69,"(65,70]",College,9066.91329500221,366.69158236564397,24.72626515315315,212.03715245958068,2019
+1995,69,"(65,70]",College,9535.28658115878,366.69158236564397,26.003560048048048,186.6522893104597,2019
+1995,69,"(65,70]",College,9552.705422379478,366.69158236564397,26.051062750750752,185.28252630000458,2019
+1995,69,"(65,70]",College,8832.726651923927,366.69158236564397,24.087617705705703,191.20235534799767,2019
+1995,69,"(65,70]",College,9415.290119416188,366.69158236564397,25.676319207207207,190.53457285749624,2019
+1995,68,"(65,70]",HS,353.7960194604158,136.76604963907803,2.5868702093397746,435.6524266620566,2019
+1995,68,"(65,70]",HS,353.7960194604158,35.67809990584644,9.916335802469137,449.9416419011416,2019
+1995,68,"(65,70]",HS,353.7960194604158,85.23101644174427,4.151024289405685,428.04506411224094,2019
+1995,68,"(65,70]",HS,353.7960194604158,47.57079987446191,7.437251851851854,464.4909279873617,2019
+1995,68,"(65,70]",HS,353.7960194604158,97.12371641035975,3.64273560090703,439.72304109932384,2019
+1995,27,"(25,30]",HS,1288.8007076514818,73.3383164731288,17.57336096096096,2812.6396401538123,2019
+1995,27,"(25,30]",HS,642.5616983635559,71.35619981169287,9.004987654320988,2921.750333292889,2019
+1995,27,"(25,30]",HS,606.9498452012384,69.37408315025698,8.74894222222222,2886.8736336166803,2019
+1995,27,"(25,30]",HS,650.1098628925254,75.32043313456471,8.631254970760233,2729.0799581713527,2019
+1995,27,"(25,30]",HS,1040.0983635559487,83.24889978030835,12.493839153439154,2907.517810289939,2019
+1995,44,"(40,45]",NoHS,432.37434763379036,49.55291653589783,8.725507555555556,4252.017354693334,2019
+1995,44,"(40,45]",NoHS,432.37434763379036,49.55291653589783,8.725507555555556,4425.748869695556,2019
+1995,44,"(40,45]",NoHS,432.37434763379036,49.55291653589783,8.725507555555556,4365.10027818124,2019
+1995,44,"(40,45]",NoHS,432.37434763379036,49.55291653589783,8.725507555555556,4146.935299662299,2019
+1995,44,"(40,45]",NoHS,432.37434763379036,49.55291653589783,8.725507555555556,4393.229174325867,2019
+1995,57,"(55,60]",HS,6484.512021229545,1193.2342301844199,5.434399933554817,1006.0102874525213,2019
+1995,57,"(55,60]",HS,6561.948447589562,1264.5904299961128,5.188991069313827,909.7705000166834,2019
+1995,57,"(55,60]",HS,6974.175002211411,1167.4667135857528,5.9737677494812305,903.56555157208345,2019
+1995,57,"(55,60]",HS,6828.456718266254,1209.091163475907,5.6475945938069225,914.73611921334,2019
+1995,57,"(55,60]",HS,6687.770544007077,1131.7886136799066,5.9090279431796064,904.8694376098329,2019
+1995,53,"(50,55]",NoHS,44.57287925696593,27.749633260102783,1.6062511111111109,7058.729430844102,2019
+1995,53,"(50,55]",NoHS,36.25054400707651,27.749633260102783,1.3063431746031746,6928.372944504656,2019
+1995,53,"(50,55]",NoHS,36.3473153471915,27.749633260102783,1.309830476190476,6986.045573838148,2019
+1995,53,"(50,55]",NoHS,42.44390977443609,27.749633260102783,1.5295304761904762,7233.7302351693725,2019
+1995,53,"(50,55]",NoHS,37.41180008845643,27.749633260102783,1.3481907936507935,7064.77581554653,2019
+1995,44,"(40,45]",HS,1215.6996373286156,116.94488302471889,10.395492354048963,2869.7304502688094,2019
+1995,44,"(40,45]",HS,1151.8499071207432,126.85546633189846,9.080017916666668,2458.202074166279,2019
+1995,44,"(40,45]",HS,1146.7210260946483,120.90911634759071,9.484156867030965,2530.1554308296622,2019
+1995,44,"(40,45]",HS,1180.6490579389651,118.92699968615479,9.927510666666668,2459.1191089865897,2019
+1995,44,"(40,45]",HS,1335.1348252985406,120.90911634759071,11.042466156648453,2540.4087645349214,2019
+1995,51,"(50,55]",College,3123.585316231756,124.87334967046255,25.014026807760143,1270.199371450602,2019
+1995,51,"(50,55]",College,3293.3803095975236,128.8375829933344,25.562263999999995,1146.727352711086,2019
+1995,51,"(50,55]",College,3342.307899159664,136.76604963907803,24.438140225442833,1131.2888703268216,2019
+1995,51,"(50,55]",College,3139.4171074745686,138.74816630051396,22.626728634920628,1145.1325178547447,2019
+1995,51,"(50,55]",College,3155.9262980981866,144.69451628482167,21.810959939117197,1137.544228396783,2019
+1995,46,"(45,50]",College,942.2238301636444,67.39196648882105,13.981248496732025,4809.113964914906,2019
+1995,46,"(45,50]",College,808.4471295886775,39.642333228718265,20.393530444444444,4993.46149296293,2019
+1995,46,"(45,50]",College,718.8949314462627,79.28466645743653,9.067263111111112,4932.858627557725,2019
+1995,46,"(45,50]",College,994.2287483414419,87.21313310318017,11.399988888888892,4679.252782544822,2019
+1995,46,"(45,50]",College,920.7018841220699,33.69598324441053,27.323787450980394,4952.996312742583,2019
+1995,45,"(40,45]",College,448.7674126492703,309.21019918400253,1.4513344444444443,820.4187153018132,2019
+1995,45,"(40,45]",College,448.47709862892526,309.21019918400253,1.4503955555555552,807.2300362907229,2019
+1995,45,"(40,45]",College,448.7674126492703,309.21019918400253,1.4513344444444443,822.5740548406595,2019
+1995,45,"(40,45]",College,468.9926227333039,309.21019918400253,1.5167437037037035,773.2977155657971,2019
+1995,45,"(40,45]",College,1168.5719946926138,309.21019918400253,3.779215555555554,1509.4207574637633,2019
+1995,71,"(70,75]",NoHS,124.44794338788148,19.821166614359132,6.278537777777778,7725.107872280452,2019
+1995,71,"(70,75]",NoHS,124.44794338788148,19.821166614359132,6.278537777777778,7720.597815111503,2019
+1995,71,"(70,75]",NoHS,124.44794338788148,19.821166614359132,6.278537777777778,7685.9745827623,2019
+1995,71,"(70,75]",NoHS,124.44794338788148,19.821166614359132,6.278537777777778,7713.705041025382,2019
+1995,71,"(70,75]",NoHS,124.44794338788148,19.821166614359132,6.278537777777778,7672.355482573463,2019
+1995,86,"(85,90]",NoHS,19.644582043343654,14.271239962338576,1.3765154320987654,7454.4093451288845,2019
+1995,86,"(85,90]",NoHS,19.780061919504647,14.271239962338576,1.3860086419753088,7328.153284787603,2019
+1995,86,"(85,90]",NoHS,19.354268022998674,14.271239962338576,1.3561728395061727,7479.035914867313,2019
+1995,86,"(85,90]",NoHS,19.354268022998674,14.271239962338576,1.3561728395061727,7557.180483401797,2019
+1995,86,"(85,90]",NoHS,19.354268022998674,14.271239962338576,1.3561728395061727,7468.515543053569,2019
+1995,34,"(30,35]",HS,784.4884812030075,116.94488302471889,6.708189883239171,10730.87377559346,2019
+1995,34,"(30,35]",HS,787.0045360459974,142.71239962338575,5.514619179012346,10962.40233567466,2019
+1995,34,"(30,35]",HS,786.0368226448475,140.73028296194985,5.585413502347418,10688.090476212185,2019
+1995,34,"(30,35]",HS,203.08626979212738,132.8018163162062,1.5292431641791042,10996.044050440798,2019
+1995,34,"(30,35]",HS,784.1013958425475,128.8375829933344,6.085967911111109,10896.746065617828,2019
+1995,32,"(30,35]",HS,10.644847412649272,35.67809990584644,0.2983580246913581,5291.433047892802,2019
+1995,32,"(30,35]",HS,10.644847412649272,35.67809990584644,0.2983580246913581,5242.755095861963,2019
+1995,32,"(30,35]",HS,10.644847412649272,35.67809990584644,0.2983580246913581,5293.995806278266,2019
+1995,32,"(30,35]",HS,10.644847412649272,35.67809990584644,0.2983580246913581,5262.297754032454,2019
+1995,32,"(30,35]",HS,10.644847412649272,35.67809990584644,0.2983580246913581,5270.628055884599,2019
+1995,33,"(30,35]",HS,388.24661654135343,105.0521830561034,3.6957501048218035,3116.4653816010346,2019
+1995,33,"(30,35]",HS,365.21503759398496,105.0521830561034,3.4765106918238993,3240.0826982182516,2019
+1995,33,"(30,35]",HS,365.9892083149049,105.0521830561034,3.483880083857442,3202.073301081199,2019
+1995,33,"(30,35]",HS,375.6663423264042,105.0521830561034,3.5759974842767295,3025.9837046196094,2019
+1995,33,"(30,35]",HS,365.9892083149049,105.0521830561034,3.483880083857442,3221.1292608978056,2019
+1995,44,"(40,45]",HS,147.86660769570986,69.37408315025698,2.1314387301587296,7174.66152486364,2019
+1995,44,"(40,45]",HS,179.6076072534277,69.37408315025698,2.588972698412698,7095.273372900505,2019
+1995,44,"(40,45]",HS,97.54551083591332,69.37408315025698,1.4060799999999998,7139.730256607695,2019
+1995,44,"(40,45]",HS,83.61043785935426,69.37408315025698,1.2052114285714282,7220.64184193627,2019
+1995,44,"(40,45]",HS,167.9950464396285,69.37408315025698,2.4215822222222223,7156.49797678488,2019
+1995,26,"(25,30]",HS,11.031932773109244,59.46349984307739,0.18552444444444446,4391.028592931855,2019
+1995,26,"(25,30]",HS,11.031932773109244,59.46349984307739,0.18552444444444446,4323.333454228459,2019
+1995,26,"(25,30]",HS,11.031932773109244,59.46349984307739,0.18552444444444446,4333.649200596157,2019
+1995,26,"(25,30]",HS,11.031932773109244,59.46349984307739,0.18552444444444446,4305.930427964262,2019
+1995,26,"(25,30]",HS,11.031932773109244,59.46349984307739,0.18552444444444446,4323.664551030885,2019
+1995,48,"(45,50]",NoHS,0,19.821166614359132,0,8138.895801443157,2019
+1995,48,"(45,50]",NoHS,0,19.821166614359132,0,8173.792046301487,2019
+1995,48,"(45,50]",NoHS,0,19.821166614359132,0,8255.367016535336,2019
+1995,48,"(45,50]",NoHS,0,19.821166614359132,0,8139.678113093502,2019
+1995,48,"(45,50]",NoHS,0,19.821166614359132,0,8239.689098858293,2019
+1995,35,"(30,35]",HS,21.967094206103496,35.67809990584644,0.6157024691358025,7545.820312637235,2019
+1995,35,"(30,35]",HS,21.967094206103496,35.67809990584644,0.6157024691358025,7680.674918514787,2019
+1995,35,"(30,35]",HS,21.986448474126494,35.67809990584644,0.616244938271605,7556.917375985012,2019
+1995,35,"(30,35]",HS,22.025157010172492,35.67809990584644,0.6173298765432099,7584.774186255023,2019
+1995,35,"(30,35]",HS,22.025157010172492,35.67809990584644,0.6173298765432099,7593.625838592876,2019
+1995,48,"(45,50]",HS,58.062804068996016,47.57079987446191,1.2205555555555556,6230.970033642894,2019
+1995,48,"(45,50]",HS,58.062804068996016,47.57079987446191,1.2205555555555556,6144.311061047608,2019
+1995,48,"(45,50]",HS,58.062804068996016,47.57079987446191,1.2205555555555556,6205.8227460497255,2019
+1995,48,"(45,50]",HS,58.062804068996016,47.57079987446191,1.2205555555555556,6196.186180210697,2019
+1995,48,"(45,50]",HS,58.062804068996016,47.57079987446191,1.2205555555555556,6229.505602152217,2019
+1995,52,"(50,55]",College,34384.83127819549,1300.268529901959,26.444407818428186,21.37930316291056,2019
+1995,52,"(50,55]",College,32141.67161432994,1300.268529901959,24.719256734417346,23.814430115263647,2019
+1995,52,"(50,55]",College,25009.62384785493,1300.268529901959,19.234199146341464,21.59007452559501,2019
+1995,52,"(50,55]",College,30835.25852277753,1300.268529901959,23.714531124661246,25.778823899766866,2019
+1995,52,"(50,55]",College,23052.90735072977,1300.268529901959,17.729343455284557,20.9070008654844,2019
+1995,82,"(80,85]",College,17121.172578505088,198.21166614359132,86.37822844444446,1697.963405265023,2019
+1995,82,"(80,85]",College,17521.80592658116,198.21166614359132,88.39946844444447,1513.026068995909,2019
+1995,82,"(80,85]",College,17121.172578505088,198.21166614359132,86.37822844444446,1506.2141830139235,2019
+1995,82,"(80,85]",College,17227.62105263158,198.21166614359132,86.91527288888891,1536.224479452981,2019
+1995,82,"(80,85]",College,17121.172578505088,198.21166614359132,86.37822844444446,1527.928501144856,2019
+1995,46,"(45,50]",HS,358.40427067669174,110.99853304041113,3.2289099761904767,4257.508099036719,2019
+1995,46,"(45,50]",HS,358.40427067669174,110.99853304041113,3.2289099761904767,4434.822559394512,2019
+1995,46,"(45,50]",HS,358.40427067669174,110.99853304041113,3.2289099761904767,4381.913800970795,2019
+1995,46,"(45,50]",HS,358.40427067669174,110.99853304041113,3.2289099761904767,4158.237306086428,2019
+1995,46,"(45,50]",HS,358.40427067669174,110.99853304041113,3.2289099761904767,4393.897015749991,2019
+1995,70,"(65,70]",HS,1517.374613003096,158.56933291487306,9.569155555555557,795.1640314317638,2019
+1995,70,"(65,70]",HS,1517.374613003096,158.56933291487306,9.569155555555557,680.4358138328346,2019
+1995,70,"(65,70]",HS,1517.374613003096,158.56933291487306,9.569155555555557,687.5440692699876,2019
+1995,70,"(65,70]",HS,1517.374613003096,158.56933291487306,9.569155555555557,627.9153952870051,2019
+1995,70,"(65,70]",HS,1517.374613003096,158.56933291487306,9.569155555555557,654.5015474039136,2019
+1995,30,"(25,30]",HS,14.43828394515701,23.785399937230956,0.6070229629629631,4908.318523153472,2019
+1995,30,"(25,30]",HS,14.43828394515701,23.785399937230956,0.6070229629629631,4856.507403632129,2019
+1995,30,"(25,30]",HS,14.43828394515701,23.785399937230956,0.6070229629629631,4862.850624543915,2019
+1995,30,"(25,30]",HS,14.43828394515701,23.785399937230956,0.6070229629629631,4835.02341264645,2019
+1995,30,"(25,30]",HS,14.43828394515701,23.785399937230956,0.6070229629629631,4875.0549639465835,2019
+1995,45,"(40,45]",HS,4.257938965059708,39.642333228718265,0.10740888888888889,4792.265500012476,2019
+1995,45,"(40,45]",HS,4.257938965059708,39.642333228718265,0.10740888888888889,4774.240456481375,2019
+1995,45,"(40,45]",HS,4.257938965059708,39.642333228718265,0.10740888888888889,4780.354461957878,2019
+1995,45,"(40,45]",HS,4.257938965059708,39.642333228718265,0.10740888888888889,4868.206365856749,2019
+1995,45,"(40,45]",HS,4.257938965059708,39.642333228718265,0.10740888888888889,4841.8657236456565,2019
+1995,41,"(40,45]",NoHS,15.46406015037594,29.731749921538697,0.5201194074074075,5979.054575638548,2019
+1995,41,"(40,45]",NoHS,17.012401592215834,29.731749921538697,0.5721964444444445,5989.37769354764,2019
+1995,41,"(40,45]",NoHS,20.689712516585583,29.731749921538697,0.6958794074074075,6009.215465964471,2019
+1995,41,"(40,45]",NoHS,22.43159663865546,29.731749921538697,0.7544660740740741,5898.389443947888,2019
+1995,41,"(40,45]",NoHS,22.43159663865546,29.731749921538697,0.7544660740740741,5995.419500038113,2019
+1995,53,"(50,55]",HS,5126.945599292349,247.76458267948914,20.69281066666667,1647.5198625723442,2019
+1995,53,"(50,55]",HS,5126.945599292349,247.76458267948914,20.69281066666667,1473.2108955724032,2019
+1995,53,"(50,55]",HS,5119.203892083149,247.76458267948914,20.661564444444448,1475.5943073400583,2019
+1995,53,"(50,55]",HS,5126.945599292349,247.76458267948914,20.69281066666667,1480.3723227490946,2019
+1995,53,"(50,55]",HS,5098.881910659001,247.76458267948914,20.579543111111114,1478.8680098955867,2019
+1995,26,"(25,30]",College,46.6437859354268,35.67809990584644,1.3073506172839506,5953.526026602711,2019
+1995,26,"(25,30]",College,48.96629809818664,35.67809990584644,1.3724469135802468,6016.440014696743,2019
+1995,26,"(25,30]",College,46.6437859354268,35.67809990584644,1.3073506172839506,5961.826099370452,2019
+1995,26,"(25,30]",College,46.6437859354268,35.67809990584644,1.3073506172839506,6055.527267106165,2019
+1995,26,"(25,30]",College,46.6437859354268,35.67809990584644,1.3073506172839506,5970.797506663957,2019
+1995,52,"(50,55]",HS,187.54285714285714,99.10583307179566,1.8923493333333334,11032.192829767378,2019
+1995,52,"(50,55]",HS,158.31791242812915,99.10583307179566,1.5974631111111113,11013.077547027051,2019
+1995,52,"(50,55]",HS,160.446881910659,99.10583307179566,1.6189448888888889,10811.62397365722,2019
+1995,52,"(50,55]",HS,154.6793100398054,99.10583307179566,1.5607488,11532.52919583234,2019
+1995,52,"(50,55]",HS,169.69822202565237,99.10583307179566,1.712292977777778,11176.498268085972,2019
+1995,23,"(20,25]",HS,0,5.549926652020558,0,5782.574768053144,2019
+1995,23,"(20,25]",HS,0,8.721313310318019,0,5777.474685676487,2019
+1995,23,"(20,25]",HS,0,7.5320433134564695,0,5773.866822970042,2019
+1995,23,"(20,25]",HS,0,14.865874960769348,0,5794.442903286615,2019
+1995,23,"(20,25]",HS,0,9.514159974892383,0,5736.996738410018,2019
+1995,40,"(35,40]",HS,571.3379920389209,99.10583307179566,5.764928000000001,5035.035863347895,2019
+1995,40,"(35,40]",HS,561.6608580274216,99.10583307179566,5.6672835555555565,5242.195767215112,2019
+1995,40,"(35,40]",HS,553.919150818222,99.10583307179566,5.589168,5167.996557272747,2019
+1995,40,"(35,40]",HS,569.402565236621,99.10583307179566,5.745399111111111,4908.994178675963,2019
+1995,40,"(35,40]",HS,553.919150818222,99.10583307179566,5.589168,5202.144620113799,2019
+1995,37,"(35,40]",College,317.79708093763827,144.69451628482167,2.1963312024353123,4699.61304595537,2019
+1995,37,"(35,40]",College,319.7325077399381,144.69451628482167,2.2097071537290716,4891.632698343857,2019
+1995,37,"(35,40]",College,310.0553737284388,144.69451628482167,2.142827397260274,4824.599831795256,2019
+1995,37,"(35,40]",College,317.79708093763827,144.69451628482167,2.1963312024353123,4583.469353320966,2019
+1995,37,"(35,40]",College,317.79708093763827,144.69451628482167,2.1963312024353123,4855.689763058988,2019
+1995,39,"(35,40]",HS,-0.5032109685979655,15.460509959200122,-0.03254814814814815,5199.06109107701,2019
+1995,39,"(35,40]",HS,-0.5032109685979655,15.460509959200122,-0.03254814814814815,5188.46362911805,2019
+1995,39,"(35,40]",HS,-0.5032109685979655,15.460509959200122,-0.03254814814814815,5201.976373687926,2019
+1995,39,"(35,40]",HS,-0.5032109685979655,15.460509959200122,-0.03254814814814815,5109.583749558269,2019
+1995,39,"(35,40]",HS,-0.5032109685979655,15.460509959200122,-0.03254814814814815,5196.352850535945,2019
+1995,41,"(40,45]",HS,708.1726669615215,114.96276636328297,6.160017624521073,388.3461985422208,2019
+1995,41,"(40,45]",HS,708.1726669615215,114.96276636328297,6.160017624521073,388.3976640530396,2019
+1995,41,"(40,45]",HS,708.1726669615215,114.96276636328297,6.160017624521073,407.0733415133661,2019
+1995,41,"(40,45]",HS,708.1726669615215,114.96276636328297,6.160017624521073,378.03559432420894,2019
+1995,41,"(40,45]",HS,708.1726669615215,114.96276636328297,6.160017624521073,390.01483752618776,2019
+1995,54,"(50,55]",HS,217.3484298982751,31.713866582974614,6.8534194444444445,5810.805831027746,2019
+1995,54,"(50,55]",HS,217.3484298982751,31.713866582974614,6.8534194444444445,5641.417628952807,2019
+1995,54,"(50,55]",HS,217.3484298982751,31.713866582974614,6.8534194444444445,5674.291305678658,2019
+1995,54,"(50,55]",HS,217.3484298982751,31.713866582974614,6.8534194444444445,5833.663306453316,2019
+1995,54,"(50,55]",HS,217.3484298982751,31.713866582974614,6.8534194444444445,5729.747292832472,2019
+1995,57,"(55,60]",HS,3034.749226006192,218.03283275795047,13.918771717171717,870.8618251077384,2019
+1995,57,"(55,60]",HS,3034.749226006192,218.03283275795047,13.918771717171717,783.7811884836271,2019
+1995,57,"(55,60]",HS,3034.749226006192,218.03283275795047,13.918771717171717,783.387656296918,2019
+1995,57,"(55,60]",HS,3034.749226006192,218.03283275795047,13.918771717171717,717.1117330971684,2019
+1995,57,"(55,60]",HS,3034.749226006192,218.03283275795047,13.918771717171717,780.0094981827734,2019
+1995,38,"(35,40]",HS,3348.0948252985404,178.3904995292322,18.76834716049383,915.3968025462846,2019
+1995,38,"(35,40]",HS,3348.0948252985404,178.3904995292322,18.76834716049383,826.0161185218678,2019
+1995,38,"(35,40]",HS,3348.0948252985404,178.3904995292322,18.76834716049383,816.5197672759194,2019
+1995,38,"(35,40]",HS,3348.0948252985404,178.3904995292322,18.76834716049383,824.0515914370113,2019
+1995,38,"(35,40]",HS,3348.0948252985404,178.3904995292322,18.76834716049383,820.00457608608815,2019
+1995,49,"(45,50]",HS,4.141813356921716,71.35619981169287,0.0580441975308642,6366.965821706961,2019
+1995,49,"(45,50]",HS,4.141813356921716,71.35619981169287,0.0580441975308642,6254.818657090568,2019
+1995,49,"(45,50]",HS,4.141813356921716,71.35619981169287,0.0580441975308642,6312.98007865726,2019
+1995,49,"(45,50]",HS,3.6579566563467494,71.35619981169287,0.051263333333333334,6307.554184188349,2019
+1995,49,"(45,50]",HS,3.774082264484741,71.35619981169287,0.05289074074074074,6344.7876428587315,2019
+1995,35,"(30,35]",HS,-8.632003538257408,15.658721625343716,-0.5512585091420533,6140.2713991380515,2019
+1995,35,"(30,35]",HS,-8.438460858027423,15.658721625343716,-0.538898452883263,6094.034435351242,2019
+1995,35,"(30,35]",HS,-8.825546218487395,15.658721625343716,-0.5636185654008438,6133.765737912255,2019
+1995,35,"(30,35]",HS,-8.438460858027423,15.658721625343716,-0.538898452883263,6201.918610728765,2019
+1995,35,"(30,35]",HS,-8.438460858027423,15.658721625343716,-0.538898452883263,6142.980677015701,2019
+1995,71,"(70,75]",College,13766.690844758956,1290.3579465947796,10.668892985151048,22.912149894566873,2019
+1995,71,"(70,75]",College,12828.00884564352,1086.1999304668807,11.809988645579883,20.120435579797295,2019
+1995,71,"(70,75]",College,12438.794515701016,1365.678379729344,9.108143396226415,20.973505920242754,2019
+1995,71,"(70,75]",College,13851.84962406015,1409.2849462809345,9.828991404907017,20.498943767727734,2019
+1995,71,"(70,75]",College,13290.575851393189,1228.9123300902666,10.814909677419353,21.266240005160498,2019
+1995,46,"(45,50]",College,2275.694188412207,103.07006639466748,22.079098888888893,2159.5936184059037,2019
+1995,46,"(45,50]",College,1073.8134984520125,374.6200490113876,2.866406913580247,1323.5625968929628,2019
+1995,46,"(45,50]",College,1124.676514816453,436.06566551590095,2.5791448484848485,1371.4333728929855,2019
+1995,46,"(45,50]",College,6474.892950022115,436.06566551590095,14.848435595959597,1843.6516733940346,2019
+1995,46,"(45,50]",College,448.4383900928793,150.64086626912942,2.976870760233918,746.2251284576398,2019
+1995,32,"(30,35]",HS,57.69507297655905,198.21166614359132,0.2910780888888889,6902.107628438711,2019
+1995,32,"(30,35]",HS,51.1339761167625,166.4977995606167,0.3071150264550265,6976.9702821590545,2019
+1995,32,"(30,35]",HS,55.5080406899602,134.7839329776421,0.41182980392156865,6939.859237670297,2019
+1995,32,"(30,35]",HS,52.5855462184874,198.21166614359132,0.2652999555555556,7006.403199333018,2019
+1995,32,"(30,35]",HS,51.75331269349846,109.01641637897524,0.4747295353535354,6958.753556626261,2019
+1995,35,"(30,35]",HS,0,12.883758299333435,0,4859.554949477913,2019
+1995,35,"(30,35]",HS,0,12.883758299333435,0,4892.874422256209,2019
+1995,35,"(30,35]",HS,0,12.883758299333435,0,4891.747672743971,2019
+1995,35,"(30,35]",HS,0,12.883758299333435,0,4881.327242226911,2019
+1995,35,"(30,35]",HS,0,12.883758299333435,0,4896.435024846296,2019
+1995,47,"(45,50]",HS,4.277293233082707,33.69598324441053,0.1269377777777778,8583.689324589917,2019
+1995,47,"(45,50]",HS,4.277293233082707,33.69598324441053,0.1269377777777778,8551.40368145667,2019
+1995,47,"(45,50]",HS,4.277293233082707,33.69598324441053,0.1269377777777778,8562.354811676612,2019
+1995,47,"(45,50]",HS,4.277293233082707,33.69598324441053,0.1269377777777778,8719.71117050933,2019
+1995,47,"(45,50]",HS,4.277293233082707,33.69598324441053,0.1269377777777778,8672.531002935226,2019
+1995,36,"(35,40]",College,274.2499778858912,134.7839329776421,2.034737908496732,6995.3656836515365,2019
+1995,36,"(35,40]",College,274.2499778858912,134.7839329776421,2.034737908496732,6899.124173088712,2019
+1995,36,"(35,40]",College,274.2499778858912,134.7839329776421,2.034737908496732,6893.300970805736,2019
+1995,36,"(35,40]",College,274.2499778858912,134.7839329776421,2.034737908496732,6967.027879267439,2019
+1995,36,"(35,40]",College,274.2499778858912,134.7839329776421,2.034737908496732,6918.288475675085,2019
+1995,38,"(35,40]",HS,31.160371517027862,75.32043313456471,0.4137040935672514,5533.6093674802805,2019
+1995,38,"(35,40]",HS,31.160371517027862,75.32043313456471,0.4137040935672514,5522.329981887318,2019
+1995,38,"(35,40]",HS,31.160371517027862,75.32043313456471,0.4137040935672514,5536.712242188234,2019
+1995,38,"(35,40]",HS,31.160371517027862,75.32043313456471,0.4137040935672514,5438.374353593804,2019
+1995,38,"(35,40]",HS,31.160371517027862,75.32043313456471,0.4137040935672514,5530.72685754918,2019
+1995,53,"(50,55]",HS,2223.031225121628,325.06713247548976,6.83868346883469,1270.199371450602,2019
+1995,53,"(50,55]",HS,2223.031225121628,325.06713247548976,6.83868346883469,1146.727352711086,2019
+1995,53,"(50,55]",HS,2223.031225121628,325.06713247548976,6.83868346883469,1131.2888703268216,2019
+1995,53,"(50,55]",HS,2223.031225121628,325.06713247548976,6.83868346883469,1145.1325178547447,2019
+1995,53,"(50,55]",HS,2223.031225121628,325.06713247548976,6.83868346883469,1137.544228396783,2019
+1995,38,"(35,40]",College,451.3415302963291,126.85546633189846,3.5579194444444444,3642.1434223445517,2019
+1995,38,"(35,40]",College,511.339761167625,126.85546633189846,4.030884722222223,3791.5679040555565,2019
+1995,38,"(35,40]",College,375.8598850066342,126.85546633189846,2.9628986111111106,6456.595512877214,2019
+1995,38,"(35,40]",College,511.339761167625,126.85546633189846,4.030884722222223,3549.7276495110623,2019
+1995,38,"(35,40]",College,373.92445820433437,126.85546633189846,2.9476416666666667,6466.295448774501,2019
+1995,63,"(60,65]",College,2908.9464838567005,140.73028296194985,20.670366197183096,903.9029943177804,2019
+1995,63,"(60,65]",College,2968.9447147279966,493.54704869754244,6.015525211958947,815.6108517841825,2019
+1995,63,"(60,65]",College,2286.7067669172934,560.9390151863635,4.076569297212407,817.5917760407667,2019
+1995,63,"(60,65]",College,1937.362229102167,221.99706608082226,8.726972222222223,814.0520891055991,2019
+1995,63,"(60,65]",College,2956.1708978328174,261.6393993095406,11.298645791245791,807.8918823050935,2019
+1995,30,"(25,30]",HS,-2.322512162759841,37.660216567282355,-0.061670175438596486,5416.146957022549,2019
+1995,30,"(25,30]",HS,-2.322512162759841,37.660216567282355,-0.061670175438596486,5366.32171320303,2019
+1995,30,"(25,30]",HS,-2.322512162759841,37.660216567282355,-0.061670175438596486,5418.770117120272,2019
+1995,30,"(25,30]",HS,-2.322512162759841,37.660216567282355,-0.061670175438596486,5386.324972740512,2019
+1995,30,"(25,30]",HS,-2.322512162759841,37.660216567282355,-0.061670175438596486,5394.851611671634,2019
+1995,52,"(50,55]",College,5993.339407341885,356.7809990584644,16.798370493827164,2221.4835310605804,2019
+1995,52,"(50,55]",College,4074.557275541796,356.7809990584644,11.420331481481483,2091.511688738291,2019
+1995,52,"(50,55]",College,4820.277222467935,356.7809990584644,13.510465061728397,1968.8953776587157,2019
+1995,52,"(50,55]",College,6512.227333038479,356.7809990584644,18.252730246913583,1973.6843797778442,2019
+1995,52,"(50,55]",College,12694.754710305175,356.7809990584644,35.58136432098765,2217.755115589546,2019
+1995,48,"(45,50]",College,2748.2092879256966,122.89123300902662,22.362940143369176,813.6274566723321,2019
+1995,48,"(45,50]",College,2610.3101282618313,112.98064970184706,23.104046003898638,690.91594009048,2019
+1995,48,"(45,50]",College,3375.9262627156127,109.01641637897524,30.967136646464645,958.5594911749733,2019
+1995,48,"(45,50]",College,2490.216895179124,128.8375829933344,19.328342222222215,694.6077184008882,2019
+1995,48,"(45,50]",College,2950.5581601061476,126.85546633189846,23.259211805555555,958.155499445413,2019
+1995,83,"(80,85]",College,530.8875718708537,95.14159974892382,5.57997314814815,4510.701373532947,2019
+1995,83,"(80,85]",College,530.8875718708537,95.14159974892382,5.57997314814815,4664.402500443519,2019
+1995,83,"(80,85]",College,530.8875718708537,95.14159974892382,5.57997314814815,4635.723020950183,2019
+1995,83,"(80,85]",College,530.8875718708537,95.14159974892382,5.57997314814815,4395.589682096456,2019
+1995,83,"(80,85]",College,530.8875718708537,95.14159974892382,5.57997314814815,4659.691495474298,2019
+1995,66,"(65,70]",College,3421.447501105705,158.56933291487306,21.57698111111111,1385.420494972333,2019
+1995,66,"(65,70]",College,3417.770190181336,158.56933291487306,21.55379055555556,1239.523723077209,2019
+1995,66,"(65,70]",College,3420.2862450243256,158.56933291487306,21.569657777777778,1258.5903969037886,2019
+1995,66,"(65,70]",College,3438.092171605484,158.56933291487306,21.681948888888886,1250.068038025885,2019
+1995,66,"(65,70]",College,3429.382750995135,158.56933291487306,21.627023888888893,1246.9431745545187,2019
+1995,60,"(55,60]",College,3616.1514374170724,346.87041575128484,10.425078857142857,1074.9069631793623,2019
+1995,60,"(55,60]",College,3613.8289252543123,346.87041575128484,10.418383238095238,969.377811029359,2019
+1995,60,"(55,60]",College,3611.5064130915525,346.87041575128484,10.411687619047619,958.5594911749733,2019
+1995,60,"(55,60]",College,3612.4741264927025,346.87041575128484,10.41447746031746,964.027673158582,2019
+1995,60,"(55,60]",College,3617.312693498452,346.87041575128484,10.428426666666667,958.155499445413,2019
+1995,33,"(30,35]",College,86.84260061919504,39.642333228718265,2.190653111111111,6141.468010688051,2019
+1995,33,"(30,35]",College,86.84260061919504,39.642333228718265,2.190653111111111,6170.774458054836,2019
+1995,33,"(30,35]",College,63.61747899159664,39.642333228718265,1.6047864444444446,6181.584512813353,2019
+1995,33,"(30,35]",College,86.84260061919504,39.642333228718265,2.190653111111111,6262.877892951341,2019
+1995,33,"(30,35]",College,86.84260061919504,39.642333228718265,2.190653111111111,6202.23983751034,2019
+1995,39,"(35,40]",College,142.96997788589118,178.3904995292322,0.8014439012345679,5490.548640321123,2019
+1995,39,"(35,40]",College,142.96997788589118,178.3904995292322,0.8014439012345679,5415.010245495227,2019
+1995,39,"(35,40]",College,142.96997788589118,178.3904995292322,0.8014439012345679,5410.439708825242,2019
+1995,39,"(35,40]",College,141.03455108359134,178.3904995292322,0.7905945185185186,5468.306759000404,2019
+1995,39,"(35,40]",College,142.96997788589118,178.3904995292322,0.8014439012345679,5430.051994599811,2019
+1995,32,"(30,35]",HS,12.386731534719152,71.35619981169287,0.17359012345679015,6022.753070936358,2019
+1995,32,"(30,35]",HS,12.386731534719152,71.35619981169287,0.17359012345679015,6086.3986170051985,2019
+1995,32,"(30,35]",HS,12.386731534719152,71.35619981169287,0.17359012345679015,6031.1496561746735,2019
+1995,32,"(30,35]",HS,12.386731534719152,71.35619981169287,0.17359012345679015,6125.940372333281,2019
+1995,32,"(30,35]",HS,12.386731534719152,71.35619981169287,0.17359012345679015,6040.2253821538925,2019
+1995,90,"(85,90]",College,51805.76275984078,1900.849878317041,27.254000092689143,451.5429000511316,2019
+1995,90,"(85,90]",College,55643.13348076073,1944.456444868631,28.61629203760335,510.032014270363,2019
+1995,90,"(85,90]",College,31222.30517470146,1817.6009785367323,17.17775548285472,224.40343369270562,2019
+1995,90,"(85,90]",College,32755.743830163643,1817.6009785367323,18.021416260753664,557.2063972202677,2019
+1995,90,"(85,90]",College,39180.780185758515,1942.474328207195,20.170552380952383,430.19953047299276,2019
+1995,71,"(70,75]",HS,6413.733463069439,887.9882643232891,7.222768273809525,336.54191448970835,2019
+1995,71,"(70,75]",HS,3559.501494913755,570.849598493543,6.235445385802469,300.22904001760014,2019
+1995,71,"(70,75]",HS,5930.76705882353,521.2966819576452,11.376951482889734,298.0418803881817,2019
+1995,71,"(70,75]",HS,4459.997523219815,1145.663430309958,3.892938715878509,305.5820454248008,2019
+1995,71,"(70,75]",HS,6522.910888987174,562.9211318477994,11.58761062597809,307.41022432543633,2019
+1995,60,"(55,60]",College,10496.78726227333,570.849598493543,18.38800848765432,328.81521582655876,2019
+1995,60,"(55,60]",College,10496.78726227333,352.8167657355925,29.751384519350815,293.03590808033493,2019
+1995,60,"(55,60]",College,10496.78726227333,977.1835140879052,10.741879197656074,291.8265657887194,2019
+1995,60,"(55,60]",College,10496.78726227333,545.0820818948762,19.257259797979795,296.44839707545225,2019
+1995,60,"(55,60]",College,10496.78726227333,733.3831647312879,14.312828228228227,294.4831939999006,2019
+1995,28,"(25,30]",HS,0.3096682883679788,19.028319949784766,0.016274074074074076,6341.065719917808,2019
+1995,28,"(25,30]",HS,0.3096682883679788,19.028319949784766,0.016274074074074076,6371.32462681868,2019
+1995,28,"(25,30]",HS,0.2516054842989828,19.028319949784766,0.013222685185185188,6382.486008354883,2019
+1995,28,"(25,30]",HS,0.3096682883679788,19.028319949784766,0.016274074074074076,6466.421423332566,2019
+1995,28,"(25,30]",HS,0.3096682883679788,19.028319949784766,0.016274074074074076,6403.812631100761,2019
+1995,68,"(65,70]",College,5122.107032286599,315.1565491683102,16.25258001397624,292.616235414372,2019
+1995,68,"(65,70]",College,5127.9133126934985,315.1565491683102,16.271003494060096,258.40379607582855,2019
+1995,68,"(65,70]",College,5151.1384343210975,315.1565491683102,16.34469741439553,259.68765935468167,2019
+1995,68,"(65,70]",College,5863.375497567448,315.1565491683102,18.60464430468204,262.9637711941244,2019
+1995,68,"(65,70]",College,5244.03892083149,315.1565491683102,16.639473095737245,263.02402104380826,2019
+1995,65,"(60,65]",NoHS,56.9015479876161,7.9284666457436535,7.176866666666666,8045.5724990227045,2019
+1995,65,"(60,65]",NoHS,52.35329500221141,7.9284666457436535,6.603205555555555,8020.504681158891,2019
+1995,65,"(60,65]",NoHS,52.37264927023441,7.9284666457436535,6.605646666666667,8019.592583122311,2019
+1995,65,"(60,65]",NoHS,52.04362671384344,7.9284666457436535,6.564147777777778,8027.676370039318,2019
+1995,65,"(60,65]",NoHS,52.914568774878376,7.9284666457436535,6.673997777777778,8098.097760881343,2019
+1995,51,"(50,55]",HS,150.05363998230874,124.87334967046255,1.201646631393298,7527.340676023644,2019
+1995,51,"(50,55]",HS,150.05363998230874,146.6766329462576,1.0230234834834835,7500.778239718634,2019
+1995,51,"(50,55]",HS,150.05363998230874,97.12371641035975,1.5449742403628122,7458.206355435834,2019
+1995,51,"(50,55]",HS,150.05363998230874,59.46349984307739,2.5234579259259267,7838.329794816462,2019
+1995,51,"(50,55]",HS,150.05363998230874,45.588683213026,3.2914668599033825,7559.847514001938,2019
+1995,61,"(60,65]",College,205600.3892083149,5094.039819890297,40.3609701686122,20.596531953093002,2019
+1995,61,"(60,65]",College,211164.74126492703,6144.561650451332,34.36611971326165,22.26202337905925,2019
+1995,61,"(60,65]",College,206641.64882795225,6481.521482895436,31.881657628270478,21.732516141960737,2019
+1995,61,"(60,65]",College,212445.99380804953,5272.430319419529,40.293750877192984,19.262965231704467,2019
+1995,61,"(60,65]",College,214782.05395842547,6025.634650765176,35.64471900584795,21.033670215083394,2019
+1995,32,"(30,35]",College,180.28500663423264,73.3383164731288,2.458264864864865,5839.188805611053,2019
+1995,32,"(30,35]",College,180.28500663423264,83.24889978030835,2.165614285714286,5758.637575479255,2019
+1995,32,"(30,35]",College,180.28500663423264,79.28466645743653,2.273895,5843.270479255678,2019
+1995,32,"(30,35]",College,180.28500663423264,75.32043313456471,2.3935736842105264,5769.327894330656,2019
+1995,32,"(30,35]",College,180.28500663423264,67.39196648882105,2.675170588235294,5796.584534104752,2019
+1995,57,"(55,60]",College,18212.86942061035,2834.426825853356,6.425591676767676,285.47526956964157,2019
+1995,57,"(55,60]",College,18300.91198584697,3052.4596586113066,5.995463997113997,251.6270091868086,2019
+1995,57,"(55,60]",College,18511.873507297656,2834.426825853356,6.531081818181818,250.6761821559547,2019
+1995,57,"(55,60]",College,18687.997346306944,3032.6384919969473,6.162289832970225,259.1890960720176,2019
+1995,57,"(55,60]",College,19244.91640866873,2854.247992467715,6.742552314814815,430.19953047299276,2019
+1995,47,"(45,50]",College,593.0147722246794,168.47991622205262,3.519795032679739,3500.6177727066556,2019
+1995,47,"(45,50]",College,643.3358690844759,168.47991622205262,3.8184721568627453,3646.409662433611,2019
+1995,47,"(45,50]",College,593.0147722246794,168.47991622205262,3.519795032679739,3602.906905477773,2019
+1995,47,"(45,50]",College,1119.4508624502432,168.47991622205262,6.644417254901961,3418.995120669636,2019
+1995,47,"(45,50]",College,569.7896505970809,168.47991622205262,3.3819440522875817,3612.7597709696083,2019
+1995,52,"(50,55]",College,686.186218487395,261.6393993095406,2.62264101010101,1706.8060204316093,2019
+1995,52,"(50,55]",College,686.186218487395,261.6393993095406,2.62264101010101,1643.2194692429516,2019
+1995,52,"(50,55]",College,686.0700928792569,261.6393993095406,2.622197171717171,1775.9552514459247,2019
+1995,52,"(50,55]",College,686.128155683326,261.6393993095406,2.6224190909090908,1589.6145333328147,2019
+1995,52,"(50,55]",College,686.186218487395,261.6393993095406,2.62264101010101,1732.2133217777882,2019
+1995,64,"(60,65]",College,2701.855816010615,122.89123300902662,21.985749103942656,2820.843497452025,2019
+1995,64,"(60,65]",College,2701.855816010615,122.89123300902662,21.985749103942656,2413.7287199607663,2019
+1995,64,"(60,65]",College,2701.855816010615,122.89123300902662,21.985749103942656,2491.4098176757243,2019
+1995,64,"(60,65]",College,2701.855816010615,122.89123300902662,21.985749103942656,2415.6422007682622,2019
+1995,64,"(60,65]",College,2701.855816010615,122.89123300902662,21.985749103942656,2491.09648851589,2019
+1995,50,"(45,50]",HS,211.25183547103055,61.44561650451331,3.438029390681004,7440.819521900924,2019
+1995,50,"(45,50]",HS,211.25183547103055,61.44561650451331,3.438029390681004,7414.562400944904,2019
+1995,50,"(45,50]",HS,211.25183547103055,61.44561650451331,3.438029390681004,7372.4798486479685,2019
+1995,50,"(45,50]",HS,211.25183547103055,61.44561650451331,3.438029390681004,7748.234053248372,2019
+1995,50,"(45,50]",HS,211.25183547103055,61.44561650451331,3.438029390681004,7472.952718076651,2019
+1995,61,"(60,65]",College,2483.230004422822,259.6572826481047,9.563490687022899,2527.357984941702,2019
+1995,61,"(60,65]",College,3894.194851835471,269.5678659552842,14.44606477124183,611.2880217860818,2019
+1995,61,"(60,65]",College,3267.9100928792573,206.14013278933496,15.852857222222225,594.5863808026857,2019
+1995,61,"(60,65]",College,2426.812313135781,291.37114923107936,8.328938261526831,2168.7361792132824,2019
+1995,61,"(60,65]",College,2666.3600884564353,350.8346490741567,7.600047758945386,608.0640150037807,2019
+1995,57,"(55,60]",HS,169.15630252100843,77.30254979600063,2.188237037037037,8340.016789553936,2019
+1995,57,"(55,60]",HS,169.15630252100843,77.30254979600063,2.188237037037037,8165.967961612543,2019
+1995,57,"(55,60]",HS,169.15630252100843,77.30254979600063,2.188237037037037,8237.27946501015,2019
+1995,57,"(55,60]",HS,169.15630252100843,77.30254979600063,2.188237037037037,8219.518442141913,2019
+1995,57,"(55,60]",HS,169.15630252100843,77.30254979600063,2.188237037037037,8132.176479211909,2019
+1995,79,"(75,80]",College,692.1086245024326,61.44561650451331,11.263759139784947,4485.937624908796,2019
+1995,79,"(75,80]",College,692.1086245024326,61.44561650451331,11.263759139784947,4638.272943453882,2019
+1995,79,"(75,80]",College,692.1086245024326,61.44561650451331,11.263759139784947,4609.403465174939,2019
+1995,79,"(75,80]",College,692.1086245024326,61.44561650451331,11.263759139784947,4369.92859625123,2019
+1995,79,"(75,80]",College,692.1086245024326,61.44561650451331,11.263759139784947,4635.680014668318,2019
+1995,78,"(75,80]",College,42867.96178681999,2933.5326589251517,14.613084894894895,21.771475130045456,2019
+1995,78,"(75,80]",College,48781.65838124724,4439.941321616447,10.987005198412696,40.7828488679548,2019
+1995,78,"(75,80]",College,55844.41786819992,2101.0436611220684,26.57937048218029,22.15857878751236,2019
+1995,78,"(75,80]",College,37392.71678018576,2279.4341606513003,16.40438553816425,44.0687620611274,2019
+1995,78,"(75,80]",College,50952.626625387,3647.09465704208,13.970744227053142,35.476229152528305,2019
+1995,32,"(30,35]",HS,9.541654135338346,7.730254979600061,1.234325925925926,8734.858431614532,2019
+1995,32,"(30,35]",HS,9.541654135338346,19.424743282071947,0.4912113378684808,8687.15285855508,2019
+1995,32,"(30,35]",HS,9.541654135338346,18.830108283641177,0.5067232748538012,8778.250342490617,2019
+1995,32,"(30,35]",HS,9.541654135338346,45.588683213026,0.20929874396135267,8719.635039216733,2019
+1995,32,"(30,35]",HS,9.541654135338346,25.76751659866687,0.37029777777777784,8728.875120732166,2019
+1995,39,"(35,40]",HS,266.29537372843873,128.8375829933344,2.066907555555555,8509.461707605318,2019
+1995,39,"(35,40]",HS,258.4375409111013,128.8375829933344,2.0059173333333327,8624.406913773299,2019
+1995,39,"(35,40]",HS,258.5536665192393,128.8375829933344,2.0068186666666663,8501.061800142383,2019
+1995,39,"(35,40]",HS,258.4181866430783,128.8375829933344,2.0057671111111106,8288.402883143122,2019
+1995,39,"(35,40]",HS,258.5149579831933,128.8375829933344,2.006518222222222,8457.706035488603,2019
+1995,64,"(60,65]",College,19733.47619637329,1026.736430623803,19.21961236379237,40.672002971836505,2019
+1995,64,"(60,65]",College,19656.05912428129,917.7200142448279,21.418361612670985,45.73272698153342,2019
+1995,64,"(60,65]",College,19498.32183989385,1036.647013930983,18.8090271595496,41.04553817903476,2019
+1995,64,"(60,65]",College,19573.803485183547,1074.307230498265,18.219930881508816,49.46523555226078,2019
+1995,64,"(60,65]",College,19709.28336134454,1078.2714638211369,18.27859126633987,39.89506190918424,2019
+1995,60,"(55,60]",NoHS,162.57198053958425,136.76604963907803,1.1886866731078902,9052.693785752495,2019
+1995,60,"(55,60]",NoHS,147.08856612118532,130.8196996547703,1.124360983164983,9013.302911941328,2019
+1995,60,"(55,60]",NoHS,143.21771251658558,136.76604963907803,1.0471729855072462,9083.968165865075,2019
+1995,60,"(55,60]",NoHS,141.2822857142857,144.69451628482167,0.9764176925418568,9244.728843525752,2019
+1995,60,"(55,60]",NoHS,178.0553949579832,120.90911634759071,1.4726382950819672,9026.427303497854,2019
+1995,70,"(65,70]",College,11005.417425917736,685.812364856826,16.047271804752732,285.47526956964157,2019
+1995,70,"(65,70]",College,11005.417425917736,685.812364856826,16.047271804752732,251.6270091868086,2019
+1995,70,"(65,70]",College,11005.417425917736,685.812364856826,16.047271804752732,250.6761821559547,2019
+1995,70,"(65,70]",College,11005.417425917736,685.812364856826,16.047271804752732,259.1890960720176,2019
+1995,70,"(65,70]",College,11005.417425917736,685.812364856826,16.047271804752732,257.88328364357784,2019
+1995,30,"(25,30]",HS,139.35072976559044,124.87334967046255,1.1159365079365078,7051.184800708057,2019
+1995,30,"(25,30]",HS,139.35072976559044,124.87334967046255,1.1159365079365078,6944.39437872101,2019
+1995,30,"(25,30]",HS,139.35072976559044,124.87334967046255,1.1159365079365078,6987.365676777864,2019
+1995,30,"(25,30]",HS,139.35072976559044,124.87334967046255,1.1159365079365078,6900.785558163336,2019
+1995,30,"(25,30]",HS,139.35072976559044,124.87334967046255,1.1159365079365078,6979.7435629171505,2019
+1995,52,"(50,55]",HS,2.167678018575851,11.298064970184706,0.19186276803118904,4416.689901812208,2019
+1995,52,"(50,55]",HS,2.167678018575851,11.298064970184706,0.19186276803118904,4434.116022206118,2019
+1995,52,"(50,55]",HS,2.167678018575851,11.298064970184706,0.19186276803118904,4438.269959679362,2019
+1995,52,"(50,55]",HS,2.167678018575851,11.298064970184706,0.19186276803118904,4427.632080102036,2019
+1995,52,"(50,55]",HS,2.167678018575851,11.298064970184706,0.19186276803118904,4429.202027167817,2019
+1995,58,"(55,60]",College,2752.3704555506415,271.5499826167202,10.135778426601783,1425.512684311884,2019
+1995,58,"(55,60]",College,2886.1084475895623,172.44414954492444,16.736482247765007,1285.9074439255228,2019
+1995,58,"(55,60]",College,2758.370278637771,273.53209927815607,10.0842653784219,1270.30806283579,2019
+1995,58,"(55,60]",College,2639.728615656789,277.4963326010279,9.512661269841267,1285.3605838908682,2019
+1995,58,"(55,60]",College,2495.926404245909,265.6036326324124,9.397184742951906,890.6972313260474,2019
+1995,68,"(65,70]",HS,986.8741264927024,21.803283275795042,45.26263838383839,895.5135966528663,2019
+1995,68,"(65,70]",HS,986.4870411322424,21.803283275795042,45.24488484848486,880.978890060994,2019
+1995,68,"(65,70]",HS,986.6805838124724,21.803283275795042,45.253761616161626,905.3465837281108,2019
+1995,68,"(65,70]",HS,986.6805838124724,21.803283275795042,45.253761616161626,840.113231556768,2019
+1995,68,"(65,70]",HS,986.8741264927024,21.803283275795042,45.26263838383839,899.2915998882465,2019
+1995,69,"(65,70]",NoHS,1167.468801415303,95.14159974892382,12.27085527777778,4261.866475083787,2019
+1995,69,"(65,70]",NoHS,1100.2901371074745,95.14159974892382,11.564763888888889,4429.977398897452,2019
+1995,69,"(65,70]",NoHS,1133.3859354268025,95.14159974892382,11.912622222222225,4379.546406681274,2019
+1995,69,"(65,70]",NoHS,1085.3873507297656,95.14159974892382,11.408125925925928,4152.479928818909,2019
+1995,69,"(65,70]",NoHS,1108.418929677134,95.14159974892382,11.650202777777778,4436.476221520074,2019
+1995,36,"(35,40]",College,751.3520389208315,374.6200490113876,2.005637554379777,4181.150387995906,2019
+1995,36,"(35,40]",College,742.603909774436,350.8346490741567,2.116677790332705,4351.986377307394,2019
+1995,36,"(35,40]",College,733.6622379478107,321.1028991526179,2.2848197256515776,4292.348595805496,2019
+1995,36,"(35,40]",College,740.2233348076072,305.2459658611307,2.425006118326118,4077.8197008152774,2019
+1995,36,"(35,40]",College,746.9005572755418,366.69158236564397,2.0368631111111113,4320.008676943025,2019
+1995,42,"(40,45]",College,237.08978328173376,109.01641637897524,2.1748080808080807,3853.8083751819586,2019
+1995,42,"(40,45]",College,237.08978328173376,109.01641637897524,2.1748080808080807,4012.798448138748,2019
+1995,42,"(40,45]",College,237.08978328173376,109.01641637897524,2.1748080808080807,3957.9818366227555,2019
+1995,42,"(40,45]",College,237.08978328173376,109.01641637897524,2.1748080808080807,3757.890377688439,2019
+1995,42,"(40,45]",College,237.08978328173376,109.01641637897524,2.1748080808080807,3985.473612413156,2019
+1995,78,"(75,80]",College,695.9794781070323,91.177366426052,7.633248309178744,5452.749665849991,2019
+1995,78,"(75,80]",College,788.8799646174259,91.177366426052,8.652146859903382,5637.0070089161,2019
+1995,78,"(75,80]",College,908.8764263600177,91.177366426052,9.968224154589373,5604.908311175497,2019
+1995,78,"(75,80]",College,721.1400265369306,91.177366426052,7.909200000000001,5315.33830668316,2019
+1995,78,"(75,80]",College,679.5283502874835,91.177366426052,7.452818357487924,5632.9724274131495,2019
+1995,49,"(45,50]",College,861.284281291464,364.709465704208,2.3615627294685995,2227.2797293808026,2019
+1995,49,"(45,50]",College,673.8962582927909,311.1923158454383,2.1655298796886067,2191.7315994258215,2019
+1995,49,"(45,50]",College,554.170756302521,336.95983244410525,1.6446196339869281,2234.2343486619898,2019
+1995,49,"(45,50]",College,620.9429809818665,346.87041575128484,1.7901295492063494,2091.9763857485073,2019
+1995,49,"(45,50]",College,678.7735338345865,307.22808252256664,2.209347297491039,2243.0563168358467,2019
+1995,40,"(35,40]",HS,823.6982927908006,91.177366426052,9.03402154589372,965.5721865554721,2019
+1995,40,"(35,40]",HS,848.8588412206988,87.21313310318017,9.73315383838384,951.1345407499333,2019
+1995,40,"(35,40]",HS,866.2776824413976,91.177366426052,9.501016714975846,966.5045939991327,2019
+1995,40,"(35,40]",HS,812.0857319770013,69.37408315025698,11.705894984126981,913.394165311626,2019
+1995,40,"(35,40]",HS,823.6982927908006,91.177366426052,9.03402154589372,991.792223255868,2019
+1995,58,"(55,60]",College,1150.185440070765,218.03283275795047,5.275285494949494,6339.1246898513955,2019
+1995,58,"(55,60]",College,1624.3650066342327,218.03283275795047,7.450093575757576,6433.594375547138,2019
+1995,58,"(55,60]",College,1032.8985758513932,218.03283275795047,4.737353373737373,6464.6444464761935,2019
+1995,58,"(55,60]",College,1569.3988854489164,218.03283275795047,7.197993373737373,6233.585532610634,2019
+1995,58,"(55,60]",College,1059.6074657231313,218.03283275795047,4.8598527676767675,6352.569873403067,2019
+1995,56,"(55,60]",HS,230.89641751437418,184.33684951353993,1.252578733572282,451.21712311795034,2019
+1995,56,"(55,60]",HS,226.83202122954447,154.60509959200127,1.4671703703703702,443.9689529319844,2019
+1995,56,"(55,60]",HS,223.1547103051747,152.62298293056534,1.462130447330447,445.7064646246349,2019
+1995,56,"(55,60]",HS,220.83219814241485,162.53356623774488,1.3586867208672087,435.9992803018138,2019
+1995,56,"(55,60]",HS,225.86430782839452,192.26531615928357,1.174753264604811,450.9844332617148,2019
+1995,88,"(85,90]",College,30813.54303405573,309.21019918400253,99.6524148148148,29.400847287218124,2019
+1995,88,"(85,90]",College,50189.48783724016,432.1014321930291,116.15209785932721,19.06671788563878,2019
+1995,88,"(85,90]",College,19371.686864219373,200.19378280502724,96.76467766776678,30.62117754026596,2019
+1995,88,"(85,90]",College,32710.648385670058,332.9955991212334,98.23147354497355,33.84995919220795,2019
+1995,88,"(85,90]",College,21447.238567005752,832.4889978030835,25.76278920634921,29.503667425020467,2019
+1995,39,"(35,40]",HS,18.193011941618753,75.32043313456471,0.24154152046783625,6168.066735117585,2019
+1995,39,"(35,40]",HS,18.193011941618753,75.32043313456471,0.24154152046783625,6242.292767863804,2019
+1995,39,"(35,40]",HS,18.193011941618753,75.32043313456471,0.24154152046783625,6208.831134996302,2019
+1995,39,"(35,40]",HS,18.193011941618753,75.32043313456471,0.24154152046783625,6215.9756283566985,2019
+1995,39,"(35,40]",HS,18.193011941618753,75.32043313456471,0.24154152046783625,6250.432577350023,2019
+1995,51,"(50,55]",NoHS,9357.788589119858,545.0820818948762,17.167668686868687,701.2947968887518,2019
+1995,51,"(50,55]",NoHS,9357.788589119858,545.0820818948762,17.167668686868687,628.4367600338842,2019
+1995,51,"(50,55]",NoHS,9357.788589119858,545.0820818948762,17.167668686868687,629.8510171803075,2019
+1995,51,"(50,55]",NoHS,9357.788589119858,545.0820818948762,17.167668686868687,635.6152717336347,2019
+1995,51,"(50,55]",NoHS,9357.788589119858,545.0820818948762,17.167668686868687,633.1002723575365,2019
+1995,29,"(25,30]",HS,107.22264484741265,89.1952497646161,1.2021116049382716,5376.231329163269,2019
+1995,29,"(25,30]",HS,76.25581601061477,89.1952497646161,0.8549313580246913,5328.243016483293,2019
+1995,29,"(25,30]",HS,76.25581601061477,89.1952497646161,0.8549313580246913,5400.725720852735,2019
+1995,29,"(25,30]",HS,76.25581601061477,89.1952497646161,0.8549313580246913,5335.999144820931,2019
+1995,29,"(25,30]",HS,76.25581601061477,89.1952497646161,0.8549313580246913,5383.424841760099,2019
+1995,29,"(25,30]",HS,18.231720477664748,87.21313310318017,0.2090478787878788,4566.986513340913,2019
+1995,29,"(25,30]",HS,18.231720477664748,87.21313310318017,0.2090478787878788,4497.819354806098,2019
+1995,29,"(25,30]",HS,18.231720477664748,87.21313310318017,0.2090478787878788,4525.651463059268,2019
+1995,29,"(25,30]",HS,18.231720477664748,87.21313310318017,0.2090478787878788,4469.574329185779,2019
+1995,29,"(25,30]",HS,18.231720477664748,87.21313310318017,0.2090478787878788,4520.714691128183,2019
+1995,28,"(25,30]",HS,36.4827952233525,53.517149858769656,0.6817028806584362,3803.992691739855,2019
+1995,28,"(25,30]",HS,36.4827952233525,53.517149858769656,0.6817028806584362,3745.3477051623267,2019
+1995,28,"(25,30]",HS,36.4827952233525,53.517149858769656,0.6817028806584362,3754.284341069398,2019
+1995,28,"(25,30]",HS,36.4827952233525,53.517149858769656,0.6817028806584362,3730.2712866599004,2019
+1995,28,"(25,30]",HS,36.4827952233525,53.517149858769656,0.6817028806584362,3745.6345376868776,2019
+1995,69,"(65,70]",HS,659.5740999557719,109.01641637897524,6.050227313131313,1258.4102660844167,2019
+1995,69,"(65,70]",HS,645.8325696594428,85.23101644174427,7.577435968992249,1238.633090994372,2019
+1995,69,"(65,70]",HS,644.4777708978328,89.1952497646161,7.225471901234568,1252.7138163250702,2019
+1995,69,"(65,70]",HS,672.3479168509509,93.15948308748793,7.21717096926714,1181.792901229066,2019
+1995,69,"(65,70]",HS,635.3812649270235,81.26678311887244,7.818462113821139,1266.2387028568542,2019
+1995,29,"(25,30]",College,393.47226890756303,138.74816630051396,2.8358736507936504,4296.122465252668,2019
+1995,29,"(25,30]",College,393.47226890756303,138.74816630051396,2.8358736507936504,4466.531908639666,2019
+1995,29,"(25,30]",College,393.47226890756303,138.74816630051396,2.8358736507936504,4414.135040734363,2019
+1995,29,"(25,30]",College,393.47226890756303,138.74816630051396,2.8358736507936504,4171.391297863948,2019
+1995,29,"(25,30]",College,393.47226890756303,138.74816630051396,2.8358736507936504,4440.404139550092,2019
+1995,70,"(65,70]",NoHS,46.06315789473684,25.76751659866687,1.7876444444444446,8455.331390180456,2019
+1995,70,"(65,70]",NoHS,42.19230429013711,25.76751659866687,1.6374222222222226,8470.383484172837,2019
+1995,70,"(65,70]",NoHS,55.74029190623618,25.76751659866687,2.1632000000000002,8580.234706864849,2019
+1995,70,"(65,70]",NoHS,57.67571870853605,25.76751659866687,2.238311111111112,8654.938129483622,2019
+1995,70,"(65,70]",NoHS,61.54657231313578,25.76751659866687,2.3885333333333336,8428.60260131967,2019
+1995,71,"(70,75]",NoHS,486.1792127377267,81.26678311887244,5.9825084010840115,4076.337602165516,2019
+1995,71,"(70,75]",NoHS,434.8904024767802,83.24889978030835,5.223977777777779,8586.55855048917,2019
+1995,71,"(70,75]",NoHS,402.9558602388324,39.642333228718265,10.164786666666666,8678.56778515223,2019
+1995,71,"(70,75]",NoHS,497.7917735515259,25.76751659866687,19.318577777777783,3972.056388863131,2019
+1995,71,"(70,75]",NoHS,455.2123839009288,25.76751659866687,17.666133333333335,8505.396319433648,2019
+1995,47,"(45,50]",HS,36.966651923927465,23.785399937230956,1.5541740740740742,5046.22611416779,2019
+1995,47,"(45,50]",HS,36.966651923927465,23.785399937230956,1.5541740740740742,4899.1258334841195,2019
+1995,47,"(45,50]",HS,36.966651923927465,23.785399937230956,1.5541740740740742,4927.674026417518,2019
+1995,47,"(45,50]",HS,36.966651923927465,23.785399937230956,1.5541740740740742,5066.07602702851,2019
+1995,47,"(45,50]",HS,36.966651923927465,23.785399937230956,1.5541740740740742,4975.833173134875,2019
+1995,44,"(40,45]",College,360.7635559486953,79.28466645743653,4.550231111111112,2501.8310682601673,2019
+1995,44,"(40,45]",College,360.7635559486953,79.28466645743653,4.550231111111112,2532.4998358534203,2019
+1995,44,"(40,45]",College,360.7635559486953,79.28466645743653,4.550231111111112,2411.8532220161987,2019
+1995,44,"(40,45]",College,360.7635559486953,79.28466645743653,4.550231111111112,2478.5956364796343,2019
+1995,44,"(40,45]",College,360.7635559486953,79.28466645743653,4.550231111111112,2448.9725283729467,2019
+1995,37,"(35,40]",NoHS,8.283626713843432,23.785399937230956,0.34826518518518523,6167.896668096333,2019
+1995,37,"(35,40]",NoHS,10.2190535161433,23.785399937230956,0.4296355555555556,6210.186768171043,2019
+1995,37,"(35,40]",NoHS,13.1221937195931,23.785399937230956,0.5516911111111112,6208.75666302056,2019
+1995,37,"(35,40]",NoHS,13.1221937195931,23.785399937230956,0.5516911111111112,6195.530731976564,2019
+1995,37,"(35,40]",NoHS,7.315913312693499,23.785399937230956,0.3075800000000001,6214.70599453645,2019
+1995,64,"(60,65]",HS,350.85417072091997,23.785399937230956,14.750820740740744,8904.614960710132,2019
+1995,64,"(60,65]",HS,439.9805749668289,23.785399937230956,18.497926296296303,8897.559535268523,2019
+1995,64,"(60,65]",HS,410.62015037593983,23.785399937230956,17.263537777777778,8969.580866434353,2019
+1995,64,"(60,65]",HS,350.91223352498895,23.785399937230956,14.753261851851855,9126.318082089127,2019
+1995,64,"(60,65]",HS,386.69827509951347,23.785399937230956,16.2578,8905.24044638409,2019
+1995,32,"(30,35]",HS,169.79499336576737,63.42773316594923,2.676983472222222,3743.9591644346983,2019
+1995,32,"(30,35]",HS,167.4724812030075,77.30254979600063,2.166454814814814,3669.142125673593,2019
+1995,32,"(30,35]",HS,170.9562494471473,73.3383164731288,2.331063183183183,3695.8282059207136,2019
+1995,32,"(30,35]",HS,168.82727996461742,75.32043313456471,2.241453918128655,3647.559949448395,2019
+1995,32,"(30,35]",HS,173.08521892967713,75.32043313456471,2.2979849122807017,3674.0699614166238,2019
+1995,47,"(45,50]",College,409.34276868642195,101.08794973323158,4.0493725490196075,8651.162394783854,2019
+1995,47,"(45,50]",College,409.34276868642195,101.08794973323158,4.0493725490196075,8398.97622878154,2019
+1995,47,"(45,50]",College,409.34276868642195,101.08794973323158,4.0493725490196075,8447.918754850882,2019
+1995,47,"(45,50]",College,409.34276868642195,101.08794973323158,4.0493725490196075,8685.192740589846,2019
+1995,47,"(45,50]",College,409.34276868642195,101.08794973323158,4.0493725490196075,8530.481959435852,2019
+1995,35,"(30,35]",College,228.99969924812032,103.07006639466748,2.221786666666667,6283.903473801298,2019
+1995,35,"(30,35]",College,159.3243343653251,103.07006639466748,1.5457866666666669,6236.584943646625,2019
+1995,35,"(30,35]",College,536.7325608137992,103.07006639466748,5.2074533333333335,3633.7941740091437,2019
+1995,35,"(30,35]",College,197.64578505086246,103.07006639466748,1.917586666666667,6346.992725380535,2019
+1995,35,"(30,35]",College,160.679133126935,103.07006639466748,1.5589311111111115,6286.676126597916,2019
+1995,79,"(75,80]",HS,60004.8113224237,683.8302481953901,87.74810924315618,20.12365416564478,2019
+1995,79,"(75,80]",HS,60069.2610349403,1565.8721625343715,38.36153580872011,21.728651686078898,2019
+1995,79,"(75,80]",HS,56173.63396727112,1431.0882295567296,39.25239045860264,21.279309952668655,2019
+1995,79,"(75,80]",HS,56056.92773109244,945.4696475049307,59.290034195201486,18.687207744553895,2019
+1995,79,"(75,80]",HS,59311.2898363556,2140.6859943507866,27.706674399176954,20.149174934146174,2019
+1995,41,"(40,45]",HS,1570.5988500663425,370.6558156885158,4.237351158645277,271.08983439545875,2019
+1995,41,"(40,45]",HS,1570.5988500663425,370.6558156885158,4.237351158645277,224.5625362589241,2019
+1995,41,"(40,45]",HS,1570.5988500663425,370.6558156885158,4.237351158645277,237.02559018351099,2019
+1995,41,"(40,45]",HS,1570.5988500663425,370.6558156885158,4.237351158645277,231.06373808415464,2019
+1995,41,"(40,45]",HS,1570.5988500663425,370.6558156885158,4.237351158645277,224.2957686035651,2019
+1995,40,"(35,40]",HS,134.2412030075188,55.499266520205566,2.4187923809523815,6737.163994252143,2019
+1995,40,"(35,40]",HS,124.77696594427245,47.57079987446191,2.622973888888889,6795.53890834774,2019
+1995,40,"(35,40]",HS,142.6022467934542,53.517149858769656,2.6646083950617285,6710.459592755396,2019
+1995,40,"(35,40]",HS,150.1504113224237,53.517149858769656,2.8056503703703704,6934.690774791646,2019
+1995,40,"(35,40]",HS,128.33815126050422,53.517149858769656,2.398075226337449,6766.2069445901,2019
+1995,57,"(55,60]",College,10266.95532950022,891.9524976461611,11.51065259259259,285.47526956964157,2019
+1995,57,"(55,60]",College,10528.237947810705,891.9524976461611,11.803585925925926,251.6270091868086,2019
+1995,57,"(55,60]",College,16082.912870411323,891.9524976461611,18.03113160493827,250.6761821559547,2019
+1995,57,"(55,60]",College,10276.63246351172,891.9524976461611,11.52150197530864,259.1890960720176,2019
+1995,57,"(55,60]",College,10268.89075630252,891.9524976461611,11.5128224691358,257.88328364357784,2019
+1995,45,"(40,45]",College,1613.9524104378595,241.81823269518142,6.674237887067396,961.4497993420297,2019
+1995,45,"(40,45]",College,1904.2664307828395,241.81823269518142,7.8747843351548275,817.3203449793548,2019
+1995,45,"(40,45]",College,1323.6383900928793,241.81823269518142,5.473691438979963,811.4430743694039,2019
+1995,45,"(40,45]",College,2194.5804511278197,241.81823269518142,9.07533078324226,1145.1325178547447,2019
+1995,45,"(40,45]",College,2717.145687748784,241.81823269518142,11.236314389799636,1137.544228396783,2019
+1995,70,"(65,70]",College,3897.756037151703,99.10583307179566,39.32922933333334,2221.4835310605804,2019
+1995,70,"(65,70]",College,3897.756037151703,99.10583307179566,39.32922933333334,2091.511688738291,2019
+1995,70,"(65,70]",College,3897.756037151703,99.10583307179566,39.32922933333334,1968.8953776587157,2019
+1995,70,"(65,70]",College,3897.756037151703,99.10583307179566,39.32922933333334,1973.6843797778442,2019
+1995,70,"(65,70]",College,3897.756037151703,99.10583307179566,39.32922933333334,2217.755115589546,2019
+1995,75,"(70,75]",HS,741.8490933215392,49.55291653589783,14.970846222222223,5657.869423547556,2019
+1995,75,"(70,75]",HS,693.4634232640425,49.55291653589783,13.99440177777778,5850.0016850700595,2019
+1995,75,"(70,75]",HS,693.4634232640425,49.55291653589783,13.99440177777778,5813.590180478189,2019
+1995,75,"(70,75]",HS,761.2033613445378,49.55291653589783,15.361424000000001,5511.553538000564,2019
+1995,75,"(70,75]",HS,761.2033613445378,49.55291653589783,15.361424000000001,5846.731364856107,2019
+1995,23,"(20,25]",College,17.747863777089783,45.588683213026,0.389304154589372,5281.847348434661,2019
+1995,23,"(20,25]",College,17.70915524104379,45.588683213026,0.3884550724637682,5266.604543911051,2019
+1995,23,"(20,25]",College,17.747863777089783,45.588683213026,0.389304154589372,5296.608078658739,2019
+1995,23,"(20,25]",College,17.80592658115878,45.588683213026,0.3905777777777778,5261.870369073291,2019
+1995,23,"(20,25]",College,17.70915524104379,45.588683213026,0.3884550724637682,5238.139235797879,2019
+1995,77,"(75,80]",HS,735.6557275541796,49.55291653589783,14.845861333333335,5266.100694453248,2019
+1995,77,"(75,80]",HS,729.84944714728,49.55291653589783,14.728688000000002,5444.929112023217,2019
+1995,77,"(75,80]",HS,729.84944714728,49.55291653589783,14.728688000000002,5411.038854885205,2019
+1995,77,"(75,80]",HS,733.7203007518797,49.55291653589783,14.806803555555556,5129.916182438577,2019
+1995,77,"(75,80]",HS,735.6557275541796,49.55291653589783,14.845861333333335,5441.885239098525,2019
+1995,50,"(45,50]",HS,198.09093321539143,39.642333228718265,4.9969544444444445,6623.538739478565,2019
+1995,50,"(45,50]",HS,200.99407341884123,37.660216567282355,5.337039766081871,6595.366409507202,2019
+1995,50,"(45,50]",HS,183.57523219814243,37.660216567282355,4.8745134502923975,6557.065660107988,2019
+1995,50,"(45,50]",HS,195.76842105263157,37.660216567282355,5.198281871345029,6894.803431151731,2019
+1995,50,"(45,50]",HS,188.4137992038921,31.713866582974614,5.9410541666666665,6650.845470705384,2019
+1995,66,"(65,70]",HS,1206.3515258735074,190.28319949784765,6.339768981481483,6493.839983934433,2019
+1995,66,"(65,70]",HS,1206.3515258735074,190.28319949784765,6.339768981481483,5194.316541452295,2019
+1995,66,"(65,70]",HS,1206.3515258735074,190.28319949784765,6.339768981481483,5691.823921799262,2019
+1995,66,"(65,70]",HS,1206.3515258735074,190.28319949784765,6.339768981481483,5249.549067939304,2019
+1995,66,"(65,70]",HS,1206.3515258735074,190.28319949784765,6.339768981481483,5405.563062416446,2019
+1995,78,"(75,80]",HS,11.031932773109244,33.69598324441053,0.32739607843137253,9027.91771329299,2019
+1995,78,"(75,80]",HS,11.031932773109244,33.69598324441053,0.32739607843137253,9003.189893577779,2019
+1995,78,"(75,80]",HS,11.031932773109244,33.69598324441053,0.32739607843137253,9124.051282909893,2019
+1995,78,"(75,80]",HS,11.031932773109244,33.69598324441053,0.32739607843137253,9086.739609945129,2019
+1995,78,"(75,80]",HS,11.031932773109244,33.69598324441053,0.32739607843137253,8933.847501145765,2019
+1995,65,"(60,65]",NoHS,132.38319327731094,31.713866582974614,4.174300000000001,9393.908645853637,2019
+1995,65,"(60,65]",NoHS,147.09243697478993,31.713866582974614,4.638111111111112,9345.844090780733,2019
+1995,65,"(60,65]",NoHS,121.73834586466165,31.713866582974614,3.838647222222222,9355.598803842739,2019
+1995,65,"(60,65]",NoHS,153.67288810260948,31.713866582974614,4.845605555555555,9953.337136264588,2019
+1995,65,"(60,65]",NoHS,180.13017249004866,31.713866582974614,5.6798552777777775,9609.885287235402,2019
+1995,49,"(45,50]",HS,268.44369747899157,69.37408315025698,3.86950984126984,1819.853730094681,2019
+1995,49,"(45,50]",HS,268.44369747899157,69.37408315025698,3.86950984126984,1844.6954333521892,2019
+1995,49,"(45,50]",HS,268.44369747899157,69.37408315025698,3.86950984126984,1780.5681342241085,2019
+1995,49,"(45,50]",HS,268.44369747899157,69.37408315025698,3.86950984126984,1889.1809969920548,2019
+1995,49,"(45,50]",HS,268.44369747899157,69.37408315025698,3.86950984126984,1827.1888852152692,2019
+1995,33,"(30,35]",College,218.41291463954002,79.28466645743653,2.754793888888889,5998.868850134343,2019
+1995,33,"(30,35]",College,218.31614329942502,79.28466645743653,2.753573333333333,6063.9346627262785,2019
+1995,33,"(30,35]",College,218.31614329942502,79.28466645743653,2.753573333333333,6031.6801253061085,2019
+1995,33,"(30,35]",College,218.41291463954002,79.28466645743653,2.754793888888889,6089.5158648037395,2019
+1995,33,"(30,35]",College,218.31614329942502,79.28466645743653,2.753573333333333,6048.101854367882,2019
+1995,40,"(35,40]",HS,20.515524104378596,59.46349984307739,0.3450103703703704,4882.0319911164715,2019
+1995,40,"(35,40]",HS,20.515524104378596,59.46349984307739,0.3450103703703704,4969.280888223261,2019
+1995,40,"(35,40]",HS,20.515524104378596,59.46349984307739,0.3450103703703704,4889.211623817311,2019
+1995,40,"(35,40]",HS,20.515524104378596,59.46349984307739,0.3450103703703704,4907.234560128281,2019
+1995,40,"(35,40]",HS,20.515524104378596,59.46349984307739,0.3450103703703704,4912.961445754654,2019
+1995,41,"(40,45]",HS,54628.021477222464,1827.5115618439122,29.892025100024096,32.39570507413498,2019
+1995,41,"(40,45]",College,35915.482919062364,1833.4579118282197,19.588932305105107,20.34554706471,2019
+1995,41,"(40,45]",HS,44614.04578505086,1458.837862816832,30.581908327294688,20.064932737719722,2019
+1995,41,"(40,45]",HS,295278.4675099514,4519.225988073882,65.33828321247564,36.22090801952496,2019
+1995,41,"(40,45]",College,56757.49417072092,1516.3192459984737,37.43109791721133,19.09768041129702,2019
+1995,43,"(40,45]",College,1130.8698805838126,156.58721625343713,7.221980872011253,3707.4160979124435,2019
+1995,43,"(40,45]",College,563.7898275099514,81.26678311887244,6.937518699186993,3863.766590723073,2019
+1995,43,"(40,45]",College,975.2615656789031,55.499266520205566,17.5725126984127,3815.678602371888,2019
+1995,43,"(40,45]",College,475.72790800530737,150.64086626912942,3.158026900584795,5751.544591837968,2019
+1995,43,"(40,45]",College,1834.2039805395843,156.58721625343713,11.713625316455698,2008.6948465383844,2019
+1995,74,"(70,75]",College,62933.886245024325,5985.992317536458,10.513526063281825,21.771475130045456,2019
+1995,74,"(70,75]",College,74119.06611233967,5569.747818634915,13.307436624752869,22.139802728840415,2019
+1995,74,"(70,75]",College,60315.40861565679,4638.152987760037,13.004186962962963,22.15857878751236,2019
+1995,74,"(70,75]",College,65240.102114108806,5867.0653178503035,11.119716345345346,21.31865848034735,2019
+1995,74,"(70,75]",College,53094.13767359576,5609.390151863635,9.465224603062428,21.252088163683666,2019
+1995,60,"(55,60]",NoHS,186.28482972136226,99.10583307179566,1.8796555555555559,6109.547183386807,2019
+1995,60,"(55,60]",NoHS,186.28482972136226,99.10583307179566,1.8796555555555559,5982.0462977947045,2019
+1995,60,"(55,60]",NoHS,186.28482972136226,99.10583307179566,1.8796555555555559,6034.286120054012,2019
+1995,60,"(55,60]",NoHS,254.0247678018576,99.10583307179566,2.563166666666667,6021.27513818469,2019
+1995,60,"(55,60]",NoHS,186.28482972136226,99.10583307179566,1.8796555555555559,5957.292072313788,2019
+1995,82,"(80,85]",College,311830.93427686865,3686.736990270799,84.58182265232973,20.12365416564478,2019
+1995,82,"(80,85]",College,301185.31269349845,3627.2734904277218,83.03352738312081,21.728651686078898,2019
+1995,82,"(80,85]",College,314221.7670057496,3686.736990270799,85.230318255675,21.279309952668655,2019
+1995,82,"(80,85]",College,302392.2448474126,3607.452323813362,83.8243219047619,18.687207744553895,2019
+1995,82,"(80,85]",College,303909.2323750553,3647.09465704208,83.3291320772947,20.149174934146174,2019
+1995,33,"(30,35]",College,34.58607695709863,61.44561650451331,0.5628729749103943,6733.120037974681,2019
+1995,33,"(30,35]",College,33.36675807164971,77.30254979600063,0.4316385185185184,6696.346992091407,2019
+1995,33,"(30,35]",College,35.86345864661654,69.37408315025698,0.5169575873015873,6766.567969259786,2019
+1995,33,"(30,35]",College,89.76509509066786,75.32043313456471,1.1917761403508773,6721.385339673376,2019
+1995,33,"(30,35]",College,38.689181777974355,69.37408315025698,0.5576892698412699,6728.507902504949,2019
+1995,58,"(55,60]",College,2296.86969305617,188.30108283641175,12.197857061988305,6493.839983934433,2019
+1995,58,"(55,60]",College,1971.330904909332,188.30108283641175,10.469036477192983,10901.798327242484,2019
+1995,58,"(55,60]",College,2010.6200689960194,188.30108283641175,10.6776872374269,10983.745522883983,2019
+1995,58,"(55,60]",College,2111.649348076073,188.30108283641175,11.214217763742692,11066.867201001856,2019
+1995,58,"(55,60]",College,2228.97492083149,188.30108283641175,11.837292102923975,10759.260322001825,2019
+1995,47,"(45,50]",College,7042.243962848297,800.775131220109,8.79428404840484,701.2947968887518,2019
+1995,47,"(45,50]",College,7042.243962848297,800.775131220109,8.79428404840484,628.4367600338842,2019
+1995,47,"(45,50]",College,7042.243962848297,800.775131220109,8.79428404840484,629.8510171803075,2019
+1995,47,"(45,50]",College,7042.243962848297,800.775131220109,8.79428404840484,635.6152717336347,2019
+1995,47,"(45,50]",College,7042.243962848297,800.775131220109,8.79428404840484,633.1002723575365,2019
+1995,69,"(65,70]",HS,64.77873507297656,35.67809990584644,1.8156441975308644,7949.4373248525635,2019
+1995,69,"(65,70]",HS,21.057443609022556,31.713866582974614,0.6639822222222221,7825.149611068972,2019
+1995,69,"(65,70]",HS,136.00244139761168,33.69598324441053,4.0361618300653594,7706.266612927988,2019
+1995,69,"(65,70]",HS,47.921167624944715,41.624449890154175,1.1512744973544975,8085.763625092788,2019
+1995,69,"(65,70]",HS,137.3378858911986,37.660216567282355,3.6467630409356726,7738.642348680694,2019
+1995,35,"(30,35]",College,327.66775762936754,101.08794973323158,3.241412636165577,6271.7943479708665,2019
+1995,35,"(30,35]",College,191.62660769570985,241.81823269518142,0.7924406921675774,6311.256820159493,2019
+1995,35,"(30,35]",College,173.5884298982751,166.4977995606167,1.0425869312169314,6267.503668204356,2019
+1995,35,"(30,35]",College,308.39090667846085,342.906182428413,0.8993448426461144,6509.0302411404355,2019
+1995,35,"(30,35]",College,311.17792127377265,154.60509959200127,2.012727407407407,6323.480698771091,2019
+1995,60,"(55,60]",NoHS,26.12826183104821,33.69598324441053,0.7754117647058824,6361.395607576328,2019
+1995,60,"(55,60]",NoHS,26.12826183104821,33.69598324441053,0.7754117647058824,6297.178233626601,2019
+1995,60,"(55,60]",NoHS,26.12826183104821,33.69598324441053,0.7754117647058824,6367.939012146518,2019
+1995,60,"(55,60]",NoHS,26.12826183104821,33.69598324441053,0.7754117647058824,6399.7444328591755,2019
+1995,60,"(55,60]",NoHS,26.12826183104821,33.69598324441053,0.7754117647058824,6296.004358776188,2019
+1995,78,"(75,80]",College,593.4018575851394,59.46349984307739,9.979262222222225,7916.36052864666,2019
+1995,78,"(75,80]",College,593.4018575851394,59.46349984307739,9.979262222222225,8185.187561852147,2019
+1995,78,"(75,80]",College,593.4018575851394,59.46349984307739,9.979262222222225,8134.241423622087,2019
+1995,78,"(75,80]",College,593.4018575851394,59.46349984307739,9.979262222222225,7711.63871300392,2019
+1995,78,"(75,80]",College,593.4018575851394,59.46349984307739,9.979262222222225,8180.611805163591,2019
+1995,54,"(50,55]",HS,547.1258027421494,160.55144957630895,3.407791111111111,311.7815152820514,2019
+1995,54,"(50,55]",HS,547.1258027421494,160.55144957630895,3.407791111111111,318.8053047570435,2019
+1995,54,"(50,55]",HS,547.1258027421494,160.55144957630895,3.407791111111111,314.84720879752075,2019
+1995,54,"(50,55]",HS,547.1258027421494,160.55144957630895,3.407791111111111,307.7326809179011,2019
+1995,54,"(50,55]",HS,547.1258027421494,160.55144957630895,3.407791111111111,312.805525645207,2019
+1995,37,"(35,40]",College,2.9805572755417957,33.69598324441053,0.08845437908496731,5858.438393720253,2019
+1995,37,"(35,40]",College,2.9805572755417957,33.69598324441053,0.08845437908496731,5963.137070326683,2019
+1995,37,"(35,40]",College,2.9805572755417957,33.69598324441053,0.08845437908496731,5867.053952967701,2019
+1995,37,"(35,40]",College,2.9805572755417957,33.69598324441053,0.08845437908496731,5888.681476557033,2019
+1995,37,"(35,40]",College,2.9805572755417957,33.69598324441053,0.08845437908496731,5895.55373931382,2019
+1995,38,"(35,40]",HS,2.9224944714727994,67.39196648882105,0.043365620915032675,5177.837597366892,2019
+1995,38,"(35,40]",HS,2.070906678460858,49.55291653589783,0.041791822222222226,5173.82310894739,2019
+1995,38,"(35,40]",HS,2.941848739495798,57.48138318164148,0.0511791570881226,5190.511646564295,2019
+1995,38,"(35,40]",HS,3.2321627598407785,51.53503319733374,0.06271777777777779,5093.536198718573,2019
+1995,38,"(35,40]",HS,1.1612560813799204,55.499266520205566,0.020923809523809525,5179.552181430465,2019
+1995,47,"(45,50]",College,6565.35479876161,1387.4816630051394,4.731849777777778,173.80829541612758,2019
+1995,47,"(45,50]",College,6565.35479876161,1387.4816630051394,4.731849777777778,155.9016655346859,2019
+1995,47,"(45,50]",College,6565.35479876161,1387.4816630051394,4.731849777777778,154.9296634455761,2019
+1995,47,"(45,50]",College,6565.35479876161,1387.4816630051394,4.731849777777778,143.6034844301031,2019
+1995,47,"(45,50]",College,6565.35479876161,1387.4816630051394,4.731849777777778,155.3212909050215,2019
+1995,23,"(20,25]",College,0.774170720919947,79.28466645743653,0.009764444444444445,7355.350956972177,2019
+1995,23,"(20,25]",College,0.774170720919947,79.28466645743653,0.009764444444444445,7351.664613124228,2019
+1995,23,"(20,25]",College,0.774170720919947,79.28466645743653,0.009764444444444445,7347.395015757601,2019
+1995,23,"(20,25]",College,0.774170720919947,79.28466645743653,0.009764444444444445,7369.11934922994,2019
+1995,23,"(20,25]",College,0.774170720919947,79.28466645743653,0.009764444444444445,7304.117266317235,2019
+1995,26,"(25,30]",HS,5.574029190623618,99.10583307179566,0.0562432,6435.293021369728,2019
+1995,26,"(25,30]",HS,5.574029190623618,99.10583307179566,0.0562432,6351.300512088057,2019
+1995,26,"(25,30]",HS,5.574029190623618,99.10583307179566,0.0562432,6456.119899191933,2019
+1995,26,"(25,30]",HS,5.574029190623618,99.10583307179566,0.0562432,6405.313021849953,2019
+1995,26,"(25,30]",HS,5.574029190623618,99.10583307179566,0.0562432,6369.002781104376,2019
+1995,58,"(55,60]",HS,73.15913312693499,85.23101644174427,0.8583627906976744,5615.823850356332,2019
+1995,58,"(55,60]",HS,59.61114551083592,85.23101644174427,0.6994067183462532,5386.107195983072,2019
+1995,58,"(55,60]",HS,45.2889871738169,85.23101644174427,0.5313674418604651,5443.773593117732,2019
+1995,58,"(55,60]",HS,71.22370632463512,85.23101644174427,0.8356547803617571,5304.881391283238,2019
+1995,58,"(55,60]",HS,109.93224237063247,85.23101644174427,1.2898149870801034,9345.810447315636,2019
+1995,63,"(60,65]",College,138413.01547987617,19642.776114829903,7.046509855364951,12.843548598773811,2019
+1995,63,"(60,65]",College,139729.10570544007,19662.597281444265,7.106340210573475,12.928149932801253,2019
+1995,63,"(60,65]",College,139458.1459531181,19067.962283013487,7.313741441441442,13.087769245243456,2019
+1995,63,"(60,65]",College,135674.38655462186,19404.92211545759,6.99175115196913,12.470737026418899,2019
+1995,63,"(60,65]",College,139314.9243697479,19444.564448686313,7.16472332087439,12.524370155609386,2019
+1995,39,"(35,40]",HS,161.8016806722689,33.69598324441053,4.801809150326797,4791.751547585758,2019
+1995,39,"(35,40]",HS,156.38248562582928,41.624449890154175,3.7569862433862435,4725.827130187653,2019
+1995,39,"(35,40]",HS,155.0276868642194,41.624449890154175,3.724438095238096,4721.838298178978,2019
+1995,39,"(35,40]",HS,153.28580274214949,37.660216567282355,4.070231578947368,4772.3404511322815,2019
+1995,39,"(35,40]",HS,153.28580274214949,33.69598324441053,4.549082352941176,4738.9544748797625,2019
+1995,63,"(60,65]",NoHS,283.4432551968156,57.48138318164148,4.931044444444445,6063.610733872398,2019
+1995,63,"(60,65]",NoHS,283.4432551968156,57.48138318164148,4.931044444444445,5937.068501649892,2019
+1995,63,"(60,65]",NoHS,283.4432551968156,57.48138318164148,4.931044444444445,5988.915543252002,2019
+1995,63,"(60,65]",NoHS,283.4432551968156,57.48138318164148,4.931044444444445,5976.002388323669,2019
+1995,63,"(60,65]",NoHS,283.4432551968156,57.48138318164148,4.931044444444445,5912.500398183409,2019
+1995,41,"(40,45]",HS,0.3870853604599735,19.821166614359132,0.01952888888888889,7593.1901780671615,2019
+1995,41,"(40,45]",HS,0.3870853604599735,16.25335662377449,0.023815718157181573,7571.129086633274,2019
+1995,41,"(40,45]",HS,0.3870853604599735,18.03726161906681,0.02146031746031746,7583.517809367542,2019
+1995,41,"(40,45]",HS,0.3870853604599735,18.235473285210404,0.021227053140096618,7719.553488314341,2019
+1995,41,"(40,45]",HS,0.3870853604599735,16.25335662377449,0.023815718157181573,7622.286481512405,2019
+1995,23,"(20,25]",HS,110.66770455550642,79.28466645743653,1.3958273333333335,5268.729176837853,2019
+1995,23,"(20,25]",HS,107.60973020787262,79.28466645743653,1.3572577777777777,5236.256711282642,2019
+1995,23,"(20,25]",HS,105.96461742591774,79.28466645743653,1.3365083333333334,5284.726601656128,2019
+1995,23,"(20,25]",HS,137.49272003538258,79.28466645743653,1.7341653333333333,5219.534315922418,2019
+1995,23,"(20,25]",HS,108.1322954444936,79.28466645743653,1.363848777777778,5237.1650955289315,2019
+1995,46,"(45,50]",College,3119.9080053073862,184.33684951353993,16.92503703703704,1608.4978260758285,2019
+1995,46,"(45,50]",College,3119.9080053073862,184.33684951353993,16.92503703703704,1447.6582868230273,2019
+1995,46,"(45,50]",College,3119.9080053073862,184.33684951353993,16.92503703703704,1446.9314256281025,2019
+1995,46,"(45,50]",College,3119.9080053073862,184.33684951353993,16.92503703703704,1324.5185751454474,2019
+1995,46,"(45,50]",College,3119.9080053073862,184.33684951353993,16.92503703703704,1440.6919053895501,2019
+1995,23,"(20,25]",HS,11.825457762052189,29.731749921538697,0.39773837037037035,3386.604106089983,2019
+1995,23,"(20,25]",HS,16.664024767801855,29.731749921538697,0.560479111111111,3355.6410414871034,2019
+1995,23,"(20,25]",HS,13.760884564352057,29.731749921538697,0.4628346666666667,3350.068014532164,2019
+1995,23,"(20,25]",HS,12.309314462627157,29.731749921538697,0.4140124444444445,3326.728514820824,2019
+1995,23,"(20,25]",HS,13.56734188412207,29.731749921538697,0.4563250370370371,3320.108575443236,2019
+1995,63,"(60,65]",College,3264.290844758956,194.2474328207195,16.804808163265307,165.27472636453817,2019
+1995,63,"(60,65]",College,3264.290844758956,194.2474328207195,16.804808163265307,148.65198943133365,2019
+1995,63,"(60,65]",College,3264.290844758956,194.2474328207195,16.804808163265307,146.91106518484872,2019
+1995,63,"(60,65]",College,3264.290844758956,194.2474328207195,16.804808163265307,150.05112198444456,2019
+1995,63,"(60,65]",College,3264.290844758956,194.2474328207195,16.804808163265307,148.50835146329194,2019
+1995,36,"(35,40]",College,64784.173622291026,848.3459310945709,76.3652788888889,20.12365416564478,2019
+1995,36,"(35,40]",College,137500.92624502434,644.1879149666719,213.44847217777777,40.025483906567764,2019
+1995,36,"(35,40]",College,59933.432781954885,1310.1791132091387,45.74445751554883,21.279309952668655,2019
+1995,36,"(35,40]",College,54980.69494913755,1058.4502972067776,51.944522188930506,18.687207744553895,2019
+1995,36,"(35,40]",College,50028.38291021672,1423.1597629109856,35.1530335623646,20.149174934146174,2019
+1995,60,"(55,60]",HS,4770.827067669173,223.9791827422582,21.30031465093412,881.2923023549425,2019
+1995,60,"(55,60]",HS,2721.5971693940737,225.9612994036941,12.044527875243666,2478.139348825786,2019
+1995,60,"(55,60]",HS,5915.825563909775,122.89123300902662,48.13871111111112,685.1720229443742,2019
+1995,60,"(55,60]",HS,3341.7079168509513,83.24889978030835,40.141166137566145,684.5604029773828,2019
+1995,60,"(55,60]",HS,3471.9621406457322,140.73028296194985,24.671037871674493,700.6123549239056,2019
+1995,25,"(20,25]",HS,19.644582043343654,83.24889978030835,0.23597407407407411,6573.4358387927905,2019
+1995,25,"(20,25]",HS,1.5289871738168952,59.46349984307739,0.025713037037037038,6782.740189323673,2019
+1995,25,"(20,25]",HS,5.419195046439628,61.44561650451331,0.08819498207885304,6609.389752358627,2019
+1995,25,"(20,25]",HS,13.160902255639098,87.21313310318017,0.15090505050505054,6824.075232584926,2019
+1995,25,"(20,25]",HS,15.386643078283946,97.12371641035975,0.15842312925170068,6627.384341846479,2019
+1995,53,"(50,55]",College,36734.01362229102,301.28173253825884,121.92579122807017,689.7355999500627,2019
+1995,53,"(50,55]",College,32952.18965059708,406.3339155943622,81.0963308401084,787.9118980613774,2019
+1995,53,"(50,55]",College,23880.844228217604,414.2623822401059,57.64666368952685,674.022180908075,2019
+1995,53,"(50,55]",College,42695.128173374615,327.0492491369256,130.54647973063976,849.7358675705849,2019
+1995,53,"(50,55]",College,39335.22724458204,412.2802655786699,95.40895,655.8752488420885,2019
+1995,72,"(70,75]",NoHS,98.82289252543123,8.126678311887245,12.16030569105691,7309.446297450125,2019
+1995,72,"(70,75]",NoHS,100.06156567890314,6.937408315025696,14.423479365079366,7307.610971113191,2019
+1995,72,"(70,75]",NoHS,101.31959310039805,7.333831647312879,13.81536936936937,7310.912259919065,2019
+1995,72,"(70,75]",NoHS,95.57137549756746,9.910583307179566,9.643365333333335,7037.853634104441,2019
+1995,72,"(70,75]",NoHS,96.3455462184874,21.803283275795042,4.418854949494951,7040.920498319506,2019
+1995,72,"(70,75]",College,1545536.814860681,917.7200142448279,1684.1049458123348,1.3152534107515892,2019
+1995,72,"(70,75]",College,1406747.3588677575,3052.4596586113066,460.8569862337662,1.4216786768684404,2019
+1995,72,"(70,75]",College,1519381.4570544008,917.7200142448279,1655.604578161747,1.3890361790858154,2019
+1995,72,"(70,75]",College,1623195.8153029634,1036.647013930983,1565.8134287656678,1.2277564783352204,2019
+1995,72,"(70,75]",College,1699513.5649712516,1700.6560955120137,999.3281824915824,1.3230953293057666,2019
+1995,49,"(45,50]",College,-3.619248120300752,35.67809990584644,-0.10144172839506173,5856.01287584952,2019
+1995,49,"(45,50]",College,-3.619248120300752,35.67809990584644,-0.10144172839506173,5798.091330389807,2019
+1995,49,"(45,50]",College,-3.619248120300752,35.67809990584644,-0.10144172839506173,5764.224380213776,2019
+1995,49,"(45,50]",College,-3.619248120300752,35.67809990584644,-0.10144172839506173,5945.026715649392,2019
+1995,49,"(45,50]",College,-3.619248120300752,35.67809990584644,-0.10144172839506173,5840.186704625459,2019
+1995,40,"(35,40]",HS,1035.3178593542682,79.28466645743653,13.058235666666668,4007.7581965390614,2019
+1995,40,"(35,40]",HS,1035.5114020344981,79.28466645743653,13.060676777777779,4157.322201110228,2019
+1995,40,"(35,40]",HS,1035.3178593542682,79.28466645743653,13.058235666666668,4097.132575056216,2019
+1995,40,"(35,40]",HS,1035.5114020344981,79.28466645743653,13.060676777777779,3892.022942623395,2019
+1995,40,"(35,40]",HS,1035.5114020344981,79.28466645743653,13.060676777777779,4129.8668439536405,2019
+1995,44,"(40,45]",HS,685.353984962406,273.53209927815607,2.505570595813204,5035.035863347895,2019
+1995,44,"(40,45]",HS,532.2423706324635,146.6766329462576,3.628678678678678,5242.195767215112,2019
+1995,44,"(40,45]",HS,588.5245820433437,430.1193155315932,1.3682821505376344,5167.996557272747,2019
+1995,44,"(40,45]",HS,1090.6130030959753,434.083548854465,2.512449518011162,4908.994178675963,2019
+1995,44,"(40,45]",HS,1061.0009730207873,378.58428233425946,2.802548923792903,5202.144620113799,2019
+1995,62,"(60,65]",College,90413.57919504645,4321.014321930291,20.924156334352702,27.67371602029138,2019
+1995,62,"(60,65]",College,76842.36645731977,1201.1626968301634,63.97332073340668,28.140505379869268,2019
+1995,62,"(60,65]",College,79224.64459973463,1165.4845969243174,67.97571139833708,28.140597625019957,2019
+1995,62,"(60,65]",College,83292.91173816896,991.0583307179566,84.04440904888891,27.149744053184026,2019
+1995,62,"(60,65]",College,78251.1249181778,991.0583307179566,78.95713349333334,27.423349206744035,2019
+1995,71,"(70,75]",HS,94.06174259177355,25.76751659866687,3.6504000000000003,7580.166518811518,2019
+1995,71,"(70,75]",HS,94.06174259177355,25.76751659866687,3.6504000000000003,7578.263217428049,2019
+1995,71,"(70,75]",HS,94.06174259177355,25.76751659866687,3.6504000000000003,7581.68677618433,2019
+1995,71,"(70,75]",HS,94.06174259177355,25.76751659866687,3.6504000000000003,7548.4300263280675,2019
+1995,71,"(70,75]",HS,94.06174259177355,25.76751659866687,3.6504000000000003,7576.2719744144415,2019
+1995,68,"(65,70]",HS,7617.452808491817,495.5291653589783,15.372360177777779,266.2710057351491,2019
+1995,68,"(65,70]",HS,7617.452808491817,495.5291653589783,15.372360177777779,240.05148966087395,2019
+1995,68,"(65,70]",HS,7617.452808491817,495.5291653589783,15.372360177777779,236.81406969648947,2019
+1995,68,"(65,70]",HS,7617.452808491817,495.5291653589783,15.372360177777779,244.2358740114048,2019
+1995,68,"(65,70]",HS,7617.452808491817,495.5291653589783,15.372360177777779,240.5642051289903,2019
+1995,56,"(55,60]",NoHS,117.86749226006192,31.713866582974614,3.7165916666666665,7698.399248173887,2019
+1995,56,"(55,60]",NoHS,132.38319327731094,31.713866582974614,4.174300000000001,7558.32136471321,2019
+1995,56,"(55,60]",NoHS,125.22211410880142,31.713866582974614,3.948497222222222,7678.579306015199,2019
+1995,56,"(55,60]",NoHS,119.4158337019018,31.713866582974614,3.7654138888888884,7666.8530585775125,2019
+1995,56,"(55,60]",NoHS,122.51251658558161,31.713866582974614,3.8630583333333335,7570.964169877804,2019
+1995,40,"(35,40]",NoHS,3.077328615656789,8.91952497646161,0.3450103703703704,4817.102178966246,2019
+1995,40,"(35,40]",NoHS,1.6451127819548872,11.496276636328297,0.14309961685823755,4832.445627679339,2019
+1995,40,"(35,40]",NoHS,2.6515347191508183,23.785399937230956,0.11147740740740743,4828.291860885297,2019
+1995,40,"(35,40]",NoHS,2.9805572755417957,31.713866582974614,0.09398277777777778,4822.130053783383,2019
+1995,40,"(35,40]",NoHS,4.025687748783724,23.785399937230956,0.1692503703703704,4836.251527598841,2019
+1995,53,"(50,55]",College,17846.570544007078,1486.587496076935,12.005058962962964,28.669459919250777,2019
+1995,53,"(50,55]",College,17846.570544007078,1486.587496076935,12.005058962962964,25.149245955546455,2019
+1995,53,"(50,55]",College,17846.570544007078,1486.587496076935,12.005058962962964,26.276727498950503,2019
+1995,53,"(50,55]",College,17846.570544007078,1486.587496076935,12.005058962962964,25.516430734781814,2019
+1995,53,"(50,55]",College,17846.570544007078,1486.587496076935,12.005058962962964,26.48580049292277,2019
+1995,80,"(75,80]",HS,789.3444670499779,53.517149858769656,14.749374156378602,6135.179404207365,2019
+1995,80,"(75,80]",HS,408.316992481203,89.1952497646161,4.577788543209876,11823.125069580432,2019
+1995,80,"(75,80]",HS,590.7696771340115,162.53356623774488,3.634754905149052,6304.037097662117,2019
+1995,80,"(75,80]",HS,433.4194781070323,33.69598324441053,12.86264522875817,12265.047138375388,2019
+1995,80,"(75,80]",HS,380.00169836355593,77.30254979600063,4.915771851851851,12120.87637653176,2019
+1995,57,"(55,60]",HS,17227.23396727112,3429.06182428413,5.023891329479769,359.93979019970027,2019
+1995,57,"(55,60]",HS,17283.361344537818,3547.9888239702855,4.871312228429547,405.72866573856277,2019
+1995,57,"(55,60]",HS,17283.361344537818,3785.8428233425943,4.565261198371147,363.878798795915,2019
+1995,57,"(55,60]",HS,16994.982750995132,3746.200490113876,4.53659188712522,435.8037787799493,2019
+1995,57,"(55,60]",HS,16960.14506855374,3627.2734904277218,4.675728233151184,339.62592173072323,2019
+1995,76,"(75,80]",NoHS,-4.062460858027421,25.76751659866687,-0.15765822222222223,7224.955063112828,2019
+1995,76,"(75,80]",NoHS,-1.9334913754975676,25.76751659866687,-0.07503600000000002,7201.122629630171,2019
+1995,76,"(75,80]",NoHS,3.0986183104820877,25.76751659866687,0.12025288888888891,7217.890109882173,2019
+1995,76,"(75,80]",NoHS,5.034045112781955,25.76751659866687,0.19536400000000004,7232.024425174869,2019
+1995,76,"(75,80]",NoHS,0.1954781070322866,25.76751659866687,0.007586222222222223,7218.129802791096,2019
+1995,39,"(35,40]",HS,133.38961521450688,43.606566551590085,3.0589341414141424,5531.2193688918505,2019
+1995,39,"(35,40]",HS,133.38961521450688,43.606566551590085,3.0589341414141424,5455.121430429446,2019
+1995,39,"(35,40]",HS,133.38961521450688,43.606566551590085,3.0589341414141424,5450.517037934021,2019
+1995,39,"(35,40]",HS,133.38961521450688,43.606566551590085,3.0589341414141424,5508.8127329031795,2019
+1995,39,"(35,40]",HS,133.38961521450688,43.606566551590085,3.0589341414141424,5470.274599892021,2019
+1995,44,"(40,45]",College,202.9488544891641,188.30108283641175,1.0777890994152048,5090.7231895489085,2019
+1995,44,"(40,45]",College,200.72311366651923,188.30108283641175,1.0659689824561402,5299.577862724535,2019
+1995,44,"(40,45]",College,200.80053073861126,188.30108283641175,1.0663801169590645,5224.169027116424,2019
+1995,44,"(40,45]",College,202.89079168509508,188.30108283641175,1.0774807485380118,4961.551143506667,2019
+1995,44,"(40,45]",College,201.86501547987618,188.30108283641175,1.0720332163742692,5261.462355534872,2019
+1995,37,"(35,40]",HS,169.3498452012384,41.624449890154175,4.068518518518519,5798.153252082871,2019
+1995,37,"(35,40]",HS,83.0685183547103,43.606566551590085,1.9049543434343439,5842.22554899019,2019
+1995,37,"(35,40]",HS,57.65636444051305,31.713866582974614,1.8180175,5814.587577994714,2019
+1995,37,"(35,40]",HS,16.896275984077842,37.660216567282355,0.44865052631578944,5708.96647934616,2019
+1995,37,"(35,40]",HS,33.92803184431668,45.588683213026,0.7442204830917876,5820.6118163225565,2019
+1995,72,"(70,75]",HS,2314.0737019018134,241.81823269518142,9.569475701275046,732.0140201734343,2019
+1995,72,"(70,75]",HS,4864.501724900487,225.9612994036941,21.528030409356727,874.3650340573322,2019
+1995,72,"(70,75]",HS,1614.5330384785493,295.3353825539511,5.46677822520507,619.2097870836614,2019
+1995,72,"(70,75]",HS,4103.511260504201,364.709465704208,11.251452584541063,877.9228527919182,2019
+1995,72,"(70,75]",HS,6019.370897832818,146.6766329462576,41.038376576576574,869.3338345074256,2019
+1995,28,"(25,30]",HS,27.966917293233085,107.03429971753931,0.26128930041152265,6256.138301539398,2019
+1995,28,"(25,30]",HS,27.966917293233085,107.03429971753931,0.26128930041152265,6287.726337298425,2019
+1995,28,"(25,30]",HS,27.966917293233085,107.03429971753931,0.26128930041152265,6322.631127099628,2019
+1995,28,"(25,30]",HS,27.966917293233085,107.03429971753931,0.26128930041152265,6367.130961263352,2019
+1995,28,"(25,30]",HS,27.966917293233085,107.03429971753931,0.26128930041152265,6351.471385365219,2019
+1995,25,"(20,25]",HS,47.224413976116765,69.37408315025698,0.6807212698412697,5932.818860108337,2019
+1995,25,"(20,25]",HS,47.224413976116765,69.37408315025698,0.6807212698412697,5878.240550363865,2019
+1995,25,"(20,25]",HS,47.224413976116765,69.37408315025698,0.6807212698412697,5935.692255868153,2019
+1995,25,"(20,25]",HS,47.224413976116765,69.37408315025698,0.6807212698412697,5900.1520155418475,2019
+1995,25,"(20,25]",HS,47.224413976116765,69.37408315025698,0.6807212698412697,5909.492050933299,2019
+1995,56,"(55,60]",HS,177.05284387439187,79.28466645743653,2.2331284444444446,5527.685548272219,2019
+1995,56,"(55,60]",HS,252.57319770013268,87.21313310318017,2.896045454545455,5412.327604135899,2019
+1995,56,"(55,60]",HS,169.60145068553737,75.32043313456471,2.2517322807017544,5459.592205239611,2019
+1995,56,"(55,60]",HS,174.55614329942503,83.24889978030835,2.0967982010582014,5447.82036449772,2019
+1995,56,"(55,60]",HS,287.93344537815125,81.26678311887244,3.5430643902439023,5389.930923933211,2019
+1995,39,"(35,40]",NoHS,21.328403361344538,31.713866582974614,0.672526111111111,9850.625100349951,2019
+1995,39,"(35,40]",NoHS,21.328403361344538,31.713866582974614,0.672526111111111,9822.005306044328,2019
+1995,39,"(35,40]",NoHS,21.328403361344538,31.713866582974614,0.672526111111111,9838.077162571768,2019
+1995,39,"(35,40]",NoHS,21.328403361344538,31.713866582974614,0.672526111111111,10014.555881285694,2019
+1995,39,"(35,40]",NoHS,21.328403361344538,31.713866582974614,0.672526111111111,9888.371656187972,2019
+1995,72,"(70,75]",NoHS,86.0297213622291,35.67809990584644,2.4112753086419754,6514.750273739667,2019
+1995,72,"(70,75]",NoHS,86.0297213622291,35.67809990584644,2.4112753086419754,6490.646604276952,2019
+1995,72,"(70,75]",NoHS,84.28783724015922,35.67809990584644,2.362453086419753,6492.43400645812,2019
+1995,72,"(70,75]",NoHS,86.0297213622291,35.67809990584644,2.4112753086419754,6466.414062251665,2019
+1995,72,"(70,75]",NoHS,84.6749226006192,35.67809990584644,2.3733024691358025,6489.85517254373,2019
+1995,44,"(40,45]",College,19398.60865103936,3686.736990270799,5.261728379928314,21.37930316291056,2019
+1995,44,"(40,45]",College,25366.59396727112,3369.5983244410527,7.5280765019607845,23.814430115263647,2019
+1995,44,"(40,45]",College,21063.888580274215,3409.240657669771,6.1784692532299745,21.59007452559501,2019
+1995,44,"(40,45]",College,19547.05588677576,3429.06182428413,5.700409292228644,25.778823899766866,2019
+1995,44,"(40,45]",College,26605.17034940292,3409.240657669771,7.803840509043928,20.9070008654844,2019
+1995,39,"(35,40]",College,12057.321892967715,495.5291653589783,24.332214400000005,168.4091443765248,2019
+1995,39,"(35,40]",College,12057.321892967715,495.5291653589783,24.332214400000005,146.93318372127163,2019
+1995,39,"(35,40]",College,12057.321892967715,495.5291653589783,24.332214400000005,148.0596774186919,2019
+1995,39,"(35,40]",College,12057.321892967715,495.5291653589783,24.332214400000005,151.61737593428026,2019
+1995,39,"(35,40]",College,12057.321892967715,495.5291653589783,24.332214400000005,151.9768634696057,2019
+1995,42,"(40,45]",College,439.72896948252986,87.21313310318017,5.042004040404041,332.0544565775248,2019
+1995,42,"(40,45]",College,441.6643962848297,87.21313310318017,5.064195959595961,341.0939123744423,2019
+1995,42,"(40,45]",College,441.6643962848297,87.21313310318017,5.064195959595961,327.873957844319,2019
+1995,42,"(40,45]",College,437.79354268023,87.21313310318017,5.019812121212122,324.9975941055408,2019
+1995,42,"(40,45]",College,435.8581158779301,87.21313310318017,4.997620202020203,326.40722013134933,2019
+1995,50,"(45,50]",College,1185.4682706766919,257.6751659866688,4.6006306666666665,895.5135966528663,2019
+1995,50,"(45,50]",College,1185.4682706766919,257.6751659866688,4.6006306666666665,880.978890060994,2019
+1995,50,"(45,50]",College,1185.4682706766919,257.6751659866688,4.6006306666666665,905.3465837281108,2019
+1995,50,"(45,50]",College,1185.4682706766919,257.6751659866688,4.6006306666666665,840.113231556768,2019
+1995,50,"(45,50]",College,1185.4682706766919,257.6751659866688,4.6006306666666665,899.2915998882465,2019
+1995,54,"(50,55]",College,338513.6958867758,9811.47747410777,34.50180635690236,20.12365416564478,2019
+1995,54,"(50,55]",College,36367.85022556391,7135.619981169289,5.096662983950616,21.728651686078898,2019
+1995,54,"(50,55]",College,23718.713524988943,6144.561650451332,3.860114825806451,21.279309952668655,2019
+1995,54,"(50,55]",College,26838.563467492262,3012.817325382588,8.9081283625731,18.687207744553895,2019
+1995,54,"(50,55]",College,67113.78880141531,8384.353477873914,8.004646867349619,20.149174934146174,2019
+1995,66,"(65,70]",NoHS,1.6064042459088899,33.69598324441053,0.047673464052287576,5662.159791124943,2019
+1995,66,"(65,70]",NoHS,1.6064042459088899,33.69598324441053,0.047673464052287576,5550.771534954491,2019
+1995,66,"(65,70]",NoHS,1.6064042459088899,33.69598324441053,0.047673464052287576,5534.910140654645,2019
+1995,66,"(65,70]",NoHS,1.6064042459088899,33.69598324441053,0.047673464052287576,5765.0848160232035,2019
+1995,66,"(65,70]",NoHS,1.6064042459088899,33.69598324441053,0.047673464052287576,5525.290769287234,2019
+1995,45,"(40,45]",HS,979.7324015922159,198.21166614359132,4.942859422222223,261.5775891379061,2019
+1995,45,"(40,45]",HS,985.5386819991154,198.21166614359132,4.972152755555555,267.3668281288936,2019
+1995,45,"(40,45]",HS,991.732047766475,198.21166614359132,5.0033989777777785,263.9990672154055,2019
+1995,45,"(40,45]",HS,987.8611941618753,198.21166614359132,4.98387008888889,257.9886009949723,2019
+1995,45,"(40,45]",HS,950.5074568774878,198.21166614359132,4.795416311111111,262.42921415827294,2019
+1995,23,"(20,25]",HS,139.7378151260504,41.624449890154175,3.357108994708995,4653.377093123217,2019
+1995,23,"(20,25]",HS,139.7378151260504,41.624449890154175,3.357108994708995,4641.2282085133875,2019
+1995,23,"(20,25]",HS,139.15718708536048,41.624449890154175,3.343159788359789,4685.372539683259,2019
+1995,23,"(20,25]",HS,139.9313578062804,41.624449890154175,3.3617587301587304,4626.560421675454,2019
+1995,23,"(20,25]",HS,140.5119858469704,41.624449890154175,3.375707936507937,4639.285325398746,2019
+1995,33,"(30,35]",HS,190.23310039805398,99.10583307179566,1.9194944888888892,5600.240967420406,2019
+1995,33,"(30,35]",HS,190.23310039805398,101.08794973323158,1.8818573420479303,5550.253141716187,2019
+1995,33,"(30,35]",HS,190.23310039805398,99.10583307179566,1.9194944888888892,5625.755958761513,2019
+1995,33,"(30,35]",HS,190.23310039805398,107.03429971753931,1.7773097119341565,5558.332442067231,2019
+1995,33,"(30,35]",HS,190.23310039805398,109.01641637897524,1.74499498989899,5607.734209708156,2019
+1995,69,"(65,70]",HS,96.77134011499336,47.57079987446191,2.0342592592592594,9228.43457910671,2019
+1995,69,"(65,70]",HS,85.15877930119417,47.57079987446191,1.7901481481481487,9229.812287072413,2019
+1995,69,"(65,70]",HS,61.93365767359576,47.57079987446191,1.3019259259259262,9233.357169439474,2019
+1995,69,"(65,70]",HS,54.191950464396285,47.57079987446191,1.1391851851851853,9537.20812592228,2019
+1995,69,"(65,70]",HS,85.15877930119417,47.57079987446191,1.7901481481481487,9305.569853967812,2019
+1995,36,"(35,40]",College,12605.125095090669,7908.6454791292945,1.5938412119186856,186.56500734690053,2019
+1995,36,"(35,40]",College,12640.678885448917,6858.12364856826,1.843168705202312,167.66260505410952,2019
+1995,36,"(35,40]",College,12654.478478549316,6996.871814868773,1.8085908693736232,164.77847523435022,2019
+1995,36,"(35,40]",College,12627.885714285714,7492.400980227752,1.6854257730746618,168.47476981668396,2019
+1995,36,"(35,40]",College,12775.558779301195,7393.295147155956,1.7279925290437892,166.7136886076035,2019
+1995,38,"(35,40]",HS,456.25751437417074,71.35619981169287,6.394083703703704,7607.247954350528,2019
+1995,66,"(65,70]",HS,459.66386554621846,134.7839329776421,3.4103758169934637,9518.91527764704,2019
+1995,40,"(35,40]",HS,456.2962229102167,73.3383164731288,6.221798438438438,7645.123750060744,2019
+1995,29,"(25,30]",HS,456.1413887660327,61.44561650451331,7.423497634408602,6261.012095757791,2019
+1995,46,"(45,50]",HS,471.2764263600177,182.354732852104,2.5843937198067635,4393.897015749991,2019
+1995,50,"(45,50]",HS,55.02418398938523,79.28466645743653,0.6940078888888889,6945.38346307731,2019
+1995,50,"(45,50]",HS,33.6377178239717,79.28466645743653,0.42426511111111115,6945.363392930556,2019
+1995,50,"(45,50]",HS,37.41180008845643,79.28466645743653,0.47186677777777775,6959.167064949992,2019
+1995,50,"(45,50]",HS,34.12157452454666,79.28466645743653,0.4303678888888889,7082.142526561906,2019
+1995,50,"(45,50]",HS,56.282211410880144,79.28466645743653,0.7098751111111111,7040.142418772567,2019
+1995,40,"(35,40]",College,3198.196019460416,913.7557809219561,3.500055579657749,176.22525904952346,2019
+1995,40,"(35,40]",College,3198.196019460416,913.7557809219561,3.500055579657749,158.79284583583328,2019
+1995,40,"(35,40]",College,3198.196019460416,913.7557809219561,3.500055579657749,155.88106100040437,2019
+1995,40,"(35,40]",College,3198.196019460416,913.7557809219561,3.500055579657749,160.5154108727985,2019
+1995,40,"(35,40]",College,3198.196019460416,913.7557809219561,3.500055579657749,158.05197027617726,2019
+1995,48,"(45,50]",College,574.6282176028307,198.21166614359132,2.899063555555556,1760.0984587505689,2019
+1995,48,"(45,50]",College,574.6282176028307,198.21166614359132,2.899063555555556,1732.0066982411608,2019
+1995,48,"(45,50]",College,574.6282176028307,198.21166614359132,2.899063555555556,1765.594317450553,2019
+1995,48,"(45,50]",College,574.6282176028307,198.21166614359132,2.899063555555556,1653.1755592828817,2019
+1995,48,"(45,50]",College,574.6282176028307,198.21166614359132,2.899063555555556,1772.565840776125,2019
+1995,70,"(65,70]",NoHS,405.2783724015922,45.588683213026,8.889889855072465,8731.926966371984,2019
+1995,70,"(65,70]",NoHS,405.2783724015922,45.588683213026,8.889889855072465,8861.236576013966,2019
+1995,70,"(65,70]",NoHS,405.2783724015922,45.588683213026,8.889889855072465,8950.52219708791,2019
+1995,70,"(65,70]",NoHS,405.2783724015922,45.588683213026,8.889889855072465,9138.559993579885,2019
+1995,70,"(65,70]",NoHS,405.2783724015922,45.588683213026,8.889889855072465,8821.55964879159,2019
+1995,78,"(75,80]",College,333.2804953560372,69.37408315025698,4.804106666666666,11375.831714990318,2019
+1995,78,"(75,80]",College,318.57125165855814,83.24889978030835,3.8267322751322754,11400.13675418329,2019
+1995,78,"(75,80]",College,319.5389650597081,83.24889978030835,3.8383566137566145,11687.135640309718,2019
+1995,78,"(75,80]",College,312.76497125165855,65.40984982738514,4.781618855218855,11958.189277845197,2019
+1995,78,"(75,80]",College,330.1838124723574,73.3383164731288,4.502200600600601,11684.708532150875,2019
+1995,49,"(45,50]",College,31122.24360902256,6640.09081581031,4.687020776119403,22.37154788791496,2019
+1995,49,"(45,50]",College,25984.07253427687,3845.3063231856722,6.757347880870561,25.736603769062857,2019
+1995,49,"(45,50]",College,23787.36311366652,5629.211318477993,4.225700860719876,22.73058933264077,2019
+1995,49,"(45,50]",College,32431.946926138877,4994.933986818502,6.492968077601411,27.29171695915778,2019
+1995,49,"(45,50]",College,17545.61167624945,2398.3611603374547,7.315667033976127,21.742735071094593,2019
+1995,32,"(30,35]",HS,-19.81877045555064,79.28466645743653,-0.2499697777777778,8534.312404203449,2019
+1995,32,"(30,35]",HS,-19.81877045555064,79.28466645743653,-0.2499697777777778,8425.18212628519,2019
+1995,32,"(30,35]",HS,-19.81877045555064,79.28466645743653,-0.2499697777777778,8555.818640453126,2019
+1995,32,"(30,35]",HS,-19.81877045555064,79.28466645743653,-0.2499697777777778,8540.353264749581,2019
+1995,32,"(30,35]",HS,-19.81877045555064,79.28466645743653,-0.2499697777777778,8503.259345265407,2019
+1995,54,"(50,55]",College,761.0098186643079,67.39196648882105,11.292292810457516,750.0179097478787,2019
+1995,54,"(50,55]",College,776.4932330827069,67.39196648882105,11.522044444444445,767.0040552656516,2019
+1995,54,"(50,55]",College,759.0743918620079,67.39196648882105,11.263573856209149,757.7668977944732,2019
+1995,54,"(50,55]",College,753.2681114551084,67.39196648882105,11.177416993464051,737.6761392152857,2019
+1995,54,"(50,55]",College,836.4914639540026,67.39196648882105,12.412332026143789,748.9099307624313,2019
+1995,33,"(30,35]",NoHS,29.34107032286599,23.785399937230956,1.233574814814815,5735.955306189789,2019
+1995,33,"(30,35]",NoHS,1.8193011941618753,23.785399937230956,0.07648814814814817,5796.570111975299,2019
+1995,33,"(30,35]",NoHS,10.722264484741265,25.76751659866687,0.4161155555555556,5743.952054036549,2019
+1995,33,"(30,35]",NoHS,1.2773816895179124,23.785399937230956,0.05370444444444445,5834.228926576995,2019
+1995,33,"(30,35]",NoHS,3.270871295886776,23.785399937230956,0.13751592592592596,5752.5956025889955,2019
+1995,66,"(65,70]",HS,1.6451127819548872,11.496276636328297,0.14309961685823755,7864.140906017834,2019
+1995,66,"(65,70]",HS,1.8386554621848739,11.496276636328297,0.15993486590038314,7878.022161990621,2019
+1995,66,"(65,70]",HS,1.8773639982308714,11.496276636328297,0.16330191570881228,7854.171531750864,2019
+1995,66,"(65,70]",HS,1.8386554621848739,11.496276636328297,0.15993486590038314,7867.8975249669475,2019
+1995,66,"(65,70]",HS,1.6838213180008845,11.496276636328297,0.14646666666666666,7919.781248743903,2019
+1995,59,"(55,60]",College,5697.7610260946485,553.0105485406198,10.303168793309439,276.5049146986306,2019
+1995,59,"(55,60]",College,5697.7610260946485,553.0105485406198,10.303168793309439,246.55326733645933,2019
+1995,59,"(55,60]",College,5697.7610260946485,553.0105485406198,10.303168793309439,248.90995542343882,2019
+1995,59,"(55,60]",College,5697.7610260946485,553.0105485406198,10.303168793309439,250.32936675001466,2019
+1995,59,"(55,60]",College,5697.7610260946485,553.0105485406198,10.303168793309439,248.30059634944445,2019
+1995,62,"(60,65]",NoHS,10.838390092879257,91.177366426052,0.11887149758454107,8888.028145547225,2019
+1995,62,"(60,65]",NoHS,10.838390092879257,91.177366426052,0.11887149758454107,8787.09333537784,2019
+1995,62,"(60,65]",NoHS,10.838390092879257,91.177366426052,0.11887149758454107,8852.382999358775,2019
+1995,62,"(60,65]",NoHS,10.838390092879257,91.177366426052,0.11887149758454107,8744.765075336054,2019
+1995,62,"(60,65]",NoHS,10.838390092879257,91.177366426052,0.11887149758454107,8623.2389423294,2019
+1995,71,"(70,75]",NoHS,140.0087748783724,75.32043313456471,1.8588418713450292,7853.832023762516,2019
+1995,71,"(70,75]",NoHS,140.0087748783724,67.39196648882105,2.0775291503267974,7809.996414393269,2019
+1995,71,"(70,75]",NoHS,140.0087748783724,67.39196648882105,2.0775291503267974,7893.684400515327,2019
+1995,71,"(70,75]",NoHS,140.0087748783724,63.42773316594923,2.207374722222222,7904.024435546169,2019
+1995,71,"(70,75]",NoHS,140.0087748783724,67.39196648882105,2.0775291503267974,7736.174436728928,2019
+1995,27,"(25,30]",College,-28.470128261831047,25.76751659866687,-1.1048844444444446,6733.120037974681,2019
+1995,27,"(25,30]",College,-24.599274657231316,25.76751659866687,-0.9546622222222224,6696.346992091407,2019
+1995,27,"(25,30]",College,-30.405555064130915,25.76751659866687,-1.1799955555555557,6766.567969259786,2019
+1995,27,"(25,30]",College,-18.986536930561698,25.76751659866687,-0.73684,6721.385339673376,2019
+1995,27,"(25,30]",College,-24.599274657231316,25.76751659866687,-0.9546622222222224,6728.507902504949,2019
+1995,60,"(55,60]",HS,122.7834763379036,39.642333228718265,3.097281777777778,6109.547183386807,2019
+1995,60,"(55,60]",HS,122.7834763379036,39.642333228718265,3.097281777777778,5982.0462977947045,2019
+1995,60,"(55,60]",HS,122.7834763379036,39.642333228718265,3.097281777777778,6034.286120054012,2019
+1995,60,"(55,60]",HS,122.7834763379036,39.642333228718265,3.097281777777778,6021.27513818469,2019
+1995,60,"(55,60]",HS,122.7834763379036,39.642333228718265,3.097281777777778,5957.292072313788,2019
+1995,39,"(35,40]",HS,5.264360902255639,29.731749921538697,0.17706192592592593,5597.064248278552,2019
+1995,39,"(35,40]",HS,5.264360902255639,29.731749921538697,0.17706192592592593,5636.074653634201,2019
+1995,39,"(35,40]",HS,5.264360902255639,29.731749921538697,0.17706192592592593,5635.205420673177,2019
+1995,39,"(35,40]",HS,5.264360902255639,29.731749921538697,0.17706192592592593,5624.10833288185,2019
+1995,39,"(35,40]",HS,5.264360902255639,29.731749921538697,0.17706192592592593,5637.631163167314,2019
+1995,66,"(65,70]",HS,3264.290844758956,87.21313310318017,37.42889090909092,1006.0102874525213,2019
+1995,66,"(65,70]",HS,3283.645112781955,51.53503319733374,63.716755555555565,909.7705000166834,2019
+1995,66,"(65,70]",HS,3084.296152145069,93.15948308748793,33.10769929078015,903.56555157208345,2019
+1995,66,"(65,70]",HS,3066.87731092437,87.21313310318017,35.16531515151516,914.73611921334,2019
+1995,66,"(65,70]",HS,3079.070499778859,59.46349984307739,51.78084888888889,904.8694376098329,2019
+1995,37,"(35,40]",HS,447.7996992481203,120.90911634759071,3.7036057559198543,3540.9727693835243,2019
+1995,37,"(35,40]",HS,447.7996992481203,120.90911634759071,3.7036057559198543,3686.246570950983,2019
+1995,37,"(35,40]",HS,447.7996992481203,120.90911634759071,3.7036057559198543,3633.7941740091437,2019
+1995,37,"(35,40]",HS,447.7996992481203,120.90911634759071,3.7036057559198543,3451.124101410348,2019
+1995,37,"(35,40]",HS,447.7996992481203,120.90911634759071,3.7036057559198543,3659.734429547002,2019
+1995,49,"(45,50]",College,5109.33321539142,412.2802655786699,12.39286388888889,2221.4835310605804,2019
+1995,49,"(45,50]",College,5035.786996904025,412.2802655786699,12.214475000000002,2091.511688738291,2019
+1995,49,"(45,50]",College,5000.949314462628,412.2802655786699,12.129975000000002,1968.8953776587157,2019
+1995,49,"(45,50]",College,5262.231932773109,412.2802655786699,12.763725,1973.6843797778442,2019
+1995,49,"(45,50]",College,5148.041751437418,412.2802655786699,12.486752777777781,2217.755115589546,2019
+1995,66,"(65,70]",College,1586.8564352056612,346.87041575128484,4.574781714285714,638.7032734700704,2019
+1995,66,"(65,70]",College,1586.8564352056612,346.87041575128484,4.574781714285714,526.4972506410035,2019
+1995,66,"(65,70]",College,1586.8564352056612,346.87041575128484,4.574781714285714,536.9866500862329,2019
+1995,66,"(65,70]",College,1586.8564352056612,346.87041575128484,4.574781714285714,545.5328789747933,2019
+1995,66,"(65,70]",College,1586.8564352056612,346.87041575128484,4.574781714285714,531.4060520040604,2019
+1995,66,"(65,70]",HS,13619.404865103936,1551.9973459043201,8.775404739605506,26.390599521947706,2019
+1995,66,"(65,70]",HS,12622.660061919505,1863.1896617497584,6.77475853427896,23.431547074982575,2019
+1995,66,"(65,70]",HS,13714.24077841663,2477.645826794891,5.535190151111112,24.41646490948213,2019
+1995,66,"(65,70]",HS,13596.17974347634,2319.0764938800185,5.862756049382717,23.445735618423583,2019
+1995,66,"(65,70]",HS,12682.6582927908,2656.036326324124,4.775031940298507,24.284436713407285,2019
+1995,31,"(30,35]",College,14.70924369747899,55.499266520205566,0.2650349206349206,6358.085562935389,2019
+1995,31,"(30,35]",College,14.70924369747899,55.499266520205566,0.2650349206349206,6299.595059278012,2019
+1995,31,"(30,35]",College,14.70924369747899,55.499266520205566,0.2650349206349206,6361.164924791511,2019
+1995,31,"(30,35]",College,14.70924369747899,55.499266520205566,0.2650349206349206,6323.077146578476,2019
+1995,31,"(30,35]",College,14.70924369747899,55.499266520205566,0.2650349206349206,6333.086679244132,2019
+1995,65,"(60,65]",College,2110.970013268465,329.0313657983616,6.4157105756358765,6493.839983934433,2019
+1995,65,"(60,65]",College,2076.1323308270676,109.01641637897524,19.04421737373737,11805.254985244985,2019
+1995,65,"(60,65]",College,1128.9731623175587,216.05071609651455,5.225500672782875,8501.061800142383,2019
+1995,65,"(60,65]",College,1485.827156125608,293.3532658925152,5.064975675675675,11908.543530085492,2019
+1995,65,"(60,65]",College,1493.3753206545775,109.01641637897524,13.698627878787876,12015.95644899762,2019
+1995,75,"(70,75]",NoHS,193.63945157010173,31.713866582974614,6.105829166666666,11567.143465357587,2019
+1995,75,"(70,75]",HS,189.18796992481202,33.69598324441053,5.614555555555555,11389.959761274831,2019
+1995,75,"(70,75]",HS,193.63945157010173,35.67809990584644,5.427403703703704,11767.23663232641,2019
+1995,75,"(70,75]",HS,194.60716497125165,39.642333228718265,4.909074444444444,11815.296913830247,2019
+1995,75,"(70,75]",NoHS,189.57505528527201,35.67809990584644,5.313485185185185,11683.718972970943,2019
+1995,47,"(45,50]",College,686.592658115878,198.21166614359132,3.463936666666667,3618.8988568603863,2019
+1995,47,"(45,50]",College,684.850773993808,198.21166614359132,3.4551486666666666,3774.7794928470976,2019
+1995,47,"(45,50]",College,687.3668288367978,198.21166614359132,3.4678424444444444,3736.371790470935,2019
+1995,47,"(45,50]",College,684.6572313135781,198.21166614359132,3.4541722222222226,3529.1802161202068,2019
+1995,47,"(45,50]",College,683.1088898717381,198.21166614359132,3.4463606666666666,3746.984850777551,2019
+1995,74,"(70,75]",HS,180.18823529411765,21.803283275795042,8.264270707070708,9371.187331454987,2019
+1995,74,"(70,75]",HS,180.7495090667846,21.803283275795042,8.290013333333334,9377.728236502147,2019
+1995,74,"(70,75]",HS,180.63338345864662,21.803283275795042,8.284687272727274,9548.069450837338,2019
+1995,74,"(70,75]",HS,178.63989385227774,21.803283275795042,8.193256565656567,9564.50843370121,2019
+1995,74,"(70,75]",HS,175.96900486510393,21.803283275795042,8.070757171717172,9337.757731468166,2019
+1995,38,"(35,40]",College,48.44373286156568,101.08794973323158,0.47922361655773416,4451.81628822596,2019
+1995,38,"(35,40]",College,48.44373286156568,101.08794973323158,0.47922361655773416,4414.863627232744,2019
+1995,38,"(35,40]",College,48.44373286156568,101.08794973323158,0.47922361655773416,4393.978115049885,2019
+1995,38,"(35,40]",College,48.44373286156568,101.08794973323158,0.47922361655773416,4314.162171146032,2019
+1995,38,"(35,40]",College,48.44373286156568,101.08794973323158,0.47922361655773416,4398.530522424839,2019
+1995,18,"(15,20]",NoHS,5.2256523662096415,19.821166614359132,0.26364,4738.996323858766,2019
+1995,18,"(15,20]",NoHS,5.2256523662096415,19.821166614359132,0.26364,4731.300489200242,2019
+1995,18,"(15,20]",NoHS,5.2256523662096415,19.821166614359132,0.26364,4761.202526243665,2019
+1995,18,"(15,20]",NoHS,5.2256523662096415,19.821166614359132,0.26364,4725.535628976837,2019
+1995,18,"(15,20]",NoHS,5.2256523662096415,19.821166614359132,0.26364,4703.78691649129,2019
+1995,38,"(35,40]",NoHS,0.774170720919947,27.749633260102783,0.027898412698412704,6241.695772545519,2019
+1995,38,"(35,40]",NoHS,0.774170720919947,27.749633260102783,0.027898412698412704,6361.2844709583915,2019
+1995,38,"(35,40]",NoHS,0.774170720919947,27.749633260102783,0.027898412698412704,6262.66385579375,2019
+1995,38,"(35,40]",NoHS,0.774170720919947,27.749633260102783,0.027898412698412704,6279.848463323621,2019
+1995,38,"(35,40]",NoHS,0.774170720919947,27.749633260102783,0.027898412698412704,6286.5939036737,2019
+1995,43,"(40,45]",College,17047.142503317118,378.58428233425946,45.02865887143688,874.8638834770056,2019
+1995,43,"(40,45]",College,17047.142503317118,378.58428233425946,45.02865887143688,791.0775620739005,2019
+1995,43,"(40,45]",College,17047.142503317118,378.58428233425946,45.02865887143688,785.3861166068258,2019
+1995,43,"(40,45]",College,17047.142503317118,378.58428233425946,45.02865887143688,798.2943384448444,2019
+1995,43,"(40,45]",College,17047.142503317118,378.58428233425946,45.02865887143688,790.6605744025237,2019
+1995,55,"(50,55]",HS,207.38098186643077,158.56933291487306,1.3078252777777777,9223.235858803144,2019
+1995,55,"(50,55]",HS,207.38098186643077,158.56933291487306,1.3078252777777777,9215.927979324999,2019
+1995,55,"(50,55]",HS,207.38098186643077,158.56933291487306,1.3078252777777777,9290.526345131762,2019
+1995,55,"(50,55]",HS,207.38098186643077,158.56933291487306,1.3078252777777777,9452.871860823856,2019
+1995,55,"(50,55]",HS,207.38098186643077,158.56933291487306,1.3078252777777777,9223.883725322095,2019
+1995,63,"(60,65]",College,15974.045112781956,828.5247644802118,19.280105794790003,29.098994164828174,2019
+1995,63,"(60,65]",College,16904.985404688192,784.9181979286217,21.537257575757575,32.80732916667187,2019
+1995,63,"(60,65]",College,17212.71826625387,872.1313310318019,19.736383333333333,29.66335962508672,2019
+1995,63,"(60,65]",College,15428.254754533391,903.8451976147765,17.069576510721244,35.02367591611627,2019
+1995,63,"(60,65]",College,16914.66253869969,816.6320645115962,20.712709277238403,28.34401409409307,2019
+1995,74,"(70,75]",College,11682.816806722689,218.03283275795047,53.582832727272724,28.085686323827737,2019
+1995,74,"(70,75]",College,11586.045466607695,218.03283275795047,53.138994343434334,26.19467687052374,2019
+1995,74,"(70,75]",College,11682.816806722689,218.03283275795047,53.582832727272724,26.691725774027656,2019
+1995,74,"(70,75]",College,12553.75886775763,218.03283275795047,57.577378181818176,23.958051961825134,2019
+1995,74,"(70,75]",College,13134.38690844759,218.03283275795047,60.24040848484848,26.919088850692344,2019
+1995,33,"(30,35]",College,10.257762052189298,53.517149858769656,0.19167242798353912,5920.167689567919,2019
+1995,33,"(30,35]",College,10.257762052189298,73.3383164731288,0.13986906906906907,5830.506558329444,2019
+1995,33,"(30,35]",College,10.257762052189298,63.42773316594923,0.1617236111111111,5866.5852170974595,2019
+1995,33,"(30,35]",College,10.257762052189298,91.177366426052,0.1125033816425121,5793.892636308876,2019
+1995,33,"(30,35]",College,8.322335249889429,75.32043313456471,0.1104923976608187,5860.185697941491,2019
+1995,77,"(75,80]",College,33008.70411322424,158.56933291487306,208.16575,418.0022957628189,2019
+1995,77,"(75,80]",College,32999.99469261389,61.44561650451331,537.0601935483871,478.92966165020914,2019
+1995,77,"(75,80]",College,36158.611233967276,114.96276636328297,314.52454022988513,412.3151783745649,2019
+1995,77,"(75,80]",College,32422.26979212738,130.8196996547703,247.83935353535352,512.2912761062823,2019
+1995,77,"(75,80]",College,33105.47545333923,109.01641637897524,303.6742222222222,397.61222995743447,2019
+1995,54,"(50,55]",College,702.1728438743919,196.22954948215542,3.5783236812570145,5690.005525387735,2019
+1995,54,"(50,55]",College,702.1728438743919,196.22954948215542,3.5783236812570145,5609.490461388885,2019
+1995,54,"(50,55]",College,702.1728438743919,196.22954948215542,3.5783236812570145,5709.30722505858,2019
+1995,54,"(50,55]",College,702.1728438743919,196.22954948215542,3.5783236812570145,5408.42136490194,2019
+1995,54,"(50,55]",College,702.1728438743919,196.22954948215542,3.5783236812570145,5777.756261524782,2019
+1995,52,"(50,55]",NoHS,2383.286499778859,247.76458267948914,9.619157322666666,224.31096892409136,2019
+1995,52,"(50,55]",NoHS,3445.2551862007963,398.4054489486186,8.647610606965173,266.31879176469477,2019
+1995,52,"(50,55]",NoHS,2857.4467120743034,158.56933291487306,18.020172372222223,187.7373249438055,2019
+1995,52,"(50,55]",NoHS,861.4604051304732,233.88976604943778,3.683189819209039,342.49182544754314,2019
+1995,52,"(50,55]",NoHS,4702.31489429456,560.9390151863635,8.382934270906949,264.8115130161773,2019
+1995,59,"(55,60]",HS,15.676957098628925,25.76751659866687,0.6084,9052.755271873039,2019
+1995,59,"(55,60]",HS,15.676957098628925,37.660216567282355,0.4162736842105263,8961.369009104394,2019
+1995,59,"(55,60]",HS,15.676957098628925,41.624449890154175,0.3766285714285715,9062.067039898948,2019
+1995,59,"(55,60]",HS,15.676957098628925,27.749633260102783,0.5649428571428572,9107.328600064731,2019
+1995,59,"(55,60]",HS,15.676957098628925,37.660216567282355,0.4162736842105263,8959.698494897113,2019
+1995,63,"(60,65]",NoHS,21.289694825298543,18.235473285210404,1.167487922705314,6556.859936953699,2019
+1995,63,"(60,65]",NoHS,21.289694825298543,15.064086626912939,1.41327485380117,6330.549636838991,2019
+1995,63,"(60,65]",NoHS,21.289694825298543,19.622954948215543,1.0849382716049383,6484.191728135423,2019
+1995,63,"(60,65]",NoHS,21.289694825298543,17.24441495449245,1.2345849297573435,6293.803326583976,2019
+1995,63,"(60,65]",NoHS,21.289694825298543,15.262298293056533,1.3949206349206351,6254.11223010155,2019
+1995,33,"(30,35]",HS,-9.096505970809377,39.642333228718265,-0.22946444444444444,7680.651390502378,2019
+1995,33,"(30,35]",HS,-9.096505970809377,39.642333228718265,-0.22946444444444444,7638.703386545314,2019
+1995,33,"(30,35]",HS,-9.096505970809377,39.642333228718265,-0.22946444444444444,7718.806346672101,2019
+1995,33,"(30,35]",HS,-9.096505970809377,39.642333228718265,-0.22946444444444444,7667.26530406449,2019
+1995,33,"(30,35]",HS,-9.096505970809377,39.642333228718265,-0.22946444444444444,7675.390203339669,2019
+1995,50,"(45,50]",College,4434.391826625388,1078.2714638211369,4.112500400326798,149.55134324885168,2019
+1995,50,"(45,50]",College,4308.976169836355,1078.2714638211369,3.9961886356209146,133.19217906120102,2019
+1995,50,"(45,50]",College,4526.57620521893,1078.2714638211369,4.197993137254902,132.14632655358247,2019
+1995,50,"(45,50]",College,4549.414241486068,1078.2714638211369,4.219173366013072,134.14242271328828,2019
+1995,50,"(45,50]",College,3235.7239451570103,1078.2714638211369,3.000843529411765,133.4915197244548,2019
+1995,67,"(65,70]",College,1861.8805838124724,178.3904995292322,10.437106172839506,1304.0328341930874,2019
+1995,67,"(65,70]",College,1861.8805838124724,178.3904995292322,10.437106172839506,1084.2893777367556,2019
+1995,67,"(65,70]",College,1861.8805838124724,178.3904995292322,10.437106172839506,1150.3717532255719,2019
+1995,67,"(65,70]",College,1861.8805838124724,178.3904995292322,10.437106172839506,1109.8295885360076,2019
+1995,67,"(65,70]",College,1861.8805838124724,178.3904995292322,10.437106172839506,1083.5131863581603,2019
+1995,44,"(40,45]",HS,182.7623529411765,97.12371641035975,1.8817479365079368,8719.319025366818,2019
+1995,44,"(40,45]",HS,151.9503582485626,97.12371641035975,1.5645031292517009,8599.359544757872,2019
+1995,44,"(40,45]",HS,126.22853604599734,63.42773316594923,1.9901158333333333,8592.10125966591,2019
+1995,44,"(40,45]",HS,122.80283060592657,51.53503319733374,2.3829000000000002,8683.997589994136,2019
+1995,44,"(40,45]",HS,144.63444493586908,93.15948308748793,1.5525466666666665,8623.246740325038,2019
+1995,26,"(25,30]",HS,9.464237063246351,27.749633260102783,0.34105809523809527,4672.953864120313,2019
+1995,26,"(25,30]",HS,9.464237063246351,27.749633260102783,0.34105809523809527,4629.965542812804,2019
+1995,26,"(25,30]",HS,9.464237063246351,27.749633260102783,0.34105809523809527,4675.217079319629,2019
+1995,26,"(25,30]",HS,9.464237063246351,27.749633260102783,0.34105809523809527,4647.223994197605,2019
+1995,26,"(25,30]",HS,9.464237063246351,27.749633260102783,0.34105809523809527,4654.58062441043,2019
+1995,89,"(85,90]",College,4284.0672268907565,515.3503319733376,8.312922222222221,203.15074685715183,2019
+1995,89,"(85,90]",College,2845.270942061035,689.7765981796978,4.124916602809707,127.5593263954961,2019
+1995,89,"(85,90]",College,28999.27394957983,662.0269649195949,43.80376553559548,315.7442517854516,2019
+1995,89,"(85,90]",College,11741.266696152145,937.541180859187,12.523467700258397,184.25240908020513,2019
+1995,89,"(85,90]",College,19138.855019902698,604.5455817379535,31.65824976320583,183.15051515092154,2019
+1995,65,"(60,65]",College,9160.5685979655,406.3339155943622,22.544435121951217,37.402548867692175,2019
+1995,65,"(60,65]",College,14631.439540026537,432.1014321930291,33.86112252803262,43.27214522095095,2019
+1995,65,"(60,65]",College,16072.36479433879,376.6021656728235,42.67730315789474,21.946679002333024,2019
+1995,65,"(60,65]",College,13209.675011057056,352.8167657355925,37.4406102372035,19.415451125195737,2019
+1995,65,"(60,65]",College,16267.455816010615,467.77953209887556,34.77590338983051,36.256924788522554,2019
+1995,35,"(30,35]",HS,53.9984077841663,83.24889978030835,0.6486380952380952,7736.184380313057,2019
+1995,35,"(30,35]",HS,53.9984077841663,83.24889978030835,0.6486380952380952,7786.196541365088,2019
+1995,35,"(30,35]",HS,53.9984077841663,83.24889978030835,0.6486380952380952,7774.702138761789,2019
+1995,35,"(30,35]",HS,53.9984077841663,83.24889978030835,0.6486380952380952,8012.44285259375,2019
+1995,35,"(30,35]",HS,53.9984077841663,83.24889978030835,0.6486380952380952,7847.036846899195,2019
+1995,61,"(60,65]",HS,73.35267580716497,27.749633260102783,2.6433746031746033,6373.576898747646,2019
+1995,61,"(60,65]",HS,73.35267580716497,27.749633260102783,2.6433746031746033,6378.27092812415,2019
+1995,61,"(60,65]",HS,73.35267580716497,27.749633260102783,2.6433746031746033,6379.485849769424,2019
+1995,61,"(60,65]",HS,73.35267580716497,27.749633260102783,2.6433746031746033,6385.690203984817,2019
+1995,61,"(60,65]",HS,73.35267580716497,27.749633260102783,2.6433746031746033,6362.740507917436,2019
+1995,44,"(40,45]",NoHS,9.367465723131359,47.57079987446191,0.19691629629629634,8852.023261584343,2019
+1995,44,"(40,45]",NoHS,4.722441397611677,47.57079987446191,0.099271851851851875,8741.176658096618,2019
+1995,44,"(40,45]",NoHS,5.206298098186643,47.57079987446191,0.10944314814814816,8812.265528884116,2019
+1995,44,"(40,45]",NoHS,5.012755417956656,47.57079987446191,0.10537462962962964,8749.727729899603,2019
+1995,44,"(40,45]",NoHS,5.245006634232641,47.57079987446191,0.11025685185185187,8806.50223948144,2019
+1995,43,"(40,45]",HS,68.32056612118532,61.44561650451331,1.1118867383512545,5688.398022822383,2019
+1995,43,"(40,45]",HS,68.32056612118532,61.44561650451331,1.1118867383512545,5590.155582750912,2019
+1995,43,"(40,45]",HS,68.32056612118532,61.44561650451331,1.1118867383512545,5584.0277023293975,2019
+1995,43,"(40,45]",HS,68.32056612118532,61.44561650451331,1.1118867383512545,5644.987622113184,2019
+1995,43,"(40,45]",HS,68.32056612118532,61.44561650451331,1.1118867383512545,5609.004328531812,2019
+1995,75,"(70,75]",HS,4827.012507739938,218.03283275795047,22.138924888888887,1647.5198625723442,2019
+1995,75,"(70,75]",HS,6394.708217602831,218.03283275795047,29.329106707070707,1473.2108955724032,2019
+1995,75,"(70,75]",HS,8599.120636886335,218.03283275795047,39.43956755555556,1475.5943073400583,2019
+1995,75,"(70,75]",HS,7120.473914197258,218.03283275795047,32.657805818181814,1480.3723227490946,2019
+1995,75,"(70,75]",HS,2028.346643078284,218.03283275795047,9.302941292929292,1029.6972047743955,2019
+1995,53,"(50,55]",College,672.5608137992039,103.07006639466748,6.525277777777778,3013.229529755039,2019
+1995,53,"(50,55]",College,672.5608137992039,103.07006639466748,6.525277777777778,3139.5825647930174,2019
+1995,53,"(50,55]",College,672.5608137992039,103.07006639466748,6.525277777777778,3100.709022034514,2019
+1995,53,"(50,55]",College,672.5608137992039,103.07006639466748,6.525277777777778,2942.0071251184636,2019
+1995,53,"(50,55]",College,672.5608137992039,103.07006639466748,6.525277777777778,3109.6938047381364,2019
+1995,65,"(60,65]",HS,87.636125608138,29.731749921538697,2.947560296296297,8129.271943714901,2019
+1995,65,"(60,65]",HS,87.636125608138,29.731749921538697,2.947560296296297,7975.219370118668,2019
+1995,65,"(60,65]",HS,87.636125608138,29.731749921538697,2.947560296296297,8047.473952651921,2019
+1995,65,"(60,65]",HS,87.636125608138,29.731749921538697,2.947560296296297,8399.905425727477,2019
+1995,65,"(60,65]",HS,87.636125608138,29.731749921538697,2.947560296296297,8202.310868388806,2019
+1995,48,"(45,50]",College,88605.77443609023,689.7765981796978,128.45575606641125,132.9976225517907,2019
+1995,48,"(45,50]",College,88553.51791242813,687.7944815182619,128.74996861991673,137.5478696957373,2019
+1995,48,"(45,50]",College,88942.5386996904,638.2415649823641,139.3556038647343,131.60323270968436,2019
+1995,48,"(45,50]",College,88584.48474126493,660.0448482581592,134.20979646312978,132.37344185187482,2019
+1995,48,"(45,50]",College,85532.31667403804,612.4740483836972,139.65051564185546,125.98374051718638,2019
+1995,46,"(45,50]",College,1402.236072534277,180.3726161906681,7.774107301587302,2922.1385265522536,2019
+1995,46,"(45,50]",College,1402.2167182662538,180.3726161906681,7.773999999999999,2504.991759833575,2019
+1995,46,"(45,50]",College,1402.236072534277,180.3726161906681,7.774107301587302,2582.950278499724,2019
+1995,46,"(45,50]",College,1402.236072534277,180.3726161906681,7.774107301587302,2507.6147474233976,2019
+1995,46,"(45,50]",College,1402.2167182662538,180.3726161906681,7.773999999999999,2583.8592752952295,2019
+1995,53,"(50,55]",HS,4087.62140645732,178.3904995292322,22.9138962962963,2221.4835310605804,2019
+1995,53,"(50,55]",HS,4087.62140645732,178.3904995292322,22.9138962962963,2091.511688738291,2019
+1995,53,"(50,55]",HS,4087.62140645732,178.3904995292322,22.9138962962963,1968.8953776587157,2019
+1995,53,"(50,55]",HS,4087.62140645732,178.3904995292322,22.9138962962963,1973.6843797778442,2019
+1995,53,"(50,55]",HS,4087.62140645732,178.3904995292322,22.9138962962963,2217.755115589546,2019
+1995,59,"(55,60]",College,279.4756302521008,39.642333228718265,7.049928888888888,8121.082904283556,2019
+1995,59,"(55,60]",College,279.4756302521008,39.642333228718265,7.049928888888888,7991.61816332687,2019
+1995,59,"(55,60]",College,279.4756302521008,39.642333228718265,7.049928888888888,8090.249262475307,2019
+1995,59,"(55,60]",College,279.4756302521008,39.642333228718265,7.049928888888888,7938.295502322435,2019
+1995,59,"(55,60]",College,279.4756302521008,39.642333228718265,7.049928888888888,7852.528740858921,2019
+1995,64,"(60,65]",HS,276.37894736842105,85.23101644174427,3.242703875968992,7705.848470395342,2019
+1995,64,"(60,65]",HS,284.8174082264485,41.624449890154175,6.8425506878306885,7592.678463623907,2019
+1995,64,"(60,65]",HS,273.57257850508626,190.28319949784765,1.4377127314814817,7715.43007585865,2019
+1995,64,"(60,65]",HS,291.765590446705,190.28319949784765,1.5333229166666669,7701.960430471789,2019
+1995,64,"(60,65]",HS,293.12038920831486,132.8018163162062,2.207201658374792,7600.876422116495,2019
+1995,22,"(20,25]",College,13.954427244582043,17.24441495449245,0.8092143039591314,6104.055969169787,2019
+1995,22,"(20,25]",College,13.954427244582043,17.64083828677963,0.7910297128589262,6090.181718434845,2019
+1995,22,"(20,25]",College,13.954427244582043,15.856933291487307,0.8800205555555555,6177.390300795056,2019
+1995,22,"(20,25]",College,13.954427244582043,18.433684951353992,0.7570069295101554,6064.536988972059,2019
+1995,22,"(20,25]",College,13.954427244582043,15.856933291487307,0.8800205555555555,6111.073083333262,2019
+1995,63,"(60,65]",HS,1630.384183989385,148.65874960769352,10.967293807407405,2058.131165120534,2019
+1995,63,"(60,65]",HS,1889.5184785493145,148.65874960769352,12.710442429629628,1681.3491853848923,2019
+1995,63,"(60,65]",HS,1554.8831844316674,148.65874960769352,10.459412503703701,1716.2177063454085,2019
+1995,63,"(60,65]",HS,1568.2376293675363,148.65874960769352,10.54924539259259,1675.2253560411573,2019
+1995,63,"(60,65]",HS,1984.8576028306059,148.65874960769352,13.351771140740738,1701.0200461467539,2019
+1995,70,"(65,70]",College,701.9793011941618,126.85546633189846,5.533693749999999,5085.351369666893,2019
+1995,70,"(65,70]",College,701.9793011941618,126.85546633189846,5.533693749999999,5285.441613186831,2019
+1995,70,"(65,70]",College,701.9793011941618,126.85546633189846,5.533693749999999,5228.077952448086,2019
+1995,70,"(65,70]",College,701.9793011941618,126.85546633189846,5.533693749999999,4956.881174071951,2019
+1995,70,"(65,70]",College,701.9793011941618,126.85546633189846,5.533693749999999,5253.799955448903,2019
+1995,30,"(25,30]",HS,34.06351172047766,77.30254979600063,0.44065185185185174,6720.2891477140965,2019
+1995,30,"(25,30]",HS,34.06351172047766,77.30254979600063,0.44065185185185174,6660.303756986771,2019
+1995,30,"(25,30]",HS,34.06351172047766,77.30254979600063,0.44065185185185174,6750.907137263331,2019
+1995,30,"(25,30]",HS,34.06351172047766,77.30254979600063,0.44065185185185174,6669.9989173889935,2019
+1995,30,"(25,30]",HS,65.03034055727555,77.30254979600063,0.8412444444444444,6729.281038441749,2019
+1995,39,"(35,40]",NoHS,2.4192835028748343,47.57079987446191,0.05085648148148149,8154.31524702211,2019
+1995,39,"(35,40]",NoHS,2.4192835028748343,47.57079987446191,0.05085648148148149,8310.549062699085,2019
+1995,39,"(35,40]",NoHS,2.4192835028748343,47.57079987446191,0.05085648148148149,8181.708501541815,2019
+1995,39,"(35,40]",NoHS,2.4192835028748343,47.57079987446191,0.05085648148148149,8204.15892403938,2019
+1995,39,"(35,40]",NoHS,2.4192835028748343,47.57079987446191,0.05085648148148149,8212.971344429438,2019
+1995,30,"(25,30]",College,97.7390535161433,75.32043313456471,1.2976432748538012,4620.198794549436,2019
+1995,30,"(25,30]",College,101.80344980097301,75.32043313456471,1.3516046783625728,4578.9588383753435,2019
+1995,30,"(25,30]",College,96.96488279522336,75.32043313456471,1.2873649122807018,4641.248662389574,2019
+1995,30,"(25,30]",College,96.77134011499336,75.32043313456471,1.2847953216374268,4585.624261159801,2019
+1995,30,"(25,30]",College,101.41636444051305,75.32043313456471,1.3464654970760233,4626.3807194320525,2019
+1995,45,"(40,45]",HS,6.773993808049536,59.46349984307739,0.11391851851851853,4952.084538408387,2019
+1995,45,"(40,45]",HS,6.773993808049536,59.46349984307739,0.11391851851851853,4864.858965745538,2019
+1995,45,"(40,45]",HS,6.773993808049536,59.46349984307739,0.11391851851851853,4910.095627059205,2019
+1995,45,"(40,45]",HS,6.773993808049536,59.46349984307739,0.11391851851851853,4905.8754869078475,2019
+1995,45,"(40,45]",HS,6.773993808049536,59.46349984307739,0.11391851851851853,4934.834843712374,2019
+1995,33,"(30,35]",College,26.96049535603715,13.47839329776421,2.0002751633986926,7855.669768565653,2019
+1995,33,"(30,35]",College,15.057620521892968,13.874816630051392,1.0852482539682542,7763.740558455034,2019
+1995,33,"(30,35]",College,19.85747899159664,10.108794973323159,1.9643764705882352,7787.759130289114,2019
+1995,33,"(30,35]",College,597.640442282176,13.874816630051392,43.07375428571429,7732.577594904821,2019
+1995,33,"(30,35]",College,24.579920389208315,11.496276636328297,2.1380766283524903,7760.367553688619,2019
+1995,67,"(65,70]",HS,148.33111012826183,25.76751659866687,5.7565155555555565,8638.130621918794,2019
+1995,67,"(65,70]",HS,157.00182220256525,25.76751659866687,6.093013333333334,8634.419311353031,2019
+1995,67,"(65,70]",HS,131.84127377266697,25.76751659866687,5.11656888888889,8637.630325119631,2019
+1995,67,"(65,70]",HS,126.07370190181337,25.76751659866687,4.8927377777777785,8601.220809349334,2019
+1995,67,"(65,70]",HS,127.97042016806724,25.76751659866687,4.966346666666667,8699.440197902732,2019
+1995,28,"(25,30]",College,452.63826625387,41.624449890154175,10.874336296296297,3703.4161308964676,2019
+1995,28,"(25,30]",College,452.63826625387,41.624449890154175,10.874336296296297,3831.8820816228426,2019
+1995,28,"(25,30]",College,452.63826625387,41.624449890154175,10.874336296296297,3785.309072288733,2019
+1995,28,"(25,30]",College,452.63826625387,41.624449890154175,10.874336296296297,3605.311494816969,2019
+1995,28,"(25,30]",College,452.63826625387,41.624449890154175,10.874336296296297,3816.4609235791345,2019
+1995,27,"(25,30]",HS,27.87014595311809,49.55291653589783,0.562432,5366.889812707727,2019
+1995,27,"(25,30]",HS,27.87014595311809,49.55291653589783,0.562432,5300.0398493454695,2019
+1995,27,"(25,30]",HS,27.87014595311809,49.55291653589783,0.562432,5370.783206650587,2019
+1995,27,"(25,30]",HS,27.87014595311809,49.55291653589783,0.562432,5307.577860787347,2019
+1995,27,"(25,30]",HS,27.87014595311809,49.55291653589783,0.562432,5358.101537084903,2019
+1995,79,"(75,80]",College,686.1088014153029,128.8375829933344,5.325377777777776,6208.688456084859,2019
+1995,79,"(75,80]",College,685.915258735073,124.87334967046255,5.492887477954145,6419.525657309679,2019
+1995,79,"(75,80]",College,687.676497125166,107.03429971753931,6.424823621399178,6379.569328998646,2019
+1995,79,"(75,80]",College,686.050738611234,118.92699968615479,5.768671037037038,6048.128061078811,2019
+1995,79,"(75,80]",College,686.031384343211,140.73028296194985,4.874795743348983,6415.936956715852,2019
+1995,75,"(70,75]",College,947.778505086245,0.09910583307179566,9563.29688888889,5013.694995482985,2019
+1995,75,"(70,75]",College,949.9074745687749,0.09910583307179566,9584.778666666667,5183.95211630961,2019
+1995,75,"(70,75]",College,949.133303847855,0.09910583307179566,9576.967111111113,5151.686228802473,2019
+1995,75,"(70,75]",College,952.0364440513048,0.09910583307179566,9606.260444444446,4884.037845730904,2019
+1995,75,"(70,75]",College,950.1010172490049,0.09910583307179566,9586.731555555556,5181.054137076989,2019
+1995,66,"(65,70]",HS,311.60371517027863,158.56933291487306,1.9650944444444445,4789.066619815103,2019
+1995,66,"(65,70]",HS,329.4096417514374,158.56933291487306,2.0773855555555554,4976.610155238004,2019
+1995,66,"(65,70]",HS,311.60371517027863,158.56933291487306,1.9650944444444445,4922.205271796597,2019
+1995,66,"(65,70]",HS,330.95798319327736,158.56933291487306,2.0871500000000003,4667.6777321553445,2019
+1995,66,"(65,70]",HS,311.60371517027863,158.56933291487306,1.9650944444444445,4985.378941808212,2019
+1995,49,"(45,50]",College,1948.0070765148164,358.7631157199002,5.429786372007368,685.466936946986,2019
+1995,49,"(45,50]",College,1948.0070765148164,358.7631157199002,5.429786372007368,564.6226524226587,2019
+1995,49,"(45,50]",College,1948.0070765148164,358.7631157199002,5.429786372007368,605.0989458573004,2019
+1995,49,"(45,50]",College,1948.0070765148164,358.7631157199002,5.429786372007368,578.3880578389937,2019
+1995,49,"(45,50]",College,1948.0070765148164,358.7631157199002,5.429786372007368,567.8149134476932,2019
+1995,39,"(35,40]",HS,-2.7657249004865103,10.901641637897521,-0.25369802020202026,5505.259636044571,2019
+1995,39,"(35,40]",HS,-2.18509685979655,10.901641637897521,-0.20043741414141417,5522.795006011756,2019
+1995,39,"(35,40]",HS,-1.7980114993365768,10.901641637897521,-0.16493034343434346,5518.047843958887,2019
+1995,39,"(35,40]",HS,-1.9915541795665637,10.901641637897521,-0.18268387878787884,5511.005778695796,2019
+1995,39,"(35,40]",HS,-2.378639540026537,10.901641637897521,-0.21819094949494955,5527.144605922083,2019
+1995,33,"(30,35]",HS,450.4705882352941,178.3904995292322,2.5251938271604937,6601.214220310106,2019
+1995,33,"(30,35]",HS,500.79168509509066,178.3904995292322,2.8072777777777778,4291.086413255342,2019
+1995,33,"(30,35]",HS,489.1791242812915,178.3904995292322,2.7421814814814818,4236.673093969697,2019
+1995,33,"(30,35]",HS,489.1791242812915,178.3904995292322,2.7421814814814818,4033.978880475268,2019
+1995,33,"(30,35]",HS,457.24458204334366,178.3904995292322,2.5631666666666666,6553.050009102705,2019
+1995,46,"(45,50]",College,7.935249889429456,19.821166614359132,0.4003422222222222,7486.836613795889,2019
+1995,46,"(45,50]",College,7.935249889429456,19.821166614359132,0.4003422222222222,7501.6989027897,2019
+1995,46,"(45,50]",College,7.935249889429456,19.821166614359132,0.4003422222222222,7430.106105607585,2019
+1995,46,"(45,50]",College,7.935249889429456,19.821166614359132,0.4003422222222222,7585.818054276996,2019
+1995,46,"(45,50]",College,7.935249889429456,19.821166614359132,0.4003422222222222,7511.937228921367,2019
+1995,76,"(75,80]",HS,2808.5171870853605,43.606566551590085,64.40583171717174,779.3712770558789,2019
+1995,76,"(75,80]",HS,2771.744077841663,39.642333228718265,69.91879266666668,664.3483253356254,2019
+1995,76,"(75,80]",HS,2690.4561521450687,39.642333228718265,67.86825933333334,661.9065501488083,2019
+1995,76,"(75,80]",HS,2856.9028571428576,35.67809990584644,80.07441160493829,942.9193650253115,2019
+1995,76,"(75,80]",HS,2584.007678018576,39.642333228718265,65.18303711111112,657.6939276411479,2019
+1995,30,"(25,30]",NoHS,52.83715170278638,37.660216567282355,1.4029964912280701,6798.990666957236,2019
+1995,30,"(25,30]",NoHS,51.67589562140646,39.642333228718265,1.3035533333333336,6712.934216142843,2019
+1995,30,"(25,30]",NoHS,52.45006634232641,39.642333228718265,1.3230822222222223,6810.338969647846,2019
+1995,30,"(25,30]",NoHS,52.25652366209642,35.67809990584644,1.4646666666666668,6813.578993520232,2019
+1995,30,"(25,30]",NoHS,52.895214506855375,39.642333228718265,1.3343113333333334,6767.247976615914,2019
+1995,77,"(75,80]",College,12572.977655904466,1958.3312614986826,6.420250701754385,22.912149894566873,2019
+1995,77,"(75,80]",College,15177.771817779745,2200.1494941938636,6.898518422422423,20.120435579797295,2019
+1995,77,"(75,80]",College,9528.64806722689,2200.1494941938636,4.330909373373373,20.973505920242754,2019
+1995,77,"(75,80]",College,13937.047111897391,2001.9378280502726,6.961778191419142,20.498943767727734,2019
+1995,77,"(75,80]",College,13570.43856700575,2001.9378280502726,6.778651353135313,21.266240005160498,2019
+1995,37,"(35,40]",HS,110.31932773109243,7.9284666457436535,13.914333333333332,7834.5557994898045,2019
+1995,37,"(35,40]",HS,181.93011941618752,7.9284666457436535,22.94644444444444,7842.71956860292,2019
+1995,37,"(35,40]",HS,201.2843874391862,7.9284666457436535,25.387555555555554,7774.702138761789,2019
+1995,37,"(35,40]",HS,54.191950464396285,7.9284666457436535,6.835111111111111,7552.81868464855,2019
+1995,37,"(35,40]",HS,50.32109685979655,7.9284666457436535,6.346888888888889,7544.968803103508,2019
+1995,51,"(50,55]",College,199.6392746572313,327.0492491369256,0.610425723905724,1114.8039781903017,2019
+1995,51,"(50,55]",College,199.6392746572313,327.0492491369256,0.610425723905724,1098.189265831656,2019
+1995,51,"(50,55]",College,199.6392746572313,327.0492491369256,0.610425723905724,1116.8784082165605,2019
+1995,51,"(50,55]",College,199.6392746572313,327.0492491369256,0.610425723905724,1052.5573115524885,2019
+1995,51,"(50,55]",College,199.6392746572313,327.0492491369256,0.610425723905724,1127.9638996105339,2019
+1995,28,"(25,30]",HS,1.7612383900928792,23.785399937230956,0.07404703703703705,5194.044820800704,2019
+1995,28,"(25,30]",HS,0.9870676691729324,23.785399937230956,0.0414988888888889,5133.262678510813,2019
+1995,28,"(25,30]",HS,0.9870676691729324,23.785399937230956,0.0414988888888889,5149.143378987435,2019
+1995,28,"(25,30]",HS,1.7612383900928792,23.785399937230956,0.07404703703703705,5112.658219031564,2019
+1995,28,"(25,30]",HS,0.9870676691729324,23.785399937230956,0.0414988888888889,5131.03250101435,2019
+1995,53,"(50,55]",College,99.86802299867315,376.6021656728235,0.2651817543859649,275.2615031087171,2019
+1995,53,"(50,55]",College,99.86802299867315,376.6021656728235,0.2651817543859649,281.650466723685,2019
+1995,53,"(50,55]",College,99.86802299867315,376.6021656728235,0.2651817543859649,282.0823847183591,2019
+1995,53,"(50,55]",College,99.86802299867315,376.6021656728235,0.2651817543859649,764.8930381449921,2019
+1995,53,"(50,55]",College,99.86802299867315,376.6021656728235,0.2651817543859649,775.3880704054186,2019
+1995,35,"(30,35]",HS,128.99619637328615,99.10583307179566,1.3016004444444444,9409.273239076241,2019
+1995,35,"(30,35]",HS,129.8671384343211,99.10583307179566,1.3103884444444447,9331.62999699247,2019
+1995,35,"(30,35]",HS,134.51216275984078,99.10583307179566,1.357257777777778,9391.226752306615,2019
+1995,35,"(30,35]",HS,129.18973905351615,99.10583307179566,1.3035533333333336,9500.455402901083,2019
+1995,35,"(30,35]",HS,131.02839451570102,99.10583307179566,1.3221057777777778,9411.589470408593,2019
+1995,48,"(45,50]",College,4867.598407784167,1585.6933291487305,3.0696972222222225,173.80829541612758,2019
+1995,48,"(45,50]",College,5544.99778858912,1585.6933291487305,3.496891666666667,155.9016655346859,2019
+1995,48,"(45,50]",College,5603.060592658116,1585.6933291487305,3.5335083333333333,154.9296634455761,2019
+1995,48,"(45,50]",College,5157.912428129147,1585.6933291487305,3.2527805555555562,143.6034844301031,2019
+1995,48,"(45,50]",College,5603.060592658116,1585.6933291487305,3.5335083333333333,155.3212909050215,2019
+1995,50,"(45,50]",College,350.31225121627597,162.53356623774488,2.1553224932249324,3340.506363444473,2019
+1995,50,"(45,50]",College,350.31225121627597,154.60509959200127,2.2658518518518513,3479.630017323124,2019
+1995,50,"(45,50]",College,350.31225121627597,188.30108283641175,1.8603836257309943,3438.116991373422,2019
+1995,50,"(45,50]",College,350.31225121627597,188.30108283641175,1.8603836257309943,3262.616971847155,2019
+1995,50,"(45,50]",College,350.31225121627597,166.4977995606167,2.1040052910052913,3447.5192060711415,2019
+1995,51,"(50,55]",HS,2342.4470588235295,132.8018163162062,17.63866733001658,2244.402267677492,2019
+1995,51,"(50,55]",HS,1827.6235294117648,132.8018163162062,13.762037147595354,1924.3154029687025,2019
+1995,51,"(50,55]",HS,1982.6512162759843,132.8018163162062,14.929398341625207,1983.1450735523704,2019
+1995,51,"(50,55]",HS,2343.027686864219,132.8018163162062,17.643039469320062,1924.7151840796164,2019
+1995,51,"(50,55]",HS,2500.7649712516586,132.8018163162062,18.8308039800995,1985.2120828751363,2019
+1995,31,"(30,35]",College,73.35267580716497,99.10583307179566,0.740144888888889,4120.992081903392,2019
+1995,31,"(30,35]",College,73.35267580716497,99.10583307179566,0.740144888888889,4057.460013123633,2019
+1995,31,"(30,35]",College,73.35267580716497,99.10583307179566,0.740144888888889,4067.1413686877117,2019
+1995,31,"(30,35]",College,73.35267580716497,99.10583307179566,0.740144888888889,4041.1272264159,2019
+1995,31,"(30,35]",College,73.35267580716497,99.10583307179566,0.740144888888889,4057.770748358499,2019
+1995,68,"(65,70]",College,44068.700574966824,3528.1676573559257,12.490534706616728,44.42378589117626,2019
+1995,68,"(65,70]",College,46619.59310039806,3766.0216567282355,12.379002923976609,53.094951335354914,2019
+1995,68,"(65,70]",College,46168.638655462186,3547.9888239702855,13.012622346368714,46.51960684428694,2019
+1995,68,"(65,70]",College,44956.674391862005,3429.06182428413,13.110488143866409,24.916089990581106,2019
+1995,68,"(65,70]",College,45255.69783281734,3666.9158236564394,12.34162440840841,44.90628171283181,2019
+1995,46,"(45,50]",HS,457.5348960636886,79.28466645743653,5.770786666666667,6926.201881384099,2019
+1995,46,"(45,50]",HS,419.4069880583813,79.28466645743653,5.289887777777778,6862.179031219368,2019
+1995,46,"(45,50]",HS,430.43892083149046,79.28466645743653,5.429031111111111,6897.799064724919,2019
+1995,46,"(45,50]",HS,429.0841220698806,79.28466645743653,5.411943333333333,7231.046413415561,2019
+1995,46,"(45,50]",HS,443.98690844758954,79.28466645743653,5.599908888888889,7004.624930396261,2019
+1995,38,"(35,40]",HS,83.82333480760725,79.28466645743653,1.0572452222222222,5990.707772049946,2019
+1995,38,"(35,40]",HS,88.68125608137993,79.28466645743653,1.1185171111111112,6029.435939216417,2019
+1995,38,"(35,40]",HS,90.59732861565679,79.28466645743653,1.1426841111111112,6020.534961211565,2019
+1995,38,"(35,40]",HS,90.82957983193278,79.28466645743653,1.1456134444444446,6204.63542625609,2019
+1995,38,"(35,40]",HS,87.92643962848297,79.28466645743653,1.1089967777777778,6076.549150755764,2019
+1995,46,"(45,50]",College,604.6273330384785,206.14013278933496,2.933088888888889,369.5032571344514,2019
+1995,46,"(45,50]",College,604.6273330384785,206.14013278933496,2.933088888888889,377.56005285500277,2019
+1995,46,"(45,50]",College,604.6273330384785,206.14013278933496,2.933088888888889,370.94070757896577,2019
+1995,46,"(45,50]",College,604.6273330384785,206.14013278933496,2.933088888888889,361.47998430427157,2019
+1995,46,"(45,50]",College,604.6273330384785,206.14013278933496,2.933088888888889,366.9212522690124,2019
+1995,58,"(55,60]",HS,74715.70013268465,4202.087322244137,17.780615775681337,20.12365416564478,2019
+1995,58,"(55,60]",HS,74849.24458204335,3924.5909896431085,19.071858641975307,21.728651686078898,2019
+1995,58,"(55,60]",HS,74907.30738611233,4083.1603225579815,18.345424002157493,21.279309952668655,2019
+1995,58,"(55,60]",HS,80231.66651923928,3924.5909896431085,20.443319248035916,18.687207744553895,2019
+1995,58,"(55,60]",HS,74835.69659442724,4142.6238224010585,18.064806220095694,20.149174934146174,2019
+1995,48,"(45,50]",HS,933.282158337019,65.40984982738514,14.26822047138047,434.104950034363,2019
+1995,48,"(45,50]",HS,865.3486775762938,65.40984982738514,13.229638653198654,444.0554352027173,2019
+1995,48,"(45,50]",HS,1008.7638036267139,65.40984982738514,15.422200269360268,438.2768249295744,2019
+1995,48,"(45,50]",HS,937.5400973020787,65.40984982738514,14.333316767676767,429.2636433893896,2019
+1995,48,"(45,50]",HS,902.3153295002212,65.40984982738514,13.794792861952862,436.38164007413263,2019
+1995,61,"(60,65]",HS,468.27651481645296,323.0850158140539,1.4493910020449898,4091.6567557939393,2019
+1995,61,"(60,65]",HS,465.4701459531181,152.62298293056534,3.0498037518037515,4253.324209537657,2019
+1995,61,"(60,65]",HS,518.6943830163644,148.65874960769352,3.4891614814814806,4204.482331390896,2019
+1995,61,"(60,65]",HS,424.24555506413094,79.28466645743653,5.350915555555556,3985.938391244787,2019
+1995,61,"(60,65]",HS,439.0902786377709,154.60509959200127,2.8400762962962958,4214.773578494599,2019
+1995,62,"(60,65]",NoHS,155.80185758513932,57.48138318164148,2.7104750957854407,10348.71788979592,2019
+1995,62,"(60,65]",NoHS,155.9954002653693,57.48138318164148,2.71384214559387,10337.958021114533,2019
+1995,62,"(60,65]",NoHS,155.22122954444936,57.48138318164148,2.7003739463601533,10176.237653410313,2019
+1995,62,"(60,65]",NoHS,156.38248562582928,57.48138318164148,2.720576245210728,10157.207935762479,2019
+1995,62,"(60,65]",NoHS,155.80185758513932,57.48138318164148,2.7104750957854407,10070.485531604649,2019
+1995,23,"(20,25]",HS,0,1.9821166614359134,0,5567.352625051843,2019
+1995,23,"(20,25]",HS,0,1.9821166614359134,0,5551.285885106617,2019
+1995,23,"(20,25]",HS,0.19354268022998675,1.9821166614359134,0.09764444444444445,5582.911232625962,2019
+1995,23,"(20,25]",HS,0,1.9821166614359134,0,5546.295808913243,2019
+1995,23,"(20,25]",HS,0,1.9821166614359134,0,5521.281911611672,2019
+1995,54,"(50,55]",College,562.8221141088014,253.7109326637969,2.218359722222222,1258.4102660844167,2019
+1995,54,"(50,55]",College,560.4996019460416,253.7109326637969,2.2092055555555556,1238.633090994372,2019
+1995,54,"(50,55]",College,560.8866873065016,253.7109326637969,2.2107312500000003,1252.7138163250702,2019
+1995,54,"(50,55]",College,564.5639982308713,253.7109326637969,2.225225347222222,1181.792901229066,2019
+1995,54,"(50,55]",College,562.8221141088014,253.7109326637969,2.218359722222222,1266.2387028568542,2019
+1995,79,"(75,80]",NoHS,4096.775975232198,237.85399937230957,17.22391040740741,320.38168729695735,2019
+1995,79,"(75,80]",NoHS,4096.775975232198,237.85399937230957,17.22391040740741,282.1673726026096,2019
+1995,79,"(75,80]",NoHS,4648.37261388766,237.85399937230957,19.542965962962963,281.4806931333186,2019
+1995,79,"(75,80]",NoHS,4096.775975232198,237.85399937230957,17.22391040740741,290.9282922900402,2019
+1995,79,"(75,80]",NoHS,4085.163414418399,237.85399937230957,17.17508818518519,290.0045977849096,2019
+1995,28,"(25,30]",College,208.83255196815568,267.5857492938483,0.7804322633744855,10156.848347635827,2019
+1995,28,"(25,30]",College,201.09084475895622,75.32043313456471,2.669804678362573,10371.844759159816,2019
+1995,28,"(25,30]",College,216.57425917735515,105.0521830561034,2.061587421383648,10132.181953845591,2019
+1995,28,"(25,30]",College,137.0282176028306,352.8167657355925,0.38838352059925096,10337.16703249593,2019
+1995,28,"(25,30]",College,171.09172932330827,245.78246601805324,0.696110394265233,10255.484391398577,2019
+1995,74,"(70,75]",College,3712.1486068111453,299.29961587682294,12.402784400294331,390.4992961020829,2019
+1995,74,"(70,75]",College,3606.4743034055728,295.3353825539511,12.211453542132736,348.00797022229165,2019
+1995,74,"(70,75]",College,3617.312693498452,271.5499826167202,13.320982968369828,346.57176140076484,2019
+1995,74,"(70,75]",College,4358.5811587793005,311.1923158454383,14.006069355980184,352.06062498524,2019
+1995,74,"(70,75]",College,2862.496240601504,291.37114923107936,9.824226757369612,349.726759699318,2019
+1995,60,"(55,60]",College,21305.8169305617,1008.8973806708799,21.117922733027726,15.493080852566397,2019
+1995,60,"(55,60]",College,11186.55402034498,624.3667483523127,17.91663961904762,15.74695442583797,2019
+1995,60,"(55,60]",College,7265.727695709863,1528.2119459670892,4.754397919008503,16.014187234236402,2019
+1995,60,"(55,60]",College,9810.252666961522,525.2609152805171,18.676913475890984,15.155013242805222,2019
+1995,60,"(55,60]",College,9780.09871738169,449.94048214595233,21.73642760646109,25.195466542445313,2019
+1995,73,"(70,75]",College,5213.459177355153,352.8167657355925,14.776676404494385,1044.0114710657658,2019
+1995,73,"(70,75]",College,5184.427775320655,352.8167657355925,14.694391760299629,829.9582726385377,2019
+1995,73,"(70,75]",College,4787.665280849182,352.8167657355925,13.56983495630462,811.7666534759694,2019
+1995,73,"(70,75]",College,5306.359663865546,352.8167657355925,15.039987265917604,810.8844679163088,2019
+1995,73,"(70,75]",College,5712.799292348518,352.8167657355925,16.191972284644194,832.6811850396234,2019
+1995,36,"(35,40]",HS,3.777953118089341,29.731749921538697,0.12706797037037038,5987.78963668199,2019
+1995,36,"(35,40]",HS,3.777953118089341,29.731749921538697,0.12706797037037038,6063.571234817199,2019
+1995,36,"(35,40]",HS,2.6166970367094207,29.731749921538697,0.0880101925925926,6082.776511483595,2019
+1995,36,"(35,40]",HS,10.35840424590889,29.731749921538697,0.3483953777777778,6017.992142436189,2019
+1995,36,"(35,40]",HS,2.0360689960194605,29.731749921538697,0.06848130370370371,6125.412251646963,2019
+1995,41,"(40,45]",College,282.57231313578063,148.65874960769352,1.9008118518518515,3135.0361338999437,2019
+1995,41,"(40,45]",College,282.57231313578063,148.65874960769352,1.9008118518518515,3246.3369849140245,2019
+1995,41,"(40,45]",College,282.57231313578063,148.65874960769352,1.9008118518518515,3116.706263475263,2019
+1995,41,"(40,45]",College,282.57231313578063,148.65874960769352,1.9008118518518515,3268.46661806806,2019
+1995,41,"(40,45]",College,282.57231313578063,148.65874960769352,1.9008118518518515,3181.6058187602566,2019
+1995,36,"(35,40]",HS,3.4063511720477666,67.39196648882105,0.050545359477124185,5390.579325551787,2019
+1995,36,"(35,40]",HS,3.4063511720477666,67.39196648882105,0.050545359477124185,5455.449135610979,2019
+1995,36,"(35,40]",HS,3.4063511720477666,67.39196648882105,0.050545359477124185,5426.205355658377,2019
+1995,36,"(35,40]",HS,3.4063511720477666,67.39196648882105,0.050545359477124185,5432.449282621879,2019
+1995,36,"(35,40]",HS,3.4063511720477666,67.39196648882105,0.050545359477124185,5462.56291868348,2019
+1995,32,"(30,35]",HS,6028.854489164087,154.60509959200127,38.99518518518518,237.26008743553803,2019
+1995,32,"(30,35]",HS,26836.62804068996,539.1357319105684,49.77712745098039,433.90539335235843,2019
+1995,32,"(30,35]",HS,9754.55108359133,255.69304932523286,38.149457364341075,210.89775718369992,2019
+1995,32,"(30,35]",HS,5647.575409111013,196.22954948215542,28.78045342312009,217.59064721785526,2019
+1995,32,"(30,35]",HS,8399.752321981425,146.6766329462576,57.26714714714714,213.9189779045612,2019
+1995,75,"(70,75]",HS,61603.12548429898,1557.9436958886279,39.541304122137404,20.12365416564478,2019
+1995,75,"(70,75]",HS,79442.30269792127,1557.9436958886279,50.99176748657054,21.728651686078898,2019
+1995,75,"(70,75]",HS,94100.818858912,1829.493678505348,51.43544356807512,21.279309952668655,2019
+1995,75,"(70,75]",HS,83659.98478549316,1563.8900458729356,53.49479971834953,18.687207744553895,2019
+1995,75,"(70,75]",HS,124051.76152145068,1593.6217957944743,77.84266119402984,20.149174934146174,2019
+1995,43,"(40,45]",HS,114.57726669615215,51.53503319733374,2.2232888888888893,7479.789346944296,2019
+1995,43,"(40,45]",HS,112.2547545333923,51.53503319733374,2.1782222222222223,7571.567048298393,2019
+1995,43,"(40,45]",HS,111.28704113224238,51.53503319733374,2.159444444444445,7478.659231612777,2019
+1995,43,"(40,45]",HS,114.57726669615215,51.53503319733374,2.2232888888888893,7726.867361425184,2019
+1995,43,"(40,45]",HS,111.28704113224238,51.53503319733374,2.159444444444445,7534.42251860049,2019
+1995,48,"(45,50]",HS,0,37.660216567282355,0,4960.123320509505,2019
+1995,48,"(45,50]",HS,0,37.660216567282355,0,4969.969773696222,2019
+1995,48,"(45,50]",HS,0,37.660216567282355,0,4922.538646078297,2019
+1995,48,"(45,50]",HS,0,37.660216567282355,0,5025.699768421201,2019
+1995,48,"(45,50]",HS,0,37.660216567282355,0,4976.752793391761,2019
+1995,71,"(70,75]",HS,5538.030252100841,49.55291653589783,111.75992533333334,1181.4656547727755,2019
+1995,71,"(70,75]",HS,5538.030252100841,112.98064970184706,49.01751111111111,939.5882580643896,2019
+1995,71,"(70,75]",HS,5538.030252100841,75.32043313456471,73.52626666666667,919.03387967736,2019
+1995,71,"(70,75]",HS,5538.030252100841,112.98064970184706,49.01751111111111,917.4799287872413,2019
+1995,71,"(70,75]",HS,5538.030252100841,95.14159974892382,58.208294444444455,943.1821512557914,2019
+1995,63,"(60,65]",College,359853.52020168066,47927.58087352038,7.508276312783751,2.8105880616522616,2019
+1995,63,"(60,65]",College,376382.06509332155,47610.442207690634,7.905451989952818,2.243383281743868,2019
+1995,63,"(60,65]",College,364541.12391685095,45489.57737995421,8.013728526690874,3.0383781419960103,2019
+1995,63,"(60,65]",College,355253.0106926139,46540.09921051524,7.6332671549687685,2.1023901664096862,2019
+1995,63,"(60,65]",College,347691.2981760283,48878.99687100962,7.1133067459133095,2.2997107014584666,2019
+1995,59,"(55,60]",College,24835.3967271119,1597.586029117346,15.545577060931903,168.4091443765248,2019
+1995,54,"(50,55]",College,15731.536134453781,1839.4042618125275,8.55251695402299,146.93318372127163,2019
+1995,62,"(60,65]",College,17192.39628482972,2418.182326951814,7.1096360655737705,148.0596774186919,2019
+1995,57,"(55,60]",College,9400.561521450685,2378.5399937230964,3.9522402592592583,151.61737593428026,2019
+1995,44,"(40,45]",College,10502.012914639541,1641.1925956689363,6.399013097155127,151.9768634696057,2019
+1995,60,"(55,60]",HS,253.13447147279965,51.53503319733374,4.911891111111112,7141.029172908119,2019
+1995,60,"(55,60]",HS,179.1043962848297,69.37408315025698,2.58171911111111,6992.002163826229,2019
+1995,60,"(55,60]",HS,529.4940645731978,87.21313310318017,6.071265252525254,4033.912820627947,2019
+1995,60,"(55,60]",HS,203.89721362229102,63.42773316594923,3.2146381944444444,7037.854055175228,2019
+1995,60,"(55,60]",HS,206.97454223794782,25.76751659866687,8.032382222222223,6963.068653533906,2019
+1995,52,"(50,55]",HS,1724.465280849182,79.28466645743653,21.750300000000003,2453.3406190802825,2019
+1995,52,"(50,55]",HS,1534.4063688633348,79.28466645743653,19.35312888888889,2103.455877769297,2019
+1995,52,"(50,55]",HS,894.5542680229987,79.28466645743653,11.282815555555556,4133.574144433655,2019
+1995,52,"(50,55]",HS,889.1350729765591,79.28466645743653,11.214464444444445,3921.3751311956958,2019
+1995,52,"(50,55]",HS,1593.6304290137107,79.28466645743653,20.10010888888889,2170.0216180259144,2019
+1995,33,"(30,35]",HS,0,5.153503319733375,0,6559.863233072853,2019
+1995,33,"(30,35]",HS,0,5.153503319733375,0,6559.207292046561,2019
+1995,33,"(30,35]",HS,0,5.153503319733375,0,6556.637327837186,2019
+1995,33,"(30,35]",HS,0,5.153503319733375,0,6586.010458213993,2019
+1995,33,"(30,35]",HS,0,5.153503319733375,0,6577.148526999983,2019
+1995,57,"(55,60]",HS,11546.94984520124,247.76458267948914,46.604521600000005,749.3230137099894,2019
+1995,57,"(55,60]",HS,11546.94984520124,247.76458267948914,46.604521600000005,669.6113479178077,2019
+1995,57,"(55,60]",HS,11546.94984520124,247.76458267948914,46.604521600000005,668.1857995736461,2019
+1995,57,"(55,60]",HS,11546.94984520124,247.76458267948914,46.604521600000005,669.8660942353438,2019
+1995,57,"(55,60]",HS,11546.94984520124,247.76458267948914,46.604521600000005,670.3823584340389,2019
+1995,67,"(65,70]",College,6104.529677134012,376.6021656728235,16.209491695906433,1188.7853354447086,2019
+1995,67,"(65,70]",College,6104.529677134012,376.6021656728235,16.209491695906433,1076.2147690908675,2019
+1995,67,"(65,70]",College,6104.529677134012,376.6021656728235,16.209491695906433,1066.3851972831017,2019
+1995,67,"(65,70]",College,6104.529677134012,376.6021656728235,16.209491695906433,1086.580919337507,2019
+1995,67,"(65,70]",College,6104.529677134012,376.6021656728235,16.209491695906433,1074.2817912139433,2019
+1995,66,"(65,70]",College,1930.0076072534278,223.9791827422582,8.616906194690266,3348.8238066259137,2019
+1995,66,"(65,70]",College,1866.138522777532,223.9791827422582,8.331749852507375,2681.54572895205,2019
+1995,66,"(65,70]",College,1794.527731092437,223.9791827422582,8.012029105211408,2931.538469565043,2019
+1995,66,"(65,70]",College,1930.0076072534278,223.9791827422582,8.616906194690266,2721.309540140147,2019
+1995,66,"(65,70]",College,2469.991685095091,223.9791827422582,11.027773451327436,2800.6763959096993,2019
+1995,43,"(40,45]",HS,595.7243697478991,166.4977995606167,3.577971428571429,6157.69422184432,2019
+1995,43,"(40,45]",HS,600.3693940734188,166.4977995606167,3.605869841269841,6409.289043041514,2019
+1995,43,"(40,45]",HS,600.1758513931889,166.4977995606167,3.6047074074074077,6321.4588555380515,2019
+1995,43,"(40,45]",HS,638.4973020787262,166.4977995606167,3.8348693121693125,6005.516300376074,2019
+1995,43,"(40,45]",HS,601.1435647943388,166.4977995606167,3.610519576719577,6362.194611488207,2019
+1995,50,"(45,50]",NoHS,114.63532950022115,105.0521830561034,1.0912227253668765,7414.939348033181,2019
+1995,50,"(45,50]",NoHS,121.73834586466165,105.0521830561034,1.1588368972746332,7244.24763846573,2019
+1995,50,"(45,50]",NoHS,114.57726669615215,105.0521830561034,1.0906700209643607,7340.162362130078,2019
+1995,50,"(45,50]",NoHS,115.00306059265812,105.0521830561034,1.0947231865828093,7549.426622928937,2019
+1995,50,"(45,50]",NoHS,119.8029190623618,105.0521830561034,1.1404134171907758,7396.223810167105,2019
+1995,36,"(35,40]",HS,395.9496152145069,158.56933291487306,2.4970125555555556,8550.54671860754,2019
+1995,36,"(35,40]",HS,395.9496152145069,158.56933291487306,2.4970125555555556,8605.823493119551,2019
+1995,36,"(35,40]",HS,395.9496152145069,158.56933291487306,2.4970125555555556,8593.119113075029,2019
+1995,36,"(35,40]",HS,395.9496152145069,158.56933291487306,2.4970125555555556,8855.885999255814,2019
+1995,36,"(35,40]",HS,395.9496152145069,158.56933291487306,2.4970125555555556,8673.068254783666,2019
+1995,61,"(60,65]",HS,2169.6134453781515,317.1386658297461,6.841213888888889,714.1181721017235,2019
+1995,61,"(60,65]",HS,2156.0654577620526,317.1386658297461,6.7984944444444455,606.2732056603442,2019
+1995,61,"(60,65]",HS,2156.0654577620526,317.1386658297461,6.7984944444444455,599.762695740554,2019
+1995,61,"(60,65]",HS,2150.2591773551526,317.1386658297461,6.780186111111111,608.6706520594827,2019
+1995,61,"(60,65]",HS,2150.2591773551526,317.1386658297461,6.780186111111111,585.1928480179902,2019
+1995,50,"(45,50]",HS,342.76408668730653,120.90911634759071,2.834890346083789,5447.630461242287,2019
+1995,50,"(45,50]",HS,431.79371959310043,120.90911634759071,3.571225500910747,3363.838457966433,2019
+1995,50,"(45,50]",HS,484.05024325519685,120.90911634759071,4.003422222222222,3322.1882336357085,2019
+1995,50,"(45,50]",HS,356.3120743034056,120.90911634759071,2.9469413479052826,5469.059344432728,2019
+1995,50,"(45,50]",HS,406.6331711632022,120.90911634759071,3.363130783242259,3331.8147865201076,2019
+1995,51,"(50,55]",NoHS,31.837770897832815,43.606566551590085,0.7301141414141414,8090.575102828343,2019
+1995,51,"(50,55]",NoHS,31.837770897832815,43.606566551590085,0.7301141414141414,8116.895643499653,2019
+1995,51,"(50,55]",NoHS,31.837770897832815,43.606566551590085,0.7301141414141414,8044.412723737567,2019
+1995,51,"(50,55]",NoHS,82.15886775762937,43.606566551590085,1.8840939393939398,8205.288035986247,2019
+1995,51,"(50,55]",NoHS,31.837770897832815,43.606566551590085,0.7301141414141414,8124.62011082129,2019
+1995,75,"(70,75]",HS,585.6601503759399,152.62298293056534,3.8372998556998557,7400.143724838215,2019
+1995,75,"(70,75]",HS,871.9097744360903,122.89123300902662,7.094971326164875,7499.226228544413,2019
+1995,75,"(70,75]",HS,996.7448031844317,204.15801612789906,4.8822222222222225,7389.188202927876,2019
+1995,75,"(70,75]",HS,479.9858469703671,178.3904995292322,2.690646913580247,7233.326592649745,2019
+1995,75,"(70,75]",HS,588.3697478991597,152.62298293056534,3.855053391053391,7390.209497859652,2019
+1995,45,"(40,45]",College,582.9505528527201,194.2474328207195,3.001072108843538,4891.591472260243,2019
+1995,45,"(40,45]",College,582.9505528527201,194.2474328207195,3.001072108843538,5096.135893589283,2019
+1995,45,"(40,45]",College,582.9505528527201,194.2474328207195,3.001072108843538,5032.653929241728,2019
+1995,45,"(40,45]",College,582.9505528527201,194.2474328207195,3.001072108843538,4774.300223601462,2019
+1995,45,"(40,45]",College,582.9505528527201,194.2474328207195,3.001072108843538,5049.899374253602,2019
+1995,47,"(45,50]",College,16117.982804068995,693.7408315025697,23.233435415873014,445.29622297751905,2019
+1995,47,"(45,50]",College,16458.753401149934,693.7408315025697,23.72464276825397,396.79582710749975,2019
+1995,47,"(45,50]",College,16474.546483856702,693.7408315025697,23.747407873015874,395.0093886661727,2019
+1995,47,"(45,50]",College,16498.778027421497,693.7408315025697,23.782336685714288,402.87968293359404,2019
+1995,47,"(45,50]",College,16233.972932330827,693.7408315025697,23.4006306031746,400.70403662987684,2019
+1995,42,"(40,45]",College,6.773993808049536,109.01641637897524,0.062137373737373734,4602.298587670303,2019
+1995,42,"(40,45]",College,6.773993808049536,109.01641637897524,0.062137373737373734,4610.244671850058,2019
+1995,42,"(40,45]",College,6.773993808049536,109.01641637897524,0.062137373737373734,4625.514536144072,2019
+1995,42,"(40,45]",College,6.773993808049536,109.01641637897524,0.062137373737373734,4540.207663936842,2019
+1995,42,"(40,45]",College,6.773993808049536,109.01641637897524,0.062137373737373734,4614.895272898487,2019
+1995,42,"(40,45]",HS,341.3125165855816,99.10583307179566,3.4439195555555555,5318.362449456812,2019
+1995,42,"(40,45]",HS,368.9891198584697,99.10583307179566,3.7231826666666668,5537.77315998802,2019
+1995,42,"(40,45]",HS,391.24652808491817,99.10583307179566,3.947764888888889,5462.124715667187,2019
+1995,42,"(40,45]",HS,403.24617425917734,99.10583307179566,4.068844,5185.9929524725385,2019
+1995,42,"(40,45]",HS,366.0859796550199,99.10583307179566,3.693889333333334,5500.064128787499,2019
+1995,75,"(70,75]",HS,178.0592658115878,25.76751659866687,6.910222222222224,9761.793635211015,2019
+1995,75,"(70,75]",HS,103.5453339230429,25.76751659866687,4.018444444444445,9634.330677143316,2019
+1995,75,"(70,75]",HS,149.02786377708978,25.76751659866687,5.783555555555556,9918.488680872613,2019
+1995,75,"(70,75]",HS,116.12560813799203,25.76751659866687,4.506666666666667,9786.890925172736,2019
+1995,75,"(70,75]",HS,133.54444935869085,25.76751659866687,5.182666666666668,9694.589688515476,2019
+1995,53,"(50,55]",HS,46858.61831048209,2140.6859943507866,21.889533744855964,14.028299846209455,2019
+1995,53,"(50,55]",HS,44942.54577620522,1944.456444868631,23.11316661003511,15.009371556072441,2019
+1995,53,"(50,55]",HS,46490.887218045114,2061.4013278933503,22.553049999999995,14.833229305017568,2019
+1995,53,"(50,55]",HS,44071.60371517028,2061.4013278933503,21.37943888888888,12.985028555243137,2019
+1995,53,"(50,55]",HS,44419.980539584256,2081.2224945077087,21.343215661375666,14.097556629034909,2019
+1995,26,"(25,30]",HS,30.77328615656789,75.32043313456471,0.40856491228070174,6040.0171446324075,2019
+1995,26,"(25,30]",HS,30.77328615656789,75.32043313456471,0.40856491228070174,6070.513957259272,2019
+1995,26,"(25,30]",HS,30.77328615656789,75.32043313456471,0.40856491228070174,6104.212945144047,2019
+1995,26,"(25,30]",HS,30.77328615656789,75.32043313456471,0.40856491228070174,6147.17551219856,2019
+1995,26,"(25,30]",HS,30.77328615656789,75.32043313456471,0.40856491228070174,6132.056903506812,2019
+1995,28,"(25,30]",HS,16.973693056169836,61.44561650451331,0.2762392831541219,6140.500997464124,2019
+1995,28,"(25,30]",HS,30.521680672268907,61.44561650451331,0.49672673835125447,6114.049074949757,2019
+1995,28,"(25,30]",HS,43.00518354710305,61.44561650451331,0.6998901792114696,6167.154046374545,2019
+1995,28,"(25,30]",HS,42.13424148606811,61.44561650451331,0.6857159856630825,6134.384847021238,2019
+1995,28,"(25,30]",HS,42.13424148606811,61.44561650451331,0.6857159856630825,6169.55615513807,2019
+1995,59,"(55,60]",College,10061.877505528526,495.5291653589783,20.30531845333333,203.15074685715183,2019
+1995,59,"(55,60]",College,8126.528120300753,495.5291653589783,16.39969690666667,178.9699345790927,2019
+1995,59,"(55,60]",College,11242.487854931445,495.5291653589783,22.687842897777777,181.16573967601852,2019
+1995,59,"(55,60]",College,11242.545917735515,495.5291653589783,22.687960071111114,184.25240908020513,2019
+1995,59,"(55,60]",College,10061.974276868641,495.5291653589783,20.30551374222222,183.15051515092154,2019
+1995,29,"(25,30]",College,137.2217602830606,162.53356623774488,0.8442672086720868,5982.485250485441,2019
+1995,29,"(25,30]",College,137.2217602830606,162.53356623774488,0.8442672086720868,5891.880317770235,2019
+1995,29,"(25,30]",College,137.2217602830606,162.53356623774488,0.8442672086720868,5928.33875193204,2019
+1995,29,"(25,30]",College,137.2217602830606,162.53356623774488,0.8442672086720868,5854.880986005287,2019
+1995,29,"(25,30]",College,137.2217602830606,162.53356623774488,0.8442672086720868,5921.871869409736,2019
+1995,55,"(50,55]",College,66825.64245908891,2715.4998261672013,24.60896583941606,23.77978164443807,2019
+1995,55,"(50,55]",College,66229.53100398055,2854.247992467715,23.20384604938272,25.70395045405458,2019
+1995,55,"(50,55]",College,63490.90207872623,2992.996158768229,21.21315855776306,25.113774094689507,2019
+1995,55,"(50,55]",College,66202.43502874834,2715.4998261672013,24.379465758313057,22.197837107810393,2019
+1995,55,"(50,55]",College,66812.0944714728,2992.996158768229,22.322813303899924,23.92156353176672,2019
+1995,71,"(70,75]",HS,674.6897832817338,53.517149858769656,12.606982716049384,4868.7667389080925,2019
+1995,71,"(70,75]",HS,1048.614241486068,91.177366426052,11.500817391304349,5062.263813379578,2019
+1995,71,"(70,75]",HS,629.3040247678018,154.60509959200127,4.070396296296296,5007.541312603552,2019
+1995,71,"(70,75]",HS,745.352215833702,93.15948308748793,8.000819574468085,4744.913180027007,2019
+1995,71,"(70,75]",HS,735.6557275541796,99.10583307179566,7.422930666666668,5034.687580356241,2019
+1995,53,"(50,55]",College,420.9553295002211,198.21166614359132,2.1237666666666666,3914.6941190158623,2019
+1995,53,"(50,55]",College,420.9553295002211,198.21166614359132,2.1237666666666666,4078.3890734688575,2019
+1995,53,"(50,55]",College,420.9553295002211,198.21166614359132,2.1237666666666666,4027.585061338199,2019
+1995,53,"(50,55]",College,420.9553295002211,198.21166614359132,2.1237666666666666,3820.8270485664193,2019
+1995,53,"(50,55]",College,420.9553295002211,198.21166614359132,2.1237666666666666,4041.386426916381,2019
+1995,49,"(45,50]",HS,149.9955771782397,99.10583307179566,1.5134888888888889,4738.545145766771,2019
+1995,49,"(45,50]",HS,149.9955771782397,99.10583307179566,1.5134888888888889,4633.489573090186,2019
+1995,49,"(45,50]",HS,149.9955771782397,99.10583307179566,1.5134888888888889,4699.375054736088,2019
+1995,49,"(45,50]",HS,149.9955771782397,99.10583307179566,1.5134888888888889,4663.844757169796,2019
+1995,49,"(45,50]",HS,149.9955771782397,99.10583307179566,1.5134888888888889,4706.08954852756,2019
+1995,37,"(35,40]",College,226.1546218487395,715.5441147783648,0.316059649122807,657.6513068806292,2019
+1995,37,"(35,40]",College,226.1546218487395,715.5441147783648,0.316059649122807,641.268382430984,2019
+1995,37,"(35,40]",College,226.1546218487395,715.5441147783648,0.316059649122807,659.6743871484637,2019
+1995,37,"(35,40]",College,226.1546218487395,715.5441147783648,0.316059649122807,615.7125435311016,2019
+1995,37,"(35,40]",College,226.1546218487395,715.5441147783648,0.316059649122807,664.7364387010095,2019
+1995,66,"(65,70]",HS,146.82147722246796,59.46349984307739,2.469102518518519,10053.265391460867,2019
+1995,66,"(65,70]",HS,170.04659885006635,59.46349984307739,2.8596802962962964,9861.06057735284,2019
+1995,66,"(65,70]",HS,130.37034940291906,59.46349984307739,2.1924432592592593,9896.02799004179,2019
+1995,66,"(65,70]",HS,168.11117204776647,59.46349984307739,2.827132148148148,10409.173290491668,2019
+1995,66,"(65,70]",HS,132.30577620521893,59.46349984307739,2.2249914074074075,10082.708892937864,2019
+1995,69,"(65,70]",HS,68851.86013268465,1310.1791132091387,52.55148661623802,15.493080852566397,2019
+1995,69,"(65,70]",HS,62023.867916850955,1175.3951802314964,52.76852326775343,29.006837610298703,2019
+1995,69,"(65,70]",HS,51568.49878814684,1302.2506465633949,39.59951866734315,26.41760328863169,2019
+1995,69,"(65,70]",HS,58308.4290844759,1197.1984635072918,48.704062744665194,15.155013242805222,2019
+1995,69,"(65,70]",HS,51369.73045555064,1213.0553967987792,42.34739039215685,25.195466542445313,2019
+1995,54,"(50,55]",HS,448.4383900928793,342.906182428413,1.3077582530507388,926.1030226134972,2019
+1995,54,"(50,55]",HS,448.4383900928793,342.906182428413,1.3077582530507388,910.4640393995145,2019
+1995,54,"(50,55]",HS,448.4383900928793,342.906182428413,1.3077582530507388,922.6159946048738,2019
+1995,54,"(50,55]",HS,448.4383900928793,342.906182428413,1.3077582530507388,868.2451214408189,2019
+1995,54,"(50,55]",HS,448.4383900928793,342.906182428413,1.3077582530507388,931.938927308994,2019
+1995,35,"(30,35]",College,109.3516143299425,61.44561650451331,1.7796487455197134,5316.600689166102,2019
+1995,35,"(30,35]",College,109.3516143299425,61.44561650451331,1.7796487455197134,5248.014969080197,2019
+1995,35,"(30,35]",College,109.3516143299425,61.44561650451331,1.7796487455197134,5248.653257698288,2019
+1995,35,"(30,35]",College,109.3516143299425,61.44561650451331,1.7796487455197134,5118.749389392543,2019
+1995,35,"(30,35]",College,109.3516143299425,61.44561650451331,1.7796487455197134,5235.220891269308,2019
+1995,30,"(25,30]",College,728.30110570544,134.7839329776421,5.403471241830065,3741.2458949386564,2019
+1995,30,"(25,30]",College,720.7529411764706,122.89123300902662,5.864966308243727,3889.3954188247635,2019
+1995,30,"(25,30]",College,731.2042459088899,107.03429971753931,6.831494650205762,3824.679859531427,2019
+1995,30,"(25,30]",College,706.0436974789916,103.07006639466748,6.850133333333334,3640.5828601928924,2019
+1995,30,"(25,30]",College,681.8508624502432,126.85546633189846,5.375021527777777,3847.3134952680252,2019
+1995,40,"(35,40]",College,23919.57211853162,2418.182326951814,9.891550298724955,36.240682513043744,2019
+1995,40,"(35,40]",College,32001.295108359132,2576.7516598666875,12.419239155555553,40.7828488679548,2019
+1995,40,"(35,40]",College,28895.99957540911,2794.7844926246376,10.339258591016549,36.5536218158438,2019
+1995,40,"(35,40]",College,30726.177868199913,2497.466993409251,12.302936514991181,44.0687620611274,2019
+1995,40,"(35,40]",College,25411.18620079611,2774.9633260102787,9.157305238095239,35.476229152528305,2019
+1995,51,"(50,55]",HS,419.50375939849624,178.3904995292322,2.3516037037037036,4329.669264426678,2019
+1995,51,"(50,55]",HS,419.50375939849624,178.3904995292322,2.3516037037037036,4509.989055086205,2019
+1995,51,"(50,55]",HS,419.50375939849624,178.3904995292322,2.3516037037037036,4456.18353790634,2019
+1995,51,"(50,55]",HS,419.50375939849624,178.3904995292322,2.3516037037037036,4228.715915403247,2019
+1995,51,"(50,55]",HS,419.50375939849624,178.3904995292322,2.3516037037037036,4468.369858052209,2019
+1995,55,"(50,55]",HS,15.173746130030962,77.30254979600063,0.19629037037037037,6207.51237252139,2019
+1995,55,"(50,55]",HS,15.173746130030962,77.30254979600063,0.19629037037037037,6106.28931947057,2019
+1995,55,"(50,55]",HS,15.173746130030962,77.30254979600063,0.19629037037037037,6129.72915076486,2019
+1995,55,"(50,55]",HS,15.173746130030962,77.30254979600063,0.19629037037037037,6157.8123645222495,2019
+1995,55,"(50,55]",HS,15.173746130030962,77.30254979600063,0.19629037037037037,6073.329896130535,2019
+1995,25,"(20,25]",NoHS,15.48341441839894,41.624449890154175,0.3719788359788361,6435.293021369728,2019
+1995,25,"(20,25]",NoHS,15.48341441839894,41.624449890154175,0.3719788359788361,6351.300512088057,2019
+1995,25,"(20,25]",NoHS,15.48341441839894,41.624449890154175,0.3719788359788361,6456.119899191933,2019
+1995,25,"(20,25]",NoHS,15.48341441839894,41.624449890154175,0.3719788359788361,6405.313021849953,2019
+1995,25,"(20,25]",NoHS,15.48341441839894,41.624449890154175,0.3719788359788361,6369.002781104376,2019
+1995,58,"(55,60]",HS,219.090314020345,152.62298293056534,1.4355001443001443,7017.8262869855,2019
+1995,58,"(55,60]",HS,216.76780185758514,71.35619981169287,3.037827160493827,6914.760745083129,2019
+1995,58,"(55,60]",HS,215.8775055285272,69.37408315025698,3.1117889523809517,7026.552391962816,2019
+1995,58,"(55,60]",HS,222.96116762494472,31.713866582974614,7.0304,7014.2853934829645,2019
+1995,58,"(55,60]",HS,222.96116762494472,51.53503319733374,4.3264000000000005,6922.226742997562,2019
+1995,36,"(35,40]",HS,37.9343653250774,39.642333228718265,0.9569155555555556,72.80823014130729,2019
+1995,36,"(35,40]",HS,37.9343653250774,39.642333228718265,0.9569155555555556,72.38875268672186,2019
+1995,36,"(35,40]",HS,37.9343653250774,39.642333228718265,0.9569155555555556,71.60793580831628,2019
+1995,36,"(35,40]",HS,37.9343653250774,39.642333228718265,0.9569155555555556,71.5387487484198,2019
+1995,36,"(35,40]",HS,37.9343653250774,39.642333228718265,0.9569155555555556,70.94316014487406,2019
+1995,65,"(60,65]",HS,-1.5870499778858913,16.055144957630898,-0.09884993141289439,6550.694755417727,2019
+1995,65,"(60,65]",HS,-1.5870499778858913,16.055144957630898,-0.09884993141289439,6318.712743866556,2019
+1995,65,"(60,65]",HS,-1.5870499778858913,16.055144957630898,-0.09884993141289439,6325.1417240454775,2019
+1995,65,"(60,65]",HS,-1.5870499778858913,16.055144957630898,-0.09884993141289439,6407.24023300521,2019
+1995,65,"(60,65]",HS,-1.5870499778858913,16.055144957630898,-0.09884993141289439,6338.742255295441,2019
+1995,55,"(50,55]",HS,354.0669792127377,69.37408315025698,5.103735619047617,8183.526340777273,2019
+1995,55,"(50,55]",HS,354.0669792127377,69.37408315025698,5.103735619047617,8224.20822464457,2019
+1995,55,"(50,55]",HS,354.0669792127377,69.37408315025698,5.103735619047617,8201.153100664249,2019
+1995,55,"(50,55]",HS,354.0669792127377,69.37408315025698,5.103735619047617,8365.596204827914,2019
+1995,55,"(50,55]",HS,354.0669792127377,69.37408315025698,5.103735619047617,8127.420195776877,2019
+1995,26,"(25,30]",HS,-4.451481645289695,51.53503319733374,-0.08637777777777779,6346.556991975745,2019
+1995,26,"(25,30]",HS,-4.451481645289695,51.53503319733374,-0.08637777777777779,6413.624341517358,2019
+1995,26,"(25,30]",HS,-4.451481645289695,51.53503319733374,-0.08637777777777779,6355.405006517488,2019
+1995,26,"(25,30]",HS,-4.451481645289695,51.53503319733374,-0.08637777777777779,6455.291997620254,2019
+1995,26,"(25,30]",HS,-4.451481645289695,51.53503319733374,-0.08637777777777779,6364.968674742339,2019
+1995,27,"(25,30]",College,238.8316674038036,43.606566551590085,5.476965656565657,4341.456315643086,2019
+1995,27,"(25,30]",College,297.1073684210526,43.606566551590085,6.813363030303031,4275.70481925069,2019
+1995,27,"(25,30]",College,288.4753648827952,43.606566551590085,6.615411111111111,4302.162502407936,2019
+1995,27,"(25,30]",College,315.4939230429014,43.606566551590085,7.235009494949496,4248.854609707347,2019
+1995,27,"(25,30]",College,219.59352498894296,43.606566551590085,5.035790303030304,4297.469521682793,2019
+1995,42,"(40,45]",HS,108.1322954444936,77.30254979600063,1.398819259259259,5856.585222090099,2019
+1995,42,"(40,45]",HS,105.36463511720477,73.3383164731288,1.4366928528528526,5776.010934196735,2019
+1995,42,"(40,45]",HS,116.31915081822203,77.30254979600063,1.5047259259259256,5771.1356950773015,2019
+1995,42,"(40,45]",HS,119.88033613445378,79.28466645743653,1.5120242222222222,5832.860548658047,2019
+1995,42,"(40,45]",HS,122.00930561698364,79.28466645743653,1.5388764444444445,5792.0554665907075,2019
+1995,24,"(20,25]",HS,100.06156567890314,47.57079987446191,2.1034240740740744,4553.784849611175,2019
+1995,24,"(20,25]",HS,77.99770013268466,47.57079987446191,1.6396129629629632,4513.39544365541,2019
+1995,24,"(20,25]",HS,98.31968155683326,47.57079987446191,2.0668074074074076,4522.989595409842,2019
+1995,24,"(20,25]",HS,101.76474126492703,47.57079987446191,2.1392270370370374,4464.379749168038,2019
+1995,24,"(20,25]",HS,49.35338345864662,47.57079987446191,1.0374722222222224,4487.991301345167,2019
+1995,50,"(45,50]",College,943.7141088014154,118.92699968615479,7.93523851851852,3523.2247102339543,2019
+1995,50,"(45,50]",College,943.7141088014154,142.71239962338575,6.6126987654321,3670.5501693721003,2019
+1995,50,"(45,50]",College,943.7141088014154,83.24889978030835,11.336055026455028,3624.8265584140195,2019
+1995,50,"(45,50]",College,943.7141088014154,103.07006639466748,9.156044444444445,3438.744346754651,2019
+1995,50,"(45,50]",College,943.7141088014154,71.35619981169287,13.2253975308642,3637.247787445382,2019
+1995,75,"(70,75]",HS,148.60206988058383,18.03726161906681,8.238615873015874,8751.77541728753,2019
+1995,75,"(70,75]",HS,148.60206988058383,18.03726161906681,8.238615873015874,8702.816069377108,2019
+1995,75,"(70,75]",HS,169.89176470588237,18.03726161906681,9.418933333333333,8752.157423009794,2019
+1995,75,"(70,75]",HS,148.60206988058383,18.03726161906681,8.238615873015874,8715.691727330439,2019
+1995,75,"(70,75]",HS,160.21463069438303,18.03726161906681,8.882425396825397,8746.664608116256,2019
+1995,58,"(55,60]",NoHS,-5.0321096859796555,31.713866582974614,-0.15867222222222224,7841.440017897543,2019
+1995,58,"(55,60]",NoHS,-2.554763379035825,23.785399937230956,-0.1074088888888889,7762.201964588021,2019
+1995,58,"(55,60]",NoHS,-4.993401149933658,31.713866582974614,-0.15745166666666666,7824.721507541954,2019
+1995,58,"(55,60]",NoHS,-7.74170720919947,31.713866582974614,-0.24411111111111114,7722.34004266766,2019
+1995,58,"(55,60]",NoHS,-4.451481645289695,29.731749921538697,-0.14972148148148148,7614.316042411645,2019
+1995,37,"(35,40]",HS,-21.967094206103496,75.32043313456471,-0.29164853801169593,6417.12681945983,2019
+1995,37,"(35,40]",HS,-31.25714285714286,75.32043313456471,-0.4149888888888889,6404.0465235826105,2019
+1995,37,"(35,40]",HS,-14.806015037593985,75.32043313456471,-0.19657368421052632,6420.7251111323285,2019
+1995,37,"(35,40]",HS,-21.386466165413534,75.32043313456471,-0.2839397660818713,6306.686215293945,2019
+1995,37,"(35,40]",HS,-30.289429455992924,75.32043313456471,-0.4021409356725146,6413.784076855895,2019
+1995,28,"(25,30]",College,56.63058823529412,39.642333228718265,1.4285382222222223,6169.4379133181155,2019
+1995,28,"(25,30]",College,56.68865103936311,39.642333228718265,1.4300028888888887,6076.0015764744185,2019
+1995,28,"(25,30]",College,56.63058823529412,31.713866582974614,1.7856727777777777,6113.599336696194,2019
+1995,28,"(25,30]",College,87.597417072092,33.69598324441053,2.5996397385620917,6037.846015599512,2019
+1995,28,"(25,30]",College,88.10062804068997,33.69598324441053,2.614573594771242,6106.930364096414,2019
+1995,25,"(20,25]",HS,50.03078283945157,53.517149858769656,0.9348551440329218,4965.490608107871,2019
+1995,25,"(20,25]",HS,41.72780185758514,27.749633260102783,1.5037244444444446,4989.185413470941,2019
+1995,25,"(20,25]",HS,40.8955683325962,138.74816630051396,0.2947467301587301,4997.925542912818,2019
+1995,25,"(20,25]",HS,42.96647501105706,97.12371641035975,0.44238911564625855,5063.652746062623,2019
+1995,25,"(20,25]",HS,36.4827952233525,81.26678311887244,0.44892628726287265,5014.625755404653,2019
+1995,58,"(55,60]",HS,26808.37080937638,31.713866582974614,845.320161111111,37.88346239094126,2019
+1995,58,"(55,60]",HS,26808.37080937638,25.76751659866687,1040.3940444444445,43.58683588092689,2019
+1995,58,"(55,60]",HS,26808.37080937638,21.803283275795042,1229.5565979797982,38.70958088550121,2019
+1995,58,"(55,60]",HS,26808.37080937638,51.53503319733374,520.1970222222222,46.45317214053716,2019
+1995,58,"(55,60]",HS,26808.37080937638,43.606566551590085,614.7782989898991,37.01651231539368,2019
+1995,49,"(45,50]",HS,579.9506413091552,99.10583307179566,5.851831555555556,4249.6115945066085,2019
+1995,49,"(45,50]",HS,569.7896505970809,99.10583307179566,5.749304888888889,4410.830637373243,2019
+1995,49,"(45,50]",HS,603.6015568332597,99.10583307179566,6.090474577777779,4357.108294602125,2019
+1995,49,"(45,50]",HS,564.1769128704113,99.10583307179566,5.692671111111111,4135.603715969302,2019
+1995,49,"(45,50]",HS,632.2071649712516,99.10583307179566,6.379111555555555,4372.715104606422,2019
+1995,43,"(40,45]",College,1431.5403697478994,699.6871814868774,2.0459719823733082,663.8123505084354,2019
+1995,43,"(40,45]",College,1688.3715064130915,685.812364856826,2.4618563224149006,593.6867018239094,2019
+1995,43,"(40,45]",College,1453.4106926138877,697.7050648254414,2.083130488636364,595.7324669811644,2019
+1995,43,"(40,45]",College,1620.7476939407343,771.0433812985704,2.1020188140531277,596.612532124066,2019
+1995,43,"(40,45]",College,1666.114098186643,794.8287812358013,2.0961924599612076,597.1757912179758,2019
+1995,34,"(30,35]",HS,15.096329057938965,47.57079987446191,0.3173444444444445,5517.274431068581,2019
+1995,34,"(30,35]",HS,15.096329057938965,47.57079987446191,0.3173444444444445,5468.027165776416,2019
+1995,34,"(30,35]",HS,15.096329057938965,47.57079987446191,0.3173444444444445,5542.4114225220155,2019
+1995,34,"(30,35]",HS,15.096329057938965,47.57079987446191,0.3173444444444445,5475.986772783874,2019
+1995,34,"(30,35]",HS,15.096329057938965,47.57079987446191,0.3173444444444445,5524.656662354793,2019
+1995,31,"(30,35]",HS,1086.7421494913756,61.44561650451331,17.68624372759857,2885.6160978958515,2019
+1995,31,"(30,35]",HS,1409.5713401149933,71.35619981169287,19.754013580246912,1507.6345501682606,2019
+1995,31,"(30,35]",HS,757.7195931003981,65.40984982738514,11.584181818181818,2964.8826901120724,2019
+1995,31,"(30,35]",HS,913.5214506855374,79.28466645743653,11.522044444444445,2801.836767246564,2019
+1995,31,"(30,35]",HS,1685.9502874834145,71.35619981169287,23.627243209876546,1560.4040514021835,2019
+1995,67,"(65,70]",HS,24297.154533392302,2576.7516598666875,9.429373777777776,30.668698835172005,2019
+1995,67,"(65,70]",HS,25243.57823971694,2755.14215939592,9.1623505355715409,34.47549120520512,2019
+1995,67,"(65,70]",HS,24250.70429013711,2576.7516598666875,9.41134711111111,30.972479308733227,2019
+1995,67,"(65,70]",HS,23733.945333923042,2636.2151597097645,9.003038028404344,37.09920510191703,2019
+1995,67,"(65,70]",HS,24206.18947368421,2774.9633260102787,8.723066444444445,29.881690059636192,2019
+1995,83,"(80,85]",HS,2070.326050420168,73.3383164731288,28.229800600600598,127.47364052247887,2019
+1995,83,"(80,85]",HS,1926.717381689518,323.0850158140539,5.96349965916837,104.72539974220119,2019
+1995,83,"(80,85]",HS,2069.358337019018,73.3383164731288,28.216605405405403,106.19922372263537,2019
+1995,83,"(80,85]",HS,1964.8452896948252,109.01641637897524,18.023389090909088,109.24437389082705,2019
+1995,83,"(80,85]",HS,1876.5124104378594,81.26678311887244,23.090767696476966,105.81752425362265,2019
+1995,38,"(35,40]",College,71447.90616541353,6382.415649823641,11.194492819875776,26.674296490179945,2019
+1995,38,"(35,40]",College,72148.53066784609,6580.627315967233,10.963777038821954,27.093301817930374,2019
+1995,38,"(35,40]",College,73979.44442282176,5688.674818321072,13.00468857607433,27.169339672837047,2019
+1995,38,"(35,40]",College,73460.7500398054,5411.178485720043,13.575739597883599,26.075276149120924,2019
+1995,38,"(35,40]",College,78283.83363113667,6342.773316594922,12.342208955555558,26.040034017721005,2019
+1995,58,"(55,60]",College,2318.2542237947814,338.9419491055412,6.8396792722547115,3332.7425496168266,2019
+1995,58,"(55,60]",College,2563.279256965944,358.7631157199002,7.144768078575814,3464.8140573312385,2019
+1995,58,"(55,60]",College,2355.414418398939,402.3696822714903,5.85385659551177,3425.287376147765,2019
+1995,58,"(55,60]",College,2177.935780628041,384.53063231856714,5.663881099656359,1742.4902057720403,2019
+1995,58,"(55,60]",College,1802.4629809818664,332.9955991212334,5.41287328042328,3431.8610001871675,2019
+1995,61,"(60,65]",College,9275.920035382574,1147.6455469713937,8.08256526578392,173.80829541612758,2019
+1995,61,"(60,65]",College,8808.708005307386,1320.0896965163183,6.672810210210209,155.9016655346859,2019
+1995,61,"(60,65]",College,8273.562494471473,1272.5188966418564,6.50172073381793,154.9296634455761,2019
+1995,61,"(60,65]",College,9581.717470145953,1514.3371293370378,6.327334438627108,143.6034844301031,2019
+1995,61,"(60,65]",College,8266.788500663422,1286.3937132719077,6.426328436911487,155.3212909050215,2019
+1995,44,"(40,45]",HS,0,1.9821166614359134,0,7222.068555525213,2019
+1995,44,"(40,45]",HS,0,1.9821166614359134,0,7234.537795319411,2019
+1995,44,"(40,45]",HS,0,1.9821166614359134,0,7258.499736220067,2019
+1995,44,"(40,45]",HS,0,1.9821166614359134,0,7124.633567478093,2019
+1995,44,"(40,45]",HS,0,1.9821166614359134,0,7241.835661582618,2019
+1995,59,"(55,60]",HS,72413.91639097745,7155.441147783647,10.120119066789783,15.493080852566397,2019
+1995,59,"(55,60]",HS,76867.91409111013,7214.904647626724,10.65404434920635,15.74695442583797,2019
+1995,59,"(55,60]",HS,62271.69931888545,7195.083481012366,8.654757027242116,16.014187234236402,2019
+1995,59,"(55,60]",HS,73125.45670057497,6382.415649823641,11.45733225672878,15.155013242805222,2019
+1995,59,"(55,60]",HS,89612.11895621408,5966.1711509220995,15.020038260612774,15.093381937043588,2019
+1995,71,"(70,75]",College,16321.45422379478,329.0313657983616,49.60455421686747,36.04553658571697,2019
+1995,71,"(70,75]",College,20569.71605484299,325.06713247548976,63.27836314363144,64.12628859103265,2019
+1995,71,"(70,75]",College,15953.723131357807,305.2459658611307,52.265139971139966,33.50963939529084,2019
+1995,71,"(70,75]",College,15553.089783281735,323.0850158140539,48.13931015678255,32.21540930038553,2019
+1995,71,"(70,75]",College,15711.794781070324,319.12078249118207,49.23463354037267,33.3896130071808,2019
+1995,42,"(40,45]",HS,131.686439628483,101.08794973323158,1.3026917647058824,7397.791851703563,2019
+1995,42,"(40,45]",HS,131.686439628483,101.08794973323158,1.3026917647058824,7296.013803945284,2019
+1995,42,"(40,45]",HS,131.686439628483,101.08794973323158,1.3026917647058824,7289.855607169314,2019
+1995,42,"(40,45]",HS,131.686439628483,101.08794973323158,1.3026917647058824,7367.823843189324,2019
+1995,42,"(40,45]",HS,131.686439628483,101.08794973323158,1.3026917647058824,7316.280581684778,2019
+1995,55,"(50,55]",College,2756.357434763379,158.56933291487306,17.382664,858.0591348453333,2019
+1995,55,"(50,55]",College,1083.8583635559487,239.83611603374553,4.519162424242424,4803.134150595092,2019
+1995,55,"(50,55]",College,1437.4995488721806,57.48138318164148,25.0080890421456,2491.4098176757243,2019
+1995,55,"(50,55]",College,1052.8721804511279,118.92699968615479,8.853096296296297,4502.434207171426,2019
+1995,55,"(50,55]",College,1591.6950022114108,239.83611603374553,6.636594306703397,2491.09648851589,2019
+1995,42,"(40,45]",College,26.708889871738172,37.660216567282355,0.7092070175438597,5467.875834868983,2019
+1995,42,"(40,45]",College,24.96700574966829,63.42773316594923,0.39362916666666664,5565.594599714698,2019
+1995,42,"(40,45]",College,26.708889871738172,101.08794973323158,0.26421437908496737,5475.917023501009,2019
+1995,42,"(40,45]",College,44.127731092436974,109.01641637897524,0.404780606060606,5496.102712187081,2019
+1995,42,"(40,45]",College,59.61114551083592,93.15948308748793,0.6398827423167849,5502.516824094271,2019
+1995,53,"(50,55]",HS,1231.5120743034056,269.5678659552842,4.5684676470588235,751.0662791596628,2019
+1995,53,"(50,55]",HS,1097.5224767801858,269.5678659552842,4.071414346405229,761.157483630574,2019
+1995,53,"(50,55]",HS,1530.148429898275,269.5678659552842,5.676301307189542,756.7324860669577,2019
+1995,53,"(50,55]",HS,1531.3096859796551,269.5678659552842,5.680609150326798,740.1183771797472,2019
+1995,53,"(50,55]",HS,1570.0182220256524,269.5678659552842,5.824203921568627,756.1017992937334,2019
+1995,41,"(40,45]",HS,210.45831048208757,196.22954948215542,1.0725107968574634,2715.368579554389,2019
+1995,41,"(40,45]",HS,210.45831048208757,196.22954948215542,1.0725107968574634,2811.631230913018,2019
+1995,41,"(40,45]",HS,210.45831048208757,196.22954948215542,1.0725107968574634,2697.0804517608967,2019
+1995,41,"(40,45]",HS,210.45831048208757,196.22954948215542,1.0725107968574634,2836.3285359310485,2019
+1995,41,"(40,45]",HS,210.45831048208757,196.22954948215542,1.0725107968574634,2797.5114359613603,2019
+1995,28,"(25,30]",HS,117.63524104378594,47.57079987446191,2.472845555555556,4899.503020936909,2019
+1995,28,"(25,30]",HS,181.89141088014154,25.76751659866687,7.058942222222223,4838.474826046944,2019
+1995,28,"(25,30]",HS,84.15235736399823,55.499266520205566,1.5162787301587304,4903.057350548742,2019
+1995,28,"(25,30]",HS,94.02303405572755,73.3383164731288,1.282045165165165,4845.356374042188,2019
+1995,28,"(25,30]",HS,90.15218045112782,61.44561650451331,1.467186523297491,4891.480090624291,2019
+1995,34,"(30,35]",College,5138.558160106148,495.5291653589783,10.36984,1913.146786830003,2019
+1995,34,"(30,35]",College,5138.558160106148,495.5291653589783,10.36984,1646.443621730329,2019
+1995,34,"(30,35]",College,5138.558160106148,495.5291653589783,10.36984,1704.685228572768,2019
+1995,34,"(30,35]",College,5138.558160106148,495.5291653589783,10.36984,1642.0381665592154,2019
+1995,34,"(30,35]",College,5138.558160106148,495.5291653589783,10.36984,1735.8516861164674,2019
+1995,30,"(25,30]",HS,35.80539584254755,37.660216567282355,0.9507485380116959,6798.990666957236,2019
+1995,30,"(25,30]",HS,35.80539584254755,37.660216567282355,0.9507485380116959,6712.934216142843,2019
+1995,30,"(25,30]",HS,35.80539584254755,33.69598324441053,1.0626013071895424,6810.338969647846,2019
+1995,30,"(25,30]",HS,35.80539584254755,33.69598324441053,1.0626013071895424,6813.578993520232,2019
+1995,30,"(25,30]",HS,35.80539584254755,35.67809990584644,1.003567901234568,6767.247976615914,2019
+1995,58,"(55,60]",HS,6.077240159221584,6.5409849827385145,0.9291016835016835,7590.492549689482,2019
+1995,58,"(55,60]",HS,6.077240159221584,6.5409849827385145,0.9291016835016835,7566.954829465372,2019
+1995,58,"(55,60]",HS,6.077240159221584,6.5409849827385145,0.9291016835016835,7569.9450116356475,2019
+1995,58,"(55,60]",HS,6.077240159221584,6.5409849827385145,0.9291016835016835,7580.061808044011,2019
+1995,58,"(55,60]",HS,6.077240159221584,6.5409849827385145,0.9291016835016835,7555.226190385261,2019
+1995,75,"(70,75]",NoHS,539.713118089341,47.57079987446191,11.345470740740744,8509.461707605318,2019
+1995,75,"(70,75]",NoHS,429.58733303847856,47.57079987446191,9.030483703703705,4033.6533197737654,2019
+1995,75,"(70,75]",NoHS,512.036514816453,47.57079987446191,10.763672592592595,8501.061800142383,2019
+1995,75,"(70,75]",NoHS,432.8775586023883,47.57079987446191,9.099648518518519,4094.99239066724,2019
+1995,75,"(70,75]",NoHS,316.94549314462625,47.57079987446191,6.662605925925926,3975.042490154683,2019
+1995,23,"(20,25]",HS,43.45033171163202,124.87334967046255,0.3479552028218694,3276.8530473784185,2019
+1995,23,"(20,25]",HS,43.45033171163202,124.87334967046255,0.3479552028218694,3246.8934154221274,2019
+1995,23,"(20,25]",HS,43.45033171163202,124.87334967046255,0.3479552028218694,3241.5009958217447,2019
+1995,23,"(20,25]",HS,43.45033171163202,124.87334967046255,0.3479552028218694,3218.9178687842928,2019
+1995,23,"(20,25]",HS,43.45033171163202,124.87334967046255,0.3479552028218694,3212.5124644785733,2019
+1995,57,"(55,60]",HS,398.8914639540027,99.10583307179566,4.024904,7636.933979233509,2019
+1995,57,"(55,60]",HS,396.9560371517028,99.10583307179566,4.005375111111111,7477.557872243383,2019
+1995,57,"(55,60]",HS,397.9237505528527,99.10583307179566,4.015139555555556,7542.857650067517,2019
+1995,57,"(55,60]",HS,398.8914639540027,99.10583307179566,4.024904,7526.593922730861,2019
+1995,57,"(55,60]",HS,396.9560371517028,99.10583307179566,4.005375111111111,7446.615090392239,2019
+1995,71,"(70,75]",College,16905.953118089343,1486.587496076935,11.372322962962965,19.38942028837009,2019
+1995,71,"(70,75]",College,16905.953118089343,1486.587496076935,11.372322962962965,17.008667102244637,2019
+1995,71,"(70,75]",College,16905.953118089343,1486.587496076935,11.372322962962965,17.771193273787972,2019
+1995,71,"(70,75]",College,16905.953118089343,1486.587496076935,11.372322962962965,17.25699755660755,2019
+1995,71,"(70,75]",College,16905.759575409113,1486.587496076935,11.372192770370372,17.91259126881453,2019
+1995,51,"(50,55]",HS,114.19018133569217,43.606566551590085,2.6186464646464653,7317.532669064305,2019
+1995,51,"(50,55]",HS,114.19018133569217,43.606566551590085,2.6186464646464653,7283.571335026553,2019
+1995,51,"(50,55]",HS,114.19018133569217,43.606566551590085,2.6186464646464653,7333.6281960330525,2019
+1995,51,"(50,55]",HS,114.19018133569217,43.606566551590085,2.6186464646464653,7413.165497195236,2019
+1995,51,"(50,55]",HS,114.19018133569217,43.606566551590085,2.6186464646464653,7392.315222977045,2019
+1995,56,"(55,60]",College,179.41406457319772,317.1386658297461,0.5657275,173.502133978254,2019
+1995,56,"(55,60]",College,179.41406457319772,317.1386658297461,0.5657275,144.27221834930953,2019
+1995,56,"(55,60]",College,179.41406457319772,317.1386658297461,0.5657275,145.9108333069895,2019
+1995,56,"(55,60]",College,179.41406457319772,317.1386658297461,0.5657275,148.42180394606606,2019
+1995,56,"(55,60]",College,179.41406457319772,317.1386658297461,0.5657275,143.45880684389707,2019
+1995,35,"(30,35]",HS,61.449800973020785,33.69598324441053,1.8236535947712418,5619.9112040399295,2019
+1995,35,"(30,35]",HS,61.70140645731977,33.69598324441053,1.831120522875817,5568.420581988195,2019
+1995,35,"(30,35]",HS,61.89494913754976,33.69598324441053,1.83686431372549,5536.726716211071,2019
+1995,35,"(30,35]",HS,61.70140645731977,33.69598324441053,1.831120522875817,5633.729464609013,2019
+1995,35,"(30,35]",HS,61.3143210968598,33.69598324441053,1.8196329411764707,5576.826159316397,2019
+1995,76,"(75,80]",NoHS,1.3160902255639098,14.271239962338576,0.09221975308641975,11599.438839415196,2019
+1995,76,"(75,80]",NoHS,1.3160902255639098,14.271239962338576,0.09221975308641975,11622.467146067833,2019
+1995,76,"(75,80]",NoHS,1.3160902255639098,14.271239962338576,0.09221975308641975,11593.965885244126,2019
+1995,76,"(75,80]",NoHS,1.3160902255639098,14.271239962338576,0.09221975308641975,11610.753071386076,2019
+1995,76,"(75,80]",NoHS,1.3160902255639098,14.271239962338576,0.09221975308641975,11688.57899193343,2019
+1995,30,"(25,30]",HS,224.54821760283062,114.96276636328297,1.953225593869732,5081.700134457481,2019
+1995,30,"(25,30]",HS,273.41774436090225,103.07006639466748,2.6527366666666667,5036.340811156902,2019
+1995,30,"(25,30]",HS,234.67049977885893,93.15948308748793,2.519018912529551,5104.852626588282,2019
+1995,30,"(25,30]",HS,253.59897390535164,89.1952497646161,2.8431892345679017,5043.672028138291,2019
+1995,30,"(25,30]",HS,152.9761344537815,59.46349984307739,2.5726056296296296,5088.4995580113455,2019
+1995,61,"(60,65]",College,5718.702344095533,558.9568985249276,10.231025610717099,212.03715245958068,2019
+1995,61,"(60,65]",College,5718.702344095533,558.9568985249276,10.231025610717099,186.6522893104597,2019
+1995,61,"(60,65]",College,5718.702344095533,558.9568985249276,10.231025610717099,185.28252630000458,2019
+1995,61,"(60,65]",College,5718.702344095533,558.9568985249276,10.231025610717099,191.20235534799767,2019
+1995,61,"(60,65]",College,5718.702344095533,558.9568985249276,10.231025610717099,190.53457285749624,2019
+1995,36,"(35,40]",College,79.64281291463953,79.28466645743653,1.0045172222222223,6733.095272988727,2019
+1995,36,"(35,40]",College,79.64281291463953,79.28466645743653,1.0045172222222223,6677.206671359813,2019
+1995,36,"(35,40]",College,79.64281291463953,79.28466645743653,1.0045172222222223,6645.618633074347,2019
+1995,36,"(35,40]",College,79.64281291463953,79.28466645743653,1.0045172222222223,6524.901981753962,2019
+1995,36,"(35,40]",College,79.64281291463953,79.28466645743653,1.0045172222222223,6652.503866110152,2019
+1995,24,"(20,25]",HS,-4.064396284829722,43.606566551590085,-0.09320606060606064,3621.7849461861915,2019
+1995,24,"(20,25]",HS,-4.064396284829722,43.606566551590085,-0.09320606060606064,3588.671668769195,2019
+1995,24,"(20,25]",HS,-4.064396284829722,43.606566551590085,-0.09320606060606064,3582.711626054489,2019
+1995,24,"(20,25]",HS,-4.064396284829722,43.606566551590085,-0.09320606060606064,3557.751327756251,2019
+1995,24,"(20,25]",HS,-4.064396284829722,43.606566551590085,-0.09320606060606064,3550.671670367512,2019
+1995,72,"(70,75]",HS,36226.73825740822,5589.568985249275,6.48113268715524,21.37930316291056,2019
+1995,72,"(70,75]",HS,35626.75594869527,6897.765981796978,5.164970229885058,12.928149932801253,2019
+1995,72,"(70,75]",HS,36223.44803184432,5708.49598493543,6.345532716049383,21.59007452559501,2019
+1995,72,"(70,75]",HS,37370.18841220698,6858.12364856826,5.449039755940911,25.778823899766866,2019
+1995,72,"(70,75]",HS,35288.056258292796,5589.568985249275,6.313198092986605,20.9070008654844,2019
+1995,44,"(40,45]",College,2398.421537372844,640.2236816438,3.746224337117303,1254.0244031054158,2019
+1995,44,"(40,45]",College,2591.848091994693,640.2236816438,4.048347735810114,1505.156786565693,2019
+1995,44,"(40,45]",College,2591.848091994693,640.2236816438,4.048347735810114,1489.321767620602,2019
+1995,44,"(40,45]",College,2591.9642176028306,640.2236816438,4.048529118679051,1376.0170337042496,2019
+1995,44,"(40,45]",College,2591.848091994693,640.2236816438,4.048347735810114,1488.4261697777704,2019
+1995,51,"(50,55]",College,3958.141353383459,842.3995811102632,4.6986506666666665,1188.7853354447086,2019
+1995,51,"(50,55]",College,3958.141353383459,842.3995811102632,4.6986506666666665,1076.2147690908675,2019
+1995,51,"(50,55]",College,3958.141353383459,842.3995811102632,4.6986506666666665,1066.3851972831017,2019
+1995,51,"(50,55]",College,3958.141353383459,842.3995811102632,4.6986506666666665,1086.580919337507,2019
+1995,51,"(50,55]",College,3958.141353383459,842.3995811102632,4.6986506666666665,1074.2817912139433,2019
+1995,75,"(70,75]",College,-27792.090190181338,4221.908488858495,-6.582826288993219,21.37930316291056,2019
+1995,75,"(70,75]",College,-27792.515984077843,4459.762488230804,-6.231837694814817,23.814430115263647,2019
+1995,75,"(70,75]",College,-27710.047448031844,4083.1603225579815,-6.7864216094929875,21.59007452559501,2019
+1995,75,"(70,75]",College,-27760.77498452012,4519.225988073882,-6.142816282651072,25.778823899766866,2019
+1995,75,"(70,75]",College,-27961.459389650598,4539.047154688242,-6.16020465016982,20.9070008654844,2019
+1995,59,"(55,60]",HS,398.8914639540027,49.55291653589783,8.049808,9069.515237760319,2019
+1995,59,"(55,60]",HS,347.0220256523662,49.55291653589783,7.003059555555556,9062.329156292017,2019
+1995,59,"(55,60]",HS,398.8914639540027,49.55291653589783,8.049808,9135.684215812766,2019
+1995,59,"(55,60]",HS,348.9574524546661,49.55291653589783,7.0421173333333345,9295.32397249818,2019
+1995,59,"(55,60]",HS,349.53808049535604,49.55291653589783,7.053834666666667,9070.152306502318,2019
+1995,46,"(45,50]",College,1449.6346749226007,148.65874960769352,9.751425185185184,899.8252147761452,2019
+1995,46,"(45,50]",College,1449.6346749226007,148.65874960769352,9.751425185185184,767.0630898143752,2019
+1995,46,"(45,50]",College,1449.6346749226007,148.65874960769352,9.751425185185184,764.8894156409768,2019
+1995,46,"(45,50]",College,1449.6346749226007,148.65874960769352,9.751425185185184,782.9106095741814,2019
+1995,46,"(45,50]",College,1449.6346749226007,148.65874960769352,9.751425185185184,747.9943782346937,2019
+1995,40,"(35,40]",College,986.4870411322424,297.31749921538704,3.317958222222222,934.6859706926377,2019
+1995,40,"(35,40]",College,986.4870411322424,297.31749921538704,3.317958222222222,918.7952549169775,2019
+1995,40,"(35,40]",College,986.4870411322424,297.31749921538704,3.317958222222222,925.919561337612,2019
+1995,40,"(35,40]",College,986.4870411322424,297.31749921538704,3.317958222222222,871.8020536857614,2019
+1995,40,"(35,40]",College,986.4870411322424,297.31749921538704,3.317958222222222,935.5482331996012,2019
+1995,28,"(25,30]",HS,5.2256523662096415,59.46349984307739,0.08788,4965.546992358518,2019
+1995,28,"(25,30]",HS,5.2256523662096415,59.46349984307739,0.08788,4921.224453556324,2019
+1995,28,"(25,30]",HS,5.2256523662096415,59.46349984307739,0.08788,4988.170284686642,2019
+1995,28,"(25,30]",HS,5.2256523662096415,59.46349984307739,0.08788,4928.388099869382,2019
+1995,28,"(25,30]",HS,5.2256523662096415,59.46349984307739,0.08788,4972.1910005219925,2019
+1995,28,"(25,30]",HS,15.289871738168952,51.53503319733374,0.2966888888888889,7796.401728924958,2019
+1995,28,"(25,30]",HS,14.612472357363998,51.53503319733374,0.2835444444444445,7812.785371778396,2019
+1995,28,"(25,30]",HS,14.128615656789032,51.53503319733374,0.2741555555555556,7856.095705504468,2019
+1995,28,"(25,30]",HS,15.289871738168952,51.53503319733374,0.2966888888888889,7993.4979188457855,2019
+1995,28,"(25,30]",HS,14.128615656789032,51.53503319733374,0.2741555555555556,7862.38037300289,2019
+1995,27,"(25,30]",HS,36.30860681114551,19.821166614359132,1.8318097777777778,5758.121147822314,2019
+1995,27,"(25,30]",HS,49.46950906678461,19.821166614359132,2.4957920000000002,5712.370386938195,2019
+1995,27,"(25,30]",HS,79.27508182220257,19.821166614359132,3.9995164444444447,5771.774776003692,2019
+1995,27,"(25,30]",HS,79.27508182220257,19.821166614359132,3.9995164444444447,5731.829738816958,2019
+1995,27,"(25,30]",HS,33.599009287925696,19.821166614359132,1.6951075555555555,5740.370675082887,2019
+1995,29,"(25,30]",HS,53.76615656789031,37.660216567282355,1.4276645614035086,6056.356775112554,2019
+1995,29,"(25,30]",HS,71.18499778858911,37.660216567282355,1.8901908771929823,5841.660479508045,2019
+1995,29,"(25,30]",HS,96.3455462184874,35.67809990584644,2.7004113580246916,5884.147528249436,2019
+1995,29,"(25,30]",HS,193.31042901371077,37.660216567282355,5.133014269005848,5807.299383208628,2019
+1995,29,"(25,30]",HS,78.92670499778859,35.67809990584644,2.2121891358024692,5849.506112717004,2019
+1995,44,"(40,45]",HS,8.515877930119416,25.76751659866687,0.3304888888888889,5347.6056933793225,2019
+1995,44,"(40,45]",HS,8.515877930119416,25.76751659866687,0.3304888888888889,5336.705446793575,2019
+1995,44,"(40,45]",HS,8.515877930119416,25.76751659866687,0.3304888888888889,5350.604269778954,2019
+1995,44,"(40,45]",HS,8.515877930119416,25.76751659866687,0.3304888888888889,5255.571856393775,2019
+1995,44,"(40,45]",HS,8.515877930119416,25.76751659866687,0.3304888888888889,5344.82007453724,2019
+1995,76,"(75,80]",HS,11478.629279080054,348.8525324127207,32.9039585858586,18.98777764246608,2019
+1995,76,"(75,80]",HS,11478.822821760285,346.87041575128484,33.092539174603175,16.894780202877044,2019
+1995,76,"(75,80]",HS,11478.629279080054,342.906182428413,33.47454746307001,17.616051569263497,2019
+1995,76,"(75,80]",HS,11479.209907120745,346.87041575128484,33.09365511111111,17.015399617746212,2019
+1995,76,"(75,80]",HS,11478.629279080054,323.0850158140539,35.52820068166326,17.572196188689677,2019
+1995,37,"(35,40]",HS,24.270252100840334,59.46349984307739,0.4081537777777778,4479.908422444866,2019
+1995,37,"(35,40]",HS,24.463794781070323,19.821166614359132,1.2342257777777779,4448.345289211609,2019
+1995,37,"(35,40]",HS,24.405731977001327,23.785399937230956,1.0260803703703705,4430.044431898459,2019
+1995,37,"(35,40]",HS,24.367023440955332,59.46349984307739,0.40978118518518525,4345.489846404119,2019
+1995,37,"(35,40]",HS,24.270252100840334,43.606566551590085,0.5565733333333334,4430.059785978489,2019
+1995,52,"(50,55]",College,29060.97535603715,307.22808252256664,94.59088217921143,21.37930316291056,2019
+1995,52,"(50,55]",College,29060.97535603715,307.22808252256664,94.59088217921143,23.814430115263647,2019
+1995,52,"(50,55]",College,29060.97535603715,307.22808252256664,94.59088217921143,21.59007452559501,2019
+1995,52,"(50,55]",College,29060.97535603715,307.22808252256664,94.59088217921143,25.778823899766866,2019
+1995,52,"(50,55]",College,29060.97535603715,307.22808252256664,94.59088217921143,20.9070008654844,2019
+1995,32,"(30,35]",HS,0.832233524988943,63.42773316594923,0.013120972222222223,4483.277099233154,2019
+1995,32,"(30,35]",HS,-1.2193188854489165,63.42773316594923,-0.01922375,4414.15979365084,2019
+1995,32,"(30,35]",HS,-1.1419018133569219,63.42773316594923,-0.018003194444444447,4424.692257394356,2019
+1995,32,"(30,35]",HS,29.824927023440956,63.42773316594923,0.4702190277777778,4396.391157565614,2019
+1995,32,"(30,35]",HS,-0.019354268022998673,63.42773316594923,-3.0513888888888886e-4,4414.497846268929,2019
+1995,27,"(25,30]",College,148.06015037593986,112.98064970184706,1.3104912280701755,7731.693829659261,2019
+1995,27,"(25,30]",College,147.76983635559486,112.98064970184706,1.3079216374269005,7605.773823499612,2019
+1995,27,"(25,30]",College,147.92467049977884,112.98064970184706,1.3092920857699804,7666.49972133984,2019
+1995,27,"(25,30]",College,147.76983635559486,112.98064970184706,1.3079216374269005,7561.123085616576,2019
+1995,27,"(25,30]",College,147.86660769570986,112.98064970184706,1.3087781676413255,7612.0969709360115,2019
+1995,46,"(45,50]",HS,120.96417514374171,43.606566551590085,2.7739898989898997,7368.681494502535,2019
+1995,46,"(45,50]",HS,120.96417514374171,43.606566551590085,2.7739898989898997,7349.063858719125,2019
+1995,46,"(45,50]",HS,120.96417514374171,43.606566551590085,2.7739898989898997,7314.4155379201275,2019
+1995,46,"(45,50]",HS,120.96417514374171,43.606566551590085,2.7739898989898997,7417.617645540975,2019
+1995,46,"(45,50]",HS,120.96417514374171,43.606566551590085,2.7739898989898997,7368.413187975161,2019
+1995,30,"(25,30]",HS,21.096152145068555,55.499266520205566,0.3801158730158731,4843.77357415188,2019
+1995,30,"(25,30]",HS,21.096152145068555,55.499266520205566,0.3801158730158731,4770.414466624099,2019
+1995,30,"(25,30]",HS,21.096152145068555,55.499266520205566,0.3801158730158731,4799.933369313176,2019
+1995,30,"(25,30]",HS,21.096152145068555,55.499266520205566,0.3801158730158731,4740.457621272948,2019
+1995,30,"(25,30]",HS,21.096152145068555,55.499266520205566,0.3801158730158731,4794.697399083889,2019
+1995,40,"(35,40]",HS,85.73940734188413,49.55291653589783,1.7302595555555558,7586.6434788513,2019
+1995,40,"(35,40]",HS,85.73940734188413,49.55291653589783,1.7302595555555558,7679.732290204857,2019
+1995,40,"(35,40]",HS,85.73940734188413,49.55291653589783,1.7302595555555558,7585.497219015291,2019
+1995,40,"(35,40]",HS,85.73940734188413,49.55291653589783,1.7302595555555558,7837.2511791997995,2019
+1995,40,"(35,40]",HS,85.73940734188413,49.55291653589783,1.7302595555555558,7642.057124376462,2019
+1995,82,"(80,85]",NoHS,486.31469261388764,11.892699968615478,40.89186592592593,6128.890637258391,2019
+1995,82,"(80,85]",NoHS,486.64371517027865,11.892699968615478,40.91953185185186,6335.995891298682,2019
+1995,82,"(80,85]",NoHS,486.5856523662097,11.892699968615478,40.914649629629636,6299.916954962644,2019
+1995,82,"(80,85]",NoHS,486.43081822202566,11.892699968615478,40.90163037037038,5974.440269231224,2019
+1995,82,"(80,85]",NoHS,486.5469438301636,11.892699968615478,40.91139481481482,6331.461021679863,2019
+1995,39,"(35,40]",HS,-47.22247854931446,17.83904995292322,-2.647140888888889,5426.976039353063,2019
+1995,39,"(35,40]",HS,-25.429572755417958,17.83904995292322,-1.4255003950617284,5381.928986011958,2019
+1995,39,"(35,40]",HS,-23.416728881026096,17.83904995292322,-1.3126668148148148,5356.468552146852,2019
+1995,39,"(35,40]",HS,-46.06122246793455,17.83904995292322,-2.582044592592593,5259.169115898736,2019
+1995,39,"(35,40]",HS,-27.09403980539584,17.83904995292322,-1.518805086419753,5362.018153510815,2019
+1995,40,"(35,40]",College,828.8465280849182,142.71239962338575,5.807810185185185,5318.362449456812,2019
+1995,40,"(35,40]",College,603.6209111012826,140.73028296194985,4.289204131455398,5537.77315998802,2019
+1995,40,"(35,40]",College,1424.0870411322423,130.8196996547703,10.885876094276092,5462.124715667187,2019
+1995,40,"(35,40]",College,1239.505386996904,122.89123300902662,10.086198637992831,5185.9929524725385,2019
+1995,40,"(35,40]",College,1327.6640778416631,154.60509959200127,8.587453333333332,5500.064128787499,2019
+1995,82,"(80,85]",NoHS,42.19230429013711,18.433684951353992,2.2888697729988055,7969.3874406342975,2019
+1995,82,"(80,85]",NoHS,42.19230429013711,18.433684951353992,2.2888697729988055,7932.65288000235,2019
+1995,82,"(80,85]",NoHS,42.19230429013711,18.433684951353992,2.2888697729988055,7976.374661185972,2019
+1995,82,"(80,85]",NoHS,42.19230429013711,18.433684951353992,2.2888697729988055,7984.3447147285215,2019
+1995,82,"(80,85]",NoHS,42.19230429013711,18.433684951353992,2.2888697729988055,7981.2531830542885,2019
+1995,24,"(20,25]",HS,4.645024325519682,55.499266520205566,0.0836952380952381,3909.2281893896206,2019
+1995,24,"(20,25]",HS,4.645024325519682,55.499266520205566,0.0836952380952381,3873.486874141758,2019
+1995,24,"(20,25]",HS,4.645024325519682,55.499266520205566,0.0836952380952381,3867.0538121746686,2019
+1995,24,"(20,25]",HS,4.645024325519682,55.499266520205566,0.0836952380952381,3840.112537865768,2019
+1995,24,"(20,25]",HS,4.645024325519682,55.499266520205566,0.0836952380952381,3832.471002919187,2019
+1995,53,"(50,55]",HS,193401.62632463512,1817.6009785367323,106.40488677571793,16.170793352358178,2019
+1995,53,"(50,55]",HS,188883.7208314905,2101.0436611220684,89.89995035639411,16.42289862910578,2019
+1995,53,"(50,55]",HS,189552.87529411766,2120.8648277364273,89.37527409345795,16.378091534893976,2019
+1995,53,"(50,55]",HS,190672.22938522778,1823.54732852104,104.56116296135266,15.726655851175858,2019
+1995,53,"(50,55]",HS,190835.05684210526,2001.9378280502726,95.32516653025301,15.701900035497545,2019
+1995,32,"(30,35]",NoHS,-11.477080937638213,59.46349984307739,-0.19301051851851853,6074.532675841955,2019
+1995,32,"(30,35]",NoHS,-16.296293675364883,59.46349984307739,-0.2740554074074074,6146.49457338924,2019
+1995,32,"(30,35]",NoHS,-24.850880141530297,59.46349984307739,-0.41791822222222225,6094.473743236068,2019
+1995,32,"(30,35]",NoHS,-12.09641751437417,59.46349984307739,-0.20342592592592593,6184.448124176472,2019
+1995,32,"(30,35]",NoHS,-21.986448474126494,59.46349984307739,-0.369746962962963,6097.348719750129,2019
+1995,40,"(35,40]",HS,302.4297921273773,148.65874960769352,2.034389451851852,3853.8083751819586,2019
+1995,40,"(35,40]",HS,302.4297921273773,148.65874960769352,2.034389451851852,4012.798448138748,2019
+1995,40,"(35,40]",HS,302.4297921273773,148.65874960769352,2.034389451851852,3957.9818366227555,2019
+1995,40,"(35,40]",HS,302.4297921273773,148.65874960769352,2.034389451851852,3757.890377688439,2019
+1995,40,"(35,40]",HS,302.4297921273773,148.65874960769352,2.034389451851852,3985.473612413156,2019
+1995,60,"(55,60]",HS,313.92622733303847,89.1952497646161,3.51953975308642,10836.349417063971,2019
+1995,60,"(55,60]",HS,314.04235294117643,89.1952497646161,3.5208416790123453,10677.204094959834,2019
+1995,60,"(55,60]",HS,325.2871826625387,89.1952497646161,3.64691150617284,10849.823549753673,2019
+1995,60,"(55,60]",HS,323.3711101282619,89.1952497646161,3.6254297283950625,10830.881860918666,2019
+1995,60,"(55,60]",HS,320.1195931003981,89.1952497646161,3.5889758024691365,10688.732474095968,2019
+1995,22,"(20,25]",HS,83.35883237505529,29.731749921538697,2.803697481481482,5957.697198093791,2019
+1995,22,"(20,25]",HS,83.20399823087129,45.588683213026,1.8251020289855073,5953.877519673302,2019
+1995,22,"(20,25]",HS,83.20399823087129,29.731749921538697,2.7984897777777777,5952.140625198908,2019
+1995,22,"(20,25]",HS,83.26206103494029,45.588683213026,1.8263756521739132,5897.39348142747,2019
+1995,22,"(20,25]",HS,83.20399823087129,47.57079987446191,1.7490561111111114,5898.438128034443,2019
+1995,30,"(25,30]",HS,174.885165855816,128.8375829933344,1.3574079999999997,6246.397440329173,2019
+1995,30,"(25,30]",HS,201.57470145953118,128.8375829933344,1.5645644444444442,6283.128057048301,2019
+1995,30,"(25,30]",HS,167.6853781512605,140.73028296194985,1.191537276995305,6256.44808684001,2019
+1995,30,"(25,30]",HS,167.93698363555947,144.69451628482167,1.1606312937595127,6312.158752828297,2019
+1995,30,"(25,30]",HS,180.03340114993367,116.94488302471889,1.539472241054614,6243.358762830681,2019
+1995,52,"(50,55]",HS,8131.540875718708,1585.6933291487305,5.128066522222222,255.18759575260992,2019
+1995,52,"(50,55]",HS,9019.301795665635,1805.708278568117,4.994883117453348,231.2346329759085,2019
+1995,52,"(50,55]",HS,8165.159239274658,1676.8706955747825,4.8692837562385085,226.9911252946507,2019
+1995,52,"(50,55]",HS,8136.51492260062,1585.6933291487305,5.131203350000001,213.03217901756048,2019
+1995,52,"(50,55]",HS,8070.129783281734,1716.5130288035011,4.701467246599948,231.7406410376595,2019
+1995,63,"(60,65]",College,1090.5162317558602,204.15801612789906,5.341530312837109,3795.707448714152,2019
+1995,63,"(60,65]",College,1054.5172932330827,204.15801612789906,5.165201510248112,3945.0450791349554,2019
+1995,63,"(60,65]",College,1035.163025210084,204.15801612789906,5.0704010787486515,3901.822682720713,2019
+1995,63,"(60,65]",College,1071.1619637328618,204.15801612789906,5.246729881337649,3700.141743646828,2019
+1995,63,"(60,65]",College,1088.5808049535606,204.15801612789906,5.332050269687164,3908.6756446165537,2019
+1995,31,"(30,35]",HS,46.6437859354268,65.40984982738514,0.7131003367003366,6039.110194931176,2019
+1995,31,"(30,35]",HS,36.966651923927465,65.40984982738514,0.5651542087542086,6067.928201434173,2019
+1995,31,"(30,35]",HS,100.06156567890314,65.40984982738514,1.5297629629629628,5983.9118175913945,2019
+1995,31,"(30,35]",HS,71.99787704555507,65.40984982738514,1.1007191919191919,6158.496578848771,2019
+1995,31,"(30,35]",HS,50.51463954002654,65.40984982738514,0.7722787878787879,6098.869157818933,2019
+1995,53,"(50,55]",College,127.08012383900929,79.28466645743653,1.6028335555555555,10547.023983276618,2019
+1995,53,"(50,55]",College,120.67386112339673,79.28466645743653,1.5220327777777778,10661.630886921466,2019
+1995,53,"(50,55]",College,120.67386112339673,79.28466645743653,1.5220327777777778,10347.804660981987,2019
+1995,53,"(50,55]",College,124.35117204776648,79.28466645743653,1.568413888888889,10989.353753723079,2019
+1995,53,"(50,55]",College,126.67368421052632,79.28466645743653,1.5977072222222224,10646.747718619332,2019
+1995,53,"(50,55]",College,4809.34206103494,1171.430946908625,4.10552758037225,1381.6370935589885,2019
+1995,53,"(50,55]",College,5539.57859354268,1330.000279823498,4.1650958105646625,1254.8968562193945,2019
+1995,53,"(50,55]",College,4615.605838124723,1238.8229133974455,3.725799537777778,1242.9151457821124,2019
+1995,53,"(50,55]",College,4563.155771782397,1106.0210970812395,4.125740262843489,1141.3826299286814,2019
+1995,53,"(50,55]",College,5057.270234409553,1359.7320297450365,3.7193138969873663,1232.9805812976492,2019
+1995,32,"(30,35]",College,117.67394957983193,63.42773316594923,1.8552444444444443,5376.231329163269,2019
+1995,32,"(30,35]",College,117.67394957983193,63.42773316594923,1.8552444444444443,5328.243016483293,2019
+1995,32,"(30,35]",College,117.67394957983193,63.42773316594923,1.8552444444444443,5400.725720852735,2019
+1995,32,"(30,35]",College,117.67394957983193,63.42773316594923,1.8552444444444443,5335.999144820931,2019
+1995,32,"(30,35]",College,117.67394957983193,63.42773316594923,1.8552444444444443,5383.424841760099,2019
+1995,58,"(55,60]",HS,106.25493144626273,31.713866582974614,3.3504250000000004,7392.023568283052,2019
+1995,58,"(55,60]",HS,67.15931003980539,33.69598324441053,1.993095424836601,7468.090757160006,2019
+1995,58,"(55,60]",HS,57.09509066784609,31.713866582974614,1.8003194444444444,7442.247658627612,2019
+1995,58,"(55,60]",HS,62.320743034055724,31.713866582974614,1.9650944444444443,7370.39216314035,2019
+1995,58,"(55,60]",HS,121.1577178239717,65.40984982738514,1.8522855218855216,7098.076205123592,2019
+1995,38,"(35,40]",College,21.831614329942504,89.1952497646161,0.24476207407407408,6976.194696802842,2019
+1995,38,"(35,40]",College,21.831614329942504,89.1952497646161,0.24476207407407408,6961.974829672496,2019
+1995,38,"(35,40]",College,21.831614329942504,89.1952497646161,0.24476207407407408,6980.106476013299,2019
+1995,38,"(35,40]",College,21.831614329942504,89.1952497646161,0.24476207407407408,6856.1323731539815,2019
+1995,38,"(35,40]",College,21.831614329942504,89.1952497646161,0.24476207407407408,6972.560730405971,2019
+1995,66,"(65,70]",College,2508.603449800973,134.7839329776421,18.612036274509805,1661.9937400937106,2019
+1995,66,"(65,70]",College,2508.603449800973,134.7839329776421,18.612036274509805,1416.7796507520457,2019
+1995,66,"(65,70]",College,2508.603449800973,134.7839329776421,18.612036274509805,1412.7648345301077,2019
+1995,66,"(65,70]",College,2508.603449800973,134.7839329776421,18.612036274509805,1446.050311547388,2019
+1995,66,"(65,70]",College,2508.603449800973,134.7839329776421,18.612036274509805,1381.5593893538721,2019
+1995,69,"(65,70]",College,100235.56054842989,1167.4667135857528,85.85731771363893,13.255309248861911,2019
+1995,69,"(65,70]",College,82871.49190623617,1316.1254631934464,62.96625528781794,13.717256073544558,2019
+1995,69,"(65,70]",College,93693.23732861565,1375.5889630365239,68.11136163944924,13.695043240469355,2019
+1995,69,"(65,70]",College,92729.08511278196,1296.3042965790871,71.53342417940878,11.811583463768105,2019
+1995,69,"(65,70]",College,93180.32987173817,1496.4980793841146,62.26558600735835,12.799983470711789,2019
+1995,34,"(30,35]",HS,8.709420610349403,33.69598324441053,0.2584705882352941,5888.914114054625,2019
+1995,34,"(30,35]",HS,8.709420610349403,33.69598324441053,0.2584705882352941,5951.145314657913,2019
+1995,34,"(30,35]",HS,8.709420610349403,33.69598324441053,0.2584705882352941,5897.1241085102165,2019
+1995,34,"(30,35]",HS,8.709420610349403,33.69598324441053,0.2584705882352941,5989.808364313681,2019
+1995,34,"(30,35]",HS,8.709420610349403,33.69598324441053,0.2584705882352941,5905.998151690274,2019
+1995,45,"(40,45]",College,114.24824413976117,59.46349984307739,1.9213171851851853,6940.6847443136885,2019
+1995,45,"(40,45]",College,114.13211853162318,59.46349984307739,1.9193642962962965,6738.359947341371,2019
+1995,45,"(40,45]",College,114.22888987173818,59.46349984307739,1.9209917037037039,6777.62572788463,2019
+1995,45,"(40,45]",College,114.19018133569217,59.46349984307739,1.920340740740741,6967.986728856464,2019
+1995,45,"(40,45]",College,114.19018133569217,59.46349984307739,1.920340740740741,6843.864823667881,2019
+1995,51,"(50,55]",College,1391.7073507297657,372.6379323499517,3.7347441843971634,2754.894850409514,2019
+1995,51,"(50,55]",College,1391.8234763379037,372.6379323499517,3.735055815602837,2253.5433004575416,2019
+1995,51,"(50,55]",College,1391.8234763379037,372.6379323499517,3.735055815602837,2324.558896701535,2019
+1995,51,"(50,55]",College,1391.9396019460416,372.6379323499517,3.7353674468085107,2270.2324817228537,2019
+1995,51,"(50,55]",College,1391.7460592658117,372.6379323499517,3.7348480614657213,2306.323057826582,2019
+1995,39,"(35,40]",HS,1622.8553737284387,97.12371641035975,16.709156462585035,3074.550094646702,2019
+1995,39,"(35,40]",HS,1622.8553737284387,97.12371641035975,16.709156462585035,2634.3712422473527,2019
+1995,39,"(35,40]",HS,1622.8553737284387,97.12371641035975,16.709156462585035,2710.2423023190004,2019
+1995,39,"(35,40]",HS,1622.8553737284387,97.12371641035975,16.709156462585035,2633.7694135424586,2019
+1995,39,"(35,40]",HS,1622.8553737284387,97.12371641035975,16.709156462585035,2721.6676583945796,2019
+1995,30,"(25,30]",HS,-48.77275541795666,89.1952497646161,-0.5468088888888889,6435.293021369728,2019
+1995,30,"(25,30]",HS,-48.1921273772667,89.1952497646161,-0.5402992592592594,6351.300512088057,2019
+1995,30,"(25,30]",HS,-45.67607253427687,89.1952497646161,-0.5120908641975309,6456.119899191933,2019
+1995,30,"(25,30]",HS,-45.2889871738169,89.1952497646161,-0.5077511111111112,6405.313021849953,2019
+1995,30,"(25,30]",HS,-44.51481645289695,89.1952497646161,-0.4990716049382717,6369.002781104376,2019
+1995,63,"(60,65]",HS,136.9314462627156,8.523101644174426,16.0659173126615,10566.430341195168,2019
+1995,63,"(60,65]",HS,136.9314462627156,7.9284666457436535,17.27086111111111,10374.166579572202,2019
+1995,63,"(60,65]",HS,136.9314462627156,7.9284666457436535,17.27086111111111,10539.226499015122,2019
+1995,63,"(60,65]",HS,136.9314462627156,9.117736642605202,15.018140096618357,10523.131649589988,2019
+1995,63,"(60,65]",HS,136.9314462627156,9.117736642605202,15.018140096618357,10391.51944940689,2019
+1995,72,"(70,75]",HS,870.5549756744804,114.96276636328297,7.572495019157089,4964.696937597434,2019
+1995,72,"(70,75]",HS,516.5654135338345,105.0521830561034,4.917226834381551,5160.567687358672,2019
+1995,72,"(70,75]",HS,907.5216275984078,128.8375829933344,7.043919999999998,5074.346531071849,2019
+1995,72,"(70,75]",HS,733.9138434321097,103.07006639466748,7.120533333333334,4847.5729101952365,2019
+1995,72,"(70,75]",HS,548.4999557717824,105.0521830561034,5.221214255765199,5098.2583619826,2019
+1995,58,"(55,60]",College,1971.32896948253,1010.8794973323157,1.9501127233115472,223.01190233627577,2019
+1995,58,"(55,60]",College,1971.32896948253,455.88683213026,4.3241629951690825,190.29188118434638,2019
+1995,58,"(55,60]",College,1971.32896948253,1587.6754458101666,1.2416448051047302,188.14617505716546,2019
+1995,58,"(55,60]",College,1971.32896948253,929.6127142134435,2.1205916607438993,176.8816712435185,2019
+1995,58,"(55,60]",College,1971.32896948253,523.2787986190812,3.7672632154882155,183.50877023711104,2019
+1995,66,"(65,70]",College,831.2658115877931,95.14159974892382,8.73714351851852,5307.309820177003,2019
+1995,66,"(65,70]",College,645.2325873507298,71.35619981169287,9.042418024691358,5515.148158266171,2019
+1995,66,"(65,70]",College,691.2763909774437,31.713866582974614,21.79729138888889,5454.855914479151,2019
+1995,66,"(65,70]",College,634.4329057938966,37.660216567282355,16.846236257309943,5172.7849770956045,2019
+1995,66,"(65,70]",College,917.3342414860681,63.42773316594923,14.462667916666666,5524.865848741085,2019
+1995,42,"(40,45]",HS,428.0777001326847,128.8375829933344,3.322615111111111,3194.043916662785,2019
+1995,42,"(40,45]",HS,428.0777001326847,128.8375829933344,3.322615111111111,3325.458637169574,2019
+1995,42,"(40,45]",HS,428.0777001326847,128.8375829933344,3.322615111111111,3278.3893527454493,2019
+1995,42,"(40,45]",HS,428.0777001326847,128.8375829933344,3.322615111111111,3114.087648803228,2019
+1995,42,"(40,45]",HS,428.0777001326847,128.8375829933344,3.322615111111111,3300.051643808211,2019
+1995,45,"(40,45]",HS,56.12737726669615,39.642333228718265,1.4158444444444445,5165.983176204378,2019
+1995,45,"(40,45]",HS,56.12737726669615,39.642333228718265,1.4158444444444445,5038.762773822301,2019
+1995,45,"(40,45]",HS,56.12737726669615,39.642333228718265,1.4158444444444445,5043.535329068394,2019
+1995,45,"(40,45]",HS,56.12737726669615,39.642333228718265,1.4158444444444445,5220.2030005541355,2019
+1995,45,"(40,45]",HS,56.12737726669615,39.642333228718265,1.4158444444444445,5111.183819597377,2019
+1995,27,"(25,30]",NoHS,-0.019354268022998673,17.046203288348853,-0.0011354005167958658,5117.845949814155,2019
+1995,27,"(25,30]",NoHS,-0.019354268022998673,17.046203288348853,-0.0011354005167958658,5098.101215261993,2019
+1995,27,"(25,30]",NoHS,-0.019354268022998673,17.046203288348853,-0.0011354005167958658,5092.508731701843,2019
+1995,27,"(25,30]",NoHS,-0.019354268022998673,17.046203288348853,-0.0011354005167958658,5118.8748962953905,2019
+1995,27,"(25,30]",NoHS,-0.019354268022998673,17.046203288348853,-0.0011354005167958658,5114.659518011233,2019
+1995,77,"(75,80]",HS,1682.4665192392745,134.7839329776421,12.482693464052286,6493.839983934433,2019
+1995,77,"(75,80]",HS,1682.4665192392745,114.96276636328297,14.634881992337164,11805.254985244985,2019
+1995,77,"(75,80]",HS,1682.4665192392745,130.8196996547703,12.8609569023569,10983.745522883983,2019
+1995,77,"(75,80]",HS,1682.4665192392745,118.92699968615479,14.147052592592592,11908.543530085492,2019
+1995,77,"(75,80]",HS,1682.4665192392745,130.8196996547703,12.8609569023569,12015.95644899762,2019
+1995,60,"(55,60]",College,17351.29482529854,1177.3772968929327,14.737242573887016,47.87797852666087,2019
+1995,60,"(55,60]",College,18577.38770455551,1736.33419541786,10.699200507356673,48.687973290935936,2019
+1995,60,"(55,60]",College,44277.939566563466,979.1656307493413,45.22007122807017,48.729264004061314,2019
+1995,60,"(55,60]",College,66872.67333038479,362.7273490427721,184.36071475409838,46.88218261934351,2019
+1995,60,"(55,60]",College,30674.54068111455,350.8346490741567,87.43304220966729,46.73578683436806,2019
+1995,39,"(35,40]",NoHS,263.64383900928794,61.44561650451331,4.290685878136201,5014.061580785973,2019
+1995,39,"(35,40]",NoHS,269.45011941618753,59.46349984307739,4.531353185185186,5217.12194065263,2019
+1995,39,"(35,40]",NoHS,395.2528615656789,51.53503319733374,7.669595555555557,5145.172889243363,2019
+1995,39,"(35,40]",NoHS,261.70841220698804,77.30254979600063,3.3855081481481473,4887.575761016082,2019
+1995,39,"(35,40]",NoHS,387.51115435647944,51.53503319733374,7.519373333333334,5184.3557870663235,2019
+1995,46,"(45,50]",HS,237.14784608580274,107.03429971753931,2.2156247736625514,8176.473676656795,2019
+1995,46,"(45,50]",HS,238.56070765148164,118.92699968615479,2.0059423703703705,7988.251466791783,2019
+1995,46,"(45,50]",HS,239.3929411764706,118.92699968615479,2.0129402222222224,8094.016892027981,2019
+1995,46,"(45,50]",HS,237.03172047766475,107.03429971753931,2.2145398353909465,8324.773158475497,2019
+1995,46,"(45,50]",HS,239.16068996019462,109.01641637897524,2.1938043636363638,8155.836002425915,2019
+1995,41,"(40,45]",HS,61.66463334807607,89.1952497646161,0.6913443654320988,7607.247954350528,2019
+1995,41,"(40,45]",HS,61.66463334807607,89.1952497646161,0.6913443654320988,7656.426579258159,2019
+1995,41,"(40,45]",HS,92.63146218487395,89.1952497646161,1.038524612345679,7645.123750060744,2019
+1995,41,"(40,45]",HS,61.66463334807607,89.1952497646161,0.6913443654320988,7878.902118059105,2019
+1995,41,"(40,45]",HS,142.9525590446705,89.1952497646161,1.602692513580247,7716.2528795457065,2019
+1995,70,"(65,70]",NoHS,133.64122069880585,29.731749921538697,4.4948992592592605,8694.896899649968,2019
+1995,70,"(65,70]",NoHS,102.01634674922602,17.83904995292322,5.718709629629631,8692.713701001607,2019
+1995,70,"(65,70]",NoHS,131.70579389650595,21.803283275795042,6.0406404040404045,8696.640724285578,2019
+1995,70,"(65,70]",NoHS,81.7330738611234,9.910583307179566,8.247049777777779,8371.82588846874,2019
+1995,70,"(65,70]",NoHS,110.26126492702345,37.660216567282355,2.9277915789473683,8690.429628130316,2019
+1995,29,"(25,30]",HS,354.57019018133565,158.56933291487306,2.2360577777777775,4341.456315643086,2019
+1995,29,"(25,30]",HS,335.21592215833704,158.56933291487306,2.1140022222222226,4275.70481925069,2019
+1995,29,"(25,30]",HS,311.9908005307386,158.56933291487306,1.9675355555555556,4302.162502407936,2019
+1995,29,"(25,30]",HS,354.57019018133565,158.56933291487306,2.2360577777777775,4248.854609707347,2019
+1995,29,"(25,30]",HS,339.0867757629367,158.56933291487306,2.1384133333333333,4297.469521682793,2019
+1995,59,"(55,60]",College,121727.23651481645,5549.926652020557,21.93312527301587,23.77978164443807,2019
+1995,59,"(55,60]",College,152110.8438390093,5827.422984621586,26.10259187301587,25.70395045405458,2019
+1995,59,"(55,60]",College,113624.30124723574,7155.441147783647,15.87942642536165,25.113774094689507,2019
+1995,59,"(55,60]",College,123352.22085802743,5450.820818948761,22.630026734545456,22.197837107810393,2019
+1995,59,"(55,60]",College,119861.156054843,6659.911982424668,17.997408429894183,23.92156353176672,2019
+1995,48,"(45,50]",HS,67.21737284387439,75.32043313456471,0.8924188304093565,5828.43100955344,2019
+1995,48,"(45,50]",HS,116.686881910659,87.21313310318017,1.3379508080808082,5806.508659327862,2019
+1995,48,"(45,50]",HS,81.65565678903141,83.24889978030835,0.9808616931216934,5813.944611929352,2019
+1995,48,"(45,50]",HS,67.58510393631137,67.39196648882105,1.0028658823529413,5920.791522003749,2019
+1995,48,"(45,50]",HS,81.849199469261393,81.26678311887244,1.0071667208672088,5888.75560582292,2019
+1995,50,"(45,50]",College,458.6961521450686,346.87041575128484,1.322384761904762,384.6675235541696,2019
+1995,50,"(45,50]",College,12927.102697921275,346.87041575128484,37.26781561904762,951.1007184860197,2019
+1995,50,"(45,50]",College,5427.710924369748,346.87041575128484,15.647661714285713,1049.843758257436,2019
+1995,50,"(45,50]",College,719.9787704555506,346.87041575128484,2.0756419047619046,357.82415830797737,2019
+1995,50,"(45,50]",College,17102.39893852278,346.87041575128484,49.30486476190477,1015.3560981549393,2019
+1995,47,"(45,50]",HS,345.89947810703234,103.07006639466748,3.3559644444444454,1039.6033123604102,2019
+1995,47,"(45,50]",HS,367.7698009730208,103.07006639466748,3.5681533333333335,1062.2712357315127,2019
+1995,47,"(45,50]",HS,338.9319416187528,103.07006639466748,3.288364444444445,1043.6476021321978,2019
+1995,47,"(45,50]",HS,339.31902697921277,103.07006639466748,3.2921200000000006,1017.0297061764974,2019
+1995,47,"(45,50]",HS,326.5452100840336,103.07006639466748,3.168186666666667,1032.338800454729,2019
+1995,37,"(35,40]",HS,176.8980097302079,47.57079987446191,3.718625925925927,6085.798376278672,2019
+1995,37,"(35,40]",HS,178.83343653250773,47.57079987446191,3.7593111111111117,6125.1412762875125,2019
+1995,37,"(35,40]",HS,179.99469261388765,47.57079987446191,3.7837222222222224,6116.099012910563,2019
+1995,37,"(35,40]",HS,176.8980097302079,47.57079987446191,3.718625925925927,6303.121707702556,2019
+1995,37,"(35,40]",HS,176.8980097302079,47.57079987446191,3.718625925925927,6173.002316618199,2019
+1995,58,"(55,60]",College,61163.16426360018,4836.364653903628,12.64651626593807,21.771475130045456,2019
+1995,58,"(55,60]",HS,38310.612295444495,2041.5801612789908,18.765176612729235,22.139802728840415,2019
+1995,58,"(55,60]",HS,44864.935161433,2953.3538255395106,15.191181894108878,22.15857878751236,2019
+1995,58,"(55,60]",HS,44878.28960636886,6124.740483836972,7.327378151743976,21.31865848034735,2019
+1995,58,"(55,60]",College,58276.668730650155,9851.119807336489,5.915740532081378,35.476229152528305,2019
+1995,69,"(65,70]",HS,224.5095090667846,25.76751659866687,8.71288888888889,8129.271943714901,2019
+1995,69,"(65,70]",HS,224.5095090667846,35.67809990584644,6.2926419753086424,7975.219370118668,2019
+1995,69,"(65,70]",HS,224.5095090667846,31.713866582974614,7.079222222222222,8047.473952651921,2019
+1995,69,"(65,70]",HS,224.5095090667846,25.76751659866687,8.71288888888889,8399.905425727477,2019
+1995,69,"(65,70]",HS,224.5095090667846,35.67809990584644,6.2926419753086424,8202.310868388806,2019
+1995,33,"(30,35]",College,615.5624944714729,9.910583307179566,62.111631111111116,4632.179890689308,2019
+1995,33,"(30,35]",College,620.0333303847856,9.910583307179566,62.56274844444445,4794.689976458093,2019
+1995,33,"(30,35]",College,615.5624944714729,9.910583307179566,62.111631111111116,4736.622052770414,2019
+1995,33,"(30,35]",College,616.5302078726228,9.910583307179566,62.209275555555564,4508.659685409517,2019
+1995,33,"(30,35]",College,614.5947810703228,9.910583307179566,62.01398666666666,4777.984255264308,2019
+1995,35,"(30,35]",HS,48.1921273772667,33.69598324441053,1.4302039215686275,4991.098647853778,2019
+1995,35,"(30,35]",HS,50.32109685979655,37.660216567282355,1.336187134502924,4980.925084372317,2019
+1995,35,"(30,35]",HS,72.38496240601503,31.713866582974614,2.2824388888888887,4993.897319160491,2019
+1995,35,"(30,35]",HS,58.83697478991596,33.69598324441053,1.7461124183006533,4905.2003999885555,2019
+1995,35,"(30,35]",HS,132.38319327731094,33.69598324441053,3.928752941176471,4893.187837074202,2019
+1995,45,"(40,45]",HS,50.80495356037152,19.821166614359132,2.563166666666667,7058.729430844102,2019
+1995,45,"(40,45]",HS,53.72744803184432,19.821166614359132,2.710609777777778,6928.372944504656,2019
+1995,45,"(40,45]",HS,74.3784520123839,19.821166614359132,3.752476,6986.045573838148,2019
+1995,45,"(40,45]",HS,64.54648385670058,19.821166614359132,3.2564422222222222,7233.7302351693725,2019
+1995,45,"(40,45]",HS,58.79826625386997,19.821166614359132,2.966438222222222,7064.77581554653,2019
+1995,24,"(20,25]",HS,10.490013268465281,27.749633260102783,0.3780234920634921,4936.454505749749,2019
+1995,24,"(20,25]",HS,9.986802299867316,27.749633260102783,0.3598895238095239,4928.438011310977,2019
+1995,24,"(20,25]",HS,10.257762052189298,27.749633260102783,0.36965396825396835,4959.585966575457,2019
+1995,24,"(20,25]",HS,10.064219371959311,27.749633260102783,0.36267936507936516,4922.432948576156,2019
+1995,24,"(20,25]",HS,10.160990712074303,27.749633260102783,0.3661666666666667,4899.778039729104,2019
+1995,40,"(35,40]",College,124.64148606811145,31.713866582974614,3.9301888888888885,2216.329048502401,2019
+1995,40,"(35,40]",College,124.64148606811145,31.713866582974614,3.9301888888888885,2245.34945471378,2019
+1995,40,"(35,40]",College,124.64148606811145,31.713866582974614,3.9301888888888885,2150.328951715199,2019
+1995,40,"(35,40]",College,124.64148606811145,31.713866582974614,3.9301888888888885,2207.547495712245,2019
+1995,40,"(35,40]",College,124.64148606811145,31.713866582974614,3.9301888888888885,2181.5417558397717,2019
+1995,79,"(75,80]",HS,856.8134453781513,503.4576320047219,1.701858092738408,365.20617411475905,2019
+1995,79,"(75,80]",HS,883.9094206103495,503.4576320047219,1.7556778652668419,365.48567990011674,2019
+1995,79,"(75,80]",HS,883.9094206103495,503.4576320047219,1.7556778652668419,362.5450957512875,2019
+1995,79,"(75,80]",HS,868.4260061919505,503.4576320047219,1.7249237095363081,358.0221054627855,2019
+1995,79,"(75,80]",HS,878.1031402034498,503.4576320047219,1.7441450568678918,366.4203294629136,2019
+1995,54,"(50,55]",HS,-6.9675364882795225,29.731749921538697,-0.2343466666666667,7482.791581144617,2019
+1995,54,"(50,55]",HS,-6.9675364882795225,29.731749921538697,-0.2343466666666667,7519.763123049173,2019
+1995,54,"(50,55]",HS,-6.9675364882795225,29.731749921538697,-0.2343466666666667,7534.913918428007,2019
+1995,54,"(50,55]",HS,-6.9675364882795225,29.731749921538697,-0.2343466666666667,7510.881659672496,2019
+1995,54,"(50,55]",HS,-6.9675364882795225,29.731749921538697,-0.2343466666666667,7510.542070470996,2019
+1995,43,"(40,45]",College,1451.9571870853606,180.3726161906681,8.04976507936508,1310.9394165156652,2019
+1995,43,"(40,45]",College,1430.6674922600619,180.3726161906681,7.931733333333333,1089.6123626446242,2019
+1995,43,"(40,45]",College,1457.7634674922601,180.3726161906681,8.081955555555556,1156.7194010336436,2019
+1995,43,"(40,45]",College,1438.4091994692615,180.3726161906681,7.9746539682539686,1113.638615989278,2019
+1995,43,"(40,45]",College,1467.4406015037594,180.3726161906681,8.135606349206348,1087.1278379823557,2019
+1995,43,"(40,45]",HS,63.50135338345865,43.606566551590085,1.4562337373737377,7027.902251728658,2019
+1995,43,"(40,45]",HS,44.127731092436974,95.14159974892382,0.4638111111111112,6931.213106459954,2019
+1995,43,"(40,45]",HS,98.70676691729324,71.35619981169287,1.3832962962962965,6925.362819528935,2019
+1995,43,"(40,45]",HS,80.99761167624945,39.642333228718265,2.04321,6999.432643670069,2019
+1995,43,"(40,45]",HS,69.8689075630252,140.73028296194985,0.4964738654147104,6950.466545292232,2019
+1995,63,"(60,65]",NoHS,4.064396284829722,25.76751659866687,0.15773333333333336,11455.69236172824,2019
+1995,63,"(60,65]",NoHS,4.064396284829722,25.76751659866687,0.15773333333333336,11521.23609400716,2019
+1995,63,"(60,65]",NoHS,4.064396284829722,25.76751659866687,0.15773333333333336,11494.185346304088,2019
+1995,63,"(60,65]",NoHS,4.064396284829722,25.76751659866687,0.15773333333333336,11506.539147757778,2019
+1995,63,"(60,65]",NoHS,4.064396284829722,25.76751659866687,0.15773333333333336,11449.491310239147,2019
+1995,46,"(45,50]",HS,58.00474126492703,71.35619981169287,0.8128900000000001,3552.3104615860657,2019
+1995,46,"(45,50]",HS,58.00474126492703,71.35619981169287,0.8128900000000001,3467.842158294878,2019
+1995,46,"(45,50]",HS,58.00474126492703,71.35619981169287,0.8128900000000001,3474.481597124729,2019
+1995,46,"(45,50]",HS,58.00474126492703,71.35619981169287,0.8128900000000001,3470.068253989926,2019
+1995,46,"(45,50]",HS,58.00474126492703,71.35619981169287,0.8128900000000001,3499.3884193715116,2019
+1995,78,"(75,80]",HS,786.9445378151261,140.73028296194985,5.591863536776213,6128.890637258391,2019
+1995,78,"(75,80]",HS,844.4267138434321,140.73028296194985,6.000319874804382,6335.995891298682,2019
+1995,78,"(75,80]",HS,807.6536045997346,140.73028296194985,5.7390178403755865,6299.916954962644,2019
+1995,78,"(75,80]",HS,809.7825740822644,140.73028296194985,5.754145852895148,5974.440269231224,2019
+1995,78,"(75,80]",HS,846.1685979655019,140.73028296194985,6.012697339593113,6331.461021679863,2019
+1995,67,"(65,70]",College,20293.14356479434,122.89123300902662,165.13092974910396,1411.0206197390985,2019
+1995,67,"(65,70]",College,8376.720743034055,122.89123300902662,68.16369677419354,2091.511688738291,2019
+1995,67,"(65,70]",College,31932.80035382574,122.89123300902662,259.84604086021506,1388.6079597821006,2019
+1995,67,"(65,70]",College,12489.502697921274,122.89123300902662,101.63054265232975,701.5010419959827,2019
+1995,67,"(65,70]",College,7985.764528969483,122.89123300902662,64.98237777777778,2217.755115589546,2019
+1995,20,"(15,20]",HS,15.522122954444937,23.785399937230956,0.6525903703703705,3668.821114205434,2019
+1995,20,"(15,20]",HS,21.889677134011503,27.749633260102783,0.7888276190476192,3635.2777942256143,2019
+1995,20,"(15,20]",HS,19.334913754975673,39.642333228718265,0.487734,3629.240348358955,2019
+1995,20,"(15,20]",HS,14.167324192835029,27.749633260102783,0.5105409523809524,3603.9558903433367,2019
+1995,20,"(15,20]",HS,13.664113224237065,27.749633260102783,0.49240698412698425,3596.7842893523666,2019
+1995,19,"(15,20]",NoHS,4.257938965059708,23.785399937230956,0.17901481481481482,7472.412418197944,2019
+1995,19,"(15,20]",NoHS,4.257938965059708,23.785399937230956,0.17901481481481482,7495.196289503906,2019
+1995,19,"(15,20]",NoHS,4.257938965059708,23.785399937230956,0.17901481481481482,7491.808775528507,2019
+1995,19,"(15,20]",NoHS,4.257938965059708,23.785399937230956,0.17901481481481482,7510.992836278596,2019
+1995,19,"(15,20]",NoHS,4.257938965059708,23.785399937230956,0.17901481481481482,7440.047006815553,2019
+1995,52,"(50,55]",College,298934.4113224237,10961.105137740598,27.272287562788836,23.77978164443807,2019
+1995,52,"(50,55]",College,299211.1773551526,11872.878802001122,25.201232350213317,25.70395045405458,2019
+1995,52,"(50,55]",College,300242.7598407784,11416.99196987086,26.297886574074077,25.113774094689507,2019
+1995,52,"(50,55]",College,299145.3728438744,11853.057635386762,25.237823188405795,22.197837107810393,2019
+1995,52,"(50,55]",College,298894.15444493585,11317.886136799065,26.409008787701886,23.92156353176672,2019
+1995,72,"(70,75]",NoHS,82.52659885006634,14.271239962338576,5.78272098765432,8498.420213602036,2019
+1995,72,"(70,75]",NoHS,82.73949579831934,14.271239962338576,5.79763888888889,8714.43691993994,2019
+1995,72,"(70,75]",NoHS,82.66207872622734,14.271239962338576,5.792214197530864,8664.843573431575,2019
+1995,72,"(70,75]",NoHS,83.1846439628483,14.271239962338576,5.82883086419753,8929.173043320045,2019
+1995,72,"(70,75]",NoHS,82.46853604599735,14.271239962338576,5.778652469135802,8555.090623773202,2019
+1995,22,"(20,25]",HS,29.41848739495798,37.660216567282355,0.7811555555555555,4233.255130436335,2019
+1995,22,"(20,25]",HS,29.41848739495798,37.660216567282355,0.7811555555555555,4194.551299702635,2019
+1995,22,"(20,25]",HS,29.41848739495798,37.660216567282355,0.7811555555555555,4187.585016012539,2019
+1995,22,"(20,25]",HS,29.41848739495798,37.660216567282355,0.7811555555555555,4158.410641388362,2019
+1995,22,"(20,25]",HS,29.41848739495798,37.660216567282355,0.7811555555555555,4150.135717170628,2019
+1995,27,"(25,30]",HS,-15.193100398053959,99.10583307179566,-0.1533017777777778,6401.95489309727,2019
+1995,27,"(25,30]",HS,-15.193100398053959,99.10583307179566,-0.1533017777777778,6471.39271674413,2019
+1995,27,"(25,30]",HS,-15.193100398053959,99.10583307179566,-0.1533017777777778,6436.970878424225,2019
+1995,27,"(25,30]",HS,-15.193100398053959,99.10583307179566,-0.1533017777777778,6498.69281379617,2019
+1995,27,"(25,30]",HS,-15.193100398053959,99.10583307179566,-0.1533017777777778,6454.496043808989,2019
+1995,58,"(55,60]",NoHS,-9.580362671384343,47.57079987446191,-0.2013916666666667,10446.920717530913,2019
+1995,58,"(55,60]",NoHS,-9.735196815568333,47.57079987446191,-0.2046464814814815,10334.631535711673,2019
+1995,58,"(55,60]",NoHS,-9.386819991154356,47.57079987446191,-0.19732314814814816,10500.684613080926,2019
+1995,58,"(55,60]",NoHS,-9.696488279522335,47.57079987446191,-0.20383277777777778,10250.755323064446,2019
+1995,58,"(55,60]",NoHS,-9.870676691729322,47.57079987446191,-0.20749444444444445,10232.012815135375,2019
+1995,38,"(35,40]",HS,87.09420610349403,77.30254979600063,1.1266666666666665,9034.131358354534,2019
+1995,38,"(35,40]",HS,103.73887660327289,61.44561650451331,1.6883039426523296,8966.10328967337,2019
+1995,38,"(35,40]",HS,75.69454223794781,73.3383164731288,1.0321281681681682,9024.559631916669,2019
+1995,38,"(35,40]",HS,93.86819991154356,81.26678311887244,1.155062330623306,9124.832399266987,2019
+1995,38,"(35,40]",HS,24.773463069438304,73.3383164731288,0.337796996996997,9038.117496855903,2019
+1995,86,"(85,90]",NoHS,82.44918177797435,23.785399937230956,3.4663777777777782,8284.325097524987,2019
+1995,86,"(85,90]",NoHS,82.44918177797435,15.460509959200122,5.332888888888889,8215.843337175798,2019
+1995,86,"(85,90]",NoHS,88.31352498894294,16.25335662377449,5.433556097560976,8258.412965822254,2019
+1995,86,"(85,90]",NoHS,85.37167624944715,10.901641637897521,7.831084444444445,8267.142108238804,2019
+1995,86,"(85,90]",NoHS,92.76500663423265,14.667663294625758,6.3244570570570575,8274.80875374146,2019
+1995,41,"(40,45]",HS,1425.0547545333925,128.8375829933344,11.060862222222221,4552.679268356546,2019
+1995,41,"(40,45]",HS,1425.0547545333925,128.8375829933344,11.060862222222221,4739.459870102507,2019
+1995,41,"(40,45]",HS,1425.0547545333925,128.8375829933344,11.060862222222221,4672.021074131677,2019
+1995,41,"(40,45]",HS,1425.0547545333925,128.8375829933344,11.060862222222221,4437.159552557617,2019
+1995,41,"(40,45]",HS,1425.0547545333925,128.8375829933344,11.060862222222221,4705.372831203686,2019
+1995,43,"(40,45]",College,27239.19681556833,6144.561650451332,4.433057777777777,466.01924174422646,2019
+1995,43,"(40,45]",College,26612.11853162318,6045.455817379535,4.402003642987251,541.163258611464,2019
+1995,43,"(40,45]",College,26983.720477664752,6342.773316594922,4.254246388888889,457.1621133126663,2019
+1995,43,"(40,45]",College,27155.97346306944,6798.660148725183,3.994312536443149,527.7546830929092,2019
+1995,43,"(40,45]",College,27004.0424590889,6184.2039836800495,4.366615740740741,439.6665709130307,2019
+1995,59,"(55,60]",HS,896.1026094648386,142.71239962338575,6.279080246913581,3358.051626172357,2019
+1995,59,"(55,60]",HS,896.1026094648386,142.71239962338575,6.279080246913581,3490.7332483965315,2019
+1995,59,"(55,60]",HS,896.1026094648386,142.71239962338575,6.279080246913581,3450.6483737051735,2019
+1995,59,"(55,60]",HS,896.1026094648386,142.71239962338575,6.279080246913581,3271.2878169921632,2019
+1995,59,"(55,60]",HS,896.1026094648386,142.71239962338575,6.279080246913581,3459.0944729589783,2019
+1995,47,"(45,50]",HS,72.42367094206102,31.713866582974614,2.283659444444444,5943.879980181996,2019
+1995,47,"(45,50]",HS,94.6810791685095,37.660216567282355,2.5140874853801165,5888.937293860487,2019
+1995,47,"(45,50]",HS,91.77793896505972,33.69598324441053,2.723705620915033,5919.5054476153,2019
+1995,47,"(45,50]",HS,96.61650597080938,31.713866582974614,3.0465066666666667,6205.489350229358,2019
+1995,47,"(45,50]",HS,80.16537815126051,35.67809990584644,2.2469071604938273,6011.180529457215,2019
+1995,44,"(40,45]",College,3115.6500663423262,172.44414954492444,18.067589272030652,2221.4835310605804,2019
+1995,44,"(40,45]",College,2986.26678460858,172.44414954492444,17.31729833971903,2091.511688738291,2019
+1995,44,"(40,45]",College,4608.057673595755,172.44414954492444,26.722029629629635,1968.8953776587157,2019
+1995,44,"(40,45]",College,3009.182237947811,172.44414954492444,17.450184572158367,1973.6843797778442,2019
+1995,44,"(40,45]",College,2761.583087129589,172.44414954492444,16.01436229885058,2217.755115589546,2019
+1995,46,"(45,50]",College,2588.2462627156124,251.72881600236096,10.281883114610674,4814.41915690879,2019
+1995,46,"(45,50]",College,2239.8694383016364,251.72881600236096,8.897946106736658,3933.5008041682513,2019
+1995,46,"(45,50]",College,2578.5691287041136,251.72881600236096,10.24344041994751,4037.3590182860294,2019
+1995,46,"(45,50]",College,2009.5536488279524,251.72881600236096,7.9830099737532825,3938.900169029,2019
+1995,46,"(45,50]",College,2009.5536488279524,251.72881600236096,7.9830099737532825,4000.441956081767,2019
+1995,74,"(70,75]",HS,497.7917735515259,53.517149858769656,9.301537448559673,4317.05852764542,2019
+1995,74,"(70,75]",HS,505.53348076072535,53.517149858769656,9.446195884773664,4487.64305948065,2019
+1995,74,"(70,75]",HS,507.4689075630252,53.517149858769656,9.48236049382716,4436.572327385833,2019
+1995,74,"(70,75]",HS,519.0814683768244,53.517149858769656,9.699348148148148,4205.147537694622,2019
+1995,74,"(70,75]",HS,505.53348076072535,53.517149858769656,9.446195884773664,4461.476991722401,2019
+1995,35,"(30,35]",HS,224.12242370632464,103.07006639466748,2.174466666666667,10324.863490049906,2019
+1995,35,"(30,35]",HS,224.12242370632464,103.07006639466748,2.174466666666667,10435.461382074182,2019
+1995,35,"(30,35]",HS,224.12242370632464,103.07006639466748,2.174466666666667,10245.630278618479,2019
+1995,35,"(30,35]",HS,224.12242370632464,103.07006639466748,2.174466666666667,10374.22053037681,2019
+1995,35,"(30,35]",HS,224.12242370632464,103.07006639466748,2.174466666666667,10251.069222083648,2019
+1995,46,"(45,50]",NoHS,3778.533746130031,604.5455817379535,6.250204881602915,266.2710057351491,2019
+1995,46,"(45,50]",NoHS,11237.66864219372,317.1386658297461,35.43455861111111,240.05148966087395,2019
+1995,46,"(45,50]",NoHS,24071.48376824414,455.88683213026,52.801445603864735,412.73080319878926,2019
+1995,46,"(45,50]",NoHS,13693.72525431225,331.01348245979744,41.369086094477716,244.2358740114048,2019
+1995,46,"(45,50]",NoHS,12449.245820433436,665.9911982424668,18.692808333333335,240.5642051289903,2019
+1995,69,"(65,70]",College,65892.9602830606,953.3981141506744,69.1137933933934,27.815911125235335,2019
+1995,69,"(65,70]",College,34192.74016806723,836.4532311259554,40.87824506582412,28.249565666445058,2019
+1995,69,"(65,70]",College,70042.74759840779,814.6499478501604,85.97895057042444,28.17249151657388,2019
+1995,69,"(65,70]",College,23085.40316674038,3865.127489800031,5.972740414814814,55.92027834696994,2019
+1995,69,"(65,70]",College,63413.87209199469,1284.4115966104716,49.3719242798354,45.086862375183294,2019
+1995,48,"(45,50]",College,376.38245024325516,140.73028296194985,2.674495086071987,694.6917649573217,2019
+1995,48,"(45,50]",College,376.0147191508183,122.89123300902662,3.059735913978495,683.1801579899435,2019
+1995,48,"(45,50]",College,369.41491375497566,120.90911634759071,3.0553106739526408,692.197189995498,2019
+1995,48,"(45,50]",College,367.5956125608138,130.8196996547703,2.8099408080808077,650.952291731353,2019
+1995,48,"(45,50]",College,369.37620521892967,118.92699968615479,3.105907037037037,699.1712525224932,2019
+1995,30,"(25,30]",HS,-6.3675541795665636,39.642333228718265,-0.1606251111111111,6239.882736809615,2019
+1995,30,"(25,30]",HS,-6.3675541795665636,39.642333228718265,-0.1606251111111111,6143.684381817986,2019
+1995,30,"(25,30]",HS,-6.3675541795665636,39.642333228718265,-0.1606251111111111,6158.343600339298,2019
+1995,30,"(25,30]",HS,-6.3675541795665636,39.642333228718265,-0.1606251111111111,6118.953765549853,2019
+1995,30,"(25,30]",HS,-6.3675541795665636,39.642333228718265,-0.1606251111111111,6144.154887800343,2019
+1995,52,"(50,55]",College,74674.5723131358,2438.003493566174,30.62939512195122,18.424123599782696,2019
+1995,52,"(50,55]",College,80293.11632021228,2457.824660180533,32.66836630824371,18.715724758082384,2019
+1995,52,"(50,55]",College,79757.00309597523,2219.9706608082233,35.92705277777777,18.77532482183993,2019
+1995,52,"(50,55]",College,74308.77664750112,2239.791827422582,33.176644247787614,17.94707285770976,2019
+1995,52,"(50,55]",College,77831.25342768687,2219.9706608082233,35.0595865079365,17.90067114790862,2019
+1995,39,"(35,40]",HS,1164.8946837682442,57.48138318164148,20.265599386973182,2677.360347033401,2019
+1995,39,"(35,40]",HS,1164.8946837682442,57.48138318164148,20.265599386973182,2787.516804139655,2019
+1995,39,"(35,40]",HS,119.7642105263158,57.48138318164148,2.0835304214559387,4568.815761131305,2019
+1995,39,"(35,40]",HS,245.5669526758072,57.48138318164148,4.2721127969348665,4617.681270243104,2019
+1995,39,"(35,40]",HS,173.95616099071208,57.48138318164148,3.026304367816092,4585.3772469219175,2019
+1995,75,"(70,75]",College,864.7486952675807,95.14159974892382,9.089070370370372,8509.461707605318,2019
+1995,75,"(70,75]",College,864.7486952675807,95.14159974892382,9.089070370370372,8624.406913773299,2019
+1995,75,"(70,75]",College,864.7486952675807,95.14159974892382,9.089070370370372,8501.061800142383,2019
+1995,75,"(70,75]",College,864.7486952675807,95.14159974892382,9.089070370370372,8288.402883143122,2019
+1995,75,"(70,75]",College,864.7486952675807,95.14159974892382,9.089070370370372,8457.706035488603,2019
+1995,28,"(25,30]",HS,-2.5160548429898277,79.28466645743653,-0.03173444444444445,7164.984325012682,2019
+1995,28,"(25,30]",HS,-2.5160548429898277,73.3383164731288,-0.03430750750750751,7137.3416966578925,2019
+1995,28,"(25,30]",HS,-2.5160548429898277,73.3383164731288,-0.03430750750750751,7129.512219678848,2019
+1995,28,"(25,30]",HS,-2.5160548429898277,75.32043313456471,-0.033404678362573104,7166.424850085459,2019
+1995,28,"(25,30]",HS,-2.5160548429898277,71.35619981169287,-0.0352604938271605,7160.523320491533,2019
+1995,27,"(25,30]",College,3786.9528527200355,25.76751659866687,146.9661555555556,2221.4835310605804,2019
+1995,27,"(25,30]",College,3786.9141441839897,25.76751659866687,146.96465333333336,2091.511688738291,2019
+1995,27,"(25,30]",College,3761.7535957540913,25.76751659866687,145.98820888888892,1968.8953776587157,2019
+1995,27,"(25,30]",College,3786.8560813799204,25.76751659866687,146.96240000000003,1973.6843797778442,2019
+1995,27,"(25,30]",College,3761.7535957540913,25.76751659866687,145.98820888888892,2217.755115589546,2019
+1995,49,"(45,50]",HS,437.27097744360907,122.89123300902662,3.5581950537634413,3719.1861563986286,2019
+1995,49,"(45,50]",HS,437.27097744360907,122.89123300902662,3.5581950537634413,3875.1419022492946,2019
+1995,49,"(45,50]",HS,437.27097744360907,122.89123300902662,3.5581950537634413,3827.1608438367452,2019
+1995,49,"(45,50]",HS,437.27097744360907,122.89123300902662,3.5581950537634413,3631.277359961436,2019
+1995,49,"(45,50]",HS,437.27097744360907,122.89123300902662,3.5581950537634413,3838.2506327557726,2019
+1995,48,"(45,50]",HS,63.57877045555065,61.44561650451331,1.0347161290322582,8483.709336893771,2019
+1995,48,"(45,50]",HS,63.21103936311367,77.30254979600063,0.8177096296296296,8405.28955343685,2019
+1995,48,"(45,50]",HS,203.06498009730208,71.35619981169287,2.845793086419753,8448.919527845143,2019
+1995,48,"(45,50]",HS,35.66991596638656,65.40984982738514,0.5453294276094277,8857.10480629922,2019
+1995,48,"(45,50]",HS,52.45006634232641,73.3383164731288,0.7151795795795796,8579.767517773593,2019
+1995,69,"(65,70]",College,11891.842901371076,432.1014321930291,27.520952293577984,13.516461742509657,2019
+1995,69,"(65,70]",College,8102.1440651039375,465.7974154374396,17.39413701446809,11.748975863729939,2019
+1995,69,"(65,70]",College,12156.222202565235,291.37114923107936,41.72074769463339,12.3878164019517,2019
+1995,69,"(65,70]",College,4401.934719150818,402.3696822714903,10.940025834701698,11.991229996124789,2019
+1995,69,"(65,70]",College,10012.930561698364,1066.3787638525214,9.389656753407683,12.532710178466164,2019
+1995,53,"(50,55]",College,183.47846085802743,29.731749921538697,6.17112888888889,7527.340676023644,2019
+1995,53,"(50,55]",College,183.18814683768244,29.731749921538697,6.161364444444445,7500.778239718634,2019
+1995,53,"(50,55]",College,184.09779743476338,29.731749921538697,6.191959703703704,7458.206355435834,2019
+1995,53,"(50,55]",College,200.58763379035827,29.731749921538697,6.7465801481481495,7838.329794816462,2019
+1995,53,"(50,55]",College,184.44617425917735,29.731749921538697,6.203677037037037,7559.847514001938,2019
+1995,51,"(50,55]",HS,-174.807748783724,118.92699968615479,-1.4698743703703705,3945.354504511984,2019
+1995,51,"(50,55]",HS,-148.64077841662981,118.92699968615479,-1.249848888888889,4108.963571429651,2019
+1995,51,"(50,55]",HS,-178.0979743476338,118.92699968615479,-1.4975402962962965,4037.7573780445978,2019
+1995,51,"(50,55]",HS,-175.77546218487396,118.92699968615479,-1.4780114074074076,3861.234400119418,2019
+1995,51,"(50,55]",HS,-156.47925696594427,118.92699968615479,-1.315758888888889,4047.304977286797,2019
+1995,57,"(55,60]",College,21507.23679787705,2378.5399937230964,9.042201037037037,23.35143383199849,2019
+1995,57,"(55,60]",College,22443.98337019018,2180.3283275795047,10.293854868686868,27.648165580847625,2019
+1995,57,"(55,60]",College,23052.0944714728,2279.4341606513003,10.113077565217392,24.469450839909886,2019
+1995,57,"(55,60]",College,23367.56904024768,2517.28816002361,9.282834365704286,26.84193915322907,2019
+1995,57,"(55,60]",College,23577.175762936753,2358.718827108737,9.995755107376283,23.5331298087227,2019
+1995,47,"(45,50]",HS,226.79331269349845,65.40984982738514,3.467265454545454,3613.3481569533883,2019
+1995,47,"(45,50]",HS,238.59941618752765,77.30254979600063,3.0865659259259255,3511.06750406059,2019
+1995,47,"(45,50]",HS,245.1798673153472,65.40984982738514,3.7483630976430975,3534.9403873884476,2019
+1995,47,"(45,50]",HS,218.08389208314907,81.26678311887244,2.68355512195122,3506.771782396862,2019
+1995,47,"(45,50]",HS,217.11617868199912,61.44561650451331,3.533468960573477,3547.493727380612,2019
+1995,52,"(50,55]",College,3495.5743476337902,354.79888239702854,9.852269894475478,968.7160741505761,2019
+1995,52,"(50,55]",College,3968.3991154356477,325.06713247548976,12.207937127371274,771.9301447579471,2019
+1995,52,"(50,55]",College,3859.0475011057056,295.3353825539511,13.066661595824012,753.7863032331538,2019
+1995,52,"(50,55]",College,3472.349226006192,354.79888239702854,9.786809931719429,753.3941109443942,2019
+1995,52,"(50,55]",College,3321.7730207872623,297.31749921538704,11.172477333333331,772.0580677103346,2019
+1995,36,"(35,40]",HS,210.38089340999556,152.62298293056534,1.378435209235209,3431.759765008622,2019
+1995,36,"(35,40]",HS,210.38089340999556,152.62298293056534,1.378435209235209,3500.7976079816945,2019
+1995,36,"(35,40]",HS,210.38089340999556,152.62298293056534,1.378435209235209,3394.303550448709,2019
+1995,36,"(35,40]",HS,210.38089340999556,152.62298293056534,1.378435209235209,3492.0706598961815,2019
+1995,36,"(35,40]",HS,210.38089340999556,152.62298293056534,1.378435209235209,3440.9451244841207,2019
+1995,47,"(45,50]",NoHS,0.5419195046439628,67.39196648882105,0.008041307189542482,6366.965821706961,2019
+1995,47,"(45,50]",NoHS,0.5419195046439628,67.39196648882105,0.008041307189542482,6254.818657090568,2019
+1995,47,"(45,50]",NoHS,0.5419195046439628,67.39196648882105,0.008041307189542482,6312.98007865726,2019
+1995,47,"(45,50]",NoHS,0.5419195046439628,67.39196648882105,0.008041307189542482,6307.554184188349,2019
+1995,47,"(45,50]",NoHS,0.5419195046439628,67.39196648882105,0.008041307189542482,6344.7876428587315,2019
+1995,34,"(30,35]",HS,9.212631578947368,31.713866582974614,0.2904922222222222,6973.315576040358,2019
+1995,34,"(30,35]",HS,7.857832817337461,33.69598324441053,0.233197908496732,7055.924897255076,2019
+1995,34,"(30,35]",HS,9.32682176028306,35.67809990584644,0.26141587654320986,6996.207107501743,2019
+1995,34,"(30,35]",HS,9.290048651039363,31.713866582974614,0.2929333333333333,7099.494024461053,2019
+1995,34,"(30,35]",HS,8.728774878372402,39.642333228718265,0.22018822222222223,6999.507463195938,2019
+1995,70,"(65,70]",HS,235.63821318000885,59.46349984307739,3.962737037037037,11128.926496398753,2019
+1995,70,"(65,70]",HS,240.34130030959753,45.588683213026,5.271950917874396,11293.732861193801,2019
+1995,70,"(65,70]",HS,237.28332596196375,29.731749921538697,7.980805925925927,11407.52826030146,2019
+1995,70,"(65,70]",HS,220.05802742149493,65.40984982738514,3.3642949494949494,11647.184274805843,2019
+1995,70,"(65,70]",HS,296.5073861123397,55.499266520205566,5.342546031746033,11243.164228592854,2019
+1995,36,"(35,40]",HS,20.70906678460858,97.12371641035975,0.2132235827664399,5765.9821905212575,2019
+1995,36,"(35,40]",HS,20.70906678460858,97.12371641035975,0.2132235827664399,5841.806728850337,2019
+1995,36,"(35,40]",HS,20.70906678460858,97.12371641035975,0.2132235827664399,5775.7009099795905,2019
+1995,36,"(35,40]",HS,20.70906678460858,97.12371641035975,0.2132235827664399,5758.111691705066,2019
+1995,36,"(35,40]",HS,20.70906678460858,97.12371641035975,0.2132235827664399,5782.912529663654,2019
+1995,47,"(45,50]",HS,428.96799646174264,118.92699968615479,3.6069857777777785,2159.5657980736446,2019
+1995,47,"(45,50]",HS,177.7689517912428,118.92699968615479,1.4947737037037039,2152.065403231475,2019
+1995,47,"(45,50]",HS,211.44537815126048,118.92699968615479,1.7779425925925927,2071.030044550573,2019
+1995,47,"(45,50]",HS,457.99939849624064,118.92699968615479,3.8510968888888897,6468.714531594167,2019
+1995,47,"(45,50]",HS,172.93038478549315,118.92699968615479,1.4540885185185186,2121.7833219944932,2019
+1995,62,"(60,65]",HS,0.32902255639097744,13.874816630051392,0.023713650793650797,7683.55644984299,2019
+1995,62,"(60,65]",HS,0.32902255639097744,13.874816630051392,0.023713650793650797,7728.387561856633,2019
+1995,62,"(60,65]",HS,0.32902255639097744,13.874816630051392,0.023713650793650797,7710.828609285428,2019
+1995,62,"(60,65]",HS,0.32902255639097744,13.874816630051392,0.023713650793650797,7720.361254305052,2019
+1995,62,"(60,65]",HS,0.32902255639097744,13.874816630051392,0.023713650793650797,7676.796075080078,2019
+1995,47,"(45,50]",HS,106.4678283945157,79.28466645743653,1.3428552222222223,6092.274507613301,2019
+1995,47,"(45,50]",HS,112.37088014153031,79.28466645743653,1.4173091111111114,5952.030508026906,2019
+1995,47,"(45,50]",HS,109.21613445378152,79.28466645743653,1.3775190000000002,6030.836119031676,2019
+1995,47,"(45,50]",HS,116.26108801415303,79.28466645743653,1.4663754444444446,6202.772160795471,2019
+1995,47,"(45,50]",HS,118.13845201238391,79.28466645743653,1.4900542222222224,6076.897417001223,2019
+1995,60,"(55,60]",NoHS,72.17206545776206,71.35619981169287,1.0114337037037038,8642.714522484344,2019
+1995,60,"(55,60]",NoHS,45.88896948252986,67.39196648882105,0.6809264052287582,8635.8666095543,2019
+1995,60,"(55,60]",NoHS,61.740114993365765,69.37408315025698,0.8899593650793649,8705.76966628859,2019
+1995,60,"(55,60]",NoHS,75.28810260946484,79.28466645743653,0.9495922222222223,8857.896963867472,2019
+1995,60,"(55,60]",NoHS,82.83626713843432,85.23101644174427,0.971902842377261,8643.321611520954,2019
+1995,48,"(45,50]",College,393.66581158779303,103.07006639466748,3.819400000000001,1049.658124656972,2019
+1995,48,"(45,50]",College,393.66581158779303,103.07006639466748,3.819400000000001,1032.7821368085165,2019
+1995,48,"(45,50]",College,393.66581158779303,103.07006639466748,3.819400000000001,1051.5840253030021,2019
+1995,48,"(45,50]",College,393.66581158779303,103.07006639466748,3.819400000000001,990.4712640752193,2019
+1995,48,"(45,50]",College,393.66581158779303,103.07006639466748,3.819400000000001,1064.178929995065,2019
+1995,75,"(70,75]",HS,5149.880406899602,265.6036326324124,19.3893447761194,168.4091443765248,2019
+1995,75,"(70,75]",HS,32166.793454223793,281.4605659238997,114.28525821596243,297.8242594016659,2019
+1995,75,"(70,75]",HS,13207.546041574526,287.4069159082075,45.95416919540229,148.0596774186919,2019
+1995,75,"(70,75]",HS,7250.534595311809,295.3353825539511,24.550172527964207,151.61737593428026,2019
+1995,75,"(70,75]",HS,14710.172702344096,432.1014321930291,34.043332436289504,151.9768634696057,2019
+1995,52,"(50,55]",HS,739.4685183547103,356.7809990584644,2.072611827160494,828.0222011609989,2019
+1995,52,"(50,55]",HS,739.4685183547103,356.7809990584644,2.072611827160494,814.6166074384893,2019
+1995,52,"(50,55]",HS,739.4685183547103,356.7809990584644,2.072611827160494,825.519406209675,2019
+1995,52,"(50,55]",HS,739.4685183547103,356.7809990584644,2.072611827160494,776.465677598076,2019
+1995,52,"(50,55]",HS,739.4685183547103,356.7809990584644,2.072611827160494,833.3852306146603,2019
+1995,44,"(40,45]",HS,16.296293675364883,75.32043313456471,0.21635953216374268,7545.820312637235,2019
+1995,44,"(40,45]",HS,29.61203007518797,99.10583307179566,0.298792,7680.674918514787,2019
+1995,44,"(40,45]",HS,39.443998230871294,69.37408315025698,0.5685696507936506,7556.917375985012,2019
+1995,44,"(40,45]",HS,20.051021671826625,85.23101644174427,0.23525498708010334,7584.774186255023,2019
+1995,44,"(40,45]",HS,16.431773551525872,99.10583307179566,0.16580026666666667,7593.625838592876,2019
+1995,39,"(35,40]",HS,229.2513047324193,186.31896617497586,1.230423877068558,7586.6434788513,2019
+1995,39,"(35,40]",HS,229.2513047324193,186.31896617497586,1.230423877068558,7679.732290204857,2019
+1995,39,"(35,40]",HS,229.2513047324193,186.31896617497586,1.230423877068558,7585.497219015291,2019
+1995,39,"(35,40]",HS,229.2513047324193,186.31896617497586,1.230423877068558,7837.2511791997995,2019
+1995,39,"(35,40]",HS,229.2513047324193,186.31896617497586,1.230423877068558,7642.057124376462,2019
+1995,74,"(70,75]",HS,7341.712551968156,138.74816630051396,52.91394292063491,168.4091443765248,2019
+1995,74,"(70,75]",HS,9004.66996904025,218.03283275795047,41.29960545454546,146.93318372127163,2019
+1995,74,"(70,75]",HS,6847.598089341,269.5678659552842,25.4021304248366,148.0596774186919,2019
+1995,74,"(70,75]",HS,9755.905882352941,376.6021656728235,25.905071111111113,151.61737593428026,2019
+1995,74,"(70,75]",HS,11823.90942061035,449.94048214595233,26.278829955947135,151.9768634696057,2019
+1995,39,"(35,40]",HS,257.31499336576735,93.15948308748793,2.7620912529550825,11043.45019356344,2019
+1995,39,"(35,40]",HS,251.41194161875276,93.15948308748793,2.6987262411347515,11122.912958084817,2019
+1995,39,"(35,40]",HS,251.74096417514374,93.15948308748793,2.702258061465721,10887.513339256804,2019
+1995,39,"(35,40]",HS,266.5082706766917,93.15948308748793,2.8607744680851064,11192.208330142557,2019
+1995,39,"(35,40]",HS,258.9601061477223,93.15948308748793,2.7797503546099294,11051.4162364966,2019
+1995,53,"(50,55]",HS,263.9728615656789,73.3383164731288,3.599385345345345,5922.107533763387,2019
+1995,53,"(50,55]",HS,263.29546218487394,73.3383164731288,3.5901487087087083,5867.366102631759,2019
+1995,53,"(50,55]",HS,263.9728615656789,73.3383164731288,3.599385345345345,5897.822285167105,2019
+1995,53,"(50,55]",HS,263.29546218487394,73.3383164731288,3.5901487087087083,6182.758628069828,2019
+1995,53,"(50,55]",HS,263.29546218487394,73.3383164731288,3.5901487087087083,5989.161560967516,2019
+1995,54,"(50,55]",College,36000.11913312694,2219.9706608082233,16.21648419444444,20.12365416564478,2019
+1995,54,"(50,55]",College,150959.6326227333,5193.145652962094,29.069015720101778,40.025483906567764,2019
+1995,54,"(50,55]",College,98791.36442282176,4558.868321302601,21.67015089275362,35.10314700103088,2019
+1995,54,"(50,55]",College,71557.08359133128,3349.777157826694,21.361744444444444,17.96867383023132,2019
+1995,54,"(50,55]",College,42498.74041574525,1064.3966471910853,39.92754066625285,20.149174934146174,2019
+1995,19,"(15,20]",HS,7.74170720919947,45.588683213026,0.16981642512077297,5650.188554575969,2019
+1995,19,"(15,20]",HS,8.341689517912428,39.642333228718265,0.2104237777777778,5746.281189170282,2019
+1995,19,"(15,20]",HS,5.941760283060593,65.40984982738514,0.09083892255892255,5671.13119238782,2019
+1995,19,"(15,20]",HS,7.509455992923486,29.731749921538697,0.25257362962962965,5756.9550066710535,2019
+1995,19,"(15,20]",HS,7.548164528969482,39.642333228718265,0.19040666666666667,5641.871054641107,2019
+1995,70,"(65,70]",College,7292.6881910659,327.0492491369256,22.298440404040413,1448.54164384706,2019
+1995,70,"(65,70]",College,7292.6881910659,327.0492491369256,22.298440404040413,1275.4213103649458,2019
+1995,70,"(65,70]",College,7292.6881910659,327.0492491369256,22.298440404040413,1273.56800365747,2019
+1995,70,"(65,70]",College,7292.6881910659,327.0492491369256,22.298440404040413,1308.3200328264893,2019
+1995,70,"(65,70]",College,7292.6881910659,327.0492491369256,22.298440404040413,1302.4300491327165,2019
+1995,41,"(40,45]",College,15444.89942503317,1014.8437306551876,15.218992795138888,26.538102390893936,2019
+1995,41,"(40,45]",College,14042.876249447147,1042.5933639152904,13.469178622729192,23.93964924210013,2019
+1995,41,"(40,45]",College,12988.45572755418,1246.7513800431896,10.417839462992402,24.643611389086267,2019
+1995,41,"(40,45]",College,13786.432198142415,1203.1448134915995,11.458664030752333,21.792984834224885,2019
+1995,41,"(40,45]",College,14242.612295444495,1161.5203636014453,12.262042700037922,24.44139090215325,2019
+1995,73,"(70,75]",College,3770.2114108801416,247.76458267948914,15.216910222222223,1882.5494216484574,2019
+1995,73,"(70,75]",College,3988.9146395400267,277.4963326010279,14.37465714285714,1677.7039283055808,2019
+1995,73,"(70,75]",College,5525.643520566121,319.12078249118207,17.315210489993095,1670.7801409561027,2019
+1995,73,"(70,75]",College,4761.1499336576735,243.80034935661735,19.528888888888886,1697.2412820378008,2019
+1995,73,"(70,75]",College,5912.728881026095,301.28173253825884,19.625248538011697,1685.9900024885817,2019
+1995,69,"(65,70]",College,0.5806280406899602,13.081969965477029,0.04438383838383838,9119.16001680349,2019
+1995,69,"(65,70]",College,0.774170720919947,12.289123300902663,0.06299641577060933,9133.783062089056,2019
+1995,69,"(65,70]",College,0.2322512162759841,11.298064970184706,0.020556725146198832,9110.986251302706,2019
+1995,69,"(65,70]",College,0.2709597523219814,13.676604963907801,0.019811916264090176,9129.699567606644,2019
+1995,69,"(65,70]",College,0.4257938965059708,11.892699968615478,0.03580296296296297,9180.758893700031,2019
+1995,27,"(25,30]",NoHS,10.257762052189298,23.785399937230956,0.43126296296296307,8199.829024576076,2019
+1995,27,"(25,30]",NoHS,2.322512162759841,23.785399937230956,0.09764444444444446,8199.00909829489,2019
+1995,27,"(25,30]",NoHS,21.289694825298543,23.785399937230956,0.8950740740740744,8195.796643039743,2019
+1995,27,"(25,30]",NoHS,5.0321096859796555,23.785399937230956,0.211562962962963,8232.513055935677,2019
+1995,27,"(25,30]",NoHS,0.5806280406899602,23.785399937230956,0.024411111111111116,8221.435641940814,2019
+1995,42,"(40,45]",HS,-2.5160548429898277,43.606566551590085,-0.057698989898989916,5597.909293529712,2019
+1995,42,"(40,45]",HS,-2.5160548429898277,43.606566551590085,-0.057698989898989916,5665.2740962103,2019
+1995,42,"(40,45]",HS,-2.5160548429898277,43.606566551590085,-0.057698989898989916,5634.905555523285,2019
+1995,42,"(40,45]",HS,-2.5160548429898277,43.606566551590085,-0.057698989898989916,5641.389633516802,2019
+1995,42,"(40,45]",HS,-2.5160548429898277,43.606566551590085,-0.057698989898989916,5672.661486316025,2019
+1995,36,"(35,40]",HS,179.04633348076072,75.32043313456471,2.377128304093567,8022.576080781633,2019
+1995,36,"(35,40]",HS,257.0246793454224,25.76751659866687,9.974755555555557,7933.805692543843,2019
+1995,36,"(35,40]",HS,214.4452896948253,33.69598324441053,6.364120261437908,7983.516571673038,2019
+1995,36,"(35,40]",HS,178.46570544007076,75.32043313456471,2.3694195321637426,8073.990435403843,2019
+1995,36,"(35,40]",HS,206.76164528969483,29.731749921538697,6.954237333333334,8002.265931535738,2019
+1995,30,"(25,30]",HS,19.354268022998674,4.7570799874461915,4.068518518518519,3803.992691739855,2019
+1995,30,"(25,30]",HS,19.354268022998674,4.955291653589783,3.9057777777777782,3745.3477051623267,2019
+1995,30,"(25,30]",HS,19.354268022998674,4.7570799874461915,4.068518518518519,3754.284341069398,2019
+1995,30,"(25,30]",HS,19.354268022998674,4.955291653589783,3.9057777777777782,3730.2712866599004,2019
+1995,30,"(25,30]",HS,19.354268022998674,4.7570799874461915,4.068518518518519,3745.6345376868776,2019
+1995,18,"(15,20]",HS,1.8386554621848739,0,Inf,5396.916953387241,2019
+1995,18,"(15,20]",HS,1.8386554621848739,0,Inf,5393.026888625339,2019
+1995,18,"(15,20]",HS,1.8386554621848739,0,Inf,5386.786729321788,2019
+1995,18,"(15,20]",HS,1.8386554621848739,0,Inf,5404.330804955562,2019
+1995,18,"(15,20]",HS,1.8386554621848739,0,Inf,5356.082225882157,2019
+1995,60,"(55,60]",College,6551.555205661212,223.9791827422582,29.250732704031467,718.4034281823234,2019
+1995,60,"(55,60]",College,6551.555205661212,223.9791827422582,29.250732704031467,571.2644994960574,2019
+1995,60,"(55,60]",College,6551.555205661212,223.9791827422582,29.250732704031467,558.4296786746759,2019
+1995,60,"(55,60]",College,6551.555205661212,223.9791827422582,29.250732704031467,557.8506091138586,2019
+1995,60,"(55,60]",College,6551.555205661212,223.9791827422582,29.250732704031467,571.106671555163,2019
+1995,75,"(70,75]",College,1687.7115258735073,277.4963326010279,6.081923714285713,242.5059529141011,2019
+1995,75,"(70,75]",College,2492.6942414860678,71.35619981169287,34.933113703703704,201.1124386038668,2019
+1995,75,"(70,75]",College,1103.9287394957983,51.53503319733374,21.42093777777778,108.92662212619173,2019
+1995,75,"(70,75]",College,1082.3100221141087,168.47991622205262,6.423970562091503,109.0889374431606,2019
+1995,75,"(70,75]",College,1768.1672180451128,277.4963326010279,6.371857968253967,201.92263387449142,2019
+1995,79,"(75,80]",HS,87.67483414418399,41.624449890154175,2.106330158730159,10156.407434099521,2019
+1995,79,"(75,80]",HS,103.6421052631579,35.67809990584644,2.9049222222222224,9922.504975987062,2019
+1995,79,"(75,80]",HS,109.79676249447148,35.67809990584644,3.077427407407408,10104.73326538584,2019
+1995,79,"(75,80]",HS,93.44240601503759,39.642333228718265,2.357136888888889,10222.582067876467,2019
+1995,79,"(75,80]",HS,86.93937195931004,35.67809990584644,2.4367713580246915,10050.578445364645,2019
+1995,73,"(70,75]",NoHS,198.3425386996904,33.69598324441053,5.886236862745098,7010.031890913915,2019
+1995,73,"(70,75]",NoHS,167.7627952233525,33.69598324441053,4.978717908496732,6970.905892457838,2019
+1995,73,"(70,75]",NoHS,204.14881910659,33.69598324441053,6.058550588235294,7045.602607364266,2019
+1995,73,"(70,75]",NoHS,225.43851393188854,33.69598324441053,6.690367581699346,7054.831729543102,2019
+1995,73,"(70,75]",NoHS,220.98703228659883,33.69598324441053,6.558260392156862,6905.015201631795,2019
+1995,62,"(60,65]",HS,6050.686103494029,574.813831816415,10.526340475095783,967.5722720699862,2019
+1995,62,"(60,65]",HS,5841.6600088456435,574.813831816415,10.162699095785438,874.9072039382536,2019
+1995,62,"(60,65]",HS,5890.0456789031405,574.813831816415,10.246875340996166,868.612642091611,2019
+1995,62,"(60,65]",HS,5768.1137903582485,574.813831816415,10.034751203065131,882.8887343707402,2019
+1995,62,"(60,65]",HS,6041.00896948253,574.813831816415,10.509505226053637,874.4460285300108,2019
+1995,37,"(35,40]",NoHS,8.322335249889429,11.099853304041115,0.7497698412698411,5366.102160365575,2019
+1995,37,"(35,40]",NoHS,8.322335249889429,11.099853304041115,0.7497698412698411,5381.720337653313,2019
+1995,37,"(35,40]",NoHS,8.322335249889429,11.099853304041115,0.7497698412698411,5379.55239478746,2019
+1995,37,"(35,40]",NoHS,8.322335249889429,11.099853304041115,0.7497698412698411,5373.463207003412,2019
+1995,37,"(35,40]",NoHS,8.322335249889429,11.099853304041115,0.7497698412698411,5387.545305331556,2019
+1995,60,"(55,60]",HS,1122.741088014153,180.3726161906681,6.22456507936508,657.6513068806292,2019
+1995,60,"(55,60]",HS,1122.741088014153,174.42626620636034,6.436766161616163,641.268382430984,2019
+1995,60,"(55,60]",HS,1122.741088014153,196.22954948215542,5.721569921436588,659.6743871484637,2019
+1995,60,"(55,60]",HS,1122.741088014153,172.44414954492444,6.510751979565773,615.7125435311016,2019
+1995,60,"(55,60]",HS,1122.741088014153,180.3726161906681,6.22456507936508,664.7364387010095,2019
+1995,43,"(40,45]",HS,6570.057885891199,118.92699968615479,55.24446007407408,701.2947968887518,2019
+1995,43,"(40,45]",HS,5630.64042459089,249.7466993409251,22.545404761904763,628.4367600338842,2019
+1995,43,"(40,45]",HS,5267.941441839895,273.53209927815607,19.25895152979066,629.8510171803075,2019
+1995,43,"(40,45]",HS,6194.10122954445,212.08648277364273,29.205544589823468,635.6152717336347,2019
+1995,43,"(40,45]",HS,5821.860592658116,247.76458267948914,23.497549688888892,633.1002723575365,2019
+1995,44,"(40,45]",HS,247442.12964175144,5728.317151549789,43.19630409688582,20.596531953093002,2019
+1995,44,"(40,45]",HS,125066.04129146396,4083.1603225579815,30.62971605609493,22.26202337905925,2019
+1995,44,"(40,45]",NoHS,132221.60449358693,2576.7516598666875,51.313289733333335,21.732516141960737,2019
+1995,44,"(40,45]",HS,144247.1853869969,3171.386658297461,45.483947852777774,19.262965231704467,2019
+1995,44,"(40,45]",College,126096.133498452,7135.619981169289,17.671363361728393,21.033670215083394,2019
+1995,73,"(70,75]",HS,138.6346218487395,39.642333228718265,3.497135777777778,12213.499411886216,2019
+1995,73,"(70,75]",HS,136.69919504643963,39.642333228718265,3.4483135555555555,12222.024195045604,2019
+1995,73,"(70,75]",HS,136.69919504643963,39.642333228718265,3.4483135555555555,12444.030462503268,2019
+1995,73,"(70,75]",HS,136.69919504643963,39.642333228718265,3.4483135555555555,12465.455443184846,2019
+1995,73,"(70,75]",HS,142.50547545333922,39.642333228718265,3.594780222222222,12169.930503770565,2019
+1995,71,"(70,75]",NoHS,249.86360017691288,31.713866582974614,7.8786861111111115,8127.192596333238,2019
+1995,71,"(70,75]",NoHS,249.86360017691288,31.713866582974614,7.8786861111111115,8169.353096732824,2019
+1995,71,"(70,75]",NoHS,249.86360017691288,31.713866582974614,7.8786861111111115,8196.854295346413,2019
+1995,71,"(70,75]",NoHS,249.86360017691288,31.713866582974614,7.8786861111111115,8091.276507344739,2019
+1995,71,"(70,75]",NoHS,249.86360017691288,31.713866582974614,7.8786861111111115,7883.564801984717,2019
+1995,22,"(20,25]",HS,5.554674922600619,19.821166614359132,0.2802395555555556,5650.188554575969,2019
+1995,22,"(20,25]",HS,4.915984077841663,37.660216567282355,0.13053520467836255,5746.281189170282,2019
+1995,22,"(20,25]",HS,-2.2838036267138437,109.01641637897524,-0.02094917171717172,5671.13119238782,2019
+1995,22,"(20,25]",HS,4.23858469703671,17.64083828677963,0.24027116104868912,5756.9550066710535,2019
+1995,22,"(20,25]",HS,-0.5612737726669615,103.07006639466748,-0.005445555555555557,5641.871054641107,2019
+1995,40,"(35,40]",College,51.79202122954445,51.53503319733374,1.004986666666667,10772.405966738577,2019
+1995,40,"(35,40]",College,51.67589562140646,59.46349984307739,0.8690355555555557,10691.288486385707,2019
+1995,40,"(35,40]",College,51.94685537372844,65.40984982738514,0.7941748148148148,10760.992525988038,2019
+1995,40,"(35,40]",College,51.55977001326846,65.40984982738514,0.7882569696969696,10880.558969562824,2019
+1995,40,"(35,40]",College,51.83072976559045,67.39196648882105,0.7690935947712418,10777.159085823649,2019
+1995,86,"(85,90]",HS,273.57257850508626,29.731749921538697,9.201361481481483,7693.573153768497,2019
+1995,86,"(85,90]",HS,252.18611233967272,29.731749921538697,8.482047407407409,7555.09586028943,2019
+1995,86,"(85,90]",HS,241.54126492702343,29.731749921538697,8.124017777777778,7750.199541348231,2019
+1995,86,"(85,90]",HS,246.86368863334806,29.731749921538697,8.303032592592594,7776.950687978739,2019
+1995,86,"(85,90]",HS,347.5058823529412,29.731749921538697,11.688040000000003,7704.991737284314,2019
+1995,46,"(45,50]",NoHS,-1.8386554621848739,17.24441495449245,-0.10662324393358874,5021.861349994255,2019
+1995,46,"(45,50]",NoHS,-1.8386554621848739,17.24441495449245,-0.10662324393358874,5041.675183981245,2019
+1995,46,"(45,50]",NoHS,-1.8193011941618753,17.24441495449245,-0.10550089399744571,5046.398290767306,2019
+1995,46,"(45,50]",NoHS,-1.8386554621848739,17.24441495449245,-0.10662324393358874,5034.302817124623,2019
+1995,46,"(45,50]",NoHS,-1.8193011941618753,17.24441495449245,-0.10550089399744571,5036.087877128034,2019
+1995,48,"(45,50]",HS,344.1769482529854,148.65874960769352,2.3152148740740737,3824.553136781865,2019
+1995,48,"(45,50]",HS,314.1778328173375,128.8375829933344,2.4385573333333332,3984.4787995526663,2019
+1995,48,"(45,50]",HS,329.1773905351614,130.8196996547703,2.5162677441077435,3934.8446166387102,2019
+1995,48,"(45,50]",HS,315.7842370632464,130.8196996547703,2.413889023569024,3732.84747912037,2019
+1995,48,"(45,50]",HS,323.1969217160549,128.8375829933344,2.5085608888888884,3948.328187617477,2019
+1995,62,"(60,65]",HS,0,31.713866582974614,0,7799.511267079525,2019
+1995,62,"(60,65]",HS,0,31.713866582974614,0,7814.65476702386,2019
+1995,62,"(60,65]",HS,0,31.713866582974614,0,7790.806886797283,2019
+1995,62,"(60,65]",HS,0,31.713866582974614,0,7804.596271515182,2019
+1995,62,"(60,65]",HS,0,31.713866582974614,0,7769.961979549703,2019
+1995,49,"(45,50]",College,4480.5130473241925,1153.5918969557015,3.883967163039328,168.8397178311953,2019
+1995,49,"(45,50]",College,4505.6735957540905,1298.2864132405234,3.4704773536895663,152.25714796134818,2019
+1995,49,"(45,50]",College,4480.5130473241925,1086.1999304668807,4.124943227899431,152.41754460911687,2019
+1995,49,"(45,50]",College,4480.5130473241925,1143.6813136485218,3.917623724244175,154.68089341254966,2019
+1995,49,"(45,50]",College,4602.4449358690845,1339.9108631306774,3.4348888888888887,151.92675713687998,2019
+1995,52,"(50,55]",College,25667.74637770898,6858.12364856826,3.7426776904303147,49.32655666747572,2019
+1995,52,"(50,55]",College,21748.9716054843,6303.130983366205,3.4505028791055206,56.1834291515572,2019
+1995,52,"(50,55]",College,23022.153418841222,5351.714985876965,4.301827260905351,50.2223013745205,2019
+1995,52,"(50,55]",College,27847.7724192835,5530.105485406199,5.035667491835921,59.872787310026354,2019
+1995,52,"(50,55]",College,22316.4193896506,6124.740483836972,3.6436514246673863,48.09579076282491,2019
+1995,44,"(40,45]",HS,182.5107474568775,87.21313310318017,2.0926979797979803,7249.2598168279455,2019
+1995,44,"(40,45]",HS,182.5107474568775,87.21313310318017,2.0926979797979803,7296.124153514364,2019
+1995,44,"(40,45]",HS,160.25333923042902,87.21313310318017,1.8374909090909095,7285.353222159289,2019
+1995,44,"(40,45]",HS,182.5107474568775,87.21313310318017,2.0926979797979803,7508.130255239294,2019
+1995,44,"(40,45]",HS,181.54303405572756,87.21313310318017,2.0816020202020207,7353.135098506097,2019
+1995,56,"(55,60]",College,139151.98078726226,360.7452323813362,385.73477428571425,16.688512790877454,2019
+1995,56,"(55,60]",College,146038.3261211853,327.0492491369256,446.53313379124586,17.493661129010025,2019
+1995,56,"(55,60]",College,139412.17956656346,325.06713247548976,428.8719640921409,16.54057463209837,2019
+1995,56,"(55,60]",College,139084.8408314905,279.4784492624638,497.65855363278166,15.139731997046004,2019
+1995,56,"(55,60]",College,144959.3643874392,281.4605659238997,515.0254846948357,15.627108432401673,2019
+1995,45,"(40,45]",HS,948.6107386112341,107.03429971753931,8.862679917695475,5551.022704405095,2019
+1995,45,"(40,45]",HS,1275.5043255196815,101.08794973323158,12.617768278867102,10297.411699163584,2019
+1995,45,"(40,45]",HS,1454.5313047324194,103.07006639466748,14.112063333333335,10275.541080026427,2019
+1995,45,"(40,45]",HS,948.9978239716941,116.94488302471889,8.114915329566855,5423.0659131295015,2019
+1995,45,"(40,45]",HS,929.6435559486953,112.98064970184706,8.228343157894736,5544.378370310292,2019
+1995,51,"(50,55]",College,12094.48208757187,495.5291653589783,24.407205333333334,168.4091443765248,2019
+1995,51,"(50,55]",College,12094.48208757187,495.5291653589783,24.407205333333334,146.93318372127163,2019
+1995,51,"(50,55]",College,12094.48208757187,495.5291653589783,24.407205333333334,148.0596774186919,2019
+1995,51,"(50,55]",College,12094.48208757187,495.5291653589783,24.407205333333334,151.61737593428026,2019
+1995,51,"(50,55]",College,12094.48208757187,495.5291653589783,24.407205333333334,151.9768634696057,2019
+1995,75,"(70,75]",College,81926.61654135339,1462.8020961397042,56.00663053297199,16.922237812228754,2019
+1995,75,"(70,75]",College,82233.9623175586,1732.3699620949883,47.469053445207216,18.281957672402182,2019
+1995,75,"(70,75]",College,80900.453250774,1444.9630461867807,55.98790464868161,18.149931201243074,2019
+1995,75,"(70,75]",College,85144.8442282176,1480.6411460926272,57.50538842778521,15.780003964162134,2019
+1995,75,"(70,75]",College,140717.14108801415,1611.4608457473976,87.3227180538472,16.98926204970277,2019
+1995,65,"(60,65]",College,1286.8846351172049,124.87334967046255,10.305518659611993,507.4572603458261,2019
+1995,65,"(60,65]",College,2752.680123839009,55.499266520205566,49.59849555555555,956.6748134596999,2019
+1995,65,"(60,65]",College,2211.1670588235297,37.660216567282355,58.71360444444445,951.3439056235887,2019
+1995,65,"(60,65]",College,1140.9921627598408,140.73028296194985,8.107652018779342,459.67335793000404,2019
+1995,65,"(60,65]",College,1323.3093675364883,77.30254979600063,17.11857333333333,506.8535303680692,2019
+1995,32,"(30,35]",College,125.72532507739938,39.642333228718265,3.1714915555555554,4730.711415703686,2019
+1995,32,"(30,35]",College,194.89747899159664,27.749633260102783,7.023425396825398,4685.07585140487,2019
+1995,32,"(30,35]",College,149.18269792127376,21.803283275795042,6.842212525252526,4748.180924624506,2019
+1995,32,"(30,35]",College,179.45277310924368,61.44561650451331,2.9205138351254476,4693.686813357333,2019
+1995,32,"(30,35]",College,121.87382574082265,21.803283275795042,5.589700606060608,4736.117579640305,2019
+1995,26,"(25,30]",HS,-20.515524104378596,39.642333228718265,-0.5175155555555556,5448.245237723688,2019
+1995,26,"(25,30]",HS,-20.515524104378596,39.642333228718265,-0.5175155555555556,5487.7228879535915,2019
+1995,26,"(25,30]",HS,-20.515524104378596,39.642333228718265,-0.5175155555555556,5457.155777939121,2019
+1995,26,"(25,30]",HS,-20.515524104378596,39.642333228718265,-0.5175155555555556,5510.689455297629,2019
+1995,26,"(25,30]",HS,-20.515524104378596,39.642333228718265,-0.5175155555555556,5476.636676302267,2019
+1995,66,"(65,70]",HS,15107.748076072536,436.06566551590095,34.6455804040404,13.516461742509657,2019
+1995,66,"(65,70]",HS,15295.87156125608,436.06566551590095,35.07699131313131,11.748975863729939,2019
+1995,66,"(65,70]",HS,15114.134984520124,436.06566551590095,34.660227070707066,12.3878164019517,2019
+1995,66,"(65,70]",HS,16132.169482529855,436.06566551590095,36.99481696969697,11.991229996124789,2019
+1995,66,"(65,70]",HS,16381.452454666076,436.06566551590095,37.566480808080804,12.532710178466164,2019
+1995,42,"(40,45]",NoHS,69.67536488279522,59.46349984307739,1.1717333333333333,6463.443577324664,2019
+1995,42,"(40,45]",NoHS,48.38567005749668,59.46349984307739,0.8137037037037037,6414.77308913341,2019
+1995,42,"(40,45]",NoHS,51.86943830163644,59.46349984307739,0.8722903703703704,6456.595512877214,2019
+1995,42,"(40,45]",NoHS,55.74029190623618,59.46349984307739,0.9373866666666668,6528.3353789919165,2019
+1995,42,"(40,45]",NoHS,54.77257850508625,59.46349984307739,0.9211125925925928,6466.295448774501,2019
+1995,22,"(20,25]",HS,123.90602388323751,27.749633260102783,4.465140952380953,4113.031112102711,2019
+1995,22,"(20,25]",HS,123.80925254312251,27.749633260102783,4.461653650793651,4056.5237638825806,2019
+1995,22,"(20,25]",HS,123.84796107916851,27.749633260102783,4.463048571428572,4069.531108311004,2019
+1995,22,"(20,25]",HS,123.80925254312251,27.749633260102783,4.461653650793651,4014.0753132670893,2019
+1995,22,"(20,25]",HS,123.80925254312251,27.749633260102783,4.461653650793651,4018.652393295664,2019
+1995,44,"(40,45]",College,41595.82510393632,7254.5469808554435,5.733759146326655,25.789700558778968,2019
+1995,44,"(40,45]",College,38286.632357364,6501.342649509796,5.889034684281842,29.006837610298703,2019
+1995,44,"(40,45]",College,52933.9423971694,7274.368147469801,7.276775291553134,26.41760328863169,2019
+1995,44,"(40,45]",College,44547.73806280407,6501.342649509796,6.852082787262873,31.32761253462964,2019
+1995,44,"(40,45]",College,39513.692950022116,7512.222146842111,5.259920723541484,15.093381937043588,2019
+1995,39,"(35,40]",NoHS,156.76957098628924,83.24889978030835,1.8831428571428572,3708.498610815979,2019
+1995,39,"(35,40]",NoHS,152.51163202122953,190.28319949784765,0.8014981481481482,3860.022705920984,2019
+1995,39,"(35,40]",NoHS,220.63865546218486,41.624449890154175,5.300698412698413,3807.1265865929404,2019
+1995,39,"(35,40]",NoHS,330.95798319327736,97.12371641035975,3.4075918367346945,3616.8487837817274,2019
+1995,39,"(35,40]",NoHS,140.97648827952233,47.57079987446191,2.963508888888889,3831.6598759881454,2019
+1995,43,"(40,45]",HS,35.66991596638656,122.89123300902662,0.29025598566308247,6275.979571937874,2019
+1995,43,"(40,45]",HS,48.71469261388766,136.76604963907803,0.3561899516908212,6316.551937548719,2019
+1995,43,"(40,45]",HS,45.90832375055285,120.90911634759071,0.3796928233151184,6307.2271034465875,2019
+1995,43,"(40,45]",HS,59.572436974789916,128.8375829933344,0.4623839999999999,6500.094257340215,2019
+1995,43,"(40,45]",HS,35.80539584254755,140.73028296194985,0.25442566510172143,6365.908635361431,2019
+1995,37,"(35,40]",HS,-11.806103494029191,75.32043313456471,-0.15674502923976608,5183.063975215474,2019
+1995,37,"(35,40]",HS,-11.806103494029191,75.32043313456471,-0.15674502923976608,5172.4991208415795,2019
+1995,37,"(35,40]",HS,-11.806103494029191,75.32043313456471,-0.15674502923976608,5185.9702877233485,2019
+1995,37,"(35,40]",HS,-11.806103494029191,75.32043313456471,-0.15674502923976608,5093.861948676526,2019
+1995,37,"(35,40]",HS,-11.806103494029191,75.32043313456471,-0.15674502923976608,5180.36406772473,2019
+1995,48,"(45,50]",College,31503.096895179122,364.709465704208,86.37861053140097,36.240682513043744,2019
+1995,48,"(45,50]",College,9406.79359575409,771.0433812985704,12.200083450442728,20.120435579797295,2019
+1995,48,"(45,50]",College,10770.650154798761,451.9225988073882,23.832953216374268,20.973505920242754,2019
+1995,48,"(45,50]",College,14048.837363998231,782.9360812671857,17.943785834036568,20.498943767727734,2019
+1995,48,"(45,50]",College,7798.647465723132,451.9225988073882,17.256599883040938,21.266240005160498,2019
+1995,45,"(40,45]",HS,179.41406457319772,53.517149858769656,3.35245925925926,6412.92053361999,2019
+1995,45,"(40,45]",HS,179.41406457319772,53.517149858769656,3.35245925925926,6265.295270913807,2019
+1995,45,"(40,45]",HS,179.41406457319772,53.517149858769656,3.35245925925926,6348.248545646491,2019
+1995,45,"(40,45]",HS,179.41406457319772,53.517149858769656,3.35245925925926,6529.23385274624,2019
+1995,45,"(40,45]",HS,179.41406457319772,53.517149858769656,3.35245925925926,6396.734122451175,2019
+1995,19,"(15,20]",HS,0.9677134011499338,4.7570799874461915,0.20342592592592595,5652.674341160172,2019
+1995,19,"(15,20]",HS,0.9677134011499338,4.360656655159009,0.22191919191919193,5655.748794952075,2019
+1995,19,"(15,20]",HS,0.9677134011499338,4.955291653589783,0.1952888888888889,5652.704754365972,2019
+1995,19,"(15,20]",HS,0.9677134011499338,4.7570799874461915,0.20342592592592595,5665.790688012181,2019
+1995,19,"(15,20]",HS,0.9677134011499338,4.7570799874461915,0.20342592592592595,5614.686877129977,2019
+1995,46,"(45,50]",HS,228.18681999115438,27.749633260102783,8.223057142857144,10760.612169417916,2019
+1995,46,"(45,50]",HS,228.18681999115438,29.731749921538697,7.674853333333335,10660.806543942059,2019
+1995,46,"(45,50]",HS,228.18681999115438,47.57079987446191,4.796783333333335,10486.008300293026,2019
+1995,46,"(45,50]",HS,228.18681999115438,39.642333228718265,5.756140000000001,10977.268857906849,2019
+1995,46,"(45,50]",HS,228.18681999115438,19.821166614359132,11.512280000000002,10748.687524429806,2019
+1995,40,"(35,40]",HS,38.863370190181335,83.24889978030835,0.4668334391534392,5183.063975215474,2019
+1995,40,"(35,40]",HS,36.92794338788147,83.24889978030835,0.443584761904762,5172.4991208415795,2019
+1995,40,"(35,40]",HS,36.92794338788147,83.24889978030835,0.443584761904762,5185.9702877233485,2019
+1995,40,"(35,40]",HS,36.19248120300752,83.24889978030835,0.43475026455026455,5093.861948676526,2019
+1995,40,"(35,40]",HS,38.863370190181335,83.24889978030835,0.4668334391534392,5180.36406772473,2019
+1995,43,"(40,45]",College,376.55663865546217,172.44414954492444,2.183644035759898,3163.265927278181,2019
+1995,43,"(40,45]",College,376.55663865546217,172.44414954492444,2.183644035759898,3291.9477660738785,2019
+1995,43,"(40,45]",College,376.55663865546217,172.44414954492444,2.183644035759898,3229.0943886081477,2019
+1995,43,"(40,45]",College,376.55663865546217,172.44414954492444,2.183644035759898,3091.393442741156,2019
+1995,43,"(40,45]",College,335.912675807165,172.44414954492444,1.9479505491698597,3248.7032425456177,2019
+1995,40,"(35,40]",HS,200.60698805838126,75.32043313456471,2.663380701754386,5717.470451940617,2019
+1995,40,"(35,40]",HS,226.1739761167625,77.30254979600063,2.9258281481481476,5787.624338808231,2019
+1995,40,"(35,40]",HS,130.17680672268907,67.39196648882105,1.9316368627450977,5716.606603947641,2019
+1995,40,"(35,40]",HS,163.89194161875275,73.3383164731288,2.234738258258258,5906.334226252087,2019
+1995,40,"(35,40]",HS,200.64569659442725,85.23101644174427,2.3541394315245476,5759.231460192502,2019
+1995,53,"(50,55]",HS,141.7700132684653,37.660216567282355,3.7644502923976613,6537.156558378719,2019
+1995,53,"(50,55]",HS,141.4409907120743,37.660216567282355,3.755713684210526,6346.594831088943,2019
+1995,53,"(50,55]",HS,149.49236620964174,37.660216567282355,3.9695036257309937,6383.577717396885,2019
+1995,53,"(50,55]",HS,131.202582927908,37.660216567282355,3.4838509941520464,6562.871218226479,2019
+1995,53,"(50,55]",HS,128.74459088898718,37.660216567282355,3.418583391812865,6445.965702930345,2019
+1995,36,"(35,40]",NoHS,83.2233524988943,59.46349984307739,1.3995703703703706,6463.443577324664,2019
+1995,36,"(35,40]",NoHS,63.869084475895626,59.46349984307739,1.074088888888889,6414.77308913341,2019
+1995,36,"(35,40]",NoHS,95.99716939407342,59.46349984307739,1.6143881481481483,6456.595512877214,2019
+1995,36,"(35,40]",NoHS,96.1907120743034,59.46349984307739,1.6176429629629632,6528.3353789919165,2019
+1995,36,"(35,40]",NoHS,67.35285272003539,59.46349984307739,1.1326755555555557,6466.295448774501,2019
+1995,66,"(65,70]",College,15577.243909774435,3686.736990270799,4.22521160334528,40.672002971836505,2019
+1995,66,"(65,70]",College,19639.995081822202,3508.3464907415664,5.598077365976145,22.562484295780024,2019
+1995,66,"(65,70]",College,17487.70370632464,3726.379323499517,4.692947815602838,41.04553817903476,2019
+1995,66,"(65,70]",College,19958.1792481203,3686.736990270799,5.41350774432497,23.009157385376763,2019
+1995,66,"(65,70]",College,18580.600513047324,3528.1676573559257,5.266359855181023,23.915111099708973,2019
+1995,44,"(40,45]",NoHS,4.451481645289695,39.642333228718265,0.11229111111111112,4055.2676481011536,2019
+1995,44,"(40,45]",NoHS,4.451481645289695,39.642333228718265,0.11229111111111112,4047.0016277791538,2019
+1995,44,"(40,45]",NoHS,4.451481645289695,39.642333228718265,0.11229111111111112,4057.5415685360203,2019
+1995,44,"(40,45]",NoHS,4.451481645289695,39.642333228718265,0.11229111111111112,3985.4753217671123,2019
+1995,44,"(40,45]",NoHS,4.451481645289695,39.642333228718265,0.11229111111111112,4053.1552204806517,2019
+1995,59,"(55,60]",College,701.3986731534719,648.1521482895436,1.08215127420999,80.4882253511356,2019
+1995,59,"(55,60]",College,2922.68801415303,184.33684951353993,15.855147909199525,14.825172268183127,2019
+1995,59,"(55,60]",College,8094.032304290137,158.56933291487306,51.044121555555556,15.269610179649586,2019
+1995,59,"(55,60]",College,6587.225121627598,158.56933291487306,41.54160833333333,14.933701341309291,2019
+1995,59,"(55,60]",College,20902.33850508625,469.76164876031146,44.49562572902017,25.875519224068324,2019
+1995,45,"(40,45]",College,60.38531623175586,67.39196648882105,0.8960313725490195,4694.20607926461,2019
+1995,45,"(40,45]",College,60.38531623175586,67.39196648882105,0.8960313725490195,4606.038528634611,2019
+1995,45,"(40,45]",College,60.38531623175586,67.39196648882105,0.8960313725490195,4622.697692720611,2019
+1995,45,"(40,45]",College,60.38531623175586,67.39196648882105,0.8960313725490195,4733.529463195969,2019
+1995,45,"(40,45]",College,60.38531623175586,67.39196648882105,0.8960313725490195,4676.373039228956,2019
+1995,50,"(45,50]",HS,484.8244139761168,103.07006639466748,4.703833333333334,4785.439113345088,2019
+1995,50,"(45,50]",HS,484.8244139761168,103.07006639466748,4.703833333333334,4984.740567204883,2019
+1995,50,"(45,50]",HS,484.8244139761168,103.07006639466748,4.703833333333334,4925.271122612006,2019
+1995,50,"(45,50]",HS,484.8244139761168,103.07006639466748,4.703833333333334,4673.858741835149,2019
+1995,50,"(45,50]",HS,484.8244139761168,103.07006639466748,4.703833333333334,4938.740256052047,2019
+1995,42,"(40,45]",College,155.9566917293233,170.46203288348855,0.9149057364341084,5531.2193688918505,2019
+1995,42,"(40,45]",College,155.9566917293233,170.46203288348855,0.9149057364341084,5455.121430429446,2019
+1995,42,"(40,45]",College,155.9566917293233,170.46203288348855,0.9149057364341084,5450.517037934021,2019
+1995,42,"(40,45]",College,155.9566917293233,170.46203288348855,0.9149057364341084,5508.8127329031795,2019
+1995,42,"(40,45]",College,155.9566917293233,170.46203288348855,0.9149057364341084,5470.274599892021,2019
+1995,68,"(65,70]",HS,1489.794781070323,178.3904995292322,8.351312345679014,779.3712770558789,2019
+1995,68,"(65,70]",HS,1491.7302078726227,178.3904995292322,8.362161728395062,664.3483253356254,2019
+1995,68,"(65,70]",HS,1487.859354268023,178.3904995292322,8.340462962962963,661.9065501488083,2019
+1995,68,"(65,70]",HS,1487.859354268023,178.3904995292322,8.340462962962963,679.3986179155102,2019
+1995,68,"(65,70]",HS,1489.794781070323,178.3904995292322,8.351312345679014,657.6939276411479,2019
+1995,60,"(55,60]",College,1295.3811587793011,174.42626620636034,7.426525757575758,2454.7418945569125,2019
+1995,60,"(55,60]",College,1418.0872180451126,146.6766329462576,9.668119519519518,2009.6312182971947,2019
+1995,60,"(55,60]",College,1301.1874391862007,202.17589946646316,6.435917647058822,2070.1652498269486,2019
+1995,60,"(55,60]",College,1368.5402919062362,118.92699968615479,11.50739777777778,2022.558549322719,2019
+1995,60,"(55,60]",College,1314.34834144184,269.5678659552842,4.87576045751634,2050.87149596276,2019
+1995,46,"(45,50]",HS,53.9984077841663,73.3383164731288,0.7362918918918918,9726.31443530622,2019
+1995,46,"(45,50]",HS,53.9984077841663,73.3383164731288,0.7362918918918918,9751.613026148978,2019
+1995,46,"(45,50]",HS,53.9984077841663,73.3383164731288,0.7362918918918918,9741.358068751011,2019
+1995,46,"(45,50]",HS,53.9984077841663,73.3383164731288,0.7362918918918918,9828.27307753723,2019
+1995,46,"(45,50]",HS,53.9984077841663,73.3383164731288,0.7362918918918918,9851.665958218302,2019
+1995,35,"(30,35]",College,-59.64985404688191,59.46349984307739,-1.003133925925926,7955.952240231051,2019
+1995,35,"(30,35]",College,-59.64985404688191,59.46349984307739,-1.003133925925926,7857.262758540013,2019
+1995,35,"(30,35]",College,-59.64985404688191,59.46349984307739,-1.003133925925926,7930.399155877613,2019
+1995,35,"(30,35]",College,-59.64985404688191,59.46349984307739,-1.003133925925926,7827.663808914932,2019
+1995,35,"(30,35]",College,-59.64985404688191,59.46349984307739,-1.003133925925926,7862.33780959371,2019
+1995,43,"(40,45]",College,32.1280849181778,79.28466645743653,0.40522444444444444,5858.438393720253,2019
+1995,43,"(40,45]",College,84.69427686864219,63.42773316594923,1.3352877777777776,5963.137070326683,2019
+1995,43,"(40,45]",College,36.01829279080053,83.24889978030835,0.43265788359788365,5867.053952967701,2019
+1995,43,"(40,45]",College,34.33447147279965,71.35619981169287,0.48117012345679017,5888.681476557033,2019
+1995,43,"(40,45]",College,32.70871295886776,75.32043313456471,0.43426081871345024,5895.55373931382,2019
+1995,64,"(60,65]",HS,32.63129588677576,15.658721625343716,2.083905485232067,9718.04526796779,2019
+1995,64,"(60,65]",HS,32.65065015479876,14.865874960769348,2.196349037037037,9585.678915382701,2019
+1995,64,"(60,65]",HS,32.32162759840779,15.064086626912939,2.145608187134503,9690.94608081371,2019
+1995,64,"(60,65]",HS,32.63129588677576,15.856933291487307,2.0578566666666664,9741.482064927308,2019
+1995,64,"(60,65]",HS,32.1667934542238,15.064086626912939,2.135329824561404,9589.568960353714,2019
+1995,56,"(55,60]",College,52546.45059708094,3092.1019918400248,16.993763703703703,14.028299846209455,2019
+1995,56,"(55,60]",College,52163.23609022556,2933.5326589251517,17.781713093093092,15.009371556072441,2019
+1995,56,"(55,60]",College,52886.89217160548,2854.247992467715,18.529186080246912,14.833229305017568,2019
+1995,56,"(55,60]",College,54609.6155683326,2992.996158768229,18.245802089771892,12.985028555243137,2019
+1995,56,"(55,60]",College,54909.02609464838,3111.9231584543836,17.644724274593067,14.097556629034909,2019
+1995,26,"(25,30]",HS,174.24647501105704,51.53503319733374,3.381126666666667,5657.049138867051,2019
+1995,26,"(25,30]",HS,174.24647501105704,51.53503319733374,3.381126666666667,5571.3729465936,2019
+1995,26,"(25,30]",HS,151.02135338345866,51.53503319733374,2.9304600000000005,5605.848109497303,2019
+1995,26,"(25,30]",HS,151.02135338345866,51.53503319733374,2.9304600000000005,5536.386309914042,2019
+1995,26,"(25,30]",HS,133.60251216275984,51.53503319733374,2.5924600000000004,5599.733013400581,2019
+1995,67,"(65,70]",College,13554.316461742592,2358.718827108737,5.746474020541549,22.912149894566873,2019
+1995,67,"(65,70]",College,14573.860592658117,1468.7484461240117,9.922638986354777,20.120435579797295,2019
+1995,67,"(65,70]",College,13036.47366651924,1659.0316456218595,7.857881253152794,20.973505920242754,2019
+1995,67,"(65,70]",College,11950.912127377267,1837.4221451510919,6.504173338127771,20.498943767727734,2019
+1995,67,"(65,70]",College,21051.38572313136,1108.0032137426758,18.999390490956067,35.476229152528305,2019
+1995,33,"(30,35]",College,31.934542237947813,85.23101644174427,0.3746821705426357,4644.681509569379,2019
+1995,33,"(30,35]",College,45.48252985404688,85.23101644174427,0.5336382428940568,4631.966854376996,2019
+1995,33,"(30,35]",College,17.61238390092879,85.23101644174427,0.20664289405684752,4660.0222630615635,2019
+1995,33,"(30,35]",College,38.90207872622733,85.23101644174427,0.45643100775193796,4710.726227876274,2019
+1995,33,"(30,35]",College,42.579389650597086,85.23101644174427,0.4995762273901809,4642.518273282773,2019
+1995,30,"(25,30]",College,167.51118973905352,63.42773316594923,2.6409770833333335,5075.292191793713,2019
+1995,30,"(25,30]",College,167.51118973905352,63.42773316594923,2.6409770833333335,5100.917985776314,2019
+1995,30,"(25,30]",College,167.51118973905352,63.42773316594923,2.6409770833333335,5129.2344964728,2019
+1995,30,"(25,30]",College,167.51118973905352,63.42773316594923,2.6409770833333335,5165.334986900209,2019
+1995,30,"(25,30]",College,167.51118973905352,63.42773316594923,2.6409770833333335,5152.631155966186,2019
+1995,62,"(60,65]",HS,2130.324281291464,79.28466645743653,26.869310000000002,720.7785488634338,2019
+1995,62,"(60,65]",HS,2130.324281291464,79.28466645743653,26.869310000000002,612.5756485241523,2019
+1995,62,"(60,65]",HS,2130.324281291464,79.28466645743653,26.869310000000002,612.9960032123796,2019
+1995,62,"(60,65]",HS,2130.324281291464,79.28466645743653,26.869310000000002,618.6485228531049,2019
+1995,62,"(60,65]",HS,2130.324281291464,79.28466645743653,26.869310000000002,594.2863188778617,2019
+1995,66,"(65,70]",College,77811.89915966387,2477.645826794891,31.405577955555565,17.66246580167328,2019
+1995,66,"(65,70]",College,53653.514727996466,473.7258820831833,113.25856736401674,35.12204166683937,2019
+1995,66,"(65,70]",College,26190.1954887218,455.88683213026,57.44889661835749,30.62117754026596,2019
+1995,66,"(65,70]",College,33819.647943387885,473.7258820831833,71.3907540678754,16.375221037328004,2019
+1995,66,"(65,70]",College,35321.53914197258,802.7572478815449,44.000274348422494,17.68598544662984,2019
+1995,68,"(65,70]",NoHS,615.0786377708978,39.642333228718265,15.515702222222222,3453.7723183859844,2019
+1995,68,"(65,70]",NoHS,806.4923485183547,37.660216567282355,21.41496842105263,3590.0076646786015,2019
+1995,68,"(65,70]",NoHS,701.0115877930119,31.713866582974614,22.10426111111111,3549.1389124726675,2019
+1995,68,"(65,70]",NoHS,650.8840336134454,35.67809990584644,18.243237037037037,3365.1265976196955,2019
+1995,68,"(65,70]",NoHS,649.1615037593984,35.67809990584644,18.194957283950618,3595.274243021055,2019
+1995,43,"(40,45]",College,114.57726669615215,35.67809990584644,3.2114172839506177,6463.443577324664,2019
+1995,43,"(40,45]",College,105.67430340557276,77.30254979600063,1.367022222222222,6414.77308913341,2019
+1995,43,"(40,45]",College,141.8667846085803,112.98064970184706,1.2556732943469788,6456.595512877214,2019
+1995,43,"(40,45]",College,110.70641309155242,47.57079987446191,2.327192592592593,6528.3353789919165,2019
+1995,43,"(40,45]",College,114.19018133569217,99.10583307179566,1.1522044444444446,6466.295448774501,2019
+1995,63,"(60,65]",College,19381.36399823087,792.8466645743653,24.445286666666668,465.48244548352443,2019
+1995,63,"(60,65]",College,19390.07341884122,792.8466645743653,24.45627166666667,499.04438561859644,2019
+1995,63,"(60,65]",College,19409.42768686422,792.8466645743653,24.48068277777778,450.5207768993384,2019
+1995,63,"(60,65]",College,19382.33171163202,792.8466645743653,24.446507222222223,555.5411964058154,2019
+1995,63,"(60,65]",College,19427.81424148607,792.8466645743653,24.50387333333334,440.44015003090516,2019
+1995,68,"(65,70]",HS,130.60260061919504,59.46349984307739,2.196349037037037,8481.737809977118,2019
+1995,68,"(65,70]",HS,130.60260061919504,59.46349984307739,2.196349037037037,8487.01359695716,2019
+1995,68,"(65,70]",HS,130.60260061919504,59.46349984307739,2.196349037037037,8404.028776872658,2019
+1995,68,"(65,70]",HS,130.60260061919504,59.46349984307739,2.196349037037037,8963.614751394727,2019
+1995,68,"(65,70]",HS,130.60260061919504,59.46349984307739,2.196349037037037,8616.649719468369,2019
+1995,67,"(65,70]",College,3218.614772224679,416.24449890154176,7.732510052910053,1270.199371450602,2019
+1995,67,"(65,70]",College,3218.614772224679,416.24449890154176,7.732510052910053,1146.727352711086,2019
+1995,67,"(65,70]",College,3218.614772224679,416.24449890154176,7.732510052910053,1131.2888703268216,2019
+1995,67,"(65,70]",College,3218.614772224679,416.24449890154176,7.732510052910053,1145.1325178547447,2019
+1995,67,"(65,70]",College,3218.614772224679,416.24449890154176,7.732510052910053,1137.544228396783,2019
+1995,56,"(55,60]",College,599.9823087129588,75.32043313456471,7.965730994152046,4197.488252177382,2019
+1995,56,"(55,60]",College,561.2737726669616,75.32043313456471,7.451812865497076,4363.828314100955,2019
+1995,56,"(55,60]",College,658.0451127819549,75.32043313456471,8.736608187134502,4314.045656891428,2019
+1995,56,"(55,60]",College,629.0137107474569,75.32043313456471,8.351169590643275,4090.4664605912817,2019
+1995,56,"(55,60]",College,648.3679787704556,75.32043313456471,8.60812865497076,4322.324937174506,2019
+1995,32,"(30,35]",HS,258.86333480760726,110.99853304041113,2.3321329365079366,3884.5537971742588,2019
+1995,32,"(30,35]",HS,243.4766917293233,110.99853304041113,2.1935126984126985,4038.1835550517703,2019
+1995,32,"(30,35]",HS,237.7671826625387,110.99853304041113,2.142075,3990.5080635845407,2019
+1995,32,"(30,35]",HS,248.79911543564796,110.99853304041113,2.2414630952380956,3770.4523719286526,2019
+1995,32,"(30,35]",HS,246.47660327288813,110.99853304041113,2.220539285714286,4016.3737311375094,2019
+1995,46,"(45,50]",HS,238.63812472357367,75.32043313456471,3.1683052631578947,7421.321794848201,2019
+1995,46,"(45,50]",HS,238.63812472357367,75.32043313456471,3.1683052631578947,7395.133477358797,2019
+1995,46,"(45,50]",HS,238.63812472357367,75.32043313456471,3.1683052631578947,7353.161197071005,2019
+1995,46,"(45,50]",HS,238.63812472357367,75.32043313456471,3.1683052631578947,7727.930785272818,2019
+1995,46,"(45,50]",HS,238.63812472357367,75.32043313456471,3.1683052631578947,7453.370790044918,2019
+1995,59,"(55,60]",HS,401.63977001326845,122.89123300902662,3.2682540501792112,5359.352594092902,2019
+1995,59,"(55,60]",HS,401.63977001326845,122.89123300902662,3.2682540501792112,5552.485580146173,2019
+1995,59,"(55,60]",HS,401.63977001326845,122.89123300902662,3.2682540501792112,5490.506122838104,2019
+1995,59,"(55,60]",HS,401.63977001326845,122.89123300902662,3.2682540501792112,5204.69890210951,2019
+1995,59,"(55,60]",HS,401.63977001326845,122.89123300902662,3.2682540501792112,5507.5414675699,2019
+1995,41,"(40,45]",College,194.31685095090666,126.85546633189846,1.531797222222222,6275.979571937874,2019
+1995,41,"(40,45]",College,231.47704555506414,168.47991622205262,1.3739147712418303,6316.551937548719,2019
+1995,41,"(40,45]",College,140.39586023883237,130.8196996547703,1.073201212121212,6307.2271034465875,2019
+1995,41,"(40,45]",College,337.92551968155686,101.08794973323158,3.3428862745098042,6500.094257340215,2019
+1995,41,"(40,45]",College,473.59893852277753,124.87334967046255,3.7926342151675483,3564.0071639289026,2019
+1995,32,"(30,35]",HS,230.7802919062362,79.28466645743653,2.910780888888889,4194.620914550911,2019
+1995,32,"(30,35]",HS,240.45742591773552,79.28466645743653,3.0328364444444444,4110.7981211472625,2019
+1995,32,"(30,35]",HS,126.26724458204335,79.28466645743653,1.592580888888889,4140.696414749207,2019
+1995,32,"(30,35]",HS,192.07175586023882,79.28466645743653,2.4225586666666667,4086.6180903831178,2019
+1995,32,"(30,35]",HS,166.91120743034057,79.28466645743653,2.1052142222222225,4116.319122302284,2019
+1995,35,"(30,35]",College,67.25608137992039,95.14159974892382,0.7069050925925927,5825.067291366486,2019
+1995,35,"(30,35]",College,96.2874834144184,89.1952497646161,1.0795135802469136,5702.121810899268,2019
+1995,35,"(30,35]",College,189.18796992481202,99.10583307179566,1.908948888888889,5748.404298458157,2019
+1995,35,"(30,35]",College,18.87041132242371,91.177366426052,0.20696376811594208,5730.22821797946,2019
+1995,35,"(30,35]",College,21.773551525873508,91.177366426052,0.23880434782608698,5826.996198436127,2019
+1995,23,"(20,25]",College,998.0221848739496,148.65874960769352,6.713511229629629,4067.517854236532,2019
+1995,23,"(20,25]",College,823.6595842547546,148.65874960769352,5.540606162962963,4242.6326078739385,2019
+1995,23,"(20,25]",College,2176.9874214949136,148.65874960769352,14.644193007407404,2199.8235180521433,2019
+1995,23,"(20,25]",College,1116.1799911543565,148.65874960769352,7.508337007407406,2121.738728378171,2019
+1995,23,"(20,25]",College,1184.694099955772,148.65874960769352,7.969218785185184,2186.3009081138157,2019
+1995,44,"(40,45]",College,2252.6432551968155,188.30108283641175,11.962986198830409,2859.436901125652,2019
+1995,44,"(40,45]",College,2366.8334365325077,188.30108283641175,12.569409590643275,2449.779793705392,2019
+1995,44,"(40,45]",College,2169.4199026979213,188.30108283641175,11.521016608187136,2520.1428192918165,2019
+1995,44,"(40,45]",College,2229.4181335692174,188.30108283641175,11.839645847953218,2448.6388438287076,2019
+1995,44,"(40,45]",College,2229.4181335692174,188.30108283641175,11.839645847953218,2532.1018357970797,2019
+1995,67,"(65,70]",College,37198.32251216276,2180.3283275795047,17.06088117171717,44.42378589117626,2019
+1995,67,"(65,70]",College,36125.12835028748,2378.5399937230964,15.187942370370365,53.094951335354914,2019
+1995,67,"(65,70]",College,36464.795754091116,2021.7589946646315,18.036173376906323,46.51960684428694,2019
+1995,67,"(65,70]",College,37441.605661211855,2081.2224945077087,17.99019843386244,51.50517525766312,2019
+1995,67,"(65,70]",College,37088.39026979212,2358.718827108737,15.72395566760037,44.90628171283181,2019
+1995,63,"(60,65]",NoHS,249.86360017691288,71.35619981169287,3.501638271604939,7457.156978355706,2019
+1995,63,"(60,65]",NoHS,247.54108801415305,71.35619981169287,3.4690901234567906,7451.248422477739,2019
+1995,63,"(60,65]",NoHS,251.41194161875276,71.35619981169287,3.523337037037037,7511.562582569271,2019
+1995,63,"(60,65]",NoHS,248.70234409553296,71.35619981169287,3.4853641975308647,7642.82193815569,2019
+1995,63,"(60,65]",NoHS,251.41194161875276,71.35619981169287,3.523337037037037,7457.680790432821,2019
+1995,89,"(85,90]",HS,10213.2472357364,451.9225988073882,22.59954970760234,349.9352488194205,2019
+1995,89,"(85,90]",HS,41139.43210968598,2140.6859943507866,19.217873251028802,664.0076828579824,2019
+1995,89,"(85,90]",HS,39865.92127377266,765.0970313142626,52.10570639032814,556.0042028007736,2019
+1995,89,"(85,90]",HS,9181.66475011057,428.13719887015725,21.445613168724282,302.92613619478277,2019
+1995,89,"(85,90]",HS,9201.01901813357,392.45909896431084,23.444529741863075,326.43208314329263,2019
+1995,20,"(15,20]",NoHS,32.186147722246794,47.57079987446191,0.6765946296296297,4680.713001332174,2019
+1995,20,"(15,20]",NoHS,34.50865988500664,47.57079987446191,0.725416851851852,4690.247121514486,2019
+1995,20,"(15,20]",NoHS,30.444263600176914,47.57079987446191,0.639977962962963,4711.885290041851,2019
+1995,20,"(15,20]",NoHS,30.831348960636888,47.57079987446191,0.6481150000000001,4684.156665391837,2019
+1995,20,"(15,20]",NoHS,33.73448916408668,47.57079987446191,0.7091427777777778,4682.354135844615,2019
+1995,57,"(55,60]",HS,319.1518796992481,103.07006639466748,3.096455555555556,8039.955703516402,2019
+1995,57,"(55,60]",HS,321.08730650154797,103.07006639466748,3.1152333333333337,8079.923870124345,2019
+1995,57,"(55,60]",HS,319.1518796992481,103.07006639466748,3.096455555555556,8057.273222002495,2019
+1995,57,"(55,60]",HS,319.1518796992481,103.07006639466748,3.096455555555556,8218.83135943241,2019
+1995,57,"(55,60]",HS,319.5389650597081,103.07006639466748,3.1002111111111117,7984.833876847316,2019
+1995,22,"(20,25]",HS,4.354710305174701,18.830108283641177,0.2312631578947368,4522.403364892549,2019
+1995,22,"(20,25]",HS,4.354710305174701,18.830108283641177,0.2312631578947368,4509.352228439618,2019
+1995,22,"(20,25]",HS,4.354710305174701,18.830108283641177,0.2312631578947368,4535.041741511559,2019
+1995,22,"(20,25]",HS,4.354710305174701,18.830108283641177,0.2312631578947368,4505.298751160949,2019
+1995,22,"(20,25]",HS,4.354710305174701,18.830108283641177,0.2312631578947368,4484.97976996032,2019
+1995,24,"(20,25]",HS,3.135391419725785,15.658721625343716,0.20023291139240504,4522.403364892549,2019
+1995,24,"(20,25]",HS,3.135391419725785,15.658721625343716,0.20023291139240504,4509.352228439618,2019
+1995,24,"(20,25]",HS,3.2321627598407785,17.64083828677963,0.18322047440699124,4535.041741511559,2019
+1995,24,"(20,25]",HS,3.154745687748784,15.658721625343716,0.2014689170182841,4505.298751160949,2019
+1995,24,"(20,25]",HS,3.154745687748784,18.631896617497585,0.16931962174940898,4484.97976996032,2019
+1995,54,"(50,55]",HS,1083.2583812472358,158.56933291487306,6.831449444444445,626.8157773837329,2019
+1995,54,"(50,55]",HS,1067.7749668288368,158.56933291487306,6.733805,532.6561485687198,2019
+1995,54,"(50,55]",HS,1071.2587350729764,158.56933291487306,6.755774999999999,532.8208336637415,2019
+1995,54,"(50,55]",HS,1079.387527642636,158.56933291487306,6.807038333333334,539.897357180577,2019
+1995,54,"(50,55]",HS,1061.7751437417073,158.56933291487306,6.695967777777779,519.2779673106131,2019
+1995,28,"(25,30]",College,158.31791242812915,128.8375829933344,1.2288177777777776,6135.206778285839,2019
+1995,28,"(25,30]",College,158.31791242812915,128.8375829933344,1.2288177777777776,6201.751359342944,2019
+1995,28,"(25,30]",College,158.31791242812915,128.8375829933344,1.2288177777777776,6168.763764255533,2019
+1995,28,"(25,30]",College,158.31791242812915,128.8375829933344,1.2288177777777776,6227.9139523756,2019
+1995,28,"(25,30]",College,158.31791242812915,128.8375829933344,1.2288177777777776,6185.558714431634,2019
+1995,53,"(50,55]",HS,213.2840336134454,73.3383164731288,2.9082210210210206,7310.898214354721,2019
+1995,53,"(50,55]",HS,213.2840336134454,73.3383164731288,2.9082210210210206,7148.812473887445,2019
+1995,53,"(50,55]",HS,213.2840336134454,73.3383164731288,2.9082210210210206,7250.46435970882,2019
+1995,53,"(50,55]",HS,213.2840336134454,73.3383164731288,2.9082210210210206,7195.646186399875,2019
+1995,53,"(50,55]",HS,213.2840336134454,73.3383164731288,2.9082210210210206,7260.823864400717,2019
+1995,38,"(35,40]",HS,2369.9301194161876,182.354732852104,12.996263285024156,421.5510907139798,2019
+1995,38,"(35,40]",College,2369.9301194161876,218.03283275795047,10.86960202020202,354.8717626430149,2019
+1995,38,"(35,40]",HS,2369.9301194161876,360.7452323813362,6.569539682539682,358.293028314288,2019
+1995,38,"(35,40]",HS,2369.9301194161876,430.1193155315932,5.509936507936508,360.38721259845,2019
+1995,38,"(35,40]",HS,2369.9301194161876,388.494865641439,6.100286848072563,348.83501900785046,2019
+1995,50,"(45,50]",NoHS,362.0022291021672,79.28466645743653,4.565854222222222,4785.439113345088,2019
+1995,50,"(45,50]",NoHS,361.9054577620522,79.28466645743653,4.564633666666667,4984.740567204883,2019
+1995,50,"(45,50]",NoHS,361.8667492260062,79.28466645743653,4.564145444444445,4925.271122612006,2019
+1995,50,"(45,50]",NoHS,361.9054577620522,79.28466645743653,4.564633666666667,4673.858741835149,2019
+1995,50,"(45,50]",NoHS,361.36353825740827,79.28466645743653,4.557798555555556,4938.740256052047,2019
+1995,56,"(55,60]",College,1187.1520919946927,198.21166614359132,5.989314933333334,567.1837645070447,2019
+1995,56,"(55,60]",College,1678.982750995135,198.21166614359132,8.470655555555556,477.25989668632263,2019
+1995,56,"(55,60]",College,2556.311720477665,198.21166614359132,12.896878222222224,668.1857995736461,2019
+1995,56,"(55,60]",College,2072.455019902698,198.21166614359132,10.455767111111113,482.65643435983174,2019
+1995,56,"(55,60]",College,2357.911118973905,198.21166614359132,11.895925022222222,466.7697427969476,2019
+1995,60,"(55,60]",College,4281.744714727997,344.8882990898489,12.414873818646235,1188.7853354447086,2019
+1995,60,"(55,60]",College,4318.072675807165,394.44121562574674,10.947316113902849,1076.2147690908675,2019
+1995,60,"(55,60]",College,4229.4881910659005,332.9955991212334,12.7013335978836,1066.3851972831017,2019
+1995,60,"(55,60]",College,4351.207182662538,352.8167657355925,12.332767615480648,1086.580919337507,2019
+1995,60,"(55,60]",College,4313.098628925255,372.6379323499517,11.574502364066195,1074.2817912139433,2019
+1995,72,"(70,75]",HS,262.05678903140205,41.624449890154175,6.2957417989418,9980.924247580262,2019
+1995,72,"(70,75]",HS,239.79938080495359,41.624449890154175,5.761022222222223,9987.890737041762,2019
+1995,72,"(70,75]",HS,251.0248562582928,41.624449890154175,6.030706878306879,10169.315213619419,2019
+1995,72,"(70,75]",HS,247.92817337461298,41.624449890154175,5.956311111111111,10186.823799977607,2019
+1995,72,"(70,75]",HS,237.9026625386997,41.624449890154175,5.715454814814816,9945.319548485679,2019
+1995,72,"(70,75]",NoHS,326.79681556833265,37.660216567282355,8.677507602339182,10358.86454670812,2019
+1995,72,"(70,75]",NoHS,326.79681556833265,37.660216567282355,8.677507602339182,10572.902964824001,2019
+1995,72,"(70,75]",NoHS,326.79681556833265,37.660216567282355,8.677507602339182,10563.987139934346,2019
+1995,72,"(70,75]",NoHS,326.79681556833265,37.660216567282355,8.677507602339182,10813.238551181606,2019
+1995,72,"(70,75]",NoHS,326.79681556833265,37.660216567282355,8.677507602339182,10392.718374660708,2019
+1995,47,"(45,50]",College,1857.6226448474126,198.21166614359132,9.371913777777777,640.3362529379341,2019
+1995,47,"(45,50]",College,1857.6226448474126,198.21166614359132,9.371913777777777,545.5743063742315,2019
+1995,47,"(45,50]",College,1857.6226448474126,198.21166614359132,9.371913777777777,552.7918750124596,2019
+1995,47,"(45,50]",College,1857.6226448474126,198.21166614359132,9.371913777777777,556.5556888566523,2019
+1995,47,"(45,50]",College,1857.6226448474126,198.21166614359132,9.371913777777777,531.230848964293,2019
+1995,33,"(30,35]",College,122.72541353383458,114.96276636328297,1.067523141762452,2208.2569034119306,2019
+1995,33,"(30,35]",College,123.11249889429456,114.96276636328297,1.0708901915708813,2296.263371558373,2019
+1995,33,"(30,35]",College,283.3658381247236,114.96276636328297,2.464848812260537,2194.892075702225,2019
+1995,33,"(30,35]",College,122.72541353383458,114.96276636328297,1.067523141762452,2262.320873387083,2019
+1995,33,"(30,35]",College,124.66084033613446,114.96276636328297,1.0843583908045977,2224.805775298538,2019
+1995,42,"(40,45]",College,10383.758337019019,2735.3209927815606,3.7961754267310788,436.06588943204696,2019
+1995,42,"(40,45]",College,10382.40353825741,2834.426825853356,3.6629640404040407,388.72052903485076,2019
+1995,42,"(40,45]",College,10405.628659885006,2596.572826481047,4.00744726039016,386.7361837048681,2019
+1995,42,"(40,45]",College,10539.386006191951,2992.996158768229,3.5213496600441503,395.26156288641494,2019
+1995,42,"(40,45]",College,10331.30827067669,2774.9633260102787,3.7230431746031742,393.16468487537037,2019
+1995,72,"(70,75]",NoHS,244.92826183104822,35.67809990584644,6.864946913580248,11128.926496398753,2019
+1995,72,"(70,75]",NoHS,286.73348076072534,35.67809990584644,8.03668024691358,11293.732861193801,2019
+1995,72,"(70,75]",NoHS,279.0111278195489,35.67809990584644,7.820235061728396,11407.52826030146,2019
+1995,72,"(70,75]",NoHS,282.53360459973464,35.67809990584644,7.918964444444446,11647.184274805843,2019
+1995,72,"(70,75]",NoHS,232.34798761609906,35.67809990584644,6.512341975308642,11243.164228592854,2019
+1995,50,"(45,50]",HS,141.4796992481203,75.32043313456471,1.8783707602339181,5694.863273533785,2019
+1995,50,"(45,50]",HS,156.96311366651923,75.32043313456471,2.0839380116959063,5543.950775482846,2019
+1995,50,"(45,50]",HS,156.96311366651923,75.32043313456471,2.0839380116959063,5615.935794365641,2019
+1995,50,"(45,50]",HS,141.4796992481203,75.32043313456471,1.8783707602339181,5777.308488627475,2019
+1995,50,"(45,50]",HS,158.89854046881914,75.32043313456471,2.1096339181286554,5663.609436255962,2019
+1995,24,"(20,25]",HS,18.754285714285714,37.660216567282355,0.49798666666666663,4851.25519422129,2019
+1995,24,"(20,25]",HS,18.754285714285714,37.660216567282355,0.49798666666666663,4933.7603864284665,2019
+1995,24,"(20,25]",HS,18.754285714285714,37.660216567282355,0.49798666666666663,4869.236555282801,2019
+1995,24,"(20,25]",HS,18.754285714285714,37.660216567282355,0.49798666666666663,4942.92493237107,2019
+1995,24,"(20,25]",HS,18.754285714285714,37.660216567282355,0.49798666666666663,4844.113783917514,2019
+1995,64,"(60,65]",HS,1344.540999557718,43.606566551590085,30.833452525252532,6493.839983934433,2019
+1995,64,"(60,65]",HS,1344.540999557718,29.731749921538697,45.22239703703704,11805.254985244985,2019
+1995,64,"(60,65]",HS,1344.540999557718,85.23101644174427,15.775254780361758,10983.745522883983,2019
+1995,64,"(60,65]",HS,1344.540999557718,35.67809990584644,37.68533086419753,11908.543530085492,2019
+1995,64,"(60,65]",HS,1344.540999557718,37.660216567282355,35.70189239766082,12015.95644899762,2019
+1995,38,"(35,40]",HS,409.34276868642195,89.1952497646161,4.589288888888889,4704.435251627747,2019
+1995,38,"(35,40]",HS,409.34276868642195,89.1952497646161,4.589288888888889,4897.441873746141,2019
+1995,38,"(35,40]",HS,409.34276868642195,89.1952497646161,4.589288888888889,4827.75511779616,2019
+1995,38,"(35,40]",HS,409.34276868642195,89.1952497646161,4.589288888888889,4585.064878441172,2019
+1995,38,"(35,40]",HS,409.34276868642195,89.1952497646161,4.589288888888889,4862.218600160013,2019
+1995,46,"(45,50]",College,2462.830605926581,574.813831816415,4.284570881226053,266.2710057351491,2019
+1995,46,"(45,50]",College,2027.3595754091111,574.813831816415,3.5269846743295012,171.09469472283982,2019
+1995,46,"(45,50]",College,1949.9425033171162,574.813831816415,3.392302681992336,169.8603617597119,2019
+1995,46,"(45,50]",College,1841.5586023883238,574.813831816415,3.2037478927203056,175.97847854602156,2019
+1995,46,"(45,50]",College,2124.1309155241047,574.813831816415,3.695337164750957,167.49857859700722,2019
+1995,24,"(20,25]",HS,51.86943830163644,87.21313310318017,0.5947434343434345,6100.53677048228,2019
+1995,24,"(20,25]",HS,51.86943830163644,87.21313310318017,0.5947434343434345,6176.513887228735,2019
+1995,24,"(20,25]",HS,53.80486510393631,87.21313310318017,0.6169353535353536,6166.172389611931,2019
+1995,24,"(20,25]",HS,92.51340114993367,87.21313310318017,1.0607737373737378,6099.502002195669,2019
+1995,24,"(20,25]",HS,96.3842547545334,87.21313310318017,1.105157575757576,6021.970672343417,2019
+1995,31,"(30,35]",HS,297.24284829721364,37.660216567282355,7.892754619883041,4830.85684066339,2019
+1995,31,"(30,35]",HS,310.8295444493587,39.642333228718265,7.84084888888889,4757.693357482286,2019
+1995,31,"(30,35]",HS,297.3589739053516,41.624449890154175,7.143853544973545,4787.133543073407,2019
+1995,31,"(30,35]",HS,301.26853604599734,35.67809990584644,8.444074567901234,4727.8163970765445,2019
+1995,31,"(30,35]",HS,303.37815126050424,37.660216567282355,8.055666666666667,4781.911535435676,2019
+1995,62,"(60,65]",HS,24593.661919504644,1002.9510306865722,24.521298814229247,35.10190862415409,2019
+1995,62,"(60,65]",HS,38321.45068553738,1133.7707303413426,33.8,39.96051406476128,2019
+1995,62,"(60,65]",HS,25666.46899601946,1234.8586800745743,20.78494439093989,36.296070486211484,2019
+1995,62,"(60,65]",HS,19047.135143741707,1082.2356971440086,17.59980306878307,42.56238193428418,2019
+1995,62,"(60,65]",HS,26481.864307828393,1115.9316803884192,23.73072184724689,34.15796762917357,2019
+1995,37,"(35,40]",HS,-2.128969482529854,23.785399937230956,-0.08950740740740741,5690.164952952259,2019
+1995,37,"(35,40]",HS,-2.128969482529854,23.785399937230956,-0.08950740740740741,5708.901338966227,2019
+1995,37,"(35,40]",HS,-2.128969482529854,23.785399937230956,-0.08950740740740741,5706.851156100456,2019
+1995,37,"(35,40]",HS,-2.128969482529854,23.785399937230956,-0.08950740740740741,5696.944113283013,2019
+1995,37,"(35,40]",HS,-2.128969482529854,23.785399937230956,-0.08950740740740741,5718.180318755357,2019
+1995,66,"(65,70]",HS,20953.511189739052,1246.7513800431896,16.80648726373432,335.3841153544347,2019
+1995,66,"(65,70]",HS,19852.0597965502,1335.9466298078057,14.859919815364323,378.33237136523985,2019
+1995,66,"(65,70]",HS,20876.28766032729,1476.6769127697553,14.137342759134976,322.9191829544208,2019
+1995,66,"(65,70]",HS,21020.67049977886,1476.6769127697553,14.235118269947801,411.04806173591686,2019
+1995,66,"(65,70]",HS,22779.19929234852,1215.0375134602148,18.747733333333336,317.8487671789361,2019
+1995,25,"(20,25]",HS,0,6.937408315025696,0,4358.741619637353,2019
+1995,25,"(20,25]",HS,0,6.937408315025696,0,4291.5442392812865,2019
+1995,25,"(20,25]",HS,0,6.937408315025696,0,4301.784134576636,2019
+1995,25,"(20,25]",HS,0,6.937408315025696,0,4274.269176438949,2019
+1995,25,"(20,25]",HS,0,6.937408315025696,0,4291.872901548525,2019
+1995,28,"(25,30]",NoHS,13.702821760283062,35.67809990584644,0.3840681481481482,5476.663062658729,2019
+1995,28,"(25,30]",NoHS,9.173923042901372,35.67809990584644,0.2571303703703704,5453.070807396402,2019
+1995,28,"(25,30]",NoHS,5.844988942945599,35.67809990584644,0.16382567901234568,5500.4347009233,2019
+1995,28,"(25,30]",NoHS,6.5030340557275546,35.67809990584644,0.18226962962962964,5471.208117658305,2019
+1995,28,"(25,30]",NoHS,9.367465723131359,35.67809990584644,0.2625550617283951,5502.57712225718,2019
+1995,58,"(55,60]",HS,3919.2392746572314,208.12224945077088,18.831428571428575,882.9719568822823,2019
+1995,58,"(55,60]",HS,3919.2392746572314,208.12224945077088,18.831428571428575,798.3163297522083,2019
+1995,58,"(55,60]",HS,3919.2392746572314,208.12224945077088,18.831428571428575,788.1983109133942,2019
+1995,58,"(55,60]",HS,4112.781954887218,208.12224945077088,19.76137566137566,801.56470392488,2019
+1995,58,"(55,60]",HS,3919.2392746572314,208.12224945077088,18.831428571428575,793.7227234179128,2019
+1995,61,"(60,65]",HS,131.80256523662095,55.499266520205566,2.374852380952381,6982.339636058687,2019
+1995,61,"(60,65]",HS,200.31667403803627,55.499266520205566,3.609357142857143,6836.624338282922,2019
+1995,61,"(60,65]",HS,173.80132684652807,55.499266520205566,3.1315968253968256,6896.326992275623,2019
+1995,61,"(60,65]",HS,235.54144183989385,55.499266520205566,4.2440460317460325,6881.457298715148,2019
+1995,61,"(60,65]",HS,172.0594427244582,55.499266520205566,3.1002111111111113,6808.333794884656,2019
+1995,27,"(25,30]",HS,78.11382574082265,109.01641637897524,0.7165326868686869,5895.090792449292,2019
+1995,27,"(25,30]",HS,78.11382574082265,109.01641637897524,0.7165326868686869,5835.701293721321,2019
+1995,27,"(25,30]",HS,78.11382574082265,109.01641637897524,0.7165326868686869,5925.646967577004,2019
+1995,27,"(25,30]",HS,78.11382574082265,109.01641637897524,0.7165326868686869,5846.601952586121,2019
+1995,27,"(25,30]",HS,79.08153914197258,109.01641637897524,0.7254094545454546,5871.154371479039,2019
+1995,65,"(60,65]",HS,1027.3245466607696,162.53356623774488,6.32069159891599,4018.404278690031,2019
+1995,65,"(60,65]",HS,1022.67952233525,186.31896617497586,5.488864302600473,4176.441729767864,2019
+1995,65,"(60,65]",HS,879.6514816452897,158.56933291487306,5.547425,4128.582914649533,2019
+1995,65,"(60,65]",HS,1016.4861565678904,150.64086626912942,6.747745029239766,3913.896810319955,2019
+1995,65,"(60,65]",HS,859.3295002211411,176.40838286779626,4.871250936329589,4184.456700051829,2019
+1995,45,"(40,45]",NoHS,0.1548341441839894,21.803283275795042,0.007101414141414143,4584.881366963574,2019
+1995,45,"(40,45]",NoHS,0.1548341441839894,21.803283275795042,0.007101414141414143,4603.464629929407,2019
+1995,45,"(40,45]",NoHS,0.1548341441839894,21.803283275795042,0.007101414141414143,4610.085103684686,2019
+1995,45,"(40,45]",NoHS,0.1548341441839894,21.803283275795042,0.007101414141414143,4596.918054643613,2019
+1995,45,"(40,45]",NoHS,0.1548341441839894,21.803283275795042,0.007101414141414143,4602.212346994236,2019
+1995,44,"(40,45]",College,3758.2117647058826,1446.9451628482168,2.597342222222222,188.29405663444533,2019
+1995,44,"(40,45]",College,4896.242724458205,1488.569612738371,3.2892265719781033,169.19680435960473,2019
+1995,44,"(40,45]",College,2527.280318443167,687.7944815182619,3.6744701889209095,118.6143690820127,2019
+1995,44,"(40,45]",College,6863.21698363556,2497.466993409251,2.7480711463844796,169.16495894233742,2019
+1995,44,"(40,45]",College,6089.046262715613,1066.3787638525214,5.71002205700124,167.35935398406093,2019
+1995,51,"(50,55]",College,431.5808226448474,134.7839329776421,3.2020198039215684,6555.659855906035,2019
+1995,51,"(50,55]",College,431.5808226448474,134.7839329776421,3.2020198039215684,6648.917912906065,2019
+1995,51,"(50,55]",College,431.5808226448474,134.7839329776421,3.2020198039215684,6587.957002269644,2019
+1995,51,"(50,55]",College,431.5808226448474,134.7839329776421,3.2020198039215684,6442.322325698942,2019
+1995,51,"(50,55]",College,431.5808226448474,134.7839329776421,3.2020198039215684,6583.189650843373,2019
+1995,44,"(40,45]",College,469.0893940734189,144.69451628482167,3.2419293150684934,4643.732861382991,2019
+1995,44,"(40,45]",College,385.28541353383457,122.89123300902662,3.135174121863799,4834.249075478108,2019
+1995,44,"(40,45]",College,704.8630871295887,126.85546633189846,5.556426597222222,4765.461503474404,2019
+1995,44,"(40,45]",College,889.65763821318,132.8018163162062,6.699137578772802,4525.902751073738,2019
+1995,44,"(40,45]",College,430.2453781512605,126.85546633189846,3.39161875,4799.480295743965,2019
+1995,40,"(35,40]",HS,254.89570986289252,79.28466645743653,3.2149433333333333,6712.03755427171,2019
+1995,40,"(35,40]",HS,174.57549756744805,79.28466645743653,2.2018822222222227,6661.49512427812,2019
+1995,40,"(35,40]",HS,140.5119858469704,79.28466645743653,1.772246666666667,6704.926102737329,2019
+1995,40,"(35,40]",HS,183.28491817779744,79.28466645743653,2.311732222222222,6779.425194396392,2019
+1995,40,"(35,40]",HS,145.93118089341,79.28466645743653,1.8405977777777778,6714.999113082005,2019
+1995,56,"(55,60]",College,341.83508182220254,67.39196648882105,5.0723416993464046,7049.477507997357,2019
+1995,56,"(55,60]",College,355.3830694383016,67.39196648882105,5.2733743790849665,6902.361101780652,2019
+1995,56,"(55,60]",College,376.6727642636002,67.39196648882105,5.589282875816993,6962.63781967558,2019
+1995,56,"(55,60]",College,353.4476426360018,67.39196648882105,5.244655424836601,6947.625148311956,2019
+1995,56,"(55,60]",College,337.96422821760285,67.39196648882105,5.014903790849673,6873.798533963818,2019
+1995,36,"(35,40]",HS,212.7034055727554,55.499266520205566,3.8325444444444443,6283.903473801298,2019
+1995,36,"(35,40]",HS,212.7034055727554,55.499266520205566,3.8325444444444443,6236.584943646625,2019
+1995,36,"(35,40]",HS,212.7034055727554,55.499266520205566,3.8325444444444443,6277.245633370675,2019
+1995,36,"(35,40]",HS,212.7034055727554,55.499266520205566,3.8325444444444443,6346.992725380535,2019
+1995,36,"(35,40]",HS,212.7034055727554,55.499266520205566,3.8325444444444443,6286.676126597916,2019
+1995,45,"(40,45]",HS,383.29192392746575,225.9612994036941,1.6962724366471735,8509.461707605318,2019
+1995,45,"(40,45]",HS,386.3692525431225,225.9612994036941,1.7098912670565303,8624.406913773299,2019
+1995,45,"(40,45]",HS,385.9821671826625,225.9612994036941,1.7081782066276803,8501.061800142383,2019
+1995,45,"(40,45]",HS,384.82091110128266,225.9612994036941,1.7030390253411307,8288.402883143122,2019
+1995,45,"(40,45]",HS,407.4654046881911,225.9612994036941,1.80325306042885,8457.706035488603,2019
+1995,53,"(50,55]",College,984.8419283502875,122.89123300902662,8.01393154121864,1321.7611745762044,2019
+1995,53,"(50,55]",College,986.7773551525875,122.89123300902662,8.02968064516129,1303.5599015652608,2019
+1995,53,"(50,55]",College,998.3899159663865,122.89123300902662,8.124175268817204,1325.952604784802,2019
+1995,53,"(50,55]",College,1002.2607695709863,122.89123300902662,8.155673476702509,1258.6846465021072,2019
+1995,53,"(50,55]",College,992.583635559487,122.89123300902662,8.076927956989248,1344.7674821983817,2019
+1995,79,"(75,80]",College,17741.57363998231,1262.6083133346767,14.051526077097508,22.912149894566873,2019
+1995,79,"(75,80]",College,18766.13052631579,1262.6083133346767,14.862986666666666,20.120435579797295,2019
+1995,79,"(75,80]",College,14010.767518796993,814.6499478501604,17.198512754798593,20.973505920242754,2019
+1995,79,"(75,80]",College,16062.745723131358,410.2981489172341,39.14895976382179,20.498943767727734,2019
+1995,79,"(75,80]",College,14334.332171605485,679.8660148725182,21.08405459021704,21.266240005160498,2019
+1995,69,"(65,70]",HS,88.64254754533391,69.37408315025698,1.277747301587301,9561.483773370624,2019
+1995,69,"(65,70]",HS,88.64254754533391,69.37408315025698,1.277747301587301,9222.879652437352,2019
+1995,69,"(65,70]",HS,88.64254754533391,69.37408315025698,1.277747301587301,9232.263479948046,2019
+1995,69,"(65,70]",HS,88.64254754533391,69.37408315025698,1.277747301587301,9352.095587922122,2019
+1995,69,"(65,70]",HS,88.64254754533391,69.37408315025698,1.277747301587301,9252.115001612714,2019
+1995,52,"(50,55]",NoHS,7.74170720919947,37.660216567282355,0.20556725146198832,5158.4213937414825,2019
+1995,52,"(50,55]",NoHS,7.74170720919947,57.48138318164148,0.13468199233716477,5067.561422225324,2019
+1995,52,"(50,55]",NoHS,7.74170720919947,35.67809990584644,0.21698765432098768,5114.682944423097,2019
+1995,52,"(50,55]",NoHS,7.74170720919947,25.76751659866687,0.3004444444444445,5110.286965099136,2019
+1995,52,"(50,55]",NoHS,7.74170720919947,49.55291653589783,0.15623111111111113,5140.452961767983,2019
+1995,38,"(35,40]",College,344.5059708093764,210.1043661122068,1.6396897274633124,4803.861579684569,2019
+1995,38,"(35,40]",College,344.5059708093764,210.1043661122068,1.6396897274633124,5000.94731836031,2019
+1995,38,"(35,40]",College,367.7310924369748,210.1043661122068,1.7502306079664571,4929.7877611307495,2019
+1995,38,"(35,40]",College,344.5059708093764,210.1043661122068,1.6396897274633124,4681.968362150078,2019
+1995,38,"(35,40]",College,390.9562140645732,210.1043661122068,1.8607714884696018,4964.979615194968,2019
+1995,31,"(30,35]",College,73.15913312693499,83.24889978030835,0.8788000000000001,6220.323136751239,2019
+1995,31,"(30,35]",College,73.15913312693499,83.24889978030835,0.8788000000000001,6171.467400422052,2019
+1995,31,"(30,35]",College,73.15913312693499,83.24889978030835,0.8788000000000001,6223.500164686098,2019
+1995,31,"(30,35]",College,73.15913312693499,83.24889978030835,0.8788000000000001,6191.787589910948,2019
+1995,31,"(30,35]",College,73.15913312693499,83.24889978030835,0.8788000000000001,6231.184564524731,2019
+1995,35,"(30,35]",College,288.9592215833702,110.99853304041113,2.6032706349206354,5968.763795319027,2019
+1995,35,"(30,35]",College,288.97857585139315,110.99853304041113,2.603445,6007.350101117613,2019
+1995,35,"(30,35]",College,288.97857585139315,110.99853304041113,2.603445,5998.481727416234,2019
+1995,35,"(30,35]",College,288.97857585139315,110.99853304041113,2.603445,6181.9078320220915,2019
+1995,35,"(30,35]",College,288.9592215833702,110.99853304041113,2.6032706349206354,6054.290736851717,2019
+1995,29,"(25,30]",College,110.22255639097746,138.74816630051396,0.7944073015873016,5517.274431068581,2019
+1995,29,"(25,30]",College,110.22255639097746,118.92699968615479,0.9268085185185188,5468.027165776416,2019
+1995,29,"(25,30]",College,110.22255639097746,132.8018163162062,0.8299777777777777,5542.4114225220155,2019
+1995,29,"(25,30]",College,110.22255639097746,128.8375829933344,0.8555155555555555,5475.986772783874,2019
+1995,29,"(25,30]",College,110.22255639097746,118.92699968615479,0.9268085185185188,5524.656662354793,2019
+1995,41,"(40,45]",HS,2479.997841662981,81.26678311887244,30.51674677506775,2771.5968025052157,2019
+1995,41,"(40,45]",HS,2354.930561698364,31.713866582974614,74.25554861111111,2374.7913310430113,2019
+1995,41,"(40,45]",HS,2979.5508536046,39.642333228718265,75.16083466666667,654.4745663692418,2019
+1995,41,"(40,45]",HS,2531.0931092436977,39.642333228718265,63.84823755555556,2374.2488040186367,2019
+1995,41,"(40,45]",HS,3283.1806103494027,27.749633260102783,118.31437841269842,672.4640105352603,2019
+1995,50,"(45,50]",HS,475.7298434321097,57.48138318164148,8.276242099616859,4785.439113345088,2019
+1995,50,"(45,50]",HS,487.3424042459089,218.03283275795047,2.2351789777777777,4984.740567204883,2019
+1995,50,"(45,50]",HS,529.921793896506,218.03283275795047,2.4304678666666666,4925.271122612006,2019
+1995,50,"(45,50]",HS,518.3092330827068,146.6766329462576,3.5336864684684683,4673.858741835149,2019
+1995,50,"(45,50]",HS,466.05270942061037,71.35619981169287,6.531355518518519,4938.740256052047,2019
+1995,42,"(40,45]",College,16236.43092436975,253.7109326637969,63.995787465277786,330.65303643564556,2019
+1995,42,"(40,45]",College,32551.07244582043,436.06566551590095,74.6471805050505,606.8450891855547,2019
+1995,42,"(40,45]",College,9720.932720035384,489.58281537467064,19.855543157894736,294.5414296037564,2019
+1995,42,"(40,45]",College,4328.930420168067,582.7422984621587,7.428550204081629,275.550979791778,2019
+1995,42,"(40,45]",College,5375.299566563468,757.1685646685189,7.0992112158231535,296.38648586369976,2019
+1995,34,"(30,35]",College,433.7291463954003,158.56933291487306,2.735265,3482.624275516203,2019
+1995,34,"(30,35]",College,433.7291463954003,158.56933291487306,2.735265,3621.15383019559,2019
+1995,34,"(30,35]",College,433.7291463954003,158.56933291487306,2.735265,3580.466532586979,2019
+1995,34,"(30,35]",College,433.7291463954003,158.56933291487306,2.735265,3382.010432051932,2019
+1995,34,"(30,35]",College,433.7291463954003,158.56933291487306,2.735265,3602.9848630402803,2019
+1995,50,"(45,50]",HS,823.4273330384785,128.8375829933344,6.391204444444443,4257.508099036719,2019
+1995,50,"(45,50]",HS,823.4273330384785,128.8375829933344,6.391204444444443,4434.822559394512,2019
+1995,50,"(45,50]",HS,823.4273330384785,128.8375829933344,6.391204444444443,4381.913800970795,2019
+1995,50,"(45,50]",HS,823.4273330384785,128.8375829933344,6.391204444444443,4158.237306086428,2019
+1995,50,"(45,50]",HS,823.4273330384785,128.8375829933344,6.391204444444443,4393.897015749991,2019
+1995,78,"(75,80]",College,467.6571782397169,103.07006639466748,4.537274444444445,11477.65501722934,2019
+1995,78,"(75,80]",College,468.27651481645296,93.15948308748793,5.026611347517731,11342.240604677256,2019
+1995,78,"(75,80]",College,467.21203007518795,45.588683213026,10.248421256038649,11720.894668932997,2019
+1995,78,"(75,80]",College,733.7203007518797,105.0521830561034,6.984341299790357,5733.435736175586,2019
+1995,78,"(75,80]",College,642.077841662981,134.7839329776421,4.763756535947712,6082.107034969571,2019
+1995,65,"(60,65]",HS,6177.108182220257,59.46349984307739,103.88066962962964,882.0914952063702,2019
+1995,65,"(60,65]",HS,6177.108182220257,59.46349984307739,103.88066962962964,701.3034572373577,2019
+1995,65,"(60,65]",HS,6177.108182220257,59.46349984307739,103.88066962962964,685.5636399887461,2019
+1995,65,"(60,65]",HS,6177.108182220257,59.46349984307739,103.88066962962964,684.837457811878,2019
+1995,65,"(60,65]",HS,6177.108182220257,59.46349984307739,103.88066962962964,708.8802359697117,2019
+1995,21,"(20,25]",HS,50.74689075630252,15.856933291487307,3.2002966666666666,5567.352625051843,2019
+1995,21,"(20,25]",HS,4.2966475011057055,15.856933291487307,0.27096333333333333,5551.285885106617,2019
+1995,21,"(20,25]",HS,4.2966475011057055,15.856933291487307,0.27096333333333333,5582.911232625962,2019
+1995,21,"(20,25]",HS,4.2966475011057055,15.856933291487307,0.27096333333333333,5546.295808913243,2019
+1995,21,"(20,25]",HS,4.2966475011057055,15.856933291487307,0.27096333333333333,5521.281911611672,2019
+1995,51,"(50,55]",College,48.38567005749668,47.57079987446191,1.0171296296296297,5898.806571336049,2019
+1995,51,"(50,55]",College,48.38567005749668,47.57079987446191,1.0171296296296297,5794.905521743396,2019
+1995,51,"(50,55]",College,48.38567005749668,47.57079987446191,1.0171296296296297,5848.790368206081,2019
+1995,51,"(50,55]",College,48.38567005749668,47.57079987446191,1.0171296296296297,5843.763436564726,2019
+1995,51,"(50,55]",College,48.38567005749668,47.57079987446191,1.0171296296296297,5878.259140928272,2019
+1995,58,"(55,60]",College,213979.81954887218,1480.6411460926272,144.51835281868213,16.922237812228754,2019
+1995,58,"(55,60]",College,209949.09969040248,1629.2998957003208,128.85847488510407,18.281957672402182,2019
+1995,58,"(55,60]",College,212068.39203892084,1526.2298293056533,138.94918574314573,18.149931201243074,2019
+1995,58,"(55,60]",College,209588.14259177353,1512.355012675602,138.5839573612931,15.780003964162134,2019
+1995,58,"(55,60]",College,211343.18761609905,1365.678379729344,154.7532645702306,16.98926204970277,2019
+1995,51,"(50,55]",HS,1521.9809287925696,158.56933291487306,9.598204777777777,2253.0219488782172,2019
+1995,51,"(50,55]",HS,1521.9809287925696,158.56933291487306,9.598204777777777,1872.8615480765354,2019
+1995,51,"(50,55]",HS,1521.9809287925696,158.56933291487306,9.598204777777777,1988.9567167787263,2019
+1995,51,"(50,55]",HS,1521.9809287925696,158.56933291487306,9.598204777777777,1907.207420581585,2019
+1995,51,"(50,55]",HS,1521.9809287925696,158.56933291487306,9.598204777777777,1859.5048710982003,2019
+1995,53,"(50,55]",College,118.06103494029192,75.32043313456471,1.567450292397661,2437.7557164733676,2019
+1995,53,"(50,55]",College,119.22229102167184,81.26678311887244,1.467048238482385,2427.28599282746,2019
+1995,53,"(50,55]",College,118.06103494029192,85.23101644174427,1.3851886304909562,2322.9099351787086,2019
+1995,53,"(50,55]",College,119.6093763821318,73.3383164731288,1.6309261261261259,2430.9957328434707,2019
+1995,53,"(50,55]",College,120.38354710305175,75.32043313456471,1.598285380116959,2381.888429508498,2019
+1995,25,"(20,25]",College,85.44909332153914,69.37408315025698,1.2317149206349203,6312.636549476874,2019
+1995,25,"(20,25]",College,93.3843432109686,69.37408315025698,1.3460984126984123,6225.554138483987,2019
+1995,25,"(20,25]",College,85.64263600176913,69.37408315025698,1.2345047619047618,6317.049169635234,2019
+1995,25,"(20,25]",College,84.82975674480319,69.37408315025698,1.2227874285714284,6237.111239950213,2019
+1995,25,"(20,25]",College,90.67474568774878,69.37408315025698,1.3070406349206347,6266.577877557224,2019
+1995,53,"(50,55]",College,11107.220875718709,196.22954948215542,56.603202244668914,1722.7958105317152,2019
+1995,53,"(50,55]",HS,10745.19929234852,592.652881769338,18.130679227053143,1521.293695113179,2019
+1995,53,"(50,55]",College,9880.934453781514,297.31749921538704,33.23361214814815,1603.8127655150677,2019
+1995,53,"(50,55]",College,10292.754568774879,612.4740483836972,16.80520929162172,1540.3031200143168,2019
+1995,53,"(50,55]",College,15946.891074745688,420.2087322244136,37.949927861635224,1556.159405090543,2019
+1995,31,"(30,35]",College,79.12024767801859,83.24889978030835,0.9504059259259261,4623.634097104858,2019
+1995,31,"(30,35]",College,49.54692613887661,73.3383164731288,0.675593993993994,4673.783636488294,2019
+1995,31,"(30,35]",College,91.54568774878372,85.23101644174427,1.0740888888888889,4648.923419882809,2019
+1995,31,"(30,35]",College,104.90013268465282,75.32043313456471,1.3927181286549708,4693.500373280707,2019
+1995,31,"(30,35]",College,88.83609022556391,65.40984982738514,1.3581454545454543,4661.580483792739,2019
+1995,36,"(35,40]",HS,41.41813356921716,126.85546633189846,0.3264986111111111,5765.076073568799,2019
+1995,36,"(35,40]",HS,50.998496240601504,126.85546633189846,0.4020204861111111,5685.760758984666,2019
+1995,36,"(35,40]",HS,64.3529411764706,126.85546633189846,0.5072934027777778,5680.961695480154,2019
+1995,36,"(35,40]",HS,54.385493144626274,126.85546633189846,0.4287201388888889,5741.722098177054,2019
+1995,36,"(35,40]",HS,39.48270676691729,126.85546633189846,0.31124166666666664,5701.554595547853,2019
+1995,48,"(45,50]",HS,2301.2224679345422,436.06566551590095,5.277238383838384,6493.839983934433,2019
+1995,48,"(45,50]",HS,2301.2224679345422,436.06566551590095,5.277238383838384,11805.254985244985,2019
+1995,48,"(45,50]",HS,2301.2224679345422,436.06566551590095,5.277238383838384,10983.745522883983,2019
+1995,48,"(45,50]",HS,2301.2224679345422,436.06566551590095,5.277238383838384,11908.543530085492,2019
+1995,48,"(45,50]",HS,2301.2224679345422,436.06566551590095,5.277238383838384,12015.95644899762,2019
+1995,34,"(30,35]",HS,40.27623175586024,49.55291653589783,0.8127923555555556,4640.21709559603,2019
+1995,34,"(30,35]",HS,40.27623175586024,49.55291653589783,0.8127923555555556,4591.235995161975,2019
+1995,34,"(30,35]",HS,40.27623175586024,49.55291653589783,0.8127923555555556,4597.232737626257,2019
+1995,34,"(30,35]",HS,40.27623175586024,49.55291653589783,0.8127923555555556,4570.925499463068,2019
+1995,34,"(30,35]",HS,40.27623175586024,49.55291653589783,0.8127923555555556,4608.770453458999,2019
+1995,60,"(55,60]",NoHS,-10.431950464396285,21.803283275795042,-0.47845777777777787,8405.107553497272,2019
+1995,60,"(55,60]",NoHS,-10.315824856258292,21.803283275795042,-0.4731317171717172,8408.994711082358,2019
+1995,60,"(55,60]",NoHS,-10.50936753648828,21.803283275795042,-0.48200848484848496,8414.441061820895,2019
+1995,60,"(55,60]",NoHS,-10.393241928350287,21.803283275795042,-0.4766824242424243,8423.841228234553,2019
+1995,60,"(55,60]",NoHS,-10.315824856258292,21.803283275795042,-0.4731317171717172,8390.990592526225,2019
+1995,22,"(20,25]",HS,72.26883679787704,25.76751659866687,2.804648888888889,4933.530934785925,2019
+1995,22,"(20,25]",HS,69.17215391419727,27.749633260102783,2.4927231746031753,4919.29333140793,2019
+1995,22,"(20,25]",HS,69.9463246351172,21.803283275795042,3.2080638383838385,4947.318254709533,2019
+1995,22,"(20,25]",HS,99.3648120300752,21.803283275795042,4.5573325252525265,4805.893871495905,2019
+1995,22,"(20,25]",HS,76.72031844316675,23.785399937230956,3.2255214814814823,4892.705194932125,2019
+1995,23,"(20,25]",HS,184.25263157894736,23.785399937230956,7.74645925925926,3652.9934997825753,2019
+1995,23,"(20,25]",HS,184.25263157894736,37.660216567282355,4.892500584795321,3625.5569092743003,2019
+1995,23,"(20,25]",HS,184.25263157894736,47.57079987446191,3.87322962962963,3663.9882886461646,2019
+1995,23,"(20,25]",HS,184.25263157894736,23.785399937230956,7.74645925925926,3615.545159817032,2019
+1995,23,"(20,25]",HS,184.25263157894736,45.588683213026,4.0416309178743965,3610.527722047203,2019
+1995,28,"(25,30]",College,539.403449800973,134.7839329776421,4.001986274509804,3227.16777347915,2019
+1995,28,"(25,30]",College,539.403449800973,134.7839329776421,4.001986274509804,3354.798649393485,2019
+1995,28,"(25,30]",College,539.403449800973,134.7839329776421,4.001986274509804,3315.1913179775206,2019
+1995,28,"(25,30]",College,539.403449800973,134.7839329776421,4.001986274509804,3132.3758200948205,2019
+1995,28,"(25,30]",College,539.403449800973,134.7839329776421,4.001986274509804,3336.6797187372636,2019
+1995,65,"(60,65]",College,47491.30933215392,549.046315217748,86.49781997593263,113.02256723055196,2019
+1995,65,"(60,65]",College,46011.67554179567,545.0820818948762,84.41237947474747,127.1817748105353,2019
+1995,65,"(60,65]",College,45880.8406899602,523.2787986190812,87.679532996633,113.89666403474936,2019
+1995,65,"(60,65]",College,45581.23662096418,539.1357319105684,84.5450114379085,137.6974487379223,2019
+1995,65,"(60,65]",College,46454.88827952234,493.54704869754244,94.12453868808568,112.31700442301147,2019
+1995,66,"(65,70]",HS,9.386819991154356,11.099853304041115,0.8456706349206348,7790.978275426994,2019
+1995,66,"(65,70]",HS,9.386819991154356,11.099853304041115,0.8456706349206348,7796.178865373999,2019
+1995,66,"(65,70]",HS,9.386819991154356,11.099853304041115,0.8456706349206348,7801.758823486482,2019
+1995,66,"(65,70]",HS,9.386819991154356,11.099853304041115,0.8456706349206348,7805.576900626989,2019
+1995,66,"(65,70]",HS,9.386819991154356,11.099853304041115,0.8456706349206348,7869.974760680709,2019
+1995,28,"(25,30]",HS,14.999557717823972,65.40984982738514,0.2293164983164983,10213.704826082128,2019
+1995,28,"(25,30]",HS,14.999557717823972,65.40984982738514,0.2293164983164983,10221.626654906831,2019
+1995,28,"(25,30]",HS,14.999557717823972,65.40984982738514,0.2293164983164983,9976.719409047093,2019
+1995,28,"(25,30]",HS,14.999557717823972,65.40984982738514,0.2293164983164983,10067.600246028003,2019
+1995,28,"(25,30]",HS,14.999557717823972,65.40984982738514,0.2293164983164983,10112.613031634977,2019
+1995,80,"(75,80]",HS,174.18841220698806,31.713866582974614,5.4925,8260.83827657929,2019
+1995,80,"(75,80]",HS,174.18841220698806,31.713866582974614,5.4925,8213.300346733891,2019
+1995,80,"(75,80]",HS,174.18841220698806,31.713866582974614,5.4925,8264.270722170402,2019
+1995,80,"(75,80]",HS,174.18841220698806,31.713866582974614,5.4925,8232.35438959092,2019
+1995,80,"(75,80]",HS,174.18841220698806,31.713866582974614,5.4925,8253.388243712332,2019
+1995,60,"(55,60]",HS,9766.473312693499,2259.612994036941,4.322188506822613,296.34376327483955,2019
+1995,60,"(55,60]",HS,9966.480318443166,2180.3283275795047,4.571091515151514,266.31879176469477,2019
+1995,60,"(55,60]",HS,10117.830694383016,2239.791827422582,4.517308515240904,261.73757958179374,2019
+1995,60,"(55,60]",HS,9382.407218045113,2219.9706608082233,4.226365412698412,267.60885127565666,2019
+1995,60,"(55,60]",HS,9775.26015037594,2239.791827422582,4.364361022615536,264.8115130161773,2019
+1995,62,"(60,65]",HS,2947.655019902698,57.48138318164148,51.28016858237548,1006.0102874525213,2019
+1995,62,"(60,65]",HS,2959.2675807164974,57.48138318164148,51.482191570881234,909.7705000166834,2019
+1995,62,"(60,65]",HS,2972.8155683325963,57.48138318164148,51.717885057471264,903.56555157208345,2019
+1995,62,"(60,65]",HS,2963.1384343210966,57.48138318164148,51.54953256704981,914.73611921334,2019
+1995,62,"(60,65]",HS,2972.8155683325963,57.48138318164148,51.717885057471264,904.8694376098329,2019
+1995,45,"(40,45]",College,358.05395842547546,35.67809990584644,10.03567901234568,7109.977109549985,2019
+1995,45,"(40,45]",College,358.05395842547546,35.67809990584644,10.03567901234568,6946.305622724346,2019
+1995,45,"(40,45]",College,358.05395842547546,35.67809990584644,10.03567901234568,7038.275557704756,2019
+1995,45,"(40,45]",College,358.05395842547546,35.67809990584644,10.03567901234568,7238.933180686047,2019
+1995,45,"(40,45]",College,358.05395842547546,35.67809990584644,10.03567901234568,7092.03130587244,2019
+1995,68,"(65,70]",NoHS,492.8564352056612,67.39196648882105,7.313281699346405,3884.0696136633624,2019
+1995,68,"(65,70]",NoHS,551.4998673153472,81.26678311887244,6.786288888888889,4037.711084039144,2019
+1995,68,"(65,70]",NoHS,419.11667403803625,79.28466645743653,5.286226111111111,7125.154836023789,2019
+1995,68,"(65,70]",NoHS,523.2426360017691,65.40984982738514,7.999447138047137,3784.9378269606505,2019
+1995,68,"(65,70]",NoHS,493.4370632463512,71.35619981169287,6.915125308641977,4047.0194611221023,2019
+1995,24,"(20,25]",College,2.5160548429898277,53.517149858769656,0.047013991769547334,5994.336428909522,2019
+1995,24,"(20,25]",College,2.5160548429898277,53.517149858769656,0.047013991769547334,5999.586303757278,2019
+1995,24,"(20,25]",College,2.5160548429898277,53.517149858769656,0.047013991769547334,6038.025056865574,2019
+1995,24,"(20,25]",College,2.5160548429898277,53.517149858769656,0.047013991769547334,5994.262226598408,2019
+1995,24,"(20,25]",College,2.5160548429898277,53.517149858769656,0.047013991769547334,5964.110102647651,2019
+1995,68,"(65,70]",College,7103.016364440513,1191.2521135229838,5.962647439452764,388.55537713787834,2019
+1995,68,"(65,70]",College,6950.117647058823,1191.2521135229838,5.834296173044925,346.64739309993803,2019
+1995,68,"(65,70]",College,7130.305882352941,1032.6827806081108,6.904642951588825,344.41278708512937,2019
+1995,68,"(65,70]",College,9359.724015922158,1143.6813136485218,8.18385673021375,352.1399943268772,2019
+1995,68,"(65,70]",College,9644.231755860239,1304.2327632248312,7.39456332320162,349.61721546067463,2019
+1995,53,"(50,55]",HS,1087.1292348518355,152.62298293056534,7.122972005772005,4111.054142646133,2019
+1995,53,"(50,55]",HS,1195.513135780628,152.62298293056534,7.83311341991342,4283.901275149144,2019
+1995,53,"(50,55]",HS,698.1084475895622,152.62298293056534,4.574071572871572,4232.978160295583,2019
+1995,53,"(50,55]",HS,651.6582043343653,152.62298293056534,4.269725252525252,4014.4748714507377,2019
+1995,53,"(50,55]",HS,622.6268022998673,152.62298293056534,4.079508802308802,4246.6706306982,2019
+1995,63,"(60,65]",HS,118.25457762052189,59.46349984307739,1.988691851851852,11322.11092353792,2019
+1995,63,"(60,65]",HS,124.06085802742149,59.46349984307739,2.0863362962962966,11265.441208459004,2019
+1995,63,"(60,65]",HS,124.06085802742149,59.46349984307739,2.0863362962962966,11019.733096169673,2019
+1995,63,"(60,65]",HS,127.93171163202122,59.46349984307739,2.1514325925925926,11197.833636403146,2019
+1995,63,"(60,65]",HS,127.93171163202122,59.46349984307739,2.1514325925925926,11083.780446636021,2019
+1995,47,"(45,50]",HS,389.0207872622733,394.44121562574674,0.9862579564489111,4257.508099036719,2019
+1995,47,"(45,50]",HS,444.18045112781954,368.67369902707986,1.2048064516129031,4434.822559394512,2019
+1995,47,"(45,50]",HS,393.47226890756303,438.04778217733684,0.898240522875817,4381.913800970795,2019
+1995,47,"(45,50]",HS,391.34329942503314,479.67223206749105,0.8158556473829199,4158.237306086428,2019
+1995,47,"(45,50]",HS,394.82706766917295,467.77953209887556,0.844045197740113,4393.897015749991,2019
+1995,21,"(20,25]",HS,30.637806280406902,35.67809990584644,0.8587286419753087,5318.992043352807,2019
+1995,21,"(20,25]",HS,43.35356037151703,35.67809990584644,1.215130864197531,5329.826270825346,2019
+1995,21,"(20,25]",HS,30.96682883679788,35.67809990584644,0.8679506172839507,5354.415098680633,2019
+1995,21,"(20,25]",HS,27.01855816010615,35.67809990584644,0.757286913580247,5322.905297963401,2019
+1995,21,"(20,25]",HS,41.30200796107917,35.67809990584644,1.1576291358024693,5320.856968933859,2019
+1995,64,"(60,65]",HS,346.73171163202124,112.98064970184706,3.0689477582846005,5713.595935741387,2019
+1995,64,"(60,65]",HS,357.1830163644405,112.98064970184706,3.161453021442495,5940.017034422129,2019
+1995,64,"(60,65]",HS,353.89279080053075,112.98064970184706,3.132330994152047,5872.25317879842,2019
+1995,64,"(60,65]",HS,356.0217602830606,112.98064970184706,3.1511746588693956,5567.918512314437,2019
+1995,64,"(60,65]",HS,353.1186200796108,112.98064970184706,3.1254787524366474,5883.522885664595,2019
+1995,36,"(35,40]",HS,274.8886687306502,154.60509959200127,1.778005185185185,5886.350401991427,2019
+1995,36,"(35,40]",HS,106.60330827067669,41.624449890154175,2.561074285714286,5842.0254930938245,2019
+1995,36,"(35,40]",HS,111.88702344095533,33.69598324441053,3.3204854901960785,5880.1137718683585,2019
+1995,36,"(35,40]",HS,80.74600619195047,35.67809990584644,2.2631812345679014,5945.448292807717,2019
+1995,36,"(35,40]",HS,168.53696594427245,51.53503319733374,3.2703377777777782,5888.947642062354,2019
+1995,47,"(45,50]",College,8577.327731092437,1308.1969965477024,6.556602525252527,25.025677784484483,2019
+1995,47,"(45,50]",College,8577.327731092437,1203.1448134915995,7.129090060406369,23.3594980764399,2019
+1995,47,"(45,50]",College,8577.327731092437,1100.0747470969318,7.797040840840841,23.770653104857466,2019
+1995,47,"(45,50]",College,8577.327731092437,1193.2342301844199,7.188301771871539,21.344317469959833,2019
+1995,47,"(45,50]",College,8577.327731092437,1288.3758299333438,6.657473333333333,23.937492986433583,2019
+1995,41,"(40,45]",HS,234.84468819106593,69.37408315025698,3.3851933968253967,316.1420277681634,2019
+1995,41,"(40,45]",HS,268.5017602830606,75.32043313456471,3.564793099415205,325.0547752257977,2019
+1995,41,"(40,45]",HS,259.46331711632024,87.21313310318017,2.975048686868688,314.442616726323,2019
+1995,41,"(40,45]",HS,219.51610791685096,79.28466645743653,2.768708222222222,321.3736985167627,2019
+1995,41,"(40,45]",HS,291.184962406015,83.24889978030835,3.497763492063492,314.581677824552,2019
+1995,77,"(75,80]",College,19514.90844758956,3547.9888239702855,5.50027337057728,46.302218746286215,2019
+1995,77,"(75,80]",College,16642.73507297656,3884.94865641439,4.283900907029479,25.672928214872634,2019
+1995,77,"(75,80]",College,16925.30738611234,3884.94865641439,4.356636054421769,26.665785891640475,2019
+1995,77,"(75,80]",College,23323.8283945157,3825.485156571313,6.096959585492228,26.011773140352517,2019
+1995,77,"(75,80]",College,18951.6992481203,3587.6311571990027,5.28251049723757,27.027338002239606,2019
+1995,29,"(25,30]",NoHS,0,29.731749921538697,0,5085.198562761839,2019
+1995,29,"(25,30]",NoHS,0,29.731749921538697,0,5006.801618912602,2019
+1995,29,"(25,30]",NoHS,0,29.731749921538697,0,5018.748163439156,2019
+1995,29,"(25,30]",NoHS,0,29.731749921538697,0,4986.647378904042,2019
+1995,29,"(25,30]",NoHS,0,29.731749921538697,0,5007.185058224872,2019
+1995,43,"(40,45]",HS,-12.09641751437417,138.74816630051396,-0.08718253968253967,6602.768579178543,2019
+1995,43,"(40,45]",HS,-14.031844316674038,138.74816630051396,-0.101131746031746,6682.225779922407,2019
+1995,43,"(40,45]",HS,-21.773551525873508,138.74816630051396,-0.1569285714285714,6646.40589865432,2019
+1995,43,"(40,45]",HS,-14.031844316674038,138.74816630051396,-0.101131746031746,6654.053908687287,2019
+1995,43,"(40,45]",HS,-12.09641751437417,138.74816630051396,-0.08718253968253967,6690.939252169733,2019
+1995,75,"(70,75]",College,7423.135957540911,753.204331345647,9.855407953216375,229.2187295429626,2019
+1995,75,"(70,75]",College,7413.284635117205,753.204331345647,9.842328736842106,202.41867223021163,2019
+1995,75,"(70,75]",College,7425.458469703671,753.204331345647,9.858491461988304,203.4243768838473,2019
+1995,75,"(70,75]",College,7431.651835471031,753.204331345647,9.866714152046784,205.9906944793638,2019
+1995,75,"(70,75]",College,7414.620079610792,753.204331345647,9.844101754385965,206.0378907464477,2019
+1995,72,"(70,75]",HS,2275.868376824414,73.3383164731288,31.032460060060057,761.4776158349403,2019
+1995,72,"(70,75]",HS,2275.868376824414,79.28466645743653,28.705025555555558,648.4313269128207,2019
+1995,72,"(70,75]",HS,2275.868376824414,77.30254979600063,29.441051851851846,648.1032637138237,2019
+1995,72,"(70,75]",HS,2275.868376824414,87.21313310318017,26.095477777777784,659.0918356356569,2019
+1995,72,"(70,75]",HS,2275.868376824414,73.3383164731288,31.032460060060057,630.0369771731072,2019
+1995,71,"(70,75]",NoHS,2950.364617425918,348.8525324127207,8.457340404040407,614.6918596084304,2019
+1995,71,"(70,75]",NoHS,3685.8268022998673,315.1565491683102,11.695225157232704,488.7957013312454,2019
+1995,71,"(70,75]",NoHS,3858.6604157452452,340.9240657669771,11.318240051679586,477.86348829609597,2019
+1995,71,"(70,75]",NoHS,3981.9471030517475,291.37114923107936,13.666236734693873,477.27522469128206,2019
+1995,71,"(70,75]",NoHS,3442.930738611234,350.8346490741567,9.813542498430634,490.25492537401243,2019
+1995,62,"(60,65]",NoHS,49.74046881910659,31.713866582974614,1.5684138888888888,9153.88106881592,2019
+1995,62,"(60,65]",NoHS,69.09473684210526,31.713866582974614,2.1786916666666665,9144.905512638157,2019
+1995,62,"(60,65]",NoHS,43.93418841220699,31.713866582974614,1.3853305555555557,9146.873953028797,2019
+1995,62,"(60,65]",NoHS,63.28845643520567,31.713866582974614,1.9956083333333334,9113.203902533189,2019
+1995,62,"(60,65]",NoHS,53.611322423706326,37.660216567282355,1.423553216374269,9117.624928551806,2019
+1995,27,"(25,30]",HS,-3.6773109243697477,69.37408315025698,-0.05300698412698411,6346.556991975745,2019
+1995,27,"(25,30]",HS,-3.6773109243697477,69.37408315025698,-0.05300698412698411,6413.624341517358,2019
+1995,27,"(25,30]",HS,-3.6773109243697477,69.37408315025698,-0.05300698412698411,6355.405006517488,2019
+1995,27,"(25,30]",HS,-3.6773109243697477,69.37408315025698,-0.05300698412698411,6455.291997620254,2019
+1995,27,"(25,30]",HS,-3.6773109243697477,69.37408315025698,-0.05300698412698411,6364.968674742339,2019
+1995,38,"(35,40]",HS,79.56539584254755,77.30254979600063,1.0292725925925923,5647.421464598177,2019
+1995,38,"(35,40]",HS,79.56539584254755,77.30254979600063,1.0292725925925923,5569.724829837809,2019
+1995,38,"(35,40]",HS,79.56539584254755,77.30254979600063,1.0292725925925923,5565.023706400844,2019
+1995,38,"(35,40]",HS,79.56539584254755,77.30254979600063,1.0292725925925923,5624.544100929773,2019
+1995,38,"(35,40]",HS,79.56539584254755,77.30254979600063,1.0292725925925923,5585.196343218916,2019
+1995,58,"(55,60]",HS,335.641716054843,95.14159974892382,3.527812407407408,9593.353173109277,2019
+1995,58,"(55,60]",HS,335.641716054843,95.14159974892382,3.527812407407408,9634.033217773602,2019
+1995,58,"(55,60]",HS,335.641716054843,95.14159974892382,3.527812407407408,9605.754796090241,2019
+1995,58,"(55,60]",HS,335.641716054843,95.14159974892382,3.527812407407408,9803.399350924681,2019
+1995,58,"(55,60]",HS,335.641716054843,95.14159974892382,3.527812407407408,9525.723584956486,2019
+1995,24,"(20,25]",HS,-3.2128084918177797,118.92699968615479,-0.027014962962962966,5900.442095225468,2019
+1995,24,"(20,25]",HS,-3.2128084918177797,118.92699968615479,-0.027014962962962966,5883.414097343806,2019
+1995,24,"(20,25]",HS,-3.2128084918177797,118.92699968615479,-0.027014962962962966,5916.9315596542765,2019
+1995,24,"(20,25]",HS,-3.2128084918177797,118.92699968615479,-0.027014962962962966,5878.125469586103,2019
+1995,24,"(20,25]",HS,-3.2128084918177797,118.92699968615479,-0.027014962962962966,5851.615014340338,2019
+1995,82,"(80,85]",HS,150.1504113224237,21.803283275795042,6.8865963636363645,8751.77541728753,2019
+1995,82,"(80,85]",HS,150.1504113224237,21.803283275795042,6.8865963636363645,8702.816069377108,2019
+1995,82,"(80,85]",HS,150.1504113224237,21.803283275795042,6.8865963636363645,8752.157423009794,2019
+1995,82,"(80,85]",HS,150.1504113224237,21.803283275795042,6.8865963636363645,8715.691727330439,2019
+1995,82,"(80,85]",HS,150.1504113224237,21.803283275795042,6.8865963636363645,8746.664608116256,2019
+1995,25,"(20,25]",HS,17.20594427244582,45.588683213026,0.3774170048309179,5511.704135963302,2019
+1995,25,"(20,25]",HS,17.20594427244582,45.588683213026,0.3774170048309179,5403.762288338964,2019
+1995,25,"(20,25]",HS,17.20594427244582,45.588683213026,0.3774170048309179,5420.206017154488,2019
+1995,25,"(20,25]",HS,17.20594427244582,45.588683213026,0.3774170048309179,5398.86998238928,2019
+1995,25,"(20,25]",HS,17.20594427244582,45.588683213026,0.3774170048309179,5391.023294860696,2019
+1995,50,"(45,50]",College,890.0640778416631,142.71239962338575,6.236767654320989,6339.1246898513955,2019
+1995,50,"(45,50]",College,582.331216275984,142.71239962338575,4.080452839506173,6433.594375547138,2019
+1995,50,"(45,50]",College,512.6558513931889,142.71239962338575,3.592230617283951,6464.6444464761935,2019
+1995,50,"(45,50]",College,775.8738965059708,142.71239962338575,5.436625679012346,6233.585532610634,2019
+1995,50,"(45,50]",College,667.1029102167182,142.71239962338575,4.674456543209876,6352.569873403067,2019
+1995,45,"(40,45]",College,74.12684652808493,89.1952497646161,0.8310627160493829,6156.4037101174035,2019
+1995,45,"(40,45]",College,72.67527642636001,89.1952497646161,0.8147886419753086,6014.68345796914,2019
+1995,45,"(40,45]",College,72.86881910659001,89.1952497646161,0.8169585185185186,6094.318601684604,2019
+1995,45,"(40,45]",College,72.67527642636001,89.1952497646161,0.8147886419753086,6268.064496439469,2019
+1995,45,"(40,45]",College,72.67527642636001,89.1952497646161,0.8147886419753086,6140.864755400789,2019
+1995,85,"(80,85]",College,469.53454223794785,93.15948308748793,5.0401153664302605,7926.711721884067,2019
+1995,85,"(80,85]",College,469.53454223794785,93.15948308748793,5.0401153664302605,7784.038147005847,2019
+1995,85,"(80,85]",College,469.53454223794785,93.15948308748793,5.0401153664302605,7985.054060512042,2019
+1995,85,"(80,85]",College,469.53454223794785,93.15948308748793,5.0401153664302605,8012.615847906758,2019
+1995,85,"(80,85]",College,469.53454223794785,93.15948308748793,5.0401153664302605,7938.476323063931,2019
+1995,58,"(55,60]",College,116.35785935426802,33.69598324441053,3.453167058823529,9582.208976370339,2019
+1995,58,"(55,60]",College,132.38319327731094,95.14159974892382,1.3914333333333337,9434.617021420692,2019
+1995,58,"(55,60]",College,132.18965059708094,29.731749921538697,4.446077037037037,9585.878972700331,2019
+1995,58,"(55,60]",College,131.64773109243697,142.71239962338575,0.9224687654320988,9574.06351852933,2019
+1995,58,"(55,60]",College,116.31915081822203,21.803283275795042,5.334937373737374,9449.83352988182,2019
+1995,29,"(25,30]",College,4526.96329057939,134.7839329776421,33.58681699346405,229.2187295429626,2019
+1995,29,"(25,30]",College,4526.96329057939,134.7839329776421,33.58681699346405,202.41867223021163,2019
+1995,29,"(25,30]",College,4526.96329057939,134.7839329776421,33.58681699346405,203.4243768838473,2019
+1995,29,"(25,30]",College,4526.96329057939,134.7839329776421,33.58681699346405,205.9906944793638,2019
+1995,29,"(25,30]",College,4526.96329057939,134.7839329776421,33.58681699346405,206.0378907464477,2019
+1995,45,"(40,45]",HS,35.0312251216276,81.26678311887244,0.43106449864498647,6056.647162399552,2019
+1995,45,"(40,45]",HS,35.0312251216276,81.26678311887244,0.43106449864498647,5917.223303366766,2019
+1995,45,"(40,45]",HS,35.0312251216276,81.26678311887244,0.43106449864498647,5995.568062729915,2019
+1995,45,"(40,45]",HS,35.0312251216276,81.26678311887244,0.43106449864498647,6166.498630313754,2019
+1995,45,"(40,45]",HS,35.0312251216276,81.26678311887244,0.43106449864498647,6041.3599963164725,2019
+1995,34,"(30,35]",HS,178.34957983193277,99.10583307179566,1.7995871111111112,7051.184800708057,2019
+1995,34,"(30,35]",HS,178.73666519239273,99.10583307179566,1.8034928888888888,6944.39437872101,2019
+1995,34,"(30,35]",HS,178.34957983193277,99.10583307179566,1.7995871111111112,6987.365676777864,2019
+1995,34,"(30,35]",HS,178.73666519239273,99.10583307179566,1.8034928888888888,6900.785558163336,2019
+1995,34,"(30,35]",HS,177.38186643078282,99.10583307179566,1.7898226666666666,6979.7435629171505,2019
+1995,36,"(35,40]",College,92.51340114993367,253.7109326637969,0.36464097222222225,5035.035863347895,2019
+1995,36,"(35,40]",College,88.25546218487395,253.7109326637969,0.3478583333333333,5242.195767215112,2019
+1995,36,"(35,40]",College,90.96505970809376,253.7109326637969,0.3585381944444444,5167.996557272747,2019
+1995,36,"(35,40]",College,90.77151702786378,253.7109326637969,0.3577753472222222,4908.994178675963,2019
+1995,36,"(35,40]",College,96.1907120743034,253.7109326637969,0.3791350694444444,5202.144620113799,2019
+1995,67,"(65,70]",College,1033.3243697478993,51.53503319733374,20.050911111111116,5081.272000139232,2019
+1995,67,"(65,70]",College,1033.3243697478993,51.53503319733374,20.050911111111116,5282.270998389508,2019
+1995,67,"(65,70]",College,1033.3243697478993,51.53503319733374,20.050911111111116,5224.753072639919,2019
+1995,67,"(65,70]",College,1033.3243697478993,51.53503319733374,20.050911111111116,4951.584424426301,2019
+1995,67,"(65,70]",College,1033.3243697478993,51.53503319733374,20.050911111111116,5294.448533949632,2019
+1995,42,"(40,45]",College,155.55025210084034,79.28466645743653,1.961921,6747.298196170328,2019
+1995,42,"(40,45]",College,154.00191065900046,79.28466645743653,1.9423921111111113,6790.917498330657,2019
+1995,42,"(40,45]",College,156.51796550199026,79.28466645743653,1.9741265555555554,6780.892380244198,2019
+1995,42,"(40,45]",College,154.5825386996904,79.28466645743653,1.9497154444444442,6988.2436287067785,2019
+1995,42,"(40,45]",College,154.5825386996904,79.28466645743653,1.9497154444444442,6843.980825625365,2019
+1995,80,"(75,80]",HS,13306.44635117205,842.3995811102632,15.795884339869282,447.06190148512604,2019
+1995,80,"(75,80]",HS,13306.44635117205,842.3995811102632,15.795884339869282,398.3228950735265,2019
+1995,80,"(75,80]",HS,13306.44635117205,842.3995811102632,15.795884339869282,394.3409924787717,2019
+1995,80,"(75,80]",HS,13306.44635117205,842.3995811102632,15.795884339869282,402.4047788876826,2019
+1995,80,"(75,80]",HS,13248.38354710305,842.3995811102632,15.726958849673201,400.1424940766882,2019
+1995,48,"(45,50]",HS,523.7652012383901,174.42626620636034,3.0027885858585863,3766.5369121937993,2019
+1995,48,"(45,50]",HS,533.4423352498894,174.42626620636034,3.058268383838384,3924.4782059912736,2019
+1995,48,"(45,50]",HS,579.8925785050862,174.42626620636034,3.3245714141414147,3875.886277543143,2019
+1995,48,"(45,50]",HS,632.1491021671827,174.42626620636034,3.624162323232324,3677.50890639808,2019
+1995,48,"(45,50]",HS,543.1194692613888,174.42626620636034,3.1137481818181825,3887.1172559226716,2019
+1995,41,"(40,45]",College,249.6700574966829,148.65874960769352,1.6794844444444441,136.61430527915292,2019
+1995,41,"(40,45]",College,323.2162759840778,148.65874960769352,2.174216296296296,139.9441535197706,2019
+1995,41,"(40,45]",College,251.60548429898276,148.65874960769352,1.6925037037037034,132.2939907796954,2019
+1995,41,"(40,45]",College,398.6979212737727,148.65874960769352,2.681967407407407,125.63673706959972,2019
+1995,41,"(40,45]",College,348.3768244139761,148.65874960769352,2.343466666666666,133.45449099691672,2019
+1995,50,"(45,50]",College,126.77045555064132,148.65874960769352,0.8527614814814813,7360.066439091361,2019
+1995,50,"(45,50]",College,126.77045555064132,148.65874960769352,0.8527614814814813,7334.094279147585,2019
+1995,50,"(45,50]",College,126.77045555064132,148.65874960769352,0.8527614814814813,7292.4684367359605,2019
+1995,50,"(45,50]",College,126.77045555064132,148.65874960769352,0.8527614814814813,7664.144688590592,2019
+1995,50,"(45,50]",College,126.77045555064132,148.65874960769352,0.8527614814814813,7391.850902893714,2019
+1995,67,"(65,70]",College,1524.3421494913755,198.21166614359132,7.690476444444445,2383.0997985732765,2019
+1995,67,"(65,70]",College,1341.4443166740382,198.21166614359132,6.767736444444446,1907.2517899900918,2019
+1995,67,"(65,70]",College,1437.7318000884563,198.21166614359132,7.253517555555556,2118.646975790628,2019
+1995,67,"(65,70]",College,1288.4136222910217,198.21166614359132,6.500190666666668,1934.5252027286194,2019
+1995,67,"(65,70]",College,1196.480849181778,198.21166614359132,6.036379555555556,1989.0600020078575,2019
+1995,56,"(55,60]",College,3613.8482795223354,148.65874960769352,24.30969108148148,874.8638834770056,2019
+1995,56,"(55,60]",College,3597.9777797434763,148.65874960769352,24.202933155555552,791.0775620739005,2019
+1995,56,"(55,60]",College,3576.8816275984077,148.65874960769352,24.061023229629626,785.3861166068258,2019
+1995,56,"(55,60]",College,3654.3180539584255,148.65874960769352,24.581923792592587,798.2943384448444,2019
+1995,56,"(55,60]",College,3585.0104201680674,148.65874960769352,24.115704118518515,790.6605744025237,2019
+1995,72,"(70,75]",College,836.1043785935427,109.01641637897524,7.669527272727272,4083.6297956470057,2019
+1995,72,"(70,75]",College,836.1043785935427,109.01641637897524,7.669527272727272,4245.468338781795,2019
+1995,72,"(70,75]",College,836.1043785935427,109.01641637897524,7.669527272727272,4197.472924943404,2019
+1995,72,"(70,75]",College,836.1043785935427,109.01641637897524,7.669527272727272,3979.162032834228,2019
+1995,72,"(70,75]",College,836.1043785935427,109.01641637897524,7.669527272727272,4218.809870339818,2019
+1995,64,"(60,65]",College,21763.29376382132,848.3459310945709,25.653796365524403,221.3871400582037,2019
+1995,64,"(60,65]",College,22951.645820433438,786.9003145900576,29.16715801847187,253.37145279090754,2019
+1995,64,"(60,65]",College,23174.994073418842,842.3995811102632,27.510690405228758,217.0976236491901,2019
+1995,64,"(60,65]",College,23302.925785050862,911.77366426052,25.55779652173913,273.63512190790107,2019
+1995,64,"(60,65]",College,22474.56311366652,919.7021309062637,24.436784865900385,210.30535981484817,2019
+1995,73,"(70,75]",NoHS,6.773993808049536,14.469451628482167,0.4681582952815829,6625.845673230785,2019
+1995,73,"(70,75]",NoHS,6.773993808049536,14.469451628482167,0.4681582952815829,6639.4739559056225,2019
+1995,73,"(70,75]",NoHS,6.773993808049536,14.469451628482167,0.4681582952815829,6620.405149985259,2019
+1995,73,"(70,75]",NoHS,6.773993808049536,14.469451628482167,0.4681582952815829,6631.904155488085,2019
+1995,73,"(70,75]",NoHS,6.773993808049536,14.469451628482167,0.4681582952815829,6620.051299745408,2019
+1995,89,"(85,90]",HS,39.3278726227333,23.785399937230956,1.6534459259259262,8330.144607489488,2019
+1995,89,"(85,90]",College,58.25634674922601,23.785399937230956,2.4492481481481487,8290.814107013273,2019
+1995,89,"(85,90]",College,39.48270676691729,39.642333228718265,0.9959733333333333,8335.875788789053,2019
+1995,89,"(85,90]",NoHS,38.979495798319334,23.785399937230956,1.6387992592592597,8342.8592981509355,2019
+1995,89,"(85,90]",NoHS,26.108907563025213,9.910583307179566,2.6344471111111116,8345.374278717123,2019
+1995,37,"(35,40]",HS,45.77284387439186,41.624449890154175,1.099662433862434,5950.49422413938,2019
+1995,37,"(35,40]",HS,39.57947810703229,39.642333228718265,0.9984144444444445,5895.974741892774,2019
+1995,37,"(35,40]",HS,36.09570986289253,41.624449890154175,0.8671756613756615,5862.416531024271,2019
+1995,37,"(35,40]",HS,46.740557275541796,37.660216567282355,1.2411122807017543,5965.125323585379,2019
+1995,37,"(35,40]",HS,37.8375939849624,43.606566551590085,0.8677040404040405,5904.874764958268,2019
+1995,22,"(20,25]",NoHS,0,21.803283275795042,0,5485.387639860643,2019
+1995,22,"(20,25]",NoHS,0,21.803283275795042,0,5489.577307588642,2019
+1995,22,"(20,25]",NoHS,0,21.803283275795042,0,5489.788379629439,2019
+1995,22,"(20,25]",NoHS,0,21.803283275795042,0,5500.851046599704,2019
+1995,22,"(20,25]",NoHS,0,21.803283275795042,0,5451.822857182282,2019
+1995,78,"(75,80]",College,4735.5055285272,317.1386658297461,14.931971527777778,1476.2233678042267,2019
+1995,78,"(75,80]",College,4522.6085802742155,317.1386658297461,14.260665972222224,1342.2462599676567,2019
+1995,78,"(75,80]",College,6670.932330827068,317.1386658297461,21.034749305555557,1326.3342879863721,2019
+1995,78,"(75,80]",College,4929.048208757187,317.1386658297461,15.542249305555556,1225.8986856800561,2019
+1995,78,"(75,80]",College,6670.932330827068,317.1386658297461,21.034749305555557,1323.5660091431075,2019
+1995,60,"(55,60]",College,317.33257850508625,109.01641637897524,2.9108696565656564,8002.227249615657,2019
+1995,60,"(55,60]",College,323.33240159221583,109.01641637897524,2.9659056161616157,7884.704550395089,2019
+1995,60,"(55,60]",College,300.88145068553735,109.01641637897524,2.759964606060606,8012.177378355937,2019
+1995,60,"(55,60]",College,279.6304643962848,109.01641637897524,2.5650307878787877,7998.189669699134,2019
+1995,60,"(55,60]",College,303.78459088898717,109.01641637897524,2.786594909090909,7893.2178149749325,2019
+1995,46,"(45,50]",College,117.82878372401593,59.46349984307739,1.9815312592592595,7414.939348033181,2019
+1995,46,"(45,50]",College,128.5123396727112,59.46349984307739,2.1611970370370375,7244.24763846573,2019
+1995,46,"(45,50]",College,131.22193719593102,59.46349984307739,2.206764444444445,7340.162362130078,2019
+1995,46,"(45,50]",College,144.1892967713401,59.46349984307739,2.424837037037037,7549.426622928937,2019
+1995,46,"(45,50]",College,136.8346749226006,59.46349984307739,2.3011540740740744,7396.223810167105,2019
+1995,32,"(30,35]",College,67.73993808049535,99.10583307179566,0.6835111111111111,4843.77357415188,2019
+1995,32,"(30,35]",College,67.73993808049535,99.10583307179566,0.6835111111111111,4770.414466624099,2019
+1995,32,"(30,35]",College,67.73993808049535,99.10583307179566,0.6835111111111111,4799.933369313176,2019
+1995,32,"(30,35]",College,67.73993808049535,99.10583307179566,0.6835111111111111,4740.457621272948,2019
+1995,32,"(30,35]",College,67.73993808049535,99.10583307179566,0.6835111111111111,4794.697399083889,2019
+1995,44,"(40,45]",College,162.3823087129589,152.62298293056534,1.0639440115440115,3431.759765008622,2019
+1995,44,"(40,45]",College,162.3823087129589,152.62298293056534,1.0639440115440115,3500.7976079816945,2019
+1995,44,"(40,45]",College,162.3823087129589,152.62298293056534,1.0639440115440115,3394.303550448709,2019
+1995,44,"(40,45]",College,162.3823087129589,152.62298293056534,1.0639440115440115,3492.0706598961815,2019
+1995,44,"(40,45]",College,161.8016806722689,152.62298293056534,1.0601396825396823,3440.9451244841207,2019
+1995,55,"(50,55]",HS,207.01325077399383,140.73028296194985,1.4709929264475743,11602.57338307135,2019
+1995,55,"(50,55]",HS,198.7296240601504,245.78246601805324,0.8085589964157707,11618.70683724539,2019
+1995,55,"(50,55]",HS,150.67297655904468,59.46349984307739,2.5338733333333336,11449.926631052303,2019
+1995,55,"(50,55]",HS,257.52789031402034,99.10583307179566,2.5985139555555556,11641.64247803443,2019
+1995,55,"(50,55]",HS,249.18620079610793,53.517149858769656,4.65619341563786,11486.058885601766,2019
+1995,63,"(60,65]",College,1672.0926315789475,564.9032485092353,2.9599628538011697,3298.876504264366,2019
+1995,63,"(60,65]",College,2225.9537195931002,212.08648277364273,10.495500186915887,2822.149964868459,2019
+1995,63,"(60,65]",College,1436.3189385227774,114.96276636328297,12.493775019157088,2911.295533237048,2019
+1995,63,"(60,65]",College,1776.9927642636,414.2623822401059,4.289534460393407,2823.60324807041,2019
+1995,63,"(60,65]",College,2667.405218929677,564.9032485092353,4.721879766081872,2911.4864844100694,2019
+1995,46,"(45,50]",College,47.030871295886776,69.37408315025698,0.6779314285714284,6596.146834195242,2019
+1995,46,"(45,50]",College,47.030871295886776,75.32043313456471,0.6244105263157894,6444.303706849182,2019
+1995,46,"(45,50]",College,47.030871295886776,81.26678311887244,0.5787219512195122,6529.627075140672,2019
+1995,46,"(45,50]",College,47.030871295886776,65.40984982738514,0.7190181818181818,6715.78339100383,2019
+1995,46,"(45,50]",College,47.030871295886776,85.23101644174427,0.5518046511627906,6579.497954136862,2019
+1995,31,"(30,35]",HS,0.5806280406899602,59.46349984307739,0.009764444444444445,5449.157541443218,2019
+1995,31,"(30,35]",HS,0.5806280406899602,59.46349984307739,0.009764444444444445,5506.741606945403,2019
+1995,31,"(30,35]",HS,0.5806280406899602,59.46349984307739,0.009764444444444445,5456.754451898427,2019
+1995,31,"(30,35]",HS,0.5806280406899602,59.46349984307739,0.009764444444444445,5542.51748082071,2019
+1995,31,"(30,35]",HS,0.5806280406899602,59.46349984307739,0.009764444444444445,5464.965823024094,2019
+1995,43,"(40,45]",HS,253.6376824413976,91.177366426052,2.781805314009662,6864.106006025632,2019
+1995,43,"(40,45]",HS,253.6376824413976,91.177366426052,2.781805314009662,6948.329216314471,2019
+1995,43,"(40,45]",HS,250.34745687748784,91.177366426052,2.745719323671498,6863.068913792842,2019
+1995,43,"(40,45]",HS,253.6376824413976,91.177366426052,2.781805314009662,7090.846306385557,2019
+1995,43,"(40,45]",HS,253.6376824413976,91.177366426052,2.781805314009662,6914.242161510636,2019
+1995,65,"(60,65]",NoHS,273.47580716497123,49.55291653589783,5.518864,10754.285809325671,2019
+1995,65,"(60,65]",NoHS,273.47580716497123,49.55291653589783,5.518864,10699.260794495416,2019
+1995,65,"(60,65]",NoHS,273.47580716497123,49.55291653589783,5.518864,10710.428134546475,2019
+1995,65,"(60,65]",NoHS,273.47580716497123,49.55291653589783,5.518864,11394.727834319645,2019
+1995,65,"(60,65]",NoHS,273.47580716497123,49.55291653589783,5.518864,11001.539068551578,2019
+1995,30,"(25,30]",College,79.73958425475453,99.10583307179566,0.8045902222222223,6832.293966842668,2019
+1995,30,"(25,30]",College,64.64325519681557,99.10583307179566,0.652264888888889,6771.30881960322,2019
+1995,30,"(25,30]",College,238.44458204334367,99.10583307179566,2.4059591111111116,6863.422256217718,2019
+1995,30,"(25,30]",College,58.062804068996016,99.10583307179566,0.5858666666666666,6781.165566012144,2019
+1995,30,"(25,30]",College,58.44988942945599,99.10583307179566,0.5897724444444444,6841.4357224157775,2019
+1995,36,"(35,40]",NoHS,-36.19248120300752,55.499266520205566,-0.6521253968253968,5767.542907287236,2019
+1995,36,"(35,40]",NoHS,-36.19248120300752,55.499266520205566,-0.6521253968253968,5836.949067610396,2019
+1995,36,"(35,40]",NoHS,-36.19248120300752,55.499266520205566,-0.6521253968253968,5805.660268121182,2019
+1995,36,"(35,40]",NoHS,-36.19248120300752,55.499266520205566,-0.6521253968253968,5812.340833325234,2019
+1995,36,"(35,40]",NoHS,-36.19248120300752,55.499266520205566,-0.6521253968253968,5844.5603180207745,2019
+1995,50,"(45,50]",HS,2651.1476337903587,384.53063231856714,6.8945030927835065,3130.698662844954,2019
+1995,50,"(45,50]",HS,2275.0554975674477,384.53063231856714,5.916448018327605,2684.5141510224685,2019
+1995,50,"(45,50]",HS,2262.184909332154,384.53063231856714,5.882977113402062,2766.794887095568,2019
+1995,50,"(45,50]",HS,2250.514285714286,384.53063231856714,5.852626804123712,2685.7092845061356,2019
+1995,50,"(45,50]",HS,2245.288633348076,384.53063231856714,5.839037113402062,2768.2183755578894,2019
+1995,42,"(40,45]",College,75.6751879699248,91.177366426052,0.8299777777777778,6238.873296697063,2019
+1995,42,"(40,45]",College,75.6751879699248,65.40984982738514,1.1569387205387203,6226.156342371979,2019
+1995,42,"(40,45]",College,687.2700574966829,51.53503319733374,13.335977777777778,6242.371635823098,2019
+1995,42,"(40,45]",College,687.2700574966829,31.713866582974614,21.67096388888889,6131.500487091336,2019
+1995,42,"(40,45]",College,75.6751879699248,89.1952497646161,0.8484217283950617,6235.623408054346,2019
+1995,29,"(25,30]",College,123.67377266696153,198.21166614359132,0.6239480000000001,2863.7252766281918,2019
+1995,29,"(25,30]",College,123.67377266696153,198.21166614359132,0.6239480000000001,2977.1258785097843,2019
+1995,29,"(25,30]",College,123.67377266696153,198.21166614359132,0.6239480000000001,2927.589550734542,2019
+1995,29,"(25,30]",College,123.67377266696153,198.21166614359132,0.6239480000000001,2786.673063242931,2019
+1995,29,"(25,30]",College,123.67377266696153,198.21166614359132,0.6239480000000001,2944.91439828027,2019
+1995,67,"(65,70]",HS,1392.4428129146395,59.46349984307739,23.416765185185188,527.6938214295657,2019
+1995,67,"(65,70]",HS,1392.4428129146395,59.46349984307739,23.416765185185188,528.3923124281789,2019
+1995,67,"(65,70]",HS,1392.4428129146395,59.46349984307739,23.416765185185188,552.7179261506309,2019
+1995,67,"(65,70]",HS,1392.4428129146395,59.46349984307739,23.416765185185188,514.5549001679166,2019
+1995,67,"(65,70]",HS,1392.4428129146395,59.46349984307739,23.416765185185188,529.9187183757858,2019
+1995,84,"(80,85]",NoHS,5.2256523662096415,15.064086626912939,0.3468947368421053,10709.31042717111,2019
+1995,84,"(80,85]",NoHS,5.2256523662096415,15.064086626912939,0.3468947368421053,10671.06180926267,2019
+1995,84,"(80,85]",NoHS,5.2256523662096415,15.064086626912939,0.3468947368421053,10700.798156004692,2019
+1995,84,"(80,85]",NoHS,5.2256523662096415,15.064086626912939,0.3468947368421053,10723.301669282167,2019
+1995,84,"(80,85]",NoHS,5.2256523662096415,15.064086626912939,0.3468947368421053,10699.414737782052,2019
+1995,24,"(20,25]",HS,0,25.76751659866687,0,6993.715721925672,2019
+1995,24,"(20,25]",HS,0,23.785399937230956,0,6955.916647605516,2019
+1995,24,"(20,25]",HS,0,23.785399937230956,0,6949.266597060909,2019
+1995,24,"(20,25]",HS,0,27.749633260102783,0,6896.063154985182,2019
+1995,24,"(20,25]",HS,0,29.731749921538697,0,6878.7444702238445,2019
+1995,48,"(45,50]",College,3109.7663688633347,348.8525324127207,8.914272020202022,306.37678987124696,2019
+1995,48,"(45,50]",College,4654.95306501548,348.8525324127207,13.343612651515155,269.8481505368983,2019
+1995,48,"(45,50]",College,3315.2506324635115,348.8525324127207,9.503301035353536,282.4723734747268,2019
+1995,48,"(45,50]",College,5415.962883679787,348.8525324127207,15.52507830808081,274.7989785177831,2019
+1995,48,"(45,50]",College,4263.667828394516,348.8525324127207,12.221977575757577,275.5519509600283,2019
+1995,50,"(45,50]",HS,615.0786377708978,124.87334967046255,4.925619753086419,6555.659855906035,2019
+1995,50,"(45,50]",HS,1162.8044228217602,124.87334967046255,9.311870194003527,6648.917912906065,2019
+1995,50,"(45,50]",HS,582.1763821318001,124.87334967046255,4.662134744268077,6587.957002269644,2019
+1995,50,"(45,50]",HS,615.0786377708978,124.87334967046255,4.925619753086419,6442.322325698942,2019
+1995,50,"(45,50]",HS,1162.8044228217602,124.87334967046255,9.311870194003527,6583.189650843373,2019
+1995,38,"(35,40]",College,1282.220256523662,321.1028991526179,3.9931755829903985,912.0751420574845,2019
+1995,38,"(35,40]",College,1283.6331180893412,321.1028991526179,3.9975756104252413,775.3090217226696,2019
+1995,38,"(35,40]",College,1282.1428394515701,321.1028991526179,3.9929344855967086,769.0841379674955,2019
+1995,38,"(35,40]",College,1282.994427244582,321.1028991526179,3.9955865569272984,784.2167259667016,2019
+1995,38,"(35,40]",College,1283.5363467492261,321.1028991526179,3.9972742386831284,762.7666170735282,2019
+1995,30,"(25,30]",NoHS,8.670712074303404,55.499266520205566,0.1562311111111111,8867.61819675838,2019
+1995,30,"(25,30]",NoHS,8.670712074303404,55.499266520205566,0.1562311111111111,8846.530144756793,2019
+1995,30,"(25,30]",NoHS,8.670712074303404,55.499266520205566,0.1562311111111111,8847.402650884667,2019
+1995,30,"(25,30]",NoHS,8.670712074303404,55.499266520205566,0.1562311111111111,8882.202382024274,2019
+1995,30,"(25,30]",NoHS,8.670712074303404,55.499266520205566,0.1562311111111111,8875.021564324483,2019
+1995,69,"(65,70]",College,1122.934630694383,75.32043313456471,14.9087649122807,3665.8460538858244,2019
+1995,69,"(65,70]",College,1126.8054842989827,83.24889978030835,13.535379894179895,3810.446728327485,2019
+1995,69,"(65,70]",College,1095.838655462185,87.21313310318017,12.56506464646465,3767.0684913765995,2019
+1995,69,"(65,70]",College,1097.386996904025,73.3383164731288,14.963351351351353,3571.7571749128083,2019
+1995,69,"(65,70]",College,1093.516143299425,67.39196648882105,16.226209150326795,3816.036693054282,2019
+1995,53,"(50,55]",HS,322.65500221141093,168.47991622205262,1.9150947450980396,6092.274507613301,2019
+1995,53,"(50,55]",HS,345.76399823087127,190.28319949784765,1.8171020833333333,5952.030508026906,2019
+1995,53,"(50,55]",HS,458.5219637328616,174.42626620636034,2.6287437878787885,3624.8265584140195,2019
+1995,53,"(50,55]",HS,324.78397169394077,170.46203288348855,1.9053156072351423,6202.772160795471,2019
+1995,53,"(50,55]",HS,483.6244493586908,158.56933291487306,3.0499242222222223,3637.247787445382,2019
+1995,44,"(40,45]",NoHS,348.5123042901371,95.14159974892382,3.6630906481481484,6398.809144405828,2019
+1995,44,"(40,45]",NoHS,255.0505440070765,124.87334967046255,2.042473791887125,6350.625361074989,2019
+1995,44,"(40,45]",NoHS,243.9605484298983,25.76751659866687,9.467755555555557,6392.029560599829,2019
+1995,44,"(40,45]",NoHS,231.8060681114551,124.87334967046255,1.8563293827160492,6463.052028085064,2019
+1995,44,"(40,45]",NoHS,282.5142503317116,25.76751659866687,10.963968888888889,6401.632497142427,2019
+1995,24,"(20,25]",HS,100.35187969924813,79.28466645743653,1.2657161111111113,4653.377093123217,2019
+1995,24,"(20,25]",HS,101.70667846085804,79.28466645743653,1.282803888888889,4641.2282085133875,2019
+1995,24,"(20,25]",HS,98.41645289694826,79.28466645743653,1.241305,4685.372539683259,2019
+1995,24,"(20,25]",HS,101.18411322423707,79.28466645743653,1.276212888888889,4626.560421675454,2019
+1995,24,"(20,25]",HS,100.93250773993809,79.28466645743653,1.2730394444444446,4639.285325398746,2019
+1995,79,"(75,80]",NoHS,150.96329057938968,25.76751659866687,5.858666666666668,10062.19445261443,2019
+1995,79,"(75,80]",NoHS,134.12507739938079,11.892699968615478,11.277933333333333,10191.408769866432,2019
+1995,79,"(75,80]",NoHS,163.15647943387881,14.271239962338576,11.432537037037036,9929.869355293513,2019
+1995,79,"(75,80]",NoHS,153.67288810260948,27.749633260102783,5.537834920634921,10049.336480109485,2019
+1995,79,"(75,80]",NoHS,127.35108359133126,12.685546633189844,10.039069444444445,10054.408496045033,2019
+1995,77,"(75,80]",HS,1107.4512162759843,29.731749921538697,37.24810074074075,3241.8417232242314,2019
+1995,77,"(75,80]",HS,1112.3284918177799,51.53503319733374,21.583928888888895,2759.148342839793,2019
+1995,77,"(75,80]",HS,1112.4059088898719,45.588683213026,24.40092212560387,2863.097533333103,2019
+1995,77,"(75,80]",HS,1110.1608137992039,107.03429971753931,10.37200987654321,2776.100255949881,2019
+1995,77,"(75,80]",HS,1126.4183989385226,27.749633260102783,40.592190476190474,2872.027078055848,2019
+1995,76,"(75,80]",College,946.90756302521,89.1952497646161,10.616120987654321,8509.461707605318,2019
+1995,76,"(75,80]",College,917.8761609907122,89.1952497646161,10.290639506172841,8624.406913773299,2019
+1995,76,"(75,80]",College,917.8761609907122,89.1952497646161,10.290639506172841,8501.061800142383,2019
+1995,76,"(75,80]",College,921.7470145953118,89.1952497646161,10.334037037037039,8288.402883143122,2019
+1995,76,"(75,80]",College,919.8115877930119,89.1952497646161,10.312338271604938,8457.706035488603,2019
+1995,26,"(25,30]",HS,118.83714108801415,41.624449890154175,2.8549840634920636,4830.85684066339,2019
+1995,26,"(25,30]",HS,70.83855639097744,41.624449890154175,1.7018496719576721,4856.507403632129,2019
+1995,26,"(25,30]",HS,131.80450066342328,41.624449890154175,3.1665163386243393,4787.133543073407,2019
+1995,26,"(25,30]",HS,57.29056877487837,41.624449890154175,1.3763681904761906,4835.02341264645,2019
+1995,26,"(25,30]",HS,54.96805661211853,41.624449890154175,1.3205713650793651,4875.0549639465835,2019
+1995,68,"(65,70]",College,4100.72424590889,325.06713247548976,12.615007289972901,285.47526956964157,2019
+1995,68,"(65,70]",College,4098.866236178682,358.7631157199002,11.424993419275632,251.6270091868086,2019
+1995,68,"(65,70]",College,3566.6625740822647,295.3353825539511,12.07665178225205,250.6761821559547,2019
+1995,68,"(65,70]",College,3919.4328173374615,305.2459658611307,12.840244444444444,259.1890960720176,2019
+1995,68,"(65,70]",College,3689.891198584697,313.17443250687427,11.782223628691984,257.88328364357784,2019
+1995,53,"(50,55]",College,12278.34763379036,475.70799874461915,25.810681481481485,168.8397178311953,2019
+1995,53,"(50,55]",College,12278.34763379036,475.70799874461915,25.810681481481485,152.25714796134818,2019
+1995,53,"(50,55]",College,12278.34763379036,475.70799874461915,25.810681481481485,152.41754460911687,2019
+1995,53,"(50,55]",College,12278.34763379036,475.70799874461915,25.810681481481485,154.68089341254966,2019
+1995,53,"(50,55]",College,12278.34763379036,475.70799874461915,25.810681481481485,151.92675713687998,2019
+1995,32,"(30,35]",HS,43.35356037151703,95.14159974892382,0.4556740740740741,6169.4379133181155,2019
+1995,32,"(30,35]",HS,43.35356037151703,95.14159974892382,0.4556740740740741,6076.0015764744185,2019
+1995,32,"(30,35]",HS,41.41813356921716,95.14159974892382,0.43533148148148154,6113.599336696194,2019
+1995,32,"(30,35]",HS,43.35356037151703,95.14159974892382,0.4556740740740741,6037.846015599512,2019
+1995,32,"(30,35]",HS,43.35356037151703,95.14159974892382,0.4556740740740741,6106.930364096414,2019
+1995,73,"(70,75]",NoHS,375.2018398938523,19.622954948215543,19.120557575757577,13508.419577535698,2019
+1995,73,"(70,75]",NoHS,376.7308270676692,19.622954948215543,19.198475869809204,13738.376522141096,2019
+1995,73,"(70,75]",NoHS,376.8275984077842,16.25335662377449,23.18460162601626,13564.003852218477,2019
+1995,73,"(70,75]",NoHS,376.4405130473242,17.442626620636037,21.581641414141416,13841.711031705385,2019
+1995,73,"(70,75]",NoHS,376.2276160990712,16.25335662377449,23.147687262872626,13465.12424894093,2019
+1995,69,"(65,70]",NoHS,204.477841662981,65.40984982738514,3.1261016835016835,6026.73342020027,2019
+1995,69,"(65,70]",NoHS,190.9298540468819,65.40984982738514,2.918977104377104,5875.423424150532,2019
+1995,69,"(65,70]",NoHS,230.79964617425918,77.30254979600063,2.985666666666666,5885.279732553102,2019
+1995,69,"(65,70]",NoHS,237.57363998230872,65.40984982738514,3.632077441077441,6140.494647055783,2019
+1995,69,"(65,70]",NoHS,204.381070322866,79.28466645743653,2.5778133333333337,6011.228237564181,2019
+1995,62,"(60,65]",College,18237.294506855374,396.42333228718263,46.004594133333335,31.185324938107264,2019
+1995,62,"(60,65]",College,12394.318407784165,396.42333228718263,31.265360533333332,27.718393841393784,2019
+1995,62,"(60,65]",College,11694.680973020786,396.42333228718263,29.50048602222222,28.816234421678093,2019
+1995,62,"(60,65]",College,13551.72298982751,396.42333228718263,34.18497824444445,27.850314891599083,2019
+1995,62,"(60,65]",College,11651.114515701016,396.42333228718263,29.3905872,28.831041348917502,2019
+1995,77,"(75,80]",College,5317.585139318885,693.7408315025697,7.665088888888888,388.55537713787834,2019
+1995,77,"(75,80]",College,5317.585139318885,693.7408315025697,7.665088888888888,346.64739309993803,2019
+1995,77,"(75,80]",College,5317.585139318885,693.7408315025697,7.665088888888888,344.41278708512937,2019
+1995,77,"(75,80]",College,5317.585139318885,693.7408315025697,7.665088888888888,352.1399943268772,2019
+1995,77,"(75,80]",College,5317.585139318885,693.7408315025697,7.665088888888888,349.61721546067463,2019
+1995,65,"(60,65]",College,8880.338151260505,1090.1641637897524,8.14587237979798,203.15074685715183,2019
+1995,65,"(60,65]",College,9098.59623175586,1296.3042965790871,7.018873775059464,178.9699345790927,2019
+1995,65,"(60,65]",College,8425.067704555506,1016.8258473166235,8.285654546242148,181.16573967601852,2019
+1995,65,"(60,65]",College,8650.506218487395,1078.2714638211369,8.022568071895424,184.25240908020513,2019
+1995,65,"(60,65]",College,7741.784626271562,1113.9495637269833,6.949852020561487,183.15051515092154,2019
+1995,63,"(60,65]",NoHS,216.12911101282617,18.03726161906681,11.982368253968254,8642.714522484344,2019
+1995,63,"(60,65]",NoHS,192.84592658115878,18.433684951353992,10.461604778972522,8635.8666095543,2019
+1995,63,"(60,65]",NoHS,170.7239982308713,17.83904995292322,9.57024049382716,8705.76966628859,2019
+1995,63,"(60,65]",NoHS,206.91647943387883,19.622954948215543,10.54461369248036,8857.896963867472,2019
+1995,63,"(60,65]",NoHS,162.88551968155681,17.442626620636037,9.338359595959595,8643.321611520954,2019
+1995,71,"(70,75]",NoHS,128.1059000442282,19.22653161592836,6.662975028636883,7697.567904594328,2019
+1995,71,"(70,75]",NoHS,128.1059000442282,16.649779956061675,7.6941497354497335,7668.22499574454,2019
+1995,71,"(70,75]",NoHS,128.1059000442282,18.631896617497585,6.875623167848699,7669.753207348312,2019
+1995,71,"(70,75]",NoHS,128.1059000442282,17.83904995292322,7.181206419753086,7637.7828549862115,2019
+1995,71,"(70,75]",NoHS,128.1059000442282,15.262298293056533,8.393617893217892,7670.751130292636,2019
+1995,40,"(35,40]",HS,232.19315347191508,118.92699968615479,1.952400666666667,6588.658373311837,2019
+1995,40,"(35,40]",HS,175.54321096859798,118.92699968615479,1.4760585185185187,6498.012299452984,2019
+1995,40,"(35,40]",HS,216.28394515701018,118.92699968615479,1.818627777777778,6492.527655444899,2019
+1995,40,"(35,40]",HS,216.63232198142416,118.92699968615479,1.8215571111111113,6561.968115707011,2019
+1995,40,"(35,40]",HS,203.06498009730208,118.92699968615479,1.707475851851852,6516.06239839198,2019
+1995,68,"(65,70]",NoHS,779.9770013268466,47.57079987446191,16.396129629629634,5430.950925899143,2019
+1995,68,"(65,70]",NoHS,770.2998673153472,47.57079987446191,16.192703703703707,5645.7821129763615,2019
+1995,68,"(65,70]",NoHS,779.9770013268466,47.57079987446191,16.396129629629634,5584.305964465328,2019
+1995,68,"(65,70]",NoHS,778.0415745245466,47.57079987446191,16.355444444444444,5292.338613986601,2019
+1995,68,"(65,70]",NoHS,787.7187085360459,47.57079987446191,16.55887037037037,5658.797672470833,2019
+1995,67,"(65,70]",College,19409.23414418399,693.7408315025697,27.977644190476187,1411.0206197390985,2019
+1995,67,"(65,70]",College,19409.42768686422,693.7408315025697,27.977923174603173,787.9118980613774,2019
+1995,67,"(65,70]",College,14570.66713843432,693.7408315025697,21.003041015873013,1108.360498527793,2019
+1995,67,"(65,70]",College,17065.43228659885,693.7408315025697,24.599146412698413,1021.9143190908119,2019
+1995,67,"(65,70]",College,15581.927642636001,693.7408315025697,22.460733079365077,1105.2904171456958,2019
+1995,81,"(80,85]",NoHS,100.25510835913313,3.567809990584644,28.099901234567902,9116.432725574316,2019
+1995,81,"(80,85]",NoHS,94.44882795223353,3.567809990584644,26.472493827160495,8723.499687097492,2019
+1995,81,"(80,85]",NoHS,111.86766917293234,3.567809990584644,31.354716049382716,9116.83064820164,2019
+1995,81,"(80,85]",NoHS,116.706236178682,3.567809990584644,32.71088888888889,9078.845548538837,2019
+1995,81,"(80,85]",NoHS,89.61026094648386,3.567809990584644,25.116320987654323,8780.907275139287,2019
+1995,42,"(40,45]",College,713.2047766475011,132.8018163162062,5.370444444444444,4070.924340307075,2019
+1995,42,"(40,45]",College,713.2047766475011,132.8018163162062,5.370444444444444,4238.871600486153,2019
+1995,42,"(40,45]",College,713.2047766475011,132.8018163162062,5.370444444444444,4180.966729161804,2019
+1995,42,"(40,45]",College,713.2047766475011,132.8018163162062,5.370444444444444,3969.6025119607352,2019
+1995,42,"(40,45]",College,713.2047766475011,132.8018163162062,5.370444444444444,4210.007337393427,2019
+1995,43,"(40,45]",College,994.7319593100398,87.21313310318017,11.40575878787879,4081.619708845696,2019
+1995,43,"(40,45]",College,1325.4770455550643,245.78246601805324,5.392886917562724,4250.008209807582,2019
+1995,43,"(40,45]",College,1083.7615922158338,49.55291653589783,21.87079324444445,4191.951207446834,2019
+1995,43,"(40,45]",College,1102.9610260946483,130.8196996547703,8.431153939393939,3980.0316819153027,2019
+1995,43,"(40,45]",College,1097.4063511720476,154.60509959200127,7.098125185185182,4221.068112848743,2019
+1995,30,"(25,30]",NoHS,2.0515524104378593,19.821166614359132,0.10350311111111112,5323.063109066519,2019
+1995,30,"(25,30]",NoHS,2.0515524104378593,31.713866582974614,0.06468944444444444,5280.769072310086,2019
+1995,30,"(25,30]",NoHS,2.0515524104378593,29.731749921538697,0.06900207407407408,5335.68512979366,2019
+1995,30,"(25,30]",NoHS,2.0515524104378593,31.713866582974614,0.06468944444444444,5298.758162058806,2019
+1995,30,"(25,30]",NoHS,2.0515524104378593,35.67809990584644,0.05750172839506173,5306.653783145428,2019
+1995,62,"(60,65]",College,20950.608049535604,1094.1283971126243,19.148217069243152,40.672002971836505,2019
+1995,62,"(60,65]",College,21279.63060592658,1300.268529901959,16.365566124661246,45.73272698153342,2019
+1995,62,"(60,65]",College,23600.98151260504,1111.967447065547,21.224525569419693,41.04553817903476,2019
+1995,62,"(60,65]",College,18766.091817779743,1026.736430623803,18.277418876018878,23.009157385376763,2019
+1995,62,"(60,65]",College,13730.88544891641,1064.3966471910853,12.900158493689222,23.915111099708973,2019
+1995,42,"(40,45]",College,448.47709862892526,237.85399937230957,1.8855142222222223,261.5775891379061,2019
+1995,42,"(40,45]",College,446.1158779301194,237.85399937230957,1.875587037037037,267.3668281288936,2019
+1995,42,"(40,45]",College,447.31584254754534,237.85399937230957,1.8806320000000003,263.9990672154055,2019
+1995,42,"(40,45]",College,446.89004865103936,237.85399937230957,1.878841851851852,257.9886009949723,2019
+1995,42,"(40,45]",College,449.0577266696152,237.85399937230957,1.8879553333333334,262.42921415827294,2019
+1995,51,"(50,55]",College,2012.089057938965,434.083548854465,4.635257574835109,2347.8003944630846,2019
+1995,51,"(50,55]",College,2027.572472357364,434.083548854465,4.670926778285135,2005.4740723432856,2019
+1995,51,"(50,55]",College,2012.089057938965,434.083548854465,4.635257574835109,2067.365126034415,2019
+1995,51,"(50,55]",College,2207.5671649712517,434.083548854465,5.08558126839168,2007.5070417170089,2019
+1995,51,"(50,55]",College,2012.089057938965,434.083548854465,4.635257574835109,2069.8400288398557,2019
+1995,41,"(40,45]",College,10465.433348076074,664.009081581031,15.760979237147598,1572.4910966947818,2019
+1995,41,"(40,45]",College,12578.532330827069,1234.8586800745743,10.186212020688423,1337.2225328846912,2019
+1995,41,"(40,45]",College,10876.905086245024,1389.4637796665752,7.828131431288635,1452.6522821084482,2019
+1995,41,"(40,45]",College,12503.437770897834,1078.2714638211369,11.595816258169934,1342.3892222022328,2019
+1995,41,"(40,45]",College,6118.077664750111,568.8674818321072,10.754838095238094,2217.755115589546,2019
+1995,35,"(30,35]",HS,321.66793454223796,59.46349984307739,5.409502222222223,5989.689431403143,2019
+1995,35,"(30,35]",HS,321.66793454223796,59.46349984307739,5.409502222222223,5907.283909697871,2019
+1995,35,"(30,35]",HS,321.66793454223796,59.46349984307739,5.409502222222223,5902.29786968959,2019
+1995,35,"(30,35]",HS,321.66793454223796,59.46349984307739,5.409502222222223,5965.425560848771,2019
+1995,35,"(30,35]",HS,321.66793454223796,59.46349984307739,5.409502222222223,5923.693090554574,2019
+1995,70,"(65,70]",College,12706.251145510836,400.3875656100545,31.734879493949396,362.5606170366224,2019
+1995,70,"(65,70]",College,18717.31906236179,767.0791479756984,24.400766350846972,410.28983119559126,2019
+1995,70,"(65,70]",College,12751.172401592215,818.6141811730322,15.576534947538336,354.53766141973495,2019
+1995,70,"(65,70]",College,7637.774789915967,618.4203983680051,12.350457407407406,205.9906944793638,2019
+1995,70,"(65,70]",College,14846.852543122512,854.2922810788787,17.37912523846352,343.71132012292003,2019
+1995,47,"(45,50]",HS,1402.9908889871738,445.97624882308054,3.1458870123456784,502.4583270484769,2019
+1995,47,"(45,50]",College,1392.1524988942945,229.92553272656593,6.054797318007663,423.1452391862719,2019
+1995,47,"(45,50]",College,1392.1524988942945,874.1134476932377,1.59264509952129,427.30287302235513,2019
+1995,47,"(45,50]",College,1436.6673153471913,477.6901154060551,3.0075299216228673,429.8752839223772,2019
+1995,47,"(45,50]",College,1392.1524988942945,1012.8616139937516,1.3744745379430312,415.797920342805,2019
+1995,36,"(35,40]",HS,12.580274214949137,59.46349984307739,0.21156296296296298,7080.4593564835495,2019
+1995,36,"(35,40]",HS,12.580274214949137,59.46349984307739,0.21156296296296298,7092.684101359657,2019
+1995,36,"(35,40]",HS,12.580274214949137,59.46349984307739,0.21156296296296298,7116.176200243126,2019
+1995,36,"(35,40]",HS,12.580274214949137,59.46349984307739,0.21156296296296298,6984.934858555696,2019
+1995,36,"(35,40]",HS,12.580274214949137,59.46349984307739,0.21156296296296298,7099.838872194137,2019
+1995,70,"(65,70]",NoHS,363.39573639982314,31.713866582974614,11.458575555555557,8739.173079021133,2019
+1995,70,"(65,70]",NoHS,522.1007341884122,31.713866582974614,16.46285333333333,4289.136014993225,2019
+1995,70,"(65,70]",NoHS,225.9804334365325,31.713866582974614,7.125603333333333,8783.517905470117,2019
+1995,70,"(65,70]",NoHS,255.01183547103054,31.713866582974614,8.04102,8795.023544437725,2019
+1995,70,"(65,70]",NoHS,796.9313401149934,31.713866582974614,25.128797777777777,4262.203345149821,2019
+1995,37,"(35,40]",HS,-0.5806280406899602,99.10583307179566,-0.005858666666666667,4946.462547756975,2019
+1995,37,"(35,40]",HS,-0.5806280406899602,99.10583307179566,-0.005858666666666667,4905.404035498434,2019
+1995,37,"(35,40]",HS,-0.5806280406899602,99.10583307179566,-0.005858666666666667,4882.197910826027,2019
+1995,37,"(35,40]",HS,-0.5806280406899602,99.10583307179566,-0.005858666666666667,4793.513528615902,2019
+1995,37,"(35,40]",HS,-0.5806280406899602,99.10583307179566,-0.005858666666666667,4887.256141248043,2019
+1995,43,"(40,45]",College,290.9333569217161,85.23101644174427,3.4134681136950906,8009.049649867683,2019
+1995,43,"(40,45]",College,310.2489164086687,158.56933291487306,1.9565505555555556,7948.740566676395,2019
+1995,43,"(40,45]",College,712.6241486068112,202.17589946646316,3.5247729847494553,4631.394813490647,2019
+1995,43,"(40,45]",College,608.6917293233082,99.10583307179566,6.141835555555556,4398.575565536206,2019
+1995,43,"(40,45]",College,340.2480318443167,61.44561650451331,5.53738494623656,8012.583490577138,2019
+1995,44,"(40,45]",HS,182.22043343653252,109.01641637897524,1.6714953535353536,8550.54671860754,2019
+1995,44,"(40,45]",HS,184.15586023883236,109.01641637897524,1.6892488888888886,8605.823493119551,2019
+1995,44,"(40,45]",HS,183.38168951791243,109.01641637897524,1.6821474747474747,8593.119113075029,2019
+1995,44,"(40,45]",HS,182.22043343653252,109.01641637897524,1.6714953535353536,8855.885999255814,2019
+1995,44,"(40,45]",HS,183.76877487837243,109.01641637897524,1.685698181818182,8673.068254783666,2019
+1995,79,"(75,80]",HS,75375.19681556833,5133.682153119015,14.682482196482196,14.028299846209455,2019
+1995,79,"(75,80]",HS,78218.33878814684,5649.0324850923535,13.84632483430799,15.009371556072441,2019
+1995,79,"(75,80]",HS,77542.8748341442,5133.682153119015,15.104728442728446,14.833229305017568,2019
+1995,79,"(75,80]",HS,83740.11145510836,5351.714985876965,15.647341399176955,12.985028555243137,2019
+1995,79,"(75,80]",HS,76335.16850950908,5430.9996523344025,14.055454501216547,14.097556629034909,2019
+1995,38,"(35,40]",NoHS,274.15320654577624,99.10583307179566,2.7662671111111115,5124.512070868364,2019
+1995,38,"(35,40]",NoHS,246.47660327288813,99.10583307179566,2.487004,5054.0095689404925,2019
+1995,38,"(35,40]",NoHS,248.99265811587796,99.10583307179566,2.512391555555556,5049.743734709701,2019
+1995,38,"(35,40]",NoHS,242.2186643078284,99.10583307179566,2.4440404444444446,5103.752981609081,2019
+1995,38,"(35,40]",NoHS,241.63803626713843,99.10583307179566,2.438181777777778,5068.048534789433,2019
+1995,32,"(30,35]",HS,341.4092879256966,148.65874960769352,2.296597333333333,228.1879586242988,2019
+1995,32,"(30,35]",HS,389.7949579831933,148.65874960769352,2.6220788148148144,231.23325082294332,2019
+1995,32,"(30,35]",HS,348.7639097744361,148.65874960769352,2.3460705185185184,230.53490666383536,2019
+1995,32,"(30,35]",HS,349.925165855816,148.65874960769352,2.3538820740740736,223.71089000104104,2019
+1995,32,"(30,35]",HS,352.2476780185758,148.65874960769352,2.3695051851851843,228.68572926342762,2019
+1995,54,"(50,55]",HS,148.06015037593986,200.19378280502724,0.7395841584158416,7263.507273509749,2019
+1995,54,"(50,55]",HS,148.06015037593986,200.19378280502724,0.7395841584158416,7051.7720213613475,2019
+1995,54,"(50,55]",HS,148.06015037593986,200.19378280502724,0.7395841584158416,7092.864117182247,2019
+1995,54,"(50,55]",HS,148.06015037593986,200.19378280502724,0.7395841584158416,7292.07911773163,2019
+1995,54,"(50,55]",HS,148.06015037593986,200.19378280502724,0.7395841584158416,7162.184100978739,2019
+1995,70,"(65,70]",HS,15.676957098628925,21.803283275795042,0.7190181818181819,8063.974865359831,2019
+1995,70,"(65,70]",HS,15.676957098628925,21.803283275795042,0.7190181818181819,8143.579085502783,2019
+1995,70,"(65,70]",HS,15.676957098628925,21.803283275795042,0.7190181818181819,8131.349810027928,2019
+1995,70,"(65,70]",HS,15.676957098628925,21.803283275795042,0.7190181818181819,8080.813148419856,2019
+1995,70,"(65,70]",HS,15.676957098628925,21.803283275795042,0.7190181818181819,7848.753034217132,2019
+1995,54,"(50,55]",HS,719.7465192392747,380.5663989956953,1.8912508333333335,4504.807708186927,2019
+1995,54,"(50,55]",HS,932.8563644405131,299.29961587682294,3.116797733627667,4694.210004488572,2019
+1995,54,"(50,55]",HS,931.9273595754091,374.6200490113876,2.487660129335685,4638.409513335335,2019
+1995,54,"(50,55]",HS,944.2560283060593,329.0313657983616,2.869805515394913,4398.978149578381,2019
+1995,54,"(50,55]",HS,872.3162140645732,327.0492491369256,2.6672319730639735,4653.413437894238,2019
+1995,64,"(60,65]",College,2396.0564458204335,67.39196648882105,35.554036640522874,3685.2240126653,2019
+1995,64,"(60,65]",College,2690.109710747457,57.48138318164148,46.79966907279694,3153.3585776360765,2019
+1995,64,"(60,65]",College,2942.9412879256965,51.53503319733374,57.105644555555564,871.8991380768414,2019
+1995,64,"(60,65]",College,2399.9251704555504,81.26678311887244,29.531440501897016,3155.858399205734,2019
+1995,64,"(60,65]",College,2461.859989385228,144.69451628482167,17.01418998173516,3254.433861941359,2019
+1995,55,"(50,55]",College,134706.30542237946,79.28466645743653,1699.0209007777776,11.633645633674586,2019
+1995,55,"(50,55]",College,129921.94972136224,85.23101644174427,1524.3505843927649,12.083992304481358,2019
+1995,55,"(50,55]",College,136196.21632905793,85.23101644174427,1597.9654122997415,11.52998555406174,2019
+1995,55,"(50,55]",College,130272.43616099072,71.35619981169287,1825.663873703704,10.52002284063352,2019
+1995,55,"(50,55]",College,139006.28185758513,73.3383164731288,1895.41141033033,10.933650970517371,2019
+1995,38,"(35,40]",HS,9.05779743476338,45.588683213026,0.19868521739130438,8086.642038919075,2019
+1995,38,"(35,40]",HS,8.47716939407342,45.588683213026,0.1859489855072464,8105.811376284107,2019
+1995,38,"(35,40]",HS,11.380309597523219,45.588683213026,0.24963014492753624,8091.569525550983,2019
+1995,38,"(35,40]",HS,7.122370632463512,45.588683213026,0.15623111111111113,8189.465731833584,2019
+1995,38,"(35,40]",HS,7.702998673153472,45.588683213026,0.16896734299516908,8142.768266977249,2019
+1995,49,"(45,50]",College,3318.9569747899163,1310.1791132091387,2.533208582955119,334.08052707681946,2019
+1995,49,"(45,50]",College,1805.4628925254312,1121.878030372727,1.6093219081272085,214.01300764262777,2019
+1995,49,"(45,50]",College,2066.4358425475457,1211.073280137343,1.7062847281323879,211.7485803515166,2019
+1995,49,"(45,50]",College,1865.557894736842,1219.001746783087,1.5303980487804874,216.60914759411648,2019
+1995,49,"(45,50]",College,2384.949031402035,1375.5889630365239,1.7337657508805637,206.87416348612456,2019
+1995,41,"(40,45]",HS,43.721291463954,63.42773316594923,0.68930875,6712.03755427171,2019
+1995,41,"(40,45]",HS,43.721291463954,63.42773316594923,0.68930875,6661.49512427812,2019
+1995,41,"(40,45]",HS,43.721291463954,63.42773316594923,0.68930875,6704.926102737329,2019
+1995,41,"(40,45]",HS,43.721291463954,63.42773316594923,0.68930875,6779.425194396392,2019
+1995,41,"(40,45]",HS,43.721291463954,63.42773316594923,0.68930875,6714.999113082005,2019
+1995,47,"(45,50]",HS,11.051287041132243,67.39196648882105,0.16398522875816993,7412.7057286597465,2019
+1995,47,"(45,50]",HS,11.051287041132243,67.39196648882105,0.16398522875816993,7309.611433689866,2019
+1995,47,"(45,50]",HS,11.051287041132243,67.39196648882105,0.16398522875816993,7382.789127906466,2019
+1995,47,"(45,50]",HS,11.051287041132243,67.39196648882105,0.16398522875816993,7371.32493751334,2019
+1995,47,"(45,50]",HS,11.051287041132243,67.39196648882105,0.16398522875816993,7410.963560162459,2019
+1995,37,"(35,40]",College,99.09385227775321,85.23101644174427,1.1626501291989664,6322.202894315495,2019
+1995,37,"(35,40]",College,98.70676691729324,85.23101644174427,1.158108527131783,6399.776903718791,2019
+1995,37,"(35,40]",College,99.48093763821318,85.23101644174427,1.1671917312661497,6321.247677786201,2019
+1995,37,"(35,40]",College,100.44865103936311,85.23101644174427,1.1785457364341085,6531.042644449763,2019
+1995,37,"(35,40]",College,97.54551083591332,85.23101644174427,1.1444837209302325,6368.3809322186,2019
+1995,27,"(25,30]",HS,589.2987527642637,69.37408315025698,8.494508698412698,8383.023579803943,2019
+1995,27,"(25,30]",HS,590.8083856700575,69.37408315025698,8.516269460317458,8482.332994400631,2019
+1995,27,"(25,30]",HS,591.4277222467935,69.37408315025698,8.52519695238095,8410.542805906081,2019
+1995,27,"(25,30]",HS,590.2664661654135,69.37408315025698,8.508457904761903,8534.709947191086,2019
+1995,27,"(25,30]",HS,589.6858381247235,69.37408315025698,8.500088380952379,8414.510353237682,2019
+1995,47,"(45,50]",College,8429.0159752322,1096.1105137740599,7.68993260196906,212.03715245958068,2019
+1995,47,"(45,50]",College,8461.047288810261,1108.0032137426758,7.636302118863047,186.6522893104597,2019
+1995,47,"(45,50]",College,8371.959593100399,1088.1820471283163,7.693528500303583,185.28252630000458,2019
+1995,47,"(45,50]",College,8722.716992481204,1082.2356971440086,8.05990507936508,191.20235534799767,2019
+1995,47,"(45,50]",College,9016.94057496683,1280.4473632876,7.04202361885105,190.53457285749624,2019
+1995,55,"(50,55]",HS,0.9677134011499338,47.57079987446191,0.020342592592592596,9364.35314102899,2019
+1995,55,"(50,55]",HS,0.9677134011499338,47.57079987446191,0.020342592592592596,9292.935620363853,2019
+1995,55,"(50,55]",HS,1.1612560813799204,47.57079987446191,0.024411111111111116,9368.592762758137,2019
+1995,55,"(50,55]",HS,0.9677134011499338,47.57079987446191,0.020342592592592596,9248.277093721224,2019
+1995,55,"(50,55]",HS,0.9677134011499338,47.57079987446191,0.020342592592592596,9114.98855518316,2019
+1995,53,"(50,55]",HS,3159.7777974347637,158.56933291487306,19.926790000000004,2201.7159391012315,2019
+1995,53,"(50,55]",HS,3409.834940291906,158.56933291487306,21.50374777777778,1887.716812440418,2019
+1995,53,"(50,55]",HS,3064.55479876161,158.56933291487306,19.32627666666667,1945.4276004223655,2019
+1995,53,"(50,55]",HS,2288.642193719593,158.56933291487306,14.433069444444444,1888.1089901069295,2019
+1995,53,"(50,55]",HS,2378.445997346307,158.56933291487306,14.999407222222224,1947.455297256281,2019
+1995,43,"(40,45]",College,275.7983193277311,174.42626620636034,1.5811742424242428,5255.046223702297,2019
+1995,43,"(40,45]",College,275.7983193277311,174.42626620636034,1.5811742424242428,5281.94026887038,2019
+1995,43,"(40,45]",College,275.7983193277311,174.42626620636034,1.5811742424242428,5283.301208514898,2019
+1995,43,"(40,45]",College,275.7983193277311,174.42626620636034,1.5811742424242428,5129.484525246591,2019
+1995,43,"(40,45]",College,275.7983193277311,174.42626620636034,1.5811742424242428,5271.312742613655,2019
+1995,20,"(15,20]",HS,393.27872622733304,118.92699968615479,3.306891851851852,4049.613545301512,2019
+1995,20,"(15,20]",HS,366.1827509951349,118.92699968615479,3.079054814814815,4038.3480779225197,2019
+1995,20,"(15,20]",HS,391.34329942503314,118.92699968615479,3.290617777777778,4054.481289253816,2019
+1995,20,"(15,20]",HS,362.3118973905352,118.92699968615479,3.046506666666667,4034.501840971045,2019
+1995,20,"(15,20]",HS,377.7953118089341,118.92699968615479,3.1766992592592596,4013.1179478711574,2019
+1995,68,"(65,70]",HS,270.37912428129147,29.731749921538697,9.093952592592593,7513.327653832488,2019
+1995,68,"(65,70]",HS,282.9593984962406,29.731749921538697,9.51707851851852,7324.69452567531,2019
+1995,68,"(65,70]",HS,294.7655019902698,29.731749921538697,9.914165925925927,7336.982056800795,2019
+1995,68,"(65,70]",HS,287.9915081822203,29.731749921538697,9.686328888888891,7655.149983123274,2019
+1995,68,"(65,70]",HS,336.18363555948696,29.731749921538697,11.307226666666669,7493.997859505272,2019
+1995,69,"(65,70]",NoHS,14157.64705882353,3171.386658297461,4.464181944444444,20.12365416564478,2019
+1995,69,"(65,70]",NoHS,24326.379478107032,3111.9231584543836,7.817153007784856,40.025483906567764,2019
+1995,69,"(65,70]",NoHS,90932.15745245467,2992.996158768229,30.381648565121413,35.10314700103088,2019
+1995,69,"(65,70]",NoHS,23827.03936311367,3111.9231584543836,7.656692710544941,17.96867383023132,2019
+1995,69,"(65,70]",NoHS,79157.02078726227,3171.386658297461,24.959750833333334,20.162592341760934,2019
+1995,37,"(35,40]",HS,6.619159663865546,19.622954948215543,0.3373171717171717,5390.579325551787,2019
+1995,37,"(35,40]",HS,6.773993808049536,16.847991622205264,0.4020653594771242,5455.449135610979,2019
+1995,37,"(35,40]",HS,6.793348076072534,19.028319949784766,0.3570125,5426.205355658377,2019
+1995,37,"(35,40]",HS,6.793348076072534,18.631896617497585,0.36460851063829786,5432.449282621879,2019
+1995,37,"(35,40]",HS,10.838390092879257,15.460509959200122,0.7010370370370371,5462.56291868348,2019
+1995,64,"(60,65]",HS,624.1751437417072,91.177366426052,6.84572463768116,6199.479917218312,2019
+1995,64,"(60,65]",HS,624.1751437417072,91.177366426052,6.84572463768116,6444.430604084401,2019
+1995,64,"(60,65]",HS,624.1751437417072,91.177366426052,6.84572463768116,6370.427758596127,2019
+1995,64,"(60,65]",HS,624.1751437417072,91.177366426052,6.84572463768116,6039.300577400631,2019
+1995,64,"(60,65]",HS,624.1751437417072,91.177366426052,6.84572463768116,6386.020557198356,2019
+1995,67,"(65,70]",HS,9216.50243255197,198.21166614359132,46.49828444444446,1946.846346312655,2019
+1995,67,"(65,70]",HS,9206.883361344539,198.21166614359132,46.449755155555565,1742.7376726015293,2019
+1995,67,"(65,70]",HS,9206.883361344539,198.21166614359132,46.449755155555565,1741.491720002914,2019
+1995,67,"(65,70]",HS,9206.883361344539,198.21166614359132,46.449755155555565,1758.4790691307094,2019
+1995,67,"(65,70]",HS,9206.883361344539,198.21166614359132,46.449755155555565,1755.7460873428959,2019
+1995,47,"(45,50]",HS,78.98476780185759,75.32043313456471,1.0486499415204678,5287.1312987428455,2019
+1995,47,"(45,50]",HS,80.92019460415746,75.32043313456471,1.0743458479532164,5164.535583217078,2019
+1995,47,"(45,50]",HS,73.17848739495798,75.32043313456471,0.9715622222222222,5204.320079998211,2019
+1995,47,"(45,50]",HS,80.92019460415746,75.32043313456471,1.0743458479532164,5394.023172542267,2019
+1995,47,"(45,50]",HS,80.92019460415746,75.32043313456471,1.0743458479532164,5242.1331169322575,2019
+1995,32,"(30,35]",HS,107.80327288810261,142.71239962338575,0.7553882716049383,6492.997593747643,2019
+1995,32,"(30,35]",HS,83.61043785935426,138.74816630051396,0.6026057142857141,6536.421927701021,2019
+1995,32,"(30,35]",HS,97.54551083591332,124.87334967046255,0.7811555555555556,6497.536288767671,2019
+1995,32,"(30,35]",HS,77.2235294117647,120.90911634759071,0.6386907103825136,6560.786800188,2019
+1995,32,"(30,35]",HS,83.80398053958426,122.89123300902662,0.6819362007168459,6571.172631052713,2019
+1995,25,"(20,25]",HS,22.838036267138435,55.499266520205566,0.41150158730158737,5553.359699975553,2019
+1995,25,"(20,25]",HS,22.838036267138435,55.499266520205566,0.41150158730158737,5467.7452597132315,2019
+1995,25,"(20,25]",HS,25.741176470588236,55.499266520205566,0.4638111111111112,5480.791644846265,2019
+1995,25,"(20,25]",HS,17.999469261388768,55.499266520205566,0.3243190476190477,5445.735549990829,2019
+1995,25,"(20,25]",HS,17.999469261388768,55.499266520205566,0.3243190476190477,5468.16399978756,2019
+1995,35,"(30,35]",HS,8.864254754533393,79.28466645743653,0.1118028888888889,4817.591250246282,2019
+1995,35,"(30,35]",HS,8.864254754533393,79.28466645743653,0.1118028888888889,4805.6932113359135,2019
+1995,35,"(30,35]",HS,8.864254754533393,79.28466645743653,0.1118028888888889,4799.698927516665,2019
+1995,35,"(30,35]",HS,8.864254754533393,79.28466645743653,0.1118028888888889,4826.213931236367,2019
+1995,35,"(30,35]",HS,8.864254754533393,79.28466645743653,0.1118028888888889,4808.079574012119,2019
+1995,58,"(55,60]",College,50564.80967359576,1070.3429971753933,47.241687764609054,12.843548598773811,2019
+1995,58,"(55,60]",College,58698.940150375944,1084.2178138054446,54.13943527117611,23.814430115263647,2019
+1995,58,"(55,60]",College,69252.57089783282,1155.5740136171376,59.929152163140834,13.087769245243456,2019
+1995,58,"(55,60]",College,37321.04018398938,1086.1999304668807,34.35927322141118,12.470737026418899,2019
+1995,58,"(55,60]",College,49266.227318885445,1167.4667135857528,42.19925651461988,20.9070008654844,2019
+1995,42,"(40,45]",HS,95.18429013710747,83.24889978030835,1.1433699470899472,5191.064175524886,2019
+1995,42,"(40,45]",HS,71.12693498452012,63.42773316594923,1.1213854166666666,5119.646056691059,2019
+1995,42,"(40,45]",HS,76.35258735072976,75.32043313456471,1.0137035087719297,5115.324822015845,2019
+1995,42,"(40,45]",HS,103.02276868642194,73.3383164731288,1.4047604804804803,5170.035487704445,2019
+1995,42,"(40,45]",HS,76.25581601061477,69.37408315025698,1.09919746031746,5133.867346771367,2019
+1995,80,"(75,80]",College,28925.92127377267,212.08648277364273,136.3873873312565,266.3766762057645,2019
+1995,80,"(75,80]",College,28935.598407784168,212.08648277364273,136.43301557632398,297.8242594016659,2019
+1995,80,"(75,80]",College,29367.39212737727,212.08648277364273,138.4689478712357,258.045434803303,2019
+1995,80,"(75,80]",College,29701.253250773992,212.08648277364273,140.04312232606438,325.94801664363706,2019
+1995,80,"(75,80]",College,28925.92127377267,212.08648277364273,136.3873873312565,253.52700021357387,2019
+1995,30,"(25,30]",HS,41.20717204776648,29.731749921538697,1.3859652444444446,6250.513128778297,2019
+1995,30,"(25,30]",HS,41.20717204776648,29.731749921538697,1.3859652444444446,6311.346139882563,2019
+1995,30,"(25,30]",HS,41.20717204776648,29.731749921538697,1.3859652444444446,6315.590919506446,2019
+1995,30,"(25,30]",HS,41.20717204776648,29.731749921538697,1.3859652444444446,6402.98554922107,2019
+1995,30,"(25,30]",HS,41.20717204776648,29.731749921538697,1.3859652444444446,6367.267343402375,2019
+1995,53,"(50,55]",HS,607.5304732419283,174.42626620636034,3.483021717171718,4111.772542465071,2019
+1995,53,"(50,55]",HS,609.2723573639983,174.42626620636034,3.4930080808080817,4283.708432881232,2019
+1995,53,"(50,55]",HS,606.3692171605485,174.42626620636034,3.4763641414141424,4230.3467816832,2019
+1995,53,"(50,55]",HS,609.4659000442282,174.42626620636034,3.494117676767677,4013.179898651387,2019
+1995,53,"(50,55]",HS,609.8529854046882,174.42626620636034,3.4963368686868694,4244.842952854591,2019
+1995,86,"(85,90]",NoHS,21.289694825298543,23.785399937230956,0.8950740740740744,7167.155421052075,2019
+1995,86,"(85,90]",NoHS,21.289694825298543,23.785399937230956,0.8950740740740744,7143.5136470424095,2019
+1995,86,"(85,90]",NoHS,21.289694825298543,23.785399937230956,0.8950740740740744,7160.146987448786,2019
+1995,86,"(85,90]",NoHS,21.289694825298543,23.785399937230956,0.8950740740740744,7174.168228216094,2019
+1995,86,"(85,90]",NoHS,21.289694825298543,23.785399937230956,0.8950740740740744,7160.384762814387,2019
+1995,56,"(55,60]",HS,1176.4491817779744,204.15801612789906,5.762444228694715,1412.2820690132837,2019
+1995,56,"(55,60]",HS,1188.0133569217162,227.94341606513,5.211878357487923,2541.7415656685816,2019
+1995,56,"(55,60]",HS,1147.3210084033612,273.53209927815607,4.194465700483091,1406.6543948618587,2019
+1995,56,"(55,60]",HS,1147.3016541353384,233.88976604943778,4.90530934086629,1326.510242157456,2019
+1995,56,"(55,60]",HS,1164.7592038920832,249.7466993409251,4.663762151675485,1423.9583137510306,2019
+1995,28,"(25,30]",NoHS,14.90278637770898,25.76751659866687,0.5783555555555556,7824.291240200184,2019
+1995,28,"(25,30]",NoHS,14.90278637770898,73.3383164731288,0.203206006006006,7911.835012979708,2019
+1995,28,"(25,30]",NoHS,14.90278637770898,53.517149858769656,0.2784674897119342,7907.234100288493,2019
+1995,28,"(25,30]",NoHS,14.90278637770898,41.624449890154175,0.3580296296296297,7936.838770085681,2019
+1995,28,"(25,30]",NoHS,14.90278637770898,25.76751659866687,0.5783555555555556,7921.562835779463,2019
+1995,30,"(25,30]",HS,12.677045555064131,43.606566551590085,0.2907141414141415,6047.2096900194965,2019
+1995,30,"(25,30]",HS,12.40608580274215,43.606566551590085,0.2845004040404041,6014.182754788478,2019
+1995,30,"(25,30]",HS,12.870588235294118,43.606566551590085,0.29515252525252533,6077.2502437357,2019
+1995,30,"(25,30]",HS,12.309314462627157,43.606566551590085,0.28228121212121215,6036.670418347988,2019
+1995,30,"(25,30]",HS,13.064130915524105,43.606566551590085,0.29959090909090913,6043.067397865647,2019
+1995,39,"(35,40]",NoHS,30.96682883679788,31.713866582974614,0.9764444444444446,5268.3819019860475,2019
+1995,39,"(35,40]",NoHS,30.96682883679788,31.713866582974614,0.9764444444444446,5257.643140541719,2019
+1995,39,"(35,40]",NoHS,30.96682883679788,31.713866582974614,0.9764444444444446,5271.336055029737,2019
+1995,39,"(35,40]",NoHS,30.96682883679788,31.713866582974614,0.9764444444444446,5177.711529309676,2019
+1995,39,"(35,40]",NoHS,30.96682883679788,31.713866582974614,0.9764444444444446,5265.637551572996,2019
+1995,27,"(25,30]",College,14.01249004865104,13.874816630051392,1.0099225396825398,5693.108768365834,2019
+1995,27,"(25,30]",College,14.01249004865104,13.874816630051392,1.0099225396825398,5678.961095768551,2019
+1995,27,"(25,30]",College,14.01249004865104,13.874816630051392,1.0099225396825398,5676.677927775317,2019
+1995,27,"(25,30]",College,14.01249004865104,13.874816630051392,1.0099225396825398,5701.631139387145,2019
+1995,27,"(25,30]",College,14.01249004865104,13.874816630051392,1.0099225396825398,5692.485638635586,2019
+1995,49,"(45,50]",College,5609.060415745245,594.6349984307741,9.432778814814814,1188.7853354447086,2019
+1995,49,"(45,50]",College,5545.19133126935,594.6349984307741,9.325369925925925,1076.2147690908675,2019
+1995,49,"(45,50]",College,5475.515966386555,594.6349984307741,9.208196592592591,1066.3851972831017,2019
+1995,49,"(45,50]",College,5523.901636444052,594.6349984307741,9.289566962962963,1086.580919337507,2019
+1995,49,"(45,50]",College,5492.934807607253,594.6349984307741,9.237489925925923,1074.2817912139433,2019
+1995,46,"(45,50]",HS,24.38637770897833,33.69598324441053,0.7237176470588236,5395.286994837798,2019
+1995,46,"(45,50]",HS,66.96576735957541,33.69598324441053,1.987351633986928,5320.250519729605,2019
+1995,46,"(45,50]",HS,76.64290137107474,31.713866582974614,2.4166999999999996,5373.512402282497,2019
+1995,46,"(45,50]",HS,198.5747899159664,37.660216567282355,5.2728,5246.206347942556,2019
+1995,46,"(45,50]",HS,24.38637770897833,39.642333228718265,0.61516,5394.018969452697,2019
+1995,55,"(50,55]",College,6817.3280141530295,321.1028991526179,21.23097621399177,294.6275285172421,2019
+1995,55,"(50,55]",College,6611.108288367979,313.17443250687427,21.109987285513366,266.9857742969191,2019
+1995,55,"(50,55]",College,5562.93919504644,332.9955991212334,16.70574388888889,262.3075857812247,2019
+1995,55,"(50,55]",College,6301.343228659885,368.67369902707986,17.091925041816012,245.48939125792532,2019
+1995,55,"(50,55]",College,6379.9022025652375,346.87041575128484,18.392753930158733,263.55830488867144,2019
+1995,56,"(55,60]",College,17444.195311808933,6342.773316594922,2.7502473194444446,36.30591661496287,2019
+1995,56,"(55,60]",College,12563.668252985404,5411.178485720043,2.3217988994709,37.32438133731049,2019
+1995,56,"(55,60]",College,95386.34869526759,6441.879149666718,14.80722417777778,61.579164362513914,2019
+1995,56,"(55,60]",College,76766.96222910217,5490.46315217748,13.981873678299237,73.23159965087461,2019
+1995,56,"(55,60]",College,21029.225086245024,5946.34998430774,3.5364929985185185,58.93143383967919,2019
+1995,31,"(30,35]",College,53.51455108359133,87.21313310318017,0.6136065656565657,5517.274431068581,2019
+1995,31,"(30,35]",College,48.501795665634674,73.3383164731288,0.6613431831831831,5468.027165776416,2019
+1995,31,"(30,35]",College,68.22379478107032,152.62298293056534,0.44700865800865797,5542.4114225220155,2019
+1995,31,"(30,35]",College,108.34519239274657,122.89123300902662,0.8816348387096774,5475.986772783874,2019
+1995,31,"(30,35]",College,56.22414860681115,116.94488302471889,0.4807747645951036,5524.656662354793,2019
+1995,59,"(55,60]",College,499.72720035382576,109.01641637897524,4.583962828282829,853.9721134386243,2019
+1995,59,"(55,60]",College,499.72720035382576,109.01641637897524,4.583962828282829,874.8172946211989,2019
+1995,59,"(55,60]",College,499.72720035382576,109.01641637897524,4.583962828282829,858.1640313018992,2019
+1995,59,"(55,60]",College,499.72720035382576,109.01641637897524,4.583962828282829,845.6345580238012,2019
+1995,59,"(55,60]",College,499.72720035382576,109.01641637897524,4.583962828282829,855.1751408421472,2019
+1995,42,"(40,45]",College,6258.6864219371955,1171.430946908625,5.342770257567211,149.55134324885168,2019
+1995,42,"(40,45]",College,6258.6864219371955,1171.430946908625,5.342770257567211,133.19217906120102,2019
+1995,42,"(40,45]",College,6258.6864219371955,1171.430946908625,5.342770257567211,132.14632655358247,2019
+1995,42,"(40,45]",College,6256.750995134896,1171.430946908625,5.341118067305883,134.14242271328828,2019
+1995,42,"(40,45]",College,6258.6864219371955,1171.430946908625,5.342770257567211,133.4915197244548,2019
+1995,37,"(35,40]",College,1036.517823971694,218.03283275795047,4.75395292929293,2492.3644245503356,2019
+1995,37,"(35,40]",College,1036.55653250774,218.03283275795047,4.754130464646464,2135.7652221332655,2019
+1995,37,"(35,40]",College,1036.421052631579,218.03283275795047,4.75350909090909,2198.3767531136186,2019
+1995,37,"(35,40]",College,1036.4791154356478,218.03283275795047,4.753775393939393,2135.3632388266087,2019
+1995,37,"(35,40]",College,1036.459761167625,218.03283275795047,4.753686626262626,2208.3862340547066,2019
+1995,55,"(50,55]",College,3585.471051747015,9.910583307179566,361.7820405333334,749.3230137099894,2019
+1995,55,"(50,55]",College,3584.9988076072536,9.910583307179566,361.73439004444447,669.6113479178077,2019
+1995,55,"(50,55]",College,3585.126545776205,9.910583307179566,361.7472791111111,668.1857995736461,2019
+1995,55,"(50,55]",College,3585.0375161433,9.910583307179566,361.73829582222226,669.8660942353438,2019
+1995,55,"(50,55]",College,3585.428472357364,9.910583307179566,361.7777441777778,670.3823584340389,2019
+1995,52,"(50,55]",HS,813.4598850066343,138.74816630051396,5.862851428571428,5318.3812135746675,2019
+1995,52,"(50,55]",HS,813.4598850066343,138.74816630051396,5.862851428571428,5395.549245859671,2019
+1995,52,"(50,55]",HS,813.4598850066343,138.74816630051396,5.862851428571428,5420.597852104592,2019
+1995,52,"(50,55]",HS,836.68500663423265,138.74816630051396,6.030241904761904,5225.944823097164,2019
+1995,52,"(50,55]",HS,836.68500663423265,138.74816630051396,6.030241904761904,5329.5091777041,2019
+1995,23,"(20,25]",NoHS,0,10.108794973323159,0,7023.742916678704,2019
+1995,23,"(20,25]",NoHS,0,10.108794973323159,0,7026.429563397534,2019
+1995,23,"(20,25]",NoHS,0,10.108794973323159,0,7026.392450184719,2019
+1995,23,"(20,25]",NoHS,0,10.108794973323159,0,7044.812018271371,2019
+1995,23,"(20,25]",NoHS,0,10.108794973323159,0,6974.322542283473,2019
+1995,36,"(35,40]",HS,0,11.298064970184706,0,7625.76315419749,2019
+1995,36,"(35,40]",HS,0,23.785399937230956,0,7678.049096114312,2019
+1995,36,"(35,40]",HS,0,10.505218305610338,0,7676.280966109865,2019
+1995,36,"(35,40]",HS,0,13.47839329776421,0,7659.928905908055,2019
+1995,36,"(35,40]",HS,0,25.76751659866687,0,7683.636503257668,2019
+1995,50,"(45,50]",HS,167.8982750995135,83.24889978030835,2.016822751322752,5150.486987981405,2019
+1995,50,"(45,50]",HS,111.77089783281734,83.24889978030835,1.3426111111111112,5000.347445192685,2019
+1995,50,"(45,50]",HS,111.77089783281734,83.24889978030835,1.3426111111111112,5029.48547684391,2019
+1995,50,"(45,50]",HS,167.8982750995135,83.24889978030835,2.016822751322752,5170.747023023169,2019
+1995,50,"(45,50]",HS,111.77089783281734,83.24889978030835,1.3426111111111112,5078.63964728895,2019
+1995,39,"(35,40]",HS,107.8419814241486,33.69598324441053,3.200440261437908,5989.689431403143,2019
+1995,39,"(35,40]",HS,119.49325077399381,35.67809990584644,3.3492044444444447,5907.283909697871,2019
+1995,39,"(35,40]",HS,100.11962848297215,39.642333228718265,2.525573555555556,5902.29786968959,2019
+1995,39,"(35,40]",HS,109.77740822644847,31.713866582974614,3.4614955555555555,5965.425560848771,2019
+1995,39,"(35,40]",HS,125.26082264484742,33.69598324441053,3.7173814379084966,5923.693090554574,2019
+1995,30,"(25,30]",HS,7.45139318885449,45.588683213026,0.16344830917874398,6457.088269359932,2019
+1995,30,"(25,30]",HS,102.28730650154799,45.588683213026,2.2436995169082126,6715.369279383328,2019
+1995,30,"(25,30]",HS,4.548252985404688,45.588683213026,0.09976714975845412,6461.195567141147,2019
+1995,30,"(25,30]",HS,18.09624060150376,45.588683213026,0.39694589371980676,6445.880795457383,2019
+1995,30,"(25,30]",HS,102.28730650154799,45.588683213026,2.2436995169082126,6713.476567380827,2019
+1995,65,"(60,65]",College,4191.166740380363,291.37114923107936,14.384288737717306,18.417170030944277,2019
+1995,65,"(60,65]",College,11088.4472357364,1106.0210970812395,10.025529589804858,17.170527036337102,2019
+1995,65,"(60,65]",College,15595.282087571872,251.72881600236096,61.952709011373585,17.50693931123254,2019
+1995,65,"(60,65]",College,17742.444582043343,640.2236816438,27.712883935328517,15.681342724688282,2019
+1995,65,"(60,65]",College,25570.471826625388,788.8824312514935,32.41353947515355,29.389843512096775,2019
+1995,44,"(40,45]",HS,53.68873949579832,47.57079987446191,1.1286070370370374,8009.049649867683,2019
+1995,44,"(40,45]",HS,55.21772666961522,45.588683213026,1.2112156521739132,7948.740566676395,2019
+1995,44,"(40,45]",HS,52.72102609464839,45.588683213026,1.1564498550724638,8000.5640047918105,2019
+1995,44,"(40,45]",HS,52.701671826625386,45.588683213026,1.156025314009662,8089.459056278482,2019
+1995,44,"(40,45]",HS,54.07582485625829,45.588683213026,1.186167729468599,8012.583490577138,2019
+1995,40,"(35,40]",HS,-2.903140203449801,31.713866582974614,-0.09154166666666666,4612.929639156488,2019
+1995,40,"(35,40]",HS,-2.903140203449801,31.713866582974614,-0.09154166666666666,4574.63964376918,2019
+1995,40,"(35,40]",HS,-2.903140203449801,31.713866582974614,-0.09154166666666666,4552.998274957067,2019
+1995,40,"(35,40]",HS,-2.903140203449801,31.713866582974614,-0.09154166666666666,4470.293754043862,2019
+1995,40,"(35,40]",HS,-2.903140203449801,31.713866582974614,-0.09154166666666666,4557.715436122273,2019
+1995,80,"(75,80]",College,35874.587350729766,334.97771578266935,107.09544444444444,254.0733973842826,2019
+1995,80,"(75,80]",College,35897.812472357364,362.7273490427721,98.9663794778385,293.03158398857187,2019
+1995,80,"(75,80]",College,35899.747899159665,317.1386658297461,113.19889930555556,251.83467101550792,2019
+1995,80,"(75,80]",College,35893.94161875276,313.17443250687427,114.61325668073137,284.3581043798717,2019
+1995,80,"(75,80]",College,35892.006191950466,317.1386658297461,113.17448819444445,240.00818186445923,2019
+1995,46,"(45,50]",College,17440.905086245024,7135.619981169289,2.444203185185185,388.55537713787834,2019
+1995,46,"(45,50]",College,7914.9279080053075,7611.327979913906,1.0398879050925927,346.64739309993803,2019
+1995,46,"(45,50]",College,14334.738611233966,6382.415649823641,2.245973844030366,344.41278708512937,2019
+1995,46,"(45,50]",College,14325.44856258293,7452.758646999034,1.9221672458628845,352.1399943268772,2019
+1995,46,"(45,50]",College,29881.44148606811,6402.236816438,4.6673439834881325,583.2295905784002,2019
+1995,66,"(65,70]",HS,556.4352056612119,85.23101644174427,6.528552971576227,4505.483584618505,2019
+1995,66,"(65,70]",HS,556.4352056612119,85.23101644174427,6.528552971576227,4682.677090349649,2019
+1995,66,"(65,70]",HS,556.4352056612119,85.23101644174427,6.528552971576227,4629.0172067390295,2019
+1995,66,"(65,70]",HS,556.4352056612119,85.23101644174427,6.528552971576227,4388.308544339852,2019
+1995,66,"(65,70]",HS,556.4352056612119,85.23101644174427,6.528552971576227,4691.663572182033,2019
+1995,71,"(70,75]",College,76599.54781070324,1183.3236468772402,64.73254211799741,229.55644387083765,2019
+1995,71,"(70,75]",College,67500.91287041132,1300.268529901959,51.91305589430895,203.52311590468244,2019
+1995,71,"(70,75]",College,73281.64564352056,1232.876563413138,59.43956420150054,224.40343369270562,2019
+1995,71,"(70,75]",College,87060.83934542237,1127.8243803570344,77.1936135286077,226.92318413262643,2019
+1995,71,"(70,75]",College,69131.60672268907,1155.5740136171376,59.82447329902801,257.7116725196197,2019
+1995,43,"(40,45]",College,1085.9679787704556,126.85546633189846,8.560671527777778,3297.720068919117,2019
+1995,43,"(40,45]",College,1189.9003980539583,126.85546633189846,9.379969444444443,3437.1612129012437,2019
+1995,43,"(40,45]",College,1385.378505086245,126.85546633189846,10.920920833333334,3396.082843113236,2019
+1995,43,"(40,45]",College,1392.1524988942945,126.85546633189846,10.974320138888888,3211.3646422010115,2019
+1995,43,"(40,45]",College,1400.861919504644,126.85546633189846,11.042976388888889,3418.327892599459,2019
+1995,34,"(30,35]",College,63.03685095090668,73.3383164731288,0.859535015015015,5018.960888694177,2019
+1995,34,"(30,35]",College,64.1981070322866,69.37408315025698,0.925390349206349,5071.998843711885,2019
+1995,34,"(30,35]",College,63.81102167182662,81.26678311887244,0.7852042276422765,5025.958043054208,2019
+1995,34,"(30,35]",College,64.39164971251658,63.42773316594923,1.0151970833333333,5104.950306460649,2019
+1995,34,"(30,35]",College,63.230393631136664,69.37408315025698,0.9114411428571426,5033.521148031234,2019
+1995,36,"(35,40]",HS,139.48620964175143,89.1952497646161,1.563830024691358,4381.558993758203,2019
+1995,36,"(35,40]",HS,144.80863334807609,89.1952497646161,1.6235016296296298,4325.03558787253,2019
+1995,36,"(35,40]",HS,148.6794869526758,89.1952497646161,1.6668991604938272,4325.561619334872,2019
+1995,36,"(35,40]",HS,131.260645731977,89.1952497646161,1.4716102716049384,4218.50421634825,2019
+1995,36,"(35,40]",HS,149.1439893852278,89.1952497646161,1.6721068641975312,4314.49163131522,2019
+1995,33,"(30,35]",HS,13.354444935869086,55.499266520205566,0.24062380952380957,4908.318523153472,2019
+1995,33,"(30,35]",HS,13.354444935869086,55.499266520205566,0.24062380952380957,4856.507403632129,2019
+1995,33,"(30,35]",HS,13.354444935869086,55.499266520205566,0.24062380952380957,4862.850624543915,2019
+1995,33,"(30,35]",HS,13.354444935869086,55.499266520205566,0.24062380952380957,4835.02341264645,2019
+1995,33,"(30,35]",HS,13.354444935869086,55.499266520205566,0.24062380952380957,4875.0549639465835,2019
+1995,38,"(35,40]",College,203.43271118973905,158.56933291487306,1.2829259444444445,6283.903473801298,2019
+1995,38,"(35,40]",College,203.43271118973905,158.56933291487306,1.2829259444444445,6236.584943646625,2019
+1995,38,"(35,40]",College,203.43271118973905,158.56933291487306,1.2829259444444445,6277.245633370675,2019
+1995,38,"(35,40]",College,203.43271118973905,158.56933291487306,1.2829259444444445,6346.992725380535,2019
+1995,38,"(35,40]",College,203.43271118973905,158.56933291487306,1.2829259444444445,6286.676126597916,2019
+1995,44,"(40,45]",HS,948.939761167625,110.99853304041113,8.549119841269842,321.3337463105271,2019
+1995,44,"(40,45]",HS,948.939761167625,110.99853304041113,8.549119841269842,328.3017927527343,2019
+1995,44,"(40,45]",HS,948.939761167625,110.99853304041113,8.549119841269842,322.42451176890705,2019
+1995,44,"(40,45]",HS,948.939761167625,110.99853304041113,8.549119841269842,315.4652132676199,2019
+1995,44,"(40,45]",HS,948.939761167625,110.99853304041113,8.549119841269842,320.60997534166034,2019
+1995,36,"(35,40]",HS,44.92125608137992,114.96276636328297,0.39074613026819927,6405.734252995128,2019
+1995,36,"(35,40]",HS,44.92125608137992,114.96276636328297,0.39074613026819927,6357.498322784415,2019
+1995,36,"(35,40]",HS,44.92125608137992,114.96276636328297,0.39074613026819927,6398.947331987319,2019
+1995,36,"(35,40]",HS,44.92125608137992,114.96276636328297,0.39074613026819927,6470.0466635090515,2019
+1995,36,"(35,40]",HS,44.92125608137992,114.96276636328297,0.39074613026819927,6408.560661304078,2019
+1995,57,"(55,60]",College,15178.58469703671,459.85106545313187,33.00761015325671,210.09007726269846,2019
+1995,57,"(55,60]",College,14501.185316231757,449.94048214595233,32.229118942731276,184.959811643916,2019
+1995,57,"(55,60]",College,13504.459867315347,487.6006987132347,27.695735266485997,184.6214611107584,2019
+1995,57,"(55,60]",College,14772.145068553737,481.65434872892695,30.66959762231367,190.42225415395845,2019
+1995,57,"(55,60]",College,13456.07419725785,436.06566551590095,30.857908020202018,189.79949845750838,2019
+1995,42,"(40,45]",College,1009.4218487394959,128.8375829933344,7.834839999999999,5035.035863347895,2019
+1995,42,"(40,45]",College,1010.3895621406457,128.8375829933344,7.842351111111109,5242.195767215112,2019
+1995,42,"(40,45]",College,1011.3572755417956,128.8375829933344,7.84986222222222,5167.996557272747,2019
+1995,42,"(40,45]",College,1009.4218487394959,128.8375829933344,7.834839999999999,4908.994178675963,2019
+1995,42,"(40,45]",College,1008.454135338346,128.8375829933344,7.8273288888888874,5202.144620113799,2019
+1995,79,"(75,80]",NoHS,148.25369305616985,19.821166614359132,7.479564444444446,8751.77541728753,2019
+1995,79,"(75,80]",NoHS,117.28686421937196,19.821166614359132,5.917253333333334,8702.816069377108,2019
+1995,79,"(75,80]",NoHS,121.1577178239717,19.821166614359132,6.112542222222222,8752.157423009794,2019
+1995,79,"(75,80]",NoHS,128.89942503317116,19.821166614359132,6.50312,8715.691727330439,2019
+1995,79,"(75,80]",NoHS,150.1891198584697,19.821166614359132,7.577208888888888,8746.664608116256,2019
+1995,79,"(75,80]",College,190.05891198584698,65.40984982738514,2.9056619528619527,10872.310747930807,2019
+1995,79,"(75,80]",College,190.05891198584698,65.40984982738514,2.9056619528619527,10958.386512221265,2019
+1995,79,"(75,80]",College,190.05891198584698,65.40984982738514,2.9056619528619527,11112.818279100302,2019
+1995,79,"(75,80]",College,190.05891198584698,65.40984982738514,2.9056619528619527,11399.349741443819,2019
+1995,79,"(75,80]",College,190.05891198584698,65.40984982738514,2.9056619528619527,11090.172610815924,2019
+1995,48,"(45,50]",HS,51.15333038478549,65.40984982738514,0.7820432323232323,4600.221285442788,2019
+1995,48,"(45,50]",HS,51.15333038478549,65.40984982738514,0.7820432323232323,4466.12229205925,2019
+1995,48,"(45,50]",HS,52.314586466165416,65.40984982738514,0.7997967676767677,4492.147286148284,2019
+1995,48,"(45,50]",HS,53.088757187085356,65.40984982738514,0.8116324579124577,4618.316786831379,2019
+1995,48,"(45,50]",HS,53.475842547545334,65.40984982738514,0.817550303030303,4536.0499426693505,2019
+1995,66,"(65,70]",HS,6218.042459088899,182.354732852104,34.098607487922706,367.2315170266476,2019
+1995,66,"(65,70]",HS,6055.46660769571,182.354732852104,33.20707125603865,323.4313047310878,2019
+1995,66,"(65,70]",HS,6175.463069438302,182.354732852104,33.86510990338165,338.2765201881155,2019
+1995,66,"(65,70]",HS,6146.431667403804,182.354732852104,33.70590700483092,330.00874035845794,2019
+1995,66,"(65,70]",HS,6076.756302521008,182.354732852104,33.32382004830918,335.29481405285526,2019
+1995,76,"(75,80]",HS,35.0312251216276,14.073028296194984,2.489245696400626,10771.665521902178,2019
+1995,76,"(75,80]",HS,35.0312251216276,27.749633260102783,1.2624031746031747,10627.076034505559,2019
+1995,76,"(75,80]",HS,35.0312251216276,14.469451628482167,2.421047184170472,10848.61936477829,2019
+1995,76,"(75,80]",HS,33.095798319327734,25.76751659866687,1.2844000000000002,10959.570259434495,2019
+1995,76,"(75,80]",HS,35.0312251216276,14.865874960769348,2.3564859259259263,10824.213690767365,2019
+1995,31,"(30,35]",HS,208.61965501990272,39.642333228718265,5.262547333333334,7305.7688950599695,2019
+1995,31,"(30,35]",HS,202.98756302521008,39.642333228718265,5.1204746666666665,7240.557504284797,2019
+1995,31,"(30,35]",HS,181.71722246793453,39.642333228718265,4.5839184444444445,7339.054361021526,2019
+1995,31,"(30,35]",HS,185.1429279080053,39.642333228718265,4.670333777777778,7251.097318828831,2019
+1995,31,"(30,35]",HS,170.5111012826183,39.642333228718265,4.301237777777778,7315.544170221785,2019
+1995,60,"(55,60]",NoHS,90.84893409995578,35.67809990584644,2.5463501234567905,6545.9434023809235,2019
+1995,60,"(55,60]",NoHS,90.84893409995578,35.67809990584644,2.5463501234567905,6409.335310850207,2019
+1995,60,"(55,60]",NoHS,90.84893409995578,35.67809990584644,2.5463501234567905,6465.306548913436,2019
+1995,60,"(55,60]",NoHS,90.84893409995578,35.67809990584644,2.5463501234567905,6451.366211214175,2019
+1995,60,"(55,60]",NoHS,90.84893409995578,35.67809990584644,2.5463501234567905,6382.812926440363,2019
+1995,57,"(55,60]",HS,807.6536045997346,158.56933291487306,5.093378333333334,4762.672027556717,2019
+1995,57,"(55,60]",HS,807.6536045997346,158.56933291487306,5.093378333333334,4950.003010636318,2019
+1995,57,"(55,60]",HS,807.6536045997346,158.56933291487306,5.093378333333334,4866.4229678435395,2019
+1995,57,"(55,60]",HS,809.5890314020345,158.56933291487306,5.105583888888889,4649.094886900222,2019
+1995,57,"(55,60]",HS,805.7181777974348,158.56933291487306,5.081172777777778,4876.5337961077485,2019
+1995,53,"(50,55]",NoHS,249.12813799203892,83.24889978030835,2.992569735449736,7263.507273509749,2019
+1995,53,"(50,55]",NoHS,253.38607695709862,83.24889978030835,3.0437168253968254,7051.7720213613475,2019
+1995,53,"(50,55]",NoHS,252.99899159663866,83.24889978030835,3.0390670899470904,7092.864117182247,2019
+1995,53,"(50,55]",NoHS,251.0635647943388,83.24889978030835,3.015818412698413,7292.07911773163,2019
+1995,53,"(50,55]",NoHS,252.99899159663866,83.24889978030835,3.0390670899470904,7162.184100978739,2019
+1995,35,"(30,35]",College,29.882989827509952,55.499266520205566,0.5384393650793652,8852.023261584343,2019
+1995,35,"(30,35]",College,29.882989827509952,55.499266520205566,0.5384393650793652,8741.176658096618,2019
+1995,35,"(30,35]",College,29.882989827509952,55.499266520205566,0.5384393650793652,8812.265528884116,2019
+1995,35,"(30,35]",College,29.882989827509952,55.499266520205566,0.5384393650793652,8749.727729899603,2019
+1995,35,"(30,35]",College,29.90234409553295,55.499266520205566,0.5387880952380952,8806.50223948144,2019
+1995,58,"(55,60]",College,28733.1527642636,436.06566551590095,65.89180262626262,21.37930316291056,2019
+1995,58,"(55,60]",College,28733.1527642636,436.06566551590095,65.89180262626262,23.814430115263647,2019
+1995,58,"(55,60]",College,28733.1527642636,436.06566551590095,65.89180262626262,21.59007452559501,2019
+1995,58,"(55,60]",College,28733.1527642636,436.06566551590095,65.89180262626262,25.778823899766866,2019
+1995,58,"(55,60]",College,28733.1527642636,436.06566551590095,65.89180262626262,20.9070008654844,2019
+1995,26,"(25,30]",HS,-2.1096152145068556,55.499266520205566,-0.03801158730158731,5953.526026602711,2019
+1995,26,"(25,30]",HS,-2.1096152145068556,55.499266520205566,-0.03801158730158731,6016.440014696743,2019
+1995,26,"(25,30]",HS,-2.1096152145068556,55.499266520205566,-0.03801158730158731,5961.826099370452,2019
+1995,26,"(25,30]",HS,-2.1096152145068556,55.499266520205566,-0.03801158730158731,6055.527267106165,2019
+1995,26,"(25,30]",HS,-2.1096152145068556,55.499266520205566,-0.03801158730158731,5970.797506663957,2019
+1995,58,"(55,60]",College,10389.758160106148,445.97624882308054,23.296662518518517,719.6885859163851,2019
+1995,58,"(55,60]",College,10389.758160106148,445.97624882308054,23.296662518518517,572.2864392041957,2019
+1995,58,"(55,60]",College,10389.758160106148,445.97624882308054,23.296662518518517,559.4286580674859,2019
+1995,58,"(55,60]",College,10389.758160106148,445.97624882308054,23.296662518518517,558.848552604423,2019
+1995,58,"(55,60]",College,10389.758160106148,445.97624882308054,23.296662518518517,572.1283289236147,2019
+1995,46,"(45,50]",College,10.644847412649272,47.57079987446191,0.2237685185185186,6680.464432682738,2019
+1995,46,"(45,50]",College,9.096505970809377,47.57079987446191,0.1912203703703704,6521.613594072795,2019
+1995,46,"(45,50]",College,7.74170720919947,47.57079987446191,0.16274074074074077,6534.099702884349,2019
+1995,46,"(45,50]",College,8.709420610349403,47.57079987446191,0.18308333333333335,6525.799982980896,2019
+1995,46,"(45,50]",College,9.096505970809377,47.57079987446191,0.1912203703703704,6580.939398330474,2019
+1995,28,"(25,30]",College,254.0247678018576,63.42773316594923,4.004947916666667,7305.7688950599695,2019
+1995,28,"(25,30]",College,107.60973020787262,75.32043313456471,1.4286923976608186,7240.557504284797,2019
+1995,28,"(25,30]",College,99.09385227775321,69.37408315025698,1.42839873015873,7339.054361021526,2019
+1995,28,"(25,30]",College,90.3844316674038,71.35619981169287,1.2666654320987654,7251.097318828831,2019
+1995,28,"(25,30]",College,345.28014153029636,73.3383164731288,4.708045645645646,4491.036087938082,2019
+1995,72,"(70,75]",HS,662.4965944272446,77.30254979600063,8.570177777777777,4355.95095135235,2019
+1995,72,"(70,75]",HS,662.4965944272446,75.32043313456471,8.795708771929824,4528.072280951035,2019
+1995,72,"(70,75]",HS,662.4965944272446,79.28466645743653,8.355923333333335,4476.541452116982,2019
+1995,72,"(70,75]",HS,662.4965944272446,81.26678311887244,8.152120325203253,4243.031754167214,2019
+1995,72,"(70,75]",HS,662.4965944272446,73.3383164731288,9.033430630630631,4501.670482825108,2019
+1995,72,"(70,75]",HS,38.12790800530738,63.42773316594923,0.601123611111111,11509.177393943604,2019
+1995,72,"(70,75]",HS,34.89574524546661,63.42773316594923,0.5501654166666666,11457.31691368803,2019
+1995,72,"(70,75]",HS,35.61185316231756,63.42773316594923,0.5614555555555555,11520.995815133036,2019
+1995,72,"(70,75]",HS,39.69560371517028,63.42773316594923,0.6258398611111111,11616.525469882949,2019
+1995,72,"(70,75]",HS,33.52159221583371,63.42773316594923,0.5285005555555556,11341.379718255635,2019
+1995,59,"(55,60]",HS,272.8951791242813,27.749633260102783,9.834190476190477,7036.88915976204,2019
+1995,59,"(55,60]",HS,272.8951791242813,27.749633260102783,9.834190476190477,6890.0354613205545,2019
+1995,59,"(55,60]",HS,272.8951791242813,27.749633260102783,9.834190476190477,6950.204542257362,2019
+1995,59,"(55,60]",HS,272.8951791242813,27.749633260102783,9.834190476190477,6935.218679225962,2019
+1995,59,"(55,60]",HS,272.8951791242813,27.749633260102783,9.834190476190477,6861.523898071045,2019
+1995,69,"(65,70]",College,11111.285272003539,445.97624882308054,24.9145224691358,1572.4910966947818,2019
+1995,69,"(65,70]",College,12030.613003095976,445.97624882308054,26.975905185185184,1337.2225328846912,2019
+1995,69,"(65,70]",College,11951.26050420168,445.97624882308054,26.79797530864197,1452.6522821084482,2019
+1995,69,"(65,70]",College,10917.74259177355,445.97624882308054,24.480547160493824,1342.3892222022328,2019
+1995,69,"(65,70]",College,9369.40114993366,445.97624882308054,21.008744691358025,1429.6621794591179,2019
+1995,65,"(60,65]",NoHS,205.9294117647059,55.499266520205566,3.7104888888888894,2520.9617659734276,2019
+1995,65,"(60,65]",NoHS,205.9294117647059,55.499266520205566,3.7104888888888894,2526.622436794533,2019
+1995,65,"(60,65]",NoHS,205.9294117647059,55.499266520205566,3.7104888888888894,2405.5689845595107,2019
+1995,65,"(60,65]",NoHS,205.9294117647059,55.499266520205566,3.7104888888888894,2556.7040153641424,2019
+1995,65,"(60,65]",NoHS,205.9294117647059,55.499266520205566,3.7104888888888894,2470.169279852391,2019
+1995,40,"(35,40]",HS,244.25086245024326,63.42773316594923,3.850852777777778,4972.604651189842,2019
+1995,40,"(35,40]",HS,251.0248562582928,63.42773316594923,3.957651388888889,4926.974117747825,2019
+1995,40,"(35,40]",HS,279.8627156125608,63.42773316594923,4.412308333333333,4931.051921284274,2019
+1995,40,"(35,40]",HS,263.9922158337019,63.42773316594923,4.162094444444444,4805.671501416308,2019
+1995,40,"(35,40]",HS,229.92870411322423,63.42773316594923,3.62505,4912.451152550607,2019
+1995,44,"(40,45]",College,533.6552321981425,178.3904995292322,2.9915002962962967,4308.605632247049,2019
+1995,44,"(40,45]",College,471.72157452454667,178.3904995292322,2.644320049382716,4486.358508654832,2019
+1995,44,"(40,45]",College,506.55925696594426,178.3904995292322,2.839608938271605,4425.072856093722,2019
+1995,44,"(40,45]",College,421.40047766475016,178.3904995292322,2.3622360987654325,4201.368119635926,2019
+1995,44,"(40,45]",College,446.5610260946484,178.3904995292322,2.5032780740740743,4455.809002907298,2019
+1995,33,"(30,35]",NoHS,-7.354621848739495,69.37408315025698,-0.10601396825396822,7796.401728924958,2019
+1995,33,"(30,35]",NoHS,-9.290048651039363,69.37408315025698,-0.13391238095238092,7812.785371778396,2019
+1995,33,"(30,35]",NoHS,-10.160990712074303,69.37408315025698,-0.14646666666666663,7856.095705504468,2019
+1995,33,"(30,35]",NoHS,-8.999734630694384,69.37408315025698,-0.12972761904761904,7993.4979188457855,2019
+1995,33,"(30,35]",NoHS,-9.677134011499337,69.37408315025698,-0.13949206349206347,7862.38037300289,2019
+1995,47,"(45,50]",HS,778.0415745245466,71.35619981169287,10.903629629629629,4635.8219768878425,2019
+1995,47,"(45,50]",HS,789.6541353383459,75.32043313456471,10.483929824561404,4829.671264798391,2019
+1995,47,"(45,50]",HS,783.3639982308713,63.42773316594923,12.350496527777777,4769.5086189341,2019
+1995,47,"(45,50]",HS,774.9448916408669,67.39196648882105,11.49906928104575,4524.6636041348265,2019
+1995,47,"(45,50]",HS,769.6805307386113,75.32043313456471,10.218748070175439,4785.852341307609,2019
+1995,56,"(55,60]",College,3017.814241486068,723.4725814241084,4.171290410958904,23.646707144297963,2019
+1995,56,"(55,60]",College,3017.717470145953,723.4725814241084,4.171156651445966,21.348543186297487,2019
+1995,56,"(55,60]",College,3017.814241486068,723.4725814241084,4.171290410958904,21.946679002333024,2019
+1995,56,"(55,60]",College,3017.814241486068,723.4725814241084,4.171290410958904,19.415451125195737,2019
+1995,56,"(55,60]",College,3017.717470145953,723.4725814241084,4.171156651445966,21.734228321919126,2019
+1995,43,"(40,45]",College,4634.979460415745,384.53063231856714,12.053602680412371,2170.7681279689064,2019
+1995,43,"(40,45]",College,4773.749562140645,386.5127489800031,12.350820444444443,1941.3046378510226,2019
+1995,43,"(40,45]",College,2456.9275541795664,313.17443250687427,7.845236708860759,10983.745522883983,2019
+1995,43,"(40,45]",College,1545.2254046881912,374.6200490113876,4.124780317460318,11908.543530085492,2019
+1995,43,"(40,45]",College,2172.439168509509,388.494865641439,5.591937913832199,12015.95644899762,2019
+1995,20,"(15,20]",HS,24.67669172932331,13.874816630051392,1.7785238095238098,7743.575086644448,2019
+1995,20,"(15,20]",HS,24.67669172932331,13.874816630051392,1.7785238095238098,7784.777260094394,2019
+1995,20,"(15,20]",HS,24.67669172932331,13.874816630051392,1.7785238095238098,7796.79836177279,2019
+1995,20,"(15,20]",HS,24.67669172932331,13.874816630051392,1.7785238095238098,7943.784876196757,2019
+1995,20,"(15,20]",HS,24.67669172932331,13.874816630051392,1.7785238095238098,7829.4544670070245,2019
+1995,65,"(60,65]",College,448678.2475364883,184178.28018062506,2.436108357057445,2.8105880616522616,2019
+1995,65,"(60,65]",College,416568.5685272004,195278.1334846662,2.133206422519962,2.243383281743868,2019
+1995,65,"(60,65]",College,379395.77429455996,192681.56065818516,1.9690300047320233,3.0383781419960103,2019
+1995,65,"(60,65]",College,404373.2894117647,197676.4946450036,2.0456316272602697,2.1023901664096862,2019
+1995,65,"(60,65]",College,469890.46722689073,183207.0430165215,2.564805694639787,2.2997107014584666,2019
+1995,45,"(40,45]",HS,228.38036267138435,33.69598324441053,6.777673202614379,6420.7773499006225,2019
+1995,45,"(40,45]",HS,228.18681999115438,33.69598324441053,6.771929411764706,6393.467438191963,2019
+1995,45,"(40,45]",HS,228.18681999115438,33.69598324441053,6.771929411764706,6356.339160710783,2019
+1995,45,"(40,45]",HS,228.7674480318443,33.69598324441053,6.789160784313725,6683.738020416755,2019
+1995,45,"(40,45]",HS,230.7028748341442,33.69598324441053,6.846598692810458,6447.248160785439,2019
+1995,52,"(50,55]",College,4505.6735957540905,495.5291653589783,9.092650666666666,276.5049146986306,2019
+1995,52,"(50,55]",College,4519.02804068996,495.5291653589783,9.119600533333333,246.55326733645933,2019
+1995,52,"(50,55]",College,4520.38283945157,495.5291653589783,9.12233457777778,248.90995542343882,2019
+1995,52,"(50,55]",College,4503.738168951791,495.5291653589783,9.088744888888888,250.32936675001466,2019
+1995,52,"(50,55]",College,4505.6735957540905,495.5291653589783,9.092650666666666,248.30059634944445,2019
+1995,57,"(55,60]",College,18869.985528527202,1797.7798119223735,10.496271792233248,44.42378589117626,2019
+1995,57,"(55,60]",College,31803.95899159664,1302.2506465633949,24.42230232369356,53.094951335354914,2019
+1995,57,"(55,60]",College,16312.74480318443,4479.583654845164,3.6415761061946896,26.691725774027656,2019
+1995,57,"(55,60]",College,52200.39628482972,4955.291653589782,10.534273244444448,24.916089990581106,2019
+1995,57,"(55,60]",College,30951.92605042017,1026.736430623803,30.14593144573145,44.90628171283181,2019
+1995,34,"(30,35]",HS,80.70729765590447,35.67809990584644,2.2620962962962965,4644.681509569379,2019
+1995,34,"(30,35]",HS,80.70729765590447,35.67809990584644,2.2620962962962965,4631.966854376996,2019
+1995,34,"(30,35]",HS,80.70729765590447,35.67809990584644,2.2620962962962965,4660.0222630615635,2019
+1995,34,"(30,35]",HS,80.70729765590447,35.67809990584644,2.2620962962962965,4710.726227876274,2019
+1995,34,"(30,35]",HS,80.70729765590447,35.67809990584644,2.2620962962962965,4642.518273282773,2019
+1995,53,"(50,55]",NoHS,165.57576293675365,79.28466645743653,2.0883705555555556,5672.778484560107,2019
+1995,53,"(50,55]",NoHS,164.9370720919947,79.28466645743653,2.080314888888889,5652.760416605709,2019
+1995,53,"(50,55]",NoHS,164.51127819548873,79.28466645743653,2.0749444444444447,5620.677257412993,2019
+1995,53,"(50,55]",NoHS,165.71124281291463,79.28466645743653,2.090079333333333,5907.147095992763,2019
+1995,53,"(50,55]",NoHS,164.8596550199027,79.28466645743653,2.0793384444444447,5697.276391459919,2019
+1995,28,"(25,30]",College,103.35179124281292,89.1952497646161,1.1587140740740742,6043.593362730998,2019
+1995,28,"(25,30]",College,105.67430340557276,89.1952497646161,1.1847525925925926,5989.648167622271,2019
+1995,28,"(25,30]",College,104.31950464396286,89.1952497646161,1.1695634567901236,6071.128290820043,2019
+1995,28,"(25,30]",College,99.2873949579832,89.1952497646161,1.1131466666666667,5998.367079230029,2019
+1995,28,"(25,30]",College,102.77116320212296,89.1952497646161,1.1522044444444446,6051.679820013649,2019
+1995,46,"(45,50]",College,641.787527642636,61.44561650451331,10.444805734767025,8509.461707605318,2019
+1995,46,"(45,50]",College,647.5938080495356,61.44561650451331,10.539300358422938,8624.406913773299,2019
+1995,46,"(45,50]",College,659.2063688633348,61.44561650451331,10.728289605734767,8501.061800142383,2019
+1995,46,"(45,50]",College,694.0440513047324,61.44561650451331,11.295257347670251,8288.402883143122,2019
+1995,46,"(45,50]",College,725.0108801415303,61.44561650451331,11.799228673835126,8457.706035488603,2019
+1995,45,"(40,45]",HS,123.20927023440956,43.606566551590085,2.825475151515152,5056.287388842187,2019
+1995,45,"(40,45]",HS,125.6672622733304,43.606566551590085,2.881842626262627,4950.444697212045,2019
+1995,45,"(40,45]",HS,123.55764705882353,43.606566551590085,2.833464242424243,5023.94788092236,2019
+1995,45,"(40,45]",HS,125.55113666519239,43.606566551590085,2.8791795959595965,4981.282640462019,2019
+1995,45,"(40,45]",HS,123.26733303847855,43.606566551590085,2.826806666666667,5025.936412022357,2019
+1995,61,"(60,65]",HS,535.1455108359133,95.14159974892382,5.624726851851853,4521.357393575612,2019
+1995,61,"(60,65]",HS,535.1455108359133,95.14159974892382,5.624726851851853,4699.244864769127,2019
+1995,61,"(60,65]",HS,535.1455108359133,95.14159974892382,5.624726851851853,4647.759363255624,2019
+1995,61,"(60,65]",HS,535.1455108359133,95.14159974892382,5.624726851851853,4407.521774519989,2019
+1995,61,"(60,65]",HS,535.1455108359133,95.14159974892382,5.624726851851853,4655.922450204317,2019
+1995,45,"(40,45]",NoHS,132.57673595754093,61.44561650451331,2.1576272401433694,7443.999834750373,2019
+1995,45,"(40,45]",NoHS,106.06138876603274,103.07006639466748,1.0290222222222225,7246.735641284346,2019
+1995,45,"(40,45]",NoHS,108.77098628925255,45.588683213026,2.3859207729468603,7340.830344340403,2019
+1995,45,"(40,45]",NoHS,136.9314462627156,53.517149858769656,2.5586460905349795,7551.76750853906,2019
+1995,45,"(40,45]",NoHS,102.57762052189297,81.26678311887244,1.2622330623306235,7403.146604680277,2019
+1995,40,"(35,40]",College,1085.9679787704556,303.2638491996948,3.580934495279593,732.0140201734343,2019
+1995,40,"(35,40]",College,1085.9679787704556,303.2638491996948,3.580934495279593,623.1963767011268,2019
+1995,40,"(35,40]",College,1085.9679787704556,303.2638491996948,3.580934495279593,619.2097870836614,2019
+1995,40,"(35,40]",College,1085.9679787704556,303.2638491996948,3.580934495279593,632.5668927239179,2019
+1995,40,"(35,40]",College,1085.9679787704556,303.2638491996948,3.580934495279593,605.2944640213726,2019
+1995,54,"(50,55]",HS,174.78839451570101,79.28466645743653,2.2045674444444443,6412.92053361999,2019
+1995,54,"(50,55]",HS,157.36955329500222,79.28466645743653,1.9848674444444445,6265.295270913807,2019
+1995,54,"(50,55]",HS,161.24040689960196,79.28466645743653,2.033689666666667,6348.248545646491,2019
+1995,54,"(50,55]",HS,159.3049800973021,79.28466645743653,2.009278555555556,6529.23385274624,2019
+1995,54,"(50,55]",HS,176.7238213180009,79.28466645743653,2.2289785555555555,6396.734122451175,2019
+1995,73,"(70,75]",College,23950.90667846086,10564.68180545342,2.267073170731707,4.67849004299774,2019
+1995,73,"(70,75]",College,23070.67456877488,10881.820471283167,2.120111669702489,4.132446998413185,2019
+1995,73,"(70,75]",College,21961.82984520124,9236.663642291354,2.37767993896042,5.0122224264057555,2019
+1995,73,"(70,75]",College,21614.71104820876,9355.59064197751,2.310352373822976,4.345945692998077,2019
+1995,73,"(70,75]",College,21781.873861123397,9415.054141820587,2.3135155181286553,3.838919884064741,2019
+1995,47,"(45,50]",HS,-2.322512162759841,31.713866582974614,-0.07323333333333333,5535.851921375672,2019
+1995,47,"(45,50]",HS,-2.322512162759841,43.606566551590085,-0.05326060606060607,5546.841266452447,2019
+1995,47,"(45,50]",HS,28.644316674038038,73.3383164731288,0.39057777777777775,5493.904740082022,2019
+1995,47,"(45,50]",HS,28.644316674038038,112.98064970184706,0.2535329434697856,5609.039921292512,2019
+1995,47,"(45,50]",HS,28.644316674038038,89.1952497646161,0.3211417283950618,5554.411600935668,2019
+1995,60,"(55,60]",HS,510.372047766475,101.08794973323158,5.048792156862745,5713.595935741387,2019
+1995,60,"(55,60]",HS,510.372047766475,101.08794973323158,5.048792156862745,5940.017034422129,2019
+1995,60,"(55,60]",HS,487.1469261388766,101.08794973323158,4.819040522875817,5872.25317879842,2019
+1995,60,"(55,60]",HS,394.24643962848296,101.08794973323158,3.900033986928104,10245.154688541006,2019
+1995,60,"(55,60]",HS,425.2132684652808,101.08794973323158,4.206369498910675,10136.287979704288,2019
+1995,34,"(30,35]",HS,80.90084033613445,73.3383164731288,1.1031183183183182,6914.70112340031,2019
+1995,34,"(30,35]",HS,80.90084033613445,79.28466645743653,1.0203844444444443,6949.614326373334,2019
+1995,34,"(30,35]",HS,80.90084033613445,87.21313310318017,0.9276222222222223,6988.193427028935,2019
+1995,34,"(30,35]",HS,80.90084033613445,77.30254979600063,1.0465481481481478,7037.377610378479,2019
+1995,34,"(30,35]",HS,80.90084033613445,49.55291653589783,1.6326151111111111,7020.069603132513,2019
+1995,52,"(50,55]",College,773.590092879257,438.04778217733684,1.76599477124183,369.5032571344514,2019
+1995,52,"(50,55]",College,798.1700132684653,438.04778217733684,1.8221071895424836,377.56005285500277,2019
+1995,52,"(50,55]",College,779.7834586466165,438.04778217733684,1.7801333333333331,370.94070757896577,2019
+1995,52,"(50,55]",College,756.5583370190182,438.04778217733684,1.727113725490196,361.47998430427157,2019
+1995,52,"(50,55]",College,779.7834586466165,438.04778217733684,1.7801333333333331,366.9212522690124,2019
+1995,58,"(55,60]",HS,7182.368863334807,1286.3937132719077,5.583336414997432,16.304811167009973,2019
+1995,58,"(55,60]",HS,7182.368863334807,1331.9823964849336,5.39224007936508,14.310677741060033,2019
+1995,58,"(55,60]",HS,7182.368863334807,1133.7707303413426,6.3349393939393925,15.157725321012794,2019
+1995,58,"(55,60]",HS,7182.368863334807,1226.9302134288303,5.853934302638665,14.572294244021856,2019
+1995,58,"(55,60]",HS,7182.368863334807,1280.4473632876,5.609265221878225,15.103432674028927,2019
+1995,26,"(25,30]",NoHS,-0.5806280406899602,73.3383164731288,-0.007917117117117116,6039.110194931176,2019
+1995,26,"(25,30]",NoHS,-0.17418841220698805,69.37408315025698,-0.0025108571428571424,6067.928201434173,2019
+1995,26,"(25,30]",NoHS,-0.5806280406899602,73.3383164731288,-0.007917117117117116,6078.55808858596,2019
+1995,26,"(25,30]",NoHS,-0.11612560813799205,85.23101644174427,-0.001362480620155039,6158.496578848771,2019
+1995,26,"(25,30]",NoHS,-0.2322512162759841,71.35619981169287,-0.0032548148148148154,6098.869157818933,2019
+1995,36,"(35,40]",HS,231.08996019460415,61.44561650451331,3.7608860215053763,5085.981901125257,2019
+1995,36,"(35,40]",HS,231.08996019460415,61.44561650451331,3.7608860215053763,5016.009493249076,2019
+1995,36,"(35,40]",HS,231.08996019460415,61.44561650451331,3.7608860215053763,5011.775732963032,2019
+1995,36,"(35,40]",HS,231.08996019460415,61.44561650451331,3.7608860215053763,5065.378895259246,2019
+1995,36,"(35,40]",HS,231.08996019460415,61.44561650451331,3.7608860215053763,5029.942902953413,2019
+1995,43,"(40,45]",HS,118.06103494029192,110.99853304041113,1.0636269841269843,4371.1786741071355,2019
+1995,43,"(40,45]",HS,118.06103494029192,110.99853304041113,1.0636269841269843,4307.905737306578,2019
+1995,43,"(40,45]",HS,118.06103494029192,110.99853304041113,1.0636269841269843,4303.7001558557795,2019
+1995,43,"(40,45]",HS,118.06103494029192,110.99853304041113,1.0636269841269843,4351.966393972396,2019
+1995,43,"(40,45]",HS,118.06103494029192,110.99853304041113,1.0636269841269843,4322.172707321235,2019
+1995,35,"(30,35]",HS,37.02471472799646,89.1952497646161,0.4150973827160494,10324.863490049906,2019
+1995,35,"(30,35]",HS,37.02471472799646,89.1952497646161,0.4150973827160494,10435.461382074182,2019
+1995,35,"(30,35]",HS,37.02471472799646,89.1952497646161,0.4150973827160494,10245.630278618479,2019
+1995,35,"(30,35]",HS,37.02471472799646,89.1952497646161,0.4150973827160494,10374.22053037681,2019
+1995,35,"(30,35]",HS,37.02471472799646,89.1952497646161,0.4150973827160494,10251.069222083648,2019
+1995,41,"(40,45]",HS,202.46499778858913,39.642333228718265,5.107292666666667,4536.365237034772,2019
+1995,41,"(40,45]",HS,202.9295002211411,39.642333228718265,5.11901,4569.661664903229,2019
+1995,41,"(40,45]",HS,203.1423971693941,39.642333228718265,5.124380444444445,4567.325696815879,2019
+1995,41,"(40,45]",HS,202.79402034498008,39.642333228718265,5.115592444444444,4541.913350829209,2019
+1995,41,"(40,45]",HS,203.0456258292791,39.642333228718265,5.121939333333334,4581.414819406118,2019
+1995,50,"(45,50]",College,56198.6977443609,2160.5071609651454,26.011808134556574,48.1308550762562,2019
+1995,50,"(45,50]",College,57689.88603272888,2041.5801612789908,28.257467978425023,48.94512798024148,2019
+1995,50,"(45,50]",College,52437.91186200796,1819.5830951981684,28.81864092955701,48.98663677803516,2019
+1995,50,"(45,50]",College,52276.98112339673,2021.7589946646315,25.857177468409585,47.12979968554182,2019
+1995,50,"(45,50]",College,56375.44091994692,2160.5071609651454,26.093614470948012,46.9826306836905,2019
+1995,45,"(40,45]",College,246.96045997346306,83.24889978030835,2.9665312169312172,7263.507273509749,2019
+1995,45,"(40,45]",College,272.7016364440513,83.24889978030835,3.275738624338625,7051.7720213613475,2019
+1995,45,"(40,45]",College,265.5405572755418,75.32043313456471,3.525478362573099,7092.864117182247,2019
+1995,45,"(40,45]",College,291.66881910659004,83.24889978030835,3.503575661375662,7292.07911773163,2019
+1995,45,"(40,45]",College,262.83095975232203,63.42773316594923,4.143786111111112,7162.184100978739,2019
+1995,48,"(45,50]",HS,433.9033348076072,83.24889978030835,5.212120952380952,2846.247179282497,2019
+1995,48,"(45,50]",HS,450.39317116320217,83.24889978030835,5.410199682539684,8624.406913773299,2019
+1995,48,"(45,50]",HS,465.79916850950906,83.24889978030835,5.595259153439154,8501.061800142383,2019
+1995,48,"(45,50]",HS,428.1357629367536,83.24889978030835,5.142839894179894,2884.1755171797727,2019
+1995,48,"(45,50]",HS,583.608597965502,83.24889978030835,7.010406137566139,8457.706035488603,2019
+1995,41,"(40,45]",College,4099.446864219372,673.9196648882105,6.082990418300654,882.9719568822823,2019
+1995,41,"(40,45]",College,4099.446864219372,673.9196648882105,6.082990418300654,798.3163297522083,2019
+1995,41,"(40,45]",College,4099.446864219372,673.9196648882105,6.082990418300654,788.1983109133942,2019
+1995,41,"(40,45]",College,4099.446864219372,673.9196648882105,6.082990418300654,801.56470392488,2019
+1995,41,"(40,45]",College,4099.446864219372,673.9196648882105,6.082990418300654,793.7227234179128,2019
+1995,48,"(45,50]",HS,114.77080937638215,118.92699968615479,0.9650525925925928,7414.939348033181,2019
+1995,48,"(45,50]",HS,137.0282176028306,118.92699968615479,1.1522044444444446,7244.24763846573,2019
+1995,48,"(45,50]",HS,123.48022998673153,118.92699968615479,1.038285925925926,7340.162362130078,2019
+1995,48,"(45,50]",HS,106.6420168067227,118.92699968615479,0.8967014814814815,7549.426622928937,2019
+1995,48,"(45,50]",HS,110.89995577178239,118.92699968615479,0.9325044444444445,7396.223810167105,2019
+1995,34,"(30,35]",HS,676.1413533834587,148.65874960769352,4.548278222222222,5517.274431068581,2019
+1995,34,"(30,35]",HS,676.1413533834587,148.65874960769352,4.548278222222222,5468.027165776416,2019
+1995,34,"(30,35]",HS,676.1413533834587,148.65874960769352,4.548278222222222,5542.4114225220155,2019
+1995,34,"(30,35]",HS,676.1413533834587,148.65874960769352,4.548278222222222,5475.986772783874,2019
+1995,34,"(30,35]",HS,676.1413533834587,148.65874960769352,4.548278222222222,5524.656662354793,2019
+1995,28,"(25,30]",HS,10.044865103936312,99.10583307179566,0.10135493333333334,4986.9284047148385,2019
+1995,28,"(25,30]",HS,10.044865103936312,99.10583307179566,0.10135493333333334,5040.153609177498,2019
+1995,28,"(25,30]",HS,10.044865103936312,99.10583307179566,0.10135493333333334,4985.949869117578,2019
+1995,28,"(25,30]",HS,10.044865103936312,99.10583307179566,0.10135493333333334,5072.626416963981,2019
+1995,28,"(25,30]",HS,10.044865103936312,99.10583307179566,0.10135493333333334,4997.679141099909,2019
+1995,47,"(45,50]",College,102.34536930561698,79.28466645743653,1.2908595555555555,5339.516952339816,2019
+1995,47,"(45,50]",College,102.34536930561698,79.28466645743653,1.2908595555555555,5325.301559951301,2019
+1995,47,"(45,50]",College,106.21622291021671,79.28466645743653,1.3396817777777779,5300.194585736936,2019
+1995,47,"(45,50]",College,102.34536930561698,79.28466645743653,1.2908595555555555,5374.977218636706,2019
+1995,47,"(45,50]",College,110.08707651481646,79.28466645743653,1.3885040000000002,5339.322531227654,2019
+1995,58,"(55,60]",College,121708.54029190625,13081.969965477027,9.30353307744108,26.68744854250756,2019
+1995,58,"(55,60]",College,119103.26227333039,13081.969965477027,9.104382794612796,28.823679097754262,2019
+1995,58,"(55,60]",College,114946.93321539141,13081.969965477027,8.786668484848486,28.199897088622777,2019
+1995,58,"(55,60]",College,119781.0487394958,13081.969965477027,9.15619352861953,24.916089990581106,2019
+1995,58,"(55,60]",College,121718.79805395844,13081.969965477027,9.304317191919194,26.90117526192332,2019
+1995,33,"(30,35]",NoHS,158.70499778858914,49.55291653589783,3.2027377777777786,10156.848347635827,2019
+1995,33,"(30,35]",NoHS,160.504944714728,49.55291653589783,3.239061511111111,10371.844759159816,2019
+1995,33,"(30,35]",NoHS,160.098505086245,49.55291653589783,3.2308593777777777,10132.181953845591,2019
+1995,33,"(30,35]",NoHS,157.7179301194162,49.55291653589783,3.1828183111111112,10337.16703249593,2019
+1995,33,"(30,35]",NoHS,159.4017514374171,49.55291653589783,3.2167985777777783,10255.484391398577,2019
+1995,43,"(40,45]",HS,311.8940291906236,75.32043313456471,4.1408953216374265,7249.2598168279455,2019
+1995,43,"(40,45]",HS,311.8940291906236,75.32043313456471,4.1408953216374265,7296.124153514364,2019
+1995,43,"(40,45]",HS,311.8940291906236,75.32043313456471,4.1408953216374265,7285.353222159289,2019
+1995,43,"(40,45]",HS,311.8940291906236,75.32043313456471,4.1408953216374265,7508.130255239294,2019
+1995,43,"(40,45]",HS,311.8940291906236,75.32043313456471,4.1408953216374265,7353.135098506097,2019
+1995,49,"(45,50]",College,56303.11402034498,2061.4013278933503,27.313028888888883,689.7355999500627,2019
+1995,49,"(45,50]",College,56804.4282706767,2358.718827108737,24.08274679365079,787.9118980613774,2019
+1995,49,"(45,50]",College,56290.39826625387,2378.5399937230964,23.665945670370366,674.022180908075,2019
+1995,49,"(45,50]",College,56785.335285272005,2378.5399937230964,23.874030049999998,849.7358675705849,2019
+1995,49,"(45,50]",College,55999.7552233525,2398.3611603374547,23.3491753241506,655.8752488420885,2019
+1995,40,"(35,40]",College,3573.765590446705,820.5962978344681,4.3550837359098225,294.6275285172421,2019
+1995,40,"(35,40]",College,37930.533180008846,1730.3878454335522,21.920249428535065,541.163258611464,2019
+1995,40,"(35,40]",College,23558.75049977886,491.5649320361065,47.926019462365595,457.1621133126663,2019
+1995,40,"(35,40]",College,55145.07074745688,846.363814433135,65.15527933385376,226.92318413262643,2019
+1995,40,"(35,40]",College,5937.444281291465,598.5992317536459,9.918897262693157,263.55830488867144,2019
+1995,50,"(45,50]",College,12025.580893409995,594.6349984307741,20.223466370370367,767.5782354674859,2019
+1995,50,"(45,50]",College,12025.580893409995,594.6349984307741,20.223466370370367,660.0289188207598,2019
+1995,50,"(45,50]",College,12025.580893409995,594.6349984307741,20.223466370370367,679.5803089659844,2019
+1995,50,"(45,50]",College,12025.580893409995,594.6349984307741,20.223466370370367,655.2838859215817,2019
+1995,50,"(45,50]",College,12025.580893409995,594.6349984307741,20.223466370370367,692.6017992747159,2019
+1995,62,"(60,65]",NoHS,0,9.910583307179566,0,8219.210099306281,2019
+1995,62,"(60,65]",NoHS,0,7.9284666457436535,0,8267.166580270667,2019
+1995,62,"(60,65]",NoHS,0,7.9284666457436535,0,8248.383517863484,2019
+1995,62,"(60,65]",NoHS,0,7.9284666457436535,0,8258.580724421396,2019
+1995,62,"(60,65]",NoHS,0,8.91952497646161,0,8211.978429845774,2019
+1995,32,"(30,35]",HS,-3.870853604599735,23.785399937230956,-0.16274074074074077,7855.669768565653,2019
+1995,32,"(30,35]",HS,-3.870853604599735,23.785399937230956,-0.16274074074074077,7763.740558455034,2019
+1995,32,"(30,35]",HS,-1.9354268022998675,23.785399937230956,-0.08137037037037038,7787.759130289114,2019
+1995,32,"(30,35]",HS,-2.903140203449801,23.785399937230956,-0.12205555555555557,7732.577594904821,2019
+1995,32,"(30,35]",HS,-3.870853604599735,23.785399937230956,-0.16274074074074077,7760.367553688619,2019
+1995,71,"(70,75]",HS,186.7686864219372,23.785399937230956,7.852240740740742,5726.6825135617855,2019
+1995,71,"(70,75]",HS,186.7686864219372,23.785399937230956,7.852240740740742,5769.693174732744,2019
+1995,71,"(70,75]",HS,186.7686864219372,23.785399937230956,7.852240740740742,5988.257488130658,2019
+1995,71,"(70,75]",HS,186.7686864219372,23.785399937230956,7.852240740740742,5810.772298104297,2019
+1995,71,"(70,75]",HS,186.7686864219372,23.785399937230956,7.852240740740742,5725.252665281858,2019
+1995,24,"(20,25]",College,-20.031667403803628,35.67809990584644,-0.5614555555555556,4944.023894517513,2019
+1995,24,"(20,25]",College,-20.031667403803628,35.67809990584644,-0.5614555555555556,4898.8216428079495,2019
+1995,24,"(20,25]",College,-20.031667403803628,35.67809990584644,-0.5614555555555556,4890.6857114835675,2019
+1995,24,"(20,25]",College,-20.031667403803628,35.67809990584644,-0.5614555555555556,4856.612923332323,2019
+1995,24,"(20,25]",College,-20.031667403803628,35.67809990584644,-0.5614555555555556,4846.948629119662,2019
+1995,50,"(45,50]",NoHS,10.257762052189298,67.39196648882105,0.15221045751633988,6313.907783606818,2019
+1995,50,"(45,50]",NoHS,8.709420610349403,75.32043313456471,0.1156315789473684,6202.695178512129,2019
+1995,50,"(45,50]",NoHS,10.257762052189298,67.39196648882105,0.15221045751633988,6260.371921660894,2019
+1995,50,"(45,50]",NoHS,6.773993808049536,65.40984982738514,0.10356228956228955,6254.991242970354,2019
+1995,50,"(45,50]",NoHS,10.257762052189298,73.3383164731288,0.13986906906906907,6291.914422879383,2019
+1995,74,"(70,75]",HS,366.66660769570984,144.69451628482167,2.5340739726027395,10822.505359008706,2019
+1995,74,"(70,75]",HS,369.95683325961966,53.517149858769656,6.912865020576132,10762.100308852463,2019
+1995,74,"(70,75]",HS,367.24723573639983,61.44561650451331,5.97678494623656,10877.421552743379,2019
+1995,74,"(70,75]",HS,368.9891198584697,41.624449890154175,8.864720634920635,10891.670022050468,2019
+1995,74,"(70,75]",HS,372.0858027421495,144.69451628482167,2.5715266362252662,10660.37433018781,2019
+1995,56,"(55,60]",College,51108.041397611676,4261.550822087214,11.99282691472868,12.843548598773811,2019
+1995,56,"(55,60]",College,55082.24679345422,4122.802655786701,13.360388888888885,12.928149932801253,2019
+1995,56,"(55,60]",College,52171.171340115,3845.3063231856722,13.567494226804124,13.087769245243456,2019
+1995,56,"(55,60]",College,50861.08093763822,3884.94865641439,13.091828344671203,12.470737026418899,2019
+1995,56,"(55,60]",College,52498.25846970367,4340.83548854465,12.094044708269916,20.9070008654844,2019
+1995,63,"(60,65]",College,4139.877930119416,529.2251486033888,7.822526841448191,180.73948442828618,2019
+1995,63,"(60,65]",College,4139.877930119416,529.2251486033888,7.822526841448191,157.57309999359973,2019
+1995,63,"(60,65]",College,4139.877930119416,529.2251486033888,7.822526841448191,166.83981755530678,2019
+1995,63,"(60,65]",College,4139.877930119416,529.2251486033888,7.822526841448191,160.74866058682576,2019
+1995,63,"(60,65]",College,4139.877930119416,529.2251486033888,7.822526841448191,162.38943695053499,2019
+1995,45,"(40,45]",College,55.35320654577621,69.37408315025698,0.797894603174603,4808.455590235795,2019
+1995,45,"(40,45]",College,51.48235294117647,69.37408315025698,0.7420977777777776,4790.3696512720335,2019
+1995,45,"(40,45]",College,54.96612118531623,69.37408315025698,0.7923149206349205,4796.5043121776425,2019
+1995,45,"(40,45]",College,55.159663865546214,69.37408315025698,0.7951047619047616,4884.65301312384,2019
+1995,45,"(40,45]",College,55.74029190623618,69.37408315025698,0.8034742857142856,4858.223382234232,2019
+1995,58,"(55,60]",College,2532.893056169836,130.8196996547703,19.36170976430976,567.1837645070447,2019
+1995,58,"(55,60]",College,2532.893056169836,130.8196996547703,19.36170976430976,477.25989668632263,2019
+1995,58,"(55,60]",College,2532.893056169836,130.8196996547703,19.36170976430976,479.27169945496007,2019
+1995,58,"(55,60]",College,2532.893056169836,130.8196996547703,19.36170976430976,482.65643435983174,2019
+1995,58,"(55,60]",College,2532.893056169836,130.8196996547703,19.36170976430976,466.7697427969476,2019
+1995,42,"(40,45]",HS,6.386908447589563,43.606566551590085,0.14646666666666672,8154.31524702211,2019
+1995,42,"(40,45]",HS,6.386908447589563,43.606566551590085,0.14646666666666672,8310.549062699085,2019
+1995,42,"(40,45]",HS,6.386908447589563,43.606566551590085,0.14646666666666672,8181.708501541815,2019
+1995,42,"(40,45]",HS,6.386908447589563,43.606566551590085,0.14646666666666672,8204.15892403938,2019
+1995,42,"(40,45]",HS,6.386908447589563,43.606566551590085,0.14646666666666672,8212.971344429438,2019
+1995,67,"(65,70]",HS,87.481291463954,63.42773316594923,1.3792277777777775,7655.013728545064,2019
+1995,67,"(65,70]",HS,87.481291463954,63.42773316594923,1.3792277777777775,7535.329263290092,2019
+1995,67,"(65,70]",HS,87.481291463954,63.42773316594923,1.3792277777777775,7538.22334769882,2019
+1995,67,"(65,70]",HS,87.481291463954,63.42773316594923,1.3792277777777775,7786.290906696796,2019
+1995,67,"(65,70]",HS,87.481291463954,63.42773316594923,1.3792277777777775,7597.178647978244,2019
+1995,91,"(90,95]",College,601.7241928350288,202.17589946646316,2.976240958605665,4532.42812647201,2019
+1995,91,"(90,95]",College,601.7241928350288,202.17589946646316,2.976240958605665,4693.544931049011,2019
+1995,91,"(90,95]",College,601.7241928350288,202.17589946646316,2.976240958605665,4652.2481733293225,2019
+1995,91,"(90,95]",College,601.7241928350288,202.17589946646316,2.976240958605665,4413.452261844532,2019
+1995,91,"(90,95]",College,601.7241928350288,202.17589946646316,2.976240958605665,4675.1696342811465,2019
+1995,36,"(35,40]",HS,13.354444935869086,25.76751659866687,0.5182666666666668,5207.500795634804,2019
+1995,36,"(35,40]",HS,13.354444935869086,25.76751659866687,0.5182666666666668,5300.566285973377,2019
+1995,36,"(35,40]",HS,13.354444935869086,25.76751659866687,0.5182666666666668,5215.159070523214,2019
+1995,36,"(35,40]",HS,13.354444935869086,25.76751659866687,0.5182666666666668,5234.383535940447,2019
+1995,36,"(35,40]",HS,13.354444935869086,25.76751659866687,0.5182666666666668,5240.492213947908,2019
+1995,44,"(40,45]",HS,565.8220256523663,116.94488302471889,4.838364971751413,3316.9520460333706,2019
+1995,44,"(40,45]",HS,578.6926138876603,116.94488302471889,4.948421845574387,3453.0350561910914,2019
+1995,44,"(40,45]",HS,583.047324192835,116.94488302471889,4.985659133709981,3403.9010761560303,2019
+1995,44,"(40,45]",HS,582.2731534719151,116.94488302471889,4.979039171374764,3232.7876814712317,2019
+1995,44,"(40,45]",HS,585.0021052631579,116.94488302471889,5.002374538606403,3428.200213507461,2019
+1995,33,"(30,35]",College,28.470128261831047,182.354732852104,0.15612497584541063,6533.614449166481,2019
+1995,33,"(30,35]",College,27.812083149049094,182.354732852104,0.15251637681159422,6475.295319292696,2019
+1995,33,"(30,35]",College,27.695957540911103,182.354732852104,0.15187956521739132,6563.381939006016,2019
+1995,33,"(30,35]",College,28.392711189739053,182.354732852104,0.1557004347826087,6484.721169683742,2019
+1995,33,"(30,35]",College,27.502414860681114,182.354732852104,0.1508182125603865,6542.356565151701,2019
+1995,77,"(75,80]",College,982.2678107032287,89.1952497646161,11.012557432098767,2499.952868641055,2019
+1995,77,"(75,80]",College,980.7775320654578,89.1952497646161,10.99584938271605,2464.2914532043424,2019
+1995,77,"(75,80]",College,980.7581777974348,89.1952497646161,10.99563239506173,2494.2983759632107,2019
+1995,77,"(75,80]",College,984.2613003095976,89.1952497646161,11.034907160493828,2364.0614772345393,2019
+1995,77,"(75,80]",College,980.3323839009288,89.1952497646161,10.990858666666668,2524.9376459936548,2019
+1995,65,"(60,65]",NoHS,70.52695267580717,105.0521830561034,0.6713516142557652,8361.536855904025,2019
+1995,65,"(60,65]",NoHS,78.26865988500664,105.0521830561034,0.745045534591195,8203.082780214301,2019
+1995,65,"(60,65]",NoHS,92.59081822202566,105.0521830561034,0.8813792872117401,8277.401779387015,2019
+1995,65,"(60,65]",NoHS,88.9135072976559,105.0521830561034,0.8463746750524108,8639.902723100697,2019
+1995,65,"(60,65]",NoHS,89.88122069880583,105.0521830561034,0.8555864150943396,8436.662606992793,2019
+1995,51,"(50,55]",College,34239.82910216718,7314.01048069852,4.681402794339054,342.9579684837273,2019
+1995,51,"(50,55]",College,32647.16638655462,8324.889978030835,3.921633375661376,397.7850180108231,2019
+1995,51,"(50,55]",College,33106.249624060154,8820.419143389814,3.7533646741573037,336.6970750805398,2019
+1995,51,"(50,55]",College,38269.581247235736,7571.685646685189,5.054301384525887,387.73327241720125,2019
+1995,51,"(50,55]",College,33256.82582927908,9078.094309376484,3.66341488597768,323.5901663295108,2019
+1995,40,"(35,40]",HS,215.7420256523662,172.44414954492444,1.2510834738186463,6463.443577324664,2019
+1995,40,"(35,40]",HS,228.70938522777533,140.73028296194985,1.6251611267605632,6414.77308913341,2019
+1995,40,"(35,40]",HS,214.3291640866873,53.517149858769656,4.004868806584362,6456.595512877214,2019
+1995,40,"(35,40]",HS,216.03233967271117,144.69451628482167,1.4930236834094366,6528.3353789919165,2019
+1995,40,"(35,40]",HS,220.1935072976559,122.89123300902662,1.7917755555555557,6466.295448774501,2019
+1995,51,"(50,55]",College,1165.881751437417,221.99706608082226,5.251789007936508,3052.3623806967666,2019
+1995,51,"(50,55]",College,2412.315966386555,103.07006639466748,23.404622222222226,1598.230916602581,2019
+1995,51,"(50,55]",College,1119.0250685537374,162.53356623774488,6.884885962059622,3140.9779702758433,2019
+1995,51,"(50,55]",College,1348.4312074303407,225.9612994036941,5.9675316569200785,2980.215009768434,2019
+1995,51,"(50,55]",College,2690.6303405572753,269.5678659552842,9.981272549019607,1648.0643955774642,2019
+1995,52,"(50,55]",HS,1455.4796638655462,132.8018163162062,10.959787330016582,2287.5505432841646,2019
+1995,52,"(50,55]",HS,334.944962406015,162.53356623774488,2.0607740921409214,6324.127136931741,2019
+1995,52,"(50,55]",HS,188.70411322423706,51.53503319733374,3.661666666666667,6407.011532063671,2019
+1995,52,"(50,55]",HS,596.4404776647501,77.30254979600063,7.715663703703703,3655.1153525161935,2019
+1995,52,"(50,55]",HS,1594.8884564352056,311.1923158454383,5.125089455060157,2022.9829499958275,2019
+1995,62,"(60,65]",HS,13365.109137549756,1258.644080011805,10.61865649693788,25.713727335780288,2019
+1995,62,"(60,65]",HS,24369.34595311809,1197.1984635072918,20.355310080941866,45.73272698153342,2019
+1995,62,"(60,65]",HS,17010.079080053074,1163.5024802628811,14.619718796138557,23.550849279301794,2019
+1995,62,"(60,65]",HS,18109.63375497567,1064.3966471910853,17.013989853093317,23.009157385376763,2019
+1995,62,"(60,65]",HS,25187.45086245024,1026.736430623803,24.53156439296439,39.89506190918424,2019
+1995,36,"(35,40]",HS,306.57160548429897,69.37408315025698,4.419108571428571,2715.368579554389,2019
+1995,36,"(35,40]",HS,302.7007518796992,69.37408315025698,4.363311746031745,2811.631230913018,2019
+1995,36,"(35,40]",HS,306.57160548429897,69.37408315025698,4.419108571428571,2697.0804517608967,2019
+1995,36,"(35,40]",HS,306.57160548429897,69.37408315025698,4.419108571428571,2836.3285359310485,2019
+1995,36,"(35,40]",HS,302.7007518796992,69.37408315025698,4.363311746031745,2797.5114359613603,2019
+1995,23,"(20,25]",HS,23.534789915966385,27.749633260102783,0.8481117460317461,5278.72188367425,2019
+1995,23,"(20,25]",HS,10.37388766032729,27.749633260102783,0.3738387301587302,5337.708575939405,2019
+1995,23,"(20,25]",HS,14.825369305616983,27.749633260102783,0.5342546031746032,5325.471979893888,2019
+1995,23,"(20,25]",HS,9.599716939407342,27.749633260102783,0.3459403174603175,5392.407675937452,2019
+1995,23,"(20,25]",HS,54.501618752764266,27.749633260102783,1.9640482539682542,5307.711051760808,2019
+1995,46,"(45,50]",College,76.44935869084476,33.69598324441053,2.268797385620915,8016.150650167273,2019
+1995,46,"(45,50]",College,76.44935869084476,33.69598324441053,2.268797385620915,7831.619072172604,2019
+1995,46,"(45,50]",College,76.44935869084476,33.69598324441053,2.268797385620915,7935.3106653704035,2019
+1995,46,"(45,50]",College,76.44935869084476,33.69598324441053,2.268797385620915,8161.542298769331,2019
+1995,46,"(45,50]",College,76.44935869084476,33.69598324441053,2.268797385620915,7995.9176362488015,2019
+1995,24,"(20,25]",College,23.418664307828397,33.69598324441053,0.6949986928104576,4766.145454147637,2019
+1995,24,"(20,25]",College,23.418664307828397,37.660216567282355,0.6218409356725146,4847.203186845396,2019
+1995,24,"(20,25]",College,23.418664307828397,37.660216567282355,0.6218409356725146,4783.811352735034,2019
+1995,24,"(20,25]",College,23.418664307828397,35.67809990584644,0.6563876543209878,4856.20695128057,2019
+1995,24,"(20,25]",College,23.418664307828397,31.713866582974614,0.7384361111111112,4759.129331743669,2019
+1995,34,"(30,35]",HS,30.77328615656789,95.14159974892382,0.3234472222222223,10466.710718341692,2019
+1995,34,"(30,35]",HS,33.289340999557716,95.14159974892382,0.34989259259259264,10542.159983397683,2019
+1995,34,"(30,35]",HS,36.77310924369748,95.14159974892382,0.3865092592592594,10366.195283975674,2019
+1995,34,"(30,35]",HS,30.77328615656789,95.14159974892382,0.3234472222222223,10466.614032826117,2019
+1995,34,"(30,35]",HS,34.83768244139761,95.14159974892382,0.3661666666666667,10479.643595242487,2019
+1995,26,"(25,30]",College,7.74170720919947,15.856933291487307,0.4882222222222223,10172.281432986749,2019
+1995,26,"(25,30]",College,7.74170720919947,15.856933291487307,0.4882222222222223,10046.095748680791,2019
+1995,26,"(25,30]",College,7.74170720919947,15.856933291487307,0.4882222222222223,10203.731575030626,2019
+1995,26,"(25,30]",College,7.74170720919947,15.856933291487307,0.4882222222222223,10187.061738431436,2019
+1995,26,"(25,30]",College,7.74170720919947,15.856933291487307,0.4882222222222223,10135.557955026605,2019
+1995,47,"(45,50]",College,2042.84298982751,368.67369902707986,5.541059737156512,813.6274566723321,2019
+1995,47,"(45,50]",College,2042.84298982751,368.67369902707986,5.541059737156512,690.91594009048,2019
+1995,47,"(45,50]",College,2042.84298982751,368.67369902707986,5.541059737156512,687.5489372226264,2019
+1995,47,"(45,50]",College,2042.84298982751,368.67369902707986,5.541059737156512,694.6077184008882,2019
+1995,47,"(45,50]",College,2042.84298982751,368.67369902707986,5.541059737156512,667.1386715490687,2019
+1995,60,"(55,60]",NoHS,642.968137992039,65.40984982738514,9.829836632996633,7842.119566148491,2019
+1995,60,"(55,60]",NoHS,642.193967271119,65.40984982738514,9.818000942760943,7917.828840262337,2019
+1995,60,"(55,60]",NoHS,641.613339230429,65.40984982738514,9.809124175084174,7857.324873710137,2019
+1995,60,"(55,60]",NoHS,640.2585404688191,65.40984982738514,9.788411717171716,8068.991929502384,2019
+1995,60,"(55,60]",NoHS,641.4197965501991,65.40984982738514,9.806165252525252,7814.750142592575,2019
+1995,40,"(35,40]",HS,97.44873949579832,71.35619981169287,1.3656660493827162,6357.829620565497,2019
+1995,40,"(35,40]",HS,97.44873949579832,71.35619981169287,1.3656660493827162,6431.161035135867,2019
+1995,40,"(35,40]",HS,97.44873949579832,71.35619981169287,1.3656660493827162,6351.406243863019,2019
+1995,40,"(35,40]",HS,97.44873949579832,71.35619981169287,1.3656660493827162,6565.575859855659,2019
+1995,40,"(35,40]",HS,97.44873949579832,71.35619981169287,1.3656660493827162,6403.019174468212,2019
+1995,74,"(70,75]",HS,389.0207872622733,3.7660216567282347,103.29754385964912,9455.612452402038,2019
+1995,74,"(70,75]",HS,389.0207872622733,3.7660216567282347,103.29754385964912,9462.212284528574,2019
+1995,74,"(70,75]",HS,389.0207872622733,3.7660216567282347,103.29754385964912,9634.08810457741,2019
+1995,74,"(70,75]",HS,389.0207872622733,3.7660216567282347,103.29754385964912,9650.675186403285,2019
+1995,74,"(70,75]",HS,389.0207872622733,3.7660216567282347,103.29754385964912,9421.881684812615,2019
+1995,63,"(60,65]",HS,83905.00981866432,2953.3538255395106,28.410077076808356,26.68744854250756,2019
+1995,63,"(60,65]",HS,86507.82984520124,2735.3209927815606,31.62620770048309,28.823679097754262,2019
+1995,63,"(60,65]",HS,84061.37295002212,3072.280825225666,27.36122696200717,28.199897088622777,2019
+1995,63,"(60,65]",HS,87204.9125165856,3092.1019918400248,28.202469629629633,24.916089990581106,2019
+1995,63,"(60,65]",HS,83888.96513047324,2755.14215939592,30.448143971223015,26.90117526192332,2019
+1995,51,"(50,55]",HS,1678.015037593985,231.90764938800186,7.235703703703703,2770.9556667644147,2019
+1995,51,"(50,55]",HS,1701.2401592215833,231.90764938800186,7.335851851851851,2266.6363669045504,2019
+1995,51,"(50,55]",HS,1678.015037593985,231.90764938800186,7.235703703703703,2321.9399636127796,2019
+1995,51,"(50,55]",HS,1678.015037593985,231.90764938800186,7.235703703703703,2270.893289776508,2019
+1995,51,"(50,55]",HS,1701.2401592215833,231.90764938800186,7.335851851851851,2302.2836667650818,2019
+1995,48,"(45,50]",College,884.3932773109244,297.31749921538704,2.9745752592592587,355.2061926673867,2019
+1995,48,"(45,50]",College,810.8470588235294,297.31749921538704,2.7272093333333327,362.8665784032332,2019
+1995,48,"(45,50]",College,870.8452896948253,297.31749921538704,2.929007851851851,354.4035795228707,2019
+1995,48,"(45,50]",College,770.2030959752323,297.31749921538704,2.5905071111111106,346.9323364212422,2019
+1995,48,"(45,50]",College,787.621937195931,297.31749921538704,2.649093777777777,352.5116949908803,2019
+1995,57,"(55,60]",College,35877.20017691288,2299.25532726566,15.603834750957853,49.32655666747572,2019
+1995,57,"(55,60]",College,34615.88252985405,2457.824660180533,14.083951182795696,56.1834291515572,2019
+1995,57,"(55,60]",College,36596.985404688196,2299.25532726566,15.91688620689655,50.2223013745205,2019
+1995,57,"(55,60]",College,35977.84237063246,2457.824660180533,14.638083405017916,59.872787310026354,2019
+1995,57,"(55,60]",College,35952.10119416188,2418.182326951814,14.867407140255011,48.09579076282491,2019
+1995,58,"(55,60]",College,1569.2440513047325,297.31749921538704,5.278007703703703,182.25182831937,2019
+1995,58,"(55,60]",College,1693.3049093321538,297.31749921538704,5.695274962962961,154.6726095127437,2019
+1995,58,"(55,60]",College,1635.048562582928,297.31749921538704,5.499335111111111,153.70767982881202,2019
+1995,58,"(55,60]",College,1563.6313135780626,297.31749921538704,5.259129777777776,158.27691864899145,2019
+1995,58,"(55,60]",College,1569.2440513047325,297.31749921538704,5.278007703703703,150.44946395837707,2019
+1995,21,"(20,25]",HS,-1.5831791242812916,27.749633260102783,-0.05705225396825398,4568.08420492442,2019
+1995,21,"(20,25]",HS,-1.5831791242812916,27.749633260102783,-0.05705225396825398,4554.901238816229,2019
+1995,21,"(20,25]",HS,-1.5831791242812916,27.749633260102783,-0.05705225396825398,4580.850241907623,2019
+1995,21,"(20,25]",HS,-1.5831791242812916,27.749633260102783,-0.05705225396825398,4550.806817324449,2019
+1995,21,"(20,25]",HS,-1.5831791242812916,27.749633260102783,-0.05705225396825398,4530.282593898626,2019
+1995,31,"(30,35]",HS,118.44812030075188,65.40984982738514,1.8108606060606058,5657.049138867051,2019
+1995,31,"(30,35]",HS,118.44812030075188,65.40984982738514,1.8108606060606058,5571.3729465936,2019
+1995,31,"(30,35]",HS,118.44812030075188,65.40984982738514,1.8108606060606058,5605.848109497303,2019
+1995,31,"(30,35]",HS,118.44812030075188,65.40984982738514,1.8108606060606058,5536.386309914042,2019
+1995,31,"(30,35]",HS,118.44812030075188,65.40984982738514,1.8108606060606058,5599.733013400581,2019
+1995,26,"(25,30]",HS,9.309402919062363,55.499266520205566,0.1677392063492064,5356.428181288562,2019
+1995,26,"(25,30]",HS,9.309402919062363,55.499266520205566,0.1677392063492064,5381.988500139967,2019
+1995,26,"(25,30]",HS,9.309402919062363,55.499266520205566,0.1677392063492064,5391.4167478893705,2019
+1995,26,"(25,30]",HS,9.309402919062363,55.499266520205566,0.1677392063492064,5462.318713277045,2019
+1995,26,"(25,30]",HS,9.309402919062363,55.499266520205566,0.1677392063492064,5409.431783237278,2019
+1995,24,"(20,25]",HS,84.86846528084918,71.35619981169287,1.1893635802469136,4524.116615324101,2019
+1995,24,"(20,25]",HS,84.86846528084918,71.35619981169287,1.1893635802469136,4512.305199739018,2019
+1995,24,"(20,25]",HS,84.86846528084918,71.35619981169287,1.1893635802469136,4555.223299459135,2019
+1995,24,"(20,25]",HS,84.86846528084918,71.35619981169287,1.1893635802469136,4498.044851433784,2019
+1995,24,"(20,25]",HS,84.86846528084918,71.35619981169287,1.1893635802469136,4510.4162856010325,2019
+1995,75,"(70,75]",College,2845.270942061035,198.21166614359132,14.354709777777778,1009.8511195625676,2019
+1995,75,"(70,75]",College,2845.270942061035,198.21166614359132,14.354709777777778,860.1627359989641,2019
+1995,75,"(70,75]",College,2845.270942061035,198.21166614359132,14.354709777777778,858.883365117689,2019
+1995,75,"(70,75]",College,2845.270942061035,198.21166614359132,14.354709777777778,878.7825186746401,2019
+1995,75,"(70,75]",College,2845.270942061035,198.21166614359132,14.354709777777778,841.1627374232406,2019
+1995,23,"(20,25]",HS,64.83679787704556,33.69598324441053,1.9241699346405228,5041.15851673466,2019
+1995,23,"(20,25]",HS,64.83679787704556,33.69598324441053,1.9241699346405228,5027.997225076138,2019
+1995,23,"(20,25]",HS,64.83679787704556,33.69598324441053,1.9241699346405228,5075.820250502429,2019
+1995,23,"(20,25]",HS,64.83679787704556,33.69598324441053,1.9241699346405228,5012.107122670947,2019
+1995,23,"(20,25]",HS,64.83679787704556,33.69598324441053,1.9241699346405228,5025.892435035619,2019
+1995,44,"(40,45]",College,1349.1473153471914,170.46203288348855,7.914649922480619,1079.0108349100847,2019
+1995,44,"(40,45]",College,1349.1473153471914,170.46203288348855,7.914649922480619,916.5197927789588,2019
+1995,44,"(40,45]",College,1349.1473153471914,170.46203288348855,7.914649922480619,911.1578014604966,2019
+1995,44,"(40,45]",College,1349.1473153471914,170.46203288348855,7.914649922480619,926.136673622232,2019
+1995,44,"(40,45]",College,1349.1473153471914,170.46203288348855,7.914649922480619,890.6972313260474,2019
+1995,57,"(55,60]",HS,98.12613887660328,101.08794973323158,0.9707006535947712,10450.837636916009,2019
+1995,57,"(55,60]",HS,98.12613887660328,101.08794973323158,0.9707006535947712,10496.189918764856,2019
+1995,57,"(55,60]",HS,98.12613887660328,101.08794973323158,0.9707006535947712,10219.8551326164,2019
+1995,57,"(55,60]",HS,98.12613887660328,101.08794973323158,0.9707006535947712,10232.767189001297,2019
+1995,57,"(55,60]",HS,98.12613887660328,101.08794973323158,0.9707006535947712,10090.105223977647,2019
+1995,42,"(40,45]",HS,34.21834586466166,65.40984982738514,0.5231375084175084,6082.901477399793,2019
+1995,42,"(40,45]",HS,34.23770013268465,65.40984982738514,0.5234334006734006,6070.502446906097,2019
+1995,42,"(40,45]",HS,34.33447147279965,65.40984982738514,0.5249128619528619,6086.312358055035,2019
+1995,42,"(40,45]",HS,34.17963732861566,65.40984982738514,0.522545723905724,5978.2129878084115,2019
+1995,42,"(40,45]",HS,34.25705440070765,65.40984982738514,0.5237292929292929,6079.73283596631,2019
+1995,52,"(50,55]",HS,252.3215922158337,107.03429971753931,2.3573900411522635,373.19886924341404,2019
+1995,52,"(50,55]",HS,807.5568332596197,299.29961587682294,2.698155261221486,395.99313004402654,2019
+1995,52,"(50,55]",HS,657.851570101725,75.32043313456471,8.734038596491228,390.31295531428697,2019
+1995,52,"(50,55]",HS,515.0170720919947,459.85106545313187,1.1199649425287357,1075.9801521090596,2019
+1995,52,"(50,55]",HS,642.9487837240159,174.42626620636034,3.6860777777777782,388.0474003641573,2019
+1995,33,"(30,35]",HS,34.276408668730646,49.55291653589783,0.6917132444444444,3911.4194194761526,2019
+1995,33,"(30,35]",HS,48.927589562140646,39.642333228718265,1.2342257777777779,3838.460240157691,2019
+1995,33,"(30,35]",HS,46.7018487394958,41.624449890154175,1.121981164021164,3861.23764436701,2019
+1995,33,"(30,35]",HS,39.443998230871294,43.606566551590085,0.9045426262626264,3814.2285582019517,2019
+1995,33,"(30,35]",HS,29.76686421937196,49.55291653589783,0.6007086222222223,3860.2844817904747,2019
+1995,37,"(35,40]",College,878.3740999557718,152.62298293056534,5.755188917748917,7400.143724838215,2019
+1995,37,"(35,40]",College,792.1895444493588,182.354732852104,4.344222560386474,7499.226228544413,2019
+1995,37,"(35,40]",College,867.4002299867316,196.22954948215542,4.4203344107744105,7389.188202927876,2019
+1995,37,"(35,40]",College,930.4177266696153,162.53356623774488,5.724465094850949,7233.326592649745,2019
+1995,37,"(35,40]",College,983.1000442282176,170.46203288348855,5.767266925064599,7390.209497859652,2019
+1995,73,"(70,75]",College,327073.194515701,7492.400980227752,43.653989606114045,23.77978164443807,2019
+1995,73,"(70,75]",College,327427.37762052193,5867.0653178503035,55.80769258258259,25.70395045405458,2019
+1995,73,"(70,75]",College,337017.41742591775,5867.0653178503035,57.44224738738739,25.113774094689507,2019
+1995,73,"(70,75]",College,331602.09323308273,6778.838982110824,48.9172399740091,22.197837107810393,2019
+1995,73,"(70,75]",College,328325.41565678903,5926.528817693381,55.39927768115942,23.92156353176672,2019
+1995,50,"(45,50]",HS,104064.9960194604,12447.692633817534,8.360183616418967,24.433576847559873,2019
+1995,50,"(45,50]",HS,102472.13976116764,12170.196301216507,8.419924972855593,24.826945192116078,2019
+1995,50,"(45,50]",HS,108077.13578062804,10822.356971440086,9.986469312169314,24.88155062166152,2019
+1995,50,"(45,50]",HS,99611.57894736843,11654.845969243172,8.546794973544973,23.92925088128981,2019
+1995,50,"(45,50]",HS,106246.22202565237,11793.594135543686,9.008807731092435,23.89919653930235,2019
+1995,54,"(50,55]",College,1079.581070322866,271.5499826167202,3.9756256285482556,1258.4102660844167,2019
+1995,54,"(50,55]",College,1079.581070322866,271.5499826167202,3.9756256285482556,1238.633090994372,2019
+1995,54,"(50,55]",College,1079.581070322866,271.5499826167202,3.9756256285482556,1252.7138163250702,2019
+1995,54,"(50,55]",College,1079.581070322866,271.5499826167202,3.9756256285482556,1181.792901229066,2019
+1995,54,"(50,55]",College,1079.581070322866,271.5499826167202,3.9756256285482556,1266.2387028568542,2019
+1995,83,"(80,85]",HS,3424.6603095975233,65.40984982738514,52.35695111111111,2221.4835310605804,2019
+1995,83,"(80,85]",HS,2068.8938345864663,35.67809990584644,57.987780740740746,11805.254985244985,2019
+1995,83,"(80,85]",HS,4390.438283945157,19.622954948215543,223.73991560044894,1968.8953776587157,2019
+1995,83,"(80,85]",HS,2455.0114816452897,33.69598324441053,72.8576894117647,11908.543530085492,2019
+1995,83,"(80,85]",HS,2213.0831313578065,65.40984982738514,33.83409589225589,12015.95644899762,2019
+1995,25,"(20,25]",College,-20.128438743918622,3.567809990584644,-5.641679012345679,5394.811727624507,2019
+1995,25,"(20,25]",College,-20.128438743918622,3.567809990584644,-5.641679012345679,5373.998454508168,2019
+1995,25,"(20,25]",College,-20.128438743918622,3.567809990584644,-5.641679012345679,5368.103318899808,2019
+1995,25,"(20,25]",College,-20.128438743918622,3.567809990584644,-5.641679012345679,5395.89635826765,2019
+1995,25,"(20,25]",College,-20.128438743918622,3.567809990584644,-5.641679012345679,5391.4528536317675,2019
+1995,40,"(35,40]",College,1775.7540911101282,158.56933291487306,11.198597222222222,2383.0997985732765,2019
+1995,40,"(35,40]",College,1774.7863777089783,158.56933291487306,11.192494444444444,1907.2517899900918,2019
+1995,40,"(35,40]",College,1774.7863777089783,158.56933291487306,11.192494444444444,2118.646975790628,2019
+1995,40,"(35,40]",College,1774.7863777089783,158.56933291487306,11.192494444444444,1934.5252027286194,2019
+1995,40,"(35,40]",College,1774.7863777089783,158.56933291487306,11.192494444444444,1989.0600020078575,2019
+1995,40,"(35,40]",College,312.1843432109686,370.6558156885158,0.8422486036838978,8550.54671860754,2019
+1995,40,"(35,40]",College,241.28965944272446,299.29961587682294,0.8061809860191316,8605.823493119551,2019
+1995,40,"(35,40]",College,285.86253869969045,99.10583307179566,2.8844168888888895,8593.119113075029,2019
+1995,40,"(35,40]",College,229.50291021671828,109.01641637897524,2.105214222222222,8855.885999255814,2019
+1995,40,"(35,40]",College,283.1529411764706,166.4977995606167,1.7006407407407411,8673.068254783666,2019
+1995,35,"(30,35]",HS,42.09553295002211,17.83904995292322,2.3597407407407407,8352.238184710342,2019
+1995,35,"(30,35]",HS,41.30200796107917,17.83904995292322,2.3152582716049386,8269.695921225284,2019
+1995,35,"(30,35]",HS,41.22459088898717,17.83904995292322,2.3109185185185184,8221.539232987772,2019
+1995,35,"(30,35]",HS,41.53425917735515,17.83904995292322,2.328277530864198,8369.880418420928,2019
+1995,35,"(30,35]",HS,40.8762140645732,17.83904995292322,2.29138962962963,8286.589721448372,2019
+1995,53,"(50,55]",HS,3.2902255639097744,27.749633260102783,0.11856825396825398,6726.763645812523,2019
+1995,53,"(50,55]",HS,3.2902255639097744,27.749633260102783,0.11856825396825398,6726.744207413722,2019
+1995,53,"(50,55]",HS,3.2902255639097744,27.749633260102783,0.11856825396825398,6740.113381284784,2019
+1995,53,"(50,55]",HS,3.2902255639097744,27.749633260102783,0.11856825396825398,6859.217944610292,2019
+1995,53,"(50,55]",HS,3.2902255639097744,27.749633260102783,0.11856825396825398,6818.539874104974,2019
+1995,78,"(75,80]",HS,110.12578505086246,19.22653161592836,5.727802978235968,6644.449544297817,2019
+1995,78,"(75,80]",HS,109.93224237063247,19.22653161592836,5.717736540664376,6524.855518068032,2019
+1995,78,"(75,80]",HS,108.0742326404246,19.22653161592836,5.621098739977091,6693.354151770759,2019
+1995,78,"(75,80]",HS,113.51278195488722,19.22653161592836,5.903965635738832,6716.457414778204,2019
+1995,78,"(75,80]",HS,116.12560813799203,19.22653161592836,6.039862542955326,6654.311048246871,2019
+1995,53,"(50,55]",HS,1900.0278460858026,101.08794973323158,18.795789716775598,1934.8455021530008,2019
+1995,53,"(50,55]",HS,1696.1306324635118,128.8375829933344,13.164874666666664,1659.2708576396446,2019
+1995,53,"(50,55]",HS,1566.7086421937195,101.08794973323158,15.4984708496732,1710.9842909763677,2019
+1995,53,"(50,55]",HS,1898.7698186643079,136.76604963907803,13.88334183574879,1660.0763671790469,2019
+1995,53,"(50,55]",HS,1944.7749137549756,103.07006639466748,18.868474444444445,1712.4399075600854,2019
+1995,49,"(45,50]",College,70.29470145953118,61.44561650451331,1.1440149103942652,6125.152279383304,2019
+1995,49,"(45,50]",College,70.29470145953118,61.44561650451331,1.1440149103942652,6137.311457952737,2019
+1995,49,"(45,50]",College,70.29470145953118,61.44561650451331,1.1440149103942652,6078.73975304343,2019
+1995,49,"(45,50]",College,70.29470145953118,61.44561650451331,1.1440149103942652,6206.131259833117,2019
+1995,49,"(45,50]",College,70.29470145953118,61.44561650451331,1.1440149103942652,6145.6876667412225,2019
+1995,65,"(60,65]",HS,592.2406015037594,69.37408315025698,8.536914285714284,1177.7518584234372,2019
+1995,65,"(60,65]",HS,592.2406015037594,69.37408315025698,8.536914285714284,1162.469197984387,2019
+1995,65,"(60,65]",HS,592.2406015037594,69.37408315025698,8.536914285714284,1180.8438191168202,2019
+1995,65,"(60,65]",HS,592.2406015037594,69.37408315025698,8.536914285714284,1121.366826164046,2019
+1995,65,"(60,65]",HS,592.2406015037594,69.37408315025698,8.536914285714284,1195.8191583694627,2019
+1995,75,"(70,75]",HS,184.09779743476338,29.731749921538697,6.191959703703704,10601.670170009067,2019
+1995,75,"(70,75]",HS,186.38160106147723,29.731749921538697,6.268773333333334,10410.84978497361,2019
+1995,75,"(70,75]",HS,187.15577178239718,29.731749921538697,6.294811851851852,10679.700790117673,2019
+1995,75,"(70,75]",HS,187.9299425033171,29.731749921538697,6.320850370370371,10716.56361413687,2019
+1995,75,"(70,75]",HS,183.9623175586024,29.731749921538697,6.187402962962963,10617.404868805572,2019
+1995,67,"(65,70]",College,11419.985846970367,166.4977995606167,68.58941005291005,1148.4943263538796,2019
+1995,67,"(65,70]",College,8352.41178239717,186.31896617497586,44.828564444444446,1017.641132618787,2019
+1995,67,"(65,70]",College,7191.852454666077,174.42626620636034,41.23147626262627,1028.5967341346372,2019
+1995,67,"(65,70]",College,8624.455373728439,158.56933291487306,54.38917611111111,1028.6543150830412,2019
+1995,67,"(65,70]",College,5844.9889429456,186.31896617497586,31.370874704491726,1034.703683128981,2019
+1995,28,"(25,30]",College,124.0802122954445,45.588683213026,2.7217327536231886,5657.049138867051,2019
+1995,28,"(25,30]",College,124.60277753206546,45.588683213026,2.733195362318841,5571.3729465936,2019
+1995,28,"(25,30]",College,124.0027952233525,45.588683213026,2.720034589371981,5605.848109497303,2019
+1995,28,"(25,30]",College,121.98995134896063,45.588683213026,2.67588231884058,5536.386309914042,2019
+1995,28,"(25,30]",College,122.14478549314462,45.588683213026,2.6792786473429953,5599.733013400581,2019
+1995,30,"(25,30]",NoHS,13.354444935869086,81.26678311887244,0.16432845528455287,6335.7742063570095,2019
+1995,30,"(25,30]",NoHS,13.354444935869086,81.26678311887244,0.16432845528455287,6274.655147135354,2019
+1995,30,"(25,30]",NoHS,13.354444935869086,81.26678311887244,0.16432845528455287,6359.17087004925,2019
+1995,30,"(25,30]",NoHS,13.354444935869086,81.26678311887244,0.16432845528455287,6286.18768544433,2019
+1995,30,"(25,30]",NoHS,13.354444935869086,81.26678311887244,0.16432845528455287,6343.014604473722,2019
+1995,55,"(50,55]",College,506.7915081822203,142.71239962338575,3.551138580246914,3777.7394229243573,2019
+1995,55,"(50,55]",College,580.9183547103053,142.71239962338575,4.070552777777778,3927.44547849566,2019
+1995,55,"(50,55]",College,650.0130915524104,142.71239962338575,4.554706481481482,3882.6410870549444,2019
+1995,55,"(50,55]",College,519.3717823971695,142.71239962338575,3.6392898148148154,3681.419810599752,2019
+1995,55,"(50,55]",College,554.209464838567,142.71239962338575,3.883400925925926,3890.092439301755,2019
+1995,50,"(45,50]",HS,140.78294559929236,152.62298293056534,0.9224229725829726,8008.401482523678,2019
+1995,50,"(45,50]",HS,89.88122069880583,162.53356623774488,0.5530009756097561,7796.180782030451,2019
+1995,50,"(45,50]",HS,105.55817779743477,170.46203288348855,0.6192474418604651,7897.409714886421,2019
+1995,50,"(45,50]",HS,108.84840336134454,160.55144957630895,0.6779658710562415,8124.340066308779,2019
+1995,50,"(45,50]",HS,94.52624502432552,168.47991622205262,0.5610534901960784,7964.450773829148,2019
+1995,30,"(25,30]",College,83.41689517912428,91.177366426052,0.9148859903381643,4473.01559099352,2019
+1995,30,"(25,30]",College,83.41689517912428,91.177366426052,0.9148859903381643,4405.271625118612,2019
+1995,30,"(25,30]",College,83.41689517912428,91.177366426052,0.9148859903381643,4432.531056208014,2019
+1995,30,"(25,30]",College,83.41689517912428,91.177366426052,0.9148859903381643,4377.607772904763,2019
+1995,30,"(25,30]",College,83.41689517912428,91.177366426052,0.9148859903381643,4427.6958639532495,2019
+1995,46,"(45,50]",College,390.2807501105705,358.7631157199002,1.0878508213627995,965.5721865554721,2019
+1995,46,"(45,50]",College,279.9614223794781,358.7631157199002,0.7803517421731125,951.1345407499333,2019
+1995,46,"(45,50]",College,477.3749562140646,358.7631157199002,1.3306132523020262,966.5045939991327,2019
+1995,46,"(45,50]",College,516.0834922600619,358.7631157199002,1.4385076660527936,913.394165311626,2019
+1995,46,"(45,50]",College,295.44483679787703,358.7631157199002,0.8235095076734195,991.792223255868,2019
+1995,40,"(35,40]",College,5638.149880583813,251.72881600236096,22.397713420822402,25.025677784484483,2019
+1995,40,"(35,40]",College,5103.39145510836,251.72881600236096,20.273370113735787,23.3594980764399,2019
+1995,40,"(35,40]",College,8388.391366651924,251.72881600236096,33.32312724409449,23.770653104857466,2019
+1995,40,"(35,40]",College,7192.297602830606,251.72881600236096,28.571610183727035,21.344317469959833,2019
+1995,40,"(35,40]",College,4397.541300309597,251.72881600236096,17.469359965004376,23.937492986433583,2019
+1995,43,"(40,45]",HS,52.275877930119414,97.12371641035975,0.5382400907029479,2630.2239022217555,2019
+1995,43,"(40,45]",HS,52.604900486510395,97.12371641035975,0.5416277551020409,2722.548244156224,2019
+1995,43,"(40,45]",HS,52.4887748783724,97.12371641035975,0.5404321088435374,2613.355060330332,2019
+1995,43,"(40,45]",HS,52.5855462184874,97.12371641035975,0.5414284807256237,2740.1286326787917,2019
+1995,43,"(40,45]",HS,52.5081291463954,97.12371641035975,0.5406313832199546,2669.218560178705,2019
+1995,33,"(30,35]",HS,1.8967182662538702,41.624449890154175,0.04556740740740742,5174.622656930245,2019
+1995,33,"(30,35]",HS,1.8967182662538702,39.642333228718265,0.047845777777777786,5128.433905952466,2019
+1995,33,"(30,35]",HS,1.8967182662538702,39.642333228718265,0.047845777777777786,5198.19850894325,2019
+1995,33,"(30,35]",HS,9.63842547545334,43.606566551590085,0.22103151515151523,5135.899179481207,2019
+1995,33,"(30,35]",HS,1.8967182662538702,39.642333228718265,0.047845777777777786,5181.546412808188,2019
+1995,24,"(20,25]",HS,154.5761517912428,31.713866582974614,4.874087219444444,5936.955126452229,2019
+1995,24,"(20,25]",HS,111.99153648827952,31.713866582974614,3.531311333333333,6009.91960324643,2019
+1995,24,"(20,25]",HS,144.88295373728437,35.67809990584644,4.060837155555555,5960.239395123843,2019
+1995,24,"(20,25]",HS,111.99695568332598,29.731749921538697,3.766914358518519,6009.858577140406,2019
+1995,24,"(20,25]",HS,154.53736583812474,29.731749921538697,5.197721837629631,5908.19163009893,2019
+1995,53,"(50,55]",HS,2.8450773993808047,79.28466645743653,0.03588433333333333,6680.464432682738,2019
+1995,53,"(50,55]",HS,2.8450773993808047,79.28466645743653,0.03588433333333333,6521.613594072795,2019
+1995,53,"(50,55]",HS,2.8450773993808047,79.28466645743653,0.03588433333333333,6534.099702884349,2019
+1995,53,"(50,55]",HS,2.8450773993808047,79.28466645743653,0.03588433333333333,6525.799982980896,2019
+1995,53,"(50,55]",HS,2.8450773993808047,79.28466645743653,0.03588433333333333,6580.939398330474,2019
+1995,57,"(55,60]",College,798.3829102167182,297.31749921538704,2.685287318518518,3401.6008691921807,2019
+1995,57,"(55,60]",College,645.6970897832819,319.12078249118207,2.02336270531401,3536.4011271624577,2019
+1995,57,"(55,60]",College,750.0165944272446,317.1386658297461,2.364948444444445,1833.4307267713725,2019
+1995,57,"(55,60]",College,551.6353471915081,323.0850158140539,1.7073999727334692,3314.8715212081966,2019
+1995,57,"(55,60]",College,835.1753737284388,329.0313657983616,2.5382849799196787,3502.7672217062145,2019
+1995,49,"(45,50]",College,141.28615656789032,158.56933291487306,0.8910055555555556,8176.473676656795,2019
+1995,49,"(45,50]",College,141.28615656789032,158.56933291487306,0.8910055555555556,7988.251466791783,2019
+1995,49,"(45,50]",College,141.28615656789032,158.56933291487306,0.8910055555555556,8094.016892027981,2019
+1995,49,"(45,50]",College,141.28615656789032,158.56933291487306,0.8910055555555556,8324.773158475497,2019
+1995,49,"(45,50]",College,141.28615656789032,158.56933291487306,0.8910055555555556,8155.836002425915,2019
+1995,59,"(55,60]",NoHS,117.86749226006192,69.37408315025698,1.699013333333333,11602.57338307135,2019
+1995,59,"(55,60]",NoHS,119.22229102167184,79.28466645743653,1.5037244444444446,11618.70683724539,2019
+1995,59,"(55,60]",NoHS,111.82896063688634,77.30254979600063,1.4466399999999997,11449.926631052303,2019
+1995,59,"(55,60]",NoHS,115.3514374170721,81.26678311887244,1.419416802168022,11641.64247803443,2019
+1995,59,"(55,60]",NoHS,111.13220698805839,71.35619981169287,1.557428888888889,11486.058885601766,2019
+1995,30,"(25,30]",HS,16.857567448031844,71.35619981169287,0.23624530864197532,4210.567365459328,2019
+1995,30,"(25,30]",HS,17.012401592215834,71.35619981169287,0.2384151851851852,4166.121552092607,2019
+1995,30,"(25,30]",HS,17.012401592215834,71.35619981169287,0.2384151851851852,4171.5630406262235,2019
+1995,30,"(25,30]",HS,17.012401592215834,71.35619981169287,0.2384151851851852,4147.691657843204,2019
+1995,30,"(25,30]",HS,17.012401592215834,71.35619981169287,0.2384151851851852,4182.032449439746,2019
+1995,52,"(50,55]",HS,93.3649889429456,164.5156828991808,0.5675142168674698,6940.6847443136885,2019
+1995,52,"(50,55]",HS,115.68045997346307,110.99853304041113,1.0421800793650795,6738.359947341371,2019
+1995,52,"(50,55]",HS,113.8418045112782,61.44561650451331,1.85272458781362,6777.62572788463,2019
+1995,52,"(50,55]",HS,111.86766917293234,166.4977995606167,0.6718867724867726,6967.986728856464,2019
+1995,52,"(50,55]",HS,96.61650597080938,188.30108283641175,0.5130958596491229,6843.864823667881,2019
+1995,37,"(35,40]",HS,855.4005838124724,178.3904995292322,4.795101679012346,8719.319025366818,2019
+1995,37,"(35,40]",HS,813.9243874391863,154.60509959200127,5.264537777777777,8599.359544757872,2019
+1995,37,"(35,40]",HS,895.4252100840337,180.3726161906681,4.964307936507937,8592.10125966591,2019
+1995,37,"(35,40]",HS,857.8198673153472,164.5156828991808,5.214213333333333,8683.997589994136,2019
+1995,37,"(35,40]",HS,808.0213356921716,156.58721625343713,5.1601998874824195,8623.246740325038,2019
+1995,47,"(45,50]",College,10823.68084918178,6441.879149666718,1.6802055111111114,31.185324938107264,2019
+1995,47,"(45,50]",College,9984.479787704555,5589.568985249275,1.7862700709219859,27.718393841393784,2019
+1995,47,"(45,50]",College,11056.12560813799,6283.309816751846,1.7596021731510687,28.816234421678093,2019
+1995,47,"(45,50]",College,10733.877045555064,6481.521482895436,1.6560736663268774,27.850314891599083,2019
+1995,47,"(45,50]",College,9290.048651039364,6223.846316908767,1.4926539278131636,28.831041348917502,2019
+1995,40,"(35,40]",College,402.5687748783724,79.28466645743653,5.077511111111111,4760.8017491957025,2019
+1995,40,"(35,40]",College,382.8274214949138,79.28466645743653,4.828517777777778,8385.024806019508,2019
+1995,40,"(35,40]",College,240.9606368863335,79.28466645743653,3.039183333333334,8439.69268836966,2019
+1995,40,"(35,40]",College,176.7044670499779,79.28466645743653,2.2287344444444446,8533.466941736673,2019
+1995,40,"(35,40]",College,413.7942503317116,79.28466645743653,5.219095555555556,4920.475589201569,2019
+1995,53,"(50,55]",HS,10.141636444051304,77.30254979600063,0.13119407407407405,7646.601124105202,2019
+1995,53,"(50,55]",HS,91.7972932330827,81.26678311887244,1.129579512195122,7359.071678445296,2019
+1995,53,"(50,55]",HS,37.72146837682441,23.785399937230956,1.5859085185185187,7581.765305121828,2019
+1995,53,"(50,55]",HS,20.26391862007961,29.731749921538697,0.6815582222222223,7575.248912242232,2019
+1995,53,"(50,55]",HS,71.84304290137108,27.749633260102783,2.588972698412699,7619.965566123517,2019
+1995,40,"(35,40]",HS,622.5300309597523,158.56933291487306,3.925916944444444,4070.924340307075,2019
+1995,40,"(35,40]",HS,582.466696152145,158.56933291487306,3.673261944444444,4238.871600486153,2019
+1995,40,"(35,40]",HS,561.7576293675365,158.56933291487306,3.5426625000000005,4180.966729161804,2019
+1995,40,"(35,40]",HS,572.4024767801857,158.56933291487306,3.609793055555555,3969.6025119607352,2019
+1995,40,"(35,40]",HS,566.5961963732861,158.56933291487306,3.5731763888888888,4210.007337393427,2019
+1995,43,"(40,45]",HS,449.87060592658116,14.073028296194984,31.96686572769953,3904.9716597380234,2019
+1995,43,"(40,45]",HS,449.77383458646614,14.073028296194984,31.959989358372457,4075.2409991157206,2019
+1995,43,"(40,45]",HS,488.26947368421054,12.685546633189844,38.49021944444445,4029.0315223933694,2019
+1995,43,"(40,45]",HS,450.25769128704115,11.298064970184706,39.85263781676413,3806.30943445616,2019
+1995,43,"(40,45]",HS,489.00493586908453,12.289123300902663,39.79168602150538,4051.2392624188424,2019
+1995,60,"(55,60]",College,799.5828748341441,188.30108283641175,4.246299929824562,1129.6097833386507,2019
+1995,60,"(55,60]",College,799.5828748341441,188.30108283641175,4.246299929824562,1086.9813648003574,2019
+1995,60,"(55,60]",College,806.7439540026537,188.30108283641175,4.2843298713450295,1169.0090425768922,2019
+1995,60,"(55,60]",College,806.7439540026537,188.30108283641175,4.2843298713450295,1044.718066009311,2019
+1995,60,"(55,60]",College,794.9378505086245,188.30108283641175,4.221631859649123,1138.0734232627042,2019
+1995,37,"(35,40]",HS,15.444705882352942,69.37408315025698,0.2226293333333333,4626.05004639676,2019
+1995,37,"(35,40]",HS,14.980203449800973,69.37408315025698,0.21593371428571423,4681.71957089696,2019
+1995,37,"(35,40]",HS,15.289871738168952,83.24889978030835,0.18366455026455028,4656.62334627314,2019
+1995,37,"(35,40]",HS,15.46406015037594,69.37408315025698,0.22290831746031742,4661.981716287713,2019
+1995,37,"(35,40]",HS,15.657602830605928,81.26678311887244,0.19266915989159894,4687.824428005099,2019
+1995,59,"(55,60]",College,11291.473507297656,1942.474328207195,5.812933197278912,17.808846069884243,2019
+1995,59,"(55,60]",College,15841.468376824414,2656.036326324124,5.964326699834163,16.614463829028654,2019
+1995,59,"(55,60]",College,6751.349314462627,3111.9231584543836,2.1695102901627745,17.17924660925449,2019
+1995,59,"(55,60]",College,22811.52091994693,6303.130983366205,3.619077721872816,32.61955909005104,2019
+1995,59,"(55,60]",College,20018.50650154799,4063.339155943622,4.926614720867209,28.36026977516257,2019
+1995,30,"(25,30]",College,96.77134011499336,114.96276636328297,0.8417624521072797,6169.4379133181155,2019
+1995,30,"(25,30]",College,95.80362671384344,114.96276636328297,0.833344827586207,6076.0015764744185,2019
+1995,30,"(25,30]",College,83.80398053958426,114.96276636328297,0.7289662835249042,6113.599336696194,2019
+1995,30,"(25,30]",College,130.64130915524106,114.96276636328297,1.1363793103448279,6037.846015599512,2019
+1995,30,"(25,30]",College,83.61043785935426,114.96276636328297,0.7272827586206896,6106.930364096414,2019
+1995,49,"(45,50]",College,421.3424148606811,307.22808252256664,1.3714319713261645,7533.785031753665,2019
+1995,49,"(45,50]",College,472.8247678018576,87.21313310318017,5.42148585858586,4410.830637373243,2019
+1995,49,"(45,50]",College,473.9860238832375,134.7839329776421,3.5166359477124183,4357.108294602125,2019
+1995,49,"(45,50]",College,437.01937195931004,174.42626620636034,2.5054676767676773,7837.095122664832,2019
+1995,49,"(45,50]",College,422.69721362229103,107.03429971753931,3.9491753086419754,7596.447084457638,2019
+1995,72,"(70,75]",NoHS,2687.920743034056,210.1043661122068,12.79326457023061,2659.8796459915898,2019
+1995,72,"(70,75]",NoHS,2684.049889429456,210.1043661122068,12.77484109014675,2275.501322243026,2019
+1995,72,"(70,75]",NoHS,2715.016718266254,210.1043661122068,12.92222893081761,2347.6238571673,2019
+1995,72,"(70,75]",NoHS,2687.920743034056,210.1043661122068,12.79326457023061,2276.4678156186246,2019
+1995,72,"(70,75]",NoHS,2695.662450243255,210.1043661122068,12.830111530398323,2355.192301744696,2019
+1995,38,"(35,40]",College,639.5617868199912,99.10583307179566,6.453321333333334,364.20416444539876,2019
+1995,38,"(35,40]",College,639.5617868199912,99.10583307179566,6.453321333333334,372.4081483337456,2019
+1995,38,"(35,40]",College,639.5617868199912,99.10583307179566,6.453321333333334,367.4946759269105,2019
+1995,38,"(35,40]",College,639.5617868199912,99.10583307179566,6.453321333333334,359.87444195300986,2019
+1995,38,"(35,40]",College,639.5617868199912,99.10583307179566,6.453321333333334,366.10379769200097,2019
+1995,61,"(60,65]",NoHS,100.93250773993809,67.39196648882105,1.4976934640522876,10847.60507031756,2019
+1995,61,"(60,65]",NoHS,98.60999557717824,67.39196648882105,1.4632307189542484,10900.612723179325,2019
+1995,61,"(60,65]",NoHS,98.41645289694826,67.39196648882105,1.4603588235294118,10774.88599312039,2019
+1995,61,"(60,65]",NoHS,100.15833701901813,67.39196648882105,1.4862058823529412,10790.807572592177,2019
+1995,61,"(60,65]",NoHS,98.02936753648828,67.39196648882105,1.4546150326797385,10654.234914832845,2019
+1995,41,"(40,45]",College,150.3826625386997,132.8018163162062,1.13238407960199,7473.356617167298,2019
+1995,41,"(40,45]",College,150.5762052189297,132.8018163162062,1.1338414593698174,7417.081365340091,2019
+1995,41,"(40,45]",College,150.1891198584697,132.8018163162062,1.1309266998341623,7465.4385426701865,2019
+1995,41,"(40,45]",College,150.4794338788147,132.8018163162062,1.1331127694859036,7548.387762653154,2019
+1995,41,"(40,45]",College,150.4794338788147,132.8018163162062,1.1331127694859036,7476.65409352274,2019
+1995,24,"(20,25]",HS,50.708182220256525,55.499266520205566,0.913673015873016,3338.036740164258,2019
+1995,24,"(20,25]",HS,50.708182220256525,55.499266520205566,0.913673015873016,3308.430308273814,2019
+1995,24,"(20,25]",HS,50.708182220256525,55.499266520205566,0.913673015873016,3315.463058415654,2019
+1995,24,"(20,25]",HS,50.708182220256525,55.499266520205566,0.913673015873016,3272.500593883051,2019
+1995,24,"(20,25]",HS,50.708182220256525,55.499266520205566,0.913673015873016,3289.80844466267,2019
+1995,40,"(35,40]",HS,80.53310924369747,85.23101644174427,0.9448803100775192,6061.841852404208,2019
+1995,40,"(35,40]",HS,312.97786819991154,85.23101644174427,3.6721123514211884,6006.216059330117,2019
+1995,40,"(35,40]",HS,323.8162582927908,85.23101644174427,3.7992772093023253,6011.18709601553,2019
+1995,40,"(35,40]",HS,33.88932330827068,85.23101644174427,0.3976172609819122,5858.3423939043805,2019
+1995,40,"(35,40]",HS,86.92001769128704,85.23101644174427,1.0198167441860464,5988.511873208574,2019
+1995,46,"(45,50]",HS,6.773993808049536,18.631896617497585,0.3635697399527187,5142.549323140131,2019
+1995,46,"(45,50]",HS,6.773993808049536,18.631896617497585,0.3635697399527187,5051.968920851195,2019
+1995,46,"(45,50]",HS,6.773993808049536,18.631896617497585,0.3635697399527187,5098.945453706283,2019
+1995,46,"(45,50]",HS,6.773993808049536,18.631896617497585,0.3635697399527187,5094.563000476619,2019
+1995,46,"(45,50]",HS,6.773993808049536,18.631896617497585,0.3635697399527187,5124.6361786662555,2019
+1995,62,"(60,65]",College,1922.8852366209642,321.1028991526179,5.98837706447188,2593.3499384864544,2019
+1995,62,"(60,65]",College,2190.941848739496,321.1028991526179,6.823176790123458,2127.2602667529973,2019
+1995,62,"(60,65]",College,1800.5662627156125,321.1028991526179,5.607443182441702,2188.7269212340157,2019
+1995,62,"(60,65]",College,1696.44030075188,321.1028991526179,5.283167187928671,2154.7805865693927,2019
+1995,62,"(60,65]",College,1648.0546306943831,321.1028991526179,5.132481316872429,2174.2463806447204,2019
+1995,66,"(65,70]",College,1788.3343653250774,138.74816630051396,12.889066666666665,1908.526401488941,2019
+1995,66,"(65,70]",College,1788.3343653250774,138.74816630051396,12.889066666666665,1563.654313293995,2019
+1995,66,"(65,70]",College,1788.3343653250774,138.74816630051396,12.889066666666665,1611.9838697690045,2019
+1995,66,"(65,70]",College,1788.3343653250774,138.74816630051396,12.889066666666665,1583.0842528488265,2019
+1995,66,"(65,70]",College,1788.3343653250774,138.74816630051396,12.889066666666665,1600.2234295254905,2019
+1995,72,"(70,75]",NoHS,277.73374613003097,4.955291653589783,56.04791111111111,9455.612452402038,2019
+1995,72,"(70,75]",NoHS,277.73374613003097,4.955291653589783,56.04791111111111,9462.212284528574,2019
+1995,72,"(70,75]",NoHS,277.73374613003097,4.955291653589783,56.04791111111111,9634.08810457741,2019
+1995,72,"(70,75]",NoHS,277.73374613003097,4.955291653589783,56.04791111111111,9650.675186403285,2019
+1995,72,"(70,75]",NoHS,277.73374613003097,4.955291653589783,56.04791111111111,9421.881684812615,2019
+1995,41,"(40,45]",HS,729.9249287925696,362.7273490427721,2.012323941712204,4252.017354693334,2019
+1995,41,"(40,45]",HS,795.51460769571,319.12078249118207,2.492832342305038,2224.08053141604,2019
+1995,41,"(40,45]",HS,736.923432109686,364.709465704208,2.020576654589372,2289.18098080824,2019
+1995,41,"(40,45]",HS,670.1357240159222,404.35179893292633,1.657308625272331,2224.9102269532445,2019
+1995,41,"(40,45]",HS,657.6793171163202,338.9419491055412,1.940389257959714,2298.457777095914,2019
+1995,36,"(35,40]",HS,18.09624060150376,142.71239962338575,0.12680216049382717,5775.92517814123,2019
+1995,36,"(35,40]",HS,22.354179566563467,142.71239962338575,0.15663796296296295,5879.149225521737,2019
+1995,36,"(35,40]",HS,23.3218929677134,142.71239962338575,0.16341882716049383,5784.419391485603,2019
+1995,36,"(35,40]",HS,22.93480760725343,142.71239962338575,0.1607064814814815,5805.742302071189,2019
+1995,36,"(35,40]",HS,24.09606368863335,142.71239962338575,0.16884351851851853,5812.517772396228,2019
+1995,72,"(70,75]",HS,218.896771340115,2.5767516598666873,84.95066666666668,7853.832023762516,2019
+1995,72,"(70,75]",HS,218.896771340115,2.5767516598666873,84.95066666666668,7809.996414393269,2019
+1995,72,"(70,75]",HS,218.896771340115,2.5767516598666873,84.95066666666668,7893.684400515327,2019
+1995,72,"(70,75]",HS,218.896771340115,2.5767516598666873,84.95066666666668,7904.024435546169,2019
+1995,72,"(70,75]",HS,218.896771340115,2.5767516598666873,84.95066666666668,7736.174436728928,2019
+1995,33,"(30,35]",HS,50.14690844758957,99.10583307179566,0.5059935111111112,6022.753070936358,2019
+1995,33,"(30,35]",HS,50.14690844758957,93.15948308748793,0.5382909692671395,6086.3986170051985,2019
+1995,33,"(30,35]",HS,50.14690844758957,97.12371641035975,0.5163199092970522,6031.1496561746735,2019
+1995,33,"(30,35]",HS,50.14690844758957,99.10583307179566,0.5059935111111112,6125.940372333281,2019
+1995,33,"(30,35]",HS,48.211481645289695,91.177366426052,0.5287658937198068,6040.2253821538925,2019
+1995,40,"(35,40]",HS,24.850880141530297,57.48138318164148,0.43232919540229886,6187.978168873854,2019
+1995,40,"(35,40]",HS,24.850880141530297,57.48138318164148,0.43232919540229886,6178.776876141141,2019
+1995,40,"(35,40]",HS,24.850880141530297,57.48138318164148,0.43232919540229886,6160.762680645753,2019
+1995,40,"(35,40]",HS,24.850880141530297,57.48138318164148,0.43232919540229886,6178.227867447358,2019
+1995,40,"(35,40]",HS,24.850880141530297,57.48138318164148,0.43232919540229886,6181.820204123364,2019
+1995,30,"(25,30]",NoHS,-1.2967359575409112,122.89123300902662,-0.010551899641577062,6005.215180919561,2019
+1995,30,"(25,30]",NoHS,-0.7354621848739495,110.99853304041113,-0.0066258730158730164,5972.417599391028,2019
+1995,30,"(25,30]",NoHS,-0.9870676691729324,128.8375829933344,-0.0076613333333333325,6035.0471196924955,2019
+1995,30,"(25,30]",NoHS,-1.064484741264927,130.8196996547703,-0.008137037037037036,5994.749098630067,2019
+1995,30,"(25,30]",NoHS,1.0451304732419282,136.76604963907803,0.007641739130434781,6001.101654681641,2019
+1995,30,"(25,30]",HS,642.077841662981,19.22653161592836,33.395406643757156,4730.711415703686,2019
+1995,30,"(25,30]",HS,655.2387439186201,19.424743282071947,33.732170068027216,4685.07585140487,2019
+1995,30,"(25,30]",HS,98.99708093763822,19.622954948215543,5.044962962962963,4748.180924624506,2019
+1995,30,"(25,30]",HS,625.1428571428572,19.622954948215543,31.857732884399553,4693.686813357333,2019
+1995,30,"(25,30]",HS,701.301901813357,18.631896617497585,37.63985579196218,4736.117579640305,2019
+1995,81,"(80,85]",HS,26.612118531623175,13.081969965477029,2.034259259259259,8140.148958660308,2019
+1995,81,"(80,85]",HS,27.366934984520125,13.28018163162062,2.060734991708126,8103.496061032392,2019
+1995,81,"(80,85]",HS,39.01820433436533,14.469451628482167,2.696591780821918,8152.240617785714,2019
+1995,81,"(80,85]",HS,26.41857585139319,15.262298293056533,1.7309696969696968,8156.629430610529,2019
+1995,81,"(80,85]",HS,30.482972136222912,12.685546633189844,2.4029687500000003,8159.968225395352,2019
+1995,50,"(45,50]",College,58864.457850508625,7710.433812985703,7.634389877177949,24.91584141582491,2019
+1995,50,"(45,50]",College,57761.07103051747,6184.2039836800495,9.340097962962963,25.032303728679153,2019
+1995,50,"(45,50]",College,57390.436797877046,7730.254979600062,7.424132444444444,25.761258095077416,2019
+1995,50,"(45,50]",College,57769.199823087125,6184.2039836800495,9.341412407407406,24.72494982547594,2019
+1995,50,"(45,50]",College,57402.62998673154,7551.86448007083,7.601120244969379,26.11033497229973,2019
+1995,78,"(75,80]",NoHS,165.8660769570986,15.658721625343716,10.592568213783402,10062.19445261443,2019
+1995,78,"(75,80]",NoHS,165.8660769570986,15.658721625343716,10.592568213783402,10191.408769866432,2019
+1995,78,"(75,80]",NoHS,165.8660769570986,15.658721625343716,10.592568213783402,9929.869355293513,2019
+1995,78,"(75,80]",NoHS,165.8660769570986,15.658721625343716,10.592568213783402,10049.336480109485,2019
+1995,78,"(75,80]",NoHS,165.8660769570986,15.658721625343716,10.592568213783402,10054.408496045033,2019
+1995,22,"(20,25]",College,63.48199911543565,29.731749921538697,2.135158518518519,4857.739143369561,2019
+1995,22,"(20,25]",College,63.48199911543565,29.731749921538697,2.135158518518519,4913.3768906543355,2019
+1995,22,"(20,25]",College,63.48199911543565,29.731749921538697,2.135158518518519,4920.7057944978305,2019
+1995,22,"(20,25]",College,63.48199911543565,29.731749921538697,2.135158518518519,4952.492406202474,2019
+1995,22,"(20,25]",College,63.48199911543565,29.731749921538697,2.135158518518519,4910.258132057927,2019
+1995,23,"(20,25]",HS,7.954604157452454,49.55291653589783,0.16052746666666667,5361.913634663209,2019
+1995,23,"(20,25]",HS,7.954604157452454,49.55291653589783,0.16052746666666667,5453.103583926881,2019
+1995,23,"(20,25]",HS,7.954604157452454,49.55291653589783,0.16052746666666667,5381.787770569388,2019
+1995,23,"(20,25]",HS,7.954604157452454,49.55291653589783,0.16052746666666667,5463.2328189140835,2019
+1995,23,"(20,25]",HS,7.954604157452454,49.55291653589783,0.16052746666666667,5354.020496960589,2019
+1995,43,"(40,45]",College,1239.4473241928351,380.5663989956953,3.2568490740740748,606.1118877029443,2019
+1995,43,"(40,45]",College,1233.6410437859356,380.5663989956953,3.2415921296296304,515.4062129238278,2019
+1995,43,"(40,45]",College,1237.511897390535,380.5663989956953,3.251763425925926,522.8475598921555,2019
+1995,43,"(40,45]",College,1245.2536045997347,380.5663989956953,3.272106018518519,522.4042177135914,2019
+1995,43,"(40,45]",College,1307.1872622733306,380.5663989956953,3.43484675925926,501.0868205257883,2019
+1995,62,"(60,65]",HS,609.8529854046882,35.67809990584644,17.093202469135804,3722.7130766959817,2019
+1995,62,"(60,65]",HS,609.8529854046882,35.67809990584644,17.093202469135804,3869.178829687203,2019
+1995,62,"(60,65]",HS,609.8529854046882,35.67809990584644,17.093202469135804,3826.7876331812827,2019
+1995,62,"(60,65]",HS,609.8529854046882,35.67809990584644,17.093202469135804,3628.9851735989387,2019
+1995,62,"(60,65]",HS,609.8529854046882,35.67809990584644,17.093202469135804,3833.5088073519605,2019
+1995,40,"(35,40]",HS,0.2516054842989828,17.64083828677963,0.01426267166042447,11043.45019356344,2019
+1995,40,"(35,40]",HS,0.2516054842989828,19.821166614359132,0.01269377777777778,11122.912958084817,2019
+1995,40,"(35,40]",HS,0.2516054842989828,17.24441495449245,0.014590549169859513,10887.513339256804,2019
+1995,40,"(35,40]",HS,0.2516054842989828,18.433684951353992,0.013649223416965355,11192.208330142557,2019
+1995,40,"(35,40]",HS,0.2516054842989828,18.03726161906681,0.01394920634920635,11051.4162364966,2019
+1995,95,"(90,95]",HS,64.44971251658558,29.731749921538697,2.1677066666666667,7558.526668820307,2019
+1995,95,"(90,95]",HS,228.38036267138435,49.55291653589783,4.608817777777778,7305.3406258115165,2019
+1995,95,"(90,95]",HS,110.51287041132242,17.046203288348853,6.4831369509043935,7493.994598420361,2019
+1995,95,"(90,95]",HS,76.0622733303848,29.731749921538697,2.5582844444444452,7690.38027743337,2019
+1995,95,"(90,95]",HS,94.25528527200355,45.588683213026,2.0675149758454108,7595.399957817038,2019
+1995,45,"(40,45]",College,5035.980539584255,198.21166614359132,25.407084444444447,5.006153497577665,2019
+1995,45,"(40,45]",College,4648.895179124282,198.21166614359132,23.454195555555557,31.16007103409629,2019
+1995,45,"(40,45]",College,5423.065900044228,198.21166614359132,27.359973333333336,44.057001601104034,2019
+1995,45,"(40,45]",College,4939.209199469262,198.21166614359132,24.918862222222227,30.769263962936225,2019
+1995,45,"(40,45]",College,5423.065900044228,198.21166614359132,27.359973333333336,35.04519164301009,2019
+1995,65,"(60,65]",HS,3417.576647501106,293.3532658925152,11.650037837837838,22.192192205335505,2019
+1995,65,"(60,65]",NoHS,5734.630906678461,204.15801612789906,28.089178252427185,19.714732327279258,2019
+1995,65,"(60,65]",HS,2557.472976559045,164.5156828991808,15.545466131191434,20.825729747363802,2019
+1995,65,"(60,65]",NoHS,3744.6637770897837,63.42773316594923,59.038272222222226,19.798238776964684,2019
+1995,65,"(60,65]",NoHS,1084.8067226890757,122.89123300902662,8.827372759856631,202.39607429798463,2019
+1995,80,"(75,80]",HS,13232.513047324193,1222.9659801059584,10.82001728795246,2.9578434431200766,2019
+1995,80,"(75,80]",HS,13468.635117204776,1456.8557461553964,9.245002569916855,2.038764724056141,2019
+1995,80,"(75,80]",HS,6388.843874391862,1203.1448134915995,5.310120446641039,2.875881281023423,2019
+1995,80,"(75,80]",HS,12818.912339672712,1127.8243803570344,11.366053583284517,2.0215520521042523,2019
+1995,80,"(75,80]",HS,7008.18045112782,1175.3951802314964,5.962403597526701,2.301242087035213,2019
+1995,47,"(45,50]",NoHS,84.96523662096418,95.14159974892382,0.893039814814815,6412.92053361999,2019
+1995,47,"(45,50]",NoHS,84.96523662096418,95.14159974892382,0.893039814814815,6265.295270913807,2019
+1995,47,"(45,50]",NoHS,84.96523662096418,95.14159974892382,0.893039814814815,6348.248545646491,2019
+1995,47,"(45,50]",NoHS,84.96523662096418,95.14159974892382,0.893039814814815,6529.23385274624,2019
+1995,47,"(45,50]",NoHS,84.96523662096418,95.14159974892382,0.893039814814815,6396.734122451175,2019
+1995,41,"(40,45]",HS,3595.539141972579,134.7839329776421,26.676318627450982,654.4693049361242,2019
+1995,41,"(40,45]",HS,3776.4047766475014,134.7839329776421,28.01821176470588,521.2393408582172,2019
+1995,41,"(40,45]",HS,4010.784962406015,134.7839329776421,29.757144444444442,508.3675383194501,2019
+1995,41,"(40,45]",HS,4033.5455816010613,134.7839329776421,29.926011895424832,508.52164390141627,2019
+1995,41,"(40,45]",HS,4084.1376382131803,134.7839329776421,30.30136862745098,522.5165115505949,2019
+1995,40,"(35,40]",College,113.04827952233525,13.47839329776421,8.387370588235294,5781.641953511938,2019
+1995,40,"(35,40]",College,101.43571870853606,16.25335662377449,6.240908943089432,5824.078577153863,2019
+1995,40,"(35,40]",College,99.57770897832818,14.865874960769348,6.698408888888889,5821.1013629327435,2019
+1995,40,"(35,40]",College,99.42287483414418,16.055144957630898,6.1925865569272975,5788.71307891756,2019
+1995,40,"(35,40]",College,97.56486510393631,15.064086626912939,6.47665321637427,5839.058087755267,2019
+1995,53,"(50,55]",College,800.4925254312251,277.4963326010279,2.8846958730158723,311.3000474391439,2019
+1995,53,"(50,55]",College,800.4925254312251,277.4963326010279,2.8846958730158723,308.5454338539558,2019
+1995,53,"(50,55]",College,800.4925254312251,277.4963326010279,2.8846958730158723,326.457971178443,2019
+1995,53,"(50,55]",College,800.4925254312251,277.4963326010279,2.8846958730158723,300.9982476882741,2019
+1995,53,"(50,55]",College,800.4925254312251,277.4963326010279,2.8846958730158723,312.29393225771753,2019
+1995,74,"(70,75]",College,117300.99283502875,5549.926652020557,21.13559334920635,24.433576847559873,2019
+1995,74,"(70,75]",College,114500.43025210084,6521.163816124155,17.55828154002026,24.826945192116078,2019
+1995,74,"(70,75]",College,114825.58195488721,5966.1711509220995,19.246109280177183,24.88155062166152,2019
+1995,74,"(70,75]",College,115892.00212295445,5609.390151863635,20.66035682764036,23.92925088128981,2019
+1995,74,"(70,75]",College,111107.62706766916,5530.105485406199,20.091411883711665,23.89919653930235,2019
+1995,46,"(45,50]",HS,280.4433436532508,63.42773316594923,4.4214625000000005,6226.92188520954,2019
+1995,46,"(45,50]",HS,264.5728438743919,63.42773316594923,4.171248611111111,6169.362880480588,2019
+1995,46,"(45,50]",HS,275.41123396727113,63.42773316594923,4.342126388888889,6201.386660610899,2019
+1995,46,"(45,50]",HS,275.41123396727113,63.42773316594923,4.342126388888889,6500.988844360003,2019
+1995,46,"(45,50]",HS,266.8953560371517,63.42773316594923,4.207865277777778,6297.427222559177,2019
+1995,28,"(25,30]",HS,44.28256523662096,37.660216567282355,1.175844678362573,5541.573515088482,2019
+1995,28,"(25,30]",HS,48.88888102609465,33.69598324441053,1.450881568627451,5490.594423545356,2019
+1995,28,"(25,30]",HS,47.86310482087572,39.642333228718265,1.2073735555555556,5544.257422050154,2019
+1995,28,"(25,30]",HS,48.114710305174704,33.69598324441053,1.4279064052287582,5511.060916450362,2019
+1995,28,"(25,30]",HS,48.69533834586466,35.67809990584644,1.3648523456790125,5519.785014383515,2019
+1995,31,"(30,35]",HS,127.91235736399824,67.39196648882105,1.8980356862745098,3473.4984987988187,2019
+1995,31,"(30,35]",HS,127.91235736399824,67.39196648882105,1.8980356862745098,3611.6650542900243,2019
+1995,31,"(30,35]",HS,127.91235736399824,67.39196648882105,1.8980356862745098,3571.0843726020044,2019
+1995,31,"(30,35]",HS,127.91235736399824,67.39196648882105,1.8980356862745098,3373.1483011939627,2019
+1995,31,"(30,35]",HS,127.91235736399824,67.39196648882105,1.8980356862745098,3593.5436966166235,2019
+1995,28,"(25,30]",HS,38.65047324192835,31.713866582974614,1.2187247222222222,5823.204142376082,2019
+1995,28,"(25,30]",HS,39.56012383900929,33.69598324441053,1.1740308496732028,5711.444560409747,2019
+1995,28,"(25,30]",HS,43.45033171163202,29.731749921538697,1.4614118518518517,5717.589022280572,2019
+1995,28,"(25,30]",HS,38.32145068553737,23.785399937230956,1.6111333333333335,5742.986638634295,2019
+1995,28,"(25,30]",HS,41.43748783724016,25.76751659866687,1.6081288888888892,5728.116745728491,2019
+1995,26,"(25,30]",HS,-8.264272445820435,59.46349984307739,-0.13898059259259263,5794.231072300836,2019
+1995,26,"(25,30]",HS,-8.264272445820435,59.46349984307739,-0.13898059259259263,5830.729963298294,2019
+1995,26,"(25,30]",HS,-8.264272445820435,59.46349984307739,-0.13898059259259263,5810.76586153952,2019
+1995,26,"(25,30]",HS,-8.264272445820435,59.46349984307739,-0.13898059259259263,5916.387231257699,2019
+1995,26,"(25,30]",HS,-8.264272445820435,59.46349984307739,-0.13898059259259263,5797.906469000865,2019
+1995,35,"(30,35]",HS,0,21.803283275795042,0,6664.411374436129,2019
+1995,35,"(30,35]",HS,0,35.67809990584644,0,6710.860973304594,2019
+1995,35,"(30,35]",HS,0,29.731749921538697,0,6709.825979640858,2019
+1995,35,"(30,35]",HS,0,21.803283275795042,0,6696.612703033863,2019
+1995,35,"(30,35]",HS,0,19.821166614359132,0,6712.71430558322,2019
+1995,63,"(60,65]",HS,310.4424590888987,31.713866582974614,9.788855555555555,9371.034761185932,2019
+1995,63,"(60,65]",HS,205.9294117647059,35.67809990584644,5.771871604938272,9175.469493400698,2019
+1995,63,"(60,65]",HS,211.73569217160548,39.642333228718265,5.341151111111111,9255.59673943316,2019
+1995,63,"(60,65]",HS,223.34825298540468,39.642333228718265,5.6340844444444445,9235.640045472903,2019
+1995,63,"(60,65]",HS,209.9938080495356,33.69598324441053,6.232013071895424,9137.500606263084,2019
+1995,35,"(30,35]",College,427.4777178239717,51.53503319733374,8.294895555555557,3746.204662764131,2019
+1995,35,"(30,35]",College,477.7988146837683,51.53503319733374,9.271340000000002,3899.898415372186,2019
+1995,35,"(30,35]",College,477.7988146837683,51.53503319733374,9.271340000000002,3844.4059202884455,2019
+1995,35,"(30,35]",College,477.7988146837683,51.53503319733374,9.271340000000002,3651.1484392838092,2019
+1995,35,"(30,35]",College,427.4777178239717,51.53503319733374,8.294895555555557,3871.8496518780944,2019
+1995,52,"(50,55]",HS,659.0128261831048,158.56933291487306,4.155991666666667,4470.3835147326445,2019
+1995,52,"(50,55]",HS,697.7213622291022,158.56933291487306,4.400102777777778,4656.563698555792,2019
+1995,52,"(50,55]",HS,659.5740999557719,158.56933291487306,4.159531277777779,4601.0095020773715,2019
+1995,52,"(50,55]",HS,659.0128261831048,158.56933291487306,4.155991666666667,4366.149181884326,2019
+1995,52,"(50,55]",HS,659.0128261831048,158.56933291487306,4.155991666666667,4613.591877625765,2019
+1995,41,"(40,45]",HS,8.128792569659444,39.642333228718265,0.20505333333333337,4626.05004639676,2019
+1995,41,"(40,45]",HS,5.419195046439628,39.642333228718265,0.13670222222222222,4681.71957089696,2019
+1995,41,"(40,45]",HS,4.645024325519682,39.642333228718265,0.11717333333333334,4656.62334627314,2019
+1995,41,"(40,45]",HS,7.161079168509509,39.642333228718265,0.18064222222222223,4661.981716287713,2019
+1995,41,"(40,45]",HS,7.161079168509509,39.642333228718265,0.18064222222222223,4687.824428005099,2019
+1995,34,"(30,35]",HS,92.22308712958868,63.42773316594923,1.4539868055555554,4965.546992358518,2019
+1995,34,"(30,35]",HS,92.70694383016364,93.15948308748793,0.9951423167848699,4921.224453556324,2019
+1995,34,"(30,35]",HS,54.095179124281294,97.12371641035975,0.5569718820861679,5067.067121893298,2019
+1995,34,"(30,35]",HS,58.93374613003096,63.42773316594923,0.9291479166666666,5040.14323910955,2019
+1995,34,"(30,35]",HS,52.25652366209642,59.46349984307739,0.8788000000000001,5069.040746396162,2019
+1995,37,"(35,40]",College,247.50237947810703,15.460509959200122,16.00868148148148,6665.426185293191,2019
+1995,37,"(35,40]",College,247.50237947810703,15.460509959200122,16.00868148148148,6615.234744374749,2019
+1995,37,"(35,40]",College,247.48302521008404,15.460509959200122,16.00742962962963,6658.364118835813,2019
+1995,37,"(35,40]",College,247.46367094206104,15.460509959200122,16.00617777777778,6732.345855724163,2019
+1995,37,"(35,40]",College,247.50237947810703,15.460509959200122,16.00868148148148,6668.367177724152,2019
+1995,48,"(45,50]",HS,154.7373728438744,49.55291653589783,3.1226693333333335,5084.455103676772,2019
+1995,48,"(45,50]",HS,160.54365325077399,47.57079987446191,3.3748361111111116,4936.240426816672,2019
+1995,48,"(45,50]",HS,141.4796992481203,148.65874960769352,0.9517078518518518,4965.004893960433,2019
+1995,48,"(45,50]",HS,136.15727554179568,93.15948308748793,1.461550354609929,5104.455394680153,2019
+1995,48,"(45,50]",HS,171.28527200353827,196.22954948215542,0.8728821548821549,5013.528882734597,2019
+1995,32,"(30,35]",HS,40.063334807607255,73.3383164731288,0.5462810810810811,7521.683661691941,2019
+1995,32,"(30,35]",HS,83.2233524988943,41.624449890154175,1.9993862433862437,7480.603862601645,2019
+1995,32,"(30,35]",HS,20.980026536930563,71.35619981169287,0.2940182716049383,7559.048918340518,2019
+1995,32,"(30,35]",HS,60.67563025210084,21.803283275795042,2.782866666666667,7508.574629328049,2019
+1995,32,"(30,35]",HS,87.09420610349403,57.48138318164148,1.5151724137931035,7516.531366201512,2019
+1995,47,"(45,50]",HS,868.4260061919505,110.99853304041113,7.823761111111112,4882.480600240133,2019
+1995,47,"(45,50]",HS,871.7162317558602,110.99853304041113,7.853403174603176,4836.5192232007585,2019
+1995,47,"(45,50]",HS,870.1678903140204,110.99853304041113,7.839453968253969,4835.058792398034,2019
+1995,47,"(45,50]",HS,870.1678903140204,110.99853304041113,7.839453968253969,5107.788151287774,2019
+1995,47,"(45,50]",HS,868.0389208314906,110.99853304041113,7.820273809523811,4908.126797268672,2019
+1995,54,"(50,55]",HS,323.6033613445378,17.83904995292322,18.14016790123457,9695.409656294147,2019
+1995,54,"(50,55]",HS,329.4096417514374,17.83904995292322,18.465649382716048,9661.196550692783,2019
+1995,54,"(50,55]",HS,329.4096417514374,17.83904995292322,18.465649382716048,9606.362861648142,2019
+1995,54,"(50,55]",HS,311.9908005307386,17.83904995292322,17.489204938271605,10095.9716920939,2019
+1995,54,"(50,55]",HS,319.7325077399381,17.83904995292322,17.92318024691358,9737.279305137632,2019
+1995,65,"(60,65]",HS,1205.0741441839893,138.74816630051396,8.68533384126984,59.74724648102374,2019
+1995,65,"(60,65]",HS,1645.3256789031402,97.12371641035975,16.940514013605444,111.11761026404056,2019
+1995,65,"(60,65]",HS,2907.9981247235737,57.48138318164148,50.590260076628354,154.9296634455761,2019
+1995,65,"(60,65]",HS,1454.2409907120743,206.14013278933496,7.054623333333335,103.47015075572719,2019
+1995,65,"(60,65]",HS,2065.3326492702345,136.76604963907803,15.101208631239935,108.14616180530088,2019
+1995,63,"(60,65]",NoHS,128.76394515701017,89.1952497646161,1.443618864197531,245.5686796179149,2019
+1995,63,"(60,65]",NoHS,128.76394515701017,89.1952497646161,1.443618864197531,244.0836819346167,2019
+1995,63,"(60,65]",NoHS,128.76394515701017,89.1952497646161,1.443618864197531,242.75900825210334,2019
+1995,63,"(60,65]",NoHS,128.76394515701017,89.1952497646161,1.443618864197531,240.4904318806488,2019
+1995,63,"(60,65]",NoHS,128.76394515701017,89.1952497646161,1.443618864197531,246.22364053253946,2019
+1995,78,"(75,80]",HS,149.60849181777976,18.235473285210404,8.204256038647344,10062.19445261443,2019
+1995,78,"(75,80]",HS,149.60849181777976,18.235473285210404,8.204256038647344,10191.408769866432,2019
+1995,78,"(75,80]",HS,149.60849181777976,18.235473285210404,8.204256038647344,9929.869355293513,2019
+1995,78,"(75,80]",HS,149.60849181777976,18.235473285210404,8.204256038647344,10049.336480109485,2019
+1995,78,"(75,80]",HS,149.22140645731977,18.235473285210404,8.183028985507246,10054.408496045033,2019
+1995,51,"(50,55]",NoHS,-9.812613887660328,0,-Inf,6807.204683253332,2019
+1995,51,"(50,55]",NoHS,-9.812613887660328,0,-Inf,6860.580180488649,2019
+1995,51,"(50,55]",NoHS,-9.812613887660328,0,-Inf,6875.296835148989,2019
+1995,51,"(50,55]",NoHS,-9.812613887660328,0,-Inf,6850.902602968036,2019
+1995,51,"(50,55]",NoHS,-9.812613887660328,0,-Inf,6855.209085669255,2019
+1995,35,"(30,35]",HS,4.645024325519682,85.23101644174427,0.05449922480620155,6168.066735117585,2019
+1995,35,"(30,35]",HS,4.045042016806723,85.23101644174427,0.04745974160206718,6242.292767863804,2019
+1995,35,"(30,35]",HS,4.08375055285272,85.23101644174427,0.04791390180878553,6208.831134996302,2019
+1995,35,"(30,35]",HS,4.354710305174701,85.23101644174427,0.05109302325581395,6215.9756283566985,2019
+1995,35,"(30,35]",HS,4.509544449358692,85.23101644174427,0.052909664082687345,6250.432577350023,2019
+1995,33,"(30,35]",HS,107.51295886775763,178.3904995292322,0.6026832098765432,3084.569491822164,2019
+1995,33,"(30,35]",HS,107.51295886775763,178.3904995292322,0.6026832098765432,3195.841921684097,2019
+1995,33,"(30,35]",HS,107.51295886775763,178.3904995292322,0.6026832098765432,3159.1360055599416,2019
+1995,33,"(30,35]",HS,107.51295886775763,178.3904995292322,0.6026832098765432,2984.686833615333,2019
+1995,33,"(30,35]",HS,107.51295886775763,178.3904995292322,0.6026832098765432,3181.6904689415423,2019
+1995,87,"(85,90]",HS,33415.39534719151,495.5291653589783,67.43376108444446,62.273321121683274,2019
+1995,87,"(85,90]",HS,33413.45992038921,495.5291653589783,67.42985530666667,74.44957685188186,2019
+1995,87,"(85,90]",HS,33405.71821318001,495.5291653589783,67.41423219555556,66.19104184632505,2019
+1995,87,"(85,90]",HS,33415.39534719151,495.5291653589783,67.43376108444446,72.1130406569444,2019
+1995,87,"(85,90]",HS,33425.07248120301,495.5291653589783,67.45328997333334,62.69690162556428,2019
+1995,73,"(70,75]",HS,20619.99844316674,229.92553272656593,89.68120329501916,266.3766762057645,2019
+1995,73,"(70,75]",HS,20861.4042282176,229.92553272656593,90.73113360153256,297.8242594016659,2019
+1995,73,"(70,75]",HS,20378.302344095533,229.92553272656593,88.63001034482758,258.045434803303,2019
+1995,73,"(70,75]",HS,20503.29220698806,227.94341606513,89.9490433236715,325.94801664363706,2019
+1995,73,"(70,75]",HS,20989.27787704556,229.92553272656593,91.28728605363986,253.52700021357387,2019
+1995,65,"(60,65]",College,2612.729411764706,368.67369902707986,7.086834289127839,3628.5951391008484,2019
+1995,65,"(60,65]",College,1637.7775143741708,360.7452323813362,4.539983809523809,3103.6736524803614,2019
+1995,65,"(60,65]",College,2751.13178239717,233.88976604943778,11.762514576271188,857.6872870651086,2019
+1995,65,"(60,65]",College,3177.3901813356924,107.03429971753931,29.68571934156379,856.6406011906047,2019
+1995,65,"(60,65]",College,3482.47150818222,455.88683213026,7.6388947053140095,887.3257945999727,2019
+1995,63,"(60,65]",NoHS,0.6967536488279522,27.749633260102783,0.02510857142857143,6890.669725275822,2019
+1995,63,"(60,65]",NoHS,0.6967536488279522,27.749633260102783,0.02510857142857143,6796.814140818968,2019
+1995,63,"(60,65]",NoHS,0.6967536488279522,27.749633260102783,0.02510857142857143,6871.454796413767,2019
+1995,63,"(60,65]",NoHS,0.6967536488279522,27.749633260102783,0.02510857142857143,6907.287802555073,2019
+1995,63,"(60,65]",NoHS,0.6967536488279522,27.749633260102783,0.02510857142857143,6799.572413122975,2019
+1995,58,"(55,60]",College,27790.793454223793,2992.996158768229,9.285275349521706,221.3871400582037,2019
+1995,58,"(55,60]",College,27773.3746130031,3072.280825225666,9.039985663082437,253.37145279090754,2019
+1995,58,"(55,60]",College,27531.446262715614,3230.850158140539,8.521424676209952,217.0976236491901,2019
+1995,58,"(55,60]",College,27515.96284829721,3290.3136579836164,8.362717269076304,273.63512190790107,2019
+1995,58,"(55,60]",College,27498.544007076514,3270.4924913692566,8.408074343434343,210.30535981484817,2019
+1995,76,"(75,80]",College,2251.094913754976,49.55291653589783,45.428101333333345,19.46344687534202,2019
+1995,76,"(75,80]",College,2347.866253869969,49.55291653589783,47.38099022222222,16.081222275391468,2019
+1995,76,"(75,80]",College,2347.866253869969,49.55291653589783,47.38099022222222,16.89239065676154,2019
+1995,76,"(75,80]",College,2154.3235736399824,49.55291653589783,43.47521244444445,16.578713203759257,2019
+1995,76,"(75,80]",College,3702.6650154798763,49.55291653589783,74.72143466666667,23.915111099708973,2019
+1995,52,"(50,55]",HS,253.9279964617426,174.42626620636034,1.4557898989898992,7946.4450087576815,2019
+1995,52,"(50,55]",HS,253.9279964617426,174.42626620636034,1.4557898989898992,7763.518052802424,2019
+1995,52,"(50,55]",HS,253.9279964617426,174.42626620636034,1.4557898989898992,7866.307980184781,2019
+1995,52,"(50,55]",HS,253.9279964617426,174.42626620636034,1.4557898989898992,8090.572382452281,2019
+1995,52,"(50,55]",HS,253.9279964617426,174.42626620636034,1.4557898989898992,7926.387934049237,2019
+1995,27,"(25,30]",HS,196.44582043343655,118.92699968615479,1.6518185185185188,6151.8693139774505,2019
+1995,27,"(25,30]",HS,192.9620521892968,118.92699968615479,1.6225251851851856,6182.930882393701,2019
+1995,27,"(25,30]",HS,173.02715612560814,118.92699968615479,1.4549022222222223,6217.253925609677,2019
+1995,27,"(25,30]",HS,196.05873507297656,118.92699968615479,1.6485637037037038,6261.012095757791,2019
+1995,27,"(25,30]",HS,196.44582043343655,118.92699968615479,1.6518185185185188,6245.613512831013,2019
+1995,52,"(50,55]",NoHS,4.645024325519682,11.694488302471887,0.3971977401129944,5312.668878547309,2019
+1995,52,"(50,55]",NoHS,4.645024325519682,11.694488302471887,0.3971977401129944,5333.029921376821,2019
+1995,52,"(50,55]",NoHS,4.645024325519682,11.694488302471887,0.3971977401129944,5337.619915664119,2019
+1995,52,"(50,55]",NoHS,4.645024325519682,11.694488302471887,0.3971977401129944,5323.967634182488,2019
+1995,52,"(50,55]",NoHS,4.645024325519682,11.694488302471887,0.3971977401129944,5329.524486308376,2019
+1995,56,"(55,60]",College,7630.8846704997795,527.243031941953,14.473182589807854,19.845044604431003,2019
+1995,56,"(55,60]",College,7421.83922158337,547.0641985563121,13.566669581320449,17.426177663816922,2019
+1995,56,"(55,60]",College,8130.573162317558,2001.9378280502726,4.061351480748074,18.149683685399104,2019
+1995,56,"(55,60]",College,7720.630411322423,1312.1612298705745,5.883903773078214,17.788689914544314,2019
+1995,56,"(55,60]",College,7651.264714727997,891.9524976461611,8.578107841975308,18.6989064652633,2019
+1995,37,"(35,40]",HS,26.76695267580717,69.37408315025698,0.3858350476190476,5973.914514483973,2019
+1995,37,"(35,40]",HS,25.605696594427247,69.37408315025698,0.369096,6045.80413458983,2019
+1995,37,"(35,40]",HS,26.76695267580717,69.37408315025698,0.3858350476190476,6013.395773453367,2019
+1995,37,"(35,40]",HS,25.79923927465723,69.37408315025698,0.37188584126984114,6020.31537961478,2019
+1995,37,"(35,40]",HS,36.63762936753649,69.37408315025698,0.5281169523809524,6053.687727313949,2019
+1995,27,"(25,30]",HS,-8.03202122954445,29.731749921538697,-0.2701496296296297,5794.231072300836,2019
+1995,27,"(25,30]",HS,-13.993135780628041,29.731749921538697,-0.47064622222222224,5830.729963298294,2019
+1995,27,"(25,30]",HS,-8.03202122954445,29.731749921538697,-0.2701496296296297,5810.76586153952,2019
+1995,27,"(25,30]",HS,-26.14761609907121,29.731749921538697,-0.8794509629629631,5916.387231257699,2019
+1995,27,"(25,30]",HS,-7.993312693498452,29.731749921538697,-0.2688477037037037,5797.906469000865,2019
+1995,23,"(20,25]",HS,-0.3483768244139761,55.499266520205566,-0.006277142857142858,5754.970682342805,2019
+1995,23,"(20,25]",HS,-0.3483768244139761,55.499266520205566,-0.006277142857142858,5809.827336611374,2019
+1995,23,"(20,25]",HS,-0.3483768244139761,55.499266520205566,-0.006277142857142858,5766.906545977137,2019
+1995,23,"(20,25]",HS,-0.3483768244139761,55.499266520205566,-0.006277142857142858,5879.59212431681,2019
+1995,23,"(20,25]",HS,-0.3483768244139761,55.499266520205566,-0.006277142857142858,5773.6261220430115,2019
+1995,47,"(45,50]",College,687.8506855373729,178.3904995292322,3.855870617283951,3470.594722873369,2019
+1995,47,"(45,50]",College,687.8506855373729,178.3904995292322,3.855870617283951,3616.1263434457624,2019
+1995,47,"(45,50]",College,637.5295886775763,178.3904995292322,3.573786666666667,3571.352352276221,2019
+1995,47,"(45,50]",College,687.8506855373729,178.3904995292322,3.855870617283951,3388.5617747553597,2019
+1995,47,"(45,50]",College,687.8506855373729,178.3904995292322,3.855870617283951,3581.7008966301887,2019
+1995,38,"(35,40]",College,239.2187527642636,122.89123300902662,1.946589247311828,3365.0907100858994,2019
+1995,38,"(35,40]",College,239.2187527642636,122.89123300902662,1.946589247311828,3503.3175100963135,2019
+1995,38,"(35,40]",College,239.2187527642636,122.89123300902662,1.946589247311828,3436.578717172231,2019
+1995,38,"(35,40]",College,239.2187527642636,122.89123300902662,1.946589247311828,3288.04015966954,2019
+1995,38,"(35,40]",College,239.2187527642636,122.89123300902662,1.946589247311828,3459.171589691163,2019
+1995,36,"(35,40]",HS,502.4367978770456,81.26678311887244,6.182560433604337,3439.8021164224956,2019
+1995,36,"(35,40]",HS,502.4367978770456,81.26678311887244,6.182560433604337,3580.9252378464107,2019
+1995,36,"(35,40]",HS,502.4367978770456,81.26678311887244,6.182560433604337,3529.971480852853,2019
+1995,36,"(35,40]",HS,502.0497125165856,81.26678311887244,6.1777972899729,3352.520553309633,2019
+1995,36,"(35,40]",HS,503.79159663865545,81.26678311887244,6.1992314363143635,3555.1705862148533,2019
+1995,32,"(30,35]",HS,271.1532950022114,112.98064970184706,2.3999976608187135,6573.4358387927905,2019
+1995,32,"(30,35]",HS,243.6702344095533,114.96276636328297,2.11955785440613,6644.733604264426,2019
+1995,32,"(30,35]",HS,245.02503317116322,140.73028296194985,1.7410967136150235,6609.389752358627,2019
+1995,32,"(30,35]",HS,263.4115877930119,124.87334967046255,2.109429982363315,6672.764953963231,2019
+1995,32,"(30,35]",HS,331.1515258735073,118.92699968615479,2.7844940740740745,3905.2286111640046,2019
+1995,62,"(60,65]",HS,3251.3234851835473,354.79888239702854,9.163849286157665,13.551019424332338,2019
+1995,62,"(60,65]",HS,4406.579743476338,428.13719887015725,10.292447736625515,12.174687236558274,2019
+1995,62,"(60,65]",HS,2106.712074303405,551.028431879184,3.823236610711429,9.146974443686329,2019
+1995,62,"(60,65]",HS,2413.6707651481647,673.9196648882105,3.581540784313726,8.814578155332287,2019
+1995,62,"(60,65]",HS,2327.7378151260505,1127.8243803570344,2.063918687756298,8.723322058196274,2019
+1995,49,"(45,50]",College,494.55961079168515,168.47991622205262,2.9354217516339873,4145.2690625965715,2019
+1995,49,"(45,50]",College,494.55961079168515,168.47991622205262,2.9354217516339873,4319.554743607349,2019
+1995,49,"(45,50]",College,494.55961079168515,168.47991622205262,2.9354217516339873,4268.207812808319,2019
+1995,49,"(45,50]",College,494.55961079168515,168.47991622205262,2.9354217516339873,4047.8859946332027,2019
+1995,49,"(45,50]",College,494.55961079168515,168.47991622205262,2.9354217516339873,4282.014241033552,2019
+1995,31,"(30,35]",HS,138.15076514816454,81.26678311887244,1.6999659620596208,5454.313055427473,2019
+1995,31,"(30,35]",HS,129.05425917735516,81.26678311887244,1.5880320867208675,5454.921475767641,2019
+1995,31,"(30,35]",HS,134.66699690402476,81.26678311887244,1.6570976693766937,5491.119086778353,2019
+1995,31,"(30,35]",HS,139.11847854931446,81.26678311887244,1.7118738211382114,5526.019373631941,2019
+1995,31,"(30,35]",HS,131.763856700575,81.26678311887244,1.6213740921409219,5489.679812409869,2019
+1995,29,"(25,30]",HS,8.47716939407342,49.55291653589783,0.1710730666666667,3809.5609506650717,2019
+1995,29,"(25,30]",HS,8.47716939407342,49.55291653589783,0.1710730666666667,3769.3480718945348,2019
+1995,29,"(25,30]",HS,8.47716939407342,49.55291653589783,0.1710730666666667,3774.271323426195,2019
+1995,29,"(25,30]",HS,8.47716939407342,49.55291653589783,0.1710730666666667,3752.6734056646665,2019
+1995,29,"(25,30]",HS,8.47716939407342,49.55291653589783,0.1710730666666667,3783.743645688444,2019
+1995,37,"(35,40]",HS,580.4344980097303,99.10583307179566,5.856713777777779,4070.924340307075,2019
+1995,37,"(35,40]",HS,580.4344980097303,99.10583307179566,5.856713777777779,4238.871600486153,2019
+1995,37,"(35,40]",HS,580.4344980097303,99.10583307179566,5.856713777777779,4180.966729161804,2019
+1995,37,"(35,40]",HS,580.4344980097303,99.10583307179566,5.856713777777779,3969.6025119607352,2019
+1995,37,"(35,40]",HS,580.4344980097303,99.10583307179566,5.856713777777779,4210.007337393427,2019
+1995,37,"(35,40]",NoHS,464.01857585139317,196.22954948215542,2.364672278338945,657.6513068806292,2019
+1995,37,"(35,40]",NoHS,464.01857585139317,196.22954948215542,2.364672278338945,641.268382430984,2019
+1995,37,"(35,40]",NoHS,464.01857585139317,196.22954948215542,2.364672278338945,659.6743871484637,2019
+1995,37,"(35,40]",NoHS,464.01857585139317,196.22954948215542,2.364672278338945,615.7125435311016,2019
+1995,37,"(35,40]",NoHS,464.01857585139317,196.22954948215542,2.364672278338945,664.7364387010095,2019
+1995,27,"(25,30]",HS,54.96612118531623,53.517149858769656,1.0270748971193415,5735.955306189789,2019
+1995,27,"(25,30]",HS,72.38496240601503,53.517149858769656,1.352556378600823,5796.570111975299,2019
+1995,27,"(25,30]",HS,91.73923042901372,53.517149858769656,1.7142024691358027,5743.952054036549,2019
+1995,27,"(25,30]",HS,54.191950464396285,53.517149858769656,1.0126090534979424,5834.228926576995,2019
+1995,27,"(25,30]",HS,51.0952675807165,53.517149858769656,0.9547456790123459,5752.5956025889955,2019
+1995,27,"(25,30]",HS,58.43053516143299,57.48138318164148,1.0165123371647509,4965.490608107871,2019
+1995,27,"(25,30]",HS,35.398956214064576,53.517149858769656,0.6614506995884775,4989.185413470941,2019
+1995,27,"(25,30]",HS,65.97869969040248,45.588683213026,1.4472604830917877,4920.105275597542,2019
+1995,27,"(25,30]",HS,6.948182220256523,45.588683213026,0.15241024154589372,5063.652746062623,2019
+1995,27,"(25,30]",HS,65.97869969040248,45.588683213026,1.4472604830917877,4918.815669362182,2019
+1995,37,"(35,40]",College,2053.100751879699,350.8346490741567,5.852046704331449,701.2947968887518,2019
+1995,37,"(35,40]",College,2053.100751879699,350.8346490741567,5.852046704331449,628.4367600338842,2019
+1995,37,"(35,40]",College,2053.100751879699,350.8346490741567,5.852046704331449,629.8510171803075,2019
+1995,37,"(35,40]",College,2053.100751879699,350.8346490741567,5.852046704331449,635.6152717336347,2019
+1995,37,"(35,40]",College,2053.100751879699,350.8346490741567,5.852046704331449,633.1002723575365,2019
+1995,21,"(20,25]",HS,6.773993808049536,11.892699968615478,0.5695925925925927,6480.881434012864,2019
+1995,21,"(20,25]",HS,7.199787704555506,11.892699968615478,0.6053955555555556,6502.070733617869,2019
+1995,21,"(20,25]",HS,6.928827952233525,11.892699968615478,0.5826118518518519,6502.881944814531,2019
+1995,21,"(20,25]",HS,6.928827952233525,11.892699968615478,0.5826118518518519,6517.5833164789465,2019
+1995,21,"(20,25]",HS,6.948182220256523,11.892699968615478,0.5842392592592593,6456.717114157169,2019
+1995,42,"(40,45]",College,1181.5780628040688,329.0313657983616,3.59108032128514,813.6274566723321,2019
+1995,42,"(40,45]",College,1237.8989827509952,331.01348245979744,3.739723752495011,690.91594009048,2019
+1995,42,"(40,45]",College,1246.0277753206544,350.8346490741567,3.5516097928436903,687.5489372226264,2019
+1995,42,"(40,45]",College,1247.9632021229545,380.5663989956953,3.2792259259259264,694.6077184008882,2019
+1995,42,"(40,45]",College,1249.3180008845643,313.17443250687427,3.9892081575246134,667.1386715490687,2019
+1995,41,"(40,45]",College,7.335267580716497,35.67809990584644,0.2055958024691358,5874.349257422185,2019
+1995,41,"(40,45]",College,4.199876160990712,33.69598324441053,0.12464026143790849,5945.040717010588,2019
+1995,41,"(40,45]",College,-6.386908447589563,31.713866582974614,-0.2013916666666667,5913.1724953086095,2019
+1995,41,"(40,45]",College,8.322335249889429,33.69598324441053,0.24698300653594768,5919.976774683111,2019
+1995,41,"(40,45]",College,2.322512162759841,16.847991622205264,0.13785098039215685,5952.792916502642,2019
+1995,49,"(45,50]",HS,135.9637328615657,235.87188271087368,0.5764304388422036,6690.969491362227,2019
+1995,49,"(45,50]",HS,138.86687306501548,79.28466645743653,1.7514972222222223,6667.358436863369,2019
+1995,49,"(45,50]",HS,134.3766828836798,170.46203288348855,0.7883085788113695,6629.516761936477,2019
+1995,49,"(45,50]",HS,134.99601946041577,225.9612994036941,0.5974298245614036,6967.404263687104,2019
+1995,49,"(45,50]",HS,135.9637328615657,124.87334967046255,1.0888130511463845,6719.864458460799,2019
+1995,50,"(45,50]",HS,349.925165855816,128.8375829933344,2.7160177777777768,5720.011985526396,2019
+1995,50,"(45,50]",HS,317.2164528969483,122.89123300902662,2.581278136200717,5553.270474236892,2019
+1995,50,"(45,50]",HS,304.0555506413092,130.8196996547703,2.3242336700336703,5585.630499739056,2019
+1995,50,"(45,50]",HS,349.1509951348961,126.85546633189846,2.752352777777778,5742.512312881166,2019
+1995,50,"(45,50]",HS,312.76497125165855,126.85546633189846,2.465522222222222,5640.2199870516815,2019
+1995,50,"(45,50]",College,2985.5893852277754,257.6751659866688,11.586639999999997,1148.4943263538796,2019
+1995,50,"(45,50]",College,2985.5893852277754,257.6751659866688,11.586639999999997,1017.641132618787,2019
+1995,50,"(45,50]",College,2985.5893852277754,257.6751659866688,11.586639999999997,1028.5967341346372,2019
+1995,50,"(45,50]",College,2985.5893852277754,257.6751659866688,11.586639999999997,1028.6543150830412,2019
+1995,50,"(45,50]",College,2985.5893852277754,257.6751659866688,11.586639999999997,1034.703683128981,2019
+1995,79,"(75,80]",HS,4674.05572755418,160.55144957630895,29.11251028806585,289.7083280513162,2019
+1995,79,"(75,80]",HS,3296.031844316674,507.4218653275938,6.495644097222222,255.08426144071555,2019
+1995,79,"(75,80]",HS,4817.27731092437,507.4218653275938,9.493633680555556,254.713600100139,2019
+1995,79,"(75,80]",HS,3173.1322423706324,130.8196996547703,24.255767676767675,261.664005916715,2019
+1995,79,"(75,80]",HS,5941.760283060593,338.9419491055412,17.530318388564,260.48600918088016,2019
+1995,34,"(30,35]",College,911.3924812030075,221.99706608082226,4.105425793650794,4537.869643350529,2019
+1995,34,"(30,35]",College,911.3924812030075,221.99706608082226,4.105425793650794,4718.374059318077,2019
+1995,34,"(30,35]",College,911.3924812030075,221.99706608082226,4.105425793650794,4665.358391223729,2019
+1995,34,"(30,35]",College,911.3924812030075,221.99706608082226,4.105425793650794,4406.76951027928,2019
+1995,34,"(30,35]",College,911.3924812030075,221.99706608082226,4.105425793650794,4694.699841836524,2019
+1995,34,"(30,35]",NoHS,-3.619248120300752,13.47839329776421,-0.2685222222222222,6435.293021369728,2019
+1995,34,"(30,35]",NoHS,-3.619248120300752,13.47839329776421,-0.2685222222222222,6351.300512088057,2019
+1995,34,"(30,35]",NoHS,-3.619248120300752,13.47839329776421,-0.2685222222222222,6456.119899191933,2019
+1995,34,"(30,35]",NoHS,-3.619248120300752,13.47839329776421,-0.2685222222222222,6405.313021849953,2019
+1995,34,"(30,35]",NoHS,-3.619248120300752,13.47839329776421,-0.2685222222222222,6369.002781104376,2019
+1995,20,"(15,20]",HS,7.490101724900486,49.55291653589783,0.1511536,3386.604106089983,2019
+1995,20,"(15,20]",HS,9.096505970809377,49.55291653589783,0.18357155555555557,3355.6410414871034,2019
+1995,20,"(15,20]",HS,8.128792569659444,49.55291653589783,0.1640426666666667,3350.068014532164,2019
+1995,20,"(15,20]",HS,7.548164528969482,49.55291653589783,0.15232533333333334,3326.728514820824,2019
+1995,20,"(15,20]",HS,11.612560813799204,49.55291653589783,0.23434666666666668,3320.108575443236,2019
+1995,32,"(30,35]",College,60025.423617868204,2913.711492310793,20.601018246409673,16.922237812228754,2019
+1995,32,"(30,35]",College,146327.65307386112,2021.7589946646315,72.37640760348584,18.281957672402182,2019
+1995,32,"(30,35]",College,19845.09226006192,2061.4013278933503,9.626991111111108,18.149931201243074,2019
+1995,32,"(30,35]",College,138791.97204776647,2120.8648277364273,65.44121541017653,15.780003964162134,2019
+1995,32,"(30,35]",College,160536.4921716055,1982.116661435913,80.99245382222223,16.98926204970277,2019
+1995,60,"(55,60]",College,7806.7375497567455,1456.8557461553964,5.358620831443688,200.78148816728685,2019
+1995,60,"(55,60]",College,7441.32896948253,1585.6933291487305,4.692792,180.96215919819537,2019
+1995,60,"(55,60]",College,7601.96939407342,1470.7305627854475,5.16883893381252,178.6971056804868,2019
+1995,60,"(55,60]",College,7611.646528084918,1480.6411460926272,5.140777391045664,183.17828030197154,2019
+1995,60,"(55,60]",College,7420.0392746572315,1573.8006291801153,4.714726336411979,180.18433041840632,2019
+1995,63,"(60,65]",College,10810.9070322866,180.3726161906681,59.93652063492063,294.6275285172421,2019
+1995,63,"(60,65]",College,12568.27456877488,180.3726161906681,69.67950476190477,266.9857742969191,2019
+1995,63,"(60,65]",College,7040.695621406458,180.3726161906681,39.034171428571426,262.3075857812247,2019
+1995,63,"(60,65]",College,10403.499690402476,180.3726161906681,57.67782222222221,245.48939125792532,2019
+1995,63,"(60,65]",College,10125.765944272445,180.3726161906681,56.13804444444444,263.55830488867144,2019
+1995,56,"(55,60]",College,49478.99072268908,5966.1711509220995,8.293257010409745,30.102798688555907,2019
+1995,56,"(55,60]",College,46345.92181512606,5946.34998430774,7.794011778222224,32.49989493615324,2019
+1995,56,"(55,60]",College,47523.62902432552,6184.2039836800495,7.684680057407407,31.815815398182444,2019
+1995,56,"(55,60]",College,45857.22654754534,5371.536152491326,8.537078639278391,28.052630910416838,2019
+1995,56,"(55,60]",College,55055.92305351614,6303.130983366205,8.734694423899368,30.284708225328608,2019
+1995,31,"(30,35]",College,9.619071207430341,41.624449890154175,0.23109185185185188,5823.204142376082,2019
+1995,31,"(30,35]",College,23.457372843874392,41.624449890154175,0.5635479365079366,10221.626654906831,2019
+1995,31,"(30,35]",College,19.29620521892968,41.624449890154175,0.4635786243386244,5717.589022280572,2019
+1995,31,"(30,35]",College,16.586607695709862,41.624449890154175,0.3984823280423281,5742.986638634295,2019
+1995,31,"(30,35]",College,11.07064130915524,41.624449890154175,0.2659648677248677,5728.116745728491,2019
+1995,41,"(40,45]",College,3942.46439628483,124.87334967046255,31.571703703703704,1647.5198625723442,2019
+1995,41,"(40,45]",College,3942.46439628483,124.87334967046255,31.571703703703704,1473.2108955724032,2019
+1995,41,"(40,45]",College,3942.46439628483,124.87334967046255,31.571703703703704,1475.5943073400583,2019
+1995,41,"(40,45]",College,3942.46439628483,124.87334967046255,31.571703703703704,1480.3723227490946,2019
+1995,41,"(40,45]",College,3942.46439628483,124.87334967046255,31.571703703703704,1478.8680098955867,2019
+1995,81,"(80,85]",HS,103952.31547103052,6521.163816124155,15.94076125092874,16.922237812228754,2019
+1995,81,"(80,85]",HS,101957.0839805396,7234.725814241084,14.092736421308981,18.281957672402182,2019
+1995,81,"(80,85]",HS,94280.21356921716,7452.758646999034,12.650377938534278,18.149931201243074,2019
+1995,81,"(80,85]",HS,99027.81551525873,6798.660148725183,14.565784044055716,15.780003964162134,2019
+1995,81,"(80,85]",HS,115189.98411322424,7452.758646999034,15.45601965248227,16.98926204970277,2019
+1995,37,"(35,40]",HS,173.4142414860681,99.10583307179566,1.7497884444444445,9089.217535285205,2019
+1995,37,"(35,40]",HS,101.39701017249004,99.10583307179566,1.023118488888889,9020.774661231066,2019
+1995,37,"(35,40]",HS,337.90616541353387,99.10583307179566,3.409548711111112,5256.023722153301,2019
+1995,37,"(35,40]",HS,151.5439186200796,99.10583307179566,1.529112,9180.471631426693,2019
+1995,37,"(35,40]",HS,244.34763379035826,99.10583307179566,2.4655222222222224,5293.544448957504,2019
+1995,66,"(65,70]",College,468.95391419725786,103.07006639466748,4.549855555555556,10754.285809325671,2019
+1995,66,"(65,70]",College,471.4699690402477,59.46349984307739,7.92872888888889,10699.260794495416,2019
+1995,66,"(65,70]",College,482.8889871738169,69.37408315025698,6.9606539682539665,10710.428134546475,2019
+1995,66,"(65,70]",College,492.95320654577625,61.44561650451331,8.022593548387098,5717.306806249791,2019
+1995,66,"(65,70]",College,518.5008403361345,61.44561650451331,8.43836989247312,6106.4500574620815,2019
+1995,47,"(45,50]",College,1169.19133126935,495.5291653589783,2.359480355555556,2960.184609363737,2019
+1995,47,"(45,50]",College,1169.19133126935,495.5291653589783,2.359480355555556,2538.0159882497783,2019
+1995,47,"(45,50]",College,1169.19133126935,495.5291653589783,2.359480355555556,2615.6075536940243,2019
+1995,47,"(45,50]",College,1169.19133126935,495.5291653589783,2.359480355555556,2538.543267119828,2019
+1995,47,"(45,50]",College,1169.19133126935,495.5291653589783,2.359480355555556,2618.33377139251,2019
+1995,51,"(50,55]",College,77.80415745245466,29.731749921538697,2.616871111111111,6423.330709456394,2019
+1995,51,"(50,55]",College,77.80415745245466,29.731749921538697,2.616871111111111,6400.664097145437,2019
+1995,51,"(50,55]",College,77.80415745245466,29.731749921538697,2.616871111111111,6364.336089228354,2019
+1995,51,"(50,55]",College,77.80415745245466,29.731749921538697,2.616871111111111,6688.708090795262,2019
+1995,51,"(50,55]",College,77.80415745245466,29.731749921538697,2.616871111111111,6451.069877861302,2019
+1995,52,"(50,55]",HS,2637.212560813799,299.29961587682294,8.811279470198674,2126.1410480471322,2019
+1995,52,"(50,55]",HS,2627.593489606369,368.67369902707986,7.127151995221028,1740.5284547598549,2019
+1995,52,"(50,55]",HS,2631.4256346749225,336.95983244410525,7.8093154771241835,1791.44319522663,2019
+1995,52,"(50,55]",HS,2639.147987616099,378.58428233425946,6.971097614892378,1755.1473517652662,2019
+1995,52,"(50,55]",HS,2639.051216275984,390.47698230287494,6.75853209249859,1803.283244521665,2019
+1995,80,"(75,80]",NoHS,21.48323750552853,23.785399937230956,0.9032111111111113,7224.955063112828,2019
+1995,80,"(75,80]",NoHS,21.48323750552853,23.785399937230956,0.9032111111111113,7201.122629630171,2019
+1995,80,"(75,80]",NoHS,21.48323750552853,23.785399937230956,0.9032111111111113,7217.890109882173,2019
+1995,80,"(75,80]",NoHS,21.48323750552853,23.785399937230956,0.9032111111111113,7232.024425174869,2019
+1995,80,"(75,80]",NoHS,21.48323750552853,23.785399937230956,0.9032111111111113,7218.129802791096,2019
+1995,50,"(45,50]",HS,0.774170720919947,15.856933291487307,0.048822222222222225,4576.871577694743,2019
+1995,50,"(45,50]",HS,0.774170720919947,15.856933291487307,0.048822222222222225,4468.040837608778,2019
+1995,50,"(45,50]",HS,0.774170720919947,15.856933291487307,0.048822222222222225,4476.595230362676,2019
+1995,50,"(45,50]",HS,0.774170720919947,15.856933291487307,0.048822222222222225,4470.908986163378,2019
+1995,50,"(45,50]",HS,0.774170720919947,15.856933291487307,0.048822222222222225,4508.685704454034,2019
+1995,70,"(65,70]",College,633.2716497125166,35.67809990584644,17.74959012345679,7364.513390445549,2019
+1995,70,"(65,70]",College,633.2716497125166,35.67809990584644,17.74959012345679,7654.280443021233,2019
+1995,70,"(65,70]",College,633.2716497125166,35.67809990584644,17.74959012345679,7571.207432539534,2019
+1995,70,"(65,70]",College,633.2716497125166,35.67809990584644,17.74959012345679,7178.465189061564,2019
+1995,70,"(65,70]",College,633.2716497125166,35.67809990584644,17.74959012345679,7608.457569601544,2019
+1995,50,"(45,50]",College,3242.8076072534277,198.21166614359132,16.36032666666667,2221.4835310605804,2019
+1995,50,"(45,50]",College,3242.8076072534277,198.21166614359132,16.36032666666667,2091.511688738291,2019
+1995,50,"(45,50]",College,3242.8076072534277,198.21166614359132,16.36032666666667,1968.8953776587157,2019
+1995,50,"(45,50]",College,3242.8076072534277,198.21166614359132,16.36032666666667,1973.6843797778442,2019
+1995,50,"(45,50]",College,3242.8076072534277,198.21166614359132,16.36032666666667,2217.755115589546,2019
+1995,53,"(50,55]",College,1782.9151702786378,360.7452323813362,4.942311111111111,133.38987859729917,2019
+1995,53,"(50,55]",College,1208.093409995577,364.709465704208,3.3124816425120773,61.84774871534349,2019
+1995,53,"(50,55]",College,1208.093409995577,398.4054489486186,3.032321503593145,60.322422966959195,2019
+1995,53,"(50,55]",College,1620.3393188854488,329.0313657983616,4.924574029451137,115.65564601400688,2019
+1995,53,"(50,55]",College,1566.1473684210525,305.2459658611307,5.130771717171716,110.0474625953644,2019
+1995,41,"(40,45]",HS,72.26883679787704,79.28466645743653,0.9115108888888889,10772.405966738577,2019
+1995,41,"(40,45]",HS,73.17848739495798,89.1952497646161,0.8204303209876543,10691.288486385707,2019
+1995,41,"(40,45]",HS,43.27614329942504,77.30254979600063,0.5598281481481481,10760.992525988038,2019
+1995,41,"(40,45]",HS,73.91394957983192,67.39196648882105,1.0967768627450978,10880.558969562824,2019
+1995,41,"(40,45]",HS,70.31405572755418,89.1952497646161,0.7883161481481481,10777.159085823649,2019
+1995,78,"(75,80]",NoHS,1209.757877045555,184.33684951353993,6.56275660692951,174.2851499043839,2019
+1995,78,"(75,80]",NoHS,1008.4734896063688,57.48138318164148,17.544349731800768,174.04968382370447,2019
+1995,78,"(75,80]",NoHS,992.564281291464,79.28466645743653,12.518994222222224,172.12929256396313,2019
+1995,78,"(75,80]",NoHS,983.3129411764706,166.4977995606167,5.905861481481482,172.93473068019415,2019
+1995,78,"(75,80]",NoHS,1684.6922600619196,134.7839329776421,12.499206862745098,323.7330726075037,2019
+1995,72,"(70,75]",College,16884.663423264043,3012.817325382588,5.604277192982456,17.018031115952343,2019
+1995,72,"(70,75]",College,17027.88500663423,2794.7844926246376,6.092736327817179,14.924969203543165,2019
+1995,72,"(70,75]",College,16971.757629367537,3012.817325382588,5.633185087719299,15.502167492933344,2019
+1995,72,"(70,75]",College,17041.432994250332,3230.850158140539,5.2745971370143145,15.121956864445616,2019
+1995,72,"(70,75]",College,17333.68244139761,2715.4998261672013,6.383238280616382,15.712355986859876,2019
+1995,51,"(50,55]",College,1821.5462892525431,140.73028296194985,12.943527511737088,1529.8832885518073,2019
+1995,51,"(50,55]",College,1356.153560371517,146.6766329462576,9.245873273273272,678.8035226812748,2019
+1995,51,"(50,55]",College,1765.496329057939,128.8375829933344,13.703271111111107,1292.7522636111648,2019
+1995,51,"(50,55]",College,1584.6887571870855,138.74816630051396,11.421331174603173,1260.4780957259256,2019
+1995,51,"(50,55]",College,1327.8963290579388,134.7839329776421,9.85203725490196,704.7251857434637,2019
+1995,31,"(30,35]",College,2820.652313135781,3.9642333228718267,711.5253022222222,548.1704518244683,2019
+1995,31,"(30,35]",College,2821.7748606811147,3.9642333228718267,711.8084711111111,435.9132636499188,2019
+1995,31,"(30,35]",College,2821.7748606811147,3.9642333228718267,711.8084711111111,425.9802186052217,2019
+1995,31,"(30,35]",College,2821.155524104379,3.9642333228718267,711.65224,424.1173788275213,2019
+1995,31,"(30,35]",College,2821.6780893409996,3.9642333228718267,711.78406,437.4036292691706,2019
+1995,53,"(50,55]",College,-10.257762052189298,168.47991622205262,-0.060884183006535954,567.1837645070447,2019
+1995,53,"(50,55]",College,-10.257762052189298,168.47991622205262,-0.060884183006535954,477.25989668632263,2019
+1995,53,"(50,55]",College,-10.257762052189298,168.47991622205262,-0.060884183006535954,479.27169945496007,2019
+1995,53,"(50,55]",College,-10.257762052189298,168.47991622205262,-0.060884183006535954,482.65643435983174,2019
+1995,53,"(50,55]",College,-10.257762052189298,168.47991622205262,-0.060884183006535954,466.7697427969476,2019
+1995,41,"(40,45]",NoHS,160.19527642636,41.624449890154175,3.848586031746032,4345.377885835843,2019
+1995,41,"(40,45]",NoHS,36.15377266696152,39.642333228718265,0.9119991111111112,4493.958375071393,2019
+1995,41,"(40,45]",NoHS,83.49431225121629,73.3383164731288,1.1384814414414415,4421.547909763287,2019
+1995,41,"(40,45]",NoHS,201.86501547987618,25.76751659866687,7.834088888888891,4339.446495419376,2019
+1995,41,"(40,45]",NoHS,19.54781070322866,65.40984982738514,0.2988511784511784,4443.026009633774,2019
+1995,23,"(20,25]",HS,-6.193365767359576,37.660216567282355,-0.16445380116959066,5474.358084172985,2019
+1995,23,"(20,25]",HS,-6.193365767359576,37.660216567282355,-0.16445380116959066,5384.390301207166,2019
+1995,23,"(20,25]",HS,-6.193365767359576,35.67809990584644,-0.17359012345679015,5379.294624098196,2019
+1995,23,"(20,25]",HS,-6.193365767359576,35.67809990584644,-0.17359012345679015,5365.293410978869,2019
+1995,23,"(20,25]",HS,-6.193365767359576,37.660216567282355,-0.16445380116959066,5368.446884434459,2019
+1995,73,"(70,75]",College,10430.015037593985,535.1714985876966,19.489107818930037,212.03715245958068,2019
+1995,73,"(70,75]",College,10430.015037593985,535.1714985876966,19.489107818930037,186.6522893104597,2019
+1995,73,"(70,75]",College,10430.015037593985,535.1714985876966,19.489107818930037,185.28252630000458,2019
+1995,73,"(70,75]",College,10430.015037593985,535.1714985876966,19.489107818930037,191.20235534799767,2019
+1995,73,"(70,75]",College,10430.015037593985,535.1714985876966,19.489107818930037,190.53457285749624,2019
+1995,47,"(45,50]",HS,249.86360017691288,118.92699968615479,2.1009829629629633,6355.568879595965,2019
+1995,47,"(45,50]",HS,255.6698805838125,118.92699968615479,2.1498051851851856,6170.300533520843,2019
+1995,47,"(45,50]",HS,234.38018575851393,118.92699968615479,1.9707903703703706,6206.256117450542,2019
+1995,47,"(45,50]",HS,267.2824413976117,118.92699968615479,2.2474496296296302,6380.569243350193,2019
+1995,47,"(45,50]",HS,269.21786819991155,118.92699968615479,2.263723703703704,6266.911103418249,2019
+1995,76,"(75,80]",HS,344.7769305616984,21.803283275795042,15.813073939393943,12564.54032427152,2019
+1995,76,"(75,80]",HS,344.66080495356033,79.28466645743653,4.347130666666666,12936.925433042115,2019
+1995,76,"(75,80]",HS,344.89305616983637,27.749633260102783,12.42874285714286,12648.341018230962,2019
+1995,76,"(75,80]",HS,344.73822202565236,19.821166614359132,17.392428444444445,13218.37954853423,2019
+1995,76,"(75,80]",HS,344.4672622733304,83.24889978030835,4.137799576719577,12814.113278665027,2019
+1995,55,"(50,55]",HS,14488.605042016807,507.4218653275938,28.553371527777777,1293.7102417280023,2019
+1995,55,"(50,55]",HS,14488.605042016807,507.4218653275938,28.553371527777777,1141.8223046821945,2019
+1995,55,"(50,55]",HS,14488.605042016807,507.4218653275938,28.553371527777777,1197.8389973855913,2019
+1995,55,"(50,55]",HS,14488.605042016807,507.4218653275938,28.553371527777777,1148.6095043448158,2019
+1995,55,"(50,55]",HS,14488.605042016807,507.4218653275938,28.553371527777777,1160.0639196216764,2019
+1995,33,"(30,35]",HS,497.4240424590889,200.19378280502724,2.4847127392739274,2908.159971716891,2019
+1995,33,"(30,35]",HS,497.4240424590889,200.19378280502724,2.4847127392739274,3023.514672628909,2019
+1995,33,"(30,35]",HS,497.4240424590889,200.19378280502724,2.4847127392739274,2988.045834131407,2019
+1995,33,"(30,35]",HS,497.4240424590889,200.19378280502724,2.4847127392739274,2823.7261151033404,2019
+1995,33,"(30,35]",HS,497.4240424590889,200.19378280502724,2.4847127392739274,3005.828088312208,2019
+1995,60,"(55,60]",HS,312.2617602830606,23.785399937230956,13.128295555555557,8348.002508244523,2019
+1995,60,"(55,60]",HS,304.6555329500221,25.76751659866687,11.823240000000002,8225.401667595299,2019
+1995,60,"(55,60]",HS,308.33284387439187,23.785399937230956,12.963113703703705,8358.38258082809,2019
+1995,60,"(55,60]",HS,305.54582927908007,23.785399937230956,12.845940370370373,8343.790464994683,2019
+1995,60,"(55,60]",HS,311.58436090225564,29.731749921538697,10.479852740740741,8234.282789294173,2019
+1995,63,"(60,65]",College,10302.00590888987,489.58281537467064,21.042417309941516,241.58361433093108,2019
+1995,63,"(60,65]",College,14410.026713843432,554.9926652020558,25.964355238095234,212.71110241217744,2019
+1995,63,"(60,65]",College,9216.231472799645,1119.895913711291,8.229542906588003,212.4020132432484,2019
+1995,63,"(60,65]",College,15889.079876160991,767.0791479756984,20.713742405971864,218.1978568405982,2019
+1995,63,"(60,65]",College,6430.842636001769,438.04778217733684,14.680687581699347,217.2155422795112,2019
+1995,36,"(35,40]",NoHS,61.12077841662981,138.74816630051396,0.4405159365079364,9212.680281367404,2019
+1995,36,"(35,40]",NoHS,61.333675364882794,112.98064970184706,0.5428688499025341,9318.939636734833,2019
+1995,36,"(35,40]",NoHS,61.3917381689518,140.73028296194985,0.43623687010954615,9203.372621455394,2019
+1995,36,"(35,40]",NoHS,60.965944272445824,134.7839329776421,0.45232352941176474,9513.710632361064,2019
+1995,36,"(35,40]",NoHS,60.88852720035383,136.76604963907803,0.44520206119162636,9278.161261042715,2019
+1995,71,"(70,75]",HS,32969.80203449801,6659.911982424668,4.950486150793651,7.918349886507029,2019
+1995,71,"(70,75]",HS,32385.49668288368,1333.9645131463697,24.277629849760608,6.98666935265107,2019
+1995,71,"(70,75]",College,32132.14931446263,1918.6889282699642,16.74693007346189,8.493875445487774,2019
+1995,71,"(70,75]",HS,32737.74436090226,5946.34998430774,5.50551925925926,7.317252542864094,2019
+1995,71,"(70,75]",HS,32296.854135338348,3171.386658297461,10.183827333333335,6.467057907772123,2019
+1995,62,"(60,65]",College,2299.6354179566565,0.19821166614359131,11601.917600000002,168.4091443765248,2019
+1995,62,"(60,65]",College,2299.6354179566565,0.19821166614359131,11601.917600000002,146.93318372127163,2019
+1995,62,"(60,65]",College,2299.6354179566565,0.19821166614359131,11601.917600000002,148.0596774186919,2019
+1995,62,"(60,65]",College,2299.6354179566565,0.19821166614359131,11601.917600000002,151.61737593428026,2019
+1995,62,"(60,65]",College,2299.6354179566565,0.19821166614359131,11601.917600000002,151.9768634696057,2019
+1995,56,"(55,60]",College,2353.478991596639,1286.3937132719077,1.8295168635507622,701.2947968887518,2019
+1995,56,"(55,60]",College,2353.478991596639,1280.4473632876,1.838013071895425,628.4367600338842,2019
+1995,56,"(55,60]",College,2353.478991596639,1224.9480967673944,1.9212887450557357,629.8510171803075,2019
+1995,56,"(55,60]",College,2353.478991596639,1435.0524628796009,1.6399950890116641,635.6152717336347,2019
+1995,56,"(55,60]",College,2353.478991596639,1427.1239962338575,1.6491061728395064,633.1002723575365,2019
+1995,82,"(80,85]",NoHS,3073.457762052189,71.35619981169287,43.072049382716045,13.516461742509657,2019
+1995,82,"(80,85]",NoHS,3073.457762052189,71.35619981169287,43.072049382716045,11.748975863729939,2019
+1995,82,"(80,85]",NoHS,3073.457762052189,71.35619981169287,43.072049382716045,12.3878164019517,2019
+1995,82,"(80,85]",NoHS,3073.457762052189,71.35619981169287,43.072049382716045,11.991229996124789,2019
+1995,82,"(80,85]",NoHS,3073.457762052189,71.35619981169287,43.072049382716045,12.532710178466164,2019
+1995,29,"(25,30]",College,144.57638213180007,69.37408315025698,2.084011428571428,4055.955760668997,2019
+1995,29,"(25,30]",College,142.58289252543125,69.37408315025698,2.0552760634920633,3974.9039686938254,2019
+1995,29,"(25,30]",College,143.1054577620522,69.37408315025698,2.0628086349206347,4003.8138889558227,2019
+1995,29,"(25,30]",College,142.58289252543125,69.37408315025698,2.0552760634920633,3951.523277787818,2019
+1995,29,"(25,30]",College,143.80221141088015,69.37408315025698,2.0728520634920633,3980.242457414388,2019
+1995,45,"(40,45]",HS,322.1904997788589,132.8018163162062,2.426100099502487,6355.662307947138,2019
+1995,45,"(40,45]",HS,349.28647501105706,132.8018163162062,2.630133266998341,6209.355128096141,2019
+1995,45,"(40,45]",HS,322.1904997788589,132.8018163162062,2.426100099502487,6291.567748504473,2019
+1995,45,"(40,45]",HS,322.1904997788589,132.8018163162062,2.426100099502487,6470.937115175357,2019
+1995,45,"(40,45]",HS,322.1904997788589,132.8018163162062,2.426100099502487,6339.620418323331,2019
+1995,73,"(70,75]",HS,0.1548341441839894,9.910583307179566,0.015623111111111112,11106.119787746062,2019
+1995,73,"(70,75]",HS,0.11612560813799205,9.910583307179566,0.011717333333333335,11169.691114228812,2019
+1995,73,"(70,75]",HS,0.11612560813799205,9.910583307179566,0.011717333333333335,11144.626003380366,2019
+1995,73,"(70,75]",HS,0.11612560813799205,9.910583307179566,0.011717333333333335,11154.436715743284,2019
+1995,73,"(70,75]",HS,0.11612560813799205,9.910583307179566,0.011717333333333335,11136.349933820627,2019
+1995,46,"(45,50]",HS,0,6.342773316594922,0,6786.1193138222125,2019
+1995,46,"(45,50]",HS,0,3.9642333228718267,0,6838.596231035326,2019
+1995,46,"(45,50]",HS,0,10.70342997175393,0,6849.834864538339,2019
+1995,46,"(45,50]",HS,0,4.162444989015419,0,6828.674833416597,2019
+1995,46,"(45,50]",HS,0,12.487334967046253,0,6827.52687796821,2019
+1995,59,"(55,60]",HS,25781.336576735957,628.3309816751845,41.03145846477392,394.36905668939465,2019
+1995,59,"(55,60]",HS,25825.46430782839,598.5992317536459,43.143163134657826,457.46851141385906,2019
+1995,59,"(55,60]",HS,26005.846085802743,648.1521482895436,40.123057764186214,387.3609068520823,2019
+1995,59,"(55,60]",HS,25719.402919062362,554.9926652020558,46.34187896825396,444.2892950884989,2019
+1995,59,"(55,60]",HS,25502.24803184432,560.9390151863635,45.463494856694155,370.33192409261244,2019
+1995,74,"(70,75]",HS,44969.64175143742,11.496276636328297,3911.670114942529,30.668698835172005,2019
+1995,74,"(70,75]",HS,42138.11233967271,9.514159974892383,4428.98925925926,34.47549120520512,2019
+1995,74,"(70,75]",HS,44801.25961963733,10.108794973323159,4431.909019607842,30.972479308733227,2019
+1995,74,"(70,75]",HS,42699.38611233968,9.117736642605202,4683.112463768116,37.09920510191703,2019
+1995,74,"(70,75]",HS,43589.682441397614,10.505218305610338,4149.336184486374,29.881690059636192,2019
+1995,54,"(50,55]",HS,30663.93454223795,1086.1999304668807,28.230469991889695,30.668698835172005,2019
+1995,54,"(50,55]",HS,52063.75515258736,1318.1075798548823,39.49886636591479,18.715724758082384,2019
+1995,54,"(50,55]",HS,52936.24555506414,1191.2521135229838,44.43748300979849,18.77532482183993,2019
+1995,54,"(50,55]",HS,44940.99743476338,1278.4652466261641,35.15230277347115,37.09920510191703,2019
+1995,54,"(50,55]",HS,31554.037328615657,1098.092630435496,28.735314721219414,29.881690059636192,2019
+1995,27,"(25,30]",HS,511.339761167625,67.39196648882105,7.587547712418301,3722.6591941394427,2019
+1995,27,"(25,30]",HS,540.371163202123,67.39196648882105,8.01833202614379,3869.262001747838,2019
+1995,27,"(25,30]",HS,435.8581158779301,67.39196648882105,6.467508496732026,3825.6196586876767,2019
+1995,27,"(25,30]",HS,335.21592215833704,67.39196648882105,4.9741228758169935,3615.762023616925,2019
+1995,27,"(25,30]",HS,443.59982308712955,67.39196648882105,6.582384313725489,3847.761121635815,2019
+1995,40,"(35,40]",HS,304.5394073418841,45.588683213026,6.6801536231884056,6275.979571937874,2019
+1995,40,"(35,40]",HS,275.5080053073861,49.55291653589783,5.5598746666666665,6316.551937548719,2019
+1995,40,"(35,40]",HS,281.31428571428575,45.588683213026,6.170704347826088,6307.2271034465875,2019
+1995,40,"(35,40]",HS,281.31428571428575,45.588683213026,6.170704347826088,6500.094257340215,2019
+1995,40,"(35,40]",HS,283.2497125165856,47.57079987446191,5.954276851851853,6365.908635361431,2019
+1995,61,"(60,65]",College,8849.73711808934,521.2966819576452,16.976392569497254,320.38168729695735,2019
+1995,61,"(60,65]",College,8849.73711808934,521.2966819576452,16.976392569497254,282.1673726026096,2019
+1995,61,"(60,65]",College,8849.73711808934,521.2966819576452,16.976392569497254,281.4806931333186,2019
+1995,61,"(60,65]",College,8849.73711808934,521.2966819576452,16.976392569497254,290.9282922900402,2019
+1995,61,"(60,65]",College,8849.73711808934,521.2966819576452,16.976392569497254,290.0045977849096,2019
+1995,78,"(75,80]",College,8193.242282176028,709.5977647940571,11.546319180633144,14.763285763706055,2019
+1995,78,"(75,80]",College,8193.242282176028,709.5977647940571,11.546319180633144,13.640369662996296,2019
+1995,78,"(75,80]",College,8193.242282176028,709.5977647940571,11.546319180633144,14.039926731240985,2019
+1995,78,"(75,80]",College,8193.242282176028,709.5977647940571,11.546319180633144,12.48574671908394,2019
+1995,78,"(75,80]",College,8193.242282176028,709.5977647940571,11.546319180633144,14.106944242387922,2019
+1995,25,"(20,25]",HS,10.702910216718267,23.785399937230956,0.44997814814814824,4802.517643276322,2019
+1995,25,"(20,25]",HS,12.289960194604157,23.785399937230956,0.5167018518518519,4805.918262517393,2019
+1995,25,"(20,25]",HS,11.806103494029191,33.69598324441053,0.35037124183006535,4781.39920801359,2019
+1995,25,"(20,25]",HS,10.702910216718267,41.624449890154175,0.2571303703703704,4804.684825078102,2019
+1995,25,"(20,25]",HS,11.264183989385229,25.76751659866687,0.43714666666666674,4787.881026115525,2019
+1995,54,"(50,55]",HS,158.06630694383017,101.08794973323158,1.5636513289760348,9018.169505038986,2019
+1995,54,"(50,55]",HS,158.80176912870414,101.08794973323158,1.5709267973856211,8810.571479251696,2019
+1995,54,"(50,55]",HS,158.60822644847414,101.08794973323158,1.5690122004357299,8927.224521904503,2019
+1995,54,"(50,55]",HS,160.52429898275102,101.08794973323158,1.5879667102396515,9181.735110144358,2019
+1995,54,"(50,55]",HS,161.41459531180894,101.08794973323158,1.5967738562091502,8995.407364321141,2019
+1995,52,"(50,55]",NoHS,240.9606368863335,37.660216567282355,6.398280701754386,6613.324296502631,2019
+1995,52,"(50,55]",NoHS,217.7355152587351,41.624449890154175,5.230952380952382,6461.085744424197,2019
+1995,52,"(50,55]",NoHS,206.12295444493586,33.69598324441053,6.1171372549019605,6546.63130894321,2019
+1995,52,"(50,55]",NoHS,204.187527642636,37.660216567282355,5.421836257309941,6733.272406782783,2019
+1995,52,"(50,55]",NoHS,219.67094206103494,35.67809990584644,6.157024691358025,6596.632059994362,2019
+1995,52,"(50,55]",College,21133.022025652368,495.5291653589783,42.64738284444445,1411.0206197390985,2019
+1995,52,"(50,55]",College,27068.97602830606,495.5291653589783,54.626403288888895,787.9118980613774,2019
+1995,52,"(50,55]",College,21328.50013268465,495.5291653589783,43.041866399999996,1388.6079597821006,2019
+1995,52,"(50,55]",College,20867.868553737284,495.5291653589783,42.11229128888889,895.2061841453966,2019
+1995,52,"(50,55]",College,21272.372755417957,495.5291653589783,42.92859884444445,1471.0363085917043,2019
+1995,36,"(35,40]",College,62219.13138505087,7908.6454791292945,7.867229799242551,22.4694626592693,2019
+1995,36,"(35,40]",College,76653.28667775322,7452.758646999034,10.285223272139481,23.491168112053288,2019
+1995,36,"(35,40]",College,76937.46945953119,7175.262314398005,10.722600246286067,23.186739386669544,2019
+1995,36,"(35,40]",College,58584.72229243697,7809.539646057498,7.5016870324760285,20.191838978140915,2019
+1995,36,"(35,40]",College,62322.15937938966,7413.116313770317,8.407012212073678,21.719765052730104,2019
+1995,65,"(60,65]",HS,385.4402476780186,31.713866582974614,12.153681944444443,10754.285809325671,2019
+1995,65,"(60,65]",HS,333.1256612118531,18.235473285210404,18.268001932367145,6095.709418108376,2019
+1995,65,"(60,65]",HS,258.0311012826183,19.622954948215543,13.14945185185185,10710.428134546475,2019
+1995,65,"(60,65]",HS,519.7975762936753,37.660216567282355,13.802299181286548,11394.727834319645,2019
+1995,65,"(60,65]",HS,347.1575055285272,29.731749921538697,11.67632266666667,11001.539068551578,2019
+1995,68,"(65,70]",HS,108.38390092879257,16.055144957630898,6.750727023319616,7911.015243475793,2019
+1995,68,"(65,70]",HS,98.70676691729324,15.262298293056533,6.467359307359307,7907.61633279198,2019
+1995,68,"(65,70]",NoHS,119.99646174259178,13.28018163162062,9.03575456053068,7910.557059202171,2019
+1995,68,"(65,70]",HS,156.76957098628924,12.685546633189844,12.358125,7877.212317512861,2019
+1995,68,"(65,70]",NoHS,121.93188854489165,13.874816630051392,8.788000000000002,7967.164080696343,2019
+1995,81,"(80,85]",NoHS,209.60672268907564,33.69598324441053,6.220525490196079,10024.95895847562,2019
+1995,81,"(80,85]",NoHS,212.31632021229547,31.713866582974614,6.694747222222222,9844.518848781154,2019
+1995,81,"(80,85]",NoHS,212.31632021229547,29.731749921538697,7.141063703703705,10098.744857447089,2019
+1995,81,"(80,85]",NoHS,214.2517470145953,29.731749921538697,7.206160000000001,10133.602412149306,2019
+1995,81,"(80,85]",NoHS,211.54214949137548,35.67809990584644,5.929187654320987,10039.837718815208,2019
+1995,41,"(40,45]",College,3599.8938522777535,519.3145652962094,6.932010178117047,139.96577840158935,2019
+1995,41,"(40,45]",College,3599.8938522777535,519.3145652962094,6.932010178117047,125.00215495354527,2019
+1995,41,"(40,45]",College,3599.8938522777535,519.3145652962094,6.932010178117047,124.56490133361669,2019
+1995,41,"(40,45]",College,3599.8938522777535,519.3145652962094,6.932010178117047,127.28360667551476,2019
+1995,41,"(40,45]",College,3599.8938522777535,519.3145652962094,6.932010178117047,126.06763354034373,2019
+1995,23,"(20,25]",HS,65.03034055727555,79.28466645743653,0.8202133333333335,4065.879335710255,2019
+1995,23,"(20,25]",HS,65.03034055727555,79.28466645743653,0.8202133333333335,4029.81736605634,2019
+1995,23,"(20,25]",HS,65.03034055727555,79.28466645743653,0.8202133333333335,4038.383572991947,2019
+1995,23,"(20,25]",HS,65.03034055727555,79.28466645743653,0.8202133333333335,3986.053353059827,2019
+1995,23,"(20,25]",HS,65.03034055727555,79.28466645743653,0.8202133333333335,4007.1350961046774,2019
+1995,75,"(70,75]",College,2262.320389208315,118.92699968615479,19.02276518518519,3534.845600803578,2019
+1995,75,"(70,75]",College,2263.094559929235,118.92699968615479,19.029274814814816,3007.8644164223524,2019
+1995,75,"(70,75]",College,2262.126846528085,118.92699968615479,19.02113777777778,3119.384005106861,2019
+1995,75,"(70,75]",College,2262.513931888545,118.92699968615479,19.024392592592594,3025.504383631395,2019
+1995,75,"(70,75]",College,2263.094559929235,118.92699968615479,19.029274814814816,3129.711708662584,2019
+1995,69,"(65,70]",HS,187.05900044228218,29.731749921538697,6.2915570370370375,6166.167063053086,2019
+1995,69,"(65,70]",HS,187.05900044228218,29.731749921538697,6.2915570370370375,5957.59939417449,2019
+1995,69,"(65,70]",HS,187.05900044228218,29.731749921538697,6.2915570370370375,6036.902597415049,2019
+1995,69,"(65,70]",HS,187.05900044228218,29.731749921538697,6.2915570370370375,6076.743327177821,2019
+1995,69,"(65,70]",HS,187.05900044228218,29.731749921538697,6.2915570370370375,6015.4060153627015,2019
+1995,27,"(25,30]",HS,98.41645289694826,120.90911634759071,0.8139704918032787,5664.094320636404,2019
+1995,27,"(25,30]",HS,78.44284829721363,120.90911634759071,0.6487753005464482,5782.378640214744,2019
+1995,27,"(25,30]",HS,67.73993808049535,122.89123300902662,0.5512186379928316,5792.508297385024,2019
+1995,27,"(25,30]",HS,73.12042459088899,103.07006639466748,0.7094244444444445,5868.684976357171,2019
+1995,27,"(25,30]",HS,69.63665634674922,126.85546633189846,0.5489448611111111,5811.863551599288,2019
+1995,53,"(50,55]",HS,900.5540911101282,146.6766329462576,6.139724324324323,1896.6685084625788,2019
+1995,53,"(50,55]",HS,956.4879256965944,146.6766329462576,6.5210654654654645,1869.830153796295,2019
+1995,53,"(50,55]",HS,879.0708536045997,146.6766329462576,5.993257657657657,1903.1024083528623,2019
+1995,53,"(50,55]",HS,824.2982750995135,146.6766329462576,5.619833633633633,1802.8071216339802,2019
+1995,53,"(50,55]",HS,1002.9381689517912,146.6766329462576,6.837750150150149,1925.9187538415936,2019
+1995,38,"(35,40]",College,78.52026536930562,59.46349984307739,1.3204783703703704,6463.443577324664,2019
+1995,38,"(35,40]",College,42.13424148606811,59.46349984307739,0.7085731851851853,6414.77308913341,2019
+1995,38,"(35,40]",College,61.10142414860682,59.46349984307739,1.0275450370370371,6456.595512877214,2019
+1995,38,"(35,40]",College,48.1340645731977,59.46349984307739,0.8094724444444444,6528.3353789919165,2019
+1995,38,"(35,40]",College,46.39218045112782,59.46349984307739,0.7801791111111112,6466.295448774501,2019
+1995,74,"(70,75]",College,23758.912339672712,1012.8616139937516,23.45721469884758,30.668698835172005,2019
+1995,74,"(70,75]",College,28964.242724458203,1304.2327632248312,22.207878486997632,34.47549120520512,2019
+1995,74,"(70,75]",College,19305.301724900488,997.0046807022643,19.36330099403579,17.771193273787972,2019
+1995,74,"(70,75]",College,24882.814683768243,1219.001746783087,20.41245203252032,37.09920510191703,2019
+1995,74,"(70,75]",College,27293.77585139319,1088.1820471283163,25.081994252175676,29.881690059636192,2019
+1995,46,"(45,50]",College,228.7674480318443,150.64086626912942,1.5186280701754384,7675.712655468863,2019
+1995,46,"(45,50]",College,228.7674480318443,150.64086626912942,1.5186280701754384,7604.761648024301,2019
+1995,46,"(45,50]",College,228.7674480318443,150.64086626912942,1.5186280701754384,7644.236261477548,2019
+1995,46,"(45,50]",College,228.7674480318443,150.64086626912942,1.5186280701754384,8013.545579275694,2019
+1995,46,"(45,50]",College,228.7674480318443,150.64086626912942,1.5186280701754384,7762.622162308534,2019
+1995,28,"(25,30]",HS,59.99823087129589,55.499266520205566,1.0810634920634923,4736.13416161428,2019
+1995,28,"(25,30]",HS,59.99823087129589,55.499266520205566,1.0810634920634923,4664.405256472653,2019
+1995,28,"(25,30]",HS,59.99823087129589,55.499266520205566,1.0810634920634923,4693.268183547766,2019
+1995,28,"(25,30]",HS,59.99823087129589,55.499266520205566,1.0810634920634923,4635.114118794602,2019
+1995,28,"(25,30]",HS,59.99823087129589,55.499266520205566,1.0810634920634923,4688.148568212227,2019
+1995,45,"(40,45]",College,175.58191950464396,396.42333228718263,0.4429152,6537.156558378719,2019
+1995,45,"(40,45]",College,175.58191950464396,396.42333228718263,0.4429152,6346.594831088943,2019
+1995,45,"(40,45]",College,175.58191950464396,396.42333228718263,0.4429152,6383.577717396885,2019
+1995,45,"(40,45]",College,175.58191950464396,396.42333228718263,0.4429152,6562.871218226479,2019
+1995,45,"(40,45]",College,175.58191950464396,396.42333228718263,0.4429152,6445.965702930345,2019
+1995,28,"(25,30]",NoHS,12.83187969924812,55.499266520205566,0.23120809523809524,3680.7151511207026,2019
+1995,28,"(25,30]",NoHS,12.83187969924812,55.499266520205566,0.23120809523809524,3623.970696510707,2019
+1995,28,"(25,30]",NoHS,12.83187969924812,55.499266520205566,0.23120809523809524,3632.61771921783,2019
+1995,28,"(25,30]",NoHS,12.83187969924812,55.499266520205566,0.23120809523809524,3609.382865643679,2019
+1995,28,"(25,30]",NoHS,12.83187969924812,55.499266520205566,0.23120809523809524,3624.2482335368013,2019
+1995,79,"(75,80]",HS,4449.565572755418,122.89123300902662,36.20734745519713,21.177994504992252,2019
+1995,79,"(75,80]",HS,2473.3012649270236,122.89123300902662,20.12593741935484,14.074356502762793,2019
+1995,79,"(75,80]",HS,2712.1329323308273,485.61858205179874,5.584903528344672,14.446785173985637,2019
+1995,79,"(75,80]",HS,4705.81608137992,196.22954948215542,23.981179663299663,17.96867383023132,2019
+1995,79,"(75,80]",HS,3393.40316674038,501.4755153432861,6.7668371892841455,20.162592341760934,2019
+1995,44,"(40,45]",HS,342.57054400707653,71.35619981169287,4.800851851851852,11203.401558367277,2019
+1995,44,"(40,45]",HS,325.1517027863777,73.3383164731288,4.433585585585585,11275.82826066944,2019
+1995,44,"(40,45]",HS,309.6682883679788,83.24889978030835,3.7197883597883603,11225.596705748576,2019
+1995,44,"(40,45]",HS,329.02255639097746,71.35619981169287,4.610987654320988,11603.474054924858,2019
+1995,44,"(40,45]",HS,324.9581601061477,79.28466645743653,4.0986255555555555,11363.936084930581,2019
+1995,59,"(55,60]",College,363.02800530738614,293.3532658925152,1.2375113813813814,1412.2820690132837,2019
+1995,59,"(55,60]",College,348.1058646616541,372.6379323499517,0.934166477541371,1388.967925319415,2019
+1995,59,"(55,60]",College,360.6667846085803,311.1923158454383,1.158983581033263,1406.6543948618587,2019
+1995,59,"(55,60]",College,306.494188412207,329.0313657983616,0.9315044712182061,1326.510242157456,2019
+1995,59,"(55,60]",College,319.0744626271561,293.3532658925152,1.0876799399399397,1423.9583137510306,2019
+1995,42,"(40,45]",College,1556.7799026979212,188.30108283641175,8.267503719298245,2281.2172718111387,2019
+1995,42,"(40,45]",College,1580.0050243255196,188.30108283641175,8.390844070175438,1954.8283008986443,2019
+1995,42,"(40,45]",College,1841.287642636002,188.30108283641175,9.778423017543862,2012.1355327303966,2019
+1995,42,"(40,45]",College,1996.1217868199913,188.30108283641175,10.600692023391813,1954.4603726562516,2019
+1995,42,"(40,45]",College,1607.100999557718,188.30108283641175,8.534741146198833,2021.297034387119,2019
+1995,33,"(30,35]",NoHS,5.806280406899602,17.442626620636037,0.3328787878787879,4934.117272750775,2019
+1995,33,"(30,35]",NoHS,6.9675364882795225,12.289123300902663,0.5669677419354838,4921.3018924561,2019
+1995,33,"(30,35]",NoHS,3.2902255639097744,21.803283275795042,0.15090505050505054,4918.949126385684,2019
+1995,33,"(30,35]",NoHS,11.22547545333923,21.803283275795042,0.5148525252525253,4939.7747381407025,2019
+1995,33,"(30,35]",NoHS,9.48359133126935,12.685546633189844,0.7475902777777779,4935.248912350365,2019
+1995,55,"(50,55]",College,142.44741264927023,59.46349984307739,2.3955437037037037,4096.084949650727,2019
+1995,55,"(50,55]",College,142.44741264927023,59.46349984307739,2.3955437037037037,4257.92736793039,2019
+1995,55,"(50,55]",College,142.44741264927023,59.46349984307739,2.3955437037037037,4209.032630680903,2019
+1995,55,"(50,55]",College,142.44741264927023,59.46349984307739,2.3955437037037037,3990.252171444618,2019
+1995,55,"(50,55]",College,142.44741264927023,59.46349984307739,2.3955437037037037,4219.335015482592,2019
+1995,59,"(55,60]",HS,132.8864042459089,49.55291653589783,2.6817070222222226,8026.925489319934,2019
+1995,59,"(55,60]",HS,132.8864042459089,49.55291653589783,2.6817070222222226,7909.040065609603,2019
+1995,59,"(55,60]",HS,132.8864042459089,49.55291653589783,2.6817070222222226,8036.906328343372,2019
+1995,59,"(55,60]",HS,132.8864042459089,49.55291653589783,2.6817070222222226,8022.875447733236,2019
+1995,59,"(55,60]",HS,132.9444670499779,49.55291653589783,2.682878755555556,7917.579605705333,2019
+1995,70,"(65,70]",College,7687.515258735073,445.97624882308054,17.23749925925926,328.81521582655876,2019
+1995,70,"(65,70]",College,7658.483856700575,445.97624882308054,17.172402962962963,293.03590808033493,2019
+1995,70,"(65,70]",College,7660.419283502875,445.97624882308054,17.176742716049382,291.8265657887194,2019
+1995,70,"(65,70]",College,7838.478549314463,445.97624882308054,17.575999999999997,296.44839707545225,2019
+1995,70,"(65,70]",College,7834.607695709863,445.97624882308054,17.567320493827157,294.4831939999006,2019
+1995,58,"(55,60]",College,203173.36399823087,5549.926652020557,36.60829714285714,20.12365416564478,2019
+1995,58,"(55,60]",College,237538.8022998673,6441.879149666718,36.87414755555555,21.728651686078898,2019
+1995,58,"(55,60]",College,224284.41892967714,5609.390151863635,39.98374383981154,21.279309952668655,2019
+1995,58,"(55,60]",College,233726.01149933657,6025.634650765176,38.78861315789474,18.687207744553895,2019
+1995,58,"(55,60]",College,243916.03361344538,5609.390151863635,43.483520848056536,20.149174934146174,2019
+1995,48,"(45,50]",HS,158.70499778858914,51.53503319733374,3.0795555555555563,5866.678956380931,2019
+1995,48,"(45,50]",HS,219.090314020345,79.28466645743653,2.763337777777778,5695.66202181637,2019
+1995,48,"(45,50]",HS,279.0885448916409,67.39196648882105,4.1412732026143795,5728.851791544455,2019
+1995,48,"(45,50]",HS,491.9854931446263,93.15948308748793,5.281110165484633,3394.6236004668426,2019
+1995,48,"(45,50]",HS,354.57019018133565,23.785399937230956,14.907051851851852,5784.841009271088,2019
+1995,48,"(45,50]",HS,983.6419637328615,148.65874960769352,6.616778133333332,6324.533755559068,2019
+1995,48,"(45,50]",HS,986.5838124723574,130.8196996547703,7.541553872053871,6412.771122173035,2019
+1995,48,"(45,50]",HS,985.1128881026094,126.85546633189846,7.765632152777777,6355.207661382406,2019
+1995,48,"(45,50]",HS,986.3128527200354,109.01641637897524,9.047379151515152,6188.738405426501,2019
+1995,48,"(45,50]",HS,984.3000088456436,120.90911634759071,8.140825428051002,6320.769696796579,2019
+1995,77,"(75,80]",College,590.8858027421495,71.35619981169287,8.280791358024691,6894.145825840213,2019
+1995,77,"(75,80]",College,324.7646174259178,23.785399937230956,13.653948148148151,2799.175634196335,2019
+1995,77,"(75,80]",College,359.60229986731537,18.631896617497585,19.300359338061465,2727.5278035840574,2019
+1995,77,"(75,80]",College,320.893763821318,25.76751659866687,12.453422222222223,2583.467069643385,2019
+1995,77,"(75,80]",College,1482.1498452012383,27.749633260102783,53.41151111111112,12015.95644899762,2019
+1995,48,"(45,50]",College,8219.19635559487,786.9003145900576,10.445028681780016,237.26008743553803,2019
+1995,48,"(45,50]",College,8432.673931888545,1008.8973806708799,8.358306893691333,214.0695355280252,2019
+1995,48,"(45,50]",College,8420.461388766034,1121.878030372727,7.505683470749903,210.89775718369992,2019
+1995,48,"(45,50]",College,8365.32107916851,2021.7589946646315,4.137645041394336,217.59064721785526,2019
+1995,48,"(45,50]",College,8516.67145510836,1064.3966471910853,8.001407630871096,213.9189779045612,2019
+1995,32,"(30,35]",College,116.12560813799203,140.73028296194985,0.8251643192488262,6476.800423859633,2019
+1995,32,"(30,35]",College,116.12560813799203,140.73028296194985,0.8251643192488262,6418.98841673487,2019
+1995,32,"(30,35]",College,116.12560813799203,140.73028296194985,0.8251643192488262,6506.309066022394,2019
+1995,32,"(30,35]",College,116.12560813799203,140.73028296194985,0.8251643192488262,6428.332303228779,2019
+1995,32,"(30,35]",College,116.12560813799203,140.73028296194985,0.8251643192488262,6485.466521462886,2019
+1995,41,"(40,45]",College,775.5255196815568,331.01348245979744,2.342881969394545,4513.0907623039175,2019
+1995,41,"(40,45]",College,794.8797877045556,331.01348245979744,2.4013516966067874,4698.247185286806,2019
+1995,41,"(40,45]",College,739.3330384785494,331.01348245979744,2.233543579507652,4631.394813490647,2019
+1995,41,"(40,45]",College,731.01070322866,331.01348245979744,2.208401596806388,4398.575565536206,2019
+1995,41,"(40,45]",College,739.3330384785494,331.01348245979744,2.233543579507652,4664.456555352075,2019
+1995,62,"(60,65]",College,6723.67271118974,832.4889978030835,8.076590476190479,266.2710057351491,2019
+1995,62,"(60,65]",College,6700.0605042016805,832.4889978030835,8.04822708994709,240.05148966087395,2019
+1995,62,"(60,65]",College,6632.320566121185,832.4889978030835,7.96685671957672,236.81406969648947,2019
+1995,62,"(60,65]",College,6129.88376824414,832.4889978030835,7.363321058201059,244.2358740114048,2019
+1995,62,"(60,65]",College,6076.853073861123,832.4889978030835,7.299619682539683,240.5642051289903,2019
+1995,61,"(60,65]",HS,9711.003980539585,1082.2356971440086,8.973095238095238,285.47526956964157,2019
+1995,61,"(60,65]",HS,8878.77045555064,1391.4458963280113,6.3809670781892995,251.6270091868086,2019
+1995,61,"(60,65]",HS,5195.653250773994,1064.3966471910853,4.881313056072833,250.6761821559547,2019
+1995,61,"(60,65]",HS,10057.44537815126,1228.9123300902666,8.18402186379928,259.1890960720176,2019
+1995,61,"(60,65]",HS,8087.180893409995,1290.3579465947796,6.267393411845024,257.88328364357784,2019
+1995,26,"(25,30]",HS,46.06315789473684,93.15948308748793,0.49445484633569736,5112.67231141534,2019
+1995,26,"(25,30]",HS,46.06315789473684,93.15948308748793,0.49445484633569736,5168.126128921462,2019
+1995,26,"(25,30]",HS,46.06315789473684,93.15948308748793,0.49445484633569736,5140.636466369175,2019
+1995,26,"(25,30]",HS,46.06315789473684,93.15948308748793,0.49445484633569736,5189.9282897657085,2019
+1995,26,"(25,30]",HS,46.06315789473684,93.15948308748793,0.49445484633569736,5154.632258172128,2019
+1995,60,"(55,60]",College,15579.024502432552,991.0583307179566,15.719583822222225,320.38168729695735,2019
+1995,60,"(55,60]",College,15579.024502432552,991.0583307179566,15.719583822222225,282.1673726026096,2019
+1995,60,"(55,60]",College,15579.024502432552,991.0583307179566,15.719583822222225,281.4806931333186,2019
+1995,60,"(55,60]",College,15579.024502432552,991.0583307179566,15.719583822222225,290.9282922900402,2019
+1995,60,"(55,60]",College,15579.024502432552,991.0583307179566,15.719583822222225,290.0045977849096,2019
+1995,30,"(25,30]",HS,22.64449358690845,49.55291653589783,0.45697600000000005,6005.215180919561,2019
+1995,30,"(25,30]",HS,22.29611676249447,49.55291653589783,0.4499456,5972.417599391028,2019
+1995,30,"(25,30]",HS,21.889677134011503,49.55291653589783,0.44174346666666675,6035.0471196924955,2019
+1995,30,"(25,30]",HS,21.715488721804512,49.55291653589783,0.4382282666666667,5994.749098630067,2019
+1995,30,"(25,30]",HS,21.59936311366652,49.55291653589783,0.4358848,6001.101654681641,2019
+1995,45,"(40,45]",HS,99.71318885448918,83.24889978030835,1.197771851851852,7168.895882597324,2019
+1995,45,"(40,45]",HS,100.85509066784608,83.24889978030835,1.2114885714285715,7143.598324209238,2019
+1995,45,"(40,45]",HS,98.93901813356922,83.24889978030835,1.1884723809523812,7103.053672507534,2019
+1995,45,"(40,45]",HS,101.14540468819106,83.24889978030835,1.214975873015873,7465.075995761025,2019
+1995,45,"(40,45]",HS,99.42287483414418,83.24889978030835,1.1942845502645503,7199.8547759128805,2019
+1995,51,"(50,55]",College,3297.6788925254314,172.44414954492444,19.123170610472545,21.177994504992252,2019
+1995,51,"(50,55]",College,6079.5646068111455,279.4784492624638,21.753250108747043,19.74678554457483,2019
+1995,51,"(50,55]",College,2358.57109951349,202.17589946646316,11.66593597821351,14.446785173985637,2019
+1995,51,"(50,55]",College,2005.7040849181778,279.4784492624638,7.176596586288415,183.79885973861093,2019
+1995,51,"(50,55]",College,3431.900741264927,126.85546633189846,27.053629145833334,20.162592341760934,2019
+1995,39,"(35,40]",HS,16.0640424590889,51.53503319733374,0.31171111111111116,6463.443577324664,2019
+1995,39,"(35,40]",HS,16.0640424590889,51.53503319733374,0.31171111111111116,6414.77308913341,2019
+1995,39,"(35,40]",HS,16.0640424590889,51.53503319733374,0.31171111111111116,6456.595512877214,2019
+1995,39,"(35,40]",HS,16.0640424590889,51.53503319733374,0.31171111111111116,6528.3353789919165,2019
+1995,39,"(35,40]",HS,16.0640424590889,51.53503319733374,0.31171111111111116,6466.295448774501,2019
+1995,92,"(90,95]",College,2374.5751437417075,206.14013278933496,11.51922777777778,1653.809904800572,2019
+1995,92,"(90,95]",College,1867.880406899602,206.14013278933496,9.061216666666667,1392.8799786493457,2019
+1995,92,"(90,95]",College,1841.4618310482088,206.14013278933496,8.933058333333335,1402.6247481786918,2019
+1995,92,"(90,95]",College,1816.8432021229544,206.14013278933496,8.813631666666668,1422.1864546908396,2019
+1995,92,"(90,95]",College,2181.80663423264,206.14013278933496,10.584094444444444,1374.749341493191,2019
+1995,32,"(30,35]",HS,-3.2902255639097744,27.749633260102783,-0.11856825396825398,6301.680202522963,2019
+1995,32,"(30,35]",HS,-3.2902255639097744,27.749633260102783,-0.11856825396825398,6331.751165826222,2019
+1995,32,"(30,35]",HS,-3.2902255639097744,27.749633260102783,-0.11856825396825398,6342.843221983052,2019
+1995,32,"(30,35]",HS,-3.2902255639097744,27.749633260102783,-0.11856825396825398,6426.257298767334,2019
+1995,32,"(30,35]",HS,-3.2902255639097744,27.749633260102783,-0.11856825396825398,6364.037381179706,2019
+1995,38,"(35,40]",HS,22.93480760725343,17.83904995292322,1.285651851851852,5770.95779682075,2019
+1995,38,"(35,40]",HS,22.93480760725343,17.64083828677963,1.3000973782771534,5759.194614075399,2019
+1995,38,"(35,40]",HS,23.128350287483418,19.821166614359132,1.1668511111111113,5774.1937605108615,2019
+1995,38,"(35,40]",HS,23.050933215391417,18.03726161906681,1.2779619047619046,5671.637947980613,2019
+1995,38,"(35,40]",HS,22.33482529854047,18.03726161906681,1.2382603174603175,5767.9516498276025,2019
+1995,40,"(35,40]",HS,109.97095090667847,57.48138318164148,1.9131577011494254,5990.707772049946,2019
+1995,40,"(35,40]",HS,106.11945157010173,57.48138318164148,1.846153409961686,6029.435939216417,2019
+1995,40,"(35,40]",HS,111.34510393631138,57.48138318164148,1.9370637547892722,6020.534961211565,2019
+1995,40,"(35,40]",HS,117.80942945599293,57.48138318164148,2.0495232183908048,6204.63542625609,2019
+1995,40,"(35,40]",HS,106.13880583812472,57.48138318164148,1.8464901149425288,6076.549150755764,2019
+1995,50,"(45,50]",College,31076.56753648828,2933.5326589251517,10.593564534534535,29.400847287218124,2019
+1995,50,"(45,50]",College,45619.945157010174,3131.744325068743,14.566944303797468,35.12204166683937,2019
+1995,50,"(45,50]",College,33805.90641309156,3092.1019918400248,10.932985555555558,30.62117754026596,2019
+1995,50,"(45,50]",College,33954.17946041575,2794.7844926246376,12.149122606776992,33.84995919220795,2019
+1995,50,"(45,50]",College,25605.32886333481,2953.3538255395106,8.669915755406414,29.503667425020467,2019
+1995,55,"(50,55]",College,465.2766032728881,160.55144957630895,2.8979906721536355,9044.950164342481,2019
+1995,55,"(50,55]",College,465.2766032728881,160.55144957630895,2.8979906721536355,9089.914351765914,2019
+1995,55,"(50,55]",College,465.2766032728881,160.55144957630895,2.8979906721536355,9064.432372634777,2019
+1995,55,"(50,55]",College,515.5977001326846,160.55144957630895,3.2114172839506177,9246.185277200962,2019
+1995,55,"(50,55]",College,434.3097744360902,160.55144957630895,2.7051127572016465,8982.93810935425,2019
+1995,49,"(45,50]",College,17167.7195931004,297.31749921538704,57.74204222222222,149.55134324885168,2019
+1995,49,"(45,50]",College,16211.618752764265,297.31749921538704,54.52628518518518,133.19217906120102,2019
+1995,49,"(45,50]",College,9807.291463954003,297.31749921538704,32.98592074074074,132.14632655358247,2019
+1995,49,"(45,50]",College,21392.75630252101,297.31749921538704,71.9525637037037,288.3802490429656,2019
+1995,49,"(45,50]",College,12112.384785493145,297.31749921538704,40.738889629629625,133.4915197244548,2019
+1995,39,"(35,40]",College,30.405555064130915,75.32043313456471,0.4036826900584795,4008.5618567600586,2019
+1995,39,"(35,40]",College,29.244298982750998,71.35619981169287,0.4098354320987655,3975.288465008708,2019
+1995,39,"(35,40]",College,30.01846970367094,85.23101644174427,0.3522012403100775,3956.48246267736,2019
+1995,39,"(35,40]",College,29.437841662980983,85.23101644174427,0.3453888372093023,3884.613560732671,2019
+1995,39,"(35,40]",College,30.21201238390093,67.39196648882105,0.44830287581699346,3960.581600058196,2019
+1995,58,"(55,60]",HS,5.903051747014596,23.785399937230956,0.24817962962962967,9390.69938170012,2019
+1995,58,"(55,60]",HS,5.903051747014596,23.785399937230956,0.24817962962962967,9154.96193060298,2019
+1995,58,"(55,60]",HS,5.903051747014596,23.785399937230956,0.24817962962962967,9296.840554755272,2019
+1995,58,"(55,60]",HS,5.903051747014596,23.785399937230956,0.24817962962962967,9010.336818937163,2019
+1995,58,"(55,60]",HS,5.903051747014596,23.785399937230956,0.24817962962962967,8986.190869793934,2019
+1995,48,"(45,50]",HS,91.9908359133127,59.46349984307739,1.5470134814814815,7434.8676286620785,2019
+1995,48,"(45,50]",HS,95.84233524988943,59.46349984307739,1.6117842962962965,7434.846144047844,2019
+1995,48,"(45,50]",HS,89.39736399823087,59.46349984307739,1.5033989629629632,7449.622646281238,2019
+1995,48,"(45,50]",HS,86.72647501105706,59.46349984307739,1.4584825185185188,7581.264949909079,2019
+1995,48,"(45,50]",HS,115.85464838567005,59.46349984307739,1.9483321481481481,7536.3048345370025,2019
+1995,35,"(30,35]",HS,230.25772666961524,99.10583307179566,2.3233519111111116,11433.894866985554,2019
+1995,35,"(30,35]",HS,334.80948252985405,99.10583307179566,3.378302488888889,11743.338763269145,2019
+1995,35,"(30,35]",HS,380.11782397169395,99.10583307179566,3.835473777777778,11273.71195694112,2019
+1995,35,"(30,35]",HS,424.9810172490049,99.10583307179566,4.288153422222223,11845.810942718355,2019
+1995,35,"(30,35]",HS,329.89349845201235,99.10583307179566,3.328699111111111,8457.706035488603,2019
+1995,31,"(30,35]",College,3303.967094206104,505.43974866615787,6.536816906318084,1278.6106373686512,2019
+1995,31,"(30,35]",College,3284.612826183105,505.43974866615787,6.498524967320262,1162.510707187475,2019
+1995,31,"(30,35]",College,3389.1258735072975,505.43974866615787,6.7053014379084965,1147.7598394657457,2019
+1995,31,"(30,35]",College,3437.511543564794,505.43974866615787,6.80103128540305,1063.817328019688,2019
+1995,31,"(30,35]",College,3431.705263157895,505.43974866615787,6.789543703703704,1163.78057426057,2019
+1995,31,"(30,35]",College,130.42841220698807,218.03283275795047,0.5982053737373738,10730.87377559346,2019
+1995,31,"(30,35]",College,130.42841220698807,218.03283275795047,0.5982053737373738,10962.40233567466,2019
+1995,31,"(30,35]",College,130.42841220698807,218.03283275795047,0.5982053737373738,10688.090476212185,2019
+1995,31,"(30,35]",College,130.42841220698807,218.03283275795047,0.5982053737373738,10996.044050440798,2019
+1995,31,"(30,35]",College,130.42841220698807,218.03283275795047,0.5982053737373738,10896.746065617828,2019
+1995,31,"(30,35]",HS,42.38584697036709,95.14159974892382,0.4455027777777778,7450.158777855681,2019
+1995,31,"(30,35]",HS,42.38584697036709,95.14159974892382,0.4455027777777778,7525.48974050415,2019
+1995,31,"(30,35]",HS,42.38584697036709,95.14159974892382,0.4455027777777778,7484.470680953668,2019
+1995,31,"(30,35]",HS,42.38584697036709,95.14159974892382,0.4455027777777778,7560.1215057898835,2019
+1995,31,"(30,35]",HS,42.38584697036709,95.14159974892382,0.4455027777777778,7509.838032887963,2019
+1995,76,"(75,80]",NoHS,89.70703228659886,2.3785399937230958,37.715166666666676,9552.127361186494,2019
+1995,76,"(75,80]",NoHS,83.78462627156125,2.3785399937230958,35.225233333333335,8974.779066397772,2019
+1995,76,"(75,80]",NoHS,80.53310924369747,2.3785399937230958,33.85821111111111,9025.662337302301,2019
+1995,76,"(75,80]",NoHS,86.33938965059708,2.3785399937230958,36.29932222222222,8988.057088654528,2019
+1995,76,"(75,80]",NoHS,88.64254754533391,2.3785399937230958,37.267629629629624,9019.997871946587,2019
+1995,33,"(30,35]",HS,19.412330827067667,59.46349984307739,0.32645792592592593,6043.593362730998,2019
+1995,33,"(30,35]",HS,19.605873507297655,59.46349984307739,0.32971274074074075,5989.648167622271,2019
+1995,33,"(30,35]",HS,18.27042901371075,59.46349984307739,0.3072545185185186,6071.128290820043,2019
+1995,33,"(30,35]",HS,19.915541795665636,59.46349984307739,0.33492044444444447,5998.367079230029,2019
+1995,33,"(30,35]",HS,20.128438743918622,59.46349984307739,0.3385007407407408,6051.679820013649,2019
+1995,39,"(35,40]",HS,2.322512162759841,0.5549926652020557,4.184761904761905,5648.713442429392,2019
+1995,39,"(35,40]",HS,2.322512162759841,0.5549926652020557,4.184761904761905,5687.443769740052,2019
+1995,39,"(35,40]",HS,2.322512162759841,0.5549926652020557,4.184761904761905,5686.134043812019,2019
+1995,39,"(35,40]",HS,2.322512162759841,0.5549926652020557,4.184761904761905,5674.021406636481,2019
+1995,39,"(35,40]",HS,2.322512162759841,0.5549926652020557,4.184761904761905,5691.5825898424855,2019
+1995,45,"(40,45]",College,47.06957983193277,103.07006639466748,0.4566755555555556,7118.579076947081,2019
+1995,45,"(40,45]",College,47.06957983193277,103.07006639466748,0.4566755555555556,6929.938454780111,2019
+1995,45,"(40,45]",College,47.06957983193277,103.07006639466748,0.4566755555555556,7019.919728194373,2019
+1995,45,"(40,45]",College,47.06957983193277,103.07006639466748,0.4566755555555556,7221.635595597465,2019
+1995,45,"(40,45]",College,47.06957983193277,103.07006639466748,0.4566755555555556,7079.511780431955,2019
+1995,72,"(70,75]",College,0.6193365767359575,10.505218305610338,0.05895513626834383,8737.785140291016,2019
+1995,72,"(70,75]",College,0.3870853604599735,21.803283275795042,0.017753535353535358,8753.359963653882,2019
+1995,72,"(70,75]",College,0.3870853604599735,23.785399937230956,0.016274074074074076,8732.209813105852,2019
+1995,72,"(70,75]",College,0.3870853604599735,23.785399937230956,0.016274074074074076,8748.640454220416,2019
+1995,72,"(70,75]",College,0.36773109243697477,13.47839329776421,0.027283006535947712,8730.324316869901,2019
+1995,27,"(25,30]",HS,-12.580274214949137,51.53503319733374,-0.24411111111111114,5794.231072300836,2019
+1995,27,"(25,30]",HS,-12.580274214949137,51.53503319733374,-0.24411111111111114,5830.729963298294,2019
+1995,27,"(25,30]",HS,-12.580274214949137,51.53503319733374,-0.24411111111111114,5810.76586153952,2019
+1995,27,"(25,30]",HS,-12.580274214949137,51.53503319733374,-0.24411111111111114,5916.387231257699,2019
+1995,27,"(25,30]",HS,-12.580274214949137,51.53503319733374,-0.24411111111111114,5797.906469000865,2019
+1995,86,"(85,90]",College,10449.175762936755,519.3145652962094,20.121091263782866,297.21928518987806,2019
+1995,86,"(85,90]",College,10217.89226006192,539.1357319105684,18.952355882352943,261.6975575350672,2019
+1995,86,"(85,90]",College,10176.474126492702,497.5112820204143,20.454760513501544,261.31728645541045,2019
+1995,86,"(85,90]",College,10534.14099955772,489.58281537467064,21.516566081871346,268.4478879899867,2019
+1995,86,"(85,90]",College,9889.063246351172,469.76164876031146,21.051235818096576,267.23935059606424,2019
+1995,19,"(15,20]",NoHS,3.6773109243697477,10.108794973323159,0.3637734204793028,6906.283569085225,2019
+1995,19,"(15,20]",NoHS,3.6773109243697477,10.108794973323159,0.3637734204793028,7023.73858443535,2019
+1995,19,"(15,20]",NoHS,3.6773109243697477,10.108794973323159,0.3637734204793028,6931.881970628152,2019
+1995,19,"(15,20]",NoHS,3.6773109243697477,10.505218305610338,0.35004612159329146,7036.785301321515,2019
+1995,19,"(15,20]",NoHS,3.6773109243697477,9.910583307179566,0.3710488888888889,6896.117003389025,2019
+1995,93,"(90,95]",HS,68873.5175586024,2120.8648277364273,32.474260809968854,16.922237812228754,2019
+1995,93,"(90,95]",HS,58555.95081822202,2120.8648277364273,27.609468577362406,18.281957672402182,2019
+1995,93,"(90,95]",HS,69098.02706766917,2120.8648277364273,32.58011833852544,18.149931201243074,2019
+1995,93,"(90,95]",HS,53135.20743034056,2061.4013278933503,25.77625555555555,15.780003964162134,2019
+1995,93,"(90,95]",HS,53423.58602388324,2120.8648277364273,25.189528971962616,16.98926204970277,2019
+1995,30,"(25,30]",College,5.186943830163645,29.731749921538697,0.1744580740740741,4120.992081903392,2019
+1995,30,"(25,30]",College,-7.799770013268465,33.69598324441053,-0.23147477124183005,4057.460013123633,2019
+1995,30,"(25,30]",College,-5.670800530738611,31.713866582974614,-0.17881138888888887,4067.1413686877117,2019
+1995,30,"(25,30]",College,-6.812702344095533,33.69598324441053,-0.20218143790849674,4041.1272264159,2019
+1995,30,"(25,30]",College,0.4257938965059708,31.713866582974614,0.013426111111111111,4057.770748358499,2019
+1995,24,"(20,25]",HS,6.406262715612561,23.785399937230956,0.269335925925926,6885.713729523993,2019
+1995,24,"(20,25]",HS,6.406262715612561,23.785399937230956,0.269335925925926,7007.123568126674,2019
+1995,24,"(20,25]",HS,6.406262715612561,23.785399937230956,0.269335925925926,6974.775892368064,2019
+1995,24,"(20,25]",HS,6.406262715612561,23.785399937230956,0.269335925925926,6996.868314437101,2019
+1995,24,"(20,25]",HS,6.406262715612561,23.785399937230956,0.269335925925926,6940.918672943236,2019
+1995,28,"(25,30]",HS,-9.096505970809377,31.713866582974614,-0.28683055555555553,7650.4181018540885,2019
+1995,28,"(25,30]",HS,-9.096505970809377,31.713866582974614,-0.28683055555555553,7736.016457464373,2019
+1995,28,"(25,30]",HS,-9.096505970809377,31.713866582974614,-0.28683055555555553,7731.5177872772165,2019
+1995,28,"(25,30]",HS,-9.096505970809377,31.713866582974614,-0.28683055555555553,7760.464575524582,2019
+1995,28,"(25,30]",HS,-9.096505970809377,31.713866582974614,-0.28683055555555553,7745.52810642454,2019
+1995,44,"(40,45]",HS,87.09420610349403,47.57079987446191,1.8308333333333335,7473.356617167298,2019
+1995,44,"(40,45]",HS,79.97183547103052,156.58721625343713,0.5107175246132208,7417.081365340091,2019
+1995,44,"(40,45]",HS,155.29864661654133,69.37408315025698,2.238568634920634,7465.4385426701865,2019
+1995,44,"(40,45]",HS,195.38133569217163,55.499266520205566,3.5204309523809534,7548.387762653154,2019
+1995,44,"(40,45]",HS,112.99021671826625,47.57079987446191,2.3752011111111115,7476.65409352274,2019
+1995,42,"(40,45]",College,3386.996904024768,523.2787986190812,6.472643097643097,976.5395493287915,2019
+1995,42,"(40,45]",College,3386.996904024768,523.2787986190812,6.472643097643097,882.9130560733887,2019
+1995,42,"(40,45]",College,3386.996904024768,523.2787986190812,6.472643097643097,871.7228416164724,2019
+1995,42,"(40,45]",College,3386.996904024768,523.2787986190812,6.472643097643097,886.5056569775361,2019
+1995,42,"(40,45]",College,3386.996904024768,523.2787986190812,6.472643097643097,877.83267019644,2019
+1995,37,"(35,40]",HS,169.15630252100843,45.588683213026,3.71048888888889,11043.45019356344,2019
+1995,37,"(35,40]",HS,167.51118973905352,73.3383164731288,2.284088288288288,11122.912958084817,2019
+1995,37,"(35,40]",HS,164.9951348960637,41.624449890154175,3.9638994708994715,10887.513339256804,2019
+1995,37,"(35,40]",HS,181.67851393188855,41.624449890154175,4.364706666666667,11192.208330142557,2019
+1995,37,"(35,40]",HS,174.38195488721806,160.55144957630895,1.0861437585733884,11051.4162364966,2019
+1995,35,"(30,35]",College,229.2513047324193,265.6036326324124,0.863133167495854,793.32006975629,2019
+1995,35,"(30,35]",College,229.2513047324193,265.6036326324124,0.863133167495854,781.0880942253675,2019
+1995,35,"(30,35]",College,229.2513047324193,265.6036326324124,0.863133167495854,807.1772164889768,2019
+1995,35,"(30,35]",College,226.34816452896948,265.6036326324124,0.8522028192371475,748.2422034244967,2019
+1995,35,"(30,35]",College,226.34816452896948,265.6036326324124,0.8522028192371475,801.0878656673116,2019
+1995,69,"(65,70]",HS,63570.0610349403,11000.74747096932,5.778703783783784,24.433576847559873,2019
+1995,69,"(65,70]",HS,63647.478107032286,10861.999304668805,5.859646674776966,24.826945192116078,2019
+1995,69,"(65,70]",HS,60065.19663865546,10861.999304668805,5.529847218167072,24.88155062166152,2019
+1995,69,"(65,70]",HS,57903.131357806284,11278.243803570345,5.134055653192736,23.92925088128981,2019
+1995,69,"(65,70]",HS,59045.80734188412,11317.886136799065,5.217034932866317,23.89919653930235,2019
+1995,40,"(35,40]",College,34.64413976116762,87.21313310318017,0.39723535353535355,5183.063975215474,2019
+1995,40,"(35,40]",College,34.64413976116762,87.21313310318017,0.39723535353535355,5172.4991208415795,2019
+1995,40,"(35,40]",College,34.64413976116762,87.21313310318017,0.39723535353535355,5185.9702877233485,2019
+1995,40,"(35,40]",College,34.64413976116762,87.21313310318017,0.39723535353535355,5093.861948676526,2019
+1995,40,"(35,40]",College,34.64413976116762,87.21313310318017,0.39723535353535355,5180.36406772473,2019
+1995,36,"(35,40]",NoHS,0,23.785399937230956,0,8316.101578075035,2019
+1995,36,"(35,40]",NoHS,0,23.785399937230956,0,8354.044073278608,2019
+1995,36,"(35,40]",NoHS,0,23.785399937230956,0,8356.218067939337,2019
+1995,36,"(35,40]",NoHS,0,23.785399937230956,0,8333.880312913116,2019
+1995,36,"(35,40]",NoHS,0,23.785399937230956,0,8364.16998827314,2019
+1995,66,"(65,70]",HS,98.86160106147723,10.30700663946675,9.59168888888889,8058.335692516647,2019
+1995,66,"(65,70]",HS,50.18561698363556,10.30700663946675,4.869077777777778,7723.4489527823725,2019
+1995,66,"(65,70]",HS,102.77116320212296,10.30700663946675,9.971,8027.142450778645,2019
+1995,66,"(65,70]",HS,59.39824856258293,10.30700663946675,5.7629,7730.3550235566045,2019
+1995,66,"(65,70]",HS,61.87559486952676,10.30700663946675,6.003255555555556,7798.168214742693,2019
+1995,23,"(20,25]",HS,5.167589562140646,16.45156828991808,0.3141092369477912,6391.688941663456,2019
+1995,23,"(20,25]",HS,6.135302963290579,15.658721625343716,0.39181378340365675,6328.53168821587,2019
+1995,23,"(20,25]",HS,4.586961521450686,19.22653161592836,0.2385745704467354,6407.389489687493,2019
+1995,23,"(20,25]",HS,5.3611322423706325,19.028319949784766,0.28174490740740743,6365.477194948081,2019
+1995,23,"(20,25]",HS,6.909473684210527,15.262298293056533,0.4527151515151515,6342.330809397422,2019
+1995,67,"(65,70]",HS,88.83609022556391,83.24889978030835,1.0671142857142857,11127.895906163623,2019
+1995,67,"(65,70]",HS,112.06121185316232,83.24889978030835,1.3460984126984128,11097.099018345743,2019
+1995,67,"(65,70]",HS,94.64237063246351,83.24889978030835,1.1368603174603176,10859.145228580666,2019
+1995,67,"(65,70]",HS,112.06121185316232,83.24889978030835,1.3460984126984128,11544.910173048549,2019
+1995,67,"(65,70]",NoHS,112.06121185316232,83.24889978030835,1.3460984126984128,11147.070279466428,2019
+1995,31,"(30,35]",HS,55.06289252543123,35.67809990584644,1.543324691358025,4922.279095485226,2019
+1995,31,"(30,35]",HS,45.38575851393189,35.67809990584644,1.2720901234567903,4970.185091793803,2019
+1995,31,"(30,35]",HS,44.97931888544892,35.67809990584644,1.2606982716049384,4973.527855752071,2019
+1995,31,"(30,35]",HS,63.927147279964615,35.67809990584644,1.7917755555555555,5042.351126744237,2019
+1995,31,"(30,35]",HS,56.185440070765154,35.67809990584644,1.574787901234568,5014.223039624455,2019
+1995,46,"(45,50]",HS,7628.484741264927,594.6349984307741,12.82885259259259,20.809047152737968,2019
+1995,46,"(45,50]",HS,7628.484741264927,594.6349984307741,12.82885259259259,18.240320764735756,2019
+1995,46,"(45,50]",HS,7628.484741264927,594.6349984307741,12.82885259259259,20.025321513800396,2019
+1995,46,"(45,50]",HS,7628.484741264927,594.6349984307741,12.82885259259259,18.29631482460966,2019
+1995,46,"(45,50]",HS,7628.484741264927,594.6349984307741,12.82885259259259,19.13985816038112,2019
+1995,38,"(35,40]",HS,157.17601061477222,69.37408315025698,2.2656300952380946,5085.981901125257,2019
+1995,38,"(35,40]",HS,124.06085802742149,69.37408315025698,1.7882882539682534,5016.009493249076,2019
+1995,38,"(35,40]",HS,139.95071207430342,69.37408315025698,2.017334222222222,5011.775732963032,2019
+1995,38,"(35,40]",HS,237.6704113224237,69.37408315025698,3.4259250793650784,5065.378895259246,2019
+1995,38,"(35,40]",HS,236.7220521892968,69.37408315025698,3.4122548571428566,5029.942902953413,2019
+1995,36,"(35,40]",HS,185.82032728881026,89.1952497646161,2.0832984691358027,6463.443577324664,2019
+1995,36,"(35,40]",HS,163.3693763821318,89.1952497646161,1.831592790123457,6414.77308913341,2019
+1995,36,"(35,40]",HS,193.8717027863777,89.1952497646161,2.1735653333333333,6456.595512877214,2019
+1995,36,"(35,40]",HS,179.54954444935868,89.1952497646161,2.0129944691358026,6528.3353789919165,2019
+1995,36,"(35,40]",HS,180.47854931446264,89.1952497646161,2.02340987654321,6466.295448774501,2019
+1995,48,"(45,50]",College,378.76302521008404,93.15948308748793,4.065748463356974,8509.461707605318,2019
+1995,48,"(45,50]",College,378.76302521008404,93.15948308748793,4.065748463356974,8624.406913773299,2019
+1995,48,"(45,50]",College,378.76302521008404,93.15948308748793,4.065748463356974,8501.061800142383,2019
+1995,48,"(45,50]",College,378.76302521008404,93.15948308748793,4.065748463356974,8288.402883143122,2019
+1995,48,"(45,50]",College,378.76302521008404,93.15948308748793,4.065748463356974,8457.706035488603,2019
+1995,29,"(25,30]",HS,11.806103494029191,69.37408315025698,0.17018031746031742,5511.704135963302,2019
+1995,29,"(25,30]",HS,11.806103494029191,69.37408315025698,0.17018031746031742,5403.762288338964,2019
+1995,29,"(25,30]",HS,11.806103494029191,69.37408315025698,0.17018031746031742,5420.206017154488,2019
+1995,29,"(25,30]",HS,11.806103494029191,69.37408315025698,0.17018031746031742,5398.86998238928,2019
+1995,29,"(25,30]",HS,11.806103494029191,69.37408315025698,0.17018031746031742,5391.023294860696,2019
+1995,39,"(35,40]",HS,27.502414860681114,37.660216567282355,0.7302776608187134,6198.90756231037,2019
+1995,39,"(35,40]",HS,46.21799203892083,37.660216567282355,1.2272364912280702,6130.316198960802,2019
+1995,39,"(35,40]",HS,35.82475011057055,37.660216567282355,0.9512624561403509,6168.726946513733,2019
+1995,39,"(35,40]",HS,40.740734188412205,37.660216567282355,1.0817976608187134,6238.6345562920715,2019
+1995,39,"(35,40]",HS,42.637452454666075,37.660216567282355,1.1321616374269006,6183.214256758105,2019
+1995,75,"(70,75]",HS,521.7136488279523,14.271239962338576,36.556995061728394,4058.1431629384397,2019
+1995,75,"(70,75]",HS,295.2687129588678,14.271239962338576,20.689772839506176,8258.494189060828,2019
+1995,75,"(70,75]",HS,256.5601769128704,14.271239962338576,17.977427160493825,8374.877549691028,2019
+1995,75,"(70,75]",HS,167.53054400707651,14.271239962338576,11.739032098765431,8590.814304076177,2019
+1995,75,"(70,75]",HS,291.397859354268,14.271239962338576,20.418538271604938,8357.811248942704,2019
+1995,29,"(25,30]",College,-169.0014683768244,67.39196648882105,-2.50773908496732,4473.01559099352,2019
+1995,29,"(25,30]",College,-169.0014683768244,67.39196648882105,-2.50773908496732,4405.271625118612,2019
+1995,29,"(25,30]",College,-169.0014683768244,67.39196648882105,-2.50773908496732,4432.531056208014,2019
+1995,29,"(25,30]",College,-169.0014683768244,67.39196648882105,-2.50773908496732,4377.607772904763,2019
+1995,29,"(25,30]",College,-169.0014683768244,67.39196648882105,-2.50773908496732,4427.6958639532495,2019
+1995,24,"(20,25]",College,-22.102574082264486,45.588683213026,-0.48482589371980683,5567.352625051843,2019
+1995,24,"(20,25]",College,-7.335267580716497,45.588683213026,-0.16090106280193237,5551.285885106617,2019
+1995,24,"(20,25]",College,-14.631826625386998,45.588683213026,-0.3209530434782609,5582.911232625962,2019
+1995,24,"(20,25]",College,-8.322335249889429,45.588683213026,-0.18255265700483092,5546.295808913243,2019
+1995,24,"(20,25]",College,3.1934542237947814,45.588683213026,0.07004927536231885,5521.281911611672,2019
+1995,35,"(30,35]",HS,241.50255639097745,49.55291653589783,4.873629511111112,5688.398022822383,2019
+1995,35,"(30,35]",HS,231.8254223794781,91.177366426052,2.542576425120773,5590.155582750912,2019
+1995,35,"(30,35]",HS,239.56712958867757,25.76751659866687,9.297253333333334,5584.0277023293975,2019
+1995,35,"(30,35]",HS,231.8254223794781,47.57079987446191,4.873271481481482,5644.987622113184,2019
+1995,35,"(30,35]",HS,241.50255639097745,112.98064970184706,2.1375568031189083,5609.004328531812,2019
+1995,46,"(45,50]",College,6.580451127819549,87.21313310318017,0.07545252525252527,5898.806571336049,2019
+1995,46,"(45,50]",College,6.386908447589563,87.21313310318017,0.07323333333333336,5794.905521743396,2019
+1995,46,"(45,50]",College,9.096505970809377,87.21313310318017,0.10430202020202022,5848.790368206081,2019
+1995,46,"(45,50]",College,6.580451127819549,87.21313310318017,0.07545252525252527,5843.763436564726,2019
+1995,46,"(45,50]",College,6.193365767359576,87.21313310318017,0.07101414141414143,5878.259140928272,2019
+1995,78,"(75,80]",NoHS,893.9736399823088,27.749633260102783,32.21569206349207,3345.735475602343,2019
+1995,78,"(75,80]",NoHS,767.9773551525874,27.749633260102783,27.6752253968254,3459.518056779142,2019
+1995,78,"(75,80]",NoHS,906.7474568774878,27.749633260102783,32.67601587301588,3421.171755069657,2019
+1995,78,"(75,80]",NoHS,598.240424590889,27.749633260102783,21.558498412698416,3267.4959608925205,2019
+1995,78,"(75,80]",NoHS,774.9448916408669,27.749633260102783,27.926311111111115,3438.7465377170033,2019
+1995,74,"(70,75]",HS,126.57691287041133,29.731749921538697,4.2572977777777785,3060.255915481034,2019
+1995,74,"(70,75]",HS,139.15718708536048,67.39196648882105,2.0648928104575166,3127.996813274128,2019
+1995,74,"(70,75]",HS,141.09261388766032,67.39196648882105,2.0936117647058823,3004.76200350138,2019
+1995,74,"(70,75]",HS,104.70659000442282,25.76751659866687,4.0635111111111115,3065.3472087541095,2019
+1995,74,"(70,75]",HS,131.41547987616102,39.642333228718265,3.3150288888888895,2983.845569754628,2019
+1995,46,"(45,50]",College,213.38080495356039,140.73028296194985,1.5162394366197183,7569.339165141713,2019
+1995,46,"(45,50]",College,217.2516585581601,140.73028296194985,1.5437449139280124,7348.688744294314,2019
+1995,46,"(45,50]",College,209.50995134896064,140.73028296194985,1.488733959311424,7391.511033659849,2019
+1995,46,"(45,50]",College,209.50995134896064,140.73028296194985,1.488733959311424,7599.114034408756,2019
+1995,46,"(45,50]",College,211.44537815126048,140.73028296194985,1.5024866979655709,7463.749753677568,2019
+1995,55,"(50,55]",College,70600.59953648828,4856.185820517988,14.538282130430838,20.12365416564478,2019
+1995,55,"(50,55]",College,73178.51836178682,2556.9304932523282,28.619674470973298,21.728651686078898,2019
+1995,55,"(50,55]",College,75346.23508889871,3766.0216567282355,20.00685124959064,21.279309952668655,2019
+1995,55,"(50,55]",College,74807.49742591773,6085.0981506082535,12.293556418385812,18.687207744553895,2019
+1995,55,"(50,55]",College,74489.46615833702,6362.594483209281,11.707404323018347,20.149174934146174,2019
+1995,42,"(40,45]",College,4925.177355152588,723.4725814241084,6.807690410958904,903.9029943177804,2019
+1995,42,"(40,45]",College,4925.177355152588,723.4725814241084,6.807690410958904,815.6108517841825,2019
+1995,42,"(40,45]",College,4925.177355152588,723.4725814241084,6.807690410958904,817.5917760407667,2019
+1995,42,"(40,45]",College,4925.177355152588,723.4725814241084,6.807690410958904,814.0520891055991,2019
+1995,42,"(40,45]",College,4925.177355152588,723.4725814241084,6.807690410958904,807.8918823050935,2019
+1995,32,"(30,35]",College,248.3171941618753,178.3904995292322,1.391986651851852,8509.461707605318,2019
+1995,32,"(30,35]",College,246.9623954002654,178.3904995292322,1.3843920839506174,8624.406913773299,2019
+1995,32,"(30,35]",College,248.51073684210525,178.3904995292322,1.3930715901234567,8501.061800142383,2019
+1995,32,"(30,35]",College,246.7688527200354,178.3904995292322,1.3833071456790125,8288.402883143122,2019
+1995,32,"(30,35]",College,248.1236514816453,178.3904995292322,1.390901713580247,8457.706035488603,2019
+1995,79,"(75,80]",College,14702.469703670942,1153.5918969557015,12.744948835433371,14.763285763706055,2019
+1995,79,"(75,80]",College,16204.36090225564,1421.1776462495498,11.402065705873238,13.640369662996296,2019
+1995,79,"(75,80]",College,36274.73684210526,1377.57107969796,26.332388489208626,24.469450839909886,2019
+1995,79,"(75,80]",College,11263.21627598408,1341.8929797921132,8.393527982931234,12.48574671908394,2019
+1995,79,"(75,80]",College,16479.19150818222,1328.018163162062,12.408860033167494,14.106944242387922,2019
+1995,48,"(45,50]",College,691.1409111012825,287.4069159082075,2.4047469731800755,6616.416474547621,2019
+1995,48,"(45,50]",College,691.1409111012825,287.4069159082075,2.4047469731800755,6709.758940879971,2019
+1995,48,"(45,50]",College,693.0763379035825,287.4069159082075,2.411481072796934,6611.546183160363,2019
+1995,48,"(45,50]",College,691.1409111012825,287.4069159082075,2.4047469731800755,6468.714531594167,2019
+1995,48,"(45,50]",College,693.0763379035825,287.4069159082075,2.411481072796934,6608.685683350981,2019
+1995,27,"(25,30]",College,203.1230429013711,89.1952497646161,2.2772854320987657,5657.049138867051,2019
+1995,27,"(25,30]",College,177.18832375055288,89.1952497646161,1.9865219753086425,5571.3729465936,2019
+1995,27,"(25,30]",College,185.89774436090227,89.1952497646161,2.0841664197530867,5605.848109497303,2019
+1995,27,"(25,30]",College,178.73666519239273,89.1952497646161,2.003880987654321,5536.386309914042,2019
+1995,27,"(25,30]",College,174.09164086687306,89.1952497646161,1.951803950617284,5599.733013400581,2019
+1995,63,"(60,65]",College,11163.077293233084,277.4963326010279,40.2278372063492,218.02474790852906,2019
+1995,63,"(60,65]",College,7159.259867315347,315.1565491683102,22.7165194129979,191.92973760628266,2019
+1995,63,"(60,65]",College,11413.327978770456,352.8167657355925,32.34916559300874,204.14510879518667,2019
+1995,63,"(60,65]",College,10484.71019902698,317.1386658297461,33.06033394444445,195.34916619568165,2019
+1995,63,"(60,65]",College,7929.559734630695,364.709465704208,21.742127584541066,195.69892649157552,2019
+1995,30,"(25,30]",College,52.5468376824414,128.8375829933344,0.40785333333333323,7855.669768565653,2019
+1995,30,"(25,30]",College,52.5468376824414,128.8375829933344,0.40785333333333323,7763.740558455034,2019
+1995,30,"(25,30]",College,52.5468376824414,128.8375829933344,0.40785333333333323,7787.759130289114,2019
+1995,30,"(25,30]",College,52.5468376824414,128.8375829933344,0.40785333333333323,7732.577594904821,2019
+1995,30,"(25,30]",College,52.5468376824414,128.8375829933344,0.40785333333333323,7760.367553688619,2019
+1995,63,"(60,65]",HS,7666.612649270235,891.9524976461611,8.595314962962963,26.538102390893936,2019
+1995,63,"(60,65]",HS,7666.999734630695,891.9524976461611,8.595748938271605,23.93964924210013,2019
+1995,63,"(60,65]",HS,7665.8384785493145,891.9524976461611,8.594447012345679,24.643611389086267,2019
+1995,63,"(60,65]",HS,7666.012666961522,891.9524976461611,8.594642301234568,21.792984834224885,2019
+1995,63,"(60,65]",HS,7666.032021229545,891.9524976461611,8.594664,24.44139090215325,2019
+1995,61,"(60,65]",HS,78.67509951348961,59.46349984307739,1.3230822222222225,8251.302607776332,2019
+1995,61,"(60,65]",HS,78.67509951348961,59.46349984307739,1.3230822222222225,8157.598622063454,2019
+1995,61,"(60,65]",HS,78.67509951348961,59.46349984307739,1.3230822222222225,8218.21102853255,2019
+1995,61,"(60,65]",HS,78.67509951348961,59.46349984307739,1.3230822222222225,8118.302697619241,2019
+1995,61,"(60,65]",HS,78.67509951348961,59.46349984307739,1.3230822222222225,8005.482521786075,2019
+1995,34,"(30,35]",HS,62.20461742591774,69.37408315025698,0.896654984126984,6406.966547566726,2019
+1995,34,"(30,35]",HS,-9.92873949579832,73.3383164731288,-0.1353827027027027,6603.310038302201,2019
+1995,34,"(30,35]",HS,-20.689712516585583,81.26678311887244,-0.25459002710027107,6547.988054364357,2019
+1995,34,"(30,35]",HS,-29.05075630252101,85.23101644174427,-0.34084723514211884,6646.286514669015,2019
+1995,34,"(30,35]",HS,-16.760796107916853,83.24889978030835,-0.20133354497354503,6549.86666169088,2019
+1995,52,"(50,55]",HS,9485.72030075188,218.03283275795047,43.50592606060606,1126.9683302055055,2019
+1995,52,"(50,55]",HS,9485.72030075188,218.03283275795047,43.50592606060606,978.9603226724223,2019
+1995,52,"(50,55]",HS,9485.72030075188,218.03283275795047,43.50592606060606,995.6692322801264,2019
+1995,52,"(50,55]",HS,9485.72030075188,218.03283275795047,43.50592606060606,972.0972624512857,2019
+1995,52,"(50,55]",HS,9485.72030075188,218.03283275795047,43.50592606060606,1033.3675699740784,2019
+1995,28,"(25,30]",HS,0,33.69598324441053,0,6787.95987332671,2019
+1995,28,"(25,30]",HS,0,35.67809990584644,0,6820.351312703955,2019
+1995,28,"(25,30]",HS,0,31.713866582974614,0,6832.299305887604,2019
+1995,28,"(25,30]",HS,0,33.69598324441053,0,6922.150169131282,2019
+1995,28,"(25,30]",HS,0,35.67809990584644,0,6855.128947753305,2019
+1995,56,"(55,60]",HS,6623.417602830606,198.21166614359132,33.41588177777778,822.5161901486978,2019
+1995,56,"(55,60]",HS,6427.9394957983195,198.21166614359132,32.429672888888895,653.9799335033744,2019
+1995,56,"(55,60]",HS,6578.186678460858,198.21166614359132,33.18768671111111,639.2380831882016,2019
+1995,56,"(55,60]",HS,3672.8594427244584,198.21166614359132,18.529986222222224,638.4722285493656,2019
+1995,56,"(55,60]",HS,8105.567448031845,198.21166614359132,40.89349333333334,654.0943898952557,2019
+1995,67,"(65,70]",NoHS,1736.852012383901,116.94488302471889,14.85188549905838,6493.839983934433,2019
+1995,67,"(65,70]",NoHS,1736.852012383901,116.94488302471889,14.85188549905838,11805.254985244985,2019
+1995,67,"(65,70]",NoHS,1736.852012383901,116.94488302471889,14.85188549905838,10983.745522883983,2019
+1995,67,"(65,70]",NoHS,1736.852012383901,116.94488302471889,14.85188549905838,11908.543530085492,2019
+1995,67,"(65,70]",NoHS,1736.852012383901,116.94488302471889,14.85188549905838,12015.95644899762,2019
+1995,59,"(55,60]",College,4132.523308270676,198.21166614359132,20.849041777777778,874.8638834770056,2019
+1995,59,"(55,60]",College,4134.458735072976,198.21166614359132,20.85880622222222,791.0775620739005,2019
+1995,59,"(55,60]",College,4135.039363113667,198.21166614359132,20.86173555555556,785.3861166068258,2019
+1995,59,"(55,60]",College,4135.039363113667,198.21166614359132,20.86173555555556,798.2943384448444,2019
+1995,59,"(55,60]",College,4134.071649712517,198.21166614359132,20.856853333333337,790.6605744025237,2019
+1995,34,"(30,35]",HS,122.82218487394958,99.10583307179566,1.239303288888889,4842.8846568859935,2019
+1995,34,"(30,35]",HS,122.80283060592657,99.10583307179566,1.239108,4877.975901542996,2019
+1995,34,"(30,35]",HS,122.57057938965059,99.10583307179566,1.2367645333333332,4850.805137079342,2019
+1995,34,"(30,35]",HS,123.09314462627157,99.10583307179566,1.2420373333333334,4898.390628075801,2019
+1995,34,"(30,35]",HS,122.80283060592657,99.10583307179566,1.239108,4868.121491183962,2019
+1995,32,"(30,35]",NoHS,-0.9870676691729324,23.785399937230956,-0.0414988888888889,5344.881869174269,2019
+1995,32,"(30,35]",NoHS,-0.9870676691729324,23.785399937230956,-0.0414988888888889,5295.712220634207,2019
+1995,32,"(30,35]",NoHS,-0.9870676691729324,23.785399937230956,-0.0414988888888889,5347.470514009338,2019
+1995,32,"(30,35]",NoHS,-0.9870676691729324,23.785399937230956,-0.0414988888888889,5315.452279401938,2019
+1995,32,"(30,35]",NoHS,-0.9870676691729324,23.785399937230956,-0.0414988888888889,5323.866725721353,2019
+1995,45,"(40,45]",College,583.0957098628925,112.98064970184706,5.1610228070175435,6270.148305634075,2019
+1995,45,"(40,45]",College,583.0957098628925,112.98064970184706,5.1610228070175435,6531.284147848535,2019
+1995,45,"(40,45]",College,583.0957098628925,112.98064970184706,5.1610228070175435,6453.363976173763,2019
+1995,45,"(40,45]",College,583.0957098628925,112.98064970184706,5.1610228070175435,6123.949501136899,2019
+1995,45,"(40,45]",College,583.0957098628925,112.98064970184706,5.1610228070175435,6471.011983434355,2019
+1995,65,"(60,65]",HS,24181.22246793454,1133.7707303413426,21.32814141414141,25.789700558778968,2019
+1995,65,"(60,65]",HS,24704.561875276428,1197.1984635072918,20.635310375275935,29.006837610298703,2019
+1995,65,"(60,65]",HS,21764.06793454224,1141.699196987086,19.06287399691358,26.41760328863169,2019
+1995,65,"(60,65]",HS,23587.04643962848,1203.1448134915995,19.604494966135817,31.32761253462964,2019
+1995,65,"(60,65]",HS,22853.519681556834,1205.1269301530353,18.963578947368422,25.195466542445313,2019
+1995,52,"(50,55]",College,230.6254577620522,136.76604963907803,1.6862771014492752,6447.767986257734,2019
+1995,52,"(50,55]",College,230.6254577620522,136.76604963907803,1.6862771014492752,6393.7224913204645,2019
+1995,52,"(50,55]",College,234.10922600619196,136.76604963907803,1.711749565217391,6433.122417208442,2019
+1995,52,"(50,55]",College,234.49631136665195,136.76604963907803,1.7145798389694042,6507.408984819075,2019
+1995,52,"(50,55]",College,228.30294559929234,136.76604963907803,1.6692954589371978,6492.498586783655,2019
+1995,33,"(30,35]",College,26.708889871738172,43.606566551590085,0.6124969696969699,4491.834587928644,2019
+1995,33,"(30,35]",College,26.708889871738172,43.606566551590085,0.6124969696969699,4498.434740907689,2019
+1995,33,"(30,35]",College,26.708889871738172,43.606566551590085,0.6124969696969699,4522.2652079761765,2019
+1995,33,"(30,35]",College,26.708889871738172,43.606566551590085,0.6124969696969699,4555.091316108889,2019
+1995,33,"(30,35]",College,26.708889871738172,43.606566551590085,0.6124969696969699,4546.731552620627,2019
+1995,30,"(25,30]",HS,16.838213180008847,35.67809990584644,0.47194814814814817,5291.433047892802,2019
+1995,30,"(25,30]",HS,14.322158337019019,39.642333228718265,0.36128444444444446,5242.755095861963,2019
+1995,30,"(25,30]",HS,17.03175586023883,33.69598324441053,0.5054535947712417,5293.995806278266,2019
+1995,30,"(25,30]",HS,16.838213180008847,37.660216567282355,0.44710877192982457,5262.297754032454,2019
+1995,30,"(25,30]",HS,16.993047324192833,35.67809990584644,0.4762879012345679,5270.628055884599,2019
+1995,62,"(60,65]",College,23818.52348518355,1470.7305627854475,16.195028571428573,12.843548598773811,2019
+1995,62,"(60,65]",College,23376.27846085803,1613.4429624088334,14.488444280644282,12.928149932801253,2019
+1995,62,"(60,65]",College,22073.73622291022,1601.550262440218,13.78273085808581,13.087769245243456,2019
+1995,62,"(60,65]",College,23242.73401149934,1536.140412612833,15.130605132616488,12.470737026418899,2019
+1995,62,"(60,65]",College,21454.39964617426,1684.7991622205263,12.734099189542484,12.524370155609386,2019
+1995,67,"(65,70]",NoHS,73.19784166298098,33.69598324441053,2.172301699346405,8947.92486817924,2019
+1995,67,"(65,70]",NoHS,74.16555506413091,33.69598324441053,2.201020653594771,8819.264172103502,2019
+1995,67,"(65,70]",NoHS,123.51893852277753,33.69598324441053,3.6656873202614375,8855.989078445327,2019
+1995,67,"(65,70]",NoHS,73.58492702344095,33.69598324441053,2.1837892810457515,9306.244993061615,2019
+1995,67,"(65,70]",NoHS,124.48665192392747,33.69598324441053,3.6944062745098036,9058.91762035323,2019
+1995,32,"(30,35]",College,-7.257850508624502,59.46349984307739,-0.12205555555555556,6413.858230060502,2019
+1995,32,"(30,35]",College,-5.709509066784609,59.46349984307739,-0.09601703703703704,6354.854651931545,2019
+1995,32,"(30,35]",College,-3.386996904024768,59.46349984307739,-0.056959259259259265,6416.964603856313,2019
+1995,32,"(30,35]",College,-5.709509066784609,59.46349984307739,-0.09601703703703704,6378.542722404999,2019
+1995,32,"(30,35]",College,-5.709509066784609,59.46349984307739,-0.09601703703703704,6388.640057967911,2019
+1995,77,"(75,80]",NoHS,14402.865634674923,2299.25532726566,6.264143639846742,25.025677784484483,2019
+1995,77,"(75,80]",NoHS,14054.488810260946,2279.4341606513003,6.165779671497584,23.3594980764399,2019
+1995,77,"(75,80]",NoHS,13784.496771340115,2378.5399937230964,5.7953605185185175,23.770653104857466,2019
+1995,77,"(75,80]",NoHS,13797.270588235295,2596.572826481047,5.3136466836301945,21.344317469959833,2019
+1995,77,"(75,80]",NoHS,14488.605042016807,2279.4341606513003,6.356228792270532,23.937492986433583,2019
+1995,38,"(35,40]",College,563.2091994692613,154.60509959200127,3.6428888888888875,4070.924340307075,2019
+1995,38,"(35,40]",College,563.2091994692613,154.60509959200127,3.6428888888888875,4238.871600486153,2019
+1995,38,"(35,40]",College,563.2091994692613,154.60509959200127,3.6428888888888875,4180.966729161804,2019
+1995,38,"(35,40]",College,563.2091994692613,154.60509959200127,3.6428888888888875,3969.6025119607352,2019
+1995,38,"(35,40]",College,563.2091994692613,154.60509959200127,3.6428888888888875,4210.007337393427,2019
+1995,45,"(40,45]",College,32.999026979212736,89.1952497646161,0.36996395061728393,6230.970033642894,2019
+1995,45,"(40,45]",College,32.999026979212736,89.1952497646161,0.36996395061728393,6144.311061047608,2019
+1995,45,"(40,45]",College,32.999026979212736,89.1952497646161,0.36996395061728393,6205.8227460497255,2019
+1995,45,"(40,45]",College,33.289340999557716,89.1952497646161,0.37321876543209875,6196.186180210697,2019
+1995,45,"(40,45]",College,32.999026979212736,89.1952497646161,0.36996395061728393,6229.505602152217,2019
+1995,52,"(50,55]",College,3412.350995134896,346.87041575128484,9.837538285714285,1476.2233678042267,2019
+1995,52,"(50,55]",College,3451.059531180894,346.87041575128484,9.949131936507937,1342.2462599676567,2019
+1995,52,"(50,55]",College,3425.898982750995,346.87041575128484,9.876596063492062,1326.3342879863721,2019
+1995,52,"(50,55]",College,3429.769836355595,346.87041575128484,9.88775542857143,1225.8986856800561,2019
+1995,52,"(50,55]",College,3392.9967271118976,346.87041575128484,9.78174146031746,1323.5660091431075,2019
+1995,30,"(25,30]",HS,2.322512162759841,118.92699968615479,0.01952888888888889,5932.818860108337,2019
+1995,30,"(25,30]",HS,2.322512162759841,118.92699968615479,0.01952888888888889,5878.240550363865,2019
+1995,30,"(25,30]",HS,2.322512162759841,118.92699968615479,0.01952888888888889,5935.692255868153,2019
+1995,30,"(25,30]",HS,2.322512162759841,118.92699968615479,0.01952888888888889,5900.1520155418475,2019
+1995,30,"(25,30]",HS,2.322512162759841,118.92699968615479,0.01952888888888889,5909.492050933299,2019
+1995,31,"(30,35]",College,102.96470588235294,118.92699968615479,0.8657807407407409,5920.167689567919,2019
+1995,31,"(30,35]",College,102.96470588235294,118.92699968615479,0.8657807407407409,5830.506558329444,2019
+1995,31,"(30,35]",College,102.96470588235294,118.92699968615479,0.8657807407407409,5866.5852170974595,2019
+1995,31,"(30,35]",College,102.96470588235294,118.92699968615479,0.8657807407407409,5793.892636308876,2019
+1995,31,"(30,35]",College,102.96470588235294,118.92699968615479,0.8657807407407409,5860.185697941491,2019
+1995,44,"(40,45]",HS,23.302538699690402,59.46349984307739,0.39187970370370373,4999.200762057217,2019
+1995,44,"(40,45]",HS,17.67044670499779,15.262298293056533,1.157784126984127,5088.543632750934,2019
+1995,44,"(40,45]",HS,6.948182220256523,25.76751659866687,0.2696488888888889,5006.5527059475135,2019
+1995,44,"(40,45]",HS,6.909473684210527,27.749633260102783,0.24899333333333337,5025.00819274159,2019
+1995,44,"(40,45]",HS,6.696576735957541,21.803283275795042,0.3071361616161617,5030.872523626694,2019
+1995,38,"(35,40]",HS,69.34634232640425,91.177366426052,0.760565314009662,7493.441899179239,2019
+1995,38,"(35,40]",HS,165.9628482972136,91.177366426052,1.820219806763285,7457.34324918692,2019
+1995,38,"(35,40]",HS,113.49342768686422,91.177366426052,1.2447543961352658,7458.792856509809,2019
+1995,38,"(35,40]",HS,63.48199911543565,91.177366426052,0.6962473429951691,7580.221708429957,2019
+1995,38,"(35,40]",HS,58.488597965501995,91.177366426052,0.6414815458937199,7618.25842989238,2019
+1995,78,"(75,80]",NoHS,2061.229544449359,1048.5397138995982,1.9658097038437303,3241.8417232242314,2019
+1995,78,"(75,80]",NoHS,2061.229544449359,1048.5397138995982,1.9658097038437303,2759.148342839793,2019
+1995,78,"(75,80]",NoHS,2061.229544449359,1048.5397138995982,1.9658097038437303,2863.097533333103,2019
+1995,78,"(75,80]",NoHS,2061.229544449359,1048.5397138995982,1.9658097038437303,2776.100255949881,2019
+1995,78,"(75,80]",NoHS,2061.229544449359,1048.5397138995982,1.9658097038437303,2872.027078055848,2019
+1995,52,"(50,55]",HS,-14.43828394515701,59.46349984307739,-0.2428091851851852,6924.40738403535,2019
+1995,52,"(50,55]",HS,-14.43828394515701,59.46349984307739,-0.2428091851851852,6949.8243228730835,2019
+1995,52,"(50,55]",HS,-14.43828394515701,59.46349984307739,-0.2428091851851852,6959.514862450749,2019
+1995,52,"(50,55]",HS,-14.43828394515701,59.46349984307739,-0.2428091851851852,6943.8368827028335,2019
+1995,52,"(50,55]",HS,-14.43828394515701,59.46349984307739,-0.2428091851851852,6944.1672126191315,2019
+1995,32,"(30,35]",HS,12.193188854489165,27.749633260102783,0.43940000000000007,4742.310882712975,2019
+1995,32,"(30,35]",HS,10.993224237063247,27.749633260102783,0.39615746031746035,4669.200132877133,2019
+1995,32,"(30,35]",HS,10.064219371959311,27.749633260102783,0.36267936507936516,4680.341138959759,2019
+1995,32,"(30,35]",HS,10.490013268465281,27.749633260102783,0.3780234920634921,4650.4048645025,2019
+1995,32,"(30,35]",HS,10.160990712074303,27.749633260102783,0.3661666666666667,4669.557717423927,2019
+1995,54,"(50,55]",NoHS,744.539336576736,186.31896617497586,3.99604695035461,8509.461707605318,2019
+1995,54,"(50,55]",NoHS,724.7592746572313,186.31896617497586,3.889884586288416,8624.406913773299,2019
+1995,54,"(50,55]",NoHS,735.0170367094206,186.31896617497586,3.944939432624113,8501.061800142383,2019
+1995,54,"(50,55]",NoHS,738.7330561698363,186.31896617497586,3.964883829787234,8288.402883143122,2019
+1995,54,"(50,55]",NoHS,747.1908712958868,186.31896617497586,4.010278108747045,8457.706035488603,2019
+1995,30,"(25,30]",HS,83.61043785935426,105.0521830561034,0.7958943396226414,7305.7688950599695,2019
+1995,30,"(25,30]",HS,86.51357806280407,105.0521830561034,0.8235295597484277,7240.557504284797,2019
+1995,30,"(25,30]",HS,83.61043785935426,105.0521830561034,0.7958943396226414,7339.054361021526,2019
+1995,30,"(25,30]",HS,87.09420610349403,105.0521830561034,0.8290566037735849,7251.097318828831,2019
+1995,30,"(25,30]",HS,84.38460858027422,105.0521830561034,0.8032637316561845,7315.544170221785,2019
+1995,71,"(70,75]",College,223673.40468819105,5549.926652020557,40.30204698412698,20.12365416564478,2019
+1995,71,"(70,75]",College,211631.1791242813,6521.163816124155,32.452976967240794,21.728651686078898,2019
+1995,71,"(70,75]",College,224219.19504643962,6362.594483209281,35.2402146071305,21.279309952668655,2019
+1995,71,"(70,75]",College,201197.29323308272,5748.138318164149,35.00216628352491,18.687207744553895,2019
+1995,71,"(70,75]",College,215803.95931003982,6283.309816751846,34.34558626007711,20.149174934146174,2019
+1995,74,"(70,75]",NoHS,21.8703228659885,19.028319949784766,1.1493564814814814,7951.01481382209,2019
+1995,74,"(70,75]",NoHS,21.8703228659885,19.028319949784766,1.1493564814814814,7967.368753044127,2019
+1995,74,"(70,75]",NoHS,21.8703228659885,19.028319949784766,1.1493564814814814,7944.486185922583,2019
+1995,74,"(70,75]",NoHS,21.8703228659885,19.028319949784766,1.1493564814814814,7958.284992536288,2019
+1995,74,"(70,75]",NoHS,21.8703228659885,19.028319949784766,1.1493564814814814,7944.061565634443,2019
+1995,91,"(90,95]",HS,0,9.910583307179566,0,7903.062883671296,2019
+1995,91,"(90,95]",HS,0,8.91952497646161,0,7678.765232152793,2019
+1995,91,"(90,95]",HS,0,9.514159974892383,0,7871.8716428876,2019
+1995,91,"(90,95]",HS,0,9.117736642605202,0,7669.004006062944,2019
+1995,91,"(90,95]",HS,0,9.712371641035974,0,7678.458144567119,2019
+1995,60,"(55,60]",College,583.91826625387,109.01641637897524,5.356241616161616,742.368319698571,2019
+1995,60,"(55,60]",College,593.5954002653693,109.01641637897524,5.445009292929293,723.2780936771694,2019
+1995,60,"(55,60]",College,583.91826625387,109.01641637897524,5.356241616161616,739.9043736338573,2019
+1995,60,"(55,60]",College,564.5639982308713,109.01641637897524,5.178706262626263,691.3112522770805,2019
+1995,60,"(55,60]",College,583.91826625387,109.01641637897524,5.356241616161616,746.2251284576398,2019
+1995,28,"(25,30]",College,162.2081203007519,122.89123300902662,1.3199324014336917,6256.138301539398,2019
+1995,28,"(25,30]",College,108.01616983635559,122.89123300902662,0.8789574910394264,6287.726337298425,2019
+1995,28,"(25,30]",College,81.88790800530738,122.89123300902662,0.66634458781362,6322.631127099628,2019
+1995,28,"(25,30]",College,88.27481645289696,122.89123300902662,0.7183166308243728,6367.130961263352,2019
+1995,28,"(25,30]",College,94.46818222025652,122.89123300902662,0.7687137634408602,6351.471385365219,2019
+1995,59,"(55,60]",NoHS,665.5932773109243,49.55291653589783,13.431969777777779,3914.45761117921,2019
+1995,59,"(55,60]",NoHS,665.5932773109243,49.55291653589783,13.431969777777779,4069.5816001750086,2019
+1995,59,"(55,60]",NoHS,665.5932773109243,49.55291653589783,13.431969777777779,4023.1557164771875,2019
+1995,59,"(55,60]",NoHS,665.5932773109243,49.55291653589783,13.431969777777779,3814.6521462278965,2019
+1995,59,"(55,60]",NoHS,665.5932773109243,49.55291653589783,13.431969777777779,4030.8767367093146,2019
+1995,47,"(45,50]",HS,20826.218168951793,3964.233322871826,5.25352986888889,30.668698835172005,2019
+1995,47,"(45,50]",HS,20816.541034940292,3964.233322871826,5.2510887577777785,34.47549120520512,2019
+1995,47,"(45,50]",HS,20803.960760725342,3964.233322871826,5.247915313333333,30.972479308733227,2019
+1995,47,"(45,50]",HS,20798.15448031844,3964.233322871826,5.246450646666666,37.09920510191703,2019
+1995,47,"(45,50]",HS,20827.18588235294,3964.233322871826,5.25377398,29.881690059636192,2019
+1995,30,"(25,30]",College,-83.99752321981425,13.874816630051392,-6.053955555555557,4982.265918438257,2019
+1995,30,"(25,30]",College,-82.25563909774436,13.874816630051392,-5.928412698412699,5006.040773839594,2019
+1995,30,"(25,30]",College,-83.80398053958426,13.874816630051392,-6.04000634920635,5014.81043075323,2019
+1995,30,"(25,30]",College,-131.99610791685095,13.874816630051392,-9.51335873015873,5080.759685320913,2019
+1995,30,"(25,30]",College,-112.64183989385228,13.874816630051392,-8.118438095238096,5031.567062896061,2019
+1995,68,"(65,70]",College,3267.000442282176,45.588683213026,71.66253140096619,870.8618251077384,2019
+1995,68,"(65,70]",College,2666.6407253427687,45.588683213026,58.49347990338165,558.63349718245,2019
+1995,68,"(65,70]",College,3865.0473241928353,45.588683213026,84.7808502415459,783.387656296918,2019
+1995,68,"(65,70]",College,2990.234409553295,45.588683213026,65.59159420289855,717.1117330971684,2019
+1995,68,"(65,70]",College,3325.0632463511724,45.588683213026,72.936154589372,780.0094981827734,2019
+1995,56,"(55,60]",College,60871.30190181336,901.8630809533405,67.49505904761905,16.689224557877427,2019
+1995,56,"(55,60]",College,57975.12923485184,903.8451976147765,64.14276403508772,17.425316625833343,2019
+1995,56,"(55,60]",College,62880.46846528085,909.7915475990842,69.11524802711207,17.13803686203101,2019
+1995,56,"(55,60]",College,63012.27103051748,937.541180859187,67.21013680996008,14.895407368353636,2019
+1995,56,"(55,60]",College,62655.76541353384,953.3981141506744,65.71836516516517,16.047438587011193,2019
+1995,33,"(30,35]",HS,2.322512162759841,59.46349984307739,0.03905777777777778,5771.245755582647,2019
+1995,33,"(30,35]",HS,2.322512162759841,59.46349984307739,0.03905777777777778,5739.7260019206415,2019
+1995,33,"(30,35]",HS,2.322512162759841,59.46349984307739,0.03905777777777778,5799.915411013337,2019
+1995,33,"(30,35]",HS,2.322512162759841,59.46349984307739,0.03905777777777778,5761.187442737718,2019
+1995,33,"(30,35]",HS,2.322512162759841,59.46349984307739,0.03905777777777778,5767.292496602604,2019
+1995,72,"(70,75]",College,327887.8737195931,8146.499478501603,40.24892833846986,17.354763389611882,2019
+1995,72,"(70,75]",College,326131.53195931006,7512.222146842111,43.41345684198183,17.612134865176802,2019
+1995,72,"(70,75]",College,328329.2865103936,7987.93014558673,41.10317448028674,18.455516391938694,2019
+1995,72,"(70,75]",College,338176.97033171164,7809.539646057498,43.30306082797518,16.673806996120835,2019
+1995,72,"(70,75]",College,331235.71693940734,7036.514148097493,47.0738365571205,16.77770318195821,2019
+1995,26,"(25,30]",NoHS,64.1400442282176,73.3383164731288,0.8745775375375374,6720.2891477140965,2019
+1995,26,"(25,30]",NoHS,98.59064130915525,73.3383164731288,1.3443264864864863,6660.303756986771,2019
+1995,26,"(25,30]",NoHS,38.0117823971694,73.3383164731288,0.5183072672672673,6750.907137263331,2019
+1995,26,"(25,30]",NoHS,94.52624502432552,73.3383164731288,1.2889066666666664,6669.9989173889935,2019
+1995,26,"(25,30]",NoHS,77.68803184431668,73.3383164731288,1.0593102702702704,6729.281038441749,2019
+1995,48,"(45,50]",HS,188.1254206103494,71.35619981169287,2.6364271234567904,7192.594253623056,2019
+1995,48,"(45,50]",HS,188.1254206103494,71.35619981169287,2.6364271234567904,7126.108986216532,2019
+1995,48,"(45,50]",HS,188.1254206103494,71.35619981169287,2.6364271234567904,7163.099020970565,2019
+1995,48,"(45,50]",HS,188.1254206103494,71.35619981169287,2.6364271234567904,7509.163575004105,2019
+1995,48,"(45,50]",HS,188.1254206103494,71.35619981169287,2.6364271234567904,7274.033573662595,2019
+1995,53,"(50,55]",College,345.08659885006637,132.8018163162062,2.5985081260364837,3476.8032979927566,2019
+1995,53,"(50,55]",College,428.5034940291906,107.03429971753931,4.003422222222222,3622.5952612645187,2019
+1995,53,"(50,55]",College,444.18045112781954,112.98064970184706,3.931473684210526,3577.741173538114,2019
+1995,53,"(50,55]",College,358.24750110570545,124.87334967046255,2.8688867724867726,3394.6236004668426,2019
+1995,53,"(50,55]",College,407.40734188412205,128.8375829933344,3.1621777777777766,3588.1082304872216,2019
+1995,42,"(40,45]",HS,5.2256523662096415,25.76751659866687,0.2028,7631.496575631488,2019
+1995,42,"(40,45]",HS,5.2256523662096415,17.442626620636037,0.2995909090909091,7728.080965156773,2019
+1995,42,"(40,45]",HS,5.2256523662096415,31.713866582974614,0.16477499999999998,7752.558278490525,2019
+1995,42,"(40,45]",HS,5.2256523662096415,47.57079987446191,0.10985,7669.98996521663,2019
+1995,42,"(40,45]",HS,5.2256523662096415,27.749633260102783,0.1883142857142857,7806.8979471827815,2019
+1995,40,"(35,40]",HS,189.555701017249,168.47991622205262,1.125093751633987,2715.368579554389,2019
+1995,40,"(35,40]",HS,46.699913312693496,168.47991622205262,0.2771838588235294,2811.631230913018,2019
+1995,40,"(35,40]",HS,59.028582043343654,168.47991622205262,0.350359754248366,2697.0804517608967,2019
+1995,40,"(35,40]",HS,70.73984962406016,168.47991622205262,0.41987111111111114,2836.3285359310485,2019
+1995,40,"(35,40]",HS,74.10749226006192,168.47991622205262,0.43985950326797385,2797.5114359613603,2019
+1995,46,"(45,50]",College,41643.320477664754,1837.4221451510919,22.66399182548244,21.771475130045456,2019
+1995,46,"(45,50]",College,91261.470322866,864.2028643860582,105.60190677879714,40.7828488679548,2019
+1995,46,"(45,50]",College,41676.242087571874,1817.6009785367323,22.929258170362296,36.5536218158438,2019
+1995,46,"(45,50]",College,35632.46545776205,1494.5159627226788,23.842144444444443,44.0687620611274,2019
+1995,46,"(45,50]",College,94379.90740380363,1113.9495637269833,84.72547633847371,35.476229152528305,2019
+1995,69,"(65,70]",College,95499.76470588236,931.5948308748792,102.51212387706857,14.028299846209455,2019
+1995,69,"(65,70]",College,95101.06678460859,909.7915475990842,104.53061147421933,15.009371556072441,2019
+1995,69,"(65,70]",College,95043.0039805396,959.3444641349821,99.07077961432508,14.833229305017568,2019
+1995,69,"(65,70]",College,95592.66519239276,977.1835140879052,97.82468064007213,12.985028555243137,2019
+1995,69,"(65,70]",College,84320.73949579832,997.0046807022643,84.57406582725868,14.097556629034909,2019
+1995,46,"(45,50]",HS,83.62979212737727,69.37408315025698,1.2054904126984125,8245.183525886336,2019
+1995,46,"(45,50]",HS,83.62979212737727,69.37408315025698,1.2054904126984125,8055.379617091821,2019
+1995,46,"(45,50]",HS,83.62979212737727,69.37408315025698,1.2054904126984125,8162.033827238127,2019
+1995,46,"(45,50]",HS,83.62979212737727,69.37408315025698,1.2054904126984125,8394.729221591308,2019
+1995,46,"(45,50]",HS,83.62979212737727,69.37408315025698,1.2054904126984125,8224.372425855912,2019
+1995,33,"(30,35]",HS,253.8312251216276,180.3726161906681,1.4072603174603173,3628.0153261899613,2019
+1995,33,"(30,35]",HS,253.8312251216276,180.3726161906681,1.4072603174603173,3770.890944163012,2019
+1995,33,"(30,35]",HS,195.76842105263157,180.3726161906681,1.0853555555555554,3728.3581520819184,2019
+1995,33,"(30,35]",HS,176.4141530296329,180.3726161906681,0.9780539682539682,6367.130961263352,2019
+1995,33,"(30,35]",HS,182.22043343653252,180.3726161906681,1.0102444444444445,6351.471385365219,2019
+1995,70,"(65,70]",HS,495.85634674922596,65.40984982738514,7.580759595959594,5291.057734394375,2019
+1995,70,"(65,70]",HS,507.6237417072092,75.32043313456471,6.739522339181287,5501.337718498655,2019
+1995,70,"(65,70]",HS,503.3077399380805,71.35619981169287,7.053454938271605,5441.868878337844,2019
+1995,70,"(65,70]",HS,510.66236178682,67.39196648882105,7.5774960784313725,5156.461774926208,2019
+1995,70,"(65,70]",HS,468.17974347633793,81.26678311887244,5.761022222222223,11930.416508851433,2019
+1995,49,"(45,50]",College,397.2463511720478,59.46349984307739,6.680507407407409,6613.324296502631,2019
+1995,49,"(45,50]",College,397.2463511720478,59.46349984307739,6.680507407407409,6461.085744424197,2019
+1995,49,"(45,50]",College,455.30915524104375,59.46349984307739,7.656951851851852,6546.63130894321,2019
+1995,49,"(45,50]",College,382.73065015479875,59.46349984307739,6.436396296296297,6733.272406782783,2019
+1995,49,"(45,50]",College,406.9234851835471,59.46349984307739,6.843248148148149,6596.632059994362,2019
+1995,44,"(40,45]",College,-485.5985846970367,396.42333228718263,-1.2249495555555556,172.24794632624122,2019
+1995,44,"(40,45]",College,-485.5985846970367,396.42333228718263,-1.2249495555555556,142.6683534501328,2019
+1995,44,"(40,45]",College,-485.5985846970367,396.42333228718263,-1.2249495555555556,149.75520101995832,2019
+1995,44,"(40,45]",College,-485.5985846970367,396.42333228718263,-1.2249495555555556,146.06350866102576,2019
+1995,44,"(40,45]",College,-485.5985846970367,396.42333228718263,-1.2249495555555556,141.7536364159434,2019
+1995,78,"(75,80]",HS,27.250809376382133,17.046203288348853,1.598643927648579,7841.000832087639,2019
+1995,78,"(75,80]",HS,27.250809376382133,16.055144957630898,1.6973256515775035,7815.974248990087,2019
+1995,78,"(75,80]",HS,27.250809376382133,13.874816630051392,1.9640482539682542,7838.097269744563,2019
+1995,78,"(75,80]",HS,27.289517912428128,16.25335662377449,1.6790081300813007,7849.8304407728865,2019
+1995,78,"(75,80]",HS,27.250809376382133,14.073028296194984,1.9363856025039126,7840.991913778227,2019
+1995,30,"(25,30]",College,466.805590446705,77.30254979600063,6.038682962962962,3107.643044274686,2019
+1995,30,"(25,30]",College,223.1160017691287,150.64086626912942,1.4811120467836256,5180.236266328034,2019
+1995,30,"(25,30]",College,214.48399823087132,200.19378280502724,1.0713819141914194,5250.705562246885,2019
+1995,30,"(25,30]",College,207.40033613445377,243.80034935661735,0.8506974525745257,5187.776946656731,2019
+1995,30,"(25,30]",College,460.0896594427245,166.4977995606167,2.763337777777778,3213.098991667056,2019
+1995,76,"(75,80]",HS,1874.4608580274214,186.31896617497586,10.060494089834515,1268.8491600998536,2019
+1995,76,"(75,80]",HS,1777.689517912428,85.23101644174427,20.857307493540052,1068.369983438741,2019
+1995,76,"(75,80]",HS,2126.066342326404,103.07006639466748,20.62738888888889,1076.9018727814953,2019
+1995,76,"(75,80]",HS,1777.689517912428,112.98064970184706,15.734460038986354,1085.289693143574,2019
+1995,76,"(75,80]",HS,1971.232198142415,164.5156828991808,11.982032128514057,1047.693263643022,2019
+1995,74,"(70,75]",HS,12.500921716054844,8.126678311887245,1.5382572357723576,9066.480290558928,2019
+1995,74,"(70,75]",HS,12.462213180008847,9.514159974892383,1.3098595370370374,9084.106238719449,2019
+1995,74,"(70,75]",HS,12.423504643962849,9.514159974892383,1.3057910185185186,9057.327328999716,2019
+1995,74,"(70,75]",HS,12.500921716054844,9.712371641035974,1.2871131972789118,9071.595722802153,2019
+1995,74,"(70,75]",HS,12.442858911985846,8.324889978030837,1.4946574603174598,9061.620958839001,2019
+1995,69,"(65,70]",College,455.0188412206988,103.07006639466748,4.414655555555556,3565.9444313321924,2019
+1995,69,"(65,70]",College,455.2123839009288,103.07006639466748,4.416533333333334,3653.0028082088684,2019
+1995,69,"(65,70]",College,455.2123839009288,103.07006639466748,4.416533333333334,3486.6534794214394,2019
+1995,69,"(65,70]",College,455.0188412206988,103.07006639466748,4.414655555555556,3785.423300168734,2019
+1995,69,"(65,70]",College,455.0188412206988,103.07006639466748,4.414655555555556,3602.546196085016,2019
+1995,45,"(40,45]",HS,11.22547545333923,51.53503319733374,0.21782222222222225,5535.851921375672,2019
+1995,45,"(40,45]",HS,11.22547545333923,51.53503319733374,0.21782222222222225,5546.841266452447,2019
+1995,45,"(40,45]",HS,11.22547545333923,51.53503319733374,0.21782222222222225,5493.904740082022,2019
+1995,45,"(40,45]",HS,11.22547545333923,51.53503319733374,0.21782222222222225,5609.039921292512,2019
+1995,45,"(40,45]",HS,11.22547545333923,51.53503319733374,0.21782222222222225,5554.411600935668,2019
+1995,73,"(70,75]",HS,2690.8238832375055,95.14159974892382,28.282306481481484,2525.976159169858,2019
+1995,73,"(70,75]",HS,2535.7961963732864,99.10583307179566,25.586750222222225,2161.1913759850604,2019
+1995,73,"(70,75]",HS,3487.2520123839013,97.12371641035975,35.905257142857145,597.3293600630575,2019
+1995,73,"(70,75]",HS,2921.7203007518797,91.177366426052,32.04435942028986,596.594030557418,2019
+1995,73,"(70,75]",HS,3758.2117647058826,87.21313310318017,43.0922686868687,612.8186564024903,2019
+1995,18,"(15,20]",HS,8.709420610349403,10.901641637897521,0.798909090909091,6017.580856078044,2019
+1995,18,"(15,20]",HS,40.643962848297214,10.901641637897521,3.728242424242425,6014.564973858676,2019
+1995,18,"(15,20]",HS,1.9354268022998675,10.901641637897521,0.17753535353535357,6011.071918594981,2019
+1995,18,"(15,20]",HS,0,10.901641637897521,0,6028.845092707124,2019
+1995,18,"(15,20]",HS,0,10.901641637897521,0,5975.6654018903455,2019
+1995,21,"(20,25]",HS,-11.728686421937196,13.874816630051392,-0.8453219047619048,3849.4399941765782,2019
+1995,21,"(20,25]",HS,-11.728686421937196,13.874816630051392,-0.8453219047619048,3814.245310803265,2019
+1995,21,"(20,25]",HS,-11.728686421937196,13.874816630051392,-0.8453219047619048,3807.9106368417015,2019
+1995,21,"(20,25]",HS,-11.728686421937196,13.874816630051392,-0.8453219047619048,3781.3814055473376,2019
+1995,21,"(20,25]",HS,-11.728686421937196,13.874816630051392,-0.8453219047619048,3773.8567411340155,2019
+1995,73,"(70,75]",College,60.38531623175586,47.57079987446191,1.269377777777778,13986.014022926855,2019
+1995,73,"(70,75]",College,60.38531623175586,47.57079987446191,1.269377777777778,14504.69046775903,2019
+1995,73,"(70,75]",College,60.38531623175586,47.57079987446191,1.269377777777778,14045.142141078579,2019
+1995,73,"(70,75]",College,60.38531623175586,47.57079987446191,1.269377777777778,14650.039310270096,2019
+1995,73,"(70,75]",College,60.38531623175586,47.57079987446191,1.269377777777778,14028.329822844786,2019
+1995,52,"(50,55]",HS,9900.675807164971,792.8466645743653,12.48750388888889,845.9668997335262,2019
+1995,52,"(50,55]",HS,9900.675807164971,792.8466645743653,12.48750388888889,765.4587138308818,2019
+1995,52,"(50,55]",HS,9900.675807164971,792.8466645743653,12.48750388888889,770.6853574351868,2019
+1995,52,"(50,55]",HS,9900.675807164971,792.8466645743653,12.48750388888889,772.4289141889332,2019
+1995,52,"(50,55]",HS,9900.675807164971,792.8466645743653,12.48750388888889,762.9624561087302,2019
+1995,35,"(30,35]",College,5737.959840778417,1163.5024802628811,4.9316266515237555,1385.420494972333,2019
+1995,35,"(30,35]",College,2792.627333038479,283.44268258533566,9.852529292929292,1239.523723077209,2019
+1995,35,"(30,35]",College,6110.33595754091,826.5426478187759,7.3926444977351435,1258.5903969037886,2019
+1995,35,"(30,35]",College,2147.1624944714727,662.0269649195949,3.2433157684630745,900.7074505382989,2019
+1995,35,"(30,35]",College,7600.8081379920395,301.28173253825884,25.228240935672513,1246.9431745545187,2019
+1995,53,"(50,55]",HS,989.5837240159221,499.4933986818502,1.981174779541446,324.31180684301086,2019
+1995,53,"(50,55]",HS,890.876957098629,499.4933986818502,1.7835610229276895,331.3059234727092,2019
+1995,53,"(50,55]",HS,1260.5434763379037,499.4933986818502,2.5236439153439156,599.762695740554,2019
+1995,53,"(50,55]",HS,890.876957098629,499.4933986818502,1.7835610229276895,316.7575768657788,2019
+1995,53,"(50,55]",HS,1200.5452454666076,499.4933986818502,2.4035257495590825,585.1928480179902,2019
+1995,73,"(70,75]",NoHS,104.90013268465282,51.53503319733374,2.0355111111111115,7682.685111362635,2019
+1995,73,"(70,75]",NoHS,104.90013268465282,51.53503319733374,2.0355111111111115,7688.047474961111,2019
+1995,73,"(70,75]",NoHS,104.90013268465282,51.53503319733374,2.0355111111111115,7827.696578637835,2019
+1995,73,"(70,75]",NoHS,104.90013268465282,51.53503319733374,2.0355111111111115,7841.173582610456,2019
+1995,73,"(70,75]",NoHS,104.90013268465282,51.53503319733374,2.0355111111111115,7655.278862718398,2019
+1995,62,"(60,65]",NoHS,40.8762140645732,35.67809990584644,1.145694814814815,6890.568432305915,2019
+1995,62,"(60,65]",NoHS,41.30200796107917,13.676604963907801,3.0199020933977456,6754.064641845672,2019
+1995,62,"(60,65]",NoHS,41.92134453781512,19.22653161592836,2.1803903780068725,6778.280083873357,2019
+1995,62,"(60,65]",NoHS,42.42455550641309,33.69598324441053,1.259038954248366,6810.826210100873,2019
+1995,62,"(60,65]",NoHS,41.49555064130916,27.749633260102783,1.4953549206349208,6721.587893674975,2019
+1995,39,"(35,40]",HS,17.70915524104379,37.660216567282355,0.4702350877192983,4145.606706238671,2019
+1995,39,"(35,40]",HS,17.70915524104379,15.856933291487307,1.1168083333333334,4111.195762635271,2019
+1995,39,"(35,40]",HS,17.70915524104379,67.39196648882105,0.262778431372549,4091.7468200548074,2019
+1995,39,"(35,40]",HS,17.70915524104379,39.642333228718265,0.4467233333333334,4017.4208616392048,2019
+1995,39,"(35,40]",HS,17.70915524104379,65.40984982738514,0.27074141414141417,4095.986098884229,2019
+1995,61,"(60,65]",HS,8338.786377708979,188.30108283641175,44.28432514619883,25.025677784484483,2019
+1995,61,"(60,65]",HS,8571.037593984962,188.30108283641175,45.51772865497076,23.3594980764399,2019
+1995,61,"(60,65]",HS,8571.037593984962,188.30108283641175,45.51772865497076,23.770653104857466,2019
+1995,61,"(60,65]",HS,8338.786377708979,188.30108283641175,44.28432514619883,21.344317469959833,2019
+1995,61,"(60,65]",HS,8571.037593984962,188.30108283641175,45.51772865497076,23.937492986433583,2019
+1995,29,"(25,30]",HS,21.986448474126494,23.785399937230956,0.9243674074074076,5449.157541443218,2019
+1995,29,"(25,30]",HS,21.986448474126494,23.785399937230956,0.9243674074074076,5506.741606945403,2019
+1995,29,"(25,30]",HS,21.986448474126494,23.785399937230956,0.9243674074074076,5456.754451898427,2019
+1995,29,"(25,30]",HS,21.986448474126494,23.785399937230956,0.9243674074074076,5542.51748082071,2019
+1995,29,"(25,30]",HS,21.986448474126494,23.785399937230956,0.9243674074074076,5464.965823024094,2019
+1995,27,"(25,30]",HS,152.74388323750554,65.40984982738514,2.3351816835016836,6048.795416503624,2019
+1995,27,"(25,30]",HS,156.0534630694383,65.40984982738514,2.385779259259259,6114.402749954223,2019
+1995,27,"(25,30]",HS,156.0534630694383,77.30254979600063,2.0187362962962956,6081.879768875179,2019
+1995,27,"(25,30]",HS,156.69215391419726,75.32043313456471,2.0803405847953216,6140.196855766579,2019
+1995,27,"(25,30]",HS,155.78250331711632,83.24889978030835,1.871286031746032,6098.438170460787,2019
+1995,51,"(50,55]",College,1404.5411658558162,388.494865641439,3.615340356009071,2754.894850409514,2019
+1995,51,"(50,55]",College,1404.5411658558162,388.494865641439,3.615340356009071,2253.5433004575416,2019
+1995,51,"(50,55]",College,1404.5411658558162,388.494865641439,3.615340356009071,2324.558896701535,2019
+1995,51,"(50,55]",College,1404.5411658558162,388.494865641439,3.615340356009071,2270.2324817228537,2019
+1995,51,"(50,55]",College,1404.5411658558162,388.494865641439,3.615340356009071,2306.323057826582,2019
+1995,52,"(50,55]",HS,1478.4725342768686,344.8882990898489,4.28681558109834,2922.1385265522536,2019
+1995,52,"(50,55]",HS,1444.4090225563912,319.12078249118207,4.526214216701173,2504.991759833575,2019
+1995,52,"(50,55]",HS,1506.7297655904467,338.9419491055412,4.445391812865497,2582.950278499724,2019
+1995,52,"(50,55]",HS,1631.9518796992481,305.2459658611307,5.34635036075036,2507.6147474233976,2019
+1995,52,"(50,55]",HS,1558.599203892083,390.47698230287494,3.9915264523406653,2583.8592752952295,2019
+1995,21,"(20,25]",HS,22.528367978770458,3.9642333228718267,5.682906666666667,4436.559294263384,2019
+1995,21,"(20,25]",HS,22.528367978770458,3.9642333228718267,5.682906666666667,4412.580934095852,2019
+1995,21,"(20,25]",HS,22.528367978770458,3.9642333228718267,5.682906666666667,4408.36238351072,2019
+1995,21,"(20,25]",HS,22.528367978770458,3.9642333228718267,5.682906666666667,4374.6120518110965,2019
+1995,21,"(20,25]",HS,22.528367978770458,3.9642333228718267,5.682906666666667,4363.625707084292,2019
+1995,50,"(45,50]",College,16489.797647058826,1006.9152640094438,16.37654948381453,17.018031115952343,2019
+1995,50,"(45,50]",HS,12316.82391862008,445.97624882308054,27.617667871604937,14.924969203543165,2019
+1995,50,"(45,50]",HS,12696.477240159222,1300.268529901959,9.764503983739838,15.502167492933344,2019
+1995,50,"(45,50]",College,9782.42122954445,1916.7068116085281,5.103765046535678,15.121956864445616,2019
+1995,50,"(45,50]",HS,15699.156444051305,1950.4027948529388,8.049186806684734,15.712355986859876,2019
+1995,36,"(35,40]",College,842.6848297213622,158.56933291487306,5.314298888888889,996.6732010511165,2019
+1995,36,"(35,40]",College,827.2014153029634,158.56933291487306,5.216654444444445,982.6850679605884,2019
+1995,36,"(35,40]",College,854.3748076072535,158.56933291487306,5.388020444444445,1000.5482066509958,2019
+1995,36,"(35,40]",College,761.7839893852278,158.56933291487306,4.804106666666667,944.0205699592873,2019
+1995,36,"(35,40]",College,816.827527642636,158.56933291487306,5.151232666666667,1007.2405752070939,2019
+1995,68,"(65,70]",College,3189.0027421494915,432.1014321930291,7.380217940876657,173.80829541612758,2019
+1995,68,"(65,70]",College,3189.0027421494915,432.1014321930291,7.380217940876657,155.9016655346859,2019
+1995,68,"(65,70]",College,3189.0027421494915,432.1014321930291,7.380217940876657,154.9296634455761,2019
+1995,68,"(65,70]",College,3189.0027421494915,432.1014321930291,7.380217940876657,143.6034844301031,2019
+1995,68,"(65,70]",College,3189.0027421494915,432.1014321930291,7.380217940876657,155.3212909050215,2019
+1995,45,"(40,45]",HS,4393.225298540469,59.46349984307739,73.8810414814815,764.0246123926429,2019
+1995,45,"(40,45]",HS,4393.225298540469,59.46349984307739,73.8810414814815,608.8884227826554,2019
+1995,45,"(40,45]",HS,2748.1125165855815,59.46349984307739,46.215115555555556,2219.75385355012,2019
+1995,45,"(40,45]",HS,4393.225298540469,59.46349984307739,73.8810414814815,594.4085166215489,2019
+1995,45,"(40,45]",HS,2748.1125165855815,59.46349984307739,46.215115555555556,2220.895894839287,2019
+1995,34,"(30,35]",HS,1418.4743034055728,89.1952497646161,15.903025185185186,774.9638263451897,2019
+1995,34,"(30,35]",HS,980.6807607253428,89.1952497646161,10.994764444444446,658.0065205583371,2019
+1995,34,"(30,35]",HS,5173.782927908005,89.1952497646161,58.00513975308642,912.5578290869056,2019
+1995,34,"(30,35]",HS,3786.6625386996902,89.1952497646161,42.45363456790123,921.4557638838523,2019
+1995,34,"(30,35]",HS,762.5581601061477,89.1952497646161,8.549313580246913,351.1517196394361,2019
+1995,66,"(65,70]",College,250.6377708978328,23.785399937230956,10.537462962962964,10754.285809325671,2019
+1995,66,"(65,70]",College,250.6377708978328,23.785399937230956,10.537462962962964,10699.260794495416,2019
+1995,66,"(65,70]",College,250.6377708978328,23.785399937230956,10.537462962962964,10710.428134546475,2019
+1995,66,"(65,70]",College,250.6377708978328,23.785399937230956,10.537462962962964,11394.727834319645,2019
+1995,66,"(65,70]",College,250.6377708978328,23.785399937230956,10.537462962962964,11001.539068551578,2019
+1995,20,"(15,20]",HS,-43.779354268023006,14.865874960769348,-2.944956444444445,5650.188554575969,2019
+1995,20,"(15,20]",HS,-42.153595754091114,14.865874960769348,-2.835594666666667,5746.281189170282,2019
+1995,20,"(15,20]",HS,-44.28256523662096,14.865874960769348,-2.9788065185185184,5671.13119238782,2019
+1995,20,"(15,20]",HS,-43.56645731977002,14.865874960769348,-2.9306352592592595,5756.9550066710535,2019
+1995,20,"(15,20]",HS,-43.45033171163202,14.865874960769348,-2.9228237037037035,5641.871054641107,2019
+1995,43,"(40,45]",HS,1312.02582927908,59.46349984307739,22.06438962962963,2258.715535391776,2019
+1995,43,"(40,45]",HS,1312.02582927908,59.46349984307739,22.06438962962963,1935.338526834827,2019
+1995,43,"(40,45]",HS,1312.02582927908,59.46349984307739,22.06438962962963,1991.0771346945144,2019
+1995,43,"(40,45]",HS,1312.02582927908,59.46349984307739,22.06438962962963,1934.8963939036535,2019
+1995,43,"(40,45]",HS,1309.8968597965502,59.46349984307739,22.02858666666667,1999.4707625330157,2019
+1995,74,"(70,75]",College,569.596107916851,23.785399937230956,23.947300000000006,6360.6847081368,2019
+1995,74,"(70,75]",College,511.9203892083149,43.606566551590085,11.739525252525254,6613.4743669274785,2019
+1995,74,"(70,75]",College,500.77233082706766,59.46349984307739,8.421507851851853,6541.983455051274,2019
+1995,74,"(70,75]",College,465.4701459531181,47.57079987446191,9.784787037037038,6198.8791667606465,2019
+1995,74,"(70,75]",College,544.2420168067227,35.67809990584644,15.254232098765435,6577.448052029737,2019
+1995,49,"(45,50]",HS,30.291364882795225,138.74816630051396,0.21831902857142854,238.36674766875657,2019
+1995,49,"(45,50]",HS,30.291364882795225,138.74816630051396,0.21831902857142854,236.434302250455,2019
+1995,49,"(45,50]",HS,30.291364882795225,138.74816630051396,0.21831902857142854,232.45065680252037,2019
+1995,49,"(45,50]",HS,30.291364882795225,138.74816630051396,0.21831902857142854,238.76654149682477,2019
+1995,49,"(45,50]",HS,30.291364882795225,138.74816630051396,0.21831902857142854,241.41791483637695,2019
+1995,34,"(30,35]",College,69.28827952233524,79.28466645743653,0.8739177777777777,6401.95489309727,2019
+1995,34,"(30,35]",College,69.28827952233524,79.28466645743653,0.8739177777777777,6471.39271674413,2019
+1995,34,"(30,35]",College,69.28827952233524,79.28466645743653,0.8739177777777777,6436.970878424225,2019
+1995,34,"(30,35]",College,69.28827952233524,79.28466645743653,0.8739177777777777,6498.69281379617,2019
+1995,34,"(30,35]",College,69.28827952233524,79.28466645743653,0.8739177777777777,6454.496043808989,2019
+1995,32,"(30,35]",College,135.6734188412207,160.55144957630895,0.845046364883402,5075.292191793713,2019
+1995,32,"(30,35]",College,132.57673595754093,160.55144957630895,0.8257585733882032,5100.917985776314,2019
+1995,32,"(30,35]",College,142.25386996904024,160.55144957630895,0.8860329218106996,5129.2344964728,2019
+1995,32,"(30,35]",College,129.6735957540911,160.55144957630895,0.8076762688614542,5165.334986900209,2019
+1995,32,"(30,35]",College,129.8671384343211,160.55144957630895,0.8088817558299042,5152.631155966186,2019
+1995,23,"(20,25]",HS,27.289517912428128,43.606566551590085,0.6258121212121213,3711.568413499047,2019
+1995,23,"(20,25]",HS,27.289517912428128,83.24889978030835,0.3278063492063492,3700.857253544804,2019
+1995,23,"(20,25]",HS,27.289517912428128,89.1952497646161,0.3059525925925926,3721.9408185395114,2019
+1995,23,"(20,25]",HS,27.289517912428128,41.624449890154175,0.6556126984126984,3697.5305360854263,2019
+1995,23,"(20,25]",HS,27.289517912428128,31.713866582974614,0.8604916666666665,3680.854604565434,2019
+1995,32,"(30,35]",HS,87.09420610349403,99.10583307179566,0.8788,6664.286749141806,2019
+1995,32,"(30,35]",HS,87.09420610349403,99.10583307179566,0.8788,6604.801236572423,2019
+1995,32,"(30,35]",HS,87.09420610349403,99.10583307179566,0.8788,6694.649588828203,2019
+1995,32,"(30,35]",HS,87.09420610349403,99.10583307179566,0.8788,6614.415603987154,2019
+1995,32,"(30,35]",HS,87.09420610349403,99.10583307179566,0.8788,6673.203707461436,2019
+1995,28,"(25,30]",HS,4.354710305174701,79.28466645743653,0.054925,5322.463051602679,2019
+1995,28,"(25,30]",HS,4.354710305174701,79.28466645743653,0.054925,5302.525577678655,2019
+1995,28,"(25,30]",HS,4.354710305174701,79.28466645743653,0.054925,5297.1117910513485,2019
+1995,28,"(25,30]",HS,4.354710305174701,79.28466645743653,0.054925,5325.396160329332,2019
+1995,28,"(25,30]",HS,4.354710305174701,79.28466645743653,0.054925,5317.347490710422,2019
+1995,53,"(50,55]",College,13800.580168067227,495.5291653589783,27.850187502222223,1056.6512432473664,2019
+1995,53,"(50,55]",College,13473.49303847855,495.5291653589783,27.19011105777778,952.1260395711382,2019
+1995,53,"(50,55]",College,13812.579814241486,495.5291653589783,27.874403324444447,934.6669018571736,2019
+1995,53,"(50,55]",College,13883.784166298099,495.5291653589783,28.018096888888895,962.4545843989392,2019
+1995,53,"(50,55]",College,13510.072605042016,495.5291653589783,27.26393025777778,947.6837304184977,2019
+1995,31,"(30,35]",College,4.703087129588678,19.821166614359132,0.23727600000000001,6435.293021369728,2019
+1995,31,"(30,35]",College,4.703087129588678,21.803283275795042,0.2157054545454546,6351.300512088057,2019
+1995,31,"(30,35]",College,4.703087129588678,19.821166614359132,0.23727600000000001,6456.119899191933,2019
+1995,31,"(30,35]",College,4.703087129588678,21.803283275795042,0.2157054545454546,6405.313021849953,2019
+1995,31,"(30,35]",College,4.703087129588678,21.803283275795042,0.2157054545454546,6369.002781104376,2019
+1995,30,"(25,30]",HS,170.6659354268023,134.7839329776421,1.2662186928104573,6256.138301539398,2019
+1995,30,"(25,30]",HS,200.31667403803627,134.7839329776421,1.4862058823529412,6287.726337298425,2019
+1995,30,"(25,30]",HS,183.8655462184874,134.7839329776421,1.3641503267973856,6322.631127099628,2019
+1995,30,"(25,30]",HS,173.02715612560814,134.7839329776421,1.2837372549019608,6367.130961263352,2019
+1995,30,"(25,30]",HS,188.60734188412206,134.7839329776421,1.399331045751634,6351.471385365219,2019
+1995,44,"(40,45]",HS,69.34634232640425,99.10583307179566,0.699720088888889,6238.873296697063,2019
+1995,44,"(40,45]",HS,19.799416187527644,99.10583307179566,0.19978053333333337,6226.156342371979,2019
+1995,44,"(40,45]",HS,18.057532065457764,99.10583307179566,0.18220453333333336,6242.371635823098,2019
+1995,44,"(40,45]",HS,17.67044670499779,99.10583307179566,0.17829875555555558,6131.500487091336,2019
+1995,44,"(40,45]",HS,20.96067226890756,99.10583307179566,0.21149786666666667,6235.623408054346,2019
+1995,71,"(70,75]",College,5784.390729765591,275.514215939592,20.994890263788964,768.6414821095557,2019
+1995,71,"(70,75]",College,5698.380362671384,221.99706608082226,25.66871924603175,611.1458434261872,2019
+1995,71,"(70,75]",College,6363.2188235294125,208.12224945077088,30.57442844444445,597.4317456851122,2019
+1995,71,"(70,75]",College,7564.944679345423,255.69304932523286,29.586039586563302,596.6000544602488,2019
+1995,71,"(70,75]",College,7233.812507739938,265.6036326324124,27.235367363184075,613.2470308033246,2019
+1995,41,"(40,45]",College,203134.07483414418,3627.2734904277218,56.00186348512446,18.857064790871725,2019
+1995,41,"(40,45]",College,200745.17753206546,7987.93014558673,25.131063225806454,19.175138344520807,2019
+1995,41,"(40,45]",College,210392.31242812914,6184.2039836800495,34.020920555555556,19.17520120101546,2019
+1995,41,"(40,45]",College,210933.26421937195,8344.711144645195,25.277479419371865,18.500026606151643,2019
+1995,41,"(40,45]",College,196907.0326404246,8919.524976461607,22.075955071604945,18.686463082699085,2019
+1995,32,"(30,35]",HS,55.488686421937196,107.03429971753931,0.518419670781893,5550.901371922288,2019
+1995,32,"(30,35]",HS,55.682229102167184,107.03429971753931,0.520227901234568,5611.108373842945,2019
+1995,32,"(30,35]",HS,55.682229102167184,107.03429971753931,0.520227901234568,5581.262454472274,2019
+1995,32,"(30,35]",HS,55.682229102167184,107.03429971753931,0.520227901234568,5634.779291353342,2019
+1995,32,"(30,35]",HS,55.682229102167184,107.03429971753931,0.520227901234568,5596.457885586973,2019
+1995,57,"(55,60]",College,1114.6122954444936,275.514215939592,4.045570903277377,8509.461707605318,2019
+1995,57,"(55,60]",College,1114.6122954444936,275.514215939592,4.045570903277377,8624.406913773299,2019
+1995,57,"(55,60]",College,1114.6122954444936,275.514215939592,4.045570903277377,8501.061800142383,2019
+1995,57,"(55,60]",College,1099.1288810260946,275.514215939592,3.9893726618705023,8288.402883143122,2019
+1995,57,"(55,60]",College,1099.1288810260946,275.514215939592,3.9893726618705023,8457.706035488603,2019
+1995,56,"(55,60]",College,12876.259035824856,1137.7349636642143,11.317450414246998,11.233606678720095,2019
+1995,56,"(55,60]",College,11918.22276868642,1137.7349636642143,10.475394665118078,9.995341176635895,2019
+1995,56,"(55,60]",College,13021.416045997346,1137.7349636642143,11.445034618660472,10.42206193307067,2019
+1995,56,"(55,60]",College,13021.416045997346,1137.7349636642143,11.445034618660472,10.066702401207388,2019
+1995,56,"(55,60]",College,11984.027279964617,1137.7349636642143,10.533232837785519,10.396116079617547,2019
+1995,61,"(60,65]",College,263.49094029190627,180.3726161906681,1.4608145396825398,4587.7680731277815,2019
+1995,61,"(60,65]",College,265.4263670942061,180.3726161906681,1.4715446984126985,4752.051379887608,2019
+1995,61,"(60,65]",College,263.49094029190627,180.3726161906681,1.4608145396825398,4696.297072816896,2019
+1995,61,"(60,65]",College,264.2651110128262,180.3726161906681,1.4651066031746032,4453.164449571944,2019
+1995,61,"(60,65]",College,265.4263670942061,180.3726161906681,1.4715446984126985,4711.769786935941,2019
+1995,28,"(25,30]",HS,79.64281291463953,33.69598324441053,2.363569934640523,10466.710718341692,2019
+1995,28,"(25,30]",HS,51.192038920831486,35.67809990584644,1.4348308641975307,10542.159983397683,2019
+1995,28,"(25,30]",HS,71.47531180893411,35.67809990584644,2.0033385185185186,10366.195283975674,2019
+1995,28,"(25,30]",HS,51.67589562140646,41.624449890154175,1.2414793650793652,10466.614032826117,2019
+1995,28,"(25,30]",HS,67.64316674038037,31.713866582974614,2.1329208333333334,10479.643595242487,2019
+1995,38,"(35,40]",HS,176.87865546218487,77.30254979600063,2.288134814814814,6283.903473801298,2019
+1995,38,"(35,40]",HS,163.0790623617868,206.14013278933496,0.7911077777777779,6236.584943646625,2019
+1995,38,"(35,40]",HS,149.08592658115876,142.71239962338575,1.0446599382716049,6277.245633370675,2019
+1995,38,"(35,40]",HS,174.32389208314905,265.6036326324124,0.6563309784411275,6346.992725380535,2019
+1995,38,"(35,40]",HS,204.45848739495798,192.26531615928357,1.0634184650630012,6286.676126597916,2019
+1995,30,"(25,30]",HS,17.244652808491818,37.660216567282355,0.45790105263157893,6341.065719917808,2019
+1995,30,"(25,30]",HS,17.244652808491818,31.713866582974614,0.5437575,6371.32462681868,2019
+1995,30,"(25,30]",HS,17.244652808491818,33.69598324441053,0.5117717647058824,6382.486008354883,2019
+1995,30,"(25,30]",HS,17.244652808491818,39.642333228718265,0.435006,6466.421423332566,2019
+1995,30,"(25,30]",HS,17.63173816895179,33.69598324441053,0.5232593464052288,6403.812631100761,2019
+1995,31,"(30,35]",HS,3.9289164086687305,118.92699968615479,0.03303637037037037,5823.204142376082,2019
+1995,31,"(30,35]",HS,3.9289164086687305,118.92699968615479,0.03303637037037037,5711.444560409747,2019
+1995,31,"(30,35]",HS,1.9934896063688634,118.92699968615479,0.0167622962962963,5717.589022280572,2019
+1995,31,"(30,35]",HS,3.9289164086687305,118.92699968615479,0.03303637037037037,5742.986638634295,2019
+1995,31,"(30,35]",HS,1.9934896063688634,118.92699968615479,0.0167622962962963,5728.116745728491,2019
+1995,73,"(70,75]",HS,35.0312251216276,29.731749921538697,1.1782429629629632,9031.651857162096,2019
+1995,73,"(70,75]",HS,35.0312251216276,61.44561650451331,0.5701175627240144,9120.80858380077,2019
+1995,73,"(70,75]",HS,35.0312251216276,103.07006639466748,0.33987777777777783,9107.11179525687,2019
+1995,73,"(70,75]",HS,35.0312251216276,41.624449890154175,0.8416021164021165,9050.510734205953,2019
+1995,73,"(70,75]",HS,35.0312251216276,65.40984982738514,0.5355649831649831,8790.603406069848,2019
+1995,76,"(75,80]",HS,18745.769836355594,1014.8437306551876,18.471582638888886,40.672002971836505,2019
+1995,76,"(75,80]",HS,18541.38876603273,1084.2178138054446,17.10116595571806,45.73272698153342,2019
+1995,76,"(75,80]",HS,24290.767624944714,1290.3579465947796,18.82482894691927,41.04553817903476,2019
+1995,76,"(75,80]",HS,20641.520389208312,1153.5918969557015,17.89326055746468,49.46523555226078,2019
+1995,76,"(75,80]",HS,19211.3948164529,1058.4502972067776,18.150493100291307,39.89506190918424,2019
+1995,33,"(30,35]",HS,-16.431773551525872,55.499266520205566,-0.29607190476190476,6140.459291312444,2019
+1995,33,"(30,35]",HS,-10.431950464396285,55.499266520205566,-0.18796555555555558,6149.481878830066,2019
+1995,33,"(30,35]",HS,-13.335090667846085,55.499266520205566,-0.24027507936507939,6182.058771425408,2019
+1995,33,"(30,35]",HS,-17.20594427244582,55.499266520205566,-0.31002111111111114,6226.932948498366,2019
+1995,33,"(30,35]",HS,-11.206121185316231,55.499266520205566,-0.2019147619047619,6215.504925854202,2019
+1995,44,"(40,45]",College,1153.5143741707209,713.5619981169287,1.616558024691358,1448.1148673604812,2019
+1995,44,"(40,45]",College,1153.5143741707209,713.5619981169287,1.616558024691358,1173.4889428775384,2019
+1995,44,"(40,45]",College,1153.5143741707209,713.5619981169287,1.616558024691358,1222.724857450055,2019
+1995,44,"(40,45]",College,1153.5143741707209,713.5619981169287,1.616558024691358,1183.1324101556684,2019
+1995,44,"(40,45]",College,1153.5143741707209,713.5619981169287,1.616558024691358,1208.6282326326368,2019
+1995,49,"(45,50]",HS,21.73484298982751,85.23101644174427,0.2550109560723514,8609.810784966478,2019
+1995,49,"(45,50]",HS,11.08999557717824,65.40984982738514,0.1695462626262626,8548.870530964366,2019
+1995,49,"(45,50]",HS,30.231366651923928,61.44561650451331,0.49200200716845877,8498.204923843374,2019
+1995,49,"(45,50]",HS,11.07064130915524,77.30254979600063,0.1432118518518518,8933.29053195786,2019
+1995,49,"(45,50]",HS,27.347580716497127,65.40984982738514,0.41809575757575757,8621.297352734911,2019
+1995,64,"(60,65]",College,51618.99407341884,832.4889978030835,62.00561714285715,16.922237812228754,2019
+1995,64,"(60,65]",College,47502.534807607255,927.6305975520074,51.20846049382716,33.67646613186312,2019
+1995,64,"(60,65]",College,51595.575409111014,733.3831647312879,70.35282222222222,18.149931201243074,2019
+1995,64,"(60,65]",College,50120.006015037594,733.3831647312879,68.34081885885885,15.780003964162134,2019
+1995,64,"(60,65]",College,55850.224148606816,747.2579813613394,74.74021762452107,16.98926204970277,2019
+1995,80,"(75,80]",HS,134717.5115435648,2457.824660180533,54.8116851971326,2.8105880616522616,2019
+1995,80,"(75,80]",HS,209990.0920300752,2279.4341606513003,92.12378039033817,4.132446998413185,2019
+1995,80,"(75,80]",HS,88582.83962848297,2140.6859943507866,41.380585411522624,3.0383781419960103,2019
+1995,80,"(75,80]",HS,44404.90356479434,2219.9706608082233,20.002473162698408,4.345945692998077,2019
+1995,80,"(75,80]",HS,136060.75580716497,2061.4013278933503,66.00401094444443,2.2997107014584666,2019
+1995,36,"(35,40]",College,181.27207430340556,55.499266520205566,3.2662066666666667,6275.979571937874,2019
+1995,36,"(35,40]",College,181.27207430340556,55.499266520205566,3.2662066666666667,6316.551937548719,2019
+1995,36,"(35,40]",College,181.27207430340556,55.499266520205566,3.2662066666666667,6307.2271034465875,2019
+1995,36,"(35,40]",College,181.27207430340556,55.499266520205566,3.2662066666666667,6500.094257340215,2019
+1995,36,"(35,40]",College,181.27207430340556,55.499266520205566,3.2662066666666667,6365.908635361431,2019
+1995,69,"(65,70]",HS,5160.4284829721355,560.9390151863635,9.199624813506084,383.0240069146469,2019
+1995,69,"(65,70]",HS,5161.589739053516,560.9390151863635,9.201695013741656,337.5928816776817,2019
+1995,69,"(65,70]",HS,5150.751348960637,560.9390151863635,9.182373144876326,336.033337347881,2019
+1995,69,"(65,70]",HS,5154.622202565237,560.9390151863635,9.18927381232823,348.4179119278091,2019
+1995,69,"(65,70]",HS,5125.590800530738,560.9390151863635,9.137518806438948,351.2529301112566,2019
+1995,37,"(35,40]",HS,102.53891198584697,19.821166614359132,5.173202666666667,6831.100597216791,2019
+1995,37,"(35,40]",HS,102.53891198584697,19.821166614359132,5.173202666666667,6846.849819488858,2019
+1995,37,"(35,40]",HS,102.53891198584697,19.821166614359132,5.173202666666667,6842.5597582734945,2019
+1995,37,"(35,40]",HS,102.53891198584697,19.821166614359132,5.173202666666667,6799.657837786581,2019
+1995,37,"(35,40]",HS,102.53891198584697,19.821166614359132,5.173202666666667,6841.742632861637,2019
+1995,34,"(30,35]",HS,46.837328615656794,69.37408315025698,0.6751415873015872,7487.021512812459,2019
+1995,34,"(30,35]",HS,40.373003095975236,69.37408315025698,0.5819608888888889,7446.131021618645,2019
+1995,34,"(30,35]",HS,37.256965944272444,69.37408315025698,0.5370444444444443,7524.214579277676,2019
+1995,34,"(30,35]",HS,36.908589119858476,69.37408315025698,0.5320227301587301,7473.972890757202,2019
+1995,34,"(30,35]",HS,103.6421052631579,69.37408315025698,1.4939599999999997,7338.942949343937,2019
+1995,47,"(45,50]",HS,1411.7003095975233,277.4963326010279,5.087275555555554,104.95698236566673,2019
+1995,47,"(45,50]",HS,1409.9584254754534,277.4963326010279,5.080998412698412,88.8556091080087,2019
+1995,47,"(45,50]",HS,1409.7648827952232,277.4963326010279,5.080300952380951,88.35712900573114,2019
+1995,47,"(45,50]",HS,1416.538876603273,277.4963326010279,5.104712063492062,90.63923851334508,2019
+1995,47,"(45,50]",HS,1414.4099071207431,277.4963326010279,5.097039999999999,86.74985551551377,2019
+1995,24,"(20,25]",HS,-1.1612560813799204,27.749633260102783,-0.04184761904761905,5138.002661138447,2019
+1995,24,"(20,25]",HS,-1.1612560813799204,27.749633260102783,-0.04184761904761905,5142.502553871918,2019
+1995,24,"(20,25]",HS,-1.1612560813799204,27.749633260102783,-0.04184761904761905,5175.450056586108,2019
+1995,24,"(20,25]",HS,-1.1612560813799204,27.749633260102783,-0.04184761904761905,5137.939059157402,2019
+1995,24,"(20,25]",HS,-1.1612560813799204,27.749633260102783,-0.04184761904761905,5112.094381446152,2019
+1995,27,"(25,30]",NoHS,-2.303157894736842,39.642333228718265,-0.058098444444444446,4672.953864120313,2019
+1995,27,"(25,30]",NoHS,-2.303157894736842,39.642333228718265,-0.058098444444444446,4629.965542812804,2019
+1995,27,"(25,30]",NoHS,-2.303157894736842,39.642333228718265,-0.058098444444444446,4675.217079319629,2019
+1995,27,"(25,30]",NoHS,-2.3612206988058384,39.642333228718265,-0.05956311111111112,4647.223994197605,2019
+1995,27,"(25,30]",NoHS,-2.3612206988058384,39.642333228718265,-0.05956311111111112,4654.58062441043,2019
+1995,64,"(60,65]",College,126.9639982308713,73.3383164731288,1.7312096096096095,1984.3749847810457,2019
+1995,64,"(60,65]",College,122.31897390535161,83.24889978030835,1.4693164021164022,1978.2102297881315,2019
+1995,64,"(60,65]",College,122.31897390535161,61.44561650451331,1.9906867383512545,1946.8883467150852,2019
+1995,64,"(60,65]",College,122.31897390535161,69.37408315025698,1.7631796825396822,1896.7178836870953,2019
+1995,64,"(60,65]",College,122.31897390535161,61.44561650451331,1.9906867383512545,1894.8885865423727,2019
+1995,67,"(65,70]",College,297.28155683325963,47.57079987446191,6.249244444444446,6850.386976216318,2019
+1995,67,"(65,70]",College,303.0878372401592,47.57079987446191,6.371300000000001,6678.39794765961,2019
+1995,67,"(65,70]",College,297.28155683325963,47.57079987446191,6.249244444444446,6689.601284858535,2019
+1995,67,"(65,70]",College,304.0555506413092,47.57079987446191,6.391642592592595,6979.695570526679,2019
+1995,67,"(65,70]",College,309.8618310482088,47.57079987446191,6.5136981481481495,6832.762751982647,2019
+1995,31,"(30,35]",HS,116.89977885891199,51.53503319733374,2.268355555555556,4246.267979761595,2019
+1995,31,"(30,35]",HS,116.89977885891199,51.53503319733374,2.268355555555556,4167.062915373189,2019
+1995,31,"(30,35]",HS,116.89977885891199,51.53503319733374,2.268355555555556,4191.790246243035,2019
+1995,31,"(30,35]",HS,116.89977885891199,51.53503319733374,2.268355555555556,4140.756809034379,2019
+1995,31,"(30,35]",HS,116.89977885891199,51.53503319733374,2.268355555555556,4190.755485381518,2019
+1995,34,"(30,35]",HS,36.77310924369748,89.1952497646161,0.4122765432098766,5444.6787186307265,2019
+1995,34,"(30,35]",HS,47.41795665634675,89.1952497646161,0.5316197530864198,5396.07944363779,2019
+1995,34,"(30,35]",HS,47.41795665634675,89.1952497646161,0.5316197530864198,5469.48496021375,2019
+1995,34,"(30,35]",HS,47.41795665634675,89.1952497646161,0.5316197530864198,5403.934318979522,2019
+1995,34,"(30,35]",HS,47.41795665634675,89.1952497646161,0.5316197530864198,5451.963815299785,2019
+1995,58,"(55,60]",HS,126.18982750995136,69.37408315025698,1.8189765079365077,6232.037489358034,2019
+1995,58,"(55,60]",HS,125.00921716054843,69.37408315025698,1.8019584761904759,6118.641107459041,2019
+1995,58,"(55,60]",HS,126.18982750995136,69.37408315025698,1.8189765079365077,6215.992774270135,2019
+1995,58,"(55,60]",HS,126.07370190181337,69.37408315025698,1.817302603174603,6206.500097768788,2019
+1995,58,"(55,60]",HS,126.24789031402035,69.37408315025698,1.81981346031746,6128.87575926345,2019
+1995,42,"(40,45]",HS,1107.277027863777,95.14159974892382,11.638200648148148,665.5774672011548,2019
+1995,42,"(40,45]",HS,441.4902078726227,95.14159974892382,4.640348796296297,655.0613905293401,2019
+1995,42,"(40,45]",HS,333.1063069438302,95.14159974892382,3.501163611111112,676.8172824033476,2019
+1995,42,"(40,45]",HS,1697.5822025652367,95.14159974892382,17.84269138888889,1205.3812938629046,2019
+1995,42,"(40,45]",HS,623.4203272888103,95.14159974892382,6.552552500000002,672.0752730476003,2019
+1995,45,"(40,45]",HS,136.89273772666962,85.23101644174427,1.6061375710594317,6537.156558378719,2019
+1995,45,"(40,45]",HS,136.98950906678462,85.23101644174427,1.6072729715762275,6346.594831088943,2019
+1995,45,"(40,45]",HS,136.98950906678462,85.23101644174427,1.6072729715762275,6383.577717396885,2019
+1995,45,"(40,45]",HS,136.98950906678462,85.23101644174427,1.6072729715762275,6562.871218226479,2019
+1995,45,"(40,45]",HS,137.0475718708536,85.23101644174427,1.6079542118863048,6445.965702930345,2019
+1995,54,"(50,55]",HS,632.6329588677576,192.26531615928357,3.290416449026346,934.6859706926377,2019
+1995,54,"(50,55]",HS,629.7298186643078,150.64086626912942,4.1803385380116955,918.7952549169775,2019
+1995,54,"(50,55]",HS,585.2924192835029,182.354732852104,3.2096365700483096,925.919561337612,2019
+1995,54,"(50,55]",HS,562.6285714285715,180.3726161906681,3.119257142857143,871.8020536857614,2019
+1995,54,"(50,55]",HS,588.1181424148607,188.30108283641175,3.1232860350877196,935.5482331996012,2019
+1995,36,"(35,40]",HS,31.566811145510837,81.26678311887244,0.38843436314363144,10776.503103399735,2019
+1995,36,"(35,40]",HS,31.566811145510837,81.26678311887244,0.38843436314363144,10784.721893010515,2019
+1995,36,"(35,40]",HS,31.566811145510837,81.26678311887244,0.38843436314363144,10478.450643885955,2019
+1995,36,"(35,40]",HS,31.566811145510837,81.26678311887244,0.38843436314363144,10765.533054409882,2019
+1995,36,"(35,40]",HS,31.566811145510837,81.26678311887244,0.38843436314363144,10664.36037022802,2019
+1995,52,"(50,55]",NoHS,68.10766917293233,69.37408315025698,0.9817451428571426,6719.367436209764,2019
+1995,52,"(50,55]",NoHS,68.10766917293233,65.40984982738514,1.0412448484848484,6595.278088687735,2019
+1995,52,"(50,55]",NoHS,67.1399557717824,81.26678311887244,0.8261672628726288,6650.177995434514,2019
+1995,52,"(50,55]",NoHS,70.04309597523219,63.42773316594923,1.1042976388888888,6885.954740258497,2019
+1995,52,"(50,55]",NoHS,70.62372401592215,63.42773316594923,1.1134518055555553,6725.123129337591,2019
+1995,37,"(35,40]",HS,105.0549668288368,73.3383164731288,1.4324703903903901,6180.949503997927,2019
+1995,37,"(35,40]",HS,106.3517027863777,73.3383164731288,1.4501519519519517,6162.903135351423,2019
+1995,37,"(35,40]",HS,79.64281291463953,73.3383164731288,1.0859645645645644,6311.738900540403,2019
+1995,37,"(35,40]",HS,91.73923042901372,73.3383164731288,1.2509045045045044,6057.964352822755,2019
+1995,37,"(35,40]",HS,123.96408668730649,73.3383164731288,1.6903045045045042,6176.932361226853,2019
+1995,72,"(70,75]",College,3913.0459088898715,338.9419491055412,11.54488525016244,1188.7853354447086,2019
+1995,72,"(70,75]",College,3913.0459088898715,338.9419491055412,11.54488525016244,1076.2147690908675,2019
+1995,72,"(70,75]",College,3913.0459088898715,338.9419491055412,11.54488525016244,1066.3851972831017,2019
+1995,72,"(70,75]",College,3913.0459088898715,338.9419491055412,11.54488525016244,1086.580919337507,2019
+1995,72,"(70,75]",College,3913.0459088898715,338.9419491055412,11.54488525016244,1074.2817912139433,2019
+1995,66,"(65,70]",College,32675.61716054843,1853.2790784425792,17.63124482471776,290.9485534401193,2019
+1995,66,"(65,70]",College,32675.61716054843,1853.2790784425792,17.63124482471776,345.76911553524354,2019
+1995,66,"(65,70]",College,32675.61716054843,1853.2790784425792,17.63124482471776,292.45985574978374,2019
+1995,66,"(65,70]",College,32675.61716054843,1853.2790784425792,17.63124482471776,339.390069301933,2019
+1995,66,"(65,70]",College,32675.61716054843,1853.2790784425792,17.63124482471776,285.3725335560638,2019
+1995,60,"(55,60]",HS,675.6574966828837,95.14159974892382,7.101599074074075,4950.922748086624,2019
+1995,60,"(55,60]",HS,714.366032728881,95.14159974892382,7.508450925925927,5145.710961242029,2019
+1995,60,"(55,60]",HS,636.9489606368863,95.14159974892382,6.694747222222223,5089.33392256731,2019
+1995,60,"(55,60]",HS,665.9803626713843,95.14159974892382,6.999886111111112,4826.271828713203,2019
+1995,60,"(55,60]",HS,683.3992038920832,95.14159974892382,7.182969444444446,5098.272568498358,2019
+1995,68,"(65,70]",NoHS,815.5888544891641,186.31896617497586,4.3773796690307325,4842.831020376416,2019
+1995,68,"(65,70]",NoHS,908.4893409995577,186.31896617497586,4.875989598108747,5039.9202138347355,2019
+1995,68,"(65,70]",NoHS,786.5574524546661,186.31896617497586,4.221564066193853,4966.39445525046,2019
+1995,68,"(65,70]",NoHS,854.2973905351615,186.31896617497586,4.5851338061465725,4712.652917099424,2019
+1995,68,"(65,70]",NoHS,860.1036709420611,186.31896617497586,4.6162969267139475,5030.696958364933,2019
+1995,53,"(50,55]",NoHS,0.36773109243697477,3.3695983244410526,0.10913202614379085,7960.784641043239,2019
+1995,53,"(50,55]",NoHS,0.36773109243697477,3.3695983244410526,0.10913202614379085,8021.442490711221,2019
+1995,53,"(50,55]",NoHS,0.36773109243697477,3.3695983244410526,0.10913202614379085,8034.013843824907,2019
+1995,53,"(50,55]",NoHS,0.36773109243697477,3.3695983244410526,0.10913202614379085,8007.903999939389,2019
+1995,53,"(50,55]",NoHS,0.36773109243697477,3.3695983244410526,0.10913202614379085,8012.0736762878005,2019
+1995,34,"(30,35]",HS,-19.39297655904467,23.785399937230956,-0.8153311111111111,5764.155153746465,2019
+1995,34,"(30,35]",HS,-19.39297655904467,23.785399937230956,-0.8153311111111111,5743.1788704106675,2019
+1995,34,"(30,35]",HS,-19.39297655904467,23.785399937230956,-0.8153311111111111,5740.188822182894,2019
+1995,34,"(30,35]",HS,-19.39297655904467,23.785399937230956,-0.8153311111111111,5768.182196602853,2019
+1995,34,"(30,35]",HS,-19.39297655904467,23.785399937230956,-0.8153311111111111,5764.053699092899,2019
+1995,64,"(60,65]",College,67872.5148164529,5312.072652648248,12.777030597014924,20.12365416564478,2019
+1995,64,"(60,65]",College,79241.01831048209,2695.678659552842,29.39557281045752,21.728651686078898,2019
+1995,64,"(60,65]",College,95051.0940645732,6560.806149352873,14.487715671030548,21.279309952668655,2019
+1995,64,"(60,65]",College,81479.33940734189,2913.711492310793,27.964106817838246,18.687207744553895,2019
+1995,64,"(60,65]",College,77963.44307828395,7432.937480384675,10.488914145185186,20.149174934146174,2019
+1995,82,"(80,85]",NoHS,1311.25165855816,79.28466645743653,16.538527777777777,6128.890637258391,2019
+1995,82,"(80,85]",NoHS,1311.25165855816,79.28466645743653,16.538527777777777,6335.995891298682,2019
+1995,82,"(80,85]",NoHS,1311.25165855816,79.28466645743653,16.538527777777777,6299.916954962644,2019
+1995,82,"(80,85]",NoHS,1311.25165855816,79.28466645743653,16.538527777777777,5974.440269231224,2019
+1995,82,"(80,85]",NoHS,1311.25165855816,79.28466645743653,16.538527777777777,6331.461021679863,2019
+1995,62,"(60,65]",NoHS,141.4796992481203,97.12371641035975,1.4566956916099776,11602.57338307135,2019
+1995,62,"(60,65]",NoHS,133.73799203892085,97.12371641035975,1.376985941043084,11618.70683724539,2019
+1995,62,"(60,65]",NoHS,133.73799203892085,97.12371641035975,1.376985941043084,11449.926631052303,2019
+1995,62,"(60,65]",NoHS,141.4796992481203,97.12371641035975,1.4566956916099776,11641.64247803443,2019
+1995,62,"(60,65]",NoHS,143.41512605042016,97.12371641035975,1.4766231292517007,11486.058885601766,2019
+1995,33,"(30,35]",HS,143.99575409111014,140.73028296194985,1.0232037558685447,5226.891570325179,2019
+1995,33,"(30,35]",HS,124.25440070765148,132.8018163162062,0.9356378109452734,5180.236266328034,2019
+1995,33,"(30,35]",HS,117.09332153914197,128.8375829933344,0.9088444444444442,5250.705562246885,2019
+1995,33,"(30,35]",HS,133.9702432551968,116.94488302471889,1.1455844821092278,5187.776946656731,2019
+1995,33,"(30,35]",HS,120.19000442282176,126.85546633189846,0.9474562499999999,5233.885263128061,2019
+1995,73,"(70,75]",NoHS,14.515701017249004,14.667663294625758,0.9896396396396396,10188.203438723356,2019
+1995,73,"(70,75]",NoHS,14.515701017249004,14.667663294625758,0.9896396396396396,10229.770860897459,2019
+1995,73,"(70,75]",NoHS,14.515701017249004,14.667663294625758,0.9896396396396396,10326.036538101409,2019
+1995,73,"(70,75]",NoHS,14.515701017249004,14.667663294625758,0.9896396396396396,10235.93573374433,2019
+1995,73,"(70,75]",NoHS,14.515701017249004,14.667663294625758,0.9896396396396396,9985.444054122845,2019
+1995,27,"(25,30]",HS,632.0329765590446,95.14159974892382,6.643077037037037,3787.4399604140017,2019
+1995,27,"(25,30]",HS,370.4987527642636,95.14159974892382,3.8941825000000003,6313.412949927725,2019
+1995,27,"(25,30]",HS,227.52877487837242,95.14159974892382,2.3914751851851856,6399.297404333454,2019
+1995,27,"(25,30]",HS,268.86949137549755,95.14159974892382,2.825992962962963,6322.60315407882,2019
+1995,27,"(25,30]",HS,455.9672003538258,95.14159974892382,4.79251138888889,6378.797664781287,2019
+1995,27,"(25,30]",HS,2.2257408226448474,19.821166614359132,0.11229111111111112,5978.933340681287,2019
+1995,27,"(25,30]",HS,2.128969482529854,19.821166614359132,0.10740888888888889,5979.008287939895,2019
+1995,27,"(25,30]",HS,2.0902609464838564,19.821166614359132,0.105456,5977.120324169686,2019
+1995,27,"(25,30]",HS,2.47734630694383,19.821166614359132,0.1249848888888889,6004.865741628631,2019
+1995,27,"(25,30]",HS,2.032198142414861,19.821166614359132,0.10252666666666668,5992.657325245012,2019
+1995,24,"(20,25]",HS,-0.9677134011499338,31.713866582974614,-0.030513888888888892,4582.542914577665,2019
+1995,24,"(20,25]",HS,-1.354798761609907,31.713866582974614,-0.04271944444444444,4586.556332421547,2019
+1995,24,"(20,25]",HS,-1.354798761609907,31.713866582974614,-0.04271944444444444,4615.941942954199,2019
+1995,24,"(20,25]",HS,-1.354798761609907,31.713866582974614,-0.04271944444444444,4582.486188486455,2019
+1995,24,"(20,25]",HS,-0.9677134011499338,31.713866582974614,-0.030513888888888892,4559.4355299842655,2019
+1995,51,"(50,55]",College,3111.6940539584252,584.7244151235943,5.3216420821092285,905.5903626544857,2019
+1995,51,"(50,55]",College,3111.6940539584252,584.7244151235943,5.3216420821092285,792.1841704670912,2019
+1995,51,"(50,55]",College,3111.6940539584252,584.7244151235943,5.3216420821092285,843.6102599394704,2019
+1995,51,"(50,55]",College,3111.6940539584252,584.7244151235943,5.3216420821092285,802.7294814185058,2019
+1995,51,"(50,55]",College,3111.6940539584252,584.7244151235943,5.3216420821092285,815.5050894048087,2019
+1995,29,"(25,30]",HS,12.348022998673153,75.32043313456471,0.16393988304093565,5226.891570325179,2019
+1995,29,"(25,30]",HS,12.348022998673153,75.32043313456471,0.16393988304093565,5180.236266328034,2019
+1995,29,"(25,30]",HS,12.348022998673153,75.32043313456471,0.16393988304093565,5250.705562246885,2019
+1995,29,"(25,30]",HS,12.348022998673153,75.32043313456471,0.16393988304093565,5187.776946656731,2019
+1995,29,"(25,30]",HS,12.348022998673153,75.32043313456471,0.16393988304093565,5233.885263128061,2019
+1995,63,"(60,65]",College,339477.7319770013,3488.5253241272076,97.31267525252524,16.170793352358178,2019
+1995,63,"(60,65]",College,264863.15789473685,3508.3464907415664,75.49515379786567,16.42289862910578,2019
+1995,63,"(60,65]",College,220461.37036709423,3904.769823028749,56.45950474901298,16.378091534893976,2019
+1995,63,"(60,65]",College,75141.41661211853,3488.5253241272076,21.53959327525252,15.726655851175858,2019
+1995,63,"(60,65]",College,264724.7748783724,3429.06182428413,77.20035054592164,15.701900035497545,2019
+1995,62,"(60,65]",HS,2505.2164528969483,1982.116661435913,1.263909688888889,336.54191448970835,2019
+1995,62,"(60,65]",HS,2892.3018133569217,1982.116661435913,1.4591985777777778,300.22904001760014,2019
+1995,62,"(60,65]",HS,2429.1541795665635,1982.116661435913,1.2255354222222223,298.0418803881817,2019
+1995,62,"(60,65]",HS,3067.2643962848297,1982.116661435913,1.5474691555555558,305.5820454248008,2019
+1995,62,"(60,65]",HS,2389.477930119416,1982.116661435913,1.2055183111111112,307.41022432543633,2019
+1995,43,"(40,45]",HS,909.7473684210526,346.87041575128484,2.6227297777777774,91.5316462446122,2019
+1995,43,"(40,45]",HS,909.7473684210526,346.87041575128484,2.6227297777777774,93.4969339024171,2019
+1995,43,"(40,45]",HS,909.7473684210526,346.87041575128484,2.6227297777777774,91.64165540752599,2019
+1995,43,"(40,45]",HS,909.7473684210526,346.87041575128484,2.6227297777777774,91.58075267167105,2019
+1995,43,"(40,45]",HS,909.7473684210526,346.87041575128484,2.6227297777777774,92.12295858878743,2019
+1995,50,"(45,50]",College,4165.232021229544,545.0820818948762,7.641476686868686,1535.0927282218022,2019
+1995,50,"(45,50]",College,4082.0086687306502,545.0820818948762,7.488796282828282,1356.6365914856933,2019
+1995,50,"(45,50]",College,4029.752145068554,545.0820818948762,7.392927191919192,1428.295690468129,2019
+1995,50,"(45,50]",College,4116.846351172047,545.0820818948762,7.552709010101009,1372.2617701114068,2019
+1995,50,"(45,50]",College,5520.030782839452,545.0820818948762,10.126971636363637,1383.7970167467042,2019
+1995,41,"(40,45]",HS,988.1708624502432,107.03429971753931,9.2322822222222225,4424.014719125092,2019
+1995,41,"(40,45]",HS,967.0747103051747,103.07006639466748,9.382692222222223,4606.528833600853,2019
+1995,41,"(40,45]",HS,983.9129234851836,110.99853304041113,8.864197539682541,4543.60160095456,2019
+1995,41,"(40,45]",HS,980.4291552410438,120.90911634759071,8.108810856102004,4313.904772955208,2019
+1995,41,"(40,45]",HS,981.0097832817338,130.8196996547703,7.498945387205387,4575.161037468026,2019
+1995,67,"(65,70]",College,396.18186643078286,140.73028296194985,2.815185602503912,6905.632033975206,2019
+1995,67,"(65,70]",College,444.5868907563025,75.32043313456471,5.902606666666666,6732.255997086048,2019
+1995,67,"(65,70]",College,533.6165236620965,51.53503319733374,10.354442222222225,4066.721664650089,2019
+1995,67,"(65,70]",College,500.69684918177796,81.26678311887244,6.16115010298103,3855.874220853183,2019
+1995,67,"(65,70]",College,492.97256081379925,51.53503319733374,9.565775555555557,4119.585064160199,2019
+1995,37,"(35,40]",HS,235.44467049977885,142.71239962338575,1.6497842592592593,10776.503103399735,2019
+1995,37,"(35,40]",HS,260.70199026979213,164.5156828991808,1.584663453815261,10784.721893010515,2019
+1995,37,"(35,40]",HS,260.6052189296771,126.85546633189846,2.054347569444444,10478.450643885955,2019
+1995,37,"(35,40]",HS,252.86351172047767,132.8018163162062,1.9040666666666664,10765.533054409882,2019
+1995,37,"(35,40]",HS,218.02582927908006,140.73028296194985,1.5492460093896712,10664.36037022802,2019
+1995,40,"(35,40]",College,545.4032728881026,346.87041575128484,1.5723545396825396,314.67104753965043,2019
+1995,40,"(35,40]",College,438.9547987616099,346.87041575128484,1.265472,321.72253771419906,2019
+1995,40,"(35,40]",College,1929.2334365325078,346.87041575128484,5.561827555555555,585.6676642194433,2019
+1995,40,"(35,40]",College,245.41211853162318,346.87041575128484,0.707503746031746,793.7445768697978,2019
+1995,40,"(35,40]",College,609.2723573639983,346.87041575128484,1.7564840634920635,314.0169900376065,2019
+1995,58,"(55,60]",HS,812.2986289252543,198.21166614359132,4.098137333333334,2141.785755717082,2019
+1995,58,"(55,60]",HS,812.2986289252543,198.21166614359132,4.098137333333334,2105.372982054461,2019
+1995,58,"(55,60]",HS,812.2986289252543,198.21166614359132,4.098137333333334,2121.6979708630242,2019
+1995,58,"(55,60]",HS,812.2986289252543,198.21166614359132,4.098137333333334,1997.6904317985914,2019
+1995,58,"(55,60]",HS,812.2986289252543,198.21166614359132,4.098137333333334,2143.761586758746,2019
+1995,27,"(25,30]",College,56.04996019460416,81.26678311887244,0.6897031978319784,5449.157541443218,2019
+1995,27,"(25,30]",College,56.04996019460416,67.39196648882105,0.8317009150326797,5506.741606945403,2019
+1995,27,"(25,30]",College,56.04996019460416,83.24889978030835,0.6732816931216933,5456.754451898427,2019
+1995,27,"(25,30]",College,56.04996019460416,81.26678311887244,0.6897031978319784,5542.51748082071,2019
+1995,27,"(25,30]",College,56.04996019460416,71.35619981169287,0.7854953086419754,5464.965823024094,2019
+1995,85,"(80,85]",College,337.73197700132687,47.57079987446191,7.0995648148148165,8748.076229620943,2019
+1995,85,"(80,85]",College,764.4935869084476,45.588683213026,16.76937198067633,4638.272943453882,2019
+1995,85,"(80,85]",College,897.0703228659885,57.48138318164148,15.606275862068966,4609.403465174939,2019
+1995,85,"(80,85]",College,1088.4840336134455,51.53503319733374,21.12124444444445,4369.92859625123,2019
+1995,85,"(80,85]",College,356.69915966386554,43.606566551590085,8.179941414141416,8862.576267462357,2019
+1995,47,"(45,50]",HS,469.70873065015485,43.606566551590085,10.77151373737374,4288.135326671456,2019
+1995,47,"(45,50]",HS,469.70873065015485,126.85546633189846,3.7027078472222223,4467.445917907185,2019
+1995,47,"(45,50]",HS,469.70873065015485,204.15801612789906,2.30071167206041,4411.795470508016,2019
+1995,47,"(45,50]",HS,469.70873065015485,43.606566551590085,10.77151373737374,4185.313831921668,2019
+1995,47,"(45,50]",HS,469.70873065015485,164.5156828991808,2.855100026773762,4426.913413696637,2019
+1995,69,"(65,70]",NoHS,22.29611676249447,17.24441495449245,1.2929471264367813,8517.736169086353,2019
+1995,69,"(65,70]",NoHS,21.967094206103496,17.046203288348853,1.2886795865633078,8395.2610834493,2019
+1995,69,"(65,70]",NoHS,22.33288987173817,18.631896617497585,1.1986374940898346,8430.220369279534,2019
+1995,69,"(65,70]",NoHS,21.75419725785051,18.433684951353992,1.1801328554360815,8858.829364747395,2019
+1995,69,"(65,70]",NoHS,22.139347191508183,17.83904995292322,1.241060888888889,8623.392731208469,2019
+1995,53,"(50,55]",HS,550.2418398938522,69.37408315025698,7.931518730158728,8509.461707605318,2019
+1995,53,"(50,55]",HS,517.4363555948695,81.26678311887244,6.367132249322493,8624.406913773299,2019
+1995,53,"(50,55]",HS,562.2995488721804,89.1952497646161,6.304142320987654,8501.061800142383,2019
+1995,53,"(50,55]",HS,559.7447854931446,69.37408315025698,8.068499936507935,8288.402883143122,2019
+1995,53,"(50,55]",HS,589.1632728881026,89.1952497646161,6.605321185185185,8457.706035488603,2019
+1995,29,"(25,30]",HS,32.22485625829279,19.821166614359132,1.62578,5436.50843803914,2019
+1995,29,"(25,30]",HS,30.96682883679788,19.821166614359132,1.5623111111111112,5416.724490814952,2019
+1995,29,"(25,30]",HS,31.06360017691287,19.821166614359132,1.5671933333333334,5146.581039334437,2019
+1995,29,"(25,30]",HS,30.96682883679788,19.821166614359132,1.5623111111111112,5227.469117113667,2019
+1995,29,"(25,30]",HS,30.96682883679788,19.821166614359132,1.5623111111111112,5436.412750281703,2019
+1995,51,"(50,55]",HS,76.64290137107474,73.3383164731288,1.0450594594594593,7682.488304220513,2019
+1995,51,"(50,55]",HS,72.57850508624503,69.37408315025698,1.0461904761904761,7431.973875674019,2019
+1995,51,"(50,55]",HS,126.18982750995136,83.24889978030835,1.5158137566137568,7473.395060405343,2019
+1995,51,"(50,55]",HS,74.12684652808493,67.39196648882105,1.0999359477124184,7684.980945271341,2019
+1995,51,"(50,55]",HS,83.0298098186643,61.44561650451331,1.3512731182795699,7552.81010534777,2019
+1995,85,"(80,85]",College,59.99823087129589,35.67809990584644,1.6816543209876544,12209.601311991382,2019
+1995,85,"(80,85]",College,59.99823087129589,35.67809990584644,1.6816543209876544,12176.158736457824,2019
+1995,85,"(80,85]",College,59.99823087129589,35.67809990584644,1.6816543209876544,12339.61496464051,2019
+1995,85,"(80,85]",College,59.99823087129589,35.67809990584644,1.6816543209876544,12289.15364391841,2019
+1995,85,"(80,85]",College,59.99823087129589,35.67809990584644,1.6816543209876544,12082.378200070349,2019
+1995,61,"(60,65]",College,403.53648827952236,63.42773316594923,6.362145833333334,6063.610733872398,2019
+1995,61,"(60,65]",College,403.6913224237063,63.42773316594923,6.364586944444444,5937.068501649892,2019
+1995,61,"(60,65]",College,403.53648827952236,63.42773316594923,6.362145833333334,5988.915543252002,2019
+1995,61,"(60,65]",College,403.6913224237063,63.42773316594923,6.364586944444444,5976.002388323669,2019
+1995,61,"(60,65]",College,403.92357363998235,63.42773316594923,6.368248611111111,5912.500398183409,2019
+1995,41,"(40,45]",HS,153.09226006191952,107.03429971753931,1.4303102880658438,1781.5206796607993,2019
+1995,41,"(40,45]",HS,152.62775762936752,118.92699968615479,1.2833734814814814,1805.563160139925,2019
+1995,41,"(40,45]",HS,151.89229544449358,109.01641637897524,1.3932974545454544,1762.9867770830638,2019
+1995,41,"(40,45]",HS,152.84065457762054,128.8375829933344,1.1863048888888887,1783.4333777773656,2019
+1995,41,"(40,45]",HS,152.55034055727555,124.87334967046255,1.2216404938271606,1759.2827630739212,2019
+1995,61,"(60,65]",College,37135.0727642636,1159.5382469400092,32.025742024691354,39.583698929810915,2019
+1995,61,"(60,65]",College,35351.238266253866,919.7021309062637,38.4377039894636,47.34822344697606,2019
+1995,61,"(60,65]",College,34857.24960636886,987.0940973950849,35.312995689424355,41.42862272119911,2019
+1995,61,"(60,65]",College,39644.81811587793,911.77366426052,43.480986202898556,45.88615192074797,2019
+1995,61,"(60,65]",College,36366.76638655462,1159.5382469400092,31.363145185185186,39.93239925429628,2019
+1995,61,"(60,65]",NoHS,26257.9354268023,707.6156481326211,37.10762402738873,346.8273843553592,2019
+1995,61,"(60,65]",NoHS,33984.15922158337,707.6156481326211,48.02629691876751,402.36346971879374,2019
+1995,61,"(60,65]",NoHS,28319.16497125166,707.6156481326211,40.020546529723,342.8095441317638,2019
+1995,61,"(60,65]",NoHS,21893.5479876161,707.6156481326211,30.93988671023965,895.2061841453966,2019
+1995,61,"(60,65]",NoHS,22649.525696594428,707.6156481326211,32.008231808278865,1471.0363085917043,2019
+1995,64,"(60,65]",NoHS,-11.322246793454225,16.45156828991808,-0.6882168674698796,7447.450000196904,2019
+1995,64,"(60,65]",NoHS,-11.07064130915524,18.03726161906681,-0.6137650793650793,7461.909939390716,2019
+1995,64,"(60,65]",NoHS,-10.490013268465281,18.631896617497585,-0.5630137115839243,7439.13852596283,2019
+1995,64,"(60,65]",NoHS,-11.07064130915524,15.460509959200122,-0.7160592592592593,7452.305473185986,2019
+1995,64,"(60,65]",NoHS,-10.95451570101725,16.847991622205264,-0.6501971241830066,7419.23453465246,2019
+1995,60,"(55,60]",College,5013.723131357807,376.6021656728235,13.31304912280702,212.03715245958068,2019
+1995,60,"(55,60]",College,5013.723131357807,376.6021656728235,13.31304912280702,186.6522893104597,2019
+1995,60,"(55,60]",College,5013.723131357807,376.6021656728235,13.31304912280702,185.28252630000458,2019
+1995,60,"(55,60]",College,5013.723131357807,376.6021656728235,13.31304912280702,191.20235534799767,2019
+1995,60,"(55,60]",College,5013.723131357807,376.6021656728235,13.31304912280702,190.53457285749624,2019
+1995,61,"(60,65]",HS,395.7367182662539,55.499266520205566,7.130485555555556,8044.265701748644,2019
+1995,61,"(60,65]",HS,405.80093763821316,53.517149858769656,7.582633580246913,8037.891959914591,2019
+1995,61,"(60,65]",HS,437.890314020345,51.53503319733374,8.496944444444445,8102.954708461033,2019
+1995,61,"(60,65]",HS,431.0969659442725,51.53503319733374,8.365124444444445,8244.548232003877,2019
+1995,61,"(60,65]",HS,411.3943210968598,53.517149858769656,7.687149300411523,8044.830754025037,2019
+1995,37,"(35,40]",HS,151.15683325961962,89.1952497646161,1.6946735802469135,4699.61304595537,2019
+1995,37,"(35,40]",HS,160.83396727111898,89.1952497646161,1.8031674074074076,4891.632698343857,2019
+1995,37,"(35,40]",HS,162.76939407341885,89.1952497646161,1.8248661728395064,4824.599831795256,2019
+1995,37,"(35,40]",HS,166.6402476780186,89.1952497646161,1.868263703703704,4583.469353320966,2019
+1995,37,"(35,40]",HS,160.83396727111898,89.1952497646161,1.8031674074074076,4855.689763058988,2019
+1995,57,"(55,60]",NoHS,798.0151791242813,75.32043313456471,10.594936140350876,3244.207426999533,2019
+1995,57,"(55,60]",NoHS,770.3966386554622,45.588683213026,16.89885700483092,3360.3791940607466,2019
+1995,57,"(55,60]",NoHS,895.7155241043786,33.69598324441053,26.58226405228758,3320.9529340138424,2019
+1995,57,"(55,60]",NoHS,778.7770367094206,69.37408315025698,11.2257633015873,3149.02343594325,2019
+1995,57,"(55,60]",NoHS,820.5822556390978,45.588683213026,17.99969198067633,3331.8943532967546,2019
+1995,59,"(55,60]",HS,323.9904467049978,43.606566551590085,7.429854545454547,8441.953487846837,2019
+1995,59,"(55,60]",HS,395.40769570986294,49.55291653589783,7.979504000000001,4546.966995532415,2019
+1995,59,"(55,60]",HS,406.4396284829722,53.517149858769656,7.594567901234569,4497.346537320407,2019
+1995,59,"(55,60]",HS,324.7646174259178,47.57079987446191,6.826974074074076,8629.772926539827,2019
+1995,59,"(55,60]",HS,331.63538257408226,103.07006639466748,3.2175722222222225,4507.49199054989,2019
+1995,74,"(70,75]",NoHS,193.92976559044672,19.821166614359132,9.783973333333334,7496.839659865029,2019
+1995,74,"(70,75]",NoHS,193.92976559044672,33.69598324441053,5.755278431372549,7454.996578189814,2019
+1995,74,"(70,75]",NoHS,193.92976559044672,45.588683213026,4.253901449275363,7534.880564951413,2019
+1995,74,"(70,75]",NoHS,193.92976559044672,21.803283275795042,8.894521212121214,7544.750598391021,2019
+1995,74,"(70,75]",NoHS,193.92976559044672,29.731749921538697,6.52264888888889,7384.530144957064,2019
+1995,26,"(25,30]",College,11.22934630694383,31.713866582974614,0.35408316666666667,7845.541140450138,2019
+1995,26,"(25,30]",College,8.229434763379038,31.713866582974614,0.25949011111111114,7887.8249390731435,2019
+1995,26,"(25,30]",College,8.519748783724015,31.713866582974614,0.2686442777777778,7969.389675058548,2019
+1995,26,"(25,30]",College,8.519748783724015,31.713866582974614,0.2686442777777778,7979.01896551266,2019
+1995,26,"(25,30]",College,25.55150464396285,31.713866582974614,0.8056887222222222,7998.472276150764,2019
+1995,27,"(25,30]",HS,-21.48323750552853,47.57079987446191,-0.45160555555555565,5932.818860108337,2019
+1995,27,"(25,30]",HS,-21.48323750552853,47.57079987446191,-0.45160555555555565,5878.240550363865,2019
+1995,27,"(25,30]",HS,-21.48323750552853,47.57079987446191,-0.45160555555555565,5935.692255868153,2019
+1995,27,"(25,30]",HS,-21.48323750552853,47.57079987446191,-0.45160555555555565,5900.1520155418475,2019
+1995,27,"(25,30]",HS,-21.48323750552853,47.57079987446191,-0.45160555555555565,5909.492050933299,2019
+1995,43,"(40,45]",HS,200.93601061477221,57.48138318164148,3.495671111111111,6463.443577324664,2019
+1995,43,"(40,45]",HS,200.93601061477221,57.48138318164148,3.495671111111111,6414.77308913341,2019
+1995,43,"(40,45]",HS,200.93601061477221,57.48138318164148,3.495671111111111,6456.595512877214,2019
+1995,43,"(40,45]",HS,200.93601061477221,57.48138318164148,3.495671111111111,6528.3353789919165,2019
+1995,43,"(40,45]",HS,200.93601061477221,57.48138318164148,3.495671111111111,6466.295448774501,2019
+1995,52,"(50,55]",College,1859.5580716497125,227.94341606513,8.157981062801932,1161.9550668134295,2019
+1995,52,"(50,55]",College,1859.5580716497125,227.94341606513,8.157981062801932,966.9314020837371,2019
+1995,52,"(50,55]",College,1859.5580716497125,227.94341606513,8.157981062801932,1024.4780768038559,2019
+1995,52,"(50,55]",College,1859.5580716497125,227.94341606513,8.157981062801932,988.7513021932203,2019
+1995,52,"(50,55]",College,1859.5580716497125,227.94341606513,8.157981062801932,963.5017530873707,2019
+1995,66,"(65,70]",College,12713.43157894737,876.0955643546737,14.511466666666667,25.025677784484483,2019
+1995,66,"(65,70]",College,9808.68497125166,1343.875096453549,7.298807007538513,23.3594980764399,2019
+1995,66,"(65,70]",College,12352.416417514374,1304.2327632248312,9.471021404930765,23.770653104857466,2019
+1995,66,"(65,70]",College,17887.504820875718,3250.671324754898,5.502710989159891,45.88615192074797,2019
+1995,66,"(65,70]",College,11490.570862450244,909.7915475990842,12.629894059549747,23.937492986433583,2019
+1995,46,"(45,50]",HS,59.22406015037594,116.94488302471889,0.5064271186440678,5447.630461242287,2019
+1995,46,"(45,50]",HS,59.22406015037594,116.94488302471889,0.5064271186440678,5288.829021952877,2019
+1995,46,"(45,50]",HS,58.64343210968598,116.94488302471889,0.5014621468926553,5319.648093853117,2019
+1995,46,"(45,50]",HS,58.83697478991596,116.94488302471889,0.5031171374764595,5469.059344432728,2019
+1995,46,"(45,50]",HS,58.83697478991596,116.94488302471889,0.5031171374764595,5371.638081758794,2019
+1995,32,"(30,35]",NoHS,7.838478549314463,29.731749921538697,0.26364000000000004,5785.269215666921,2019
+1995,32,"(30,35]",NoHS,7.838478549314463,29.731749921538697,0.26364000000000004,5853.80435619501,2019
+1995,32,"(30,35]",NoHS,7.838478549314463,29.731749921538697,0.26364000000000004,5804.260708425121,2019
+1995,32,"(30,35]",NoHS,7.838478549314463,29.731749921538697,0.26364000000000004,5889.95059504361,2019
+1995,32,"(30,35]",NoHS,7.838478549314463,29.731749921538697,0.26364000000000004,5806.998781295932,2019
+1995,19,"(15,20]",HS,-1.5870499778858913,11.099853304041115,-0.14297936507936507,5666.762800526956,2019
+1995,19,"(15,20]",HS,-1.5870499778858913,17.64083828677963,-0.08996454431960049,5662.678232527343,2019
+1995,19,"(15,20]",HS,-1.5870499778858913,5.351714985876965,-0.29654979423868316,5656.126065259225,2019
+1995,19,"(15,20]",HS,-1.5870499778858913,17.83904995292322,-0.08896493827160495,5674.547344672966,2019
+1995,19,"(15,20]",HS,-1.5870499778858913,8.126678311887245,-0.1952888888888889,5623.886336650626,2019
+1995,77,"(75,80]",NoHS,187.7363998230871,59.46349984307739,3.15717037037037,8126.500910656663,2019
+1995,77,"(75,80]",NoHS,186.7686864219372,59.46349984307739,3.1408962962962965,8081.948921953328,2019
+1995,77,"(75,80]",NoHS,188.3170278637771,59.46349984307739,3.166934814814815,8128.388533670257,2019
+1995,77,"(75,80]",NoHS,186.7686864219372,59.46349984307739,3.1408962962962965,8095.827460941875,2019
+1995,77,"(75,80]",NoHS,187.7363998230871,59.46349984307739,3.15717037037037,8119.004199060046,2019
+1995,66,"(65,70]",College,341579.0248562583,2219.9706608082233,153.86645908730156,16.922237812228754,2019
+1995,66,"(65,70]",College,454295.0303051747,2874.0691590820743,158.06684013486588,18.281957672402182,2019
+1995,66,"(65,70]",College,416443.65608138,1831.4757951667839,227.38146863876867,18.149931201243074,2019
+1995,66,"(65,70]",College,331896.74260946485,2774.9633260102787,119.60401043809524,15.780003964162134,2019
+1995,66,"(65,70]",College,281753.85984962404,1377.57107969796,204.5294533269384,16.98926204970277,2019
+1995,48,"(45,50]",College,291.397859354268,69.37408315025698,4.200385015873015,6355.568879595965,2019
+1995,48,"(45,50]",College,291.397859354268,69.37408315025698,4.200385015873015,6170.300533520843,2019
+1995,48,"(45,50]",College,291.397859354268,69.37408315025698,4.200385015873015,6206.256117450542,2019
+1995,48,"(45,50]",College,291.397859354268,69.37408315025698,4.200385015873015,6380.569243350193,2019
+1995,48,"(45,50]",College,291.397859354268,69.37408315025698,4.200385015873015,6266.911103418249,2019
+1995,63,"(60,65]",HS,1574.6632463511721,101.08794973323158,15.577160784313726,6493.839983934433,2019
+1995,63,"(60,65]",HS,1574.6632463511721,101.08794973323158,15.577160784313726,11805.254985244985,2019
+1995,63,"(60,65]",HS,1574.6632463511721,101.08794973323158,15.577160784313726,10983.745522883983,2019
+1995,63,"(60,65]",HS,1574.6632463511721,101.08794973323158,15.577160784313726,11908.543530085492,2019
+1995,63,"(60,65]",HS,1574.6632463511721,101.08794973323158,15.577160784313726,12015.95644899762,2019
+1995,64,"(60,65]",HS,5016.529500221141,991.0583307179566,5.061790355555555,1006.0102874525213,2019
+1995,64,"(60,65]",HS,5016.529500221141,991.0583307179566,5.061790355555555,909.7705000166834,2019
+1995,64,"(60,65]",HS,5016.529500221141,991.0583307179566,5.061790355555555,903.56555157208345,2019
+1995,64,"(60,65]",HS,5016.529500221141,991.0583307179566,5.061790355555555,914.73611921334,2019
+1995,64,"(60,65]",HS,5016.529500221141,991.0583307179566,5.061790355555555,904.8694376098329,2019
+1995,40,"(35,40]",HS,7.74170720919947,59.46349984307739,0.1301925925925926,7493.441899179239,2019
+1995,40,"(35,40]",HS,4.451481645289695,59.46349984307739,0.07486074074074074,7612.227182347825,2019
+1995,40,"(35,40]",HS,5.419195046439628,59.46349984307739,0.09113481481481482,7576.767009790981,2019
+1995,40,"(35,40]",HS,6.193365767359576,59.46349984307739,0.1041540740740741,7580.221708429957,2019
+1995,40,"(35,40]",HS,6.193365767359576,59.46349984307739,0.1041540740740741,7618.25842989238,2019
+1995,27,"(25,30]",HS,-9.619071207430341,35.67809990584644,-0.2696071604938272,6627.653515186372,2019
+1995,27,"(25,30]",HS,-9.619071207430341,35.67809990584644,-0.2696071604938272,6566.6831510205175,2019
+1995,27,"(25,30]",HS,-9.619071207430341,35.67809990584644,-0.2696071604938272,6630.863434780603,2019
+1995,27,"(25,30]",HS,-9.619071207430341,35.67809990584644,-0.2696071604938272,6591.160823882936,2019
+1995,27,"(25,30]",HS,-9.619071207430341,35.67809990584644,-0.2696071604938272,6601.594737314937,2019
+1995,59,"(55,60]",College,15342.70888987174,1724.4414954492445,8.897204648786719,55.35794914038826,2019
+1995,59,"(55,60]",College,49404.47872622734,1486.587496076935,33.23348195555556,63.00249976635193,2019
+1995,59,"(55,60]",College,28017.62547545334,1577.764862502987,17.75779530988275,56.39390260401984,2019
+1995,59,"(55,60]",College,10044.884458204335,1512.355012675602,6.6418826095820584,67.20455463107461,2019
+1995,59,"(55,60]",College,14976.526138876605,1575.7827458415513,9.504182082459817,54.08648539855666,2019
+1995,48,"(45,50]",College,973.9067669172932,79.28466645743653,12.283671111111111,3512.4441870773385,2019
+1995,48,"(45,50]",College,869.3937195931004,79.28466645743653,10.96547111111111,3658.7286170962498,2019
+1995,48,"(45,50]",College,906.1668288367979,79.28466645743653,11.429282222222223,3615.0788913299234,2019
+1995,48,"(45,50]",College,896.4896948252986,79.28466645743653,11.307226666666667,3430.5457827680902,2019
+1995,48,"(45,50]",College,828.7497567448032,79.28466645743653,10.452837777777779,3624.96504353788,2019
+1995,62,"(60,65]",College,147.65371074745687,134.7839329776421,1.0954845098039214,9548.551365137591,2019
+1995,62,"(60,65]",College,147.65371074745687,134.7839329776421,1.0954845098039214,9408.318965447726,2019
+1995,62,"(60,65]",College,147.65371074745687,134.7839329776421,1.0954845098039214,9560.424224080816,2019
+1995,62,"(60,65]",College,147.65371074745687,134.7839329776421,1.0954845098039214,9543.733576536843,2019
+1995,62,"(60,65]",College,147.65371074745687,134.7839329776421,1.0954845098039214,9418.47730531861,2019
+1995,54,"(50,55]",College,284.8561167624945,67.39196648882105,4.22685568627451,6412.92053361999,2019
+1995,54,"(50,55]",College,269.3727023440955,91.177366426052,2.9543812560386473,6265.295270913807,2019
+1995,54,"(50,55]",College,274.40481203007516,87.21313310318017,3.146370303030303,6348.248545646491,2019
+1995,54,"(50,55]",College,272.4693852277753,75.32043313456471,3.6174697076023388,6529.23385274624,2019
+1995,54,"(50,55]",College,282.9206899601946,67.39196648882105,4.198136732026144,6396.734122451175,2019
+1995,70,"(65,70]",HS,151.7374613003096,29.731749921538697,5.10354962962963,7968.069569399,2019
+1995,70,"(65,70]",HS,151.7374613003096,29.731749921538697,5.10354962962963,7923.596351228,2019
+1995,70,"(65,70]",HS,152.0471295886776,29.731749921538697,5.113965037037038,8008.5016170302115,2019
+1995,70,"(65,70]",HS,151.9503582485626,29.731749921538697,5.110710222222223,8018.992052556011,2019
+1995,70,"(65,70]",HS,151.98906678460858,29.731749921538697,5.112012148148149,7848.700599447159,2019
+1995,44,"(40,45]",College,493.1854577620522,146.6766329462576,3.3623996396396394,4408.864075090462,2019
+1995,44,"(40,45]",College,499.37882352941176,146.6766329462576,3.404624264264264,4429.711786415778,2019
+1995,44,"(40,45]",College,493.1854577620522,146.6766329462576,3.3623996396396394,4430.042737850503,2019
+1995,44,"(40,45]",College,495.3144272445821,146.6766329462576,3.376914354354354,4300.318485987452,2019
+1995,44,"(40,45]",College,500.34653693056174,146.6766329462576,3.4112218618618617,4422.384987519764,2019
+1995,27,"(25,30]",College,70.64307828394516,81.26678311887244,0.8692737127371274,5688.813395576264,2019
+1995,27,"(25,30]",College,149.9955771782397,81.26678311887244,1.8457181571815717,5521.7958532206085,2019
+1995,27,"(25,30]",College,60.965944272445824,81.26678311887244,0.7501951219512196,5691.568614077734,2019
+1995,27,"(25,30]",College,63.869084475895626,81.26678311887244,0.785918699186992,5657.490075693607,2019
+1995,27,"(25,30]",College,149.9955771782397,81.26678311887244,1.8457181571815717,5558.182126194758,2019
+1995,35,"(30,35]",College,32.32162759840779,61.44561650451331,0.5260200716845879,7497.178450686422,2019
+1995,35,"(30,35]",College,32.32162759840779,61.44561650451331,0.5260200716845879,7486.495785355985,2019
+1995,35,"(30,35]",College,32.32162759840779,71.35619981169287,0.45296172839506177,7570.348011185575,2019
+1995,35,"(30,35]",College,32.32162759840779,99.10583307179566,0.3261324444444445,7348.239326442585,2019
+1995,35,"(30,35]",College,32.32162759840779,95.14159974892382,0.3397212962962964,7564.484524508602,2019
+1995,24,"(20,25]",College,15.386643078283946,23.785399937230956,0.6468944444444445,4944.023894517513,2019
+1995,24,"(20,25]",College,15.386643078283946,23.785399937230956,0.6468944444444445,4898.8216428079495,2019
+1995,24,"(20,25]",College,15.386643078283946,23.785399937230956,0.6468944444444445,4890.6857114835675,2019
+1995,24,"(20,25]",College,15.386643078283946,23.785399937230956,0.6468944444444445,4856.612923332323,2019
+1995,24,"(20,25]",College,15.386643078283946,23.785399937230956,0.6468944444444445,4846.948629119662,2019
+1995,70,"(65,70]",College,16.257585139318888,37.660216567282355,0.43169122807017546,8063.974865359831,2019
+1995,70,"(65,70]",College,12.193188854489165,12.487334967046253,0.9764444444444446,8143.579085502783,2019
+1995,70,"(65,70]",College,8.515877930119416,14.469451628482167,0.5885418569254185,8131.349810027928,2019
+1995,70,"(65,70]",College,10.838390092879257,17.83904995292322,0.6075654320987655,8080.813148419856,2019
+1995,70,"(65,70]",College,9.096505970809377,11.298064970184706,0.8051384015594542,7848.753034217132,2019
+1995,36,"(35,40]",HS,297.28155683325963,204.15801612789906,1.4561346278317153,3874.595217106928,2019
+1995,36,"(35,40]",HS,297.28155683325963,204.15801612789906,1.4561346278317153,4032.2139720863224,2019
+1995,36,"(35,40]",HS,297.28155683325963,204.15801612789906,1.4561346278317153,3955.2266427544264,2019
+1995,36,"(35,40]",HS,297.28155683325963,204.15801612789906,1.4561346278317153,3786.560637899621,2019
+1995,36,"(35,40]",HS,297.28155683325963,204.15801612789906,1.4561346278317153,3979.244974891442,2019
+1995,33,"(30,35]",HS,-0.03870853604599735,31.713866582974614,-0.0012205555555555555,6435.293021369728,2019
+1995,33,"(30,35]",HS,0.2516054842989828,49.55291653589783,0.0050775111111111115,6351.300512088057,2019
+1995,33,"(30,35]",HS,0.1548341441839894,35.67809990584644,0.004339753086419753,6456.119899191933,2019
+1995,33,"(30,35]",HS,0.03870853604599735,43.606566551590085,8.876767676767679e-4,6405.313021849953,2019
+1995,33,"(30,35]",HS,0,39.642333228718265,0,6369.002781104376,2019
+1995,37,"(35,40]",HS,314.3713754975675,63.42773316594923,4.9563709722222224,7468.93435518052,2019
+1995,37,"(35,40]",HS,324.72590888987173,63.42773316594923,5.119620277777777,7517.218823271648,2019
+1995,37,"(35,40]",HS,330.08704113224235,63.42773316594923,5.204143749999999,7506.121500059639,2019
+1995,37,"(35,40]",HS,303.62975674480316,63.42773316594923,4.7870188888888885,7735.649352276213,2019
+1995,37,"(35,40]",HS,358.07331269349845,63.42773316594923,5.645374583333333,4241.463064634971,2019
+1995,54,"(50,55]",College,386.4079610791685,87.21313310318017,4.430616666666667,4754.295682153601,2019
+1995,54,"(50,55]",College,389.3111012826183,87.21313310318017,4.463904545454547,4615.7053349366115,2019
+1995,54,"(50,55]",College,387.9563025210084,87.21313310318017,4.448370202020203,4642.60197954306,2019
+1995,54,"(50,55]",College,385.2467049977886,87.21313310318017,4.417301515151516,4772.997252965079,2019
+1995,54,"(50,55]",College,396.08509509066783,87.21313310318017,4.541576262626263,4687.975059962836,2019
+1995,58,"(55,60]",College,2967.0092879256968,180.3726161906681,16.449333333333335,858.0591348453333,2019
+1995,58,"(55,60]",College,3160.5519681556834,178.3904995292322,17.717041975308643,682.3899510937216,2019
+1995,58,"(55,60]",College,2285.7390535161435,166.4977995606167,13.728343915343919,2491.4098176757243,2019
+1995,58,"(55,60]",College,3553.4436090225563,162.53356623774488,21.862829268292685,666.393537385818,2019
+1995,58,"(55,60]",College,3160.5519681556834,168.47991622205262,18.75922091503268,682.7725070648121,2019
+1995,25,"(20,25]",HS,35.22476780185758,109.01641637897524,0.32311434343434337,5226.891570325179,2019
+1995,25,"(20,25]",HS,35.22476780185758,109.01641637897524,0.32311434343434337,5180.236266328034,2019
+1995,25,"(20,25]",HS,35.22476780185758,109.01641637897524,0.32311434343434337,5250.705562246885,2019
+1995,25,"(20,25]",HS,35.22476780185758,109.01641637897524,0.32311434343434337,5187.776946656731,2019
+1995,25,"(20,25]",HS,35.22476780185758,109.01641637897524,0.32311434343434337,5233.885263128061,2019
+1995,72,"(70,75]",HS,76490.97036709421,1143.6813136485218,66.88136761024457,45.768866197714395,2019
+1995,72,"(70,75]",HS,76582.90314020345,1242.7871467203177,61.62189828105617,45.88638419384911,2019
+1995,72,"(70,75]",HS,76552.9040247678,1064.3966471910853,71.92140657976414,47.27769737356657,2019
+1995,72,"(70,75]",HS,76561.61344537816,1072.3251138368291,71.39776216882316,45.34357197452849,2019
+1995,72,"(70,75]",HS,76589.6771340115,1042.5933639152904,73.46073722010983,47.99744104954688,2019
+1995,41,"(40,45]",HS,138.38301636444052,59.46349984307739,2.327192592592593,6070.724065777873,2019
+1995,41,"(40,45]",HS,138.38301636444052,59.46349984307739,2.327192592592593,6115.282520708986,2019
+1995,41,"(40,45]",HS,138.38301636444052,59.46349984307739,2.327192592592593,6112.156445769297,2019
+1995,41,"(40,45]",HS,138.38301636444052,59.46349984307739,2.327192592592593,6078.148747471618,2019
+1995,41,"(40,45]",HS,138.38301636444052,59.46349984307739,2.327192592592593,6131.011006878262,2019
+1995,37,"(35,40]",College,199.9295886775763,323.0850158140539,0.6188141785957736,4181.150387995906,2019
+1995,37,"(35,40]",College,203.99398496240602,336.95983244410525,0.6053955555555556,4351.986377307394,2019
+1995,37,"(35,40]",College,204.96169836355594,358.7631157199002,0.5713009208103131,4292.348595805496,2019
+1995,37,"(35,40]",College,206.8971251658558,291.37114923107936,0.710081027966742,4077.8197008152774,2019
+1995,37,"(35,40]",College,199.7360459973463,334.97771578266935,0.5962666666666666,4320.008676943025,2019
+1995,56,"(55,60]",HS,1277.3623352498894,132.8018163162062,9.618560729684907,168.8397178311953,2019
+1995,56,"(55,60]",HS,1279.9170986289253,132.8018163162062,9.63779814262023,152.25714796134818,2019
+1995,56,"(55,60]",HS,1271.285095090668,132.8018163162062,9.572799004975124,152.41754460911687,2019
+1995,56,"(55,60]",HS,1287.1555948695268,132.8018163162062,9.69230414593698,154.68089341254966,2019
+1995,56,"(55,60]",HS,1272.5237682441398,132.8018163162062,9.582126235489218,151.92675713687998,2019
+1995,49,"(45,50]",HS,97.11971693940734,69.37408315025698,1.399942349206349,7360.066439091361,2019
+1995,49,"(45,50]",HS,97.11971693940734,69.37408315025698,1.399942349206349,7334.094279147585,2019
+1995,49,"(45,50]",HS,97.11971693940734,69.37408315025698,1.399942349206349,7292.4684367359605,2019
+1995,49,"(45,50]",HS,97.11971693940734,69.37408315025698,1.399942349206349,7664.144688590592,2019
+1995,49,"(45,50]",HS,97.11971693940734,69.37408315025698,1.399942349206349,7391.850902893714,2019
+1995,30,"(25,30]",HS,591.2148252985405,31.713866582974614,18.64215527777778,1424.9370612599175,2019
+1995,30,"(25,30]",HS,590.4019460415744,31.713866582974614,18.616523611111106,1401.8674777431802,2019
+1995,30,"(25,30]",HS,592.3373728438744,31.713866582974614,18.677551388888887,1420.6300206058452,2019
+1995,30,"(25,30]",HS,594.0792569659443,31.713866582974614,18.732476388888887,1336.2138349122172,2019
+1995,30,"(25,30]",HS,592.5309155241044,31.713866582974614,18.683654166666667,1434.1662575525238,2019
+1995,65,"(60,65]",HS,89.64896948252985,61.44561650451331,1.4589969892473118,7955.2881004131095,2019
+1995,65,"(60,65]",HS,90.03605484298984,61.44561650451331,1.4652966308243731,7755.558905985253,2019
+1995,65,"(60,65]",HS,90.4231402034498,61.44561650451331,1.4715962724014338,7768.569233053342,2019
+1995,65,"(60,65]",HS,89.84251216275985,61.44561650451331,1.4621468100358423,8105.452919593375,2019
+1995,65,"(60,65]",HS,90.4231402034498,61.44561650451331,1.4715962724014338,7934.821259370134,2019
+1995,46,"(45,50]",College,339.8609464838567,73.3383164731288,4.634152552552552,6972.966982569361,2019
+1995,46,"(45,50]",College,339.8609464838567,73.3383164731288,4.634152552552552,6769.701140506899,2019
+1995,46,"(45,50]",College,339.8609464838567,73.3383164731288,4.634152552552552,6809.14955249496,2019
+1995,46,"(45,50]",College,339.8609464838567,73.3383164731288,4.634152552552552,7000.395953022366,2019
+1995,46,"(45,50]",College,339.8609464838567,73.3383164731288,4.634152552552552,6875.696736939588,2019
+1995,38,"(35,40]",HS,4.548252985404688,51.53503319733374,0.08825555555555557,9802.94145831768,2019
+1995,38,"(35,40]",HS,4.548252985404688,65.40984982738514,0.06953468013468013,9984.267637981498,2019
+1995,38,"(35,40]",HS,4.548252985404688,91.177366426052,0.04988357487922706,7556.917375985012,2019
+1995,38,"(35,40]",HS,4.548252985404688,19.821166614359132,0.22946444444444444,7584.774186255023,2019
+1995,38,"(35,40]",NoHS,4.548252985404688,39.642333228718265,0.11473222222222222,8646.051305808698,2019
+1995,64,"(60,65]",College,4027.0038390092877,384.53063231856714,10.47251766323024,1002.4645738119268,2019
+1995,64,"(60,65]",College,3478.755488721805,311.1923158454383,11.178796234961078,906.3524985526159,2019
+1995,64,"(60,65]",College,3630.686492702344,336.95983244410525,10.774834692810458,894.8652079721911,2019
+1995,64,"(60,65]",College,3184.3770720919947,408.3160322557981,7.798804897518878,910.0404752830284,2019
+1995,64,"(60,65]",College,3587.913560371517,332.9955991212334,10.774657592592595,901.1372393586219,2019
+1995,22,"(20,25]",HS,7.161079168509509,39.642333228718265,0.18064222222222223,3880.4838659397356,2019
+1995,22,"(20,25]",HS,7.161079168509509,39.642333228718265,0.18064222222222223,3845.005354467002,2019
+1995,22,"(20,25]",HS,7.161079168509509,39.642333228718265,0.18064222222222223,3838.619594423716,2019
+1995,22,"(20,25]",HS,7.161079168509509,39.642333228718265,0.18064222222222223,3811.876417709882,2019
+1995,22,"(20,25]",HS,7.161079168509509,39.642333228718265,0.18064222222222223,3804.2910705173854,2019
+1995,37,"(35,40]",HS,-18.67686864219372,25.76751659866687,-0.7248222222222224,8576.717714436056,2019
+1995,37,"(35,40]",HS,-18.67686864219372,25.76751659866687,-0.7248222222222224,8512.558381526549,2019
+1995,37,"(35,40]",HS,-18.67686864219372,25.76751659866687,-0.7248222222222224,8526.069562582436,2019
+1995,37,"(35,40]",HS,-18.67686864219372,25.76751659866687,-0.7248222222222224,8523.891430137659,2019
+1995,37,"(35,40]",HS,-18.67686864219372,25.76751659866687,-0.7248222222222224,8516.661288088348,2019
+1995,42,"(40,45]",HS,1032.0856965944272,99.10583307179566,10.413975288888889,7468.72686064229,2019
+1995,42,"(40,45]",HS,1034.4856258292791,99.10583307179566,10.438191111111111,7567.848016139035,2019
+1995,42,"(40,45]",HS,1034.156603272888,99.10583307179566,10.4348712,7415.646313855805,2019
+1995,42,"(40,45]",HS,1030.7115435647943,99.10583307179566,10.400109777777779,7262.959298852457,2019
+1995,42,"(40,45]",HS,1035.78236178682,99.10583307179566,10.451275466666667,7418.83103720287,2019
+1995,63,"(60,65]",HS,176.5109243697479,27.749633260102783,6.360838095238096,257.58256639504503,2019
+1995,63,"(60,65]",HS,179.99469261388765,27.749633260102783,6.486380952380952,260.8049132501757,2019
+1995,63,"(60,65]",HS,183.8655462184874,27.749633260102783,6.625873015873016,258.57269743816244,2019
+1995,63,"(60,65]",HS,174.962582927908,27.749633260102783,6.3050412698412694,251.17866631025987,2019
+1995,63,"(60,65]",HS,168.86598850066343,27.749633260102783,6.085341269841271,256.7198482898078,2019
+1995,30,"(25,30]",HS,105.0936753648828,109.01641637897524,0.9640169696969697,5517.274431068581,2019
+1995,30,"(25,30]",HS,105.0936753648828,109.01641637897524,0.9640169696969697,5468.027165776416,2019
+1995,30,"(25,30]",HS,105.0936753648828,109.01641637897524,0.9640169696969697,5542.4114225220155,2019
+1995,30,"(25,30]",HS,105.0936753648828,109.01641637897524,0.9640169696969697,5475.986772783874,2019
+1995,30,"(25,30]",HS,105.0936753648828,109.01641637897524,0.9640169696969697,5524.656662354793,2019
+1995,73,"(70,75]",HS,721.1400265369306,33.69598324441053,21.40136470588235,4083.6297956470057,2019
+1995,73,"(70,75]",HS,721.1400265369306,33.69598324441053,21.40136470588235,4245.468338781795,2019
+1995,73,"(70,75]",HS,721.1400265369306,33.69598324441053,21.40136470588235,4197.472924943404,2019
+1995,73,"(70,75]",HS,721.1400265369306,33.69598324441053,21.40136470588235,3979.162032834228,2019
+1995,73,"(70,75]",HS,721.1400265369306,33.69598324441053,21.40136470588235,4218.809870339818,2019
+1995,77,"(75,80]",College,253.25059708093764,35.67809990584644,7.098208641975309,8553.75040946738,2019
+1995,77,"(75,80]",College,263.121273772667,35.67809990584644,7.374867901234569,8572.025929372887,2019
+1995,77,"(75,80]",College,263.7019018133569,35.67809990584644,7.391141975308642,8787.827015502327,2019
+1995,77,"(75,80]",College,255.96019460415744,35.67809990584644,7.174154320987654,8991.638501215633,2019
+1995,77,"(75,80]",College,276.6692613887661,35.67809990584644,7.754596296296298,8786.00201686243,2019
+1995,61,"(60,65]",College,41324.01376382132,2913.711492310793,14.182603141345426,21.771475130045456,2019
+1995,61,"(60,65]",College,15356.876214064574,3270.4924913692566,4.695585222895623,22.139802728840415,2019
+1995,61,"(60,65]",College,23239.946996904022,7353.652813927239,3.1603269266247374,36.5536218158438,2019
+1995,61,"(60,65]",College,19263.709402919063,4618.331821145677,4.1711401754887945,21.31865848034735,2019
+1995,61,"(60,65]",College,14218.26462627156,1242.7871467203177,11.440627354244196,21.252088163683666,2019
+1995,72,"(70,75]",HS,591.0793454223794,49.55291653589783,11.928245333333333,6021.830201547906,2019
+1995,72,"(70,75]",HS,590.4987173816895,49.55291653589783,11.916528000000001,6260.481664974495,2019
+1995,72,"(70,75]",HS,591.6599734630694,49.55291653589783,11.939962666666666,6189.70633835309,2019
+1995,72,"(70,75]",HS,589.7245466607696,49.55291653589783,11.900904888888892,5867.779232024489,2019
+1995,72,"(70,75]",HS,586.2407784166297,49.55291653589783,11.830600888888888,6221.170371242134,2019
+1995,29,"(25,30]",HS,167.20152145068553,79.28466645743653,2.108875888888889,4103.213762470083,2019
+1995,29,"(25,30]",HS,167.20152145068553,79.28466645743653,2.108875888888889,4046.6101952514523,2019
+1995,29,"(25,30]",HS,167.20152145068553,79.28466645743653,2.108875888888889,4106.081965576726,2019
+1995,29,"(25,30]",HS,167.20152145068553,79.28466645743653,2.108875888888889,4054.122311214219,2019
+1995,29,"(25,30]",HS,167.20152145068553,79.28466645743653,2.108875888888889,4073.2756256835687,2019
+1995,55,"(50,55]",HS,28655.92923485184,1151.6097802942656,24.883367374258942,466.01924174422646,2019
+1995,55,"(50,55]",HS,28287.03688633348,1169.4488302471887,24.188349378531075,541.163258611464,2019
+1995,55,"(50,55]",HS,26959.140557275543,1383.5174296822674,19.48594212034384,457.1621133126663,2019
+1995,55,"(50,55]",HS,26987.784873949582,1242.7871467203177,21.715532659932663,527.7546830929092,2019
+1995,55,"(50,55]",HS,27813.244405130474,1106.0210970812395,25.1471192353644,439.6665709130307,2019
+1995,57,"(55,60]",College,4998.433259619637,418.2266155629777,11.951494892048446,619.44106272674,2019
+1995,57,"(55,60]",College,4983.9175586023885,418.2266155629777,11.916787151132175,560.7234386302895,2019
+1995,57,"(55,60]",College,4969.40185758514,418.2266155629777,11.882079410215903,552.1843496058855,2019
+1995,57,"(55,60]",College,5151.331977001327,418.2266155629777,12.317083096366508,513.4452830389521,2019
+1995,57,"(55,60]",College,5278.102432551968,418.2266155629777,12.620197367035281,551.5337545009551,2019
+1995,47,"(45,50]",HS,828.5562140645732,128.8375829933344,6.431013333333332,3973.561702274487,2019
+1995,47,"(45,50]",HS,828.5562140645732,128.8375829933344,6.431013333333332,4139.7182350953735,2019
+1995,47,"(45,50]",HS,828.5562140645732,128.8375829933344,6.431013333333332,4088.150252824763,2019
+1995,47,"(45,50]",HS,828.5562140645732,128.8375829933344,6.431013333333332,3878.283096870604,2019
+1995,47,"(45,50]",HS,828.5562140645732,128.8375829933344,6.431013333333332,4102.159157743836,2019
+1995,33,"(30,35]",HS,48.1921273772667,29.731749921538697,1.620897777777778,5753.262209606475,2019
+1995,33,"(30,35]",HS,44.321273772666956,29.731749921538697,1.4907051851851851,5728.478426290392,2019
+1995,33,"(30,35]",HS,50.32109685979655,29.731749921538697,1.6925037037037038,5778.234435672465,2019
+1995,33,"(30,35]",HS,48.579212737726664,29.731749921538697,1.633917037037037,5747.531762330942,2019
+1995,33,"(30,35]",HS,46.837328615656794,29.731749921538697,1.5753303703703707,5780.485060104943,2019
+1995,67,"(65,70]",HS,2.709597523219814,14.865874960769348,0.18226962962962964,11599.438839415196,2019
+1995,67,"(65,70]",HS,2.709597523219814,37.660216567282355,0.0719485380116959,11622.467146067833,2019
+1995,67,"(65,70]",HS,2.709597523219814,27.749633260102783,0.09764444444444445,11593.965885244126,2019
+1995,67,"(65,70]",HS,2.709597523219814,23.785399937230956,0.11391851851851853,11610.753071386076,2019
+1995,67,"(65,70]",HS,2.709597523219814,19.424743282071947,0.1394920634920635,11688.57899193343,2019
+1995,72,"(70,75]",College,70938.26957983193,4122.802655786701,17.206321888888883,33.256112451152106,2019
+1995,72,"(70,75]",College,73531.74149491376,4281.371988701573,17.17480790946502,34.20219418135996,2019
+1995,72,"(70,75]",College,69125.7423794781,4281.371988701573,16.145698753086418,34.18563392382753,2019
+1995,72,"(70,75]",College,71800.50222025653,4261.550822087214,16.848444432041344,32.510805420774574,2019
+1995,72,"(70,75]",College,79724.13954887219,4340.83548854465,18.36608177371893,32.40059001795,2019
+1995,47,"(45,50]",HS,330.76444051304736,148.65874960769352,2.224991407407407,239.21186057453443,2019
+1995,47,"(45,50]",HS,312.95851393188855,107.03429971753931,2.923908641975309,235.0111310715502,2019
+1995,47,"(45,50]",HS,253.15382574082267,172.44414954492444,1.468033716475096,231.81864840262224,2019
+1995,47,"(45,50]",HS,372.3761167624945,69.37408315025698,5.367654603174603,229.32302444729635,2019
+1995,47,"(45,50]",HS,289.34630694383014,241.81823269518142,1.196544626593807,239.0784766025882,2019
+1995,64,"(60,65]",HS,4.103104820875719,9.514159974892383,0.43126296296296296,6146.989876708266,2019
+1995,64,"(60,65]",HS,4.180521892967713,8.523101644174426,0.49049302325581395,6159.617970473073,2019
+1995,64,"(60,65]",HS,4.180521892967713,8.523101644174426,0.49049302325581395,6141.287905091678,2019
+1995,64,"(60,65]",HS,4.122459088898718,7.9284666457436535,0.5199566666666667,6153.150099157823,2019
+1995,64,"(60,65]",HS,4.103104820875719,7.9284666457436535,0.5175155555555555,6121.6270897973955,2019
+1995,63,"(60,65]",NoHS,6.793348076072534,1.7640838286779628,3.8509213483146065,9439.884661136595,2019
+1995,63,"(60,65]",NoHS,6.870765148164529,1.7244414954492444,3.984342273307791,9458.213103515267,2019
+1995,63,"(60,65]",NoHS,7.199787704555506,1.7046203288348851,4.223689922480621,9429.349597707962,2019
+1995,63,"(60,65]",NoHS,7.199787704555506,1.8433684951353995,3.9057777777777773,9446.039130786068,2019
+1995,63,"(60,65]",NoHS,6.619159663865546,1.962295494821554,3.3731717171717173,9404.120642527165,2019
+1995,46,"(45,50]",College,69.92697036709421,89.1952497646161,0.7839763950617286,4515.146645597912,2019
+1995,46,"(45,50]",College,142.64095532950023,89.1952497646161,1.5991990123456792,4367.914481104514,2019
+1995,46,"(45,50]",College,55.159663865546214,89.1952497646161,0.6184148148148148,4392.258510784792,2019
+1995,46,"(45,50]",College,117.48040689960195,89.1952497646161,1.317115061728395,4516.61161885054,2019
+1995,46,"(45,50]",College,38.90207872622733,89.1952497646161,0.4361451851851852,4438.932265378708,2019
+1995,27,"(25,30]",HS,24.48314904909332,49.55291653589783,0.4940808888888889,5018.960888694177,2019
+1995,27,"(25,30]",HS,21.192923485183545,49.55291653589783,0.42768266666666666,5071.998843711885,2019
+1995,27,"(25,30]",HS,21.48323750552853,49.55291653589783,0.4335413333333334,5025.958043054208,2019
+1995,27,"(25,30]",HS,23.128350287483418,49.55291653589783,0.4667404444444445,5104.950306460649,2019
+1995,27,"(25,30]",HS,20.70906678460858,49.55291653589783,0.41791822222222225,5033.521148031234,2019
+1995,24,"(20,25]",College,-0.09677134011499337,91.177366426052,-0.0010613526570048312,6025.145542092377,2019
+1995,24,"(20,25]",College,-0.09677134011499337,91.177366426052,-0.0010613526570048312,6007.757664392419,2019
+1995,24,"(20,25]",College,-0.09677134011499337,91.177366426052,-0.0010613526570048312,6041.983504653711,2019
+1995,24,"(20,25]",College,-0.09677134011499337,91.177366426052,-0.0010613526570048312,6002.357263635351,2019
+1995,24,"(20,25]",College,-0.09677134011499337,91.177366426052,-0.0010613526570048312,5975.2865206867655,2019
+1995,41,"(40,45]",NoHS,1.9354268022998675,16.649779956061675,0.11624338624338623,7404.137498494226,2019
+1995,41,"(40,45]",NoHS,1.9354268022998675,16.055144957630898,0.12054869684499316,7416.921088850388,2019
+1995,41,"(40,45]",NoHS,1.9354268022998675,18.830108283641177,0.10278362573099416,7441.487112254237,2019
+1995,41,"(40,45]",NoHS,1.9354268022998675,17.64083828677963,0.10971285892634207,7304.246166375383,2019
+1995,41,"(40,45]",NoHS,1.9354268022998675,16.649779956061675,0.11624338624338623,7424.402934923014,2019
+1995,49,"(45,50]",HS,23.050933215391417,35.67809990584644,0.6460807407407407,8194.328426417022,2019
+1995,49,"(45,50]",HS,21.967094206103496,33.69598324441053,0.6519202614379085,8203.461743286369,2019
+1995,49,"(45,50]",HS,19.66393631136665,37.660216567282355,0.5221408187134502,8117.3263262336795,2019
+1995,49,"(45,50]",HS,23.457372843874392,31.713866582974614,0.7396566666666666,8588.646636204137,2019
+1995,49,"(45,50]",HS,27.792728881026093,37.660216567282355,0.7379864327485379,8257.607542267466,2019
+1995,33,"(30,35]",College,71.18499778858911,116.94488302471889,0.6087055367231637,6151.8693139774505,2019
+1995,33,"(30,35]",College,71.18499778858911,116.94488302471889,0.6087055367231637,6182.930882393701,2019
+1995,33,"(30,35]",College,71.18499778858911,116.94488302471889,0.6087055367231637,6217.253925609677,2019
+1995,33,"(30,35]",College,71.18499778858911,116.94488302471889,0.6087055367231637,6261.012095757791,2019
+1995,33,"(30,35]",College,71.18499778858911,116.94488302471889,0.6087055367231637,6245.613512831013,2019
+1995,32,"(30,35]",College,-1.354798761609907,65.40984982738514,-0.02071245791245791,6921.941907892721,2019
+1995,32,"(30,35]",College,-1.1612560813799204,65.40984982738514,-0.01775353535353535,6815.228456218571,2019
+1995,32,"(30,35]",College,-1.354798761609907,65.40984982738514,-0.02071245791245791,6831.490021267065,2019
+1995,32,"(30,35]",College,-1.1612560813799204,65.40984982738514,-0.01775353535353535,6787.794625107519,2019
+1995,32,"(30,35]",College,-1.354798761609907,65.40984982738514,-0.02071245791245791,6815.750391520009,2019
+1995,55,"(50,55]",College,2043.5784520123839,293.3532658925152,6.966271351351351,160.49691274252643,2019
+1995,55,"(50,55]",College,2528.6080212295446,269.5678659552842,9.38022791503268,133.03486057931934,2019
+1995,55,"(50,55]",College,2391.0727218045113,297.31749921538704,8.042152675555554,132.89817190932996,2019
+1995,55,"(50,55]",College,2268.7189102167185,287.4069159082075,7.893751975478926,137.76641013426723,2019
+1995,55,"(50,55]",College,2252.039402034498,313.17443250687427,7.1910065710267235,132.66425115118906,2019
+1995,42,"(40,45]",HS,61.740114993365765,23.785399937230956,2.5957148148148153,6567.083414043676,2019
+1995,42,"(40,45]",HS,61.740114993365765,23.785399937230956,2.5957148148148153,6548.003551133135,2019
+1995,42,"(40,45]",HS,61.740114993365765,23.785399937230956,2.5957148148148153,6558.718122173961,2019
+1995,42,"(40,45]",HS,61.740114993365765,23.785399937230956,2.5957148148148153,6676.370601563996,2019
+1995,42,"(40,45]",HS,61.740114993365765,23.785399937230956,2.5957148148148153,6592.2477846552765,2019
+1995,69,"(65,70]",HS,968.8940114993366,110.99853304041113,8.72889023809524,3884.0696136633624,2019
+1995,69,"(65,70]",HS,1003.5381512605042,132.8018163162062,7.556659834162519,4037.711084039144,2019
+1995,69,"(65,70]",HS,1100.6772224679346,124.87334967046255,8.814348500881835,3993.7450008145497,2019
+1995,69,"(65,70]",HS,995.2158160106147,103.07006639466748,9.655721111111111,3784.9378269606505,2019
+1995,69,"(65,70]",HS,959.0233348076073,124.87334967046255,7.679968042328042,4047.0194611221023,2019
+1995,80,"(75,80]",College,5300.746926138877,336.95983244410525,15.731094379084968,482.84721461568677,2019
+1995,80,"(75,80]",College,5300.746926138877,336.95983244410525,15.731094379084968,425.1404367883154,2019
+1995,80,"(75,80]",College,5300.746926138877,336.95983244410525,15.731094379084968,424.5226678858233,2019
+1995,80,"(75,80]",College,5300.746926138877,336.95983244410525,15.731094379084968,436.1066776088298,2019
+1995,80,"(75,80]",College,5300.746926138877,336.95983244410525,15.731094379084968,434.1433497109054,2019
+1995,45,"(40,45]",College,1584.9790712074305,107.03429971753931,14.808141646090537,2599.7673669296755,2019
+1995,45,"(40,45]",College,1593.0304467049978,107.03429971753931,14.883364032921811,2228.6403510537375,2019
+1995,45,"(40,45]",College,1596.4367978770456,107.03429971753931,14.91518888888889,2297.998463600702,2019
+1995,45,"(40,45]",College,1589.4692613887662,107.03429971753931,14.850092592592596,2230.9739699010033,2019
+1995,45,"(40,45]",College,1581.6307828394517,107.03429971753931,14.776859259259261,2298.8071796092445,2019
+1995,49,"(45,50]",College,9423.593100398055,1226.9302134288303,7.680626817447497,496.7641223961655,2019
+1995,49,"(45,50]",College,7159.143741707209,880.0597976775455,8.134837837837837,443.1851883833371,2019
+1995,49,"(45,50]",College,7343.009287925697,776.989731282878,9.450587301587303,440.3282671794037,2019
+1995,49,"(45,50]",College,8152.017691287041,440.02989883877274,18.526054054054054,450.2074235362028,2019
+1995,49,"(45,50]",College,7246.237947810703,2061.4013278933503,3.515199999999999,446.9820762544329,2019
+1995,36,"(35,40]",HS,41.41813356921716,79.28466645743653,0.5223977777777778,5902.339790192642,2019
+1995,36,"(35,40]",HS,41.41813356921716,79.28466645743653,0.5223977777777778,5821.136015729386,2019
+1995,36,"(35,40]",HS,41.22459088898717,79.28466645743653,0.5199566666666666,5816.222688807612,2019
+1995,36,"(35,40]",HS,41.22459088898717,79.28466645743653,0.5199566666666666,5878.429767765382,2019
+1995,36,"(35,40]",HS,41.41813356921716,79.28466645743653,0.5223977777777778,5837.305896021875,2019
+1995,71,"(70,75]",College,10189.654383016365,358.7631157199002,28.402179422958877,276.5049146986306,2019
+1995,71,"(70,75]",College,4556.5946749226005,299.29961587682294,15.224191523178806,246.55326733645933,2019
+1995,71,"(70,75]",College,4077.1701017249,283.44268258533566,14.384460606060602,248.90995542343882,2019
+1995,71,"(70,75]",College,4957.421565678903,360.7452323813362,13.742167936507936,250.32936675001466,2019
+1995,71,"(70,75]",College,5358.616187527643,273.53209927815607,19.59044734299517,248.30059634944445,2019
+1995,67,"(65,70]",HS,6963.665634674922,1597.586029117346,4.358867383512544,276.5049146986306,2019
+1995,67,"(65,70]",HS,7106.887218045113,1498.4801960455504,4.742730158730159,246.55326733645933,2019
+1995,67,"(65,70]",HS,7006.24502432552,1542.0867625971407,4.54335332762068,248.90995542343882,2019
+1995,67,"(65,70]",HS,7095.2746572313135,1542.0867625971407,4.601086546700942,250.32936675001466,2019
+1995,67,"(65,70]",HS,7027.534719150818,1492.5338460612425,4.708459200236093,248.30059634944445,2019
+1995,77,"(75,80]",NoHS,17.61238390092879,11.892699968615478,1.480940740740741,9115.47810029781,2019
+1995,77,"(75,80]",NoHS,31.160371517027862,11.892699968615478,2.620125925925926,9072.439673876936,2019
+1995,77,"(75,80]",NoHS,31.160371517027862,11.892699968615478,2.620125925925926,9121.749594982073,2019
+1995,77,"(75,80]",NoHS,25.354091110128262,11.892699968615478,2.131903703703704,9129.39148232629,2019
+1995,77,"(75,80]",NoHS,21.48323750552853,11.892699968615478,1.8064222222222226,9132.143565435765,2019
+1995,27,"(25,30]",HS,-3.096682883679788,63.42773316594923,-0.048822222222222225,6039.110194931176,2019
+1995,27,"(25,30]",HS,-3.096682883679788,63.42773316594923,-0.048822222222222225,6067.928201434173,2019
+1995,27,"(25,30]",HS,-3.096682883679788,63.42773316594923,-0.048822222222222225,6078.55808858596,2019
+1995,27,"(25,30]",HS,-3.096682883679788,63.42773316594923,-0.048822222222222225,6158.496578848771,2019
+1995,27,"(25,30]",HS,-3.096682883679788,63.42773316594923,-0.048822222222222225,6098.869157818933,2019
+1995,73,"(70,75]",HS,369.6665192392747,99.10583307179566,3.7300177777777783,1494.3462519021025,2019
+1995,73,"(70,75]",HS,383.21450685537377,99.10583307179566,3.866720000000001,1514.0181116185786,2019
+1995,73,"(70,75]",HS,352.2476780185758,99.10583307179566,3.5542577777777775,1506.695808556293,2019
+1995,73,"(70,75]",HS,394.82706766917295,99.10583307179566,3.9838933333333335,1464.6669957637143,2019
+1995,73,"(70,75]",HS,379.343653250774,99.10583307179566,3.827662222222223,1494.30575723761,2019
+1995,66,"(65,70]",HS,245.79726846528087,39.642333228718265,6.2003734,9407.56130313127,2019
+1995,66,"(65,70]",HS,245.79726846528087,39.642333228718265,6.2003734,9413.412968267474,2019
+1995,66,"(65,70]",HS,245.79726846528087,39.642333228718265,6.2003734,9321.369945992485,2019
+1995,66,"(65,70]",HS,245.79726846528087,39.642333228718265,6.2003734,9942.037488143624,2019
+1995,66,"(65,70]",HS,245.79726846528087,39.642333228718265,6.2003734,9557.199512599213,2019
+1995,70,"(65,70]",HS,89.70703228659886,11.496276636328297,7.803137931034484,8359.602323154966,2019
+1995,70,"(65,70]",HS,80.02989827509953,11.496276636328297,6.961375478927204,8364.838377196798,2019
+1995,70,"(65,70]",HS,72.28819106590004,11.496276636328297,6.287965517241378,8366.666307764153,2019
+1995,70,"(65,70]",HS,141.96355594869524,11.496276636328297,12.34865517241379,8658.493275875302,2019
+1995,70,"(65,70]",HS,43.256789031402036,11.496276636328297,3.7626781609195405,8375.474053742833,2019
+1995,40,"(35,40]",HS,27.289517912428128,29.731749921538697,0.9178577777777778,5886.579734631811,2019
+1995,40,"(35,40]",HS,16.0640424590889,37.660216567282355,0.42655204678362574,5778.054847556751,2019
+1995,40,"(35,40]",HS,31.934542237947813,37.660216567282355,0.8479649122807018,5871.699985293022,2019
+1995,40,"(35,40]",HS,19.354268022998674,31.713866582974614,0.6102777777777778,5917.895867558456,2019
+1995,40,"(35,40]",HS,31.35391419725785,39.642333228718265,0.7909200000000001,5806.542887476209,2019
+1995,79,"(75,80]",NoHS,100.93250773993809,21.803283275795042,4.629234343434344,8261.848435612952,2019
+1995,79,"(75,80]",NoHS,92.41662980981867,21.803283275795042,4.238656565656567,8281.64714642736,2019
+1995,79,"(75,80]",NoHS,103.6421052631579,21.803283275795042,4.753509090909092,8322.657454035156,2019
+1995,79,"(75,80]",NoHS,94.35205661211853,21.803283275795042,4.327424242424243,8540.75885694354,2019
+1995,79,"(75,80]",NoHS,92.41662980981867,21.803283275795042,4.238656565656567,8435.275905940598,2019
+1995,51,"(50,55]",College,2808.8849181777973,400.3875656100545,7.015414961496149,1060.639685422372,2019
+1995,51,"(50,55]",College,2909.1206722689076,400.3875656100545,7.265761782178218,956.3992368796055,2019
+1995,51,"(50,55]",College,2806.4849889429456,400.3875656100545,7.009420946094609,945.3694348790466,2019
+1995,51,"(50,55]",College,3155.2101901813357,400.3875656100545,7.880390055005501,954.5873006651497,2019
+1995,51,"(50,55]",College,2807.7430163644403,400.3875656100545,7.012562970297029,949.9463767132868,2019
+1995,40,"(35,40]",College,102.24859796550199,41.624449890154175,2.4564552380952382,5902.339790192642,2019
+1995,40,"(35,40]",College,102.24859796550199,41.624449890154175,2.4564552380952382,5821.136015729386,2019
+1995,40,"(35,40]",College,102.24859796550199,41.624449890154175,2.4564552380952382,5816.222688807612,2019
+1995,40,"(35,40]",College,102.24859796550199,41.624449890154175,2.4564552380952382,5878.429767765382,2019
+1995,40,"(35,40]",College,102.24859796550199,41.624449890154175,2.4564552380952382,5837.305896021875,2019
+1995,84,"(80,85]",College,11154.329164086686,7294.18931408416,1.5292075217391303,195.03207208454089,2019
+1995,84,"(80,85]",College,12346.745616983635,7631.149146528266,1.617940546031746,171.26853047089702,2019
+1995,84,"(80,85]",College,10884.55002211411,8483.45931094571,1.2830320301142264,178.53000863407883,2019
+1995,84,"(80,85]",College,7141.608774878373,6996.871814868773,1.020685952785647,174.49045580451855,2019
+1995,84,"(80,85]",College,7288.256063688633,7690.6126463713445,0.9476821156930124,181.0218103817977,2019
+1995,30,"(25,30]",HS,-0.3870853604599735,37.660216567282355,-0.010278362573099416,5635.305088552068,2019
+1995,30,"(25,30]",HS,-0.3870853604599735,37.660216567282355,-0.010278362573099416,5683.557256671711,2019
+1995,30,"(25,30]",HS,-0.3870853604599735,37.660216567282355,-0.010278362573099416,5697.533064990896,2019
+1995,30,"(25,30]",HS,-0.3870853604599735,37.660216567282355,-0.010278362573099416,5768.4549894527645,2019
+1995,30,"(25,30]",HS,-0.3870853604599735,37.660216567282355,-0.010278362573099416,5709.619157202568,2019
+1995,79,"(75,80]",NoHS,28.45077399380805,8.523101644174426,3.338077519379845,11599.438839415196,2019
+1995,79,"(75,80]",NoHS,37.9343653250774,12.685546633189844,2.9903611111111115,11622.467146067833,2019
+1995,79,"(75,80]",NoHS,31.54745687748784,21.803283275795042,1.4469131313131316,11593.965885244126,2019
+1995,79,"(75,80]",NoHS,30.77328615656789,6.5409849827385145,4.704686868686869,11610.753071386076,2019
+1995,79,"(75,80]",NoHS,30.347492260061923,16.25335662377449,1.8671523035230353,11688.57899193343,2019
+1995,48,"(45,50]",College,2941.4616541353384,305.2459658611307,9.636365367965366,1006.0102874525213,2019
+1995,48,"(45,50]",College,3359.70738611234,332.9955991212334,10.08934470899471,909.7705000166834,2019
+1995,48,"(45,50]",College,2729.3388766032726,334.97771578266935,8.14782222222222,903.56555157208345,2019
+1995,48,"(45,50]",College,2732.6291021671827,283.44268258533566,9.640852525252523,914.73611921334,2019
+1995,48,"(45,50]",College,3249.1945157010173,289.38903256964335,11.227773515981735,904.8694376098329,2019
+1995,79,"(75,80]",NoHS,159.53723131357805,23.785399937230956,6.70735962962963,10881.618821137885,2019
+1995,79,"(75,80]",NoHS,159.53723131357805,23.785399937230956,6.70735962962963,10866.027251576248,2019
+1995,79,"(75,80]",NoHS,159.53723131357805,23.785399937230956,6.70735962962963,11136.768782692978,2019
+1995,79,"(75,80]",NoHS,159.53723131357805,23.785399937230956,6.70735962962963,11397.554147224018,2019
+1995,79,"(75,80]",NoHS,159.53723131357805,23.785399937230956,6.70735962962963,11143.863581841943,2019
+1995,62,"(60,65]",College,2694.694736842105,112.98064970184706,23.850940350877192,2201.6096210858736,2019
+1995,62,"(60,65]",College,2613.4068111455113,112.98064970184706,23.131454970760238,1883.541849492439,2019
+1995,62,"(60,65]",College,2686.9530296329062,112.98064970184706,23.782417933723202,1933.5363181678822,2019
+1995,62,"(60,65]",College,2694.694736842105,112.98064970184706,23.850940350877192,1889.2101816209943,2019
+1995,62,"(60,65]",College,2690.8238832375055,112.98064970184706,23.816679142300195,1932.5795519437324,2019
+1995,47,"(45,50]",HS,1780.3991154356481,77.30254979600063,23.031570370370368,2246.194505578279,2019
+1995,47,"(45,50]",HS,1780.3991154356481,89.1952497646161,19.960694320987656,1842.4062043089118,2019
+1995,47,"(45,50]",HS,1780.3991154356481,97.12371641035975,18.33124988662132,1894.042009246256,2019
+1995,47,"(45,50]",HS,1780.3991154356481,81.26678311887244,21.908079132791332,1869.8877426410804,2019
+1995,47,"(45,50]",HS,1780.3991154356481,87.21313310318017,20.41434646464647,1911.7638893498447,2019
+1995,64,"(60,65]",HS,12928.457496682884,291.37114923107936,44.3710969009826,1188.7853354447086,2019
+1995,64,"(60,65]",HS,12926.502715612562,291.37114923107936,44.364387996976554,1076.2147690908675,2019
+1995,64,"(60,65]",HS,12949.553648827952,291.37114923107936,44.44349992441419,1066.3851972831017,2019
+1995,64,"(60,65]",HS,13471.480194604157,291.37114923107936,46.2347772940287,1086.580919337507,2019
+1995,64,"(60,65]",HS,13245.673949579832,291.37114923107936,45.45979924414208,1074.2817912139433,2019
+1995,64,"(60,65]",HS,68.53346306943831,21.803283275795042,3.143263434343435,7611.926369165863,2019
+1995,64,"(60,65]",HS,57.11444493586909,31.713866582974614,1.8009297222222223,7535.085066992428,2019
+1995,64,"(60,65]",HS,84.34590004422822,45.588683213026,1.8501499516908213,7619.756084037335,2019
+1995,64,"(60,65]",HS,61.93365767359576,27.749633260102783,2.2318730158730165,7657.8138524170845,2019
+1995,64,"(60,65]",HS,73.70105263157895,83.24889978030835,0.8853096296296297,7533.6804304190755,2019
+1995,29,"(25,30]",College,636.7554179566563,279.4784492624638,2.2783703703703697,6616.416474547621,2019
+1995,29,"(25,30]",College,664.6255639097744,279.4784492624638,2.378092356185973,6709.758940879971,2019
+1995,29,"(25,30]",College,664.6642724458204,279.4784492624638,2.37823085894405,6611.546183160363,2019
+1995,29,"(25,30]",College,563.4027421494914,279.4784492624638,2.0159076438140264,6468.714531594167,2019
+1995,29,"(25,30]",College,741.0749226006192,279.4784492624638,2.6516353033884945,6608.685683350981,2019
+1995,21,"(20,25]",HS,30.386200796107918,5.946349984307739,5.11005925925926,4785.266366537217,2019
+1995,21,"(20,25]",HS,30.386200796107918,5.946349984307739,5.11005925925926,4781.817175780801,2019
+1995,21,"(20,25]",HS,30.386200796107918,5.946349984307739,5.11005925925926,4776.284234530262,2019
+1995,21,"(20,25]",HS,30.386200796107918,5.946349984307739,5.11005925925926,4791.839981596109,2019
+1995,21,"(20,25]",HS,30.386200796107918,5.946349984307739,5.11005925925926,4749.059574806958,2019
+1995,50,"(45,50]",HS,58.43053516143299,45.588683213026,1.2816894685990339,6153.764111819196,2019
+1995,50,"(45,50]",HS,58.43053516143299,45.588683213026,1.2816894685990339,6040.1199956595265,2019
+1995,50,"(45,50]",HS,58.43053516143299,45.588683213026,1.2816894685990339,6090.39869809511,2019
+1995,50,"(45,50]",HS,58.43053516143299,45.588683213026,1.2816894685990339,6306.328915407024,2019
+1995,50,"(45,50]",HS,58.43053516143299,45.588683213026,1.2816894685990339,6159.035318989354,2019
+1995,62,"(60,65]",College,11490.686988058382,97.12371641035975,118.30979510204082,1476.2233678042267,2019
+1995,62,"(60,65]",College,5308.875718708536,428.13719887015725,12.399940329218106,1342.2462599676567,2019
+1995,62,"(60,65]",College,13440.3778858912,309.21019918400253,43.46679999999999,1326.3342879863721,2019
+1995,62,"(60,65]",College,7062.178858911986,200.19378280502724,35.276714191419146,1225.8986856800561,2019
+1995,62,"(60,65]",College,4918.887218045113,378.58428233425946,12.992845840605002,1323.5660091431075,2019
+1995,36,"(35,40]",College,1222.8026536930563,360.7452323813362,3.389657142857143,158.64063121707065,2019
+1995,36,"(35,40]",College,1222.8026536930563,360.7452323813362,3.389657142857143,138.01775579229118,2019
+1995,36,"(35,40]",College,1222.8026536930563,360.7452323813362,3.389657142857143,142.9637950262603,2019
+1995,36,"(35,40]",College,1222.8026536930563,360.7452323813362,3.389657142857143,127.71482367784665,2019
+1995,36,"(35,40]",College,1222.8026536930563,360.7452323813362,3.389657142857143,139.44076359983336,2019
+1995,46,"(45,50]",HS,-3.367642636001769,81.26678311887244,-0.04143934959349593,6938.7160952934255,2019
+1995,46,"(45,50]",HS,-3.367642636001769,81.26678311887244,-0.04143934959349593,6809.407638951196,2019
+1995,46,"(45,50]",HS,27.599186200796108,81.26678311887244,0.33961214092140923,6828.571125950172,2019
+1995,46,"(45,50]",HS,-3.367642636001769,81.26678311887244,-0.04143934959349593,7125.26856894221,2019
+1995,46,"(45,50]",HS,-3.367642636001769,81.26678311887244,-0.04143934959349593,6902.977789561512,2019
+1995,52,"(50,55]",College,92027.12516585582,3131.744325068743,29.385261251758088,20.12365416564478,2019
+1995,52,"(50,55]",College,83387.61217160549,3171.386658297461,26.29373871944445,21.728651686078898,2019
+1995,52,"(50,55]",College,78088.43294117648,2735.3209927815606,28.54817885990338,21.279309952668655,2019
+1995,52,"(50,55]",College,88167.72928792569,3191.2078249118204,27.628325739130432,18.687207744553895,2019
+1995,52,"(50,55]",College,73677.15011057055,3171.386658297461,23.231840847222227,20.149174934146174,2019
+1995,48,"(45,50]",College,223.63856700574968,140.73028296194985,1.589128951486698,5866.678956380931,2019
+1995,48,"(45,50]",College,223.63856700574968,140.73028296194985,1.589128951486698,5695.66202181637,2019
+1995,48,"(45,50]",College,223.63856700574968,140.73028296194985,1.589128951486698,5728.851791544455,2019
+1995,48,"(45,50]",College,223.63856700574968,140.73028296194985,1.589128951486698,5889.756215194013,2019
+1995,48,"(45,50]",College,223.63856700574968,140.73028296194985,1.589128951486698,5784.841009271088,2019
+1995,52,"(50,55]",College,12586.254683768244,291.37114923107936,43.196640151171565,870.8618251077384,2019
+1995,52,"(50,55]",College,13139.399663865546,461.8331821145678,28.45053186456843,783.7811884836271,2019
+1995,52,"(50,55]",College,10031.491304732419,366.69158236564397,27.356753705705703,783.387656296918,2019
+1995,52,"(50,55]",College,10170.45494913755,461.8331821145678,22.021923376251785,717.1117330971684,2019
+1995,52,"(50,55]",College,10203.357204776648,463.8152987760037,21.998750864197532,780.0094981827734,2019
+1995,43,"(40,45]",College,378.2404599734631,105.0521830561034,3.6005007127882602,5968.763795319027,2019
+1995,43,"(40,45]",College,378.2404599734631,105.0521830561034,3.6005007127882602,6007.350101117613,2019
+1995,43,"(40,45]",College,378.2404599734631,105.0521830561034,3.6005007127882602,5998.481727416234,2019
+1995,43,"(40,45]",College,378.2404599734631,105.0521830561034,3.6005007127882602,6181.9078320220915,2019
+1995,43,"(40,45]",College,378.2404599734631,105.0521830561034,3.6005007127882602,6054.290736851717,2019
+1995,59,"(55,60]",College,2919.20424590889,329.0313657983616,8.872115394912985,2221.4835310605804,2019
+1995,59,"(55,60]",College,3093.392658115878,325.06713247548976,9.516165582655827,2091.511688738291,2019
+1995,59,"(55,60]",College,3284.999911543565,325.06713247548976,10.105604607046072,1968.8953776587157,2019
+1995,59,"(55,60]",College,4448.191419725785,352.8167657355925,12.6076531835206,1973.6843797778442,2019
+1995,59,"(55,60]",College,4361.097213622291,354.79888239702854,12.291744506517688,2217.755115589546,2019
+1995,55,"(50,55]",College,16287.584254754534,239.83611603374553,67.91130762167126,1287.5044100301693,2019
+1995,55,"(50,55]",College,4754.375939849625,239.83611603374553,19.823436179981638,1165.3237399244952,2019
+1995,55,"(50,55]",College,16366.93675364883,239.83611603374553,68.24216896235079,1147.1449981854655,2019
+1995,55,"(50,55]",College,4436.965944272446,239.83611603374553,18.499990817263544,1070.9570579090885,2019
+1995,55,"(50,55]",College,19737.67607253428,239.83611603374553,82.29651313131313,1471.0363085917043,2019
+1995,79,"(75,80]",NoHS,0.32902255639097744,0.31713866582974615,1.0374722222222221,9886.272018760435,2019
+1995,79,"(75,80]",NoHS,0.32902255639097744,0.31713866582974615,1.0374722222222221,9852.552090730289,2019
+1995,79,"(75,80]",NoHS,0.32902255639097744,0.31713866582974615,1.0374722222222221,9874.74208434179,2019
+1995,79,"(75,80]",NoHS,0.32902255639097744,0.31713866582974615,1.0374722222222221,9892.48341116725,2019
+1995,79,"(75,80]",NoHS,0.32902255639097744,0.31713866582974615,1.0374722222222221,9880.279372926861,2019
+1995,28,"(25,30]",HS,28.257231313578064,99.10583307179566,0.2851217777777778,4473.01559099352,2019
+1995,28,"(25,30]",HS,53.80486510393631,99.10583307179566,0.5429031111111111,4405.271625118612,2019
+1995,28,"(25,30]",HS,25.354091110128262,99.10583307179566,0.25582844444444447,4432.531056208014,2019
+1995,28,"(25,30]",HS,71.99787704555507,99.10583307179566,0.7264746666666668,4377.607772904763,2019
+1995,28,"(25,30]",HS,54.96612118531623,99.10583307179566,0.5546204444444445,4427.6958639532495,2019
+1995,65,"(60,65]",HS,18139.361910659,255.69304932523286,70.9419437037037,320.38168729695735,2019
+1995,65,"(60,65]",HS,22256.634055727554,717.5262314398004,31.01856500920811,571.9353970584395,2019
+1995,65,"(60,65]",HS,18961.18283945157,305.2459658611307,62.117718037518024,281.4806931333186,2019
+1995,65,"(60,65]",HS,20107.67161432994,731.4010480698521,27.491991797651306,625.4395267898756,2019
+1995,65,"(60,65]",HS,55235.339053516145,925.6484808905715,59.67204634784678,257.7116725196197,2019
+1995,36,"(35,40]",HS,0.6580451127819549,9.712371641035974,0.06775328798185942,6167.896668096333,2019
+1995,36,"(35,40]",HS,0.6580451127819549,8.324889978030837,0.07904550264550263,6210.186768171043,2019
+1995,36,"(35,40]",HS,0.6580451127819549,12.883758299333435,0.05107555555555556,6208.75666302056,2019
+1995,36,"(35,40]",HS,0.6580451127819549,13.47839329776421,0.04882222222222222,6195.530731976564,2019
+1995,36,"(35,40]",HS,0.6580451127819549,12.289123300902663,0.053546953405017916,6214.70599453645,2019
+1995,42,"(40,45]",HS,1565.3731977001326,109.01641637897524,14.359059393939392,6493.839983934433,2019
+1995,42,"(40,45]",HS,1557.8250331711631,109.01641637897524,14.289820606060605,11805.254985244985,2019
+1995,42,"(40,45]",HS,1569.6117823971695,109.01641637897524,14.397939636363636,10983.745522883983,2019
+1995,42,"(40,45]",HS,1569.1859885006634,109.01641637897524,14.394033858585857,11908.543530085492,2019
+1995,42,"(40,45]",HS,1566.5344537815126,109.01641637897524,14.369711515151515,12015.95644899762,2019
+1995,38,"(35,40]",College,259.5407341884122,144.69451628482167,1.7937150684931507,6498.565569365068,2019
+1995,38,"(35,40]",College,259.5407341884122,144.69451628482167,1.7937150684931507,6546.264334438541,2019
+1995,38,"(35,40]",College,259.5407341884122,144.69451628482167,1.7937150684931507,6542.91794564699,2019
+1995,38,"(35,40]",College,259.5407341884122,144.69451628482167,1.7937150684931507,6506.513514337639,2019
+1995,38,"(35,40]",College,259.5407341884122,144.69451628482167,1.7937150684931507,6563.101304389801,2019
+1995,68,"(65,70]",HS,22977.580539584254,495.5291653589783,46.36978435555556,36.90266076026997,2019
+1995,68,"(65,70]",HS,22977.580539584254,495.5291653589783,46.36978435555556,42.45837409286082,2019
+1995,68,"(65,70]",HS,22977.580539584254,495.5291653589783,46.36978435555556,37.70739107340576,2019
+1995,68,"(65,70]",HS,22977.580539584254,495.5291653589783,46.36978435555556,45.250500998308404,2019
+1995,68,"(65,70]",HS,22979.515966386552,495.5291653589783,46.373690133333334,36.05815599447345,2019
+1995,64,"(60,65]",HS,1035.453339230429,65.40984982738514,15.830235690235689,1086.2903119842313,2019
+1995,64,"(60,65]",HS,1316.0902255639098,67.39196648882105,19.52888888888889,1075.4513631097238,2019
+1995,64,"(60,65]",HS,1035.453339230429,61.44561650451331,16.851541218637994,1085.557273947716,2019
+1995,64,"(60,65]",HS,1209.641751437417,79.28466645743653,15.256944444444445,933.2902307138165,2019
+1995,64,"(60,65]",HS,1134.1601061477224,71.35619981169287,15.89434567901235,1088.537755689766,2019
+1995,22,"(20,25]",HS,2.709597523219814,19.821166614359132,0.13670222222222222,7776.43645185097,2019
+1995,22,"(20,25]",HS,2.709597523219814,19.821166614359132,0.13670222222222222,7783.247100305211,2019
+1995,22,"(20,25]",HS,2.709597523219814,19.821166614359132,0.13670222222222222,7833.113590846753,2019
+1995,22,"(20,25]",HS,2.709597523219814,19.821166614359132,0.13670222222222222,7776.340189393268,2019
+1995,22,"(20,25]",HS,2.709597523219814,19.821166614359132,0.13670222222222222,7737.223920466391,2019
+1995,62,"(60,65]",NoHS,9.290048651039363,13.28018163162062,0.6995422885572139,8650.989509892834,2019
+1995,62,"(60,65]",NoHS,9.290048651039363,33.69598324441053,0.2757019607843137,8666.388151454315,2019
+1995,62,"(60,65]",NoHS,9.290048651039363,14.469451628482167,0.6420456621004567,8644.548085828428,2019
+1995,62,"(60,65]",NoHS,9.290048651039363,5.748138318164148,1.616183908045977,8662.496639858336,2019
+1995,62,"(60,65]",NoHS,9.290048651039363,10.108794973323159,0.9190065359477123,8615.47318538944,2019
+1995,72,"(70,75]",HS,186792.0083149049,18770.6447837981,9.951283531620321,14.028299846209455,2019
+1995,72,"(70,75]",HS,174802.91021671827,17660.659453393986,9.897869933906971,15.009371556072441,2019
+1995,72,"(70,75]",HS,174945.33827509952,19523.84911514374,8.960596716525666,14.833229305017568,2019
+1995,72,"(70,75]",HS,172493.69443609024,17660.659453393986,9.767115146028186,12.985028555243137,2019
+1995,72,"(70,75]",HS,171006.37700132685,19385.10094884323,8.821536573506023,14.097556629034909,2019
+1995,36,"(35,40]",HS,50.998496240601504,45.588683213026,1.118665700483092,6317.744846878971,2019
+1995,36,"(35,40]",HS,35.32153914197258,45.588683213026,0.7747874396135267,6276.952392301535,2019
+1995,36,"(35,40]",HS,22.160636886333478,33.69598324441053,0.6576640522875816,6285.636827710051,2019
+1995,36,"(35,40]",HS,43.256789031402036,49.55291653589783,0.8729413333333335,6399.792257061452,2019
+1995,36,"(35,40]",HS,20.380044228217606,31.713866582974614,0.6426225000000001,6323.10838235657,2019
+1995,28,"(25,30]",HS,337.73197700132687,55.499266520205566,6.085341269841271,4566.986513340913,2019
+1995,28,"(25,30]",HS,337.73197700132687,55.499266520205566,6.085341269841271,4497.819354806098,2019
+1995,28,"(25,30]",HS,337.73197700132687,55.499266520205566,6.085341269841271,4525.651463059268,2019
+1995,28,"(25,30]",HS,337.73197700132687,55.499266520205566,6.085341269841271,4469.574329185779,2019
+1995,28,"(25,30]",HS,337.73197700132687,55.499266520205566,6.085341269841271,4520.714691128183,2019
+1995,29,"(25,30]",College,50.80495356037152,138.74816630051396,0.36616666666666664,4440.125772155914,2019
+1995,29,"(25,30]",College,50.51463954002654,138.74816630051396,0.3640742857142857,4372.87992365163,2019
+1995,29,"(25,30]",College,50.51463954002654,138.74816630051396,0.3640742857142857,4399.938917757993,2019
+1995,29,"(25,30]",College,50.51463954002654,138.74816630051396,0.3640742857142857,4345.41948210541,2019
+1995,29,"(25,30]",College,50.51463954002654,138.74816630051396,0.3640742857142857,4395.139278385635,2019
+1995,61,"(60,65]",College,5202.9304555506415,556.9747818634917,9.341411182285487,240.7782059296406,2019
+1995,61,"(60,65]",College,5202.9304555506415,556.9747818634917,9.341411182285487,217.01076344544487,2019
+1995,61,"(60,65]",College,5202.9304555506415,556.9747818634917,9.341411182285487,214.29449947456487,2019
+1995,61,"(60,65]",College,5202.9304555506415,556.9747818634917,9.341411182285487,219.6683474107827,2019
+1995,61,"(60,65]",College,5202.9304555506415,556.9747818634917,9.341411182285487,216.0779871231476,2019
+1995,52,"(50,55]",College,1818.3334807607255,69.37408315025698,26.210558730158727,2679.0168447048563,2019
+1995,52,"(50,55]",College,1818.3334807607255,69.37408315025698,26.210558730158727,2297.4519529327117,2019
+1995,52,"(50,55]",College,1818.3334807607255,69.37408315025698,26.210558730158727,2369.0551682036144,2019
+1995,52,"(50,55]",College,1818.3334807607255,69.37408315025698,26.210558730158727,2298.567273831577,2019
+1995,52,"(50,55]",College,1818.3334807607255,69.37408315025698,26.210558730158727,2371.070637316199,2019
+1995,78,"(75,80]",NoHS,798.7893498452013,19.821166614359132,40.299815111111116,4495.518581804624,2019
+1995,78,"(75,80]",NoHS,575.0540114993366,73.3383164731288,7.841112792792793,4646.632284921048,2019
+1995,78,"(75,80]",NoHS,951.1267934542238,23.785399937230956,39.987841111111116,4594.926720442217,2019
+1995,78,"(75,80]",NoHS,805.6794692613888,25.76751659866687,31.26725333333334,4391.182586313904,2019
+1995,78,"(75,80]",NoHS,658.6838036267138,51.53503319733374,12.781282222222224,4616.229273133141,2019
+1995,43,"(40,45]",College,0.19354268022998675,87.21313310318017,0.0022191919191919198,7586.6434788513,2019
+1995,43,"(40,45]",College,0.19354268022998675,87.21313310318017,0.0022191919191919198,7679.732290204857,2019
+1995,43,"(40,45]",College,0.19354268022998675,87.21313310318017,0.0022191919191919198,7585.497219015291,2019
+1995,43,"(40,45]",College,0.19354268022998675,87.21313310318017,0.0022191919191919198,7837.2511791997995,2019
+1995,43,"(40,45]",College,0.19354268022998675,87.21313310318017,0.0022191919191919198,7642.057124376462,2019
+1995,72,"(70,75]",College,4516.3184431667405,360.7452323813362,12.5194126984127,2184.8965000711046,2019
+1995,72,"(70,75]",College,4474.706766917293,360.7452323813362,12.404063492063491,1954.2564679473194,2019
+1995,72,"(70,75]",College,4506.64130915524,360.7452323813362,12.4925873015873,1955.4960994554585,2019
+1995,72,"(70,75]",College,4470.448827952233,360.7452323813362,12.392260317460316,1973.6843797778442,2019
+1995,72,"(70,75]",College,4483.416187527642,360.7452323813362,12.428206349206349,1974.4375466229856,2019
+1995,44,"(40,45]",College,1075.0328173374612,206.14013278933496,5.215058333333333,2959.187751235644,2019
+1995,44,"(40,45]",College,1033.614683768244,206.14013278933496,5.014136111111111,3080.939624848597,2019
+1995,44,"(40,45]",College,1012.9056169836356,206.14013278933496,4.9136750000000005,3037.3313171479213,2019
+1995,44,"(40,45]",College,1014.6475011057054,206.14013278933496,4.922125,2885.110620595647,2019
+1995,44,"(40,45]",College,974.1970809376382,206.14013278933496,4.725897222222223,3057.400792724701,2019
+1995,39,"(35,40]",HS,-0.19354268022998675,16.847991622205264,-0.011487581699346406,8268.346201841223,2019
+1995,39,"(35,40]",HS,-0.19354268022998675,16.055144957630898,-0.012054869684499314,8325.974901932323,2019
+1995,39,"(35,40]",HS,-0.19354268022998675,18.631896617497585,-0.010387706855791963,8324.69081464424,2019
+1995,39,"(35,40]",HS,-0.19354268022998675,16.45156828991808,-0.01176439089692102,8308.297477062108,2019
+1995,39,"(35,40]",HS,-0.19354268022998675,18.03726161906681,-0.01073015873015873,8328.274278733332,2019
+1995,51,"(50,55]",HS,83.88139761167625,19.622954948215543,4.274656790123457,5780.664639014627,2019
+1995,51,"(50,55]",HS,83.90075187969926,19.028319949784766,4.409256944444445,6311.954759694288,2019
+1995,51,"(50,55]",HS,2.5934719150818224,16.847991622205264,0.15393359477124183,5757.334718412845,2019
+1995,51,"(50,55]",HS,33.579655019902695,17.83904995292322,1.8823679012345678,5748.394576655395,2019
+1995,51,"(50,55]",HS,2.709597523219814,18.433684951353992,0.1469916367980884,5779.306040387331,2019
+1995,64,"(60,65]",HS,125.99822025652367,35.67809990584644,3.5315283209876545,9052.693785752495,2019
+1995,64,"(60,65]",HS,48.968233524988946,43.606566551590085,1.1229554949494953,9013.302911941328,2019
+1995,64,"(60,65]",HS,42.77486775762937,39.642333228718265,1.0790199333333335,9083.968165865075,2019
+1995,64,"(60,65]",HS,64.0645625829279,21.803283275795042,2.938298868686869,9244.728843525752,2019
+1995,64,"(60,65]",HS,107.61166563467492,21.803283275795042,4.935571595959597,9026.427303497854,2019
+1995,89,"(85,90]",NoHS,215.80008845643522,21.803283275795042,9.897595959595963,10709.96095947432,2019
+1995,89,"(85,90]",NoHS,215.80008845643522,21.803283275795042,9.897595959595963,10583.603870887326,2019
+1995,89,"(85,90]",NoHS,215.80008845643522,21.803283275795042,9.897595959595963,10936.931291796707,2019
+1995,89,"(85,90]",NoHS,215.80008845643522,21.803283275795042,9.897595959595963,10979.195399387907,2019
+1995,89,"(85,90]",NoHS,215.80008845643522,21.803283275795042,9.897595959595963,10850.139314457972,2019
+1995,27,"(25,30]",College,39.676249447147285,208.12224945077088,0.19063915343915347,6039.110194931176,2019
+1995,27,"(25,30]",College,39.676249447147285,208.12224945077088,0.19063915343915347,6067.928201434173,2019
+1995,27,"(25,30]",College,39.676249447147285,208.12224945077088,0.19063915343915347,6078.55808858596,2019
+1995,27,"(25,30]",College,39.676249447147285,208.12224945077088,0.19063915343915347,6158.496578848771,2019
+1995,27,"(25,30]",College,39.676249447147285,208.12224945077088,0.19063915343915347,6098.869157818933,2019
+1995,78,"(75,80]",NoHS,216.76780185758514,41.624449890154175,5.207703703703705,9119.602954415479,2019
+1995,78,"(75,80]",NoHS,220.05802742149493,41.624449890154175,5.286749206349207,8979.910295111422,2019
+1995,78,"(75,80]",NoHS,218.703228659885,41.624449890154175,5.254201058201059,9277.357567048426,2019
+1995,78,"(75,80]",NoHS,218.896771340115,41.624449890154175,5.258850793650795,9315.24857155659,2019
+1995,78,"(75,80]",NoHS,217.3484298982751,41.624449890154175,5.221652910052911,9211.511760321378,2019
+1995,58,"(55,60]",NoHS,333.78370632463515,107.03429971753931,3.118474238683128,7946.6562305374955,2019
+1995,58,"(55,60]",NoHS,297.1460769570986,136.76604963907803,2.172659645732689,7829.949661121391,2019
+1995,58,"(55,60]",NoHS,343.6350287483414,118.92699968615479,2.889461851851852,7956.537261165863,2019
+1995,58,"(55,60]",NoHS,336.6481379920389,120.90911634759071,2.7843073224043717,7942.646689368628,2019
+1995,58,"(55,60]",NoHS,362.69898275099513,116.94488302471889,3.101452354048964,7838.403805812023,2019
+1995,34,"(30,35]",HS,105.44205218929677,91.177366426052,1.1564498550724638,5982.485250485441,2019
+1995,34,"(30,35]",HS,103.50662538699692,91.177366426052,1.1352228019323674,5891.880317770235,2019
+1995,34,"(30,35]",HS,103.50662538699692,91.177366426052,1.1352228019323674,5928.33875193204,2019
+1995,34,"(30,35]",HS,105.44205218929677,91.177366426052,1.1564498550724638,5854.880986005287,2019
+1995,34,"(30,35]",HS,105.44205218929677,91.177366426052,1.1564498550724638,5921.871869409736,2019
+1995,83,"(80,85]",NoHS,30.92812030075188,18.433684951353992,1.6778045400238948,9766.406165166474,2019
+1995,83,"(80,85]",NoHS,29.960406899601946,15.658721625343716,1.9133367088607593,9721.388321310458,2019
+1995,83,"(80,85]",NoHS,29.960406899601946,18.03726161906681,1.6610285714285713,9774.968935439796,2019
+1995,83,"(80,85]",NoHS,30.92812030075188,17.24441495449245,1.7935151979565769,9784.736157906327,2019
+1995,83,"(80,85]",NoHS,30.92812030075188,17.442626620636037,1.7731343434343434,9780.947516153374,2019
+1995,34,"(30,35]",College,48.59856700574967,51.53503319733374,0.9430200000000002,6253.511787797136,2019
+1995,34,"(30,35]",College,48.59856700574967,51.53503319733374,0.9430200000000002,6195.98329899732,2019
+1995,34,"(30,35]",College,48.59856700574967,51.53503319733374,0.9430200000000002,6256.540502254586,2019
+1995,34,"(30,35]",College,48.59856700574967,51.53503319733374,0.9430200000000002,6219.079167758753,2019
+1995,34,"(30,35]",College,48.59856700574967,51.53503319733374,0.9430200000000002,6228.924069953832,2019
+1995,69,"(65,70]",NoHS,8.61264927023441,13.47839329776421,0.6389967320261438,7968.719346857431,2019
+1995,69,"(65,70]",NoHS,8.61264927023441,13.47839329776421,0.6389967320261438,8012.900878789539,2019
+1995,69,"(65,70]",NoHS,8.61264927023441,13.47839329776421,0.6389967320261438,7994.281390777629,2019
+1995,69,"(65,70]",NoHS,8.61264927023441,13.47839329776421,0.6389967320261438,8002.694989160719,2019
+1995,69,"(65,70]",NoHS,8.61264927023441,13.47839329776421,0.6389967320261438,8051.258615943671,2019
+1995,50,"(45,50]",NoHS,108.55808934099956,79.28466645743653,1.3692192222222224,6453.755426123915,2019
+1995,50,"(45,50]",NoHS,108.55808934099956,79.28466645743653,1.3692192222222224,6466.419775008259,2019
+1995,50,"(45,50]",NoHS,108.55808934099956,79.28466645743653,1.3692192222222224,6462.296107458483,2019
+1995,50,"(45,50]",NoHS,108.55808934099956,79.28466645743653,1.3692192222222224,6439.566547531268,2019
+1995,50,"(45,50]",NoHS,108.55808934099956,79.28466645743653,1.3692192222222224,6443.638055112557,2019
+1995,43,"(40,45]",HS,69.23021671826625,59.46349984307739,1.1642472592592592,9089.217535285205,2019
+1995,43,"(40,45]",HS,63.03685095090668,63.42773316594923,0.9938373611111111,9020.774661231066,2019
+1995,43,"(40,45]",HS,63.230393631136664,61.44561650451331,1.0290464516129032,9079.58744465103,2019
+1995,43,"(40,45]",HS,62.649765590446705,65.40984982738514,0.9578032323232323,9180.471631426693,2019
+1995,43,"(40,45]",HS,72.52044228217602,63.42773316594923,1.1433554166666664,9093.227979513602,2019
+1995,27,"(25,30]",HS,170.3562671384343,89.1952497646161,1.9099253333333333,5226.891570325179,2019
+1995,27,"(25,30]",HS,154.87285272003538,89.1952497646161,1.7363352098765432,5180.236266328034,2019
+1995,27,"(25,30]",HS,144.4215479876161,89.1952497646161,1.6191618765432099,5250.705562246885,2019
+1995,27,"(25,30]",HS,146.55051747014596,89.1952497646161,1.6430305185185188,5187.776946656731,2019
+1995,27,"(25,30]",HS,143.84091994692616,89.1952497646161,1.6126522469135807,5233.885263128061,2019
+1995,36,"(35,40]",College,504.95285272003537,257.6751659866688,1.9596488888888883,1975.5565965199166,2019
+1995,36,"(35,40]",College,487.7275541795666,257.6751659866688,1.8927999999999996,1565.8416499978753,2019
+1995,36,"(35,40]",College,462.7605484298983,257.6751659866688,1.7959066666666663,1731.4873571604523,2019
+1995,36,"(35,40]",College,488.5017249004865,257.6751659866688,1.895804444444444,1591.8795112674377,2019
+1995,36,"(35,40]",College,498.5659442724458,257.6751659866688,1.9348622222222216,1650.5064160420454,2019
+1995,87,"(85,90]",NoHS,765.3258204334365,142.71239962338575,5.36271425925926,5657.869423547556,2019
+1995,87,"(85,90]",NoHS,771.9062715612561,116.94488302471889,6.600598945386063,5850.0016850700595,2019
+1995,87,"(85,90]",NoHS,771.1127465723132,142.71239962338575,5.403263827160495,5813.590180478189,2019
+1995,87,"(85,90]",NoHS,766.0999911543565,124.87334967046255,6.13501594356261,5511.553538000564,2019
+1995,87,"(85,90]",NoHS,767.5515612560813,116.94488302471889,6.56336165725047,5846.731364856107,2019
+1995,69,"(65,70]",HS,1896.5247235736401,170.46203288348855,11.125789664082689,3614.1731252363197,2019
+1995,69,"(65,70]",HS,1896.5247235736401,170.46203288348855,11.125789664082689,2975.1126998559866,2019
+1995,69,"(65,70]",HS,1896.5247235736401,170.46203288348855,11.125789664082689,3056.7928507222705,2019
+1995,69,"(65,70]",HS,1896.5247235736401,170.46203288348855,11.125789664082689,2728.756541042984,2019
+1995,69,"(65,70]",HS,1896.5247235736401,170.46203288348855,11.125789664082689,3012.4360656241556,2019
+1995,30,"(25,30]",HS,8.90296329057939,87.21313310318017,0.1020828282828283,4874.5322656365,2019
+1995,30,"(25,30]",HS,22.257408226448476,87.21313310318017,0.25520707070707077,4829.689546159227,2019
+1995,30,"(25,30]",HS,24.96700574966829,87.21313310318017,0.28627575757575763,4876.893109726542,2019
+1995,30,"(25,30]",HS,17.999469261388768,87.21313310318017,0.20638484848484853,4847.692479758904,2019
+1995,30,"(25,30]",HS,30.96682883679788,87.21313310318017,0.35507070707070715,4855.366454803707,2019
+1995,60,"(55,60]",College,19056.212295444493,1405.3207129580626,13.560045133991537,203.15074685715183,2019
+1995,60,"(55,60]",College,19356.20344980097,1478.6590294311914,13.090376526660707,178.9699345790927,2019
+1995,60,"(55,60]",College,19410.39540026537,1435.0524628796009,13.525913443830575,181.16573967601852,2019
+1995,60,"(55,60]",College,19485.877045555062,1413.2491796038062,13.787998129967272,184.25240908020513,2019
+1995,60,"(55,60]",College,19182.015037593985,1298.2864132405234,14.774871586089905,183.15051515092154,2019
+1995,36,"(35,40]",NoHS,13.586696152145068,3.7660216567282347,3.607705263157895,4003.825192657236,2019
+1995,36,"(35,40]",NoHS,2.3612206988058384,12.289123300902663,0.19213906810035844,4016.578189005949,2019
+1995,36,"(35,40]",NoHS,0.2128969482529854,8.126678311887245,0.026197289972899728,3652.1376585781086,2019
+1995,36,"(35,40]",NoHS,0.1354798761609907,15.658721625343716,0.008652039381153304,4008.0042054974206,2019
+1995,36,"(35,40]",NoHS,172.46588235294118,9.117736642605202,18.915427053140096,3586.0709707170486,2019
+1995,37,"(35,40]",HS,6.677222467934543,29.731749921538697,0.22458222222222227,8671.830268299274,2019
+1995,37,"(35,40]",HS,12.98671384343211,29.731749921538697,0.4367961481481482,8819.139482244394,2019
+1995,37,"(35,40]",HS,11.322246793454225,29.731749921538697,0.3808133333333334,8668.65986063159,2019
+1995,37,"(35,40]",HS,13.160902255639098,29.731749921538697,0.44265481481481483,9016.838006668086,2019
+1995,37,"(35,40]",HS,6.677222467934543,29.731749921538697,0.22458222222222227,8764.775193068479,2019
+1995,45,"(40,45]",HS,275.2370455550641,204.15801612789906,1.3481569363538295,7414.939348033181,2019
+1995,45,"(40,45]",HS,195.3619814241486,144.69451628482167,1.3501685235920853,7244.24763846573,2019
+1995,45,"(40,45]",HS,233.97374613003095,61.44561650451331,3.8078183512544803,7340.162362130078,2019
+1995,45,"(40,45]",HS,180.05275541795666,61.44561650451331,2.9302782795698925,7549.426622928937,2019
+1995,45,"(40,45]",HS,172.5045908889872,289.38903256964335,0.5960992694063928,7396.223810167105,2019
+1995,70,"(65,70]",College,78.52026536930562,1.9821166614359134,39.61435111111111,12366.191178822886,2019
+1995,70,"(65,70]",College,113.35794781070324,1.9821166614359134,57.19035111111111,11755.368580941105,2019
+1995,70,"(65,70]",College,151.09877045555064,1.9821166614359134,76.23101777777777,11692.078055440208,2019
+1995,70,"(65,70]",College,89.55219814241485,1.9821166614359134,45.18008444444444,12116.195176372874,2019
+1995,70,"(65,70]",College,114.32566121185316,1.9821166614359134,57.67857333333333,11353.752402985303,2019
+1995,22,"(20,25]",HS,-19.122016806722687,15.856933291487307,-1.2059088888888887,5242.7599985600955,2019
+1995,22,"(20,25]",HS,-18.754285714285714,15.856933291487307,-1.1827183333333333,5331.923504510583,2019
+1995,22,"(20,25]",HS,-18.773639982308712,15.856933291487307,-1.1839388888888889,5262.192487002519,2019
+1995,22,"(20,25]",HS,-19.0058911985847,15.856933291487307,-1.1985855555555556,5341.827645387381,2019
+1995,22,"(20,25]",HS,-18.9671826625387,15.856933291487307,-1.1961444444444445,5235.042263917204,2019
+1995,34,"(30,35]",College,144.2860681114551,174.42626620636034,0.827203787878788,4341.456315643086,2019
+1995,34,"(30,35]",College,53.32100840336135,154.60509959200127,0.34488518518518513,4275.70481925069,2019
+1995,34,"(30,35]",College,121.06094648385671,154.60509959200127,0.7830333333333332,4302.162502407936,2019
+1995,34,"(30,35]",College,330.08704113224235,156.58721625343713,2.108007594936709,4248.854609707347,2019
+1995,34,"(30,35]",College,121.06094648385671,164.5156828991808,0.7358626506024097,4297.469521682793,2019
+1995,53,"(50,55]",HS,705654.6766917293,21942.03144209556,32.15995194218609,2.0000789024324326,2019
+1995,53,"(50,55]",HS,706064.9871738169,21050.0789444494,33.54215388156518,1.5956083588445662,2019
+1995,53,"(50,55]",HS,693765.3498452012,19523.84911514374,35.5342507388607,2.195860886247657,2019
+1995,53,"(50,55]",HS,703897.309155241,19523.84911514374,36.0532036999436,1.4945476443958283,2019
+1995,53,"(50,55]",HS,692786.0238832375,19523.84911514374,35.4840902425268,1.6332706553106373,2019
+1995,62,"(60,65]",College,4061.8802299867316,445.97624882308054,9.107839802469135,2221.4835310605804,2019
+1995,62,"(60,65]",College,4061.8802299867316,445.97624882308054,9.107839802469135,2091.511688738291,2019
+1995,62,"(60,65]",College,4061.8802299867316,445.97624882308054,9.107839802469135,1968.8953776587157,2019
+1995,62,"(60,65]",College,4061.8802299867316,445.97624882308054,9.107839802469135,1973.6843797778442,2019
+1995,62,"(60,65]",College,4061.8802299867316,445.97624882308054,9.107839802469135,2217.755115589546,2019
+1995,47,"(45,50]",HS,151.9310039805396,87.21313310318017,1.7420656565656572,6812.427891807543,2019
+1995,47,"(45,50]",HS,151.9310039805396,87.21313310318017,1.7420656565656572,6661.393451599428,2019
+1995,47,"(45,50]",HS,151.9310039805396,87.21313310318017,1.7420656565656572,6756.114527166404,2019
+1995,47,"(45,50]",HS,151.9310039805396,87.21313310318017,1.7420656565656572,6705.033956506212,2019
+1995,47,"(45,50]",HS,151.9310039805396,87.21313310318017,1.7420656565656572,6765.767702007474,2019
+1995,31,"(30,35]",HS,166.3499336576736,126.85546633189846,1.311334375,5880.253015241828,2019
+1995,31,"(30,35]",HS,166.3499336576736,126.85546633189846,1.311334375,5827.765798257302,2019
+1995,31,"(30,35]",HS,166.3499336576736,126.85546633189846,1.311334375,5907.0437561474855,2019
+1995,31,"(30,35]",HS,166.3499336576736,126.85546633189846,1.311334375,5836.249063625106,2019
+1995,31,"(30,35]",HS,166.3499336576736,126.85546633189846,1.311334375,5888.12091964323,2019
+1995,38,"(35,40]",HS,1473.4404245908888,237.85399937230957,6.194726296296296,2032.8439796811658,2019
+1995,38,"(35,40]",HS,1475.7629367536488,237.85399937230957,6.204490740740741,1741.804672290793,2019
+1995,38,"(35,40]",HS,1475.7629367536488,237.85399937230957,6.204490740740741,1791.9694193109258,2019
+1995,38,"(35,40]",HS,1475.182308712959,237.85399937230957,6.202049629629631,1741.4067526531612,2019
+1995,38,"(35,40]",HS,1474.601680672269,237.85399937230957,6.199608518518519,1799.5236843575071,2019
+1995,39,"(35,40]",College,86.39745245466608,122.89123300902662,0.70304,11322.169233789436,2019
+1995,39,"(35,40]",College,86.39745245466608,122.89123300902662,0.70304,11566.305878799258,2019
+1995,39,"(35,40]",College,86.39745245466608,122.89123300902662,0.70304,11225.596705748576,2019
+1995,39,"(35,40]",College,86.39745245466608,122.89123300902662,0.70304,11758.340895534824,2019
+1995,39,"(35,40]",College,86.39745245466608,122.89123300902662,0.70304,11491.275948470156,2019
+1995,54,"(50,55]",College,3635.583122512163,1361.7141464064728,2.66985779071648,18.397018760496685,2019
+1995,54,"(50,55]",College,1881.6993542680232,1106.0210970812395,1.7013232019115894,11.536201477865474,2019
+1995,54,"(50,55]",College,1643.8934630694382,1123.860147034163,1.46272066627474,12.208027503338148,2019
+1995,54,"(50,55]",College,1138.630942061035,434.083548854465,2.6230686352105534,166.6437945724472,2019
+1995,54,"(50,55]",College,761.2807784166298,660.0448482581592,1.1533773506840173,167.94667776403583,2019
+1995,33,"(30,35]",HS,0,5.748138318164148,0,7070.8670685037705,2019
+1995,33,"(30,35]",HS,0,5.748138318164148,0,7070.1600306225055,2019
+1995,33,"(30,35]",HS,0,5.748138318164148,0,7067.389869927132,2019
+1995,33,"(30,35]",HS,0,5.748138318164148,0,7099.051124575414,2019
+1995,33,"(30,35]",HS,0,5.748138318164148,0,7089.498861767775,2019
+1995,85,"(80,85]",HS,303.6684652808492,91.177366426052,3.33052463768116,11456.84357029195,2019
+1995,85,"(80,85]",HS,297.08801415302963,83.24889978030835,3.568671957671958,11547.547063738062,2019
+1995,85,"(80,85]",HS,316.2487394957983,81.26678311887244,3.891488346883469,11710.281613590188,2019
+1995,85,"(80,85]",HS,291.533339230429,91.177366426052,3.197431014492754,12012.217992906928,2019
+1995,85,"(80,85]",HS,292.05590446704997,81.26678311887244,3.5937918699186993,11686.418436286487,2019
+1995,37,"(35,40]",HS,314.91329500221144,247.76458267948914,1.2710182044444447,7586.6434788513,2019
+1995,37,"(35,40]",HS,458.1348783724016,247.76458267948914,1.8490733155555557,4299.426908146019,2019
+1995,37,"(35,40]",HS,283.5593808049536,247.76458267948914,1.1444710044444448,7585.497219015291,2019
+1995,37,"(35,40]",HS,496.84341441839894,247.76458267948914,2.0053044266666666,4026.311118414298,2019
+1995,37,"(35,40]",HS,415.5554887218045,247.76458267948914,1.6772190933333335,4270.150298443937,2019
+1995,50,"(45,50]",College,1556.0831490490932,301.28173253825884,5.1648771929824555,2900.537842179125,2019
+1995,50,"(45,50]",College,1505.7620521892968,301.28173253825884,4.99785380116959,2322.469217976974,2019
+1995,50,"(45,50]",College,1505.7620521892968,301.28173253825884,4.99785380116959,2536.8432028730035,2019
+1995,50,"(45,50]",College,1556.0831490490932,301.28173253825884,5.1648771929824555,2361.513457452167,2019
+1995,50,"(45,50]",College,1556.0831490490932,301.28173253825884,5.1648771929824555,2462.569121475076,2019
+1995,37,"(35,40]",HS,139.8345864661654,39.642333228718265,3.5274055555555552,6340.031896013322,2019
+1995,37,"(35,40]",HS,139.8345864661654,39.642333228718265,3.5274055555555552,6349.057246930515,2019
+1995,37,"(35,40]",HS,139.8345864661654,39.642333228718265,3.5274055555555552,6337.2754789351075,2019
+1995,37,"(35,40]",HS,139.8345864661654,39.642333228718265,3.5274055555555552,6320.18833280742,2019
+1995,37,"(35,40]",HS,139.8345864661654,39.642333228718265,3.5274055555555552,6341.140179988253,2019
+1995,47,"(45,50]",College,7063.7272003538255,1022.7721973009315,6.906452110249783,388.55537713787834,2019
+1995,47,"(45,50]",College,7209.271295886776,1030.7006639466751,6.994534444444443,346.64739309993803,2019
+1995,47,"(45,50]",College,7242.560636886334,1048.5397138995982,6.9072830917874395,344.41278708512937,2019
+1995,47,"(45,50]",College,6818.702167182662,1034.6648972695468,6.590251766709237,352.1399943268772,2019
+1995,47,"(45,50]",College,7157.40185758514,941.5054141820589,7.602082526315789,349.61721546067463,2019
+1995,43,"(40,45]",HS,76.46871295886777,75.32043313456471,1.0152452631578948,6822.523770778978,2019
+1995,43,"(40,45]",HS,76.46871295886777,75.32043313456471,1.0152452631578948,6771.149366616903,2019
+1995,43,"(40,45]",HS,77.04934099955773,75.32043313456471,1.0229540350877193,6815.295258312273,2019
+1995,43,"(40,45]",HS,77.04934099955773,75.32043313456471,1.0229540350877193,6891.020672485791,2019
+1995,43,"(40,45]",HS,76.46871295886777,75.32043313456471,1.0152452631578948,6825.534079529255,2019
+1995,28,"(25,30]",College,-17.5156125608138,83.24889978030835,-0.21040052910052912,6787.95987332671,2019
+1995,28,"(25,30]",College,-17.5156125608138,83.24889978030835,-0.21040052910052912,6820.351312703955,2019
+1995,28,"(25,30]",College,-17.5156125608138,83.24889978030835,-0.21040052910052912,6832.299305887604,2019
+1995,28,"(25,30]",College,-17.5156125608138,83.24889978030835,-0.21040052910052912,6922.150169131282,2019
+1995,28,"(25,30]",College,-17.5156125608138,83.24889978030835,-0.21040052910052912,6855.128947753305,2019
+1995,32,"(30,35]",HS,305.7006634232641,55.499266520205566,5.508192857142858,5410.831338743262,2019
+1995,32,"(30,35]",HS,305.7006634232641,55.499266520205566,5.508192857142858,5336.189272031422,2019
+1995,32,"(30,35]",HS,305.7006634232641,55.499266520205566,5.508192857142858,5414.613584600706,2019
+1995,32,"(30,35]",HS,305.7006634232641,55.499266520205566,5.508192857142858,5346.095359021916,2019
+1995,32,"(30,35]",HS,305.7006634232641,55.499266520205566,5.508192857142858,5371.352477020363,2019
+1995,72,"(70,75]",NoHS,195.09102167182664,25.76751659866687,7.571200000000001,7010.031890913915,2019
+1995,72,"(70,75]",NoHS,195.09102167182664,25.76751659866687,7.571200000000001,6970.905892457838,2019
+1995,72,"(70,75]",NoHS,195.09102167182664,25.76751659866687,7.571200000000001,7045.602607364266,2019
+1995,72,"(70,75]",NoHS,195.09102167182664,25.76751659866687,7.571200000000001,7054.831729543102,2019
+1995,72,"(70,75]",NoHS,195.09102167182664,25.76751659866687,7.571200000000001,6905.015201631795,2019
+1995,66,"(65,70]",College,1823.1333392304289,109.01641637897524,16.72347523232323,3240.8090732236983,2019
+1995,66,"(65,70]",College,2427.5477753206546,132.8018163162062,18.279477213930345,2771.5385594209274,2019
+1995,66,"(65,70]",College,2375.988005307386,120.90911634759071,19.651024480874316,2860.6793926113196,2019
+1995,66,"(65,70]",College,2482.823564794339,132.8018163162062,18.69570487562189,2775.2982300706103,2019
+1995,66,"(65,70]",College,2366.4076426360016,101.08794973323158,23.4093939869281,2890.5095485712186,2019
+1995,72,"(70,75]",College,7102.435736399823,214.06859943507862,33.17831646090535,1476.2233678042267,2019
+1995,72,"(70,75]",College,5205.717470145953,214.06859943507862,24.317987242798353,1342.2462599676567,2019
+1995,72,"(70,75]",College,5064.431313578063,214.06859943507862,23.65798312757202,1326.3342879863721,2019
+1995,72,"(70,75]",College,7828.220787262273,214.06859943507862,36.56874855967078,1225.8986856800561,2019
+1995,72,"(70,75]",College,29168.23670942061,214.06859943507862,136.25649341563786,1471.0363085917043,2019
+1995,42,"(40,45]",HS,8.18685537372844,130.8196996547703,0.06258121212121212,8862.817194813399,2019
+1995,42,"(40,45]",HS,8.128792569659444,128.8375829933344,0.06309333333333332,8764.749477493917,2019
+1995,42,"(40,45]",HS,8.322335249889429,128.8375829933344,0.06459555555555553,8819.666804531917,2019
+1995,42,"(40,45]",HS,8.825546218487395,128.8375829933344,0.06850133333333332,8919.616410129975,2019
+1995,42,"(40,45]",HS,8.842965059708094,142.71239962338575,0.06196353703703704,8840.379870672969,2019
+1995,68,"(65,70]",NoHS,1224.3509951348963,18.830108283641177,65.02092163742691,2077.326768201713,2019
+1995,68,"(65,70]",NoHS,1451.0281822202564,16.25335662377449,89.27560108401083,1698.827456032623,2019
+1995,68,"(65,70]",NoHS,8054.0076780185755,19.622954948215543,410.4380659932659,1968.8953776587157,2019
+1995,68,"(65,70]",NoHS,3723.025705440071,18.830108283641177,197.71663812865495,1973.6843797778442,2019
+1995,68,"(65,70]",NoHS,2370.2204334365324,16.25335662377449,145.82959620596205,1727.4526593854202,2019
+1995,36,"(35,40]",College,313.15205661211854,55.499266520205566,5.642453968253969,9695.165345598356,2019
+1995,36,"(35,40]",College,313.15205661211854,55.499266520205566,5.642453968253969,9622.159613465006,2019
+1995,36,"(35,40]",College,313.15205661211854,55.499266520205566,5.642453968253969,9684.893248948789,2019
+1995,36,"(35,40]",College,313.15205661211854,55.499266520205566,5.642453968253969,9792.503047894543,2019
+1995,36,"(35,40]",College,313.15205661211854,55.499266520205566,5.642453968253969,9699.443152764125,2019
+1995,58,"(55,60]",HS,2731.4678460858026,356.7809990584644,7.655866913580247,1304.0328341930874,2019
+1995,58,"(55,60]",HS,2710.178151260504,356.7809990584644,7.596195308641975,1084.2893777367556,2019
+1995,58,"(55,60]",HS,2727.596992481203,356.7809990584644,7.645017530864198,1150.3717532255719,2019
+1995,58,"(55,60]",HS,2745.0158337019016,356.7809990584644,7.6938397530864195,1109.8295885360076,2019
+1995,58,"(55,60]",HS,2704.371870853605,356.7809990584644,7.579921234567903,1083.5131863581603,2019
+1995,56,"(55,60]",NoHS,16.547899159663867,91.177366426052,0.18149130434782612,8834.94026338192,2019
+1995,56,"(55,60]",NoHS,16.547899159663867,91.177366426052,0.18149130434782612,8862.627690382942,2019
+1995,56,"(55,60]",NoHS,16.547899159663867,91.177366426052,0.18149130434782612,8889.842488259648,2019
+1995,56,"(55,60]",NoHS,16.547899159663867,91.177366426052,0.18149130434782612,9110.94300359027,2019
+1995,56,"(55,60]",NoHS,16.547899159663867,91.177366426052,0.18149130434782612,8863.777457817225,2019
+1995,72,"(70,75]",College,53643.469862892525,1692.72762886627,31.69055017954723,229.55644387083765,2019
+1995,72,"(70,75]",College,19212.749615214507,1565.8721625343715,12.26967952742616,586.0636270407006,2019
+1995,72,"(70,75]",College,37129.75034055728,1601.550262440218,23.183631017601762,224.40343369270562,2019
+1995,72,"(70,75]",College,13881.500362671384,1672.9064622519109,8.297834144286465,636.7425475110548,2019
+1995,72,"(70,75]",College,52756.057319770014,1538.1225292742686,34.29899524627721,257.7116725196197,2019
+1995,80,"(75,80]",NoHS,61.353029632905795,1.9821166614359134,30.95328888888889,9663.265271017739,2019
+1995,80,"(75,80]",NoHS,54.23065900044229,1.9821166614359134,27.359973333333336,9559.584279916151,2019
+1995,80,"(75,80]",NoHS,77.12675807164972,1.9821166614359134,38.91131111111111,9828.31534056769,2019
+1995,80,"(75,80]",NoHS,52.604900486510395,1.9821166614359134,26.53976,9935.090501712453,2019
+1995,80,"(75,80]",NoHS,76.62354710305175,1.9821166614359134,38.65743555555555,9793.733686442778,2019
+1995,51,"(50,55]",College,28599.298646616542,479.67223206749105,59.62258545454545,22.37154788791496,2019
+1995,51,"(50,55]",College,31732.174011499337,418.2266155629777,75.87315783043707,25.736603769062857,2019
+1995,51,"(50,55]",College,29404.552321981424,893.9346143075969,32.89340389258438,22.73058933264077,2019
+1995,51,"(50,55]",College,30545.09933657674,1040.6112472538543,29.353035936507943,27.29171695915778,2019
+1995,51,"(50,55]",College,27206.488102609463,939.5232975206229,28.95775780590717,21.742735071094593,2019
+1995,37,"(35,40]",College,40.643962848297214,77.30254979600063,0.5257777777777777,4817.591250246282,2019
+1995,37,"(35,40]",College,40.643962848297214,77.30254979600063,0.5257777777777777,4805.6932113359135,2019
+1995,37,"(35,40]",College,40.643962848297214,77.30254979600063,0.5257777777777777,4799.698927516665,2019
+1995,37,"(35,40]",College,40.643962848297214,77.30254979600063,0.5257777777777777,4826.213931236367,2019
+1995,37,"(35,40]",College,40.740734188412205,77.30254979600063,0.5270296296296295,4808.079574012119,2019
+1995,85,"(80,85]",College,182.70429013710748,39.642333228718265,4.608817777777778,8748.076229620943,2019
+1995,85,"(80,85]",College,149.80203449800976,39.642333228718265,3.7788400000000006,8644.865634615544,2019
+1995,85,"(80,85]",College,176.8980097302079,39.642333228718265,4.462351111111111,8933.469414202273,2019
+1995,85,"(80,85]",College,182.70429013710748,39.642333228718265,4.608817777777778,8967.99144807184,2019
+1995,85,"(80,85]",College,190.44599734630694,39.642333228718265,4.804106666666667,8862.576267462357,2019
+1995,76,"(75,80]",HS,46.06315789473684,29.731749921538697,1.549291851851852,10664.227802260544,2019
+1995,76,"(75,80]",HS,46.06315789473684,29.731749921538697,1.549291851851852,10635.018065212551,2019
+1995,76,"(75,80]",HS,46.06315789473684,29.731749921538697,1.549291851851852,10777.785581407075,2019
+1995,76,"(75,80]",HS,46.06315789473684,29.731749921538697,1.549291851851852,10733.711167703255,2019
+1995,76,"(75,80]",HS,46.06315789473684,29.731749921538697,1.549291851851852,10553.107364125857,2019
+1995,52,"(50,55]",College,36133.93454223795,6560.806149352873,5.507544914400806,321.3282801053765,2019
+1995,52,"(50,55]",College,34905.712693498455,6897.765981796978,5.060437362707535,362.7607247815075,2019
+1995,52,"(50,55]",College,34182.63724015922,5787.780651392867,5.906000814307458,315.7442517854516,2019
+1995,52,"(50,55]",College,31937.36796107917,6620.2696491959505,4.82417932401863,396.1070222422064,2019
+1995,52,"(50,55]",College,33526.35336576736,5569.747818634915,6.019366487939899,305.5307211486849,2019
+1995,38,"(35,40]",NoHS,24.19283502874834,18.235473285210404,1.3266908212560384,4991.098647853778,2019
+1995,38,"(35,40]",NoHS,24.19283502874834,18.433684951353992,1.3124253285543608,4980.925084372317,2019
+1995,38,"(35,40]",NoHS,23.844458204334366,19.22653161592836,1.2401851088201603,4993.897319160491,2019
+1995,38,"(35,40]",NoHS,25.354091110128262,17.83904995292322,1.4212691358024692,4905.2003999885555,2019
+1995,38,"(35,40]",NoHS,24.773463069438304,19.028319949784766,1.3019259259259262,4988.498736934135,2019
+1995,42,"(40,45]",HS,153.67288810260948,29.731749921538697,5.168645925925927,7036.160799774628,2019
+1995,42,"(40,45]",HS,103.35179124281292,29.731749921538697,3.4761422222222227,7015.718089516199,2019
+1995,42,"(40,45]",HS,103.35179124281292,29.731749921538697,3.4761422222222227,7027.197987058334,2019
+1995,42,"(40,45]",HS,153.67288810260948,29.731749921538697,5.168645925925927,7153.254214958552,2019
+1995,42,"(40,45]",HS,103.35179124281292,29.731749921538697,3.4761422222222227,7063.122625426135,2019
+1995,45,"(40,45]",College,76964.95639097744,4083.1603225579815,18.849359395900755,18.424123599782696,2019
+1995,45,"(40,45]",College,77058.43750552852,3964.233322871826,19.43842131111111,18.715724758082384,2019
+1995,45,"(40,45]",College,79054.24962406016,4102.981489172341,19.2675131078905,18.77532482183993,2019
+1995,45,"(40,45]",College,77691.12852720036,3726.379323499517,20.848958676122933,17.94707285770976,2019
+1995,45,"(40,45]",College,79504.42989827509,3924.5909896431085,20.258016722783385,17.90067114790862,2019
+1995,49,"(45,50]",HS,161.7242636001769,188.30108283641175,0.8588599766081871,7547.784091740466,2019
+1995,49,"(45,50]",HS,162.1113489606369,188.30108283641175,0.860915649122807,7478.015601266625,2019
+1995,49,"(45,50]",HS,162.1113489606369,188.30108283641175,0.860915649122807,7516.832304395514,2019
+1995,49,"(45,50]",HS,161.7242636001769,188.30108283641175,0.8588599766081871,7879.986465960219,2019
+1995,49,"(45,50]",HS,170.43368421052634,188.30108283641175,0.9051126081871347,7633.24510657902,2019
+1995,46,"(45,50]",College,528.0037859354269,103.07006639466748,5.122765555555557,4080.94935540562,2019
+1995,46,"(45,50]",College,526.010296329058,103.07006639466748,5.103424444444445,4236.453124093276,2019
+1995,46,"(45,50]",College,500.2691198584697,103.07006639466748,4.853680000000001,4182.624354552631,2019
+1995,46,"(45,50]",College,518.7524458204334,103.07006639466748,5.033007777777779,3968.776499099563,2019
+1995,46,"(45,50]",College,503.7528881026095,103.07006639466748,4.887480000000001,4200.503044807208,2019
+1995,44,"(40,45]",College,112.4482972136223,130.8196996547703,0.8595670033670033,7479.789346944296,2019
+1995,44,"(40,45]",College,112.4482972136223,130.8196996547703,0.8595670033670033,7571.567048298393,2019
+1995,44,"(40,45]",College,112.4482972136223,130.8196996547703,0.8595670033670033,7478.659231612777,2019
+1995,44,"(40,45]",College,112.4482972136223,130.8196996547703,0.8595670033670033,7726.867361425184,2019
+1995,44,"(40,45]",College,112.4482972136223,130.8196996547703,0.8595670033670033,7534.42251860049,2019
+1995,41,"(40,45]",HS,38.70853604599735,45.588683213026,0.8490821256038649,6577.743844453519,2019
+1995,41,"(40,45]",HS,38.70853604599735,45.588683213026,0.8490821256038649,6689.4806111198295,2019
+1995,41,"(40,45]",HS,38.70853604599735,45.588683213026,0.8490821256038649,6575.339031527607,2019
+1995,41,"(40,45]",HS,38.70853604599735,45.588683213026,0.8490821256038649,6839.43860289917,2019
+1995,41,"(40,45]",HS,38.70853604599735,45.588683213026,0.8490821256038649,6648.244291055749,2019
+1995,26,"(25,30]",HS,197.80061919504644,79.28466645743653,2.494815555555556,5998.868850134343,2019
+1995,26,"(25,30]",HS,197.80061919504644,79.28466645743653,2.494815555555556,6063.9346627262785,2019
+1995,26,"(25,30]",HS,197.80061919504644,79.28466645743653,2.494815555555556,6031.6801253061085,2019
+1995,26,"(25,30]",HS,197.80061919504644,79.28466645743653,2.494815555555556,6089.5158648037395,2019
+1995,26,"(25,30]",HS,197.80061919504644,79.28466645743653,2.494815555555556,6048.101854367882,2019
+1995,61,"(60,65]",College,327337.38027421496,45192.25988073883,7.243217779727095,1.658037599443493,2019
+1995,61,"(60,65]",College,361735.72083149053,46183.318211456775,7.832605686218408,1.3099843651878587,2019
+1995,61,"(60,65]",College,326299.99150818225,44201.201550020865,7.382152069755856,1.794591267949258,2019
+1995,61,"(60,65]",College,327342.60592658113,48145.61370627833,6.799012012259275,1.229831366565289,2019
+1995,61,"(60,65]",College,327016.29296771344,47749.19037399116,6.848624875236382,1.3552752018552499,2019
+1995,23,"(20,25]",NoHS,8.90296329057939,23.785399937230956,0.37430370370370375,5158.387405314197,2019
+1995,23,"(20,25]",NoHS,8.90296329057939,23.785399937230956,0.37430370370370375,5268.182729874714,2019
+1995,23,"(20,25]",NoHS,8.90296329057939,23.785399937230956,0.37430370370370375,5192.9966175516165,2019
+1995,23,"(20,25]",NoHS,8.90296329057939,23.785399937230956,0.37430370370370375,5277.871317782907,2019
+1995,23,"(20,25]",NoHS,8.90296329057939,23.785399937230956,0.37430370370370375,5194.581142227433,2019
+1995,40,"(35,40]",HS,38.863370190181335,69.37408315025698,0.5602001269841269,5791.100023770284,2019
+1995,40,"(35,40]",HS,39.25045555064131,69.37408315025698,0.5657798095238095,5894.595267355017,2019
+1995,40,"(35,40]",HS,38.282742149491376,69.37408315025698,0.5518306031746031,5799.616553604613,2019
+1995,40,"(35,40]",HS,35.379601946041575,69.37408315025698,0.5099829841269841,5820.995484977611,2019
+1995,40,"(35,40]",HS,35.379601946041575,69.37408315025698,0.5099829841269841,5827.788756211263,2019
+1995,73,"(70,75]",HS,330.76637593984964,39.642333228718265,8.3437666,10605.212310535642,2019
+1995,73,"(70,75]",HS,321.8634126492703,31.713866582974614,10.148980472222224,10762.26308172589,2019
+1995,73,"(70,75]",HS,323.50852543122517,35.67809990584644,9.067425851851853,10870.703403251013,2019
+1995,73,"(70,75]",HS,325.34718089341,43.606566551590085,7.460967616161617,11099.081487708503,2019
+1995,73,"(70,75]",HS,325.92780893409997,33.69598324441053,9.67260122875817,10714.074149472634,2019
+1995,76,"(75,80]",HS,469.7280849181778,25.76751659866687,18.229466666666667,9381.768531540367,2019
+1995,76,"(75,80]",HS,32.67000442282176,71.35619981169287,0.457843950617284,9261.668592068152,2019
+1995,76,"(75,80]",HS,245.1218045112782,13.28018163162062,18.457714759535655,9346.746508134021,2019
+1995,76,"(75,80]",HS,22.992870411322425,12.090911634759072,1.9016655737704917,9249.895183406315,2019
+1995,76,"(75,80]",HS,83.0298098186643,12.090911634759072,6.867125683060109,9261.298201339789,2019
+1995,50,"(45,50]",College,3950.2641662980986,77.30254979600063,51.1013437037037,165.27472636453817,2019
+1995,50,"(45,50]",College,3949.0835559486954,77.30254979600063,51.0860711111111,148.65198943133365,2019
+1995,50,"(45,50]",College,3460.4076426360016,77.30254979600063,44.764469629629616,146.91106518484872,2019
+1995,50,"(45,50]",College,3948.6771163202125,77.30254979600063,51.080813333333325,150.05112198444456,2019
+1995,50,"(45,50]",College,3947.3029632905796,77.30254979600063,51.06303703703703,148.50835146329194,2019
+1995,51,"(50,55]",HS,136.25404688191065,79.28466645743653,1.7185422222222222,9695.409656294147,2019
+1995,51,"(50,55]",HS,136.25404688191065,79.28466645743653,1.7185422222222222,9661.196550692783,2019
+1995,51,"(50,55]",HS,135.8669615214507,79.28466645743653,1.7136600000000002,9606.362861648142,2019
+1995,51,"(50,55]",HS,135.6734188412207,79.28466645743653,1.7112188888888888,10095.9716920939,2019
+1995,51,"(50,55]",HS,135.6734188412207,79.28466645743653,1.7112188888888888,9737.279305137632,2019
+1995,89,"(85,90]",College,202.60047766475012,31.713866582974614,6.388387777777778,10557.584003221189,2019
+1995,89,"(85,90]",College,74.86230871295886,25.76751659866687,2.9052977777777778,11844.375982112433,2019
+1995,89,"(85,90]",College,211.4647324192835,29.731749921538697,7.112421333333334,10529.291122263132,2019
+1995,89,"(85,90]",College,67.60445820433436,25.76751659866687,2.6236311111111115,11921.401961868632,2019
+1995,89,"(85,90]",College,47.824396284829724,29.731749921538697,1.6085294814814817,11905.958275650595,2019
+1995,75,"(70,75]",HS,400.24626271561254,49.55291653589783,8.077148444444445,11086.615684593538,2019
+1995,75,"(70,75]",HS,392.5045555064131,49.55291653589783,7.9209173333333345,11110.302799125693,2019
+1995,75,"(70,75]",HS,394.43998230871296,49.55291653589783,7.9599751111111114,11390.005104162192,2019
+1995,75,"(70,75]",HS,404.11711632021235,49.55291653589783,8.155264,11654.167548241525,2019
+1995,75,"(70,75]",HS,392.5045555064131,49.55291653589783,7.9209173333333345,11387.63970213655,2019
+1995,28,"(25,30]",HS,99.03578947368422,79.28466645743653,1.2491165555555557,1770.148597747156,2019
+1995,28,"(25,30]",HS,99.03578947368422,79.28466645743653,1.2491165555555557,1824.1653948868047,2019
+1995,28,"(25,30]",HS,99.03578947368422,79.28466645743653,1.2491165555555557,1760.2233821687446,2019
+1995,28,"(25,30]",HS,99.03578947368422,79.28466645743653,1.2491165555555557,1801.2976259958225,2019
+1995,28,"(25,30]",HS,99.03578947368422,79.28466645743653,1.2491165555555557,1781.4536197767297,2019
+1995,60,"(55,60]",College,21564.351242812914,1865.1717784111945,11.56158992561105,26.68744854250756,2019
+1995,60,"(55,60]",College,60576.2073772667,1645.1568289918082,36.820931785809904,28.823679097754262,2019
+1995,60,"(55,60]",College,62475.09332153914,2200.1494941938636,28.39584014014014,28.199897088622777,2019
+1995,60,"(55,60]",College,316057.13224237063,1435.0524628796009,220.24082074892578,24.916089990581106,2019
+1995,60,"(55,60]",College,112062.50858911985,1444.9630461867807,77.55389238835544,44.90628171283181,2019
+1995,53,"(50,55]",College,499.72720035382576,114.96276636328297,4.346861302681993,3766.5369121937993,2019
+1995,53,"(50,55]",College,431.9872622733304,136.76604963907803,3.1585855072463764,6170.300533520843,2019
+1995,53,"(50,55]",College,449.4061034940292,154.60509959200127,2.9067999999999996,6206.256117450542,2019
+1995,53,"(50,55]",College,375.8598850066342,279.4784492624638,1.3448617809298657,6380.569243350193,2019
+1995,53,"(50,55]",College,530.6940291906237,237.85399937230957,2.231175555555556,3887.1172559226716,2019
+1995,44,"(40,45]",HS,155.51154356479435,65.40984982738514,2.377494276094276,5924.357221755845,2019
+1995,44,"(40,45]",HS,154.8341441839894,65.40984982738514,2.367138047138047,5875.470736022899,2019
+1995,44,"(40,45]",HS,155.12445820433436,65.40984982738514,2.3715764309764307,5912.9946189804305,2019
+1995,44,"(40,45]",HS,155.80185758513932,65.40984982738514,2.3819326599326596,5981.768213766112,2019
+1995,44,"(40,45]",HS,155.0276868642194,65.40984982738514,2.3700969696969696,5925.815589631072,2019
+1995,62,"(60,65]",HS,1152.449889429456,150.64086626912942,7.6503137426900585,926.1030226134972,2019
+1995,62,"(60,65]",HS,1152.449889429456,150.64086626912942,7.6503137426900585,910.4640393995145,2019
+1995,62,"(60,65]",HS,1152.449889429456,148.65874960769352,7.752317925925925,922.6159946048738,2019
+1995,62,"(60,65]",HS,1152.449889429456,172.44414954492444,6.68303269476373,868.2451214408189,2019
+1995,62,"(60,65]",HS,1152.449889429456,156.58721625343713,7.359795499296767,931.938927308994,2019
+1995,57,"(55,60]",HS,144.90540468819108,43.606566551590085,3.3230179797979806,6232.037489358034,2019
+1995,57,"(55,60]",HS,144.90540468819108,43.606566551590085,3.3230179797979806,6118.641107459041,2019
+1995,57,"(55,60]",HS,139.09912428129147,43.606566551590085,3.189866464646465,6215.992774270135,2019
+1995,57,"(55,60]",HS,133.29284387439188,43.606566551590085,3.05671494949495,6206.500097768788,2019
+1995,57,"(55,60]",HS,131.357417072092,43.606566551590085,3.012331111111112,6128.87575926345,2019
+1995,70,"(65,70]",College,70701.46527200354,6164.382817065691,11.469350196141479,2.8105880616522616,2019
+1995,70,"(65,70]",College,76407.06961521451,3785.8428233425943,20.18231426410704,2.243383281743868,2019
+1995,70,"(65,70]",College,65375.13684210526,5966.1711509220995,10.957636847545219,3.0383781419960103,2019
+1995,70,"(65,70]",College,73938.66498009731,5886.886484464662,12.559893107369998,2.1023901664096862,2019
+1995,70,"(65,70]",College,77651.76194604157,9732.192807650334,7.978855688617335,2.2997107014584666,2019
+1995,70,"(65,70]",NoHS,46.93409995577178,39.642333228718265,1.1839388888888889,9751.100335946985,2019
+1995,70,"(65,70]",NoHS,49.00500663423264,33.69598324441053,1.4543278431372548,9757.906412823571,2019
+1995,70,"(65,70]",NoHS,47.301831048208754,35.67809990584644,1.3257945679012346,9935.153352147277,2019
+1995,70,"(65,70]",NoHS,47.534082264484745,33.69598324441053,1.4106750326797386,9952.258780270397,2019
+1995,70,"(65,70]",NoHS,46.45024325519682,37.660216567282355,1.2334035087719297,9716.315481890344,2019
+1995,55,"(50,55]",HS,570.9896152145069,99.10583307179566,5.7614128000000004,1064.9304258478287,2019
+1995,55,"(50,55]",HS,423.85846970367095,225.9612994036941,1.8758011695906434,377.48652093056165,2019
+1995,55,"(50,55]",HS,524.8877487837241,103.07006639466748,5.092533333333335,1061.4448262162393,2019
+1995,55,"(50,55]",HS,592.8212295444494,150.64086626912942,3.9353280701754385,994.8901484882115,2019
+1995,55,"(50,55]",HS,983.1968155683326,63.42773316594923,15.501055555555554,1066.5550810827285,2019
+1995,75,"(70,75]",NoHS,-0.8690066342326405,29.731749921538697,-0.02922823703703704,9596.396752594483,2019
+1995,75,"(70,75]",NoHS,-0.8690066342326405,29.731749921538697,-0.02922823703703704,9563.665526179493,2019
+1995,75,"(70,75]",NoHS,-0.8690066342326405,29.731749921538697,-0.02922823703703704,9585.20488724799,2019
+1995,75,"(70,75]",NoHS,-0.8690066342326405,29.731749921538697,-0.02922823703703704,9602.426020837225,2019
+1995,75,"(70,75]",NoHS,-0.8690066342326405,29.731749921538697,-0.02922823703703704,9590.579817059264,2019
+1995,54,"(50,55]",HS,17.399486952675808,33.69598324441053,0.516366797385621,4754.295682153601,2019
+1995,54,"(50,55]",HS,44.747067669172935,41.624449890154175,1.0750188359788362,4615.7053349366115,2019
+1995,54,"(50,55]",HS,67.46897832817336,31.713866582974614,2.127428333333333,4642.60197954306,2019
+1995,54,"(50,55]",HS,30.734577620521893,35.67809990584644,0.861440987654321,4772.997252965079,2019
+1995,54,"(50,55]",HS,38.185970809376386,29.731749921538697,1.2843499259259261,4687.975059962836,2019
+1995,29,"(25,30]",NoHS,87.13291463954003,19.028319949784766,4.579117592592593,5257.59654551314,2019
+1995,29,"(25,30]",NoHS,78.38478549314462,19.028319949784766,4.119375,5234.947980438212,2019
+1995,29,"(25,30]",NoHS,117.94490933215391,19.028319949784766,6.198387962962963,5280.417318270394,2019
+1995,29,"(25,30]",NoHS,88.15869084475895,19.028319949784766,4.633025462962963,5252.359798307392,2019
+1995,29,"(25,30]",NoHS,207.1680849181778,19.028319949784766,10.887355555555557,5181.546412808188,2019
+1995,40,"(35,40]",HS,0,9.910583307179566,0,5841.378978032922,2019
+1995,40,"(35,40]",HS,0,9.910583307179566,0,5851.46439257114,2019
+1995,40,"(35,40]",HS,0,9.910583307179566,0,5870.845374179642,2019
+1995,40,"(35,40]",HS,0,9.910583307179566,0,5762.571267121911,2019
+1995,40,"(35,40]",HS,0,9.910583307179566,0,5857.367078518611,2019
+1995,88,"(85,90]",HS,48571.471030517474,1353.7856797607287,35.87825736131447,229.55644387083765,2019
+1995,88,"(85,90]",HS,48648.88810260946,1486.587496076935,32.72521007407407,203.52311590468244,2019
+1995,88,"(85,90]",HS,48705.015479876165,1528.2119459670892,31.870589422106935,224.40343369270562,2019
+1995,88,"(85,90]",HS,48691.46749226006,1631.2820123617569,29.84858971243418,226.92318413262643,2019
+1995,88,"(85,90]",HS,49241.128704113224,1413.2491796038062,34.8424958703444,257.7116725196197,2019
+1995,69,"(65,70]",College,9404.432375055285,1121.878030372727,8.382758303886925,14.763285763706055,2019
+1995,69,"(65,70]",College,11139.155417956656,1004.9331473480081,11.084474074074073,13.640369662996296,2019
+1995,69,"(65,70]",College,10903.613976116761,1264.5904299961128,8.622249320794147,14.039926731240985,2019
+1995,69,"(65,70]",College,11575.594161875277,1159.5382469400092,9.982934320987654,12.48574671908394,2019
+1995,69,"(65,70]",College,11593.013003095975,1314.1433465320106,8.821726361655774,14.106944242387922,2019
+1995,74,"(70,75]",HS,17240.588412206987,826.5426478187759,20.858679776179056,241.58361433093108,2019
+1995,74,"(70,75]",HS,17240.588412206987,826.5426478187759,20.858679776179056,212.71110241217744,2019
+1995,74,"(70,75]",HS,17240.588412206987,826.5426478187759,20.858679776179056,212.4020132432484,2019
+1995,74,"(70,75]",HS,17240.588412206987,826.5426478187759,20.858679776179056,218.1978568405982,2019
+1995,74,"(70,75]",HS,17240.588412206987,826.5426478187759,20.858679776179056,217.2155422795112,2019
+1995,55,"(50,55]",HS,517.9008580274216,192.26531615928357,2.6936780297823604,5451.266831553348,2019
+1995,55,"(50,55]",HS,492.9144980097302,192.26531615928357,2.5637203207331045,5666.654504795214,2019
+1995,55,"(50,55]",HS,435.4903847854931,172.44414954492444,2.525399591315453,5601.583037117679,2019
+1995,55,"(50,55]",HS,498.52723573639986,180.3726161906681,2.763874285714286,5310.419480822671,2019
+1995,55,"(50,55]",HS,474.2956921716055,192.26531615928357,2.4668811912943873,5615.293946253031,2019
+1995,25,"(20,25]",HS,35.41831048208758,69.37408315025698,0.5105409523809523,4874.5322656365,2019
+1995,25,"(20,25]",HS,31.66358248562583,69.37408315025698,0.4564180317460317,4829.689546159227,2019
+1995,25,"(20,25]",HS,29.844281291463954,69.37408315025698,0.4301935238095237,4876.893109726542,2019
+1995,25,"(20,25]",HS,45.01802742149492,69.37408315025698,0.6489170793650794,4847.692479758904,2019
+1995,25,"(20,25]",HS,26.96049535603715,69.37408315025698,0.3886248888888888,4855.366454803707,2019
+1995,78,"(75,80]",NoHS,94.06174259177355,14.271239962338576,6.590999999999999,7663.01181241055,2019
+1995,78,"(75,80]",NoHS,94.06174259177355,14.271239962338576,6.590999999999999,7626.831157219244,2019
+1995,78,"(75,80]",NoHS,94.06174259177355,14.271239962338576,6.590999999999999,7668.284002998711,2019
+1995,78,"(75,80]",NoHS,94.06174259177355,14.271239962338576,6.590999999999999,7674.708226977253,2019
+1995,78,"(75,80]",NoHS,94.06174259177355,14.271239962338576,6.590999999999999,7677.021791350357,2019
+1995,45,"(40,45]",HS,194.51039363113665,71.35619981169287,2.7259074074074072,5234.259988090338,2019
+1995,45,"(40,45]",HS,194.51039363113665,71.35619981169287,2.7259074074074072,5112.89022966569,2019
+1995,45,"(40,45]",HS,198.3812472357364,71.35619981169287,2.7801543209876542,5152.276881496579,2019
+1995,45,"(40,45]",HS,196.05873507297656,71.35619981169287,2.7476061728395065,5340.082943198972,2019
+1995,45,"(40,45]",HS,194.51039363113665,71.35619981169287,2.7259074074074072,5189.711788077984,2019
+1995,35,"(30,35]",HS,96.2874834144184,168.47991622205262,0.5715071895424837,4070.924340307075,2019
+1995,35,"(30,35]",HS,96.2874834144184,168.47991622205262,0.5715071895424837,4238.871600486153,2019
+1995,35,"(30,35]",HS,96.2874834144184,168.47991622205262,0.5715071895424837,4180.966729161804,2019
+1995,35,"(30,35]",HS,96.2874834144184,168.47991622205262,0.5715071895424837,3969.6025119607352,2019
+1995,35,"(30,35]",HS,96.2874834144184,168.47991622205262,0.5715071895424837,4210.007337393427,2019
+1995,61,"(60,65]",NoHS,54.191950464396285,19.821166614359132,2.7340444444444447,6436.7578060526785,2019
+1995,61,"(60,65]",NoHS,98.78418398938523,5.153503319733375,19.168355555555554,6669.391773448599,2019
+1995,61,"(60,65]",NoHS,38.70853604599735,7.730254979600061,5.007407407407408,6416.947342520197,2019
+1995,61,"(60,65]",NoHS,154.25351614329944,18.631896617497585,8.279002364066194,6643.513959811287,2019
+1995,61,"(60,65]",NoHS,39.48270676691729,12.487334967046253,3.1618201058201056,6408.890259534906,2019
+1995,47,"(45,50]",College,192.5556125608138,144.69451628482167,1.330773394216134,6028.48687373963,2019
+1995,47,"(45,50]",College,175.93029632905797,118.92699968615479,1.4793133333333337,6012.437237193075,2019
+1995,47,"(45,50]",College,247.38625386996907,122.89123300902662,2.013050465949821,5984.09065343997,2019
+1995,47,"(45,50]",College,197.47159663865546,110.99853304041113,1.7790469047619049,6068.522658215684,2019
+1995,47,"(45,50]",College,263.5664219371959,124.87334967046255,2.1106699118165784,6028.267366032638,2019
+1995,40,"(35,40]",HS,8.380398053958427,65.40984982738514,0.12812134680134682,8086.642038919075,2019
+1995,40,"(35,40]",HS,15.541477222467934,65.40984982738514,0.23760148148148144,8105.811376284107,2019
+1995,40,"(35,40]",HS,12.444794338788146,65.40984982738514,0.1902587205387205,8091.569525550983,2019
+1995,40,"(35,40]",HS,15.541477222467934,65.40984982738514,0.23760148148148144,8189.465731833584,2019
+1995,40,"(35,40]",HS,15.541477222467934,65.40984982738514,0.23760148148148144,8142.768266977249,2019
+1995,95,"(90,95]",NoHS,711.2693498452013,37.660216567282355,18.886491228070177,7169.073024693857,2019
+1995,95,"(90,95]",NoHS,295.15258735072973,37.660216567282355,7.837251461988303,2420.818944244989,2019
+1995,95,"(90,95]",NoHS,1388.6687306501549,37.660216567282355,36.87362573099415,7481.6253148658625,2019
+1995,95,"(90,95]",NoHS,324.1839893852278,37.660216567282355,8.60812865497076,2401.679987572425,2019
+1995,95,"(90,95]",NoHS,188.70411322423706,37.660216567282355,5.010701754385964,2407.54547510895,2019
+1995,34,"(30,35]",NoHS,10.838390092879257,18.433684951353992,0.5879665471923536,4874.5322656365,2019
+1995,34,"(30,35]",NoHS,10.838390092879257,19.424743282071947,0.557968253968254,4829.689546159227,2019
+1995,34,"(30,35]",NoHS,10.838390092879257,17.64083828677963,0.6143920099875155,4876.893109726542,2019
+1995,34,"(30,35]",NoHS,10.838390092879257,14.865874960769348,0.7290785185185186,4847.692479758904,2019
+1995,34,"(30,35]",NoHS,10.838390092879257,13.47839329776421,0.8041307189542484,4855.366454803707,2019
+1995,37,"(35,40]",HS,229.36743034055726,71.35619981169287,3.214400864197531,4553.043044469959,2019
+1995,37,"(35,40]",HS,229.48355594869525,73.3383164731288,3.129108588588588,4586.461885632596,2019
+1995,37,"(35,40]",HS,229.58032728881025,65.40984982738514,3.509873939393939,4584.117329430334,2019
+1995,37,"(35,40]",HS,228.78680229986733,71.35619981169287,3.206263827160494,4558.61155573432,2019
+1995,37,"(35,40]",HS,229.48355594869525,83.24889978030835,2.7565956613756617,4598.25825024695,2019
+1995,48,"(45,50]",College,2032.5852277753206,291.37114923107936,6.975931670445953,6493.839983934433,2019
+1995,48,"(45,50]",College,2038.58505086245,291.37114923107936,6.996523356009067,11805.254985244985,2019
+1995,48,"(45,50]",College,2038.58505086245,291.37114923107936,6.996523356009067,10983.745522883983,2019
+1995,48,"(45,50]",College,2038.875364882795,291.37114923107936,6.997519727891153,11908.543530085492,2019
+1995,48,"(45,50]",College,2033.8045466607696,291.37114923107936,6.980116432350716,12015.95644899762,2019
+1995,40,"(35,40]",NoHS,0,4.955291653589783,0,7625.76315419749,2019
+1995,40,"(35,40]",NoHS,0,4.955291653589783,0,7678.049096114312,2019
+1995,40,"(35,40]",NoHS,0,4.955291653589783,0,7676.280966109865,2019
+1995,40,"(35,40]",NoHS,0,4.955291653589783,0,7659.928905908055,2019
+1995,40,"(35,40]",NoHS,0,4.955291653589783,0,7683.636503257668,2019
+1995,57,"(55,60]",College,287561.90149491373,9672.729307807256,29.72913769672131,17.66246580167328,2019
+1995,57,"(55,60]",College,363846.69084475894,9672.729307807256,37.61572140255009,19.06671788563878,2019
+1995,57,"(55,60]",College,363832.7557717824,9672.729307807256,37.61428074681239,18.562367869065405,2019
+1995,57,"(55,60]",College,288271.8160459973,9752.013974264695,29.56023410207768,16.375221037328004,2019
+1995,57,"(55,60]",College,362092.0329057939,9672.729307807256,37.43431883424409,17.67421612293456,2019
+1995,67,"(65,70]",HS,6359.754409553295,313.17443250687427,20.307387032348807,21.177994504992252,2019
+1995,67,"(65,70]",HS,10093.541088014154,331.01348245979744,30.49283978709249,19.74678554457483,2019
+1995,67,"(65,70]",HS,8370.54673153472,342.906182428413,24.4106031342325,20.141261655395216,2019
+1995,67,"(65,70]",HS,5508.14726227333,305.2459658611307,18.04494695526695,17.96867383023132,2019
+1995,67,"(65,70]",HS,8020.389314462627,358.7631157199002,22.355668581952123,20.162592341760934,2019
+1995,76,"(75,80]",HS,1552.5993808049536,144.69451628482167,10.730188127853882,3614.1731252363197,2019
+1995,76,"(75,80]",HS,1598.6431844316676,97.12371641035975,16.459864217687077,2975.1126998559866,2019
+1995,76,"(75,80]",HS,1311.4452012383902,120.90911634759071,10.846536976320584,1649.1755591240085,2019
+1995,76,"(75,80]",HS,3418.157275541796,138.74816630051396,24.635693333333332,1973.6843797778442,2019
+1995,76,"(75,80]",HS,3006.298452012384,291.37114923107936,10.31776296296296,2217.755115589546,2019
+1995,69,"(65,70]",College,3140.9073861123397,283.44268258533566,11.081278787878786,288.60004533974404,2019
+1995,69,"(65,70]",College,9006.508624502434,309.21019918400253,29.127462962962962,257.13666316945705,2019
+1995,69,"(65,70]",College,6705.7990446705,521.2966819576452,12.863690249260667,254.56615276459564,2019
+1995,69,"(65,70]",College,7278.753118089341,348.8525324127207,20.86484242424243,259.7717162793813,2019
+1995,69,"(65,70]",College,9181.47120743034,136.76604963907803,67.13267826086955,258.3113021916331,2019
+1995,64,"(60,65]",HS,1564.9861123396727,59.46349984307739,26.318432592592593,216.49832306334014,2019
+1995,64,"(60,65]",HS,1851.4292790800532,59.46349984307739,31.135558518518522,183.2052754461114,2019
+1995,64,"(60,65]",HS,783.0736842105263,59.46349984307739,13.168980740740741,97.75872567959667,2019
+1995,64,"(60,65]",HS,1855.3001326846527,59.46349984307739,31.200654814814815,186.10352672829774,2019
+1995,64,"(60,65]",HS,887.5867315347191,59.46349984307739,14.926580740740741,97.8763484795119,2019
+1995,38,"(35,40]",HS,1019.8731534719151,168.47991622205262,6.053381176470588,826.8738654435887,2019
+1995,38,"(35,40]",HS,1019.8731534719151,168.47991622205262,6.053381176470588,687.7308216341864,2019
+1995,38,"(35,40]",HS,1019.8731534719151,168.47991622205262,6.053381176470588,740.3987366081976,2019
+1995,38,"(35,40]",HS,1019.8731534719151,168.47991622205262,6.053381176470588,702.8837716215914,2019
+1995,38,"(35,40]",HS,1019.8731534719151,168.47991622205262,6.053381176470588,684.2856967443555,2019
+1995,58,"(55,60]",College,26567.1972755418,3865.127489800031,6.873562992592593,18.424123599782696,2019
+1995,58,"(55,60]",College,47591.21606368864,6481.521482895436,7.342599448182129,18.715724758082384,2019
+1995,58,"(55,60]",College,179154.25287925696,2160.5071609651454,82.92231385117228,18.77532482183993,2019
+1995,58,"(55,60]",College,148547.23923927464,5430.9996523344025,27.351730574209242,17.94707285770976,2019
+1995,58,"(55,60]",College,350851.57724900485,6441.879149666718,54.464166293333335,29.881690059636192,2019
+1995,34,"(30,35]",College,1864.590181335692,350.8346490741567,5.314726428123037,2215.3794267316644,2019
+1995,34,"(30,35]",College,1864.590181335692,350.8346490741567,5.314726428123037,1894.9934535221212,2019
+1995,34,"(30,35]",College,1864.590181335692,350.8346490741567,5.314726428123037,1955.255555994563,2019
+1995,34,"(30,35]",College,1864.590181335692,350.8346490741567,5.314726428123037,1890.6054522444956,2019
+1995,34,"(30,35]",College,1864.590181335692,350.8346490741567,5.314726428123037,1961.8988269831175,2019
+1995,51,"(50,55]",College,768.5579831932773,97.12371641035975,7.913185487528345,3973.561702274487,2019
+1995,51,"(50,55]",College,538.4357363998231,97.12371641035975,5.543813151927438,4139.7182350953735,2019
+1995,51,"(50,55]",College,904.8120300751881,430.1193155315932,2.1036303123399898,4088.150252824763,2019
+1995,51,"(50,55]",College,547.2419283502875,97.12371641035975,5.634482993197279,3878.283096870604,2019
+1995,51,"(50,55]",College,453.27695709862894,190.28319949784765,2.382117592592593,4102.159157743836,2019
+1995,73,"(70,75]",HS,206.52939407341884,1.328018163162062,155.5169950248756,9865.585283567121,2019
+1995,73,"(70,75]",HS,206.52939407341884,1.328018163162062,155.5169950248756,10069.431396078842,2019
+1995,73,"(70,75]",HS,206.66487394957983,1.328018163162062,155.61901160862354,10060.940134278328,2019
+1995,73,"(70,75]",HS,206.97454223794782,1.328018163162062,155.85219237147595,10298.322430728056,2019
+1995,73,"(70,75]",HS,206.52939407341884,1.328018163162062,155.5169950248756,9897.827024477567,2019
+1995,60,"(55,60]",College,213490.29204776647,5490.46315217748,38.88384023906939,21.771475130045456,2019
+1995,60,"(55,60]",College,110560.96576735956,5371.536152491326,20.582746281262807,22.139802728840415,2019
+1995,60,"(55,60]",College,128891.78009730208,6283.309816751846,20.51335742726954,22.15857878751236,2019
+1995,60,"(55,60]",College,204912.09337461303,5193.145652962094,39.45818335708227,21.31865848034735,2019
+1995,60,"(55,60]",College,121641.63258735073,6164.382817065691,19.732978336548765,21.252088163683666,2019
+1995,64,"(60,65]",HS,90051.53825740823,6778.838982110824,13.284212605588044,18.424123599782696,2019
+1995,64,"(60,65]",College,89639.29234851836,7492.400980227752,11.964027630805408,18.715724758082384,2019
+1995,64,"(60,65]",HS,89393.49314462628,6957.229481640055,12.84900740740741,18.77532482183993,2019
+1995,64,"(60,65]",College,89763.546749226,6144.561650451332,14.608616831541218,17.94707285770976,2019
+1995,64,"(60,65]",HS,89877.54338788148,9454.696475049306,9.506126783135338,17.90067114790862,2019
+1995,34,"(30,35]",HS,22.14128261831048,109.01641637897524,0.20310044444444442,5180.146740821862,2019
+1995,34,"(30,35]",HS,22.14128261831048,109.01641637897524,0.20310044444444442,5101.693250799639,2019
+1995,34,"(30,35]",HS,22.14128261831048,109.01641637897524,0.20310044444444442,5133.262077297526,2019
+1995,34,"(30,35]",HS,22.14128261831048,109.01641637897524,0.20310044444444442,5069.656068954644,2019
+1995,34,"(30,35]",HS,22.14128261831048,109.01641637897524,0.20310044444444442,5127.662498022596,2019
+1995,45,"(40,45]",HS,85.73940734188413,114.96276636328297,0.74580153256705,7533.785031753665,2019
+1995,45,"(40,45]",HS,85.73940734188413,114.96276636328297,0.74580153256705,7437.560326049497,2019
+1995,45,"(40,45]",HS,85.73940734188413,114.96276636328297,0.74580153256705,7474.280387569217,2019
+1995,45,"(40,45]",HS,85.73940734188413,114.96276636328297,0.74580153256705,7837.095122664832,2019
+1995,45,"(40,45]",HS,85.73940734188413,114.96276636328297,0.74580153256705,7596.447084457638,2019
+1995,50,"(45,50]",College,526.242547545334,178.3904995292322,2.949947160493828,4349.925330307022,2019
+1995,50,"(45,50]",College,845.587969924812,178.3904995292322,4.740095308641975,4532.3297114686375,2019
+1995,50,"(45,50]",College,644.3035824856258,178.3904995292322,3.61175950617284,4476.211514479599,2019
+1995,50,"(45,50]",College,990.7449800973021,178.3904995292322,5.55379901234568,4247.1080245045,2019
+1995,50,"(45,50]",College,710.1080937638213,178.3904995292322,3.9806385185185187,4489.182027838722,2019
+1995,73,"(70,75]",HS,299.21698363555953,89.1952497646161,3.35462913580247,1520.8450673217624,2019
+1995,73,"(70,75]",HS,299.21698363555953,89.1952497646161,3.35462913580247,1465.3657390270325,2019
+1995,73,"(70,75]",HS,299.21698363555953,89.1952497646161,3.35462913580247,1581.599352895676,2019
+1995,73,"(70,75]",HS,299.21698363555953,89.1952497646161,3.35462913580247,1416.1934913731977,2019
+1995,73,"(70,75]",HS,299.21698363555953,89.1952497646161,3.35462913580247,1540.350955823535,2019
+1995,68,"(65,70]",NoHS,637.4328173374613,77.30254979600063,8.245948148148146,5925.073099018514,2019
+1995,68,"(65,70]",NoHS,609.7368597965502,81.26678311887244,7.502903848238483,6154.311548754246,2019
+1995,68,"(65,70]",NoHS,607.7433701901813,87.21313310318017,6.968484545454546,6083.445681975152,2019
+1995,68,"(65,70]",NoHS,574.8024060150376,87.21313310318017,6.590778080808082,5771.002515317936,2019
+1995,68,"(65,70]",NoHS,636.7534825298541,79.28466645743653,8.031231144444446,6166.622237457098,2019
+1995,69,"(65,70]",College,312040.54099955776,6164.382817065691,50.61991609860665,4.756923591685615,2019
+1995,69,"(65,70]",College,312993.9322423706,5391.357319105684,58.054755735294115,3.7928562004130293,2019
+1995,69,"(65,70]",College,602392.3021671827,5252.60915280517,114.68439486792452,5.148934604028179,2019
+1995,69,"(65,70]",College,307392.4199911544,5371.536152491326,57.22616608446084,3.539786476402375,2019
+1995,69,"(65,70]",College,311469.396550199,4776.901154060551,65.20323249423697,3.8741007175455637,2019
+1995,59,"(55,60]",NoHS,120.20935869084477,29.731749921538697,4.043130962962963,9231.37756620387,2019
+1995,59,"(55,60]",NoHS,98.12613887660328,23.785399937230956,4.125477777777778,9006.532900374445,2019
+1995,59,"(55,60]",NoHS,100.25510835913313,59.46349984307739,1.6859940740740742,9082.892171474177,2019
+1995,59,"(55,60]",NoHS,85.73940734188413,59.46349984307739,1.4418829629629633,9065.293185128303,2019
+1995,59,"(55,60]",NoHS,65.92063688633348,79.28466645743653,0.8314424444444445,8974.575955716417,2019
+1995,46,"(45,50]",College,269.45011941618753,210.1043661122068,1.2824584486373165,6339.1246898513955,2019
+1995,46,"(45,50]",College,289.38501547987613,210.1043661122068,1.3773393710691824,6433.594375547138,2019
+1995,46,"(45,50]",College,280.09496682883685,210.1043661122068,1.3331230188679248,6464.6444464761935,2019
+1995,46,"(45,50]",College,284.3529057938965,210.1043661122068,1.3533888469601678,6233.585532610634,2019
+1995,46,"(45,50]",College,297.1267226890756,210.1043661122068,1.4141863312368972,6352.569873403067,2019
+1995,42,"(40,45]",College,40.41171163202123,144.69451628482167,0.2792898630136986,8563.70557537069,2019
+1995,42,"(40,45]",College,49.54692613887661,105.0521830561034,0.47164109014675054,8749.635872700836,2019
+1995,42,"(40,45]",College,44.49546218487395,75.32043313456471,0.5907488888888889,8614.731501979453,2019
+1995,42,"(40,45]",College,46.50830605926581,45.588683213026,1.0201721739130436,8640.487547767998,2019
+1995,42,"(40,45]",College,30.09588677576294,77.30254979600063,0.38932592592592585,8646.051305808698,2019
+1995,42,"(40,45]",College,1731.0457319770014,707.6156481326211,2.4463078742608153,826.8738654435887,2019
+1995,42,"(40,45]",College,1731.0457319770014,707.6156481326211,2.4463078742608153,687.7308216341864,2019
+1995,42,"(40,45]",College,1731.0457319770014,707.6156481326211,2.4463078742608153,740.3987366081976,2019
+1995,42,"(40,45]",College,1731.0457319770014,707.6156481326211,2.4463078742608153,702.8837716215914,2019
+1995,42,"(40,45]",College,1731.0457319770014,707.6156481326211,2.4463078742608153,684.2856967443555,2019
+1995,28,"(25,30]",HS,819.7500221141088,99.10583307179566,8.271460888888889,943.4035204790777,2019
+1995,28,"(25,30]",HS,819.7500221141088,99.10583307179566,8.271460888888889,928.346484533575,2019
+1995,28,"(25,30]",HS,819.7500221141088,99.10583307179566,8.271460888888889,946.3492718487485,2019
+1995,28,"(25,30]",HS,819.7500221141088,99.10583307179566,8.271460888888889,886.093408492927,2019
+1995,28,"(25,30]",HS,819.7500221141088,99.10583307179566,8.271460888888889,950.0859716996854,2019
+1995,55,"(50,55]",NoHS,0,33.69598324441053,0,8426.198190038232,2019
+1995,55,"(50,55]",NoHS,0,33.69598324441053,0,8455.101164401876,2019
+1995,55,"(50,55]",NoHS,0,33.69598324441053,0,8439.38798579531,2019
+1995,55,"(50,55]",NoHS,0,33.69598324441053,0,8443.861363978289,2019
+1995,55,"(50,55]",NoHS,0,33.69598324441053,0,8406.516813171336,2019
+1995,53,"(50,55]",College,116.45463069438301,69.37408315025698,1.6786474920634917,8609.810784966478,2019
+1995,53,"(50,55]",College,114.71274657231314,69.37408315025698,1.6535389206349203,8548.870530964366,2019
+1995,53,"(50,55]",College,115.2933746130031,69.37408315025698,1.661908444444444,8498.204923843374,2019
+1995,53,"(50,55]",College,118.1965148164529,69.37408315025698,1.7037560634920632,8933.29053195786,2019
+1995,53,"(50,55]",College,116.26108801415303,69.37408315025698,1.6758576507936505,8621.297352734911,2019
+1995,44,"(40,45]",NoHS,81.28792569659443,59.46349984307739,1.3670222222222224,5335.755269594744,2019
+1995,44,"(40,45]",NoHS,81.28792569659443,59.46349984307739,1.3670222222222224,5320.252880992469,2019
+1995,44,"(40,45]",NoHS,81.28792569659443,59.46349984307739,1.3670222222222224,5328.958469956101,2019
+1995,44,"(40,45]",NoHS,81.28792569659443,59.46349984307739,1.3670222222222224,5424.551109383185,2019
+1995,44,"(40,45]",NoHS,81.28792569659443,59.46349984307739,1.3670222222222224,5356.201320700132,2019
+1995,61,"(60,65]",HS,990.1643520566122,41.624449890154175,23.788046560846563,3867.685600044964,2019
+1995,61,"(60,65]",HS,990.1643520566122,41.624449890154175,23.788046560846563,4020.9560855260534,2019
+1995,61,"(60,65]",HS,990.1643520566122,41.624449890154175,23.788046560846563,3975.084922856,2019
+1995,61,"(60,65]",HS,990.1643520566122,41.624449890154175,23.788046560846563,3769.072663607596,2019
+1995,61,"(60,65]",HS,990.1643520566122,41.624449890154175,23.788046560846563,3982.713688252301,2019
+1995,58,"(55,60]",HS,34.56672268907563,89.1952497646161,0.38753995061728397,7071.5686693994885,2019
+1995,58,"(55,60]",HS,48.017938965059706,89.1952497646161,0.5383463703703704,7138.614113688194,2019
+1995,58,"(55,60]",HS,51.59847854931446,89.1952497646161,0.578489086419753,7045.354550370347,2019
+1995,58,"(55,60]",HS,59.8627509951349,89.1952497646161,0.671142814814815,7291.013986935739,2019
+1995,58,"(55,60]",HS,48.63727554179567,89.1952497646161,0.545289975308642,7004.593043194701,2019
+1995,34,"(30,35]",HS,441.37408226448474,364.709465704208,1.2102073671497586,5927.703700383836,2019
+1995,34,"(30,35]",HS,611.6916408668731,323.0850158140539,1.8932838445807767,3722.5105661508373,2019
+1995,34,"(30,35]",HS,658.1418841220699,350.8346490741567,1.875931826741996,3677.427680595533,2019
+1995,34,"(30,35]",HS,497.6950022114109,338.9419491055412,1.4683782975958413,3500.441822207967,2019
+1995,34,"(30,35]",HS,468.47005749668284,293.3532658925152,1.596948498498498,5924.820057448185,2019
+1995,32,"(30,35]",HS,181.11724015922158,118.92699968615479,1.5229278518518519,5517.274431068581,2019
+1995,32,"(30,35]",HS,182.6655816010615,118.92699968615479,1.5359471111111114,5468.027165776416,2019
+1995,32,"(30,35]",HS,182.6655816010615,118.92699968615479,1.5359471111111114,5542.4114225220155,2019
+1995,32,"(30,35]",HS,182.6655816010615,118.92699968615479,1.5359471111111114,5475.986772783874,2019
+1995,32,"(30,35]",HS,182.6655816010615,118.92699968615479,1.5359471111111114,5524.656662354793,2019
+1995,51,"(50,55]",College,5624.7760813799205,798.793014558673,7.041593978494624,22.912149894566873,2019
+1995,51,"(50,55]",College,7399.233436532508,1028.718547285239,7.192670391779061,20.120435579797295,2019
+1995,51,"(50,55]",College,13616.77268465281,2656.036326324124,5.126726825870647,20.973505920242754,2019
+1995,51,"(50,55]",College,7249.489464838567,2774.9633260102787,2.612463161904762,20.498943767727734,2019
+1995,51,"(50,55]",College,6724.117859354268,757.1685646685189,8.880608853984874,21.266240005160498,2019
+1995,59,"(55,60]",HS,387.49180008845644,75.32043313456471,5.144577426900584,8379.50073322407,2019
+1995,59,"(55,60]",HS,193.44590888987173,73.3383164731288,2.637719519519519,8255.020968445595,2019
+1995,59,"(55,60]",HS,238.34781070322867,71.35619981169287,3.340253703703704,8342.642972145228,2019
+1995,59,"(55,60]",HS,246.6701459531181,77.30254979600063,3.1909703703703696,8392.383253924269,2019
+1995,59,"(55,60]",HS,399.0462980981867,81.26678311887244,4.910324769647698,8215.74324132497,2019
+1995,62,"(60,65]",NoHS,261.86324635117205,75.32043313456471,3.476656140350877,6545.9434023809235,2019
+1995,62,"(60,65]",NoHS,261.86324635117205,75.32043313456471,3.476656140350877,6409.335310850207,2019
+1995,62,"(60,65]",NoHS,261.86324635117205,75.32043313456471,3.476656140350877,6465.306548913436,2019
+1995,62,"(60,65]",NoHS,261.86324635117205,75.32043313456471,3.476656140350877,6451.366211214175,2019
+1995,62,"(60,65]",NoHS,261.86324635117205,75.32043313456471,3.476656140350877,6382.812926440363,2019
+1995,28,"(25,30]",HS,49.6436974789916,109.01641637897524,0.4553781818181818,3749.439546686293,2019
+1995,28,"(25,30]",HS,30.289429455992924,109.01641637897524,0.27784282828282825,3692.654163417747,2019
+1995,28,"(25,30]",HS,30.289429455992924,109.01641637897524,0.27784282828282825,3715.503980698189,2019
+1995,28,"(25,30]",HS,30.289429455992924,109.01641637897524,0.27784282828282825,3669.465346076459,2019
+1995,28,"(25,30]",HS,30.289429455992924,109.01641637897524,0.27784282828282825,3711.4509518886443,2019
+1995,45,"(40,45]",HS,16.838213180008847,23.785399937230956,0.7079222222222223,5116.44784732299,2019
+1995,45,"(40,45]",HS,16.838213180008847,23.785399937230956,0.7079222222222223,5113.28724617934,2019
+1995,45,"(40,45]",HS,16.838213180008847,23.785399937230956,0.7079222222222223,5107.934494945714,2019
+1995,45,"(40,45]",HS,16.838213180008847,23.785399937230956,0.7079222222222223,5117.49251928344,2019
+1995,45,"(40,45]",HS,16.838213180008847,23.785399937230956,0.7079222222222223,5103.810925234917,2019
+1995,50,"(45,50]",HS,1471.563060592658,43.606566551590085,33.74636383838384,2138.7881675483645,2019
+1995,50,"(45,50]",HS,1375.565891198585,43.606566551590085,31.544925454545467,3652.653476596063,2019
+1995,50,"(45,50]",HS,1665.299283502875,43.606566551590085,38.18918606060607,1894.9701237624026,2019
+1995,50,"(45,50]",HS,1664.912198142415,43.606566551590085,38.1803092929293,1831.7044046193914,2019
+1995,50,"(45,50]",HS,1664.7186554621849,43.606566551590085,38.17587090909092,1896.199787077908,2019
+1995,62,"(60,65]",College,4503.060769570987,792.8466645743653,5.6796111666666675,388.55537713787834,2019
+1995,62,"(60,65]",College,4503.060769570987,792.8466645743653,5.6796111666666675,346.64739309993803,2019
+1995,62,"(60,65]",College,4503.060769570987,792.8466645743653,5.6796111666666675,344.41278708512937,2019
+1995,62,"(60,65]",College,4503.060769570987,792.8466645743653,5.6796111666666675,352.1399943268772,2019
+1995,62,"(60,65]",College,4503.060769570987,792.8466645743653,5.6796111666666675,349.61721546067463,2019
+1995,56,"(55,60]",HS,6.773993808049536,33.69598324441053,0.2010326797385621,5749.531000505741,2019
+1995,56,"(55,60]",HS,6.773993808049536,33.69598324441053,0.2010326797385621,5570.026064713936,2019
+1995,56,"(55,60]",HS,6.773993808049536,33.69598324441053,0.2010326797385621,5614.965151699879,2019
+1995,56,"(55,60]",HS,6.773993808049536,33.69598324441053,0.2010326797385621,5439.689851168637,2019
+1995,56,"(55,60]",HS,6.773993808049536,33.69598324441053,0.2010326797385621,5438.84627323285,2019
+1995,68,"(65,70]",HS,159.59529411764706,35.67809990584644,4.473200493827161,10858.90755743848,2019
+1995,68,"(65,70]",HS,132.8864042459089,37.660216567282355,3.528561871345029,10759.692823548412,2019
+1995,68,"(65,70]",HS,165.40157452454665,37.660216567282355,4.39194432748538,10451.148372162592,2019
+1995,68,"(65,70]",HS,157.54374170720922,29.731749921538697,5.29883851851852,11104.789011425057,2019
+1995,68,"(65,70]",HS,149.91816010614772,35.67809990584644,4.2019659259259265,10756.664303341204,2019
+1995,46,"(45,50]",HS,231.47704555506414,69.37408315025698,3.336650158730158,8651.162394783854,2019
+1995,46,"(45,50]",HS,231.47704555506414,69.37408315025698,3.336650158730158,8398.97622878154,2019
+1995,46,"(45,50]",HS,231.47704555506414,69.37408315025698,3.336650158730158,8447.918754850882,2019
+1995,46,"(45,50]",HS,231.47704555506414,69.37408315025698,3.336650158730158,8685.192740589846,2019
+1995,46,"(45,50]",HS,231.47704555506414,69.37408315025698,3.336650158730158,8530.481959435852,2019
+1995,54,"(50,55]",HS,202.25210084033614,79.28466645743653,2.5509611111111115,6355.568879595965,2019
+1995,54,"(50,55]",HS,200.70375939849626,79.28466645743653,2.5314322222222225,6170.300533520843,2019
+1995,54,"(50,55]",HS,201.09084475895622,79.28466645743653,2.5363144444444448,6206.256117450542,2019
+1995,54,"(50,55]",HS,201.4779301194162,79.28466645743653,2.5411966666666665,6380.569243350193,2019
+1995,54,"(50,55]",HS,200.70375939849626,79.28466645743653,2.5314322222222225,6266.911103418249,2019
+1995,36,"(35,40]",HS,5558.545776205219,305.2459658611307,18.210054834054834,1033.3159518636485,2019
+1995,36,"(35,40]",HS,10846.131800088457,396.42333228718263,27.359973333333336,931.6526121033427,2019
+1995,36,"(35,40]",HS,7298.4944714728,325.06713247548976,22.45226829268293,915.8253810299675,2019
+1995,36,"(35,40]",HS,8184.919946926139,358.7631157199002,22.81427378759976,925.2306837053504,2019
+1995,36,"(35,40]",HS,3474.091110128262,348.8525324127207,9.958623737373738,920.5272714121853,2019
+1995,70,"(65,70]",College,1014.1636444051305,31.713866582974614,31.978555555555555,170.66624377970442,2019
+1995,70,"(65,70]",College,1014.1636444051305,31.713866582974614,31.978555555555555,141.37470201500213,2019
+1995,70,"(65,70]",College,1014.1636444051305,31.713866582974614,31.978555555555555,149.22089294309973,2019
+1995,70,"(65,70]",College,1014.1636444051305,31.713866582974614,31.978555555555555,145.46757291899664,2019
+1995,70,"(65,70]",College,1014.1636444051305,31.713866582974614,31.978555555555555,141.20675682515918,2019
+1995,53,"(50,55]",NoHS,0,14.271239962338576,0,5998.09777660985,2019
+1995,53,"(50,55]",NoHS,0,14.271239962338576,0,6022.409033402815,2019
+1995,53,"(50,55]",NoHS,0,14.271239962338576,0,6031.07016239031,2019
+1995,53,"(50,55]",NoHS,0,14.271239962338576,0,6013.844580907036,2019
+1995,53,"(50,55]",NoHS,0,14.271239962338576,0,6020.770754265808,2019
+1995,85,"(80,85]",NoHS,0,13.874816630051392,0,4795.842942066932,2019
+1995,85,"(80,85]",NoHS,0,13.874816630051392,0,4741.706144498642,2019
+1995,85,"(80,85]",NoHS,0,13.874816630051392,0,4830.879194244944,2019
+1995,85,"(80,85]",NoHS,0,13.874816630051392,0,4837.477895771652,2019
+1995,85,"(80,85]",NoHS,0,13.874816630051392,0,4721.018440897494,2019
+1995,73,"(70,75]",College,1563.6313135780626,25.76751659866687,60.68226666666667,2814.459857294626,2019
+1995,73,"(70,75]",College,1563.6313135780626,25.76751659866687,60.68226666666667,2408.272357424377,2019
+1995,73,"(70,75]",College,1563.6313135780626,25.76751659866687,60.68226666666667,2486.03666885131,2019
+1995,73,"(70,75]",College,1563.6313135780626,25.76751659866687,60.68226666666667,2409.964184325232,2019
+1995,73,"(70,75]",College,1563.6313135780626,25.76751659866687,60.68226666666667,2493.5741246622065,2019
+1995,66,"(65,70]",College,1095.1612560813799,112.98064970184706,9.693352436647173,4546.073531559339,2019
+1995,66,"(65,70]",College,971.2939407341885,122.89123300902662,7.903687813620072,4724.8633753662525,2019
+1995,66,"(65,70]",College,975.1647943387882,158.56933291487306,6.149769166666667,4670.720069324344,2019
+1995,66,"(65,70]",College,1451.2797877045555,140.73028296194985,10.312491079812206,2375.6225142270746,2019
+1995,66,"(65,70]",College,1315.7999115435648,103.07006639466748,12.766072222222224,4733.930816503872,2019
+1995,35,"(30,35]",College,441.4708536045997,144.69451628482167,3.051054490106545,6345.093628015691,2019
+1995,35,"(30,35]",College,441.4708536045997,144.69451628482167,3.051054490106545,6302.790242932754,2019
+1995,35,"(30,35]",College,441.4708536045997,144.69451628482167,3.051054490106545,6350.013870904935,2019
+1995,35,"(30,35]",College,441.4708536045997,144.69451628482167,3.051054490106545,6195.398240132257,2019
+1995,35,"(30,35]",College,441.4708536045997,144.69451628482167,3.051054490106545,6320.367619886197,2019
+1995,26,"(25,30]",HS,68.20444051304732,109.01641637897524,0.6256345858585858,7611.805204692665,2019
+1995,26,"(25,30]",HS,68.26250331711633,130.8196996547703,0.5218059932659933,7570.233205312284,2019
+1995,26,"(25,30]",HS,68.3786289252543,105.0521830561034,0.6509015513626834,7649.618155598966,2019
+1995,26,"(25,30]",HS,78.8492879256966,142.71239962338575,0.5525048148148148,7598.539105603154,2019
+1995,26,"(25,30]",HS,68.06896063688633,107.03429971753931,0.6359546502057614,7606.591176638028,2019
+1995,37,"(35,40]",HS,1085.5808934099957,174.42626620636034,6.2237237373737395,48.113755681491774,2019
+1995,37,"(35,40]",HS,1085.5808934099957,331.01348245979744,3.2795669993346652,48.68671398732936,2019
+1995,37,"(35,40]",HS,1056.3559486952677,154.60509959200127,6.832607407407407,261.33747901707255,2019
+1995,37,"(35,40]",HS,1031.2921716054843,122.89123300902662,8.391910035842294,47.72733960271641,2019
+1995,37,"(35,40]",HS,1027.7116320212297,251.72881600236096,4.082614173228348,261.73455041742886,2019
+1995,59,"(55,60]",HS,57.69507297655905,61.44561650451331,0.938961577060932,9379.400590185918,2019
+1995,59,"(55,60]",HS,78.34607695709863,61.44561650451331,1.2750474551971327,9193.592445998172,2019
+1995,59,"(55,60]",HS,75.8106678460858,73.3383164731288,1.0337115915915915,9226.554361038623,2019
+1995,59,"(55,60]",HS,93.05532065457763,73.3383164731288,1.26884996996997,9270.85595364968,2019
+1995,59,"(55,60]",HS,80.88148606811146,63.42773316594923,1.2751754166666667,9149.385290383634,2019
+1995,25,"(20,25]",HS,20.321981424148607,118.92699968615479,0.1708777777777778,4649.324398842626,2019
+1995,25,"(20,25]",HS,22.64449358690845,144.69451628482167,0.1564986301369863,4577.6471930591415,2019
+1995,25,"(20,25]",HS,22.64449358690845,122.89123300902662,0.18426451612903227,4588.569748051569,2019
+1995,25,"(20,25]",HS,20.70906678460858,114.96276636328297,0.18013716475095787,4559.220459342567,2019
+1995,25,"(20,25]",HS,21.48323750552853,144.69451628482167,0.1484730593607306,4577.997766144541,2019
+1995,91,"(90,95]",HS,311.0230871295887,11.694488302471887,26.595698681732586,455.7624797490249,2019
+1995,91,"(90,95]",HS,172.0594427244582,55.499266520205566,3.1002111111111113,472.7521914878847,2019
+1995,91,"(90,95]",HS,121.2931977001327,55.499266520205566,2.1854919047619052,463.90973731665747,2019
+1995,91,"(90,95]",HS,235.09629367536488,21.803283275795042,10.782609696969699,431.0406295332521,2019
+1995,91,"(90,95]",NoHS,108.48067226890757,15.658721625343716,6.927811533052039,457.3052019135968,2019
+1995,58,"(55,60]",HS,183.01395842547547,83.24889978030835,2.198394920634921,7036.88915976204,2019
+1995,58,"(55,60]",HS,183.01395842547547,83.24889978030835,2.198394920634921,6890.0354613205545,2019
+1995,58,"(55,60]",HS,183.01395842547547,83.24889978030835,2.198394920634921,6950.204542257362,2019
+1995,58,"(55,60]",HS,183.01395842547547,83.24889978030835,2.198394920634921,6935.218679225962,2019
+1995,58,"(55,60]",HS,183.01395842547547,83.24889978030835,2.198394920634921,6861.523898071045,2019
+1995,56,"(55,60]",NoHS,121.54480318443167,93.15948308748793,1.3046959810874705,7223.189414131122,2019
+1995,56,"(55,60]",NoHS,121.54480318443167,93.15948308748793,1.3046959810874705,7091.758313671237,2019
+1995,56,"(55,60]",NoHS,121.54480318443167,93.15948308748793,1.3046959810874705,7204.592925202169,2019
+1995,56,"(55,60]",NoHS,121.54480318443167,93.15948308748793,1.3046959810874705,7193.590520204862,2019
+1995,56,"(55,60]",NoHS,121.54480318443167,93.15948308748793,1.3046959810874705,7103.620698757521,2019
+1995,86,"(85,90]",College,657.464484741265,41.624449890154175,15.795151322751325,6128.890637258391,2019
+1995,86,"(85,90]",College,658.0451127819549,41.624449890154175,15.809100529100531,6335.995891298682,2019
+1995,86,"(85,90]",College,658.4321981424149,41.624449890154175,15.818400000000002,6299.916954962644,2019
+1995,86,"(85,90]",College,654.9484298982751,41.624449890154175,15.734704761904764,5974.440269231224,2019
+1995,86,"(85,90]",College,662.3030517470146,41.624449890154175,15.91139470899471,6331.461021679863,2019
+1995,27,"(25,30]",HS,-3.4837682441397613,37.660216567282355,-0.09250526315789473,8229.347194043894,2019
+1995,27,"(25,30]",HS,-3.4837682441397613,37.660216567282355,-0.09250526315789473,8227.197082498464,2019
+1995,27,"(25,30]",HS,-3.4837682441397613,37.660216567282355,-0.09250526315789473,8228.358816660122,2019
+1995,27,"(25,30]",HS,-3.4837682441397613,37.660216567282355,-0.09250526315789473,8267.748517449074,2019
+1995,27,"(25,30]",HS,-3.4837682441397613,37.660216567282355,-0.09250526315789473,8248.40725857757,2019
+1995,26,"(25,30]",HS,-3.6773109243697477,63.42773316594923,-0.05797638888888888,7611.805204692665,2019
+1995,26,"(25,30]",HS,-3.6773109243697477,63.42773316594923,-0.05797638888888888,7570.233205312284,2019
+1995,26,"(25,30]",HS,-3.6773109243697477,63.42773316594923,-0.05797638888888888,7649.618155598966,2019
+1995,26,"(25,30]",HS,-3.6773109243697477,63.42773316594923,-0.05797638888888888,7598.539105603154,2019
+1995,26,"(25,30]",HS,-3.6773109243697477,63.42773316594923,-0.05797638888888888,7606.591176638028,2019
+1995,36,"(35,40]",HS,42.71486952675807,51.53503319733374,0.8288511111111112,5183.063975215474,2019
+1995,36,"(35,40]",HS,42.71486952675807,51.53503319733374,0.8288511111111112,5172.4991208415795,2019
+1995,36,"(35,40]",HS,42.71486952675807,51.53503319733374,0.8288511111111112,5185.9702877233485,2019
+1995,36,"(35,40]",HS,42.71486952675807,51.53503319733374,0.8288511111111112,5093.861948676526,2019
+1995,36,"(35,40]",HS,42.71486952675807,51.53503319733374,0.8288511111111112,5180.36406772473,2019
+1995,61,"(60,65]",College,6581.031755860239,81.26678311887244,80.9805864498645,1249.2548909457264,2019
+1995,61,"(60,65]",College,6581.031755860239,81.26678311887244,80.9805864498645,1134.6583285674965,2019
+1995,61,"(60,65]",College,6581.031755860239,91.177366426052,72.17834879227054,1123.8246513048853,2019
+1995,61,"(60,65]",College,6581.031755860239,85.23101644174427,77.21404754521964,1032.020520819945,2019
+1995,61,"(60,65]",College,6581.031755860239,95.14159974892382,69.1709175925926,1114.841971750689,2019
+1995,34,"(30,35]",College,2473.47545333923,107.03429971753931,23.109185185185183,1937.062057494307,2019
+1995,34,"(30,35]",College,2473.47545333923,107.03429971753931,23.109185185185183,1649.7112978521363,2019
+1995,34,"(30,35]",College,2473.47545333923,107.03429971753931,23.109185185185183,1699.7607850693378,2019
+1995,34,"(30,35]",College,2473.47545333923,107.03429971753931,23.109185185185183,1655.7539499153565,2019
+1995,34,"(30,35]",College,2473.47545333923,107.03429971753931,23.109185185185183,1710.8568014282191,2019
+1995,75,"(70,75]",HS,650.8840336134454,41.624449890154175,15.637060317460318,4278.311287572851,2019
+1995,75,"(70,75]",HS,596.8856258292791,37.660216567282355,15.849235087719297,4422.882434052401,2019
+1995,75,"(70,75]",HS,650.3034055727554,35.67809990584644,18.226962962962965,4397.697301912542,2019
+1995,75,"(70,75]",HS,650.8840336134454,39.642333228718265,16.418913333333332,4170.496220865119,2019
+1995,75,"(70,75]",HS,597.853339230429,33.69598324441053,17.74256993464052,4419.7168393263455,2019
+1995,57,"(55,60]",HS,315.1842547545334,180.3726161906681,1.7474063492063492,7036.88915976204,2019
+1995,57,"(55,60]",HS,315.1842547545334,180.3726161906681,1.7474063492063492,6890.0354613205545,2019
+1995,57,"(55,60]",HS,315.1842547545334,180.3726161906681,1.7474063492063492,6950.204542257362,2019
+1995,57,"(55,60]",HS,315.1842547545334,180.3726161906681,1.7474063492063492,6935.218679225962,2019
+1995,57,"(55,60]",HS,315.1842547545334,180.3726161906681,1.7474063492063492,6861.523898071045,2019
+1995,53,"(50,55]",College,12996.526457319771,1686.7812788819624,7.7049269042956,276.5049146986306,2019
+1995,53,"(50,55]",College,12948.04401592216,1686.7812788819624,7.676184326935632,246.55326733645933,2019
+1995,53,"(50,55]",College,12948.04401592216,1686.7812788819624,7.676184326935632,248.90995542343882,2019
+1995,53,"(50,55]",College,12948.06337019018,1686.7812788819624,7.676195801018408,250.32936675001466,2019
+1995,53,"(50,55]",College,12948.04401592216,1686.7812788819624,7.676184326935632,248.30059634944445,2019
+1995,33,"(30,35]",HS,68.5141088014153,95.14159974892382,0.7201277777777779,5226.891570325179,2019
+1995,33,"(30,35]",HS,68.5141088014153,95.14159974892382,0.7201277777777779,5180.236266328034,2019
+1995,33,"(30,35]",HS,68.5141088014153,95.14159974892382,0.7201277777777779,5250.705562246885,2019
+1995,33,"(30,35]",HS,68.5141088014153,95.14159974892382,0.7201277777777779,5187.776946656731,2019
+1995,33,"(30,35]",HS,68.5141088014153,95.14159974892382,0.7201277777777779,5233.885263128061,2019
+1995,64,"(60,65]",HS,1282.220256523662,170.46203288348855,7.52202842377261,4132.986620170418,2019
+1995,64,"(60,65]",HS,1282.220256523662,170.46203288348855,7.52202842377261,4296.287078424561,2019
+1995,64,"(60,65]",HS,1282.220256523662,170.46203288348855,7.52202842377261,4246.951847995295,2019
+1995,64,"(60,65]",HS,1282.220256523662,170.46203288348855,7.52202842377261,4026.200393400729,2019
+1995,64,"(60,65]",HS,1282.220256523662,170.46203288348855,7.52202842377261,4257.347047085305,2019
+1995,47,"(45,50]",HS,73.95265811587794,9.910583307179566,7.4619884444444455,6613.324296502631,2019
+1995,47,"(45,50]",HS,73.91394957983192,9.910583307179566,7.458082666666666,6461.085744424197,2019
+1995,47,"(45,50]",HS,73.87524104378593,9.910583307179566,7.454176888888889,6546.63130894321,2019
+1995,47,"(45,50]",HS,73.87524104378593,9.910583307179566,7.454176888888889,6733.272406782783,2019
+1995,47,"(45,50]",HS,73.83653250773993,9.910583307179566,7.45027111111111,6596.632059994362,2019
+1995,31,"(30,35]",College,48.1921273772667,79.28466645743653,0.6078366666666667,5844.214917119915,2019
+1995,31,"(30,35]",College,45.2889871738169,79.28466645743653,0.5712200000000001,5878.580584722016,2019
+1995,31,"(30,35]",College,44.90190181335692,79.28466645743653,0.5663377777777778,5853.618439522459,2019
+1995,31,"(30,35]",College,44.90190181335692,79.28466645743653,0.5663377777777778,5905.742100932372,2019
+1995,31,"(30,35]",College,47.224413976116765,79.28466645743653,0.5956311111111111,5841.371888872893,2019
+1995,37,"(35,40]",College,13574.30942061035,77.30254979600063,175.59976296296296,750.9512277828977,2019
+1995,37,"(35,40]",College,13574.30942061035,77.30254979600063,175.59976296296296,595.8193163505946,2019
+1995,37,"(35,40]",College,13574.30942061035,77.30254979600063,175.59976296296296,580.6241365177384,2019
+1995,37,"(35,40]",College,13574.30942061035,77.30254979600063,175.59976296296296,581.1012118843823,2019
+1995,37,"(35,40]",College,13574.30942061035,77.30254979600063,175.59976296296296,597.4027042969759,2019
+1995,49,"(45,50]",College,18799.439221583372,771.0433812985704,24.381817777777776,729.24125020673,2019
+1995,49,"(45,50]",College,18893.28806722689,891.9524976461611,21.181944237037033,787.9118980613774,2019
+1995,49,"(45,50]",College,19013.28452896948,937.541180859187,20.279946008926473,706.4659528969368,2019
+1995,49,"(45,50]",College,18450.636603272887,759.1506813299549,24.30431409341456,895.2061841453966,2019
+1995,49,"(45,50]",College,18391.00610349403,969.2550474421616,18.974372279027495,691.5297424252727,2019
+1995,68,"(65,70]",HS,5226.329765590447,267.5857492938483,19.53142041152263,203.15074685715183,2019
+1995,68,"(65,70]",HS,3084.3929234851835,259.6572826481047,11.878707548770143,178.9699345790927,2019
+1995,68,"(65,70]",HS,4002.9464838567005,188.30108283641175,21.258223391812866,181.16573967601852,2019
+1995,68,"(65,70]",HS,3740.3864838567006,255.69304932523286,14.628424565030144,184.25240908020513,2019
+1995,68,"(65,70]",HS,3389.183936311367,233.88976604943778,14.490518305084745,183.15051515092154,2019
+1995,68,"(65,70]",College,46023.53583724016,4043.517989329263,11.38205294466231,30.668698835172005,2019
+1995,68,"(65,70]",College,41658.37403379036,3984.054489486186,10.456276173864012,34.47549120520512,2019
+1995,68,"(65,70]",College,41492.571051747014,4717.437654217474,8.795573803641455,30.972479308733227,2019
+1995,68,"(65,70]",College,45915.083422202566,4023.696822714904,11.411168744871373,37.09920510191703,2019
+1995,68,"(65,70]",College,43797.66224431668,4638.152987760037,9.442910218765434,29.881690059636192,2019
+1995,26,"(25,30]",HS,4.838567005749669,41.624449890154175,0.11624338624338626,5772.472417844971,2019
+1995,26,"(25,30]",HS,4.838567005749669,41.624449890154175,0.11624338624338626,5719.369197429643,2019
+1995,26,"(25,30]",HS,4.838567005749669,41.624449890154175,0.11624338624338626,5775.268154266426,2019
+1995,26,"(25,30]",HS,4.838567005749669,41.624449890154175,0.11624338624338626,5740.688460895603,2019
+1995,26,"(25,30]",HS,4.838567005749669,41.624449890154175,0.11624338624338626,5749.776062919214,2019
+1995,43,"(40,45]",HS,116.89977885891199,99.10583307179566,1.1795448888888889,6747.298196170328,2019
+1995,43,"(40,45]",HS,116.89977885891199,99.10583307179566,1.1795448888888889,6790.917498330657,2019
+1995,43,"(40,45]",HS,116.89977885891199,99.10583307179566,1.1795448888888889,6780.892380244198,2019
+1995,43,"(40,45]",HS,116.89977885891199,99.10583307179566,1.1795448888888889,6988.2436287067785,2019
+1995,43,"(40,45]",HS,116.89977885891199,99.10583307179566,1.1795448888888889,6843.980825625365,2019
+1995,67,"(65,70]",HS,606.6982397169394,49.55291653589783,12.2434416,4908.43961859227,2019
+1995,67,"(65,70]",HS,606.6982397169394,49.55291653589783,12.2434416,5102.601916198456,2019
+1995,67,"(65,70]",HS,606.6982397169394,49.55291653589783,12.2434416,5047.040382487846,2019
+1995,67,"(65,70]",HS,606.6982397169394,49.55291653589783,12.2434416,4783.163184925444,2019
+1995,67,"(65,70]",HS,606.6982397169394,49.55291653589783,12.2434416,5114.3652498673655,2019
+1995,30,"(25,30]",College,101.60990712074305,142.71239962338575,0.7119907407407409,6832.293966842668,2019
+1995,30,"(25,30]",College,101.80344980097301,142.71239962338575,0.7133469135802469,6771.30881960322,2019
+1995,30,"(25,30]",College,100.44865103936311,142.71239962338575,0.7038537037037037,6863.422256217718,2019
+1995,30,"(25,30]",College,100.06156567890314,142.71239962338575,0.7011413580246914,6781.165566012144,2019
+1995,30,"(25,30]",College,101.60990712074305,142.71239962338575,0.7119907407407409,6841.4357224157775,2019
+1995,60,"(55,60]",NoHS,13.547987616099071,49.55291653589783,0.27340444444444445,11636.060116873816,2019
+1995,60,"(55,60]",NoHS,14.515701017249004,49.55291653589783,0.2929333333333333,11337.641901227646,2019
+1995,60,"(55,60]",NoHS,17.22529854046882,49.55291653589783,0.34761422222222227,11523.780803842474,2019
+1995,60,"(55,60]",NoHS,13.547987616099071,49.55291653589783,0.27340444444444445,11170.357760784094,2019
+1995,60,"(55,60]",NoHS,13.451216275984077,49.55291653589783,0.27145155555555556,11259.141638215513,2019
+1995,47,"(45,50]",College,768.5579831932773,392.45909896431084,1.9583135802469136,714.1181721017235,2019
+1995,47,"(45,50]",College,753.4616541353384,392.45909896431084,1.9198475869809206,606.2732056603442,2019
+1995,47,"(45,50]",College,760.0421052631579,392.45909896431084,1.9366148148148146,599.762695740554,2019
+1995,47,"(45,50]",College,767.0096417514375,392.45909896431084,1.9543683501683502,608.6706520594827,2019
+1995,47,"(45,50]",College,759.2679345422379,392.45909896431084,1.9346421997755328,585.1928480179902,2019
+1995,29,"(25,30]",College,469.7280849181778,77.30254979600063,6.076488888888887,2804.023833239818,2019
+1995,29,"(25,30]",College,466.824944714728,65.40984982738514,7.136921212121211,2901.759258317105,2019
+1995,29,"(25,30]",College,467.79265811587794,71.35619981169287,6.55573950617284,2864.963366133451,2019
+1995,29,"(25,30]",College,469.7280849181778,81.26678311887244,5.780074796747968,2727.8955576647422,2019
+1995,29,"(25,30]",College,466.824944714728,85.23101644174427,5.477172093023256,2890.5345250682667,2019
+1995,64,"(60,65]",HS,44.127731092436974,41.624449890154175,1.0601396825396827,7236.185842956419,2019
+1995,64,"(60,65]",HS,44.127731092436974,41.624449890154175,1.0601396825396827,7118.188684109087,2019
+1995,64,"(60,65]",HS,44.127731092436974,41.624449890154175,1.0601396825396827,7145.51283027171,2019
+1995,64,"(60,65]",HS,44.127731092436974,41.624449890154175,1.0601396825396827,7178.249833699275,2019
+1995,64,"(60,65]",HS,44.127731092436974,41.624449890154175,1.0601396825396827,7079.767413517517,2019
+1995,28,"(25,30]",College,11.51578947368421,71.35619981169287,0.16138456790123457,5932.818860108337,2019
+1995,28,"(25,30]",College,11.51578947368421,71.35619981169287,0.16138456790123457,5878.240550363865,2019
+1995,28,"(25,30]",College,11.51578947368421,71.35619981169287,0.16138456790123457,5935.692255868153,2019
+1995,28,"(25,30]",College,11.51578947368421,71.35619981169287,0.16138456790123457,5900.1520155418475,2019
+1995,28,"(25,30]",College,11.51578947368421,71.35619981169287,0.16138456790123457,5909.492050933299,2019
+1995,45,"(40,45]",College,4759.988677576293,412.2802655786699,11.545516666666668,652.4190966468677,2019
+1995,45,"(40,45]",College,4759.988677576293,412.2802655786699,11.545516666666668,519.8021882807873,2019
+1995,45,"(40,45]",College,4759.988677576293,412.2802655786699,11.545516666666668,507.85514846775624,2019
+1995,45,"(40,45]",College,4759.988677576293,412.2802655786699,11.545516666666668,507.74612890546257,2019
+1995,45,"(40,45]",College,4759.988677576293,412.2802655786699,11.545516666666668,519.8068157962921,2019
+1995,38,"(35,40]",College,509.79141972578503,317.1386658297461,1.6074716666666666,4699.61304595537,2019
+1995,38,"(35,40]",College,550.4353825740823,317.1386658297461,1.73563,4891.632698343857,2019
+1995,38,"(35,40]",College,594.5631136665193,317.1386658297461,1.8747733333333334,4824.599831795256,2019
+1995,38,"(35,40]",College,536.8873949579831,317.1386658297461,1.6929105555555555,4583.469353320966,2019
+1995,38,"(35,40]",College,625.9170278637771,317.1386658297461,1.9736383333333334,4855.689763058988,2019
+1995,33,"(30,35]",HS,40.063334807607255,41.624449890154175,0.9624952380952382,6775.597207617997,2019
+1995,33,"(30,35]",HS,38.51499336576736,55.499266520205566,0.693973015873016,6847.198446975186,2019
+1995,33,"(30,35]",HS,35.80539584254755,101.08794973323158,0.3542004357298475,6785.043366015026,2019
+1995,33,"(30,35]",HS,36.73440070765148,110.99853304041113,0.33094492063492065,6891.682921737755,2019
+1995,33,"(30,35]",HS,65.99805395842547,71.35619981169287,0.9249098765432099,6795.253557745887,2019
+1995,74,"(70,75]",NoHS,9981.963732861566,392.45909896431084,25.434405162738496,23.77978164443807,2019
+1995,74,"(70,75]",NoHS,59551.94080495356,955.3802308121102,62.33323538035962,47.34822344697606,2019
+1995,74,"(70,75]",NoHS,7725.25608137992,229.92553272656593,33.59894827586207,25.113774094689507,2019
+1995,74,"(70,75]",NoHS,22995.58000884564,529.2251486033888,43.451412068248025,22.197837107810393,2019
+1995,74,"(70,75]",NoHS,55881.790959752325,229.92553272656593,243.0429987356322,23.937492986433583,2019
+1995,33,"(30,35]",College,0.2322512162759841,29.731749921538697,0.007811555555555557,4323.871685741627,2019
+1995,33,"(30,35]",College,-0.03870853604599735,29.731749921538697,-0.001301925925925926,4257.211884442877,2019
+1995,33,"(30,35]",College,0.9290048651039364,29.731749921538697,0.031246222222222227,4267.369860573658,2019
+1995,33,"(30,35]",College,-1.8773639982308714,29.731749921538697,-0.06314340740740741,4240.075022107,2019
+1995,33,"(30,35]",College,0.832233524988943,29.731749921538697,0.02799140740740741,4257.537917411907,2019
+1995,57,"(55,60]",NoHS,0.0774170720919947,29.731749921538697,0.002603851851851852,9988.804931681454,2019
+1995,57,"(55,60]",NoHS,11.689977885891198,29.731749921538697,0.3931816296296296,10045.955869010724,2019
+1995,57,"(55,60]",NoHS,0.8515877930119417,29.731749921538697,0.028642370370370374,10022.368936546924,2019
+1995,57,"(55,60]",NoHS,0.0774170720919947,29.731749921538697,0.002603851851851852,10033.140848797111,2019
+1995,57,"(55,60]",NoHS,0.0774170720919947,29.731749921538697,0.002603851851851852,9983.397917269756,2019
+1995,62,"(60,65]",College,1728.3361344537814,225.9612994036941,7.6488148148148145,3256.477348391085,2019
+1995,62,"(60,65]",College,1728.3361344537814,225.9612994036941,7.6488148148148145,2785.4286339170085,2019
+1995,62,"(60,65]",College,1728.3361344537814,225.9612994036941,7.6488148148148145,2874.946433668732,2019
+1995,62,"(60,65]",College,1728.3361344537814,225.9612994036941,7.6488148148148145,2789.2016801302516,2019
+1995,62,"(60,65]",College,1728.3361344537814,225.9612994036941,7.6488148148148145,2873.1521702211276,2019
+1995,26,"(25,30]",HS,23.805749668288367,33.69598324441053,0.7064862745098038,4112.958612198729,2019
+1995,26,"(25,30]",HS,28.276585581601065,33.69598324441053,0.839167843137255,4050.667720919314,2019
+1995,26,"(25,30]",HS,24.057355152587352,33.69598324441053,0.7139532026143791,4075.7328944207306,2019
+1995,26,"(25,30]",HS,37.31502874834145,33.69598324441053,1.1074028758169936,4025.2306803155107,2019
+1995,26,"(25,30]",HS,39.4052896948253,33.69598324441053,1.169435816993464,4071.2869126839532,2019
+1995,70,"(65,70]",HS,4924.693498452012,1982.116661435913,2.484562888888889,276.5049146986306,2019
+1995,70,"(65,70]",HS,6778.832375055285,1982.116661435913,3.419996666666667,246.55326733645933,2019
+1995,70,"(65,70]",HS,8663.938080495356,1982.116661435913,4.371053555555556,248.90995542343882,2019
+1995,70,"(65,70]",HS,11150.961521450685,1982.116661435913,5.625784666666667,250.32936675001466,2019
+1995,70,"(65,70]",HS,11412.24413976117,1982.116661435913,5.757604666666668,248.30059634944445,2019
+1995,41,"(40,45]",HS,-1.0257762052189296,63.42773316594923,-0.01617236111111111,5791.100023770284,2019
+1995,41,"(40,45]",HS,-1.0257762052189296,63.42773316594923,-0.01617236111111111,5894.595267355017,2019
+1995,41,"(40,45]",HS,-1.0257762052189296,63.42773316594923,-0.01617236111111111,5799.616553604613,2019
+1995,41,"(40,45]",HS,-1.0257762052189296,63.42773316594923,-0.01617236111111111,5820.995484977611,2019
+1995,41,"(40,45]",HS,-1.0257762052189296,63.42773316594923,-0.01617236111111111,5827.788756211263,2019
+1995,41,"(40,45]",College,91.15860238832376,109.01641637897524,0.8361915151515151,6168.066735117585,2019
+1995,41,"(40,45]",College,91.15860238832376,109.01641637897524,0.8361915151515151,6242.292767863804,2019
+1995,41,"(40,45]",College,91.54568774878372,109.01641637897524,0.8397422222222222,6208.831134996302,2019
+1995,41,"(40,45]",College,91.15860238832376,109.01641637897524,0.8361915151515151,6215.9756283566985,2019
+1995,41,"(40,45]",College,91.15860238832376,109.01641637897524,0.8361915151515151,6250.432577350023,2019
+1995,38,"(35,40]",HS,0,13.874816630051392,0,6365.534626943191,2019
+1995,38,"(35,40]",HS,0,13.874816630051392,0,6394.577594346057,2019
+1995,38,"(35,40]",HS,0,13.874816630051392,0,6396.241671938392,2019
+1995,38,"(35,40]",HS,0,13.874816630051392,0,6379.1433053813425,2019
+1995,38,"(35,40]",HS,0,13.874816630051392,0,6402.328445140992,2019
+1995,41,"(40,45]",HS,77.02998673153472,158.56933291487306,0.4857811111111111,7586.6434788513,2019
+1995,41,"(40,45]",HS,85.15877930119417,158.56933291487306,0.5370444444444445,7679.732290204857,2019
+1995,41,"(40,45]",HS,74.12684652808493,158.56933291487306,0.46747277777777785,7585.497219015291,2019
+1995,41,"(40,45]",HS,98.51322423706324,158.56933291487306,0.6212627777777777,7837.2511791997995,2019
+1995,41,"(40,45]",HS,77.99770013268466,158.56933291487306,0.4918838888888889,7642.057124376462,2019
+1995,72,"(70,75]",College,5987.24281291464,208.12224945077088,28.767913227513233,139.96577840158935,2019
+1995,72,"(70,75]",College,5987.24281291464,208.12224945077088,28.767913227513233,125.00215495354527,2019
+1995,72,"(70,75]",College,5987.24281291464,208.12224945077088,28.767913227513233,124.56490133361669,2019
+1995,72,"(70,75]",College,5987.24281291464,208.12224945077088,28.767913227513233,127.28360667551476,2019
+1995,72,"(70,75]",College,5987.24281291464,208.12224945077088,28.767913227513233,126.06763354034373,2019
+1995,32,"(30,35]",College,95.61008403361345,89.1952497646161,1.071919012345679,5115.024887770662,2019
+1995,32,"(30,35]",College,95.61008403361345,89.1952497646161,1.071919012345679,5037.55767032028,2019
+1995,32,"(30,35]",College,95.61008403361345,89.1952497646161,1.071919012345679,5068.729631520126,2019
+1995,32,"(30,35]",College,95.61008403361345,89.1952497646161,1.071919012345679,5005.923241669871,2019
+1995,32,"(30,35]",College,95.61008403361345,89.1952497646161,1.071919012345679,5063.200446965063,2019
+1995,38,"(35,40]",HS,98.31968155683326,120.90911634759071,0.8131701275045538,365.56074867473575,2019
+1995,38,"(35,40]",HS,98.31968155683326,120.90911634759071,0.8131701275045538,361.37840243126027,2019
+1995,38,"(35,40]",HS,98.31968155683326,120.90911634759071,0.8131701275045538,358.69962184502435,2019
+1995,38,"(35,40]",HS,98.31968155683326,120.90911634759071,0.8131701275045538,352.9778451808697,2019
+1995,38,"(35,40]",HS,98.31968155683326,120.90911634759071,0.8131701275045538,364.8504163836995,2019
+1995,31,"(30,35]",HS,19.354268022998674,4.955291653589783,3.9057777777777782,8229.347194043894,2019
+1995,31,"(30,35]",HS,19.354268022998674,4.955291653589783,3.9057777777777782,8227.197082498464,2019
+1995,31,"(30,35]",HS,19.354268022998674,4.955291653589783,3.9057777777777782,8228.358816660122,2019
+1995,31,"(30,35]",HS,19.354268022998674,4.955291653589783,3.9057777777777782,8267.748517449074,2019
+1995,31,"(30,35]",HS,19.354268022998674,4.955291653589783,3.9057777777777782,8248.40725857757,2019
+1995,42,"(40,45]",College,219.01289694825297,198.21166614359132,1.1049445333333334,3538.8837254147593,2019
+1995,42,"(40,45]",College,219.01289694825297,198.21166614359132,1.1049445333333334,3661.5003798897087,2019
+1995,42,"(40,45]",College,219.01289694825297,198.21166614359132,1.1049445333333334,3495.761910123079,2019
+1995,42,"(40,45]",College,219.01289694825297,198.21166614359132,1.1049445333333334,3669.7770323211394,2019
+1995,42,"(40,45]",College,219.01289694825297,198.21166614359132,1.1049445333333334,3571.632413359891,2019
+1995,62,"(60,65]",HS,34735.29836355594,6283.309816751846,5.528184886084822,33.256112451152106,2019
+1995,62,"(60,65]",HS,48992.23281733746,6699.554315653388,7.312759999999999,34.20219418135996,2019
+1995,62,"(60,65]",HS,50569.431472799646,7135.619981169289,7.0869008728395055,34.18563392382753,2019
+1995,62,"(60,65]",HS,55885.83600176913,6897.765981796978,8.102019719029375,32.510805420774574,2019
+1995,62,"(60,65]",HS,54791.93277310924,7650.970313142626,7.16143580886586,32.40059001795,2019
+1995,45,"(40,45]",College,157.29213622291022,35.67809990584644,4.408646666666667,5736.448374329654,2019
+1995,45,"(40,45]",College,108.73227775320656,33.69598324441053,3.2268616993464057,5688.36519388124,2019
+1995,45,"(40,45]",College,106.00332596196374,31.713866582974614,3.342491388888889,5723.41850865474,2019
+1995,45,"(40,45]",College,108.51938080495356,39.642333228718265,2.737462,5789.509760838874,2019
+1995,45,"(40,45]",College,158.06630694383017,29.731749921538697,5.316414518518519,5776.244282187475,2019
+1995,55,"(50,55]",College,2709.5975232198143,323.0850158140539,8.386639400136332,2628.8861084323917,2019
+1995,55,"(50,55]",College,2777.3374613003098,323.0850158140539,8.59630538513974,2248.9810785475524,2019
+1995,55,"(50,55]",College,2756.047766475011,323.0850158140539,8.530410361281525,2320.021490642261,2019
+1995,55,"(50,55]",College,2752.1769128704113,323.0850158140539,8.518429447852759,2250.139204963103,2019
+1995,55,"(50,55]",College,2696.049535603715,323.0850158140539,8.34470620313565,2320.1736602931996,2019
+1995,54,"(50,55]",College,104070.80229986733,6659.911982424668,15.626453108465611,12.843548598773811,2019
+1995,54,"(50,55]",College,102121.63396727112,6659.911982424668,15.333781322751324,12.928149932801253,2019
+1995,54,"(50,55]",College,102511.81601061477,6719.375482267746,15.256152343493937,13.087769245243456,2019
+1995,54,"(50,55]",College,101491.49770897832,6283.309816751846,16.152553458114262,12.470737026418899,2019
+1995,54,"(50,55]",College,102771.5502874834,7036.514148097493,14.60546346165884,12.524370155609386,2019
+1995,53,"(50,55]",College,472.1086598850066,247.76458267948914,1.9054727466666668,657.6513068806292,2019
+1995,53,"(50,55]",College,490.5919858469704,247.76458267948914,1.9800731022222224,641.268382430984,2019
+1995,53,"(50,55]",College,474.5860061919505,247.76458267948914,1.915471537777778,659.6743871484637,2019
+1995,53,"(50,55]",College,466.20560813799204,247.76458267948914,1.8816475022222223,615.7125435311016,2019
+1995,53,"(50,55]",College,494.84992481203005,247.76458267948914,1.9972585244444445,664.7364387010095,2019
+1995,50,"(45,50]",College,1714.9816895179124,297.31749921538704,5.768182814814813,2373.298066296945,2019
+1995,50,"(45,50]",College,1714.9816895179124,297.31749921538704,5.768182814814813,1974.8637471949035,2019
+1995,50,"(45,50]",College,1714.9816895179124,297.31749921538704,5.768182814814813,2090.631118783852,2019
+1995,50,"(45,50]",College,1714.9816895179124,297.31749921538704,5.768182814814813,2023.374455701319,2019
+1995,50,"(45,50]",College,1714.9816895179124,297.31749921538704,5.768182814814813,1997.812477787879,2019
+1995,37,"(35,40]",HS,1486.1561786819993,109.01641637897524,13.632407191919192,2324.2574923490315,2019
+1995,37,"(35,40]",HS,1698.8402299867314,109.01641637897524,15.58334319191919,1990.2622236031002,2019
+1995,37,"(35,40]",HS,1704.3949049093321,109.01641637897524,15.634295838383837,2048.3371766456785,2019
+1995,37,"(35,40]",HS,1696.7306147722245,109.01641637897524,15.563991838383835,1990.6472391768052,2019
+1995,37,"(35,40]",HS,1490.9753914197258,109.01641637897524,13.676613494949494,2059.0317347941864,2019
+1995,51,"(50,55]",HS,2184.8646085802743,116.94488302471889,18.68285770244821,169.99029101187944,2019
+1995,51,"(50,55]",HS,1274.0721096859795,110.99853304041113,11.47827880952381,78.7668668517002,2019
+1995,51,"(50,55]",HS,1423.3128704113226,114.96276636328297,12.380642145593871,77.19173811231335,2019
+1995,51,"(50,55]",HS,2437.321680672269,99.10583307179566,24.593120355555556,147.1595246547624,2019
+1995,51,"(50,55]",HS,4037.5519150818222,107.03429971753931,37.722037942386834,201.78041372655292,2019
+1995,34,"(30,35]",HS,177.36251216275986,158.56933291487306,1.1185171111111112,4270.771144269872,2019
+1995,34,"(30,35]",HS,142.52482972136224,158.56933291487306,0.8988171111111112,4205.36865209391,2019
+1995,34,"(30,35]",HS,163.81452454666078,158.56933291487306,1.0330782222222223,4208.26921200078,2019
+1995,34,"(30,35]",HS,140.58940291906237,158.56933291487306,0.8866115555555556,4188.216095408963,2019
+1995,34,"(30,35]",HS,158.00824413976116,158.56933291487306,0.9964615555555555,4202.127035262127,2019
+1995,67,"(65,70]",College,4466.7134542237945,289.38903256964335,15.434978356164383,22.912149894566873,2019
+1995,67,"(65,70]",College,24615.91932773109,545.0820818948762,45.160022949494945,40.7828488679548,2019
+1995,67,"(65,70]",College,5078.695409111013,515.3503319733376,9.854840666666664,20.973505920242754,2019
+1995,67,"(65,70]",College,7435.271083591332,249.7466993409251,29.77124864197531,20.498943767727734,2019
+1995,67,"(65,70]",College,3562.2885095090664,281.4605659238997,12.656439092331766,21.266240005160498,2019
+1995,95,"(90,95]",College,7175.594869526758,237.85399937230957,30.168064814814816,25.025677784484483,2019
+1995,95,"(90,95]",College,6186.591773551526,134.7839329776421,45.90006862745098,23.3594980764399,2019
+1995,95,"(90,95]",College,49996.912870411325,392.45909896431084,127.39394500561167,25.113774094689507,2019
+1995,95,"(90,95]",College,18875.24988942946,186.31896617497586,101.30611111111112,21.344317469959833,2019
+1995,95,"(90,95]",College,95402.02565236621,243.80034935661735,391.31209575429085,23.92156353176672,2019
+1995,56,"(55,60]",HS,445829.43476337905,51237.71569811836,8.701196544165056,1.658037599443493,2019
+1995,56,"(55,60]",HS,442887.58602388325,51237.71569811836,8.643780855362133,1.3099843651878587,2019
+1995,56,"(55,60]",HS,400766.89252543123,51237.71569811836,7.821716621534494,1.794591267949258,2019
+1995,56,"(55,60]",HS,400695.2817337461,51237.71569811836,7.820319002793896,1.229831366565289,2019
+1995,56,"(55,60]",HS,447995.1773551526,51237.71569811836,8.74346506769826,1.3552752018552499,2019
+1995,49,"(45,50]",HS,12.193188854489165,29.731749921538697,0.41010666666666673,5554.151904375114,2019
+1995,49,"(45,50]",HS,7.664290137107475,31.713866582974614,0.24167,5533.261194155812,2019
+1995,49,"(45,50]",HS,38.30209641751438,33.69598324441053,1.1366962091503268,5540.347219577528,2019
+1995,49,"(45,50]",HS,29.49590446704998,33.69598324441053,0.8753537254901961,5642.16603978722,2019
+1995,49,"(45,50]",HS,1.1612560813799204,29.731749921538697,0.03905777777777778,5611.637696126205,2019
+1995,32,"(30,35]",HS,0,12.883758299333435,0,5327.225454386288,2019
+1995,32,"(30,35]",HS,0,12.487334967046253,0,5264.8847956607215,2019
+1995,32,"(30,35]",HS,0,10.901641637897521,0,5281.172693576762,2019
+1995,32,"(30,35]",HS,0,14.271239962338576,0,5243.752016718931,2019
+1995,32,"(30,35]",HS,0,12.289123300902663,0,5262.597434127107,2019
+1995,28,"(25,30]",HS,12.83187969924812,79.28466645743653,0.16184566666666667,6751.4016084640225,2019
+1995,28,"(25,30]",HS,12.154480318443168,79.28466645743653,0.1533017777777778,6691.138507496328,2019
+1995,28,"(25,30]",HS,19.412330827067667,79.28466645743653,0.24484344444444442,6782.161348014952,2019
+1995,28,"(25,30]",HS,13.025422379478107,79.28466645743653,0.16428677777777778,6700.878552916271,2019
+1995,28,"(25,30]",HS,13.025422379478107,79.28466645743653,0.16428677777777778,6760.435128330125,2019
+1995,64,"(60,65]",HS,550.5902167182662,49.55291653589783,11.111156622222222,4619.553345152027,2019
+1995,64,"(60,65]",HS,550.5902167182662,61.44561650451331,8.96061017921147,4803.134150595092,2019
+1995,64,"(60,65]",HS,550.5902167182662,53.517149858769656,10.288107983539094,4750.718173606378,2019
+1995,64,"(60,65]",HS,550.5902167182662,61.44561650451331,8.96061017921147,4502.434207171426,2019
+1995,64,"(60,65]",HS,550.5902167182662,61.44561650451331,8.96061017921147,4761.435201666548,2019
+1995,63,"(60,65]",NoHS,227.95456877487837,81.26678311887244,2.8050152845528458,2852.846044864541,2019
+1995,63,"(60,65]",NoHS,234.34147722246794,59.46349984307739,3.9409297777777783,2936.957173855883,2019
+1995,63,"(60,65]",NoHS,235.17371074745688,35.67809990584644,6.591542469135803,2836.402797263133,2019
+1995,63,"(60,65]",NoHS,239.62519239274658,29.731749921538697,8.059572444444445,2950.224101585815,2019
+1995,63,"(60,65]",NoHS,232.46411322423705,43.606566551590085,5.330942828282829,2907.535142915112,2019
+1995,38,"(35,40]",College,313.5391419725785,166.4977995606167,1.8831428571428572,8550.54671860754,2019
+1995,38,"(35,40]",College,313.5391419725785,166.4977995606167,1.8831428571428572,8605.823493119551,2019
+1995,38,"(35,40]",College,313.5391419725785,166.4977995606167,1.8831428571428572,8593.119113075029,2019
+1995,38,"(35,40]",College,313.5391419725785,166.4977995606167,1.8831428571428572,8855.885999255814,2019
+1995,38,"(35,40]",College,313.5391419725785,166.4977995606167,1.8831428571428572,8673.068254783666,2019
+1995,41,"(40,45]",HS,17.4769040247678,29.731749921538697,0.5878195555555555,4999.200762057217,2019
+1995,41,"(40,45]",HS,17.4769040247678,29.731749921538697,0.5878195555555555,5088.543632750934,2019
+1995,41,"(40,45]",HS,17.5156125608138,29.731749921538697,0.5891214814814816,5006.5527059475135,2019
+1995,41,"(40,45]",HS,17.4769040247678,29.731749921538697,0.5878195555555555,5025.00819274159,2019
+1995,41,"(40,45]",HS,17.4769040247678,29.731749921538697,0.5878195555555555,5030.872523626694,2019
+1995,42,"(40,45]",College,3653.31163202123,160.55144957630895,22.754772016460908,809.1981601819334,2019
+1995,42,"(40,45]",College,1734.7230429013712,221.99706608082226,7.814171031746033,2009.8643648685477,2019
+1995,42,"(40,45]",College,1310.8645731977,178.3904995292322,7.348286913580247,3951.503675137249,2019
+1995,42,"(40,45]",College,1061.3880583812474,134.7839329776421,7.874737254901962,3738.8363825397237,2019
+1995,42,"(40,45]",College,761.2033613445378,241.81823269518142,3.147832786885246,3975.404508541053,2019
+1995,56,"(55,60]",HS,5880.987881468377,1433.0703462181655,4.103767757799293,168.8397178311953,2019
+1995,56,"(55,60]",HS,5675.4455550641305,509.4039819890297,11.141345092952875,152.25714796134818,2019
+1995,56,"(55,60]",College,5653.768774878373,148.65874960769352,38.03186014814814,152.41754460911687,2019
+1995,56,"(55,60]",HS,5731.960017691287,689.7765981796978,8.309878927203066,154.68089341254966,2019
+1995,56,"(55,60]",HS,5837.63432109686,192.26531615928357,30.36238900343643,151.92675713687998,2019
+1995,60,"(55,60]",College,3362.2815037593987,41.624449890154175,80.77659915343916,1120.9909840354817,2019
+1995,60,"(55,60]",College,3362.2815037593987,41.624449890154175,80.77659915343916,891.4921497926355,2019
+1995,60,"(55,60]",College,3362.2815037593987,41.624449890154175,80.77659915343916,871.8991380768414,2019
+1995,60,"(55,60]",College,3362.2815037593987,41.624449890154175,80.77659915343916,870.5940149027904,2019
+1995,60,"(55,60]",College,3362.2815037593987,41.624449890154175,80.77659915343916,891.9919309581358,2019
+1995,75,"(70,75]",NoHS,9758.421937195932,406.3339155943622,24.015770189701897,25.025677784484483,2019
+1995,75,"(70,75]",NoHS,5569.577708978328,547.0641985563121,10.180848470209337,23.3594980764399,2019
+1995,75,"(70,75]",NoHS,4560.252631578947,1260.6261966732409,3.6174503144654087,23.770653104857466,2019
+1995,75,"(70,75]",NoHS,32178.40601503759,1028.718547285239,31.280087347463066,45.88615192074797,2019
+1995,75,"(70,75]",NoHS,7078.53321539142,616.438281706569,11.482955269739193,23.937492986433583,2019
+1995,55,"(50,55]",HS,43.043892083149046,51.53503319733374,0.8352355555555556,6667.863173911409,2019
+1995,55,"(50,55]",HS,52.72102609464839,51.53503319733374,1.0230133333333336,6672.023073440313,2019
+1995,55,"(50,55]",HS,40.9149226006192,51.53503319733374,0.7939244444444447,6672.786318793551,2019
+1995,55,"(50,55]",HS,43.430977443609024,51.53503319733374,0.8427466666666668,6678.198682462976,2019
+1995,55,"(50,55]",HS,44.97931888544892,51.53503319733374,0.8727911111111113,6658.781935871763,2019
+1995,63,"(60,65]",HS,4486.706413091552,192.26531615928357,23.336015578465066,1188.7853354447086,2019
+1995,63,"(60,65]",HS,4437.740114993366,194.2474328207195,22.845810884353742,1076.2147690908675,2019
+1995,63,"(60,65]",HS,4503.157540911102,279.4784492624638,16.112718360914105,1066.3851972831017,2019
+1995,63,"(60,65]",HS,4361.097213622291,128.8375829933344,33.849573333333325,1086.580919337507,2019
+1995,63,"(60,65]",HS,4334.581866430783,128.8375829933344,33.64376888888888,1074.2817912139433,2019
+1995,39,"(35,40]",College,-1.9354268022998675,71.35619981169287,-0.02712345679012346,6903.447887461448,2019
+1995,39,"(35,40]",College,0.8709420610349403,87.21313310318017,0.009986363636363639,6915.3670137413665,2019
+1995,39,"(35,40]",College,-5.806280406899602,53.517149858769656,-0.10849382716049384,6938.271810202148,2019
+1995,39,"(35,40]",College,-3.870853604599735,27.749633260102783,-0.13949206349206353,6810.311501780908,2019
+1995,39,"(35,40]",College,0.4838567005749669,29.731749921538697,0.016274074074074076,6922.342915320031,2019
+1995,34,"(30,35]",HS,412.8265369305617,41.624449890154175,9.917885714285715,4826.851320628159,2019
+1995,34,"(30,35]",HS,398.3108359133127,41.624449890154175,9.569155555555557,4851.222705142148,2019
+1995,34,"(30,35]",HS,346.6349402919063,41.624449890154175,8.327676190476192,4878.153092967292,2019
+1995,34,"(30,35]",HS,345.10595311808936,41.624449890154175,8.290943280423281,4912.486426558726,2019
+1995,34,"(30,35]",HS,323.6033613445378,41.624449890154175,7.774357671957673,4900.404461461216,2019
+1995,41,"(40,45]",NoHS,21.34775762936754,21.803283275795042,0.9791074747474751,5579.465137397917,2019
+1995,41,"(40,45]",NoHS,20.84454666076957,21.803283275795042,0.9560278787878789,5679.178162746694,2019
+1995,41,"(40,45]",NoHS,21.30904909332154,21.803283275795042,0.9773321212121214,5587.670431920064,2019
+1995,41,"(40,45]",NoHS,21.34775762936754,21.803283275795042,0.9791074747474751,5608.268073435639,2019
+1995,41,"(40,45]",NoHS,20.941318000884564,21.803283275795042,0.9604662626262628,5614.81308558557,2019
+1995,73,"(70,75]",HS,9122.440689960195,241.81823269518142,37.724370856102006,1249.2548909457264,2019
+1995,73,"(70,75]",HS,9325.66050420168,241.81823269518142,38.5647533697632,1134.6583285674965,2019
+1995,73,"(70,75]",HS,9122.440689960195,241.81823269518142,37.724370856102006,1123.8246513048853,2019
+1995,73,"(70,75]",HS,9080.441928350287,241.81823269518142,37.55069180327868,1032.020520819945,2019
+1995,73,"(70,75]",HS,9080.441928350287,241.81823269518142,37.55069180327868,1114.841971750689,2019
+1995,43,"(40,45]",HS,172.64007076514818,79.28466645743653,2.1774711111111116,7468.93435518052,2019
+1995,43,"(40,45]",HS,172.64007076514818,79.28466645743653,2.1774711111111116,7517.218823271648,2019
+1995,43,"(40,45]",HS,172.64007076514818,79.28466645743653,2.1774711111111116,7506.121500059639,2019
+1995,43,"(40,45]",HS,172.64007076514818,79.28466645743653,2.1774711111111116,7735.649352276213,2019
+1995,43,"(40,45]",HS,172.64007076514818,79.28466645743653,2.1774711111111116,7575.957372644875,2019
+1995,52,"(50,55]",College,91173.69871738169,7789.71847944314,11.704363765903308,23.77978164443807,2019
+1995,52,"(50,55]",College,76185.75356037152,7432.937480384675,10.249750352592594,25.70395045405458,2019
+1995,52,"(50,55]",College,83128.12950022116,6580.627315967233,12.632250013386882,25.113774094689507,2019
+1995,52,"(50,55]",College,86873.1803626714,6759.017815496465,12.85292963180189,22.197837107810393,2019
+1995,52,"(50,55]",College,75999.95258735072,7155.441147783647,10.621281206525085,23.92156353176672,2019
+1995,35,"(30,35]",College,29.592675807164973,75.32043313456471,0.39289040935672515,5874.349257422185,2019
+1995,35,"(30,35]",College,29.592675807164973,75.32043313456471,0.39289040935672515,5945.040717010588,2019
+1995,35,"(30,35]",College,29.592675807164973,75.32043313456471,0.39289040935672515,5913.1724953086095,2019
+1995,35,"(30,35]",College,29.592675807164973,75.32043313456471,0.39289040935672515,5919.976774683111,2019
+1995,35,"(30,35]",College,29.592675807164973,75.32043313456471,0.39289040935672515,5952.792916502642,2019
+1995,80,"(75,80]",HS,431.6582397169394,57.48138318164148,7.509531187739464,12253.666756392387,2019
+1995,80,"(75,80]",HS,431.6582397169394,57.48138318164148,7.509531187739464,12279.847334501615,2019
+1995,80,"(75,80]",HS,431.6582397169394,57.48138318164148,7.509531187739464,12588.992968698618,2019
+1995,80,"(75,80]",HS,431.6582397169394,57.48138318164148,7.509531187739464,12880.962912583343,2019
+1995,80,"(75,80]",HS,431.6582397169394,57.48138318164148,7.509531187739464,12586.378568687674,2019
+1995,32,"(30,35]",College,101.12605042016807,172.44414954492444,0.5864278416347383,5880.253015241828,2019
+1995,32,"(30,35]",College,109.4483856700575,75.32043313456471,1.4531035087719297,5827.765798257302,2019
+1995,32,"(30,35]",College,169.83370190181336,231.90764938800186,0.7323333333333333,5907.0437561474855,2019
+1995,32,"(30,35]",College,133.48638655462187,172.44414954492444,0.7740847509578546,5836.249063625106,2019
+1995,32,"(30,35]",College,145.44732419283503,109.01641637897524,1.3341781818181817,5888.12091964323,2019
+1995,28,"(25,30]",College,118.83520566121184,158.56933291487306,0.7494211111111111,9918.843290970446,2019
+1995,28,"(25,30]",College,118.83520566121184,158.56933291487306,0.7494211111111111,9983.3019435048809,2019
+1995,28,"(25,30]",College,118.83520566121184,158.56933291487306,0.7494211111111111,10026.140866114045,2019
+1995,28,"(25,30]",College,118.83520566121184,158.56933291487306,0.7494211111111111,9996.182377430336,2019
+1995,28,"(25,30]",College,118.83520566121184,158.56933291487306,0.7494211111111111,10008.234769492869,2019
+1995,32,"(30,35]",HS,87.57806280406899,75.32043313456471,1.1627397660818712,10162.887032575545,2019
+1995,32,"(30,35]",HS,95.31977001326847,69.37408315025698,1.373996825396825,10530.595324312479,2019
+1995,32,"(30,35]",HS,90.09411764705882,81.26678311887244,1.1086216802168023,10139.305278210817,2019
+1995,32,"(30,35]",HS,95.31977001326847,85.23101644174427,1.1183695090439276,10371.575852938331,2019
+1995,32,"(30,35]",HS,92.99725785050863,75.32043313456471,1.2346883040935672,10235.822193802398,2019
+1995,21,"(20,25]",NoHS,-0.05806280406899603,19.821166614359132,-0.0029293333333333337,4644.737233169476,2019
+1995,21,"(20,25]",NoHS,-0.05806280406899603,19.821166614359132,-0.0029293333333333337,4658.899338985906,2019
+1995,21,"(20,25]",NoHS,-0.05806280406899603,19.821166614359132,-0.0029293333333333337,4656.793712126889,2019
+1995,21,"(20,25]",NoHS,-0.05806280406899603,19.821166614359132,-0.0029293333333333337,4668.718230777963,2019
+1995,21,"(20,25]",NoHS,-0.05806280406899603,19.821166614359132,-0.0029293333333333337,4624.619388636626,2019
+1995,39,"(35,40]",HS,12.773816895179126,33.69598324441053,0.37909019607843136,6417.12681945983,2019
+1995,39,"(35,40]",HS,9.870676691729322,37.660216567282355,0.26209824561403505,6404.0465235826105,2019
+1995,39,"(35,40]",HS,11.999646174259178,31.713866582974614,0.3783722222222222,6420.7251111323285,2019
+1995,39,"(35,40]",HS,12.193188854489165,35.67809990584644,0.3417555555555556,6306.686215293945,2019
+1995,39,"(35,40]",HS,10.451304732419283,33.69598324441053,0.3101647058823529,6413.784076855895,2019
+1995,55,"(50,55]",HS,68.70765148164529,69.37408315025698,0.9903936507936505,8939.24720168447,2019
+1995,55,"(50,55]",HS,70.64307828394516,69.37408315025698,1.0182920634920634,8817.488605761513,2019
+1995,55,"(50,55]",HS,71.99787704555507,69.37408315025698,1.0378209523809523,8914.319726430413,2019
+1995,55,"(50,55]",HS,69.48182220256524,69.37408315025698,1.0015530158730157,8960.805788402253,2019
+1995,55,"(50,55]",HS,73.15913312693499,69.37408315025698,1.05456,8821.066904962918,2019
+1995,77,"(75,80]",College,1278.1752145068556,158.56933291487306,8.060670944444446,5788.838634450267,2019
+1995,77,"(75,80]",College,1526.0840336134454,158.56933291487306,9.624080555555556,3007.8644164223524,2019
+1995,77,"(75,80]",College,3237.5819548872178,158.56933291487306,20.41745333333333,835.6126717737243,2019
+1995,77,"(75,80]",College,2147.5495798319325,158.56933291487306,13.543284444444444,3025.504383631395,2019
+1995,77,"(75,80]",College,3147.6426713843434,158.56933291487306,19.85026116666667,857.8074432543277,2019
+1995,45,"(40,45]",College,154.79543564794338,69.37408315025698,2.231315047619047,7511.328278136546,2019
+1995,45,"(40,45]",College,152.22131800088457,61.44561650451331,2.4773340501792114,7312.27989722066,2019
+1995,45,"(40,45]",College,111.57735515258734,81.26678311887244,1.3729761517615175,7407.225654821088,2019
+1995,45,"(40,45]",College,152.29873507297657,73.3383164731288,2.07665981981982,7620.070673833428,2019
+1995,45,"(40,45]",College,94.9133303847855,71.35619981169287,1.3301343209876544,7470.105544513388,2019
+1995,36,"(35,40]",HS,105.75172047766476,99.10583307179566,1.067058488888889,6743.6830938880175,2019
+1995,36,"(35,40]",HS,101.28088456435206,99.10583307179566,1.0219467555555557,6826.428703999404,2019
+1995,36,"(35,40]",HS,105.19044670499778,99.10583307179566,1.061395111111111,6742.664196255765,2019
+1995,36,"(35,40]",HS,101.93892967713401,99.10583307179566,1.0285865777777778,6966.445494249849,2019
+1995,36,"(35,40]",HS,106.08074303405573,99.10583307179566,1.0703784,6792.939667699669,2019
+1995,43,"(40,45]",College,4637.282618310483,1191.2521135229838,3.8927801811795164,237.26008743553803,2019
+1995,43,"(40,45]",College,4637.282618310483,921.6842475676998,5.031313739545998,214.0695355280252,2019
+1995,43,"(40,45]",College,4637.282618310483,949.4338808278025,4.884260728369289,210.89775718369992,2019
+1995,43,"(40,45]",College,4637.282618310483,1591.6396791330383,2.9135253908952543,217.59064721785526,2019
+1995,43,"(40,45]",College,4637.282618310483,775.007614621442,5.983531685137824,213.9189779045612,2019
+1995,39,"(35,40]",College,143.2215833701902,93.15948308748793,1.5373806146572104,7353.198546848912,2019
+1995,39,"(35,40]",College,143.2215833701902,93.15948308748793,1.5373806146572104,7331.729591048267,2019
+1995,39,"(35,40]",College,143.2215833701902,93.15948308748793,1.5373806146572104,7391.877068543288,2019
+1995,39,"(35,40]",College,143.2215833701902,93.15948308748793,1.5373806146572104,7206.888625643389,2019
+1995,39,"(35,40]",College,143.2215833701902,93.15948308748793,1.5373806146572104,7348.419532173638,2019
+1995,61,"(60,65]",HS,5508.224679345422,364.709465704208,15.103048309178746,306.37678987124696,2019
+1995,61,"(60,65]",HS,5506.2892525431225,386.5127489800031,14.246074074074073,269.8481505368983,2019
+1995,61,"(60,65]",HS,5508.224679345422,313.17443250687427,17.588360056258793,282.4723734747268,2019
+1995,61,"(60,65]",HS,5314.681999115435,309.21019918400253,17.18792592592592,274.7989785177831,2019
+1995,61,"(60,65]",HS,5506.2892525431225,346.87041575128484,15.874196825396824,275.5519509600283,2019
+1995,40,"(35,40]",HS,969.6101194161876,57.48138318164148,16.8682461302682,3292.655934943191,2019
+1995,40,"(35,40]",HS,970.0359133126935,65.40984982738514,14.830119865319864,3427.1892767056206,2019
+1995,40,"(35,40]",HS,988.3644051304732,59.46349984307739,16.621362814814816,3380.224523710167,2019
+1995,40,"(35,40]",HS,979.3066076957099,67.39196648882105,14.531503660130719,3211.283018679796,2019
+1995,40,"(35,40]",HS,994.2093940734188,55.499266520205566,17.913919523809525,3402.0068376350546,2019
+1995,47,"(45,50]",College,1751.658027421495,186.31896617497586,9.401394089834515,2922.1385265522536,2019
+1995,47,"(45,50]",College,1913.072622733304,186.31896617497586,10.267728841607564,2504.991759833575,2019
+1995,47,"(45,50]",College,1719.336399823087,186.31896617497586,9.227919385342789,4925.271122612006,2019
+1995,47,"(45,50]",College,2319.318708536046,186.31896617497586,12.448108510638297,2507.6147474233976,2019
+1995,47,"(45,50]",College,2716.468288367979,186.31896617497586,14.579665957446808,2583.8592752952295,2019
+1995,59,"(55,60]",HS,462.9540911101283,107.03429971753931,4.325287242798354,7636.933979233509,2019
+1995,59,"(55,60]",HS,462.97344537815127,107.03429971753931,4.325468065843622,7477.557872243383,2019
+1995,59,"(55,60]",HS,462.97344537815127,107.03429971753931,4.325468065843622,7542.857650067517,2019
+1995,59,"(55,60]",HS,462.9540911101283,107.03429971753931,4.325287242798354,7526.593922730861,2019
+1995,59,"(55,60]",HS,462.9540911101283,107.03429971753931,4.325287242798354,7446.615090392239,2019
+1995,40,"(35,40]",HS,10.838390092879257,69.37408315025698,0.15623111111111107,7545.820312637235,2019
+1995,40,"(35,40]",HS,10.838390092879257,69.37408315025698,0.15623111111111107,7680.674918514787,2019
+1995,40,"(35,40]",HS,10.838390092879257,69.37408315025698,0.15623111111111107,7556.917375985012,2019
+1995,40,"(35,40]",HS,10.838390092879257,69.37408315025698,0.15623111111111107,7584.774186255023,2019
+1995,40,"(35,40]",HS,10.838390092879257,69.37408315025698,0.15623111111111107,7593.625838592876,2019
+1995,48,"(45,50]",HS,3285.774082264485,206.14013278933496,15.93951666666667,22.912149894566873,2019
+1995,48,"(45,50]",HS,1324.2190181335693,206.14013278933496,6.423877777777779,111.25179463043578,2019
+1995,48,"(45,50]",HS,1278.1558602388325,57.48138318164148,22.235996934865902,213.5660718721293,2019
+1995,48,"(45,50]",HS,5414.356479433879,47.57079987446191,113.81680555555558,20.498943767727734,2019
+1995,48,"(45,50]",HS,5216.942945599292,130.8196996547703,39.87887878787878,21.266240005160498,2019
+1995,52,"(50,55]",HS,318.9776912870411,130.8196996547703,2.4383001346801345,1706.8060204316093,2019
+1995,52,"(50,55]",HS,304.98455550641313,130.8196996547703,2.3313350841750844,1643.2194692429516,2019
+1995,52,"(50,55]",HS,345.95754091110126,130.8196996547703,2.6445370370370367,1775.9552514459247,2019
+1995,52,"(50,55]",HS,341.0415568332597,130.8196996547703,2.606958720538721,1589.6145333328147,2019
+1995,52,"(50,55]",HS,293.70101724900485,130.8196996547703,2.245082491582491,1732.2133217777882,2019
+1995,66,"(65,70]",College,2161.484652808492,81.26678311887244,26.59739403794038,761.4776158349403,2019
+1995,66,"(65,70]",College,1938.717027863777,81.26678311887244,23.856204878048782,648.4313269128207,2019
+1995,66,"(65,70]",College,1970.070942061035,81.26678311887244,24.242019512195125,648.1032637138237,2019
+1995,66,"(65,70]",College,2059.836037151703,75.32043313456471,27.347639298245614,659.0918356356569,2019
+1995,66,"(65,70]",College,1929.8140645731976,81.26678311887244,23.746652574525744,630.0369771731072,2019
+1995,42,"(40,45]",College,99.67448031844317,154.60509959200127,0.6447037037037037,8550.54671860754,2019
+1995,42,"(40,45]",College,100.6421937195931,154.60509959200127,0.6509629629629627,8605.823493119551,2019
+1995,42,"(40,45]",College,98.90030959752322,154.60509959200127,0.6396962962962962,8593.119113075029,2019
+1995,42,"(40,45]",College,100.6421937195931,154.60509959200127,0.6509629629629627,8855.885999255814,2019
+1995,42,"(40,45]",College,100.6421937195931,154.60509959200127,0.6509629629629627,8673.068254783666,2019
+1995,42,"(40,45]",HS,164.47256965944274,29.731749921538697,5.53188325925926,7027.902251728658,2019
+1995,42,"(40,45]",HS,202.9101459531181,29.731749921538697,6.824695703703704,6931.213106459954,2019
+1995,42,"(40,45]",HS,191.78144183989386,29.731749921538697,6.450392000000001,6925.362819528935,2019
+1995,42,"(40,45]",HS,155.97604599734632,29.731749921538697,5.2461105185185195,6999.432643670069,2019
+1995,42,"(40,45]",HS,175.58191950464396,29.731749921538697,5.905536000000001,6950.466545292232,2019
+1995,65,"(60,65]",College,2898.7854931446263,99.10583307179566,29.249393333333337,957.3042444516814,2019
+1995,65,"(60,65]",College,2898.7854931446263,99.10583307179566,29.249393333333337,761.1826717046777,2019
+1995,65,"(60,65]",College,2898.7854931446263,99.10583307179566,29.249393333333337,744.4716410235919,2019
+1995,65,"(60,65]",College,2898.7854931446263,99.10583307179566,29.249393333333337,743.3406757587394,2019
+1995,65,"(60,65]",College,2898.7854931446263,99.10583307179566,29.249393333333337,770.0504631998205,2019
+1995,43,"(40,45]",College,1126.0313135780627,162.53356623774488,6.927992411924119,4070.924340307075,2019
+1995,43,"(40,45]",College,1958.884175143742,140.73028296194985,13.919421846635368,2130.168719325034,2019
+1995,43,"(40,45]",College,1283.768597965502,122.89123300902662,10.446380645161291,2192.616184702423,2019
+1995,43,"(40,45]",College,2050.2943830163645,200.19378280502724,10.241548734873488,2129.7677893648242,2019
+1995,43,"(40,45]",College,1191.4487394957982,152.62298293056534,7.806483116883116,2202.599437063884,2019
+1995,74,"(70,75]",College,472.0505970809377,45.588683213026,10.354556521739132,8091.826921015602,2019
+1995,74,"(70,75]",College,485.21149933657676,45.588683213026,10.643244444444447,8046.662959917383,2019
+1995,74,"(70,75]",College,472.4376824413976,45.588683213026,10.36304734299517,8132.886945485081,2019
+1995,74,"(70,75]",College,478.8245908889872,45.588683213026,10.503145893719807,8143.540314894262,2019
+1995,74,"(70,75]",College,484.05024325519685,45.588683213026,10.61777198067633,7970.603952744879,2019
+1995,48,"(45,50]",College,707.4952675807166,69.37408315025698,10.198264761904761,3228.4602063135562,2019
+1995,48,"(45,50]",College,707.4952675807166,69.37408315025698,10.198264761904761,3363.838457966433,2019
+1995,48,"(45,50]",College,707.4952675807166,69.37408315025698,10.198264761904761,3322.1882336357085,2019
+1995,48,"(45,50]",College,707.4952675807166,69.37408315025698,10.198264761904761,3152.150487157897,2019
+1995,48,"(45,50]",College,707.4952675807166,69.37408315025698,10.198264761904761,3331.8147865201076,2019
+1995,61,"(60,65]",HS,63.443290579389654,9.910583307179566,6.4015697777777785,6890.568432305915,2019
+1995,61,"(60,65]",HS,63.79166740380363,9.910583307179566,6.4367217777777785,6754.064641845672,2019
+1995,61,"(60,65]",NoHS,71.18499778858911,9.910583307179566,7.182725333333333,6778.280083873357,2019
+1995,61,"(60,65]",NoHS,77.01063246351173,9.910583307179566,7.77054488888889,6810.826210100873,2019
+1995,61,"(60,65]",HS,62.28203449800973,9.910583307179566,6.284396444444444,6721.587893674975,2019
+1995,55,"(50,55]",HS,2249.353029632906,237.85399937230957,9.456864444444445,2659.4432290767827,2019
+1995,55,"(50,55]",HS,2249.353029632906,237.85399937230957,9.456864444444445,2273.967658097057,2019
+1995,55,"(50,55]",HS,2249.353029632906,237.85399937230957,9.456864444444445,2346.840271356585,2019
+1995,55,"(50,55]",HS,2249.353029632906,237.85399937230957,9.456864444444445,2276.6390883993445,2019
+1995,55,"(50,55]",HS,2249.353029632906,237.85399937230957,9.456864444444445,2348.105439131494,2019
+1995,83,"(80,85]",NoHS,176.8012383900929,31.713866582974614,5.5748875,7203.034900024068,2019
+1995,83,"(80,85]",NoHS,177.18832375055288,33.69598324441053,5.2584405228758175,7163.545637299096,2019
+1995,83,"(80,85]",NoHS,177.38186643078282,35.67809990584644,4.971729629629629,7204.70802042293,2019
+1995,83,"(80,85]",NoHS,177.18832375055288,31.713866582974614,5.587093055555556,7175.84706958772,2019
+1995,83,"(80,85]",NoHS,178.93020787262273,39.642333228718265,4.513614444444444,7196.390087470723,2019
+1995,87,"(85,90]",HS,4579.3165855816005,279.4784492624638,16.385222537431044,388.55537713787834,2019
+1995,87,"(85,90]",HS,5105.733321539143,332.9955991212334,15.332735132275136,346.64739309993803,2019
+1995,87,"(85,90]",HS,3766.998602388324,331.01348245979744,11.380196886227548,344.41278708512937,2019
+1995,87,"(85,90]",HS,7018.651110128262,717.5262314398004,9.781734524248009,352.1399943268772,2019
+1995,87,"(85,90]",HS,6003.5584608580275,334.97771578266935,17.922262222222223,349.61721546067463,2019
+1995,31,"(30,35]",NoHS,76.99127819548872,85.23101644174427,0.9033246511627906,4440.125772155914,2019
+1995,31,"(30,35]",NoHS,87.636125608138,85.23101644174427,1.028218708010336,4372.87992365163,2019
+1995,31,"(30,35]",NoHS,75.8300221141088,85.23101644174427,0.8896998449612402,4399.938917757993,2019
+1995,31,"(30,35]",NoHS,80.08796107916851,85.23101644174427,0.9396574677002584,4345.41948210541,2019
+1995,31,"(30,35]",NoHS,84.7329854046882,85.23101644174427,0.99415669250646,4395.139278385635,2019
+1995,63,"(60,65]",HS,1199.1904467049976,138.74816630051396,8.64292825396825,4291.947639677355,2019
+1995,63,"(60,65]",HS,1199.1904467049976,138.74816630051396,8.64292825396825,4461.52888461572,2019
+1995,63,"(60,65]",HS,1202.8677576293676,138.74816630051396,8.669431746031744,4410.2961453756625,2019
+1995,63,"(60,65]",HS,619.9172047766475,138.74816630051396,4.467930793650793,4181.054250451887,2019
+1995,63,"(60,65]",HS,1207.8998673153474,138.74816630051396,8.705699682539683,4421.091159804362,2019
+1995,59,"(55,60]",HS,305.41034940291905,47.57079987446191,6.420122222222223,10194.13514860426,2019
+1995,59,"(55,60]",HS,306.18452012383904,47.57079987446191,6.436396296296298,10186.057993016962,2019
+1995,59,"(55,60]",HS,305.02326404245906,47.57079987446191,6.411985185185186,10268.509080091066,2019
+1995,59,"(55,60]",HS,306.18452012383904,47.57079987446191,6.436396296296298,10447.94416698147,2019
+1995,59,"(55,60]",HS,306.76514816452897,47.57079987446191,6.448601851851853,10194.851213871763,2019
+1995,24,"(20,25]",NoHS,0.3870853604599735,17.64083828677963,0.021942571785268414,5613.419660699759,2019
+1995,24,"(20,25]",NoHS,0,17.64083828677963,0,5616.472764119449,2019
+1995,24,"(20,25]",NoHS,0,17.64083828677963,0,5613.449862702756,2019
+1995,24,"(20,25]",HS,0,17.64083828677963,0,5626.444921815462,2019
+1995,24,"(20,25]",NoHS,0,17.64083828677963,0,5575.695998486547,2019
+1995,67,"(65,70]",HS,171.69171163202125,65.40984982738514,2.6248602020202023,8483.307310672619,2019
+1995,67,"(65,70]",HS,284.2174259177355,19.821166614359132,14.339086666666667,8144.931048026333,2019
+1995,67,"(65,70]",HS,303.0878372401592,35.67809990584644,8.495066666666666,8192.968441608944,2019
+1995,67,"(65,70]",HS,324.62913754975676,65.40984982738514,4.963000808080808,8243.647943138316,2019
+1995,67,"(65,70]",HS,387.9369482529854,29.731749921538697,13.047901629629632,8181.096612032682,2019
+1995,77,"(75,80]",College,88050.88757187084,4975.112820204143,17.69826951748561,44.14896104184736,2019
+1995,77,"(75,80]",College,93367.11791242813,3270.4924913692566,28.548335811447814,45.43924969944461,2019
+1995,77,"(75,80]",College,106416.752481203,3508.3464907415664,30.33245227118644,45.31772377295982,2019
+1995,77,"(75,80]",College,46166.50968597966,2358.718827108737,19.572705807656398,43.23474895901596,2019
+1995,77,"(75,80]",College,57080.787863777085,3389.419491055412,16.840874378167637,43.57713641606616,2019
+1995,58,"(55,60]",College,1271.188323750553,138.74816630051396,9.16183873015873,6493.839983934433,2019
+1995,58,"(55,60]",College,1216.9963732861568,138.74816630051396,8.771260952380953,7499.226228544413,2019
+1995,58,"(55,60]",College,1219.7059708093764,138.74816630051396,8.79078984126984,7389.188202927876,2019
+1995,58,"(55,60]",College,1246.0277753206544,138.74816630051396,8.980499047619045,7233.326592649745,2019
+1995,58,"(55,60]",College,1216.9963732861568,138.74816630051396,8.771260952380953,7390.209497859652,2019
+1995,28,"(25,30]",HS,70.64307828394516,118.92699968615479,0.5940037037037038,5929.308191386971,2019
+1995,28,"(25,30]",HS,77.4170720919947,118.92699968615479,0.6509629629629631,5957.602234135369,2019
+1995,28,"(25,30]",HS,135.28633348076073,118.92699968615479,1.137557777777778,5875.113420907915,2019
+1995,28,"(25,30]",HS,115.85464838567005,118.92699968615479,0.9741660740740741,5912.454287213431,2019
+1995,28,"(25,30]",HS,69.21086245024325,118.92699968615479,0.581960888888889,5987.98062767677,2019
+1995,35,"(30,35]",HS,146.70535161432994,49.55291653589783,2.960579555555556,6463.443577324664,2019
+1995,35,"(30,35]",HS,146.70535161432994,49.55291653589783,2.960579555555556,6414.77308913341,2019
+1995,35,"(30,35]",HS,146.70535161432994,49.55291653589783,2.960579555555556,6456.595512877214,2019
+1995,35,"(30,35]",HS,146.29891198584696,49.55291653589783,2.9523774222222223,6528.3353789919165,2019
+1995,35,"(30,35]",HS,146.70535161432994,49.55291653589783,2.960579555555556,6466.295448774501,2019
+1995,81,"(80,85]",HS,527.7521804511279,35.67809990584644,14.79204839506173,8509.461707605318,2019
+1995,81,"(80,85]",HS,864.9035294117647,35.67809990584644,24.24186074074074,8624.406913773299,2019
+1995,81,"(80,85]",HS,527.7521804511279,35.67809990584644,14.79204839506173,8501.061800142383,2019
+1995,81,"(80,85]",HS,527.7521804511279,35.67809990584644,14.79204839506173,8288.402883143122,2019
+1995,81,"(80,85]",HS,527.7521804511279,35.67809990584644,14.79204839506173,8457.706035488603,2019
+1995,77,"(75,80]",HS,4937.564086687307,436.06566551590095,11.32298292929293,17.808846069884243,2019
+1995,77,"(75,80]",HS,4623.541088014153,457.86894879169597,10.097957287157286,16.614463829028654,2019
+1995,77,"(75,80]",HS,7496.682176028306,332.9955991212334,22.512856613756615,17.17924660925449,2019
+1995,77,"(75,80]",HS,6129.148306059265,854.2922810788787,7.174533168342355,15.173253711722765,2019
+1995,77,"(75,80]",HS,4586.051870853605,374.6200490113876,12.241875155790712,17.00057526003222,2019
+1995,44,"(40,45]",HS,74.99778858911985,79.28466645743653,0.9459305555555555,1954.7639528143088,2019
+1995,44,"(40,45]",HS,74.59134896063688,79.28466645743653,0.9408042222222222,2031.8545650913504,2019
+1995,44,"(40,45]",HS,74.16555506413091,79.28466645743653,0.9354337777777778,1932.9696248492837,2019
+1995,44,"(40,45]",HS,69.52053073861124,79.28466645743653,0.8768471111111112,2028.1061206212569,2019
+1995,44,"(40,45]",HS,74.84295444493587,79.28466645743653,0.9439776666666667,1968.3453131289505,2019
+1995,73,"(70,75]",HS,21598.78248562583,1236.8407967360101,17.462863888888887,25.789700558778968,2019
+1995,73,"(70,75]",HS,65684.12773109243,846.363814433135,77.60743856362217,15.74695442583797,2019
+1995,73,"(70,75]",HS,4128.265369305617,507.4218653275938,8.135765625,15.157725321012794,2019
+1995,73,"(70,75]",HS,131649.2794338788,1175.3951802314964,112.00427026419338,15.155013242805222,2019
+1995,73,"(70,75]",HS,19571.80999557718,507.4218653275938,38.57108125,25.195466542445313,2019
+1995,71,"(70,75]",HS,299.62342326404246,51.53503319733374,5.813975555555556,10734.11020403173,2019
+1995,71,"(70,75]",HS,299.62342326404246,51.53503319733374,5.813975555555556,10727.914666374836,2019
+1995,71,"(70,75]",HS,299.62342326404246,51.53503319733374,5.813975555555556,10881.663279861526,2019
+1995,71,"(70,75]",HS,299.62342326404246,51.53503319733374,5.813975555555556,10714.368614908164,2019
+1995,71,"(70,75]",HS,299.62342326404246,51.53503319733374,5.813975555555556,10484.951255055359,2019
+1995,47,"(45,50]",HS,102.190535161433,75.32043313456471,1.3567438596491228,8542.294892336493,2019
+1995,47,"(45,50]",HS,96.3842547545334,75.32043313456471,1.2796561403508773,8315.926145736132,2019
+1995,47,"(45,50]",HS,102.190535161433,75.32043313456471,1.3567438596491228,8423.903673833252,2019
+1995,47,"(45,50]",HS,102.190535161433,75.32043313456471,1.3567438596491228,8665.962714716958,2019
+1995,47,"(45,50]",HS,94.44882795223353,75.32043313456471,1.2539602339181286,8495.414136518348,2019
+1995,64,"(60,65]",College,9405.980716497126,1036.647013930983,9.073465306989588,22.912149894566873,2019
+1995,64,"(60,65]",College,36730.33631136666,570.849598493543,64.34328132716051,40.7828488679548,2019
+1995,64,"(60,65]",College,14385.833878814685,1068.3608805139572,13.465331931560504,20.973505920242754,2019
+1995,64,"(60,65]",College,10263.374789915966,1532.176179289961,6.698560471467586,20.498943767727734,2019
+1995,64,"(60,65]",College,5314.488456435205,816.6320645115962,6.507812621359223,21.266240005160498,2019
+1995,78,"(75,80]",College,61026.98763379036,889.9703809847251,68.57193108636476,23.77978164443807,2019
+1995,78,"(75,80]",College,58502.04918177798,929.6127142134435,62.931636247334744,25.70395045405458,2019
+1995,78,"(75,80]",College,58611.0524192835,929.6127142134435,63.04889285951195,25.113774094689507,2019
+1995,78,"(75,80]",College,59856.17054400708,929.6127142134435,64.38828732527836,22.197837107810393,2019
+1995,78,"(75,80]",College,59677.356461742595,929.6127142134435,64.1959340156361,23.92156353176672,2019
+1995,61,"(60,65]",NoHS,64.2948783724016,21.803283275795042,2.948862222222223,6555.6791027989775,2019
+1995,61,"(60,65]",NoHS,64.2948783724016,21.803283275795042,2.948862222222223,6560.50724730564,2019
+1995,61,"(60,65]",NoHS,64.2948783724016,21.803283275795042,2.948862222222223,6561.756880999246,2019
+1995,61,"(60,65]",NoHS,64.2948783724016,21.803283275795042,2.948862222222223,6568.138502484695,2019
+1995,61,"(60,65]",NoHS,64.2948783724016,21.803283275795042,2.948862222222223,6544.533100790384,2019
+1995,41,"(40,45]",College,86.70712074303405,73.3383164731288,1.1822894894894893,5446.624250016195,2019
+1995,41,"(40,45]",College,86.32003538257409,67.39196648882105,1.2808653594771242,5371.690162365177,2019
+1995,41,"(40,45]",College,86.32003538257409,83.24889978030835,1.0368910052910054,5367.156189989533,2019
+1995,41,"(40,45]",College,86.32003538257409,69.37408315025698,1.2442692063492062,5424.560303750833,2019
+1995,41,"(40,45]",College,86.32003538257409,79.28466645743653,1.0887355555555558,5386.6115774736845,2019
+1995,36,"(35,40]",HS,334.46110570544005,128.8375829933344,2.5959902222222215,7628.972845529774,2019
+1995,36,"(35,40]",HS,335.62236178682,128.8375829933344,2.6050035555555553,7524.014233800231,2019
+1995,36,"(35,40]",HS,338.9125873507297,128.8375829933344,2.6305413333333325,7517.6635933762855,2019
+1995,36,"(35,40]",HS,332.5256789031402,128.8375829933344,2.5809679999999995,7598.068336755702,2019
+1995,36,"(35,40]",HS,336.7836178681999,128.8375829933344,2.614016888888888,7544.914348339864,2019
+1995,25,"(20,25]",NoHS,37.198903140203456,69.37408315025698,0.536207492063492,8383.023579803943,2019
+1995,25,"(20,25]",NoHS,105.71301194161876,69.37408315025698,1.5238113015873014,8309.745252983796,2019
+1995,25,"(20,25]",NoHS,20.55423264042459,69.37408315025698,0.2962811428571428,8410.542805906081,2019
+1995,25,"(20,25]",NoHS,105.71301194161876,69.37408315025698,1.5238113015873014,8345.469750380467,2019
+1995,25,"(20,25]",NoHS,43.779354268023006,69.37408315025698,0.6310620952380952,8414.510353237682,2019
+1995,59,"(55,60]",HS,178.63989385227774,148.65874960769352,1.2016776296296292,2025.7747080357512,2019
+1995,59,"(55,60]",HS,178.2528084918178,148.65874960769352,1.1990737777777778,2006.8921441988714,2019
+1995,59,"(55,60]",HS,178.44635117204777,148.65874960769352,1.2003757037037035,1949.318064709802,2019
+1995,59,"(55,60]",HS,178.83343653250773,148.65874960769352,1.2029795555555554,1906.9458132937657,2019
+1995,59,"(55,60]",HS,178.44635117204777,148.65874960769352,1.2003757037037035,1911.814213433853,2019
+1995,63,"(60,65]",HS,3949.238390092879,517.3324486347734,7.633850148999573,19.38942028837009,2019
+1995,63,"(60,65]",HS,56233.34188412207,517.3324486347734,108.69865602383992,18.715724758082384,2019
+1995,63,"(60,65]",HS,102625.03847854932,2814.6056592389964,36.46160453834117,18.77532482183993,2019
+1995,63,"(60,65]",HS,10551.811446262716,610.4919317222614,17.284112857142855,17.25699755660755,2019
+1995,63,"(60,65]",HS,7014.431879699248,517.3324486347734,13.558847696892293,17.91259126881453,2019
+1995,26,"(25,30]",HS,190.44599734630694,105.0521830561034,1.8128704402515723,6048.795416503624,2019
+1995,26,"(25,30]",HS,190.44599734630694,105.0521830561034,1.8128704402515723,6114.402749954223,2019
+1995,26,"(25,30]",HS,190.44599734630694,105.0521830561034,1.8128704402515723,6081.879768875179,2019
+1995,26,"(25,30]",HS,190.44599734630694,105.0521830561034,1.8128704402515723,6140.196855766579,2019
+1995,26,"(25,30]",HS,190.44599734630694,105.0521830561034,1.8128704402515723,6098.438170460787,2019
+1995,57,"(55,60]",College,22881.583370190183,632.2952149980564,36.188133054684776,28.168667685583948,2019
+1995,57,"(55,60]",College,16995.38919062362,176.40838286779626,96.34116539325845,16.614463829028654,2019
+1995,57,"(55,60]",College,21768.90650154799,293.3532658925152,74.20713873873873,29.940806559656828,2019
+1995,57,"(55,60]",College,18205.805112781953,156.58721625343713,116.2662288045007,15.173253711722765,2019
+1995,57,"(55,60]",College,19025.84544891641,176.40838286779626,107.851141423221,17.00057526003222,2019
+1995,69,"(65,70]",HS,4358.5811587793005,67.39196648882105,64.67508496732025,801.9013594284179,2019
+1995,69,"(65,70]",HS,3386.2227333038477,67.39196648882105,50.24668235294117,637.5485976076843,2019
+1995,69,"(65,70]",HS,4846.889340999558,81.26678311887244,59.641702981029816,623.2396728335447,2019
+1995,69,"(65,70]",HS,3750.470057496683,73.3383164731288,51.13929849849849,622.5795072180865,2019
+1995,69,"(65,70]",HS,3402.673861123397,79.28466645743653,42.91717444444445,644.4365782747484,2019
+1995,41,"(40,45]",HS,97.06165413533836,10.70342997175393,9.06827572016461,6356.001463151784,2019
+1995,41,"(40,45]",HS,108.65486068111456,10.70342997175393,10.151405761316873,6364.3671464009885,2019
+1995,41,"(40,45]",HS,97.19713401149934,10.70342997175393,9.080933333333334,6349.376768405013,2019
+1995,41,"(40,45]",HS,106.71943387881468,10.70342997175393,9.970582716049384,6335.173649704443,2019
+1995,41,"(40,45]",HS,99.05514374170721,10.70342997175393,9.254523456790125,6351.114334370707,2019
+1995,52,"(50,55]",HS,36018.679876161,1760.119595355091,20.463768468468473,39.14053917043137,2019
+1995,52,"(50,55]",HS,36185.70720919946,1760.119595355091,20.55866391391391,43.99375840559783,2019
+1995,52,"(50,55]",HS,36028.93763821318,1760.119595355091,20.469596346346346,39.50871575970605,2019
+1995,52,"(50,55]",HS,36206.41627598408,1760.119595355091,20.57042962962963,47.51439594906731,2019
+1995,52,"(50,55]",HS,36272.801415302965,1760.119595355091,20.6081458958959,38.31798889695555,2019
+1995,40,"(35,40]",HS,60.15306501547988,35.67809990584644,1.6859940740740742,5328.785013969524,2019
+1995,40,"(35,40]",HS,60.15306501547988,35.67809990584644,1.6859940740740742,5287.75140589038,2019
+1995,40,"(35,40]",HS,60.15306501547988,35.67809990584644,1.6859940740740742,6456.595512877214,2019
+1995,40,"(35,40]",HS,60.15306501547988,35.67809990584644,1.6859940740740742,6528.3353789919165,2019
+1995,40,"(35,40]",HS,60.15306501547988,35.67809990584644,1.6859940740740742,6466.295448774501,2019
+1995,67,"(65,70]",HS,214.42593542680228,31.713866582974614,6.761267499999999,6528.961203926085,2019
+1995,67,"(65,70]",HS,214.3485183547103,31.713866582974614,6.758826388888889,6365.042041571277,2019
+1995,67,"(65,70]",HS,214.7549579831933,31.713866582974614,6.771642222222223,6375.719709005283,2019
+1995,67,"(65,70]",HS,214.7549579831933,31.713866582974614,6.771642222222223,6652.202532995191,2019
+1995,67,"(65,70]",HS,214.7356037151703,31.713866582974614,6.771031944444445,6512.163922740311,2019
+1995,35,"(30,35]",HS,58.062804068996016,59.46349984307739,0.9764444444444444,7022.609883421172,2019
+1995,35,"(30,35]",HS,48.77275541795666,59.46349984307739,0.8202133333333335,7083.108126032836,2019
+1995,35,"(30,35]",HS,48.77275541795666,59.46349984307739,0.8202133333333335,7083.873584606028,2019
+1995,35,"(30,35]",HS,51.288810260946484,59.46349984307739,0.862525925925926,7037.845768667839,2019
+1995,35,"(30,35]",HS,48.77275541795666,59.46349984307739,0.8202133333333335,7098.395955933646,2019
+1995,27,"(25,30]",HS,36.5408580274215,97.12371641035975,0.376230022675737,8383.023579803943,2019
+1995,27,"(25,30]",HS,36.5408580274215,97.12371641035975,0.376230022675737,8482.332994400631,2019
+1995,27,"(25,30]",HS,36.5408580274215,97.12371641035975,0.376230022675737,8410.542805906081,2019
+1995,27,"(25,30]",HS,36.5408580274215,97.12371641035975,0.376230022675737,8534.709947191086,2019
+1995,27,"(25,30]",HS,36.5408580274215,97.12371641035975,0.376230022675737,8414.510353237682,2019
+1995,48,"(45,50]",College,6263.041132242371,455.88683213026,13.738148792270533,229.2187295429626,2019
+1995,48,"(45,50]",College,6263.041132242371,455.88683213026,13.738148792270533,202.41867223021163,2019
+1995,48,"(45,50]",College,6263.041132242371,455.88683213026,13.738148792270533,203.4243768838473,2019
+1995,48,"(45,50]",College,6263.041132242371,455.88683213026,13.738148792270533,205.9906944793638,2019
+1995,48,"(45,50]",College,6263.041132242371,455.88683213026,13.738148792270533,206.0378907464477,2019
+1995,57,"(55,60]",HS,3090.044369747899,436.06566551590095,7.086190484848484,845.9668997335262,2019
+1995,57,"(55,60]",HS,3088.5540911101284,436.06566551590095,7.082772929292929,765.4587138308818,2019
+1995,57,"(55,60]",HS,3090.1024325519684,436.06566551590095,7.086323636363637,770.6853574351868,2019
+1995,57,"(55,60]",HS,3090.1024325519684,436.06566551590095,7.086323636363637,772.4289141889332,2019
+1995,57,"(55,60]",HS,3093.199115435648,436.06566551590095,7.09342505050505,762.9624561087302,2019
+1995,22,"(20,25]",HS,3.5805395842547547,13.874816630051392,0.2580603174603175,5300.282445649127,2019
+1995,22,"(20,25]",HS,3.5805395842547547,13.874816630051392,0.2580603174603175,5390.424234613663,2019
+1995,22,"(20,25]",HS,3.5805395842547547,13.874816630051392,0.2580603174603175,5319.928143219671,2019
+1995,22,"(20,25]",HS,3.5805395842547547,13.874816630051392,0.2580603174603175,5400.437041616642,2019
+1995,22,"(20,25]",HS,3.5805395842547547,13.874816630051392,0.2580603174603175,5292.480033664006,2019
+1995,70,"(65,70]",HS,28.644316674038038,33.69598324441053,0.850081045751634,8755.172719231286,2019
+1995,70,"(65,70]",HS,52.45006634232641,33.69598324441053,1.5565673202614378,8841.600158325264,2019
+1995,70,"(65,70]",HS,37.70211410880141,33.69598324441053,1.1188904575163396,8828.322659225738,2019
+1995,70,"(65,70]",HS,60.19177355152588,33.69598324441053,1.786318954248366,8773.454283713729,2019
+1995,70,"(65,70]",HS,38.41822202565237,33.69598324441053,1.1401424836601308,8521.503302341367,2019
+1995,67,"(65,70]",College,234981.6777001327,3092.1019918400248,75.9941548888889,16.02230168339801,2019
+1995,67,"(65,70]",College,203188.94418398937,3092.1019918400248,65.7122387037037,16.273983288970626,2019
+1995,67,"(65,70]",College,313231.00267138437,2219.9706608082233,141.09691096428568,16.319656525418374,2019
+1995,67,"(65,70]",College,202298.80268907562,2021.7589946646315,100.06079024400871,32.376643680730425,2019
+1995,67,"(65,70]",College,145730.051340115,638.2415649823641,228.3305559144237,15.641322762962897,2019
+1995,78,"(75,80]",College,10360.049358690845,1222.9659801059584,8.471249018548534,247.2604921031394,2019
+1995,78,"(75,80]",College,10360.049358690845,1222.9659801059584,8.471249018548534,217.93250696356927,2019
+1995,78,"(75,80]",College,10360.049358690845,1222.9659801059584,8.471249018548534,216.92574579068787,2019
+1995,78,"(75,80]",College,10360.049358690845,1222.9659801059584,8.471249018548534,224.92058671407517,2019
+1995,78,"(75,80]",College,10360.049358690845,1222.9659801059584,8.471249018548534,226.75072785015496,2019
+1995,25,"(20,25]",HS,-4.103104820875719,33.69598324441053,-0.12176836601307188,7279.04869301211,2019
+1995,25,"(20,25]",HS,-4.103104820875719,33.69598324441053,-0.12176836601307188,7239.294048795903,2019
+1995,25,"(20,25]",HS,-4.103104820875719,33.69598324441053,-0.12176836601307188,7315.2086187421855,2019
+1995,25,"(20,25]",HS,-4.103104820875719,33.69598324441053,-0.12176836601307188,7266.362532680614,2019
+1995,25,"(20,25]",HS,-4.103104820875719,33.69598324441053,-0.12176836601307188,7274.062600610133,2019
+1995,45,"(40,45]",HS,507.08182220256526,132.8018163162062,3.8183349917081255,4329.669264426678,2019
+1995,45,"(40,45]",HS,507.08182220256526,132.8018163162062,3.8183349917081255,4509.989055086205,2019
+1995,45,"(40,45]",HS,507.08182220256526,132.8018163162062,3.8183349917081255,4456.18353790634,2019
+1995,45,"(40,45]",HS,507.08182220256526,132.8018163162062,3.8183349917081255,4228.715915403247,2019
+1995,45,"(40,45]",HS,507.08182220256526,132.8018163162062,3.8183349917081255,4468.369858052209,2019
+1995,73,"(70,75]",College,1693.1113666519238,23.785399937230956,71.1828,6103.747835902969,2019
+1995,73,"(70,75]",College,2715.984431667404,39.642333228718265,68.51222444444444,5028.277395663319,2019
+1995,73,"(70,75]",College,1866.719150818222,45.588683213026,40.94698550724638,5155.004901236228,2019
+1995,73,"(70,75]",College,2388.316674038036,47.57079987446191,50.205518518518524,4616.455205929198,2019
+1995,73,"(70,75]",College,2227.6762494471473,43.606566551590085,51.08579797979799,5154.21144582329,2019
+1995,35,"(30,35]",HS,551.0547191508182,109.01641637897524,5.054786585858586,4338.435538982038,2019
+1995,35,"(30,35]",HS,552.0224325519681,109.01641637897524,5.063663353535353,4516.4264653886885,2019
+1995,35,"(30,35]",HS,569.596107916851,109.01641637897524,5.224865454545455,4452.161259803139,2019
+1995,35,"(30,35]",HS,579.5054931446263,109.01641637897524,5.315763555555555,4228.352045080195,2019
+1995,35,"(30,35]",HS,580.4732065457762,109.01641637897524,5.324640323232322,4483.9435224313,2019
+1995,40,"(35,40]",HS,3413.7057938965063,140.73028296194985,24.257080438184662,845.6376065737898,2019
+1995,40,"(35,40]",HS,3413.7057938965063,140.73028296194985,24.257080438184662,673.3436309642121,2019
+1995,40,"(35,40]",HS,3413.7057938965063,140.73028296194985,24.257080438184662,656.33697840955,2019
+1995,40,"(35,40]",HS,3413.7057938965063,140.73028296194985,24.257080438184662,656.7324060981136,2019
+1995,40,"(35,40]",HS,3413.7057938965063,140.73028296194985,24.257080438184662,674.7333668451728,2019
+1995,28,"(25,30]",HS,77.78480318443167,99.10583307179566,0.7848660444444445,4736.13416161428,2019
+1995,28,"(25,30]",HS,77.78480318443167,99.10583307179566,0.7848660444444445,4664.405256472653,2019
+1995,28,"(25,30]",HS,77.20417514374171,99.10583307179566,0.7790073777777778,4693.268183547766,2019
+1995,28,"(25,30]",HS,77.78480318443167,99.10583307179566,0.7848660444444445,4635.114118794602,2019
+1995,28,"(25,30]",HS,77.78480318443167,99.10583307179566,0.7848660444444445,4688.148568212227,2019
+1995,26,"(25,30]",College,100.54542237947811,79.28466645743653,1.2681572222222224,5599.034165700544,2019
+1995,26,"(25,30]",College,35.90216718266254,79.28466645743653,0.4528261111111111,5636.479787066839,2019
+1995,26,"(25,30]",College,35.573144626271564,79.28466645743653,0.44867622222222225,5691.568614077734,2019
+1995,26,"(25,30]",College,12.40608580274215,79.28466645743653,0.1564752222222222,5657.490075693607,2019
+1995,26,"(25,30]",College,114.38372401592216,79.28466645743653,1.4426966666666667,5558.182126194758,2019
+1995,79,"(75,80]",College,99300.59456877488,6303.130983366205,15.754169607267642,20.12365416564478,2019
+1995,79,"(75,80]",College,100153.90489164088,6996.871814868773,14.31409743405729,21.728651686078898,2019
+1995,79,"(75,80]",College,93958.81659442725,5629.211318477993,16.691293198748046,21.279309952668655,2019
+1995,79,"(75,80]",College,86466.72137992039,6917.587148411339,12.499549268385863,18.687207744553895,2019
+1995,79,"(75,80]",College,98890.41956656348,6640.09081581031,14.892931785074627,20.149174934146174,2019
+1995,49,"(45,50]",HS,-2.903140203449801,31.713866582974614,-0.09154166666666666,6904.45046296763,2019
+1995,49,"(45,50]",HS,-2.903140203449801,31.713866582974614,-0.09154166666666666,6958.588467294748,2019
+1995,49,"(45,50]",HS,-2.903140203449801,31.713866582974614,-0.09154166666666666,6973.515359875617,2019
+1995,49,"(45,50]",HS,-2.903140203449801,31.713866582974614,-0.09154166666666666,6948.772638668794,2019
+1995,49,"(45,50]",HS,-2.903140203449801,31.713866582974614,-0.09154166666666666,6953.140642550522,2019
+1995,57,"(55,60]",HS,149.02786377708978,116.94488302471889,1.2743427495291901,8909.887271106101,2019
+1995,57,"(55,60]",HS,163.73710747456877,116.94488302471889,1.400122033898305,8779.034451111309,2019
+1995,57,"(55,60]",HS,109.25484298982751,116.94488302471889,0.9342421845574387,8920.96600239472,2019
+1995,57,"(55,60]",HS,139.9313578062804,116.94488302471889,1.1965581920903954,8905.391724955993,2019
+1995,57,"(55,60]",HS,113.02892525431226,116.94488302471889,0.9665145009416196,8788.513340594127,2019
+1995,24,"(20,25]",HS,31.276497125165857,12.090911634759072,2.586777413479053,5630.13098990596,2019
+1995,24,"(20,25]",HS,97.41003095975232,23.785399937230956,4.095370740740742,5266.90919740054,2019
+1995,24,"(20,25]",HS,42.88905793896506,29.731749921538697,1.442533925925926,5624.041138932419,2019
+1995,24,"(20,25]",HS,79.99118973905352,15.064086626912939,5.310059064327486,5640.669963829173,2019
+1995,24,"(20,25]",HS,83.53302078726227,14.469451628482167,5.773060578386605,5590.914317422071,2019
+1995,24,"(20,25]",College,-26.205678903140203,53.517149858769656,-0.4896688065843622,4944.023894517513,2019
+1995,24,"(20,25]",College,-25.431508182220256,53.517149858769656,-0.475202962962963,4898.8216428079495,2019
+1995,24,"(20,25]",College,-20.205855816010615,53.517149858769656,-0.3775585185185185,4890.6857114835675,2019
+1995,24,"(20,25]",College,-30.850703228659885,53.517149858769656,-0.5764638683127572,4856.612923332323,2019
+1995,24,"(20,25]",College,-27.7153118089341,53.517149858769656,-0.5178772016460905,4846.948629119662,2019
+1995,48,"(45,50]",HS,17.34142414860681,95.14159974892382,0.18226962962962961,4160.360305242944,2019
+1995,48,"(45,50]",HS,17.34142414860681,95.14159974892382,0.18226962962962961,4038.3906264000325,2019
+1995,48,"(45,50]",HS,19.27685095090668,95.14159974892382,0.20261222222222228,4039.7272883963124,2019
+1995,48,"(45,50]",HS,17.34142414860681,95.14159974892382,0.18226962962962961,4185.258500453144,2019
+1995,48,"(45,50]",HS,17.534966828836797,95.14159974892382,0.1843038888888889,4077.702677944862,2019
+1995,65,"(60,65]",HS,313.01657673595753,47.57079987446191,6.580015,7366.007510135778,2019
+1995,65,"(60,65]",HS,320.758283945157,47.57079987446191,6.7427557407407415,7181.073070605856,2019
+1995,65,"(60,65]",HS,330.43541795665635,47.57079987446191,6.946181666666668,7193.11966975892,2019
+1995,65,"(60,65]",HS,293.66230871295886,47.57079987446191,6.173163148148149,7505.049009560869,2019
+1995,65,"(60,65]",HS,326.5645643520566,47.57079987446191,6.864811296296297,7347.05673136719,2019
+1995,44,"(40,45]",HS,-4.451481645289695,71.35619981169287,-0.062383950617283954,7916.497535750001,2019
+1995,44,"(40,45]",HS,-4.451481645289695,71.35619981169287,-0.062383950617283954,8013.633686636839,2019
+1995,44,"(40,45]",HS,-4.451481645289695,71.35619981169287,-0.062383950617283954,7915.301438530941,2019
+1995,44,"(40,45]",HS,-4.451481645289695,71.35619981169287,-0.062383950617283954,8178.001222825767,2019
+1995,44,"(40,45]",HS,-4.451481645289695,71.35619981169287,-0.062383950617283954,7974.320470156992,2019
+1995,28,"(25,30]",NoHS,0,9.910583307179566,0,5181.836404181156,2019
+1995,28,"(25,30]",NoHS,0,9.910583307179566,0,5181.318256322236,2019
+1995,28,"(25,30]",NoHS,0,9.910583307179566,0,5179.288163068088,2019
+1995,28,"(25,30]",NoHS,0,9.910583307179566,0,5202.490896247634,2019
+1995,28,"(25,30]",NoHS,0,9.910583307179566,0,5195.49058600571,2019
+1995,51,"(50,55]",College,3127.8432551968153,554.9926652020558,5.635828095238094,530.8298499457426,2019
+1995,51,"(50,55]",College,3097.457054400708,554.9926652020558,5.581077460317459,447.91305299753367,2019
+1995,51,"(50,55]",College,3070.74816452897,554.9926652020558,5.532952698412698,451.7751912717351,2019
+1995,51,"(50,55]",College,3129.5851393188855,554.9926652020558,5.638966666666666,457.97780081675467,2019
+1995,51,"(50,55]",College,3350.99796550199,554.9926652020558,6.037913968253966,633.1002723575365,2019
+1995,48,"(45,50]",College,5840.5955241043785,1240.8050300588818,4.7071017465388705,25.713727335780288,2019
+1995,48,"(45,50]",College,5840.5955241043785,1240.8050300588818,4.7071017465388705,22.562484295780024,2019
+1995,48,"(45,50]",College,5840.5955241043785,1240.8050300588818,4.7071017465388705,23.550849279301794,2019
+1995,48,"(45,50]",College,5840.5955241043785,1240.8050300588818,4.7071017465388705,23.009157385376763,2019
+1995,48,"(45,50]",College,5840.5955241043785,1240.8050300588818,4.7071017465388705,23.915111099708973,2019
+1995,81,"(80,85]",HS,197.74255639097743,47.57079987446191,4.15680537037037,10901.838728394136,2019
+1995,81,"(80,85]",HS,197.74255639097743,47.57079987446191,4.15680537037037,10925.131057624003,2019
+1995,81,"(80,85]",HS,197.74255639097743,47.57079987446191,4.15680537037037,11200.171656867049,2019
+1995,81,"(80,85]",HS,197.74255639097743,47.57079987446191,4.15680537037037,11459.931392874974,2019
+1995,81,"(80,85]",HS,197.74255639097743,47.57079987446191,4.15680537037037,11197.845678214504,2019
+1995,43,"(40,45]",College,1839.816718266254,376.6021656728235,4.885305730994152,952.2415630519217,2019
+1995,43,"(40,45]",College,1978.0061919504644,376.6021656728235,5.252243274853802,612.5756485241523,2019
+1995,43,"(40,45]",College,1393.1202122954444,376.6021656728235,3.6991826900584797,612.9960032123796,2019
+1995,43,"(40,45]",College,1222.4155683325962,376.6021656728235,3.2459069005847954,618.6485228531049,2019
+1995,43,"(40,45]",College,1330.9930119416188,376.6021656728235,3.534214970760234,594.2863188778617,2019
+1995,37,"(35,40]",HS,4.064396284829722,14.865874960769348,0.2734044444444445,5405.656705863073,2019
+1995,37,"(35,40]",HS,4.064396284829722,16.055144957630898,0.25315226337448565,5423.456272578178,2019
+1995,37,"(35,40]",HS,4.064396284829722,16.45156828991808,0.24705220883534143,5421.5085988554965,2019
+1995,37,"(35,40]",HS,4.064396284829722,16.847991622205264,0.24123921568627454,5412.096908177953,2019
+1995,37,"(35,40]",HS,4.064396284829722,17.64083828677963,0.23039700374531835,5432.271303378764,2019
+1995,20,"(15,20]",NoHS,31.48939407341884,37.660216567282355,0.8361447953216373,6852.1262929768145,2019
+1995,20,"(15,20]",NoHS,29.592675807164973,37.660216567282355,0.7857808187134503,6832.351843856115,2019
+1995,20,"(15,20]",NoHS,29.553967271118974,37.660216567282355,0.7847529824561403,6871.275348411356,2019
+1995,20,"(15,20]",NoHS,27.637894736842107,37.660216567282355,0.7338750877192982,6826.210211631362,2019
+1995,20,"(15,20]",NoHS,29.70880141530296,37.660216567282355,0.78886432748538,6795.423876557374,2019
+1995,77,"(75,80]",College,56129.119150818224,7135.619981169289,7.866046580246913,30.672904878676462,2019
+1995,77,"(75,80]",College,54723.99929234852,8205.962978344682,6.668808942565754,31.158369196292295,2019
+1995,77,"(75,80]",College,54826.57691287041,7730.254979600062,7.092466814814815,31.257592753738454,2019
+1995,77,"(75,80]",College,58025.83741707209,8463.63814433135,6.855897715326568,29.878699827095193,2019
+1995,77,"(75,80]",College,54418.20185758514,8463.63814433135,6.429646557377049,29.801449192988763,2019
+1995,43,"(40,45]",HS,10.064219371959311,49.55291653589783,0.20310044444444447,7593.1901780671615,2019
+1995,43,"(40,45]",HS,10.064219371959311,49.55291653589783,0.20310044444444447,7571.129086633274,2019
+1995,43,"(40,45]",HS,10.064219371959311,49.55291653589783,0.20310044444444447,7583.517809367542,2019
+1995,43,"(40,45]",HS,10.064219371959311,49.55291653589783,0.20310044444444447,7719.553488314341,2019
+1995,43,"(40,45]",HS,10.064219371959311,49.55291653589783,0.20310044444444447,7622.286481512405,2019
+1995,40,"(35,40]",HS,25357.96196373286,1982.116661435913,12.793375111111112,22.16611650240942,2019
+1995,40,"(35,40]",HS,25357.96196373286,1982.116661435913,12.793375111111112,25.503236006723913,2019
+1995,40,"(35,40]",HS,25357.96196373286,1982.116661435913,12.793375111111112,22.64948939494601,2019
+1995,40,"(35,40]",HS,25357.96196373286,1982.116661435913,12.793375111111112,27.18036738426121,2019
+1995,40,"(35,40]",HS,25357.96196373286,1982.116661435913,12.793375111111112,21.65885251006231,2019
+1995,31,"(30,35]",NoHS,-6.386908447589563,47.57079987446191,-0.13426111111111114,4685.647242576765,2019
+1995,31,"(30,35]",NoHS,-6.9675364882795225,47.57079987446191,-0.1464666666666667,4613.410058671379,2019
+1995,31,"(30,35]",NoHS,-6.193365767359576,43.606566551590085,-0.14202828282828286,4624.417946117326,2019
+1995,31,"(30,35]",NoHS,-5.999823087129589,41.624449890154175,-0.14414179894179896,4594.839366110055,2019
+1995,31,"(30,35]",NoHS,-6.773993808049536,45.588683213026,-0.14858937198067634,4613.763370608771,2019
+1995,66,"(65,70]",NoHS,152.89871738168952,19.424743282071947,7.871337868480727,8528.975809540598,2019
+1995,66,"(65,70]",NoHS,152.89871738168952,19.424743282071947,7.871337868480727,8523.93629213151,2019
+1995,66,"(65,70]",NoHS,152.89871738168952,19.424743282071947,7.871337868480727,8531.653090741911,2019
+1995,66,"(65,70]",NoHS,152.89871738168952,19.424743282071947,7.871337868480727,8498.288179638632,2019
+1995,66,"(65,70]",NoHS,152.89871738168952,19.424743282071947,7.871337868480727,8586.778663107802,2019
+1995,64,"(60,65]",HS,99.67448031844317,11.496276636328297,8.670153256704982,7121.986422612729,2019
+1995,64,"(60,65]",HS,95.80362671384344,11.496276636328297,8.33344827586207,7118.188684109087,2019
+1995,64,"(60,65]",HS,84.19106590004422,11.496276636328297,7.323333333333333,7145.51283027171,2019
+1995,64,"(60,65]",HS,76.44935869084476,11.496276636328297,6.64992337164751,7178.249833699275,2019
+1995,64,"(60,65]",HS,101.60990712074305,11.496276636328297,8.838505747126439,6944.500464768904,2019
+1995,25,"(20,25]",HS,130.40905793896508,93.15948308748793,1.3998473758865249,3749.439546686293,2019
+1995,25,"(20,25]",HS,130.40905793896508,93.15948308748793,1.3998473758865249,3692.654163417747,2019
+1995,25,"(20,25]",HS,130.40905793896508,93.15948308748793,1.3998473758865249,3715.503980698189,2019
+1995,25,"(20,25]",HS,130.40905793896508,93.15948308748793,1.3998473758865249,3669.465346076459,2019
+1995,25,"(20,25]",HS,130.40905793896508,93.15948308748793,1.3998473758865249,3711.4509518886443,2019
+1995,70,"(65,70]",HS,282.18522777532064,79.28466645743653,3.5591399999999997,9455.612452402038,2019
+1995,70,"(65,70]",HS,282.18522777532064,79.28466645743653,3.5591399999999997,9462.212284528574,2019
+1995,70,"(65,70]",HS,282.18522777532064,79.28466645743653,3.5591399999999997,9634.08810457741,2019
+1995,70,"(65,70]",HS,282.18522777532064,79.28466645743653,3.5591399999999997,9650.675186403285,2019
+1995,70,"(65,70]",HS,282.18522777532064,79.28466645743653,3.5591399999999997,9421.881684812615,2019
+1995,46,"(45,50]",HS,24.48314904909332,63.42773316594923,0.3860006944444444,4237.844051324103,2019
+1995,46,"(45,50]",HS,22.160636886333478,63.42773316594923,0.3493840277777777,4137.074847590664,2019
+1995,46,"(45,50]",HS,23.128350287483418,63.42773316594923,0.36464097222222225,4144.995581618133,2019
+1995,46,"(45,50]",HS,26.321804511278195,63.42773316594923,0.41498888888888885,4139.730540695464,2019
+1995,46,"(45,50]",HS,22.93480760725343,63.42773316594923,0.36158958333333335,4174.708983539873,2019
+1995,26,"(25,30]",HS,562.4350287483416,148.65874960769352,3.783396740740741,4093.262400293722,2019
+1995,26,"(25,30]",HS,562.4350287483416,148.65874960769352,3.783396740740741,4235.2515333644815,2019
+1995,26,"(25,30]",HS,562.4350287483416,148.65874960769352,3.783396740740741,4183.775938606058,2019
+1995,26,"(25,30]",HS,562.4350287483416,148.65874960769352,3.783396740740741,3984.830616242086,2019
+1995,26,"(25,30]",HS,562.4350287483416,148.65874960769352,3.783396740740741,4218.207041425622,2019
+1995,72,"(70,75]",College,112569.45493144628,17204.772621263728,6.542920235535075,2.0000789024324326,2019
+1995,72,"(70,75]",College,118712.30605926581,17204.772621263728,6.8999636712749615,1.5956083588445662,2019
+1995,72,"(70,75]",College,112050.56700574968,19385.10094884323,5.780241604180869,2.195860886247657,2019
+1995,72,"(70,75]",College,124403.23502874836,19781.52428113042,6.288859910932977,1.4945476443958283,2019
+1995,72,"(70,75]",College,123020.37257850509,18711.18128395502,6.574698342749531,1.6332706553106373,2019
+1995,47,"(45,50]",HS,29.089464838567004,39.642333228718265,0.733798,5142.549323140131,2019
+1995,47,"(45,50]",HS,33.5409464838567,39.642333228718265,0.8460891111111112,5051.968920851195,2019
+1995,47,"(45,50]",HS,33.73448916408668,39.642333228718265,0.8509713333333332,5098.945453706283,2019
+1995,47,"(45,50]",HS,29.089464838567004,39.642333228718265,0.733798,5094.563000476619,2019
+1995,47,"(45,50]",HS,29.089464838567004,39.642333228718265,0.733798,5124.6361786662555,2019
+1995,84,"(80,85]",HS,34.64413976116762,39.642333228718265,0.8739177777777777,8232.357179467735,2019
+1995,84,"(80,85]",HS,36.966651923927465,33.69598324441053,1.0970640522875816,7998.713792214519,2019
+1995,84,"(80,85]",HS,40.256877487837244,35.67809990584644,1.128335802469136,8199.866303615952,2019
+1995,84,"(80,85]",HS,31.160371517027862,31.713866582974614,0.9825472222222221,7988.545848359841,2019
+1995,84,"(80,85]",HS,30.19265811587793,35.67809990584644,0.8462518518518518,7998.393909312425,2019
+1995,61,"(60,65]",HS,838.0398053958426,144.69451628482167,5.791786910197869,2039.2319481811805,2019
+1995,61,"(60,65]",HS,838.0398053958426,144.69451628482167,5.791786910197869,1666.1034792837886,2019
+1995,61,"(60,65]",HS,838.0398053958426,144.69451628482167,5.791786910197869,1710.0944533571812,2019
+1995,61,"(60,65]",HS,838.0398053958426,144.69451628482167,5.791786910197869,1668.3904752775065,2019
+1995,61,"(60,65]",HS,838.0398053958426,144.69451628482167,5.791786910197869,1694.4575820698337,2019
+1995,67,"(65,70]",NoHS,0,11.496276636328297,0,11076.49068853242,2019
+1995,67,"(65,70]",NoHS,0,11.496276636328297,0,11108.293298494576,2019
+1995,67,"(65,70]",NoHS,0,11.496276636328297,0,11087.43359912828,2019
+1995,67,"(65,70]",NoHS,0,11.496276636328297,0,11099.77582152057,2019
+1995,67,"(65,70]",NoHS,0,11.496276636328297,0,11160.817519541964,2019
+1995,69,"(65,70]",HS,51.23074745687749,16.055144957630898,3.1909240054869685,8615.829756659627,2019
+1995,69,"(65,70]",HS,51.23074745687749,18.631896617497585,2.7496260047281322,8425.78290819219,2019
+1995,69,"(65,70]",HS,51.23074745687749,16.055144957630898,3.1909240054869685,8508.293032495776,2019
+1995,69,"(65,70]",HS,51.23074745687749,19.22653161592836,2.664586025200458,8964.637791565667,2019
+1995,69,"(65,70]",HS,51.23074745687749,17.046203288348853,3.0054051679586564,8580.025004869169,2019
+1995,64,"(60,65]",HS,234992.51609022557,1694.709745527706,138.66239732813514,14.028299846209455,2019
+1995,64,"(60,65]",HS,224421.2148960637,3230.850158140539,69.46196942331288,15.009371556072441,2019
+1995,64,"(60,65]",HS,235967.9711985847,1948.4206781915027,121.10730184695377,14.833229305017568,2019
+1995,64,"(60,65]",HS,238087.26354710307,1365.678379729344,174.33626180293504,12.985028555243137,2019
+1995,64,"(60,65]",HS,239548.51078283944,5331.893819262607,44.927472095828165,14.097556629034909,2019
+1995,42,"(40,45]",NoHS,1.8386554621848739,49.55291653589783,0.03710488888888889,7471.105400624425,2019
+1995,42,"(40,45]",NoHS,1.8386554621848739,49.55291653589783,0.03710488888888889,7484.004614201798,2019
+1995,42,"(40,45]",NoHS,1.8386554621848739,49.55291653589783,0.03710488888888889,7508.792828921161,2019
+1995,42,"(40,45]",NoHS,1.8386554621848739,49.55291653589783,0.03710488888888889,7370.310585425432,2019
+1995,42,"(40,45]",NoHS,1.8386554621848739,49.55291653589783,0.03710488888888889,7491.5541310241415,2019
+1995,50,"(45,50]",College,130239.70809376382,9831.298640722132,13.247457213261645,21.771475130045456,2019
+1995,50,"(45,50]",College,120257.55081822204,10247.543139623673,11.735256849344509,22.139802728840415,2019
+1995,50,"(45,50]",College,135326.00973020785,9573.623474735461,14.135296848401193,22.15857878751236,2019
+1995,50,"(45,50]",College,130005.71499336576,10029.51030686572,12.962319297321036,21.31865848034735,2019
+1995,50,"(45,50]",College,119586.53834586467,8820.419143389814,13.55792013982522,21.252088163683666,2019
+1995,57,"(55,60]",HS,488.11463954002653,93.15948308748793,5.239559338061466,6339.1246898513955,2019
+1995,57,"(55,60]",HS,568.821937195931,93.15948308748793,6.105894089834515,6433.594375547138,2019
+1995,57,"(55,60]",HS,502.2432551968156,93.15948308748793,5.3912198581560284,6464.6444464761935,2019
+1995,57,"(55,60]",HS,477.08270676691734,93.15948308748793,5.1211394799054375,6233.585532610634,2019
+1995,57,"(55,60]",HS,442.2450243255197,93.15948308748793,4.7471820330969265,2179.4704545169907,2019
+1995,46,"(45,50]",HS,72.984944714728,31.713866582974614,2.3013575,7675.712655468863,2019
+1995,46,"(45,50]",HS,72.24948252985405,39.642333228718265,1.8225335555555557,7604.761648024301,2019
+1995,46,"(45,50]",HS,72.53979655019903,33.69598324441053,2.1527728104575163,7644.236261477548,2019
+1995,46,"(45,50]",HS,71.95916850950907,31.713866582974614,2.2690127777777778,8013.545579275694,2019
+1995,46,"(45,50]",HS,72.44302521008403,41.624449890154175,1.7403959788359789,7762.622162308534,2019
+1995,55,"(50,55]",HS,803.453728438744,148.65874960769352,5.404685096296295,6339.1246898513955,2019
+1995,55,"(50,55]",HS,803.453728438744,148.65874960769352,5.404685096296295,6433.594375547138,2019
+1995,55,"(50,55]",HS,803.453728438744,148.65874960769352,5.404685096296295,6464.6444464761935,2019
+1995,55,"(50,55]",HS,803.453728438744,148.65874960769352,5.404685096296295,6233.585532610634,2019
+1995,55,"(50,55]",HS,803.453728438744,148.65874960769352,5.404685096296295,6352.569873403067,2019
+1995,66,"(65,70]",HS,108784.72781954888,4539.047154688242,23.966423813682677,16.922237812228754,2019
+1995,66,"(65,70]",HS,97882.85572755417,5371.536152491326,18.22250710947109,18.281957672402182,2019
+1995,66,"(65,70]",HS,77789.06112339672,5232.7879861908095,14.865700909090911,18.149931201243074,2019
+1995,66,"(65,70]",HS,90498.04122069881,5173.324486347734,17.493207986377183,15.780003964162134,2019
+1995,66,"(65,70]",HS,81405.59964617425,4618.331821145677,17.62662424415832,16.98926204970277,2019
+1995,51,"(50,55]",College,924.7469261388766,406.3339155943622,2.275830027100271,3109.773583124611,2019
+1995,51,"(50,55]",College,1100.2901371074745,406.3339155943622,2.7078471544715446,2541.7415656685816,2019
+1995,51,"(50,55]",College,939.6497125165856,406.3339155943622,2.3125062330623307,2607.273115261749,2019
+1995,51,"(50,55]",College,1214.2867757629367,406.3339155943622,2.9883963143631433,2548.9772400919965,2019
+1995,51,"(50,55]",College,946.6172490048651,406.3339155943622,2.3296535501355016,2589.0505167049514,2019
+1995,21,"(20,25]",HS,5.670800530738611,27.749633260102783,0.20435587301587302,5747.800864722266,2019
+1995,21,"(20,25]",HS,5.670800530738611,27.749633260102783,0.20435587301587302,5752.834822283291,2019
+1995,21,"(20,25]",HS,5.670800530738611,27.749633260102783,0.20435587301587302,5789.692663176096,2019
+1995,21,"(20,25]",HS,5.670800530738611,27.749633260102783,0.20435587301587302,5747.729714209943,2019
+1995,21,"(20,25]",HS,35.186059265811586,27.749633260102783,1.2679828571428573,5718.817689305642,2019
+1995,67,"(65,70]",College,7519.133126934985,309.21019918400253,24.317222222222217,25.713727335780288,2019
+1995,67,"(65,70]",College,21094.216718266252,396.42333228718263,53.21134,45.73272698153342,2019
+1995,67,"(65,70]",College,22523.529411764706,249.7466993409251,90.18549382716049,41.04553817903476,2019
+1995,67,"(65,70]",College,9411.980539584256,317.1386658297461,29.67780833333334,23.009157385376763,2019
+1995,67,"(65,70]",College,14220.548429898276,317.1386658297461,44.840159722222225,23.915111099708973,2019
+1995,42,"(40,45]",College,2352.7048208757187,618.4203983680051,3.804377777777777,813.6274566723321,2019
+1995,42,"(40,45]",College,2730.113047324193,618.4203983680051,4.414655555555555,969.377811029359,2019
+1995,42,"(40,45]",College,2255.933480760725,618.4203983680051,3.6478962962962953,687.5489372226264,2019
+1995,42,"(40,45]",College,2594.6331711632024,618.4203983680051,4.195581481481481,964.027673158582,2019
+1995,42,"(40,45]",College,2594.6331711632024,618.4203983680051,4.195581481481481,958.155499445413,2019
+1995,22,"(20,25]",HS,0.4838567005749669,11.892699968615478,0.04068518518518519,5599.034249693659,2019
+1995,22,"(20,25]",HS,0.4838567005749669,11.892699968615478,0.04068518518518519,5603.937916584534,2019
+1995,22,"(20,25]",HS,0.4838567005749669,11.892699968615478,0.04068518518518519,5639.841789802408,2019
+1995,22,"(20,25]",HS,0.4838567005749669,11.892699968615478,0.04068518518518519,5598.9649407240595,2019
+1995,22,"(20,25]",HS,0.4838567005749669,11.892699968615478,0.04068518518518519,5570.801227074773,2019
+1995,23,"(20,25]",College,53.22423706324635,12.090911634759072,4.402003642987249,5380.467250162285,2019
+1995,23,"(20,25]",College,53.22423706324635,37.660216567282355,1.4132748538011695,5366.420102368095,2019
+1995,23,"(20,25]",College,53.22423706324635,37.660216567282355,1.4132748538011695,5417.461985152713,2019
+1995,23,"(20,25]",College,53.22423706324635,23.785399937230956,2.2376851851851853,5349.460473880112,2019
+1995,23,"(20,25]",College,53.22423706324635,10.30700663946675,5.163888888888889,5364.173643772542,2019
+1995,38,"(35,40]",HS,200.89730207872623,89.1952497646161,2.252331851851852,5908.000773190527,2019
+1995,38,"(35,40]",HS,200.89730207872623,89.1952497646161,2.252331851851852,5862.5069903445565,2019
+1995,38,"(35,40]",HS,200.89730207872623,89.1952497646161,2.252331851851852,5868.485033243674,2019
+1995,38,"(35,40]",HS,200.89730207872623,89.1952497646161,2.252331851851852,5979.507095630367,2019
+1995,38,"(35,40]",HS,200.89730207872623,89.1952497646161,2.252331851851852,5875.132063964786,2019
+1995,74,"(70,75]",HS,292.05590446704997,47.57079987446191,6.139394444444445,9751.100335946985,2019
+1995,74,"(70,75]",HS,294.18487394957987,47.57079987446191,6.18414814814815,9757.906412823571,2019
+1995,74,"(70,75]",HS,264.7663865546219,47.57079987446191,5.565733333333335,9935.153352147277,2019
+1995,74,"(70,75]",HS,305.41034940291905,47.57079987446191,6.420122222222223,9952.258780270397,2019
+1995,74,"(70,75]",HS,279.6691729323308,47.57079987446191,5.879009259259259,9716.315481890344,2019
+1995,70,"(65,70]",HS,154994.9781512605,44518.340215850614,3.4815983120609477,16.922237812228754,2019
+1995,70,"(65,70]",HS,163335.69995577176,39959.47189454801,4.087533999118166,18.281957672402182,2019
+1995,70,"(65,70]",HS,181369.0391862008,46500.45687728653,3.900371122477976,18.149931201243074,2019
+1995,70,"(65,70]",HS,172863.88352056613,43566.92421836137,3.9677780018198368,15.780003964162134,2019
+1995,70,"(65,70]",HS,141490.5376382132,46460.81454405781,3.045373591202124,16.98926204970277,2019
+1995,38,"(35,40]",College,279.14660769570986,91.177366426052,3.0615778743961353,4037.3230593468825,2019
+1995,38,"(35,40]",College,279.14660769570986,91.177366426052,3.0615778743961353,4203.884088143595,2019
+1995,38,"(35,40]",College,246.24435205661212,91.177366426052,2.700717971014493,7416.930614463379,2019
+1995,38,"(35,40]",College,279.14660769570986,91.177366426052,3.0615778743961353,3936.837538172344,2019
+1995,38,"(35,40]",College,279.14660769570986,91.177366426052,3.0615778743961353,4175.25806976701,2019
+1995,67,"(65,70]",HS,501.6626271561256,45.588683213026,11.004104347826088,5498.7690763901255,2019
+1995,67,"(65,70]",HS,501.6626271561256,45.588683213026,11.004104347826088,5715.6700878775355,2019
+1995,67,"(65,70]",HS,501.6626271561256,45.588683213026,11.004104347826088,5650.6027325037285,2019
+1995,67,"(65,70]",HS,501.6626271561256,45.588683213026,11.004104347826088,5357.635758044528,2019
+1995,67,"(65,70]",HS,501.6626271561256,45.588683213026,11.004104347826088,5724.055034960964,2019
+1995,33,"(30,35]",HS,46.6437859354268,99.10583307179566,0.4706462222222222,5888.914114054625,2019
+1995,33,"(30,35]",HS,46.6437859354268,99.10583307179566,0.4706462222222222,5951.145314657913,2019
+1995,33,"(30,35]",HS,46.6437859354268,99.10583307179566,0.4706462222222222,5897.1241085102165,2019
+1995,33,"(30,35]",HS,46.6437859354268,99.10583307179566,0.4706462222222222,5989.808364313681,2019
+1995,33,"(30,35]",HS,46.6437859354268,99.10583307179566,0.4706462222222222,5905.998151690274,2019
+1995,83,"(80,85]",College,12391.95718708536,1982.116661435913,6.251880844444445,205.4995729198662,2019
+1995,83,"(80,85]",College,12465.503405572756,1982.116661435913,6.288985733333334,185.40422466140868,2019
+1995,83,"(80,85]",College,12413.24688191066,1982.116661435913,6.262621733333335,182.50299198427751,2019
+1995,83,"(80,85]",College,12440.342857142856,1982.116661435913,6.276291955555555,188.8220483709579,2019
+1995,83,"(80,85]",College,12422.924015922159,1982.116661435913,6.267503955555556,188.09394411101613,2019
+1995,26,"(25,30]",HS,29.360424590888986,63.42773316594923,0.4628956944444444,5058.203661609155,2019
+1995,26,"(25,30]",HS,28.779796550199027,63.42773316594923,0.45374152777777776,5083.743173435492,2019
+1995,26,"(25,30]",HS,30.90876603272888,63.42773316594923,0.48730680555555556,5111.964342321209,2019
+1995,26,"(25,30]",HS,28.586253869969042,63.42773316594923,0.45069013888888887,5147.943282245307,2019
+1995,26,"(25,30]",HS,28.586253869969042,63.42773316594923,0.45069013888888887,5135.282225163544,2019
+1995,56,"(55,60]",College,776.7061300309598,126.85546633189846,6.122764375,5931.988265228674,2019
+1995,56,"(55,60]",College,762.1904290137107,148.65874960769352,5.127114488888888,5957.430294789878,2019
+1995,56,"(55,60]",College,810.5760990712075,140.73028296194985,5.759784475743349,5925.8594051271575,2019
+1995,56,"(55,60]",College,769.9321362229102,144.69451628482167,5.321087184170472,5759.295320422534,2019
+1995,56,"(55,60]",College,786.7316408668731,128.8375829933344,6.10638311111111,5917.512264235222,2019
+1995,51,"(50,55]",College,655.3355152587351,198.21166614359132,3.306240888888889,3523.2247102339543,2019
+1995,51,"(50,55]",College,278.7014595311809,198.21166614359132,1.40608,5952.030508026906,2019
+1995,51,"(50,55]",College,288.7656789031402,198.21166614359132,1.4568551111111112,6030.836119031676,2019
+1995,51,"(50,55]",College,400.7301194161875,198.21166614359132,2.0217282222222224,6202.772160795471,2019
+1995,51,"(50,55]",College,415.9232198142415,198.21166614359132,2.0983791111111114,3637.247787445382,2019
+1995,24,"(20,25]",NoHS,5.999823087129589,12.289123300902663,0.4882222222222222,5994.336428909522,2019
+1995,24,"(20,25]",NoHS,6.580451127819549,14.073028296194984,0.4675931142410016,5999.586303757278,2019
+1995,24,"(20,25]",NoHS,7.548164528969482,14.469451628482167,0.521662100456621,6038.025056865574,2019
+1995,24,"(20,25]",NoHS,7.257850508624502,12.685546633189844,0.5721354166666667,5994.262226598408,2019
+1995,24,"(20,25]",NoHS,7.548164528969482,11.694488302471887,0.6454463276836159,5964.110102647651,2019
+1995,28,"(25,30]",HS,2.9805572755417957,35.67809990584644,0.08354024691358025,5735.955306189789,2019
+1995,28,"(25,30]",HS,36.71504643962848,37.660216567282355,0.9749026900584794,5796.570111975299,2019
+1995,28,"(25,30]",HS,5.303069438301637,41.624449890154175,0.12740275132275133,5743.952054036549,2019
+1995,28,"(25,30]",HS,6.212720035382574,35.67809990584644,0.17413259259259262,5834.228926576995,2019
+1995,28,"(25,30]",HS,6.386908447589563,41.624449890154175,0.15344126984126988,5752.5956025889955,2019
+1995,68,"(65,70]",HS,642.1746130030959,67.39196648882105,9.528949019607841,5430.950925899143,2019
+1995,68,"(65,70]",HS,460.82512162759843,73.3383164731288,6.283551951951952,10061.217717627082,2019
+1995,68,"(65,70]",HS,496.572454666077,67.39196648882105,7.368422091503269,5584.305964465328,2019
+1995,68,"(65,70]",HS,676.4316674038037,77.30254979600063,8.750444444444444,5292.338613986601,2019
+1995,68,"(65,70]",HS,596.1114551083591,69.37408315025698,8.59271111111111,5658.797672470833,2019
+1995,75,"(70,75]",HS,368060.1149933658,14092.849462809343,26.11679887482419,2.8105880616522616,2019
+1995,75,"(70,75]",HS,376643.73286156566,13161.254631934466,28.61761613119143,2.243383281743868,2019
+1995,75,"(70,75]",HS,384364.15037593985,14667.663294625758,26.204865945945947,3.0383781419960103,2019
+1995,75,"(70,75]",HS,378447.5506413092,13716.24729713652,27.591187475915223,2.1023901664096862,2019
+1995,75,"(70,75]",HS,367500.7766475011,14231.597629109856,25.822875704116374,2.2997107014584666,2019
+1995,65,"(60,65]",HS,142.15709862892524,49.55291653589783,2.8687937777777774,7866.915270514619,2019
+1995,65,"(60,65]",HS,142.15709862892524,49.55291653589783,2.8687937777777774,7826.663678070139,2019
+1995,65,"(60,65]",HS,142.15709862892524,49.55291653589783,2.8687937777777774,7834.832748479494,2019
+1995,65,"(60,65]",HS,142.15709862892524,49.55291653589783,2.8687937777777774,8335.4078543676,2019
+1995,65,"(60,65]",HS,142.15709862892524,49.55291653589783,2.8687937777777774,8047.784597885671,2019
+1995,46,"(45,50]",College,1756.0127377266695,1189.2699968615482,1.4765467407407404,343.83893580536545,2019
+1995,46,"(45,50]",College,1737.4326404245908,1189.2699968615482,1.4609236296296293,302.6000423592911,2019
+1995,46,"(45,50]",College,1743.2389208314905,1189.2699968615482,1.4658058518518515,317.1841807739571,2019
+1995,46,"(45,50]",College,1750.59354268023,1189.2699968615482,1.4719899999999997,308.4496946623568,2019
+1995,46,"(45,50]",College,1749.4322865988502,1189.2699968615482,1.4710135555555555,309.8740312980354,2019
+1995,52,"(50,55]",College,1436.8608580274215,59.46349984307739,24.16374518518519,1899.79586157033,2019
+1995,52,"(50,55]",College,1434.9254312251217,59.46349984307739,24.13119703703704,1549.2322052949698,2019
+1995,52,"(50,55]",College,1463.9568332596195,59.46349984307739,24.61941925925926,1607.8820837610438,2019
+1995,52,"(50,55]",College,1127.1925696594426,59.46349984307739,18.95604148148148,740.0694175988859,2019
+1995,52,"(50,55]",College,1305.2518354710305,59.46349984307739,21.950471111111113,1578.6666423676302,2019
+1995,61,"(60,65]",HS,66.96576735957541,47.57079987446191,1.4077074074074076,9063.461724478617,2019
+1995,61,"(60,65]",HS,66.96576735957541,47.57079987446191,1.4077074074074076,8780.493232829314,2019
+1995,61,"(60,65]",HS,66.96576735957541,47.57079987446191,1.4077074074074076,8851.334436189081,2019
+1995,61,"(60,65]",HS,66.96576735957541,47.57079987446191,1.4077074074074076,8575.033468775971,2019
+1995,61,"(60,65]",HS,66.96576735957541,47.57079987446191,1.4077074074074076,8573.703667035277,2019
+1995,40,"(35,40]",HS,374.50508624502436,142.71239962338575,2.624194444444445,5684.77117496782,2019
+1995,40,"(35,40]",HS,388.05307386112344,142.71239962338575,2.719126543209877,5759.527762068797,2019
+1995,40,"(35,40]",HS,364.827952233525,142.71239962338575,2.556385802469136,5694.353011055548,2019
+1995,40,"(35,40]",HS,370.63423264042456,142.71239962338575,2.597070987654321,5677.011528245976,2019
+1995,40,"(35,40]",HS,370.63423264042456,142.71239962338575,2.597070987654321,5701.463058632902,2019
+1995,42,"(40,45]",HS,-0.38514993365767364,39.642333228718265,-0.009715622222222223,5874.349257422185,2019
+1995,42,"(40,45]",HS,-0.38514993365767364,35.67809990584644,-0.010795135802469137,5945.040717010588,2019
+1995,42,"(40,45]",HS,-0.38514993365767364,37.660216567282355,-0.01022697076023392,5913.1724953086095,2019
+1995,42,"(40,45]",HS,-0.38514993365767364,37.660216567282355,-0.01022697076023392,5919.976774683111,2019
+1995,42,"(40,45]",HS,-0.38514993365767364,39.642333228718265,-0.009715622222222223,5952.792916502642,2019
+1995,19,"(15,20]",NoHS,7.044953560371517,89.1952497646161,0.0789835061728395,4933.530934785925,2019
+1995,19,"(15,20]",NoHS,7.044953560371517,89.1952497646161,0.0789835061728395,4919.29333140793,2019
+1995,19,"(15,20]",NoHS,7.044953560371517,89.1952497646161,0.0789835061728395,4947.318254709533,2019
+1995,19,"(15,20]",NoHS,7.044953560371517,89.1952497646161,0.0789835061728395,4914.871356202664,2019
+1995,19,"(15,20]",NoHS,7.044953560371517,89.1952497646161,0.0789835061728395,4892.705194932125,2019
+1995,48,"(45,50]",College,16297.648474126494,792.8466645743653,20.555864333333336,22.83440413664794,2019
+1995,48,"(45,50]",College,16295.325961963734,792.8466645743653,20.552935,20.452469430525316,2019
+1995,48,"(45,50]",College,16296.680760725343,792.8466645743653,20.55464377777778,21.019620424243335,2019
+1995,48,"(45,50]",College,16297.454931446264,792.8466645743653,20.555620222222224,20.35719255294102,2019
+1995,48,"(45,50]",College,16296.293675364885,792.8466645743653,20.55415555555556,21.006253532254263,2019
+1995,59,"(55,60]",College,29893.150818222028,1086.1999304668807,27.52085502838605,452.2936585636692,2019
+1995,59,"(55,60]",College,29704.62089341,1224.9480967673944,24.249697576411364,516.4737329949005,2019
+1995,59,"(55,60]",College,34482.299371959314,1135.7528470027783,30.36074218343999,442.0870166088811,2019
+1995,59,"(55,60]",College,35471.80567890314,1161.5203636014453,30.539116480849447,556.1804184274577,2019
+1995,59,"(55,60]",College,36016.20252985405,1151.6097802942656,31.27465843564735,429.2511023333832,2019
+1995,32,"(30,35]",College,-25.17990269792127,67.39196648882105,-0.37363359477124175,8045.571056137536,2019
+1995,32,"(30,35]",College,-55.972543122512164,79.28466645743653,-0.7059693333333333,8057.3929517872575,2019
+1995,32,"(30,35]",College,-92.88113224237063,99.10583307179566,-0.9371913777777777,8100.077007120842,2019
+1995,32,"(30,35]",College,-14.767306501547989,85.23101644174427,-0.1732621188630491,8158.873648071948,2019
+1995,32,"(30,35]",College,22.62513931888545,81.26678311887244,0.2784057452574526,8143.900017623021,2019
+1995,40,"(35,40]",HS,28.063688633348075,63.42773316594923,0.44245138888888885,5183.063975215474,2019
+1995,40,"(35,40]",HS,28.063688633348075,63.42773316594923,0.44245138888888885,5172.4991208415795,2019
+1995,40,"(35,40]",HS,28.063688633348075,63.42773316594923,0.44245138888888885,5185.9702877233485,2019
+1995,40,"(35,40]",HS,28.063688633348075,63.42773316594923,0.44245138888888885,5093.861948676526,2019
+1995,40,"(35,40]",HS,28.063688633348075,63.42773316594923,0.44245138888888885,5180.36406772473,2019
+1995,31,"(30,35]",HS,14.322158337019019,19.821166614359132,0.7225688888888889,4802.517643276322,2019
+1995,31,"(30,35]",HS,14.322158337019019,19.821166614359132,0.7225688888888889,4805.918262517393,2019
+1995,31,"(30,35]",HS,14.322158337019019,19.821166614359132,0.7225688888888889,4781.39920801359,2019
+1995,31,"(30,35]",HS,14.322158337019019,19.821166614359132,0.7225688888888889,4804.684825078102,2019
+1995,31,"(30,35]",HS,14.322158337019019,19.821166614359132,0.7225688888888889,4787.881026115525,2019
+1995,69,"(65,70]",HS,2.5160548429898277,14.271239962338576,0.17630246913580247,11599.438839415196,2019
+1995,69,"(65,70]",HS,2.5160548429898277,14.271239962338576,0.17630246913580247,11622.467146067833,2019
+1995,69,"(65,70]",HS,2.5160548429898277,14.271239962338576,0.17630246913580247,11593.965885244126,2019
+1995,69,"(65,70]",HS,2.5160548429898277,14.271239962338576,0.17630246913580247,11610.753071386076,2019
+1995,69,"(65,70]",HS,2.5160548429898277,14.271239962338576,0.17630246913580247,11688.57899193343,2019
+1995,65,"(60,65]",College,2695.4689075630254,432.1014321930291,6.238046687054027,737.7158388119253,2019
+1995,65,"(60,65]",College,3469.6396284829725,432.1014321930291,8.029687869520897,880.5610006032055,2019
+1995,65,"(60,65]",College,3701.8908447589565,432.1014321930291,8.567180224260959,872.8217698744002,2019
+1995,65,"(60,65]",College,3216.0987173816898,432.1014321930291,7.442925382262997,885.0597758958771,2019
+1995,65,"(60,65]",College,5017.981070322866,432.1014321930291,11.612970234454638,890.991182616749,2019
+1995,50,"(45,50]",HS,0,21.803283275795042,0,5557.244489908748,2019
+1995,50,"(45,50]",HS,0,21.803283275795042,0,5466.269048668886,2019
+1995,50,"(45,50]",HS,0,21.803283275795042,0,5520.516275599603,2019
+1995,50,"(45,50]",HS,0,21.803283275795042,0,5510.593127503264,2019
+1995,50,"(45,50]",HS,0,21.803283275795042,0,5542.60783723464,2019
+1995,40,"(35,40]",HS,219.78706766917296,89.1952497646161,2.464111802469136,11043.45019356344,2019
+1995,40,"(35,40]",HS,208.931258735073,89.1952497646161,2.342403427160494,11122.912958084817,2019
+1995,40,"(35,40]",HS,227.43200353825742,89.1952497646161,2.5498219259259263,10887.513339256804,2019
+1995,40,"(35,40]",HS,221.9160371517028,89.1952497646161,2.4879804444444447,11192.208330142557,2019
+1995,40,"(35,40]",HS,220.17415302963292,89.1952497646161,2.4684515555555557,11051.4162364966,2019
+1995,39,"(35,40]",HS,9.425528527200353,29.731749921538697,0.31701896296296295,6173.408192533437,2019
+1995,39,"(35,40]",HS,9.425528527200353,35.67809990584644,0.26418246913580246,6283.735830117263,2019
+1995,39,"(35,40]",HS,23.941229544449357,33.69598324441053,0.710506928104575,6182.486953880225,2019
+1995,39,"(35,40]",HS,16.78015037593985,35.67809990584644,0.4703207407407408,6205.277247528055,2019
+1995,39,"(35,40]",HS,9.425528527200353,29.731749921538697,0.31701896296296295,6212.518986768575,2019
+1995,48,"(45,50]",HS,305.855497567448,13.874816630051392,22.043930793650794,5339.516952339816,2019
+1995,48,"(45,50]",HS,372.24063688633345,27.749633260102783,13.414254285714286,5325.301559951301,2019
+1995,48,"(45,50]",HS,371.0793808049536,23.785399937230956,15.601141111111115,5300.194585736936,2019
+1995,48,"(45,50]",HS,80.37827509951349,11.099853304041115,7.241381746031745,7121.793871656262,2019
+1995,48,"(45,50]",HS,274.8886687306502,14.271239962338576,19.261722839506174,5339.322531227654,2019
+1995,44,"(40,45]",HS,0,19.821166614359132,0,6129.755746015944,2019
+1995,44,"(40,45]",HS,0,19.821166614359132,0,6203.520747315241,2019
+1995,44,"(40,45]",HS,0,19.821166614359132,0,6170.266950761316,2019
+1995,44,"(40,45]",HS,0,19.821166614359132,0,6177.367068368496,2019
+1995,44,"(40,45]",HS,0,19.821166614359132,0,6211.609998957987,2019
+1995,46,"(45,50]",College,2657.147456877488,644.1879149666719,4.124801777777777,948.3104854616874,2019
+1995,46,"(45,50]",College,2657.147456877488,644.1879149666719,4.124801777777777,855.7160612487996,2019
+1995,46,"(45,50]",College,2657.147456877488,644.1879149666719,4.124801777777777,845.8782625639991,2019
+1995,46,"(45,50]",College,2657.147456877488,644.1879149666719,4.124801777777777,853.6808983245235,2019
+1995,46,"(45,50]",College,2657.147456877488,644.1879149666719,4.124801777777777,849.4883699243483,2019
+1995,26,"(25,30]",College,93.09402919062363,31.713866582974614,2.935436111111111,5277.689068668875,2019
+1995,26,"(25,30]",College,93.09402919062363,31.713866582974614,2.935436111111111,5229.137552852065,2019
+1995,26,"(25,30]",College,93.09402919062363,31.713866582974614,2.935436111111111,5280.245170540367,2019
+1995,26,"(25,30]",College,93.09402919062363,31.713866582974614,2.935436111111111,5248.6294508815035,2019
+1995,26,"(25,30]",College,93.09402919062363,31.713866582974614,2.935436111111111,5256.938115590263,2019
+1995,85,"(80,85]",College,5409.517912428129,176.40838286779626,30.664744069912615,1148.4943263538796,2019
+1995,85,"(80,85]",College,5409.517912428129,176.40838286779626,30.664744069912615,1017.641132618787,2019
+1995,85,"(80,85]",College,5409.517912428129,176.40838286779626,30.664744069912615,1028.5967341346372,2019
+1995,85,"(80,85]",College,5409.517912428129,176.40838286779626,30.664744069912615,1028.6543150830412,2019
+1995,85,"(80,85]",College,5409.517912428129,176.40838286779626,30.664744069912615,1034.703683128981,2019
+1995,60,"(55,60]",HS,245070.41892967714,44557.98254907932,5.500033998616055,16.170103695566063,2019
+1995,60,"(55,60]",HS,235209.61291463953,45152.617547510104,5.20921323480636,16.487311510181534,2019
+1995,60,"(55,60]",HS,253032.57125165858,47114.91304233166,5.370540979759735,15.80712234109105,2019
+1995,60,"(55,60]",HS,243925.807518797,46619.383876972686,5.232282952569916,15.984615184303909,2019
+1995,60,"(55,60]",HS,255340.18062804072,43428.176052060866,5.879597161113646,15.290620563462307,2019
+1995,45,"(40,45]",College,692.5924812030075,424.17296554728546,1.6328067497403946,386.8080871854267,2019
+1995,45,"(40,45]",College,678.9477222467934,313.17443250687427,2.1679538677918426,395.99313004402654,2019
+1995,45,"(40,45]",College,618.9494913754976,430.1193155315932,1.4390181259600614,390.31295531428697,2019
+1995,45,"(40,45]",College,624.6590004422821,400.3875656100545,1.5601358635863585,382.43257412639684,2019
+1995,45,"(40,45]",College,688.6248562582928,438.04778217733684,1.5720313725490196,388.0474003641573,2019
+1995,80,"(75,80]",College,3262.742503317116,112.98064970184706,28.878772709551654,794.6751141788088,2019
+1995,80,"(75,80]",College,3303.386466165414,105.0521830561034,31.445195807127885,628.3669023677721,2019
+1995,80,"(75,80]",College,3284.032198142415,110.99853304041113,29.58626666666667,617.7993021218462,2019
+1995,80,"(75,80]",College,3384.6743918620077,116.94488302471889,28.94247532956685,617.2642622628059,2019
+1995,80,"(75,80]",College,3351.7721362229104,105.0521830561034,31.90578280922432,633.7713355517692,2019
+1995,51,"(50,55]",HS,2497.861831048209,297.31749921538704,8.401328,2058.131165120534,2019
+1995,51,"(50,55]",HS,2500.571428571429,297.31749921538704,8.410441481481481,1681.3491853848923,2019
+1995,51,"(50,55]",HS,2497.861831048209,297.31749921538704,8.401328,1716.2177063454085,2019
+1995,51,"(50,55]",HS,2506.3777089783284,297.31749921538704,8.42997037037037,1675.2253560411573,2019
+1995,51,"(50,55]",HS,2498.6360017691286,297.31749921538704,8.40393185185185,1701.0200461467539,2019
+1995,54,"(50,55]",HS,5823.699248120301,198.21166614359132,29.381213333333335,706.5852587146609,2019
+1995,54,"(50,55]",HS,5976.59796550199,198.21166614359132,30.152604444444446,563.1725825546895,2019
+1995,54,"(50,55]",HS,4917.919504643963,198.21166614359132,24.811453333333333,550.2527878943282,2019
+1995,54,"(50,55]",HS,6009.500221141088,198.21166614359132,30.318600000000004,549.8019663351338,2019
+1995,54,"(50,55]",HS,4910.177797434763,198.21166614359132,24.772395555555555,563.4830660975119,2019
+1995,73,"(70,75]",HS,508.37855816010614,118.92699968615479,4.274711037037037,5000.59550060603,2019
+1995,73,"(70,75]",HS,509.86883679787707,134.7839329776421,3.782860653594771,5197.350906226411,2019
+1995,73,"(70,75]",HS,503.6754710305175,112.98064970184706,4.458068460038986,5140.943306645489,2019
+1995,73,"(70,75]",HS,509.19143741707205,118.92699968615479,4.2815461481481485,4874.266475263556,2019
+1995,73,"(70,75]",HS,513.1590623617868,107.03429971753931,4.794342222222222,5166.236609531043,2019
+1995,48,"(45,50]",HS,429.56797877045557,152.62298293056534,2.814569408369408,7675.712655468863,2019
+1995,48,"(45,50]",HS,452.50278637770896,67.39196648882105,6.714491503267973,7604.761648024301,2019
+1995,48,"(45,50]",HS,499.92074303405576,93.15948308748793,5.366289361702128,4456.18353790634,2019
+1995,48,"(45,50]",HS,501.17877045555065,53.517149858769656,9.364825514403293,4228.715915403247,2019
+1995,48,"(45,50]",HS,611.0142414860682,107.03429971753931,5.708583539094651,4468.369858052209,2019
+1995,58,"(55,60]",HS,35839.26581158779,3012.817325382588,11.895598684210526,21.37930316291056,2019
+1995,58,"(55,60]",HS,37118.582927908006,3290.3136579836164,11.281168540829986,23.814430115263647,2019
+1995,58,"(55,60]",HS,34666.39716939408,3111.9231584543836,11.139862845010617,21.59007452559501,2019
+1995,58,"(55,60]",HS,34896.712958867756,2913.711492310793,11.97672214663643,25.778823899766866,2019
+1995,58,"(55,60]",HS,34861.87527642636,3191.2078249118204,10.924351276742582,20.9070008654844,2019
+1995,39,"(35,40]",College,2090.260946483857,3409.240657669771,0.6131162790697675,502.4583270484769,2019
+1995,39,"(35,40]",College,1993.4896063688634,3369.5983244410527,0.5916104575163399,423.1452391862719,2019
+1995,39,"(35,40]",College,1904.4599734630694,3369.5983244410527,0.5651890196078431,427.30287302235513,2019
+1995,39,"(35,40]",College,1805.7532065457763,3369.5983244410527,0.5358956862745098,429.8752839223772,2019
+1995,39,"(35,40]",College,1767.044670499779,3369.5983244410527,0.5244081045751634,415.797920342805,2019
+1995,54,"(50,55]",College,4512.447589562141,378.58428233425946,11.919268179173939,654.4215253844106,2019
+1995,54,"(50,55]",College,5957.824325519682,297.31749921538704,20.038592888888886,521.4816975816819,2019
+1995,54,"(50,55]",College,4411.805395842548,1062.4145305296497,4.152621475953565,509.2245246454324,2019
+1995,54,"(50,55]",College,4371.16143299425,408.3160322557981,10.705338727076592,508.9595769660219,2019
+1995,54,"(50,55]",College,4425.353383458647,880.0597976775455,5.028468968968969,521.5681166428152,2019
+1995,34,"(30,35]",NoHS,0,9.712371641035974,0,9566.467195338755,2019
+1995,34,"(30,35]",NoHS,0,9.712371641035974,0,9565.51061467737,2019
+1995,34,"(30,35]",NoHS,0,9.712371641035974,0,9561.762750213025,2019
+1995,34,"(30,35]",NoHS,0,9.712371641035974,0,9604.59856525829,2019
+1995,34,"(30,35]",NoHS,0,9.712371641035974,0,9591.674915597618,2019
+1995,69,"(65,70]",College,51617.32960636886,1339.9108631306774,38.522957777777776,27.5604857433983,2019
+1995,69,"(65,70]",College,69141.49675364884,1052.50394722247,65.69238712701403,27.993411513947677,2019
+1995,69,"(65,70]",College,52005.69234851836,1052.50394722247,49.411398870056495,28.07197554343897,2019
+1995,69,"(65,70]",College,56966.03640866873,1141.699196987086,49.89583645061729,26.94156439430704,2019
+1995,69,"(65,70]",College,68001.99486952677,1244.7692633817533,54.630200849256916,26.90515142797549,2019
+1995,25,"(20,25]",College,117.69330384785493,65.40984982738514,1.7993208080808079,6169.4379133181155,2019
+1995,25,"(20,25]",College,136.98950906678462,65.40984982738514,2.0943253872053873,6076.0015764744185,2019
+1995,25,"(20,25]",College,151.11812472357366,81.26678311887244,1.8595312737127374,6113.599336696194,2019
+1995,25,"(20,25]",College,130.0800353825741,83.24889978030835,1.5625435978835982,6037.846015599512,2019
+1995,25,"(20,25]",College,146.24084918177797,71.35619981169287,2.0494483950617286,6106.930364096414,2019
+1995,44,"(40,45]",HS,127.54462627156126,31.713866582974614,4.021730555555555,7736.184380313057,2019
+1995,44,"(40,45]",HS,127.54462627156126,33.69598324441053,3.78515816993464,7786.196541365088,2019
+1995,44,"(40,45]",HS,127.54462627156126,33.69598324441053,3.78515816993464,7774.702138761789,2019
+1995,44,"(40,45]",HS,127.54462627156126,39.642333228718265,3.2173844444444444,8012.44285259375,2019
+1995,44,"(40,45]",HS,127.54462627156126,37.660216567282355,3.3867204678362572,7847.036846899195,2019
+1995,42,"(40,45]",HS,233.00603272888102,105.0521830561034,2.2180027672955975,6473.935767863413,2019
+1995,42,"(40,45]",HS,233.00603272888102,105.0521830561034,2.2180027672955975,6553.371553542505,2019
+1995,42,"(40,45]",HS,233.00603272888102,105.0521830561034,2.2180027672955975,6472.957626136797,2019
+1995,42,"(40,45]",HS,233.00603272888102,105.0521830561034,2.2180027672955975,6687.787672135821,2019
+1995,42,"(40,45]",HS,233.00603272888102,105.0521830561034,2.2180027672955975,6521.222078706023,2019
+1995,49,"(45,50]",College,956.4879256965944,93.15948308748793,10.267209456264775,3973.561702274487,2019
+1995,49,"(45,50]",College,956.4879256965944,93.15948308748793,10.267209456264775,4139.7182350953735,2019
+1995,49,"(45,50]",College,1281.639628482972,93.15948308748793,13.757478959810873,4088.150252824763,2019
+1995,49,"(45,50]",College,859.7165855816011,93.15948308748793,9.228438770685578,3878.283096870604,2019
+1995,49,"(45,50]",College,1088.0969482529856,93.15948308748793,11.679937588652484,4102.159157743836,2019
+1995,48,"(45,50]",HS,16.451127819548873,9.910583307179566,1.6599555555555556,7855.35393229795,2019
+1995,48,"(45,50]",HS,5.612737726669615,9.910583307179566,0.5663377777777778,7746.1033826291505,2019
+1995,48,"(45,50]",HS,3.4837682441397613,9.910583307179566,0.35152,7823.650867860943,2019
+1995,48,"(45,50]",HS,13.547987616099071,9.910583307179566,1.3670222222222224,7811.502095687635,2019
+1995,48,"(45,50]",HS,2.5160548429898277,9.910583307179566,0.2538755555555556,7853.5077305658315,2019
+1995,70,"(65,70]",NoHS,27.930144183989384,23.785399937230956,1.174255814814815,6909.34165749137,2019
+1995,70,"(65,70]",NoHS,27.930144183989384,23.785399937230956,1.174255814814815,6914.447399170616,2019
+1995,70,"(65,70]",NoHS,27.930144183989384,23.785399937230956,1.174255814814815,6916.484511208313,2019
+1995,70,"(65,70]",NoHS,27.930144183989384,23.785399937230956,1.174255814814815,6921.8661538780125,2019
+1995,70,"(65,70]",NoHS,27.930144183989384,23.785399937230956,1.174255814814815,6920.115075859263,2019
+1995,32,"(30,35]",HS,1064.291198584697,178.3904995292322,5.966075555555555,688.3126135240152,2019
+1995,32,"(30,35]",HS,1064.097655904467,178.3904995292322,5.96499061728395,676.9853925043695,2019
+1995,32,"(30,35]",HS,1064.097655904467,178.3904995292322,5.96499061728395,689.7275158414486,2019
+1995,32,"(30,35]",HS,1064.291198584697,178.3904995292322,5.966075555555555,648.2964214147033,2019
+1995,32,"(30,35]",HS,1065.258911985847,178.3904995292322,5.97150024691358,696.4738791207582,2019
+1995,73,"(70,75]",NoHS,19.0058911985847,2.3785399937230958,7.990570370370372,7957.698362034234,2019
+1995,73,"(70,75]",NoHS,20.109084475895624,2.3785399937230958,8.454381481481484,7962.682682706621,2019
+1995,73,"(70,75]",NoHS,19.0058911985847,2.3785399937230958,7.990570370370372,7964.422731995981,2019
+1995,73,"(70,75]",NoHS,19.29620521892968,2.3785399937230958,8.112625925925927,7969.334255933903,2019
+1995,73,"(70,75]",NoHS,19.489747899159667,2.3785399937230958,8.193996296296298,7972.807028645312,2019
+1995,54,"(50,55]",HS,433.9226890756303,134.7839329776421,3.2193947712418303,4180.098860872415,2019
+1995,54,"(50,55]",HS,439.1483414418399,134.7839329776421,3.258165359477124,4354.189421950976,2019
+1995,54,"(50,55]",HS,434.6968597965502,134.7839329776421,3.225138562091503,4302.242640953143,2019
+1995,54,"(50,55]",HS,434.3097744360902,134.7839329776421,3.222266666666666,4082.6329914303105,2019
+1995,54,"(50,55]",HS,431.40663423264044,134.7839329776421,3.2007274509803922,4314.00797909999,2019
+1995,19,"(15,20]",HS,8.806191950464395,11.298064970184706,0.7794424951267055,6191.804592880234,2019
+1995,19,"(15,20]",HS,8.806191950464395,12.487334967046253,0.7052098765432098,6300.979331449112,2019
+1995,19,"(15,20]",HS,8.806191950464395,13.081969965477029,0.6731548821548821,6271.891498989218,2019
+1995,19,"(15,20]",HS,8.806191950464395,11.892699968615478,0.7404703703703704,6291.757552939215,2019
+1995,19,"(15,20]",HS,8.806191950464395,13.47839329776421,0.6533562091503268,6241.446247418865,2019
+1995,75,"(70,75]",NoHS,13398.379124281291,937.541180859187,14.290976650223161,21.177994504992252,2019
+1995,75,"(70,75]",NoHS,4134.80711189739,505.43974866615787,8.180613263616557,19.74678554457483,2019
+1995,75,"(70,75]",NoHS,15916.233914197259,368.67369902707986,43.171601218637996,20.141261655395216,2019
+1995,75,"(70,75]",NoHS,5293.779389650597,218.03283275795047,24.279734949494948,17.96867383023132,2019
+1995,75,"(70,75]",NoHS,9815.129942503316,925.6484808905715,10.603517582679038,20.162592341760934,2019
+1995,51,"(50,55]",HS,159.96302521008406,33.69598324441053,4.747243137254903,6412.92053361999,2019
+1995,51,"(50,55]",HS,159.96302521008406,33.69598324441053,4.747243137254903,6265.295270913807,2019
+1995,51,"(50,55]",HS,159.96302521008406,33.69598324441053,4.747243137254903,6348.248545646491,2019
+1995,51,"(50,55]",HS,159.96302521008406,33.69598324441053,4.747243137254903,6529.23385274624,2019
+1995,51,"(50,55]",HS,159.96302521008406,33.69598324441053,4.747243137254903,6396.734122451175,2019
+1995,39,"(35,40]",College,695.0117647058825,188.30108283641175,3.690960000000001,5318.362449456812,2019
+1995,39,"(35,40]",College,695.0117647058825,188.30108283641175,3.690960000000001,5537.77315998802,2019
+1995,39,"(35,40]",College,695.0117647058825,188.30108283641175,3.690960000000001,5462.124715667187,2019
+1995,39,"(35,40]",College,695.0117647058825,188.30108283641175,3.690960000000001,5185.9929524725385,2019
+1995,39,"(35,40]",College,695.0117647058825,188.30108283641175,3.690960000000001,5500.064128787499,2019
+1995,50,"(45,50]",College,248.31525873507297,261.6393993095406,0.9490744107744107,4145.2690625965715,2019
+1995,50,"(45,50]",College,248.31525873507297,255.69304932523286,0.9711459086993969,4319.554743607349,2019
+1995,50,"(45,50]",College,248.31525873507297,273.53209927815607,0.907810305958132,4268.207812808319,2019
+1995,50,"(45,50]",College,248.31525873507297,259.6572826481047,0.9563192536047496,4047.8859946332027,2019
+1995,50,"(45,50]",College,248.31525873507297,257.6751659866688,0.9636755555555553,4282.014241033552,2019
+1995,71,"(70,75]",College,25501.18354710305,495.5291653589783,51.462528,366.3215736417963,2019
+1995,71,"(70,75]",College,25501.18354710305,495.5291653589783,51.462528,439.2377225687429,2019
+1995,71,"(70,75]",College,25501.18354710305,495.5291653589783,51.462528,365.9855394755431,2019
+1995,71,"(70,75]",College,25501.18354710305,495.5291653589783,51.462528,427.99962888407816,2019
+1995,71,"(70,75]",College,25501.18354710305,495.5291653589783,51.462528,357.7737594067429,2019
+1995,77,"(75,80]",HS,74388.1291463954,2041.5801612789908,36.43654584681769,16.922237812228754,2019
+1995,77,"(75,80]",HS,78328.65811587793,2160.5071609651454,36.25475514780836,18.281957672402182,2019
+1995,77,"(75,80]",HS,73521.05793896505,2041.5801612789908,36.0118399137001,18.149931201243074,2019
+1995,77,"(75,80]",HS,68748.29544449359,1934.5458615614514,35.537175318761385,15.780003964162134,2019
+1995,77,"(75,80]",HS,79722.16541353383,2120.8648277364273,37.589460851505706,16.98926204970277,2019
+1995,34,"(30,35]",College,70.0624502432552,89.1952497646161,0.7854953086419754,5802.043043403273,2019
+1995,34,"(30,35]",College,70.0624502432552,83.24889978030835,0.8416021164021165,5729.772812708518,2019
+1995,34,"(30,35]",College,70.0624502432552,53.517149858769656,1.3091588477366256,5806.252117938011,2019
+1995,34,"(30,35]",College,70.0624502432552,73.3383164731288,0.9553321321321321,5737.922014271008,2019
+1995,34,"(30,35]",College,70.0624502432552,91.177366426052,0.7684193236714977,5792.542204887794,2019
+1995,44,"(40,45]",NoHS,1374.5401149933657,67.39196648882105,20.39620130718954,353.7982484560356,2019
+1995,44,"(40,45]",NoHS,1383.0366386554622,69.37408315025698,19.935926730158727,362.18153591723836,2019
+1995,44,"(40,45]",NoHS,1368.1144980097301,61.44561650451331,22.265453189964155,356.68503593698034,2019
+1995,44,"(40,45]",NoHS,1375.5271826625387,79.28466645743653,17.349220777777777,350.46225643921747,2019
+1995,44,"(40,45]",NoHS,1385.010773993808,73.3383164731288,18.885227267267265,655.1298998380137,2019
+1995,46,"(45,50]",HS,288.1850508624503,237.85399937230957,1.211604814814815,4464.798493282395,2019
+1995,46,"(45,50]",HS,287.6044228217603,237.85399937230957,1.209163703703704,4651.720516328945,2019
+1995,46,"(45,50]",HS,290.1204776647501,237.85399937230957,1.219741851851852,4571.308531152988,2019
+1995,46,"(45,50]",HS,288.1850508624503,237.85399937230957,1.211604814814815,4368.816030667936,2019
+1995,46,"(45,50]",HS,285.66899601946045,237.85399937230957,1.201026666666667,4584.402630742739,2019
+1995,45,"(40,45]",HS,357.08624502432554,194.2474328207195,1.8383061224489796,3908.0891056811997,2019
+1995,45,"(40,45]",HS,357.08624502432554,160.55144957630895,2.224123456790124,4069.4414840879463,2019
+1995,45,"(40,45]",HS,357.08624502432554,180.3726161906681,1.9797142857142858,4020.5356463442863,2019
+1995,45,"(40,45]",HS,357.08624502432554,184.33684951353993,1.9371397849462366,3814.958803847408,2019
+1995,45,"(40,45]",HS,357.08624502432554,168.47991622205262,2.119458823529412,4036.2229950392634,2019
+1995,41,"(40,45]",College,165.49834586466164,134.7839329776421,1.2278788888888887,5191.064175524886,2019
+1995,41,"(40,45]",College,186.8267492260062,124.87334967046255,1.4961298765432098,5119.646056691059,2019
+1995,41,"(40,45]",College,199.44573197700134,110.99853304041113,1.7968321428571432,5115.324822015845,2019
+1995,41,"(40,45]",College,252.3022379478107,124.87334967046255,2.0204650440917105,5170.035487704445,2019
+1995,41,"(40,45]",College,239.74131800088455,140.73028296194985,1.7035517370892017,5133.867346771367,2019
+1995,35,"(30,35]",HS,-1.548341441839894,89.1952497646161,-0.017359012345679013,8154.31524702211,2019
+1995,35,"(30,35]",HS,-1.548341441839894,89.1952497646161,-0.017359012345679013,8310.549062699085,2019
+1995,35,"(30,35]",HS,-1.548341441839894,89.1952497646161,-0.017359012345679013,8181.708501541815,2019
+1995,35,"(30,35]",HS,-1.548341441839894,89.1952497646161,-0.017359012345679013,8204.15892403938,2019
+1995,35,"(30,35]",HS,-1.548341441839894,89.1952497646161,-0.017359012345679013,8212.971344429438,2019
+1995,59,"(55,60]",HS,771.1708093763822,128.8375829933344,5.985604444444443,4825.051843885758,2019
+1995,59,"(55,60]",HS,748.9134011499337,128.8375829933344,5.8128488888888885,5014.887814850148,2019
+1995,59,"(55,60]",HS,804.07306501548,128.8375829933344,6.240982222222222,4959.944090568568,2019
+1995,59,"(55,60]",HS,756.8486510393632,128.8375829933344,5.874439999999999,4703.570015352438,2019
+1995,59,"(55,60]",HS,891.1672711189739,128.8375829933344,6.91698222222222,4968.655482813197,2019
+1995,37,"(35,40]",HS,120.73192392746573,122.89123300902662,0.9824291039426524,6283.903473801298,2019
+1995,37,"(35,40]",HS,155.74379478107033,124.87334967046255,1.2472140388007056,6236.584943646625,2019
+1995,37,"(35,40]",HS,165.71124281291463,114.96276636328297,1.4414340229885056,6277.245633370675,2019
+1995,37,"(35,40]",HS,152.35679787704555,118.92699968615479,1.281095111111111,6346.992725380535,2019
+1995,37,"(35,40]",HS,143.1248120300752,110.99853304041113,1.289429761904762,6286.676126597916,2019
+1995,84,"(80,85]",NoHS,135.8669615214507,29.731749921538697,4.5697600000000005,8126.500910656663,2019
+1995,84,"(80,85]",NoHS,135.8669615214507,29.731749921538697,4.5697600000000005,8081.948921953328,2019
+1995,84,"(80,85]",NoHS,135.8669615214507,29.731749921538697,4.5697600000000005,8128.388533670257,2019
+1995,84,"(80,85]",NoHS,135.8669615214507,29.731749921538697,4.5697600000000005,8095.827460941875,2019
+1995,84,"(80,85]",NoHS,135.8669615214507,29.731749921538697,4.5697600000000005,8119.004199060046,2019
+1995,40,"(35,40]",College,2765.3378151260504,150.64086626912942,18.357155555555554,2221.4835310605804,2019
+1995,40,"(35,40]",College,3053.7164086687308,150.64086626912942,20.27150058479532,2091.511688738291,2019
+1995,40,"(35,40]",College,2880.9795665634674,150.64086626912942,19.124820760233916,1968.8953776587157,2019
+1995,40,"(35,40]",College,2983.7991154356478,150.64086626912942,19.8073682748538,1973.6843797778442,2019
+1995,40,"(35,40]",College,2682.356390977444,150.64086626912942,17.80629956140351,2217.755115589546,2019
+1995,43,"(40,45]",College,466.0507739938081,198.21166614359132,2.3512782222222226,3414.016238977091,2019
+1995,43,"(40,45]",College,466.0507739938081,198.21166614359132,2.3512782222222226,3541.4226131474047,2019
+1995,43,"(40,45]",College,466.0507739938081,198.21166614359132,2.3512782222222226,3490.1499687688606,2019
+1995,43,"(40,45]",College,466.0507739938081,198.21166614359132,2.3512782222222226,3315.426948677234,2019
+1995,43,"(40,45]",College,466.0507739938081,198.21166614359132,2.3512782222222226,3518.03471632757,2019
+1995,81,"(80,85]",College,58150.57567448032,168.47991622205262,345.14841281045756,70.09756984505843,2019
+1995,81,"(80,85]",College,48103.29128704114,580.7601818007226,82.8281497155859,71.19867686912748,2019
+1995,81,"(80,85]",College,67749.42167182663,665.9911982424668,101.72720277777779,71.39849727852989,2019
+1995,81,"(80,85]",College,61289.35409111013,358.7631157199002,170.83515948434626,68.52340011160537,2019
+1995,81,"(80,85]",College,68807.63563025212,644.1879149666719,106.81298737777779,68.43078706862578,2019
+1995,42,"(40,45]",HS,85.06200796107917,103.07006639466748,0.8252833333333335,11322.169233789436,2019
+1995,42,"(40,45]",HS,81.7911366651924,103.07006639466748,0.793548888888889,11566.305878799258,2019
+1995,42,"(40,45]",HS,82.66207872622734,103.07006639466748,0.801998888888889,11225.596705748576,2019
+1995,42,"(40,45]",HS,80.78471472799646,103.07006639466748,0.7837844444444445,11758.340895534824,2019
+1995,42,"(40,45]",HS,79.85570986289254,103.07006639466748,0.7747711111111113,11491.275948470156,2019
+1995,38,"(35,40]",NoHS,-8.593295002211411,10.505218305610338,-0.8180025157232707,6093.539128447668,2019
+1995,38,"(35,40]",NoHS,-8.593295002211411,10.505218305610338,-0.8180025157232707,6112.260416906941,2019
+1995,38,"(35,40]",NoHS,-8.593295002211411,10.505218305610338,-0.8180025157232707,6106.542022349398,2019
+1995,38,"(35,40]",NoHS,-8.593295002211411,10.505218305610338,-0.8180025157232707,6097.765316646281,2019
+1995,38,"(35,40]",NoHS,-8.593295002211411,10.505218305610338,-0.8180025157232707,6119.835621339591,2019
+1995,58,"(55,60]",College,342.4157098628925,79.28466645743653,4.318813777777778,7457.156978355706,2019
+1995,58,"(55,60]",College,340.6738257408227,79.28466645743653,4.296843777777778,7451.248422477739,2019
+1995,58,"(55,60]",College,340.94478549314465,79.28466645743653,4.300261333333334,7511.562582569271,2019
+1995,58,"(55,60]",College,340.6544714727997,79.28466645743653,4.296599666666667,7642.82193815569,2019
+1995,58,"(55,60]",College,340.5189915966386,79.28466645743653,4.294890888888888,7457.680790432821,2019
+1995,50,"(45,50]",College,10708.716497125166,792.8466645743653,13.506667777777778,266.2710057351491,2019
+1995,50,"(45,50]",College,10708.716497125166,792.8466645743653,13.506667777777778,240.05148966087395,2019
+1995,50,"(45,50]",College,10708.716497125166,792.8466645743653,13.506667777777778,236.81406969648947,2019
+1995,50,"(45,50]",College,10708.716497125166,792.8466645743653,13.506667777777778,244.2358740114048,2019
+1995,50,"(45,50]",College,10708.716497125166,792.8466645743653,13.506667777777778,240.5642051289903,2019
+1995,31,"(30,35]",HS,60.83046439628483,21.803283275795042,2.7899680808080816,4649.324398842626,2019
+1995,31,"(30,35]",HS,59.08858027421495,21.803283275795042,2.710077171717172,4577.6471930591415,2019
+1995,31,"(30,35]",HS,58.895037593984966,21.803283275795042,2.7012004040404047,4588.569748051569,2019
+1995,31,"(30,35]",HS,61.02400707651482,21.803283275795042,2.798844848484849,4559.220459342567,2019
+1995,31,"(30,35]",HS,64.89486068111455,21.803283275795042,2.9763802020202026,4577.997766144541,2019
+1995,77,"(75,80]",HS,1332.7348960636887,77.30254979600063,17.240503703703702,4595.06671604053,2019
+1995,77,"(75,80]",HS,1332.7348960636887,77.30254979600063,17.240503703703702,4752.152054217042,2019
+1995,77,"(75,80]",HS,1332.7348960636887,77.30254979600063,17.240503703703702,4725.298605231641,2019
+1995,77,"(75,80]",HS,1332.7348960636887,77.30254979600063,17.240503703703702,4478.462402495388,2019
+1995,77,"(75,80]",HS,1332.7348960636887,77.30254979600063,17.240503703703702,4751.326533601192,2019
+1995,78,"(75,80]",HS,599.014595311809,53.517149858769656,11.192946502057614,3491.6169912376477,2019
+1995,78,"(75,80]",HS,600.9500221141088,53.517149858769656,11.229111111111113,3610.593048806495,2019
+1995,78,"(75,80]",HS,604.8208757187085,53.517149858769656,11.301440329218106,3588.393007259441,2019
+1995,78,"(75,80]",HS,602.8854489164087,53.517149858769656,11.26527572016461,3402.51201522037,2019
+1995,78,"(75,80]",HS,600.9500221141088,53.517149858769656,11.229111111111113,3606.9463819947973,2019
+1995,55,"(50,55]",College,502.63034055727553,79.28466645743653,6.339565555555556,5255.046223702297,2019
+1995,55,"(50,55]",College,502.63034055727553,79.28466645743653,6.339565555555556,5281.94026887038,2019
+1995,55,"(50,55]",College,502.63034055727553,79.28466645743653,6.339565555555556,5283.301208514898,2019
+1995,55,"(50,55]",College,502.63034055727553,79.28466645743653,6.339565555555556,5129.484525246591,2019
+1995,55,"(50,55]",College,502.63034055727553,79.28466645743653,6.339565555555556,5271.312742613655,2019
+1995,75,"(70,75]",College,14835.92705882353,172.44414954492444,86.03322929757344,25.025677784484483,2019
+1995,75,"(70,75]",College,19648.001942503317,707.6156481326211,27.766488763149702,47.34822344697606,2019
+1995,75,"(70,75]",College,20421.42558867758,354.79888239702854,57.55775060707635,41.42862272119911,2019
+1995,75,"(70,75]",College,42660.871118973904,719.5083481012365,59.29169721456994,45.88615192074797,2019
+1995,75,"(70,75]",College,22848.36563998231,453.9047154688242,50.33736125958272,39.93239925429628,2019
+1995,48,"(45,50]",NoHS,26.223097744360903,67.39196648882105,0.3891131111111111,10500.501963218001,2019
+1995,48,"(45,50]",NoHS,49.56628040689961,79.28466645743653,0.6251685555555556,10336.66577854784,2019
+1995,48,"(45,50]",NoHS,59.03051747014596,85.23101644174427,0.6925943152454781,10092.03084324297,2019
+1995,48,"(45,50]",NoHS,89.35865546218488,67.39196648882105,1.3259541176470588,10558.78761822826,2019
+1995,48,"(45,50]",NoHS,62.22397169394074,81.26678311887244,0.7656753387533877,10372.234183791057,2019
+1995,42,"(40,45]",HS,6243.648155683326,545.0820818948762,11.454509995959596,16.114655255000407,2019
+1995,42,"(40,45]",HS,6532.452543122512,1359.7320297450365,4.804220537738905,14.46997871291787,2019
+1995,42,"(40,45]",HS,10048.619831932774,878.0776810161096,11.443884805618259,14.951180330280554,2019
+1995,42,"(40,45]",HS,11259.926050420168,656.0806149352873,17.162412353138638,14.487342732719895,2019
+1995,42,"(40,45]",HS,10196.02193719593,608.5098150608254,16.75572305465074,14.858827457552408,2019
+1995,64,"(60,65]",College,332.06117647058824,192.26531615928357,1.7270986941580757,7636.933979233509,2019
+1995,64,"(60,65]",College,332.06117647058824,192.26531615928357,1.7270986941580757,7477.557872243383,2019
+1995,64,"(60,65]",College,332.06117647058824,192.26531615928357,1.7270986941580757,7542.857650067517,2019
+1995,64,"(60,65]",College,332.06117647058824,192.26531615928357,1.7270986941580757,7526.593922730861,2019
+1995,64,"(60,65]",College,332.06117647058824,192.26531615928357,1.7270986941580757,7446.615090392239,2019
+1995,54,"(50,55]",NoHS,63.44135515258735,31.713866582974614,2.0004295277777775,6537.156558378719,2019
+1995,54,"(50,55]",NoHS,59.222124723573636,31.713866582974614,1.867388972222222,6346.594831088943,2019
+1995,54,"(50,55]",NoHS,64.06069172932331,31.713866582974614,2.0199584166666664,6383.577717396885,2019
+1995,54,"(50,55]",NoHS,61.68011676249447,31.713866582974614,1.94489425,6562.871218226479,2019
+1995,54,"(50,55]",NoHS,63.809086245024325,31.713866582974614,2.0120248055555554,6445.965702930345,2019
+1995,29,"(25,30]",HS,75.69454223794781,73.3383164731288,1.0321281681681682,4120.992081903392,2019
+1995,29,"(25,30]",HS,45.637363998230875,67.39196648882105,0.6771929411764706,4057.460013123633,2019
+1995,29,"(25,30]",HS,69.28827952233524,67.39196648882105,1.0281385620915031,4067.1413686877117,2019
+1995,29,"(25,30]",HS,35.34089340999558,71.35619981169287,0.4952743209876544,4041.1272264159,2019
+1995,29,"(25,30]",HS,48.34696152145069,63.42773316594923,0.7622369444444445,4057.770748358499,2019
+1995,47,"(45,50]",HS,9.890030959752323,19.821166614359132,0.4989631111111112,6539.225084230227,2019
+1995,47,"(45,50]",HS,9.890030959752323,19.821166614359132,0.4989631111111112,6552.206248106346,2019
+1995,47,"(45,50]",HS,9.890030959752323,19.821166614359132,0.4989631111111112,6489.674976311149,2019
+1995,47,"(45,50]",HS,9.890030959752323,19.821166614359132,0.4989631111111112,6625.678409159826,2019
+1995,47,"(45,50]",HS,9.890030959752323,19.821166614359132,0.4989631111111112,6561.148705717527,2019
+1995,37,"(35,40]",College,22305.9874391862,1189.2699968615482,18.75603311111111,176.22525904952346,2019
+1995,37,"(35,40]",College,18985.18213180009,1189.2699968615482,15.963727481481481,158.79284583583328,2019
+1995,37,"(35,40]",College,19706.32215833702,1189.2699968615482,16.57009948148148,155.88106100040437,2019
+1995,37,"(35,40]",College,19376.52543122512,1189.2699968615482,16.292789259259255,160.5154108727985,2019
+1995,37,"(35,40]",College,16787.11791242813,1189.2699968615482,14.115480888888888,158.05197027617726,2019
+1995,42,"(40,45]",HS,316.6164705882353,59.46349984307739,5.324551555555556,5684.77117496782,2019
+1995,42,"(40,45]",HS,308.1393011941619,59.46349984307739,5.181990666666667,5759.527762068797,2019
+1995,42,"(40,45]",HS,320.08088456435206,59.46349984307739,5.382812740740741,5694.353011055548,2019
+1995,42,"(40,45]",HS,319.1712339672711,59.46349984307739,5.3675151111111115,5677.011528245976,2019
+1995,42,"(40,45]",HS,320.17765590446703,59.46349984307739,5.3844401481481485,5701.463058632902,2019
+1995,54,"(50,55]",HS,227.72038213180008,31.713866582974614,7.180467305555555,8458.421042957209,2019
+1995,54,"(50,55]",HS,196.19421494913757,33.69598324441053,5.822480784313726,8263.708412105192,2019
+1995,54,"(50,55]",HS,195.94260946483857,33.69598324441053,5.81501385620915,8373.120920946163,2019
+1995,54,"(50,55]",HS,229.1932419283503,35.67809990584644,6.42391950617284,8611.834299977303,2019
+1995,54,"(50,55]",HS,259.1730030959752,29.731749921538697,8.717045037037037,8437.07172479203,2019
+1995,28,"(25,30]",NoHS,10.451304732419283,61.44561650451331,0.17009032258064516,6346.556991975745,2019
+1995,28,"(25,30]",NoHS,9.290048651039363,73.3383164731288,0.12667387387387385,6413.624341517358,2019
+1995,28,"(25,30]",NoHS,10.451304732419283,85.23101644174427,0.12262325581395347,6355.405006517488,2019
+1995,28,"(25,30]",NoHS,9.096505970809377,73.3383164731288,0.12403483483483482,6455.291997620254,2019
+1995,28,"(25,30]",NoHS,10.451304732419283,73.3383164731288,0.14250810810810807,6364.968674742339,2019
+1995,75,"(70,75]",College,1429.990092879257,103.07006639466748,13.873961111111113,72.88855794141492,2019
+1995,72,"(70,75]",College,1430.086864219372,307.22808252256664,4.654805161290322,72.69863970037798,2019
+1995,72,"(70,75]",College,1431.4029544449359,220.01494941938637,6.505934974974975,71.70012090068224,2019
+1995,75,"(70,75]",College,1431.6352056612118,112.98064970184706,12.671507992202729,71.69485517327512,2019
+1995,72,"(70,75]",College,1624.5972578505086,227.94341606513,7.127195362318841,132.66425115118906,2019
+1995,28,"(25,30]",College,112.83538257408227,110.99853304041113,1.0165484126984128,4504.45086414715,2019
+1995,28,"(25,30]",College,41.41813356921716,124.87334967046255,0.3316811287477954,4506.121452208015,2019
+1995,28,"(25,30]",College,88.44900486510394,128.8375829933344,0.6865155555555554,4446.543304756532,2019
+1995,28,"(25,30]",College,52.06298098186643,120.90911634759071,0.4305959927140255,4487.982636219686,2019
+1995,28,"(25,30]",College,48.96629809818664,132.8018163162062,0.3687170812603648,4506.4665475886895,2019
+1995,67,"(65,70]",NoHS,1305.2518354710305,19.821166614359132,65.85141333333334,3341.844512059312,2019
+1995,67,"(65,70]",NoHS,1330.4123839009287,19.821166614359132,67.1207911111111,3473.6648239926812,2019
+1995,67,"(65,70]",NoHS,1330.4123839009287,19.821166614359132,67.1207911111111,3434.1205220863144,2019
+1995,67,"(65,70]",NoHS,1316.8643962848298,19.821166614359132,66.43728,3256.071569273435,2019
+1995,67,"(65,70]",NoHS,1307.1872622733306,19.821166614359132,65.9490577777778,3478.7607261855883,2019
+1995,43,"(40,45]",College,31.54745687748784,69.37408315025698,0.4547441269841269,4271.2311452536405,2019
+1995,43,"(40,45]",College,29.80557275541796,69.37408315025698,0.4296355555555555,4235.777445838495,2019
+1995,43,"(40,45]",College,32.70871295886776,69.37408315025698,0.4714831746031745,4215.739141392752,2019
+1995,43,"(40,45]",College,32.70871295886776,69.37408315025698,0.4714831746031745,4139.160881325819,2019
+1995,43,"(40,45]",College,32.70871295886776,69.37408315025698,0.4714831746031745,4220.106883210222,2019
+1995,26,"(25,30]",HS,45.09544449358691,35.67809990584644,1.2639530864197532,4120.992081903392,2019
+1995,26,"(25,30]",HS,45.17286156567891,35.67809990584644,1.2661229629629631,4057.460013123633,2019
+1995,26,"(25,30]",HS,45.09544449358691,35.67809990584644,1.2639530864197532,4067.1413686877117,2019
+1995,26,"(25,30]",HS,45.09544449358691,35.67809990584644,1.2639530864197532,4041.1272264159,2019
+1995,26,"(25,30]",HS,45.153507297655906,35.67809990584644,1.2655804938271606,4057.770748358499,2019
+1995,80,"(75,80]",HS,84640.78167182663,1326.0360465006258,63.829925208437146,20.596531953093002,2019
+1995,80,"(75,80]",HS,77406.81432994251,1012.8616139937516,76.42387988693196,22.26202337905925,2019
+1995,80,"(75,80]",HS,77164.88597965501,971.2371641035975,79.45009605442176,21.732516141960737,2019
+1995,80,"(75,80]",HS,77260.3025210084,1220.9838634445227,63.277087301587294,19.262965231704467,2019
+1995,80,"(75,80]",HS,72702.3724015922,1199.1805801687274,60.62670927456382,21.033670215083394,2019
+1995,49,"(45,50]",HS,239.4122954444936,53.517149858769656,4.4735621399176955,4933.735104467178,2019
+1995,49,"(45,50]",HS,239.4122954444936,39.642333228718265,6.039308888888889,4812.165171069266,2019
+1995,49,"(45,50]",HS,239.4122954444936,81.26678311887244,2.9460043360433605,4848.304826493708,2019
+1995,49,"(45,50]",HS,239.4122954444936,43.606566551590085,5.490280808080809,4806.332890494117,2019
+1995,49,"(45,50]",HS,239.4122954444936,105.0521830561034,2.2789844863731656,4859.605343017613,2019
+1995,22,"(20,25]",HS,-12.193188854489165,4.955291653589783,-2.46064,7349.913853965192,2019
+1995,22,"(20,25]",HS,-10.838390092879257,4.955291653589783,-2.1872355555555556,7372.324219184168,2019
+1995,22,"(20,25]",HS,-10.838390092879257,4.955291653589783,-2.1872355555555556,7368.9922382247605,2019
+1995,22,"(20,25]",HS,-10.838390092879257,4.955291653589783,-2.1872355555555556,7387.861806175667,2019
+1995,22,"(20,25]",HS,-10.644847412649272,4.955291653589783,-2.148177777777778,7318.079023097263,2019
+1995,35,"(30,35]",NoHS,-13.160902255639098,35.67809990584644,-0.36887901234567905,5874.349257422185,2019
+1995,35,"(30,35]",NoHS,-13.160902255639098,35.67809990584644,-0.36887901234567905,5945.040717010588,2019
+1995,35,"(30,35]",NoHS,-13.160902255639098,35.67809990584644,-0.36887901234567905,5913.1724953086095,2019
+1995,35,"(30,35]",NoHS,-13.160902255639098,35.67809990584644,-0.36887901234567905,5919.976774683111,2019
+1995,35,"(30,35]",NoHS,-13.160902255639098,35.67809990584644,-0.36887901234567905,5952.792916502642,2019
+1995,42,"(40,45]",HS,204.187527642636,71.35619981169287,2.861524691358025,7320.73151221735,2019
+1995,42,"(40,45]",HS,201.86501547987618,71.35619981169287,2.828976543209877,7220.013652562453,2019
+1995,42,"(40,45]",HS,204.187527642636,71.35619981169287,2.861524691358025,7213.919603675972,2019
+1995,42,"(40,45]",HS,206.12295444493586,71.35619981169287,2.8886481481481483,7291.07567048965,2019
+1995,42,"(40,45]",HS,204.187527642636,71.35619981169287,2.861524691358025,7240.06931801274,2019
+1995,41,"(40,45]",HS,35.32153914197258,39.642333228718265,0.8910055555555556,5690.164952952259,2019
+1995,41,"(40,45]",HS,35.32153914197258,39.642333228718265,0.8910055555555556,5708.901338966227,2019
+1995,41,"(40,45]",HS,35.32153914197258,39.642333228718265,0.8910055555555556,5706.851156100456,2019
+1995,41,"(40,45]",HS,35.32153914197258,39.642333228718265,0.8910055555555556,5696.944113283013,2019
+1995,41,"(40,45]",HS,35.32153914197258,39.642333228718265,0.8910055555555556,5718.180318755357,2019
+1995,39,"(35,40]",HS,-12.502857142857144,0.9910583307179567,-12.615662222222223,6422.919638651289,2019
+1995,39,"(35,40]",HS,-12.56091994692614,0.9910583307179567,-12.674248888888888,6442.652888700436,2019
+1995,39,"(35,40]",HS,-12.502857142857144,0.9910583307179567,-12.615662222222223,6436.625391718637,2019
+1995,39,"(35,40]",HS,-12.502857142857144,0.9910583307179567,-12.615662222222223,6427.374269466867,2019
+1995,39,"(35,40]",HS,-12.502857142857144,0.9910583307179567,-12.615662222222223,6450.637563663812,2019
+1995,37,"(35,40]",College,246738.27297655903,40236.96822714904,6.13212883196497,19.107937946227455,2019
+1995,37,"(35,40]",College,209300.92525431226,41802.84038968341,5.00685894315368,19.503696975812954,2019
+1995,37,"(35,40]",College,237694.217072092,46104.03354499934,5.155605676889271,18.655515636750955,2019
+1995,37,"(35,40]",College,226653.96196373287,37125.04506869466,6.10514981313401,18.98752820338388,2019
+1995,37,"(35,40]",College,245328.8951791243,44696.73071537985,5.488743611727026,18.153376128028647,2019
+1995,27,"(25,30]",HS,-28.489482529854047,95.14159974892382,-0.299442962962963,6253.511787797136,2019
+1995,27,"(25,30]",HS,29.728155683325966,69.37408315025698,0.42851961904761904,6195.98329899732,2019
+1995,27,"(25,30]",HS,11.902874834144184,33.69598324441053,0.3532431372549019,6256.540502254586,2019
+1995,27,"(25,30]",HS,-4.915984077841663,31.713866582974614,-0.15501055555555554,6219.079167758753,2019
+1995,27,"(25,30]",HS,-1.6064042459088899,146.6766329462576,-0.01095201201201201,6228.924069953832,2019
+1995,36,"(35,40]",College,275.8563821318001,45.588683213026,6.050983768115943,7479.789346944296,2019
+1995,36,"(35,40]",College,287.12056612118533,43.606566551590085,6.5843424242424256,7571.567048298393,2019
+1995,36,"(35,40]",College,214.21303847854932,51.53503319733374,4.156648888888889,7478.659231612777,2019
+1995,36,"(35,40]",College,256.67630252100844,47.57079987446191,5.395669259259261,7726.867361425184,2019
+1995,36,"(35,40]",College,221.33540911101284,63.42773316594923,3.489568333333333,7534.42251860049,2019
+1995,41,"(40,45]",HS,-6.773993808049536,25.76751659866687,-0.26288888888888895,7493.441899179239,2019
+1995,41,"(40,45]",HS,-6.773993808049536,45.588683213026,-0.14858937198067634,7612.227182347825,2019
+1995,41,"(40,45]",HS,-6.773993808049536,43.606566551590085,-0.15534343434343437,7576.767009790981,2019
+1995,41,"(40,45]",HS,-6.773993808049536,33.69598324441053,-0.2010326797385621,7580.221708429957,2019
+1995,41,"(40,45]",HS,-6.773993808049536,47.57079987446191,-0.14239814814814816,7618.25842989238,2019
+1995,55,"(50,55]",College,-49.33402919062362,1288.3758299333438,-0.03829164444444444,1962.2476971978674,2019
+1995,55,"(50,55]",College,-50.03078283945157,1149.62766363283,-0.04351911877394635,2010.445959766861,2019
+1995,55,"(50,55]",College,-49.25661211853162,1282.429479949036,-0.03840882706508672,1944.2455045439951,2019
+1995,55,"(50,55]",College,-49.56628040689961,1324.0539298391898,-0.03743524284763807,2003.5192749639743,2019
+1995,55,"(50,55]",College,-49.6243432109686,1333.9645131463697,-0.03720064718507512,1952.5359801370676,2019
+1995,45,"(40,45]",College,3775.630605926581,380.5663989956953,9.92108240740741,2221.4835310605804,2019
+1995,45,"(40,45]",College,3565.9464661654138,309.21019918400253,11.532434814814813,2091.511688738291,2019
+1995,45,"(40,45]",College,4474.55193277311,380.5663989956953,11.75761166666667,1968.8953776587157,2019
+1995,45,"(40,45]",College,3503.470888987174,321.1028991526179,10.910742002743486,1973.6843797778442,2019
+1995,45,"(40,45]",College,3815.3455639097747,336.95983244410525,11.32284977777778,2217.755115589546,2019
+1995,95,"(90,95]",NoHS,650.4969482529854,9.910583307179566,65.63659555555556,4823.944526147398,2019
+1995,95,"(90,95]",NoHS,293.33328615656785,9.910583307179566,29.597983999999997,9014.603016102876,2019
+1995,95,"(90,95]",NoHS,473.59893852277753,9.910583307179566,47.78719111111111,9247.397181028007,2019
+1995,95,"(90,95]",NoHS,353.0218487394958,9.910583307179566,35.620693333333335,9279.316162806532,2019
+1995,95,"(90,95]",NoHS,358.4023352498894,9.910583307179566,36.163596444444444,9193.456051173122,2019
+1995,42,"(40,45]",NoHS,0.19354268022998675,19.821166614359132,0.009764444444444445,6982.5027068357185,2019
+1995,42,"(40,45]",NoHS,0.19354268022998675,19.821166614359132,0.009764444444444445,7029.244165544813,2019
+1995,42,"(40,45]",NoHS,0.19354268022998675,19.821166614359132,0.009764444444444445,7031.372755006773,2019
+1995,42,"(40,45]",NoHS,0.19354268022998675,19.821166614359132,0.009764444444444445,7018.540017298794,2019
+1995,42,"(40,45]",NoHS,0.19354268022998675,19.821166614359132,0.009764444444444445,7033.256513410536,2019
+1995,41,"(40,45]",HS,16.857567448031844,69.37408315025698,0.24299517460317455,6446.835750416421,2019
+1995,41,"(40,45]",HS,31.160371517027862,69.37408315025698,0.4491644444444443,6433.694897592446,2019
+1995,41,"(40,45]",HS,19.934896063688633,69.37408315025698,0.2873536507936507,6450.450700852545,2019
+1995,41,"(40,45]",HS,27.037912428129147,69.37408315025698,0.3897408253968253,6335.883846976536,2019
+1995,41,"(40,45]",HS,12.677045555064131,69.37408315025698,0.18273460317460313,6443.477532146815,2019
+1995,47,"(45,50]",College,740.8813799203891,77.30254979600063,9.584177777777775,3908.787672102094,2019
+1995,47,"(45,50]",College,740.8813799203891,77.30254979600063,9.584177777777775,4075.6016518852075,2019
+1995,47,"(45,50]",College,740.8813799203891,77.30254979600063,9.584177777777775,4033.9567260662793,2019
+1995,47,"(45,50]",College,740.8813799203891,77.30254979600063,9.584177777777775,3812.5689873246747,2019
+1995,47,"(45,50]",College,740.8813799203891,77.30254979600063,9.584177777777775,4043.3988245686023,2019
+1995,50,"(45,50]",College,11274.848191065901,1090.1641637897524,10.342339773737374,18.397018760496685,2019
+1995,50,"(45,50]",College,10885.943529411765,1090.1641637897524,9.985600234343433,16.185670480756905,2019
+1995,50,"(45,50]",College,10821.93896505971,1090.1641637897524,9.926889292929294,17.020054862015993,2019
+1995,50,"(45,50]",College,11071.725148164529,1090.1641637897524,10.15601642020202,16.291548243350416,2019
+1995,50,"(45,50]",College,10910.89118089341,1090.1641637897524,10.008484541414141,16.990830785398654,2019
+1995,27,"(25,30]",HS,25.741176470588236,49.55291653589783,0.5194684444444445,3809.5609506650717,2019
+1995,27,"(25,30]",HS,25.741176470588236,49.55291653589783,0.5194684444444445,3769.3480718945348,2019
+1995,27,"(25,30]",HS,25.741176470588236,49.55291653589783,0.5194684444444445,3774.271323426195,2019
+1995,27,"(25,30]",HS,25.741176470588236,49.55291653589783,0.5194684444444445,3752.6734056646665,2019
+1995,27,"(25,30]",HS,25.741176470588236,49.55291653589783,0.5194684444444445,3783.743645688444,2019
+1995,42,"(40,45]",College,197.99416187527643,79.28466645743653,2.497256666666667,4408.864075090462,2019
+1995,42,"(40,45]",College,197.99416187527643,79.28466645743653,2.497256666666667,4429.711786415778,2019
+1995,42,"(40,45]",College,211.54214949137548,79.28466645743653,2.668134444444444,4430.042737850503,2019
+1995,42,"(40,45]",College,236.70269792127377,79.28466645743653,2.985478888888889,4300.318485987452,2019
+1995,42,"(40,45]",College,211.54214949137548,79.28466645743653,2.668134444444444,4422.384987519764,2019
+1995,65,"(60,65]",HS,23894.218027421495,2299.25532726566,10.392155122605361,25.025677784484483,2019
+1995,65,"(60,65]",HS,104241.23598407784,1042.5933639152904,99.98263905365441,23.3594980764399,2019
+1995,65,"(60,65]",HS,11594.232321981424,1042.5933639152904,11.120569843683988,41.42862272119911,2019
+1995,65,"(60,65]",HS,81773.11784166298,5589.568985249275,14.629592739164698,22.197837107810393,2019
+1995,65,"(60,65]",HS,46907.003980539586,5589.568985249275,8.391882111899134,23.937492986433583,2019
+1995,61,"(60,65]",NoHS,149.02786377708978,23.785399937230956,6.265518518518519,6843.021555531304,2019
+1995,61,"(60,65]",NoHS,149.02786377708978,23.785399937230956,6.265518518518519,6718.507881314943,2019
+1995,61,"(60,65]",NoHS,149.02786377708978,23.785399937230956,6.265518518518519,6825.403829163911,2019
+1995,61,"(60,65]",NoHS,149.02786377708978,23.785399937230956,6.265518518518519,6814.980498105756,2019
+1995,61,"(60,65]",NoHS,149.02786377708978,23.785399937230956,6.265518518518519,6729.745930352763,2019
+1995,34,"(30,35]",NoHS,0.9870676691729324,16.847991622205264,0.05858666666666667,5031.740284625522,2019
+1995,34,"(30,35]",NoHS,0.9870676691729324,16.847991622205264,0.05858666666666667,5012.891832368632,2019
+1995,34,"(30,35]",NoHS,0.9870676691729324,16.847991622205264,0.05858666666666667,5007.773756770761,2019
+1995,34,"(30,35]",NoHS,0.9870676691729324,16.847991622205264,0.05858666666666667,5034.513181533587,2019
+1995,34,"(30,35]",NoHS,0.9870676691729324,16.847991622205264,0.05858666666666667,5026.904145121975,2019
+1995,83,"(80,85]",College,80571.62423706324,1843.3684951353996,43.70890814814814,229.55644387083765,2019
+1995,83,"(80,85]",College,81172.18717381688,570.849598493543,142.19540030864195,203.52311590468244,2019
+1995,83,"(80,85]",College,73459.89845201239,570.849598493543,128.68520648148152,224.40343369270562,2019
+1995,83,"(80,85]",College,159874.3826625387,1716.5130288035011,93.13904408519373,226.92318413262643,2019
+1995,83,"(80,85]",College,87644.64148606811,1351.803563099293,64.83533841642229,257.7116725196197,2019
+1995,35,"(30,35]",College,252.18611233967272,107.03429971753931,2.356124279835391,5688.48164360569,2019
+1995,35,"(30,35]",College,252.18611233967272,107.03429971753931,2.356124279835391,5625.538180196715,2019
+1995,35,"(30,35]",College,312.1843432109686,107.03429971753931,2.9166757201646094,5660.786138030524,2019
+1995,35,"(30,35]",College,252.18611233967272,107.03429971753931,2.356124279835391,5724.937466466243,2019
+1995,35,"(30,35]",College,252.18611233967272,107.03429971753931,2.356124279835391,5674.080544756541,2019
+1995,37,"(35,40]",HS,1929.6205218929676,176.40838286779626,10.938372034956306,15.798699965087858,2019
+1995,37,"(35,40]",HS,1929.6205218929676,178.3904995292322,10.816834567901235,13.404837205157637,2019
+1995,37,"(35,40]",HS,1929.6205218929676,392.45909896431084,4.916742985409652,13.242694816858622,2019
+1995,37,"(35,40]",HS,1929.6205218929676,390.47698230287494,4.941701071630005,13.698257093103773,2019
+1995,37,"(35,40]",HS,1929.6205218929676,340.9240657669771,5.65997157622739,13.034023733631267,2019
+1995,53,"(50,55]",HS,3250.9363998230874,99.10583307179566,32.80267466666667,627.3589811615038,2019
+1995,53,"(50,55]",HS,3173.5193277310927,99.10583307179566,32.02151911111112,499.9166650226581,2019
+1995,53,"(50,55]",HS,3214.16329057939,99.10583307179566,32.43162577777778,488.16636765783835,2019
+1995,53,"(50,55]",HS,3202.5507297655904,99.10583307179566,32.31445244444445,487.9123764613866,2019
+1995,53,"(50,55]",HS,3189.0027421494915,99.10583307179566,32.17775022222222,499.9995103632262,2019
+1995,50,"(45,50]",HS,14491.043679787705,991.0583307179566,14.621786862222223,1299.0731217314196,2019
+1995,50,"(45,50]",HS,14491.043679787705,991.0583307179566,14.621786862222223,1146.8230929589292,2019
+1995,50,"(45,50]",HS,14491.043679787705,991.0583307179566,14.621786862222223,1210.2182088178872,2019
+1995,50,"(45,50]",HS,14491.043679787705,991.0583307179566,14.621786862222223,1155.2360103119356,2019
+1995,50,"(45,50]",HS,14491.043679787705,991.0583307179566,14.621786862222223,1165.574655132908,2019
+1995,49,"(45,50]",HS,430.7098805838125,99.10583307179566,4.345958933333334,3906.889790054441,2019
+1995,49,"(45,50]",HS,190.6201857585139,75.32043313456471,2.530789824561403,6862.179031219368,2019
+1995,49,"(45,50]",HS,409.18793454223794,99.10583307179566,4.128797688888889,4021.050316682864,2019
+1995,49,"(45,50]",HS,526.8231755860238,95.14159974892382,5.537253703703704,3815.794238758638,2019
+1995,49,"(45,50]",HS,312.22305174701455,85.23101644174427,3.66325622739018,7004.624930396261,2019
+1995,41,"(40,45]",HS,333.9578947368421,85.23101644174427,3.918267183462532,6743.6830938880175,2019
+1995,41,"(40,45]",HS,333.9578947368421,85.23101644174427,3.918267183462532,6826.428703999404,2019
+1995,41,"(40,45]",HS,333.9578947368421,85.23101644174427,3.918267183462532,6742.664196255765,2019
+1995,41,"(40,45]",HS,333.9578947368421,85.23101644174427,3.918267183462532,6966.445494249849,2019
+1995,41,"(40,45]",HS,333.9578947368421,85.23101644174427,3.918267183462532,6792.939667699669,2019
+1995,34,"(30,35]",HS,48.67598407784166,61.44561650451331,0.7921799283154122,4921.495461531716,2019
+1995,34,"(30,35]",HS,17.418841220698805,61.44561650451331,0.2834838709677419,4946.344716316973,2019
+1995,34,"(30,35]",HS,71.5140203449801,61.44561650451331,1.1638587813620072,4973.803150947497,2019
+1995,34,"(30,35]",HS,51.192038920831486,61.44561650451331,0.8331275985663081,5008.809687139606,2019
+1995,34,"(30,35]",HS,13.451216275984077,61.44561650451331,0.21891254480286737,4996.4908207722765,2019
+1995,35,"(30,35]",HS,357.47333038478547,118.92699968615479,3.0058214814814814,8862.817194813399,2019
+1995,35,"(30,35]",HS,357.47333038478547,118.92699968615479,3.0058214814814814,8764.749477493917,2019
+1995,35,"(30,35]",HS,357.47333038478547,118.92699968615479,3.0058214814814814,8819.666804531917,2019
+1995,35,"(30,35]",HS,357.47333038478547,118.92699968615479,3.0058214814814814,8919.616410129975,2019
+1995,35,"(30,35]",HS,357.47333038478547,118.92699968615479,3.0058214814814814,8840.379870672969,2019
+1995,36,"(35,40]",NoHS,1651.3061477222468,67.39196648882105,24.50301176470588,2042.512776007321,2019
+1995,36,"(35,40]",NoHS,1723.8846528084919,67.39196648882105,25.579972549019608,1749.610017213293,2019
+1995,36,"(35,40]",NoHS,1644.7256965944273,67.39196648882105,24.405367320261437,1800.8223707107459,2019
+1995,36,"(35,40]",NoHS,1708.014153029633,67.39196648882105,25.34447712418301,1750.2627110355825,2019
+1995,36,"(35,40]",NoHS,1794.527731092437,67.39196648882105,26.628214379084966,1808.120117120237,2019
+1995,47,"(45,50]",College,624.5041662980982,109.01641637897524,5.728533252525252,4249.6115945066085,2019
+1995,47,"(45,50]",College,554.983635559487,120.90911634759071,4.590089253187614,4410.830637373243,2019
+1995,47,"(45,50]",College,454.32208757187084,120.90911634759071,3.757550309653916,4357.108294602125,2019
+1995,47,"(45,50]",College,591.5051393188854,105.0521830561034,5.630583983228512,4135.603715969302,2019
+1995,47,"(45,50]",College,608.4594781070323,132.8018163162062,4.5817105140961845,4372.715104606422,2019
+1995,27,"(25,30]",College,4.645024325519682,39.642333228718265,0.11717333333333334,5131.08659483892,2019
+1995,27,"(25,30]",College,4.645024325519682,39.642333228718265,0.11717333333333334,5083.883732236489,2019
+1995,27,"(25,30]",College,4.645024325519682,39.642333228718265,0.11717333333333334,5133.5716938807955,2019
+1995,27,"(25,30]",College,4.645024325519682,39.642333228718265,0.11717333333333334,5102.8341886551025,2019
+1995,27,"(25,30]",College,4.645024325519682,39.642333228718265,0.11717333333333334,5110.912057122422,2019
+1995,55,"(50,55]",College,4263.551702786378,154.60509959200127,27.57704444444444,619.0404082653438,2019
+1995,55,"(50,55]",College,3028.3623175586026,293.3532658925152,10.32326096096096,492.2523962480139,2019
+1995,55,"(50,55]",College,2278.190888987174,204.15801612789906,11.15895879180151,1796.3167431624483,2019
+1995,55,"(50,55]",College,3314.2248562582927,184.33684951353993,17.9791770609319,480.6937930274909,2019
+1995,55,"(50,55]",College,3111.9727554179567,212.08648277364273,14.673131048805814,492.11639763061555,2019
+1995,21,"(20,25]",HS,40.27623175586024,35.67809990584644,1.1288782716049384,4819.587240894411,2019
+1995,21,"(20,25]",HS,40.27623175586024,35.67809990584644,1.1288782716049384,4799.099576851141,2019
+1995,21,"(20,25]",HS,40.27623175586024,35.67809990584644,1.1288782716049384,4785.967471653864,2019
+1995,21,"(20,25]",HS,40.27623175586024,35.67809990584644,1.1288782716049384,4755.8470137188215,2019
+1995,21,"(20,25]",HS,40.27623175586024,35.67809990584644,1.1288782716049384,4766.051742918955,2019
+1995,50,"(45,50]",HS,76.0622733303848,29.731749921538697,2.5582844444444452,6981.160975710676,2019
+1995,50,"(45,50]",HS,76.0622733303848,29.731749921538697,2.5582844444444452,6852.23697822933,2019
+1995,50,"(45,50]",HS,45.09544449358691,29.731749921538697,1.516743703703704,6909.275842406541,2019
+1995,50,"(45,50]",HS,76.0622733303848,29.731749921538697,2.5582844444444452,7154.238694277866,2019
+1995,50,"(45,50]",HS,76.0622733303848,29.731749921538697,2.5582844444444452,6987.140916625298,2019
+1995,35,"(30,35]",HS,123.59635559486954,73.3383164731288,1.6852903303303304,5989.689431403143,2019
+1995,35,"(30,35]",HS,127.83494029190625,77.30254979600063,1.6536962962962962,5907.283909697871,2019
+1995,35,"(30,35]",HS,127.48656346749226,67.39196648882105,1.8917175163398692,5902.29786968959,2019
+1995,35,"(30,35]",HS,123.71248120300751,79.28466645743653,1.560358222222222,5965.425560848771,2019
+1995,35,"(30,35]",HS,125.93822202565238,65.40984982738514,1.925370909090909,5923.693090554574,2019
+1995,25,"(20,25]",HS,0.5806280406899602,23.785399937230956,0.024411111111111116,5532.077018935298,2019
+1995,25,"(20,25]",HS,0.774170720919947,23.785399937230956,0.03254814814814815,5501.863489264097,2019
+1995,25,"(20,25]",HS,0.4838567005749669,23.785399937230956,0.020342592592592596,5559.5585625509875,2019
+1995,25,"(20,25]",HS,0.4838567005749669,23.785399937230956,0.020342592592592596,5522.435537062017,2019
+1995,25,"(20,25]",HS,0.2903140203449801,23.785399937230956,0.012205555555555558,5528.287588701409,2019
+1995,88,"(85,90]",HS,101.02927908005309,31.713866582974614,3.1856500000000003,7961.355754168617,2019
+1995,88,"(85,90]",HS,124.25440070765148,59.46349984307739,2.0895911111111114,7902.7239562649165,2019
+1995,88,"(85,90]",HS,50.708182220256525,59.46349984307739,0.8527614814814816,8175.149947768063,2019
+1995,88,"(85,90]",HS,85.54586466165414,87.21313310318017,0.9808828282828285,8141.718688798661,2019
+1995,88,"(85,90]",HS,44.90190181335692,59.46349984307739,0.7551170370370371,8004.727359343235,2019
+1995,27,"(25,30]",College,15.193100398053959,21.803283275795042,0.6968262626262628,8188.92980106929,2019
+1995,27,"(25,30]",College,15.193100398053959,21.803283275795042,0.6968262626262628,8144.2058262090095,2019
+1995,27,"(25,30]",College,15.77372843874392,21.803283275795042,0.7234565656565658,8229.609717622083,2019
+1995,27,"(25,30]",College,15.193100398053959,21.803283275795042,0.6968262626262628,8174.657870659003,2019
+1995,27,"(25,30]",College,15.193100398053959,21.803283275795042,0.6968262626262628,8183.32044710239,2019
+1995,57,"(55,60]",College,4547.22720919947,136.76604963907803,33.24821636070853,1946.846346312655,2019
+1995,57,"(55,60]",College,3720.76125608138,33.69598324441053,110.42150718954248,1742.7376726015293,2019
+1995,57,"(55,60]",College,3532.1461724900487,87.21313310318017,40.50016375757576,1741.491720002914,2019
+1995,57,"(55,60]",College,4268.719292348518,136.76604963907803,31.21183439613526,1758.4790691307094,2019
+1995,57,"(55,60]",College,3054.2147810703227,55.499266520205566,55.03162424603175,1755.7460873428959,2019
+1995,45,"(40,45]",HS,227.99327731092438,188.30108283641175,1.2107911111111112,8483.709336893771,2019
+1995,45,"(40,45]",HS,227.99327731092438,188.30108283641175,1.2107911111111112,8405.28955343685,2019
+1995,45,"(40,45]",HS,227.99327731092438,188.30108283641175,1.2107911111111112,8448.919527845143,2019
+1995,45,"(40,45]",HS,227.99327731092438,188.30108283641175,1.2107911111111112,8857.10480629922,2019
+1995,45,"(40,45]",HS,227.99327731092438,188.30108283641175,1.2107911111111112,8579.767517773593,2019
+1995,29,"(25,30]",HS,-3.870853604599735,25.76751659866687,-0.15022222222222226,7703.614372482216,2019
+1995,29,"(25,30]",HS,-3.870853604599735,25.76751659866687,-0.15022222222222226,7769.576390507655,2019
+1995,29,"(25,30]",HS,-3.870853604599735,25.76751659866687,-0.15022222222222226,7788.681698231536,2019
+1995,29,"(25,30]",HS,-3.870853604599735,25.76751659866687,-0.15022222222222226,7885.633885916715,2019
+1995,29,"(25,30]",HS,-3.870853604599735,25.76751659866687,-0.15022222222222226,7805.203712959383,2019
+1995,33,"(30,35]",NoHS,24.19283502874834,25.76751659866687,0.938888888888889,6611.530868581921,2019
+1995,33,"(30,35]",NoHS,29.999115435647944,25.76751659866687,1.1642222222222225,6709.50230474464,2019
+1995,33,"(30,35]",NoHS,24.19283502874834,25.76751659866687,0.938888888888889,6640.555467119525,2019
+1995,33,"(30,35]",NoHS,24.19283502874834,25.76751659866687,0.938888888888889,6752.967896862212,2019
+1995,33,"(30,35]",NoHS,24.19283502874834,25.76751659866687,0.938888888888889,6687.079406736064,2019
+1995,58,"(55,60]",College,51270.26887218046,1090.1641637897524,47.0298608,33.256112451152106,2019
+1995,58,"(55,60]",College,50668.58338788147,1090.1641637897524,46.47793889292929,34.20219418135996,2019
+1995,58,"(55,60]",College,50672.4735957541,1090.1641637897524,46.481507353535356,34.18563392382753,2019
+1995,58,"(55,60]",College,51657.23810703229,1090.1641637897524,47.384824985858586,32.510805420774574,2019
+1995,58,"(55,60]",College,51457.8891463954,1090.1641637897524,47.201963571717165,32.40059001795,2019
+1995,47,"(45,50]",College,528.3328084918178,301.28173253825884,1.753617134502924,846.6333596208157,2019
+1995,47,"(45,50]",College,620.7300840336135,303.2638491996948,2.04683177923021,865.0936895285089,2019
+1995,47,"(45,50]",College,623.0138876603272,394.44121562574674,1.5794847571189279,849.9269530482885,2019
+1995,47,"(45,50]",College,595.1824502432553,394.44121562574674,1.5089256058068121,828.2498398541742,2019
+1995,47,"(45,50]",College,596.5372490048651,370.6558156885158,1.6094101960784313,840.7172779312068,2019
+1995,60,"(55,60]",College,12576.790446705,396.42333228718263,31.72565644444445,22.912149894566873,2019
+1995,60,"(55,60]",College,12677.432640424591,396.42333228718263,31.979532000000003,20.120435579797295,2019
+1995,60,"(55,60]",College,12600.789739053516,396.42333228718263,31.786196000000004,20.973505920242754,2019
+1995,60,"(55,60]",College,12488.534984520125,396.42333228718263,31.503027111111116,20.498943767727734,2019
+1995,60,"(55,60]",College,12524.050066342326,396.42333228718263,31.59261588888889,21.266240005160498,2019
+1995,59,"(55,60]",College,10497.619495798319,979.1656307493413,10.720984444444442,25.713727335780288,2019
+1995,59,"(55,60]",College,10519.083379035825,987.0940973950849,10.656616635430611,22.562484295780024,2019
+1995,59,"(55,60]",College,10567.372277753206,979.1656307493413,10.79222140350877,23.550849279301794,2019
+1995,59,"(55,60]",College,10683.943034055728,1280.4473632876,8.343914275885794,23.009157385376763,2019
+1995,59,"(55,60]",College,10598.281043785935,1280.4473632876,8.277014227726179,23.915111099708973,2019
+1995,60,"(55,60]",NoHS,2634.1352321981426,346.87041575128484,7.5940037333333335,663.8123505084354,2019
+1995,60,"(55,60]",NoHS,2638.0060858027423,346.87041575128484,7.6051630984126986,593.6867018239094,2019
+1995,60,"(55,60]",NoHS,2634.1352321981426,346.87041575128484,7.5940037333333335,595.7324669811644,2019
+1995,60,"(55,60]",NoHS,2643.812366209642,346.87041575128484,7.621902146031746,596.612532124066,2019
+1995,60,"(55,60]",NoHS,2643.812366209642,346.87041575128484,7.621902146031746,597.1757912179758,2019
+1995,47,"(45,50]",HS,288.8430959752322,51.53503319733374,5.604791111111112,4167.361897726578,2019
+1995,47,"(45,50]",HS,275.2951083591331,51.53503319733374,5.341902222222222,4151.776461489871,2019
+1995,47,"(45,50]",HS,308.1973639982309,51.53503319733374,5.9803466666666685,4250.773400584716,2019
+1995,47,"(45,50]",HS,279.16596196373285,51.53503319733374,5.417013333333334,4313.198158836817,2019
+1995,47,"(45,50]",HS,329.4870588235294,51.53503319733374,6.393457777777779,4225.794326409483,2019
+1995,43,"(40,45]",HS,0,1.9821166614359134,0,8268.346201841223,2019
+1995,43,"(40,45]",HS,0,1.9821166614359134,0,8325.974901932323,2019
+1995,43,"(40,45]",HS,0,1.9821166614359134,0,8324.69081464424,2019
+1995,43,"(40,45]",HS,0,1.9821166614359134,0,8308.297477062108,2019
+1995,43,"(40,45]",HS,0,1.9821166614359134,0,8328.274278733332,2019
+1995,41,"(40,45]",HS,0,39.642333228718265,0,5775.92517814123,2019
+1995,41,"(40,45]",HS,0,39.642333228718265,0,5879.149225521737,2019
+1995,41,"(40,45]",HS,0,39.642333228718265,0,5784.419391485603,2019
+1995,41,"(40,45]",HS,0,39.642333228718265,0,5805.742302071189,2019
+1995,41,"(40,45]",HS,0,39.642333228718265,0,5812.517772396228,2019
+1995,64,"(60,65]",HS,562.3382574082265,59.46349984307739,9.456864444444445,3569.064291358902,2019
+1995,64,"(60,65]",HS,383.69836355594873,83.24889978030835,4.609050264550265,6358.060626983193,2019
+1995,64,"(60,65]",HS,488.59849624060155,37.660216567282355,12.973863157894737,3668.171387332922,2019
+1995,64,"(60,65]",HS,464.01857585139317,85.23101644174427,5.4442454780361755,6399.755280135196,2019
+1995,64,"(60,65]",HS,494.7918620079611,116.94488302471889,4.230983427495292,3675.21114107164,2019
+1995,26,"(25,30]",College,64.44971251658558,73.3383164731288,0.8787999999999998,4576.678701596961,2019
+1995,26,"(25,30]",College,64.44971251658558,73.3383164731288,0.8787999999999998,4506.121452208015,2019
+1995,26,"(25,30]",College,64.44971251658558,73.3383164731288,0.8787999999999998,4516.873342270431,2019
+1995,26,"(25,30]",College,64.44971251658558,73.3383164731288,0.8787999999999998,4487.982636219686,2019
+1995,26,"(25,30]",College,64.44971251658558,73.3383164731288,0.8787999999999998,4506.4665475886895,2019
+1995,46,"(45,50]",HS,98.12613887660328,59.46349984307739,1.6501911111111114,5077.012659107177,2019
+1995,46,"(45,50]",HS,99.09385227775321,59.46349984307739,1.6664651851851855,4964.453116888771,2019
+1995,46,"(45,50]",HS,105.48076072534278,59.46349984307739,1.7738740740740744,5035.044704407237,2019
+1995,46,"(45,50]",HS,114.19018133569217,59.46349984307739,1.920340740740741,4996.9765284213945,2019
+1995,46,"(45,50]",HS,210.96152145068555,59.46349984307739,3.5477481481481488,5042.23880490225,2019
+1995,31,"(30,35]",HS,112.2547545333923,128.8375829933344,0.8712888888888887,10737.253743437894,2019
+1995,31,"(30,35]",HS,112.2547545333923,128.8375829933344,0.8712888888888887,11130.19192437654,2019
+1995,31,"(30,35]",HS,112.2547545333923,128.8375829933344,0.8712888888888887,10695.604626239667,2019
+1995,31,"(30,35]",HS,112.2547545333923,128.8375829933344,0.8712888888888887,11032.646042468106,2019
+1995,31,"(30,35]",HS,112.2547545333923,128.8375829933344,0.8712888888888887,10875.854417196302,2019
+1995,72,"(70,75]",NoHS,461.79283502874836,37.660216567282355,12.262086549707602,6782.85493207006,2019
+1995,72,"(70,75]",NoHS,461.79283502874836,37.660216567282355,12.262086549707602,6744.996905782908,2019
+1995,72,"(70,75]",NoHS,461.79283502874836,37.660216567282355,12.262086549707602,6817.272893823594,2019
+1995,72,"(70,75]",NoHS,461.79283502874836,37.660216567282355,12.262086549707602,6826.202924080736,2019
+1995,72,"(70,75]",NoHS,461.79283502874836,37.660216567282355,12.262086549707602,6681.241561413335,2019
+1995,55,"(50,55]",HS,58084.0744095533,1801.7440452452454,32.23769467302286,229.55644387083765,2019
+1995,55,"(50,55]",HS,58356.89217160548,1936.5279782228874,30.13480457181849,203.52311590468244,2019
+1995,55,"(50,55]",HS,60578.858911985844,1801.7440452452454,33.62234445666788,224.40343369270562,2019
+1995,55,"(50,55]",HS,58817.62052189297,1801.7440452452454,32.64482581591492,226.92318413262643,2019
+1995,55,"(50,55]",HS,59016.95012826184,1801.7440452452454,32.75545729372937,217.07099392870268,2019
+1995,28,"(25,30]",College,41.26329942503317,73.3383164731288,0.562643123123123,4697.7730103853155,2019
+1995,28,"(25,30]",College,11.786749226006192,75.32043313456471,0.1564880701754386,4770.854934961959,2019
+1995,28,"(25,30]",College,14.767306501547989,65.40984982738514,0.22576579124579124,4722.454460988344,2019
+1995,28,"(25,30]",College,20.651003980539585,65.40984982738514,0.315717037037037,4799.929245583533,2019
+1995,28,"(25,30]",College,19.025245466607696,67.39196648882105,0.2823073202614379,4752.380069967106,2019
+1995,31,"(30,35]",HS,156.1889429455993,118.92699968615479,1.313317777777778,5532.523454430293,2019
+1995,31,"(30,35]",HS,161.22105263157897,118.92699968615479,1.3556303703703707,5565.056286424339,2019
+1995,31,"(30,35]",HS,156.96311366651923,118.92699968615479,1.3198274074074074,5541.425455637323,2019
+1995,31,"(30,35]",HS,155.72444051304734,118.92699968615479,1.3094120000000002,5590.769188434748,2019
+1995,31,"(30,35]",HS,157.35019902697923,118.92699968615479,1.3230822222222225,5529.832054356661,2019
+1995,67,"(65,70]",HS,384.37576293675363,25.76751659866687,14.917066666666667,6752.173552248669,2019
+1995,67,"(65,70]",HS,379.92428129146396,81.26678311887244,4.675025474254743,6582.650315980497,2019
+1995,67,"(65,70]",HS,361.5377266696152,23.785399937230956,15.199985185185188,6593.693031872923,2019
+1995,67,"(65,70]",HS,376.0534276868642,33.69598324441053,11.160185620915032,6879.628260079371,2019
+1995,67,"(65,70]",HS,388.24661654135343,29.731749921538697,13.058317037037039,6734.802005040813,2019
+1995,75,"(70,75]",College,3508.92879256966,297.31749921538704,11.801958518518518,870.8618251077384,2019
+1995,75,"(70,75]",College,3508.92879256966,297.31749921538704,11.801958518518518,783.7811884836271,2019
+1995,75,"(70,75]",College,3508.92879256966,297.31749921538704,11.801958518518518,783.387656296918,2019
+1995,75,"(70,75]",College,3508.92879256966,297.31749921538704,11.801958518518518,717.1117330971684,2019
+1995,75,"(70,75]",College,3508.92879256966,297.31749921538704,11.801958518518518,780.0094981827734,2019
+1995,40,"(35,40]",HS,134.70377001326847,126.85546633189846,1.0618680763888888,8079.304454665299,2019
+1995,40,"(35,40]",HS,82.83433171163203,126.85546633189846,0.6529819652777779,8018.466344554174,2019
+1995,40,"(35,40]",HS,137.0262821760283,126.85546633189846,1.0801764097222222,8070.744374123993,2019
+1995,40,"(35,40]",HS,146.70341618752764,126.85546633189846,1.1564611319444444,8160.4192065787865,2019
+1995,40,"(35,40]",HS,153.86449535603717,126.85546633189846,1.212911826388889,8082.869293970105,2019
+1995,33,"(30,35]",HS,51.927501105705446,9.910583307179566,5.23960088888889,6164.566730074742,2019
+1995,33,"(30,35]",HS,51.985563909774434,9.910583307179566,5.245459555555556,6116.148916381304,2019
+1995,33,"(30,35]",HS,52.024272445820436,9.910583307179566,5.249365333333333,6167.71528044378,2019
+1995,33,"(30,35]",HS,51.927501105705446,9.910583307179566,5.23960088888889,6136.28696408689,2019
+1995,33,"(30,35]",HS,51.927501105705446,9.910583307179566,5.23960088888889,6175.330800497062,2019
+1995,42,"(40,45]",College,130.27357806280406,103.07006639466748,1.2639322222222222,8719.319025366818,2019
+1995,42,"(40,45]",College,130.27357806280406,103.07006639466748,1.2639322222222222,8599.359544757872,2019
+1995,42,"(40,45]",College,130.27357806280406,103.07006639466748,1.2639322222222222,8592.10125966591,2019
+1995,42,"(40,45]",College,130.27357806280406,103.07006639466748,1.2639322222222222,8683.997589994136,2019
+1995,42,"(40,45]",College,130.27357806280406,103.07006639466748,1.2639322222222222,8623.246740325038,2019
+1995,49,"(45,50]",HS,3542.798761609907,539.1357319105684,6.571255718954248,1299.0731217314196,2019
+1995,49,"(45,50]",HS,3862.144183989385,539.1357319105684,7.1635841503267965,1146.8230929589292,2019
+1995,49,"(45,50]",HS,3562.153029632906,539.1357319105684,6.607154411764706,1210.2182088178872,2019
+1995,49,"(45,50]",HS,3755.6957098628927,539.1357319105684,6.966141339869281,1155.2360103119356,2019
+1995,49,"(45,50]",HS,3542.798761609907,539.1357319105684,6.571255718954248,1165.574655132908,2019
+1995,68,"(65,70]",HS,26256.19354268023,1256.661963350369,20.893600911321418,57.01406692197993,2019
+1995,68,"(65,70]",HS,25288.480141530297,1256.661963350369,20.123534314756398,64.12628859103265,2019
+1995,68,"(65,70]",HS,19249.94851835471,1256.661963350369,15.318318752190677,58.40219037764882,2019
+1995,68,"(65,70]",HS,21173.762759840778,1256.661963350369,16.849211146161934,69.25689553798362,2019
+1995,68,"(65,70]",HS,26256.19354268023,1256.661963350369,20.893600911321418,55.70037590422868,2019
+1995,42,"(40,45]",College,296.99124281291466,79.28466645743653,3.7458850000000004,3344.92031743099,2019
+1995,42,"(40,45]",College,295.44290137107475,79.28466645743653,3.7263561111111114,3481.5891091675912,2019
+1995,42,"(40,45]",College,313.24882795223357,79.28466645743653,3.950938333333334,3433.8788838657397,2019
+1995,42,"(40,45]",College,295.8299867315347,79.28466645743653,3.731238333333333,3262.2557675126454,2019
+1995,42,"(40,45]",College,298.7331269349845,79.28466645743653,3.767855,3456.0069488222966,2019
+1995,60,"(55,60]",HS,524.8974259177355,81.26678311887244,6.458941842818429,3332.7425496168266,2019
+1995,60,"(55,60]",HS,486.22759840778417,61.44561650451331,7.9131372759856635,3464.8140573312385,2019
+1995,60,"(55,60]",HS,510.2268907563025,69.37408315025698,7.354719047619046,3425.287376147765,2019
+1995,60,"(55,60]",HS,488.55011057054406,79.28466645743653,6.161974722222223,3247.768856511147,2019
+1995,60,"(55,60]",HS,452.55117204776644,71.35619981169287,6.342142283950617,5912.500398183409,2019
+1995,66,"(65,70]",NoHS,390.3755860238833,47.57079987446191,8.206201851851853,7366.007510135778,2019
+1995,66,"(65,70]",NoHS,389.9885006634233,47.57079987446191,8.198064814814817,7181.073070605856,2019
+1995,66,"(65,70]",NoHS,392.5045555064131,47.57079987446191,8.250955555555556,7193.11966975892,2019
+1995,66,"(65,70]",NoHS,390.76267138434326,47.57079987446191,8.214338888888891,7505.049009560869,2019
+1995,66,"(65,70]",NoHS,391.73038478549313,47.57079987446191,8.234681481481482,7347.05673136719,2019
+1995,32,"(30,35]",HS,418.8263600176913,107.03429971753931,3.9130106995884777,2655.1048579804674,2019
+1995,32,"(30,35]",HS,458.1155241043786,146.6766329462576,3.1233027027027025,2760.717885543883,2019
+1995,32,"(30,35]",HS,4073.299248120301,126.85546633189846,32.109765277777775,383.4747326223491,2019
+1995,32,"(30,35]",HS,509.40433436532504,116.94488302471889,4.3559352165725045,2578.398247267351,2019
+1995,32,"(30,35]",HS,566.8865103936312,107.03429971753931,5.296306995884774,2746.8661148266992,2019
+1995,63,"(60,65]",NoHS,5.806280406899602,15.856933291487307,0.36616666666666664,10066.384245115501,2019
+1995,63,"(60,65]",NoHS,5.806280406899602,15.856933291487307,0.36616666666666664,9964.765543612275,2019
+1995,63,"(60,65]",NoHS,5.806280406899602,15.856933291487307,0.36616666666666664,10076.738643542836,2019
+1995,63,"(60,65]",NoHS,5.806280406899602,15.856933291487307,0.36616666666666664,10127.06810042961,2019
+1995,63,"(60,65]",NoHS,5.806280406899602,15.856933291487307,0.36616666666666664,9962.907983411827,2019
+1995,42,"(40,45]",HS,23.167058823529413,79.28466645743653,0.29220100000000004,6587.609871587434,2019
+1995,42,"(40,45]",HS,23.167058823529413,79.28466645743653,0.29220100000000004,6607.849102363417,2019
+1995,42,"(40,45]",HS,23.167058823529413,79.28466645743653,0.29220100000000004,6601.667054190293,2019
+1995,42,"(40,45]",HS,23.167058823529413,79.28466645743653,0.29220100000000004,6592.178723696119,2019
+1995,42,"(40,45]",HS,23.167058823529413,79.28466645743653,0.29220100000000004,6616.0385125646035,2019
+1995,35,"(30,35]",College,23.418664307828397,53.517149858769656,0.43759176954732515,4565.96542138287,2019
+1995,35,"(30,35]",College,23.418664307828397,53.517149858769656,0.43759176954732515,4528.065256281867,2019
+1995,35,"(30,35]",College,23.418664307828397,53.517149858769656,0.43759176954732515,4506.644218157043,2019
+1995,35,"(30,35]",College,23.418664307828397,53.517149858769656,0.43759176954732515,4424.78171163271,2019
+1995,35,"(30,35]",College,23.418664307828397,53.517149858769656,0.43759176954732515,4511.313353923732,2019
+1995,47,"(45,50]",HS,125.29953118089341,51.53503319733374,2.4313466666666668,6163.533515868524,2019
+1995,47,"(45,50]",HS,131.202582927908,51.53503319733374,2.545891111111111,5962.549926253853,2019
+1995,47,"(45,50]",HS,129.20909332153914,51.53503319733374,2.507208888888889,5995.78145883142,2019
+1995,47,"(45,50]",HS,142.85385227775322,51.53503319733374,2.771975555555556,6165.533320625972,2019
+1995,47,"(45,50]",HS,137.2411145510836,51.53503319733374,2.6630644444444447,6059.494838114793,2019
+1995,47,"(45,50]",HS,14.999557717823972,25.76751659866687,0.5821111111111112,6065.368185880041,2019
+1995,47,"(45,50]",HS,14.999557717823972,25.76751659866687,0.5821111111111112,6077.408685690911,2019
+1995,47,"(45,50]",HS,14.999557717823972,25.76751659866687,0.5821111111111112,6019.408665553377,2019
+1995,47,"(45,50]",HS,14.999557717823972,25.76751659866687,0.5821111111111112,6145.55677701083,2019
+1995,47,"(45,50]",HS,14.999557717823972,25.76751659866687,0.5821111111111112,6085.703139116167,2019
+1995,74,"(70,75]",HS,16.257585139318888,29.731749921538697,0.546808888888889,9703.050870701994,2019
+1995,74,"(70,75]",HS,15.77372843874392,29.731749921538697,0.5305348148148149,9742.638891725039,2019
+1995,74,"(70,75]",HS,15.018911985846971,27.749633260102783,0.5412292063492065,9834.320488841791,2019
+1995,74,"(70,75]",HS,14.515701017249004,21.803283275795042,0.6657575757575759,9748.510199184147,2019
+1995,74,"(70,75]",HS,15.77372843874392,35.67809990584644,0.4421123456790124,9509.946695356093,2019
+1995,76,"(75,80]",NoHS,0.09677134011499337,23.785399937230956,0.004068518518518519,9038.185740016319,2019
+1995,76,"(75,80]",NoHS,0.09677134011499337,23.785399937230956,0.004068518518518519,9020.740247874786,2019
+1995,76,"(75,80]",NoHS,0.09677134011499337,23.785399937230956,0.004068518518518519,9051.87819354462,2019
+1995,76,"(75,80]",NoHS,0.09677134011499337,23.785399937230956,0.004068518518518519,9056.917442880518,2019
+1995,76,"(75,80]",NoHS,0.09677134011499337,23.785399937230956,0.004068518518518519,9045.880438044971,2019
+1995,67,"(65,70]",HS,484.8244139761168,59.46349984307739,8.153311111111112,3693.6176176574277,2019
+1995,67,"(65,70]",HS,484.8244139761168,59.46349984307739,8.153311111111112,3839.313751862713,2019
+1995,67,"(65,70]",HS,484.8244139761168,59.46349984307739,8.153311111111112,3795.606891871996,2019
+1995,67,"(65,70]",HS,484.8244139761168,59.46349984307739,8.153311111111112,3598.8159440759678,2019
+1995,67,"(65,70]",HS,484.8244139761168,59.46349984307739,8.153311111111112,3844.946064811342,2019
+1995,53,"(50,55]",College,2305.673949579832,156.58721625343713,14.724535021097047,530.8298499457426,2019
+1995,53,"(50,55]",College,2309.5448031844317,156.58721625343713,14.749255133614628,447.91305299753367,2019
+1995,53,"(50,55]",College,2309.5448031844317,156.58721625343713,14.749255133614628,451.7751912717351,2019
+1995,53,"(50,55]",College,2330.8344980097304,156.58721625343713,14.885215752461324,457.97780081675467,2019
+1995,53,"(50,55]",College,2326.9636444051303,156.58721625343713,14.860495639943741,440.81119912418035,2019
+1995,42,"(40,45]",HS,76.23646174259177,83.24889978030835,0.9157653968253969,6560.7350328257,2019
+1995,42,"(40,45]",HS,188.49121627598407,33.69598324441053,5.593877908496731,6385.746047547368,2019
+1995,42,"(40,45]",HS,105.26786377708977,55.499266520205566,1.8967433333333332,6527.392089844989,2019
+1995,42,"(40,45]",HS,180.7495090667846,37.660216567282355,4.799481403508771,6498.577669890476,2019
+1995,42,"(40,45]",HS,138.17011941618753,45.588683213026,3.0307986473429955,6440.848191146308,2019
+1995,61,"(60,65]",College,95566.94337019019,6778.838982110824,14.09783351137102,229.55644387083765,2019
+1995,61,"(60,65]",College,87456.92444051304,7393.295147155956,11.829221301161752,203.52311590468244,2019
+1995,61,"(60,65]",College,94949.54222025652,7512.222146842111,12.639341644092642,224.40343369270562,2019
+1995,61,"(60,65]",College,84539.84916408669,7452.758646999034,11.343430421985815,226.92318413262643,2019
+1995,61,"(60,65]",College,83982.44624502433,7928.466645743652,10.592520596666668,257.7116725196197,2019
+1995,32,"(30,35]",HS,1.4515701017249005,47.57079987446191,0.030513888888888892,6067.531740158954,2019
+1995,32,"(30,35]",HS,1.4515701017249005,47.57079987446191,0.030513888888888892,6045.4514419130255,2019
+1995,32,"(30,35]",HS,1.4515701017249005,47.57079987446191,0.030513888888888892,6042.304022726221,2019
+1995,32,"(30,35]",HS,1.4515701017249005,47.57079987446191,0.030513888888888892,6071.770732638923,2019
+1995,32,"(30,35]",HS,1.4515701017249005,47.57079987446191,0.030513888888888892,6067.42494578679,2019
+1995,17,"(15,20]",NoHS,242.56704113224237,107.03429971753931,2.2662552263374485,5277.293443543119,2019
+1995,17,"(15,20]",NoHS,267.7275895621406,110.99853304041113,2.4119921428571427,5342.150756222132,2019
+1995,17,"(15,20]",NoHS,190.31051747014595,140.73028296194985,1.3523067918622846,5297.990571242624,2019
+1995,17,"(15,20]",NoHS,211.60021229544452,128.8375829933344,1.6423795555555554,5342.09651079458,2019
+1995,17,"(15,20]",NoHS,283.21100398053954,114.96276636328297,2.4635019923371644,5251.7258912397,2019
+1995,68,"(65,70]",College,6746.897832817338,1337.9287464692413,5.042793086419754,22.912149894566873,2019
+1995,68,"(65,70]",College,9214.56700574967,1490.5517293998068,6.181984042553192,20.120435579797295,2019
+1995,68,"(65,70]",College,4012.526846528085,705.633531471185,5.68641747815231,20.973505920242754,2019
+1995,68,"(65,70]",College,23901.166209641753,919.7021309062637,25.987942624521075,44.0687620611274,2019
+1995,68,"(65,70]",College,5950.276160990712,372.6379323499517,15.967982978723404,21.266240005160498,2019
+1995,39,"(35,40]",HS,3.909562140645732,33.69598324441053,0.11602457516339869,6372.413432747184,2019
+1995,39,"(35,40]",HS,3.1934542237947814,33.69598324441053,0.09477254901960784,6383.415703156249,2019
+1995,39,"(35,40]",HS,3.5224767801857584,33.69598324441053,0.10453699346405228,6404.558592190892,2019
+1995,39,"(35,40]",HS,3.4063511720477666,33.69598324441053,0.10109071895424837,6286.4413844514065,2019
+1995,39,"(35,40]",HS,4.103104820875719,33.69598324441053,0.12176836601307188,6389.854996919319,2019
+1995,60,"(55,60]",College,1182.739318885449,267.5857492938483,4.420038518518518,5332.968965403472,2019
+1995,60,"(55,60]",College,1223.7703670942062,267.5857492938483,4.57337646090535,5542.788336143129,2019
+1995,60,"(55,60]",College,1036.033967271119,267.5857492938483,3.8717830452674895,5482.060869181574,2019
+1995,60,"(55,60]",College,1064.291198584697,267.5857492938483,3.977383703703703,5198.699149784886,2019
+1995,60,"(55,60]",College,1033.5179124281292,267.5857492938483,3.86238024691358,5491.68928064516,2019
+1995,29,"(25,30]",College,53.55325961963733,126.85546633189846,0.4221596527777778,5328.150930571073,2019
+1995,29,"(25,30]",College,53.55325961963733,126.85546633189846,0.4221596527777778,5247.455912305599,2019
+1995,29,"(25,30]",College,53.55325961963733,126.85546633189846,0.4221596527777778,5279.926705257513,2019
+1995,29,"(25,30]",College,53.55325961963733,126.85546633189846,0.4221596527777778,5214.5033824254915,2019
+1995,29,"(25,30]",College,53.55325961963733,126.85546633189846,0.4221596527777778,5274.167138006376,2019
+1995,42,"(40,45]",HS,-1.354798761609907,8.523101644174426,-0.1589560723514212,4741.543715985894,2019
+1995,42,"(40,45]",HS,-1.354798761609907,9.315948308748792,-0.14542789598108746,4731.878830677438,2019
+1995,42,"(40,45]",HS,-1.354798761609907,8.721313310318019,-0.15534343434343434,4744.202453727566,2019
+1995,42,"(40,45]",HS,-1.354798761609907,8.721313310318019,-0.15534343434343434,4659.940380504902,2019
+1995,42,"(40,45]",HS,-1.354798761609907,9.712371641035974,-0.1394920634920635,4739.073800611962,2019
+1995,70,"(65,70]",HS,7570.809022556391,156.58721625343713,48.34883206751055,952.2415630519217,2019
+1995,70,"(65,70]",HS,15179.958850066341,162.53356623774488,93.39583940379404,859.463802757928,2019
+1995,70,"(65,70]",HS,10504.64509509067,156.58721625343713,67.08494694796063,854.6200933785892,2019
+1995,70,"(65,70]",HS,12381.525236620964,158.56933291487306,78.08272261111111,858.6059155260748,2019
+1995,70,"(65,70]",HS,12551.6298982751,174.42626620636034,71.95951717171718,853.5237559469111,2019
+1995,27,"(25,30]",HS,37.76017691287041,69.37408315025698,0.5442980317460316,5280.710473085797,2019
+1995,27,"(25,30]",HS,37.76017691287041,69.37408315025698,0.5442980317460316,5181.350771521436,2019
+1995,27,"(25,30]",HS,38.92143299425033,69.37408315025698,0.5610370793650793,5299.7746301464085,2019
+1995,27,"(25,30]",HS,38.534347633790354,69.37408315025698,0.5554573968253966,5202.628381619708,2019
+1995,27,"(25,30]",HS,38.34080495356037,69.37408315025698,0.5526675555555555,5182.097289938154,2019
+1995,87,"(85,90]",NoHS,943.9076514816453,37.660216567282355,25.063787134502924,6566.324473818434,2019
+1995,87,"(85,90]",NoHS,563.4027421494914,95.14159974892382,5.921728703703704,6790.070491945075,2019
+1995,87,"(85,90]",NoHS,659.2063688633348,99.10583307179566,6.651539555555556,6748.321160189606,2019
+1995,87,"(85,90]",NoHS,605.7498805838125,51.53503319733374,11.754137777777778,6398.7539223434105,2019
+1995,87,"(85,90]",NoHS,880.8127377266696,99.10583307179566,8.887597333333334,6783.212581242498,2019
+1995,48,"(45,50]",HS,1711.5753383458646,420.2087322244136,4.073155094339622,2770.9556667644147,2019
+1995,48,"(45,50]",HS,1660.6155506413093,420.2087322244136,3.951882536687631,2266.6363669045504,2019
+1995,48,"(45,50]",HS,1708.788323750553,420.2087322244136,4.066522641509434,2321.9399636127796,2019
+1995,48,"(45,50]",HS,1710.7624590888988,420.2087322244136,4.071220628930818,2270.893289776508,2019
+1995,48,"(45,50]",HS,1719.4718796992481,420.2087322244136,4.091947044025157,2302.2836667650818,2019
+1995,55,"(50,55]",NoHS,4.064396284829722,21.803283275795042,0.18641212121212128,10545.435570274247,2019
+1995,55,"(50,55]",NoHS,4.064396284829722,21.803283275795042,0.18641212121212128,10568.23265608068,2019
+1995,55,"(50,55]",NoHS,4.064396284829722,21.803283275795042,0.18641212121212128,10542.060776734737,2019
+1995,55,"(50,55]",NoHS,4.064396284829722,21.803283275795042,0.18641212121212128,10557.560432928749,2019
+1995,55,"(50,55]",NoHS,4.064396284829722,21.803283275795042,0.18641212121212128,10511.842945073262,2019
+1995,24,"(20,25]",College,56.51446262715613,43.606566551590085,1.2960080808080812,3909.2281893896206,2019
+1995,24,"(20,25]",College,56.51446262715613,43.606566551590085,1.2960080808080812,3873.486874141758,2019
+1995,24,"(20,25]",College,56.51446262715613,43.606566551590085,1.2960080808080812,3867.0538121746686,2019
+1995,24,"(20,25]",College,56.51446262715613,43.606566551590085,1.2960080808080812,3840.112537865768,2019
+1995,24,"(20,25]",College,56.51446262715613,43.606566551590085,1.2960080808080812,3832.471002919187,2019
+1995,57,"(55,60]",HS,1006.499354268023,2695.678659552842,0.37337512418300656,58.5749257088356,2019
+1995,57,"(55,60]",HS,1099.4191950464397,2695.678659552842,0.4078450490196079,58.888229046573215,2019
+1995,57,"(55,60]",HS,1008.454135338346,2695.678659552842,0.3741002777777778,60.74005264286268,2019
+1995,57,"(55,60]",HS,1031.6792569659444,2695.678659552842,0.38271596405228764,56.47449291458749,2019
+1995,57,"(55,60]",HS,1190.3842547545332,2695.678659552842,0.44158982026143784,59.84594794845716,2019
+1995,63,"(60,65]",College,9781.84060150376,1486.587496076935,6.580063822222223,22.912149894566873,2019
+1995,63,"(60,65]",College,8059.310747456878,1486.587496076935,5.421349748148148,20.120435579797295,2019
+1995,63,"(60,65]",College,9125.343830163645,1486.587496076935,6.138450548148149,20.973505920242754,2019
+1995,63,"(60,65]",College,8134.792392746573,1486.587496076935,5.472124859259259,20.498943767727734,2019
+1995,63,"(60,65]",College,11690.17142857143,1486.587496076935,7.863762785185186,21.266240005160498,2019
+1995,52,"(50,55]",College,16888.147191508182,519.3145652962094,32.52007226463104,16.114655255000407,2019
+1995,52,"(50,55]",College,15294.516762494472,519.3145652962094,29.451353350296856,14.46997871291787,2019
+1995,52,"(50,55]",College,14480.263352498894,580.7601818007226,24.933292271520664,14.951180330280554,2019
+1995,52,"(50,55]",College,12243.31640866873,537.1536152491325,22.792951701517016,14.487342732719895,2019
+1995,52,"(50,55]",College,12069.708624502433,539.1357319105684,22.387142810457515,14.858827457552408,2019
+1995,75,"(70,75]",NoHS,9.096505970809377,16.649779956061675,0.5463439153439152,7431.382358502202,2019
+1995,75,"(70,75]",NoHS,9.096505970809377,16.649779956061675,0.5463439153439152,7406.868998322646,2019
+1995,75,"(70,75]",NoHS,9.096505970809377,16.649779956061675,0.5463439153439152,7424.115549457262,2019
+1995,75,"(70,75]",NoHS,8.90296329057939,16.649779956061675,0.5347195767195766,7438.653702345148,2019
+1995,75,"(70,75]",NoHS,9.290048651039363,16.649779956061675,0.5579682539682539,7424.3620907352715,2019
+1995,65,"(60,65]",NoHS,2.128969482529854,27.749633260102783,0.07672063492063493,9296.83924116009,2019
+1995,65,"(60,65]",NoHS,2.128969482529854,7.333831647312879,0.2902942942942943,9348.384361765067,2019
+1995,65,"(60,65]",NoHS,2.128969482529854,27.749633260102783,0.07672063492063493,9326.66162574379,2019
+1995,65,"(60,65]",NoHS,2.128969482529854,7.333831647312879,0.2902942942942943,9336.477490527397,2019
+1995,65,"(60,65]",NoHS,2.128969482529854,17.442626620636037,0.12205555555555554,9393.135055126766,2019
+1995,76,"(75,80]",College,7539.455108359133,616.438281706569,12.230673097534835,32.63763999903155,2019
+1995,76,"(75,80]",College,7539.455108359133,616.438281706569,12.230673097534835,30.15517559167181,2019
+1995,76,"(75,80]",College,7539.455108359133,616.438281706569,12.230673097534835,31.038488423324605,2019
+1995,76,"(75,80]",College,7539.455108359133,616.438281706569,12.230673097534835,27.602615912127014,2019
+1995,76,"(75,80]",College,7539.455108359133,616.438281706569,12.230673097534835,31.186646051474145,2019
+1995,61,"(60,65]",HS,1935.0397169394075,574.813831816415,3.366376398467432,289.00240412958016,2019
+1995,61,"(60,65]",HS,1935.0397169394075,574.813831816415,3.366376398467432,259.72124479468187,2019
+1995,61,"(60,65]",HS,1935.0397169394075,574.813831816415,3.366376398467432,255.25352352376626,2019
+1995,61,"(60,65]",HS,1935.0397169394075,574.813831816415,3.366376398467432,260.9793455085895,2019
+1995,61,"(60,65]",HS,1935.0397169394075,574.813831816415,3.366376398467432,258.25130604111666,2019
+1995,65,"(60,65]",College,7758.3518796992485,257.6751659866688,30.109039999999993,2221.4835310605804,2019
+1995,65,"(60,65]",College,8417.364705882354,257.6751659866688,32.666573333333325,2091.511688738291,2019
+1995,65,"(60,65]",College,7174.820698805838,257.6751659866688,27.844439999999995,1968.8953776587157,2019
+1995,65,"(60,65]",College,10333.43724015922,257.6751659866688,40.10257333333332,1130.0878616014716,2019
+1995,65,"(60,65]",College,7888.99318885449,257.6751659866688,30.616039999999995,2217.755115589546,2019
+1995,42,"(40,45]",HS,90.96505970809376,71.35619981169287,1.2748024691358024,7479.789346944296,2019
+1995,42,"(40,45]",HS,90.96505970809376,71.35619981169287,1.2748024691358024,7571.567048298393,2019
+1995,42,"(40,45]",HS,90.96505970809376,71.35619981169287,1.2748024691358024,7478.659231612777,2019
+1995,42,"(40,45]",HS,90.96505970809376,71.35619981169287,1.2748024691358024,7726.867361425184,2019
+1995,42,"(40,45]",HS,90.96505970809376,71.35619981169287,1.2748024691358024,7534.42251860049,2019
+1995,29,"(25,30]",HS,7.548164528969482,16.45156828991808,0.4588112449799197,5194.044820800704,2019
+1995,29,"(25,30]",HS,7.74170720919947,15.856933291487307,0.4882222222222223,5133.262678510813,2019
+1995,29,"(25,30]",HS,5.419195046439628,19.821166614359132,0.27340444444444445,5149.143378987435,2019
+1995,29,"(25,30]",HS,7.935249889429456,19.424743282071947,0.40851247165532883,5112.658219031564,2019
+1995,29,"(25,30]",HS,5.612737726669615,19.821166614359132,0.2831688888888889,5131.03250101435,2019
+1995,24,"(20,25]",College,-1.354798761609907,35.67809990584644,-0.03797283950617284,5332.413577885925,2019
+1995,24,"(20,25]",College,-1.4515701017249005,35.67809990584644,-0.040685185185185185,5337.083736835528,2019
+1995,24,"(20,25]",College,-1.4322158337019018,37.660216567282355,-0.03802994152046783,5371.2779018482115,2019
+1995,24,"(20,25]",College,-1.354798761609907,35.67809990584644,-0.03797283950617284,5332.3475693433675,2019
+1995,24,"(20,25]",College,-1.3741530296329059,35.67809990584644,-0.03851530864197531,5305.524984881525,2019
+1995,26,"(25,30]",College,17.418841220698805,53.517149858769656,0.3254814814814815,5449.157541443218,2019
+1995,26,"(25,30]",College,17.418841220698805,53.517149858769656,0.3254814814814815,5506.741606945403,2019
+1995,26,"(25,30]",College,17.418841220698805,53.517149858769656,0.3254814814814815,5456.754451898427,2019
+1995,26,"(25,30]",College,17.418841220698805,53.517149858769656,0.3254814814814815,5542.51748082071,2019
+1995,26,"(25,30]",College,17.418841220698805,53.517149858769656,0.3254814814814815,5464.965823024094,2019
+1995,45,"(40,45]",HS,32.515170278637775,53.517149858769656,0.6075654320987656,4673.984779653094,2019
+1995,45,"(40,45]",HS,37.35373728438744,53.517149858769656,0.6979769547325104,4558.880606040193,2019
+1995,45,"(40,45]",HS,29.41848739495798,53.517149858769656,0.5497020576131687,4563.198632216319,2019
+1995,45,"(40,45]",HS,38.32145068553737,53.517149858769656,0.7160592592592593,4723.0408112200475,2019
+1995,45,"(40,45]",HS,61.54657231313578,53.517149858769656,1.1500345679012347,4536.0499426693505,2019
+1995,63,"(60,65]",College,205711.09562140648,19484.20678191503,10.557837838815418,18.424123599782696,2019
+1995,63,"(60,65]",College,156055.94041574525,19107.604616242203,8.167216328261873,18.715724758082384,2019
+1995,63,"(60,65]",College,271037.5951879699,18433.684951353996,14.703386539545994,18.77532482183993,2019
+1995,63,"(60,65]",College,202023.89466607696,18433.684951353996,10.959495901075266,17.94707285770976,2019
+1995,63,"(60,65]",College,150916.00810260946,18453.506117968354,8.178175309225443,17.90067114790862,2019
+1995,47,"(45,50]",College,133.25413533834586,176.40838286779626,0.7553730337078652,6234.783848009772,2019
+1995,47,"(45,50]",College,116.02883679787705,178.3904995292322,0.6504204938271605,6091.259287140288,2019
+1995,47,"(45,50]",College,180.47854931446264,166.4977995606167,1.083969576719577,6171.908304188205,2019
+1995,47,"(45,50]",College,128.99619637328615,138.74816630051396,0.929714603174603,6347.866241529998,2019
+1995,47,"(45,50]",College,157.64051304732422,146.6766329462576,1.0747486486486486,6219.047059383827,2019
+1995,70,"(65,70]",NoHS,27.057266696152148,27.749633260102783,0.975049523809524,8005.0169805722735,2019
+1995,70,"(65,70]",NoHS,17.186590004422822,27.749633260102783,0.619344761904762,8037.677097966235,2019
+1995,70,"(65,70]",NoHS,25.315382574082264,27.749633260102783,0.9122780952380953,8113.314415703239,2019
+1995,70,"(65,70]",NoHS,14.651180893409995,27.749633260102783,0.5279774603174604,8042.520926627408,2019
+1995,70,"(65,70]",NoHS,22.838036267138435,27.749633260102783,0.8230031746031747,7845.706035668247,2019
+1995,27,"(25,30]",College,75.9655019902698,126.85546633189846,0.5988350694444445,6465.056597429679,2019
+1995,27,"(25,30]",College,75.9655019902698,126.85546633189846,0.5988350694444445,6535.178844052089,2019
+1995,27,"(25,30]",College,76.44935869084476,126.85546633189846,0.6026493055555555,6500.417722388186,2019
+1995,27,"(25,30]",College,75.9655019902698,126.85546633189846,0.5988350694444445,6562.7480280754025,2019
+1995,27,"(25,30]",College,76.83644405130474,126.85546633189846,0.6057006944444444,6518.115626853898,2019
+1995,75,"(70,75]",HS,103.89371074745688,14.469451628482167,7.180210654490106,8268.204583532139,2019
+1995,75,"(70,75]",HS,103.89371074745688,14.469451628482167,7.180210654490106,8223.75740594579,2019
+1995,75,"(70,75]",HS,103.89371074745688,14.469451628482167,7.180210654490106,8275.15454751327,2019
+1995,75,"(70,75]",HS,103.89371074745688,14.469451628482167,7.180210654490106,8238.211008717924,2019
+1995,75,"(70,75]",HS,103.89371074745688,14.469451628482167,7.180210654490106,8268.37871481122,2019
+1995,58,"(55,60]",College,43519.03936311367,6977.050648254415,6.237454987373737,36.240682513043744,2019
+1995,58,"(55,60]",College,51153.13684210526,6917.587148411339,7.394650149633873,40.7828488679548,2019
+1995,58,"(55,60]",College,42154.75701017249,5966.1711509220995,7.065629856035438,22.15857878751236,2019
+1995,58,"(55,60]",College,37055.08157452454,6877.944815182619,5.387522373358949,44.0687620611274,2019
+1995,58,"(55,60]",College,41941.085891198585,5510.28431879184,7.6114195683453225,35.476229152528305,2019
+1995,37,"(35,40]",College,-65.22388323750553,79.28466645743653,-0.8226544444444445,5310.820623500008,2019
+1995,37,"(35,40]",College,-65.22388323750553,79.28466645743653,-0.8226544444444445,5328.307917115497,2019
+1995,37,"(35,40]",College,-65.22388323750553,79.28466645743653,-0.8226544444444445,5326.394413107175,2019
+1995,37,"(35,40]",College,-65.22388323750553,79.28466645743653,-0.8226544444444445,5317.1478398096,2019
+1995,37,"(35,40]",College,-65.22388323750553,79.28466645743653,-0.8226544444444445,5336.968298253232,2019
+1995,84,"(80,85]",College,334.80948252985405,170.46203288348855,1.9641293540051679,10515.078734236517,2019
+1995,84,"(80,85]",College,315.6294029190624,174.42626620636034,1.8095290909090913,10377.779884264306,2019
+1995,84,"(80,85]",College,305.77808049535605,192.26531615928357,1.5903964719358537,10683.865414632357,2019
+1995,84,"(80,85]",College,305.855497567448,176.40838286779626,1.733792309612984,10542.112698467394,2019
+1995,84,"(80,85]",College,334.80948252985405,170.46203288348855,1.9641293540051679,10442.688882825812,2019
+1995,83,"(80,85]",College,3680.1560017691286,600.5813484150817,6.127656164283095,21.177994504992252,2019
+1995,83,"(80,85]",College,4452.35258735073,586.7065317850304,7.5887216966966955,19.74678554457483,2019
+1995,83,"(80,85]",College,4606.122246793455,733.3831647312879,6.28064900900901,20.141261655395216,2019
+1995,83,"(80,85]",College,3579.958956214065,667.9733149039029,5.359434091658424,17.96867383023132,2019
+1995,83,"(80,85]",College,3623.1189739053516,176.40838286779626,20.538247191011237,20.162592341760934,2019
+1995,78,"(75,80]",College,21685.99281733746,1074.307230498265,20.186025190651907,44.401893054335716,2019
+1995,78,"(75,80]",College,20377.528173374612,969.2550474421616,21.02390720290843,49.90749226212331,2019
+1995,78,"(75,80]",College,21587.944095532952,1209.091163475907,17.854686848816034,44.81956071780096,2019
+1995,78,"(75,80]",College,19972.63688633348,1127.8243803570344,17.70899550868971,53.90138133471697,2019
+1995,78,"(75,80]",College,21379.11154356479,1217.0196301216508,17.56677625769091,43.46877383705424,2019
+1995,27,"(25,30]",HS,39.966563467492264,23.785399937230956,1.6802981481481485,5811.655486331548,2019
+1995,27,"(25,30]",HS,40.353648827952235,23.785399937230956,1.6965722222222226,5722.058979290612,2019
+1995,27,"(25,30]",HS,40.643962848297214,23.785399937230956,1.708777777777778,5735.7121730024355,2019
+1995,27,"(25,30]",HS,39.966563467492264,23.785399937230956,1.6802981481481485,5699.025562193334,2019
+1995,27,"(25,30]",HS,39.966563467492264,23.785399937230956,1.6802981481481485,5722.497195646439,2019
+1995,58,"(55,60]",College,6709.621512605042,148.65874960769352,45.134386844444435,2221.4835310605804,2019
+1995,58,"(55,60]",College,1051.614153029633,53.517149858769656,19.650040329218108,2789.293190292662,2019
+1995,58,"(55,60]",College,20288.88562582928,77.30254979600063,262.4607555555555,1388.6079597821006,2019
+1995,58,"(55,60]",College,1057.2849535603714,71.35619981169287,14.81700197530864,2689.615592623422,2019
+1995,58,"(55,60]",College,31597.85539141973,51.53503319733374,613.1335022222223,1405.5116661924696,2019
+1995,27,"(25,30]",College,154.40835028748342,150.64086626912942,1.0250097076023392,6246.397440329173,2019
+1995,27,"(25,30]",College,154.40835028748342,150.64086626912942,1.0250097076023392,6283.128057048301,2019
+1995,27,"(25,30]",College,154.40835028748342,150.64086626912942,1.0250097076023392,6256.44808684001,2019
+1995,27,"(25,30]",College,154.40835028748342,150.64086626912942,1.0250097076023392,6312.158752828297,2019
+1995,27,"(25,30]",College,154.40835028748342,150.64086626912942,1.0250097076023392,6243.358762830681,2019
+1995,47,"(45,50]",HS,294.1268111455108,83.24889978030835,3.5331014814814816,5150.486987981405,2019
+1995,47,"(45,50]",HS,316.3842193719593,75.32043313456471,4.200509824561403,5000.347445192685,2019
+1995,47,"(45,50]",HS,315.0294206103494,67.39196648882105,4.6745841830065356,5029.48547684391,2019
+1995,47,"(45,50]",HS,309.6102255639098,65.40984982738514,4.733388417508418,5170.747023023169,2019
+1995,47,"(45,50]",HS,316.96484741264925,77.30254979600063,4.100315555555555,5078.63964728895,2019
+1995,40,"(35,40]",HS,2349.704909332154,0,Inf,604.7167836215508,2019
+1995,40,"(35,40]",HS,1600.6947368421052,0,Inf,513.7380265981417,2019
+1995,40,"(35,40]",HS,2531.6350287483415,0,Inf,513.9965308027029,2019
+1995,40,"(35,40]",HS,1567.7924812030076,0,Inf,518.6458144205325,2019
+1995,40,"(35,40]",HS,1455.5377266696153,0,Inf,498.57844207337376,2019
+1995,41,"(40,45]",HS,890.1995577178241,112.98064970184706,7.879221442495128,3414.447399801056,2019
+1995,41,"(40,45]",HS,895.2316674038037,112.98064970184706,7.923761013645225,3554.9303306678353,2019
+1995,41,"(40,45]",HS,815.4920831490491,112.98064970184706,7.2179801169590645,3504.6130526322922,2019
+1995,41,"(40,45]",HS,847.0395400265369,112.98064970184706,7.497208966861598,3328.973787661089,2019
+1995,41,"(40,45]",HS,810.2664307828394,112.98064970184706,7.171727485380116,3527.770139799165,2019
+1995,83,"(80,85]",College,92389.20481203008,4677.795320988755,19.750587290018835,2.8105880616522616,2019
+1995,83,"(80,85]",College,174180.72856258295,7274.368147469801,23.94444782440206,2.243383281743868,2019
+1995,83,"(80,85]",College,128972.8357717824,3805.663989956953,33.889706530092596,3.0383781419960103,2019
+1995,83,"(80,85]",College,185523.49088014153,2497.466993409251,74.28466176719577,2.1023901664096862,2019
+1995,83,"(80,85]",College,158871.1154710305,4003.8756561005453,39.67933300550054,2.2997107014584666,2019
+1995,39,"(35,40]",HS,0.4838567005749669,33.69598324441053,0.014359477124183007,6459.469960285429,2019
+1995,39,"(35,40]",HS,0.11612560813799205,29.731749921538697,0.0039057777777777784,6503.759228694064,2019
+1995,39,"(35,40]",HS,0.2128969482529854,31.713866582974614,0.0067130555555555554,6502.261518573957,2019
+1995,39,"(35,40]",HS,0.5806280406899602,31.713866582974614,0.018308333333333333,6488.410361709183,2019
+1995,39,"(35,40]",HS,1.006421937195931,29.731749921538697,0.03385007407407408,6508.492091211373,2019
+1995,55,"(50,55]",College,2784.498540468819,487.6006987132347,5.710612285456188,2400.0252729177664,2019
+1995,55,"(50,55]",College,3651.5697478991597,487.6006987132347,7.488852574525745,2091.511688738291,2019
+1995,55,"(50,55]",College,2602.5684210526315,487.6006987132347,5.337499367660342,2009.319568998948,2019
+1995,55,"(50,55]",College,2515.2806722689074,487.6006987132347,5.158484552845528,1970.6486840776172,2019
+1995,55,"(50,55]",College,2041.68173374613,487.6006987132347,4.187200180668473,2024.3440745001021,2019
+1995,58,"(55,60]",HS,13965.4978858912,1207.1090468144712,11.569375544608649,36.240682513043744,2019
+1995,58,"(55,60]",HS,12404.614878372402,1032.6827806081108,12.012028389848583,40.7828488679548,2019
+1995,58,"(55,60]",HS,12192.821123396727,1161.5203636014453,10.497294326886612,36.5536218158438,2019
+1995,58,"(55,60]",HS,18845.870110570544,1030.7006639466751,18.284523111111106,44.0687620611274,2019
+1995,58,"(55,60]",HS,18492.809553295003,1175.3951802314964,15.733269851976768,35.476229152528305,2019
+1995,54,"(50,55]",HS,1535.9547103051748,156.58721625343713,9.808940646976092,6493.839983934433,2019
+1995,54,"(50,55]",HS,1520.4712958867758,156.58721625343713,9.710060196905768,11805.254985244985,2019
+1995,54,"(50,55]",HS,1508.8587350729765,156.58721625343713,9.635899859353025,10983.745522883983,2019
+1995,54,"(50,55]",HS,1522.4067226890757,156.58721625343713,9.722420253164557,11908.543530085492,2019
+1995,54,"(50,55]",HS,1518.5358690844757,156.58721625343713,9.697700140646976,12015.95644899762,2019
+1995,75,"(70,75]",HS,1232.3443078283944,124.87334967046255,9.868753509700175,1308.5930758162108,2019
+1995,75,"(70,75]",HS,1260.2144537815127,122.89123300902662,10.254714050179212,1290.2272021411131,2019
+1995,75,"(70,75]",HS,1252.472746572313,122.89123300902662,10.191717634408603,1313.6808071722894,2019
+1995,75,"(70,75]",HS,1203.3129057938963,120.90911634759071,9.952209908925317,1239.4622228971107,2019
+1995,75,"(70,75]",HS,1203.1193631136664,134.7839329776421,8.92628176470588,1322.4676263062688,2019
+1995,60,"(55,60]",HS,2291.351791242813,95.14159974892382,24.08359537037037,1125.2477435629585,2019
+1995,60,"(55,60]",HS,2292.319504643963,95.14159974892382,24.09376666666667,1016.7043644634781,2019
+1995,60,"(55,60]",HS,2294.2549314462626,95.14159974892382,24.114109259259262,1008.6199228091364,2019
+1995,60,"(55,60]",HS,2293.2872180451127,95.14159974892382,24.103937962962966,1019.9059438510678,2019
+1995,60,"(55,60]",HS,2303.9320654577623,95.14159974892382,24.21582222222223,1013.3230179641292,2019
+1995,82,"(80,85]",NoHS,300.24275984077843,39.642333228718265,7.573791333333334,6644.449544297817,2019
+1995,82,"(80,85]",NoHS,300.24275984077843,39.642333228718265,7.573791333333334,6524.855518068032,2019
+1995,82,"(80,85]",NoHS,300.24275984077843,39.642333228718265,7.573791333333334,6693.354151770759,2019
+1995,82,"(80,85]",NoHS,300.24275984077843,39.642333228718265,7.573791333333334,6716.457414778204,2019
+1995,82,"(80,85]",NoHS,300.24275984077843,39.642333228718265,7.573791333333334,6654.311048246871,2019
+1995,32,"(30,35]",HS,99.57770897832818,69.37408315025698,1.4353733333333332,4619.949601786032,2019
+1995,32,"(30,35]",HS,95.41654135338347,71.35619981169287,1.3371864197530865,4527.627294503769,2019
+1995,32,"(30,35]",HS,96.77134011499336,63.42773316594923,1.5256944444444445,4560.557233211989,2019
+1995,32,"(30,35]",HS,94.9133303847855,69.37408315025698,1.3681381587301584,4500.995442478125,2019
+1995,32,"(30,35]",HS,95.41654135338347,59.46349984307739,1.6046237037037039,4533.7081174451505,2019
+1995,64,"(60,65]",HS,713.591862007961,406.3339155943622,1.7561710569105689,5020.228893076046,2019
+1995,64,"(60,65]",HS,525.2748341441841,313.17443250687427,1.6772596343178625,5219.732523587561,2019
+1995,64,"(60,65]",HS,638.4973020787262,311.1923158454383,2.0517772116065114,5162.770262850015,2019
+1995,64,"(60,65]",HS,528.7198938522778,356.7809990584644,1.4819171851851853,4892.951462447519,2019
+1995,64,"(60,65]",HS,522.5265280849181,325.06713247548976,1.6074418970189701,5174.41682906448,2019
+1995,23,"(20,25]",NoHS,9.290048651039363,16.055144957630898,0.5786337448559671,5396.916953387241,2019
+1995,23,"(20,25]",NoHS,9.290048651039363,16.055144957630898,0.5786337448559671,5393.026888625339,2019
+1995,23,"(20,25]",NoHS,9.290048651039363,16.055144957630898,0.5786337448559671,5386.786729321788,2019
+1995,23,"(20,25]",NoHS,9.290048651039363,16.055144957630898,0.5786337448559671,5404.330804955562,2019
+1995,23,"(20,25]",NoHS,9.290048651039363,16.055144957630898,0.5786337448559671,5356.082225882157,2019
+1995,49,"(45,50]",College,354.18310482087577,124.87334967046255,2.8363386243386244,7443.999834750373,2019
+1995,49,"(45,50]",College,339.76417514374174,107.03429971753931,3.1743485596707823,7246.735641284346,2019
+1995,49,"(45,50]",College,472.2441397611677,103.07006639466748,4.581777777777779,7340.830344340403,2019
+1995,49,"(45,50]",College,507.6624502432552,172.44414954492444,2.943923882503193,4186.611591528106,2019
+1995,49,"(45,50]",College,624.1944980097303,216.05071609651455,2.8891109887869524,4431.056962171805,2019
+1995,48,"(45,50]",College,810.1696594427244,358.7631157199002,2.258230079803561,87.14461093378583,2019
+1995,48,"(45,50]",College,810.1696594427244,358.7631157199002,2.258230079803561,88.84010324265839,2019
+1995,48,"(45,50]",College,810.1696594427244,358.7631157199002,2.258230079803561,86.57984264719681,2019
+1995,48,"(45,50]",College,810.1696594427244,358.7631157199002,2.258230079803561,85.98617906190091,2019
+1995,48,"(45,50]",College,810.1696594427244,358.7631157199002,2.258230079803561,86.74336428488503,2019
+1995,61,"(60,65]",NoHS,43.27614329942504,12.883758299333435,3.3589688888888896,9124.278503466989,2019
+1995,61,"(60,65]",NoHS,43.701937195931,12.289123300902663,3.556147670250896,9130.998377097616,2019
+1995,61,"(60,65]",NoHS,44.147085360459975,14.865874960769348,2.9696930370370374,9132.737633346891,2019
+1995,61,"(60,65]",NoHS,43.95354268022999,7.9284666457436535,5.543763333333333,9141.61965621956,2019
+1995,61,"(60,65]",NoHS,43.547103051747015,19.821166614359132,2.197,9108.765354496169,2019
+1995,28,"(25,30]",HS,263.9922158337019,19.028319949784766,13.873648148148149,4412.5232992224865,2019
+1995,28,"(25,30]",HS,196.25227775320656,19.028319949784766,10.313694444444446,4324.346075002663,2019
+1995,28,"(25,30]",HS,236.89624060150376,19.028319949784766,12.449666666666667,4355.7975267102365,2019
+1995,28,"(25,30]",HS,211.73569217160548,19.028319949784766,11.12739814814815,4298.90993874716,2019
+1995,28,"(25,30]",HS,186.5751437417072,19.028319949784766,9.80512962962963,4330.153881411836,2019
+1995,48,"(45,50]",College,8704.582043343655,2120.8648277364273,4.104260643821392,2.7080406339861716,2019
+1995,48,"(45,50]",College,8641.680672268909,1492.5338460612425,5.789939501254244,1.7560665969149347,2019
+1995,48,"(45,50]",College,8854.577620521894,3012.817325382588,2.9389692982456146,2.5374697450418155,2019
+1995,48,"(45,50]",College,8454.13781512605,2477.645826794891,3.412165582222223,1.9414854514763569,2019
+1995,48,"(45,50]",College,8779.28951791243,2299.25532726566,3.818318659003831,2.044439931976294,2019
+1995,49,"(45,50]",College,25689.03607253428,1898.867761655605,13.528607200185574,36.300938140789796,2019
+1995,49,"(45,50]",College,25196.16028306059,1890.9392950098613,13.324679617982762,41.297937399345344,2019
+1995,49,"(45,50]",College,27195.204564352058,1637.2283623460644,16.610513957492604,36.98841501559292,2019
+1995,49,"(45,50]",College,27433.62979212738,1819.5830951981684,15.076876601307191,43.98761867238369,2019
+1995,49,"(45,50]",College,27363.76088456435,1625.335662377449,16.83575984823848,35.39801741208662,2019
+1995,47,"(45,50]",HS,378.66625386996907,220.01494941938637,1.7210932932932934,5644.01627413896,2019
+1995,47,"(45,50]",HS,339.95771782397173,130.8196996547703,2.5986737373737374,5494.451209262182,2019
+1995,47,"(45,50]",HS,346.8284829721362,212.08648277364273,1.635316303219107,5565.793504687755,2019
+1995,47,"(45,50]",HS,376.0727819548872,150.64086626912942,2.496485789473684,5725.725371155599,2019
+1995,47,"(45,50]",HS,339.16419283502876,350.8346490741567,0.9667351663527934,5613.041489011966,2019
+1995,32,"(30,35]",College,182.31720477664751,174.42626620636034,1.0452393939393942,5226.891570325179,2019
+1995,32,"(30,35]",College,192.18788146837682,73.3383164731288,2.6205657657657655,5180.236266328034,2019
+1995,32,"(30,35]",College,739.1394957983193,221.99706608082226,3.329501190476191,3192.4064575811653,2019
+1995,32,"(30,35]",College,182.12366209641752,138.74816630051396,1.3126203174603173,5187.776946656731,2019
+1995,32,"(30,35]",College,403.14940291906237,128.8375829933344,3.1291288888888884,5233.885263128061,2019
+1995,67,"(65,70]",NoHS,175.11741707209202,31.713866582974614,5.521793333333334,9550.124154437783,2019
+1995,67,"(65,70]",NoHS,175.11741707209202,31.713866582974614,5.521793333333334,9467.418950565228,2019
+1995,67,"(65,70]",NoHS,175.11741707209202,31.713866582974614,5.521793333333334,9474.908914054648,2019
+1995,67,"(65,70]",NoHS,175.11741707209202,31.713866582974614,5.521793333333334,10082.478178527135,2019
+1995,67,"(65,70]",NoHS,175.11741707209202,31.713866582974614,5.521793333333334,9740.661295159674,2019
+1995,46,"(45,50]",College,871.1356037151703,176.40838286779626,4.9381757802746575,8509.461707605318,2019
+1995,46,"(45,50]",College,871.1356037151703,176.40838286779626,4.9381757802746575,8624.406913773299,2019
+1995,46,"(45,50]",College,871.1356037151703,176.40838286779626,4.9381757802746575,8501.061800142383,2019
+1995,46,"(45,50]",College,871.1356037151703,176.40838286779626,4.9381757802746575,8288.402883143122,2019
+1995,46,"(45,50]",College,871.1356037151703,176.40838286779626,4.9381757802746575,8457.706035488603,2019
+1995,35,"(30,35]",HS,151.3503759398496,118.92699968615479,1.2726325925925925,7628.972845529774,2019
+1995,35,"(30,35]",HS,146.70535161432994,118.92699968615479,1.233574814814815,7524.014233800231,2019
+1995,35,"(30,35]",HS,162.57585139318886,118.92699968615479,1.3670222222222224,7517.6635933762855,2019
+1995,35,"(30,35]",HS,173.80132684652807,118.92699968615479,1.4614118518518517,7598.068336755702,2019
+1995,35,"(30,35]",HS,150.5762052189297,118.92699968615479,1.2661229629629631,7544.914348339864,2019
+1995,55,"(50,55]",College,24605.75833701902,358.7631157199002,68.58497225291592,29.098994164828174,2019
+1995,55,"(50,55]",College,25181.451039363114,334.97771578266935,75.17351111111111,32.80732916667187,2019
+1995,55,"(50,55]",College,25708.95161432994,360.7452323813362,71.26622698412697,29.66335962508672,2019
+1995,55,"(50,55]",College,24695.03957540911,376.6021656728235,65.57328084210526,35.02367591611627,2019
+1995,55,"(50,55]",College,23904.437080937638,340.9240657669771,70.11660214470284,28.34401409409307,2019
+1995,35,"(30,35]",HS,74.22361786819992,168.47991622205262,0.4405487581699347,5250.828935730535,2019
+1995,35,"(30,35]",HS,18.09624060150376,168.47991622205262,0.10740888888888889,5160.143606579091,2019
+1995,35,"(30,35]",HS,5.128881026094649,168.47991622205262,0.030442091503267977,5154.487101583681,2019
+1995,35,"(30,35]",HS,50.82430782839452,168.47991622205262,0.3016638954248366,5210.757796678556,2019
+1995,35,"(30,35]",HS,51.192038920831486,168.47991622205262,0.3038465359477124,5177.542448810507,2019
+1995,40,"(35,40]",HS,45.79219814241486,99.10583307179566,0.46205351111111115,6325.112031482278,2019
+1995,40,"(35,40]",HS,62.320743034055724,99.10583307179566,0.6288302222222222,6238.091800672673,2019
+1995,40,"(35,40]",HS,38.39886775762937,99.10583307179566,0.3874531555555556,6232.826542430649,2019
+1995,40,"(35,40]",HS,64.46906678460859,99.10583307179566,0.650507288888889,6299.489384209591,2019
+1995,40,"(35,40]",HS,48.88888102609465,99.10583307179566,0.4932997333333334,6255.419895635214,2019
+1995,71,"(70,75]",College,1576.405130473242,116.94488302471889,13.479898305084745,3314.7897621412267,2019
+1995,71,"(70,75]",College,843.2654577620522,180.3726161906681,4.675130158730158,5643.600016469959,2019
+1995,71,"(70,75]",College,1724.0201326846527,138.74816630051396,12.425534539682536,2926.202837164742,2019
+1995,71,"(70,75]",College,807.8471472799647,160.55144957630895,5.031702606310015,5289.592836884443,2019
+1995,71,"(70,75]",College,564.4672268907563,67.39196648882105,8.375883006535947,5608.162293012254,2019
+1995,68,"(65,70]",HS,817.524281291464,85.23101644174427,9.591863565891474,5307.309820177003,2019
+1995,68,"(65,70]",HS,817.524281291464,85.23101644174427,9.591863565891474,5515.148158266171,2019
+1995,68,"(65,70]",HS,817.524281291464,85.23101644174427,9.591863565891474,5454.855914479151,2019
+1995,68,"(65,70]",HS,817.524281291464,85.23101644174427,9.591863565891474,5172.7849770956045,2019
+1995,68,"(65,70]",HS,817.524281291464,85.23101644174427,9.591863565891474,5524.865848741085,2019
+1995,52,"(50,55]",College,7829.982025652366,1094.1283971126243,7.156364871175523,25.713727335780288,2019
+1995,52,"(50,55]",College,8617.991048208756,327.0492491369256,26.35074402693603,22.562484295780024,2019
+1995,52,"(50,55]",College,4592.787156125608,457.86894879169597,10.030789745069745,23.550849279301794,2019
+1995,52,"(50,55]",College,9412.2708536046,590.6707651079022,15.934885234899328,23.009157385376763,2019
+1995,52,"(50,55]",College,5545.752605042017,235.87188271087368,23.511715518207286,23.915111099708973,2019
+1995,71,"(70,75]",College,36517.82644847412,10961.105137740598,3.331582535664055,19.014795955822553,2019
+1995,71,"(70,75]",College,37536.63511720478,10961.105137740598,3.4245301587301595,19.858091872621596,2019
+1995,71,"(70,75]",College,35994.09995577178,10961.105137740598,3.2838020896122164,19.646502048651634,2019
+1995,71,"(70,75]",College,36068.61388766032,10961.105137740598,3.290600120554551,16.998461962599745,2019
+1995,71,"(70,75]",College,33066.76691729323,10961.105137740598,3.016736588306209,18.294596212110218,2019
+1995,49,"(45,50]",College,353.7960194604158,156.58721625343713,2.259418284106892,8509.461707605318,2019
+1995,49,"(45,50]",College,286.0560813799204,156.58721625343713,1.8268163150492265,8624.406913773299,2019
+1995,49,"(45,50]",College,309.2812030075188,156.58721625343713,1.9751369901547118,8501.061800142383,2019
+1995,49,"(45,50]",College,361.5377266696152,156.58721625343713,2.3088585091420537,8288.402883143122,2019
+1995,49,"(45,50]",College,351.86059265811593,156.58721625343713,2.2470582278481017,8457.706035488603,2019
+1995,47,"(45,50]",HS,221.79991154356478,51.53503319733374,4.303866666666667,5447.630461242287,2019
+1995,47,"(45,50]",HS,252.76674038036268,51.53503319733374,4.904755555555556,5288.829021952877,2019
+1995,47,"(45,50]",HS,303.0878372401592,51.53503319733374,5.881200000000001,5319.648093853117,2019
+1995,47,"(45,50]",HS,221.79991154356478,51.53503319733374,4.303866666666667,5469.059344432728,2019
+1995,47,"(45,50]",HS,221.79991154356478,51.53503319733374,4.303866666666667,5371.638081758794,2019
+1995,79,"(75,80]",College,414.1813356921716,47.57079987446191,8.706629629629631,9277.705170483694,2019
+1995,79,"(75,80]",College,414.1813356921716,47.57079987446191,8.706629629629631,9351.1564893363,2019
+1995,79,"(75,80]",College,414.1813356921716,47.57079987446191,8.706629629629631,9482.938263724354,2019
+1995,79,"(75,80]",College,414.1813356921716,47.57079987446191,8.706629629629631,9727.445111562256,2019
+1995,79,"(75,80]",College,414.1813356921716,47.57079987446191,8.706629629629631,9463.613960123936,2019
+1995,68,"(65,70]",NoHS,6.580451127819549,17.83904995292322,0.36887901234567905,11599.438839415196,2019
+1995,68,"(65,70]",NoHS,6.580451127819549,17.83904995292322,0.36887901234567905,11622.467146067833,2019
+1995,68,"(65,70]",NoHS,6.580451127819549,17.83904995292322,0.36887901234567905,11593.965885244126,2019
+1995,68,"(65,70]",NoHS,6.580451127819549,17.83904995292322,0.36887901234567905,11610.753071386076,2019
+1995,68,"(65,70]",NoHS,6.580451127819549,17.83904995292322,0.36887901234567905,11688.57899193343,2019
+1995,37,"(35,40]",HS,84.57815126050421,89.1952497646161,0.9482360493827162,5613.792781453667,2019
+1995,37,"(35,40]",HS,141.28615656789032,89.1952497646161,1.58400987654321,5509.065720095046,2019
+1995,37,"(35,40]",HS,129.6735957540911,89.1952497646161,1.4538172839506174,5554.260568364217,2019
+1995,37,"(35,40]",HS,71.99787704555507,89.1952497646161,0.8071940740740742,5538.05550087337,2019
+1995,37,"(35,40]",HS,145.15701017249006,89.1952497646161,1.6274074074074076,5521.606551202136,2019
+1995,82,"(80,85]",College,2938.5585139318887,1068.3608805139572,2.75052987012987,60.01679527289912,2019
+1995,82,"(80,85]",College,3794.98487394958,1399.3743629737548,2.711915391879131,41.334727120939775,2019
+1995,82,"(80,85]",College,7143.07969924812,802.7572478815449,8.898181508916323,3.2292858834429956,2019
+1995,82,"(80,85]",College,1530.3419725785052,578.7780651392867,2.644091171993912,29.559881494968756,2019
+1995,82,"(80,85]",College,1636.016275984078,2715.4998261672013,0.6024733495539335,32.57785942447451,2019
+1995,52,"(50,55]",College,13956.943299425035,792.8466645743653,17.603584555555557,17.018031115952343,2019
+1995,52,"(50,55]",College,15960.110039805395,792.8466645743653,20.130134555555557,14.924969203543165,2019
+1995,52,"(50,55]",College,12755.865811587793,792.8466645743653,16.08869202777778,15.502167492933344,2019
+1995,52,"(50,55]",College,13076.324104378595,792.8466645743653,16.492879000000002,15.121956864445616,2019
+1995,52,"(50,55]",College,13656.952145068555,792.8466645743653,17.225212333333335,15.712355986859876,2019
+1995,58,"(55,60]",NoHS,1032.4921362229102,138.74816630051396,7.4414831111111095,303.5248865272656,2019
+1995,58,"(55,60]",NoHS,1027.0729411764705,138.74816630051396,7.402425333333332,310.933830160805,2019
+1995,58,"(55,60]",NoHS,1030.7502521008403,138.74816630051396,7.428928825396824,305.0148080056835,2019
+1995,58,"(55,60]",NoHS,1031.7760283060593,138.74816630051396,7.436321904761903,300.5614928503821,2019
+1995,58,"(55,60]",NoHS,1029.0664307828395,138.74816630051396,7.416793015873014,303.9524751456728,2019
+1995,32,"(30,35]",College,142.25386996904024,257.6751659866688,0.5520666666666665,4936.508698589785,2019
+1995,32,"(30,35]",College,153.86643078283944,257.6751659866688,0.5971333333333332,4892.445355985772,2019
+1995,32,"(30,35]",College,130.64130915524106,257.6751659866688,0.5069999999999999,4958.99969092968,2019
+1995,32,"(30,35]",College,129.6735957540911,257.6751659866688,0.5032444444444443,4899.567109619853,2019
+1995,32,"(30,35]",College,140.3184431667404,257.6751659866688,0.5445555555555555,4943.1138528946285,2019
+1995,47,"(45,50]",College,1238.286068111455,491.5649320361065,2.51906917562724,4847.745267259857,2019
+1995,47,"(45,50]",College,1396.7975232198144,491.5649320361065,2.8415320788530467,5050.456236903463,2019
+1995,47,"(45,50]",College,1254.543653250774,491.5649320361065,2.55214229390681,4987.543298656799,2019
+1995,47,"(45,50]",College,1239.834409553295,287.4069159082075,4.313864214559386,4731.505368895273,2019
+1995,47,"(45,50]",College,1152.836974789916,142.71239962338575,8.07804351851852,5004.634162624529,2019
+1995,43,"(40,45]",HS,7.74170720919947,49.55291653589783,0.15623111111111113,5210.292393008128,2019
+1995,43,"(40,45]",HS,7.74170720919947,49.55291653589783,0.15623111111111113,5272.9926442195665,2019
+1995,43,"(40,45]",HS,7.74170720919947,49.55291653589783,0.15623111111111113,5244.7269171004755,2019
+1995,43,"(40,45]",HS,7.74170720919947,49.55291653589783,0.15623111111111113,5250.76201707688,2019
+1995,43,"(40,45]",HS,7.74170720919947,49.55291653589783,0.15623111111111113,5279.868508127638,2019
+1995,63,"(60,65]",NoHS,254.50862450243255,93.15948308748793,2.731966903073286,7277.745767692448,2019
+1995,63,"(60,65]",NoHS,277.92728881026096,93.15948308748793,2.9833494089834516,7170.862983664866,2019
+1995,63,"(60,65]",NoHS,288.1850508624503,93.15948308748793,3.0934591016548465,7286.795061728811,2019
+1995,63,"(60,65]",NoHS,229.3480760725343,93.15948308748793,2.4618865248226953,7274.073729991864,2019
+1995,63,"(60,65]",NoHS,261.4761609907121,93.15948308748793,2.8067583924349884,7178.605500008443,2019
+1995,45,"(40,45]",HS,8.380398053958427,71.35619981169287,0.11744456790123459,5378.481973240946,2019
+1995,45,"(40,45]",HS,8.380398053958427,71.35619981169287,0.11744456790123459,5235.953503053448,2019
+1995,45,"(40,45]",HS,8.380398053958427,71.35619981169287,0.11744456790123459,5303.939354128021,2019
+1995,45,"(40,45]",HS,8.380398053958427,71.35619981169287,0.11744456790123459,5456.346898501251,2019
+1995,45,"(40,45]",HS,8.380398053958427,71.35619981169287,0.11744456790123459,5348.9644602965,2019
+1995,39,"(35,40]",HS,296.4106147722247,99.10583307179566,2.9908493333333337,4308.605632247049,2019
+1995,39,"(35,40]",HS,300.2814683768244,99.10583307179566,3.0299071111111116,4486.358508654832,2019
+1995,39,"(35,40]",HS,275.1209199469261,99.10583307179566,2.7760315555555555,7915.301438530941,2019
+1995,39,"(35,40]",HS,327.3774436090225,99.10583307179566,3.3033115555555552,4201.368119635926,2019
+1995,39,"(35,40]",HS,373.8276868642194,99.10583307179566,3.7720048888888895,4455.809002907298,2019
+1995,64,"(60,65]",HS,285.08836797877046,85.23101644174427,3.34488992248062,6732.9703638667215,2019
+1995,64,"(60,65]",HS,405.6654577620522,85.23101644174427,4.7595989664082685,6592.459183857715,2019
+1995,64,"(60,65]",HS,342.22216718266253,85.23101644174427,4.015230387596899,6650.029600212305,2019
+1995,64,"(60,65]",HS,313.34559929234854,85.23101644174427,3.676426873385013,6635.690967135017,2019
+1995,64,"(60,65]",HS,312.6681999115436,85.23101644174427,3.668479069767442,6565.179017007266,2019
+1995,30,"(25,30]",HS,4.838567005749669,9.910583307179566,0.4882222222222223,7757.4618706214915,2019
+1995,30,"(25,30]",HS,4.838567005749669,9.910583307179566,0.4882222222222223,7839.438981595286,2019
+1995,30,"(25,30]",HS,4.838567005749669,9.910583307179566,0.4882222222222223,7768.276889776767,2019
+1995,30,"(25,30]",HS,4.838567005749669,9.910583307179566,0.4882222222222223,7890.369786103159,2019
+1995,30,"(25,30]",HS,4.838567005749669,9.910583307179566,0.4882222222222223,7779.966659787713,2019
+1995,59,"(55,60]",HS,4538.556497125166,677.8838982110824,6.695182625081221,149.55134324885168,2019
+1995,59,"(55,60]",HS,4538.691977001327,677.8838982110824,6.695382482131254,133.19217906120102,2019
+1995,59,"(55,60]",HS,4538.827456877488,677.8838982110824,6.695582339181286,132.14632655358247,2019
+1995,59,"(55,60]",HS,4538.65326846528,677.8838982110824,6.695325380116958,134.14242271328828,2019
+1995,59,"(55,60]",HS,4537.027509951349,677.8838982110824,6.692927095516569,133.4915197244548,2019
+1995,67,"(65,70]",NoHS,0,3.171386658297461,0,8436.426441422602,2019
+1995,67,"(65,70]",NoHS,0,3.171386658297461,0,8484.155810549255,2019
+1995,67,"(65,70]",NoHS,0,3.171386658297461,0,8465.085201874641,2019
+1995,67,"(65,70]",NoHS,0,3.171386658297461,0,8475.361212111504,2019
+1995,67,"(65,70]",NoHS,0,3.171386658297461,0,8520.922945216795,2019
+1995,81,"(80,85]",HS,2185.87103051747,237.85399937230957,9.18996962962963,2593.3499384864544,2019
+1995,81,"(80,85]",HS,2038.3915081822202,97.12371641035975,20.98757732426304,2127.2602667529973,2019
+1995,81,"(80,85]",HS,1093.709685979655,93.15948308748793,11.740186288416075,1180.8438191168202,2019
+1995,81,"(80,85]",HS,2908.3658558160105,309.21019918400253,9.405788888888887,1973.6843797778442,2019
+1995,81,"(80,85]",HS,2726.048651039363,285.4247992467715,9.550847222222222,2174.2463806447204,2019
+1995,78,"(75,80]",HS,306.552251216276,43.606566551590085,7.0299561616161625,7868.427079855176,2019
+1995,78,"(75,80]",HS,306.726439628483,43.606566551590085,7.033950707070709,7726.802575326741,2019
+1995,78,"(75,80]",HS,301.6556214064573,43.606566551590085,6.917665050505052,7926.34043072109,2019
+1995,78,"(75,80]",HS,299.7976116762494,43.606566551590085,6.875056565656566,7953.699557924755,2019
+1995,78,"(75,80]",HS,306.8445006634233,43.606566551590085,7.036658121212123,7880.105176619023,2019
+1995,28,"(25,30]",HS,12.580274214949137,37.660216567282355,0.334046783625731,6664.286749141806,2019
+1995,28,"(25,30]",HS,12.580274214949137,37.660216567282355,0.334046783625731,6604.801236572423,2019
+1995,28,"(25,30]",HS,12.580274214949137,37.660216567282355,0.334046783625731,6694.649588828203,2019
+1995,28,"(25,30]",HS,12.580274214949137,37.660216567282355,0.334046783625731,6614.415603987154,2019
+1995,28,"(25,30]",HS,12.580274214949137,37.660216567282355,0.334046783625731,6673.203707461436,2019
+1995,53,"(50,55]",College,1036.808137992039,198.21166614359132,5.23081288888889,81.55903543142963,2019
+1995,53,"(50,55]",College,2278.5779743476337,356.7809990584644,6.386489135802469,152.57627387511806,2019
+1995,53,"(50,55]",College,3657.376028306059,995.0225640408286,3.67567144754316,210.89775718369992,2019
+1995,53,"(50,55]",College,1517.568155683326,301.28173253825884,5.0370400584795325,156.77988009842588,2019
+1995,53,"(50,55]",College,2107.4862450243254,340.9240657669771,6.18168811369509,148.94620217802554,2019
+1995,58,"(55,60]",College,4626.444228217602,168.47991622205262,27.459915294117646,1120.9909840354817,2019
+1995,58,"(55,60]",College,4678.7007518797,168.47991622205262,27.770080000000004,891.4921497926355,2019
+1995,58,"(55,60]",College,4630.315081822203,154.60509959200127,29.9493037037037,871.8991380768414,2019
+1995,58,"(55,60]",College,4610.9608137992045,176.40838286779626,26.13799151061174,870.5940149027904,2019
+1995,58,"(55,60]",College,4589.671118973905,160.55144957630895,28.586917969821677,891.9919309581358,2019
+1995,44,"(40,45]",HS,210.38089340999556,198.21166614359132,1.061395111111111,8061.30988700562,2019
+1995,44,"(40,45]",HS,210.38089340999556,198.21166614359132,1.061395111111111,8107.524318210783,2019
+1995,44,"(40,45]",HS,210.38089340999556,198.21166614359132,1.061395111111111,8094.484435299477,2019
+1995,44,"(40,45]",HS,210.38089340999556,198.21166614359132,1.061395111111111,8346.29243598333,2019
+1995,44,"(40,45]",HS,210.38089340999556,198.21166614359132,1.061395111111111,8175.226787441359,2019
+1995,45,"(40,45]",College,5088.837045555065,247.76458267948914,20.53900113777778,900.4446532349032,2019
+1995,45,"(40,45]",College,5026.6711366651925,247.76458267948914,20.288093973333336,717.527446963883,2019
+1995,45,"(40,45]",College,6107.452171605485,247.76458267948914,24.65022282666667,700.6623143144973,2019
+1995,45,"(40,45]",College,6088.8720743034055,247.76458267948914,24.575231893333335,700.2977622451377,2019
+1995,45,"(40,45]",College,5864.052896948253,247.76458267948914,23.667841600000003,717.6463543936006,2019
+1995,39,"(35,40]",College,2211.0315789473684,828.5247644802118,2.6686366826156296,294.6275285172421,2019
+1995,39,"(35,40]",College,3964.3347191508187,820.5962978344681,4.83104143853999,266.9857742969191,2019
+1995,39,"(35,40]",College,2998.169659442725,780.9539646057499,3.839111900733221,262.3075857812247,2019
+1995,39,"(35,40]",College,3078.683414418399,876.0955643546737,3.514095424836601,245.48939125792532,2019
+1995,39,"(35,40]",College,3102.4891640866877,808.7035978658527,3.836373638344227,263.55830488867144,2019
+1995,60,"(55,60]",HS,986.2934984520125,160.55144957630895,6.143161591220852,81.9670703345758,2019
+1995,60,"(55,60]",HS,1368.8112516585581,59.46349984307739,23.019352296296297,153.17512963396865,2019
+1995,60,"(55,60]",HS,2752.293038478549,170.46203288348855,16.146076589147285,212.21978371133923,2019
+1995,60,"(55,60]",HS,1612.9846970367093,233.88976604943778,6.896345762711864,156.74454325493792,2019
+1995,60,"(55,60]",HS,2591.7300309597526,99.10583307179566,26.151135111111117,148.99287092771775,2019
+1995,41,"(40,45]",College,131.08645731977,69.37408315025698,1.8895594920634915,7249.2598168279455,2019
+1995,41,"(40,45]",College,131.08645731977,69.37408315025698,1.8895594920634915,7296.124153514364,2019
+1995,41,"(40,45]",College,131.08645731977,69.37408315025698,1.8895594920634915,7285.353222159289,2019
+1995,41,"(40,45]",College,131.08645731977,69.37408315025698,1.8895594920634915,7508.130255239294,2019
+1995,41,"(40,45]",College,131.08645731977,69.37408315025698,1.8895594920634915,7353.135098506097,2019
+1995,54,"(50,55]",HS,13505.795311808935,707.6156481326211,19.08634347961407,436.06588943204696,2019
+1995,54,"(50,55]",HS,12536.533569217161,771.0433812985704,16.259180576978004,388.72052903485076,2019
+1995,54,"(50,55]",HS,14760.53250773994,606.5276983993896,24.33612273057371,386.7361837048681,2019
+1995,54,"(50,55]",HS,14661.051570101725,604.5455817379535,24.25135839708561,395.26156288641494,2019
+1995,54,"(50,55]",HS,9065.34559929235,501.4755153432861,18.07734440052701,393.16468487537037,2019
+1995,52,"(50,55]",HS,2125.1373374613004,1435.0524628796009,1.4808778023327198,1074.9069631793623,2019
+1995,52,"(50,55]",HS,2211.941229544449,1387.4816630051394,1.5942129460317458,690.91594009048,2019
+1995,52,"(50,55]",HS,2364.00771340115,1331.9823964849336,1.7748040211640213,958.5594911749733,2019
+1995,52,"(50,55]",HS,2271.3975409111013,1302.2506465633949,1.7442091865381364,694.6077184008882,2019
+1995,52,"(50,55]",HS,2082.267633790358,1466.7663294625759,1.4196314654654654,958.155499445413,2019
+1995,54,"(50,55]",HS,839.5881468376825,83.24889978030835,10.085276190476193,3618.8988568603863,2019
+1995,54,"(50,55]",HS,839.3946041574525,69.37408315025698,12.099541587301585,3774.7794928470976,2019
+1995,54,"(50,55]",HS,778.0415745245466,83.24889978030835,9.345968253968254,3736.371790470935,2019
+1995,54,"(50,55]",HS,706.2372401592216,67.39196648882105,10.479546405228758,3529.1802161202068,2019
+1995,54,"(50,55]",HS,748.6230871295887,67.39196648882105,11.108491503267974,3746.984850777551,2019
+1995,31,"(30,35]",NoHS,0,21.803283275795042,0,7835.940961168091,2019
+1995,31,"(30,35]",NoHS,0,21.803283275795042,0,7814.328047173125,2019
+1995,31,"(30,35]",NoHS,0,21.803283275795042,0,7814.75699718972,2019
+1995,31,"(30,35]",NoHS,0,21.803283275795042,0,7850.242524643753,2019
+1995,31,"(30,35]",NoHS,0,21.803283275795042,0,7835.2452530982355,2019
+1995,74,"(70,75]",HS,1188.6230163644407,118.92699968615479,9.994559851851854,2771.974676613935,2019
+1995,74,"(70,75]",HS,1501.310570544007,69.37408315025698,21.640798730158725,5028.277395663319,2019
+1995,74,"(70,75]",HS,1461.82786377709,59.46349984307739,24.583616296296302,5155.004901236228,2019
+1995,74,"(70,75]",HS,1264.4143299425032,126.85546633189846,9.967361805555553,2402.4440143314796,2019
+1995,74,"(70,75]",HS,1266.3497567448032,89.1952497646161,14.197502222222223,2834.77753398629,2019
+1995,68,"(65,70]",HS,416.9296417514374,103.07006639466748,4.045108888888889,8056.570716631398,2019
+1995,68,"(65,70]",HS,416.9296417514374,103.07006639466748,4.045108888888889,7854.298673334772,2019
+1995,68,"(65,70]",HS,416.9296417514374,103.07006639466748,4.045108888888889,7867.4746411624,2019
+1995,68,"(65,70]",HS,416.9296417514374,103.07006639466748,4.045108888888889,8208.64735667328,2019
+1995,68,"(65,70]",HS,416.9296417514374,103.07006639466748,4.045108888888889,8035.843302347026,2019
+1995,52,"(50,55]",HS,37329.5444493587,6481.521482895436,5.759379884471629,33.49772843884923,2019
+1995,52,"(50,55]",HS,37120.47964617426,6501.342649509796,5.70966362601626,40.025483906567764,2019
+1995,52,"(50,55]",HS,37187.27122512163,6679.733149039027,5.567179166501814,35.10314700103088,2019
+1995,52,"(50,55]",HS,37178.5811587793,6362.594483209281,5.843305157493943,38.62917136370322,2019
+1995,52,"(50,55]",HS,37021.77287925696,6679.733149039027,5.542402975272008,33.63512995488385,2019
+1995,73,"(70,75]",HS,2973.783281733746,487.6006987132347,6.098808491418247,13.516461742509657,2019
+1995,65,"(60,65]",HS,5456.200406899602,235.87188271087368,23.132050943043886,11.748975863729939,2019
+1995,70,"(65,70]",HS,6697.350906678461,295.3353825539511,22.677103057419835,12.3878164019517,2019
+1995,80,"(75,80]",HS,4568.768509509067,392.45909896431084,11.641387654320988,11.991229996124789,2019
+1995,69,"(65,70]",HS,2473.2819106590005,313.17443250687427,7.89745794655415,8.726199060810947,2019
+1995,50,"(45,50]",College,4351.516850950907,85.23101644174427,51.055555038759685,2004.553233503802,2019
+1995,50,"(45,50]",College,4198.618133569217,85.23101644174427,49.26162222222222,1812.575778880259,2019
+1995,50,"(45,50]",College,4217.972401592216,85.23101644174427,49.48870232558139,1799.5351154927243,2019
+1995,50,"(45,50]",College,4351.516850950907,85.23101644174427,51.055555038759685,1829.1113939434326,2019
+1995,50,"(45,50]",College,4174.038213180009,85.23101644174427,48.97323049095607,1811.6203456971361,2019
+1995,42,"(40,45]",HS,105.67430340557276,105.0521830561034,1.0059220125786164,5902.339790192642,2019
+1995,42,"(40,45]",HS,59.8046881910659,105.0521830561034,0.569285534591195,5821.136015729386,2019
+1995,42,"(40,45]",HS,59.8046881910659,105.0521830561034,0.569285534591195,5816.222688807612,2019
+1995,42,"(40,45]",HS,105.67430340557276,105.0521830561034,1.0059220125786164,5878.429767765382,2019
+1995,42,"(40,45]",HS,105.67430340557276,105.0521830561034,1.0059220125786164,5837.305896021875,2019
+1995,72,"(70,75]",NoHS,126.38337019018134,19.22653161592836,6.573383734249714,7902.0926619097545,2019
+1995,72,"(70,75]",NoHS,128.76394515701017,16.649779956061675,7.733672486772485,7871.970110530558,2019
+1995,72,"(70,75]",NoHS,127.1575409111013,17.442626620636037,7.290045454545455,7873.538926791705,2019
+1995,72,"(70,75]",NoHS,126.9639982308713,19.22653161592836,6.6035830469644905,7840.719120597018,2019
+1995,72,"(70,75]",NoHS,129.6735957540911,19.622954948215543,6.608260381593714,7874.563364597678,2019
+1995,55,"(50,55]",HS,21.289694825298543,59.46349984307739,0.3580296296296297,10983.544205982069,2019
+1995,55,"(50,55]",HS,21.289694825298543,59.46349984307739,0.3580296296296297,11030.11927319886,2019
+1995,55,"(50,55]",HS,21.289694825298543,59.46349984307739,0.3580296296296297,10997.742971708652,2019
+1995,55,"(50,55]",HS,21.289694825298543,59.46349984307739,0.3580296296296297,11224.028574450836,2019
+1995,55,"(50,55]",HS,21.289694825298543,59.46349984307739,0.3580296296296297,10906.11428573367,2019
+1995,80,"(75,80]",HS,129.6735957540911,503.4576320047219,0.2575660542432196,362.37461650160344,2019
+1995,80,"(75,80]",HS,129.6735957540911,503.4576320047219,0.2575660542432196,363.4820907029417,2019
+1995,80,"(75,80]",HS,129.6735957540911,503.4576320047219,0.2575660542432196,363.9330727801722,2019
+1995,80,"(75,80]",HS,129.6735957540911,503.4576320047219,0.2575660542432196,369.6448450583993,2019
+1995,80,"(75,80]",HS,129.6735957540911,503.4576320047219,0.2575660542432196,364.07155701939814,2019
+1995,40,"(35,40]",HS,180.82692613887662,148.65874960769352,1.2163893925925924,6405.640088585454,2019
+1995,40,"(35,40]",HS,182.7623529411765,148.65874960769352,1.2294086518518517,6317.511961175613,2019
+1995,40,"(35,40]",HS,176.95607253427687,148.65874960769352,1.1903508740740738,6312.179668387129,2019
+1995,40,"(35,40]",HS,407.4654046881911,148.65874960769352,2.7409446518518514,6379.6912270113535,2019
+1995,40,"(35,40]",HS,158.95660327288812,148.65874960769352,1.069271762962963,6335.060668486791,2019
+1995,37,"(35,40]",College,105.48076072534278,93.15948308748793,1.132260047281324,5446.624250016195,2019
+1995,37,"(35,40]",College,105.48076072534278,93.15948308748793,1.132260047281324,5371.690162365177,2019
+1995,37,"(35,40]",College,105.48076072534278,93.15948308748793,1.132260047281324,5367.156189989533,2019
+1995,37,"(35,40]",College,105.48076072534278,93.15948308748793,1.132260047281324,5424.560303750833,2019
+1995,37,"(35,40]",College,105.48076072534278,93.15948308748793,1.132260047281324,5386.6115774736845,2019
+1995,56,"(55,60]",HS,29144.04387439186,332.9955991212334,87.52080793650794,33.07887425024675,2019
+1995,56,"(55,60]",HS,11776.743069438302,336.95983244410525,34.949990875816994,38.05449153409482,2019
+1995,56,"(55,60]",HS,13274.5118089341,340.9240657669771,38.93685762273901,33.60975780198918,2019
+1995,56,"(55,60]",HS,12967.940203449802,323.0850158140539,40.137857123381046,40.353902997162976,2019
+1995,56,"(55,60]",HS,21609.42733303848,340.9240657669771,63.38486925064599,32.14910308739483,2019
+1995,40,"(35,40]",College,148.25369305616985,85.23101644174427,1.7394335917312662,7499.440683340981,2019
+1995,40,"(35,40]",College,148.25369305616985,85.23101644174427,1.7394335917312662,7591.459508395143,2019
+1995,40,"(35,40]",College,148.25369305616985,85.23101644174427,1.7394335917312662,7498.307598904915,2019
+1995,40,"(35,40]",College,148.25369305616985,85.23101644174427,1.7394335917312662,7747.1678355119175,2019
+1995,40,"(35,40]",College,148.25369305616985,85.23101644174427,1.7394335917312662,7554.217390434448,2019
+1995,57,"(55,60]",HS,279.76594427244584,65.40984982738514,4.277122558922558,6493.575853752247,2019
+1995,57,"(55,60]",HS,248.89588677576296,63.42773316594923,3.9240861111111114,6358.060626983193,2019
+1995,57,"(55,60]",HS,302.79752321981425,63.42773316594923,4.773897916666667,6413.584095129865,2019
+1995,57,"(55,60]",HS,236.91559486952679,63.42773316594923,3.735205138888889,6399.755280135196,2019
+1995,57,"(55,60]",HS,244.65730207872625,75.32043313456471,3.2482195321637426,6331.7504216543375,2019
+1995,52,"(50,55]",HS,575.3249712516586,150.64086626912942,3.819182573099415,3776.224580714819,2019
+1995,52,"(50,55]",HS,559.8415568332597,150.64086626912942,3.7163989473684214,3933.49479797425,2019
+1995,52,"(50,55]",HS,563.7124104378594,150.64086626912942,3.7420948538011696,3886.56702955968,2019
+1995,52,"(50,55]",HS,577.2603980539584,150.64086626912942,3.832030526315789,3688.1757033513795,2019
+1995,52,"(50,55]",HS,571.4541176470588,150.64086626912942,3.793486666666666,3897.1956200761438,2019
+1995,60,"(55,60]",College,5024.9486068111455,180.3726161906681,27.85871111111111,22.912149894566873,2019
+1995,60,"(55,60]",College,5052.66391862008,699.6871814868774,7.22131840100724,20.120435579797295,2019
+1995,60,"(55,60]",College,4736.27969924812,198.21166614359132,23.89506022222222,20.973505920242754,2019
+1995,60,"(55,60]",College,5699.83193277311,130.8196996547703,43.57013468013468,20.498943767727734,2019
+1995,60,"(55,60]",College,5138.171074745688,699.6871814868774,7.3435260937991815,21.266240005160498,2019
+1995,83,"(80,85]",HS,26095.16603272888,8463.63814433135,3.083209086651054,128.25315731141592,2019
+1995,83,"(80,85]",HS,25708.08067226891,8463.63814433135,3.037473983866771,153.22811140571906,2019
+1995,83,"(80,85]",HS,25382.92896948253,8503.280477560067,2.9850748821548825,134.3334748868992,2019
+1995,83,"(80,85]",HS,25912.46174259177,8463.63814433135,3.061622118136872,148.42164986962405,2019
+1995,83,"(80,85]",HS,26150.519239274658,8463.63814433135,3.0897492063492065,129.39333755086028,2019
+1995,65,"(60,65]",HS,2043.6171605484299,71.35619981169287,28.639658024691357,1845.4872734149365,2019
+1995,65,"(60,65]",HS,1997.360459973463,67.39196648882105,29.637960784313723,1513.015760922719,2019
+1995,65,"(60,65]",HS,2048.4557275541797,87.21313310318017,23.48792727272728,1581.8109571633902,2019
+1995,65,"(60,65]",HS,2086.970720919947,73.3383164731288,28.456757957957954,1531.7909593093077,2019
+1995,65,"(60,65]",HS,2175.613268465281,77.30254979600063,28.144133333333333,1544.1650154822833,2019
+1995,24,"(20,25]",HS,-3.9463352498894295,9.315948308748792,-0.42361068557919623,4040.8624522166383,2019
+1995,24,"(20,25]",HS,-3.9463352498894295,7.730254979600061,-0.5105051851851853,4109.585312580696,2019
+1995,24,"(20,25]",HS,-3.9463352498894295,7.730254979600061,-0.5105051851851853,4055.840061895831,2019
+1995,24,"(20,25]",HS,-3.9463352498894295,7.9284666457436535,-0.4977425555555555,4117.218938953354,2019
+1995,24,"(20,25]",HS,-3.9463352498894295,7.730254979600061,-0.5105051851851853,4034.9140006103858,2019
+1995,31,"(30,35]",HS,7.935249889429456,19.821166614359132,0.4003422222222222,6435.293021369728,2019
+1995,31,"(30,35]",HS,7.935249889429456,19.821166614359132,0.4003422222222222,6351.300512088057,2019
+1995,31,"(30,35]",HS,7.935249889429456,19.821166614359132,0.4003422222222222,6456.119899191933,2019
+1995,31,"(30,35]",HS,7.935249889429456,19.821166614359132,0.4003422222222222,6405.313021849953,2019
+1995,31,"(30,35]",HS,7.935249889429456,19.821166614359132,0.4003422222222222,6369.002781104376,2019
+1995,56,"(55,60]",HS,534.8164882795223,223.9791827422582,2.387795516224189,4631.690103632411,2019
+1995,56,"(55,60]",HS,505.88185758513936,204.15801612789906,2.477893678532902,4815.753223215141,2019
+1995,56,"(55,60]",HS,723.4238301636444,85.23101644174427,8.487800103359174,4763.199535931577,2019
+1995,56,"(55,60]",HS,525.1393542680231,134.7839329776421,3.896156928104576,4514.263263459651,2019
+1995,56,"(55,60]",HS,592.1051216275985,126.85546633189846,4.6675570138888895,4773.944720389449,2019
+1995,46,"(45,50]",College,319.2486510393631,160.55144957630895,1.988450754458162,7715.527087960778,2019
+1995,46,"(45,50]",College,570.8541353383459,160.55144957630895,3.5555838134430737,7834.217263068155,2019
+1995,46,"(45,50]",College,317.31322423706325,160.55144957630895,1.976395884773663,7740.689935808599,2019
+1995,46,"(45,50]",College,454.7285272003538,160.55144957630895,2.8322916323731144,7609.462054397547,2019
+1995,46,"(45,50]",College,388.92401592215833,160.55144957630895,2.4224260631001373,7864.841883333703,2019
+1995,60,"(55,60]",HS,135.8669615214507,37.660216567282355,3.6077052631578947,7491.797119043893,2019
+1995,60,"(55,60]",HS,143.0280406899602,35.67809990584644,4.008846913580247,7381.770723644382,2019
+1995,60,"(55,60]",HS,143.2215833701902,33.69598324441053,4.2504052287581695,7501.1125687937265,2019
+1995,60,"(55,60]",HS,143.0280406899602,39.642333228718265,3.607962222222222,7488.017080231824,2019
+1995,60,"(55,60]",HS,135.8669615214507,33.69598324441053,4.032141176470589,7389.74096106247,2019
+1995,19,"(15,20]",HS,-3.9289164086687305,75.32043313456471,-0.052162690058479524,6906.283569085225,2019
+1995,19,"(15,20]",HS,-0.832233524988943,75.32043313456471,-0.01104923976608187,7023.73858443535,2019
+1995,19,"(15,20]",HS,-3.9289164086687305,75.32043313456471,-0.052162690058479524,6931.881970628152,2019
+1995,19,"(15,20]",HS,8.651357806280407,75.32043313456471,0.11486070175438595,7036.785301321515,2019
+1995,19,"(15,20]",HS,3.8127908005307387,75.32043313456471,0.05062093567251462,6896.117003389025,2019
+1995,26,"(25,30]",HS,13.509279080053075,23.785399937230956,0.5679651851851854,4358.741619637353,2019
+1995,26,"(25,30]",HS,13.509279080053075,21.803283275795042,0.619598383838384,4291.5442392812865,2019
+1995,26,"(25,30]",HS,13.509279080053075,39.642333228718265,0.34077911111111114,4301.784134576636,2019
+1995,26,"(25,30]",HS,13.509279080053075,33.69598324441053,0.40091660130718954,4274.269176438949,2019
+1995,26,"(25,30]",HS,13.509279080053075,49.55291653589783,0.2726232888888889,4291.872901548525,2019
+1995,73,"(70,75]",HS,329.21609907120745,47.57079987446191,6.920550000000001,12471.626760716837,2019
+1995,73,"(70,75]",HS,329.21609907120745,47.57079987446191,6.920550000000001,12480.331711705458,2019
+1995,73,"(70,75]",HS,321.261494913755,47.57079987446191,6.75333388888889,12707.029991444779,2019
+1995,73,"(70,75]",HS,323.7969040247678,47.57079987446191,6.806631481481483,12728.907780390033,2019
+1995,73,"(70,75]",HS,321.35826625387,47.57079987446191,6.75536814814815,12427.137041426271,2019
+1995,62,"(60,65]",College,2970.8801415302964,156.58721625343713,18.972686357243322,1334.1437672615743,2019
+1995,62,"(60,65]",College,3040.5555064130913,156.58721625343713,19.417648382559776,1206.836637815167,2019
+1995,62,"(60,65]",College,2992.169836355595,156.58721625343713,19.108646976090018,1197.4286583462226,2019
+1995,62,"(60,65]",College,3110.2308712958866,156.58721625343713,19.862610407876232,1219.6390052225318,2019
+1995,62,"(60,65]",College,2968.9447147279966,156.58721625343713,18.96032630098453,1208.0917164031562,2019
+1995,50,"(45,50]",College,994.4416452896947,128.8375829933344,7.718567999999998,6616.416474547621,2019
+1995,50,"(45,50]",College,994.4416452896947,128.8375829933344,7.718567999999998,6709.758940879971,2019
+1995,50,"(45,50]",College,994.4416452896947,128.8375829933344,7.718567999999998,6611.546183160363,2019
+1995,50,"(45,50]",College,994.4416452896947,128.8375829933344,7.718567999999998,6468.714531594167,2019
+1995,50,"(45,50]",College,994.4416452896947,128.8375829933344,7.718567999999998,6608.685683350981,2019
+1995,58,"(55,60]",College,22545.399734630693,4439.941321616447,5.07785984126984,274.916639481433,2019
+1995,58,"(55,60]",College,22950.678107032287,2576.7516598666875,8.906825777777778,316.0028041414593,2019
+1995,58,"(55,60]",College,21960.900840336133,2834.426825853356,7.747915959595959,270.0187725972711,2019
+1995,58,"(55,60]",College,22203.79690402477,2438.003493566174,9.107368780487803,308.71970079073583,2019
+1995,58,"(55,60]",College,21818.25988500663,1661.0137622832954,13.135508194112965,259.1061563810028,2019
+1995,43,"(40,45]",HS,17.496258292790802,37.660216567282355,0.4645819883040936,4741.543715985894,2019
+1995,43,"(40,45]",HS,17.496258292790802,37.660216567282355,0.4645819883040936,4731.878830677438,2019
+1995,43,"(40,45]",HS,17.496258292790802,37.660216567282355,0.4645819883040936,4744.202453727566,2019
+1995,43,"(40,45]",HS,17.496258292790802,39.642333228718265,0.44135288888888896,4659.940380504902,2019
+1995,43,"(40,45]",HS,17.496258292790802,35.67809990584644,0.49039209876543216,4739.073800611962,2019
+1995,62,"(60,65]",HS,996.9383458646616,99.10583307179566,10.059330666666668,3653.264955563705,2019
+1995,62,"(60,65]",HS,408.568597965502,99.10583307179566,4.122548444444445,6711.3854215373085,2019
+1995,62,"(60,65]",HS,430.05183547103053,99.10583307179566,4.339319111111111,6819.889078681405,2019
+1995,62,"(60,65]",HS,761.5904467049978,99.10583307179566,7.684617777777778,3558.873558773145,2019
+1995,62,"(60,65]",HS,424.8261831048209,99.10583307179566,4.286591111111112,6718.631831269677,2019
+1995,52,"(50,55]",College,32858.350482087575,2200.1494941938636,14.934599021021024,26.67063875864351,2019
+1995,52,"(50,55]",College,32517.58956214065,2299.25532726566,14.14266139846743,29.977656489646268,2019
+1995,52,"(50,55]",College,31917.075011057055,2338.8976604943773,13.646204171374768,26.921516876831326,2019
+1995,52,"(50,55]",College,33030.44863334808,2180.3283275795047,15.149300321212124,32.376643680730425,2019
+1995,52,"(50,55]",College,32983.69839893852,2180.3283275795047,15.127858488888887,26.11014721535711,2019
+1995,42,"(40,45]",HS,183.28491817779744,124.87334967046255,1.4677664902998235,2719.3914671271077,2019
+1995,42,"(40,45]",HS,182.89783281733747,124.87334967046255,1.4646666666666666,2689.455979663887,2019
+1995,42,"(40,45]",HS,180.9624060150376,124.87334967046255,1.4491675485008817,2683.9426849919164,2019
+1995,42,"(40,45]",HS,180.9624060150376,124.87334967046255,1.4491675485008817,2637.937282941058,2019
+1995,42,"(40,45]",HS,180.18823529411765,124.87334967046255,1.4429679012345678,2729.090718783011,2019
+1995,44,"(40,45]",HS,2.4579920389208314,61.44561650451331,0.04000272401433692,5426.976039353063,2019
+1995,44,"(40,45]",HS,2.4579920389208314,67.39196648882105,0.036473071895424834,5381.928986011958,2019
+1995,44,"(40,45]",HS,3.619248120300752,61.44561650451331,0.058901648745519716,5356.468552146852,2019
+1995,44,"(40,45]",HS,2.4579920389208314,73.3383164731288,0.03351579579579579,5259.169115898736,2019
+1995,44,"(40,45]",HS,4.006333480760725,75.32043313456471,0.053190526315789466,5362.018153510815,2019
+1995,79,"(75,80]",HS,28.063688633348075,37.660216567282355,0.7451812865497075,9027.91771329299,2019
+1995,79,"(75,80]",HS,28.063688633348075,37.660216567282355,0.7451812865497075,9003.189893577779,2019
+1995,79,"(75,80]",HS,28.063688633348075,37.660216567282355,0.7451812865497075,9124.051282909893,2019
+1995,79,"(75,80]",HS,28.063688633348075,37.660216567282355,0.7451812865497075,9086.739609945129,2019
+1995,79,"(75,80]",HS,28.063688633348075,37.660216567282355,0.7451812865497075,8933.847501145765,2019
+1995,31,"(30,35]",College,102.57762052189297,128.8375829933344,0.7961777777777775,5532.523454430293,2019
+1995,31,"(30,35]",College,96.77134011499336,128.8375829933344,0.751111111111111,5565.056286424339,2019
+1995,31,"(30,35]",College,96.77134011499336,128.8375829933344,0.751111111111111,5541.425455637323,2019
+1995,31,"(30,35]",College,94.8359133126935,128.8375829933344,0.7360888888888888,5590.769188434748,2019
+1995,31,"(30,35]",College,111.86766917293234,128.8375829933344,0.8682844444444443,5529.832054356661,2019
+1995,40,"(35,40]",College,1505.9555948695267,0,Inf,173.502133978254,2019
+1995,40,"(35,40]",College,1505.9555948695267,0,Inf,144.27221834930953,2019
+1995,40,"(35,40]",College,1505.9555948695267,0,Inf,145.9108333069895,2019
+1995,40,"(35,40]",College,1505.9555948695267,0,Inf,148.42180394606606,2019
+1995,40,"(35,40]",College,1505.9555948695267,0,Inf,143.45880684389707,2019
+1995,37,"(35,40]",College,173.22069880583814,107.03429971753931,1.6183662551440332,5368.536454608944,2019
+1995,37,"(35,40]",College,173.02715612560814,138.74816630051396,1.2470590476190475,5294.676690692571,2019
+1995,37,"(35,40]",College,185.22034498009728,122.89123300902662,1.5071892473118278,5290.207721498901,2019
+1995,37,"(35,40]",College,189.09119858469703,122.89123300902662,1.5386874551971326,5346.788837292071,2019
+1995,37,"(35,40]",College,180.7688633348076,136.76604963907803,1.3217378421900159,5309.3841787231895,2019
+1995,27,"(25,30]",College,744.171605484299,336.95983244410525,2.2084875816993463,228.1879586242988,2019
+1995,27,"(25,30]",College,744.171605484299,336.95983244410525,2.2084875816993463,231.23325082294332,2019
+1995,27,"(25,30]",College,744.171605484299,336.95983244410525,2.2084875816993463,230.53490666383536,2019
+1995,27,"(25,30]",College,744.171605484299,336.95983244410525,2.2084875816993463,223.71089000104104,2019
+1995,27,"(25,30]",College,744.171605484299,336.95983244410525,2.2084875816993463,228.68572926342762,2019
+1995,75,"(70,75]",NoHS,0.17418841220698805,16.847991622205264,0.010338823529411763,7464.003837998185,2019
+1995,75,"(70,75]",NoHS,0.17418841220698805,16.847991622205264,0.010338823529411763,7252.167167022533,2019
+1995,75,"(70,75]",NoHS,0.17418841220698805,16.847991622205264,0.010338823529411763,7434.545443911191,2019
+1995,75,"(70,75]",NoHS,0.17418841220698805,16.847991622205264,0.010338823529411763,7242.94823126679,2019
+1995,75,"(70,75]",NoHS,0.17418841220698805,16.847991622205264,0.010338823529411763,7251.877139858155,2019
+1995,94,"(90,95]",NoHS,28.141105705440072,17.64083828677963,1.5952249687890137,7841.000832087639,2019
+1995,94,"(90,95]",NoHS,24.618628925254313,27.749633260102783,0.887169523809524,7815.974248990087,2019
+1995,94,"(90,95]",NoHS,20.496169836355595,21.803283275795042,0.9400496969696971,7838.097269744563,2019
+1995,94,"(90,95]",NoHS,46.87603715170279,11.298064970184706,4.149032358674464,7849.8304407728865,2019
+1995,94,"(90,95]",NoHS,19.780061919504647,11.298064970184706,1.7507477582846005,7840.991913778227,2019
+1995,34,"(30,35]",College,3089.3282618310486,325.06713247548976,9.503662330623309,249.32871883398366,2019
+1995,34,"(30,35]",College,2685.211145510836,315.1565491683102,8.520245422781272,225.69452525227433,2019
+1995,34,"(30,35]",College,3608.4097302078726,331.01348245979744,10.901095941450436,222.25749103776488,2019
+1995,34,"(30,35]",College,3421.2539584254755,348.8525324127207,9.80716388888889,206.6647859086591,2019
+1995,34,"(30,35]",College,3265.0650154798764,323.0850158140539,10.10590047716428,221.99562263130503,2019
+1995,83,"(80,85]",College,662.2643432109687,105.0521830561034,6.3041464150943405,6697.066058528109,2019
+1995,83,"(80,85]",College,670.586678460858,25.76751659866687,26.024497777777782,6810.169728107317,2019
+1995,83,"(80,85]",College,598.3952587350731,63.42773316594923,9.434284166666668,6834.884962633398,2019
+1995,83,"(80,85]",College,646.2390092879257,39.642333228718265,16.30174,6641.097779289067,2019
+1995,83,"(80,85]",College,529.7456700574967,37.660216567282355,14.066453099415204,6734.723302863688,2019
+1995,28,"(25,30]",HS,1.064484741264927,103.07006639466748,0.010327777777777778,5085.198562761839,2019
+1995,28,"(25,30]",HS,1.2580274214949139,103.07006639466748,0.012205555555555558,5006.801618912602,2019
+1995,28,"(25,30]",HS,1.4515701017249005,103.07006639466748,0.014083333333333335,5018.748163439156,2019
+1995,28,"(25,30]",HS,1.2580274214949139,103.07006639466748,0.012205555555555558,4986.647378904042,2019
+1995,28,"(25,30]",HS,1.064484741264927,103.07006639466748,0.010327777777777778,5007.185058224872,2019
+1995,41,"(40,45]",College,1088.9678903140205,346.87041575128484,3.139408380952381,714.1181721017235,2019
+1995,41,"(40,45]",College,1088.0001769128705,346.87041575128484,3.13661853968254,606.2732056603442,2019
+1995,41,"(40,45]",College,1606.307474568775,346.87041575128484,4.6308575238095235,599.762695740554,2019
+1995,41,"(40,45]",College,1089.9356037151701,346.87041575128484,3.1421982222222216,608.6706520594827,2019
+1995,41,"(40,45]",College,1232.1894736842105,346.87041575128484,3.5523048888888886,585.1928480179902,2019
+1995,51,"(50,55]",HS,4368.451835471031,229.92553272656593,18.99942030651341,2221.4835310605804,2019
+1995,51,"(50,55]",HS,4913.44866873065,331.01348245979744,14.843651177644713,2091.511688738291,2019
+1995,51,"(50,55]",HS,3959.7671118973904,206.14013278933496,19.209103333333335,1968.8953776587157,2019
+1995,51,"(50,55]",HS,4058.396461742592,233.88976604943778,17.35174877589454,1973.6843797778442,2019
+1995,51,"(50,55]",HS,4993.904360902256,652.1163816124156,7.657995569064504,2217.755115589546,2019
+1995,33,"(30,35]",NoHS,-0.4838567005749669,11.892699968615478,-0.04068518518518519,5344.881869174269,2019
+1995,33,"(30,35]",NoHS,-0.4838567005749669,11.892699968615478,-0.04068518518518519,5295.712220634207,2019
+1995,33,"(30,35]",NoHS,-0.4838567005749669,11.892699968615478,-0.04068518518518519,5347.470514009338,2019
+1995,33,"(30,35]",NoHS,-0.4838567005749669,11.892699968615478,-0.04068518518518519,5315.452279401938,2019
+1995,33,"(30,35]",NoHS,-0.4838567005749669,11.892699968615478,-0.04068518518518519,5323.866725721353,2019
+1995,69,"(65,70]",NoHS,-2.961203007518797,11.099853304041115,-0.2667785714285714,9296.83924116009,2019
+1995,69,"(65,70]",NoHS,-2.961203007518797,11.099853304041115,-0.2667785714285714,9348.384361765067,2019
+1995,69,"(65,70]",NoHS,-2.961203007518797,11.099853304041115,-0.2667785714285714,9326.66162574379,2019
+1995,69,"(65,70]",NoHS,-2.903140203449801,11.099853304041115,-0.26154761904761903,9336.477490527397,2019
+1995,69,"(65,70]",NoHS,-2.941848739495798,11.099853304041115,-0.2650349206349206,9393.135055126766,2019
+1995,48,"(45,50]",HS,330.28058381247234,118.92699968615479,2.7771707407407407,8509.461707605318,2019
+1995,48,"(45,50]",HS,328.5386996904025,118.92699968615479,2.7625240740740744,8624.406913773299,2019
+1995,48,"(45,50]",HS,328.5386996904025,118.92699968615479,2.7625240740740744,8501.061800142383,2019
+1995,48,"(45,50]",HS,330.57089783281737,118.92699968615479,2.7796118518518522,8288.402883143122,2019
+1995,48,"(45,50]",HS,330.08704113224235,118.92699968615479,2.7755433333333333,8457.706035488603,2019
+1995,38,"(35,40]",HS,28.779796550199027,61.44561650451331,0.4683783512544803,4411.774693626699,2019
+1995,38,"(35,40]",HS,28.779796550199027,61.44561650451331,0.4683783512544803,4402.781990200409,2019
+1995,38,"(35,40]",HS,28.779796550199027,61.44561650451331,0.4683783512544803,4414.248519154481,2019
+1995,38,"(35,40]",HS,28.779796550199027,61.44561650451331,0.4683783512544803,4335.846778172332,2019
+1995,38,"(35,40]",HS,28.779796550199027,61.44561650451331,0.4683783512544803,4409.4765580837575,2019
+1995,43,"(40,45]",HS,-7.586873065015481,47.57079987446191,-0.15948592592592598,4205.906434302879,2019
+1995,43,"(40,45]",HS,-8.748129146395401,47.57079987446191,-0.18389703703703708,4170.994967931945,2019
+1995,43,"(40,45]",HS,-8.632003538257408,47.57079987446191,-0.18145592592592594,4151.263131668639,2019
+1995,43,"(40,45]",HS,-6.580451127819549,47.57079987446191,-0.13832962962962964,4075.856068508145,2019
+1995,43,"(40,45]",HS,-7.935249889429456,47.57079987446191,-0.1668092592592593,4155.5640727296,2019
+1995,51,"(50,55]",College,12279.528244139761,265.6036326324124,46.23253124378109,174.6070340027365,2019
+1995,51,"(50,55]",College,14054.488810260946,327.0492491369256,42.9736158922559,157.3529848720224,2019
+1995,51,"(50,55]",College,15111.057655904466,291.37114923107936,51.86188713529854,155.32489661109076,2019
+1995,51,"(50,55]",College,15171.055886775765,275.514215939592,55.064512134292556,159.8605117035092,2019
+1995,51,"(50,55]",College,14275.127465723132,327.0492491369256,43.64825023569025,157.44221239614905,2019
+1995,74,"(70,75]",College,783.0736842105263,122.89123300902662,6.372087455197132,4492.074416005742,2019
+1995,74,"(70,75]",College,844.0396284829721,138.74816630051396,6.083248888888888,4669.574537052579,2019
+1995,74,"(70,75]",College,642.5616983635559,124.87334967046255,5.145707231040564,4616.433369847944,2019
+1995,74,"(70,75]",College,652.4323750552853,105.0521830561034,6.210555136268344,4375.6264939753555,2019
+1995,74,"(70,75]",College,891.2640424590888,136.76604963907803,6.516705314009661,4642.347682750834,2019
+1995,43,"(40,45]",College,3.4837682441397613,59.46349984307739,0.058586666666666676,5825.2756312012525,2019
+1995,43,"(40,45]",College,0.9677134011499338,59.46349984307739,0.016274074074074076,5902.8377299584145,2019
+1995,43,"(40,45]",College,3.096682883679788,59.46349984307739,0.05207703703703705,5874.833385182419,2019
+1995,43,"(40,45]",College,3.096682883679788,59.46349984307739,0.05207703703703705,5876.071741487058,2019
+1995,43,"(40,45]",College,1.7418841220698806,59.46349984307739,0.029293333333333338,5908.096299699128,2019
+1995,29,"(25,30]",College,7528.46188412207,107.03429971753931,70.3369097942387,595.2677059620863,2019
+1995,29,"(25,30]",College,5722.128049535603,105.0521830561034,54.4693873375262,473.3124314407708,2019
+1995,29,"(25,30]",College,7632.220114993365,110.99853304041113,68.75964849206349,462.4919971370774,2019
+1995,29,"(25,30]",College,6489.0602742149495,114.96276636328297,56.44488628352491,460.3952240212533,2019
+1995,29,"(25,30]",College,7419.5360636886335,128.8375829933344,57.58828977777777,475.14505523159323,2019
+1995,83,"(80,85]",HS,336.7642636001769,168.47991622205262,1.9988392156862744,612.9528798291036,2019
+1995,83,"(80,85]",HS,243.12831490490933,39.642333228718265,6.133047555555556,611.7988407004865,2019
+1995,83,"(80,85]",HS,348.7639097744361,184.33684951353993,1.8919923536439667,619.4581524157477,2019
+1995,83,"(80,85]",HS,215.64525431225124,79.28466645743653,2.7198860000000002,4220.3206251089305,2019
+1995,83,"(80,85]",HS,191.64596196373287,47.57079987446191,4.028647037037038,4728.821553862922,2019
+1995,45,"(40,45]",HS,155.25993808049537,55.499266520205566,2.7975133333333337,6537.156558378719,2019
+1995,45,"(40,45]",HS,155.25993808049537,55.499266520205566,2.7975133333333337,6346.594831088943,2019
+1995,45,"(40,45]",HS,155.25993808049537,55.499266520205566,2.7975133333333337,6383.577717396885,2019
+1995,45,"(40,45]",HS,155.25993808049537,55.499266520205566,2.7975133333333337,6562.871218226479,2019
+1995,45,"(40,45]",HS,155.25993808049537,55.499266520205566,2.7975133333333337,6445.965702930345,2019
+1995,28,"(25,30]",HS,20.167147279964617,45.588683213026,0.44237178743961353,4874.5322656365,2019
+1995,28,"(25,30]",HS,20.4574613003096,45.588683213026,0.4487399033816426,4829.689546159227,2019
+1995,28,"(25,30]",HS,20.4574613003096,45.588683213026,0.4487399033816426,4876.893109726542,2019
+1995,28,"(25,30]",HS,20.74777532065458,45.588683213026,0.45510801932367156,4847.692479758904,2019
+1995,28,"(25,30]",HS,20.74777532065458,45.588683213026,0.45510801932367156,4855.366454803707,2019
+1995,41,"(40,45]",College,223.83210968597967,89.1952497646161,2.5094622222222225,7860.153839355982,2019
+1995,41,"(40,45]",College,212.21954887218047,89.1952497646161,2.37926962962963,7752.014663655171,2019
+1995,41,"(40,45]",College,200.60698805838126,89.1952497646161,2.249077037037037,7745.471579583263,2019
+1995,41,"(40,45]",College,198.2844758956214,89.1952497646161,2.2230385185185186,7828.312830322082,2019
+1995,41,"(40,45]",College,227.31587793011943,89.1952497646161,2.5485200000000003,7773.548114994944,2019
+1995,65,"(60,65]",HS,885.8448474126493,47.57079987446191,18.621609259259262,5865.992631074241,2019
+1995,65,"(60,65]",HS,874.23228659885,47.57079987446191,18.37749814814815,6095.709418108376,2019
+1995,65,"(60,65]",HS,947.778505086245,47.57079987446191,19.923535185185187,6029.070410824306,2019
+1995,65,"(60,65]",HS,918.747103051747,47.57079987446191,19.31325740740741,5717.306806249791,2019
+1995,65,"(60,65]",HS,880.0385670057497,47.57079987446191,18.499553703703707,6106.4500574620815,2019
+1995,50,"(45,50]",College,184.44617425917735,99.10583307179566,1.8611031111111112,4387.290977983592,2019
+1995,50,"(45,50]",College,192.18788146837682,99.10583307179566,1.9392186666666666,4571.752344506165,2019
+1995,50,"(45,50]",College,176.7044670499779,99.10583307179566,1.7829875555555557,4517.40751843096,2019
+1995,50,"(45,50]",College,192.18788146837682,99.10583307179566,1.9392186666666666,4284.222190642578,2019
+1995,50,"(45,50]",College,192.18788146837682,99.10583307179566,1.9392186666666666,4532.020036237656,2019
+1995,61,"(60,65]",HS,107.62908447589562,37.660216567282355,2.8578987134502922,9907.519441101655,2019
+1995,61,"(60,65]",HS,106.77749668288368,37.660216567282355,2.8352863157894737,9762.015146987233,2019
+1995,61,"(60,65]",HS,107.64843874391863,37.660216567282355,2.8584126315789473,9919.838648100002,2019
+1995,61,"(60,65]",HS,106.19686864219372,37.660216567282355,2.8198687719298245,9902.52053263903,2019
+1995,61,"(60,65]",HS,108.11294117647058,37.660216567282355,2.8707466666666663,9772.555379312686,2019
+1995,67,"(65,70]",College,3763.611605484299,198.21166614359132,18.987841022222224,2221.4835310605804,2019
+1995,67,"(65,70]",College,3763.611605484299,198.21166614359132,18.987841022222224,2091.511688738291,2019
+1995,67,"(65,70]",College,3759.740751879699,198.21166614359132,18.968312133333335,1968.8953776587157,2019
+1995,67,"(65,70]",College,3767.482459088899,198.21166614359132,19.007369911111113,1973.6843797778442,2019
+1995,67,"(65,70]",College,3763.611605484299,198.21166614359132,18.987841022222224,2217.755115589546,2019
+1995,70,"(65,70]",HS,188.87830163644406,12.883758299333435,14.66018666666667,9446.47173822001,2019
+1995,70,"(65,70]",HS,165.45963732861566,8.126678311887245,20.360057452574523,7987.734379277281,2019
+1995,70,"(65,70]",HS,195.8458381247236,18.235473285210404,10.739827536231884,9588.073357518251,2019
+1995,70,"(65,70]",HS,174.943228659885,25.76751659866687,6.789293333333334,7956.023815952778,2019
+1995,70,"(65,70]",HS,195.4587527642636,8.126678311887245,24.051493766937668,9384.803105203137,2019
+1995,66,"(65,70]",HS,8.90296329057939,29.731749921538697,0.29944296296296297,10132.52412924946,2019
+1995,66,"(65,70]",HS,8.90296329057939,29.731749921538697,0.29944296296296297,9986.727555193884,2019
+1995,66,"(65,70]",HS,8.90296329057939,29.731749921538697,0.29944296296296297,9996.753053175751,2019
+1995,66,"(65,70]",HS,8.90296329057939,29.731749921538697,0.29944296296296297,10316.031728208838,2019
+1995,66,"(65,70]",HS,8.90296329057939,29.731749921538697,0.29944296296296297,10064.543628921563,2019
+1995,89,"(85,90]",NoHS,395.69800973020784,23.785399937230956,16.636172222222225,10354.5816656638,2019
+1995,89,"(85,90]",NoHS,395.87219814241485,23.785399937230956,16.643495555555557,10436.558584043323,2019
+1995,89,"(85,90]",NoHS,395.7173639982309,23.785399937230956,16.63698592592593,10583.636457275205,2019
+1995,89,"(85,90]",NoHS,395.7560725342769,23.785399937230956,16.638613333333335,10856.523564294534,2019
+1995,89,"(85,90]",NoHS,396.9560371517028,23.785399937230956,16.689062962962964,10562.069154145209,2019
+1995,42,"(40,45]",College,12638.337019018134,158.56933291487306,79.70227777777778,701.2947968887518,2019
+1995,42,"(40,45]",College,12638.337019018134,158.56933291487306,79.70227777777778,628.4367600338842,2019
+1995,42,"(40,45]",College,12638.337019018134,158.56933291487306,79.70227777777778,629.8510171803075,2019
+1995,42,"(40,45]",College,12638.337019018134,158.56933291487306,79.70227777777778,635.6152717336347,2019
+1995,42,"(40,45]",College,12638.337019018134,158.56933291487306,79.70227777777778,633.1002723575365,2019
+1995,56,"(55,60]",College,11581.593984962406,1189.2699968615482,9.738405925925925,14.143780498529537,2019
+1995,56,"(55,60]",College,11606.754533392304,1189.2699968615482,9.75956222222222,12.697290467735924,2019
+1995,56,"(55,60]",College,11557.981777974348,1189.2699968615482,9.718551555555553,13.042213774070117,2019
+1995,56,"(55,60]",College,11579.658558160107,1189.2699968615482,9.736778518518516,12.694964530533138,2019
+1995,56,"(55,60]",College,11560.304290137106,1189.2699968615482,9.720504444444442,13.033691388183092,2019
+1995,53,"(50,55]",HS,142.64095532950023,79.28466645743653,1.799098888888889,4830.343889565521,2019
+1995,53,"(50,55]",HS,142.64095532950023,79.28466645743653,1.799098888888889,4693.614544575399,2019
+1995,53,"(50,55]",HS,113.60955329500221,79.28466645743653,1.4329322222222223,4725.527947629886,2019
+1995,53,"(50,55]",HS,82.25563909774436,79.28466645743653,1.0374722222222224,4794.173244431105,2019
+1995,53,"(50,55]",HS,161.9952233524989,79.28466645743653,2.04321,4742.309322269384,2019
+1995,35,"(30,35]",HS,6.619159663865546,97.12371641035975,0.06815183673469388,8154.31524702211,2019
+1995,35,"(30,35]",HS,6.638513931888545,39.642333228718265,0.16746022222222223,8310.549062699085,2019
+1995,35,"(30,35]",HS,6.657868199911544,83.24889978030835,0.07997544973544975,8181.708501541815,2019
+1995,35,"(30,35]",HS,6.657868199911544,53.517149858769656,0.12440625514403293,8204.15892403938,2019
+1995,35,"(30,35]",HS,6.696576735957541,57.48138318164148,0.11649992337164752,8212.971344429438,2019
+1995,42,"(40,45]",HS,158.60822644847414,55.499266520205566,2.8578436507936513,6747.298196170328,2019
+1995,42,"(40,45]",HS,158.60822644847414,55.499266520205566,2.8578436507936513,6790.917498330657,2019
+1995,42,"(40,45]",HS,158.60822644847414,55.499266520205566,2.8578436507936513,6780.892380244198,2019
+1995,42,"(40,45]",HS,158.60822644847414,55.499266520205566,2.8578436507936513,6988.2436287067785,2019
+1995,42,"(40,45]",HS,158.60822644847414,55.499266520205566,2.8578436507936513,6843.980825625365,2019
+1995,88,"(85,90]",College,33154.24820875719,99105.83307179566,0.3345337724444445,2.7599606309264977,2019
+1995,88,"(85,90]",College,32600.71614329943,99105.83307179566,0.32894851022222227,2.4130700277309254,2019
+1995,88,"(85,90]",College,23757.75108359133,99105.83307179566,0.23972101688888892,2.9604249961916107,2019
+1995,88,"(85,90]",College,27586.02529854047,99105.83307179566,0.27834915911111113,2.542239978113004,2019
+1995,88,"(85,90]",College,27568.60645731977,99105.83307179566,0.2781733991111111,2.262368443770943,2019
+1995,57,"(55,60]",College,385756.80608580273,4955.291653589782,77.8474473457778,3.154252019260004,2019
+1995,57,"(55,60]",College,387384.07423264044,4162.444989015417,93.06647301164023,2.515666217215731,2019
+1995,57,"(55,60]",College,119096.21731977002,5232.7879861908095,22.759610676767686,3.411751280295482,2019
+1995,57,"(55,60]",College,200957.16289429457,4380.477821773369,45.875626146405224,2.359839939682467,2019
+1995,57,"(55,60]",College,222848.42901371073,5708.49598493543,39.03802851080247,2.586157069102154,2019
+1995,36,"(35,40]",College,20.631649712516584,18.830108283641177,1.0956734502923975,6573.42663994059,2019
+1995,36,"(35,40]",College,34.76026536930562,18.03726161906681,1.9271365079365081,6568.330121437214,2019
+1995,36,"(35,40]",College,16.33500221141088,17.442626620636037,0.9364989898989899,6589.516741467237,2019
+1995,36,"(35,40]",College,38.166616541353385,19.622954948215543,1.9449984287317619,6466.403379894562,2019
+1995,36,"(35,40]",College,23.263830163644407,16.649779956061675,1.3972455026455024,6575.603357990936,2019
+1995,30,"(25,30]",HS,13.006068111455109,109.01641637897524,0.11930375757575758,5605.74266233403,2019
+1995,30,"(25,30]",HS,25.954073418841222,109.01641637897524,0.2380749090909091,5581.594360656238,2019
+1995,30,"(25,30]",HS,24.057355152587352,109.01641637897524,0.22067644444444445,5630.074574896232,2019
+1995,30,"(25,30]",HS,13.760884564352057,109.01641637897524,0.12622763636363638,5600.159149607445,2019
+1995,30,"(25,30]",HS,18.81234851835471,109.01641637897524,0.17256436363636363,5632.267491008585,2019
+1995,38,"(35,40]",HS,51.714604157452456,95.14159974892382,0.5435540740740742,8310.141724798592,2019
+1995,38,"(35,40]",HS,51.714604157452456,95.14159974892382,0.5435540740740742,8247.565382970006,2019
+1995,38,"(35,40]",HS,51.714604157452456,95.14159974892382,0.5435540740740742,8301.33707052754,2019
+1995,38,"(35,40]",HS,51.714604157452456,95.14159974892382,0.5435540740740742,8393.574041052463,2019
+1995,38,"(35,40]",HS,51.714604157452456,95.14159974892382,0.5435540740740742,8313.808416654963,2019
+1995,51,"(50,55]",HS,100.11962848297215,59.46349984307739,1.683715703703704,11032.192829767378,2019
+1995,51,"(50,55]",HS,152.45356921716055,59.46349984307739,2.56381762962963,11085.778506637702,2019
+1995,51,"(50,55]",HS,127.60268907563025,59.46349984307739,2.1458994074074074,10811.62397365722,2019
+1995,51,"(50,55]",HS,98.22291021671828,59.46349984307739,1.6518185185185188,11532.52919583234,2019
+1995,51,"(50,55]",HS,152.41486068111453,59.46349984307739,2.5631666666666666,11176.498268085972,2019
+1995,32,"(30,35]",HS,8.651357806280407,59.46349984307739,0.14549022222222224,5657.049138867051,2019
+1995,32,"(30,35]",HS,8.651357806280407,59.46349984307739,0.14549022222222224,5571.3729465936,2019
+1995,32,"(30,35]",HS,8.651357806280407,59.46349984307739,0.14549022222222224,5605.848109497303,2019
+1995,32,"(30,35]",HS,8.651357806280407,59.46349984307739,0.14549022222222224,5536.386309914042,2019
+1995,32,"(30,35]",HS,8.651357806280407,59.46349984307739,0.14549022222222224,5599.733013400581,2019
+1995,48,"(45,50]",College,4847.857054400708,112.98064970184706,42.90873762183236,1074.9069631793623,2019
+1995,48,"(45,50]",College,5232.426360017692,112.98064970184706,46.31258869395712,969.377811029359,2019
+1995,48,"(45,50]",College,4357.6134453781515,112.98064970184706,38.56955555555556,958.5594911749733,2019
+1995,48,"(45,50]",College,4357.6134453781515,112.98064970184706,38.56955555555556,964.027673158582,2019
+1995,48,"(45,50]",College,4367.290579389651,112.98064970184706,38.65520857699805,958.155499445413,2019
+1995,45,"(40,45]",HS,0,35.67809990584644,0,5137.363798516814,2019
+1995,45,"(40,45]",HS,0,31.713866582974614,0,5053.262057226063,2019
+1995,45,"(40,45]",HS,0,33.69598324441053,0,5103.410604821881,2019
+1995,45,"(40,45]",HS,0,33.69598324441053,0,5094.237205686747,2019
+1995,45,"(40,45]",HS,0,35.67809990584644,0,5123.833026258012,2019
+1995,37,"(35,40]",HS,23.22512162759841,65.40984982738514,0.35507070707070704,7404.137498494226,2019
+1995,37,"(35,40]",HS,26.321804511278195,65.40984982738514,0.40241346801346795,7416.921088850388,2019
+1995,37,"(35,40]",HS,22.838036267138435,65.40984982738514,0.34915286195286194,7441.487112254237,2019
+1995,37,"(35,40]",HS,21.289694825298543,65.40984982738514,0.3254814814814815,7304.246166375383,2019
+1995,37,"(35,40]",HS,23.22512162759841,65.40984982738514,0.35507070707070704,7424.402934923014,2019
+1995,35,"(30,35]",HS,-9.677134011499337,14.865874960769348,-0.6509629629629631,6009.93563462,2019
+1995,35,"(30,35]",HS,-8.709420610349403,14.865874960769348,-0.5858666666666666,6049.417079761102,2019
+1995,35,"(30,35]",HS,-8.709420610349403,14.865874960769348,-0.5858666666666666,5984.934212601473,2019
+1995,35,"(30,35]",HS,-8.709420610349403,14.865874960769348,-0.5858666666666666,6061.432801828875,2019
+1995,35,"(30,35]",HS,-9.677134011499337,14.865874960769348,-0.6509629629629631,6004.67117729271,2019
+1995,64,"(60,65]",College,785.3961963732862,158.56933291487306,4.953014444444445,4197.488252177382,2019
+1995,64,"(60,65]",College,785.3961963732862,158.56933291487306,4.953014444444445,4363.828314100955,2019
+1995,64,"(60,65]",College,785.3961963732862,158.56933291487306,4.953014444444445,4314.045656891428,2019
+1995,64,"(60,65]",College,785.3961963732862,158.56933291487306,4.953014444444445,4090.4664605912817,2019
+1995,64,"(60,65]",College,785.3961963732862,158.56933291487306,4.953014444444445,4322.324937174506,2019
+1995,46,"(45,50]",College,144.1892967713401,112.98064970184706,1.2762300194931773,7993.378926058584,2019
+1995,46,"(45,50]",College,148.42788146837682,142.71239962338575,1.040048950617284,7963.8055678147775,2019
+1995,46,"(45,50]",College,142.75708093763822,116.94488302471889,1.220721054613936,7875.335500357784,2019
+1995,46,"(45,50]",College,145.00217602830608,144.69451628482167,1.0021262709284628,8340.627167700522,2019
+1995,46,"(45,50]",College,144.5570278637771,112.98064970184706,1.2794848343079923,7979.714857168615,2019
+1995,64,"(60,65]",HS,219.090314020345,25.76751659866687,8.50257777777778,8917.55650196107,2019
+1995,64,"(60,65]",HS,219.090314020345,25.76751659866687,8.50257777777778,8961.887390979558,2019
+1995,64,"(60,65]",HS,219.090314020345,25.76751659866687,8.50257777777778,8936.764312957577,2019
+1995,64,"(60,65]",HS,219.090314020345,25.76751659866687,8.50257777777778,9115.95731749773,2019
+1995,64,"(60,65]",HS,219.090314020345,25.76751659866687,8.50257777777778,8856.417856184966,2019
+1995,58,"(55,60]",HS,1684.5954887218045,99.10583307179566,16.997944888888888,4206.217775614758,2019
+1995,58,"(55,60]",HS,1684.5954887218045,99.10583307179566,16.997944888888888,3598.3697274922283,2019
+1995,58,"(55,60]",HS,1684.5954887218045,99.10583307179566,16.997944888888888,3712.0343869011276,2019
+1995,58,"(55,60]",HS,1684.5954887218045,99.10583307179566,16.997944888888888,3600.2227297580416,2019
+1995,58,"(55,60]",HS,1684.5954887218045,99.10583307179566,16.997944888888888,3712.2778583427544,2019
+1995,51,"(50,55]",College,1495.6204157452455,582.7422984621587,2.566521118669689,2039.2319481811805,2019
+1995,51,"(50,55]",College,4649.53386996904,582.7422984621587,7.978713544973542,2091.511688738291,2019
+1995,51,"(50,55]",College,1866.138522777532,582.7422984621587,3.202339229024942,1710.0944533571812,2019
+1995,51,"(50,55]",College,1997.7475453339232,582.7422984621587,3.428183522297807,1668.3904752775065,2019
+1995,51,"(50,55]",College,2866.9477222467935,582.7422984621587,4.9197522297808,2217.755115589546,2019
+1995,31,"(30,35]",College,2548.3764705882354,101.08794973323158,25.209498039215685,2106.432704283353,2019
+1995,31,"(30,35]",College,2546.0539584254752,114.96276636328297,22.146770114942527,1795.6745171889481,2019
+1995,31,"(30,35]",College,2548.957098628925,103.07006639466748,24.730333333333334,1851.3234779575191,2019
+1995,31,"(30,35]",College,2552.247324192835,105.0521830561034,24.29504318658281,1789.954643094906,2019
+1995,31,"(30,35]",College,2549.3441839893853,110.99853304041113,22.967368253968257,1860.4662065984612,2019
+1995,26,"(25,30]",College,21.096152145068555,99.10583307179566,0.2128648888888889,8551.810994995038,2019
+1995,26,"(25,30]",College,21.096152145068555,99.10583307179566,0.2128648888888889,8473.139557291233,2019
+1995,26,"(25,30]",College,21.096152145068555,99.10583307179566,0.2128648888888889,8555.952826733237,2019
+1995,26,"(25,30]",College,21.096152145068555,99.10583307179566,0.2128648888888889,8504.723651335536,2019
+1995,26,"(25,30]",College,21.096152145068555,99.10583307179566,0.2128648888888889,8518.186765453405,2019
+1995,23,"(20,25]",HS,-32.70871295886776,59.46349984307739,-0.5500637037037037,6906.283569085225,2019
+1995,23,"(20,25]",HS,-31.740999557717824,59.46349984307739,-0.5337896296296297,7023.73858443535,2019
+1995,23,"(20,25]",HS,-31.740999557717824,59.46349984307739,-0.5337896296296297,6931.881970628152,2019
+1995,23,"(20,25]",HS,-31.54745687748784,59.46349984307739,-0.5305348148148149,7036.785301321515,2019
+1995,23,"(20,25]",HS,-31.25714285714286,59.46349984307739,-0.5256525925925927,6896.117003389025,2019
+1995,39,"(35,40]",NoHS,3.2902255639097744,27.749633260102783,0.11856825396825398,4625.263679413817,2019
+1995,39,"(35,40]",NoHS,3.2902255639097744,27.749633260102783,0.11856825396825398,4586.87130432825,2019
+1995,39,"(35,40]",NoHS,3.2902255639097744,27.749633260102783,0.11856825396825398,4565.172070875868,2019
+1995,39,"(35,40]",NoHS,3.2902255639097744,27.749633260102783,0.11856825396825398,4482.2464148120725,2019
+1995,39,"(35,40]",NoHS,3.2902255639097744,27.749633260102783,0.11856825396825398,4569.901844775333,2019
+1995,25,"(20,25]",College,2.903140203449801,8.126678311887245,0.3572357723577236,6435.293021369728,2019
+1995,25,"(20,25]",College,2.903140203449801,9.712371641035974,0.2989115646258504,6351.300512088057,2019
+1995,25,"(20,25]",College,2.903140203449801,9.712371641035974,0.2989115646258504,6456.119899191933,2019
+1995,25,"(20,25]",College,2.903140203449801,8.523101644174426,0.34062015503875975,6405.313021849953,2019
+1995,25,"(20,25]",College,2.903140203449801,8.126678311887245,0.3572357723577236,6369.002781104376,2019
+1995,83,"(80,85]",NoHS,81.28792569659443,12.487334967046253,6.50962962962963,7558.551903243029,2019
+1995,83,"(80,85]",NoHS,90.3844316674038,21.803283275795042,4.145450505050506,7532.77132329279,2019
+1995,83,"(80,85]",NoHS,88.44900486510394,16.055144957630898,5.509075445816187,7549.73668881448,2019
+1995,83,"(80,85]",NoHS,88.83609022556391,37.660216567282355,2.3588842105263157,7563.3008249608665,2019
+1995,83,"(80,85]",NoHS,79.93312693498453,37.660216567282355,2.1224818713450295,7553.970224275989,2019
+1995,50,"(45,50]",NoHS,253.65703670942062,69.37408315025698,3.6563659682539678,10500.501963218001,2019
+1995,50,"(45,50]",NoHS,253.65703670942062,69.37408315025698,3.6563659682539678,10336.66577854784,2019
+1995,50,"(45,50]",NoHS,253.65703670942062,69.37408315025698,3.6563659682539678,10092.03084324297,2019
+1995,50,"(45,50]",NoHS,253.65703670942062,69.37408315025698,3.6563659682539678,10558.78761822826,2019
+1995,50,"(45,50]",NoHS,253.65703670942062,69.37408315025698,3.6563659682539678,10372.234183791057,2019
+1995,17,"(15,20]",NoHS,0.1954781070322866,4.360656655159009,0.044827676767676766,5630.13098990596,2019
+1995,17,"(15,20]",NoHS,0.1954781070322866,7.333831647312879,0.026654294294294296,5627.309289234001,2019
+1995,17,"(15,20]",NoHS,0.1954781070322866,6.937408315025696,0.028177396825396828,5624.041138932419,2019
+1995,17,"(15,20]",NoHS,0.1954781070322866,8.324889978030837,0.023481164021164017,5640.669963829173,2019
+1995,17,"(15,20]",NoHS,0.1954781070322866,3.9642333228718267,0.04931044444444444,5590.914317422071,2019
+1995,68,"(65,70]",College,2336.64077841663,372.6379323499517,6.270539243498818,530.8298499457426,2019
+1995,68,"(65,70]",College,2315.351083591331,400.3875656100545,5.782774697469747,447.91305299753367,2019
+1995,68,"(65,70]",College,2336.64077841663,348.8525324127207,6.698076010101012,451.7751912717351,2019
+1995,68,"(65,70]",College,2336.64077841663,402.3696822714903,5.807198905309251,457.97780081675467,2019
+1995,68,"(65,70]",College,2336.64077841663,366.69158236564397,6.3722236636636636,440.81119912418035,2019
+1995,47,"(45,50]",HS,19376.080283060594,43.606566551590085,444.3385896969698,1411.0206197390985,2019
+1995,47,"(45,50]",HS,25193.702291021673,41.624449890154175,605.2621081481483,787.9118980613774,2019
+1995,47,"(45,50]",HS,25191.80557275542,43.606566551590085,577.7066979797982,1388.6079597821006,2019
+1995,47,"(45,50]",HS,25184.218699690402,47.57079987446191,529.4049872222223,895.2061841453966,2019
+1995,47,"(45,50]",HS,25178.296293675365,49.55291653589783,508.10927093333333,1471.0363085917043,2019
+1995,61,"(60,65]",HS,536.1325785050863,178.3904995292322,3.00538750617284,4981.8660279339965,2019
+1995,61,"(60,65]",HS,533.4810437859354,178.3904995292322,2.9905238518518518,5177.8716679201825,2019
+1995,61,"(60,65]",HS,520.0685360459973,178.3904995292322,2.91533762962963,5121.142272609448,2019
+1995,61,"(60,65]",HS,539.809889429456,178.3904995292322,3.0260013333333333,4856.436039995452,2019
+1995,61,"(60,65]",HS,522.1975055285272,178.3904995292322,2.927271950617284,5130.136785100445,2019
+1995,87,"(85,90]",College,1869.6222910216718,495.5291653589783,3.7729813333333335,242.5059529141011,2019
+1995,87,"(85,90]",College,1869.6222910216718,495.5291653589783,3.7729813333333335,201.1124386038668,2019
+1995,87,"(85,90]",College,1859.9451570101726,495.5291653589783,3.753452444444445,201.89852919329613,2019
+1995,87,"(85,90]",College,1865.751437417072,495.5291653589783,3.765169777777778,209.6216145577486,2019
+1995,87,"(85,90]",College,1914.137107474569,495.5291653589783,3.8628142222222226,201.92263387449142,2019
+1995,63,"(60,65]",College,1075.9037593984963,103.07006639466748,10.438566666666668,1177.7518584234372,2019
+1995,63,"(60,65]",College,1075.9037593984963,103.07006639466748,10.438566666666668,1162.469197984387,2019
+1995,63,"(60,65]",College,1075.9037593984963,103.07006639466748,10.438566666666668,1180.8438191168202,2019
+1995,63,"(60,65]",College,1075.9037593984963,103.07006639466748,10.438566666666668,1121.366826164046,2019
+1995,63,"(60,65]",College,1075.9037593984963,103.07006639466748,10.438566666666668,1195.8191583694627,2019
+1995,50,"(45,50]",College,898.3670588235294,142.71239962338575,6.294947469135803,934.6859706926377,2019
+1995,50,"(45,50]",College,898.3670588235294,142.71239962338575,6.294947469135803,918.7952549169775,2019
+1995,50,"(45,50]",College,898.3670588235294,142.71239962338575,6.294947469135803,925.919561337612,2019
+1995,50,"(45,50]",College,898.3670588235294,142.71239962338575,6.294947469135803,871.8020536857614,2019
+1995,50,"(45,50]",College,898.3670588235294,142.71239962338575,6.294947469135803,935.5482331996012,2019
+1995,55,"(50,55]",College,59738.34176028306,2517.28816002361,23.7312289903762,12.843548598773811,2019
+1995,55,"(50,55]",College,63737.281910659,2180.3283275795047,29.232882545454544,12.928149932801253,2019
+1995,55,"(50,55]",College,64956.310482087574,2338.8976604943773,27.772190112994355,13.087769245243456,2019
+1995,55,"(50,55]",College,61593.85478991597,2517.28816002361,24.4683369063867,12.470737026418899,2019
+1995,55,"(50,55]",College,64351.19929234852,2438.003493566174,26.395039819331522,12.524370155609386,2019
+1995,44,"(40,45]",College,1754.6095532950023,93.15948308748793,18.8344706855792,1868.4900534969324,2019
+1995,44,"(40,45]",College,1754.6095532950023,93.15948308748793,18.8344706855792,1602.3825448541243,2019
+1995,44,"(40,45]",College,1754.6095532950023,93.15948308748793,18.8344706855792,1651.262940737151,2019
+1995,44,"(40,45]",College,1754.6095532950023,93.15948308748793,18.8344706855792,1597.9266900242658,2019
+1995,44,"(40,45]",College,1754.6095532950023,93.15948308748793,18.8344706855792,1658.4468227396924,2019
+1995,41,"(40,45]",College,389.7949579831933,239.83611603374553,1.6252554637281909,6626.835484478377,2019
+1995,41,"(40,45]",College,389.7949579831933,239.83611603374553,1.6252554637281909,6541.347348324019,2019
+1995,41,"(40,45]",College,389.7949579831933,239.83611603374553,1.6252554637281909,6542.142938196383,2019
+1995,41,"(40,45]",College,389.7949579831933,239.83611603374553,1.6252554637281909,6380.225274187178,2019
+1995,41,"(40,45]",College,389.7949579831933,239.83611603374553,1.6252554637281909,6525.400269770401,2019
+1995,62,"(60,65]",HS,159.42110570544008,118.92699968615479,1.3404954814814818,9907.519441101655,2019
+1995,62,"(60,65]",HS,159.42110570544008,118.92699968615479,1.3404954814814818,9762.015146987233,2019
+1995,62,"(60,65]",HS,159.42110570544008,118.92699968615479,1.3404954814814818,9919.838648100002,2019
+1995,62,"(60,65]",HS,159.42110570544008,118.92699968615479,1.3404954814814818,9902.52053263903,2019
+1995,62,"(60,65]",HS,159.42110570544008,118.92699968615479,1.3404954814814818,9772.555379312686,2019
+1995,62,"(60,65]",College,1412.2809376382131,75.32043313456471,18.750302923976605,3624.4977863354384,2019
+1995,62,"(60,65]",College,1325.1867315347192,75.32043313456471,17.593987134502925,3768.1311094086245,2019
+1995,62,"(60,65]",College,1450.9894736842107,75.32043313456471,19.26422105263158,3725.144180080058,2019
+1995,62,"(60,65]",College,1363.8952675807163,75.32043313456471,18.107905263157893,3532.0853188336514,2019
+1995,62,"(60,65]",College,1315.50959752322,75.32043313456471,17.465507602339184,3732.2932728840483,2019
+1995,67,"(65,70]",College,1078.0288580274214,216.05071609651455,4.989702776758409,6616.416474547621,2019
+1995,67,"(65,70]",College,1016.8887253427687,216.05071609651455,4.706713051987768,6709.758940879971,2019
+1995,67,"(65,70]",College,1037.5823087129588,216.05071609651455,4.802494189602446,6611.546183160363,2019
+1995,67,"(65,70]",College,1030.9979867315346,216.05071609651455,4.7720183730886845,6468.714531594167,2019
+1995,67,"(65,70]",College,1046.9884829721364,216.05071609651455,4.846031070336392,6608.685683350981,2019
+1995,26,"(25,30]",College,218.29678903140203,59.46349984307739,3.6711056296296296,7362.078054367046,2019
+1995,26,"(25,30]",College,218.43226890756304,59.46349984307739,3.6733840000000004,7224.089943810985,2019
+1995,26,"(25,30]",College,218.39356037151703,59.46349984307739,3.6727330370370375,7281.139978969909,2019
+1995,26,"(25,30]",College,218.41291463954002,59.46349984307739,3.6730585185185185,7179.300368836899,2019
+1995,26,"(25,30]",College,218.39356037151703,59.46349984307739,3.6727330370370375,7230.807692676312,2019
+1995,52,"(50,55]",NoHS,12076.676160990712,693.7408315025697,17.408051555555556,176.22525904952346,2019
+1995,52,"(50,55]",NoHS,12877.555771782396,693.7408315025697,18.562487873015872,158.79284583583328,2019
+1995,52,"(50,55]",NoHS,13683.409429455995,693.7408315025697,19.724094082539683,155.88106100040437,2019
+1995,52,"(50,55]",NoHS,14661.032215833702,693.7408315025697,21.133298704761906,160.5154108727985,2019
+1995,52,"(50,55]",NoHS,10655.82128261831,693.7408315025697,15.359945384126982,158.05197027617726,2019
+1995,38,"(35,40]",HS,790.0412206988059,594.6349984307741,1.3286154074074072,314.67104753965043,2019
+1995,38,"(35,40]",HS,788.4928792569659,594.6349984307741,1.3260115555555552,321.72253771419906,2019
+1995,38,"(35,40]",HS,799.9118973905353,594.6349984307741,1.3452149629629628,315.97456706028794,2019
+1995,38,"(35,40]",HS,805.5246351172048,594.6349984307741,1.3546539259259256,308.99336671796976,2019
+1995,38,"(35,40]",HS,790.8153914197259,594.6349984307741,1.3299173333333332,314.0169900376065,2019
+1995,23,"(20,25]",HS,17.09175409111013,16.847991622205264,1.014468339869281,3391.5613944099255,2019
+1995,23,"(20,25]",HS,17.09175409111013,16.847991622205264,1.014468339869281,3377.1441493310936,2019
+1995,23,"(20,25]",HS,17.09175409111013,16.847991622205264,1.014468339869281,3367.9030382590704,2019
+1995,23,"(20,25]",HS,17.09175409111013,16.847991622205264,1.014468339869281,3346.707160436245,2019
+1995,23,"(20,25]",HS,17.09175409111013,16.847991622205264,1.014468339869281,3353.8882661753255,2019
+1995,60,"(55,60]",HS,299.4105263157895,118.92699968615479,2.51759925925926,8441.953487846837,2019
+1995,60,"(55,60]",HS,303.0878372401592,118.92699968615479,2.5485200000000003,8483.920062780977,2019
+1995,60,"(55,60]",HS,309.6295798319328,118.92699968615479,2.603526370370371,8460.136882255407,2019
+1995,60,"(55,60]",HS,305.41034940291905,118.92699968615479,2.568048888888889,8629.772926539827,2019
+1995,60,"(55,60]",HS,304.44263600176913,118.92699968615479,2.559911851851852,8384.07556985009,2019
+1995,32,"(30,35]",HS,41.069756744803186,59.46349984307739,0.6906717037037038,4796.658383442558,2019
+1995,32,"(30,35]",HS,44.94061034940292,59.46349984307739,0.755768,4870.443006406291,2019
+1995,32,"(30,35]",HS,41.069756744803186,59.46349984307739,0.6906717037037038,4794.688301483186,2019
+1995,32,"(30,35]",HS,43.00518354710305,59.46349984307739,0.7232198518518519,4910.977486917586,2019
+1995,32,"(30,35]",HS,89.45542680229987,59.46349984307739,1.5043754074074076,4823.290666364708,2019
+1995,32,"(30,35]",HS,35.80539584254755,59.46349984307739,0.6021407407407409,7611.805204692665,2019
+1995,32,"(30,35]",HS,35.80539584254755,59.46349984307739,0.6021407407407409,7570.233205312284,2019
+1995,32,"(30,35]",HS,35.80539584254755,59.46349984307739,0.6021407407407409,7649.618155598966,2019
+1995,32,"(30,35]",HS,35.80539584254755,59.46349984307739,0.6021407407407409,7598.539105603154,2019
+1995,32,"(30,35]",HS,35.80539584254755,59.46349984307739,0.6021407407407409,7606.591176638028,2019
+1995,81,"(80,85]",HS,806.4923485183547,114.96276636328297,7.015248275862069,5612.263716924397,2019
+1995,81,"(80,85]",HS,534.7584254754534,51.53503319733374,10.376600000000002,5809.551846590163,2019
+1995,81,"(80,85]",HS,1287.2523662096419,114.96276636328297,11.197124137931036,5758.183943132993,2019
+1995,81,"(80,85]",HS,677.8832375055285,114.96276636328297,5.8965459770114945,5465.926882266628,2019
+1995,81,"(80,85]",HS,593.4986289252544,109.01641637897524,5.444121616161616,5783.670279125553,2019
+1995,51,"(50,55]",College,1075.3231313578062,471.74376542174736,2.279464425770308,8509.461707605318,2019
+1995,51,"(50,55]",College,796.6216718266254,190.28319949784765,4.186505555555557,8624.406913773299,2019
+1995,51,"(50,55]",College,1340.476603272888,196.22954948215542,6.831165881032547,8501.061800142383,2019
+1995,51,"(50,55]",College,1354.0245908889872,570.849598493543,2.3719462962962963,8288.402883143122,2019
+1995,51,"(50,55]",College,1168.2236178681999,249.7466993409251,4.677633862433862,8457.706035488603,2019
+1995,65,"(60,65]",NoHS,568.047766475011,9.910583307179566,57.31728888888889,3741.586677511715,2019
+1995,65,"(60,65]",NoHS,593.7889429455994,9.910583307179566,59.91463111111112,3889.1749692995354,2019
+1995,65,"(60,65]",NoHS,600.3693940734188,9.910583307179566,60.57861333333333,3844.9004877518614,2019
+1995,65,"(60,65]",NoHS,625.1428571428572,9.910583307179566,63.07831111111112,3645.5538133672226,2019
+1995,65,"(60,65]",NoHS,621.6590888987174,9.910583307179566,62.72679111111112,3894.880429169401,2019
+1995,25,"(20,25]",NoHS,0,10.108794973323159,0,4269.355394678247,2019
+1995,25,"(20,25]",NoHS,0,13.081969965477029,0,4253.3627685146585,2019
+1995,25,"(20,25]",NoHS,0,11.099853304041115,0,4249.020158914773,2019
+1995,25,"(20,25]",NoHS,0,10.901641637897521,0,4271.7081556920675,2019
+1995,25,"(20,25]",NoHS,0,13.081969965477029,0,4265.252003582731,2019
+1995,46,"(45,50]",College,1497.2461742591775,237.85399937230957,6.294811851851852,2454.7418945569125,2019
+1995,46,"(45,50]",College,1468.6018575851394,237.85399937230957,6.174383703703705,2009.6312182971947,2019
+1995,46,"(45,50]",College,1253.1888544891642,237.85399937230957,5.268731481481482,2070.1652498269486,2019
+1995,46,"(45,50]",College,1434.1512605042017,237.85399937230957,6.029544444444445,2022.558549322719,2019
+1995,46,"(45,50]",College,1003.9058823529413,237.85399937230957,4.220681111111112,1127.9638996105339,2019
+1995,53,"(50,55]",HS,-1.1612560813799204,16.847991622205264,-0.06892549019607842,6280.537072723784,2019
+1995,53,"(50,55]",HS,-1.1612560813799204,16.055144957630898,-0.07232921810699589,6328.392138621102,2019
+1995,53,"(50,55]",HS,-1.1612560813799204,15.064086626912939,-0.07708771929824562,6338.310111891946,2019
+1995,53,"(50,55]",HS,-1.1612560813799204,17.83904995292322,-0.0650962962962963,6317.711157155677,2019
+1995,53,"(50,55]",HS,-1.1612560813799204,16.649779956061675,-0.06974603174603174,6321.000758378204,2019
+1995,39,"(35,40]",NoHS,0.0019354268022998672,11.892699968615478,1.6274074074074075e-4,4746.936531566439,2019
+1995,39,"(35,40]",NoHS,0.0019354268022998672,11.892699968615478,1.6274074074074075e-4,4760.752611489637,2019
+1995,39,"(35,40]",NoHS,0.0019354268022998672,11.892699968615478,1.6274074074074075e-4,4758.834815875482,2019
+1995,39,"(35,40]",NoHS,0.0019354268022998672,11.892699968615478,1.6274074074074075e-4,4753.448226676124,2019
+1995,39,"(35,40]",NoHS,0.0019354268022998672,11.892699968615478,1.6274074074074075e-4,4765.905467518223,2019
+1995,35,"(30,35]",HS,12.193188854489165,53.517149858769656,0.22783703703703706,6966.708571979632,2019
+1995,35,"(30,35]",HS,11.806103494029191,53.517149858769656,0.22060411522633747,6961.30713356865,2019
+1995,35,"(30,35]",HS,13.160902255639098,53.517149858769656,0.245919341563786,6983.761329144155,2019
+1995,35,"(30,35]",HS,13.547987616099071,53.517149858769656,0.2531522633744856,6853.282210965184,2019
+1995,35,"(30,35]",HS,12.96735957540911,53.517149858769656,0.24230288065843622,6969.015521023216,2019
+1995,40,"(35,40]",HS,58.062804068996016,71.35619981169287,0.8137037037037037,8475.57471567228,2019
+1995,40,"(35,40]",HS,62.320743034055724,71.35619981169287,0.8733753086419753,8463.497941887825,2019
+1995,40,"(35,40]",HS,64.74002653693057,71.35619981169287,0.9072796296296298,8558.293045108167,2019
+1995,40,"(35,40]",HS,52.83715170278638,71.35619981169287,0.7404703703703704,8307.198748110795,2019
+1995,40,"(35,40]",HS,75.28810260946484,71.35619981169287,1.0551024691358026,8551.664362097361,2019
+1995,55,"(50,55]",HS,4273.6159221583375,138.74816630051396,30.801242539682537,218.83500548813709,2019
+1995,55,"(50,55]",HS,4274.390092879257,138.74816630051396,30.80682222222222,198.04513890179845,2019
+1995,55,"(50,55]",HS,4274.390092879257,138.74816630051396,30.80682222222222,193.87965678751252,2019
+1995,55,"(50,55]",HS,4274.390092879257,138.74816630051396,30.80682222222222,181.09615926288564,2019
+1995,55,"(50,55]",HS,4274.390092879257,138.74816630051396,30.80682222222222,194.72750748130687,2019
+1995,46,"(45,50]",HS,7.257850508624502,14.271239962338576,0.5085648148148147,4792.265500012476,2019
+1995,46,"(45,50]",HS,7.257850508624502,14.271239962338576,0.5085648148148147,4774.240456481375,2019
+1995,46,"(45,50]",HS,7.257850508624502,14.271239962338576,0.5085648148148147,4780.354461957878,2019
+1995,46,"(45,50]",HS,7.257850508624502,14.271239962338576,0.5085648148148147,4868.206365856749,2019
+1995,46,"(45,50]",HS,7.257850508624502,14.271239962338576,0.5085648148148147,4841.8657236456565,2019
+1995,52,"(50,55]",HS,-8.380398053958427,43.606566551590085,-0.19218202020202027,6539.225084230227,2019
+1995,52,"(50,55]",HS,-8.573940734188414,65.40984982738514,-0.13108026936026937,6552.206248106346,2019
+1995,52,"(50,55]",HS,-8.380398053958427,132.8018163162062,-0.063104543946932,6489.674976311149,2019
+1995,52,"(50,55]",HS,-8.380398053958427,140.73028296194985,-0.059549358372456965,6625.678409159826,2019
+1995,52,"(50,55]",HS,-8.573940734188414,63.42773316594923,-0.1351765277777778,6561.148705717527,2019
+1995,44,"(40,45]",College,3988.7210968597965,170.46203288348855,23.399469250645993,1446.022824221454,2019
+1995,44,"(40,45]",College,3938.4,170.46203288348855,23.10426511627907,1292.7307657071292,2019
+1995,44,"(40,45]",College,3938.4,170.46203288348855,23.10426511627907,1287.1904408211253,2019
+1995,44,"(40,45]",College,3938.4,170.46203288348855,23.10426511627907,1297.2202339658738,2019
+1995,44,"(40,45]",College,3938.4,170.46203288348855,23.10426511627907,1297.2160353769011,2019
+1995,39,"(35,40]",NoHS,17.80592658115878,59.46349984307739,0.29944296296296297,7599.726055192131,2019
+1995,39,"(35,40]",NoHS,22.063865546218487,59.46349984307739,0.37104888888888893,7728.823331862896,2019
+1995,39,"(35,40]",NoHS,20.515524104378596,59.46349984307739,0.3450103703703704,7596.947607158411,2019
+1995,39,"(35,40]",NoHS,19.354268022998674,59.46349984307739,0.32548148148148154,7902.08025464057,2019
+1995,39,"(35,40]",NoHS,19.54781070322866,59.46349984307739,0.3287362962962963,7681.180136350589,2019
+1995,25,"(20,25]",College,24.579920389208315,63.42773316594923,0.38752638888888885,7215.590527701474,2019
+1995,25,"(20,25]",College,24.579920389208315,63.42773316594923,0.38752638888888885,7149.21150213268,2019
+1995,25,"(20,25]",College,24.579920389208315,63.42773316594923,0.38752638888888885,7219.085198230908,2019
+1995,25,"(20,25]",College,24.579920389208315,63.42773316594923,0.38752638888888885,7175.860581485055,2019
+1995,25,"(20,25]",College,24.579920389208315,63.42773316594923,0.38752638888888885,7187.2200840230635,2019
+1995,32,"(30,35]",College,37.74082264484742,23.785399937230956,1.5867222222222228,7611.805204692665,2019
+1995,32,"(30,35]",College,45.830906678460856,23.785399937230956,1.9268503703703705,7570.233205312284,2019
+1995,32,"(30,35]",NoHS,11.573852277753208,23.785399937230956,0.4865948148148149,7649.618155598966,2019
+1995,32,"(30,35]",College,12.928651039363114,23.785399937230956,0.5435540740740742,7598.539105603154,2019
+1995,32,"(30,35]",College,31.934542237947813,23.785399937230956,1.3426111111111114,7606.591176638028,2019
+1995,61,"(60,65]",NoHS,-0.5999823087129589,61.44561650451331,-0.009764444444444445,6201.511582451023,2019
+1995,61,"(60,65]",NoHS,-0.5999823087129589,73.3383164731288,-0.00818102102102102,6078.658171168035,2019
+1995,61,"(60,65]",NoHS,-0.5999823087129589,67.39196648882105,-0.008902875816993464,6100.452068969671,2019
+1995,61,"(60,65]",NoHS,-0.5999823087129589,69.37408315025698,-0.008648507936507935,6129.743582543148,2019
+1995,61,"(60,65]",NoHS,-0.5999823087129589,65.40984982738514,-0.009172659932659932,6049.4290978456265,2019
+1995,49,"(45,50]",College,577.7249004865104,208.12224945077088,2.7758920634920634,4631.3405539165815,2019
+1995,49,"(45,50]",College,577.7249004865104,208.12224945077088,2.7758920634920634,4807.816870452107,2019
+1995,49,"(45,50]",College,577.7249004865104,208.12224945077088,2.7758920634920634,4746.728299722653,2019
+1995,49,"(45,50]",College,577.7249004865104,208.12224945077088,2.7758920634920634,4504.0391215254285,2019
+1995,49,"(45,50]",College,577.7249004865104,208.12224945077088,2.7758920634920634,4767.018260713532,2019
+1995,42,"(40,45]",HS,112.06121185316232,19.821166614359132,5.653613333333333,5856.585222090099,2019
+1995,42,"(40,45]",HS,113.99663865546219,19.821166614359132,5.751257777777778,5776.010934196735,2019
+1995,42,"(40,45]",HS,108.96452896948253,19.821166614359132,5.497382222222222,5771.1356950773015,2019
+1995,42,"(40,45]",HS,117.69330384785493,19.821166614359132,5.937758666666667,5832.860548658047,2019
+1995,42,"(40,45]",HS,109.91288810260946,19.821166614359132,5.545228,5792.0554665907075,2019
+1995,37,"(35,40]",HS,119.8029190623618,53.517149858769656,2.238589300411523,7736.184380313057,2019
+1995,37,"(35,40]",HS,119.8029190623618,53.517149858769656,2.238589300411523,7786.196541365088,2019
+1995,37,"(35,40]",HS,119.8029190623618,53.517149858769656,2.238589300411523,7774.702138761789,2019
+1995,37,"(35,40]",HS,119.8029190623618,53.517149858769656,2.238589300411523,8012.44285259375,2019
+1995,37,"(35,40]",HS,119.8029190623618,53.517149858769656,2.238589300411523,7847.036846899195,2019
+1995,38,"(35,40]",College,5337.907120743034,426.15508220872135,12.52573850129199,22.192192205335505,2019
+1995,38,"(35,40]",College,5337.907120743034,426.15508220872135,12.52573850129199,19.714732327279258,2019
+1995,38,"(35,40]",College,5337.907120743034,426.15508220872135,12.52573850129199,20.825729747363802,2019
+1995,38,"(35,40]",College,5337.907120743034,426.15508220872135,12.52573850129199,19.798238776964684,2019
+1995,38,"(35,40]",College,5337.907120743034,426.15508220872135,12.52573850129199,20.4760075984214,2019
+1995,82,"(80,85]",HS,2187.03228659885,148.65874960769352,14.711762962962961,3220.3995674755006,2019
+1995,82,"(80,85]",HS,2767.66032728881,148.65874960769352,18.617540740740736,2653.1016104146497,2019
+1995,82,"(80,85]",HS,2380.5749668288368,148.65874960769352,16.013688888888886,2722.265434730003,2019
+1995,82,"(80,85]",HS,2961.203007518797,148.65874960769352,19.919466666666665,1973.6843797778442,2019
+1995,82,"(80,85]",HS,3348.2883679787706,148.65874960769352,22.523318518518515,2217.755115589546,2019
+1995,63,"(60,65]",HS,328.7709509066785,212.08648277364273,1.5501739979231568,1251.1163579121853,2019
+1995,63,"(60,65]",HS,326.8355241043786,212.08648277364273,1.5410483489096571,1231.4782135730761,2019
+1995,63,"(60,65]",HS,330.7063777089783,212.08648277364273,1.5592996469366562,1254.1267614122507,2019
+1995,63,"(60,65]",HS,334.57723131357807,212.08648277364273,1.5775509449636551,1181.4490108884675,2019
+1995,63,"(60,65]",HS,326.8355241043786,212.08648277364273,1.5410483489096571,1268.4603375632464,2019
+1995,41,"(40,45]",College,4171.812472357364,432.1014321930291,9.654706422018348,19.38942028837009,2019
+1995,41,"(40,45]",College,4065.3639982308714,432.1014321930291,9.408355759429154,17.008667102244637,2019
+1995,41,"(40,45]",College,4248.842459088898,445.97624882308054,9.527059950617282,17.771193273787972,2019
+1995,41,"(40,45]",College,3407.8995134896063,471.74376542174736,7.224047805788982,17.25699755660755,2019
+1995,41,"(40,45]",College,4154.393631136665,440.02989883877274,9.441162162162163,17.91259126881453,2019
+1995,65,"(60,65]",College,1502.858911985847,110.99853304041113,13.539448412698414,2775.9744291936304,2019
+1995,65,"(60,65]",College,1475.7629367536488,110.99853304041113,13.295337301587303,2374.395148967327,2019
+1995,65,"(60,65]",College,1503.826625386997,110.99853304041113,13.548166666666669,2449.4565686888654,2019
+1995,65,"(60,65]",College,1498.9880583812474,110.99853304041113,13.5045753968254,2375.6225142270746,2019
+1995,65,"(60,65]",College,1661.5639097744363,110.99853304041113,14.969242063492066,2476.706693339522,2019
+1995,58,"(55,60]",College,12653.239805395844,882.0419143389814,14.345395156054932,203.15074685715183,2019
+1995,58,"(55,60]",College,12660.981512605042,505.43974866615787,25.049437734204794,178.9699345790927,2019
+1995,58,"(55,60]",College,12653.239805395844,467.77953209887556,27.04957984934087,181.16573967601852,2019
+1995,58,"(55,60]",College,12653.239805395844,1234.8586800745743,10.24671082575352,184.25240908020513,2019
+1995,58,"(55,60]",College,12653.239805395844,755.186448007083,16.75512032662584,183.15051515092154,2019
+1995,49,"(45,50]",HS,100.7389650597081,83.24889978030835,1.2100936507936508,5378.481973240946,2019
+1995,49,"(45,50]",HS,100.7389650597081,89.1952497646161,1.1294207407407408,5235.953503053448,2019
+1995,49,"(45,50]",HS,100.7389650597081,91.177366426052,1.104868115942029,5303.939354128021,2019
+1995,49,"(45,50]",HS,100.7389650597081,89.1952497646161,1.1294207407407408,5456.346898501251,2019
+1995,49,"(45,50]",HS,100.7389650597081,85.23101644174427,1.181951937984496,5348.9644602965,2019
+1995,68,"(65,70]",College,426.1809818664308,27.749633260102783,15.358076190476192,9730.037228903218,2019
+1995,68,"(65,70]",College,443.3675718708536,55.499266520205566,7.9887104761904775,9680.252849697397,2019
+1995,68,"(65,70]",College,388.6337019018133,45.588683213026,8.524784541062802,9690.356601482603,2019
+1995,68,"(65,70]",College,376.8275984077842,16.649779956061675,22.6325873015873,10309.482936096703,2019
+1995,68,"(65,70]",College,544.8032905793897,25.76751659866687,21.14302666666667,5524.865848741085,2019
+1995,51,"(50,55]",College,989.0030959752322,91.177366426052,10.847024154589374,1321.7611745762044,2019
+1995,51,"(50,55]",College,766.5257850508625,109.01641637897524,7.031287676767677,1303.5599015652608,2019
+1995,51,"(50,55]",College,2011.295532950022,75.32043313456471,26.70318596491228,2457.6900987155486,2019
+1995,51,"(50,55]",College,460.47674480318443,317.1386658297461,1.451972888888889,1258.6846465021072,2019
+1995,51,"(50,55]",College,1138.476107916851,105.0521830561034,10.837243689727465,1344.7674821983817,2019
+1995,48,"(45,50]",HS,382.4306590004423,105.0521830561034,3.6403875471698113,7682.488304220513,2019
+1995,48,"(45,50]",HS,346.23817779743473,105.0521830561034,3.2958684696016767,7431.973875674019,2019
+1995,48,"(45,50]",HS,255.75697478991597,105.0521830561034,2.4345707756813417,7473.395060405343,2019
+1995,48,"(45,50]",HS,523.7168155683327,105.0521830561034,4.985301593291405,4429.320456194251,2019
+1995,48,"(45,50]",HS,334.9159310039805,105.0521830561034,3.188091111111111,7552.81010534777,2019
+1995,75,"(70,75]",NoHS,13600.24413976117,2457.824660180533,5.5334476702508955,13.516461742509657,2019
+1995,75,"(70,75]",NoHS,13484.118531623175,2477.645826794891,5.442310755555557,11.748975863729939,2019
+1995,75,"(70,75]",NoHS,12129.31977001327,2596.572826481047,4.671280407124682,12.3878164019517,2019
+1995,75,"(70,75]",NoHS,12630.595311808935,2576.7516598666875,4.9017511111111105,11.991229996124789,2019
+1995,75,"(70,75]",NoHS,12257.05793896506,2497.466993409251,4.907795767195767,12.532710178466164,2019
+1995,43,"(40,45]",College,7190.981512605043,1603.5323791016538,4.4844629309160835,2221.4835310605804,2019
+1995,43,"(40,45]",College,7191.175055285273,887.9882643232891,8.09827713293651,2002.9216917869169,2019
+1995,43,"(40,45]",College,7239.367182662539,1758.1374786936553,4.117634297883001,1968.8953776587157,2019
+1995,43,"(40,45]",College,7258.7988677576295,737.3473980541597,9.84447614097969,1973.6843797778442,2019
+1995,43,"(40,45]",College,7191.175055285273,515.3503319733376,13.953954444444442,1979.003778704989,2019
+1995,80,"(75,80]",HS,301.1524104378594,53.517149858769656,5.62721316872428,10872.310747930807,2019
+1995,80,"(75,80]",HS,301.1524104378594,53.517149858769656,5.62721316872428,10958.386512221265,2019
+1995,80,"(75,80]",HS,301.1524104378594,53.517149858769656,5.62721316872428,11112.818279100302,2019
+1995,80,"(75,80]",HS,301.1524104378594,53.517149858769656,5.62721316872428,11399.349741443819,2019
+1995,80,"(75,80]",HS,301.1524104378594,53.517149858769656,5.62721316872428,11090.172610815924,2019
+1995,27,"(25,30]",College,1.6451127819548872,51.53503319733374,0.03192222222222223,4874.5322656365,2019
+1995,27,"(25,30]",College,1.6451127819548872,51.53503319733374,0.03192222222222223,4829.689546159227,2019
+1995,27,"(25,30]",College,1.6451127819548872,51.53503319733374,0.03192222222222223,4876.893109726542,2019
+1995,27,"(25,30]",College,1.6451127819548872,51.53503319733374,0.03192222222222223,4847.692479758904,2019
+1995,27,"(25,30]",College,1.6451127819548872,51.53503319733374,0.03192222222222223,4855.366454803707,2019
+1995,84,"(80,85]",College,6995.01954887218,267.5857492938483,26.141226008230447,1288.2938549008304,2019
+1995,84,"(80,85]",College,7029.857231313578,321.1028991526179,21.892848834019208,1019.0702324638272,2019
+1995,84,"(80,85]",College,8567.553825740824,301.28173253825884,28.43701725146199,1001.975770438253,2019
+1995,84,"(80,85]",College,8563.682972136225,340.9240657669771,25.119033333333338,1000.5025855366417,2019
+1995,84,"(80,85]",College,8562.715258735074,305.2459658611307,28.05185396825397,1028.392513469173,2019
+1995,19,"(15,20]",NoHS,29.999115435647944,31.713866582974614,0.9459305555555555,4317.546901424308,2019
+1995,19,"(15,20]",NoHS,29.999115435647944,31.713866582974614,0.9459305555555555,4299.19336906019,2019
+1995,19,"(15,20]",NoHS,29.999115435647944,31.713866582974614,0.9459305555555555,4287.429191492744,2019
+1995,19,"(15,20]",NoHS,29.999115435647944,31.713866582974614,0.9459305555555555,4260.446281270999,2019
+1995,19,"(15,20]",NoHS,29.999115435647944,31.713866582974614,0.9459305555555555,4269.588017842144,2019
+1995,65,"(60,65]",College,1138.030959752322,338.9419491055412,3.3575984405458086,7538.385548469519,2019
+1995,65,"(60,65]",College,1141.9018133569218,372.6379323499517,3.064373522458629,7646.518703344731,2019
+1995,65,"(60,65]",College,1356.734188412207,309.21019918400253,4.38774074074074,7579.266906584385,2019
+1995,65,"(60,65]",College,1333.5090667846086,400.3875656100545,3.330545654565457,7382.020188708215,2019
+1995,65,"(60,65]",College,1263.8337019018134,400.3875656100545,3.1565258525852586,7534.114270891742,2019
+1995,58,"(55,60]",HS,0,12.090911634759072,0,7149.552007478864,2019
+1995,58,"(55,60]",HS,0,12.090911634759072,0,7163.433549119078,2019
+1995,58,"(55,60]",HS,0,12.090911634759072,0,7141.572992206023,2019
+1995,58,"(55,60]",HS,0,12.090911634759072,0,7154.2132615531355,2019
+1995,58,"(55,60]",HS,0,12.090911634759072,0,7122.465160528579,2019
+1995,51,"(50,55]",HS,442.8062980981867,112.98064970184706,3.9193109551656926,7547.784091740466,2019
+1995,51,"(50,55]",HS,360.3764705882353,112.98064970184706,3.1897185185185184,7478.015601266625,2019
+1995,51,"(50,55]",HS,458.77356921716057,112.98064970184706,4.06063844054581,7516.832304395514,2019
+1995,51,"(50,55]",HS,421.3424148606811,112.98064970184706,3.729332553606238,7879.986465960219,2019
+1995,51,"(50,55]",HS,388.05307386112344,112.98064970184706,3.434686159844055,7633.24510657902,2019
+1995,51,"(50,55]",NoHS,432.56789031402036,29.731749921538697,14.549022222222224,5255.046223702297,2019
+1995,51,"(50,55]",NoHS,500.3078283945157,33.69598324441053,14.847699346405228,5281.94026887038,2019
+1995,51,"(50,55]",NoHS,984.1645289694825,31.713866582974614,31.032624999999996,5283.301208514898,2019
+1995,51,"(50,55]",NoHS,500.3078283945157,39.642333228718265,12.620544444444445,5129.484525246591,2019
+1995,51,"(50,55]",NoHS,641.593984962406,31.713866582974614,20.230708333333332,5271.312742613655,2019
+1995,78,"(75,80]",HS,168.18858911985845,39.642333228718265,4.242651111111111,8435.644948923878,2019
+1995,78,"(75,80]",HS,168.18858911985845,31.713866582974614,5.303313888888888,8336.120446441295,2019
+1995,78,"(75,80]",HS,181.54303405572756,41.624449890154175,4.361451851851853,8614.416948621707,2019
+1995,78,"(75,80]",HS,258.1085183547103,14.073028296194984,18.34065226917058,8647.70605276238,2019
+1995,78,"(75,80]",HS,162.45972578505086,15.658721625343716,10.37503122362869,8546.055699872531,2019
+1995,81,"(80,85]",NoHS,63.69489606368863,16.45156828991808,3.871661044176707,7606.881550743872,2019
+1995,81,"(80,85]",NoHS,59.8627509951349,13.081969965477029,4.5759737373737375,7569.7447410506675,2019
+1995,81,"(80,85]",NoHS,61.3143210968598,14.469451628482167,4.237501369863014,7614.94563496018,2019
+1995,81,"(80,85]",NoHS,61.83688633348076,13.874816630051392,4.456771428571429,7623.6556900631385,2019
+1995,81,"(80,85]",NoHS,60.73369305616984,15.460509959200122,3.9283111111111118,7618.365031290317,2019
+1995,58,"(55,60]",HS,203.4133569217161,7.5320433134564695,27.00639766081872,8917.55650196107,2019
+1995,58,"(55,60]",HS,204.381070322866,7.5320433134564695,27.13487719298246,8961.887390979558,2019
+1995,58,"(55,60]",HS,204.381070322866,7.5320433134564695,27.13487719298246,8936.764312957577,2019
+1995,58,"(55,60]",HS,203.60689960194603,7.5320433134564695,27.03209356725146,9115.95731749773,2019
+1995,58,"(55,60]",HS,202.8327288810261,7.5320433134564695,26.929309941520472,8856.417856184966,2019
+1995,56,"(55,60]",College,497.8885448916409,51.53503319733374,9.661166666666668,5121.309507413527,2019
+1995,56,"(55,60]",College,501.19812472357364,128.8375829933344,3.8901546666666658,5323.660075242717,2019
+1995,56,"(55,60]",College,636.9489606368863,146.6766329462576,4.342538738738738,5262.527289713055,2019
+1995,56,"(55,60]",College,380.9113489606369,51.53503319733374,7.391308888888889,4988.987443812491,2019
+1995,56,"(55,60]",College,728.3978770455551,154.60509959200127,4.7113444444444434,5275.40829728064,2019
+1995,61,"(60,65]",College,1693.8855373728438,216.05071609651455,7.840221814475025,4847.62552378063,2019
+1995,61,"(60,65]",College,1169.38487394958,216.05071609651455,5.412548012232416,5039.729534885292,2019
+1995,61,"(60,65]",College,1693.8855373728438,216.05071609651455,7.840221814475025,4982.236180471414,2019
+1995,61,"(60,65]",College,1016.4861565678904,216.05071609651455,4.704849745158002,4724.027424792651,2019
+1995,61,"(60,65]",College,1306.8001769128705,216.05071609651455,6.048580632008155,4991.797815432025,2019
+1995,57,"(55,60]",College,4309.2277753206545,255.69304932523286,16.853128337639962,583.2281537744559,2019
+1995,57,"(55,60]",College,2245.0950906678463,307.22808252256664,7.30758422939068,1640.4505955404316,2019
+1995,57,"(55,60]",College,3756.2763379035828,99.10583307179566,37.90166755555556,453.3551730541526,2019
+1995,57,"(55,60]",College,1197.255019902698,265.6036326324124,4.507675621890547,3059.8814047971673,2019
+1995,57,"(55,60]",College,1942.3943387881468,110.99853304041113,17.499279365079367,1691.6162249215624,2019
+1995,43,"(40,45]",HS,108.86775762936755,65.40984982738514,1.6643939393939393,4791.751547585758,2019
+1995,43,"(40,45]",HS,118.54489164086688,65.40984982738514,1.8123400673400671,4725.827130187653,2019
+1995,43,"(40,45]",HS,99.1906236178682,65.40984982738514,1.5164478114478113,4721.838298178978,2019
+1995,43,"(40,45]",HS,108.86775762936755,65.40984982738514,1.6643939393939393,4772.3404511322815,2019
+1995,43,"(40,45]",HS,97.25519681556833,65.40984982738514,1.4868585858585857,4738.9544748797625,2019
+1995,67,"(65,70]",College,87729.41318000885,1024.754313962367,85.6101916183108,17.66246580167328,2019
+1995,67,"(65,70]",College,90731.26015037594,1104.0389804198037,82.18121077199281,19.06671788563878,2019
+1995,67,"(65,70]",College,119951.75338345865,1086.1999304668807,110.43248118410379,18.562367869065405,2019
+1995,67,"(65,70]",College,102563.87899159665,1108.0032137426758,92.56640930232557,16.375221037328004,2019
+1995,67,"(65,70]",College,100457.36045997347,1106.0210970812395,90.82770728793311,17.67421612293456,2019
+1995,58,"(55,60]",HS,120317.74259177355,10624.145305296495,11.32493383084577,1.5180090759751512,2019
+1995,58,"(55,60]",HS,126576.54513931889,15837.112124872949,7.992400643582255,1.1283399987471374,2019
+1995,58,"(55,60]",College,128233.38660769572,5886.886484464662,21.782887600448937,1.5834176039133876,2019
+1995,58,"(55,60]",NoHS,126406.9823971694,4301.193155315932,29.388817900665643,1.1811220509857348,2019
+1995,58,"(55,60]",HS,125765.33034940292,7908.6454791292945,15.902259202450571,1.204036184241622,2019
+1995,39,"(35,40]",College,914.5278726227334,257.6751659866688,3.549150222222222,2754.894850409514,2019
+1995,39,"(35,40]",College,914.5278726227334,257.6751659866688,3.549150222222222,2253.5433004575416,2019
+1995,39,"(35,40]",College,914.5278726227334,257.6751659866688,3.549150222222222,2324.558896701535,2019
+1995,39,"(35,40]",College,914.5278726227334,257.6751659866688,3.549150222222222,2270.2324817228537,2019
+1995,39,"(35,40]",College,914.5278726227334,257.6751659866688,3.549150222222222,2306.323057826582,2019
+1995,62,"(60,65]",HS,938.9336045997346,55.499266520205566,16.917946190476194,5332.968965403472,2019
+1995,62,"(60,65]",HS,1066.033082706767,65.40984982738514,16.297745454545453,5542.788336143129,2019
+1995,62,"(60,65]",HS,1030.3825210084035,45.588683213026,22.60171710144928,5482.060869181574,2019
+1995,62,"(60,65]",HS,800.1054400707651,122.89123300902662,6.510679569892472,5198.699149784886,2019
+1995,62,"(60,65]",HS,958.4233524988944,118.92699968615479,8.058921481481482,5491.68928064516,2019
+1995,46,"(45,50]",College,2640.212472357364,630.3130983366204,4.188731726065688,2386.8277870069637,2019
+1995,46,"(45,50]",College,2591.6332596196376,630.3130983366204,4.111660167714885,2048.120341809742,2019
+1995,46,"(45,50]",College,2579.6336134453786,630.3130983366204,4.092622571628232,2115.5200170022267,2019
+1995,46,"(45,50]",College,2454.6050420168067,630.3130983366204,3.894263102725367,2045.5162952636897,2019
+1995,46,"(45,50]",College,2589.3107474568774,630.3130983366204,4.107975471698113,2115.43288671169,2019
+1995,23,"(20,25]",HS,1.3160902255639098,7.730254979600061,0.17025185185185188,4582.542914577665,2019
+1995,23,"(20,25]",HS,1.3160902255639098,7.135619981169288,0.1844395061728395,4586.556332421547,2019
+1995,23,"(20,25]",HS,1.3160902255639098,10.108794973323159,0.13019259259259258,4615.941942954199,2019
+1995,23,"(20,25]",HS,1.3160902255639098,7.9284666457436535,0.16599555555555554,4582.486188486455,2019
+1995,23,"(20,25]",HS,1.3160902255639098,11.496276636328297,0.11447969348659004,4559.4355299842655,2019
+1995,73,"(70,75]",HS,91.58439628482972,31.713866582974614,2.887834444444444,10069.417618575999,2019
+1995,73,"(70,75]",HS,91.58439628482972,39.642333228718265,2.310267555555556,10074.717331725493,2019
+1995,73,"(70,75]",HS,91.58439628482972,33.69598324441053,2.7179618300653594,10201.666986798782,2019
+1995,73,"(70,75]",HS,91.58439628482972,33.69598324441053,2.7179618300653594,10298.1386535192,2019
+1995,73,"(70,75]",HS,91.58439628482972,33.69598324441053,2.7179618300653594,9973.276128621317,2019
+1995,57,"(55,60]",NoHS,59.53372843874392,85.23101644174427,0.6984983979328165,7628.789989094473,2019
+1995,57,"(55,60]",NoHS,62.92072534276869,85.23101644174427,0.7382374160206718,7516.751682340774,2019
+1995,57,"(55,60]",NoHS,57.985386996904026,85.23101644174427,0.6803319896640827,7638.275778507379,2019
+1995,57,"(55,60]",NoHS,51.017850508624505,85.23101644174427,0.5985831524547803,7624.940829568433,2019
+1995,57,"(55,60]",NoHS,51.888792569659444,85.23101644174427,0.6088017571059432,7524.867661252063,2019
+1995,51,"(50,55]",NoHS,17.418841220698805,59.46349984307739,0.2929333333333333,7352.567344922261,2019
+1995,51,"(50,55]",NoHS,17.418841220698805,59.46349984307739,0.2929333333333333,7313.226764764586,2019
+1995,51,"(50,55]",NoHS,17.418841220698805,59.46349984307739,0.2929333333333333,7314.553964231229,2019
+1995,51,"(50,55]",NoHS,17.418841220698805,59.46349984307739,0.2929333333333333,7723.679967781814,2019
+1995,51,"(50,55]",NoHS,17.418841220698805,59.46349984307739,0.2929333333333333,7459.564472493403,2019
+1995,40,"(35,40]",College,222.28376824413976,136.76604963907803,1.6252847020933976,232.70384268480984,2019
+1995,40,"(35,40]",College,222.28376824413976,136.76604963907803,1.6252847020933976,228.61897256368735,2019
+1995,40,"(35,40]",College,222.28376824413976,136.76604963907803,1.6252847020933976,225.12913268825346,2019
+1995,40,"(35,40]",College,222.28376824413976,136.76604963907803,1.6252847020933976,222.14739797546062,2019
+1995,40,"(35,40]",College,222.28376824413976,136.76604963907803,1.6252847020933976,230.79797632124823,2019
+1995,24,"(20,25]",HS,0.6773993808049535,4.360656655159009,0.15534343434343434,5824.3073586368355,2019
+1995,24,"(20,25]",NoHS,0.6773993808049535,4.360656655159009,0.15534343434343434,5807.499076856517,2019
+1995,24,"(20,25]",NoHS,0.6773993808049535,4.7570799874461915,0.14239814814814816,5840.584055783041,2019
+1995,24,"(20,25]",NoHS,0.6773993808049535,4.360656655159009,0.15534343434343434,5802.278689456866,2019
+1995,24,"(20,25]",HS,0.6773993808049535,4.558868321302601,0.14858937198067632,5776.110304600813,2019
+1995,61,"(60,65]",College,50941.594692613886,2616.3939930954048,19.47015427609428,27.67371602029138,2019
+1995,61,"(60,65]",College,52289.81300309598,2854.247992467715,18.31999641975309,28.140505379869268,2019
+1995,61,"(60,65]",College,48795.593454223796,2596.572826481047,18.79230690415606,28.140597625019957,2019
+1995,61,"(60,65]",College,48273.802388323755,2517.28816002361,19.17690757655293,27.149744053184026,2019
+1995,61,"(60,65]",College,49252.160636886336,2854.247992467715,17.25573978395062,27.423349206744035,2019
+1995,73,"(70,75]",College,1377.3077753206546,41.624449890154175,33.08891238095239,2351.1436135057197,2019
+1995,73,"(70,75]",College,1344.4055196815568,47.57079987446191,28.26115018518519,2011.380631216886,2019
+1995,73,"(70,75]",College,1330.8575320654577,55.499266520205566,23.979731904761906,2075.1318004220757,2019
+1995,73,"(70,75]",College,1290.2135692171605,156.58721625343713,8.23958430379747,3750.5369935613076,2019
+1995,73,"(70,75]",College,1330.8575320654577,105.0521830561034,12.668537610062893,2081.8217648191994,2019
+1995,76,"(75,80]",HS,157.15665634674923,11.892699968615478,13.21454814814815,8204.640331808787,2019
+1995,76,"(75,80]",HS,157.15665634674923,11.892699968615478,13.21454814814815,8159.6599586572465,2019
+1995,76,"(75,80]",HS,157.15665634674923,11.892699968615478,13.21454814814815,8206.546105041185,2019
+1995,76,"(75,80]",HS,157.15665634674923,11.892699968615478,13.21454814814815,8173.671945117827,2019
+1995,76,"(75,80]",HS,157.15665634674923,11.892699968615478,13.21454814814815,8197.071536456668,2019
+1995,44,"(40,45]",College,1055.3882352941175,394.44121562574674,2.6756540480178668,2656.9016066278627,2019
+1995,44,"(40,45]",College,1055.3882352941175,334.97771578266935,3.1506222222222218,2276.7609720996415,2019
+1995,44,"(40,45]",College,1055.3882352941175,332.9955991212334,3.1693759259259258,2343.5058973667974,2019
+1995,44,"(40,45]",College,1055.3882352941175,408.3160322557981,2.584733764832794,2276.332451261046,2019
+1995,44,"(40,45]",College,1055.3882352941175,348.8525324127207,3.025313383838384,2354.1761692307077,2019
+1995,60,"(55,60]",HS,530.6940291906237,128.8375829933344,4.119093333333333,5332.968965403472,2019
+1995,60,"(55,60]",HS,530.6940291906237,128.8375829933344,4.119093333333333,5542.788336143129,2019
+1995,60,"(55,60]",HS,530.6940291906237,128.8375829933344,4.119093333333333,5482.060869181574,2019
+1995,60,"(55,60]",HS,530.6940291906237,128.8375829933344,4.119093333333333,5198.699149784886,2019
+1995,60,"(55,60]",HS,530.6940291906237,128.8375829933344,4.119093333333333,5491.68928064516,2019
+1995,69,"(65,70]",College,616968.969128704,11793.594135543686,52.31390550140055,4.756923591685615,2019
+1995,69,"(65,70]",College,613560.6825298541,11020.56863758368,55.674140119904074,3.7928562004130293,2019
+1995,69,"(65,70]",College,620023.0726227334,12685.546633189844,48.876338604166676,5.148934604028179,2019
+1995,69,"(65,70]",College,642899.8174259177,12368.407967360099,51.979189166666664,3.539786476402375,2019
+1995,69,"(65,70]",College,615509.65731977,10802.53580482573,56.97825662793067,3.8741007175455637,2019
+1995,43,"(40,45]",HS,468.76037151702786,89.1952497646161,5.255440987654321,4699.61304595537,2019
+1995,43,"(40,45]",HS,468.76037151702786,89.1952497646161,5.255440987654321,4891.632698343857,2019
+1995,43,"(40,45]",HS,468.76037151702786,89.1952497646161,5.255440987654321,4824.599831795256,2019
+1995,43,"(40,45]",HS,468.76037151702786,89.1952497646161,5.255440987654321,4583.469353320966,2019
+1995,43,"(40,45]",HS,466.437859354268,89.1952497646161,5.2294024691358025,4855.689763058988,2019
+1995,71,"(70,75]",HS,3735.1801857585137,148.65874960769352,25.12586844444444,751.2900502814281,2019
+1995,71,"(70,75]",HS,3756.4698805838125,148.65874960769352,25.26908029629629,597.4169680145556,2019
+1995,71,"(70,75]",HS,4050.6547545333924,148.65874960769352,27.2480077037037,584.0553743111726,2019
+1995,71,"(70,75]",HS,3698.4070765148163,148.65874960769352,24.878502518518513,583.3363854611805,2019
+1995,71,"(70,75]",HS,3280.354887218045,148.65874960769352,22.066342518518514,599.200464065993,2019
+1995,22,"(20,25]",College,-0.8709420610349403,25.76751659866687,-0.033800000000000004,5873.251108265843,2019
+1995,22,"(20,25]",College,-1.3160902255639098,12.685546633189844,-0.10374722222222223,5856.3015804481,2019
+1995,22,"(20,25]",College,-1.4515701017249005,39.642333228718265,-0.036616666666666665,5889.664584352592,2019
+1995,22,"(20,25]",College,-1.4515701017249005,31.713866582974614,-0.04577083333333333,5851.037324255456,2019
+1995,22,"(20,25]",College,-1.4515701017249005,21.803283275795042,-0.0665757575757576,5824.649037049176,2019
+1995,79,"(75,80]",College,635.0135338345865,126.85546633189846,5.005803472222222,4362.199741853566,2019
+1995,79,"(75,80]",College,635.0135338345865,126.85546633189846,5.005803472222222,4509.605616616441,2019
+1995,79,"(75,80]",College,635.0135338345865,126.85546633189846,5.005803472222222,4483.926658369959,2019
+1995,79,"(75,80]",College,635.0135338345865,126.85546633189846,5.005803472222222,4252.270654288923,2019
+1995,79,"(75,80]",College,635.0135338345865,126.85546633189846,5.005803472222222,4506.377951407294,2019
+1995,56,"(55,60]",HS,0.9677134011499338,27.749633260102783,0.03487301587301588,10575.574288571732,2019
+1995,56,"(55,60]",HS,0.9677134011499338,27.749633260102783,0.03487301587301588,10634.366861403405,2019
+1995,56,"(55,60]",HS,0.9677134011499338,27.749633260102783,0.03487301587301588,10615.055600337559,2019
+1995,56,"(55,60]",HS,0.9677134011499338,27.749633260102783,0.03487301587301588,10629.713978774158,2019
+1995,56,"(55,60]",HS,0.9677134011499338,27.749633260102783,0.03487301587301588,10566.487791911484,2019
+1995,24,"(20,25]",HS,85.54586466165414,95.14159974892382,0.8991425925925928,3338.036740164258,2019
+1995,24,"(20,25]",HS,85.54586466165414,95.14159974892382,0.8991425925925928,3308.430308273814,2019
+1995,24,"(20,25]",HS,85.54586466165414,95.14159974892382,0.8991425925925928,3315.463058415654,2019
+1995,24,"(20,25]",HS,85.54586466165414,95.14159974892382,0.8991425925925928,3272.500593883051,2019
+1995,24,"(20,25]",HS,85.54586466165414,95.14159974892382,0.8991425925925928,3289.80844466267,2019
+1995,75,"(70,75]",HS,46928.29367536488,1197.1984635072918,39.19842457689477,21.37930316291056,2019
+1995,75,"(70,75]",HS,45457.17576293676,1292.3400632562157,35.174314451261075,12.928149932801253,2019
+1995,75,"(70,75]",HS,43978.858062804065,1064.3966471910853,41.31811029174426,21.59007452559501,2019
+1995,75,"(70,75]",HS,49150.16364440513,1193.2342301844199,41.19070874861573,25.778823899766866,2019
+1995,75,"(70,75]",HS,52836.08721804512,1157.5561302785734,45.644514193302896,20.9070008654844,2019
+1995,56,"(55,60]",College,13418.50756302521,257.6751659866688,52.075284444444435,336.54191448970835,2019
+1995,56,"(55,60]",College,12590.144891640866,257.6751659866688,48.86052888888887,300.22904001760014,2019
+1995,56,"(55,60]",College,10030.736488279521,257.6751659866688,38.92783555555554,298.0418803881817,2019
+1995,56,"(55,60]",College,13642.436444051305,257.6751659866688,52.94431999999999,305.5820454248008,2019
+1995,56,"(55,60]",College,11455.210614772224,257.6751659866688,44.456013333333324,307.41022432543633,2019
+1995,45,"(40,45]",College,4306.1310924369745,323.0850158140539,13.328167143830944,216.82550759376804,2019
+1995,45,"(40,45]",College,4306.1310924369745,323.0850158140539,13.328167143830944,196.24935608125503,2019
+1995,45,"(40,45]",College,4306.1310924369745,323.0850158140539,13.328167143830944,193.18791809760666,2019
+1995,45,"(40,45]",College,4306.1310924369745,323.0850158140539,13.328167143830944,180.35729111547306,2019
+1995,45,"(40,45]",College,4306.1310924369745,323.0850158140539,13.328167143830944,193.97625691519556,2019
+1995,41,"(40,45]",College,673.4898186643078,168.47991622205262,3.997448679738562,3642.1434223445517,2019
+1995,41,"(40,45]",College,674.3026979212738,168.47991622205262,4.002273464052288,3791.5679040555565,2019
+1995,41,"(40,45]",College,673.1414418398938,168.47991622205262,3.9953809150326793,3737.616867165434,2019
+1995,41,"(40,45]",College,672.7543564794338,168.47991622205262,3.9930833986928103,3549.7276495110623,2019
+1995,41,"(40,45]",College,674.2252808491818,168.47991622205262,4.001813960784314,3764.2982728791517,2019
+1995,43,"(40,45]",NoHS,54.811287041132246,144.69451628482167,0.3788069406392694,7473.356617167298,2019
+1995,43,"(40,45]",NoHS,45.811552410437855,122.89123300902662,0.3727812903225806,7417.081365340091,2019
+1995,43,"(40,45]",NoHS,58.66278637770898,39.642333228718265,1.4798015555555557,7465.4385426701865,2019
+1995,43,"(40,45]",NoHS,38.05049093321539,154.60509959200127,0.24611407407407404,7548.387762653154,2019
+1995,43,"(40,45]",NoHS,42.38584697036709,116.94488302471889,0.36244293785310727,7476.65409352274,2019
+1995,66,"(65,70]",NoHS,1.1612560813799204,29.731749921538697,0.03905777777777778,11599.438839415196,2019
+1995,66,"(65,70]",NoHS,1.1612560813799204,29.731749921538697,0.03905777777777778,11622.467146067833,2019
+1995,66,"(65,70]",NoHS,1.1612560813799204,29.731749921538697,0.03905777777777778,11593.965885244126,2019
+1995,66,"(65,70]",NoHS,1.1612560813799204,29.731749921538697,0.03905777777777778,11610.753071386076,2019
+1995,66,"(65,70]",NoHS,1.1612560813799204,29.731749921538697,0.03905777777777778,11688.57899193343,2019
+1995,37,"(35,40]",HS,307.9264042459089,150.64086626912942,2.044109356725146,4390.207917947098,2019
+1995,37,"(35,40]",HS,342.37700132684654,150.64086626912942,2.272802923976608,4569.585707155279,2019
+1995,37,"(35,40]",HS,348.5703670942061,150.64086626912942,2.313916374269006,4506.966036427783,2019
+1995,37,"(35,40]",HS,319.1518796992481,150.64086626912942,2.118627485380117,4281.710696146677,2019
+1995,37,"(35,40]",HS,329.21609907120745,150.64086626912942,2.185436842105263,4536.009121691992,2019
+1995,53,"(50,55]",College,1787.9472799646176,245.78246601805324,7.274511111111112,567.1837645070447,2019
+1995,53,"(50,55]",College,1787.9472799646176,245.78246601805324,7.274511111111112,477.25989668632263,2019
+1995,53,"(50,55]",College,1787.9472799646176,245.78246601805324,7.274511111111112,479.27169945496007,2019
+1995,53,"(50,55]",College,1787.9472799646176,245.78246601805324,7.274511111111112,482.65643435983174,2019
+1995,53,"(50,55]",College,1787.9472799646176,245.78246601805324,7.274511111111112,466.7697427969476,2019
+1995,50,"(45,50]",HS,348.4735957540911,69.37408315025698,5.023109206349205,5210.497929351814,2019
+1995,50,"(45,50]",HS,348.4735957540911,69.37408315025698,5.023109206349205,5090.552403500056,2019
+1995,50,"(45,50]",HS,348.4735957540911,69.37408315025698,5.023109206349205,5157.951939165848,2019
+1995,50,"(45,50]",HS,348.4735957540911,69.37408315025698,5.023109206349205,5305.0025010654535,2019
+1995,50,"(45,50]",HS,348.4735957540911,69.37408315025698,5.023109206349205,5197.346470287788,2019
+1995,24,"(20,25]",HS,-4.23858469703671,11.892699968615478,-0.3564022222222223,4944.023894517513,2019
+1995,24,"(20,25]",HS,-4.23858469703671,11.892699968615478,-0.3564022222222223,4898.8216428079495,2019
+1995,24,"(20,25]",HS,-4.23858469703671,11.892699968615478,-0.3564022222222223,4890.6857114835675,2019
+1995,24,"(20,25]",HS,-4.23858469703671,11.892699968615478,-0.3564022222222223,4856.612923332323,2019
+1995,24,"(20,25]",HS,-4.23858469703671,11.892699968615478,-0.3564022222222223,4846.948629119662,2019
+1995,52,"(50,55]",College,2384.4458204334364,267.5857492938483,8.910959670781892,1079.0108349100847,2019
+1995,52,"(50,55]",College,2558.6342326404247,346.87041575128484,7.3763403174603175,916.5197927789588,2019
+1995,52,"(50,55]",College,2413.4772224679346,327.0492491369256,7.379552861952864,911.1578014604966,2019
+1995,52,"(50,55]",College,2384.4458204334364,313.17443250687427,7.613794655414909,926.136673622232,2019
+1995,52,"(50,55]",College,2384.4458204334364,269.5678659552842,8.84543790849673,890.6972313260474,2019
+1995,74,"(70,75]",HS,30622.226094648388,418.2266155629777,73.21921885202738,1411.0206197390985,2019
+1995,74,"(70,75]",HS,35305.95895621406,418.2266155629777,84.41824992101105,787.9118980613774,2019
+1995,74,"(70,75]",HS,35305.95895621406,418.2266155629777,84.41824992101105,1388.6079597821006,2019
+1995,74,"(70,75]",HS,25067.55117204777,418.2266155629777,59.93772332806741,895.2061841453966,2019
+1995,74,"(70,75]",HS,25319.15665634675,418.2266155629777,60.53932417061611,1471.0363085917043,2019
+1995,74,"(70,75]",HS,5.380486510393631,33.69598324441053,0.15967738562091502,7951.01481382209,2019
+1995,74,"(70,75]",HS,5.380486510393631,33.69598324441053,0.15967738562091502,7967.368753044127,2019
+1995,74,"(70,75]",HS,5.380486510393631,33.69598324441053,0.15967738562091502,7944.486185922583,2019
+1995,74,"(70,75]",HS,5.380486510393631,33.69598324441053,0.15967738562091502,7958.284992536288,2019
+1995,74,"(70,75]",HS,5.380486510393631,33.69598324441053,0.15967738562091502,7944.061565634443,2019
+1995,78,"(75,80]",College,467.98620079610794,71.35619981169287,6.558451851851852,9060.25894983445,2019
+1995,78,"(75,80]",College,450.5673595754091,79.28466645743653,5.682906666666667,9131.988753356192,2019
+1995,78,"(75,80]",College,461.2122069880584,87.21313310318017,5.288334343434345,9260.68189232583,2019
+1995,78,"(75,80]",College,479.59876160990717,69.37408315025698,6.913226666666666,9499.458110766893,2019
+1995,78,"(75,80]",College,480.37293233082704,77.30254979600063,6.214192592592591,9241.81050210296,2019
+1995,50,"(45,50]",HS,24.870234409553294,51.53503319733374,0.48258888888888896,7414.939348033181,2019
+1995,50,"(45,50]",HS,36.4827952233525,51.53503319733374,0.7079222222222222,7244.24763846573,2019
+1995,50,"(45,50]",HS,44.22450243255197,51.53503319733374,0.8581444444444446,7340.162362130078,2019
+1995,50,"(45,50]",HS,57.772490048651036,51.53503319733374,1.1210333333333333,7549.426622928937,2019
+1995,50,"(45,50]",HS,40.353648827952235,51.53503319733374,0.7830333333333335,7396.223810167105,2019
+1995,64,"(60,65]",HS,6426.00406899602,200.19378280502724,32.098919251925196,673.2324972620189,2019
+1995,64,"(60,65]",HS,6759.865192392747,200.19378280502724,33.766609020902095,535.3451981235008,2019
+1995,64,"(60,65]",HS,2182.5808049535603,200.19378280502724,10.902340594059407,1953.5700589588403,2019
+1995,64,"(60,65]",HS,4687.6037151702785,200.19378280502724,23.415331133113312,522.77473065948,2019
+1995,64,"(60,65]",HS,3036.1040247678015,200.19378280502724,15.165825742574256,535.1972939033681,2019
+1995,55,"(50,55]",HS,354.76373286156564,99.10583307179566,3.579645333333333,9371.034761185932,2019
+1995,55,"(50,55]",HS,355.44113224237066,99.10583307179566,3.5864804444444447,9175.469493400698,2019
+1995,55,"(50,55]",HS,354.6669615214507,99.10583307179566,3.578668888888889,9255.59673943316,2019
+1995,55,"(50,55]",HS,354.18310482087577,99.10583307179566,3.5737866666666673,9235.640045472903,2019
+1995,55,"(50,55]",HS,355.5379035824856,99.10583307179566,3.587456888888889,9137.500606263084,2019
+1995,65,"(60,65]",College,2774.376258292791,323.0850158140539,8.587139986366735,229.2187295429626,2019
+1995,65,"(60,65]",College,2774.376258292791,323.0850158140539,8.587139986366735,202.41867223021163,2019
+1995,65,"(60,65]",College,2774.376258292791,323.0850158140539,8.587139986366735,203.4243768838473,2019
+1995,65,"(60,65]",College,2774.376258292791,323.0850158140539,8.587139986366735,205.9906944793638,2019
+1995,65,"(60,65]",College,2774.376258292791,323.0850158140539,8.587139986366735,206.0378907464477,2019
+1995,79,"(75,80]",NoHS,664.0449358690845,55.499266520205566,11.964931746031748,8509.461707605318,2019
+1995,79,"(75,80]",NoHS,664.0449358690845,55.499266520205566,11.964931746031748,8624.406913773299,2019
+1995,79,"(75,80]",NoHS,664.0449358690845,55.499266520205566,11.964931746031748,8501.061800142383,2019
+1995,79,"(75,80]",NoHS,664.0449358690845,55.499266520205566,11.964931746031748,8288.402883143122,2019
+1995,79,"(75,80]",NoHS,664.0449358690845,55.499266520205566,11.964931746031748,8457.706035488603,2019
+1995,59,"(55,60]",HS,448.63193277310927,39.642333228718265,11.316991111111111,7705.848470395342,2019
+1995,59,"(55,60]",HS,449.5996461742592,39.642333228718265,11.341402222222223,7592.678463623907,2019
+1995,59,"(55,60]",HS,448.63193277310927,39.642333228718265,11.316991111111111,7715.43007585865,2019
+1995,59,"(55,60]",HS,453.47049977885894,39.642333228718265,11.439046666666668,7701.960430471789,2019
+1995,59,"(55,60]",HS,451.53507297655904,39.642333228718265,11.390224444444444,7600.876422116495,2019
+1995,66,"(65,70]",College,1030.5180008845643,122.89123300902662,8.385610394265234,1064.9304258478287,2019
+1995,66,"(65,70]",College,986.1386643078284,105.0521830561034,9.387131572327045,1047.0696731685669,2019
+1995,66,"(65,70]",College,1016.6216364440513,105.0521830561034,9.6773013836478,1061.4448262162393,2019
+1995,66,"(65,70]",College,1027.1116497125165,122.89123300902662,8.357891971326165,994.8901484882115,2019
+1995,66,"(65,70]",College,1234.9571340114994,124.87334967046255,9.889677319223987,1066.5550810827285,2019
+1995,78,"(75,80]",NoHS,83.61043785935426,7.333831647312879,11.400648648648648,9466.07341116715,2019
+1995,78,"(75,80]",NoHS,75.53970809376382,7.333831647312879,10.30016936936937,9421.379660656374,2019
+1995,78,"(75,80]",NoHS,59.32083149049094,7.333831647312879,8.088654654654656,9472.586117184956,2019
+1995,78,"(75,80]",NoHS,54.695161432994254,7.333831647312879,7.457924324324325,9480.521923272609,2019
+1995,78,"(75,80]",NoHS,65.76580274214949,7.333831647312879,8.967454654654654,9483.379855732243,2019
+1995,53,"(50,55]",College,941.9335161432995,303.2638491996948,3.1059868119099487,567.1837645070447,2019
+1995,53,"(50,55]",College,1036.7694294559928,374.6200490113876,2.7675225396825396,477.25989668632263,2019
+1995,53,"(50,55]",College,976.7711985846971,319.12078249118207,3.0608197653554177,479.27169945496007,2019
+1995,53,"(50,55]",College,1052.2528438743918,396.42333228718263,2.6543665777777776,482.65643435983174,2019
+1995,53,"(50,55]",College,1096.767660327289,307.22808252256664,3.569880888888888,466.7697427969476,2019
+1995,31,"(30,35]",HS,-16.78015037593985,16.055144957630898,-1.0451572016460906,6973.315576040358,2019
+1995,31,"(30,35]",HS,-16.683379035824856,18.830108283641177,-0.8859948538011695,7055.924897255076,2019
+1995,31,"(30,35]",HS,-16.760796107916853,19.424743282071947,-0.8628580498866215,6996.207107501743,2019
+1995,31,"(30,35]",HS,-16.52854489164087,16.055144957630898,-1.0294858710562416,7099.494024461053,2019
+1995,31,"(30,35]",HS,-16.586607695709862,19.22653161592836,-0.8626936998854524,6999.507463195938,2019
+1995,83,"(80,85]",HS,44.95996461742592,7.135619981169288,6.300779012345679,8140.148958660308,2019
+1995,83,"(80,85]",HS,99.59706324635117,7.135619981169288,13.95773086419753,8421.127589001298,2019
+1995,83,"(80,85]",HS,67.2367271118974,7.135619981169288,9.422688888888889,8152.240617785714,2019
+1995,83,"(80,85]",HS,65.12711189739053,7.135619981169288,9.127043209876543,8156.629430610529,2019
+1995,83,"(80,85]",HS,91.04247678018575,7.135619981169288,12.758874074074072,8466.819809308325,2019
+1995,50,"(45,50]",NoHS,22.45095090667846,14.073028296194984,1.595317683881064,4887.195395759558,2019
+1995,50,"(45,50]",NoHS,22.45095090667846,14.073028296194984,1.595317683881064,4905.925792297363,2019
+1995,50,"(45,50]",NoHS,22.45095090667846,14.073028296194984,1.595317683881064,4910.14818963856,2019
+1995,50,"(45,50]",NoHS,22.45095090667846,14.073028296194984,1.595317683881064,4897.589272694187,2019
+1995,50,"(45,50]",NoHS,22.45095090667846,14.073028296194984,1.595317683881064,4902.701095536038,2019
+1995,41,"(40,45]",College,101.26153029632906,71.35619981169287,1.4190992592592593,6085.798376278672,2019
+1995,41,"(40,45]",College,101.26153029632906,71.35619981169287,1.4190992592592593,6125.1412762875125,2019
+1995,41,"(40,45]",College,101.26153029632906,71.35619981169287,1.4190992592592593,6116.099012910563,2019
+1995,41,"(40,45]",College,101.26153029632906,71.35619981169287,1.4190992592592593,6303.121707702556,2019
+1995,41,"(40,45]",College,101.26153029632906,71.35619981169287,1.4190992592592593,6173.002316618199,2019
+1995,31,"(30,35]",College,383.4080495356037,198.21166614359132,1.9343364444444444,2602.0812637059544,2019
+1995,31,"(30,35]",College,383.7951348960637,198.21166614359132,1.9362893333333335,2704.831011574818,2019
+1995,31,"(30,35]",College,383.0209641751438,198.21166614359132,1.9323835555555557,2658.493837136953,2019
+1995,31,"(30,35]",College,383.4080495356037,198.21166614359132,1.9343364444444444,2531.695562296614,2019
+1995,31,"(30,35]",College,383.21450685537377,198.21166614359132,1.9333600000000004,2673.3277682905004,2019
+1995,64,"(60,65]",College,4037.4938522777534,21.803283275795042,185.17825050505056,1334.1437672615743,2019
+1995,64,"(60,65]",College,4037.4938522777534,21.803283275795042,185.17825050505056,1206.836637815167,2019
+1995,64,"(60,65]",College,4037.4938522777534,21.803283275795042,185.17825050505056,1197.4286583462226,2019
+1995,64,"(60,65]",College,4037.4938522777534,21.803283275795042,185.17825050505056,1219.6390052225318,2019
+1995,64,"(60,65]",College,4037.4938522777534,21.803283275795042,185.17825050505056,1208.0917164031562,2019
+1995,56,"(55,60]",HS,4356.839274657232,160.55144957630895,27.136717146776412,1023.8273134949546,2019
+1995,56,"(55,60]",HS,4467.352145068553,178.3904995292322,25.042545185185183,923.2048119462322,2019
+1995,56,"(55,60]",HS,4479.158248562583,168.47991622205262,26.585710326797386,912.5578290869056,2019
+1995,56,"(55,60]",HS,4497.544803184432,196.22954948215542,22.91981414141414,921.4557638838523,2019
+1995,56,"(55,60]",HS,4458.449181777974,174.42626620636034,25.56065252525253,916.9759157628778,2019
+1995,27,"(25,30]",College,248.31525873507297,57.48138318164148,4.3199249042145595,9667.344258766581,2019
+1995,27,"(25,30]",College,248.31525873507297,57.48138318164148,4.3199249042145595,9670.975540258632,2019
+1995,27,"(25,30]",College,248.31525873507297,57.48138318164148,4.3199249042145595,9457.81068937512,2019
+1995,27,"(25,30]",College,248.31525873507297,57.48138318164148,4.3199249042145595,9464.355079172019,2019
+1995,27,"(25,30]",College,248.31525873507297,57.48138318164148,4.3199249042145595,9517.496735049974,2019
+1995,44,"(40,45]",HS,145.73763821318002,39.642333228718265,3.6763133333333338,6473.935767863413,2019
+1995,44,"(40,45]",HS,144.1892967713401,39.642333228718265,3.6372555555555555,6553.371553542505,2019
+1995,44,"(40,45]",HS,145.54409553295002,39.642333228718265,3.671431111111111,6472.957626136797,2019
+1995,44,"(40,45]",HS,145.93118089341,39.642333228718265,3.6811955555555556,6687.787672135821,2019
+1995,44,"(40,45]",HS,145.73763821318002,39.642333228718265,3.6763133333333338,6521.222078706023,2019
+1995,47,"(45,50]",HS,360.7635559486953,245.78246601805324,1.4678164874551973,10500.501963218001,2019
+1995,47,"(45,50]",HS,336.7642636001769,69.37408315025698,4.854323809523808,10336.66577854784,2019
+1995,47,"(45,50]",HS,303.6684652808492,55.499266520205566,5.471576190476191,10092.03084324297,2019
+1995,47,"(45,50]",HS,308.70057496682887,53.517149858769656,5.768255144032922,10558.78761822826,2019
+1995,47,"(45,50]",HS,371.8922600619195,245.78246601805324,1.5130951612903225,10372.234183791057,2019
+1995,21,"(20,25]",HS,-5.515966386554622,25.76751659866687,-0.21406666666666668,5567.352625051843,2019
+1995,21,"(20,25]",HS,-5.515966386554622,25.76751659866687,-0.21406666666666668,5551.285885106617,2019
+1995,21,"(20,25]",HS,-5.515966386554622,25.76751659866687,-0.21406666666666668,5582.911232625962,2019
+1995,21,"(20,25]",HS,-5.515966386554622,25.76751659866687,-0.21406666666666668,5546.295808913243,2019
+1995,21,"(20,25]",HS,-5.515966386554622,25.76751659866687,-0.21406666666666668,5521.281911611672,2019
+1995,51,"(50,55]",NoHS,106.87426802299868,55.499266520205566,1.9256879365079367,9140.667175207458,2019
+1995,51,"(50,55]",NoHS,106.87426802299868,55.499266520205566,1.9256879365079367,9101.788578441137,2019
+1995,51,"(50,55]",NoHS,106.87426802299868,55.499266520205566,1.9256879365079367,9048.932481936014,2019
+1995,51,"(50,55]",NoHS,106.87426802299868,55.499266520205566,1.9256879365079367,9515.01997368824,2019
+1995,51,"(50,55]",NoHS,106.87426802299868,55.499266520205566,1.9256879365079367,9178.351221697518,2019
+1995,48,"(45,50]",College,471.8764086687307,267.5857492938483,1.7634586666666665,7473.59453070057,2019
+1995,48,"(45,50]",College,472.14736842105265,267.5857492938483,1.7644712757201644,7585.999977307988,2019
+1995,48,"(45,50]",College,471.54738611233967,267.5857492938483,1.7622290699588474,7500.395919219263,2019
+1995,48,"(45,50]",College,471.97318000884565,267.5857492938483,1.7638203127572014,7351.371532033409,2019
+1995,48,"(45,50]",College,472.36026536930564,267.5857492938483,1.7652668971193415,7504.163042197167,2019
+1995,40,"(35,40]",HS,265.05670057496684,49.55291653589783,5.348962666666667,277.36610358456835,2019
+1995,40,"(35,40]",HS,316.73259619637327,49.55291653589783,6.391805333333333,272.6027822205068,2019
+1995,40,"(35,40]",HS,225.38045112781955,49.55291653589783,4.548278222222223,268.4906420069617,2019
+1995,40,"(35,40]",HS,225.38045112781955,49.55291653589783,4.548278222222223,264.98075525149517,2019
+1995,40,"(35,40]",HS,220.92896948252985,49.55291653589783,4.458445333333334,275.10230723579764,2019
+1995,72,"(70,75]",HS,405.18160106147724,19.622954948215543,20.648347923681257,9371.187331454987,2019
+1995,72,"(70,75]",HS,420.66501547987616,35.67809990584644,11.790566666666667,9377.728236502147,2019
+1995,72,"(70,75]",HS,418.72958867757626,61.44561650451331,6.814637275985663,9548.069450837338,2019
+1995,72,"(70,75]",HS,412.9233082706767,53.517149858769656,7.715719341563787,9564.50843370121,2019
+1995,72,"(70,75]",HS,412.9233082706767,17.046203288348853,24.223770025839798,9337.757731468166,2019
+1995,33,"(30,35]",HS,141.8280760725343,75.32043313456471,1.8829960233918128,5058.203661609155,2019
+1995,33,"(30,35]",HS,131.41547987616102,75.32043313456471,1.744752046783626,5083.743173435492,2019
+1995,33,"(30,35]",HS,164.8015922158337,75.32043313456471,2.1880064327485376,5111.964342321209,2019
+1995,33,"(30,35]",HS,107.78391862007962,75.32043313456471,1.431005029239766,5147.943282245307,2019
+1995,33,"(30,35]",HS,155.9954002653693,75.32043313456471,2.071090058479532,5135.282225163544,2019
+1995,58,"(55,60]",HS,-2.709597523219814,41.624449890154175,-0.0650962962962963,9604.758716798458,2019
+1995,58,"(55,60]",HS,-2.709597523219814,41.624449890154175,-0.0650962962962963,9507.70226014131,2019
+1995,58,"(55,60]",HS,-2.709597523219814,41.624449890154175,-0.0650962962962963,9584.280684995229,2019
+1995,58,"(55,60]",HS,-2.709597523219814,41.624449890154175,-0.0650962962962963,9458.876516252549,2019
+1995,58,"(55,60]",HS,-2.709597523219814,41.624449890154175,-0.0650962962962963,9326.560965063696,2019
+1995,39,"(35,40]",HS,66.09482529854047,109.01641637897524,0.6062832323232323,5180.763204601785,2019
+1995,39,"(35,40]",HS,102.84858027421495,144.69451628482167,0.7107980517503805,5140.869418995654,2019
+1995,39,"(35,40]",HS,79.48797877045556,188.30108283641175,0.42213235087719303,5146.111602583003,2019
+1995,39,"(35,40]",HS,58.19828394515701,47.57079987446191,1.2234035185185186,5243.467550524319,2019
+1995,39,"(35,40]",HS,66.15288810260947,107.03429971753931,0.6180531687242798,5151.940425818111,2019
+1995,46,"(45,50]",NoHS,0,4.7570799874461915,0,7830.279974796629,2019
+1995,46,"(45,50]",NoHS,0,4.7570799874461915,0,7889.943433486447,2019
+1995,46,"(45,50]",NoHS,0,4.7570799874461915,0,7902.30869884417,2019
+1995,46,"(45,50]",NoHS,0,4.7570799874461915,0,7876.626885186282,2019
+1995,46,"(45,50]",NoHS,0,4.7570799874461915,0,7880.728206184722,2019
+1995,45,"(40,45]",College,108.96452896948253,79.28466645743653,1.3743455555555555,7983.729732871933,2019
+1995,45,"(40,45]",College,108.96452896948253,79.28466645743653,1.3743455555555555,7949.7720137004535,2019
+1995,45,"(40,45]",College,108.77098628925255,79.28466645743653,1.3719044444444446,7903.605931822315,2019
+1995,45,"(40,45]",College,108.96452896948253,79.28466645743653,1.3743455555555555,8310.700566677293,2019
+1995,45,"(40,45]",College,108.96452896948253,79.28466645743653,1.3743455555555555,8016.64409641354,2019
+1995,24,"(20,25]",NoHS,6.444971251658558,43.606566551590085,0.14779818181818183,4875.742704749602,2019
+1995,24,"(20,25]",NoHS,10.122282176028307,43.606566551590085,0.2321274747474748,4885.674079929389,2019
+1995,24,"(20,25]",NoHS,6.5030340557275546,43.606566551590085,0.149129696969697,4908.2138387890745,2019
+1995,24,"(20,25]",NoHS,6.154657231313578,43.606566551590085,0.14114060606060608,4879.329854808095,2019
+1995,24,"(20,25]",NoHS,11.438372401592217,43.606566551590085,0.2623084848484849,4877.4522198649865,2019
+1995,95,"(90,95]",College,9741.003095975231,1046.5575972381623,9.307660774410772,241.58361433093108,2019
+1995,95,"(90,95]",HS,9741.003095975231,1046.5575972381623,9.307660774410772,212.71110241217744,2019
+1995,95,"(90,95]",College,9741.003095975231,1046.5575972381623,9.307660774410772,212.4020132432484,2019
+1995,95,"(90,95]",HS,9741.003095975231,1046.5575972381623,9.307660774410772,218.1978568405982,2019
+1995,95,"(90,95]",HS,9741.003095975231,1046.5575972381623,9.307660774410772,217.2155422795112,2019
+1995,70,"(65,70]",College,975.0680229986732,61.44561650451331,15.86879713261649,5620.669354459209,2019
+1995,70,"(65,70]",College,975.0680229986732,61.44561650451331,15.86879713261649,5841.8224308399385,2019
+1995,70,"(65,70]",College,975.0680229986732,61.44561650451331,15.86879713261649,5778.420288778127,2019
+1995,70,"(65,70]",College,975.0680229986732,61.44561650451331,15.86879713261649,5478.6755296767205,2019
+1995,70,"(65,70]",College,975.0680229986732,61.44561650451331,15.86879713261649,5806.849961281065,2019
+1995,39,"(35,40]",HS,2957.3321539141975,118.92699968615479,24.86678518518519,224.57913137405677,2019
+1995,39,"(35,40]",HS,2961.628801415303,118.92699968615479,24.90291362962963,202.23233997603356,2019
+1995,39,"(35,40]",HS,2957.5450508624504,118.92699968615479,24.868575333333336,199.4735861986765,2019
+1995,39,"(35,40]",HS,2963.777125165856,118.92699968615479,24.920977851851855,204.23881045067327,2019
+1995,39,"(35,40]",HS,2959.790145953118,118.92699968615479,24.88745325925926,201.78041372655292,2019
+1995,66,"(65,70]",HS,791.7831048208757,73.3383164731288,10.796308708708708,4261.866475083787,2019
+1995,66,"(65,70]",HS,791.7831048208757,73.3383164731288,10.796308708708708,4429.977398897452,2019
+1995,66,"(65,70]",HS,791.7831048208757,73.3383164731288,10.796308708708708,4379.546406681274,2019
+1995,66,"(65,70]",HS,791.7831048208757,73.3383164731288,10.796308708708708,4152.479928818909,2019
+1995,66,"(65,70]",HS,791.7831048208757,73.3383164731288,10.796308708708708,4436.476221520074,2019
+1995,32,"(30,35]",College,202.7359575409111,158.56933291487306,1.2785319444444445,5862.369582772601,2019
+1995,32,"(30,35]",College,206.60681114551085,194.2474328207195,1.0636269841269843,5891.969430328351,2019
+1995,32,"(30,35]",College,228.05134011499337,166.4977995606167,1.3696958201058202,5924.6772715174275,2019
+1995,32,"(30,35]",College,212.7034055727554,166.4977995606167,1.2775148148148148,5966.376233667234,2019
+1995,32,"(30,35]",College,210.76797877045556,164.5156828991808,1.2811421686746989,5951.702289933964,2019
+1995,25,"(20,25]",HS,11.031932773109244,14.271239962338576,0.7730185185185184,5160.999212963312,2019
+1995,25,"(20,25]",HS,11.031932773109244,14.271239962338576,0.7730185185185184,5140.258751982958,2019
+1995,25,"(20,25]",HS,11.031932773109244,14.271239962338576,0.7730185185185184,5137.357933868252,2019
+1995,25,"(20,25]",HS,11.031932773109244,14.271239962338576,0.7730185185185184,5165.535382767739,2019
+1995,25,"(20,25]",HS,11.031932773109244,14.271239962338576,0.7730185185185184,5156.145421571494,2019
+1995,64,"(60,65]",College,1158.5077753206544,533.1893819262607,2.172788533663775,1515.6295115776259,2019
+1995,64,"(60,65]",College,1391.1267226890757,513.3682153119015,2.709802985842986,1238.8492780228228,2019
+1995,64,"(60,65]",College,1687.4018575851394,533.1893819262607,3.164732672449401,1278.429168869362,2019
+1995,64,"(60,65]",College,1971.8708889871739,549.046315217748,3.591447268351384,1245.7444884342008,2019
+1995,64,"(60,65]",College,1125.160371517028,497.5112820204143,2.2615776007082777,1266.333458778751,2019
+1995,26,"(25,30]",NoHS,14.88343210968598,83.24889978030835,0.17878232804232808,4754.990862230474,2019
+1995,26,"(25,30]",NoHS,13.044776647501106,73.3383164731288,0.17787123123123122,4681.6846290462445,2019
+1995,26,"(25,30]",NoHS,13.218965059708095,63.42773316594923,0.20840986111111112,4692.855423924339,2019
+1995,26,"(25,30]",NoHS,14.922140645731977,49.55291653589783,0.3011354666666667,4662.8391059279,2019
+1995,26,"(25,30]",NoHS,11.999646174259178,59.46349984307739,0.20179851851851854,4682.0431697017475,2019
+1995,24,"(20,25]",HS,-0.19354268022998675,29.731749921538697,-0.006509629629629631,6391.688941663456,2019
+1995,24,"(20,25]",HS,-0.19354268022998675,29.731749921538697,-0.006509629629629631,6328.53168821587,2019
+1995,24,"(20,25]",HS,-0.19354268022998675,29.731749921538697,-0.006509629629629631,6407.389489687493,2019
+1995,24,"(20,25]",HS,-0.19354268022998675,29.731749921538697,-0.006509629629629631,6365.477194948081,2019
+1995,24,"(20,25]",HS,-0.19354268022998675,29.731749921538697,-0.006509629629629631,6342.330809397422,2019
+1995,19,"(15,20]",HS,-5.806280406899602,19.821166614359132,-0.2929333333333333,4435.592700704662,2019
+1995,19,"(15,20]",HS,-5.806280406899602,19.821166614359132,-0.2929333333333333,4485.157907475494,2019
+1995,19,"(15,20]",HS,-5.806280406899602,19.821166614359132,-0.2929333333333333,4474.875767727078,2019
+1995,19,"(15,20]",HS,-5.806280406899602,19.821166614359132,-0.2929333333333333,4531.120345738596,2019
+1995,19,"(15,20]",HS,-5.806280406899602,19.821166614359132,-0.2929333333333333,4459.951654481317,2019
+1995,78,"(75,80]",HS,334.44175143741705,33.69598324441053,9.925270588235293,12253.666756392387,2019
+1995,78,"(75,80]",HS,333.4740380362672,33.69598324441053,9.89655163398693,12279.847334501615,2019
+1995,78,"(75,80]",HS,367.53754975674485,31.713866582974614,11.589175000000001,12588.992968698618,2019
+1995,78,"(75,80]",HS,479.9858469703671,33.69598324441053,14.244601307189543,12880.962912583343,2019
+1995,78,"(75,80]",HS,398.5043785935427,33.69598324441053,11.826465359477124,12586.378568687674,2019
+1995,32,"(30,35]",College,296.2170720919947,204.15801612789906,1.4509206040992448,3246.3181093742896,2019
+1995,32,"(30,35]",College,296.2170720919947,204.15801612789906,1.4509206040992448,3375.0861476576356,2019
+1995,32,"(30,35]",College,296.2170720919947,204.15801612789906,1.4509206040992448,3335.4930255966997,2019
+1995,32,"(30,35]",College,296.2170720919947,204.15801612789906,1.4509206040992448,3152.0663624158633,2019
+1995,32,"(30,35]",College,296.2170720919947,204.15801612789906,1.4509206040992448,3355.342983760642,2019
+1995,37,"(35,40]",HS,12.40608580274215,23.785399937230956,0.5215840740740741,5390.38653254471,2019
+1995,37,"(35,40]",HS,12.599628482972136,23.785399937230956,0.5297211111111112,5379.399083999285,2019
+1995,37,"(35,40]",HS,12.599628482972136,23.785399937230956,0.5297211111111112,5393.409097551963,2019
+1995,37,"(35,40]",HS,12.40608580274215,23.785399937230956,0.5215840740740741,5297.61642497311,2019
+1995,37,"(35,40]",HS,12.599628482972136,23.785399937230956,0.5297211111111112,5387.578628755216,2019
+1995,40,"(35,40]",HS,52.45006634232641,174.42626620636034,0.3007005050505051,6743.6830938880175,2019
+1995,40,"(35,40]",HS,52.45006634232641,174.42626620636034,0.3007005050505051,6826.428703999404,2019
+1995,40,"(35,40]",HS,52.45006634232641,174.42626620636034,0.3007005050505051,6742.664196255765,2019
+1995,40,"(35,40]",HS,52.45006634232641,174.42626620636034,0.3007005050505051,6966.445494249849,2019
+1995,40,"(35,40]",HS,52.45006634232641,174.42626620636034,0.3007005050505051,6792.939667699669,2019
+1995,47,"(45,50]",College,2231.643874391862,277.4963326010279,8.04206619047619,2001.764184942759,2019
+1995,47,"(45,50]",College,2231.643874391862,277.4963326010279,8.04206619047619,1716.28130557118,2019
+1995,47,"(45,50]",College,2231.643874391862,277.4963326010279,8.04206619047619,1768.7510117741724,2019
+1995,47,"(45,50]",College,2231.643874391862,277.4963326010279,8.04206619047619,1716.6378671025814,2019
+1995,47,"(45,50]",College,2231.643874391862,277.4963326010279,8.04206619047619,1770.5945606298487,2019
+1995,60,"(55,60]",College,24936.600194604158,1010.8794973323157,24.668222335511985,21.37930316291056,2019
+1995,60,"(55,60]",College,24936.600194604158,1010.8794973323157,24.668222335511985,23.814430115263647,2019
+1995,60,"(55,60]",College,24936.600194604158,1010.8794973323157,24.668222335511985,21.59007452559501,2019
+1995,60,"(55,60]",College,24936.600194604158,1010.8794973323157,24.668222335511985,25.778823899766866,2019
+1995,60,"(55,60]",College,24936.600194604158,1010.8794973323157,24.668222335511985,20.9070008654844,2019
+1995,28,"(25,30]",College,9.580362671384343,35.67809990584644,0.2685222222222222,7171.859668039989,2019
+1995,28,"(25,30]",College,9.580362671384343,35.67809990584644,0.2685222222222222,7105.882939669253,2019
+1995,28,"(25,30]",College,9.580362671384343,35.67809990584644,0.2685222222222222,7175.33315874417,2019
+1995,28,"(25,30]",College,9.580362671384343,35.67809990584644,0.2685222222222222,7132.370509420332,2019
+1995,28,"(25,30]",College,9.580362671384343,35.67809990584644,0.2685222222222222,7143.661166475848,2019
+1995,37,"(35,40]",College,44.35998230871296,29.731749921538697,1.4920071111111113,5779.610181670081,2019
+1995,37,"(35,40]",College,37.58598850066342,73.3383164731288,0.5125013813813812,5706.259301556166,2019
+1995,37,"(35,40]",HS,37.02471472799646,19.028319949784766,1.9457689814814816,5672.3490906229445,2019
+1995,37,"(35,40]",HS,55.93383458646617,51.53503319733374,1.0853555555555559,5772.992228271332,2019
+1995,37,"(35,40]",HS,38.51499336576736,31.713866582974614,1.2144527777777778,5718.258104939111,2019
+1995,37,"(35,40]",College,971.9713401149934,71.35619981169287,13.621400000000001,3298.2963399722876,2019
+1995,37,"(35,40]",College,530.1134011499337,71.35619981169287,7.429114814814816,3437.00648712189,2019
+1995,37,"(35,40]",College,591.8728704113224,69.37408315025698,8.531613587301585,3393.9717101423494,2019
+1995,37,"(35,40]",College,966.7456877487838,65.40984982738514,14.77981818181818,3210.3287333975904,2019
+1995,37,"(35,40]",College,577.2797523219815,71.35619981169287,8.090113456790125,3416.8567160720568,2019
+1995,49,"(45,50]",HS,31.218434321096858,77.30254979600063,0.4038474074074073,5227.200342047822,2019
+1995,49,"(45,50]",HS,31.218434321096858,63.42773316594923,0.49218902777777773,5135.12890430837,2019
+1995,49,"(45,50]",HS,31.218434321096858,69.37408315025698,0.4500013968253967,5182.878713435802,2019
+1995,49,"(45,50]",HS,31.218434321096858,83.24889978030835,0.375001164021164,5178.424121057266,2019
+1995,49,"(45,50]",HS,31.218434321096858,73.3383164731288,0.4256769969969969,5208.992330993917,2019
+1995,75,"(70,75]",College,1203.8354710305175,227.94341606513,5.281290821256039,6045.343413929202,2019
+1995,75,"(70,75]",College,1203.8354710305175,227.94341606513,5.281290821256039,6257.855611409289,2019
+1995,75,"(70,75]",College,1203.8354710305175,227.94341606513,5.281290821256039,6202.523817944968,2019
+1995,75,"(70,75]",College,1203.8354710305175,227.94341606513,5.281290821256039,5887.714253177935,2019
+1995,75,"(70,75]",College,1203.8354710305175,227.94341606513,5.281290821256039,6229.976849592998,2019
+1995,45,"(40,45]",College,5214.813976116762,721.4904647626724,7.22783492063492,344.4101753488984,2019
+1995,45,"(40,45]",College,5214.813976116762,721.4904647626724,7.22783492063492,311.726585539404,2019
+1995,45,"(40,45]",College,5214.813976116762,721.4904647626724,7.22783492063492,306.86373335716195,2019
+1995,45,"(40,45]",College,5214.813976116762,721.4904647626724,7.22783492063492,286.48329685873983,2019
+1995,45,"(40,45]",College,5214.813976116762,721.4904647626724,7.22783492063492,308.11594723832974,2019
+1995,52,"(50,55]",College,883.7158779301194,198.21166614359132,4.458445333333334,91.5316462446122,2019
+1995,52,"(50,55]",College,883.7158779301194,198.21166614359132,4.458445333333334,93.4969339024171,2019
+1995,52,"(50,55]",College,883.7158779301194,198.21166614359132,4.458445333333334,91.64165540752599,2019
+1995,52,"(50,55]",College,883.7158779301194,198.21166614359132,4.458445333333334,91.58075267167105,2019
+1995,52,"(50,55]",College,883.7158779301194,198.21166614359132,4.458445333333334,92.12295858878743,2019
+1995,53,"(50,55]",College,1169.38487394958,4281.371988701573,0.2731332098765432,65.96097972940979,2019
+1995,53,"(50,55]",College,1130.6763379035824,4400.298988387727,0.25695443443443444,64.96353643665992,2019
+1995,53,"(50,55]",College,1254.543653250774,4241.729655472855,0.2957622845275182,68.05450318023095,2019
+1995,53,"(50,55]",College,1194.5454223794782,4182.266155629777,0.2856215692469721,63.83151764919368,2019
+1995,53,"(50,55]",College,1138.418045112782,4142.6238224010585,0.2748060393407762,68.13316291061462,2019
+1995,32,"(30,35]",NoHS,-56.12737726669615,39.642333228718265,-1.4158444444444445,6145.786464976988,2019
+1995,32,"(30,35]",NoHS,-56.12737726669615,39.642333228718265,-1.4158444444444445,6241.394724870494,2019
+1995,32,"(30,35]",NoHS,-56.12737726669615,39.642333228718265,-1.4158444444444445,6178.075578290203,2019
+1995,32,"(30,35]",NoHS,-56.12737726669615,39.642333228718265,-1.4158444444444445,6279.4307270999725,2019
+1995,32,"(30,35]",NoHS,-56.12737726669615,39.642333228718265,-1.4158444444444445,6217.225277990738,2019
+1995,61,"(60,65]",College,5086.882264484741,1337.9287464692413,3.8020576790123464,1535.0927282218022,2019
+1995,61,"(60,65]",College,5086.882264484741,1337.9287464692413,3.8020576790123464,1356.6365914856933,2019
+1995,61,"(60,65]",College,5086.882264484741,1337.9287464692413,3.8020576790123464,1428.295690468129,2019
+1995,61,"(60,65]",College,5086.882264484741,1337.9287464692413,3.8020576790123464,1372.2617701114068,2019
+1995,61,"(60,65]",College,5086.882264484741,1337.9287464692413,3.8020576790123464,1383.7970167467042,2019
+1995,63,"(60,65]",HS,70.35276426360018,114.96276636328297,0.6119613026819923,6914.821058406505,2019
+1995,63,"(60,65]",HS,70.35276426360018,114.96276636328297,0.6119613026819923,6919.135028281567,2019
+1995,63,"(60,65]",HS,70.35276426360018,114.96276636328297,0.6119613026819923,6919.926541979987,2019
+1995,63,"(60,65]",HS,70.35276426360018,114.96276636328297,0.6119613026819923,6925.539363554296,2019
+1995,63,"(60,65]",HS,70.35276426360018,114.96276636328297,0.6119613026819923,6905.403478231999,2019
+1995,60,"(55,60]",College,2922.3009287925697,233.88976604943778,12.494351412429378,1032.3029434166908,2019
+1995,60,"(55,60]",College,684.1733746130031,208.12224945077088,3.2873629629629635,468.93024212215323,2019
+1995,60,"(55,60]",College,1485.4594250331713,190.28319949784765,7.806571620370373,911.3119710535315,2019
+1995,60,"(55,60]",College,2000.321662980982,101.08794973323158,19.78793385620915,873.8555942399062,2019
+1995,60,"(55,60]",College,898.4251216275984,85.23101644174427,10.541058397932817,468.59301935270776,2019
+1995,79,"(75,80]",College,1053.6463511720476,109.01641637897524,9.665024646464644,996.6732010511165,2019
+1995,79,"(75,80]",College,1731.0457319770014,132.8018163162062,13.034804643449418,1798.264335458207,2019
+1995,79,"(75,80]",College,1067.194338788147,130.8196996547703,8.157749494949496,1000.5482066509958,2019
+1995,79,"(75,80]",College,1647.822379478107,114.96276636328297,14.333531034482759,1813.9980156438717,2019
+1995,79,"(75,80]",College,1053.6463511720476,148.65874960769352,7.087684740740738,1007.2405752070939,2019
+1995,48,"(45,50]",College,271.5403803626714,105.0521830561034,2.5848142557651994,4111.054142646133,2019
+1995,48,"(45,50]",College,267.6695267580717,138.74816630051396,1.929175238095238,4283.901275149144,2019
+1995,48,"(45,50]",College,269.21786819991155,122.89123300902662,2.190700358422939,4232.978160295583,2019
+1995,48,"(45,50]",College,268.25015479876157,114.96276636328297,2.333365517241379,4014.4748714507377,2019
+1995,48,"(45,50]",College,269.41141088014155,132.8018163162062,2.0286726368159202,4246.6706306982,2019
+1995,65,"(60,65]",HS,90.96505970809376,49.55291653589783,1.8357155555555555,9674.334674076012,2019
+1995,76,"(75,80]",HS,94.44882795223353,35.67809990584644,2.6472493827160495,10904.875284868456,2019
+1995,65,"(60,65]",HS,87.55870853604601,27.749633260102783,3.155310476190477,9538.42390815847,2019
+1995,67,"(65,70]",HS,88.21675364882796,23.785399937230956,3.7088614814814824,10025.571782719617,2019
+1995,62,"(60,65]",HS,90.5779743476338,57.48138318164148,1.5757793103448279,9049.19795854406,2019
+1995,51,"(50,55]",College,1350.3472799646174,396.42333228718263,3.4063264444444448,2383.0997985732765,2019
+1995,51,"(50,55]",College,1350.3472799646174,396.42333228718263,3.4063264444444448,1907.2517899900918,2019
+1995,51,"(50,55]",College,1350.3472799646174,396.42333228718263,3.4063264444444448,2118.646975790628,2019
+1995,51,"(50,55]",College,1350.3472799646174,396.42333228718263,3.4063264444444448,1934.5252027286194,2019
+1995,51,"(50,55]",College,1350.3472799646174,396.42333228718263,3.4063264444444448,1989.0600020078575,2019
+1995,54,"(50,55]",College,9878.224856258294,1361.7141464064728,7.2542573508005805,23.162943355378495,2019
+1995,54,"(50,55]",College,10317.179655019903,1109.9853304041117,9.294879285714284,20.560994955291644,2019
+1995,54,"(50,55]",College,10572.462450243256,1351.803563099293,7.821005017921148,21.298970912122765,2019
+1995,54,"(50,55]",College,9642.6834144184,1232.876563413138,7.821288603072527,20.54502247647623,2019
+1995,54,"(50,55]",College,9286.177797434764,1252.697730027497,7.412943741209565,21.301536380485793,2019
+1995,27,"(25,30]",College,-46.837328615656794,59.46349984307739,-0.7876651851851854,6720.2891477140965,2019
+1995,27,"(25,30]",College,-59.61114551083592,79.28466645743653,-0.7518622222222223,6660.303756986771,2019
+1995,27,"(25,30]",College,-62.12720035382574,63.42773316594923,-0.9794958333333333,6750.907137263331,2019
+1995,27,"(25,30]",College,-55.74029190623618,57.48138318164148,-0.9697103448275862,6669.9989173889935,2019
+1995,27,"(25,30]",College,-62.51428571428572,87.21313310318017,-0.71679898989899,6729.281038441749,2019
+1995,89,"(85,90]",College,43933.02715612561,640.2236816438,68.62137158582732,26.68744854250756,2019
+1995,89,"(85,90]",College,27708.15072976559,679.8660148725182,40.755310787172014,53.094951335354914,2019
+1995,89,"(85,90]",College,35708.624502432554,638.2415649823641,55.94844720496894,46.51960684428694,2019
+1995,89,"(85,90]",College,27918.33808049536,665.9911982424668,41.91998055555556,51.50517525766312,2019
+1995,89,"(85,90]",College,28480.88923485184,669.9554315653387,42.51161777777778,44.90628171283181,2019
+1995,49,"(45,50]",HS,2426.0574966828835,594.6349984307741,4.079910370370369,900.4446532349032,2019
+1995,49,"(45,50]",HS,2584.7624944714726,594.6349984307741,4.346805185185184,717.527446963883,2019
+1995,49,"(45,50]",HS,2484.1203007518798,594.6349984307741,4.1775548148148145,700.6623143144973,2019
+1995,49,"(45,50]",HS,2532.5059708093763,594.6349984307741,4.258925185185184,700.2977622451377,2019
+1995,49,"(45,50]",HS,2532.5059708093763,594.6349984307741,4.258925185185184,717.6463543936006,2019
+1995,39,"(35,40]",HS,0.019354268022998673,105.0521830561034,1.8423480083857444e-4,6976.194696802842,2019
+1995,39,"(35,40]",HS,0.019354268022998673,118.92699968615479,1.6274074074074075e-4,6961.974829672496,2019
+1995,39,"(35,40]",HS,0.019354268022998673,122.89123300902662,1.574910394265233e-4,6980.106476013299,2019
+1995,39,"(35,40]",HS,0.019354268022998673,126.85546633189846,1.5256944444444443e-4,6856.1323731539815,2019
+1995,39,"(35,40]",HS,0.019354268022998673,107.03429971753931,1.8082304526748972e-4,6972.560730405971,2019
+1995,51,"(50,55]",College,2083.486952675807,142.71239962338575,14.59920061728395,640.3362529379341,2019
+1995,51,"(50,55]",College,1863.5063423264044,120.90911634759071,15.412455227686705,298.13621599757994,2019
+1995,51,"(50,55]",College,2612.632640424591,216.05071609651455,12.092682161060143,552.7918750124596,2019
+1995,51,"(50,55]",College,1438.0414683768245,93.15948308748793,15.43634014184397,556.5556888566523,2019
+1995,51,"(50,55]",College,2230.2116585581603,245.78246601805324,9.073924982078854,531.230848964293,2019
+1995,48,"(45,50]",College,1393.8943830163644,317.1386658297461,4.3952205555555555,3510.1018649862563,2019
+1995,48,"(45,50]",College,1392.9266696152145,317.1386658297461,4.392169166666666,3655.661532757453,2019
+1995,48,"(45,50]",College,1382.8624502432551,317.1386658297461,4.360434722222222,3592.310827031615,2019
+1995,48,"(45,50]",College,1388.0881026094648,317.1386658297461,4.376912222222223,3435.261914615887,2019
+1995,48,"(45,50]",College,1381.507651481645,317.1386658297461,4.356162777777778,3600.8051323894374,2019
+1995,18,"(15,20]",HS,108.38390092879257,21.803283275795042,4.9709898989899,6689.3695119542335,2019
+1995,18,"(15,20]",HS,108.38390092879257,21.803283275795042,4.9709898989899,6704.852737609089,2019
+1995,18,"(15,20]",HS,108.38390092879257,21.803283275795042,4.9709898989899,6704.211601457083,2019
+1995,18,"(15,20]",HS,108.38390092879257,21.803283275795042,4.9709898989899,6645.578336933188,2019
+1995,18,"(15,20]",HS,108.38390092879257,21.803283275795042,4.9709898989899,6639.026715281977,2019
+1995,46,"(45,50]",College,3052.6519239274658,1328.018163162062,2.2986522388059702,180.73948442828618,2019
+1995,46,"(45,50]",College,3052.6519239274658,1328.018163162062,2.2986522388059702,157.57309999359973,2019
+1995,46,"(45,50]",College,3052.6519239274658,1328.018163162062,2.2986522388059702,166.83981755530678,2019
+1995,46,"(45,50]",College,3052.6519239274658,1328.018163162062,2.2986522388059702,160.74866058682576,2019
+1995,46,"(45,50]",College,3052.6519239274658,1328.018163162062,2.2986522388059702,162.38943695053499,2019
+1995,32,"(30,35]",NoHS,-92.70694383016364,15.856933291487307,-5.84646111111111,5774.492373037271,2019
+1995,32,"(30,35]",NoHS,-92.70694383016364,15.856933291487307,-5.84646111111111,5713.53811485227,2019
+1995,32,"(30,35]",NoHS,-92.70694383016364,15.856933291487307,-5.84646111111111,5721.000727680436,2019
+1995,32,"(30,35]",NoHS,-90.77151702786378,15.856933291487307,-5.724405555555555,5688.262831370974,2019
+1995,32,"(30,35]",NoHS,-92.70694383016364,15.856933291487307,-5.84646111111111,5735.358774018759,2019
+1995,72,"(70,75]",HS,999.8414860681115,148.65874960769352,6.725749333333333,446.56120592595227,2019
+1995,72,"(70,75]",HS,999.8414860681115,148.65874960769352,6.725749333333333,446.67268289659376,2019
+1995,72,"(70,75]",HS,999.8414860681115,148.65874960769352,6.725749333333333,468.3269038978312,2019
+1995,72,"(70,75]",HS,999.8414860681115,148.65874960769352,6.725749333333333,433.1770824659653,2019
+1995,72,"(70,75]",HS,999.8414860681115,148.65874960769352,6.725749333333333,446.35146625149,2019
+1995,63,"(60,65]",HS,657.077399380805,118.92699968615479,5.525048148148149,8509.461707605318,2019
+1995,63,"(60,65]",HS,656.8838567005749,118.92699968615479,5.5234207407407405,8624.406913773299,2019
+1995,63,"(60,65]",HS,503.98513931888544,118.92699968615479,4.23776888888889,8501.061800142383,2019
+1995,63,"(60,65]",HS,351.08642193719595,118.92699968615479,2.9521170370370373,3312.4599126545036,2019
+1995,63,"(60,65]",HS,488.5017249004865,118.92699968615479,4.107576296296297,8457.706035488603,2019
+1995,39,"(35,40]",HS,313.34559929234854,41.624449890154175,7.527921693121694,5713.222442595246,2019
+1995,39,"(35,40]",HS,313.34559929234854,41.624449890154175,7.527921693121694,5670.201207536914,2019
+1995,39,"(35,40]",HS,313.34559929234854,41.624449890154175,7.527921693121694,5707.169242776692,2019
+1995,39,"(35,40]",HS,313.34559929234854,41.624449890154175,7.527921693121694,5770.582160088013,2019
+1995,39,"(35,40]",HS,313.34559929234854,41.624449890154175,7.527921693121694,5715.743293249498,2019
+1995,55,"(50,55]",NoHS,263.6419035824856,49.55291653589783,5.320411431111111,2718.7308507504085,2019
+1995,55,"(50,55]",NoHS,263.69996638655465,49.55291653589783,5.321583164444445,2756.7007397141792,2019
+1995,55,"(50,55]",NoHS,263.6612578505086,49.55291653589783,5.320802008888889,2693.6098975961304,2019
+1995,55,"(50,55]",NoHS,263.6806121185316,49.55291653589783,5.321192586666666,2724.244093301867,2019
+1995,55,"(50,55]",NoHS,263.69996638655465,49.55291653589783,5.321583164444445,2678.6554959332298,2019
+1995,36,"(35,40]",HS,-3.774082264484741,148.65874960769352,-0.02538755555555555,8375.226394787323,2019
+1995,36,"(35,40]",HS,-5.748217602830606,148.65874960769352,-0.03866719999999999,8363.292606465402,2019
+1995,36,"(35,40]",HS,-5.4966121185316235,31.713866582974614,-0.17331888888888888,8456.965363443112,2019
+1995,36,"(35,40]",HS,-6.348199911543565,114.96276636328297,-0.05521961685823756,8208.843949339554,2019
+1995,36,"(35,40]",HS,-4.1611676249447145,63.42773316594923,-0.0656048611111111,8450.415162096635,2019
+1995,50,"(45,50]",College,2415.993277310924,239.83611603374553,10.073517355371898,3482.970798650863,2019
+1995,50,"(45,50]",College,2415.993277310924,239.83611603374553,10.073517355371898,2853.2638392294148,2019
+1995,50,"(45,50]",College,2415.993277310924,239.83611603374553,10.073517355371898,2925.217820052986,2019
+1995,50,"(45,50]",College,2415.993277310924,239.83611603374553,10.073517355371898,2874.2517448155622,2019
+1995,50,"(45,50]",College,2415.993277310924,239.83611603374553,10.073517355371898,2904.7221321430197,2019
+1995,39,"(35,40]",College,245.43147279964617,77.30254979600063,3.174946666666666,5341.329051925777,2019
+1995,39,"(35,40]",College,245.81855816010616,71.35619981169287,3.4449502469135806,5272.424328652387,2019
+1995,39,"(35,40]",College,249.68941176470588,73.3383164731288,3.404624264264264,5273.065586053244,2019
+1995,39,"(35,40]",College,246.20564352056613,87.21313310318017,2.823034040404041,5142.557514015235,2019
+1995,39,"(35,40]",College,246.97981424148608,73.3383164731288,3.3676777177177177,5259.570743533018,2019
+1995,35,"(30,35]",HS,225.84495356037152,128.8375829933344,1.7529431111111107,9409.273239076241,2019
+1995,35,"(30,35]",HS,225.67076514816455,128.8375829933344,1.7515911111111109,9331.62999699247,2019
+1995,35,"(30,35]",HS,225.9804334365325,128.8375829933344,1.7539946666666661,9391.226752306615,2019
+1995,35,"(30,35]",HS,225.49657673595755,128.8375829933344,1.7502391111111106,9500.455402901083,2019
+1995,35,"(30,35]",HS,225.84495356037152,128.8375829933344,1.7529431111111107,9411.589470408593,2019
+1995,29,"(25,30]",HS,7.00624502432552,12.289123300902663,0.5701175627240144,5079.77573115654,2019
+1995,29,"(25,30]",HS,7.00624502432552,23.785399937230956,0.2945607407407408,5033.044897159287,2019
+1995,29,"(25,30]",HS,7.00624502432552,53.517149858769656,0.13091588477366256,5082.235979209092,2019
+1995,29,"(25,30]",HS,7.00624502432552,29.731749921538697,0.23564859259259263,5051.805849022085,2019
+1995,29,"(25,30]",HS,7.00624502432552,53.517149858769656,0.13091588477366256,5059.802938808297,2019
+1995,31,"(30,35]",HS,7.935249889429456,237.85399937230957,0.03336185185185186,6416.759869361203,2019
+1995,31,"(30,35]",HS,7.935249889429456,237.85399937230957,0.03336185185185186,6492.775958325693,2019
+1995,31,"(30,35]",HS,7.935249889429456,237.85399937230957,0.03336185185185186,6437.824377173573,2019
+1995,31,"(30,35]",HS,7.935249889429456,237.85399937230957,0.03336185185185186,6532.8677373295,2019
+1995,31,"(30,35]",HS,7.935249889429456,237.85399937230957,0.03336185185185186,6440.861324195712,2019
+1995,32,"(30,35]",HS,139.52491817779745,45.588683213026,3.060516521739131,4227.202798526458,2019
+1995,32,"(30,35]",HS,150.3826625386997,37.660216567282355,3.9931438596491224,4174.548773184407,2019
+1995,32,"(30,35]",HS,147.4988766032729,55.499266520205566,2.65767253968254,4230.269409980276,2019
+1995,32,"(30,35]",HS,140.87971693940736,122.89123300902662,1.1463772759856632,4180.486048622218,2019
+1995,32,"(30,35]",HS,136.98950906678462,85.23101644174427,1.6072729715762275,4220.280759020623,2019
+1995,87,"(85,90]",HS,2356.4401946041576,118.92699968615479,19.81417340740741,219.28842048988935,2019
+1995,87,"(85,90]",HS,1800.9727023440955,114.96276636328297,15.66570429118774,181.80917727882678,2019
+1995,87,"(85,90]",HS,3884.4596550199026,259.6572826481047,14.959948804071244,254.713600100139,2019
+1995,87,"(85,90]",HS,3468.1493498452014,140.73028296194985,24.64394497652582,261.664005916715,2019
+1995,87,"(85,90]",HS,1055.0205042016808,91.177366426052,11.57107893719807,99.751922044519,2019
+1995,48,"(45,50]",NoHS,5.709509066784609,10.901641637897521,0.523729292929293,4671.498928765034,2019
+1995,48,"(45,50]",NoHS,4.935338345864661,10.901641637897521,0.45271515151515157,4689.930402235536,2019
+1995,48,"(45,50]",NoHS,7.064307828394516,10.901641637897521,0.6480040404040406,4694.323989942122,2019
+1995,48,"(45,50]",NoHS,5.709509066784609,10.901641637897521,0.523729292929293,4683.072386557103,2019
+1995,48,"(45,50]",NoHS,4.741795665634675,10.901641637897521,0.43496161616161627,4684.732907489989,2019
+1995,21,"(20,25]",NoHS,-0.019354268022998673,19.821166614359132,-9.764444444444445e-4,6354.794848976989,2019
+1995,21,"(20,25]",NoHS,-0.019354268022998673,17.83904995292322,-0.0010849382716049383,6357.225616864192,2019
+1995,21,"(20,25]",NoHS,-0.019354268022998673,16.649779956061675,-0.0011624338624338622,6357.192038349655,2019
+1995,21,"(20,25]",NoHS,-0.019354268022998673,18.631896617497585,-0.0010387706855791961,6373.8573089590755,2019
+1995,21,"(20,25]",NoHS,-0.019354268022998673,17.24441495449245,-0.0011223499361430393,6310.081318831179,2019
+1995,79,"(75,80]",College,197.80061919504644,75.32043313456471,2.6261216374269005,2930.3014494696836,2019
+1995,79,"(75,80]",College,168.76921716054844,93.15948308748793,1.8116160756501183,2989.263258640031,2019
+1995,79,"(75,80]",College,178.44635117204777,39.642333228718265,4.501408888888889,2925.5687406978805,2019
+1995,79,"(75,80]",College,217.1548872180451,33.69598324441053,6.444533333333332,2951.177993531814,2019
+1995,79,"(75,80]",College,168.76921716054844,75.32043313456471,2.2406830409356724,2947.10987411031,2019
+1995,46,"(45,50]",NoHS,0,9.712371641035974,0,7903.579016656737,2019
+1995,29,"(25,30]",NoHS,0,23.785399937230956,0,8251.537282121632,2019
+1995,32,"(30,35]",NoHS,0,9.514159974892383,0,8317.951118557003,2019
+1995,44,"(40,45]",NoHS,0,10.70342997175393,0,7750.077598659567,2019
+1995,22,"(20,25]",HS,0,9.514159974892383,0,7437.052935470094,2019
+1995,34,"(30,35]",HS,2549.3441839893853,85.23101644174427,29.910991214470286,2138.8481319271073,2019
+1995,34,"(30,35]",HS,1504.2137107474568,85.23101644174427,17.648665633074934,1829.5300385900052,2019
+1995,34,"(30,35]",HS,2264.836444051305,99.10583307179566,22.852705777777782,1887.7103591905882,2019
+1995,34,"(30,35]",HS,2324.8346749226002,83.24889978030835,27.926311111111108,1825.2936228219908,2019
+1995,34,"(30,35]",HS,1746.1420610349403,95.14159974892382,18.35308703703704,1894.1241353466285,2019
+1995,33,"(30,35]",HS,14.960849181777974,27.749633260102783,0.5391368253968254,5139.415953265247,2019
+1995,33,"(30,35]",HS,16.547899159663867,27.749633260102783,0.5963285714285715,5193.726819237646,2019
+1995,33,"(30,35]",HS,16.141459531180892,27.749633260102783,0.5816819047619047,5146.581039334437,2019
+1995,33,"(30,35]",HS,16.35435647943388,27.749633260102783,0.5893539682539684,5227.469117113667,2019
+1995,33,"(30,35]",HS,14.631826625386998,27.749633260102783,0.5272800000000001,5154.3256588358,2019
+1995,75,"(70,75]",College,70466.5673595754,1076.289347159701,65.47176885614896,26.921508837221772,2019
+1995,75,"(70,75]",College,57884.35771782398,1308.1969965477024,44.247432053872075,27.341219502492322,2019
+1995,75,"(70,75]",College,59717.981070322865,1151.6097802942656,51.85609057181105,27.266623621108597,2019
+1995,75,"(70,75]",College,68006.63989385228,1106.0210970812395,61.48765161290323,26.182098506356482,2019
+1995,75,"(70,75]",College,58076.158513931885,1016.8258473166235,57.1151477582846,26.140884454823315,2019
+1995,78,"(75,80]",HS,284.1980716497125,43.606566551590085,6.517322828282829,11648.904381493156,2019
+1995,78,"(75,80]",HS,303.35879699248125,43.606566551590085,6.956722828282831,11741.128414730452,2019
+1995,78,"(75,80]",HS,311.1005042016807,43.606566551590085,7.134258181818183,11906.591022224577,2019
+1995,78,"(75,80]",HS,283.52067226890756,43.606566551590085,6.501788484848486,12213.589017822178,2019
+1995,78,"(75,80]",HS,282.64973020787266,43.606566551590085,6.48181575757576,11882.327806187455,2019
+1995,56,"(55,60]",College,100.19704555506414,128.8375829933344,0.7777004444444443,2230.9520995212342,2019
+1995,56,"(55,60]",College,106.23557717823972,114.96276636328297,0.9240868199233717,2248.899021135428,2019
+1995,56,"(55,60]",College,99.65512605042017,118.92699968615479,0.8379520740740741,2211.1617537614184,2019
+1995,56,"(55,60]",College,108.36454666076958,105.0521830561034,1.0315306498951782,2212.7302116109063,2019
+1995,56,"(55,60]",College,99.71318885448918,105.0521830561034,0.9491776939203356,2179.4704545169907,2019
+1995,48,"(45,50]",HS,74.93972578505087,71.35619981169287,1.0502202469135804,4600.221285442788,2019
+1995,48,"(45,50]",HS,74.14620079610792,65.40984982738514,1.1335632323232323,4466.12229205925,2019
+1995,48,"(45,50]",HS,75.52035382574083,75.32043313456471,1.002654269005848,4492.147286148284,2019
+1995,48,"(45,50]",HS,73.46880141530296,71.35619981169287,1.0296064197530865,4618.316786831379,2019
+1995,48,"(45,50]",HS,75.15262273330386,63.42773316594923,1.1848543055555556,4536.0499426693505,2019
+1995,33,"(30,35]",NoHS,0,10.108794973323159,0,8336.492841652343,2019
+1995,33,"(30,35]",NoHS,0,10.901641637897521,0,8335.659249933138,2019
+1995,33,"(30,35]",NoHS,0,11.892699968615478,0,8332.393253757067,2019
+1995,33,"(30,35]",NoHS,0,13.28018163162062,0,8369.721606867937,2019
+1995,33,"(30,35]",NoHS,0,12.883758299333435,0,8358.459569306495,2019
+1995,77,"(75,80]",HS,364.44086687306503,49.55291653589783,7.354579555555556,12135.486366658686,2019
+1995,77,"(75,80]",HS,364.44086687306503,49.55291653589783,7.354579555555556,12253.439880917043,2019
+1995,77,"(75,80]",HS,364.44086687306503,49.55291653589783,7.354579555555556,12215.05233426444,2019
+1995,77,"(75,80]",HS,364.44086687306503,49.55291653589783,7.354579555555556,12489.044305154273,2019
+1995,77,"(75,80]",HS,364.44086687306503,49.55291653589783,7.354579555555556,12299.655740646007,2019
+1995,62,"(60,65]",HS,657.6580274214949,31.713866582974614,20.73723888888889,3433.776389769418,2019
+1995,62,"(60,65]",HS,654.367801857585,29.731749921538697,22.009057777777777,3569.6220333150495,2019
+1995,62,"(60,65]",HS,653.7871738168952,23.785399937230956,27.486911111111116,3511.3743390622403,2019
+1995,62,"(60,65]",HS,632.1103936311366,37.660216567282355,16.784566081871343,3353.5574118564887,2019
+1995,62,"(60,65]",HS,634.4329057938966,31.713866582974614,20.004905555555556,3517.996555595365,2019
+1995,74,"(70,75]",College,2028.327288810261,485.61858205179874,4.1767909297052155,211.879275585676,2019
+1995,74,"(70,75]",College,1991.5541795665636,485.61858205179874,4.101066666666667,179.77474112737383,2019
+1995,74,"(70,75]",College,2003.1667403803626,485.61858205179874,4.124979591836735,177.60021968887287,2019
+1995,74,"(70,75]",College,2028.327288810261,485.61858205179874,4.1767909297052155,183.70984929689658,2019
+1995,74,"(70,75]",College,2072.842105263158,485.61858205179874,4.268457142857143,174.80169335141514,2019
+1995,32,"(30,35]",HS,89.1070499778859,77.30254979600063,1.152705185185185,5197.043139781405,2019
+1995,32,"(30,35]",HS,37.79888544891641,29.731749921538697,1.2713306666666668,5142.184307372175,2019
+1995,32,"(30,35]",HS,98.49386996904025,49.55291653589783,1.9876503111111112,5068.729631520126,2019
+1995,32,"(30,35]",HS,56.04996019460416,63.42773316594923,0.8836822222222223,5119.436552221292,2019
+1995,32,"(30,35]",HS,34.58607695709863,45.588683213026,0.7586548792270533,5161.822900637309,2019
+1995,35,"(30,35]",HS,400.40109685979655,87.21313310318017,4.591064242424244,3698.9846890445538,2019
+1995,35,"(30,35]",HS,496.41762052189296,93.15948308748793,5.328685862884161,3851.174531060745,2019
+1995,35,"(30,35]",HS,476.2117647058824,89.1952497646161,5.3389812345679015,6312.179668387129,2019
+1995,35,"(30,35]",HS,440.34830605926584,83.24889978030835,5.289539047619049,3606.3882757445595,2019
+1995,35,"(30,35]",HS,337.0545776205219,81.26678311887244,4.147507317073171,6335.060668486791,2019
+1995,27,"(25,30]",HS,8.128792569659444,16.055144957630898,0.5063045267489713,4946.7093520867365,2019
+1995,27,"(25,30]",HS,8.322335249889429,17.442626620636037,0.47712626262626257,4888.821597537304,2019
+1995,27,"(25,30]",HS,8.322335249889429,16.649779956061675,0.4998465608465607,4903.946074178473,2019
+1995,27,"(25,30]",HS,7.74170720919947,18.830108283641177,0.41113450292397663,4869.1983027993565,2019
+1995,27,"(25,30]",HS,7.74170720919947,18.235473285210404,0.4245410628019324,4886.697618969696,2019
+1995,45,"(40,45]",HS,125.03050685537373,67.39196648882105,1.8552731633986927,10500.501963218001,2019
+1995,45,"(40,45]",HS,125.03050685537373,67.39196648882105,1.8552731633986927,10336.66577854784,2019
+1995,45,"(40,45]",HS,124.81760990712074,67.39196648882105,1.8521140784313723,10092.03084324297,2019
+1995,45,"(40,45]",HS,125.10792392746573,67.39196648882105,1.8564219215686275,10558.78761822826,2019
+1995,45,"(40,45]",HS,124.91438124723574,67.39196648882105,1.8535500261437907,10372.234183791057,2019
+1995,28,"(25,30]",HS,67.43026979212738,51.53503319733374,1.3084355555555558,6145.786464976988,2019
+1995,28,"(25,30]",HS,67.43026979212738,51.53503319733374,1.3084355555555558,6241.394724870494,2019
+1995,28,"(25,30]",HS,67.43026979212738,51.53503319733374,1.3084355555555558,6178.075578290203,2019
+1995,28,"(25,30]",HS,67.43026979212738,51.53503319733374,1.3084355555555558,6279.4307270999725,2019
+1995,28,"(25,30]",HS,67.43026979212738,51.53503319733374,1.3084355555555558,6217.225277990738,2019
+1995,58,"(55,60]",HS,112928.86368863336,47273.48237524654,2.388841651059865,229.55644387083765,2019
+1995,58,"(55,60]",HS,97868.1464838567,47808.65387383422,2.0470801529390092,203.52311590468244,2019
+1995,58,"(55,60]",HS,118334.51074745688,48601.5005384086,2.4347913014319373,224.40343369270562,2019
+1995,58,"(55,60]",HS,125296.04741264928,49295.241369911164,2.5417473153732746,226.92318413262643,2019
+1995,58,"(55,60]",HS,120654.3133126935,46659.02621020139,2.5858729406211656,257.7116725196197,2019
+1995,44,"(40,45]",College,6315.297655904467,693.7408315025697,9.103252063492063,173.80829541612758,2019
+1995,44,"(40,45]",College,6315.297655904467,693.7408315025697,9.103252063492063,155.9016655346859,2019
+1995,44,"(40,45]",College,6315.297655904467,693.7408315025697,9.103252063492063,154.9296634455761,2019
+1995,44,"(40,45]",College,6315.297655904467,693.7408315025697,9.103252063492063,143.6034844301031,2019
+1995,44,"(40,45]",College,6315.297655904467,693.7408315025697,9.103252063492063,155.3212909050215,2019
+1995,65,"(60,65]",College,507.08182220256526,396.42333228718263,1.2791422222222224,8509.461707605318,2019
+1995,65,"(60,65]",College,119.99646174259178,396.42333228718263,0.3026977777777778,8624.406913773299,2019
+1995,65,"(60,65]",College,684.5604599734631,396.42333228718263,1.7268420000000002,8501.061800142383,2019
+1995,65,"(60,65]",College,410.31048208757187,396.42333228718263,1.0350311111111112,8288.402883143122,2019
+1995,65,"(60,65]",College,561.2737726669616,396.42333228718263,1.4158444444444447,8457.706035488603,2019
+1995,27,"(25,30]",College,16.838213180008847,67.39196648882105,0.2498549019607843,5353.671629502501,2019
+1995,27,"(25,30]",College,20.88325519681557,71.35619981169287,0.2926620987654321,5274.375902016152,2019
+1995,27,"(25,30]",College,57.44346749226006,73.3383164731288,0.7832667867867867,5332.289986910923,2019
+1995,27,"(25,30]",College,64.39164971251658,73.3383164731288,0.8780082882882881,5235.730891263979,2019
+1995,27,"(25,30]",College,68.10766917293233,85.23101644174427,0.7990948837209302,5321.636846744199,2019
+1995,49,"(45,50]",College,5295.712881026095,991.0583307179566,5.343492624888889,294.6275285172421,2019
+1995,49,"(45,50]",College,5295.618045112782,991.0583307179566,5.3433969333333335,266.9857742969191,2019
+1995,49,"(45,50]",College,5295.6954621848745,991.0583307179566,5.34347504888889,262.3075857812247,2019
+1995,49,"(45,50]",College,5295.637399380805,991.0583307179566,5.343416462222223,245.48939125792532,2019
+1995,49,"(45,50]",College,5295.712881026095,991.0583307179566,5.343492624888889,263.55830488867144,2019
+1995,51,"(50,55]",College,117054.41946041575,598.5992317536459,195.54722634289917,24.433576847559873,2019
+1995,51,"(50,55]",College,118197.09544449359,632.2952149980564,186.93340174155347,24.826945192116078,2019
+1995,51,"(50,55]",College,101487.00751879699,640.2236816438,158.51804678362572,24.88155062166152,2019
+1995,51,"(50,55]",College,117402.98982750995,604.5455817379535,194.20039344262298,23.92925088128981,2019
+1995,51,"(50,55]",College,123975.6992481203,652.1163816124156,190.11284295845996,23.89919653930235,2019
+1995,61,"(60,65]",NoHS,21.134860681114553,19.22653161592836,1.0992549828178695,6140.565797148343,2019
+1995,61,"(60,65]",NoHS,21.134860681114553,19.22653161592836,1.0992549828178695,6122.511764735604,2019
+1995,61,"(60,65]",NoHS,21.134860681114553,19.22653161592836,1.0992549828178695,6121.666926248024,2019
+1995,61,"(60,65]",NoHS,21.134860681114553,19.22653161592836,1.0992549828178695,6127.974316091778,2019
+1995,61,"(60,65]",NoHS,21.134860681114553,19.22653161592836,1.0992549828178695,6113.980595692329,2019
+1995,44,"(40,45]",HS,98.80353825740823,77.30254979600063,1.2781407407407406,5328.785013969524,2019
+1995,44,"(40,45]",HS,98.80353825740823,77.30254979600063,1.2781407407407406,5287.75140589038,2019
+1995,44,"(40,45]",HS,98.80353825740823,77.30254979600063,1.2781407407407406,5293.143366155216,2019
+1995,44,"(40,45]",HS,98.80353825740823,77.30254979600063,1.2781407407407406,5393.2809126753255,2019
+1995,44,"(40,45]",HS,98.80353825740823,77.30254979600063,1.2781407407407406,5299.138727201005,2019
+1995,54,"(50,55]",HS,175.23354268023,71.35619981169287,2.455757777777778,7360.066439091361,2019
+1995,54,"(50,55]",HS,175.23354268023,71.35619981169287,2.455757777777778,7334.094279147585,2019
+1995,54,"(50,55]",HS,175.23354268023,71.35619981169287,2.455757777777778,7292.4684367359605,2019
+1995,54,"(50,55]",HS,175.23354268023,71.35619981169287,2.455757777777778,7664.144688590592,2019
+1995,54,"(50,55]",HS,175.23354268023,71.35619981169287,2.455757777777778,7391.850902893714,2019
+1995,43,"(40,45]",HS,4.451481645289695,15.064086626912939,0.2955029239766082,8043.4367597373475,2019
+1995,43,"(40,45]",HS,4.451481645289695,15.064086626912939,0.2955029239766082,8180.071392777345,2019
+1995,43,"(40,45]",HS,4.451481645289695,15.064086626912939,0.2955029239766082,8040.496091759705,2019
+1995,43,"(40,45]",HS,4.451481645289695,15.064086626912939,0.2955029239766082,8363.443936922771,2019
+1995,43,"(40,45]",HS,4.451481645289695,15.064086626912939,0.2955029239766082,8129.646544914142,2019
+1995,43,"(40,45]",HS,61.54657231313578,85.23101644174427,0.7221147286821705,8514.781805535,2019
+1995,43,"(40,45]",HS,61.54657231313578,85.23101644174427,0.7221147286821705,8577.279378677715,2019
+1995,43,"(40,45]",HS,61.54657231313578,85.23101644174427,0.7221147286821705,8572.894754087503,2019
+1995,43,"(40,45]",HS,61.54657231313578,85.23101644174427,0.7221147286821705,8525.195644792526,2019
+1995,43,"(40,45]",HS,61.54657231313578,85.23101644174427,0.7221147286821705,8599.34011252291,2019
+1995,41,"(40,45]",College,141.3442193719593,128.8375829933344,1.0970728888888885,5647.421464598177,2019
+1995,41,"(40,45]",College,141.3442193719593,128.8375829933344,1.0970728888888885,5569.724829837809,2019
+1995,41,"(40,45]",College,141.3442193719593,128.8375829933344,1.0970728888888885,5565.023706400844,2019
+1995,41,"(40,45]",College,141.3442193719593,128.8375829933344,1.0970728888888885,5624.544100929773,2019
+1995,41,"(40,45]",College,141.3442193719593,128.8375829933344,1.0970728888888885,5585.196343218916,2019
+1995,57,"(55,60]",HS,733.2364440513047,39.642333228718265,18.496298888888887,8348.002508244523,2019
+1995,57,"(55,60]",HS,733.2364440513047,39.642333228718265,18.496298888888887,8225.401667595299,2019
+1995,57,"(55,60]",HS,733.2364440513047,39.642333228718265,18.496298888888887,8358.38258082809,2019
+1995,57,"(55,60]",HS,733.2364440513047,39.642333228718265,18.496298888888887,8343.790464994683,2019
+1995,57,"(55,60]",HS,733.2364440513047,39.642333228718265,18.496298888888887,8234.282789294173,2019
+1995,92,"(90,95]",NoHS,-0.5806280406899602,13.28018163162062,-0.04372139303482587,9713.498561079487,2019
+1995,92,"(90,95]",NoHS,-0.5806280406899602,13.28018163162062,-0.04372139303482587,9716.887870420343,2019
+1995,92,"(90,95]",NoHS,-0.5806280406899602,13.28018163162062,-0.04372139303482587,9745.647289793282,2019
+1995,92,"(90,95]",NoHS,-0.5806280406899602,13.28018163162062,-0.04372139303482587,9756.381629056958,2019
+1995,92,"(90,95]",NoHS,-0.5806280406899602,13.28018163162062,-0.04372139303482587,9739.254053217834,2019
+1995,46,"(45,50]",College,139.9313578062804,71.35619981169287,1.961025925925926,8533.477869286919,2019
+1995,46,"(45,50]",College,139.9313578062804,71.35619981169287,1.961025925925926,8519.76932318525,2019
+1995,46,"(45,50]",College,139.9313578062804,71.35619981169287,1.961025925925926,8512.187590157682,2019
+1995,46,"(45,50]",College,139.9313578062804,71.35619981169287,1.961025925925926,8484.106078380504,2019
+1995,46,"(45,50]",College,139.9313578062804,71.35619981169287,1.961025925925926,8494.782321465183,2019
+1995,94,"(90,95]",NoHS,397.1495798319328,79.28466645743653,5.0091600000000005,2742.4823770647,2019
+1995,94,"(90,95]",NoHS,449.4061034940292,65.40984982738514,6.870618181818181,2805.452630080961,2019
+1995,94,"(90,95]",NoHS,265.15347191508187,65.40984982738514,4.053723905723906,2757.7246453534913,2019
+1995,94,"(90,95]",NoHS,265.15347191508187,71.35619981169287,3.7159135802469145,2800.281755466814,2019
+1995,94,"(90,95]",NoHS,284.89482529854047,65.40984982738514,4.355534006734007,2783.2117604127047,2019
+1995,49,"(45,50]",College,1065.4524546660768,202.17589946646316,5.269928104575163,1258.4102660844167,2019
+1995,49,"(45,50]",College,1075.1295886775763,202.17589946646316,5.3177930283224395,1238.633090994372,2019
+1995,49,"(45,50]",College,1150.6112339672711,202.17589946646316,5.691139433551198,2321.9399636127796,2019
+1995,49,"(45,50]",College,1098.3547103051749,202.17589946646316,5.432668845315905,2270.893289776508,2019
+1995,49,"(45,50]",College,1061.5816010614774,202.17589946646316,5.250782135076253,1266.2387028568542,2019
+1995,39,"(35,40]",College,181.1559486952676,69.37408315025698,2.611291428571428,7499.440683340981,2019
+1995,39,"(35,40]",College,181.1559486952676,69.37408315025698,2.611291428571428,7591.459508395143,2019
+1995,39,"(35,40]",College,181.1559486952676,69.37408315025698,2.611291428571428,7498.307598904915,2019
+1995,39,"(35,40]",College,181.1559486952676,69.37408315025698,2.611291428571428,7747.1678355119175,2019
+1995,39,"(35,40]",College,181.1559486952676,69.37408315025698,2.611291428571428,7554.217390434448,2019
+1995,42,"(40,45]",HS,29.824927023440956,85.23101644174427,0.3499304392764858,8240.890557351026,2019
+1995,42,"(40,45]",HS,29.437841662980983,85.23101644174427,0.3453888372093023,8178.835684935328,2019
+1995,42,"(40,45]",HS,29.437841662980983,85.23101644174427,0.3453888372093023,8232.159275184495,2019
+1995,42,"(40,45]",HS,29.437841662980983,85.23101644174427,0.3453888372093023,8323.627604439247,2019
+1995,42,"(40,45]",HS,29.631384343210968,85.23101644174427,0.34765963824289403,8244.52669344793,2019
+1995,65,"(60,65]",College,11.283538257408226,15.064086626912939,0.74903567251462,11599.438839415196,2019
+1995,65,"(60,65]",College,11.283538257408226,15.064086626912939,0.74903567251462,11622.467146067833,2019
+1995,65,"(60,65]",College,11.283538257408226,15.064086626912939,0.74903567251462,11593.965885244126,2019
+1995,65,"(60,65]",College,11.283538257408226,15.064086626912939,0.74903567251462,11610.753071386076,2019
+1995,65,"(60,65]",College,11.283538257408226,15.064086626912939,0.74903567251462,11688.57899193343,2019
+1995,53,"(50,55]",College,7058.540256523663,786.9003145900576,8.9700564679541,188.29405663444533,2019
+1995,53,"(50,55]",College,7058.540256523663,786.9003145900576,8.9700564679541,169.19680435960473,2019
+1995,53,"(50,55]",College,7058.540256523663,786.9003145900576,8.9700564679541,165.36848959811448,2019
+1995,53,"(50,55]",College,7058.540256523663,786.9003145900576,8.9700564679541,169.16495894233742,2019
+1995,53,"(50,55]",College,7058.540256523663,786.9003145900576,8.9700564679541,167.35935398406093,2019
+1995,38,"(35,40]",HS,711.9854577620522,73.3383164731288,9.708232912912912,8079.304454665299,2019
+1995,38,"(35,40]",HS,713.901530296329,73.3383164731288,9.734359399399398,8018.466344554174,2019
+1995,38,"(35,40]",HS,713.901530296329,73.3383164731288,9.734359399399398,8070.744374123993,2019
+1995,38,"(35,40]",HS,702.4825121627598,73.3383164731288,9.578656096096095,8160.4192065787865,2019
+1995,38,"(35,40]",HS,142.95062361786822,73.3383164731288,1.9491942342342343,8082.869293970105,2019
+1995,20,"(15,20]",HS,1.1612560813799204,14.073028296194984,0.08251643192488263,4644.737233169476,2019
+1995,20,"(15,20]",HS,1.1612560813799204,14.469451628482167,0.08025570776255708,4658.899338985906,2019
+1995,20,"(15,20]",HS,1.1612560813799204,14.271239962338576,0.08137037037037037,4656.793712126889,2019
+1995,20,"(15,20]",HS,1.1612560813799204,12.883758299333435,0.09013333333333334,4668.718230777963,2019
+1995,20,"(15,20]",HS,1.1612560813799204,14.469451628482167,0.08025570776255708,4624.619388636626,2019
+1995,60,"(55,60]",College,3261.2909332153913,332.9955991212334,9.7937958994709,882.9719568822823,2019
+1995,60,"(55,60]",College,3251.613799203892,309.21019918400253,10.515868518518516,798.3163297522083,2019
+1995,60,"(55,60]",College,3145.1653250773998,344.8882990898489,9.119373818646235,788.1983109133942,2019
+1995,60,"(55,60]",College,3195.486421937196,332.9955991212334,9.596182142857144,801.56470392488,2019
+1995,60,"(55,60]",College,3201.2927023440952,329.0313657983616,9.729445381526103,793.7227234179128,2019
+1995,61,"(60,65]",College,418.1489606368864,152.62298293056534,2.7397509379509377,4889.266391987612,2019
+1995,61,"(60,65]",College,423.181070322866,152.62298293056534,2.772721789321789,5083.565579637161,2019
+1995,61,"(60,65]",College,426.85838124723574,152.62298293056534,2.7968158730158725,5028.089291012187,2019
+1995,61,"(60,65]",College,410.2137107474569,152.62298293056534,2.6877584415584415,4765.309242366631,2019
+1995,61,"(60,65]",College,429.9550641309155,152.62298293056534,2.8171056277056272,5039.432033741106,2019
+1995,63,"(60,65]",HS,1180.8038920831489,166.4977995606167,7.092008994708994,7397.6145289867,2019
+1995,63,"(60,65]",HS,1180.997434763379,166.4977995606167,7.093171428571429,7288.971322524201,2019
+1995,63,"(60,65]",HS,1180.8038920831489,166.4977995606167,7.092008994708994,7406.812870228253,2019
+1995,63,"(60,65]",HS,1179.0620079610792,166.4977995606167,7.081547089947091,7393.882010661396,2019
+1995,63,"(60,65]",HS,1180.0297213622293,166.4977995606167,7.087359259259261,7296.841362674335,2019
+1995,38,"(35,40]",HS,131.02839451570102,124.87334967046255,1.049290299823633,5902.339790192642,2019
+1995,38,"(35,40]",HS,133.73799203892085,124.87334967046255,1.070989065255732,5821.136015729386,2019
+1995,38,"(35,40]",HS,131.02839451570102,124.87334967046255,1.049290299823633,5816.222688807612,2019
+1995,38,"(35,40]",HS,132.57673595754093,124.87334967046255,1.0616895943562612,5878.429767765382,2019
+1995,38,"(35,40]",HS,134.31862007961078,124.87334967046255,1.0756388007054671,5837.305896021875,2019
+1995,46,"(45,50]",HS,226.63847854931447,61.44561650451331,3.688440143369176,7025.517965226795,2019
+1995,46,"(45,50]",HS,224.5095090667846,61.44561650451331,3.6537921146953405,7000.726358005476,2019
+1995,46,"(45,50]",HS,218.703228659885,61.44561650451331,3.559297491039427,6960.992599336219,2019
+1995,46,"(45,50]",HS,256.4440513047324,61.44561650451331,4.173512544802867,7315.774476138844,2019
+1995,46,"(45,50]",HS,235.1543564794339,61.44561650451331,3.8270322580645164,7055.857680677259,2019
+1995,65,"(60,65]",College,101065.47156125608,10683.608805139573,9.459862618016905,19.014795955822553,2019
+1995,65,"(60,65]",College,123843.89668288369,10683.608805139573,11.591953518862091,19.858091872621596,2019
+1995,65,"(60,65]",College,122394.45555064132,10683.608805139573,11.456283900226758,19.646502048651634,2019
+1995,65,"(60,65]",College,102542.78283945157,10683.608805139573,9.598140919398062,16.998461962599745,2019
+1995,65,"(60,65]",College,119773.11348960637,10683.608805139573,11.210922795299938,18.294596212110218,2019
+1995,26,"(25,30]",HS,-3.096682883679788,51.53503319733374,-0.0600888888888889,6787.95987332671,2019
+1995,26,"(25,30]",HS,-3.096682883679788,51.53503319733374,-0.0600888888888889,6820.351312703955,2019
+1995,26,"(25,30]",HS,-3.096682883679788,51.53503319733374,-0.0600888888888889,6832.299305887604,2019
+1995,26,"(25,30]",HS,-3.038620079610792,51.53503319733374,-0.058962222222222235,6922.150169131282,2019
+1995,26,"(25,30]",HS,-2.903140203449801,51.53503319733374,-0.05633333333333334,6855.128947753305,2019
+1995,35,"(30,35]",HS,197.99416187527643,178.3904995292322,1.109891851851852,8719.319025366818,2019
+1995,35,"(30,35]",HS,195.28456435205663,178.3904995292322,1.094702716049383,8599.359544757872,2019
+1995,35,"(30,35]",HS,195.86519239274656,178.3904995292322,1.0979575308641976,8592.10125966591,2019
+1995,35,"(30,35]",HS,195.67164971251657,178.3904995292322,1.0968725925925926,8683.997589994136,2019
+1995,35,"(30,35]",HS,198.5747899159664,178.3904995292322,1.1131466666666667,8623.246740325038,2019
+1995,38,"(35,40]",College,4661.668996019461,594.6349984307741,7.839546962962962,301.87975065294603,2019
+1995,38,"(35,40]",College,4661.668996019461,594.6349984307741,7.839546962962962,271.54956527777324,2019
+1995,38,"(35,40]",College,4661.668996019461,594.6349984307741,7.839546962962962,268.47048967405334,2019
+1995,38,"(35,40]",College,4661.668996019461,594.6349984307741,7.839546962962962,273.1100161855459,2019
+1995,38,"(35,40]",College,4661.668996019461,594.6349984307741,7.839546962962962,269.9680164533146,2019
+1995,23,"(20,25]",HS,-324.3775320654578,17.83904995292322,-18.183565432098767,3880.4838659397356,2019
+1995,23,"(20,25]",HS,-324.3775320654578,17.83904995292322,-18.183565432098767,3845.005354467002,2019
+1995,23,"(20,25]",HS,-324.3775320654578,17.83904995292322,-18.183565432098767,3838.619594423716,2019
+1995,23,"(20,25]",HS,-324.7646174259178,17.83904995292322,-18.205264197530866,3811.876417709882,2019
+1995,23,"(20,25]",HS,-324.3775320654578,17.83904995292322,-18.183565432098767,3804.2910705173854,2019
+1995,44,"(40,45]",HS,114.65468376824414,109.01641637897524,1.0517194343434342,6416.346661792223,2019
+1995,44,"(40,45]",HS,114.71274657231314,109.01641637897524,1.0522520404040403,6471.94181807894,2019
+1995,44,"(40,45]",HS,114.79016364440513,109.01641637897524,1.0529621818181818,6390.913898459608,2019
+1995,44,"(40,45]",HS,114.24824413976117,109.01641637897524,1.0479911919191918,6604.467405180762,2019
+1995,44,"(40,45]",HS,114.44178681999117,109.01641637897524,1.0497665454545455,6444.006614497625,2019
+1995,35,"(30,35]",HS,145.54409553295002,114.96276636328297,1.2660107279693487,4636.463303387209,2019
+1995,35,"(30,35]",HS,162.96293675364882,114.96276636328297,1.4175279693486589,4572.675325436328,2019
+1995,35,"(30,35]",HS,135.8669615214507,114.96276636328297,1.1818344827586207,4568.815761131305,2019
+1995,35,"(30,35]",HS,137.80238832375056,114.96276636328297,1.1986697318007664,4617.681270243104,2019
+1995,35,"(30,35]",HS,147.4795223352499,114.96276636328297,1.2828459770114944,4585.3772469219175,2019
+1995,45,"(40,45]",College,4.838567005749669,29.731749921538697,0.16274074074074077,8625.31071024274,2019
+1995,45,"(40,45]",College,35.998938522777536,53.517149858769656,0.6726617283950618,8378.020548174409,2019
+1995,45,"(40,45]",College,37.160194604157454,16.649779956061675,2.2318730158730156,8487.290587014122,2019
+1995,45,"(40,45]",College,36.65698363555949,39.642333228718265,0.924692888888889,8581.694594257748,2019
+1995,45,"(40,45]",College,34.83768244139761,39.642333228718265,0.8788,8565.267901391147,2019
+1995,24,"(20,25]",HS,-18.193011941618753,95.14159974892382,-0.1912203703703704,3909.2281893896206,2019
+1995,24,"(20,25]",HS,-10.257762052189298,95.14159974892382,-0.10781574074074077,3873.486874141758,2019
+1995,24,"(20,25]",HS,-23.612206988058382,95.14159974892382,-0.24817962962962967,3867.0538121746686,2019
+1995,24,"(20,25]",HS,-20.321981424148607,95.14159974892382,-0.21359722222222224,3840.112537865768,2019
+1995,24,"(20,25]",HS,-30.579743476337903,95.14159974892382,-0.321412962962963,3832.471002919187,2019
+1995,37,"(35,40]",NoHS,14.128615656789032,128.8375829933344,0.1096622222222222,5742.21937346265,2019
+1995,37,"(35,40]",NoHS,14.128615656789032,128.8375829933344,0.1096622222222222,5730.256440302335,2019
+1995,37,"(35,40]",NoHS,14.128615656789032,128.8375829933344,0.1096622222222222,5724.155870460183,2019
+1995,37,"(35,40]",NoHS,14.128615656789032,128.8375829933344,0.1096622222222222,5756.780516716062,2019
+1995,37,"(35,40]",NoHS,14.128615656789032,128.8375829933344,0.1096622222222222,5731.045849132384,2019
+1995,35,"(30,35]",College,2395.787421494914,198.21166614359132,12.087015200000002,800.302138533691,2019
+1995,35,"(30,35]",College,2407.399982308713,198.21166614359132,12.145601866666667,637.3850630281834,2019
+1995,35,"(30,35]",College,2407.399982308713,198.21166614359132,12.145601866666667,621.6450871104984,2019
+1995,35,"(30,35]",College,2401.5937019018133,198.21166614359132,12.116308533333333,621.8335314361182,2019
+1995,35,"(30,35]",College,2407.399982308713,198.21166614359132,12.145601866666667,638.9468206670421,2019
+1995,38,"(35,40]",NoHS,8.128792569659444,4.162444989015419,1.9528888888888887,6445.810599605627,2019
+1995,38,"(35,40]",NoHS,8.709420610349403,4.162444989015419,2.092380952380952,6436.225919665265,2019
+1995,38,"(35,40]",NoHS,9.48359133126935,4.162444989015419,2.27837037037037,6417.461132670441,2019
+1995,38,"(35,40]",NoHS,7.74170720919947,4.162444989015419,1.8598941798941797,6435.654035608617,2019
+1995,38,"(35,40]",NoHS,7.74170720919947,4.162444989015419,1.8598941798941797,6439.396052983537,2019
+1995,27,"(25,30]",College,152.70517470145953,99.10583307179566,1.5408293333333334,6064.687162649257,2019
+1995,27,"(25,30]",College,71.41724900486511,99.10583307179566,0.7206160000000001,6130.466863491491,2019
+1995,27,"(25,30]",College,102.38407784166297,99.10583307179566,1.0330782222222221,6097.858436150238,2019
+1995,27,"(25,30]",College,652.0452896948253,99.10583307179566,6.579282666666668,6156.328737074682,2019
+1995,27,"(25,30]",College,652.0452896948253,99.10583307179566,6.579282666666668,6114.460340928873,2019
+1995,42,"(40,45]",HS,121.54480318443167,95.14159974892382,1.277514814814815,7174.66152486364,2019
+1995,42,"(40,45]",HS,125.80274214949138,95.14159974892382,1.3222685185185188,7095.273372900505,2019
+1995,42,"(40,45]",HS,123.67377266696153,95.14159974892382,1.299891666666667,7139.730256607695,2019
+1995,42,"(40,45]",HS,125.80274214949138,95.14159974892382,1.3222685185185188,7220.64184193627,2019
+1995,42,"(40,45]",HS,122.89960194604157,95.14159974892382,1.2917546296296298,7156.49797678488,2019
+1995,39,"(35,40]",HS,241.34772224679347,109.01641637897524,2.2138658585858586,9648.234233199535,2019
+1995,39,"(35,40]",HS,275.02414860681114,109.01641637897524,2.5227773737373735,9781.120437502814,2019
+1995,39,"(35,40]",HS,112.64183989385228,109.01641637897524,1.0332557575757575,9753.349320609494,2019
+1995,39,"(35,40]",HS,147.6924192835029,109.01641637897524,1.3547722828282829,9609.028234768684,2019
+1995,39,"(35,40]",HS,35.0312251216276,109.01641637897524,0.3213389898989899,9958.797962992863,2019
+1995,52,"(50,55]",HS,434.6000884564352,87.21313310318017,4.983195454545455,2817.5652750463987,2019
+1995,52,"(50,55]",HS,435.18071649712516,87.21313310318017,4.989853030303031,2935.7135675691634,2019
+1995,52,"(50,55]",HS,435.37425917735516,87.21313310318017,4.992072222222223,2899.3642808278723,2019
+1995,52,"(50,55]",HS,435.95488721804514,87.21313310318017,4.9987297979797995,2750.967701868615,2019
+1995,52,"(50,55]",HS,435.95488721804514,87.21313310318017,4.9987297979797995,2907.76563608461,2019
+1995,58,"(55,60]",HS,720.3658558160106,39.642333228718265,18.17163111111111,3569.064291358902,2019
+1995,58,"(55,60]",HS,646.8196373286156,35.67809990584644,18.129318518518517,3710.5008695139213,2019
+1995,58,"(55,60]",HS,484.24378593542684,41.624449890154175,11.633638095238098,3668.171387332922,2019
+1995,58,"(55,60]",HS,503.5980539584255,41.624449890154175,12.098611640211642,3478.0651909923763,2019
+1995,58,"(55,60]",HS,753.2681114551084,31.713866582974614,23.752011111111113,3675.21114107164,2019
+1995,56,"(55,60]",College,24.67669172932331,79.28466645743653,0.3112416666666667,7689.775210484891,2019
+1995,56,"(55,60]",College,24.67669172932331,79.28466645743653,0.3112416666666667,7449.694305574543,2019
+1995,56,"(55,60]",College,24.67669172932331,79.28466645743653,0.3112416666666667,7509.798595308081,2019
+1995,56,"(55,60]",College,24.67669172932331,79.28466645743653,0.3112416666666667,7275.374663874907,2019
+1995,56,"(55,60]",College,24.67669172932331,79.28466645743653,0.3112416666666667,7274.246411031652,2019
+1995,73,"(70,75]",HS,904.618487394958,51.53503319733374,17.55346666666667,5620.669354459209,2019
+1995,73,"(70,75]",HS,904.618487394958,51.53503319733374,17.55346666666667,5841.8224308399385,2019
+1995,73,"(70,75]",HS,904.618487394958,51.53503319733374,17.55346666666667,5778.420288778127,2019
+1995,73,"(70,75]",HS,904.618487394958,51.53503319733374,17.55346666666667,5478.6755296767205,2019
+1995,73,"(70,75]",HS,904.618487394958,51.53503319733374,17.55346666666667,5806.849961281065,2019
+1995,51,"(50,55]",HS,15397.287925696595,1861.2075450883226,8.272740977399124,285.47526956964157,2019
+1995,51,"(50,55]",HS,15287.35568332596,1861.2075450883226,8.213675967341143,251.6270091868086,2019
+1995,51,"(50,55]",HS,16949.50022114109,1861.2075450883226,9.10672228138682,250.6761821559547,2019
+1995,51,"(50,55]",HS,17108.205218929677,1861.2075450883226,9.191992190273341,259.1890960720176,2019
+1995,51,"(50,55]",HS,15889.273418841221,1861.2075450883226,8.537077694947344,257.88328364357784,2019
+1995,64,"(60,65]",HS,-40.93427686864219,297.31749921538704,-0.13767866666666664,657.6513068806292,2019
+1995,64,"(60,65]",HS,-40.93427686864219,297.31749921538704,-0.13767866666666664,641.268382430984,2019
+1995,64,"(60,65]",HS,-40.93427686864219,297.31749921538704,-0.13767866666666664,659.6743871484637,2019
+1995,64,"(60,65]",HS,-40.93427686864219,297.31749921538704,-0.13767866666666664,615.7125435311016,2019
+1995,64,"(60,65]",HS,-40.93427686864219,297.31749921538704,-0.13767866666666664,664.7364387010095,2019
+1995,41,"(40,45]",HS,77.99770013268466,99.10583307179566,0.7870142222222223,5779.610181670081,2019
+1995,41,"(40,45]",HS,77.99770013268466,99.10583307179566,0.7870142222222223,5706.259301556166,2019
+1995,41,"(40,45]",HS,77.99770013268466,99.10583307179566,0.7870142222222223,5672.3490906229445,2019
+1995,41,"(40,45]",HS,77.99770013268466,99.10583307179566,0.7870142222222223,5772.992228271332,2019
+1995,41,"(40,45]",HS,77.99770013268466,99.10583307179566,0.7870142222222223,5718.258104939111,2019
+1995,46,"(45,50]",HS,11697.913135780629,2180.3283275795047,5.365207151515151,276.5049146986306,2019
+1995,46,"(45,50]",HS,11701.783989385229,2180.3283275795047,5.366982505050506,246.55326733645933,2019
+1995,46,"(45,50]",HS,11701.203361344538,2180.3283275795047,5.366716202020202,248.90995542343882,2019
+1995,46,"(45,50]",HS,11702.75170278638,2180.3283275795047,5.367426343434344,250.32936675001466,2019
+1995,46,"(45,50]",HS,11701.396904024768,2180.3283275795047,5.36680496969697,248.30059634944445,2019
+1995,76,"(75,80]",NoHS,34.83768244139761,9.910583307179566,3.5152,8069.907265111983,2019
+1995,76,"(75,80]",NoHS,44.90190181335692,9.910583307179566,4.530702222222223,8003.197973906754,2019
+1995,76,"(75,80]",NoHS,44.70835913312693,9.910583307179566,4.511173333333333,8044.665800367329,2019
+1995,76,"(75,80]",NoHS,17.418841220698805,9.910583307179566,1.7576,8053.169012032282,2019
+1995,76,"(75,80]",NoHS,31.54745687748784,9.910583307179566,3.183208888888889,8060.637226704273,2019
+1995,81,"(80,85]",HS,96.57779743476338,19.22653161592836,5.023152348224514,7138.522765683105,2019
+1995,81,"(80,85]",HS,98.51322423706324,19.22653161592836,5.123816723940435,6837.707057128729,2019
+1995,81,"(80,85]",HS,112.06121185316232,19.22653161592836,5.82846735395189,7095.750365612682,2019
+1995,81,"(80,85]",HS,112.06121185316232,19.22653161592836,5.82846735395189,6869.344012843583,2019
+1995,81,"(80,85]",HS,77.2235294117647,19.22653161592836,4.016508591065292,7016.01113506863,2019
+1995,72,"(70,75]",College,421.1488721804511,39.642333228718265,10.623715555555556,13240.289959092475,2019
+1995,72,"(70,75]",College,421.1488721804511,39.642333228718265,10.623715555555556,13739.43883709708,2019
+1995,72,"(70,75]",College,421.1488721804511,39.642333228718265,10.623715555555556,13385.232803949024,2019
+1995,72,"(70,75]",College,421.1488721804511,39.642333228718265,10.623715555555556,13856.949397268054,2019
+1995,72,"(70,75]",College,421.1488721804511,39.642333228718265,10.623715555555556,13337.42194593592,2019
+1995,27,"(25,30]",HS,222.38053958425476,148.65874960769352,1.4959128888888886,6151.8693139774505,2019
+1995,27,"(25,30]",HS,288.41730207872627,148.65874960769352,1.9401300148148146,3708.042752194871,2019
+1995,27,"(25,30]",HS,242.70252100840335,148.65874960769352,1.6326151111111107,6217.253925609677,2019
+1995,27,"(25,30]",HS,283.7335692171606,148.65874960769352,1.9086234074074075,3465.1052731186874,2019
+1995,27,"(25,30]",HS,272.37261388766035,148.65874960769352,1.8322003555555553,6245.613512831013,2019
+1995,45,"(40,45]",HS,66.96576735957541,103.07006639466748,0.6497111111111112,6190.105659992881,2019
+1995,45,"(40,45]",HS,63.28845643520567,103.07006639466748,0.6140333333333334,6081.073694393607,2019
+1995,45,"(40,45]",HS,62.51428571428572,103.07006639466748,0.6065222222222223,6137.619520916783,2019
+1995,45,"(40,45]",HS,65.03034055727555,103.07006639466748,0.6309333333333335,6132.344345738677,2019
+1995,45,"(40,45]",HS,65.22388323750553,103.07006639466748,0.6328111111111112,6168.543541668214,2019
+1995,46,"(45,50]",HS,380.2145953118089,23.785399937230956,15.98520925925926,3448.2480216235235,2019
+1995,46,"(45,50]",HS,380.2145953118089,23.785399937230956,15.98520925925926,3509.3817022277262,2019
+1995,46,"(45,50]",HS,380.2145953118089,23.785399937230956,15.98520925925926,3366.8467044010113,2019
+1995,46,"(45,50]",HS,380.2145953118089,23.785399937230956,15.98520925925926,3599.30122314365,2019
+1995,46,"(45,50]",HS,380.2145953118089,23.785399937230956,15.98520925925926,3473.7955698880346,2019
+1995,65,"(60,65]",HS,199.38766917293233,85.23101644174427,2.3393792248062013,7955.2881004131095,2019
+1995,65,"(60,65]",HS,272.8951791242813,136.76604963907803,1.995342995169082,7755.558905985253,2019
+1995,65,"(60,65]",HS,278.2369570986289,33.69598324441053,8.257273725490196,7768.569233053342,2019
+1995,65,"(60,65]",College,173.56907563025212,45.588683213026,3.8072842512077303,8105.452919593375,2019
+1995,65,"(60,65]",College,358.1313754975675,65.40984982738514,5.4751903030303035,7934.821259370134,2019
+1995,52,"(50,55]",College,6657.674657231313,344.8882990898489,19.30385772669221,905.5903626544857,2019
+1995,52,"(50,55]",College,4704.499991154357,527.243031941953,8.922830091896408,792.1841704670912,2019
+1995,52,"(50,55]",College,5640.878832375055,178.3904995292322,31.620959901234567,843.6102599394704,2019
+1995,52,"(50,55]",College,7073.230145953118,713.5619981169287,9.91256564197531,802.7294814185058,2019
+1995,52,"(50,55]",College,3728.599734630695,406.3339155943622,9.17619620596206,815.5050894048087,2019
+1995,71,"(70,75]",HS,78138.98628925256,1962.2954948215543,39.82019349046016,25.076751147447723,2019
+1995,71,"(70,75]",HS,79840.22644847413,2001.9378280502726,39.881471507150714,25.78323057740077,2019
+1995,71,"(70,75]",HS,78545.42591773551,2021.7589946646315,38.8500440087146,25.796076415012095,2019
+1995,71,"(70,75]",HS,79006.05749668289,1803.726161906681,43.80158095238095,24.383287067531338,2019
+1995,71,"(70,75]",HS,76673.86819991155,2101.0436611220684,36.49322935010482,24.26827638141447,2019
+1995,44,"(40,45]",HS,0.0019354268022998672,39.642333228718265,4.882222222222222e-5,6888.402350419126,2019
+1995,44,"(40,45]",HS,0.0019354268022998672,39.642333228718265,4.882222222222222e-5,6856.995938600652,2019
+1995,44,"(40,45]",HS,0.0019354268022998672,39.642333228718265,4.882222222222222e-5,6829.375081065247,2019
+1995,44,"(40,45]",HS,0.0019354268022998672,39.642333228718265,4.882222222222222e-5,6700.667427491135,2019
+1995,44,"(40,45]",HS,0.0019354268022998672,39.642333228718265,4.882222222222222e-5,6828.137023431215,2019
+1995,28,"(25,30]",HS,4.838567005749669,61.44561650451331,0.07874551971326166,4831.288166104991,2019
+1995,28,"(25,30]",HS,4.064396284829722,61.44561650451331,0.0661462365591398,4854.342571355874,2019
+1995,28,"(25,30]",HS,4.645024325519682,61.44561650451331,0.07559569892473118,4862.8464810951855,2019
+1995,28,"(25,30]",HS,4.838567005749669,61.44561650451331,0.07874551971326166,4926.797273439921,2019
+1995,28,"(25,30]",HS,3.2902255639097744,61.44561650451331,0.05354695340501792,4879.095336515733,2019
+1995,40,"(35,40]",College,4233.74613003096,594.6349984307741,7.119907407407406,253.50885895492434,2019
+1995,40,"(35,40]",College,4233.74613003096,594.6349984307741,7.119907407407406,228.0951709847959,2019
+1995,40,"(35,40]",College,4233.74613003096,594.6349984307741,7.119907407407406,223.73368093130875,2019
+1995,40,"(35,40]",College,4233.74613003096,594.6349984307741,7.119907407407406,229.3157566784314,2019
+1995,40,"(35,40]",College,4233.74613003096,594.6349984307741,7.119907407407406,226.5162647734118,2019
+1995,34,"(30,35]",College,59.99823087129589,61.44561650451331,0.9764444444444444,4965.490608107871,2019
+1995,34,"(30,35]",College,59.99823087129589,61.44561650451331,0.9764444444444444,4989.185413470941,2019
+1995,34,"(30,35]",College,59.99823087129589,61.44561650451331,0.9764444444444444,4997.925542912818,2019
+1995,34,"(30,35]",College,59.99823087129589,61.44561650451331,0.9764444444444444,5063.652746062623,2019
+1995,34,"(30,35]",College,59.99823087129589,61.44561650451331,0.9764444444444444,5014.625755404653,2019
+1995,34,"(30,35]",HS,246.76691729323306,198.21166614359132,1.2449666666666666,4537.869643350529,2019
+1995,34,"(30,35]",HS,246.76691729323306,198.21166614359132,1.2449666666666666,4718.374059318077,2019
+1995,34,"(30,35]",HS,246.76691729323306,198.21166614359132,1.2449666666666666,4665.358391223729,2019
+1995,34,"(30,35]",HS,246.76691729323306,198.21166614359132,1.2449666666666666,4406.76951027928,2019
+1995,34,"(30,35]",HS,246.76691729323306,198.21166614359132,1.2449666666666666,4694.699841836524,2019
+1995,66,"(65,70]",NoHS,12220.284829721362,176.40838286779626,69.27269912609239,1430.366218627982,2019
+1995,66,"(65,70]",NoHS,12220.284829721362,176.40838286779626,69.27269912609239,1265.0314904502334,2019
+1995,66,"(65,70]",NoHS,12220.284829721362,176.40838286779626,69.27269912609239,1267.521160643301,2019
+1995,66,"(65,70]",NoHS,12220.284829721362,176.40838286779626,69.27269912609239,1294.3108074411766,2019
+1995,66,"(65,70]",NoHS,12220.284829721362,176.40838286779626,69.27269912609239,1295.06656487652,2019
+1995,34,"(30,35]",College,78.59226324635117,73.3383164731288,1.0716398606606605,6346.556991975745,2019
+1995,34,"(30,35]",College,77.7584813799204,73.3383164731288,1.0602708804804806,6413.624341517358,2019
+1995,34,"(30,35]",College,80.36588836797877,65.40984982738514,1.2286511676767675,6355.405006517488,2019
+1995,34,"(30,35]",College,79.45933445378151,63.42773316594923,1.252753811111111,6455.291997620254,2019
+1995,34,"(30,35]",College,80.72510358248563,75.32043313456471,1.0717557005847953,6364.968674742339,2019
+1995,61,"(60,65]",HS,875.78062804069,158.56933291487306,5.523013888888889,241.07268864961097,2019
+1995,61,"(60,65]",HS,875.78062804069,158.56933291487306,5.523013888888889,244.76794665071398,2019
+1995,61,"(60,65]",HS,875.78062804069,158.56933291487306,5.523013888888889,243.73800909926723,2019
+1995,61,"(60,65]",HS,875.78062804069,158.56933291487306,5.523013888888889,238.33568770596253,2019
+1995,61,"(60,65]",HS,875.78062804069,158.56933291487306,5.523013888888889,242.44284448582275,2019
+1995,60,"(55,60]",College,2879.6247678018576,87.21313310318017,33.018246969696975,2021.1734329147062,2019
+1995,60,"(55,60]",College,2875.753914197258,87.21313310318017,32.97386313131314,1742.8143363156462,2019
+1995,60,"(55,60]",College,2855.431932773109,87.21313310318017,32.740847979797984,1802.3152752269766,2019
+1995,60,"(55,60]",College,2830.755241043786,352.8167657355925,8.023301373283397,1749.3841970076078,2019
+1995,60,"(55,60]",College,2854.464219371959,87.21313310318017,32.72975202020202,1840.2758306916846,2019
+1995,80,"(75,80]",HS,17022.078726227333,814.6499478501604,20.894960800216275,30.668698835172005,2019
+1995,80,"(75,80]",HS,17022.078726227333,814.6499478501604,20.894960800216275,34.47549120520512,2019
+1995,80,"(75,80]",HS,17022.078726227333,814.6499478501604,20.894960800216275,30.972479308733227,2019
+1995,80,"(75,80]",HS,17022.078726227333,814.6499478501604,20.894960800216275,37.09920510191703,2019
+1995,80,"(75,80]",HS,17022.078726227333,814.6499478501604,20.894960800216275,29.881690059636192,2019
+1995,40,"(35,40]",HS,102.36472357363999,97.12371641035975,1.0539621768707483,5765.9821905212575,2019
+1995,40,"(35,40]",HS,113.55149049093322,97.12371641035975,1.1691427664399094,5841.806728850337,2019
+1995,40,"(35,40]",HS,159.45981424148607,97.12371641035975,1.6418215873015873,5775.7009099795905,2019
+1995,40,"(35,40]",HS,99.0744980097302,97.12371641035975,1.0200855328798186,5758.111691705066,2019
+1995,40,"(35,40]",HS,145.13765590446704,97.12371641035975,1.4943585487528344,5782.912529663654,2019
+1995,52,"(50,55]",HS,353.7960194604158,87.21313310318017,4.056682828282829,6690.969491362227,2019
+1995,52,"(50,55]",HS,353.7960194604158,87.21313310318017,4.056682828282829,6667.358436863369,2019
+1995,52,"(50,55]",HS,353.7960194604158,87.21313310318017,4.056682828282829,6629.516761936477,2019
+1995,52,"(50,55]",HS,353.7960194604158,87.21313310318017,4.056682828282829,6967.404263687104,2019
+1995,52,"(50,55]",HS,353.7960194604158,87.21313310318017,4.056682828282829,6719.864458460799,2019
+1995,39,"(35,40]",HS,190.54276868642194,116.94488302471889,1.6293382297551788,4081.619708845696,2019
+1995,39,"(35,40]",HS,190.54276868642194,116.94488302471889,1.6293382297551788,4250.008209807582,2019
+1995,39,"(35,40]",HS,190.54276868642194,116.94488302471889,1.6293382297551788,4191.951207446834,2019
+1995,39,"(35,40]",HS,190.54276868642194,116.94488302471889,1.6293382297551788,3980.0316819153027,2019
+1995,39,"(35,40]",HS,190.54276868642194,116.94488302471889,1.6293382297551788,4221.068112848743,2019
+1995,42,"(40,45]",College,329.1967448031844,112.98064970184706,2.913744483430799,5953.8559711459475,2019
+1995,42,"(40,45]",College,327.06777532065456,112.98064970184706,2.89490081871345,6005.14713340567,2019
+1995,42,"(40,45]",College,317.3906413091553,112.98064970184706,2.8092477972709555,6005.796098700952,2019
+1995,42,"(40,45]",College,326.3323131357806,112.98064970184706,2.8883911890838205,5966.773144085556,2019
+1995,42,"(40,45]",College,310.2295621406458,112.98064970184706,2.745864561403509,6018.1083456688875,2019
+1995,55,"(50,55]",HS,17.767218045112784,7.135619981169288,2.4899333333333336,7907.301257667617,2019
+1995,55,"(50,55]",HS,16.19952233524989,7.730254979600061,2.0956,7912.2344091014,2019
+1995,55,"(50,55]",HS,16.81885891198585,10.30700663946675,1.6317888888888892,7913.1395282953845,2019
+1995,55,"(50,55]",HS,16.741441839893852,11.694488302471887,1.431566854990584,7919.557954848834,2019
+1995,55,"(50,55]",HS,17.5156125608138,13.28018163162062,1.3189286898839137,7896.5319777500245,2019
+1995,68,"(65,70]",College,13291.15647943388,142.71239962338575,93.13245740740741,241.58361433093108,2019
+1995,68,"(65,70]",College,12329.636444051304,152.62298293056534,80.78492640692639,212.71110241217744,2019
+1995,68,"(65,70]",College,12376.0866873065,223.9791827422582,55.255522123893805,212.4020132432484,2019
+1995,68,"(65,70]",College,12318.410968597966,136.76604963907803,90.06921674718195,218.1978568405982,2019
+1995,68,"(65,70]",College,10996.708005307386,338.9419491055412,32.44422248213125,217.2155422795112,2019
+1995,65,"(60,65]",College,723.8496240601504,85.23101644174427,8.492795865633076,742.368319698571,2019
+1995,65,"(60,65]",College,723.8496240601504,148.65874960769352,4.869202962962962,723.2780936771694,2019
+1995,65,"(60,65]",College,723.8496240601504,93.15948308748793,7.770004728132387,739.9043736338573,2019
+1995,65,"(60,65]",HS,723.8496240601504,220.01494941938637,3.290002002002002,691.3112522770805,2019
+1995,65,"(60,65]",HS,723.8496240601504,116.94488302471889,6.189664783427495,746.2251284576398,2019
+1995,20,"(15,20]",HS,-5.0321096859796555,11.892699968615478,-0.423125925925926,5128.89241100543,2019
+1995,20,"(15,20]",HS,-5.0321096859796555,11.892699968615478,-0.423125925925926,5124.36885967296,2019
+1995,20,"(15,20]",HS,-5.0321096859796555,11.892699968615478,-0.423125925925926,5121.168842310924,2019
+1995,20,"(15,20]",HS,-5.0321096859796555,11.892699968615478,-0.423125925925926,5139.418930968133,2019
+1995,20,"(15,20]",HS,-5.0321096859796555,11.892699968615478,-0.423125925925926,5088.466680302095,2019
+1995,33,"(30,35]",College,147.2859796550199,103.07006639466748,1.428988888888889,4662.132061759705,2019
+1995,33,"(30,35]",College,147.2859796550199,103.07006639466748,1.428988888888889,4591.523920815124,2019
+1995,33,"(30,35]",College,147.2859796550199,103.07006639466748,1.428988888888889,4619.935864632874,2019
+1995,33,"(30,35]",College,147.2859796550199,103.07006639466748,1.428988888888889,4562.690457185431,2019
+1995,33,"(30,35]",College,147.2859796550199,103.07006639466748,1.428988888888889,4614.896243290818,2019
+1995,89,"(85,90]",College,613.9173816895179,61.44561650451331,9.991231541218639,8509.461707605318,2019
+1995,89,"(85,90]",College,615.0786377708978,61.44561650451331,10.01013046594982,8624.406913773299,2019
+1995,89,"(85,90]",College,613.9173816895179,61.44561650451331,9.991231541218639,8501.061800142383,2019
+1995,89,"(85,90]",College,615.0786377708978,61.44561650451331,10.01013046594982,8288.402883143122,2019
+1995,89,"(85,90]",College,613.9173816895179,61.44561650451331,9.991231541218639,8457.706035488603,2019
+1995,33,"(30,35]",HS,59.22406015037594,47.57079987446191,1.2449666666666668,4945.766455131038,2019
+1995,33,"(30,35]",HS,59.22406015037594,47.57079987446191,1.2449666666666668,4998.5523404367195,2019
+1995,33,"(30,35]",HS,59.22406015037594,47.57079987446191,1.2449666666666668,4944.795996335697,2019
+1995,33,"(30,35]",HS,59.22406015037594,47.57079987446191,1.2449666666666668,5030.7571186931,2019
+1995,33,"(30,35]",HS,59.22406015037594,47.57079987446191,1.2449666666666668,4956.428455277453,2019
+1995,60,"(55,60]",HS,34168.48539938081,644.1879149666719,53.04117728,451.5429000511316,2019
+1995,60,"(55,60]",HS,35200.93031118974,253.7109326637969,138.74423912916666,510.032014270363,2019
+1995,60,"(55,60]",HS,7409.320881026095,370.6558156885158,19.989760223410574,250.6761821559547,2019
+1995,60,"(55,60]",HS,4862.142439628483,309.21019918400253,15.724392185185181,259.1890960720176,2019
+1995,60,"(55,60]",HS,5549.529009818665,741.3116313770316,7.486094612477719,257.88328364357784,2019
+1995,44,"(40,45]",College,3132.294736842105,747.2579813613394,4.191718007662835,266.2710057351491,2019
+1995,44,"(40,45]",College,3051.587439186201,747.2579813613394,4.083713409961686,240.05148966087395,2019
+1995,44,"(40,45]",College,3498.2839451570103,747.2579813613394,4.681494252873563,236.81406969648947,2019
+1995,44,"(40,45]",College,3291.3868199911544,747.2579813613394,4.404619157088122,244.2358740114048,2019
+1995,44,"(40,45]",College,3351.7721362229104,747.2579813613394,4.4854283524904215,240.5642051289903,2019
+1995,59,"(55,60]",HS,161826.8412206988,8602.386310631864,18.811854685099846,18.424123599782696,2019
+1995,59,"(55,60]",HS,223995.71131357807,8602.386310631864,26.038787753200204,18.715724758082384,2019
+1995,59,"(55,60]",HS,249610.0592658116,8602.386310631864,29.016374091141834,18.77532482183993,2019
+1995,59,"(55,60]",HS,228474.67601946043,8602.386310631864,26.55945312954429,17.94707285770976,2019
+1995,59,"(55,60]",HS,213723.37549756744,8602.386310631864,24.84466144393241,17.90067114790862,2019
+1995,47,"(45,50]",College,3304.3541795665637,1145.663430309958,2.8842276816609,25.713727335780288,2019
+1995,47,"(45,50]",College,1741.3034940291907,513.3682153119015,3.3919191763191767,228.29465216401863,2019
+1995,47,"(45,50]",College,3425.898982750995,1381.5353130208314,2.479776630001594,23.550849279301794,2019
+1995,47,"(45,50]",College,6541.355506413092,269.5678659552842,24.266080392156866,23.009157385376763,2019
+1995,47,"(45,50]",College,3968.205572755418,428.13719887015725,9.268537242798354,23.915111099708973,2019
+1995,35,"(30,35]",NoHS,-0.7354621848739495,23.785399937230956,-0.030920740740740745,5779.610181670081,2019
+1995,35,"(30,35]",NoHS,-1.5096329057938966,23.785399937230956,-0.06346888888888891,5706.259301556166,2019
+1995,35,"(30,35]",NoHS,-0.7354621848739495,21.803283275795042,-0.03373171717171718,5672.3490906229445,2019
+1995,35,"(30,35]",NoHS,-0.7354621848739495,23.785399937230956,-0.030920740740740745,5772.992228271332,2019
+1995,35,"(30,35]",NoHS,-0.3483768244139761,19.821166614359132,-0.017576,5718.258104939111,2019
+1995,44,"(40,45]",College,322.5969394073419,79.28466645743653,4.068844,3873.8305599095156,2019
+1995,44,"(40,45]",College,345.8220610349403,79.28466645743653,4.361777333333333,3948.503137877855,2019
+1995,44,"(40,45]",College,367.1117558602389,79.28466645743653,4.630299555555556,3807.120742210521,2019
+1995,44,"(40,45]",College,359.3700486510394,79.28466645743653,4.5326551111111115,3920.8357313755723,2019
+1995,44,"(40,45]",College,345.8220610349403,79.28466645743653,4.361777333333333,3862.7635977825216,2019
+1995,74,"(70,75]",NoHS,797.7829279080054,19.821166614359132,40.24904,4828.580091982753,2019
+1995,74,"(70,75]",NoHS,1233.0604157452456,59.46349984307739,20.736425185185187,2522.9519932625208,2019
+1995,74,"(70,75]",NoHS,1506.149137549757,27.749633260102783,54.27636190476191,2604.419367130939,2019
+1995,74,"(70,75]",NoHS,1551.6316674038037,21.803283275795042,71.16504646464648,2524.7243833489683,2019
+1995,74,"(70,75]",NoHS,947.1978770455551,67.39196648882105,14.055056209150326,4993.131428044753,2019
+1995,30,"(25,30]",HS,74.84295444493587,83.24889978030835,0.8990263492063493,5982.485250485441,2019
+1995,30,"(25,30]",HS,257.66337019018135,83.24889978030835,3.0950964021164027,5891.880317770235,2019
+1995,30,"(25,30]",HS,221.8773286156568,83.24889978030835,2.6652283597883604,5928.33875193204,2019
+1995,30,"(25,30]",HS,209.47124281291462,83.24889978030835,2.516204338624339,5854.880986005287,2019
+1995,30,"(25,30]",HS,268.8888456435206,83.24889978030835,3.229938730158731,5921.871869409736,2019
+1995,30,"(25,30]",HS,3065.425740822645,67.39196648882105,45.48651568627451,546.7086635050748,2019
+1995,30,"(25,30]",HS,2740.5643520566123,67.39196648882105,40.666039215686276,1537.7872398400125,2019
+1995,30,"(25,30]",HS,2520.5063246351174,67.39196648882105,37.400694117647056,1585.964967272763,2019
+1995,30,"(25,30]",HS,2773.27306501548,67.39196648882105,41.151389542483656,1533.303878231785,2019
+1995,30,"(25,30]",HS,2205.225298540469,67.39196648882105,32.72237647058824,1591.6121310520043,2019
+1995,62,"(60,65]",HS,9881.904102609466,107.03429971753931,92.32464853497943,173.80829541612758,2019
+1995,62,"(60,65]",HS,10723.814761609907,114.96276636328297,93.28076472796934,155.9016655346859,2019
+1995,62,"(60,65]",HS,10292.408127377266,118.92699968615479,86.5439147925926,154.9296634455761,2019
+1995,62,"(60,65]",HS,9944.22484564352,103.07006639466748,96.48024100000002,143.6034844301031,2019
+1995,62,"(60,65]",HS,11021.289861123396,99.10583307179566,111.20727730666667,155.3212909050215,2019
+1995,72,"(70,75]",NoHS,205.54232640424593,69.37408315025698,2.9628114285714284,10281.380080247554,2019
+1995,72,"(70,75]",NoHS,205.9294117647059,77.30254979600063,2.6639407407407405,10223.995282659465,2019
+1995,72,"(70,75]",NoHS,205.9294117647059,67.39196648882105,3.055696732026144,10333.550464240647,2019
+1995,72,"(70,75]",NoHS,205.54232640424593,77.30254979600063,2.658933333333333,10347.086510068142,2019
+1995,72,"(70,75]",NoHS,205.54232640424593,67.39196648882105,3.0499529411764708,10127.355603029668,2019
+1995,51,"(50,55]",College,1098.161167624945,386.5127489800031,2.8412029629629636,684.1897201688918,2019
+1995,51,"(50,55]",College,1239.795701017249,386.5127489800031,3.207645037037037,581.3198239085737,2019
+1995,51,"(50,55]",College,1140.3534719150819,386.5127489800031,2.9503644444444443,586.4365872688211,2019
+1995,51,"(50,55]",College,1110.9349845201239,386.5127489800031,2.874251851851852,586.5462994650995,2019
+1995,51,"(50,55]",College,1211.3642812914638,386.5127489800031,3.134086222222222,562.5140360079962,2019
+1995,22,"(20,25]",College,28243.934931446263,1958.3312614986826,14.422450116959062,48.57383204816104,2019
+1995,22,"(20,25]",College,29632.93268465281,1970.223961467298,15.04038792756539,54.54952497085959,2019
+1995,22,"(20,25]",College,29637.79060592658,2160.5071609651454,13.717978417940877,51.19055889743302,2019
+1995,22,"(20,25]",College,28133.67366651924,1877.0644783798098,14.988123205444094,57.953665018750584,2019
+1995,22,"(20,25]",College,28273.15987616099,2101.0436611220684,13.456721723270437,47.09160657263776,2019
+1995,44,"(40,45]",HS,2996.4277753206547,112.98064970184706,26.521601559454194,1029.6501251760724,2019
+1995,44,"(40,45]",HS,3838.338434321097,112.98064970184706,33.973414424951265,932.102572840529,2019
+1995,44,"(40,45]",HS,2922.8815568332598,112.98064970184706,25.87063859649123,922.8096671620362,2019
+1995,44,"(40,45]",HS,2709.984608580274,112.98064970184706,23.986272124756336,942.9193650253115,2019
+1995,44,"(40,45]",HS,4602.832021229545,112.98064970184706,40.74000311890838,944.5908033752314,2019
+1995,63,"(60,65]",NoHS,157.93082706766916,43.606566551590085,3.6217212121212126,7705.848470395342,2019
+1995,63,"(60,65]",NoHS,157.93082706766916,43.606566551590085,3.6217212121212126,7592.678463623907,2019
+1995,63,"(60,65]",NoHS,157.93082706766916,43.606566551590085,3.6217212121212126,7715.43007585865,2019
+1995,63,"(60,65]",NoHS,157.93082706766916,43.606566551590085,3.6217212121212126,7701.960430471789,2019
+1995,63,"(60,65]",NoHS,157.93082706766916,43.606566551590085,3.6217212121212126,7600.876422116495,2019
+1995,31,"(30,35]",NoHS,2.322512162759841,17.24441495449245,0.13468199233716474,4644.681509569379,2019
+1995,31,"(30,35]",NoHS,2.322512162759841,17.24441495449245,0.13468199233716474,4631.966854376996,2019
+1995,31,"(30,35]",NoHS,2.322512162759841,17.24441495449245,0.13468199233716474,4660.0222630615635,2019
+1995,31,"(30,35]",NoHS,2.322512162759841,17.24441495449245,0.13468199233716474,4710.726227876274,2019
+1995,31,"(30,35]",NoHS,2.322512162759841,17.24441495449245,0.13468199233716474,4642.518273282773,2019
+1995,68,"(65,70]",HS,8.128792569659444,45.588683213026,0.17830724637681164,5619.468546741055,2019
+1995,68,"(65,70]",HS,8.128792569659444,45.588683213026,0.17830724637681164,5420.464369933187,2019
+1995,68,"(65,70]",HS,8.128792569659444,45.588683213026,0.17830724637681164,5425.979426465654,2019
+1995,68,"(65,70]",HS,8.128792569659444,45.588683213026,0.17830724637681164,5496.407069037764,2019
+1995,68,"(65,70]",HS,8.128792569659444,45.588683213026,0.17830724637681164,5437.646548875068,2019
+1995,41,"(40,45]",HS,12460.277753206547,1425.1418795724219,8.743184051923967,749.3230137099894,2019
+1995,41,"(40,45]",HS,12460.277753206547,1191.2521135229838,10.459815862451471,669.6113479178077,2019
+1995,41,"(40,45]",HS,12460.277753206547,1278.4652466261641,9.746278036175712,668.1857995736461,2019
+1995,41,"(40,45]",HS,12460.277753206547,1220.9838634445227,10.205112554112553,669.8660942353438,2019
+1995,41,"(40,45]",HS,12460.277753206547,1375.5889630365239,9.058140249759846,670.3823584340389,2019
+1995,33,"(30,35]",HS,68.32056612118532,138.74816630051396,0.4924069841269841,6492.997593747643,2019
+1995,33,"(30,35]",HS,68.32056612118532,138.74816630051396,0.4924069841269841,6403.427113869246,2019
+1995,33,"(30,35]",HS,68.32056612118532,138.74816630051396,0.4924069841269841,6497.536288767671,2019
+1995,33,"(30,35]",HS,68.32056612118532,138.74816630051396,0.4924069841269841,6415.314418234504,2019
+1995,33,"(30,35]",HS,68.32056612118532,138.74816630051396,0.4924069841269841,6445.622959773151,2019
+1995,39,"(35,40]",HS,405.37514374170723,188.30108283641175,2.1528030409356727,4408.864075090462,2019
+1995,39,"(35,40]",HS,405.37514374170723,188.30108283641175,2.1528030409356727,4429.711786415778,2019
+1995,39,"(35,40]",HS,405.37514374170723,188.30108283641175,2.1528030409356727,4430.042737850503,2019
+1995,39,"(35,40]",HS,405.37514374170723,188.30108283641175,2.1528030409356727,4300.318485987452,2019
+1995,39,"(35,40]",HS,405.37514374170723,188.30108283641175,2.1528030409356727,4422.384987519764,2019
+1995,40,"(35,40]",HS,392.8916408668731,218.03283275795047,1.8019838383838385,1064.9304258478287,2019
+1995,40,"(35,40]",HS,392.8916408668731,218.03283275795047,1.8019838383838385,1047.0696731685669,2019
+1995,40,"(35,40]",HS,392.8916408668731,218.03283275795047,1.8019838383838385,1061.4448262162393,2019
+1995,40,"(35,40]",HS,392.8916408668731,218.03283275795047,1.8019838383838385,994.8901484882115,2019
+1995,40,"(35,40]",HS,392.8916408668731,218.03283275795047,1.8019838383838385,1066.5550810827285,2019
+1995,31,"(30,35]",College,156.67279964617427,99.10583307179566,1.5808635555555557,4773.135206561598,2019
+1995,31,"(30,35]",College,156.67279964617427,99.10583307179566,1.5808635555555557,4700.84591939687,2019
+1995,31,"(30,35]",College,156.67279964617427,99.10583307179566,1.5808635555555557,4729.934338070314,2019
+1995,31,"(30,35]",College,156.67279964617427,99.10583307179566,1.5808635555555557,4671.3259447254395,2019
+1995,31,"(30,35]",College,156.67279964617427,99.10583307179566,1.5808635555555557,4724.774725743412,2019
+1995,51,"(50,55]",College,5953.566386554622,424.17296554728546,14.035704465212877,1092.407180150381,2019
+1995,51,"(50,55]",College,6400.649977885891,424.17296554728546,15.089716926272065,964.908984971262,2019
+1995,51,"(50,55]",College,7047.082529854048,424.17296554728546,16.613700311526483,1032.2410490468737,2019
+1995,51,"(50,55]",College,5572.287306501548,424.17296554728546,13.136828037383177,975.513788440541,2019
+1995,51,"(50,55]",College,8132.856965944273,424.17296554728546,19.173444859813085,982.7823381982085,2019
+1995,63,"(60,65]",HS,279.4756302521008,63.42773316594923,4.406205555555555,9582.208976370339,2019
+1995,63,"(60,65]",HS,279.4756302521008,63.42773316594923,4.406205555555555,9434.617021420692,2019
+1995,63,"(60,65]",HS,279.4756302521008,63.42773316594923,4.406205555555555,9585.878972700331,2019
+1995,63,"(60,65]",HS,279.4756302521008,63.42773316594923,4.406205555555555,9574.06351852933,2019
+1995,63,"(60,65]",HS,279.4756302521008,63.42773316594923,4.406205555555555,9449.83352988182,2019
+1995,59,"(55,60]",HS,39488.958195488725,130.8196996547703,301.8578876094276,1411.0206197390985,2019
+1995,59,"(55,60]",HS,39012.61095090668,107.03429971753931,364.487001399177,787.9118980613774,2019
+1995,59,"(55,60]",HS,39341.22706766918,122.89123300902662,320.1304609318997,1388.6079597821006,2019
+1995,59,"(55,60]",HS,39035.71994692614,109.01641637897524,358.0719422222222,895.2061841453966,2019
+1995,59,"(55,60]",HS,39165.741919504646,107.03429971753931,365.91767333333337,1471.0363085917043,2019
+1995,45,"(40,45]",HS,8.573940734188414,31.713866582974614,0.2703530555555556,8468.258264044322,2019
+1995,45,"(40,45]",HS,13.799593100398054,31.713866582974614,0.43512805555555556,8438.375523188777,2019
+1995,45,"(40,45]",HS,11.6706236178682,31.713866582974614,0.3679975,8390.482153350726,2019
+1995,45,"(40,45]",HS,20.186501547987618,31.713866582974614,0.6365197222222222,8818.121022831578,2019
+1995,45,"(40,45]",HS,8.573940734188414,31.713866582974614,0.2703530555555556,8504.828456785102,2019
+1995,54,"(50,55]",HS,353.69924812030075,120.90911634759071,2.9253315118397087,7410.5516537088215,2019
+1995,54,"(50,55]",HS,357.5701017249005,120.90911634759071,2.957346083788707,7342.051681243596,2019
+1995,54,"(50,55]",HS,351.9573639982309,120.90911634759071,2.9109249544626596,7380.1626261337715,2019
+1995,54,"(50,55]",HS,363.37638213180014,120.90911634759071,3.0053679417122043,7736.713984760941,2019
+1995,54,"(50,55]",HS,351.7638213180009,120.90911634759071,2.9093242258652094,7494.458831913946,2019
+1995,69,"(65,70]",HS,1.9354268022998675,39.642333228718265,0.048822222222222225,9119.16001680349,2019
+1995,69,"(65,70]",HS,1.9354268022998675,37.660216567282355,0.05139181286549708,9133.783062089056,2019
+1995,69,"(65,70]",HS,1.9354268022998675,39.642333228718265,0.048822222222222225,9110.986251302706,2019
+1995,69,"(65,70]",HS,1.9354268022998675,37.660216567282355,0.05139181286549708,9129.699567606644,2019
+1995,69,"(65,70]",HS,1.9354268022998675,31.713866582974614,0.061027777777777785,9180.758893700031,2019
+1995,45,"(40,45]",HS,-28.644316674038038,55.499266520205566,-0.516120634920635,7079.44171251661,2019
+1995,45,"(40,45]",HS,-26.708889871738172,55.499266520205566,-0.48124761904761915,7061.740002976386,2019
+1995,45,"(40,45]",HS,8.128792569659444,55.499266520205566,0.1464666666666667,7075.164318743152,2019
+1995,45,"(40,45]",HS,-5.419195046439628,55.499266520205566,-0.09764444444444445,7198.4251062742915,2019
+1995,45,"(40,45]",HS,-28.644316674038038,55.499266520205566,-0.516120634920635,7158.811977827853,2019
+1995,58,"(55,60]",College,162.9822910216718,178.3904995292322,0.9136265185185185,7320.556047685833,2019
+1995,58,"(55,60]",College,154.25351614329944,178.3904995292322,0.8646958024691359,7213.04454124107,2019
+1995,58,"(55,60]",College,154.65995577178242,178.3904995292322,0.8669741728395064,7329.658572876981,2019
+1995,58,"(55,60]",College,169.1756567890314,178.3904995292322,0.9483445432098765,7316.862409758045,2019
+1995,58,"(55,60]",College,152.51163202122953,178.3904995292322,0.8549313580246913,7220.832601809894,2019
+1995,70,"(65,70]",HS,519.8169305616984,43.606566551590085,11.920611313131317,4076.337602165516,2019
+1995,70,"(65,70]",HS,432.3356390977444,43.606566551590085,9.91446181818182,8586.55855048917,2019
+1995,70,"(65,70]",HS,645.2325873507298,43.606566551590085,14.796684040404044,4189.977440231583,2019
+1995,70,"(65,70]",HS,404.2913047324193,43.606566551590085,9.271340000000002,8689.935948656475,2019
+1995,70,"(65,70]",HS,437.56129146395403,43.606566551590085,10.034298181818185,8505.396319433648,2019
+1995,79,"(75,80]",HS,381.66616541353386,37.660216567282355,10.134465497076024,8187.537735377124,2019
+1995,79,"(75,80]",HS,381.66616541353386,37.660216567282355,10.134465497076024,8090.940424252183,2019
+1995,79,"(75,80]",HS,381.66616541353386,37.660216567282355,10.134465497076024,8361.051734889581,2019
+1995,79,"(75,80]",HS,381.66616541353386,37.660216567282355,10.134465497076024,8393.361747695828,2019
+1995,79,"(75,80]",HS,381.66616541353386,37.660216567282355,10.134465497076024,8294.701111177901,2019
+1995,52,"(50,55]",College,8.324270676691729,39.642333228718265,0.20998437777777776,7980.563323605927,2019
+1995,52,"(50,55]",College,8.324270676691729,39.642333228718265,0.20998437777777776,7989.458380020244,2019
+1995,52,"(50,55]",College,8.324270676691729,39.642333228718265,0.20998437777777776,7905.5699739883175,2019
+1995,52,"(50,55]",College,8.324270676691729,39.642333228718265,0.20998437777777776,8364.594970752512,2019
+1995,52,"(50,55]",College,8.324270676691729,39.642333228718265,0.20998437777777776,8042.191679808764,2019
+1995,61,"(60,65]",HS,8827.481645289696,1783.9049952923222,4.948403456790123,1006.0102874525213,2019
+1995,61,"(60,65]",HS,8827.481645289696,1783.9049952923222,4.948403456790123,909.7705000166834,2019
+1995,61,"(60,65]",HS,8827.481645289696,1783.9049952923222,4.948403456790123,903.56555157208345,2019
+1995,61,"(60,65]",HS,8827.481645289696,1783.9049952923222,4.948403456790123,914.73611921334,2019
+1995,61,"(60,65]",HS,8827.481645289696,1783.9049952923222,4.948403456790123,904.8694376098329,2019
+1995,42,"(40,45]",HS,887.1802919062362,120.90911634759071,7.337579817850638,4007.7581965390614,2019
+1995,42,"(40,45]",HS,887.1802919062362,126.85546633189846,6.993630763888889,4157.322201110228,2019
+1995,42,"(40,45]",HS,887.1802919062362,118.92699968615479,7.4598728148148155,4097.132575056216,2019
+1995,42,"(40,45]",HS,887.1802919062362,116.94488302471889,7.586311337099811,3892.022942623395,2019
+1995,42,"(40,45]",HS,887.1802919062362,140.73028296194985,6.3041178716744914,4129.8668439536405,2019
+1995,55,"(50,55]",NoHS,16.993047324192833,37.660216567282355,0.4512201169590643,7556.761629079777,2019
+1995,55,"(50,55]",NoHS,17.05111012826183,37.660216567282355,0.45276187134502915,7394.854866849433,2019
+1995,55,"(50,55]",NoHS,17.147881468376827,37.660216567282355,0.45533146198830415,7514.757519175064,2019
+1995,55,"(50,55]",NoHS,16.896275984077842,37.660216567282355,0.44865052631578944,7278.1187218941905,2019
+1995,55,"(50,55]",NoHS,17.147881468376827,37.660216567282355,0.45533146198830415,7254.822137927411,2019
+1995,32,"(30,35]",HS,114.28695267580716,83.24889978030835,1.3728343915343917,4736.13416161428,2019
+1995,32,"(30,35]",HS,153.57611676249448,79.28466645743653,1.9370216666666669,4664.405256472653,2019
+1995,32,"(30,35]",HS,156.47925696594427,67.39196648882105,2.321927450980392,4693.268183547766,2019
+1995,32,"(30,35]",HS,116.02883679787705,87.21313310318017,1.3304055555555558,4635.114118794602,2019
+1995,32,"(30,35]",HS,117.77072091994692,65.40984982738514,1.800504377104377,4688.148568212227,2019
+1995,87,"(85,90]",College,1234.8603626713843,118.92699968615479,10.383347481481483,1387.2332469249302,2019
+1995,87,"(85,90]",College,1234.8603626713843,118.92699968615479,10.383347481481483,1405.8718873911594,2019
+1995,87,"(85,90]",College,1234.8603626713843,118.92699968615479,10.383347481481483,1397.6988354140713,2019
+1995,87,"(85,90]",College,1234.8603626713843,118.92699968615479,10.383347481481483,1367.0122703852753,2019
+1995,87,"(85,90]",College,1234.8603626713843,118.92699968615479,10.383347481481483,1396.5339453311462,2019
+1995,67,"(65,70]",HS,1.664467049977886,14.865874960769348,0.11196562962962964,9695.319200752905,2019
+1995,67,"(65,70]",HS,1.664467049977886,14.865874960769348,0.11196562962962964,9700.126692077934,2019
+1995,67,"(65,70]",HS,1.664467049977886,14.865874960769348,0.11196562962962964,9654.02633777032,2019
+1995,67,"(65,70]",HS,1.664467049977886,14.865874960769348,0.11196562962962964,9733.330543537677,2019
+1995,67,"(65,70]",HS,1.664467049977886,14.865874960769348,0.11196562962962964,9734.843322479366,2019
+1995,76,"(75,80]",NoHS,64.89486068111455,25.76751659866687,2.518475555555556,8282.677058990554,2019
+1995,76,"(75,80]",NoHS,26.186324635117206,25.76751659866687,1.0162533333333335,8142.392547350391,2019
+1995,76,"(75,80]",NoHS,30.05717823971694,25.76751659866687,1.1664755555555557,8310.039914284698,2019
+1995,76,"(75,80]",NoHS,35.86345864661654,25.76751659866687,1.391808888888889,8396.86721274909,2019
+1995,76,"(75,80]",NoHS,39.734312251216274,25.76751659866687,1.5420311111111111,8298.350612256943,2019
+1995,62,"(60,65]",College,1187.1908005307387,202.17589946646316,5.872068845315904,2820.843497452025,2019
+1995,62,"(60,65]",College,1187.1908005307387,202.17589946646316,5.872068845315904,2413.7287199607663,2019
+1995,62,"(60,65]",College,1187.1908005307387,202.17589946646316,5.872068845315904,2491.4098176757243,2019
+1995,62,"(60,65]",College,1187.1908005307387,202.17589946646316,5.872068845315904,2415.6422007682622,2019
+1995,62,"(60,65]",College,1187.1908005307387,202.17589946646316,5.872068845315904,2491.09648851589,2019
+1995,82,"(80,85]",NoHS,451738.2927908005,2695.678659552842,167.57868790849673,4.756923591685615,2019
+1995,82,"(80,85]",NoHS,447832.6015037594,11813.415302158042,37.908817225950784,3.7928562004130293,2019
+1995,82,"(80,85]",NoHS,450048.6651923928,8047.393645429808,55.924773289545705,5.148934604028179,2019
+1995,82,"(80,85]",NoHS,450470.5882352941,12685.546633189844,35.51053819444444,3.539786476402375,2019
+1995,82,"(80,85]",NoHS,452210.5369305617,4657.974154374397,97.08309276595743,3.8741007175455637,2019
+1995,57,"(55,60]",College,25033.197346306944,2061.4013278933503,12.143776666666664,335.3841153544347,2019
+1995,57,"(55,60]",College,24268.510216718267,2418.182326951814,10.035847978142078,378.33237136523985,2019
+1995,57,"(55,60]",College,24969.521804511278,2180.3283275795047,11.452184282828282,322.9191829544208,2019
+1995,57,"(55,60]",College,25145.8391862008,2120.8648277364273,11.856408224299066,411.04806173591686,2019
+1995,57,"(55,60]",College,26036.32905793897,2061.4013278933503,12.630402777777777,317.8487671789361,2019
+1995,66,"(65,70]",College,35762.17776205219,2497.466993409251,14.319379537918872,16.922237812228754,2019
+1995,66,"(65,70]",College,65895.28279522336,713.5619981169287,92.34696209876545,33.67646613186312,2019
+1995,66,"(65,70]",College,41041.48015922158,1666.9601122676029,24.620553219711983,18.149931201243074,2019
+1995,66,"(65,70]",College,78915.86660769572,2497.466993409251,31.598362186948854,32.61955909005104,2019
+1995,66,"(65,70]",College,71218.36454666077,2497.466993409251,28.516238546737213,28.36026977516257,2019
+1995,65,"(60,65]",HS,70.73984962406016,41.624449890154175,1.6994783068783073,8259.622956578512,2019
+1995,65,"(60,65]",HS,70.73984962406016,41.624449890154175,1.6994783068783073,8140.859237104771,2019
+1995,65,"(60,65]",HS,70.73984962406016,41.624449890154175,1.6994783068783073,8174.759150656551,2019
+1995,65,"(60,65]",HS,70.73984962406016,41.624449890154175,1.6994783068783073,8590.37999498498,2019
+1995,65,"(60,65]",HS,70.73984962406016,41.624449890154175,1.6994783068783073,8362.07780475569,2019
+1995,54,"(50,55]",College,8903.73746130031,277.4963326010279,32.08596444444444,180.73948442828618,2019
+1995,54,"(50,55]",College,8903.73746130031,277.4963326010279,32.08596444444444,157.57309999359973,2019
+1995,54,"(50,55]",College,8903.73746130031,277.4963326010279,32.08596444444444,166.83981755530678,2019
+1995,54,"(50,55]",College,8903.73746130031,277.4963326010279,32.08596444444444,160.74866058682576,2019
+1995,54,"(50,55]",College,8903.73746130031,277.4963326010279,32.08596444444444,162.38943695053499,2019
+1995,44,"(40,45]",HS,314.10041574524547,116.94488302471889,2.685884218455744,4424.014719125092,2019
+1995,44,"(40,45]",HS,106.83555948695269,107.03429971753931,0.9981432098765434,8228.284602800533,2019
+1995,44,"(40,45]",HS,217.1548872180451,138.74816630051396,1.565100952380952,8127.31845502193,2019
+1995,44,"(40,45]",HS,277.07570101724906,112.98064970184706,2.452417309941521,4313.904772955208,2019
+1995,44,"(40,45]",HS,107.14522777532066,124.87334967046255,0.8580311816578483,8187.918353668494,2019
+1995,24,"(20,25]",HS,-5.322423706324636,37.660216567282355,-0.14132748538011697,8786.466529419982,2019
+1995,24,"(20,25]",HS,-5.4966121185316235,41.624449890154175,-0.1320524867724868,8841.3236178954,2019
+1995,24,"(20,25]",HS,-5.303069438301637,35.67809990584644,-0.14863654320987654,8831.469507741833,2019
+1995,24,"(20,25]",HS,-5.39984077841663,33.69598324441053,-0.16025176470588234,9046.295724081985,2019
+1995,24,"(20,25]",HS,-5.341777974347634,37.660216567282355,-0.14184140350877192,9019.99960903876,2019
+1995,79,"(75,80]",College,3686.9880583812474,178.3904995292322,20.668074074074077,909.8252989170123,2019
+1995,79,"(75,80]",College,5341.777974347634,178.3904995292322,29.944296296296297,719.5347173005113,2019
+1995,79,"(75,80]",College,3830.2096417514376,178.3904995292322,21.47092839506173,707.0568756725786,2019
+1995,79,"(75,80]",College,4807.600176912871,178.3904995292322,26.94986666666667,706.228578230651,2019
+1995,79,"(75,80]",College,3154.745687748784,178.3904995292322,17.684493827160495,725.8370669136132,2019
+1995,38,"(35,40]",NoHS,-1.9354268022998675,75.32043313456471,-0.02569590643274854,6074.333298590279,2019
+1995,38,"(35,40]",NoHS,-1.9354268022998675,75.32043313456471,-0.02569590643274854,6116.670172660682,2019
+1995,38,"(35,40]",NoHS,-1.9354268022998675,75.32043313456471,-0.02569590643274854,6115.7268190586565,2019
+1995,38,"(35,40]",NoHS,-1.9354268022998675,75.32043313456471,-0.02569590643274854,6103.683467955626,2019
+1995,38,"(35,40]",NoHS,-1.9354268022998675,75.32043313456471,-0.02569590643274854,6118.359407814534,2019
+1995,73,"(70,75]",NoHS,-0.9677134011499338,5.946349984307739,-0.16274074074074077,10084.534813964252,2019
+1995,73,"(70,75]",NoHS,-0.9677134011499338,5.946349984307739,-0.16274074074074077,10140.622684911628,2019
+1995,73,"(70,75]",NoHS,-0.9677134011499338,5.946349984307739,-0.16274074074074077,10123.261939705631,2019
+1995,73,"(70,75]",NoHS,-0.9677134011499338,5.946349984307739,-0.16274074074074077,10135.271841867461,2019
+1995,73,"(70,75]",NoHS,-0.9677134011499338,5.946349984307739,-0.16274074074074077,10108.768040837542,2019
+1995,39,"(35,40]",College,520.8233524988942,95.14159974892382,5.474191666666667,4699.61304595537,2019
+1995,39,"(35,40]",College,520.8233524988942,95.14159974892382,5.474191666666667,4891.632698343857,2019
+1995,39,"(35,40]",College,520.8233524988942,95.14159974892382,5.474191666666667,4824.599831795256,2019
+1995,39,"(35,40]",College,520.8233524988942,95.14159974892382,5.474191666666667,4583.469353320966,2019
+1995,39,"(35,40]",College,520.8233524988942,95.14159974892382,5.474191666666667,4855.689763058988,2019
+1995,64,"(60,65]",HS,19.354268022998674,15.460509959200122,1.251851851851852,6820.560264171402,2019
+1995,64,"(60,65]",HS,19.354268022998674,15.460509959200122,1.251851851851852,6833.803036755984,2019
+1995,64,"(60,65]",HS,19.354268022998674,15.460509959200122,1.251851851851852,6812.948408986593,2019
+1995,64,"(60,65]",HS,19.354268022998674,15.460509959200122,1.251851851851852,6825.007027309419,2019
+1995,64,"(60,65]",HS,19.354268022998674,15.460509959200122,1.251851851851852,6794.719837834542,2019
+1995,39,"(35,40]",HS,186.7686864219372,120.90911634759071,1.544703096539162,5124.512070868364,2019
+1995,39,"(35,40]",HS,197.29740822644845,132.8018163162062,1.4856529353233827,5054.0095689404925,2019
+1995,39,"(35,40]",HS,172.0787969924812,128.8375829933344,1.3356257777777774,5049.743734709701,2019
+1995,39,"(35,40]",HS,225.9997877045555,120.90911634759071,1.8691707832422586,5103.752981609081,2019
+1995,39,"(35,40]",HS,209.21963732861565,126.85546633189846,1.6492756944444442,5068.048534789433,2019
+1995,59,"(55,60]",HS,1313.18708536046,136.76604963907803,9.601703703703704,3127.23147522204,2019
+1995,59,"(55,60]",HS,1370.475718708536,136.76604963907803,10.02058421900161,2675.3096657376896,2019
+1995,59,"(55,60]",HS,1167.64298982751,136.76604963907803,8.53752077294686,2759.81686899869,2019
+1995,59,"(55,60]",HS,1426.9901813356921,136.76604963907803,10.43380418679549,2676.687332639035,2019
+1995,59,"(55,60]",HS,1145.9662096417514,136.76604963907803,8.379025442834138,5275.40829728064,2019
+1995,39,"(35,40]",College,759.8485625829279,178.3904995292322,4.2594676543209875,3853.8083751819586,2019
+1995,39,"(35,40]",College,864.3616099071207,178.3904995292322,4.8453343209876545,4012.798448138748,2019
+1995,39,"(35,40]",College,812.1050862450244,178.3904995292322,4.552400987654321,3957.9818366227555,2019
+1995,39,"(35,40]",College,758.880849181778,178.3904995292322,4.254042962962963,3757.890377688439,2019
+1995,39,"(35,40]",College,934.036974789916,178.3904995292322,5.235912098765433,3985.473612413156,2019
+1995,54,"(50,55]",College,543.4678460858028,297.31749921538704,1.8279039999999998,4785.439113345088,2019
+1995,54,"(50,55]",College,520.0491817779744,297.31749921538704,1.7491374814814813,4984.740567204883,2019
+1995,54,"(50,55]",College,601.3371074745688,297.31749921538704,2.0225419259259256,4925.271122612006,2019
+1995,54,"(50,55]",College,480.4309951348961,297.31749921538704,1.6158853629629628,4673.858741835149,2019
+1995,54,"(50,55]",College,574.2411322423707,297.31749921538704,1.9314071111111109,4938.740256052047,2019
+1995,52,"(50,55]",College,660.5611676249447,118.92699968615479,5.554341481481481,3434.2611641432277,2019
+1995,52,"(50,55]",College,679.9154356479435,118.92699968615479,5.717082222222223,3582.188706632091,2019
+1995,52,"(50,55]",College,685.721716054843,118.92699968615479,5.765904444444445,3545.740580864668,2019
+1995,52,"(50,55]",College,674.1091552410438,118.92699968615479,5.668260000000001,3349.1200049727777,2019
+1995,52,"(50,55]",College,677.9800088456435,118.92699968615479,5.700808148148148,3555.8121585144895,2019
+1995,34,"(30,35]",College,45.48252985404688,49.55291653589783,0.9178577777777778,6787.95987332671,2019
+1995,34,"(30,35]",College,45.48252985404688,49.55291653589783,0.9178577777777778,6820.351312703955,2019
+1995,34,"(30,35]",College,45.48252985404688,49.55291653589783,0.9178577777777778,6832.299305887604,2019
+1995,34,"(30,35]",College,45.48252985404688,49.55291653589783,0.9178577777777778,6922.150169131282,2019
+1995,34,"(30,35]",College,45.48252985404688,49.55291653589783,0.9178577777777778,6855.128947753305,2019
+1995,33,"(30,35]",HS,459.25742591773553,186.31896617497586,2.4648989598108746,2908.159971716891,2019
+1995,33,"(30,35]",HS,435.0839451570102,112.98064970184706,3.850959844054581,3023.514672628909,2019
+1995,33,"(30,35]",HS,427.34223794781076,164.5156828991808,2.597577510040161,2988.045834131407,2019
+1995,33,"(30,35]",HS,502.2432551968156,241.81823269518142,2.076945355191257,2823.7261151033404,2019
+1995,33,"(30,35]",HS,544.8226448474126,69.37408315025698,7.853403174603172,3005.828088312208,2019
+1995,46,"(45,50]",HS,1134.8955683325962,186.31896617497586,6.091143546099291,4430.534884374041,2019
+1995,46,"(45,50]",HS,2102.067049977886,164.5156828991808,12.777304953145919,2320.097088094191,2019
+1995,46,"(45,50]",HS,1267.29811587793,150.64086626912942,8.412711286549706,4561.933935492161,2019
+1995,46,"(45,50]",HS,1425.0741088014152,170.46203288348855,8.360067545219637,2321.2234022991283,2019
+1995,46,"(45,50]",HS,1201.6484387439186,192.26531615928357,6.249949095074457,4576.690483488634,2019
+1995,53,"(50,55]",College,1571.9536488279523,699.6871814868774,2.2466520616934216,223.01190233627577,2019
+1995,53,"(50,55]",College,1573.8890756302521,699.6871814868774,2.2494181932640855,190.29188118434638,2019
+1995,53,"(50,55]",College,1573.8890756302521,699.6871814868774,2.2494181932640855,188.14617505716546,2019
+1995,53,"(50,55]",College,1573.8890756302521,699.6871814868774,2.2494181932640855,176.8816712435185,2019
+1995,53,"(50,55]",College,1573.8890756302521,699.6871814868774,2.2494181932640855,183.50877023711104,2019
+1995,64,"(60,65]",NoHS,473.40539584254753,81.26678311887244,5.825324661246612,4132.986620170418,2019
+1995,64,"(60,65]",NoHS,473.40539584254753,81.26678311887244,5.825324661246612,4296.287078424561,2019
+1995,64,"(60,65]",NoHS,473.40539584254753,81.26678311887244,5.825324661246612,4246.951847995295,2019
+1995,64,"(60,65]",NoHS,473.40539584254753,81.26678311887244,5.825324661246612,4026.200393400729,2019
+1995,64,"(60,65]",NoHS,473.40539584254753,81.26678311887244,5.825324661246612,4257.347047085305,2019
+1995,57,"(55,60]",HS,1005.647766475011,154.60509959200127,6.5046222222222205,3914.3233042414586,2019
+1995,57,"(55,60]",HS,1005.647766475011,154.60509959200127,6.5046222222222205,4068.327735524583,2019
+1995,57,"(55,60]",HS,1005.647766475011,154.60509959200127,6.5046222222222205,4023.75463924796,2019
+1995,57,"(55,60]",HS,1005.647766475011,154.60509959200127,6.5046222222222205,3815.771170947304,2019
+1995,57,"(55,60]",HS,1005.647766475011,154.60509959200127,6.5046222222222205,4030.821756198994,2019
+1995,46,"(45,50]",College,1021.227952233525,319.12078249118207,3.2001298826777083,7468.72686064229,2019
+1995,46,"(45,50]",College,1042.5176470588235,321.1028991526179,3.246677777777778,7567.848016139035,2019
+1995,46,"(45,50]",College,1038.6467934542238,331.01348245979744,3.1377779108449775,7415.646313855805,2019
+1995,46,"(45,50]",College,1042.5176470588235,388.494865641439,2.6834785714285716,7262.959298852457,2019
+1995,46,"(45,50]",College,1050.2593542680231,325.06713247548976,3.2308998644986455,7418.83103720287,2019
+1995,46,"(45,50]",College,431.32921716054847,198.21166614359132,2.176104088888889,5183.691854682871,2019
+1995,46,"(45,50]",College,435.52909332153916,182.354732852104,2.3883618840579715,5400.450604218068,2019
+1995,46,"(45,50]",College,346.0349579831933,158.56933291487306,2.182231277777778,5333.177827377688,2019
+1995,46,"(45,50]",College,426.2196904024768,178.3904995292322,2.389251061728395,5059.396583144762,2019
+1995,46,"(45,50]",College,366.9182131800089,162.53356623774488,2.2574919241192415,5351.453080604655,2019
+1995,22,"(20,25]",HS,16.412419283502874,35.67809990584644,0.4600138271604938,5065.706708428521,2019
+1995,22,"(20,25]",HS,16.412419283502874,39.642333228718265,0.41401244444444446,5076.025020308094,2019
+1995,22,"(20,25]",HS,16.412419283502874,37.660216567282355,0.43580257309941517,5099.442951601033,2019
+1995,22,"(20,25]",HS,16.412419283502874,35.67809990584644,0.4600138271604938,5069.433617581817,2019
+1995,22,"(20,25]",HS,16.412419283502874,35.67809990584644,0.4600138271604938,5067.4828280296915,2019
+1995,56,"(55,60]",HS,569.402565236621,166.4977995606167,3.4198804232804236,8509.461707605318,2019
+1995,56,"(55,60]",HS,569.8283591331269,184.33684951353993,3.091234121863799,8624.406913773299,2019
+1995,56,"(55,60]",HS,608.6917293233082,158.56933291487306,3.838647222222222,8501.061800142383,2019
+1995,56,"(55,60]",HS,628.878230871296,170.46203288348855,3.6892568992248065,8288.402883143122,2019
+1995,56,"(55,60]",HS,652.7807518796993,156.58721625343713,4.168799774964839,8457.706035488603,2019
+1995,67,"(65,70]",HS,439.72896948252986,47.57079987446191,9.243674074074075,3202.8669185117856,2019
+1995,67,"(65,70]",HS,439.72896948252986,39.642333228718265,11.092408888888889,3225.302073676413,2019
+1995,67,"(65,70]",HS,439.72896948252986,41.624449890154175,10.564198941798944,3255.96711085506,2019
+1995,67,"(65,70]",HS,439.72896948252986,45.588683213026,9.645572946859904,3357.495142479488,2019
+1995,67,"(65,70]",HS,439.72896948252986,41.624449890154175,10.564198941798944,3231.6983142433114,2019
+1995,42,"(40,45]",HS,107.8419814241486,87.21313310318017,1.2365337373737375,6075.981225836813,2019
+1995,42,"(40,45]",HS,106.85491375497567,67.39196648882105,1.5855734640522874,6155.882352153605,2019
+1995,42,"(40,45]",HS,105.44205218929677,77.30254979600063,1.3640177777777776,6086.222457081867,2019
+1995,42,"(40,45]",HS,106.33234851835472,67.39196648882105,1.5778193464052288,6067.687581932784,2019
+1995,42,"(40,45]",HS,108.11294117647058,71.35619981169287,1.5151162962962963,6093.821798245333,2019
+1995,41,"(40,45]",College,16684.346749226006,596.6171150922099,27.964914728682167,328.81521582655876,2019
+1995,41,"(40,45]",College,36978.65157010173,360.7452323813362,102.50627936507937,593.9652302619086,2019
+1995,41,"(40,45]",College,17224.13728438744,1187.287880200112,14.507128028195142,291.8265657887194,2019
+1995,41,"(40,45]",College,52745.99310039806,360.7452323813362,146.21397142857145,226.92318413262643,2019
+1995,41,"(40,45]",College,38086.102786377705,1674.888578913347,22.73948444444444,491.25530744380757,2019
+1995,48,"(45,50]",College,281.8949137549757,71.35619981169287,3.9505314814814816,5084.455103676772,2019
+1995,48,"(45,50]",College,281.8949137549757,71.35619981169287,3.9505314814814816,4936.240426816672,2019
+1995,48,"(45,50]",College,281.8949137549757,71.35619981169287,3.9505314814814816,4965.004893960433,2019
+1995,48,"(45,50]",College,281.8949137549757,71.35619981169287,3.9505314814814816,5104.455394680153,2019
+1995,48,"(45,50]",College,281.8949137549757,71.35619981169287,3.9505314814814816,5013.528882734597,2019
+1995,65,"(60,65]",College,103347.1462184874,49533.09536928347,2.08642616513272,193.03694560323368,2019
+1995,65,"(60,65]",College,105774.94559929236,49116.85087038193,2.1535367949062865,196.9320708918026,2019
+1995,65,"(60,65]",College,105734.49517912428,48343.82537242193,2.1871354689991342,191.40220674000443,2019
+1995,65,"(60,65]",College,106236.54489164088,47749.19037399116,2.2248868317882016,191.62032092337196,2019
+1995,65,"(60,65]",College,106026.55108359133,48581.679371794235,2.182438986354776,183.0286357281281,2019
+1995,35,"(30,35]",College,160.83396727111898,158.56933291487306,1.0142816666666667,6378.095963542223,2019
+1995,35,"(30,35]",College,160.83396727111898,158.56933291487306,1.0142816666666667,6418.227291295198,2019
+1995,35,"(30,35]",College,160.83396727111898,158.56933291487306,1.0142816666666667,6373.732560378583,2019
+1995,35,"(30,35]",College,160.83396727111898,158.56933291487306,1.0142816666666667,6619.352804676008,2019
+1995,35,"(30,35]",College,160.83396727111898,158.56933291487306,1.0142816666666667,6430.65835432211,2019
+1995,32,"(30,35]",HS,-40.8375055285272,15.460509959200122,-2.641407407407408,5511.704135963302,2019
+1995,32,"(30,35]",HS,-40.8375055285272,15.460509959200122,-2.641407407407408,5403.762288338964,2019
+1995,32,"(30,35]",HS,-40.8375055285272,15.460509959200122,-2.641407407407408,5420.206017154488,2019
+1995,32,"(30,35]",HS,-40.8375055285272,15.460509959200122,-2.641407407407408,5398.86998238928,2019
+1995,32,"(30,35]",HS,-40.8375055285272,15.460509959200122,-2.641407407407408,5391.023294860696,2019
+1995,52,"(50,55]",HS,564.7575409111013,138.74816630051396,4.070378412698412,3136.2565213285316,2019
+1995,52,"(50,55]",HS,578.3055285272003,138.74816630051396,4.168022857142856,3267.5581723754262,2019
+1995,52,"(50,55]",HS,570.5638213180009,138.74816630051396,4.112226031746031,3211.0735150542696,2019
+1995,52,"(50,55]",HS,563.0156567890314,138.74816630051396,4.0578241269841255,3068.8345257422384,2019
+1995,52,"(50,55]",HS,554.499778858912,138.74816630051396,3.9964476190476184,3220.271344539985,2019
+1995,34,"(30,35]",HS,320.700221141088,79.28466645743653,4.044921111111111,5895.090792449292,2019
+1995,34,"(30,35]",HS,69.52053073861124,71.35619981169287,0.9742745679012347,5956.904829474124,2019
+1995,34,"(30,35]",HS,68.4754002653693,71.35619981169287,0.9596279012345679,6019.371675729066,2019
+1995,34,"(30,35]",HS,72.28819106590004,85.23101644174427,0.8481441860465115,5979.178324830511,2019
+1995,34,"(30,35]",HS,126.67368421052632,67.39196648882105,1.8796555555555554,5871.154371479039,2019
+1995,28,"(25,30]",HS,83.82333480760725,3.9642333228718267,21.144904444444443,6005.215180919561,2019
+1995,28,"(25,30]",HS,83.80398053958426,3.9642333228718267,21.14002222222222,5972.417599391028,2019
+1995,28,"(25,30]",HS,33.34740380362672,3.9642333228718267,8.41206888888889,6035.0471196924955,2019
+1995,28,"(25,30]",HS,33.36675807164971,3.9642333228718267,8.41695111111111,5994.749098630067,2019
+1995,28,"(25,30]",HS,33.502237947810706,3.9642333228718267,8.451126666666667,6001.101654681641,2019
+1995,50,"(45,50]",HS,96.61650597080938,103.07006639466748,0.9373866666666668,6870.986285058119,2019
+1995,50,"(45,50]",HS,96.61650597080938,103.07006639466748,0.9373866666666668,6712.816360752246,2019
+1995,50,"(45,50]",HS,96.61650597080938,103.07006639466748,0.9373866666666668,6801.694869381943,2019
+1995,50,"(45,50]",HS,96.61650597080938,103.07006639466748,0.9373866666666668,6995.607698390202,2019
+1995,50,"(45,50]",HS,96.61650597080938,103.07006639466748,0.9373866666666668,6853.6437016653945,2019
+1995,66,"(65,70]",HS,126.9639982308713,99.10583307179566,1.2810951111111113,386.8080871854267,2019
+1995,66,"(65,70]",HS,126.77045555064132,99.10583307179566,1.2791422222222224,395.99313004402654,2019
+1995,66,"(65,70]",HS,126.18982750995136,99.10583307179566,1.2732835555555557,390.31295531428697,2019
+1995,66,"(65,70]",HS,125.80274214949138,99.10583307179566,1.269377777777778,382.43257412639684,2019
+1995,66,"(65,70]",HS,126.77045555064132,99.10583307179566,1.2791422222222224,388.0474003641573,2019
+1995,65,"(60,65]",College,2295.6097302078724,204.15801612789906,11.244279180151024,2936.3857764583113,2019
+1995,65,"(60,65]",College,2876.237770897833,204.15801612789906,14.088292125134844,2472.4344878926668,2019
+1995,65,"(60,65]",College,2585.9237505528527,204.15801612789906,12.666285652642934,2492.1790874086632,2019
+1995,65,"(60,65]",College,1579.5018133569217,204.15801612789906,7.736663214670982,2511.5902807807392,2019
+1995,65,"(60,65]",College,2218.1926581158777,204.15801612789906,10.865077454153182,2424.584177689375,2019
+1995,37,"(35,40]",HS,90.82957983193278,61.44561650451331,1.4782108960573477,5849.879589926943,2019
+1995,37,"(35,40]",HS,104.59046439628484,61.44561650451331,1.702163154121864,5801.607677142505,2019
+1995,37,"(35,40]",HS,88.41029632905794,53.517149858769656,1.6519993415637861,5838.659831297222,2019
+1995,37,"(35,40]",HS,87.28774878372403,69.37408315025698,1.2582184126984126,5906.568843769537,2019
+1995,37,"(35,40]",HS,126.7123927465723,89.1952497646161,1.4206181728395062,5851.319624035039,2019
+1995,28,"(25,30]",HS,169.1756567890314,71.35619981169287,2.3708613580246913,6744.26647884396,2019
+1995,28,"(25,30]",HS,197.95545333923042,63.42773316594923,3.120960555555555,6753.555285935964,2019
+1995,28,"(25,30]",HS,84.98459088898719,65.40984982738514,1.2992628956228958,6910.177449005423,2019
+1995,28,"(25,30]",HS,175.65933657673597,79.28466645743653,2.2155524444444445,6839.391035472136,2019
+1995,28,"(25,30]",HS,98.41645289694826,71.35619981169287,1.379227777777778,6793.784246123856,2019
+1995,52,"(50,55]",NoHS,155.58896063688633,128.8375829933344,1.207636444444444,7682.488304220513,2019
+1995,52,"(50,55]",NoHS,139.8345864661654,128.8375829933344,1.0853555555555552,7431.973875674019,2019
+1995,52,"(50,55]",NoHS,144.69250773993807,128.8375829933344,1.123061333333333,7473.395060405343,2019
+1995,52,"(50,55]",NoHS,140.55069438301635,128.8375829933344,1.0909137777777773,7684.980945271341,2019
+1995,52,"(50,55]",NoHS,146.02795223352499,128.8375829933344,1.1334266666666664,7552.81010534777,2019
+1995,54,"(50,55]",College,1561.502344095533,386.5127489800031,4.039976296296296,2922.1385265522536,2019
+1995,54,"(50,55]",College,1564.5990269792128,336.95983244410525,4.643280522875817,2504.991759833575,2019
+1995,54,"(50,55]",College,1564.5990269792128,332.9955991212334,4.698557671957673,2582.950278499724,2019
+1995,54,"(50,55]",College,1562.276514816453,360.7452323813362,4.330692063492064,2507.6147474233976,2019
+1995,54,"(50,55]",College,1563.6313135780626,311.1923158454383,5.024646284501062,2583.8592752952295,2019
+1995,45,"(40,45]",College,311.79725785050863,495.5291653589783,0.6292208,1088.290727947336,2019
+1995,45,"(40,45]",College,311.79725785050863,495.5291653589783,0.6292208,1114.132992651645,2019
+1995,45,"(40,45]",College,311.79725785050863,495.5291653589783,0.6292208,1098.151730376399,2019
+1995,45,"(40,45]",College,311.79725785050863,495.5291653589783,0.6292208,1075.9801521090596,2019
+1995,45,"(40,45]",College,311.79725785050863,495.5291653589783,0.6292208,1091.7775553589586,2019
+1995,54,"(50,55]",College,135.4798761609907,317.1386658297461,0.42719444444444443,228.1879586242988,2019
+1995,54,"(50,55]",College,135.4798761609907,317.1386658297461,0.42719444444444443,231.23325082294332,2019
+1995,54,"(50,55]",College,135.4798761609907,317.1386658297461,0.42719444444444443,230.53490666383536,2019
+1995,54,"(50,55]",College,135.4798761609907,317.1386658297461,0.42719444444444443,223.71089000104104,2019
+1995,54,"(50,55]",College,135.4798761609907,317.1386658297461,0.42719444444444443,228.68572926342762,2019
+1995,49,"(45,50]",HS,449.6964175143742,178.3904995292322,2.5208540740740744,3320.7019300114735,2019
+1995,49,"(45,50]",HS,449.6964175143742,178.3904995292322,2.5208540740740744,3459.9481318590756,2019
+1995,49,"(45,50]",HS,449.6964175143742,178.3904995292322,2.5208540740740744,3417.107901073524,2019
+1995,49,"(45,50]",HS,449.6964175143742,178.3904995292322,2.5208540740740744,3242.2119330825108,2019
+1995,49,"(45,50]",HS,449.6964175143742,178.3904995292322,2.5208540740740744,3427.0094983365366,2019
+1995,63,"(60,65]",College,1375.8949137549757,69.37408315025698,19.832981587301585,1287.016030337191,2019
+1995,63,"(60,65]",College,1375.8949137549757,69.37408315025698,19.832981587301585,1238.7365044507942,2019
+1995,63,"(60,65]",College,1375.8949137549757,69.37408315025698,19.832981587301585,1340.1148996687016,2019
+1995,63,"(60,65]",College,1375.8949137549757,69.37408315025698,19.832981587301585,1192.2198478726714,2019
+1995,63,"(60,65]",College,1375.8949137549757,69.37408315025698,19.832981587301585,1297.4403126974642,2019
+1995,36,"(35,40]",HS,24.773463069438304,138.74816630051396,0.17854984126984125,5627.43364901089,2019
+1995,36,"(35,40]",HS,24.773463069438304,138.74816630051396,0.17854984126984125,5735.2533009154495,2019
+1995,36,"(35,40]",HS,24.773463069438304,138.74816630051396,0.17854984126984125,5646.3382066065005,2019
+1995,36,"(35,40]",HS,24.773463069438304,138.74816630051396,0.17854984126984125,5661.831630538502,2019
+1995,36,"(35,40]",HS,24.773463069438304,138.74816630051396,0.17854984126984125,5667.913233901871,2019
+1995,43,"(40,45]",HS,185.10421937195932,107.03429971753931,1.7293916049382718,10776.503103399735,2019
+1995,43,"(40,45]",HS,185.10421937195932,107.03429971753931,1.7293916049382718,10784.721893010515,2019
+1995,43,"(40,45]",HS,185.10421937195932,107.03429971753931,1.7293916049382718,10478.450643885955,2019
+1995,43,"(40,45]",HS,185.2977620521893,107.03429971753931,1.7311998353909468,10765.533054409882,2019
+1995,43,"(40,45]",HS,185.10421937195932,107.03429971753931,1.7293916049382718,10664.36037022802,2019
+1995,74,"(70,75]",HS,156.57602830605927,63.42773316594923,2.468573611111111,10637.56400646668,2019
+1995,74,"(70,75]",HS,165.18867757629368,59.46349984307739,2.777984444444445,10644.988817607302,2019
+1995,74,"(70,75]",HS,171.47881468376826,23.785399937230956,7.209414814814816,10838.349115117064,2019
+1995,74,"(70,75]",HS,158.08566121185316,27.749633260102783,5.696855873015874,10857.009582166811,2019
+1995,74,"(70,75]",HS,156.3437770897833,29.731749921538697,5.258478814814816,10599.616892937456,2019
+1995,60,"(55,60]",College,14573.763821318002,850.3280477560069,17.138989898989898,25.025677784484483,2019
+1995,60,"(55,60]",College,14573.763821318002,1345.8572131149854,10.828610702012762,23.3594980764399,2019
+1995,60,"(55,60]",College,14573.763821318002,709.5977647940571,20.53806331471136,23.770653104857466,2019
+1995,60,"(55,60]",College,14573.763821318002,1135.7528470027783,12.831809191390345,21.344317469959833,2019
+1995,60,"(55,60]",College,14573.763821318002,1262.6083133346767,11.542585034013607,23.937492986433583,2019
+1995,83,"(80,85]",HS,1372.024060150376,152.62298293056534,8.989629437229437,83.04526384456679,2019
+1995,83,"(80,85]",HS,1287.058823529412,186.31896617497586,6.907825059101656,82.84820856824345,2019
+1995,83,"(80,85]",HS,1283.187969924812,152.62298293056534,8.407567099567098,82.19474514520826,2019
+1995,83,"(80,85]",HS,1412.8615656789032,168.47991622205262,8.385934640522876,81.81731713939126,2019
+1995,83,"(80,85]",HS,1300.9938965059707,182.354732852104,7.134412560386473,83.1816952797561,2019
+1995,52,"(50,55]",College,194109.97318000885,14865.87496076935,13.057420010074074,2.8105880616522616,2019
+1995,52,"(50,55]",College,190150.0899425033,15599.258125500639,12.18968802315403,2.243383281743868,2019
+1995,52,"(50,55]",College,306651.17088014155,16312.820123617566,18.798170307546915,3.0383781419960103,2019
+1995,52,"(50,55]",College,227770.5290402477,14647.8421280114,15.549766788152159,2.1023901664096862,2019
+1995,52,"(50,55]",College,226880.6197965502,14152.31296265242,16.031345575474635,2.2997107014584666,2019
+1995,77,"(75,80]",College,1417.4291729323309,297.31749921538704,4.767392355555555,1196.0247441945705,2019
+1995,77,"(75,80]",College,1513.6779478107032,253.7109326637969,5.966151840277778,1018.229523596218,2019
+1995,77,"(75,80]",College,1464.0148960636886,303.2638491996948,4.8275285693536665,1011.7159054194681,2019
+1995,77,"(75,80]",College,1474.601680672269,218.03283275795047,6.763209292929292,1033.539843781718,2019
+1995,77,"(75,80]",College,1689.8598496240602,237.85399937230957,7.104609777777778,988.9799054969313,2019
+1995,51,"(50,55]",College,60.55950464396285,37.660216567282355,1.6080498245614034,8793.538876665629,2019
+1995,51,"(50,55]",College,67.1399557717824,37.660216567282355,1.7827819883040934,8560.51222530544,2019
+1995,51,"(50,55]",College,60.946590004422816,37.660216567282355,1.6183281871345028,8671.665563266191,2019
+1995,51,"(50,55]",College,66.75287041132242,37.660216567282355,1.7725036257309938,8920.8439881844,2019
+1995,51,"(50,55]",College,61.333675364882794,37.660216567282355,1.628606549707602,8745.279274995333,2019
+1995,59,"(55,60]",NoHS,2.903140203449801,11.496276636328297,0.2525287356321839,6914.821058406505,2019
+1995,59,"(55,60]",NoHS,2.903140203449801,11.496276636328297,0.2525287356321839,6919.135028281567,2019
+1995,59,"(55,60]",NoHS,2.903140203449801,11.496276636328297,0.2525287356321839,6919.926541979987,2019
+1995,59,"(55,60]",NoHS,2.903140203449801,11.496276636328297,0.2525287356321839,6925.539363554296,2019
+1995,59,"(55,60]",NoHS,2.903140203449801,11.496276636328297,0.2525287356321839,6905.403478231999,2019
+1995,87,"(85,90]",NoHS,1.9354268022998675,13.081969965477029,0.14794612794612794,6561.672441869656,2019
+1995,87,"(85,90]",NoHS,1.9354268022998675,13.081969965477029,0.14794612794612794,6415.703665280353,2019
+1995,87,"(85,90]",NoHS,1.9354268022998675,13.081969965477029,0.14794612794612794,6625.519132691564,2019
+1995,87,"(85,90]",NoHS,1.9354268022998675,13.081969965477029,0.14794612794612794,6457.426071035623,2019
+1995,87,"(85,90]",NoHS,1.9354268022998675,13.081969965477029,0.14794612794612794,6449.060740990024,2019
+1995,44,"(40,45]",College,2902.172490048651,309.21019918400253,9.385759259259258,149.55134324885168,2019
+1995,44,"(40,45]",College,1914.3306501547988,404.35179893292633,4.734319607843137,94.93161341402124,2019
+1995,44,"(40,45]",College,2192.06439628483,348.8525324127207,6.283641919191921,94.7850052253094,2019
+1995,44,"(40,45]",College,1869.4287483414419,386.5127489800031,4.836654814814815,96.6532027824031,2019
+1995,44,"(40,45]",College,2155.4848297213625,338.9419491055412,6.359451332033789,92.94666177210911,2019
+1995,45,"(40,45]",NoHS,-5.206298098186643,8.324889978030837,-0.6253894179894178,5137.363798516814,2019
+1995,45,"(40,45]",NoHS,-5.206298098186643,8.324889978030837,-0.6253894179894178,5053.262057226063,2019
+1995,45,"(40,45]",NoHS,-5.206298098186643,8.324889978030837,-0.6253894179894178,5103.410604821881,2019
+1995,45,"(40,45]",NoHS,-5.206298098186643,8.324889978030837,-0.6253894179894178,5094.237205686747,2019
+1995,45,"(40,45]",NoHS,-5.206298098186643,8.324889978030837,-0.6253894179894178,5123.833026258012,2019
+1995,36,"(35,40]",HS,331.9256965944272,116.94488302471889,2.838308851224105,4636.463303387209,2019
+1995,36,"(35,40]",HS,331.9256965944272,116.94488302471889,2.838308851224105,4572.675325436328,2019
+1995,36,"(35,40]",HS,331.9256965944272,116.94488302471889,2.838308851224105,4568.815761131305,2019
+1995,36,"(35,40]",HS,331.9256965944272,116.94488302471889,2.838308851224105,4617.681270243104,2019
+1995,36,"(35,40]",HS,331.9256965944272,116.94488302471889,2.838308851224105,4585.3772469219175,2019
+1995,63,"(60,65]",NoHS,78.98476780185759,33.69598324441053,2.344041045751634,5395.9502258495,2019
+1995,63,"(60,65]",NoHS,104.12596196373286,31.713866582974614,3.2832944444444445,5121.122149091927,2019
+1995,63,"(60,65]",NoHS,96.4810260946484,33.69598324441053,2.863279738562092,5269.659816737566,2019
+1995,63,"(60,65]",NoHS,73.21719593100399,37.660216567282355,1.9441522807017544,5105.163478270268,2019
+1995,63,"(60,65]",NoHS,85.9910128261831,35.67809990584644,2.41019037037037,5104.371778120688,2019
+1995,36,"(35,40]",HS,1545.438301636444,332.9955991212334,4.641017195767196,2383.0997985732765,2019
+1995,36,"(35,40]",HS,1545.438301636444,332.9955991212334,4.641017195767196,1907.2517899900918,2019
+1995,36,"(35,40]",HS,1545.438301636444,332.9955991212334,4.641017195767196,2118.646975790628,2019
+1995,36,"(35,40]",HS,1545.438301636444,332.9955991212334,4.641017195767196,1934.5252027286194,2019
+1995,36,"(35,40]",HS,1545.438301636444,332.9955991212334,4.641017195767196,1989.0600020078575,2019
+1995,21,"(20,25]",HS,0.774170720919947,10.70342997175393,0.0723292181069959,5518.3793710479495,2019
+1995,21,"(20,25]",HS,0.774170720919947,14.865874960769348,0.05207703703703705,5619.333167267503,2019
+1995,21,"(20,25]",HS,0.774170720919947,10.30700663946675,0.07511111111111111,5549.27946829673,2019
+1995,21,"(20,25]",HS,0.774170720919947,11.496276636328297,0.06734099616858238,5627.970581832238,2019
+1995,21,"(20,25]",HS,0.774170720919947,10.70342997175393,0.0723292181069959,5514.953356657341,2019
+1995,30,"(25,30]",NoHS,0,49.55291653589783,0,6069.16318766865,2019
+1995,30,"(25,30]",NoHS,0,49.55291653589783,0,6045.748255435567,2019
+1995,30,"(25,30]",NoHS,0,49.55291653589783,0,6039.1162278826205,2019
+1995,30,"(25,30]",NoHS,0,49.55291653589783,0,6070.383397141,2019
+1995,30,"(25,30]",NoHS,0,49.55291653589783,0,6065.3844544304975,2019
+1995,25,"(20,25]",HS,54.96612118531623,81.26678311887244,0.6763663956639567,4576.678701596961,2019
+1995,25,"(20,25]",HS,51.48235294117647,75.32043313456471,0.6835111111111111,4506.121452208015,2019
+1995,25,"(20,25]",HS,52.64360902255639,73.3383164731288,0.7178186186186185,4516.873342270431,2019
+1995,25,"(20,25]",HS,82.44918177797435,75.32043313456471,1.0946456140350875,4487.982636219686,2019
+1995,25,"(20,25]",HS,125.99628482972136,73.3383164731288,1.7180144144144143,4420.365416869883,2019
+1995,42,"(40,45]",HS,1584.2436090225565,99.10583307179566,15.985372000000002,2126.1410480471322,2019
+1995,42,"(40,45]",HS,1427.474038036267,99.10583307179566,14.403532,1740.5284547598549,2019
+1995,42,"(40,45]",HS,1522.3099513489606,99.10583307179566,15.360447555555556,1791.44319522663,2019
+1995,42,"(40,45]",HS,1408.1197700132686,99.10583307179566,14.208243111111114,1755.1473517652662,2019
+1995,42,"(40,45]",HS,1458.440866873065,99.10583307179566,14.715994222222223,1803.283244521665,2019
+1995,32,"(30,35]",NoHS,8.109438301636445,11.099853304041115,0.7305896825396825,5690.039548085178,2019
+1995,32,"(30,35]",NoHS,8.109438301636445,11.496276636328297,0.7053969348659005,5665.528114035775,2019
+1995,32,"(30,35]",NoHS,8.109438301636445,11.099853304041115,0.7305896825396825,5714.737354085041,2019
+1995,32,"(30,35]",NoHS,8.109438301636445,11.099853304041115,0.7305896825396825,5684.372072757606,2019
+1995,32,"(30,35]",NoHS,8.109438301636445,11.298064970184706,0.7177723196881092,5716.963246380946,2019
+1995,66,"(65,70]",College,-19114.66218487395,899.8809642919047,-21.241322956436612,17.481128495327734,2019
+1995,66,"(65,70]",College,-20035.53825740823,899.8809642919047,-22.264653940283896,17.81012891379878,2019
+1995,66,"(65,70]",College,-18796.28447589562,899.8809642919047,-20.887523152227114,17.981744590624892,2019
+1995,66,"(65,70]",College,-16026.108093763822,899.8809642919047,-17.809142241801272,16.943017018412426,2019
+1995,66,"(65,70]",College,-18156.819460415747,899.8809642919047,-20.176912481644642,16.9795240596316,2019
+1995,47,"(45,50]",College,234.07051747014594,77.30254979600063,3.0279792592592587,6272.783891996068,2019
+1995,47,"(45,50]",College,232.71571870853603,77.30254979600063,3.0104533333333325,6250.648528425116,2019
+1995,47,"(45,50]",College,228.07069438301636,77.30254979600063,2.950364444444444,6215.171958215969,2019
+1995,47,"(45,50]",College,246.6507916850951,73.3383164731288,3.363191351351351,6531.9414907963055,2019
+1995,47,"(45,50]",College,237.9413710747457,77.30254979600063,3.0780533333333326,6299.872923624396,2019
+1995,47,"(45,50]",College,4.219230429013711,35.67809990584644,0.11825827160493829,5535.851921375672,2019
+1995,47,"(45,50]",College,4.219230429013711,35.67809990584644,0.11825827160493829,5546.841266452447,2019
+1995,47,"(45,50]",College,4.219230429013711,35.67809990584644,0.11825827160493829,5493.904740082022,2019
+1995,47,"(45,50]",College,4.219230429013711,35.67809990584644,0.11825827160493829,5609.039921292512,2019
+1995,47,"(45,50]",College,4.219230429013711,35.67809990584644,0.11825827160493829,5554.411600935668,2019
+1995,40,"(35,40]",HS,1.2580274214949139,16.649779956061675,0.07555820105820105,8201.437128830637,2019
+1995,40,"(35,40]",HS,1.2580274214949139,16.649779956061675,0.07555820105820105,8230.363742498304,2019
+1995,40,"(35,40]",HS,1.354798761609907,16.649779956061675,0.08137037037037036,8297.584938725991,2019
+1995,40,"(35,40]",HS,1.1612560813799204,16.649779956061675,0.06974603174603174,8190.494932160849,2019
+1995,40,"(35,40]",HS,1.548341441839894,16.649779956061675,0.09299470899470898,8312.463212933979,2019
+1995,62,"(60,65]",College,870.9420610349404,35.67809990584644,24.411111111111115,4619.553345152027,2019
+1995,62,"(60,65]",College,832.2335249889429,35.67809990584644,23.326172839506174,4803.134150595092,2019
+1995,62,"(60,65]",College,764.4935869084476,35.67809990584644,21.427530864197532,4750.718173606378,2019
+1995,62,"(60,65]",College,721.9141972578506,35.67809990584644,20.2340987654321,4502.434207171426,2019
+1995,62,"(60,65]",College,718.0433436532508,35.67809990584644,20.125604938271604,4761.435201666548,2019
+1995,49,"(45,50]",College,573.2927731092437,57.48138318164148,9.973538237547894,3719.1861563986286,2019
+1995,49,"(45,50]",College,430.1292525431225,57.48138318164148,7.482931494252874,6092.731031201698,2019
+1995,49,"(45,50]",College,410.71692171605486,188.30108283641175,2.181171321637427,6128.234602018607,2019
+1995,49,"(45,50]",College,482.13417072092,57.48138318164148,8.387657777777779,3631.277359961436,2019
+1995,49,"(45,50]",College,548.9838124723574,114.96276636328297,4.775318390804598,3838.2506327557726,2019
+1995,85,"(80,85]",NoHS,1799.9469261388767,144.69451628482167,12.439634703196347,2291.710165638352,2019
+1995,85,"(80,85]",NoHS,794.1056169836356,144.69451628482167,5.488152815829529,1031.1872455986936,2019
+1995,85,"(80,85]",NoHS,1076.0973020787262,144.69451628482167,7.437028919330289,1061.437311022973,2019
+1995,85,"(80,85]",NoHS,718.0433436532508,144.69451628482167,4.962477929984779,899.3663967531345,2019
+1995,85,"(80,85]",NoHS,1058.6784608580274,144.69451628482167,7.316645357686453,1046.352101489307,2019
+1995,66,"(65,70]",College,5685.31623175586,495.5291653589783,11.473222222222223,168.8397178311953,2019
+1995,66,"(65,70]",College,5685.31623175586,495.5291653589783,11.473222222222223,152.25714796134818,2019
+1995,66,"(65,70]",College,5685.31623175586,495.5291653589783,11.473222222222223,152.41754460911687,2019
+1995,66,"(65,70]",College,5685.31623175586,495.5291653589783,11.473222222222223,154.68089341254966,2019
+1995,66,"(65,70]",College,5685.31623175586,495.5291653589783,11.473222222222223,151.92675713687998,2019
+1995,34,"(30,35]",College,558.2738611233968,166.4977995606167,3.3530404761904773,8509.461707605318,2019
+1995,34,"(30,35]",College,558.2738611233968,105.0521830561034,5.31425283018868,8624.406913773299,2019
+1995,34,"(30,35]",College,558.2738611233968,101.08794973323158,5.522654901960785,8501.061800142383,2019
+1995,34,"(30,35]",College,558.2738611233968,107.03429971753931,5.215840740740742,8288.402883143122,2019
+1995,34,"(30,35]",College,558.2738611233968,120.90911634759071,4.617301639344263,8457.706035488603,2019
+1995,52,"(50,55]",HS,84.96717204776648,39.642333228718265,2.143344377777778,7321.967050574138,2019
+1995,52,"(50,55]",HS,89.41865369305617,39.642333228718265,2.2556354888888888,7127.936696345254,2019
+1995,52,"(50,55]",HS,84.96717204776648,39.642333228718265,2.143344377777778,7220.488863285641,2019
+1995,52,"(50,55]",HS,89.80573905351613,39.642333228718265,2.2653999333333332,7427.968041185962,2019
+1995,52,"(50,55]",HS,89.61219637328617,39.642333228718265,2.2605177111111114,7281.783545587158,2019
+1995,32,"(30,35]",HS,143.60866873065015,103.07006639466748,1.3933111111111112,3749.439546686293,2019
+1995,32,"(30,35]",HS,143.60866873065015,103.07006639466748,1.3933111111111112,3692.654163417747,2019
+1995,32,"(30,35]",HS,142.83449800973023,103.07006639466748,1.3858000000000004,3715.503980698189,2019
+1995,32,"(30,35]",HS,142.44741264927023,103.07006639466748,1.3820444444444446,3669.465346076459,2019
+1995,32,"(30,35]",HS,142.44741264927023,103.07006639466748,1.3820444444444446,3711.4509518886443,2019
+1995,88,"(85,90]",NoHS,218.31614329942502,89.1952497646161,2.447620740740741,362.37461650160344,2019
+1995,88,"(85,90]",NoHS,220.25157010172492,89.1952497646161,2.4693195061728397,363.4820907029417,2019
+1995,88,"(85,90]",NoHS,210.57443609022556,89.1952497646161,2.3608256790123456,363.9330727801722,2019
+1995,88,"(85,90]",NoHS,214.4452896948253,89.1952497646161,2.4042232098765433,369.6448450583993,2019
+1995,88,"(85,90]",NoHS,218.31614329942502,89.1952497646161,2.447620740740741,364.07155701939814,2019
+1995,57,"(55,60]",HS,108.77098628925255,118.92699968615479,0.9146029629629631,9179.025366456555,2019
+1995,57,"(55,60]",HS,108.77098628925255,118.92699968615479,0.9146029629629631,9044.219917469602,2019
+1995,57,"(55,60]",HS,108.77098628925255,118.92699968615479,0.9146029629629631,9190.438749413273,2019
+1995,57,"(55,60]",HS,108.77098628925255,118.92699968615479,0.9146029629629631,9174.394024791685,2019
+1995,57,"(55,60]",HS,108.77098628925255,118.92699968615479,0.9146029629629631,9053.98513271433,2019
+1995,76,"(75,80]",NoHS,2108.260415745245,63.42773316594923,33.23877916666666,221.82072464019706,2019
+1995,76,"(75,80]",NoHS,2111.1635559486954,63.42773316594923,33.28455,184.450572946288,2019
+1995,76,"(75,80]",NoHS,2113.486068111455,63.42773316594923,33.32116666666666,186.54552560758725,2019
+1995,76,"(75,80]",NoHS,2399.5421494913753,63.42773316594923,37.83111944444444,189.75577619032663,2019
+1995,76,"(75,80]",NoHS,2106.3249889429453,63.42773316594923,33.20826527777777,183.41063455807267,2019
+1995,83,"(80,85]",NoHS,123.48022998673153,16.649779956061675,7.416328042328041,7970.366899530137,2019
+1995,83,"(80,85]",NoHS,123.48022998673153,16.649779956061675,7.416328042328041,7925.7789219596625,2019
+1995,83,"(80,85]",NoHS,123.48022998673153,16.649779956061675,7.416328042328041,7970.7147975987,2019
+1995,83,"(80,85]",NoHS,123.48022998673153,16.649779956061675,7.416328042328041,7937.50496759815,2019
+1995,83,"(80,85]",NoHS,123.48022998673153,16.649779956061675,7.416328042328041,7965.712412605337,2019
+1995,26,"(25,30]",HS,-2.322512162759841,55.499266520205566,-0.04184761904761905,6492.997593747643,2019
+1995,26,"(25,30]",HS,-2.3612206988058384,57.48138318164148,-0.04107800766283525,6403.427113869246,2019
+1995,26,"(25,30]",HS,-2.2838036267138437,55.499266520205566,-0.04115015873015874,6497.536288767671,2019
+1995,26,"(25,30]",HS,-2.3805749668288367,55.499266520205566,-0.04289380952380953,6415.314418234504,2019
+1995,26,"(25,30]",HS,-2.303157894736842,57.48138318164148,-0.04006789272030652,6445.622959773151,2019
+1995,59,"(55,60]",HS,197.51224060150375,53.517149858769656,3.6906345185185185,6732.9703638667215,2019
+1995,59,"(55,60]",HS,167.7066678460858,53.517149858769656,3.1336995390946503,6592.459183857715,2019
+1995,59,"(55,60]",HS,171.57752145068554,53.517149858769656,3.206028757201646,6650.029600212305,2019
+1995,59,"(55,60]",HS,180.09339938080495,53.517149858769656,3.3651530370370373,6635.690967135017,2019
+1995,59,"(55,60]",HS,162.67455816010616,53.517149858769656,3.039671555555556,6565.179017007266,2019
+1995,66,"(65,70]",College,4474.706766917293,198.21166614359132,22.575395555555556,266.2710057351491,2019
+1995,66,"(65,70]",College,4465.029632905795,198.21166614359132,22.52657333333334,240.05148966087395,2019
+1995,66,"(65,70]",College,4465.029632905795,198.21166614359132,22.52657333333334,236.81406969648947,2019
+1995,66,"(65,70]",College,4465.029632905795,198.21166614359132,22.52657333333334,244.2358740114048,2019
+1995,66,"(65,70]",College,4465.029632905795,198.21166614359132,22.52657333333334,240.5642051289903,2019
+1995,45,"(40,45]",NoHS,18.580097302078727,33.69598324441053,0.5514039215686274,4952.084538408387,2019
+1995,45,"(40,45]",NoHS,18.580097302078727,33.69598324441053,0.5514039215686274,4864.858965745538,2019
+1995,45,"(40,45]",NoHS,18.580097302078727,33.69598324441053,0.5514039215686274,4910.095627059205,2019
+1995,45,"(40,45]",NoHS,18.580097302078727,33.69598324441053,0.5514039215686274,4905.8754869078475,2019
+1995,45,"(40,45]",NoHS,18.580097302078727,33.69598324441053,0.5514039215686274,4934.834843712374,2019
+1995,44,"(40,45]",HS,320.564741264927,79.28466645743653,4.043212333333333,8719.319025366818,2019
+1995,44,"(40,45]",HS,394.43998230871296,152.62298293056534,2.5844075036075034,8599.359544757872,2019
+1995,44,"(40,45]",HS,340.80930561698364,81.26678311887244,4.193709810298103,8592.10125966591,2019
+1995,44,"(40,45]",HS,413.0587881468377,198.21166614359132,2.0839277333333333,8683.997589994136,2019
+1995,44,"(40,45]",HS,360.5893675364883,325.06713247548976,1.1092766124661246,8623.246740325038,2019
+1995,39,"(35,40]",HS,11.806103494029191,41.624449890154175,0.28363386243386246,5531.2193688918505,2019
+1995,39,"(35,40]",HS,11.806103494029191,41.624449890154175,0.28363386243386246,5455.121430429446,2019
+1995,39,"(35,40]",HS,11.806103494029191,41.624449890154175,0.28363386243386246,5450.517037934021,2019
+1995,39,"(35,40]",HS,11.806103494029191,41.624449890154175,0.28363386243386246,5508.8127329031795,2019
+1995,39,"(35,40]",HS,11.806103494029191,41.624449890154175,0.28363386243386246,5470.274599892021,2019
+1995,54,"(50,55]",College,2810.8203449800976,430.1193155315932,6.534978187403994,1262.8371321034817,2019
+1995,54,"(50,55]",College,2810.8203449800976,430.1193155315932,6.534978187403994,1140.103362359183,2019
+1995,54,"(50,55]",College,2810.8203449800976,430.1193155315932,6.534978187403994,1132.5648593282033,2019
+1995,54,"(50,55]",College,2810.8203449800976,430.1193155315932,6.534978187403994,1144.799295332266,2019
+1995,54,"(50,55]",College,2810.8203449800976,430.1193155315932,6.534978187403994,1139.5400667266026,2019
+1995,91,"(90,95]",College,276.76603272888104,43.606566551590085,6.34688888888889,10515.078734236517,2019
+1995,91,"(90,95]",College,195.4781070322866,43.606566551590085,4.482767676767677,10377.779884264306,2019
+1995,91,"(90,95]",College,220.05802742149493,43.606566551590085,5.046442424242425,10683.865414632357,2019
+1995,91,"(90,95]",College,166.4467049977886,43.606566551590085,3.817010101010102,10542.112698467394,2019
+1995,91,"(90,95]",College,187.7363998230871,43.606566551590085,4.305232323232324,10442.688882825812,2019
+1995,60,"(55,60]",HS,26.2637417072092,25.76751659866687,1.0192577777777778,8314.747310465844,2019
+1995,60,"(55,60]",HS,26.186324635117206,25.76751659866687,1.0162533333333335,8395.019420321543,2019
+1995,60,"(55,60]",HS,26.16697036709421,25.76751659866687,1.0155022222222225,8330.869009336482,2019
+1995,60,"(55,60]",HS,26.225033171163204,25.76751659866687,1.0177555555555557,8555.292785079448,2019
+1995,60,"(55,60]",HS,26.186324635117206,25.76751659866687,1.0162533333333335,8285.728390391876,2019
+1995,72,"(70,75]",HS,255693.10570544007,1696.6918621891418,150.70096780893041,2.0000789024324326,2019
+1995,72,"(70,75]",HS,243839.58425475456,4202.087322244137,58.02820492662473,1.5956083588445662,2019
+1995,72,"(70,75]",HS,236684.69845201238,2992.996158768229,79.0795196173657,2.195860886247657,2019
+1995,72,"(70,75]",HS,245897.91065900045,4360.6566551590095,56.3901105050505,1.4945476443958283,2019
+1995,72,"(70,75]",HS,193644.67722246793,2021.7589946646315,95.78029712418301,1.6332706553106373,2019
+1995,28,"(25,30]",HS,11.24482972136223,35.67809990584644,0.3151745679012346,4922.279095485226,2019
+1995,28,"(25,30]",HS,11.24482972136223,37.660216567282355,0.298586432748538,4970.185091793803,2019
+1995,28,"(25,30]",HS,11.24482972136223,43.606566551590085,0.25787010101010105,4973.527855752071,2019
+1995,28,"(25,30]",HS,11.24482972136223,43.606566551590085,0.25787010101010105,5042.351126744237,2019
+1995,28,"(25,30]",HS,11.24482972136223,41.624449890154175,0.2701496296296297,5014.223039624455,2019
+1995,43,"(40,45]",HS,1245.0794161875276,61.44561650451331,20.26311211469534,2997.6187608995856,2019
+1995,43,"(40,45]",HS,1017.4538699690403,73.3383164731288,13.873428228228228,3120.9518276725425,2019
+1995,43,"(40,45]",HS,1115.3284033613445,77.30254979600063,14.42809333333333,3076.7771783147787,2019
+1995,43,"(40,45]",HS,1084.7873684210526,49.55291653589783,21.891493866666668,2922.5795896042396,2019
+1995,43,"(40,45]",HS,941.7399734630694,79.28466645743653,11.877958444444445,3097.1072964308905,2019
+1995,45,"(40,45]",HS,164.27902697921274,63.42773316594923,2.590018888888889,7360.066439091361,2019
+1995,45,"(40,45]",HS,164.27902697921274,63.42773316594923,2.590018888888889,7334.094279147585,2019
+1995,45,"(40,45]",HS,164.27902697921274,63.42773316594923,2.590018888888889,7292.4684367359605,2019
+1995,45,"(40,45]",HS,164.27902697921274,63.42773316594923,2.590018888888889,7664.144688590592,2019
+1995,45,"(40,45]",HS,164.27902697921274,63.42773316594923,2.590018888888889,7391.850902893714,2019
+1995,49,"(45,50]",College,3893.498098186643,551.028431879184,7.065875139888087,388.55537713787834,2019
+1995,49,"(45,50]",College,3036.8781954887218,549.046315217748,5.53118764540714,346.64739309993803,2019
+1995,49,"(45,50]",College,4081.23449800973,983.129864072213,4.1512669354838705,344.41278708512937,2019
+1995,49,"(45,50]",College,4350.258823529412,872.1313310318019,4.988077676767677,352.1399943268772,2019
+1995,49,"(45,50]",College,4009.430163644405,1056.4681805453417,3.795126287262873,349.61721546067463,2019
+1995,80,"(75,80]",College,14341.067456877488,846.363814433135,16.944329627894874,3.319513015945766,2019
+1995,80,"(75,80]",College,9231.09555064131,1072.3251138368291,8.60848583281988,2.2862127853481793,2019
+1995,80,"(75,80]",College,8927.775462184874,570.849598493543,15.639452993827161,3.2292858834429956,2019
+1995,80,"(75,80]",College,9500.797275541796,719.5083481012365,13.204568509335783,2.2691027331284834,2019
+1995,80,"(75,80]",College,29300.523131357808,2081.2224945077087,14.078515492063495,4.317086401169733,2019
+1995,30,"(25,30]",College,75.09455992923485,29.731749921538697,2.525736296296296,6787.95987332671,2019
+1995,30,"(25,30]",College,89.70703228659886,35.67809990584644,2.5143444444444447,6681.579464262497,2019
+1995,30,"(25,30]",College,85.06200796107917,29.731749921538697,2.8609822222222228,6832.299305887604,2019
+1995,30,"(25,30]",College,79.15895621406457,39.642333228718265,1.996828888888889,6922.150169131282,2019
+1995,30,"(25,30]",College,81.96532507739938,35.67809990584644,2.297356790123457,6855.128947753305,2019
+1995,47,"(45,50]",College,6492.389208314905,574.813831816415,11.294768582375475,820.5594961270206,2019
+1995,47,"(45,50]",College,6492.389208314905,574.813831816415,11.294768582375475,653.8702386901675,2019
+1995,47,"(45,50]",College,6492.389208314905,574.813831816415,11.294768582375475,638.5013376709006,2019
+1995,47,"(45,50]",College,6492.389208314905,574.813831816415,11.294768582375475,638.1691277329874,2019
+1995,47,"(45,50]",College,6492.389208314905,574.813831816415,11.294768582375475,653.9785969554578,2019
+1995,36,"(35,40]",HS,44.90190181335692,61.44561650451331,0.7307584229390681,6814.119376132852,2019
+1995,36,"(35,40]",HS,44.90190181335692,61.44561650451331,0.7307584229390681,6685.052943623025,2019
+1995,36,"(35,40]",HS,44.90190181335692,61.44561650451331,0.7307584229390681,6657.930443408395,2019
+1995,36,"(35,40]",HS,44.90190181335692,61.44561650451331,0.7307584229390681,6597.732074299203,2019
+1995,36,"(35,40]",HS,44.90190181335692,61.44561650451331,0.7307584229390681,6655.052249205335,2019
+1995,23,"(20,25]",HS,-52.93392304290137,19.821166614359132,-2.6705755555555557,4568.08420492442,2019
+1995,23,"(20,25]",HS,-50.82430782839452,19.821166614359132,-2.564143111111111,4554.901238816229,2019
+1995,23,"(20,25]",HS,-50.9791419725785,19.821166614359132,-2.5719546666666666,4580.850241907623,2019
+1995,23,"(20,25]",HS,-50.80495356037152,19.821166614359132,-2.563166666666667,4550.806817324449,2019
+1995,23,"(20,25]",HS,-50.88237063246351,19.821166614359132,-2.5670724444444444,4530.282593898626,2019
+1995,32,"(30,35]",NoHS,8.806191950464395,25.76751659866687,0.34175555555555553,7129.102365720518,2019
+1995,32,"(30,35]",NoHS,8.806191950464395,25.76751659866687,0.34175555555555553,7072.458566592422,2019
+1995,32,"(30,35]",NoHS,8.806191950464395,25.76751659866687,0.34175555555555553,7146.006857736172,2019
+1995,32,"(30,35]",NoHS,8.806191950464395,25.76751659866687,0.34175555555555553,7096.551097463665,2019
+1995,32,"(30,35]",NoHS,8.806191950464395,25.76751659866687,0.34175555555555553,7107.125589971855,2019
+1995,79,"(75,80]",HS,400.24626271561254,21.803283275795042,18.357155555555558,10747.341663312636,2019
+1995,79,"(75,80]",HS,406.0525431225122,23.785399937230956,17.07150370370371,10832.428051037186,2019
+1995,79,"(75,80]",HS,371.21486068111454,21.803283275795042,17.025640404040406,10985.08474019906,2019
+1995,79,"(75,80]",HS,392.5045555064131,21.803283275795042,18.002084848484852,11268.322737575141,2019
+1995,79,"(75,80]",HS,371.21486068111454,21.803283275795042,17.025640404040406,10962.699366943183,2019
+1995,43,"(40,45]",College,418.2457319770013,77.30254979600063,5.410503703703702,4058.3146205122985,2019
+1995,43,"(40,45]",College,414.5684210526316,79.28466645743653,5.22886,4225.288618208758,2019
+1995,43,"(40,45]",College,417.4715612560814,71.35619981169287,5.85052962962963,4165.482939220143,2019
+1995,43,"(40,45]",College,418.05218929677136,75.32043313456471,5.550315789473684,3956.7231273073257,2019
+1995,43,"(40,45]",College,419.79407341884126,87.21313310318017,4.813427272727274,4193.006791373573,2019
+1995,45,"(40,45]",College,40.8375055285272,55.499266520205566,0.735820634920635,6680.464432682738,2019
+1995,45,"(40,45]",College,40.8375055285272,55.499266520205566,0.735820634920635,6521.613594072795,2019
+1995,45,"(40,45]",College,40.8375055285272,55.499266520205566,0.735820634920635,6534.099702884349,2019
+1995,45,"(40,45]",College,40.8375055285272,55.499266520205566,0.735820634920635,6525.799982980896,2019
+1995,45,"(40,45]",College,40.8375055285272,55.499266520205566,0.735820634920635,6580.939398330474,2019
+1995,82,"(80,85]",College,3612.050268022999,138.74816630051396,26.03313877460317,1605.2638929720265,2019
+1995,82,"(80,85]",College,4873.851771782397,138.74816630051396,35.12732385396824,1418.5703397797984,2019
+1995,82,"(80,85]",College,7006.806298098187,112.98064970184706,62.01775539961014,1423.2813496300075,2019
+1995,82,"(80,85]",College,1456.7086598850067,107.03429971753931,13.609736913580248,1046.7860157202583,2019
+1995,82,"(80,85]",College,1528.9968509509067,105.0521830561034,14.5546413836478,1014.0372347053024,2019
+1995,24,"(20,25]",HS,12.773816895179126,9.910583307179566,1.2889066666666669,6906.283569085225,2019
+1995,24,"(20,25]",HS,12.773816895179126,9.910583307179566,1.2889066666666669,7023.73858443535,2019
+1995,24,"(20,25]",HS,12.773816895179126,9.910583307179566,1.2889066666666669,6931.881970628152,2019
+1995,24,"(20,25]",HS,12.773816895179126,9.910583307179566,1.2889066666666669,7036.785301321515,2019
+1995,24,"(20,25]",HS,12.773816895179126,9.910583307179566,1.2889066666666669,6896.117003389025,2019
+1995,67,"(65,70]",College,522100.15356037155,16312.820123617566,32.005511591737545,2.0000789024324326,2019
+1995,67,"(65,70]",College,475628.233524989,18770.6447837981,25.338939551801012,1.5956083588445662,2019
+1995,67,"(65,70]",College,501885.5883237506,15440.688792585766,32.50409324775353,2.195860886247657,2019
+1995,67,"(65,70]",College,499886.0988942946,16847.991622205263,29.670367252287583,1.4945476443958283,2019
+1995,67,"(65,70]",College,502198.35329500225,19345.458615614512,25.959495883424413,1.6332706553106373,2019
+1995,52,"(50,55]",College,656.690314020345,212.08648277364273,3.096332710280374,1258.4102660844167,2019
+1995,52,"(50,55]",College,430.2453781512605,212.08648277364273,2.0286317757009344,1238.633090994372,2019
+1995,52,"(50,55]",College,581.7892967713401,212.08648277364273,2.7431700934579437,420.38537056509705,2019
+1995,52,"(50,55]",College,701.205130473242,212.08648277364273,3.306222637590862,1181.792901229066,2019
+1995,52,"(50,55]",College,493.5338345864661,212.08648277364273,2.327040498442367,1266.2387028568542,2019
+1995,76,"(75,80]",HS,69784.71649712516,3607.452323813362,19.344598412698414,23.77978164443807,2019
+1995,76,"(75,80]",HS,68491.85139318884,3211.0289915261797,21.330187791495195,25.70395045405458,2019
+1995,76,"(75,80]",HS,70317.92658115877,4043.517989329263,17.390284095860565,25.113774094689507,2019
+1995,76,"(75,80]",HS,70792.10614772224,4043.517989329263,17.507553159041393,22.197837107810393,2019
+1995,76,"(75,80]",HS,70300.50773993808,4083.1603225579815,17.217180366774542,23.92156353176672,2019
+1995,45,"(40,45]",HS,55.35320654577621,33.69598324441053,1.642724183006536,8483.709336893771,2019
+1995,45,"(40,45]",HS,56.9015479876161,33.69598324441053,1.6886745098039215,8405.28955343685,2019
+1995,45,"(40,45]",HS,56.9015479876161,33.69598324441053,1.6886745098039215,8448.919527845143,2019
+1995,45,"(40,45]",HS,56.9015479876161,33.69598324441053,1.6886745098039215,8857.10480629922,2019
+1995,45,"(40,45]",HS,55.35320654577621,33.69598324441053,1.642724183006536,8579.767517773593,2019
+1995,57,"(55,60]",College,51529.11285272004,3904.769823028749,13.196453360406093,23.77978164443807,2019
+1995,57,"(55,60]",College,54550.31409111013,3904.769823028749,13.970174059785673,25.70395045405458,2019
+1995,57,"(55,60]",College,53449.0562406015,4400.298988387727,12.146687391391392,25.113774094689507,2019
+1995,57,"(55,60]",College,56365.7444316674,4420.120155002088,12.75208420926756,22.197837107810393,2019
+1995,57,"(55,60]",College,56549.6099778859,4182.266155629777,13.521284364402318,23.92156353176672,2019
+1995,41,"(40,45]",College,74.51393188854489,178.3904995292322,0.41770123456790126,990.8007569137495,2019
+1995,41,"(40,45]",College,49.35338345864662,188.30108283641175,0.2620982456140351,991.4597494018974,2019
+1995,41,"(40,45]",College,52.72102609464839,178.3904995292322,0.2955371851851852,984.9673309648699,2019
+1995,41,"(40,45]",College,47.08893409995578,158.56933291487306,0.2969611666666667,989.6487636818085,2019
+1995,41,"(40,45]",College,50.66947368421053,174.42626620636034,0.2904922222222223,983.558881354969,2019
+1995,51,"(50,55]",NoHS,120.49967271118973,12.090911634759072,9.966136247723131,4141.427930527345,2019
+1995,51,"(50,55]",NoHS,120.30613003095976,12.090911634759072,9.950128961748634,4149.309829614781,2019
+1995,51,"(50,55]",NoHS,120.49967271118973,12.090911634759072,9.966136247723131,4124.318618658174,2019
+1995,51,"(50,55]",NoHS,120.49967271118973,12.090911634759072,9.966136247723131,4142.214136850454,2019
+1995,51,"(50,55]",NoHS,120.30613003095976,12.090911634759072,9.950128961748634,4108.725420375424,2019
+1995,82,"(80,85]",HS,114.19211676249446,33.69598324441053,3.388894039215686,8314.186647343387,2019
+1995,82,"(80,85]",HS,113.41794604157452,33.69598324441053,3.3659188758169933,8267.675266823342,2019
+1995,82,"(80,85]",HS,112.2566899601946,33.69598324441053,3.331456130718954,8314.549552779581,2019
+1995,82,"(80,85]",HS,114.77274480318442,33.69598324441053,3.4061254117647053,8279.907141880354,2019
+1995,82,"(80,85]",HS,112.2566899601946,33.69598324441053,3.331456130718954,8309.33137863014,2019
+1995,27,"(25,30]",College,234.30276868642196,140.73028296194985,1.6649065414710484,8509.461707605318,2019
+1995,27,"(25,30]",College,234.30276868642196,140.73028296194985,1.6649065414710484,8624.406913773299,2019
+1995,27,"(25,30]",College,234.30276868642196,140.73028296194985,1.6649065414710484,8501.061800142383,2019
+1995,27,"(25,30]",College,234.30276868642196,140.73028296194985,1.6649065414710484,8288.402883143122,2019
+1995,27,"(25,30]",College,234.30276868642196,140.73028296194985,1.6649065414710484,8457.706035488603,2019
+1995,61,"(60,65]",College,2289.6099071207427,327.0492491369256,7.000810774410775,863.0437376397598,2019
+1995,61,"(60,65]",College,2289.6099071207427,327.0492491369256,7.000810774410775,717.2519372557234,2019
+1995,61,"(60,65]",College,2289.6099071207427,327.0492491369256,7.000810774410775,757.2234608675187,2019
+1995,61,"(60,65]",College,2289.6099071207427,327.0492491369256,7.000810774410775,729.3963391894159,2019
+1995,61,"(60,65]",College,2289.6099071207427,327.0492491369256,7.000810774410775,711.8739624305335,2019
+1995,42,"(40,45]",College,52.74038036267139,99.10583307179566,0.5321622222222223,7729.228432162061,2019
+1995,42,"(40,45]",College,54.67580716497125,99.10583307179566,0.5516911111111111,7815.445337404033,2019
+1995,42,"(40,45]",College,56.61123396727112,99.10583307179566,0.5712200000000001,7645.123750060744,2019
+1995,42,"(40,45]",College,52.74038036267139,99.10583307179566,0.5321622222222223,8057.5625208968395,2019
+1995,42,"(40,45]",College,52.74038036267139,99.10583307179566,0.5321622222222223,7866.552240613365,2019
+1995,55,"(50,55]",College,4790.955506413092,148.65874960769352,32.227874370370365,284.50659175887586,2019
+1995,55,"(50,55]",College,4790.955506413092,148.65874960769352,32.227874370370365,255.7794384160925,2019
+1995,55,"(50,55]",College,4790.955506413092,148.65874960769352,32.227874370370365,251.2273445533546,2019
+1995,55,"(50,55]",College,4790.955506413092,148.65874960769352,32.227874370370365,257.39679059306303,2019
+1995,55,"(50,55]",College,4790.955506413092,148.65874960769352,32.227874370370365,254.7305793893372,2019
+1995,61,"(60,65]",HS,13323.478107032286,594.6349984307741,22.40614518518518,186.56500734690053,2019
+1995,61,"(60,65]",HS,12856.84670499779,594.6349984307741,21.621409333333332,167.66260505410952,2019
+1995,61,"(60,65]",HS,11858.166475011056,594.6349984307741,19.941924888888884,164.77847523435022,2019
+1995,61,"(60,65]",HS,12524.340380362672,594.6349984307741,21.062232148148144,168.47476981668396,2019
+1995,61,"(60,65]",HS,13781.013003095975,594.6349984307741,23.175583407407405,166.7136886076035,2019
+1995,65,"(60,65]",College,387347.35918620083,47848.29620706295,8.095321879591273,19.107937946227455,2019
+1995,65,"(60,65]",College,399098.3223706325,48086.15020643525,8.299652200421363,19.503696975812954,2019
+1995,65,"(60,65]",College,416166.67715170275,47848.29620706295,8.697627922857404,18.655515636750955,2019
+1995,65,"(60,65]",College,398789.6411499336,47848.29620706295,8.334458544232715,18.98752820338388,2019
+1995,65,"(60,65]",College,409419.77931888547,47848.29620706295,8.556621902421062,18.153376128028647,2019
+1995,68,"(65,70]",NoHS,3388.545245466608,93.15948308748793,36.37359432624113,2159.5936184059037,2019
+1995,68,"(65,70]",NoHS,3388.545245466608,93.15948308748793,36.37359432624113,1857.001899201244,2019
+1995,68,"(65,70]",NoHS,3388.545245466608,93.15948308748793,36.37359432624113,1912.010047475375,2019
+1995,68,"(65,70]",NoHS,3388.545245466608,93.15948308748793,36.37359432624113,1843.6516733940346,2019
+1995,68,"(65,70]",NoHS,3388.545245466608,93.15948308748793,36.37359432624113,1948.6462183221734,2019
+1995,58,"(55,60]",HS,119.53195931003981,138.74816630051396,0.861502984126984,8206.0688024671,2019
+1995,58,"(55,60]",HS,119.53195931003981,138.74816630051396,0.861502984126984,8084.165416238259,2019
+1995,58,"(55,60]",HS,123.40281291463954,138.74816630051396,0.8894013968253967,8169.973892645244,2019
+1995,58,"(55,60]",HS,140.82165413533835,138.74816630051396,1.0149442539682538,8218.684691477758,2019
+1995,58,"(55,60]",HS,119.53195931003981,138.74816630051396,0.861502984126984,8045.7006268172745,2019
+1995,43,"(40,45]",HS,107.60973020787262,67.39196648882105,1.5967738562091502,1867.6877961450023,2019
+1995,43,"(40,45]",HS,107.41618752764263,67.39196648882105,1.5939019607843137,1924.6561369235612,2019
+1995,43,"(40,45]",HS,107.60973020787262,75.32043313456471,1.4286923976608186,1848.7453717043925,2019
+1995,43,"(40,45]",HS,106.83555948695269,83.24889978030835,1.2833269841269843,1926.1719436207072,2019
+1995,43,"(40,45]",HS,105.86784608580274,69.37408315025698,1.5260431746031742,1878.6502879834475,2019
+1995,26,"(25,30]",HS,9.870676691729322,37.660216567282355,0.26209824561403505,6921.941907892721,2019
+1995,26,"(25,30]",HS,9.870676691729322,37.660216567282355,0.26209824561403505,6815.228456218571,2019
+1995,26,"(25,30]",HS,9.870676691729322,37.660216567282355,0.26209824561403505,6831.490021267065,2019
+1995,26,"(25,30]",HS,9.870676691729322,37.660216567282355,0.26209824561403505,6787.794625107519,2019
+1995,26,"(25,30]",HS,9.870676691729322,37.660216567282355,0.26209824561403505,6815.750391520009,2019
+1995,42,"(40,45]",HS,5.8256346749226005,43.606566551590085,0.13359535353535357,8086.642038919075,2019
+1995,42,"(40,45]",HS,5.8256346749226005,43.606566551590085,0.13359535353535357,8105.811376284107,2019
+1995,42,"(40,45]",HS,5.8256346749226005,43.606566551590085,0.13359535353535357,8091.569525550983,2019
+1995,42,"(40,45]",HS,5.8256346749226005,43.606566551590085,0.13359535353535357,8189.465731833584,2019
+1995,42,"(40,45]",HS,5.8256346749226005,43.606566551590085,0.13359535353535357,8142.768266977249,2019
+1995,66,"(65,70]",HS,35.476373286156566,29.731749921538697,1.1932151111111111,9929.470815620858,2019
+1995,66,"(65,70]",HS,35.43766475011057,29.731749921538697,1.1919131851851852,9946.997653925657,2019
+1995,66,"(65,70]",HS,47.05022556390977,29.731749921538697,1.5824909629629629,9916.883221881513,2019
+1995,66,"(65,70]",HS,41.243945157010174,29.731749921538697,1.3872020740740743,9934.214021352593,2019
+1995,66,"(65,70]",HS,41.243945157010174,29.731749921538697,1.3872020740740743,9999.723773429236,2019
+1995,52,"(50,55]",NoHS,127.71881468376824,71.35619981169287,1.789876913580247,10760.612169417916,2019
+1995,52,"(50,55]",NoHS,130.46712074303406,71.35619981169287,1.8283922222222224,10660.806543942059,2019
+1995,52,"(50,55]",NoHS,129.63488721804512,71.35619981169287,1.8167291358024693,10486.008300293026,2019
+1995,52,"(50,55]",NoHS,128.89942503317116,71.35619981169287,1.8064222222222222,10977.268857906849,2019
+1995,52,"(50,55]",NoHS,129.8864927023441,71.35619981169287,1.8202551851851854,10748.687524429806,2019
+1995,53,"(50,55]",College,7670.0964175143745,1466.7663294625759,5.229255855855856,266.2710057351491,2019
+1995,53,"(50,55]",College,9257.146395400265,1466.7663294625759,6.311261861861861,240.05148966087395,2019
+1995,53,"(50,55]",College,10418.402476780186,1466.7663294625759,7.102973573573573,236.81406969648947,2019
+1995,53,"(50,55]",College,8057.181777974348,1466.7663294625759,5.4931597597597595,244.2358740114048,2019
+1995,53,"(50,55]",College,7737.83635559487,1466.7663294625759,5.275439039039039,240.5642051289903,2019
+1995,57,"(55,60]",HS,1149.8370632463511,148.65874960769352,7.734741925925924,5931.988265228674,2019
+1995,57,"(55,60]",HS,1149.8370632463511,148.65874960769352,7.734741925925924,5957.430294789878,2019
+1995,57,"(55,60]",HS,1149.8370632463511,148.65874960769352,7.734741925925924,5925.8594051271575,2019
+1995,57,"(55,60]",HS,1149.8370632463511,148.65874960769352,7.734741925925924,5759.295320422534,2019
+1995,57,"(55,60]",HS,1149.8370632463511,148.65874960769352,7.734741925925924,5917.512264235222,2019
+1995,50,"(45,50]",HS,193.54268022998673,75.32043313456471,2.5695906432748536,9902.30376336358,2019
+1995,50,"(45,50]",HS,218.703228659885,31.713866582974614,6.896138888888888,9674.352990108357,2019
+1995,50,"(45,50]",HS,212.8969482529854,19.424743282071947,10.960090702947847,9802.442605481327,2019
+1995,50,"(45,50]",HS,226.44493586908447,63.42773316594923,3.570125,10081.905211982037,2019
+1995,50,"(45,50]",HS,319.3454223794781,25.76751659866687,12.393333333333336,9877.310040239772,2019
+1995,57,"(55,60]",HS,385.2467049977886,79.28466645743653,4.859031666666667,10770.674560130072,2019
+1995,57,"(55,60]",HS,384.6660769570986,79.28466645743653,4.851708333333333,10612.493755305568,2019
+1995,57,"(55,60]",HS,384.6660769570986,79.28466645743653,4.851708333333333,10784.067031394634,2019
+1995,57,"(55,60]",HS,385.2467049977886,79.28466645743653,4.859031666666667,10765.240140694716,2019
+1995,57,"(55,60]",HS,385.2467049977886,79.28466645743653,4.859031666666667,10623.952265464492,2019
+1995,30,"(25,30]",HS,54.288721804511276,97.12371641035975,0.5589646258503401,4909.828434451052,2019
+1995,30,"(25,30]",HS,54.288721804511276,97.12371641035975,0.5589646258503401,4842.097670247802,2019
+1995,30,"(25,30]",HS,54.288721804511276,97.12371641035975,0.5589646258503401,4913.260472356947,2019
+1995,30,"(25,30]",HS,54.288721804511276,97.12371641035975,0.5589646258503401,4851.0865269567175,2019
+1995,30,"(25,30]",HS,54.288721804511276,97.12371641035975,0.5589646258503401,4874.005022906337,2019
+1995,40,"(35,40]",NoHS,567.854223794781,257.6751659866688,2.203759999999999,1064.9304258478287,2019
+1995,40,"(35,40]",NoHS,386.69827509951347,144.69451628482167,2.6725150684931505,1047.0696731685669,2019
+1995,40,"(35,40]",NoHS,715.140203449801,101.08794973323158,7.074435729847495,1061.4448262162393,2019
+1995,40,"(35,40]",NoHS,444.18045112781954,71.35619981169287,6.224833333333334,994.8901484882115,2019
+1995,40,"(35,40]",NoHS,362.3118973905352,210.1043661122068,1.7244377358490568,1066.5550810827285,2019
+1995,23,"(20,25]",HS,1.4515701017249005,63.42773316594923,0.022885416666666665,5473.025644745248,2019
+1995,23,"(20,25]",HS,1.4515701017249005,63.42773316594923,0.022885416666666665,5464.137792220067,2019
+1995,23,"(20,25]",HS,1.4515701017249005,63.42773316594923,0.022885416666666665,5498.671394777396,2019
+1995,23,"(20,25]",HS,1.4515701017249005,63.42773316594923,0.022885416666666665,5457.480005278512,2019
+1995,23,"(20,25]",HS,1.4515701017249005,63.42773316594923,0.022885416666666665,5432.362606352855,2019
+1995,52,"(50,55]",NoHS,-6.9675364882795225,47.57079987446191,-0.1464666666666667,5337.016791038028,2019
+1995,52,"(50,55]",NoHS,-34.06351172047766,47.57079987446191,-0.7160592592592593,5152.347163591335,2019
+1995,52,"(50,55]",NoHS,-9.677134011499337,47.57079987446191,-0.20342592592592595,5257.325946469061,2019
+1995,52,"(50,55]",NoHS,-21.48323750552853,47.57079987446191,-0.45160555555555565,5227.812770082988,2019
+1995,52,"(50,55]",NoHS,0.774170720919947,47.57079987446191,0.016274074074074076,5219.886843050057,2019
+1995,61,"(60,65]",NoHS,341.8931446262716,15.856933291487307,21.56111388888889,2718.7308507504085,2019
+1995,61,"(60,65]",NoHS,353.4089340999558,18.631896617497585,18.967952718676123,2756.7007397141792,2019
+1995,61,"(60,65]",NoHS,360.9570986289253,15.856933291487307,22.763361111111113,2693.6098975961304,2019
+1995,61,"(60,65]",NoHS,345.4736842105263,15.856933291487307,21.786916666666666,2724.244093301867,2019
+1995,61,"(60,65]",NoHS,399.8591773551526,17.83904995292322,22.414824691358028,2678.6554959332298,2019
+1995,76,"(75,80]",College,2391.606899601946,103.07006639466748,23.203700000000005,4033.8809906736255,2019
+1995,76,"(75,80]",College,1080.3552410437858,95.14159974892382,11.355235185185185,1806.2478055547283,2019
+1995,76,"(75,80]",College,2107.2927023440952,112.98064970184706,18.651801949317736,3408.7889427949863,2019
+1995,76,"(75,80]",College,1496.6655462184874,206.14013278933496,7.260427777777779,3334.2624629855286,2019
+1995,76,"(75,80]",College,3203.7119858469705,178.3904995292322,17.958983209876546,2217.755115589546,2019
+1995,70,"(65,70]",HS,141.28615656789032,23.785399937230956,5.940037037037038,9781.759014216032,2019
+1995,70,"(65,70]",HS,183.67200353825743,23.785399937230956,7.72204814814815,9779.302915736096,2019
+1995,70,"(65,70]",HS,153.09226006191952,23.785399937230956,6.436396296296298,9783.720816931516,2019
+1995,70,"(65,70]",HS,169.93047324192835,23.785399937230956,7.14431851851852,9740.804937460704,2019
+1995,70,"(65,70]",HS,153.28580274214949,23.785399937230956,6.444533333333334,9776.733333755343,2019
+1995,64,"(60,65]",HS,50.66947368421053,9.910583307179566,5.112663111111112,8939.24720168447,2019
+1995,64,"(60,65]",HS,99.57770897832818,9.910583307179566,10.047613333333334,8638.08154352502,2019
+1995,64,"(60,65]",HS,47.14699690402477,9.910583307179566,4.757237333333333,8914.319726430413,2019
+1995,64,"(60,65]",HS,69.52053073861124,9.910583307179566,7.01477688888889,8960.805788402253,2019
+1995,64,"(60,65]",HS,93.75207430340558,9.910583307179566,9.45979377777778,8652.530463686115,2019
+1995,25,"(20,25]",HS,-48.0953560371517,15.064086626912939,-3.1927163742690063,4323.871685741627,2019
+1995,25,"(20,25]",HS,-48.0953560371517,17.046203288348853,-2.8214702842377264,4257.211884442877,2019
+1995,25,"(20,25]",HS,-48.0953560371517,16.847991622205264,-2.8546640522875815,4267.369860573658,2019
+1995,25,"(20,25]",HS,-48.0953560371517,15.856933291487307,-3.0330805555555553,4240.075022107,2019
+1995,25,"(20,25]",HS,-48.0953560371517,17.64083828677963,-2.7263645443196003,4257.537917411907,2019
+1995,55,"(50,55]",College,1372.6046881910659,192.26531615928357,7.139117525773196,5402.403927861673,2019
+1995,55,"(50,55]",College,1467.8276868642195,178.3904995292322,8.228171851851853,2822.149964868459,2019
+1995,55,"(50,55]",College,1696.7886775762938,192.26531615928357,8.825245819014892,2911.295533237048,2019
+1995,55,"(50,55]",College,1337.9605484298982,188.30108283641175,7.105432046783625,5262.81907459198,2019
+1995,55,"(50,55]",College,1205.7708978328174,180.3726161906681,6.684888888888889,5564.960771272854,2019
+1995,30,"(25,30]",HS,6.580451127819549,57.48138318164148,0.11447969348659004,6914.70112340031,2019
+1995,30,"(25,30]",HS,6.580451127819549,57.48138318164148,0.11447969348659004,6949.614326373334,2019
+1995,30,"(25,30]",HS,6.580451127819549,57.48138318164148,0.11447969348659004,6988.193427028935,2019
+1995,30,"(25,30]",HS,6.580451127819549,57.48138318164148,0.11447969348659004,7037.377610378479,2019
+1995,30,"(25,30]",HS,6.580451127819549,57.48138318164148,0.11447969348659004,7020.069603132513,2019
+1995,50,"(45,50]",HS,219.70965059708095,73.3383164731288,2.995837117117117,11032.192829767378,2019
+1995,50,"(45,50]",HS,216.03233967271117,73.3383164731288,2.945695375375375,11085.778506637702,2019
+1995,50,"(45,50]",HS,215.25816895179125,73.3383164731288,2.935139219219219,10811.62397365722,2019
+1995,50,"(45,50]",HS,232.67701017249007,73.3383164731288,3.1726527327327325,11532.52919583234,2019
+1995,50,"(45,50]",HS,208.09708978328175,73.3383164731288,2.8374947747747745,11176.498268085972,2019
+1995,58,"(55,60]",NoHS,176.82059265811588,79.28466645743653,2.2301991111111112,11650.129964675722,2019
+1995,58,"(55,60]",NoHS,176.82059265811588,79.28466645743653,2.2301991111111112,11708.04500209673,2019
+1995,58,"(55,60]",NoHS,176.82059265811588,79.28466645743653,2.2301991111111112,11675.223553305867,2019
+1995,58,"(55,60]",NoHS,176.82059265811588,79.28466645743653,2.2301991111111112,11909.325999552704,2019
+1995,58,"(55,60]",NoHS,176.82059265811588,79.28466645743653,2.2301991111111112,11570.256832501089,2019
+1995,68,"(65,70]",HS,172.83361344537815,25.76751659866687,6.707422222222223,6445.256573305118,2019
+1995,68,"(65,70]",HS,172.83361344537815,25.76751659866687,6.707422222222223,6283.4389386678195,2019
+1995,68,"(65,70]",HS,172.83361344537815,25.76751659866687,6.707422222222223,6293.97971292992,2019
+1995,68,"(65,70]",HS,172.83361344537815,25.76751659866687,6.707422222222223,6566.917885338621,2019
+1995,68,"(65,70]",HS,172.83361344537815,25.76751659866687,6.707422222222223,6428.674641877622,2019
+1995,60,"(55,60]",NoHS,458.4058381247236,31.713866582974614,14.454429166666666,5712.823341263224,2019
+1995,60,"(55,60]",NoHS,665.3997346306944,49.55291653589783,13.428064000000001,3264.370271872299,2019
+1995,60,"(55,60]",NoHS,634.0458204334366,49.55291653589783,12.795328000000001,3227.1302581612936,2019
+1995,60,"(55,60]",NoHS,457.3413533834586,23.785399937230956,19.22781851851852,5630.283247034484,2019
+1995,60,"(55,60]",NoHS,528.9714993365768,21.803283275795042,24.261093737373745,3233.323589906552,2019
+1995,69,"(65,70]",College,3570.3205307386115,289.38903256964335,12.337442435312026,791.6205717755117,2019
+1995,69,"(65,70]",College,3570.5914904909337,289.38903256964335,12.338378751902589,629.3748968484231,2019
+1995,69,"(65,70]",College,3570.3785935426804,289.38903256964335,12.33764307458143,615.249419845527,2019
+1995,69,"(65,70]",College,3570.5334276868643,289.38903256964335,12.338178112633182,614.5977178926236,2019
+1995,69,"(65,70]",College,3570.5334276868643,289.38903256964335,12.338178112633182,636.1745700625036,2019
+1995,21,"(20,25]",HS,-7.702998673153472,27.749633260102783,-0.27758920634920636,4698.600896219216,2019
+1995,21,"(20,25]",HS,-7.702998673153472,27.749633260102783,-0.27758920634920636,4685.041273937298,2019
+1995,21,"(20,25]",HS,-7.702998673153472,27.749633260102783,-0.27758920634920636,4711.731677115458,2019
+1995,21,"(20,25]",HS,-7.702998673153472,27.749633260102783,-0.27758920634920636,4680.829868974572,2019
+1995,21,"(20,25]",HS,-7.702998673153472,27.749633260102783,-0.27758920634920636,4659.719239166389,2019
+1995,40,"(35,40]",College,4302.74409553295,1217.0196301216508,3.5354763300760044,218.02474790852906,2019
+1995,40,"(35,40]",College,4349.678195488722,1421.1776462495498,3.060615403688207,191.92973760628266,2019
+1995,40,"(35,40]",College,3557.7983193277314,1096.1105137740599,3.2458390596745033,204.14510879518667,2019
+1995,40,"(35,40]",College,3587.0232640424592,1147.6455469713937,3.1255497601228175,195.34916619568165,2019
+1995,40,"(35,40]",College,4454.48155683326,1096.1105137740599,4.063898211774162,195.69892649157552,2019
+1995,55,"(50,55]",HS,89.22317558602388,69.37408315025698,1.2861168253968251,9522.991022535829,2019
+1995,55,"(50,55]",HS,84.19106590004422,69.37408315025698,1.213580952380952,9515.445636975977,2019
+1995,55,"(50,55]",HS,89.61026094648386,69.37408315025698,1.2916965079365077,9592.468449657876,2019
+1995,55,"(50,55]",HS,89.41671826625387,69.37408315025698,1.2889066666666664,9760.090194580433,2019
+1995,55,"(50,55]",HS,89.41671826625387,69.37408315025698,1.2889066666666664,9523.659944716535,2019
+1995,45,"(40,45]",College,1044.0079256965944,334.97771578266935,3.116648888888889,6493.839983934433,2019
+1995,45,"(40,45]",College,940.6367801857585,428.13719887015725,2.197045205761317,11805.254985244985,2019
+1995,45,"(40,45]",College,952.6944891640867,356.7809990584644,2.670250074074074,10983.745522883983,2019
+1995,45,"(40,45]",College,957.4749933657674,428.13719887015725,2.236374218106996,11908.543530085492,2019
+1995,45,"(40,45]",College,932.3337992038921,404.35179893292633,2.3057491067538125,12015.95644899762,2019
+1995,40,"(35,40]",HS,217.09682441397612,103.07006639466748,2.1063033333333334,7499.440683340981,2019
+1995,40,"(35,40]",HS,217.09682441397612,103.07006639466748,2.1063033333333334,7591.459508395143,2019
+1995,40,"(35,40]",HS,217.09682441397612,103.07006639466748,2.1063033333333334,7498.307598904915,2019
+1995,40,"(35,40]",HS,217.09682441397612,103.07006639466748,2.1063033333333334,7747.1678355119175,2019
+1995,40,"(35,40]",HS,217.09682441397612,103.07006639466748,2.1063033333333334,7554.217390434448,2019
+1995,56,"(55,60]",HS,79.73958425475453,39.642333228718265,2.0114755555555557,6890.568432305915,2019
+1995,56,"(55,60]",HS,79.73958425475453,39.642333228718265,2.0114755555555557,6754.064641845672,2019
+1995,56,"(55,60]",HS,130.0606811145511,39.642333228718265,3.280853333333334,6778.280083873357,2019
+1995,56,"(55,60]",HS,79.73958425475453,39.642333228718265,2.0114755555555557,6810.826210100873,2019
+1995,56,"(55,60]",HS,79.73958425475453,39.642333228718265,2.0114755555555557,6721.587893674975,2019
+1995,47,"(45,50]",HS,25.450862450243253,53.517149858769656,0.4755646090534979,5169.564903530292,2019
+1995,47,"(45,50]",HS,12.677045555064131,53.517149858769656,0.23687818930041155,5150.120731995399,2019
+1995,47,"(45,50]",HS,76.15904467049978,53.517149858769656,1.4230773662551441,5156.716098660969,2019
+1995,47,"(45,50]",HS,16.160813799203893,53.517149858769656,0.30197448559670786,5251.484662527624,2019
+1995,47,"(45,50]",HS,33.579655019902695,53.517149858769656,0.6274559670781893,5223.070197696627,2019
+1995,42,"(40,45]",HS,191.80079610791685,79.28466645743653,2.419141111111111,11043.45019356344,2019
+1995,42,"(40,45]",HS,191.80079610791685,79.28466645743653,2.419141111111111,11122.912958084817,2019
+1995,42,"(40,45]",HS,191.80079610791685,79.28466645743653,2.419141111111111,10887.513339256804,2019
+1995,42,"(40,45]",HS,191.80079610791685,79.28466645743653,2.419141111111111,11192.208330142557,2019
+1995,42,"(40,45]",HS,191.80079610791685,79.28466645743653,2.419141111111111,11051.4162364966,2019
+1995,48,"(45,50]",HS,29.730091110128264,11.099853304041115,2.678421984126984,4416.689901812208,2019
+1995,48,"(45,50]",HS,29.730091110128264,11.099853304041115,2.678421984126984,4434.116022206118,2019
+1995,48,"(45,50]",HS,29.730091110128264,11.099853304041115,2.678421984126984,4438.269959679362,2019
+1995,48,"(45,50]",HS,29.730091110128264,11.099853304041115,2.678421984126984,4427.632080102036,2019
+1995,48,"(45,50]",HS,29.730091110128264,11.099853304041115,2.678421984126984,4429.202027167817,2019
+1995,51,"(50,55]",NoHS,12.193188854489165,27.749633260102783,0.43940000000000007,5383.317489076451,2019
+1995,51,"(50,55]",NoHS,12.193188854489165,27.749633260102783,0.43940000000000007,5424.336116974496,2019
+1995,51,"(50,55]",NoHS,12.193188854489165,27.749633260102783,0.43940000000000007,5432.837236918044,2019
+1995,51,"(50,55]",NoHS,12.193188854489165,27.749633260102783,0.43940000000000007,5415.180990007244,2019
+1995,51,"(50,55]",NoHS,12.193188854489165,27.749633260102783,0.43940000000000007,5418.000648197023,2019
+1995,32,"(30,35]",NoHS,1.3160902255639098,23.785399937230956,0.05533185185185186,6627.653515186372,2019
+1995,32,"(30,35]",NoHS,1.3160902255639098,23.785399937230956,0.05533185185185186,6566.6831510205175,2019
+1995,32,"(30,35]",NoHS,1.3160902255639098,23.785399937230956,0.05533185185185186,6630.863434780603,2019
+1995,32,"(30,35]",NoHS,1.3160902255639098,23.785399937230956,0.05533185185185186,6591.160823882936,2019
+1995,32,"(30,35]",NoHS,1.3160902255639098,23.785399937230956,0.05533185185185186,6601.594737314937,2019
+1995,27,"(25,30]",NoHS,3.2902255639097744,8.523101644174426,0.38603617571059434,6005.215180919561,2019
+1995,27,"(25,30]",NoHS,3.2902255639097744,9.910583307179566,0.3319911111111111,5972.417599391028,2019
+1995,27,"(25,30]",NoHS,3.2902255639097744,8.523101644174426,0.38603617571059434,6035.0471196924955,2019
+1995,27,"(25,30]",NoHS,3.2902255639097744,8.523101644174426,0.38603617571059434,5994.749098630067,2019
+1995,27,"(25,30]",NoHS,3.2902255639097744,9.117736642605202,0.3608599033816425,6001.101654681641,2019
+1995,67,"(65,70]",HS,8.45781512605042,59.46349984307739,0.14223540740740742,6932.839618563134,2019
+1995,67,"(65,70]",HS,9.251340114993365,59.46349984307739,0.15558014814814813,6863.8102498490725,2019
+1995,67,"(65,70]",HS,8.18685537372844,59.46349984307739,0.1376786666666667,6792.21791266473,2019
+1995,67,"(65,70]",HS,8.806191950464395,59.46349984307739,0.14809407407407407,7033.5043816762645,2019
+1995,67,"(65,70]",HS,9.03844316674038,59.46349984307739,0.15199985185185186,6832.808399582353,2019
+1995,35,"(30,35]",College,1152.5466607695712,128.8375829933344,8.945733333333333,701.2947968887518,2019
+1995,35,"(30,35]",College,1152.5466607695712,128.8375829933344,8.945733333333333,628.4367600338842,2019
+1995,35,"(30,35]",College,1152.5466607695712,128.8375829933344,8.945733333333333,629.8510171803075,2019
+1995,35,"(30,35]",College,1152.5466607695712,128.8375829933344,8.945733333333333,635.6152717336347,2019
+1995,35,"(30,35]",College,1152.5466607695712,128.8375829933344,8.945733333333333,633.1002723575365,2019
+1995,77,"(75,80]",HS,11920.680760725343,148.65874960769352,80.18822162962962,1647.5198625723442,2019
+1995,77,"(75,80]",HS,10546.527731092436,148.65874960769352,70.94454755555553,1473.2108955724032,2019
+1995,77,"(75,80]",HS,11901.326492702345,148.65874960769352,80.05802903703703,1475.5943073400583,2019
+1995,77,"(75,80]",HS,10562.011145510836,148.65874960769352,71.04870162962962,1480.3723227490946,2019
+1995,77,"(75,80]",HS,10554.269438301637,148.65874960769352,70.99662459259258,1478.8680098955867,2019
+1995,58,"(55,60]",College,632.3039363113667,89.1952497646161,7.088986666666667,3332.7425496168266,2019
+1995,58,"(55,60]",College,631.9168509509067,89.1952497646161,7.084646913580247,3464.8140573312385,2019
+1995,58,"(55,60]",College,630.9491375497568,89.1952497646161,7.073797530864198,3425.287376147765,2019
+1995,58,"(55,60]",College,629.9814241486068,89.1952497646161,7.062948148148148,3247.768856511147,2019
+1995,58,"(55,60]",College,630.9491375497568,89.1952497646161,7.073797530864198,3431.8610001871675,2019
+1995,74,"(70,75]",College,499.72720035382576,97.12371641035975,5.145264399092971,4523.487521824148,2019
+1995,74,"(70,75]",College,499.72720035382576,97.12371641035975,5.145264399092971,4702.228902380259,2019
+1995,74,"(70,75]",College,499.72720035382576,97.12371641035975,5.145264399092971,4648.716118645238,2019
+1995,74,"(70,75]",College,499.72720035382576,97.12371641035975,5.145264399092971,4406.2252787121615,2019
+1995,74,"(70,75]",College,499.72720035382576,97.12371641035975,5.145264399092971,4674.81165050802,2019
+1995,44,"(40,45]",HS,323.7969040247678,109.01641637897524,2.9701664646464643,4803.861579684569,2019
+1995,44,"(40,45]",HS,322.90660769570985,142.71239962338575,2.262638765432099,5000.94731836031,2019
+1995,44,"(40,45]",HS,324.99686864219376,128.8375829933344,2.522531555555555,4929.7877611307495,2019
+1995,44,"(40,45]",HS,400.4978681999116,110.99853304041113,3.608136587301588,4681.968362150078,2019
+1995,44,"(40,45]",HS,424.5939318885449,130.8196996547703,3.2456421548821544,4964.979615194968,2019
+1995,56,"(55,60]",HS,1186.2037328615656,0,Inf,4313.56330949789,2019
+1995,56,"(55,60]",HS,3593.8940291906238,0,Inf,638.0289126558922,2019
+1995,56,"(55,60]",HS,1344.502291021672,0,Inf,4427.820114883968,2019
+1995,56,"(55,60]",HS,1431.131994692614,0,Inf,2253.6122471781628,2019
+1995,56,"(55,60]",HS,1384.9914197257851,0,Inf,4435.2434066475635,2019
+1995,61,"(60,65]",HS,793.0411322423706,59.46349984307739,13.336603703703705,7400.143724838215,2019
+1995,61,"(60,65]",HS,434.98717381689517,59.46349984307739,7.315196296296297,2854.4035534463133,2019
+1995,61,"(60,65]",HS,880.1353383458647,59.46349984307739,14.801270370370373,7389.188202927876,2019
+1995,61,"(60,65]",HS,393.375497567448,59.46349984307739,6.615411111111111,2825.256452018747,2019
+1995,61,"(60,65]",HS,481.43741707209205,59.46349984307739,8.096351851851853,2737.392116516135,2019
+1995,21,"(20,25]",HS,2.1096152145068556,71.35619981169287,0.029564567901234573,3964.674841257417,2019
+1995,21,"(20,25]",HS,2.1096152145068556,71.35619981169287,0.029564567901234573,3933.398403911934,2019
+1995,21,"(20,25]",HS,2.1096152145068556,71.35619981169287,0.029564567901234573,3929.2988311171853,2019
+1995,21,"(20,25]",HS,2.1096152145068556,71.35619981169287,0.029564567901234573,3898.2606671647613,2019
+1995,21,"(20,25]",HS,2.1096152145068556,71.35619981169287,0.029564567901234573,3890.142460063441,2019
+1995,73,"(70,75]",HS,425.23262273330386,12.883758299333435,33.00532444444445,9150.450681057759,2019
+1995,73,"(70,75]",HS,423.87782397169394,12.883758299333435,32.90016888888889,9285.958136648336,2019
+1995,73,"(70,75]",HS,424.45845201238393,12.883758299333435,32.94523555555556,9379.523242645118,2019
+1995,73,"(70,75]",HS,428.1357629367536,12.883758299333435,33.23065777777778,9576.573743594225,2019
+1995,73,"(70,75]",HS,429.1034763379036,12.883758299333435,33.30576888888889,9244.379483148092,2019
+1995,83,"(80,85]",College,172.44652808491819,45.588683213026,3.782660869565218,7343.865283944935,2019
+1995,83,"(80,85]",College,172.44652808491819,45.588683213026,3.782660869565218,7211.682412882299,2019
+1995,83,"(80,85]",College,172.44652808491819,45.588683213026,3.782660869565218,7397.917744822403,2019
+1995,83,"(80,85]",College,172.44652808491819,45.588683213026,3.782660869565218,7423.452930245224,2019
+1995,83,"(80,85]",College,172.44652808491819,45.588683213026,3.782660869565218,7354.764840938502,2019
+1995,21,"(20,25]",HS,2.4986360017691287,35.67809990584644,0.07003276543209877,5281.847348434661,2019
+1995,21,"(20,25]",HS,2.4986360017691287,35.67809990584644,0.07003276543209877,5266.604543911051,2019
+1995,21,"(20,25]",HS,2.4986360017691287,35.67809990584644,0.07003276543209877,5296.608078658739,2019
+1995,21,"(20,25]",HS,2.4986360017691287,35.67809990584644,0.07003276543209877,5261.870369073291,2019
+1995,21,"(20,25]",HS,2.4986360017691287,35.67809990584644,0.07003276543209877,5238.139235797879,2019
+1995,42,"(40,45]",HS,132.05417072091993,91.177366426052,1.4483218357487921,6822.523770778978,2019
+1995,42,"(40,45]",HS,132.05417072091993,91.177366426052,1.4483218357487921,6771.149366616903,2019
+1995,42,"(40,45]",HS,132.05417072091993,91.177366426052,1.4483218357487921,6815.295258312273,2019
+1995,42,"(40,45]",HS,132.05417072091993,91.177366426052,1.4483218357487921,6891.020672485791,2019
+1995,42,"(40,45]",HS,132.05417072091993,91.177366426052,1.4483218357487921,6825.534079529255,2019
+1995,68,"(65,70]",HS,584.30535161433,39.642333228718265,14.73942888888889,4317.215395763177,2019
+1995,68,"(65,70]",HS,580.6280406899602,39.642333228718265,14.646666666666668,4487.509578541404,2019
+1995,68,"(65,70]",HS,596.3049977885892,39.642333228718265,15.042126666666668,4436.423638310252,2019
+1995,68,"(65,70]",HS,588.5632905793897,39.642333228718265,14.846837777777779,4206.408244862278,2019
+1995,68,"(65,70]",HS,595.9179124281292,39.642333228718265,15.032362222222224,4494.092801466089,2019
+1995,55,"(50,55]",College,252.96028306059267,43.606566551590085,5.800967676767678,8920.871710998577,2019
+1995,55,"(50,55]",College,252.96028306059267,43.606566551590085,5.800967676767678,8661.911492271758,2019
+1995,55,"(50,55]",College,252.96028306059267,43.606566551590085,5.800967676767678,8914.817654890716,2019
+1995,55,"(50,55]",College,252.96028306059267,43.606566551590085,5.800967676767678,8480.97565448051,2019
+1995,55,"(50,55]",College,252.96028306059267,43.606566551590085,5.800967676767678,8588.619527531486,2019
+1995,47,"(45,50]",College,152.31808934099956,128.8375829933344,1.1822488888888887,8483.709336893771,2019
+1995,47,"(45,50]",College,185.41388766032728,112.98064970184706,1.6411118908382065,8405.28955343685,2019
+1995,47,"(45,50]",College,162.3823087129589,120.90911634759071,1.3430112932604736,8448.919527845143,2019
+1995,47,"(45,50]",College,237.72847412649273,118.92699968615479,1.9989445185185188,4673.858741835149,2019
+1995,47,"(45,50]",College,133.73799203892085,134.7839329776421,0.9922398692810458,4938.740256052047,2019
+1995,59,"(55,60]",College,677.2058381247235,158.56933291487306,4.270723888888889,4132.986620170418,2019
+1995,59,"(55,60]",College,677.2058381247235,158.56933291487306,4.270723888888889,4296.287078424561,2019
+1995,59,"(55,60]",College,677.2058381247235,158.56933291487306,4.270723888888889,4246.951847995295,2019
+1995,59,"(55,60]",College,677.2058381247235,158.56933291487306,4.270723888888889,4026.200393400729,2019
+1995,59,"(55,60]",College,694.6246793454225,158.56933291487306,4.38057388888889,4257.347047085305,2019
+1995,20,"(15,20]",HS,60.482087571870856,49.55291653589783,1.2205555555555556,5583.660066493946,2019
+1995,20,"(15,20]",HS,61.64334365325078,49.55291653589783,1.2439902222222223,5580.861656050232,2019
+1995,20,"(15,20]",HS,63.38522777532066,49.55291653589783,1.2791422222222224,5577.620480958046,2019
+1995,20,"(15,20]",HS,64.1593984962406,49.55291653589783,1.2947653333333333,5594.112052059178,2019
+1995,20,"(15,20]",HS,62.61105705440071,49.55291653589783,1.2635191111111113,5544.767087186421,2019
+1995,67,"(65,70]",NoHS,74.51393188854489,12.487334967046253,5.96716049382716,6543.353091349798,2019
+1995,67,"(65,70]",NoHS,74.51393188854489,16.847991622205264,4.422718954248365,6546.282172322191,2019
+1995,67,"(65,70]",NoHS,74.51393188854489,12.487334967046253,5.96716049382716,6547.1899394420525,2019
+1995,67,"(65,70]",NoHS,74.51393188854489,6.739196648882105,11.056797385620914,6552.354238169327,2019
+1995,67,"(65,70]",NoHS,74.51393188854489,12.289123300902663,6.063405017921147,6605.700292500731,2019
+1995,35,"(30,35]",HS,1216.0286598850068,79.28466645743653,15.337501111111115,264.00184088033285,2019
+1995,35,"(30,35]",HS,1610.2750995134895,83.24889978030835,19.34289947089947,493.74492480773233,2019
+1995,35,"(30,35]",HS,2378.6395400265374,81.26678311887244,29.26951761517616,491.08174610368616,2019
+1995,35,"(30,35]",HS,585.4859619637328,77.30254979600063,7.573954074074073,259.04550065504026,2019
+1995,35,"(30,35]",HS,2580.117470145953,73.3383164731288,35.18102942942942,478.9985061218011,2019
+1995,70,"(65,70]",HS,1505.374966828837,85.23101644174427,17.662290439276486,3186.281461024755,2019
+1995,70,"(65,70]",HS,1505.374966828837,85.23101644174427,17.662290439276486,2725.393318102095,2019
+1995,70,"(65,70]",HS,1505.374966828837,85.23101644174427,17.662290439276486,2813.2745934827685,2019
+1995,70,"(65,70]",HS,1505.374966828837,85.23101644174427,17.662290439276486,2728.838958314345,2019
+1995,70,"(65,70]",HS,1505.374966828837,85.23101644174427,17.662290439276486,2820.397814113859,2019
+1995,47,"(45,50]",HS,2902.3660327288812,325.06713247548976,8.928512737127372,845.9668997335262,2019
+1995,47,"(45,50]",HS,2499.2166298098186,360.7452323813362,6.927926984126984,545.5743063742315,2019
+1995,47,"(45,50]",HS,3599.8938522777535,1060.4324138682136,3.394741433021807,770.6853574351868,2019
+1995,47,"(45,50]",HS,2820.7877930119416,553.0105485406198,5.100784786937475,772.4289141889332,2019
+1995,47,"(45,50]",College,3345.8690844758953,432.1014321930291,7.743249235474005,762.9624561087302,2019
+1995,57,"(55,60]",NoHS,460.24449358690845,198.21166614359132,2.321984888888889,4373.177166393571,2019
+1995,57,"(55,60]",NoHS,1059.2590888987174,198.21166614359132,5.344080444444445,4546.966995532415,2019
+1995,57,"(55,60]",NoHS,463.14763379035827,198.21166614359132,2.336631555555556,4497.346537320407,2019
+1995,57,"(55,60]",NoHS,579.2732419283503,198.21166614359132,2.9224982222222224,4262.3043824474835,2019
+1995,57,"(55,60]",NoHS,594.9501990269791,198.21166614359132,3.001590222222222,4507.49199054989,2019
+1995,41,"(40,45]",College,737.0105263157894,467.77953209887556,1.575551035781544,287.3022433038702,2019
+1995,41,"(40,45]",College,737.0105263157894,467.77953209887556,1.575551035781544,293.74042362463126,2019
+1995,41,"(40,45]",College,737.0105263157894,467.77953209887556,1.575551035781544,288.49238801339374,2019
+1995,41,"(40,45]",College,737.0105263157894,467.77953209887556,1.575551035781544,282.1183840019538,2019
+1995,41,"(40,45]",College,737.0105263157894,467.77953209887556,1.575551035781544,286.7050730555865,2019
+1995,56,"(55,60]",College,1503.245997346307,81.26678311887244,18.497668292682928,3212.0860129284288,2019
+1995,56,"(55,60]",College,1450.8268978328174,97.12371641035975,14.937926095238096,2751.0766272553374,2019
+1995,56,"(55,60]",College,1501.310570544007,130.8196996547703,11.476181144781144,2830.501395117516,2019
+1995,56,"(55,60]",College,1439.856279380805,73.3383164731288,19.633069705225225,5123.233927002018,2019
+1995,56,"(55,60]",College,1404.7327731092437,174.42626620636034,8.053447474747475,5403.665436212377,2019
+1995,26,"(25,30]",HS,28.547545333923043,35.67809990584644,0.8001419753086421,5795.207909241561,2019
+1995,26,"(25,30]",HS,28.547545333923043,35.67809990584644,0.8001419753086421,5772.849901016107,2019
+1995,26,"(25,30]",HS,28.547545333923043,35.67809990584644,0.8001419753086421,5766.517235813227,2019
+1995,26,"(25,30]",HS,28.547545333923043,35.67809990584644,0.8001419753086421,5796.373039814993,2019
+1995,26,"(25,30]",HS,28.547545333923043,35.67809990584644,0.8001419753086421,5791.599743820478,2019
+1995,42,"(40,45]",College,192.9620521892968,132.8018163162062,1.4530076285240463,4552.679268356546,2019
+1995,42,"(40,45]",College,192.9620521892968,132.8018163162062,1.4530076285240463,4739.459870102507,2019
+1995,42,"(40,45]",College,192.9620521892968,132.8018163162062,1.4530076285240463,4672.021074131677,2019
+1995,42,"(40,45]",College,192.9620521892968,132.8018163162062,1.4530076285240463,4437.159552557617,2019
+1995,42,"(40,45]",College,192.9620521892968,132.8018163162062,1.4530076285240463,4705.372831203686,2019
+1995,23,"(20,25]",HS,-3.8321450685537375,33.69598324441053,-0.11372705882352942,4582.542914577665,2019
+1995,23,"(20,25]",HS,-3.8321450685537375,37.660216567282355,-0.10175578947368422,4586.556332421547,2019
+1995,23,"(20,25]",HS,-3.8321450685537375,39.642333228718265,-0.096668,4615.941942954199,2019
+1995,23,"(20,25]",HS,-3.8321450685537375,31.713866582974614,-0.120835,4582.486188486455,2019
+1995,23,"(20,25]",HS,-3.8321450685537375,33.69598324441053,-0.11372705882352942,4559.4355299842655,2019
+1995,69,"(65,70]",NoHS,111.09349845201238,57.48138318164148,1.9326865900383141,7507.0979547457,2019
+1995,69,"(65,70]",NoHS,111.09349845201238,57.48138318164148,1.9326865900383141,7468.687391402311,2019
+1995,69,"(65,70]",NoHS,111.09349845201238,57.48138318164148,1.9326865900383141,7476.4828245109,2019
+1995,69,"(65,70]",NoHS,111.09349845201238,57.48138318164148,1.9326865900383141,7954.162604245376,2019
+1995,69,"(65,70]",NoHS,111.09349845201238,57.48138318164148,1.9326865900383141,7679.694672886617,2019
+1995,53,"(50,55]",HS,365.021494913755,83.24889978030835,4.38470052910053,6339.1246898513955,2019
+1995,53,"(50,55]",HS,365.021494913755,83.24889978030835,4.38470052910053,6433.594375547138,2019
+1995,53,"(50,55]",HS,365.021494913755,83.24889978030835,4.38470052910053,6464.6444464761935,2019
+1995,53,"(50,55]",HS,365.021494913755,83.24889978030835,4.38470052910053,6233.585532610634,2019
+1995,53,"(50,55]",HS,365.021494913755,83.24889978030835,4.38470052910053,6352.569873403067,2019
+1995,59,"(55,60]",College,1776.7218045112782,422.19084888584956,4.208338028169013,2770.9556667644147,2019
+1995,59,"(55,60]",College,1776.7218045112782,422.19084888584956,4.208338028169013,2266.6363669045504,2019
+1995,59,"(55,60]",College,1776.7218045112782,422.19084888584956,4.208338028169013,2321.9399636127796,2019
+1995,59,"(55,60]",College,1776.7218045112782,422.19084888584956,4.208338028169013,2270.893289776508,2019
+1995,59,"(55,60]",College,1776.7218045112782,422.19084888584956,4.208338028169013,2302.2836667650818,2019
+1995,56,"(55,60]",College,2056.390977443609,299.29961587682294,6.870676968359086,575.9806022367845,2019
+1995,56,"(55,60]",College,2056.390977443609,350.8346490741567,5.861424984306339,489.267871452033,2019
+1995,56,"(55,60]",College,2056.390977443609,315.1565491683102,6.52498252969951,489.3296270350065,2019
+1995,56,"(55,60]",College,2056.390977443609,352.8167657355925,5.828495630461923,495.74217464753053,2019
+1995,56,"(55,60]",College,2056.390977443609,319.12078249118207,6.443926846100758,477.1505499519468,2019
+1995,36,"(35,40]",College,99.48093763821318,112.98064970184706,0.8805130604288499,6325.112031482278,2019
+1995,36,"(35,40]",College,99.48093763821318,112.98064970184706,0.8805130604288499,6238.091800672673,2019
+1995,36,"(35,40]",College,99.48093763821318,112.98064970184706,0.8805130604288499,6232.826542430649,2019
+1995,36,"(35,40]",College,99.48093763821318,112.98064970184706,0.8805130604288499,6299.489384209591,2019
+1995,36,"(35,40]",College,99.48093763821318,112.98064970184706,0.8805130604288499,6255.419895635214,2019
+1995,60,"(55,60]",HS,-0.4838567005749669,49.55291653589783,-0.009764444444444445,8310.063439481528,2019
+1995,60,"(55,60]",HS,-0.4838567005749669,49.55291653589783,-0.009764444444444445,8263.081053022946,2019
+1995,60,"(55,60]",HS,-0.4838567005749669,49.55291653589783,-0.009764444444444445,8234.486915005855,2019
+1995,60,"(55,60]",HS,-0.4838567005749669,49.55291653589783,-0.009764444444444445,8154.982286229465,2019
+1995,60,"(55,60]",HS,-0.4838567005749669,49.55291653589783,-0.009764444444444445,8006.654019357782,2019
+1995,80,"(75,80]",HS,1658.6607695709863,85.23101644174427,19.460764857881138,1148.4943263538796,2019
+1995,80,"(75,80]",HS,1889.1701017249006,85.23101644174427,22.165288888888888,1017.641132618787,2019
+1995,80,"(75,80]",HS,2288.835736399823,85.23101644174427,26.854493023255813,1028.5967341346372,2019
+1995,80,"(75,80]",HS,2100.905793896506,85.23101644174427,24.649545219638245,1028.6543150830412,2019
+1995,80,"(75,80]",HS,2284.1907120743035,85.23101644174427,26.799993798449613,1034.703683128981,2019
+1995,65,"(60,65]",HS,1447.3121627598407,297.31749921538704,4.8679010370370355,3186.7955804491767,2019
+1995,65,"(60,65]",HS,1451.1830163644406,297.31749921538704,4.880920296296296,2725.3462430668264,2019
+1995,65,"(60,65]",HS,1430.861034940292,297.31749921538704,4.812569185185184,2813.001395477927,2019
+1995,65,"(60,65]",HS,1576.9857585139318,297.31749921538704,5.304046222222221,2729.0432525294777,2019
+1995,65,"(60,65]",HS,1451.1830163644406,297.31749921538704,4.880920296296296,2842.3343820961586,2019
+1995,40,"(35,40]",College,20686.22874834144,148.65874960769352,139.15244681481477,1411.0206197390985,2019
+1995,40,"(35,40]",College,20666.10030959752,194.2474328207195,106.39059682539681,787.9118980613774,2019
+1995,40,"(35,40]",College,20687.77708978328,140.73028296194985,147.00302347417838,1388.6079597821006,2019
+1995,40,"(35,40]",College,20665.132596196374,221.99706608082226,93.0874130952381,895.2061841453966,2019
+1995,40,"(35,40]",College,20664.358425475453,245.78246601805324,84.07580394265233,1471.0363085917043,2019
+1995,65,"(60,65]",HS,613.3367536488279,69.37408315025698,8.841006984126981,8509.461707605318,2019
+1995,65,"(60,65]",HS,613.3367536488279,69.37408315025698,8.841006984126981,8624.406913773299,2019
+1995,65,"(60,65]",HS,613.3367536488279,69.37408315025698,8.841006984126981,8501.061800142383,2019
+1995,65,"(60,65]",HS,613.3367536488279,69.37408315025698,8.841006984126981,8288.402883143122,2019
+1995,65,"(60,65]",HS,613.3367536488279,69.37408315025698,8.841006984126981,8457.706035488603,2019
+1995,31,"(30,35]",HS,28.547545333923043,71.35619981169287,0.40007098765432103,5356.428181288562,2019
+1995,31,"(30,35]",HS,28.547545333923043,71.35619981169287,0.40007098765432103,5381.988500139967,2019
+1995,31,"(30,35]",HS,28.547545333923043,71.35619981169287,0.40007098765432103,5391.4167478893705,2019
+1995,31,"(30,35]",HS,28.547545333923043,71.35619981169287,0.40007098765432103,5462.318713277045,2019
+1995,31,"(30,35]",HS,28.547545333923043,71.35619981169287,0.40007098765432103,5409.431783237278,2019
+1995,44,"(40,45]",NoHS,1304.6712074303407,0,Inf,4211.228321314976,2019
+1995,44,"(40,45]",NoHS,1068.5491375497568,0,Inf,4384.00037785143,2019
+1995,44,"(40,45]",NoHS,1215.6415745245467,0,Inf,4321.619491606778,2019
+1995,44,"(40,45]",NoHS,1176.9330384785494,0,Inf,4104.372584249554,2019
+1995,44,"(40,45]",NoHS,1068.5491375497568,0,Inf,4352.4698668843585,2019
+1995,33,"(30,35]",HS,115.27402034498009,39.642333228718265,2.9078515555555553,8849.860563566823,2019
+1995,33,"(30,35]",HS,115.27402034498009,39.642333228718265,2.9078515555555553,8760.703534237287,2019
+1995,33,"(30,35]",HS,115.27402034498009,39.642333228718265,2.9078515555555553,8895.73227254585,2019
+1995,33,"(30,35]",HS,115.27402034498009,39.642333228718265,2.9078515555555553,8777.067881183066,2019
+1995,33,"(30,35]",HS,115.27402034498009,39.642333228718265,2.9078515555555553,8813.926598266593,2019
+1995,44,"(40,45]",HS,315.8616541353383,49.55291653589783,6.374229333333333,5085.981901125257,2019
+1995,44,"(40,45]",HS,231.08996019460415,49.55291653589783,4.6634986666666665,5016.009493249076,2019
+1995,44,"(40,45]",HS,217.92905793896506,49.55291653589783,4.397905777777778,5011.775732963032,2019
+1995,44,"(40,45]",HS,301.92658115877936,49.55291653589783,6.093013333333335,5065.378895259246,2019
+1995,44,"(40,45]",HS,220.83219814241485,49.55291653589783,4.456492444444445,5029.942902953413,2019
+1995,68,"(65,70]",College,3972.269969040248,354.79888239702854,11.19583563004345,870.8618251077384,2019
+1995,68,"(65,70]",College,3850.3380804953563,354.79888239702854,10.852170825574177,783.7811884836271,2019
+1995,68,"(65,70]",College,3536.7989385227775,354.79888239702854,9.968461328367471,783.387656296918,2019
+1995,68,"(65,70]",College,4732.892702344096,354.79888239702854,13.339649410304157,717.1117330971684,2019
+1995,68,"(65,70]",College,3825.177532065458,354.79888239702854,10.781255865921786,780.0094981827734,2019
+1995,30,"(25,30]",HS,21.8703228659885,37.660216567282355,0.5807274853801169,5194.044820800704,2019
+1995,30,"(25,30]",HS,21.8703228659885,33.69598324441053,0.6490483660130718,5133.262678510813,2019
+1995,30,"(25,30]",HS,21.8703228659885,13.081969965477029,1.6717912457912454,5149.143378987435,2019
+1995,30,"(25,30]",HS,21.8703228659885,37.660216567282355,0.5807274853801169,5112.658219031564,2019
+1995,30,"(25,30]",HS,21.8703228659885,35.67809990584644,0.61299012345679,5131.03250101435,2019
+1995,46,"(45,50]",College,343.92534276868645,277.4963326010279,1.239386984126984,3681.121638688295,2019
+1995,46,"(45,50]",College,343.92534276868645,277.4963326010279,1.239386984126984,3822.229892617619,2019
+1995,46,"(45,50]",College,343.92534276868645,277.4963326010279,1.239386984126984,3775.8416138541834,2019
+1995,46,"(45,50]",College,343.92534276868645,277.4963326010279,1.239386984126984,3581.7197921245233,2019
+1995,46,"(45,50]",College,343.92534276868645,277.4963326010279,1.239386984126984,3791.2559436512906,2019
+1995,23,"(20,25]",HS,278.89693763821316,81.26678311887244,3.4318688021680215,4611.829078557608,2019
+1995,23,"(20,25]",HS,258.57495621406457,77.30254979600063,3.3449731851851845,4599.788666144341,2019
+1995,23,"(20,25]",HS,236.70463334807607,73.3383164731288,3.227571135135135,4643.538851454608,2019
+1995,23,"(20,25]",HS,236.89817602830607,77.30254979600063,3.06455837037037,4585.2518417040355,2019
+1995,23,"(20,25]",HS,259.7362122954445,81.26678311887244,3.1960931924119245,4597.863130202374,2019
+1995,42,"(40,45]",College,151.02135338345866,184.33684951353993,0.8192683870967743,7397.791851703563,2019
+1995,42,"(40,45]",College,151.02135338345866,184.33684951353993,0.8192683870967743,7296.013803945284,2019
+1995,42,"(40,45]",College,151.02135338345866,184.33684951353993,0.8192683870967743,7289.855607169314,2019
+1995,42,"(40,45]",College,151.02135338345866,184.33684951353993,0.8192683870967743,7367.823843189324,2019
+1995,42,"(40,45]",College,151.02135338345866,184.33684951353993,0.8192683870967743,7316.280581684778,2019
+1995,53,"(50,55]",HS,504.56576735957543,63.42773316594923,7.954970833333333,94.62129830796383,2019
+1995,53,"(50,55]",HS,504.56576735957543,63.42773316594923,7.954970833333333,94.04591326523526,2019
+1995,53,"(50,55]",HS,504.56576735957543,63.42773316594923,7.954970833333333,97.62896784432158,2019
+1995,53,"(50,55]",HS,504.56576735957543,63.42773316594923,7.954970833333333,91.86216463721176,2019
+1995,53,"(50,55]",HS,504.56576735957543,63.42773316594923,7.954970833333333,97.38049326045763,2019
+1995,48,"(45,50]",College,9535.199486952675,9296.127142134434,1.0257174134091447,87.4454276014078,2019
+1995,48,"(45,50]",College,16339.540787262275,2596.572826481047,6.292733491094147,155.48293994204602,2019
+1995,48,"(45,50]",College,98601.99258735073,9296.127142134434,10.606781843638949,84.6758842184617,2019
+1995,48,"(45,50]",College,10520.370437859356,7254.5469808554435,1.4501760710382514,167.3157735280683,2019
+1995,48,"(45,50]",College,161409.59223352498,2596.572826481047,62.162551570822714,134.76510003163577,2019
+1995,27,"(25,30]",HS,183.47846085802743,73.3383164731288,2.501809009009009,4736.13416161428,2019
+1995,27,"(25,30]",HS,182.97524988942945,73.3383164731288,2.494947507507507,4664.405256472653,2019
+1995,27,"(25,30]",HS,184.0203803626714,65.40984982738514,2.813343569023569,4693.268183547766,2019
+1995,27,"(25,30]",HS,183.5365236620964,61.44561650451331,2.986975053763441,4635.114118794602,2019
+1995,27,"(25,30]",HS,181.50432551968157,71.35619981169287,2.543637777777778,4688.148568212227,2019
+1995,34,"(30,35]",HS,83.03174524546661,49.55291653589783,1.6756177244444446,5180.222890192279,2019
+1995,34,"(30,35]",HS,88.45094029190625,49.55291653589783,1.7849795022222226,5133.984151457576,2019
+1995,34,"(30,35]",HS,77.99963555948696,49.55291653589783,1.5740675022222226,5203.824257161518,2019
+1995,34,"(30,35]",HS,85.25748606811145,49.55291653589783,1.7205341688888889,5141.45750427555,2019
+1995,34,"(30,35]",HS,86.0897195931004,49.55291653589783,1.7373290133333334,5187.154139302199,2019
+1995,42,"(40,45]",HS,764.0290844758956,124.87334967046255,6.11843188712522,4362.939534688403,2019
+1995,42,"(40,45]",HS,736.6427952233526,124.87334967046255,5.899119365079365,4541.203175684092,2019
+1995,42,"(40,45]",HS,810.2857850508625,124.87334967046255,6.488860811287478,4478.972447169097,2019
+1995,42,"(40,45]",HS,718.9142857142857,124.87334967046255,5.757147442680775,4255.1162089498175,2019
+1995,42,"(40,45]",HS,781.4092171605485,124.87334967046255,6.257613968253968,4507.835140525949,2019
+1995,77,"(75,80]",HS,140.1249004865104,7.9284666457436535,17.673644444444445,7675.028627398649,2019
+1995,77,"(75,80]",HS,140.1249004865104,16.847991622205264,8.317009150326797,7632.951749236087,2019
+1995,77,"(75,80]",HS,140.1249004865104,11.298064970184706,12.402557504873295,7676.811382464619,2019
+1995,77,"(75,80]",HS,140.1249004865104,17.24441495449245,8.125813537675606,7646.059258262992,2019
+1995,77,"(75,80]",HS,140.1249004865104,29.731749921538697,4.712971851851853,7667.948399789253,2019
+1995,45,"(40,45]",College,1365.2500663423264,170.46203288348855,8.009115245478036,1436.2069541287506,2019
+1995,45,"(40,45]",College,1713.6268907563026,170.46203288348855,10.052836175710594,1220.4614056252472,2019
+1995,45,"(40,45]",College,1432.9900044228218,170.46203288348855,8.406505426356588,1220.8387443701317,2019
+1995,45,"(40,45]",College,1713.6268907563026,170.46203288348855,10.052836175710594,1237.0530016569462,2019
+1995,45,"(40,45]",College,1183.3199469261388,170.46203288348855,6.941838759689921,1189.8083211788332,2019
+1995,83,"(80,85]",College,427.8841574524547,27.749633260102783,15.419452698412702,12564.54032427152,2019
+1995,83,"(80,85]",College,427.7293233082707,27.749633260102783,15.413873015873017,12936.925433042115,2019
+1995,83,"(80,85]",College,427.7293233082707,27.749633260102783,15.413873015873017,12648.341018230962,2019
+1995,83,"(80,85]",College,427.7293233082707,27.749633260102783,15.413873015873017,13218.37954853423,2019
+1995,83,"(80,85]",College,428.1164086687306,27.749633260102783,15.427822222222224,12814.113278665027,2019
+1995,51,"(50,55]",College,18696.80353825741,834.4711144645196,22.405573079968327,321.3282801053765,2019
+1995,51,"(50,55]",College,18695.255196815568,834.4711144645196,22.403717603589335,362.7607247815075,2019
+1995,51,"(50,55]",College,18696.60999557718,834.4711144645196,22.40534114542095,315.7442517854516,2019
+1995,51,"(50,55]",College,18697.19062361787,834.4711144645196,22.406036949063076,396.1070222422064,2019
+1995,51,"(50,55]",College,18695.990659000443,834.4711144645196,22.404598954869357,305.5307211486849,2019
+1995,20,"(15,20]",HS,-5.999823087129589,39.642333228718265,-0.1513488888888889,3909.2281893896206,2019
+1995,20,"(15,20]",HS,-5.999823087129589,39.642333228718265,-0.1513488888888889,3873.486874141758,2019
+1995,20,"(15,20]",HS,-5.999823087129589,39.642333228718265,-0.1513488888888889,3867.0538121746686,2019
+1995,20,"(15,20]",HS,-5.999823087129589,39.642333228718265,-0.1513488888888889,3840.112537865768,2019
+1995,20,"(15,20]",HS,-5.999823087129589,39.642333228718265,-0.1513488888888889,3832.471002919187,2019
+1995,22,"(20,25]",NoHS,3.135391419725785,25.76751659866687,0.12168000000000001,5488.1669582777795,2019
+1995,22,"(20,25]",NoHS,34.10222025652366,25.76751659866687,1.3234577777777778,5479.758338956803,2019
+1995,22,"(20,25]",NoHS,34.10222025652366,25.76751659866687,1.3234577777777778,5503.649645745904,2019
+1995,22,"(20,25]",NoHS,3.135391419725785,25.76751659866687,0.12168000000000001,5472.460110757718,2019
+1995,22,"(20,25]",NoHS,3.135391419725785,25.76751659866687,0.12168000000000001,5473.777150610794,2019
+1995,34,"(30,35]",HS,52.25652366209642,18.433684951353992,2.8348387096774195,4197.937098926288,2019
+1995,34,"(30,35]",HS,52.25652366209642,19.424743282071947,2.6902040816326536,4134.359205715435,2019
+1995,34,"(30,35]",HS,50.127554179566566,16.847991622205264,2.975283660130719,4159.942254720725,2019
+1995,34,"(30,35]",HS,51.0952675807165,17.83904995292322,2.8642370370370376,4108.396606402888,2019
+1995,34,"(30,35]",HS,52.25652366209642,17.046203288348853,3.0655813953488376,4155.4044138539075,2019
+1995,38,"(35,40]",College,1234.2216718266254,154.60509959200127,7.9830592592592575,895.5135966528663,2019
+1995,38,"(35,40]",College,3477.0136045997347,925.6484808905715,3.756300233166786,2091.511688738291,2019
+1995,38,"(35,40]",College,5640.8014153029635,323.0850158140539,17.459186094069526,1968.8953776587157,2019
+1995,38,"(35,40]",College,1951.8198673153474,925.6484808905715,2.108597278134666,1614.3331866442927,2019
+1995,38,"(35,40]",College,1437.4414860681113,233.88976604943778,6.145807532956685,1635.0979933013518,2019
+1995,62,"(60,65]",HS,34.06351172047766,69.37408315025698,0.4910120634920634,7842.119566148491,2019
+1995,62,"(60,65]",HS,30.579743476337903,47.57079987446191,0.642825925925926,7917.828840262337,2019
+1995,62,"(60,65]",HS,29.224944714727997,19.424743282071947,1.5045215419501137,7857.324873710137,2019
+1995,62,"(60,65]",HS,29.80557275541796,59.46349984307739,0.5012414814814815,8068.991929502384,2019
+1995,62,"(60,65]",HS,31.740999557717824,47.57079987446191,0.6672370370370372,7814.750142592575,2019
+1995,36,"(35,40]",College,1634.661477222468,358.7631157199002,4.556381092694906,1072.9134963064603,2019
+1995,36,"(35,40]",College,1982.6512162759843,350.8346490741567,5.651241180163214,917.6058495218389,2019
+1995,36,"(35,40]",College,2174.064927023441,354.79888239702854,6.127598013656114,914.6228094415749,2019
+1995,36,"(35,40]",College,4621.566952675807,325.06713247548976,14.217269268292684,843.7181024533365,2019
+1995,36,"(35,40]",College,4214.198319327731,293.3532658925152,14.365609009009008,880.7494086107736,2019
+1995,47,"(45,50]",College,1316.6708536045999,237.85399937230957,5.535626296296297,2679.0168447048563,2019
+1995,47,"(45,50]",College,1312.8,237.85399937230957,5.519352222222222,2297.4519529327117,2019
+1995,47,"(45,50]",College,1310.8645731977,237.85399937230957,5.511215185185185,2369.0551682036144,2019
+1995,47,"(45,50]",College,1301.1874391862007,237.85399937230957,5.47053,2298.567273831577,2019
+1995,47,"(45,50]",College,1305.0582927908006,237.85399937230957,5.486804074074075,2371.070637316199,2019
+1995,55,"(50,55]",HS,775.7190623617869,29.731749921538697,26.09059555555556,4305.194395648704,2019
+1995,55,"(50,55]",HS,775.7190623617869,29.731749921538697,26.09059555555556,4475.299039649128,2019
+1995,55,"(50,55]",HS,775.7190623617869,29.731749921538697,26.09059555555556,4423.908174622965,2019
+1995,55,"(50,55]",HS,775.7190623617869,29.731749921538697,26.09059555555556,4193.958742772969,2019
+1995,55,"(50,55]",HS,775.7190623617869,29.731749921538697,26.09059555555556,4434.736507007482,2019
+1995,41,"(40,45]",College,1119.9347191508182,178.3904995292322,6.277995308641976,2630.969115999954,2019
+1995,41,"(40,45]",College,1119.9347191508182,178.3904995292322,6.277995308641976,2254.538815876892,2019
+1995,41,"(40,45]",College,1120.1282618310481,178.3904995292322,6.27908024691358,2320.6322822625325,2019
+1995,41,"(40,45]",College,1119.9347191508182,178.3904995292322,6.277995308641976,2254.114477584087,2019
+1995,41,"(40,45]",College,1119.9347191508182,178.3904995292322,6.277995308641976,2331.1984077310995,2019
+1995,53,"(50,55]",HS,8.767483414418399,73.3383164731288,0.11954846846846845,4673.984779653094,2019
+1995,53,"(50,55]",HS,12.638337019018135,73.3383164731288,0.17232924924924925,4558.880606040193,2019
+1995,53,"(50,55]",HS,18.444617425917734,73.3383164731288,0.25150042042042037,4563.198632216319,2019
+1995,53,"(50,55]",HS,15.735019902697921,73.3383164731288,0.21455387387387384,4723.0408112200475,2019
+1995,53,"(50,55]",HS,23.476727111897393,73.3383164731288,0.3201154354354354,4624.4044093770735,2019
+1995,66,"(65,70]",College,41600.489482529854,1585.6933291487305,26.234889633333335,21.37930316291056,2019
+1995,66,"(65,70]",College,40842.03442724458,1544.0688792585765,26.450914836685207,23.814430115263647,2019
+1995,66,"(65,70]",College,41741.311136665194,1490.5517293998068,28.003933250591015,21.59007452559501,2019
+1995,66,"(65,70]",College,41003.932879256965,1468.7484461240117,27.917600857699806,25.778823899766866,2019
+1995,66,"(65,70]",College,41273.36364440514,1474.6947961083195,27.98773261648746,20.9070008654844,2019
+1995,68,"(65,70]",HS,149.02786377708978,116.94488302471889,1.2743427495291901,9407.56130313127,2019
+1995,68,"(65,70]",HS,149.02786377708978,116.94488302471889,1.2743427495291901,9413.412968267474,2019
+1995,68,"(65,70]",HS,149.02786377708978,116.94488302471889,1.2743427495291901,9321.369945992485,2019
+1995,68,"(65,70]",HS,149.02786377708978,116.94488302471889,1.2743427495291901,9942.037488143624,2019
+1995,68,"(65,70]",HS,149.02786377708978,116.94488302471889,1.2743427495291901,9557.199512599213,2019
+1995,48,"(45,50]",College,2382.7039363113668,178.3904995292322,13.356675061728396,3130.698662844954,2019
+1995,48,"(45,50]",College,2382.7039363113668,178.3904995292322,13.356675061728396,2684.5141510224685,2019
+1995,48,"(45,50]",College,2382.7039363113668,178.3904995292322,13.356675061728396,2766.794887095568,2019
+1995,48,"(45,50]",College,2382.7039363113668,178.3904995292322,13.356675061728396,2685.7092845061356,2019
+1995,48,"(45,50]",College,2382.7039363113668,178.3904995292322,13.356675061728396,2768.2183755578894,2019
+1995,39,"(35,40]",NoHS,207.76806722689076,27.749633260102783,7.487236507936509,7080.867247873331,2019
+1995,39,"(35,40]",NoHS,204.82621848739495,142.71239962338575,1.4352377160493828,7167.750138481587,2019
+1995,39,"(35,40]",NoHS,211.3873153471915,53.517149858769656,3.9498986008230452,7079.797405359577,2019
+1995,39,"(35,40]",NoHS,213.67111897390538,91.177366426052,2.343466666666667,7314.767768229835,2019
+1995,39,"(35,40]",NoHS,208.32934099955773,118.92699968615479,1.7517413333333336,7132.5866503703855,2019
+1995,33,"(30,35]",College,4013.630039805396,168.47991622205262,23.822602300653596,797.9834521432487,2019
+1995,33,"(30,35]",College,4013.630039805396,168.47991622205262,23.822602300653596,634.5682621247508,2019
+1995,33,"(30,35]",College,4013.630039805396,168.47991622205262,23.822602300653596,620.1085159843298,2019
+1995,33,"(30,35]",College,4013.630039805396,168.47991622205262,23.822602300653596,617.3967402735968,2019
+1995,33,"(30,35]",College,4013.630039805396,168.47991622205262,23.822602300653596,636.73781923577,2019
+1995,77,"(75,80]",NoHS,7174.240070765148,101.08794973323158,70.97027973856208,433.36379699936833,2019
+1995,77,"(75,80]",NoHS,8435.17063246351,109.01641637897524,77.37523313131312,392.2387501999704,2019
+1995,77,"(75,80]",NoHS,4983.336930561698,109.01641637897524,45.71180282828282,386.1199295704456,2019
+1995,77,"(75,80]",NoHS,5275.586377708978,112.98064970184706,46.69460116959064,360.47567171275153,2019
+1995,77,"(75,80]",NoHS,4978.304820875718,116.94488302471889,42.56966779661016,387.6955629315926,2019
+1995,45,"(40,45]",HS,253.54091110128263,128.8375829933344,1.9679111111111107,5105.630223336043,2019
+1995,45,"(40,45]",HS,253.54091110128263,128.8375829933344,1.9679111111111107,5316.425207156416,2019
+1995,45,"(40,45]",HS,253.54091110128263,128.8375829933344,1.9679111111111107,5252.533336595273,2019
+1995,45,"(40,45]",HS,253.54091110128263,128.8375829933344,1.9679111111111107,4983.962351674725,2019
+1995,45,"(40,45]",HS,253.54091110128263,128.8375829933344,1.9679111111111107,5273.027700837032,2019
+1995,83,"(80,85]",HS,295.8299867315347,63.42773316594923,4.664047916666666,9442.112502886288,2019
+1995,83,"(80,85]",HS,294.8622733303848,63.42773316594923,4.648790972222223,9272.163097325098,2019
+1995,83,"(80,85]",HS,294.8622733303848,63.42773316594923,4.648790972222223,9511.60852397735,2019
+1995,83,"(80,85]",HS,294.08810260946484,63.42773316594923,4.636585416666667,9544.439476646297,2019
+1995,83,"(80,85]",HS,296.79770013268467,63.42773316594923,4.679304861111111,9456.126219013388,2019
+1995,38,"(35,40]",HS,140.5119858469704,174.42626620636034,0.805566666666667,5902.339790192642,2019
+1995,38,"(35,40]",HS,141.09261388766032,174.42626620636034,0.8088954545454546,5821.136015729386,2019
+1995,38,"(35,40]",HS,141.09261388766032,174.42626620636034,0.8088954545454546,5816.222688807612,2019
+1995,38,"(35,40]",HS,142.25386996904024,174.42626620636034,0.8155530303030304,5878.429767765382,2019
+1995,38,"(35,40]",HS,140.3184431667404,174.42626620636034,0.804457070707071,5837.305896021875,2019
+1995,84,"(80,85]",HS,110822.94513931888,3964.233322871826,27.955706971111113,23.77978164443807,2019
+1995,84,"(80,85]",HS,159767.95354268025,2774.9633260102787,57.57479821269842,25.70395045405458,2019
+1995,84,"(80,85]",HS,50795.6828659885,2101.0436611220684,24.176405186582805,25.113774094689507,2019
+1995,84,"(80,85]",HS,99808.23766475012,1415.2312962652422,70.52432908185496,22.197837107810393,2019
+1995,84,"(80,85]",HS,154445.5298363556,887.9882643232891,173.92744481150794,23.92156353176672,2019
+1995,54,"(50,55]",NoHS,3113.1340114993363,1557.9436958886279,1.9982326830647439,348.77470508714487,2019
+1995,54,"(50,55]",NoHS,2030.4562582927908,1409.2849462809345,1.4407705578996717,223.65498883629567,2019
+1995,54,"(50,55]",NoHS,2897.9145510835915,1300.268529901959,2.2287046747967483,220.5868103370272,2019
+1995,54,"(50,55]",NoHS,2161.0975674480314,1339.9108631306774,1.6128666666666662,227.75193928197973,2019
+1995,54,"(50,55]",NoHS,2934.107032286599,1510.372896014166,1.9426375036453778,316.3665015319411,2019
+1995,42,"(40,45]",College,544.7258735072976,67.39196648882105,8.082949673202613,3746.204662764131,2019
+1995,42,"(40,45]",College,542.4614241486069,65.40984982738514,8.293268148148147,3899.898415372186,2019
+1995,42,"(40,45]",College,516.3718708536046,75.32043313456471,6.85566783625731,3844.4059202884455,2019
+1995,42,"(40,45]",College,533.2100840336135,73.3383164731288,7.2705525525525525,3651.1484392838092,2019
+1995,42,"(40,45]",College,516.1396196373286,77.30254979600063,6.676877037037035,3871.8496518780944,2019
+1995,45,"(40,45]",HS,1136.98582927908,128.8375829933344,8.824954666666665,4785.439113345088,2019
+1995,45,"(40,45]",HS,1157.1916850950906,128.8375829933344,8.981786666666665,4984.740567204883,2019
+1995,45,"(40,45]",HS,1149.2757894736842,128.8375829933344,8.920345777777776,4925.271122612006,2019
+1995,45,"(40,45]",HS,1146.8565059708094,128.8375829933344,8.901567999999997,4673.858741835149,2019
+1995,45,"(40,45]",HS,1149.3144980097302,128.8375829933344,8.92064622222222,4938.740256052047,2019
+1995,66,"(65,70]",College,2330.6409553295002,91.177366426052,25.56161739130435,153.77054121742498,2019
+1995,66,"(65,70]",College,3814.5326846528087,269.5678659552842,14.150546732026143,178.9699345790927,2019
+1995,66,"(65,70]",College,4044.267846085803,378.58428233425946,10.682608958696916,181.16573967601852,2019
+1995,66,"(65,70]",College,5394.80866873065,91.177366426052,59.168287922705325,184.25240908020513,2019
+1995,66,"(65,70]",College,4382.96753648828,190.28319949784765,23.033917592592598,183.15051515092154,2019
+1995,58,"(55,60]",NoHS,127.93171163202122,83.24889978030835,1.5367375661375662,8727.9245267188,2019
+1995,58,"(55,60]",NoHS,129.09296771340115,83.24889978030835,1.5506867724867726,8545.78040488213,2019
+1995,58,"(55,60]",NoHS,141.4796992481203,83.24889978030835,1.6994783068783073,8620.408722216072,2019
+1995,58,"(55,60]",NoHS,139.54427244582044,83.24889978030835,1.67622962962963,8601.821605304565,2019
+1995,58,"(55,60]",NoHS,139.54427244582044,83.24889978030835,1.67622962962963,8510.417225708672,2019
+1995,48,"(45,50]",College,1069.3233082706768,237.85399937230957,4.495712962962964,6616.416474547621,2019
+1995,48,"(45,50]",College,1344.153914197258,237.85399937230957,5.651172222222224,11805.254985244985,2019
+1995,48,"(45,50]",College,1971.232198142415,237.85399937230957,8.287572222222224,10983.745522883983,2019
+1995,48,"(45,50]",College,945.6495356037152,237.85399937230957,3.975756296296297,6468.714531594167,2019
+1995,48,"(45,50]",College,1092.5484298982751,237.85399937230957,4.5933574074074075,6608.685683350981,2019
+1995,62,"(60,65]",HS,1043.5434232640425,21.803283275795042,47.86175595959597,4619.553345152027,2019
+1995,62,"(60,65]",HS,1043.5434232640425,35.67809990584644,29.248850864197536,4803.134150595092,2019
+1995,62,"(60,65]",HS,1043.5434232640425,51.53503319733374,20.249204444444448,4750.718173606378,2019
+1995,62,"(60,65]",HS,1043.5434232640425,37.660216567282355,27.709437660818715,4502.434207171426,2019
+1995,62,"(60,65]",HS,1043.5434232640425,35.67809990584644,29.248850864197536,4761.435201666548,2019
+1995,50,"(45,50]",HS,506.5011941618753,192.26531615928357,2.6343867124856817,2990.573666396572,2019
+1995,50,"(45,50]",HS,583.14409553295,184.33684951353993,3.1634700119474313,3115.9766785211013,2019
+1995,50,"(45,50]",HS,447.47067669172935,164.5156828991808,2.7199271753681393,3077.3954180677792,2019
+1995,50,"(45,50]",HS,528.9521450685537,180.3726161906681,2.9325523809523806,2919.8867686145445,2019
+1995,50,"(45,50]",HS,561.6608580274216,162.53356623774488,3.455660704607047,3086.312646007576,2019
+1995,50,"(45,50]",College,3117.991932773109,656.0806149352873,4.752452460557234,22.912149894566873,2019
+1995,50,"(45,50]",College,8462.65369305617,1863.1896617497584,4.542024822695036,20.120435579797295,2019
+1995,50,"(45,50]",College,4528.51163202123,1674.888578913347,2.703768888888889,20.973505920242754,2019
+1995,50,"(45,50]",College,7234.818929677134,751.2222146842112,9.63073081207857,20.498943767727734,2019
+1995,50,"(45,50]",College,3599.4487041132243,329.0313657983616,10.9395306291834,21.266240005160498,2019
+1995,27,"(25,30]",HS,-6.773993808049536,79.28466645743653,-0.0854388888888889,7757.4618706214915,2019
+1995,27,"(25,30]",HS,-6.773993808049536,65.40984982738514,-0.10356228956228955,7839.438981595286,2019
+1995,27,"(25,30]",HS,-3.870853604599735,69.37408315025698,-0.05579682539682539,7768.276889776767,2019
+1995,27,"(25,30]",HS,-3.870853604599735,79.28466645743653,-0.048822222222222225,7890.369786103159,2019
+1995,27,"(25,30]",HS,-2.903140203449801,79.28466645743653,-0.036616666666666665,7779.966659787713,2019
+1995,31,"(30,35]",HS,19.509102167182665,59.46349984307739,0.3280853333333334,5932.818860108337,2019
+1995,31,"(30,35]",HS,19.509102167182665,59.46349984307739,0.3280853333333334,5878.240550363865,2019
+1995,31,"(30,35]",HS,19.509102167182665,59.46349984307739,0.3280853333333334,5935.692255868153,2019
+1995,31,"(30,35]",HS,19.509102167182665,59.46349984307739,0.3280853333333334,5900.1520155418475,2019
+1995,31,"(30,35]",HS,19.509102167182665,59.46349984307739,0.3280853333333334,5909.492050933299,2019
+1995,43,"(40,45]",College,742.2361786819991,105.0521830561034,7.0654046121593295,2016.1412761661554,2019
+1995,43,"(40,45]",College,742.2361786819991,105.0521830561034,7.0654046121593295,2065.3546281363074,2019
+1995,43,"(40,45]",College,742.2361786819991,105.0521830561034,7.0654046121593295,2026.0379677529738,2019
+1995,43,"(40,45]",College,742.2361786819991,105.0521830561034,7.0654046121593295,1996.4571560999138,2019
+1995,43,"(40,45]",College,742.2361786819991,105.0521830561034,7.0654046121593295,2018.9815014691037,2019
+1995,41,"(40,45]",HS,93.09402919062363,23.785399937230956,3.9139148148148157,6322.202894315495,2019
+1995,41,"(40,45]",HS,100.83573639982309,23.785399937230956,4.239396296296297,6399.776903718791,2019
+1995,41,"(40,45]",HS,98.90030959752322,23.785399937230956,4.1580259259259265,6321.247677786201,2019
+1995,41,"(40,45]",HS,118.25457762052189,23.785399937230956,4.97172962962963,6531.042644449763,2019
+1995,41,"(40,45]",HS,100.83573639982309,23.785399937230956,4.239396296296297,6368.3809322186,2019
+1995,39,"(35,40]",HS,199.79410880141532,99.10583307179566,2.0159672000000004,6883.0139731088075,2019
+1995,39,"(35,40]",HS,199.79410880141532,99.10583307179566,2.0159672000000004,6830.012229365081,2019
+1995,39,"(35,40]",HS,199.79410880141532,99.10583307179566,2.0159672000000004,6836.976844703859,2019
+1995,39,"(35,40]",HS,199.79410880141532,99.10583307179566,2.0159672000000004,6966.321175564245,2019
+1995,39,"(35,40]",HS,199.79410880141532,99.10583307179566,2.0159672000000004,6844.7208527176535,2019
+1995,74,"(70,75]",College,34312.40760725342,1082.2356971440086,31.70511534391534,28.168667685583948,2019
+1995,74,"(70,75]",College,33321.469084475895,1119.895913711291,29.754076853490655,33.67646613186312,2019
+1995,74,"(70,75]",College,35265.02467934542,1203.1448134915995,29.31070664470071,29.940806559656828,2019
+1995,74,"(70,75]",College,30445.42485625829,1106.0210970812395,27.52698383114297,32.61955909005104,2019
+1995,74,"(70,75]",College,34303.11755860239,1008.8973806708799,34.0006012660991,28.36026977516257,2019
+1995,62,"(60,65]",HS,410.31048208757187,53.517149858769656,7.666897119341564,10983.544205982069,2019
+1995,62,"(60,65]",HS,410.31048208757187,53.517149858769656,7.666897119341564,11030.11927319886,2019
+1995,62,"(60,65]",HS,410.31048208757187,53.517149858769656,7.666897119341564,10997.742971708652,2019
+1995,62,"(60,65]",HS,410.31048208757187,53.517149858769656,7.666897119341564,11224.028574450836,2019
+1995,62,"(60,65]",HS,410.31048208757187,53.517149858769656,7.666897119341564,10906.11428573367,2019
+1995,71,"(70,75]",NoHS,298.05572755417955,41.624449890154175,7.160592592592593,11128.926496398753,2019
+1995,71,"(70,75]",NoHS,298.05572755417955,41.624449890154175,7.160592592592593,11293.732861193801,2019
+1995,71,"(70,75]",NoHS,298.05572755417955,41.624449890154175,7.160592592592593,11407.52826030146,2019
+1995,71,"(70,75]",NoHS,298.05572755417955,41.624449890154175,7.160592592592593,11647.184274805843,2019
+1995,71,"(70,75]",NoHS,298.05572755417955,41.624449890154175,7.160592592592593,11243.164228592854,2019
+1995,61,"(60,65]",NoHS,1518.9229544449358,27.749633260102783,54.73668571428572,2201.6096210858736,2019
+1995,61,"(60,65]",NoHS,903.4572313135781,27.749633260102783,32.55744761904762,3748.103134605461,2019
+1995,61,"(60,65]",NoHS,346.0543122512163,27.749633260102783,12.470590476190479,6935.65476198151,2019
+1995,61,"(60,65]",NoHS,475.72790800530737,27.749633260102783,17.143574603174603,7129.350271311663,2019
+1995,61,"(60,65]",NoHS,2463.411233967271,27.749633260102783,88.77274920634922,1932.5795519437324,2019
+1995,80,"(75,80]",NoHS,175.078708536046,18.830108283641177,9.297806783625731,7774.761473775265,2019
+1995,80,"(75,80]",NoHS,156.73086245024328,16.25335662377449,9.64298428184282,7717.503858671061,2019
+1995,80,"(75,80]",NoHS,184.67842547545334,47.57079987446191,3.882180370370371,7859.236972435932,2019
+1995,80,"(75,80]",NoHS,84.03623175586024,37.660216567282355,2.231432514619883,7950.897152013795,2019
+1995,80,"(75,80]",NoHS,23.22512162759841,65.40984982738514,0.35507070707070704,7817.116556926878,2019
+1995,35,"(30,35]",HS,22.063865546218487,99.10583307179566,0.22262933333333335,2171.0350634973593,2019
+1995,35,"(30,35]",HS,21.096152145068555,99.10583307179566,0.2128648888888889,2213.259578300411,2019
+1995,35,"(30,35]",HS,16.257585139318888,99.10583307179566,0.1640426666666667,2147.6486846807275,2019
+1995,35,"(30,35]",HS,22.063865546218487,99.10583307179566,0.22262933333333335,2195.7072849248557,2019
+1995,35,"(30,35]",HS,16.0640424590889,99.10583307179566,0.16208977777777778,2162.228183658922,2019
+1995,64,"(60,65]",HS,742.8168067226891,152.62298293056534,4.8670049062049054,4018.1814336210455,2019
+1995,64,"(60,65]",HS,742.8168067226891,152.62298293056534,4.8670049062049054,4176.945767929863,2019
+1995,64,"(60,65]",HS,742.8168067226891,152.62298293056534,4.8670049062049054,4128.980960599778,2019
+1995,64,"(60,65]",HS,742.8168067226891,152.62298293056534,4.8670049062049054,3914.361490996911,2019
+1995,64,"(60,65]",HS,744.752233524989,152.62298293056534,4.879686002886003,4139.087404152831,2019
+1995,40,"(35,40]",HS,26.515347191508184,138.74816630051396,0.19110412698412696,7499.440683340981,2019
+1995,40,"(35,40]",HS,26.515347191508184,138.74816630051396,0.19110412698412696,7591.459508395143,2019
+1995,40,"(35,40]",HS,26.515347191508184,138.74816630051396,0.19110412698412696,7498.307598904915,2019
+1995,40,"(35,40]",HS,26.515347191508184,138.74816630051396,0.19110412698412696,7747.1678355119175,2019
+1995,40,"(35,40]",HS,26.515347191508184,138.74816630051396,0.19110412698412696,7554.217390434448,2019
+1995,57,"(55,60]",HS,699.8309774436091,9.910583307179566,70.61450933333334,54.82053784037403,2019
+1995,57,"(55,60]",HS,813.4018222025653,9.910583307179566,82.07406133333335,55.267175476100604,2019
+1995,57,"(55,60]",HS,593.0921892967713,9.910583307179566,59.844327111111106,57.255308276685184,2019
+1995,57,"(55,60]",HS,753.6745510835913,9.910583307179566,76.04744622222222,53.58690411238133,2019
+1995,57,"(55,60]",HS,683.9217691287041,9.910583307179566,69.00923466666667,56.51772524886802,2019
+1995,57,"(55,60]",NoHS,2.245095090667846,33.69598324441053,0.06662797385620915,6848.7060524391245,2019
+1995,57,"(55,60]",NoHS,2.0515524104378593,37.660216567282355,0.054475321637426896,6634.883996328482,2019
+1995,57,"(55,60]",NoHS,2.245095090667846,37.660216567282355,0.05961450292397661,6688.414379416185,2019
+1995,57,"(55,60]",NoHS,2.0515524104378593,35.67809990584644,0.05750172839506173,6479.630565312769,2019
+1995,57,"(55,60]",NoHS,2.0515524104378593,31.713866582974614,0.06468944444444444,6478.625715123423,2019
+1995,48,"(45,50]",College,203.41529234851836,71.35619981169287,2.8507024320987657,7025.517965226795,2019
+1995,48,"(45,50]",College,203.41529234851836,71.35619981169287,2.8507024320987657,7000.726358005476,2019
+1995,48,"(45,50]",College,203.41529234851836,71.35619981169287,2.8507024320987657,6960.992599336219,2019
+1995,48,"(45,50]",College,203.41529234851836,71.35619981169287,2.8507024320987657,7315.774476138844,2019
+1995,48,"(45,50]",College,203.41529234851836,71.35619981169287,2.8507024320987657,7055.857680677259,2019
+1995,55,"(50,55]",HS,245.04438743918618,109.01641637897524,2.247775111111111,8904.614960710132,2019
+1995,55,"(50,55]",HS,229.0384077841663,109.01641637897524,2.1009533737373736,8897.559535268523,2019
+1995,55,"(50,55]",HS,282.9787527642636,109.01641637897524,2.595744404040404,8969.580866434353,2019
+1995,55,"(50,55]",HS,223.56114993365767,109.01641637897524,2.0507108686868687,9126.318082089127,2019
+1995,55,"(50,55]",HS,215.52912870411322,109.01641637897524,1.9770336969696969,8905.24044638409,2019
+1995,64,"(60,65]",NoHS,2.5160548429898277,39.642333228718265,0.0634688888888889,5707.255039431829,2019
+1995,64,"(60,65]",NoHS,12.773816895179126,39.642333228718265,0.3222266666666667,5529.0699928061895,2019
+1995,64,"(60,65]",NoHS,16.257585139318888,39.642333228718265,0.41010666666666673,5573.678645345924,2019
+1995,64,"(60,65]",NoHS,6.386908447589563,39.642333228718265,0.16111333333333336,5399.692133723172,2019
+1995,64,"(60,65]",NoHS,11.031932773109244,39.642333228718265,0.2782866666666667,5398.854758566006,2019
+1995,75,"(70,75]",HS,710.3984077841662,53.517149858769656,13.274219753086419,4512.3254999301735,2019
+1995,75,"(70,75]",HS,817.0404245908891,53.517149858769656,15.266889711934159,4665.556908809817,2019
+1995,75,"(70,75]",HS,675.7542680229988,53.517149858769656,12.626873251028808,4636.5176100276785,2019
+1995,75,"(70,75]",HS,933.166032728881,53.517149858769656,17.436766255144033,4395.634065049976,2019
+1995,75,"(70,75]",HS,737.6879256965944,53.517149858769656,13.784140740740742,4662.948727498146,2019
+1995,66,"(65,70]",HS,22447.27359575409,493.54704869754244,45.48152735385988,456.48543085377753,2019
+1995,66,"(65,70]",HS,22707.201415302963,422.19084888584956,53.784210328638494,521.1997340146957,2019
+1995,66,"(65,70]",HS,22039.09208314905,489.58281537467064,45.01606549707602,443.6699763338207,2019
+1995,66,"(65,70]",HS,22321.664396284832,489.58281537467064,45.5932350877193,558.4589179150528,2019
+1995,66,"(65,70]",HS,22734.29739053516,449.94048214595233,50.52734371023005,430.91354875213636,2019
+1995,45,"(40,45]",College,100791.22158337019,1375.5889630365239,73.27132180595581,20.12365416564478,2019
+1995,45,"(40,45]",College,101867.31888544891,2913.711492310793,34.961360846560844,21.728651686078898,2019
+1995,45,"(40,45]",College,94501.08447589564,1131.7886136799066,83.49711539209964,21.279309952668655,2019
+1995,45,"(40,45]",College,99324.16806722688,2160.5071609651454,45.97261692150866,18.687207744553895,2019
+1995,45,"(40,45]",College,102434.78602388324,1952.3849115143746,52.46649132543711,20.149174934146174,2019
+1995,72,"(70,75]",NoHS,84.07494029190624,33.69598324441053,2.4951027450980394,7639.390435342151,2019
+1995,72,"(70,75]",NoHS,76.37194161875277,11.496276636328297,6.643189272030652,7644.175383192522,2019
+1995,72,"(70,75]",NoHS,84.34590004422822,16.25335662377449,5.189444986449864,7645.84583051201,2019
+1995,72,"(70,75]",NoHS,77.55255196815568,19.821166614359132,3.912612888888889,7650.5608934972215,2019
+1995,72,"(70,75]",NoHS,91.64245908889872,31.713866582974614,2.8896652777777776,7653.894755303571,2019
+1995,73,"(70,75]",College,1164.3527642636002,73.3383164731288,15.876458858858857,8509.461707605318,2019
+1995,73,"(70,75]",College,1147.5145510835914,73.3383164731288,15.646862462462462,8624.406913773299,2019
+1995,73,"(70,75]",College,1140.5470145953118,71.35619981169287,15.983853086419753,8501.061800142383,2019
+1995,73,"(70,75]",College,1184.0941176470587,81.26678311887244,14.570456368563686,8288.402883143122,2019
+1995,73,"(70,75]",College,1096.806368863335,85.23101644174427,12.868629457364342,8457.706035488603,2019
+1995,31,"(30,35]",HS,432.56789031402036,79.28466645743653,5.455883333333333,6680.834227347805,2019
+1995,31,"(30,35]",HS,432.56789031402036,79.28466645743653,5.455883333333333,6681.579464262497,2019
+1995,31,"(30,35]",HS,432.56789031402036,79.28466645743653,5.455883333333333,6725.916897066791,2019
+1995,31,"(30,35]",HS,432.56789031402036,79.28466645743653,5.455883333333333,6768.665274100937,2019
+1995,31,"(30,35]",HS,432.56789031402036,79.28466645743653,5.455883333333333,6724.153970486334,2019
+1995,36,"(35,40]",HS,11.360955329500221,63.42773316594923,0.17911652777777778,6567.083414043676,2019
+1995,36,"(35,40]",HS,11.360955329500221,63.42773316594923,0.17911652777777778,6548.003551133135,2019
+1995,36,"(35,40]",HS,11.360955329500221,63.42773316594923,0.17911652777777778,6558.718122173961,2019
+1995,36,"(35,40]",HS,11.360955329500221,63.42773316594923,0.17911652777777778,6676.370601563996,2019
+1995,36,"(35,40]",HS,11.360955329500221,63.42773316594923,0.17911652777777778,6592.2477846552765,2019
+1995,52,"(50,55]",College,435.1226536930561,126.85546633189846,3.4300662499999994,257.58256639504503,2019
+1995,52,"(50,55]",College,502.59163202122954,148.65874960769352,3.380841244444444,260.8049132501757,2019
+1995,52,"(50,55]",College,436.76776647501106,140.73028296194985,3.1035805320813767,258.57269743816244,2019
+1995,52,"(50,55]",College,362.62156567890315,71.35619981169287,5.0818508641975315,251.17866631025987,2019
+1995,52,"(50,55]",College,689.1280672268907,101.08794973323158,6.817113899782134,256.7198482898078,2019
+1995,27,"(25,30]",HS,8.709420610349403,49.55291653589783,0.17576,5735.955306189789,2019
+1995,27,"(25,30]",HS,8.709420610349403,49.55291653589783,0.17576,5796.570111975299,2019
+1995,27,"(25,30]",HS,8.709420610349403,49.55291653589783,0.17576,5743.952054036549,2019
+1995,27,"(25,30]",HS,8.709420610349403,49.55291653589783,0.17576,5834.228926576995,2019
+1995,27,"(25,30]",HS,8.709420610349403,49.55291653589783,0.17576,5752.5956025889955,2019
+1995,68,"(65,70]",College,36965.29712516586,1694.709745527706,21.81217003248863,28.168667685583948,2019
+1995,68,"(65,70]",College,36965.29712516586,1694.709745527706,21.81217003248863,33.67646613186312,2019
+1995,68,"(65,70]",College,36965.29712516586,1694.709745527706,21.81217003248863,29.940806559656828,2019
+1995,68,"(65,70]",College,36965.29712516586,1694.709745527706,21.81217003248863,32.61955909005104,2019
+1995,68,"(65,70]",College,36965.29712516586,1694.709745527706,21.81217003248863,28.36026977516257,2019
+1995,36,"(35,40]",HS,303.33944272445825,29.731749921538697,10.202542518518522,518.552643066771,2019
+1995,36,"(35,40]",HS,285.7270588235294,21.803283275795042,13.104772121212122,512.9822577959465,2019
+1995,36,"(35,40]",HS,302.0814153029633,35.67809990584644,8.46685827160494,511.63258564642666,2019
+1995,36,"(35,40]",HS,266.58568774878376,45.588683213026,5.8476285990338175,487.281265563355,2019
+1995,36,"(35,40]",HS,298.21056169836356,41.624449890154175,7.164312380952381,516.9566337148124,2019
+1995,76,"(75,80]",HS,4.2966475011057055,21.803283275795042,0.19706424242424245,9527.856231966112,2019
+1995,76,"(75,80]",HS,4.2966475011057055,21.803283275795042,0.19706424242424245,9493.827212545919,2019
+1995,76,"(75,80]",HS,4.2966475011057055,21.803283275795042,0.19706424242424245,9520.283036994064,2019
+1995,76,"(75,80]",HS,4.2966475011057055,21.803283275795042,0.19706424242424245,9540.303956238124,2019
+1995,76,"(75,80]",HS,4.2966475011057055,21.803283275795042,0.19706424242424245,9519.052237866183,2019
+1995,46,"(45,50]",College,247.28948252985407,154.60509959200127,1.599491111111111,6275.670289200402,2019
+1995,46,"(45,50]",College,305.60389208314905,154.60509959200127,1.9766740740740736,6092.731031201698,2019
+1995,46,"(45,50]",College,275.0435028748342,154.60509959200127,1.7790066666666666,6128.234602018607,2019
+1995,46,"(45,50]",College,267.9017779743476,154.60509959200127,1.7328133333333329,6300.356362627333,2019
+1995,46,"(45,50]",College,288.4753648827952,154.60509959200127,1.8658851851851845,6188.127068065421,2019
+1995,65,"(60,65]",HS,707.0114108801415,37.660216567282355,18.77342923976608,5307.309820177003,2019
+1995,65,"(60,65]",HS,708.1726669615215,37.660216567282355,18.80426432748538,5515.148158266171,2019
+1995,65,"(60,65]",HS,707.0114108801415,37.660216567282355,18.77342923976608,5454.855914479151,2019
+1995,65,"(60,65]",HS,706.2372401592216,37.660216567282355,18.752872514619884,5172.7849770956045,2019
+1995,65,"(60,65]",HS,708.7532950022115,37.660216567282355,18.819681871345033,5524.865848741085,2019
+1995,21,"(20,25]",NoHS,2.709597523219814,19.821166614359132,0.13670222222222222,5805.816032942392,2019
+1995,21,"(20,25]",NoHS,2.709597523219814,23.785399937230956,0.11391851851851853,5824.173719762691,2019
+1995,21,"(20,25]",NoHS,2.709597523219814,21.803283275795042,0.1242747474747475,5821.984309362952,2019
+1995,21,"(20,25]",NoHS,2.709597523219814,25.76751659866687,0.10515555555555557,5837.834029078976,2019
+1995,21,"(20,25]",NoHS,2.709597523219814,29.731749921538697,0.09113481481481482,5778.711123592334,2019
+1995,44,"(40,45]",NoHS,10.257762052189298,99.10583307179566,0.10350311111111113,7276.052061859375,2019
+1995,44,"(40,45]",NoHS,4.6256700574966825,99.10583307179566,0.046674044444444444,7224.788737035591,2019
+1995,44,"(40,45]",NoHS,9.657779743476338,99.10583307179566,0.09744915555555556,7195.065363691615,2019
+1995,44,"(40,45]",NoHS,1.5676957098628925,99.10583307179566,0.0158184,7057.735867614548,2019
+1995,44,"(40,45]",NoHS,7.199787704555506,99.10583307179566,0.07264746666666667,7195.09030105085,2019
+1995,53,"(50,55]",HS,96.61650597080938,53.517149858769656,1.8053372839506174,4380.543697045992,2019
+1995,53,"(50,55]",HS,72.44302521008403,53.517149858769656,1.353641316872428,4389.239613590444,2019
+1995,53,"(50,55]",HS,424.7681203007519,53.517149858769656,7.937046748971194,4279.660227013578,2019
+1995,53,"(50,55]",HS,385.0531623175586,53.517149858769656,7.194948971193416,4340.043719452469,2019
+1995,53,"(50,55]",HS,158.51145510835914,53.517149858769656,2.961881481481482,4311.254220285449,2019
+1995,65,"(60,65]",College,4853.3412797877045,198.21166614359132,24.485648974222222,1233.0326492637485,2019
+1995,65,"(60,65]",College,4853.215864130915,198.21166614359132,24.485016238222222,980.422986428166,2019
+1995,65,"(60,65]",College,4853.392375055285,198.21166614359132,24.485906755555554,958.8987463006936,2019
+1995,65,"(60,65]",College,4853.229799203892,198.21166614359132,24.485086542222223,957.4420337614681,2019
+1995,65,"(60,65]",College,4853.175607253428,198.21166614359132,24.48481313777778,991.844931440681,2019
+1995,60,"(55,60]",HS,332.02246793454225,45.588683213026,7.28300193236715,9438.208858318529,2019
+1995,60,"(55,60]",HS,328.9257850508625,45.588683213026,7.215075362318842,9485.128010368693,2019
+1995,60,"(55,60]",HS,338.60291906236176,45.588683213026,7.4273458937198065,9458.538119126275,2019
+1995,60,"(55,60]",HS,338.79646174259176,45.588683213026,7.431591304347826,9648.193323713724,2019
+1995,60,"(55,60]",HS,338.79646174259176,45.588683213026,7.431591304347826,9373.500627086945,2019
+1995,33,"(30,35]",College,62.7078283945157,114.96276636328297,0.5454620689655173,10737.253743437894,2019
+1995,33,"(30,35]",College,76.25581601061477,114.96276636328297,0.6633088122605364,11130.19192437654,2019
+1995,33,"(30,35]",College,62.7078283945157,114.96276636328297,0.5454620689655173,10695.604626239667,2019
+1995,33,"(30,35]",College,76.25581601061477,114.96276636328297,0.6633088122605364,11032.646042468106,2019
+1995,33,"(30,35]",College,68.5141088014153,114.96276636328297,0.595967816091954,10875.854417196302,2019
+1995,58,"(55,60]",NoHS,114.19018133569217,77.30254979600063,1.477185185185185,6974.345045446219,2019
+1995,58,"(55,60]",NoHS,121.93188854489165,69.37408315025698,1.7575999999999998,6866.921253887382,2019
+1995,58,"(55,60]",NoHS,83.2233524988943,71.35619981169287,1.1663086419753088,6977.016227089621,2019
+1995,58,"(55,60]",NoHS,110.31932773109243,77.30254979600063,1.4271111111111108,6968.416429854928,2019
+1995,58,"(55,60]",NoHS,94.8359133126935,65.40984982738514,1.4498720538720538,6877.996485147378,2019
+1995,70,"(65,70]",HS,4773.7302078726225,404.35179893292633,11.805883442265793,1092.407180150381,2019
+1995,70,"(65,70]",HS,4773.7302078726225,434.083548854465,10.997261288685946,964.908984971262,2019
+1995,70,"(65,70]",HS,4773.7302078726225,426.15508220872135,11.20186149870801,1032.2410490468737,2019
+1995,70,"(65,70]",HS,4773.7302078726225,410.2981489172341,11.634783682232957,975.513788440541,2019
+1995,70,"(65,70]",HS,4754.375939849625,406.3339155943622,11.700662330623308,982.7823381982085,2019
+1995,66,"(65,70]",College,21732.21080937638,2219.9706608082233,9.789413523809522,36.240682513043744,2019
+1995,66,"(65,70]",College,22329.483520566122,2200.1494941938636,10.149075587587589,40.7828488679548,2019
+1995,66,"(65,70]",College,21378.97606368863,2299.25532726566,9.298217475095782,36.5536218158438,2019
+1995,66,"(65,70]",College,22091.38731534719,2279.4341606513003,9.691610179710144,44.0687620611274,2019
+1995,66,"(65,70]",College,21945.84321981424,2259.612994036941,9.71221323196881,35.476229152528305,2019
+1995,67,"(65,70]",NoHS,168.71115435647945,39.642333228718265,4.255833111111111,7403.444093123893,2019
+1995,67,"(65,70]",NoHS,127.0994781070323,39.642333228718265,3.2061553333333337,7263.146213569826,2019
+1995,67,"(65,70]",NoHS,188.06542237947812,39.642333228718265,4.744055333333334,7328.949494104747,2019
+1995,67,"(65,70]",NoHS,125.16405130473242,39.642333228718265,3.1573331111111114,7649.913871436159,2019
+1995,67,"(65,70]",NoHS,135.8088987173817,39.642333228718265,3.4258553333333337,7469.96168525134,2019
+1995,42,"(40,45]",HS,1946.8071118973905,79.28466645743653,24.554648444444446,165.27472636453817,2019
+1995,42,"(40,45]",HS,1937.1299778858913,79.28466645743653,24.43259288888889,148.65198943133365,2019
+1995,42,"(40,45]",HS,1931.3236974789918,79.28466645743653,24.35935955555556,146.91106518484872,2019
+1995,42,"(40,45]",HS,1931.3236974789918,79.28466645743653,24.35935955555556,150.05112198444456,2019
+1995,42,"(40,45]",HS,1923.5819902697922,79.28466645743653,24.261715111111112,148.50835146329194,2019
+1995,23,"(20,25]",HS,8.999734630694384,77.30254979600063,0.1164222222222222,4284.077548462728,2019
+1995,23,"(20,25]",HS,8.806191950464395,71.35619981169287,0.12341172839506172,4265.866291531121,2019
+1995,23,"(20,25]",HS,8.806191950464395,59.46349984307739,0.14809407407407407,4254.193309130815,2019
+1995,23,"(20,25]",HS,8.806191950464395,73.3383164731288,0.12007627627627625,4227.419568737856,2019
+1995,23,"(20,25]",HS,8.999734630694384,73.3383164731288,0.12271531531531532,4236.490439140094,2019
+1995,75,"(70,75]",College,43337.51568332596,1383.5174296822674,31.324155918497294,4.67849004299774,2019
+1995,75,"(70,75]",College,47153.59670942061,1345.8572131149854,35.036106542300764,4.132446998413185,2019
+1995,75,"(70,75]",College,41065.32461742592,1349.8214464378568,30.422782750856587,5.0122224264057555,2019
+1995,75,"(70,75]",College,47135.40369747899,1302.2506465633949,36.19533906308135,2.1023901664096862,2019
+1995,75,"(70,75]",College,46016.14637770898,1383.5174296822674,33.260257796879976,2.2997107014584666,2019
+1995,49,"(45,50]",College,807.4600619195047,220.01494941938637,3.670023623623624,8509.461707605318,2019
+1995,49,"(45,50]",College,788.686421937196,202.17589946646316,3.90099128540305,8624.406913773299,2019
+1995,49,"(45,50]",College,937.1336576735957,273.53209927815607,3.426046376811594,8501.061800142383,2019
+1995,49,"(45,50]",College,936.1659442724459,235.87188271087368,3.9689594771241836,8288.402883143122,2019
+1995,49,"(45,50]",College,1042.4208757187084,235.87188271087368,4.419436788048553,8457.706035488603,2019
+1995,26,"(25,30]",HS,5.670800530738611,29.731749921538697,0.19073214814814815,6973.315576040358,2019
+1995,26,"(25,30]",HS,36.13441839893852,45.588683213026,0.7926181642512078,7055.924897255076,2019
+1995,26,"(25,30]",HS,5.804344980097302,31.713866582974614,0.18302230555555557,6996.207107501743,2019
+1995,26,"(25,30]",HS,5.53532065457762,41.624449890154175,0.13298243386243386,7099.494024461053,2019
+1995,26,"(25,30]",HS,6.135302963290579,33.69598324441053,0.18207816993464052,6999.507463195938,2019
+1995,28,"(25,30]",College,66.77222467934543,114.96276636328297,0.5808160919540231,4404.60476502251,2019
+1995,28,"(25,30]",College,62.320743034055724,114.96276636328297,0.5420950191570881,4337.896883320745,2019
+1995,28,"(25,30]",College,76.0622733303848,114.96276636328297,0.661625287356322,4364.739405468429,2019
+1995,28,"(25,30]",College,63.09491375497568,114.96276636328297,0.5488291187739464,4310.656125312806,2019
+1995,28,"(25,30]",College,69.28827952233524,114.96276636328297,0.6027019157088123,4359.978163212085,2019
+1995,67,"(65,70]",College,27124.542131800088,495.5291653589783,54.738538168888894,27.52569213186565,2019
+1995,67,"(65,70]",College,26946.482865988502,495.5291653589783,54.379206613333345,31.807427411551703,2019
+1995,67,"(65,70]",College,25860.708429898277,495.5291653589783,52.18806528000001,28.170678350034745,2019
+1995,67,"(65,70]",College,26661.97512605042,495.5291653589783,53.80505728000001,30.665343058833077,2019
+1995,67,"(65,70]",College,26661.97512605042,495.5291653589783,53.80505728000001,26.68473133754655,2019
+1995,28,"(25,30]",College,137.99593100398056,132.8018163162062,1.039111774461028,6914.70112340031,2019
+1995,28,"(25,30]",College,135.28633348076073,132.8018163162062,1.0187084577114427,6949.614326373334,2019
+1995,28,"(25,30]",College,139.54427244582044,132.8018163162062,1.0507708126036484,6988.193427028935,2019
+1995,28,"(25,30]",College,141.4796992481203,132.8018163162062,1.0653446102819235,7037.377610378479,2019
+1995,28,"(25,30]",College,137.60884564352057,132.8018163162062,1.036197014925373,7020.069603132513,2019
+1995,27,"(25,30]",HS,3.1934542237947814,14.271239962338576,0.22376851851851853,5919.969680669639,2019
+1995,27,"(25,30]",HS,3.1934542237947814,14.271239962338576,0.22376851851851853,5896.179151917301,2019
+1995,27,"(25,30]",HS,3.1934542237947814,14.271239962338576,0.22376851851851853,5892.851742906066,2019
+1995,27,"(25,30]",HS,3.1934542237947814,14.271239962338576,0.22376851851851853,5925.172934264627,2019
+1995,27,"(25,30]",HS,3.1934542237947814,14.271239962338576,0.22376851851851853,5914.40209643059,2019
+1995,52,"(50,55]",HS,0,13.28018163162062,0,8678.738564485433,2019
+1995,52,"(50,55]",NoHS,0,19.821166614359132,0,9681.665030886792,2019
+1995,52,"(50,55]",NoHS,0,16.649779956061675,0,9773.82089793681,2019
+1995,52,"(50,55]",NoHS,0,4.360656655159009,0,9635.460788772389,2019
+1995,52,"(50,55]",NoHS,0,8.721313310318019,0,8630.692012976173,2019
+1995,43,"(40,45]",NoHS,22.17999115435648,73.3383164731288,0.3024338738738738,5849.879589926943,2019
+1995,43,"(40,45]",NoHS,22.17999115435648,73.3383164731288,0.3024338738738738,5801.607677142505,2019
+1995,43,"(40,45]",NoHS,22.17999115435648,73.3383164731288,0.3024338738738738,5838.659831297222,2019
+1995,43,"(40,45]",NoHS,22.17999115435648,73.3383164731288,0.3024338738738738,5906.568843769537,2019
+1995,43,"(40,45]",NoHS,22.17999115435648,73.3383164731288,0.3024338738738738,5851.319624035039,2019
+1995,42,"(40,45]",HS,492.83708093763823,122.89123300902662,4.010351827956989,3853.8083751819586,2019
+1995,42,"(40,45]",HS,497.8304820875719,114.96276636328297,4.33036275862069,4012.798448138748,2019
+1995,42,"(40,45]",HS,496.78535161432995,116.94488302471889,4.248029830508474,3957.9818366227555,2019
+1995,42,"(40,45]",HS,505.61089783281733,120.90911634759071,4.181743387978142,3757.890377688439,2019
+1995,42,"(40,45]",HS,496.16601503759404,114.96276636328297,4.315884444444445,3985.473612413156,2019
+1995,26,"(25,30]",HS,23.515435647943388,69.37408315025698,0.3389657142857142,4483.277099233154,2019
+1995,26,"(25,30]",HS,23.515435647943388,69.37408315025698,0.3389657142857142,4414.15979365084,2019
+1995,26,"(25,30]",HS,23.515435647943388,69.37408315025698,0.3389657142857142,4424.692257394356,2019
+1995,26,"(25,30]",HS,23.515435647943388,69.37408315025698,0.3389657142857142,4396.391157565614,2019
+1995,26,"(25,30]",HS,23.515435647943388,69.37408315025698,0.3389657142857142,4414.497846268929,2019
+1995,48,"(45,50]",College,35664.26452012384,895.9167309690328,39.80756613569322,614.5871132297784,2019
+1995,48,"(45,50]",College,48659.1845731977,1072.3251138368291,45.377268465804065,702.6323156472997,2019
+1995,48,"(45,50]",College,10533.347474568774,1286.3937132719077,8.188276548536209,600.2589560145811,2019
+1995,48,"(45,50]",College,9865.025245466608,1635.2462456846283,6.0327459986531995,757.0328402299958,2019
+1995,48,"(45,50]",College,36000.29332153914,824.5605311573398,43.65997638888889,583.2295905784002,2019
+1995,48,"(45,50]",HS,408.858911985847,122.89123300902662,3.3269982078853046,3875.831861605876,2019
+1995,48,"(45,50]",HS,411.1814241486068,122.89123300902662,3.3458971326164875,4035.8524425761616,2019
+1995,48,"(45,50]",HS,380.9887660327289,122.89123300902662,3.1002111111111113,3987.350272072975,2019
+1995,48,"(45,50]",HS,381.9564794338788,122.89123300902662,3.1080856630824374,3783.470254342711,2019
+1995,48,"(45,50]",HS,447.7609907120743,122.89123300902662,3.6435551971326166,4002.9081378871715,2019
+1995,62,"(60,65]",College,6581.225298540469,511.3860986504657,12.869386391042203,219.57322367081102,2019
+1995,62,"(60,65]",College,6581.225298540469,511.3860986504657,12.869386391042203,197.55173579993635,2019
+1995,62,"(60,65]",College,6581.225298540469,511.3860986504657,12.869386391042203,193.61071792742328,2019
+1995,62,"(60,65]",College,6581.225298540469,511.3860986504657,12.869386391042203,198.99693049033064,2019
+1995,62,"(60,65]",College,6581.225298540469,511.3860986504657,12.869386391042203,199.17044323919137,2019
+1995,29,"(25,30]",HS,227.02362848297213,138.74816630051396,1.6362279555555552,4773.135206561598,2019
+1995,29,"(25,30]",HS,227.02362848297213,138.74816630051396,1.6362279555555552,4700.84591939687,2019
+1995,29,"(25,30]",HS,227.02362848297213,138.74816630051396,1.6362279555555552,4729.934338070314,2019
+1995,29,"(25,30]",HS,227.02362848297213,138.74816630051396,1.6362279555555552,4671.3259447254395,2019
+1995,29,"(25,30]",HS,227.02362848297213,138.74816630051396,1.6362279555555552,4724.774725743412,2019
+1995,42,"(40,45]",HS,-15.48341441839894,35.67809990584644,-0.43397530864197537,6602.768579178543,2019
+1995,42,"(40,45]",HS,-15.48341441839894,35.67809990584644,-0.43397530864197537,6682.225779922407,2019
+1995,42,"(40,45]",HS,-15.48341441839894,35.67809990584644,-0.43397530864197537,6646.40589865432,2019
+1995,42,"(40,45]",HS,-15.48341441839894,35.67809990584644,-0.43397530864197537,6654.053908687287,2019
+1995,42,"(40,45]",HS,-15.48341441839894,35.67809990584644,-0.43397530864197537,6690.939252169733,2019
+1995,59,"(55,60]",College,9017.15347191508,221.99706608082226,40.61834523809524,306.37678987124696,2019
+1995,59,"(55,60]",College,9168.116762494472,279.4784492624638,32.804378250591014,269.8481505368983,2019
+1995,59,"(55,60]",College,4755.343653250775,255.69304932523286,18.59786046511628,282.4723734747268,2019
+1995,59,"(55,60]",College,10969.999115435648,206.14013278933496,53.21622222222223,274.7989785177831,2019
+1995,59,"(55,60]",College,6727.5435647943395,223.9791827422582,30.03646804326451,275.5519509600283,2019
+1995,67,"(65,70]",College,58071.31994692614,4122.802655786701,14.085398888888886,3.477646175884979,2019
+1995,67,"(65,70]",College,195362.13432286598,2041.5801612789908,95.69163044789643,2.775685119686954,2019
+1995,67,"(65,70]",College,288678.5653427687,8760.955643546738,32.95057949019607,3.756140333857652,2019
+1995,67,"(65,70]",College,113908.18965059708,3884.94865641439,29.320384829931974,2.6063201171881616,2019
+1995,67,"(65,70]",College,53078.49942503317,2120.8648277364273,25.026818650051922,2.888688174119088,2019
+1995,65,"(60,65]",College,201.86501547987618,65.40984982738514,3.086156228956229,8072.787498319844,2019
+1995,65,"(60,65]",College,201.86501547987618,55.499266520205566,3.6372555555555564,7955.337316766706,2019
+1995,65,"(60,65]",College,201.86501547987618,99.10583307179566,2.0368631111111113,7910.740933019802,2019
+1995,65,"(60,65]",College,201.86501547987618,87.21313310318017,2.314617171717172,8136.820233370076,2019
+1995,65,"(60,65]",College,201.86501547987618,97.12371641035975,2.0784317460317463,7929.434233724464,2019
+1995,61,"(60,65]",College,19103.04962406015,261.6393993095406,73.0128936026936,17.018031115952343,2019
+1995,61,"(60,65]",College,19104.59796550199,551.028431879184,34.67080255795363,14.924969203543165,2019
+1995,61,"(60,65]",College,19103.63025210084,788.8824312514935,24.216067560022335,15.502167492933344,2019
+1995,61,"(60,65]",College,19103.63025210084,382.5485156571313,49.9377973517559,15.121956864445616,2019
+1995,61,"(60,65]",College,19102.85608137992,473.7258820831833,40.32470423059042,15.712355986859876,2019
+1995,81,"(80,85]",College,8248.789031402035,610.4919317222614,13.511708513708513,21.177994504992252,2019
+1995,81,"(80,85]",College,8248.789031402035,610.4919317222614,13.511708513708513,19.74678554457483,2019
+1995,81,"(80,85]",College,8248.789031402035,610.4919317222614,13.511708513708513,20.141261655395216,2019
+1995,81,"(80,85]",College,8248.789031402035,610.4919317222614,13.511708513708513,17.96867383023132,2019
+1995,81,"(80,85]",College,8248.789031402035,610.4919317222614,13.511708513708513,20.162592341760934,2019
+1995,68,"(65,70]",HS,156237.90924369748,8305.068811416479,18.812355778308135,15.493080852566397,2019
+1995,68,"(65,70]",HS,154534.1530296329,8423.995811102632,18.344519215686272,15.74695442583797,2019
+1995,68,"(65,70]",HS,145260.16842105263,7888.824312514935,18.41341151312116,16.014187234236402,2019
+1995,68,"(65,70]",HS,153092.45360459975,7650.970313142626,20.009547461139896,15.155013242805222,2019
+1995,68,"(65,70]",HS,147313.0756302521,8443.81697771699,17.446265832029216,15.093381937043588,2019
+1995,68,"(65,70]",HS,759.6550199026979,33.69598324441053,22.544379084967318,5042.0811920759415,2019
+1995,68,"(65,70]",HS,759.6550199026979,33.69598324441053,22.544379084967318,5240.967978440295,2019
+1995,68,"(65,70]",HS,759.6550199026979,33.69598324441053,22.544379084967318,5181.304645757888,2019
+1995,68,"(65,70]",HS,759.6550199026979,33.69598324441053,22.544379084967318,4912.669383702135,2019
+1995,68,"(65,70]",HS,759.6550199026979,33.69598324441053,22.544379084967318,5248.656532623708,2019
+1995,79,"(75,80]",College,466.728173374613,45.588683213026,10.2378077294686,694.7858673150915,2019
+1995,79,"(75,80]",College,466.728173374613,45.588683213026,10.2378077294686,678.8035226812748,2019
+1995,79,"(75,80]",College,466.728173374613,45.588683213026,10.2378077294686,697.454993277029,2019
+1995,79,"(75,80]",College,466.728173374613,45.588683213026,10.2378077294686,655.9639206253643,2019
+1995,79,"(75,80]",College,466.728173374613,45.588683213026,10.2378077294686,704.7251857434637,2019
+1995,29,"(25,30]",College,21.289694825298543,49.55291653589783,0.42963555555555566,4210.567365459328,2019
+1995,29,"(25,30]",College,21.289694825298543,49.55291653589783,0.42963555555555566,4166.121552092607,2019
+1995,29,"(25,30]",College,21.289694825298543,49.55291653589783,0.42963555555555566,4171.5630406262235,2019
+1995,29,"(25,30]",College,21.289694825298543,49.55291653589783,0.42963555555555566,4147.691657843204,2019
+1995,29,"(25,30]",College,21.289694825298543,49.55291653589783,0.42963555555555566,4182.032449439746,2019
+1995,30,"(25,30]",College,91.21666519239274,31.713866582974614,2.8762391666666662,5353.671629502501,2019
+1995,30,"(25,30]",College,69.79149049093321,31.713866582974614,2.2006616666666665,5274.375902016152,2019
+1995,30,"(25,30]",College,68.88183989385227,39.642333228718265,1.737582888888889,5332.289986910923,2019
+1995,30,"(25,30]",College,98.78418398938523,37.660216567282355,2.6230381286549704,5119.638985336199,2019
+1995,30,"(25,30]",College,100.23575409111012,39.642333228718265,2.5285028888888887,5219.96096721843,2019
+1995,69,"(65,70]",College,723.4625386996904,29.731749921538697,24.33299555555556,5796.243750109084,2019
+1995,69,"(65,70]",College,723.4625386996904,29.731749921538697,24.33299555555556,6024.200800859506,2019
+1995,69,"(65,70]",College,727.3333923042901,29.731749921538697,24.46318814814815,5955.168085687384,2019
+1995,69,"(65,70]",College,742.8168067226891,29.731749921538697,24.98395851851852,5645.499644148387,2019
+1995,69,"(65,70]",College,737.0105263157894,29.731749921538697,24.78866962962963,6035.761788304727,2019
+1995,64,"(60,65]",College,485.21149933657676,33.69598324441053,14.39968366013072,4870.15211721683,2019
+1995,64,"(60,65]",College,384.5693056169836,61.44561650451331,6.258693906810036,8094.954371716411,2019
+1995,64,"(60,65]",College,444.56753648827953,19.22653161592836,23.12260710194731,8106.271725037972,2019
+1995,64,"(60,65]",College,489.08235294117645,49.55291653589783,9.869900444444445,4742.4232526265405,2019
+1995,64,"(60,65]",College,396.18186643078286,81.26678311887244,4.875077506775068,7853.677855647028,2019
+1995,36,"(35,40]",HS,94.15851393188855,83.24889978030835,1.1310481481481482,6322.202894315495,2019
+1995,36,"(35,40]",HS,94.15851393188855,83.24889978030835,1.1310481481481482,6399.776903718791,2019
+1995,36,"(35,40]",HS,94.15851393188855,83.24889978030835,1.1310481481481482,6321.247677786201,2019
+1995,36,"(35,40]",HS,94.15851393188855,83.24889978030835,1.1310481481481482,6531.042644449763,2019
+1995,36,"(35,40]",HS,94.15851393188855,83.24889978030835,1.1310481481481482,6368.3809322186,2019
+1995,58,"(55,60]",NoHS,0,9.712371641035974,0,8124.490912067015,2019
+1995,58,"(55,60]",NoHS,0,12.685546633189844,0,8140.265391192901,2019
+1995,58,"(55,60]",NoHS,0,8.721313310318019,0,8115.423849263125,2019
+1995,58,"(55,60]",NoHS,0,8.721313310318019,0,8129.7877916932675,2019
+1995,58,"(55,60]",NoHS,0,9.315948308748792,0,8093.710404189888,2019
+1995,66,"(65,70]",HS,671.20601503759406,136.76604963907803,4.907694685990338,4675.961346473598,2019
+1995,66,"(65,70]",HS,647.9808934099956,136.76604963907803,4.737878260869564,4859.859471521398,2019
+1995,66,"(65,70]",HS,680.8831490490934,136.76604963907803,4.97845152979066,4804.169213881544,2019
+1995,66,"(65,70]",HS,667.3351614329943,136.76604963907803,4.879391948470209,4554.352655902627,2019
+1995,66,"(65,70]",HS,655.7226006191951,136.76604963907803,4.7944837359098225,4869.185982405259,2019
+1995,32,"(30,35]",HS,-4.606315789473684,53.517149858769656,-0.08607176954732511,7335.340943454995,2019
+1995,32,"(30,35]",HS,-4.606315789473684,53.517149858769656,-0.08607176954732511,7379.672334840955,2019
+1995,32,"(30,35]",HS,-4.606315789473684,53.517149858769656,-0.08607176954732511,7397.1804288481535,2019
+1995,32,"(30,35]",HS,-4.606315789473684,53.517149858769656,-0.08607176954732511,7487.423974537512,2019
+1995,32,"(30,35]",HS,-4.606315789473684,53.517149858769656,-0.08607176954732511,7414.241734709882,2019
+1995,54,"(50,55]",College,8889.02821760283,1006.9152640094438,8.827980402449695,18.587856887892674,2019
+1995,54,"(50,55]",College,9722.113330384786,1330.000279823498,7.309858108958436,17.327646214138458,2019
+1995,54,"(50,55]",College,13050.776470588235,1076.289347159701,12.125713689379985,17.569625567095052,2019
+1995,54,"(50,55]",College,7613.059389650597,1026.736430623803,7.414813736593737,15.745584345175448,2019
+1995,54,"(50,55]",College,11736.757151702786,1330.000279823498,8.824627580725284,17.68598544662984,2019
+1995,46,"(45,50]",College,4858.695444493587,380.5663989956953,12.767011111111113,2221.4835310605804,2019
+1995,46,"(45,50]",College,7583.002211410881,447.9583654845164,16.927917404129797,2091.511688738291,2019
+1995,46,"(45,50]",College,3885.7563909774435,350.8346490741567,11.07574865034526,1968.8953776587157,2019
+1995,46,"(45,50]",College,4908.2423706324635,453.9047154688242,10.813376031052886,1973.6843797778442,2019
+1995,46,"(45,50]",College,10354.572100840336,434.083548854465,23.85386898021309,1248.1332271693932,2019
+1995,31,"(30,35]",HS,6.890119416187527,29.731749921538697,0.23174281481481482,4576.678701596961,2019
+1995,31,"(30,35]",HS,6.890119416187527,29.731749921538697,0.23174281481481482,4506.121452208015,2019
+1995,31,"(30,35]",HS,6.890119416187527,29.731749921538697,0.23174281481481482,4516.873342270431,2019
+1995,31,"(30,35]",HS,8.051375497567449,29.731749921538697,0.27080059259259265,4487.982636219686,2019
+1995,31,"(30,35]",HS,7.277204776647501,29.731749921538697,0.2447620740740741,4506.4665475886895,2019
+1995,53,"(50,55]",HS,379.53719593100396,61.44561650451331,6.176798566308244,2437.7557164733676,2019
+1995,53,"(50,55]",HS,361.1506413091553,61.44561650451331,5.87756559139785,2427.28599282746,2019
+1995,53,"(50,55]",HS,362.69898275099513,61.44561650451331,5.902764157706093,2322.9099351787086,2019
+1995,53,"(50,55]",HS,359.0216718266254,61.44561650451331,5.842917562724014,2430.9957328434707,2019
+1995,53,"(50,55]",HS,361.1506413091553,61.44561650451331,5.87756559139785,2381.888429508498,2019
+1995,67,"(65,70]",NoHS,0.19354268022998675,13.081969965477029,0.014794612794612794,6020.859149504966,2019
+1995,67,"(65,70]",NoHS,-1.7031755860238833,13.081969965477029,-0.13019259259259258,5807.640388912698,2019
+1995,67,"(65,70]",NoHS,-1.5289871738168952,13.081969965477029,-0.11687744107744107,5813.549378047051,2019
+1995,67,"(65,70]",NoHS,1.354798761609907,13.081969965477029,0.10356228956228955,5889.0075664204505,2019
+1995,67,"(65,70]",NoHS,-1.7031755860238833,13.081969965477029,-0.13019259259259258,5826.049866326833,2019
+1995,54,"(50,55]",HS,60.965944272445824,31.713866582974614,1.922375,5464.724699248244,2019
+1995,54,"(50,55]",HS,46.45024325519682,31.713866582974614,1.4646666666666666,5344.700686239493,2019
+1995,54,"(50,55]",HS,46.45024325519682,31.713866582974614,1.4646666666666666,5387.830644098869,2019
+1995,54,"(50,55]",HS,46.45024325519682,31.713866582974614,1.4646666666666666,5580.073925478049,2019
+1995,54,"(50,55]",HS,46.45024325519682,31.713866582974614,1.4646666666666666,5453.153106431632,2019
+1995,30,"(25,30]",HS,38.573056169836356,73.3383164731288,0.5259604804804804,7171.859668039989,2019
+1995,30,"(25,30]",HS,82.02338788146837,69.37408315025698,1.1823347301587297,6961.301456233086,2019
+1995,30,"(25,30]",HS,46.99216275984078,77.30254979600063,0.6078992592592591,7175.33315874417,2019
+1995,30,"(25,30]",HS,51.05655904467051,79.28466645743653,0.6439651111111112,7132.370509420332,2019
+1995,30,"(25,30]",HS,52.99198584697037,67.39196648882105,0.7863249673202615,7007.173455447635,2019
+1995,68,"(65,70]",HS,2972.2349402919062,83.24889978030835,35.70299365079365,2221.4835310605804,2019
+1995,68,"(65,70]",HS,2292.1259619637326,83.24889978030835,27.533408465608467,11805.254985244985,2019
+1995,68,"(65,70]",HS,2288.797027863777,83.24889978030835,27.493420740740746,10983.745522883983,2019
+1995,68,"(65,70]",HS,2288.4099425033173,83.24889978030835,27.48877100529101,11908.543530085492,2019
+1995,68,"(65,70]",HS,2482.7848562582926,83.24889978030835,29.82363566137566,12015.95644899762,2019
+1995,31,"(30,35]",NoHS,-12.386731534719152,27.749633260102783,-0.44637460317460326,5323.063109066519,2019
+1995,31,"(30,35]",NoHS,-12.386731534719152,43.606566551590085,-0.28405656565656573,5280.769072310086,2019
+1995,31,"(30,35]",NoHS,-12.386731534719152,21.803283275795042,-0.5681131313131315,5335.68512979366,2019
+1995,31,"(30,35]",NoHS,-12.386731534719152,37.660216567282355,-0.3289076023391813,5298.758162058806,2019
+1995,31,"(30,35]",NoHS,-12.386731534719152,35.67809990584644,-0.3471802469135803,5306.653783145428,2019
+1995,52,"(50,55]",HS,134.41539141972578,67.39196648882105,1.9945313725490195,6226.92188520954,2019
+1995,52,"(50,55]",HS,135.28633348076073,67.39196648882105,2.0074549019607844,6169.362880480588,2019
+1995,52,"(50,55]",HS,151.5439186200796,67.39196648882105,2.2486941176470587,6201.386660610899,2019
+1995,52,"(50,55]",HS,142.06032728881024,67.39196648882105,2.107971241830065,6500.988844360003,2019
+1995,52,"(50,55]",HS,134.70570544007077,67.39196648882105,1.9988392156862744,6297.427222559177,2019
+1995,79,"(75,80]",NoHS,215.37429455992924,11.694488302471887,18.41673521657251,8435.644948923878,2019
+1995,79,"(75,80]",NoHS,217.65809818664306,17.64083828677963,12.338308114856428,8336.120446441295,2019
+1995,79,"(75,80]",NoHS,264.47607253427685,19.821166614359132,13.343113333333333,8614.416948621707,2019
+1995,79,"(75,80]",NoHS,281.2755771782397,12.487334967046253,22.524868430335097,8647.70605276238,2019
+1995,79,"(75,80]",NoHS,285.14643078283945,19.622954948215543,14.531268686868685,8546.055699872531,2019
+1995,36,"(35,40]",HS,32.92160990712075,29.731749921538697,1.1072880000000003,8295.489980517752,2019
+1995,36,"(35,40]",HS,32.92160990712075,29.731749921538697,1.1072880000000003,8312.763097178547,2019
+1995,36,"(35,40]",HS,32.92160990712075,29.731749921538697,1.1072880000000003,8290.619453089992,2019
+1995,36,"(35,40]",HS,32.92160990712075,29.731749921538697,1.1072880000000003,8312.301767317253,2019
+1995,36,"(35,40]",HS,32.92160990712075,29.731749921538697,1.1072880000000003,8311.934005378449,2019
+1995,49,"(45,50]",College,3859.2410437859353,939.5232975206229,4.107658696671354,1299.0731217314196,2019
+1995,49,"(45,50]",College,3859.2410437859353,939.5232975206229,4.107658696671354,1146.8230929589292,2019
+1995,49,"(45,50]",College,3859.2410437859353,939.5232975206229,4.107658696671354,1210.2182088178872,2019
+1995,49,"(45,50]",College,3859.2410437859353,939.5232975206229,4.107658696671354,1155.2360103119356,2019
+1995,49,"(45,50]",College,3859.2410437859353,939.5232975206229,4.107658696671354,1165.574655132908,2019
+1995,71,"(70,75]",NoHS,681.8508624502432,162.53356623774488,4.195138753387534,937.2829036244362,2019
+1995,71,"(70,75]",NoHS,691.5279964617425,162.53356623774488,4.254678048780487,965.598074661367,2019
+1995,71,"(70,75]",NoHS,710.8822644847413,162.53356623774488,4.3737566395663965,948.0028572823696,2019
+1995,71,"(70,75]",NoHS,836.68500663423265,162.53356623774488,5.147767479674797,849.0251560216396,2019
+1995,71,"(70,75]",NoHS,681.8508624502432,162.53356623774488,4.195138753387534,936.1678032390926,2019
+1995,36,"(35,40]",HS,1388.5913135780627,346.87041575128484,4.003199034920635,5463.215122027853,2019
+1995,36,"(35,40]",HS,1351.0246793454226,346.87041575128484,3.8948973968253973,5687.351844123008,2019
+1995,36,"(35,40]",HS,1466.4922423706325,346.87041575128484,4.2277812571428575,2940.166622507119,2019
+1995,36,"(35,40]",HS,1396.7394604157453,346.87041575128484,4.026689498412698,5324.591463069141,2019
+1995,36,"(35,40]",HS,1448.5895444493588,346.87041575128484,4.176169193650794,5646.447397444424,2019
+1995,75,"(70,75]",College,52039.77521450686,1621.3714290545772,32.096146682966584,4.756923591685615,2019
+1995,75,"(70,75]",College,52415.228659885004,782.9360812671857,66.94700872011252,3.7928562004130293,2019
+1995,75,"(70,75]",College,51548.95097744361,1775.9765286465781,29.0256938343254,5.148934604028179,2019
+1995,75,"(70,75]",College,51802.29834586466,1399.3743629737548,37.01818449480642,3.539786476402375,2019
+1995,75,"(70,75]",College,52033.19476337904,1171.430946908625,44.418490821583,3.8741007175455637,2019
+1995,69,"(65,70]",College,1475.375851393189,150.64086626912942,9.793994736842105,1161.9550668134295,2019
+1995,69,"(65,70]",College,1475.375851393189,150.64086626912942,9.793994736842105,966.9314020837371,2019
+1995,69,"(65,70]",College,1475.375851393189,150.64086626912942,9.793994736842105,1024.4780768038559,2019
+1995,69,"(65,70]",College,1475.375851393189,150.64086626912942,9.793994736842105,988.7513021932203,2019
+1995,69,"(65,70]",College,1475.375851393189,150.64086626912942,9.793994736842105,963.5017530873707,2019
+1995,47,"(45,50]",HS,547.33869969040245,39.642333228718265,13.806924444444444,4552.916713441904,2019
+1995,47,"(45,50]",HS,547.5322423706325,39.642333228718265,13.811806666666667,4726.936612589336,2019
+1995,47,"(45,50]",HS,547.33869969040245,39.642333228718265,13.806924444444444,4667.230744770276,2019
+1995,47,"(45,50]",HS,547.33869969040245,39.642333228718265,13.806924444444444,4429.320456194251,2019
+1995,47,"(45,50]",HS,547.5322423706325,39.642333228718265,13.811806666666667,4684.709581278558,2019
+1995,84,"(80,85]",NoHS,27.095975232198143,0.9315948308748793,29.085579196217495,7057.017669849552,2019
+1995,84,"(80,85]",NoHS,25.160548429898274,0.9315948308748793,27.008037825059098,6998.681355526132,2019
+1995,84,"(80,85]",NoHS,27.095975232198143,0.9315948308748793,29.085579196217495,7034.9443724913535,2019
+1995,84,"(80,85]",NoHS,27.095975232198143,0.9315948308748793,29.085579196217495,7042.380308617842,2019
+1995,84,"(80,85]",NoHS,32.902255639097746,0.9315948308748793,35.31820330969267,7048.911154781384,2019
+1995,30,"(25,30]",College,208.63900928792572,138.74816630051396,1.5037244444444442,4773.135206561598,2019
+1995,30,"(25,30]",College,208.63900928792572,138.74816630051396,1.5037244444444442,4700.84591939687,2019
+1995,30,"(25,30]",College,208.63900928792572,138.74816630051396,1.5037244444444442,4729.934338070314,2019
+1995,30,"(25,30]",College,208.63900928792572,138.74816630051396,1.5037244444444442,4671.3259447254395,2019
+1995,30,"(25,30]",College,208.63900928792572,138.74816630051396,1.5037244444444442,4724.774725743412,2019
+1995,79,"(75,80]",NoHS,153.67288810260948,25.76751659866687,5.963822222222223,7343.865283944935,2019
+1995,79,"(75,80]",NoHS,70.44953560371516,25.76751659866687,2.7340444444444443,7361.464138020982,2019
+1995,79,"(75,80]",NoHS,85.93295002211411,25.76751659866687,3.3349333333333337,7514.9290493027875,2019
+1995,79,"(75,80]",NoHS,95.61008403361345,25.76751659866687,3.7104888888888894,7591.785658725834,2019
+1995,79,"(75,80]",NoHS,83.99752321981425,25.76751659866687,3.259822222222223,7498.023035511955,2019
+1995,33,"(30,35]",College,-14.941494913754976,37.660216567282355,-0.3967447953216374,5328.436073860541,2019
+1995,33,"(30,35]",College,-58.23699248120301,37.660216567282355,-1.546379649122807,5279.417716592268,2019
+1995,33,"(30,35]",College,-25.77988500663423,37.660216567282355,-0.6845389473684209,5331.016753632183,2019
+1995,33,"(30,35]",College,-34.39253427686864,37.660216567282355,-0.9132325146198829,5299.097036699362,2019
+1995,33,"(30,35]",College,-25.79923927465723,37.660216567282355,-0.6850528654970759,5307.485592406932,2019
+1995,62,"(60,65]",HS,188.89765590446706,83.24889978030835,2.2690708994708997,7277.745767692448,2019
+1995,62,"(60,65]",HS,189.86536930561698,83.24889978030835,2.2806952380952383,7170.862983664866,2019
+1995,62,"(60,65]",HS,186.96222910216719,83.24889978030835,2.2458222222222224,7286.795061728811,2019
+1995,62,"(60,65]",HS,193.15559486952677,83.24889978030835,2.3202179894179897,7274.073729991864,2019
+1995,62,"(60,65]",HS,192.7685095090668,83.24889978030835,2.3155682539682543,7178.605500008443,2019
+1995,36,"(35,40]",College,52.45006634232641,35.67809990584644,1.4700913580246915,3700.210945433179,2019
+1995,36,"(35,40]",College,52.45006634232641,35.67809990584644,1.4700913580246915,3669.497045348939,2019
+1995,36,"(35,40]",College,52.45006634232641,35.67809990584644,1.4700913580246915,3652.1376585781086,2019
+1995,36,"(35,40]",College,52.45006634232641,35.67809990584644,1.4700913580246915,3585.7971336929704,2019
+1995,36,"(35,40]",College,52.45006634232641,35.67809990584644,1.4700913580246915,3655.921477699629,2019
+1995,38,"(35,40]",HS,0,9.315948308748792,0,5466.8999628916445,2019
+1995,38,"(35,40]",HS,0,5.748138318164148,0,5505.003149514308,2019
+1995,38,"(35,40]",HS,0,14.271239962338576,0,5504.154131273393,2019
+1995,38,"(35,40]",HS,0,5.748138318164148,0,5493.315115292242,2019
+1995,38,"(35,40]",HS,0,7.333831647312879,0,5506.52346115115,2019
+1995,75,"(70,75]",NoHS,249.5539318885449,79.28466645743653,3.147568666666667,10719.179612926002,2019
+1995,75,"(70,75]",NoHS,246.10887218045113,49.55291653589783,4.966587022222223,10804.043042526266,2019
+1995,75,"(70,75]",NoHS,289.53984962406014,47.57079987446191,6.086503703703705,10956.29971412968,2019
+1995,75,"(70,75]",NoHS,261.2826183104821,45.588683213026,5.7313043478260886,11238.795522134347,2019
+1995,75,"(70,75]",NoHS,239.1026271561256,57.48138318164148,4.159653333333333,10933.97299891496,2019
+1995,45,"(40,45]",College,3.4837682441397613,198.21166614359132,0.017576,657.6513068806292,2019
+1995,45,"(40,45]",College,3.4837682441397613,198.21166614359132,0.017576,641.268382430984,2019
+1995,45,"(40,45]",College,3.4837682441397613,198.21166614359132,0.017576,659.6743871484637,2019
+1995,45,"(40,45]",College,3.4837682441397613,198.21166614359132,0.017576,615.7125435311016,2019
+1995,45,"(40,45]",College,3.4837682441397613,198.21166614359132,0.017576,664.7364387010095,2019
+1995,47,"(45,50]",College,22613.068836090228,265.6036326324124,85.1384019562189,229.55644387083765,2019
+1995,47,"(45,50]",College,51853.18497443609,221.99706608082226,233.57599219603176,293.03590808033493,2019
+1995,47,"(45,50]",College,37158.27872516586,539.1357319105684,68.92193658447712,508.609193056353,2019
+1995,47,"(45,50]",College,31372.89337956656,289.38903256964335,108.41078910624047,296.44839707545225,2019
+1995,47,"(45,50]",College,5647.408768863334,174.42626620636034,32.377054738888894,257.7116725196197,2019
+1995,52,"(50,55]",College,238.15426802299868,120.90911634759071,1.9696965391621128,7675.712655468863,2019
+1995,52,"(50,55]",College,238.15426802299868,120.90911634759071,1.9696965391621128,7604.761648024301,2019
+1995,52,"(50,55]",College,239.3155241043786,120.90911634759071,1.9793009107468125,7644.236261477548,2019
+1995,52,"(50,55]",College,240.6703228659885,120.90911634759071,1.9905060109289618,8013.545579275694,2019
+1995,52,"(50,55]",College,238.73489606368867,120.90911634759071,1.974498724954463,7762.622162308534,2019
+1995,55,"(50,55]",College,1793.927748783724,227.94341606513,7.870057314009662,2464.5029789579376,2019
+1995,55,"(50,55]",College,1793.8890402476782,227.94341606513,7.869887497584543,1971.084878942002,2019
+1995,55,"(50,55]",College,1793.695497567448,227.94341606513,7.869038415458937,2159.0599908561685,2019
+1995,55,"(50,55]",College,1793.637434763379,227.94341606513,7.868783690821256,1999.3043871728848,2019
+1995,55,"(50,55]",College,1793.869685979655,227.94341606513,7.869802589371981,2061.269609162126,2019
+1995,74,"(70,75]",HS,24922.49093321539,551.028431879184,45.22904716227017,44.813401421542466,2019
+1995,74,"(70,75]",HS,26045.03847854931,709.5977647940571,36.70394661700806,50.36417155529571,2019
+1995,74,"(70,75]",HS,26474.703228659888,691.7587148411337,38.27158611907036,44.98004396395005,2019
+1995,74,"(70,75]",HS,25936.65457762052,1270.5367799804203,20.413934477379094,54.12219865528908,2019
+1995,74,"(70,75]",HS,25905.687748783723,909.7915475990842,28.47431130476882,43.637124033478145,2019
+1995,35,"(30,35]",HS,248.41203007518797,156.58721625343713,1.5864132208157526,5856.585222090099,2019
+1995,35,"(30,35]",HS,406.57510835913314,166.4977995606167,2.441924814814815,5776.010934196735,2019
+1995,35,"(30,35]",HS,329.08061919504644,229.92553272656593,1.4312486973180076,5771.1356950773015,2019
+1995,35,"(30,35]",HS,434.8323396727112,277.4963326010279,1.566984095238095,3297.26927969016,2019
+1995,35,"(30,35]",HS,442.94177797434764,253.7109326637969,1.7458521527777777,3494.172333492782,2019
+1995,68,"(65,70]",HS,632.1103936311366,138.74816630051396,4.555810793650792,6284.662797294007,2019
+1995,68,"(65,70]",HS,641.55527642636,138.74816630051396,4.6238829206349195,6532.563681774367,2019
+1995,68,"(65,70]",HS,679.9734984520124,138.74816630051396,4.900774666666666,6458.196785846356,2019
+1995,68,"(65,70]",HS,684.4056258292791,138.74816630051396,4.932718349206348,6123.358457551207,2019
+1995,68,"(65,70]",HS,751.1391419725785,138.74816630051396,5.413686984126983,6542.147020201644,2019
+1995,32,"(30,35]",HS,76.15904467049978,41.624449890154175,1.8296708994708997,4473.01559099352,2019
+1995,32,"(30,35]",HS,76.15904467049978,41.624449890154175,1.8296708994708997,4405.271625118612,2019
+1995,32,"(30,35]",HS,76.15904467049978,41.624449890154175,1.8296708994708997,4432.531056208014,2019
+1995,32,"(30,35]",HS,76.15904467049978,41.624449890154175,1.8296708994708997,4377.607772904763,2019
+1995,32,"(30,35]",HS,76.15904467049978,41.624449890154175,1.8296708994708997,4427.6958639532495,2019
+1995,44,"(40,45]",HS,6.115948695267581,33.69598324441053,0.1815037908496732,6664.411374436129,2019
+1995,44,"(40,45]",HS,6.115948695267581,33.69598324441053,0.1815037908496732,6710.860973304594,2019
+1995,44,"(40,45]",HS,6.115948695267581,33.69598324441053,0.1815037908496732,6709.825979640858,2019
+1995,44,"(40,45]",HS,6.115948695267581,33.69598324441053,0.1815037908496732,6696.612703033863,2019
+1995,44,"(40,45]",HS,6.115948695267581,33.69598324441053,0.1815037908496732,6712.71430558322,2019
+1995,46,"(45,50]",College,1895.0150906678462,372.6379323499517,5.085405768321513,774.9638263451897,2019
+1995,46,"(45,50]",College,1936.9751437417074,372.6379323499517,5.1980085106382985,658.0065205583371,2019
+1995,46,"(45,50]",College,2039.3398673153474,372.6379323499517,5.472711418439717,654.5531824778102,2019
+1995,46,"(45,50]",College,2064.0165590446704,372.6379323499517,5.538933049645389,663.9335193165376,2019
+1995,46,"(45,50]",College,1993.1025210084033,372.6379323499517,5.348630260047281,638.466401996985,2019
+1995,46,"(45,50]",College,7275.84804245909,1193.2342301844199,6.097585753414545,436.06588943204696,2019
+1995,46,"(45,50]",College,7327.87231490491,1066.3787638525214,6.871735037587774,388.72052903485076,2019
+1995,46,"(45,50]",College,7342.9686439628485,1254.679846688933,5.8524640077233645,386.7361837048681,2019
+1995,46,"(45,50]",College,7202.0695727554175,1042.5933639152904,6.907841371356146,395.26156288641494,2019
+1995,46,"(45,50]",College,7724.634809376383,1151.6097802942656,6.7076842707974755,393.16468487537037,2019
+1995,81,"(80,85]",NoHS,317.13903582485625,23.785399937230956,13.33334888888889,10557.584003221189,2019
+1995,81,"(80,85]",NoHS,318.93898275099514,23.785399937230956,13.409023333333336,10484.768848228801,2019
+1995,81,"(80,85]",NoHS,303.80394515701016,23.785399937230956,12.772707037037039,10529.291122263132,2019
+1995,81,"(80,85]",NoHS,327.5322777532066,23.785399937230956,13.77030777777778,10371.916942598738,2019
+1995,81,"(80,85]",NoHS,303.82329942503316,23.785399937230956,12.773520740740741,10371.032850457002,2019
+1995,21,"(20,25]",HS,3.6773109243697477,39.642333228718265,0.09276222222222222,4568.08420492442,2019
+1995,21,"(20,25]",HS,3.6773109243697477,39.642333228718265,0.09276222222222222,4554.901238816229,2019
+1995,21,"(20,25]",HS,3.6773109243697477,39.642333228718265,0.09276222222222222,4580.850241907623,2019
+1995,21,"(20,25]",HS,3.6773109243697477,39.642333228718265,0.09276222222222222,4550.806817324449,2019
+1995,21,"(20,25]",HS,3.6773109243697477,39.642333228718265,0.09276222222222222,4530.282593898626,2019
+1995,38,"(35,40]",NoHS,146.163432109686,79.28466645743653,1.8435271111111113,5052.682854275201,2019
+1995,38,"(35,40]",NoHS,148.48594427244583,79.28466645743653,1.8728204444444447,5018.996103374853,2019
+1995,38,"(35,40]",NoHS,146.55051747014596,79.28466645743653,1.8484093333333336,5056.600909443938,2019
+1995,38,"(35,40]",NoHS,130.68001769128705,79.28466645743653,1.6482382222222223,4933.478416316537,2019
+1995,38,"(35,40]",NoHS,139.19589562140646,79.28466645743653,1.7556471111111112,5032.993203553747,2019
+1995,42,"(40,45]",College,1632.2809022556391,168.47991622205262,9.688281777777778,2933.387859658297,2019
+1995,42,"(40,45]",College,1613.2750110570544,158.56933291487306,10.173940833333333,2513.136171272982,2019
+1995,42,"(40,45]",College,1929.6785846970367,190.28319949784765,10.141087546296298,2585.3189303829286,2019
+1995,42,"(40,45]",College,1488.304502432552,154.60509959200127,9.62649037037037,2511.965714070228,2019
+1995,42,"(40,45]",College,1800.5856169836356,174.42626620636034,10.322904090909093,2597.587231815348,2019
+1995,66,"(65,70]",College,654.5032817337462,87.21313310318017,7.504641313131316,7468.72686064229,2019
+1995,66,"(65,70]",College,656.825793896506,73.3383164731288,8.956106786786785,7567.848016139035,2019
+1995,66,"(65,70]",College,655.6838920831491,71.35619981169287,9.188884691358025,7415.646313855805,2019
+1995,66,"(65,70]",College,654.1549049093322,75.32043313456471,8.684959415204679,7262.959298852457,2019
+1995,66,"(65,70]",College,661.1417956656347,75.32043313456471,8.7777216374269,7418.83103720287,2019
+1995,33,"(30,35]",College,471.33448916408673,164.5156828991808,2.8649821151271757,742.368319698571,2019
+1995,33,"(30,35]",College,471.33448916408673,164.5156828991808,2.8649821151271757,723.2780936771694,2019
+1995,33,"(30,35]",College,471.33448916408673,164.5156828991808,2.8649821151271757,739.9043736338573,2019
+1995,33,"(30,35]",College,471.33448916408673,164.5156828991808,2.8649821151271757,691.3112522770805,2019
+1995,33,"(30,35]",College,471.33448916408673,164.5156828991808,2.8649821151271757,746.2251284576398,2019
+1995,27,"(25,30]",HS,207.76806722689076,47.57079987446191,4.36755462962963,5517.274431068581,2019
+1995,27,"(25,30]",HS,211.25183547103055,47.57079987446191,4.440787962962964,5468.027165776416,2019
+1995,27,"(25,30]",HS,253.05705440070767,47.57079987446191,5.319587962962964,5542.4114225220155,2019
+1995,27,"(25,30]",HS,210.28412206988057,47.57079987446191,4.420445370370371,5475.986772783874,2019
+1995,27,"(25,30]",HS,208.92932330827068,47.57079987446191,4.3919657407407415,5524.656662354793,2019
+1995,36,"(35,40]",HS,626.6911985846971,198.21166614359132,3.1617271111111114,3698.9846890445538,2019
+1995,36,"(35,40]",HS,521.4039805395843,295.3353825539511,1.7654639821029083,3851.174531060745,2019
+1995,36,"(35,40]",HS,547.7257850508624,172.44414954492444,3.176250319284802,3796.6641464349027,2019
+1995,36,"(35,40]",HS,526.8231755860238,285.4247992467715,1.845751234567901,3606.3882757445595,2019
+1995,36,"(35,40]",HS,512.1139318885449,239.83611603374553,2.1352661157024793,3821.7509909058776,2019
+1995,72,"(70,75]",HS,45.48252985404688,21.803283275795042,2.0860404040404044,8026.058677898318,2019
+1995,72,"(70,75]",HS,45.48252985404688,21.803283275795042,2.0860404040404044,8024.043417607201,2019
+1995,72,"(70,75]",HS,45.48252985404688,21.803283275795042,2.0860404040404044,8027.668362177603,2019
+1995,72,"(70,75]",HS,45.48252985404688,21.803283275795042,2.0860404040404044,7992.4553328701195,2019
+1995,72,"(70,75]",HS,45.48252985404688,21.803283275795042,2.0860404040404044,8021.935042648745,2019
+1995,87,"(85,90]",College,2367.026979212738,114.96276636328297,20.589509578544064,1082.6846121919796,2019
+1995,87,"(85,90]",College,1965.4259177355152,71.35619981169287,27.54387037037037,901.6406312626159,2019
+1995,87,"(85,90]",College,4457.094383016365,120.90911634759071,36.863178870673956,1267.521160643301,2019
+1995,87,"(85,90]",College,1875.2350287483414,295.3353825539511,6.349510216256524,932.5855490358268,2019
+1995,87,"(85,90]",College,1573.501990269792,99.10583307179566,15.876986666666667,901.72105483861435,2019
+1995,28,"(25,30]",HS,0.5612737726669615,67.39196648882105,0.008328496732026144,5771.245755582647,2019
+1995,28,"(25,30]",HS,1.064484741264927,69.37408315025698,0.015344126984126981,5739.7260019206415,2019
+1995,28,"(25,30]",HS,0.4257938965059708,75.32043313456471,0.005653099415204678,5799.915411013337,2019
+1995,28,"(25,30]",HS,1.0838390092879255,69.37408315025698,0.015623111111111105,5761.187442737718,2019
+1995,28,"(25,30]",HS,0.6580451127819549,79.28466645743653,0.008299777777777777,5767.292496602604,2019
+1995,21,"(20,25]",HS,-16.0640424590889,41.624449890154175,-0.3859280423280424,4698.600896219216,2019
+1995,21,"(20,25]",HS,-18.580097302078727,35.67809990584644,-0.5207703703703704,4685.041273937298,2019
+1995,21,"(20,25]",HS,-16.257585139318888,33.69598324441053,-0.4824784313725491,4711.731677115458,2019
+1995,21,"(20,25]",HS,-16.644670499778858,35.67809990584644,-0.46652345679012347,4680.829868974572,2019
+1995,21,"(20,25]",HS,-16.644670499778858,33.69598324441053,-0.49396601307189536,4659.719239166389,2019
+1995,70,"(65,70]",NoHS,181.63980539584256,67.39196648882105,2.6952738562091505,11716.737168848502,2019
+1995,70,"(65,70]",NoHS,181.63980539584256,67.39196648882105,2.6952738562091505,11724.915221700649,2019
+1995,70,"(65,70]",NoHS,181.63980539584256,67.39196648882105,2.6952738562091505,11937.891781318529,2019
+1995,70,"(65,70]",NoHS,181.63980539584256,67.39196648882105,2.6952738562091505,11958.445339232436,2019
+1995,70,"(65,70]",NoHS,181.63980539584256,67.39196648882105,2.6952738562091505,11674.940348141421,2019
+1995,53,"(50,55]",College,7225.664360902256,1090.1641637897524,6.628051628282828,237.26008743553803,2019
+1995,53,"(50,55]",College,5617.440813799204,1090.1641637897524,5.152839361616161,214.0695355280252,2019
+1995,53,"(50,55]",College,5341.7973286156575,1090.1641637897524,4.899993511111112,210.89775718369992,2019
+1995,53,"(50,55]",College,5049.354338788147,1090.1641637897524,4.631737591919192,217.59064721785526,2019
+1995,53,"(50,55]",College,9606.858664307829,1090.1641637897524,8.81230458989899,213.9189779045612,2019
+1995,27,"(25,30]",HS,196.44582043343655,49.55291653589783,3.964364444444445,5982.485250485441,2019
+1995,27,"(25,30]",HS,202.01984962406016,49.55291653589783,4.0768508444444445,5891.880317770235,2019
+1995,27,"(25,30]",HS,197.21999115435648,49.55291653589783,3.9799875555555557,5928.33875193204,2019
+1995,27,"(25,30]",HS,190.63954002653693,49.55291653589783,3.8471911111111115,5854.880986005287,2019
+1995,27,"(25,30]",HS,196.83290579389651,49.55291653589783,3.9721760000000006,5921.871869409736,2019
+1995,36,"(35,40]",College,23.22512162759841,11.892699968615478,1.9528888888888891,8105.057788211202,2019
+1995,36,"(35,40]",College,17.418841220698805,13.081969965477029,1.3315151515151513,8093.508960821695,2019
+1995,36,"(35,40]",College,25.160548429898274,12.289123300902663,2.0473835125448026,8184.160015813823,2019
+1995,36,"(35,40]",College,17.418841220698805,11.694488302471887,1.4894915254237289,7944.042518685186,2019
+1995,36,"(35,40]",College,17.418841220698805,11.099853304041115,1.5692857142857142,8177.821111295294,2019
+1995,31,"(30,35]",HS,33.5409464838567,51.53503319733374,0.6508377777777778,5590.309406030176,2019
+1995,31,"(30,35]",HS,75.57841662980981,35.67809990584644,2.118341975308642,5559.777839218622,2019
+1995,31,"(30,35]",HS,28.702379478107034,45.588683213026,0.6295943961352658,5618.080229039539,2019
+1995,31,"(30,35]",HS,-2.554763379035825,35.67809990584644,-0.07160592592592593,5580.566434878511,2019
+1995,31,"(30,35]",HS,38.10855373728439,51.53503319733374,0.739468888888889,5586.480087058748,2019
+1995,36,"(35,40]",HS,-7.935249889429456,39.642333228718265,-0.2001711111111111,7004.134169027505,2019
+1995,36,"(35,40]",HS,-7.935249889429456,39.642333228718265,-0.2001711111111111,7020.390219302516,2019
+1995,36,"(35,40]",HS,-7.935249889429456,39.642333228718265,-0.2001711111111111,7002.140126960017,2019
+1995,36,"(35,40]",HS,-7.935249889429456,39.642333228718265,-0.2001711111111111,7106.701112021382,2019
+1995,36,"(35,40]",HS,-7.935249889429456,39.642333228718265,-0.2001711111111111,7159.745312550493,2019
+1995,86,"(85,90]",College,278456.6861034941,3230.850158140539,86.18681538104977,33.49772843884923,2019
+1995,86,"(85,90]",College,61295.79906236179,2101.0436611220684,29.173976817610058,21.728651686078898,2019
+1995,86,"(85,90]",College,156782.01578062805,2755.14215939592,56.905236358113505,35.10314700103088,2019
+1995,86,"(85,90]",College,130852.71582485625,2200.1494941938636,59.47446578978979,18.687207744553895,2019
+1995,86,"(85,90]",College,17075.361026094648,909.7915475990842,18.7684322536916,20.162592341760934,2019
+1995,24,"(20,25]",HS,24.541211853162316,73.3383164731288,0.3346301501501501,4139.182794397853,2019
+1995,24,"(20,25]",HS,23.573498452012384,83.24889978030835,0.2831688888888889,4101.339048789797,2019
+1995,24,"(20,25]",HS,23.960583812472358,83.24889978030835,0.2878186243386244,4094.5275714036084,2019
+1995,24,"(20,25]",HS,23.379955771782395,81.26678311887244,0.2876938753387534,4066.0015162141913,2019
+1995,24,"(20,25]",HS,27.444352056612118,77.30254979600063,0.3550251851851851,4057.910479200919,2019
+1995,41,"(40,45]",HS,1460.8601503759398,99.10583307179566,14.740405333333333,1913.6863377639172,2019
+1995,41,"(40,45]",HS,1460.8601503759398,99.10583307179566,14.740405333333333,1640.8773323646587,2019
+1995,41,"(40,45]",HS,1460.8601503759398,99.10583307179566,14.740405333333333,1691.8336532638127,2019
+1995,41,"(40,45]",HS,1460.8601503759398,99.10583307179566,14.740405333333333,1637.6875907877497,2019
+1995,41,"(40,45]",HS,1460.8601503759398,99.10583307179566,14.740405333333333,1698.022194278769,2019
+1995,38,"(35,40]",NoHS,51.67589562140646,41.624449890154175,1.2414793650793652,5390.38653254471,2019
+1995,38,"(35,40]",NoHS,51.67589562140646,41.624449890154175,1.2414793650793652,5379.399083999285,2019
+1995,38,"(35,40]",NoHS,51.67589562140646,41.624449890154175,1.2414793650793652,5393.409097551963,2019
+1995,38,"(35,40]",NoHS,51.67589562140646,41.624449890154175,1.2414793650793652,5297.61642497311,2019
+1995,38,"(35,40]",NoHS,51.67589562140646,41.624449890154175,1.2414793650793652,5387.578628755216,2019
+1995,80,"(75,80]",NoHS,34.54736842105263,33.69598324441053,1.0252666666666665,10585.351135630388,2019
+1995,80,"(75,80]",NoHS,37.8375939849624,33.69598324441053,1.122911111111111,10551.565248409393,2019
+1995,80,"(75,80]",NoHS,36.869880583812474,33.69598324441053,1.094192156862745,10581.431326462673,2019
+1995,80,"(75,80]",NoHS,32.611941618752766,33.69598324441053,0.9678287581699346,10597.271107369332,2019
+1995,80,"(75,80]",NoHS,34.9344537815126,33.69598324441053,1.0367542483660128,10585.339095912663,2019
+1995,59,"(55,60]",HS,0,49.55291653589783,0,8219.210099306281,2019
+1995,59,"(55,60]",HS,0,49.55291653589783,0,8267.166580270667,2019
+1995,59,"(55,60]",HS,0,49.55291653589783,0,8248.383517863484,2019
+1995,59,"(55,60]",HS,0,49.55291653589783,0,8258.580724421396,2019
+1995,59,"(55,60]",HS,0,49.55291653589783,0,8211.978429845774,2019
+1995,77,"(75,80]",HS,1861.8805838124724,0.9910583307179567,1878.679111111111,1082.6846121919796,2019
+1995,77,"(75,80]",HS,1794.140645731977,0.9910583307179567,1810.328,901.6406312626159,2019
+1995,77,"(75,80]",HS,1730.2715612560814,0.9910583307179567,1745.8826666666666,909.158831487083,2019
+1995,77,"(75,80]",HS,1472.2791685095092,0.9910583307179567,1485.5625777777777,932.5855490358268,2019
+1995,77,"(75,80]",HS,1824.333303847855,0.9910583307179567,1840.7930666666666,901.72105483861435,2019
+1995,27,"(25,30]",College,30.676514816452897,65.40984982738514,0.46898922558922557,5376.231329163269,2019
+1995,27,"(25,30]",College,30.676514816452897,65.40984982738514,0.46898922558922557,5328.243016483293,2019
+1995,27,"(25,30]",College,30.676514816452897,65.40984982738514,0.46898922558922557,5400.725720852735,2019
+1995,27,"(25,30]",College,30.676514816452897,65.40984982738514,0.46898922558922557,5335.999144820931,2019
+1995,27,"(25,30]",College,30.676514816452897,65.40984982738514,0.46898922558922557,5383.424841760099,2019
+1995,50,"(45,50]",HS,9.870676691729322,41.624449890154175,0.23713650793650792,4023.568684202414,2019
+1995,50,"(45,50]",HS,9.870676691729322,41.624449890154175,0.23713650793650792,3952.6979064711713,2019
+1995,50,"(45,50]",HS,9.870676691729322,41.624449890154175,0.23713650793650792,3989.452693758799,2019
+1995,50,"(45,50]",HS,9.870676691729322,41.624449890154175,0.23713650793650792,3986.0238298885924,2019
+1995,50,"(45,50]",HS,9.870676691729322,41.624449890154175,0.23713650793650792,4009.5533072732405,2019
+1995,54,"(50,55]",College,12887.619991154355,594.6349984307741,21.673160888888884,203.15074685715183,2019
+1995,54,"(50,55]",College,12887.619991154355,594.6349984307741,21.673160888888884,178.9699345790927,2019
+1995,54,"(50,55]",College,12887.619991154355,594.6349984307741,21.673160888888884,181.16573967601852,2019
+1995,54,"(50,55]",College,12887.619991154355,594.6349984307741,21.673160888888884,184.25240908020513,2019
+1995,54,"(50,55]",College,12887.619991154355,594.6349984307741,21.673160888888884,183.15051515092154,2019
+1995,57,"(55,60]",HS,1483.5046439628484,198.21166614359132,7.484446666666668,8509.461707605318,2019
+1995,57,"(55,60]",HS,1475.7629367536488,198.21166614359132,7.445388888888889,8624.406913773299,2019
+1995,57,"(55,60]",HS,1500.923485183547,198.21166614359132,7.572326666666666,8501.061800142383,2019
+1995,57,"(55,60]",HS,1533.825740822645,198.21166614359132,7.738322222222224,8288.402883143122,2019
+1995,57,"(55,60]",HS,1514.4714727996463,198.21166614359132,7.640677777777779,8457.706035488603,2019
+1995,69,"(65,70]",HS,1797.6244139761168,91.177366426052,19.71568695652174,2291.710165638352,2019
+1995,69,"(65,70]",HS,1797.6244139761168,91.177366426052,19.71568695652174,1887.0208853258814,2019
+1995,69,"(65,70]",HS,1797.6244139761168,91.177366426052,19.71568695652174,1967.403631392842,2019
+1995,69,"(65,70]",HS,1797.6244139761168,91.177366426052,19.71568695652174,1728.192065896747,2019
+1995,69,"(65,70]",HS,1797.6244139761168,91.177366426052,19.71568695652174,1902.4843795320976,2019
+1995,48,"(45,50]",College,7.161079168509509,198.21166614359132,0.03612844444444445,4237.844051324103,2019
+1995,48,"(45,50]",College,7.161079168509509,198.21166614359132,0.03612844444444445,4137.074847590664,2019
+1995,48,"(45,50]",College,7.161079168509509,198.21166614359132,0.03612844444444445,4144.995581618133,2019
+1995,48,"(45,50]",College,7.161079168509509,198.21166614359132,0.03612844444444445,4139.730540695464,2019
+1995,48,"(45,50]",College,7.161079168509509,198.21166614359132,0.03612844444444445,4174.708983539873,2019
+1995,66,"(65,70]",HS,294.7655019902698,67.39196648882105,4.373896732026144,8709.934224187708,2019
+1995,66,"(65,70]",HS,300.5717823971694,67.39196648882105,4.460053594771241,8544.877895357742,2019
+1995,66,"(65,70]",HS,308.3134896063689,67.39196648882105,4.574929411764706,8622.293519489656,2019
+1995,66,"(65,70]",HS,294.7655019902698,67.39196648882105,4.373896732026144,8999.898669160528,2019
+1995,66,"(65,70]",HS,298.63635559486954,67.39196648882105,4.431334640522876,8788.190214898777,2019
+1995,45,"(40,45]",College,622.0461742591774,216.05071609651455,2.879167380224261,8509.461707605318,2019
+1995,45,"(40,45]",College,622.0461742591774,216.05071609651455,2.879167380224261,8624.406913773299,2019
+1995,45,"(40,45]",College,622.0461742591774,216.05071609651455,2.879167380224261,8501.061800142383,2019
+1995,45,"(40,45]",College,622.0461742591774,216.05071609651455,2.879167380224261,8288.402883143122,2019
+1995,45,"(40,45]",College,622.0461742591774,216.05071609651455,2.879167380224261,8457.706035488603,2019
+1995,49,"(45,50]",College,5239.916461742592,580.7601818007226,9.022513295411452,209.66370415617817,2019
+1995,49,"(45,50]",College,5201.072445820433,443.99413216164453,11.714281944444444,189.89386995413602,2019
+1995,49,"(45,50]",College,4677.984643962848,2438.003493566174,1.9187768419150855,189.57185079163847,2019
+1995,49,"(45,50]",College,4309.769694825298,289.38903256964335,14.8926504109589,174.51355951462455,2019
+1995,49,"(45,50]",College,10150.345864661655,624.3667483523127,16.257025044091712,187.1809550066815,2019
+1995,40,"(35,40]",College,397.5366651923928,362.7273490427721,1.0959655130540378,912.45644557039,2019
+1995,40,"(35,40]",College,397.5366651923928,362.7273490427721,1.0959655130540378,932.1345043557387,2019
+1995,40,"(35,40]",College,397.5366651923928,362.7273490427721,1.0959655130540378,910.3946866480198,2019
+1995,40,"(35,40]",College,397.5366651923928,362.7273490427721,1.0959655130540378,891.2024989406175,2019
+1995,40,"(35,40]",College,397.5366651923928,362.7273490427721,1.0959655130540378,905.5347988669928,2019
+1995,23,"(20,25]",College,15.560831490490934,57.48138318164148,0.27071080459770114,6984.698445515141,2019
+1995,23,"(20,25]",College,15.560831490490934,57.48138318164148,0.27071080459770114,7067.0899412454355,2019
+1995,23,"(20,25]",College,15.75437417072092,57.48138318164148,0.2740778544061303,7111.341342395941,2019
+1995,23,"(20,25]",College,15.173746130030962,57.48138318164148,0.26397670498084297,7115.844364401375,2019
+1995,23,"(20,25]",College,15.560831490490934,57.48138318164148,0.27071080459770114,7089.799105412118,2019
+1995,46,"(45,50]",HS,2119.098805838125,527.243031941953,4.019206850459482,692.8897084253423,2019
+1995,46,"(45,50]",HS,2119.098805838125,527.243031941953,4.019206850459482,588.7360908874167,2019
+1995,46,"(45,50]",HS,2119.098805838125,527.243031941953,4.019206850459482,585.6676642194433,2019
+1995,46,"(45,50]",HS,2119.098805838125,527.243031941953,4.019206850459482,593.7512083001429,2019
+1995,46,"(45,50]",HS,2119.098805838125,527.243031941953,4.019206850459482,570.9477886114207,2019
+1995,22,"(20,25]",HS,10.160990712074303,49.55291653589783,0.20505333333333334,4944.023894517513,2019
+1995,22,"(20,25]",HS,10.160990712074303,49.55291653589783,0.20505333333333334,4898.8216428079495,2019
+1995,22,"(20,25]",HS,10.160990712074303,49.55291653589783,0.20505333333333334,4890.6857114835675,2019
+1995,22,"(20,25]",HS,10.160990712074303,49.55291653589783,0.20505333333333334,4856.612923332323,2019
+1995,22,"(20,25]",HS,10.160990712074303,49.55291653589783,0.20505333333333334,4846.948629119662,2019
+1995,56,"(55,60]",College,13740.562582927909,545.0820818948762,25.20824484848485,614.5871132297784,2019
+1995,56,"(55,60]",College,13739.59486952676,545.0820818948762,25.206469494949495,702.6323156472997,2019
+1995,56,"(55,60]",College,13739.59486952676,545.0820818948762,25.206469494949495,600.2589560145811,2019
+1995,56,"(55,60]",College,13740.562582927909,545.0820818948762,25.20824484848485,757.0328402299958,2019
+1995,56,"(55,60]",College,13739.59486952676,545.0820818948762,25.206469494949495,583.2295905784002,2019
+1995,72,"(70,75]",College,2122.9309509066784,79.28466645743653,26.776059555555555,1926.2142640826962,2019
+1995,72,"(70,75]",College,2120.647147279965,79.28466645743653,26.747254444444447,1577.9625566898076,2019
+1995,72,"(70,75]",College,2120.6858558160106,79.28466645743653,26.747742666666667,1617.7558229077101,2019
+1995,72,"(70,75]",College,2123.5502874834146,79.28466645743653,26.783871111111115,1589.5696603522665,2019
+1995,72,"(70,75]",College,2121.614860681115,79.28466645743653,26.759460000000004,1606.4209341915434,2019
+1995,44,"(40,45]",College,6264.84107916851,527.243031941953,11.88226434419382,328.8983924629993,2019
+1995,44,"(40,45]",College,6355.728721804512,525.2609152805171,12.100136402515723,295.6096595211166,2019
+1995,44,"(40,45]",College,7145.053834586466,527.243031941953,13.55172738512949,290.6340892981224,2019
+1995,44,"(40,45]",College,7087.552304290138,521.2966819576452,13.596005019011407,295.9629026221318,2019
+1995,44,"(40,45]",College,6554.071260504202,535.1714985876966,12.246674716049382,292.5073103584562,2019
+1995,46,"(45,50]",NoHS,3.292160990712074,13.874816630051392,0.23727600000000001,5813.526547065149,2019
+1995,46,"(45,50]",NoHS,3.292160990712074,13.874816630051392,0.23727600000000001,5835.80714947447,2019
+1995,46,"(45,50]",NoHS,3.292160990712074,13.874816630051392,0.23727600000000001,5840.829870492872,2019
+1995,46,"(45,50]",NoHS,3.292160990712074,13.874816630051392,0.23727600000000001,5825.890505244276,2019
+1995,46,"(45,50]",NoHS,3.292160990712074,13.874816630051392,0.23727600000000001,5831.971235681365,2019
+1995,47,"(45,50]",HS,1410.7325961963732,445.97624882308054,3.1632460246913574,159.0231165028004,2019
+1995,47,"(45,50]",HS,1410.7325961963732,445.97624882308054,3.1632460246913574,131.82856125540508,2019
+1995,47,"(45,50]",HS,1410.7325961963732,445.97624882308054,3.1632460246913574,132.42400763211444,2019
+1995,47,"(45,50]",HS,1410.7325961963732,445.97624882308054,3.1632460246913574,137.20432636260742,2019
+1995,47,"(45,50]",HS,1410.7325961963732,445.97624882308054,3.1632460246913574,132.1524380279732,2019
+1995,51,"(50,55]",HS,40.160106147722246,79.28466645743653,0.5065305555555556,6870.986285058119,2019
+1995,51,"(50,55]",HS,40.160106147722246,79.28466645743653,0.5065305555555556,6712.816360752246,2019
+1995,51,"(50,55]",HS,40.160106147722246,79.28466645743653,0.5065305555555556,6801.694869381943,2019
+1995,51,"(50,55]",HS,40.160106147722246,79.28466645743653,0.5065305555555556,6995.607698390202,2019
+1995,51,"(50,55]",HS,40.160106147722246,79.28466645743653,0.5065305555555556,6853.6437016653945,2019
+1995,59,"(55,60]",College,11454.959009287926,4063.339155943622,2.819099900271003,16.922237812228754,2019
+1995,59,"(55,60]",College,10902.93657673596,2517.28816002361,4.331223079615048,33.67646613186312,2019
+1995,59,"(55,60]",College,5930.805767359575,2735.3209927815606,2.1682302673107885,18.149931201243074,2019
+1995,59,"(55,60]",College,86282.48810260947,2398.3611603374547,35.975602644628104,32.61955909005104,2019
+1995,59,"(55,60]",College,8528.593684210526,1318.1075798548823,6.470332023391813,16.98926204970277,2019
+1995,52,"(50,55]",College,2711.37811587793,275.514215939592,9.841155043964825,2385.6688809757843,2019
+1995,52,"(50,55]",College,2069.803485183547,281.4605659238997,7.353795649452268,2045.1052659665427,2019
+1995,52,"(50,55]",College,2091.8479964617427,307.22808252256664,6.808778609318995,2108.7515340331825,2019
+1995,52,"(50,55]",College,2312.1189208314904,325.06713247548976,7.112742845528455,2047.2467044409211,2019
+1995,52,"(50,55]",College,2092.7963555948695,275.514215939592,7.595965051958431,2109.4936499008045,2019
+1995,39,"(35,40]",HS,15.096329057938965,51.53503319733374,0.2929333333333334,6903.447887461448,2019
+1995,39,"(35,40]",HS,15.096329057938965,51.53503319733374,0.2929333333333334,6915.3670137413665,2019
+1995,39,"(35,40]",HS,15.096329057938965,51.53503319733374,0.2929333333333334,6938.271810202148,2019
+1995,39,"(35,40]",HS,15.48341441839894,51.53503319733374,0.3004444444444445,6810.311501780908,2019
+1995,39,"(35,40]",HS,15.096329057938965,51.53503319733374,0.2929333333333334,6922.342915320031,2019
+1995,77,"(75,80]",College,689.5925696594428,118.92699968615479,5.798452592592594,1462.5220912816337,2019
+1995,77,"(75,80]",College,689.5925696594428,118.92699968615479,5.798452592592594,1449.8220783944691,2019
+1995,77,"(75,80]",College,689.5925696594428,118.92699968615479,5.798452592592594,1468.6940985693623,2019
+1995,77,"(75,80]",College,689.5925696594428,118.92699968615479,5.798452592592594,1265.1447249762764,2019
+1995,77,"(75,80]",College,689.5925696594428,118.92699968615479,5.798452592592594,1473.3057974588116,2019
+1995,71,"(70,75]",NoHS,0,14.271239962338576,0,6855.800666628626,2019
+1995,71,"(70,75]",NoHS,0,14.271239962338576,0,6868.020912684045,2019
+1995,71,"(70,75]",NoHS,0,14.271239962338576,0,6851.426179133336,2019
+1995,71,"(70,75]",NoHS,0,14.271239962338576,0,6864.317912964941,2019
+1995,71,"(70,75]",NoHS,0,14.271239962338576,0,6849.946789775066,2019
+1995,29,"(25,30]",College,35.476373286156566,114.96276636328297,0.30859011494252875,7757.4618706214915,2019
+1995,29,"(25,30]",College,35.476373286156566,114.96276636328297,0.30859011494252875,7839.438981595286,2019
+1995,29,"(25,30]",College,35.476373286156566,114.96276636328297,0.30859011494252875,7768.276889776767,2019
+1995,29,"(25,30]",College,35.476373286156566,114.96276636328297,0.30859011494252875,7890.369786103159,2019
+1995,29,"(25,30]",College,35.476373286156566,114.96276636328297,0.30859011494252875,7779.966659787713,2019
+1995,48,"(45,50]",NoHS,60.38531623175586,55.499266520205566,1.0880380952380952,5693.124315366467,2019
+1995,48,"(45,50]",NoHS,60.38531623175586,55.499266520205566,1.0880380952380952,5552.922239303137,2019
+1995,48,"(45,50]",NoHS,60.38531623175586,55.499266520205566,1.0880380952380952,5558.181789981334,2019
+1995,48,"(45,50]",NoHS,60.38531623175586,55.499266520205566,1.0880380952380952,5752.876774840663,2019
+1995,48,"(45,50]",NoHS,60.38531623175586,55.499266520205566,1.0880380952380952,5632.733187690559,2019
+1995,37,"(35,40]",College,13106.381282618311,699.6871814868774,18.731772754170603,22.912149894566873,2019
+1995,37,"(35,40]",College,6227.042193719593,554.9926652020558,11.220044126984124,20.120435579797295,2019
+1995,37,"(35,40]",College,14308.61034940292,723.4725814241084,19.777681582952816,20.973505920242754,2019
+1995,37,"(35,40]",College,16904.21123396727,1197.1984635072918,14.11980699043414,20.498943767727734,2019
+1995,37,"(35,40]",College,3719.696771340115,1809.6725118909887,2.0554529877084096,21.266240005160498,2019
+1995,31,"(30,35]",College,-16.799504643962848,99.10583307179566,-0.16951075555555556,6413.858230060502,2019
+1995,31,"(30,35]",College,-20.089730207872623,99.10583307179566,-0.20270986666666668,6354.854651931545,2019
+1995,31,"(30,35]",College,-13.702821760283062,99.10583307179566,-0.13826453333333336,6416.964603856313,2019
+1995,31,"(30,35]",College,-24.21218929677134,99.10583307179566,-0.2443064,6378.542722404999,2019
+1995,31,"(30,35]",College,-12.735108359133127,99.10583307179566,-0.1285000888888889,6388.640057967911,2019
+1995,45,"(40,45]",College,79.15895621406457,408.3160322557981,0.193866882416397,5150.486987981405,2019
+1995,45,"(40,45]",College,254.66345864661656,340.9240657669771,0.7469800000000001,3180.3563642377885,2019
+1995,45,"(40,45]",College,110.57093321539142,388.494865641439,0.28461362811791385,5029.48547684391,2019
+1995,45,"(40,45]",College,90.94570544007077,400.3875656100545,0.22714418041804182,5170.747023023169,2019
+1995,45,"(40,45]",College,214.03885006634235,400.3875656100545,0.5345791639163917,5078.63964728895,2019
+1995,62,"(60,65]",HS,8613.03635559487,110.99853304041113,77.59594761904764,1608.4978260758285,2019
+1995,62,"(60,65]",HS,8622.713489606369,110.99853304041113,77.68313015873017,1447.6582868230273,2019
+1995,62,"(60,65]",HS,8665.292879256966,110.99853304041113,78.06673333333333,1446.9314256281025,2019
+1995,62,"(60,65]",HS,8587.101636444051,110.99853304041113,77.36229841269842,1324.5185751454474,2019
+1995,62,"(60,65]",HS,8578.19867315347,110.99853304041113,77.28209047619048,1440.6919053895501,2019
+1995,79,"(75,80]",NoHS,53.03069438301637,19.821166614359132,2.675457777777778,8414.287478559132,2019
+1995,79,"(75,80]",NoHS,53.03069438301637,19.821166614359132,2.675457777777778,8374.559700318048,2019
+1995,79,"(75,80]",NoHS,53.03069438301637,19.821166614359132,2.675457777777778,8420.076550576314,2019
+1995,79,"(75,80]",NoHS,53.03069438301637,19.821166614359132,2.675457777777778,8427.130600433655,2019
+1995,79,"(75,80]",NoHS,53.03069438301637,19.821166614359132,2.675457777777778,8429.67098484281,2019
+1995,78,"(75,80]",HS,3492.0905793896504,140.73028296194985,24.814066353677617,1148.4943263538796,2019
+1995,78,"(75,80]",HS,4014.655816010615,140.73028296194985,28.52730579029734,1017.641132618787,2019
+1995,78,"(75,80]",HS,1719.239628482972,140.73028296194985,12.216557746478871,737.7847675558006,2019
+1995,78,"(75,80]",HS,4014.655816010615,140.73028296194985,28.52730579029734,1028.6543150830412,2019
+1995,78,"(75,80]",HS,3530.7991154356478,140.73028296194985,25.08912112676056,1034.703683128981,2019
+1995,40,"(35,40]",HS,3.096682883679788,65.40984982738514,0.04734276094276094,6322.202894315495,2019
+1995,40,"(35,40]",HS,-0.774170720919947,67.39196648882105,-0.011487581699346406,6399.776903718791,2019
+1995,40,"(35,40]",HS,-12.386731534719152,65.40984982738514,-0.18937104377104377,6321.247677786201,2019
+1995,40,"(35,40]",HS,14.70924369747899,85.23101644174427,0.17258087855297155,6531.042644449763,2019
+1995,40,"(35,40]",HS,-10.451304732419283,71.35619981169287,-0.14646666666666666,6368.3809322186,2019
+1995,34,"(30,35]",HS,1.7418841220698806,12.685546633189844,0.1373125,5499.725683246737,2019
+1995,34,"(30,35]",HS,1.7418841220698806,12.685546633189844,0.1373125,5469.688840927751,2019
+1995,34,"(30,35]",HS,1.7418841220698806,12.685546633189844,0.1373125,5527.046516040848,2019
+1995,34,"(30,35]",HS,1.7418841220698806,12.685546633189844,0.1373125,5490.140584322491,2019
+1995,34,"(30,35]",HS,1.7418841220698806,12.685546633189844,0.1373125,5495.958413429115,2019
+1995,27,"(25,30]",HS,14.670535161432994,69.37408315025698,0.21146996825396822,6145.786464976988,2019
+1995,27,"(25,30]",HS,14.670535161432994,69.37408315025698,0.21146996825396822,6241.394724870494,2019
+1995,27,"(25,30]",HS,14.670535161432994,69.37408315025698,0.21146996825396822,6178.075578290203,2019
+1995,27,"(25,30]",HS,14.670535161432994,69.37408315025698,0.21146996825396822,6279.4307270999725,2019
+1995,27,"(25,30]",HS,14.670535161432994,69.37408315025698,0.21146996825396822,6217.225277990738,2019
+1995,46,"(45,50]",HS,83.41689517912428,79.28466645743653,1.0521188888888888,5186.393339466139,2019
+1995,46,"(45,50]",HS,84.5587969924812,79.28466645743653,1.0665214444444444,5048.955171569983,2019
+1995,46,"(45,50]",HS,84.86846528084918,79.28466645743653,1.0704272222222222,5114.5129566374735,2019
+1995,46,"(45,50]",HS,83.0298098186643,79.28466645743653,1.0472366666666666,5261.477374656225,2019
+1995,46,"(45,50]",HS,85.08136222910217,79.28466645743653,1.0731124444444444,5157.930023367967,2019
+1995,58,"(55,60]",HS,50.57270234409553,85.23101644174427,0.5933603100775193,9718.04526796779,2019
+1995,58,"(55,60]",HS,85.41038478549315,85.23101644174427,1.002104496124031,9585.678915382701,2019
+1995,58,"(55,60]",HS,71.86239716939407,85.23101644174427,0.8431484237726098,9690.94608081371,2019
+1995,58,"(55,60]",HS,58.314409553295,85.23101644174427,0.6841923514211886,9741.482064927308,2019
+1995,58,"(55,60]",HS,50.57270234409553,85.23101644174427,0.5933603100775193,9589.568960353714,2019
+1995,32,"(30,35]",HS,87.55870853604601,49.55291653589783,1.766973866666667,5662.465866936278,2019
+1995,32,"(30,35]",HS,46.527660327288814,31.713866582974614,1.467107777777778,5728.478426290392,2019
+1995,32,"(30,35]",HS,41.43748783724016,75.32043313456471,0.5501493567251462,5688.264358180617,2019
+1995,32,"(30,35]",HS,42.560035382574085,85.23101644174427,0.4993491472868217,5620.091691302313,2019
+1995,32,"(30,35]",HS,78.7138080495356,43.606566551590085,1.8050907070707074,5670.0423674715075,2019
+1995,40,"(35,40]",HS,132.57673595754093,120.90911634759071,1.0964990892531878,6283.903473801298,2019
+1995,40,"(35,40]",HS,132.57673595754093,120.90911634759071,1.0964990892531878,6236.584943646625,2019
+1995,40,"(35,40]",HS,132.57673595754093,120.90911634759071,1.0964990892531878,6277.245633370675,2019
+1995,40,"(35,40]",HS,132.57673595754093,120.90911634759071,1.0964990892531878,6346.992725380535,2019
+1995,40,"(35,40]",HS,132.57673595754093,120.90911634759071,1.0964990892531878,6286.676126597916,2019
+1995,47,"(45,50]",College,1194.738965059708,206.14013278933496,5.795761111111112,3758.300406351997,2019
+1995,47,"(45,50]",College,1194.738965059708,206.14013278933496,5.795761111111112,3007.009125520441,2019
+1995,47,"(45,50]",College,1194.738965059708,206.14013278933496,5.795761111111112,3291.7825429732584,2019
+1995,47,"(45,50]",College,1194.738965059708,206.14013278933496,5.795761111111112,3054.549552059808,2019
+1995,47,"(45,50]",College,1194.738965059708,206.14013278933496,5.795761111111112,3149.521831139867,2019
+1995,42,"(40,45]",NoHS,21.115506413091552,17.64083828677963,1.196967290886392,7114.34036406312,2019
+1995,42,"(40,45]",NoHS,21.115506413091552,17.64083828677963,1.196967290886392,7093.670512580041,2019
+1995,42,"(40,45]",NoHS,21.115506413091552,17.64083828677963,1.196967290886392,7105.277964539062,2019
+1995,42,"(40,45]",NoHS,21.115506413091552,17.64083828677963,1.196967290886392,7232.734817190981,2019
+1995,42,"(40,45]",NoHS,21.115506413091552,17.64083828677963,1.196967290886392,7141.601765554607,2019
+1995,40,"(35,40]",College,832.2335249889429,495.5291653589783,1.6794844444444446,1079.0108349100847,2019
+1995,40,"(35,40]",College,929.0048651039363,495.5291653589783,1.8747733333333334,916.5197927789588,2019
+1995,40,"(35,40]",College,880.6191950464397,495.5291653589783,1.7771288888888892,911.1578014604966,2019
+1995,40,"(35,40]",College,754.8164528969482,495.5291653589783,1.5232533333333333,481.96969508962286,2019
+1995,40,"(35,40]",College,754.8164528969482,495.5291653589783,1.5232533333333333,489.8767789189058,2019
+1995,50,"(45,50]",College,1082.2519593100399,45.588683213026,23.739487149758457,2739.2064697822802,2019
+1995,50,"(45,50]",College,1069.0329942503317,164.5156828991808,6.4980613119143245,2348.8170924826586,2019
+1995,50,"(45,50]",College,1406.5153011941618,57.48138318164148,24.469058038314177,2420.8086665248165,2019
+1995,50,"(45,50]",College,1435.2738080495355,57.48138318164148,24.96936796934866,2349.8627751635154,2019
+1995,50,"(45,50]",College,1672.8087394957984,103.07006639466748,16.229821111111114,2422.0541485164003,2019
+1995,39,"(35,40]",HS,77.61061477222468,65.40984982738514,1.186527946127946,6743.6830938880175,2019
+1995,39,"(35,40]",HS,79.73958425475453,75.32043313456471,1.0586713450292398,6826.428703999404,2019
+1995,39,"(35,40]",HS,58.062804068996016,67.39196648882105,0.8615686274509803,6742.664196255765,2019
+1995,39,"(35,40]",HS,82.06209641751438,75.32043313456471,1.089506432748538,6966.445494249849,2019
+1995,39,"(35,40]",HS,96.1907120743034,73.3383164731288,1.3116024024024022,6792.939667699669,2019
+1995,37,"(35,40]",HS,-3.561185316231756,37.660216567282355,-0.09456093567251461,6779.759246161329,2019
+1995,37,"(35,40]",HS,-0.19354268022998675,37.660216567282355,-0.005139181286549708,6887.231304089514,2019
+1995,37,"(35,40]",HS,-2.7483060592658117,37.660216567282355,-0.07297637426900584,6855.148392658781,2019
+1995,37,"(35,40]",HS,-0.5032109685979655,37.660216567282355,-0.01336187134502924,6858.274062458506,2019
+1995,37,"(35,40]",HS,0.8128792569659443,37.660216567282355,0.02158456140350877,6892.688129785396,2019
+1995,49,"(45,50]",College,6088.852720035383,568.8674818321072,10.703464188927603,1188.7853354447086,2019
+1995,49,"(45,50]",College,6088.852720035383,568.8674818321072,10.703464188927603,1076.2147690908675,2019
+1995,49,"(45,50]",College,6088.852720035383,568.8674818321072,10.703464188927603,1066.3851972831017,2019
+1995,49,"(45,50]",College,6088.852720035383,568.8674818321072,10.703464188927603,1086.580919337507,2019
+1995,49,"(45,50]",College,6088.852720035383,568.8674818321072,10.703464188927603,1074.2817912139433,2019
+1995,87,"(85,90]",HS,390.8207341884122,19.028319949784766,20.53889861111111,10147.490032756996,2019
+1995,87,"(85,90]",HS,352.69282618310484,19.028319949784766,18.535153240740744,10227.827412772149,2019
+1995,87,"(85,90]",HS,345.53174701459534,19.028319949784766,18.15881527777778,10371.963728545168,2019
+1995,87,"(85,90]",HS,365.66018575851393,19.028319949784766,19.216630092592595,10639.39309343482,2019
+1995,87,"(85,90]",HS,375.33731977001327,19.028319949784766,19.72519490740741,10350.827771476917,2019
+1995,37,"(35,40]",College,3299.709155241044,247.76458267948914,13.317921066666669,688.8352340191798,2019
+1995,37,"(35,40]",College,3299.709155241044,247.76458267948914,13.317921066666669,548.4004033465789,2019
+1995,37,"(35,40]",College,3299.709155241044,247.76458267948914,13.317921066666669,534.8344796863921,2019
+1995,37,"(35,40]",College,3299.709155241044,247.76458267948914,13.317921066666669,535.3203499064768,2019
+1995,37,"(35,40]",College,3299.709155241044,247.76458267948914,13.317921066666669,549.4461037362,2019
+1995,82,"(80,85]",NoHS,37.256965944272444,79.28466645743653,0.46991388888888885,11599.438839415196,2019
+1995,82,"(80,85]",NoHS,37.256965944272444,83.24889978030835,0.44753703703703707,11622.467146067833,2019
+1995,82,"(80,85]",NoHS,37.256965944272444,85.23101644174427,0.43712919896640823,11593.965885244126,2019
+1995,82,"(80,85]",NoHS,37.256965944272444,85.23101644174427,0.43712919896640823,11610.753071386076,2019
+1995,82,"(80,85]",NoHS,37.256965944272444,91.177366426052,0.40862077294685994,11688.57899193343,2019
+1995,71,"(70,75]",College,2285.3519681556836,59.46349984307739,38.43285333333334,3884.0326667338754,2019
+1995,71,"(70,75]",College,2266.9654135338346,59.46349984307739,38.12364592592593,3323.4826506354025,2019
+1995,71,"(70,75]",College,2637.599646174259,57.48138318164148,45.88615478927203,3430.7995573254857,2019
+1995,71,"(70,75]",College,2317.286510393631,55.499266520205566,41.753461904761906,3325.817418684179,2019
+1995,71,"(70,75]",College,2289.222821760283,61.44561650451331,37.256080286738346,3441.2014554082416,2019
+1995,48,"(45,50]",HS,121.02223794781071,396.42333228718263,0.3052853555555556,5415.488346743796,2019
+1995,48,"(45,50]",HS,161.9565148164529,396.42333228718263,0.4085443555555556,5643.179736679039,2019
+1995,48,"(45,50]",HS,124.21569217160548,396.42333228718263,0.3133410222222222,5576.0987580539695,2019
+1995,48,"(45,50]",HS,626.942804068996,396.42333228718263,1.5814982444444445,2837.2552329234004,2019
+1995,48,"(45,50]",HS,121.31255196815567,396.42333228718263,0.30601768888888886,5594.135838406255,2019
+1995,80,"(75,80]",HS,170.89818664307828,31.713866582974614,5.3887527777777775,6752.030384383865,2019
+1995,80,"(75,80]",HS,172.64007076514818,21.803283275795042,7.918076767676769,6529.97176199519,2019
+1995,80,"(75,80]",HS,172.83361344537815,31.713866582974614,5.449780555555555,6726.825140258807,2019
+1995,80,"(75,80]",HS,173.80132684652807,79.28466645743653,2.192117777777778,6509.51312246087,2019
+1995,80,"(75,80]",HS,173.02715612560814,25.76751659866687,6.7149333333333345,6537.97963205214,2019
+1995,43,"(40,45]",College,398.1172932330827,162.53356623774488,2.449446612466125,2959.187751235644,2019
+1995,43,"(40,45]",College,398.1172932330827,162.53356623774488,2.449446612466125,3080.939624848597,2019
+1995,43,"(40,45]",College,398.1172932330827,162.53356623774488,2.449446612466125,3037.3313171479213,2019
+1995,43,"(40,45]",College,398.1172932330827,162.53356623774488,2.449446612466125,2885.110620595647,2019
+1995,43,"(40,45]",College,398.1172932330827,162.53356623774488,2.449446612466125,3057.400792724701,2019
+1995,57,"(55,60]",HS,129.8090756302521,77.30254979600063,1.6792340740740737,9044.950164342481,2019
+1995,57,"(55,60]",HS,125.93822202565238,158.56933291487306,0.7942155000000001,9089.914351765914,2019
+1995,57,"(55,60]",HS,122.06736842105263,107.03429971753931,1.1404509465020576,9064.432372634777,2019
+1995,57,"(55,60]",HS,104.64852720035383,200.19378280502724,0.5227361496149615,9246.185277200962,2019
+1995,57,"(55,60]",HS,170.4530384785493,77.30254979600063,2.205011851851851,8982.93810935425,2019
+1995,59,"(55,60]",College,10219.459955771781,5827.422984621586,1.753684258503401,4.67849004299774,2019
+1995,59,"(55,60]",College,11406.32173374613,9177.200142448279,1.2428977854571635,2.038764724056141,2019
+1995,59,"(55,60]",College,16132.440442282175,5569.747818634915,2.896440012653223,2.875881281023423,2019
+1995,59,"(55,60]",College,12745.811269349846,1982.116661435913,6.430404182222223,2.0215520521042523,2019
+1995,59,"(55,60]",College,12590.493268465281,3547.9888239702855,3.5486282209807567,3.838919884064741,2019
+1995,55,"(50,55]",HS,27296.29190623618,1833.4579118282197,14.887874834834836,42.72352100320238,2019
+1995,55,"(50,55]",HS,18683.64263600177,1226.9302134288303,15.227958714772932,48.66010053681803,2019
+1995,55,"(50,55]",HS,24789.91419725785,4439.941321616447,5.5833877976190465,43.46049188755664,2019
+1995,55,"(50,55]",HS,22541.528881026094,1811.6546285524248,12.442508922927303,51.956747618103364,2019
+1995,55,"(50,55]",HS,26451.47810703229,2101.0436611220684,12.589685115303983,42.28950169981637,2019
+1995,38,"(35,40]",College,484.6308712958868,210.1043661122068,2.3066197064989518,2959.241528261412,2019
+1995,38,"(35,40]",College,484.6308712958868,210.1043661122068,2.3066197064989518,3080.6489195534045,2019
+1995,38,"(35,40]",College,484.6308712958868,210.1043661122068,2.3066197064989518,3036.813702115637,2019
+1995,38,"(35,40]",College,484.6308712958868,210.1043661122068,2.3066197064989518,2884.153712894936,2019
+1995,38,"(35,40]",College,484.6308712958868,210.1043661122068,2.3066197064989518,3058.492344240498,2019
+1995,44,"(40,45]",HS,115.2159575409111,31.713866582974614,3.632983611111111,6463.443577324664,2019
+1995,44,"(40,45]",HS,115.69981424148607,31.713866582974614,3.6482405555555553,6414.77308913341,2019
+1995,44,"(40,45]",HS,115.04176912870412,35.67809990584644,3.224436543209877,6456.595512877214,2019
+1995,44,"(40,45]",HS,117.34492702344095,35.67809990584644,3.28899037037037,6528.3353789919165,2019
+1995,44,"(40,45]",HS,115.56433436532508,31.713866582974614,3.643968611111111,6466.295448774501,2019
+1995,36,"(35,40]",HS,234.32212295444492,109.01641637897524,2.149420525252525,9081.297447659492,2019
+1995,36,"(35,40]",HS,302.0427067669173,109.01641637897524,2.7706167272727273,9328.97874769929,2019
+1995,36,"(35,40]",HS,223.59985846970366,109.01641637897524,2.051065939393939,9008.848211370227,2019
+1995,36,"(35,40]",HS,345.0672445820433,109.01641637897524,3.1652778181818175,9393.350660768141,2019
+1995,36,"(35,40]",HS,222.96116762494472,109.01641637897524,2.0452072727272728,9183.69021681913,2019
+1995,34,"(30,35]",HS,381.8597080937638,97.12371641035975,3.931683446712018,4830.85684066339,2019
+1995,34,"(30,35]",HS,381.8597080937638,91.177366426052,4.188097584541063,4757.693357482286,2019
+1995,34,"(30,35]",HS,381.8597080937638,93.15948308748793,4.098989125295508,4787.133543073407,2019
+1995,34,"(30,35]",HS,381.8597080937638,85.23101644174427,4.4802904392764855,4727.8163970765445,2019
+1995,34,"(30,35]",HS,381.8597080937638,83.24889978030835,4.586964021164022,4781.911535435676,2019
+1995,24,"(20,25]",HS,-15.171810703228662,29.731749921538697,-0.5102898666666668,4851.25519422129,2019
+1995,24,"(20,25]",HS,-15.171810703228662,29.731749921538697,-0.5102898666666668,4933.7603864284665,2019
+1995,24,"(20,25]",HS,-15.171810703228662,29.731749921538697,-0.5102898666666668,4869.236555282801,2019
+1995,24,"(20,25]",HS,-15.171810703228662,29.731749921538697,-0.5102898666666668,4942.92493237107,2019
+1995,24,"(20,25]",HS,-15.171810703228662,29.731749921538697,-0.5102898666666668,4844.113783917514,2019
+1995,73,"(70,75]",HS,1289.9813180008846,170.46203288348855,7.567557984496124,6360.6847081368,2019
+1995,73,"(70,75]",HS,1289.9813180008846,170.46203288348855,7.567557984496124,6613.4743669274785,2019
+1995,73,"(70,75]",HS,1289.9813180008846,170.46203288348855,7.567557984496124,6541.983455051274,2019
+1995,73,"(70,75]",HS,1289.9813180008846,170.46203288348855,7.567557984496124,6198.8791667606465,2019
+1995,73,"(70,75]",HS,1289.9813180008846,170.46203288348855,7.567557984496124,6577.448052029737,2019
+1995,40,"(35,40]",HS,2639.922158337019,148.65874960769352,17.758269629629627,2258.715535391776,2019
+1995,40,"(35,40]",HS,2638.180274214949,182.354732852104,14.46729806763285,1935.338526834827,2019
+1995,40,"(35,40]",HS,2637.406103494029,148.65874960769352,17.74134459259259,1991.0771346945144,2019
+1995,40,"(35,40]",HS,2637.793188854489,148.65874960769352,17.74394844444444,1934.8963939036535,2019
+1995,40,"(35,40]",HS,2637.406103494029,174.42626620636034,15.120464141414145,1999.4707625330157,2019
+1995,53,"(50,55]",College,980.2936753648828,416.24449890154176,2.3550910052910057,4145.2690625965715,2019
+1995,53,"(50,55]",College,980.2936753648828,416.24449890154176,2.3550910052910057,4319.554743607349,2019
+1995,53,"(50,55]",College,980.2936753648828,416.24449890154176,2.3550910052910057,4268.207812808319,2019
+1995,53,"(50,55]",College,980.2936753648828,416.24449890154176,2.3550910052910057,4047.8859946332027,2019
+1995,53,"(50,55]",College,980.2936753648828,416.24449890154176,2.3550910052910057,4282.014241033552,2019
+1995,68,"(65,70]",College,337.82874834144184,396.42333228718263,0.852191888888889,5865.992631074241,2019
+1995,68,"(65,70]",College,336.299761167625,396.42333228718263,0.8483349333333334,6095.709418108376,2019
+1995,68,"(65,70]",College,338.02229102167183,396.42333228718263,0.8526801111111112,6029.070410824306,2019
+1995,68,"(65,70]",College,337.82874834144184,396.42333228718263,0.852191888888889,5717.306806249791,2019
+1995,68,"(65,70]",College,333.18372401592217,396.42333228718263,0.8404745555555556,6106.4500574620815,2019
+1995,62,"(60,65]",College,692.1666873065016,107.03429971753931,6.4667745679012345,4937.458084591109,2019
+1995,62,"(60,65]",College,688.9345245466608,138.74816630051396,4.965359492063491,5133.672407554141,2019
+1995,62,"(60,65]",College,693.1731092436975,122.89123300902662,5.640541577060932,5077.649309646575,2019
+1995,62,"(60,65]",College,767.7257496682884,110.99853304041113,6.916539603174604,4812.279135139314,2019
+1995,62,"(60,65]",College,664.2771870853604,120.90911634759071,5.494020692167577,5089.103853600268,2019
+1995,34,"(30,35]",HS,294.2797098628925,105.0521830561034,2.8012717232704403,6256.138301539398,2019
+1995,34,"(30,35]",HS,294.2797098628925,105.0521830561034,2.8012717232704403,6287.726337298425,2019
+1995,34,"(30,35]",HS,294.2797098628925,105.0521830561034,2.8012717232704403,6322.631127099628,2019
+1995,34,"(30,35]",HS,294.2797098628925,105.0521830561034,2.8012717232704403,6367.130961263352,2019
+1995,34,"(30,35]",HS,294.2797098628925,105.0521830561034,2.8012717232704403,6351.471385365219,2019
+1995,77,"(75,80]",College,21490.01149933658,31.713866582974614,677.6219305555555,44.42378589117626,2019
+1995,77,"(75,80]",College,21497.753206545778,39.642333228718265,542.2928333333334,53.094951335354914,2019
+1995,77,"(75,80]",College,21492.914639540028,35.67809990584644,602.411975308642,46.51960684428694,2019
+1995,77,"(75,80]",College,21490.01149933658,35.67809990584644,602.3306049382717,51.50517525766312,2019
+1995,77,"(75,80]",College,21492.914639540028,33.69598324441053,637.8479738562091,44.90628171283181,2019
+1995,35,"(30,35]",NoHS,5896.664838567006,218.03283275795047,27.04484808080808,10.633198602315272,2019
+1995,35,"(30,35]",NoHS,5896.664838567006,218.03283275795047,27.04484808080808,9.442638486713797,2019
+1995,35,"(30,35]",NoHS,5896.664838567006,218.03283275795047,27.04484808080808,9.857506770750025,2019
+1995,35,"(30,35]",NoHS,5896.664838567006,218.03283275795047,27.04484808080808,9.448987582288042,2019
+1995,35,"(30,35]",NoHS,5896.664838567006,218.03283275795047,27.04484808080808,9.806201507892347,2019
+1995,29,"(25,30]",NoHS,65.22388323750553,47.57079987446191,1.371090740740741,5531.982894281929,2019
+1995,29,"(25,30]",NoHS,65.22388323750553,47.57079987446191,1.371090740740741,5508.152333399228,2019
+1995,29,"(25,30]",NoHS,65.22388323750553,47.57079987446191,1.371090740740741,5555.994650116479,2019
+1995,29,"(25,30]",NoHS,65.22388323750553,47.57079987446191,1.371090740740741,5526.472848824258,2019
+1995,29,"(25,30]",NoHS,65.22388323750553,47.57079987446191,1.371090740740741,5558.158712070948,2019
+1995,22,"(20,25]",HS,-3.851499336576736,27.749633260102783,-0.13879460317460318,5754.970682342805,2019
+1995,22,"(20,25]",HS,-3.851499336576736,27.749633260102783,-0.13879460317460318,5809.827336611374,2019
+1995,22,"(20,25]",HS,-3.851499336576736,27.749633260102783,-0.13879460317460318,5766.906545977137,2019
+1995,22,"(20,25]",HS,-3.851499336576736,27.749633260102783,-0.13879460317460318,5879.59212431681,2019
+1995,22,"(20,25]",HS,-3.851499336576736,27.749633260102783,-0.13879460317460318,5773.6261220430115,2019
+1995,68,"(65,70]",NoHS,27.483060592658116,35.67809990584644,0.7703061728395062,9592.395071745475,2019
+1995,68,"(65,70]",NoHS,47.224413976116765,35.67809990584644,1.3236246913580247,9583.407498590886,2019
+1995,68,"(65,70]",NoHS,55.74029190623618,35.67809990584644,1.5623111111111112,9591.233745832142,2019
+1995,68,"(65,70]",NoHS,55.74029190623618,35.67809990584644,1.5623111111111112,9552.856114309861,2019
+1995,68,"(65,70]",NoHS,57.09509066784609,35.67809990584644,1.6002839506172841,9664.44118253809,2019
+1995,45,"(40,45]",College,299.9330915524105,95.14159974892382,3.152491574074075,6023.270807522424,2019
+1995,45,"(40,45]",College,332.83534719150816,95.14159974892382,3.4983156481481483,5972.7834679302505,2019
+1995,45,"(40,45]",College,334.77077399380806,95.14159974892382,3.5186582407407414,6009.5894485308845,2019
+1995,45,"(40,45]",College,332.83534719150816,95.14159974892382,3.4983156481481483,6078.985263491013,2019
+1995,45,"(40,45]",College,303.80394515701016,95.14159974892382,3.1931767592592597,6065.056510873566,2019
+1995,66,"(65,70]",College,6795.089960194605,366.69158236564397,18.530804324324325,13.516461742509657,2019
+1995,66,"(65,70]",College,5864.5367536488275,279.4784492624638,20.983860362490145,11.748975863729939,2019
+1995,66,"(65,70]",College,5312.553029632905,368.67369902707986,14.409905137395459,12.3878164019517,2019
+1995,66,"(65,70]",College,6391.1663865546225,297.31749921538704,21.49609896296296,11.991229996124789,2019
+1995,66,"(65,70]",College,5825.054046881911,364.709465704208,15.971765458937199,12.532710178466164,2019
+1995,65,"(60,65]",College,48043.83497567448,1867.1538950726303,25.731052540693558,28.168667685583948,2019
+1995,65,"(60,65]",College,46681.100964175144,1722.4593787878086,27.101423429228998,33.67646613186312,2019
+1995,65,"(60,65]",College,47329.85602830606,1758.1374786936553,26.920452241012146,29.940806559656828,2019
+1995,65,"(60,65]",College,45703.12980097302,1795.7976952609376,25.450043688986998,32.61955909005104,2019
+1995,65,"(60,65]",College,44716.062131800085,1738.316312079296,25.723777554795383,28.36026977516257,2019
+1995,51,"(50,55]",HS,289.2495356037152,51.53503319733374,5.612677777777779,6056.647162399552,2019
+1995,51,"(50,55]",HS,280.92720035382575,51.53503319733374,5.45118888888889,5917.223303366766,2019
+1995,51,"(50,55]",HS,322.73241928350285,51.53503319733374,6.262388888888889,5995.568062729915,2019
+1995,51,"(50,55]",HS,295.63644405130475,51.53503319733374,5.736611111111112,6166.498630313754,2019
+1995,51,"(50,55]",HS,303.37815126050424,51.53503319733374,5.8868333333333345,6041.3599963164725,2019
+1995,43,"(40,45]",HS,4.393418841220699,33.69598324441053,0.1303840522875817,5004.781488248792,2019
+1995,43,"(40,45]",HS,3.851499336576736,33.69598324441053,0.11430143790849673,5020.722733676487,2019
+1995,43,"(40,45]",HS,4.199876160990712,33.69598324441053,0.12464026143790849,5016.407131809437,2019
+1995,43,"(40,45]",HS,4.4321273772666965,33.69598324441053,0.13153281045751633,5010.005254296337,2019
+1995,43,"(40,45]",HS,3.735373728438744,33.69598324441053,0.11085516339869281,5024.676915413885,2019
+1995,37,"(35,40]",College,3315.3861123396728,221.99706608082226,14.934369047619048,13.516461742509657,2019
+1995,37,"(35,40]",College,3371.5134896063687,221.99706608082226,15.187198412698413,11.748975863729939,2019
+1995,37,"(35,40]",College,3363.7717823971698,221.99706608082226,15.1523253968254,12.3878164019517,2019
+1995,37,"(35,40]",College,3197.325077399381,221.99706608082226,14.402555555555557,11.991229996124789,2019
+1995,37,"(35,40]",College,3201.1959310039806,221.99706608082226,14.419992063492066,12.532710178466164,2019
+1995,69,"(65,70]",College,7079.791242812915,886.0061476618532,7.990679592344022,22.912149894566873,2019
+1995,69,"(65,70]",College,7062.372401592215,1143.6813136485218,6.175122665126132,20.120435579797295,2019
+1995,69,"(65,70]",College,7110.758071649712,245.78246601805324,28.931103942652328,20.973505920242754,2019
+1995,69,"(65,70]",College,7478.489164086687,1080.2535804825727,6.9229015290519875,20.498943767727734,2019
+1995,69,"(65,70]",College,7079.791242812915,257.6751659866688,27.475644444444438,21.266240005160498,2019
+1995,18,"(15,20]",HS,-0.8709420610349403,13.874816630051392,-0.06277142857142858,4221.966446629889,2019
+1995,18,"(15,20]",HS,-0.8709420610349403,13.874816630051392,-0.06277142857142858,4183.365826143097,2019
+1995,18,"(15,20]",HS,-0.8709420610349403,13.874816630051392,-0.06277142857142858,4176.4181192152,2019
+1995,18,"(15,20]",HS,-0.8709420610349403,13.874816630051392,-0.06277142857142858,4147.32154294719,2019
+1995,18,"(15,20]",HS,-0.8709420610349403,13.874816630051392,-0.06277142857142858,4139.0686852008,2019
+1995,39,"(35,40]",HS,15.580185758513931,65.40984982738514,0.23819326599326596,6082.901477399793,2019
+1995,39,"(35,40]",HS,24.289606368863332,65.40984982738514,0.3713447811447811,6070.502446906097,2019
+1995,39,"(35,40]",HS,54.67580716497125,65.40984982738514,0.8358956228956228,6086.312358055035,2019
+1995,39,"(35,40]",HS,12.09641751437417,65.40984982738514,0.18493265993265992,5978.2129878084115,2019
+1995,39,"(35,40]",HS,29.128173374613006,65.40984982738514,0.4453178451178451,6079.73283596631,2019
+1995,22,"(20,25]",HS,0.19354268022998675,53.517149858769656,0.003616460905349795,5754.970682342805,2019
+1995,22,"(20,25]",HS,0.19354268022998675,53.517149858769656,0.003616460905349795,5809.827336611374,2019
+1995,22,"(20,25]",HS,0.19354268022998675,53.517149858769656,0.003616460905349795,5766.906545977137,2019
+1995,22,"(20,25]",HS,0.19354268022998675,53.517149858769656,0.003616460905349795,5879.59212431681,2019
+1995,22,"(20,25]",HS,0.19354268022998675,53.517149858769656,0.003616460905349795,5773.6261220430115,2019
+1995,29,"(25,30]",HS,112.79860946483856,73.3383164731288,1.5380583423423422,8753.600331892088,2019
+1995,29,"(25,30]",HS,148.73948518354712,73.3383164731288,2.028127891891892,8754.576782718708,2019
+1995,29,"(25,30]",HS,114.63726492702344,73.3383164731288,1.563129213213213,8812.670151496244,2019
+1995,29,"(25,30]",HS,149.99751260504203,73.3383164731288,2.0452816456456455,8868.681451082488,2019
+1995,29,"(25,30]",HS,158.41661919504642,73.3383164731288,2.1600798438438433,8810.360267105372,2019
+1995,55,"(50,55]",NoHS,107.80327288810261,39.642333228718265,2.719397777777778,6974.345045446219,2019
+1995,55,"(50,55]",NoHS,134.31862007961078,35.67809990584644,3.7647358024691355,6866.921253887382,2019
+1995,55,"(50,55]",NoHS,142.83449800973023,33.69598324441053,4.238917647058824,6977.016227089621,2019
+1995,55,"(50,55]",NoHS,95.86168951791242,37.660216567282355,2.54543649122807,7126.430841995595,2019
+1995,55,"(50,55]",NoHS,141.4796992481203,35.67809990584644,3.96544938271605,6877.996485147378,2019
+1995,56,"(55,60]",HS,80.51375497567449,33.69598324441053,2.3894169934640526,6455.146722276868,2019
+1995,56,"(55,60]",HS,78.38478549314462,35.67809990584644,2.197,6294.687243324624,2019
+1995,56,"(55,60]",HS,81.28792569659443,41.624449890154175,1.9528888888888891,6315.332966264062,2019
+1995,56,"(55,60]",HS,80.12666961521451,35.67809990584644,2.2458222222222224,6387.719752866126,2019
+1995,56,"(55,60]",HS,80.12666961521451,39.642333228718265,2.02124,6278.217922879334,2019
+1995,54,"(50,55]",HS,20.4574613003096,49.55291653589783,0.4128407111111112,4792.265500012476,2019
+1995,54,"(50,55]",HS,20.4574613003096,49.55291653589783,0.4128407111111112,4774.240456481375,2019
+1995,54,"(50,55]",HS,20.4574613003096,49.55291653589783,0.4128407111111112,4780.354461957878,2019
+1995,54,"(50,55]",HS,20.4574613003096,49.55291653589783,0.4128407111111112,4868.206365856749,2019
+1995,54,"(50,55]",HS,20.4574613003096,49.55291653589783,0.4128407111111112,4841.8657236456565,2019
+1995,40,"(35,40]",HS,772.6223794781071,148.65874960769352,5.197288296296295,3100.101453336765,2019
+1995,40,"(35,40]",HS,766.8160990712074,148.65874960769352,5.1582305185185175,3227.651035203067,2019
+1995,40,"(35,40]",HS,743.5909774436091,148.65874960769352,5.001999407407407,3181.966141426399,2019
+1995,40,"(35,40]",HS,788.1057938965059,148.65874960769352,5.301442370370369,3022.4968402938184,2019
+1995,40,"(35,40]",HS,811.3309155241044,148.65874960769352,5.45767348148148,3202.991306314061,2019
+1995,52,"(50,55]",College,644.7100221141088,422.19084888584956,1.527058257694314,1863.8677660236651,2019
+1995,52,"(50,55]",College,1078.4972313135781,182.354732852104,5.91428154589372,1598.230916602581,2019
+1995,52,"(50,55]",College,1244.5568509509067,192.26531615928357,6.473122016036656,1647.2169188491177,2019
+1995,52,"(50,55]",College,672.6188766032728,118.92699968615479,5.655728962962963,1598.9424417336138,2019
+1995,52,"(50,55]",College,516.8750818222026,144.69451628482167,3.5721815525114153,1648.0643955774642,2019
+1995,21,"(20,25]",HS,7.74170720919947,59.46349984307739,0.1301925925925926,4710.836833626469,2019
+1995,21,"(20,25]",HS,7.74170720919947,59.46349984307739,0.1301925925925926,4697.241899835193,2019
+1995,21,"(20,25]",HS,7.74170720919947,59.46349984307739,0.1301925925925926,4724.001809257848,2019
+1995,21,"(20,25]",HS,7.74170720919947,59.46349984307739,0.1301925925925926,4693.019527674218,2019
+1995,21,"(20,25]",HS,7.74170720919947,59.46349984307739,0.1301925925925926,4671.8539222784775,2019
+1995,28,"(25,30]",HS,22.838036267138435,97.12371641035975,0.23514376417233562,6787.95987332671,2019
+1995,28,"(25,30]",HS,22.838036267138435,97.12371641035975,0.23514376417233562,6820.351312703955,2019
+1995,28,"(25,30]",HS,22.838036267138435,97.12371641035975,0.23514376417233562,6832.299305887604,2019
+1995,28,"(25,30]",HS,22.838036267138435,97.12371641035975,0.23514376417233562,6922.150169131282,2019
+1995,28,"(25,30]",HS,22.838036267138435,97.12371641035975,0.23514376417233562,6855.128947753305,2019
+1995,53,"(50,55]",College,1073.1941618752764,198.21166614359132,5.414384444444445,530.8298499457426,2019
+1995,53,"(50,55]",College,1073.1941618752764,198.21166614359132,5.414384444444445,447.91305299753367,2019
+1995,53,"(50,55]",College,1073.1941618752764,198.21166614359132,5.414384444444445,451.7751912717351,2019
+1995,53,"(50,55]",College,1073.1941618752764,198.21166614359132,5.414384444444445,457.97780081675467,2019
+1995,53,"(50,55]",College,1073.1941618752764,198.21166614359132,5.414384444444445,440.81119912418035,2019
+1995,42,"(40,45]",HS,11.612560813799204,29.731749921538697,0.3905777777777778,7113.947127705161,2019
+1995,42,"(40,45]",HS,9.48359133126935,29.731749921538697,0.3189718518518519,7108.431532087479,2019
+1995,42,"(40,45]",HS,8.244918177797436,29.731749921538697,0.2773102222222223,7131.360287965363,2019
+1995,42,"(40,45]",HS,8.90296329057939,29.731749921538697,0.29944296296296297,6998.123546625537,2019
+1995,42,"(40,45]",HS,8.302980981866432,29.731749921538697,0.2792631111111112,7116.302833179677,2019
+1995,52,"(50,55]",College,1442.9380981866432,192.26531615928357,7.504931867124858,983.3051568848698,2019
+1995,52,"(50,55]",College,1443.189703670942,166.4977995606167,8.667920582010582,817.3885830415327,2019
+1995,52,"(50,55]",College,1443.247766475011,178.3904995292322,8.090384691358025,868.0569656248099,2019
+1995,52,"(50,55]",College,1443.518726227333,186.31896617497586,7.747567281323876,832.3784385858787,2019
+1995,52,"(50,55]",College,1442.6671384343213,184.33684951353993,7.826254719235365,811.5592171278171,2019
+1995,57,"(55,60]",HS,646.5293233082707,122.89123300902662,5.260988172043011,6555.659855906035,2019
+1995,57,"(55,60]",HS,646.5293233082707,122.89123300902662,5.260988172043011,6648.917912906065,2019
+1995,57,"(55,60]",HS,646.5293233082707,122.89123300902662,5.260988172043011,6587.957002269644,2019
+1995,57,"(55,60]",HS,646.5293233082707,122.89123300902662,5.260988172043011,6442.322325698942,2019
+1995,57,"(55,60]",HS,646.5293233082707,122.89123300902662,5.260988172043011,6583.189650843373,2019
+1995,57,"(55,60]",HS,14865.239097744361,396.42333228718263,37.498396,17.402342901517216,2019
+1995,57,"(55,60]",HS,14883.04502432552,396.42333228718263,37.543312444444446,15.692363627300924,2019
+1995,57,"(55,60]",HS,14828.465988500664,396.42333228718263,37.40563377777778,16.163593641372508,2019
+1995,57,"(55,60]",HS,14808.337549756745,396.42333228718263,37.35485866666667,14.264234200841944,2019
+1995,57,"(55,60]",HS,14890.78673153472,396.42333228718263,37.56284133333334,15.996173061618904,2019
+1995,60,"(55,60]",HS,1290.7361344537815,59.46349984307739,21.70636,4239.304396261892,2019
+1995,60,"(55,60]",HS,1625.5649712516586,59.46349984307739,27.33718962962963,2215.047648416433,2019
+1995,60,"(55,60]",HS,1435.8931446262716,59.46349984307739,24.147471111111113,2286.3345877468482,2019
+1995,60,"(55,60]",HS,950.1010172490049,59.46349984307739,15.977885925925928,4131.825677123686,2019
+1995,60,"(55,60]",HS,979.1324192835028,59.46349984307739,16.466108148148148,4369.507542135945,2019
+1995,38,"(35,40]",HS,2.1309049093321537,59.46349984307739,0.035835511111111114,6903.447887461448,2019
+1995,38,"(35,40]",HS,2.1309049093321537,59.46349984307739,0.035835511111111114,6915.3670137413665,2019
+1995,38,"(35,40]",HS,2.1309049093321537,59.46349984307739,0.035835511111111114,6938.271810202148,2019
+1995,38,"(35,40]",HS,2.1309049093321537,59.46349984307739,0.035835511111111114,6810.311501780908,2019
+1995,38,"(35,40]",HS,2.1309049093321537,59.46349984307739,0.035835511111111114,6922.342915320031,2019
+1995,54,"(50,55]",College,356.1185316231756,107.03429971753931,3.327144032921811,5985.859172374347,2019
+1995,54,"(50,55]",College,356.1185316231756,107.03429971753931,3.327144032921811,5935.685418869993,2019
+1995,54,"(50,55]",College,356.1185316231756,107.03429971753931,3.327144032921811,5972.2627908024315,2019
+1995,54,"(50,55]",College,356.1185316231756,107.03429971753931,3.327144032921811,6041.227575680555,2019
+1995,54,"(50,55]",College,356.1185316231756,107.03429971753931,3.327144032921811,6027.385337089729,2019
+1995,48,"(45,50]",College,465.7604599734631,297.31749921538704,1.5665423703703703,6616.416474547621,2019
+1995,48,"(45,50]",College,465.7604599734631,297.31749921538704,1.5665423703703703,6709.758940879971,2019
+1995,48,"(45,50]",College,465.95400265369307,297.31749921538704,1.567193333333333,6611.546183160363,2019
+1995,48,"(45,50]",College,465.95400265369307,297.31749921538704,1.567193333333333,6468.714531594167,2019
+1995,48,"(45,50]",College,465.95400265369307,297.31749921538704,1.567193333333333,6608.685683350981,2019
+1995,36,"(35,40]",HS,33.482883679787705,85.23101644174427,0.3928485788113695,6327.994744529626,2019
+1995,36,"(35,40]",HS,61.353029632905795,85.23101644174427,0.7198439276485789,6275.777531215648,2019
+1995,36,"(35,40]",HS,26.747598407784167,85.23101644174427,0.3138247028423773,6315.857986404547,2019
+1995,36,"(35,40]",HS,24.19283502874834,85.23101644174427,0.2838501291989664,6389.317254655295,2019
+1995,36,"(35,40]",HS,38.51499336576736,85.23101644174427,0.4518894056847545,6329.552473732065,2019
+1995,24,"(20,25]",NoHS,0.1548341441839894,23.785399937230956,0.006509629629629631,4613.210205608398,2019
+1995,24,"(20,25]",NoHS,0.1548341441839894,23.785399937230956,0.006509629629629631,4615.361682367204,2019
+1995,24,"(20,25]",NoHS,0.1548341441839894,23.785399937230956,0.006509629629629631,4624.848691826118,2019
+1995,24,"(20,25]",NoHS,0.1548341441839894,23.785399937230956,0.006509629629629631,4681.429349807138,2019
+1995,24,"(20,25]",NoHS,0.1548341441839894,23.785399937230956,0.006509629629629631,4623.076435951288,2019
+1995,73,"(70,75]",NoHS,828.1691287041132,37.660216567282355,21.990556725146195,3791.9419543159274,2019
+1995,73,"(70,75]",NoHS,830.6851835471031,37.660216567282355,22.057366081871344,3942.220601560676,2019
+1995,73,"(70,75]",NoHS,829.9110128261831,37.660216567282355,22.036809356725144,3897.6534315536,2019
+1995,73,"(70,75]",NoHS,828.9432994250332,37.660216567282355,22.011113450292395,3694.93617453012,2019
+1995,73,"(70,75]",NoHS,829.9110128261831,37.660216567282355,22.036809356725144,3917.4663094280522,2019
+1995,31,"(30,35]",HS,139.42814683768245,49.55291653589783,2.8137223111111114,5645.042888476639,2019
+1995,31,"(30,35]",HS,139.42814683768245,49.55291653589783,2.8137223111111114,5594.655160226437,2019
+1995,31,"(30,35]",HS,139.42814683768245,49.55291653589783,2.8137223111111114,5670.7619997180245,2019
+1995,31,"(30,35]",HS,139.42814683768245,49.55291653589783,2.8137223111111114,5602.799094970649,2019
+1995,31,"(30,35]",HS,139.42814683768245,49.55291653589783,2.8137223111111114,5652.59607669375,2019
+1995,39,"(35,40]",HS,372.41482529854045,273.53209927815607,1.3615031884057969,7468.93435518052,2019
+1995,39,"(35,40]",HS,443.6191773551526,243.80034935661735,1.8196002529358626,4272.859352265442,2019
+1995,39,"(35,40]",HS,505.9979831932773,386.5127489800031,1.3091365925925926,4214.305894063579,2019
+1995,39,"(35,40]",HS,360.9764528969483,380.5663989956953,0.9485242361111113,4003.677524436819,2019
+1995,39,"(35,40]",HS,394.05289694825296,202.17589946646316,1.9490596949891066,7575.957372644875,2019
+1995,27,"(25,30]",HS,8.148146837682441,37.660216567282355,0.21635953216374268,4576.678701596961,2019
+1995,27,"(25,30]",HS,8.148146837682441,37.660216567282355,0.21635953216374268,4506.121452208015,2019
+1995,27,"(25,30]",HS,8.148146837682441,37.660216567282355,0.21635953216374268,4516.873342270431,2019
+1995,27,"(25,30]",HS,8.148146837682441,37.660216567282355,0.21635953216374268,4487.982636219686,2019
+1995,27,"(25,30]",HS,8.148146837682441,37.660216567282355,0.21635953216374268,4506.4665475886895,2019
+1995,25,"(20,25]",NoHS,-4.6256700574966825,65.40984982738514,-0.07071824915824915,4323.871685741627,2019
+1995,25,"(20,25]",NoHS,-2.0902609464838564,65.40984982738514,-0.03195636363636363,4257.211884442877,2019
+1995,25,"(20,25]",NoHS,-2.728951791242813,65.40984982738514,-0.041720808080808074,4267.369860573658,2019
+1995,25,"(20,25]",NoHS,-2.3612206988058384,65.40984982738514,-0.03609885521885522,4240.075022107,2019
+1995,25,"(20,25]",NoHS,-6.406262715612561,65.40984982738514,-0.0979403367003367,4257.537917411907,2019
+1995,39,"(35,40]",HS,883.3675011057054,95.14159974892382,9.284766111111113,1040.7642510920439,2019
+1995,39,"(35,40]",HS,1085.8324988942945,61.44561650451331,17.671439569892474,1031.1872455986936,2019
+1995,39,"(35,40]",HS,822.0144714727996,73.3383164731288,11.208526606606606,1061.437311022973,2019
+1995,39,"(35,40]",HS,1025.2536399823086,253.7109326637969,4.041030590277777,899.3663967531345,2019
+1995,39,"(35,40]",HS,725.6495709862893,126.85546633189846,5.720286180555555,1046.352101489307,2019
+1995,37,"(35,40]",HS,93.57788589119859,118.92699968615479,0.7868514814814815,6588.658373311837,2019
+1995,37,"(35,40]",HS,93.57788589119859,118.92699968615479,0.7868514814814815,6498.012299452984,2019
+1995,37,"(35,40]",HS,93.57788589119859,118.92699968615479,0.7868514814814815,6492.527655444899,2019
+1995,37,"(35,40]",HS,93.57788589119859,118.92699968615479,0.7868514814814815,6561.968115707011,2019
+1995,37,"(35,40]",HS,93.57788589119859,118.92699968615479,0.7868514814814815,6516.06239839198,2019
+1995,30,"(25,30]",HS,24.19283502874834,15.856933291487307,1.5256944444444445,3803.992691739855,2019
+1995,30,"(25,30]",HS,24.115417956656348,15.856933291487307,1.5208122222222222,3745.3477051623267,2019
+1995,30,"(25,30]",HS,24.328314904909334,15.856933291487307,1.5342383333333334,3754.284341069398,2019
+1995,30,"(25,30]",HS,24.115417956656348,15.856933291487307,1.5208122222222222,3730.2712866599004,2019
+1995,30,"(25,30]",HS,24.19283502874834,15.856933291487307,1.5256944444444445,3745.6345376868776,2019
+1995,42,"(40,45]",HS,922.7147279964618,140.73028296194985,6.5566181533646315,8509.461707605318,2019
+1995,42,"(40,45]",HS,922.7147279964618,140.73028296194985,6.5566181533646315,8624.406913773299,2019
+1995,42,"(40,45]",HS,919.424502432552,140.73028296194985,6.533238497652582,8501.061800142383,2019
+1995,42,"(40,45]",HS,919.424502432552,140.73028296194985,6.533238497652582,8288.402883143122,2019
+1995,42,"(40,45]",HS,920.7793011941619,140.73028296194985,6.5428654147104846,8457.706035488603,2019
+1995,53,"(50,55]",College,1894.58929677134,109.01641637897524,17.378935757575757,3165.324084074624,2019
+1995,53,"(50,55]",College,1944.9103936311367,109.01641637897524,17.840527676767675,2713.899365587281,2019
+1995,53,"(50,55]",College,2243.1596638655465,138.74816630051396,16.167130158730156,2796.8679919509304,2019
+1995,53,"(50,55]",College,1470.9243697478992,130.8196996547703,11.243905723905723,2714.4631846481325,2019
+1995,53,"(50,55]",College,1678.595665634675,138.74816630051396,12.098146666666665,2799.7831353214315,2019
+1995,81,"(80,85]",NoHS,48.38567005749668,13.28018163162062,3.6434494195688223,6836.608570799614,2019
+1995,81,"(80,85]",NoHS,44.51481645289695,14.865874960769348,2.99442962962963,6804.3297510048405,2019
+1995,81,"(80,85]",NoHS,23.22512162759841,7.9284666457436535,2.929333333333333,6841.312191809768,2019
+1995,81,"(80,85]",NoHS,36.77310924369748,6.5409849827385145,5.621952861952862,6847.043607314217,2019
+1995,81,"(80,85]",NoHS,61.93365767359576,16.25335662377449,3.8105149051490517,6849.107669644989,2019
+1995,66,"(65,70]",College,537.0809376382132,77.30254979600063,6.947777777777777,8509.461707605318,2019
+1995,66,"(65,70]",College,398.7559840778417,63.42773316594923,6.286776527777778,2969.660307096706,2019
+1995,66,"(65,70]",College,534.9519681556834,65.40984982738514,8.178461952861953,8501.061800142383,2019
+1995,66,"(65,70]",College,1031.7760283060593,81.26678311887244,12.696159349593497,8288.402883143122,2019
+1995,66,"(65,70]",College,473.56022998673154,83.24889978030835,5.68848634920635,8457.706035488603,2019
+1995,43,"(40,45]",College,1330.6639893852278,253.7109326637969,5.244803506944444,4699.61304595537,2019
+1995,43,"(40,45]",College,888.7479876160991,253.7109326637969,3.502994444444444,4891.632698343857,2019
+1995,43,"(40,45]",College,1186.0488987173817,253.7109326637969,4.6748040625,4824.599831795256,2019
+1995,43,"(40,45]",College,1289.3813356921717,253.7109326637969,5.082088194444444,4583.469353320966,2019
+1995,43,"(40,45]",College,1475.375851393189,253.7109326637969,5.815184375,2540.4087645349214,2019
+1995,50,"(45,50]",HS,286.73348076072534,87.21313310318017,3.2877328282828286,7410.5516537088215,2019
+1995,50,"(45,50]",HS,243.18637770897834,87.21313310318017,2.788414646464647,7342.051681243596,2019
+1995,50,"(45,50]",HS,214.1549756744803,87.21313310318017,2.455535858585859,7380.1626261337715,2019
+1995,50,"(45,50]",HS,221.12251216275985,87.21313310318017,2.535426767676768,7736.713984760941,2019
+1995,50,"(45,50]",HS,221.89668288367977,87.21313310318017,2.5443035353535355,7494.458831913946,2019
+1995,36,"(35,40]",HS,35.66991596638656,43.606566551590085,0.8179941414141417,5124.512070868364,2019
+1995,36,"(35,40]",HS,35.66991596638656,43.606566551590085,0.8179941414141417,5054.0095689404925,2019
+1995,36,"(35,40]",HS,35.66991596638656,43.606566551590085,0.8179941414141417,5049.743734709701,2019
+1995,36,"(35,40]",HS,35.66991596638656,43.606566551590085,0.8179941414141417,5103.752981609081,2019
+1995,36,"(35,40]",HS,35.66991596638656,43.606566551590085,0.8179941414141417,5068.048534789433,2019
+1995,46,"(45,50]",HS,58.19828394515701,49.55291653589783,1.1744673777777779,6153.764111819196,2019
+1995,46,"(45,50]",HS,58.19828394515701,49.55291653589783,1.1744673777777779,6040.1199956595265,2019
+1995,46,"(45,50]",HS,58.19828394515701,49.55291653589783,1.1744673777777779,6090.39869809511,2019
+1995,46,"(45,50]",HS,58.19828394515701,49.55291653589783,1.1744673777777779,6306.328915407024,2019
+1995,46,"(45,50]",HS,58.19828394515701,49.55291653589783,1.1744673777777779,6159.035318989354,2019
+1995,52,"(50,55]",HS,46.37282618310482,27.749633260102783,1.6711149206349207,7109.977109549985,2019
+1995,52,"(50,55]",HS,47.68891640866873,27.749633260102783,1.7185422222222224,6946.305622724346,2019
+1995,52,"(50,55]",HS,47.88245908889871,39.642333228718265,1.2078617777777776,7038.275557704756,2019
+1995,52,"(50,55]",HS,46.89539141972578,33.69598324441053,1.391720522875817,7238.933180686047,2019
+1995,52,"(50,55]",HS,46.17928350287484,23.785399937230956,1.9414970370370375,7092.03130587244,2019
+1995,48,"(45,50]",NoHS,1185.6424590888987,263.6215159709765,4.497517794486216,2138.809767915861,2019
+1995,48,"(45,50]",NoHS,1185.6424590888987,263.6215159709765,4.497517794486216,1833.78204508739,2019
+1995,48,"(45,50]",NoHS,1185.6424590888987,263.6215159709765,4.497517794486216,1889.843953373477,2019
+1995,48,"(45,50]",NoHS,1185.6424590888987,263.6215159709765,4.497517794486216,1834.1630176774484,2019
+1995,48,"(45,50]",NoHS,1185.6424590888987,263.6215159709765,4.497517794486216,1891.8137160107594,2019
+1995,72,"(70,75]",College,1516.9875276426362,132.8018163162062,11.422942620232172,3910.0412712793245,2019
+1995,72,"(70,75]",College,1516.9875276426362,132.8018163162062,11.422942620232172,3217.0518370714394,2019
+1995,72,"(70,75]",College,1516.9875276426362,132.8018163162062,11.422942620232172,3289.121912753709,2019
+1995,72,"(70,75]",College,1516.9875276426362,132.8018163162062,11.422942620232172,2931.569402656075,2019
+1995,72,"(70,75]",College,1516.9875276426362,132.8018163162062,11.422942620232172,3235.302222845653,2019
+1995,59,"(55,60]",HS,356.1204670499779,231.90764938800186,1.5356132839506174,9907.519441101655,2019
+1995,59,"(55,60]",HS,356.1204670499779,231.90764938800186,1.5356132839506174,9762.015146987233,2019
+1995,59,"(55,60]",HS,356.1204670499779,231.90764938800186,1.5356132839506174,9919.838648100002,2019
+1995,59,"(55,60]",HS,356.1204670499779,231.90764938800186,1.5356132839506174,9902.52053263903,2019
+1995,59,"(55,60]",HS,356.1204670499779,231.90764938800186,1.5356132839506174,9772.555379312686,2019
+1995,44,"(40,45]",College,740.6878372401593,198.21166614359132,3.7368528888888894,742.368319698571,2019
+1995,44,"(40,45]",College,740.6878372401593,198.21166614359132,3.7368528888888894,723.2780936771694,2019
+1995,44,"(40,45]",College,740.6878372401593,198.21166614359132,3.7368528888888894,739.9043736338573,2019
+1995,44,"(40,45]",College,740.6878372401593,198.21166614359132,3.7368528888888894,691.3112522770805,2019
+1995,44,"(40,45]",College,740.6878372401593,198.21166614359132,3.7368528888888894,746.2251284576398,2019
+1995,35,"(30,35]",HS,5.419195046439628,17.83904995292322,0.30378271604938273,4941.187663579424,2019
+1995,35,"(30,35]",HS,5.419195046439628,17.83904995292322,0.30378271604938273,4931.115835728289,2019
+1995,35,"(30,35]",HS,5.419195046439628,17.83904995292322,0.30378271604938273,4943.958348174308,2019
+1995,35,"(30,35]",HS,5.419195046439628,17.83904995292322,0.30378271604938273,4856.148398154924,2019
+1995,35,"(30,35]",HS,5.419195046439628,17.83904995292322,0.30378271604938273,4938.613751767832,2019
+1995,46,"(45,50]",College,222.57408226448476,178.3904995292322,1.2476790123456791,6447.767986257734,2019
+1995,46,"(45,50]",College,222.57408226448476,178.3904995292322,1.2476790123456791,6393.7224913204645,2019
+1995,46,"(45,50]",College,222.57408226448476,178.3904995292322,1.2476790123456791,6433.122417208442,2019
+1995,46,"(45,50]",College,222.57408226448476,178.3904995292322,1.2476790123456791,6507.408984819075,2019
+1995,46,"(45,50]",College,222.57408226448476,178.3904995292322,1.2476790123456791,6492.498586783655,2019
+1995,31,"(30,35]",College,6.928827952233525,89.1952497646161,0.07768158024691359,4641.634444483834,2019
+1995,31,"(30,35]",College,6.928827952233525,89.1952497646161,0.07768158024691359,4583.818259806442,2019
+1995,31,"(30,35]",College,6.928827952233525,89.1952497646161,0.07768158024691359,4645.001704118705,2019
+1995,31,"(30,35]",College,6.928827952233525,89.1952497646161,0.07768158024691359,4590.337621070145,2019
+1995,31,"(30,35]",College,6.928827952233525,89.1952497646161,0.07768158024691359,4634.033773655466,2019
+1995,56,"(55,60]",HS,3855.370190181336,626.3488650137485,6.155308016877639,168.8397178311953,2019
+1995,56,"(55,60]",HS,3855.370190181336,626.3488650137485,6.155308016877639,152.25714796134818,2019
+1995,56,"(55,60]",HS,3855.370190181336,626.3488650137485,6.155308016877639,152.41754460911687,2019
+1995,56,"(55,60]",HS,3855.370190181336,626.3488650137485,6.155308016877639,154.68089341254966,2019
+1995,56,"(55,60]",HS,3855.370190181336,626.3488650137485,6.155308016877639,151.92675713687998,2019
+1995,54,"(50,55]",College,2039.9398496240601,491.5649320361065,4.1498888888888885,24.433576847559873,2019
+1995,54,"(50,55]",College,2430.9154179566563,598.5992317536459,4.061006578366445,24.826945192116078,2019
+1995,54,"(50,55]",College,2253.7464484741263,991.0583307179566,2.2740805244444444,41.04553817903476,2019
+1995,54,"(50,55]",College,2195.7997700132687,491.5649320361065,4.466957724014337,49.46523555226078,2019
+1995,54,"(50,55]",College,5927.534896063688,1546.0509959200124,3.833984074074074,23.915111099708973,2019
+1995,29,"(25,30]",NoHS,32.011959310039806,57.48138318164148,0.5569100383141763,5174.622656930245,2019
+1995,29,"(25,30]",NoHS,19.99295886775763,57.48138318164148,0.34781624521072796,5128.433905952466,2019
+1995,29,"(25,30]",NoHS,58.66278637770898,57.48138318164148,1.020552796934866,5198.19850894325,2019
+1995,29,"(25,30]",NoHS,34.85703670942061,57.48138318164148,0.6064056704980844,5135.899179481207,2019
+1995,29,"(25,30]",NoHS,44.86319327731092,57.48138318164148,0.7804821455938696,5181.546412808188,2019
+1995,53,"(50,55]",HS,1742.6795824856258,261.6393993095406,6.66061605050505,120.71204763492237,2019
+1995,53,"(50,55]",HS,1620.7476939407343,79.28466645743653,20.44213296666667,101.13615625242014,2019
+1995,53,"(50,55]",HS,1434.753178239717,122.89123300902662,11.674983992831542,57.255308276685184,2019
+1995,53,"(50,55]",HS,1625.392718266254,110.99853304041113,14.643371166666668,102.97078349526899,2019
+1995,53,"(50,55]",HS,2299.114788146838,251.72881600236096,9.1332999720035,7.238544343418541,2019
+1995,70,"(65,70]",College,3502.34834144184,218.03283275795047,16.06339878787879,13.516461742509657,2019
+1995,70,"(65,70]",College,3115.2629809818663,218.03283275795047,14.28804525252525,11.748975863729939,2019
+1995,70,"(65,70]",College,3502.34834144184,218.03283275795047,16.06339878787879,12.3878164019517,2019
+1995,70,"(65,70]",College,3502.34834144184,218.03283275795047,16.06339878787879,11.991229996124789,2019
+1995,70,"(65,70]",College,2728.177620521893,218.03283275795047,12.512691717171716,8.726199060810947,2019
+1995,40,"(35,40]",HS,199.50379478107033,39.642333228718265,5.032594666666667,7628.972845529774,2019
+1995,40,"(35,40]",HS,197.51030517470147,33.69598324441053,5.8615385620915035,7524.014233800231,2019
+1995,40,"(35,40]",HS,201.6521185316232,39.642333228718265,5.0867873333333335,7517.6635933762855,2019
+1995,40,"(35,40]",HS,197.78126492702344,31.713866582974614,6.236428611111111,7598.068336755702,2019
+1995,40,"(35,40]",HS,199.71669172932332,43.606566551590085,4.5799682828282835,7544.914348339864,2019
+1995,55,"(50,55]",College,19832.31844316674,445.97624882308054,44.4694498765432,285.87986299312547,2019
+1995,55,"(50,55]",College,19832.31844316674,445.97624882308054,44.4694498765432,319.3906959522618,2019
+1995,55,"(50,55]",College,19832.31844316674,445.97624882308054,44.4694498765432,290.7763546034021,2019
+1995,55,"(50,55]",College,19832.31844316674,445.97624882308054,44.4694498765432,345.5785115230352,2019
+1995,55,"(50,55]",College,19832.31844316674,445.97624882308054,44.4694498765432,270.8972002483401,2019
+1995,44,"(40,45]",College,45.86961521450686,91.177366426052,0.50308115942029,6069.644258544091,2019
+1995,44,"(40,45]",College,45.86961521450686,91.177366426052,0.50308115942029,6019.26268569514,2019
+1995,44,"(40,45]",College,45.86961521450686,91.177366426052,0.50308115942029,5990.787200432485,2019
+1995,44,"(40,45]",College,45.86961521450686,91.177366426052,0.50308115942029,5881.965462451612,2019
+1995,44,"(40,45]",College,45.86961521450686,91.177366426052,0.50308115942029,5996.993991435745,2019
+1995,41,"(40,45]",College,26380.15762936754,7076.15648132621,3.728034802365391,27.677933997052822,2019
+1995,41,"(40,45]",College,26300.030959752323,6243.667483523127,4.212272839506173,31.107318357275904,2019
+1995,41,"(40,45]",College,26042.61919504644,6441.879149666718,4.042705333333334,29.768456812586244,2019
+1995,41,"(40,45]",College,26387.5316054843,6085.0981506082535,4.336418403184944,33.21434448586953,2019
+1995,41,"(40,45]",College,25078.21537372844,6996.871814868773,3.5842039181617884,26.921713819630213,2019
+1995,60,"(55,60]",NoHS,372.3761167624945,45.588683213026,8.16817004830918,8904.614960710132,2019
+1995,60,"(55,60]",NoHS,386.50473241928347,45.588683213026,8.47808502415459,8897.559535268523,2019
+1995,60,"(55,60]",NoHS,396.5689517912428,45.588683213026,8.698846376811595,8969.580866434353,2019
+1995,60,"(55,60]",NoHS,367.34400707651486,45.588683213026,8.057789371980677,9126.318082089127,2019
+1995,60,"(55,60]",NoHS,402.9558602388324,45.588683213026,8.838944927536232,8905.24044638409,2019
+1995,30,"(25,30]",HS,-9.619071207430341,99.10583307179566,-0.0970585777777778,10077.88967032217,2019
+1995,30,"(25,30]",HS,-9.619071207430341,99.10583307179566,-0.0970585777777778,10190.648315969574,2019
+1995,30,"(25,30]",HS,-9.619071207430341,99.10583307179566,-0.0970585777777778,10184.722221316217,2019
+1995,30,"(25,30]",HS,-9.619071207430341,99.10583307179566,-0.0970585777777778,10222.853802411953,2019
+1995,30,"(25,30]",HS,-9.619071207430341,99.10583307179566,-0.0970585777777778,10203.178003566665,2019
+1995,39,"(35,40]",NoHS,7.354621848739495,29.731749921538697,0.24736592592592593,5477.297962800612,2019
+1995,39,"(35,40]",NoHS,5.419195046439628,29.731749921538697,0.18226962962962964,5375.682298918292,2019
+1995,39,"(35,40]",NoHS,6.580451127819549,29.731749921538697,0.22132740740740742,5458.626841770024,2019
+1995,39,"(35,40]",NoHS,7.354621848739495,29.731749921538697,0.24736592592592593,5330.1755100590035,2019
+1995,39,"(35,40]",NoHS,5.999823087129589,29.731749921538697,0.20179851851851854,5366.901035949369,2019
+1995,41,"(40,45]",College,22525.658381247238,1881.0287117026817,11.975180517503807,553.5007544444713,2019
+1995,41,"(40,45]",College,11810.342078726228,664.009081581031,17.78641649087894,327.59172491091584,2019
+1995,41,"(40,45]",College,4585.451888544892,707.6156481326211,6.4801448366013075,319.02057470177624,2019
+1995,41,"(40,45]",College,13729.685484298983,1433.0703462181655,9.58060818195789,302.92613619478277,2019
+1995,41,"(40,45]",College,16702.268801415303,806.7214812044167,20.703885034125033,326.43208314329263,2019
+1995,69,"(65,70]",HS,3238.5496682883677,128.8375829933344,25.136684444444438,1276.3583785205915,2019
+1995,69,"(65,70]",HS,3238.5496682883677,128.8375829933344,25.136684444444438,1075.7935010222636,2019
+1995,69,"(65,70]",HS,3238.5496682883677,128.8375829933344,25.136684444444438,1080.945965338476,2019
+1995,69,"(65,70]",HS,3238.5496682883677,128.8375829933344,25.136684444444438,1099.51153010231,2019
+1995,69,"(65,70]",HS,3238.5496682883677,128.8375829933344,25.136684444444438,1074.8981780844128,2019
+1995,38,"(35,40]",College,539.306678460858,218.03283275795047,2.473511313131313,3219.3946293103577,2019
+1995,38,"(35,40]",College,539.306678460858,218.03283275795047,2.473511313131313,3351.475197844976,2019
+1995,38,"(35,40]",College,539.306678460858,218.03283275795047,2.473511313131313,3303.786334923162,2019
+1995,38,"(35,40]",College,539.306678460858,218.03283275795047,2.473511313131313,3137.705687326799,2019
+1995,38,"(35,40]",College,539.306678460858,218.03283275795047,2.473511313131313,3327.3707917378515,2019
+1995,63,"(60,65]",College,173948.41928350288,5748.138318164149,30.26169685823755,2.0000789024324326,2019
+1995,63,"(60,65]",College,344078.2414860681,6759.017815496465,50.90654454219615,1.5956083588445662,2019
+1995,63,"(60,65]",College,266668.91110128263,6184.2039836800495,43.120975925925926,2.195860886247657,2019
+1995,63,"(60,65]",College,224424.35028748342,4994.933986818502,44.930393650793654,1.4945476443958283,2019
+1995,63,"(60,65]",College,181283.49332153914,6659.911982424668,27.22010347883598,1.6332706553106373,2019
+1995,33,"(30,35]",College,416.89093321539144,39.642333228718265,10.516306666666667,2871.249021769718,2019
+1995,33,"(30,35]",College,416.89093321539144,39.642333228718265,10.516306666666667,2984.9475562897564,2019
+1995,33,"(30,35]",College,415.5554887218045,39.642333228718265,10.482619333333334,2935.2810838010982,2019
+1995,33,"(30,35]",College,416.89093321539144,39.642333228718265,10.516306666666667,2793.994372340457,2019
+1995,33,"(30,35]",College,411.27819548872185,39.642333228718265,10.374722222222223,2952.651448191131,2019
+1995,75,"(70,75]",HS,200.08442282176028,11.298064970184706,17.709618713450293,10703.623478786965,2019
+1995,75,"(70,75]",HS,200.08442282176028,11.298064970184706,17.709618713450293,10726.492311121747,2019
+1995,75,"(70,75]",HS,200.08442282176028,11.298064970184706,17.709618713450293,10996.532172196741,2019
+1995,75,"(70,75]",HS,200.08442282176028,11.298064970184706,17.709618713450293,11251.569003913619,2019
+1995,75,"(70,75]",HS,200.08442282176028,11.298064970184706,17.709618713450293,10994.24848406515,2019
+1995,30,"(25,30]",NoHS,91.7972932330827,47.57079987446191,1.9296983333333335,5992.756665850748,2019
+1995,30,"(25,30]",NoHS,87.442582927908,47.57079987446191,1.8381566666666669,6046.681101621699,2019
+1995,30,"(25,30]",NoHS,87.15226890756303,47.57079987446191,1.832053888888889,6049.947305809631,2019
+1995,30,"(25,30]",NoHS,85.60392746572313,47.57079987446191,1.799505740740741,6136.819385533218,2019
+1995,30,"(25,30]",NoHS,87.82966828836798,47.57079987446191,1.8462937037037042,6103.5059163872365,2019
+1995,68,"(65,70]",College,2230.9664750110574,148.65874960769352,15.007300148148147,2593.3499384864544,2019
+1995,68,"(65,70]",College,2230.9664750110574,148.65874960769352,15.007300148148147,2127.2602667529973,2019
+1995,68,"(65,70]",College,2230.9664750110574,148.65874960769352,15.007300148148147,2188.7269212340157,2019
+1995,68,"(65,70]",College,2230.9664750110574,148.65874960769352,15.007300148148147,2154.7805865693927,2019
+1995,68,"(65,70]",College,2230.9664750110574,148.65874960769352,15.007300148148147,2174.2463806447204,2019
+1995,60,"(55,60]",College,150075.70384785495,911.77366426052,164.5975418357488,17.66246580167328,2019
+1995,60,"(55,60]",College,96025.03954002653,1034.6648972695468,92.80786445295868,19.06671788563878,2019
+1995,60,"(55,60]",College,119708.85731977002,430.1193155315932,278.3154650281618,18.562367869065405,2019
+1995,60,"(55,60]",College,101672.61494913755,1401.3564796351907,72.55299877416313,16.375221037328004,2019
+1995,60,"(55,60]",College,24811.01034940292,350.8346490741567,70.71995430006277,17.67421612293456,2019
+1995,62,"(60,65]",College,93444.14789915967,7512.222146842111,12.438948965112871,33.256112451152106,2019
+1995,62,"(60,65]",College,70766.55851393189,6481.521482895436,10.91820164458036,34.20219418135996,2019
+1995,62,"(60,65]",College,103271.37425917736,6977.050648254415,14.801580132575758,34.18563392382753,2019
+1995,62,"(60,65]",College,79152.37576293676,6005.813484150818,13.17929302530253,32.510805420774574,2019
+1995,62,"(60,65]",College,74769.79531180894,5985.992317536458,12.490793730684326,32.40059001795,2019
+1995,50,"(45,50]",HS,8115.825210084034,208.12224945077088,38.99547132275133,1249.4376525329924,2019
+1995,50,"(45,50]",HS,6625.546572313136,208.12224945077088,31.83487873015873,1102.875709482904,2019
+1995,50,"(45,50]",HS,4539.156479433879,208.12224945077088,21.810049100529103,1163.402958467945,2019
+1995,50,"(45,50]",HS,7128.757540911102,208.12224945077088,34.252741164021174,1115.015399108703,2019
+1995,50,"(45,50]",HS,3741.7606368863335,208.12224945077088,17.97866708994709,1126.3858472537866,2019
+1995,63,"(60,65]",College,2417.154533392304,114.96276636328297,21.02554252873563,1845.4872734149365,2019
+1995,63,"(60,65]",College,2688.5013710747457,120.90911634759071,22.235720947176684,1513.015760922719,2019
+1995,63,"(60,65]",College,2760.692790800531,109.01641637897524,25.32364282828283,1581.8109571633902,2019
+1995,63,"(60,65]",College,2531.9253427686863,134.7839329776421,18.785067973856208,1531.7909593093077,2019
+1995,63,"(60,65]",College,2718.694029190624,124.87334967046255,21.771611287477956,1544.1650154822833,2019
+1995,78,"(75,80]",HS,1829.7524988942946,130.8196996547703,13.986826936026935,3220.3995674755006,2019
+1995,78,"(75,80]",HS,1829.7524988942946,130.8196996547703,13.986826936026935,2653.1016104146497,2019
+1995,78,"(75,80]",HS,1829.7524988942946,130.8196996547703,13.986826936026935,2722.265434730003,2019
+1995,78,"(75,80]",HS,1829.7524988942946,130.8196996547703,13.986826936026935,2431.059336671289,2019
+1995,78,"(75,80]",HS,1829.7524988942946,130.8196996547703,13.986826936026935,2678.7744411751582,2019
+1995,31,"(30,35]",HS,25.93471915081822,45.588683213026,0.5688850241545894,6140.500997464124,2019
+1995,31,"(30,35]",HS,59.22406015037594,45.588683213026,1.2990956521739132,6114.049074949757,2019
+1995,31,"(30,35]",HS,26.708889871738172,45.588683213026,0.5858666666666668,6167.154046374545,2019
+1995,31,"(30,35]",HS,29.224944714727997,45.588683213026,0.6410570048309179,6134.384847021238,2019
+1995,31,"(30,35]",HS,25.93471915081822,45.588683213026,0.5688850241545894,6169.55615513807,2019
+1995,70,"(65,70]",College,4553.0915524104375,3349.777157826694,1.3592222222222219,1.7449073056538371,2019
+1995,70,"(65,70]",College,4628.573197700132,3567.8099905846443,1.2973149382716047,21.5242570326627,2019
+1995,70,"(65,70]",College,4701.151702786377,3567.8099905846443,1.3176575308641973,1.698613929335639,2019
+1995,70,"(65,70]",College,4549.220698805838,3230.850158140539,1.4080568507157463,21.380389014992367,2019
+1995,70,"(65,70]",College,4463.094206103495,3329.955991212334,1.3402862433862437,1.3561776844567908,2019
+1995,54,"(50,55]",HS,3.2321627598407785,35.67809990584644,0.09059234567901235,6280.537072723784,2019
+1995,54,"(50,55]",HS,3.154745687748784,35.67809990584644,0.08842246913580247,6328.392138621102,2019
+1995,54,"(50,55]",HS,3.154745687748784,35.67809990584644,0.08842246913580247,6338.310111891946,2019
+1995,54,"(50,55]",HS,3.154745687748784,35.67809990584644,0.08842246913580247,6317.711157155677,2019
+1995,54,"(50,55]",HS,3.2321627598407785,35.67809990584644,0.09059234567901235,6321.000758378204,2019
+1995,42,"(40,45]",HS,117.77072091994692,59.46349984307739,1.9805548148148149,7027.902251728658,2019
+1995,42,"(40,45]",HS,116.41592215833703,59.46349984307739,1.9577711111111114,6931.213106459954,2019
+1995,42,"(40,45]",HS,111.77089783281734,59.46349984307739,1.8796555555555559,6925.362819528935,2019
+1995,42,"(40,45]",HS,112.99021671826625,59.46349984307739,1.900160888888889,6999.432643670069,2019
+1995,42,"(40,45]",HS,114.86758071649712,59.46349984307739,1.9317325925925926,6950.466545292232,2019
+1995,35,"(30,35]",HS,50.901724900486506,63.42773316594923,0.8025152777777776,6009.93563462,2019
+1995,35,"(30,35]",HS,50.901724900486506,63.42773316594923,0.8025152777777776,6049.417079761102,2019
+1995,35,"(30,35]",HS,172.83361344537815,63.42773316594923,2.7248902777777775,10443.214629112084,2019
+1995,35,"(30,35]",HS,299.02344095532953,63.42773316594923,4.714395833333334,10625.844391914932,2019
+1995,35,"(30,35]",HS,64.44971251658558,63.42773316594923,1.0161125,6004.67117729271,2019
+1995,73,"(70,75]",HS,507.5656789031402,55.499266520205566,9.145448412698414,4480.406692557835,2019
+1995,73,"(70,75]",HS,508.14630694383015,55.499266520205566,9.155910317460318,4657.445774420424,2019
+1995,73,"(70,75]",HS,508.53339230429015,55.499266520205566,9.162884920634921,4604.442636194211,2019
+1995,73,"(70,75]",HS,507.95276426360016,55.499266520205566,9.152423015873017,4364.261232602765,2019
+1995,73,"(70,75]",HS,508.53339230429015,55.499266520205566,9.162884920634921,4630.289639206772,2019
+1995,43,"(40,45]",College,449.5996461742592,59.46349984307739,7.560934814814816,6140.413178405043,2019
+1995,43,"(40,45]",College,534.7777797434763,33.69598324441053,15.870668496732025,3875.05632744788,2019
+1995,43,"(40,45]",College,1935.2913224237063,61.44561650451331,31.496003010752688,2006.74315304295,2019
+1995,43,"(40,45]",College,370.61487837240156,31.713866582974614,11.686209166666666,5995.546674237574,2019
+1995,43,"(40,45]",College,1642.2096417514374,31.713866582974614,51.78206944444444,2015.4735651809667,2019
+1995,42,"(40,45]",College,104.57111012826184,71.35619981169287,1.4654803703703705,8128.54659056143,2019
+1995,42,"(40,45]",College,131.47354268023,67.39196648882105,1.9508785620915032,8228.284602800533,2019
+1995,42,"(40,45]",College,99.84866873065016,75.32043313456471,1.325651812865497,8127.31845502193,2019
+1995,42,"(40,45]",College,89.80380362671384,69.37408315025698,1.294486349206349,8397.054841135596,2019
+1995,42,"(40,45]",College,89.39736399823087,77.30254979600063,1.1564607407407406,8187.918353668494,2019
+1995,67,"(65,70]",HS,1576.792215833702,45.588683213026,34.587360386473435,6493.839983934433,2019
+1995,67,"(65,70]",HS,997.4589756744804,43.606566551590085,22.874054404040407,8624.406913773299,2019
+1995,67,"(65,70]",HS,1846.7068376824413,47.57079987446191,38.8201762962963,10983.745522883983,2019
+1995,67,"(65,70]",HS,1346.4164281291464,43.606566551590085,30.87646046464647,8288.402883143122,2019
+1995,67,"(65,70]",HS,1500.9621937195932,47.57079987446191,31.552174814814823,12015.95644899762,2019
+1995,78,"(75,80]",HS,150.1891198584697,21.803283275795042,6.888371717171718,8289.03092169209,2019
+1995,78,"(75,80]",HS,130.83485183547103,21.803283275795042,6.00069494949495,8243.587893254038,2019
+1995,78,"(75,80]",HS,133.73799203892085,21.803283275795042,6.133846464646466,8290.95629716429,2019
+1995,78,"(75,80]",HS,134.70570544007077,21.803283275795042,6.178230303030304,8257.744003010097,2019
+1995,78,"(75,80]",HS,120.38354710305175,21.803283275795042,5.521349494949496,8281.384275870158,2019
+1995,29,"(25,30]",HS,219.82577620521892,79.28466645743653,2.772614,5112.073887404632,2019
+1995,29,"(25,30]",HS,219.82577620521892,79.28466645743653,2.772614,5028.817567434843,2019
+1995,29,"(25,30]",HS,219.82577620521892,79.28466645743653,2.772614,5068.968572308752,2019
+1995,29,"(25,30]",HS,219.82577620521892,79.28466645743653,2.772614,4999.2952045200545,2019
+1995,29,"(25,30]",HS,219.82577620521892,79.28466645743653,2.772614,5032.998332686025,2019
+1995,42,"(40,45]",HS,-12.948005307386113,35.67809990584644,-0.3629118518518519,6733.095272988727,2019
+1995,42,"(40,45]",HS,-12.948005307386113,31.713866582974614,-0.40827583333333334,6677.206671359813,2019
+1995,42,"(40,45]",HS,-12.948005307386113,31.713866582974614,-0.40827583333333334,6645.618633074347,2019
+1995,42,"(40,45]",HS,-12.948005307386113,35.67809990584644,-0.3629118518518519,6524.901981753962,2019
+1995,42,"(40,45]",HS,-12.948005307386113,35.67809990584644,-0.3629118518518519,6652.503866110152,2019
+1995,70,"(65,70]",College,7513.501034940292,9.712371641035974,773.6010639455783,209.66370415617817,2019
+1995,70,"(65,70]",College,7469.779743476338,9.712371641035974,769.099455782313,189.89386995413602,2019
+1995,70,"(65,70]",College,7497.862786377709,9.712371641035974,771.9909269841271,189.57185079163847,2019
+1995,70,"(65,70]",College,7492.404882795223,9.712371641035974,771.4289732426305,174.51355951462455,2019
+1995,70,"(65,70]",College,7484.411570101725,9.712371641035974,770.6059700680273,187.1809550066815,2019
+1995,46,"(45,50]",HS,381.27908005307387,89.1952497646161,4.274656790123457,9018.169505038986,2019
+1995,46,"(45,50]",HS,394.82706766917295,89.1952497646161,4.426548148148148,8810.571479251696,2019
+1995,46,"(45,50]",HS,379.343653250774,89.1952497646161,4.252958024691359,8927.224521904503,2019
+1995,46,"(45,50]",HS,505.14639540026536,89.1952497646161,5.663377777777778,5090.2465679729985,2019
+1995,46,"(45,50]",HS,439.34188412206987,89.1952497646161,4.92561975308642,5384.083898061362,2019
+1995,35,"(30,35]",College,94.73914197257851,79.28466645743653,1.194923888888889,7607.247954350528,2019
+1995,35,"(30,35]",College,94.73914197257851,79.28466645743653,1.194923888888889,7656.426579258159,2019
+1995,35,"(30,35]",College,94.73914197257851,79.28466645743653,1.194923888888889,7645.123750060744,2019
+1995,35,"(30,35]",College,94.73914197257851,79.28466645743653,1.194923888888889,7878.902118059105,2019
+1995,35,"(30,35]",College,94.73914197257851,79.28466645743653,1.194923888888889,7716.2528795457065,2019
+1995,69,"(65,70]",HS,1557.0508624502431,245.78246601805324,6.3350770609319,2464.5029789579376,2019
+1995,69,"(65,70]",HS,1557.0508624502431,245.78246601805324,6.3350770609319,1971.084878942002,2019
+1995,69,"(65,70]",HS,1557.0508624502431,245.78246601805324,6.3350770609319,2159.0599908561685,2019
+1995,69,"(65,70]",HS,1557.0508624502431,245.78246601805324,6.3350770609319,1999.3043871728848,2019
+1995,69,"(65,70]",HS,1557.0508624502431,245.78246601805324,6.3350770609319,2061.269609162126,2019
+1995,50,"(45,50]",College,460.65093321539143,116.94488302471889,3.939043088512241,4464.798493282395,2019
+1995,50,"(45,50]",College,460.65093321539143,116.94488302471889,3.939043088512241,4651.720516328945,2019
+1995,50,"(45,50]",College,460.65093321539143,116.94488302471889,3.939043088512241,4571.308531152988,2019
+1995,50,"(45,50]",College,460.65093321539143,116.94488302471889,3.939043088512241,4368.816030667936,2019
+1995,50,"(45,50]",College,460.65093321539143,116.94488302471889,3.939043088512241,4584.402630742739,2019
+1995,39,"(35,40]",College,443.79336576735955,168.47991622205262,2.6341024836601306,7538.385548469519,2019
+1995,39,"(35,40]",College,1316.6708536045999,198.21166614359132,6.642751555555557,11805.254985244985,2019
+1995,39,"(35,40]",College,510.565590446705,346.87041575128484,1.4719202539682539,7579.266906584385,2019
+1995,39,"(35,40]",College,1031.3889429455994,436.06566551590095,2.365214747474748,7382.020188708215,2019
+1995,39,"(35,40]",College,453.47049977885894,134.7839329776421,3.3644254901960786,7534.114270891742,2019
+1995,68,"(65,70]",College,1624.2101724900488,624.3667483523127,2.6013719929453263,231.90525028237363,2019
+1995,68,"(65,70]",College,1624.2101724900488,624.3667483523127,2.6013719929453263,192.33201594732162,2019
+1995,68,"(65,70]",College,1624.2101724900488,624.3667483523127,2.6013719929453263,202.60983482542127,2019
+1995,68,"(65,70]",College,1624.2101724900488,624.3667483523127,2.6013719929453263,198.00001265703577,2019
+1995,68,"(65,70]",College,1624.2101724900488,624.3667483523127,2.6013719929453263,191.8596330268211,2019
+1995,89,"(85,90]",College,80.51375497567449,29.731749921538697,2.7080059259259266,2432.070094805274,2019
+1995,89,"(85,90]",College,134.12507739938079,19.821166614359132,6.766759999999999,4251.755506024399,2019
+1995,89,"(85,90]",College,92.90048651039363,47.57079987446191,1.9528888888888891,2456.5463548294783,2019
+1995,89,"(85,90]",College,95.61008403361345,18.830108283641177,5.077511111111111,2165.19044671483,2019
+1995,89,"(85,90]",College,223.83210968597967,79.28466645743653,2.8231450000000002,432.41857808163775,2019
+1995,62,"(60,65]",College,12490.04461742592,1044.5754805767262,11.957053223698084,173.80829541612758,2019
+1995,62,"(60,65]",College,13504.034073418841,1044.5754805767262,12.927772405650433,155.9016655346859,2019
+1995,62,"(60,65]",College,12250.206528084918,1181.3415302158044,10.369741700223713,154.9296634455761,2019
+1995,62,"(60,65]",College,10099.927996461744,1119.895913711291,9.01863099311701,143.6034844301031,2019
+1995,62,"(60,65]",College,16129.769553295002,1046.5575972381623,15.412213905723904,155.3212909050215,2019
+1995,42,"(40,45]",NoHS,56.12737726669615,79.28466645743653,0.7079222222222222,6452.047776193377,2019
+1995,42,"(40,45]",NoHS,56.12737726669615,79.28466645743653,0.7079222222222222,6465.48242251336,2019
+1995,42,"(40,45]",NoHS,56.12737726669615,79.28466645743653,0.7079222222222222,6448.259588186039,2019
+1995,42,"(40,45]",NoHS,56.12737726669615,79.28466645743653,0.7079222222222222,6465.123610398263,2019
+1995,42,"(40,45]",NoHS,56.12737726669615,79.28466645743653,0.7079222222222222,6464.837573334148,2019
+1995,39,"(35,40]",College,33.869969040247675,132.8018163162062,0.2550414593698175,6033.017689775336,2019
+1995,39,"(35,40]",College,33.869969040247675,132.8018163162062,0.2550414593698175,6077.29938400418,2019
+1995,39,"(35,40]",College,33.869969040247675,132.8018163162062,0.2550414593698175,6074.192725686926,2019
+1995,39,"(35,40]",College,33.869969040247675,132.8018163162062,0.2550414593698175,6040.396255414949,2019
+1995,39,"(35,40]",College,33.869969040247675,132.8018163162062,0.2550414593698175,6092.930177673018,2019
+1995,22,"(20,25]",HS,3.6773109243697477,49.55291653589783,0.07420977777777778,3744.944122815768,2019
+1995,22,"(20,25]",HS,3.6773109243697477,49.55291653589783,0.07420977777777778,3715.7427262460396,2019
+1995,22,"(20,25]",HS,3.6773109243697477,49.55291653589783,0.07420977777777778,3704.6399646650198,2019
+1995,22,"(20,25]",HS,3.6773109243697477,49.55291653589783,0.07420977777777778,3682.1312326939646,2019
+1995,22,"(20,25]",HS,3.6773109243697477,49.55291653589783,0.07420977777777778,3692.3409988634667,2019
+1995,45,"(40,45]",HS,52.25652366209642,23.785399937230956,2.1970000000000005,6450.592745338535,2019
+1995,45,"(40,45]",HS,52.25652366209642,23.785399937230956,2.1970000000000005,6331.466971595924,2019
+1995,45,"(40,45]",HS,52.23716939407342,23.785399937230956,2.196186296296297,6384.170882126572,2019
+1995,45,"(40,45]",HS,52.08233524988943,23.785399937230956,2.189676666666667,6610.516557388379,2019
+1995,45,"(40,45]",HS,52.25652366209642,23.785399937230956,2.1970000000000005,6456.118210746887,2019
+1995,79,"(75,80]",HS,224.6062804068996,55.499266520205566,4.047013492063493,11842.142102273905,2019
+1995,79,"(75,80]",HS,282.8626271561256,41.624449890154175,6.79558835978836,11880.875256904666,2019
+1995,79,"(75,80]",HS,263.50835913312693,19.821166614359132,13.29429111111111,11756.11170418194,2019
+1995,79,"(75,80]",HS,329.89349845201235,75.32043313456471,4.379867251461987,12012.930363619787,2019
+1995,79,"(75,80]",HS,275.1209199469261,43.606566551590085,6.309162626262626,11868.882543290603,2019
+1995,45,"(40,45]",HS,1057.1688279522336,180.3726161906681,5.861027301587302,3924.1880456103763,2019
+1995,45,"(40,45]",HS,632.3232905793897,168.47991622205262,3.7531078169934644,4089.178490287358,2019
+1995,45,"(40,45]",HS,759.1324546660769,410.2981489172341,1.8501971229200211,4040.5700624681726,2019
+1995,45,"(40,45]",HS,730.565555064131,69.37408315025698,10.53081384126984,3831.9987412791065,2019
+1995,45,"(40,45]",HS,653.2065457762053,164.5156828991808,3.970481927710844,4053.64014785368,2019
+1995,39,"(35,40]",HS,8505.52339672711,39.642333228718265,214.55657888888885,552.5792355188418,2019
+1995,39,"(35,40]",HS,8505.52339672711,39.642333228718265,214.55657888888885,440.42900663198634,2019
+1995,39,"(35,40]",HS,8505.52339672711,39.642333228718265,214.55657888888885,430.04901184566734,2019
+1995,39,"(35,40]",HS,8505.52339672711,39.642333228718265,214.55657888888885,428.5688118581294,2019
+1995,39,"(35,40]",HS,8505.52339672711,39.642333228718265,214.55657888888885,441.9290696315722,2019
+1995,39,"(35,40]",HS,75.38487394957984,97.12371641035975,0.7761736961451249,6995.3656836515365,2019
+1995,39,"(35,40]",HS,76.73967271118974,97.12371641035975,0.7901229024943311,6899.124173088712,2019
+1995,39,"(35,40]",HS,83.90075187969926,97.12371641035975,0.8638544217687076,6893.300970805736,2019
+1995,39,"(35,40]",HS,86.70712074303405,97.12371641035975,0.8927492063492064,6967.027879267439,2019
+1995,39,"(35,40]",HS,77.70738611233968,97.12371641035975,0.8000866213151928,6918.288475675085,2019
+1995,70,"(65,70]",HS,31830.02919062362,426.15508220872135,74.69118759689923,274.916639481433,2019
+1995,70,"(65,70]",HS,31814.54577620522,426.15508220872135,74.65485478036176,316.0028041414593,2019
+1995,70,"(65,70]",HS,31830.02919062362,426.15508220872135,74.69118759689923,270.0187725972711,2019
+1995,70,"(65,70]",HS,31830.02919062362,426.15508220872135,74.69118759689923,308.71970079073583,2019
+1995,70,"(65,70]",HS,31830.02919062362,426.15508220872135,74.69118759689923,259.1061563810028,2019
+1995,47,"(45,50]",College,13.760884564352057,91.177366426052,0.15092434782608696,5259.05932585017,2019
+1995,47,"(45,50]",College,13.760884564352057,87.21313310318017,0.15778454545454548,5269.499203674186,2019
+1995,47,"(45,50]",College,13.760884564352057,49.55291653589783,0.2777008,5219.209503617087,2019
+1995,47,"(45,50]",College,13.760884564352057,97.12371641035975,0.14168408163265309,5328.58792577835,2019
+1995,47,"(45,50]",College,13.760884564352057,97.12371641035975,0.14168408163265309,5276.691021433984,2019
+1995,46,"(45,50]",HS,2516.8290137107474,366.69158236564397,6.863612732732732,2077.326768201713,2019
+1995,46,"(45,50]",HS,2397.8970367094203,378.58428233425946,6.333852588714367,1698.827456032623,2019
+1995,46,"(45,50]",HS,2865.8058204334366,340.9240657669771,8.40599449612403,1754.0847440220641,2019
+1995,46,"(45,50]",HS,2593.5106236178685,338.9419491055412,7.651784119558155,1702.6871403348819,2019
+1995,46,"(45,50]",HS,2086.21590446705,307.22808252256664,6.790446652329748,1727.4526593854202,2019
+1995,64,"(60,65]",College,711.7532065457763,83.24889978030835,8.54970105820106,4847.62552378063,2019
+1995,64,"(60,65]",College,710.7854931446262,101.08794973323158,7.031357298474945,5039.729534885292,2019
+1995,64,"(60,65]",College,709.6242370632464,79.28466645743653,8.95033388888889,4982.236180471414,2019
+1995,64,"(60,65]",College,709.4306943830163,154.60509959200127,4.588662962962962,4724.027424792651,2019
+1995,64,"(60,65]",College,709.6242370632464,63.42773316594923,11.187917361111111,4991.797815432025,2019
+1995,54,"(50,55]",HS,13398.961687748784,1205.1269301530353,11.118299120614035,291.680823882915,2019
+1995,54,"(50,55]",HS,12977.443149049093,1373.606846375088,9.447712919672918,262.097828131543,2019
+1995,54,"(50,55]",HS,13034.73178239717,1391.4458963280113,9.367760411522633,256.1674975429229,2019
+1995,54,"(50,55]",HS,13735.72401592216,1470.7305627854475,9.339388439652593,262.0484973257203,2019
+1995,54,"(50,55]",HS,13513.343476337905,1278.4652466261641,10.569973264427219,259.2514874187126,2019
+1995,22,"(20,25]",HS,38.90207872622733,47.57079987446191,0.8177722222222222,5786.466204658417,2019
+1995,22,"(20,25]",HS,38.90207872622733,47.57079987446191,0.8177722222222222,5767.162519277629,2019
+1995,22,"(20,25]",HS,38.90207872622733,47.57079987446191,0.8177722222222222,5821.24569412534,2019
+1995,22,"(20,25]",HS,38.90207872622733,47.57079987446191,0.8177722222222222,5751.130994413757,2019
+1995,22,"(20,25]",HS,38.90207872622733,47.57079987446191,0.8177722222222222,5767.81828672781,2019
+1995,27,"(25,30]",College,2.709597523219814,57.48138318164148,0.04713869731800766,5937.925564163551,2019
+1995,27,"(25,30]",College,2.709597523219814,57.48138318164148,0.04713869731800766,6000.674694103982,2019
+1995,27,"(25,30]",College,2.709597523219814,57.48138318164148,0.04713869731800766,5946.2038876397155,2019
+1995,27,"(25,30]",College,2.709597523219814,57.48138318164148,0.04713869731800766,6039.659523309011,2019
+1995,27,"(25,30]",College,2.709597523219814,57.48138318164148,0.04713869731800766,5955.151786494376,2019
+1995,34,"(30,35]",College,15737.535957540911,701.6692981483134,22.428708223477713,168.4091443765248,2019
+1995,34,"(30,35]",College,14819.369482529855,701.6692981483134,21.120162335216573,146.93318372127163,2019
+1995,34,"(30,35]",College,14480.863334807607,701.6692981483134,20.637732580037664,148.0596774186919,2019
+1995,34,"(30,35]",College,14659.116143299425,701.6692981483134,20.8917736346516,151.61737593428026,2019
+1995,34,"(30,35]",College,15407.932773109245,701.6692981483134,21.958966729441304,151.9768634696057,2019
+1995,43,"(40,45]",College,158.70499778858914,53.517149858769656,2.9654979423868317,7860.153839355982,2019
+1995,43,"(40,45]",College,160.54365325077399,53.517149858769656,2.9998543209876543,7752.014663655171,2019
+1995,43,"(40,45]",College,160.93073861123398,53.517149858769656,3.007087242798354,7745.471579583263,2019
+1995,43,"(40,45]",College,158.25984962406017,53.517149858769656,2.9571800823045273,7828.312830322082,2019
+1995,43,"(40,45]",College,171.57558602388323,53.517149858769656,3.2059925925925925,7773.548114994944,2019
+1995,30,"(25,30]",College,188.89765590446706,101.08794973323158,1.8686466230936818,6356.390576150795,2019
+1995,30,"(25,30]",College,188.89765590446706,101.08794973323158,1.8686466230936818,6260.1228351786,2019
+1995,30,"(25,30]",College,188.89765590446706,101.08794973323158,1.8686466230936818,6298.859921460347,2019
+1995,30,"(25,30]",College,188.1234851835471,101.08794973323158,1.8609882352941176,6220.811045193742,2019
+1995,30,"(25,30]",College,188.1234851835471,101.08794973323158,1.8609882352941176,6291.988858783089,2019
+1995,54,"(50,55]",NoHS,42.38584697036709,12.883758299333435,3.2898666666666667,6504.178681565247,2019
+1995,54,"(50,55]",NoHS,42.38584697036709,12.883758299333435,3.2898666666666667,6522.661649945092,2019
+1995,54,"(50,55]",NoHS,42.38584697036709,12.883758299333435,3.2898666666666667,6516.982461469095,2019
+1995,54,"(50,55]",NoHS,42.38584697036709,12.883758299333435,3.2898666666666667,6526.694402383064,2019
+1995,54,"(50,55]",NoHS,42.38584697036709,12.883758299333435,3.2898666666666667,6509.656422268592,2019
+1995,48,"(45,50]",College,105.48076072534278,37.660216567282355,2.8008538011695907,2521.441348575426,2019
+1995,48,"(45,50]",College,105.48076072534278,37.660216567282355,2.8008538011695907,2529.42549436099,2019
+1995,48,"(45,50]",College,105.48076072534278,37.660216567282355,2.8008538011695907,2466.846876323486,2019
+1995,48,"(45,50]",College,105.48076072534278,37.660216567282355,2.8008538011695907,2568.7749733909004,2019
+1995,48,"(45,50]",College,105.48076072534278,37.660216567282355,2.8008538011695907,2506.693653423178,2019
+1995,50,"(45,50]",HS,52.701671826625386,71.35619981169287,0.7385717283950618,5644.01627413896,2019
+1995,50,"(45,50]",HS,49.99207430340557,81.26678311887244,0.61516,5494.451209262182,2019
+1995,50,"(45,50]",HS,49.99207430340557,65.40984982738514,0.764289696969697,5565.793504687755,2019
+1995,50,"(45,50]",HS,50.76624502432552,77.30254979600063,0.6567214814814814,5725.725371155599,2019
+1995,50,"(45,50]",HS,52.701671826625386,65.40984982738514,0.8057146127946127,5613.041489011966,2019
+1995,61,"(60,65]",College,778.0415745245466,204.15801612789906,3.810977346278317,257.58256639504503,2019
+1995,61,"(60,65]",College,816.750110570544,204.15801612789906,4.000578209277239,260.8049132501757,2019
+1995,61,"(60,65]",College,822.5563909774437,204.15801612789906,4.029018338727077,258.57269743816244,2019
+1995,61,"(60,65]",College,820.6209641751437,204.15801612789906,4.019538295577131,251.17866631025987,2019
+1995,61,"(60,65]",College,787.7187085360459,204.15801612789906,3.858377562028047,256.7198482898078,2019
+1995,27,"(25,30]",HS,-8.341689517912428,43.606566551590085,-0.19129434343434346,6665.039968660181,2019
+1995,27,"(25,30]",HS,-8.341689517912428,43.606566551590085,-0.19129434343434346,6587.043836220098,2019
+1995,27,"(25,30]",HS,-8.341689517912428,43.606566551590085,-0.19129434343434346,6607.422078429927,2019
+1995,27,"(25,30]",HS,-8.341689517912428,43.606566551590085,-0.19129434343434346,6560.604028575028,2019
+1995,27,"(25,30]",HS,-8.341689517912428,43.606566551590085,-0.19129434343434346,6584.182054571311,2019
+1995,68,"(65,70]",NoHS,568.628394515701,35.67809990584644,15.937743209876542,5039.331341497819,2019
+1995,68,"(65,70]",NoHS,581.7892967713401,35.67809990584644,16.306622222222224,5238.671300363342,2019
+1995,68,"(65,70]",NoHS,511.7268465280849,35.67809990584644,14.342883950617283,5181.628125756689,2019
+1995,68,"(65,70]",NoHS,484.05024325519685,35.67809990584644,13.567153086419754,4910.714202939769,2019
+1995,68,"(65,70]",NoHS,580.2409553295003,35.67809990584644,16.263224691358026,5250.748322929473,2019
+1995,57,"(55,60]",College,73023.69195931005,7175.262314398005,10.177145971761819,15.493080852566397,2019
+1995,57,"(55,60]",College,74387.97431225122,7314.01048069852,10.170613579042456,15.74695442583797,2019
+1995,57,"(55,60]",College,69237.97777974348,6501.342649509796,10.64979674390244,16.014187234236402,2019
+1995,57,"(55,60]",College,69536.03350729764,7750.076146214421,8.972303264563795,15.155013242805222,2019
+1995,57,"(55,60]",College,67783.31099513489,7571.685646685189,8.952208815590458,15.093381937043588,2019
+1995,38,"(35,40]",HS,15.386643078283946,93.15948308748793,0.1651645390070922,6473.935767863413,2019
+1995,38,"(35,40]",HS,15.386643078283946,93.15948308748793,0.1651645390070922,6553.371553542505,2019
+1995,38,"(35,40]",HS,15.386643078283946,93.15948308748793,0.1651645390070922,6472.957626136797,2019
+1995,38,"(35,40]",HS,15.386643078283946,93.15948308748793,0.1651645390070922,6687.787672135821,2019
+1995,38,"(35,40]",HS,15.386643078283946,93.15948308748793,0.1651645390070922,6521.222078706023,2019
+1995,79,"(75,80]",NoHS,1883.5573639982308,144.69451628482167,13.017475799086757,2291.710165638352,2019
+1995,79,"(75,80]",NoHS,1883.5573639982308,144.69451628482167,13.017475799086757,1887.0208853258814,2019
+1995,79,"(75,80]",NoHS,1883.5573639982308,144.69451628482167,13.017475799086757,1967.403631392842,2019
+1995,79,"(75,80]",NoHS,1883.5573639982308,144.69451628482167,13.017475799086757,1728.192065896747,2019
+1995,79,"(75,80]",NoHS,1883.5573639982308,144.69451628482167,13.017475799086757,1902.4843795320976,2019
+1995,43,"(40,45]",NoHS,4.354710305174701,7.333831647312879,0.5937837837837838,6459.469960285429,2019
+1995,43,"(40,45]",NoHS,4.354710305174701,7.9284666457436535,0.54925,6503.759228694064,2019
+1995,43,"(40,45]",NoHS,3.8902078726227334,9.117736642605202,0.426663768115942,6502.261518573957,2019
+1995,43,"(40,45]",NoHS,4.1611676249447145,8.721313310318019,0.47712626262626257,6488.410361709183,2019
+1995,43,"(40,45]",NoHS,4.064396284829722,8.91952497646161,0.4556740740740742,6508.492091211373,2019
+1995,59,"(55,60]",NoHS,18364.87784166298,340.9240657669771,53.86794211886304,532.7311498556179,2019
+1995,59,"(55,60]",NoHS,18364.87784166298,340.9240657669771,53.86794211886304,600.9510587942095,2019
+1995,59,"(55,60]",NoHS,18364.87784166298,340.9240657669771,53.86794211886304,512.9315902869894,2019
+1995,59,"(55,60]",NoHS,18364.87784166298,340.9240657669771,53.86794211886304,652.9173462585771,2019
+1995,59,"(55,60]",NoHS,18364.87784166298,340.9240657669771,53.86794211886304,504.87763572368067,2019
+1995,38,"(35,40]",HS,24581.855816010615,275.514215939592,89.2217330135891,33.49772843884923,2019
+1995,38,"(35,40]",HS,24365.08801415303,352.8167657355925,69.05875905118602,40.025483906567764,2019
+1995,38,"(35,40]",HS,16876.921716054843,352.8167657355925,47.834806491885146,20.141261655395216,2019
+1995,38,"(35,40]",HS,25290.22202565237,313.17443250687427,80.75442756680732,38.62917136370322,2019
+1995,38,"(35,40]",HS,26590.82883679788,315.1565491683102,84.37339762403913,33.63512995488385,2019
+1995,59,"(55,60]",HS,4051.3321539141975,257.6751659866688,15.72263333333333,701.2947968887518,2019
+1995,59,"(55,60]",HS,3083.6187527642637,257.6751659866688,11.967077777777776,628.4367600338842,2019
+1995,59,"(55,60]",HS,3170.7129588677576,257.6751659866688,12.305077777777775,629.8510171803075,2019
+1995,59,"(55,60]",HS,3373.932773109244,257.6751659866688,13.093744444444443,635.6152717336347,2019
+1995,59,"(55,60]",HS,3509.412649270235,257.6751659866688,13.619522222222221,633.1002723575365,2019
+1995,33,"(30,35]",HS,4.645024325519682,21.803283275795042,0.21304242424242428,5131.08659483892,2019
+1995,33,"(30,35]",HS,4.645024325519682,21.803283275795042,0.21304242424242428,5083.883732236489,2019
+1995,33,"(30,35]",HS,4.645024325519682,21.803283275795042,0.21304242424242428,5133.5716938807955,2019
+1995,33,"(30,35]",HS,4.645024325519682,21.803283275795042,0.21304242424242428,5102.8341886551025,2019
+1995,33,"(30,35]",HS,4.645024325519682,21.803283275795042,0.21304242424242428,5110.912057122422,2019
+1995,52,"(50,55]",College,33260.89022556391,1288.3758299333438,25.816139555555555,21.37930316291056,2019
+1995,52,"(50,55]",College,34321.11702786378,1288.3758299333438,26.639056888888888,23.814430115263647,2019
+1995,52,"(50,55]",College,33831.84113224238,1288.3758299333438,26.259295111111115,21.59007452559501,2019
+1995,52,"(50,55]",College,33272.69632905794,1288.3758299333438,25.825303111111108,25.778823899766866,2019
+1995,52,"(50,55]",College,33139.151879699246,1288.3758299333438,25.721649777777774,20.9070008654844,2019
+1995,33,"(30,35]",College,151.7374613003096,146.6766329462576,1.0345033033033033,5226.891570325179,2019
+1995,33,"(30,35]",College,151.7374613003096,146.6766329462576,1.0345033033033033,5180.236266328034,2019
+1995,33,"(30,35]",College,151.7374613003096,146.6766329462576,1.0345033033033033,5250.705562246885,2019
+1995,33,"(30,35]",College,151.7374613003096,146.6766329462576,1.0345033033033033,5187.776946656731,2019
+1995,33,"(30,35]",College,151.7374613003096,146.6766329462576,1.0345033033033033,5233.885263128061,2019
+1995,31,"(30,35]",HS,9.91132065457762,47.57079987446191,0.20834883333333337,5811.655486331548,2019
+1995,31,"(30,35]",HS,9.91132065457762,47.57079987446191,0.20834883333333337,5722.058979290612,2019
+1995,31,"(30,35]",HS,9.91132065457762,47.57079987446191,0.20834883333333337,5735.7121730024355,2019
+1995,31,"(30,35]",HS,9.91132065457762,47.57079987446191,0.20834883333333337,5699.025562193334,2019
+1995,31,"(30,35]",HS,9.91132065457762,47.57079987446191,0.20834883333333337,5722.497195646439,2019
+1995,44,"(40,45]",College,5932.721839893852,463.8152987760037,12.791130123456789,2221.4835310605804,2019
+1995,44,"(40,45]",College,7075.5913666519245,267.5857492938483,26.442332543209876,2091.511688738291,2019
+1995,44,"(40,45]",College,5782.726262715612,394.44121562574674,14.660552786152987,1968.8953776587157,2019
+1995,44,"(40,45]",College,6613.663051747015,313.17443250687427,21.118144922644166,1973.6843797778442,2019
+1995,44,"(40,45]",College,7038.818257408227,396.42333228718263,17.755812244444446,2107.6608651471456,2019
+1995,61,"(60,65]",HS,2067.5583900928796,218.03283275795047,9.482784606060607,4265.011001139973,2019
+1995,61,"(60,65]",HS,2015.301866430783,218.03283275795047,9.243111878787879,3487.4963309836107,2019
+1995,61,"(60,65]",HS,2061.7521096859796,218.03283275795047,9.456154303030303,3599.5764195929964,2019
+1995,61,"(60,65]",HS,1989.1736045997345,218.03283275795047,9.123275515151514,3508.159651386505,2019
+1995,61,"(60,65]",HS,2008.5278726227332,218.03283275795047,9.212043191919191,3563.588838950293,2019
+1995,43,"(40,45]",College,283.96582043343653,158.56933291487306,1.7907991111111112,8009.049649867683,2019
+1995,43,"(40,45]",College,283.96582043343653,158.56933291487306,1.7907991111111112,7948.740566676395,2019
+1995,43,"(40,45]",College,283.96582043343653,158.56933291487306,1.7907991111111112,8000.5640047918105,2019
+1995,43,"(40,45]",College,283.96582043343653,158.56933291487306,1.7907991111111112,8089.459056278482,2019
+1995,43,"(40,45]",College,283.96582043343653,158.56933291487306,1.7907991111111112,8012.583490577138,2019
+1995,44,"(40,45]",College,202.25210084033614,198.21166614359132,1.0203844444444445,6325.112031482278,2019
+1995,44,"(40,45]",College,211.15506413091555,198.21166614359132,1.065300888888889,6238.091800672673,2019
+1995,44,"(40,45]",College,202.25210084033614,198.21166614359132,1.0203844444444445,6232.826542430649,2019
+1995,44,"(40,45]",College,204.381070322866,198.21166614359132,1.0311253333333334,6299.489384209591,2019
+1995,44,"(40,45]",College,208.63900928792572,198.21166614359132,1.0526071111111113,6255.419895635214,2019
+1995,44,"(40,45]",HS,11.264183989385229,21.803283275795042,0.516627878787879,4699.479415820611,2019
+1995,44,"(40,45]",HS,11.264183989385229,21.803283275795042,0.516627878787879,4756.032583610262,2019
+1995,44,"(40,45]",HS,11.264183989385229,21.803283275795042,0.516627878787879,4730.538006195065,2019
+1995,44,"(40,45]",HS,11.264183989385229,21.803283275795042,0.516627878787879,4735.981429706112,2019
+1995,44,"(40,45]",HS,11.264183989385229,21.803283275795042,0.516627878787879,4762.2343432169455,2019
+1995,30,"(25,30]",HS,15.096329057938965,69.37408315025698,0.217607619047619,7757.4618706214915,2019
+1995,30,"(25,30]",HS,15.096329057938965,69.37408315025698,0.217607619047619,7839.438981595286,2019
+1995,30,"(25,30]",HS,15.096329057938965,69.37408315025698,0.217607619047619,7768.276889776767,2019
+1995,30,"(25,30]",HS,15.096329057938965,69.37408315025698,0.217607619047619,7890.369786103159,2019
+1995,30,"(25,30]",HS,15.096329057938965,69.37408315025698,0.217607619047619,7779.966659787713,2019
+1995,73,"(70,75]",NoHS,196.19421494913757,25.76751659866687,7.614013333333335,13508.419577535698,2019
+1995,73,"(70,75]",NoHS,196.19421494913757,25.76751659866687,7.614013333333335,13738.376522141096,2019
+1995,73,"(70,75]",NoHS,196.19421494913757,25.76751659866687,7.614013333333335,13564.003852218477,2019
+1995,73,"(70,75]",NoHS,196.19421494913757,25.76751659866687,7.614013333333335,13841.711031705385,2019
+1995,73,"(70,75]",NoHS,196.19421494913757,25.76751659866687,7.614013333333335,13465.12424894093,2019
+1995,63,"(60,65]",HS,1598.6818929677133,426.15508220872135,3.7514087235142117,899.8252147761452,2019
+1995,63,"(60,65]",HS,1599.2431667403805,364.709465704208,4.38497850241546,767.0630898143752,2019
+1995,63,"(60,65]",HS,1599.2431667403805,430.1193155315932,3.7181384536610342,764.8894156409768,2019
+1995,63,"(60,65]",HS,1599.2431667403805,352.8167657355925,4.5327867665418236,782.9106095741814,2019
+1995,63,"(60,65]",HS,1599.2431667403805,366.69158236564397,4.3612759159159165,747.9943782346937,2019
+1995,69,"(65,70]",HS,20580.902821760283,1177.3772968929327,17.480295293677514,520.0947050828265,2019
+1995,69,"(65,70]",HS,23863.425386996903,1296.3042965790871,18.408814542983354,293.03590808033493,2019
+1995,69,"(65,70]",HS,42702.579566563465,1320.0896965163183,32.34824094094094,508.609193056353,2019
+1995,69,"(65,70]",HS,12058.250897832817,1476.6769127697553,8.165801736017897,296.44839707545225,2019
+1995,69,"(65,70]",HS,20542.62007961079,1322.0718131777544,15.538202898550722,491.25530744380757,2019
+1995,70,"(65,70]",NoHS,316.88743034055733,35.67809990584644,8.881847160493828,6782.85493207006,2019
+1995,70,"(65,70]",NoHS,280.54011499336576,35.67809990584644,7.86309012345679,6744.996905782908,2019
+1995,70,"(65,70]",NoHS,279.3982131800089,35.67809990584644,7.831084444444446,6817.272893823594,2019
+1995,70,"(65,70]",NoHS,280.73365767359576,35.67809990584644,7.868514814814815,6826.202924080736,2019
+1995,70,"(65,70]",NoHS,293.1784520123839,35.67809990584644,8.217322469135803,6681.241561413335,2019
+1995,61,"(60,65]",NoHS,1.8580097302078729,25.76751659866687,0.07210666666666668,6204.344862705815,2019
+1995,61,"(60,65]",NoHS,1.8580097302078729,25.76751659866687,0.07210666666666668,6133.886673252815,2019
+1995,61,"(60,65]",NoHS,1.8580097302078729,25.76751659866687,0.07210666666666668,6179.462540551437,2019
+1995,61,"(60,65]",NoHS,1.8580097302078729,25.76751659866687,0.07210666666666668,6104.3391607520625,2019
+1995,61,"(60,65]",NoHS,1.8580097302078729,25.76751659866687,0.07210666666666668,6019.507066764823,2019
+1995,72,"(70,75]",College,684.6572313135781,35.67809990584644,19.189845679012347,5553.83746045513,2019
+1995,72,"(70,75]",College,1068.0652808491818,73.3383164731288,14.563536936936936,5773.292155593908,2019
+1995,72,"(70,75]",College,777.7512605042017,67.39196648882105,11.540711764705883,5707.590348860296,2019
+1995,72,"(70,75]",College,715.624060150376,89.1952497646161,8.023118518518519,5409.865484109379,2019
+1995,72,"(70,75]",College,773.8804068996019,114.96276636328297,6.731574329501916,5739.629862998621,2019
+1995,47,"(45,50]",HS,32093.344007076514,1266.5725466575486,25.33873333333333,40.672002971836505,2019
+1995,47,"(45,50]",HS,21143.589455992922,1288.3758299333438,16.411041688888886,45.73272698153342,2019
+1995,47,"(45,50]",HS,15662.15108359133,1341.8929797921132,11.671684194977843,23.550849279301794,2019
+1995,47,"(45,50]",HS,7743.603927465723,1318.1075798548823,5.874789012531329,23.009157385376763,2019
+1995,47,"(45,50]",HS,23063.416718266253,1365.678379729344,16.887883018867928,39.89506190918424,2019
+1995,73,"(70,75]",HS,264.1857585139319,37.660216567282355,7.01498245614035,11716.737168848502,2019
+1995,73,"(70,75]",HS,266.5082706766917,37.660216567282355,7.076652631578947,11724.915221700649,2019
+1995,73,"(70,75]",HS,262.25033171163204,37.660216567282355,6.963590643274854,11937.891781318529,2019
+1995,73,"(70,75]",HS,265.5405572755418,37.660216567282355,7.050956725146198,11958.445339232436,2019
+1995,73,"(70,75]",HS,269.99203892083153,37.660216567282355,7.169157894736843,11674.940348141421,2019
+1995,31,"(30,35]",HS,-11.709332153914199,41.624449890154175,-0.2813089947089948,3803.992691739855,2019
+1995,31,"(30,35]",HS,-11.322246793454225,41.624449890154175,-0.27200952380952387,3745.3477051623267,2019
+1995,31,"(30,35]",HS,-11.709332153914199,41.624449890154175,-0.2813089947089948,3754.284341069398,2019
+1995,31,"(30,35]",HS,-11.51578947368421,41.624449890154175,-0.27665925925925927,3730.2712866599004,2019
+1995,31,"(30,35]",HS,-11.322246793454225,41.624449890154175,-0.27200952380952387,3745.6345376868776,2019
+1995,33,"(30,35]",HS,10.838390092879257,99.10583307179566,0.10936177777777778,7335.340943454995,2019
+1995,33,"(30,35]",HS,10.838390092879257,99.10583307179566,0.10936177777777778,7379.672334840955,2019
+1995,33,"(30,35]",HS,10.838390092879257,99.10583307179566,0.10936177777777778,7397.1804288481535,2019
+1995,33,"(30,35]",HS,10.838390092879257,99.10583307179566,0.10936177777777778,7487.423974537512,2019
+1995,33,"(30,35]",HS,10.838390092879257,99.10583307179566,0.10936177777777778,7414.241734709882,2019
+1995,27,"(25,30]",College,-190.44599734630694,138.74816630051396,-1.3726019047619045,7845.541140450138,2019
+1995,27,"(25,30]",College,-195.38133569217163,138.74816630051396,-1.408172380952381,7887.8249390731435,2019
+1995,27,"(25,30]",College,-194.83941618752766,138.74816630051396,-1.404266603174603,7969.389675058548,2019
+1995,27,"(25,30]",College,-194.31685095090666,138.74816630051396,-1.400500317460317,7979.01896551266,2019
+1995,27,"(25,30]",College,-194.02653693056172,138.74816630051396,-1.3984079365079363,7998.472276150764,2019
+1995,59,"(55,60]",HS,165.73059708093766,65.40984982738514,2.5337253872053873,9223.235858803144,2019
+1995,59,"(55,60]",HS,183.14943830163642,79.28466645743653,2.310023444444444,9215.927979324999,2019
+1995,59,"(55,60]",HS,167.8595665634675,79.28466645743653,2.117175666666667,9290.526345131762,2019
+1995,59,"(55,60]",HS,185.22034498009728,87.21313310318017,2.1237666666666666,9452.871860823856,2019
+1995,59,"(55,60]",HS,187.15577178239718,73.3383164731288,2.5519507507507506,9223.883725322095,2019
+1995,29,"(25,30]",College,208.34869526758072,132.8018163162062,1.5688693200663348,4404.60476502251,2019
+1995,29,"(25,30]",College,208.34869526758072,132.8018163162062,1.5688693200663348,4337.896883320745,2019
+1995,29,"(25,30]",College,208.34869526758072,132.8018163162062,1.5688693200663348,4364.739405468429,2019
+1995,29,"(25,30]",College,208.34869526758072,132.8018163162062,1.5688693200663348,4310.656125312806,2019
+1995,29,"(25,30]",College,208.34869526758072,132.8018163162062,1.5688693200663348,4359.978163212085,2019
+1995,50,"(45,50]",HS,362.50544007076513,180.3726161906681,2.00975873015873,241.07268864961097,2019
+1995,50,"(45,50]",HS,454.24467049977886,287.4069159082075,1.580493180076628,244.76794665071398,2019
+1995,50,"(45,50]",HS,499.53365767359577,192.26531615928357,2.59814753722795,243.73800909926723,2019
+1995,50,"(45,50]",HS,447.8577620521893,188.30108283641175,2.3784130994152046,238.33568770596253,2019
+1995,50,"(45,50]",HS,540.5647058823529,168.47991622205262,3.208481568627451,242.44284448582275,2019
+1995,34,"(30,35]",HS,88.83609022556391,81.26678311887244,1.0931414634146341,5291.433047892802,2019
+1995,34,"(30,35]",HS,129.48005307386114,77.30254979600063,1.6749777777777777,5136.08217210458,2019
+1995,34,"(30,35]",HS,112.06121185316232,65.40984982738514,1.7132161616161614,5211.565572919806,2019
+1995,34,"(30,35]",HS,110.12578505086246,77.30254979600063,1.4246074074074073,5145.616780828799,2019
+1995,34,"(30,35]",HS,79.15895621406457,79.28466645743653,0.9984144444444445,5270.628055884599,2019
+1995,38,"(35,40]",HS,176.20125608137994,79.28466645743653,2.2223875555555557,7769.3713295708,2019
+1995,38,"(35,40]",HS,181.98818222025653,97.12371641035975,1.8737769614512474,7705.260195410583,2019
+1995,38,"(35,40]",HS,180.34306943830165,77.30254979600063,2.332951111111111,7754.470087642236,2019
+1995,38,"(35,40]",HS,185.20099071207432,71.35619981169287,2.595443580246914,7844.661744822736,2019
+1995,38,"(35,40]",HS,180.24629809818666,91.177366426052,1.9768754589371984,7771.2838748704235,2019
+1995,70,"(65,70]",HS,15.48341441839894,9.117736642605202,1.6981642512077295,6625.845673230785,2019
+1995,70,"(65,70]",HS,15.48341441839894,9.117736642605202,1.6981642512077295,6639.4739559056225,2019
+1995,70,"(65,70]",HS,15.48341441839894,9.117736642605202,1.6981642512077295,6620.405149985259,2019
+1995,70,"(65,70]",HS,15.48341441839894,9.117736642605202,1.6981642512077295,6631.904155488085,2019
+1995,70,"(65,70]",HS,15.48341441839894,9.117736642605202,1.6981642512077295,6620.051299745408,2019
+1995,41,"(40,45]",HS,284.91417956656346,103.07006639466748,2.764276666666667,6140.2713991380515,2019
+1995,41,"(40,45]",HS,298.7137726669615,103.07006639466748,2.8981622222222225,3601.9895092514553,2019
+1995,41,"(40,45]",HS,353.33151702786375,21.803283275795042,16.20542707070707,3550.736024200168,2019
+1995,41,"(40,45]",HS,260.9148872180451,39.642333228718265,6.581723777777778,6201.918610728765,2019
+1995,41,"(40,45]",HS,267.9017779743476,31.713866582974614,8.447465,6142.980677015701,2019
+1995,41,"(40,45]",College,33.289340999557716,152.62298293056534,0.21811486291486287,9802.94145831768,2019
+1995,41,"(40,45]",College,33.289340999557716,67.39196648882105,0.49396601307189536,9984.267637981498,2019
+1995,41,"(40,45]",College,33.289340999557716,103.07006639466748,0.3229777777777778,9907.615989478058,2019
+1995,41,"(40,45]",College,33.289340999557716,39.642333228718265,0.8397422222222222,9826.920630127675,2019
+1995,41,"(40,45]",College,33.289340999557716,97.12371641035975,0.3427519274376417,9958.797962992863,2019
+1995,71,"(70,75]",HS,255.6698805838125,39.642333228718265,6.449415555555556,3698.456091178586,2019
+1995,71,"(70,75]",HS,255.6698805838125,39.642333228718265,6.449415555555556,3700.5788035889555,2019
+1995,71,"(70,75]",HS,255.6698805838125,39.642333228718265,6.449415555555556,3793.627545583086,2019
+1995,71,"(70,75]",HS,255.6698805838125,39.642333228718265,6.449415555555556,3673.3379946027735,2019
+1995,71,"(70,75]",HS,255.6698805838125,39.642333228718265,6.449415555555556,3629.7811502930736,2019
+1995,49,"(45,50]",HS,241.34772224679347,49.55291653589783,4.870504888888889,6423.330709456394,2019
+1995,49,"(45,50]",HS,241.34772224679347,49.55291653589783,4.870504888888889,6400.664097145437,2019
+1995,49,"(45,50]",HS,241.34772224679347,49.55291653589783,4.870504888888889,6364.336089228354,2019
+1995,49,"(45,50]",HS,241.34772224679347,49.55291653589783,4.870504888888889,6688.708090795262,2019
+1995,49,"(45,50]",HS,241.34772224679347,49.55291653589783,4.870504888888889,6451.069877861302,2019
+1995,50,"(45,50]",HS,33.599009287925696,39.642333228718265,0.8475537777777777,5269.555968246342,2019
+1995,50,"(45,50]",HS,33.52159221583371,39.642333228718265,0.8456008888888891,5153.81852694941,2019
+1995,50,"(45,50]",HS,33.65707209199469,39.642333228718265,0.8490184444444444,5195.408129236117,2019
+1995,50,"(45,50]",HS,33.386112339672714,39.642333228718265,0.8421833333333334,5380.785579427941,2019
+1995,50,"(45,50]",HS,33.52159221583371,39.642333228718265,0.8456008888888891,5258.397646584268,2019
+1995,36,"(35,40]",College,589.5310039805396,204.15801612789906,2.887621143473571,3408.35017446044,2019
+1995,36,"(35,40]",College,589.5310039805396,204.15801612789906,2.887621143473571,3548.5822430395006,2019
+1995,36,"(35,40]",College,589.5310039805396,204.15801612789906,2.887621143473571,3498.3548172543487,2019
+1995,36,"(35,40]",College,589.5310039805396,204.15801612789906,2.887621143473571,3323.0291937166753,2019
+1995,36,"(35,40]",College,589.5310039805396,204.15801612789906,2.887621143473571,3521.4705524944948,2019
+1995,49,"(45,50]",College,831.459354268023,309.21019918400253,2.6889777777777772,436.6357471282046,2019
+1995,49,"(45,50]",College,831.459354268023,380.5663989956953,2.184794444444445,446.63539331494184,2019
+1995,49,"(45,50]",College,831.459354268023,303.2638491996948,2.7417028322440085,437.7830462258077,2019
+1995,49,"(45,50]",College,831.459354268023,340.9240657669771,2.4388403100775196,429.3885913297333,2019
+1995,49,"(45,50]",College,831.459354268023,307.22808252256664,2.706326021505376,435.61734294310554,2019
+1995,33,"(30,35]",College,450.1802742149491,150.64086626912942,2.9884339181286546,8509.461707605318,2019
+1995,33,"(30,35]",College,450.1802742149491,150.64086626912942,2.9884339181286546,8624.406913773299,2019
+1995,33,"(30,35]",College,450.1802742149491,150.64086626912942,2.9884339181286546,8501.061800142383,2019
+1995,33,"(30,35]",College,450.1802742149491,150.64086626912942,2.9884339181286546,8288.402883143122,2019
+1995,33,"(30,35]",College,450.1802742149491,150.64086626912942,2.9884339181286546,8457.706035488603,2019
+1995,38,"(35,40]",College,71.41724900486511,55.499266520205566,1.286814285714286,7545.820312637235,2019
+1995,38,"(35,40]",College,71.41724900486511,55.499266520205566,1.286814285714286,7680.674918514787,2019
+1995,38,"(35,40]",College,71.41724900486511,55.499266520205566,1.286814285714286,7556.917375985012,2019
+1995,38,"(35,40]",College,71.41724900486511,55.499266520205566,1.286814285714286,7584.774186255023,2019
+1995,38,"(35,40]",College,71.41724900486511,55.499266520205566,1.286814285714286,7593.625838592876,2019
+1995,66,"(65,70]",HS,190.60083149049095,53.517149858769656,3.561490699588478,2359.379516290807,2019
+1995,66,"(65,70]",HS,190.25245466607697,112.98064970184706,1.6839384015594543,2371.259720949312,2019
+1995,66,"(65,70]",HS,191.0653339230429,57.48138318164148,3.3239515708812264,2267.558024712572,2019
+1995,66,"(65,70]",HS,190.02020344980096,49.55291653589783,3.834692622222222,2425.9775669392448,2019
+1995,66,"(65,70]",HS,191.1233967271119,67.39196648882105,2.8359967320261434,2332.795343088733,2019
+1995,51,"(50,55]",College,663.8513931888544,227.94341606513,2.912351690821256,4485.8604959738705,2019
+1995,51,"(50,55]",College,661.5288810260947,227.94341606513,2.90216270531401,4673.965014008826,2019
+1995,51,"(50,55]",College,661.5288810260947,227.94341606513,2.90216270531401,4616.093123375558,2019
+1995,51,"(50,55]",College,661.5288810260947,227.94341606513,2.90216270531401,4379.8301493864155,2019
+1995,51,"(50,55]",College,661.5288810260947,227.94341606513,2.90216270531401,4629.468965274455,2019
+1995,53,"(50,55]",College,17888.762848297214,973.2192807650334,18.381019778230367,410.09584617269593,2019
+1995,53,"(50,55]",College,17836.50632463512,1272.5188966418564,14.016692696434754,462.37306859881767,2019
+1995,53,"(50,55]",College,19647.678726227332,1236.8407967360101,15.88537407407407,417.13911713209046,2019
+1995,53,"(50,55]",College,19634.51782397169,1211.073280137343,16.212493617021273,497.33409590979136,2019
+1995,53,"(50,55]",College,19555.93949579832,1036.647013930983,18.864607945612914,387.18447604830794,2019
+1995,46,"(45,50]",College,1101.2578505086244,396.42333228718263,2.7779844444444444,324.31180684301086,2019
+1995,46,"(45,50]",College,1109.967271118974,396.42333228718263,2.799954444444445,331.3059234727092,2019
+1995,46,"(45,50]",College,1104.1609907120744,396.42333228718263,2.785307777777778,323.57900171610896,2019
+1995,46,"(45,50]",College,1115.5800088456435,396.42333228718263,2.814112888888889,316.7575768657788,2019
+1995,46,"(45,50]",College,1103.9674480318445,396.42333228718263,2.784819555555556,321.8516655840988,2019
+1995,53,"(50,55]",HS,1959.8131800088456,198.21166614359132,9.887476444444445,2922.1385265522536,2019
+1995,53,"(50,55]",HS,1567.3086245024326,198.21166614359132,7.907247111111112,2504.991759833575,2019
+1995,53,"(50,55]",HS,1698.9176470588236,198.21166614359132,8.571229333333335,2582.950278499724,2019
+1995,53,"(50,55]",HS,1866.525608137992,198.21166614359132,9.416830222222224,2507.6147474233976,2019
+1995,53,"(50,55]",HS,1662.744520123839,198.21166614359132,8.388731866666667,2583.8592752952295,2019
+1995,59,"(55,60]",NoHS,23539.434940291907,943.4875308434947,24.949386367880486,40.672002971836505,2019
+1995,59,"(55,60]",NoHS,23539.434940291907,1032.6827806081108,22.794448965664323,45.73272698153342,2019
+1995,59,"(55,60]",NoHS,23539.434940291907,1109.9853304041117,21.206978412698408,41.04553817903476,2019
+1995,59,"(55,60]",NoHS,23539.434940291907,1193.2342301844199,19.727421779254335,49.46523555226078,2019
+1995,59,"(55,60]",NoHS,23539.434940291907,1032.6827806081108,22.794448965664323,39.89506190918424,2019
+1995,28,"(25,30]",HS,139.8345864661654,71.35619981169287,1.9596697530864198,5112.67231141534,2019
+1995,28,"(25,30]",HS,159.51787704555508,71.35619981169287,2.2355153086419755,5168.126128921462,2019
+1995,28,"(25,30]",HS,112.00314904909332,71.35619981169287,1.5696344444444446,5140.636466369175,2019
+1995,28,"(25,30]",HS,150.75039363113666,71.35619981169287,2.112646049382716,5189.9282897657085,2019
+1995,28,"(25,30]",HS,160.19527642636,71.35619981169287,2.2450085185185187,5154.632258172128,2019
+1995,63,"(60,65]",HS,549.4870234409553,79.28466645743653,6.930558555555556,3700.6427031369385,2019
+1995,63,"(60,65]",HS,238.8316674038036,65.40984982738514,3.651310437710437,6592.459183857715,2019
+1995,63,"(60,65]",HS,240.99934542237946,107.03429971753931,2.2516085596707818,6650.029600212305,2019
+1995,63,"(60,65]",HS,282.7852100840336,25.76751659866687,10.974484444444446,6635.690967135017,2019
+1995,63,"(60,65]",HS,274.2499778858912,25.76751659866687,10.643244444444447,6565.179017007266,2019
+1995,52,"(50,55]",College,403.53648827952236,99.10583307179566,4.071773333333334,688.3126135240152,2019
+1995,52,"(50,55]",College,405.4719150818222,99.10583307179566,4.091302222222223,676.9853925043695,2019
+1995,52,"(50,55]",College,398.6979212737727,99.10583307179566,4.022951111111111,689.7275158414486,2019
+1995,52,"(50,55]",College,404.8525785050862,99.10583307179566,4.085052977777778,648.2964214147033,2019
+1995,52,"(50,55]",College,396.7624944714728,99.10583307179566,4.003422222222222,696.4738791207582,2019
+1995,32,"(30,35]",HS,90.3844316674038,118.92699968615479,0.7599992592592593,5269.069957127928,2019
+1995,32,"(30,35]",HS,90.3844316674038,118.92699968615479,0.7599992592592593,5300.053606649174,2019
+1995,32,"(30,35]",HS,90.3844316674038,118.92699968615479,0.7599992592592593,5277.548053516427,2019
+1995,32,"(30,35]",HS,90.3844316674038,118.92699968615479,0.7599992592592593,5324.542084756778,2019
+1995,32,"(30,35]",HS,90.3844316674038,118.92699968615479,0.7599992592592593,5266.50671896231,2019
+1995,51,"(50,55]",HS,1324.6061034940292,233.88976604943778,5.663377777777777,4485.8604959738705,2019
+1995,51,"(50,55]",HS,1322.6706766917293,221.99706608082226,5.958054761904762,4673.965014008826,2019
+1995,51,"(50,55]",HS,1308.1549756744805,208.12224945077088,6.285512380952382,4616.093123375558,2019
+1995,51,"(50,55]",HS,1310.4774878372402,221.99706608082226,5.903129761904763,4379.8301493864155,2019
+1995,51,"(50,55]",HS,1315.7224944714728,229.92553272656593,5.722385325670499,4629.468965274455,2019
+1995,63,"(60,65]",College,23088.790163644408,2219.9706608082233,10.40049338095238,536.1898473197591,2019
+1995,63,"(60,65]",College,22010.04132684653,2259.612994036941,9.740624339181288,621.8356755834504,2019
+1995,63,"(60,65]",College,22089.800265369307,2081.2224945077087,10.613858116402119,523.4351576001438,2019
+1995,63,"(60,65]",College,22102.516019460418,2101.0436611220684,10.519779492662472,603.0868687974299,2019
+1995,63,"(60,65]",College,23184.94216718266,2319.0764938800185,9.997489185185184,503.2054214363308,2019
+1995,20,"(15,20]",HS,58.04344980097302,18.433684951353992,3.1487708482676227,3794.25089559008,2019
+1995,20,"(15,20]",HS,55.52739495798319,18.235473285210404,3.0450207729468595,3759.560795442728,2019
+1995,20,"(15,20]",HS,55.52739495798319,16.45156828991808,3.37520374832664,3753.3169411708623,2019
+1995,20,"(15,20]",HS,55.52739495798319,23.785399937230956,2.3345159259259263,3727.1680572422324,2019
+1995,20,"(15,20]",HS,55.52739495798319,37.660216567282355,1.474431111111111,3719.751273311981,2019
+1995,52,"(50,55]",College,929.9725785050863,168.47991622205262,5.519783006535948,4785.439113345088,2019
+1995,52,"(50,55]",College,757.0615479876162,186.31896617497586,4.063255413711585,4984.740567204883,2019
+1995,52,"(50,55]",College,799.7377089783282,158.56933291487306,5.043457611111111,4925.271122612006,2019
+1995,52,"(50,55]",College,961.94582927908,180.3726161906681,5.333103492063492,4673.858741835149,2019
+1995,52,"(50,55]",College,743.0684122069881,168.47991622205262,4.410427241830066,4938.740256052047,2019
+1995,50,"(45,50]",HS,99.22933215391419,37.660216567282355,2.634858245614035,6275.670289200402,2019
+1995,50,"(45,50]",HS,99.22933215391419,37.660216567282355,2.634858245614035,6092.731031201698,2019
+1995,50,"(45,50]",HS,99.22933215391419,37.660216567282355,2.634858245614035,6128.234602018607,2019
+1995,50,"(45,50]",HS,99.22933215391419,37.660216567282355,2.634858245614035,6300.356362627333,2019
+1995,50,"(45,50]",HS,99.22933215391419,37.660216567282355,2.634858245614035,6188.127068065421,2019
+1995,69,"(65,70]",HS,11.08999557717824,39.642333228718265,0.27975133333333335,6269.698446852776,2019
+1995,69,"(65,70]",HS,11.08999557717824,25.76751659866687,0.4303866666666667,6207.2718872285,2019
+1995,69,"(65,70]",HS,11.08999557717824,33.69598324441053,0.3291192156862745,6142.527512636393,2019
+1995,69,"(65,70]",HS,11.08999557717824,45.588683213026,0.24326202898550725,6360.734406671212,2019
+1995,69,"(65,70]",HS,11.08999557717824,25.76751659866687,0.4303866666666667,6179.235431293995,2019
+1995,40,"(35,40]",College,117228.80141530297,2041.5801612789908,57.4206213592233,22.4694626592693,2019
+1995,40,"(35,40]",College,117803.4296329058,2061.4013278933503,57.1472561111111,23.491168112053288,2019
+1995,40,"(35,40]",College,117869.04060150376,2001.9378280502726,58.87747309130913,23.186739386669544,2019
+1995,40,"(35,40]",College,119710.0185758514,2180.3283275795047,54.90458343434344,20.191838978140915,2019
+1995,40,"(35,40]",College,119599.6992481203,2160.5071609651454,55.35723343527014,21.719765052730104,2019
+1995,62,"(60,65]",HS,202.29080937638213,15.856933291487307,12.757246666666665,8256.266217123208,2019
+1995,62,"(60,65]",HS,240.61226006191953,15.856933291487307,15.173946666666668,8135.012638456532,2019
+1995,62,"(60,65]",HS,248.353967271119,15.856933291487307,15.662168888888889,8266.532222975315,2019
+1995,62,"(60,65]",HS,203.45206545776205,15.856933291487307,12.83048,8252.10046006284,2019
+1995,62,"(60,65]",HS,194.16201680672268,15.856933291487307,12.244613333333332,8143.79616541165,2019
+1995,42,"(40,45]",HS,302.75881468376826,297.31749921538704,1.018301362962963,7736.184380313057,2019
+1995,42,"(40,45]",HS,302.75881468376826,297.31749921538704,1.018301362962963,7786.196541365088,2019
+1995,42,"(40,45]",HS,302.75881468376826,297.31749921538704,1.018301362962963,7774.702138761789,2019
+1995,42,"(40,45]",HS,302.75881468376826,297.31749921538704,1.018301362962963,8012.44285259375,2019
+1995,42,"(40,45]",HS,302.75881468376826,297.31749921538704,1.018301362962963,7847.036846899195,2019
+1995,82,"(80,85]",NoHS,6317.233082706767,198.21166614359132,31.871146666666668,898.3283889781626,2019
+1995,82,"(80,85]",NoHS,7884.92879256966,198.21166614359132,39.780346666666674,710.327801915068,2019
+1995,82,"(80,85]",NoHS,7207.529411764705,198.21166614359132,36.36279111111111,698.3818190411764,2019
+1995,82,"(80,85]",NoHS,6317.233082706767,198.21166614359132,31.871146666666668,697.7769913750838,2019
+1995,82,"(80,85]",NoHS,6317.233082706767,198.21166614359132,31.871146666666668,716.4371611599935,2019
+1995,22,"(20,25]",HS,86.49422379478106,25.76751659866687,3.3567155555555557,5340.650081656257,2019
+1995,22,"(20,25]",HS,105.80978328173374,25.76751659866687,4.106324444444445,5432.977023493375,2019
+1995,22,"(20,25]",HS,92.28114993365767,25.76751659866687,3.5812977777777784,5382.261125144711,2019
+1995,22,"(20,25]",HS,163.91129588677578,25.76751659866687,6.361160000000001,5430.748734373053,2019
+1995,22,"(20,25]",HS,131.08645731977,25.76751659866687,5.087275555555556,5361.002155923519,2019
+1995,72,"(70,75]",HS,14.515701017249004,19.028319949784766,0.7628472222222222,7283.690229864493,2019
+1995,72,"(70,75]",HS,14.515701017249004,19.028319949784766,0.7628472222222222,7287.076813251954,2019
+1995,72,"(70,75]",HS,14.515701017249004,19.028319949784766,0.7628472222222222,7292.555730895637,2019
+1995,72,"(70,75]",HS,14.515701017249004,19.028319949784766,0.7628472222222222,7299.284283226078,2019
+1995,72,"(70,75]",HS,14.515701017249004,19.028319949784766,0.7628472222222222,7295.198151239424,2019
+1995,29,"(25,30]",College,121.83511720477665,69.37408315025698,1.756205079365079,3523.1199051718563,2019
+1995,29,"(25,30]",College,121.83511720477665,69.37408315025698,1.756205079365079,3663.260268568709,2019
+1995,29,"(25,30]",College,121.83511720477665,69.37408315025698,1.756205079365079,3622.099862865369,2019
+1995,29,"(25,30]",College,121.83511720477665,69.37408315025698,1.756205079365079,3421.336133337245,2019
+1995,29,"(25,30]",College,121.83511720477665,69.37408315025698,1.756205079365079,3644.8800343610455,2019
+1995,59,"(55,60]",College,27575.96107916851,436.06566551590095,63.23809292929293,40.672002971836505,2019
+1995,59,"(55,60]",College,49194.67846085803,582.7422984621587,84.41926832955401,24.826945192116078,2019
+1995,59,"(55,60]",College,58871.812472357364,628.3309816751845,93.69554293725903,24.88155062166152,2019
+1995,59,"(55,60]",College,35646.69084475896,614.4561650451333,58.013399283154115,49.46523555226078,2019
+1995,59,"(55,60]",College,41452.97125165856,402.3696822714903,103.02210399562125,39.89506190918424,2019
+1995,26,"(25,30]",HS,3.6579566563467494,12.883758299333435,0.28392000000000006,5929.308191386971,2019
+1995,26,"(25,30]",HS,3.6579566563467494,12.883758299333435,0.28392000000000006,5957.602234135369,2019
+1995,26,"(25,30]",HS,3.6579566563467494,12.883758299333435,0.28392000000000006,5968.03885061167,2019
+1995,26,"(25,30]",HS,3.6579566563467494,12.883758299333435,0.28392000000000006,6046.523913778793,2019
+1995,26,"(25,30]",HS,3.6579566563467494,12.883758299333435,0.28392000000000006,5987.98062767677,2019
+1995,39,"(35,40]",HS,8.496523662096417,67.39196648882105,0.12607620915032677,3580.2967021393933,2019
+1995,39,"(35,40]",HS,8.496523662096417,67.39196648882105,0.12607620915032677,3550.578159925695,2019
+1995,39,"(35,40]",HS,8.496523662096417,67.39196648882105,0.12607620915032677,3533.781345872844,2019
+1995,39,"(35,40]",HS,8.496523662096417,67.39196648882105,0.12607620915032677,3469.5907453997543,2019
+1995,39,"(35,40]",HS,8.496523662096417,67.39196648882105,0.12607620915032677,3537.4425412268515,2019
+1995,38,"(35,40]",HS,56.51446262715613,41.624449890154175,1.3577227513227514,5446.624250016195,2019
+1995,38,"(35,40]",HS,57.09509066784609,41.624449890154175,1.3716719576719578,5371.690162365177,2019
+1995,38,"(35,40]",HS,56.8241309155241,41.624449890154175,1.3651623280423282,5367.156189989533,2019
+1995,38,"(35,40]",HS,57.288633348076075,41.624449890154175,1.3763216931216933,5424.560303750833,2019
+1995,38,"(35,40]",HS,56.22414860681115,41.624449890154175,1.3507481481481483,5386.6115774736845,2019
+1995,38,"(35,40]",HS,507.6624502432552,59.46349984307739,8.53737925925926,3187.429237369427,2019
+1995,38,"(35,40]",HS,507.6624502432552,59.46349984307739,8.53737925925926,3321.4768586174846,2019
+1995,38,"(35,40]",HS,507.6624502432552,59.46349984307739,8.53737925925926,3279.8886287468436,2019
+1995,38,"(35,40]",HS,507.6624502432552,59.46349984307739,8.53737925925926,3102.4185250997234,2019
+1995,38,"(35,40]",HS,507.6624502432552,59.46349984307739,8.53737925925926,3302.0043907885092,2019
+1995,37,"(35,40]",HS,60.57885891198585,69.37408315025698,0.8732203174603173,3700.210945433179,2019
+1995,37,"(35,40]",HS,60.57885891198585,69.37408315025698,0.8732203174603173,3669.497045348939,2019
+1995,37,"(35,40]",HS,60.57885891198585,69.37408315025698,0.8732203174603173,3652.1376585781086,2019
+1995,37,"(35,40]",HS,60.57885891198585,69.37408315025698,0.8732203174603173,3585.7971336929704,2019
+1995,37,"(35,40]",HS,60.57885891198585,69.37408315025698,0.8732203174603173,3655.921477699629,2019
+1995,34,"(30,35]",NoHS,0,8.523101644174426,0,6576.94620685439,2019
+1995,34,"(30,35]",NoHS,0,9.117736642605202,0,6576.288557648681,2019
+1995,34,"(30,35]",NoHS,0,8.126678311887245,0,6573.711900825505,2019
+1995,34,"(30,35]",NoHS,0,9.514159974892383,0,6603.161523714162,2019
+1995,34,"(30,35]",NoHS,0,8.91952497646161,0,6594.276514558861,2019
+1995,36,"(35,40]",HS,179.76244139761167,196.22954948215542,0.9160824242424241,3945.299877260263,2019
+1995,36,"(35,40]",HS,179.76244139761167,105.0521830561034,1.7111728301886793,3894.404342903484,2019
+1995,36,"(35,40]",HS,179.76244139761167,83.24889978030835,2.159337142857143,3894.8779989393306,2019
+1995,36,"(35,40]",HS,179.76244139761167,225.9612994036941,0.7955452631578946,3798.479990955272,2019
+1995,36,"(35,40]",HS,179.76244139761167,109.01641637897524,1.6489483636363635,3884.9102175086946,2019
+1995,32,"(30,35]",College,132.28642193719594,77.30254979600063,1.7112814814814812,5982.485250485441,2019
+1995,32,"(30,35]",College,169.44661654135336,77.30254979600063,2.191992592592592,5891.880317770235,2019
+1995,32,"(30,35]",College,140.70552852720036,77.30254979600063,1.8201925925925924,5928.33875193204,2019
+1995,32,"(30,35]",College,148.93109243697478,77.30254979600063,1.9265999999999994,5854.880986005287,2019
+1995,32,"(30,35]",College,103.5453339230429,77.30254979600063,1.3394814814814813,5921.871869409736,2019
+1995,42,"(40,45]",NoHS,83.92010614772225,95.14159974892382,0.882054814814815,11328.900752317319,2019
+1995,42,"(40,45]",NoHS,83.92010614772225,95.14159974892382,0.882054814814815,11743.338763269145,2019
+1995,42,"(40,45]",NoHS,83.92010614772225,95.14159974892382,0.882054814814815,11233.488743899143,2019
+1995,42,"(40,45]",NoHS,83.92010614772225,95.14159974892382,0.882054814814815,11797.480307648719,2019
+1995,42,"(40,45]",NoHS,83.92010614772225,95.14159974892382,0.882054814814815,11469.244445158569,2019
+1995,54,"(50,55]",HS,629.4975674480319,237.85399937230957,2.6465712962962966,6555.659855906035,2019
+1995,54,"(50,55]",HS,604.3370190181336,237.85399937230957,2.540789814814815,6648.917912906065,2019
+1995,54,"(50,55]",HS,604.3370190181336,237.85399937230957,2.540789814814815,6587.957002269644,2019
+1995,54,"(50,55]",HS,683.6895179124282,237.85399937230957,2.8744083333333337,6442.322325698942,2019
+1995,54,"(50,55]",HS,623.6912870411322,237.85399937230957,2.6221601851851855,6583.189650843373,2019
+1995,45,"(40,45]",College,678.3670942061035,150.64086626912942,4.503207602339181,3675.5445712892433,2019
+1995,45,"(40,45]",College,686.1088014153029,150.64086626912942,4.554599415204677,3829.2393640099567,2019
+1995,45,"(40,45]",College,666.7545333923043,150.64086626912942,4.426119883040935,3781.538980452658,2019
+1995,45,"(40,45]",College,680.3025210084035,150.64086626912942,4.516055555555556,3587.411861370131,2019
+1995,45,"(40,45]",College,666.7545333923043,150.64086626912942,4.426119883040935,3794.4972174911177,2019
+1995,65,"(60,65]",College,4494.641662980982,1226.9302134288303,3.6633229940764678,1188.7853354447086,2019
+1995,65,"(60,65]",College,4901.081291463955,1209.091163475907,4.053525027322405,1076.2147690908675,2019
+1995,65,"(60,65]",College,4855.018133569218,1228.9123300902666,3.9506627240143364,1066.3851972831017,2019
+1995,65,"(60,65]",College,4998.239716939407,1393.428012989447,3.5870096412201673,1086.580919337507,2019
+1995,65,"(60,65]",College,4695.732507739938,1415.2312962652422,3.3179965141612198,1074.2817912139433,2019
+1995,59,"(55,60]",HS,701.282547545334,168.47991622205262,4.162410352941177,4778.765767349562,2019
+1995,59,"(55,60]",HS,709.7210084033613,176.40838286779626,4.023170536828964,4967.581921722986,2019
+1995,59,"(55,60]",HS,726.5592215833702,156.58721625343713,4.63996511954993,4910.538061685046,2019
+1995,59,"(55,60]",HS,738.3653250773993,172.44414954492444,4.2817650063856965,4655.2941929629105,2019
+1995,59,"(55,60]",HS,687.6571428571428,196.22954948215542,3.5043506172839503,4922.557510602132,2019
+1995,65,"(60,65]",NoHS,48.38567005749668,13.081969965477029,3.698653198653198,6536.908850116577,2019
+1995,65,"(60,65]",NoHS,48.38567005749668,13.081969965477029,3.698653198653198,6517.274987061042,2019
+1995,65,"(60,65]",NoHS,48.38567005749668,13.081969965477029,3.698653198653198,6517.029580303228,2019
+1995,65,"(60,65]",NoHS,48.38567005749668,13.081969965477029,3.698653198653198,6524.651077884069,2019
+1995,65,"(60,65]",NoHS,48.38567005749668,13.081969965477029,3.698653198653198,6577.356175891383,2019
+1995,31,"(30,35]",HS,51.81137549756745,31.713866582974614,1.633713611111111,5194.39808561834,2019
+1995,31,"(30,35]",HS,45.96638655462185,31.713866582974614,1.4494097222222222,5122.741701569115,2019
+1995,31,"(30,35]",HS,1427.0482441397612,25.76751659866687,55.38167555555556,1748.3253788263314,2019
+1995,31,"(30,35]",HS,41.166528084918184,31.713866582974614,1.2980608333333334,5132.251545080768,2019
+1995,31,"(30,35]",HS,40.8375055285272,29.731749921538697,1.373531851851852,5156.498378361256,2019
+1995,68,"(65,70]",College,11605.206191950465,485.61858205179874,23.89778031746032,28.085686323827737,2019
+1995,68,"(65,70]",College,13469.602830605927,1316.1254631934464,10.234284805890228,26.19467687052374,2019
+1995,68,"(65,70]",College,12161.254312251216,705.633531471185,17.234518726591762,26.691725774027656,2019
+1995,68,"(65,70]",College,74790.44631578948,909.7915475990842,82.2061344855967,24.916089990581106,2019
+1995,68,"(65,70]",College,10551.753383458647,485.61858205179874,21.728479455782313,26.919088850692344,2019
+1995,44,"(40,45]",College,46.93409995577178,116.94488302471889,0.40133521657250465,6129.755746015944,2019
+1995,44,"(40,45]",College,101.12605042016807,107.03429971753931,0.9448004115226338,6077.29938400418,2019
+1995,44,"(40,45]",College,166.87249889429455,55.499266520205566,3.0067514285714285,6074.192725686926,2019
+1995,44,"(40,45]",College,129.55747014595312,53.517149858769656,2.4208589300411525,6040.396255414949,2019
+1995,44,"(40,45]",College,103.25501990269792,37.660216567282355,2.741753216374269,6092.930177673018,2019
+1995,35,"(30,35]",HS,3.4450597080937637,1.9821166614359134,1.738071111111111,8375.226394787323,2019
+1995,35,"(30,35]",HS,3.4450597080937637,1.9821166614359134,1.738071111111111,8363.292606465402,2019
+1995,35,"(30,35]",HS,3.4450597080937637,1.9821166614359134,1.738071111111111,8456.965363443112,2019
+1995,35,"(30,35]",HS,3.4450597080937637,1.9821166614359134,1.738071111111111,8208.843949339554,2019
+1995,35,"(30,35]",HS,3.4450597080937637,1.9821166614359134,1.738071111111111,8450.415162096635,2019
+1995,55,"(50,55]",NoHS,16174.400495356036,1439.016696202473,11.239897728803182,25.713727335780288,2019
+1995,55,"(50,55]",NoHS,10409.112428129147,1318.1075798548823,7.897012798663326,22.562484295780024,2019
+1995,55,"(50,55]",NoHS,11779.142998673155,1262.6083133346767,9.329213877551021,23.550849279301794,2019
+1995,55,"(50,55]",NoHS,15403.24904024768,1191.2521135229838,12.930301541874655,23.009157385376763,2019
+1995,55,"(50,55]",NoHS,11241.074993365766,1242.7871467203177,9.04505250398724,23.915111099708973,2019
+1995,52,"(50,55]",College,2202.128615656789,455.88683213026,4.830428212560387,2159.5936184059037,2019
+1995,52,"(50,55]",College,2202.128615656789,455.88683213026,4.830428212560387,1857.001899201244,2019
+1995,52,"(50,55]",College,2202.128615656789,455.88683213026,4.830428212560387,1912.010047475375,2019
+1995,52,"(50,55]",College,2202.128615656789,455.88683213026,4.830428212560387,1843.6516733940346,2019
+1995,52,"(50,55]",College,2202.128615656789,455.88683213026,4.830428212560387,1948.6462183221734,2019
+1995,45,"(40,45]",College,4808.103387881468,792.8466645743653,6.064354688888889,845.9668997335262,2019
+1995,45,"(40,45]",College,4808.103387881468,792.8466645743653,6.064354688888889,765.4587138308818,2019
+1995,45,"(40,45]",College,4808.103387881468,792.8466645743653,6.064354688888889,770.6853574351868,2019
+1995,45,"(40,45]",College,4808.103387881468,792.8466645743653,6.064354688888889,772.4289141889332,2019
+1995,45,"(40,45]",College,4808.103387881468,792.8466645743653,6.064354688888889,762.9624561087302,2019
+1995,26,"(25,30]",HS,189.47828394515702,71.35619981169287,2.6553864197530865,5895.090792449292,2019
+1995,26,"(25,30]",HS,195.09102167182664,79.28466645743653,2.46064,5835.701293721321,2019
+1995,26,"(25,30]",HS,197.21999115435648,73.3383164731288,2.6891807807807804,5925.646967577004,2019
+1995,26,"(25,30]",HS,191.99433878814685,69.37408315025698,2.767522539682539,5846.601952586121,2019
+1995,26,"(25,30]",HS,191.60725342768689,65.40984982738514,2.9293333333333336,5871.154371479039,2019
+1995,47,"(45,50]",College,66.55932773109244,93.15948308748793,0.7144664775413712,6205.955812997121,2019
+1995,47,"(45,50]",College,66.52061919504645,93.15948308748793,0.7140509692671395,6148.5906096795015,2019
+1995,47,"(45,50]",College,66.52061919504645,93.15948308748793,0.7140509692671395,6180.506565607244,2019
+1995,47,"(45,50]",College,66.52061919504645,93.15948308748793,0.7140509692671395,6479.099987541879,2019
+1995,47,"(45,50]",College,66.55932773109244,93.15948308748793,0.7144664775413712,6276.223758578965,2019
+1995,21,"(20,25]",NoHS,-1.2580274214949139,29.731749921538697,-0.0423125925925926,6391.688941663456,2019
+1995,21,"(20,25]",NoHS,-1.2580274214949139,29.731749921538697,-0.0423125925925926,6328.53168821587,2019
+1995,21,"(20,25]",NoHS,-1.2580274214949139,29.731749921538697,-0.0423125925925926,6407.389489687493,2019
+1995,21,"(20,25]",NoHS,-2.4192835028748343,29.731749921538697,-0.08137037037037038,6365.477194948081,2019
+1995,21,"(20,25]",NoHS,-1.064484741264927,29.731749921538697,-0.03580296296296297,6342.330809397422,2019
+1995,29,"(25,30]",HS,0.9677134011499338,31.713866582974614,0.030513888888888892,4983.351641693197,2019
+1995,29,"(25,30]",HS,0.9677134011499338,31.713866582974614,0.030513888888888892,4925.035088984037,2019
+1995,29,"(25,30]",HS,0.9677134011499338,31.713866582974614,0.030513888888888892,4940.271598779733,2019
+1995,29,"(25,30]",HS,0.9677134011499338,31.713866582974614,0.030513888888888892,4905.266436514788,2019
+1995,29,"(25,30]",HS,0.9677134011499338,31.713866582974614,0.030513888888888892,4922.895377242667,2019
+1995,59,"(55,60]",College,2363.852879256966,475.70799874461915,4.969125777777778,187.15845390970588,2019
+1995,59,"(55,60]",College,2363.349668288368,475.70799874461915,4.968067962962963,155.329574508333,2019
+1995,59,"(55,60]",College,2363.891587793012,475.70799874461915,4.969207148148149,155.59500202933998,2019
+1995,59,"(55,60]",College,2364.1238390092876,475.70799874461915,4.969695370370371,162.0612975216458,2019
+1995,59,"(55,60]",College,2363.872233524989,475.70799874461915,4.9691664629629635,157.88061482535488,2019
+1995,24,"(20,25]",HS,26.37986731534719,61.44561650451331,0.4293205734767025,4669.763637504649,2019
+1995,24,"(20,25]",HS,26.360513047324194,39.642333228718265,0.6649586666666667,4629.913167451394,2019
+1995,24,"(20,25]",HS,26.37986731534719,69.37408315025698,0.38025536507936497,4661.853638190432,2019
+1995,24,"(20,25]",HS,26.360513047324194,35.67809990584644,0.738842962962963,4574.805896213797,2019
+1995,24,"(20,25]",HS,26.37986731534719,71.35619981169287,0.3696927160493827,4621.580610475362,2019
+1995,33,"(30,35]",HS,250.6377708978328,116.94488302471889,2.1432128060263653,5050.109250201726,2019
+1995,33,"(30,35]",HS,250.6377708978328,39.642333228718265,6.322477777777777,4980.443321260909,2019
+1995,33,"(30,35]",HS,250.6377708978328,91.177366426052,2.748903381642512,5053.639346335837,2019
+1995,33,"(30,35]",HS,250.6377708978328,27.749633260102783,9.032111111111112,4989.689002453333,2019
+1995,33,"(30,35]",HS,279.6691729323308,43.606566551590085,6.413464646464647,5013.26231258852,2019
+1995,27,"(25,30]",HS,143.41512605042016,109.01641637897524,1.3155369696969694,5657.049138867051,2019
+1995,27,"(25,30]",HS,137.60884564352057,109.01641637897524,1.2622763636363636,5571.3729465936,2019
+1995,27,"(25,30]",HS,140.3184431667404,109.01641637897524,1.2871313131313131,5605.848109497303,2019
+1995,27,"(25,30]",HS,135.6734188412207,109.01641637897524,1.2445228282828282,5536.386309914042,2019
+1995,27,"(25,30]",HS,135.6734188412207,109.01641637897524,1.2445228282828282,5599.733013400581,2019
+1995,54,"(50,55]",College,494.5015479876161,325.06713247548976,1.521228997289973,8509.461707605318,2019
+1995,54,"(50,55]",College,502.2432551968156,342.906182428413,1.4646666666666668,8624.406913773299,2019
+1995,54,"(50,55]",College,469.9216275984078,291.37114923107936,1.6127939531368096,8501.061800142383,2019
+1995,54,"(50,55]",College,510.372047766475,334.97771578266935,1.5236,8288.402883143122,2019
+1995,54,"(50,55]",College,476.88916408668734,380.5663989956953,1.253103703703704,8457.706035488603,2019
+1995,32,"(30,35]",College,32.1280849181778,75.32043313456471,0.42655204678362574,6413.858230060502,2019
+1995,32,"(30,35]",College,32.1280849181778,75.32043313456471,0.42655204678362574,6354.854651931545,2019
+1995,32,"(30,35]",College,82.44918177797435,75.32043313456471,1.0946456140350875,6416.964603856313,2019
+1995,32,"(30,35]",College,82.44918177797435,75.32043313456471,1.0946456140350875,6378.542722404999,2019
+1995,32,"(30,35]",College,32.1280849181778,75.32043313456471,0.42655204678362574,6388.640057967911,2019
+1995,31,"(30,35]",College,104.41627598407784,118.92699968615479,0.8779862962962963,7350.31627454828,2019
+1995,31,"(30,35]",College,104.41627598407784,118.92699968615479,0.8779862962962963,7284.707253268566,2019
+1995,31,"(30,35]",College,104.41627598407784,118.92699968615479,0.8779862962962963,7383.804700705395,2019
+1995,31,"(30,35]",College,104.41627598407784,118.92699968615479,0.8779862962962963,7295.31133498625,2019
+1995,31,"(30,35]",College,104.41627598407784,118.92699968615479,0.8779862962962963,7360.151155057388,2019
+1995,34,"(30,35]",HS,83.2233524988943,35.67809990584644,2.3326172839506176,6969.914689859438,2019
+1995,34,"(30,35]",HS,83.2233524988943,35.67809990584644,2.3326172839506176,7029.594421499501,2019
+1995,34,"(30,35]",HS,83.2233524988943,35.67809990584644,2.3326172839506176,7046.880121239953,2019
+1995,34,"(30,35]",HS,83.2233524988943,35.67809990584644,2.3326172839506176,7134.598488812288,2019
+1995,34,"(30,35]",HS,65.80451127819549,35.67809990584644,1.8443950617283953,7061.828563307494,2019
+1995,68,"(65,70]",College,56234.01928350288,6283.309816751846,8.949744787942517,34.28487830627973,2019
+1995,68,"(65,70]",College,60963.62176028306,5668.853651706712,10.754135757575757,22.26202337905925,2019
+1995,68,"(65,70]",College,45856.64785493144,5807.601818007226,7.895969677664011,21.732516141960737,2019
+1995,68,"(65,70]",College,66779.57930119416,5827.422984621586,11.45953871504157,19.262965231704467,2019
+1995,68,"(65,70]",College,58424.34179566564,6243.667483523127,9.357375604938273,21.033670215083394,2019
+1995,24,"(20,25]",College,15.812436974789916,15.658721625343716,1.0098165963431784,3621.7849461861915,2019
+1995,24,"(20,25]",College,15.812436974789916,19.028319949784766,0.8309949074074074,3588.671668769195,2019
+1995,24,"(20,25]",College,15.812436974789916,19.821166614359132,0.7977551111111112,3582.711626054489,2019
+1995,24,"(20,25]",College,15.812436974789916,18.433684951353992,0.8578011947431303,3557.751327756251,2019
+1995,24,"(20,25]",College,15.812436974789916,16.25335662377449,0.9728720867208671,3550.671670367512,2019
+1995,52,"(50,55]",HS,997.3254312251216,124.87334967046255,7.986695590828924,3874.1522504730565,2019
+1995,52,"(50,55]",HS,997.3254312251216,124.87334967046255,7.986695590828924,4036.6061525779796,2019
+1995,52,"(50,55]",HS,997.3254312251216,124.87334967046255,7.986695590828924,3986.6258833437414,2019
+1995,52,"(50,55]",HS,997.3254312251216,124.87334967046255,7.986695590828924,3782.5805874177977,2019
+1995,52,"(50,55]",HS,997.3254312251216,124.87334967046255,7.986695590828924,3998.1777468136584,2019
+1995,38,"(35,40]",HS,12.425440070765148,17.83904995292322,0.6965303703703705,6560.7350328257,2019
+1995,38,"(35,40]",HS,15.173746130030962,17.83904995292322,0.8505916049382717,6518.373637690638,2019
+1995,38,"(35,40]",HS,17.844635117204778,17.83904995292322,1.0003130864197531,6527.392089844989,2019
+1995,38,"(35,40]",HS,23.999292348518356,17.83904995292322,1.3453234567901236,6645.938112624461,2019
+1995,38,"(35,40]",HS,13.896364440513047,17.83904995292322,0.7789856790123457,6566.3048581289595,2019
+1995,45,"(40,45]",College,253.54091110128263,103.07006639466748,2.4598888888888895,10760.612169417916,2019
+1995,45,"(40,45]",College,253.54091110128263,53.517149858769656,4.737563786008231,10660.806543942059,2019
+1995,45,"(40,45]",College,253.54091110128263,71.35619981169287,3.553172839506173,10486.008300293026,2019
+1995,45,"(40,45]",College,253.54091110128263,53.517149858769656,4.737563786008231,10977.268857906849,2019
+1995,45,"(40,45]",College,253.54091110128263,81.26678311887244,3.1198590785907863,10748.687524429806,2019
+1995,57,"(55,60]",HS,71.41724900486511,168.47991622205262,0.4238917647058824,10194.13514860426,2019
+1995,57,"(55,60]",HS,71.41724900486511,168.47991622205262,0.4238917647058824,10186.057993016962,2019
+1995,57,"(55,60]",HS,67.35285272003539,168.47991622205262,0.39976784313725494,10268.509080091066,2019
+1995,57,"(55,60]",HS,67.54639540026537,168.47991622205262,0.40091660130718954,10447.94416698147,2019
+1995,57,"(55,60]",HS,71.41724900486511,168.47991622205262,0.4238917647058824,10194.851213871763,2019
+1995,49,"(45,50]",College,2537.2477664750113,753.204331345647,3.36860485380117,2077.326768201713,2019
+1995,49,"(45,50]",College,2537.2477664750113,753.204331345647,3.36860485380117,1698.827456032623,2019
+1995,49,"(45,50]",College,2537.2477664750113,753.204331345647,3.36860485380117,1754.0847440220641,2019
+1995,49,"(45,50]",College,2537.2477664750113,753.204331345647,3.36860485380117,1702.6871403348819,2019
+1995,49,"(45,50]",College,2537.2477664750113,753.204331345647,3.36860485380117,1727.4526593854202,2019
+1995,78,"(75,80]",HS,993.667474568775,59.46349984307739,16.710544740740744,4749.81631519025,2019
+1995,78,"(75,80]",HS,962.739354268023,59.46349984307739,16.190425333333334,4911.112535045706,2019
+1995,78,"(75,80]",HS,975.8421937195932,59.46349984307739,16.410776296296298,4880.5448521205235,2019
+1995,78,"(75,80]",HS,937.2110747456878,59.46349984307739,15.761115259259261,4626.983225856271,2019
+1995,78,"(75,80]",HS,958.2878726227334,59.46349984307739,16.115564592592595,4908.367081033725,2019
+1995,75,"(70,75]",NoHS,555.2739495798319,29.731749921538697,18.676127407407407,4763.300644366345,2019
+1995,75,"(70,75]",NoHS,549.6612118531623,29.731749921538697,18.487348148148147,4925.609034176586,2019
+1995,75,"(70,75]",NoHS,598.0468819106591,29.731749921538697,20.114755555555558,4895.323503870307,2019
+1995,75,"(70,75]",NoHS,544.2420168067227,29.731749921538697,18.30507851851852,4641.742698364686,2019
+1995,75,"(70,75]",NoHS,572.8863334807608,29.731749921538697,19.268503703703708,4920.634212935443,2019
+1995,46,"(45,50]",NoHS,234.22535161432995,55.499266520205566,4.220332380952382,4825.192833773793,2019
+1995,46,"(45,50]",NoHS,458.65744360902255,55.499266520205566,8.264207301587302,4718.2162447927,2019
+1995,46,"(45,50]",NoHS,27.231455108359132,55.499266520205566,0.49066333333333334,4860.9946729570265,2019
+1995,46,"(45,50]",NoHS,549.8547545333922,55.499266520205566,9.90742380952381,2923.1668650176643,2019
+1995,46,"(45,50]",NoHS,363.60863334807607,55.499266520205566,6.551593492063493,4792.143762719907,2019
+1995,62,"(60,65]",HS,69.67536488279522,29.731749921538697,2.3434666666666666,6811.419623859971,2019
+1995,62,"(60,65]",HS,69.67536488279522,29.731749921538697,2.3434666666666666,6711.3854215373085,2019
+1995,62,"(60,65]",HS,69.67536488279522,29.731749921538697,2.3434666666666666,6819.889078681405,2019
+1995,62,"(60,65]",HS,69.67536488279522,29.731749921538697,2.3434666666666666,6807.982874287825,2019
+1995,62,"(60,65]",HS,69.67536488279522,29.731749921538697,2.3434666666666666,6718.631831269677,2019
+1995,58,"(55,60]",College,8925.704555506414,89.1952497646161,100.0692814814815,749.3230137099894,2019
+1995,58,"(55,60]",College,9216.018575851394,89.1952497646161,103.32409629629632,669.6113479178077,2019
+1995,58,"(55,60]",College,8925.704555506414,89.1952497646161,100.0692814814815,668.1857995736461,2019
+1995,58,"(55,60]",College,9535.36399823087,89.1952497646161,106.90439259259259,669.8660942353438,2019
+1995,58,"(55,60]",College,8815.385227775321,89.1952497646161,98.83245185185186,670.3823584340389,2019
+1995,68,"(65,70]",NoHS,210.38089340999556,47.57079987446191,4.42247962962963,8286.75844696644,2019
+1995,68,"(65,70]",NoHS,210.38089340999556,47.57079987446191,4.42247962962963,8078.707202543892,2019
+1995,68,"(65,70]",NoHS,210.38089340999556,47.57079987446191,4.42247962962963,8092.259626587924,2019
+1995,68,"(65,70]",NoHS,210.38089340999556,47.57079987446191,4.42247962962963,8443.180133783122,2019
+1995,68,"(65,70]",NoHS,210.38089340999556,47.57079987446191,4.42247962962963,8265.438820856762,2019
+1995,77,"(75,80]",HS,5266.296329057939,634.2773316594922,8.302829166666667,241.58361433093108,2019
+1995,77,"(75,80]",HS,7490.101724900487,634.2773316594922,11.808875,212.71110241217744,2019
+1995,77,"(75,80]",HS,5237.264927023441,634.2773316594922,8.257058333333333,212.4020132432484,2019
+1995,77,"(75,80]",HS,5399.84077841663,634.2773316594922,8.513375,218.1978568405982,2019
+1995,77,"(75,80]",HS,7296.5590446705,634.2773316594922,11.503736111111111,217.2155422795112,2019
+1995,37,"(35,40]",HS,10267.439186200796,398.4054489486186,25.771332227750136,253.50885895492434,2019
+1995,37,"(35,40]",HS,10308.083149049095,398.4054489486186,25.87334881149807,228.0951709847959,2019
+1995,37,"(35,40]",HS,10267.439186200796,398.4054489486186,25.771332227750136,223.73368093130875,2019
+1995,37,"(35,40]",HS,10267.439186200796,398.4054489486186,25.771332227750136,229.3157566784314,2019
+1995,37,"(35,40]",HS,10279.051747014595,398.4054489486186,25.800479823106688,226.5162647734118,2019
+1995,54,"(50,55]",NoHS,0,69.37408315025698,0,5137.363798516814,2019
+1995,54,"(50,55]",NoHS,0,71.35619981169287,0,5053.262057226063,2019
+1995,54,"(50,55]",NoHS,0,79.28466645743653,0,5103.410604821881,2019
+1995,54,"(50,55]",NoHS,0,71.35619981169287,0,5094.237205686747,2019
+1995,54,"(50,55]",NoHS,0,61.44561650451331,0,5123.833026258012,2019
+1995,69,"(65,70]",College,1358.476072534277,152.62298293056534,8.90086176046176,2937.3015458108193,2019
+1995,69,"(65,70]",College,1370.0886333480762,152.62298293056534,8.97694834054834,2512.9364448024016,2019
+1995,69,"(65,70]",College,1373.185316231756,152.62298293056534,8.997238095238094,2593.8733029689397,2019
+1995,69,"(65,70]",College,1364.0888102609465,152.62298293056534,8.93763694083694,2514.9335015782367,2019
+1995,69,"(65,70]",College,1380.5399380804954,152.62298293056534,9.045426262626261,2622.228223281019,2019
+1995,42,"(40,45]",NoHS,0,2.3785399937230958,0,5997.970241664203,2019
+1995,42,"(40,45]",NoHS,0,2.3785399937230958,0,6039.774880678379,2019
+1995,42,"(40,45]",NoHS,0,2.3785399937230958,0,6038.843386380295,2019
+1995,42,"(40,45]",NoHS,0,2.3785399937230958,0,6026.951437424735,2019
+1995,42,"(40,45]",NoHS,0,2.3785399937230958,0,6041.442879730445,2019
+1995,43,"(40,45]",College,202.8327288810261,73.3383164731288,2.7657129129129125,2959.241528261412,2019
+1995,43,"(40,45]",College,209.60672268907564,73.3383164731288,2.8580792792792793,3080.6489195534045,2019
+1995,43,"(40,45]",College,200.12313135780627,73.3383164731288,2.728766366366366,3036.813702115637,2019
+1995,43,"(40,45]",College,204.381070322866,73.3383164731288,2.786825225225225,2884.153712894936,2019
+1995,43,"(40,45]",College,202.4456435205661,73.3383164731288,2.760434834834834,3058.492344240498,2019
+1995,57,"(55,60]",HS,555.9513489606369,75.32043313456471,7.381149122807017,4462.425679814691,2019
+1995,57,"(55,60]",HS,524.790977443609,59.46349984307739,8.82543037037037,4639.762240153347,2019
+1995,57,"(55,60]",HS,658.7225121627598,59.46349984307739,11.077762222222223,4589.129119530876,2019
+1995,57,"(55,60]",HS,567.1768244139762,71.35619981169287,7.948529012345681,4349.290185996686,2019
+1995,57,"(55,60]",HS,620.8075011057055,67.39196648882105,9.211891764705882,4599.4816228258505,2019
+1995,55,"(50,55]",HS,394.24643962848296,89.1952497646161,4.420038518518519,4619.553345152027,2019
+1995,55,"(50,55]",HS,394.24643962848296,89.1952497646161,4.420038518518519,4803.134150595092,2019
+1995,55,"(50,55]",HS,394.40127377266697,89.1952497646161,4.421774419753087,4750.718173606378,2019
+1995,55,"(50,55]",HS,394.24643962848296,89.1952497646161,4.420038518518519,4502.434207171426,2019
+1995,55,"(50,55]",HS,394.24643962848296,89.1952497646161,4.420038518518519,4215.730843592804,2019
+1995,55,"(50,55]",College,399.39467492260064,110.99853304041113,3.5981977777777785,3874.6045342632956,2019
+1995,55,"(50,55]",College,380.50490933215394,120.90911634759071,3.147032422586521,4028.149206562114,2019
+1995,55,"(50,55]",College,405.2977266696152,128.8375829933344,3.145803555555555,3982.1959845961783,2019
+1995,55,"(50,55]",College,367.03433878814684,101.08794973323158,3.63084165577342,3775.815188342105,2019
+1995,55,"(50,55]",College,363.5699248120301,128.8375829933344,2.821924444444444,3989.8383971529283,2019
+1995,23,"(20,25]",College,46.19863777089783,23.785399937230956,1.942310740740741,5441.39441025883,2019
+1995,23,"(20,25]",College,15.231808934099956,23.785399937230956,0.6403848148148149,5425.691171247952,2019
+1995,23,"(20,25]",College,46.19863777089783,23.785399937230956,1.942310740740741,5456.601013107063,2019
+1995,23,"(20,25]",College,46.19863777089783,23.785399937230956,1.942310740740741,5420.813992715521,2019
+1995,23,"(20,25]",College,46.19863777089783,23.785399937230956,1.942310740740741,5396.366020739919,2019
+1995,71,"(70,75]",HS,111.28704113224238,65.40984982738514,1.7013804713804714,8433.944608339232,2019
+1995,71,"(70,75]",HS,122.12543122512163,81.26678311887244,1.5027718157181573,8386.871141504893,2019
+1995,71,"(70,75]",HS,121.35126050420168,79.28466645743653,1.5305766666666667,8476.7406265157,2019
+1995,71,"(70,75]",HS,121.93188854489165,81.26678311887244,1.5003902439024392,8487.844414123396,2019
+1995,71,"(70,75]",HS,120.77063246351172,81.26678311887244,1.4861008130081301,8307.59640420273,2019
+1995,59,"(55,60]",College,2969.9704909332154,261.6393993095406,11.351388585858585,318.9255190218015,2019
+1995,59,"(55,60]",College,2186.0645731977,1006.9152640094438,2.1710511811023623,204.8733691525345,2019
+1995,59,"(55,60]",College,1053.8398938522778,917.7200142448279,1.1483239740820734,109.84202856469145,2019
+1995,59,"(55,60]",College,3103.9020256523663,1006.9152640094438,3.0825851356080496,290.96421513796554,2019
+1995,59,"(55,60]",College,1986.134984520124,202.17589946646316,9.823796949891067,199.27955353857251,2019
+1995,43,"(40,45]",College,11944.486510393632,527.243031941953,22.654612364243942,404.5399506013285,2019
+1995,43,"(40,45]",College,11944.486510393632,527.243031941953,22.654612364243942,360.5208216451983,2019
+1995,43,"(40,45]",College,11944.486510393632,527.243031941953,22.654612364243942,359.0329730075358,2019
+1995,43,"(40,45]",College,11944.486510393632,527.243031941953,22.654612364243942,364.719192228634,2019
+1995,43,"(40,45]",College,11944.486510393632,527.243031941953,22.654612364243942,362.30141130840855,2019
+1995,75,"(70,75]",College,355.7314462627156,65.40984982738514,5.4384996632996625,9535.708955831644,2019
+1995,75,"(70,75]",College,354.18310482087577,65.40984982738514,5.414828282828283,9416.983152014995,2019
+1995,75,"(70,75]",College,355.7314462627156,65.40984982738514,5.4384996632996625,9777.85085457021,2019
+1995,75,"(70,75]",College,354.18310482087577,65.40984982738514,5.414828282828283,9534.390952442624,2019
+1995,75,"(70,75]",College,354.18310482087577,65.40984982738514,5.414828282828283,9560.05906080465,2019
+1995,24,"(20,25]",College,-94.8165590446705,69.37408315025698,-1.3667432380952378,4218.4657899663125,2019
+1995,24,"(20,25]",College,-94.8165590446705,69.37408315025698,-1.3667432380952378,4265.6047279265395,2019
+1995,24,"(20,25]",College,-94.8165590446705,69.37408315025698,-1.3667432380952378,4255.825909693419,2019
+1995,24,"(20,25]",College,-94.8165590446705,69.37408315025698,-1.3667432380952378,4309.317256672819,2019
+1995,24,"(20,25]",College,-94.8165590446705,69.37408315025698,-1.3667432380952378,4241.632347429955,2019
+1995,44,"(40,45]",College,2356.9627598407787,525.2609152805171,4.487222809224319,2383.0997985732765,2019
+1995,44,"(40,45]",College,2356.9627598407787,525.2609152805171,4.487222809224319,1907.2517899900918,2019
+1995,44,"(40,45]",College,2356.9627598407787,525.2609152805171,4.487222809224319,2118.646975790628,2019
+1995,44,"(40,45]",College,2356.9627598407787,525.2609152805171,4.487222809224319,1934.5252027286194,2019
+1995,44,"(40,45]",College,2356.9627598407787,525.2609152805171,4.487222809224319,1989.0600020078575,2019
+1995,60,"(55,60]",HS,260.70199026979213,19.22653161592836,13.559491408934708,7718.357472670502,2019
+1995,60,"(55,60]",HS,286.2496240601504,19.821166614359132,14.441613333333335,7756.726912600682,2019
+1995,60,"(55,60]",HS,245.2185758513932,27.749633260102783,8.836822222222224,7734.98229041132,2019
+1995,60,"(55,60]",HS,297.08801415302963,29.731749921538697,9.992281481481482,7890.078102289675,2019
+1995,60,"(55,60]",HS,251.0248562582928,49.55291653589783,5.065793777777778,7665.440519086728,2019
+1995,66,"(65,70]",NoHS,102.57762052189297,9.910583307179566,10.350311111111111,8383.311687147852,2019
+1995,66,"(65,70]",NoHS,102.57762052189297,9.910583307179566,10.350311111111111,8224.444970717854,2019
+1995,66,"(65,70]",NoHS,102.57762052189297,9.910583307179566,10.350311111111111,8298.957508912534,2019
+1995,66,"(65,70]",NoHS,102.57762052189297,9.910583307179566,10.350311111111111,8662.402465313253,2019
+1995,66,"(65,70]",NoHS,102.57762052189297,9.910583307179566,10.350311111111111,8458.633078174622,2019
+1995,69,"(65,70]",College,8186.874727996462,358.7631157199002,22.819722455494173,364.97724673939905,2019
+1995,69,"(65,70]",College,8457.81512605042,358.7631157199002,23.57492940454267,321.7025879569825,2019
+1995,69,"(65,70]",College,8179.1330207872625,358.7631157199002,22.79814357274402,320.4869652084005,2019
+1995,69,"(65,70]",College,8233.305616983636,358.7631157199002,22.949141804788223,331.37063960688,2019
+1995,69,"(65,70]",College,8156.875612560814,358.7631157199002,22.73610428483733,329.7011716154546,2019
+1995,45,"(40,45]",HS,3.154745687748784,77.30254979600063,0.040810370370370365,5569.9112352386755,2019
+1995,45,"(40,45]",HS,6.251428571428572,65.40984982738514,0.09557319865319865,5492.446124270946,2019
+1995,45,"(40,45]",HS,6.638513931888545,67.39196648882105,0.09850601307189541,5547.431884680942,2019
+1995,45,"(40,45]",HS,1.6064042459088899,71.35619981169287,0.02251246913580247,5538.8176856002065,2019
+1995,45,"(40,45]",HS,33.5409464838567,69.37408315025698,0.48347949206349194,5568.60216885429,2019
+1995,26,"(25,30]",HS,6.154657231313578,33.69598324441053,0.18265254901960784,4754.990862230474,2019
+1995,26,"(25,30]",HS,6.154657231313578,33.69598324441053,0.18265254901960784,4681.6846290462445,2019
+1995,26,"(25,30]",HS,6.154657231313578,33.69598324441053,0.18265254901960784,4692.855423924339,2019
+1995,26,"(25,30]",HS,6.154657231313578,33.69598324441053,0.18265254901960784,4662.8391059279,2019
+1995,26,"(25,30]",HS,6.154657231313578,33.69598324441053,0.18265254901960784,4682.0431697017475,2019
+1995,31,"(30,35]",College,46.93409995577178,168.47991622205262,0.2785738562091503,6787.95987332671,2019
+1995,31,"(30,35]",College,46.93409995577178,168.47991622205262,0.2785738562091503,6820.351312703955,2019
+1995,31,"(30,35]",College,46.93409995577178,168.47991622205262,0.2785738562091503,6832.299305887604,2019
+1995,31,"(30,35]",College,46.93409995577178,168.47991622205262,0.2785738562091503,6922.150169131282,2019
+1995,31,"(30,35]",College,46.93409995577178,168.47991622205262,0.2785738562091503,6855.128947753305,2019
+1995,48,"(45,50]",College,3676.923839009288,210.1043661122068,17.500463731656183,1451.5926844026615,2019
+1995,48,"(45,50]",College,3694.342680229987,200.19378280502724,18.453833223322334,1297.7101681732076,2019
+1995,48,"(45,50]",College,3719.5032286598853,212.08648277364273,17.537672274143304,1292.1485027976505,2019
+1995,48,"(45,50]",College,3682.730119416188,303.2638491996948,12.143650254175743,1302.2169291814648,2019
+1995,48,"(45,50]",College,3684.6655462184876,200.19378280502724,18.405494389438946,1302.212714420166,2019
+1995,42,"(40,45]",NoHS,7.354621848739495,14.865874960769348,0.49473185185185187,8268.346201841223,2019
+1995,42,"(40,45]",NoHS,7.354621848739495,14.865874960769348,0.49473185185185187,8325.974901932323,2019
+1995,42,"(40,45]",NoHS,7.354621848739495,14.865874960769348,0.49473185185185187,8324.69081464424,2019
+1995,42,"(40,45]",NoHS,7.354621848739495,14.865874960769348,0.49473185185185187,8308.297477062108,2019
+1995,42,"(40,45]",NoHS,7.354621848739495,14.865874960769348,0.49473185185185187,8328.274278733332,2019
+1995,72,"(70,75]",College,4546.511101282618,356.7809990584644,12.743142469135803,2221.4835310605804,2019
+1995,72,"(70,75]",College,4546.511101282618,356.7809990584644,12.743142469135803,2091.511688738291,2019
+1995,72,"(70,75]",College,4545.7369305616985,356.7809990584644,12.740972592592593,1968.8953776587157,2019
+1995,72,"(70,75]",College,4549.027156125608,356.7809990584644,12.750194567901234,1973.6843797778442,2019
+1995,72,"(70,75]",College,4543.801503759399,356.7809990584644,12.735547901234568,2217.755115589546,2019
+1995,73,"(70,75]",HS,453.8575851393189,67.39196648882105,6.73459477124183,4828.580091982753,2019
+1995,73,"(70,75]",HS,453.8575851393189,67.39196648882105,6.73459477124183,5020.480047711471,2019
+1995,73,"(70,75]",HS,453.8575851393189,67.39196648882105,6.73459477124183,4966.209224728917,2019
+1995,73,"(70,75]",HS,453.8575851393189,67.39196648882105,6.73459477124183,4705.748816465837,2019
+1995,73,"(70,75]",HS,453.8575851393189,67.39196648882105,6.73459477124183,4993.131428044753,2019
+1995,41,"(40,45]",HS,407.13638213180013,95.14159974892382,4.279267777777779,7271.374022791193,2019
+1995,41,"(40,45]",HS,522.3329854046882,95.14159974892382,5.49005888888889,4265.513891065806,2019
+1995,41,"(40,45]",HS,390.10462627156124,95.14159974892382,4.100252962962964,7263.669950289615,2019
+1995,41,"(40,45]",HS,324.90009730207873,95.14159974892382,3.414911018518519,7344.377299649794,2019
+1995,41,"(40,45]",HS,256.7730738611234,95.14159974892382,2.69885175925926,7274.5823781715135,2019
+1995,80,"(75,80]",HS,254256.82547545334,5331.893819262607,47.686025658818664,12.843548598773811,2019
+1995,80,"(75,80]",HS,254369.27377266696,5450.820818948761,46.66623288888889,12.928149932801253,2019
+1995,80,"(75,80]",HS,254387.27324192834,5312.072652648248,47.888515439469316,13.087769245243456,2019
+1995,80,"(75,80]",HS,255960.58168951792,5272.430319419529,48.546982355889725,12.470737026418899,2019
+1995,80,"(75,80]",HS,255207.89420610352,5351.714985876965,47.68712363786009,12.524370155609386,2019
+1995,51,"(50,55]",College,4277.293233082707,654.0984982738512,6.5392188552188575,522.2969723303252,2019
+1995,51,"(50,55]",College,4277.293233082707,654.0984982738512,6.5392188552188575,465.4643708920004,2019
+1995,51,"(50,55]",College,4277.293233082707,654.0984982738512,6.5392188552188575,463.543426279282,2019
+1995,51,"(50,55]",College,4277.293233082707,654.0984982738512,6.5392188552188575,470.8848398498615,2019
+1995,51,"(50,55]",College,4277.293233082707,654.0984982738512,6.5392188552188575,467.7632701445341,2019
+1995,60,"(55,60]",HS,21611.74984520124,3290.3136579836164,6.568294725568943,33.49772843884923,2019
+1995,60,"(55,60]",HS,21883.48376824414,3409.240657669771,6.418873281653747,40.025483906567764,2019
+1995,60,"(55,60]",HS,21470.947545333922,3409.240657669771,6.297867971576227,35.10314700103088,2019
+1995,60,"(55,60]",HS,21627.52357363998,3092.1019918400248,6.994440555555555,38.62917136370322,2019
+1995,60,"(55,60]",HS,21929.64369747899,3131.744325068743,7.002373572433193,33.63512995488385,2019
+1995,42,"(40,45]",HS,113.41601061477223,16.45156828991808,6.893933065595717,5679.882187442045,2019
+1995,42,"(40,45]",HS,113.41601061477223,16.847991622205264,6.731722875816994,5642.013834745062,2019
+1995,42,"(40,45]",HS,113.41601061477223,18.235473285210404,6.219526570048309,5684.286598406309,2019
+1995,42,"(40,45]",HS,-2.709597523219814,18.235473285210404,-0.14858937198067632,5671.637947980613,2019
+1995,42,"(40,45]",HS,113.41601061477223,18.433684951353992,6.152649940262844,5657.748422146419,2019
+1995,32,"(30,35]",HS,-184.05908889871736,47.57079987446191,-3.869161111111111,6787.95987332671,2019
+1995,32,"(30,35]",HS,-184.05908889871736,47.57079987446191,-3.869161111111111,6820.351312703955,2019
+1995,32,"(30,35]",HS,-184.05908889871736,47.57079987446191,-3.869161111111111,6832.299305887604,2019
+1995,32,"(30,35]",HS,-184.05908889871736,47.57079987446191,-3.869161111111111,6922.150169131282,2019
+1995,32,"(30,35]",HS,-184.05908889871736,47.57079987446191,-3.869161111111111,6855.128947753305,2019
+1995,81,"(80,85]",NoHS,39.28916408668731,12.487334967046253,3.1463209876543212,8630.73829592903,2019
+1995,81,"(80,85]",NoHS,39.48270676691729,12.883758299333435,3.0645333333333333,8591.876406690819,2019
+1995,81,"(80,85]",NoHS,39.48270676691729,13.676604963907801,2.88687922705314,8643.55869344324,2019
+1995,81,"(80,85]",NoHS,39.48270676691729,12.883758299333435,3.0645333333333333,8648.212010613872,2019
+1995,81,"(80,85]",NoHS,39.28916408668731,12.685546633189844,3.0971597222222225,8651.752027406928,2019
+1995,45,"(40,45]",HS,9.096505970809377,7.730254979600061,1.1767407407407409,7025.403572003124,2019
+1995,45,"(40,45]",HS,9.096505970809377,7.730254979600061,1.1767407407407409,7058.214705373064,2019
+1995,45,"(40,45]",HS,9.096505970809377,7.730254979600061,1.1767407407407409,7128.967890785489,2019
+1995,45,"(40,45]",HS,9.096505970809377,7.730254979600061,1.1767407407407409,7024.813185644943,2019
+1995,45,"(40,45]",HS,9.096505970809377,7.730254979600061,1.1767407407407409,7118.977251715058,2019
+1995,48,"(45,50]",HS,325.09363998230873,114.96276636328297,2.8278167816091955,7932.036401913128,2019
+1995,48,"(45,50]",HS,400.8849535603715,97.12371641035975,4.127570158730159,4616.814418441594,2019
+1995,48,"(45,50]",HS,365.292454666077,81.26678311887244,4.494978644986451,4561.933935492161,2019
+1995,48,"(45,50]",HS,311.75854931446264,95.14159974892382,3.2767848148148153,8259.745365414781,2019
+1995,48,"(45,50]",HS,317.15839009287924,45.588683213026,6.956954396135266,7966.290919312118,2019
+1995,51,"(50,55]",College,34.295762936753654,25.76751659866687,1.3309688888888893,6227.833415622236,2019
+1995,51,"(50,55]",College,36.386023883237506,35.67809990584644,1.019841975308642,6240.196428841698,2019
+1995,51,"(50,55]",College,33.13450685537373,33.69598324441053,0.9833369934640522,6180.642836636008,2019
+1995,51,"(50,55]",College,36.289252543122515,43.606566551590085,0.8321969696969699,6310.169915582547,2019
+1995,51,"(50,55]",College,28.044334365325078,31.713866582974614,0.8842924999999999,6248.713055140886,2019
+1995,34,"(30,35]",HS,69.46246793454223,57.48138318164148,1.2084341762452107,4826.851320628159,2019
+1995,34,"(30,35]",HS,68.12702344095533,57.48138318164148,1.1852015325670497,4851.222705142148,2019
+1995,34,"(30,35]",HS,71.22370632463512,57.48138318164148,1.2390743295019158,4878.153092967292,2019
+1995,34,"(30,35]",HS,58.25634674922601,57.48138318164148,1.013481992337165,4912.486426558726,2019
+1995,34,"(30,35]",HS,68.82377708978328,57.48138318164148,1.1973229118773947,4900.404461461216,2019
+1995,43,"(40,45]",HS,497.5982308712959,144.69451628482167,3.438957077625571,3585.8889109029246,2019
+1995,43,"(40,45]",HS,63.09491375497568,144.69451628482167,0.43605601217656015,6293.199001477029,2019
+1995,43,"(40,45]",HS,100.83573639982309,144.69451628482167,0.6968870624048706,6332.630324479104,2019
+1995,43,"(40,45]",HS,381.47262273330387,144.69451628482167,2.6364,3482.3363153458595,2019
+1995,43,"(40,45]",HS,79.54604157452454,144.69451628482167,0.5497515981735159,6347.502563268259,2019
+1995,51,"(50,55]",HS,3578.991242812915,227.94341606513,15.70122666666667,4728.538424224795,2019
+1995,51,"(50,55]",HS,936.1659442724459,227.94341606513,4.107010241545894,4926.264698219681,2019
+1995,51,"(50,55]",HS,1162.6108801415303,227.94341606513,5.100436328502416,4864.8987993368855,2019
+1995,51,"(50,55]",HS,2160.323396727112,227.94341606513,9.47745468599034,4615.156883829705,2019
+1995,51,"(50,55]",HS,1440.7317116320212,227.94341606513,6.32056734299517,4881.569396185362,2019
+1995,43,"(40,45]",HS,131.376771340115,206.14013278933496,0.6373177777777779,5902.339790192642,2019
+1995,43,"(40,45]",HS,131.376771340115,206.14013278933496,0.6373177777777779,5821.136015729386,2019
+1995,43,"(40,45]",HS,131.376771340115,206.14013278933496,0.6373177777777779,5816.222688807612,2019
+1995,43,"(40,45]",HS,131.376771340115,206.14013278933496,0.6373177777777779,5878.429767765382,2019
+1995,43,"(40,45]",HS,131.376771340115,206.14013278933496,0.6373177777777779,5837.305896021875,2019
+1995,53,"(50,55]",College,5295.521273772667,568.8674818321072,9.30888377855207,180.4027161765539,2019
+1995,53,"(50,55]",College,5295.521273772667,568.8674818321072,9.30888377855207,162.23289368213017,2019
+1995,53,"(50,55]",College,5295.521273772667,568.8674818321072,9.30888377855207,161.69417232923178,2019
+1995,53,"(50,55]",College,5295.521273772667,568.8674818321072,9.30888377855207,163.01604214210892,2019
+1995,53,"(50,55]",College,5295.521273772667,568.8674818321072,9.30888377855207,160.87343854614383,2019
+1995,63,"(60,65]",NoHS,218.703228659885,71.35619981169287,3.0649506172839507,7116.081205329889,2019
+1995,63,"(60,65]",NoHS,218.703228659885,71.35619981169287,3.0649506172839507,7110.442895239876,2019
+1995,63,"(60,65]",NoHS,218.703228659885,71.35619981169287,3.0649506172839507,7167.998403631126,2019
+1995,63,"(60,65]",NoHS,218.703228659885,71.35619981169287,3.0649506172839507,7293.254213053311,2019
+1995,63,"(60,65]",NoHS,218.703228659885,71.35619981169287,3.0649506172839507,7116.58105926723,2019
+1995,63,"(60,65]",HS,182.31720477664751,120.90911634759071,1.5078863387978143,9531.23779631485,2019
+1995,63,"(60,65]",HS,171.67235736399823,75.32043313456471,2.279226900584795,9578.61941311361,2019
+1995,63,"(60,65]",HS,169.44661654135336,37.660216567282355,4.499353216374268,9551.767435136217,2019
+1995,63,"(60,65]",HS,173.4142414860681,107.03429971753931,1.6201744855967077,9743.292001011714,2019
+1995,63,"(60,65]",HS,169.6208049535604,23.785399937230956,7.1312992592592614,9465.891759952916,2019
+1995,61,"(60,65]",HS,826.8143299425034,53.517149858769656,15.449520987654322,5150.602116999276,2019
+1995,61,"(60,65]",HS,1061.3106413091552,126.85546633189846,8.366298055555555,5354.7126287180245,2019
+1995,61,"(60,65]",HS,877.5612206988059,47.57079987446191,18.44747666666667,5293.625939677207,2019
+1995,61,"(60,65]",HS,881.5869084475896,47.57079987446191,18.532101851851856,5019.27913687599,2019
+1995,61,"(60,65]",HS,655.277452454666,99.10583307179566,6.611895911111111,5303.7851768188775,2019
+1995,46,"(45,50]",HS,922.0373286156569,148.65874960769352,6.2023751111111105,3278.1884018417136,2019
+1995,46,"(45,50]",HS,921.4567005749668,148.65874960769352,6.198469333333332,3415.2675413129523,2019
+1995,46,"(45,50]",HS,938.4884564352056,148.65874960769352,6.3130388148148135,3372.7239559725945,2019
+1995,46,"(45,50]",HS,934.249871738169,148.65874960769352,6.284526637037036,3199.5835524442896,2019
+1995,46,"(45,50]",HS,922.3276426360019,148.65874960769352,6.204327999999999,3384.281302521895,2019
+1995,84,"(80,85]",NoHS,775.7190623617869,29.731749921538697,26.09059555555556,4278.311287572851,2019
+1995,84,"(80,85]",NoHS,747.4618310482088,33.69598324441053,22.182520261437908,4422.882434052401,2019
+1995,84,"(80,85]",NoHS,747.6553737284388,33.69598324441053,22.188264052287582,4397.697301912542,2019
+1995,84,"(80,85]",NoHS,779.9770013268466,35.67809990584644,21.86150617283951,4170.496220865119,2019
+1995,84,"(80,85]",NoHS,749.3972578505087,39.642333228718265,18.903964444444448,4419.7168393263455,2019
+1995,36,"(35,40]",HS,40.10204334365325,118.92699968615479,0.33719881481481484,6417.12681945983,2019
+1995,36,"(35,40]",HS,45.327695709862894,118.92699968615479,0.3811388148148149,6404.0465235826105,2019
+1995,36,"(35,40]",HS,41.069756744803186,118.92699968615479,0.3453358518518519,6420.7251111323285,2019
+1995,36,"(35,40]",HS,44.35998230871296,118.92699968615479,0.3730017777777778,6306.686215293945,2019
+1995,36,"(35,40]",HS,41.45684210526316,118.92699968615479,0.3485906666666667,6413.784076855895,2019
+1995,38,"(35,40]",NoHS,15.096329057938965,89.1952497646161,0.16925037037037038,3580.2967021393933,2019
+1995,38,"(35,40]",NoHS,15.096329057938965,89.1952497646161,0.16925037037037038,3550.578159925695,2019
+1995,38,"(35,40]",NoHS,15.096329057938965,89.1952497646161,0.16925037037037038,3533.781345872844,2019
+1995,38,"(35,40]",NoHS,15.096329057938965,89.1952497646161,0.16925037037037038,3469.5907453997543,2019
+1995,38,"(35,40]",NoHS,15.096329057938965,89.1952497646161,0.16925037037037038,3537.4425412268515,2019
+1995,67,"(65,70]",College,28108.20344980097,1702.6382121734496,16.508617772603802,40.672002971836505,2019
+1995,67,"(65,70]",College,28156.58911985847,1811.6546285524248,15.54191879406759,45.73272698153342,2019
+1995,67,"(65,70]",College,25721.82220256524,1896.885644994169,13.560027864855453,41.04553817903476,2019
+1995,67,"(65,70]",College,27444.35205661212,1738.316312079296,15.78789306980869,49.46523555226078,2019
+1995,67,"(65,70]",College,26981.78505086245,1770.0301786622706,15.243686450167973,39.89506190918424,2019
+1995,46,"(45,50]",College,20.515524104378596,49.55291653589783,0.4140124444444445,5093.572667779653,2019
+1995,46,"(45,50]",College,20.515524104378596,49.55291653589783,0.4140124444444445,5003.854935903101,2019
+1995,46,"(45,50]",College,20.515524104378596,49.55291653589783,0.4140124444444445,5050.384073251587,2019
+1995,46,"(45,50]",College,20.515524104378596,49.55291653589783,0.4140124444444445,5046.043357667588,2019
+1995,46,"(45,50]",College,20.515524104378596,49.55291653589783,0.4140124444444445,5075.830124664792,2019
+1995,70,"(65,70]",NoHS,1774.8057319770014,79.28466645743653,22.385233000000003,5760.197935966622,2019
+1995,70,"(65,70]",NoHS,1731.6263600176912,79.28466645743653,21.840621111111112,4706.22570965361,2019
+1995,70,"(65,70]",NoHS,1735.129482529854,79.28466645743653,21.884805222222223,4830.486570849278,2019
+1995,70,"(65,70]",NoHS,1769.3091198584698,79.28466645743653,22.315905444444446,4712.685764192441,2019
+1995,70,"(65,70]",NoHS,1731.8199026979214,79.28466645743653,21.843062222222223,4786.317258086849,2019
+1995,53,"(50,55]",HS,662.9804511278196,507.4218653275938,1.3065665798611112,5562.98637226541,2019
+1995,53,"(50,55]",HS,418.5360459973463,925.6484808905715,0.4521544135141566,9397.94288660713,2019
+1995,53,"(50,55]",HS,315.93907120743035,283.44268258533566,1.1146488888888886,9522.372798444481,2019
+1995,53,"(50,55]",HS,431.0969659442725,340.9240657669771,1.2644955555555557,9793.850758523196,2019
+1995,53,"(50,55]",HS,614.5367182662538,352.8167657355925,1.7418013483146069,5743.02280956913,2019
+1995,85,"(80,85]",HS,479.9858469703671,13.081969965477029,36.69063973063973,3322.562140934869,2019
+1995,85,"(80,85]",HS,584.4988942945599,35.67809990584644,16.38256790123457,8624.406913773299,2019
+1995,85,"(80,85]",HS,598.0468819106591,29.731749921538697,20.114755555555558,8501.061800142383,2019
+1995,85,"(80,85]",HS,1784.4635117204775,15.460509959200122,115.42074074074074,11908.543530085492,2019
+1995,85,"(80,85]",HS,694.8182220256524,33.69598324441053,20.620209150326797,8457.706035488603,2019
+1995,41,"(40,45]",College,114.82887218045113,214.06859943507862,0.5364115637860083,6463.443577324664,2019
+1995,41,"(40,45]",College,114.82887218045113,214.06859943507862,0.5364115637860083,6414.77308913341,2019
+1995,41,"(40,45]",College,114.82887218045113,214.06859943507862,0.5364115637860083,6456.595512877214,2019
+1995,41,"(40,45]",College,114.82887218045113,214.06859943507862,0.5364115637860083,6528.3353789919165,2019
+1995,41,"(40,45]",College,114.82887218045113,214.06859943507862,0.5364115637860083,6466.295448774501,2019
+1995,46,"(45,50]",College,139.02170720919946,148.65874960769352,0.9351733925925924,3054.743525141326,2019
+1995,46,"(45,50]",College,139.02170720919946,148.65874960769352,0.9351733925925924,3111.4664569461474,2019
+1995,46,"(45,50]",College,137.86045112781954,148.65874960769352,0.9273618370370368,3001.769709024097,2019
+1995,46,"(45,50]",College,138.05399380804954,148.65874960769352,0.9286637629629628,3205.6977283918764,2019
+1995,46,"(45,50]",College,138.24753648827954,148.65874960769352,0.9299656888888889,3094.4528773447723,2019
+1995,79,"(75,80]",College,619.3365767359576,83.24889978030835,7.439576719576721,5689.825737480551,2019
+1995,79,"(75,80]",College,619.3365767359576,83.24889978030835,7.439576719576721,5882.094269348663,2019
+1995,79,"(75,80]",College,619.3365767359576,83.24889978030835,7.439576719576721,5848.599976058819,2019
+1995,79,"(75,80]",College,619.3365767359576,83.24889978030835,7.439576719576721,5546.439971413523,2019
+1995,79,"(75,80]",College,619.3365767359576,83.24889978030835,7.439576719576721,5877.884271259218,2019
+1995,21,"(20,25]",HS,15.291807164971251,35.67809990584644,0.42860486419753085,5440.092282573847,2019
+1995,21,"(20,25]",HS,15.291807164971251,35.67809990584644,0.42860486419753085,5436.171097298494,2019
+1995,21,"(20,25]",HS,15.291807164971251,35.67809990584644,0.42860486419753085,5429.88101672796,2019
+1995,21,"(20,25]",HS,15.291807164971251,35.67809990584644,0.42860486419753085,5447.565444945865,2019
+1995,21,"(20,25]",HS,15.291807164971251,35.67809990584644,0.42860486419753085,5398.930877297452,2019
+1995,40,"(35,40]",HS,-57.985386996904026,49.55291653589783,-1.1701710222222224,5181.886384249245,2019
+1995,40,"(35,40]",HS,-58.00474126492703,49.55291653589783,-1.1705616,5158.260520151691,2019
+1995,40,"(35,40]",HS,-57.869261388766034,49.55291653589783,-1.1678275555555557,5137.482386369294,2019
+1995,40,"(35,40]",HS,-37.08277753206546,49.55291653589783,-0.7483470222222223,5040.66045238865,2019
+1995,40,"(35,40]",HS,-58.082158337019024,49.55291653589783,-1.1721239111111112,5136.551042108266,2019
+1995,72,"(70,75]",NoHS,30.676514816452897,29.731749921538697,1.0317762962962964,6568.139601075413,2019
+1995,72,"(70,75]",NoHS,31.160371517027862,19.821166614359132,1.5720755555555554,6572.993207363642,2019
+1995,72,"(70,75]",NoHS,50.088845643520564,16.45156828991808,3.0446243641231594,6574.929721276241,2019
+1995,72,"(70,75]",NoHS,28.934630694383017,15.658721625343716,1.84782841068917,6580.045603814682,2019
+1995,72,"(70,75]",NoHS,42.48261831048209,12.883758299333435,3.297377777777778,6578.380998784329,2019
+1995,63,"(60,65]",HS,2311.0931446262716,178.3904995292322,12.95524790123457,6493.839983934433,2019
+1995,63,"(60,65]",HS,2881.8505086245027,172.44414954492444,16.711790549169862,11805.254985244985,2019
+1995,63,"(60,65]",HS,2075.7452454666077,184.33684951353993,11.260609318996416,10983.745522883983,2019
+1995,63,"(60,65]",HS,2038.9721362229102,188.30108283641175,10.828254970760234,11908.543530085492,2019
+1995,63,"(60,65]",HS,2230.3858469703673,192.26531615928357,11.600562657502866,12015.95644899762,2019
+1995,29,"(25,30]",HS,3.6386023883237506,33.69598324441053,0.10798326797385621,5147.327296181609,2019
+1995,29,"(25,30]",HS,3.5805395842547547,33.69598324441053,0.10626013071895425,5119.215083452422,2019
+1995,29,"(25,30]",HS,3.6386023883237506,33.69598324441053,0.10798326797385621,5172.897529406863,2019
+1995,29,"(25,30]",HS,3.5805395842547547,33.69598324441053,0.10626013071895425,5138.356368507952,2019
+1995,29,"(25,30]",HS,3.5805395842547547,33.69598324441053,0.10626013071895425,5143.8014165503055,2019
+1995,69,"(65,70]",College,944.6818222025653,85.23101644174427,11.08377984496124,394.79918627839794,2019
+1995,69,"(65,70]",College,944.6818222025653,85.23101644174427,11.08377984496124,396.3579890599926,2019
+1995,69,"(65,70]",College,944.6818222025653,85.23101644174427,11.08377984496124,398.0435266522949,2019
+1995,69,"(65,70]",College,944.6818222025653,85.23101644174427,11.08377984496124,385.7129375264021,2019
+1995,69,"(65,70]",College,944.6818222025653,85.23101644174427,11.08377984496124,396.23502798949846,2019
+1995,63,"(60,65]",HS,80.1847324192835,9.910583307179566,8.090818666666667,8511.759344388567,2019
+1995,63,"(60,65]",HS,82.12015922158336,9.910583307179566,8.286107555555555,8511.471234039622,2019
+1995,63,"(60,65]",HS,84.05558602388324,9.910583307179566,8.481396444444444,8519.342529900352,2019
+1995,63,"(60,65]",HS,56.959610791685094,9.910583307179566,5.747352,8200.289309817392,2019
+1995,63,"(60,65]",HS,87.92643962848297,9.910583307179566,8.871974222222223,8484.833362032225,2019
+1995,46,"(45,50]",HS,647.2067226890756,150.64086626912942,4.2963555555555555,3502.5856779697706,2019
+1995,46,"(45,50]",HS,251.70225563909776,188.30108283641175,1.336701052631579,5510.542946115949,2019
+1995,46,"(45,50]",HS,138.4797877045555,184.33684951353993,0.7512322580645161,5588.899608067632,2019
+1995,46,"(45,50]",HS,64.74002653693057,188.30108283641175,0.3438112280701755,5672.41851722905,2019
+1995,46,"(45,50]",HS,175.44643962848298,148.65874960769352,1.1801958518518516,5596.88505959734,2019
+1995,60,"(55,60]",HS,1029.8406015037594,69.37408315025698,14.844745396825394,7400.143724838215,2019
+1995,60,"(55,60]",HS,1057.0914108801414,77.30254979600063,13.674728888888884,7499.226228544413,2019
+1995,60,"(55,60]",HS,1161.8367094206105,61.44561650451331,18.90837419354839,7389.188202927876,2019
+1995,60,"(55,60]",HS,1002.5510835913312,69.37408315025698,14.451377777777774,7233.326592649745,2019
+1995,60,"(55,60]",HS,936.8433436532507,73.3383164731288,12.774268468468467,7390.209497859652,2019
+1995,63,"(60,65]",HS,200334.20900486512,1974.1881947901697,101.47675360107095,27.5604857433983,2019
+1995,63,"(60,65]",HS,135037.18598850066,4221.908488858495,31.984868062597812,27.993411513947677,2019
+1995,63,"(60,65]",HS,168877.79460415745,4202.087322244137,40.189025513626824,28.07197554343897,2019
+1995,63,"(60,65]",HS,112655.17498452013,4321.014321930291,26.071465306829765,26.94156439430704,2019
+1995,63,"(60,65]",HS,125024.21671826625,1280.4473632876,97.64104351565187,26.90515142797549,2019
+1995,53,"(50,55]",College,16984.144360902257,3686.736990270799,4.606822891278375,31.185324938107264,2019
+1995,53,"(50,55]",College,17279.87757629368,3270.4924913692566,5.28357047811448,27.718393841393784,2019
+1995,53,"(50,55]",College,16349.3243697479,3528.1676573559257,4.63394202247191,28.816234421678093,2019
+1995,53,"(50,55]",College,16541.125165855818,3567.8099905846443,4.636212469135803,27.850314891599083,2019
+1995,53,"(50,55]",College,17773.99203892083,3627.2734904277218,4.900097024893745,28.831041348917502,2019
+1995,29,"(25,30]",College,79.93312693498453,85.23101644174427,0.9378408268733851,7757.4618706214915,2019
+1995,29,"(25,30]",College,108.96452896948253,85.23101644174427,1.2784609819121446,7679.932031243088,2019
+1995,29,"(25,30]",College,105.0936753648828,85.23101644174427,1.23304496124031,7647.320829317096,2019
+1995,29,"(25,30]",College,145.73763821318002,85.23101644174427,1.7099131782945738,7715.416549207024,2019
+1995,29,"(25,30]",College,110.89995577178239,85.23101644174427,1.3011689922480618,7631.321613987746,2019
+1995,56,"(55,60]",College,1856.7517027863776,295.3353825539511,6.286926025354212,749.3230137099894,2019
+1995,56,"(55,60]",College,1857.1387881468377,295.3353825539511,6.288236689038031,669.6113479178077,2019
+1995,56,"(55,60]",College,1833.7201238390094,295.3353825539511,6.20894153616704,668.1857995736461,2019
+1995,56,"(55,60]",College,1822.6881910659001,295.3353825539511,6.171587621178225,669.8660942353438,2019
+1995,56,"(55,60]",College,1833.3330384785493,295.3353825539511,6.207630872483221,670.3823584340389,2019
+1995,35,"(30,35]",HS,4.995336576735958,27.749633260102783,0.18001450793650794,5405.656705863073,2019
+1995,35,"(30,35]",HS,4.995336576735958,27.749633260102783,0.18001450793650794,5423.456272578178,2019
+1995,35,"(30,35]",HS,4.995336576735958,27.749633260102783,0.18001450793650794,5421.5085988554965,2019
+1995,35,"(30,35]",HS,4.995336576735958,27.749633260102783,0.18001450793650794,5412.096908177953,2019
+1995,35,"(30,35]",HS,4.995336576735958,27.749633260102783,0.18001450793650794,5432.271303378764,2019
+1995,36,"(35,40]",College,-6.735285272003538,39.642333228718265,-0.16990133333333332,7545.820312637235,2019
+1995,36,"(35,40]",College,-6.735285272003538,39.642333228718265,-0.16990133333333332,7680.674918514787,2019
+1995,36,"(35,40]",College,-6.735285272003538,39.642333228718265,-0.16990133333333332,7556.917375985012,2019
+1995,36,"(35,40]",College,-6.735285272003538,39.642333228718265,-0.16990133333333332,7584.774186255023,2019
+1995,36,"(35,40]",College,-6.735285272003538,39.642333228718265,-0.16990133333333332,7593.625838592876,2019
+1995,48,"(45,50]",College,11001.933657673595,434.083548854465,25.34519837645865,237.26008743553803,2019
+1995,48,"(45,50]",College,11001.933657673595,606.5276983993896,18.13921060275962,214.0695355280252,2019
+1995,48,"(45,50]",College,11001.933657673595,374.6200490113876,29.368245737801292,210.89775718369992,2019
+1995,48,"(45,50]",College,11001.933657673595,414.2623822401059,26.557887293992554,217.59064721785526,2019
+1995,48,"(45,50]",College,11001.933657673595,547.0641985563121,20.110863929146532,213.9189779045612,2019
+1995,53,"(50,55]",College,14473.12162759841,572.831715154979,25.26592233756248,1249.2548909457264,2019
+1995,53,"(50,55]",College,14472.34745687749,572.831715154979,25.264570857362553,1134.6583285674965,2019
+1995,53,"(50,55]",College,14472.34745687749,572.831715154979,25.264570857362553,1123.8246513048853,2019
+1995,53,"(50,55]",College,14472.34745687749,572.831715154979,25.264570857362553,1032.020520819945,2019
+1995,53,"(50,55]",College,14471.960371517029,572.831715154979,25.263895117262592,1114.841971750689,2019
+1995,63,"(60,65]",HS,32.1280849181778,3.3695983244410526,9.534692810457516,6860.681216996816,2019
+1995,63,"(60,65]",HS,82.44918177797435,3.3695983244410526,24.468549019607842,6874.00188826326,2019
+1995,63,"(60,65]",HS,1.1612560813799204,3.3695983244410526,0.34462745098039216,6853.024586182008,2019
+1995,63,"(60,65]",HS,32.1280849181778,3.3695983244410526,9.534692810457516,6865.154137571638,2019
+1995,63,"(60,65]",HS,1.1612560813799204,3.3695983244410526,0.34462745098039216,6834.688788113846,2019
+1995,35,"(30,35]",College,198.09093321539143,63.42773316594923,3.123096527777778,6995.3656836515365,2019
+1995,35,"(30,35]",College,197.91674480318446,63.42773316594923,3.120350277777778,6899.124173088712,2019
+1995,35,"(30,35]",College,197.99416187527643,63.42773316594923,3.121570833333333,6893.300970805736,2019
+1995,35,"(30,35]",College,197.87803626713844,63.42773316594923,3.11974,6967.027879267439,2019
+1995,35,"(30,35]",College,197.74255639097743,63.42773316594923,3.1176040277777775,6918.288475675085,2019
+1995,46,"(45,50]",College,333.1063069438302,241.81823269518142,1.3775069945355192,688.3126135240152,2019
+1995,46,"(45,50]",College,333.1063069438302,241.81823269518142,1.3775069945355192,676.9853925043695,2019
+1995,46,"(45,50]",College,333.1063069438302,241.81823269518142,1.3775069945355192,689.7275158414486,2019
+1995,46,"(45,50]",College,333.1063069438302,241.81823269518142,1.3775069945355192,648.2964214147033,2019
+1995,46,"(45,50]",College,333.1063069438302,241.81823269518142,1.3775069945355192,696.4738791207582,2019
+1995,55,"(50,55]",College,818.2016806722689,327.0492491369256,2.5017690235690244,436.6357471282046,2019
+1995,55,"(50,55]",College,820.1371074745688,327.0492491369256,2.5076868686868696,446.63539331494184,2019
+1995,55,"(50,55]",College,819.5564794338788,327.0492491369256,2.505911515151516,437.7830462258077,2019
+1995,55,"(50,55]",College,820.1371074745688,327.0492491369256,2.5076868686868696,429.3885913297333,2019
+1995,55,"(50,55]",College,820.1371074745688,327.0492491369256,2.5076868686868696,435.61734294310554,2019
+1995,35,"(30,35]",College,25561.18177797435,991.0583307179566,25.79180355555556,382.11844403990114,2019
+1995,35,"(30,35]",College,25328.930561698362,991.0583307179566,25.55745688888889,431.1519354442965,2019
+1995,35,"(30,35]",College,24632.17691287041,991.0583307179566,24.854416888888892,370.18431227198874,2019
+1995,35,"(30,35]",College,24694.11057054401,991.0583307179566,24.916909333333336,469.08316566508347,2019
+1995,35,"(30,35]",College,25367.639097744363,991.0583307179566,25.59651466666667,362.35781931966784,2019
+1995,37,"(35,40]",HS,-24.67669172932331,39.642333228718265,-0.6224833333333334,5872.276934137125,2019
+1995,37,"(35,40]",HS,-24.67669172932331,23.785399937230956,-1.0374722222222224,5890.981328733826,2019
+1995,37,"(35,40]",HS,-24.67669172932331,41.624449890154175,-0.59284126984127,5885.917689220232,2019
+1995,37,"(35,40]",HS,-24.67669172932331,19.821166614359132,-1.2449666666666668,5878.406152953643,2019
+1995,37,"(35,40]",HS,-24.67669172932331,25.76751659866687,-0.9576666666666668,5895.620901962834,2019
+1995,66,"(65,70]",HS,48.98565236620964,16.45156828991808,2.9775673360107096,6494.036927468301,2019
+1995,66,"(65,70]",HS,48.98565236620964,16.45156828991808,2.9775673360107096,6497.675095723119,2019
+1995,66,"(65,70]",HS,48.98565236620964,16.45156828991808,2.9775673360107096,6499.070499244272,2019
+1995,66,"(65,70]",HS,48.98565236620964,16.45156828991808,2.9775673360107096,6505.246013822738,2019
+1995,66,"(65,70]",HS,48.98565236620964,16.45156828991808,2.9775673360107096,6553.693572111659,2019
+1995,27,"(25,30]",HS,150.77168332596196,152.62298293056534,0.9878701125541124,5226.891570325179,2019
+1995,27,"(25,30]",HS,177.48057319770015,172.44414954492444,1.029206114942529,5180.236266328034,2019
+1995,27,"(25,30]",HS,133.54638478549313,152.62298293056534,0.8750083520923518,5250.705562246885,2019
+1995,27,"(25,30]",HS,150.57814064573196,150.64086626912942,0.9995836081871343,5187.776946656731,2019
+1995,27,"(25,30]",HS,123.28862273330385,178.3904995292322,0.6911165283950618,5233.885263128061,2019
+1995,69,"(65,70]",College,41845.08872180452,164.5156828991808,254.3531898259706,21.37930316291056,2019
+1995,69,"(65,70]",College,37981.47361344538,154.60509959200127,245.66766370370365,23.814430115263647,2019
+1995,69,"(65,70]",College,37520.57107474568,162.53356623774488,230.84813766937668,21.59007452559501,2019
+1995,69,"(65,70]",College,41517.76934099956,156.58721625343713,265.14149963431794,25.778823899766866,2019
+1995,69,"(65,70]",College,41422.75923927466,164.5156828991808,251.78608208835342,20.9070008654844,2019
+1995,41,"(40,45]",College,-77.61061477222468,122.89123300902662,-0.6315390681003584,6602.768579178543,2019
+1995,41,"(40,45]",College,-77.61061477222468,122.89123300902662,-0.6315390681003584,6682.225779922407,2019
+1995,41,"(40,45]",College,-77.61061477222468,122.89123300902662,-0.6315390681003584,6646.40589865432,2019
+1995,41,"(40,45]",College,-75.48164528969484,122.89123300902662,-0.614215053763441,6654.053908687287,2019
+1995,41,"(40,45]",College,-75.48164528969484,122.89123300902662,-0.614215053763441,6690.939252169733,2019
+1995,63,"(60,65]",HS,464.7153295002211,37.660216567282355,12.339688187134502,4208.284343057662,2019
+1995,63,"(60,65]",HS,464.7153295002211,37.660216567282355,12.339688187134502,4373.854324522404,2019
+1995,63,"(60,65]",HS,464.7153295002211,37.660216567282355,12.339688187134502,4325.9338415670845,2019
+1995,63,"(60,65]",HS,464.7153295002211,37.660216567282355,12.339688187134502,4102.331061409379,2019
+1995,63,"(60,65]",HS,464.7153295002211,37.660216567282355,12.339688187134502,4333.531690621448,2019
+1995,37,"(35,40]",HS,2.128969482529854,47.57079987446191,0.044753703703703705,6747.298196170328,2019
+1995,37,"(35,40]",HS,2.128969482529854,47.57079987446191,0.044753703703703705,6790.917498330657,2019
+1995,37,"(35,40]",HS,2.128969482529854,47.57079987446191,0.044753703703703705,6780.892380244198,2019
+1995,37,"(35,40]",HS,2.128969482529854,47.57079987446191,0.044753703703703705,6988.2436287067785,2019
+1995,37,"(35,40]",HS,2.128969482529854,47.57079987446191,0.044753703703703705,6843.980825625365,2019
+1995,25,"(20,25]",HS,-2.438637770897833,39.642333228718265,-0.06151600000000001,4742.310882712975,2019
+1995,25,"(20,25]",HS,-2.012843874391862,39.642333228718265,-0.05077511111111112,4669.200132877133,2019
+1995,25,"(20,25]",HS,-2.070906678460858,39.642333228718265,-0.05223977777777778,4680.341138959759,2019
+1995,25,"(20,25]",HS,-4.606315789473684,39.642333228718265,-0.11619688888888889,4650.4048645025,2019
+1995,25,"(20,25]",HS,-2.47734630694383,39.642333228718265,-0.06249244444444445,4669.557717423927,2019
+1995,68,"(65,70]",NoHS,310.0553737284388,79.28466645743653,3.9106600000000005,10626.119732652358,2019
+1995,68,"(65,70]",NoHS,347.2155683325962,69.37408315025698,5.004975238095237,10424.751011875045,2019
+1995,68,"(65,70]",NoHS,347.98973905351613,83.24889978030835,4.18011216931217,10519.1980731306,2019
+1995,68,"(65,70]",NoHS,335.60300751879703,81.26678311887244,4.129645528455285,10979.876354824855,2019
+1995,68,"(65,70]",NoHS,310.0553737284388,79.28466645743653,3.9106600000000005,10721.592041132477,2019
+1995,22,"(20,25]",HS,-20.321981424148607,69.37408315025698,-0.29293333333333327,6499.614052911581,2019
+1995,22,"(20,25]",HS,-20.321981424148607,69.37408315025698,-0.29293333333333327,6493.881560308206,2019
+1995,22,"(20,25]",HS,-20.321981424148607,69.37408315025698,-0.29293333333333327,6489.826322617663,2019
+1995,22,"(20,25]",HS,-20.321981424148607,69.37408315025698,-0.29293333333333327,6512.953836941953,2019
+1995,22,"(20,25]",HS,-20.321981424148607,69.37408315025698,-0.29293333333333327,6448.384347485357,2019
+1995,48,"(45,50]",College,12.96735957540911,148.65874960769352,0.08722903703703702,9018.169505038986,2019
+1995,48,"(45,50]",College,10.838390092879257,148.65874960769352,0.07290785185185183,8810.571479251696,2019
+1995,48,"(45,50]",College,11.612560813799204,148.65874960769352,0.07811555555555555,8927.224521904503,2019
+1995,48,"(45,50]",College,16.451127819548873,148.65874960769352,0.1106637037037037,9181.735110144358,2019
+1995,48,"(45,50]",College,10.257762052189298,148.65874960769352,0.06900207407407406,8995.407364321141,2019
+1995,53,"(50,55]",College,1485.0142768686424,257.6751659866688,5.763125333333333,632.6249877427365,2019
+1995,53,"(50,55]",College,1485.0142768686424,257.6751659866688,5.763125333333333,537.5302270368319,2019
+1995,53,"(50,55]",College,1485.0142768686424,257.6751659866688,5.763125333333333,534.7286796049505,2019
+1995,53,"(50,55]",College,1485.0142768686424,257.6751659866688,5.763125333333333,542.1091499926436,2019
+1995,53,"(50,55]",College,1485.0142768686424,257.6751659866688,5.763125333333333,521.2890787379343,2019
+1995,62,"(60,65]",College,2719.8552852720036,114.96276636328297,23.658575478927204,2744.357488116929,2019
+1995,62,"(60,65]",College,1448.6669615214507,75.32043313456471,19.23338596491228,4671.070965110919,2019
+1995,62,"(60,65]",College,2274.707120743034,75.32043313456471,30.200398830409355,2408.2787820823314,2019
+1995,62,"(60,65]",College,1068.3555948695268,366.69158236564397,2.9134990990990994,4387.118976207181,2019
+1995,62,"(60,65]",College,1500.923485183547,366.69158236564397,4.093149549549549,2407.547763020685,2019
+1995,25,"(20,25]",College,79.35249889429457,9.910583307179566,8.006844444444445,6787.95987332671,2019
+1995,25,"(20,25]",College,79.35249889429457,9.910583307179566,8.006844444444445,6820.351312703955,2019
+1995,25,"(20,25]",College,-1.9354268022998675,9.910583307179566,-0.1952888888888889,6832.299305887604,2019
+1995,25,"(20,25]",College,-1.9354268022998675,9.910583307179566,-0.1952888888888889,6922.150169131282,2019
+1995,25,"(20,25]",College,-1.9354268022998675,9.910583307179566,-0.1952888888888889,6855.128947753305,2019
+1995,50,"(45,50]",NoHS,19.81877045555064,73.3383164731288,0.2702375975975976,5395.286994837798,2019
+1995,50,"(45,50]",NoHS,19.934896063688633,73.3383164731288,0.271821021021021,5320.250519729605,2019
+1995,50,"(45,50]",NoHS,19.644582043343654,73.3383164731288,0.2678624624624624,5373.512402282497,2019
+1995,50,"(45,50]",NoHS,19.799416187527644,73.3383164731288,0.2699736936936937,5365.168269977983,2019
+1995,50,"(45,50]",NoHS,19.56716497125166,73.3383164731288,0.26680684684684686,5394.018969452697,2019
+1995,43,"(40,45]",HS,84.57815126050421,59.46349984307739,1.4223540740740743,6498.565569365068,2019
+1995,43,"(40,45]",HS,77.80415745245466,59.46349984307739,1.3084355555555556,6546.264334438541,2019
+1995,43,"(40,45]",HS,74.70747456877488,59.46349984307739,1.2563585185185187,6542.91794564699,2019
+1995,43,"(40,45]",HS,93.2875718708536,59.46349984307739,1.5688207407407408,6506.513514337639,2019
+1995,43,"(40,45]",HS,85.15877930119417,59.46349984307739,1.4321185185185188,6563.101304389801,2019
+1995,65,"(60,65]",College,2874.9990977443613,5.946349984307739,483.48972148148164,775.501105796074,2019
+1995,65,"(60,65]",College,3260.342574082265,5.946349984307739,548.2930844444446,616.3903600437927,2019
+1995,65,"(60,65]",College,3089.8314727996462,5.946349984307739,519.6181659259261,602.8317418755753,2019
+1995,65,"(60,65]",College,3274.2776470588237,5.946349984307739,550.6365511111112,602.2801853612676,2019
+1995,65,"(60,65]",College,3116.927448031844,5.946349984307739,524.1749066666667,623.2332741852663,2019
+1995,60,"(55,60]",College,1566.9215391419725,136.76604963907803,11.456948148148147,2384.284382458967,2019
+1995,60,"(55,60]",College,1343.186200796108,136.76604963907803,9.821049919484702,4059.7919567191334,2019
+1995,60,"(55,60]",College,1371.0563467492261,136.76604963907803,10.024829629629629,4015.487976211738,2019
+1995,60,"(55,60]",College,1574.082618310482,136.76604963907803,11.509308212560384,2041.7928105912347,2019
+1995,60,"(55,60]",College,1475.182308712959,136.76604963907803,10.786173268921095,2105.569648983274,2019
+1995,39,"(35,40]",HS,278.7982308712959,184.33684951353993,1.5124389486260457,7987.610371265428,2019
+1995,39,"(35,40]",HS,278.7982308712959,184.33684951353993,1.5124389486260457,8039.247927542548,2019
+1995,39,"(35,40]",HS,278.7982308712959,184.33684951353993,1.5124389486260457,8027.379956856731,2019
+1995,39,"(35,40]",HS,278.7982308712959,184.33684951353993,1.5124389486260457,8272.847243844968,2019
+1995,39,"(35,40]",HS,278.7982308712959,184.33684951353993,1.5124389486260457,8102.065542995445,2019
+1995,57,"(55,60]",HS,127.79623175586023,61.44561650451331,2.0798266666666665,7705.848470395342,2019
+1995,57,"(55,60]",HS,127.60268907563025,87.21313310318017,1.4631132323232325,7592.678463623907,2019
+1995,57,"(55,60]",HS,126.09305616983636,51.53503319733374,2.4467444444444446,7715.43007585865,2019
+1995,57,"(55,60]",HS,129.48005307386114,71.35619981169287,1.8145592592592596,7701.960430471789,2019
+1995,57,"(55,60]",HS,129.48005307386114,55.499266520205566,2.3330047619047627,7600.876422116495,2019
+1995,70,"(65,70]",College,614.6915524104379,23.785399937230956,25.843229629629636,5397.591396041816,2019
+1995,70,"(65,70]",College,558.6996550199027,35.67809990584644,15.659456543209878,5610.872174014921,2019
+1995,70,"(65,70]",College,865.1357806280407,43.606566551590085,19.839575757575762,5547.018755679435,2019
+1995,70,"(65,70]",College,416.4070765148164,69.37408315025698,6.00234349206349,11958.445339232436,2019
+1995,70,"(65,70]",College,586.8214064573198,33.69598324441053,17.41517385620915,5578.1569024253095,2019
+1995,21,"(20,25]",HS,30.96682883679788,2.3785399937230958,13.019259259259261,6511.013266129591,2019
+1995,21,"(20,25]",HS,30.96682883679788,2.3785399937230958,13.019259259259261,6500.439786402809,2019
+1995,21,"(20,25]",HS,30.96682883679788,2.3785399937230958,13.019259259259261,6541.522865301567,2019
+1995,21,"(20,25]",HS,30.96682883679788,2.3785399937230958,13.019259259259261,6492.519315732046,2019
+1995,21,"(20,25]",HS,30.96682883679788,2.3785399937230958,13.019259259259261,6462.638272186666,2019
+1995,35,"(30,35]",College,131.99610791685095,109.01641637897524,1.210791111111111,10824.247934579636,2019
+1995,35,"(30,35]",College,131.99610791685095,109.01641637897524,1.210791111111111,11123.773033274227,2019
+1995,35,"(30,35]",College,131.99610791685095,109.01641637897524,1.210791111111111,10744.017938200259,2019
+1995,35,"(30,35]",College,131.99610791685095,109.01641637897524,1.210791111111111,11204.52985322577,2019
+1995,35,"(30,35]",College,131.99610791685095,109.01641637897524,1.210791111111111,10946.605372610318,2019
+1995,57,"(55,60]",College,1533.825740822645,51.53503319733374,29.762777777777785,227.57064179053296,2019
+1995,57,"(55,60]",College,1533.825740822645,51.53503319733374,29.762777777777785,199.80448421184502,2019
+1995,57,"(55,60]",College,1533.825740822645,51.53503319733374,29.762777777777785,205.0916118005754,2019
+1995,57,"(55,60]",College,1533.825740822645,51.53503319733374,29.762777777777785,183.79885973861093,2019
+1995,57,"(55,60]",College,1533.825740822645,51.53503319733374,29.762777777777785,199.2981062361801,2019
+1995,42,"(40,45]",HS,233.218929677134,118.92699968615479,1.9610259259259262,5765.076073568799,2019
+1995,42,"(40,45]",HS,233.218929677134,118.92699968615479,1.9610259259259262,5685.760758984666,2019
+1995,42,"(40,45]",HS,233.218929677134,118.92699968615479,1.9610259259259262,5680.961695480154,2019
+1995,42,"(40,45]",HS,233.218929677134,118.92699968615479,1.9610259259259262,5741.722098177054,2019
+1995,42,"(40,45]",HS,233.218929677134,118.92699968615479,1.9610259259259262,5701.554595547853,2019
+1995,51,"(50,55]",HS,240.9606368863335,59.46349984307739,4.052244444444445,7440.819521900924,2019
+1995,51,"(50,55]",HS,240.9606368863335,59.46349984307739,4.052244444444445,7414.562400944904,2019
+1995,51,"(50,55]",HS,240.9606368863335,59.46349984307739,4.052244444444445,7372.4798486479685,2019
+1995,51,"(50,55]",HS,240.9606368863335,59.46349984307739,4.052244444444445,7748.234053248372,2019
+1995,51,"(50,55]",HS,240.9606368863335,59.46349984307739,4.052244444444445,7472.952718076651,2019
+1995,40,"(35,40]",HS,295.0558160106148,9.712371641035974,30.379378684807264,4722.8632929365285,2019
+1995,40,"(35,40]",HS,294.3977708978328,9.712371641035974,30.3116253968254,4900.190729604009,2019
+1995,40,"(35,40]",HS,293.3719946926139,9.514159974892383,30.835301851851856,4832.032250066974,2019
+1995,40,"(35,40]",HS,294.9977532065458,9.315948308748792,31.665885579196217,4588.759076791224,2019
+1995,40,"(35,40]",HS,292.07525873507296,9.315948308748792,31.352176832151297,4869.706088061905,2019
+1995,24,"(20,25]",NoHS,56.53381689517912,33.69598324441053,1.6777613071895423,10658.163819127589,2019
+1995,24,"(20,25]",NoHS,49.56628040689961,33.69598324441053,1.4709848366013072,10923.103138994862,2019
+1995,24,"(20,25]",NoHS,42.01811587793012,33.69598324441053,1.2469769934640522,10607.417404172189,2019
+1995,24,"(20,25]",NoHS,37.566634232640425,33.69598324441053,1.1148698039215685,10927.657617817682,2019
+1995,24,"(20,25]",NoHS,83.82333480760725,33.69598324441053,2.487635816993464,10851.112908787956,2019
+1995,60,"(55,60]",NoHS,69.38505086245024,39.642333228718265,1.7502766666666667,6696.566227394718,2019
+1995,60,"(55,60]",NoHS,60.59821318000885,41.624449890154175,1.4558321693121694,6533.4608636713765,2019
+1995,60,"(55,60]",NoHS,103.19695709862891,41.624449890154175,2.479238941798942,6588.852912401676,2019
+1995,60,"(55,60]",NoHS,70.33340999557718,41.624449890154175,1.6897138624338628,6576.086369515203,2019
+1995,60,"(55,60]",NoHS,69.17215391419727,41.624449890154175,1.66181544973545,6510.278863499361,2019
+1995,64,"(60,65]",College,5333.416930561698,99.10583307179566,53.815368533333334,1100.165776627306,2019
+1995,64,"(60,65]",College,3232.4724281291465,99.10583307179566,32.61636906666667,993.1730603469953,2019
+1995,64,"(60,65]",College,1842.8940468819108,99.10583307179566,18.595212711111113,978.9748662586323,2019
+1995,64,"(60,65]",College,3534.573197700133,99.10583307179566,35.664633333333335,993.7296039247324,2019
+1995,64,"(60,65]",College,4672.410614772225,99.10583307179566,47.145667111111116,1000.2159818439908,2019
+1995,31,"(30,35]",NoHS,46.00509509066785,49.55291653589783,0.9284033777777779,4640.21709559603,2019
+1995,31,"(30,35]",NoHS,26.650827067669173,49.55291653589783,0.5378256,4591.235995161975,2019
+1995,31,"(30,35]",NoHS,32.45710747456878,49.55291653589783,0.6549989333333335,4597.232737626257,2019
+1995,31,"(30,35]",NoHS,46.00509509066785,49.55291653589783,0.9284033777777779,4570.925499463068,2019
+1995,31,"(30,35]",NoHS,28.586253869969042,49.55291653589783,0.5768833777777779,4608.770453458999,2019
+1995,37,"(35,40]",HS,11.031932773109244,10.70342997175393,1.0306913580246915,8746.449810120137,2019
+1995,37,"(35,40]",HS,11.031932773109244,13.874816630051392,0.795104761904762,8761.550965584365,2019
+1995,37,"(35,40]",HS,11.031932773109244,11.892699968615478,0.9276222222222223,8790.57061720209,2019
+1995,37,"(35,40]",HS,11.031932773109244,13.676604963907801,0.8066280193236716,8628.448959511788,2019
+1995,37,"(35,40]",HS,11.031932773109244,11.892699968615478,0.9276222222222223,8770.389211926306,2019
+1995,57,"(55,60]",HS,4622.244352056612,297.31749921538704,15.546492770370367,159.81565876423568,2019
+1995,57,"(55,60]",HS,4622.244352056612,297.31749921538704,15.546492770370367,143.83793207356928,2019
+1995,57,"(55,60]",HS,4622.244352056612,297.31749921538704,15.546492770370367,144.161202227935,2019
+1995,57,"(55,60]",HS,4622.244352056612,297.31749921538704,15.546492770370367,145.18933637067713,2019
+1995,57,"(55,60]",HS,4622.244352056612,297.31749921538704,15.546492770370367,143.305863797134,2019
+1995,42,"(40,45]",College,-7.354621848739495,75.32043313456471,-0.09764444444444444,4830.020503841415,2019
+1995,42,"(40,45]",College,-7.354621848739495,75.32043313456471,-0.09764444444444444,4888.1445928759695,2019
+1995,42,"(40,45]",College,-7.354621848739495,75.32043313456471,-0.09764444444444444,4861.941832792026,2019
+1995,42,"(40,45]",College,-7.354621848739495,75.32043313456471,-0.09764444444444444,4867.536462503764,2019
+1995,42,"(40,45]",College,-7.354621848739495,75.32043313456471,-0.09764444444444444,4894.518623573782,2019
+1995,52,"(50,55]",HS,-91.50697921273773,19.821166614359132,-4.616629333333334,8307.58155849225,2019
+1995,52,"(50,55]",HS,-91.50697921273773,19.821166614359132,-4.616629333333334,8154.162001537514,2019
+1995,52,"(50,55]",HS,-91.50697921273773,19.821166614359132,-4.616629333333334,8222.038249887133,2019
+1995,52,"(50,55]",HS,-91.50697921273773,19.821166614359132,-4.616629333333334,8513.54404352266,2019
+1995,52,"(50,55]",HS,-91.50697921273773,19.821166614359132,-4.616629333333334,8314.697688178416,2019
+1995,59,"(55,60]",College,297.9589562140646,194.2474328207195,1.5339145124716553,8404.553077687327,2019
+1995,59,"(55,60]",College,344.2350110570544,49.55291653589783,6.946816355555556,8396.453268829919,2019
+1995,59,"(55,60]",College,366.3762936753649,194.2474328207195,1.8861319727891157,8418.165674028378,2019
+1995,59,"(55,60]",College,347.79619637328614,69.37408315025698,5.013344761904761,8631.40365518107,2019
+1995,59,"(55,60]",College,369.22137107474566,73.3383164731288,5.034494774774774,8354.695716187653,2019
+1995,41,"(40,45]",NoHS,76.87515258735074,47.57079987446191,1.616015555555556,6463.443577324664,2019
+1995,41,"(40,45]",NoHS,76.58483856700575,47.57079987446191,1.609912777777778,6414.77308913341,2019
+1995,41,"(40,45]",NoHS,76.58483856700575,47.57079987446191,1.609912777777778,6456.595512877214,2019
+1995,41,"(40,45]",NoHS,76.58483856700575,47.57079987446191,1.609912777777778,6528.3353789919165,2019
+1995,41,"(40,45]",NoHS,77.49448916408669,47.57079987446191,1.629034814814815,6466.295448774501,2019
+1995,43,"(40,45]",College,1172.2880141530295,204.15801612789906,5.74206213592233,3170.5583008312797,2019
+1995,43,"(40,45]",College,1245.8342326404245,204.15801612789906,6.10230377562028,3301.0067366779476,2019
+1995,43,"(40,45]",College,1230.3508182220257,204.15801612789906,6.026463430420713,3254.2835499156868,2019
+1995,43,"(40,45]",College,1197.448562582928,204.15801612789906,5.8653026968716295,3091.189946675876,2019
+1995,43,"(40,45]",College,1218.7382574082264,204.15801612789906,5.969583171521036,3275.786559434673,2019
+1995,68,"(65,70]",College,5.999823087129589,61.44561650451331,0.09764444444444445,8849.59602366485,2019
+1995,68,"(65,70]",College,-3.6773109243697477,61.44561650451331,-0.05984659498207885,8722.3491813894,2019
+1995,68,"(65,70]",College,-3.6773109243697477,61.44561650451331,-0.05984659498207885,8758.670517332646,2019
+1995,68,"(65,70]",College,5.999823087129589,61.44561650451331,0.09764444444444445,9203.978564764953,2019
+1995,68,"(65,70]",College,2.128969482529854,61.44561650451331,0.034648028673835124,8959.369075267867,2019
+1995,50,"(45,50]",College,6440.326227333038,485.61858205179874,13.262108299319728,1270.199371450602,2019
+1995,50,"(45,50]",College,6475.1639097744355,434.083548854465,14.916860882800608,1146.727352711086,2019
+1995,50,"(45,50]",College,6467.422202565237,218.03283275795047,29.66260686868687,1131.2888703268216,2019
+1995,50,"(45,50]",College,6391.940557275542,537.1536152491325,11.899651004510046,1145.1325178547447,2019
+1995,50,"(45,50]",College,6225.493852277753,358.7631157199002,17.352658563535915,1137.544228396783,2019
+1995,28,"(25,30]",HS,10.064219371959311,97.12371641035975,0.10362267573696146,5862.369582772601,2019
+1995,28,"(25,30]",HS,9.096505970809377,97.12371641035975,0.09365895691609978,5891.969430328351,2019
+1995,28,"(25,30]",HS,8.128792569659444,97.12371641035975,0.08369523809523811,5924.6772715174275,2019
+1995,28,"(25,30]",HS,6.193365767359576,97.12371641035975,0.06376780045351474,5966.376233667234,2019
+1995,28,"(25,30]",HS,8.128792569659444,97.12371641035975,0.08369523809523811,5951.702289933964,2019
+1995,64,"(60,65]",HS,87.67483414418399,114.96276636328297,0.7626367816091955,6732.9703638667215,2019
+1995,64,"(60,65]",HS,89.41671826625387,114.96276636328297,0.7777885057471264,6592.459183857715,2019
+1995,64,"(60,65]",HS,85.93295002211411,130.8196996547703,0.6568808080808081,6650.029600212305,2019
+1995,64,"(60,65]",HS,86.32003538257409,124.87334967046255,0.6912606701940035,6635.690967135017,2019
+1995,64,"(60,65]",HS,89.99734630694383,128.8375829933344,0.6985333333333331,6565.179017007266,2019
+1995,73,"(70,75]",HS,458.3090667846086,7.5320433134564695,60.84790643274855,10637.56400646668,2019
+1995,73,"(70,75]",HS,237.6704113224237,7.5320433134564695,31.554573099415208,10644.988817607302,2019
+1995,73,"(70,75]",HS,497.01760283060594,7.5320433134564695,65.98708771929826,5036.109132454852,2019
+1995,73,"(70,75]",HS,601.5306501547988,7.5320433134564695,79.86287719298247,4773.410722322744,2019
+1995,73,"(70,75]",HS,618.9494913754976,7.5320433134564695,82.17550877192984,5064.379291994887,2019
+1995,39,"(35,40]",HS,49.93401149933658,53.517149858769656,0.9330469135802469,7140.593053950812,2019
+1995,39,"(35,40]",HS,52.64360902255639,53.517149858769656,0.983677366255144,7075.169675392464,2019
+1995,39,"(35,40]",HS,38.32145068553737,53.517149858769656,0.7160592592592593,7034.899822434949,2019
+1995,39,"(35,40]",HS,47.99858469703671,53.517149858769656,0.8968823045267491,7158.150373249089,2019
+1995,39,"(35,40]",HS,46.06315789473684,53.517149858769656,0.860717695473251,7085.849703048598,2019
+1995,33,"(30,35]",NoHS,41.80521892967713,59.46349984307739,0.70304,5998.868850134343,2019
+1995,33,"(30,35]",NoHS,41.80521892967713,59.46349984307739,0.70304,6063.9346627262785,2019
+1995,33,"(30,35]",NoHS,41.80521892967713,59.46349984307739,0.70304,6031.6801253061085,2019
+1995,33,"(30,35]",NoHS,41.80521892967713,59.46349984307739,0.70304,6089.5158648037395,2019
+1995,33,"(30,35]",NoHS,41.80521892967713,59.46349984307739,0.70304,6048.101854367882,2019
+1995,25,"(20,25]",NoHS,27.057266696152148,45.588683213026,0.5935084057971015,4922.279095485226,2019
+1995,25,"(20,25]",NoHS,27.057266696152148,45.588683213026,0.5935084057971015,4970.185091793803,2019
+1995,25,"(20,25]",NoHS,27.057266696152148,45.588683213026,0.5935084057971015,4973.527855752071,2019
+1995,25,"(20,25]",NoHS,27.057266696152148,45.588683213026,0.5935084057971015,5042.351126744237,2019
+1995,25,"(20,25]",NoHS,27.057266696152148,45.588683213026,0.5935084057971015,5014.223039624455,2019
+1995,29,"(25,30]",HS,20.84454666076957,63.42773316594923,0.3286345833333333,6647.7369950337325,2019
+1995,29,"(25,30]",HS,20.84454666076957,63.42773316594923,0.3286345833333333,6542.296195795881,2019
+1995,29,"(25,30]",HS,20.84454666076957,63.42773316594923,0.3286345833333333,6581.908381598665,2019
+1995,29,"(25,30]",HS,21.03808934099956,63.42773316594923,0.33168597222222224,6503.694188394203,2019
+1995,29,"(25,30]",HS,20.84454666076957,63.42773316594923,0.3286345833333333,6579.1003678034585,2019
+1995,48,"(45,50]",College,36.59892083149049,85.23101644174427,0.42940847545219635,6035.353031510663,2019
+1995,48,"(45,50]",College,36.59892083149049,85.23101644174427,0.42940847545219635,5929.046864822083,2019
+1995,48,"(45,50]",College,36.59892083149049,85.23101644174427,0.42940847545219635,5984.179045801088,2019
+1995,48,"(45,50]",College,36.59892083149049,85.23101644174427,0.42940847545219635,5979.035749991342,2019
+1995,48,"(45,50]",College,36.59892083149049,85.23101644174427,0.42940847545219635,6014.329966098765,2019
+1995,62,"(60,65]",College,782.4930561698363,91.177366426052,8.582097584541064,3653.264955563705,2019
+1995,62,"(60,65]",College,782.4930561698363,91.177366426052,8.582097584541064,3797.6108962100743,2019
+1995,62,"(60,65]",College,784.4284829721363,91.177366426052,8.60332463768116,3754.0020764954643,2019
+1995,62,"(60,65]",College,782.4930561698363,91.177366426052,8.582097584541064,3558.873558773145,2019
+1995,62,"(60,65]",College,782.4930561698363,91.177366426052,8.582097584541064,3763.1906899684227,2019
+1995,94,"(90,95]",College,5322.4237063246355,293.3532658925152,18.143393393393392,1017.8813948807847,2019
+1995,94,"(90,95]",College,8829.417072091996,336.95983244410525,26.203173856209155,899.7547752049484,2019
+1995,94,"(90,95]",College,8906.83414418399,313.17443250687427,28.440489451476797,916.0479733175731,2019
+1995,94,"(90,95]",College,6464.325519681557,293.3532658925152,22.035975975975976,920.0999887098599,2019
+1995,94,"(90,95]",College,7006.24502432552,342.906182428413,20.431958895311496,919.7653495047537,2019
+1995,50,"(45,50]",HS,271.5790888987174,142.71239962338575,1.9029817283950619,3609.5033911593373,2019
+1995,50,"(45,50]",HS,357.3572047766475,95.14159974892382,3.756056296296297,3595.8264398123238,2019
+1995,50,"(45,50]",HS,303.9394250331711,61.44561650451331,4.946478566308243,3678.4595256656053,2019
+1995,50,"(45,50]",HS,250.6571251658558,112.98064970184706,2.2185845614035085,3742.9316093995303,2019
+1995,50,"(45,50]",HS,275.37252543122514,75.32043313456471,3.656013567251462,3715.641920329906,2019
+1995,35,"(30,35]",HS,68.90119416187528,39.642333228718265,1.7380711111111113,7499.440683340981,2019
+1995,35,"(30,35]",HS,68.90119416187528,39.642333228718265,1.7380711111111113,7591.459508395143,2019
+1995,35,"(30,35]",HS,68.90119416187528,39.642333228718265,1.7380711111111113,7498.307598904915,2019
+1995,35,"(30,35]",HS,68.90119416187528,39.642333228718265,1.7380711111111113,7747.1678355119175,2019
+1995,35,"(30,35]",HS,68.90119416187528,39.642333228718265,1.7380711111111113,7554.217390434448,2019
+1995,52,"(50,55]",College,1128.1602830605925,204.15801612789906,5.52591715210356,300.73770620844675,2019
+1995,52,"(50,55]",College,1128.1602830605925,204.15801612789906,5.52591715210356,308.1144242737186,2019
+1995,52,"(50,55]",College,1128.1602830605925,204.15801612789906,5.52591715210356,303.9265528107457,2019
+1995,52,"(50,55]",College,1128.1796373286156,204.15801612789906,5.526011952535059,299.3352089009606,2019
+1995,52,"(50,55]",College,1128.1602830605925,204.15801612789906,5.52591715210356,302.779839230092,2019
+1995,51,"(50,55]",College,9532.131835471031,346.87041575128484,27.480382882539683,180.73948442828618,2019
+1995,51,"(50,55]",College,9532.131835471031,346.87041575128484,27.480382882539683,157.57309999359973,2019
+1995,51,"(50,55]",College,9532.131835471031,346.87041575128484,27.480382882539683,166.83981755530678,2019
+1995,51,"(50,55]",College,9532.131835471031,346.87041575128484,27.480382882539683,160.74866058682576,2019
+1995,51,"(50,55]",College,9532.131835471031,346.87041575128484,27.480382882539683,162.38943695053499,2019
+1995,64,"(60,65]",HS,619.7043078283945,134.7839329776421,4.597760980392156,4937.458084591109,2019
+1995,64,"(60,65]",HS,619.4720566121185,170.46203288348855,3.634076434108527,5133.672407554141,2019
+1995,64,"(60,65]",HS,620.2655816010615,95.14159974892382,6.519394074074075,5077.649309646575,2019
+1995,64,"(60,65]",HS,618.8527200353825,245.78246601805324,2.517887992831541,4812.279135139314,2019
+1995,64,"(60,65]",HS,619.2398053958425,109.01641637897524,5.6802436363636355,5089.103853600268,2019
+1995,46,"(45,50]",NoHS,247.69592215833703,49.55291653589783,4.9986144,10760.612169417916,2019
+1995,46,"(45,50]",NoHS,252.92157452454666,49.55291653589783,5.1040704,10660.806543942059,2019
+1995,46,"(45,50]",NoHS,258.72785493144625,49.55291653589783,5.221243733333333,10486.008300293026,2019
+1995,46,"(45,50]",NoHS,253.50220256523664,49.55291653589783,5.115787733333334,10977.268857906849,2019
+1995,46,"(45,50]",NoHS,267.05019018133567,49.55291653589783,5.389192177777778,10748.687524429806,2019
+1995,37,"(35,40]",HS,-11.786749226006192,71.35619981169287,-0.16518185185185186,5716.890935289307,2019
+1995,37,"(35,40]",HS,-11.806103494029191,67.39196648882105,-0.17518562091503267,5606.435572872079,2019
+1995,37,"(35,40]",HS,-11.999646174259178,57.48138318164148,-0.20875708812260538,5582.667965702825,2019
+1995,37,"(35,40]",HS,-11.999646174259178,61.44561650451331,-0.1952888888888889,5531.228150715053,2019
+1995,37,"(35,40]",HS,-11.999646174259178,97.12371641035975,-0.12355011337868482,5583.277751691989,2019
+1995,26,"(25,30]",College,832.0399823087129,65.40984982738514,12.720408080808078,2610.861797433578,2019
+1995,26,"(25,30]",College,360.8409730207873,65.40984982738514,5.516615218855219,3974.9039686938254,2019
+1995,26,"(25,30]",College,803.10535161433,65.40984982738514,12.278049158249157,2668.106532328854,2019
+1995,26,"(25,30]",College,372.327731092437,65.40984982738514,5.692227272727272,3951.523277787818,2019
+1995,26,"(25,30]",College,403.4881026094649,65.40984982738514,6.168613804713805,3980.242457414388,2019
+1995,48,"(45,50]",HS,315.08748341441844,109.01641637897524,2.8902755555555557,5941.778979005155,2019
+1995,48,"(45,50]",HS,315.08748341441844,109.01641637897524,2.8902755555555557,5899.723058236579,2019
+1995,48,"(45,50]",HS,315.08748341441844,109.01641637897524,2.8902755555555557,5864.757848562553,2019
+1995,48,"(45,50]",HS,315.08748341441844,109.01641637897524,2.8902755555555557,6165.017933822071,2019
+1995,48,"(45,50]",HS,315.08748341441844,109.01641637897524,2.8902755555555557,5949.706057614894,2019
+1995,46,"(45,50]",HS,58.41118089341,112.98064970184706,0.5170016374269006,6613.324296502631,2019
+1995,46,"(45,50]",HS,57.42411322423707,112.98064970184706,0.5082650292397661,6461.085744424197,2019
+1995,46,"(45,50]",HS,54.501618752764266,112.98064970184706,0.48239781676413257,6546.63130894321,2019
+1995,46,"(45,50]",HS,55.14030959752322,112.98064970184706,0.4880509161793372,6733.272406782783,2019
+1995,46,"(45,50]",HS,54.695161432994254,112.98064970184706,0.4841108771929825,6596.632059994362,2019
+1995,44,"(40,45]",HS,18.193011941618753,17.83904995292322,1.019841975308642,5087.790046404136,2019
+1995,44,"(40,45]",HS,18.193011941618753,17.83904995292322,1.019841975308642,5045.558433817906,2019
+1995,44,"(40,45]",HS,18.193011941618753,17.83904995292322,1.019841975308642,5021.689277024746,2019
+1995,44,"(40,45]",HS,18.193011941618753,17.83904995292322,1.019841975308642,4930.471055371624,2019
+1995,44,"(40,45]",HS,18.193011941618753,17.83904995292322,1.019841975308642,5026.892028313188,2019
+1995,48,"(45,50]",College,1332.9284387439186,358.7631157199002,3.715344137507674,3306.8662589362784,2019
+1995,48,"(45,50]",College,1332.9284387439186,358.7631157199002,3.715344137507674,2835.878527489226,2019
+1995,48,"(45,50]",College,1332.9284387439186,358.7631157199002,3.715344137507674,2924.262539362355,2019
+1995,48,"(45,50]",College,1332.9284387439186,358.7631157199002,3.715344137507674,2837.2552329234004,2019
+1995,48,"(45,50]",College,1332.9284387439186,358.7631157199002,3.715344137507674,2926.7503500745215,2019
+1995,57,"(55,60]",NoHS,0,12.487334967046253,0,9512.97464456542,2019
+1995,57,"(55,60]",NoHS,0,12.487334967046253,0,9568.479830823557,2019
+1995,57,"(55,60]",NoHS,0,12.487334967046253,0,9546.740175276627,2019
+1995,57,"(55,60]",NoHS,0,12.487334967046253,0,9558.54249767242,2019
+1995,57,"(55,60]",NoHS,0,12.487334967046253,0,9504.604656770423,2019
+1995,54,"(50,55]",HS,320.603449800973,99.10583307179566,3.2349604444444444,5872.827747463432,2019
+1995,54,"(50,55]",HS,320.603449800973,99.10583307179566,3.2349604444444444,5717.199233937661,2019
+1995,54,"(50,55]",HS,320.603449800973,99.10583307179566,3.2349604444444444,5791.433784617968,2019
+1995,54,"(50,55]",HS,320.603449800973,99.10583307179566,3.2349604444444444,5957.849375480035,2019
+1995,54,"(50,55]",HS,320.603449800973,99.10583307179566,3.2349604444444444,5840.597227789162,2019
+1995,78,"(75,80]",NoHS,17739.94788146838,340.9240657669771,52.03489475452197,382.11844403990114,2019
+1995,78,"(75,80]",NoHS,12757.965749668288,291.37114923107936,43.78596090702946,431.1519354442965,2019
+1995,78,"(75,80]",NoHS,3583.2685360459973,243.80034935661735,14.697552917795843,212.4020132432484,2019
+1995,78,"(75,80]",NoHS,17012.227403803627,301.28173253825884,56.466176228070175,469.08316566508347,2019
+1995,78,"(75,80]",NoHS,12518.746996904025,889.9703809847251,14.066475991091313,217.2155422795112,2019
+1995,35,"(30,35]",HS,148.64077841662981,75.32043313456471,1.9734456140350876,6283.903473801298,2019
+1995,35,"(30,35]",HS,148.64077841662981,75.32043313456471,1.9734456140350876,6236.584943646625,2019
+1995,35,"(30,35]",HS,148.64077841662981,75.32043313456471,1.9734456140350876,6277.245633370675,2019
+1995,35,"(30,35]",HS,148.64077841662981,75.32043313456471,1.9734456140350876,6346.992725380535,2019
+1995,35,"(30,35]",HS,148.64077841662981,75.32043313456471,1.9734456140350876,6286.676126597916,2019
+1995,70,"(65,70]",College,4254.53261388766,475.70799874461915,8.943580148148149,174.6070340027365,2019
+1995,70,"(65,70]",College,4251.62947368421,475.70799874461915,8.93747737037037,157.3529848720224,2019
+1995,70,"(65,70]",College,4251.82301636444,475.70799874461915,8.937884222222223,155.32489661109076,2019
+1995,70,"(65,70]",College,4252.98427244582,475.70799874461915,8.940325333333334,159.8605117035092,2019
+1995,70,"(65,70]",College,4251.0488456435205,475.70799874461915,8.936256814814815,157.44221239614905,2019
+1995,45,"(40,45]",College,436.8451835471031,93.15948308748793,4.689218628841608,4004.2735157685574,2019
+1995,45,"(40,45]",College,436.8451835471031,93.15948308748793,4.689218628841608,4172.63111237098,2019
+1995,45,"(40,45]",College,436.8451835471031,93.15948308748793,4.689218628841608,4123.030675822776,2019
+1995,45,"(40,45]",College,436.8451835471031,93.15948308748793,4.689218628841608,3910.2027970669487,2019
+1995,45,"(40,45]",College,469.7474391862008,93.15948308748793,5.042400661938534,4136.367497644188,2019
+1995,33,"(30,35]",HS,96.98423706324635,142.71239962338575,0.6795782098765433,4730.711415703686,2019
+1995,33,"(30,35]",HS,79.42991596638656,114.96276636328297,0.6909186206896553,4685.07585140487,2019
+1995,33,"(30,35]",HS,100.21639982308714,122.89123300902662,0.8154886021505378,4748.180924624506,2019
+1995,33,"(30,35]",HS,79.41056169836355,118.92699968615479,0.6677252592592593,4693.686813357333,2019
+1995,33,"(30,35]",HS,84.6168597965502,126.85546633189846,0.6670336111111111,4736.117579640305,2019
+1995,76,"(75,80]",HS,604.2402476780186,170.46203288348855,3.5447204134366923,257.58256639504503,2019
+1995,76,"(75,80]",HS,604.2402476780186,170.46203288348855,3.5447204134366923,260.8049132501757,2019
+1995,76,"(75,80]",HS,604.2402476780186,170.46203288348855,3.5447204134366923,258.57269743816244,2019
+1995,76,"(75,80]",HS,604.2402476780186,170.46203288348855,3.5447204134366923,251.17866631025987,2019
+1995,76,"(75,80]",HS,604.2402476780186,170.46203288348855,3.5447204134366923,256.7198482898078,2019
+1995,28,"(25,30]",HS,18.289783281733747,59.46349984307739,0.30758,4925.843129318882,2019
+1995,28,"(25,30]",HS,18.483325961963732,59.46349984307739,0.31083481481481484,4880.528381236429,2019
+1995,28,"(25,30]",HS,18.483325961963732,59.46349984307739,0.31083481481481484,4928.228824398245,2019
+1995,28,"(25,30]",HS,18.483325961963732,59.46349984307739,0.31083481481481484,4898.720819391922,2019
+1995,28,"(25,30]",HS,18.25107474568775,59.46349984307739,0.30692903703703706,4906.475573117832,2019
+1995,38,"(35,40]",College,5886.600619195047,838.4353477873913,7.020935644864724,388.55537713787834,2019
+1995,38,"(35,40]",College,5886.600619195047,858.2565144017506,6.858789325121888,346.64739309993803,2019
+1995,38,"(35,40]",College,5886.600619195047,876.0955643546737,6.719130718954249,344.41278708512937,2019
+1995,38,"(35,40]",College,5886.600619195047,836.4532311259554,7.037572933122697,352.1399943268772,2019
+1995,38,"(35,40]",College,5886.600619195047,802.7572478815449,7.332977229080933,349.61721546067463,2019
+1995,23,"(20,25]",HS,-21.696134453781514,33.69598324441053,-0.643878954248366,4233.974849850338,2019
+1995,23,"(20,25]",HS,9.290048651039363,29.731749921538697,0.31246222222222225,4281.28709266785,2019
+1995,23,"(20,25]",HS,9.290048651039363,35.67809990584644,0.2603851851851852,4271.472322909905,2019
+1995,23,"(20,25]",HS,9.290048651039363,39.642333228718265,0.23434666666666668,4325.160329183201,2019
+1995,23,"(20,25]",HS,-21.75419725785051,33.69598324441053,-0.645602091503268,4257.226578450809,2019
+1995,47,"(45,50]",HS,38341.38558160106,737.3473980541597,51.99907897252091,450.15262028697896,2019
+1995,47,"(45,50]",HS,38294.935338345866,737.3473980541597,51.9360825567503,507.41770423998526,2019
+1995,47,"(45,50]",HS,38451.704909332155,667.9733149039029,57.564732080448394,455.0788748695447,2019
+1995,47,"(45,50]",HS,38434.092525431224,739.3295147155957,51.98506452189454,545.03063648483635,2019
+1995,47,"(45,50]",HS,38347.19186200796,737.3473980541597,52.00695352449223,424.74742372784965,2019
+1995,44,"(40,45]",College,944.1979655019903,77.30254979600063,12.214318518518517,8509.461707605318,2019
+1995,44,"(40,45]",College,947.4881910659001,77.30254979600063,12.256881481481479,8624.406913773299,2019
+1995,44,"(40,45]",College,955.4234409553295,77.30254979600063,12.359533333333331,8501.061800142383,2019
+1995,44,"(40,45]",College,1011.5508182220257,77.30254979600063,13.085607407407405,8288.402883143122,2019
+1995,44,"(40,45]",College,990.2611233967272,77.30254979600063,12.810199999999998,8457.706035488603,2019
+1995,36,"(35,40]",College,394.82706766917295,200.19378280502724,1.9722244224422443,412.0868694868045,2019
+1995,36,"(35,40]",College,394.82706766917295,200.19378280502724,1.9722244224422443,413.5779342596735,2019
+1995,36,"(35,40]",College,394.82706766917295,200.19378280502724,1.9722244224422443,405.77533629829895,2019
+1995,36,"(35,40]",College,394.82706766917295,200.19378280502724,1.9722244224422443,396.75110608978105,2019
+1995,36,"(35,40]",College,394.82706766917295,200.19378280502724,1.9722244224422443,416.29712092382624,2019
+1995,46,"(45,50]",HS,139.06041574524548,138.74816630051396,1.002250476190476,5481.927899708077,2019
+1995,46,"(45,50]",HS,171.96267138434322,138.74816630051396,1.239386984126984,5346.850195788332,2019
+1995,46,"(45,50]",HS,148.73754975674478,138.74816630051396,1.0719965079365075,5387.0053685250505,2019
+1995,46,"(45,50]",HS,129.38328173374614,138.74816630051396,0.9325044444444444,5340.369884031246,2019
+1995,46,"(45,50]",HS,146.80212295444494,138.74816630051396,1.0580473015873013,5399.561498009471,2019
+1995,56,"(55,60]",NoHS,94.44882795223353,0,Inf,8183.526959629751,2019
+1995,56,"(55,60]",NoHS,94.44882795223353,0,Inf,8190.4320875882095,2019
+1995,56,"(55,60]",NoHS,94.44882795223353,0,Inf,8196.095293458839,2019
+1995,56,"(55,60]",NoHS,94.44882795223353,0,Inf,8200.289309817392,2019
+1995,56,"(55,60]",NoHS,94.44882795223353,0,Inf,8177.328937110497,2019
+1995,28,"(25,30]",HS,-10.451304732419283,18.433684951353992,-0.5669677419354838,5499.725683246737,2019
+1995,28,"(25,30]",HS,-10.451304732419283,18.433684951353992,-0.5669677419354838,5469.688840927751,2019
+1995,28,"(25,30]",HS,-10.451304732419283,18.433684951353992,-0.5669677419354838,5527.046516040848,2019
+1995,28,"(25,30]",HS,-10.451304732419283,18.433684951353992,-0.5669677419354838,5490.140584322491,2019
+1995,28,"(25,30]",HS,-10.451304732419283,18.433684951353992,-0.5669677419354838,5495.958413429115,2019
+1995,29,"(25,30]",HS,95.10687306501548,59.46349984307739,1.5994160000000002,4144.117392657489,2019
+1995,29,"(25,30]",HS,91.42956214064574,59.46349984307739,1.5375745185185188,4081.354600639708,2019
+1995,29,"(25,30]",HS,90.07476337903583,59.46349984307739,1.514790814814815,4106.60966183802,2019
+1995,29,"(25,30]",HS,93.17144626271562,59.46349984307739,1.5668678518518522,4055.7248551637144,2019
+1995,29,"(25,30]",HS,78.46220256523661,59.46349984307739,1.3195019259259257,4102.129998418076,2019
+1995,36,"(35,40]",College,840.3623175586024,152.62298293056534,5.506132178932178,4699.61304595537,2019
+1995,36,"(35,40]",College,840.3623175586024,152.62298293056534,5.506132178932178,4891.632698343857,2019
+1995,36,"(35,40]",College,840.3623175586024,152.62298293056534,5.506132178932178,4824.599831795256,2019
+1995,36,"(35,40]",College,840.3623175586024,152.62298293056534,5.506132178932178,4583.469353320966,2019
+1995,36,"(35,40]",College,840.3623175586024,152.62298293056534,5.506132178932178,4855.689763058988,2019
+1995,53,"(50,55]",College,3417.963732861566,1056.4681805453417,3.235273712737128,218.02474790852906,2019
+1995,53,"(50,55]",College,3299.902697921274,1020.7900806394954,3.2326947141316076,191.92973760628266,2019
+1995,53,"(50,55]",College,3299.902697921274,1155.5740136171376,2.8556394129979035,204.14510879518667,2019
+1995,53,"(50,55]",College,3301.838124723574,1078.2714638211369,3.0621584967320263,195.34916619568165,2019
+1995,53,"(50,55]",College,3334.740380362671,1131.7886136799066,2.9464339365635333,195.69892649157552,2019
+1995,33,"(30,35]",HS,64.2368155683326,126.85546633189846,0.5063779861111112,6973.315576040358,2019
+1995,33,"(30,35]",HS,64.75938080495357,142.71239962338575,0.4537754320987655,7055.924897255076,2019
+1995,33,"(30,35]",HS,54.695161432994254,116.94488302471889,0.46770033898305086,6996.207107501743,2019
+1995,33,"(30,35]",HS,62.30138876603273,120.90911634759071,0.5152745355191257,7099.494024461053,2019
+1995,33,"(30,35]",HS,66.42384785493145,142.71239962338575,0.4654385185185186,6999.507463195938,2019
+1995,75,"(70,75]",College,6433.1651481645295,438.04778217733684,14.68598954248366,1148.4943263538796,2019
+1995,75,"(70,75]",College,6433.1651481645295,438.04778217733684,14.68598954248366,1017.641132618787,2019
+1995,75,"(70,75]",College,6433.1651481645295,438.04778217733684,14.68598954248366,1028.5967341346372,2019
+1995,75,"(70,75]",College,6433.1651481645295,438.04778217733684,14.68598954248366,1028.6543150830412,2019
+1995,75,"(70,75]",College,6433.1651481645295,438.04778217733684,14.68598954248366,1034.703683128981,2019
+1995,40,"(35,40]",HS,508.2624325519682,134.7839329776421,3.770942287581699,3449.449075372322,2019
+1995,40,"(35,40]",HS,515.0364263600177,128.8375829933344,3.9975635555555544,3590.388766769856,2019
+1995,40,"(35,40]",HS,482.9470499778859,132.8018163162062,3.6365997346600327,3541.1875969555404,2019
+1995,40,"(35,40]",HS,464.7153295002211,114.96276636328297,4.042311647509578,3364.2012583179226,2019
+1995,40,"(35,40]",HS,470.13452454666077,132.8018163162062,3.54012119402985,3564.0071639289026,2019
+1995,73,"(70,75]",College,484.4373286156568,225.9612994036941,2.143895126705653,5931.988265228674,2019
+1995,73,"(70,75]",College,484.4373286156568,225.9612994036941,2.143895126705653,5957.430294789878,2019
+1995,73,"(70,75]",College,484.4373286156568,225.9612994036941,2.143895126705653,5925.8594051271575,2019
+1995,73,"(70,75]",College,484.4373286156568,225.9612994036941,2.143895126705653,5759.295320422534,2019
+1995,73,"(70,75]",College,484.4373286156568,225.9612994036941,2.143895126705653,5917.512264235222,2019
+1995,41,"(40,45]",College,1713.8204334365325,158.56933291487306,10.808019444444446,2910.4511585059113,2019
+1995,41,"(40,45]",College,1713.8204334365325,158.56933291487306,10.808019444444446,2385.4491703869403,2019
+1995,41,"(40,45]",College,1713.8204334365325,158.56933291487306,10.808019444444446,2457.6900987155486,2019
+1995,41,"(40,45]",College,1713.8204334365325,158.56933291487306,10.808019444444446,2418.645868251261,2019
+1995,41,"(40,45]",College,1713.8204334365325,158.56933291487306,10.808019444444446,2445.065217858957,2019
+1995,43,"(40,45]",HS,173.99486952675807,132.8018163162062,1.3101844112769483,2329.93686208288,2019
+1995,43,"(40,45]",HS,173.99486952675807,132.8018163162062,1.3101844112769483,2422.7613364723743,2019
+1995,43,"(40,45]",HS,173.99486952675807,132.8018163162062,1.3101844112769483,2305.273641658814,2019
+1995,43,"(40,45]",HS,173.99486952675807,132.8018163162062,1.3101844112769483,2419.155463759991,2019
+1995,43,"(40,45]",HS,173.99486952675807,132.8018163162062,1.3101844112769483,2346.1918761576685,2019
+1995,45,"(40,45]",NoHS,177.09155241043788,138.74816630051396,1.276352380952381,5500.049285361762,2019
+1995,45,"(40,45]",NoHS,177.09155241043788,138.74816630051396,1.276352380952381,5576.130843298971,2019
+1995,45,"(40,45]",NoHS,177.09155241043788,138.74816630051396,1.276352380952381,5523.995305840172,2019
+1995,45,"(40,45]",NoHS,177.09155241043788,138.74816630051396,1.276352380952381,5400.9399294485665,2019
+1995,45,"(40,45]",NoHS,177.09155241043788,138.74816630051396,1.276352380952381,5522.988390829191,2019
+1995,46,"(45,50]",HS,1559.1798319327731,364.709465704208,4.275128502415459,6493.839983934433,2019
+1995,46,"(45,50]",HS,2646.8896948252986,342.906182428413,7.718990879897238,11805.254985244985,2019
+1995,46,"(45,50]",HS,1901.7503759398496,404.35179893292633,4.703207407407407,10983.745522883983,2019
+1995,46,"(45,50]",HS,2457.2178681999117,325.06713247548976,7.559108943089432,11908.543530085492,2019
+1995,46,"(45,50]",HS,2000.457142857143,350.8346490741567,5.701994224733208,12015.95644899762,2019
+1995,32,"(30,35]",College,-32.26356479433879,47.57079987446191,-0.6782220370370372,6039.110194931176,2019
+1995,32,"(30,35]",College,-34.54736842105263,47.57079987446191,-0.7262305555555556,6067.928201434173,2019
+1995,32,"(30,35]",College,-34.50865988500664,47.57079987446191,-0.725416851851852,6078.55808858596,2019
+1995,32,"(30,35]",College,-35.90216718266254,47.57079987446191,-0.7547101851851853,6158.496578848771,2019
+1995,32,"(30,35]",College,-30.173303847854932,47.57079987446191,-0.6342820370370371,6098.869157818933,2019
+1995,21,"(20,25]",HS,11.806103494029191,25.76751659866687,0.45817777777777785,5137.927132406162,2019
+1995,21,"(20,25]",HS,1.7999469261388765,23.785399937230956,0.07567444444444445,5110.158075548371,2019
+1995,21,"(20,25]",HS,0.6193365767359575,21.803283275795042,0.02840565656565657,5105.27262173762,2019
+1995,21,"(20,25]",HS,0.9483591331269351,25.76751659866687,0.03680444444444445,5066.186759594084,2019
+1995,21,"(20,25]",HS,4.219230429013711,27.749633260102783,0.15204634920634924,5053.463602995952,2019
+1995,39,"(35,40]",College,121.1577178239717,158.56933291487306,0.7640677777777778,6275.979571937874,2019
+1995,39,"(35,40]",College,121.1577178239717,158.56933291487306,0.7640677777777778,6316.551937548719,2019
+1995,39,"(35,40]",College,121.1577178239717,158.56933291487306,0.7640677777777778,6307.2271034465875,2019
+1995,39,"(35,40]",College,121.1577178239717,158.56933291487306,0.7640677777777778,6500.094257340215,2019
+1995,39,"(35,40]",College,121.1577178239717,158.56933291487306,0.7640677777777778,6365.908635361431,2019
+1995,46,"(45,50]",HS,190.25245466607697,99.10583307179566,1.919689777777778,7414.939348033181,2019
+1995,46,"(45,50]",HS,190.25245466607697,99.10583307179566,1.919689777777778,7244.24763846573,2019
+1995,46,"(45,50]",HS,190.25245466607697,99.10583307179566,1.919689777777778,7340.162362130078,2019
+1995,46,"(45,50]",HS,190.25245466607697,99.10583307179566,1.919689777777778,7549.426622928937,2019
+1995,46,"(45,50]",HS,190.25245466607697,99.10583307179566,1.919689777777778,7396.223810167105,2019
+1995,79,"(75,80]",HS,156.45990269792128,19.424743282071947,8.054670294784582,7911.985313986249,2019
+1995,79,"(75,80]",HS,156.45990269792128,17.24441495449245,9.073076883780331,7866.454898040391,2019
+1995,79,"(75,80]",HS,156.45990269792128,19.424743282071947,8.054670294784582,7915.272808329883,2019
+1995,79,"(75,80]",HS,156.45990269792128,15.460509959200122,10.119970370370371,7884.704293829229,2019
+1995,79,"(75,80]",HS,156.45990269792128,18.830108283641177,8.309028304093568,7904.849893989081,2019
+1995,40,"(35,40]",College,64093.593984962405,8721.313310318019,7.349075959595959,23.77978164443807,2019
+1995,40,"(35,40]",College,66342.94701459531,8721.313310318019,7.606990444444444,25.70395045405458,2019
+1995,40,"(35,40]",College,54395.17027863777,8721.313310318019,6.237038888888889,25.113774094689507,2019
+1995,40,"(35,40]",College,69296.40831490491,8721.313310318019,7.945639131313131,22.197837107810393,2019
+1995,40,"(35,40]",College,53455.52056612119,8721.313310318019,6.1292971212121214,23.92156353176672,2019
+1995,75,"(70,75]",HS,51875.24458204334,733.3831647312879,70.73416336336336,229.55644387083765,2019
+1995,75,"(70,75]",HS,51683.63732861566,792.8466645743653,65.18743111111112,203.52311590468244,2019
+1995,75,"(70,75]",HS,52111.36665192393,755.186448007083,69.00463692038495,224.40343369270562,2019
+1995,75,"(70,75]",HS,52125.88235294118,727.4368147469802,71.65692098092643,226.92318413262643,2019
+1995,75,"(70,75]",HS,51983.62848297214,749.2400980227752,69.3818024691358,257.7116725196197,2019
+1995,55,"(50,55]",College,226.90943830163644,95.14159974892382,2.384965555555556,11602.57338307135,2019
+1995,55,"(50,55]",College,226.90943830163644,95.14159974892382,2.384965555555556,11618.70683724539,2019
+1995,55,"(50,55]",College,226.90943830163644,95.14159974892382,2.384965555555556,11449.926631052303,2019
+1995,55,"(50,55]",College,226.90943830163644,95.14159974892382,2.384965555555556,11641.64247803443,2019
+1995,55,"(50,55]",College,226.90943830163644,95.14159974892382,2.384965555555556,11486.058885601766,2019
+1995,52,"(50,55]",College,58078.28748341442,951.4159974892383,61.044051851851854,22.009782910850127,2019
+1995,52,"(50,55]",College,57751.20035382574,947.4517641663666,60.9542380288238,22.624578400077862,2019
+1995,52,"(50,55]",College,59309.21892967714,977.1835140879052,60.694043723236426,22.50243363431648,2019
+1995,52,"(50,55]",College,55573.84520123839,850.3280477560069,65.35577104377104,21.366579791130743,2019
+1995,52,"(50,55]",College,57397.017249004864,919.7021309062637,62.40826819923372,21.287361050667425,2019
+1995,43,"(40,45]",HS,-333.37726669615216,148.65874960769352,-2.242567407407407,12.466693005157236,2019
+1995,43,"(40,45]",HS,-318.95833701901813,148.65874960769352,-2.1455739259259254,9.346677243896178,2019
+1995,43,"(40,45]",HS,-329.8547899159664,148.65874960769352,-2.2188723555555554,13.301331943778607,2019
+1995,43,"(40,45]",HS,-332.4095532950022,148.65874960769352,-2.236057777777777,9.759891578256168,2019
+1995,43,"(40,45]",HS,-333.2804953560372,148.65874960769352,-2.241916444444444,10.449245275012746,2019
+1995,61,"(60,65]",NoHS,74.51393188854489,51.53503319733374,1.445888888888889,7829.409984888172,2019
+1995,61,"(60,65]",NoHS,74.51393188854489,51.53503319733374,1.445888888888889,7750.373216886122,2019
+1995,61,"(60,65]",NoHS,74.51393188854489,51.53503319733374,1.445888888888889,7837.463405904155,2019
+1995,61,"(60,65]",NoHS,74.51393188854489,51.53503319733374,1.445888888888889,7876.608539120631,2019
+1995,61,"(60,65]",NoHS,74.51393188854489,51.53503319733374,1.445888888888889,7748.928447838291,2019
+1995,49,"(45,50]",College,23568.079256965942,535.1714985876966,44.0383677366255,267.05772429339754,2019
+1995,49,"(45,50]",College,23568.079256965942,535.1714985876966,44.0383677366255,308.6155977959228,2019
+1995,49,"(45,50]",College,23568.079256965942,535.1714985876966,44.0383677366255,265.6405326285418,2019
+1995,49,"(45,50]",College,23570.014683768244,535.1714985876966,44.04198419753086,332.53398635747675,2019
+1995,49,"(45,50]",College,23568.079256965942,535.1714985876966,44.0383677366255,253.44341309420824,2019
+1995,50,"(45,50]",College,55.391915081822205,81.26678311887244,0.6816058536585367,7434.8676286620785,2019
+1995,50,"(45,50]",College,55.14030959752322,63.42773316594923,0.8693406944444444,7434.846144047844,2019
+1995,50,"(45,50]",College,52.75973463069438,75.32043313456471,0.7004704093567251,7449.622646281238,2019
+1995,50,"(45,50]",College,52.81779743476338,73.3383164731288,0.7201937537537536,7581.264949909079,2019
+1995,50,"(45,50]",College,56.785422379478106,67.39196648882105,0.8426141176470587,7536.3048345370025,2019
+1995,53,"(50,55]",College,121.48674038036266,114.96276636328297,1.056748582375479,6134.582453703353,2019
+1995,53,"(50,55]",College,121.48674038036266,114.96276636328297,1.056748582375479,6111.886143887727,2019
+1995,53,"(50,55]",College,121.48674038036266,114.96276636328297,1.056748582375479,6043.989084518966,2019
+1995,53,"(50,55]",College,121.48674038036266,114.96276636328297,1.056748582375479,6401.080888215374,2019
+1995,53,"(50,55]",College,121.48674038036266,114.96276636328297,1.056748582375479,6124.095854977836,2019
+1995,88,"(85,90]",NoHS,1.9354268022998675,19.028319949784766,0.10171296296296298,9886.272018760435,2019
+1995,88,"(85,90]",NoHS,1.9354268022998675,19.028319949784766,0.10171296296296298,9852.552090730289,2019
+1995,88,"(85,90]",NoHS,1.9354268022998675,19.028319949784766,0.10171296296296298,9874.74208434179,2019
+1995,88,"(85,90]",NoHS,1.9354268022998675,19.028319949784766,0.10171296296296298,9892.48341116725,2019
+1995,88,"(85,90]",NoHS,1.9354268022998675,19.028319949784766,0.10171296296296298,9880.279372926861,2019
+1995,20,"(15,20]",HS,617.3256682883681,57.48138318164148,10.739575739463604,6391.688941663456,2019
+1995,20,"(15,20]",HS,585.7975656789032,65.40984982738514,8.955800498316497,6328.53168821587,2019
+1995,20,"(15,20]",HS,588.313620521893,81.26678311887244,7.23928766395664,6407.389489687493,2019
+1995,20,"(15,20]",HS,617.8288792569659,55.499266520205566,11.132199000000002,6365.477194948081,2019
+1995,20,"(15,20]",HS,36.426667846085806,93.15948308748793,0.39101406146572104,6342.330809397422,2019
+1995,66,"(65,70]",NoHS,206.56810260946486,33.69598324441053,6.1303479738562094,9730.037228903218,2019
+1995,66,"(65,70]",NoHS,219.84513047324194,79.28466645743653,2.7728581111111112,9680.252849697397,2019
+1995,66,"(65,70]",NoHS,301.5975586023883,51.53503319733374,5.852282222222223,9690.356601482603,2019
+1995,66,"(65,70]",NoHS,199.69733746130032,105.0521830561034,1.900934675052411,10309.482936096703,2019
+1995,66,"(65,70]",NoHS,205.6003892083149,69.37408315025698,2.9636483809523804,9953.741848613954,2019
+1995,58,"(55,60]",College,12793.20987173817,1845.3506117968354,6.932671650554959,31.185324938107264,2019
+1995,58,"(55,60]",College,12457.471384343211,1827.5115618439122,6.81663068209207,27.718393841393784,2019
+1995,58,"(55,60]",College,13180.66296329058,1793.8155785995014,7.347836154696134,28.816234421678093,2019
+1995,58,"(55,60]",College,13158.134595311809,1625.335662377449,8.095641349593496,27.850314891599083,2019
+1995,58,"(55,60]",College,13152.096063688634,1865.1717784111945,7.051412752391073,28.831041348917502,2019
+1995,38,"(35,40]",College,-3.6773109243697477,47.57079987446191,-0.07730185185185186,7497.178450686422,2019
+1995,38,"(35,40]",College,-3.6773109243697477,47.57079987446191,-0.07730185185185186,7486.495785355985,2019
+1995,38,"(35,40]",College,-3.6773109243697477,47.57079987446191,-0.07730185185185186,7570.348011185575,2019
+1995,38,"(35,40]",College,-3.6773109243697477,47.57079987446191,-0.07730185185185186,7348.239326442585,2019
+1995,38,"(35,40]",College,-3.6773109243697477,47.57079987446191,-0.07730185185185186,7564.484524508602,2019
+1995,72,"(70,75]",College,1137.643874391862,218.03283275795047,5.21776404040404,897.1853040125943,2019
+1995,72,"(70,75]",College,1137.643874391862,218.03283275795047,5.21776404040404,855.6746513307264,2019
+1995,72,"(70,75]",College,1137.643874391862,218.03283275795047,5.21776404040404,934.1577168654158,2019
+1995,72,"(70,75]",College,1137.643874391862,218.03283275795047,5.21776404040404,828.4281408101742,2019
+1995,72,"(70,75]",College,1137.643874391862,218.03283275795047,5.21776404040404,907.766116519666,2019
+1995,40,"(35,40]",HS,-20.631649712516584,59.46349984307739,-0.34696325925925925,6082.901477399793,2019
+1995,40,"(35,40]",HS,-20.631649712516584,59.46349984307739,-0.34696325925925925,6070.502446906097,2019
+1995,40,"(35,40]",HS,-20.631649712516584,59.46349984307739,-0.34696325925925925,6086.312358055035,2019
+1995,40,"(35,40]",HS,-20.631649712516584,59.46349984307739,-0.34696325925925925,5978.2129878084115,2019
+1995,40,"(35,40]",HS,-20.631649712516584,59.46349984307739,-0.34696325925925925,6079.73283596631,2019
+1995,77,"(75,80]",College,1508.8587350729765,99.10583307179566,15.224721777777779,2344.922858420905,2019
+1995,77,"(75,80]",College,1508.8587350729765,99.10583307179566,15.224721777777779,1916.0849303496602,2019
+1995,77,"(75,80]",College,1508.8587350729765,99.10583307179566,15.224721777777779,1967.417561012961,2019
+1995,77,"(75,80]",College,1509.0522777532065,99.10583307179566,15.226674666666666,1911.7472781542097,2019
+1995,77,"(75,80]",College,1508.8587350729765,99.10583307179566,15.224721777777779,1939.2175719649156,2019
+1995,28,"(25,30]",NoHS,42.48261831048209,118.92699968615479,0.35721592592592594,7247.920738482523,2019
+1995,28,"(25,30]",NoHS,41.03104820875719,118.92699968615479,0.3450103703703704,7190.332876035628,2019
+1995,28,"(25,30]",NoHS,42.67616099071208,118.92699968615479,0.3588433333333334,7265.106972031778,2019
+1995,28,"(25,30]",NoHS,41.61167624944715,118.92699968615479,0.34989259259259264,7214.826949088058,2019
+1995,28,"(25,30]",NoHS,25.354091110128262,118.92699968615479,0.2131903703703704,7225.577683138055,2019
+1995,45,"(40,45]",NoHS,22.33482529854047,33.69598324441053,0.6628334640522876,5464.724699248244,2019
+1995,45,"(40,45]",NoHS,22.33482529854047,33.69598324441053,0.6628334640522876,5344.700686239493,2019
+1995,45,"(40,45]",NoHS,22.33482529854047,33.69598324441053,0.6628334640522876,5387.830644098869,2019
+1995,45,"(40,45]",NoHS,22.33482529854047,33.69598324441053,0.6628334640522876,5580.073925478049,2019
+1995,45,"(40,45]",NoHS,22.33482529854047,33.69598324441053,0.6628334640522876,5453.153106431632,2019
+1995,50,"(45,50]",HS,13.741530296329058,19.821166614359132,0.6932755555555555,5337.016791038028,2019
+1995,50,"(45,50]",HS,13.741530296329058,19.821166614359132,0.6932755555555555,5152.347163591335,2019
+1995,50,"(45,50]",HS,13.741530296329058,19.821166614359132,0.6932755555555555,5257.325946469061,2019
+1995,50,"(45,50]",HS,13.741530296329058,19.821166614359132,0.6932755555555555,5227.812770082988,2019
+1995,50,"(45,50]",HS,13.741530296329058,19.821166614359132,0.6932755555555555,5219.886843050057,2019
+1995,47,"(45,50]",HS,85.54586466165414,81.26678311887244,1.0526547425474255,3671.287366681989,2019
+1995,47,"(45,50]",HS,114.57726669615215,69.37408315025698,1.6515860317460316,3511.06750406059,2019
+1995,47,"(45,50]",HS,97.15842547545333,69.37408315025698,1.400500317460317,3534.9403873884476,2019
+1995,47,"(45,50]",HS,114.57726669615215,75.32043313456471,1.5211976608187134,3506.771782396862,2019
+1995,47,"(45,50]",HS,130.0606811145511,81.26678311887244,1.600416260162602,3547.493727380612,2019
+1995,76,"(75,80]",College,1007.389650597081,79.28466645743653,12.705983333333334,1462.5220912816337,2019
+1995,76,"(75,80]",College,1000.6156567890314,79.28466645743653,12.620544444444445,1449.8220783944691,2019
+1995,76,"(75,80]",College,1002.5510835913312,79.28466645743653,12.644955555555555,1468.6940985693623,2019
+1995,76,"(75,80]",College,1000.0350287483415,79.28466645743653,12.61322111111111,1265.1447249762764,2019
+1995,76,"(75,80]",College,1001.1962848297213,79.28466645743653,12.627867777777778,1473.3057974588116,2019
+1995,67,"(65,70]",HS,103.15824856258293,31.713866582974614,3.2527805555555553,8640.561094512525,2019
+1995,67,"(65,70]",HS,95.80362671384344,49.55291653589783,1.9333600000000004,8743.63724271005,2019
+1995,67,"(65,70]",HS,101.99699248120301,45.588683213026,2.237331400966184,8572.509426360446,2019
+1995,67,"(65,70]",HS,94.44882795223353,43.606566551590085,2.1659313131313134,9329.066682034934,2019
+1995,67,"(65,70]",HS,100.6421937195931,31.713866582974614,3.1734444444444443,8812.951293692937,2019
+1995,41,"(40,45]",HS,851.2974789915967,178.3904995292322,4.772100987654321,3170.5583008312797,2019
+1995,41,"(40,45]",HS,839.6849181777975,178.3904995292322,4.7070046913580255,3301.0067366779476,2019
+1995,41,"(40,45]",HS,855.1683325961964,178.3904995292322,4.79379975308642,3254.2835499156868,2019
+1995,41,"(40,45]",HS,853.2329057938965,178.3904995292322,4.78295037037037,3091.189946675876,2019
+1995,41,"(40,45]",HS,839.6849181777975,178.3904995292322,4.7070046913580255,3275.786559434673,2019
+1995,60,"(55,60]",HS,188.3170278637771,59.46349984307739,3.166934814814815,8747.759821287995,2019
+1995,60,"(55,60]",HS,188.3170278637771,59.46349984307739,3.166934814814815,8608.304717509036,2019
+1995,60,"(55,60]",HS,188.3170278637771,59.46349984307739,3.166934814814815,8714.546850045954,2019
+1995,60,"(55,60]",HS,188.3170278637771,59.46349984307739,3.166934814814815,8550.867324368683,2019
+1995,60,"(55,60]",HS,188.3170278637771,59.46349984307739,3.166934814814815,8458.482227605698,2019
+1995,47,"(45,50]",College,115.62239716939408,200.19378280502724,0.5775523872387239,4107.172398228653,2019
+1995,47,"(45,50]",College,666.9674303405573,99.10583307179566,6.7298504,2728.32418559126,2019
+1995,47,"(45,50]",College,344.1575939849624,146.6766329462576,2.346369609609609,4018.0489003049674,2019
+1995,47,"(45,50]",College,334.84819106590004,227.94341606513,1.4689969855072464,3986.030586017864,2019
+1995,47,"(45,50]",College,651.4453073861123,430.1193155315932,1.5145688274449562,2705.9696294588475,2019
+1995,79,"(75,80]",HS,455.2123839009288,61.44561650451331,7.408378494623656,10491.236094706765,2019
+1995,79,"(75,80]",HS,455.2123839009288,61.44561650451331,7.408378494623656,10302.403422213985,2019
+1995,79,"(75,80]",HS,455.2123839009288,61.44561650451331,7.408378494623656,10568.453895774717,2019
+1995,79,"(75,80]",HS,455.2123839009288,61.44561650451331,7.408378494623656,10604.932732005358,2019
+1995,79,"(75,80]",HS,455.2123839009288,61.44561650451331,7.408378494623656,10506.806890374433,2019
+1995,41,"(40,45]",HS,665.3997346306944,134.7839329776421,4.9367882352941175,2328.3681390331903,2019
+1995,41,"(40,45]",HS,665.3997346306944,134.7839329776421,4.9367882352941175,2308.035283351951,2019
+1995,41,"(40,45]",HS,665.3997346306944,134.7839329776421,4.9367882352941175,2336.1049674060573,2019
+1995,41,"(40,45]",HS,665.3997346306944,134.7839329776421,4.9367882352941175,2017.9744591366193,2019
+1995,41,"(40,45]",HS,665.3997346306944,134.7839329776421,4.9367882352941175,2381.1204868016257,2019
+1995,24,"(20,25]",HS,-20.4187527642636,59.46349984307739,-0.343382962962963,5021.076500307123,2019
+1995,24,"(20,25]",HS,-20.4187527642636,59.46349984307739,-0.343382962962963,5131.680622495019,2019
+1995,24,"(20,25]",HS,-20.4187527642636,59.46349984307739,-0.343382962962963,5059.112000791405,2019
+1995,24,"(20,25]",HS,-20.4187527642636,59.46349984307739,-0.343382962962963,5139.156368383154,2019
+1995,24,"(20,25]",HS,-20.4187527642636,59.46349984307739,-0.343382962962963,5057.292869534784,2019
+1995,39,"(35,40]",HS,75.26874834144184,77.30254979600063,0.9736903703703701,5124.512070868364,2019
+1995,39,"(35,40]",HS,76.43000442282177,77.30254979600063,0.9887125925925925,5054.0095689404925,2019
+1995,39,"(35,40]",HS,76.04291906236179,77.30254979600063,0.983705185185185,5049.743734709701,2019
+1995,39,"(35,40]",HS,75.8493763821318,77.30254979600063,0.9812014814814812,5103.752981609081,2019
+1995,39,"(35,40]",HS,75.8493763821318,77.30254979600063,0.9812014814814812,5068.048534789433,2019
+1995,67,"(65,70]",NoHS,181.73657673595756,12.090911634759072,15.030841530054644,7507.0979547457,2019
+1995,67,"(65,70]",NoHS,181.73657673595756,12.090911634759072,15.030841530054644,7468.687391402311,2019
+1995,67,"(65,70]",NoHS,181.73657673595756,12.090911634759072,15.030841530054644,7476.4828245109,2019
+1995,67,"(65,70]",NoHS,181.73657673595756,12.090911634759072,15.030841530054644,7954.162604245376,2019
+1995,67,"(65,70]",NoHS,181.73657673595756,12.090911634759072,15.030841530054644,7679.694672886617,2019
+1995,46,"(45,50]",HS,72.37528527200355,59.46349984307739,1.2171380000000003,5943.879980181996,2019
+1995,46,"(45,50]",HS,72.37528527200355,59.46349984307739,1.2171380000000003,5888.937293860487,2019
+1995,46,"(45,50]",HS,72.13335692171606,59.46349984307739,1.2130694814814815,5919.5054476153,2019
+1995,46,"(45,50]",HS,72.85914197257851,59.46349984307739,1.2252750370370373,6205.489350229358,2019
+1995,46,"(45,50]",HS,72.13335692171606,59.46349984307739,1.2130694814814815,6011.180529457215,2019
+1995,26,"(25,30]",HS,0.2903140203449801,11.892699968615478,0.024411111111111116,6887.8563860087,2019
+1995,26,"(25,30]",HS,0.2903140203449801,11.892699968615478,0.024411111111111116,6887.167647931967,2019
+1995,26,"(25,30]",HS,0.2903140203449801,11.892699968615478,0.024411111111111116,6884.469185515538,2019
+1995,26,"(25,30]",HS,0.2903140203449801,11.892699968615478,0.024411111111111116,6915.31097237215,2019
+1995,26,"(25,30]",HS,0.2903140203449801,11.892699968615478,0.024411111111111116,6906.005944609217,2019
+1995,26,"(25,30]",HS,234.9221052631579,126.85546633189846,1.8518879166666666,4965.546992358518,2019
+1995,26,"(25,30]",HS,234.9221052631579,126.85546633189846,1.8518879166666666,4921.224453556324,2019
+1995,26,"(25,30]",HS,234.9221052631579,126.85546633189846,1.8518879166666666,4988.170284686642,2019
+1995,26,"(25,30]",HS,233.18022114108803,126.85546633189846,1.8381566666666667,4928.388099869382,2019
+1995,26,"(25,30]",HS,233.18022114108803,126.85546633189846,1.8381566666666667,4972.1910005219925,2019
+1995,36,"(35,40]",HS,155.9954002653693,43.606566551590085,3.5773373737373744,5128.065045063238,2019
+1995,36,"(35,40]",HS,155.9954002653693,43.606566551590085,3.5773373737373744,5165.70448522201,2019
+1995,36,"(35,40]",HS,155.9954002653693,43.606566551590085,3.5773373737373744,5163.063825647834,2019
+1995,36,"(35,40]",HS,155.9954002653693,43.606566551590085,3.5773373737373744,5134.336825867615,2019
+1995,36,"(35,40]",HS,155.9954002653693,43.606566551590085,3.5773373737373744,5178.990659863202,2019
+1995,34,"(30,35]",HS,16.838213180008847,35.67809990584644,0.47194814814814817,4261.880699753855,2019
+1995,34,"(30,35]",HS,16.257585139318888,15.658721625343716,1.0382447257383967,4196.1765944397675,2019
+1995,34,"(30,35]",HS,13.160902255639098,37.660216567282355,0.3494643274853801,4206.188936518073,2019
+1995,34,"(30,35]",HS,12.870588235294118,27.749633260102783,0.4638111111111112,4179.285421863011,2019
+1995,34,"(30,35]",HS,17.61238390092879,63.42773316594923,0.27767638888888885,4196.497953101444,2019
+1995,63,"(60,65]",HS,47.41795665634675,41.624449890154175,1.1391851851851853,9907.519441101655,2019
+1995,63,"(60,65]",HS,47.41795665634675,41.624449890154175,1.1391851851851853,9762.015146987233,2019
+1995,63,"(60,65]",HS,47.41795665634675,41.624449890154175,1.1391851851851853,9919.838648100002,2019
+1995,63,"(60,65]",HS,47.41795665634675,41.624449890154175,1.1391851851851853,9902.52053263903,2019
+1995,63,"(60,65]",HS,47.41795665634675,41.624449890154175,1.1391851851851853,9772.555379312686,2019
+1995,55,"(50,55]",HS,1067.329818664308,57.48138318164148,18.568269578544065,107.48060504526093,2019
+1995,55,"(50,55]",HS,934.036974789916,81.26678311887244,11.493465582655828,109.75890662704981,2019
+1995,55,"(50,55]",HS,1357.3922335249888,85.23101644174427,15.926035968992245,199.6002590985759,2019
+1995,55,"(50,55]",HS,1677.511826625387,73.3383164731288,22.873606966966964,205.5337378512761,2019
+1995,55,"(50,55]",HS,1000.6156567890314,101.08794973323158,9.898466230936819,107.45161060711571,2019
+1995,34,"(30,35]",College,100.83573639982309,77.30254979600063,1.3044296296296294,4921.495461531716,2019
+1995,34,"(30,35]",College,100.83573639982309,77.30254979600063,1.3044296296296294,4946.344716316973,2019
+1995,34,"(30,35]",College,100.83573639982309,77.30254979600063,1.3044296296296294,4973.803150947497,2019
+1995,34,"(30,35]",College,100.83573639982309,77.30254979600063,1.3044296296296294,5008.809687139606,2019
+1995,34,"(30,35]",College,100.83573639982309,77.30254979600063,1.3044296296296294,4996.4908207722765,2019
+1995,52,"(50,55]",HS,4117.872127377266,321.1028991526179,12.824151193415638,454.2088318980097,2019
+1995,52,"(50,55]",HS,3851.925130473242,301.28173253825884,12.785126725146199,404.73770005814976,2019
+1995,52,"(50,55]",HS,3627.8994781070323,348.8525324127207,10.399521691919194,402.91550603129,2019
+1995,52,"(50,55]",HS,4738.698982750995,329.0313657983616,14.40196733601071,410.943324327156,2019
+1995,52,"(50,55]",HS,4104.672516585581,332.9955991212334,12.3265067989418,408.724132438155,2019
+1995,65,"(60,65]",HS,240.22517470145954,39.642333228718265,6.059814222222222,7403.444093123893,2019
+1995,65,"(60,65]",HS,240.43807164971253,21.803283275795042,11.027608484848487,7263.146213569826,2019
+1995,65,"(60,65]",HS,226.50299867315346,23.785399937230956,9.522774444444446,7328.949494104747,2019
+1995,65,"(60,65]",HS,228.88357363998233,33.69598324441053,6.7926070588235294,7649.913871436159,2019
+1995,65,"(60,65]",HS,237.39945157010172,16.847991622205264,14.0906677124183,7469.96168525134,2019
+1995,36,"(35,40]",NoHS,23.22512162759841,21.803283275795042,1.0652121212121215,6567.083414043676,2019
+1995,36,"(35,40]",NoHS,23.22512162759841,21.803283275795042,1.0652121212121215,6548.003551133135,2019
+1995,36,"(35,40]",NoHS,23.22512162759841,21.803283275795042,1.0652121212121215,6558.718122173961,2019
+1995,36,"(35,40]",NoHS,23.22512162759841,21.803283275795042,1.0652121212121215,6676.370601563996,2019
+1995,36,"(35,40]",NoHS,23.22512162759841,21.803283275795042,1.0652121212121215,6592.2477846552765,2019
+1995,51,"(50,55]",HS,803.202122954445,132.8018163162062,6.048126036484245,5415.488346743796,2019
+1995,51,"(50,55]",HS,803.202122954445,132.8018163162062,6.048126036484245,5643.179736679039,2019
+1995,51,"(50,55]",HS,803.202122954445,132.8018163162062,6.048126036484245,5576.0987580539695,2019
+1995,51,"(50,55]",HS,803.202122954445,132.8018163162062,6.048126036484245,5288.264549744857,2019
+1995,51,"(50,55]",HS,803.202122954445,132.8018163162062,6.048126036484245,5594.135838406255,2019
+1995,65,"(60,65]",College,53974.98911985847,5153.503319733375,10.473455777777776,15.493080852566397,2019
+1995,65,"(60,65]",College,53682.62354710306,4816.543487289269,11.145466388660267,15.74695442583797,2019
+1995,65,"(60,65]",College,53193.754091110124,4558.868321302601,11.66819270531401,16.014187234236402,2019
+1995,65,"(60,65]",College,53327.453374613004,4776.901154060551,11.163608300599355,15.155013242805222,2019
+1995,65,"(60,65]",College,52583.146289252545,4915.649320361066,10.69709063082437,15.093381937043588,2019
+1995,46,"(45,50]",HS,6696.963821318001,332.9955991212334,20.111268253968255,15.253367385458933,2019
+1995,46,"(45,50]",HS,6696.963821318001,332.9955991212334,20.111268253968255,13.669846329599178,2019
+1995,46,"(45,50]",HS,6696.963821318001,332.9955991212334,20.111268253968255,14.141286271652579,2019
+1995,46,"(45,50]",HS,6696.963821318001,332.9955991212334,20.111268253968255,13.59836777984047,2019
+1995,46,"(45,50]",HS,6696.963821318001,332.9955991212334,20.111268253968255,14.015681924275222,2019
+1995,80,"(75,80]",HS,29.61203007518797,49.55291653589783,0.597584,9149.77168168357,2019
+1995,80,"(75,80]",HS,27.87014595311809,49.55291653589783,0.562432,9083.955180559893,2019
+1995,80,"(75,80]",HS,27.87014595311809,49.55291653589783,0.562432,9341.673169586742,2019
+1995,80,"(75,80]",HS,25.354091110128262,49.55291653589783,0.5116568888888889,9441.09335271741,2019
+1995,80,"(75,80]",HS,26.321804511278195,49.55291653589783,0.5311857777777778,9300.945342267267,2019
+1995,68,"(65,70]",HS,683.2056612118531,81.26678311887244,8.406948509485094,4294.884662655431,2019
+1995,68,"(65,70]",HS,683.2056612118531,83.24889978030835,8.20678306878307,4464.776672917934,2019
+1995,68,"(65,70]",HS,683.2056612118531,65.40984982738514,10.44499663299663,4416.160330962045,2019
+1995,68,"(65,70]",HS,683.2056612118531,65.40984982738514,10.44499663299663,4185.267783289169,2019
+1995,68,"(65,70]",HS,683.2056612118531,65.40984982738514,10.44499663299663,4475.069589869571,2019
+1995,22,"(20,25]",HS,26.12826183104821,45.588683213026,0.5731304347826087,6906.283569085225,2019
+1995,22,"(20,25]",HS,24.579920389208315,45.588683213026,0.5391671497584541,7023.73858443535,2019
+1995,22,"(20,25]",HS,23.999292348518356,45.588683213026,0.5264309178743962,6931.881970628152,2019
+1995,22,"(20,25]",HS,23.805749668288367,45.588683213026,0.5221855072463768,7036.785301321515,2019
+1995,22,"(20,25]",HS,23.805749668288367,45.588683213026,0.5221855072463768,6896.117003389025,2019
+1995,53,"(50,55]",HS,367.3052985404688,69.37408315025698,5.29456076190476,6684.501349818873,2019
+1995,53,"(50,55]",HS,367.3052985404688,69.37408315025698,5.29456076190476,6637.188438965281,2019
+1995,53,"(50,55]",HS,367.3052985404688,69.37408315025698,5.29456076190476,6597.852578091197,2019
+1995,53,"(50,55]",HS,367.3052985404688,69.37408315025698,5.29456076190476,6935.645173929224,2019
+1995,53,"(50,55]",HS,367.3052985404688,69.37408315025698,5.29456076190476,6693.419313252749,2019
+1995,60,"(55,60]",HS,700.6245024325519,101.08794973323158,6.930840958605664,361.11822082784613,2019
+1995,60,"(55,60]",HS,567.0800530738612,101.08794973323158,5.609769063180829,371.8330507782442,2019
+1995,60,"(55,60]",HS,706.4307828394516,101.08794973323158,6.988278867102396,370.9380812614798,2019
+1995,60,"(55,60]",HS,569.015479876161,101.08794973323158,5.628915032679738,326.7727110134958,2019
+1995,60,"(55,60]",HS,634.8199911543566,101.08794973323158,6.2798779956427015,359.97092902414227,2019
+1995,45,"(40,45]",HS,398.60114993365767,158.56933291487306,2.5137341666666666,414.21258953080303,2019
+1995,45,"(40,45]",HS,398.60114993365767,158.56933291487306,2.5137341666666666,423.6777562003234,2019
+1995,45,"(40,45]",HS,398.60114993365767,158.56933291487306,2.5137341666666666,414.9299037212348,2019
+1995,45,"(40,45]",HS,398.60114993365767,158.56933291487306,2.5137341666666666,408.11330234885565,2019
+1995,45,"(40,45]",HS,398.60114993365767,158.56933291487306,2.5137341666666666,419.51590315662304,2019
+1995,44,"(40,45]",College,634.8199911543566,130.8196996547703,4.852632996632996,3642.1434223445517,2019
+1995,44,"(40,45]",College,635.5941618752765,130.8196996547703,4.8585508417508425,3791.5679040555565,2019
+1995,44,"(40,45]",College,634.6264484741265,130.8196996547703,4.851153535353535,3737.616867165434,2019
+1995,44,"(40,45]",College,636.1747899159664,130.8196996547703,4.862989225589225,3549.7276495110623,2019
+1995,44,"(40,45]",College,638.1102167182663,130.8196996547703,4.877783838383839,3764.2982728791517,2019
+1995,59,"(55,60]",College,5977.178593542681,237.85399937230957,25.129611481481486,302.8816787262546,2019
+1995,59,"(55,60]",College,6015.8871295886775,237.85399937230957,25.292352222222224,273.27706478441667,2019
+1995,59,"(55,60]",College,5357.842016806722,237.85399937230957,22.52575962962963,269.22803336130465,2019
+1995,59,"(55,60]",College,4806.24537815126,237.85399937230957,20.206704074074075,277.77204845876975,2019
+1995,59,"(55,60]",College,4699.796904024768,237.85399937230957,19.75916703703704,273.0848658088845,2019
+1995,45,"(40,45]",HS,278.6627509951349,543.0999652334403,0.513096609894566,6355.568879595965,2019
+1995,45,"(40,45]",HS,259.26977443609024,572.831715154979,0.45261071895424837,6170.300533520843,2019
+1995,45,"(40,45]",HS,249.30232640424592,572.831715154979,0.43521041138023836,6206.256117450542,2019
+1995,45,"(40,45]",HS,240.45742591773552,539.1357319105684,0.44600535947712416,6380.569243350193,2019
+1995,45,"(40,45]",HS,240.32194604157453,517.3324486347734,0.46454063856960404,6266.911103418249,2019
+1995,43,"(40,45]",HS,7865.4196904024775,1450.9093961710885,5.421027468123862,1249.2548909457264,2019
+1995,43,"(40,45]",HS,7315.893958425476,1310.1791132091387,5.583888404773912,1134.6583285674965,2019
+1995,43,"(40,45]",HS,9032.636886333481,1330.000279823498,6.791454876635203,1123.8246513048853,2019
+1995,43,"(40,45]",HS,7436.877487837241,1343.875096453549,5.533905276958375,1032.020520819945,2019
+1995,43,"(40,45]",HS,8070.671702786378,1294.3221799176513,6.2354426339969375,1114.841971750689,2019
+1995,21,"(20,25]",HS,0,17.83904995292322,0,4770.787878984444,2019
+1995,21,"(20,25]",HS,0,17.83904995292322,0,4767.885639655362,2019
+1995,21,"(20,25]",HS,0,16.45156828991808,0,4762.731113688147,2019
+1995,21,"(20,25]",HS,0,15.460509959200122,0,4779.013483286848,2019
+1995,21,"(20,25]",HS,0,19.028319949784766,0,4733.086874970753,2019
+1995,38,"(35,40]",HS,-7.412684652808491,53.517149858769656,-0.13851045267489712,5052.339227341404,2019
+1995,38,"(35,40]",HS,-7.412684652808491,53.517149858769656,-0.13851045267489712,5029.304009833986,2019
+1995,38,"(35,40]",HS,-7.412684652808491,53.517149858769656,-0.13851045267489712,5009.04532938533,2019
+1995,38,"(35,40]",HS,-7.412684652808491,53.517149858769656,-0.13851045267489712,4914.643943703781,2019
+1995,38,"(35,40]",HS,-7.412684652808491,53.517149858769656,-0.13851045267489712,5008.137268730342,2019
+1995,52,"(50,55]",NoHS,0,23.785399937230956,0,7079.44171251661,2019
+1995,52,"(50,55]",NoHS,0,23.785399937230956,0,7061.740002976386,2019
+1995,52,"(50,55]",NoHS,0,23.785399937230956,0,7075.164318743152,2019
+1995,52,"(50,55]",NoHS,0,23.785399937230956,0,7198.4251062742915,2019
+1995,52,"(50,55]",NoHS,0,23.785399937230956,0,7158.811977827853,2019
+1995,91,"(90,95]",College,3067.45793896506,170.46203288348855,17.994962790697674,2221.4835310605804,2019
+1995,91,"(90,95]",College,3067.45793896506,170.46203288348855,17.994962790697674,2091.511688738291,2019
+1995,91,"(90,95]",College,3067.45793896506,170.46203288348855,17.994962790697674,1968.8953776587157,2019
+1995,91,"(90,95]",College,3067.45793896506,170.46203288348855,17.994962790697674,1973.6843797778442,2019
+1995,91,"(90,95]",College,3067.45793896506,170.46203288348855,17.994962790697674,2217.755115589546,2019
+1995,50,"(45,50]",College,376.80824413976114,99.10583307179566,3.802079377777778,4349.925330307022,2019
+1995,50,"(45,50]",College,328.3838655462185,99.10583307179566,3.313466577777778,7126.001208026452,2019
+1995,50,"(45,50]",College,354.9959840778417,99.10583307179566,3.5819888000000004,7167.525852268077,2019
+1995,50,"(45,50]",College,325.8174896063689,99.10583307179566,3.2875712711111116,7368.837853034916,2019
+1995,50,"(45,50]",College,334.39336576735957,99.10583307179566,3.374103777777778,7237.575520178187,2019
+1995,67,"(65,70]",HS,5876.923485183547,87.21313310318017,67.38576262626263,496.7641223961655,2019
+1995,67,"(65,70]",HS,3670.5369305616987,101.08794973323158,36.3103311546841,443.1851883833371,2019
+1995,67,"(65,70]",HS,5290.8762494471475,154.60509959200127,34.221874074074066,440.3282671794037,2019
+1995,67,"(65,70]",HS,3267.968155683326,118.92699968615479,27.478774074074078,450.2074235362028,2019
+1995,67,"(65,70]",HS,3991.4306943830165,148.65874960769352,26.849618370370365,446.9820762544329,2019
+1995,52,"(50,55]",HS,670.625386996904,138.74816630051396,4.833399999999999,4387.290977983592,2019
+1995,52,"(50,55]",HS,670.625386996904,138.74816630051396,4.833399999999999,4571.752344506165,2019
+1995,52,"(50,55]",HS,670.625386996904,138.74816630051396,4.833399999999999,4517.40751843096,2019
+1995,52,"(50,55]",HS,670.625386996904,138.74816630051396,4.833399999999999,4284.222190642578,2019
+1995,52,"(50,55]",HS,670.625386996904,138.74816630051396,4.833399999999999,4532.020036237656,2019
+1995,31,"(30,35]",College,933.069261388766,162.53356623774488,5.740778861788618,965.5721865554721,2019
+1995,31,"(30,35]",College,777.6544891640866,122.89123300902662,6.327989964157705,951.1345407499333,2019
+1995,31,"(30,35]",College,1012.8088456435206,140.73028296194985,7.19680813771518,966.5045939991327,2019
+1995,31,"(30,35]",College,864.7486952675807,160.55144957630895,5.386115775034295,913.394165311626,2019
+1995,31,"(30,35]",College,875.78062804069,134.7839329776421,6.4976633986928105,991.792223255868,2019
+1995,32,"(30,35]",College,48.38567005749668,57.48138318164148,0.8417624521072797,4546.809038730141,2019
+1995,32,"(30,35]",College,49.54692613887661,57.48138318164148,0.8619647509578545,4526.445776348307,2019
+1995,32,"(30,35]",College,39.463352498894295,57.48138318164148,0.6865414559386973,4540.812244537827,2019
+1995,32,"(30,35]",College,40.353648827952235,57.48138318164148,0.7020298850574713,4551.560016508847,2019
+1995,32,"(30,35]",College,39.056912870411324,57.48138318164148,0.6794706513409963,4540.904181667929,2019
+1995,44,"(40,45]",College,1590.069243697479,150.64086626912942,10.555364444444443,1009.8511195625676,2019
+1995,44,"(40,45]",College,1590.069243697479,150.64086626912942,10.555364444444443,860.1627359989641,2019
+1995,44,"(40,45]",College,1590.069243697479,150.64086626912942,10.555364444444443,858.883365117689,2019
+1995,44,"(40,45]",College,1590.069243697479,150.64086626912942,10.555364444444443,878.7825186746401,2019
+1995,44,"(40,45]",College,1590.069243697479,150.64086626912942,10.555364444444443,841.1627374232406,2019
+1995,38,"(35,40]",HS,98.90030959752322,118.92699968615479,0.8316051851851852,5381.5833785384,2019
+1995,38,"(35,40]",HS,129.8671384343211,118.92699968615479,1.0919903703703706,5452.352947654987,2019
+1995,38,"(35,40]",HS,129.8671384343211,118.92699968615479,1.0919903703703706,5390.654183367389,2019
+1995,38,"(35,40]",HS,98.90030959752322,118.92699968615479,0.8316051851851852,5374.237579642305,2019
+1995,38,"(35,40]",HS,98.90030959752322,118.92699968615479,0.8316051851851852,5397.385028406747,2019
+1995,44,"(40,45]",HS,30.77328615656789,19.821166614359132,1.5525466666666667,8577.802168984452,2019
+1995,44,"(40,45]",HS,30.77328615656789,19.821166614359132,1.5525466666666667,8686.363023038359,2019
+1995,44,"(40,45]",HS,30.77328615656789,19.821166614359132,1.5525466666666667,8713.875523283143,2019
+1995,44,"(40,45]",HS,30.77328615656789,19.821166614359132,1.5525466666666667,8621.068738968814,2019
+1995,44,"(40,45]",HS,30.77328615656789,19.821166614359132,1.5525466666666667,8774.953311021234,2019
+1995,73,"(70,75]",College,174895.23007518798,4142.6238224010585,42.21846770866561,23.77978164443807,2019
+1995,73,"(70,75]",HS,173703.2007076515,1480.6411460926272,117.31620532500374,25.70395045405458,2019
+1995,73,"(70,75]",HS,175805.07421494913,8245.605311573401,21.321063472222217,25.113774094689507,2019
+1995,73,"(70,75]",College,178501.89792127378,7968.108978972372,22.40204023217247,22.197837107810393,2019
+1995,73,"(70,75]",College,173391.0163644405,5153.503319733375,33.64527111111111,23.92156353176672,2019
+1995,48,"(45,50]",College,417.08447589562144,166.4977995606167,2.505044973544974,3945.354504511984,2019
+1995,48,"(45,50]",College,417.08447589562144,166.4977995606167,2.505044973544974,4108.963571429651,2019
+1995,48,"(45,50]",College,417.08447589562144,166.4977995606167,2.505044973544974,4037.7573780445978,2019
+1995,48,"(45,50]",College,417.08447589562144,166.4977995606167,2.505044973544974,3861.234400119418,2019
+1995,48,"(45,50]",College,417.08447589562144,166.4977995606167,2.505044973544974,4047.304977286797,2019
+1995,22,"(20,25]",HS,0.11612560813799205,79.28466645743653,0.0014646666666666669,4698.600896219216,2019
+1995,22,"(20,25]",HS,0.11612560813799205,67.39196648882105,0.0017231372549019609,4685.041273937298,2019
+1995,22,"(20,25]",HS,0.11612560813799205,77.30254979600063,0.001502222222222222,4711.731677115458,2019
+1995,22,"(20,25]",HS,0.11612560813799205,59.46349984307739,0.0019528888888888892,4680.829868974572,2019
+1995,22,"(20,25]",HS,0.11612560813799205,71.35619981169287,0.0016274074074074077,4659.719239166389,2019
+1995,53,"(50,55]",College,4820.954621848739,317.1386658297461,15.201409166666666,1201.5228952456878,2019
+1995,53,"(50,55]",College,4953.14427244582,283.44268258533566,17.47494141414141,1091.1771107702834,2019
+1995,53,"(50,55]",College,4709.280495356037,289.38903256964335,16.273182343987823,1080.351390022802,2019
+1995,53,"(50,55]",College,4664.37859354268,307.22808252256664,15.182136200716842,996.0897709548601,2019
+1995,53,"(50,55]",College,5725.960194604158,325.06713247548976,17.614700542005423,1077.3588919203903,2019
+1995,66,"(65,70]",HS,972.1648827952234,59.46349984307739,16.348934814814818,4018.404278690031,2019
+1995,66,"(65,70]",HS,972.1648827952234,59.46349984307739,16.348934814814818,4176.441729767864,2019
+1995,66,"(65,70]",HS,972.1648827952234,59.46349984307739,16.348934814814818,4128.582914649533,2019
+1995,66,"(65,70]",HS,972.1648827952234,59.46349984307739,16.348934814814818,3913.896810319955,2019
+1995,66,"(65,70]",HS,972.1648827952234,59.46349984307739,16.348934814814818,4184.456700051829,2019
+1995,39,"(35,40]",College,924.7469261388766,396.42333228718263,2.3327257777777777,4699.61304595537,2019
+1995,39,"(35,40]",College,937.1336576735957,396.42333228718263,2.363972,4891.632698343857,2019
+1995,39,"(35,40]",College,922.2308712958868,396.42333228718263,2.326378888888889,4824.599831795256,2019
+1995,39,"(35,40]",College,913.7149933657674,396.42333228718263,2.3048971111111114,4583.469353320966,2019
+1995,39,"(35,40]",College,932.682176028306,396.42333228718263,2.352742888888889,4855.689763058988,2019
+1995,53,"(50,55]",College,846.749226006192,372.6379323499517,2.2723108747044916,2679.0168447048563,2019
+1995,53,"(50,55]",College,687.8313312693499,368.67369902707986,1.8656913500597374,4571.752344506165,2019
+1995,53,"(50,55]",College,872.9549049093322,303.2638491996948,2.8785326942628897,2369.0551682036144,2019
+1995,53,"(50,55]",College,898.5025386996904,350.8346490741567,2.5610427620841176,2298.567273831577,2019
+1995,53,"(50,55]",College,873.3226360017691,390.47698230287494,2.2365534348561757,2371.070637316199,2019
+1995,76,"(75,80]",HS,1297.8991490490932,63.42773316594923,20.462644402777777,5745.209110936385,2019
+1995,76,"(75,80]",HS,1880.4626165413533,81.26678311887244,23.13937557723577,2985.5305901560982,2019
+1995,76,"(75,80]",HS,1744.9827403803627,61.44561650451331,28.398815727598567,3096.457673759942,2019
+1995,76,"(75,80]",HS,988.2308606811147,67.39196648882105,14.663926758169936,5598.593167283648,2019
+1995,76,"(75,80]",HS,1472.0875612560815,65.40984982738514,22.50559457239057,3105.071463302318,2019
+1995,42,"(40,45]",College,434.5033171163202,75.32043313456471,5.768730994152047,4636.463303387209,2019
+1995,42,"(40,45]",College,434.5033171163202,75.32043313456471,5.768730994152047,4572.675325436328,2019
+1995,42,"(40,45]",College,434.5033171163202,75.32043313456471,5.768730994152047,4568.815761131305,2019
+1995,42,"(40,45]",College,434.5033171163202,75.32043313456471,5.768730994152047,4617.681270243104,2019
+1995,42,"(40,45]",College,434.5033171163202,75.32043313456471,5.768730994152047,4585.3772469219175,2019
+1995,34,"(30,35]",HS,139.50556390977445,41.624449890154175,3.351529312169313,4921.495461531716,2019
+1995,34,"(30,35]",HS,168.53696594427245,41.624449890154175,4.04898962962963,4946.344716316973,2019
+1995,34,"(30,35]",HS,145.31184431667404,41.624449890154175,3.491021375661376,4973.803150947497,2019
+1995,34,"(30,35]",HS,154.98897832817337,41.624449890154175,3.7235081481481487,5008.809687139606,2019
+1995,34,"(30,35]",HS,162.73068553737284,41.624449890154175,3.909497566137566,4996.4908207722765,2019
+1995,67,"(65,70]",HS,1.6451127819548872,11.099853304041115,0.14821031746031743,11599.438839415196,2019
+1995,67,"(65,70]",HS,1.6838213180008845,11.099853304041115,0.15169761904761903,11622.467146067833,2019
+1995,67,"(65,70]",HS,1.6451127819548872,11.099853304041115,0.14821031746031743,11593.965885244126,2019
+1995,67,"(65,70]",HS,2.2257408226448474,11.099853304041115,0.20051984126984124,11610.753071386076,2019
+1995,67,"(65,70]",HS,1.548341441839894,11.099853304041115,0.1394920634920635,11688.57899193343,2019
+1995,25,"(20,25]",HS,0,21.803283275795042,0,7639.8086111518005,2019
+1995,25,"(20,25]",HS,0,21.803283275795042,0,7637.8125305013655,2019
+1995,25,"(20,25]",HS,0,21.803283275795042,0,7638.891039700556,2019
+1995,25,"(20,25]",HS,0,21.803283275795042,0,7675.458919045341,2019
+1995,25,"(20,25]",HS,0,21.803283275795042,0,7657.503240108381,2019
+1995,31,"(30,35]",HS,249.4765148164529,39.642333228718265,6.293184444444444,10730.87377559346,2019
+1995,31,"(30,35]",HS,248.70234409553296,39.642333228718265,6.273655555555556,10962.40233567466,2019
+1995,31,"(30,35]",HS,243.6702344095533,39.642333228718265,6.146717777777778,10688.090476212185,2019
+1995,31,"(30,35]",HS,243.8637770897833,39.642333228718265,6.1516,10996.044050440798,2019
+1995,31,"(30,35]",HS,242.12189296771342,39.642333228718265,6.107660000000001,10896.746065617828,2019
+1995,22,"(20,25]",HS,17.554321096859795,43.606566551590085,0.40256141414141416,4470.31741203057,2019
+1995,22,"(20,25]",HS,23.07028748341442,43.606566551590085,0.5290553535353536,4429.446166827987,2019
+1995,22,"(20,25]",HS,19.509102167182665,43.606566551590085,0.447389090909091,4422.089771260643,2019
+1995,22,"(20,25]",HS,26.592764263600177,43.606566551590085,0.6098339393939395,4391.281631696866,2019
+1995,22,"(20,25]",HS,33.71513489606369,43.606566551590085,0.7731664646464648,4382.543311734106,2019
+1995,57,"(55,60]",College,11757.717823971694,396.42333228718263,29.6595,1446.022824221454,2019
+1995,57,"(55,60]",College,11757.717823971694,396.42333228718263,29.6595,1292.7307657071292,2019
+1995,57,"(55,60]",College,11757.717823971694,396.42333228718263,29.6595,1287.1904408211253,2019
+1995,57,"(55,60]",College,11757.717823971694,396.42333228718263,29.6595,1297.2202339658738,2019
+1995,57,"(55,60]",College,11757.717823971694,396.42333228718263,29.6595,1297.2160353769011,2019
+1995,58,"(55,60]",HS,255.86342326404244,19.821166614359132,12.908595555555555,5527.685548272219,2019
+1995,58,"(55,60]",HS,269.02432551968155,19.821166614359132,13.572577777777777,5412.327604135899,2019
+1995,58,"(55,60]",HS,266.8953560371517,19.821166614359132,13.46516888888889,5459.592205239611,2019
+1995,58,"(55,60]",HS,248.70234409553296,19.821166614359132,12.547311111111112,5447.82036449772,2019
+1995,58,"(55,60]",HS,265.5405572755418,19.821166614359132,13.396817777777779,5389.930923933211,2019
+1995,76,"(75,80]",HS,142.25386996904024,10.901641637897521,13.048848484848486,8751.77541728753,2019
+1995,76,"(75,80]",HS,97.7390535161433,10.901641637897521,8.965535353535355,8702.816069377108,2019
+1995,76,"(75,80]",HS,62.90137107474569,10.901641637897521,5.769898989898991,8420.076550576314,2019
+1995,76,"(75,80]",HS,59.03051747014596,10.901641637897521,5.414828282828284,8427.130600433655,2019
+1995,76,"(75,80]",HS,53.22423706324635,10.901641637897521,4.8822222222222225,8429.67098484281,2019
+1995,44,"(40,45]",College,2825.9940911101285,309.21019918400253,9.139394814814814,1100.165776627306,2019
+1995,44,"(40,45]",College,2082.3256965944274,154.60509959200127,13.468674074074073,707.8758053410827,2019
+1995,44,"(40,45]",College,3414.905758513932,198.21166614359132,17.22858106666667,978.9748662586323,2019
+1995,44,"(40,45]",College,1989.8122954444937,221.99706608082226,8.963236904761906,716.008753802683,2019
+1995,44,"(40,45]",College,2183.1614329942504,83.24889978030835,26.22450793650794,696.4242878904051,2019
+1995,76,"(75,80]",HS,181.1559486952676,31.713866582974614,5.7122,10491.236094706765,2019
+1995,76,"(75,80]",HS,188.70411322423706,31.713866582974614,5.950208333333333,10302.403422213985,2019
+1995,76,"(75,80]",HS,174.38195488721806,31.713866582974614,5.498602777777778,10568.453895774717,2019
+1995,76,"(75,80]",HS,178.63989385227774,31.713866582974614,5.632863888888888,10604.932732005358,2019
+1995,76,"(75,80]",HS,173.4142414860681,31.713866582974614,5.4680888888888886,10506.806890374433,2019
+1995,23,"(20,25]",College,47.301831048208754,79.28466645743653,0.5966075555555556,4851.25519422129,2019
+1995,23,"(20,25]",College,47.301831048208754,79.28466645743653,0.5966075555555556,4933.7603864284665,2019
+1995,23,"(20,25]",College,47.301831048208754,79.28466645743653,0.5966075555555556,4869.236555282801,2019
+1995,23,"(20,25]",College,47.301831048208754,79.28466645743653,0.5966075555555556,4942.92493237107,2019
+1995,23,"(20,25]",College,47.301831048208754,79.28466645743653,0.5966075555555556,4844.113783917514,2019
+1995,50,"(45,50]",HS,-194.12330827067672,198.21166614359132,-0.979373777777778,246.90765503575403,2019
+1995,50,"(45,50]",HS,-192.9620521892968,198.21166614359132,-0.9735151111111113,249.35999961575877,2019
+1995,50,"(45,50]",HS,-190.83308270676693,198.21166614359132,-0.9627742222222223,247.1810266917618,2019
+1995,50,"(45,50]",HS,-194.12330827067672,198.21166614359132,-0.979373777777778,242.87670356842932,2019
+1995,50,"(45,50]",HS,-194.35555948695267,198.21166614359132,-0.9805455111111111,246.88275153092908,2019
+1995,46,"(45,50]",HS,377.4082264484741,75.32043313456471,5.010701754385964,6680.125555292235,2019
+1995,46,"(45,50]",HS,377.4082264484741,75.32043313456471,5.010701754385964,6526.349239986229,2019
+1995,46,"(45,50]",HS,377.4082264484741,75.32043313456471,5.010701754385964,6612.75890115884,2019
+1995,46,"(45,50]",HS,377.4082264484741,75.32043313456471,5.010701754385964,6801.28526270522,2019
+1995,46,"(45,50]",HS,377.4082264484741,75.32043313456471,5.010701754385964,6663.264710326138,2019
+1995,51,"(50,55]",College,2190.9031402034498,396.42333228718263,5.526675555555555,11.174748196367089,2019
+1995,51,"(50,55]",College,2374.768686421937,396.42333228718263,5.990486666666667,9.722059574360648,2019
+1995,51,"(50,55]",College,2423.1543564794338,396.42333228718263,6.112542222222222,10.070461762280148,2019
+1995,51,"(50,55]",College,3632.7961079168513,396.42333228718263,9.163931111111113,12.48574671908394,2019
+1995,51,"(50,55]",College,2384.4458204334364,396.42333228718263,6.014897777777778,9.82229716046172,2019
+1995,40,"(35,40]",NoHS,121.44803184431667,73.3383164731288,1.6559969969969968,5902.339790192642,2019
+1995,40,"(35,40]",NoHS,121.44803184431667,73.3383164731288,1.6559969969969968,5821.136015729386,2019
+1995,40,"(35,40]",NoHS,121.44803184431667,73.3383164731288,1.6559969969969968,5816.222688807612,2019
+1995,40,"(35,40]",NoHS,121.44803184431667,73.3383164731288,1.6559969969969968,5878.429767765382,2019
+1995,40,"(35,40]",NoHS,121.44803184431667,73.3383164731288,1.6559969969969968,5837.305896021875,2019
+1995,33,"(30,35]",HS,90.30701459531181,83.24889978030835,1.0847832804232806,5920.167689567919,2019
+1995,33,"(30,35]",HS,91.23601946041575,83.24889978030835,1.0959426455026455,5830.506558329444,2019
+1995,33,"(30,35]",HS,98.84224679345422,83.24889978030835,1.187309947089947,5866.5852170974595,2019
+1995,33,"(30,35]",HS,90.5392658115878,83.24889978030835,1.087573121693122,5793.892636308876,2019
+1995,33,"(30,35]",HS,90.22959752321981,83.24889978030835,1.0838533333333333,5860.185697941491,2019
+1995,62,"(60,65]",HS,262.598708536046,21.803283275795042,12.043998383838385,6816.484186724122,2019
+1995,62,"(60,65]",HS,339.00935869084475,43.606566551590085,7.774273131313133,6850.370241038609,2019
+1995,62,"(60,65]",HS,223.4063157894737,21.803283275795042,10.246452929292932,6831.1664306651055,2019
+1995,62,"(60,65]",HS,351.89930119416186,65.40984982738514,5.379912996632996,6968.1396342047665,2019
+1995,62,"(60,65]",HS,353.2928084918178,39.642333228718265,8.912008444444446,6769.750464090697,2019
+1995,58,"(55,60]",College,1207.3192392746573,281.4605659238997,4.289479186228482,4251.07195192696,2019
+1995,58,"(55,60]",College,1207.3192392746573,319.12078249118207,3.7832673567977917,4419.038137549979,2019
+1995,58,"(55,60]",College,1213.1255196815569,531.2072652648249,2.2837140961857374,4368.293329111411,2019
+1995,58,"(55,60]",College,1201.5129588677576,180.3726161906681,6.6612825396825395,4141.234690113122,2019
+1995,58,"(55,60]",College,1201.5129588677576,174.42626620636034,6.888371717171718,4378.985533889086,2019
+1995,45,"(40,45]",HS,152.91807164971252,13.676604963907801,11.180996457326893,5810.805831027746,2019
+1995,45,"(40,45]",HS,169.75628482972135,13.676604963907801,12.412165539452495,5641.417628952807,2019
+1995,45,"(40,45]",HS,171.88525431225122,12.883758299333435,13.341235555555558,5674.291305678658,2019
+1995,45,"(40,45]",HS,170.7239982308713,14.073028296194984,12.131290766823161,5833.663306453316,2019
+1995,45,"(40,45]",HS,149.43430340557276,14.271239962338576,10.47101049382716,5729.747292832472,2019
+1995,51,"(50,55]",NoHS,246.18628925254313,39.642333228718265,6.210186666666667,6769.193891354256,2019
+1995,51,"(50,55]",NoHS,246.18628925254313,39.642333228718265,6.210186666666667,6613.367225285129,2019
+1995,51,"(50,55]",NoHS,246.76691729323306,39.642333228718265,6.224833333333333,6700.929015212901,2019
+1995,51,"(50,55]",NoHS,246.28306059265813,39.642333228718265,6.2126277777777785,6891.969061447957,2019
+1995,51,"(50,55]",NoHS,246.37983193277313,39.642333228718265,6.215068888888889,6752.108235133746,2019
+1995,45,"(40,45]",HS,98.14549314462629,53.517149858769656,1.833907325102881,7410.5516537088215,2019
+1995,45,"(40,45]",HS,98.22291021671828,53.517149858769656,1.8353539094650209,7342.051681243596,2019
+1995,45,"(40,45]",HS,98.41645289694826,53.517149858769656,1.8389703703703706,7380.1626261337715,2019
+1995,45,"(40,45]",HS,98.16484741264927,53.517149858769656,1.8342689711934157,7736.713984760941,2019
+1995,45,"(40,45]",HS,98.22291021671828,53.517149858769656,1.8353539094650209,7494.458831913946,2019
+1995,22,"(20,25]",HS,88.44900486510394,75.32043313456471,1.1743029239766083,4553.784849611175,2019
+1995,22,"(20,25]",HS,80.2234409553295,75.32043313456471,1.0650953216374268,4513.39544365541,2019
+1995,22,"(20,25]",HS,99.86802299867315,75.32043313456471,1.3259087719298246,4522.989595409842,2019
+1995,22,"(20,25]",HS,81.48146837682441,75.32043313456471,1.0817976608187134,4464.379749168038,2019
+1995,22,"(20,25]",HS,82.44918177797435,75.32043313456471,1.0946456140350875,4487.991301345167,2019
+1995,58,"(55,60]",HS,1087.3227775320656,63.42773316594923,17.142702777777778,3065.5084963172567,2019
+1995,58,"(55,60]",HS,1583.8178151260506,71.35619981169287,22.19593839506173,2623.0827429909714,2019
+1995,58,"(55,60]",HS,431.9098452012384,75.32043313456471,5.734298479532163,5162.770262850015,2019
+1995,58,"(55,60]",HS,796.8345687748784,73.3383164731288,10.865187627627627,2625.162188971658,2019
+1995,58,"(55,60]",HS,1070.8135869084476,69.37408315025698,15.435354793650792,2707.160981312618,2019
+1995,55,"(50,55]",College,13987.91012826183,495.5291653589783,28.228227733333334,241.58361433093108,2019
+1995,55,"(50,55]",College,14036.295798319328,495.5291653589783,28.325872177777782,212.71110241217744,2019
+1995,55,"(50,55]",College,13600.824767801858,495.5291653589783,27.44707217777778,212.4020132432484,2019
+1995,55,"(50,55]",College,13891.138788146838,495.5291653589783,28.03293884444445,218.1978568405982,2019
+1995,55,"(50,55]",College,14036.295798319328,495.5291653589783,28.325872177777782,217.2155422795112,2019
+1995,27,"(25,30]",College,21.8703228659885,114.96276636328297,0.1902383141762452,6767.726280013961,2019
+1995,27,"(25,30]",College,18.580097302078727,136.76604963907803,0.13585314009661834,6705.467331968206,2019
+1995,27,"(25,30]",College,18.38655462184874,107.03429971753931,0.17178189300411525,6771.004039954916,2019
+1995,27,"(25,30]",College,22.257408226448476,130.8196996547703,0.17013804713804714,6730.4623305035075,2019
+1995,27,"(25,30]",College,20.515524104378596,120.90911634759071,0.16967723132969037,6741.116760457534,2019
+1995,28,"(25,30]",HS,108.77098628925255,118.92699968615479,0.9146029629629631,4566.986513340913,2019
+1995,28,"(25,30]",HS,108.77098628925255,118.92699968615479,0.9146029629629631,4497.819354806098,2019
+1995,28,"(25,30]",HS,108.77098628925255,118.92699968615479,0.9146029629629631,4525.651463059268,2019
+1995,28,"(25,30]",HS,108.77098628925255,118.92699968615479,0.9146029629629631,4469.574329185779,2019
+1995,28,"(25,30]",HS,108.77098628925255,118.92699968615479,0.9146029629629631,4520.714691128183,2019
+1995,25,"(20,25]",HS,-11.806103494029191,31.713866582974614,-0.37226944444444443,6835.185826818693,2019
+1995,25,"(20,25]",HS,-11.806103494029191,31.713866582974614,-0.37226944444444443,6933.475539569267,2019
+1995,25,"(20,25]",HS,-11.806103494029191,31.713866582974614,-0.37226944444444443,6875.387456439959,2019
+1995,25,"(20,25]",HS,568.821937195931,31.713866582974614,17.93606388888889,6978.600839750204,2019
+1995,25,"(20,25]",HS,-11.806103494029191,31.713866582974614,-0.37226944444444443,6877.359994132627,2019
+1995,32,"(30,35]",HS,0.19354268022998675,41.624449890154175,0.004649735449735451,6476.800423859633,2019
+1995,32,"(30,35]",HS,0.19354268022998675,41.624449890154175,0.004649735449735451,6418.98841673487,2019
+1995,32,"(30,35]",HS,0,41.624449890154175,0,6506.309066022394,2019
+1995,32,"(30,35]",HS,0,41.624449890154175,0,6428.332303228779,2019
+1995,32,"(30,35]",HS,0,41.624449890154175,0,6485.466521462886,2019
+1995,47,"(45,50]",HS,120085.87846085803,6005.813484150818,19.994939699303263,2.0000789024324326,2019
+1995,47,"(45,50]",HS,120498.1243697479,6402.236816438,18.82125385620915,1.5956083588445662,2019
+1995,47,"(45,50]",HS,120239.16426360018,5629.211318477993,21.359859749608766,2.195860886247657,2019
+1995,47,"(45,50]",HS,120494.05997346308,5569.747818634915,21.633665274812184,1.4945476443958283,2019
+1995,47,"(45,50]",HS,120126.52242370632,6184.2039836800495,19.424734814814816,1.6332706553106373,2019
+1995,32,"(30,35]",HS,0.2128969482529854,12.289123300902663,0.017324014336917562,7972.05599611563,2019
+1995,32,"(30,35]",HS,0.19354268022998675,12.289123300902663,0.01574910394265233,7971.258845564477,2019
+1995,32,"(30,35]",HS,0.2516054842989828,12.289123300902663,0.02047383512544803,7968.135625177527,2019
+1995,32,"(30,35]",HS,0.2128969482529854,12.289123300902663,0.017324014336917562,8003.832137715243,2019
+1995,32,"(30,35]",HS,0.2128969482529854,12.289123300902663,0.017324014336917562,7993.062429664678,2019
+1995,42,"(40,45]",HS,380.33072091994694,39.642333228718265,9.59405488888889,7418.051401858642,2019
+1995,42,"(40,45]",HS,382.07260504201685,39.642333228718265,9.63799488888889,7509.071572963769,2019
+1995,42,"(40,45]",HS,380.13717823971695,39.642333228718265,9.589172666666666,7416.930614463379,2019
+1995,42,"(40,45]",HS,382.07260504201685,39.642333228718265,9.63799488888889,7663.090042209811,2019
+1995,42,"(40,45]",HS,384.0080318443167,39.642333228718265,9.686817111111111,7472.233633041101,2019
+1995,40,"(35,40]",HS,133.15736399823086,69.37408315025698,1.9194107936507931,6070.724065777873,2019
+1995,40,"(35,40]",HS,131.80256523662095,85.23101644174427,1.5464155038759688,6115.282520708986,2019
+1995,40,"(35,40]",HS,131.22193719593102,73.3383164731288,1.7892684684684685,6112.156445769297,2019
+1995,40,"(35,40]",HS,132.96382131800087,85.23101644174427,1.560040310077519,6078.148747471618,2019
+1995,40,"(35,40]",HS,132.7702786377709,71.35619981169287,1.8606691358024692,6131.011006878262,2019
+1995,32,"(30,35]",HS,-15.810501547987617,29.731749921538697,-0.5317716444444445,5688.813395576264,2019
+1995,32,"(30,35]",HS,-15.810501547987617,29.731749921538697,-0.5317716444444445,5636.479787066839,2019
+1995,32,"(30,35]",HS,-15.810501547987617,29.731749921538697,-0.5317716444444445,5691.568614077734,2019
+1995,32,"(30,35]",HS,-15.810501547987617,29.731749921538697,-0.5317716444444445,5657.490075693607,2019
+1995,32,"(30,35]",HS,-15.810501547987617,29.731749921538697,-0.5317716444444445,5666.445973337356,2019
+1995,57,"(55,60]",College,214.6388323750553,297.31749921538704,0.7219179259259259,8747.759821287995,2019
+1995,57,"(55,60]",College,214.6388323750553,297.31749921538704,0.7219179259259259,8608.304717509036,2019
+1995,57,"(55,60]",College,214.6388323750553,297.31749921538704,0.7219179259259259,8714.546850045954,2019
+1995,57,"(55,60]",College,214.6388323750553,297.31749921538704,0.7219179259259259,8550.867324368683,2019
+1995,57,"(55,60]",College,214.6388323750553,297.31749921538704,0.7219179259259259,8458.482227605698,2019
+1995,78,"(75,80]",NoHS,-1.548341441839894,12.487334967046253,-0.12399294532627866,7841.673154054462,2019
+1995,78,"(75,80]",NoHS,-1.548341441839894,12.487334967046253,-0.12399294532627866,7775.345563190689,2019
+1995,78,"(75,80]",NoHS,-1.548341441839894,12.487334967046253,-0.12399294532627866,7965.837303970782,2019
+1995,78,"(75,80]",NoHS,-1.548341441839894,12.487334967046253,-0.12399294532627866,7913.2205578886815,2019
+1995,78,"(75,80]",NoHS,-1.548341441839894,12.487334967046253,-0.12399294532627866,7814.081840112434,2019
+1995,40,"(35,40]",NoHS,200.80053073861126,39.642333228718265,5.065305555555557,6675.721100925252,2019
+1995,40,"(35,40]",NoHS,204.67138434321097,39.642333228718265,5.16295,6752.719086216435,2019
+1995,40,"(35,40]",NoHS,196.92967713401148,39.642333228718265,4.967661111111111,6668.976555388328,2019
+1995,40,"(35,40]",NoHS,171.76912870411323,39.642333228718265,4.332972222222223,6893.8546521580765,2019
+1995,40,"(35,40]",NoHS,171.76912870411323,39.642333228718265,4.332972222222223,6723.170132518355,2019
+1995,48,"(45,50]",NoHS,0,4.955291653589783,0,6770.123274715722,2019
+1995,48,"(45,50]",NoHS,0,4.955291653589783,0,6803.573611215924,2019
+1995,48,"(45,50]",NoHS,0,4.955291653589783,0,6817.281430191286,2019
+1995,48,"(45,50]",NoHS,0,4.955291653589783,0,6795.538027000068,2019
+1995,48,"(45,50]",NoHS,0,4.955291653589783,0,6795.230780602518,2019
+1995,48,"(45,50]",College,1455.5377266696153,281.4605659238997,5.171373552425665,2960.184609363737,2019
+1995,48,"(45,50]",College,1455.5377266696153,281.4605659238997,5.171373552425665,2538.0159882497783,2019
+1995,48,"(45,50]",College,1455.5377266696153,281.4605659238997,5.171373552425665,2615.6075536940243,2019
+1995,48,"(45,50]",College,1455.5377266696153,281.4605659238997,5.171373552425665,2538.543267119828,2019
+1995,48,"(45,50]",College,1455.5377266696153,281.4605659238997,5.171373552425665,2618.33377139251,2019
+1995,39,"(35,40]",HS,65.32065457762053,49.55291653589783,1.3182000000000003,7586.6434788513,2019
+1995,39,"(35,40]",HS,56.45639982308713,49.55291653589783,1.1393153777777778,7679.732290204857,2019
+1995,39,"(35,40]",HS,79.89441839893853,49.55291653589783,1.6123050666666667,7585.497219015291,2019
+1995,39,"(35,40]",HS,72.57850508624503,49.55291653589783,1.4646666666666668,7837.2511791997995,2019
+1995,39,"(35,40]",HS,70.60436974789916,49.55291653589783,1.4248277333333332,7642.057124376462,2019
+1995,56,"(55,60]",HS,1030.8083149049094,79.28466645743653,13.001357777777779,3926.337289596476,2019
+1995,56,"(55,60]",HS,1030.8083149049094,79.28466645743653,13.001357777777779,4081.4727249550806,2019
+1995,56,"(55,60]",HS,1030.8083149049094,79.28466645743653,13.001357777777779,4034.6042560420915,2019
+1995,56,"(55,60]",HS,1030.8083149049094,79.28466645743653,13.001357777777779,3824.8903741540425,2019
+1995,56,"(55,60]",HS,1030.8083149049094,79.28466645743653,13.001357777777779,4044.479695178697,2019
+1995,47,"(45,50]",HS,913.5408049535604,327.0492491369256,2.793282074074075,826.8738654435887,2019
+1995,47,"(45,50]",HS,827.8594604157453,455.88683213026,1.8159319420289857,687.7308216341864,2019
+1995,47,"(45,50]",HS,760.1582308712959,436.06566551590095,1.7432196363636363,740.3987366081976,2019
+1995,47,"(45,50]",HS,971.7777974347634,451.9225988073882,2.1503191033138402,702.8837716215914,2019
+1995,47,"(45,50]",HS,689.3216099071207,477.6901154060551,1.443030926694329,684.2856967443555,2019
+1995,75,"(70,75]",NoHS,135.8669615214507,39.642333228718265,3.4273200000000004,9442.112502886288,2019
+1995,75,"(70,75]",NoHS,134.76376824413975,33.69598324441053,3.9994015686274507,9272.163097325098,2019
+1995,75,"(70,75]",NoHS,139.69910659000445,55.499266520205566,2.5171342857142864,9511.60852397735,2019
+1995,75,"(70,75]",NoHS,160.64042459088898,33.69598324441053,4.767346405228758,9544.439476646297,2019
+1995,75,"(70,75]",NoHS,129.75101282618311,55.499266520205566,2.3378869841269845,9456.126219013388,2019
+1995,61,"(60,65]",College,6192.185157010173,1339.9108631306774,4.621341111111111,237.26008743553803,2019
+1995,61,"(60,65]",College,7676.792994250332,1042.5933639152904,7.3631707815800596,214.0695355280252,2019
+1995,61,"(60,65]",College,10610.222627156125,1316.1254631934464,8.06171062248996,210.89775718369992,2019
+1995,61,"(60,65]",College,6554.1873861123395,1060.4324138682136,6.180674317757009,217.59064721785526,2019
+1995,61,"(60,65]",College,5627.67922158337,1318.1075798548823,4.269514345864662,213.9189779045612,2019
+1995,26,"(25,30]",College,266.12118531623173,59.46349984307739,4.475370370370371,4473.01559099352,2019
+1995,26,"(25,30]",College,266.12118531623173,59.46349984307739,4.475370370370371,4405.271625118612,2019
+1995,26,"(25,30]",College,266.12118531623173,59.46349984307739,4.475370370370371,4432.531056208014,2019
+1995,26,"(25,30]",College,266.12118531623173,59.46349984307739,4.475370370370371,4377.607772904763,2019
+1995,26,"(25,30]",College,266.12118531623173,59.46349984307739,4.475370370370371,4427.6958639532495,2019
+1995,61,"(60,65]",HS,-7.74170720919947,14.271239962338576,-0.5424691358024691,9160.831405284423,2019
+1995,61,"(60,65]",HS,-7.74170720919947,14.271239962338576,-0.5424691358024691,9215.269922702038,2019
+1995,61,"(60,65]",HS,-7.74170720919947,14.271239962338576,-0.5424691358024691,9198.937909986114,2019
+1995,61,"(60,65]",HS,-7.74170720919947,14.271239962338576,-0.5424691358024691,9206.069913174608,2019
+1995,61,"(60,65]",HS,-7.74170720919947,14.271239962338576,-0.5424691358024691,9161.41543326293,2019
+1995,28,"(25,30]",HS,0.09677134011499337,55.499266520205566,0.001743650793650794,7840.337338999777,2019
+1995,28,"(25,30]",HS,0.09677134011499337,55.499266520205566,0.001743650793650794,7770.354383151233,2019
+1995,28,"(25,30]",HS,0.09677134011499337,55.499266520205566,0.001743650793650794,7876.0583268072105,2019
+1995,28,"(25,30]",HS,0.09677134011499337,55.499266520205566,0.001743650793650794,7781.665403620493,2019
+1995,28,"(25,30]",HS,0.09677134011499337,55.499266520205566,0.001743650793650794,7850.827878182041,2019
+1995,52,"(50,55]",HS,48.734046881910665,14.865874960769348,3.278249481481482,5734.516781816222,2019
+1995,52,"(50,55]",HS,48.67598407784166,12.487334967046253,3.8980282186948854,5608.567213503238,2019
+1995,52,"(50,55]",HS,48.38567005749668,11.892699968615478,4.068518518518519,5653.826486523458,2019
+1995,52,"(50,55]",HS,48.579212737726664,12.289123300902663,3.953025089605734,5855.560770303933,2019
+1995,52,"(50,55]",HS,48.77275541795666,13.874816630051392,3.5152000000000005,5722.3739023755925,2019
+1995,38,"(35,40]",NoHS,-3.4837682441397613,3.567809990584644,-0.9764444444444444,6277.604702463652,2019
+1995,38,"(35,40]",NoHS,-3.4837682441397613,3.567809990584644,-0.9764444444444444,6296.891498854182,2019
+1995,38,"(35,40]",NoHS,-3.4837682441397613,3.567809990584644,-0.9764444444444444,6291.000370593863,2019
+1995,38,"(35,40]",NoHS,-3.4837682441397613,3.567809990584644,-0.9764444444444444,6281.958549768129,2019
+1995,38,"(35,40]",NoHS,-3.4837682441397613,3.567809990584644,-0.9764444444444444,6304.69552504752,2019
+1995,46,"(45,50]",HS,126.9639982308713,73.3383164731288,1.7312096096096095,8848.71286750076,2019
+1995,46,"(45,50]",HS,126.9639982308713,73.3383164731288,1.7312096096096095,8941.402135982677,2019
+1995,46,"(45,50]",HS,126.9639982308713,73.3383164731288,1.7312096096096095,8676.62377779981,2019
+1995,46,"(45,50]",HS,126.9639982308713,73.3383164731288,1.7312096096096095,9212.957142885443,2019
+1995,46,"(45,50]",HS,126.9639982308713,73.3383164731288,1.7312096096096095,8932.123661740266,2019
+1995,62,"(60,65]",College,3906.0783724015923,55.499266520205566,70.38072063492065,2004.553233503802,2019
+1995,62,"(60,65]",College,3902.9816895179124,55.499266520205566,70.32492380952381,1812.575778880259,2019
+1995,62,"(60,65]",College,3912.2717381689517,55.499266520205566,70.49231428571429,1799.5351154927243,2019
+1995,62,"(60,65]",College,3879.950110570544,55.499266520205566,69.90993492063492,1829.1113939434326,2019
+1995,62,"(60,65]",College,3864.427987616099,55.499266520205566,69.63025333333334,1811.6203456971361,2019
+1995,82,"(80,85]",HS,15.88985404688191,33.69598324441053,0.47156522875816986,11599.438839415196,2019
+1995,82,"(80,85]",HS,15.88985404688191,33.69598324441053,0.47156522875816986,11622.467146067833,2019
+1995,82,"(80,85]",HS,15.88985404688191,33.69598324441053,0.47156522875816986,11593.965885244126,2019
+1995,82,"(80,85]",HS,15.88985404688191,33.69598324441053,0.47156522875816986,11610.753071386076,2019
+1995,82,"(80,85]",HS,15.88985404688191,33.69598324441053,0.47156522875816986,11688.57899193343,2019
+1995,49,"(45,50]",College,748.1585846970366,261.6393993095406,2.8595027609427603,3510.1018649862563,2019
+1995,49,"(45,50]",College,755.5906236178682,321.1028991526179,2.3531105624142663,3655.661532757453,2019
+1995,49,"(45,50]",College,772.6223794781071,261.6393993095406,2.9530047138047135,3592.310827031615,2019
+1995,49,"(45,50]",College,752.6874834144185,319.12078249118207,2.3586288474810213,3435.261914615887,2019
+1995,49,"(45,50]",College,740.8426713843432,291.37114923107936,2.542608193499621,3600.8051323894374,2019
+1995,27,"(25,30]",College,28.547545333923043,63.42773316594923,0.4500798611111111,10730.87377559346,2019
+1995,27,"(25,30]",College,28.547545333923043,63.42773316594923,0.4500798611111111,10962.40233567466,2019
+1995,27,"(25,30]",College,28.547545333923043,63.42773316594923,0.4500798611111111,10688.090476212185,2019
+1995,27,"(25,30]",College,28.547545333923043,63.42773316594923,0.4500798611111111,10996.044050440798,2019
+1995,27,"(25,30]",College,28.547545333923043,63.42773316594923,0.4500798611111111,10896.746065617828,2019
+1995,51,"(50,55]",HS,-7.083662096417514,47.57079987446191,-0.1489077777777778,5812.644516901175,2019
+1995,51,"(50,55]",HS,-6.812702344095533,13.081969965477029,-0.5207703703703703,6108.443446860734,2019
+1995,51,"(50,55]",HS,-7.2965590446705,18.433684951353992,-0.3958274790919953,5768.5999765469605,2019
+1995,51,"(50,55]",HS,-7.161079168509509,33.69598324441053,-0.2125202614379085,6099.756645045446,2019
+1995,51,"(50,55]",HS,-7.064307828394516,27.749633260102783,-0.2545730158730159,6106.781763736411,2019
+1995,74,"(70,75]",College,7746.93286156568,73.3383164731288,105.63281561561561,286.90348501325605,2019
+1995,74,"(70,75]",College,7745.7716054842995,73.3383164731288,105.61698138138138,252.61463511125103,2019
+1995,74,"(70,75]",College,7756.416452896948,73.3383164731288,105.7621285285285,252.24756236920592,2019
+1995,74,"(70,75]",College,7749.448916408668,73.3383164731288,105.6671231231231,259.13067706751315,2019
+1995,74,"(70,75]",College,7754.287483414419,73.3383164731288,105.73309909909909,257.9640852366241,2019
+1995,39,"(35,40]",NoHS,34.83768244139761,29.731749921538697,1.1717333333333333,7860.232324170209,2019
+1995,39,"(35,40]",NoHS,34.83768244139761,29.731749921538697,1.1717333333333333,7947.9105331170385,2019
+1995,39,"(35,40]",NoHS,34.83768244139761,29.731749921538697,1.1717333333333333,7897.672962523602,2019
+1995,39,"(35,40]",NoHS,34.83768244139761,29.731749921538697,1.1717333333333333,8194.131398321153,2019
+1995,39,"(35,40]",NoHS,34.83768244139761,29.731749921538697,1.1717333333333333,7999.883655158905,2019
+1995,72,"(70,75]",College,228.18681999115438,75.32043313456471,3.0295473684210528,11108.285403898204,2019
+1995,72,"(70,75]",College,247.54108801415305,71.35619981169287,3.4690901234567906,11232.634958288796,2019
+1995,72,"(70,75]",College,402.3752321981424,63.42773316594923,6.343837499999999,11342.951564418272,2019
+1995,72,"(70,75]",College,224.31596638655463,67.39196648882105,3.3285267973856207,11583.787798008158,2019
+1995,72,"(70,75]",College,203.0262715612561,65.40984982738514,3.103909764309764,11188.96366248743,2019
+1995,35,"(30,35]",College,72.23012826183106,23.785399937230956,3.036742222222223,8043.4367597373475,2019
+1995,35,"(30,35]",College,72.23012826183106,23.785399937230956,3.036742222222223,8180.071392777345,2019
+1995,35,"(30,35]",College,72.23012826183106,23.785399937230956,3.036742222222223,8040.496091759705,2019
+1995,35,"(30,35]",College,72.23012826183106,23.785399937230956,3.036742222222223,8363.443936922771,2019
+1995,35,"(30,35]",College,72.23012826183106,23.785399937230956,3.036742222222223,8129.646544914142,2019
+1995,36,"(35,40]",HS,169.89176470588237,154.60509959200127,1.0988755555555554,6405.640088585454,2019
+1995,36,"(35,40]",HS,169.89176470588237,154.60509959200127,1.0988755555555554,6317.511961175613,2019
+1995,36,"(35,40]",HS,169.89176470588237,154.60509959200127,1.0988755555555554,6312.179668387129,2019
+1995,36,"(35,40]",HS,169.89176470588237,154.60509959200127,1.0988755555555554,6379.6912270113535,2019
+1995,36,"(35,40]",HS,169.89176470588237,154.60509959200127,1.0988755555555554,6335.060668486791,2019
+1995,23,"(20,25]",HS,26.708889871738172,39.642333228718265,0.6737466666666667,8972.105181049847,2019
+1995,23,"(20,25]",HS,26.708889871738172,39.642333228718265,0.6737466666666667,9130.302556768054,2019
+1995,23,"(20,25]",HS,26.708889871738172,39.642333228718265,0.6737466666666667,9088.153440399139,2019
+1995,23,"(20,25]",HS,26.708889871738172,39.642333228718265,0.6737466666666667,9116.939931138319,2019
+1995,23,"(20,25]",HS,26.708889871738172,39.642333228718265,0.6737466666666667,9044.037384206595,2019
+1995,81,"(80,85]",HS,190.02020344980096,59.46349984307739,3.195577185185185,4699.822156821534,2019
+1995,81,"(80,85]",HS,421.4972490048651,25.76751659866687,16.35769777777778,4772.01636294406,2019
+1995,81,"(80,85]",HS,214.98720919946928,31.713866582974614,6.778965555555556,4951.685909669799,2019
+1995,81,"(80,85]",HS,193.31042901371077,83.24889978030835,2.3220778835978844,4907.206300574695,2019
+1995,81,"(80,85]",HS,185.18163644405132,95.14159974892382,1.9463792592592597,4835.549952259769,2019
+1995,69,"(65,70]",HS,430.4969836355595,67.39196648882105,6.387956993464052,9399.470660879648,2019
+1995,69,"(65,70]",HS,430.4969836355595,67.39196648882105,6.387956993464052,9221.347373114593,2019
+1995,69,"(65,70]",HS,429.3357275541796,67.39196648882105,6.3707256209150325,9304.891733954979,2019
+1995,69,"(65,70]",HS,431.8517823971694,67.39196648882105,6.4080602614379085,9712.390623656345,2019
+1995,69,"(65,70]",HS,432.62595311808934,67.39196648882105,6.419547843137255,9483.921917317854,2019
+1995,47,"(45,50]",College,825.3434055727554,158.56933291487306,5.204937111111111,2830.7776319052145,2019
+1995,47,"(45,50]",College,829.2142591773551,158.56933291487306,5.229348222222222,2427.0644696377653,2019
+1995,47,"(45,50]",College,809.8599911543565,158.56933291487306,5.107292666666667,4769.5086189341,2019
+1995,47,"(45,50]",College,815.666271561256,158.56933291487306,5.143909333333333,4524.6636041348265,2019
+1995,47,"(45,50]",College,835.0205395842547,158.56933291487306,5.265964888888889,2503.8710928616892,2019
+1995,51,"(50,55]",College,1105.9028748341443,178.3904995292322,6.1993372839506184,3109.773583124611,2019
+1995,51,"(50,55]",College,1105.9028748341443,178.3904995292322,6.1993372839506184,2541.7415656685816,2019
+1995,51,"(50,55]",College,1105.9028748341443,178.3904995292322,6.1993372839506184,2607.273115261749,2019
+1995,51,"(50,55]",College,1105.9028748341443,178.3904995292322,6.1993372839506184,2548.9772400919965,2019
+1995,51,"(50,55]",College,1105.9028748341443,178.3904995292322,6.1993372839506184,2589.0505167049514,2019
+1995,47,"(45,50]",HS,1601.7592215833702,148.65874960769352,10.77473896296296,2358.981364683442,2019
+1995,47,"(45,50]",HS,1601.7592215833702,148.65874960769352,10.77473896296296,2022.5537287813725,2019
+1995,47,"(45,50]",HS,1601.7592215833702,148.65874960769352,10.77473896296296,2084.3867159405536,2019
+1995,47,"(45,50]",HS,1601.7592215833702,148.65874960769352,10.77473896296296,2022.973919138591,2019
+1995,47,"(45,50]",HS,1601.7592215833702,148.65874960769352,10.77473896296296,2086.5592482638585,2019
+1995,53,"(50,55]",College,111178.07660327289,16015.502624402181,6.941903679867986,18.424123599782696,2019
+1995,53,"(50,55]",College,109581.3494913755,17561.55362032219,6.239843686982694,18.715724758082384,2019
+1995,53,"(50,55]",College,89617.84781954887,19305.816282385797,4.642012878850102,18.77532482183993,2019
+1995,53,"(50,55]",College,102771.16320212296,18116.546285524244,5.67277899343545,17.94707285770976,2019
+1995,53,"(50,55]",College,104290.47324192835,16471.38945653244,6.331613584703837,17.90067114790862,2019
+1995,78,"(75,80]",NoHS,101.22282176028305,15.658721625343716,6.464309423347397,8392.988893415608,2019
+1995,78,"(75,80]",NoHS,101.41636444051305,17.24441495449245,5.881113665389527,8241.9227551037,2019
+1995,78,"(75,80]",NoHS,101.60990712074305,14.667663294625758,6.9274774774774786,8454.763134399875,2019
+1995,78,"(75,80]",NoHS,101.60990712074305,13.676604963907801,7.429468599033818,8483.946203445757,2019
+1995,78,"(75,80]",NoHS,101.41636444051305,14.865874960769348,6.8220918518518525,8405.445529975943,2019
+1995,37,"(35,40]",HS,11.148058381247235,45.588683213026,0.24453565217391304,5390.579325551787,2019
+1995,37,"(35,40]",HS,10.760973020787262,45.588683213026,0.2360448309178744,5455.449135610979,2019
+1995,37,"(35,40]",HS,12.502857142857144,45.588683213026,0.27425352657004837,5426.205355658377,2019
+1995,37,"(35,40]",HS,10.760973020787262,45.588683213026,0.2360448309178744,5432.449282621879,2019
+1995,37,"(35,40]",HS,9.986802299867316,45.588683213026,0.21906318840579714,5462.56291868348,2019
+1995,39,"(35,40]",College,35.61185316231756,99.10583307179566,0.35933155555555557,5124.512070868364,2019
+1995,39,"(35,40]",College,35.61185316231756,99.10583307179566,0.35933155555555557,5054.0095689404925,2019
+1995,39,"(35,40]",College,35.61185316231756,99.10583307179566,0.35933155555555557,5049.743734709701,2019
+1995,39,"(35,40]",College,35.61185316231756,99.10583307179566,0.35933155555555557,5103.752981609081,2019
+1995,39,"(35,40]",College,35.61185316231756,99.10583307179566,0.35933155555555557,5068.048534789433,2019
+1995,33,"(30,35]",HS,-51.86943830163644,19.821166614359132,-2.616871111111111,5579.1892668782875,2019
+1995,33,"(30,35]",HS,-51.86943830163644,19.821166614359132,-2.616871111111111,5493.176620118991,2019
+1995,33,"(30,35]",HS,-51.86943830163644,19.821166614359132,-2.616871111111111,5506.283686082336,2019
+1995,33,"(30,35]",HS,-51.86943830163644,19.821166614359132,-2.616871111111111,5471.064539705599,2019
+1995,33,"(30,35]",HS,-51.86943830163644,19.821166614359132,-2.616871111111111,5493.5973078205825,2019
+1995,56,"(55,60]",HS,7877.670942061035,604.5455817379535,13.030731147540985,265.3640574426861,2019
+1995,56,"(55,60]",College,6225.880937638213,1034.6648972695468,6.017292124308216,233.7137183168169,2019
+1995,56,"(55,60]",College,7504.617425917735,338.9419491055412,22.141306042884988,244.44097462418304,2019
+1995,56,"(55,60]",College,5687.096824413976,606.5276983993896,9.376483282498182,238.46661921099695,2019
+1995,56,"(55,60]",College,3714.5485360459975,778.9718479443139,4.7685273169352556,242.28637295883382,2019
+1995,31,"(30,35]",HS,3.4837682441397613,57.48138318164148,0.06060689655172414,5131.08659483892,2019
+1995,31,"(30,35]",HS,4.645024325519682,57.48138318164148,0.08080919540229886,5083.883732236489,2019
+1995,31,"(30,35]",HS,4.257938965059708,57.48138318164148,0.07407509578544061,5133.5716938807955,2019
+1995,31,"(30,35]",HS,4.257938965059708,57.48138318164148,0.07407509578544061,5102.8341886551025,2019
+1995,31,"(30,35]",HS,2.322512162759841,57.48138318164148,0.04040459770114943,5110.912057122422,2019
+1995,77,"(75,80]",NoHS,9.328757187085362,31.713866582974614,0.29415388888888894,8722.288853794345,2019
+1995,77,"(75,80]",NoHS,9.48359133126935,29.731749921538697,0.3189718518518519,8648.512709963226,2019
+1995,77,"(75,80]",NoHS,9.328757187085362,21.803283275795042,0.42786020202020214,8860.396571315827,2019
+1995,77,"(75,80]",NoHS,11.419018133569217,19.821166614359132,0.5761022222222223,8801.870992799779,2019
+1995,77,"(75,80]",NoHS,11.438372401592217,21.803283275795042,0.5246169696969698,8691.599050058558,2019
+1995,36,"(35,40]",College,3120.1015479876164,392.45909896431084,7.950131762065096,149.55134324885168,2019
+1995,36,"(35,40]",College,2704.507350729765,186.31896617497586,14.515469929078012,133.19217906120102,2019
+1995,36,"(35,40]",College,2738.6095709862893,164.5156828991808,16.64649547523427,132.14632655358247,2019
+1995,36,"(35,40]",College,3602.138947368421,235.87188271087368,15.271591111111112,134.14242271328828,2019
+1995,36,"(35,40]",College,5031.916143299425,164.5156828991808,30.586239892904953,133.4915197244548,2019
+1995,50,"(45,50]",HS,3.096682883679788,67.39196648882105,0.04595032679738562,5572.729584753271,2019
+1995,50,"(45,50]",HS,3.096682883679788,67.39196648882105,0.04595032679738562,5594.08732195587,2019
+1995,50,"(45,50]",HS,3.096682883679788,67.39196648882105,0.04595032679738562,5598.902001271189,2019
+1995,50,"(45,50]",HS,3.096682883679788,67.39196648882105,0.04595032679738562,5584.581426311345,2019
+1995,50,"(45,50]",HS,3.096682883679788,67.39196648882105,0.04595032679738562,5590.410292169158,2019
+1995,68,"(65,70]",HS,564.9510835913313,223.9791827422582,2.522337463126844,8509.461707605318,2019
+1995,68,"(65,70]",HS,564.9510835913313,223.9791827422582,2.522337463126844,8624.406913773299,2019
+1995,68,"(65,70]",HS,564.9510835913313,223.9791827422582,2.522337463126844,8501.061800142383,2019
+1995,68,"(65,70]",HS,564.9510835913313,223.9791827422582,2.522337463126844,8288.402883143122,2019
+1995,68,"(65,70]",HS,564.9510835913313,223.9791827422582,2.522337463126844,8457.706035488603,2019
+1995,31,"(30,35]",HS,59.41760283060592,95.14159974892382,0.6245175925925927,3749.439546686293,2019
+1995,31,"(30,35]",HS,49.74046881910659,95.14159974892382,0.5228046296296297,3692.654163417747,2019
+1995,31,"(30,35]",HS,49.74046881910659,95.14159974892382,0.5228046296296297,3715.503980698189,2019
+1995,31,"(30,35]",HS,67.15931003980539,95.14159974892382,0.705887962962963,3669.465346076459,2019
+1995,31,"(30,35]",HS,51.67589562140646,95.14159974892382,0.5431472222222223,3711.4509518886443,2019
+1995,25,"(20,25]",HS,8.728774878372402,19.821166614359132,0.44037644444444446,6597.111322347945,2019
+1995,25,"(20,25]",HS,8.728774878372402,19.821166614359132,0.44037644444444446,6536.421927701021,2019
+1995,25,"(20,25]",HS,8.844900486510394,19.821166614359132,0.44623511111111114,6600.306449680783,2019
+1995,25,"(20,25]",HS,8.844900486510394,19.821166614359132,0.44623511111111114,6560.786800188,2019
+1995,25,"(20,25]",HS,8.844900486510394,19.821166614359132,0.44623511111111114,6571.172631052713,2019
+1995,79,"(75,80]",College,364.827952233525,77.30254979600063,4.719481481481481,10872.310747930807,2019
+1995,79,"(75,80]",College,412.8265369305617,77.30254979600063,5.340399999999999,10958.386512221265,2019
+1995,79,"(75,80]",College,569.209022556391,77.30254979600063,7.363392592592591,5537.459303652778,2019
+1995,79,"(75,80]",College,425.9874391862008,77.30254979600063,5.510651851851851,11399.349741443819,2019
+1995,79,"(75,80]",College,381.47262273330387,77.30254979600063,4.934799999999999,11090.172610815924,2019
+1995,49,"(45,50]",College,4684.894117647059,1292.3400632562157,3.6251248807089294,1249.2548909457264,2019
+1995,49,"(45,50]",College,5685.70331711632,1375.5889630365239,4.133286519372398,1134.6583285674965,2019
+1995,49,"(45,50]",College,2214.3218045112785,1488.569612738371,1.4875500517828082,1123.8246513048853,2019
+1995,49,"(45,50]",College,3176.616010614772,1474.6947961083195,2.1540836917562722,1032.020520819945,2019
+1995,49,"(45,50]",College,2739.2095532950025,1320.0896965163183,2.0750177510844177,1114.841971750689,2019
+1995,31,"(30,35]",HS,14.089907120743034,43.606566551590085,0.3231143434343435,5998.868850134343,2019
+1995,31,"(30,35]",HS,16.799504643962848,43.606566551590085,0.38525171717171725,6063.9346627262785,2019
+1995,31,"(30,35]",HS,14.631826625386998,43.606566551590085,0.3355418181818183,6031.6801253061085,2019
+1995,31,"(30,35]",HS,16.993047324192833,43.606566551590085,0.38969010101010104,6089.5158648037395,2019
+1995,31,"(30,35]",HS,16.412419283502874,43.606566551590085,0.37637494949494954,6048.101854367882,2019
+1995,30,"(25,30]",College,210.90345864661654,75.32043313456471,2.800082923976608,5657.049138867051,2019
+1995,30,"(25,30]",College,210.90345864661654,75.32043313456471,2.800082923976608,5571.3729465936,2019
+1995,30,"(25,30]",College,210.90345864661654,75.32043313456471,2.800082923976608,5605.848109497303,2019
+1995,30,"(25,30]",College,210.90345864661654,75.32043313456471,2.800082923976608,5536.386309914042,2019
+1995,30,"(25,30]",College,210.90345864661654,75.32043313456471,2.800082923976608,5599.733013400581,2019
+1995,46,"(45,50]",College,-4968.2406015037595,5787.780651392867,-0.8584016742770167,2.066135500645733,2019
+1995,46,"(45,50]",College,-2678.437151702786,1950.4027948529388,-1.3732738482384823,1.554428200534315,2019
+1995,46,"(45,50]",College,3069.19982308713,1006.9152640094438,3.0481212598425205,2.1755129082993045,2019
+1995,46,"(45,50]",College,6633.675364882795,2378.5399937230964,2.788969444444444,1.604698340465293,2019
+1995,46,"(45,50]",College,-214.6388323750553,7036.514148097493,-0.030503574334898278,1.632334489079377,2019
+1995,51,"(50,55]",College,499.2781813356922,138.74816630051396,3.5984488634920626,1251.1163579121853,2019
+1995,51,"(50,55]",College,961.3226218487395,138.74816630051396,6.928542895238094,1231.4782135730761,2019
+1995,51,"(50,55]",College,486.3108217602831,138.74816630051396,3.5049891809523803,1254.1267614122507,2019
+1995,51,"(50,55]",College,457.35683679787707,138.74816630051396,3.2963090539682534,1181.4490108884675,2019
+1995,51,"(50,55]",College,446.8281149933658,138.74816630051396,3.2204253714285707,1268.4603375632464,2019
+1995,44,"(40,45]",College,5041.7868199911545,693.7408315025697,7.267536507936508,237.26008743553803,2019
+1995,44,"(40,45]",College,4660.507739938081,693.7408315025697,6.717937777777777,214.0695355280252,2019
+1995,44,"(40,45]",College,4362.452012383901,693.7408315025697,6.288302222222222,210.89775718369992,2019
+1995,44,"(40,45]",College,3892.1432994250335,693.7408315025697,5.610370793650794,217.59064721785526,2019
+1995,44,"(40,45]",College,5423.065900044228,693.7408315025697,7.817135238095238,213.9189779045612,2019
+1995,56,"(55,60]",College,120013.89993808049,1092.1462804511884,109.88811854809434,1.658037599443493,2019
+1995,56,"(55,60]",College,144513.30657231313,1032.6827806081108,139.93968843676691,1.3099843651878587,2019
+1995,56,"(55,60]",College,103848.05402919064,931.5948308748792,111.47341160283689,1.794591267949258,2019
+1995,56,"(55,60]",College,127973.92329057939,1169.4488302471887,109.43097293408664,1.229831366565289,2019
+1995,56,"(55,60]",College,105449.23262273331,1123.860147034163,93.8277177111503,1.3552752018552499,2019
+1995,35,"(30,35]",HS,-0.5806280406899602,51.53503319733374,-0.011266666666666668,7610.826421962427,2019
+1995,35,"(30,35]",HS,-0.5806280406899602,51.53503319733374,-0.011266666666666668,7751.604787828115,2019
+1995,35,"(30,35]",HS,-0.5806280406899602,51.53503319733374,-0.011266666666666668,7692.09383448849,2019
+1995,35,"(30,35]",HS,-0.5806280406899602,51.53503319733374,-0.011266666666666668,7629.443417194353,2019
+1995,35,"(30,35]",HS,-0.5806280406899602,51.53503319733374,-0.011266666666666668,7731.830592890139,2019
+1995,33,"(30,35]",HS,23.108996019460417,33.69598324441053,0.6858086274509804,6452.9497236854,2019
+1995,33,"(30,35]",HS,25.25731977001327,31.713866582974614,0.7964125000000001,6521.141380238716,2019
+1995,33,"(30,35]",HS,26.53470145953118,35.67809990584644,0.7437251851851853,6461.946065018894,2019
+1995,33,"(30,35]",HS,26.050844758956213,37.660216567282355,0.6917338011695906,6563.5075466933395,2019
+1995,33,"(30,35]",HS,22.876744803184433,37.660216567282355,0.6074512280701755,6471.670057146755,2019
+1995,48,"(45,50]",College,1166.6752764263601,178.3904995292322,6.540007901234569,2537.880903241128,2019
+1995,48,"(45,50]",College,1166.6752764263601,178.3904995292322,6.540007901234569,2176.417609686332,2019
+1995,48,"(45,50]",College,1166.6752764263601,178.3904995292322,6.540007901234569,2244.2486250104294,2019
+1995,48,"(45,50]",College,1166.6752764263601,178.3904995292322,6.540007901234569,2177.4741732595744,2019
+1995,48,"(45,50]",College,1166.6752764263601,178.3904995292322,6.540007901234569,2246.157915197241,2019
+1995,80,"(75,80]",HS,332.3127819548872,27.749633260102783,11.975393650793652,11648.904381493156,2019
+1995,80,"(75,80]",HS,333.4740380362672,27.749633260102783,12.017241269841273,11741.128414730452,2019
+1995,80,"(75,80]",HS,335.796550199027,27.749633260102783,12.100936507936511,11906.591022224577,2019
+1995,80,"(75,80]",HS,333.8611233967271,27.749633260102783,12.031190476190478,12213.589017822178,2019
+1995,80,"(75,80]",HS,332.5063246351172,27.749633260102783,11.982368253968255,11882.327806187455,2019
+1995,84,"(80,85]",HS,302.50720919946923,37.660216567282355,8.032540350877191,441.6047523490902,2019
+1995,84,"(80,85]",HS,329.6031844316674,37.660216567282355,8.75202573099415,445.5563984405841,2019
+1995,84,"(80,85]",HS,310.2489164086687,37.660216567282355,8.23810760233918,443.3387676119404,2019
+1995,84,"(80,85]",HS,302.31366651923923,37.660216567282355,8.027401169590641,455.095149189793,2019
+1995,84,"(80,85]",HS,378.37593984962405,37.660216567282355,10.047099415204677,447.45836086092095,2019
+1995,69,"(65,70]",College,1132.8053073861124,105.0521830561034,10.783262893081762,476.24343587741816,2019
+1995,69,"(65,70]",College,1132.8053073861124,105.0521830561034,10.783262893081762,482.77837296802625,2019
+1995,69,"(65,70]",College,1132.8053073861124,105.0521830561034,10.783262893081762,487.04583980209406,2019
+1995,69,"(65,70]",College,1132.8053073861124,105.0521830561034,10.783262893081762,468.7361030667586,2019
+1995,69,"(65,70]",College,1132.8053073861124,105.0521830561034,10.783262893081762,477.5111674260214,2019
+1995,70,"(65,70]",College,12367.76435205661,717.5262314398004,17.23667206875384,180.73948442828618,2019
+1995,70,"(65,70]",College,12367.76435205661,717.5262314398004,17.23667206875384,157.57309999359973,2019
+1995,70,"(65,70]",College,12367.76435205661,717.5262314398004,17.23667206875384,166.83981755530678,2019
+1995,70,"(65,70]",College,12367.76435205661,717.5262314398004,17.23667206875384,160.74866058682576,2019
+1995,70,"(65,70]",College,12367.76435205661,717.5262314398004,17.23667206875384,162.38943695053499,2019
+1995,66,"(65,70]",College,1792.0116762494472,178.3904995292322,10.045443456790125,2593.3499384864544,2019
+1995,66,"(65,70]",College,1369.5080053073862,178.3904995292322,7.677023209876544,1162.469197984387,2019
+1995,66,"(65,70]",College,1187.6746572313136,178.3904995292322,6.657723703703704,1180.8438191168202,2019
+1995,66,"(65,70]",College,1174.0298982750994,178.3904995292322,6.581235555555555,1121.366826164046,2019
+1995,66,"(65,70]",College,1181.384520123839,178.3904995292322,6.622463209876543,1195.8191583694627,2019
+1995,45,"(40,45]",College,2691.9851393188856,594.6349984307741,4.527121925925925,790.8110250291357,2019
+1995,45,"(40,45]",College,2703.404157452455,594.6349984307741,4.546325333333333,630.0632575585273,2019
+1995,45,"(40,45]",College,2694.8882795223353,594.6349984307741,4.532004148148148,615.5819972012438,2019
+1995,45,"(40,45]",College,2846.819283502875,594.6349984307741,4.78750711111111,615.4498522774538,2019
+1995,45,"(40,45]",College,2706.8879256965947,594.6349984307741,4.552184,630.0688666682217,2019
+1995,45,"(40,45]",HS,14.651180893409995,114.96276636328297,0.12744283524904215,6366.965821706961,2019
+1995,45,"(40,45]",HS,15.618894294559931,107.03429971753931,0.14592419753086422,6254.818657090568,2019
+1995,45,"(40,45]",HS,14.418929677134013,110.99853304041113,0.12990198412698414,6312.98007865726,2019
+1995,45,"(40,45]",HS,14.941494913754976,101.08794973323158,0.1478068845315904,6307.554184188349,2019
+1995,45,"(40,45]",HS,16.48983635559487,105.0521830561034,0.15696805031446542,6344.7876428587315,2019
+1995,32,"(30,35]",College,100.83573639982309,69.37408315025698,1.4535073015873012,6064.687162649257,2019
+1995,32,"(30,35]",College,100.83573639982309,69.37408315025698,1.4535073015873012,6130.466863491491,2019
+1995,32,"(30,35]",College,100.83573639982309,69.37408315025698,1.4535073015873012,6097.858436150238,2019
+1995,32,"(30,35]",College,100.83573639982309,69.37408315025698,1.4535073015873012,6156.328737074682,2019
+1995,32,"(30,35]",College,100.83573639982309,69.37408315025698,1.4535073015873012,6114.460340928873,2019
+1995,34,"(30,35]",College,161.97586908447587,168.47991622205262,0.9613957124183006,6040.0171446324075,2019
+1995,34,"(30,35]",College,158.68564352056612,168.47991622205262,0.9418668235294118,6070.513957259272,2019
+1995,34,"(30,35]",College,142.73772666961523,168.47991622205262,0.8472091503267974,6104.212945144047,2019
+1995,34,"(30,35]",College,149.39559486952678,168.47991622205262,0.8867264313725491,6147.17551219856,2019
+1995,34,"(30,35]",College,149.39559486952678,168.47991622205262,0.8867264313725491,6132.056903506812,2019
+1995,73,"(70,75]",College,16320.486510393632,495.5291653589783,32.93547111111111,289.7083280513162,2019
+1995,73,"(70,75]",College,16320.486510393632,495.5291653589783,32.93547111111111,255.08426144071555,2019
+1995,73,"(70,75]",College,16320.486510393632,495.5291653589783,32.93547111111111,254.713600100139,2019
+1995,73,"(70,75]",College,16320.486510393632,495.5291653589783,32.93547111111111,261.664005916715,2019
+1995,73,"(70,75]",College,16320.486510393632,495.5291653589783,32.93547111111111,260.48600918088016,2019
+1995,48,"(45,50]",College,2996.52454666077,941.5054141820589,3.182694970760234,29.273272543476548,2019
+1995,48,"(45,50]",College,22223.05440070765,402.3696822714903,55.23043951833608,52.037399848157335,2019
+1995,48,"(45,50]",College,6157.05716054843,818.6141811730322,7.52131749260156,26.665785891640475,2019
+1995,48,"(45,50]",College,7198.742574082265,1183.3236468772402,6.083494226689001,26.011773140352517,2019
+1995,48,"(45,50]",College,15288.052436974791,1690.745512204834,9.042196076592418,27.027338002239606,2019
+1995,55,"(50,55]",College,3478.7748429898274,63.42773316594923,54.84627416666666,883.5036976901016,2019
+1995,55,"(50,55]",College,2022.0371517027863,35.67809990584644,56.67446296296296,2491.726967813739,2019
+1995,55,"(50,55]",College,2355.5886068111454,47.57079987446191,49.51753203703704,2565.3647658007903,2019
+1995,55,"(50,55]",College,1390.6428659885007,57.48138318164148,24.192926283524905,4636.169384935472,2019
+1995,55,"(50,55]",College,1013.9894559929235,114.96276636328297,8.820155325670498,4894.885039537062,2019
+1995,47,"(45,50]",HS,5.903051747014596,63.42773316594923,0.09306736111111111,5535.851921375672,2019
+1995,47,"(45,50]",HS,5.903051747014596,71.35619981169287,0.08272654320987655,5546.841266452447,2019
+1995,47,"(45,50]",HS,5.903051747014596,69.37408315025698,0.08509015873015871,5493.904740082022,2019
+1995,47,"(45,50]",HS,5.903051747014596,69.37408315025698,0.08509015873015871,5609.039921292512,2019
+1995,47,"(45,50]",HS,5.903051747014596,67.39196648882105,0.08759281045751634,5554.411600935668,2019
+1995,37,"(35,40]",HS,9.19327731092437,29.731749921538697,0.3092074074074075,4811.751644059093,2019
+1995,37,"(35,40]",HS,9.19327731092437,29.731749921538697,0.3092074074074075,4789.813341675762,2019
+1995,37,"(35,40]",HS,9.19327731092437,29.731749921538697,0.3092074074074075,4770.5193603002135,2019
+1995,37,"(35,40]",HS,9.19327731092437,29.731749921538697,0.3092074074074075,4680.613278717945,2019
+1995,37,"(35,40]",HS,9.19327731092437,29.731749921538697,0.3092074074074075,4769.654540628981,2019
+1995,59,"(55,60]",HS,1211.5771782397169,128.8375829933344,9.403911111111109,457.05477102502755,2019
+1995,59,"(55,60]",HS,1211.5771782397169,128.8375829933344,9.403911111111109,457.6371259981079,2019
+1995,59,"(55,60]",HS,1211.5771782397169,128.8375829933344,9.403911111111109,478.30131810254943,2019
+1995,59,"(55,60]",HS,1211.5771782397169,128.8375829933344,9.403911111111109,446.52337539003827,2019
+1995,59,"(55,60]",HS,1211.5771782397169,128.8375829933344,9.403911111111109,465.9451104989181,2019
+1995,75,"(70,75]",College,11090.18911985847,792.8466645743653,13.98781077777778,173.80829541612758,2019
+1995,75,"(70,75]",College,15928.756125608139,792.8466645743653,20.09058855555556,155.9016655346859,2019
+1995,75,"(70,75]",College,11090.18911985847,792.8466645743653,13.98781077777778,154.9296634455761,2019
+1995,75,"(70,75]",College,11090.18911985847,792.8466645743653,13.98781077777778,143.6034844301031,2019
+1995,75,"(70,75]",College,11090.18911985847,792.8466645743653,13.98781077777778,155.3212909050215,2019
+1995,72,"(70,75]",NoHS,347.2349226006192,18.03726161906681,19.250977777777777,13849.350507057636,2019
+1995,72,"(70,75]",NoHS,347.2349226006192,18.03726161906681,19.250977777777777,14286.029723688373,2019
+1995,72,"(70,75]",NoHS,347.2349226006192,18.03726161906681,19.250977777777777,13985.198659753694,2019
+1995,72,"(70,75]",NoHS,347.2349226006192,18.03726161906681,19.250977777777777,14541.862703712188,2019
+1995,72,"(70,75]",NoHS,347.2349226006192,18.03726161906681,19.250977777777777,14001.052454619023,2019
+1995,54,"(50,55]",College,1821.6237063246351,273.53209927815607,6.659634138486312,1102.283586052587,2019
+1995,54,"(50,55]",College,2117.744007076515,273.53209927815607,7.74221384863124,917.2298769112473,2019
+1995,54,"(50,55]",College,2202.515701017249,273.53209927815607,8.052128824476648,970.9982911340996,2019
+1995,54,"(50,55]",College,2171.742414860681,273.53209927815607,7.939625442834137,939.7607837930094,2019
+1995,54,"(50,55]",College,2104.389562140646,273.53209927815607,7.693391626409017,927.888466075671,2019
+1995,49,"(45,50]",HS,-6.773993808049536,55.499266520205566,-0.12205555555555557,6498.229764596055,2019
+1995,49,"(45,50]",HS,-6.773993808049536,55.499266520205566,-0.12205555555555557,6407.853801937354,2019
+1995,49,"(45,50]",HS,-6.773993808049536,55.499266520205566,-0.12205555555555557,6472.003855651785,2019
+1995,49,"(45,50]",HS,-6.773993808049536,55.499266520205566,-0.12205555555555557,6461.953956739491,2019
+1995,49,"(45,50]",HS,-6.773993808049536,55.499266520205566,-0.12205555555555557,6496.702520483253,2019
+1995,33,"(30,35]",HS,78.77187085360461,9.712371641035974,8.110467120181408,5910.442588343368,2019
+1995,33,"(30,35]",HS,78.77187085360461,9.117736642605202,8.639410628019323,5850.898429493132,2019
+1995,33,"(30,35]",HS,78.77187085360461,9.514159974892383,8.279435185185188,5941.078336828031,2019
+1995,33,"(30,35]",HS,78.77187085360461,9.910583307179566,7.948257777777779,5861.827475484764,2019
+1995,33,"(30,35]",HS,78.77187085360461,9.117736642605202,8.639410628019323,5886.443832955867,2019
+1995,58,"(55,60]",HS,183.43975232198142,19.821166614359132,9.254740444444444,7141.029172908119,2019
+1995,58,"(55,60]",HS,183.43975232198142,19.821166614359132,9.254740444444444,6992.002163826229,2019
+1995,58,"(55,60]",HS,183.43975232198142,19.821166614359132,9.254740444444444,7053.061696315915,2019
+1995,58,"(55,60]",HS,183.43975232198142,19.821166614359132,9.254740444444444,7037.854055175228,2019
+1995,58,"(55,60]",HS,183.43975232198142,19.821166614359132,9.254740444444444,6963.068653533906,2019
+1995,51,"(50,55]",College,281.4110570544007,198.21166614359132,1.4197502222222222,4145.2690625965715,2019
+1995,51,"(50,55]",College,281.4110570544007,198.21166614359132,1.4197502222222222,4319.554743607349,2019
+1995,51,"(50,55]",College,281.4110570544007,198.21166614359132,1.4197502222222222,4268.207812808319,2019
+1995,51,"(50,55]",College,281.4110570544007,198.21166614359132,1.4197502222222222,4047.8859946332027,2019
+1995,51,"(50,55]",College,281.4110570544007,198.21166614359132,1.4197502222222222,4282.014241033552,2019
+1995,67,"(65,70]",HS,26015.05871738169,267.5857492938483,97.22139084773661,514.7630115191478,2019
+1995,67,"(65,70]",HS,35613.4015037594,251.72881600236096,141.47526719160106,580.7494698792518,2019
+1995,67,"(65,70]",HS,28042.20539584255,204.15801612789906,137.35539719525352,498.43993533984303,2019
+1995,67,"(65,70]",HS,39531.86660769571,237.85399937230957,166.2022362962963,634.1446526226525,2019
+1995,67,"(65,70]",HS,35342.635294117645,206.14013278933496,171.4495611111111,490.4706984907263,2019
+1995,37,"(35,40]",College,6315.684741264928,297.31749921538704,21.242223407407405,556.9234408553125,2019
+1995,37,"(35,40]",College,6318.587881468377,297.31749921538704,21.25198785185185,497.896766460427,2019
+1995,37,"(35,40]",College,6434.713489606369,297.31749921538704,21.642565629629626,499.52107307421755,2019
+1995,37,"(35,40]",College,6319.555594869527,297.31749921538704,21.255242666666664,500.17187657692847,2019
+1995,37,"(35,40]",College,6366.9735515258735,297.31749921538704,21.41472859259259,501.002574300527,2019
+1995,23,"(20,25]",HS,51.79202122954445,23.785399937230956,2.1774711111111116,6530.479359915009,2019
+1995,23,"(20,25]",HS,110.9193100398054,23.785399937230956,4.663335925925926,6477.282318331021,2019
+1995,23,"(20,25]",HS,87.88773109243698,23.785399937230956,3.6950285185185194,6600.7407274188245,2019
+1995,23,"(20,25]",HS,14.283449800973022,23.785399937230956,0.6005133333333335,6677.430386289758,2019
+1995,23,"(20,25]",HS,1.470924369747899,23.785399937230956,0.06184148148148149,6571.940566049224,2019
+1995,66,"(65,70]",College,1932.5236620964176,210.1043661122068,9.197922431865829,1899.79586157033,2019
+1995,66,"(65,70]",College,1942.2007961079169,210.1043661122068,9.243981132075472,1549.2322052949698,2019
+1995,66,"(65,70]",College,1926.717381689518,210.1043661122068,9.170287211740042,1607.8820837610438,2019
+1995,66,"(65,70]",College,1926.717381689518,210.1043661122068,9.170287211740042,1422.0923756152818,2019
+1995,66,"(65,70]",College,1926.717381689518,210.1043661122068,9.170287211740042,1578.6666423676302,2019
+1995,46,"(45,50]",NoHS,175.31095975232196,116.94488302471889,1.4990904708097925,8016.150650167273,2019
+1995,46,"(45,50]",NoHS,163.95000442282176,116.94488302471889,1.4019425235404896,7831.619072172604,2019
+1995,46,"(45,50]",NoHS,163.69839893852279,116.94488302471889,1.3997910357815442,7935.3106653704035,2019
+1995,46,"(45,50]",NoHS,172.2142768686422,116.94488302471889,1.4726106214689265,8161.542298769331,2019
+1995,46,"(45,50]",NoHS,170.2594957983193,116.94488302471889,1.4558952165725045,7995.9176362488015,2019
+1995,33,"(30,35]",HS,8.128792569659444,13.874816630051392,0.5858666666666668,8276.587405228202,2019
+1995,33,"(30,35]",HS,8.128792569659444,13.874816630051392,0.5858666666666668,8251.537282121632,2019
+1995,33,"(30,35]",HS,8.128792569659444,13.874816630051392,0.5858666666666668,8317.951118557003,2019
+1995,33,"(30,35]",HS,8.128792569659444,13.874816630051392,0.5858666666666668,8259.988759500755,2019
+1995,33,"(30,35]",HS,8.128792569659444,13.874816630051392,0.5858666666666668,8355.095904498234,2019
+1995,36,"(35,40]",College,33.40546660769571,33.69598324441053,0.9913783006535947,6528.541929457658,2019
+1995,36,"(35,40]",College,30.6958690844759,33.69598324441053,0.91096522875817,6409.905243583524,2019
+1995,36,"(35,40]",College,30.637806280406902,33.69598324441053,0.909242091503268,6509.998096304743,2019
+1995,36,"(35,40]",College,36.289252543122515,33.69598324441053,1.0769607843137254,6357.9134626392415,2019
+1995,36,"(35,40]",College,32.70871295886776,33.69598324441053,0.9707006535947712,6397.139529684585,2019
+1995,41,"(40,45]",NoHS,-11.999646174259178,18.235473285210404,-0.6580386473429951,8733.61444733424,2019
+1995,41,"(40,45]",NoHS,-11.999646174259178,18.235473285210404,-0.6580386473429951,8795.428936670367,2019
+1995,41,"(40,45]",NoHS,-11.999646174259178,18.235473285210404,-0.6580386473429951,8798.477116817503,2019
+1995,41,"(40,45]",NoHS,-11.999646174259178,18.235473285210404,-0.6580386473429951,8777.10801741278,2019
+1995,41,"(40,45]",NoHS,-11.999646174259178,18.235473285210404,-0.6580386473429951,8805.222837915408,2019
+1995,30,"(25,30]",HS,434.17429455992925,51.53503319733374,8.424837777777778,4278.226249822951,2019
+1995,30,"(25,30]",HS,430.1486068111455,49.55291653589783,8.680591111111111,4445.168142121555,2019
+1995,30,"(25,30]",HS,434.2710659000442,61.44561650451331,7.067567885304659,4394.640687034612,2019
+1995,30,"(25,30]",HS,450.4705882352941,87.21313310318017,5.165169191919192,4153.191113103383,2019
+1995,30,"(25,30]",HS,436.3032640424591,99.10583307179566,4.402397422222222,4425.2200926482865,2019
+1995,41,"(40,45]",College,12931.747722246795,505.43974866615787,25.585141960784316,1299.0731217314196,2019
+1995,41,"(40,45]",College,49704.85696594427,505.43974866615787,98.33982605664488,203.52311590468244,2019
+1995,41,"(40,45]",College,49704.85696594427,505.43974866615787,98.33982605664488,224.40343369270562,2019
+1995,41,"(40,45]",College,13415.60442282176,505.43974866615787,26.542440435729848,1155.2360103119356,2019
+1995,41,"(40,45]",College,12931.747722246795,505.43974866615787,25.585141960784316,1165.574655132908,2019
+1995,39,"(35,40]",College,347.2542768686422,336.95983244410525,1.030550954248366,4211.228321314976,2019
+1995,39,"(35,40]",College,365.25374613003095,336.95983244410525,1.0839682091503269,4384.00037785143,2019
+1995,39,"(35,40]",College,340.6738257408227,336.95983244410525,1.0110220653594773,4321.619491606778,2019
+1995,39,"(35,40]",College,353.2540999557718,336.95983244410525,1.0483567058823529,4104.372584249554,2019
+1995,39,"(35,40]",College,344.54467934542237,336.95983244410525,1.0225096470588235,4352.4698668843585,2019
+1995,41,"(40,45]",NoHS,15.386643078283946,51.53503319733374,0.2985666666666667,6931.921376119846,2019
+1995,41,"(40,45]",NoHS,15.386643078283946,51.53503319733374,0.2985666666666667,6911.781520840988,2019
+1995,41,"(40,45]",NoHS,15.386643078283946,51.53503319733374,0.2985666666666667,6923.091345819766,2019
+1995,41,"(40,45]",NoHS,15.386643078283946,51.53503319733374,0.2985666666666667,7047.280073968587,2019
+1995,41,"(40,45]",NoHS,15.386643078283946,51.53503319733374,0.2985666666666667,6958.483767300402,2019
+1995,71,"(70,75]",NoHS,36.386023883237506,19.821166614359132,1.8357155555555555,9821.270518267429,2019
+1995,71,"(70,75]",NoHS,36.386023883237506,19.821166614359132,1.8357155555555555,9838.776619763976,2019
+1995,71,"(70,75]",NoHS,36.386023883237506,19.821166614359132,1.8357155555555555,9815.003850498173,2019
+1995,71,"(70,75]",NoHS,36.386023883237506,19.821166614359132,1.8357155555555555,9833.471891149642,2019
+1995,71,"(70,75]",NoHS,36.386023883237506,19.821166614359132,1.8357155555555555,9812.884552724523,2019
+1995,29,"(25,30]",College,20.70906678460858,59.46349984307739,0.34826518518518523,5328.436073860541,2019
+1995,29,"(25,30]",College,20.70906678460858,59.46349984307739,0.34826518518518523,5279.417716592268,2019
+1995,29,"(25,30]",College,20.70906678460858,59.46349984307739,0.34826518518518523,5331.016753632183,2019
+1995,29,"(25,30]",College,20.70906678460858,59.46349984307739,0.34826518518518523,5299.097036699362,2019
+1995,29,"(25,30]",College,20.70906678460858,59.46349984307739,0.34826518518518523,5307.485592406932,2019
+1995,45,"(40,45]",HS,50.708182220256525,114.96276636328297,0.4410835249042146,5490.354593987924,2019
+1995,45,"(40,45]",HS,50.708182220256525,114.96276636328297,0.4410835249042146,5393.647980870083,2019
+1995,45,"(40,45]",HS,50.708182220256525,114.96276636328297,0.4410835249042146,5443.801670560528,2019
+1995,45,"(40,45]",HS,50.708182220256525,114.96276636328297,0.4410835249042146,5439.122819525661,2019
+1995,45,"(40,45]",HS,50.708182220256525,114.96276636328297,0.4410835249042146,5471.229932487385,2019
+1995,37,"(35,40]",HS,207.1487306501548,158.56933291487306,1.306360611111111,5368.536454608944,2019
+1995,37,"(35,40]",HS,202.11662096417515,158.56933291487306,1.2746261666666667,5294.676690692571,2019
+1995,37,"(35,40]",HS,190.50406015037595,158.56933291487306,1.2013928333333335,5290.207721498901,2019
+1995,37,"(35,40]",HS,202.11662096417515,158.56933291487306,1.2746261666666667,5346.788837292071,2019
+1995,37,"(35,40]",HS,194.3749137549757,158.56933291487306,1.2258039444444446,5309.3841787231895,2019
+1995,32,"(30,35]",HS,36.83117204776648,99.10583307179566,0.37163475555555564,5683.360981985204,2019
+1995,32,"(30,35]",HS,30.831348960636888,99.10583307179566,0.3110952,5597.286295996265,2019
+1995,32,"(30,35]",HS,58.50795223352499,99.10583307179566,0.5903583111111111,5631.921808413563,2019
+1995,32,"(30,35]",HS,35.282830605926584,99.10583307179566,0.3560116444444445,5562.136930856519,2019
+1995,32,"(30,35]",HS,33.34740380362672,99.10583307179566,0.3364827555555556,5625.778270023833,2019
+1995,36,"(35,40]",HS,270.63072976559044,128.8375829933344,2.1005573333333327,6648.113393431299,2019
+1995,36,"(35,40]",HS,271.59844316674037,128.8375829933344,2.1080684444444437,6598.052319866077,2019
+1995,36,"(35,40]",HS,269.6630163644405,128.8375829933344,2.0930462222222217,6641.069670000051,2019
+1995,36,"(35,40]",HS,269.6630163644405,128.8375829933344,2.0930462222222217,6714.85924657086,2019
+1995,36,"(35,40]",HS,268.8888456435206,128.8375829933344,2.087037333333333,6651.046746922392,2019
+1995,42,"(40,45]",College,65.57226006191951,218.03283275795047,0.3007448888888889,10824.247934579636,2019
+1995,42,"(40,45]",College,65.57226006191951,218.03283275795047,0.3007448888888889,11123.773033274227,2019
+1995,42,"(40,45]",College,65.57226006191951,218.03283275795047,0.3007448888888889,10744.017938200259,2019
+1995,42,"(40,45]",College,65.57226006191951,218.03283275795047,0.3007448888888889,11204.52985322577,2019
+1995,42,"(40,45]",College,65.57226006191951,218.03283275795047,0.3007448888888889,10946.605372610318,2019
+1995,61,"(60,65]",College,1814.6561698363557,202.17589946646316,8.975630501089325,3127.23147522204,2019
+1995,61,"(60,65]",College,1830.9137549756745,202.17589946646316,9.056043572984748,2675.3096657376896,2019
+1995,61,"(60,65]",College,1771.1090667846088,192.26531615928357,9.211797021764033,2759.81686899869,2019
+1995,61,"(60,65]",College,1815.6238832375057,221.99706608082226,8.178594047619049,2676.687332639035,2019
+1995,61,"(60,65]",College,1807.1080053073863,202.17589946646316,8.938295860566448,2759.9978847225993,2019
+1995,27,"(25,30]",HS,-1.8386554621848739,41.624449890154175,-0.04417248677248677,6043.593362730998,2019
+1995,27,"(25,30]",College,5.903051747014596,71.35619981169287,0.08272654320987655,5989.648167622271,2019
+1995,27,"(25,30]",HS,-1.8386554621848739,140.73028296194985,-0.013065101721439747,6071.128290820043,2019
+1995,27,"(25,30]",HS,9.77390535161433,67.39196648882105,0.14503071895424835,5998.367079230029,2019
+1995,27,"(25,30]",HS,-1.8386554621848739,192.26531615928357,-0.009563115693012601,6051.679820013649,2019
+1995,34,"(30,35]",NoHS,2.7483060592658117,41.624449890154175,0.0660262433862434,4261.880699753855,2019
+1995,34,"(30,35]",NoHS,2.7483060592658117,41.624449890154175,0.0660262433862434,4196.1765944397675,2019
+1995,34,"(30,35]",NoHS,2.7483060592658117,41.624449890154175,0.0660262433862434,4206.188936518073,2019
+1995,34,"(30,35]",NoHS,2.7483060592658117,41.624449890154175,0.0660262433862434,4179.285421863011,2019
+1995,34,"(30,35]",NoHS,2.7483060592658117,41.624449890154175,0.0660262433862434,4196.497953101444,2019
+1995,32,"(30,35]",HS,160.81461300309596,128.8375829933344,1.248196444444444,6832.293966842668,2019
+1995,32,"(30,35]",HS,158.37597523219813,31.713866582974614,4.993903055555555,6771.30881960322,2019
+1995,32,"(30,35]",HS,142.06032728881024,150.64086626912942,0.9430397660818711,6863.422256217718,2019
+1995,32,"(30,35]",HS,112.29346306943832,67.39196648882105,1.6662737254901963,6781.165566012144,2019
+1995,32,"(30,35]",HS,183.47846085802743,93.15948308748793,1.969509219858156,6841.4357224157775,2019
+1995,29,"(25,30]",HS,10.064219371959311,17.83904995292322,0.564167901234568,4802.517643276322,2019
+1995,29,"(25,30]",HS,5.0321096859796555,17.83904995292322,0.282083950617284,4805.918262517393,2019
+1995,29,"(25,30]",HS,11.53514374170721,17.83904995292322,0.6466232098765432,4781.39920801359,2019
+1995,29,"(25,30]",HS,11.264183989385229,17.83904995292322,0.6314340740740741,4804.684825078102,2019
+1995,29,"(25,30]",HS,11.864166298098187,17.83904995292322,0.6650671604938272,4787.881026115525,2019
+1995,53,"(50,55]",NoHS,15.986625386996904,35.67809990584644,0.44807950617283954,5106.837177304687,2019
+1995,53,"(50,55]",NoHS,15.986625386996904,31.713866582974614,0.5040894444444444,5016.885805547714,2019
+1995,53,"(50,55]",NoHS,15.986625386996904,33.69598324441053,0.4744371241830065,5063.536112500678,2019
+1995,53,"(50,55]",NoHS,15.986625386996904,33.69598324441053,0.4744371241830065,5059.184092972086,2019
+1995,53,"(50,55]",NoHS,15.986625386996904,35.67809990584644,0.44807950617283954,5089.048429659628,2019
+1995,47,"(45,50]",College,13009.88090225564,366.69158236564397,35.4790824984985,1946.846346312655,2019
+1995,47,"(45,50]",College,16373.962352941177,342.906182428413,47.75056033397559,1742.7376726015293,2019
+1995,47,"(45,50]",College,16211.40585581601,366.69158236564397,44.209920912912914,1741.491720002914,2019
+1995,47,"(45,50]",College,13801.005961963734,338.9419491055412,40.717904639376215,1758.4790691307094,2019
+1995,47,"(45,50]",College,18677.41056169836,281.4605659238997,66.35888938967135,1755.7460873428959,2019
+1995,85,"(80,85]",NoHS,0.7354621848739495,39.642333228718265,0.018552444444444444,10813.106084486373,2019
+1995,85,"(80,85]",NoHS,0.890296329057939,39.642333228718265,0.022458222222222223,10815.13435074244,2019
+1995,85,"(80,85]",NoHS,10.644847412649272,39.642333228718265,0.2685222222222223,10852.92826506035,2019
+1995,85,"(80,85]",NoHS,1.1031932773109243,39.642333228718265,0.027828666666666665,10868.204578216775,2019
+1995,85,"(80,85]",NoHS,0.7354621848739495,39.642333228718265,0.018552444444444444,10838.328853784416,2019
+1995,30,"(25,30]",HS,15.77372843874392,17.64083828677963,0.8941598002496879,6239.882736809615,2019
+1995,30,"(25,30]",HS,14.418929677134013,59.46349984307739,0.24248370370370376,6143.684381817986,2019
+1995,30,"(25,30]",HS,15.096329057938965,31.713866582974614,0.47601666666666664,6158.343600339298,2019
+1995,30,"(25,30]",HS,14.90278637770898,29.731749921538697,0.5012414814814815,6118.953765549853,2019
+1995,30,"(25,30]",HS,16.257585139318888,37.660216567282355,0.43169122807017546,6144.154887800343,2019
+1995,22,"(20,25]",HS,0.19354268022998675,39.642333228718265,0.004882222222222223,6208.176796490687,2019
+1995,22,"(20,25]",HS,0.19354268022998675,39.642333228718265,0.004882222222222223,6321.749817311989,2019
+1995,22,"(20,25]",HS,0.19354268022998675,39.642333228718265,0.004882222222222223,6242.939405918309,2019
+1995,22,"(20,25]",HS,0.19354268022998675,39.642333228718265,0.004882222222222223,6331.466908703677,2019
+1995,22,"(20,25]",HS,0.19354268022998675,39.642333228718265,0.004882222222222223,6204.32253029873,2019
+1995,66,"(65,70]",College,8836.036231755861,277.4963326010279,31.841992825396822,18.587856887892674,2019
+1995,66,"(65,70]",College,8836.036231755861,277.4963326010279,31.841992825396822,17.327646214138458,2019
+1995,66,"(65,70]",College,8836.036231755861,277.4963326010279,31.841992825396822,17.569625567095052,2019
+1995,66,"(65,70]",College,8836.036231755861,277.4963326010279,31.841992825396822,15.745584345175448,2019
+1995,66,"(65,70]",College,8836.036231755861,277.4963326010279,31.841992825396822,17.68598544662984,2019
+1995,46,"(45,50]",HS,779.7253958425475,134.7839329776421,5.785002549019607,3708.657589309467,2019
+1995,46,"(45,50]",HS,815.2404776647501,122.89123300902662,6.633837562724014,3863.737019964034,2019
+1995,46,"(45,50]",HS,787.834834144184,128.8375829933344,6.114945777777777,3815.606903171383,2019
+1995,46,"(45,50]",HS,762.7129942503317,138.74816630051396,5.497103238095237,3619.7308909200424,2019
+1995,46,"(45,50]",HS,667.1416187527643,116.94488302471889,5.704752542372882,3828.681881097686,2019
+1995,79,"(75,80]",NoHS,30.579743476337903,118.92699968615479,0.2571303703703704,6805.41526179411,2019
+1995,79,"(75,80]",NoHS,37.74082264484742,118.92699968615479,0.31734444444444454,6612.270061851132,2019
+1995,79,"(75,80]",NoHS,74.08813799203892,118.92699968615479,0.6229715555555556,6778.556137782545,2019
+1995,79,"(75,80]",NoHS,83.99752321981425,118.92699968615479,0.7062948148148149,6457.437016079398,2019
+1995,79,"(75,80]",NoHS,30.19265811587793,118.92699968615479,0.2538755555555556,6612.005625318988,2019
+1995,24,"(20,25]",NoHS,2.322512162759841,33.69598324441053,0.06892549019607842,5400.303102465575,2019
+1995,24,"(20,25]",NoHS,2.322512162759841,33.69598324441053,0.06892549019607842,5405.032719457241,2019
+1995,24,"(20,25]",NoHS,2.322512162759841,33.69598324441053,0.06892549019607842,5439.662226847667,2019
+1995,24,"(20,25]",NoHS,2.322512162759841,33.69598324441053,0.06892549019607842,5400.236253536483,2019
+1995,24,"(20,25]",NoHS,2.322512162759841,33.69598324441053,0.06892549019607842,5373.072177837979,2019
+1995,39,"(35,40]",College,-16.91563025210084,21.803283275795042,-0.775829494949495,8563.70557537069,2019
+1995,39,"(35,40]",College,-16.91563025210084,19.821166614359132,-0.8534124444444444,8749.635872700836,2019
+1995,39,"(35,40]",College,-16.91563025210084,21.803283275795042,-0.775829494949495,8614.731501979453,2019
+1995,39,"(35,40]",College,-16.91563025210084,21.803283275795042,-0.775829494949495,8640.487547767998,2019
+1995,39,"(35,40]",College,-16.91563025210084,19.821166614359132,-0.8534124444444444,8646.051305808698,2019
+1995,52,"(50,55]",HS,3598.0551968155687,198.21166614359132,18.152590444444446,906.9909812603994,2019
+1995,52,"(50,55]",HS,3598.0551968155687,198.21166614359132,18.152590444444446,818.5261818167361,2019
+1995,52,"(50,55]",HS,3598.0551968155687,198.21166614359132,18.152590444444446,813.6065255080287,2019
+1995,52,"(50,55]",HS,3598.0551968155687,198.21166614359132,18.152590444444446,820.6894799752569,2019
+1995,52,"(50,55]",HS,3598.0551968155687,198.21166614359132,18.152590444444446,816.8410327841352,2019
+1995,37,"(35,40]",HS,450.5673595754091,118.92699968615479,3.7886044444444447,3540.9727693835243,2019
+1995,37,"(35,40]",HS,336.086864219372,118.92699968615479,2.8259929629629634,3686.246570950983,2019
+1995,37,"(35,40]",HS,365.9892083149049,118.92699968615479,3.0774274074074075,3633.7941740091437,2019
+1995,37,"(35,40]",HS,340.6351172047767,118.92699968615479,2.8642370370370376,3451.124101410348,2019
+1995,37,"(35,40]",HS,340.6351172047767,118.92699968615479,2.8642370370370376,3659.734429547002,2019
+1995,26,"(25,30]",HS,107.22264484741265,55.499266520205566,1.9319650793650796,5226.891570325179,2019
+1995,26,"(25,30]",HS,107.22264484741265,55.499266520205566,1.9319650793650796,5180.236266328034,2019
+1995,26,"(25,30]",HS,107.22264484741265,55.499266520205566,1.9319650793650796,5250.705562246885,2019
+1995,26,"(25,30]",HS,107.22264484741265,55.499266520205566,1.9319650793650796,5187.776946656731,2019
+1995,26,"(25,30]",HS,107.22264484741265,55.499266520205566,1.9319650793650796,5233.885263128061,2019
+1995,40,"(35,40]",NoHS,181.54303405572756,39.642333228718265,4.579524444444445,5368.536454608944,2019
+1995,40,"(35,40]",NoHS,181.54303405572756,39.642333228718265,4.579524444444445,5294.676690692571,2019
+1995,40,"(35,40]",NoHS,181.54303405572756,39.642333228718265,4.579524444444445,5290.207721498901,2019
+1995,40,"(35,40]",NoHS,181.54303405572756,39.642333228718265,4.579524444444445,5346.788837292071,2019
+1995,40,"(35,40]",NoHS,181.54303405572756,39.642333228718265,4.579524444444445,5309.3841787231895,2019
+1995,68,"(65,70]",College,119365.90162582928,4142.6238224010585,28.814081785645936,16.922237812228754,2019
+1995,68,"(65,70]",College,119630.6680123839,4459.762488230804,26.824448236444454,18.281957672402182,2019
+1995,68,"(65,70]",College,119359.90180274216,4400.298988387727,27.12540718658659,18.149931201243074,2019
+1995,68,"(65,70]",College,120298.39025917737,4301.193155315932,27.968609154531492,15.780003964162134,2019
+1995,68,"(65,70]",College,119822.46880849182,4063.339155943622,29.4886703299729,16.98926204970277,2019
+1995,29,"(25,30]",NoHS,0,5.946349984307739,0,5563.399598544462,2019
+1995,29,"(25,30]",NoHS,0,5.946349984307739,0,5541.935910626139,2019
+1995,29,"(25,30]",NoHS,0,10.901641637897521,0,5535.856552025176,2019
+1995,29,"(25,30]",NoHS,0,21.803283275795042,0,5564.518123896094,2019
+1995,29,"(25,30]",NoHS,0,5.946349984307739,0,5559.935759736689,2019
+1995,40,"(35,40]",College,56.12737726669615,59.46349984307739,0.9438962962962963,6069.644258544091,2019
+1995,40,"(35,40]",College,56.12737726669615,59.46349984307739,0.9438962962962963,6019.26268569514,2019
+1995,40,"(35,40]",College,56.12737726669615,59.46349984307739,0.9438962962962963,5990.787200432485,2019
+1995,40,"(35,40]",College,56.12737726669615,59.46349984307739,0.9438962962962963,5881.965462451612,2019
+1995,40,"(35,40]",College,56.12737726669615,59.46349984307739,0.9438962962962963,5996.993991435745,2019
+1995,48,"(45,50]",HS,21.48323750552853,89.1952497646161,0.24085629629629632,3552.3104615860657,2019
+1995,48,"(45,50]",HS,21.48323750552853,89.1952497646161,0.24085629629629632,3467.842158294878,2019
+1995,48,"(45,50]",HS,21.48323750552853,89.1952497646161,0.24085629629629632,3474.481597124729,2019
+1995,48,"(45,50]",HS,21.48323750552853,89.1952497646161,0.24085629629629632,3470.068253989926,2019
+1995,48,"(45,50]",HS,21.48323750552853,89.1952497646161,0.24085629629629632,3499.3884193715116,2019
+1995,60,"(55,60]",HS,0,19.821166614359132,0,8323.852834000236,2019
+1995,60,"(55,60]",HS,0,19.821166614359132,0,8372.41987209283,2019
+1995,60,"(55,60]",HS,0,19.821166614359132,0,8353.3976734435455,2019
+1995,60,"(55,60]",HS,0,19.821166614359132,0,8363.72470556469,2019
+1995,60,"(55,60]",HS,0,19.821166614359132,0,8316.529094662017,2019
+1995,60,"(55,60]",College,15462.124723573641,1183.3236468772402,13.066691233947516,15.493080852566397,2019
+1995,60,"(55,60]",College,22918.395187969923,987.0940973950849,23.218045015618024,14.310677741060033,2019
+1995,60,"(55,60]",College,51139.859814241485,1191.2521135229838,42.929501852468114,26.41760328863169,2019
+1995,60,"(55,60]",College,56704.44412206988,1423.1597629109856,39.844046747137114,14.572294244021856,2019
+1995,60,"(55,60]",College,48697.31248120301,773.0254979600062,62.99573896296296,15.103432674028927,2019
+1995,42,"(40,45]",HS,247.54108801415305,99.10583307179566,2.497744888888889,6140.2713991380515,2019
+1995,42,"(40,45]",HS,247.54108801415305,99.10583307179566,2.497744888888889,6094.034435351242,2019
+1995,42,"(40,45]",HS,247.54108801415305,99.10583307179566,2.497744888888889,6133.765737912255,2019
+1995,42,"(40,45]",HS,247.54108801415305,99.10583307179566,2.497744888888889,6201.918610728765,2019
+1995,42,"(40,45]",HS,247.54108801415305,99.10583307179566,2.497744888888889,6142.980677015701,2019
+1995,24,"(20,25]",HS,-0.5032109685979655,47.57079987446191,-0.01057814814814815,5123.465358747979,2019
+1995,24,"(20,25]",HS,-0.11612560813799205,47.57079987446191,-0.0024411111111111118,5180.717148311342,2019
+1995,24,"(20,25]",HS,-1.1419018133569219,43.606566551590085,-0.026186464646464656,5168.84045214705,2019
+1995,24,"(20,25]",HS,-0.7354621848739495,47.57079987446191,-0.015460370370370373,5233.80745126165,2019
+1995,24,"(20,25]",HS,-0.890296329057939,31.713866582974614,-0.028072777777777776,5151.601904249599,2019
+1995,68,"(65,70]",College,1804.2048651039363,69.37408315025698,26.00690031746031,530.8298499457426,2019
+1995,68,"(65,70]",College,1804.2048651039363,69.37408315025698,26.00690031746031,447.91305299753367,2019
+1995,68,"(65,70]",College,1804.2048651039363,69.37408315025698,26.00690031746031,451.7751912717351,2019
+1995,68,"(65,70]",College,1804.2048651039363,69.37408315025698,26.00690031746031,457.97780081675467,2019
+1995,68,"(65,70]",College,1804.2048651039363,69.37408315025698,26.00690031746031,440.81119912418035,2019
+1995,37,"(35,40]",HS,25.760530738611234,13.874816630051392,1.8566393650793653,5454.61970650391,2019
+1995,37,"(35,40]",HS,42.79228659885006,18.631896617497585,2.2967219858156027,5294.676690692571,2019
+1995,37,"(35,40]",HS,30.986183104820878,51.53503319733374,0.6012644444444446,5373.881821132954,2019
+1995,37,"(35,40]",HS,23.438018575851395,25.76751659866687,0.9095955555555557,5468.031547665303,2019
+1995,37,"(35,40]",HS,22.083219814241485,29.731749921538697,0.7427487407407407,5412.801868913228,2019
+1995,36,"(35,40]",NoHS,6.9675364882795225,37.660216567282355,0.18501052631578946,7717.527488038792,2019
+1995,36,"(35,40]",NoHS,-0.19354268022998675,39.642333228718265,-0.004882222222222223,7769.189264276325,2019
+1995,36,"(35,40]",NoHS,2.5160548429898277,35.67809990584644,0.070520987654321,7771.541923254507,2019
+1995,36,"(35,40]",NoHS,0.19354268022998675,37.660216567282355,0.005139181286549708,7757.358326030668,2019
+1995,36,"(35,40]",NoHS,1.9354268022998675,33.69598324441053,0.057437908496732026,7773.623978625236,2019
+1995,38,"(35,40]",College,40.063334807607255,73.3383164731288,0.5462810810810811,6463.443577324664,2019
+1995,38,"(35,40]",College,40.063334807607255,73.3383164731288,0.5462810810810811,6414.77308913341,2019
+1995,38,"(35,40]",College,40.063334807607255,73.3383164731288,0.5462810810810811,6456.595512877214,2019
+1995,38,"(35,40]",College,40.063334807607255,73.3383164731288,0.5462810810810811,6528.3353789919165,2019
+1995,38,"(35,40]",College,40.063334807607255,73.3383164731288,0.5462810810810811,6466.295448774501,2019
+1995,23,"(20,25]",HS,-15.46212472357364,53.517149858769656,-0.28891906172839504,4710.836833626469,2019
+1995,23,"(20,25]",HS,-15.539541795665635,53.517149858769656,-0.290365646090535,4697.241899835193,2019
+1995,23,"(20,25]",HS,-15.423416187527643,53.517149858769656,-0.2881957695473251,4724.001809257848,2019
+1995,23,"(20,25]",HS,-15.48147899159664,53.517149858769656,-0.28928070781893006,4693.019527674218,2019
+1995,23,"(20,25]",HS,-15.404061919504644,53.517149858769656,-0.2878341234567901,4671.8539222784775,2019
+1995,39,"(35,40]",College,1059.0655462184875,1220.9838634445227,0.8673870129870129,685.466936946986,2019
+1995,39,"(35,40]",College,1123.3217160548431,1847.3327284582713,0.6080776347162614,564.6226524226587,2019
+1995,39,"(35,40]",College,1302.1551525873508,545.0820818948762,2.388915717171717,605.0989458573004,2019
+1995,39,"(35,40]",College,1214.4222556390978,1258.644080011805,0.9648655048118985,578.3880578389937,2019
+1995,39,"(35,40]",College,1168.03007518797,1022.7721973009315,1.1420236864771747,567.8149134476932,2019
+1995,44,"(40,45]",College,1424.7644405130475,198.21166614359132,7.188095777777779,2112.8061593976386,2019
+1995,44,"(40,45]",College,1135.4181335692172,198.21166614359132,5.728311333333334,3601.9895092514553,2019
+1995,44,"(40,45]",College,1156.5142857142857,198.21166614359132,5.834743777777779,3550.736024200168,2019
+1995,44,"(40,45]",College,1275.9301194161876,198.21166614359132,6.437210000000001,3372.241267408758,2019
+1995,44,"(40,45]",College,2637.309332153914,198.21166614359132,13.305520222222222,1870.9419161472347,2019
+1995,29,"(25,30]",HS,96.3842547545334,118.92699968615479,0.810448888888889,5180.146740821862,2019
+1995,29,"(25,30]",HS,96.3842547545334,118.92699968615479,0.810448888888889,5101.693250799639,2019
+1995,29,"(25,30]",HS,96.3842547545334,118.92699968615479,0.810448888888889,5133.262077297526,2019
+1995,29,"(25,30]",HS,96.3842547545334,118.92699968615479,0.810448888888889,5069.656068954644,2019
+1995,29,"(25,30]",HS,96.3842547545334,118.92699968615479,0.810448888888889,5127.662498022596,2019
+1995,34,"(30,35]",HS,1370.4563644405132,59.46349984307739,23.047018222222228,1715.5344414404804,2019
+1995,34,"(30,35]",HS,1457.511862007961,59.46349984307739,24.51103392592593,1467.4355537450806,2019
+1995,34,"(30,35]",HS,1531.135497567448,59.46349984307739,25.749165481481484,1514.101019289107,2019
+1995,34,"(30,35]",HS,1479.1692879256968,59.46349984307739,24.87524770370371,1464.0375952599486,2019
+1995,34,"(30,35]",HS,1658.1188500663425,59.46349984307739,27.884649481481485,1519.2454022544662,2019
+1995,62,"(60,65]",College,-1606.59778858912,416.24449890154176,-3.8597453968253976,229.2187295429626,2019
+1995,62,"(60,65]",College,-3641.1184431667402,416.24449890154176,-8.747547301587302,202.41867223021163,2019
+1995,62,"(60,65]",College,-4454.965413533835,416.24449890154176,-10.70276105820106,203.4243768838473,2019
+1995,62,"(60,65]",College,-4852.502078726227,416.24449890154176,-11.65781671957672,205.9906944793638,2019
+1995,62,"(60,65]",College,-1898.65369305617,416.24449890154176,-4.561390476190477,206.0378907464477,2019
+1995,55,"(50,55]",HS,6831.185670057497,140.73028296194985,48.54097871674492,2221.4835310605804,2019
+1995,55,"(50,55]",HS,6919.6346749226,126.85546633189846,54.547390625,2091.511688738291,2019
+1995,55,"(50,55]",HS,6903.957717823972,255.69304932523286,27.000959689922478,1968.8953776587157,2019
+1995,55,"(50,55]",College,5223.233082706767,646.1700316281078,8.083372528970688,1973.6843797778442,2019
+1995,55,"(50,55]",HS,8208.628925254312,114.96276636328297,71.4025,2217.755115589546,2019
+1995,83,"(80,85]",HS,662.8836797877046,49.55291653589783,13.377288888888891,4410.4635654383255,2019
+1995,83,"(80,85]",HS,690.3667403803628,49.55291653589783,13.931909333333337,4560.749111757911,2019
+1995,83,"(80,85]",HS,657.077399380805,49.55291653589783,13.260115555555558,4532.70695402978,2019
+1995,83,"(80,85]",HS,664.2384785493144,49.55291653589783,13.404629333333334,4297.909911584053,2019
+1995,83,"(80,85]",HS,666.3674480318443,49.55291653589783,13.44759288888889,4556.14279578779,2019
+1995,35,"(30,35]",HS,54.288721804511276,73.3383164731288,0.7402504504504503,6674.862698044517,2019
+1995,35,"(30,35]",HS,52.682317558602385,75.32043313456471,0.6994425730994152,6589.5121259889,2019
+1995,35,"(30,35]",HS,53.84357363998231,69.37408315025698,0.7761338412698411,6649.631698478681,2019
+1995,35,"(30,35]",HS,46.56636886333481,65.40984982738514,0.7119167676767676,6562.345049272493,2019
+1995,35,"(30,35]",HS,51.44364440513047,79.28466645743653,0.6488473333333333,6596.133903206096,2019
+1995,49,"(45,50]",College,23472.817549756743,792.8466645743653,29.605746733333334,1411.0206197390985,2019
+1995,49,"(45,50]",College,23449.127925696594,792.8466645743653,29.575867533333334,787.9118980613774,2019
+1995,49,"(45,50]",College,25004.70786377709,792.8466645743653,31.53788617777778,1388.6079597821006,2019
+1995,49,"(45,50]",College,23762.58965059708,792.8466645743653,29.971229888888892,895.2061841453966,2019
+1995,49,"(45,50]",College,23469.178947368422,792.8466645743653,29.601157444444446,1471.0363085917043,2019
+1995,40,"(35,40]",College,136.44758956214065,124.87334967046255,1.0926878306878307,4722.8632929365285,2019
+1995,40,"(35,40]",College,127.73816895179125,124.87334967046255,1.022941798941799,4900.190729604009,2019
+1995,40,"(35,40]",College,116.706236178682,122.89123300902662,0.9496709677419355,4832.032250066974,2019
+1995,40,"(35,40]",College,132.96382131800087,132.8018163162062,1.0012199004975122,4588.759076791224,2019
+1995,40,"(35,40]",College,121.35126050420168,122.89123300902662,0.987468817204301,4869.706088061905,2019
+1995,28,"(25,30]",HS,152.24067226890756,97.12371641035975,1.5674922448979591,5843.054075104063,2019
+1995,28,"(25,30]",HS,152.24067226890756,97.12371641035975,1.5674922448979591,5906.429866592945,2019
+1995,28,"(25,30]",HS,183.20750110570546,97.12371641035975,1.8863312471655331,5875.013109363902,2019
+1995,28,"(25,30]",HS,152.24067226890756,97.12371641035975,1.5674922448979591,5931.346621864472,2019
+1995,28,"(25,30]",HS,732.8687129588678,97.12371641035975,7.545723537414967,5891.008300009305,2019
+1995,27,"(25,30]",HS,14.517636444051305,33.69598324441053,0.4308417516339869,5018.960888694177,2019
+1995,27,"(25,30]",HS,14.517636444051305,27.749633260102783,0.5231649841269842,5071.998843711885,2019
+1995,27,"(25,30]",HS,14.517636444051305,43.606566551590085,0.3329231717171718,5025.958043054208,2019
+1995,27,"(25,30]",HS,14.517636444051305,33.69598324441053,0.4308417516339869,5104.950306460649,2019
+1995,27,"(25,30]",HS,14.517636444051305,27.749633260102783,0.5231649841269842,5033.521148031234,2019
+1995,36,"(35,40]",HS,139.52491817779745,126.85546633189846,1.099873125,5133.701466063994,2019
+1995,36,"(35,40]",HS,139.52491817779745,126.85546633189846,1.099873125,5123.237229340822,2019
+1995,36,"(35,40]",HS,139.52491817779745,126.85546633189846,1.099873125,5136.580099407875,2019
+1995,36,"(35,40]",HS,139.52491817779745,126.85546633189846,1.099873125,5045.348982550644,2019
+1995,36,"(35,40]",HS,139.52491817779745,126.85546633189846,1.099873125,5131.0272719753775,2019
+1995,25,"(20,25]",HS,5.148235294117647,59.46349984307739,0.08657807407407409,4644.681509569379,2019
+1995,25,"(20,25]",HS,5.148235294117647,59.46349984307739,0.08657807407407409,4631.966854376996,2019
+1995,25,"(20,25]",HS,5.148235294117647,59.46349984307739,0.08657807407407409,4660.0222630615635,2019
+1995,25,"(20,25]",HS,5.148235294117647,59.46349984307739,0.08657807407407409,4710.726227876274,2019
+1995,25,"(20,25]",HS,5.148235294117647,59.46349984307739,0.08657807407407409,4642.518273282773,2019
+1995,46,"(45,50]",College,3576.088102609465,606.5276983993896,5.896001307189541,903.9029943177804,2019
+1995,46,"(45,50]",College,3576.088102609465,606.5276983993896,5.896001307189541,815.6108517841825,2019
+1995,46,"(45,50]",College,3272.226094648386,606.5276983993896,5.39501510530138,817.5917760407667,2019
+1995,46,"(45,50]",College,3624.4737726669614,606.5276983993896,5.975776180101669,814.0520891055991,2019
+1995,46,"(45,50]",College,3518.025298540469,606.5276983993896,5.800271459694988,807.8918823050935,2019
+1995,42,"(40,45]",College,1823.946218487395,418.2266155629777,4.361143338599263,179.5888650112135,2019
+1995,42,"(40,45]",College,2158.775055285272,1328.018163162062,1.625561393034826,152.57627387511806,2019
+1995,42,"(40,45]",College,1705.1110128261832,989.0762140565207,1.723942997105322,151.2712879578801,2019
+1995,42,"(40,45]",College,1574.276160990712,1906.7962283013487,0.8256132132132131,156.77988009842588,2019
+1995,42,"(40,45]",College,1596.9013003095974,1296.3042965790871,1.2318876860346586,148.94620217802554,2019
+1995,92,"(90,95]",NoHS,544.6291021671827,206.14013278933496,2.642033333333334,984.4506603419637,2019
+1995,92,"(90,95]",NoHS,313.15205661211854,47.57079987446191,6.582862962962964,363.4820907029417,2019
+1995,92,"(90,95]",NoHS,525.2748341441841,47.57079987446191,11.041959259259263,997.3624794211471,2019
+1995,92,"(90,95]",NoHS,365.79566563467495,59.46349984307739,6.151600000000001,369.6448450583993,2019
+1995,92,"(90,95]",NoHS,329.4096417514374,122.89123300902662,2.6804974910394264,364.07155701939814,2019
+1995,63,"(60,65]",HS,1002.5510835913312,85.23101644174427,11.762749354005168,8509.461707605318,2019
+1995,63,"(60,65]",HS,938.6819991154357,85.23101644174427,11.013385012919898,8624.406913773299,2019
+1995,63,"(60,65]",HS,1374.1530296329058,85.23101644174427,16.12268733850129,8501.061800142383,2019
+1995,63,"(60,65]",HS,1002.5510835913312,85.23101644174427,11.762749354005168,8288.402883143122,2019
+1995,63,"(60,65]",HS,1331.5736399823088,85.23101644174427,15.623111111111111,8457.706035488603,2019
+1995,33,"(30,35]",HS,103.06147722246793,120.90911634759071,0.8523879781420765,5376.231329163269,2019
+1995,33,"(30,35]",HS,103.06147722246793,120.90911634759071,0.8523879781420765,5328.243016483293,2019
+1995,33,"(30,35]",HS,103.06147722246793,120.90911634759071,0.8523879781420765,5400.725720852735,2019
+1995,33,"(30,35]",HS,103.06147722246793,120.90911634759071,0.8523879781420765,5335.999144820931,2019
+1995,33,"(30,35]",HS,103.06147722246793,120.90911634759071,0.8523879781420765,5383.424841760099,2019
+1995,86,"(85,90]",NoHS,135.6734188412207,25.76751659866687,5.26528888888889,11086.615684593538,2019
+1995,86,"(85,90]",NoHS,135.6734188412207,25.76751659866687,5.26528888888889,11110.302799125693,2019
+1995,86,"(85,90]",NoHS,135.6734188412207,25.76751659866687,5.26528888888889,11390.005104162192,2019
+1995,86,"(85,90]",NoHS,147.67306501547986,25.76751659866687,5.730977777777778,11654.167548241525,2019
+1995,86,"(85,90]",NoHS,135.6734188412207,25.76751659866687,5.26528888888889,11387.63970213655,2019
+1995,29,"(25,30]",College,199.34896063688635,75.32043313456471,2.6466783625730996,8332.38457135453,2019
+1995,29,"(25,30]",College,98.70676691729324,75.32043313456471,1.3104912280701755,8260.806546103031,2019
+1995,29,"(25,30]",College,98.70676691729324,75.32043313456471,1.3104912280701755,8413.06288661051,2019
+1995,29,"(25,30]",College,98.70676691729324,75.32043313456471,1.3104912280701755,8264.113278750276,2019
+1995,29,"(25,30]",College,81.48146837682441,75.32043313456471,1.0817976608187134,8378.497564659452,2019
+1995,82,"(80,85]",HS,173.80132684652807,47.57079987446191,3.65352962962963,7449.292502859425,2019
+1995,82,"(80,85]",HS,173.80132684652807,47.57079987446191,3.65352962962963,7408.453179873558,2019
+1995,82,"(80,85]",HS,173.80132684652807,47.57079987446191,3.65352962962963,7451.022823955553,2019
+1995,82,"(80,85]",HS,173.80132684652807,47.57079987446191,3.65352962962963,7421.175173948829,2019
+1995,82,"(80,85]",HS,173.80132684652807,47.57079987446191,3.65352962962963,7442.420517227874,2019
+1995,77,"(75,80]",College,2180.6453781512605,75.32043313456471,28.951577777777775,1899.79586157033,2019
+1995,77,"(75,80]",College,1772.4638655462186,237.85399937230957,7.45189851851852,1549.2322052949698,2019
+1995,77,"(75,80]",College,3274.7421494913756,75.32043313456471,43.47747368421052,1968.8953776587157,2019
+1995,77,"(75,80]",College,3258.2910216718265,929.6127142134435,3.5049983416252064,1973.6843797778442,2019
+1995,77,"(75,80]",College,3664.1500221141087,225.9612994036941,16.215830019493175,2217.755115589546,2019
+1995,53,"(50,55]",HS,227.02556390977443,79.28466645743653,2.8634233333333334,4516.685193869893,2019
+1995,53,"(50,55]",HS,176.7044670499779,79.28466645743653,2.2287344444444446,4388.834377819616,2019
+1995,53,"(50,55]",HS,227.02556390977443,79.28466645743653,2.8634233333333334,4418.675481964102,2019
+1995,53,"(50,55]",HS,176.8980097302079,79.28466645743653,2.2311755555555557,4383.464725742719,2019
+1995,53,"(50,55]",HS,726.3656789031403,79.28466645743653,9.16149,4434.3671569462385,2019
+1995,30,"(25,30]",HS,11.283538257408226,112.98064970184706,0.09987142300194932,5811.655486331548,2019
+1995,30,"(25,30]",HS,11.477080937638213,112.98064970184706,0.10158448343079922,5722.058979290612,2019
+1995,30,"(25,30]",HS,11.477080937638213,112.98064970184706,0.10158448343079922,5735.7121730024355,2019
+1995,30,"(25,30]",HS,11.477080937638213,112.98064970184706,0.10158448343079922,5699.025562193334,2019
+1995,30,"(25,30]",HS,11.477080937638213,112.98064970184706,0.10158448343079922,5722.497195646439,2019
+1995,52,"(50,55]",HS,159.61464838567008,51.53503319733374,3.0972066666666676,5922.107533763387,2019
+1995,52,"(50,55]",HS,161.55007518796992,51.53503319733374,3.1347622222222227,5867.366102631759,2019
+1995,52,"(50,55]",HS,167.35635559486954,51.53503319733374,3.2474288888888894,5897.822285167105,2019
+1995,52,"(50,55]",HS,159.61464838567008,51.53503319733374,3.0972066666666676,6182.758628069828,2019
+1995,52,"(50,55]",HS,169.29178239716938,51.53503319733374,3.2849844444444445,5989.161560967516,2019
+1995,64,"(60,65]",HS,528.2747456877488,51.53503319733374,10.250788888888891,3763.9699584312316,2019
+1995,64,"(60,65]",HS,545.1516674038037,59.46349984307739,9.16783688888889,3912.6900186576327,2019
+1995,64,"(60,65]",HS,583.9376205218929,21.803283275795042,26.782095757575757,3867.7597195074295,2019
+1995,64,"(60,65]",HS,629.4007961079169,81.26678311887244,7.744871544715449,3666.7182161745013,2019
+1995,64,"(60,65]",HS,548.2289960194604,105.0521830561034,5.218634968553459,3877.2267758234993,2019
+1995,33,"(30,35]",College,16.451127819548873,69.37408315025698,0.2371365079365079,5872.830813415494,2019
+1995,33,"(30,35]",College,16.451127819548873,69.37408315025698,0.2371365079365079,5782.29118515261,2019
+1995,33,"(30,35]",College,16.451127819548873,69.37408315025698,0.2371365079365079,5796.088096707483,2019
+1995,33,"(30,35]",College,16.451127819548873,69.37408315025698,0.2371365079365079,5759.0153110087795,2019
+1995,33,"(30,35]",College,16.451127819548873,69.37408315025698,0.2371365079365079,5782.734014312645,2019
+1995,67,"(65,70]",HS,17336.875895621408,991.0583307179566,17.493295155555558,259.7261765362417,2019
+1995,67,"(65,70]",HS,17336.875895621408,991.0583307179566,17.493295155555558,228.8112524432624,2019
+1995,67,"(65,70]",HS,17336.875895621408,991.0583307179566,17.493295155555558,231.618567065858,2019
+1995,67,"(65,70]",HS,17337.65006634233,991.0583307179566,17.494076311111115,235.56484270098787,2019
+1995,67,"(65,70]",HS,17336.875895621408,991.0583307179566,17.493295155555558,234.1560824496531,2019
+1995,30,"(25,30]",HS,0.7548164528969483,33.69598324441053,0.02240078431372549,5277.689068668875,2019
+1995,30,"(25,30]",HS,1.6838213180008845,39.642333228718265,0.04247533333333333,5229.137552852065,2019
+1995,30,"(25,30]",HS,1.6257585139318886,33.69598324441053,0.0482478431372549,5280.245170540367,2019
+1995,30,"(25,30]",HS,0.8709420610349403,35.67809990584644,0.024411111111111113,5248.6294508815035,2019
+1995,30,"(25,30]",HS,1.0257762052189296,35.67809990584644,0.028750864197530864,5256.938115590263,2019
+1995,56,"(55,60]",HS,383.94996904024765,126.85546633189846,3.0266726388888885,7926.01556908649,2019
+1995,56,"(55,60]",HS,459.41226006191954,120.90911634759071,3.799649471766849,7809.612133556955,2019
+1995,56,"(55,60]",HS,372.3180539584255,109.01641637897524,3.415247595959596,7935.870934705317,2019
+1995,56,"(55,60]",HS,337.8674568774878,114.96276636328297,2.9389294252873563,7922.016442308205,2019
+1995,56,"(55,60]",HS,365.350517470146,140.73028296194985,2.596104475743349,7818.04431943456,2019
+1995,33,"(30,35]",HS,164.10483856700577,83.24889978030835,1.9712553439153444,6533.614449166481,2019
+1995,33,"(30,35]",HS,164.10483856700577,83.24889978030835,1.9712553439153444,6475.295319292696,2019
+1995,33,"(30,35]",HS,164.10483856700577,83.24889978030835,1.9712553439153444,6563.381939006016,2019
+1995,33,"(30,35]",HS,164.10483856700577,83.24889978030835,1.9712553439153444,6484.721169683742,2019
+1995,33,"(30,35]",HS,164.10483856700577,83.24889978030835,1.9712553439153444,6542.356565151701,2019
+1995,62,"(60,65]",NoHS,0,9.712371641035974,0,6574.757803172257,2019
+1995,62,"(60,65]",NoHS,0,10.70342997175393,0,6369.488629529869,2019
+1995,62,"(60,65]",NoHS,0,11.892699968615478,0,6420.87779723803,2019
+1995,62,"(60,65]",NoHS,0,12.685546633189844,0,6220.4453359173085,2019
+1995,62,"(60,65]",NoHS,0,11.694488302471887,0,6219.480679736587,2019
+1995,33,"(30,35]",College,94.54559929234851,89.1952497646161,1.0599846913580246,3622.6271547880256,2019
+1995,33,"(30,35]",College,94.54559929234851,89.1952497646161,1.0599846913580246,3550.2347422768335,2019
+1995,33,"(30,35]",College,94.54559929234851,89.1952497646161,1.0599846913580246,3576.0559958515014,2019
+1995,33,"(30,35]",College,94.54559929234851,89.1952497646161,1.0599846913580246,3529.3519884275083,2019
+1995,33,"(30,35]",College,94.54559929234851,89.1952497646161,1.0599846913580246,3555.0028796397164,2019
+1995,51,"(50,55]",College,2389.381158779301,471.74376542174736,5.064997852474323,142.52509254648507,2019
+1995,51,"(50,55]",College,2926.5588677576293,447.9583654845164,6.533104621435595,169.19680435960473,2019
+1995,51,"(50,55]",College,2229.708447589562,424.17296554728546,5.256601973001039,118.6143690820127,2019
+1995,51,"(50,55]",College,1807.1080053073863,410.2981489172341,4.404377670424047,121.88787670308677,2019
+1995,51,"(50,55]",College,1647.725608137992,489.58281537467064,3.3655707602339175,116.52795099841478,2019
+1995,19,"(15,20]",HS,-9.677134011499337,9.910583307179566,-0.9764444444444446,4420.65804140072,2019
+1995,19,"(15,20]",HS,-9.677134011499337,9.910583307179566,-0.9764444444444446,4470.056361911609,2019
+1995,19,"(15,20]",HS,-9.677134011499337,9.910583307179566,-0.9764444444444446,4459.808842171029,2019
+1995,19,"(15,20]",HS,-9.677134011499337,9.910583307179566,-0.9764444444444446,4515.864044451506,2019
+1995,19,"(15,20]",HS,-9.677134011499337,9.910583307179566,-0.9764444444444446,4444.93497847742,2019
+1995,72,"(70,75]",NoHS,901.7153471915082,59.46349984307739,15.164182222222223,6021.830201547906,2019
+1995,72,"(70,75]",NoHS,901.7153471915082,59.46349984307739,15.164182222222223,6260.481664974495,2019
+1995,72,"(70,75]",NoHS,901.7153471915082,59.46349984307739,15.164182222222223,6189.70633835309,2019
+1995,72,"(70,75]",NoHS,901.7153471915082,59.46349984307739,15.164182222222223,5867.779232024489,2019
+1995,72,"(70,75]",NoHS,901.7153471915082,59.46349984307739,15.164182222222223,6221.170371242134,2019
+1995,73,"(70,75]",HS,128.6091110128262,31.713866582974614,4.055295833333333,3573.0589035070902,2019
+1995,73,"(70,75]",HS,150.1891198584697,35.67809990584644,4.20956049382716,3676.484401401112,2019
+1995,73,"(70,75]",HS,116.12560813799203,39.642333228718265,2.929333333333333,3579.0343949555745,2019
+1995,73,"(70,75]",HS,161.7049093321539,35.67809990584644,4.532329629629629,3636.781114709271,2019
+1995,73,"(70,75]",HS,130.25422379478107,31.713866582974614,4.107169444444445,3525.1416461639046,2019
+1995,54,"(50,55]",College,1256.421017249005,148.65874960769352,8.451712533333332,2573.272400951561,2019
+1995,54,"(50,55]",College,1256.421017249005,148.65874960769352,8.451712533333332,2532.7055928079085,2019
+1995,54,"(50,55]",College,1256.421017249005,148.65874960769352,8.451712533333332,2559.3351825193704,2019
+1995,54,"(50,55]",College,1256.421017249005,148.65874960769352,8.451712533333332,2421.202588565935,2019
+1995,54,"(50,55]",College,1256.421017249005,148.65874960769352,8.451712533333332,2628.56277946982,2019
+1995,68,"(65,70]",NoHS,240.18646616541352,43.606566551590085,5.508034343434344,7796.55685473319,2019
+1995,68,"(65,70]",NoHS,238.56070765148164,49.55291653589783,4.814261688888889,7621.566003281534,2019
+1995,68,"(65,70]",NoHS,237.86395400265368,47.57079987446191,5.00020925925926,7688.675761720328,2019
+1995,68,"(65,70]",NoHS,238.25103936311368,45.588683213026,5.226100483091788,8027.151979226401,2019
+1995,68,"(65,70]",NoHS,237.30268022998672,47.57079987446191,4.988410555555556,7843.23047122684,2019
+1995,36,"(35,40]",HS,1406.1649889429457,114.96276636328297,12.23148183908046,2106.413571119967,2019
+1995,36,"(35,40]",HS,1917.3499159663866,77.30254979600063,24.803191111111108,1804.8414126345974,2019
+1995,36,"(35,40]",HS,1629.7261388766033,182.354732852104,8.937120048309179,1856.8216457322608,2019
+1995,36,"(35,40]",HS,1285.8975674480319,136.76604963907803,9.402169404186795,3363.2146623716603,2019
+1995,36,"(35,40]",HS,1340.844334365325,124.87334967046255,10.737634074074073,1864.6493032273786,2019
+1995,84,"(80,85]",HS,30112.531446262718,634.2773316594922,47.47533916666667,266.3766762057645,2019
+1995,84,"(80,85]",HS,30112.531446262718,634.2773316594922,47.47533916666667,297.8242594016659,2019
+1995,84,"(80,85]",HS,30112.531446262718,634.2773316594922,47.47533916666667,258.045434803303,2019
+1995,84,"(80,85]",HS,30112.531446262718,634.2773316594922,47.47533916666667,325.94801664363706,2019
+1995,84,"(80,85]",HS,30112.531446262718,634.2773316594922,47.47533916666667,253.52700021357387,2019
+1995,49,"(45,50]",HS,6525.872091994693,618.4203983680051,10.552485185185184,218.02474790852906,2019
+1995,49,"(45,50]",HS,6525.872091994693,618.4203983680051,10.552485185185184,191.92973760628266,2019
+1995,49,"(45,50]",HS,6525.872091994693,618.4203983680051,10.552485185185184,204.14510879518667,2019
+1995,49,"(45,50]",HS,6525.872091994693,618.4203983680051,10.552485185185184,195.34916619568165,2019
+1995,49,"(45,50]",HS,6525.891446262715,618.4203983680051,10.55251648148148,195.69892649157552,2019
+1995,34,"(30,35]",HS,424.63264042459093,57.48138318164148,7.387307279693488,4632.179890689308,2019
+1995,34,"(30,35]",HS,424.63264042459093,57.48138318164148,7.387307279693488,4794.689976458093,2019
+1995,34,"(30,35]",HS,424.63264042459093,57.48138318164148,7.387307279693488,4736.622052770414,2019
+1995,34,"(30,35]",HS,424.63264042459093,57.48138318164148,7.387307279693488,4508.659685409517,2019
+1995,34,"(30,35]",HS,424.63264042459093,57.48138318164148,7.387307279693488,4777.984255264308,2019
+1995,57,"(55,60]",College,1639.3065015479876,297.31749921538704,5.513656296296295,136.80682335585269,2019
+1995,57,"(55,60]",College,1241.7698363555949,297.31749921538704,4.176578370370369,112.30891121743643,2019
+1995,57,"(55,60]",College,1126.6119416187528,297.31749921538704,3.7892554074074067,119.66971304614526,2019
+1995,57,"(55,60]",College,1497.4397169394074,297.31749921538704,5.036500444444444,115.82370867049397,2019
+1995,57,"(55,60]",College,1197.448562582928,297.31749921538704,4.027507851851851,113.06752745612471,2019
+1995,39,"(35,40]",HS,105.46140645731977,118.92699968615479,0.8867742962962963,7736.184380313057,2019
+1995,39,"(35,40]",HS,103.29372843874391,116.94488302471889,0.8832684745762711,7786.196541365088,2019
+1995,39,"(35,40]",HS,95.95846085802742,122.89123300902662,0.7808405734767025,7774.702138761789,2019
+1995,39,"(35,40]",HS,106.70007961079169,132.8018163162062,0.8034534660033167,8012.44285259375,2019
+1995,39,"(35,40]",HS,99.82931446262715,116.94488302471889,0.853644143126177,7847.036846899195,2019
+1995,52,"(50,55]",College,194.80070765148164,334.97771578266935,0.5815333333333333,8458.421042957209,2019
+1995,52,"(50,55]",College,229.2513047324193,388.494865641439,0.5901012471655329,8263.708412105192,2019
+1995,52,"(50,55]",College,287.5076514816453,368.67369902707986,0.7798431302270014,5032.653929241728,2019
+1995,52,"(50,55]",College,339.57063246351174,404.35179893292633,0.8397900871459695,4774.300223601462,2019
+1995,52,"(50,55]",College,256.6182397169394,392.45909896431084,0.6538725701459034,8437.07172479203,2019
+1995,46,"(45,50]",College,376.2469703670942,257.6751659866688,1.4601599999999997,5640.3348092615315,2019
+1995,46,"(45,50]",College,376.2469703670942,257.6751659866688,1.4601599999999997,5625.3185496949945,2019
+1995,46,"(45,50]",College,376.2469703670942,257.6751659866688,1.4601599999999997,5598.797098057976,2019
+1995,46,"(45,50]",College,376.2469703670942,257.6751659866688,1.4601599999999997,5677.792837042936,2019
+1995,46,"(45,50]",College,376.2469703670942,257.6751659866688,1.4601599999999997,5640.129434847257,2019
+1995,78,"(75,80]",NoHS,49.74046881910659,29.731749921538697,1.672974814814815,8414.287478559132,2019
+1995,78,"(75,80]",NoHS,49.74046881910659,29.731749921538697,1.672974814814815,8374.559700318048,2019
+1995,78,"(75,80]",NoHS,49.74046881910659,29.731749921538697,1.672974814814815,8420.076550576314,2019
+1995,78,"(75,80]",NoHS,49.74046881910659,29.731749921538697,1.672974814814815,8427.130600433655,2019
+1995,78,"(75,80]",NoHS,49.74046881910659,29.731749921538697,1.672974814814815,8429.67098484281,2019
+1995,32,"(30,35]",HS,135.4798761609907,33.69598324441053,4.020653594771241,6261.660837045303,2019
+1995,32,"(30,35]",HS,129.6735957540911,73.3383164731288,1.768156156156156,6144.862921289557,2019
+1995,32,"(30,35]",HS,142.9893321539142,45.588683213026,3.1365093719806767,6181.326507678905,2019
+1995,32,"(30,35]",HS,140.80229986731533,43.606566551590085,3.2289242424242426,6106.071230180575,2019
+1995,32,"(30,35]",HS,124.69954887218046,51.53503319733374,2.4197044444444447,6179.800621514125,2019
+1995,82,"(80,85]",College,218.896771340115,37.660216567282355,5.812414035087719,8994.016964680906,2019
+1995,82,"(80,85]",College,218.896771340115,37.660216567282355,5.812414035087719,9013.23313632493,2019
+1995,82,"(80,85]",College,218.896771340115,31.713866582974614,6.902241666666667,9240.141631047485,2019
+1995,82,"(80,85]",College,218.896771340115,37.660216567282355,5.812414035087719,9454.443413581781,2019
+1995,82,"(80,85]",College,218.896771340115,37.660216567282355,5.812414035087719,9238.222698656198,2019
+1995,73,"(70,75]",HS,24383.39715170279,1365.678379729344,17.854421299790364,394.36905668939465,2019
+1995,73,"(70,75]",HS,24383.28102609465,1183.3236468772402,20.605758272845712,457.46851141385906,2019
+1995,73,"(70,75]",HS,24383.31973463069,1209.091163475907,20.16665117668488,387.3609068520823,2019
+1995,73,"(70,75]",HS,24383.08748341442,1161.5203636014453,20.992389154342053,444.2892950884989,2019
+1995,73,"(70,75]",HS,24382.932649270235,1331.9823964849336,18.30574691798942,370.33192409261244,2019
+1995,48,"(45,50]",College,351.9573639982309,198.21166614359132,1.7756642222222225,3523.2247102339543,2019
+1995,48,"(45,50]",College,340.34480318443167,198.21166614359132,1.7170775555555557,3670.5501693721003,2019
+1995,48,"(45,50]",College,330.86121185316233,198.21166614359132,1.6692317777777779,3624.8265584140195,2019
+1995,48,"(45,50]",College,330.86121185316233,198.21166614359132,1.6692317777777779,3438.744346754651,2019
+1995,48,"(45,50]",College,348.0865103936311,198.21166614359132,1.7561353333333332,3637.247787445382,2019
+1995,42,"(40,45]",HS,-1.1806103494029192,39.642333228718265,-0.02978155555555556,7965.516796889977,2019
+1995,42,"(40,45]",HS,-0.9483591331269351,37.660216567282355,-0.02518198830409357,7979.269634911596,2019
+1995,42,"(40,45]",HS,-0.9870676691729324,45.588683213026,-0.021651594202898555,8005.698246224658,2019
+1995,42,"(40,45]",HS,-1.1806103494029192,37.660216567282355,-0.03134900584795322,7858.051736439903,2019
+1995,42,"(40,45]",HS,-1.0838390092879255,49.55291653589783,-0.021872355555555553,7987.318752121444,2019
+1995,29,"(25,30]",HS,1479.8273330384786,71.35619981169287,20.738595061728397,2470.5426339695487,2019
+1995,29,"(25,30]",HS,1478.2789915966387,71.35619981169287,20.716896296296298,2104.515860712897,2019
+1995,29,"(25,30]",HS,1477.5048208757187,71.35619981169287,20.70604691358025,2169.614463172605,2019
+1995,29,"(25,30]",HS,1478.2789915966387,71.35619981169287,20.716896296296298,2112.8108544577835,2019
+1995,29,"(25,30]",HS,1477.5048208757187,71.35619981169287,20.70604691358025,2183.3598320286997,2019
+1995,69,"(65,70]",NoHS,418.4392746572313,25.76751659866687,16.239022222222225,9393.908645853637,2019
+1995,69,"(65,70]",NoHS,332.9321185316232,25.76751659866687,12.920613333333336,9345.844090780733,2019
+1995,69,"(65,70]",NoHS,403.8655108359133,25.76751659866687,15.673435555555557,9355.598803842739,2019
+1995,69,"(65,70]",NoHS,500.4626625386997,25.76751659866687,19.422231111111113,4994.088755912973,2019
+1995,69,"(65,70]",NoHS,406.0525431225122,25.76751659866687,15.758311111111114,9609.885287235402,2019
+1995,49,"(45,50]",College,4774.310835913313,453.9047154688242,10.518310722950025,19.38942028837009,2019
+1995,49,"(45,50]",College,4810.11623175586,1036.647013930983,4.640071468026343,17.008667102244637,2019
+1995,49,"(45,50]",College,4218.262715612561,543.0999652334403,7.767009732360096,17.771193273787972,2019
+1995,49,"(45,50]",College,5622.027775320655,1133.7707303413426,4.958698989898989,17.25699755660755,2019
+1995,49,"(45,50]",College,6038.531623175586,1014.8437306551876,5.950208333333333,17.91259126881453,2019
+1995,38,"(35,40]",HS,1.548341441839894,18.235473285210404,0.08490821256038647,6424.706567690452,2019
+1995,38,"(35,40]",HS,1.548341441839894,18.235473285210404,0.08490821256038647,6419.7253550452715,2019
+1995,38,"(35,40]",HS,1.548341441839894,18.235473285210404,0.08490821256038647,6440.432639740138,2019
+1995,38,"(35,40]",HS,1.548341441839894,18.235473285210404,0.08490821256038647,6320.1046485733295,2019
+1995,38,"(35,40]",HS,1.548341441839894,18.235473285210404,0.08490821256038647,6426.834038721928,2019
+1995,43,"(40,45]",NoHS,191.89756744803185,79.28466645743653,2.420361666666667,5886.350401991427,2019
+1995,43,"(40,45]",NoHS,191.89756744803185,79.28466645743653,2.420361666666667,5842.0254930938245,2019
+1995,43,"(40,45]",NoHS,191.89756744803185,79.28466645743653,2.420361666666667,5880.1137718683585,2019
+1995,43,"(40,45]",NoHS,191.89756744803185,79.28466645743653,2.420361666666667,5945.448292807717,2019
+1995,43,"(40,45]",NoHS,191.89756744803185,79.28466645743653,2.420361666666667,5888.947642062354,2019
+1995,61,"(60,65]",College,11160.193507297656,297.31749921538704,37.536282044444434,328.81521582655876,2019
+1995,61,"(60,65]",College,6797.547952233525,297.31749921538704,22.862925896296293,293.03590808033493,2019
+1995,61,"(60,65]",College,5926.605891198585,297.31749921538704,19.93359256296296,291.8265657887194,2019
+1995,61,"(60,65]",College,6458.848261831048,297.31749921538704,21.723740711111105,296.44839707545225,2019
+1995,61,"(60,65]",College,8643.9451216276,297.31749921538704,29.07311256296296,294.4831939999006,2019
+1995,62,"(60,65]",College,8690.55019902698,640.2236816438,13.574240454076369,320.38168729695735,2019
+1995,62,"(60,65]",College,8688.711543564796,640.2236816438,13.571368558651534,282.1673726026096,2019
+1995,62,"(60,65]",College,8688.711543564796,640.2236816438,13.571368558651534,281.4806931333186,2019
+1995,62,"(60,65]",College,8688.711543564796,640.2236816438,13.571368558651534,290.9282922900402,2019
+1995,62,"(60,65]",College,8688.711543564796,640.2236816438,13.571368558651534,290.0045977849096,2019
+1995,73,"(70,75]",NoHS,526.0877134011499,85.23101644174427,6.172491369509044,3309.3311649245325,2019
+1995,73,"(70,75]",NoHS,726.1334276868643,31.713866582974614,22.896401666666666,3440.4834390735864,2019
+1995,73,"(70,75]",NoHS,350.118708536046,45.588683213026,7.6799478260869565,7045.602607364266,2019
+1995,73,"(70,75]",NoHS,817.330738611234,73.3383164731288,11.144661861861861,3224.6715751706347,2019
+1995,73,"(70,75]",NoHS,401.81395842547545,33.69598324441053,11.924684183006535,6905.015201631795,2019
+1995,44,"(40,45]",HS,582.2731534719151,277.4963326010279,2.0983093650793645,2260.136021227271,2019
+1995,44,"(40,45]",HS,582.2731534719151,277.4963326010279,2.0983093650793645,2355.4512951014176,2019
+1995,44,"(40,45]",HS,582.2731534719151,277.4963326010279,2.0983093650793645,2326.135623002439,2019
+1995,44,"(40,45]",HS,582.2731534719151,277.4963326010279,2.0983093650793645,2200.6266554174026,2019
+1995,44,"(40,45]",HS,582.2731534719151,277.4963326010279,2.0983093650793645,2340.5856595325445,2019
+1995,44,"(40,45]",HS,187.15577178239718,65.40984982738514,2.8612781144781145,2587.716340908736,2019
+1995,44,"(40,45]",HS,458.3090667846086,114.96276636328297,3.986586973180077,7646.518703344731,2019
+1995,44,"(40,45]",HS,170.9756037151703,37.660216567282355,4.5399527485380125,2561.301450727003,2019
+1995,44,"(40,45]",HS,88.02321096859797,95.14159974892382,0.9251811111111112,2619.0726516403706,2019
+1995,44,"(40,45]",HS,516.7589562140646,39.642333228718265,13.035533333333333,7534.114270891742,2019
+1995,55,"(50,55]",College,776.4932330827069,218.03283275795047,3.561359191919192,5931.988265228674,2019
+1995,55,"(50,55]",College,776.4932330827069,218.03283275795047,3.561359191919192,5957.430294789878,2019
+1995,55,"(50,55]",College,776.4932330827069,218.03283275795047,3.561359191919192,5925.8594051271575,2019
+1995,55,"(50,55]",College,776.4932330827069,218.03283275795047,3.561359191919192,5759.295320422534,2019
+1995,55,"(50,55]",College,776.4932330827069,218.03283275795047,3.561359191919192,5917.512264235222,2019
+1995,24,"(20,25]",HS,44.90190181335692,77.30254979600063,0.5808592592592592,3794.25089559008,2019
+1995,24,"(20,25]",HS,44.90190181335692,69.37408315025698,0.6472431746031745,3759.560795442728,2019
+1995,24,"(20,25]",HS,44.90190181335692,69.37408315025698,0.6472431746031745,3753.3169411708623,2019
+1995,24,"(20,25]",HS,44.90190181335692,69.37408315025698,0.6472431746031745,3727.1680572422324,2019
+1995,24,"(20,25]",HS,44.90190181335692,67.39196648882105,0.6662797385620914,3719.751273311981,2019
+1995,44,"(40,45]",NoHS,113.99663865546219,55.499266520205566,2.054020634920635,9409.273239076241,2019
+1995,44,"(40,45]",NoHS,113.99663865546219,55.499266520205566,2.054020634920635,9331.62999699247,2019
+1995,44,"(40,45]",NoHS,113.99663865546219,55.499266520205566,2.054020634920635,9391.226752306615,2019
+1995,44,"(40,45]",NoHS,113.99663865546219,55.499266520205566,2.054020634920635,9500.455402901083,2019
+1995,44,"(40,45]",NoHS,113.99663865546219,55.499266520205566,2.054020634920635,9411.589470408593,2019
+1995,23,"(20,25]",College,137.2217602830606,39.642333228718265,3.461495555555556,5699.50798671218,2019
+1995,23,"(20,25]",College,137.2217602830606,39.642333228718265,3.461495555555556,5798.038715058675,2019
+1995,23,"(20,25]",College,137.2217602830606,39.642333228718265,3.461495555555556,5743.915029126823,2019
+1995,23,"(20,25]",College,137.2217602830606,39.642333228718265,3.461495555555556,5795.660699003739,2019
+1995,23,"(20,25]",College,137.2217602830606,39.642333228718265,3.461495555555556,5721.227591640209,2019
+1995,71,"(70,75]",HS,351.3767359575409,39.642333228718265,8.863674444444445,9150.450681057759,2019
+1995,71,"(70,75]",HS,351.86059265811593,39.642333228718265,8.875880000000002,9285.958136648336,2019
+1995,71,"(70,75]",HS,349.4413091552411,39.642333228718265,8.814852222222223,9379.523242645118,2019
+1995,71,"(70,75]",HS,346.0543122512163,39.642333228718265,8.729413333333333,9576.573743594225,2019
+1995,71,"(70,75]",HS,346.0543122512163,39.642333228718265,8.729413333333333,9244.379483148092,2019
+1995,64,"(60,65]",HS,339.4738611233967,45.588683213026,7.446450241545894,6109.547183386807,2019
+1995,64,"(60,65]",HS,339.4738611233967,45.588683213026,7.446450241545894,5982.0462977947045,2019
+1995,64,"(60,65]",HS,339.4738611233967,45.588683213026,7.446450241545894,6034.286120054012,2019
+1995,64,"(60,65]",HS,339.4738611233967,45.588683213026,7.446450241545894,6021.27513818469,2019
+1995,64,"(60,65]",HS,339.4738611233967,45.588683213026,7.446450241545894,5957.292072313788,2019
+1995,54,"(50,55]",HS,2230.3858469703673,198.21166614359132,11.25254577777778,1573.726881296914,2019
+1995,54,"(50,55]",HS,2713.274834144184,198.21166614359132,13.688774666666667,1879.7614803007448,2019
+1995,54,"(50,55]",HS,2675.1469261388766,198.21166614359132,13.496415111111112,1855.9370120275435,2019
+1995,54,"(50,55]",HS,2705.533126934985,198.21166614359132,13.649716888888891,1887.4102886938879,2019
+1995,54,"(50,55]",HS,1905.8147722246795,198.21166614359132,9.615048444444446,1301.2977113538777,2019
+1995,73,"(70,75]",HS,706.4307828394516,79.28466645743653,8.910055555555555,5000.59550060603,2019
+1995,73,"(70,75]",HS,4019.8814683768246,33.69598324441053,119.29853594771242,738.3970381667011,2019
+1995,73,"(70,75]",HS,1697.3693056169836,136.76604963907803,12.410750402576488,2696.0548191323005,2019
+1995,73,"(70,75]",HS,826.4272445820434,57.48138318164148,14.377302681992338,4874.266475263556,2019
+1995,73,"(70,75]",HS,706.4307828394516,120.90911634759071,5.842659380692168,5166.236609531043,2019
+1995,24,"(20,25]",NoHS,10.315824856258292,18.830108283641177,0.5478367251461987,7004.645450602819,2019
+1995,24,"(20,25]",NoHS,0.6386908447589562,18.830108283641177,0.03391859649122807,6944.869745571184,2019
+1995,24,"(20,25]",NoHS,1.2193188854489165,18.830108283641177,0.06475368421052632,6992.780451641069,2019
+1995,24,"(20,25]",NoHS,13.606050420168067,18.830108283641177,0.7225688888888888,6862.208838781519,2019
+1995,24,"(20,25]",NoHS,11.6706236178682,18.830108283641177,0.6197852631578947,6932.370910117237,2019
+1995,34,"(30,35]",College,241.63803626713843,35.67809990584644,6.772727160493828,6095.145302872287,2019
+1995,34,"(30,35]",College,207.72935869084478,31.713866582974614,6.550111388888889,6156.775286452288,2019
+1995,34,"(30,35]",College,168.28536045997345,33.69598324441053,4.994226143790849,6123.216655609346,2019
+1995,34,"(30,35]",College,164.8596550199027,33.69598324441053,4.892561045751634,6185.108325761321,2019
+1995,34,"(30,35]",College,206.51003980539585,39.642333228718265,5.209331111111111,6143.970266451605,2019
+1995,66,"(65,70]",College,809.2019460415745,126.85546633189846,6.3789284722222215,7400.143724838215,2019
+1995,66,"(65,70]",College,809.2019460415745,126.85546633189846,6.3789284722222215,7499.226228544413,2019
+1995,66,"(65,70]",College,809.2019460415745,126.85546633189846,6.3789284722222215,7389.188202927876,2019
+1995,66,"(65,70]",College,809.2019460415745,126.85546633189846,6.3789284722222215,7233.326592649745,2019
+1995,66,"(65,70]",College,809.2019460415745,126.85546633189846,6.3789284722222215,7390.209497859652,2019
+1995,36,"(35,40]",HS,135.8669615214507,138.74816630051396,0.9792342857142855,7165.991788409922,2019
+1995,36,"(35,40]",HS,135.8669615214507,138.74816630051396,0.9792342857142855,7112.03102979202,2019
+1995,36,"(35,40]",HS,135.8669615214507,138.74816630051396,0.9792342857142855,7158.399369135297,2019
+1995,36,"(35,40]",HS,135.8669615214507,138.74816630051396,0.9792342857142855,7237.937046741569,2019
+1995,36,"(35,40]",HS,135.8669615214507,138.74816630051396,0.9792342857142855,7169.153645885222,2019
+1995,61,"(60,65]",College,18232.6881910659,594.6349984307741,30.661982962962956,212.03715245958068,2019
+1995,61,"(60,65]",College,18232.6881910659,594.6349984307741,30.661982962962956,186.6522893104597,2019
+1995,61,"(60,65]",College,18232.6881910659,594.6349984307741,30.661982962962956,185.28252630000458,2019
+1995,61,"(60,65]",College,18232.6881910659,594.6349984307741,30.661982962962956,191.20235534799767,2019
+1995,61,"(60,65]",College,18232.6881910659,594.6349984307741,30.661982962962956,190.53457285749624,2019
+1995,70,"(65,70]",NoHS,226.63847854931447,85.23101644174427,2.6591080103359173,13986.014022926855,2019
+1995,70,"(65,70]",NoHS,230.50933215391422,71.35619981169287,3.230403703703704,14504.69046775903,2019
+1995,70,"(65,70]",NoHS,234.38018575851393,81.26678311887244,2.8840834688346884,14045.142141078579,2019
+1995,70,"(65,70]",NoHS,230.50933215391422,95.14159974892382,2.4228027777777785,14650.039310270096,2019
+1995,70,"(65,70]",NoHS,205.34878372401593,97.12371641035975,2.114301133786848,14028.329822844786,2019
+1995,39,"(35,40]",College,2262.513931888545,832.4889978030835,2.7177703703703706,987.8594619897478,2019
+1995,39,"(35,40]",College,2262.513931888545,832.4889978030835,2.7177703703703706,786.7614431181676,2019
+1995,39,"(35,40]",College,2262.513931888545,832.4889978030835,2.7177703703703706,767.332675665085,2019
+1995,39,"(35,40]",College,2262.513931888545,832.4889978030835,2.7177703703703706,767.5652834530172,2019
+1995,39,"(35,40]",College,2262.513931888545,832.4889978030835,2.7177703703703706,788.6892113779253,2019
+1995,44,"(40,45]",College,320.951826625387,118.92699968615479,2.698729703703704,3447.1487624446368,2019
+1995,44,"(40,45]",College,329.8547899159664,118.92699968615479,2.773590444444445,3587.378971207187,2019
+1995,44,"(40,45]",College,343.0737549756745,118.92699968615479,2.8847423703703705,3518.8849061088135,2019
+1995,44,"(40,45]",College,347.4671738168952,118.92699968615479,2.9216845185185187,3368.8261832428275,2019
+1995,44,"(40,45]",College,328.1129057938965,118.92699968615479,2.758943777777778,3540.253528961737,2019
+1995,33,"(30,35]",College,21.521946041574523,69.37408315025698,0.3102303492063491,6787.95987332671,2019
+1995,33,"(30,35]",College,13.954427244582043,69.37408315025698,0.2011475555555555,6820.351312703955,2019
+1995,33,"(30,35]",College,29.844281291463954,69.37408315025698,0.4301935238095237,6832.299305887604,2019
+1995,33,"(30,35]",College,43.58581158779301,69.37408315025698,0.6282722539682538,6922.150169131282,2019
+1995,33,"(30,35]",College,18.231720477664748,69.37408315025698,0.26280304761904755,6855.128947753305,2019
+1995,45,"(40,45]",College,74.32038920831491,51.53503319733374,1.4421333333333335,6412.92053361999,2019
+1995,45,"(40,45]",College,74.32038920831491,51.53503319733374,1.4421333333333335,6265.295270913807,2019
+1995,45,"(40,45]",College,74.32038920831491,51.53503319733374,1.4421333333333335,6348.248545646491,2019
+1995,45,"(40,45]",College,74.32038920831491,51.53503319733374,1.4421333333333335,6529.23385274624,2019
+1995,45,"(40,45]",College,74.32038920831491,51.53503319733374,1.4421333333333335,6396.734122451175,2019
+1995,77,"(75,80]",HS,421.8262715612561,25.76751659866687,16.37046666666667,12253.666756392387,2019
+1995,77,"(75,80]",HS,250.7538965059708,37.660216567282355,6.6583232748538,12279.847334501615,2019
+1995,77,"(75,80]",HS,243.4766917293233,14.469451628482167,16.826946727549466,12588.992968698618,2019
+1995,77,"(75,80]",HS,520.2427244582044,57.48138318164148,9.050629885057473,5974.440269231224,2019
+1995,77,"(75,80]",HS,490.70811145510834,27.749633260102783,17.68340888888889,6331.461021679863,2019
+1995,77,"(75,80]",College,4146.651923927466,188.30108283641175,22.0213918128655,203.15074685715183,2019
+1995,77,"(75,80]",College,4185.360459973463,426.15508220872135,9.821214470284236,178.9699345790927,2019
+1995,77,"(75,80]",College,4167.941618752764,227.94341606513,18.284983574879227,181.16573967601852,2019
+1995,77,"(75,80]",College,4164.070765148164,457.86894879169597,9.094459836459835,184.25240908020513,2019
+1995,77,"(75,80]",College,4191.166740380363,535.1714985876966,7.831446090534979,183.15051515092154,2019
+1995,46,"(45,50]",NoHS,0,11.099853304041115,0,4360.144907477554,2019
+1995,46,"(45,50]",NoHS,0,5.748138318164148,0,4376.855359273732,2019
+1995,46,"(45,50]",NoHS,0,9.117736642605202,0,4380.622400035097,2019
+1995,46,"(45,50]",NoHS,0,25.76751659866687,0,4369.417876105899,2019
+1995,46,"(45,50]",NoHS,0,12.883758299333435,0,4373.9784239307655,2019
+1995,83,"(80,85]",HS,179.99469261388765,9.910583307179566,18.161866666666665,12253.666756392387,2019
+1995,83,"(80,85]",HS,179.99469261388765,9.910583307179566,18.161866666666665,12279.847334501615,2019
+1995,83,"(80,85]",HS,179.99469261388765,9.910583307179566,18.161866666666665,12588.992968698618,2019
+1995,83,"(80,85]",HS,179.99469261388765,9.910583307179566,18.161866666666665,12880.962912583343,2019
+1995,83,"(80,85]",HS,179.99469261388765,9.910583307179566,18.161866666666665,12586.378568687674,2019
+1995,63,"(60,65]",NoHS,384.47253427686866,118.92699968615479,3.2328448148148152,8133.9511568930775,2019
+1995,63,"(60,65]",NoHS,386.02087571870857,118.92699968615479,3.2458640740740745,8014.49392761578,2019
+1995,63,"(60,65]",NoHS,384.6660769570986,118.92699968615479,3.234472222222222,8144.065073763175,2019
+1995,63,"(60,65]",NoHS,381.9564794338788,118.92699968615479,3.211688518518519,8129.847114754727,2019
+1995,63,"(60,65]",NoHS,385.6337903582486,118.92699968615479,3.2426092592592597,8023.147328240149,2019
+1995,26,"(25,30]",HS,42.73422379478107,25.76751659866687,1.6584533333333336,4323.871685741627,2019
+1995,26,"(25,30]",HS,42.67616099071208,25.76751659866687,1.6562000000000003,4257.211884442877,2019
+1995,26,"(25,30]",HS,42.656806722689076,25.76751659866687,1.6554488888888892,4267.369860573658,2019
+1995,26,"(25,30]",HS,42.656806722689076,25.76751659866687,1.6554488888888892,4240.075022107,2019
+1995,26,"(25,30]",HS,42.73422379478107,25.76751659866687,1.6584533333333336,4257.537917411907,2019
+1995,26,"(25,30]",College,260.6052189296771,134.7839329776421,1.9335035947712416,10466.710718341692,2019
+1995,26,"(25,30]",College,402.2784608580274,110.99853304041113,3.6241781746031747,8624.406913773299,2019
+1995,26,"(25,30]",College,328.9257850508625,120.90911634759071,2.7204382513661205,10366.195283975674,2019
+1995,26,"(25,30]",College,276.86280406899607,128.8375829933344,2.148928888888889,10466.614032826117,2019
+1995,26,"(25,30]",College,238.15426802299868,112.98064970184706,2.107920857699805,10479.643595242487,2019
+1995,71,"(70,75]",HS,-0.6967536488279522,11.892699968615478,-0.058586666666666676,7951.01481382209,2019
+1995,71,"(70,75]",HS,-0.6967536488279522,11.892699968615478,-0.058586666666666676,7967.368753044127,2019
+1995,71,"(70,75]",HS,-0.6967536488279522,11.892699968615478,-0.058586666666666676,7944.486185922583,2019
+1995,71,"(70,75]",HS,-0.6967536488279522,11.892699968615478,-0.058586666666666676,7958.284992536288,2019
+1995,71,"(70,75]",HS,-0.6967536488279522,11.892699968615478,-0.058586666666666676,7944.061565634443,2019
+1995,43,"(40,45]",HS,441.16118531623175,55.499266520205566,7.948955238095238,7293.542937669847,2019
+1995,43,"(40,45]",HS,817.524281291464,186.31896617497586,4.387767375886525,4169.486698866014,2019
+1995,43,"(40,45]",HS,821.5693233082707,148.65874960769352,5.5265453629629615,4111.805712840347,2019
+1995,43,"(40,45]",HS,913.9665988500664,289.38903256964335,3.1582627397260272,3908.308522376215,2019
+1995,43,"(40,45]",HS,1006.48,315.1565491683102,3.1935874493361287,4141.054096917582,2019
+1995,69,"(65,70]",College,37264.70765148164,2061.4013278933503,18.077366666666663,3.154252019260004,2019
+1995,69,"(65,70]",College,13859.59133126935,1415.2312962652422,9.79316339869281,2.515666217215731,2019
+1995,69,"(65,70]",College,12597.693056169835,997.0046807022643,12.635540534570357,3.411751280295482,2019
+1995,69,"(65,70]",College,11467.403803626714,5153.503319733375,2.2251666666666665,2.359839939682467,2019
+1995,69,"(65,70]",College,39223.359575409115,2517.28816002361,15.581593000874891,4.317086401169733,2019
+1995,64,"(60,65]",College,3932.495012826183,1431.0882295567296,2.7479053573407195,200.78148816728685,2019
+1995,64,"(60,65]",College,3931.7208421052633,1169.4488302471887,3.362028966478343,180.96215919819537,2019
+1995,64,"(60,65]",College,3931.5272994250336,1431.0882295567296,2.7472291492767003,178.6971056804868,2019
+1995,64,"(60,65]",College,3931.3337567448034,1367.6604963907803,2.8744953642512074,183.17828030197154,2019
+1995,64,"(60,65]",College,3931.5272994250336,1353.7856797607287,2.904098749308606,180.18433041840632,2019
+1995,57,"(55,60]",College,1391.3783281733745,138.74816630051396,10.028084444444442,2523.7306643073885,2019
+1995,57,"(55,60]",College,1391.3783281733745,109.01641637897524,12.763016565656564,2159.021835587265,2019
+1995,57,"(55,60]",College,1391.3783281733745,97.12371641035975,14.32583492063492,2227.2206312039216,2019
+1995,57,"(55,60]",College,1391.3783281733745,134.7839329776421,10.323028104575162,2160.133636946286,2019
+1995,57,"(55,60]",College,1391.3783281733745,71.35619981169287,19.499053086419753,2227.366714068835,2019
+1995,71,"(70,75]",College,4961.66015037594,438.04778217733684,11.326755555555556,1804.4648556736022,2019
+1995,71,"(70,75]",College,4961.66015037594,438.04778217733684,11.326755555555556,1613.550978320362,2019
+1995,71,"(70,75]",College,4961.66015037594,438.04778217733684,11.326755555555556,1616.1614371494402,2019
+1995,71,"(70,75]",College,4961.66015037594,438.04778217733684,11.326755555555556,1621.3946128345035,2019
+1995,71,"(70,75]",College,4961.66015037594,438.04778217733684,11.326755555555556,1619.7469970832403,2019
+1995,41,"(40,45]",HS,935.9724015922159,124.87334967046255,7.495373544973544,1863.3178143622408,2019
+1995,41,"(40,45]",HS,959.1975232198143,124.87334967046255,7.681362962962964,1598.2981149933535,2019
+1995,41,"(40,45]",HS,959.1975232198143,124.87334967046255,7.681362962962964,1648.0042344775816,2019
+1995,41,"(40,45]",HS,935.9724015922159,124.87334967046255,7.495373544973544,1594.2961512821594,2019
+1995,41,"(40,45]",HS,935.9724015922159,124.87334967046255,7.495373544973544,1654.8572367071968,2019
+1995,29,"(25,30]",HS,25.83794781070323,128.8375829933344,0.20054666666666662,5726.192993831354,2019
+1995,29,"(25,30]",HS,32.22485625829279,128.8375829933344,0.2501199999999999,5788.301269492944,2019
+1995,29,"(25,30]",HS,25.83794781070323,107.03429971753931,0.2413987654320988,5757.51284740725,2019
+1995,29,"(25,30]",HS,61.256258292790804,128.8375829933344,0.47545333333333323,5812.71968966002,2019
+1995,29,"(25,30]",HS,33.192569659442725,124.87334967046255,0.26580987654320987,5773.188134240372,2019
+1995,37,"(35,40]",HS,974.4873949579832,103.07006639466748,9.454611111111111,3329.0862165840526,2019
+1995,37,"(35,40]",HS,978.358248562583,103.07006639466748,9.492166666666668,3466.057074252316,2019
+1995,37,"(35,40]",HS,978.358248562583,103.07006639466748,9.492166666666668,3416.9977281414613,2019
+1995,37,"(35,40]",HS,986.0999557717824,103.07006639466748,9.567277777777779,3245.749444703076,2019
+1995,37,"(35,40]",HS,991.906236178682,103.07006639466748,9.623611111111112,3439.57588814122,2019
+1995,40,"(35,40]",HS,374.17606368863335,99.10583307179566,3.775520088888889,6995.3656836515365,2019
+1995,40,"(35,40]",HS,878.4902255639098,99.10583307179566,8.864162666666667,4205.727106701109,2019
+1995,40,"(35,40]",HS,346.34462627156125,99.10583307179566,3.4946946666666667,6893.300970805736,2019
+1995,40,"(35,40]",HS,638.4392392746572,99.10583307179566,6.441994577777778,3938.404973926311,2019
+1995,40,"(35,40]",HS,704.5921273772667,99.10583307179566,7.109492,4173.59473269251,2019
+1995,56,"(55,60]",HS,7480.618133569217,475.70799874461915,15.725230925925928,203.15074685715183,2019
+1995,56,"(55,60]",HS,7480.618133569217,475.70799874461915,15.725230925925928,178.9699345790927,2019
+1995,56,"(55,60]",HS,7480.618133569217,475.70799874461915,15.725230925925928,181.16573967601852,2019
+1995,56,"(55,60]",HS,7480.618133569217,475.70799874461915,15.725230925925928,184.25240908020513,2019
+1995,56,"(55,60]",HS,7480.618133569217,475.70799874461915,15.725230925925928,183.15051515092154,2019
+1995,82,"(80,85]",College,23100.383370190182,1655.0674122989876,13.957367052561544,44.42378589117626,2019
+1995,82,"(80,85]",College,23568.95019902698,1823.54732852104,12.92478118357488,53.094951335354914,2019
+1995,82,"(80,85]",College,23426.793100398052,1724.4414954492445,13.585148097062579,46.51960684428694,2019
+1995,82,"(80,85]",College,23490.081556833262,1635.2462456846283,14.364858882154884,51.50517525766312,2019
+1995,82,"(80,85]",College,23356.05325077399,1873.100245056938,12.469195555555554,44.90628171283181,2019
+1995,76,"(75,80]",College,5555.6426360017695,172.44414954492444,32.21705491698596,1138.4110551048375,2019
+1995,76,"(75,80]",College,5025.529234851835,198.21166614359132,25.354356444444445,900.1663894516972,2019
+1995,76,"(75,80]",College,4879.017425917736,188.30108283641175,25.91072421052632,885.0277840880169,2019
+1995,76,"(75,80]",College,5159.847854931447,160.55144957630895,32.13828257887518,884.2613132629145,2019
+1995,76,"(75,80]",College,5019.529411764705,186.31896617497586,26.94051773049645,907.908504906761,2019
+1995,46,"(45,50]",HS,374.0212295444494,315.1565491683102,1.186779175401817,6680.125555292235,2019
+1995,46,"(45,50]",HS,375.18248562582926,323.0850158140539,1.1612500340831626,6526.349239986229,2019
+1995,46,"(45,50]",HS,383.50482087571874,283.44268258533566,1.3530242424242422,6612.75890115884,2019
+1995,46,"(45,50]",HS,393.181954887218,325.06713247548976,1.209540785907859,6801.28526270522,2019
+1995,46,"(45,50]",HS,384.47253427686866,321.1028991526179,1.1973499314128946,6663.264710326138,2019
+1995,71,"(70,75]",NoHS,51.617832817337465,75.32043313456471,0.6853098245614035,10069.417618575999,2019
+1995,71,"(70,75]",NoHS,51.617832817337465,75.32043313456471,0.6853098245614035,10074.717331725493,2019
+1995,71,"(70,75]",NoHS,51.617832817337465,75.32043313456471,0.6853098245614035,10201.666986798782,2019
+1995,71,"(70,75]",NoHS,51.617832817337465,75.32043313456471,0.6853098245614035,10298.1386535192,2019
+1995,71,"(70,75]",NoHS,51.617832817337465,75.32043313456471,0.6853098245614035,9973.276128621317,2019
+1995,49,"(45,50]",HS,45.79219814241486,89.1952497646161,0.5133927901234568,6515.750244910126,2019
+1995,49,"(45,50]",HS,45.79219814241486,89.1952497646161,0.5133927901234568,6395.4211805773275,2019
+1995,49,"(45,50]",HS,45.79219814241486,89.1952497646161,0.5133927901234568,6448.657453816858,2019
+1995,49,"(45,50]",HS,45.79219814241486,89.1952497646161,0.5133927901234568,6677.28944892882,2019
+1995,49,"(45,50]",HS,45.79219814241486,89.1952497646161,0.5133927901234568,6521.331523097888,2019
+1995,52,"(50,55]",HS,9147.465758513932,455.88683213026,20.06521161352657,286.02224896542515,2019
+1995,52,"(50,55]",HS,8955.006917293234,368.67369902707986,24.28979051373955,257.0430331332709,2019
+1995,52,"(50,55]",HS,8951.890880141531,160.55144957630895,55.757147654320995,252.62138242241727,2019
+1995,52,"(50,55]",HS,8955.606899601946,765.0970313142626,11.70519101899827,258.28816047641754,2019
+1995,52,"(50,55]",HS,8982.79964617426,477.6901154060551,18.80465882895344,255.588252196751,2019
+1995,27,"(25,30]",College,1237.3183547103051,109.01641637897524,11.349835151515151,3641.692519320596,2019
+1995,27,"(25,30]",College,721.5271118973906,134.7839329776421,5.353213071895425,3768.017370542326,2019
+1995,27,"(25,30]",College,698.3019902697922,134.7839329776421,5.180899346405229,3722.2205781485914,2019
+1995,27,"(25,30]",College,670.4318443166741,134.7839329776421,4.9741228758169935,3545.2229607579466,2019
+1995,27,"(25,30]",College,725.3979655019903,122.89123300902662,5.902764157706093,3752.8532318384628,2019
+1995,30,"(25,30]",NoHS,0,14.271239962338576,0,7128.469827085665,2019
+1995,30,"(25,30]",NoHS,0,14.271239962338576,0,7129.323523496045,2019
+1995,30,"(25,30]",NoHS,0,14.271239962338576,0,7130.642052702604,2019
+1995,30,"(25,30]",NoHS,0,14.271239962338576,0,7160.443924283229,2019
+1995,30,"(25,30]",NoHS,0,14.271239962338576,0,7151.58026458103,2019
+1995,76,"(75,80]",NoHS,11.612560813799204,11.892699968615478,0.9764444444444446,8991.218600549488,2019
+1995,76,"(75,80]",NoHS,11.612560813799204,11.892699968615478,0.9764444444444446,8960.551505456566,2019
+1995,76,"(75,80]",NoHS,11.612560813799204,11.892699968615478,0.9764444444444446,8980.732528488017,2019
+1995,76,"(75,80]",NoHS,11.612560813799204,11.892699968615478,0.9764444444444446,8996.867644682354,2019
+1995,76,"(75,80]",NoHS,11.612560813799204,11.892699968615478,0.9764444444444446,8985.768498773703,2019
+1995,34,"(30,35]",HS,59.45631136665193,47.57079987446191,1.2498488888888892,4112.958612198729,2019
+1995,34,"(30,35]",HS,58.875683325961965,47.57079987446191,1.2376433333333337,4050.667720919314,2019
+1995,34,"(30,35]",HS,57.90796992481203,47.57079987446191,1.2173007407407408,4075.7328944207306,2019
+1995,34,"(30,35]",HS,58.29505528527201,47.57079987446191,1.225437777777778,4025.2306803155107,2019
+1995,34,"(30,35]",HS,57.90796992481203,47.57079987446191,1.2173007407407408,4071.2869126839532,2019
+1995,67,"(65,70]",College,989.3901813356922,79.28466645743653,12.47896,5665.398441265315,2019
+1995,67,"(65,70]",College,1119.0637770897833,79.28466645743653,14.114504444444446,5888.872210634142,2019
+1995,67,"(65,70]",College,989.1966386554622,79.28466645743653,12.476518888888888,5821.833117231439,2019
+1995,67,"(65,70]",College,970.0359133126935,79.28466645743653,12.234848888888889,5519.988355724743,2019
+1995,67,"(65,70]",College,1186.8037151702788,79.28466645743653,14.968893333333336,5897.511247021488,2019
+1995,80,"(75,80]",HS,174.18841220698806,8.126678311887245,21.434146341463414,9064.427992886722,2019
+1995,80,"(75,80]",HS,174.18841220698806,8.721313310318019,19.972727272727273,8901.276563725885,2019
+1995,80,"(75,80]",HS,174.18841220698806,16.45156828991808,10.587951807228917,9131.144173061393,2019
+1995,80,"(75,80]",HS,174.18841220698806,17.046203288348853,10.218604651162792,9162.661887589218,2019
+1995,80,"(75,80]",HS,174.18841220698806,8.126678311887245,21.434146341463414,9077.881160354078,2019
+1995,69,"(65,70]",NoHS,242.50897832817338,23.785399937230956,10.19570740740741,6850.386976216318,2019
+1995,69,"(65,70]",NoHS,219.28385670057497,23.785399937230956,9.219262962962965,6678.39794765961,2019
+1995,69,"(65,70]",NoHS,217.3484298982751,23.785399937230956,9.137892592592594,6689.601284858535,2019
+1995,69,"(65,70]",NoHS,230.89641751437418,23.785399937230956,9.707485185185186,6979.695570526679,2019
+1995,69,"(65,70]",NoHS,267.6695267580717,23.785399937230956,11.253522222222227,6832.762751982647,2019
+1995,42,"(40,45]",College,498.76916408668734,112.98064970184706,4.414642378167642,4699.61304595537,2019
+1995,42,"(40,45]",College,498.76916408668734,109.01641637897524,4.575174828282829,4891.632698343857,2019
+1995,42,"(40,45]",College,498.76916408668734,101.08794973323158,4.9340120697167755,4824.599831795256,2019
+1995,42,"(40,45]",College,498.76916408668734,112.98064970184706,4.414642378167642,4583.469353320966,2019
+1995,42,"(40,45]",College,498.76916408668734,124.87334967046255,3.9942002469135804,4855.689763058988,2019
+1995,27,"(25,30]",HS,37.64405130473242,53.517149858769656,0.703401646090535,6435.293021369728,2019
+1995,27,"(25,30]",HS,37.64405130473242,53.517149858769656,0.703401646090535,6351.300512088057,2019
+1995,27,"(25,30]",HS,37.64405130473242,53.517149858769656,0.703401646090535,6456.119899191933,2019
+1995,27,"(25,30]",HS,37.64405130473242,53.517149858769656,0.703401646090535,6405.313021849953,2019
+1995,27,"(25,30]",HS,37.64405130473242,53.517149858769656,0.703401646090535,6369.002781104376,2019
+1995,50,"(45,50]",College,209.80026536930563,103.07006639466748,2.0355111111111115,3389.8832173534306,2019
+1995,50,"(45,50]",College,209.80026536930563,103.07006639466748,2.0355111111111115,3532.0303816193177,2019
+1995,50,"(45,50]",College,209.80026536930563,103.07006639466748,2.0355111111111115,3488.2976460627156,2019
+1995,50,"(45,50]",College,209.80026536930563,103.07006639466748,2.0355111111111115,3309.758012222871,2019
+1995,50,"(45,50]",College,209.80026536930563,103.07006639466748,2.0355111111111115,3498.405526593495,2019
+1995,46,"(45,50]",HS,423.47138434321096,69.37408315025698,6.104172698412697,5668.563680789943,2019
+1995,46,"(45,50]",HS,423.47138434321096,69.37408315025698,6.104172698412697,5538.073493338491,2019
+1995,46,"(45,50]",HS,423.47138434321096,73.3383164731288,5.774217417417416,5611.398262901298,2019
+1995,46,"(45,50]",HS,423.47138434321096,71.35619981169287,5.934612345679012,5771.376346709416,2019
+1995,46,"(45,50]",HS,423.47138434321096,61.44561650451331,6.89180788530466,5654.256049502006,2019
+1995,46,"(45,50]",HS,43.547103051747015,67.39196648882105,0.6461764705882352,6989.903865634908,2019
+1995,46,"(45,50]",HS,46.58572313135781,67.39196648882105,0.69126522875817,6788.484820303691,2019
+1995,46,"(45,50]",HS,45.09544449358691,67.39196648882105,0.6691516339869281,6889.053216461087,2019
+1995,46,"(45,50]",HS,46.58572313135781,67.39196648882105,0.69126522875817,7146.006173714086,2019
+1995,46,"(45,50]",HS,43.547103051747015,67.39196648882105,0.6461764705882352,6940.98355921151,2019
+1995,69,"(65,70]",College,113879.39049977885,5331.893819262607,21.358150473358112,20.12365416564478,2019
+1995,69,"(65,70]",College,127982.45852277752,5569.747818634915,22.978142402530647,21.728651686078898,2019
+1995,69,"(65,70]",College,119951.98563467493,5014.75515343286,23.919809036451472,21.279309952668655,2019
+1995,69,"(65,70]",College,127150.82498009731,5629.211318477993,22.587680189358377,18.687207744553895,2019
+1995,69,"(65,70]",College,112860.58183104821,5490.46315217748,20.555748887284395,20.149174934146174,2019
+1995,77,"(75,80]",College,203410.2602388324,17521.911287093477,11.608908235294116,12.843548598773811,2019
+1995,77,"(75,80]",College,203681.21999115436,17521.911287093477,11.624372287581696,12.928149932801253,2019
+1995,77,"(75,80]",College,203323.16603272888,17521.911287093477,11.603937647058821,13.087769245243456,2019
+1995,77,"(75,80]",College,203427.67908005306,17521.911287093477,11.609902352941173,12.470737026418899,2019
+1995,77,"(75,80]",College,203868.95639097746,17521.911287093477,11.635086666666664,12.524370155609386,2019
+1995,48,"(45,50]",College,58285.958779301196,1070.3429971753933,54.45540255144032,18.424123599782696,2019
+1995,48,"(45,50]",College,66022.8080672269,1284.4115966104716,51.40315475308643,18.715724758082384,2019
+1995,48,"(45,50]",College,50272.53700132685,1115.9316803884192,45.0498340398658,18.77532482183993,2019
+1995,48,"(45,50]",College,51508.15218045113,985.111980733649,52.28659602951039,17.94707285770976,2019
+1995,48,"(45,50]",College,54405.060309597524,1284.4115966104716,42.35796410836763,17.90067114790862,2019
+1995,44,"(40,45]",College,4724.183281733745,481.65434872892695,9.808243804298124,266.2710057351491,2019
+1995,44,"(40,45]",College,3400.351348960637,481.65434872892695,7.059733516232281,240.05148966087395,2019
+1995,44,"(40,45]",College,3543.5729323308274,481.65434872892695,7.357086968449932,236.81406969648947,2019
+1995,44,"(40,45]",College,3159.9713401149934,481.65434872892695,6.56066191129401,244.2358740114048,2019
+1995,44,"(40,45]",College,3160.3584254754537,481.65434872892695,6.561465569272977,240.5642051289903,2019
+1995,64,"(60,65]",College,6285.646917293233,2596.572826481047,2.4207473994910935,13.516461742509657,2019
+1995,64,"(60,65]",College,7497.61118089341,1982.116661435913,3.782628604444445,11.748975863729939,2019
+1995,64,"(60,65]",College,7364.64735957541,1389.4637796665752,5.3003521699159934,12.3878164019517,2019
+1995,64,"(60,65]",College,5369.415869084476,2675.8574929384827,2.006615032098766,11.991229996124789,2019
+1995,64,"(60,65]",College,6185.3918089341005,2061.4013278933503,3.0005762222222216,12.532710178466164,2019
+1995,27,"(25,30]",HS,0.774170720919947,41.624449890154175,0.018598941798941802,5449.157541443218,2019
+1995,27,"(25,30]",HS,0.774170720919947,41.624449890154175,0.018598941798941802,5506.741606945403,2019
+1995,27,"(25,30]",HS,0.774170720919947,41.624449890154175,0.018598941798941802,5456.754451898427,2019
+1995,27,"(25,30]",HS,0.774170720919947,41.624449890154175,0.018598941798941802,5542.51748082071,2019
+1995,27,"(25,30]",HS,0.774170720919947,41.624449890154175,0.018598941798941802,5464.965823024094,2019
+1995,47,"(45,50]",College,1349.5731092436974,327.0492491369256,4.126513400673402,1634.6574386235498,2019
+1995,47,"(45,50]",College,1349.5731092436974,362.7273490427721,3.7206268366727384,1323.5625968929628,2019
+1995,47,"(45,50]",College,1349.5731092436974,338.9419491055412,3.981723456790123,1371.4333728929855,2019
+1995,47,"(45,50]",College,1349.5731092436974,372.6379323499517,3.6216739952718675,1328.400333349714,2019
+1995,47,"(45,50]",College,1349.5731092436974,382.5485156571313,3.5278482440990206,1356.7915126125458,2019
+1995,52,"(50,55]",NoHS,244.25086245024326,79.28466645743653,3.0806822222222223,8483.709336893771,2019
+1995,52,"(50,55]",NoHS,244.44440513047323,79.28466645743653,3.0831233333333334,8405.28955343685,2019
+1995,52,"(50,55]",NoHS,237.6704113224237,79.28466645743653,2.9976844444444444,8448.919527845143,2019
+1995,52,"(50,55]",NoHS,245.2185758513932,79.28466645743653,3.0928877777777783,8857.10480629922,2019
+1995,52,"(50,55]",NoHS,239.99292348518355,79.28466645743653,3.0269777777777778,8579.767517773593,2019
+1995,63,"(60,65]",HS,343.53825740822646,45.588683213026,7.5356038647343,7628.789989094473,2019
+1995,63,"(60,65]",HS,343.53825740822646,45.588683213026,7.5356038647343,7516.751682340774,2019
+1995,63,"(60,65]",HS,343.53825740822646,45.588683213026,7.5356038647343,7638.275778507379,2019
+1995,63,"(60,65]",HS,343.53825740822646,45.588683213026,7.5356038647343,7624.940829568433,2019
+1995,63,"(60,65]",HS,343.53825740822646,45.588683213026,7.5356038647343,7524.867661252063,2019
+1995,26,"(25,30]",HS,38.14726227333039,105.0521830561034,0.36312679245283025,5376.231329163269,2019
+1995,26,"(25,30]",HS,16.470482087571874,105.0521830561034,0.15678381551362686,5328.243016483293,2019
+1995,26,"(25,30]",HS,18.986536930561698,105.0521830561034,0.18073433962264152,5400.725720852735,2019
+1995,26,"(25,30]",HS,15.88985404688191,105.0521830561034,0.15125677148846958,5335.999144820931,2019
+1995,26,"(25,30]",HS,18.986536930561698,105.0521830561034,0.18073433962264152,5383.424841760099,2019
+1995,35,"(30,35]",College,260.9923042901371,107.03429971753931,2.438398765432099,8550.54671860754,2019
+1995,35,"(30,35]",College,260.9923042901371,107.03429971753931,2.438398765432099,8605.823493119551,2019
+1995,35,"(30,35]",College,260.9923042901371,107.03429971753931,2.438398765432099,8593.119113075029,2019
+1995,35,"(30,35]",College,260.7987616099071,107.03429971753931,2.4365905349794237,8855.885999255814,2019
+1995,35,"(30,35]",College,261.3793896505971,107.03429971753931,2.442015226337449,8673.068254783666,2019
+1995,70,"(65,70]",College,935.391773551526,61.44561650451331,15.223083870967743,592.2174524632179,2019
+1995,70,"(65,70]",College,921.8437859354268,75.32043313456471,12.238960233918128,592.524113302113,2019
+1995,70,"(65,70]",College,934.8111455108359,61.44561650451331,15.21363440860215,620.6390396647191,2019
+1995,70,"(65,70]",College,914.1020787262273,69.37408315025698,13.176420317460314,577.5651085018224,2019
+1995,70,"(65,70]",College,913.5214506855374,63.42773316594923,14.402555555555555,595.9241041527342,2019
+1995,30,"(25,30]",HS,9.77390535161433,33.69598324441053,0.2900614379084967,5304.360294675193,2019
+1995,30,"(25,30]",HS,5.128881026094649,31.713866582974614,0.1617236111111111,5283.043709809006,2019
+1995,30,"(25,30]",HS,5.999823087129589,33.69598324441053,0.17805751633986927,5280.062313417574,2019
+1995,30,"(25,30]",HS,7.161079168509509,41.624449890154175,0.17204021164021166,5309.022469189785,2019
+1995,30,"(25,30]",HS,13.547987616099071,45.588683213026,0.2971787439613527,5299.371675751804,2019
+1995,28,"(25,30]",HS,20.205855816010615,107.03429971753931,0.18877925925925926,6253.511787797136,2019
+1995,28,"(25,30]",HS,17.128527200353826,43.606566551590085,0.39279696969696976,6195.98329899732,2019
+1995,28,"(25,30]",HS,19.451039363113665,51.53503319733374,0.37743333333333334,6256.540502254586,2019
+1995,28,"(25,30]",HS,15.92856258292791,23.785399937230956,0.6696781481481483,6219.079167758753,2019
+1995,28,"(25,30]",HS,16.160813799203893,51.53503319733374,0.313588888888889,6228.924069953832,2019
+1995,38,"(35,40]",HS,87.403874391862,95.14159974892382,0.9186714814814816,10776.503103399735,2019
+1995,38,"(35,40]",HS,87.403874391862,95.14159974892382,0.9186714814814816,10784.721893010515,2019
+1995,38,"(35,40]",HS,87.403874391862,95.14159974892382,0.9186714814814816,10478.450643885955,2019
+1995,38,"(35,40]",HS,87.403874391862,95.14159974892382,0.9186714814814816,10765.533054409882,2019
+1995,38,"(35,40]",HS,87.403874391862,95.14159974892382,0.9186714814814816,10664.36037022802,2019
+1995,48,"(45,50]",College,39.753666519239275,87.21313310318017,0.4558220202020203,7360.066439091361,2019
+1995,48,"(45,50]",College,39.753666519239275,87.21313310318017,0.4558220202020203,7334.094279147585,2019
+1995,48,"(45,50]",College,39.753666519239275,87.21313310318017,0.4558220202020203,7292.4684367359605,2019
+1995,48,"(45,50]",College,39.753666519239275,87.21313310318017,0.4558220202020203,7664.144688590592,2019
+1995,48,"(45,50]",College,39.753666519239275,87.21313310318017,0.4558220202020203,7391.850902893714,2019
+1995,81,"(80,85]",College,1292.6328527200355,67.39196648882105,19.180815163398695,4872.00154197262,2019
+1995,81,"(80,85]",College,2653.7217514374174,71.35619981169287,37.18978530864198,2532.0347717197997,2019
+1995,81,"(80,85]",College,1291.6844935869085,75.32043313456471,17.149190994152047,5010.082228100246,2019
+1995,81,"(80,85]",College,1776.9734099955772,77.30254979600063,22.98725481481481,2547.5913232743037,2019
+1995,81,"(80,85]",College,1952.9424148606813,65.40984982738514,29.857008080808082,2635.6221280489744,2019
+1995,55,"(50,55]",College,8645.551525873507,594.6349984307741,14.539257777777774,19.38942028837009,2019
+1995,55,"(50,55]",College,8684.260061919505,594.6349984307741,14.604354074074072,17.008667102244637,2019
+1995,55,"(50,55]",College,8593.295002211411,594.6349984307741,14.451377777777775,17.771193273787972,2019
+1995,55,"(50,55]",College,8593.295002211411,594.6349984307741,14.451377777777775,17.25699755660755,2019
+1995,55,"(50,55]",College,9077.15170278638,594.6349984307741,15.26508148148148,17.91259126881453,2019
+1995,32,"(30,35]",College,365.79566563467495,198.21166614359132,1.8454800000000002,4009.924404252125,2019
+1995,32,"(30,35]",College,365.79566563467495,198.21166614359132,1.8454800000000002,4167.840062200682,2019
+1995,32,"(30,35]",College,365.79566563467495,198.21166614359132,1.8454800000000002,4120.829984895949,2019
+1995,32,"(30,35]",College,365.79566563467495,198.21166614359132,1.8454800000000002,3894.7783351468547,2019
+1995,32,"(30,35]",College,365.79566563467495,198.21166614359132,1.8454800000000002,4144.680030788236,2019
+1995,80,"(75,80]",NoHS,173.08521892967713,25.76751659866687,6.7171866666666675,8193.62549708515,2019
+1995,80,"(75,80]",NoHS,224.68369747899158,25.76751659866687,8.719648888888889,8258.494189060828,2019
+1995,80,"(75,80]",NoHS,193.73622291021672,25.76751659866687,7.518622222222223,8374.877549691028,2019
+1995,80,"(75,80]",NoHS,197.51030517470147,25.76751659866687,7.66508888888889,8590.814304076177,2019
+1995,80,"(75,80]",NoHS,213.38080495356039,25.76751659866687,8.281000000000002,8357.811248942704,2019
+1995,72,"(70,75]",HS,830.2980981866431,122.89123300902662,6.7563655913978495,311.3000474391439,2019
+1995,72,"(70,75]",HS,830.2980981866431,122.89123300902662,6.7563655913978495,308.5454338539558,2019
+1995,72,"(70,75]",HS,830.2980981866431,122.89123300902662,6.7563655913978495,326.457971178443,2019
+1995,72,"(70,75]",HS,830.2980981866431,122.89123300902662,6.7563655913978495,300.9982476882741,2019
+1995,72,"(70,75]",HS,830.2980981866431,122.89123300902662,6.7563655913978495,312.29393225771753,2019
+1995,75,"(70,75]",HS,7573.3250773993805,218.03283275795047,34.73479191919191,173.80829541612758,2019
+1995,75,"(70,75]",HS,7553.970809376382,200.19378280502724,37.73329372937294,155.9016655346859,2019
+1995,75,"(70,75]",HS,7573.3250773993805,699.6871814868774,10.823872836008812,154.9296634455761,2019
+1995,75,"(70,75]",HS,7544.293675364883,192.26531615928357,39.23897365406644,143.6034844301031,2019
+1995,75,"(70,75]",HS,7573.3250773993805,495.5291653589783,15.283308444444446,155.3212909050215,2019
+1995,34,"(30,35]",HS,4.741795665634675,55.499266520205566,0.0854388888888889,7703.614372482216,2019
+1995,34,"(30,35]",HS,5.322423706324636,55.499266520205566,0.09590079365079367,7769.576390507655,2019
+1995,34,"(30,35]",HS,6.0965944272445824,55.499266520205566,0.10985000000000002,7788.681698231536,2019
+1995,34,"(30,35]",HS,5.709509066784609,55.499266520205566,0.10287539682539684,7885.633885916715,2019
+1995,34,"(30,35]",HS,13.257673595754092,55.499266520205566,0.23888015873015878,7805.203712959383,2019
+1995,25,"(20,25]",College,-1.9354268022998675,55.499266520205566,-0.03487301587301588,6301.680202522963,2019
+1995,25,"(20,25]",College,-1.354798761609907,55.499266520205566,-0.024411111111111113,6331.751165826222,2019
+1995,25,"(20,25]",College,-2.167678018575851,55.499266520205566,-0.039057777777777775,6342.843221983052,2019
+1995,25,"(20,25]",College,-2.128969482529854,55.499266520205566,-0.03836031746031746,6426.257298767334,2019
+1995,25,"(20,25]",College,-2.128969482529854,55.499266520205566,-0.03836031746031746,6364.037381179706,2019
+1995,37,"(35,40]",College,236.6252808491818,170.46203288348855,1.3881406718346254,6732.753725813507,2019
+1995,37,"(35,40]",College,236.6252808491818,170.46203288348855,1.3881406718346254,6682.0553006185455,2019
+1995,37,"(35,40]",College,236.6252808491818,170.46203288348855,1.3881406718346254,6725.620325348014,2019
+1995,37,"(35,40]",College,236.6252808491818,170.46203288348855,1.3881406718346254,6800.349352544545,2019
+1995,37,"(35,40]",College,236.6252808491818,170.46203288348855,1.3881406718346254,6735.724425240171,2019
+1995,59,"(55,60]",HS,302.1201238390093,33.69598324441053,8.96605751633987,8133.9511568930775,2019
+1995,59,"(55,60]",HS,251.79902697921275,33.69598324441053,7.472671895424837,8014.49392761578,2019
+1995,59,"(55,60]",HS,253.54091110128263,33.69598324441053,7.524366013071895,8144.065073763175,2019
+1995,59,"(55,60]",HS,302.1201238390093,33.69598324441053,8.96605751633987,8129.847114754727,2019
+1995,59,"(55,60]",HS,299.9911543564794,33.69598324441053,8.902875816993463,8023.147328240149,2019
+1995,32,"(30,35]",HS,968.1004865103937,103.07006639466748,9.392644444444446,3523.1199051718563,2019
+1995,32,"(30,35]",HS,955.9072976559045,103.07006639466748,9.274344444444445,3663.260268568709,2019
+1995,32,"(30,35]",HS,954.5331446262716,103.07006639466748,9.261012222222224,3622.099862865369,2019
+1995,32,"(30,35]",HS,954.9202299867316,103.07006639466748,9.264767777777779,3421.336133337245,2019
+1995,32,"(30,35]",HS,954.1847678018576,103.07006639466748,9.257632222222224,3644.8800343610455,2019
+1995,87,"(85,90]",HS,11891.455816010615,891.9524976461611,13.331938469135801,320.38168729695735,2019
+1995,87,"(85,90]",HS,10527.850862450245,891.9524976461611,11.803151950617284,282.1673726026096,2019
+1995,87,"(85,90]",HS,14724.340026536931,891.9524976461611,16.507986765432097,281.4806931333186,2019
+1995,87,"(85,90]",HS,10867.65374613003,891.9524976461611,12.18411717530864,290.9282922900402,2019
+1995,87,"(85,90]",HS,16959.409606368863,891.9524976461611,19.013803595061727,290.0045977849096,2019
+1995,51,"(50,55]",College,708.3662096417515,95.14159974892382,7.445388888888891,3737.321948574617,2019
+1995,51,"(50,55]",College,662.6901371074746,95.14159974892382,6.965303703703705,3894.455705425577,2019
+1995,51,"(50,55]",College,546.1774436090226,95.14159974892382,5.740679629629631,3848.1619646407626,2019
+1995,51,"(50,55]",College,637.5295886775763,95.14159974892382,6.700850000000001,3649.5226111074735,2019
+1995,51,"(50,55]",College,509.79141972578503,95.14159974892382,5.35823888888889,3860.6096650091567,2019
+1995,48,"(45,50]",HS,6868.132967713401,1292.3400632562157,5.3144935787321055,332.3252875605878,2019
+1995,48,"(45,50]",HS,8104.251357806281,1280.4473632876,6.329234289645683,298.6897089109194,2019
+1995,48,"(45,50]",HS,7043.211676249447,1450.9093961710885,4.854342865816636,293.66229666742385,2019
+1995,48,"(45,50]",HS,6297.511083591332,1274.5010133032922,4.941158161396234,299.0466325621558,2019
+1995,48,"(45,50]",HS,6017.203219814242,1381.5353130208314,4.355446555077316,295.5550354031719,2019
+1995,43,"(40,45]",HS,1015.1313578062804,49.55291653589783,20.485804444444447,6157.69422184432,2019
+1995,43,"(40,45]",HS,998.8931269349845,49.55291653589783,20.15810968888889,6409.289043041514,2019
+1995,43,"(40,45]",HS,1034.834002653693,49.55291653589783,20.883412622222224,6321.4588555380515,2019
+1995,43,"(40,45]",HS,986.5257496682884,49.55291653589783,19.908530488888893,6005.516300376074,2019
+1995,43,"(40,45]",HS,1014.9765236620965,49.55291653589783,20.482679822222224,6362.194611488207,2019
+1995,22,"(20,25]",NoHS,43.160017691287045,75.32043313456471,0.5730187134502924,4911.898038935544,2019
+1995,22,"(20,25]",NoHS,43.160017691287045,75.32043313456471,0.5730187134502924,4899.074216301768,2019
+1995,22,"(20,25]",NoHS,42.77293233082707,75.32043313456471,0.5678795321637427,4945.671010278309,2019
+1995,22,"(20,25]",NoHS,43.06324635117205,75.32043313456471,0.5717339181286549,4883.591552429278,2019
+1995,22,"(20,25]",NoHS,42.96647501105706,75.32043313456471,0.5704491228070175,4897.023395237906,2019
+1995,27,"(25,30]",HS,6.71593100398054,89.1952497646161,0.07529471604938272,5754.916775188537,2019
+1995,27,"(25,30]",HS,3.3482883679787707,89.1952497646161,0.03753886419753087,5782.378640214744,2019
+1995,27,"(25,30]",HS,11.496435205661212,89.1952497646161,0.12889066666666668,5792.508297385024,2019
+1995,27,"(25,30]",HS,11.689977885891198,89.1952497646161,0.13106054320987653,5868.684976357171,2019
+1995,27,"(25,30]",HS,1.9934896063688634,89.1952497646161,0.02234972839506173,5811.863551599288,2019
+1995,29,"(25,30]",College,13.85765590446705,29.731749921538697,0.4660894814814815,6931.071744450502,2019
+1995,29,"(25,30]",College,13.27702786377709,29.731749921538697,0.4465605925925926,6876.001384187077,2019
+1995,29,"(25,30]",College,8.632003538257408,29.731749921538697,0.29032948148148147,6947.506667243501,2019
+1995,29,"(25,30]",College,7.664290137107475,29.731749921538697,0.25778133333333336,6899.424678089675,2019
+1995,29,"(25,30]",College,13.470570544007076,29.731749921538697,0.45307022222222226,6909.705434694864,2019
+1995,40,"(35,40]",College,-12.870588235294118,182.354732852104,-0.07057995169082126,8719.319025366818,2019
+1995,40,"(35,40]",College,-12.870588235294118,182.354732852104,-0.07057995169082126,8599.359544757872,2019
+1995,40,"(35,40]",College,-12.870588235294118,182.354732852104,-0.07057995169082126,8592.10125966591,2019
+1995,40,"(35,40]",College,-12.870588235294118,182.354732852104,-0.07057995169082126,8683.997589994136,2019
+1995,40,"(35,40]",College,-12.870588235294118,182.354732852104,-0.07057995169082126,8623.246740325038,2019
+1995,75,"(70,75]",NoHS,191.99433878814685,75.32043313456471,2.549033918128655,8994.016964680906,2019
+1995,75,"(70,75]",NoHS,191.99433878814685,75.32043313456471,2.549033918128655,9013.23313632493,2019
+1995,75,"(70,75]",NoHS,191.99433878814685,67.39196648882105,2.8489202614379083,9240.141631047485,2019
+1995,75,"(70,75]",NoHS,191.99433878814685,81.26678311887244,2.362519241192412,9454.443413581781,2019
+1995,75,"(70,75]",NoHS,191.99433878814685,71.35619981169287,2.690646913580247,9238.222698656198,2019
+1995,85,"(80,85]",NoHS,2.728951791242813,14.667663294625758,0.18605225225225225,7090.992067244735,2019
+1995,85,"(80,85]",NoHS,32.82483856700575,14.667663294625758,2.237905105105105,7068.359331192883,2019
+1995,85,"(80,85]",NoHS,0.8515877930119417,14.667663294625758,0.058058858858858864,7088.366236948011,2019
+1995,85,"(80,85]",NoHS,9.793259619637329,14.667663294625758,0.6676768768768769,7098.977104676145,2019
+1995,85,"(80,85]",NoHS,2.6902432551968154,14.667663294625758,0.18341321321321322,7090.98400199099,2019
+1995,46,"(45,50]",College,1172.8686421937196,243.80034935661735,4.810775067750677,3013.229529755039,2019
+1995,46,"(45,50]",College,1172.8686421937196,243.80034935661735,4.810775067750677,3139.5825647930174,2019
+1995,46,"(45,50]",College,1172.8686421937196,243.80034935661735,4.810775067750677,3100.709022034514,2019
+1995,46,"(45,50]",College,1172.8686421937196,243.80034935661735,4.810775067750677,2942.0071251184636,2019
+1995,46,"(45,50]",College,1172.8686421937196,243.80034935661735,4.810775067750677,3109.6938047381364,2019
+1995,51,"(50,55]",College,15191.010137107474,8126.678311887244,1.869276665582656,148.2705163118188,2019
+1995,51,"(50,55]",College,9267.61705440071,8463.63814433135,1.0949921176164457,765.4587138308818,2019
+1995,51,"(50,55]",College,14391.601450685537,9553.802308121101,1.506374214845551,770.6853574351868,2019
+1995,51,"(50,55]",College,10832.041892967714,7195.083481012366,1.5054782785430059,148.17206240421137,2019
+1995,51,"(50,55]",College,9590.65914197258,7551.86448007083,1.2699723581219016,762.9624561087302,2019
+1995,40,"(35,40]",HS,143.0280406899602,59.46349984307739,2.405308148148148,7607.247954350528,2019
+1995,40,"(35,40]",HS,149.22140645731977,59.46349984307739,2.5094622222222225,7656.426579258159,2019
+1995,40,"(35,40]",HS,154.6406015037594,59.46349984307739,2.600597037037037,7645.123750060744,2019
+1995,40,"(35,40]",HS,157.93082706766916,59.46349984307739,2.655928888888889,7878.902118059105,2019
+1995,40,"(35,40]",HS,154.21480760725345,59.46349984307739,2.593436444444445,7716.2528795457065,2019
+1995,25,"(20,25]",College,177.8657231313578,89.1952497646161,1.9941165432098766,6479.18435557756,2019
+1995,25,"(20,25]",College,177.8657231313578,89.1952497646161,1.9941165432098766,6449.9451439008835,2019
+1995,25,"(20,25]",College,177.8657231313578,89.1952497646161,1.9941165432098766,6448.090374929368,2019
+1995,25,"(20,25]",College,177.8657231313578,89.1952497646161,1.9941165432098766,6447.137944873906,2019
+1995,25,"(20,25]",College,177.8657231313578,89.1952497646161,1.9941165432098766,6463.469803094857,2019
+1995,38,"(35,40]",College,7.74170720919947,51.53503319733374,0.15022222222222226,6587.609871587434,2019
+1995,38,"(35,40]",College,7.74170720919947,51.53503319733374,0.15022222222222226,6607.849102363417,2019
+1995,38,"(35,40]",College,7.74170720919947,51.53503319733374,0.15022222222222226,6601.667054190293,2019
+1995,38,"(35,40]",College,7.74170720919947,51.53503319733374,0.15022222222222226,6592.178723696119,2019
+1995,38,"(35,40]",College,7.74170720919947,51.53503319733374,0.15022222222222226,6616.0385125646035,2019
+1995,62,"(60,65]",College,34862.842989827506,1179.3594135543685,29.560829878618108,21.37930316291056,2019
+1995,62,"(60,65]",College,34862.842989827506,1226.9302134288303,28.41469107880093,23.814430115263647,2019
+1995,62,"(60,65]",College,34862.842989827506,1155.5740136171376,30.169286068229457,21.59007452559501,2019
+1995,62,"(60,65]",College,34862.842989827506,1068.3608805139572,32.63208493094207,25.778823899766866,2019
+1995,62,"(60,65]",College,34862.842989827506,1094.1283971126243,31.863575684380024,20.9070008654844,2019
+1995,44,"(40,45]",HS,53.9984077841663,25.76751659866687,2.0956,9004.930437692685,2019
+1995,44,"(40,45]",HS,60.38531623175586,25.76751659866687,2.343466666666667,8946.787346327736,2019
+1995,44,"(40,45]",HS,53.03069438301637,25.76751659866687,2.058044444444445,8959.165613991225,2019
+1995,44,"(40,45]",HS,88.06191950464395,25.76751659866687,3.4175555555555555,8919.616410129975,2019
+1995,44,"(40,45]",HS,52.25652366209642,25.76751659866687,2.0280000000000005,9012.57529595247,2019
+1995,36,"(35,40]",HS,173.80132684652807,39.642333228718265,4.384235555555556,6085.798376278672,2019
+1995,36,"(35,40]",HS,173.80132684652807,39.642333228718265,4.384235555555556,6125.1412762875125,2019
+1995,36,"(35,40]",HS,173.80132684652807,39.642333228718265,4.384235555555556,6116.099012910563,2019
+1995,36,"(35,40]",HS,173.80132684652807,39.642333228718265,4.384235555555556,6303.121707702556,2019
+1995,36,"(35,40]",HS,173.80132684652807,39.642333228718265,4.384235555555556,6173.002316618199,2019
+1995,63,"(60,65]",HS,928.4242370632463,31.713866582974614,29.275025,8509.461707605318,2019
+1995,63,"(60,65]",HS,909.0699690402478,31.713866582974614,28.664747222222225,8624.406913773299,2019
+1995,63,"(60,65]",HS,899.3928350287484,31.713866582974614,28.359608333333334,8501.061800142383,2019
+1995,63,"(60,65]",HS,810.3632021229545,31.713866582974614,25.552330555555557,8288.402883143122,2019
+1995,63,"(60,65]",HS,789.073507297656,31.713866582974614,24.881025,8457.706035488603,2019
+1995,32,"(30,35]",HS,243.08960636886334,99.10583307179566,2.4528284444444446,5645.432096131304,2019
+1995,32,"(30,35]",HS,135.6734188412207,99.10583307179566,1.3689751111111113,5678.62886347084,2019
+1995,32,"(30,35]",HS,252.76674038036268,99.10583307179566,2.5504728888888892,5654.515770831991,2019
+1995,32,"(30,35]",HS,190.83308270676693,99.10583307179566,1.9255484444444446,5704.86651858245,2019
+1995,32,"(30,35]",HS,243.08960636886334,99.10583307179566,2.4528284444444446,5642.685769525668,2019
+1995,33,"(30,35]",HS,8.438460858027423,128.8375829933344,0.06549688888888888,8383.023579803943,2019
+1995,33,"(30,35]",HS,8.438460858027423,128.8375829933344,0.06549688888888888,8482.332994400631,2019
+1995,33,"(30,35]",HS,8.438460858027423,128.8375829933344,0.06549688888888888,8410.542805906081,2019
+1995,33,"(30,35]",HS,8.438460858027423,128.8375829933344,0.06549688888888888,8534.709947191086,2019
+1995,33,"(30,35]",HS,8.438460858027423,128.8375829933344,0.06549688888888888,8414.510353237682,2019
+1995,47,"(45,50]",College,14980.590535161435,7333.831647312879,2.0426689969969973,237.26008743553803,2019
+1995,47,"(45,50]",College,14980.203449800974,6877.944815182619,2.178005763688761,214.0695355280252,2019
+1995,47,"(45,50]",College,15070.200796107916,6699.554315653388,2.249433333333333,210.89775718369992,2019
+1995,47,"(45,50]",College,12941.424856258294,6164.382817065691,2.0993869524830298,217.59064721785526,2019
+1995,47,"(45,50]",College,10746.070234409553,8027.572478815449,1.3386450589849108,213.9189779045612,2019
+1995,45,"(40,45]",College,987.8418398938522,172.44414954492444,5.728474074074074,8509.461707605318,2019
+1995,45,"(40,45]",College,407.21379920389205,172.44414954492444,2.3614242656449553,8624.406913773299,2019
+1995,45,"(40,45]",College,987.8418398938522,172.44414954492444,5.728474074074074,8501.061800142383,2019
+1995,45,"(40,45]",College,407.21379920389205,172.44414954492444,2.3614242656449553,8288.402883143122,2019
+1995,45,"(40,45]",HS,407.21379920389205,172.44414954492444,2.3614242656449553,8457.706035488603,2019
+1995,42,"(40,45]",College,525.565148164529,110.99853304041113,4.734883730158731,7538.385548469519,2019
+1995,42,"(40,45]",College,521.6942945599293,110.99853304041113,4.700010714285715,7646.518703344731,2019
+1995,42,"(40,45]",College,496.533746130031,110.99853304041113,4.473336111111112,7579.266906584385,2019
+1995,42,"(40,45]",College,525.565148164529,110.99853304041113,4.734883730158731,7382.020188708215,2019
+1995,42,"(40,45]",College,496.533746130031,110.99853304041113,4.473336111111112,7534.114270891742,2019
+1995,30,"(25,30]",HS,23.3993100398054,75.32043313456471,0.31066350877192983,10213.704826082128,2019
+1995,30,"(25,30]",HS,23.3993100398054,75.32043313456471,0.31066350877192983,10221.626654906831,2019
+1995,30,"(25,30]",HS,23.3993100398054,75.32043313456471,0.31066350877192983,9976.719409047093,2019
+1995,30,"(25,30]",HS,23.3993100398054,75.32043313456471,0.31066350877192983,10067.600246028003,2019
+1995,30,"(25,30]",HS,23.3993100398054,75.32043313456471,0.31066350877192983,10112.613031634977,2019
+1995,39,"(35,40]",College,169.2530738611234,116.94488302471889,1.447289265536723,9081.297447659492,2019
+1995,39,"(35,40]",College,171.28527200353827,120.90911634759071,1.4166448087431696,9328.97874769929,2019
+1995,39,"(35,40]",College,167.22087571870853,120.90911634759071,1.3830295081967212,9008.848211370227,2019
+1995,39,"(35,40]",College,171.67235736399823,112.98064970184706,1.5194846003898634,9393.350660768141,2019
+1995,39,"(35,40]",College,169.54338788146836,130.8196996547703,1.2960080808080805,9183.69021681913,2019
+1995,34,"(30,35]",College,237.6704113224237,200.19378280502724,1.1872017601760174,3227.16777347915,2019
+1995,34,"(30,35]",College,243.4766917293233,200.19378280502724,1.2162050605060506,3354.798649393485,2019
+1995,34,"(30,35]",College,255.0892525431225,200.19378280502724,1.2742116611661165,3315.1913179775206,2019
+1995,34,"(30,35]",College,241.54126492702343,200.19378280502724,1.2065372937293728,3132.3758200948205,2019
+1995,34,"(30,35]",College,249.2829721362229,200.19378280502724,1.2452083608360835,3336.6797187372636,2019
+1995,43,"(40,45]",HS,5531.411092436975,792.8466645743653,6.976646733333334,424.62858064464035,2019
+1995,43,"(40,45]",HS,5521.908146837683,792.8466645743653,6.964660877777779,381.6507256459714,2019
+1995,43,"(40,45]",HS,5545.036497125166,792.8466645743653,6.993832155555555,375.22695049199126,2019
+1995,43,"(40,45]",HS,5562.35856700575,792.8466645743653,7.015680100000001,382.10678478169206,2019
+1995,43,"(40,45]",HS,5531.488509509067,792.8466645743653,6.976744377777778,377.6453970952921,2019
+1995,70,"(65,70]",College,5206.298098186643,792.8466645743653,6.566588888888889,2221.4835310605804,2019
+1995,70,"(65,70]",College,5206.298098186643,792.8466645743653,6.566588888888889,2091.511688738291,2019
+1995,70,"(65,70]",College,5206.298098186643,792.8466645743653,6.566588888888889,1968.8953776587157,2019
+1995,70,"(65,70]",College,5206.298098186643,792.8466645743653,6.566588888888889,1973.6843797778442,2019
+1995,70,"(65,70]",College,5206.298098186643,792.8466645743653,6.566588888888889,2217.755115589546,2019
+1995,35,"(30,35]",NoHS,28.74108801415303,39.642333228718265,0.7250099999999999,7320.73151221735,2019
+1995,35,"(30,35]",NoHS,28.74108801415303,35.67809990584644,0.8055666666666667,7220.013652562453,2019
+1995,35,"(30,35]",NoHS,28.74108801415303,27.749633260102783,1.0357285714285716,7213.919603675972,2019
+1995,35,"(30,35]",NoHS,28.74108801415303,29.731749921538697,0.9666800000000001,7291.07567048965,2019
+1995,35,"(30,35]",NoHS,28.74108801415303,45.588683213026,0.6304434782608695,7240.06931801274,2019
+1995,91,"(90,95]",NoHS,0.4257938965059708,29.731749921538697,0.014321185185185187,9566.150493501158,2019
+1995,91,"(90,95]",HS,0.3483768244139761,29.731749921538697,0.011717333333333333,8858.828549535345,2019
+1995,91,"(90,95]",HS,0.40643962848297216,29.731749921538697,0.013670222222222224,9088.022373822152,2019
+1995,91,"(90,95]",HS,0.3483768244139761,29.731749921538697,0.011717333333333333,9611.745600581131,2019
+1995,91,"(90,95]",NoHS,0.3483768244139761,29.731749921538697,0.011717333333333333,8853.947582629613,2019
+1995,90,"(85,90]",HS,417.1038301636444,27.749633260102783,15.030967301587301,9179.966550605921,2019
+1995,90,"(85,90]",HS,403.92357363998235,23.785399937230956,16.981996296296302,9071.66047451006,2019
+1995,90,"(85,90]",HS,479.59876160990717,19.622954948215543,24.44070033670034,9374.512550034258,2019
+1995,90,"(85,90]",HS,445.3417072091995,41.624449890154175,10.699041269841272,9410.738928024486,2019
+1995,90,"(85,90]",HS,509.40433436532504,13.676604963907801,37.24640257648953,4864.542369884157,2019
+1995,37,"(35,40]",College,-33.4441751437417,59.46349984307739,-0.5624319999999999,6498.565569365068,2019
+1995,37,"(35,40]",College,-18.347846085802743,57.48138318164148,-0.3191963218390805,6546.264334438541,2019
+1995,37,"(35,40]",College,-11.186766917293234,93.15948308748793,-0.12008189125295508,6542.91794564699,2019
+1995,37,"(35,40]",College,-21.63807164971252,65.40984982738514,-0.3308075420875421,6506.513514337639,2019
+1995,37,"(35,40]",College,23.650915524104377,71.35619981169287,0.33144864197530866,6563.101304389801,2019
+1995,22,"(20,25]",HS,19.083308270676692,35.67809990584644,0.5348745679012346,5121.992338411696,2019
+1995,22,"(20,25]",HS,19.81877045555064,35.67809990584644,0.5554883950617284,5132.425298200816,2019
+1995,22,"(20,25]",HS,20.167147279964617,35.67809990584644,0.5652528395061729,5156.1034287298335,2019
+1995,22,"(20,25]",HS,19.180079610791687,35.67809990584644,0.537586913580247,5125.760657666613,2019
+1995,22,"(20,25]",HS,18.851057054400705,35.67809990584644,0.5283649382716049,5123.78819267506,2019
+1995,42,"(40,45]",HS,151.3503759398496,59.46349984307739,2.545265185185185,3376.256173047069,2019
+1995,42,"(40,45]",HS,144.1892967713401,59.46349984307739,2.424837037037037,3247.7572522532814,2019
+1995,42,"(40,45]",HS,147.67306501547986,59.46349984307739,2.483423703703704,3459.1280564438953,2019
+1995,42,"(40,45]",HS,153.67288810260948,59.46349984307739,2.5843229629629634,3097.212823822851,2019
+1995,42,"(40,45]",HS,144.57638213180007,59.46349984307739,2.4313466666666668,3340.7560496253986,2019
+1995,42,"(40,45]",NoHS,-0.2128969482529854,25.76751659866687,-0.008262222222222223,5739.085187581187,2019
+1995,42,"(40,45]",NoHS,-0.2128969482529854,25.76751659866687,-0.008262222222222223,5765.26995819255,2019
+1995,42,"(40,45]",NoHS,-0.2128969482529854,25.76751659866687,-0.008262222222222223,5766.770269418683,2019
+1995,42,"(40,45]",NoHS,-0.2128969482529854,25.76751659866687,-0.008262222222222223,5751.354599252654,2019
+1995,42,"(40,45]",NoHS,-0.2128969482529854,25.76751659866687,-0.008262222222222223,5772.2580268459,2019
+1995,62,"(60,65]",HS,306.76514816452897,91.177366426052,3.3644879227053144,8002.227249615657,2019
+1995,62,"(60,65]",HS,306.76514816452897,91.177366426052,3.3644879227053144,7884.704550395089,2019
+1995,62,"(60,65]",HS,306.76514816452897,91.177366426052,3.3644879227053144,8012.177378355937,2019
+1995,62,"(60,65]",HS,306.76514816452897,91.177366426052,3.3644879227053144,7998.189669699134,2019
+1995,62,"(60,65]",HS,306.76514816452897,91.177366426052,3.3644879227053144,7893.2178149749325,2019
+1995,34,"(30,35]",HS,138.4604334365325,99.10583307179566,1.397096711111111,6282.976098333765,2019
+1995,34,"(30,35]",HS,140.87971693940736,99.10583307179566,1.4215078222222224,6222.366364505653,2019
+1995,34,"(30,35]",HS,140.4152145068554,99.10583307179566,1.4168208888888891,6306.177789866836,2019
+1995,34,"(30,35]",HS,139.52491817779745,99.10583307179566,1.4078376000000001,6233.802798347584,2019
+1995,34,"(30,35]",HS,141.5184077841663,99.10583307179566,1.4279523555555556,6290.156159811347,2019
+1995,70,"(65,70]",College,5493.921875276427,872.1313310318019,6.299420373737375,294.6275285172421,2019
+1995,70,"(65,70]",College,5531.643343653251,556.9747818634917,9.93158671411625,266.9857742969191,2019
+1995,70,"(65,70]",College,5626.943759398496,1310.1791132091387,4.294789699109094,262.3075857812247,2019
+1995,70,"(65,70]",College,5478.806191950464,776.989731282878,7.05132380952381,245.48939125792532,2019
+1995,70,"(65,70]",College,5562.706943830163,763.1149146528267,7.289474805194804,263.55830488867144,2019
+1995,43,"(40,45]",HS,405.4138522777532,31.713866582974614,12.78348861111111,3344.92031743099,2019
+1995,43,"(40,45]",HS,405.4138522777532,31.713866582974614,12.78348861111111,3481.5891091675912,2019
+1995,43,"(40,45]",HS,405.4138522777532,31.713866582974614,12.78348861111111,3433.8788838657397,2019
+1995,43,"(40,45]",HS,405.4138522777532,31.713866582974614,12.78348861111111,3262.2557675126454,2019
+1995,43,"(40,45]",HS,405.4138522777532,31.713866582974614,12.78348861111111,3456.0069488222966,2019
+1995,69,"(65,70]",College,708.3662096417515,49.55291653589783,14.29514666666667,537.8539648791311,2019
+1995,69,"(65,70]",College,718.0433436532508,49.55291653589783,14.490435555555557,542.9721471774209,2019
+1995,69,"(65,70]",College,799.3312693498452,49.55291653589783,16.130862222222223,534.0804343303435,2019
+1995,69,"(65,70]",College,719.9787704555506,49.55291653589783,14.529493333333333,528.0890984743517,2019
+1995,69,"(65,70]",College,713.2047766475011,49.55291653589783,14.392791111111112,536.2914385573174,2019
+1995,42,"(40,45]",HS,185.41388766032728,39.642333228718265,4.677168888888889,5856.585222090099,2019
+1995,42,"(40,45]",HS,185.41388766032728,39.642333228718265,4.677168888888889,5776.010934196735,2019
+1995,42,"(40,45]",HS,185.60743034055727,39.642333228718265,4.682051111111111,5771.1356950773015,2019
+1995,42,"(40,45]",HS,185.60743034055727,39.642333228718265,4.682051111111111,5832.860548658047,2019
+1995,42,"(40,45]",HS,185.51065900044227,39.642333228718265,4.67961,5792.0554665907075,2019
+1995,57,"(55,60]",HS,340.4415745245467,79.28466645743653,4.293914444444445,10175.568939112238,2019
+1995,57,"(55,60]",HS,329.9902697921274,79.28466645743653,4.1620944444444445,10226.153649984615,2019
+1995,57,"(55,60]",HS,341.98991596638655,79.28466645743653,4.313443333333334,10197.486423450173,2019
+1995,57,"(55,60]",HS,314.50685537372846,79.28466645743653,3.9668055555555557,10401.958441172075,2019
+1995,57,"(55,60]",HS,337.73197700132687,79.28466645743653,4.259738888888889,10105.805377221495,2019
+1995,59,"(55,60]",College,5747.271179124282,273.53209927815607,21.011322599033814,1334.1437672615743,2019
+1995,59,"(55,60]",College,5747.271179124282,273.53209927815607,21.011322599033814,1206.836637815167,2019
+1995,59,"(55,60]",College,5747.271179124282,273.53209927815607,21.011322599033814,1197.4286583462226,2019
+1995,59,"(55,60]",College,5747.271179124282,273.53209927815607,21.011322599033814,1219.6390052225318,2019
+1995,59,"(55,60]",College,5747.426013268465,273.53209927815607,21.011888653784215,1208.0917164031562,2019
+1995,24,"(20,25]",HS,8.535232198142415,79.28466645743653,0.107653,4766.145454147637,2019
+1995,24,"(20,25]",HS,8.535232198142415,79.28466645743653,0.107653,4847.203186845396,2019
+1995,24,"(20,25]",HS,8.535232198142415,79.28466645743653,0.107653,4783.811352735034,2019
+1995,24,"(20,25]",HS,8.535232198142415,79.28466645743653,0.107653,4856.20695128057,2019
+1995,24,"(20,25]",HS,8.535232198142415,79.28466645743653,0.107653,4759.129331743669,2019
+1995,26,"(25,30]",NoHS,20.515524104378596,12.883758299333435,1.592355555555556,6686.997775707327,2019
+1995,26,"(25,30]",NoHS,20.515524104378596,14.271239962338576,1.4375432098765433,6692.880894593116,2019
+1995,26,"(25,30]",NoHS,20.515524104378596,14.469451628482167,1.4178508371385086,6695.320560523566,2019
+1995,26,"(25,30]",NoHS,20.515524104378596,13.676604963907801,1.500045088566828,6676.375691506473,2019
+1995,26,"(25,30]",NoHS,20.515524104378596,13.28018163162062,1.544822553897181,6706.872523840277,2019
+1995,31,"(30,35]",HS,1.4515701017249005,23.785399937230956,0.061027777777777785,5619.5955515785,2019
+1995,31,"(30,35]",HS,12.09641751437417,23.785399937230956,0.5085648148148149,5597.9150587413815,2019
+1995,31,"(30,35]",HS,1.4515701017249005,23.785399937230956,0.061027777777777785,5591.7742924805225,2019
+1995,31,"(30,35]",HS,1.4515701017249005,23.785399937230956,0.061027777777777785,5620.725375165504,2019
+1995,31,"(30,35]",HS,5.709509066784609,23.785399937230956,0.24004259259259264,5616.096724501503,2019
+1995,32,"(30,35]",College,64.3529411764706,71.35619981169287,0.901854938271605,6346.556991975745,2019
+1995,32,"(30,35]",College,64.3529411764706,71.35619981169287,0.901854938271605,6413.624341517358,2019
+1995,32,"(30,35]",College,64.3529411764706,71.35619981169287,0.901854938271605,6355.405006517488,2019
+1995,32,"(30,35]",College,64.3529411764706,71.35619981169287,0.901854938271605,6455.291997620254,2019
+1995,32,"(30,35]",College,64.3529411764706,71.35619981169287,0.901854938271605,6364.968674742339,2019
+1995,68,"(65,70]",College,617.7882352941176,63.42773316594923,9.740033333333333,4789.066619815103,2019
+1995,68,"(65,70]",College,632.8845643520566,67.39196648882105,9.391098039215686,4976.610155238004,2019
+1995,68,"(65,70]",College,631.9168509509067,59.46349984307739,10.62697037037037,4922.205271796597,2019
+1995,68,"(65,70]",College,632.8845643520566,67.39196648882105,9.391098039215686,4667.6777321553445,2019
+1995,68,"(65,70]",College,624.1751437417072,69.37408315025698,8.997238095238092,4985.378941808212,2019
+1995,37,"(35,40]",HS,257.9923927465723,146.6766329462576,1.7589195195195193,2959.187751235644,2019
+1995,37,"(35,40]",HS,257.9923927465723,146.6766329462576,1.7589195195195193,3080.939624848597,2019
+1995,37,"(35,40]",HS,257.9923927465723,146.6766329462576,1.7589195195195193,3037.3313171479213,2019
+1995,37,"(35,40]",HS,257.9923927465723,146.6766329462576,1.7589195195195193,2885.110620595647,2019
+1995,37,"(35,40]",HS,257.9923927465723,146.6766329462576,1.7589195195195193,3057.400792724701,2019
+1995,61,"(60,65]",College,1912.259743476338,344.8882990898489,5.544577037037038,5872.365004694382,2019
+1995,61,"(60,65]",College,2196.26427244582,332.9955991212334,6.59547537037037,4696.113067110322,2019
+1995,61,"(60,65]",College,2027.3595754091111,321.1028991526179,6.313737997256517,5115.572706418371,2019
+1995,61,"(60,65]",College,2149.8333834586465,390.47698230287494,5.505659695431471,4739.491262516947,2019
+1995,61,"(60,65]",College,2190.225740822645,340.9240657669771,6.424379974160208,4885.295096179835,2019
+1995,65,"(60,65]",HS,294.7655019902698,77.30254979600063,3.81314074074074,9393.908645853637,2019
+1995,65,"(60,65]",HS,265.83087129588677,33.69598324441053,7.889096732026143,9345.844090780733,2019
+1995,65,"(60,65]",HS,305.02326404245906,37.660216567282355,8.099349707602338,9355.598803842739,2019
+1995,65,"(60,65]",HS,218.50968597965502,47.57079987446191,4.593357407407408,9953.337136264588,2019
+1995,65,"(60,65]",HS,242.3154356479434,41.624449890154175,5.8214687830687835,9609.885287235402,2019
+1995,39,"(35,40]",HS,533.2100840336135,73.3383164731288,7.2705525525525525,3708.498610815979,2019
+1995,39,"(35,40]",HS,528.9521450685537,73.3383164731288,7.212493693693692,3860.022705920984,2019
+1995,39,"(35,40]",HS,497.40468819106593,73.3383164731288,6.78233033033033,3807.1265865929404,2019
+1995,39,"(35,40]",HS,477.6633348076072,73.3383164731288,6.513148348348347,3616.8487837817274,2019
+1995,39,"(35,40]",HS,523.3394073418841,73.3383164731288,7.135961561561561,3831.6598759881454,2019
+1995,69,"(65,70]",College,585011.7823971694,26025.19176465354,22.478673267326734,2.8105880616522616,2019
+1995,69,"(65,70]",College,566778.1264927024,9157.378975833919,61.893051274651285,2.243383281743868,2019
+1995,69,"(65,70]",College,483394.13356921717,33557.23507811001,14.405064435256286,3.0383781419960103,2019
+1995,69,"(65,70]",College,557962.2574082265,9157.378975833919,60.93034468494469,2.1023901664096862,2019
+1995,69,"(65,70]",College,685601.7195931005,9157.378975833919,74.86877210197211,2.2997107014584666,2019
+1995,39,"(35,40]",College,250.6377708978328,148.65874960769352,1.6859940740740738,429.47315747267476,2019
+1995,39,"(35,40]",College,250.6377708978328,148.65874960769352,1.6859940740740738,425.0238936853399,2019
+1995,39,"(35,40]",College,250.6377708978328,148.65874960769352,1.6859940740740738,423.8136396292108,2019
+1995,39,"(35,40]",College,250.6377708978328,148.65874960769352,1.6859940740740738,419.16720824723535,2019
+1995,39,"(35,40]",College,250.6377708978328,148.65874960769352,1.6859940740740738,433.9187825689625,2019
+1995,42,"(40,45]",HS,147.76983635559486,41.624449890154175,3.550073015873016,8609.593829836362,2019
+1995,42,"(40,45]",HS,97.25519681556833,41.624449890154175,2.3364920634920634,8514.32804748061,2019
+1995,42,"(40,45]",HS,118.73843432109686,41.624449890154175,2.852612698412699,8567.676307929232,2019
+1995,42,"(40,45]",HS,147.76983635559486,41.624449890154175,3.550073015873016,8664.770210323524,2019
+1995,42,"(40,45]",HS,97.44873949579832,41.624449890154175,2.3411417989417993,8587.797572141859,2019
+1995,63,"(60,65]",HS,98570.70641309155,953.3981141506744,103.38882042042042,23.77978164443807,2019
+1995,63,"(60,65]",HS,88345.84661654136,1042.5933639152904,84.73662855935784,25.70395045405458,2019
+1995,63,"(60,65]",HS,99258.75064130916,941.5054141820589,105.42557604678362,25.113774094689507,2019
+1995,63,"(60,65]",HS,83118.25882352941,1086.1999304668807,76.52206236820761,22.197837107810393,2019
+1995,63,"(60,65]",HS,97987.36877487837,989.0762140565207,99.0695837007348,23.92156353176672,2019
+1995,24,"(20,25]",HS,20.651003980539585,39.642333228718265,0.5209331111111112,4218.4657899663125,2019
+1995,24,"(20,25]",HS,20.651003980539585,39.642333228718265,0.5209331111111112,4265.6047279265395,2019
+1995,24,"(20,25]",HS,20.651003980539585,39.642333228718265,0.5209331111111112,4255.825909693419,2019
+1995,24,"(20,25]",HS,20.651003980539585,39.642333228718265,0.5209331111111112,4309.317256672819,2019
+1995,24,"(20,25]",HS,20.651003980539585,39.642333228718265,0.5209331111111112,4241.632347429955,2019
+1995,62,"(60,65]",HS,391.34329942503314,122.89123300902662,3.184468817204301,6261.001877132101,2019
+1995,62,"(60,65]",HS,391.1497567448032,122.89123300902662,3.182893906810036,6169.051246704685,2019
+1995,62,"(60,65]",HS,391.9239274657231,122.89123300902662,3.1891935483870966,6268.786931564741,2019
+1995,62,"(60,65]",HS,391.34329942503314,122.89123300902662,3.184468817204301,6257.842844696768,2019
+1995,62,"(60,65]",HS,391.53684210526313,122.89123300902662,3.186043727598566,6175.712087974529,2019
+1995,29,"(25,30]",College,40.19881468376824,79.28466645743653,0.5070187777777777,5280.710473085797,2019
+1995,29,"(25,30]",College,34.58607695709863,79.28466645743653,0.4362265555555556,5181.350771521436,2019
+1995,29,"(25,30]",College,32.0700221141088,79.28466645743653,0.4044921111111111,5299.7746301464085,2019
+1995,29,"(25,30]",College,34.198991596638656,79.28466645743653,0.43134433333333333,5202.628381619708,2019
+1995,29,"(25,30]",College,32.0700221141088,79.28466645743653,0.4044921111111111,5182.097289938154,2019
+1995,43,"(40,45]",College,104.70659000442282,89.1952497646161,1.1739032098765432,5647.421464598177,2019
+1995,43,"(40,45]",College,163.83387881468377,89.1952497646161,1.8368004938271607,5569.724829837809,2019
+1995,43,"(40,45]",College,99.03578947368422,89.1952497646161,1.1103258271604939,5565.023706400844,2019
+1995,43,"(40,45]",College,207.57452454666077,89.1952497646161,2.3271925925925925,5624.544100929773,2019
+1995,43,"(40,45]",College,86.33938965059708,89.1952497646161,0.967981925925926,5585.196343218916,2019
+1995,66,"(65,70]",College,1896.71826625387,366.69158236564397,5.172516516516517,945.5963301691243,2019
+1995,66,"(65,70]",College,1896.71826625387,366.69158236564397,5.172516516516517,808.7182488025418,2019
+1995,66,"(65,70]",College,1097.386996904025,366.69158236564397,2.9926702702702705,806.0891908567189,2019
+1995,66,"(65,70]",College,1078.0327288810263,366.69158236564397,2.93988948948949,743.5983833959058,2019
+1995,66,"(65,70]",College,1078.0327288810263,366.69158236564397,2.93988948948949,776.2353735394609,2019
+1995,50,"(45,50]",College,22849.068199911544,1290.3579465947796,17.707542515787676,382.11844403990114,2019
+1995,50,"(45,50]",College,22590.379053516142,1633.2641290231925,13.831430355987054,431.1519354442965,2019
+1995,50,"(45,50]",College,19311.82411322424,1292.3400632562157,14.943299107021131,370.18431227198874,2019
+1995,50,"(45,50]",College,20248.60939407342,1399.3743629737548,14.469758722064842,469.08316566508347,2019
+1995,50,"(45,50]",College,20065.924458204332,1948.4206781915027,10.298558562224482,362.35781931966784,2019
+1995,35,"(30,35]",NoHS,132.26706766917295,91.177366426052,1.4506568115942031,6822.523770778978,2019
+1995,35,"(30,35]",NoHS,132.26706766917295,91.177366426052,1.4506568115942031,6771.149366616903,2019
+1995,35,"(30,35]",NoHS,132.26706766917295,91.177366426052,1.4506568115942031,6815.295258312273,2019
+1995,35,"(30,35]",NoHS,132.26706766917295,91.177366426052,1.4506568115942031,6891.020672485791,2019
+1995,35,"(30,35]",NoHS,132.26706766917295,91.177366426052,1.4506568115942031,6825.534079529255,2019
+1995,43,"(40,45]",College,16093.073861123396,624.3667483523127,25.775033509700172,388.55537713787834,2019
+1995,43,"(40,45]",College,16093.073861123396,624.3667483523127,25.775033509700172,346.64739309993803,2019
+1995,43,"(40,45]",College,16093.073861123396,624.3667483523127,25.775033509700172,344.41278708512937,2019
+1995,43,"(40,45]",College,16093.073861123396,624.3667483523127,25.775033509700172,352.1399943268772,2019
+1995,43,"(40,45]",College,16093.073861123396,624.3667483523127,25.775033509700172,349.61721546067463,2019
+1995,24,"(20,25]",HS,7.354621848739495,23.785399937230956,0.30920740740740743,5599.034249693659,2019
+1995,24,"(20,25]",HS,7.354621848739495,23.785399937230956,0.30920740740740743,5603.937916584534,2019
+1995,24,"(20,25]",HS,7.354621848739495,23.785399937230956,0.30920740740740743,5639.841789802408,2019
+1995,24,"(20,25]",HS,7.354621848739495,23.785399937230956,0.30920740740740743,5598.9649407240595,2019
+1995,24,"(20,25]",HS,7.354621848739495,23.785399937230956,0.30920740740740743,5570.801227074773,2019
+1995,39,"(35,40]",HS,64.66260946483857,65.40984982738514,0.9885760269360269,6993.612581285013,2019
+1995,39,"(35,40]",HS,60.79175586023883,65.40984982738514,0.9293975757575756,7074.277137297004,2019
+1995,39,"(35,40]",HS,60.79175586023883,65.40984982738514,0.9293975757575756,6986.546866913639,2019
+1995,39,"(35,40]",HS,53.05004865103936,65.40984982738514,0.8110406734006733,7222.1334444605045,2019
+1995,39,"(35,40]",HS,51.114621848739496,65.40984982738514,0.7814514478114477,7043.3210905684955,2019
+1995,60,"(55,60]",College,25660.46917293233,4856.185820517988,5.284078929705215,23.35143383199849,2019
+1995,60,"(55,60]",College,25669.17859354268,4856.185820517988,5.285872399092971,27.648165580847625,2019
+1995,60,"(55,60]",College,25734.983104820876,4856.185820517988,5.299423056689342,24.469450839909886,2019
+1995,60,"(55,60]",College,25945.94462627156,4856.185820517988,5.342864870748299,26.84193915322907,2019
+1995,60,"(55,60]",College,25549.18213180009,4856.185820517988,5.261162376417234,23.5331298087227,2019
+1995,58,"(55,60]",HS,678.6574082264485,386.5127489800031,1.7558474074074075,4735.8343114892805,2019
+1995,58,"(55,60]",HS,659.6902255639097,332.9955991212334,1.9810779100529101,4904.628491677789,2019
+1995,58,"(55,60]",HS,652.7420433436532,332.9955991212334,1.9602122222222222,4849.668635491767,2019
+1995,58,"(55,60]",HS,640.2391862007962,408.3160322557981,1.567999137001079,4600.001991847777,2019
+1995,58,"(55,60]",HS,658.9741176470588,368.67369902707986,1.7874183034647553,4862.291074703808,2019
+1995,26,"(25,30]",HS,15.868564352056612,55.499266520205566,0.2859238571428572,5018.960888694177,2019
+1995,26,"(25,30]",HS,16.412419283502874,55.499266520205566,0.2957231746031746,5071.998843711885,2019
+1995,26,"(25,30]",HS,16.993047324192833,55.499266520205566,0.3061850793650794,5025.958043054208,2019
+1995,26,"(25,30]",HS,18.909119858469705,55.499266520205566,0.3407093650793651,5104.950306460649,2019
+1995,26,"(25,30]",HS,16.973693056169836,55.499266520205566,0.3058363492063492,5033.521148031234,2019
+1995,38,"(35,40]",HS,984.7451570101725,164.5156828991808,5.9857220883534135,3540.9727693835243,2019
+1995,38,"(35,40]",HS,973.1325961963734,164.5156828991808,5.915135742971888,3686.246570950983,2019
+1995,38,"(35,40]",HS,709.9145510835913,164.5156828991808,4.3151785809906285,3633.7941740091437,2019
+1995,38,"(35,40]",HS,963.455462184874,164.5156828991808,5.856313788487283,3451.124101410348,2019
+1995,38,"(35,40]",HS,936.3594869526759,164.5156828991808,5.691612315930389,3659.734429547002,2019
+1995,66,"(65,70]",HS,5305.004865103937,991.0583307179566,5.352868444444446,388.55537713787834,2019
+1995,66,"(65,70]",HS,8846.835913312694,991.0583307179566,8.926655111111113,346.64739309993803,2019
+1995,66,"(65,70]",HS,8827.481645289696,991.0583307179566,8.9071262222222245,344.41278708512937,2019
+1995,66,"(65,70]",HS,7933.314462627156,991.0583307179566,8.004891555555556,352.1399943268772,2019
+1995,66,"(65,70]",HS,9230.050420168067,991.0583307179566,9.313327111111112,349.61721546067463,2019
+1995,83,"(80,85]",College,2696.049535603715,251.72881600236096,10.710134733158355,1268.8491600998536,2019
+1995,83,"(80,85]",College,2692.1786819991153,251.72881600236096,10.694757655293088,1068.369983438741,2019
+1995,83,"(80,85]",College,2699.920389208315,251.72881600236096,10.725511811023624,1076.9018727814953,2019
+1995,83,"(80,85]",College,2694.114108801415,251.72881600236096,10.702446194225722,1085.289693143574,2019
+1995,83,"(80,85]",College,2684.4369747899163,251.72881600236096,10.664003499562558,1047.693263643022,2019
+1995,65,"(60,65]",NoHS,315.4358602388324,25.76751659866687,12.24160888888889,8142.46829472414,2019
+1995,65,"(60,65]",NoHS,380.9887660327289,57.48138318164148,6.6280375478927205,8147.533050223203,2019
+1995,65,"(60,65]",NoHS,346.09302078726233,39.642333228718265,8.730389777777779,8067.867622970004,2019
+1995,65,"(60,65]",NoHS,203.54690137107477,23.785399937230956,8.557640481481483,8605.070158322906,2019
+1995,65,"(60,65]",NoHS,460.1477222467935,27.749633260102783,16.58211904761905,8271.983727790348,2019
+1995,35,"(30,35]",HS,150.5762052189297,101.08794973323158,1.4895564270152506,5647.421464598177,2019
+1995,35,"(30,35]",HS,150.5762052189297,101.08794973323158,1.4895564270152506,5569.724829837809,2019
+1995,35,"(30,35]",HS,150.5762052189297,101.08794973323158,1.4895564270152506,5565.023706400844,2019
+1995,35,"(30,35]",HS,150.5762052189297,101.08794973323158,1.4895564270152506,5624.544100929773,2019
+1995,35,"(30,35]",HS,150.5762052189297,101.08794973323158,1.4895564270152506,5585.196343218916,2019
+1995,59,"(55,60]",College,24826.31957540911,1847.3327284582713,13.439008140200285,25.789700558778968,2019
+1995,59,"(55,60]",College,20175.566386554623,810.6857145272886,24.887038250475413,29.006837610298703,2019
+1995,59,"(55,60]",College,24451.601592215833,1881.0287117026817,12.999058143074581,26.41760328863169,2019
+1995,59,"(55,60]",College,20866.339566563467,1952.3849115143746,10.687615666102651,31.32761253462964,2019
+1995,59,"(55,60]",College,23998.55688633348,2537.109326637969,9.45901567361111,25.195466542445313,2019
+1995,44,"(40,45]",HS,1074.9360459973464,218.03283275795047,4.930156767676768,1287.016030337191,2019
+1995,44,"(40,45]",HS,1074.9360459973464,218.03283275795047,4.930156767676768,1238.7365044507942,2019
+1995,44,"(40,45]",HS,1074.9360459973464,218.03283275795047,4.930156767676768,1340.1148996687016,2019
+1995,44,"(40,45]",HS,1074.9360459973464,218.03283275795047,4.930156767676768,1192.2198478726714,2019
+1995,44,"(40,45]",HS,1074.9360459973464,218.03283275795047,4.930156767676768,1297.4403126974642,2019
+1995,74,"(70,75]",HS,128.3768597965502,1.1892699968615479,107.94593333333334,9560.452230553374,2019
+1995,74,"(70,75]",HS,128.3768597965502,1.1892699968615479,107.94593333333334,9558.051699917029,2019
+1995,74,"(70,75]",HS,128.3768597965502,1.1892699968615479,107.94593333333334,9562.3696485883,2019
+1995,74,"(70,75]",HS,128.3768597965502,1.1892699968615479,107.94593333333334,9520.424716698584,2019
+1995,74,"(70,75]",HS,128.3768597965502,1.1892699968615479,107.94593333333334,9555.540253280098,2019
+1995,57,"(55,60]",College,11397.53489606369,301.28173253825884,37.830155847953215,2023.1310546586064,2019
+1995,57,"(55,60]",College,8504.071826625386,319.12078249118207,26.64844251207729,1829.161782063365,2019
+1995,57,"(55,60]",College,14169.453162317559,305.2459658611307,46.41978845598845,1805.978624359576,2019
+1995,57,"(55,60]",College,14343.254489164086,319.12078249118207,44.94616231884057,1836.604698698099,2019
+1995,57,"(55,60]",College,12472.470942061036,370.6558156885158,33.6497376114082,1818.636569393413,2019
+1995,46,"(45,50]",College,113478.35071207432,7056.335314711851,16.08176846067416,15.493080852566397,2019
+1995,46,"(45,50]",College,117497.99992923485,7095.977647940571,16.558394876474235,15.74695442583797,2019
+1995,46,"(45,50]",College,117016.11736399823,7135.619981169289,16.39887181111111,16.014187234236402,2019
+1995,46,"(45,50]",College,118860.36620964175,6838.3024819539005,17.381560193236716,15.155013242805222,2019
+1995,46,"(45,50]",College,117122.3722954445,7254.5469808554435,16.1446845136612,15.093381937043588,2019
+1995,21,"(20,25]",HS,265.90828836797874,16.055144957630898,16.562185459533605,4116.311330543375,2019
+1995,21,"(20,25]",HS,266.8179389650597,18.235473285210404,14.631807729468596,4187.47241224463,2019
+1995,21,"(20,25]",HS,317.17774436090224,19.424743282071947,16.32854240362812,4148.383083451427,2019
+1995,21,"(20,25]",HS,305.60389208314905,25.76751659866687,11.860044444444446,4185.754956202113,2019
+1995,21,"(20,25]",HS,301.53949579831936,49.55291653589783,6.085201777777779,4131.997711906225,2019
+1995,45,"(40,45]",NoHS,50.708182220256525,63.42773316594923,0.7994638888888889,5840.338344322328,2019
+1995,45,"(40,45]",NoHS,39.09562140645732,63.42773316594923,0.6163805555555555,5705.893908615763,2019
+1995,45,"(40,45]",NoHS,54.385493144626274,63.42773316594923,0.8574402777777778,5781.440640977179,2019
+1995,45,"(40,45]",NoHS,37.160194604157454,63.42773316594923,0.5858666666666666,5946.266545691289,2019
+1995,45,"(40,45]",NoHS,37.9343653250774,63.42773316594923,0.5980722222222222,5825.597148433405,2019
+1995,72,"(70,75]",NoHS,0,8.721313310318019,0,7632.974212945995,2019
+1995,72,"(70,75]",NoHS,0,8.324889978030837,0,7937.838253687429,2019
+1995,72,"(70,75]",NoHS,0,8.324889978030837,0,8017.609102682695,2019
+1995,72,"(70,75]",NoHS,0,9.712371641035974,0,7639.953584504014,2019
+1995,72,"(70,75]",NoHS,0,14.073028296194984,0,7626.299094693133,2019
+1995,32,"(30,35]",HS,0,43.606566551590085,0,5823.238966655781,2019
+1995,32,"(30,35]",HS,0,43.606566551590085,0,5791.435251215933,2019
+1995,32,"(30,35]",HS,0,43.606566551590085,0,5852.166907300673,2019
+1995,32,"(30,35]",HS,0,43.606566551590085,0,5813.090038369241,2019
+1995,32,"(30,35]",HS,0,43.606566551590085,0,5819.250092725814,2019
+1995,71,"(70,75]",NoHS,278.31437417072095,89.1952497646161,3.120282469135803,8903.141215842035,2019
+1995,71,"(70,75]",NoHS,278.31437417072095,89.1952497646161,3.120282469135803,9034.98630795534,2019
+1995,71,"(70,75]",NoHS,278.31437417072095,89.1952497646161,3.120282469135803,9126.022627432922,2019
+1995,71,"(70,75]",NoHS,278.31437417072095,89.1952497646161,3.120282469135803,9317.747439439614,2019
+1995,71,"(70,75]",NoHS,278.31437417072095,89.1952497646161,3.120282469135803,8994.531401789507,2019
+1995,54,"(50,55]",College,4247.100574966829,1544.0688792585765,2.750590101269434,31.185324938107264,2019
+1995,54,"(50,55]",College,3722.251534719151,4420.120155002088,0.8421154638764323,27.718393841393784,2019
+1995,54,"(50,55]",College,4759.795134896063,3845.3063231856722,1.237819495990836,28.816234421678093,2019
+1995,54,"(50,55]",College,6985.729500221141,2338.8976604943773,2.9867615065913378,27.850314891599083,2019
+1995,54,"(50,55]",College,5610.260380362672,4380.477821773369,1.2807416470588233,28.831041348917502,2019
+1995,72,"(70,75]",College,731.2042459088899,101.08794973323158,7.233347276688453,3850.3494981248577,2019
+1995,72,"(70,75]",College,731.2042459088899,101.08794973323158,7.233347276688453,4002.4924589704387,2019
+1995,72,"(70,75]",College,731.2042459088899,101.08794973323158,7.233347276688453,3956.942887096232,2019
+1995,72,"(70,75]",College,731.2042459088899,101.08794973323158,7.233347276688453,3750.5369935613076,2019
+1995,72,"(70,75]",College,731.2042459088899,101.08794973323158,7.233347276688453,3979.1551552911615,2019
+1995,57,"(55,60]",HS,146.70535161432994,55.499266520205566,2.6433746031746033,5712.823341263224,2019
+1995,57,"(55,60]",HS,149.02786377708978,91.177366426052,1.6344830917874398,5593.601733936427,2019
+1995,57,"(55,60]",HS,150.96329057938968,59.46349984307739,2.5387555555555563,5642.449359953283,2019
+1995,57,"(55,60]",HS,144.3828394515701,51.53503319733374,2.801644444444445,5630.283247034484,2019
+1995,57,"(55,60]",HS,149.02786377708978,67.39196648882105,2.2113594771241827,5570.454925690666,2019
+1995,62,"(60,65]",HS,532.9004157452454,33.69598324441053,15.814953725490192,4018.1814336210455,2019
+1995,62,"(60,65]",HS,482.5793188854489,33.69598324441053,14.321568104575162,4176.945767929863,2019
+1995,62,"(60,65]",HS,482.5793188854489,33.69598324441053,14.321568104575162,4128.980960599778,2019
+1995,62,"(60,65]",HS,517.4170013268465,33.69598324441053,15.355450457516339,3914.361490996911,2019
+1995,62,"(60,65]",HS,556.106183104821,33.69598324441053,16.503634248366016,4139.087404152831,2019
+1995,63,"(60,65]",College,632.6910216718267,186.31896617497586,3.3957413711583926,4658.368222716416,2019
+1995,63,"(60,65]",College,682.9540557275542,186.31896617497586,3.6655101182033096,4841.646223301972,2019
+1995,63,"(60,65]",College,682.9540557275542,186.31896617497586,3.6655101182033096,4788.600555086958,2019
+1995,63,"(60,65]",College,683.5346837682441,186.31896617497586,3.668626430260047,4541.083039471348,2019
+1995,63,"(60,65]",College,683.5346837682441,186.31896617497586,3.668626430260047,4797.011008305077,2019
+1995,72,"(70,75]",HS,113.14505086245025,8.324889978030837,13.591176719576717,8384.212492153572,2019
+1995,72,"(70,75]",HS,77.76544891640867,23.785399937230956,3.269461481481482,8066.85529651915,2019
+1995,72,"(70,75]",HS,100.50671384343211,27.749633260102783,3.621911428571429,8387.475777171123,2019
+1995,72,"(70,75]",HS,123.40281291463954,27.749633260102783,4.447006984126984,8352.031490449868,2019
+1995,72,"(70,75]",HS,97.02294559929234,8.324889978030837,11.654561904761902,8377.066355982412,2019
+1995,33,"(30,35]",HS,6.890119416187527,53.517149858769656,0.12874600823045268,6775.597207617997,2019
+1995,33,"(30,35]",HS,6.890119416187527,53.517149858769656,0.12874600823045268,6847.198446975186,2019
+1995,33,"(30,35]",HS,6.890119416187527,53.517149858769656,0.12874600823045268,6785.043366015026,2019
+1995,33,"(30,35]",HS,6.890119416187527,53.517149858769656,0.12874600823045268,6891.682921737755,2019
+1995,33,"(30,35]",HS,6.890119416187527,53.517149858769656,0.12874600823045268,6795.253557745887,2019
+1995,86,"(85,90]",HS,102.96470588235294,37.660216567282355,2.7340444444444443,9527.316645675555,2019
+1995,86,"(85,90]",HS,102.96470588235294,37.660216567282355,2.7340444444444443,9414.912501724966,2019
+1995,86,"(85,90]",HS,102.96470588235294,37.660216567282355,2.7340444444444443,9729.223845280863,2019
+1995,86,"(85,90]",HS,102.96470588235294,37.660216567282355,2.7340444444444443,9766.820951123907,2019
+1995,86,"(85,90]",HS,102.96470588235294,37.660216567282355,2.7340444444444443,9652.01584671398,2019
+1995,63,"(60,65]",College,10194.28005307386,2338.8976604943773,4.358583201506591,77.32657701167389,2019
+1995,63,"(60,65]",College,10064.606457319771,2279.4341606513003,4.4153968695652175,69.72025247345113,2019
+1995,63,"(60,65]",College,10223.31145510836,2160.5071609651454,4.731903527013253,71.41753314302709,2019
+1995,63,"(60,65]",College,9836.226094648386,2279.4341606513003,4.315205178743962,63.05777437791012,2019
+1995,63,"(60,65]",College,10110.863157894737,2041.5801612789908,4.952469341963322,70.69838055826355,2019
+1995,74,"(70,75]",College,2812.1751437417074,267.5857492938483,10.509435390946502,1048.663923817165,2019
+1995,74,"(70,75]",College,2812.1751437417074,267.5857492938483,10.509435390946502,883.4601830682961,2019
+1995,74,"(70,75]",College,2812.1751437417074,267.5857492938483,10.509435390946502,902.7530348993707,2019
+1995,74,"(70,75]",College,2812.1751437417074,267.5857492938483,10.509435390946502,900.7074505382989,2019
+1995,74,"(70,75]",College,2812.1751437417074,267.5857492938483,10.509435390946502,868.2139939195467,2019
+1995,88,"(85,90]",College,3029.504219371959,186.31896617497586,16.2597736643026,2221.4835310605804,2019
+1995,88,"(85,90]",College,3031.439646174259,186.31896617497586,16.27016137115839,2091.511688738291,2019
+1995,88,"(85,90]",College,3031.439646174259,186.31896617497586,16.27016137115839,1968.8953776587157,2019
+1995,88,"(85,90]",College,3035.310499778859,186.31896617497586,16.290936784869977,1973.6843797778442,2019
+1995,88,"(85,90]",College,3021.76251216276,186.31896617497586,16.21822283687943,2217.755115589546,2019
+1995,80,"(75,80]",HS,59.61114551083592,11.694488302471887,5.097370998116761,8714.311333069762,2019
+1995,80,"(75,80]",HS,59.61114551083592,13.28018163162062,4.488729684908789,8472.194238956132,2019
+1995,80,"(75,80]",HS,59.61114551083592,13.47839329776421,4.422718954248366,8759.719099745798,2019
+1995,80,"(75,80]",HS,59.61114551083592,11.694488302471887,5.097370998116761,8433.375574717655,2019
+1995,80,"(75,80]",HS,59.61114551083592,12.487334967046253,4.773728395061728,8547.112750345541,2019
+1995,63,"(60,65]",NoHS,-0.9870676691729324,25.76751659866687,-0.038306666666666676,7556.761629079777,2019
+1995,63,"(60,65]",NoHS,-1.6064042459088899,25.76751659866687,-0.06234222222222223,7394.854866849433,2019
+1995,63,"(60,65]",NoHS,-2.2257408226448474,25.76751659866687,-0.08637777777777779,7514.757519175064,2019
+1995,63,"(60,65]",NoHS,-0.4451481645289695,25.76751659866687,-0.017275555555555558,7278.1187218941905,2019
+1995,63,"(60,65]",NoHS,-0.6193365767359575,25.76751659866687,-0.02403555555555556,7254.822137927411,2019
+1995,43,"(40,45]",College,608.8852720035383,134.7839329776421,4.517491503267974,4227.7328858097735,2019
+1995,43,"(40,45]",College,411.08465280849185,134.7839329776421,3.0499529411764708,4385.50604218557,2019
+1995,43,"(40,45]",College,283.9271118973905,134.7839329776421,2.1065352941176467,7466.117925481189,2019
+1995,43,"(40,45]",College,316.4422821760283,134.7839329776421,2.3477745098039215,7550.728326139071,2019
+1995,43,"(40,45]",College,185.60743034055727,134.7839329776421,1.3770738562091502,7483.652170009331,2019
+1995,47,"(45,50]",HS,391.9239274657231,89.1952497646161,4.394,4387.290977983592,2019
+1995,47,"(45,50]",HS,395.79478107032287,89.1952497646161,4.437397530864198,4571.752344506165,2019
+1995,47,"(45,50]",HS,403.53648827952236,89.1952497646161,4.524192592592593,4517.40751843096,2019
+1995,47,"(45,50]",HS,401.6010614772225,89.1952497646161,4.502493827160494,4284.222190642578,2019
+1995,47,"(45,50]",HS,403.53648827952236,89.1952497646161,4.524192592592593,4532.020036237656,2019
+1995,54,"(50,55]",College,9366.517363998231,503.4576320047219,18.604380524934385,276.5049146986306,2019
+1995,54,"(50,55]",College,3873.234179566564,332.9955991212334,11.631487592592595,246.55326733645933,2019
+1995,54,"(50,55]",College,11736.621671826626,499.4933986818502,23.49705061728395,248.90995542343882,2019
+1995,54,"(50,55]",College,8304.52932330827,1203.1448134915995,6.902352260662639,250.32936675001466,2019
+1995,54,"(50,55]",College,2819.35557717824,459.85106545313187,6.131018908045977,172.88522592553065,2019
+1995,67,"(65,70]",NoHS,10.064219371959311,27.749633260102783,0.36267936507936516,8920.392781293373,2019
+1995,67,"(65,70]",NoHS,10.064219371959311,27.749633260102783,0.36267936507936516,8792.127964431565,2019
+1995,67,"(65,70]",NoHS,10.064219371959311,27.749633260102783,0.36267936507936516,8828.73987101902,2019
+1995,67,"(65,70]",NoHS,10.064219371959311,27.749633260102783,0.36267936507936516,9277.610382299365,2019
+1995,67,"(65,70]",NoHS,10.064219371959311,27.749633260102783,0.36267936507936516,9031.044017178214,2019
+1995,43,"(40,45]",College,805.0601326846528,118.92699968615479,6.769363851851852,3449.449075372322,2019
+1995,43,"(40,45]",College,805.0601326846528,118.92699968615479,6.769363851851852,3590.388766769856,2019
+1995,43,"(40,45]",College,805.0601326846528,118.92699968615479,6.769363851851852,3541.1875969555404,2019
+1995,43,"(40,45]",College,805.0601326846528,118.92699968615479,6.769363851851852,3364.2012583179226,2019
+1995,43,"(40,45]",College,805.0601326846528,118.92699968615479,6.769363851851852,3564.0071639289026,2019
+1995,44,"(40,45]",HS,4671.0171074745695,79.28466645743653,58.9145078888889,497.3064128495474,2019
+1995,44,"(40,45]",HS,4670.630022114109,79.28466645743653,58.90962566666667,396.02755118012135,2019
+1995,44,"(40,45]",HS,4677.249181777975,79.28466645743653,58.99311166666667,386.0544426977616,2019
+1995,44,"(40,45]",HS,6315.723449800973,79.28466645743653,79.658826,386.3493422229228,2019
+1995,44,"(40,45]",HS,6315.781512605043,79.28466645743653,79.65955833333335,396.66586321557065,2019
+1995,39,"(35,40]",HS,16.78015037593985,69.37408315025698,0.24187923809523806,10776.503103399735,2019
+1995,39,"(35,40]",HS,21.03808934099956,69.37408315025698,0.303255746031746,10784.721893010515,2019
+1995,39,"(35,40]",HS,13.683467492260062,69.37408315025698,0.19724177777777774,10478.450643885955,2019
+1995,39,"(35,40]",HS,12.522211410880141,69.37408315025698,0.1805027301587301,10765.533054409882,2019
+1995,39,"(35,40]",HS,24.134772224679345,69.37408315025698,0.3478932063492063,10664.36037022802,2019
+1995,37,"(35,40]",College,334.63529411764705,85.23101644174427,3.9262149870801033,4552.679268356546,2019
+1995,37,"(35,40]",College,334.44175143741705,85.23101644174427,3.923944186046511,4739.459870102507,2019
+1995,37,"(35,40]",College,335.02237947810704,85.23101644174427,3.9307565891472867,4672.021074131677,2019
+1995,37,"(35,40]",College,334.44175143741705,85.23101644174427,3.923944186046511,4437.159552557617,2019
+1995,37,"(35,40]",College,334.63529411764705,85.23101644174427,3.9262149870801033,4705.372831203686,2019
+1995,70,"(65,70]",NoHS,9894.288898717381,154.60509959200127,63.997170370370355,2221.4835310605804,2019
+1995,70,"(65,70]",NoHS,11882.359310039805,156.58721625343713,75.88332939521801,2091.511688738291,2019
+1995,70,"(65,70]",NoHS,7937.959486952675,162.53356623774488,48.83889322493225,1968.8953776587157,2019
+1995,70,"(65,70]",NoHS,7615.323839009288,168.47991622205262,45.200187712418305,1973.6843797778442,2019
+1995,70,"(65,70]",NoHS,7158.3695709862895,170.46203288348855,41.993923514211886,2217.755115589546,2019
+1995,29,"(25,30]",College,244.05731977001327,89.1952497646161,2.7362143209876546,4773.135206561598,2019
+1995,29,"(25,30]",College,244.05731977001327,89.1952497646161,2.7362143209876546,4700.84591939687,2019
+1995,29,"(25,30]",College,244.05731977001327,89.1952497646161,2.7362143209876546,4729.934338070314,2019
+1995,29,"(25,30]",College,244.05731977001327,89.1952497646161,2.7362143209876546,4671.3259447254395,2019
+1995,29,"(25,30]",College,244.05731977001327,89.1952497646161,2.7362143209876546,4724.774725743412,2019
+1995,51,"(50,55]",College,1156.8045997346308,29.731749921538697,38.9080562962963,3512.4441870773385,2019
+1995,51,"(50,55]",College,1156.8045997346308,29.731749921538697,38.9080562962963,3658.7286170962498,2019
+1995,51,"(50,55]",College,1156.8045997346308,29.731749921538697,38.9080562962963,3615.0788913299234,2019
+1995,51,"(50,55]",College,1156.8045997346308,29.731749921538697,38.9080562962963,3430.5457827680902,2019
+1995,51,"(50,55]",College,1156.8045997346308,29.731749921538697,38.9080562962963,3624.96504353788,2019
+1995,33,"(30,35]",NoHS,0,13.874816630051392,0,6636.715978351933,2019
+1995,33,"(30,35]",NoHS,0,13.874816630051392,0,6676.825205151581,2019
+1995,33,"(30,35]",NoHS,0,13.874816630051392,0,6692.665811354318,2019
+1995,33,"(30,35]",NoHS,0,13.874816630051392,0,6774.314474482116,2019
+1995,33,"(30,35]",NoHS,0,13.874816630051392,0,6708.102181946626,2019
+1995,48,"(45,50]",HS,72417.86466165414,6303.130983366205,11.489189238294896,16.170793352358178,2019
+1995,48,"(45,50]",HS,72415.92923485184,6243.667483523127,11.598300105820105,16.42289862910578,2019
+1995,48,"(45,50]",HS,72543.66740380363,5906.707651079021,12.281574049217003,16.378091534893976,2019
+1995,48,"(45,50]",HS,70484.37328615657,6124.740483836972,11.508140381157856,15.726655851175858,2019
+1995,48,"(45,50]",HS,70615.98230871296,6223.846316908767,11.34603566878981,15.701900035497545,2019
+1995,80,"(75,80]",NoHS,115.60304290137108,73.3383164731288,1.576298018018018,8583.738640592097,2019
+1995,80,"(75,80]",NoHS,127.21560371517027,73.3383164731288,1.7346403603603602,8429.239180962133,2019
+1995,80,"(75,80]",NoHS,115.60304290137108,73.3383164731288,1.576298018018018,8646.916841595787,2019
+1995,80,"(75,80]",NoHS,111.73218929677134,73.3383164731288,1.523517237237237,8676.763162209498,2019
+1995,80,"(75,80]",NoHS,109.79676249447148,73.3383164731288,1.4971268468468468,8596.478382528208,2019
+1995,78,"(75,80]",HS,482.11481645289695,37.660216567282355,12.80170058479532,12564.54032427152,2019
+1995,78,"(75,80]",HS,1200.1581601061478,39.642333228718265,30.27466,7172.923674442607,2019
+1995,78,"(75,80]",HS,544.0484741264928,29.731749921538697,18.298568888888894,7132.390935218298,2019
+1995,78,"(75,80]",HS,550.2418398938522,49.55291653589783,11.104126222222222,6759.81505336174,2019
+1995,78,"(75,80]",HS,888.5544449358691,53.517149858769656,16.603172016460906,7171.677629218965,2019
+1995,44,"(40,45]",College,48655.081468376826,7432.937480384675,6.545875247407407,332.3043810491016,2019
+1995,44,"(40,45]",College,48621.211499336576,7274.368147469801,6.683908555858311,203.52311590468244,2019
+1995,44,"(40,45]",College,42477.199115435644,8265.42647818776,5.1391418491873155,321.7670471591364,2019
+1995,44,"(40,45]",College,52272.39416187528,7095.977647940571,7.366482358783363,198.036886649606,2019
+1995,44,"(40,45]",College,48422.830252100845,6540.984982738513,7.40298752861953,189.6731943993438,2019
+1995,43,"(40,45]",HS,274.6757717823972,138.74816630051396,1.979671365079365,11322.169233789436,2019
+1995,43,"(40,45]",HS,278.5659796550199,138.74816630051396,2.007709269841269,11566.305878799258,2019
+1995,43,"(40,45]",HS,276.03057054400705,138.74816630051396,1.989435809523809,11225.596705748576,2019
+1995,43,"(40,45]",HS,274.6564175143742,138.74816630051396,1.9795318730158729,11758.340895534824,2019
+1995,43,"(40,45]",HS,276.746678460858,138.74816630051396,1.9945970158730153,11491.275948470156,2019
+1995,65,"(60,65]",College,7882.21919504644,227.94341606513,34.579718647343,1092.407180150381,2019
+1995,65,"(60,65]",College,5747.056346749226,227.94341606513,25.21264463768116,964.908984971262,2019
+1995,65,"(60,65]",College,5731.379389650598,227.94341606513,25.14386898550725,1032.2410490468737,2019
+1995,65,"(60,65]",College,6006.016452896948,227.94341606513,26.34871652173913,975.513788440541,2019
+1995,65,"(60,65]",College,5714.3476337903585,227.94341606513,25.06914975845411,982.7823381982085,2019
+1995,57,"(55,60]",College,5036.425687748783,743.2937480384675,6.775821404444444,1647.5198625723442,2019
+1995,57,"(55,60]",College,4382.2127200353825,743.2937480384675,5.895667401481481,1473.2108955724032,2019
+1995,57,"(55,60]",College,4097.685625829279,743.2937480384675,5.512875140740741,1475.5943073400583,2019
+1995,57,"(55,60]",College,5907.329040247678,743.2937480384675,7.94750266074074,1480.3723227490946,2019
+1995,57,"(55,60]",College,4531.298646616542,743.2937480384675,6.096242109629631,1478.8680098955867,2019
+1995,48,"(45,50]",College,306.57160548429897,152.62298293056534,2.008685714285714,2159.5657980736446,2019
+1995,48,"(45,50]",College,306.57160548429897,152.62298293056534,2.008685714285714,2152.065403231475,2019
+1995,48,"(45,50]",College,306.57160548429897,152.62298293056534,2.008685714285714,2071.030044550573,2019
+1995,48,"(45,50]",College,306.57160548429897,152.62298293056534,2.008685714285714,2165.15290479083,2019
+1995,48,"(45,50]",College,306.57160548429897,152.62298293056534,2.008685714285714,2121.7833219944932,2019
+1995,75,"(70,75]",HS,1164.93339230429,57.48138318164148,20.266272796934864,996.6732010511165,2019
+1995,75,"(70,75]",HS,1238.479610791685,57.48138318164148,21.54575172413793,982.6850679605884,2019
+1995,75,"(70,75]",HS,1037.195223352499,57.48138318164148,18.04401992337165,1000.5482066509958,2019
+1995,75,"(70,75]",HS,1037.195223352499,57.48138318164148,18.04401992337165,944.0205699592873,2019
+1995,75,"(70,75]",HS,1124.289429455993,57.48138318164148,19.559192337164752,1007.2405752070939,2019
+1995,70,"(65,70]",College,17121.75514197258,1871.1181283955023,9.15054740913371,266.3766762057645,2019
+1995,70,"(65,70]",College,17121.75514197258,2239.791827422582,7.644351109931169,297.8242594016659,2019
+1995,70,"(65,70]",College,17121.75514197258,1777.9586453080142,9.63000752979066,258.045434803303,2019
+1995,70,"(65,70]",College,17121.75514197258,1637.2283623460644,10.457768467581383,325.94801664363706,2019
+1995,70,"(65,70]",College,17121.75514197258,2239.791827422582,7.644351109931169,253.52700021357387,2019
+1995,46,"(45,50]",HS,1291.8973905351613,43.606566551590085,29.626212121212124,4485.8604959738705,2019
+1995,46,"(45,50]",HS,565.3381689517912,18.235473285210404,31.002111111111105,4673.965014008826,2019
+1995,46,"(45,50]",HS,1168.9977885891199,19.622954948215543,59.57297418630751,4616.093123375558,2019
+1995,46,"(45,50]",HS,1026.1632905793897,31.713866582974614,32.35692777777778,4379.8301493864155,2019
+1995,46,"(45,50]",HS,582.5634674922601,77.30254979600063,7.536148148148147,4629.468965274455,2019
+1995,53,"(50,55]",College,403.2074657231314,77.30254979600063,5.215965925925926,6226.92188520954,2019
+1995,53,"(50,55]",College,410.94917293233084,77.30254979600063,5.316114074074073,6169.362880480588,2019
+1995,53,"(50,55]",College,348.6284298982751,77.30254979600063,4.509921481481481,6201.386660610899,2019
+1995,53,"(50,55]",College,349.01551525873504,77.30254979600063,4.514928888888887,6500.988844360003,2019
+1995,53,"(50,55]",College,353.66053958425476,77.30254979600063,4.575017777777777,6297.427222559177,2019
+1995,29,"(25,30]",HS,303.97813356921716,69.37408315025698,4.381724698412698,5920.167689567919,2019
+1995,29,"(25,30]",HS,303.97813356921716,69.37408315025698,4.381724698412698,5830.506558329444,2019
+1995,29,"(25,30]",HS,303.97813356921716,69.37408315025698,4.381724698412698,5866.5852170974595,2019
+1995,29,"(25,30]",HS,309.78441397611675,69.37408315025698,4.465419936507935,5793.892636308876,2019
+1995,29,"(25,30]",HS,303.97813356921716,69.37408315025698,4.381724698412698,5860.185697941491,2019
+1995,46,"(45,50]",College,997.3254312251216,160.55144957630895,6.211874348422497,4785.439113345088,2019
+1995,46,"(45,50]",College,1049.194869526758,184.33684951353993,5.691726164874552,4984.740567204883,2019
+1995,46,"(45,50]",College,1057.3236620964176,164.5156828991808,6.426886746987952,4925.271122612006,2019
+1995,46,"(45,50]",College,1023.4536930561698,164.5156828991808,6.221009906291833,4673.858741835149,2019
+1995,46,"(45,50]",College,1086.5486068111456,152.62298293056534,7.119167676767677,4938.740256052047,2019
+1995,63,"(60,65]",HS,771.2675807164972,293.3532658925152,2.6291426426426425,1668.5544208288488,2019
+1995,63,"(60,65]",HS,771.2675807164972,293.3532658925152,2.6291426426426425,1416.7366933624833,2019
+1995,63,"(60,65]",HS,771.2675807164972,293.3532658925152,2.6291426426426425,1409.3014011269029,2019
+1995,63,"(60,65]",HS,771.2675807164972,293.3532658925152,2.6291426426426425,1429.497959945573,2019
+1995,63,"(60,65]",HS,771.2675807164972,293.3532658925152,2.6291426426426425,1374.6653732560642,2019
+1995,63,"(60,65]",HS,280.3272180451128,45.588683213026,6.149052753623189,6545.9434023809235,2019
+1995,63,"(60,65]",HS,267.7469438301636,45.588683213026,5.873101062801932,6409.335310850207,2019
+1995,63,"(60,65]",HS,303.16525431225125,45.588683213026,6.65001120772947,6465.306548913436,2019
+1995,63,"(60,65]",HS,278.19824856258293,45.588683213026,6.102353236714976,6451.366211214175,2019
+1995,63,"(60,65]",HS,308.0038213180009,45.588683213026,6.756146473429953,6382.812926440363,2019
+1995,54,"(50,55]",College,847913.4239363114,44617.44604892241,19.004077978972308,2.8105880616522616,2019
+1995,54,"(50,55]",College,326561.71927465725,45331.00804703934,7.203936849050187,2.243383281743868,2019
+1995,54,"(50,55]",College,446471.8416275984,42536.223554414704,10.496273630319973,3.0383781419960103,2019
+1995,54,"(50,55]",College,340463.88999557716,47194.1977087891,7.214104837556581,2.1023901664096862,2019
+1995,54,"(50,55]",College,288155.7678549315,49493.45303605476,5.82209868535576,2.2997107014584666,2019
+1995,72,"(70,75]",HS,2351.5435647943386,107.03429971753931,21.97,5181.283761256745,2019
+1995,72,"(70,75]",HS,2351.5435647943386,107.03429971753931,21.97,4245.519139467034,2019
+1995,72,"(70,75]",HS,2351.5435647943386,107.03429971753931,21.97,4378.389653956008,2019
+1995,72,"(70,75]",HS,2351.5435647943386,107.03429971753931,21.97,4282.664757630822,2019
+1995,72,"(70,75]",HS,2399.929234851835,107.03429971753931,22.42205761316872,4323.681883920706,2019
+1995,43,"(40,45]",College,86185.02000884565,1928.5995115771436,44.687878168322484,26.68744854250756,2019
+1995,43,"(40,45]",College,162060.4453003096,2774.9633260102787,58.40093228666667,28.823679097754262,2019
+1995,43,"(40,45]",College,66852.33005926582,2319.0764938800185,28.827134523456795,28.199897088622777,2019
+1995,43,"(40,45]",College,154661.58153029633,2378.5399937230964,65.02374647407406,24.916089990581106,2019
+1995,43,"(40,45]",College,141566.0192835029,4737.258820831833,29.883530674105067,44.90628171283181,2019
+1995,24,"(20,25]",HS,2.128969482529854,49.55291653589783,0.04296355555555555,7463.206261794441,2019
+1995,24,"(20,25]",HS,2.128969482529854,79.28466645743653,0.026852222222222222,7599.738919924215,2019
+1995,24,"(20,25]",HS,2.128969482529854,75.32043313456471,0.02826549707602339,7504.996393239022,2019
+1995,24,"(20,25]",HS,2.128969482529854,67.39196648882105,0.03159084967320261,7611.420394163458,2019
+1995,24,"(20,25]",HS,2.128969482529854,59.46349984307739,0.03580296296296297,7458.5728268067805,2019
+1995,31,"(30,35]",HS,76.33323308270677,128.8375829933344,0.5924764444444444,5454.313055427473,2019
+1995,31,"(30,35]",HS,76.33323308270677,233.88976604943778,0.326364143126177,5454.921475767641,2019
+1995,31,"(30,35]",HS,76.33323308270677,140.73028296194985,0.5424080125195618,5491.119086778353,2019
+1995,31,"(30,35]",HS,76.33323308270677,95.14159974892382,0.8023118518518519,5526.019373631941,2019
+1995,31,"(30,35]",HS,76.33323308270677,51.53503319733374,1.4811911111111113,5489.679812409869,2019
+1995,53,"(50,55]",College,2391.413356921716,170.46203288348855,14.029008785529715,10.55899465686371,2019
+1995,53,"(50,55]",College,2391.413356921716,170.46203288348855,14.029008785529715,8.885114226505129,2019
+1995,53,"(50,55]",College,2391.413356921716,170.46203288348855,14.029008785529715,9.297733248097757,2019
+1995,53,"(50,55]",College,2391.413356921716,170.46203288348855,14.029008785529715,8.183325742185618,2019
+1995,53,"(50,55]",College,2391.413356921716,170.46203288348855,14.029008785529715,8.918229208555854,2019
+1995,42,"(40,45]",HS,601.0467934542238,81.26678311887244,7.395971273712738,4008.5618567600586,2019
+1995,42,"(40,45]",HS,606.8143653250775,81.26678311887244,7.46694211382114,3975.288465008708,2019
+1995,42,"(40,45]",HS,601.6274214949137,67.39196648882105,8.927286928104575,3956.48246267736,2019
+1995,42,"(40,45]",HS,610.3368421052631,75.32043313456471,8.103204093567252,3884.613560732671,2019
+1995,42,"(40,45]",HS,616.2398938522778,75.32043313456471,8.181576608187134,3960.581600058196,2019
+1995,56,"(55,60]",College,1041.455097744361,178.3904995292322,5.838063688888889,7400.143724838215,2019
+1995,56,"(55,60]",College,1041.455097744361,178.3904995292322,5.838063688888889,7499.226228544413,2019
+1995,56,"(55,60]",College,1041.455097744361,178.3904995292322,5.838063688888889,7389.188202927876,2019
+1995,56,"(55,60]",College,1041.455097744361,178.3904995292322,5.838063688888889,7233.326592649745,2019
+1995,56,"(55,60]",College,1041.455097744361,178.3904995292322,5.838063688888889,7390.209497859652,2019
+1995,36,"(35,40]",HS,-4.064396284829722,37.660216567282355,-0.10792280701754386,4612.929639156488,2019
+1995,36,"(35,40]",HS,-4.064396284829722,37.660216567282355,-0.10792280701754386,4574.63964376918,2019
+1995,36,"(35,40]",HS,-4.064396284829722,37.660216567282355,-0.10792280701754386,4552.998274957067,2019
+1995,36,"(35,40]",HS,-4.064396284829722,37.660216567282355,-0.10792280701754386,4470.293754043862,2019
+1995,36,"(35,40]",HS,-4.064396284829722,37.660216567282355,-0.10792280701754386,4557.715436122273,2019
+1995,28,"(25,30]",College,63.520707651481644,126.85546633189846,0.5007329166666666,6419.341891946056,2019
+1995,28,"(25,30]",College,64.48842105263158,126.85546633189846,0.5083613888888888,6451.753963332385,2019
+1995,28,"(25,30]",College,61.00465280849182,126.85546633189846,0.4808988888888889,6487.569312770118,2019
+1995,28,"(25,30]",College,62.940079610791685,126.85546633189846,0.4961558333333333,6533.230012048705,2019
+1995,28,"(25,30]",College,61.58528084918178,126.85546633189846,0.4854759722222222,6517.161925518671,2019
+1995,30,"(25,30]",HS,32.70871295886776,57.48138318164148,0.569031417624521,7611.805204692665,2019
+1995,30,"(25,30]",HS,32.70871295886776,57.48138318164148,0.569031417624521,7570.233205312284,2019
+1995,30,"(25,30]",HS,32.70871295886776,57.48138318164148,0.569031417624521,7649.618155598966,2019
+1995,30,"(25,30]",HS,32.70871295886776,57.48138318164148,0.569031417624521,7598.539105603154,2019
+1995,30,"(25,30]",HS,32.70871295886776,57.48138318164148,0.569031417624521,7606.591176638028,2019
+1995,46,"(45,50]",HS,46.46959752321981,83.24889978030835,0.5582007407407408,9140.667175207458,2019
+1995,46,"(45,50]",HS,46.46959752321981,83.24889978030835,0.5582007407407408,9101.788578441137,2019
+1995,46,"(45,50]",HS,46.46959752321981,83.24889978030835,0.5582007407407408,9048.932481936014,2019
+1995,46,"(45,50]",HS,46.46959752321981,83.24889978030835,0.5582007407407408,9515.01997368824,2019
+1995,46,"(45,50]",HS,46.46959752321981,83.24889978030835,0.5582007407407408,9178.351221697518,2019
+1995,36,"(35,40]",College,44.99867315347191,140.73028296194985,0.31975117370892014,5902.339790192642,2019
+1995,36,"(35,40]",College,44.99867315347191,140.73028296194985,0.31975117370892014,5821.136015729386,2019
+1995,36,"(35,40]",College,44.99867315347191,140.73028296194985,0.31975117370892014,5816.222688807612,2019
+1995,36,"(35,40]",College,44.99867315347191,140.73028296194985,0.31975117370892014,5878.429767765382,2019
+1995,36,"(35,40]",College,44.99867315347191,140.73028296194985,0.31975117370892014,5837.305896021875,2019
+1995,22,"(20,25]",HS,7.74170720919947,73.3383164731288,0.10556156156156156,4894.375933161411,2019
+1995,22,"(20,25]",HS,7.74170720919947,73.3383164731288,0.10556156156156156,4880.251326618899,2019
+1995,22,"(20,25]",HS,7.74170720919947,69.37408315025698,0.11159365079365079,4908.053829927212,2019
+1995,22,"(20,25]",HS,7.74170720919947,63.42773316594923,0.12205555555555557,4875.864446449754,2019
+1995,22,"(20,25]",HS,7.74170720919947,65.40984982738514,0.11835690235690235,4853.874207068027,2019
+1995,51,"(50,55]",College,399.29596815568334,128.8375829933344,3.0992196444444438,3057.6021508393433,2019
+1995,51,"(50,55]",College,361.24741264927025,128.8375829933344,2.8038977777777774,5164.535583217078,2019
+1995,51,"(50,55]",College,337.92551968155686,128.8375829933344,2.6228799999999994,5204.320079998211,2019
+1995,51,"(50,55]",College,314.87458646616545,128.8375829933344,2.443965333333333,5394.023172542267,2019
+1995,51,"(50,55]",College,387.64663423264045,128.8375829933344,3.008800888888888,3137.6104898056697,2019
+1995,52,"(50,55]",HS,48.05664750110571,6.937408315025696,6.927175873015874,7043.979955673029,2019
+1995,52,"(50,55]",HS,52.17910659000442,7.5320433134564695,6.9276163742690064,7081.481334422834,2019
+1995,52,"(50,55]",HS,34.66349402919062,7.730254979600061,4.484133333333333,7096.059390709104,2019
+1995,52,"(50,55]",HS,53.901636444051306,7.9284666457436535,6.798494444444445,7069.149097132397,2019
+1995,52,"(50,55]",HS,30.541034940291905,8.324889978030837,3.668641269841269,7076.634037145735,2019
+1995,67,"(65,70]",College,573.0798761609907,97.12371641035975,5.900514285714285,4261.866475083787,2019
+1995,67,"(65,70]",College,573.0798761609907,97.12371641035975,5.900514285714285,4429.977398897452,2019
+1995,67,"(65,70]",College,573.0798761609907,97.12371641035975,5.900514285714285,4379.546406681274,2019
+1995,67,"(65,70]",College,573.0798761609907,97.12371641035975,5.900514285714285,4152.479928818909,2019
+1995,67,"(65,70]",College,573.0798761609907,97.12371641035975,5.900514285714285,4436.476221520074,2019
+1995,57,"(55,60]",HS,784.1575232198143,144.69451628482167,5.419400426179604,3517.894915726253,2019
+1995,57,"(55,60]",HS,785.4929677134012,144.69451628482167,5.428629832572298,3657.3037295136382,2019
+1995,57,"(55,60]",HS,784.4671915081822,144.69451628482167,5.4215405783866055,3615.581121571163,2019
+1995,57,"(55,60]",HS,784.1381689517913,144.69451628482167,5.419266666666667,3428.200461835321,2019
+1995,57,"(55,60]",HS,784.3123573639982,144.69451628482167,5.420470502283105,3622.5199469505087,2019
+1995,41,"(40,45]",HS,269.5081822202566,83.24889978030835,3.2373783068783077,8719.319025366818,2019
+1995,41,"(40,45]",HS,267.0888987173817,81.26678311887244,3.2865691056910573,8599.359544757872,2019
+1995,41,"(40,45]",HS,267.0888987173817,122.89123300902662,2.1733763440860216,8592.10125966591,2019
+1995,41,"(40,45]",HS,268.3469261388766,73.3383164731288,3.6590276276276272,8683.997589994136,2019
+1995,41,"(40,45]",HS,267.0888987173817,87.21313310318017,3.062484848484849,8623.246740325038,2019
+1995,50,"(45,50]",HS,12.96735957540911,69.37408315025698,0.18691936507936505,8517.016373650069,2019
+1995,50,"(45,50]",HS,12.96735957540911,69.37408315025698,0.18691936507936505,8359.729097031539,2019
+1995,50,"(45,50]",HS,12.96735957540911,69.37408315025698,0.18691936507936505,8429.316511191158,2019
+1995,50,"(45,50]",HS,12.96735957540911,69.37408315025698,0.18691936507936505,8728.171189887591,2019
+1995,50,"(45,50]",HS,12.96735957540911,69.37408315025698,0.18691936507936505,8524.311901551591,2019
+1995,62,"(60,65]",College,217.1548872180451,81.26678311887244,2.6721235772357725,7636.933979233509,2019
+1995,62,"(60,65]",College,217.1548872180451,81.26678311887244,2.6721235772357725,7477.557872243383,2019
+1995,62,"(60,65]",College,217.1548872180451,81.26678311887244,2.6721235772357725,7542.857650067517,2019
+1995,62,"(60,65]",College,217.1548872180451,81.26678311887244,2.6721235772357725,7526.593922730861,2019
+1995,62,"(60,65]",College,217.1548872180451,81.26678311887244,2.6721235772357725,7446.615090392239,2019
+1995,28,"(25,30]",College,-21.270340557275542,21.803283275795042,-0.9755567676767679,5323.063109066519,2019
+1995,28,"(25,30]",College,-21.270340557275542,21.803283275795042,-0.9755567676767679,5280.769072310086,2019
+1995,28,"(25,30]",College,-21.270340557275542,21.803283275795042,-0.9755567676767679,5335.68512979366,2019
+1995,28,"(25,30]",College,-21.270340557275542,27.749633260102783,-0.766508888888889,5298.758162058806,2019
+1995,28,"(25,30]",College,-21.270340557275542,27.749633260102783,-0.766508888888889,5306.653783145428,2019
+1995,26,"(25,30]",HS,3.0986183104820877,47.57079987446191,0.06513698148148149,5953.526026602711,2019
+1995,26,"(25,30]",HS,3.0986183104820877,47.57079987446191,0.06513698148148149,6016.440014696743,2019
+1995,26,"(25,30]",HS,3.0986183104820877,47.57079987446191,0.06513698148148149,5961.826099370452,2019
+1995,26,"(25,30]",HS,3.0986183104820877,47.57079987446191,0.06513698148148149,6055.527267106165,2019
+1995,26,"(25,30]",HS,3.0986183104820877,47.57079987446191,0.06513698148148149,5970.797506663957,2019
+1995,51,"(50,55]",HS,576.1765590446705,83.24889978030835,6.921131216931218,6555.659855906035,2019
+1995,51,"(50,55]",HS,653.5936311366653,83.24889978030835,7.851078306878309,6648.917912906065,2019
+1995,51,"(50,55]",HS,572.3057054400707,83.24889978030835,6.874633862433862,6587.957002269644,2019
+1995,51,"(50,55]",HS,597.466253869969,83.24889978030835,7.176866666666667,6442.322325698942,2019
+1995,51,"(50,55]",HS,545.2097302078726,83.24889978030835,6.549152380952381,6583.189650843373,2019
+1995,66,"(65,70]",HS,54240.142591773554,860.2386310631864,63.052437583205325,14.028299846209455,2019
+1995,66,"(65,70]",HS,49069.80472357364,241.81823269518142,202.92020240437157,15.009371556072441,2019
+1995,66,"(65,70]",HS,44857.657956656345,729.418931408416,61.49779780193237,24.469450839909886,2019
+1995,66,"(65,70]",HS,54682.000530738616,864.2028643860582,63.27449582059124,12.985028555243137,2019
+1995,66,"(65,70]",HS,13666.048651039364,705.633531471185,19.367062421972538,23.5331298087227,2019
+1995,24,"(20,25]",HS,9.444882795223354,59.46349984307739,0.15883496296296298,5567.352625051843,2019
+1995,24,"(20,25]",HS,8.728774878372402,59.46349984307739,0.14679214814814817,5551.285885106617,2019
+1995,24,"(20,25]",HS,9.444882795223354,59.46349984307739,0.15883496296296298,5582.911232625962,2019
+1995,24,"(20,25]",HS,7.935249889429456,59.46349984307739,0.13344740740740743,5546.295808913243,2019
+1995,24,"(20,25]",HS,9.096505970809377,59.46349984307739,0.1529762962962963,5521.281911611672,2019
+1995,43,"(40,45]",HS,60.57885891198585,19.821166614359132,3.056271111111111,5779.610181670081,2019
+1995,43,"(40,45]",HS,59.8046881910659,14.667663294625758,4.077315315315316,5706.259301556166,2019
+1995,43,"(40,45]",HS,63.48199911543565,25.76751659866687,2.4636444444444447,5672.3490906229445,2019
+1995,43,"(40,45]",HS,55.93383458646617,43.606566551590085,1.2826929292929297,5772.992228271332,2019
+1995,43,"(40,45]",HS,93.09402919062363,17.046203288348853,5.461276485788115,5609.004328531812,2019
+1995,84,"(80,85]",College,9749.035117204776,1211.073280137343,8.049913475177304,13.516461742509657,2019
+1995,84,"(80,85]",College,16627.638743918622,788.8824312514935,21.07746108319375,11.748975863729939,2019
+1995,84,"(80,85]",College,25758.18887218045,822.5784144959041,31.313961585006687,21.59007452559501,2019
+1995,84,"(80,85]",College,10295.59964617426,422.19084888584956,24.386126969222744,11.991229996124789,2019
+1995,84,"(80,85]",College,16999.821318000882,1183.3236468772402,14.366163781872324,12.532710178466164,2019
+1995,81,"(80,85]",College,6811.618505086245,545.0820818948762,12.496500492929291,5.123791117965824,2019
+1995,81,"(80,85]",College,6859.92675807165,2477.645826794891,2.7687277511111117,3.531521587116946,2019
+1995,81,"(80,85]",HS,9034.57231313578,836.4532311259554,10.801048973143759,4.977359127827816,2019
+1995,81,"(80,85]",College,6856.05590446705,1433.0703462181655,4.7841726141078835,3.5085478557785676,2019
+1995,81,"(80,85]",HS,7102.435736399823,1268.5546633189845,5.598840902777778,4.046856475705799,2019
+1995,50,"(45,50]",HS,116.12560813799203,148.65874960769352,0.7811555555555554,6925.954167138991,2019
+1995,50,"(45,50]",HS,116.12560813799203,148.65874960769352,0.7811555555555554,6766.518883627422,2019
+1995,50,"(45,50]",HS,116.12560813799203,148.65874960769352,0.7811555555555554,6856.108420220095,2019
+1995,50,"(45,50]",HS,116.12560813799203,148.65874960769352,0.7811555555555554,7051.572551629016,2019
+1995,50,"(45,50]",HS,116.12560813799203,148.65874960769352,0.7811555555555554,6908.4728430998175,2019
+1995,54,"(50,55]",HS,2052.868500663423,430.1193155315932,4.772788448540706,2299.965031862891,2019
+1995,54,"(50,55]",HS,2125.1566917293235,110.99853304041113,19.145808809523814,1972.1759708684403,2019
+1995,54,"(50,55]",HS,2099.357452454666,206.14013278933496,10.18412777777778,2032.6234415911895,2019
+1995,54,"(50,55]",HS,2934.494117647059,539.1357319105684,5.4429598039215685,544.2984963553871,2019
+1995,54,"(50,55]",HS,1379.9593100398056,188.30108283641175,7.328472514619884,2033.6692061438293,2019
+1995,49,"(45,50]",HS,20.012313135780627,45.588683213026,0.4389754589371981,5845.07592900238,2019
+1995,49,"(45,50]",HS,20.4574613003096,33.69598324441053,0.6071186928104576,5706.089302785442,2019
+1995,49,"(45,50]",HS,20.4574613003096,33.69598324441053,0.6071186928104576,5717.014030369392,2019
+1995,49,"(45,50]",HS,20.921963732861563,49.55291653589783,0.42221457777777777,5709.752186000038,2019
+1995,49,"(45,50]",HS,20.921963732861563,43.606566551590085,0.47978929292929295,5757.996446956255,2019
+1995,33,"(30,35]",College,944.7785935426803,237.85399937230957,3.97209462962963,275.2615031087171,2019
+1995,33,"(30,35]",College,944.7785935426803,237.85399937230957,3.97209462962963,281.650466723685,2019
+1995,33,"(30,35]",College,944.7785935426803,237.85399937230957,3.97209462962963,282.0823847183591,2019
+1995,33,"(30,35]",College,944.7785935426803,237.85399937230957,3.97209462962963,271.86376341215276,2019
+1995,33,"(30,35]",College,944.7785935426803,237.85399937230957,3.97209462962963,275.5939829659494,2019
+1995,74,"(70,75]",HS,1326.5995931003981,85.23101644174427,15.564751524547804,6925.827974725131,2019
+1995,74,"(70,75]",HS,1325.728651039363,69.37408315025698,19.109854730158727,7038.09672354306,2019
+1995,74,"(70,75]",HS,1260.7950818222025,85.23101644174427,14.792679173126613,6965.259825516376,2019
+1995,74,"(70,75]",HS,1260.8144360902256,65.40984982738514,19.275605117845117,6863.480458692863,2019
+1995,74,"(70,75]",HS,1325.6318796992482,83.24889978030835,15.923716507936511,6979.216542636025,2019
+1995,80,"(75,80]",College,34.45059708093764,37.660216567282355,0.914774269005848,11599.438839415196,2019
+1995,80,"(75,80]",College,36.386023883237506,37.660216567282355,0.966166081871345,11622.467146067833,2019
+1995,80,"(75,80]",College,38.32145068553737,31.713866582974614,1.2083499999999998,11593.965885244126,2019
+1995,80,"(75,80]",College,43.740645731977,33.69598324441053,1.2980967320261436,11610.753071386076,2019
+1995,80,"(75,80]",College,38.12790800530738,37.660216567282355,1.0124187134502922,11688.57899193343,2019
+1995,27,"(25,30]",NoHS,0,21.803283275795042,0,7230.305108785104,2019
+1995,27,"(25,30]",NoHS,0,21.803283275795042,0,7231.171000858298,2019
+1995,27,"(25,30]",NoHS,0,21.803283275795042,0,7232.508366196093,2019
+1995,27,"(25,30]",NoHS,0,21.803283275795042,0,7262.7359787928435,2019
+1995,27,"(25,30]",NoHS,0,21.803283275795042,0,7253.745695382533,2019
+1995,40,"(35,40]",HS,226.83202122954447,79.28466645743653,2.8609822222222223,6980.51905426779,2019
+1995,40,"(35,40]",HS,244.25086245024326,73.3383164731288,3.330467267267267,6927.954927090834,2019
+1995,40,"(35,40]",HS,190.44599734630694,89.1952497646161,2.1351585185185185,6973.123144674338,2019
+1995,40,"(35,40]",HS,205.9294117647059,79.28466645743653,2.597342222222222,7050.6021999756285,2019
+1995,40,"(35,40]",HS,212.31632021229547,93.15948308748793,2.2790628841607568,6983.599075429536,2019
+1995,42,"(40,45]",HS,318.6486687306502,166.4977995606167,1.9138311111111115,5623.897930547706,2019
+1995,42,"(40,45]",HS,318.6486687306502,166.4977995606167,1.9138311111111115,5854.626909618697,2019
+1995,42,"(40,45]",HS,318.6486687306502,166.4977995606167,1.9138311111111115,5771.320161494557,2019
+1995,42,"(40,45]",HS,318.6486687306502,166.4977995606167,1.9138311111111115,5481.197104874658,2019
+1995,42,"(40,45]",HS,318.6486687306502,166.4977995606167,1.9138311111111115,5812.519390898017,2019
+1995,78,"(75,80]",HS,543.0807607253428,4.360656655159009,124.5410505050505,6045.343413929202,2019
+1995,78,"(75,80]",HS,572.1121627598408,4.7570799874461915,120.26540740740741,6257.855611409289,2019
+1995,78,"(75,80]",HS,543.0807607253428,4.955291653589783,109.59612444444444,6202.523817944968,2019
+1995,78,"(75,80]",HS,543.0807607253428,4.360656655159009,124.5410505050505,5887.714253177935,2019
+1995,78,"(75,80]",HS,552.7578947368421,4.955291653589783,111.54901333333333,6229.976849592998,2019
+1995,64,"(60,65]",HS,0,4.558868321302601,0,7021.164982736996,2019
+1995,64,"(60,65]",HS,0,4.558868321302601,0,7034.797248642428,2019
+1995,64,"(60,65]",HS,0,4.558868321302601,0,7013.329249453031,2019
+1995,64,"(60,65]",HS,0,4.558868321302601,0,7025.742533029331,2019
+1995,64,"(60,65]",HS,0,4.558868321302601,0,6994.564543842198,2019
+1995,78,"(75,80]",HS,697.9149049093322,122.89123300902662,5.679126881720431,5769.475513409445,2019
+1995,78,"(75,80]",HS,1138.127731092437,89.1952497646161,12.75995901234568,5966.708778589537,2019
+1995,78,"(75,80]",HS,395.21415302963294,57.48138318164148,6.875515708812261,11906.591022224577,2019
+1995,78,"(75,80]",HS,678.1735515258734,25.76751659866687,26.318933333333334,5623.069427637464,2019
+1995,78,"(75,80]",HS,632.3039363113667,21.803283275795042,29.000400000000006,5965.672271118962,2019
+1995,75,"(70,75]",HS,763.9129588677577,35.67809990584644,21.41125679012346,5885.641955562077,2019
+1995,75,"(70,75]",HS,876.458027421495,97.12371641035975,9.024140136054422,6085.509010592983,2019
+1995,75,"(70,75]",HS,725.2044228217603,150.64086626912942,4.814128070175438,6047.631664361005,2019
+1995,75,"(70,75]",HS,597.079168509509,35.67809990584644,16.735172839506173,5733.435736175586,2019
+1995,75,"(70,75]",HS,1040.8725342768687,150.64086626912942,6.9096292397660815,6082.107034969571,2019
+1995,67,"(65,70]",College,3033.9750552852724,69.37408315025698,43.73355174603174,2082.2056684028744,2019
+1995,67,"(65,70]",College,3033.9750552852724,69.37408315025698,43.73355174603174,1882.5725709998271,2019
+1995,67,"(65,70]",College,3033.9750552852724,69.37408315025698,43.73355174603174,1858.7124744078858,2019
+1995,67,"(65,70]",College,3033.9750552852724,69.37408315025698,43.73355174603174,1890.2328178091502,2019
+1995,67,"(65,70]",College,3033.9750552852724,69.37408315025698,43.73355174603174,1871.7400263497632,2019
+1995,37,"(35,40]",College,31.837770897832815,91.177366426052,0.34918502415458935,7174.66152486364,2019
+1995,37,"(35,40]",College,31.837770897832815,91.177366426052,0.34918502415458935,7095.273372900505,2019
+1995,37,"(35,40]",College,31.837770897832815,91.177366426052,0.34918502415458935,7139.730256607695,2019
+1995,37,"(35,40]",College,31.837770897832815,91.177366426052,0.34918502415458935,7220.64184193627,2019
+1995,37,"(35,40]",College,31.837770897832815,91.177366426052,0.34918502415458935,7156.49797678488,2019
+1995,38,"(35,40]",HS,154.05997346306944,49.55291653589783,3.1089991111111113,6085.798376278672,2019
+1995,38,"(35,40]",HS,154.05997346306944,49.55291653589783,3.1089991111111113,6125.1412762875125,2019
+1995,38,"(35,40]",HS,154.05997346306944,49.55291653589783,3.1089991111111113,6116.099012910563,2019
+1995,38,"(35,40]",HS,154.05997346306944,49.55291653589783,3.1089991111111113,6303.121707702556,2019
+1995,38,"(35,40]",HS,154.05997346306944,49.55291653589783,3.1089991111111113,6173.002316618199,2019
+1995,84,"(80,85]",College,7376.298628925255,719.5083481012365,10.251859687786961,229.2187295429626,2019
+1995,84,"(80,85]",College,7293.07527642636,719.5083481012365,10.136192715029079,202.41867223021163,2019
+1995,84,"(80,85]",College,7115.016010614772,719.5083481012365,9.888719191919192,203.4243768838473,2019
+1995,84,"(80,85]",College,7012.43839009288,719.5083481012365,9.746152923171106,205.9906944793638,2019
+1995,84,"(80,85]",College,7022.115524104378,719.5083481012365,9.759602571166207,206.0378907464477,2019
+1995,63,"(60,65]",HS,337.2481203007519,103.07006639466748,3.2720277777777786,3901.143761190756,2019
+1995,63,"(60,65]",HS,337.2481203007519,103.07006639466748,3.2720277777777786,4054.629658905154,2019
+1995,63,"(60,65]",HS,337.2481203007519,103.07006639466748,3.2720277777777786,4010.2066404314173,2019
+1995,63,"(60,65]",HS,337.2481203007519,103.07006639466748,3.2720277777777786,3802.923453344458,2019
+1995,63,"(60,65]",HS,337.2481203007519,103.07006639466748,3.2720277777777786,4017.249962369915,2019
+1995,78,"(75,80]",College,16192.767695709865,1484.605379415499,10.907119103990507,28.071845194894046,2019
+1995,78,"(75,80]",College,21685.1799380805,1484.605379415499,14.60669632398754,49.90749226212331,2019
+1995,78,"(75,80]",College,21615.83359575409,1484.605379415499,14.559986037679868,44.81956071780096,2019
+1995,78,"(75,80]",College,19150.87402034498,1484.605379415499,12.89963938288088,25.07266674408929,2019
+1995,78,"(75,80]",College,19236.226342326405,1484.605379415499,12.957130971665924,26.05737416945724,2019
+1995,34,"(30,35]",HS,10.548076072534277,49.55291653589783,0.2128648888888889,5811.655486331548,2019
+1995,34,"(30,35]",HS,10.548076072534277,49.55291653589783,0.2128648888888889,5722.058979290612,2019
+1995,34,"(30,35]",HS,10.548076072534277,49.55291653589783,0.2128648888888889,5735.7121730024355,2019
+1995,34,"(30,35]",HS,10.548076072534277,49.55291653589783,0.2128648888888889,5699.025562193334,2019
+1995,34,"(30,35]",HS,10.548076072534277,49.55291653589783,0.2128648888888889,5722.497195646439,2019
+1995,45,"(40,45]",HS,110495.49221406456,12487.334967046254,8.848604806843033,15.493080852566397,2019
+1995,45,"(40,45]",HS,116073.39225829279,12408.050300588817,9.354684212779553,15.74695442583797,2019
+1995,45,"(40,45]",HS,107809.11981247236,12408.050300588817,8.688643034220803,16.014187234236402,2019
+1995,45,"(40,45]",HS,110959.99464661656,12408.050300588817,8.942580982392618,15.155013242805222,2019
+1995,45,"(40,45]",HS,110520.65276249447,12408.050300588817,8.907173172665956,15.093381937043588,2019
+1995,35,"(30,35]",College,1295.4779301194162,118.92699968615479,10.893051481481482,4803.861579684569,2019
+1995,35,"(30,35]",College,1303.6067226890757,118.92699968615479,10.961402592592593,5000.94731836031,2019
+1995,35,"(30,35]",College,1360.7018133569218,118.92699968615479,11.441487777777779,2585.3189303829286,2019
+1995,35,"(30,35]",College,1343.089429455993,118.92699968615479,11.293393703703705,2511.965714070228,2019
+1995,35,"(30,35]",College,1332.2510393631137,118.92699968615479,11.20225888888889,4964.979615194968,2019
+1995,48,"(45,50]",HS,278.19824856258293,51.53503319733374,5.398235555555556,7547.784091740466,2019
+1995,48,"(45,50]",HS,282.0691021671827,45.588683213026,6.187261449275363,7478.015601266625,2019
+1995,48,"(45,50]",HS,281.14009730207874,43.606566551590085,6.447196363636365,7516.832304395514,2019
+1995,48,"(45,50]",HS,296.73963732861563,81.26678311887244,3.6514259078590783,7879.986465960219,2019
+1995,48,"(45,50]",HS,304.5006988058381,73.3383164731288,4.152000120120119,7633.24510657902,2019
+1995,18,"(15,20]",HS,115.73852277753207,23.785399937230956,4.865948148148149,5340.650081656257,2019
+1995,18,"(15,20]",HS,82.83626713843432,25.76751659866687,3.214755555555556,5432.977023493375,2019
+1995,18,"(15,20]",HS,102.190535161433,27.749633260102783,3.682590476190477,5382.261125144711,2019
+1995,18,"(15,20]",HS,92.51340114993367,27.749633260102783,3.333860317460318,5430.748734373053,2019
+1995,18,"(15,20]",HS,98.31968155683326,27.749633260102783,3.543098412698413,5361.002155923519,2019
+1995,48,"(45,50]",College,1023.9762582927908,297.31749921538704,3.4440497481481476,2679.0168447048563,2019
+1995,48,"(45,50]",College,1185.3908536046,297.31749921538704,3.986952859259259,2297.4519529327117,2019
+1995,48,"(45,50]",College,1000.7511366651925,297.31749921538704,3.3659341925925923,2369.0551682036144,2019
+1995,48,"(45,50]",College,1519.4455196815568,297.31749921538704,5.110514933333333,2298.567273831577,2019
+1995,48,"(45,50]",College,1089.7807695709862,297.31749921538704,3.6653771555555545,2371.070637316199,2019
+1995,50,"(45,50]",HS,123.18991596638656,71.35619981169287,1.7264080246913582,6328.240059756019,2019
+1995,50,"(45,50]",HS,123.18991596638656,71.35619981169287,1.7264080246913582,6268.668982839127,2019
+1995,50,"(45,50]",HS,123.18991596638656,71.35619981169287,1.7264080246913582,6266.776101439899,2019
+1995,50,"(45,50]",HS,123.18991596638656,71.35619981169287,1.7264080246913582,6620.263804865237,2019
+1995,50,"(45,50]",HS,123.18991596638656,71.35619981169287,1.7264080246913582,6361.480394885751,2019
+1995,48,"(45,50]",NoHS,5.303069438301637,49.55291653589783,0.10701831111111113,5106.837177304687,2019
+1995,48,"(45,50]",NoHS,5.264360902255639,49.55291653589783,0.10623715555555556,5016.885805547714,2019
+1995,48,"(45,50]",NoHS,5.303069438301637,49.55291653589783,0.10701831111111113,5063.536112500678,2019
+1995,48,"(45,50]",NoHS,5.264360902255639,49.55291653589783,0.10623715555555556,5059.184092972086,2019
+1995,48,"(45,50]",NoHS,5.341777974347634,49.55291653589783,0.10779946666666668,5089.048429659628,2019
+1995,21,"(20,25]",HS,10.451304732419283,47.57079987446191,0.2197,6476.300331353191,2019
+1995,21,"(20,25]",HS,10.451304732419283,47.57079987446191,0.2197,6471.632253648075,2019
+1995,21,"(20,25]",HS,10.451304732419283,47.57079987446191,0.2197,6464.14406249851,2019
+1995,21,"(20,25]",HS,10.451304732419283,47.57079987446191,0.2197,6485.1969532177145,2019
+1995,21,"(20,25]",HS,10.451304732419283,47.57079987446191,0.2197,6427.298658443268,2019
+1995,22,"(20,25]",HS,3.774082264484741,33.69598324441053,0.11200392156862744,4420.65804140072,2019
+1995,22,"(20,25]",HS,3.2902255639097744,31.713866582974614,0.10374722222222221,4470.056361911609,2019
+1995,22,"(20,25]",HS,3.2902255639097744,35.67809990584644,0.09221975308641976,4459.808842171029,2019
+1995,22,"(20,25]",HS,3.2902255639097744,31.713866582974614,0.10374722222222221,4515.864044451506,2019
+1995,22,"(20,25]",HS,9.096505970809377,39.642333228718265,0.22946444444444444,4444.93497847742,2019
+1995,57,"(55,60]",HS,162.26618310482087,43.606566551590085,3.7211410101010105,8002.227249615657,2019
+1995,57,"(55,60]",HS,131.99610791685095,21.803283275795042,6.053955555555556,7884.704550395089,2019
+1995,57,"(55,60]",HS,128.2220256523662,73.3383164731288,1.748363363363363,8012.177378355937,2019
+1995,57,"(55,60]",HS,95.99716939407342,57.48138318164148,1.670056704980843,7998.189669699134,2019
+1995,57,"(55,60]",HS,102.190535161433,59.46349984307739,1.7185422222222226,7893.2178149749325,2019
+1995,43,"(40,45]",College,81.28792569659443,218.03283275795047,0.3728242424242424,112.21757156222009,2019
+1995,43,"(40,45]",College,81.28792569659443,202.17589946646316,0.4020653594771242,112.39830449775476,2019
+1995,43,"(40,45]",College,81.28792569659443,265.6036326324124,0.30604975124378103,111.25783899231881,2019
+1995,43,"(40,45]",College,131.60902255639098,243.80034935661735,0.5398229448961156,102.11173349950202,2019
+1995,43,"(40,45]",College,50.32109685979655,210.1043661122068,0.23950524109014673,110.20513495720085,2019
+1995,29,"(25,30]",College,44.90190181335692,71.35619981169287,0.6292641975308643,4843.77357415188,2019
+1995,29,"(25,30]",College,97.7390535161433,75.32043313456471,1.2976432748538012,4770.414466624099,2019
+1995,29,"(25,30]",College,80.32021229544449,73.3383164731288,1.0952012012012011,4799.933369313176,2019
+1995,29,"(25,30]",College,34.25705440070765,83.24889978030835,0.41150158730158737,4740.457621272948,2019
+1995,29,"(25,30]",College,93.86819991154356,69.37408315025698,1.3530730158730155,4794.697399083889,2019
+1995,71,"(70,75]",College,4819.21273772667,519.3145652962094,9.279949109414757,285.47526956964157,2019
+1995,71,"(70,75]",College,4838.567005749668,519.3145652962094,9.317217981340116,251.6270091868086,2019
+1995,71,"(70,75]",College,4819.21273772667,519.3145652962094,9.279949109414757,250.6761821559547,2019
+1995,71,"(70,75]",College,4819.21273772667,519.3145652962094,9.279949109414757,259.1890960720176,2019
+1995,71,"(70,75]",College,4857.9212737726675,519.3145652962094,9.35448685326548,257.88328364357784,2019
+1995,23,"(20,25]",NoHS,22.354179566563467,4.360656655159009,5.126333333333333,4366.717591995406,2019
+1995,23,"(20,25]",NoHS,47.127642636001774,4.558868321302601,10.337574879227054,4446.602769923453,2019
+1995,23,"(20,25]",NoHS,20.031667403803628,4.558868321302601,4.394,4391.168973311906,2019
+1995,23,"(20,25]",NoHS,24.67669172932331,4.162444989015419,5.928412698412697,4453.4375936267825,2019
+1995,23,"(20,25]",NoHS,21.192923485183545,4.162444989015419,5.091460317460316,4364.006571910704,2019
+1995,44,"(40,45]",HS,-14.941494913754976,39.642333228718265,-0.37690755555555555,3700.210945433179,2019
+1995,44,"(40,45]",HS,-14.941494913754976,39.642333228718265,-0.37690755555555555,3669.497045348939,2019
+1995,44,"(40,45]",HS,-14.941494913754976,39.642333228718265,-0.37690755555555555,3652.1376585781086,2019
+1995,44,"(40,45]",HS,-14.941494913754976,39.642333228718265,-0.37690755555555555,3585.7971336929704,2019
+1995,44,"(40,45]",HS,-14.941494913754976,39.642333228718265,-0.37690755555555555,3655.921477699629,2019
+1995,69,"(65,70]",NoHS,20.4187527642636,25.76751659866687,0.7924222222222224,7216.829762096687,2019
+1995,69,"(65,70]",NoHS,20.225210084033613,25.76751659866687,0.7849111111111112,7068.425523254538,2019
+1995,69,"(65,70]",NoHS,20.225210084033613,25.76751659866687,0.7849111111111112,7045.931308038261,2019
+1995,69,"(65,70]",NoHS,20.4187527642636,25.76751659866687,0.7924222222222224,7401.116566563223,2019
+1995,69,"(65,70]",NoHS,20.4187527642636,25.76751659866687,0.7924222222222224,7222.658900574187,2019
+1995,64,"(60,65]",College,6084.981866430783,428.13719887015725,14.212691358024692,943.442345056205,2019
+1995,64,"(60,65]",College,6084.981866430783,428.13719887015725,14.212691358024692,850.6212679241595,2019
+1995,64,"(60,65]",College,6084.981866430783,428.13719887015725,14.212691358024692,836.170624853489,2019
+1995,64,"(60,65]",College,6084.981866430783,428.13719887015725,14.212691358024692,844.7578926644846,2019
+1995,64,"(60,65]",College,6084.981866430783,428.13719887015725,14.212691358024692,840.4635639883161,2019
+1995,23,"(20,25]",NoHS,0,15.064086626912939,0,6520.572088171907,2019
+1995,23,"(20,25]",NoHS,0,15.064086626912939,0,6523.066267388514,2019
+1995,23,"(20,25]",NoHS,0,15.064086626912939,0,6523.031812912824,2019
+1995,23,"(20,25]",NoHS,0,15.064086626912939,0,6540.131829665545,2019
+1995,23,"(20,25]",NoHS,0,15.064086626912939,0,6474.692118234038,2019
+1995,44,"(40,45]",HS,10715.103405572756,424.17296554728546,25.26116531671859,436.06588943204696,2019
+1995,44,"(40,45]",HS,10798.32675807165,501.4755153432861,21.533108651734736,388.72052903485076,2019
+1995,44,"(40,45]",HS,10771.230782839451,422.19084888584956,25.51270547730829,386.7361837048681,2019
+1995,44,"(40,45]",HS,10786.71419725785,578.7780651392867,18.63704733637747,395.26156288641494,2019
+1995,44,"(40,45]",HS,10862.195842547546,479.67223206749105,22.645037832874195,393.16468487537037,2019
+1998,65,"(60,65]",HS,189176.121,1312.1201129943504,144.17591737717274,33.197695996425345,2019
+1998,65,"(60,65]",HS,60329.85163333333,863.0423841807909,69.90369504343529,332.63937689667944,2019
+1998,65,"(60,65]",HS,49130.993,1387.890429378531,35.39976352600101,349.70181964412177,2019
+1998,65,"(60,65]",HS,61013.18226666667,615.402813559322,99.1434893087067,342.7358547122605,2019
+1998,65,"(60,65]",HS,49198.638666666666,726.2862033898306,67.74001548843898,369.4534653776576,2019
+1998,62,"(60,65]",College,44122.5516,2457.9151412429383,17.95121029999748,29.171152638828563,2019
+1998,62,"(60,65]",College,43765.10533333334,2476.395706214689,17.67290470723307,30.043340904004076,2019
+1998,62,"(60,65]",College,44254.30566666667,2457.9151412429383,18.004814293258228,32.28937243415807,2019
+1998,62,"(60,65]",College,44354.77133333334,2457.9151412429383,18.045688636306483,30.125084445708545,2019
+1998,62,"(60,65]",College,43921.365,2439.4345762711864,18.004731681362117,32.53636765465956,2019
+1998,18,"(15,20]",HS,317.0047333333333,2.2176677966101694,142.94509476031214,4464.934331572253,2019
+1998,18,"(15,20]",HS,327.4360233333333,2.2176677966101694,147.6488154960981,4554.323641429288,2019
+1998,18,"(15,20]",HS,295.01898,2.2176677966101694,133.0311872909699,4410.272975167521,2019
+1998,18,"(15,20]",HS,335.75042333333334,2.2176677966101694,151.39797937569676,4487.779068545503,2019
+1998,18,"(15,20]",HS,334.91169,2.2176677966101694,151.01977424749165,4301.86659174873,2019
+1998,58,"(55,60]",College,2643.8333333333335,120.12367231638417,22.009261641368667,2157.627566616434,2019
+1998,58,"(55,60]",College,2638.3633333333337,120.12367231638417,21.963725237972735,2224.273231177494,2019
+1998,58,"(55,60]",College,2640.1866666666665,120.12367231638417,21.97890403910471,2503.142162222979,2019
+1998,58,"(55,60]",College,2642.01,120.12367231638417,21.99408284023669,2712.9001745063183,2019
+1998,58,"(55,60]",College,2640.1866666666665,120.12367231638417,21.97890403910471,2191.4013656799025,2019
+1998,32,"(30,35]",NoHS,-0.2735,22.176677966101696,-0.012332775919732442,5023.7689486600975,2019
+1998,32,"(30,35]",NoHS,-0.2735,22.176677966101696,-0.012332775919732442,5006.64072944434,2019
+1998,32,"(30,35]",NoHS,-0.2735,24.024734463276836,-0.011384100848983792,5009.143597182681,2019
+1998,32,"(30,35]",NoHS,-0.2735,24.024734463276836,-0.011384100848983792,5044.78424795602,2019
+1998,32,"(30,35]",NoHS,-0.2735,22.176677966101696,-0.012332775919732442,5005.976612810833,2019
+1998,65,"(60,65]",College,56613.75243333333,1402.6748813559325,40.361279143037166,33.298020221494895,2019
+1998,65,"(60,65]",College,50848.4089,972.0777175141244,52.308995447435684,34.892343262385054,2019
+1998,65,"(60,65]",College,52845.8341,964.6854915254239,54.7803761580748,30.18795190638621,2019
+1998,65,"(60,65]",College,59778.895000000004,1088.5052768361584,54.9183327560459,29.311296248858962,2019
+1998,65,"(60,65]",College,47156.140666666666,1142.0989152542375,41.28901624617116,29.895445829547914,2019
+1998,22,"(20,25]",HS,-2.6985333333333332,5.544169491525424,-0.48673355629877363,9521.562361805969,2019
+1998,22,"(20,25]",HS,-2.880866666666667,5.544169491525424,-0.5196209587513936,9446.960320846129,2019
+1998,22,"(20,25]",HS,-4.7042,5.544169491525424,-0.848494983277592,9660.172065256838,2019
+1998,22,"(20,25]",HS,-4.521866666666667,5.544169491525424,-0.8156075808249721,9613.241396254287,2019
+1998,22,"(20,25]",HS,-2.880866666666667,5.544169491525424,-0.5196209587513936,9783.27846929459,2019
+1998,51,"(50,55]",College,316.8953333333333,105.33922033898305,3.008331866455436,6643.819251232737,2019
+1998,51,"(50,55]",College,317.9893333333333,105.33922033898305,3.0187173619667895,6768.440616974549,2019
+1998,51,"(50,55]",College,317.6246666666667,103.49116384180793,3.069099378881987,7059.960694852116,2019
+1998,51,"(50,55]",College,316.8953333333333,105.33922033898305,3.008331866455436,6625.4544442493625,2019
+1998,51,"(50,55]",College,318.7186666666667,105.33922033898305,3.025641025641026,6951.689704319664,2019
+1998,51,"(50,55]",College,40546.73966666667,4971.27197740113,8.156210292051572,14.877212580377346,2019
+1998,51,"(50,55]",College,35312.77016666666,2032.8621468926553,17.370961538461536,16.271566775185565,2019
+1998,51,"(50,55]",College,135469.6188666667,3566.7490395480227,37.98125894605508,15.830599937145305,2019
+1998,51,"(50,55]",College,28915.422833333334,5969.222485875707,4.844085289458151,12.792498654247364,2019
+1998,51,"(50,55]",College,231875.67033333334,2772.084745762712,83.64667447045709,15.429581264837443,2019
+1998,42,"(40,45]",HS,112.682,129.36395480225988,0.8710463449593885,7084.522058342247,2019
+1998,42,"(40,45]",HS,117.42266666666667,129.36395480225988,0.9076923076923078,7181.423531850547,2019
+1998,42,"(40,45]",HS,94.631,129.36395480225988,0.7315097945532728,7476.045329312692,2019
+1998,42,"(40,45]",HS,118.152,129.36395480225988,0.9133301481127568,7120.0023080945075,2019
+1998,42,"(40,45]",HS,117.24033333333333,129.36395480225988,0.9062828475871954,7385.543612665152,2019
+1998,53,"(50,55]",College,19335.0278,2106.7844067796614,9.177506600950535,38.053773474593086,2019
+1998,53,"(50,55]",College,19335.0278,2106.7844067796614,9.177506600950535,42.18184382868875,2019
+1998,53,"(50,55]",College,19335.0278,2106.7844067796614,9.177506600950535,48.78558675164173,2019
+1998,53,"(50,55]",College,19335.0278,2106.7844067796614,9.177506600950535,43.51752977132237,2019
+1998,53,"(50,55]",College,19335.0278,2106.7844067796614,9.177506600950535,40.86645779379727,2019
+1998,51,"(50,55]",College,330.935,166.32508474576272,1.9896878483835005,5891.0602152429265,2019
+1998,51,"(50,55]",College,329.1116666666667,166.32508474576272,1.978725380899294,5644.882739540428,2019
+1998,51,"(50,55]",College,330.935,166.32508474576272,1.9896878483835005,5260.437209737514,2019
+1998,51,"(50,55]",College,330.935,166.32508474576272,1.9896878483835005,5755.047571136058,2019
+1998,51,"(50,55]",College,332.7583333333333,166.32508474576272,2.000650315867707,5250.308750450524,2019
+1998,49,"(45,50]",College,30289.031,3234.098870056497,9.365524128045866,189.46351079781405,2019
+1998,49,"(45,50]",College,28951.433666666668,4342.932768361583,6.666332455703407,192.58167694736372,2019
+1998,49,"(45,50]",College,29141.06033333333,2199.187231638418,13.250831904668223,150.30761671519522,2019
+1998,49,"(45,50]",College,27004.113666666668,4379.893898305085,6.1654721081523505,151.92882091734515,2019
+1998,49,"(45,50]",College,29195.76033333333,2143.7455367231637,13.61904192134702,139.50095816350716,2019
+1998,44,"(40,45]",College,1035.5621666666666,277.2084745762712,3.7356800445930873,2668.2157469797667,2019
+1998,44,"(40,45]",College,1035.5621666666666,277.2084745762712,3.7356800445930873,2909.929143909464,2019
+1998,44,"(40,45]",College,1035.5621666666666,277.2084745762712,3.7356800445930873,2715.8975977220257,2019
+1998,44,"(40,45]",College,1035.5621666666666,277.2084745762712,3.7356800445930873,2694.7597943146266,2019
+1998,44,"(40,45]",College,1035.5621666666666,277.2084745762712,3.7356800445930873,2781.414225180133,2019
+1998,70,"(65,70]",College,27900.245533333335,604.3144745762711,46.168421752426546,230.18167748707756,2019
+1998,70,"(65,70]",College,27904.8221,587.6819661016949,47.4828626869439,259.1080005545722,2019
+1998,70,"(65,70]",College,27525.2588,611.7067005649718,44.99747799816104,247.0845732607239,2019
+1998,70,"(65,70]",College,27514.610533333336,704.1095254237289,39.07717413249765,237.9829096378888,2019
+1998,70,"(65,70]",College,27648.643766666668,720.7420338983052,38.36135880284709,223.12826117150817,2019
+1998,58,"(55,60]",HS,2857.4368333333337,231.00706214689265,12.369478260869567,1161.0419777391355,2019
+1998,58,"(55,60]",HS,2857.4368333333337,231.00706214689265,12.369478260869567,1266.4358193017956,2019
+1998,58,"(55,60]",HS,2857.4368333333337,229.1590056497175,12.469232117812064,1161.686726803908,2019
+1998,58,"(55,60]",HS,2855.4311666666667,229.1590056497175,12.460479825223866,1488.6625167633024,2019
+1998,58,"(55,60]",HS,2857.4368333333337,229.1590056497175,12.469232117812064,1163.2494198484746,2019
+1998,27,"(25,30]",College,-73.66266666666667,73.92225988700567,-0.996488294314381,4654.451917344992,2019
+1998,27,"(25,30]",College,-73.66266666666667,73.92225988700567,-0.996488294314381,4664.688084823889,2019
+1998,27,"(25,30]",College,-73.66266666666667,73.92225988700567,-0.996488294314381,4696.878589001155,2019
+1998,27,"(25,30]",College,-73.66266666666667,73.92225988700567,-0.996488294314381,4665.042029025743,2019
+1998,27,"(25,30]",College,-73.845,73.92225988700567,-0.9989548494983276,4643.38356543593,2019
+1998,55,"(50,55]",HS,490.8413333333333,79.46642937853107,6.176713074589717,5642.457340108619,2019
+1998,55,"(50,55]",HS,409.3383333333333,48.04946892655367,8.519102135322871,6729.275634464584,2019
+1998,55,"(50,55]",HS,409.52066666666667,79.46642937853107,5.153379481994245,7130.469895280015,2019
+1998,55,"(50,55]",HS,484.8243333333333,83.16254237288136,5.829840208101077,5510.0703039485315,2019
+1998,55,"(50,55]",HS,418.8196666666667,66.53003389830509,6.295196952805648,6980.240195741516,2019
+1998,53,"(50,55]",College,415.59236666666663,229.1590056497175,1.8135545905707195,10539.780332767627,2019
+1998,53,"(50,55]",College,776.3571,632.0353220338983,1.228344481605351,10174.650373158365,2019
+1998,53,"(50,55]",College,647.9397333333333,238.39928813559317,2.7178761245495324,9881.289916979043,2019
+1998,53,"(50,55]",College,927.8578666666667,759.5512203389831,1.2215869605904517,10062.590158865458,2019
+1998,53,"(50,55]",College,633.2801333333333,678.2367344632768,0.9337154730117649,10318.796404198825,2019
+1998,46,"(45,50]",College,400.09403333333336,171.86925423728815,2.3278976516704426,6749.149800580456,2019
+1998,46,"(45,50]",College,403.19370000000004,142.30035028248585,2.8333992094861666,6881.797545350621,2019
+1998,46,"(45,50]",College,392.8007,181.10953672316384,2.1688570746024163,7175.39028267909,2019
+1998,46,"(45,50]",College,396.9943666666666,168.17314124293785,2.360628836046896,6708.475552150048,2019
+1998,46,"(45,50]",College,374.9320333333333,151.54063276836158,2.4741353291459336,7177.981370555919,2019
+1998,55,"(50,55]",College,15295.214,604.3144745762711,25.310024239820812,162.0093394411526,2019
+1998,55,"(50,55]",College,62320.621666666666,966.5335480225991,64.47848788504702,204.9857309357115,2019
+1998,55,"(50,55]",College,4611.939333333333,319.71377401129945,14.42521313820635,149.95879773770454,2019
+1998,55,"(50,55]",College,8222.139333333333,328.95405649717515,24.994795385366952,164.60121593974128,2019
+1998,55,"(50,55]",College,5545.486,430.59716384180786,12.878593882325923,157.58918020816802,2019
+1998,41,"(40,45]",HS,90.07266666666668,72.07420338983052,1.249721293199554,6710.05446891937,2019
+1998,41,"(40,45]",HS,101.01266666666668,72.07420338983052,1.4015093045193379,6801.834007468991,2019
+1998,41,"(40,45]",HS,104.65933333333334,72.07420338983052,1.4521053082925992,7080.882938705507,2019
+1998,41,"(40,45]",HS,91.896,72.07420338983052,1.2750192950861845,6743.659334067359,2019
+1998,41,"(40,45]",HS,90.07266666666668,72.07420338983052,1.249721293199554,6995.164884158602,2019
+1998,44,"(40,45]",College,10562.205333333333,554.4169491525424,19.05101449275362,2150.3575711143103,2019
+1998,44,"(40,45]",College,9650.538666666665,554.4169491525424,17.406644370122628,2189.3534340063206,2019
+1998,44,"(40,45]",College,8647.523000000001,554.4169491525424,15.597508361204014,2073.356382708964,2019
+1998,44,"(40,45]",College,8647.705333333333,554.4169491525424,15.597837235228537,2274.3648425549122,2019
+1998,44,"(40,45]",College,10562.205333333333,554.4169491525424,19.05101449275362,2129.9289889826314,2019
+1998,42,"(40,45]",College,360.9106,73.92225988700567,4.8822993311036775,8573.767581654349,2019
+1998,42,"(40,45]",College,687.8889666666666,162.62897175141245,4.229805792034052,6937.447696277579,2019
+1998,42,"(40,45]",College,478.4426666666667,83.16254237288136,5.753102935711631,6425.85405511986,2019
+1998,42,"(40,45]",College,526.0316666666666,227.31094915254238,2.314150148190445,7080.314042852648,2019
+1998,42,"(40,45]",College,203.37460000000002,279.0565310734463,0.7287935502447452,8952.43221635315,2019
+1998,43,"(40,45]",College,18297.332333333332,5174.558192090396,3.536018275203057,21.13849777945019,2019
+1998,43,"(40,45]",College,18300.851366666666,5174.558192090396,3.536698339703774,23.397164300310926,2019
+1998,43,"(40,45]",College,18300.432,5174.558192090396,3.5366172957477304,19.4157232272074,2019
+1998,43,"(40,45]",College,18300.960766666667,5174.558192090396,3.536719481605351,17.956760658131365,2019
+1998,43,"(40,45]",College,18303.039366666668,5174.558192090396,3.537121177735308,18.153283260488458,2019
+1998,38,"(35,40]",HS,20.366633333333336,55.441694915254246,0.36735228539576364,5653.18473753942,2019
+1998,38,"(35,40]",HS,20.1296,60.98586440677967,0.33006993006993,5644.73480655862,2019
+1998,38,"(35,40]",HS,18.561533333333333,46.201412429378536,0.40175250836120396,5632.908211936878,2019
+1998,38,"(35,40]",HS,20.60366666666667,77.61837288135592,0.2654483197961459,5681.473932757346,2019
+1998,38,"(35,40]",HS,19.0356,46.201412429378536,0.41201337792642134,5612.984504428865,2019
+1998,45,"(40,45]",HS,7.0380666666666665,27.720847457627123,0.25389074693422514,5898.351340529917,2019
+1998,45,"(40,45]",HS,4.995933333333333,38.80918644067796,0.12873068960025483,6008.989600224518,2019
+1998,45,"(40,45]",HS,6.801033333333334,40.65724293785311,0.16727728792946184,6267.799747990275,2019
+1998,45,"(40,45]",HS,6.801033333333334,36.96112994350283,0.184005016722408,5882.047151660105,2019
+1998,45,"(40,45]",HS,4.9777,27.720847457627123,0.1795652173913043,6171.6772741543,2019
+1998,35,"(30,35]",HS,71.47466666666668,35.11307344632768,2.0355571202253127,6277.977656363151,2019
+1998,35,"(30,35]",HS,71.657,13.860423728813561,5.1698996655518386,6404.524626299983,2019
+1998,35,"(30,35]",HS,71.657,27.720847457627123,2.5849498327759193,6664.274376415686,2019
+1998,35,"(30,35]",HS,71.47466666666668,22.176677966101696,3.222965440356745,6333.420382022387,2019
+1998,35,"(30,35]",HS,71.47466666666668,16.44770282485876,4.345571380256286,6595.429030305869,2019
+1998,30,"(25,30]",HS,0.09116666666666667,24.024734463276836,0.0037947002829945976,5884.792766082211,2019
+1998,30,"(25,30]",HS,0.09116666666666667,24.024734463276836,0.0037947002829945976,5864.728941179665,2019
+1998,30,"(25,30]",HS,0.09116666666666667,22.176677966101696,0.004110925306577481,5867.660775448234,2019
+1998,30,"(25,30]",HS,0.09116666666666667,22.176677966101696,0.004110925306577481,5909.409877764202,2019
+1998,30,"(25,30]",HS,0.09116666666666667,24.024734463276836,0.0037947002829945976,5863.9510015887645,2019
+1998,26,"(25,30]",College,22.609333333333332,51.745581920903966,0.43693263258480636,4631.115319574003,2019
+1998,26,"(25,30]",College,22.791666666666668,51.745581920903966,0.44045628284758714,4691.451192099043,2019
+1998,26,"(25,30]",College,22.791666666666668,51.745581920903966,0.44045628284758714,4674.952735555175,2019
+1998,26,"(25,30]",College,22.974,51.745581920903966,0.4439799331103678,4622.082892221756,2019
+1998,26,"(25,30]",College,22.791666666666668,51.745581920903966,0.44045628284758714,4700.926815572881,2019
+1998,45,"(40,45]",College,247.88216666666665,112.73144632768363,2.1988732934919675,5594.689966101576,2019
+1998,45,"(40,45]",College,247.69983333333334,112.73144632768363,2.1972558802565927,5704.647965052463,2019
+1998,45,"(40,45]",College,247.88216666666665,114.57950282485875,2.163407595209839,5948.020892041082,2019
+1998,45,"(40,45]",College,248.0645,112.73144632768363,2.2004907067273423,5560.973154903703,2019
+1998,45,"(40,45]",College,247.88216666666665,114.57950282485875,2.163407595209839,5950.168767517856,2019
+1998,58,"(55,60]",NoHS,2.188,7.946642937853107,0.27533639262658477,5557.404423090054,2019
+1998,58,"(55,60]",NoHS,2.005666666666667,9.05547683615819,0.22148658794621534,5564.791041588124,2019
+1998,58,"(55,60]",NoHS,2.005666666666667,7.577031638418079,0.2647034831552329,5586.806528961227,2019
+1998,58,"(55,60]",NoHS,2.005666666666667,7.392225988700565,0.2713210702341138,5557.114335338822,2019
+1998,58,"(55,60]",NoHS,2.005666666666667,9.240282485875708,0.21705685618729095,5587.857639061933,2019
+1998,24,"(20,25]",HS,10.1195,31.416960451977403,0.32210308872712967,3940.417555714447,2019
+1998,24,"(20,25]",HS,10.1195,31.416960451977403,0.32210308872712967,3950.4310211322363,2019
+1998,24,"(20,25]",HS,10.1195,31.416960451977403,0.32210308872712967,3956.8523201760026,2019
+1998,24,"(20,25]",HS,10.1195,31.416960451977403,0.32210308872712967,3972.072106292959,2019
+1998,24,"(20,25]",HS,10.1195,31.416960451977403,0.32210308872712967,3929.700908132727,2019
+1998,60,"(55,60]",College,19194.740533333337,2476.395706214689,7.751079718464536,12.827327900564516,2019
+1998,60,"(55,60]",College,15261.664666666666,855.6501581920903,17.836337106409413,12.02738793032553,2019
+1998,60,"(55,60]",College,30748.602166666667,1258.526474576271,24.432225136161165,13.902246643795191,2019
+1998,60,"(55,60]",College,18483.13,1430.3957288135593,12.921689870628192,12.711287252851669,2019
+1998,60,"(55,60]",College,8521.804166666667,600.6183615819209,14.1883843581168,12.650181453643658,2019
+1998,51,"(50,55]",HS,2408.6233333333334,175.56536723163845,13.71923957049815,926.8486187811662,2019
+1998,51,"(50,55]",College,2408.6233333333334,336.3462824858757,7.161141534051234,1016.1109766067514,2019
+1998,51,"(50,55]",College,2408.6233333333334,175.56536723163845,13.71923957049815,927.8800650970167,2019
+1998,51,"(50,55]",College,2408.6233333333334,160.78091525423727,14.98077884134856,1188.91791781917,2019
+1998,51,"(50,55]",College,2408.6233333333334,310.4734915254237,7.7579033285555035,929.6699238097069,2019
+1998,35,"(30,35]",College,12.635700000000002,72.07420338983052,0.17531515307435042,5170.983930849369,2019
+1998,35,"(30,35]",College,5.378833333333334,62.833920903954805,0.08560397403108401,5243.803145240088,2019
+1998,35,"(30,35]",College,8.022666666666668,75.77031638418079,0.10588139326209317,5213.849648317053,2019
+1998,35,"(30,35]",HS,4.7771333333333335,46.201412429378536,0.10339799331103679,5182.07044806852,2019
+1998,35,"(30,35]",NoHS,9.9007,20.328621468926556,0.48703253268470653,5145.551153187865,2019
+1998,24,"(20,25]",College,-14.951333333333334,42.50529943502825,-0.3517522175367166,5531.334798764253,2019
+1998,24,"(20,25]",College,-12.945666666666666,42.50529943502825,-0.3045659444525229,5545.39113389587,2019
+1998,24,"(20,25]",College,-14.769,42.50529943502825,-0.34746255634724443,5554.404989496669,2019
+1998,24,"(20,25]",College,-16.045333333333335,42.50529943502825,-0.37749018467354956,5575.769662501026,2019
+1998,24,"(20,25]",College,-14.039666666666667,42.50529943502825,-0.33030391158935585,5516.291376371387,2019
+1998,57,"(55,60]",NoHS,231.50863333333334,123.81978531073446,1.8697224579443918,7963.398732710848,2019
+1998,57,"(55,60]",NoHS,226.96853333333334,123.81978531073446,1.833055458493486,7939.762686415374,2019
+1998,57,"(55,60]",NoHS,230.7793,123.81978531073446,1.8638321769081017,8355.881402258967,2019
+1998,57,"(55,60]",NoHS,230.23229999999998,123.81978531073446,1.859414466130884,7828.7407266851005,2019
+1998,57,"(55,60]",NoHS,234.26186666666666,123.81978531073446,1.891958268856387,8283.697551547091,2019
+1998,39,"(35,40]",College,900.5443333333334,382.5476949152542,2.3540707349781074,394.27666396512075,2019
+1998,39,"(35,40]",College,902.3676666666667,382.5476949152542,2.358837025188632,377.0934284565653,2019
+1998,39,"(35,40]",College,898.721,382.5476949152542,2.349304444767583,388.56318390711493,2019
+1998,39,"(35,40]",College,902.3676666666667,382.5476949152542,2.358837025188632,385.3272640582595,2019
+1998,39,"(35,40]",College,902.1853333333333,382.5476949152542,2.3583603961675794,390.07343357187597,2019
+1998,71,"(70,75]",HS,417.54333333333335,38.80918644067796,10.758878802357065,7368.784580989326,2019
+1998,71,"(70,75]",HS,417.54333333333335,38.80918644067796,10.758878802357065,7304.642405175242,2019
+1998,71,"(70,75]",HS,417.54333333333335,38.80918644067796,10.758878802357065,7809.32654962192,2019
+1998,71,"(70,75]",HS,417.7256666666667,38.80918644067796,10.76357700270744,7550.012212212483,2019
+1998,71,"(70,75]",HS,417.54333333333335,38.80918644067796,10.758878802357065,7656.73428593787,2019
+1998,50,"(45,50]",HS,621.939,83.16254237288136,7.478595317725752,6011.285927478594,2019
+1998,50,"(45,50]",HS,622.6683333333334,83.16254237288136,7.487365291713118,5760.084421928948,2019
+1998,50,"(45,50]",HS,620.6626666666666,83.16254237288136,7.4632478632478625,5367.79306540765,2019
+1998,50,"(45,50]",HS,622.486,83.16254237288136,7.485172798216276,5872.497515273394,2019
+1998,50,"(45,50]",HS,620.6626666666666,83.16254237288136,7.4632478632478625,5357.45790288098,2019
+1998,55,"(50,55]",NoHS,29.829733333333333,51.745581920903966,0.576469182990922,8049.180866028783,2019
+1998,55,"(50,55]",NoHS,29.811500000000002,51.745581920903966,0.576116817964644,8021.461946019277,2019
+1998,55,"(50,55]",NoHS,28.042866666666665,51.745581920903966,0.5419374104156711,8425.621402490007,2019
+1998,55,"(50,55]",NoHS,22.554633333333335,49.89752542372881,0.4520190759321195,7847.200714108054,2019
+1998,55,"(50,55]",NoHS,21.460633333333334,49.89752542372881,0.43009414096370624,8341.31761573864,2019
+1998,33,"(30,35]",College,164.28233333333336,184.80564971751414,0.8889464882943144,7043.532742249374,2019
+1998,33,"(30,35]",College,162.459,184.80564971751414,0.8790802675585283,7085.1739155695905,2019
+1998,33,"(30,35]",College,162.459,184.80564971751414,0.8790802675585283,7253.426085101133,2019
+1998,33,"(30,35]",College,164.46466666666666,184.80564971751414,0.8899331103678928,7063.776453719572,2019
+1998,33,"(30,35]",College,162.64133333333334,184.80564971751414,0.880066889632107,7131.19077267229,2019
+1998,24,"(20,25]",College,37.287166666666664,48.04946892655367,0.7760162078723951,3594.2344985856316,2019
+1998,24,"(20,25]",College,101.65083333333332,48.04946892655367,2.115545407769488,7416.869852169866,2019
+1998,24,"(20,25]",College,40.93383333333334,48.04946892655367,0.8519102135322872,3710.6217518261265,2019
+1998,24,"(20,25]",College,66.82516666666668,48.04946892655367,1.3907576537175201,3566.3606599963323,2019
+1998,24,"(20,25]",College,46.950833333333335,48.04946892655367,0.9771353228711088,3695.034532067714,2019
+1998,61,"(60,65]",HS,1102.5696666666668,55.441694915254246,19.88701226309922,5725.6674092134,2019
+1998,61,"(60,65]",HS,1106.7633333333333,55.441694915254246,19.962653288740242,5458.5888054057805,2019
+1998,61,"(60,65]",HS,1145.965,55.441694915254246,20.669732441471567,5110.050079730983,2019
+1998,61,"(60,65]",HS,1189.7250000000001,55.441694915254246,21.45903010033445,5589.7751582450155,2019
+1998,61,"(60,65]",HS,1116.974,55.441694915254246,20.146822742474914,5096.154456263653,2019
+1998,66,"(65,70]",College,168.11133333333333,12.936395480225992,12.995222169135209,8028.75450640381,2019
+1998,66,"(65,70]",College,129.639,13.490812429378531,9.6094286892381,8371.052196024255,2019
+1998,66,"(65,70]",College,63.999,38.80918644067796,1.6490683229813667,8432.792881315854,2019
+1998,66,"(65,70]",College,47.589,18.480564971751416,2.575083612040133,7937.968773602918,2019
+1998,66,"(65,70]",College,47.77133333333334,25.872790960451983,1.8463927376970852,8361.866810822734,2019
+1998,38,"(35,40]",NoHS,1.094,12.381978531073447,0.08835421554435183,5038.596215368239,2019
+1998,38,"(35,40]",NoHS,1.4586666666666668,12.381978531073447,0.11780562072580243,5011.788027169932,2019
+1998,38,"(35,40]",NoHS,0.3646666666666667,12.936395480225992,0.028189202102245577,5026.010216034746,2019
+1998,38,"(35,40]",NoHS,0.18233333333333335,12.19717288135593,0.014948819296645387,5043.81536076017,2019
+1998,38,"(35,40]",NoHS,3.4643333333333337,12.381978531073447,0.27978834922378076,5000.2828983964155,2019
+1998,37,"(35,40]",College,2654.7733333333335,347.43462146892654,7.641073080481037,1536.201262184947,2019
+1998,37,"(35,40]",College,2647.48,345.58656497175144,7.660830218374975,1572.3247147872942,2019
+1998,37,"(35,40]",College,2609.19,345.58656497175144,7.550033087117486,1504.9273518017321,2019
+1998,37,"(35,40]",College,2629.2466666666664,347.43462146892654,7.567601223937949,1686.959979931377,2019
+1998,37,"(35,40]",College,2623.7766666666666,345.58656497175144,7.592241518072719,1576.0134355173925,2019
+1998,40,"(35,40]",HS,1036.7108666666668,131.21201129943503,7.9010363182439125,4682.936742749192,2019
+1998,40,"(35,40]",HS,1064.0426333333332,112.73144632768363,9.438738417676406,4480.336189563835,2019
+1998,40,"(35,40]",HS,807.1532,109.03533333333333,7.402675585284281,4183.674463164471,2019
+1998,40,"(35,40]",HS,1044.1865333333333,134.9081242937853,7.739982590369725,4573.522865182306,2019
+1998,40,"(35,40]",HS,1030.8762,92.40282485875707,11.156327759197323,4170.852934007986,2019
+1998,51,"(50,55]",HS,333.2141666666667,140.45229378531073,2.372436630874846,4914.665746285526,2019
+1998,51,"(50,55]",HS,333.3965,140.45229378531073,2.3737348178137654,4709.3999691934005,2019
+1998,51,"(50,55]",HS,335.9491666666667,140.45229378531073,2.3919094349586345,4388.436044174361,2019
+1998,51,"(50,55]",HS,333.2141666666667,140.45229378531073,2.372436630874846,4802.218784666237,2019
+1998,51,"(50,55]",HS,355.0941666666667,140.45229378531073,2.528219063545151,4380.919091777379,2019
+1998,56,"(55,60]",College,90.255,134.9081242937853,0.6690108581115133,8074.675188873279,2019
+1998,56,"(55,60]",College,92.443,70.22614689265536,1.3163615560640733,7698.2046448208375,2019
+1998,56,"(55,60]",College,90.255,145.99646327683615,0.6181999068625376,7206.286239285533,2019
+1998,56,"(55,60]",College,92.80766666666668,51.745581920903966,1.7935379837553749,7884.711071225282,2019
+1998,56,"(55,60]",College,89.34333333333333,157.08480225988703,0.5687586071217784,7188.220512268848,2019
+1998,26,"(25,30]",NoHS,-12.015766666666666,10.349116384180792,-1.1610427615862395,5110.8309166988165,2019
+1998,26,"(25,30]",NoHS,-12.015766666666666,9.609893785310735,-1.2503537432467198,5125.9626181509675,2019
+1998,26,"(25,30]",NoHS,-12.015766666666666,17.741342372881356,-0.6772749442586399,5126.218011269678,2019
+1998,26,"(25,30]",NoHS,-12.1981,17.002119774011298,-0.7174458339392178,5151.733934771349,2019
+1998,26,"(25,30]",NoHS,-12.015766666666666,13.306006779661017,-0.9030332590115199,5132.181985733587,2019
+1998,27,"(25,30]",HS,0.9116666666666666,20.328621468926556,0.044846457889936145,4504.248073186149,2019
+1998,27,"(25,30]",HS,0.9116666666666666,20.328621468926556,0.044846457889936145,4496.857596544475,2019
+1998,27,"(25,30]",HS,0.9116666666666666,20.328621468926556,0.044846457889936145,4550.272455343313,2019
+1998,27,"(25,30]",HS,0.9116666666666666,20.328621468926556,0.044846457889936145,4496.670831872603,2019
+1998,27,"(25,30]",HS,0.9116666666666666,20.328621468926556,0.044846457889936145,4491.30622921819,2019
+1998,49,"(45,50]",HS,126.904,155.23674576271185,0.8174868609651219,6407.879710414514,2019
+1998,49,"(45,50]",HS,126.72166666666668,155.23674576271185,0.8163123108775284,6460.67350830006,2019
+1998,49,"(45,50]",HS,128.54500000000002,155.23674576271185,0.8280578117534642,6767.161976534034,2019
+1998,49,"(45,50]",HS,126.904,155.23674576271185,0.8174868609651219,6431.226031448294,2019
+1998,49,"(45,50]",HS,126.904,155.23674576271185,0.8174868609651219,6739.613177472517,2019
+1998,64,"(60,65]",HS,3.6466666666666665,27.720847457627123,0.13154960981047936,4852.160588647158,2019
+1998,64,"(60,65]",HS,3.6466666666666665,27.720847457627123,0.13154960981047936,4817.300314458206,2019
+1998,64,"(60,65]",HS,3.829,27.720847457627123,0.13812709030100334,4934.518709129158,2019
+1998,64,"(60,65]",HS,3.810766666666667,27.720847457627123,0.13746934225195093,4845.534655506296,2019
+1998,64,"(60,65]",HS,3.829,27.720847457627123,0.13812709030100334,4894.809188337187,2019
+1998,60,"(55,60]",HS,49597.219333333334,571.0494576271187,86.85275622084401,16.988373072866104,2019
+1998,60,"(55,60]",HS,35756.296,591.3780790960453,60.462667224080256,15.731066752257544,2019
+1998,60,"(55,60]",HS,46986.753000000004,558.1130621468926,84.18859221688189,18.94060439607927,2019
+1998,60,"(55,60]",HS,36983.581666666665,619.0989265536723,59.73775769979534,14.828356112193319,2019
+1998,60,"(55,60]",HS,44277.462,530.3922146892655,83.48060317201356,15.680390977537717,2019
+1998,68,"(65,70]",HS,16273.25,369.6112994350283,44.028010033444815,12.721433128327465,2019
+1998,68,"(65,70]",HS,17638.92666666667,369.6112994350283,47.72290969899666,13.57336395888188,2019
+1998,68,"(65,70]",HS,19026.483333333334,369.6112994350283,51.47700668896321,16.275653375010755,2019
+1998,68,"(65,70]",HS,18368.260000000002,369.6112994350283,49.69615384615385,14.828356112193319,2019
+1998,68,"(65,70]",HS,16025.276666666667,369.6112994350283,43.357107023411366,14.436668171043834,2019
+1998,71,"(70,75]",NoHS,-0.7293333333333334,9.240282485875708,-0.07892976588628761,4732.084495396478,2019
+1998,71,"(70,75]",NoHS,-0.7293333333333334,9.240282485875708,-0.07892976588628761,4767.79426484292,2019
+1998,71,"(70,75]",NoHS,-0.7293333333333334,9.240282485875708,-0.07892976588628761,4796.865610385022,2019
+1998,71,"(70,75]",NoHS,-0.7293333333333334,9.240282485875708,-0.07892976588628761,4744.837210901799,2019
+1998,71,"(70,75]",NoHS,-0.7293333333333334,9.240282485875708,-0.07892976588628761,4789.244814592665,2019
+1998,55,"(50,55]",College,5417.178033333334,38.80918644067796,139.5849418697245,891.3889652834965,2019
+1998,55,"(50,55]",College,4835.352366666666,31.416960451977403,153.9089809167814,914.1350445380331,2019
+1998,55,"(50,55]",College,5052.511366666667,70.22614689265536,71.94629906706565,863.6514934446475,2019
+1998,55,"(50,55]",College,4706.096266666666,33.265016949152546,141.47283537718317,952.9713703561383,2019
+1998,55,"(50,55]",College,4279.436266666667,33.265016949152546,128.64674842066145,880.6678585449445,2019
+1998,36,"(35,40]",HS,-0.547,64.68197740112994,-0.008456760630673675,5919.948940037925,2019
+1998,36,"(35,40]",HS,-0.7293333333333334,64.68197740112994,-0.011275680840898233,5948.883678923033,2019
+1998,36,"(35,40]",HS,-0.547,64.68197740112994,-0.008456760630673675,5933.749279948139,2019
+1998,36,"(35,40]",HS,-0.7293333333333334,66.53003389830509,-0.010962467484206614,5972.205920091406,2019
+1998,36,"(35,40]",HS,-0.7293333333333334,66.53003389830509,-0.010962467484206614,5923.385556447099,2019
+1998,36,"(35,40]",HS,1651.3018333333332,73.92225988700567,22.338357023411366,2863.0552527729237,2019
+1998,36,"(35,40]",HS,1651.6665,73.92225988700567,22.34329013377926,3122.883080268622,2019
+1998,36,"(35,40]",HS,1651.4841666666669,73.92225988700567,22.340823578595316,2913.9493815444034,2019
+1998,36,"(35,40]",HS,1651.6665,73.92225988700567,22.34329013377926,2891.546305350199,2019
+1998,36,"(35,40]",HS,1651.4841666666669,73.92225988700567,22.340823578595316,2984.1239679039413,2019
+1998,22,"(20,25]",HS,-14.769,48.04946892655367,-0.3073707229225624,6519.07315435558,2019
+1998,22,"(20,25]",HS,-14.769,48.04946892655367,-0.3073707229225624,6535.639549328752,2019
+1998,22,"(20,25]",HS,-14.778116666666667,48.04946892655367,-0.30756045793671216,6546.2630219989505,2019
+1998,22,"(20,25]",HS,-14.732533333333333,48.04946892655367,-0.30661178286596347,6571.442815177519,2019
+1998,22,"(20,25]",HS,-14.759883333333333,48.04946892655367,-0.30718098790841264,6501.343406539041,2019
+1998,25,"(20,25]",HS,7.749166666666667,49.89752542372881,0.15530162269292708,6213.394629091306,2019
+1998,25,"(20,25]",HS,9.754833333333334,57.289751412429375,0.17027187398856405,6251.893292225768,2019
+1998,25,"(20,25]",HS,8.113833333333334,48.04946892655367,0.1688641625932596,6344.579031651943,2019
+1998,25,"(20,25]",HS,7.749166666666667,64.68197740112994,0.11980410893454373,6214.695757897889,2019
+1998,25,"(20,25]",HS,9.937166666666666,72.07420338983052,0.13787411028213703,6308.152408813711,2019
+1998,43,"(40,45]",HS,7783.81,336.3462824858757,23.14225072586277,298.995037894117,2019
+1998,43,"(40,45]",HS,7783.81,336.3462824858757,23.14225072586277,301.07926025302294,2019
+1998,43,"(40,45]",HS,7783.81,336.3462824858757,23.14225072586277,287.9865881446447,2019
+1998,43,"(40,45]",HS,7783.81,336.3462824858757,23.14225072586277,309.1291856834658,2019
+1998,43,"(40,45]",HS,7783.81,336.3462824858757,23.14225072586277,292.6523934319388,2019
+1998,34,"(30,35]",College,15811.946666666667,2217.6677966101697,7.1299888517279815,17.153329630576767,2019
+1998,34,"(30,35]",College,32278.47,2217.6677966101697,14.555142140468227,21.65731740764358,2019
+1998,34,"(30,35]",College,16044.421666666667,2217.6677966101697,7.234817447045708,21.332893182162632,2019
+1998,34,"(30,35]",College,15332.41,2217.6677966101697,6.913754180602006,21.09820419040399,2019
+1998,34,"(30,35]",College,14876.576666666666,2217.6677966101697,6.708207915273132,19.418969895583434,2019
+1998,33,"(30,35]",College,18.962666666666667,72.07420338983052,0.2630992196209587,8578.006334999116,2019
+1998,33,"(30,35]",College,42.483666666666664,72.07420338983052,0.589443443958494,8695.8175139194,2019
+1998,33,"(30,35]",College,38.10766666666667,72.07420338983052,0.5287282394305806,8759.1151657419,2019
+1998,33,"(30,35]",College,44.489333333333335,72.07420338983052,0.6172712460337878,8734.942819381948,2019
+1998,33,"(30,35]",College,42.30133333333334,72.07420338983052,0.5869136437698311,8791.285704930906,2019
+1998,49,"(45,50]",HS,39.931,36.96112994350283,1.0803511705685616,5097.400694002952,2019
+1998,49,"(45,50]",HS,39.931,36.96112994350283,1.0803511705685616,5196.960891639354,2019
+1998,49,"(45,50]",HS,39.931,36.96112994350283,1.0803511705685616,5383.912849014998,2019
+1998,49,"(45,50]",HS,39.931,36.96112994350283,1.0803511705685616,5112.361277963758,2019
+1998,49,"(45,50]",HS,39.931,36.96112994350283,1.0803511705685616,5368.659578532746,2019
+1998,25,"(20,25]",College,-32.26388333333333,27.720847457627123,-1.163885172798216,5146.322793838182,2019
+1998,25,"(20,25]",College,-32.26388333333333,27.720847457627123,-1.163885172798216,5161.559576537904,2019
+1998,25,"(20,25]",College,-32.26388333333333,27.720847457627123,-1.163885172798216,5161.816743219727,2019
+1998,25,"(20,25]",College,-32.446216666666665,27.720847457627123,-1.1704626532887399,5187.5098606135025,2019
+1998,25,"(20,25]",College,-32.26388333333333,27.720847457627123,-1.163885172798216,5167.822134168035,2019
+1998,26,"(25,30]",NoHS,-0.3646666666666667,20.328621468926556,-0.01793858315597446,6425.8183705926695,2019
+1998,26,"(25,30]",NoHS,-0.3646666666666667,18.480564971751416,-0.019732441471571903,6465.633227298282,2019
+1998,26,"(25,30]",NoHS,-0.3646666666666667,18.480564971751416,-0.019732441471571903,6561.487709855719,2019
+1998,26,"(25,30]",NoHS,-0.3646666666666667,20.328621468926556,-0.01793858315597446,6427.163982434017,2019
+1998,26,"(25,30]",NoHS,-0.3646666666666667,20.328621468926556,-0.01793858315597446,6523.815732428653,2019
+1998,89,"(85,90]",NoHS,312.7016666666667,18.480564971751416,16.92056856187291,11767.31432514325,2019
+1998,89,"(85,90]",NoHS,319.63033333333334,33.265016949152546,9.608602749907098,12163.815671648372,2019
+1998,89,"(85,90]",NoHS,319.63033333333334,46.201412429378536,6.91819397993311,12474.655710143245,2019
+1998,89,"(85,90]",NoHS,318.1716666666667,24.024734463276836,13.243503987651145,11945.711930131461,2019
+1998,89,"(85,90]",NoHS,319.448,18.480564971751416,17.285618729096985,12569.389869008552,2019
+1998,56,"(55,60]",College,2605.361,295.68903954802266,8.81115175585284,711.7750379010902,2019
+1998,56,"(55,60]",College,2428.1330000000003,295.68903954802266,8.211778846153845,728.1293556128763,2019
+1998,56,"(55,60]",College,2499.243,295.68903954802266,8.452267976588626,663.6949034487737,2019
+1998,56,"(55,60]",College,2508.542,295.68903954802266,8.483716555183944,742.4771085993871,2019
+1998,56,"(55,60]",College,2428.1330000000003,295.68903954802266,8.211778846153845,709.9714794459962,2019
+1998,52,"(50,55]",College,502.87533333333334,129.36395480225988,3.8872909698996656,7570.451948247081,2019
+1998,52,"(50,55]",College,508.5276666666667,129.36395480225988,3.9309842331581466,7295.5458773660675,2019
+1998,52,"(50,55]",College,501.052,129.36395480225988,3.873196368848543,6745.419237795171,2019
+1998,52,"(50,55]",College,502.693,129.36395480225988,3.885881509794553,7437.608822028371,2019
+1998,52,"(50,55]",College,506.8866666666667,129.36395480225988,3.9182990922121363,6749.999812376278,2019
+1998,34,"(30,35]",College,3548.0243333333337,462.0141242937853,7.6794715719063555,160.0150613271221,2019
+1998,34,"(30,35]",College,3473.2676666666666,462.0141242937853,7.517665551839465,157.95444701524133,2019
+1998,34,"(30,35]",College,3509.734333333334,462.0141242937853,7.596595317725754,151.9716512597711,2019
+1998,34,"(30,35]",College,3548.0243333333337,462.0141242937853,7.6794715719063555,168.18093887591812,2019
+1998,34,"(30,35]",College,3509.734333333334,462.0141242937853,7.596595317725754,157.97790506420648,2019
+1998,71,"(70,75]",NoHS,251.9482,164.47702824858757,1.5318139115403406,6449.261588691396,2019
+1998,71,"(70,75]",NoHS,254.26383333333334,164.47702824858757,1.5458926759610687,6429.102980373615,2019
+1998,71,"(70,75]",NoHS,252.69576666666666,164.47702824858757,1.5363590244635676,6917.269191704897,2019
+1998,71,"(70,75]",NoHS,252.53166666666667,164.47702824858757,1.535361316748713,6595.319799417521,2019
+1998,71,"(70,75]",NoHS,253.5709666666667,164.47702824858757,1.5416801322761267,6709.104566880276,2019
+1998,73,"(70,75]",College,73.11566666666667,55.441694915254246,1.3187848383500556,4660.096721147039,2019
+1998,73,"(70,75]",College,71.11,55.441694915254246,1.2826086956521736,4629.399667559335,2019
+1998,73,"(70,75]",College,65.27533333333334,55.441694915254246,1.1773690078037902,4815.043514154699,2019
+1998,73,"(70,75]",College,67.46333333333332,55.441694915254246,1.2168338907469338,4868.652588098641,2019
+1998,73,"(70,75]",College,98.09533333333333,55.441694915254246,1.7693422519509472,4777.070402259665,2019
+1998,86,"(85,90]",HS,278.71473333333336,18.480564971751416,15.081505016722407,10342.967064262028,2019
+1998,86,"(85,90]",HS,278.6782666666667,18.480564971751416,15.079531772575248,10559.95414781474,2019
+1998,86,"(85,90]",HS,278.7329666666667,18.480564971751416,15.082491638795984,11030.643562149573,2019
+1998,86,"(85,90]",HS,278.71473333333336,18.480564971751416,15.081505016722407,10418.857279766442,2019
+1998,86,"(85,90]",HS,278.6965,18.480564971751416,15.080518394648827,11100.329874628002,2019
+1998,36,"(35,40]",HS,-0.14586666666666667,64.68197740112994,-0.0022551361681796465,6720.3324018934945,2019
+1998,36,"(35,40]",HS,0.03646666666666667,64.68197740112994,5.637840420449116e-4,6748.051838598406,2019
+1998,36,"(35,40]",HS,0.03646666666666667,64.68197740112994,5.637840420449116e-4,6776.995742676721,2019
+1998,36,"(35,40]",HS,-0.3282,64.68197740112994,-0.005074056378404204,6741.129464283955,2019
+1998,36,"(35,40]",HS,0.03646666666666667,64.68197740112994,5.637840420449116e-4,6680.335480367665,2019
+1998,47,"(45,50]",College,17491.929533333336,596.9222485875707,29.303530861385216,28.22184059674483,2019
+1998,47,"(45,50]",College,17768.29216666667,1082.9611073446329,16.40713784286644,30.639316426521578,2019
+1998,47,"(45,50]",College,18152.8514,1127.314463276836,16.102739733538023,31.036640637792367,2019
+1998,47,"(45,50]",College,42603.40496666667,1058.936372881356,40.23226140655005,28.586895599279444,2019
+1998,47,"(45,50]",College,16228.487166666666,593.2261355932204,27.35632534200189,27.97163603202594,2019
+1998,36,"(35,40]",HS,-2.990266666666667,44.35335593220339,-0.06741917502787068,12328.867478418182,2019
+1998,36,"(35,40]",HS,-2.935566666666667,36.96112994350283,-0.07942307692307692,12339.22590495818,2019
+1998,36,"(35,40]",HS,-2.990266666666667,48.04946892655367,-0.0622330846411114,12627.934795655448,2019
+1998,36,"(35,40]",HS,-2.9720333333333335,33.265016949152546,-0.08934410999628391,12391.634828730983,2019
+1998,36,"(35,40]",HS,-2.880866666666667,13.490812429378531,-0.21354285976084666,12897.556589002943,2019
+1998,76,"(75,80]",HS,-6.0881099999999995,11.827561581920904,-0.5147392349498328,6822.960303394912,2019
+1998,76,"(75,80]",HS,-16.31701,11.642755932203391,-1.4014731645166425,6873.252421592697,2019
+1998,76,"(75,80]",HS,-8.750176666666666,11.827561581920904,-0.7398123954849498,6879.11938876684,2019
+1998,76,"(75,80]",HS,-15.915876666666668,11.642755932203391,-1.3670196952805647,6809.966484965231,2019
+1998,76,"(75,80]",HS,-9.844176666666666,11.642755932203391,-0.8455194563890215,6879.138959572121,2019
+1998,38,"(35,40]",HS,331.3726,110.88338983050849,2.9884782608695644,8101.892474183622,2019
+1998,38,"(35,40]",HS,328.0906,110.88338983050849,2.958879598662207,8259.637385462525,2019
+1998,38,"(35,40]",HS,337.4078333333333,110.88338983050849,3.0429069119286503,8531.130878582037,2019
+1998,38,"(35,40]",HS,368.0398333333333,110.88338983050849,3.319161092530657,6621.446427084069,2019
+1998,38,"(35,40]",HS,335.4021666666667,110.88338983050849,3.02481884057971,8449.849179727034,2019
+1998,77,"(75,80]",HS,274050.64666666667,10404.558079096045,26.339479734104803,33.298020221494895,2019
+1998,77,"(75,80]",HS,279481.08033333335,9979.50508474576,28.00550507865726,34.892343262385054,2019
+1998,77,"(75,80]",HS,326641.05,9351.165875706214,34.93051608127222,30.18795190638621,2019
+1998,77,"(75,80]",HS,275753.2753333333,10090.388474576272,27.328311098043535,29.311296248858962,2019
+1998,77,"(75,80]",HS,329552.91333333333,8981.554576271186,36.692190704268,29.895445829547914,2019
+1998,79,"(75,80]",College,76691.77033333333,1958.9398870056498,39.149629267369214,24.138170005778257,2019
+1998,79,"(75,80]",College,76996.44933333332,2106.7844067796614,36.54690488763714,24.904159637331603,2019
+1998,79,"(75,80]",College,70414.216,2032.8621468926553,34.63796898753421,27.033696461809864,2019
+1998,79,"(75,80]",College,74420.444,2291.5900564971753,32.475461214802024,24.73838124127179,2019
+1998,79,"(75,80]",College,80485.033,2051.3427118644067,39.235293320075925,26.89246887516341,2019
+1998,68,"(65,70]",College,4664.086666666667,291.9929265536723,15.973286482367387,2150.3575711143103,2019
+1998,68,"(65,70]",College,5256.67,293.84098305084746,17.88950590017038,2189.3534340063206,2019
+1998,68,"(65,70]",College,5347.836666666667,323.40988700564975,16.535785953177257,2073.356382708964,2019
+1998,68,"(65,70]",College,5347.836666666667,291.9929265536723,18.314952796240636,2274.3648425549122,2019
+1998,68,"(65,70]",College,4709.67,317.8657175141243,14.816539628218091,2129.9289889826314,2019
+1998,67,"(65,70]",College,49797.96833333334,1648.4663954802259,30.208664531997545,15.134541716248247,2019
+1998,67,"(65,70]",College,49444.24166666667,1748.2614463276836,28.28194934489171,15.874244413854168,2019
+1998,67,"(65,70]",College,50117.051666666666,2014.381581920904,24.879621674695468,13.522093385409011,2019
+1998,67,"(65,70]",College,49396.835,1840.6642711864408,26.83641757666116,13.033395147043223,2019
+1998,67,"(65,70]",College,49367.66166666667,1958.9398870056498,25.20121316337477,13.520225057567519,2019
+1998,52,"(50,55]",NoHS,0.9299,11.827561581920904,0.0786214464882943,6855.830963764218,2019
+1998,52,"(50,55]",NoHS,0.9116666666666666,11.827561581920904,0.07707984949832776,6858.426790451178,2019
+1998,52,"(50,55]",NoHS,0.9299,11.827561581920904,0.0786214464882943,6837.451679258673,2019
+1998,52,"(50,55]",NoHS,0.9299,11.827561581920904,0.0786214464882943,6855.391967302666,2019
+1998,52,"(50,55]",NoHS,0.9116666666666666,11.642755932203391,0.07830333917290438,6860.282243589012,2019
+1998,69,"(65,70]",College,336.7696666666667,123.81978531073446,2.719837268506964,920.7534827153593,2019
+1998,69,"(65,70]",College,334.764,123.81978531073446,2.703638995657166,851.3215873576971,2019
+1998,69,"(65,70]",College,334.764,123.81978531073446,2.703638995657166,881.6413385900996,2019
+1998,69,"(65,70]",College,338.593,123.81978531073446,2.734562971097689,955.5649381424653,2019
+1998,69,"(65,70]",College,334.9463333333333,123.81978531073446,2.705111565916238,958.9961782613806,2019
+1998,74,"(70,75]",HS,257.09000000000003,24.024734463276836,10.701054798044765,8572.687749142098,2019
+1998,74,"(70,75]",HS,248.15566666666666,38.80918644067796,6.394250676859373,8552.38524405405,2019
+1998,74,"(70,75]",HS,265.4773333333333,25.872790960451983,10.260869565217389,9139.163828448161,2019
+1998,74,"(70,75]",HS,264.5656666666667,24.024734463276836,11.012220221250322,8816.93767707696,2019
+1998,74,"(70,75]",HS,241.774,22.176677966101696,10.902173913043478,8976.687286181155,2019
+1998,51,"(50,55]",College,1879.1273333333334,188.50176271186442,9.968752049314709,12677.183342975433,2019
+1998,51,"(50,55]",College,1879.1273333333334,188.50176271186442,9.968752049314709,13310.446752006314,2019
+1998,51,"(50,55]",College,1879.2185,188.50176271186442,9.969235687586071,11563.862010738283,2019
+1998,51,"(50,55]",College,1879.0361666666668,186.65370621468927,10.06696413788536,11849.545150295664,2019
+1998,51,"(50,55]",College,1879.0361666666668,188.50176271186442,9.968268411043347,12559.287953020945,2019
+1998,59,"(55,60]",College,3732.8191666666667,406.57242937853107,9.181191091517178,989.8571907928463,2019
+1998,59,"(55,60]",College,3738.1068333333337,406.57242937853107,9.194196564305262,1014.2679772209816,2019
+1998,59,"(55,60]",College,3676.2958333333336,406.57242937853107,9.042167072058376,933.1290263371411,2019
+1998,59,"(55,60]",College,3687.0535,406.57242937853107,9.068626482213439,1018.6794278261202,2019
+1998,59,"(55,60]",College,3727.1668333333337,406.57242937853107,9.167288689571299,979.7517024446639,2019
+1998,36,"(35,40]",HS,10.2836,20.328621468926556,0.5058680449984797,5809.894922849839,2019
+1998,36,"(35,40]",HS,10.465933333333332,20.328621468926556,0.5148373365764669,5924.179285789679,2019
+1998,36,"(35,40]",HS,10.465933333333332,20.328621468926556,0.5148373365764669,6152.587945454799,2019
+1998,36,"(35,40]",HS,10.2836,18.480564971751416,0.5564548494983276,5812.4128447073035,2019
+1998,36,"(35,40]",HS,10.465933333333332,20.328621468926556,0.5148373365764669,6080.63260159423,2019
+1998,30,"(25,30]",HS,13.675,60.98586440677967,0.22423228944968074,4716.5956921284505,2019
+1998,30,"(25,30]",HS,10.210666666666667,59.13780790960452,0.17265886287625418,4700.5147605027205,2019
+1998,30,"(25,30]",HS,9.116666666666665,66.53003389830509,0.13703084355258266,4702.86459293197,2019
+1998,30,"(25,30]",HS,10.028333333333334,62.833920903954805,0.15960062954947865,4736.326032265683,2019
+1998,30,"(25,30]",HS,9.481333333333334,59.13780790960452,0.16032608695652176,4699.8912506071265,2019
+1998,38,"(35,40]",College,28376.536666666667,5636.57231638418,5.034360436427436,12.827327900564516,2019
+1998,38,"(35,40]",College,23898.43,5655.052881355933,4.226031215161649,13.939333164601404,2019
+1998,38,"(35,40]",College,25893.15666666667,5636.57231638418,4.593777071111355,13.902246643795191,2019
+1998,38,"(35,40]",College,33753.54666666666,5433.2861016949155,6.212363206152025,12.711287252851669,2019
+1998,38,"(35,40]",College,29169.68666666667,5377.844406779661,5.424048086979508,13.739997953806727,2019
+1998,21,"(20,25]",HS,9.846,33.265016949152546,0.29598662207357856,5328.813981055973,2019
+1998,21,"(20,25]",HS,9.973633333333334,22.176677966101696,0.44973522853957637,5342.997207520069,2019
+1998,21,"(20,25]",HS,10.94,27.720847457627123,0.39464882943143803,5386.235889967081,2019
+1998,21,"(20,25]",HS,11.2135,35.11307344632768,0.31935398697412426,5323.624920006528,2019
+1998,21,"(20,25]",HS,10.757666666666667,25.872790960451983,0.41579073100812225,5366.411583122617,2019
+1998,57,"(55,60]",HS,5878.426666666667,386.2438079096046,15.219471603910963,298.995037894117,2019
+1998,57,"(55,60]",HS,5876.6033333333335,386.2438079096046,15.214750924133073,301.07926025302294,2019
+1998,57,"(55,60]",HS,5878.426666666667,386.2438079096046,15.219471603910963,287.9865881446447,2019
+1998,57,"(55,60]",HS,5876.6033333333335,386.2438079096046,15.214750924133073,309.1291856834658,2019
+1998,57,"(55,60]",HS,5878.426666666667,386.2438079096046,15.219471603910963,292.6523934319388,2019
+1998,72,"(70,75]",HS,6199.333333333333,332.65016949152545,18.63619472315124,2150.3575711143103,2019
+1998,72,"(70,75]",HS,6197.51,332.65016949152545,18.630713489409143,2189.3534340063206,2019
+1998,72,"(70,75]",HS,6197.51,332.65016949152545,18.630713489409143,2073.356382708964,2019
+1998,72,"(70,75]",HS,6197.51,332.65016949152545,18.630713489409143,2274.3648425549122,2019
+1998,72,"(70,75]",HS,6197.51,332.65016949152545,18.630713489409143,2129.9289889826314,2019
+1998,27,"(25,30]",HS,8.551433333333332,24.024734463276836,0.3559428865448932,4942.663465570991,2019
+1998,27,"(25,30]",HS,7.822100000000001,20.328621468926556,0.3847826086956522,4925.811770317253,2019
+1998,27,"(25,30]",HS,6.3999,22.176677966101696,0.2885869565217391,4928.2742308833895,2019
+1998,27,"(25,30]",HS,6.2175666666666665,35.11307344632768,0.17707269846857948,4963.339486524484,2019
+1998,27,"(25,30]",HS,6.053466666666666,29.56890395480226,0.2047240802675585,4925.158375414968,2019
+1998,40,"(35,40]",College,63.3426,103.49116384180793,0.612058050645007,7278.172050742367,2019
+1998,40,"(35,40]",College,62.99616666666667,116.4275593220339,0.5410760736847693,7419.242926845151,2019
+1998,40,"(35,40]",College,42.53836666666667,99.79505084745762,0.4262572773442339,7773.035448662466,2019
+1998,40,"(35,40]",College,48.810633333333335,129.36395480225988,0.3773124701385571,7300.724628979791,2019
+1998,40,"(35,40]",College,54.90056666666667,134.9081242937853,0.40694781692399323,7596.282031568217,2019
+1998,86,"(85,90]",College,915.8968000000001,20.328621468926556,45.054545454545455,56.556775216341485,2019
+1998,86,"(85,90]",College,783.9057,38.80918644067796,20.198972766364072,52.92406087083268,2019
+1998,86,"(85,90]",College,1466.3064333333334,35.11307344632768,41.7595581763774,107.0896228361481,2019
+1998,86,"(85,90]",College,1012.6793333333334,40.65724293785311,24.907722712070537,53.373018884700606,2019
+1998,86,"(85,90]",College,955.609,18.480564971751416,51.70886287625417,54.97769447282083,2019
+1998,56,"(55,60]",HS,363.22623333333337,83.16254237288136,4.3676662950575995,8428.15129462844,2019
+1998,56,"(55,60]",HS,363.4085666666667,81.31448587570623,4.469173761021587,8080.925607764993,2019
+1998,56,"(55,60]",HS,363.4085666666667,81.31448587570623,4.469173761021587,7505.681348731191,2019
+1998,56,"(55,60]",HS,363.4085666666667,81.31448587570623,4.469173761021587,8274.78302769712,2019
+1998,56,"(55,60]",HS,361.40290000000005,81.31448587570623,4.444508209182122,7504.804099694948,2019
+1998,49,"(45,50]",College,27793.689933333335,2162.2261016949155,12.85420146928508,20.795659224605267,2019
+1998,49,"(45,50]",College,27720.7566,2162.2261016949155,12.820470800102905,22.619970068465086,2019
+1998,49,"(45,50]",College,33013.893266666666,2236.148361581921,14.763731170015753,23.23004397624981,2019
+1998,49,"(45,50]",College,28918.6866,2365.5123163841813,12.225126201923075,20.81448267901815,2019
+1998,49,"(45,50]",College,28382.626600000003,2069.823276836158,13.712584507883422,22.273799349732734,2019
+1998,66,"(65,70]",College,15445.639000000001,356.6749039548023,43.30452977974942,192.1071176168304,2019
+1998,66,"(65,70]",College,15080.972333333335,356.6749039548023,42.2821234858856,190.6471069453121,2019
+1998,66,"(65,70]",College,13988.795666666667,356.6749039548023,39.22001663576342,182.3729297077571,2019
+1998,66,"(65,70]",College,14151.072333333334,356.6749039548023,39.674987436532824,199.43240001319322,2019
+1998,66,"(65,70]",College,13439.972333333335,356.6749039548023,37.68129516349836,186.61529837275322,2019
+1998,68,"(65,70]",College,48776.719333333334,3696.1129943502824,13.196760869565217,16.988373072866104,2019
+1998,68,"(65,70]",College,385254.6526666667,3696.1129943502824,104.23237959866222,17.31960725314636,2019
+1998,68,"(65,70]",College,385382.286,3696.1129943502824,104.26691137123747,18.94060439607927,2019
+1998,68,"(65,70]",College,201608.51933333336,3696.1129943502824,54.54609197324415,17.623763815881922,2019
+1998,68,"(65,70]",College,131811.31933333332,3696.1129943502824,35.66214548494983,18.931858893614667,2019
+1998,63,"(60,65]",HS,167.96546666666669,64.68197740112994,2.596789297658863,34.838582041213805,2019
+1998,63,"(60,65]",HS,167.89253333333332,66.53003389830509,2.523560014864362,38.008086427390474,2019
+1998,63,"(60,65]",HS,167.929,66.53003389830509,2.5241081382385726,38.26456312785278,2019
+1998,63,"(60,65]",HS,167.89253333333332,66.53003389830509,2.523560014864362,35.033404760228244,2019
+1998,63,"(60,65]",HS,168.18426666666667,66.53003389830509,2.527945001858045,39.90810646399875,2019
+1998,77,"(75,80]",College,1919.0583333333334,62.833920903954805,30.54175683651387,3937.478059906914,2019
+1998,77,"(75,80]",College,1920.881666666667,62.833920903954805,30.570775132795596,4304.912089374519,2019
+1998,77,"(75,80]",College,1919.0583333333334,62.833920903954805,30.54175683651387,4015.372329705835,2019
+1998,77,"(75,80]",College,1920.881666666667,62.833920903954805,30.570775132795596,3968.626444732619,2019
+1998,77,"(75,80]",College,1920.881666666667,62.833920903954805,30.570775132795596,4113.774929363466,2019
+1998,54,"(50,55]",HS,777.287,96.09893785310734,8.088403653202985,10553.334075500763,2019
+1998,54,"(50,55]",HS,777.287,96.09893785310734,8.088403653202985,10174.650373158365,2019
+1998,54,"(50,55]",HS,777.287,96.09893785310734,8.088403653202985,9881.289916979043,2019
+1998,54,"(50,55]",HS,777.287,96.09893785310734,8.088403653202985,10062.590158865458,2019
+1998,54,"(50,55]",HS,777.287,97.9469943502825,7.935792263519909,10318.796404198825,2019
+1998,32,"(30,35]",HS,32021.38,310.4734915254237,103.13724319159103,536.0154874735761,2019
+1998,32,"(30,35]",HS,29291.850000000002,469.4063502824859,62.40190398440998,535.0274479074111,2019
+1998,32,"(30,35]",HS,31939.33,449.07772881355936,71.12205293364714,528.8723032152741,2019
+1998,32,"(30,35]",HS,34632.39333333333,397.33214689265543,87.1623240258225,517.5320202384021,2019
+1998,32,"(30,35]",HS,31067.77666666667,340.042395480226,91.36442125927003,492.89325755016216,2019
+1998,71,"(70,75]",College,2196.3873333333336,138.6042372881356,15.846465997770347,5232.70514722251,2019
+1998,71,"(70,75]",College,2196.3873333333336,138.6042372881356,15.846465997770347,5385.9621767594635,2019
+1998,71,"(70,75]",College,2196.3873333333336,138.6042372881356,15.846465997770347,6052.997104412707,2019
+1998,71,"(70,75]",College,2196.3873333333336,138.6042372881356,15.846465997770347,6580.070812184493,2019
+1998,71,"(70,75]",College,2196.3873333333336,138.6042372881356,15.846465997770347,5328.900960428951,2019
+1998,29,"(25,30]",HS,10.484166666666667,18.2957593220339,0.5730380730380731,9243.797666521143,2019
+1998,29,"(25,30]",HS,11.2135,18.2957593220339,0.6129015911624607,9354.219847102268,2019
+1998,29,"(25,30]",HS,10.484166666666667,18.480564971751416,0.5673076923076922,9418.528693516248,2019
+1998,29,"(25,30]",HS,11.2135,18.480564971751416,0.6067725752508359,9298.169001234037,2019
+1998,29,"(25,30]",HS,10.484166666666667,18.480564971751416,0.5673076923076922,9388.88982563121,2019
+1998,43,"(40,45]",College,23178.213333333333,972.0777175141244,23.843992013937456,14.436794001472233,2019
+1998,43,"(40,45]",College,205649.93766666666,506.36748022598874,406.12785318458117,17.289802727705126,2019
+1998,43,"(40,45]",College,141417.73333333334,901.851570621469,156.80821316958165,18.31520213384377,2019
+1998,43,"(40,45]",College,46015.46333333333,554.4169491525424,82.9979375696767,17.01378510190925,2019
+1998,43,"(40,45]",College,21860.125666666667,892.6112881355933,24.490084269857423,15.632884341052364,2019
+1998,29,"(25,30]",HS,-3.4625100000000004,101.64310734463277,-0.034065369413195504,5439.700621604325,2019
+1998,29,"(25,30]",HS,-3.4625100000000004,101.64310734463277,-0.034065369413195504,5456.461176667915,2019
+1998,29,"(25,30]",HS,-3.4625100000000004,101.64310734463277,-0.034065369413195504,5491.965122839175,2019
+1998,29,"(25,30]",HS,-1.6391766666666667,101.64310734463277,-0.01612678625722104,5434.241334905907,2019
+1998,29,"(25,30]",HS,-3.4625100000000004,101.64310734463277,-0.034065369413195504,5515.967511685421,2019
+1998,39,"(35,40]",HS,270.1997666666667,131.21201129943503,2.059260916670592,5452.913890596165,2019
+1998,39,"(35,40]",HS,567.4031,131.21201129943503,4.324322860238353,5216.879721988354,2019
+1998,39,"(35,40]",HS,288.4513333333333,131.21201129943503,2.1983607329596304,4871.703228567128,2019
+1998,39,"(35,40]",HS,310.31309999999996,131.21201129943503,2.3649747986245226,5324.375824157183,2019
+1998,39,"(35,40]",HS,301.2146666666667,131.21201129943503,2.2956333317631543,4855.739279634947,2019
+1998,55,"(50,55]",NoHS,994.2636666666666,121.97172881355934,8.151591162460726,6645.35683588794,2019
+1998,55,"(50,55]",NoHS,992.258,121.97172881355934,8.135147461234418,6336.002002873605,2019
+1998,55,"(50,55]",NoHS,994.2636666666666,121.97172881355934,8.151591162460726,5931.187831619664,2019
+1998,55,"(50,55]",NoHS,994.0813333333334,121.97172881355934,8.150096280531063,6489.419599024523,2019
+1998,55,"(50,55]",NoHS,994.2636666666666,121.97172881355934,8.151591162460726,5915.841739832491,2019
+1998,48,"(45,50]",HS,539.1596666666667,175.56536723163845,3.070991022707269,7798.532845572385,2019
+1998,48,"(45,50]",HS,405.6916666666667,175.56536723163845,2.3107727512761835,7517.200812807272,2019
+1998,48,"(45,50]",HS,403.68600000000004,175.56536723163845,2.299348706213695,6948.390272860827,2019
+1998,48,"(45,50]",HS,529.8606666666666,175.56536723163845,3.018024995599365,7663.815930978997,2019
+1998,48,"(45,50]",HS,405.6916666666667,175.56536723163845,2.3107727512761835,6953.749442443586,2019
+1998,29,"(25,30]",College,363.86440000000005,168.17314124293785,2.163629681355434,10655.555634668388,2019
+1998,29,"(25,30]",College,329.3851666666667,168.17314124293785,1.9586074460656402,10778.054105059306,2019
+1998,29,"(25,30]",College,281.9785,170.021197740113,1.6584902573796714,9898.107776613564,2019
+1998,29,"(25,30]",College,302.78273333333334,168.17314124293785,1.8004226542688082,10406.649220825837,2019
+1998,29,"(25,30]",College,281.7961666666667,168.17314124293785,1.6756312249623289,10088.575280350666,2019
+1998,81,"(80,85]",HS,1925.5493999999999,22.176677966101696,86.82767558528427,4082.178935880369,2019
+1998,81,"(80,85]",HS,912.3960000000001,27.720847457627123,32.91371237458194,8297.73296897413,2019
+1998,81,"(80,85]",HS,853.6846666666667,60.98586440677967,13.998074389378734,7745.443794556723,2019
+1998,81,"(80,85]",HS,3835.6551666666664,16.817314124293787,228.0777500091881,1742.2015146540846,2019
+1998,81,"(80,85]",HS,748.2595333333334,51.745581920903966,14.460355948399425,7724.282232545154,2019
+1998,67,"(65,70]",College,8246.936666666666,369.6112994350283,22.312458193979932,1265.1636122305272,2019
+1998,67,"(65,70]",College,8246.936666666666,369.6112994350283,22.312458193979932,1384.5912179254933,2019
+1998,67,"(65,70]",College,8246.936666666666,369.6112994350283,22.312458193979932,1256.2504708641445,2019
+1998,67,"(65,70]",College,8246.936666666666,369.6112994350283,22.312458193979932,1614.3278796349125,2019
+1998,67,"(65,70]",College,8246.936666666666,369.6112994350283,22.312458193979932,1257.634191627612,2019
+1998,59,"(55,60]",College,7516.874,835.3215367231638,8.998779116228135,1075.3952320724156,2019
+1998,59,"(55,60]",College,7520.520666666667,875.978779661017,8.585277225068088,1173.1025509071924,2019
+1998,59,"(55,60]",College,7515.050666666667,696.7172994350283,10.786370128545196,1076.0839060201547,2019
+1998,59,"(55,60]",College,7516.874,465.7102372881356,16.14066730371078,1378.9333194768694,2019
+1998,59,"(55,60]",College,7516.874,693.021186440678,10.846528428093645,1077.444578641194,2019
+1998,45,"(40,45]",HS,226.09333333333333,164.47702824858757,1.374619518244335,6529.500233515514,2019
+1998,45,"(40,45]",HS,344.61,140.45229378531073,2.453573314557296,6256.6434256820785,2019
+1998,45,"(40,45]",HS,248.15566666666666,160.78091525423727,1.5434398185522624,5830.533848644152,2019
+1998,45,"(40,45]",HS,364.6666666666667,182.957593220339,1.9931759062193846,6378.74730297188,2019
+1998,45,"(40,45]",HS,251.073,175.56536723163845,1.4300827319133953,5819.30772382736,2019
+1998,23,"(20,25]",HS,7.475666666666667,7.577031638418079,0.9866220735785953,5587.600265793985,2019
+1998,23,"(20,25]",HS,6.199333333333334,8.501059887005649,0.7292424022102661,5580.335876724039,2019
+1998,23,"(20,25]",HS,7.475666666666667,6.653003389830508,1.123652917131178,5617.036420421811,2019
+1998,23,"(20,25]",HS,8.934333333333335,8.13144858757062,1.098738218303436,5610.2471138125065,2019
+1998,23,"(20,25]",HS,8.569666666666667,9.05547683615819,0.9463517848611018,5569.637570351303,2019
+1998,72,"(70,75]",HS,238.07263333333333,44.35335593220339,5.367635172798216,8190.519694219675,2019
+1998,72,"(70,75]",HS,238.07263333333333,44.35335593220339,5.367635172798216,8165.618415480254,2019
+1998,72,"(70,75]",HS,238.07263333333333,44.35335593220339,5.367635172798216,8661.396941020601,2019
+1998,72,"(70,75]",HS,238.07263333333333,44.35335593220339,5.367635172798216,8439.55061972224,2019
+1998,72,"(70,75]",HS,238.07263333333333,44.35335593220339,5.367635172798216,8514.31564385606,2019
+1998,22,"(20,25]",HS,0,22.176677966101696,0,3833.7146262818724,2019
+1998,22,"(20,25]",HS,0,22.176677966101696,0,3828.730448226232,2019
+1998,22,"(20,25]",HS,0,22.176677966101696,0,3853.91109903763,2019
+1998,22,"(20,25]",HS,0,22.176677966101696,0,3849.2528803368887,2019
+1998,22,"(20,25]",HS,0,22.176677966101696,0,3821.3902213548354,2019
+1998,52,"(50,55]",HS,189.07966666666667,55.441694915254246,3.410423634336677,7746.050067603743,2019
+1998,52,"(50,55]",HS,177.04566666666665,55.441694915254246,3.193366778149386,7897.34252466709,2019
+1998,52,"(50,55]",HS,171.02866666666665,55.441694915254246,3.084838350055741,8181.436185142312,2019
+1998,52,"(50,55]",HS,168.65833333333336,55.441694915254246,3.0420847268673357,7768.7842883090825,2019
+1998,52,"(50,55]",HS,171.211,55.441694915254246,3.088127090301003,8158.257195703787,2019
+1998,27,"(25,30]",College,1.2763333333333333,51.745581920903966,0.024665551839464877,6572.452921385853,2019
+1998,27,"(25,30]",College,1.2763333333333333,51.745581920903966,0.024665551839464877,6592.7036606736465,2019
+1998,27,"(25,30]",College,1.2763333333333333,51.745581920903966,0.024665551839464877,6635.600877076926,2019
+1998,27,"(25,30]",College,1.2763333333333333,51.745581920903966,0.024665551839464877,6565.856803822471,2019
+1998,27,"(25,30]",College,1.2763333333333333,51.745581920903966,0.024665551839464877,6664.601475026424,2019
+1998,48,"(45,50]",College,7087.0778666666665,1478.4451977401131,4.793602006688962,298.995037894117,2019
+1998,48,"(45,50]",College,7347.851000000001,1478.4451977401131,4.969985367892977,301.07926025302294,2019
+1998,48,"(45,50]",College,9685.364333333335,1478.4451977401131,6.551047240802676,287.9865881446447,2019
+1998,48,"(45,50]",College,8360.165666666668,1478.4451977401131,5.654701086956522,309.1291856834658,2019
+1998,48,"(45,50]",College,9279.125666666667,1478.4451977401131,6.276272993311037,292.6523934319388,2019
+1998,54,"(50,55]",College,36061.432656666664,462.0141242937853,78.05266280936455,21.13849777945019,2019
+1998,54,"(50,55]",College,36189.06599,462.0141242937853,78.32891698996656,23.397164300310926,2019
+1998,54,"(50,55]",College,36329.46265666667,462.0141242937853,78.63279658862878,19.4157232272074,2019
+1998,54,"(50,55]",College,36077.84265666667,462.0141242937853,78.08818120401338,17.956760658131365,2019
+1998,54,"(50,55]",College,36207.29932333333,462.0141242937853,78.3683818729097,18.153283260488458,2019
+1998,30,"(25,30]",HS,-14.3314,18.480564971751416,-0.7754849498327757,5092.313415582628,2019
+1998,30,"(25,30]",HS,-14.149066666666668,18.480564971751416,-0.7656187290969899,5107.390292036046,2019
+1998,30,"(25,30]",HS,-14.130833333333333,18.480564971751416,-0.7646321070234112,5107.64475981748,2019
+1998,30,"(25,30]",HS,-14.1126,18.480564971751416,-0.7636454849498326,5133.068234331966,2019
+1998,30,"(25,30]",HS,-14.258466666666667,18.480564971751416,-0.7715384615384614,5113.587125680832,2019
+1998,57,"(55,60]",College,6829.555007333333,1051.5441468926554,6.494786764316909,354.151381960544,2019
+1998,57,"(55,60]",College,6932.729782666666,1051.5441468926554,6.592904162086862,358.8968123762861,2019
+1998,57,"(55,60]",College,6843.5771700000005,1051.5441468926554,6.508121594535976,393.8708294662557,2019
+1998,57,"(55,60]",College,6842.333291999999,1051.5441468926554,6.5069386884224505,410.30458201984567,2019
+1998,57,"(55,60]",College,7126.7973600000005,1051.5441468926554,6.777459016875232,343.6317196789311,2019
+1998,56,"(55,60]",College,2260.9333333333334,683.7809039548022,3.3065172195606984,3367.3833616380807,2019
+1998,56,"(55,60]",College,2260.9333333333334,683.7809039548022,3.3065172195606984,3623.8764854168826,2019
+1998,56,"(55,60]",College,2260.9333333333334,683.7809039548022,3.3065172195606984,3484.9668742741787,2019
+1998,56,"(55,60]",College,2262.7566666666667,683.7809039548022,3.309183765705505,4087.8618361036074,2019
+1998,56,"(55,60]",College,2262.7566666666667,683.7809039548022,3.309183765705505,3268.9642418434514,2019
+1998,57,"(55,60]",HS,125.5912,136.75618079096043,0.9183584922715359,6672.819123809927,2019
+1998,57,"(55,60]",HS,127.63333333333333,136.75618079096043,0.9332911506824552,6363.131180059052,2019
+1998,57,"(55,60]",HS,124.29663333333333,136.75618079096043,0.908892253457471,5955.1478769373025,2019
+1998,57,"(55,60]",HS,125.81,136.75618079096043,0.9199584199584201,6516.2570634547565,2019
+1998,57,"(55,60]",HS,126.6852,136.75618079096043,0.926358130705957,5939.5015065264615,2019
+1998,64,"(60,65]",HS,4754.669866666666,462.0141242937853,10.291178595317724,1604.7561097933108,2019
+1998,64,"(60,65]",HS,4752.846533333333,462.0141242937853,10.287232107023412,1645.897333482472,2019
+1998,64,"(60,65]",HS,4751.0232000000005,462.0141242937853,10.283285618729098,1559.2176482497962,2019
+1998,64,"(60,65]",HS,4751.0232000000005,462.0141242937853,10.283285618729098,1668.0675122971618,2019
+1998,64,"(60,65]",HS,4752.846533333333,462.0141242937853,10.287232107023412,1588.2675460490439,2019
+1998,39,"(35,40]",HS,143.44163333333333,60.98586440677967,2.352047228134184,7584.821991881456,2019
+1998,39,"(35,40]",HS,85.11319999999999,79.46642937853107,1.0710585673174144,7737.71139243706,2019
+1998,39,"(35,40]",HS,117.02153333333334,48.04946892655367,2.435438641625933,8051.531498991023,2019
+1998,39,"(35,40]",HS,193.83856666666668,62.833920903954805,3.0849350777100137,7651.805856413659,2019
+1998,39,"(35,40]",HS,58.000233333333334,53.593638418079095,1.08222235036328,7968.355080756535,2019
+1998,45,"(40,45]",HS,59.3495,15.338868926553674,3.8692227102389487,7121.171706815051,2019
+1998,45,"(40,45]",HS,55.70283333333334,14.599646327683615,3.81535498073748,7256.795987365644,2019
+1998,45,"(40,45]",HS,50.415166666666664,15.893285875706214,3.1721046900521115,7503.383674512945,2019
+1998,45,"(40,45]",HS,55.70283333333334,17.92614802259887,3.107350963693411,7082.618459494663,2019
+1998,45,"(40,45]",HS,56.15866666666667,14.969257627118646,3.751599983484041,7471.808810261342,2019
+1998,69,"(65,70]",HS,976.84901,147.84451977401133,6.607272366220735,8119.012618847415,2019
+1998,69,"(65,70]",HS,976.84901,147.84451977401133,6.607272366220735,7764.4391439143465,2019
+1998,69,"(65,70]",HS,976.6666766666666,179.26148022598866,5.4482796607247534,7190.8686045175755,2019
+1998,69,"(65,70]",HS,976.6666766666666,157.08480225988703,6.21744855400354,7889.192044359979,2019
+1998,69,"(65,70]",HS,976.6666766666666,157.08480225988703,6.21744855400354,7171.961563677898,2019
+1998,40,"(35,40]",NoHS,361.3846666666667,64.68197740112994,5.587099856665075,4836.11898343931,2019
+1998,40,"(35,40]",NoHS,356.27933333333334,64.68197740112994,5.508170090778787,4627.238644678061,2019
+1998,40,"(35,40]",NoHS,370.1366666666667,64.68197740112994,5.722408026755854,4320.8928267190295,2019
+1998,40,"(35,40]",NoHS,386.3643333333333,64.68197740112994,5.973291925465839,4723.417870352025,2019
+1998,40,"(35,40]",NoHS,411.891,64.68197740112994,6.367940754897277,4307.303497434585,2019
+1998,41,"(40,45]",College,1692.6003333333333,608.0105875706214,2.783833650161125,1090.9961191157795,2019
+1998,41,"(40,45]",College,1692.6003333333333,608.0105875706214,2.783833650161125,1158.8350524575364,2019
+1998,41,"(40,45]",College,1692.6003333333333,608.0105875706214,2.783833650161125,1113.4793849347677,2019
+1998,41,"(40,45]",College,1692.6003333333333,608.0105875706214,2.783833650161125,1127.1930006879193,2019
+1998,41,"(40,45]",College,1690.777,608.0105875706214,2.780834798873652,1080.601964399687,2019
+1998,37,"(35,40]",HS,749.937,221.76677966101698,3.381647157190635,6598.102443122999,2019
+1998,37,"(35,40]",HS,751.7603333333334,221.76677966101698,3.38986900780379,6314.057016842677,2019
+1998,37,"(35,40]",HS,749.937,221.76677966101698,3.381647157190635,5894.6143530571335,2019
+1998,37,"(35,40]",HS,753.5836666666667,223.61483615819208,3.3700074628928385,6444.359375136676,2019
+1998,37,"(35,40]",HS,749.937,221.76677966101698,3.381647157190635,5875.839893935242,2019
+1998,55,"(50,55]",College,2620.2211666666667,225.46289265536726,11.621518449476396,1270.39977057935,2019
+1998,55,"(50,55]",College,2648.027,323.40988700564975,8.18783564261825,1385.7205899026994,2019
+1998,55,"(50,55]",College,2416.4636666666665,319.71377401129945,7.5582094457440014,3873.5136287659493,2019
+1998,55,"(50,55]",College,3691.8671000000004,365.915186440678,10.08940660788487,1628.8786762463583,2019
+1998,55,"(50,55]",College,2829.084,243.94345762711868,11.597294010337487,1272.8151302330398,2019
+1998,43,"(40,45]",College,40894.08466666666,6542.12,6.250891861761426,186.39066253227105,2019
+1998,43,"(40,45]",College,43368.712666666666,6763.8867796610175,6.411803461447081,186.18460392767727,2019
+1998,43,"(40,45]",College,42478.01433333334,6689.964519774011,6.3495126480533655,179.83633704493724,2019
+1998,43,"(40,45]",College,43050.541,6634.522824858757,6.48886772062865,176.10747682354042,2019
+1998,43,"(40,45]",College,43928.65833333334,6800.847909604519,6.459291387959867,171.1655300389893,2019
+1998,53,"(50,55]",HS,-0.12763333333333335,4.620141242937854,-0.027625418060200666,6826.131397800386,2019
+1998,53,"(50,55]",HS,-0.14586666666666667,4.804946892655368,-0.030357602263956777,6801.029979789439,2019
+1998,53,"(50,55]",HS,-0.14586666666666667,4.620141242937854,-0.031571906354515046,6815.321957467553,2019
+1998,53,"(50,55]",HS,-0.12763333333333335,4.804946892655368,-0.026562901980962183,6798.30247201327,2019
+1998,53,"(50,55]",HS,-0.14586666666666667,4.620141242937854,-0.031571906354515046,6828.048018595617,2019
+1998,57,"(55,60]",College,5444.929166666667,195.893988700565,27.795284596453584,2175.0214958421666,2019
+1998,57,"(55,60]",College,27714.666666666668,720.7420338983052,38.452962867678586,1175.502057019537,2019
+1998,57,"(55,60]",College,15547.563333333334,371.4593559322034,41.85535533037155,2104.9311850276376,2019
+1998,57,"(55,60]",College,3055.9978333333333,195.893988700565,15.600263456805703,2316.249094659818,2019
+1998,57,"(55,60]",College,3552.9473333333335,604.3144745762711,5.87930205680505,2144.5230903962083,2019
+1998,33,"(30,35]",HS,821.9586666666667,134.9081242937853,6.092729188619599,7004.903533282934,2019
+1998,33,"(30,35]",HS,953.421,134.9081242937853,7.06718742841435,6703.284764902292,2019
+1998,33,"(30,35]",HS,1042.582,134.9081242937853,7.728089064003299,6253.144050587149,2019
+1998,33,"(30,35]",HS,769.082,134.9081242937853,5.70078343336235,6840.067005436596,2019
+1998,33,"(30,35]",HS,911.4843333333334,134.9081242937853,6.756333898382738,6239.812088149288,2019
+1998,80,"(75,80]",HS,125.62766666666667,29.56890395480226,4.248641304347826,10786.40037315358,2019
+1998,80,"(75,80]",HS,125.62766666666667,29.56890395480226,4.248641304347826,10883.589296355365,2019
+1998,80,"(75,80]",HS,125.81,29.56890395480226,4.2548076923076925,10772.220857923021,2019
+1998,80,"(75,80]",HS,125.62766666666667,29.56890395480226,4.248641304347826,10774.420531120917,2019
+1998,80,"(75,80]",HS,125.62766666666667,29.56890395480226,4.248641304347826,10806.636028000983,2019
+1998,40,"(35,40]",College,-46.495,107.18727683615819,-0.43377349786645136,6155.50882917436,2019
+1998,40,"(35,40]",College,-48.683,107.18727683615819,-0.4541863683542844,6144.5726327616485,2019
+1998,40,"(35,40]",College,-52.32966666666667,107.18727683615819,-0.4882078191673394,6185.605712103512,2019
+1998,40,"(35,40]",College,-51.965,107.18727683615819,-0.4848056740860339,6202.792789386381,2019
+1998,40,"(35,40]",College,-48.683,107.18727683615819,-0.4541863683542844,6094.8483084956015,2019
+1998,46,"(45,50]",HS,473.5196666666667,33.265016949152546,14.234764028242289,7363.825260597536,2019
+1998,46,"(45,50]",HS,473.5196666666667,33.265016949152546,14.234764028242289,7056.103416322779,2019
+1998,46,"(45,50]",HS,473.5196666666667,33.265016949152546,14.234764028242289,6575.546504620977,2019
+1998,46,"(45,50]",HS,471.6963333333333,35.11307344632768,13.433638443935926,7193.809455659184,2019
+1998,46,"(45,50]",HS,473.5196666666667,33.265016949152546,14.234764028242289,6562.885930526776,2019
+1998,45,"(40,45]",HS,4.011333333333334,33.265016949152546,0.12058714232627277,4785.286823780903,2019
+1998,45,"(40,45]",HS,3.829,33.265016949152546,0.11510590858416944,4778.151194513948,2019
+1998,45,"(40,45]",HS,4.011333333333334,33.265016949152546,0.12058714232627277,4806.265446633204,2019
+1998,45,"(40,45]",HS,3.829,33.265016949152546,0.11510590858416944,4690.496844461215,2019
+1998,45,"(40,45]",HS,3.829,33.265016949152546,0.11510590858416944,4909.354562926074,2019
+1998,39,"(35,40]",HS,450.181,125.66784180790961,3.5823086759787524,5831.993460363023,2019
+1998,39,"(35,40]",HS,452.0043333333333,125.66784180790961,3.596817824119614,5579.550499523875,2019
+1998,39,"(35,40]",HS,450.181,125.66784180790961,3.5823086759787524,5210.377779636392,2019
+1998,39,"(35,40]",HS,448.3576666666667,125.66784180790961,3.567799527837891,5694.5195926438455,2019
+1998,39,"(35,40]",HS,448.3576666666667,125.66784180790961,3.567799527837891,5193.304037479085,2019
+1998,33,"(30,35]",College,3638.8263333333334,526.6961016949153,6.908777797336149,184.42826699004786,2019
+1998,33,"(30,35]",College,3753.514,526.6961016949153,7.1265270198908635,185.53712073516473,2019
+1998,33,"(30,35]",College,3875.6773333333335,526.6961016949153,7.358469752977761,172.3483856761194,2019
+1998,33,"(30,35]",College,3802.744,526.6961016949153,7.219996479493046,188.78345131410256,2019
+1998,33,"(30,35]",College,3719.053,526.6961016949153,7.061098398169335,180.52794782762228,2019
+1998,89,"(85,90]",HS,340.781,20.328621468926556,16.763605959258133,10679.801613113208,2019
+1998,89,"(85,90]",HS,360.2906666666667,29.56890395480226,12.184782608695654,10833.300149903976,2019
+1998,89,"(85,90]",HS,241.95633333333336,24.024734463276836,10.071134551067663,11248.638175734837,2019
+1998,89,"(85,90]",HS,286.9926666666667,27.720847457627123,10.352954292084727,10814.019534175957,2019
+1998,89,"(85,90]",HS,293.5566666666667,20.328621468926556,14.440559440559438,11263.319063572364,2019
+1998,69,"(65,70]",HS,5869.31,415.8127118644068,14.115273132664436,166.29543342112322,2019
+1998,69,"(65,70]",HS,5674.213333333333,319.71377401129945,17.747791288882013,166.10121731105176,2019
+1998,69,"(65,70]",HS,5893.013333333333,243.94345762711868,24.157291983378936,157.86925679183383,2019
+1998,69,"(65,70]",HS,5626.806666666667,327.106,17.201783723522855,174.67710074792583,2019
+1998,69,"(65,70]",HS,5843.783333333333,234.70317514124295,24.89861217180628,163.92567414901708,2019
+1998,59,"(55,60]",NoHS,319.3568333333333,53.593638418079095,5.958857109906585,8239.822548971426,2019
+1998,59,"(55,60]",NoHS,323.7328333333333,75.77031638418079,4.272554857655599,8163.187435787229,2019
+1998,59,"(55,60]",NoHS,322.65706666666665,88.70671186440678,3.637346711259754,8594.88222779109,2019
+1998,59,"(55,60]",NoHS,324.6445,51.745581920903966,6.27385929288103,8069.791898681974,2019
+1998,59,"(55,60]",NoHS,325.02740000000006,64.68197740112994,5.025007166746298,8505.351286861827,2019
+1998,24,"(20,25]",HS,19.345566666666667,55.441694915254246,0.3489353400222965,3867.372068447215,2019
+1998,24,"(20,25]",HS,19.345566666666667,55.441694915254246,0.3489353400222965,3859.4116714791335,2019
+1998,24,"(20,25]",HS,19.51878333333333,55.441694915254246,0.3520596432552953,3911.4077664054093,2019
+1998,24,"(20,25]",HS,19.336450000000003,55.441694915254246,0.34877090301003344,3860.9814792769553,2019
+1998,24,"(20,25]",HS,19.336450000000003,55.441694915254246,0.34877090301003344,3829.773057197252,2019
+1998,45,"(40,45]",College,59.021300000000004,103.49116384180793,0.5703027950310559,7695.495888657968,2019
+1998,45,"(40,45]",College,58.94836666666667,103.49116384180793,0.5695980649784997,7840.516217829574,2019
+1998,45,"(40,45]",College,54.57236666666667,103.49116384180793,0.5273142618251313,8062.558597388199,2019
+1998,45,"(40,45]",College,58.93013333333333,103.49116384180793,0.5694218824653606,7732.438442683757,2019
+1998,45,"(40,45]",College,59.05776666666667,103.49116384180793,0.5706551600573339,8046.238471266193,2019
+1998,49,"(45,50]",College,900.1796666666667,129.36395480225988,6.958504538939322,5680.665199099559,2019
+1998,49,"(45,50]",College,895.0743333333334,129.36395480225988,6.919039655996178,5443.279776454085,2019
+1998,49,"(45,50]",College,893.4333333333334,129.36395480225988,6.906354515050168,5072.564444695973,2019
+1998,49,"(45,50]",College,901.8206666666666,129.36395480225988,6.971189679885332,5549.51014962031,2019
+1998,49,"(45,50]",College,892.157,129.36395480225988,6.8964882943143815,5062.79771611234,2019
+1998,38,"(35,40]",HS,60.93580000000001,29.56890395480226,2.060806856187291,5626.572898718334,2019
+1998,38,"(35,40]",HS,60.75346666666667,29.56890395480226,2.054640468227425,5632.409713949563,2019
+1998,38,"(35,40]",HS,60.73523333333333,29.56890395480226,2.054023829431438,5645.852077224235,2019
+1998,38,"(35,40]",HS,60.73523333333333,29.56890395480226,2.054023829431438,5653.827396651081,2019
+1998,38,"(35,40]",HS,60.73523333333333,29.56890395480226,2.054023829431438,5627.044444657633,2019
+1998,28,"(25,30]",HS,838.1498666666668,83.16254237288136,10.078454106280194,1333.6209480511502,2019
+1998,28,"(25,30]",HS,838.1681,83.16254237288136,10.078673355629876,1228.0671478993677,2019
+1998,28,"(25,30]",HS,836.3265333333334,83.16254237288136,10.05652917131178,1237.8309067562855,2019
+1998,28,"(25,30]",HS,838.1498666666668,83.16254237288136,10.078454106280194,1368.5676624116065,2019
+1998,28,"(25,30]",HS,839.9732,83.16254237288136,10.100379041248607,1384.701915015064,2019
+1998,42,"(40,45]",College,5290.401666666667,1097.745559322034,4.819333243246286,329.60724751488976,2019
+1998,42,"(40,45]",College,5290.401666666667,1535.7349491525424,3.4448663615984287,328.62699444421844,2019
+1998,42,"(40,45]",College,5288.578333333333,1049.6960903954803,5.0381995148146395,310.6506193840891,2019
+1998,42,"(40,45]",College,5288.578333333333,1145.7950282485876,4.615640845830186,340.29525039014305,2019
+1998,42,"(40,45]",College,5290.401666666667,1574.54413559322,3.3599576836717073,326.0302691238727,2019
+1998,69,"(65,70]",College,21478.9396,497.127197740113,43.20612450423344,1124.464231073661,2019
+1998,69,"(65,70]",College,21476.933933333334,497.127197740113,43.20208999017792,1154.3818307568995,2019
+1998,69,"(65,70]",College,21478.9396,497.127197740113,43.20612450423344,1113.7551821247303,2019
+1998,69,"(65,70]",College,21478.848433333333,495.27914124293784,43.367157315429544,1082.000413011135,2019
+1998,69,"(65,70]",College,21478.739033333335,497.127197740113,43.20572105282789,1046.2462730770544,2019
+1998,66,"(65,70]",College,1695.7,107.18727683615819,15.81997462807058,108.6834108756774,2019
+1998,66,"(65,70]",College,1646.47,55.441694915254246,29.697324414715716,121.41915231103101,2019
+1998,66,"(65,70]",College,1582.6533333333332,79.46642937853107,19.915999066656294,118.70032991315509,2019
+1998,66,"(65,70]",College,1591.77,125.66784180790961,12.66648632697226,115.11354612859421,2019
+1998,66,"(65,70]",College,1885.3266666666668,109.03533333333333,17.290969899665555,8.606743217050987,2019
+1998,51,"(50,55]",College,5317.204666666667,837.169593220339,6.351406823333113,2581.523126903102,2019
+1998,51,"(50,55]",College,5304.441333333333,713.3498079096046,7.43596097527163,2503.363369267753,2019
+1998,51,"(50,55]",College,5377.3746666666675,761.3992768361583,7.062489852907751,2441.6704904679195,2019
+1998,51,"(50,55]",College,5676.401333333333,659.7561694915254,8.603786665167739,2880.403502399444,2019
+1998,51,"(50,55]",College,5219.109333333333,748.4628813559322,6.973103761509559,2670.511530230936,2019
+1998,47,"(45,50]",NoHS,0.5652333333333334,90.55476836158192,0.006241894751211521,4266.4353730009125,2019
+1998,47,"(45,50]",NoHS,0.5652333333333334,57.289751412429375,0.009866220735785955,4255.684063442391,2019
+1998,47,"(45,50]",NoHS,0.5652333333333334,70.22614689265536,0.008048759021299067,4218.418734838426,2019
+1998,47,"(45,50]",NoHS,0.5652333333333334,49.89752542372881,0.011327883067013503,4135.161289999483,2019
+1998,47,"(45,50]",NoHS,0.5652333333333334,101.64310734463277,0.005560960778352083,4408.179460794193,2019
+1998,43,"(40,45]",HS,131.00650000000002,86.85865536723163,1.5082722550345125,6913.24921187953,2019
+1998,43,"(40,45]",HS,231.28983333333335,85.0105988700565,2.7207176094227137,7052.601530104939,2019
+1998,43,"(40,45]",HS,223.9965,85.0105988700565,2.6349243856332705,7338.635481413007,2019
+1998,43,"(40,45]",HS,180.05416666666667,85.0105988700565,2.118020212301876,6974.302213410953,2019
+1998,43,"(40,45]",HS,207.40416666666667,85.0105988700565,2.4397448015122873,7262.8236418705565,2019
+1998,34,"(30,35]",HS,6.564,22.176677966101696,0.29598662207357856,4494.680574260376,2019
+1998,34,"(30,35]",HS,6.381666666666667,22.176677966101696,0.2877647714604236,4465.8637087119405,2019
+1998,34,"(30,35]",HS,6.564,22.176677966101696,0.29598662207357856,4442.882345160649,2019
+1998,34,"(30,35]",HS,6.381666666666667,22.176677966101696,0.2877647714604236,4512.727235087732,2019
+1998,34,"(30,35]",HS,6.381666666666667,22.176677966101696,0.2877647714604236,4454.639032339083,2019
+1998,39,"(35,40]",HS,3.0103233333333335,31.416960451977403,0.09581841432225063,4654.597205525467,2019
+1998,39,"(35,40]",HS,3.0103233333333335,31.416960451977403,0.09581841432225063,4659.425726252649,2019
+1998,39,"(35,40]",HS,3.028556666666667,33.265016949152546,0.09104329245633593,4670.5459565705005,2019
+1998,39,"(35,40]",HS,3.0103233333333335,33.265016949152546,0.0904951690821256,4677.143560509094,2019
+1998,39,"(35,40]",HS,2.82799,33.265016949152546,0.08501393534002229,4654.987293142006,2019
+1998,45,"(40,45]",College,381.71483333333333,216.22261016949156,1.7653788983220418,5533.247383220714,2019
+1998,45,"(40,45]",College,381.71483333333333,214.37455367231638,1.7805976819282667,5302.544073047052,2019
+1998,45,"(40,45]",College,381.71483333333333,216.22261016949156,1.7653788983220418,4941.204165755663,2019
+1998,45,"(40,45]",College,381.71483333333333,216.22261016949156,1.7653788983220418,5406.981344037345,2019
+1998,45,"(40,45]",College,381.71483333333333,216.22261016949156,1.7653788983220418,4932.342710680521,2019
+1998,35,"(30,35]",College,173.45370000000003,83.16254237288136,2.0857190635451506,8318.907452006564,2019
+1998,35,"(30,35]",College,128.45383333333334,48.04946892655367,2.6733663493696938,8480.877673425282,2019
+1998,35,"(30,35]",College,73.42563333333334,75.77031638418079,0.9690553878782936,8759.643313709936,2019
+1998,35,"(30,35]",College,52.6214,85.0105988700565,0.6189981096408318,8407.985232962048,2019
+1998,35,"(30,35]",College,96.5455,48.04946892655367,2.0092937998456395,8676.184426484357,2019
+1998,72,"(70,75]",HS,925.1958000000001,40.65724293785311,22.7559896625114,5295.998251144292,2019
+1998,72,"(70,75]",HS,939.6183666666667,18.480564971751416,50.84359531772574,5100.854716664451,2019
+1998,72,"(70,75]",HS,908.2752666666668,51.745581920903966,17.552711419015765,4761.399847454215,2019
+1998,72,"(70,75]",HS,885.4106666666667,20.328621468926556,43.554879902705984,5207.921433277587,2019
+1998,72,"(70,75]",HS,894.7461333333333,20.328621468926556,44.01410763149893,4748.809105764519,2019
+1998,66,"(65,70]",HS,327.2883333333333,22.176677966101696,14.758221850613152,7818.618386727969,2019
+1998,66,"(65,70]",HS,327.2883333333333,22.176677966101696,14.758221850613152,8145.767815414913,2019
+1998,66,"(65,70]",HS,327.2883333333333,22.176677966101696,14.758221850613152,8343.757673077924,2019
+1998,66,"(65,70]",HS,327.2883333333333,22.176677966101696,14.758221850613152,7825.265711313477,2019
+1998,66,"(65,70]",HS,327.2883333333333,22.176677966101696,14.758221850613152,8166.450843232444,2019
+1998,40,"(35,40]",College,51.782666666666664,83.16254237288136,0.6226681531029357,7130.325576712816,2019
+1998,40,"(35,40]",College,51.782666666666664,83.16254237288136,0.6226681531029357,7270.583658297636,2019
+1998,40,"(35,40]",College,51.782666666666664,83.16254237288136,0.6226681531029357,7550.90337656786,2019
+1998,40,"(35,40]",College,51.782666666666664,83.16254237288136,0.6226681531029357,7133.415753533371,2019
+1998,40,"(35,40]",College,51.782666666666664,83.16254237288136,0.6226681531029357,7462.5945455953215,2019
+1998,76,"(75,80]",HS,1406.337,64.68197740112994,21.742331581462018,664.4705116736146,2019
+1998,76,"(75,80]",HS,1411.9528666666668,166.32508474576272,8.489115570419917,701.2900624877425,2019
+1998,76,"(75,80]",HS,3411.4566666666665,64.68197740112994,52.74199713330148,928.7188052758696,2019
+1998,76,"(75,80]",HS,3955.9587,94.25088135593221,41.972644107810346,1011.3062025605519,2019
+1998,76,"(75,80]",HS,2458.2362333333335,73.92225988700567,33.254343645484944,655.3693126043007,2019
+1998,34,"(30,35]",College,1161.4633333333334,138.6042372881356,8.379710144927536,7980.197039038161,2019
+1998,34,"(30,35]",College,1558.95,138.6042372881356,11.247491638795985,4062.4062694897693,2019
+1998,34,"(30,35]",College,942.6633333333334,138.6042372881356,6.801114827201784,7122.574840286102,2019
+1998,34,"(30,35]",College,904.0086666666666,138.6042372881356,6.522229654403566,7800.080875580211,2019
+1998,34,"(30,35]",College,1203.4,138.6042372881356,8.68227424749164,7099.220626106779,2019
+1998,44,"(40,45]",College,29084.537,713.3498079096046,40.77177378827525,410.0844390573279,2019
+1998,44,"(40,45]",College,26785.13133333333,522.999988700565,51.21440136142854,409.24260336737694,2019
+1998,44,"(40,45]",College,28745.397,766.9434463276837,37.48046500382802,401.4830055523254,2019
+1998,44,"(40,45]",College,29751.69466666667,883.3710056497175,33.6797274037587,396.0547782505392,2019
+1998,44,"(40,45]",College,29478.377,918.4840790960453,32.09459768645316,378.47519618782866,2019
+1998,42,"(40,45]",HS,4382.928666666667,351.1307344632769,12.482327055095931,1602.6951069570543,2019
+1998,42,"(40,45]",HS,4291.762,351.1307344632769,12.22268966731209,1656.98426198447,2019
+1998,42,"(40,45]",HS,4474.095333333333,351.1307344632769,12.741964442879771,1575.4812051285762,2019
+1998,42,"(40,45]",HS,4291.762,351.1307344632769,12.22268966731209,1686.4904583169732,2019
+1998,42,"(40,45]",HS,4474.277666666667,351.1307344632769,12.742483717655341,1572.234233348147,2019
+1998,45,"(40,45]",College,28342.768533333336,3843.9575141242935,7.373330331875484,16.47231744255796,2019
+1998,45,"(40,45]",College,27498.382866666667,4158.127118644067,6.613165514678559,17.72255562400867,2019
+1998,45,"(40,45]",College,29257.352533333335,4361.413333333333,6.708227424749165,18.425095931565252,2019
+1998,45,"(40,45]",College,29524.835533333335,4269.0105084745765,6.91608406086667,16.699318985138266,2019
+1998,45,"(40,45]",College,32263.0993,4213.568813559323,7.656953221263861,17.840594983961697,2019
+1998,26,"(25,30]",HS,1.2763333333333333,120.12367231638417,0.010625160792384873,5526.196721678967,2019
+1998,26,"(25,30]",HS,1.2763333333333333,120.12367231638417,0.010625160792384873,5521.984514929787,2019
+1998,26,"(25,30]",HS,1.2763333333333333,120.12367231638417,0.010625160792384873,5585.389021251114,2019
+1998,26,"(25,30]",HS,1.2763333333333333,120.12367231638417,0.010625160792384873,5498.852203582002,2019
+1998,26,"(25,30]",HS,1.2763333333333333,120.12367231638417,0.010625160792384873,5600.894549803316,2019
+1998,39,"(35,40]",HS,388.42470000000003,151.54063276836158,2.5631719552981487,5164.991943720177,2019
+1998,39,"(35,40]",HS,382.40770000000003,151.54063276836158,2.5234664328248635,4941.907013304315,2019
+1998,39,"(35,40]",HS,373.47336666666666,151.54063276836158,2.464509747940289,4614.7286111249905,2019
+1998,39,"(35,40]",HS,379.6727,151.54063276836158,2.5054184680642795,5044.62676181761,2019
+1998,39,"(35,40]",HS,380.8031666666667,151.54063276836158,2.5128782934986544,4600.215160046746,2019
+1998,45,"(40,45]",NoHS,0,24.024734463276836,0,6190.664425795344,2019
+1998,45,"(40,45]",NoHS,0,24.024734463276836,0,6159.011719788843,2019
+1998,45,"(40,45]",NoHS,0,24.024734463276836,0,6084.502289162336,2019
+1998,45,"(40,45]",NoHS,0,24.024734463276836,0,6184.244166726758,2019
+1998,45,"(40,45]",NoHS,0,24.024734463276836,0,6128.952588290247,2019
+1998,31,"(30,35]",NoHS,5.123566666666667,11.088338983050848,0.4620680044593088,5345.142847752627,2019
+1998,31,"(30,35]",NoHS,12.581,11.088338983050848,1.1346153846153846,5339.922349346828,2019
+1998,31,"(30,35]",NoHS,8.752,10.903533333333334,0.802675585284281,5360.01127549817,2019
+1998,31,"(30,35]",NoHS,10.2836,10.903533333333334,0.94314381270903,5339.63438091106,2019
+1998,31,"(30,35]",NoHS,9.754833333333334,10.903533333333334,0.8946488294314382,5356.121418786679,2019
+1998,28,"(25,30]",College,47.589,70.22614689265536,0.6776535821158247,5439.700621604325,2019
+1998,28,"(25,30]",College,43.76,70.22614689265536,0.6231297306812181,5456.461176667915,2019
+1998,28,"(25,30]",College,43.577666666666666,70.22614689265536,0.6205333568033797,5491.965122839175,2019
+1998,28,"(25,30]",College,43.76,70.22614689265536,0.6231297306812181,5434.241334905907,2019
+1998,28,"(25,30]",College,48.86533333333334,70.22614689265536,0.6958281992606936,5515.967511685421,2019
+1998,44,"(40,45]",HS,487.4681666666667,129.36395480225988,3.7681915910176786,789.8355259673465,2019
+1998,44,"(40,45]",HS,524.8465,131.21201129943503,3.999988223656319,730.7819163410023,2019
+1998,44,"(40,45]",HS,512.9948333333333,131.21201129943503,3.9096636676244754,741.8227001546873,2019
+1998,44,"(40,45]",HS,510.25983333333335,131.21201129943503,3.888819539309435,800.6423991908252,2019
+1998,44,"(40,45]",HS,515.0005,131.21201129943503,3.9249493617221725,816.3649782532741,2019
+1998,72,"(70,75]",College,352.4868,75.77031638418079,4.652043396688148,8001.1752361057415,2019
+1998,72,"(70,75]",College,224.5435,88.70671186440678,2.531302257525083,7982.226231348434,2019
+1998,72,"(70,75]",College,368.6050666666667,72.07420338983052,5.114244061401251,8529.886243694174,2019
+1998,72,"(70,75]",College,579.4553333333333,79.46642937853107,7.291825464727386,6719.898635200491,2019
+1998,72,"(70,75]",College,296.12756666666667,49.89752542372881,5.9347144803666545,8378.241470843914,2019
+1998,52,"(50,55]",College,20.97198,83.16254237288136,0.2521806020066889,6159.652917208023,2019
+1998,52,"(50,55]",College,20.97198,83.16254237288136,0.2521806020066889,6186.705563380774,2019
+1998,52,"(50,55]",College,54.06548,83.16254237288136,0.650118171683389,6183.449658656986,2019
+1998,52,"(50,55]",College,43.307813333333335,83.16254237288136,0.520761055369751,6122.506828679683,2019
+1998,52,"(50,55]",College,36.92614666666667,83.16254237288136,0.4440237829803047,6239.33430491558,2019
+1998,49,"(45,50]",College,1210.0916333333332,245.7915141242938,4.92324414715719,6258.447098045985,2019
+1998,49,"(45,50]",College,1210.2739666666666,245.7915141242938,4.923985968265144,5998.398427975454,2019
+1998,49,"(45,50]",College,1210.0916333333332,245.7915141242938,4.92324414715719,5588.292414799658,2019
+1998,49,"(45,50]",College,1210.0916333333332,245.7915141242938,4.92324414715719,6115.650741482947,2019
+1998,49,"(45,50]",College,1210.2739666666666,245.7915141242938,4.923985968265144,5578.0467004699885,2019
+1998,24,"(20,25]",College,63.81666666666666,44.35335593220339,1.438823857302118,4114.736013678283,2019
+1998,24,"(20,25]",College,63.81666666666666,44.35335593220339,1.438823857302118,4122.060433378463,2019
+1998,24,"(20,25]",College,65.64,44.35335593220339,1.479933110367893,4157.045719957476,2019
+1998,24,"(20,25]",College,65.64,44.35335593220339,1.479933110367893,4124.221259533108,2019
+1998,24,"(20,25]",College,65.64,44.35335593220339,1.479933110367893,4076.755884007919,2019
+1998,48,"(45,50]",College,204483.04080000002,1277.0070395480225,160.12679215329442,16.988373072866104,2019
+1998,48,"(45,50]",College,152547.54233333335,2162.2261016949155,70.5511519881085,17.31960725314636,2019
+1998,48,"(45,50]",College,186073.22703333333,1539.4310621468926,120.87142556019063,18.94060439607927,2019
+1998,48,"(45,50]",College,236523.71166666667,1759.3497853107344,134.43813938618925,17.623763815881922,2019
+1998,48,"(45,50]",College,151060.15816666666,2088.30384180791,72.33629280492495,18.931858893614667,2019
+1998,42,"(40,45]",College,2669.36,1478.4451977401131,1.8055183946488294,218.45019933154805,2019
+1998,42,"(40,45]",College,3289.2933333333335,1478.4451977401131,2.224832775919732,221.16661623708174,2019
+1998,42,"(40,45]",College,2293.7533333333336,1478.4451977401131,1.5514632107023412,235.71584378550378,2019
+1998,42,"(40,45]",College,2251.8166666666666,1478.4451977401131,1.5230978260869563,250.57069558941907,2019
+1998,42,"(40,45]",College,2288.2833333333338,1478.4451977401131,1.5477633779264215,211.9754717691777,2019
+1998,43,"(40,45]",HS,228.77363333333332,97.9469943502825,2.3356881428661573,7002.483708420163,2019
+1998,43,"(40,45]",HS,228.77363333333332,99.79505084745762,2.2924346587390065,7138.210990594196,2019
+1998,43,"(40,45]",HS,228.60953333333333,97.9469943502825,2.334012746892156,7478.602280180979,2019
+1998,43,"(40,45]",HS,226.9503,97.9469943502825,2.31707263204392,7024.182022308514,2019
+1998,43,"(40,45]",HS,226.9503,97.9469943502825,2.31707263204392,7308.544068451311,2019
+1998,19,"(15,20]",HS,9.444866666666668,29.56890395480226,0.3194188963210703,2596.075599470442,2019
+1998,19,"(15,20]",HS,9.426633333333333,29.56890395480226,0.3188022575250836,2564.1870949642116,2019
+1998,19,"(15,20]",HS,9.426633333333333,29.56890395480226,0.3188022575250836,2649.3641539546297,2019
+1998,19,"(15,20]",HS,9.444866666666668,29.56890395480226,0.3194188963210703,2592.039263875046,2019
+1998,19,"(15,20]",HS,9.426633333333333,29.56890395480226,0.3188022575250836,2644.4465331164274,2019
+1998,70,"(65,70]",College,304.132,77.61837288135592,3.9182990922121363,5402.026639457249,2019
+1998,70,"(65,70]",College,304.132,79.46642937853107,3.827175857509528,5369.6482255642395,2019
+1998,70,"(65,70]",College,304.132,79.46642937853107,3.827175857509528,5631.871942845392,2019
+1998,70,"(65,70]",College,304.132,79.46642937853107,3.827175857509528,5640.309830822774,2019
+1998,70,"(65,70]",College,304.132,77.61837288135592,3.9182990922121363,5560.44574127395,2019
+1998,43,"(40,45]",College,234.663,426.90105084745767,0.5496894409937888,5550.432254169724,2019
+1998,43,"(40,45]",College,232.56616666666667,426.90105084745767,0.5447776860820339,5305.994375289576,2019
+1998,43,"(40,45]",College,232.93083333333334,426.90105084745767,0.5456319043275565,5382.850871010809,2019
+1998,43,"(40,45]",College,232.56616666666667,426.90105084745767,0.5447776860820339,5367.494908669991,2019
+1998,43,"(40,45]",College,232.65733333333336,426.90105084745767,0.5449912406434145,5526.227725237278,2019
+1998,66,"(65,70]",HS,1219.0077333333334,44.35335593220339,27.484002229654404,5858.943627656079,2019
+1998,66,"(65,70]",HS,1315.8267333333333,44.35335593220339,29.666903567447044,5634.079496259181,2019
+1998,66,"(65,70]",HS,702.4574,44.35335593220339,15.837750836120401,5216.260854495479,2019
+1998,66,"(65,70]",HS,751.5050666666667,44.35335593220339,16.943589743589744,5705.087037951258,2019
+1998,66,"(65,70]",HS,688.0530666666666,44.35335593220339,15.512987736900778,5202.5618756052145,2019
+1998,50,"(45,50]",College,614.4633333333334,138.6042372881356,4.433221850613155,5673.560958120998,2019
+1998,50,"(45,50]",College,594.4066666666666,138.6042372881356,4.288517279821627,5377.584187203878,2019
+1998,50,"(45,50]",College,623.58,138.6042372881356,4.498996655518394,5065.370731983304,2019
+1998,50,"(45,50]",College,567.4213333333333,138.6042372881356,4.093823857302118,5548.025840680098,2019
+1998,50,"(45,50]",College,585.29,138.6042372881356,4.222742474916387,5049.807385064748,2019
+1998,61,"(60,65]",HS,801.5373333333334,83.16254237288136,9.638201412114457,6371.106286046566,2019
+1998,61,"(60,65]",HS,799.8963333333334,83.16254237288136,9.618468970642883,6073.920639383061,2019
+1998,61,"(60,65]",HS,801.5373333333334,83.16254237288136,9.638201412114457,5686.092093403573,2019
+1998,61,"(60,65]",HS,801.5373333333334,83.16254237288136,9.638201412114457,6219.895272117161,2019
+1998,61,"(60,65]",HS,799.8963333333334,83.16254237288136,9.618468970642883,5670.630054187182,2019
+1998,42,"(40,45]",College,2967.2015,462.0141242937853,6.422317725752508,847.3626968371109,2019
+1998,42,"(40,45]",College,2961.968533333333,462.0141242937853,6.410991304347826,927.6093877343186,2019
+1998,42,"(40,45]",College,2949.7339666666667,462.0141242937853,6.384510367892977,848.7905122859795,2019
+1998,42,"(40,45]",College,2953.562966666667,462.0141242937853,6.392797993311038,1086.7167010755709,2019
+1998,42,"(40,45]",College,2950.9373666666665,462.0141242937853,6.387115050167224,849.3886047751397,2019
+1998,38,"(35,40]",HS,35.00982333333334,73.92225988700567,0.47360326086956517,5739.54360750215,2019
+1998,38,"(35,40]",HS,35.81209,73.92225988700567,0.4844561036789296,5730.964594150149,2019
+1998,38,"(35,40]",HS,36.83315666666667,73.92225988700567,0.49826881270903,5775.506016537304,2019
+1998,38,"(35,40]",HS,35.00982333333334,73.92225988700567,0.47360326086956517,5768.264952569161,2019
+1998,38,"(35,40]",HS,35.00982333333334,73.92225988700567,0.47360326086956517,5698.729269800138,2019
+1998,45,"(40,45]",NoHS,373.6210566666667,147.84451977401133,2.5271214464882936,306.3194840804262,2019
+1998,45,"(40,45]",NoHS,364.50439,142.30035028248585,2.561514355210008,282.5383713791633,2019
+1998,45,"(40,45]",NoHS,373.6210566666667,144.14840677966103,2.591919432295686,286.25632099603376,2019
+1998,45,"(40,45]",NoHS,364.50439,140.45229378531073,2.595218491462771,315.5879552088368,2019
+1998,45,"(40,45]",NoHS,364.50439,142.30035028248585,2.561514355210008,317.28947418918705,2019
+1998,21,"(20,25]",HS,-2.5526666666666666,36.96112994350283,-0.06906354515050166,5987.889417784738,2019
+1998,21,"(20,25]",HS,-2.9173333333333336,46.201412429378536,-0.06314381270903009,6003.105958357601,2019
+1998,21,"(20,25]",HS,-2.735,36.96112994350283,-0.07399665551839463,6012.863814739306,2019
+1998,21,"(20,25]",HS,-2.5526666666666666,46.201412429378536,-0.05525083612040133,6035.991921073744,2019
+1998,21,"(20,25]",HS,-2.5526666666666666,25.872790960451983,-0.09866220735785951,5971.60431608133,2019
+1998,38,"(35,40]",NoHS,16.2459,25.872790960451983,0.6279144768275201,5429.521787681474,2019
+1998,38,"(35,40]",NoHS,16.008866666666666,22.176677966101696,0.7218784838350055,5400.63365382645,2019
+1998,38,"(35,40]",NoHS,16.1365,24.024734463276836,0.6716619500900438,5415.9592883899995,2019
+1998,38,"(35,40]",NoHS,16.0271,24.024734463276836,0.6671083097504502,5435.145866771625,2019
+1998,38,"(35,40]",NoHS,13.893799999999999,22.176677966101696,0.626505016722408,5388.235885742682,2019
+1998,70,"(65,70]",HS,3562.5198333333337,231.00706214689265,15.42169230769231,976.3376174929726,2019
+1998,70,"(65,70]",HS,3564.3431666666665,231.00706214689265,15.429585284280936,1075.8046259976386,2019
+1998,70,"(65,70]",HS,3562.5198333333337,231.00706214689265,15.42169230769231,984.0214763464415,2019
+1998,70,"(65,70]",HS,3562.3375,231.00706214689265,15.420903010033445,1260.6002674025333,2019
+1998,70,"(65,70]",HS,3562.3375,231.00706214689265,15.420903010033445,985.2888841219867,2019
+1998,55,"(50,55]",HS,701.5092666666667,129.36395480225988,5.422756808408983,901.1988056224311,2019
+1998,55,"(50,55]",HS,828.0486,242.09540112994353,3.4203400648472,824.7151403552609,2019
+1998,55,"(50,55]",HS,911.7760666666667,175.56536723163845,5.193370885407498,868.467481752016,2019
+1998,55,"(50,55]",HS,1253.7440566666667,142.30035028248585,8.810547930330541,933.9896406682941,2019
+1998,55,"(50,55]",HS,890.13857,225.46289265536726,3.9480490980865173,931.6538534006016,2019
+1998,33,"(30,35]",HS,0,9.979505084745762,0,5420.11969593651,2019
+1998,33,"(30,35]",HS,0,12.381978531073447,0,5415.358840509778,2019
+1998,33,"(30,35]",HS,0,9.05547683615819,0,5435.501212845547,2019
+1998,33,"(30,35]",HS,0,27.720847457627123,0,5416.021876563125,2019
+1998,33,"(30,35]",HS,0,14.045229378531072,0,5432.275044913247,2019
+1998,42,"(40,45]",College,6825.6483333333335,1663.2508474576273,4.103799702712746,182.33691989144364,2019
+1998,42,"(40,45]",College,6413.575,1663.2508474576273,3.8560479375696763,180.98444902747238,2019
+1998,42,"(40,45]",College,5242.995,1663.2508474576273,3.152257525083612,169.76309155991544,2019
+1998,42,"(40,45]",College,7051.741666666667,1663.2508474576273,4.239734299516908,185.3697193082039,2019
+1998,42,"(40,45]",College,5928.568333333333,1663.2508474576273,3.56444630248978,179.299402800348,2019
+1998,70,"(65,70]",College,23615.99566666667,1537.5830056497175,15.359167979804479,13.03880004061325,2019
+1998,70,"(65,70]",College,13131.646666666666,574.7455706214689,22.847756186215573,12.440634123637386,2019
+1998,70,"(65,70]",College,17469.356666666667,1537.5830056497175,11.361569816053512,9.689090924677142,2019
+1998,70,"(65,70]",College,19125.67266666667,1190.148384180791,16.069990028874717,10.966092522025658,2019
+1998,70,"(65,70]",College,10925.030433333333,340.042395480226,32.12843627308419,10.309975573490402,2019
+1998,68,"(65,70]",HS,294.4683333333333,42.50529943502825,6.9278028209975275,8378.89583288445,2019
+1998,68,"(65,70]",HS,294.286,42.50529943502825,6.9235131598080555,8680.63532366426,2019
+1998,68,"(65,70]",HS,294.1036666666667,40.65724293785311,7.233733657646701,8835.1005367156,2019
+1998,68,"(65,70]",HS,294.1036666666667,40.65724293785311,7.233733657646701,8401.982940897613,2019
+1998,68,"(65,70]",HS,296.1093333333333,40.65724293785311,7.28306476132563,8741.445904688835,2019
+1998,70,"(65,70]",College,242.68566666666666,83.16254237288136,2.9182088442958007,7524.138512139759,2019
+1998,70,"(65,70]",College,242.68566666666666,83.16254237288136,2.9182088442958007,7500.620135794027,2019
+1998,70,"(65,70]",College,266.389,83.16254237288136,3.2032329988851727,8070.147381741624,2019
+1998,70,"(65,70]",College,246.33233333333334,83.16254237288136,2.962058714232627,7694.5397578057255,2019
+1998,70,"(65,70]",College,242.68566666666666,83.16254237288136,2.9182088442958007,7827.288653037787,2019
+1998,70,"(65,70]",College,1080.1791333333333,129.36395480225988,8.349923554706164,12677.183342975433,2019
+1998,70,"(65,70]",College,1286.1793333333333,129.36395480225988,9.942331581462016,13310.446752006314,2019
+1998,70,"(65,70]",College,1108.4043333333332,129.36395480225988,8.568107978977544,11563.862010738283,2019
+1998,70,"(65,70]",College,1051.3704666666665,129.36395480225988,8.127228858098423,11849.545150295664,2019
+1998,70,"(65,70]",College,1354.7366666666667,129.36395480225988,10.472288580984234,12559.287953020945,2019
+1998,58,"(55,60]",College,48.42773333333333,49.89752542372881,0.9705437879350923,12208.48996779374,2019
+1998,58,"(55,60]",College,48.42773333333333,49.89752542372881,0.9705437879350923,12400.282250238593,2019
+1998,58,"(55,60]",College,48.42773333333333,49.89752542372881,0.9705437879350923,12941.694916765937,2019
+1998,58,"(55,60]",College,48.42773333333333,49.89752542372881,0.9705437879350923,11858.765427914012,2019
+1998,58,"(55,60]",College,48.42773333333333,49.89752542372881,0.9705437879350923,12925.685061953589,2019
+1998,72,"(70,75]",College,561.3131666666667,77.61837288135592,7.231704889313586,6147.076568967964,2019
+1998,72,"(70,75]",College,559.4898333333334,77.61837288135592,7.208213887561715,5919.990463962846,2019
+1998,72,"(70,75]",College,559.4898333333334,77.61837288135592,7.208213887561715,5526.2574208693495,2019
+1998,72,"(70,75]",College,561.3131666666667,77.61837288135592,7.231704889313586,6043.184948171922,2019
+1998,72,"(70,75]",College,559.4898333333334,77.61837288135592,7.208213887561715,5510.915168107238,2019
+1998,78,"(75,80]",NoHS,84.785,33.265016949152546,2.5487736900780376,6338.058289391634,2019
+1998,78,"(75,80]",NoHS,84.785,33.265016949152546,2.5487736900780376,6479.145836595784,2019
+1998,78,"(75,80]",NoHS,84.785,33.265016949152546,2.5487736900780376,6586.99775232292,2019
+1998,78,"(75,80]",NoHS,84.785,33.265016949152546,2.5487736900780376,6531.551077472067,2019
+1998,78,"(75,80]",NoHS,84.785,33.265016949152546,2.5487736900780376,6540.221954911356,2019
+1998,85,"(80,85]",HS,200.202,22.176677966101696,9.027591973244146,4865.347059727807,2019
+1998,85,"(80,85]",HS,216.612,24.024734463276836,9.016207872395164,4948.177618274218,2019
+1998,85,"(80,85]",HS,229.74,24.024734463276836,9.562644713146385,5008.200430721334,2019
+1998,85,"(80,85]",HS,196.373,24.024734463276836,8.173784409570363,5065.592204600509,2019
+1998,85,"(80,85]",HS,229.37533333333334,24.024734463276836,9.547465912014408,5033.684955633605,2019
+1998,60,"(55,60]",College,7582.149333333333,656.0600564971752,11.557096424702056,166.29543342112322,2019
+1998,60,"(55,60]",College,10231.452666666666,656.0600564971752,15.595298883602617,166.10121731105176,2019
+1998,60,"(55,60]",College,12477.799333333334,656.0600564971752,19.019294361486647,157.86925679183383,2019
+1998,60,"(55,60]",College,12488.739333333335,656.0600564971752,19.03596966413868,174.67710074792583,2019
+1998,60,"(55,60]",College,12486.916000000001,656.0600564971752,19.033190447030005,163.92567414901708,2019
+1998,36,"(35,40]",NoHS,-0.09116666666666667,15.154063276836158,-0.0060159882535280205,5248.537718091622,2019
+1998,36,"(35,40]",NoHS,-0.054700000000000006,14.045229378531072,-0.003894560816757614,5220.612522084974,2019
+1998,36,"(35,40]",NoHS,-0.07293333333333334,13.860423728813561,-0.005261984392419174,5235.4273021348445,2019
+1998,36,"(35,40]",NoHS,-0.07293333333333334,15.708480225988701,-0.004642927405075743,5253.974327868409,2019
+1998,36,"(35,40]",NoHS,-0.09116666666666667,14.045229378531072,-0.0064909346945960225,5208.628012960167,2019
+1998,53,"(50,55]",HS,1890.2496666666668,86.85865536723163,21.762363908062337,483.90144726328134,2019
+1998,53,"(50,55]",HS,1890.2496666666668,86.85865536723163,21.762363908062337,512.6576262337117,2019
+1998,53,"(50,55]",HS,1890.2496666666668,86.85865536723163,21.762363908062337,473.9624347543857,2019
+1998,53,"(50,55]",HS,1890.2496666666668,86.85865536723163,21.762363908062337,501.72729449762176,2019
+1998,53,"(50,55]",HS,1890.2496666666668,86.85865536723163,21.762363908062337,483.0398866145473,2019
+1998,39,"(35,40]",HS,-11.614633333333334,20.328621468926556,-0.5713438735177865,7451.893349630863,2019
+1998,39,"(35,40]",HS,-11.614633333333334,20.328621468926556,-0.5713438735177865,7489.214963131983,2019
+1998,39,"(35,40]",HS,-11.614633333333334,20.328621468926556,-0.5713438735177865,7518.393891782776,2019
+1998,39,"(35,40]",HS,-11.5964,20.328621468926556,-0.5704469443599878,7450.500603569721,2019
+1998,39,"(35,40]",HS,-11.614633333333334,20.328621468926556,-0.5713438735177865,7529.304099826169,2019
+1998,57,"(55,60]",NoHS,2.735,11.27314463276836,0.24261198530621197,5601.863656139905,2019
+1998,57,"(55,60]",NoHS,2.9173333333333336,10.349116384180792,0.2818920210224558,5609.309367582855,2019
+1998,57,"(55,60]",NoHS,2.9173333333333336,12.751589830508475,0.22878193010518152,5631.500978845694,2019
+1998,57,"(55,60]",NoHS,2.9173333333333336,10.903533333333334,0.26755852842809363,5601.571247686786,2019
+1998,57,"(55,60]",NoHS,2.9173333333333336,12.936395480225992,0.2255136168179646,5632.560497826764,2019
+1998,21,"(20,25]",HS,9.754833333333334,22.176677966101696,0.4398690078037904,6235.20844071716,2019
+1998,21,"(20,25]",HS,9.754833333333334,22.176677966101696,0.4398690078037904,6211.350881033354,2019
+1998,21,"(20,25]",HS,9.937166666666666,22.176677966101696,0.44809085841694535,6224.247280584791,2019
+1998,21,"(20,25]",HS,9.754833333333334,22.176677966101696,0.4398690078037904,6261.478341996253,2019
+1998,21,"(20,25]",HS,9.937166666666666,22.176677966101696,0.44809085841694535,6170.4502152018495,2019
+1998,24,"(20,25]",College,-71.45643333333334,42.50529943502825,-1.681118220154137,5258.84246134204,2019
+1998,24,"(20,25]",College,-71.45643333333334,42.50529943502825,-1.681118220154137,5238.72073661029,2019
+1998,24,"(20,25]",College,-71.45643333333334,42.50529943502825,-1.681118220154137,5249.59769993948,2019
+1998,24,"(20,25]",College,-71.45643333333334,42.50529943502825,-1.681118220154137,5280.998781153198,2019
+1998,24,"(20,25]",College,-71.45643333333334,42.50529943502825,-1.681118220154137,5204.224671207359,2019
+1998,43,"(40,45]",HS,1528.5550333333335,147.84451977401133,10.338936036789297,3007.0724161288485,2019
+1998,43,"(40,45]",HS,1528.5550333333335,147.84451977401133,10.338936036789297,3279.4828047336073,2019
+1998,43,"(40,45]",HS,1528.9379333333334,147.84451977401133,10.34152591973244,3060.8097416353467,2019
+1998,43,"(40,45]",HS,1528.7556000000002,147.84451977401133,10.340292642140467,3036.9874905164534,2019
+1998,43,"(40,45]",HS,1528.9379333333334,147.84451977401133,10.34152591973244,3134.6468155114267,2019
+1998,39,"(35,40]",HS,613.9163333333333,129.36395480225988,4.745652173913044,1214.9483217769016,2019
+1998,39,"(35,40]",HS,613.9181566666666,129.36395480225988,4.7456662685140945,1118.6231835569524,2019
+1998,39,"(35,40]",HS,613.9163333333333,129.36395480225988,4.745652173913044,1129.5711639814597,2019
+1998,39,"(35,40]",HS,613.9163333333333,129.36395480225988,4.745652173913044,1250.8217406632198,2019
+1998,39,"(35,40]",HS,613.9163333333333,129.36395480225988,4.745652173913044,1262.168476572613,2019
+1998,27,"(25,30]",HS,35.919666666666664,44.35335593220339,0.8098522853957636,11119.215648778109,2019
+1998,27,"(25,30]",HS,35.919666666666664,44.35335593220339,0.8098522853957636,11358.174711240603,2019
+1998,27,"(25,30]",HS,35.919666666666664,44.35335593220339,0.8098522853957636,11419.461030634211,2019
+1998,27,"(25,30]",HS,35.919666666666664,44.35335593220339,0.8098522853957636,11177.913055748082,2019
+1998,27,"(25,30]",HS,35.919666666666664,44.35335593220339,0.8098522853957636,11412.087047251216,2019
+1998,64,"(60,65]",College,2609.0806000000002,277.2084745762712,9.411979933110368,990.0464068744088,2019
+1998,64,"(60,65]",College,2747.5627666666664,277.2084745762712,9.911539576365662,1079.9991768446484,2019
+1998,64,"(60,65]",College,2695.2148666666667,277.2084745762712,9.72270011148272,990.680424161386,2019
+1998,64,"(60,65]",College,2731.8456333333334,277.2084745762712,9.854841694537345,1269.4941706562672,2019
+1998,64,"(60,65]",College,2724.406433333333,277.2084745762712,9.828005574136007,991.9331068953388,2019
+1998,80,"(75,80]",HS,713.9808666666667,53.593638418079095,13.32211970937608,7268.46273123132,2019
+1998,80,"(75,80]",HS,751.3956666666667,51.745581920903966,14.520962732919251,6971.9161940582735,2019
+1998,80,"(75,80]",HS,1502.4631333333334,121.97172881355934,12.318126076821729,3497.259767406744,2019
+1998,80,"(75,80]",HS,835.6519000000001,77.61837288135592,10.766161012900145,7084.756330265982,2019
+1998,80,"(75,80]",HS,518.7383333333333,49.89752542372881,10.396073330855941,6488.267041197935,2019
+1998,56,"(55,60]",College,1236.7487666666666,94.25088135593221,13.121880123286772,6645.35683588794,2019
+1998,56,"(55,60]",College,489.25503333333336,94.25088135593221,5.190986294183225,6336.002002873605,2019
+1998,56,"(55,60]",College,1054.4336666666668,94.25088135593221,11.187520493147092,5931.187831619664,2019
+1998,56,"(55,60]",College,598.7644333333334,94.25088135593221,6.35287887730343,6489.419599024523,2019
+1998,56,"(55,60]",College,620.6444333333334,94.25088135593221,6.585025247557217,5915.841739832491,2019
+1998,33,"(30,35]",HS,187.3475,168.17314124293785,1.1140155830791283,7296.774510708179,2019
+1998,33,"(30,35]",HS,185.52416666666667,144.14840677966103,1.2870358459823341,6982.588293779711,2019
+1998,33,"(30,35]",HS,189.17083333333335,170.021197740113,1.11263087101934,6513.691716569121,2019
+1998,33,"(30,35]",HS,190.99416666666667,160.78091525423727,1.1879156575558376,7125.069794275189,2019
+1998,33,"(30,35]",HS,181.8775,173.71731073446327,1.046973955738988,6499.804255702303,2019
+1998,55,"(50,55]",College,347.9831666666667,121.97172881355934,2.8529821627647713,11476.662892674074,2019
+1998,55,"(50,55]",College,349.8065,121.97172881355934,2.8679309820614165,11442.599178856184,2019
+1998,55,"(50,55]",College,347.9831666666667,121.97172881355934,2.8529821627647713,12042.299681790018,2019
+1998,55,"(50,55]",College,347.9831666666667,121.97172881355934,2.8529821627647713,11282.596942590588,2019
+1998,55,"(50,55]",College,349.8065,121.97172881355934,2.8679309820614165,11938.270014468144,2019
+1998,47,"(45,50]",HS,124.4972,92.40282485875707,1.3473311036789297,6643.819251232737,2019
+1998,47,"(45,50]",HS,130.87886666666668,92.40282485875707,1.4163946488294314,6768.440616974549,2019
+1998,47,"(45,50]",HS,123.22086666666667,92.40282485875707,1.3335183946488294,7059.960694852116,2019
+1998,47,"(45,50]",HS,124.86186666666667,92.40282485875707,1.351277591973244,6625.4544442493625,2019
+1998,47,"(45,50]",HS,122.49153333333334,92.40282485875707,1.3256254180602005,6951.689704319664,2019
+1998,52,"(50,55]",College,3458.134,1293.639548022599,2.673182035355948,184.665434483542,2019
+1998,52,"(50,55]",College,3063.2000000000003,1293.639548022599,2.3678929765886285,184.29568661943344,2019
+1998,52,"(50,55]",College,3108.054,1293.639548022599,2.4025656951743906,170.56924812482072,2019
+1998,52,"(50,55]",College,3062.4706666666666,1293.639548022599,2.3673291925465834,186.72121175867437,2019
+1998,52,"(50,55]",College,3350.5573333333336,1293.639548022599,2.590023889154324,182.36893371724233,2019
+1998,56,"(55,60]",College,16102.403666666667,1097.745559322034,14.668611983829374,14.317612436576573,2019
+1998,56,"(55,60]",College,16158.927,1097.745559322034,14.720102361406706,15.291696459915979,2019
+1998,56,"(55,60]",College,15659.333666666666,1097.745559322034,14.264993862819946,15.36399861952805,2019
+1998,56,"(55,60]",College,14811.483666666667,1097.745559322034,13.492638199159936,15.608242534038396,2019
+1998,56,"(55,60]",College,16888.44266666667,1097.745559322034,15.38466042813869,16.425531106105645,2019
+1998,48,"(45,50]",College,827.4286666666667,203.28621468926553,4.070264518090605,672.0917793659944,2019
+1998,48,"(45,50]",College,594.042,447.22967231638415,1.3282705436855635,718.93104459162,2019
+1998,48,"(45,50]",College,1049.3283333333334,138.6042372881356,7.570680044593088,673.3232684605655,2019
+1998,48,"(45,50]",College,999.0043333333334,380.69963841807913,2.6241273500665647,695.9731086285062,2019
+1998,48,"(45,50]",College,1103.6636666666668,195.893988700565,5.633984350350224,659.8598502048342,2019
+1998,24,"(20,25]",NoHS,8.934333333333335,64.68197740112994,0.13812709030100337,5741.587773361549,2019
+1998,24,"(20,25]",NoHS,4.011333333333334,62.833920903954805,0.06384025181979147,5719.618937149392,2019
+1998,24,"(20,25]",NoHS,2.735,64.68197740112994,0.04228380315336837,5731.494371738134,2019
+1998,24,"(20,25]",NoHS,23.156333333333333,62.833920903954805,0.36853236277788703,5765.777974126369,2019
+1998,24,"(20,25]",NoHS,10.393,64.68197740112994,0.1606784519827998,5681.956240690518,2019
+1998,46,"(45,50]",College,181.02053333333333,116.4275593220339,1.5547911026171894,6399.0161651591325,2019
+1998,46,"(45,50]",College,378.26873333333333,116.4275593220339,3.248962148962149,5644.882739540428,2019
+1998,46,"(45,50]",College,175.98813333333334,116.4275593220339,1.5115676593937464,6718.784634793342,2019
+1998,46,"(45,50]",College,323.5869666666667,116.4275593220339,2.7792987206030686,5755.047571136058,2019
+1998,46,"(45,50]",College,228.60953333333333,116.4275593220339,1.9635345330997505,6687.732977001843,2019
+1998,78,"(75,80]",HS,3322.1133333333337,103.49116384180793,32.10045389393215,524.3578818392843,2019
+1998,78,"(75,80]",HS,3323.9366666666665,103.49116384180793,32.11807214524605,520.0840769396345,2019
+1998,78,"(75,80]",HS,3322.1133333333337,103.49116384180793,32.10045389393215,499.24836498311845,2019
+1998,78,"(75,80]",HS,3323.9366666666665,103.49116384180793,32.11807214524605,544.7512340474157,2019
+1998,78,"(75,80]",HS,3323.9366666666665,103.49116384180793,32.11807214524605,516.3157950256189,2019
+1998,25,"(20,25]",HS,-14.276700000000002,35.11307344632768,-0.4065921492694949,5574.672139363965,2019
+1998,25,"(20,25]",HS,-14.240233333333334,33.265016949152546,-0.42808435525826827,5570.422983426795,2019
+1998,25,"(20,25]",HS,-13.5656,33.265016949152546,-0.407803790412486,5634.383669718151,2019
+1998,25,"(20,25]",HS,-14.149066666666668,33.265016949152546,-0.4253437383872166,5547.087757034345,2019
+1998,25,"(20,25]",HS,-13.729700000000001,33.265016949152546,-0.41273690078037906,5650.025211700717,2019
+1998,79,"(75,80]",HS,40.7515,13.306006779661017,3.062639353400223,8486.43340025514,2019
+1998,79,"(75,80]",HS,46.03916666666667,13.121201129943504,3.5087615996985253,8501.738681264074,2019
+1998,79,"(75,80]",HS,37.83416666666667,11.088338983050848,3.4120680044593086,8512.085088187465,2019
+1998,79,"(75,80]",HS,41.298500000000004,10.903533333333334,3.787625418060201,8450.6709945582,2019
+1998,79,"(75,80]",HS,38.5635,10.71872768361582,3.597768423480567,8510.270855006303,2019
+1998,40,"(35,40]",College,3599.6246666666666,2587.279096045198,1.3912780697563305,298.995037894117,2019
+1998,40,"(35,40]",College,3307.1620000000003,1958.9398870056498,1.6882406764687323,301.07926025302294,2019
+1998,40,"(35,40]",College,3506.087666666667,2014.381581920904,1.7405280598938357,287.9865881446447,2019
+1998,40,"(35,40]",College,3409.2686666666664,1977.4204519774014,1.724099021660988,309.1291856834658,2019
+1998,40,"(35,40]",College,3541.2780000000002,2143.7455367231637,1.6519115442278862,292.6523934319388,2019
+1998,39,"(35,40]",NoHS,220.1128,317.8657175141243,0.6924710274558605,5494.493843390047,2019
+1998,39,"(35,40]",NoHS,319.0833333333333,317.8657175141243,1.0038305981177569,5256.659849993992,2019
+1998,39,"(35,40]",NoHS,331.55493333333334,317.8657175141243,1.0430660340670452,4908.851291847376,2019
+1998,39,"(35,40]",NoHS,217.3595666666667,317.8657175141243,0.683809403437816,5364.975639204166,2019
+1998,39,"(35,40]",NoHS,212.9471,317.8657175141243,0.669927860309559,4892.765613458924,2019
+1998,37,"(35,40]",HS,310.3313333333333,59.13780790960452,5.247596153846153,5666.746978665104,2019
+1998,37,"(35,40]",HS,315.80133333333333,90.55476836158192,3.4874070029349533,5421.583284234119,2019
+1998,37,"(35,40]",HS,319.4662333333333,72.07420338983052,4.432462910556556,5062.597665997419,2019
+1998,37,"(35,40]",HS,317.64290000000005,60.98586440677967,5.208467619337185,5534.346992462814,2019
+1998,37,"(35,40]",HS,317.6246666666667,79.46642937853107,3.996966632962589,5047.08253829003,2019
+1998,72,"(70,75]",HS,163.57123333333334,55.441694915254246,2.950328874024526,8889.34475276035,2019
+1998,72,"(70,75]",HS,159.5599,68.37809039548021,2.3334945313206186,8918.966291486891,2019
+1998,72,"(70,75]",HS,158.28356666666667,51.745581920903966,3.058880793119923,9456.228704890764,2019
+1998,72,"(70,75]",HS,161.2009,48.04946892655367,3.3548945201955234,9194.467567361402,2019
+1998,72,"(70,75]",HS,161.34676666666667,68.37809039548021,2.3596266835397275,9312.352623135037,2019
+1998,39,"(35,40]",HS,21404.11,805.75263276836165,26.564120462704427,190.38642206507495,2019
+1998,39,"(35,40]",HS,21635.527466666666,624.6430960451978,34.63662306307019,212.9050545375042,2019
+1998,39,"(35,40]",HS,19726.1328,874.1307231638418,22.566570739674884,203.0897275971188,2019
+1998,39,"(35,40]",HS,17514.94,831.6254237288136,21.061092530657746,1139.7952739421792,2019
+1998,39,"(35,40]",HS,19885.27333333333,624.6430960451978,31.834616374106975,183.3459347059927,2019
+1998,44,"(40,45]",HS,24.359733333333335,127.51589830508476,0.19103291163782657,8778.571934258589,2019
+1998,44,"(40,45]",HS,24.37796666666667,127.51589830508476,0.1911759003441423,8956.599521234693,2019
+1998,44,"(40,45]",HS,24.37796666666667,127.51589830508476,0.1911759003441423,9380.029166059408,2019
+1998,44,"(40,45]",HS,24.359733333333335,127.51589830508476,0.19103291163782657,8776.966336902717,2019
+1998,44,"(40,45]",HS,24.359733333333335,127.51589830508476,0.19103291163782657,9312.865362916571,2019
+1998,80,"(75,80]",HS,392.34486666666663,38.80918644067796,10.10958751393534,9388.836574829067,2019
+1998,80,"(75,80]",HS,111.4239,15.708480225988701,7.093232343104466,9523.78034331952,2019
+1998,80,"(75,80]",HS,227.78903333333332,49.89752542372881,4.5651368760064415,9888.912673404197,2019
+1998,80,"(75,80]",HS,244.3449,59.13780790960452,4.131788252508361,9506.830351485385,2019
+1998,80,"(75,80]",HS,264.201,22.176677966101696,11.913461538461538,9901.818948415026,2019
+1998,30,"(25,30]",College,195.73483333333334,55.441694915254246,3.53046265328874,8020.654427826905,2019
+1998,30,"(25,30]",College,216.70316666666668,55.441694915254246,3.908667781493868,8075.172204091083,2019
+1998,30,"(25,30]",College,214.87983333333335,55.441694915254246,3.8757803790412484,8263.698109180206,2019
+1998,30,"(25,30]",College,246.78816666666665,55.441694915254246,4.451309921962095,8017.39210965497,2019
+1998,30,"(25,30]",College,222.9025,55.441694915254246,4.020484949832776,8253.953374872672,2019
+1998,59,"(55,60]",HS,571.4326666666666,33.265016949152546,17.17818654775176,109.3400889117011,2019
+1998,59,"(55,60]",HS,571.615,33.265016949152546,17.183667781493867,111.21791553261906,2019
+1998,59,"(55,60]",HS,571.4326666666666,33.265016949152546,17.17818654775176,117.994620568594,2019
+1998,59,"(55,60]",HS,571.4326666666666,33.265016949152546,17.17818654775176,110.14469523324965,2019
+1998,59,"(55,60]",HS,571.2503333333334,33.265016949152546,17.17270531400966,124.1080366967916,2019
+1998,36,"(35,40]",HS,36.46666666666666,40.65724293785311,0.8969291577987227,5893.2813832952515,2019
+1998,36,"(35,40]",HS,27.35,40.65724293785311,0.6726968683490422,5884.472574941864,2019
+1998,36,"(35,40]",HS,34.64333333333334,40.65724293785311,0.8520826999087868,5872.143692524619,2019
+1998,36,"(35,40]",HS,34.64333333333334,40.65724293785311,0.8520826999087868,5922.772050108093,2019
+1998,36,"(35,40]",HS,20.05666666666667,40.65724293785311,0.49331103678929766,5851.373804400583,2019
+1998,62,"(60,65]",HS,436.2325,62.833920903954805,6.9426273854023215,5519.910639430121,2019
+1998,62,"(60,65]",HS,430.2155,64.68197740112994,6.651242236024845,5291.675627947471,2019
+1998,62,"(60,65]",HS,434.4091666666667,62.833920903954805,6.913609089120598,4951.996619382942,2019
+1998,62,"(60,65]",HS,430.7625,62.833920903954805,6.8555724965571505,5401.400901584122,2019
+1998,62,"(60,65]",HS,432.5858333333333,64.68197740112994,6.687888198757764,4939.597643308779,2019
+1998,66,"(65,70]",College,54676.11433333334,3825.4769491525426,14.292626791398058,24.536113405023357,2019
+1998,66,"(65,70]",College,58599.80003333333,4509.257853107344,12.995442252864741,25.75983580138125,2019
+1998,66,"(65,70]",College,53380.56306666667,3954.840903954803,13.497524771043665,22.59482456630162,2019
+1998,66,"(65,70]",College,53968.31456666667,4472.296723163842,12.067248196467563,21.34192801567523,2019
+1998,66,"(65,70]",College,54227.483166666665,4065.7242937853107,13.337717771359076,21.91752728842682,2019
+1998,38,"(35,40]",HS,204.6874,92.40282485875707,2.215163879598662,7581.493929680534,2019
+1998,38,"(35,40]",HS,297.2762666666667,92.40282485875707,3.2171772575250834,5760.432230495143,2019
+1998,38,"(35,40]",HS,220.53216666666665,92.40282485875707,2.3866387959866215,8100.934265307912,2019
+1998,38,"(35,40]",HS,219.74813333333333,92.40282485875707,2.378153846153846,7580.107277421126,2019
+1998,38,"(35,40]",HS,210.13916666666665,92.40282485875707,2.2741638795986616,8042.92916269726,2019
+1998,32,"(30,35]",College,2046.8375333333336,203.28621468926553,10.068747339616905,3170.8680751060056,2019
+1998,32,"(30,35]",College,2046.8375333333336,203.28621468926553,10.068747339616905,3458.6798326412572,2019
+1998,32,"(30,35]",College,2046.8375333333336,203.28621468926553,10.068747339616905,3224.6143848864995,2019
+1998,32,"(30,35]",College,2046.8375333333336,203.28621468926553,10.068747339616905,3202.3485225631534,2019
+1998,32,"(30,35]",College,2047.0198666666668,203.28621468926553,10.069644268774704,3306.4626616789524,2019
+1998,54,"(50,55]",College,16447.378333333334,1293.639548022599,12.714034878165313,162.0093394411526,2019
+1998,54,"(50,55]",College,16533.257333333335,1293.639548022599,12.780420449116102,160.64717240411966,2019
+1998,54,"(50,55]",College,16624.424,1293.639548022599,12.850893454371713,149.95879773770454,2019
+1998,54,"(50,55]",College,16467.435,1293.639548022599,12.729538939321548,164.60121593974128,2019
+1998,54,"(50,55]",College,16653.415,1293.639548022599,12.873303870043,157.58918020816802,2019
+1998,52,"(50,55]",HS,23.521,57.289751412429375,0.41056208868270583,7011.519856862918,2019
+1998,52,"(50,55]",HS,23.703333333333333,57.289751412429375,0.41374474053295934,7183.8541294396855,2019
+1998,52,"(50,55]",HS,21.88,57.289751412429375,0.381918222030424,7434.562268540985,2019
+1998,52,"(50,55]",HS,23.703333333333333,57.289751412429375,0.41374474053295934,7031.7933894901025,2019
+1998,52,"(50,55]",HS,23.703333333333333,57.289751412429375,0.41374474053295934,7339.649320976712,2019
+1998,36,"(35,40]",HS,16.0271,60.98586440677967,0.2628002432350258,6909.565526294338,2019
+1998,36,"(35,40]",HS,17.850433333333335,62.833920903954805,0.284089120598072,7085.131989379552,2019
+1998,36,"(35,40]",HS,15.115433333333332,62.833920903954805,0.24056167617548688,7405.378375761653,2019
+1998,36,"(35,40]",HS,17.485766666666667,62.833920903954805,0.2782854613417273,6899.426434309222,2019
+1998,36,"(35,40]",HS,17.850433333333335,60.98586440677967,0.2926978818283166,7239.99186595738,2019
+1998,78,"(75,80]",HS,492.6829,38.80918644067796,12.695007166746299,5916.298186402599,2019
+1998,78,"(75,80]",HS,680.2856666666667,38.80918644067796,17.52898550724638,5673.517306452078,2019
+1998,78,"(75,80]",HS,312.1729,38.80918644067796,8.043788819875777,7524.172695962887,2019
+1998,78,"(75,80]",HS,858.1518333333333,38.80918644067796,22.112079949036474,5765.165390768395,2019
+1998,78,"(75,80]",HS,251.62,38.80918644067796,6.4835164835164845,7533.992687831582,2019
+1998,55,"(50,55]",HS,521.838,49.89752542372881,10.45819397993311,6160.140294819429,2019
+1998,55,"(50,55]",HS,536.0600000000001,49.89752542372881,10.743218134522484,5873.373275483873,2019
+1998,55,"(50,55]",HS,1175.6853333333333,49.89752542372881,23.561996779388085,5498.116964974228,2019
+1998,55,"(50,55]",HS,951.9623333333334,49.89752542372881,19.078347578347582,6015.588951680486,2019
+1998,55,"(50,55]",HS,381.259,49.89752542372881,7.640839836492011,5483.8913814998205,2019
+1998,33,"(30,35]",HS,512.9036666666667,312.3215480225989,1.6422295224713541,776.6594101984763,2019
+1998,33,"(30,35]",HS,556.6636666666666,310.4734915254237,1.7929507087115781,707.9652276379787,2019
+1998,33,"(30,35]",HS,529.3136666666667,310.4734915254237,1.704859452142061,726.0985193168004,2019
+1998,33,"(30,35]",HS,547.547,312.3215480225989,1.753151530743504,800.6388593487138,2019
+1998,33,"(30,35]",HS,538.4303333333334,310.4734915254237,1.7342232043319001,805.7132112296174,2019
+1998,56,"(55,60]",HS,49.37586666666667,18.480564971751416,2.6717725752508357,6831.866477645088,2019
+1998,56,"(55,60]",HS,49.37586666666667,18.480564971751416,2.6717725752508357,6808.339616519533,2019
+1998,56,"(55,60]",HS,49.37586666666667,18.480564971751416,2.6717725752508357,7151.376192320563,2019
+1998,56,"(55,60]",HS,47.552533333333336,18.480564971751416,2.5731103678929763,6660.432706678318,2019
+1998,56,"(55,60]",HS,49.35763333333333,18.480564971751416,2.670785953177257,7079.822052311613,2019
+1998,50,"(45,50]",HS,5.105333333333333,22.176677966101696,0.23021181716833888,10528.272372650945,2019
+1998,50,"(45,50]",HS,5.105333333333333,22.176677966101696,0.23021181716833888,10502.603291974705,2019
+1998,50,"(45,50]",HS,5.105333333333333,22.176677966101696,0.23021181716833888,10729.944396690062,2019
+1998,50,"(45,50]",HS,4.923,22.176677966101696,0.22198996655518394,10548.636100665663,2019
+1998,50,"(45,50]",HS,4.923,22.176677966101696,0.22198996655518394,10855.392034458182,2019
+1998,71,"(70,75]",College,561.5866666666666,53.593638418079095,10.478606850420942,5628.808928857535,2019
+1998,71,"(70,75]",College,601.7,57.289751412429375,10.502751105836662,5422.207730477261,2019
+1998,71,"(70,75]",College,567.0566666666666,51.745581920903966,10.958552317247966,5060.1472307680715,2019
+1998,71,"(70,75]",College,576.1733333333334,53.593638418079095,10.750778456925385,5535.213840218745,2019
+1998,71,"(70,75]",College,577.9966666666667,51.745581920903966,11.169971333014809,5046.564038657646,2019
+1998,83,"(80,85]",NoHS,267.483,36.96112994350283,7.236872909698995,9431.321790759303,2019
+1998,83,"(80,85]",NoHS,267.483,36.96112994350283,7.236872909698995,9628.027104295103,2019
+1998,83,"(80,85]",NoHS,267.483,36.96112994350283,7.236872909698995,9992.658818955857,2019
+1998,83,"(80,85]",NoHS,267.483,36.96112994350283,7.236872909698995,9586.178233114591,2019
+1998,83,"(80,85]",NoHS,267.3006666666667,36.96112994350283,7.231939799331103,10023.678763692333,2019
+1998,63,"(60,65]",HS,292.4626666666667,59.13780790960452,4.945443143812709,6919.918894855104,2019
+1998,63,"(60,65]",HS,292.2803333333333,60.98586440677967,4.7925914665045095,6899.379985672032,2019
+1998,63,"(60,65]",HS,292.645,59.13780790960452,4.948526337792642,7260.972800614339,2019
+1998,63,"(60,65]",HS,292.4626666666667,59.13780790960452,4.945443143812709,6802.905731064433,2019
+1998,63,"(60,65]",HS,292.645,60.98586440677967,4.798570994223168,7198.2475234795,2019
+1998,47,"(45,50]",HS,334.36286666666666,92.40282485875707,3.618535117056856,5492.921434218529,2019
+1998,47,"(45,50]",HS,318.8645333333333,92.40282485875707,3.4508093645484945,5595.9548469528945,2019
+1998,47,"(45,50]",HS,328.1635333333333,92.40282485875707,3.551444816053511,5836.975384045563,2019
+1998,47,"(45,50]",HS,331.44553333333334,92.40282485875707,3.586963210702341,5477.737932365199,2019
+1998,47,"(45,50]",HS,310.84186666666665,92.40282485875707,3.363986622073578,5747.459998073947,2019
+1998,43,"(40,45]",NoHS,8.934333333333335,49.89752542372881,0.17905363557537476,5140.803091190895,2019
+1998,43,"(40,45]",NoHS,9.116666666666665,49.89752542372881,0.18270779140344356,5117.657249880999,2019
+1998,43,"(40,45]",NoHS,9.116666666666665,49.89752542372881,0.18270779140344356,5078.116045145244,2019
+1998,43,"(40,45]",NoHS,8.934333333333335,49.89752542372881,0.17905363557537476,5165.663606409568,2019
+1998,43,"(40,45]",NoHS,8.934333333333335,49.89752542372881,0.17905363557537476,5076.7544828924565,2019
+1998,76,"(75,80]",HS,1378.44,138.6042372881356,9.94515050167224,3492.6449491164485,2019
+1998,76,"(75,80]",HS,1378.44,138.6042372881356,9.94515050167224,3817.6254606690286,2019
+1998,76,"(75,80]",HS,1380.2633333333333,140.45229378531073,9.827275127618377,3561.8691057440287,2019
+1998,76,"(75,80]",HS,1378.44,140.45229378531073,9.814293258229185,3519.2966830397213,2019
+1998,76,"(75,80]",HS,1380.2633333333333,138.6042372881356,9.958305462653287,3648.821684851576,2019
+1998,77,"(75,80]",College,102063.45366666667,7096.5369491525435,14.382149264910812,33.298020221494895,2019
+1998,77,"(75,80]",College,101800.89366666667,6227.950395480226,16.34580996992944,34.892343262385054,2019
+1998,77,"(75,80]",College,101901.177,6172.508700564971,16.508875393026656,30.18795190638621,2019
+1998,77,"(75,80]",College,102045.22033333333,6837.809039548023,14.92367215041128,29.311296248858962,2019
+1998,77,"(75,80]",College,102209.32033333334,6209.469830508475,16.460233018792803,29.895445829547914,2019
+1998,47,"(45,50]",HS,338.9576666666667,75.77031638418079,4.473488865323437,6399.0161651591325,2019
+1998,47,"(45,50]",HS,338.9576666666667,75.77031638418079,4.473488865323437,6482.562783264771,2019
+1998,47,"(45,50]",HS,338.9576666666667,75.77031638418079,4.473488865323437,6718.784634793342,2019
+1998,47,"(45,50]",HS,338.9576666666667,75.77031638418079,4.473488865323437,6393.47539557341,2019
+1998,47,"(45,50]",HS,338.9576666666667,75.77031638418079,4.473488865323437,6687.732977001843,2019
+1998,36,"(35,40]",NoHS,103.91176666666667,14.78445197740113,7.028448996655518,7181.990094927304,2019
+1998,36,"(35,40]",NoHS,98.95230000000001,14.045229378531072,7.0452605175145235,7321.82438598217,2019
+1998,36,"(35,40]",NoHS,105.93566666666668,14.599646327683615,7.25604335125524,7562.492055250152,2019
+1998,36,"(35,40]",NoHS,93.8652,22.176677966101696,4.232608695652174,7258.893912428733,2019
+1998,36,"(35,40]",NoHS,102.0702,31.416960451977403,3.2488884517017507,7490.439215998621,2019
+1998,92,"(90,95]",HS,0,22.176677966101696,0,6457.046920707131,2019
+1998,92,"(90,95]",HS,0,29.56890395480226,0,6503.675549746129,2019
+1998,92,"(90,95]",HS,0,27.720847457627123,0,6510.796458584332,2019
+1998,92,"(90,95]",HS,0,8.870671186440678,0,6444.730576653584,2019
+1998,92,"(90,95]",HS,0,33.265016949152546,0,6511.076187384925,2019
+1998,78,"(75,80]",College,97.73066666666668,64.68197740112994,1.5109412326803633,5889.575465491411,2019
+1998,78,"(75,80]",College,65.3665,48.04946892655367,1.3604000514535632,5907.54257374551,2019
+1998,78,"(75,80]",College,163.553,48.04946892655367,3.4038461538461537,6026.707758021572,2019
+1998,78,"(75,80]",College,70.8365,90.55476836158192,0.7822503583373148,6000.2403833097615,2019
+1998,78,"(75,80]",College,53.788333333333334,49.89752542372881,1.0779759692803172,5989.795968267506,2019
+1998,58,"(55,60]",NoHS,382.8817666666667,46.201412429378536,8.287230769230769,4483.157273044393,2019
+1998,58,"(55,60]",NoHS,496.09253333333334,46.201412429378536,10.737605351170567,4280.264961852465,2019
+1998,58,"(55,60]",NoHS,499.73920000000004,46.201412429378536,10.816535117056857,4026.451042385777,2019
+1998,58,"(55,60]",NoHS,499.5568666666666,46.201412429378536,10.81258862876254,4368.370739348684,2019
+1998,58,"(55,60]",NoHS,499.5568666666666,46.201412429378536,10.81258862876254,4009.624265055239,2019
+1998,47,"(45,50]",College,408.4266666666667,125.66784180790961,3.2500491835530196,486.8252370988927,2019
+1998,47,"(45,50]",College,413.71433333333334,162.62897175141245,2.543915323806628,469.5858230467478,2019
+1998,47,"(45,50]",College,417.361,107.18727683615819,3.893755045554146,471.14458480045715,2019
+1998,47,"(45,50]",College,399.4923333333333,168.17314124293785,2.375482377154618,480.0703462032974,2019
+1998,47,"(45,50]",College,433.9533333333333,171.86925423728815,2.5249038012011362,485.78830720249806,2019
+1998,51,"(50,55]",HS,1397.585,147.84451977401133,9.453072742474914,3359.8694537874994,2019
+1998,51,"(50,55]",HS,1625.5016666666668,147.84451977401133,10.99466973244147,3669.6142748103657,2019
+1998,51,"(50,55]",HS,1716.6683333333333,147.84451977401133,11.611308528428092,3417.9579349706573,2019
+1998,51,"(50,55]",HS,1625.5016666666668,147.84451977401133,10.99466973244147,3394.0449091032706,2019
+1998,51,"(50,55]",HS,1899.0016666666668,147.84451977401133,12.844586120401337,3504.6932893426556,2019
+1998,25,"(20,25]",NoHS,12.672166666666666,44.35335593220339,0.28570930880713485,4959.361656676717,2019
+1998,25,"(20,25]",NoHS,12.544533333333334,44.35335593220339,0.28283166109253066,4942.453030007403,2019
+1998,25,"(20,25]",NoHS,12.672166666666666,44.35335593220339,0.28570930880713485,4944.9238096989275,2019
+1998,25,"(20,25]",NoHS,12.034,44.35335593220339,0.2713210702341137,4980.107529067916,2019
+1998,25,"(20,25]",NoHS,12.398666666666667,44.35335593220339,0.27954292084726867,4941.797427689417,2019
+1998,64,"(60,65]",College,11169.010666666667,1393.4345988700566,8.01545381155576,162.0093394411526,2019
+1998,64,"(60,65]",College,10556.188333333334,389.9399209039548,27.071319881437333,160.64717240411966,2019
+1998,64,"(60,65]",College,29493.51066666667,696.7172994350283,42.33210613628097,179.83633704493724,2019
+1998,64,"(60,65]",College,14613.287333333334,389.9399209039548,37.47574062039341,164.60121593974128,2019
+1998,64,"(60,65]",College,13229.377333333334,413.9646553672317,31.95774605828953,157.58918020816802,2019
+1998,53,"(50,55]",College,3272.154,255.03179661016952,12.83037661771121,3367.3833616380807,2019
+1998,53,"(50,55]",College,3270.3306666666667,256.8798531073446,12.730973749428552,3623.8764854168826,2019
+1998,53,"(50,55]",College,3272.154,256.8798531073446,12.738071749957895,3484.9668742741787,2019
+1998,53,"(50,55]",College,3272.154,255.03179661016952,12.83037661771121,4087.8618361036074,2019
+1998,53,"(50,55]",College,3270.3306666666667,255.03179661016952,12.823227182395422,3268.9642418434514,2019
+1998,40,"(35,40]",NoHS,5.2512,40.65724293785311,0.12915779872301608,6730.747678965257,2019
+1998,40,"(35,40]",NoHS,16.118266666666667,38.80918644067796,0.41532091097308493,6720.687092591918,2019
+1998,40,"(35,40]",NoHS,14.896633333333334,38.80918644067796,0.3838429686255774,6706.606211107233,2019
+1998,40,"(35,40]",NoHS,5.47,38.80918644067796,0.1409460105112279,6764.429124715379,2019
+1998,40,"(35,40]",NoHS,7.913266666666667,40.65724293785311,0.1946336272423229,6682.884812587302,2019
+1998,73,"(70,75]",NoHS,117.96966666666667,35.11307344632768,3.359707797922901,6864.9294585651905,2019
+1998,73,"(70,75]",NoHS,117.96966666666667,36.96112994350283,3.191722408026755,6889.342044685118,2019
+1998,73,"(70,75]",NoHS,117.96966666666667,36.96112994350283,3.191722408026755,6830.741573951076,2019
+1998,73,"(70,75]",NoHS,117.96966666666667,35.11307344632768,3.359707797922901,6919.831657683792,2019
+1998,73,"(70,75]",NoHS,117.96966666666667,35.11307344632768,3.359707797922901,6830.918758249043,2019
+1998,41,"(40,45]",College,516.5503333333334,369.6112994350283,1.3975501672240802,402.8318826371981,2019
+1998,41,"(40,45]",College,496.4936666666667,443.53355932203397,1.119404960981048,389.25898214686697,2019
+1998,41,"(40,45]",College,481.907,410.2685423728813,1.17461357678749,394.4573317766651,2019
+1998,41,"(40,45]",College,520.0146666666667,462.0141242937853,1.1255384615384616,394.22838028586233,2019
+1998,41,"(40,45]",College,481.907,447.22967231638415,1.0775380745736478,401.5213704868064,2019
+1998,43,"(40,45]",College,-8.205,27.720847457627123,-0.29598662207357856,6274.968438954626,2019
+1998,43,"(40,45]",College,-8.205,27.720847457627123,-0.29598662207357856,6266.602521604965,2019
+1998,43,"(40,45]",College,-8.205,27.720847457627123,-0.29598662207357856,6261.9514249314125,2019
+1998,43,"(40,45]",College,-8.205,27.720847457627123,-0.29598662207357856,6271.436613915165,2019
+1998,43,"(40,45]",College,-8.205,27.720847457627123,-0.29598662207357856,6274.604611438405,2019
+1998,72,"(70,75]",College,3671.5551666666665,138.6042372881356,26.489487179487178,1960.5021670141036,2019
+1998,72,"(70,75]",College,3671.7375,138.6042372881356,26.490802675585282,1901.1851092782567,2019
+1998,72,"(70,75]",College,3671.5551666666665,138.6042372881356,26.489487179487178,1858.2128493718033,2019
+1998,72,"(70,75]",College,3627.795166666667,138.6042372881356,26.17376811594203,2223.990724366313,2019
+1998,72,"(70,75]",College,4083.8108333333334,138.6042372881356,29.463823857302117,2027.0745903060488,2019
+1998,54,"(50,55]",HS,71.11,96.09893785310734,0.7399665551839465,7070.21030764819,2019
+1998,54,"(50,55]",HS,71.11,96.09893785310734,0.7399665551839465,7101.262040658247,2019
+1998,54,"(50,55]",HS,71.11,96.09893785310734,0.7399665551839465,7097.5248282782195,2019
+1998,54,"(50,55]",HS,71.29233333333333,96.09893785310734,0.7418639053254438,7027.573058190812,2019
+1998,54,"(50,55]",HS,71.29233333333333,96.09893785310734,0.7418639053254438,7161.670683138482,2019
+1998,40,"(35,40]",HS,1050.6046666666668,138.6042372881356,7.579888517279822,12677.183342975433,2019
+1998,40,"(35,40]",HS,1017.7846666666667,138.6042372881356,7.343099219620958,13310.446752006314,2019
+1998,40,"(35,40]",HS,804.4546666666666,138.6042372881356,5.803968784838349,7568.077389300056,2019
+1998,40,"(35,40]",HS,771.6346666666666,138.6042372881356,5.567179487179486,7364.2090498089065,2019
+1998,40,"(35,40]",HS,1017.7846666666667,138.6042372881356,7.343099219620958,12559.287953020945,2019
+1998,55,"(50,55]",College,2610.284,554.4169491525424,4.708160535117057,1161.0419777391355,2019
+1998,55,"(50,55]",College,3217.454,153.38868926553673,20.97582302453963,1266.4358193017956,2019
+1998,55,"(50,55]",College,3215.6306666666665,153.38868926553673,20.963936011604947,1161.686726803908,2019
+1998,55,"(50,55]",College,3215.6306666666665,419.50882485875707,7.665227704683747,1488.6625167633024,2019
+1998,55,"(50,55]",College,2577.464,194.04593220338984,13.282752030578116,1163.2494198484746,2019
+1998,39,"(35,40]",HS,152.24833333333333,138.6042372881356,1.0984392419175026,5610.257622921237,2019
+1998,39,"(35,40]",HS,146.96066666666667,99.79505084745762,1.4726247987117553,5718.999756592986,2019
+1998,39,"(35,40]",HS,145.13733333333334,182.957593220339,0.7932840106753151,5991.714825516876,2019
+1998,39,"(35,40]",HS,148.41933333333336,66.53003389830509,2.2308621330360463,5627.64190198072,2019
+1998,39,"(35,40]",HS,149.69566666666665,186.65370621468927,0.8019967548594323,5855.467399828545,2019
+1998,50,"(45,50]",College,303.45736666666664,380.69963841807913,0.7971044257557552,248.47765543663087,2019
+1998,50,"(45,50]",College,337.69956666666667,382.5476949152542,0.882764609891264,239.87700350776808,2019
+1998,50,"(45,50]",College,335.311,397.33214689265543,0.843906043400482,236.06684181998025,2019
+1998,50,"(45,50]",College,468.3414,216.22261016949156,2.166014921533316,240.75304980274547,2019
+1998,50,"(45,50]",College,825.9335333333333,255.03179661016952,3.23855120934516,247.68575501083455,2019
+1998,45,"(40,45]",NoHS,47.89896666666667,46.201412429378536,1.0367424749163878,6435.136236721351,2019
+1998,45,"(40,45]",NoHS,46.276199999999996,38.80918644067796,1.192403248924988,6599.611223326899,2019
+1998,45,"(40,45]",NoHS,46.276199999999996,42.50529943502825,1.0887160098880324,6820.79781917147,2019
+1998,45,"(40,45]",NoHS,47.826033333333335,46.201412429378536,1.0351638795986622,6424.644582894127,2019
+1998,45,"(40,45]",NoHS,46.25796666666667,40.65724293785311,1.13775463666768,6804.299387195462,2019
+1998,61,"(60,65]",NoHS,0,1.5893285875706216,0,5559.33257647129,2019
+1998,61,"(60,65]",NoHS,0,1.5893285875706216,0,5550.7785295002695,2019
+1998,61,"(60,65]",NoHS,0,1.607809152542373,0,5539.955373465994,2019
+1998,61,"(60,65]",NoHS,0,1.607809152542373,0,5558.128749094602,2019
+1998,61,"(60,65]",NoHS,0,1.607809152542373,0,5558.951890298627,2019
+1998,27,"(25,30]",College,28.407533333333333,12.936395480225992,2.1959388437649303,4807.1201988502735,2019
+1998,27,"(25,30]",College,42.8301,12.936395480225992,3.310821786908743,4869.164410034647,2019
+1998,27,"(25,30]",College,29.683866666666667,12.936395480225992,2.2946010511227897,4820.914146815708,2019
+1998,27,"(25,30]",College,29.136866666666666,12.936395480225992,2.2523172479694216,4841.000249879263,2019
+1998,27,"(25,30]",College,30.777866666666664,12.936395480225992,2.3791686574295263,4832.220125503034,2019
+1998,57,"(55,60]",HS,933.3643333333334,110.88338983050849,8.417530657748049,5164.3915937104975,2019
+1998,57,"(55,60]",HS,988.5201666666667,110.88338983050849,8.914952619843923,4923.978695118654,2019
+1998,57,"(55,60]",HS,1008.121,110.88338983050849,9.091722408026754,4609.380253730459,2019
+1998,57,"(55,60]",HS,882.311,110.88338983050849,7.95710702341137,5043.206084024279,2019
+1998,57,"(55,60]",HS,977.1243333333334,110.88338983050849,8.812179487179487,4597.454148123309,2019
+1998,65,"(60,65]",College,2277.5256666666664,299.3851525423729,7.607343408068044,12677.183342975433,2019
+1998,65,"(60,65]",College,2886.1543333333334,364.06712994350283,7.927533402373394,3623.8764854168826,2019
+1998,65,"(60,65]",College,1554.9386666666667,138.6042372881356,11.21855072463768,11563.862010738283,2019
+1998,65,"(60,65]",College,3294.034,110.88338983050849,29.7071906354515,4087.8618361036074,2019
+1998,65,"(60,65]",College,1827.1623333333332,160.78091525423727,11.36429861992081,12559.287953020945,2019
+1998,32,"(30,35]",College,420.096,151.54063276836158,2.772167387225712,7135.7079509169025,2019
+1998,32,"(30,35]",College,444.711,157.08480225988703,2.831024985244934,6828.616213665693,2019
+1998,32,"(30,35]",College,264.3833333333333,147.84451977401133,1.7882525083612035,6369.725978226732,2019
+1998,32,"(30,35]",College,389.6463333333333,166.32508474576272,2.3426793013749534,6969.277610794425,2019
+1998,32,"(30,35]",College,285.8986666666667,182.957593220339,1.5626499104759977,6357.498760708051,2019
+1998,46,"(45,50]",NoHS,115.50816666666667,105.33922033898305,1.096535234407088,8738.688173331366,2019
+1998,46,"(45,50]",NoHS,105.33396666666667,107.18727683615819,0.982709606735094,8943.554247811306,2019
+1998,46,"(45,50]",NoHS,87.79350000000001,105.33922033898305,0.8334360147861293,9394.780302032505,2019
+1998,46,"(45,50]",NoHS,111.3145,105.33922033898305,1.0567241682802322,8684.045084928117,2019
+1998,46,"(45,50]",NoHS,85.20436666666667,105.33922033898305,0.8088570087425923,9358.057860026502,2019
+1998,61,"(60,65]",College,88.97866666666667,88.70671186440678,1.0030657748049052,8554.88472031266,2019
+1998,61,"(60,65]",College,86.51716666666667,88.70671186440678,0.9753170289855072,8561.193252931394,2019
+1998,61,"(60,65]",College,85.4414,88.70671186440678,0.9631897993311036,9077.199755963407,2019
+1998,61,"(60,65]",College,86.426,88.70671186440678,0.9742892976588629,8408.309002620334,2019
+1998,61,"(60,65]",College,86.79066666666667,88.70671186440678,0.9784002229654403,8960.374433006844,2019
+1998,39,"(35,40]",HS,223.2307,138.6042372881356,1.6105618729096989,5896.717514405425,2019
+1998,39,"(35,40]",HS,278.35006666666663,155.23674576271185,1.7930681637203376,6016.301701677684,2019
+1998,39,"(35,40]",HS,218.12536666666668,181.10953672316384,1.2043836598184425,6300.726665265706,2019
+1998,39,"(35,40]",HS,256.9988333333333,173.71731073446327,1.4794083113925853,5895.639007090074,2019
+1998,39,"(35,40]",HS,276.7090666666667,170.021197740113,1.627497455285735,6255.611585353807,2019
+1998,21,"(20,25]",HS,1.094,24.024734463276836,0.04553640339593517,6519.07315435558,2019
+1998,21,"(20,25]",HS,1.094,24.024734463276836,0.04553640339593517,6535.639549328752,2019
+1998,21,"(20,25]",HS,1.094,24.024734463276836,0.04553640339593517,6546.2630219989505,2019
+1998,21,"(20,25]",HS,1.094,24.024734463276836,0.04553640339593517,6571.442815177519,2019
+1998,21,"(20,25]",HS,1.094,24.024734463276836,0.04553640339593517,6501.343406539041,2019
+1998,74,"(70,75]",NoHS,13349.170333333333,253.18374011299437,52.72522764445963,184.42826699004786,2019
+1998,74,"(70,75]",NoHS,13385.620042999999,384.3957514124294,34.822497371044506,185.53712073516473,2019
+1998,74,"(70,75]",NoHS,11525.837,670.8445084745763,17.181085712706263,172.3483856761194,2019
+1998,74,"(70,75]",NoHS,13349.352666666666,255.03179661016952,52.34387572100236,188.78345131410256,2019
+1998,74,"(70,75]",NoHS,11881.204666666667,282.75264406779667,42.01978271799243,180.52794782762228,2019
+1998,34,"(30,35]",HS,273.6823333333333,114.57950282485875,2.3885802136152767,856.4072143099218,2019
+1998,34,"(30,35]",HS,273.5,114.57950282485875,2.38698888769015,824.2767420207267,2019
+1998,34,"(30,35]",HS,273.5,116.4275593220339,2.349100175187132,816.0627816869472,2019
+1998,34,"(30,35]",HS,273.5,114.57950282485875,2.38698888769015,832.1091560210494,2019
+1998,34,"(30,35]",HS,273.5,114.57950282485875,2.38698888769015,851.2137340923722,2019
+1998,63,"(60,65]",HS,63.452,46.201412429378536,1.3733779264214045,7488.614282375177,2019
+1998,63,"(60,65]",HS,154.80100000000002,46.201412429378536,3.3505685618729095,7460.718627780874,2019
+1998,63,"(60,65]",HS,50.415166666666664,46.201412429378536,1.0912040133779262,7905.520959802244,2019
+1998,63,"(60,65]",HS,48.86533333333334,46.201412429378536,1.0576588628762542,7320.150513290728,2019
+1998,63,"(60,65]",HS,48.86533333333334,46.201412429378536,1.0576588628762542,7738.961945329361,2019
+1998,58,"(55,60]",HS,583.649,129.36395480225988,4.511681796464405,409.7514832549138,2019
+1998,58,"(55,60]",HS,585.6546666666667,129.36395480225988,4.5271858576206405,396.5426658775213,2019
+1998,58,"(55,60]",HS,587.2956666666666,129.36395480225988,4.53987099856665,403.64226190600715,2019
+1998,58,"(55,60]",HS,587.2956666666666,129.36395480225988,4.53987099856665,400.21092624822444,2019
+1998,58,"(55,60]",HS,585.4723333333334,129.36395480225988,4.5257763975155285,404.7594537976904,2019
+1998,45,"(40,45]",HS,336.58733333333333,77.61837288135592,4.336438923395446,7633.42359649985,2019
+1998,45,"(40,45]",HS,243.59733333333335,25.872790960451983,9.415193502150023,6728.6028704294295,2019
+1998,45,"(40,45]",HS,403.7771666666667,51.745581920903966,7.803123506927854,8110.484735912743,2019
+1998,45,"(40,45]",HS,192.79926666666665,20.328621468926556,9.484128914563696,7617.700372415753,2019
+1998,45,"(40,45]",HS,323.3317,48.04946892655367,6.72914201183432,7976.189443046552,2019
+1998,68,"(65,70]",NoHS,79.07796666666667,16.07809152542373,4.918367739207319,7878.8370821678955,2019
+1998,68,"(65,70]",NoHS,81.6671,16.07809152542373,5.079402606389113,7871.166188518766,2019
+1998,68,"(65,70]",NoHS,85.91546666666666,16.07809152542373,5.343635874370507,7819.086400332698,2019
+1998,68,"(65,70]",NoHS,90.72906666666667,16.07809152542373,5.643024641525391,7821.736878408029,2019
+1998,68,"(65,70]",NoHS,87.33766666666668,16.07809152542373,5.432091646484451,7817.595555069098,2019
+1998,24,"(20,25]",NoHS,31.3978,20.328621468926556,1.544512009729401,4888.128399987446,2019
+1998,24,"(20,25]",NoHS,38.85523333333333,22.176677966101696,1.752076365663322,4917.713553205923,2019
+1998,24,"(20,25]",NoHS,42.702466666666666,22.176677966101696,1.9255574136008917,4878.848407202628,2019
+1998,24,"(20,25]",NoHS,31.3978,20.328621468926556,1.544512009729401,4904.070705026932,2019
+1998,24,"(20,25]",NoHS,47.789566666666666,18.480564971751416,2.585936454849498,4842.389009759101,2019
+1998,83,"(80,85]",HS,331.29966666666667,64.68197740112994,5.121978021978022,9154.115668382747,2019
+1998,83,"(80,85]",HS,331.29966666666667,64.68197740112994,5.121978021978022,9285.685842774838,2019
+1998,83,"(80,85]",HS,331.29966666666667,64.68197740112994,5.121978021978022,9641.689864915576,2019
+1998,83,"(80,85]",HS,331.29966666666667,64.68197740112994,5.121978021978022,9269.159600722252,2019
+1998,83,"(80,85]",HS,331.482,64.68197740112994,5.124796942188247,9654.273483062028,2019
+1998,65,"(60,65]",HS,494.3056666666667,35.11307344632768,14.077539165639854,7669.59713584125,2019
+1998,65,"(60,65]",HS,504.88100000000003,36.96112994350283,13.65978260869565,7335.2012768413715,2019
+1998,65,"(60,65]",HS,532.231,35.11307344632768,15.15763069882063,6793.406668773094,2019
+1998,65,"(60,65]",HS,501.2343333333333,36.96112994350283,13.561120401337789,7452.9583050234505,2019
+1998,65,"(60,65]",HS,504.88100000000003,36.96112994350283,13.65978260869565,6774.998450828774,2019
+1998,56,"(55,60]",College,960.1126333333333,556.2650056497175,1.7259986222069132,1112.737228240296,2019
+1998,56,"(55,60]",College,960.1126333333333,545.1766666666666,1.761103678929766,1026.9989046161452,2019
+1998,56,"(55,60]",College,960.1126333333333,476.79857627118633,2.0136650592413994,1053.0430263320163,2019
+1998,56,"(55,60]",College,958.2893,550.720836158192,1.740063634935243,1163.636139897249,2019
+1998,56,"(55,60]",College,960.1126333333333,513.7597062146892,1.868797069367917,1160.2598623491428,2019
+1998,60,"(55,60]",HS,457.6202,53.593638418079095,8.538703725060547,5650.451973686075,2019
+1998,60,"(55,60]",HS,457.29200000000003,53.593638418079095,8.532579863914197,5387.411979003589,2019
+1998,60,"(55,60]",HS,457.10966666666667,53.593638418079095,8.52917771883289,5043.204272867327,2019
+1998,60,"(55,60]",HS,458.1125,53.593638418079095,8.547889516780073,5517.8607690952795,2019
+1998,60,"(55,60]",HS,458.80536666666666,53.593638418079095,8.560817668089033,5030.155710274131,2019
+1998,65,"(60,65]",College,152.066,125.66784180790961,1.2100629549478654,10872.269679748175,2019
+1998,65,"(60,65]",College,152.43066666666667,125.66784180790961,1.2129647845760376,11263.80016087825,2019
+1998,65,"(60,65]",College,150.06033333333335,125.66784180790961,1.1941028919929175,11464.23080065812,2019
+1998,65,"(60,65]",College,151.519,125.66784180790961,1.205710210505607,10902.226999835568,2019
+1998,65,"(60,65]",College,150.06033333333335,125.66784180790961,1.1941028919929175,11342.706624148332,2019
+1998,51,"(50,55]",College,394.7516666666667,73.92225988700567,5.340091973244147,5533.247383220714,2019
+1998,51,"(50,55]",College,394.7516666666667,73.92225988700567,5.340091973244147,5302.544073047052,2019
+1998,51,"(50,55]",College,394.934,73.92225988700567,5.342558528428093,4941.204165755663,2019
+1998,51,"(50,55]",College,394.934,73.92225988700567,5.342558528428093,5406.981344037345,2019
+1998,51,"(50,55]",College,394.934,73.92225988700567,5.342558528428093,4932.342710680521,2019
+1998,40,"(35,40]",College,412.7115,118.27561581920904,3.4894047867892977,5711.144416056749,2019
+1998,40,"(35,40]",College,412.7115,120.12367231638417,3.4357216362233087,5465.282145170348,2019
+1998,40,"(35,40]",College,412.34683333333334,120.12367231638417,3.432685875996913,5102.223576773684,2019
+1998,40,"(35,40]",College,412.5291666666667,118.27561581920904,3.4878631897993313,5578.068448866714,2019
+1998,40,"(35,40]",College,412.7115,120.12367231638417,3.4357216362233087,5085.972897384757,2019
+1998,33,"(30,35]",College,373.05400000000003,73.92225988700567,5.046571906354514,7423.135833809296,2019
+1998,33,"(30,35]",College,373.05400000000003,73.92225988700567,5.046571906354514,7104.207775789483,2019
+1998,33,"(30,35]",College,373.05400000000003,73.92225988700567,5.046571906354514,6626.863339759856,2019
+1998,33,"(30,35]",College,373.05400000000003,73.92225988700567,5.046571906354514,7250.449512309782,2019
+1998,33,"(30,35]",College,373.05400000000003,73.92225988700567,5.046571906354514,6613.609308861369,2019
+1998,33,"(30,35]",HS,65.3118,90.55476836158192,0.721240870930312,7659.271972710345,2019
+1998,33,"(30,35]",HS,116.74803333333334,88.70671186440678,1.3161127369007803,7661.436007679693,2019
+1998,33,"(30,35]",HS,99.95513333333334,88.70671186440678,1.1268046265328873,7793.511520908594,2019
+1998,33,"(30,35]",HS,20.822466666666667,90.55476836158192,0.22994334857688895,7695.907295008612,2019
+1998,33,"(30,35]",HS,102.14313333333334,90.55476836158192,1.1279707869769982,7745.548103527237,2019
+1998,48,"(45,50]",College,856.8937333333333,194.04593220338984,4.415932473323777,5824.42530630818,2019
+1998,48,"(45,50]",College,1248.0716666666667,155.23674576271185,8.03979534957796,5577.4703582580305,2019
+1998,48,"(45,50]",College,763.4479,123.81978531073446,6.165798931762592,5184.227912488011,2019
+1998,48,"(45,50]",College,786.4583666666667,236.55123163841807,3.3246851484113717,5699.293200450774,2019
+1998,48,"(45,50]",College,969.5028000000001,94.25088135593221,10.286405665945308,5187.74662644479,2019
+1998,50,"(45,50]",HS,71.11,22.176677966101696,3.2065217391304346,8790.979589813158,2019
+1998,50,"(45,50]",HS,71.11,22.176677966101696,3.2065217391304346,8827.135732518163,2019
+1998,50,"(45,50]",HS,71.11,22.176677966101696,3.2065217391304346,8669.007264226126,2019
+1998,50,"(45,50]",HS,71.11,22.176677966101696,3.2065217391304346,8853.024317177897,2019
+1998,50,"(45,50]",HS,71.29233333333333,22.176677966101696,3.2147435897435894,8698.119851996937,2019
+1998,43,"(40,45]",HS,2002.567,415.8127118644068,4.816031215161649,12677.183342975433,2019
+1998,43,"(40,45]",HS,2002.567,415.8127118644068,4.816031215161649,13310.446752006314,2019
+1998,43,"(40,45]",HS,2004.208,415.8127118644068,4.819977703455964,11563.862010738283,2019
+1998,43,"(40,45]",HS,2000.7436666666667,415.8127118644068,4.811646228167967,11849.545150295664,2019
+1998,43,"(40,45]",HS,2002.567,415.8127118644068,4.816031215161649,12559.287953020945,2019
+1998,48,"(45,50]",College,1744.5653333333332,136.75618079096043,12.756756756756758,2557.543281460963,2019
+1998,48,"(45,50]",College,1744.5653333333332,136.75618079096043,12.756756756756758,2793.5969113373235,2019
+1998,48,"(45,50]",College,1744.5653333333332,136.75618079096043,12.756756756756758,2601.906191372841,2019
+1998,48,"(45,50]",College,1744.5653333333332,136.75618079096043,12.756756756756758,2584.2677087192505,2019
+1998,48,"(45,50]",College,1744.5653333333332,136.75618079096043,12.756756756756758,2668.286025095692,2019
+1998,31,"(30,35]",HS,9.299,68.37809039548021,0.13599385338515774,5546.833007102462,2019
+1998,31,"(30,35]",HS,10.593566666666668,70.22614689265536,0.15084932230241158,5619.099186227749,2019
+1998,31,"(30,35]",HS,6.564,70.22614689265536,0.09346945960218273,5599.338464023976,2019
+1998,31,"(30,35]",HS,4.941233333333334,70.22614689265536,0.07036173208942088,5536.014583739101,2019
+1998,31,"(30,35]",HS,7.566833333333333,68.37809039548021,0.11066166500949111,5630.448439576168,2019
+1998,65,"(60,65]",NoHS,0,16.632508474576273,0,6217.924098976031,2019
+1998,65,"(60,65]",NoHS,0,16.632508474576273,0,6220.92255294123,2019
+1998,65,"(60,65]",NoHS,0,16.632508474576273,0,6209.815791475166,2019
+1998,65,"(60,65]",NoHS,0,16.632508474576273,0,6161.036635056446,2019
+1998,65,"(60,65]",NoHS,0,16.632508474576273,0,6199.543796674155,2019
+1998,47,"(45,50]",HS,6.928666666666667,110.88338983050849,0.0624860646599777,5825.489682693075,2019
+1998,47,"(45,50]",HS,6.928666666666667,110.88338983050849,0.0624860646599777,5813.214439749261,2019
+1998,47,"(45,50]",HS,8.934333333333335,110.88338983050849,0.08057413600891862,5775.47991788882,2019
+1998,47,"(45,50]",HS,6.928666666666667,110.88338983050849,0.0624860646599777,5820.422238948674,2019
+1998,47,"(45,50]",HS,6.928666666666667,110.88338983050849,0.0624860646599777,5798.650187123816,2019
+1998,81,"(80,85]",HS,38888.23566666667,981.318,39.62857673727239,14.877212580377346,2019
+1998,81,"(80,85]",HS,18261.95966666667,3751.554689265537,4.867837784404501,16.271566775185565,2019
+1998,81,"(80,85]",HS,28113.065000000002,1352.7773559322034,20.781738308021275,13.603227854163862,2019
+1998,81,"(80,85]",HS,19615.967,2753.6041807909605,7.123742452470203,12.792498654247364,2019
+1998,81,"(80,85]",HS,15649.487666666666,1206.7808926553673,12.967961095432964,11.765973219552288,2019
+1998,44,"(40,45]",College,639.2606666666667,203.28621468926553,3.144633627242323,5967.621213756129,2019
+1998,44,"(40,45]",College,639.2606666666667,203.28621468926553,3.144633627242323,5709.307486450731,2019
+1998,44,"(40,45]",College,639.0783333333334,203.28621468926553,3.1437366980845245,5331.549354567733,2019
+1998,44,"(40,45]",College,639.0783333333334,203.28621468926553,3.1437366980845245,5826.950279381149,2019
+1998,44,"(40,45]",College,639.2606666666667,203.28621468926553,3.144633627242323,5314.078548643711,2019
+1998,35,"(30,35]",NoHS,0,9.05547683615819,0,6471.206818258209,2019
+1998,35,"(30,35]",NoHS,0,6.468197740112996,0,6461.943353913198,2019
+1998,35,"(30,35]",NoHS,0,7.577031638418079,0,6457.420918091919,2019
+1998,35,"(30,35]",NoHS,0,7.022614689265536,0,6465.787741649165,2019
+1998,35,"(30,35]",NoHS,0,8.13144858757062,0,6469.613294407289,2019
+1998,36,"(35,40]",HS,65.51236666666667,46.201412429378536,1.417973244147157,6633.643120363131,2019
+1998,36,"(35,40]",HS,18.63446666666667,73.92225988700567,0.2520819397993311,6666.0661587185,2019
+1998,36,"(35,40]",HS,16.957,44.35335593220339,0.38231605351170567,6649.107194602839,2019
+1998,36,"(35,40]",HS,26.493033333333333,118.27561581920904,0.22399404264214048,6692.200070724344,2019
+1998,36,"(35,40]",HS,39.748666666666665,53.593638418079095,0.7416676277245993,6637.494046617886,2019
+1998,40,"(35,40]",HS,493.90453333333335,110.88338983050849,4.454269788182831,5666.746978665104,2019
+1998,40,"(35,40]",HS,462.9078666666666,110.88338983050849,4.174726867335562,5421.583284234119,2019
+1998,40,"(35,40]",HS,452.33253333333334,110.88338983050849,4.079353400222965,5062.597665997419,2019
+1998,40,"(35,40]",HS,515.7845333333333,110.88338983050849,4.65159420289855,5534.346992462814,2019
+1998,40,"(35,40]",HS,453.60886666666664,110.88338983050849,4.090863991081381,5047.08253829003,2019
+1998,79,"(75,80]",HS,19.600833333333334,36.96112994350283,0.5303093645484949,7776.071915122235,2019
+1998,79,"(75,80]",HS,17.2305,33.265016949152546,0.5179765886287625,7956.165435869366,2019
+1998,79,"(75,80]",HS,15.498333333333335,16.44770282485876,0.9422795084739394,8085.437803977469,2019
+1998,79,"(75,80]",HS,15.498333333333335,38.80918644067796,0.39934702978181247,7987.249985164855,2019
+1998,79,"(75,80]",HS,18.598,31.416960451977403,0.5919732441471571,8155.999976902812,2019
+1998,41,"(40,45]",HS,163.3342,97.9469943502825,1.6675774594560484,9325.084857082242,2019
+1998,41,"(40,45]",HS,318.49986666666666,97.9469943502825,3.251757430428472,7125.701003863561,2019
+1998,41,"(40,45]",HS,55.757533333333335,97.9469943502825,0.5692623209440272,9942.414605047057,2019
+1998,41,"(40,45]",HS,72.71453333333334,97.9469943502825,0.7423865715908373,9376.255276533982,2019
+1998,41,"(40,45]",HS,73.42563333333334,97.9469943502825,0.74964662081151,9896.982828255053,2019
+1998,53,"(50,55]",NoHS,111.6427,29.56890395480226,3.7756793478260873,5594.689966101576,2019
+1998,53,"(50,55]",NoHS,151.9566,17.002119774011298,8.937509088265234,5704.647965052463,2019
+1998,53,"(50,55]",NoHS,113.5572,22.176677966101696,5.1205685618729095,5948.020892041082,2019
+1998,53,"(50,55]",NoHS,133.48623333333333,11.27314463276836,11.84108229617852,5560.973154903703,2019
+1998,53,"(50,55]",NoHS,124.3878,36.96112994350283,3.365367892976588,5950.168767517856,2019
+1998,60,"(55,60]",HS,589.119,40.65724293785311,14.489890544238369,7518.746587833752,2019
+1998,60,"(55,60]",HS,587.1133333333333,40.65724293785311,14.440559440559438,7168.73369122071,2019
+1998,60,"(55,60]",HS,587.1133333333333,40.65724293785311,14.440559440559438,6710.715371965831,2019
+1998,60,"(55,60]",HS,588.9366666666666,40.65724293785311,14.485405898449374,7342.314742781989,2019
+1998,60,"(55,60]",HS,587.1133333333333,40.65724293785311,14.440559440559438,6693.352365266437,2019
+1998,72,"(70,75]",College,578159.855,42265.052090395475,13.679383471797115,2.4561748366481653,2019
+1998,72,"(70,75]",College,570946.019,42542.26056497175,13.42067890652014,2.3770717503918735,2019
+1998,72,"(70,75]",College,532604.7833333333,41729.11570621469,12.763385332270841,2.3034957165280963,2019
+1998,72,"(70,75]",College,570871.2623333334,42523.78,13.42475345167653,2.2918021842382674,2019
+1998,72,"(70,75]",College,590730.8266666667,41950.882485875714,14.081487483977426,2.148480802965019,2019
+1998,73,"(70,75]",HS,12703.163333333334,759.5512203389831,16.724564444335947,192.1071176168304,2019
+1998,73,"(70,75]",HS,12721.396666666666,757.703163841808,16.789420017945996,190.6471069453121,2019
+1998,73,"(70,75]",HS,12721.396666666666,759.5512203389831,16.748569847586033,182.3729297077571,2019
+1998,73,"(70,75]",HS,12737.806666666665,757.703163841808,16.811077575658697,199.43240001319322,2019
+1998,73,"(70,75]",HS,12697.693333333335,757.703163841808,16.758136879027653,186.61529837275322,2019
+1998,47,"(45,50]",College,1669.991,535.9363841807909,3.1160246799677087,483.90144726328134,2019
+1998,47,"(45,50]",College,1648.2933333333333,158.93285875706215,10.371004122268024,512.6576262337117,2019
+1998,47,"(45,50]",College,1679.6546666666668,535.9363841807909,3.134056048898628,473.9624347543857,2019
+1998,47,"(45,50]",College,1655.769,535.9363841807909,3.0894879483335256,501.72729449762176,2019
+1998,47,"(45,50]",College,1641.4558333333332,535.9363841807909,3.0627811094452775,483.0398866145473,2019
+1998,89,"(85,90]",College,435.53963333333337,24.024734463276836,18.128801131978392,9377.428501005044,2019
+1998,89,"(85,90]",College,435.959,24.024734463276836,18.146256753280166,9573.009783711046,2019
+1998,89,"(85,90]",College,435.2296666666667,24.024734463276836,18.115899151016208,9935.557887708545,2019
+1998,89,"(85,90]",College,435.959,24.024734463276836,18.146256753280166,9531.400049036589,2019
+1998,89,"(85,90]",College,435.2296666666667,24.024734463276836,18.115899151016208,9966.400575544354,2019
+1998,35,"(30,35]",HS,129.49313333333333,101.64310734463277,1.2739981757373062,5603.369403698516,2019
+1998,35,"(30,35]",HS,130.16776666666667,116.4275593220339,1.1180150767107289,5356.203060219984,2019
+1998,35,"(30,35]",HS,129.71193333333335,101.64310734463277,1.2761508057160234,4990.07778662995,2019
+1998,35,"(30,35]",HS,129.65723333333335,131.21201129943503,0.9881506429883651,5479.912798128988,2019
+1998,35,"(30,35]",HS,128.45383333333334,99.79505084745762,1.2871763904372602,4987.305314921298,2019
+1998,52,"(50,55]",College,2077.2325,184.80564971751414,11.240091973244146,784.5008464418868,2019
+1998,52,"(50,55]",College,2079.0558333333333,184.80564971751414,11.249958193979932,831.912116874101,2019
+1998,52,"(50,55]",College,2077.2325,184.80564971751414,11.240091973244146,791.9704264021841,2019
+1998,52,"(50,55]",College,2079.0558333333333,184.80564971751414,11.249958193979932,821.5685691918064,2019
+1998,52,"(50,55]",College,2079.0558333333333,184.80564971751414,11.249958193979932,783.0520461896592,2019
+1998,23,"(20,25]",HS,16.957,24.024734463276836,0.7058142526369952,3940.417555714447,2019
+1998,23,"(20,25]",HS,15.863,24.024734463276836,0.6602778492410599,3950.4310211322363,2019
+1998,23,"(20,25]",HS,16.592333333333332,24.024734463276836,0.6906354515050167,3956.8523201760026,2019
+1998,23,"(20,25]",HS,14.951333333333334,24.024734463276836,0.622330846411114,3972.072106292959,2019
+1998,23,"(20,25]",HS,18.598,24.024734463276836,0.7741188577308978,3929.700908132727,2019
+1998,70,"(65,70]",College,1125.9995000000001,125.66784180790961,8.96012443438914,6830.085066173457,2019
+1998,70,"(65,70]",College,1224.6418333333334,125.66784180790961,9.745069348809757,6577.76717210965,2019
+1998,70,"(65,70]",College,1153.3495,125.66784180790961,9.177761656502065,6140.286013786708,2019
+1998,70,"(65,70]",College,1153.5318333333332,125.66784180790961,9.179212571316151,6714.649932132376,2019
+1998,70,"(65,70]",College,1098.6495,125.66784180790961,8.742487212276215,6123.239066299356,2019
+1998,56,"(55,60]",College,2114.155,219.9187231638418,9.613347011045223,2833.5410611071466,2019
+1998,56,"(55,60]",College,2114.155,219.9187231638418,9.613347011045223,3079.835952225202,2019
+1998,56,"(55,60]",College,2114.155,219.9187231638418,9.613347011045223,2880.9030194066245,2019
+1998,56,"(55,60]",College,2114.155,219.9187231638418,9.613347011045223,2861.265058952369,2019
+1998,56,"(55,60]",College,2114.155,219.9187231638418,9.613347011045223,2951.932255455948,2019
+1998,43,"(40,45]",College,62884.943333333336,2993.8515254237286,21.00469672571122,24.536113405023357,2019
+1998,43,"(40,45]",College,76953.78333333333,4823.42745762712,15.95417035072207,25.75983580138125,2019
+1998,43,"(40,45]",College,53677.201166666666,3437.385084745763,15.615707825367712,22.59482456630162,2019
+1998,43,"(40,45]",College,210483.7949,3474.3462146892657,60.58227415854266,21.34192801567523,2019
+1998,43,"(40,45]",College,39961.06676666666,4915.8302824858765,8.129057447129528,18.153283260488458,2019
+1998,40,"(35,40]",HS,-5.834666666666667,44.35335593220339,-0.1315496098104794,4315.464349736621,2019
+1998,40,"(35,40]",HS,-5.834666666666667,44.35335593220339,-0.1315496098104794,4292.50363300009,2019
+1998,40,"(35,40]",HS,-5.652333333333333,44.35335593220339,-0.1274386845039019,4304.684674385013,2019
+1998,40,"(35,40]",HS,-7.293333333333333,42.50529943502825,-0.17158644757888614,4319.934451112531,2019
+1998,40,"(35,40]",HS,-6.564,44.35335593220339,-0.14799331103678928,4282.649703266687,2019
+1998,64,"(60,65]",College,99663.40000000001,9184.840790960452,10.850857654286926,15.134541716248247,2019
+1998,64,"(60,65]",College,94685.7,9036.996271186441,10.477563247635267,15.874244413854168,2019
+1998,64,"(60,65]",College,94257.76366666668,9184.840790960452,10.262318728424058,13.522093385409011,2019
+1998,64,"(60,65]",College,99654.28333333333,8870.671186440679,11.234131131549608,13.033395147043223,2019
+1998,64,"(60,65]",College,102200.20366666667,9184.840790960452,11.127052280236603,13.520225057567519,2019
+1998,47,"(45,50]",College,821.3752,177.41342372881357,4.629724080267558,4880.088209029135,2019
+1998,47,"(45,50]",College,825.0218666666667,145.99646327683615,5.65097159307396,4657.946148117639,2019
+1998,47,"(45,50]",College,821.3752,160.78091525423727,5.108661054088341,4306.3237271607695,2019
+1998,47,"(45,50]",College,857.8418666666668,181.10953672316384,4.736591358951608,4773.119076501365,2019
+1998,47,"(45,50]",College,841.4318666666667,166.32508474576272,5.058959494611668,4322.9846730594145,2019
+1998,70,"(65,70]",College,15510.185,317.8657175141243,48.794771330792564,308.5503594698028,2019
+1998,70,"(65,70]",College,17572.01033333333,338.19433898305084,51.95832191092347,356.5524580153443,2019
+1998,70,"(65,70]",College,16577.199666666667,391.78797740113,42.3116599356345,289.8003182178426,2019
+1998,70,"(65,70]",College,16508.277666666665,277.2084745762712,59.55185061315495,324.22818180642776,2019
+1998,70,"(65,70]",College,14418.373,310.4734915254237,46.43994863831821,306.08866320146404,2019
+1998,32,"(30,35]",College,435.0473333333333,153.38868926553673,2.836241286215094,6945.636652589671,2019
+1998,32,"(30,35]",College,435.0473333333333,153.38868926553673,2.836241286215094,6648.211564668942,2019
+1998,32,"(30,35]",College,434.865,153.38868926553673,2.8350525849216264,6200.011473531665,2019
+1998,32,"(30,35]",College,434.865,153.38868926553673,2.8350525849216264,6784.078918324363,2019
+1998,32,"(30,35]",College,435.0473333333333,153.38868926553673,2.836241286215094,6187.362936599234,2019
+1998,30,"(25,30]",HS,3.099666666666667,14.78445197740113,0.20965719063545152,5211.585148513804,2019
+1998,30,"(25,30]",HS,3.099666666666667,14.78445197740113,0.20965719063545152,5186.6669736730855,2019
+1998,30,"(25,30]",HS,3.099666666666667,14.78445197740113,0.20965719063545152,5231.641151784361,2019
+1998,30,"(25,30]",HS,3.099666666666667,14.78445197740113,0.20965719063545152,5186.762063320429,2019
+1998,30,"(25,30]",HS,3.099666666666667,14.78445197740113,0.20965719063545152,5220.656923785367,2019
+1998,54,"(50,55]",HS,1400.6846666666668,205.13427118644066,6.82813582813583,2433.4677393974894,2019
+1998,54,"(50,55]",HS,1398.8613333333333,206.98232768361586,6.758361204013376,2464.4470936111366,2019
+1998,54,"(50,55]",HS,1398.8613333333333,206.98232768361586,6.758361204013376,2364.9695473147012,2019
+1998,54,"(50,55]",HS,1399.0436666666667,206.98232768361586,6.759242116579072,2735.0011334654796,2019
+1998,54,"(50,55]",HS,1397.038,206.98232768361586,6.749552078356425,2551.0109256997043,2019
+1998,80,"(75,80]",HS,103.383,25.872790960451983,3.99581939799331,9700.78810090278,2019
+1998,80,"(75,80]",HS,97.366,51.745581920903966,1.881629240324892,9903.11356569628,2019
+1998,80,"(75,80]",HS,102.65366666666668,29.56890395480226,3.4716764214046827,10278.163328313705,2019
+1998,80,"(75,80]",HS,105.38866666666668,42.50529943502825,2.479424167514905,9860.069012600672,2019
+1998,80,"(75,80]",HS,105.571,16.26289717514124,6.491524779568259,10310.069557097575,2019
+1998,27,"(25,30]",HS,31.54366666666667,68.37809039548021,0.4613124830516136,6103.829728320809,2019
+1998,27,"(25,30]",HS,30.8508,68.37809039548021,0.4511796077013469,6083.019110891792,2019
+1998,27,"(25,30]",HS,31.251933333333334,68.37809039548021,0.45704600921992233,6086.060070510648,2019
+1998,27,"(25,30]",HS,30.777866666666664,68.37809039548021,0.4501129892434241,6129.363109712926,2019
+1998,27,"(25,30]",HS,31.434266666666666,68.37809039548021,0.4597125553647293,6082.212215731584,2019
+1998,73,"(70,75]",HS,502.693,120.12367231638417,4.184795472086442,6530.429516741515,2019
+1998,73,"(70,75]",HS,502.87533333333334,120.12367231638417,4.18631335219964,6290.735012779991,2019
+1998,73,"(70,75]",HS,503.24,120.12367231638417,4.189349112426036,5870.67979256718,2019
+1998,73,"(70,75]",HS,505.428,120.12367231638417,4.20756367378441,6421.8424004982835,2019
+1998,73,"(70,75]",HS,502.693,120.12367231638417,4.184795472086442,5854.92084963438,2019
+1998,48,"(45,50]",HS,3462.3276666666666,277.2084745762712,12.489977703455963,1129.4226313595414,2019
+1998,48,"(45,50]",HS,3460.5043333333338,277.2084745762712,12.483400222965441,1144.6399240143814,2019
+1998,48,"(45,50]",HS,3462.3276666666666,277.2084745762712,12.489977703455963,1092.4338328872145,2019
+1998,48,"(45,50]",HS,3460.5043333333338,277.2084745762712,12.483400222965441,1188.3408044753521,2019
+1998,48,"(45,50]",HS,3458.681,277.2084745762712,12.476822742474916,1118.114413618539,2019
+1998,39,"(35,40]",College,28469.344333333334,2882.9681355932207,9.875011791441556,25.76807049501636,2019
+1998,39,"(35,40]",College,44439.738666666664,2827.5264406779665,15.716825147004172,28.00259224458871,2019
+1998,39,"(35,40]",College,41331.32,3363.462824858757,12.288323716417363,28.663406554624366,2019
+1998,39,"(35,40]",College,35587.82,2698.1624858757064,13.189650432950016,26.089005045136595,2019
+1998,39,"(35,40]",College,34128.78866666667,3197.1377401129944,10.674794594699094,27.947706799657595,2019
+1998,53,"(50,55]",College,526014.5273333333,43355.40542372881,12.132616964191522,1.7286486277616078,2019
+1998,53,"(50,55]",College,529989.2116666667,43577.17220338984,12.16208360636671,1.6531354492131587,2019
+1998,53,"(50,55]",College,550330.3183333334,43447.80824858757,12.666469046829857,1.613896980624044,2019
+1998,53,"(50,55]",College,525450.935,43336.92485875706,12.124785888997442,1.632692940326805,2019
+1998,53,"(50,55]",College,524335.055,43336.92485875706,12.09903694618166,1.5124953973615605,2019
+1998,47,"(45,50]",College,3395.0466666666666,397.33214689265543,8.544606051178345,354.151381960544,2019
+1998,47,"(45,50]",College,3393.2233333333334,397.33214689265543,8.540017111301236,358.8968123762861,2019
+1998,47,"(45,50]",College,3393.2233333333334,397.33214689265543,8.540017111301236,393.8708294662557,2019
+1998,47,"(45,50]",College,3395.0466666666666,397.33214689265543,8.544606051178345,410.30458201984567,2019
+1998,47,"(45,50]",College,3391.4,397.33214689265543,8.535428171424126,343.6317196789311,2019
+1998,36,"(35,40]",HS,42.57483333333334,90.55476836158192,0.47015562077673884,6521.868542839025,2019
+1998,36,"(35,40]",HS,42.57483333333334,90.55476836158192,0.47015562077673884,6674.873428589672,2019
+1998,36,"(35,40]",HS,42.57483333333334,90.55476836158192,0.47015562077673884,6984.020712540752,2019
+1998,36,"(35,40]",HS,42.57483333333334,90.55476836158192,0.47015562077673884,6523.208649707985,2019
+1998,36,"(35,40]",HS,42.57483333333334,90.55476836158192,0.47015562077673884,6872.879836833328,2019
+1998,42,"(40,45]",College,1135.9549,293.84098305084746,3.8658831324540923,11416.092591854427,2019
+1998,42,"(40,45]",College,1145.0715666666667,221.76677966101698,5.163404403567447,11996.381733163431,2019
+1998,42,"(40,45]",College,1132.3082333333334,293.84098305084746,3.853472791905934,11563.862010738283,2019
+1998,42,"(40,45]",College,1130.4757833333335,297.53709604519776,3.79944483682669,11849.545150295664,2019
+1998,42,"(40,45]",College,1137.7782333333334,613.5547570621469,1.8544037353427087,11289.147238875019,2019
+1998,43,"(40,45]",HS,975.6656666666667,88.70671186440678,10.998780657748048,4945.044452605113,2019
+1998,43,"(40,45]",HS,975.6656666666667,88.70671186440678,10.998780657748048,4730.99385882768,2019
+1998,43,"(40,45]",HS,977.3066666666666,88.70671186440678,11.017279821627646,4417.966156903763,2019
+1998,43,"(40,45]",HS,979.13,88.70671186440678,11.037834448160535,4828.478068989766,2019
+1998,43,"(40,45]",HS,977.489,88.70671186440678,11.019335284280936,4403.489046373026,2019
+1998,82,"(80,85]",HS,633.7906666666667,64.68197740112994,9.798566650740565,4584.8146680268665,2019
+1998,82,"(80,85]",HS,594.3702,42.50529943502825,13.983437545441324,4421.106928343649,2019
+1998,82,"(80,85]",HS,715.2936666666667,75.77031638418079,9.44028876743617,4125.519308033626,2019
+1998,82,"(80,85]",HS,718.3933333333334,48.04946892655367,14.951119114998717,4478.057280338506,2019
+1998,82,"(80,85]",HS,407.27796666666666,27.720847457627123,14.692118171683386,5222.052578773088,2019
+1998,59,"(55,60]",HS,180.8564333333333,57.289751412429375,3.1568723702664796,5309.125707552075,2019
+1998,59,"(55,60]",HS,166.52503333333334,90.55476836158192,1.8389427342843492,5273.497965396276,2019
+1998,59,"(55,60]",HS,182.29686666666666,49.89752542372881,3.653424996903258,5412.229368890518,2019
+1998,59,"(55,60]",HS,170.09876666666668,73.92225988700567,2.3010493311036786,5346.381191255005,2019
+1998,59,"(55,60]",HS,155.67620000000002,73.92225988700567,2.1059448160535115,5376.088497461739,2019
+1998,89,"(85,90]",HS,85392.89933333333,3640.6712994350282,23.455262040982632,17.268444467120176,2019
+1998,89,"(85,90]",HS,84487.432,3049.2932203389832,27.70721799939191,17.91468756555343,2019
+1998,89,"(85,90]",HS,83284.032,3363.462824858757,24.76139512661252,15.830599937145305,2019
+1998,89,"(85,90]",HS,81878.789,3511.307344632768,23.318604999119877,15.204111176697074,2019
+1998,89,"(85,90]",HS,83304.27100000001,3455.8656497175143,24.105182157995458,15.429581264837443,2019
+1998,50,"(45,50]",College,1665.4326666666668,77.61837288135592,21.456681000159264,3155.873464024714,2019
+1998,50,"(45,50]",College,918.4494666666667,109.03533333333333,8.423411371237458,6409.824407630545,2019
+1998,50,"(45,50]",College,2572.9056666666665,153.38868926553673,16.77376395212959,1053.5730370535407,2019
+1998,50,"(45,50]",College,985.6028333333334,266.12013559322037,3.7036011241174283,6536.070330236378,2019
+1998,50,"(45,50]",College,3398.164566666667,123.81978531073446,27.444439175360657,1055.744987465088,2019
+1998,47,"(45,50]",HS,144.59033333333335,62.833920903954805,2.301150895140665,4981.304108275855,2019
+1998,47,"(45,50]",HS,148.05466666666666,64.68197740112994,2.288963210702341,4950.3635376879165,2019
+1998,47,"(45,50]",HS,144.40800000000002,64.68197740112994,2.2325848064978504,4985.994431929155,2019
+1998,47,"(45,50]",HS,144.40800000000002,62.833920903954805,2.298249065512493,4970.526201761803,2019
+1998,47,"(45,50]",HS,148.05466666666666,64.68197740112994,2.288963210702341,4942.198222039355,2019
+1998,39,"(35,40]",HS,243.77966666666666,155.23674576271185,1.5703734671125977,8430.581247878294,2019
+1998,39,"(35,40]",HS,243.77966666666666,155.23674576271185,1.5703734671125977,8545.894001331984,2019
+1998,39,"(35,40]",HS,245.603,155.23674576271185,1.5821189679885335,8896.493940247521,2019
+1998,39,"(35,40]",HS,243.77966666666666,155.23674576271185,1.5703734671125977,8472.802745075729,2019
+1998,39,"(35,40]",HS,245.78533333333334,155.23674576271185,1.583293518076127,8788.796897456741,2019
+1998,40,"(35,40]",HS,402.592,121.97172881355934,3.3006993006993,6264.8367139203965,2019
+1998,40,"(35,40]",HS,446.04203333333334,129.36395480225988,3.447962255136168,5993.657752561032,2019
+1998,40,"(35,40]",HS,408.8095666666667,94.25088135593221,4.337461472883468,5597.085495570711,2019
+1998,40,"(35,40]",HS,446.8443,129.36395480225988,3.4541638795986622,6117.159707842596,2019
+1998,40,"(35,40]",HS,396.3926666666667,114.57950282485875,3.4595425612255912,5578.744561645099,2019
+1998,58,"(55,60]",College,1136.8483333333334,445.38161581920906,2.5525264019761584,4377.279362275074,2019
+1998,58,"(55,60]",College,972.0554666666667,377.00352542372883,2.578372352285396,4704.007161735493,2019
+1998,58,"(55,60]",College,1551.8572333333334,367.7632429378531,4.219718155997379,4449.8934935096395,2019
+1998,58,"(55,60]",College,1412.5728000000001,255.03179661016952,5.538810527846445,4422.9432988566405,2019
+1998,58,"(55,60]",College,1295.6242,214.37455367231638,6.043740629685157,4554.496304839617,2019
+1998,55,"(50,55]",College,14634.985,406.57242937853107,35.99600942535725,192.1071176168304,2019
+1998,55,"(50,55]",College,27818.779000000002,242.09540112994353,114.90833312058005,220.95350677744145,2019
+1998,55,"(50,55]",College,14702.266,328.95405649717515,44.69397993311036,182.3729297077571,2019
+1998,55,"(50,55]",College,14288.187,316.01766101694915,45.21325470867805,199.43240001319322,2019
+1998,55,"(50,55]",College,23725.213333333333,269.8162485875706,87.93100288633345,202.69225601124634,2019
+1998,33,"(30,35]",HS,191.26766666666666,64.68197740112994,2.9570473005255615,8651.063944450394,2019
+1998,33,"(30,35]",HS,189.262,64.68197740112994,2.9260391782130912,8708.820917407676,2019
+1998,33,"(30,35]",HS,185.25066666666666,64.68197740112994,2.864022933588151,8854.96700210193,2019
+1998,33,"(30,35]",HS,269.8533333333333,64.68197740112994,4.172001911132345,8725.510201893203,2019
+1998,33,"(30,35]",HS,247.791,64.68197740112994,3.8309125656951744,8816.283803928158,2019
+1998,34,"(30,35]",HS,223.17600000000002,85.0105988700565,2.625272647956958,9067.500241823127,2019
+1998,34,"(30,35]",HS,221.35266666666666,85.0105988700565,2.603824342009597,9028.016252888929,2019
+1998,34,"(30,35]",HS,270.5826666666667,85.0105988700565,3.1829286025883383,9341.039049388393,2019
+1998,34,"(30,35]",HS,212.23600000000002,85.0105988700565,2.4965828122727936,9070.214445280588,2019
+1998,34,"(30,35]",HS,206.766,85.0105988700565,2.432237894430711,9318.442064642524,2019
+1998,53,"(50,55]",HS,412.0733333333333,55.441694915254246,7.432552954292084,5081.0736477775,2019
+1998,53,"(50,55]",HS,411.891,46.201412429378536,8.915117056856186,4869.223276992864,2019
+1998,53,"(50,55]",HS,412.0733333333333,53.593638418079095,7.688847883750433,4537.41185529569,2019
+1998,53,"(50,55]",HS,412.0733333333333,49.89752542372881,8.25839217143565,4965.125995364676,2019
+1998,53,"(50,55]",HS,411.891,70.22614689265536,5.865208590036966,4529.27455313931,2019
+1998,32,"(30,35]",HS,3.6466666666666665,22.176677966101696,0.1644370122630992,6907.729245227847,2019
+1998,32,"(30,35]",HS,3.6466666666666665,22.176677966101696,0.1644370122630992,6990.245820518608,2019
+1998,32,"(30,35]",HS,3.6466666666666665,22.176677966101696,0.1644370122630992,7038.302703103737,2019
+1998,32,"(30,35]",HS,3.6466666666666665,22.176677966101696,0.1644370122630992,6948.359998133506,2019
+1998,32,"(30,35]",HS,3.6466666666666665,22.176677966101696,0.1644370122630992,7016.154092557401,2019
+1998,54,"(50,55]",HS,58.346666666666664,9.240282485875708,6.3143812709030085,1661.6582778833338,2019
+1998,54,"(50,55]",HS,58.346666666666664,9.240282485875708,6.3143812709030085,1621.5018249109903,2019
+1998,54,"(50,55]",HS,58.346666666666664,9.240282485875708,6.3143812709030085,1694.1331191531885,2019
+1998,54,"(50,55]",HS,58.529,9.240282485875708,6.334113712374581,1778.599079104845,2019
+1998,54,"(50,55]",HS,58.346666666666664,9.240282485875708,6.3143812709030085,1790.5775815624988,2019
+1998,30,"(25,30]",College,20.05666666666667,199.59010169491523,0.10048928527189399,4404.358551830077,2019
+1998,30,"(25,30]",College,78.221,199.59010169491523,0.39190821256038655,9084.547479797719,2019
+1998,30,"(25,30]",College,20.111366666666665,199.59010169491523,0.10076334695899913,4511.581819862896,2019
+1998,30,"(25,30]",College,27.16766666666667,199.59010169491523,0.13611730459556548,4424.604903963337,2019
+1998,30,"(25,30]",College,83.87333333333333,199.59010169491523,0.42022792022792027,8453.349301500239,2019
+1998,36,"(35,40]",NoHS,-0.3646666666666667,36.96112994350283,-0.009866220735785951,5057.935257596189,2019
+1998,36,"(35,40]",NoHS,-0.3646666666666667,36.96112994350283,-0.009866220735785951,5102.04082627466,2019
+1998,36,"(35,40]",NoHS,-0.3646666666666667,36.96112994350283,-0.009866220735785951,5046.2655133358885,2019
+1998,36,"(35,40]",NoHS,-0.3646666666666667,36.96112994350283,-0.009866220735785951,5050.312765015798,2019
+1998,36,"(35,40]",NoHS,-0.3646666666666667,36.96112994350283,-0.009866220735785951,5062.2277605465515,2019
+1998,60,"(55,60]",College,3510.2813333333334,1848.0564971751412,1.8994448160535118,2679.3987741086435,2019
+1998,60,"(55,60]",College,3505.3583333333336,1848.0564971751412,1.8967809364548496,2650.2112475921576,2019
+1998,60,"(55,60]",College,3510.2813333333334,1848.0564971751412,1.8994448160535118,2562.8814713947713,2019
+1998,60,"(55,60]",College,3505.5406666666668,1848.0564971751412,1.8968795986622073,3024.7034180564006,2019
+1998,60,"(55,60]",College,3508.458,1848.0564971751412,1.8984581939799332,2743.0812517787103,2019
+1998,58,"(55,60]",HS,1984.6983333333333,569.2014011299434,3.486812100942536,1480.5935331409144,2019
+1998,58,"(55,60]",HS,2014.054,600.6183615819209,3.3533007460766657,1569.6711247151757,2019
+1998,58,"(55,60]",HS,2006.7606666666668,667.148395480226,3.007967463104161,1487.670861197806,2019
+1998,58,"(55,60]",HS,1985.063,728.1342598870057,2.7262321104188243,1548.1023058711955,2019
+1998,58,"(55,60]",HS,2006.7606666666668,643.1236610169491,3.1203340637373627,1473.9380526320622,2019
+1998,70,"(65,70]",College,2262.7566666666667,674.5406214689266,3.354515050167224,3570.815039868401,2019
+1998,70,"(65,70]",College,1983.7866666666669,674.5406214689266,2.9409447015164707,3919.822643999917,2019
+1998,70,"(65,70]",College,1780.2115000000001,674.5406214689266,2.639146469968388,3657.0692367834645,2019
+1998,70,"(65,70]",College,1731.1638333333333,674.5406214689266,2.566433774682732,3630.7541589599996,2019
+1998,70,"(65,70]",College,1878.0333333333333,674.5406214689266,2.78416639941357,3747.473370028728,2019
+1998,33,"(30,35]",College,-21.697666666666667,114.57950282485875,-0.18936778509008526,5439.700621604325,2019
+1998,33,"(30,35]",College,-17.941599999999998,123.81978531073446,-0.14490091349273695,5456.461176667915,2019
+1998,33,"(30,35]",College,-17.613400000000002,118.27561581920904,-0.14891826923076926,5491.965122839175,2019
+1998,33,"(30,35]",College,-21.788833333333333,133.06006779661018,-0.1637518580453363,5434.241334905907,2019
+1998,33,"(30,35]",College,-21.314766666666667,96.09893785310734,-0.22180023154103423,5515.967511685421,2019
+1998,72,"(70,75]",College,795.7938333333334,40.65724293785311,19.57323654606263,7527.032530068784,2019
+1998,72,"(70,75]",College,795.7938333333334,40.65724293785311,19.57323654606263,7248.967911819345,2019
+1998,72,"(70,75]",College,795.7938333333334,40.65724293785311,19.57323654606263,6766.845818450778,2019
+1998,72,"(70,75]",College,795.9761666666667,40.65724293785311,19.577721191851627,7399.818300579418,2019
+1998,72,"(70,75]",College,795.7938333333334,40.65724293785311,19.57323654606263,6748.059386505563,2019
+1998,50,"(45,50]",College,147.56236666666666,123.81978531073446,1.1917511106673988,7196.330397204806,2019
+1998,50,"(45,50]",College,201.87946666666667,136.75618079096043,1.4761999457651636,7336.8859704493125,2019
+1998,50,"(45,50]",College,148.65636666666668,123.81978531073446,1.200586532221834,7600.818145775864,2019
+1998,50,"(45,50]",College,310.5319,110.88338983050849,2.8005267558528426,6399.495737837689,2019
+1998,50,"(45,50]",College,258.0199,121.97172881355934,2.115407418668288,5837.731655827365,2019
+1998,55,"(50,55]",HS,10.028333333333334,22.176677966101696,0.4522017837235229,5194.666050969721,2019
+1998,55,"(50,55]",HS,8.934333333333335,22.176677966101696,0.40287068004459314,5157.345051479194,2019
+1998,55,"(50,55]",HS,9.663666666666666,22.176677966101696,0.4357580824972129,5282.837685991553,2019
+1998,55,"(50,55]",HS,9.481333333333334,22.176677966101696,0.427536231884058,5187.572404888967,2019
+1998,55,"(50,55]",HS,8.934333333333335,22.176677966101696,0.40287068004459314,5240.325140128795,2019
+1998,32,"(30,35]",College,31068.0137,253.18374011299437,122.7093560041989,1137.361481989933,2019
+1998,32,"(30,35]",College,30623.284466666664,253.18374011299437,120.95280863218024,1175.502057019537,2019
+1998,32,"(30,35]",College,30129.015266666665,253.18374011299437,119.00059321827013,1154.3887531924051,2019
+1998,32,"(30,35]",College,30570.261933333335,253.18374011299437,120.74338549422649,1214.7358267998663,2019
+1998,32,"(30,35]",College,30654.0988,253.18374011299437,121.07451602665819,1202.1806832917837,2019
+1998,60,"(55,60]",HS,1981.6898333333334,166.32508474576272,11.914557785209958,797.9765239530605,2019
+1998,60,"(55,60]",HS,1112.4156666666668,86.85865536723163,12.80719419341066,396.5426658775213,2019
+1998,60,"(55,60]",HS,781.8453333333334,155.23674576271185,5.036470775601211,403.64226190600715,2019
+1998,60,"(55,60]",HS,885.5383,129.36395480225988,6.845324892498806,400.21092624822444,2019
+1998,60,"(55,60]",HS,1012.69939,85.0105988700565,11.912625054529592,404.7594537976904,2019
+1998,65,"(60,65]",College,56815.431333333334,3862.4380790960454,14.709732601494615,350.74565291931157,2019
+1998,65,"(60,65]",College,58831.12633333333,3973.3214689265537,14.806535739285993,332.63937689667944,2019
+1998,65,"(60,65]",College,56513.65143333333,3548.2684745762717,15.927106936315493,349.70181964412177,2019
+1998,65,"(60,65]",College,56965.52813333333,3770.035254237288,15.110078365794479,342.7358547122605,2019
+1998,65,"(60,65]",College,56485.699733333335,3234.098870056497,17.465668800764455,369.4534653776576,2019
+1998,18,"(15,20]",HS,-4.467166666666667,17.55653672316384,-0.2544446400281641,6175.898286837417,2019
+1998,18,"(15,20]",HS,-5.287666666666667,24.024734463276836,-0.2200926164136867,6206.140888353359,2019
+1998,18,"(15,20]",HS,-5.014166666666667,15.893285875706214,-0.31548961655129504,6215.827839348546,2019
+1998,18,"(15,20]",HS,-0.3646666666666667,24.024734463276836,-0.01517880113197839,6167.665774345534,2019
+1998,18,"(15,20]",HS,7.475666666666667,33.265016949152546,0.22473058342623559,6181.537985639747,2019
+1998,28,"(25,30]",HS,0.09116666666666667,18.480564971751416,0.004933110367892976,4044.1367085411066,2019
+1998,28,"(25,30]",HS,0.09116666666666667,18.480564971751416,0.004933110367892976,4037.5011730655738,2019
+1998,28,"(25,30]",HS,0.09116666666666667,20.328621468926556,0.004484645788993615,4085.459675292814,2019
+1998,28,"(25,30]",HS,0.09116666666666667,18.480564971751416,0.004933110367892976,4037.333486505443,2019
+1998,28,"(25,30]",HS,0.09116666666666667,18.480564971751416,0.004933110367892976,4032.51688089915,2019
+1998,65,"(60,65]",College,6004.6925,462.0141242937853,12.996772575250837,3367.3833616380807,2019
+1998,65,"(60,65]",College,6022.925833333333,462.0141242937853,13.036237458193979,3623.8764854168826,2019
+1998,65,"(60,65]",College,6002.869166666667,462.0141242937853,12.992826086956523,3484.9668742741787,2019
+1998,65,"(60,65]",College,6551.6925,462.0141242937853,14.180719063545151,4087.8618361036074,2019
+1998,65,"(60,65]",College,6006.515833333333,462.0141242937853,13.00071906354515,3268.9642418434514,2019
+1998,55,"(50,55]",HS,790.7067333333333,240.24734463276835,3.2912194494468743,6517.755786279735,2019
+1998,55,"(50,55]",HS,617.4900666666666,240.24734463276835,2.5702263956779006,6213.729549520417,2019
+1998,55,"(50,55]",HS,808.9400666666667,240.24734463276835,3.3671134551067663,5816.974004070115,2019
+1998,55,"(50,55]",HS,631.8761666666667,240.24734463276835,2.6301067661435558,6363.064212047788,2019
+1998,55,"(50,55]",HS,644.8400666666666,240.24734463276835,2.6840674041677386,5801.156061150059,2019
+1998,39,"(35,40]",College,91.16666666666667,144.14840677966103,0.6324500471657662,6744.46500604753,2019
+1998,39,"(35,40]",College,87.52,144.14840677966103,0.6071520452791355,6836.715208916417,2019
+1998,39,"(35,40]",College,100.28333333333333,144.14840677966103,0.6956950518823428,7117.195160370924,2019
+1998,39,"(35,40]",College,98.46000000000001,144.14840677966103,0.6830460509390275,6778.242203844258,2019
+1998,39,"(35,40]",College,103.93,144.14840677966103,0.7209930537689735,7031.037526039363,2019
+1998,80,"(75,80]",HS,617.9276666666666,94.25088135593221,6.556200406584037,8101.200850849176,2019
+1998,80,"(75,80]",HS,610.6343333333334,94.25088135593221,6.47881828316611,7768.760427926378,2019
+1998,80,"(75,80]",HS,612.4576666666667,94.25088135593221,6.498163814020591,7251.986474749441,2019
+1998,80,"(75,80]",HS,612.64,94.25088135593221,6.500098367106039,7894.254362689237,2019
+1998,80,"(75,80]",HS,616.2866666666666,94.25088135593221,6.5387894288150035,7231.216574589054,2019
+1998,69,"(65,70]",College,31191.763333333332,1219.7172881355932,25.572945170771256,15.461122807023534,2019
+1998,69,"(65,70]",College,26104.663333333334,1302.8798305084747,20.036125145283332,17.11080061364524,2019
+1998,69,"(65,70]",College,29853.43666666667,1256.6784180790962,23.755828251032852,14.131132046699694,2019
+1998,69,"(65,70]",College,34362.54,796.5123502824858,43.14125196905385,13.286622082032142,2019
+1998,69,"(65,70]",College,37828.69666666666,935.1165875706214,40.45345486271762,13.260759435712192,2019
+1998,50,"(45,50]",HS,164.39173333333335,120.12367231638417,1.3685207100591719,5800.525027972513,2019
+1998,50,"(45,50]",HS,164.61053333333334,120.12367231638417,1.370342166195009,5909.328311696911,2019
+1998,50,"(45,50]",HS,164.39173333333335,120.12367231638417,1.3685207100591719,6163.8459985788295,2019
+1998,50,"(45,50]",HS,164.57406666666668,120.12367231638417,1.3700385901723697,5784.491250033539,2019
+1998,50,"(45,50]",HS,164.39173333333335,120.12367231638417,1.3685207100591719,6069.317751099743,2019
+1998,35,"(30,35]",College,20008.34833333333,397.33214689265543,50.35673174146378,251.32549471633246,2019
+1998,35,"(30,35]",College,15440.898333333334,397.33214689265543,38.86143734930388,221.16661623708174,2019
+1998,35,"(30,35]",College,15442.721666666666,397.33214689265543,38.866026289180986,235.71584378550378,2019
+1998,35,"(30,35]",College,13637.621666666666,452.7738418079096,30.120162446249402,250.57069558941907,2019
+1998,35,"(30,35]",College,11772.351666666666,410.2685423728813,28.694258639910814,211.9754717691777,2019
+1998,33,"(30,35]",HS,2607.366666666667,365.915186440678,7.125603864734299,1102.0911223618975,2019
+1998,33,"(30,35]",HS,2006.5783333333334,332.65016949152545,6.032097733184689,3604.971770358593,2019
+1998,33,"(30,35]",HS,2102.121,432.4452203389831,4.861011062516079,3361.181876254126,2019
+1998,33,"(30,35]",HS,2316.9096666666665,375.1554689265537,6.175865364021285,3337.165383627602,2019
+1998,33,"(30,35]",HS,2124.5480000000002,280.90458757062146,7.563237106143286,3445.762910531378,2019
+1998,43,"(40,45]",HS,72.89686666666667,123.81978531073446,0.5887335895771977,7189.666619292353,2019
+1998,43,"(40,45]",HS,73.0792,123.81978531073446,0.5902061598362701,7356.260585082369,2019
+1998,43,"(40,45]",HS,73.0792,123.81978531073446,0.5902061598362701,7764.634350771294,2019
+1998,43,"(40,45]",HS,72.89686666666667,123.81978531073446,0.5887335895771977,7210.302014963842,2019
+1998,43,"(40,45]",HS,73.0792,123.81978531073446,0.5902061598362701,7555.6831977827505,2019
+1998,88,"(85,90]",College,200388.89166666666,1108.8338983050849,180.7203874024526,15.33769983650124,2019
+1998,88,"(85,90]",College,200708.15733333334,1108.8338983050849,181.00831661092528,14.787604740190357,2019
+1998,88,"(85,90]",College,200508.68466666667,1108.8338983050849,180.82842251950945,12.199425912784587,2019
+1998,88,"(85,90]",College,201021.40600000002,1108.8338983050849,181.29081939799332,12.59356906027004,2019
+1998,88,"(85,90]",College,201258.804,1108.8338983050849,181.50491638795984,11.746718629781517,2019
+1998,74,"(70,75]",HS,474.0666666666667,29.56890395480226,16.032608695652176,7076.592482208706,2019
+1998,74,"(70,75]",HS,474.0666666666667,29.56890395480226,16.032608695652176,6854.110374562882,2019
+1998,74,"(70,75]",HS,474.0666666666667,29.56890395480226,16.032608695652176,6348.124498798365,2019
+1998,74,"(70,75]",HS,474.0666666666667,29.56890395480226,16.032608695652176,6996.44653341437,2019
+1998,74,"(70,75]",HS,474.0666666666667,29.56890395480226,16.032608695652176,6347.0199269156965,2019
+1998,39,"(35,40]",HS,828.158,73.92225988700567,11.203093645484948,5655.139130573762,2019
+1998,39,"(35,40]",HS,307.1222666666667,157.08480225988703,1.9551367302773952,5410.883895873941,2019
+1998,39,"(35,40]",HS,227.84373333333335,103.49116384180793,2.2015766841853797,7296.70040410622,2019
+1998,39,"(35,40]",HS,2653.5334666666668,212.52649717514123,12.485659444525231,2694.7597943146266,2019
+1998,39,"(35,40]",HS,867.4690666666667,79.46642937853107,10.916170179668663,5036.766183588921,2019
+1998,54,"(50,55]",College,1361.6106333333332,739.2225988700566,1.8419494147157187,1480.5935331409144,2019
+1998,54,"(50,55]",College,726.416,739.2225988700566,0.9826755852842809,1569.6711247151757,2019
+1998,54,"(50,55]",College,2005.6666666666667,739.2225988700566,2.713210702341137,2083.2021615761514,2019
+1998,54,"(50,55]",College,735.3503333333334,739.2225988700566,0.9947617056856187,1548.1023058711955,2019
+1998,54,"(50,55]",College,1493.1276666666668,739.2225988700566,2.0198620401337792,1473.9380526320622,2019
+1998,88,"(85,90]",HS,0,8.501059887005649,0,7386.231716115755,2019
+1998,88,"(85,90]",HS,0,12.936395480225992,0,7439.570318563007,2019
+1998,88,"(85,90]",HS,0,13.490812429378531,0,7447.71594354517,2019
+1998,88,"(85,90]",HS,0,14.599646327683615,0,7372.143020123296,2019
+1998,88,"(85,90]",HS,0,20.328621468926556,0,7448.035926002203,2019
+1998,43,"(40,45]",College,1727.426,221.76677966101698,7.789381270903008,1090.9961191157795,2019
+1998,43,"(40,45]",College,1499.5093333333332,221.76677966101698,6.761649944258639,1158.8350524575364,2019
+1998,43,"(40,45]",College,1384.6393333333333,221.76677966101698,6.243673355629876,1113.4793849347677,2019
+1998,43,"(40,45]",College,1545.0926666666667,221.76677966101698,6.967196209587513,1127.1930006879193,2019
+1998,43,"(40,45]",College,1725.602666666667,221.76677966101698,7.781159420289855,1080.601964399687,2019
+1998,84,"(80,85]",NoHS,283.47363333333334,35.11307344632768,8.073164935750748,11514.980040918945,2019
+1998,84,"(80,85]",NoHS,283.4918666666666,35.11307344632768,8.073684210526315,11816.64907717544,2019
+1998,84,"(80,85]",NoHS,283.4918666666666,35.11307344632768,8.073684210526315,12282.585741862005,2019
+1998,84,"(80,85]",NoHS,283.47363333333334,35.11307344632768,8.073164935750748,11623.091780647268,2019
+1998,84,"(80,85]",NoHS,283.47363333333334,35.11307344632768,8.073164935750748,12221.179036041534,2019
+1998,44,"(40,45]",HS,664.058,44.35335593220339,14.971989966555183,10553.334075500763,2019
+1998,44,"(40,45]",HS,664.058,44.35335593220339,14.971989966555183,10174.650373158365,2019
+1998,44,"(40,45]",HS,664.058,44.35335593220339,14.971989966555183,9881.289916979043,2019
+1998,44,"(40,45]",HS,664.058,44.35335593220339,14.971989966555183,10062.590158865458,2019
+1998,44,"(40,45]",HS,664.058,44.35335593220339,14.971989966555183,10318.796404198825,2019
+1998,65,"(60,65]",HS,172.12266666666667,40.65724293785311,4.233505624809973,10866.981967197748,2019
+1998,65,"(60,65]",HS,172.12266666666667,40.65724293785311,4.233505624809973,11494.22648305352,2019
+1998,65,"(60,65]",HS,172.12266666666667,40.65724293785311,4.233505624809973,10824.717783362405,2019
+1998,65,"(60,65]",HS,172.12266666666667,42.50529943502825,4.049440162861713,10615.868897146589,2019
+1998,65,"(60,65]",HS,172.12266666666667,42.50529943502825,4.049440162861713,10921.65876632318,2019
+1998,44,"(40,45]",HS,1585.0236666666667,240.24734463276835,6.597465912014408,3260.742466621271,2019
+1998,44,"(40,45]",HS,1578.095,240.24734463276835,6.568626189863648,3555.865796244696,2019
+1998,44,"(40,45]",HS,1579.3713333333333,240.24734463276835,6.573938770259841,3318.7307805038217,2019
+1998,44,"(40,45]",HS,1581.7416666666668,240.24734463276835,6.5838049909956275,3292.9776873560813,2019
+1998,44,"(40,45]",HS,1581.7416666666668,240.24734463276835,6.5838049909956275,3399.0638060548154,2019
+1998,25,"(20,25]",NoHS,10.575333333333335,27.720847457627123,0.3814938684503902,5175.899373970733,2019
+1998,25,"(20,25]",NoHS,11.669333333333334,25.872790960451983,0.4510272336359292,5191.223724423689,2019
+1998,25,"(20,25]",NoHS,8.934333333333335,27.720847457627123,0.3222965440356745,5191.482369075566,2019
+1998,25,"(20,25]",NoHS,8.934333333333335,25.872790960451983,0.34531772575250835,5217.323148125226,2019
+1998,25,"(20,25]",NoHS,16.41,27.720847457627123,0.5919732441471571,5197.522273779371,2019
+1998,60,"(55,60]",College,171023.926,9240.282485875707,18.50851705685619,24.536113405023357,2019
+1998,60,"(55,60]",College,191200.93266666666,9240.282485875707,20.692109030100333,25.75983580138125,2019
+1998,60,"(55,60]",College,167152.98933333336,9240.282485875707,18.08959732441472,22.59482456630162,2019
+1998,60,"(55,60]",College,189020.226,9240.282485875707,20.456109030100333,21.34192801567523,2019
+1998,60,"(55,60]",College,190019.23033333334,9240.282485875707,20.564223076923078,21.91752728842682,2019
+1998,71,"(70,75]",College,102037.01533333333,3012.33209039548,33.87309641545438,350.74565291931157,2019
+1998,71,"(70,75]",College,101104.56266666668,2901.4487005649717,34.84623479539016,332.63937689667944,2019
+1998,71,"(70,75]",College,101246.60033333334,3326.5016949152546,30.436359160163505,349.70181964412177,2019
+1998,71,"(70,75]",College,99281.41166666667,2809.045875706215,35.34346395881006,342.7358547122605,2019
+1998,71,"(70,75]",College,100091.154,2919.929265536723,34.27862283561238,335.0119632149632,2019
+1998,73,"(70,75]",NoHS,144.955,40.65724293785311,3.5652934022499236,9039.484731307373,2019
+1998,73,"(70,75]",NoHS,144.955,40.65724293785311,3.5652934022499236,9070.737671482348,2019
+1998,73,"(70,75]",NoHS,145.13733333333334,40.65724293785311,3.5697780480389176,8993.963469528517,2019
+1998,73,"(70,75]",NoHS,144.77266666666665,40.65724293785311,3.5608087564609296,9109.274681761166,2019
+1998,73,"(70,75]",NoHS,145.13733333333334,40.65724293785311,3.5697780480389176,8993.00719290158,2019
+1998,58,"(55,60]",College,23239.295000000002,5229.99988700565,4.4434599430374515,16.47231744255796,2019
+1998,58,"(55,60]",College,92646.30166666668,5229.99988700565,17.714398406939505,19.512198871435135,2019
+1998,58,"(55,60]",College,79777.215,5248.480451977402,15.200059470535587,21.441993446198993,2019
+1998,58,"(55,60]",College,23649.727333333332,5248.480451977402,4.506014178717791,16.699318985138266,2019
+1998,58,"(55,60]",College,24041.744,5229.99988700565,4.5968918775187015,17.840594983961697,2019
+1998,84,"(80,85]",College,590.5776666666667,138.6042372881356,4.260891861761427,7348.0423349987905,2019
+1998,84,"(80,85]",College,655.1419000000001,182.957593220339,3.5808401743184355,7046.5084826137345,2019
+1998,84,"(80,85]",College,1111.5951666666667,120.12367231638417,9.253756110110626,6577.778357848249,2019
+1998,84,"(80,85]",College,367.7116333333334,68.37809039548021,5.377623610232308,8983.954678409158,2019
+1998,84,"(80,85]",College,552.6158666666668,116.4275593220339,4.746435207304773,6558.939409341469,2019
+1998,19,"(15,20]",HS,12.599233333333334,0,Inf,7374.510128694521,2019
+1998,19,"(15,20]",HS,12.40049,0,Inf,7410.622182494486,2019
+1998,19,"(15,20]",HS,12.582823333333334,0,Inf,7422.189166747194,2019
+1998,19,"(15,20]",HS,12.582823333333334,0,Inf,7364.679858839629,2019
+1998,19,"(15,20]",HS,12.582823333333334,0,Inf,7381.24437430689,2019
+1998,59,"(55,60]",HS,4646.582666666667,236.55123163841807,19.64302884615385,184.85193233772293,2019
+1998,59,"(55,60]",HS,5653.427333333333,802.0565197740112,7.048664519211504,181.29643382570626,2019
+1998,59,"(55,60]",HS,2632.3463333333334,212.52649717514123,12.385967718481897,175.55992747413535,2019
+1998,59,"(55,60]",HS,2490.7462666666665,314.16960451977405,7.928030690537083,129.75412479080592,2019
+1998,59,"(55,60]",HS,10245.966400000001,214.37455367231638,47.794694960212205,179.84427419868038,2019
+1998,46,"(45,50]",College,10345.593333333334,2217.6677966101697,4.665078037904125,15.033651893824317,2019
+1998,46,"(45,50]",College,11202.578233333332,2217.6677966101697,5.05151323857302,16.558378531738175,2019
+1998,46,"(45,50]",College,12624.778233333333,2217.6677966101697,5.692817586399107,18.22201148001322,2019
+1998,46,"(45,50]",College,10345.593333333334,2217.6677966101697,4.665078037904125,18.08597877973916,2019
+1998,46,"(45,50]",College,11713.093333333334,2217.6677966101697,5.281716833890747,17.015940929825515,2019
+1998,67,"(65,70]",NoHS,0.9116666666666666,15.893285875706214,0.05736174846387182,8907.997035767889,2019
+1998,67,"(65,70]",NoHS,0.9116666666666666,15.893285875706214,0.05736174846387182,9206.549686479926,2019
+1998,67,"(65,70]",NoHS,0.9116666666666666,15.893285875706214,0.05736174846387182,9464.285696017516,2019
+1998,67,"(65,70]",NoHS,0.9116666666666666,15.893285875706214,0.05736174846387182,9168.578431238075,2019
+1998,67,"(65,70]",NoHS,0.9116666666666666,15.893285875706214,0.05736174846387182,9404.774098736254,2019
+1998,57,"(55,60]",College,1711.2530333333334,72.07420338983052,23.74293371065946,3157.5886359013466,2019
+1998,57,"(55,60]",College,1700.6777,72.07420338983052,23.596205299717003,3431.202609578753,2019
+1998,57,"(55,60]",College,1690.0841333333333,72.07420338983052,23.449223908755677,3210.484077668291,2019
+1998,57,"(55,60]",College,1728.0277,72.07420338983052,23.975675328016465,3187.5976466295133,2019
+1998,57,"(55,60]",College,1680.9857,72.07420338983052,23.322986879341393,3289.3360709905005,2019
+1998,42,"(40,45]",HS,199.29033333333334,147.84451977401133,1.3479724080267557,5876.058493123756,2019
+1998,42,"(40,45]",HS,171.3204,147.84451977401133,1.15878762541806,5928.999042028323,2019
+1998,42,"(40,45]",HS,155.0198,147.84451977401133,1.048532608695652,5906.840285282501,2019
+1998,42,"(40,45]",HS,199.30856666666668,147.84451977401133,1.3480957357859529,5896.231774042648,2019
+1998,42,"(40,45]",HS,182.71623333333335,147.84451977401133,1.2358674749163878,5919.934966017081,2019
+1998,56,"(55,60]",HS,679.1916666666666,101.64310734463277,6.6821222256004855,6160.140294819429,2019
+1998,56,"(55,60]",HS,679.0093333333334,101.64310734463277,6.68032836728489,5873.373275483873,2019
+1998,56,"(55,60]",HS,679.0093333333334,101.64310734463277,6.68032836728489,5498.116964974228,2019
+1998,56,"(55,60]",HS,678.827,101.64310734463277,6.678534508969292,6015.588951680486,2019
+1998,56,"(55,60]",HS,679.0093333333334,101.64310734463277,6.68032836728489,5483.8913814998205,2019
+1998,29,"(25,30]",HS,257.9469666666667,105.33922033898305,2.4487267499853314,5113.629876990912,2019
+1998,29,"(25,30]",HS,251.6564666666667,105.33922033898305,2.389010150795048,5046.832630488647,2019
+1998,29,"(25,30]",HS,263.654,105.33922033898305,2.502904418236226,5086.385191362404,2019
+1998,29,"(25,30]",HS,215.66386666666668,105.33922033898305,2.047327348471513,5138.1338734086485,2019
+1998,29,"(25,30]",HS,260.53610000000003,105.33922033898305,2.4733057560288683,5072.9925954693235,2019
+1998,46,"(45,50]",NoHS,-10.192433333333332,42.50529943502825,-0.23979206049149335,5940.41494948802,2019
+1998,46,"(45,50]",NoHS,-8.332633333333334,42.50529943502825,-0.19603751635887742,5918.432519067448,2019
+1998,46,"(45,50]",NoHS,-12.034,42.50529943502825,-0.28311763850516214,5931.1800409098705,2019
+1998,46,"(45,50]",NoHS,-10.155966666666668,42.50529943502825,-0.23893412825359897,5914.936979658117,2019
+1998,46,"(45,50]",NoHS,-8.3144,42.50529943502825,-0.19560855023993018,5940.990257711024,2019
+1998,55,"(50,55]",HS,0.23703333333333335,51.745581920903966,0.004580745341614906,5232.017913684541,2019
+1998,55,"(50,55]",HS,0.23703333333333335,51.745581920903966,0.004580745341614906,5223.661997439904,2019
+1998,55,"(50,55]",HS,0.21880000000000002,51.745581920903966,0.004228380315336837,5385.001363984544,2019
+1998,55,"(50,55]",HS,0.23703333333333335,51.745581920903966,0.004580745341614906,5214.946205668808,2019
+1998,55,"(50,55]",HS,0.23703333333333335,51.745581920903966,0.004580745341614906,5284.16871627103,2019
+1998,49,"(45,50]",HS,498.0435,127.51589830508476,3.9057365130143955,6258.447098045985,2019
+1998,49,"(45,50]",HS,625.1298333333334,188.50176271186442,3.3163076267296216,5998.398427975454,2019
+1998,49,"(45,50]",HS,433.0416666666667,145.99646327683615,2.9661106642394484,5588.292414799658,2019
+1998,49,"(45,50]",HS,474.0119666666667,175.56536723163845,2.699917268086604,6115.650741482947,2019
+1998,49,"(45,50]",HS,522.2026666666667,145.99646327683615,3.5768172388975916,5578.0467004699885,2019
+1998,70,"(65,70]",NoHS,194.54966666666667,48.04946892655367,4.048945201955235,7622.880598206182,2019
+1998,70,"(65,70]",NoHS,194.54966666666667,48.04946892655367,4.048945201955235,7556.526623250624,2019
+1998,70,"(65,70]",NoHS,194.54966666666667,48.04946892655367,4.048945201955235,8078.613669036992,2019
+1998,70,"(65,70]",NoHS,194.54966666666667,48.04946892655367,4.048945201955235,7810.357458022923,2019
+1998,70,"(65,70]",NoHS,194.36733333333333,48.04946892655367,4.045150501672241,7920.75960321528,2019
+1998,45,"(40,45]",College,17231.047,1921.9787570621468,8.96526402109596,12.721433128327465,2019
+1998,45,"(40,45]",College,25266.477,2125.2649717514123,11.888624400174495,15.731066752257544,2019
+1998,45,"(40,45]",College,23948.207000000002,4121.165988700565,5.811027040808675,16.275653375010755,2019
+1998,45,"(40,45]",College,17880.15366666667,2402.4734463276836,7.442393877025985,13.859521983272524,2019
+1998,45,"(40,45]",College,21920.660333333333,1550.5194011299436,14.137624022865252,15.680390977537717,2019
+1998,53,"(50,55]",College,36335.75133333333,3086.2543502824856,11.773414375262853,20.509354661393694,2019
+1998,53,"(50,55]",College,33161.69266666667,3104.7349152542374,10.68100613154961,22.774330530588475,2019
+1998,53,"(50,55]",College,36210.251299999996,3086.2543502824856,11.732750185248232,26.57603818380152,2019
+1998,53,"(50,55]",College,36464.29633333334,3086.2543502824856,11.815065187351053,23.444957467344494,2019
+1998,53,"(50,55]",College,36200.46,3086.2543502824856,11.729577634029601,21.886016861465155,2019
+1998,39,"(35,40]",HS,0,36.96112994350283,0,6491.3466585884835,2019
+1998,39,"(35,40]",HS,0,36.96112994350283,0,6482.692261333412,2019
+1998,39,"(35,40]",HS,0,36.96112994350283,0,6477.88078201772,2019
+1998,39,"(35,40]",HS,0,36.96112994350283,0,6487.693046480046,2019
+1998,39,"(35,40]",HS,0,36.96112994350283,0,6490.970285295983,2019
+1998,60,"(55,60]",HS,637.6196666666666,138.6042372881356,4.600289855072463,6620.945795507772,2019
+1998,60,"(55,60]",HS,635.7963333333333,138.6042372881356,4.587134894091415,6312.253370429019,2019
+1998,60,"(55,60]",HS,637.6196666666666,138.6042372881356,4.600289855072463,5908.897814610518,2019
+1998,60,"(55,60]",HS,635.7963333333333,138.6042372881356,4.587134894091415,6465.181991191287,2019
+1998,60,"(55,60]",HS,637.6196666666666,138.6042372881356,4.600289855072463,5894.084562493734,2019
+1998,51,"(50,55]",College,200.93133333333336,97.9469943502825,2.051429292610589,6802.940762768174,2019
+1998,51,"(50,55]",College,201.11366666666666,97.9469943502825,2.053290843692812,6891.761087523226,2019
+1998,51,"(50,55]",College,199.29033333333334,97.9469943502825,2.0346753328705747,7142.893952536132,2019
+1998,51,"(50,55]",College,200.93133333333336,96.09893785310734,2.0908798559300235,6797.050243616645,2019
+1998,51,"(50,55]",College,199.29033333333334,96.09893785310734,2.0738037046565476,7109.8822233750925,2019
+1998,23,"(20,25]",HS,-4.831833333333333,59.13780790960452,-0.08170464046822742,6672.281237086939,2019
+1998,23,"(20,25]",HS,8.113833333333334,59.13780790960452,0.13720213210702342,6830.415031631067,2019
+1998,23,"(20,25]",HS,-5.014166666666667,59.13780790960452,-0.08478783444816054,6984.143077531415,2019
+1998,23,"(20,25]",HS,-7.658,59.13780790960452,-0.12949414715719065,6637.893508842315,2019
+1998,23,"(20,25]",HS,0.8205,59.13780790960452,0.013874372909698998,6893.314085105585,2019
+1998,38,"(35,40]",NoHS,79.315,92.40282485875707,0.8583612040133778,7316.352703572435,2019
+1998,38,"(35,40]",NoHS,77.674,92.40282485875707,0.8406020066889632,7262.481971169953,2019
+1998,38,"(35,40]",NoHS,77.49166666666667,92.40282485875707,0.8386287625418061,7264.503661599621,2019
+1998,38,"(35,40]",NoHS,77.49166666666667,92.40282485875707,0.8386287625418061,7386.587994402862,2019
+1998,38,"(35,40]",NoHS,77.674,92.40282485875707,0.8406020066889632,7235.802818730799,2019
+1998,50,"(45,50]",College,659.4996666666666,210.6784406779661,3.130361438713841,6688.70331709382,2019
+1998,50,"(45,50]",College,683.203,62.833920903954805,10.873155616761753,6409.824407630545,2019
+1998,50,"(45,50]",College,427.754,179.26148022598866,2.3862014274385412,5973.0292909279415,2019
+1998,50,"(45,50]",College,779.1103333333334,62.833920903954805,12.399518001180406,6536.070330236378,2019
+1998,50,"(45,50]",College,651.8416666666667,177.41342372881357,3.674139492753623,5962.317381654715,2019
+1998,57,"(55,60]",HS,1420.9236666666668,170.021197740113,8.357332412389123,1262.0030332370147,2019
+1998,57,"(55,60]",HS,1420.9236666666668,170.021197740113,8.357332412389123,1265.3148391863513,2019
+1998,57,"(55,60]",HS,1420.9236666666668,170.021197740113,8.357332412389123,1240.1930042544732,2019
+1998,57,"(55,60]",HS,1421.106,170.021197740113,8.358404827686492,1418.6769820260142,2019
+1998,57,"(55,60]",HS,1421.106,170.021197740113,8.358404827686492,1316.622960232569,2019
+1998,75,"(70,75]",NoHS,153.03236666666666,16.07809152542373,9.518067889132356,9882.667430100477,2019
+1998,75,"(70,75]",NoHS,152.9959,16.07809152542373,9.515799792411487,9875.652370814856,2019
+1998,75,"(70,75]",NoHS,153.03236666666666,16.07809152542373,9.518067889132356,9791.541172446994,2019
+1998,75,"(70,75]",NoHS,152.85003333333333,16.07809152542373,9.506727405528004,9874.11280185889,2019
+1998,75,"(70,75]",NoHS,153.01413333333335,16.07809152542373,9.516933840771921,9790.933215534116,2019
+1998,41,"(40,45]",College,3123.7346666666667,258.72790960451977,12.073435260391783,1957.7108131771238,2019
+1998,41,"(40,45]",College,3122.823,258.72790960451977,12.069911610129001,2142.948452148091,2019
+1998,41,"(40,45]",College,3360.768,258.72790960451977,12.989584328714765,1960.8428568732102,2019
+1998,41,"(40,45]",College,3360.5856666666664,258.72790960451977,12.988879598662207,2510.5490572102663,2019
+1998,41,"(40,45]",College,3178.4346666666665,258.72790960451977,12.284854276158624,1962.382749659861,2019
+1998,79,"(75,80]",HS,72.93333333333332,18.11095367231638,4.027028871749369,12605.213371154248,2019
+1998,79,"(75,80]",HS,92.99,29.56890395480226,3.1448578595317724,12163.815671648372,2019
+1998,79,"(75,80]",HS,120.34,12.936395480225992,9.30243669374104,12474.655710143245,2019
+1998,79,"(75,80]",HS,151.33666666666667,29.56890395480226,5.1181020066889635,11945.711930131461,2019
+1998,79,"(75,80]",HS,122.16333333333333,27.720847457627123,4.406911928651058,12569.389869008552,2019
+1998,68,"(65,70]",HS,321.089,46.201412429378536,6.949765886287625,7157.1948662905825,2019
+1998,68,"(65,70]",HS,353.909,27.720847457627123,12.766889632107022,7456.6687753232445,2019
+1998,68,"(65,70]",HS,346.798,51.745581920903966,6.701982799808885,7637.90949110607,2019
+1998,68,"(65,70]",HS,359.7436666666667,25.872790960451983,13.90432393693263,7163.279854078033,2019
+1998,68,"(65,70]",HS,341.875,42.50529943502825,8.043114730260287,7475.602102567643,2019
+1998,42,"(40,45]",College,27432.414666666667,5119.116497175141,5.35881820267317,466.8321139745203,2019
+1998,42,"(40,45]",College,27194.2691,5303.922146892656,5.127199899782084,472.64880654070583,2019
+1998,42,"(40,45]",College,25947.3279,5618.09175141243,4.618530463386727,461.4263979654585,2019
+1998,42,"(40,45]",College,26865.540333333334,4915.8302824858765,5.465107375462066,454.2407996241676,2019
+1998,42,"(40,45]",College,27053.9089,5950.741920903954,4.546308554394566,433.5662536044084,2019
+1998,74,"(70,75]",College,1861.8421333333333,1118.0741807909606,1.66522236656624,672.9560629452508,2019
+1998,74,"(70,75]",College,2293.972133333333,783.57595480226,2.927568309459203,714.1206566645141,2019
+1998,74,"(70,75]",College,2282.703933333333,1940.4593220338984,1.176372989329511,666.3726103132212,2019
+1998,74,"(70,75]",College,2308.9234666666666,1127.314463276836,2.048162728219749,688.3704121837844,2019
+1998,74,"(70,75]",College,2330.420566666667,417.6607683615819,5.579697072838667,666.5889616137439,2019
+1998,84,"(80,85]",NoHS,185.98,9.240282485875708,20.12709030100334,9700.78810090278,2019
+1998,84,"(80,85]",NoHS,116.69333333333333,16.632508474576273,7.015979189892232,9903.11356569628,2019
+1998,84,"(80,85]",NoHS,158.63,13.675618079096047,11.59947572991051,10278.163328313705,2019
+1998,84,"(80,85]",NoHS,100.28333333333333,10.71872768361582,9.355898973590127,9860.069012600672,2019
+1998,84,"(80,85]",NoHS,140.39666666666665,12.56678418079096,11.172044068463505,10310.069557097575,2019
+1998,41,"(40,45]",HS,124.35133333333333,99.79505084745762,1.2460671373714853,8982.026034995239,2019
+1998,41,"(40,45]",HS,125.08066666666667,99.79505084745762,1.2533754490276232,9163.079272333584,2019
+1998,41,"(40,45]",HS,122.528,99.79505084745762,1.227796358231141,9534.708345552412,2019
+1998,41,"(40,45]",HS,119.61066666666667,99.79505084745762,1.19856311160659,9061.349032396734,2019
+1998,41,"(40,45]",HS,123.25733333333334,99.79505084745762,1.2351046698872787,9436.20995562586,2019
+1998,50,"(45,50]",College,7747.161,467.5582937853107,16.56940129813476,2259.6124020692982,2019
+1998,50,"(45,50]",College,14720.317000000001,504.51942372881365,29.17690837590503,847.5160110212607,2019
+1998,50,"(45,50]",College,8090.677000000001,462.0141242937853,17.511752508361205,2107.3666185571624,2019
+1998,50,"(45,50]",College,9668.225,517.4558192090395,18.68415551839465,947.4246341156446,2019
+1998,50,"(45,50]",College,10608.153333333334,498.975254237288,21.2598786077047,879.1082927038166,2019
+1998,68,"(65,70]",College,49426.19066666666,659.7561694915254,74.91584459870904,16.757236891707684,2019
+1998,68,"(65,70]",College,46825.57033333334,510.06359322033904,91.80339658765935,17.289802727705126,2019
+1998,68,"(65,70]",College,45436.555,633.8833785310735,71.67967569254171,18.31520213384377,2019
+1998,68,"(65,70]",College,47322.793333333335,656.0600564971752,72.13180083847567,17.01378510190925,2019
+1998,68,"(65,70]",College,46027.862,539.6324971751412,85.29482979795667,18.87450133539183,2019
+1998,36,"(35,40]",College,97.73066666666668,107.18727683615819,0.9117748817898744,7527.304670853448,2019
+1998,36,"(35,40]",College,97.913,120.12367231638417,0.8151016207872396,7630.2624862353205,2019
+1998,36,"(35,40]",College,95.54266666666668,110.88338983050849,0.8616499442586398,7943.298145367839,2019
+1998,36,"(35,40]",College,97.366,120.12367231638417,0.8105479804476461,7565.00243613442,2019
+1998,36,"(35,40]",College,94.81333333333333,125.66784180790961,0.7544757033248082,7847.140071635949,2019
+1998,82,"(80,85]",NoHS,830.346,79.46642937853107,10.449016100178891,6000.412476541083,2019
+1998,82,"(80,85]",NoHS,832.3516666666667,79.46642937853107,10.474255269502995,5754.746154453051,2019
+1998,82,"(80,85]",NoHS,830.346,79.46642937853107,10.449016100178891,5371.715751509441,2019
+1998,82,"(80,85]",NoHS,832.1693333333334,79.46642937853107,10.47196079956444,5848.737760781554,2019
+1998,82,"(80,85]",NoHS,832.1693333333334,79.46642937853107,10.47196079956444,5357.039523910454,2019
+1998,56,"(55,60]",HS,160.08866666666665,35.11307344632768,4.5592325294842455,11649.295381239861,2019
+1998,56,"(55,60]",HS,124.89833333333333,35.11307344632768,3.55703221263862,11695.938160704805,2019
+1998,56,"(55,60]",HS,233.20433333333335,35.11307344632768,6.64152437951065,12195.435823167034,2019
+1998,56,"(55,60]",HS,169.20533333333336,35.11307344632768,4.8188699172680876,11376.762780272207,2019
+1998,56,"(55,60]",HS,127.45100000000001,35.11307344632768,3.6297306812180956,12122.260145402386,2019
+1998,54,"(50,55]",NoHS,11937.181,659.7561694915254,18.093322278744274,356.44226048754206,2019
+1998,54,"(50,55]",NoHS,5308.452666666667,521.1519322033898,10.185998244740151,353.1101158278783,2019
+1998,54,"(50,55]",College,3547.842,766.9434463276837,4.625949953660797,334.7816676765537,2019
+1998,54,"(50,55]",NoHS,7100.424666666667,1112.530011299435,6.382232024800276,370.1779121172964,2019
+1998,54,"(50,55]",NoHS,18785.803333333333,931.4204745762712,20.16898258746085,378.47519618782866,2019
+1998,60,"(55,60]",HS,142.80346666666668,49.89752542372881,2.8619348445435406,8320.753596790115,2019
+1998,60,"(55,60]",HS,160.78153333333333,31.416960451977403,5.117666732244737,8297.053129583337,2019
+1998,60,"(55,60]",HS,215.57270000000003,36.96112994350283,5.832416387959865,8788.275844574011,2019
+1998,60,"(55,60]",HS,548.0393,83.16254237288136,6.589977703455964,6411.30548175583,2019
+1998,60,"(55,60]",HS,374.7314666666667,46.201412429378536,8.110822742474916,8740.264989802194,2019
+1998,55,"(50,55]",HS,40.8062,55.441694915254246,0.736020066889632,5495.864051085696,2019
+1998,55,"(50,55]",HS,40.62386666666667,55.441694915254246,0.7327313266443701,5491.915377701513,2019
+1998,55,"(50,55]",HS,40.8062,55.441694915254246,0.736020066889632,5659.324056220775,2019
+1998,55,"(50,55]",HS,40.8062,55.441694915254246,0.736020066889632,5460.010804794337,2019
+1998,55,"(50,55]",HS,40.62386666666667,55.441694915254246,0.7327313266443701,5641.8836256298,2019
+1998,44,"(40,45]",HS,164.70170000000002,145.99646327683615,1.1281211633715762,6405.600429251019,2019
+1998,44,"(40,45]",HS,125.13536666666667,145.99646327683615,0.8571123153126455,6375.325323103127,2019
+1998,44,"(40,45]",HS,133.88736666666668,145.99646327683615,0.9170589729478008,6447.100194598076,2019
+1998,44,"(40,45]",HS,161.23736666666667,145.99646327683615,1.1043922780576607,6408.285512249991,2019
+1998,44,"(40,45]",HS,155.76736666666667,145.99646327683615,1.0669256170356887,6443.529641409352,2019
+1998,50,"(45,50]",College,7342.381,240.24734463276835,30.561757139181893,406.28870612201246,2019
+1998,50,"(45,50]",College,7449.775333333333,240.24734463276835,31.008772832518652,405.0906733986043,2019
+1998,50,"(45,50]",College,7725.0804333333335,240.24734463276835,32.15469642397736,380.79431285814894,2019
+1998,50,"(45,50]",College,7342.381,240.24734463276835,30.561757139181893,419.92440895540994,2019
+1998,50,"(45,50]",College,7341.9981,240.24734463276835,30.560163365063033,403.2477681194106,2019
+1998,66,"(65,70]",HS,326.74133333333333,129.36395480225988,2.525752508361204,8955.307856665224,2019
+1998,66,"(65,70]",HS,319.995,116.4275593220339,2.748447204968944,9330.019052954955,2019
+1998,66,"(65,70]",HS,336.22266666666667,109.03533333333333,3.0836120401337794,9556.793150393878,2019
+1998,66,"(65,70]",HS,338.9576666666667,97.9469943502825,3.4606234618539786,8962.921585222113,2019
+1998,66,"(65,70]",HS,337.8636666666667,101.64310734463277,3.3240194588020677,9353.709028901141,2019
+1998,83,"(80,85]",NoHS,691.0798000000001,18.480564971751416,37.394949832775914,6652.5486178488045,2019
+1998,83,"(80,85]",NoHS,372.507,18.480564971751416,20.156688963210698,8148.123181426951,2019
+1998,83,"(80,85]",NoHS,539.342,18.480564971751416,29.184280936454844,5955.1902844373535,2019
+1998,83,"(80,85]",NoHS,347.3997,18.480564971751416,18.79811036789297,8133.621521748758,2019
+1998,83,"(80,85]",NoHS,325.31913333333335,18.480564971751416,17.603311036789297,8471.556210183613,2019
+1998,51,"(50,55]",College,5003.226666666667,369.6112994350283,13.536454849498329,2578.2076533218283,2019
+1998,51,"(50,55]",College,5139.976666666667,369.6112994350283,13.906438127090302,2520.2262744593354,2019
+1998,51,"(50,55]",College,4820.893333333333,369.6112994350283,13.04314381270903,2467.1385493662638,2019
+1998,51,"(50,55]",College,5276.726666666667,369.6112994350283,14.276421404682274,2912.2160746417403,2019
+1998,51,"(50,55]",College,5369.716666666667,369.6112994350283,14.528010033444815,2643.5531336169297,2019
+1998,36,"(35,40]",NoHS,23.88566666666667,68.37809039548021,0.34931754496971895,1133.9004562237042,2019
+1998,36,"(35,40]",NoHS,23.88566666666667,68.37809039548021,0.34931754496971895,1130.9338898202545,2019
+1998,36,"(35,40]",NoHS,23.88566666666667,68.37809039548021,0.34931754496971895,1104.5742422259164,2019
+1998,36,"(35,40]",NoHS,23.703333333333333,68.37809039548021,0.3466509988249119,1085.357156678871,2019
+1998,36,"(35,40]",NoHS,23.88566666666667,68.37809039548021,0.34931754496971895,1164.665237643595,2019
+1998,26,"(25,30]",HS,0.9116666666666666,48.04946892655367,0.018973501414972987,5392.1822925028555,2019
+1998,26,"(25,30]",HS,0.9116666666666666,48.04946892655367,0.018973501414972987,5383.334911845109,2019
+1998,26,"(25,30]",HS,0.9116666666666666,48.04946892655367,0.018973501414972987,5447.279581652761,2019
+1998,26,"(25,30]",HS,0.9116666666666666,48.04946892655367,0.018973501414972987,5383.111329764332,2019
+1998,26,"(25,30]",HS,0.9116666666666666,48.04946892655367,0.018973501414972987,5376.689188938733,2019
+1998,49,"(45,50]",College,1171.3093333333334,184.80564971751414,6.338060200668896,2433.4677393974894,2019
+1998,49,"(45,50]",College,863.166,184.80564971751414,4.67066889632107,1153.1364284228284,2019
+1998,49,"(45,50]",College,2359.9403333333335,184.80564971751414,12.769849498327758,2364.9695473147012,2019
+1998,49,"(45,50]",College,997.9103333333334,184.80564971751414,5.399782608695652,1312.3859740481014,2019
+1998,49,"(45,50]",College,1005.2036666666667,184.80564971751414,5.439247491638795,1308.0681009620591,2019
+1998,24,"(20,25]",College,-8.843166666666667,14.78445197740113,-0.5981396321070235,4921.360948595615,2019
+1998,24,"(20,25]",College,-8.824933333333332,14.78445197740113,-0.5969063545150501,4902.530517556619,2019
+1998,24,"(20,25]",College,-8.843166666666667,14.78445197740113,-0.5981396321070235,4912.709461489829,2019
+1998,24,"(20,25]",College,-8.824933333333332,14.78445197740113,-0.5969063545150501,4942.0954063940335,2019
+1998,24,"(20,25]",College,-8.843166666666667,14.78445197740113,-0.5981396321070235,4870.248206306161,2019
+1998,41,"(40,45]",HS,2.8261666666666665,73.92225988700567,0.03823160535117056,7451.893349630863,2019
+1998,41,"(40,45]",HS,2.8261666666666665,73.92225988700567,0.03823160535117056,7489.214963131983,2019
+1998,41,"(40,45]",HS,2.8261666666666665,73.92225988700567,0.03823160535117056,7518.393891782776,2019
+1998,41,"(40,45]",HS,2.8261666666666665,73.92225988700567,0.03823160535117056,7450.500603569721,2019
+1998,41,"(40,45]",HS,2.8261666666666665,73.92225988700567,0.03823160535117056,7529.304099826169,2019
+1998,67,"(65,70]",HS,191.63233333333335,35.11307344632768,5.457577891216336,11226.704336153767,2019
+1998,67,"(65,70]",HS,191.81466666666665,35.11307344632768,5.462770638972012,11706.748972945496,2019
+1998,67,"(65,70]",HS,191.81466666666665,35.11307344632768,5.462770638972012,11986.59791312261,2019
+1998,67,"(65,70]",HS,191.81466666666665,35.11307344632768,5.462770638972012,11199.490671504414,2019
+1998,67,"(65,70]",HS,191.81466666666665,35.11307344632768,5.462770638972012,11918.903685082663,2019
+1998,59,"(55,60]",HS,4391.316,158.93285875706215,27.63000700007778,1076.0435792796268,2019
+1998,59,"(55,60]",HS,4391.498333333333,158.93285875706215,27.631154235047052,1173.721672478248,2019
+1998,59,"(55,60]",HS,4391.316,158.93285875706215,27.63000700007778,1076.641127089867,2019
+1998,59,"(55,60]",HS,4391.498333333333,158.93285875706215,27.631154235047052,1379.6794376002404,2019
+1998,59,"(55,60]",HS,4393.321666666667,158.93285875706215,27.64262658473983,1078.0894173749998,2019
+1998,56,"(55,60]",HS,131.80876666666666,92.40282485875707,1.4264581939799328,8082.849703694237,2019
+1998,56,"(55,60]",HS,99.554,81.31448587570623,1.2243083003952568,8058.859116734029,2019
+1998,56,"(55,60]",HS,306.39293333333336,48.04946892655367,6.376614355544122,5897.295315651266,2019
+1998,56,"(55,60]",HS,111.3145,59.13780790960452,1.8822899247491638,7946.171827747317,2019
+1998,56,"(55,60]",HS,79.4791,83.16254237288136,0.9557079152731326,8407.953004410516,2019
+1998,65,"(60,65]",College,8866.632966666666,463.8621807909605,19.11480033045077,1703.167257248016,2019
+1998,65,"(60,65]",College,16191.145300000002,482.34274576271196,33.5677180640449,1863.5242399167746,2019
+1998,65,"(60,65]",College,15341.4902,482.34274576271196,31.80620074578095,1691.1810129624191,2019
+1998,65,"(60,65]",College,8868.820966666666,482.34274576271196,18.386968695139604,2173.072521782032,2019
+1998,65,"(60,65]",College,15177.189633333333,482.34274576271196,31.46557041991824,1693.2482247547273,2019
+1998,34,"(30,35]",College,353.14320000000004,73.92225988700567,4.777224080267558,10186.86870716961,2019
+1998,34,"(30,35]",College,357.2821666666667,73.92225988700567,4.833214882943143,10294.227811026027,2019
+1998,34,"(30,35]",College,353.14320000000004,73.92225988700567,4.777224080267558,10613.271457346998,2019
+1998,34,"(30,35]",College,359.4884,73.92225988700567,4.863060200668896,10180.405603687785,2019
+1998,34,"(30,35]",College,349.62416666666667,73.92225988700567,4.729619565217391,10555.508004466592,2019
+1998,27,"(25,30]",College,91.53133333333334,25.872790960451983,3.53774486383182,8651.063944450394,2019
+1998,27,"(25,30]",College,91.53133333333334,31.416960451977403,2.9134369466850285,8708.820917407676,2019
+1998,27,"(25,30]",College,91.53133333333334,20.328621468926556,4.502584372149589,8854.96700210193,2019
+1998,27,"(25,30]",College,93.35466666666667,33.265016949152546,2.806391675956893,8725.510201893203,2019
+1998,27,"(25,30]",College,91.53133333333334,31.416960451977403,2.9134369466850285,8816.283803928158,2019
+1998,48,"(45,50]",College,373.4186666666667,114.57950282485875,3.2590354946596185,6712.767654511908,2019
+1998,48,"(45,50]",College,373.4186666666667,114.57950282485875,3.2590354946596185,6659.25414697578,2019
+1998,48,"(45,50]",College,373.4186666666667,114.57950282485875,3.2590354946596185,6631.764151726033,2019
+1998,48,"(45,50]",College,373.601,112.73144632768363,3.314079719282855,6737.597625406818,2019
+1998,48,"(45,50]",College,373.4186666666667,112.73144632768363,3.3124623060474807,6655.604587706739,2019
+1998,81,"(80,85]",NoHS,22.664033333333332,14.230035028248587,1.5926899187768753,11756.337109844992,2019
+1998,81,"(80,85]",NoHS,22.499933333333335,14.230035028248587,1.5811579724623206,11696.54549753465,2019
+1998,81,"(80,85]",NoHS,21.077733333333335,14.045229378531072,1.5007041013906004,11892.223272435176,2019
+1998,81,"(80,85]",NoHS,31.54366666666667,14.230035028248587,2.2166963471311303,11805.277934006663,2019
+1998,81,"(80,85]",NoHS,22.0988,14.045229378531072,1.5734025699700758,12144.54742726246,2019
+1998,45,"(40,45]",College,587.6603333333334,181.10953672316384,3.244778513412054,5928.803122682337,2019
+1998,45,"(40,45]",College,587.2956666666666,181.10953672316384,3.242764998976179,5681.180915389119,2019
+1998,45,"(40,45]",College,587.2956666666666,181.10953672316384,3.242764998976179,5293.986339163972,2019
+1998,45,"(40,45]",College,587.6603333333334,181.10953672316384,3.244778513412054,5793.152819772431,2019
+1998,45,"(40,45]",College,572.8913333333334,181.10953672316384,3.1632311787591294,5284.918269605436,2019
+1998,36,"(35,40]",HS,28.790433333333336,59.13780790960452,0.4868363294314382,5738.570887206602,2019
+1998,36,"(35,40]",HS,28.553400000000003,59.13780790960452,0.48282817725752514,5712.733669024003,2019
+1998,36,"(35,40]",HS,26.821233333333335,59.13780790960452,0.4535378344481606,5668.594649824748,2019
+1998,36,"(35,40]",HS,27.2953,59.13780790960452,0.46155413879598667,5766.322159983282,2019
+1998,36,"(35,40]",HS,25.34433333333333,59.13780790960452,0.42856396321070234,5667.074766381172,2019
+1998,68,"(65,70]",NoHS,0.23703333333333335,0.09240282485875706,2.565217391304348,6864.989647735204,2019
+1998,68,"(65,70]",NoHS,0.20056666666666667,0.09240282485875706,2.17056856187291,6896.420800380421,2019
+1998,68,"(65,70]",NoHS,0.21880000000000002,0.09240282485875706,2.367892976588629,6848.304018107543,2019
+1998,68,"(65,70]",NoHS,0.23703333333333335,0.09240282485875706,2.565217391304348,6831.044462961518,2019
+1998,68,"(65,70]",NoHS,0.23703333333333335,0.09240282485875706,2.565217391304348,6848.477407085236,2019
+1998,42,"(40,45]",HS,220.80566666666667,175.56536723163845,1.257683506424925,6910.967502753963,2019
+1998,42,"(40,45]",HS,217.88833333333335,175.56536723163845,1.2410667136067592,6611.974388812821,2019
+1998,42,"(40,45]",HS,219.71166666666667,175.56536723163845,1.2514522091181128,6174.168015786035,2019
+1998,42,"(40,45]",HS,221.89966666666666,175.56536723163845,1.2639148037317371,6749.497084989761,2019
+1998,42,"(40,45]",HS,219.52933333333334,175.56536723163845,1.2504136595669775,6155.246305713123,2019
+1998,38,"(35,40]",HS,1008.3033333333334,133.06006779661018,7.577805648457822,6020.918655420925,2019
+1998,38,"(35,40]",HS,1008.4856666666667,125.66784180790961,8.025009836710604,5760.432230495143,2019
+1998,38,"(35,40]",HS,1005.933,107.18727683615819,9.384817206781225,5379.010011714817,2019
+1998,38,"(35,40]",HS,1011.403,120.12367231638417,8.419680987908414,5880.243670300867,2019
+1998,38,"(35,40]",HS,1009.0326666666666,96.09893785310734,10.49993568304605,5362.525188551483,2019
+1998,54,"(50,55]",College,65674.82749000001,1541.2791186440677,42.610599660739645,2.2359087914150084,2019
+1998,54,"(50,55]",College,161226.062,1369.40986440678,117.73397153805531,2.1227283130164674,2019
+1998,54,"(50,55]",College,165220.256,1578.2402485875707,104.68637848252958,2.5204902743388824,2019
+1998,54,"(50,55]",College,161483.68259,1369.40986440678,117.92209680040078,2.4769585418250664,2019
+1998,54,"(50,55]",College,166320.80176666667,1369.40986440678,121.45436226919239,2.442058002360887,2019
+1998,26,"(25,30]",College,93.71933333333332,24.024734463276836,3.9009518909184457,6194.6899892567235,2019
+1998,26,"(25,30]",College,92.1695,42.50529943502825,2.168423731278174,6176.515942835612,2019
+1998,26,"(25,30]",College,93.66463333333333,29.56890395480226,3.1676734949832777,6191.515333492348,2019
+1998,26,"(25,30]",College,91.1849,33.265016949152546,2.741164994425864,6272.8209445055845,2019
+1998,26,"(25,30]",College,91.02080000000001,24.024734463276836,3.7886287625418062,6196.144483520589,2019
+1998,62,"(60,65]",NoHS,0.3646666666666667,11.088338983050848,0.03288740245261985,4460.576469495562,2019
+1998,62,"(60,65]",NoHS,0.3646666666666667,11.088338983050848,0.03288740245261985,4449.391496900338,2019
+1998,62,"(60,65]",NoHS,0.3646666666666667,11.088338983050848,0.03288740245261985,4489.0757396845775,2019
+1998,62,"(60,65]",NoHS,0.3646666666666667,11.088338983050848,0.03288740245261985,4442.731858635672,2019
+1998,62,"(60,65]",NoHS,0.3646666666666667,11.088338983050848,0.03288740245261985,4482.79288613024,2019
+1998,34,"(30,35]",College,147.4712,127.51589830508476,1.1564926566816924,8341.246216130781,2019
+1998,34,"(30,35]",College,119.61066666666667,88.70671186440678,1.3483835005574136,8396.934757474204,2019
+1998,34,"(30,35]",College,267.11833333333334,120.12367231638417,2.223694365834834,8537.846960156547,2019
+1998,34,"(30,35]",College,501.32550000000003,116.4275593220339,4.305900621118012,7058.612653031708,2019
+1998,34,"(30,35]",College,438.147,96.09893785310734,4.5593323900180085,6438.622359962526,2019
+1998,26,"(25,30]",HS,-70.80003333333335,66.53003389830509,-1.0641815310293572,5175.899373970733,2019
+1998,26,"(25,30]",HS,-76.92643333333334,53.593638418079095,-1.435365009802791,5191.223724423689,2019
+1998,26,"(25,30]",HS,-71.25586666666668,66.53003389830509,-1.0710330732069864,5191.482369075566,2019
+1998,26,"(25,30]",HS,-108.88946666666666,62.833920903954805,-1.7329726539445207,5217.323148125226,2019
+1998,26,"(25,30]",HS,-79.89846666666666,66.53003389830509,-1.2009383128948345,5197.522273779371,2019
+1998,40,"(35,40]",HS,218.4171,94.25088135593221,2.31740114105843,8501.426475173957,2019
+1998,40,"(35,40]",HS,207.38593333333333,121.97172881355934,1.7002787068004457,8617.708243454541,2019
+1998,40,"(35,40]",HS,257.89226666666667,99.79505084745762,2.584219001610306,8971.254400623842,2019
+1998,40,"(35,40]",HS,211.59783333333334,97.9469943502825,2.160330030920679,8544.002774902532,2019
+1998,40,"(35,40]",HS,233.11316666666667,136.75618079096043,1.7045896230678843,8862.65234058083,2019
+1998,50,"(45,50]",College,6.746333333333333,70.22614689265536,0.09606583348002112,5006.914920246683,2019
+1998,50,"(45,50]",College,6.746333333333333,70.22614689265536,0.09606583348002112,5028.301016313473,2019
+1998,50,"(45,50]",College,6.746333333333333,70.22614689265536,0.09606583348002112,4993.414140769544,2019
+1998,50,"(45,50]",College,6.746333333333333,70.22614689265536,0.09606583348002112,5021.589850100004,2019
+1998,50,"(45,50]",College,6.564,70.22614689265536,0.09346945960218273,5022.455065640242,2019
+1998,44,"(40,45]",HS,11.2135,92.40282485875707,0.12135451505016721,7581.493929680534,2019
+1998,44,"(40,45]",HS,12.672166666666666,94.25088135593221,0.1344514394386517,7735.245027248888,2019
+1998,44,"(40,45]",HS,16.50116666666667,99.79505084745762,0.1653505512201165,8100.934265307912,2019
+1998,44,"(40,45]",HS,16.50116666666667,99.79505084745762,0.1653505512201165,7580.107277421126,2019
+1998,44,"(40,45]",HS,15.954166666666666,94.25088135593221,0.16927339497671975,8042.92916269726,2019
+1998,48,"(45,50]",HS,165.28516666666667,136.75618079096043,1.2086120401337794,7141.7590907031245,2019
+1998,48,"(45,50]",HS,114.26830000000001,96.09893785310734,1.1890693336763571,7235.003083834787,2019
+1998,48,"(45,50]",HS,57.45323333333333,121.97172881355934,0.47103729603729594,7498.643542310632,2019
+1998,48,"(45,50]",HS,57.74496666666667,107.18727683615819,0.5387296736247261,7135.575196095427,2019
+1998,48,"(45,50]",HS,128.43560000000002,107.18727683615819,1.1982354976357976,7463.9876743474715,2019
+1998,92,"(90,95]",College,848.0323333333334,60.98586440677967,13.905391709739536,7718.920988012966,2019
+1998,92,"(90,95]",College,848.0323333333334,85.0105988700565,9.975607096117495,7391.132002418743,2019
+1998,92,"(90,95]",College,848.0323333333334,60.98586440677967,13.905391709739536,7568.077389300056,2019
+1998,92,"(90,95]",College,848.0323333333334,81.31448587570623,10.429043782304651,7364.2090498089065,2019
+1998,92,"(90,95]",College,848.0323333333334,57.289751412429375,14.802513755529185,7626.12468056185,2019
+1998,72,"(70,75]",College,272.5883333333333,75.77031638418079,3.5975609756097557,4966.788140424882,2019
+1998,72,"(70,75]",College,34.096333333333334,64.68197740112994,0.5271380793119924,4895.998809989711,2019
+1998,72,"(70,75]",College,159.90633333333335,42.50529943502825,3.762032863167079,5175.588023031697,2019
+1998,72,"(70,75]",College,78.03866666666667,29.56890395480226,2.6392140468227425,5110.485916449194,2019
+1998,72,"(70,75]",College,226.82266666666666,62.833920903954805,3.6098760574463897,5029.766592031288,2019
+1998,42,"(40,45]",HS,5.47,96.09893785310734,0.05692050424491896,5605.829200451235,2019
+1998,42,"(40,45]",HS,5.47,96.09893785310734,0.05692050424491896,5633.22862666124,2019
+1998,42,"(40,45]",HS,5.47,96.09893785310734,0.05692050424491896,5618.897277427643,2019
+1998,42,"(40,45]",College,5.47,96.09893785310734,0.05692050424491896,5655.313361155723,2019
+1998,42,"(40,45]",HS,5.47,96.09893785310734,0.05692050424491896,5609.083465785688,2019
+1998,67,"(65,70]",College,185.7065,25.872790960451983,7.1776755852842795,8961.385909048813,2019
+1998,67,"(65,70]",College,185.7065,27.720847457627123,6.699163879598661,9284.101941663215,2019
+1998,67,"(65,70]",College,187.52983333333336,27.720847457627123,6.7649386845039015,9449.305377925522,2019
+1998,67,"(65,70]",College,209.40983333333335,25.872790960451983,8.09382465360726,8986.078003157196,2019
+1998,67,"(65,70]",College,185.7065,25.872790960451983,7.1776755852842795,9349.139996173442,2019
+1998,39,"(35,40]",NoHS,53.059000000000005,53.593638418079095,0.9900242186599009,7224.995149242054,2019
+1998,39,"(35,40]",NoHS,55.611666666666665,48.04946892655367,1.1573835863133521,7398.0246281894815,2019
+1998,39,"(35,40]",NoHS,49.412333333333336,83.16254237288136,0.5941657376439985,7755.585480285101,2019
+1998,39,"(35,40]",NoHS,57.07033333333334,48.04946892655367,1.187741188577309,7287.140830948649,2019
+1998,39,"(35,40]",NoHS,62.175666666666665,48.04946892655367,1.2939927965011577,7642.70453170877,2019
+1998,49,"(45,50]",College,4833.457923333333,367.7632429378531,13.142852136938876,361.3376609152109,2019
+1998,49,"(45,50]",College,4833.60379,323.40988700564975,14.945751457238412,363.2094793252022,2019
+1998,49,"(45,50]",College,4833.49439,293.84098305084746,16.44935413642961,343.9746471142547,2019
+1998,49,"(45,50]",College,4870.052223333334,452.7738418079096,10.756037062316567,376.4410748028705,2019
+1998,49,"(45,50]",College,4851.964756666667,384.3957514124294,12.622316294700285,354.0710937295739,2019
+1998,58,"(55,60]",College,2464.235,157.08480225988703,15.687290969899664,1106.054317105649,2019
+1998,58,"(55,60]",College,2464.235,157.08480225988703,15.687290969899664,1121.1982873953189,2019
+1998,58,"(55,60]",College,2464.235,157.08480225988703,15.687290969899664,1059.3411295872866,2019
+1998,58,"(55,60]",College,2464.235,157.08480225988703,15.687290969899664,1216.1301294020504,2019
+1998,58,"(55,60]",College,2466.0583333333334,157.08480225988703,15.698898288412353,1153.6955172511377,2019
+1998,56,"(55,60]",HS,118.55313333333334,31.416960451977403,3.7735392484753096,7881.569395988212,2019
+1998,56,"(55,60]",HS,118.55313333333334,31.416960451977403,3.7735392484753096,7808.2662442345245,2019
+1998,56,"(55,60]",HS,118.73546666666667,31.416960451977403,3.7793429077316545,8221.191697524759,2019
+1998,56,"(55,60]",HS,118.73546666666667,31.416960451977403,3.7793429077316545,7718.931382640629,2019
+1998,56,"(55,60]",HS,118.73546666666667,33.265016949152546,3.5693794128576735,8135.55340618678,2019
+1998,28,"(25,30]",NoHS,32.85646666666667,40.65724293785311,0.8081331711766494,8341.246216130781,2019
+1998,28,"(25,30]",NoHS,32.67413333333334,40.65724293785311,0.8036485253876559,8396.934757474204,2019
+1998,28,"(25,30]",NoHS,32.85646666666667,40.65724293785311,0.8081331711766494,8537.846960156547,2019
+1998,28,"(25,30]",NoHS,32.67413333333334,40.65724293785311,0.8036485253876559,8413.02635406379,2019
+1998,28,"(25,30]",NoHS,39.96746666666667,40.65724293785311,0.9830343569474003,8500.54911072823,2019
+1998,44,"(40,45]",HS,134.562,92.40282485875707,1.4562541806020066,9176.007015611212,2019
+1998,44,"(40,45]",HS,158.083,92.40282485875707,1.710802675585284,9354.665078179232,2019
+1998,44,"(40,45]",HS,162.27666666666667,92.40282485875707,1.7561872909698995,9662.152027123037,2019
+1998,44,"(40,45]",HS,151.33666666666667,92.40282485875707,1.637792642140468,9274.262507416855,2019
+1998,44,"(40,45]",HS,159.35933333333335,92.40282485875707,1.7246153846153847,9570.094345376338,2019
+1998,29,"(25,30]",HS,883.405,24.024734463276836,36.770645742217646,7297.117904670218,2019
+1998,29,"(25,30]",HS,881.5816666666666,24.024734463276836,36.694751736557755,6905.571763262329,2019
+1998,29,"(25,30]",HS,885.2283333333334,24.024734463276836,36.84653974787754,6513.142975071376,2019
+1998,29,"(25,30]",HS,883.405,24.024734463276836,36.770645742217646,7130.438209563198,2019
+1998,29,"(25,30]",HS,881.5816666666666,24.024734463276836,36.694751736557755,6491.18883103544,2019
+1998,77,"(75,80]",College,-1767.5393333333334,273.51236158192086,-6.462374581939801,203.53367559516607,2019
+1998,77,"(75,80]",College,-1759.8813333333333,293.84098305084746,-5.989230348541259,210.56397960674062,2019
+1998,77,"(75,80]",College,-1751.3116666666667,291.9929265536723,-5.9977879852673475,203.53599141196437,2019
+1998,77,"(75,80]",College,-1833.7263333333333,280.90458757062146,-6.527933022355219,206.6114591353759,2019
+1998,77,"(75,80]",College,-1953.5193333333334,293.84098305084746,-6.648219431648472,201.14099064957605,2019
+1998,52,"(50,55]",College,37813.016,240.24734463276835,157.39202469771033,239.35508512455985,2019
+1998,52,"(50,55]",College,38079.33206666667,269.8162485875706,141.13061116965227,236.71627333090117,2019
+1998,52,"(50,55]",College,37040.57906666667,234.70317514124295,157.81882390119296,238.3428985928071,2019
+1998,52,"(50,55]",College,40171.42473333333,234.70317514124295,171.15842045664024,231.3593322725349,2019
+1998,52,"(50,55]",College,33719.268000000004,245.7915141242938,137.18646113611788,222.24856997119846,2019
+1998,69,"(65,70]",NoHS,0,20.328621468926556,0,9243.64827083399,2019
+1998,69,"(65,70]",NoHS,0,20.328621468926556,0,9284.5905069284,2019
+1998,69,"(65,70]",NoHS,0,18.480564971751416,0,9222.034254250646,2019
+1998,69,"(65,70]",NoHS,0,18.480564971751416,0,9197.913718048385,2019
+1998,69,"(65,70]",NoHS,0,20.328621468926556,0,9222.637728579683,2019
+1998,59,"(55,60]",HS,994.1725,70.22614689265536,14.156728568913925,294.63934821768623,2019
+1998,59,"(55,60]",HS,999.4601666666666,70.22614689265536,14.232023411371237,284.6726528520817,2019
+1998,59,"(55,60]",HS,990.5440666666667,70.22614689265536,14.10506072874494,287.09353635170385,2019
+1998,59,"(55,60]",HS,988.5384,70.22614689265536,14.076500616088717,291.6986867839103,2019
+1998,59,"(55,60]",HS,1014.0650666666667,70.22614689265536,14.439992958986094,293.3066281134939,2019
+1998,26,"(25,30]",NoHS,6.746333333333333,36.96112994350283,0.1825250836120401,6338.7041242749,2019
+1998,26,"(25,30]",NoHS,6.564,36.96112994350283,0.17759197324414713,6313.585916389551,2019
+1998,26,"(25,30]",NoHS,6.564,36.96112994350283,0.17759197324414713,6301.245942004583,2019
+1998,26,"(25,30]",NoHS,6.746333333333333,36.96112994350283,0.1825250836120401,6332.460597444944,2019
+1998,26,"(25,30]",NoHS,6.746333333333333,36.96112994350283,0.1825250836120401,6318.6742845147055,2019
+1998,56,"(55,60]",College,26963.5992,3271.06,8.243076923076924,13.03880004061325,2019
+1998,56,"(55,60]",College,26923.358233333336,3271.06,8.230774804905241,14.418271434568833,2019
+1998,56,"(55,60]",College,30477.01666666667,3252.5794350282486,9.370106795378536,11.619529147179684,2019
+1998,56,"(55,60]",College,58802.31766666666,3252.5794350282486,18.078672278808146,13.033395147043223,2019
+1998,56,"(55,60]",College,95337.90633333333,3271.06,29.1458751393534,13.520225057567519,2019
+1998,33,"(30,35]",College,64.61893333333333,86.85865536723163,0.7439550273962855,9782.767899699264,2019
+1998,33,"(30,35]",College,64.12663333333333,86.85865536723163,0.7382871984629616,9849.26306619714,2019
+1998,33,"(30,35]",College,64.30896666666666,86.85865536723163,0.7403863943641927,10079.20754132238,2019
+1998,33,"(30,35]",College,64.63716666666667,86.85865536723163,0.7441649469864087,9778.788860111143,2019
+1998,33,"(30,35]",College,65.3118,86.85865536723163,0.7519319718209636,10067.321918418082,2019
+1998,41,"(40,45]",HS,2123.8186666666666,356.6749039548023,5.954494255462941,797.9765239530605,2019
+1998,41,"(40,45]",HS,2125.8243333333335,234.70317514124295,9.057501382561293,847.4785778394746,2019
+1998,41,"(40,45]",HS,2137.129,341.8904519774011,6.250917472656604,810.411440030314,2019
+1998,41,"(40,45]",HS,2116.817066666667,249.487627118644,8.484657500309677,834.0361437557127,2019
+1998,41,"(40,45]",HS,2123.2716666666665,443.53355932203397,4.787172519509475,789.3669971454356,2019
+1998,68,"(65,70]",HS,15153.723333333335,349.2826779661017,43.38527012440056,11.149415382359729,2019
+1998,68,"(65,70]",HS,26925.89266666667,1312.1201129943504,20.52090536530218,13.939333164601404,2019
+1998,68,"(65,70]",HS,23597.58,737.3745423728814,32.002162597128276,13.902246643795191,2019
+1998,68,"(65,70]",HS,5013.619666666667,445.38161581920906,11.256907534104,11.880775170467038,2019
+1998,68,"(65,70]",HS,64049.871,935.1165875706214,68.49399513529949,16.589108194601298,2019
+1998,70,"(65,70]",NoHS,51.965,2.032862146892655,25.56248099726361,8229.59350298948,2019
+1998,70,"(65,70]",NoHS,51.965,2.032862146892655,25.56248099726361,8241.606258844524,2019
+1998,70,"(65,70]",NoHS,51.965,2.032862146892655,25.56248099726361,8930.154646238234,2019
+1998,70,"(65,70]",NoHS,51.965,2.032862146892655,25.56248099726361,8386.528238391631,2019
+1998,70,"(65,70]",NoHS,51.965,2.032862146892655,25.56248099726361,8761.931742421653,2019
+1998,56,"(55,60]",College,180841.48200000002,4435.335593220339,40.772897157190634,32.75797024958856,2019
+1998,56,"(55,60]",College,185229.33366666667,4435.335593220339,41.76219133221851,33.733308450685655,2019
+1998,56,"(55,60]",College,183987.279,4416.855028248588,41.65572060284631,36.11853352727931,2019
+1998,56,"(55,60]",College,179086.34133333334,4416.855028248588,40.54612166076601,33.976031628799,2019
+1998,56,"(55,60]",College,184338.63533333334,4435.335593220339,41.561372630992196,36.681252218847234,2019
+1998,47,"(45,50]",HS,-7.293333333333333,11.642755932203391,-0.6264267133832351,6964.085484548574,2019
+1998,47,"(45,50]",HS,-7.293333333333333,11.642755932203391,-0.6264267133832351,7034.235471938216,2019
+1998,47,"(45,50]",HS,-7.293333333333333,11.642755932203391,-0.6264267133832351,6944.490197690294,2019
+1998,47,"(45,50]",HS,-7.293333333333333,11.642755932203391,-0.6264267133832351,6956.589248722582,2019
+1998,47,"(45,50]",HS,-7.293333333333333,11.642755932203391,-0.6264267133832351,6976.745093377031,2019
+1998,56,"(55,60]",College,94.084,184.80564971751414,0.5090969899665552,5441.617258681026,2019
+1998,56,"(55,60]",College,94.01106666666666,184.80564971751414,0.5087023411371236,5405.100410657056,2019
+1998,56,"(55,60]",College,93.90166666666667,184.80564971751414,0.5081103678929766,5547.293916925227,2019
+1998,56,"(55,60]",College,93.9199,184.80564971751414,0.5082090301003344,5479.802469253457,2019
+1998,56,"(55,60]",College,94.0293,184.80564971751414,0.5088010033444816,5510.251134263128,2019
+1998,30,"(25,30]",HS,558.6693333333334,64.68197740112994,8.637171524128046,7236.551944140793,2019
+1998,30,"(25,30]",HS,558.6693333333334,64.68197740112994,8.637171524128046,6966.24874263307,2019
+1998,30,"(25,30]",HS,558.487,64.68197740112994,8.63435260391782,6445.7117066764895,2019
+1998,30,"(25,30]",HS,558.6693333333334,64.68197740112994,8.637171524128046,7108.313687128863,2019
+1998,30,"(25,30]",HS,558.8516666666667,64.68197740112994,8.63999044433827,6449.347635677487,2019
+1998,36,"(35,40]",HS,26.292466666666666,27.720847457627123,0.9484726867335561,7746.69317898656,2019
+1998,36,"(35,40]",HS,26.110133333333337,27.720847457627123,0.9418952062430324,7902.8454628095815,2019
+1998,36,"(35,40]",HS,26.128366666666665,27.720847457627123,0.9425529542920845,8223.362949109534,2019
+1998,36,"(35,40]",HS,26.110133333333337,27.720847457627123,0.9418952062430324,7815.106577089922,2019
+1998,36,"(35,40]",HS,26.292466666666666,27.720847457627123,0.9484726867335561,8138.411424541216,2019
+1998,38,"(35,40]",HS,479.719,184.80564971751414,2.595802675585284,6311.6157175697035,2019
+1998,38,"(35,40]",HS,551.923,184.80564971751414,2.9865050167224076,6062.350932157989,2019
+1998,38,"(35,40]",HS,529.8606666666666,184.80564971751414,2.867123745819397,5701.91603368475,2019
+1998,38,"(35,40]",HS,494.12333333333333,184.80564971751414,2.673745819397993,6163.143776815657,2019
+1998,38,"(35,40]",HS,497.4053333333333,184.80564971751414,2.6915050167224077,5659.4948975502,2019
+1998,46,"(45,50]",HS,137.38816666666665,92.40282485875707,1.4868394648829428,7193.172797038853,2019
+1998,46,"(45,50]",HS,153.06883333333334,92.40282485875707,1.6565384615384615,7334.54736679388,2019
+1998,46,"(45,50]",HS,158.72116666666665,92.40282485875707,1.7177090301003342,7647.455415060598,2019
+1998,46,"(45,50]",HS,133.01216666666667,92.40282485875707,1.4394816053511705,7149.822611312577,2019
+1998,46,"(45,50]",HS,150.33383333333336,92.40282485875707,1.6269397993311039,7650.21696923868,2019
+1998,54,"(50,55]",HS,1332.8566666666668,94.25088135593221,14.141583054626533,2557.543281460963,2019
+1998,54,"(50,55]",HS,1335.227,94.25088135593221,14.16673224473736,2793.5969113373235,2019
+1998,54,"(50,55]",HS,394.2046666666667,92.40282485875707,4.266153846153846,6291.217716162096,2019
+1998,54,"(50,55]",HS,252.53166666666667,92.40282485875707,2.7329431438127085,5973.903877220264,2019
+1998,54,"(50,55]",HS,1026.719,94.25088135593221,10.89346842415896,4831.906264689679,2019
+1998,51,"(50,55]",College,1571.6221666666668,83.16254237288136,18.898197696023782,3534.976237595696,2019
+1998,51,"(50,55]",College,1569.9811666666667,83.16254237288136,18.87846525455221,3861.81773534787,2019
+1998,51,"(50,55]",College,1571.6221666666668,83.16254237288136,18.898197696023782,3595.9609526581635,2019
+1998,51,"(50,55]",College,1567.9755,83.16254237288136,18.854347826086954,3571.9248544162947,2019
+1998,51,"(50,55]",College,1573.4455,83.16254237288136,18.920122630992196,3687.5531725045685,2019
+1998,34,"(30,35]",HS,153.14176666666665,88.70671186440678,1.7263830824972126,7459.464880377105,2019
+1998,34,"(30,35]",HS,158.92173333333335,27.720847457627123,5.7329319955406906,7461.5724622610305,2019
+1998,34,"(30,35]",HS,161.25560000000002,62.833920903954805,2.566378123155617,7590.202527363695,2019
+1998,34,"(30,35]",HS,168.38483333333335,88.70671186440678,1.8982197603121516,7495.1444986278875,2019
+1998,34,"(30,35]",HS,200.9495666666667,101.64310734463277,1.9770112496199457,7543.490329549875,2019
+1998,69,"(65,70]",College,3027.1162333333336,369.6112994350283,8.189999163879598,11.149415382359729,2019
+1998,69,"(65,70]",College,3122.4583333333335,369.6112994350283,8.447951505016722,12.02738793032553,2019
+1998,69,"(65,70]",College,1910.7439333333334,369.6112994350283,5.169603678929765,8.27856246475437,2019
+1998,69,"(65,70]",College,1674.4946333333332,369.6112994350283,4.530420568561873,115.11354612859421,2019
+1998,69,"(65,70]",College,2745.7576666666664,369.6112994350283,7.428770903010032,8.606743217050987,2019
+1998,60,"(55,60]",HS,308.36213333333336,35.11307344632768,8.781975004400635,5215.057756473732,2019
+1998,60,"(55,60]",HS,435.79490000000004,35.11307344632768,12.411186410843163,5262.9896287353695,2019
+1998,60,"(55,60]",HS,173.2349,35.11307344632768,4.933629642668545,5369.409921516698,2019
+1998,60,"(55,60]",HS,390.4121333333334,35.11307344632768,11.118711494455203,5176.126181652842,2019
+1998,60,"(55,60]",HS,379.2715666666667,35.11307344632768,10.80143460658335,5359.181415643574,2019
+1998,45,"(40,45]",College,874.6347666666668,245.7915141242938,3.5584416727437325,394.27666396512075,2019
+1998,45,"(40,45]",College,710.5165333333333,194.04593220338984,3.6615894250676857,377.0934284565653,2019
+1998,45,"(40,45]",College,640.3181999999999,260.5759661016949,2.4573187219810713,388.56318390711493,2019
+1998,45,"(40,45]",College,1030.36749,402.8763163841808,2.5575280752354943,385.3272640582595,2019
+1998,45,"(40,45]",College,870.4958,556.2650056497175,1.564894054378382,390.07343357187597,2019
+1998,49,"(45,50]",HS,13043.762,1354.6254124293785,9.629054556571017,11.333225350380904,2019
+1998,49,"(45,50]",HS,15708.928333333335,970.2296610169492,16.190938047459788,12.440634123637386,2019
+1998,49,"(45,50]",HS,13712.196,1127.314463276836,12.163594495312244,9.689090924677142,2019
+1998,49,"(45,50]",HS,29054.452,1733.4769943502824,16.760794688763543,10.966092522025658,2019
+1998,49,"(45,50]",HS,17192.574666666667,1277.0070395480225,13.463179241949772,10.309975573490402,2019
+1998,17,"(15,20]",HS,11.7605,7.392225988700565,1.590928093645485,3173.854124079298,2019
+1998,17,"(15,20]",HS,11.395833333333334,7.577031638418079,1.5039970633820052,3148.9867770654373,2019
+1998,17,"(15,20]",HS,11.8152,7.577031638418079,1.559344155314463,3220.057358613541,2019
+1998,17,"(15,20]",HS,12.252799999999999,7.577031638418079,1.6170976425483317,3204.4138022622183,2019
+1998,17,"(15,20]",HS,11.195266666666667,7.392225988700565,1.514464882943144,3261.0928266710835,2019
+1998,56,"(55,60]",NoHS,143.861,25.872790960451983,5.560320114667939,7881.569395988212,2019
+1998,56,"(55,60]",NoHS,162.64133333333334,25.872790960451983,6.286192068800763,7808.2662442345245,2019
+1998,56,"(55,60]",NoHS,147.143,25.872790960451983,5.687171524128044,8221.191697524759,2019
+1998,56,"(55,60]",NoHS,166.288,25.872790960451983,6.427138079311991,7718.931382640629,2019
+1998,56,"(55,60]",NoHS,144.2439,25.872790960451983,5.575119445771619,8135.55340618678,2019
+1998,54,"(50,55]",College,494.3056666666667,114.57950282485875,4.314084583018665,10553.334075500763,2019
+1998,54,"(50,55]",College,485.189,97.9469943502825,4.953587429797437,10174.650373158365,2019
+1998,54,"(50,55]",College,492.4823333333333,109.03533333333333,4.516722408026756,9881.289916979043,2019
+1998,54,"(50,55]",College,483.3656666666667,153.38868926553673,3.1512471289841644,10062.590158865458,2019
+1998,54,"(50,55]",College,477.89566666666667,114.57950282485875,4.170865249757256,10318.796404198825,2019
+1998,40,"(35,40]",College,138.20866666666666,155.23674576271185,0.8903089663959229,231.72466147508408,2019
+1998,40,"(35,40]",College,138.20866666666666,155.23674576271185,0.8903089663959229,228.7629712682837,2019
+1998,40,"(35,40]",College,138.20866666666666,155.23674576271185,0.8903089663959229,209.0695670473969,2019
+1998,40,"(35,40]",College,138.20866666666666,155.23674576271185,0.8903089663959229,243.10063944086988,2019
+1998,40,"(35,40]",College,138.20866666666666,153.38868926553673,0.9010355804488858,230.54784354734275,2019
+1998,41,"(40,45]",College,18.78033333333333,92.40282485875707,0.20324414715719058,6344.205288475778,2019
+1998,41,"(40,45]",College,18.78033333333333,92.40282485875707,0.20324414715719058,6439.2076345950445,2019
+1998,41,"(40,45]",College,18.962666666666667,92.40282485875707,0.20521739130434782,6399.91975644607,2019
+1998,41,"(40,45]",College,18.78033333333333,92.40282485875707,0.20324414715719058,6337.0081039736815,2019
+1998,41,"(40,45]",College,18.962666666666667,92.40282485875707,0.20521739130434782,6416.772301594046,2019
+1998,21,"(20,25]",NoHS,-18.23333333333333,60.98586440677967,-0.2989763859329076,4850.513945074418,2019
+1998,21,"(20,25]",NoHS,-18.23333333333333,60.98586440677967,-0.2989763859329076,4848.774709843949,2019
+1998,21,"(20,25]",NoHS,-18.598,60.98586440677967,-0.30495591365156577,4860.430325877301,2019
+1998,21,"(20,25]",NoHS,-18.598,60.98586440677967,-0.30495591365156577,4844.97965585749,2019
+1998,21,"(20,25]",NoHS,-18.598,60.98586440677967,-0.30495591365156577,4858.427226201985,2019
+1998,44,"(40,45]",College,976.4132333333333,184.80564971751414,5.283459866220735,6373.327534764825,2019
+1998,44,"(40,45]",College,976.4132333333333,184.80564971751414,5.283459866220735,6098.0525014050545,2019
+1998,44,"(40,45]",College,976.4132333333333,184.80564971751414,5.283459866220735,5694.331616239851,2019
+1998,44,"(40,45]",College,978.0542333333333,184.80564971751414,5.292339464882942,6224.803251202424,2019
+1998,44,"(40,45]",College,976.4132333333333,184.80564971751414,5.283459866220735,5676.422783391835,2019
+1998,53,"(50,55]",HS,13515.093666666666,421.3568813559322,32.075170157836055,844.0072121425828,2019
+1998,53,"(50,55]",HS,13628.140333333335,373.30741242937853,36.50648200271532,864.103320663174,2019
+1998,53,"(50,55]",HS,13846.940333333334,412.11659887005646,33.599569566717165,807.1549372233096,2019
+1998,53,"(50,55]",HS,13768.537,389.9399209039548,35.3093803991187,899.592332155313,2019
+1998,53,"(50,55]",HS,13976.397,402.8763163841808,34.691532938541314,840.7400768120267,2019
+1998,36,"(35,40]",College,563.2276666666667,258.72790960451977,2.176911132345915,5887.299835903583,2019
+1998,36,"(35,40]",College,487.5593333333333,75.77031638418079,6.43470103597357,5633.85415118672,2019
+1998,36,"(35,40]",College,762.8826666666666,328.95405649717515,2.319116154973507,5259.5973482707,2019
+1998,36,"(35,40]",College,476.8016666666667,328.95405649717515,1.449447596858442,5750.11925304213,2019
+1998,36,"(35,40]",College,389.464,186.65370621468927,2.086559157588,5242.845430418516,2019
+1998,78,"(75,80]",College,2599.7086666666664,203.28621468926553,12.788415931894193,1752.7987753921066,2019
+1998,78,"(75,80]",College,2601.3496666666665,203.28621468926553,12.796488294314381,1774.428141753258,2019
+1998,78,"(75,80]",College,2601.532,203.28621468926553,12.797385223472181,1761.8501929995468,2019
+1998,78,"(75,80]",College,2601.3496666666665,203.28621468926553,12.796488294314381,1967.9236911139037,2019
+1998,78,"(75,80]",College,2599.5263333333337,203.28621468926553,12.787519002736396,1798.581552766421,2019
+1998,59,"(55,60]",HS,14.3314,24.024734463276836,0.5965268844867507,5706.260673092432,2019
+1998,59,"(55,60]",HS,15.935933333333333,25.872790960451983,0.6159340659340657,5758.707217396711,2019
+1998,59,"(55,60]",HS,15.006033333333333,25.872790960451983,0.5799928332537027,5875.151168715037,2019
+1998,59,"(55,60]",HS,15.060733333333333,24.024734463276836,0.6268844867507075,5663.662158422824,2019
+1998,59,"(55,60]",HS,14.805466666666668,25.872790960451983,0.5722408026755852,5863.9592464902335,2019
+1998,37,"(35,40]",College,381.0766666666667,51.745581920903966,7.364429049211657,6792.960583726442,2019
+1998,37,"(35,40]",College,382.5353333333333,49.89752542372881,7.666418927288493,6924.6267348144975,2019
+1998,37,"(35,40]",College,397.122,49.89752542372881,7.958751393534003,7254.833088658124,2019
+1998,37,"(35,40]",College,420.82533333333333,51.745581920903966,8.132584806497848,6814.009656757435,2019
+1998,37,"(35,40]",College,367.94866666666667,51.745581920903966,7.110726230291446,7089.863232629816,2019
+1998,35,"(30,35]",HS,124.31486666666667,110.88338983050849,1.1211315496098104,8006.948433088359,2019
+1998,35,"(30,35]",HS,122.67386666666667,110.88338983050849,1.1063322185061315,8162.844771408939,2019
+1998,35,"(30,35]",HS,122.67386666666667,110.88338983050849,1.1063322185061315,8431.156700535845,2019
+1998,35,"(30,35]",HS,139.08386666666667,110.88338983050849,1.2543255295429205,8092.685797370794,2019
+1998,35,"(30,35]",HS,171.53920000000002,110.88338983050849,1.5470234113712373,8350.827521475567,2019
+1998,81,"(80,85]",NoHS,1177.1075333333335,44.35335593220339,26.539311594202903,10359.247263962181,2019
+1998,81,"(80,85]",NoHS,1177.1075333333335,44.35335593220339,26.539311594202903,9934.14577530665,2019
+1998,81,"(80,85]",NoHS,1178.9308666666668,44.35335593220339,26.580420847268677,9273.331501090262,2019
+1998,81,"(80,85]",NoHS,1177.0893,44.35335593220339,26.53890050167224,10062.590158865458,2019
+1998,81,"(80,85]",NoHS,1177.0893,44.35335593220339,26.53890050167224,9246.77240999123,2019
+1998,77,"(75,80]",HS,491.82593333333335,24.024734463276836,20.471649086699255,7692.7562592756685,2019
+1998,77,"(75,80]",HS,487.57756666666666,62.833920903954805,7.759782608695652,7377.248777583178,2019
+1998,77,"(75,80]",HS,487.5593333333333,62.833920903954805,7.759492425732835,6886.157730014684,2019
+1998,77,"(75,80]",HS,499.958,73.92225988700567,6.76329431438127,7497.84034445643,2019
+1998,77,"(75,80]",HS,488.63509999999997,42.50529943502825,11.495863021666423,6867.897523554054,2019
+1998,41,"(40,45]",HS,-0.547,18.480564971751416,-0.029598662207357854,5164.690044279562,2019
+1998,41,"(40,45]",HS,-0.547,18.480564971751416,-0.029598662207357854,5170.047717957246,2019
+1998,41,"(40,45]",HS,-0.547,18.480564971751416,-0.029598662207357854,5182.386603638812,2019
+1998,41,"(40,45]",HS,-0.547,18.480564971751416,-0.029598662207357854,5189.707232658506,2019
+1998,41,"(40,45]",HS,-0.547,18.480564971751416,-0.029598662207357854,5165.122881223466,2019
+1998,51,"(50,55]",College,6138.7986666666675,609.8586440677966,10.065936961589136,210.70243553870668,2019
+1998,51,"(50,55]",College,6120.383,609.8586440677966,10.035740346609911,207.98468005096615,2019
+1998,51,"(50,55]",College,6118.559666666667,609.8586440677966,10.032750582750584,199.6890164623008,2019
+1998,51,"(50,55]",College,6136.975333333333,609.8586440677966,10.062947197729805,217.81968785551067,2019
+1998,51,"(50,55]",College,6136.610666666667,609.8586440677966,10.062349244957941,208.12347952721143,2019
+1998,37,"(35,40]",HS,62.688023333333334,59.13780790960452,1.0600329222408027,7475.392242295826,2019
+1998,37,"(35,40]",HS,61.97692333333333,59.13780790960452,1.0480084657190636,7577.640004017163,2019
+1998,37,"(35,40]",HS,66.88169,59.13780790960452,1.1309463837792644,7888.5167972605905,2019
+1998,37,"(35,40]",HS,62.25042333333333,59.13780790960452,1.0526332566889631,7512.830023076036,2019
+1998,37,"(35,40]",HS,63.69085666666667,59.13780790960452,1.076990489130435,7793.021882434992,2019
+1998,57,"(55,60]",College,11917.999533333334,4620.141242937853,2.5795747157190636,24.37255086240942,2019
+1998,57,"(55,60]",College,11374.992633333333,4620.141242937853,2.4620443478260867,26.87001037620601,2019
+1998,57,"(55,60]",College,11542.757533333333,4620.141242937853,2.4983559866220735,30.448181424357113,2019
+1998,57,"(55,60]",College,11662.550533333333,4620.141242937853,2.524284414715719,29.61543426371057,2019
+1998,57,"(55,60]",College,12155.014633333332,4620.141242937853,2.630875117056856,27.584403963672486,2019
+1998,23,"(20,25]",HS,5.7435,40.65724293785311,0.14126634235329885,5233.413215233062,2019
+1998,23,"(20,25]",HS,5.7435,40.65724293785311,0.14126634235329885,5247.342522031109,2019
+1998,23,"(20,25]",HS,5.925833333333333,40.65724293785311,0.14575098814229248,5289.807110386397,2019
+1998,23,"(20,25]",HS,5.925833333333333,40.65724293785311,0.14575098814229248,5228.317052978689,2019
+1998,23,"(20,25]",HS,3.920166666666667,40.65724293785311,0.09641988446336272,5270.337714421088,2019
+1998,21,"(20,25]",HS,9.481333333333334,46.201412429378536,0.20521739130434782,5135.837574109279,2019
+1998,21,"(20,25]",HS,9.299,46.201412429378536,0.20127090301003342,5144.97960163661,2019
+1998,21,"(20,25]",HS,9.481333333333334,46.201412429378536,0.20521739130434782,5188.646740611303,2019
+1998,21,"(20,25]",HS,9.481333333333334,46.201412429378536,0.20521739130434782,5147.676652460586,2019
+1998,21,"(20,25]",HS,9.299,46.201412429378536,0.20127090301003342,5088.43240002711,2019
+1998,52,"(50,55]",NoHS,56.341,92.40282485875707,0.6097324414715719,4624.016146235626,2019
+1998,52,"(50,55]",NoHS,56.341,92.40282485875707,0.6097324414715719,4596.592676282135,2019
+1998,52,"(50,55]",NoHS,56.341,92.40282485875707,0.6097324414715719,4589.330101366974,2019
+1998,52,"(50,55]",NoHS,56.15866666666667,92.40282485875707,0.6077591973244146,4601.751674929776,2019
+1998,52,"(50,55]",NoHS,59.80533333333334,92.40282485875707,0.6472240802675585,4600.427265704343,2019
+1998,76,"(75,80]",College,555.4602666666667,57.289751412429375,9.695630596612364,341.1977289615487,2019
+1998,76,"(75,80]",College,1327.9883666666667,40.65724293785311,32.66302067497719,701.2900624877425,2019
+1998,76,"(75,80]",College,674.0681,48.04946892655367,14.028627476202725,330.33207602026044,2019
+1998,76,"(75,80]",College,912.8153666666667,107.18727683615819,8.516079460269866,327.9226385984864,2019
+1998,76,"(75,80]",College,1102.4055666666666,46.201412429378536,23.860862876254178,336.05018447029266,2019
+1998,32,"(30,35]",College,64.91066666666667,72.07420338983052,0.9006088671640511,4613.885845125887,2019
+1998,32,"(30,35]",College,50.852766666666675,49.89752542372881,1.0191440604484086,4610.36902477446,2019
+1998,32,"(30,35]",College,55.06466666666667,75.77031638418079,0.7267313810261848,4663.30618372241,2019
+1998,32,"(30,35]",College,70.92766666666667,68.37809039548021,1.0372864503299288,4591.055589283845,2019
+1998,32,"(30,35]",College,55.39286666666667,57.289751412429375,0.9668896321070235,4676.251929650626,2019
+1998,72,"(70,75]",HS,378.7063333333333,49.89752542372881,7.589681654899047,6987.640568780744,2019
+1998,72,"(70,75]",HS,348.986,121.97172881355934,2.861204013377926,6926.816091560357,2019
+1998,72,"(70,75]",HS,343.1513333333333,121.97172881355934,2.8133677916286604,7405.395884930101,2019
+1998,72,"(70,75]",HS,353.1796666666667,81.31448587570623,4.343379446640316,7159.49435744843,2019
+1998,72,"(70,75]",HS,342.422,92.40282485875707,3.7057525083612037,7260.696324170565,2019
+1998,57,"(55,60]",NoHS,413.532,46.201412429378536,8.950635451505015,7382.2858532653045,2019
+1998,57,"(55,60]",NoHS,415.3553333333333,46.201412429378536,8.99010033444816,7360.37459953422,2019
+1998,57,"(55,60]",NoHS,417.1786666666667,46.201412429378536,9.029565217391303,7746.12789562786,2019
+1998,57,"(55,60]",NoHS,413.532,46.201412429378536,8.950635451505015,7257.454242256121,2019
+1998,57,"(55,60]",NoHS,413.71433333333334,46.201412429378536,8.954581939799331,7679.211515093548,2019
+1998,69,"(65,70]",College,190517.52909999999,1753.8056158192092,108.63092658704285,15.134541716248247,2019
+1998,69,"(65,70]",College,92658.1898,1232.6536836158193,75.1696855585585,15.874244413854168,2019
+1998,69,"(65,70]",College,189850.025,595.0741920903955,319.0358908577245,13.522093385409011,2019
+1998,69,"(65,70]",College,431847.09160000004,1227.1095141242938,351.92220957408233,13.033395147043223,2019
+1998,69,"(65,70]",College,153242.03176666668,1171.6678192090394,130.7896566367387,13.520225057567519,2019
+1998,49,"(45,50]",College,512462.60233333334,25299.893446327682,20.255524135723903,1.5150354057313873,2019
+1998,49,"(45,50]",College,512052.17,25189.010056497173,20.328395949324847,1.464846990715889,2019
+1998,49,"(45,50]",College,512861.73000000004,27351.236158192092,18.750952499322064,1.378549503687558,2019
+1998,49,"(45,50]",College,513539.8276666667,27924.133672316388,18.390537507553304,1.3995906763482278,2019
+1998,49,"(45,50]",College,489094.7623333333,30252.684858757064,16.166986983694375,1.3253294318145419,2019
+1998,56,"(55,60]",College,1186.8258999999998,184.80564971751414,6.422021739130433,345.11115955442546,2019
+1998,56,"(55,60]",College,1306.9653333333333,184.80564971751414,7.0721070234113705,336.39414665944753,2019
+1998,56,"(55,60]",College,1178.59355,184.80564971751414,6.377475752508361,335.3626487123653,2019
+1998,56,"(55,60]",College,1184.4191,184.80564971751414,6.408998327759197,333.9615969085065,2019
+1998,56,"(55,60]",College,1241.3253333333332,184.80564971751414,6.716923076923075,338.3527731939444,2019
+1998,36,"(35,40]",HS,365.396,181.10953672316384,2.017541464746434,5963.358116499038,2019
+1998,36,"(35,40]",HS,373.9839,116.4275593220339,3.212159579550884,5706.638156046067,2019
+1998,36,"(35,40]",HS,428.48333333333335,83.16254237288136,5.1523597175771085,5327.546313345367,2019
+1998,36,"(35,40]",HS,511.28090000000003,103.49116384180793,4.940333850931676,5824.4052917687595,2019
+1998,36,"(35,40]",HS,413.40436666666665,109.03533333333333,3.7914715719063548,5310.577976743663,2019
+1998,25,"(20,25]",HS,-3.5555,25.872790960451983,-0.13742236024844717,4700.276183525282,2019
+1998,25,"(20,25]",HS,-3.5555,25.872790960451983,-0.13742236024844717,4714.192350409101,2019
+1998,25,"(20,25]",HS,-3.5555,25.872790960451983,-0.13742236024844717,4714.427227714354,2019
+1998,25,"(20,25]",HS,-3.5555,25.872790960451983,-0.13742236024844717,4737.893448665567,2019
+1998,25,"(20,25]",HS,-3.5555,25.872790960451983,-0.13742236024844717,4719.9121141425585,2019
+1998,49,"(45,50]",HS,691.408,238.39928813559317,2.90021000233336,6368.36248556263,2019
+1998,49,"(45,50]",HS,691.408,238.39928813559317,2.90021000233336,6103.746652121346,2019
+1998,49,"(45,50]",HS,691.408,238.39928813559317,2.90021000233336,5686.4380596707015,2019
+1998,49,"(45,50]",HS,691.408,236.55123163841807,2.9228678929765888,6223.058235807922,2019
+1998,49,"(45,50]",HS,689.5846666666666,236.55123163841807,2.9151599080267556,5676.01240267422,2019
+1998,50,"(45,50]",HS,0.3646666666666667,33.265016949152546,0.010962467484206614,6386.001434166603,2019
+1998,50,"(45,50]",HS,0.3646666666666667,33.265016949152546,0.010962467484206614,6372.545102885671,2019
+1998,50,"(45,50]",HS,0.3646666666666667,33.265016949152546,0.010962467484206614,6331.17987457976,2019
+1998,50,"(45,50]",HS,0.3646666666666667,33.265016949152546,0.010962467484206614,6380.446415656236,2019
+1998,50,"(45,50]",HS,0.3646666666666667,33.265016949152546,0.010962467484206614,6356.579520038629,2019
+1998,68,"(65,70]",College,71118.75200000001,2199.187231638418,32.33865265169614,16.988373072866104,2019
+1998,68,"(65,70]",College,66690.787,2846.007005649717,23.433107110281025,17.31960725314636,2019
+1998,68,"(65,70]",College,78588.40166666667,2587.279096045198,30.374922360248448,18.94060439607927,2019
+1998,68,"(65,70]",College,74339.67033333333,2273.109491525424,32.70395491747559,17.623763815881922,2019
+1998,68,"(65,70]",College,71626.00333333333,2605.7596610169494,27.487570862686493,18.931858893614667,2019
+1998,29,"(25,30]",NoHS,-3.282,46.201412429378536,-0.07103678929765886,5184.787183450672,2019
+1998,29,"(25,30]",NoHS,-3.099666666666667,46.201412429378536,-0.06709030100334448,5167.109982852331,2019
+1998,29,"(25,30]",NoHS,-3.099666666666667,46.201412429378536,-0.06709030100334448,5169.693070710121,2019
+1998,29,"(25,30]",NoHS,-3.099666666666667,46.201412429378536,-0.06709030100334448,5206.47605002861,2019
+1998,29,"(25,30]",NoHS,-3.099666666666667,46.201412429378536,-0.06709030100334448,5166.424580429387,2019
+1998,21,"(20,25]",NoHS,0,8.501059887005649,0,4856.424952321054,2019
+1998,21,"(20,25]",NoHS,0,8.501059887005649,0,4861.394022027457,2019
+1998,21,"(20,25]",NoHS,0,8.13144858757062,0,4893.306624448903,2019
+1998,21,"(20,25]",NoHS,0,6.653003389830508,0,4829.772355508809,2019
+1998,21,"(20,25]",NoHS,0,7.022614689265536,0,4857.55334517823,2019
+1998,29,"(25,30]",College,98.36883333333333,85.0105988700565,1.1571361058601133,5942.1449292712205,2019
+1998,29,"(25,30]",College,98.36883333333333,85.0105988700565,1.1571361058601133,5981.816385428739,2019
+1998,29,"(25,30]",College,98.36883333333333,85.0105988700565,1.1571361058601133,6082.199554675328,2019
+1998,29,"(25,30]",College,98.36883333333333,85.0105988700565,1.1571361058601133,5993.279732343711,2019
+1998,29,"(25,30]",College,98.36883333333333,85.0105988700565,1.1571361058601133,6055.629277151975,2019
+1998,28,"(25,30]",HS,0,15.523674576271185,0,4761.050924232432,2019
+1998,28,"(25,30]",HS,0,15.523674576271185,0,4738.286890646716,2019
+1998,28,"(25,30]",HS,0,15.523674576271185,0,4779.373114158645,2019
+1998,28,"(25,30]",HS,0,15.523674576271185,0,4738.373759927456,2019
+1998,28,"(25,30]",HS,0,15.523674576271185,0,4769.3384572593895,2019
+1998,29,"(25,30]",HS,-20.6766,138.6042372881356,-0.1491772575250836,8152.306593068388,2019
+1998,29,"(25,30]",HS,143.66043333333332,138.6042372881356,1.0364793756967667,6524.468099310574,2019
+1998,29,"(25,30]",HS,170.8828,138.6042372881356,1.2328829431438126,6086.016938998638,2019
+1998,29,"(25,30]",HS,-28.589866666666666,138.6042372881356,-0.20626978818283162,8148.9907267408835,2019
+1998,29,"(25,30]",HS,-29.793266666666668,138.6042372881356,-0.21495206243032328,8389.434942291191,2019
+1998,58,"(55,60]",NoHS,507.0507666666667,83.16254237288136,6.097105165366035,7709.1281459359725,2019
+1998,58,"(55,60]",NoHS,521.8197666666666,83.16254237288136,6.274697138610181,7351.3447264651695,2019
+1998,58,"(55,60]",NoHS,492.64643333333333,83.16254237288136,5.92389817911557,6880.00038057317,2019
+1998,58,"(55,60]",NoHS,508.8741,83.16254237288136,6.119030100334448,7528.251523375786,2019
+1998,58,"(55,60]",NoHS,514.5264333333333,83.16254237288136,6.186997398736529,6861.924081444131,2019
+1998,37,"(35,40]",College,294.79653333333334,75.77031638418079,3.8906599233216417,8598.609560934896,2019
+1998,37,"(35,40]",College,294.2495333333333,51.745581920903966,5.686466794075488,8823.116947088845,2019
+1998,37,"(35,40]",College,294.03073333333333,55.441694915254246,5.303422519509475,9167.845932984452,2019
+1998,37,"(35,40]",College,295.1612,72.07420338983052,4.095240545407769,8645.793523834767,2019
+1998,37,"(35,40]",College,294.97886666666665,92.40282485875707,3.1923143812709025,9125.953540981467,2019
+1998,54,"(50,55]",HS,126163.3073,9018.515706214688,13.98936492543451,17.65514345863118,2019
+1998,54,"(50,55]",HS,128937.9648,8796.748926553671,14.657456507686689,18.212895568678366,2019
+1998,54,"(50,55]",HS,125076.1995,10293.674689265536,12.15078223041497,19.6756376232697,2019
+1998,54,"(50,55]",HS,115860.90873333333,10515.441468926554,11.018168764070039,18.30449983333552,2019
+1998,54,"(50,55]",HS,121485.92853333334,10423.038644067798,11.655519343437938,19.64463151203668,2019
+1998,44,"(40,45]",College,1758.2403333333332,212.52649717514123,8.273040570015995,2533.6317837083384,2019
+1998,44,"(40,45]",College,1760.0636666666667,212.52649717514123,8.28161989239494,2760.500483865202,2019
+1998,44,"(40,45]",College,1760.0636666666667,212.52649717514123,8.28161989239494,2570.499303903068,2019
+1998,44,"(40,45]",College,1760.0636666666667,212.52649717514123,8.28161989239494,2562.168082781042,2019
+1998,44,"(40,45]",College,1760.0636666666667,212.52649717514123,8.28161989239494,2639.346638990376,2019
+1998,27,"(25,30]",HS,35.555,68.37809039548021,0.5199764982373679,7550.019434255759,2019
+1998,27,"(25,30]",HS,35.8285,70.22614689265536,0.5101874669952473,7600.425519691176,2019
+1998,27,"(25,30]",HS,37.196,70.22614689265536,0.5296602710790353,7727.971193468082,2019
+1998,27,"(25,30]",HS,37.196,70.22614689265536,0.5296602710790353,7614.990713408231,2019
+1998,27,"(25,30]",HS,37.925333333333334,70.22614689265536,0.540045766590389,7694.211311462064,2019
+1998,47,"(45,50]",College,1429.6756666666668,212.52649717514123,6.727046677330232,2610.704610258841,2019
+1998,47,"(45,50]",College,1425.1173333333334,212.52649717514123,6.705598371382871,2851.6648724971064,2019
+1998,47,"(45,50]",College,1422.3823333333332,212.52649717514123,6.692729387814454,2655.9896516776803,2019
+1998,47,"(45,50]",College,1429.4933333333333,212.52649717514123,6.726188745092337,2637.9845339088074,2019
+1998,47,"(45,50]",College,1418.7356666666667,212.52649717514123,6.675570743056566,2723.7492627015336,2019
+1998,50,"(45,50]",HS,383.7205,182.957593220339,2.097319347319347,6273.223461988092,2019
+1998,50,"(45,50]",HS,356.93573333333336,144.14840677966103,2.476168424663408,6942.542554393064,2019
+1998,50,"(45,50]",HS,665.5166666666667,182.957593220339,3.6375460288503763,5589.563544258481,2019
+1998,50,"(45,50]",HS,428.37393333333335,149.69257627118645,2.861691234155002,6163.1435589841485,2019
+1998,50,"(45,50]",HS,420.7524,182.957593220339,2.2997263605959257,5593.359218298558,2019
+1998,50,"(45,50]",HS,71166.70566666668,8149.929152542373,8.732187033118711,33.298020221494895,2019
+1998,50,"(45,50]",HS,69405.001,8168.409717514126,8.496758047185942,34.892343262385054,2019
+1998,50,"(45,50]",HS,71231.43400000001,8149.929152542373,8.740129228949105,30.18795190638621,2019
+1998,50,"(45,50]",HS,69592.98666666668,8168.409717514126,8.519771788313987,29.311296248858962,2019
+1998,50,"(45,50]",HS,71154.854,8149.929152542373,8.730732828248357,29.895445829547914,2019
+1998,54,"(50,55]",NoHS,0,7.761837288135593,0,6407.625426934342,2019
+1998,54,"(50,55]",NoHS,0,7.761837288135593,0,6390.743446141828,2019
+1998,54,"(50,55]",NoHS,0,7.761837288135593,0,6335.245370429717,2019
+1998,54,"(50,55]",NoHS,0,7.761837288135593,0,6406.142828175123,2019
+1998,54,"(50,55]",NoHS,0,7.761837288135593,0,6377.251208301844,2019
+1998,73,"(70,75]",NoHS,202.75466666666665,48.04946892655367,4.219706714689992,7317.965382992639,2019
+1998,73,"(70,75]",NoHS,202.937,48.04946892655367,4.223501414972987,7254.265566959439,2019
+1998,73,"(70,75]",NoHS,202.937,46.201412429378536,4.392441471571906,7755.4691315112195,2019
+1998,73,"(70,75]",NoHS,202.75466666666665,46.201412429378536,4.3884949832775915,7497.9431686310345,2019
+1998,73,"(70,75]",NoHS,202.75466666666665,48.04946892655367,4.219706714689992,7603.929228141916,2019
+1998,32,"(30,35]",HS,-7.475666666666667,83.16254237288136,-0.08989223337049423,4951.447698478893,2019
+1998,32,"(30,35]",HS,-7.475666666666667,83.16254237288136,-0.08989223337049423,4951.743362589689,2019
+1998,32,"(30,35]",HS,-7.475666666666667,83.16254237288136,-0.08989223337049423,4955.838247156889,2019
+1998,32,"(30,35]",HS,-7.475666666666667,83.16254237288136,-0.08989223337049423,4945.65058738336,2019
+1998,32,"(30,35]",HS,-7.658,83.16254237288136,-0.09208472686733556,4993.826195124651,2019
+1998,70,"(65,70]",HS,124.86186666666667,38.80918644067796,3.2173275999362962,7419.388041681358,2019
+1998,70,"(65,70]",HS,124.67953333333334,38.80918644067796,3.212629399585922,7446.878672243421,2019
+1998,70,"(65,70]",HS,124.86186666666667,38.80918644067796,3.2173275999362962,7381.75603523693,2019
+1998,70,"(65,70]",HS,124.86186666666667,36.96112994350283,3.3781939799331098,7478.7470070476065,2019
+1998,70,"(65,70]",HS,124.67953333333334,36.96112994350283,3.373260869565217,7381.651369696236,2019
+1998,70,"(65,70]",College,222780.15433333334,2273.109491525424,98.00678549093183,17.946207271687662,2019
+1998,70,"(65,70]",College,227819.30066666665,2088.30384180791,109.09298546778344,18.83866816423636,2019
+1998,70,"(65,70]",College,222684.794,2420.954011299435,91.9822487170977,16.444942368718884,2019
+1998,70,"(65,70]",College,219498.33666666667,2236.148361581921,98.15911163934878,15.79138562042399,2019
+1998,70,"(65,70]",College,227359.82066666667,2106.7844067796614,107.91793404916973,16.010495326213785,2019
+1998,49,"(45,50]",College,92802.56133333333,2199.187231638418,42.19857227171806,32.75797024958856,2019
+1998,49,"(45,50]",College,94161.12700000001,2032.8621468926553,46.319484645789,33.733308450685655,2019
+1998,49,"(45,50]",College,97568.02533333332,2051.3427118644067,47.56300581517972,36.11853352727931,2019
+1998,49,"(45,50]",College,102125.447,2069.823276836158,49.340177078356426,33.976031628799,2019
+1998,49,"(45,50]",College,99849.56233333334,2347.0317514124295,42.542910752376685,36.681252218847234,2019
+1998,59,"(55,60]",HS,203.11933333333334,14.969257627118646,13.569098641562409,9197.725542404887,2019
+1998,59,"(55,60]",HS,204.94266666666667,14.969257627118646,13.69090383583137,9170.425908915437,2019
+1998,59,"(55,60]",HS,206.766,14.969257627118646,13.812709030100333,9651.043026034784,2019
+1998,59,"(55,60]",HS,203.11933333333334,15.154063276836158,13.40362182886043,9042.195545341598,2019
+1998,59,"(55,60]",HS,203.30166666666665,14.969257627118646,13.581279160989304,9567.67067840706,2019
+1998,57,"(55,60]",College,1169.6683333333333,462.0141242937853,2.5316722408026755,661.7297421465378,2019
+1998,57,"(55,60]",College,1217.075,462.0141242937853,2.6342809364548496,691.8241707291543,2019
+1998,57,"(55,60]",College,1169.6683333333333,462.0141242937853,2.5316722408026755,652.2477211344527,2019
+1998,57,"(55,60]",College,1665.615,462.0141242937853,3.605117056856187,688.3673687244622,2019
+1998,57,"(55,60]",College,1009.215,462.0141242937853,2.18438127090301,657.8914421110785,2019
+1998,55,"(50,55]",HS,59.25833333333334,90.55476836158192,0.6543921916592724,5463.072585508416,2019
+1998,55,"(50,55]",HS,11.487,64.68197740112994,0.17759197324414716,5454.347658010845,2019
+1998,55,"(50,55]",HS,56.888,49.89752542372881,1.140096618357488,5622.812041136898,2019
+1998,55,"(50,55]",HS,11.906366666666667,53.593638418079095,0.22216007380924924,5445.246962280974,2019
+1998,55,"(50,55]",HS,26.438333333333333,27.720847457627123,0.9537346711259753,5517.526454861067,2019
+1998,34,"(30,35]",NoHS,7.658,35.11307344632768,0.21809540573842634,5323.782198554701,2019
+1998,34,"(30,35]",NoHS,7.658,17.741342372881356,0.43164715719063546,5339.544387548591,2019
+1998,34,"(30,35]",NoHS,7.658,33.265016949152546,0.23021181716833888,5339.81042204693,2019
+1998,34,"(30,35]",NoHS,7.475666666666667,51.745581920903966,0.14446966077400858,5366.3895089961825,2019
+1998,34,"(30,35]",NoHS,7.475666666666667,31.416960451977403,0.2379500295101318,5346.022895439433,2019
+1998,51,"(50,55]",College,1018.0399333333334,109.03533333333333,9.336789297658864,6101.455208836638,2019
+1998,51,"(50,55]",College,902.8052666666667,110.88338983050849,8.141934225195094,5846.485681019423,2019
+1998,51,"(50,55]",College,963.1576,109.03533333333333,8.833444816053513,5448.30995464328,2019
+1998,51,"(50,55]",College,1040.6492666666668,109.03533333333333,9.544147157190638,5960.58497062277,2019
+1998,51,"(50,55]",College,958.0522666666667,109.03533333333333,8.786622073578597,5437.819764691698,2019
+1998,46,"(45,50]",HS,59.31303333333334,51.745581920903966,1.1462434304825608,7995.158207115777,2019
+1998,46,"(45,50]",HS,59.11246666666667,51.745581920903966,1.142367415193502,8197.893264153476,2019
+1998,46,"(45,50]",HS,59.11246666666667,51.745581920903966,1.142367415193502,8426.264158431764,2019
+1998,46,"(45,50]",HS,59.31303333333334,51.745581920903966,1.1462434304825608,8064.099817694415,2019
+1998,46,"(45,50]",HS,59.1307,51.745581920903966,1.14271978021978,8424.317510134631,2019
+1998,23,"(20,25]",College,24.3962,38.80918644067796,0.6286192068800766,4620.449325350882,2019
+1998,23,"(20,25]",College,23.4663,38.80918644067796,0.6046583850931678,4602.770261917217,2019
+1998,23,"(20,25]",College,24.3962,38.80918644067796,0.6286192068800766,4612.326824648588,2019
+1998,23,"(20,25]",College,25.1073,38.80918644067796,0.6469421882465362,4639.9159957591055,2019
+1998,23,"(20,25]",College,23.283966666666668,38.80918644067796,0.5999601847427936,4572.461819842769,2019
+1998,76,"(75,80]",HS,457.47433333333333,51.745581920903966,8.840838509316768,9464.114610564202,2019
+1998,76,"(75,80]",HS,457.47433333333333,51.745581920903966,8.840838509316768,9075.957379711112,2019
+1998,76,"(75,80]",HS,457.29200000000003,49.89752542372881,9.164622816796731,8471.786156580756,2019
+1998,76,"(75,80]",HS,457.29200000000003,51.745581920903966,8.837314859053988,9224.316741621196,2019
+1998,76,"(75,80]",HS,457.29200000000003,51.745581920903966,8.837314859053988,8449.321297311675,2019
+1998,39,"(35,40]",HS,18.598,55.441694915254246,0.33545150501672233,6445.776499853153,2019
+1998,39,"(35,40]",HS,18.598,55.441694915254246,0.33545150501672233,6436.141865736254,2019
+1998,39,"(35,40]",HS,20.421333333333333,55.441694915254246,0.36833890746934217,6422.657150619853,2019
+1998,39,"(35,40]",HS,18.598,53.593638418079095,0.3470187982931611,6478.031916614011,2019
+1998,39,"(35,40]",HS,18.598,53.593638418079095,0.3470187982931611,6399.940085530445,2019
+1998,35,"(30,35]",HS,42.9395,83.16254237288136,0.5163322185061315,6606.077697454823,2019
+1998,35,"(30,35]",HS,48.04483333333334,99.79505084745762,0.4814350303480739,6639.163178823786,2019
+1998,35,"(30,35]",HS,44.945166666666665,99.79505084745762,0.45037470580948846,6665.030198217615,2019
+1998,35,"(30,35]",HS,46.40383333333334,99.79505084745762,0.464991329121764,6604.843032885554,2019
+1998,35,"(30,35]",HS,50.96216666666667,103.49116384180793,0.4924301242236024,6674.702059937643,2019
+1998,57,"(55,60]",College,124194.72723333334,1713.148372881356,72.49502097967695,24.138170005778257,2019
+1998,57,"(55,60]",College,149153.42556666667,1772.2861807909605,84.1587702839845,24.904159637331603,2019
+1998,57,"(55,60]",College,150070.19756666667,1430.3957288135593,104.91516056968534,27.033696461809864,2019
+1998,57,"(55,60]",College,116236.24190000001,1750.1095028248585,66.41655377128268,24.73838124127179,2019
+1998,57,"(55,60]",College,113304.13956666666,1129.1625197740113,100.3435179457986,26.89246887516341,2019
+1998,35,"(30,35]",College,79.862,110.88338983050849,0.7202341137123744,6793.75608828991,2019
+1998,35,"(30,35]",College,79.862,110.88338983050849,0.7202341137123744,6743.73326529762,2019
+1998,35,"(30,35]",College,79.862,110.88338983050849,0.7202341137123744,6745.610549269795,2019
+1998,35,"(30,35]",College,81.68533333333333,110.88338983050849,0.7366778149386843,6858.974572693907,2019
+1998,35,"(30,35]",College,79.862,110.88338983050849,0.7202341137123744,6718.959766580777,2019
+1998,65,"(60,65]",College,38463.581333333335,1921.9787570621468,20.01249035245691,15.210363786456199,2019
+1998,65,"(60,65]",College,39251.443666666666,2143.7455367231637,18.30974945219698,16.54242337918642,2019
+1998,65,"(60,65]",College,38574.62233333334,1977.4204519774014,19.507546963398244,16.90726711735487,2019
+1998,65,"(60,65]",College,38754.76766666667,2125.2649717514123,18.235263923222337,15.401116629790682,2019
+1998,65,"(60,65]",College,38579.727666666666,2106.7844067796614,18.312138414598365,16.270747867357453,2019
+1998,64,"(60,65]",College,16835.566,3437.385084745763,4.897782932355161,427.9945007409445,2019
+1998,64,"(60,65]",College,16833.74266666667,3437.385084745763,4.8972524903801204,432.9581660494229,2019
+1998,64,"(60,65]",College,16833.56033333333,3437.385084745763,4.897199446182615,470.4440593817059,2019
+1998,64,"(60,65]",College,16835.566,3437.385084745763,4.897782932355161,499.6470893248126,2019
+1998,64,"(60,65]",College,16835.38366666667,3437.385084745763,4.8977298881576585,415.7494063180793,2019
+1998,55,"(50,55]",College,749.937,277.2084745762712,2.7053177257525083,10553.334075500763,2019
+1998,55,"(50,55]",College,750.1193333333334,277.2084745762712,2.7059754738015607,10174.650373158365,2019
+1998,55,"(50,55]",College,750.1193333333334,277.2084745762712,2.7059754738015607,9881.289916979043,2019
+1998,55,"(50,55]",College,748.296,277.2084745762712,2.699397993311037,10062.590158865458,2019
+1998,55,"(50,55]",College,750.1193333333334,277.2084745762712,2.7059754738015607,10318.796404198825,2019
+1998,39,"(35,40]",College,964.4521666666667,425.05299435028246,2.2690162861712957,107.71362554560422,2019
+1998,39,"(35,40]",College,1456.7521666666669,425.05299435028246,3.427224807328778,216.60657583097054,2019
+1998,39,"(35,40]",College,1053.7955,425.05299435028246,2.479209684455431,103.07785327960059,2019
+1998,39,"(35,40]",College,1453.1055000000001,425.05299435028246,3.4186454849498333,219.0964900783155,2019
+1998,39,"(35,40]",College,1053.7955,425.05299435028246,2.479209684455431,106.78429182038492,2019
+1998,19,"(15,20]",NoHS,0,11.827561581920904,0,3696.1616642553286,2019
+1998,19,"(15,20]",NoHS,0,11.827561581920904,0,3667.9112430789296,2019
+1998,19,"(15,20]",NoHS,0,11.827561581920904,0,3693.695874851778,2019
+1998,19,"(15,20]",NoHS,0,11.827561581920904,0,3697.078294206001,2019
+1998,19,"(15,20]",NoHS,0,11.827561581920904,0,3655.9579242969726,2019
+1998,48,"(45,50]",HS,241.1540666666667,120.12367231638417,2.0075482377154623,6529.608324796745,2019
+1998,48,"(45,50]",HS,241.1176,120.12367231638417,2.0072446616928223,6614.859975833577,2019
+1998,48,"(45,50]",HS,240.62529999999998,120.12367231638417,2.003146385387188,6855.902681216637,2019
+1998,48,"(45,50]",HS,240.91703333333334,120.12367231638417,2.0055749935683047,6523.954478286762,2019
+1998,48,"(45,50]",HS,240.97173333333333,120.12367231638417,2.0060303576022642,6824.217316157223,2019
+1998,58,"(55,60]",College,54344.632333333335,1332.4487344632769,40.785533377555325,256.5424312737601,2019
+1998,58,"(55,60]",College,36392.457,1334.296790960452,27.27463428417903,220.95350677744145,2019
+1998,58,"(55,60]",College,39102.295,1334.296790960452,29.305545261675576,218.70860629439773,2019
+1998,58,"(55,60]",College,43367.61866666666,1350.9292994350283,32.102063879141134,213.37349522402116,2019
+1998,58,"(55,60]",College,36056.052,1332.4487344632769,27.05999192871291,202.69225601124634,2019
+1998,62,"(60,65]",College,11946.115333333335,8870.671186440679,1.3466980211817168,32.59167722406987,2019
+1998,62,"(60,65]",College,17559.6299,8870.671186440679,1.9795153637123744,35.74989867639697,2019
+1998,62,"(60,65]",College,6700.403566666667,8870.671186440679,0.7553434712931995,28.49419598729792,2019
+1998,62,"(60,65]",College,16587.24623333333,8870.671186440679,1.8698975404124856,30.12080541554375,2019
+1998,62,"(60,65]",College,4668.827333333333,8870.671186440679,0.5263217670011147,29.68890666551109,2019
+1998,81,"(80,85]",HS,1765.5336666666667,127.51589830508476,13.845596432552952,12677.183342975433,2019
+1998,81,"(80,85]",HS,2921.3811333333333,72.07420338983052,40.532964582797355,3623.8764854168826,2019
+1998,81,"(80,85]",HS,1957.0930666666668,48.04946892655367,40.73079495755081,11563.862010738283,2019
+1998,81,"(80,85]",HS,2851.511,164.47702824858757,17.336834391792866,4087.8618361036074,2019
+1998,81,"(80,85]",HS,1019.8815000000001,40.65724293785311,25.084866220735783,7349.423493591447,2019
+1998,75,"(70,75]",NoHS,24.250333333333334,24.024734463276836,1.0093902752765629,9078.968065367077,2019
+1998,75,"(70,75]",NoHS,24.068,24.024734463276836,1.0018008747105738,9263.903254314051,2019
+1998,75,"(70,75]",NoHS,24.068,24.024734463276836,1.0018008747105738,9596.247354549161,2019
+1998,75,"(70,75]",NoHS,24.250333333333334,24.024734463276836,1.0093902752765629,9151.221162208552,2019
+1998,75,"(70,75]",NoHS,24.068,24.024734463276836,1.0018008747105738,9612.763676199402,2019
+1998,65,"(60,65]",College,661.0312666666667,125.66784180790961,5.260146566987999,9015.689689660285,2019
+1998,65,"(60,65]",College,620.2068333333334,105.33922033898305,5.887710496978232,8622.603945408915,2019
+1998,65,"(60,65]",College,691.3715333333333,109.03533333333333,6.340802675585285,7985.71885544142,2019
+1998,65,"(60,65]",College,683.8229333333334,125.66784180790961,5.4415109187487705,8761.028533566863,2019
+1998,65,"(60,65]",College,626.9896333333334,96.09893785310734,6.524417931566761,7964.079807420237,2019
+1998,44,"(40,45]",HS,162.459,46.201412429378536,3.5163210702341132,5888.024998108391,2019
+1998,44,"(40,45]",HS,162.64133333333334,46.201412429378536,3.520267558528428,5968.560889403779,2019
+1998,44,"(40,45]",HS,162.459,46.201412429378536,3.5163210702341132,6213.4243387880615,2019
+1998,44,"(40,45]",HS,162.459,46.201412429378536,3.5163210702341132,5917.513027895025,2019
+1998,44,"(40,45]",HS,162.459,46.201412429378536,3.5163210702341132,6138.207356526716,2019
+1998,47,"(45,50]",HS,170.48166666666665,64.68197740112994,2.6356903965599616,6729.651038795875,2019
+1998,47,"(45,50]",HS,168.2572,53.593638418079095,3.1394994810287167,6855.882393338662,2019
+1998,47,"(45,50]",HS,177.41215666666668,53.593638418079095,3.3103211855610657,7151.168631680349,2019
+1998,47,"(45,50]",HS,189.28023333333334,70.22614689265536,2.6952957225840524,6711.048976078705,2019
+1998,47,"(45,50]",HS,168.476,75.77031638418079,2.2235092585039564,7041.498883549715,2019
+1998,36,"(35,40]",HS,3.466156666666667,101.64310734463277,0.03410124657950745,5605.829200451235,2019
+1998,36,"(35,40]",HS,3.64849,101.64310734463277,0.03589510489510489,5633.22862666124,2019
+1998,36,"(35,40]",HS,3.466156666666667,101.64310734463277,0.03410124657950745,5618.897277427643,2019
+1998,36,"(35,40]",HS,3.64849,101.64310734463277,0.03589510489510489,5655.313361155723,2019
+1998,36,"(35,40]",HS,3.466156666666667,101.64310734463277,0.03410124657950745,5609.083465785688,2019
+1998,84,"(80,85]",NoHS,75.66833333333334,42.50529943502825,1.7802093936309438,6512.627330402705,2019
+1998,84,"(80,85]",NoHS,79.95316666666668,44.35335593220339,1.8026407469342254,6559.164809710931,2019
+1998,84,"(80,85]",NoHS,69.83366666666667,31.416960451977403,2.2228014951800117,6566.281231316457,2019
+1998,84,"(80,85]",NoHS,69.8519,31.416960451977403,2.223381861105646,6499.803445062347,2019
+1998,84,"(80,85]",NoHS,71.20116666666668,44.35335593220339,1.6053163322185064,6567.092767792454,2019
+1998,39,"(35,40]",College,14678.927333333335,437.9893898305085,33.51434458038751,20.22854587623405,2019
+1998,39,"(35,40]",College,3336.1530000000002,515.6077627118644,6.4703312115654334,22.18352624537244,2019
+1998,39,"(35,40]",College,5514.489333333333,421.3568813559322,13.087455260224138,17.646335022929115,2019
+1998,39,"(35,40]",College,45958.630033333335,415.8127118644068,110.52723671497584,23.753072418622548,2019
+1998,39,"(35,40]",College,28644.019666666667,595.0741920903955,48.135207420179064,20.019563911113863,2019
+1998,36,"(35,40]",HS,120.01180000000001,66.53003389830509,1.8038740245261984,6081.124323883356,2019
+1998,36,"(35,40]",HS,127.66980000000001,66.53003389830509,1.9189799331103679,6036.348650206751,2019
+1998,36,"(35,40]",HS,127.48746666666666,66.53003389830509,1.9162393162393159,6038.029016277838,2019
+1998,36,"(35,40]",HS,104.6958,66.53003389830509,1.5736622073578594,6139.501708458515,2019
+1998,36,"(35,40]",HS,120.37646666666666,66.53003389830509,1.8093552582683015,6014.173770261568,2019
+1998,38,"(35,40]",College,2339.756033333333,480.4946892655367,4.869473244147157,2668.2157469797667,2019
+1998,38,"(35,40]",College,926.2898,371.4593559322034,2.493650476713423,5410.883895873941,2019
+1998,38,"(35,40]",College,462.1238333333333,147.84451977401133,3.1257420568561867,5052.65693153327,2019
+1998,38,"(35,40]",College,1113.4185,539.6324971751412,2.063290305584826,2694.7597943146266,2019
+1998,38,"(35,40]",College,751.6691666666667,125.66784180790961,5.981396321070234,5036.766183588921,2019
+1998,36,"(35,40]",College,119.97533333333332,103.49116384180793,1.159280936454849,7135.523709675743,2019
+1998,36,"(35,40]",College,120.0665,103.49116384180793,1.1601618490205445,7280.230625260376,2019
+1998,36,"(35,40]",College,120.15766666666667,103.49116384180793,1.1610427615862395,7624.408732206818,2019
+1998,36,"(35,40]",College,119.53773333333334,101.64310734463277,1.1760535117056856,7134.218625194258,2019
+1998,36,"(35,40]",College,120.04826666666666,101.64310734463277,1.1810763149893584,7569.81569437029,2019
+1998,54,"(50,55]",HS,704.3536666666666,162.62897175141245,4.331046670720583,7190.649827929327,2019
+1998,54,"(50,55]",HS,563.2276666666667,155.23674576271185,3.6281852205765253,6815.529981227068,2019
+1998,54,"(50,55]",HS,657.6763333333333,160.78091525423727,4.090512436089648,6419.83182188226,2019
+1998,54,"(50,55]",HS,570.1563333333334,166.32508474576272,3.427963582311408,7031.547092048184,2019
+1998,54,"(50,55]",HS,1020.3373333333334,144.14840677966103,7.078380927879255,6400.106894509841,2019
+1998,48,"(45,50]",College,423.925,203.28621468926553,2.085360291882031,2401.090775697776,2019
+1998,48,"(45,50]",College,423.925,203.28621468926553,2.085360291882031,2449.8540063919363,2019
+1998,48,"(45,50]",College,423.925,203.28621468926553,2.085360291882031,2219.1722505643966,2019
+1998,48,"(45,50]",College,423.925,203.28621468926553,2.085360291882031,2274.543477297006,2019
+1998,48,"(45,50]",College,423.925,203.28621468926553,2.085360291882031,2272.7623685611165,2019
+1998,29,"(25,30]",HS,7.475666666666667,116.4275593220339,0.0642087381217816,7501.570791401689,2019
+1998,29,"(25,30]",HS,7.475666666666667,114.57950282485875,0.06524436293019745,7596.297793324986,2019
+1998,29,"(25,30]",HS,5.652333333333333,114.57950282485875,0.04933110367892977,7705.446693084018,2019
+1998,29,"(25,30]",HS,5.652333333333333,114.57950282485875,0.04933110367892977,7531.6844942358,2019
+1998,29,"(25,30]",HS,5.652333333333333,116.4275593220339,0.04854807028720072,7674.972491153783,2019
+1998,44,"(40,45]",HS,685.938,88.70671186440678,7.73265050167224,5838.466582775544,2019
+1998,44,"(40,45]",HS,709.4590000000001,90.55476836158192,7.834584669988398,5585.873685539415,2019
+1998,44,"(40,45]",HS,727.8746666666666,90.55476836158192,8.03794962801174,5216.009715317521,2019
+1998,44,"(40,45]",HS,860.7956666666666,90.55476836158192,9.505801651764385,5702.054475809706,2019
+1998,44,"(40,45]",HS,859.1546666666667,90.55476836158192,9.487680021841513,5200.024432228632,2019
+1998,57,"(55,60]",College,0.30996666666666667,133.06006779661018,0.0023295243403939053,5463.072585508416,2019
+1998,57,"(55,60]",College,3.099666666666667,42.50529943502825,0.07292424022102661,5454.347658010845,2019
+1998,57,"(55,60]",College,4.558333333333333,94.25088135593221,0.04836382713620564,5622.812041136898,2019
+1998,57,"(55,60]",College,0.4740666666666667,121.97172881355934,0.0038866930171277993,5445.246962280974,2019
+1998,57,"(55,60]",College,278.75120000000004,73.92225988700567,3.770869565217391,5569.769412836992,2019
+1998,69,"(65,70]",HS,6.928666666666667,22.176677966101696,0.3124303232998885,5039.484786641693,2019
+1998,69,"(65,70]",HS,6.564,27.720847457627123,0.23678929765886284,5241.403175253996,2019
+1998,69,"(65,70]",HS,6.746333333333333,31.416960451977403,0.2147353924847531,5249.037571908603,2019
+1998,69,"(65,70]",HS,7.658,29.56890395480226,0.2589882943143813,5122.7016137901355,2019
+1998,69,"(65,70]",HS,6.564,20.328621468926556,0.32289449680754023,5141.620666782919,2019
+1998,75,"(70,75]",College,38731.246666666666,166.32508474576272,232.8647342995169,28.687107647947688,2019
+1998,75,"(70,75]",College,88703.89033333333,114.57950282485875,774.1689232926961,34.892343262385054,2019
+1998,75,"(70,75]",College,78695.06666666668,134.9081242937853,583.323406789756,30.18795190638621,2019
+1998,75,"(70,75]",College,111901.61333333333,168.17314124293785,665.3952736226984,29.311296248858962,2019
+1998,75,"(70,75]",College,35893.77533333334,97.9469943502825,366.4612229444059,24.761027519237324,2019
+1998,43,"(40,45]",HS,194.03913333333333,36.96112994350283,5.249816053511704,6216.77195100323,2019
+1998,43,"(40,45]",HS,63.43376666666667,36.96112994350283,1.7162290969899663,6337.269990833132,2019
+1998,43,"(40,45]",HS,158.5206,86.85865536723163,1.8250409165302783,6639.467769447644,2019
+1998,43,"(40,45]",HS,286.2633333333333,64.68197740112994,4.425704730052556,6236.035611553122,2019
+1998,43,"(40,45]",HS,392.0531333333334,62.833920903954805,6.239514066496164,4654.573401731592,2019
+1998,62,"(60,65]",College,4507.243533333333,718.8939774011301,6.269691602685901,1407.872989543903,2019
+1998,62,"(60,65]",College,3169.1903666666667,210.6784406779661,15.042784427624245,1434.6985409237366,2019
+1998,62,"(60,65]",College,3803.5098,454.62189830508476,8.366314544416346,1370.8121863317635,2019
+1998,62,"(60,65]",College,3868.183433333333,382.5476949152542,10.111637018725865,1470.4592917303457,2019
+1998,62,"(60,65]",College,3717.0473333333334,286.4487570621469,12.976308123853705,1372.458430453845,2019
+1998,84,"(80,85]",NoHS,35.190333333333335,17.371731073446327,2.025724044687967,6822.960303394912,2019
+1998,84,"(80,85]",NoHS,35.008,17.371731073446327,2.015228065181812,6873.252421592697,2019
+1998,84,"(80,85]",NoHS,35.008,17.371731073446327,2.015228065181812,6879.11938876684,2019
+1998,84,"(80,85]",NoHS,35.008,17.371731073446327,2.015228065181812,6809.966484965231,2019
+1998,84,"(80,85]",NoHS,35.008,17.371731073446327,2.015228065181812,6879.138959572121,2019
+1998,49,"(45,50]",NoHS,180.51,42.50529943502825,4.246764577577432,7427.429475885974,2019
+1998,49,"(45,50]",NoHS,172.852,42.50529943502825,4.066598807619601,7524.403229024317,2019
+1998,49,"(45,50]",NoHS,195.826,42.50529943502825,4.607096117493093,7798.5893066349,2019
+1998,49,"(45,50]",NoHS,185.79766666666666,42.50529943502825,4.371164752072124,7420.9982254753,2019
+1998,49,"(45,50]",NoHS,181.604,42.50529943502825,4.272502544714265,7762.547203848616,2019
+1998,49,"(45,50]",College,4975.876666666667,1151.3391977401131,4.3218164346645045,356.44226048754206,2019
+1998,49,"(45,50]",College,62496.29983333334,863.0423841807909,72.41394047252442,332.63937689667944,2019
+1998,49,"(45,50]",College,5458.604166666667,358.5229604519773,15.225256869978972,334.7816676765537,2019
+1998,49,"(45,50]",College,21891.724033333336,358.5229604519773,61.06087042719721,396.0547782505392,2019
+1998,49,"(45,50]",College,12607.620666666666,1012.7349604519775,12.449082098479114,348.4556492348632,2019
+1998,48,"(45,50]",College,554.8403333333334,101.64310734463277,5.458710854363029,5454.685379890741,2019
+1998,48,"(45,50]",College,452.7336666666667,120.12367231638417,3.7688963210702346,5226.74327295075,2019
+1998,48,"(45,50]",College,443.4346666666667,127.51589830508476,3.4774853375987593,4870.775190099669,2019
+1998,48,"(45,50]",College,816.8533333333334,99.79505084745762,8.185309054874274,5328.747746564509,2019
+1998,48,"(45,50]",College,467.32033333333334,133.06006779661018,3.5121005202526936,4861.396987064056,2019
+1998,70,"(65,70]",College,3625.7895,110.88338983050849,32.699122073578586,1088.20963566218,2019
+1998,70,"(65,70]",College,3623.4191666666666,110.88338983050849,32.677745261984384,1199.0739055068775,2019
+1998,70,"(65,70]",College,3625.7530333333334,110.88338983050849,32.69879319955407,1096.773936671993,2019
+1998,70,"(65,70]",College,3628.5792,110.88338983050849,32.724280936454846,1405.0440473944263,2019
+1998,70,"(65,70]",College,3623.2368333333334,110.88338983050849,32.67610089186176,1098.1865682545008,2019
+1998,51,"(50,55]",College,5325.956666666667,369.6112994350283,14.409615384615384,994.1543102452795,2019
+1998,51,"(50,55]",College,5284.02,369.6112994350283,14.296153846153846,1089.9241187769228,2019
+1998,51,"(50,55]",College,5274.903333333333,369.6112994350283,14.271488294314379,995.2318017836129,2019
+1998,51,"(50,55]",College,5304.076666666667,369.6112994350283,14.350418060200667,1275.5261452100935,2019
+1998,51,"(50,55]",College,5338.72,369.6112994350283,14.444147157190635,997.3638863780352,2019
+1998,42,"(40,45]",HS,42.027833333333334,73.92225988700567,0.5685409698996654,7746.390264584258,2019
+1998,42,"(40,45]",HS,42.210166666666666,73.92225988700567,0.5710075250836119,7947.692028697371,2019
+1998,42,"(40,45]",HS,42.210166666666666,73.92225988700567,0.5710075250836119,8205.239027244483,2019
+1998,42,"(40,45]",HS,42.210166666666666,73.92225988700567,0.5710075250836119,7859.121313794751,2019
+1998,42,"(40,45]",HS,42.210166666666666,73.92225988700567,0.5710075250836119,8141.665040670945,2019
+1998,61,"(60,65]",HS,44536.193,3160.176610169491,14.092944317315029,15.461122807023534,2019
+1998,61,"(60,65]",HS,45772.23066666666,3012.33209039548,15.194948396495475,18.83866816423636,2019
+1998,61,"(60,65]",HS,43682.873,3104.7349152542374,14.069759316770186,14.131132046699694,2019
+1998,61,"(60,65]",HS,48113.390666666666,3012.33209039548,15.972140263044505,15.79138562042399,2019
+1998,61,"(60,65]",HS,43721.163,3160.176610169491,13.835037845449747,13.260759435712192,2019
+1998,51,"(50,55]",HS,808.7595566666666,166.32508474576272,4.86252303976217,5891.0602152429265,2019
+1998,51,"(50,55]",HS,850.9879566666667,188.50176271186442,4.514482752967408,5644.882739540428,2019
+1998,51,"(50,55]",HS,826.7011566666666,112.73144632768363,7.333367783321453,5260.437209737514,2019
+1998,51,"(50,55]",HS,982.0491566666666,127.51589830508476,7.701386021036303,5755.047571136058,2019
+1998,51,"(50,55]",HS,892.3411566666666,186.65370621468927,4.780730984469685,5250.308750450524,2019
+1998,79,"(75,80]",NoHS,194.00266666666667,33.265016949152546,5.832032701597918,9676.475320722991,2019
+1998,79,"(75,80]",NoHS,191.63233333333335,31.416960451977403,6.099645878418257,9870.793669454968,2019
+1998,79,"(75,80]",NoHS,190.72066666666666,17.186925423728816,11.096846117883985,10314.802499344254,2019
+1998,79,"(75,80]",NoHS,192.544,11.457950282485875,16.804401769338657,9779.468006472744,2019
+1998,79,"(75,80]",NoHS,213.33,16.26289717514124,13.117588932806326,10217.090669914041,2019
+1998,57,"(55,60]",NoHS,0,11.642755932203391,0,5881.330270960735,2019
+1998,57,"(55,60]",NoHS,0,11.642755932203391,0,5888.567942938318,2019
+1998,57,"(55,60]",NoHS,0,11.642755932203391,0,5912.11489539793,2019
+1998,57,"(55,60]",NoHS,0,11.642755932203391,0,5879.407612117831,2019
+1998,57,"(55,60]",NoHS,0,11.642755932203391,0,5912.445125536384,2019
+1998,79,"(75,80]",College,2734.0883333333336,447.22967231638415,6.113387600541752,3401.0254851957316,2019
+1998,79,"(75,80]",College,2734.0883333333336,445.38161581920906,6.13875435407097,3717.4810706001053,2019
+1998,79,"(75,80]",College,2734.0883333333336,445.38161581920906,6.13875435407097,3468.4337457866473,2019
+1998,79,"(75,80]",College,2734.0883333333336,445.38161581920906,6.13875435407097,3426.978087770075,2019
+1998,79,"(75,80]",College,2734.0883333333336,445.38161581920906,6.13875435407097,3553.1053748404593,2019
+1998,53,"(50,55]",College,5433.898,166.32508474576272,32.670345596432554,1173.7509234433908,2019
+1998,53,"(50,55]",College,5439.185666666667,166.32508474576272,32.70213675213675,1203.6766824505603,2019
+1998,53,"(50,55]",College,5442.6500000000005,166.32508474576272,32.722965440356745,1134.8282121207162,2019
+1998,53,"(50,55]",College,5440.826666666667,166.32508474576272,32.71200297287254,1234.2416912023505,2019
+1998,53,"(50,55]",College,5438.821,166.32508474576272,32.69994425863991,1160.2107203134442,2019
+1998,37,"(35,40]",HS,25.143766666666668,125.66784180790961,0.2000811528624828,6089.0903215432,2019
+1998,37,"(35,40]",HS,24.961433333333336,121.97172881355934,0.20464933617107528,6118.851767171569,2019
+1998,37,"(35,40]",HS,24.979666666666667,120.12367231638417,0.20794957550810395,6103.284956840297,2019
+1998,37,"(35,40]",HS,25.143766666666668,121.97172881355934,0.20614421810073982,6142.840358021503,2019
+1998,37,"(35,40]",HS,25.143766666666668,118.27561581920904,0.21258622491638798,6092.6251269828945,2019
+1998,58,"(55,60]",HS,282489.2156666667,1739.021163841808,162.44150533659845,36.8681670933861,2019
+1998,58,"(55,60]",HS,280897.081,1848.0564971751412,151.9959381270903,38.00380767650884,2019
+1998,58,"(55,60]",HS,276722.7416666667,1921.9787570621468,143.97804379984566,40.88852409263954,2019
+1998,58,"(55,60]",HS,281303.1373333333,1822.1837062146894,154.3769359664059,38.26294605589551,2019
+1998,58,"(55,60]",HS,277457.9096666667,2106.7844067796614,131.69734348412837,41.73463310184387,2019
+1998,36,"(35,40]",HS,-26.383633333333336,25.872790960451983,-1.0197443860487339,5803.933130999101,2019
+1998,36,"(35,40]",HS,-25.4902,72.07420338983052,-0.35366606637509646,5815.431264864697,2019
+1998,36,"(35,40]",HS,-24.37796666666667,92.40282485875707,-0.2638227424749164,5805.144029971926,2019
+1998,36,"(35,40]",HS,-23.83096666666667,72.07420338983052,-0.3306448846582626,5245.390658590056,2019
+1998,36,"(35,40]",HS,-24.742633333333334,46.201412429378536,-0.5355384615384615,5347.310257985739,2019
+1998,22,"(20,25]",HS,515.2922333333333,36.96112994350283,13.941463210702338,1264.3350030161441,2019
+1998,22,"(20,25]",HS,515.3651666666667,31.416960451977403,16.404042888058235,1164.5654695148748,2019
+1998,22,"(20,25]",HS,515.3651666666667,42.50529943502825,12.124727352043044,1233.6947088225047,2019
+1998,22,"(20,25]",HS,513.5418333333333,24.024734463276836,21.375546694108568,1301.5468594255094,2019
+1998,22,"(20,25]",HS,513.8153333333333,33.265016949152546,15.44611668524712,1301.1278851985066,2019
+1998,48,"(45,50]",College,1744.93,940.6607570621469,1.8550045666300898,796.0741895358094,2019
+1998,48,"(45,50]",College,1498.78,912.9399096045198,1.6417071750639785,856.9904815278467,2019
+1998,48,"(45,50]",College,1803.2766666666669,334.4982259887006,5.390990225244369,920.8845313112022,2019
+1998,48,"(45,50]",College,1218.8983333333333,576.5936271186441,2.1139642826515734,923.7592846547761,2019
+1998,48,"(45,50]",College,893.4333333333334,748.4628813559322,1.1936909038358314,774.8058111327333,2019
+1998,31,"(30,35]",HS,265.6596666666667,88.70671186440678,2.9948090858416947,5493.738985032758,2019
+1998,31,"(30,35]",HS,265.295,72.07420338983052,3.6808592745047592,5258.486857349447,2019
+1998,31,"(30,35]",HS,269.3063333333333,75.77031638418079,3.5542458601843543,4903.977337641412,2019
+1998,31,"(30,35]",HS,267.3006666666667,85.0105988700565,3.144321651883089,5365.9528557747635,2019
+1998,31,"(30,35]",HS,266.936,64.68197740112994,4.126899187768752,4893.972817692412,2019
+1998,53,"(50,55]",HS,208.91753333333332,38.80918644067796,5.383197961458832,6425.294990617806,2019
+1998,53,"(50,55]",HS,260.7549,73.92225988700567,3.5274205685618725,6550.791038023041,2019
+1998,53,"(50,55]",HS,147.45296666666667,166.32508474576272,0.8865347454477889,6786.444765740608,2019
+1998,53,"(50,55]",HS,182.5339,42.50529943502825,4.294379816780572,6444.152869554647,2019
+1998,53,"(50,55]",HS,256.7982666666667,164.47702824858757,1.5613017173349368,6767.217954213816,2019
+1998,55,"(50,55]",HS,20.822466666666667,40.65724293785311,0.5121465491030708,5220.315842370122,2019
+1998,55,"(50,55]",HS,20.69483333333333,25.872790960451983,0.7998686096512181,5200.852014357652,2019
+1998,55,"(50,55]",HS,20.2937,25.872790960451983,0.7843645484949832,5329.144744025367,2019
+1998,55,"(50,55]",HS,19.327333333333332,35.11307344632768,0.5504312621017426,5185.3922189754,2019
+1998,55,"(50,55]",HS,20.1843,24.024734463276836,0.8401466426550038,5330.150213281878,2019
+1998,76,"(75,80]",NoHS,99.18933333333334,16.632508474576273,5.963582311408398,9701.275235097906,2019
+1998,76,"(75,80]",NoHS,99.007,16.632508474576273,5.952619843924191,9693.435006187208,2019
+1998,76,"(75,80]",NoHS,99.18933333333334,16.632508474576273,5.963582311408398,9611.283051587137,2019
+1998,76,"(75,80]",NoHS,99.007,16.632508474576273,5.952619843924191,9690.214750030234,2019
+1998,76,"(75,80]",NoHS,99.18933333333334,16.632508474576273,5.963582311408398,9609.415176670158,2019
+1998,32,"(30,35]",College,99.51753333333335,101.64310734463277,0.9790878686530862,7930.3280994123,2019
+1998,32,"(30,35]",College,99.3352,103.49116384180793,0.9598423315814618,7932.568718022878,2019
+1998,32,"(30,35]",College,102.43486666666666,101.64310734463277,1.007789601702645,8069.318288678587,2019
+1998,32,"(30,35]",College,99.3352,103.49116384180793,0.9598423315814618,7968.259919419232,2019
+1998,32,"(30,35]",College,102.43486666666666,103.49116384180793,0.9897933588150977,8019.657480450545,2019
+1998,20,"(15,20]",HS,501.2708,46.201412429378536,10.849685618729096,2892.424762331481,2019
+1998,20,"(15,20]",HS,501.2708,46.201412429378536,10.849685618729096,2753.932894341607,2019
+1998,20,"(15,20]",HS,501.2708,46.201412429378536,10.849685618729096,2591.137888131369,2019
+1998,20,"(15,20]",HS,501.2708,46.201412429378536,10.849685618729096,2825.6837476789333,2019
+1998,20,"(15,20]",HS,501.2708,46.201412429378536,10.849685618729096,2569.7127218827086,2019
+1998,71,"(70,75]",NoHS,209.13633333333334,92.40282485875707,2.2633110367892977,5903.6801197895675,2019
+1998,71,"(70,75]",NoHS,208.04233333333335,92.40282485875707,2.2514715719063543,5885.2268482744275,2019
+1998,71,"(70,75]",NoHS,204.76033333333334,92.40282485875707,2.215953177257525,6332.09617080942,2019
+1998,71,"(70,75]",NoHS,206.58366666666666,92.40282485875707,2.2356856187290965,6037.382396110295,2019
+1998,71,"(70,75]",NoHS,229.193,92.40282485875707,2.4803678929765884,6141.5414320505715,2019
+1998,61,"(60,65]",College,9971.263,1940.4593220338984,5.1386096512183475,1336.0518693715908,2019
+1998,61,"(60,65]",College,9969.257333333335,2162.2261016949155,4.6106451705113916,1373.6411494366278,2019
+1998,61,"(60,65]",College,9971.080666666667,2494.87627118644,3.9966233122754873,1509.6740211365836,2019
+1998,61,"(60,65]",College,9969.439666666667,3344.9822598870055,2.980416304809771,1594.694995657589,2019
+1998,61,"(60,65]",College,9969.257333333335,2513.3568361581924,3.9665109187487704,1299.6337999441757,2019
+1998,64,"(60,65]",HS,255.63133333333334,66.53003389830509,3.842344853214418,8239.822548971426,2019
+1998,64,"(60,65]",HS,122.6374,55.441694915254246,2.21200668896321,8163.187435787229,2019
+1998,64,"(60,65]",HS,587.6238666666667,114.57950282485875,5.128525191498544,6081.38191232761,2019
+1998,64,"(60,65]",HS,210.048,38.80918644067796,5.412326803631152,8069.791898681974,2019
+1998,64,"(60,65]",HS,101.37733333333333,29.56890395480226,3.4285117056856187,8505.351286861827,2019
+1998,66,"(65,70]",College,9261.986333333334,646.8197740112995,14.319268991877687,24.53020817016796,2019
+1998,66,"(65,70]",College,9259.251333333334,646.8197740112995,14.315040611562349,26.43676998248344,2019
+1998,66,"(65,70]",College,9239.285833333333,646.8197740112995,14.28417343526039,25.88029422940003,2019
+1998,66,"(65,70]",College,9254.328333333335,646.8197740112995,14.307429526994746,26.719125504811366,2019
+1998,66,"(65,70]",College,9236.095,646.8197740112995,14.279240324892497,27.97163603202594,2019
+1998,77,"(75,80]",HS,622.1213333333334,68.37809039548021,9.098255446081536,8014.584145547972,2019
+1998,77,"(75,80]",HS,647.4656666666666,68.37809039548021,9.468905360209709,7675.459135394895,2019
+1998,77,"(75,80]",HS,647.4656666666666,68.37809039548021,9.468905360209709,7913.536078050684,2019
+1998,77,"(75,80]",HS,674.8156666666666,68.37809039548021,9.86888728193076,7684.562753184303,2019
+1998,77,"(75,80]",HS,654.9413333333334,68.37809039548021,9.578233752146799,7924.392192789985,2019
+1998,69,"(65,70]",HS,9133.988333333335,552.5688926553671,16.530044406662125,1701.4246674142166,2019
+1998,69,"(65,70]",HS,10993.788333333334,554.4169491525424,19.829459308807134,1730.7605631806587,2019
+1998,69,"(65,70]",HS,9628.111666666666,554.4169491525424,17.366192865105905,1637.3145745820614,2019
+1998,69,"(65,70]",HS,9407.488333333335,554.4169491525424,16.96825529542921,1790.6470882359201,2019
+1998,69,"(65,70]",HS,9225.155,554.4169491525424,16.63938127090301,1660.495073593795,2019
+1998,42,"(40,45]",College,478.8073333333333,120.12367231638417,3.985953177257525,6435.158333249555,2019
+1998,42,"(40,45]",College,471.514,121.97172881355934,3.8657646701124957,6157.21272082058,2019
+1998,42,"(40,45]",College,478.8073333333333,121.97172881355934,3.925559947299077,5749.5751399326855,2019
+1998,42,"(40,45]",College,478.8073333333333,120.12367231638417,3.985953177257525,6285.193142249565,2019
+1998,42,"(40,45]",College,471.514,121.97172881355934,3.8657646701124957,5731.492564651239,2019
+1998,59,"(55,60]",HS,360.98353333333336,25.872790960451983,13.952245580506448,4581.059873285691,2019
+1998,59,"(55,60]",HS,322.01890000000003,44.35335593220339,7.260305183946489,4650.307991540787,2019
+1998,59,"(55,60]",HS,657.7675,59.13780790960452,11.122622282608697,9881.289916979043,2019
+1998,59,"(55,60]",HS,417.79859999999996,35.11307344632768,11.898662207357859,4405.771038988781,2019
+1998,59,"(55,60]",HS,701.5092666666667,35.11307344632768,19.97857771519099,10318.796404198825,2019
+1998,19,"(15,20]",HS,169.023,13.306006779661017,12.702759197324415,5635.277825177111,2019
+1998,19,"(15,20]",HS,148.96633333333335,13.306006779661017,11.195419918246007,5617.069369845523,2019
+1998,19,"(15,20]",HS,234.663,13.306006779661017,17.635869565217394,5675.994397419726,2019
+1998,19,"(15,20]",HS,1009.5796666666666,13.306006779661017,75.87397807506503,5220.339703173326,2019
+1998,19,"(15,20]",HS,787.133,13.306006779661017,59.156215161649946,4759.074903137948,2019
+1998,51,"(50,55]",College,29647.582333333332,3381.9433898305087,8.766433649505636,15.461122807023534,2019
+1998,51,"(50,55]",College,10049.028166666667,3677.632429378531,2.7324721433253223,14.76385092088788,2019
+1998,51,"(50,55]",College,32919.1711,2568.7985310734466,12.815006977695434,14.131132046699694,2019
+1998,51,"(50,55]",College,15643.9265,5655.052881355933,2.766362548363827,12.418519587477107,2019
+1998,51,"(50,55]",College,45172.82806666667,1443.3321242937852,31.297597625889118,16.010495326213785,2019
+1998,65,"(60,65]",HS,19.692,20.328621468926556,0.9686834904226207,5219.985663467409,2019
+1998,65,"(60,65]",HS,39.931,20.328621468926556,1.9642748555792031,5222.5028840802315,2019
+1998,65,"(60,65]",HS,23.521,20.328621468926556,1.1570386135603525,5213.178689268983,2019
+1998,65,"(60,65]",HS,45.401,20.328621468926556,2.2333536029188203,5172.228286348549,2019
+1998,65,"(60,65]",HS,21.697666666666667,20.328621468926556,1.0673456977804803,5204.5552862259465,2019
+1998,20,"(15,20]",HS,1.5133666666666665,12.381978531073447,0.12222333150302,5328.813981055973,2019
+1998,20,"(15,20]",HS,1.3128,11.457950282485875,0.11457546660912721,5342.997207520069,2019
+1998,20,"(15,20]",HS,1.6957,12.19717288135593,0.13902401945880208,5386.235889967081,2019
+1998,20,"(15,20]",HS,1.5680666666666667,17.002119774011298,0.09222771557365131,5323.624920006528,2019
+1998,20,"(15,20]",HS,1.4769,14.230035028248587,0.1037875168309951,5366.411583122617,2019
+1998,50,"(45,50]",College,2780.4921666666664,92.40282485875707,30.090986622073572,157.4560047522761,2019
+1998,50,"(45,50]",College,2876.9465,92.40282485875707,31.13483277591973,157.010295472491,2019
+1998,50,"(45,50]",College,2711.9348333333337,92.40282485875707,29.349046822742476,147.54209426197204,2019
+1998,50,"(45,50]",College,2884.9691666666668,92.40282485875707,31.22165551839465,164.8928659601079,2019
+1998,50,"(45,50]",College,2775.0221666666666,92.40282485875707,30.03178929765886,156.49360032647812,2019
+1998,57,"(55,60]",College,1928.5396666666668,242.09540112994353,7.966031810870842,12677.183342975433,2019
+1998,57,"(55,60]",College,1930.363,171.86925423728815,11.231578379544718,13310.446752006314,2019
+1998,57,"(55,60]",College,1931.8216666666667,166.32508474576272,11.614734299516908,11563.862010738283,2019
+1998,57,"(55,60]",College,1928.0109,79.46642937853107,24.26195457727308,11849.545150295664,2019
+1998,57,"(55,60]",College,1932.1863333333333,88.70671186440678,21.78173773690078,12559.287953020945,2019
+1998,42,"(40,45]",College,199.47266666666667,92.40282485875707,2.1587290969899664,6546.423743597779,2019
+1998,42,"(40,45]",College,199.47266666666667,92.40282485875707,2.1587290969899664,6678.381857184746,2019
+1998,42,"(40,45]",College,199.29033333333334,92.40282485875707,2.1567558528428092,6949.23849679504,2019
+1998,42,"(40,45]",College,199.47266666666667,90.55476836158192,2.202784792846905,6604.237198110079,2019
+1998,42,"(40,45]",College,199.47266666666667,92.40282485875707,2.1587290969899664,6877.449326288401,2019
+1998,65,"(60,65]",NoHS,181.62223333333336,94.25088135593221,1.9270083284149782,8871.772048637693,2019
+1998,65,"(60,65]",NoHS,181.42166666666665,94.25088135593221,1.9248803200209847,9191.26092087839,2019
+1998,65,"(60,65]",NoHS,181.78633333333335,94.25088135593221,1.9287494261918814,9354.812322753733,2019
+1998,65,"(60,65]",NoHS,181.8045666666667,94.25088135593221,1.9289428815004264,8896.217221801357,2019
+1998,65,"(60,65]",NoHS,181.96866666666665,94.25088135593221,1.9306839792773294,9255.648594833936,2019
+1998,30,"(25,30]",College,-10.94,81.31448587570623,-0.13453937366980842,5439.700621604325,2019
+1998,30,"(25,30]",College,-11.122333333333334,81.31448587570623,-0.13678169656430525,5456.461176667915,2019
+1998,30,"(25,30]",College,-10.94,81.31448587570623,-0.13453937366980842,5491.965122839175,2019
+1998,30,"(25,30]",College,-10.94,81.31448587570623,-0.13453937366980842,5434.241334905907,2019
+1998,30,"(25,30]",College,-10.94,81.31448587570623,-0.13453937366980842,5515.967511685421,2019
+1998,50,"(45,50]",College,633794.131,8778.26836158192,72.20035944375991,1.5150354057313873,2019
+1998,50,"(45,50]",College,647744.272,21049.363502824857,30.77262986660246,1.464846990715889,2019
+1998,50,"(45,50]",HS,654282.3624333333,12954.87604519774,50.50471808071603,1.378549503687558,2019
+1998,50,"(45,50]",HS,642764.931,10090.388474576272,63.70071208056157,1.3995906763482278,2019
+1998,50,"(45,50]",HS,740804.835,15098.621581920903,49.064401738966694,1.3253294318145419,2019
+1998,35,"(30,35]",HS,69.10433333333333,55.441694915254246,1.246432552954292,7084.522058342247,2019
+1998,35,"(30,35]",HS,67.09866666666667,55.441694915254246,1.2102564102564102,7181.423531850547,2019
+1998,35,"(30,35]",HS,65.45766666666667,55.441694915254246,1.1806577480490523,7476.045329312692,2019
+1998,35,"(30,35]",HS,67.281,57.289751412429375,1.174398532743554,7120.0023080945075,2019
+1998,35,"(30,35]",HS,69.10433333333333,55.441694915254246,1.246432552954292,7385.543612665152,2019
+1998,59,"(55,60]",College,382.353,170.021197740113,2.2488548785807767,8786.892655402877,2019
+1998,59,"(55,60]",College,536.2423333333334,170.021197740113,3.153973389559401,8424.887426615376,2019
+1998,59,"(55,60]",College,180.14533333333335,170.021197740113,1.059546313799622,11059.379791903919,2019
+1998,59,"(55,60]",College,200.749,170.021197740113,1.1807292424022102,10465.271199618155,2019
+1998,59,"(55,60]",College,229.37533333333334,170.021197740113,1.3490984440889924,10972.735472848377,2019
+1998,79,"(75,80]",HS,766.7116666666666,79.46642937853107,9.648246091623239,7709.007507732662,2019
+1998,79,"(75,80]",HS,733.1623333333334,79.46642937853107,9.226063622929145,7440.919404337832,2019
+1998,79,"(75,80]",HS,762.1533333333334,79.46642937853107,9.59088434315937,7647.016886439569,2019
+1998,79,"(75,80]",HS,774.7343333333334,79.46642937853107,9.749202768919655,7445.542943553055,2019
+1998,79,"(75,80]",HS,780.022,79.46642937853107,9.815742397137747,7549.140143539965,2019
+1998,57,"(55,60]",College,9904.711333333335,2402.4734463276836,4.122714175456651,27.6080540632598,2019
+1998,57,"(55,60]",College,9622.641666666666,2402.4734463276836,4.0053061487007975,29.783557206408005,2019
+1998,57,"(55,60]",College,9330.908333333335,2402.4734463276836,3.883875739644971,29.29817273240591,2019
+1998,57,"(55,60]",College,9484.068333333335,2402.4734463276836,3.9476267043992803,30.09040222886789,2019
+1998,57,"(55,60]",College,8949.831666666667,2402.4734463276836,3.7252572678157962,31.825139449713298,2019
+1998,30,"(25,30]",NoHS,7.840333333333334,40.65724293785311,0.19283976892672544,4408.321466158701,2019
+1998,30,"(25,30]",NoHS,7.658,42.50529943502825,0.18016576995783046,4393.291575807944,2019
+1998,30,"(25,30]",NoHS,7.840333333333334,40.65724293785311,0.19283976892672544,4395.487824419421,2019
+1998,30,"(25,30]",NoHS,7.658,42.50529943502825,0.18016576995783046,4426.762241590593,2019
+1998,30,"(25,30]",NoHS,7.840333333333334,42.50529943502825,0.18445543114730262,4392.708818192805,2019
+1998,25,"(20,25]",College,1.6428233333333333,17.741342372881356,0.09259859253065775,6622.244229706453,2019
+1998,25,"(20,25]",College,1.6428233333333333,17.741342372881356,0.09259859253065775,6642.648383680613,2019
+1998,25,"(20,25]",College,1.8251566666666668,17.741342372881356,0.10287590579710146,6685.870578985009,2019
+1998,25,"(20,25]",College,1.6428233333333333,17.741342372881356,0.09259859253065775,6615.598141557168,2019
+1998,25,"(20,25]",College,1.6428233333333333,17.741342372881356,0.09259859253065775,6715.090878426665,2019
+1998,35,"(30,35]",HS,-20.038433333333334,73.92225988700567,-0.271074414715719,11458.321138502444,2019
+1998,35,"(30,35]",HS,-20.038433333333334,73.92225988700567,-0.271074414715719,11853.363940649113,2019
+1998,35,"(30,35]",HS,-21.9347,73.92225988700567,-0.29672658862876244,12269.521132374397,2019
+1998,35,"(30,35]",HS,-20.1296,73.92225988700567,-0.27230769230769225,11456.362147564463,2019
+1998,35,"(30,35]",HS,-21.952933333333334,73.92225988700567,-0.29697324414715714,12049.661983439735,2019
+1998,29,"(25,30]",HS,-7.658,73.92225988700567,-0.10359531772575249,5449.114447712343,2019
+1998,29,"(25,30]",HS,-7.658,73.92225988700567,-0.10359531772575249,5461.098253558657,2019
+1998,29,"(25,30]",HS,-7.475666666666667,73.92225988700567,-0.101128762541806,5498.7846975281,2019
+1998,29,"(25,30]",HS,-7.475666666666667,73.92225988700567,-0.101128762541806,5461.51262725899,2019
+1998,29,"(25,30]",HS,-7.658,73.92225988700567,-0.10359531772575249,5436.1563771658875,2019
+1998,57,"(55,60]",College,502676.60823333333,4989.75254237288,100.74179109376938,24.536113405023357,2019
+1998,57,"(55,60]",College,505858.3431333333,6874.770169491526,73.58185519833135,25.75983580138125,2019
+1998,57,"(55,60]",College,506569.042,5377.844406779661,94.19555563217598,22.59482456630162,2019
+1998,57,"(55,60]",College,503695.8515666667,6172.508700564971,81.60310110548136,21.34192801567523,2019
+1998,57,"(55,60]",College,504591.10823333333,7059.575819209041,71.47612280901433,21.91752728842682,2019
+1998,40,"(35,40]",NoHS,-7.074533333333334,35.11307344632768,-0.20147861292026054,5712.632921715536,2019
+1998,40,"(35,40]",NoHS,-8.223233333333333,20.328621468926556,-0.404515050167224,5857.786296866701,2019
+1998,40,"(35,40]",NoHS,-7.311566666666667,46.201412429378536,-0.1582541806020067,6122.5569315679495,2019
+1998,40,"(35,40]",NoHS,-8.843166666666667,25.872790960451983,-0.3417940754897276,5704.250207860363,2019
+1998,40,"(35,40]",NoHS,-7.457433333333333,22.176677966101696,-0.33627369007803787,5985.82005323311,2019
+1998,26,"(25,30]",NoHS,2.1150666666666664,14.045229378531072,0.1505896849146277,4767.9751311020345,2019
+1998,26,"(25,30]",NoHS,0.10940000000000001,14.045229378531072,0.007789121633515228,4778.460961194145,2019
+1998,26,"(25,30]",NoHS,3.7743,14.045229378531072,0.26872469635627533,4811.436599593778,2019
+1998,26,"(25,30]",NoHS,0.18233333333333335,14.045229378531072,0.012981869389192045,4778.823538181126,2019
+1998,26,"(25,30]",NoHS,0.2552666666666667,14.045229378531072,0.018174617144868864,4756.636819399204,2019
+1998,49,"(45,50]",College,53.8248,60.98586440677967,0.8825782912739434,5502.10430773658,2019
+1998,49,"(45,50]",College,51.83736666666667,59.13780790960452,0.8765520484949834,5525.60551220461,2019
+1998,49,"(45,50]",College,52.001466666666666,59.13780790960452,0.8793269230769231,5487.268286333741,2019
+1998,49,"(45,50]",College,51.655033333333336,59.13780790960452,0.8734688545150502,5518.2306042780265,2019
+1998,49,"(45,50]",College,51.655033333333336,60.98586440677967,0.8470001013479274,5519.181390585939,2019
+1998,51,"(50,55]",HS,106718.15016666667,7355.264858757062,14.50908325070167,16.988373072866104,2019
+1998,51,"(50,55]",HS,136600.54136666667,7429.187118644068,18.387010474383935,17.31960725314636,2019
+1998,51,"(50,55]",HS,111993.78283333333,8445.618192090396,13.260578478224277,18.94060439607927,2019
+1998,51,"(50,55]",HS,133031.53046666668,8334.734802259887,15.961099377822602,17.623763815881922,2019
+1998,51,"(50,55]",HS,131863.01083333333,6468.197740112994,20.38636048733875,18.931858893614667,2019
+1998,55,"(50,55]",College,699685.3863333334,41488.868361581925,16.864412406611496,1.7964957198546014,2019
+1998,55,"(50,55]",College,702829.5423333334,40472.437288135596,17.365634229776578,1.738398732565361,2019
+1998,55,"(50,55]",College,830164.2136666666,41285.58214689266,20.107848079093845,1.6765279231860748,2019
+1998,55,"(50,55]",College,861077.554,24930.282146892656,34.53942273602892,1.6957573856708301,2019
+1998,55,"(50,55]",College,865869.6386666667,19016.501355932203,45.532541578504315,1.569439900845698,2019
+1998,32,"(30,35]",HS,-16.31701,48.04946892655367,-0.3395877283251865,9421.793852373561,2019
+1998,32,"(30,35]",HS,-18.687343333333335,60.98586440677967,-0.30642089794263705,9396.73154243399,2019
+1998,32,"(30,35]",HS,-17.775676666666666,48.04946892655367,-0.3699453305891433,9658.6300647922,2019
+1998,32,"(30,35]",HS,-15.770010000000001,51.745581920903966,-0.3047605112279025,9483.874530051167,2019
+1998,32,"(30,35]",HS,-19.05201,72.07420338983052,-0.2643388217134036,9677.813273194688,2019
+1998,69,"(65,70]",NoHS,0,13.860423728813561,0,6851.231180022854,2019
+1998,69,"(65,70]",NoHS,0,25.872790960451983,0,6854.5350320756015,2019
+1998,69,"(65,70]",NoHS,0,24.024734463276836,0,6842.297026391692,2019
+1998,69,"(65,70]",NoHS,0,20.328621468926556,0,6788.54962258434,2019
+1998,69,"(65,70]",NoHS,0,9.240282485875708,0,6830.978809903119,2019
+1998,48,"(45,50]",HS,1057.7886,160.78091525423727,6.579068158228579,2797.336278988916,2019
+1998,48,"(45,50]",HS,1057.7703666666666,160.78091525423727,6.5789547533925345,3055.292672259954,2019
+1998,48,"(45,50]",HS,1057.6062666666667,160.78091525423727,6.577934109868144,2845.616667772762,2019
+1998,48,"(45,50]",HS,1055.9652666666666,160.78091525423727,6.567727674624226,2826.391764414477,2019
+1998,48,"(45,50]",HS,1057.4057,160.78091525423727,6.576686656671665,2918.449322084841,2019
+1998,63,"(60,65]",HS,73.298,64.68197740112994,1.1332059245102724,6912.230095452402,2019
+1998,63,"(60,65]",HS,73.48033333333333,64.68197740112994,1.136024844720497,6891.714007281403,2019
+1998,63,"(60,65]",HS,73.298,64.68197740112994,1.1332059245102724,7252.90505239638,2019
+1998,63,"(60,65]",HS,73.298,64.68197740112994,1.1332059245102724,6795.346946298831,2019
+1998,63,"(60,65]",HS,73.298,64.68197740112994,1.1332059245102724,7190.249470019631,2019
+1998,64,"(60,65]",NoHS,8.934333333333335,25.872790960451983,0.34531772575250835,5798.991639366102,2019
+1998,64,"(60,65]",NoHS,8.934333333333335,22.176677966101696,0.40287068004459314,5806.1279839264,2019
+1998,64,"(60,65]",NoHS,8.934333333333335,22.176677966101696,0.40287068004459314,5829.345279020343,2019
+1998,64,"(60,65]",NoHS,8.934333333333335,25.872790960451983,0.34531772575250835,5797.095897749549,2019
+1998,64,"(60,65]",NoHS,8.934333333333335,22.176677966101696,0.40287068004459314,5829.670885936417,2019
+1998,44,"(40,45]",HS,69.12256666666667,73.92225988700567,0.9350710702341136,6633.643120363131,2019
+1998,44,"(40,45]",HS,69.12256666666667,73.92225988700567,0.9350710702341136,6666.0661587185,2019
+1998,44,"(40,45]",HS,69.30489999999999,73.92225988700567,0.9375376254180599,6649.107194602839,2019
+1998,44,"(40,45]",HS,69.12256666666667,73.92225988700567,0.9350710702341136,6692.200070724344,2019
+1998,44,"(40,45]",HS,69.12256666666667,73.92225988700567,0.9350710702341136,6637.494046617886,2019
+1998,19,"(15,20]",HS,21.132433333333335,6.8378090395480235,3.0905269818313297,5560.501532494016,2019
+1998,19,"(15,20]",HS,21.1142,8.501059887005649,2.483713828704377,5575.30142094381,2019
+1998,19,"(15,20]",HS,22.937533333333334,6.468197740112996,3.5462016244624937,5620.420046000782,2019
+1998,19,"(15,20]",HS,21.1142,7.207420338983052,2.9295086184718286,5555.086860107208,2019
+1998,19,"(15,20]",HS,21.132433333333335,7.577031638418079,2.7890121543355906,5599.733812819973,2019
+1998,87,"(85,90]",HS,217.79716666666667,48.04946892655367,4.532769488037046,9201.05985319397,2019
+1998,87,"(85,90]",HS,272.88006666666666,18.480564971751416,14.765785953177254,9333.304746456357,2019
+1998,87,"(85,90]",HS,128.78203333333335,27.720847457627123,4.645674470457079,9786.033650141342,2019
+1998,87,"(85,90]",HS,124.09606666666667,25.872790960451983,4.796392737697085,9866.400470354743,2019
+1998,87,"(85,90]",HS,240.88056666666668,12.936395480225992,18.620377448638315,9703.782579847015,2019
+1998,45,"(40,45]",College,1572.4627233333333,277.2084745762712,5.672491527313266,672.0917793659944,2019
+1998,45,"(40,45]",College,1959.1734900000001,277.2084745762712,7.067509364548495,718.93104459162,2019
+1998,45,"(40,45]",College,2547.8713,277.2084745762712,9.191173913043476,942.8621107542589,2019
+1998,45,"(40,45]",College,2596.1367566666668,277.2084745762712,9.365286399108138,1029.9302171209063,2019
+1998,45,"(40,45]",College,1316.3737333333333,277.2084745762712,4.748677814938684,659.8598502048342,2019
+1998,76,"(75,80]",HS,1.094,24.024734463276836,0.04553640339593517,5274.675592806682,2019
+1998,76,"(75,80]",HS,1.094,24.024734463276836,0.04553640339593517,5364.922825010832,2019
+1998,76,"(75,80]",HS,1.094,24.024734463276836,0.04553640339593517,5317.536203715541,2019
+1998,76,"(75,80]",HS,1.094,24.024734463276836,0.04553640339593517,5258.1801585037665,2019
+1998,76,"(75,80]",HS,1.094,24.024734463276836,0.04553640339593517,5323.33756907036,2019
+1998,47,"(45,50]",HS,-19.892566666666667,36.96112994350283,-0.5382023411371236,5863.939524399147,2019
+1998,47,"(45,50]",HS,-19.874333333333333,36.96112994350283,-0.5377090301003343,5884.515063185753,2019
+1998,47,"(45,50]",HS,-19.874333333333333,36.96112994350283,-0.5377090301003343,5883.7211902011695,2019
+1998,47,"(45,50]",HS,-19.874333333333333,36.96112994350283,-0.5377090301003343,5847.707069024703,2019
+1998,47,"(45,50]",HS,-19.892566666666667,36.96112994350283,-0.5382023411371236,5843.738963378678,2019
+1998,34,"(30,35]",HS,23.758033333333334,105.33922033898305,0.22553834418822977,5646.435670320965,2019
+1998,34,"(30,35]",HS,22.281133333333337,105.33922033898305,0.2115179252479024,5663.153143511656,2019
+1998,34,"(30,35]",HS,24.669700000000002,105.33922033898305,0.2341929237810245,5663.435301313184,2019
+1998,34,"(30,35]",HS,23.922133333333335,105.33922033898305,0.22709616851493283,5691.625242042837,2019
+1998,34,"(30,35]",HS,24.651466666666668,107.18727683615819,0.2299850074962519,5670.024288250685,2019
+1998,42,"(40,45]",College,2110.5083333333337,184.80564971751414,11.420150501672241,32.40059072763658,2019
+1998,42,"(40,45]",College,2112.3316666666665,184.80564971751414,11.430016722408025,33.88491363358727,2019
+1998,42,"(40,45]",College,2112.3316666666665,184.80564971751414,11.430016722408025,37.501004918089826,2019
+1998,42,"(40,45]",College,2110.5083333333337,184.80564971751414,11.420150501672241,37.46184075588751,2019
+1998,42,"(40,45]",College,2114.155,184.80564971751414,11.439882943143813,36.25047312419011,2019
+1998,39,"(35,40]",HS,515.274,157.08480225988703,3.2802282116860115,7197.991184270298,2019
+1998,39,"(35,40]",HS,513.2683333333333,157.08480225988703,3.2674601613220533,6810.1435075197605,2019
+1998,39,"(35,40]",HS,513.2683333333333,157.08480225988703,3.2674601613220533,6429.9333154256,2019
+1998,39,"(35,40]",HS,513.2683333333333,157.08480225988703,3.2674601613220533,7033.282045279937,2019
+1998,39,"(35,40]",HS,511.445,157.08480225988703,3.255852842809364,6400.907602420346,2019
+1998,66,"(65,70]",College,32510.033333333333,20.328621468926556,1599.224688355123,20.509354661393694,2019
+1998,66,"(65,70]",College,50878.475666666665,20.328621468926556,2502.8000912131342,25.074107589463175,2019
+1998,66,"(65,70]",College,57715.793333333335,20.328621468926556,2839.1395560960777,30.927558731825656,2019
+1998,66,"(65,70]",College,39579.279,20.328621468926556,1946.9730921252658,23.444957467344494,2019
+1998,66,"(65,70]",College,51383.35666666667,22.176677966101696,2316.9997212931994,26.424276254213254,2019
+1998,48,"(45,50]",College,394.8428333333333,129.36395480225988,3.05218585762064,5639.159938382367,2019
+1998,48,"(45,50]",College,378.6151666666667,129.36395480225988,2.9267439082656477,5398.726693585091,2019
+1998,48,"(45,50]",College,400.4951666666667,129.36395480225988,3.0958791208791214,5019.509260695193,2019
+1998,48,"(45,50]",College,384.0851666666667,129.36395480225988,2.969027711419016,5516.475556203393,2019
+1998,48,"(45,50]",College,391.56083333333333,129.36395480225988,3.0268155757286195,5022.453329630479,2019
+1998,77,"(75,80]",HS,226.09333333333333,40.65724293785311,5.560960778352082,5080.583081017145,2019
+1998,77,"(75,80]",HS,226.09333333333333,24.024734463276836,9.410856701826601,5163.154873103219,2019
+1998,77,"(75,80]",HS,226.09333333333333,20.328621468926556,11.121921556704164,5261.585846674525,2019
+1998,77,"(75,80]",HS,226.09333333333333,38.80918644067796,5.825768434464087,5259.628350965728,2019
+1998,77,"(75,80]",HS,226.09333333333333,22.176677966101696,10.19509476031215,5222.052578773088,2019
+1998,32,"(30,35]",HS,-9.481333333333334,31.416960451977403,-0.30179028132992325,5084.075760054158,2019
+1998,32,"(30,35]",HS,-9.299,31.416960451977403,-0.29598662207357856,5084.379343739246,2019
+1998,32,"(30,35]",HS,-9.481333333333334,31.416960451977403,-0.30179028132992325,5088.5839127130275,2019
+1998,32,"(30,35]",HS,-9.481333333333334,31.416960451977403,-0.30179028132992325,5078.123369199218,2019
+1998,32,"(30,35]",HS,-9.299,31.416960451977403,-0.29598662207357856,5127.589394987722,2019
+1998,73,"(70,75]",HS,96.819,70.22614689265536,1.3786745291321951,7755.311027851558,2019
+1998,73,"(70,75]",HS,96.819,70.22614689265536,1.3786745291321951,7737.873395106892,2019
+1998,73,"(70,75]",HS,97.913,70.22614689265536,1.3942527723992255,8322.156723594293,2019
+1998,73,"(70,75]",HS,98.27766666666668,70.22614689265536,1.3994455201549025,7905.002222580508,2019
+1998,73,"(70,75]",HS,101.19500000000001,70.22614689265536,1.440987502200317,8200.389430935862,2019
+1998,29,"(25,30]",College,54.918800000000005,36.96112994350283,1.4858528428093642,6318.245348713845,2019
+1998,29,"(25,30]",College,54.736466666666665,36.96112994350283,1.4809197324414711,6393.1720990083695,2019
+1998,29,"(25,30]",College,54.918800000000005,36.96112994350283,1.4858528428093642,6529.46084079184,2019
+1998,29,"(25,30]",College,54.736466666666665,36.96112994350283,1.4809197324414711,6307.561500235812,2019
+1998,29,"(25,30]",College,54.55413333333333,36.96112994350283,1.4759866220735782,6422.092830362874,2019
+1998,38,"(35,40]",College,1161.0986666666668,380.69963841807913,3.0499074585186867,1480.5935331409144,2019
+1998,38,"(35,40]",College,1161.0986666666668,380.69963841807913,3.0499074585186867,1569.6711247151757,2019
+1998,38,"(35,40]",College,1161.0986666666668,380.69963841807913,3.0499074585186867,1487.670861197806,2019
+1998,38,"(35,40]",College,1161.0986666666668,380.69963841807913,3.0499074585186867,1548.1023058711955,2019
+1998,38,"(35,40]",College,1162.922,380.69963841807913,3.0546968860603303,1473.9380526320622,2019
+1998,30,"(25,30]",NoHS,79.13266666666668,66.53003389830509,1.1894277220364178,11119.215648778109,2019
+1998,30,"(25,30]",NoHS,78.768,68.37809039548021,1.1519479345566304,11358.174711240603,2019
+1998,30,"(25,30]",NoHS,78.58566666666667,68.37809039548021,1.1492813884118234,11419.461030634211,2019
+1998,30,"(25,30]",NoHS,79.862,59.13780790960452,1.3504389632107023,11177.913055748082,2019
+1998,30,"(25,30]",NoHS,80.04433333333333,66.53003389830509,1.2031308063916757,11412.087047251216,2019
+1998,50,"(45,50]",College,323.45933333333335,125.66784180790961,2.573922880188865,6729.651038795875,2019
+1998,50,"(45,50]",College,603.9791666666666,101.64310734463277,5.94215567041654,5998.398427975454,2019
+1998,50,"(45,50]",College,277.0190333333333,33.265016949152546,8.327638424377554,7151.168631680349,2019
+1998,50,"(45,50]",College,248.2833,49.89752542372881,4.975863991081383,6711.048976078705,2019
+1998,50,"(45,50]",College,553.1993333333334,116.4275593220339,4.751446621011839,5578.0467004699885,2019
+1998,44,"(40,45]",College,2.735,77.61837288135592,0.035236502627806976,132.33494048014,2019
+1998,44,"(40,45]",College,2.735,68.37809039548021,0.03999819217210522,133.70249026246267,2019
+1998,44,"(40,45]",College,2.735,86.85865536723163,0.031487938518465805,132.05845757351395,2019
+1998,44,"(40,45]",College,2.735,90.55476836158192,0.030202716538120265,132.14839169600486,2019
+1998,44,"(40,45]",College,2.735,83.16254237288136,0.03288740245261984,136.47988144534997,2019
+1998,83,"(80,85]",HS,365.943,51.745581920903966,7.071966077400858,6423.290979090671,2019
+1998,83,"(80,85]",HS,387.82300000000004,85.0105988700565,4.562054675003636,6527.685029690007,2019
+1998,83,"(80,85]",HS,289.72766666666666,90.55476836158192,3.1994744386048732,6652.129561847343,2019
+1998,83,"(80,85]",HS,176.49866666666665,53.593638418079095,3.293276438703725,6649.654734779784,2019
+1998,83,"(80,85]",HS,324.1886666666667,75.77031638418079,4.278570845909129,6602.148353187639,2019
+1998,39,"(35,40]",HS,268.577,92.40282485875707,2.9065886287625413,5613.293713119658,2019
+1998,39,"(35,40]",HS,270.4003333333333,92.40282485875707,2.9263210702341134,5370.317362986463,2019
+1998,39,"(35,40]",HS,268.577,92.40282485875707,2.9065886287625413,5014.988619618716,2019
+1998,39,"(35,40]",HS,268.577,92.40282485875707,2.9065886287625413,5480.975115262682,2019
+1998,39,"(35,40]",HS,270.218,92.40282485875707,2.924347826086956,4998.555142770293,2019
+1998,34,"(30,35]",College,2036.8456666666668,129.36395480225988,15.74507883420927,12677.183342975433,2019
+1998,34,"(30,35]",College,2036.8456666666668,129.36395480225988,15.74507883420927,13310.446752006314,2019
+1998,34,"(30,35]",College,2036.8456666666668,129.36395480225988,15.74507883420927,11563.862010738283,2019
+1998,34,"(30,35]",College,2036.8456666666668,129.36395480225988,15.74507883420927,11849.545150295664,2019
+1998,34,"(30,35]",College,2035.0223333333333,129.36395480225988,15.730984233158146,12559.287953020945,2019
+1998,42,"(40,45]",HS,32.8747,99.79505084745762,0.3294221479004088,8888.463254270913,2019
+1998,42,"(40,45]",HS,34.82566666666666,99.79505084745762,0.34897188158057724,9067.630520194964,2019
+1998,42,"(40,45]",HS,33.07526666666667,99.79505084745762,0.3314319336058467,9435.388456840275,2019
+1998,42,"(40,45]",HS,27.532333333333334,99.79505084745762,0.27588876501919984,8966.959970365353,2019
+1998,42,"(40,45]",HS,27.605266666666665,99.79505084745762,0.2766195961848136,9337.916091913263,2019
+1998,49,"(45,50]",College,1854.8952333333334,221.76677966101698,8.364170847268673,797.9765239530605,2019
+1998,49,"(45,50]",College,1839.7798,223.61483615819208,8.22744962547334,847.4785778394746,2019
+1998,49,"(45,50]",College,1806.0299,223.61483615819208,8.07652090992012,810.411440030314,2019
+1998,49,"(45,50]",College,1857.0832333333335,223.61483615819208,8.304830150087069,834.0361437557127,2019
+1998,49,"(45,50]",College,1796.3844666666666,223.61483615819208,8.033386771331436,789.3669971454356,2019
+1998,43,"(40,45]",HS,127.43276666666667,51.745581920903966,2.462679168657429,6971.343735813543,2019
+1998,43,"(40,45]",HS,128.49030000000002,51.745581920903966,2.4831163401815575,7111.867081776896,2019
+1998,43,"(40,45]",HS,130.186,51.745581920903966,2.5158862876254178,7400.304679434301,2019
+1998,43,"(40,45]",HS,130.733,51.745581920903966,2.5264572384137596,7032.909787713902,2019
+1998,43,"(40,45]",HS,129.76663333333335,51.745581920903966,2.507781892021022,7323.855765689579,2019
+1998,60,"(55,60]",College,7878.805666666667,668.9964519774012,11.777051497625603,299.3795337464169,2019
+1998,60,"(55,60]",College,7878.805666666667,668.9964519774012,11.777051497625603,299.06473041804315,2019
+1998,60,"(55,60]",College,7878.988,668.9964519774012,11.77732404515974,285.01372738225047,2019
+1998,60,"(55,60]",College,7880.629,668.9964519774012,11.779776972966978,305.7523090027176,2019
+1998,60,"(55,60]",College,7880.629,668.9964519774012,11.779776972966978,295.6368007403637,2019
+1998,51,"(50,55]",College,44367.17,3843.9575141242935,11.542055248263443,27.16682622033857,2019
+1998,51,"(50,55]",College,44030.94733333334,3751.554689265537,11.736720101487718,28.056924644252824,2019
+1998,51,"(50,55]",College,43410.649333333335,4102.6854237288135,10.581032872337222,30.603898916797483,2019
+1998,51,"(50,55]",College,50366.48366666667,3492.826779661017,14.419977526499265,27.85973822035848,2019
+1998,51,"(50,55]",College,43266.97066666667,3696.1129943502824,11.70607357859532,30.59730117749432,2019
+1998,61,"(60,65]",College,9350.053333333333,1108.8338983050849,8.432329988851727,208.0456107944621,2019
+1998,61,"(60,65]",College,10425.090666666667,1108.8338983050849,9.401850613154961,204.24782270085961,2019
+1998,61,"(60,65]",College,9432.103333333334,1108.8338983050849,8.506326644370123,198.74523196814184,2019
+1998,61,"(60,65]",College,9546.973333333333,1108.8338983050849,8.609921962095875,216.2431039155938,2019
+1998,61,"(60,65]",College,10280.500333333333,1108.8338983050849,9.271452062430322,204.62046263766325,2019
+1998,41,"(40,45]",HS,0,11.088338983050848,0,5944.3786329777395,2019
+1998,41,"(40,45]",HS,0,11.088338983050848,0,5913.26349065468,2019
+1998,41,"(40,45]",HS,0,11.088338983050848,0,5938.024743513928,2019
+1998,41,"(40,45]",HS,0,11.088338983050848,0,5917.20902888125,2019
+1998,41,"(40,45]",HS,0,11.088338983050848,0,5941.05709658537,2019
+1998,51,"(50,55]",HS,898.7392333333333,127.51589830508476,7.048056323009063,5928.803122682337,2019
+1998,51,"(50,55]",HS,918.3036,99.79505084745762,9.201895206243034,5681.180915389119,2019
+1998,51,"(50,55]",HS,923.5183333333334,125.66784180790961,7.3488835333464495,5293.986339163972,2019
+1998,51,"(50,55]",HS,905.9961,110.88338983050849,8.170710702341136,5793.152819772431,2019
+1998,51,"(50,55]",HS,907.8194333333333,134.9081242937853,6.729168002932148,5284.918269605436,2019
+1998,29,"(25,30]",College,-13.912033333333333,46.201412429378536,-0.3011170568561873,4192.305162980284,2019
+1998,29,"(25,30]",College,-25.636066666666665,60.98586440677967,-0.4203607986216681,4162.003407052234,2019
+1998,29,"(25,30]",College,-6.162866666666667,53.593638418079095,-0.11499250374812595,4184.668180135367,2019
+1998,29,"(25,30]",College,-18.78033333333333,20.328621468926556,-0.9238370325326845,4193.219639465275,2019
+1998,29,"(25,30]",College,18.23333333333333,29.56890395480226,0.616638795986622,4175.383794062975,2019
+1998,44,"(40,45]",HS,8.022666666666668,20.328621468926556,0.39464882943143814,5799.1336488880215,2019
+1998,44,"(40,45]",HS,6.564,20.328621468926556,0.32289449680754023,5827.477882865372,2019
+1998,44,"(40,45]",HS,3.282,20.328621468926556,0.16144724840377012,5812.652349192705,2019
+1998,44,"(40,45]",HS,5.105333333333333,20.328621468926556,0.25114016418364243,5850.324159902036,2019
+1998,44,"(40,45]",HS,8.387333333333334,20.328621468926556,0.41258741258741255,5802.5001302645705,2019
+1998,41,"(40,45]",HS,198.10516666666666,46.201412429378536,4.2878595317725745,6937.163995893794,2019
+1998,41,"(40,45]",HS,198.10516666666666,46.201412429378536,4.2878595317725745,7032.049918703402,2019
+1998,41,"(40,45]",HS,198.10516666666666,46.201412429378536,4.2878595317725745,7320.543582627169,2019
+1998,41,"(40,45]",HS,198.10516666666666,46.201412429378536,4.2878595317725745,6971.906256433,2019
+1998,41,"(40,45]",HS,197.92283333333336,46.201412429378536,4.283913043478261,7231.92430173233,2019
+1998,21,"(20,25]",HS,-1.7868666666666666,7.577031638418079,-0.23582673953829839,9521.562361805969,2019
+1998,21,"(20,25]",HS,-8.5332,7.946642937853107,-1.0738119312436807,9446.960320846129,2019
+1998,21,"(20,25]",HS,-8.5332,7.577031638418079,-1.1261930010604455,9660.172065256838,2019
+1998,21,"(20,25]",HS,-2.3156333333333334,8.501059887005649,-0.2723934855314818,9613.241396254287,2019
+1998,21,"(20,25]",HS,-26.948866666666664,8.685865536723163,-3.1026115420194973,9783.27846929459,2019
+1998,39,"(35,40]",HS,45273.36666666667,7909.681807909606,5.723791141812271,28.22184059674483,2019
+1998,39,"(35,40]",HS,45975.35,7909.681807909606,5.81254102459913,30.639316426521578,2019
+1998,39,"(35,40]",HS,44456.513333333336,7909.681807909606,5.620518550933016,31.036640637792367,2019
+1998,39,"(35,40]",HS,47457.72,7909.681807909606,5.99995311474385,28.586895599279444,2019
+1998,39,"(35,40]",HS,43829.28666666667,7909.681807909606,5.541219954365016,30.381399923236962,2019
+1998,76,"(75,80]",NoHS,91.16666666666667,17.371731073446327,5.247989753077635,9668.611001460742,2019
+1998,76,"(75,80]",NoHS,91.16666666666667,18.480564971751416,4.933110367892976,9660.797170633046,2019
+1998,76,"(75,80]",NoHS,91.16666666666667,15.338868926553674,5.943506467340935,9578.921822002163,2019
+1998,76,"(75,80]",NoHS,91.16666666666667,17.002119774011298,5.362076486840192,9657.587757091806,2019
+1998,76,"(75,80]",NoHS,91.16666666666667,15.708480225988701,5.8036592563446785,9577.06023622772,2019
+1998,21,"(20,25]",HS,1.8233333333333333,22.176677966101696,0.0822185061315496,5202.187681321773,2019
+1998,21,"(20,25]",HS,10.028333333333334,27.720847457627123,0.36176142697881825,5211.447815097174,2019
+1998,21,"(20,25]",HS,2.188,16.07809152542373,0.13608580325222006,5255.679091724359,2019
+1998,21,"(20,25]",HS,5.47,35.11307344632768,0.15578243267030453,5214.179709237113,2019
+1998,21,"(20,25]",HS,1.8233333333333333,25.872790960451983,0.07047300525561394,5154.170077750277,2019
+1998,78,"(75,80]",HS,11.7605,48.04946892655367,0.24475816825315155,198.92025178055775,2019
+1998,78,"(75,80]",HS,12.307500000000001,16.07809152542373,0.7654826432937377,202.79569642249322,2019
+1998,78,"(75,80]",HS,12.581,42.50529943502825,0.29598662207357856,203.76175228629924,2019
+1998,78,"(75,80]",HS,51.60033333333334,55.441694915254246,0.9307134894091416,204.24094302920076,2019
+1998,78,"(75,80]",HS,20.421333333333333,36.96112994350283,0.5525083612040133,213.4329729526158,2019
+1998,24,"(20,25]",HS,3.6102,24.024734463276836,0.15027013120658606,6487.251797842384,2019
+1998,24,"(20,25]",HS,3.591966666666667,22.176677966101696,0.16197045707915272,6504.51833439358,2019
+1998,24,"(20,25]",HS,3.591966666666667,22.176677966101696,0.16197045707915272,6557.156730373979,2019
+1998,24,"(20,25]",HS,3.7925333333333335,24.024734463276836,0.15785953177257525,6480.934680048102,2019
+1998,24,"(20,25]",HS,3.7743,24.024734463276836,0.15710059171597635,6533.02279162608,2019
+1998,53,"(50,55]",HS,54.51766666666666,29.56890395480226,1.84375,7366.710558274901,2019
+1998,53,"(50,55]",HS,54.51766666666666,29.56890395480226,1.84375,7376.027811123301,2019
+1998,53,"(50,55]",HS,54.7,29.56890395480226,1.8499163879598663,7370.370284786125,2019
+1998,53,"(50,55]",HS,54.7,29.56890395480226,1.8499163879598663,7356.207426681399,2019
+1998,53,"(50,55]",HS,54.51766666666666,29.56890395480226,1.84375,7376.415520772886,2019
+1998,60,"(55,60]",NoHS,556.2078333333334,36.96112994350283,15.048453177257523,567.9457770880483,2019
+1998,60,"(55,60]",NoHS,635.4316666666666,120.12367231638417,5.289812194494469,524.6185207353593,2019
+1998,60,"(55,60]",NoHS,552.5611666666666,62.833920903954805,8.793994688176273,527.6268677311397,2019
+1998,60,"(55,60]",NoHS,577.8143333333334,38.80918644067796,14.888596910336043,583.5581217556004,2019
+1998,60,"(55,60]",NoHS,553.1446333333333,92.40282485875707,5.986230769230769,591.5742222566957,2019
+1998,76,"(75,80]",College,1063.368,92.40282485875707,11.507959866220734,5862.02818262727,2019
+1998,76,"(75,80]",College,1069.932,92.40282485875707,11.578996655518393,5613.212319160344,2019
+1998,76,"(75,80]",College,1061.5446666666667,92.40282485875707,11.488227424749162,5759.621826425291,2019
+1998,76,"(75,80]",College,1072.1200000000001,92.40282485875707,11.602675585284281,5685.985524398325,2019
+1998,76,"(75,80]",College,1078.5016666666668,92.40282485875707,11.671739130434784,5788.67508620566,2019
+1998,70,"(65,70]",College,28626.880333333334,1363.8656949152544,20.989515639303548,365.1824479784416,2019
+1998,70,"(65,70]",College,27338.111866666666,1299.1837175141243,21.042529626968985,364.4769994435077,2019
+1998,70,"(65,70]",College,28577.942066666667,1312.1201129943504,21.7799740920439,358.9191760089904,2019
+1998,70,"(65,70]",College,25667.026866666667,1365.7137514124295,18.793855476758342,351.1647201849988,2019
+1998,70,"(65,70]",College,28992.094,1362.017638418079,21.28613696491698,335.70849920465423,2019
+1998,46,"(45,50]",College,326.08493333333337,253.18374011299437,1.2879378951736933,6318.855944997659,2019
+1998,46,"(45,50]",College,484.095,253.18374011299437,1.9120303688694675,6054.942803628193,2019
+1998,46,"(45,50]",College,596.9046333333333,253.18374011299437,2.357594658594341,5642.274900980045,2019
+1998,46,"(45,50]",College,350.627,253.18374011299437,1.3848717134975466,6174.281280390614,2019
+1998,46,"(45,50]",College,638.5860333333334,253.18374011299437,2.522223714083441,5632.610247920407,2019
+1998,45,"(40,45]",College,161.18266666666665,184.80564971751414,0.872173913043478,5340.812668582816,2019
+1998,45,"(40,45]",College,163.18833333333333,184.80564971751414,0.8830267558528427,5045.751144889904,2019
+1998,45,"(40,45]",College,163.18833333333333,186.65370621468927,0.8742839166859829,5181.76085690501,2019
+1998,45,"(40,45]",College,165.19400000000002,184.80564971751414,0.8938795986622073,5167.880216048004,2019
+1998,45,"(40,45]",College,163.18833333333333,184.80564971751414,0.8830267558528427,5325.717789314062,2019
+1998,61,"(60,65]",College,92802.56133333333,3622.190734463277,25.620561736400244,32.75797024958856,2019
+1998,61,"(60,65]",College,93803.389,3326.5016949152546,28.19880992196209,33.733308450685655,2019
+1998,61,"(60,65]",College,100106.28766666667,3899.3992090395477,25.672233669894915,36.11853352727931,2019
+1998,61,"(60,65]",College,89564.32133333333,3400.4239548022597,26.33916315253744,33.976031628799,2019
+1998,61,"(60,65]",College,89091.34866666667,4065.7242937853107,21.912786561264824,36.681252218847234,2019
+1998,50,"(45,50]",HS,137.297,46.201412429378536,2.971705685618729,7202.355855404584,2019
+1998,50,"(45,50]",HS,137.297,48.04946892655367,2.857409313094932,7296.391009962974,2019
+1998,50,"(45,50]",HS,137.297,46.201412429378536,2.971705685618729,7562.268418555051,2019
+1998,50,"(45,50]",HS,137.297,48.04946892655367,2.857409313094932,7196.119491369986,2019
+1998,50,"(45,50]",HS,137.297,46.201412429378536,2.971705685618729,7527.31850070169,2019
+1998,76,"(75,80]",HS,251.43766666666667,36.96112994350283,6.802759197324414,9238.845825236578,2019
+1998,76,"(75,80]",HS,207.18536666666668,33.265016949152546,6.228325901151988,9431.536744397314,2019
+1998,76,"(75,80]",HS,175.04,36.96112994350283,4.735785953177256,9788.72699508339,2019
+1998,76,"(75,80]",HS,173.90953333333334,38.80918644067796,4.481143494186973,9390.541931859398,2019
+1998,76,"(75,80]",HS,205.672,72.07420338983052,2.853614612811937,9819.113879688313,2019
+1998,47,"(45,50]",College,13050.508333333335,221.76677966101698,58.84789576365663,1889.1470596622846,2019
+1998,47,"(45,50]",College,10918.12,221.76677966101698,49.2324414715719,3623.8764854168826,2019
+1998,47,"(45,50]",College,13053.243333333334,221.76677966101698,58.86022853957636,1767.0461098389364,2019
+1998,47,"(45,50]",College,9662.755000000001,221.76677966101698,43.571697324414714,4087.8618361036074,2019
+1998,47,"(45,50]",College,13051.42,221.76677966101698,58.8520066889632,1963.6763239926356,2019
+1998,50,"(45,50]",College,7765.576666666667,367.7632429378531,21.115695534528832,2262.5181746952267,2019
+1998,50,"(45,50]",College,7765.576666666667,367.7632429378531,21.115695534528832,2218.235837774609,2019
+1998,50,"(45,50]",College,7763.753333333333,365.915186440678,21.217357521705345,2085.612454334969,2019
+1998,50,"(45,50]",College,7763.753333333333,367.7632429378531,21.110737634661604,2469.163543557741,2019
+1998,50,"(45,50]",College,7765.576666666667,365.915186440678,21.222340461470896,2340.045156626072,2019
+1998,40,"(35,40]",NoHS,80.39076666666666,90.55476836158192,0.8877585147771483,12130.454391363934,2019
+1998,40,"(35,40]",NoHS,80.22666666666667,90.55476836158192,0.8859463517848611,12562.52218685532,2019
+1998,40,"(35,40]",NoHS,80.19931666666666,90.55476836158192,0.8856443246194798,12995.483094198891,2019
+1998,40,"(35,40]",NoHS,80.39076666666666,90.55476836158192,0.8877585147771483,12089.486569430466,2019
+1998,40,"(35,40]",NoHS,80.38165,90.55476836158192,0.8876578390553546,12964.505219364528,2019
+1998,38,"(35,40]",College,371.61356666666666,188.50176271186442,1.9714063217260147,5197.494174437633,2019
+1998,38,"(35,40]",College,380.73023333333333,188.50176271186442,2.01977014886222,4972.516072651907,2019
+1998,38,"(35,40]",College,384.37690000000003,188.50176271186442,2.0391156797167027,4643.507977218093,2019
+1998,38,"(35,40]",College,360.67356666666666,188.50176271186442,1.913369729162568,5074.976954302865,2019
+1998,38,"(35,40]",College,360.67356666666666,188.50176271186442,1.913369729162568,4628.291794963845,2019
+1998,35,"(30,35]",College,-45.401,22.176677966101696,-2.0472408026755855,5293.19589603794,2019
+1998,35,"(30,35]",College,-45.401,22.176677966101696,-2.0472408026755855,5296.824931180363,2019
+1998,35,"(30,35]",College,-45.401,22.176677966101696,-2.0472408026755855,5340.449302107459,2019
+1998,35,"(30,35]",College,-45.401,22.176677966101696,-2.0472408026755855,5221.436740203121,2019
+1998,35,"(30,35]",College,-45.401,22.176677966101696,-2.0472408026755855,5421.322535761281,2019
+1998,61,"(60,65]",College,941.3870000000001,86.85865536723163,10.838148438055931,8074.675188873279,2019
+1998,61,"(60,65]",College,1007.9386666666667,79.46642937853107,12.683829820331336,7698.2046448208375,2019
+1998,61,"(60,65]",College,1006.8446666666666,79.46642937853107,12.670063000700008,7206.286239285533,2019
+1998,61,"(60,65]",College,1038.9353333333333,79.46642937853107,13.073889709885666,7884.711071225282,2019
+1998,61,"(60,65]",College,1007.9386666666667,73.92225988700567,13.635117056856185,7188.220512268848,2019
+1998,68,"(65,70]",HS,621.392,40.65724293785311,15.28367284889024,7888.728460838249,2019
+1998,68,"(65,70]",HS,621.5743333333334,42.50529943502825,14.623454994910572,7544.7784353862935,2019
+1998,68,"(65,70]",HS,621.5743333333334,42.50529943502825,14.623454994910572,6987.503982909057,2019
+1998,68,"(65,70]",HS,621.5743333333334,42.50529943502825,14.623454994910572,7665.899949754052,2019
+1998,68,"(65,70]",HS,621.5743333333334,42.50529943502825,14.623454994910572,6968.569815932798,2019
+1998,33,"(30,35]",HS,76.56176666666667,49.89752542372881,1.5343800322061194,7459.464880377105,2019
+1998,33,"(30,35]",HS,78.38510000000001,49.89752542372881,1.5709215904868081,7461.5724622610305,2019
+1998,33,"(30,35]",HS,76.56176666666667,49.89752542372881,1.5343800322061194,7590.202527363695,2019
+1998,33,"(30,35]",HS,76.7441,51.745581920903966,1.4831043956043954,7495.1444986278875,2019
+1998,33,"(30,35]",HS,76.56176666666667,49.89752542372881,1.5343800322061194,7543.490329549875,2019
+1998,47,"(45,50]",College,159.9975,151.54063276836158,1.0558059384941676,7252.947696136842,2019
+1998,47,"(45,50]",College,160.17983333333333,151.54063276836158,1.0570091361448732,6950.02130766754,2019
+1998,47,"(45,50]",College,159.9975,151.54063276836158,1.0558059384941676,6476.350323578884,2019
+1998,47,"(45,50]",College,160.17983333333333,151.54063276836158,1.0570091361448732,7087.001124525006,2019
+1998,47,"(45,50]",College,159.9975,151.54063276836158,1.0558059384941676,6465.256982671444,2019
+1998,80,"(75,80]",NoHS,245.96766666666667,129.36395480225988,1.9013616817964645,9730.580339656213,2019
+1998,80,"(75,80]",NoHS,246.15,133.06006779661018,1.8499163879598661,9925.985199497733,2019
+1998,80,"(75,80]",NoHS,246.15,131.21201129943503,1.8759715483536672,10372.476659203294,2019
+1998,80,"(75,80]",NoHS,246.15,96.09893785310734,2.5614226910213533,9834.148898441108,2019
+1998,80,"(75,80]",NoHS,245.96766666666667,107.18727683615819,2.2947468573405607,10274.21848410422,2019
+1998,44,"(40,45]",HS,34.36983333333334,120.12367231638417,0.2861204013377927,7475.392242295826,2019
+1998,44,"(40,45]",HS,31.069599999999998,120.12367231638417,0.2586467712889118,7577.640004017163,2019
+1998,44,"(40,45]",HS,29.9756,120.12367231638417,0.24953949060972475,7888.5167972605905,2019
+1998,44,"(40,45]",HS,25.617833333333333,120.12367231638417,0.2132621559042964,7512.830023076036,2019
+1998,44,"(40,45]",HS,28.7175,120.12367231638417,0.23906611782865966,7793.021882434992,2019
+1998,34,"(30,35]",College,4495.154833333333,166.32508474576272,27.026319212188774,3367.3833616380807,2019
+1998,34,"(30,35]",College,4376.5470000000005,157.08480225988703,27.86104662600826,3623.8764854168826,2019
+1998,34,"(30,35]",College,4277.357666666667,101.64310734463277,42.082122225600486,3484.9668742741787,2019
+1998,34,"(30,35]",College,4277.8135,181.10953672316384,23.620034468636955,4087.8618361036074,2019
+1998,34,"(30,35]",College,4316.377,166.32508474576272,25.951449275362318,3268.9642418434514,2019
+1998,24,"(20,25]",NoHS,3.6466666666666665,83.16254237288136,0.043849869936826456,4318.383684991643,2019
+1998,24,"(20,25]",NoHS,3.6466666666666665,83.16254237288136,0.043849869936826456,4288.902511345302,2019
+1998,24,"(20,25]",NoHS,3.6466666666666665,83.16254237288136,0.043849869936826456,4273.554466410776,2019
+1998,24,"(20,25]",NoHS,3.6466666666666665,83.16254237288136,0.043849869936826456,4335.851942724503,2019
+1998,24,"(20,25]",NoHS,3.6466666666666665,83.16254237288136,0.043849869936826456,4250.515741208221,2019
+1998,64,"(60,65]",HS,26.438333333333333,27.720847457627123,0.9537346711259753,5662.405384702741,2019
+1998,64,"(60,65]",HS,26.438333333333333,27.720847457627123,0.9537346711259753,5658.337054550246,2019
+1998,64,"(60,65]",HS,26.438333333333333,27.720847457627123,0.9537346711259753,5830.818723289156,2019
+1998,64,"(60,65]",HS,26.438333333333333,27.720847457627123,0.9537346711259753,5625.4656764107995,2019
+1998,64,"(60,65]",HS,26.438333333333333,27.720847457627123,0.9537346711259753,5812.849794805496,2019
+1998,44,"(40,45]",HS,1.094,38.80918644067796,0.028189202102245587,6981.271798300821,2019
+1998,44,"(40,45]",HS,0.9116666666666666,36.96112994350283,0.024665551839464877,6970.8367483966285,2019
+1998,44,"(40,45]",HS,1.094,38.80918644067796,0.028189202102245587,6956.231764597947,2019
+1998,44,"(40,45]",HS,1.094,36.96112994350283,0.029598662207357854,7016.2068959388125,2019
+1998,44,"(40,45]",HS,0.9116666666666666,36.96112994350283,0.024665551839464877,6931.627435569098,2019
+1998,59,"(55,60]",NoHS,51.053333333333335,55.441694915254246,0.9208472686733555,8092.682862765332,2019
+1998,59,"(55,60]",NoHS,12.216333333333335,55.441694915254246,0.22034559643255294,8017.416233724965,2019
+1998,59,"(55,60]",NoHS,27.35,55.441694915254246,0.4933110367892976,8441.402190270934,2019
+1998,59,"(55,60]",NoHS,5.47,55.441694915254246,0.09866220735785951,7925.688474043442,2019
+1998,59,"(55,60]",NoHS,30.814333333333334,55.441694915254246,0.5557971014492753,8353.47001612042,2019
+1998,37,"(35,40]",HS,7.457433333333333,22.176677966101696,0.33627369007803787,5029.848658223769,2019
+1998,37,"(35,40]",HS,6.354316666666667,36.96112994350283,0.17191889632107019,5003.087011988381,2019
+1998,37,"(35,40]",HS,10.0648,44.35335593220339,0.22692307692307692,5017.284509569252,2019
+1998,37,"(35,40]",HS,7.995316666666667,38.80918644067796,0.20601608536391147,5035.058742605331,2019
+1998,37,"(35,40]",HS,6.3087333333333335,27.720847457627123,0.22758082497212928,4991.601857383679,2019
+1998,57,"(55,60]",NoHS,53.4966,55.441694915254246,0.9649163879598661,5045.1895474222565,2019
+1998,57,"(55,60]",NoHS,45.16396666666667,55.441694915254246,0.8146209587513934,5033.286398526371,2019
+1998,57,"(55,60]",NoHS,43.2677,55.441694915254246,0.7804180602006687,5076.954334208129,2019
+1998,57,"(55,60]",NoHS,55.39286666666667,55.441694915254246,0.9991192865105908,5025.021293154196,2019
+1998,57,"(55,60]",NoHS,43.46826666666667,55.441694915254246,0.7840356744704571,5069.6453053074865,2019
+1998,54,"(50,55]",College,10261.72,1201.2367231638418,8.542629277077436,218.97221767871497,2019
+1998,54,"(50,55]",College,10265.366666666667,1201.2367231638418,8.545665037303833,218.71184503707983,2019
+1998,54,"(50,55]",College,10261.72,1201.2367231638418,8.542629277077436,207.4384028670532,2019
+1998,54,"(50,55]",College,10259.896666666666,1201.2367231638418,8.541111396964238,226.23319749980843,2019
+1998,54,"(50,55]",College,10263.543333333335,1201.2367231638418,8.544147157190636,215.9591980528625,2019
+1998,51,"(50,55]",NoHS,165.19400000000002,83.16254237288136,1.9863991081382386,8660.322621803727,2019
+1998,51,"(50,55]",NoHS,179.78066666666666,83.16254237288136,2.1617985878855444,8773.393232672777,2019
+1998,51,"(50,55]",NoHS,205.30733333333336,83.16254237288136,2.46874767744333,9093.091978816885,2019
+1998,51,"(50,55]",NoHS,187.074,83.16254237288136,2.249498327759197,8652.823835904934,2019
+1998,51,"(50,55]",NoHS,177.95733333333334,83.16254237288136,2.139873652917131,9051.067178835841,2019
+1998,47,"(45,50]",HS,1323.3753333333332,145.99646327683615,9.064434189915753,6753.593731821052,2019
+1998,47,"(45,50]",HS,1323.5576666666668,145.99646327683615,9.065683078616487,6472.009280306376,2019
+1998,47,"(45,50]",HS,1323.5576666666668,145.99646327683615,9.065683078616487,6030.976598424102,2019
+1998,47,"(45,50]",HS,1323.3753333333332,145.99646327683615,9.064434189915753,6599.479976965884,2019
+1998,47,"(45,50]",HS,1323.3753333333332,145.99646327683615,9.064434189915753,6020.160767627929,2019
+1998,52,"(50,55]",College,139.84966666666665,138.6042372881356,1.0089855072463765,9757.878443995258,2019
+1998,52,"(50,55]",College,139.84966666666665,138.6042372881356,1.0089855072463765,9819.18062123592,2019
+1998,52,"(50,55]",College,139.84966666666665,136.75618079096043,1.02262044653349,9700.869205504365,2019
+1998,52,"(50,55]",College,140.032,136.75618079096043,1.0239537196058939,9746.62740448974,2019
+1998,52,"(50,55]",College,139.84966666666665,138.6042372881356,1.0089855072463765,9746.8843706798325,2019
+1998,23,"(20,25]",HS,-30.814333333333334,14.599646327683615,-2.1106219042377545,4521.09611676313,2019
+1998,23,"(20,25]",HS,-31.9448,9.05547683615819,-3.5276772916524477,4518.9323402703185,2019
+1998,23,"(20,25]",HS,-32.18183333333333,6.468197740112996,-4.975394171046343,4500.735504685418,2019
+1998,23,"(20,25]",HS,-31.81716666666667,10.533922033898305,-3.020448277885349,4556.6527092684855,2019
+1998,23,"(20,25]",HS,-30.44966666666667,10.903533333333334,-2.7926421404682276,4484.515383168449,2019
+1998,33,"(30,35]",NoHS,15.863,90.55476836158192,0.17517575592109752,6515.301147682527,2019
+1998,33,"(30,35]",NoHS,15.863,68.37809039548021,0.2319895145982103,6535.375793556958,2019
+1998,33,"(30,35]",NoHS,15.863,88.70671186440678,0.1788252508361204,6577.899990627318,2019
+1998,33,"(30,35]",NoHS,15.680666666666667,73.92225988700567,0.21212374581939794,6508.762387672381,2019
+1998,33,"(30,35]",NoHS,15.680666666666667,73.92225988700567,0.21212374581939794,6606.6484094237485,2019
+1998,38,"(35,40]",HS,98.1865,59.13780790960452,1.66029995819398,9176.007015611212,2019
+1998,38,"(35,40]",HS,214.87983333333335,59.13780790960452,3.633544105351171,9354.665078179232,2019
+1998,38,"(35,40]",HS,141.58183333333335,59.13780790960452,2.3941001254180607,9662.152027123037,2019
+1998,38,"(35,40]",HS,93.99283333333334,59.13780790960452,1.5893864966555185,9274.262507416855,2019
+1998,38,"(35,40]",HS,114.77883333333332,59.13780790960452,1.9408706103678928,9570.094345376338,2019
+1998,27,"(25,30]",HS,32.273,97.9469943502825,0.32949454155360636,9402.686820645553,2019
+1998,27,"(25,30]",HS,8.387333333333334,134.9081242937853,0.062170706006322456,9405.343436464682,2019
+1998,27,"(25,30]",HS,22.609333333333332,147.84451977401133,0.15292642140468224,9567.482173931126,2019
+1998,27,"(25,30]",HS,29.173333333333332,35.11307344632768,0.8308396409082908,9447.661129348962,2019
+1998,27,"(25,30]",HS,35.37266666666667,62.833920903954805,0.5629549478654338,9508.601252338105,2019
+1998,61,"(60,65]",HS,0.09116666666666667,25.872790960451983,0.003523650262780697,4855.081037603333,2019
+1998,61,"(60,65]",HS,0.09116666666666667,29.56890395480226,0.0030831939799331105,4862.256506369986,2019
+1998,61,"(60,65]",HS,0.09116666666666667,20.328621468926556,0.004484645788993615,4880.315948017476,2019
+1998,61,"(60,65]",HS,0.09116666666666667,29.56890395480226,0.0030831939799331105,4854.842209271143,2019
+1998,61,"(60,65]",HS,0.18233333333333335,29.56890395480226,0.006166387959866221,4881.038316697169,2019
+1998,54,"(50,55]",College,2168.6726666666664,356.6749039548023,6.0802502296081915,2682.844375489048,2019
+1998,54,"(50,55]",College,2168.6726666666664,356.6749039548023,6.0802502296081915,2632.478609273642,2019
+1998,54,"(50,55]",College,2168.6726666666664,356.6749039548023,6.0802502296081915,2536.4250665529253,2019
+1998,54,"(50,55]",College,2168.6726666666664,356.6749039548023,6.0802502296081915,2991.6620524667005,2019
+1998,54,"(50,55]",College,2168.6726666666664,356.6749039548023,6.0802502296081915,2771.054615124245,2019
+1998,34,"(30,35]",HS,290.88548333333335,129.36395480225988,2.2485821786908744,8049.33533325422,2019
+1998,34,"(30,35]",HS,287.23881666666665,129.36395480225988,2.2203929765886286,7702.924803533904,2019
+1998,34,"(30,35]",HS,289.24448333333333,129.36395480225988,2.2358970377448637,7185.28010568307,2019
+1998,34,"(30,35]",HS,287.23881666666665,129.36395480225988,2.2203929765886286,7861.595920922855,2019
+1998,34,"(30,35]",HS,289.06215000000003,129.36395480225988,2.2344875776397517,7171.487364349273,2019
+1998,35,"(30,35]",HS,1.2763333333333333,18.480564971751416,0.06906354515050166,5557.27524195047,2019
+1998,35,"(30,35]",HS,1.2763333333333333,18.480564971751416,0.06906354515050166,5527.707387296509,2019
+1998,35,"(30,35]",HS,1.2763333333333333,18.480564971751416,0.06906354515050166,5543.393625027508,2019
+1998,35,"(30,35]",HS,1.4586666666666668,18.480564971751416,0.07892976588628761,5563.031652313786,2019
+1998,35,"(30,35]",HS,1.4586666666666668,18.480564971751416,0.07892976588628761,5515.017907021528,2019
+1998,63,"(60,65]",College,784.0333333333334,120.12367231638417,6.526884486750709,4680.835745526401,2019
+1998,63,"(60,65]",College,784.0333333333334,120.12367231638417,6.526884486750709,4471.051288635323,2019
+1998,63,"(60,65]",College,784.0333333333334,120.12367231638417,6.526884486750709,4426.1275306134585,2019
+1998,63,"(60,65]",College,784.0333333333334,120.12367231638417,6.526884486750709,4430.053433940548,2019
+1998,63,"(60,65]",College,784.0333333333334,120.12367231638417,6.526884486750709,4666.679015373502,2019
+1998,74,"(70,75]",HS,303.9132,57.289751412429375,5.30484410400259,6207.808362675761,2019
+1998,74,"(70,75]",HS,303.9132,57.289751412429375,5.30484410400259,6193.1065486639945,2019
+1998,74,"(70,75]",HS,303.9132,57.289751412429375,5.30484410400259,6618.015178236479,2019
+1998,74,"(70,75]",HS,303.9132,57.289751412429375,5.30484410400259,6384.678999935202,2019
+1998,74,"(70,75]",HS,303.9132,57.289751412429375,5.30484410400259,6500.359751217724,2019
+1998,43,"(40,45]",HS,40.386833333333335,55.441694915254246,0.7284559643255295,5089.491127392195,2019
+1998,43,"(40,45]",HS,71.3835,55.441694915254246,1.2875418060200667,5062.412149410078,2019
+1998,43,"(40,45]",HS,89.5986,55.441694915254246,1.616086956521739,5126.976850600866,2019
+1998,43,"(40,45]",HS,54.955266666666674,55.441694915254246,0.991226309921962,5094.762991425234,2019
+1998,43,"(40,45]",HS,44.01526666666667,55.441694915254246,0.793901895206243,5050.790807212876,2019
+1998,72,"(70,75]",NoHS,451.09449,27.720847457627123,16.2727525083612,6979.384004750022,2019
+1998,72,"(70,75]",NoHS,592.5851566666666,27.720847457627123,21.3768773690078,6722.212155630795,2019
+1998,72,"(70,75]",NoHS,651.6611566666667,27.720847457627123,23.507981047937566,6274.858177749753,2019
+1998,72,"(70,75]",NoHS,559.7651566666666,27.720847457627123,20.192930880713483,6863.311093722278,2019
+1998,72,"(70,75]",NoHS,471.0782233333333,27.720847457627123,16.993644370122627,6258.265343502116,2019
+1998,55,"(50,55]",HS,13.419733333333333,27.720847457627123,0.484102564102564,5989.792278383574,2019
+1998,55,"(50,55]",HS,13.419733333333333,35.11307344632768,0.3821862348178138,5923.973263221083,2019
+1998,55,"(50,55]",HS,13.419733333333333,33.265016949152546,0.4034188034188034,6098.116398946005,2019
+1998,55,"(50,55]",HS,13.419733333333333,40.65724293785311,0.33006993006993,5957.994292583332,2019
+1998,55,"(50,55]",HS,13.383266666666668,31.416960451977403,0.4259885894156994,6039.440632496752,2019
+1998,50,"(45,50]",HS,-66.42403333333334,184.80564971751414,-0.3594264214046823,4975.043046890674,2019
+1998,50,"(45,50]",HS,-64.36366666666666,184.80564971751414,-0.3482775919732441,4949.605781340183,2019
+1998,50,"(45,50]",HS,-64.09016666666666,184.80564971751414,-0.34679765886287617,4889.727293463891,2019
+1998,50,"(45,50]",HS,-66.4605,184.80564971751414,-0.35962374581939793,4969.883493239967,2019
+1998,50,"(45,50]",HS,-66.09583333333333,184.80564971751414,-0.3576505016722408,4925.4491702122195,2019
+1998,74,"(70,75]",HS,9413.87,328.95405649717515,28.617582954417347,317.41379299108996,2019
+1998,74,"(70,75]",HS,9585.081,291.9929265536723,32.82641505440075,314.4846465913035,2019
+1998,74,"(70,75]",HS,12613.82,447.22967231638415,28.204345062052575,299.2892815975591,2019
+1998,74,"(70,75]",HS,6966.774333333333,798.3604067796609,8.72635250216772,328.2208170838058,2019
+1998,74,"(70,75]",HS,9357.164333333334,312.3215480225989,29.96003443430765,309.08108172553807,2019
+1998,68,"(65,70]",College,8095.6,260.5759661016949,31.0680993382196,977.3757162857149,2019
+1998,68,"(65,70]",College,8095.6,260.5759661016949,31.0680993382196,996.044641037148,2019
+1998,68,"(65,70]",College,8095.6,260.5759661016949,31.0680993382196,928.7188052758696,2019
+1998,68,"(65,70]",College,8095.6,260.5759661016949,31.0680993382196,1011.3062025605519,2019
+1998,68,"(65,70]",College,8093.776666666668,260.5759661016949,31.06110201854883,963.2610750102971,2019
+1998,45,"(40,45]",College,1.0393,17.371731073446327,0.059827083185085034,6014.694797672854,2019
+1998,45,"(40,45]",College,1.0575333333333332,17.186925423728816,0.06153126910490163,6016.078255917485,2019
+1998,45,"(40,45]",College,0.8752000000000001,17.371731073446327,0.0503807016295453,5999.12537065863,2019
+1998,45,"(40,45]",College,0.8752000000000001,17.186925423728816,0.05092242960405653,6014.291575380501,2019
+1998,45,"(40,45]",College,0.8752000000000001,17.186925423728816,0.05092242960405653,6019.398206183328,2019
+1998,38,"(35,40]",NoHS,4.011333333333334,29.56890395480226,0.1356605351170569,6000.431952292839,2019
+1998,38,"(35,40]",NoHS,4.011333333333334,29.56890395480226,0.1356605351170569,5991.462983789976,2019
+1998,38,"(35,40]",NoHS,4.193666666666667,29.56890395480226,0.1418269230769231,5978.909939877596,2019
+1998,38,"(35,40]",NoHS,4.011333333333334,29.56890395480226,0.1356605351170569,6030.458813039684,2019
+1998,38,"(35,40]",NoHS,4.193666666666667,29.56890395480226,0.1418269230769231,5957.7624174297,2019
+1998,32,"(30,35]",College,1426.6307,232.8551186440678,6.1266881669055575,322.422092112196,2019
+1998,32,"(30,35]",College,1728.7752666666665,170.021197740113,10.167998400465319,25.625583412962538,2019
+1998,32,"(30,35]",College,1853.3454,186.65370621468927,9.929325474353455,29.05102589899851,2019
+1998,32,"(30,35]",College,1245.9566000000002,121.97172881355934,10.215126178169657,189.10595467525317,2019
+1998,32,"(30,35]",College,4940.576933333334,413.9646553672317,11.93477962255136,37.62504974143589,2019
+1998,42,"(40,45]",College,617.3806666666667,118.27561581920904,5.219847408026756,5853.670931125274,2019
+1998,42,"(40,45]",College,617.3806666666667,68.37809039548021,9.028925246316552,5600.420239527254,2019
+1998,42,"(40,45]",College,617.3806666666667,53.593638418079095,11.519663245300427,5229.593081357716,2019
+1998,42,"(40,45]",College,617.3806666666667,64.68197740112994,9.544863831820354,5716.903584103846,2019
+1998,42,"(40,45]",College,617.3806666666667,51.745581920903966,11.93107978977544,5213.566169904746,2019
+1998,40,"(35,40]",HS,2708.5616666666665,147.84451977401133,18.320338628762535,2312.093976736359,2019
+1998,40,"(35,40]",HS,2737.9173333333338,147.84451977401133,18.518896321070233,2259.814603456534,2019
+1998,40,"(35,40]",HS,2568.3473333333336,147.84451977401133,17.371948160535116,2120.6257273637075,2019
+1998,40,"(35,40]",HS,2933.014,147.84451977401133,19.8385033444816,2564.526188459556,2019
+1998,40,"(35,40]",HS,2792.6173333333336,147.84451977401133,18.888879598662204,2396.464421088354,2019
+1998,42,"(40,45]",HS,16.574099999999998,66.53003389830509,0.24912207357859525,7851.371650284933,2019
+1998,42,"(40,45]",HS,30.777866666666664,114.57950282485875,0.2686158161613982,7839.636044315975,2019
+1998,42,"(40,45]",HS,36.977199999999996,40.65724293785311,0.9094861660079049,7823.210791287185,2019
+1998,42,"(40,45]",HS,19.12676666666667,48.04946892655367,0.3980640596861333,7890.6608289789365,2019
+1998,42,"(40,45]",HS,36.22963333333333,53.593638418079095,0.6760062276554031,7795.539940331575,2019
+1998,70,"(65,70]",NoHS,143.5875,35.11307344632768,4.089288857595494,8879.66221878924,2019
+1998,70,"(65,70]",NoHS,91.02080000000001,35.11307344632768,2.5922196796338675,8892.62388138786,2019
+1998,70,"(65,70]",NoHS,70.98236666666666,35.11307344632768,2.021536701284985,9635.561804035822,2019
+1998,70,"(65,70]",NoHS,94.26633333333334,35.11307344632768,2.6846505896849147,9048.993479228768,2019
+1998,70,"(65,70]",NoHS,143.33223333333333,35.11307344632768,4.082019010737547,9454.050704755831,2019
+1998,22,"(20,25]",HS,0,140.45229378531073,0,4862.090421818106,2019
+1998,22,"(20,25]",HS,71.657,140.45229378531073,0.5101874669952473,4856.073701276828,2019
+1998,22,"(20,25]",HS,25.5996,140.45229378531073,0.18226544622425628,4869.6529344864075,2019
+1998,22,"(20,25]",HS,-0.7293333333333334,140.45229378531073,-0.005192747755676818,4872.482873111088,2019
+1998,22,"(20,25]",HS,-0.40113333333333334,140.45229378531073,-0.0028560112656222498,4791.266042565949,2019
+1998,35,"(30,35]",HS,431.65593333333334,144.14840677966103,2.9945244833204696,5967.621213756129,2019
+1998,35,"(30,35]",HS,469.94593333333336,144.14840677966103,3.2601535031300917,5709.307486450731,2019
+1998,35,"(30,35]",HS,495.65493333333336,144.14840677966103,3.438504416430838,5331.549354567733,2019
+1998,35,"(30,35]",HS,497.2959333333334,144.14840677966103,3.4498885172798217,5826.950279381149,2019
+1998,35,"(30,35]",HS,457.3467,144.14840677966103,3.1727489066117824,5314.078548643711,2019
+1998,78,"(75,80]",HS,813.2066666666666,55.441694915254246,14.667781493868446,8576.839549045251,2019
+1998,78,"(75,80]",HS,813.2066666666666,55.441694915254246,14.667781493868446,8224.880843228608,2019
+1998,78,"(75,80]",HS,811.3833333333334,55.441694915254246,14.63489409141583,7677.7659943158305,2019
+1998,78,"(75,80]",HS,813.2066666666666,55.441694915254246,14.667781493868446,8357.742793284637,2019
+1998,78,"(75,80]",HS,813.2066666666666,55.441694915254246,14.667781493868446,7655.776649229211,2019
+1998,52,"(50,55]",HS,172.39616666666666,57.289751412429375,3.009197324414716,5583.359781792357,2019
+1998,52,"(50,55]",HS,172.39616666666666,57.289751412429375,3.009197324414716,5692.411519475915,2019
+1998,52,"(50,55]",HS,172.39616666666666,55.441694915254246,3.1095039018952058,5897.186482756034,2019
+1998,52,"(50,55]",HS,174.2195,57.289751412429375,3.0410238429172516,5599.746628307516,2019
+1998,52,"(50,55]",HS,172.39616666666666,57.289751412429375,3.009197324414716,5880.479046542203,2019
+1998,51,"(50,55]",College,2779.9451666666664,288.29681355932206,9.642649644112852,2679.3987741086435,2019
+1998,51,"(50,55]",College,2794.5318333333335,288.29681355932206,9.693245647886116,2650.2112475921576,2019
+1998,51,"(50,55]",College,2779.9451666666664,288.29681355932206,9.642649644112852,2562.8814713947713,2019
+1998,51,"(50,55]",College,2778.1218333333336,288.29681355932206,9.636325143641198,3024.7034180564006,2019
+1998,51,"(50,55]",College,2809.1185,288.29681355932206,9.743841651659377,2743.0812517787103,2019
+1998,51,"(50,55]",College,12833.167,162.62897175141245,78.91070614168439,27.924709756455037,2019
+1998,51,"(50,55]",College,5470.656400000001,166.32508474576272,32.89134894091416,30.532763886742572,2019
+1998,51,"(50,55]",College,2326.391,144.14840677966103,16.13886030357602,21.24124257206781,2019
+1998,51,"(50,55]",College,21792.29766666667,153.38868926553673,142.07238989402427,32.7867129217538,2019
+1998,51,"(50,55]",College,7037.665533333334,153.38868926553673,45.88125478502639,32.04320273493679,2019
+1998,37,"(35,40]",College,590.213,166.32508474576272,3.5485507246376806,920.7534827153593,2019
+1998,37,"(35,40]",College,614.4633333333334,164.47702824858757,3.7358611100672654,851.3215873576971,2019
+1998,37,"(35,40]",College,625.4033333333334,164.47702824858757,3.80237495772425,881.6413385900996,2019
+1998,37,"(35,40]",College,589.8483333333334,147.84451977401133,3.989653010033444,955.5649381424653,2019
+1998,37,"(35,40]",College,594.4066666666666,166.32508474576272,3.5737643998513557,958.9961782613806,2019
+1998,46,"(45,50]",College,737.903,267.96819209039546,2.753696228808673,4638.832056448044,2019
+1998,46,"(45,50]",College,739.544,267.96819209039546,2.7598200899550225,4445.420514067422,2019
+1998,46,"(45,50]",College,741.3673333333334,267.96819209039546,2.766624380117634,4142.488975112517,2019
+1998,46,"(45,50]",College,737.903,267.96819209039546,2.753696228808673,4532.976144062721,2019
+1998,46,"(45,50]",College,737.7206666666666,267.96819209039546,2.7530157997924114,4135.059919618993,2019
+1998,74,"(70,75]",HS,24.068,31.416960451977403,0.7660830218374975,4408.199596987162,2019
+1998,74,"(70,75]",HS,24.250333333333334,31.416960451977403,0.7718866810938422,4379.161843620381,2019
+1998,74,"(70,75]",HS,24.068,31.416960451977403,0.7660830218374975,4554.770887533832,2019
+1998,74,"(70,75]",HS,24.068,31.416960451977403,0.7660830218374975,4605.48217364988,2019
+1998,74,"(70,75]",HS,24.068,31.416960451977403,0.7660830218374975,4476.464759818143,2019
+1998,62,"(60,65]",College,1161.6456666666668,107.18727683615819,10.837533156498676,788.8211330329559,2019
+1998,62,"(60,65]",College,970.1956666666666,107.18727683615819,9.051406988813286,735.704536174089,2019
+1998,62,"(60,65]",College,1068.4733333333334,107.18727683615819,9.968285088225118,749.5603471031287,2019
+1998,62,"(60,65]",College,1073.9433333333334,107.18727683615819,10.019317264444702,809.4850818716668,2019
+1998,62,"(60,65]",College,1069.5673333333332,107.18727683615819,9.978491523469033,808.1239013598023,2019
+1998,81,"(80,85]",HS,10774.568966666668,463.8621807909605,23.2279530706605,1158.9506650172775,2019
+1998,81,"(80,85]",HS,11702.390366666667,547.0247231638417,21.392799760462808,1182.0502431528917,2019
+1998,81,"(80,85]",HS,19671.214,321.56183050847454,61.17397070695422,1154.3887531924051,2019
+1998,81,"(80,85]",HS,20530.004,151.54063276836158,135.47524267884822,1214.7358267998663,2019
+1998,81,"(80,85]",HS,19033.32083333333,127.51589830508476,149.26233580534145,1202.1806832917837,2019
+1998,65,"(60,65]",HS,238.58316666666667,35.11307344632768,6.794710438303116,8144.394143142768,2019
+1998,65,"(60,65]",HS,273.3176666666667,123.81978531073446,2.207382818349723,8485.174797619182,2019
+1998,65,"(60,65]",HS,240.80763333333334,110.88338983050849,2.171719620958751,8691.414232439212,2019
+1998,65,"(60,65]",HS,303.38443333333333,92.40282485875707,3.283280936454849,8151.318439577764,2019
+1998,65,"(60,65]",HS,225.7469,123.81978531073446,1.8231892377577,8506.719618236788,2019
+1998,25,"(20,25]",HS,20.5125,10.903533333333334,1.8812709030100334,10981.09410487152,2019
+1998,25,"(20,25]",NoHS,20.786,53.593638418079095,0.38784453926882717,10492.726861164756,2019
+1998,25,"(20,25]",HS,20.5125,15.893285875706214,1.290639340437116,10564.862771075777,2019
+1998,25,"(20,25]",HS,20.69483333333333,22.176677966101696,0.9331800445930879,10429.854037386216,2019
+1998,25,"(20,25]",HS,20.5125,27.720847457627123,0.7399665551839464,10531.616541002599,2019
+1998,52,"(50,55]",HS,16.373533333333334,40.65724293785311,0.4027211918516266,6354.930479666868,2019
+1998,52,"(50,55]",HS,16.373533333333334,40.65724293785311,0.4027211918516266,6382.074370845516,2019
+1998,52,"(50,55]",HS,16.3553,40.65724293785311,0.4022727272727272,6337.794874935186,2019
+1998,52,"(50,55]",HS,18.178633333333334,40.65724293785311,0.44711918516266336,6373.5563521846425,2019
+1998,52,"(50,55]",HS,18.178633333333334,40.65724293785311,0.44711918516266336,6374.654510371007,2019
+1998,66,"(65,70]",HS,807.3720000000001,38.80918644067796,20.803631151457243,8517.00344288106,2019
+1998,66,"(65,70]",HS,2804.8336666666664,38.80918644067796,72.2724159898073,1466.1550982097267,2019
+1998,66,"(65,70]",HS,957.0676666666667,40.65724293785311,23.539905746427483,7543.362171874041,2019
+1998,66,"(65,70]",HS,931.3586666666666,40.65724293785311,22.907570690179384,8275.917153692335,2019
+1998,66,"(65,70]",HS,1126.6376666666667,40.65724293785311,27.710626330191545,7523.5283152850725,2019
+1998,38,"(35,40]",College,189.1526,149.69257627118645,1.2636070853462158,6744.46500604753,2019
+1998,38,"(35,40]",College,179.8536,151.54063276836158,1.186834162656008,6836.715208916417,2019
+1998,38,"(35,40]",College,187.1287,149.69257627118645,1.2500867087823608,7117.195160370924,2019
+1998,38,"(35,40]",College,189.31670000000003,149.69257627118645,1.2647033320946366,6778.242203844258,2019
+1998,38,"(35,40]",College,161.60203333333334,149.69257627118645,1.0795594368058135,7031.037526039363,2019
+1998,72,"(70,75]",HS,8754.5162,73.92225988700567,118.42868729096988,2679.3987741086435,2019
+1998,72,"(70,75]",HS,8389.831300000002,73.92225988700567,113.49533026755853,2650.2112475921576,2019
+1998,72,"(70,75]",HS,8754.497966666668,73.92225988700567,118.4284406354515,2562.8814713947713,2019
+1998,72,"(70,75]",HS,7660.497966666667,73.92225988700567,103.62910953177256,3024.7034180564006,2019
+1998,72,"(70,75]",HS,7933.815633333334,73.92225988700567,107.32647575250834,2743.0812517787103,2019
+1998,63,"(60,65]",College,10010.1,197.7420451977401,50.62201106492046,1584.5211479615887,2019
+1998,63,"(60,65]",College,10010.1,197.7420451977401,50.62201106492046,1616.3255229691324,2019
+1998,63,"(60,65]",College,10010.1,197.7420451977401,50.62201106492046,1551.8483624197213,2019
+1998,63,"(60,65]",College,10010.1,197.7420451977401,50.62201106492046,1655.9940010527175,2019
+1998,63,"(60,65]",College,10010.1,197.7420451977401,50.62201106492046,1561.534723536322,2019
+1998,66,"(65,70]",College,30068.59,864.8904406779662,34.76577909270216,298.0162535081259,2019
+1998,66,"(65,70]",College,29127.75,973.9257740112994,29.907566651647176,304.191718462084,2019
+1998,66,"(65,70]",College,29897.196666666667,951.7490960451977,31.412897360132483,343.78165505172876,2019
+1998,66,"(65,70]",College,29762.27,981.318,30.3288740245262,324.8162221243954,2019
+1998,66,"(65,70]",College,29111.34,824.2331977401129,35.3193005084212,272.6442674248767,2019
+1998,47,"(45,50]",HS,384.17633333333333,55.441694915254246,6.929375696767,10553.334075500763,2019
+1998,47,"(45,50]",HS,399.31,66.53003389830509,6.001950947603121,10174.650373158365,2019
+1998,47,"(45,50]",HS,382.4441666666667,75.77031638418079,5.04741414471001,9881.289916979043,2019
+1998,47,"(45,50]",HS,433.771,85.0105988700565,5.102551984877127,10062.590158865458,2019
+1998,47,"(45,50]",HS,383.994,86.85865536723163,4.4209065679926,10318.796404198825,2019
+1998,64,"(60,65]",HS,21425.99,1232.6536836158193,17.38200297844389,26.09713894804051,2019
+1998,64,"(60,65]",HS,21425.99,1232.6536836158193,17.38200297844389,28.514919334628168,2019
+1998,64,"(60,65]",HS,21425.99,1232.6536836158193,17.38200297844389,28.799520907598453,2019
+1998,64,"(60,65]",HS,21425.99,1232.6536836158193,17.38200297844389,26.279214608437307,2019
+1998,64,"(60,65]",HS,21425.99,1232.6536836158193,17.38200297844389,28.426159871659014,2019
+1998,40,"(35,40]",College,892.157,92.40282485875707,9.655083612040134,4420.108752462307,2019
+1998,40,"(35,40]",College,881.3993333333334,92.40282485875707,9.53866220735786,4229.19661470525,2019
+1998,40,"(35,40]",College,917.866,92.40282485875707,9.933311036789297,3949.2031249094375,2019
+1998,40,"(35,40]",College,917.6836666666667,92.40282485875707,9.93133779264214,4317.10235868349,2019
+1998,40,"(35,40]",College,910.5726666666667,92.40282485875707,9.854381270903009,3936.782770175413,2019
+1998,66,"(65,70]",College,14830.264000000001,883.3710056497175,16.788262128993438,356.44226048754206,2019
+1998,66,"(65,70]",College,52023.346666666665,598.7703050847458,86.88364507205085,332.63937689667944,2019
+1998,66,"(65,70]",College,17586.05,199.59010169491523,88.11083240431067,401.4830055523254,2019
+1998,66,"(65,70]",College,9588.91,280.90458757062146,34.13582555888048,370.1779121172964,2019
+1998,66,"(65,70]",College,24332.38333333333,445.38161581920906,54.632662124092754,378.47519618782866,2019
+1998,35,"(30,35]",College,2112.514,328.95405649717515,6.421911991281801,797.9765239530605,2019
+1998,35,"(30,35]",College,2140.5933333333337,352.978790960452,6.064368138121838,847.4785778394746,2019
+1998,35,"(30,35]",College,2080.605666666667,328.95405649717515,6.324912630115366,810.411440030314,2019
+1998,35,"(30,35]",College,2128.1946666666668,328.95405649717515,6.469580248769306,834.0361437557127,2019
+1998,35,"(30,35]",College,1864.723,345.58656497175144,5.395820292239729,789.3669971454356,2019
+1998,44,"(40,45]",HS,359.4154666666667,118.27561581920904,3.038795986622074,8430.581247878294,2019
+1998,44,"(40,45]",HS,361.05646666666667,123.81978531073446,2.9159836270154247,8545.894001331984,2019
+1998,44,"(40,45]",HS,360.3271333333334,116.4275593220339,3.0948611774698738,8896.493940247521,2019
+1998,44,"(40,45]",HS,361.23879999999997,103.49116384180793,3.490527950310558,8472.802745075729,2019
+1998,44,"(40,45]",HS,359.5431,118.27561581920904,3.0398751045150503,8788.796897456741,2019
+1998,31,"(30,35]",HS,93.3729,142.30035028248585,0.6561677452981802,7459.464880377105,2019
+1998,31,"(30,35]",HS,91.54956666666666,142.30035028248585,0.6433544716153413,7461.5724622610305,2019
+1998,31,"(30,35]",HS,91.54956666666666,142.30035028248585,0.6433544716153413,7590.202527363695,2019
+1998,31,"(30,35]",HS,91.54956666666666,142.30035028248585,0.6433544716153413,7495.1444986278875,2019
+1998,31,"(30,35]",HS,93.3729,142.30035028248585,0.6561677452981802,7543.490329549875,2019
+1998,66,"(65,70]",HS,882.4933333333333,83.16254237288136,10.611668524712002,6528.602870944839,2019
+1998,66,"(65,70]",HS,882.4933333333333,83.16254237288136,10.611668524712002,6243.95457372248,2019
+1998,66,"(65,70]",HS,882.4933333333333,83.16254237288136,10.611668524712002,5782.761922915925,2019
+1998,66,"(65,70]",HS,882.4933333333333,83.16254237288136,10.611668524712002,6344.193068476105,2019
+1998,66,"(65,70]",HS,882.4933333333333,83.16254237288136,10.611668524712002,5767.092267470969,2019
+1998,18,"(15,20]",HS,0.7657999999999999,0,Inf,5497.881149556432,2019
+1998,18,"(15,20]",HS,0.7657999999999999,0,Inf,5524.674751663162,2019
+1998,18,"(15,20]",HS,0.7657999999999999,0,Inf,5533.587499323175,2019
+1998,18,"(15,20]",HS,0.7657999999999999,0,Inf,5489.38313364699,2019
+1998,18,"(15,20]",HS,0.7657999999999999,0,Inf,5501.88982995453,2019
+1998,44,"(40,45]",College,464.47593333333333,75.77031638418079,6.130051390814912,6240.15353780565,2019
+1998,44,"(40,45]",College,444.51043333333337,112.73144632768363,3.943091726520094,5970.630519583286,2019
+1998,44,"(40,45]",College,377.8129,81.31448587570623,4.6463172696868345,5575.345592501213,2019
+1998,44,"(40,45]",College,429.24913333333336,96.09893785310734,4.466741703112941,6094.732746473897,2019
+1998,44,"(40,45]",College,324.6080333333333,83.16254237288136,3.903296172426607,7968.355080756535,2019
+1998,43,"(40,45]",HS,0.1641,46.201412429378536,0.0035518394648829427,6059.367838639618,2019
+1998,43,"(40,45]",HS,1.0575333333333332,27.720847457627123,0.03814938684503901,6089.7152113037755,2019
+1998,43,"(40,45]",HS,1.2216333333333336,27.720847457627123,0.04406911928651059,6113.441511927942,2019
+1998,43,"(40,45]",HS,0.6199333333333333,17.371731073446327,0.03568633032092792,6058.235353203453,2019
+1998,43,"(40,45]",HS,1.0028333333333335,53.593638418079095,0.01871179794718026,6122.312943741205,2019
+1998,54,"(50,55]",College,1052.2456666666667,158.93285875706215,6.620693007700086,5993.752932311862,2019
+1998,54,"(50,55]",College,1052.2456666666667,158.93285875706215,6.620693007700086,5744.702735935562,2019
+1998,54,"(50,55]",College,1052.2456666666667,158.93285875706215,6.620693007700086,5351.941707437198,2019
+1998,54,"(50,55]",College,1052.2456666666667,158.93285875706215,6.620693007700086,5856.995991258485,2019
+1998,54,"(50,55]",College,1052.2456666666667,158.93285875706215,6.620693007700086,5342.129324373951,2019
+1998,50,"(45,50]",College,217.70600000000002,77.61837288135592,2.804825609173436,6284.748020883595,2019
+1998,50,"(45,50]",College,338.4106666666667,77.61837288135592,4.359929925147317,6366.802735114477,2019
+1998,50,"(45,50]",College,197.28466666666665,77.61837288135592,2.5417263895524767,6598.806339350837,2019
+1998,50,"(45,50]",College,165.92333333333335,77.61837288135592,2.13768115942029,6279.306193610575,2019
+1998,50,"(45,50]",College,179.23366666666666,77.61837288135592,2.3091654722089507,6568.309175441042,2019
+1998,84,"(80,85]",College,333.4876666666667,55.441694915254246,6.015105908584169,9607.787724614414,2019
+1998,84,"(80,85]",College,300.5765,55.441694915254246,5.421488294314381,10023.611376772375,2019
+1998,84,"(80,85]",College,290.0011666666667,55.441694915254246,5.230741360089185,9643.858294429174,2019
+1998,84,"(80,85]",College,328.0176666666667,55.441694915254246,5.916443701226309,9628.636074605933,2019
+1998,84,"(80,85]",College,309.5108333333333,55.441694915254246,5.5826365663322175,9699.323481429648,2019
+1998,71,"(70,75]",HS,109.8923,20.328621468926556,5.4057920340529035,11149.934334433989,2019
+1998,71,"(70,75]",HS,113.53896666666667,27.720847457627123,4.095797101449275,11145.404260046185,2019
+1998,71,"(70,75]",HS,111.93443333333333,22.176677966101696,5.04739409141583,11773.407602628284,2019
+1998,71,"(70,75]",HS,109.4547,31.416960451977403,3.4839366515837105,11312.787540890644,2019
+1998,71,"(70,75]",HS,112.88256666666666,27.720847457627123,4.072118171683388,11595.538785062032,2019
+1998,21,"(20,25]",HS,-0.7293333333333334,49.89752542372881,-0.014616623312275489,6183.2483654864445,2019
+1998,21,"(20,25]",HS,-2.5526666666666666,49.89752542372881,-0.05115818159296421,6159.589618818721,2019
+1998,21,"(20,25]",HS,-0.7293333333333334,49.89752542372881,-0.014616623312275489,6172.378548363779,2019
+1998,21,"(20,25]",HS,-0.7293333333333334,49.89752542372881,-0.014616623312275489,6209.299350900938,2019
+1998,21,"(20,25]",HS,-0.7293333333333334,49.89752542372881,-0.014616623312275489,6119.029791901232,2019
+1998,68,"(65,70]",HS,6116.554,877.826836158192,6.967836648477381,1653.9142417046216,2019
+1998,68,"(65,70]",HS,6537.561666666667,877.826836158192,7.447438831191693,1693.129975225595,2019
+1998,68,"(65,70]",HS,6002.231,877.826836158192,6.837602534765007,1585.4035340117,2019
+1998,68,"(65,70]",HS,6621.070333333333,877.826836158192,7.542569970075691,1768.8647991131688,2019
+1998,68,"(65,70]",HS,6138.981,877.826836158192,6.993384967435311,1644.418721752345,2019
+1998,42,"(40,45]",HS,62.72266666666667,46.201412429378536,1.357591973244147,5744.047545054896,2019
+1998,42,"(40,45]",HS,62.540333333333336,46.201412429378536,1.3536454849498327,5855.382893258746,2019
+1998,42,"(40,45]",HS,62.358000000000004,46.201412429378536,1.3496989966555184,6134.601500930469,2019
+1998,42,"(40,45]",HS,62.72266666666667,46.201412429378536,1.357591973244147,5761.846393550943,2019
+1998,42,"(40,45]",HS,62.540333333333336,46.201412429378536,1.3536454849498327,5995.104931673532,2019
+1998,36,"(35,40]",HS,91.16666666666667,48.04946892655367,1.8973501414972989,6702.57391119631,2019
+1998,36,"(35,40]",HS,78.40333333333334,48.04946892655367,1.631721121687677,6743.729780179255,2019
+1998,36,"(35,40]",HS,93.17233333333333,48.04946892655367,1.9390918446102392,7072.988970959252,2019
+1998,36,"(35,40]",HS,80.409,48.04946892655367,1.6734628248006176,6736.141312694085,2019
+1998,36,"(35,40]",HS,91.16666666666667,48.04946892655367,1.8973501414972989,6987.366477313968,2019
+1998,64,"(60,65]",NoHS,375.97133333333335,35.11307344632768,10.707445872205598,8027.105919226818,2019
+1998,64,"(60,65]",NoHS,375.789,35.11307344632768,10.702253124449921,8003.280784570906,2019
+1998,64,"(60,65]",NoHS,375.789,35.11307344632768,10.702253124449921,8422.728449966427,2019
+1998,64,"(60,65]",NoHS,375.789,35.11307344632768,10.702253124449921,7891.370649209441,2019
+1998,64,"(60,65]",NoHS,375.789,35.11307344632768,10.702253124449921,8349.96712847918,2019
+1998,53,"(50,55]",HS,396.8576166666667,83.16254237288136,4.772071720549981,5583.359781792357,2019
+1998,53,"(50,55]",HS,444.08195,83.16254237288136,5.339927536231884,5692.411519475915,2019
+1998,53,"(50,55]",HS,409.63006666666666,83.16254237288136,4.925655890003716,5897.186482756034,2019
+1998,53,"(50,55]",HS,436.9800666666667,83.16254237288136,5.254529914529915,5599.746628307516,2019
+1998,53,"(50,55]",HS,431.50095000000005,83.16254237288136,5.188645484949833,5880.479046542203,2019
+1998,65,"(60,65]",College,19551.603333333333,1848.0564971751412,10.579548494983277,31.762881731561624,2019
+1998,65,"(60,65]",College,19551.603333333333,1848.0564971751412,10.579548494983277,34.51812888485169,2019
+1998,65,"(60,65]",College,19551.603333333333,1848.0564971751412,10.579548494983277,35.13549152028825,2019
+1998,65,"(60,65]",College,19557.073333333334,1848.0564971751412,10.582508361204013,32.19383759030869,2019
+1998,65,"(60,65]",College,19551.603333333333,1848.0564971751412,10.579548494983277,34.566883686298794,2019
+1998,37,"(35,40]",HS,277.45663333333334,79.46642937853107,3.49149490549895,6937.163995893794,2019
+1998,37,"(35,40]",HS,587.3503666666667,64.68197740112994,9.08058767319637,5523.754993706381,2019
+1998,37,"(35,40]",HS,815.0664666666667,62.833920903954805,12.97175880385599,5158.274001072178,2019
+1998,37,"(35,40]",HS,167.58256666666668,62.833920903954805,2.667071611253197,7490.717031150396,2019
+1998,37,"(35,40]",HS,277.21959999999996,77.61837288135592,3.571571906354515,7231.92430173233,2019
+1998,54,"(50,55]",College,14674.186666666666,2217.6677966101697,6.616945373467112,22.204411533903258,2019
+1998,54,"(50,55]",College,9897.053333333333,2217.6677966101697,4.462820512820512,24.353920253896007,2019
+1998,54,"(50,55]",College,7923.295,2217.6677966101697,3.572805183946488,19.337585429647227,2019
+1998,54,"(50,55]",College,7871.33,2217.6677966101697,3.549372909698996,20.438086518054927,2019
+1998,54,"(50,55]",College,7871.33,2217.6677966101697,3.549372909698996,20.221048162119448,2019
+1998,66,"(65,70]",College,15388.021666666666,924.0282485875706,16.65319397993311,262.64948088473994,2019
+1998,66,"(65,70]",College,15388.021666666666,924.0282485875706,16.65319397993311,260.6892444893109,2019
+1998,66,"(65,70]",College,15388.021666666666,924.0282485875706,16.65319397993311,250.57456937200817,2019
+1998,66,"(65,70]",College,15388.021666666666,924.0282485875706,16.65319397993311,269.531251239284,2019
+1998,66,"(65,70]",College,15388.021666666666,924.0282485875706,16.65319397993311,255.46654311350304,2019
+1998,64,"(60,65]",HS,1346.167,38.80918644067796,34.68681318681319,6005.537202489211,2019
+1998,64,"(60,65]",HS,1346.3493333333333,38.80918644067796,34.691511387163565,5726.818053528321,2019
+1998,64,"(60,65]",HS,1346.167,38.80918644067796,34.68681318681319,5359.6330812653305,2019
+1998,64,"(60,65]",HS,1346.3493333333333,38.80918644067796,34.691511387163565,5864.631348379309,2019
+1998,64,"(60,65]",HS,1346.167,38.80918644067796,34.68681318681319,5345.5513479165365,2019
+1998,39,"(35,40]",College,2899.1,700.4134124293786,4.1391269049867185,216.21111620049282,2019
+1998,39,"(35,40]",College,2871.75,763.2473333333334,3.762541806020067,214.78225288884127,2019
+1998,39,"(35,40]",College,2877.2200000000003,500.82331073446335,5.744980192276839,206.45799266929959,2019
+1998,39,"(35,40]",College,2906.3933333333334,632.0353220338983,4.598466623638249,224.59571638244105,2019
+1998,39,"(35,40]",College,2922.8033333333337,691.1731299435029,4.228757176327509,212.32429477356413,2019
+1998,59,"(55,60]",College,16667.09,1142.0989152542375,14.59338571938825,262.64948088473994,2019
+1998,59,"(55,60]",College,16667.09,1142.0989152542375,14.59338571938825,260.6892444893109,2019
+1998,59,"(55,60]",College,16667.09,1142.0989152542375,14.59338571938825,250.57456937200817,2019
+1998,59,"(55,60]",College,16665.266666666666,1142.0989152542375,14.591789243541035,269.531251239284,2019
+1998,59,"(55,60]",College,16665.266666666666,1142.0989152542375,14.591789243541035,255.46654311350304,2019
+1998,64,"(60,65]",College,17886.9,3141.69604519774,5.69338973047413,988.5859082189633,2019
+1998,64,"(60,65]",College,16493.873333333333,3141.69604519774,5.249990163289396,1021.1001874181532,2019
+1998,64,"(60,65]",College,16424.586666666666,3141.69604519774,5.227936258115286,942.8621107542589,2019
+1998,64,"(60,65]",College,16984.35,3141.69604519774,5.406108597285067,1029.9302171209063,2019
+1998,64,"(60,65]",College,16211.256666666666,3141.69604519774,5.160033444816054,969.8612621006496,2019
+1998,50,"(45,50]",HS,731.5760333333334,170.021197740113,4.302851897629781,6574.84396979085,2019
+1998,50,"(45,50]",HS,721.5112333333333,170.021197740113,4.243654573215064,6300.092323655428,2019
+1998,50,"(45,50]",HS,753.1096,175.56536723163845,4.2896250660095046,5871.023653334001,2019
+1998,50,"(45,50]",HS,693.2313333333334,151.54063276836158,4.574557467982707,6423.044144250536,2019
+1998,50,"(45,50]",HS,805.0199,184.80564971751414,4.356035117056856,5859.719569343475,2019
+1998,59,"(55,60]",College,46308.29066666667,3862.4380790960454,11.989393672688866,19.119932411046605,2019
+1998,59,"(55,60]",College,43772.763333333336,3806.9963841807908,11.497978699223951,19.512198871435135,2019
+1998,59,"(55,60]",College,46287.14,3770.035254237288,12.277641156797168,21.441993446198993,2019
+1998,59,"(55,60]",College,41896.55333333334,3455.8656497175143,12.123316581117093,19.84743632088412,2019
+1998,59,"(55,60]",College,42637.009,3566.7490395480227,11.954025508170584,21.540000328966926,2019
+1998,46,"(45,50]",HS,-10.4846225,13.860423728813561,-0.7564431438127089,5702.798358299757,2019
+1998,46,"(45,50]",HS,-9.749180999999998,13.860423728813561,-0.703382608695652,5681.695225070876,2019
+1998,46,"(45,50]",HS,-11.785224399999999,13.860423728813561,-0.8502787959866218,5693.932846054174,2019
+1998,46,"(45,50]",HS,-10.454191066666667,13.860423728813561,-0.754247580824972,5678.339507233922,2019
+1998,46,"(45,50]",HS,-12.885241400000002,13.860423728813561,-0.9296426755852842,5703.350654194497,2019
+1998,60,"(55,60]",College,53286.69786666667,4028.763163841808,13.226565002608083,19.119932411046605,2019
+1998,60,"(55,60]",College,60787.891200000005,4102.6854237288135,14.816610322697281,19.512198871435135,2019
+1998,60,"(55,60]",College,64979.40633333334,3492.826779661017,18.603672736281432,21.441993446198993,2019
+1998,60,"(55,60]",College,58005.2475,3880.918644067797,14.946267319636883,19.84743632088412,2019
+1998,60,"(55,60]",College,63947.72786666667,3880.918644067797,16.47747189042841,21.540000328966926,2019
+1998,86,"(85,90]",NoHS,418.36383333333333,31.416960451977403,13.316496163682864,9377.428501005044,2019
+1998,86,"(85,90]",NoHS,506.8866666666667,86.85865536723163,5.83576460542233,7362.689921698674,2019
+1998,86,"(85,90]",NoHS,387.0936666666667,29.56890395480226,13.091241638795989,9935.557887708545,2019
+1998,86,"(85,90]",NoHS,588.7543333333334,101.64310734463277,5.792368501064154,7482.943888435965,2019
+1998,86,"(85,90]",NoHS,437.7823333333333,88.70671186440678,4.935165830546265,9966.400575544354,2019
+1998,74,"(70,75]",HS,23.174566666666667,38.80918644067796,0.597141264532569,4411.373506377624,2019
+1998,74,"(70,75]",HS,23.101633333333336,38.80918644067796,0.5952619843924193,4356.559444157098,2019
+1998,74,"(70,75]",HS,25.234933333333334,38.80918644067796,0.6502309284917982,4542.039773613147,2019
+1998,74,"(70,75]",HS,23.812733333333334,38.80918644067796,0.6135849657588789,4629.873096440604,2019
+1998,74,"(70,75]",HS,23.283966666666668,38.80918644067796,0.5999601847427936,4462.098719649205,2019
+1998,46,"(45,50]",College,217.23193333333333,142.30035028248585,1.5265734265734268,6570.418381572441,2019
+1998,46,"(45,50]",College,206.78423333333333,151.54063276836158,1.3645464556652256,6656.202855490211,2019
+1998,46,"(45,50]",College,243.1962,160.78091525423727,1.512593703148426,5401.341775967755,2019
+1998,46,"(45,50]",College,206.5472,170.021197740113,1.2148320488585138,6564.729198517659,2019
+1998,46,"(45,50]",College,212.19953333333333,168.17314124293785,1.2617920540997465,6866.868679343044,2019
+1998,40,"(35,40]",HS,5889.366666666667,905.5476836158192,6.5036516278752305,427.9945007409445,2019
+1998,40,"(35,40]",HS,5889.366666666667,905.5476836158192,6.5036516278752305,432.9581660494229,2019
+1998,40,"(35,40]",HS,5889.366666666667,905.5476836158192,6.5036516278752305,470.4440593817059,2019
+1998,40,"(35,40]",HS,5889.366666666667,905.5476836158192,6.5036516278752305,499.6470893248126,2019
+1998,40,"(35,40]",HS,5889.366666666667,905.5476836158192,6.5036516278752305,415.7494063180793,2019
+1998,41,"(40,45]",College,2612.8366666666666,203.28621468926553,12.852994831255701,938.2233471783773,2019
+1998,41,"(40,45]",College,2613.0190000000002,203.28621468926553,12.8538917604135,1027.2273025734107,2019
+1998,41,"(40,45]",College,2613.0190000000002,203.28621468926553,12.8538917604135,939.7173320277941,2019
+1998,41,"(40,45]",College,2613.0190000000002,203.28621468926553,12.8538917604135,1203.246320109516,2019
+1998,41,"(40,45]",College,2613.0190000000002,203.28621468926553,12.8538917604135,940.3417699199392,2019
+1998,53,"(50,55]",College,2057.6316666666667,600.6183615819209,3.4258554154875225,767.839860608785,2019
+1998,53,"(50,55]",College,2057.6316666666667,600.6183615819209,3.4258554154875225,805.9122761828827,2019
+1998,53,"(50,55]",College,2057.814,600.6183615819209,3.426158991510162,780.1364701653963,2019
+1998,53,"(50,55]",College,2057.814,600.6183615819209,3.426158991510162,803.0187191834965,2019
+1998,53,"(50,55]",College,2057.6316666666667,600.6183615819209,3.4258554154875225,760.7261350805742,2019
+1998,38,"(35,40]",College,73.66266666666667,203.28621468926553,0.3623593797506841,6373.327534764825,2019
+1998,38,"(35,40]",College,73.66266666666667,203.28621468926553,0.3623593797506841,6098.0525014050545,2019
+1998,38,"(35,40]",College,72.751,203.28621468926553,0.3578747339616905,5694.331616239851,2019
+1998,38,"(35,40]",College,75.66833333333334,203.28621468926553,0.3722256004864701,6224.803251202424,2019
+1998,38,"(35,40]",College,73.48033333333333,203.28621468926553,0.3614624505928854,5676.422783391835,2019
+1998,44,"(40,45]",HS,-4.558333333333333,73.92225988700567,-0.06166387959866219,6838.299798675861,2019
+1998,44,"(40,45]",HS,-4.558333333333333,73.92225988700567,-0.06166387959866219,6835.232208623094,2019
+1998,44,"(40,45]",HS,-4.558333333333333,73.92225988700567,-0.06166387959866219,6845.856904880517,2019
+1998,44,"(40,45]",HS,-4.558333333333333,73.92225988700567,-0.06166387959866219,6825.143678517932,2019
+1998,44,"(40,45]",HS,-6.381666666666667,73.92225988700567,-0.08632943143812707,6842.4690121145395,2019
+1998,51,"(50,55]",HS,945.3983333333334,160.78091525423727,5.880040748856342,6143.3321856787425,2019
+1998,51,"(50,55]",HS,920.2363333333334,145.99646327683615,6.303141272596419,5886.749964195731,2019
+1998,51,"(50,55]",HS,971.2896666666667,153.38868926553673,6.332211790305033,5485.545057737645,2019
+1998,51,"(50,55]",HS,943.7573333333333,182.957593220339,5.158339245295767,6002.77348359007,2019
+1998,51,"(50,55]",HS,912.7606666666667,182.957593220339,4.988919293267119,5476.148867237102,2019
+1998,40,"(35,40]",College,79488.21666666667,3326.5016949152546,23.895438498699367,29.171152638828563,2019
+1998,40,"(35,40]",College,78979.50666666667,3326.5016949152546,23.742512077294684,30.043340904004076,2019
+1998,40,"(35,40]",College,80436.35,3326.5016949152546,24.18046265328874,32.28937243415807,2019
+1998,40,"(35,40]",College,80241.25333333333,3326.5016949152546,24.12181345224823,30.125084445708545,2019
+1998,40,"(35,40]",College,81025.28666666667,3326.5016949152546,24.357506503158675,32.53636765465956,2019
+1998,42,"(40,45]",College,5388.861666666667,554.4169491525424,9.719871794871795,20.60317504058726,2019
+1998,42,"(40,45]",College,5388.861666666667,554.4169491525424,9.719871794871795,22.390481420784656,2019
+1998,42,"(40,45]",College,5387.038333333333,554.4169491525424,9.71658305462653,22.03298399002282,2019
+1998,42,"(40,45]",College,5383.391666666667,554.4169491525424,9.710005574136009,22.06894050188729,2019
+1998,42,"(40,45]",College,5388.861666666667,554.4169491525424,9.719871794871795,23.731700163679456,2019
+1998,43,"(40,45]",HS,0,0.9240282485875706,0,4861.046177844813,2019
+1998,43,"(40,45]",HS,0,0.9055476836158193,0,4835.964706717428,2019
+1998,43,"(40,45]",HS,0,0.9240282485875706,0,4856.2631203949295,2019
+1998,43,"(40,45]",HS,0,0.9240282485875706,0,4839.127013338453,2019
+1998,43,"(40,45]",HS,0,0.9055476836158193,0,4858.351352909703,2019
+1998,73,"(70,75]",College,2218.2673333333337,96.09893785310734,23.08316182145614,3003.905299965395,2019
+1998,73,"(70,75]",College,2218.2673333333337,96.09893785310734,23.08316182145614,3297.426863281419,2019
+1998,73,"(70,75]",College,2218.2673333333337,96.09893785310734,23.08316182145614,3076.554808198889,2019
+1998,73,"(70,75]",College,2218.2673333333337,96.09893785310734,23.08316182145614,3053.67789445265,2019
+1998,73,"(70,75]",College,2216.444,97.9469943502825,22.629014955512083,3151.937318781999,2019
+1998,68,"(65,70]",HS,558.1041,166.32508474576272,3.3555016722408024,4883.711225951369,2019
+1998,68,"(65,70]",HS,529.09669,168.17314124293785,3.1461426366275864,4678.282032914458,2019
+1998,68,"(65,70]",HS,552.9987666666667,142.30035028248585,3.886137775268211,4352.755494470835,2019
+1998,68,"(65,70]",HS,545.8877666666667,164.47702824858757,3.3189301416707377,4736.68729343662,2019
+1998,68,"(65,70]",HS,553.6551666666667,138.6042372881356,3.994503901895206,4334.432710011917,2019
+1998,76,"(75,80]",HS,279.517,38.80918644067796,7.202341137123747,9238.845825236578,2019
+1998,76,"(75,80]",HS,279.3346666666667,36.96112994350283,7.557525083612039,9431.536744397314,2019
+1998,76,"(75,80]",HS,279.3346666666667,38.80918644067796,7.197642936773373,9788.72699508339,2019
+1998,76,"(75,80]",HS,279.517,38.80918644067796,7.202341137123747,9390.541931859398,2019
+1998,76,"(75,80]",HS,279.517,38.80918644067796,7.202341137123747,9819.113879688313,2019
+1998,48,"(45,50]",College,5505.008,498.975254237288,11.032627276105538,988.5859082189633,2019
+1998,48,"(45,50]",College,5492.427,498.975254237288,11.007413600891864,1021.1001874181532,2019
+1998,48,"(45,50]",College,5326.139,498.975254237288,10.674154589371984,942.8621107542589,2019
+1998,48,"(45,50]",College,5897.207,498.975254237288,11.818636194723155,1029.9302171209063,2019
+1998,48,"(45,50]",College,6068.600333333333,498.975254237288,12.162126842561626,969.8612621006496,2019
+1998,31,"(30,35]",HS,109.80113333333334,92.40282485875707,1.18828762541806,5900.741819363268,2019
+1998,31,"(30,35]",HS,111.6427,92.40282485875707,1.2082173913043477,5823.6628528882475,2019
+1998,31,"(30,35]",HS,109.81936666666667,92.40282485875707,1.1884849498327759,5869.303514341057,2019
+1998,31,"(30,35]",HS,107.9778,92.40282485875707,1.1685551839464883,5929.017576483328,2019
+1998,31,"(30,35]",HS,111.62446666666666,92.40282485875707,1.208020066889632,5853.849472387077,2019
+1998,52,"(50,55]",HS,152.97766666666666,116.4275593220339,1.3139300313213356,6729.651038795875,2019
+1998,52,"(50,55]",HS,147.83586666666667,96.09893785310734,1.5383714947260099,6855.882393338662,2019
+1998,52,"(50,55]",HS,154.92863333333332,120.12367231638417,1.2897427321842037,7151.168631680349,2019
+1998,52,"(50,55]",HS,152.8865,116.4275593220339,1.3131469979296067,6711.048976078705,2019
+1998,52,"(50,55]",HS,155.27506666666667,118.27561581920904,1.3128239966555184,7041.498883549715,2019
+1998,49,"(45,50]",College,10432.292833333335,303.08126553672315,34.42077759197325,3367.3833616380807,2019
+1998,79,"(75,80]",HS,2139.6269666666667,219.9187231638418,9.729171467918272,3456.0444099253864,2019
+1998,51,"(50,55]",HS,6077.3341,680.084790960452,8.936141758761087,3484.9668742741787,2019
+1998,36,"(35,40]",HS,1695.3353333333332,310.4734915254237,5.460483357222488,3793.8682264962567,2019
+1998,55,"(50,55]",College,4325.967733333334,301.233209039548,14.360859306071365,3268.9642418434514,2019
+1998,53,"(50,55]",College,6379.1140000000005,280.90458757062146,22.709184122513644,2842.939395699347,2019
+1998,53,"(50,55]",College,6379.1140000000005,280.90458757062146,22.709184122513644,2934.2739185047135,2019
+1998,53,"(50,55]",College,6379.1140000000005,280.90458757062146,22.709184122513644,2772.819244001933,2019
+1998,53,"(50,55]",College,6379.1140000000005,280.90458757062146,22.709184122513644,3026.685042482587,2019
+1998,53,"(50,55]",College,6379.1140000000005,280.90458757062146,22.709184122513644,2792.840805853901,2019
+1998,72,"(70,75]",HS,352.08566666666667,40.65724293785311,8.65985101854667,11685.158372987218,2019
+1998,72,"(70,75]",HS,352.08566666666667,40.65724293785311,8.65985101854667,11756.208813062205,2019
+1998,72,"(70,75]",HS,352.26800000000003,40.65724293785311,8.664335664335663,12493.842084306876,2019
+1998,72,"(70,75]",HS,352.26800000000003,40.65724293785311,8.664335664335663,11792.079730789683,2019
+1998,72,"(70,75]",HS,352.08566666666667,40.65724293785311,8.65985101854667,12364.054282090696,2019
+1998,69,"(65,70]",HS,154.72806666666668,24.024734463276836,6.440365320298431,8434.822833429844,2019
+1998,69,"(65,70]",HS,154.9104,24.024734463276836,6.44795472086442,8794.432828471783,2019
+1998,69,"(65,70]",HS,154.72806666666668,24.024734463276836,6.440365320298431,8946.896306901475,2019
+1998,69,"(65,70]",HS,154.89216666666667,24.024734463276836,6.447195780807821,8490.239498247041,2019
+1998,69,"(65,70]",HS,154.7463,24.024734463276836,6.441124260355029,8867.96200493594,2019
+1998,47,"(45,50]",HS,51.418,99.79505084745762,0.515235971757711,5338.382051216946,2019
+1998,47,"(45,50]",HS,88.614,99.79505084745762,0.887959866220736,5340.642176249938,2019
+1998,47,"(45,50]",HS,29.300966666666667,99.79505084745762,0.29361142078533387,5329.805257833241,2019
+1998,47,"(45,50]",HS,36.649,99.79505084745762,0.36724266072092165,5332.887976591707,2019
+1998,47,"(45,50]",HS,76.94466666666668,99.79505084745762,0.771026879722532,5352.2926817303405,2019
+1998,59,"(55,60]",HS,489.8385,70.22614689265536,6.975158422812886,5923.860944290309,2019
+1998,59,"(55,60]",HS,378.7975,48.04946892655367,7.883489837921276,7225.184044935826,2019
+1998,59,"(55,60]",HS,411.6175,57.289751412429375,7.184836551947352,5287.230289761693,2019
+1998,59,"(55,60]",HS,345.7951666666667,90.55476836158192,3.8186301276363395,7124.154061577114,2019
+1998,59,"(55,60]",HS,876.3851666666667,88.70671186440678,9.87958124303233,5273.550345097989,2019
+1998,72,"(70,75]",College,784.945,75.77031638418079,10.359531772575252,7225.533350049924,2019
+1998,72,"(70,75]",College,734.8033333333334,81.31448587570623,9.036561264822135,6960.325582665304,2019
+1998,72,"(70,75]",College,729.698,60.98586440677967,11.965034965034963,6495.559368631551,2019
+1998,72,"(70,75]",College,751.9426666666667,66.53003389830509,11.302303976217019,7105.38813941871,2019
+1998,72,"(70,75]",College,745.7433333333333,86.85865536723163,8.58571123603501,6478.123031951005,2019
+1998,55,"(50,55]",HS,9.864233333333333,110.88338983050849,0.08896042363433666,4383.5707445396665,2019
+1998,55,"(50,55]",HS,9.827766666666667,110.88338983050849,0.08863154960981047,4335.401743697691,2019
+1998,55,"(50,55]",HS,10.301833333333335,110.88338983050849,0.09290691192865105,4462.8466899742225,2019
+1998,55,"(50,55]",HS,10.301833333333335,110.88338983050849,0.09290691192865105,4360.299700434802,2019
+1998,55,"(50,55]",HS,10.0648,110.88338983050849,0.09076923076923075,4419.905405658131,2019
+1998,25,"(20,25]",HS,0,24.024734463276836,0,4584.574187010124,2019
+1998,25,"(20,25]",HS,0,24.024734463276836,0,4555.180984142612,2019
+1998,25,"(20,25]",HS,0,24.024734463276836,0,4531.7399933138295,2019
+1998,25,"(20,25]",HS,0,24.024734463276836,0,4602.981781059105,2019
+1998,25,"(20,25]",HS,0,24.024734463276836,0,4543.731814239141,2019
+1998,67,"(65,70]",HS,299.209,18.480564971751416,16.190468227424745,7525.897955636932,2019
+1998,67,"(65,70]",HS,299.209,25.872790960451983,11.564620162446246,7846.756873477674,2019
+1998,67,"(65,70]",HS,299.209,38.80918644067796,7.7097467749641675,7982.791097702956,2019
+1998,67,"(65,70]",HS,299.209,38.80918644067796,7.7097467749641675,7575.342997067203,2019
+1998,67,"(65,70]",HS,299.0266666666667,31.416960451977403,9.518001180405273,7912.362647275094,2019
+1998,69,"(65,70]",College,8059.133333333333,375.1554689265537,21.482116084814734,2682.844375489048,2019
+1998,69,"(65,70]",College,8340.656,375.1554689265537,22.232532085605552,2632.478609273642,2019
+1998,69,"(65,70]",College,8353.419333333333,377.00352542372883,22.157403764181257,2536.4250665529253,2019
+1998,69,"(65,70]",College,8336.28,377.00352542372883,22.111941766673226,2991.6620524667005,2019
+1998,69,"(65,70]",College,8064.6033333333335,377.00352542372883,21.39132074234376,2771.054615124245,2019
+1998,52,"(50,55]",College,84469.56333333332,1166.1236497175141,72.43619778553975,350.74565291931157,2019
+1998,52,"(50,55]",College,86427.82333333333,1031.2155254237289,83.81160019659318,332.63937689667944,2019
+1998,52,"(50,55]",College,85669.31666666668,1012.7349604519775,84.59204037790201,349.70181964412177,2019
+1998,52,"(50,55]",College,83494.08,1156.8833672316384,72.17156228963424,342.7358547122605,2019
+1998,52,"(50,55]",College,83364.62333333334,1055.2402598870058,79.00060915251656,335.0119632149632,2019
+1998,26,"(25,30]",College,164.46466666666666,114.57950282485875,1.4353759844643434,5512.8524125736285,2019
+1998,26,"(25,30]",College,167.01733333333334,114.57950282485875,1.4576545474161184,5497.33882155275,2019
+1998,26,"(25,30]",College,168.84066666666666,114.57950282485875,1.473567806667386,5546.2693202513265,2019
+1998,26,"(25,30]",College,218.07066666666665,114.57950282485875,1.903225806451613,5532.503412126553,2019
+1998,26,"(25,30]",College,210.77733333333336,114.57950282485875,1.8395727694465427,5568.195708734783,2019
+1998,56,"(55,60]",College,6764.5666666666675,297.53709604519776,22.735204304202416,1161.3969760584043,2019
+1998,56,"(55,60]",College,6762.743333333333,297.53709604519776,22.72907621678888,1266.7935013065257,2019
+1998,56,"(55,60]",College,6764.5666666666675,297.53709604519776,22.735204304202416,1162.0756149372191,2019
+1998,56,"(55,60]",College,6760.92,297.53709604519776,22.72294812937535,1488.8005553762264,2019
+1998,56,"(55,60]",College,6764.5666666666675,297.53709604519776,22.735204304202416,1163.3911306698635,2019
+1998,46,"(45,50]",College,424.16021,66.53003389830509,6.375469620958751,6548.939378970037,2019
+1998,46,"(45,50]",College,424.2331433333333,73.92225988700567,5.738909280936453,6275.887789511621,2019
+1998,46,"(45,50]",College,451.8767,92.40282485875707,4.890290969899666,5848.219734179429,2019
+1998,46,"(45,50]",College,442.4136,79.46642937853107,5.567301858909543,6399.495737837689,2019
+1998,46,"(45,50]",College,415.8749833333333,88.70671186440678,4.688201992753623,5837.731655827365,2019
+1998,71,"(70,75]",HS,45.583333333333336,17.92614802259887,2.542840395821122,7478.5581438979425,2019
+1998,71,"(70,75]",HS,46.13033333333334,17.92614802259887,2.5733544805709756,7567.022004256748,2019
+1998,71,"(70,75]",HS,45.583333333333336,17.92614802259887,2.542840395821122,7516.960817073514,2019
+1998,71,"(70,75]",HS,45.583333333333336,17.92614802259887,2.542840395821122,7555.7134304091405,2019
+1998,71,"(70,75]",HS,45.583333333333336,17.92614802259887,2.542840395821122,7535.633283430498,2019
+1998,26,"(25,30]",HS,0,18.480564971751416,0,5801.262480863184,2019
+1998,26,"(25,30]",HS,0,16.44770282485876,0,5797.028055589448,2019
+1998,26,"(25,30]",HS,0,29.56890395480226,0,5817.187486957533,2019
+1998,26,"(25,30]",HS,0,10.533922033898305,0,5796.89393499318,2019
+1998,26,"(25,30]",HS,0,12.012367231638418,0,5813.50154381606,2019
+1998,85,"(80,85]",College,10067.170333333333,554.4169491525424,18.158121516164993,19.900465541142104,2019
+1998,85,"(80,85]",College,10067.170333333333,554.4169491525424,18.158121516164993,21.446645979943224,2019
+1998,85,"(80,85]",College,10067.170333333333,554.4169491525424,18.158121516164993,21.113050171000037,2019
+1998,85,"(80,85]",College,10068.993666666665,554.4169491525424,18.161410256410253,21.65244817866952,2019
+1998,85,"(80,85]",College,10067.170333333333,554.4169491525424,18.158121516164993,22.615376312897332,2019
+1998,34,"(30,35]",College,-40.988533333333336,42.50529943502825,-0.9643158353933402,7197.909013431406,2019
+1998,34,"(30,35]",College,-40.988533333333336,44.35335593220339,-0.9241360089186176,7288.801489143358,2019
+1998,34,"(30,35]",College,-41.17086666666667,42.50529943502825,-0.9686054965828124,7393.5320677419395,2019
+1998,34,"(30,35]",College,-40.988533333333336,44.35335593220339,-0.9241360089186176,7226.803720831342,2019
+1998,34,"(30,35]",College,-41.17086666666667,42.50529943502825,-0.9686054965828124,7364.291454162424,2019
+1998,61,"(60,65]",College,84777.342,8168.409717514126,10.378683848121186,48.18985231979501,2019
+1998,61,"(60,65]",College,84715.34866666667,7854.240112994352,10.785938225457405,49.68466152990824,2019
+1998,61,"(60,65]",College,84918.10333333333,7928.162372881356,10.710944016964085,53.8623244642646,2019
+1998,61,"(60,65]",College,84774.06,8519.5404519774,9.9505437503174,49.99889121411865,2019
+1998,61,"(60,65]",College,84843.89366666667,8519.5404519774,9.958740632186828,54.351565094426654,2019
+1998,50,"(45,50]",College,129225.65033333332,24154.0984180791,5.350050666209476,15.134541716248247,2019
+1998,50,"(45,50]",College,151402.85366666666,24117.137288135596,6.277811991440176,15.874244413854168,2019
+1998,50,"(45,50]",College,160896.58566666665,24154.0984180791,6.661254039862535,13.522093385409011,2019
+1998,50,"(45,50]",College,131715.412,23507.2786440678,5.603175679939421,13.033395147043223,2019
+1998,50,"(45,50]",College,139260.40180000002,24154.0984180791,5.765497821097103,13.520225057567519,2019
+1998,46,"(45,50]",College,404.9988,75.77031638418079,5.345085243494576,7545.779315011768,2019
+1998,46,"(45,50]",College,407.8249666666667,75.77031638418079,5.38238437066645,7694.084010898584,2019
+1998,46,"(45,50]",College,399.87523333333337,75.77031638418079,5.277465535524922,8022.330689343966,2019
+1998,46,"(45,50]",College,404.28770000000003,75.77031638418079,5.335700301819072,7500.304120131153,2019
+1998,46,"(45,50]",College,407.6791,75.77031638418079,5.38045925442532,8025.227613828089,2019
+1998,40,"(35,40]",College,717.8463333333334,288.29681355932206,2.489955835691622,776.6594101984763,2019
+1998,40,"(35,40]",College,719.6696666666667,288.29681355932206,2.496280336163279,707.9652276379787,2019
+1998,40,"(35,40]",College,717.8463333333334,290.14487005649715,2.4740962443814842,726.0985193168004,2019
+1998,40,"(35,40]",College,719.6696666666667,288.29681355932206,2.496280336163279,800.6388593487138,2019
+1998,40,"(35,40]",College,719.4873333333334,288.29681355932206,2.4956478861161133,805.7132112296174,2019
+1998,56,"(55,60]",College,14459.033333333335,785.424011299435,18.40920716112532,988.5859082189633,2019
+1998,56,"(55,60]",College,14457.210000000001,785.424011299435,18.406885697422783,1021.1001874181532,2019
+1998,56,"(55,60]",College,14459.033333333335,785.424011299435,18.40920716112532,942.8621107542589,2019
+1998,56,"(55,60]",College,14459.033333333335,785.424011299435,18.40920716112532,1029.9302171209063,2019
+1998,56,"(55,60]",College,14459.033333333335,785.424011299435,18.40920716112532,969.8612621006496,2019
+1998,69,"(65,70]",HS,847.6311999999999,59.13780790960452,14.333152173913042,8041.39410768655,2019
+1998,69,"(65,70]",HS,747.749,92.40282485875707,8.092274247491638,7691.930554167923,2019
+1998,69,"(65,70]",HS,769.5743000000001,129.36395480225988,5.948908265647397,7122.069942296968,2019
+1998,69,"(65,70]",HS,752.0703000000001,116.4275593220339,6.459555661729575,7814.276833973311,2019
+1998,69,"(65,70]",HS,766.7116666666666,40.65724293785311,18.857935542718145,7102.4861965092205,2019
+1998,62,"(60,65]",HS,237.74443333333332,70.22614689265536,3.385411899313501,8143.2621365393625,2019
+1998,62,"(60,65]",HS,238.63786666666667,70.22614689265536,3.3981341313149094,8067.525091012797,2019
+1998,62,"(60,65]",HS,237.68973333333335,70.22614689265536,3.38463298715015,8494.160960095329,2019
+1998,62,"(60,65]",HS,238.56493333333333,70.22614689265536,3.3970955817637742,7975.224032766593,2019
+1998,62,"(60,65]",HS,237.92676666666668,70.22614689265536,3.38800827319134,8405.67920979246,2019
+1998,75,"(70,75]",HS,299.3913333333333,38.80918644067796,7.7144449753145405,7634.925063189284,2019
+1998,75,"(70,75]",HS,292.2803333333333,79.46642937853107,3.6780353115034607,7788.245976207485,2019
+1998,75,"(70,75]",HS,271.4943333333333,25.872790960451983,10.493430482560914,8138.577479284764,2019
+1998,75,"(70,75]",HS,286.628,25.872790960451983,11.078356426182511,7716.1882723323815,2019
+1998,75,"(70,75]",HS,264.748,46.201412429378536,5.730301003344481,8061.480967304915,2019
+1998,47,"(45,50]",HS,18.980900000000002,11.088338983050848,1.711789297658863,7068.850325100842,2019
+1998,47,"(45,50]",HS,18.980900000000002,11.088338983050848,1.711789297658863,7076.2080263279695,2019
+1998,47,"(45,50]",HS,18.980900000000002,11.088338983050848,1.711789297658863,7072.414998560409,2019
+1998,47,"(45,50]",HS,18.980900000000002,11.088338983050848,1.711789297658863,7058.314614933572,2019
+1998,47,"(45,50]",HS,18.980900000000002,11.088338983050848,1.711789297658863,7079.070516845399,2019
+1998,70,"(65,70]",College,144504.63666666666,707.8056384180792,204.1586402018914,17.268444467120176,2019
+1998,70,"(65,70]",College,147081.00666666665,792.8162372881355,185.51714728972254,17.91468756555343,2019
+1998,70,"(65,70]",College,149568.03333333335,735.5264858757062,203.34826305440248,15.830599937145305,2019
+1998,70,"(65,70]",College,148521.44,713.3498079096046,208.2028176824302,15.204111176697074,2019
+1998,70,"(65,70]",College,146997.13333333336,696.7172994350283,210.98533573449964,15.429581264837443,2019
+1998,51,"(50,55]",College,39362.12,2642.7207909604517,14.894543583506797,12.827327900564516,2019
+1998,51,"(50,55]",College,27202.857,5433.2861016949155,5.006704320524196,13.939333164601404,2019
+1998,51,"(50,55]",College,27796.716666666667,3030.812655367232,9.171374092503466,13.902246643795191,2019
+1998,51,"(50,55]",College,36224.16333333334,2494.87627118644,14.519422767248859,12.711287252851669,2019
+1998,51,"(50,55]",College,337213.8306666667,3344.9822598870055,100.81184426911067,16.589108194601298,2019
+1998,30,"(25,30]",College,228.00783333333334,138.6042372881356,1.6450278706800445,6205.016953979874,2019
+1998,30,"(25,30]",College,231.18043333333333,140.45229378531073,1.6459712198556593,6241.700844846977,2019
+1998,30,"(25,30]",College,234.24363333333335,138.6042372881356,1.6900178372352286,6389.922994539683,2019
+1998,30,"(25,30]",College,231.14396666666667,138.6042372881356,1.667654403567447,6222.850699840188,2019
+1998,30,"(25,30]",College,235.28293333333332,138.6042372881356,1.6975161649944255,6282.23950476949,2019
+1998,68,"(65,70]",NoHS,-1.6774666666666667,12.012367231638418,-0.13964497041420118,5637.584511929205,2019
+1998,68,"(65,70]",NoHS,-1.4404333333333335,12.012367231638418,-0.11991252894262928,5640.303110188829,2019
+1998,68,"(65,70]",NoHS,-1.4951333333333334,12.012367231638418,-0.1244661692822228,5630.232979800925,2019
+1998,68,"(65,70]",NoHS,-1.4586666666666668,12.012367231638418,-0.12143040905582712,5586.006544683064,2019
+1998,68,"(65,70]",NoHS,-1.4404333333333335,12.012367231638418,-0.11991252894262928,5620.919704522068,2019
+1998,25,"(20,25]",HS,138.51863333333333,49.89752542372881,2.776062182583922,8489.057266543497,2019
+1998,25,"(20,25]",HS,139.24796666666668,49.89752542372881,2.790678805896198,8578.523186535229,2019
+1998,25,"(20,25]",HS,136.89586666666668,49.89752542372881,2.7435401957141092,8844.392892133716,2019
+1998,25,"(20,25]",HS,137.16936666666666,49.89752542372881,2.7490214294562123,8483.671346968604,2019
+1998,25,"(20,25]",HS,137.2423,49.89752542372881,2.75048309178744,8796.256681340115,2019
+1998,39,"(35,40]",NoHS,75.08486666666667,44.35335593220339,1.6928790412486066,4544.31845561636,2019
+1998,39,"(35,40]",NoHS,73.44386666666666,44.35335593220339,1.655880713489409,4510.8583733332,2019
+1998,39,"(35,40]",NoHS,75.24896666666666,44.35335593220339,1.696578874024526,4512.114081676318,2019
+1998,39,"(35,40]",NoHS,75.24896666666666,44.35335593220339,1.696578874024526,4587.942859918312,2019
+1998,39,"(35,40]",NoHS,75.08486666666667,44.35335593220339,1.6928790412486066,4494.287471174499,2019
+1998,95,"(90,95]",HS,801.5373333333334,59.13780790960452,13.553720735785955,65.59489039935588,2019
+1998,95,"(90,95]",HS,1190.6366666666668,116.4275593220339,10.226416095981314,61.77895171202499,2019
+1998,95,"(90,95]",HS,166.4521,75.77031638418079,2.196798270658292,119.1095025946448,2019
+1998,95,"(90,95]",HS,516.5321,77.61837288135592,6.654765886287627,298.9151343112181,2019
+1998,95,"(90,95]",HS,389.8286666666667,114.57950282485875,3.402254827921028,117.30614155502533,2019
+1998,81,"(80,85]",HS,482.454,72.07420338983052,6.6938512992024695,10553.334075500763,2019
+1998,81,"(80,85]",HS,486.283,53.593638418079095,9.073520931841772,10174.650373158365,2019
+1998,81,"(80,85]",HS,477.3486666666667,64.68197740112994,7.379933110367894,9881.289916979043,2019
+1998,81,"(80,85]",HS,507.2513333333333,90.55476836158192,5.601597160603371,10062.590158865458,2019
+1998,81,"(80,85]",HS,489.01800000000003,55.441694915254246,8.82040133779264,10318.796404198825,2019
+1998,23,"(20,25]",HS,452.05903333333333,134.9081242937853,3.3508659000320704,5013.119372485492,2019
+1998,23,"(20,25]",HS,505.06333333333333,31.416960451977403,16.07613614007476,4790.363822874673,2019
+1998,23,"(20,25]",HS,473.86609999999996,57.289751412429375,8.271393893623907,4473.4812070993,2019
+1998,23,"(20,25]",HS,456.12506666666667,36.96112994350283,12.340668896321068,4865.878628605676,2019
+1998,23,"(20,25]",HS,624.9110333333333,134.9081242937853,4.63212305859715,4436.0627680958105,2019
+1998,48,"(45,50]",College,1007.2093333333333,277.2084745762712,3.63340022296544,8823.799633638642,2019
+1998,48,"(45,50]",College,1007.027,277.2084745762712,3.632742474916388,8434.17096733004,2019
+1998,48,"(45,50]",College,1007.2093333333333,277.2084745762712,3.63340022296544,8625.356072297998,2019
+1998,48,"(45,50]",College,1007.027,277.2084745762712,3.632742474916388,8552.740663719329,2019
+1998,48,"(45,50]",College,1006.6623333333334,277.2084745762712,3.631426978818283,8739.073460368742,2019
+1998,44,"(40,45]",HS,295.5623333333333,210.6784406779661,1.4029073519920199,7953.135797741581,2019
+1998,44,"(40,45]",HS,295.7446666666667,208.83038418079096,1.4161955781809574,8114.4237139959005,2019
+1998,44,"(40,45]",HS,295.7446666666667,208.83038418079096,1.4161955781809574,8498.03889551971,2019
+1998,44,"(40,45]",HS,294.1036666666667,210.6784406779661,1.3959836883177845,7951.681172330597,2019
+1998,44,"(40,45]",HS,295.7446666666667,208.83038418079096,1.4161955781809574,8437.19040545914,2019
+1998,63,"(60,65]",NoHS,538.1750666666667,24.024734463276836,22.400874710573706,5471.476043357417,2019
+1998,63,"(60,65]",NoHS,596.5581999999999,25.872790960451983,23.057357859531766,5216.376053001013,2019
+1998,63,"(60,65]",NoHS,574.6417333333333,24.024734463276836,23.918754823771543,4883.047503156451,2019
+1998,63,"(60,65]",NoHS,528.0191,33.265016949152546,15.873104793756966,5342.75456608477,2019
+1998,63,"(60,65]",NoHS,519.4129666666666,25.872790960451983,20.07564500716674,4870.80599618985,2019
+1998,53,"(50,55]",College,2648.027,487.88691525423735,5.427542566129522,1929.1486436714422,2019
+1998,53,"(50,55]",College,2648.027,487.88691525423735,5.427542566129522,1889.8210300269402,2019
+1998,53,"(50,55]",College,2648.027,487.88691525423735,5.427542566129522,1804.0510391782348,2019
+1998,53,"(50,55]",College,2648.027,487.88691525423735,5.427542566129522,2180.5099130765316,2019
+1998,53,"(50,55]",College,2648.027,487.88691525423735,5.427542566129522,2008.0289116277727,2019
+1998,24,"(20,25]",NoHS,0.9116666666666666,10.71872768361582,0.08505362703263752,5350.373166605473,2019
+1998,24,"(20,25]",NoHS,0.9116666666666666,10.71872768361582,0.08505362703263752,5357.170576761136,2019
+1998,24,"(20,25]",NoHS,0.9116666666666666,10.71872768361582,0.08505362703263752,5390.809439846493,2019
+1998,24,"(20,25]",NoHS,0.9116666666666666,10.71872768361582,0.08505362703263752,5322.487947730335,2019
+1998,24,"(20,25]",NoHS,0.9116666666666666,10.71872768361582,0.08505362703263752,5351.914283123837,2019
+1998,43,"(40,45]",College,54.317099999999996,55.441694915254246,0.9797157190635449,9447.765548163088,2019
+1998,43,"(40,45]",College,54.4812,55.441694915254246,0.9826755852842808,9445.037424155624,2019
+1998,43,"(40,45]",College,54.4812,55.441694915254246,0.9826755852842808,9726.336380840236,2019
+1998,43,"(40,45]",College,54.499433333333336,55.441694915254246,0.983004459308807,9515.952184372902,2019
+1998,43,"(40,45]",College,54.317099999999996,55.441694915254246,0.9797157190635449,9691.97554273168,2019
+1998,35,"(30,35]",HS,-0.8569666666666668,24.024734463276836,-0.03567018266014922,5685.915875329083,2019
+1998,35,"(30,35]",HS,-0.8387333333333333,25.872790960451983,-0.03241758241758241,5655.663579580391,2019
+1998,35,"(30,35]",HS,-0.8387333333333333,24.024734463276836,-0.034911242603550295,5671.712924674112,2019
+1998,35,"(30,35]",HS,-0.8569666666666668,24.024734463276836,-0.03567018266014922,5691.805535935171,2019
+1998,35,"(30,35]",HS,-0.8569666666666668,25.872790960451983,-0.033122312470138554,5642.680361329738,2019
+1998,33,"(30,35]",College,1524.3066666666668,277.2084745762712,5.498773690078038,948.074934071981,2019
+1998,33,"(30,35]",College,1524.3066666666668,277.2084745762712,5.498773690078038,1003.58412784806,2019
+1998,33,"(30,35]",College,1524.3066666666668,277.2084745762712,5.498773690078038,945.939009527041,2019
+1998,33,"(30,35]",College,1524.3066666666668,277.2084745762712,5.498773690078038,1000.4624911977764,2019
+1998,33,"(30,35]",College,1487.84,277.2084745762712,5.367224080267557,947.3904900970305,2019
+1998,60,"(55,60]",College,19566.19,739.2225988700566,26.46860367892976,1137.361481989933,2019
+1998,60,"(55,60]",College,19549.233,739.2225988700566,26.44566471571906,1175.502057019537,2019
+1998,60,"(55,60]",College,19562.54333333333,739.2225988700566,26.463670568561867,1154.3887531924051,2019
+1998,60,"(55,60]",College,19533.37,739.2225988700566,26.424205685618723,1214.7358267998663,2019
+1998,60,"(55,60]",College,19530.635000000002,739.2225988700566,26.42050585284281,1202.1806832917837,2019
+1998,46,"(45,50]",HS,791.3266666666666,96.09893785310734,8.234499614098276,6753.593731821052,2019
+1998,46,"(45,50]",HS,869.73,99.79505084745762,8.71516164994426,6472.009280306376,2019
+1998,46,"(45,50]",HS,780.3866666666667,105.33922033898305,7.4083201314322595,6030.976598424102,2019
+1998,46,"(45,50]",HS,771.4523333333334,99.79505084745762,7.730366654279699,6599.479976965884,2019
+1998,46,"(45,50]",HS,638.349,109.03533333333333,5.854515050167225,6020.160767627929,2019
+1998,44,"(40,45]",HS,167.01733333333334,68.37809039548021,2.4425562686432256,7181.990094927304,2019
+1998,44,"(40,45]",HS,163.02605666666668,66.53003389830509,2.450412950575994,7321.82438598217,2019
+1998,44,"(40,45]",HS,168.34836666666666,66.53003389830509,2.5304115570419916,7562.492055250152,2019
+1998,44,"(40,45]",HS,162.44076666666666,68.37809039548021,2.3756259604085694,7258.893912428733,2019
+1998,44,"(40,45]",HS,218.8,66.53003389830509,3.2887402452619843,7490.439215998621,2019
+1998,61,"(60,65]",College,114128.63266666667,2051.3427118644067,55.63606315345446,24.138170005778257,2019
+1998,61,"(60,65]",College,112990.14333333333,2420.954011299435,46.67174295999387,24.904159637331603,2019
+1998,61,"(60,65]",College,115112.321,2106.7844067796614,54.638870797394816,27.033696461809864,2019
+1998,61,"(60,65]",College,114068.098,2014.381581920904,56.62685710779049,24.73838124127179,2019
+1998,61,"(60,65]",College,121814.89433333333,2457.9151412429383,49.5602522191767,26.89246887516341,2019
+1998,64,"(60,65]",NoHS,1693.8766666666668,48.04946892655367,35.25276562901981,1391.5861804455399,2019
+1998,64,"(60,65]",NoHS,1593.7756666666667,48.04946892655367,33.169475173655776,1473.1932481411816,2019
+1998,64,"(60,65]",NoHS,1606.3566666666668,48.04946892655367,33.431309493182404,1393.8540376488822,2019
+1998,64,"(60,65]",NoHS,1613.65,48.04946892655367,33.58309750450219,1474.4401828565237,2019
+1998,64,"(60,65]",NoHS,1553.2976666666668,48.04946892655367,32.32705171083098,1390.975760048604,2019
+1998,55,"(50,55]",College,1882.7740000000001,227.31094915254238,8.282812627457378,573.7997115785307,2019
+1998,55,"(50,55]",College,1885.5272333333335,227.31094915254238,8.294924817141148,608.3934863730094,2019
+1998,55,"(50,55]",College,1887.3323333333333,227.31094915254238,8.302865921635805,576.4111149301759,2019
+1998,55,"(50,55]",College,1884.5973333333334,227.31094915254238,8.29083394512875,607.8975657775095,2019
+1998,55,"(50,55]",College,1885.8736666666668,227.31094915254238,8.29644886749871,572.0102893323026,2019
+1998,35,"(30,35]",College,314.1603333333333,118.27561581920904,2.6561716137123743,5963.358116499038,2019
+1998,35,"(30,35]",College,314.8896666666667,118.27561581920904,2.662338001672241,5706.638156046067,2019
+1998,35,"(30,35]",College,314.1603333333333,118.27561581920904,2.6561716137123743,5327.546313345367,2019
+1998,35,"(30,35]",College,316.5306666666667,118.27561581920904,2.67621237458194,5824.4052917687595,2019
+1998,35,"(30,35]",College,313.2486666666667,118.27561581920904,2.648463628762542,5310.577976743663,2019
+1998,22,"(20,25]",HS,9.663666666666666,36.96112994350283,0.2614548494983277,5215.2585197580665,2019
+1998,22,"(20,25]",HS,9.663666666666666,36.96112994350283,0.2614548494983277,5228.511635727136,2019
+1998,22,"(20,25]",HS,12.034,36.96112994350283,0.3255852842809364,5237.010413857225,2019
+1998,22,"(20,25]",HS,10.94,36.96112994350283,0.2959866220735785,5257.154248385683,2019
+1998,22,"(20,25]",HS,9.116666666666665,36.96112994350283,0.24665551839464875,5201.074721514971,2019
+1998,38,"(35,40]",HS,27.787599999999998,64.68197740112994,0.42960344003822265,5288.13041332716,2019
+1998,38,"(35,40]",HS,29.793266666666668,64.68197740112994,0.46061156235069284,5309.942429089691,2019
+1998,38,"(35,40]",HS,28.152266666666666,64.68197740112994,0.4352412804586718,5332.717960162208,2019
+1998,38,"(35,40]",HS,27.951700000000002,64.68197740112994,0.4321404682274248,5304.495314876358,2019
+1998,38,"(35,40]",HS,27.951700000000002,66.53003389830509,0.4201365663322185,5256.657425904605,2019
+1998,58,"(55,60]",College,6099.031766666667,839.0176497175141,7.269253237664461,1718.2382517409376,2019
+1998,58,"(55,60]",College,7209.970533333333,443.53355932203397,16.255749721293196,1684.644345050891,2019
+1998,58,"(55,60]",College,4682.958166666667,545.1766666666666,8.58979933110368,1587.2378671015526,2019
+1998,58,"(55,60]",College,8906.618666666665,781.7278983050846,11.393502375926058,1906.4679005012356,2019
+1998,58,"(55,60]",College,7539.373933333333,258.72790960451977,29.140164835164835,1776.2312663578937,2019
+1998,44,"(40,45]",HS,11.031166666666666,53.593638418079095,0.2058297774189828,4918.738950918025,2019
+1998,44,"(40,45]",HS,14.951333333333334,83.16254237288136,0.17978446674098847,4939.027333227739,2019
+1998,44,"(40,45]",HS,15.680666666666667,66.53003389830509,0.2356930509104422,4960.211926469215,2019
+1998,44,"(40,45]",HS,-3.282,59.13780790960452,-0.05549749163879599,4933.960715962834,2019
+1998,44,"(40,45]",HS,12.125166666666667,62.833920903954805,0.19297167027346054,4889.464444232838,2019
+1998,77,"(75,80]",College,14536.342666666666,497.127197740113,29.2406907784312,356.44226048754206,2019
+1998,77,"(75,80]",College,11666.598333333333,615.402813559322,18.957661675052982,353.1101158278783,2019
+1998,77,"(75,80]",College,10554.912,728.1342598870057,14.495832130791301,334.7816676765537,2019
+1998,77,"(75,80]",College,6698.015,534.0883276836157,12.54102486951893,370.1779121172964,2019
+1998,77,"(75,80]",College,11286.251,912.9399096045198,12.36253435879382,348.4556492348632,2019
+1998,42,"(40,45]",HS,165.3945666666667,29.56890395480226,5.59353051839465,7016.358080484308,2019
+1998,42,"(40,45]",HS,163.58946666666668,27.720847457627123,5.901315496098104,6994.239134268626,2019
+1998,42,"(40,45]",HS,163.62593333333334,27.720847457627123,5.902630992196209,6937.59407641571,2019
+1998,42,"(40,45]",HS,165.43103333333332,27.720847457627123,5.967748049052395,7022.547216703499,2019
+1998,42,"(40,45]",HS,165.43103333333332,27.720847457627123,5.967748049052395,6933.374004898664,2019
+1998,36,"(35,40]",HS,152.43066666666667,105.33922033898305,1.447045707915273,7092.949097580759,2019
+1998,36,"(35,40]",HS,187.80333333333334,153.38868926553673,1.2243623322722328,5706.638156046067,2019
+1998,36,"(35,40]",HS,199.47266666666667,182.957593220339,1.0902672207020032,5327.546313345367,2019
+1998,36,"(35,40]",HS,209.86566666666667,155.23674576271185,1.3519071508201945,5824.4052917687595,2019
+1998,36,"(35,40]",HS,255.63133333333334,101.64310734463277,2.5149893584676195,5310.577976743663,2019
+1998,43,"(40,45]",HS,154.36339999999998,57.289751412429375,2.694433056424641,5610.257622921237,2019
+1998,43,"(40,45]",HS,204.32273333333333,57.289751412429375,3.5664796633941096,5718.999756592986,2019
+1998,43,"(40,45]",HS,526.1410666666667,57.289751412429375,9.183860179091596,5991.714825516876,2019
+1998,43,"(40,45]",HS,526.6880666666667,57.289751412429375,9.193408134642358,5627.64190198072,2019
+1998,43,"(40,45]",HS,180.43706666666668,57.289751412429375,3.149552271010897,5855.467399828545,2019
+1998,27,"(25,30]",College,20.5125,86.85865536723163,0.23615953888849356,5439.700621604325,2019
+1998,27,"(25,30]",College,21.241833333333332,85.0105988700565,0.24987276428675292,5456.461176667915,2019
+1998,27,"(25,30]",College,20.69483333333333,86.85865536723163,0.23825873478972462,5491.965122839175,2019
+1998,27,"(25,30]",College,20.786,85.0105988700565,0.24451068779991278,5434.241334905907,2019
+1998,27,"(25,30]",College,20.5125,86.85865536723163,0.23615953888849356,5515.967511685421,2019
+1998,43,"(40,45]",College,28555.40566666667,798.3604067796609,35.76756239935588,21.13849777945019,2019
+1998,43,"(40,45]",College,29452.485666666667,805.75263276836165,36.55276379982203,23.397164300310926,2019
+1998,43,"(40,45]",College,27787.782333333333,796.5123502824858,34.88681917295859,19.4157232272074,2019
+1998,43,"(40,45]",College,25885.134000000002,796.5123502824858,32.49809496465403,17.956760658131365,2019
+1998,43,"(40,45]",College,26346.43733333333,800.2084632768363,32.92446723875582,18.153283260488458,2019
+1998,30,"(25,30]",College,67.09866666666667,64.68197740112994,1.0373626373626375,4570.305132160245,2019
+1998,30,"(25,30]",College,66.187,64.68197740112994,1.0232680363115145,4599.890602647667,2019
+1998,30,"(25,30]",College,70.92766666666667,64.68197740112994,1.0965599617773532,4556.358397449656,2019
+1998,30,"(25,30]",College,66.91633333333333,66.53003389830509,1.0058063916759568,4585.0739837964065,2019
+1998,30,"(25,30]",College,63.999,64.68197740112994,0.9894409937888199,4558.852583742581,2019
+1998,45,"(40,45]",College,1150.7968333333333,177.41342372881357,6.4865262681159415,2954.9803190114667,2019
+1998,45,"(40,45]",College,1063.1856666666667,177.41342372881357,5.992701365663322,3227.3985967533354,2019
+1998,45,"(40,45]",College,774.7343333333334,177.41342372881357,4.366830406911929,5592.491376870254,2019
+1998,45,"(40,45]",College,724.9573333333334,177.41342372881357,4.086259754738015,6118.3229894806545,2019
+1998,45,"(40,45]",College,740.6015333333334,177.41342372881357,4.1744391025641026,5581.723579638756,2019
+1998,53,"(50,55]",HS,3592.8783333333336,48.04946892655367,74.77456907640854,381.86425649927617,2019
+1998,53,"(50,55]",HS,3583.944,88.70671186440678,40.40217391304348,380.1922807518526,2019
+1998,53,"(50,55]",HS,3575.739,79.46642937853107,44.99684996499961,356.7803230774508,2019
+1998,53,"(50,55]",HS,3549.1183333333333,59.13780790960452,60.014370819397996,399.94347917316964,2019
+1998,53,"(50,55]",HS,3581.9383333333335,46.201412429378536,77.52876254180602,380.55050532562603,2019
+1998,63,"(60,65]",College,26423.6555,1219.7172881355932,21.66375418060201,343.99179330762587,2019
+1998,63,"(60,65]",College,26323.353933333336,975.7738305084747,26.97690090706395,348.940613035089,2019
+1998,63,"(60,65]",College,26115.512166666667,1232.6536836158193,21.186414735775923,345.36455287264573,2019
+1998,63,"(60,65]",College,26352.527266666668,1045.99997740113,25.193621258139615,330.73850999473024,2019
+1998,63,"(60,65]",College,26425.460600000002,1044.151920903955,25.308061088584363,317.86447504065575,2019
+1998,43,"(40,45]",HS,110.63986666666668,73.92225988700567,1.4967056856187289,10108.658599992958,2019
+1998,43,"(40,45]",HS,70.5083,73.92225988700567,0.9538168896321069,10313.660063966729,2019
+1998,43,"(40,45]",HS,198.15986666666666,73.92225988700567,2.680652173913043,10801.245716018542,2019
+1998,43,"(40,45]",HS,148.92986666666667,73.92225988700567,2.014682274247491,10106.809730308794,2019
+1998,43,"(40,45]",HS,94.39396666666666,73.92225988700567,1.2769356187290966,10723.905578997113,2019
+1998,33,"(30,35]",College,-34.924126666666666,66.53003389830509,-0.5249377554812337,7240.4287017054285,2019
+1998,33,"(30,35]",College,-34.987943333333334,66.53003389830509,-0.5258969713861018,7288.767871015557,2019
+1998,33,"(30,35]",College,-33.16461,66.53003389830509,-0.49849080267558527,7411.0834975161515,2019
+1998,33,"(30,35]",College,-34.924126666666666,66.53003389830509,-0.5249377554812337,7302.735814747777,2019
+1998,33,"(30,35]",College,-34.91501,66.53003389830509,-0.5248007246376811,7378.707949244909,2019
+1998,30,"(25,30]",HS,659.4085,109.03533333333333,6.047658862876254,4498.236628506617,2019
+1998,30,"(25,30]",HS,604.7085,123.81978531073446,4.883779264214047,4301.6761144696575,2019
+1998,30,"(25,30]",HS,659.4085,68.37809039548021,9.64356413269457,4025.7381355635284,2019
+1998,30,"(25,30]",HS,841.7418333333334,88.70671186440678,9.48904333890747,4397.341878266136,2019
+1998,30,"(25,30]",HS,1024.0751666666667,94.25088135593221,10.865417404419963,4012.15025553436,2019
+1998,33,"(30,35]",HS,0,17.371731073446327,0,3909.883975776514,2019
+1998,33,"(30,35]",HS,0,17.371731073446327,0,3891.098890810329,2019
+1998,33,"(30,35]",HS,0,17.371731073446327,0,3925.0443783478595,2019
+1998,33,"(30,35]",HS,0,17.371731073446327,0,3890.4322605965804,2019
+1998,33,"(30,35]",HS,0,17.371731073446327,0,3915.969690872446,2019
+1998,63,"(60,65]",College,16730.1591,1816.639536723164,9.209399422285884,32.06308320400024,2019
+1998,63,"(60,65]",College,20486.97333333333,1665.0989039548024,12.303757623450716,40.05661956605624,2019
+1998,63,"(60,65]",College,23976.833333333332,1057.0883163841806,22.68195850971771,40.88446930796607,2019
+1998,63,"(60,65]",College,22161.887333333332,1332.4487344632769,16.632450285046314,37.35501916474916,2019
+1998,63,"(60,65]",College,16931.108666666667,1010.8869039548023,16.74876645491064,36.42783184129872,2019
+1998,62,"(60,65]",College,7926.03,2513.3568361581924,3.1535633484162893,357.24022790722057,2019
+1998,62,"(60,65]",College,7909.62,2513.3568361581924,3.1470342317529014,354.2971198257258,2019
+1998,62,"(60,65]",College,7926.03,2513.3568361581924,3.1535633484162893,338.8148910317176,2019
+1998,62,"(60,65]",College,7926.03,2513.3568361581924,3.1535633484162893,369.63396890219866,2019
+1998,62,"(60,65]",College,7927.8533333333335,2513.3568361581924,3.1542888058233323,351.6615372773043,2019
+1998,41,"(40,45]",HS,127.2869,70.22614689265536,1.8125286041189932,4984.884974127664,2019
+1998,41,"(40,45]",HS,122.54623333333333,79.46642937853107,1.54211324570273,4976.028568802818,2019
+1998,41,"(40,45]",HS,110.91336666666668,86.85865536723163,1.2769408667188502,5009.258182524434,2019
+1998,41,"(40,45]",HS,114.35946666666666,68.37809039548021,1.6724577420229596,5023.17670748706,2019
+1998,41,"(40,45]",HS,108.48833333333333,59.13780790960452,1.8345004180602007,4935.760567608882,2019
+1998,79,"(75,80]",College,91885.24233333333,1848.0564971751412,49.71993143812709,19.870363582697635,2019
+1998,80,"(75,80]",College,84082.28733333333,1995.901016949152,42.1274835872662,20.51857384330544,2019
+1998,74,"(70,75]",College,83072.16066666668,1781.5264632768362,46.629765192411774,22.274098763990136,2019
+1998,75,"(70,75]",College,84610.14233333334,1731.6289378531076,48.861589503253455,20.614063977660088,2019
+1998,76,"(75,80]",College,82367.44233333333,2014.381581920904,40.889691939492494,22.35096783731165,2019
+1998,47,"(45,50]",College,923.4818666666667,125.66784180790961,7.348593350383632,64.46592217671113,2019
+1998,47,"(45,50]",College,922.0049666666667,114.57950282485875,8.046857805588521,60.714894578677786,2019
+1998,47,"(45,50]",College,1012.8616666666667,123.81978531073446,8.180127789147907,60.66905668131724,2019
+1998,47,"(45,50]",College,833.2633333333334,170.021197740113,4.900937908971936,60.54557194169396,2019
+1998,47,"(45,50]",College,992.4403333333333,266.12013559322037,3.7292944072835374,63.62253744829741,2019
+1998,19,"(15,20]",HS,-28.808666666666667,31.416960451977403,-0.9169781625024591,5071.656345594163,2019
+1998,19,"(15,20]",HS,-28.991,31.416960451977403,-0.9227818217588039,5032.892773856868,2019
+1998,19,"(15,20]",HS,-28.991,31.416960451977403,-0.9227818217588039,5068.272933933262,2019
+1998,19,"(15,20]",HS,-28.991,31.416960451977403,-0.9227818217588039,5072.914091474394,2019
+1998,19,"(15,20]",HS,-29.173333333333332,31.416960451977403,-0.9285854810151485,5016.491130596054,2019
+1998,45,"(40,45]",HS,-36.649,92.40282485875707,-0.3966220735785953,7070.21030764819,2019
+1998,45,"(40,45]",HS,-36.649,92.40282485875707,-0.3966220735785953,7101.262040658247,2019
+1998,45,"(40,45]",HS,-41.66316666666666,92.40282485875707,-0.45088628762541794,7097.5248282782195,2019
+1998,45,"(40,45]",HS,-35.73733333333334,92.40282485875707,-0.3867558528428094,7027.573058190812,2019
+1998,45,"(40,45]",HS,-35.73733333333334,92.40282485875707,-0.3867558528428094,7161.670683138482,2019
+1998,52,"(50,55]",College,842.1065,166.32508474576272,5.063015607580825,3931.8210978577345,2019
+1998,52,"(50,55]",College,1066.5588333333333,81.31448587570623,13.116467771359073,4246.827866219093,2019
+1998,52,"(50,55]",College,1079.1945333333335,181.10953672316384,5.958794621527542,3999.1568763219125,2019
+1998,52,"(50,55]",College,959.7115,118.27561581920904,8.114195756688963,3975.466424774938,2019
+1998,52,"(50,55]",College,1776.2913333333333,79.46642937853107,22.352726141401572,4096.4226107361665,2019
+1998,87,"(85,90]",HS,1978.3166666666668,72.07420338983052,27.448332046994253,3026.0188966872383,2019
+1998,87,"(85,90]",HS,1980.14,73.92225988700567,26.78678929765886,3325.9630486225715,2019
+1998,87,"(85,90]",HS,1978.3166666666668,73.92225988700567,26.762123745819395,3102.018658964602,2019
+1998,87,"(85,90]",HS,1980.14,73.92225988700567,26.78678929765886,3056.1820489048723,2019
+1998,87,"(85,90]",HS,1980.14,72.07420338983052,27.473630048880885,3178.431818531016,2019
+1998,52,"(50,55]",College,1120.2742333333333,131.21201129943503,8.537893918696122,5993.752932311862,2019
+1998,52,"(50,55]",College,1122.1158,131.21201129943503,8.551928965094918,5744.702735935562,2019
+1998,52,"(50,55]",College,1120.2924666666665,131.21201129943503,8.538032879551556,5351.941707437198,2019
+1998,52,"(50,55]",College,1118.4508999999998,129.36395480225988,8.645769230769229,5856.995991258485,2019
+1998,52,"(50,55]",College,1122.1158,131.21201129943503,8.551928965094918,5342.129324373951,2019
+1998,46,"(45,50]",College,1860.1646666666668,92.40282485875707,20.131036789297656,797.9765239530605,2019
+1998,46,"(45,50]",College,1860.4746333333333,92.40282485875707,20.134391304347822,847.4785778394746,2019
+1998,46,"(45,50]",College,1859.253,92.40282485875707,20.12117056856187,810.411440030314,2019
+1998,46,"(45,50]",College,1858.8336333333334,92.40282485875707,20.11663210702341,834.0361437557127,2019
+1998,46,"(45,50]",College,1858.9430333333335,92.40282485875707,20.117816053511707,789.3669971454356,2019
+1998,57,"(55,60]",HS,1420.3748433333333,36.96112994350283,38.4288804347826,3157.5886359013466,2019
+1998,57,"(55,60]",HS,1420.3748433333333,36.96112994350283,38.4288804347826,3431.202609578753,2019
+1998,57,"(55,60]",HS,1420.3748433333333,36.96112994350283,38.4288804347826,3210.484077668291,2019
+1998,57,"(55,60]",HS,1420.3748433333333,36.96112994350283,38.4288804347826,3187.5976466295133,2019
+1998,57,"(55,60]",HS,1420.5571766666667,36.96112994350283,38.43381354515049,3289.3360709905005,2019
+1998,37,"(35,40]",College,-13.219166666666666,129.36395480225988,-0.10218585762064022,5347.6071823664515,2019
+1998,37,"(35,40]",College,-18.342733333333335,129.36395480225988,-0.14179168657429528,5339.614004414322,2019
+1998,37,"(35,40]",College,-18.160400000000003,97.9469943502825,-0.185410487789487,5328.426685181286,2019
+1998,37,"(35,40]",College,-15.607733333333334,105.33922033898305,-0.1481664026286452,5374.3672318879535,2019
+1998,37,"(35,40]",College,-9.9554,118.27561581920904,-0.0841711956521739,5309.579934842187,2019
+1998,38,"(35,40]",College,2345.3536666666664,410.2685423728813,5.716630510108771,143.24640240228106,2019
+1998,38,"(35,40]",College,2341.16,410.2685423728813,5.706408749887011,146.4367993763397,2019
+1998,38,"(35,40]",College,2454.7536666666665,412.11659887005646,5.956454249591314,142.60331357732917,2019
+1998,38,"(35,40]",College,2337.6956666666665,410.2685423728813,5.697964687095122,147.19118126378294,2019
+1998,38,"(35,40]",College,2400.0536666666667,412.11659887005646,5.82372482265249,141.59997248212872,2019
+1998,21,"(20,25]",NoHS,3.810766666666667,15.523674576271185,0.2454809683070553,5148.764989129124,2019
+1998,21,"(20,25]",NoHS,2.1515333333333335,17.55653672316384,0.12254884703397291,5175.135176137983,2019
+1998,21,"(20,25]",NoHS,2.8991,15.893285875706214,0.18241036011511239,5182.014954268734,2019
+1998,21,"(20,25]",NoHS,8.551433333333332,15.708480225988701,0.5443832382451307,5142.234756732456,2019
+1998,21,"(20,25]",NoHS,3.2455333333333334,14.969257627118646,0.21681324579875302,5152.805987483554,2019
+1998,45,"(40,45]",College,483.74856666666665,450.9257853107345,1.0727897636931847,294.63934821768623,2019
+1998,45,"(40,45]",College,721.8029666666666,142.30035028248585,5.072390652825436,284.6726528520817,2019
+1998,45,"(40,45]",College,473.6473,421.3568813559322,1.124100070410139,287.09353635170385,2019
+1998,45,"(40,45]",College,945.216,312.3215480225989,3.0264194256990753,291.6986867839103,2019
+1998,45,"(40,45]",College,386.23670000000004,391.78797740113,0.9858309143686502,293.4603177801903,2019
+1998,23,"(20,25]",HS,2.060366666666667,36.96112994350283,0.05574414715719063,8488.275136282708,2019
+1998,23,"(20,25]",HS,1.7868666666666666,20.328621468926556,0.08789905746427484,8412.890646023636,2019
+1998,23,"(20,25]",HS,1.9692,35.11307344632768,0.05608167576130963,8679.573259950472,2019
+1998,23,"(20,25]",HS,1.7868666666666666,31.416960451977403,0.056875860712177845,8548.868264369334,2019
+1998,23,"(20,25]",HS,1.9692,35.11307344632768,0.05608167576130963,8670.504362055548,2019
+1998,46,"(45,50]",HS,77.9475,38.80918644067796,2.008480649784998,3992.713825026497,2019
+1998,46,"(45,50]",HS,67.9374,38.80918644067796,1.7505494505494505,3995.8369143331743,2019
+1998,46,"(45,50]",HS,61.209300000000006,38.80918644067796,1.5771858576206406,4088.7687354167238,2019
+1998,46,"(45,50]",HS,55.374633333333335,38.80918644067796,1.426843446408664,3988.1343043509196,2019
+1998,46,"(45,50]",HS,66.49696666666667,40.65724293785311,1.6355503192459713,4113.612458853122,2019
+1998,30,"(25,30]",NoHS,23.7945,0,Inf,5352.84656239202,2019
+1998,30,"(25,30]",NoHS,23.7945,0,Inf,5332.827579007611,2019
+1998,30,"(25,30]",NoHS,23.7945,0,Inf,5321.174427025986,2019
+1998,30,"(25,30]",NoHS,23.7945,0,Inf,5347.920518914764,2019
+1998,30,"(25,30]",NoHS,25.617833333333333,0,Inf,5335.247821458648,2019
+1998,51,"(50,55]",College,4263.135666666667,462.0141242937853,9.227284280936455,249.25070125765902,2019
+1998,51,"(50,55]",College,3231.129,462.0141242937853,6.993571906354515,249.5949241124224,2019
+1998,51,"(50,55]",College,3851.0623333333338,462.0141242937853,8.335377926421407,275.95751008800465,2019
+1998,51,"(50,55]",College,3851.0623333333338,462.0141242937853,8.335377926421407,292.3033231466263,2019
+1998,51,"(50,55]",College,3231.129,462.0141242937853,6.993571906354515,241.9111186306855,2019
+1998,51,"(50,55]",College,237.27036666666666,112.73144632768363,2.1047398431931574,5956.4221137709255,2019
+1998,51,"(50,55]",College,243.1962,110.88338983050849,2.193260869565217,6072.760341517185,2019
+1998,51,"(50,55]",College,238.63786666666667,110.88338983050849,2.152151616499442,6291.217716162096,2019
+1998,51,"(50,55]",College,249.01263333333333,110.88338983050849,2.2457162764771454,5973.903877220264,2019
+1998,51,"(50,55]",College,226.07510000000002,110.88338983050849,2.038854515050167,6273.393942230667,2019
+1998,33,"(30,35]",NoHS,-0.6381666666666667,0.720742033898305,-0.8854300660320727,3909.883975776514,2019
+1998,33,"(30,35]",NoHS,-0.6564,0.720742033898305,-0.9107280679187034,3891.098890810329,2019
+1998,33,"(30,35]",NoHS,-0.6017,0.720742033898305,-0.8348340622588115,3925.0443783478595,2019
+1998,33,"(30,35]",NoHS,-0.7111000000000001,0.720742033898305,-0.9866220735785954,3890.4322605965804,2019
+1998,33,"(30,35]",NoHS,-0.6746333333333333,0.720742033898305,-0.936026069805334,3915.969690872446,2019
+1998,28,"(25,30]",HS,12.708633333333333,92.40282485875707,0.13753511705685617,4767.9751311020345,2019
+1998,28,"(25,30]",HS,13.437966666666668,92.40282485875707,0.14542809364548495,4778.460961194145,2019
+1998,28,"(25,30]",HS,14.076133333333333,92.40282485875707,0.1523344481605351,4811.436599593778,2019
+1998,28,"(25,30]",HS,17.4493,92.40282485875707,0.18883946488294315,4778.823538181126,2019
+1998,28,"(25,30]",HS,12.161633333333333,92.40282485875707,0.1316153846153846,4756.636819399204,2019
+1998,26,"(25,30]",College,-135.83833333333334,240.24734463276835,-0.565410342166195,5310.4393706347255,2019
+1998,26,"(25,30]",College,-164.00883333333334,240.24734463276835,-0.6826665809107282,5322.118199366801,2019
+1998,26,"(25,30]",College,-130.733,240.24734463276835,-0.5441600205814253,5411.833476846729,2019
+1998,26,"(25,30]",College,-107.94133333333333,240.24734463276835,-0.44929251350656035,5418.763993756345,2019
+1998,26,"(25,30]",College,-168.27543333333332,240.24734463276835,-0.7004257782351428,5297.811071365612,2019
+1998,44,"(40,45]",College,2545.3733333333334,859.3462711864407,2.961987988635955,240.77040800187896,2019
+1998,44,"(40,45]",College,2545.3733333333334,859.3462711864407,2.961987988635955,252.69024861771263,2019
+1998,44,"(40,45]",College,2545.3733333333334,859.3462711864407,2.961987988635955,281.2737845996803,2019
+1998,44,"(40,45]",College,2547.1966666666667,859.3462711864407,2.964109756536124,277.26243068305774,2019
+1998,44,"(40,45]",College,2545.3733333333334,859.3462711864407,2.961987988635955,233.79506320506871,2019
+1998,65,"(60,65]",HS,28854.25,1611.5052655367233,17.90515403025375,467.4324417017221,2019
+1998,65,"(60,65]",HS,28849.69166666667,1598.5688700564972,18.047199721615407,469.48630002516677,2019
+1998,65,"(60,65]",HS,28527.50866666667,1609.657209039548,17.722722891843844,456.66313297425876,2019
+1998,65,"(60,65]",HS,28729.16933333333,1727.9328248587572,16.62632303757623,449.2787473989665,2019
+1998,65,"(60,65]",HS,28656.236,1598.5688700564972,17.92618168461345,437.9876707019056,2019
+1998,49,"(45,50]",College,4510.379666666667,277.2084745762712,16.27071348940914,317.41379299108996,2019
+1998,49,"(45,50]",College,4510.379666666667,277.2084745762712,16.27071348940914,314.4846465913035,2019
+1998,49,"(45,50]",College,4510.379666666667,277.2084745762712,16.27071348940914,299.2892815975591,2019
+1998,49,"(45,50]",College,4510.379666666667,277.2084745762712,16.27071348940914,328.2208170838058,2019
+1998,49,"(45,50]",College,4510.379666666667,277.2084745762712,16.27071348940914,309.08108172553807,2019
+1998,40,"(35,40]",HS,56.52333333333333,16.817314124293787,3.3610202506523574,6579.203645041615,2019
+1998,40,"(35,40]",HS,56.52333333333333,20.328621468926556,2.780480389176041,6733.553628551343,2019
+1998,40,"(35,40]",HS,56.341,42.50529943502825,1.3255053075468954,7045.4186905448005,2019
+1998,40,"(35,40]",HS,56.15866666666667,36.96112994350283,1.5193979933110364,6580.5555330686575,2019
+1998,40,"(35,40]",HS,56.15866666666667,11.642755932203391,4.82348569305091,6933.300752293767,2019
+1998,68,"(65,70]",HS,1507.8966666666668,83.16254237288136,18.13192121887774,3076.912050639389,2019
+1998,68,"(65,70]",HS,1490.3926666666669,83.16254237288136,17.921441843180975,3354.2166936220665,2019
+1998,68,"(65,70]",HS,1527.9533333333334,83.16254237288136,18.373095503530287,3104.888970958319,2019
+1998,68,"(65,70]",HS,1488.0223333333333,83.16254237288136,17.892939427722034,3091.796827801075,2019
+1998,68,"(65,70]",HS,1509.72,83.16254237288136,18.153846153846153,3181.1779454847356,2019
+1998,34,"(30,35]",HS,48.683,79.46642937853107,0.612623473594151,8991.93774984685,2019
+1998,34,"(30,35]",HS,48.683,79.46642937853107,0.612623473594151,8952.782794110051,2019
+1998,34,"(30,35]",HS,48.683,79.46642937853107,0.612623473594151,9263.19706765191,2019
+1998,34,"(30,35]",HS,48.683,79.46642937853107,0.612623473594151,8994.629334945163,2019
+1998,34,"(30,35]",HS,48.683,79.46642937853107,0.612623473594151,9240.788391087235,2019
+1998,41,"(40,45]",HS,293.1555333333333,81.31448587570623,3.6052067497719666,2296.5683855666016,2019
+1998,41,"(40,45]",HS,989.3406666666666,68.37809039548021,14.468679381722861,2504.986429102138,2019
+1998,41,"(40,45]",HS,840.2284666666667,116.4275593220339,7.21674895153156,2337.3925530479432,2019
+1998,41,"(40,45]",HS,402.24556666666666,109.03533333333333,3.689130434782609,4754.035608131162,2019
+1998,41,"(40,45]",HS,459.9176,160.78091525423727,2.8605235843616654,4334.6359905406935,2019
+1998,55,"(50,55]",College,839.645,149.69257627118645,5.609129196085717,1547.4706026282672,2019
+1998,55,"(50,55]",College,839.645,149.69257627118645,5.609129196085717,1430.5866032779422,2019
+1998,55,"(50,55]",College,839.645,149.69257627118645,5.609129196085717,1480.5372299022836,2019
+1998,55,"(50,55]",College,841.4683333333334,149.69257627118645,5.621309715512614,1596.5100923103437,2019
+1998,55,"(50,55]",College,839.645,149.69257627118645,5.609129196085717,1601.1440013080864,2019
+1998,51,"(50,55]",College,869.7664666666667,184.80564971751414,4.706384615384615,6055.5702947319405,2019
+1998,51,"(50,55]",College,869.9488000000001,184.80564971751414,4.707371237458194,5802.653533663582,2019
+1998,51,"(50,55]",College,869.9488000000001,184.80564971751414,4.707371237458194,5407.180126037676,2019
+1998,51,"(50,55]",College,869.9488000000001,184.80564971751414,4.707371237458194,5917.019574160707,2019
+1998,51,"(50,55]",College,870.1311333333333,184.80564971751414,4.708357859531772,5397.918166833942,2019
+1998,73,"(70,75]",HS,5372.634,789.1201242937854,6.808385484793182,1172.2434644796817,2019
+1998,73,"(70,75]",HS,5782.884,789.1201242937854,7.328268310449351,1211.7847685664879,2019
+1998,73,"(70,75]",HS,5416.211666666667,789.1201242937854,6.863608593829549,1146.6651376430677,2019
+1998,73,"(70,75]",HS,6010.800666666667,789.1201242937854,7.617092102480556,1247.873254604186,2019
+1998,73,"(70,75]",HS,5669.837333333333,789.1201242937854,7.185011709601873,1148.498574381864,2019
+1998,41,"(40,45]",NoHS,3.6102,44.35335593220339,0.0813963210702341,7181.595672372394,2019
+1998,41,"(40,45]",NoHS,7.0563,35.11307344632768,0.20095933814469286,7364.074201117561,2019
+1998,41,"(40,45]",NoHS,-1.8962666666666668,27.720847457627123,-0.06840579710144927,7696.928713283685,2019
+1998,41,"(40,45]",NoHS,5.707033333333334,44.35335593220339,0.12867196209587514,7171.057403526831,2019
+1998,41,"(40,45]",NoHS,7.803866666666667,36.96112994350283,0.21113712374581936,7525.030923392389,2019
+1998,45,"(40,45]",HS,61.264,77.61837288135592,0.7892976588628764,6115.754738530056,2019
+1998,45,"(40,45]",HS,61.264,77.61837288135592,0.7892976588628764,6161.460146301787,2019
+1998,45,"(40,45]",HS,61.264,77.61837288135592,0.7892976588628764,6497.967108517059,2019
+1998,45,"(40,45]",HS,61.446333333333335,77.61837288135592,0.7916467590380635,6103.157588511894,2019
+1998,45,"(40,45]",HS,61.264,77.61837288135592,0.7892976588628764,6390.3722576187965,2019
+1998,19,"(15,20]",HS,8.679066666666667,25.872790960451983,0.3354515050167224,5233.413215233062,2019
+1998,19,"(15,20]",HS,8.6973,25.872790960451983,0.3361562350692785,5247.342522031109,2019
+1998,19,"(15,20]",HS,8.6973,25.872790960451983,0.3361562350692785,5289.807110386397,2019
+1998,19,"(15,20]",HS,8.6973,25.872790960451983,0.3361562350692785,5228.317052978689,2019
+1998,19,"(15,20]",HS,8.6973,25.872790960451983,0.3361562350692785,5270.337714421088,2019
+1998,37,"(35,40]",HS,3.4461,29.56890395480226,0.11654473244147157,4476.064712422818,2019
+1998,37,"(35,40]",HS,3.427866666666667,29.56890395480226,0.11592809364548497,4480.708029617799,2019
+1998,37,"(35,40]",HS,3.4461,29.56890395480226,0.11654473244147157,4491.401730559456,2019
+1998,37,"(35,40]",HS,3.4461,29.56890395480226,0.11654473244147157,4497.746275720318,2019
+1998,37,"(35,40]",HS,3.427866666666667,29.56890395480226,0.11592809364548497,4476.439837774817,2019
+1998,47,"(45,50]",NoHS,0,24.024734463276836,0,6398.403694678456,2019
+1998,47,"(45,50]",NoHS,0,9.05547683615819,0,6399.2456630943725,2019
+1998,47,"(45,50]",NoHS,0,5.35936384180791,0,6381.483464643629,2019
+1998,47,"(45,50]",NoHS,0,6.28339209039548,0,6396.217066683724,2019
+1998,47,"(45,50]",NoHS,0,11.827561581920904,0,6402.201534554055,2019
+1998,38,"(35,40]",College,737.7206666666666,258.72790960451977,2.8513377926421404,5649.257023169742,2019
+1998,38,"(35,40]",College,698.8836666666666,258.72790960451977,2.7012302914476827,5404.850006621293,2019
+1998,38,"(35,40]",College,767.0763333333334,258.72790960451977,2.9647993311036793,5046.972368414417,2019
+1998,38,"(35,40]",College,700.16,258.72790960451977,2.7061634018155756,5517.265678799352,2019
+1998,38,"(35,40]",College,687.5790000000001,258.72790960451977,2.6575370281892026,5031.505126891844,2019
+1998,34,"(30,35]",HS,134.59846666666667,70.22614689265536,1.9166431966203135,7043.532742249374,2019
+1998,34,"(30,35]",HS,136.9688,72.07420338983052,1.900385901723694,7085.1739155695905,2019
+1998,34,"(30,35]",HS,137.15113333333335,70.22614689265536,1.9529924309100513,7253.426085101133,2019
+1998,34,"(30,35]",HS,136.60413333333332,70.22614689265536,1.9452033092765357,7063.776453719572,2019
+1998,34,"(30,35]",HS,137.1329,72.07420338983052,1.902662721893491,7131.19077267229,2019
+1998,55,"(50,55]",HS,495.6367,168.17314124293785,2.9471810797897757,899.3590326650301,2019
+1998,55,"(50,55]",College,6514.7153,179.26148022598866,36.341969796227986,2675.43368144692,2019
+1998,55,"(50,55]",HS,3928.6451666666667,262.42402259887007,14.970600358000848,2878.8527867131565,2019
+1998,55,"(50,55]",HS,1833.5257666666666,508.21553672316384,3.6077719671632713,2077.4772612716206,2019
+1998,55,"(50,55]",HS,5579.6735,890.7632316384181,6.263924353654644,2518.0937316181894,2019
+1998,74,"(70,75]",HS,49698.596666666665,1016.4310734463277,48.89519610823959,350.74565291931157,2019
+1998,74,"(70,75]",HS,46416.596666666665,962.8374350282485,48.20813460094108,332.63937689667944,2019
+1998,74,"(70,75]",HS,46835.96333333334,907.3957401129943,51.61580693281748,349.70181964412177,2019
+1998,74,"(70,75]",HS,46699.21333333334,983.1660564971752,47.498805542283804,342.7358547122605,2019
+1998,74,"(70,75]",HS,46352.78,909.2437966101695,50.97948446039644,369.4534653776576,2019
+1998,64,"(60,65]",College,26761.1545,2550.3179661016948,10.493261960157046,229.89506438892923,2019
+1998,64,"(60,65]",College,29284.739,2531.8374011299434,11.5665954641994,256.1838369564009,2019
+1998,64,"(60,65]",College,28013.2375,2550.3179661016948,10.984213683292134,244.97879082231435,2019
+1998,64,"(60,65]",College,26641.3615,2550.3179661016948,10.446290170132325,236.08485404273915,2019
+1998,64,"(60,65]",College,28235.3195,2550.3179661016948,11.071293805438419,221.28639044747553,2019
+1998,70,"(65,70]",College,123838.61200000001,6505.158870056497,19.036985025843723,33.298020221494895,2019
+1998,70,"(65,70]",College,130639.64533333333,6967.172994350282,18.750739423187813,34.892343262385054,2019
+1998,70,"(65,70]",College,134138.98666666666,6819.32847457627,19.670409948246643,30.18795190638621,2019
+1998,70,"(65,70]",College,120270.71333333333,6468.197740112994,18.59416149068323,29.311296248858962,2019
+1998,70,"(65,70]",College,129181.34333333334,7041.095254237288,18.34676831783987,29.895445829547914,2019
+1998,42,"(40,45]",College,17303.61566666667,920.3321355932204,18.801490241904073,340.09105590647454,2019
+1998,42,"(40,45]",College,15484.293666666666,944.3568700564973,16.39665486389727,293.6914392903194,2019
+1998,42,"(40,45]",College,14906.844000000001,920.3321355932204,16.197243824797518,283.6666751442691,2019
+1998,42,"(40,45]",College,15126.920333333333,922.1801920903955,16.403432282625452,303.539266716632,2019
+1998,42,"(40,45]",College,15030.283666666666,811.2968022598872,18.52624541943151,290.66080904294404,2019
+1998,30,"(25,30]",College,19.527900000000002,107.18727683615819,0.1821848691039096,1312.1075035635533,2019
+1998,30,"(25,30]",College,55.50226666666667,145.99646327683615,0.38016172050294234,2701.8987592156213,2019
+1998,30,"(25,30]",College,35.73733333333334,60.98586440677967,0.5859937164284991,1311.9556955992289,2019
+1998,30,"(25,30]",College,15.881233333333334,133.06006779661018,0.11935386473429951,1261.8612883515702,2019
+1998,30,"(25,30]",College,8.3144,51.745581920903966,0.16067845198279976,1344.7456302975759,2019
+1998,71,"(70,75]",College,33567.566666666666,879.6748926553672,38.15905961046626,186.39066253227105,2019
+1998,71,"(70,75]",College,33237.56156666666,691.1731299435029,48.088619372954405,186.18460392767727,2019
+1998,71,"(70,75]",College,33505.573333333334,2180.7066666666665,15.364548494983278,179.83633704493724,2019
+1998,71,"(70,75]",College,32668.681566666666,1284.3992655367233,25.434989292846655,176.10747682354042,2019
+1998,71,"(70,75]",College,32655.936466666666,1796.3109152542374,18.179445545508347,171.1655300389893,2019
+1998,49,"(45,50]",College,38714.472,4823.42745762712,8.026340675815936,12.827327900564516,2019
+1998,49,"(45,50]",College,40560.05,4823.42745762712,8.408968592626762,13.939333164601404,2019
+1998,49,"(45,50]",College,43089.19566666667,4804.946892655367,8.967673655775663,13.902246643795191,2019
+1998,49,"(45,50]",College,41468.07,4823.42745762712,8.597220620458998,12.711287252851669,2019
+1998,49,"(45,50]",College,42142.88566666666,4823.42745762712,8.737124386524682,13.739997953806727,2019
+1998,31,"(30,35]",HS,38.36293333333334,22.176677966101696,1.729877369007804,4919.396339234363,2019
+1998,31,"(30,35]",HS,56.0675,18.480564971751416,3.03386287625418,4915.056422488795,2019
+1998,31,"(30,35]",HS,49.9958,25.872790960451983,1.9323698041089343,4939.598917056781,2019
+1998,31,"(30,35]",HS,449.3605,20.328621468926556,22.104819093949526,5028.497955322962,2019
+1998,31,"(30,35]",HS,591.3799333333334,44.35335593220339,13.3333751393534,3932.864413858804,2019
+1998,41,"(40,45]",HS,286.2633333333333,94.25088135593221,3.037248344153715,7828.3968804059305,2019
+1998,41,"(40,45]",HS,282.6166666666667,94.25088135593221,2.9985572824447506,7935.473008713823,2019
+1998,41,"(40,45]",HS,284.8046666666667,96.09893785310734,2.963660921018781,8261.030095156422,2019
+1998,41,"(40,45]",HS,282.4343333333333,94.25088135593221,2.9966227293593017,7867.602556411916,2019
+1998,41,"(40,45]",HS,285.1693333333333,94.25088135593221,3.0256410256410255,8161.025698185037,2019
+1998,57,"(55,60]",College,8647.523000000001,1921.9787570621468,4.49928125803962,1127.9721036236704,2019
+1998,57,"(55,60]",College,14340.699,1903.4981920903954,7.533865311556321,1152.3503326406772,2019
+1998,57,"(55,60]",College,8774.974,585.8339096045197,14.978603758057881,1103.8285601066045,2019
+1998,57,"(55,60]",College,10100.172666666665,1513.5582711864408,6.673131030990561,1201.4654162387214,2019
+1998,57,"(55,60]",College,4712.952,1160.5794802259886,4.060861044245149,1106.82722332524,2019
+1998,51,"(50,55]",College,4746.501333333333,73.92225988700567,64.20936454849496,218.69098967220174,2019
+1998,51,"(50,55]",College,4934.851666666667,123.81978531073446,39.85511406179804,220.18510982652782,2019
+1998,51,"(50,55]",College,4927.6495,49.89752542372881,98.7553883314753,209.60210738108208,2019
+1998,51,"(50,55]",College,4732.826333333333,64.68197740112994,73.17071189679886,228.7318265748921,2019
+1998,51,"(50,55]",College,4712.2226666666675,73.92225988700567,63.745652173913044,213.77912369345754,2019
+1998,29,"(25,30]",College,12.034,46.201412429378536,0.2604682274247492,4553.301894265948,2019
+1998,29,"(25,30]",College,12.034,46.201412429378536,0.2604682274247492,4520.390873406796,2019
+1998,29,"(25,30]",College,11.851666666666667,46.201412429378536,0.25652173913043474,4545.007295685362,2019
+1998,29,"(25,30]",College,12.034,46.201412429378536,0.2604682274247492,4554.2951157394555,2019
+1998,29,"(25,30]",College,12.216333333333335,46.201412429378536,0.26441471571906355,4534.9234370331305,2019
+1998,31,"(30,35]",HS,32.455333333333336,20.328621468926556,1.596533900881727,4857.799952431907,2019
+1998,31,"(30,35]",HS,1.1851666666666667,24.024734463276836,0.04933110367892977,4835.654742204575,2019
+1998,31,"(30,35]",HS,20.421333333333333,22.176677966101696,0.9208472686733555,4876.457976495445,2019
+1998,31,"(30,35]",HS,1.8233333333333333,20.328621468926556,0.08969291577987229,4834.975167860319,2019
+1998,31,"(30,35]",HS,14.039666666666667,20.328621468926556,0.6906354515050167,4865.631976040869,2019
+1998,40,"(35,40]",HS,2138.4053333333336,831.6254237288136,2.5713563730955036,1173.7509234433908,2019
+1998,40,"(35,40]",HS,2173.0486666666666,831.6254237288136,2.6130137495354884,1203.6766824505603,2019
+1998,40,"(35,40]",HS,1739.0953333333332,831.6254237288136,2.0912002972872537,810.411440030314,2019
+1998,40,"(35,40]",HS,1742.742,831.6254237288136,2.0955852842809364,834.0361437557127,2019
+1998,40,"(35,40]",HS,1748.3943333333332,831.6254237288136,2.1023820141211442,789.3669971454356,2019
+1998,78,"(75,80]",College,120587.60866666667,6874.770169491526,17.5406021864998,24.536113405023357,2019
+1998,78,"(75,80]",College,134108.90166666667,8796.748926553671,15.24528013546556,25.75983580138125,2019
+1998,78,"(75,80]",College,114880.94,2716.6430508474577,42.28783018224012,22.59482456630162,2019
+1998,78,"(75,80]",College,118749.50633333332,4620.141242937853,25.70257056856187,21.34192801567523,2019
+1998,78,"(75,80]",College,127254.08,6117.067005649717,20.803120168941792,21.91752728842682,2019
+1998,77,"(75,80]",NoHS,0,15.708480225988701,0,5255.051834364683,2019
+1998,77,"(75,80]",NoHS,0,15.708480225988701,0,5272.201073815045,2019
+1998,77,"(75,80]",NoHS,0,15.708480225988701,0,5304.288805394663,2019
+1998,77,"(75,80]",NoHS,0,15.708480225988701,0,5222.882836390706,2019
+1998,77,"(75,80]",NoHS,0,15.708480225988701,0,5295.395686034159,2019
+1998,43,"(40,45]",HS,0,12.936395480225992,0,4873.642178853501,2019
+1998,43,"(40,45]",HS,0,12.751589830508475,0,4847.711639640334,2019
+1998,43,"(40,45]",HS,0,12.936395480225992,0,4861.468221149242,2019
+1998,43,"(40,45]",HS,0,12.751589830508475,0,4878.690459373002,2019
+1998,43,"(40,45]",HS,0,12.936395480225992,0,4836.583166854061,2019
+1998,57,"(55,60]",HS,394.76078333333334,24.024734463276836,16.431431695394906,8027.105919226818,2019
+1998,57,"(55,60]",HS,210.64970000000002,20.328621468926556,10.362222560048647,8003.280784570906,2019
+1998,57,"(55,60]",HS,155.9497,22.176677966101696,7.0321488294314385,8401.959191750548,2019
+1998,57,"(55,60]",HS,145.0097,12.381978531073447,11.711351270403835,8514.176527214051,2019
+1998,57,"(55,60]",HS,121.26989999999999,24.024734463276836,5.047710316439413,8402.657162569789,2019
+1998,39,"(35,40]",NoHS,0.0036466666666666665,36.96112994350283,9.86622073578595e-5,5151.745944023254,2019
+1998,39,"(35,40]",NoHS,0.0036466666666666665,36.96112994350283,9.86622073578595e-5,5153.174700729026,2019
+1998,39,"(35,40]",NoHS,0.0036466666666666665,36.96112994350283,9.86622073578595e-5,5200.860560809162,2019
+1998,39,"(35,40]",NoHS,0.0036466666666666665,36.96112994350283,9.86622073578595e-5,5147.284038264317,2019
+1998,39,"(35,40]",NoHS,0.0036466666666666665,36.96112994350283,9.86622073578595e-5,5118.542460499555,2019
+1998,83,"(80,85]",HS,98.46000000000001,40.65724293785311,2.421708726056552,5580.839273040401,2019
+1998,83,"(80,85]",HS,102.10666666666667,40.65724293785311,2.5114016418364242,5675.850796055892,2019
+1998,83,"(80,85]",HS,92.99,44.35335593220339,2.096571906354515,5744.700492669712,2019
+1998,83,"(80,85]",HS,98.46000000000001,31.416960451977403,3.1339759984261266,5810.532233279862,2019
+1998,83,"(80,85]",HS,98.46000000000001,25.872790960451983,3.805542283803153,5773.932741826699,2019
+1998,81,"(80,85]",NoHS,54.7,42.50529943502825,1.286898356841646,6783.98680302217,2019
+1998,81,"(80,85]",NoHS,54.7,42.50529943502825,1.286898356841646,6832.463343971949,2019
+1998,81,"(80,85]",NoHS,54.7,42.50529943502825,1.286898356841646,6839.876283144938,2019
+1998,81,"(80,85]",NoHS,54.7,42.50529943502825,1.286898356841646,6770.628589124943,2019
+1998,81,"(80,85]",NoHS,54.7,42.50529943502825,1.286898356841646,6840.7216336408355,2019
+1998,61,"(60,65]",HS,482.8369,60.98586440677967,7.917193675889327,6538.04050691292,2019
+1998,61,"(60,65]",HS,474.99656666666664,55.441694915254246,8.567497212931993,6233.681466577544,2019
+1998,61,"(60,65]",HS,481.06826666666666,49.89752542372881,9.641124736776911,5835.404667484177,2019
+1998,61,"(60,65]",HS,468.15906666666666,57.289751412429375,8.171776890710973,6384.621511315389,2019
+1998,61,"(60,65]",HS,481.0318,59.13780790960452,8.134082357859532,5820.306400798856,2019
+1998,39,"(35,40]",NoHS,-12.398666666666667,40.65724293785311,-0.3049559136515658,5676.747876984225,2019
+1998,39,"(35,40]",NoHS,-5.287666666666667,40.65724293785311,-0.13005472788081485,5682.993023394274,2019
+1998,39,"(35,40]",NoHS,-4.923,40.65724293785311,-0.12108543630282759,5675.161428253435,2019
+1998,39,"(35,40]",NoHS,-3.920166666666667,40.65724293785311,-0.09641988446336272,5693.362420535073,2019
+1998,39,"(35,40]",NoHS,-6.017,40.65724293785311,-0.14799331103678928,5612.568448640609,2019
+1998,25,"(20,25]",NoHS,-10.429466666666668,59.13780790960452,-0.17635869565217394,6183.100243017927,2019
+1998,25,"(20,25]",NoHS,-10.593566666666668,59.13780790960452,-0.17913357023411372,6162.019357834373,2019
+1998,25,"(20,25]",NoHS,-10.794133333333333,59.13780790960452,-0.18252508361204012,6165.09981043467,2019
+1998,25,"(20,25]",NoHS,-10.611799999999999,59.13780790960452,-0.179441889632107,6208.965226760537,2019
+1998,25,"(20,25]",NoHS,-10.429466666666668,59.13780790960452,-0.17635869565217394,6161.2019835164065,2019
+1998,86,"(85,90]",HS,233.93366666666665,15.523674576271185,15.06947762382545,7836.25168404789,2019
+1998,86,"(85,90]",HS,234.116,15.523674576271185,15.081223124701388,7993.61554196331,2019
+1998,86,"(85,90]",HS,234.116,15.523674576271185,15.081223124701388,8353.184995264211,2019
+1998,86,"(85,90]",HS,233.93366666666665,15.523674576271185,15.06947762382545,7919.657736396587,2019
+1998,86,"(85,90]",HS,234.116,15.523674576271185,15.081223124701388,8274.055512415838,2019
+1998,21,"(20,25]",HS,-0.21880000000000002,13.860423728813561,-0.015785953177257523,6295.365681076677,2019
+1998,21,"(20,25]",HS,-0.20968333333333333,13.860423728813561,-0.015128205128205126,6301.807067735317,2019
+1998,21,"(20,25]",HS,-0.20968333333333333,13.860423728813561,-0.015128205128205126,6343.175256073489,2019
+1998,21,"(20,25]",HS,-0.20968333333333333,13.860423728813561,-0.015128205128205126,6260.81601853053,2019
+1998,21,"(20,25]",HS,-0.20968333333333333,13.860423728813561,-0.015128205128205126,6296.8284125587015,2019
+1998,57,"(55,60]",NoHS,364.53903333333335,53.593638418079095,6.801908661054089,8604.050744985281,2019
+1998,57,"(55,60]",NoHS,282.5802,42.50529943502825,6.648116911443943,8610.395533553741,2019
+1998,57,"(55,60]",NoHS,359.0508,35.11307344632768,10.225558880478788,9129.36759243936,2019
+1998,57,"(55,60]",NoHS,338.2101,36.96112994350283,9.150426421404681,8456.632637759009,2019
+1998,57,"(55,60]",NoHS,393.5665,55.441694915254246,7.098745819397992,6304.525851595935,2019
+1998,28,"(25,30]",College,24.8338,73.92225988700567,0.3359448160535116,9004.642238610391,2019
+1998,28,"(25,30]",College,25.016133333333336,73.92225988700567,0.3384113712374582,9091.408442180864,2019
+1998,28,"(25,30]",College,25.016133333333336,73.92225988700567,0.3384113712374582,9587.772087197347,2019
+1998,28,"(25,30]",College,25.016133333333336,73.92225988700567,0.3384113712374582,9233.143151658722,2019
+1998,28,"(25,30]",College,26.657133333333334,73.92225988700567,0.3606103678929765,9531.906551071468,2019
+1998,56,"(55,60]",College,3352.016,62.833920903954805,53.347235884320284,1072.0587459155374,2019
+1998,56,"(55,60]",College,3350.1926666666664,62.833920903954805,53.31821758803855,1169.3478460342844,2019
+1998,56,"(55,60]",College,3350.1926666666664,62.833920903954805,53.31821758803855,1072.685181802964,2019
+1998,56,"(55,60]",College,3348.3693333333335,62.833920903954805,53.28919929175684,1374.2774341740057,2019
+1998,56,"(55,60]",College,3352.016,62.833920903954805,53.347235884320284,1073.8995040163363,2019
+1998,31,"(30,35]",HS,2.005666666666667,68.37809039548021,0.029332007592877168,7422.84367096752,2019
+1998,31,"(30,35]",HS,2.005666666666667,68.37809039548021,0.029332007592877168,7516.576536556413,2019
+1998,31,"(30,35]",HS,2.188,68.37809039548021,0.031998553737684184,7624.579945748796,2019
+1998,31,"(30,35]",HS,2.005666666666667,68.37809039548021,0.029332007592877168,7452.641337977174,2019
+1998,31,"(30,35]",HS,2.005666666666667,68.37809039548021,0.029332007592877168,7594.425562991406,2019
+1998,32,"(30,35]",College,16.957,55.441694915254246,0.30585284280936453,5546.833007102462,2019
+1998,32,"(30,35]",College,16.957,55.441694915254246,0.30585284280936453,5619.099186227749,2019
+1998,32,"(30,35]",College,16.957,55.441694915254246,0.30585284280936453,5599.338464023976,2019
+1998,32,"(30,35]",College,16.957,55.441694915254246,0.30585284280936453,5536.014583739101,2019
+1998,32,"(30,35]",College,16.957,55.441694915254246,0.30585284280936453,5630.448439576168,2019
+1998,67,"(65,70]",NoHS,5997.672666666667,295.68903954802266,20.283716555183943,2581.523126903102,2019
+1998,67,"(65,70]",NoHS,6000.407666666667,295.68903954802266,20.29296613712374,2503.363369267753,2019
+1998,67,"(65,70]",NoHS,5994.7553333333335,295.68903954802266,20.273850334448156,2441.6704904679195,2019
+1998,67,"(65,70]",NoHS,6013.3533333333335,295.68903954802266,20.336747491638793,2880.403502399444,2019
+1998,67,"(65,70]",NoHS,5984.727,295.68903954802266,20.239935200668892,2670.511530230936,2019
+1998,46,"(45,50]",College,125346.144,4287.491073446327,29.235313112674433,29.171152638828563,2019
+1998,46,"(45,50]",College,124971.26666666668,4435.335593220339,28.17628205128205,30.043340904004076,2019
+1998,46,"(45,50]",College,125749.83,4435.335593220339,28.351818561872907,32.28937243415807,2019
+1998,46,"(45,50]",College,141699.07366666666,4047.2437288135593,35.011252882515535,30.125084445708545,2019
+1998,46,"(45,50]",College,136159.96933333334,4084.204858757063,33.33818308388444,32.53636765465956,2019
+1998,20,"(15,20]",HS,181.05700000000002,36.96112994350283,4.898578595317725,3809.979973733217,2019
+1998,20,"(15,20]",HS,179.23366666666666,36.96112994350283,4.849247491638795,3855.555537496976,2019
+1998,20,"(15,20]",HS,179.23366666666666,36.96112994350283,4.849247491638795,3696.041659202897,2019
+1998,20,"(15,20]",HS,181.05700000000002,36.96112994350283,4.898578595317725,3817.3145741563153,2019
+1998,20,"(15,20]",HS,179.23366666666666,36.96112994350283,4.849247491638795,3683.922834757565,2019
+1998,72,"(70,75]",NoHS,83.50866666666667,15.708480225988701,5.316151878811725,9376.377211387535,2019
+1998,72,"(70,75]",NoHS,85.51433333333333,15.708480225988701,5.4438323824513075,9354.171346481202,2019
+1998,72,"(70,75]",NoHS,85.51433333333333,15.708480225988701,5.4438323824513075,9995.960422187793,2019
+1998,72,"(70,75]",NoHS,85.51433333333333,15.708480225988701,5.4438323824513075,9643.525569660665,2019
+1998,72,"(70,75]",NoHS,87.33766666666668,15.708480225988701,5.559905567578202,9818.251704353084,2019
+1998,41,"(40,45]",College,754.1306666666667,219.9187231638418,3.429133526320227,5887.299835903583,2019
+1998,41,"(40,45]",College,755.9540000000001,219.9187231638418,3.4374244681150055,5633.85415118672,2019
+1998,41,"(40,45]",College,754.1306666666667,219.9187231638418,3.429133526320227,5259.5973482707,2019
+1998,41,"(40,45]",College,754.1306666666667,219.9187231638418,3.429133526320227,5750.11925304213,2019
+1998,41,"(40,45]",College,755.9540000000001,219.9187231638418,3.4374244681150055,5242.845430418516,2019
+1998,71,"(70,75]",NoHS,-4.248366666666667,4.620141242937854,-0.91953177257525065,5268.824362957185,2019
+1998,71,"(70,75]",NoHS,-0.6017,4.620141242937854,-0.13023411371237456,5242.267977310448,2019
+1998,71,"(70,75]",NoHS,-2.443266666666667,4.620141242937854,-0.5288294314381271,5306.5193817993095,2019
+1998,71,"(70,75]",NoHS,-0.6017,4.620141242937854,-0.13023411371237456,5298.030023152862,2019
+1998,71,"(70,75]",NoHS,-7.9315,4.620141242937854,-1.7167224080267554,5300.397284987899,2019
+1998,58,"(55,60]",College,37305.217666666664,4010.282598870057,9.302391227286035,14.877212580377346,2019
+1998,58,"(55,60]",College,39422.29,4121.165988700565,9.56580979948108,16.271566775185565,2019
+1998,58,"(55,60]",College,38684.204666666665,3603.7101694915254,10.734549352542663,13.603227854163862,2019
+1998,58,"(55,60]",College,38654.302,3603.7101694915254,10.72625160792385,12.792498654247364,2019
+1998,58,"(55,60]",College,41454.759666666665,3603.7101694915254,11.503355629877369,12.779614944940466,2019
+1998,43,"(40,45]",College,1058.445,127.51589830508476,8.300494401628615,2433.4677393974894,2019
+1998,43,"(40,45]",College,1062.0916666666667,127.51589830508476,8.329092142891763,2464.4470936111366,2019
+1998,43,"(40,45]",College,1107.675,181.10953672316384,6.116050098969353,2364.9695473147012,2019
+1998,43,"(40,45]",College,1105.8516666666667,127.51589830508476,8.672265038049536,2735.0011334654796,2019
+1998,43,"(40,45]",College,1060.2683333333332,179.26148022598866,5.91464676067993,2551.0109256997043,2019
+1998,50,"(45,50]",HS,2376.2591666666667,184.80564971751414,12.858152173913043,188.7117829841586,2019
+1998,50,"(45,50]",HS,2408.988,184.80564971751414,13.0352508361204,187.75013769251072,2019
+1998,50,"(45,50]",HS,2401.6946666666668,184.80564971751414,12.995785953177256,173.43276557384993,2019
+1998,50,"(45,50]",HS,2397.8656666666666,184.80564971751414,12.975066889632105,193.93265332520684,2019
+1998,50,"(45,50]",HS,2389.2048333333337,184.80564971751414,12.928202341137125,186.76590916532825,2019
+1998,27,"(25,30]",HS,21.241833333333332,31.416960451977403,0.6761263033641549,4397.671463886165,2019
+1998,27,"(25,30]",HS,25.508433333333336,31.416960451977403,0.8119319299626205,4365.885331395827,2019
+1998,27,"(25,30]",HS,7.840333333333334,31.416960451977403,0.24955734802282117,4389.660372083057,2019
+1998,27,"(25,30]",HS,10.520633333333333,31.416960451977403,0.3348711390910879,4398.630737361282,2019
+1998,27,"(25,30]",HS,12.161633333333333,31.416960451977403,0.38710407239819,4379.921176556264,2019
+1998,48,"(45,50]",College,92.26066666666668,33.265016949152546,2.7735042735042734,8882.126247016487,2019
+1998,48,"(45,50]",College,92.443,33.265016949152546,2.7789855072463765,9090.355022453825,2019
+1998,48,"(45,50]",College,92.26066666666668,33.265016949152546,2.7735042735042734,9548.987565467196,2019
+1998,48,"(45,50]",College,92.443,33.265016949152546,2.7789855072463765,8826.586239168893,2019
+1998,48,"(45,50]",College,92.26066666666668,33.265016949152546,2.7735042735042734,9511.662356062026,2019
+1998,41,"(40,45]",HS,11.304666666666666,31.416960451977403,0.35982687389337004,4957.622267364891,2019
+1998,41,"(40,45]",HS,11.2682,38.80918644067796,0.2903487816531295,4978.0710321623565,2019
+1998,41,"(40,45]",HS,11.742266666666668,35.11307344632768,0.3344129554655871,4999.423092563818,2019
+1998,41,"(40,45]",HS,11.359366666666666,35.11307344632768,0.32350818517866575,4972.9643625823355,2019
+1998,41,"(40,45]",HS,10.903533333333334,35.11307344632768,0.3105263157894737,4928.116341627258,2019
+1998,26,"(25,30]",College,36.19316666666666,46.201412429378536,0.7833779264214045,5676.209331057484,2019
+1998,26,"(25,30]",College,36.19316666666666,46.201412429378536,0.7833779264214045,5693.698605865702,2019
+1998,26,"(25,30]",College,36.19316666666666,46.201412429378536,0.7833779264214045,5730.746201784175,2019
+1998,26,"(25,30]",College,36.19316666666666,46.201412429378536,0.7833779264214045,5670.512684081105,2019
+1998,26,"(25,30]",College,36.19316666666666,46.201412429378536,0.7833779264214045,5755.792172695817,2019
+1998,48,"(45,50]",HS,1658.6863333333333,120.12367231638417,13.808155389760742,3128.473486013038,2019
+1998,48,"(45,50]",HS,1658.8686666666667,120.12367231638417,13.80967326987394,3416.8860190974797,2019
+1998,48,"(45,50]",HS,1660.692,120.12367231638417,13.824852071005918,3182.5613830947,2019
+1998,48,"(45,50]",HS,1659.051,120.12367231638417,13.811191149987136,3160.2952598344245,2019
+1998,48,"(45,50]",HS,1660.5096666666668,120.12367231638417,13.823334190892721,3263.3232282154554,2019
+1998,41,"(40,45]",NoHS,20.05666666666667,0.8316254237288135,24.117428465254555,5256.01269180236,2019
+1998,41,"(40,45]",NoHS,27.35,0.8316254237288135,32.887402452619845,5228.378794330142,2019
+1998,41,"(40,45]",NoHS,27.35,0.8316254237288135,32.887402452619845,5250.546822006639,2019
+1998,41,"(40,45]",NoHS,21.88,0.8316254237288135,26.309921962095874,5230.875120033277,2019
+1998,41,"(40,45]",NoHS,27.35,0.8316254237288135,32.887402452619845,5252.109863300833,2019
+1998,57,"(55,60]",HS,1.094,24.024734463276836,0.04553640339593517,5839.355545151592,2019
+1998,57,"(55,60]",HS,1.094,24.024734463276836,0.04553640339593517,5835.160079687448,2019
+1998,57,"(55,60]",HS,2.188,24.024734463276836,0.09107280679187034,6013.031800336152,2019
+1998,57,"(55,60]",HS,1.094,24.024734463276836,0.04553640339593517,5801.261471026559,2019
+1998,57,"(55,60]",HS,1.094,24.024734463276836,0.04553640339593517,5994.501342862208,2019
+1998,27,"(25,30]",College,13.675,60.98586440677967,0.22423228944968074,4942.663465570991,2019
+1998,27,"(25,30]",College,13.675,60.98586440677967,0.22423228944968074,4925.811770317253,2019
+1998,27,"(25,30]",College,13.675,60.98586440677967,0.22423228944968074,4928.2742308833895,2019
+1998,27,"(25,30]",College,13.675,60.98586440677967,0.22423228944968074,4963.339486524484,2019
+1998,27,"(25,30]",College,13.675,60.98586440677967,0.22423228944968074,4925.158375414968,2019
+1998,42,"(40,45]",HS,218.25300000000001,116.4275593220339,1.8745819397993313,9759.881240300516,2019
+1998,42,"(40,45]",HS,218.25300000000001,116.4275593220339,1.8745819397993313,9956.613924854038,2019
+1998,42,"(40,45]",HS,218.25300000000001,116.4275593220339,1.8745819397993313,10360.426561994836,2019
+1998,42,"(40,45]",HS,218.07066666666665,114.57950282485875,1.903225806451613,9846.073713050759,2019
+1998,42,"(40,45]",HS,218.07066666666665,114.57950282485875,1.903225806451613,10253.398082640791,2019
+1998,32,"(30,35]",NoHS,0,27.720847457627123,0,4963.265068715965,2019
+1998,32,"(30,35]",NoHS,0,24.024734463276836,0,4959.197355514536,2019
+1998,32,"(30,35]",NoHS,0,25.872790960451983,0,4965.241891159401,2019
+1998,32,"(30,35]",NoHS,0,24.024734463276836,0,4973.725277521789,2019
+1998,32,"(30,35]",NoHS,0,29.56890395480226,0,4924.793303918951,2019
+1998,25,"(20,25]",NoHS,32.3277,12.012367231638418,2.6912014406997686,6112.490678754557,2019
+1998,25,"(20,25]",NoHS,23.1928,12.012367231638418,1.930743503987651,6130.58800687742,2019
+1998,25,"(20,25]",NoHS,23.1928,12.012367231638418,1.930743503987651,6130.893453894352,2019
+1998,25,"(20,25]",NoHS,23.1928,12.012367231638418,1.930743503987651,6161.410183386257,2019
+1998,25,"(20,25]",NoHS,28.681033333333332,12.012367231638418,2.3876254180602006,6138.0262937227735,2019
+1998,44,"(40,45]",HS,41.572,49.89752542372881,0.8331475287997029,5798.087205223501,2019
+1998,44,"(40,45]",HS,41.572,48.04946892655367,0.8651916645227683,5884.911616233801,2019
+1998,44,"(40,45]",HS,41.572,48.04946892655367,0.8651916645227683,5849.005693701669,2019
+1998,44,"(40,45]",HS,41.572,49.89752542372881,0.8331475287997029,5791.5095644508965,2019
+1998,44,"(40,45]",HS,41.38966666666666,48.04946892655367,0.8613969642397735,5864.407548142828,2019
+1998,25,"(20,25]",HS,0,27.720847457627123,0,5439.700621604325,2019
+1998,25,"(20,25]",HS,0,27.720847457627123,0,5456.461176667915,2019
+1998,25,"(20,25]",HS,0,27.720847457627123,0,5491.965122839175,2019
+1998,25,"(20,25]",HS,0,27.720847457627123,0,5434.241334905907,2019
+1998,25,"(20,25]",HS,0,27.720847457627123,0,5515.967511685421,2019
+1998,49,"(45,50]",College,3360.5856666666664,369.6112994350283,9.092215719063544,1604.7561097933108,2019
+1998,49,"(45,50]",College,3362.409,369.6112994350283,9.097148829431438,1645.897333482472,2019
+1998,49,"(45,50]",College,3360.5856666666664,369.6112994350283,9.092215719063544,1559.2176482497962,2019
+1998,49,"(45,50]",College,3360.5856666666664,369.6112994350283,9.092215719063544,1668.0675122971618,2019
+1998,49,"(45,50]",College,3360.5856666666664,369.6112994350283,9.092215719063544,1588.2675460490439,2019
+1998,50,"(45,50]",College,623.2153333333334,367.7632429378531,1.6946101746189144,935.3667801185462,2019
+1998,50,"(45,50]",College,694.3253333333333,367.7632429378531,1.88796826944085,873.0931225810727,2019
+1998,50,"(45,50]",College,623.2153333333334,367.7632429378531,1.6946101746189144,911.5805044867345,2019
+1998,50,"(45,50]",College,532.0486666666667,367.7632429378531,1.4467151812574581,980.7798303971416,2019
+1998,50,"(45,50]",College,725.322,367.7632429378531,1.972252567183745,956.9710482356847,2019
+1998,51,"(50,55]",College,39950.692,1334.296790960452,29.94138355923253,28.22184059674483,2019
+1998,51,"(50,55]",College,42271.3395,1312.1201129943504,32.21605939987752,30.639316426521578,2019
+1998,51,"(50,55]",College,42103.4105,1487.6854802259886,28.301284821039076,31.036640637792367,2019
+1998,51,"(50,55]",College,44118.649666666664,1336.1448474576273,33.01936144918284,28.586895599279444,2019
+1998,51,"(50,55]",College,44731.289666666664,1402.6748813559325,31.88999123120105,30.381399923236962,2019
+1998,73,"(70,75]",College,1877.1216666666667,166.32508474576272,11.285860274990709,3384.195022500561,2019
+1998,73,"(70,75]",College,1875.2983333333334,166.32508474576272,11.274897807506504,3432.919919155218,2019
+1998,73,"(70,75]",College,1877.1216666666667,166.32508474576272,11.285860274990709,3325.054508533056,2019
+1998,73,"(70,75]",College,1877.1216666666667,166.32508474576272,11.285860274990709,3752.4246303001833,2019
+1998,73,"(70,75]",College,1875.116,166.32508474576272,11.273801560758082,3520.362957902925,2019
+1998,62,"(60,65]",HS,680.5591666666667,155.23674576271185,4.384008201942985,9170.84060388686,2019
+1998,62,"(60,65]",HS,687.4878333333334,162.62897175141245,4.227339236850106,8752.578482122193,2019
+1998,62,"(60,65]",HS,692.8666666666667,140.45229378531073,4.933110367892977,8833.70998488213,2019
+1998,62,"(60,65]",HS,684.2058333333334,145.99646327683615,4.686454849498329,8833.687828558885,2019
+1998,62,"(60,65]",HS,699.4306666666666,153.38868926553673,4.559858161743966,9152.799679725409,2019
+1998,43,"(40,45]",HS,9.991866666666667,64.68197740112994,0.15447682752030578,6067.748263463799,2019
+1998,43,"(40,45]",HS,9.827766666666667,64.68197740112994,0.1519397993311037,6079.7690397583065,2019
+1998,43,"(40,45]",HS,10.028333333333334,64.68197740112994,0.15504061156235072,6069.014203296969,2019
+1998,43,"(40,45]",HS,10.028333333333334,64.68197740112994,0.15504061156235072,6065.598912157542,2019
+1998,43,"(40,45]",HS,9.991866666666667,64.68197740112994,0.15447682752030578,6097.759453901768,2019
+1998,41,"(40,45]",College,367.03700000000003,170.021197740113,2.1587719936018614,5963.358116499038,2019
+1998,41,"(40,45]",College,405.327,168.17314124293785,2.410176779741997,5706.638156046067,2019
+1998,41,"(40,45]",College,370.866,162.62897175141245,2.280442383703253,5327.546313345367,2019
+1998,41,"(40,45]",College,355.3676666666667,99.79505084745762,3.560974854453116,5824.4052917687595,2019
+1998,41,"(40,45]",College,381.0766666666667,81.31448587570623,4.686454849498328,5310.577976743663,2019
+1998,41,"(40,45]",HS,185.98,97.9469943502825,1.8987821038682398,11709.41382408434,2019
+1998,41,"(40,45]",College,934.2760000000001,97.9469943502825,9.53858774531457,10174.650373158365,2019
+1998,41,"(40,45]",College,185.61533333333335,97.9469943502825,1.8950590017037925,12461.386801725208,2019
+1998,41,"(40,45]",HS,191.68703333333332,97.9469943502825,1.9570486527418436,11774.35441144268,2019
+1998,41,"(40,45]",HS,187.93096666666668,73.92225988700567,2.542278428093645,12392.985882373761,2019
+1998,28,"(25,30]",College,-59.076,109.03533333333333,-0.5418060200668897,6864.570965245692,2019
+1998,28,"(25,30]",College,-48.136,109.03533333333333,-0.44147157190635455,6841.166649180118,2019
+1998,28,"(25,30]",College,-39.019333333333336,109.03533333333333,-0.3578595317725753,6844.586614027637,2019
+1998,28,"(25,30]",College,-42.666000000000004,109.03533333333333,-0.39130434782608703,6893.286659547518,2019
+1998,28,"(25,30]",College,-49.95933333333333,109.03533333333333,-0.4581939799331104,6840.259187908213,2019
+1998,36,"(35,40]",HS,9.581616666666667,0,Inf,5353.190151845587,2019
+1998,36,"(35,40]",HS,7.211283333333334,0,Inf,5398.66277808841,2019
+1998,36,"(35,40]",HS,7.211283333333334,0,Inf,5340.879155943589,2019
+1998,36,"(35,40]",HS,7.2204,0,Inf,5344.776451928747,2019
+1998,36,"(35,40]",HS,7.2204,0,Inf,5358.420249901614,2019
+1998,71,"(70,75]",NoHS,126.70343333333334,13.860423728813561,9.14138238573021,8572.687749142098,2019
+1998,71,"(70,75]",NoHS,151.90189999999998,14.045229378531072,10.81519538813589,8552.38524405405,2019
+1998,71,"(70,75]",NoHS,153.39703333333333,17.186925423728816,8.92521667206099,9139.163828448161,2019
+1998,71,"(70,75]",NoHS,150.4797,17.92614802259887,8.394424714684689,8816.93767707696,2019
+1998,71,"(70,75]",NoHS,144.42623333333333,14.045229378531072,10.282938743179018,8976.687286181155,2019
+1998,43,"(40,45]",HS,6934.0455,251.33568361581922,27.58878246114499,812.1321375646023,2019
+1998,43,"(40,45]",HS,6873.7661,194.04593220338984,35.42339703774486,821.7216248559307,2019
+1998,43,"(40,45]",HS,7012.7588,101.64310734463277,68.9939434478565,777.0016222604294,2019
+1998,43,"(40,45]",HS,6912.967766666667,94.25088135593221,73.34645222637549,866.1369027746119,2019
+1998,43,"(40,45]",HS,8278.480333333333,225.46289265536726,36.7177065628598,810.2352284215415,2019
+1998,44,"(40,45]",HS,13.310333333333334,92.40282485875707,0.1440468227424749,199.10116477947864,2019
+1998,44,"(40,45]",HS,13.492666666666667,92.40282485875707,0.1460200668896321,201.08699575141895,2019
+1998,44,"(40,45]",HS,13.310333333333334,92.40282485875707,0.1440468227424749,199.95610425024194,2019
+1998,44,"(40,45]",HS,13.310333333333334,92.40282485875707,0.1440468227424749,198.71687775761757,2019
+1998,44,"(40,45]",HS,13.310333333333334,92.40282485875707,0.1440468227424749,207.5255581459951,2019
+1998,46,"(45,50]",HS,26.600245333333334,42.50529943502825,0.6258100916097136,5636.161268582355,2019
+1998,46,"(45,50]",HS,26.782578666666666,42.50529943502825,0.6300997527991856,5624.284971032996,2019
+1998,46,"(45,50]",HS,26.81904533333333,42.50529943502825,0.63095768503708,5587.77682112929,2019
+1998,46,"(45,50]",HS,26.81904533333333,42.50529943502825,0.63095768503708,5631.258516759143,2019
+1998,46,"(45,50]",HS,26.782578666666666,42.50529943502825,0.6300997527991856,5610.194056616439,2019
+1998,40,"(35,40]",College,10.265366666666667,48.04946892655367,0.21364162593259584,5151.745944023254,2019
+1998,40,"(35,40]",College,10.265366666666667,48.04946892655367,0.21364162593259584,5153.174700729026,2019
+1998,40,"(35,40]",College,10.265366666666667,48.04946892655367,0.21364162593259584,5200.860560809162,2019
+1998,40,"(35,40]",College,10.0648,48.04946892655367,0.20946745562130178,5147.284038264317,2019
+1998,40,"(35,40]",College,10.083033333333333,48.04946892655367,0.20984692564960122,5118.542460499555,2019
+1998,56,"(55,60]",HS,158.63,18.480564971751416,8.583612040133778,7189.06971964137,2019
+1998,56,"(55,60]",HS,158.63,20.328621468926556,7.803283672848889,7162.289891198949,2019
+1998,56,"(55,60]",HS,158.61176666666665,20.328621468926556,7.80238674369109,7589.300130447977,2019
+1998,56,"(55,60]",HS,158.63,20.328621468926556,7.803283672848889,7027.344501127705,2019
+1998,56,"(55,60]",HS,158.63,18.480564971751416,8.583612040133778,7429.4034763635955,2019
+1998,78,"(75,80]",HS,261.8306666666667,57.289751412429375,4.570288056964074,8028.238436698804,2019
+1998,78,"(75,80]",HS,301.944,38.80918644067796,7.780219780219782,8195.68020084032,2019
+1998,78,"(75,80]",HS,354.8206666666667,86.85865536723163,4.085035223795631,8506.066211605747,2019
+1998,78,"(75,80]",HS,500.14033333333333,35.11307344632768,14.243707093821511,6406.3253309117035,2019
+1998,78,"(75,80]",HS,362.11400000000003,86.85865536723163,4.169003059844874,8532.471366488882,2019
+1998,78,"(75,80]",College,1431.499,92.40282485875707,15.491939799331103,276.2160548351351,2019
+1998,78,"(75,80]",College,1431.6813333333332,92.40282485875707,15.493913043478258,285.21418815636565,2019
+1998,78,"(75,80]",College,1437.1513333333332,92.40282485875707,15.553110367892973,271.93549133047065,2019
+1998,78,"(75,80]",College,1431.499,92.40282485875707,15.491939799331103,283.7630078537408,2019
+1998,78,"(75,80]",College,1436.969,92.40282485875707,15.551137123745818,274.3557478421014,2019
+1998,31,"(30,35]",HS,166.47033333333334,157.08480225988703,1.0597481802085382,8412.930308700787,2019
+1998,31,"(30,35]",HS,164.647,157.08480225988703,1.0481408616958487,8415.307280748208,2019
+1998,31,"(30,35]",HS,156.25966666666665,157.08480225988703,0.9947471965374776,8560.378782614122,2019
+1998,31,"(30,35]",HS,176.681,157.08480225988703,1.1247491638795986,8453.170479624374,2019
+1998,31,"(30,35]",HS,167.382,157.08480225988703,1.0655518394648829,8507.69585279597,2019
+1998,40,"(35,40]",College,612.4576666666667,277.2084745762712,2.209375696767001,687.7017286075601,2019
+1998,40,"(35,40]",College,610.6343333333334,277.2084745762712,2.202798216276477,727.5061835532445,2019
+1998,40,"(35,40]",College,610.6343333333334,277.2084745762712,2.202798216276477,677.5596772562069,2019
+1998,40,"(35,40]",College,612.64,279.0565310734463,2.1953974617378016,714.9562668750507,2019
+1998,40,"(35,40]",College,612.4576666666667,277.2084745762712,2.209375696767001,682.6606424556418,2019
+1998,37,"(35,40]",College,375.0414333333334,59.13780790960452,6.3418216973244155,6373.327534764825,2019
+1998,37,"(35,40]",College,371.3783566666667,75.77031638418079,4.901370013867363,6098.0525014050545,2019
+1998,37,"(35,40]",College,375.44256666666666,60.98586440677967,6.156222762744501,5694.331616239851,2019
+1998,37,"(35,40]",College,391.45143333333334,253.18374011299437,1.5461160071283842,6224.803251202424,2019
+1998,37,"(35,40]",College,422.48456666666664,253.18374011299437,1.6686875961233305,5676.422783391835,2019
+1998,60,"(55,60]",College,12172.427466666668,1299.1837175141243,9.369288810021077,289.16863946004435,2019
+1998,60,"(55,60]",College,13794.3007,1081.1130508474578,12.759350827544806,286.45812824770235,2019
+1998,60,"(55,60]",College,13258.2407,1574.54413559322,8.420367775213153,273.1136703212822,2019
+1998,60,"(55,60]",College,11621.926666666666,997.950508474576,11.645794624055496,299.98205059385333,2019
+1998,60,"(55,60]",College,11810.477566666666,1005.3427344632769,11.74771265738737,281.7302365431434,2019
+1998,37,"(35,40]",College,2033.199,595.0741920903955,3.4167151374145703,947.2794260583738,2019
+1998,37,"(35,40]",College,2031.3756666666668,595.0741920903955,3.4136510937078044,1036.9105417204753,2019
+1998,37,"(35,40]",College,2031.3756666666668,595.0741920903955,3.4136510937078044,948.7949310731331,2019
+1998,37,"(35,40]",College,2031.3756666666668,595.0741920903955,3.4136510937078044,1214.781802295928,2019
+1998,37,"(35,40]",College,2033.199,595.0741920903955,3.4167151374145703,949.5400404862858,2019
+1998,51,"(50,55]",NoHS,0,14.969257627118646,0,4680.326941475656,2019
+1998,51,"(50,55]",NoHS,0,14.969257627118646,0,4663.00745079843,2019
+1998,51,"(50,55]",NoHS,0,14.969257627118646,0,4673.050952880936,2019
+1998,51,"(50,55]",NoHS,0,14.969257627118646,0,4660.2533894388125,2019
+1998,51,"(50,55]",NoHS,0,14.969257627118646,0,4680.780214622175,2019
+1998,67,"(65,70]",College,138.82860000000002,99.79505084745762,1.3911371237458199,10553.334075500763,2019
+1998,67,"(65,70]",College,159.43226666666666,121.97172881355934,1.3071247592986721,10174.650373158365,2019
+1998,67,"(65,70]",College,143.02226666666667,110.88338983050849,1.28984392419175,9881.289916979043,2019
+1998,67,"(65,70]",College,137.1876,99.79505084745762,1.3746934225195095,10062.590158865458,2019
+1998,67,"(65,70]",College,144.49916666666667,131.21201129943503,1.1012647793113193,10318.796404198825,2019
+1998,43,"(40,45]",HS,65.3665,81.31448587570623,0.8038727576771054,7584.821991881456,2019
+1998,43,"(40,45]",HS,90.54673333333334,73.92225988700567,1.2248913043478258,7737.71139243706,2019
+1998,43,"(40,45]",HS,51.23566666666667,73.92225988700567,0.693102006688963,8051.531498991023,2019
+1998,43,"(40,45]",HS,29.99383333333333,68.37809039548021,0.4386468408207539,7651.805856413659,2019
+1998,43,"(40,45]",HS,78.89563333333334,90.55476836158192,0.871247696402976,7968.355080756535,2019
+1998,40,"(35,40]",College,167.929,64.68197740112994,2.596225513616818,7714.50259083686,2019
+1998,40,"(35,40]",College,168.11133333333333,64.68197740112994,2.5990444338270424,7870.95107599512,2019
+1998,40,"(35,40]",College,170.29933333333335,64.68197740112994,2.6328714763497376,8243.05591451556,2019
+1998,40,"(35,40]",College,167.929,64.68197740112994,2.596225513616818,7713.091611345609,2019
+1998,40,"(35,40]",College,168.11133333333333,64.68197740112994,2.5990444338270424,8184.033178558499,2019
+1998,34,"(30,35]",HS,7.111,64.68197740112994,0.10993788819875776,5277.295336469729,2019
+1998,34,"(30,35]",HS,7.111,64.68197740112994,0.10993788819875776,5276.97676773098,2019
+1998,34,"(30,35]",HS,7.111,64.68197740112994,0.10993788819875776,5247.459719856137,2019
+1998,34,"(30,35]",HS,7.293333333333333,64.68197740112994,0.11275680840898232,5318.64033433516,2019
+1998,34,"(30,35]",HS,7.293333333333333,64.68197740112994,0.11275680840898232,5270.799066195641,2019
+1998,41,"(40,45]",HS,528.402,94.25088135593221,5.60633484162896,4716.793377624692,2019
+1998,41,"(40,45]",HS,522.3485333333333,96.09893785310734,5.435528685361461,4513.737484332216,2019
+1998,41,"(40,45]",HS,516.1309666666667,109.03533333333333,4.73361204013378,4213.89000607747,2019
+1998,41,"(40,45]",HS,512.9583666666666,127.51589830508476,4.022701274780669,4606.886886904861,2019
+1998,41,"(40,45]",HS,521.0357333333334,107.18727683615819,4.8609848921693,4200.4686860512975,2019
+1998,45,"(40,45]",HS,5540.0160000000005,521.1519322033898,10.630328043834059,891.3889652834965,2019
+1998,45,"(40,45]",HS,9406.759,229.1590056497175,41.04904790160751,914.1350445380331,2019
+1998,45,"(40,45]",HS,6868.1320000000005,327.106,20.99665551839465,863.6514934446475,2019
+1998,45,"(40,45]",HS,9674.059666666666,371.4593559322034,26.043386745203748,952.9713703561383,2019
+1998,45,"(40,45]",HS,6914.262333333333,127.51589830508476,54.22274732199117,880.6678585449445,2019
+1998,36,"(35,40]",College,1934.0096666666668,184.80564971751414,10.46510033444816,2648.4721829025634,2019
+1998,36,"(35,40]",College,2043.592,184.80564971751414,11.058060200668896,2888.112794013904,2019
+1998,36,"(35,40]",College,1992.5386666666668,184.80564971751414,10.78180602006689,2695.6501755785357,2019
+1998,36,"(35,40]",College,2026.9996666666668,184.80564971751414,10.968277591973244,2674.08497733151,2019
+1998,36,"(35,40]",College,1963.183,184.80564971751414,10.622959866220734,2760.3132392264547,2019
+1998,70,"(65,70]",NoHS,-2.2609333333333335,27.720847457627123,-0.0815607580824972,4156.866859809015,2019
+1998,70,"(65,70]",NoHS,-2.060366666666667,29.56890395480226,-0.0696801839464883,4136.8133169222665,2019
+1998,70,"(65,70]",NoHS,-2.0786,27.720847457627123,-0.07498327759197322,4351.637152576947,2019
+1998,70,"(65,70]",NoHS,-0.9481333333333334,29.56890395480226,-0.03206521739130435,4317.534589412323,2019
+1998,70,"(65,70]",NoHS,-1.2763333333333333,29.56890395480226,-0.043164715719063544,4224.071308194541,2019
+1998,32,"(30,35]",College,288.99833333333333,110.88338983050849,2.6063266443701223,5954.701359580302,2019
+1998,32,"(30,35]",College,290.8216666666667,110.88338983050849,2.6227703455964324,5932.723587672926,2019
+1998,32,"(30,35]",College,288.99833333333333,110.88338983050849,2.6063266443701223,5987.873105685718,2019
+1998,32,"(30,35]",College,288.99833333333333,110.88338983050849,2.6063266443701223,5995.54131203189,2019
+1998,32,"(30,35]",College,290.8216666666667,110.88338983050849,2.6227703455964324,5917.215984084703,2019
+1998,51,"(50,55]",HS,2125.3685,101.64310734463277,20.91010945576163,1336.0518693715908,2019
+1998,51,"(50,55]",HS,2127.1918333333333,101.64310734463277,20.928048038917606,1373.6411494366278,2019
+1998,51,"(50,55]",HS,2125.514366666667,101.64310734463277,20.91154454241411,1509.6740211365836,2019
+1998,51,"(50,55]",HS,2123.381066666667,101.64310734463277,20.890556400121618,1594.694995657589,2019
+1998,51,"(50,55]",HS,2126.973033333333,101.64310734463277,20.925895408938885,1299.6337999441757,2019
+1998,37,"(35,40]",HS,701.254,121.97172881355934,5.749315901489814,5070.124744242048,2019
+1998,37,"(35,40]",HS,699.2483333333333,121.97172881355934,5.732872200263504,4851.137292162054,2019
+1998,37,"(35,40]",HS,701.0716666666666,121.97172881355934,5.747821019560149,4529.968289238853,2019
+1998,37,"(35,40]",HS,699.2483333333333,121.97172881355934,5.732872200263504,4951.970351406762,2019
+1998,37,"(35,40]",HS,701.0716666666666,121.97172881355934,5.747821019560149,4515.721411753281,2019
+1998,49,"(45,50]",College,4887.445,166.32508474576272,29.384894091415827,1898.3481832606376,2019
+1998,49,"(45,50]",College,4933.028333333333,166.32508474576272,29.65895577852099,1975.1821141188298,2019
+1998,49,"(45,50]",College,5024.195,166.32508474576272,30.20707915273132,2154.739542109568,2019
+1998,49,"(45,50]",College,4857.724666666667,166.32508474576272,29.20620587142326,2238.4646763465234,2019
+1998,49,"(45,50]",College,4978.611666666667,166.32508474576272,29.933017465626158,1846.1135649968924,2019
+1998,33,"(30,35]",College,46.695566666666664,42.50529943502825,1.0985822306238184,6724.777525976273,2019
+1998,33,"(30,35]",College,47.06023333333333,42.50529943502825,1.1071615530027628,6744.6876594778005,2019
+1998,33,"(30,35]",College,47.2061,42.50529943502825,1.1105932819543405,6745.023703055253,2019
+1998,33,"(30,35]",College,46.695566666666664,42.50529943502825,1.0985822306238184,6778.597286630073,2019
+1998,33,"(30,35]",College,46.695566666666664,42.50529943502825,1.0985822306238184,6752.871037880858,2019
+1998,77,"(75,80]",NoHS,323.45933333333335,2.2176677966101694,145.855629877369,9676.475320722991,2019
+1998,77,"(75,80]",NoHS,322.73,2.2176677966101694,145.52675585284283,9870.793669454968,2019
+1998,77,"(75,80]",NoHS,325.8296666666667,2.2176677966101694,146.92447045707917,10314.802499344254,2019
+1998,77,"(75,80]",NoHS,326.012,2.2176677966101694,147.0066889632107,9779.468006472744,2019
+1998,77,"(75,80]",NoHS,327.653,2.2176677966101694,147.74665551839468,10217.090669914041,2019
+1998,51,"(50,55]",College,824.6572,151.54063276836158,5.441822334611306,6574.84396979085,2019
+1998,51,"(50,55]",College,820.9923000000001,171.86925423728815,4.776842162045528,6300.092323655428,2019
+1998,51,"(50,55]",College,822.8156333333333,170.021197740113,4.839488512432746,5871.023653334001,2019
+1998,51,"(50,55]",College,822.8338666666667,149.69257627118645,5.496824806969735,6423.044144250536,2019
+1998,51,"(50,55]",College,826.4623,173.71731073446327,4.7575126307549995,5859.719569343475,2019
+1998,27,"(25,30]",HS,3.2455333333333334,83.16254237288136,0.039026384243775546,9036.045109419178,2019
+1998,27,"(25,30]",HS,7.4392,83.16254237288136,0.08945373467112597,8995.617844190656,2019
+1998,27,"(25,30]",HS,2.206233333333333,83.16254237288136,0.026529171311780002,9247.807671822779,2019
+1998,27,"(25,30]",HS,7.9862,83.16254237288136,0.09603121516164995,9120.241929017986,2019
+1998,27,"(25,30]",HS,1.1304666666666667,83.16254237288136,0.013593459680416201,9195.978719484705,2019
+1998,83,"(80,85]",NoHS,689.8034666666667,48.04946892655367,14.356110110625162,10553.334075500763,2019
+1998,83,"(80,85]",NoHS,689.8217,48.04946892655367,14.35648958065346,10174.650373158365,2019
+1998,83,"(80,85]",NoHS,689.8217,48.04946892655367,14.35648958065346,9755.390128412055,2019
+1998,83,"(80,85]",NoHS,689.8034666666667,48.04946892655367,14.356110110625162,10062.590158865458,2019
+1998,83,"(80,85]",NoHS,689.8217,48.04946892655367,14.35648958065346,9729.521502563954,2019
+1998,34,"(30,35]",HS,1555.4856666666667,51.745581920903966,30.060260391782126,1262.0030332370147,2019
+1998,34,"(30,35]",HS,1913.5883333333334,49.89752542372881,38.350365415582814,1265.3148391863513,2019
+1998,34,"(30,35]",HS,1525.036,81.31448587570623,18.754788689571296,1240.1930042544732,2019
+1998,34,"(30,35]",HS,1337.2326666666668,68.37809039548021,19.556449426014648,1418.6769820260142,2019
+1998,34,"(30,35]",HS,2096.651,81.31448587570623,25.784470963818784,1316.622960232569,2019
+1998,46,"(45,50]",HS,313.431,214.37455367231638,1.4620718486910391,5550.432254169724,2019
+1998,46,"(45,50]",HS,313.431,212.52649717514123,1.4747855169405264,5305.994375289576,2019
+1998,46,"(45,50]",HS,313.431,212.52649717514123,1.4747855169405264,5382.850871010809,2019
+1998,46,"(45,50]",HS,313.431,212.52649717514123,1.4747855169405264,5367.494908669991,2019
+1998,46,"(45,50]",HS,313.431,214.37455367231638,1.4620718486910391,5526.227725237278,2019
+1998,52,"(50,55]",HS,569.6093333333334,92.40282485875707,6.164414715719064,5722.744206838161,2019
+1998,52,"(50,55]",HS,569.6093333333334,92.40282485875707,6.164414715719064,5483.600373392821,2019
+1998,52,"(50,55]",HS,567.7860000000001,94.25088135593221,6.024198308085777,5110.139001731434,2019
+1998,52,"(50,55]",HS,565.2333333333333,92.40282485875707,6.117056856187291,5590.617638329268,2019
+1998,52,"(50,55]",HS,563.7382,94.25088135593221,5.981251229588826,5100.29992699938,2019
+1998,32,"(30,35]",HS,0,51.745581920903966,0,6089.358025114347,2019
+1998,32,"(30,35]",HS,0,51.745581920903966,0,6089.721636877095,2019
+1998,32,"(30,35]",HS,0,51.745581920903966,0,6094.7575818611995,2019
+1998,32,"(30,35]",HS,0,51.745581920903966,0,6082.228658690276,2019
+1998,32,"(30,35]",HS,0,51.745581920903966,0,6141.475679254448,2019
+1998,36,"(35,40]",NoHS,165.92333333333335,57.289751412429375,2.896213183730716,7489.300001741792,2019
+1998,36,"(35,40]",NoHS,165.92333333333335,57.289751412429375,2.896213183730716,7669.5801442314505,2019
+1998,36,"(35,40]",NoHS,164.1,57.289751412429375,2.86438666522818,8092.178792394783,2019
+1998,36,"(35,40]",NoHS,165.92333333333335,57.289751412429375,2.896213183730716,7486.224405878779,2019
+1998,36,"(35,40]",NoHS,158.63,57.289751412429375,2.768907109720574,7999.9432115205445,2019
+1998,29,"(25,30]",HS,8.752,18.480564971751416,0.47357859531772567,4919.396339234363,2019
+1998,29,"(25,30]",HS,2.005666666666667,29.56890395480226,0.06783026755852845,4915.056422488795,2019
+1998,29,"(25,30]",HS,8.387333333333334,24.024734463276836,0.349112426035503,4939.598917056781,2019
+1998,29,"(25,30]",HS,10.301833333333335,15.523674576271185,0.6636207994903648,4939.18745380447,2019
+1998,29,"(25,30]",HS,10.575333333333335,11.088338983050848,0.9537346711259755,4937.495382994613,2019
+1998,24,"(20,25]",HS,561.769,184.80564971751414,3.039782608695652,12677.183342975433,2019
+1998,24,"(20,25]",HS,563.7746666666667,184.80564971751414,3.0506354515050167,13310.446752006314,2019
+1998,24,"(20,25]",HS,560.6750000000001,184.80564971751414,3.033862876254181,11563.862010738283,2019
+1998,24,"(20,25]",HS,564.504,184.80564971751414,3.054581939799331,11849.545150295664,2019
+1998,24,"(20,25]",HS,561.5866666666666,184.80564971751414,3.038795986622073,12559.287953020945,2019
+1998,37,"(35,40]",College,93.537,125.66784180790961,0.744319299626205,6222.545818224529,2019
+1998,37,"(35,40]",College,93.537,125.66784180790961,0.744319299626205,6176.728849822766,2019
+1998,37,"(35,40]",College,93.537,125.66784180790961,0.744319299626205,6178.448294174147,2019
+1998,37,"(35,40]",College,93.537,125.66784180790961,0.744319299626205,6282.280816379456,2019
+1998,37,"(35,40]",College,93.537,125.66784180790961,0.744319299626205,6154.038275000836,2019
+1998,75,"(70,75]",College,1927.4456666666667,70.22614689265536,27.446268262629822,4003.3375997497096,2019
+1998,75,"(70,75]",College,1916.5056666666667,70.22614689265536,27.290485829959515,4119.723560868055,2019
+1998,75,"(70,75]",College,1916.5056666666667,70.22614689265536,27.290485829959515,4595.013683463679,2019
+1998,75,"(70,75]",College,1914.6823333333332,70.22614689265536,27.264522091181128,5035.569557980364,2019
+1998,75,"(70,75]",College,1921.9756666666667,70.22614689265536,27.36837704629467,4091.8734544844074,2019
+1998,29,"(25,30]",HS,169.93466666666666,110.88338983050849,1.5325529542920844,4646.226442518355,2019
+1998,29,"(25,30]",HS,171.94033333333334,110.88338983050849,1.5506410256410255,4589.306594978466,2019
+1998,29,"(25,30]",HS,169.93466666666666,110.88338983050849,1.5325529542920844,4576.549546490714,2019
+1998,29,"(25,30]",HS,169.93466666666666,110.88338983050849,1.5325529542920844,4686.213003844593,2019
+1998,29,"(25,30]",HS,171.94033333333334,110.88338983050849,1.5506410256410255,4586.754351995355,2019
+1998,39,"(35,40]",HS,192.544,66.53003389830509,2.894091415830546,7226.212487117262,2019
+1998,39,"(35,40]",HS,263.7451666666667,66.53003389830509,3.964302303976217,7325.051989926241,2019
+1998,39,"(35,40]",HS,204.39566666666667,66.53003389830509,3.0722315124489037,7625.566222822289,2019
+1998,39,"(35,40]",HS,186.98283333333336,66.53003389830509,2.810502601263471,7262.402341802515,2019
+1998,39,"(35,40]",HS,240.31533333333334,66.53003389830509,3.612133036046079,7533.254472000101,2019
+1998,61,"(60,65]",HS,726.5983333333334,90.55476836158192,8.023855026960618,6561.815196823793,2019
+1998,61,"(60,65]",HS,728.4216666666666,110.88338983050849,6.569258639910813,6256.349396474017,2019
+1998,61,"(60,65]",HS,730.245,121.97172881355934,5.987002128306475,5856.624318284321,2019
+1998,61,"(60,65]",HS,724.4103333333334,92.40282485875707,7.839698996655518,6407.838314036223,2019
+1998,61,"(60,65]",HS,728.057,120.12367231638417,6.060895291998971,5841.47114881762,2019
+1998,49,"(45,50]",College,2815.2266666666665,295.68903954802266,9.520903010033441,3367.3833616380807,2019
+1998,49,"(45,50]",College,2815.5913333333338,295.68903954802266,9.522136287625417,3599.6290254888254,2019
+1998,49,"(45,50]",College,2815.409,295.68903954802266,9.521519648829429,3484.9668742741787,2019
+1998,49,"(45,50]",College,2815.5913333333338,295.68903954802266,9.522136287625417,4043.2067017851246,2019
+1998,49,"(45,50]",College,2815.409,295.68903954802266,9.521519648829429,3268.9642418434514,2019
+1998,23,"(20,25]",NoHS,-51.418,51.745581920903966,-0.9936693741041565,4858.266579644521,2019
+1998,23,"(20,25]",NoHS,-51.418,51.745581920903966,-0.9936693741041565,4839.677564379718,2019
+1998,23,"(20,25]",NoHS,-51.418,51.745581920903966,-0.9936693741041565,4849.72600903625,2019
+1998,23,"(20,25]",NoHS,-51.418,51.745581920903966,-0.9936693741041565,4878.735211070112,2019
+1998,23,"(20,25]",NoHS,-51.418,51.745581920903966,-0.9936693741041565,4807.809128900186,2019
+1998,57,"(55,60]",HS,549.5526666666666,51.745581920903966,10.62028189202102,10298.466001167531,2019
+1998,57,"(55,60]",HS,549.5526666666666,51.745581920903966,10.62028189202102,9827.58311133472,2019
+1998,57,"(55,60]",HS,549.5526666666666,51.745581920903966,10.62028189202102,9881.289916979043,2019
+1998,57,"(55,60]",HS,549.188,51.745581920903966,10.61323459149546,9962.915045199445,2019
+1998,57,"(55,60]",HS,549.188,51.745581920903966,10.61323459149546,10318.796404198825,2019
+1998,52,"(50,55]",College,26546.6758,548.872779661017,48.36580858754771,1137.361481989933,2019
+1998,52,"(50,55]",College,26668.675033333337,524.8480451977401,50.81218321635499,1175.502057019537,2019
+1998,52,"(50,55]",College,26771.91216666667,558.1130621468926,47.96861779884384,1154.3887531924051,2019
+1998,52,"(50,55]",College,26718.324399999998,524.8480451977401,50.90678081869141,1214.7358267998663,2019
+1998,52,"(50,55]",College,26847.67166666667,526.6961016949153,50.973742885642196,1202.1806832917837,2019
+1998,28,"(25,30]",HS,568.8253000000001,46.201412429378536,12.311859531772576,6945.636652589671,2019
+1998,28,"(25,30]",HS,668.6163333333334,44.35335593220339,15.074763099219622,6648.211564668942,2019
+1998,28,"(25,30]",HS,726.7442,179.26148022598866,4.054101299865532,6200.011473531665,2019
+1998,28,"(25,30]",HS,359.8713,170.021197740113,2.1166260724152974,6784.078918324363,2019
+1998,28,"(25,30]",HS,1150.888,120.12367231638417,9.580859274504759,3416.799323399762,2019
+1998,70,"(65,70]",NoHS,102.74483333333333,9.240282485875708,11.119230769230766,11149.934334433989,2019
+1998,70,"(65,70]",NoHS,102.74483333333333,9.240282485875708,11.119230769230766,11145.404260046185,2019
+1998,70,"(65,70]",NoHS,102.74483333333333,9.240282485875708,11.119230769230766,11773.407602628284,2019
+1998,70,"(65,70]",NoHS,102.54426666666666,9.240282485875708,11.097525083612037,11312.787540890644,2019
+1998,70,"(65,70]",NoHS,102.6172,9.240282485875708,11.105418060200666,11595.538785062032,2019
+1998,37,"(35,40]",HS,1144.871,151.54063276836158,7.5548780487804885,797.9765239530605,2019
+1998,37,"(35,40]",HS,1144.5063333333333,149.69257627118645,7.645712044262768,847.4785778394746,2019
+1998,37,"(35,40]",HS,1144.6886666666667,153.38868926553673,7.462666720393279,810.411440030314,2019
+1998,37,"(35,40]",HS,1144.6886666666667,149.69257627118645,7.646930096205458,834.0361437557127,2019
+1998,37,"(35,40]",HS,1144.6886666666667,147.84451977401133,7.742516722408025,789.3669971454356,2019
+1998,38,"(35,40]",HS,242.13866666666667,101.64310734463277,2.3822438431134083,7007.236360531766,2019
+1998,38,"(35,40]",HS,246.15,101.64310734463277,2.4217087260565524,7103.080727020382,2019
+1998,38,"(35,40]",HS,295.1976666666667,101.64310734463277,2.9042566129522656,7394.488468400899,2019
+1998,38,"(35,40]",HS,247.244,101.64310734463277,2.432471875950137,7042.329553000835,2019
+1998,38,"(35,40]",HS,269.671,101.64310734463277,2.6531164487686225,7304.974043241277,2019
+1998,68,"(65,70]",College,4236.879666666667,528.5441581920903,8.016131861449589,160.0150613271221,2019
+1998,68,"(65,70]",College,10545.977666666666,528.5441581920903,19.952879060738592,157.95444701524133,2019
+1998,68,"(65,70]",College,4837.850333333333,528.5441581920903,9.153162055335969,151.9716512597711,2019
+1998,68,"(65,70]",College,5009.608333333334,528.5441581920903,9.478126388661508,168.18093887591812,2019
+1998,68,"(65,70]",College,4946.156333333333,528.5441581920903,9.358075870617679,157.97790506420648,2019
+1998,23,"(20,25]",NoHS,1.6592333333333333,24.024734463276836,0.06906354515050167,5203.613860096076,2019
+1998,23,"(20,25]",NoHS,-0.23703333333333335,38.80918644067796,-0.0061076604554865434,5168.089308553523,2019
+1998,23,"(20,25]",NoHS,1.0757666666666668,27.720847457627123,0.03880713489409141,5149.5950511710125,2019
+1998,23,"(20,25]",NoHS,-4.303066666666667,20.328621468926556,-0.21167528124049861,5224.662955007755,2019
+1998,23,"(20,25]",NoHS,1.7868666666666666,25.872790960451983,0.06906354515050166,5121.833592595756,2019
+1998,38,"(35,40]",HS,942.4263000000001,70.22614689265536,13.419877662383385,4500.735302253462,2019
+1998,38,"(35,40]",HS,542.4416666666666,406.57242937853107,1.3341821222256003,4302.529532035208,2019
+1998,38,"(35,40]",HS,603.4139333333334,101.64310734463277,5.936594709638189,4008.4683363780423,2019
+1998,38,"(35,40]",HS,3124.0081666666665,79.46642937853107,39.31230069222991,909.3637695100479,2019
+1998,38,"(35,40]",HS,582.6461666666667,190.34981920903957,3.060923141864467,4005.9182699218663,2019
+1998,52,"(50,55]",NoHS,234.04306666666668,49.89752542372881,4.690474420909204,7122.659823616207,2019
+1998,52,"(50,55]",NoHS,234.00660000000002,49.89752542372881,4.689743589743591,7283.2311917284005,2019
+1998,52,"(50,55]",NoHS,215.53623333333334,49.89752542372881,4.319577604360214,7653.6853332312385,2019
+1998,52,"(50,55]",NoHS,226.93206666666669,49.89752542372881,4.547962343614518,7101.353298898603,2019
+1998,52,"(50,55]",NoHS,234.15246666666667,49.89752542372881,4.692666914406045,7504.141202158004,2019
+1998,33,"(30,35]",College,755.7352,177.41342372881357,4.2597408026755845,7268.025545884052,2019
+1998,33,"(30,35]",College,881.8916333333333,345.58656497175144,2.5518689750147545,6955.761655678818,2019
+1998,33,"(30,35]",College,625.9503333333333,238.39928813559317,2.6256384330196267,6488.391580157973,2019
+1998,33,"(30,35]",College,609.3033,201.4381581920904,3.024766039704213,7098.947594977265,2019
+1998,33,"(30,35]",College,1015.1226,195.893988700565,5.181999747586294,6475.414499135502,2019
+1998,53,"(50,55]",College,4007.322,391.78797740113,10.228292421278475,1153.92942688556,2019
+1998,53,"(50,55]",College,4005.4986666666664,391.78797740113,10.223638543572914,1181.567585439443,2019
+1998,53,"(50,55]",College,4003.6753333333336,391.78797740113,10.218984665867357,1109.0050542880454,2019
+1998,53,"(50,55]",College,4005.4986666666664,391.78797740113,10.223638543572914,1215.7916510810026,2019
+1998,53,"(50,55]",College,4003.6753333333336,391.78797740113,10.218984665867357,1150.929012535388,2019
+1998,36,"(35,40]",College,118.11553333333335,55.441694915254246,2.1304459308807133,6001.057117937546,2019
+1998,36,"(35,40]",College,118.29786666666666,55.441694915254246,2.1337346711259753,5934.0467944968095,2019
+1998,36,"(35,40]",College,118.11553333333335,55.441694915254246,2.1304459308807133,5965.040380795272,2019
+1998,36,"(35,40]",College,118.11553333333335,55.441694915254246,2.1304459308807133,6034.7430856727715,2019
+1998,36,"(35,40]",College,118.11553333333335,55.441694915254246,2.1304459308807133,5932.041826458703,2019
+1998,59,"(55,60]",College,743.373,29.56890395480226,25.140363712374583,4072.0652288259907,2019
+1998,59,"(55,60]",College,526.214,35.11307344632768,14.986270022883298,3903.6951382632296,2019
+1998,59,"(55,60]",College,602.794,29.56890395480226,20.386078595317727,3653.1122629070233,2019
+1998,59,"(55,60]",College,557.2106666666666,40.65724293785311,13.705077531164484,3984.6400123174476,2019
+1998,59,"(55,60]",College,559.034,31.416960451977403,17.79401927995278,3643.965477271766,2019
+1998,52,"(50,55]",HS,435999.11333333334,609.8586440677966,714.9183135704875,36.8681670933861,2019
+1998,52,"(50,55]",HS,141745.56866666666,3363.462824858757,42.142748722849056,38.00380767650884,2019
+1998,52,"(50,55]",HS,832253.2066666667,1546.8232881355934,538.0402616447496,40.88852409263954,2019
+1998,52,"(50,55]",HS,307696.6166666667,733.6784293785311,419.38893709510296,38.26294605589551,2019
+1998,52,"(50,55]",HS,93452.215,1759.3497853107344,53.11747315983249,41.73463310184387,2019
+1998,70,"(65,70]",HS,628.6853333333333,31.416960451977403,20.01101711587645,7321.656577789337,2019
+1998,70,"(65,70]",HS,688.673,31.416960451977403,21.92042101121385,7051.872889222471,2019
+1998,70,"(65,70]",HS,623.033,31.416960451977403,19.831103678929765,6582.580442708019,2019
+1998,70,"(65,70]",HS,666.793,31.416960451977403,21.223981900452486,7199.891391642387,2019
+1998,70,"(65,70]",HS,654.0296666666667,31.416960451977403,20.817725752508363,6565.173887354326,2019
+1998,50,"(45,50]",NoHS,14.769,36.96112994350283,0.39958193979933104,6930.484118347364,2019
+1998,50,"(45,50]",NoHS,14.586666666666666,36.96112994350283,0.39464882943143803,6904.837949484097,2019
+1998,50,"(45,50]",NoHS,14.769,36.96112994350283,0.39958193979933104,6919.710058323022,2019
+1998,50,"(45,50]",NoHS,14.586666666666666,36.96112994350283,0.39464882943143803,6900.759820166963,2019
+1998,50,"(45,50]",NoHS,14.769,36.96112994350283,0.39958193979933104,6931.155311275227,2019
+1998,57,"(55,60]",HS,147.17946666666668,83.16254237288136,1.769780750650316,11649.295381239861,2019
+1998,57,"(55,60]",HS,147.01536666666667,83.16254237288136,1.7678075065031584,11756.014274263725,2019
+1998,57,"(55,60]",HS,147.01536666666667,83.16254237288136,1.7678075065031584,12195.435823167034,2019
+1998,57,"(55,60]",HS,147.01536666666667,83.16254237288136,1.7678075065031584,11376.762780272207,2019
+1998,57,"(55,60]",HS,147.01536666666667,83.16254237288136,1.7678075065031584,12122.260145402386,2019
+1998,67,"(65,70]",College,2727.889,332.65016949152545,8.200473801560758,3367.3833616380807,2019
+1998,67,"(65,70]",College,2740.4700000000003,332.65016949152545,8.238294314381271,3623.8764854168826,2019
+1998,67,"(65,70]",College,2739.9230000000002,332.65016949152545,8.23664994425864,3484.9668742741787,2019
+1998,67,"(65,70]",College,2737.5526666666665,332.65016949152545,8.229524340393905,4087.8618361036074,2019
+1998,67,"(65,70]",College,2735.547,332.65016949152545,8.223494983277591,3268.9642418434514,2019
+1998,39,"(35,40]",College,2632.8933333333334,1166.1236497175141,2.25781659944135,140.24161964874554,2019
+1998,39,"(35,40]",College,2472.8046666666664,1288.0953785310733,1.9197372398669885,139.96378608334717,2019
+1998,39,"(35,40]",College,2510.5476666666664,1267.766757062147,1.9802914476827516,129.8102957833956,2019
+1998,39,"(35,40]",College,2429.774,1147.6430847457627,2.117186111515034,144.16946884275183,2019
+1998,39,"(35,40]",College,2798.9990000000003,1718.6925423728815,1.628562951774733,138.42869705470315,2019
+1998,55,"(50,55]",College,165.9415666666667,423.20493785310737,0.39210687736413957,6754.436420996586,2019
+1998,55,"(50,55]",College,201.77006666666668,421.3568813559322,0.4788578888693305,6729.275634464584,2019
+1998,55,"(50,55]",College,169.15063333333333,260.5759661016949,0.6491413458573495,7130.469895280015,2019
+1998,55,"(50,55]",College,165.86863333333332,258.72790960451977,0.6410929288103201,6602.488707492312,2019
+1998,55,"(50,55]",College,174.2195,203.28621468926553,0.85701581027668,6980.240195741516,2019
+1998,38,"(35,40]",NoHS,2.0968333333333335,22.176677966101696,0.09455128205128206,5941.042635775108,2019
+1998,38,"(35,40]",NoHS,2.0968333333333335,22.176677966101696,0.09455128205128206,5934.003477906091,2019
+1998,38,"(35,40]",NoHS,2.0786,22.176677966101696,0.09372909698996654,5928.169923312742,2019
+1998,38,"(35,40]",NoHS,2.0968333333333335,22.176677966101696,0.09455128205128206,5937.716614307545,2019
+1998,38,"(35,40]",NoHS,2.0786,22.176677966101696,0.09372909698996654,5939.910353725418,2019
+1998,70,"(65,70]",HS,3884.9763333333335,33.265016949152546,116.78864734299516,3367.3833616380807,2019
+1998,70,"(65,70]",HS,3884.9763333333335,33.265016949152546,116.78864734299516,3623.8764854168826,2019
+1998,70,"(65,70]",HS,3886.799666666667,33.265016949152546,116.84345968041619,3484.9668742741787,2019
+1998,70,"(65,70]",HS,3884.9763333333335,33.265016949152546,116.78864734299516,4087.8618361036074,2019
+1998,70,"(65,70]",HS,3886.799666666667,33.265016949152546,116.84345968041619,3268.9642418434514,2019
+1998,72,"(70,75]",NoHS,5.506466666666666,11.088338983050848,0.4965997770345596,5208.787587727517,2019
+1998,72,"(70,75]",NoHS,5.506466666666666,11.088338983050848,0.4965997770345596,5268.798959938971,2019
+1998,72,"(70,75]",NoHS,5.506466666666666,11.088338983050848,0.4965997770345596,5274.62666897451,2019
+1998,72,"(70,75]",NoHS,5.506466666666666,11.088338983050848,0.4965997770345596,5244.970118905415,2019
+1998,72,"(70,75]",NoHS,5.506466666666666,11.088338983050848,0.4965997770345596,5275.31765744226,2019
+1998,30,"(25,30]",HS,195.9354,131.21201129943503,1.493273352489519,9993.992444132447,2019
+1998,30,"(25,30]",HS,174.42006666666668,131.21201129943503,1.3292995430778654,10053.938557210815,2019
+1998,30,"(25,30]",HS,196.82883333333334,131.21201129943503,1.5000824344057657,10147.135688530627,2019
+1998,30,"(25,30]",HS,217.83363333333332,131.21201129943503,1.6601653398652785,10098.745394296562,2019
+1998,30,"(25,30]",HS,181.7134,131.21201129943503,1.3848838852513072,10111.003324182915,2019
+1998,38,"(35,40]",College,148.14583333333334,129.36395480225988,1.1451863354037268,6277.977656363151,2019
+1998,38,"(35,40]",College,157.26250000000002,129.36395480225988,1.2156593406593408,6404.524626299983,2019
+1998,38,"(35,40]",College,166.37916666666666,129.36395480225988,1.2861323459149545,6664.274376415686,2019
+1998,38,"(35,40]",College,146.3225,129.36395480225988,1.131091734352604,6333.420382022387,2019
+1998,38,"(35,40]",College,144.49916666666667,129.36395480225988,1.1169971333014812,6595.429030305869,2019
+1998,25,"(20,25]",College,38.7276,94.25088135593221,0.4108990753492032,6515.301147682527,2019
+1998,25,"(20,25]",College,38.58173333333333,105.33922033898305,0.3662618083670715,6535.375793556958,2019
+1998,25,"(20,25]",College,36.940733333333334,105.33922033898305,0.35068356510004106,6577.899990627318,2019
+1998,25,"(20,25]",College,36.557833333333335,105.33922033898305,0.3470486416710673,6508.762387672381,2019
+1998,25,"(20,25]",College,37.83416666666667,105.33922033898305,0.3591650531009799,6606.6484094237485,2019
+1998,39,"(35,40]",NoHS,45.583333333333336,12.19717288135593,3.7372048241613465,6829.155768819401,2019
+1998,39,"(35,40]",NoHS,45.583333333333336,12.19717288135593,3.7372048241613465,6864.421472118045,2019
+1998,39,"(35,40]",NoHS,45.583333333333336,12.19717288135593,3.7372048241613465,6821.519534971859,2019
+1998,39,"(35,40]",NoHS,45.583333333333336,12.19717288135593,3.7372048241613465,6852.789984965787,2019
+1998,39,"(35,40]",NoHS,45.583333333333336,12.19717288135593,3.7372048241613465,6835.031451928438,2019
+1998,59,"(55,60]",College,10598.672,412.11659887005646,25.717653763666636,1197.6906315602296,2019
+1998,59,"(55,60]",College,9506.677666666666,412.11659887005646,23.067931970544567,1306.3807982223543,2019
+1998,59,"(55,60]",College,10308.944333333335,412.11659887005646,25.014630232313998,1198.3904779040076,2019
+1998,59,"(55,60]",College,10691.844333333334,412.11659887005646,25.943736220885768,1535.325572731734,2019
+1998,59,"(55,60]",College,9780.177666666666,412.11659887005646,23.73157910523869,1199.747103503297,2019
+1998,56,"(55,60]",HS,14.130833333333333,94.25088135593221,0.14992786412223752,12068.00145580763,2019
+1998,56,"(55,60]",HS,14.149066666666668,94.25088135593221,0.15012131943078236,12059.330827184736,2019
+1998,56,"(55,60]",HS,14.130833333333333,94.25088135593221,0.14992786412223752,12426.932383064957,2019
+1998,56,"(55,60]",HS,14.130833333333333,94.25088135593221,0.14992786412223752,11989.27370264312,2019
+1998,56,"(55,60]",HS,14.149066666666668,94.25088135593221,0.15012131943078236,12388.636104298714,2019
+1998,34,"(30,35]",HS,-40.71503333333333,103.49116384180793,-0.39341555183946475,5184.787183450672,2019
+1998,34,"(30,35]",HS,-9.72019,101.64310734463277,-0.09563058680449986,5167.109982852331,2019
+1998,34,"(30,35]",HS,-155.58503333333334,103.49116384180793,-1.5033653846153843,5169.693070710121,2019
+1998,34,"(30,35]",HS,-9.738423333333333,103.49116384180793,-0.0940990802675585,5206.47605002861,2019
+1998,34,"(30,35]",HS,-13.365033333333333,103.49116384180793,-0.12914178213091254,5166.424580429387,2019
+1998,40,"(35,40]",College,3440.63,646.8197740112995,5.31930243669374,308.5503594698028,2019
+1998,40,"(35,40]",College,3726.8933333333334,646.8197740112995,5.7618729096989965,307.6470502155673,2019
+1998,40,"(35,40]",College,3798.0033333333336,646.8197740112995,5.871810797897754,289.8003182178426,2019
+1998,40,"(35,40]",College,4410.643333333333,648.6678305084746,6.7995407293066155,324.22818180642776,2019
+1998,40,"(35,40]",College,979.13,646.8197740112995,1.5137601528905875,208.25207412867627,2019
+1998,39,"(35,40]",HS,445.0392,558.1130621468926,0.7973997209240515,294.63934821768623,2019
+1998,39,"(35,40]",HS,471.31161,558.1130621468926,0.8444733548915813,284.6726528520817,2019
+1998,39,"(35,40]",HS,874.4706666666666,559.9611186440679,1.5616631897303437,576.4111149301759,2019
+1998,39,"(35,40]",HS,372.1605666666667,469.4063502824859,0.7928324072367208,291.6986867839103,2019
+1998,39,"(35,40]",HS,529.2407333333333,558.1130621468926,0.9482679572083546,293.3066281134939,2019
+1998,87,"(85,90]",HS,140.39666666666665,12.381978531073447,11.338790994858481,4831.081699420055,2019
+1998,87,"(85,90]",HS,143.60573333333335,29.56890395480226,4.856647157190636,5000.24558085483,2019
+1998,87,"(85,90]",HS,126.9587,46.201412429378536,2.747939799331103,4755.65408616369,2019
+1998,87,"(85,90]",HS,50.324,13.675618079096047,3.679833679833679,2413.859553196932,2019
+1998,87,"(85,90]",HS,144.97323333333335,9.79469943502825,14.801192654761154,4869.898762091872,2019
+1998,61,"(60,65]",HS,373.4186666666667,129.36395480225988,2.8865742952699476,8851.371863124845,2019
+1998,61,"(60,65]",HS,408.062,129.36395480225988,3.1543717152412807,8769.048987779586,2019
+1998,61,"(60,65]",HS,393.293,129.36395480225988,3.040205446727186,9232.783626807399,2019
+1998,61,"(60,65]",HS,371.5953333333333,129.36395480225988,2.8724796942188244,8668.721750832228,2019
+1998,61,"(60,65]",HS,371.413,129.36395480225988,2.8710702341137124,9136.607811526128,2019
+1998,44,"(40,45]",NoHS,45.583333333333336,48.04946892655367,0.9486750707486494,5626.572898718334,2019
+1998,44,"(40,45]",NoHS,43.76,66.53003389830509,0.6577480490523968,5632.409713949563,2019
+1998,44,"(40,45]",NoHS,58.346666666666664,24.024734463276836,2.4286081811165423,5645.852077224235,2019
+1998,44,"(40,45]",NoHS,40.11333333333334,20.328621468926556,1.9732441471571907,5653.827396651081,2019
+1998,44,"(40,45]",NoHS,45.583333333333336,42.50529943502825,1.0724152973680385,5627.044444657633,2019
+1998,18,"(15,20]",HS,2.9173333333333336,0.18480564971751412,15.785953177257527,12.931731252056267,2019
+1998,18,"(15,20]",HS,2.9173333333333336,0.18480564971751412,15.785953177257527,13.926081693861757,2019
+1998,18,"(15,20]",HS,2.9173333333333336,0.18480564971751412,15.785953177257527,12.058815368128142,2019
+1998,18,"(15,20]",HS,2.9173333333333336,0.18480564971751412,15.785953177257527,11.402174558212634,2019
+1998,18,"(15,20]",HS,2.9173333333333336,0.18480564971751412,15.785953177257527,12.292519321401429,2019
+1998,47,"(45,50]",HS,470.05533333333335,147.84451977401133,3.1793896321070227,1497.599902251994,2019
+1998,47,"(45,50]",HS,471.9516,147.84451977401133,3.1922157190635443,1378.900170610585,2019
+1998,47,"(45,50]",HS,546.6170999999999,147.84451977401133,3.6972428929765875,1384.623909862161,2019
+1998,47,"(45,50]",HS,653.7926333333334,147.84451977401133,4.422163461538461,1543.514285181437,2019
+1998,47,"(45,50]",HS,647.0645333333333,147.84451977401133,4.376655518394648,1561.1023557300591,2019
+1998,29,"(25,30]",NoHS,1.641,18.480564971751416,0.08879598662207357,5565.177551485425,2019
+1998,29,"(25,30]",NoHS,1.641,18.480564971751416,0.08879598662207357,5565.5098630380035,2019
+1998,29,"(25,30]",NoHS,1.641,20.328621468926556,0.08072362420188506,5570.112306819508,2019
+1998,29,"(25,30]",NoHS,1.8233333333333333,18.480564971751416,0.09866220735785951,5558.661890915644,2019
+1998,29,"(25,30]",NoHS,1.8233333333333333,20.328621468926556,0.08969291577987229,5612.808844909194,2019
+1998,33,"(30,35]",College,611.2725,173.71731073446327,3.5187771294385546,6945.636652589671,2019
+1998,33,"(30,35]",College,610.9807666666667,103.49116384180793,5.903699832775919,6648.211564668942,2019
+1998,33,"(30,35]",College,611.4548333333333,170.021197740113,3.596344699723717,6200.011473531665,2019
+1998,33,"(30,35]",College,611.3636666666666,101.64310734463277,6.014806932198236,6784.078918324363,2019
+1998,33,"(30,35]",College,610.9078333333334,194.04593220338984,3.1482640547857943,6187.362936599234,2019
+1998,51,"(50,55]",College,2448.0073333333335,184.80564971751414,13.24638795986622,784.5008464418868,2019
+1998,51,"(50,55]",College,2674.83,184.80564971751414,14.473745819397992,831.912116874101,2019
+1998,51,"(50,55]",College,2217.1733333333336,184.80564971751414,11.99732441471572,791.9704264021841,2019
+1998,51,"(50,55]",College,2543.55,184.80564971751414,13.763377926421404,821.5685691918064,2019
+1998,51,"(50,55]",College,2191.6466666666665,184.80564971751414,11.859197324414714,783.0520461896592,2019
+1998,64,"(60,65]",College,3431.6956666666665,462.0141242937853,7.427685618729097,1130.0402261877111,2019
+1998,64,"(60,65]",College,3433.5190000000002,462.0141242937853,7.431632107023412,1232.89559252973,2019
+1998,64,"(60,65]",College,3433.5190000000002,462.0141242937853,7.431632107023412,1130.659298786069,2019
+1998,64,"(60,65]",College,3433.5190000000002,462.0141242937853,7.431632107023412,1449.0066160554954,2019
+1998,64,"(60,65]",College,3433.5190000000002,462.0141242937853,7.431632107023412,1132.0435640018054,2019
+1998,50,"(45,50]",HS,141.21716666666666,42.50529943502825,3.3223425912461826,6453.2310558992,2019
+1998,50,"(45,50]",HS,141.21716666666666,42.50529943502825,3.3223425912461826,6579.272738295202,2019
+1998,50,"(45,50]",HS,141.21716666666666,42.50529943502825,3.3223425912461826,6815.951047441468,2019
+1998,50,"(45,50]",HS,141.21716666666666,42.50529943502825,3.3223425912461826,6472.170925614333,2019
+1998,50,"(45,50]",HS,141.03483333333335,42.50529943502825,3.3180529300567114,6796.640641081637,2019
+1998,71,"(70,75]",College,20204.356666666667,846.4098757062147,23.87065326926728,14.635923813578808,2019
+1998,71,"(70,75]",College,22173.556666666667,846.4098757062147,26.197185669845627,15.731066752257544,2019
+1998,71,"(70,75]",College,19080.81866666667,848.2579322033899,22.494123476220665,16.275653375010755,2019
+1998,71,"(70,75]",College,21732.67466666667,848.2579322033899,25.620361262304996,14.828356112193319,2019
+1998,71,"(70,75]",College,19843.33666666667,844.5618192090395,23.495422378021566,15.680390977537717,2019
+1998,77,"(75,80]",HS,128486.10633333333,417.6607683615819,307.6326915677627,350.74565291931157,2019
+1998,77,"(75,80]",HS,124320.33666666667,500.82331073446335,248.2319293092596,332.63937689667944,2019
+1998,77,"(75,80]",HS,124296.63333333333,517.4558192090395,240.20723841376017,349.70181964412177,2019
+1998,77,"(75,80]",HS,126530.946,506.36748022598874,249.87968410516805,342.7358547122605,2019
+1998,77,"(75,80]",HS,128455.292,519.3038757062147,247.36054939954056,369.4534653776576,2019
+1998,75,"(70,75]",College,1899.184,290.14487005649715,6.5456404575762095,766.8537169070426,2019
+1998,75,"(70,75]",College,1901.1896666666669,290.14487005649715,6.55255309630829,811.3409816088872,2019
+1998,75,"(70,75]",College,1901.1896666666669,290.14487005649715,6.55255309630829,788.2737522632406,2019
+1998,75,"(70,75]",College,1901.0073333333332,290.14487005649715,6.551924674605373,811.8876470939999,2019
+1998,75,"(70,75]",College,1901.0073333333332,290.14487005649715,6.551924674605373,753.0467236150232,2019
+1998,63,"(60,65]",College,104908.4736,3936.360338983051,26.651135710584576,17.946207271687662,2019
+1998,63,"(60,65]",College,108897.78106666666,3936.360338983051,27.664586493318886,18.83866816423636,2019
+1998,63,"(60,65]",College,106766.6326,3936.360338983051,27.123185736492534,16.444942368718884,2019
+1998,63,"(60,65]",College,106671.03523333334,3825.4769491525426,27.884375373628682,15.79138562042399,2019
+1998,63,"(60,65]",College,102741.18666666668,3548.2684745762717,28.955302396878484,16.010495326213785,2019
+1998,52,"(50,55]",NoHS,0.40113333333333334,6.653003389830508,0.060293571163136384,5207.630783621623,2019
+1998,52,"(50,55]",NoHS,0.38289999999999996,6.653003389830508,0.05755295429208472,5188.870596722045,2019
+1998,52,"(50,55]",NoHS,0.34643333333333337,6.653003389830508,0.05207172054998142,5199.826378230131,2019
+1998,52,"(50,55]",NoHS,0.34643333333333337,6.653003389830508,0.05207172054998142,5186.720587653692,2019
+1998,52,"(50,55]",NoHS,0.34643333333333337,6.653003389830508,0.05207172054998142,5209.115888658897,2019
+1998,44,"(40,45]",College,7898.534133333334,462.0141242937853,17.095871571906354,401.16566193425894,2019
+1998,44,"(40,45]",College,8397.726333333334,462.0141242937853,18.176341137123746,397.8124158847421,2019
+1998,44,"(40,45]",College,9402.237133333332,462.0141242937853,20.350540468227422,378.99457557511573,2019
+1998,44,"(40,45]",College,7836.5955,462.0141242937853,16.961809364548497,416.8849863685161,2019
+1998,44,"(40,45]",College,8029.321833333333,462.0141242937853,17.378953177257525,396.4605293820811,2019
+1998,25,"(20,25]",HS,39.14696666666667,64.68197740112994,0.6052221691352127,7490.098648216886,2019
+1998,25,"(20,25]",HS,39.14696666666667,64.68197740112994,0.6052221691352127,7540.1046853760445,2019
+1998,25,"(20,25]",HS,39.14696666666667,64.68197740112994,0.6052221691352127,7666.638091953491,2019
+1998,25,"(20,25]",HS,39.14696666666667,64.68197740112994,0.6052221691352127,7554.55428232359,2019
+1998,25,"(20,25]",HS,39.14696666666667,64.68197740112994,0.6052221691352127,7633.146145504992,2019
+1998,48,"(45,50]",HS,226.31213333333335,53.593638418079095,4.222742474916388,6450.2057220479855,2019
+1998,48,"(45,50]",HS,226.60386666666668,46.201412429378536,4.9046956521739125,6558.706082775769,2019
+1998,48,"(45,50]",HS,225.63750000000002,73.92225988700567,3.052362040133779,6848.492820253698,2019
+1998,48,"(45,50]",HS,227.552,33.265016949152546,6.840579710144927,6443.152496329136,2019
+1998,48,"(45,50]",HS,225.72866666666667,46.201412429378536,4.885752508361204,6787.744833212828,2019
+1998,66,"(65,70]",College,2086.8414666666667,201.4381581920904,10.359712804148383,1089.5949428983345,2019
+1998,66,"(65,70]",College,2087.0238,201.4381581920904,10.360617962014052,1166.6410808840005,2019
+1998,66,"(65,70]",College,2085.2004666666667,201.4381581920904,10.351566383357367,1125.0936296366303,2019
+1998,66,"(65,70]",College,2087.206133333333,199.59010169491523,10.457463148767497,1139.6422664715235,2019
+1998,66,"(65,70]",College,2085.0181333333335,201.4381581920904,10.3506612254917,1069.693456419704,2019
+1998,60,"(55,60]",College,2919.886,646.8197740112995,4.514218824653606,989.8571907928463,2019
+1998,60,"(55,60]",College,2918.0626666666667,646.8197740112995,4.511399904443382,1014.2679772209816,2019
+1998,60,"(55,60]",College,2921.8005000000003,646.8197740112995,4.517178690874343,933.1290263371411,2019
+1998,60,"(55,60]",College,2921.6181666666666,646.8197740112995,4.51689679885332,1018.6794278261202,2019
+1998,60,"(55,60]",College,2921.2717333333335,646.8197740112995,4.516361204013378,979.7517024446639,2019
+1998,61,"(60,65]",College,57783.25666666667,918.4840790960453,62.91154956494821,256.5424312737601,2019
+1998,61,"(60,65]",College,48511.60666666667,870.4346101694916,55.73262609263716,243.26563600917376,2019
+1998,61,"(60,65]",College,60592.284,872.2826666666666,69.46404682274247,254.51962476666486,2019
+1998,61,"(60,65]",College,48232.08966666667,872.2826666666666,55.29410535117057,253.59817743419003,2019
+1998,61,"(60,65]",College,52521.846,872.2826666666666,60.21195652173913,244.72229009661538,2019
+1998,28,"(25,30]",NoHS,2.188,14.969257627118646,0.14616623312275487,6089.358025114347,2019
+1998,28,"(25,30]",NoHS,2.188,20.328621468926556,0.10763149893584675,6089.721636877095,2019
+1998,28,"(25,30]",NoHS,2.188,14.230035028248587,0.15375928419406681,6094.7575818611995,2019
+1998,28,"(25,30]",NoHS,2.188,22.176677966101696,0.09866220735785954,6082.228658690276,2019
+1998,28,"(25,30]",NoHS,2.188,12.19717288135593,0.17938583155974464,6263.72928192084,2019
+1998,33,"(30,35]",HS,29.866200000000003,0.05544169491525423,538.6956521739131,8214.82460596844,2019
+1998,33,"(30,35]",HS,44.43463333333333,0.05544169491525423,801.4659977703456,8327.647811461286,2019
+1998,33,"(30,35]",HS,36.61253333333333,0.05544169491525423,660.3790412486064,8388.265522312107,2019
+1998,33,"(30,35]",HS,54.8641,0.05544169491525423,989.5819397993312,8365.116601932834,2019
+1998,33,"(30,35]",HS,51.928533333333334,0.05544169491525423,936.6332218506133,8419.074002347705,2019
+1998,61,"(60,65]",College,23875.82066666667,900.0035141242939,26.528586046575512,365.1824479784416,2019
+1998,61,"(60,65]",College,20490.43766666667,476.79857627118633,42.975039537476356,364.4769994435077,2019
+1998,61,"(60,65]",College,19888.373,672.6925649717514,29.565323054871552,358.9191760089904,2019
+1998,61,"(60,65]",College,20126.682666666668,665.3003389830509,30.252025269416574,351.1647201849988,2019
+1998,61,"(60,65]",College,19658.99766666667,628.3392090395481,31.287236867991343,335.70849920465423,2019
+1998,26,"(25,30]",HS,-11.906366666666667,29.56890395480226,-0.4026651337792642,4022.4132242936553,2019
+1998,26,"(25,30]",HS,-11.724033333333333,29.56890395480226,-0.396498745819398,4034.3224337782244,2019
+1998,26,"(25,30]",HS,-11.888133333333334,29.56890395480226,-0.4020484949832776,4034.523437621798,2019
+1998,26,"(25,30]",HS,-10.083033333333333,29.56890395480226,-0.341001254180602,4054.605414465882,2019
+1998,26,"(25,30]",HS,-11.888133333333334,29.56890395480226,-0.4020484949832776,4039.217306416124,2019
+1998,53,"(50,55]",College,10420.897,336.3462824858757,30.982643610570037,3367.3833616380807,2019
+1998,53,"(50,55]",College,10465.860400000001,498.975254237288,20.97470828688221,3623.8764854168826,2019
+1998,53,"(50,55]",College,9703.378866666668,502.67136723163844,19.30362359826874,3484.9668742741787,2019
+1998,53,"(50,55]",College,9312.5656,365.915186440678,25.45006587615283,4087.8618361036074,2019
+1998,53,"(50,55]",College,11184.818966666668,260.5759661016949,42.923448136815395,3268.9642418434514,2019
+1998,34,"(30,35]",HS,27.6235,60.98586440677967,0.4529492246883551,7568.279128355423,2019
+1998,34,"(30,35]",HS,27.6235,60.98586440677967,0.4529492246883551,7591.598161495529,2019
+1998,34,"(30,35]",HS,27.6235,60.98586440677967,0.4529492246883551,7640.994956185849,2019
+1998,34,"(30,35]",HS,27.6235,60.98586440677967,0.4529492246883551,7560.683599033228,2019
+1998,34,"(30,35]",HS,27.6235,60.98586440677967,0.4529492246883551,7674.389584157516,2019
+1998,43,"(40,45]",HS,166.7620666666667,36.96112994350283,4.511822742474917,7226.212487117262,2019
+1998,43,"(40,45]",HS,166.78029999999998,36.96112994350283,4.512316053511705,7325.051989926241,2019
+1998,43,"(40,45]",HS,166.78029999999998,36.96112994350283,4.512316053511705,7625.566222822289,2019
+1998,43,"(40,45]",HS,166.7620666666667,36.96112994350283,4.511822742474917,7262.402341802515,2019
+1998,43,"(40,45]",HS,166.7620666666667,36.96112994350283,4.511822742474917,7533.254472000101,2019
+1998,22,"(20,25]",HS,3.9566333333333334,14.78445197740113,0.267621237458194,1616.8379801442488,2019
+1998,22,"(20,25]",HS,3.9566333333333334,14.78445197740113,0.267621237458194,1616.2582350679804,2019
+1998,22,"(20,25]",HS,3.9566333333333334,14.78445197740113,0.267621237458194,1620.1434404087138,2019
+1998,22,"(20,25]",HS,3.9566333333333334,14.78445197740113,0.267621237458194,1614.9932170737052,2019
+1998,22,"(20,25]",HS,3.9566333333333334,14.78445197740113,0.267621237458194,1619.4757405175803,2019
+1998,42,"(40,45]",College,320.77903333333336,147.84451977401133,2.169705267558528,6913.24921187953,2019
+1998,42,"(40,45]",College,320.23203333333333,147.84451977401133,2.1660054347826083,7052.601530104939,2019
+1998,42,"(40,45]",College,318.22636666666665,147.84451977401133,2.1524393812709026,7338.635481413007,2019
+1998,42,"(40,45]",College,320.2138,147.84451977401133,2.165882107023411,6974.302213410953,2019
+1998,42,"(40,45]",College,318.22636666666665,147.84451977401133,2.1524393812709026,7262.8236418705565,2019
+1998,43,"(40,45]",HS,112.3538,110.88338983050849,1.0132608695652172,5744.047545054896,2019
+1998,43,"(40,45]",HS,112.5179,110.88338983050849,1.014740802675585,5855.382893258746,2019
+1998,43,"(40,45]",HS,110.69456666666667,110.88338983050849,0.9982971014492753,6134.601500930469,2019
+1998,43,"(40,45]",HS,112.49966666666667,110.88338983050849,1.014576365663322,5761.846393550943,2019
+1998,43,"(40,45]",HS,112.3538,110.88338983050849,1.0132608695652172,5995.104931673532,2019
+1998,47,"(45,50]",HS,158.083,110.88338983050849,1.42566889632107,6094.301105593029,2019
+1998,47,"(45,50]",HS,158.26533333333336,110.88338983050849,1.4273132664437012,6173.869313259387,2019
+1998,47,"(45,50]",HS,158.26533333333336,110.88338983050849,1.4273132664437012,6398.842505040659,2019
+1998,47,"(45,50]",HS,158.26533333333336,110.88338983050849,1.4273132664437012,6089.024182181591,2019
+1998,47,"(45,50]",HS,158.26533333333336,110.88338983050849,1.4273132664437012,6369.26949763999,2019
+1998,60,"(55,60]",College,6401.723333333333,720.7420338983052,8.88212846239602,1336.0518693715908,2019
+1998,60,"(55,60]",College,6401.723333333333,720.7420338983052,8.88212846239602,1373.6411494366278,2019
+1998,60,"(55,60]",College,6401.723333333333,720.7420338983052,8.88212846239602,1509.6740211365836,2019
+1998,60,"(55,60]",College,6401.723333333333,720.7420338983052,8.88212846239602,1594.694995657589,2019
+1998,60,"(55,60]",College,6401.723333333333,720.7420338983052,8.88212846239602,1299.6337999441757,2019
+1998,46,"(45,50]",HS,11786.573666666667,369.6112994350283,31.889105351170567,405.76690584934414,2019
+1998,46,"(45,50]",HS,11029.890333333335,369.6112994350283,29.841864548494982,407.81940455420676,2019
+1998,46,"(45,50]",HS,11257.807,369.6112994350283,30.458503344481603,384.76622144527676,2019
+1998,46,"(45,50]",HS,11080.943666666666,369.6112994350283,29.979991638795983,424.5622576405229,2019
+1998,46,"(45,50]",HS,10987.953666666666,369.6112994350283,29.72840301003344,399.1770449101626,2019
+1998,55,"(50,55]",HS,559.2163333333334,75.77031638418079,7.380414389428177,9381.680238900622,2019
+1998,55,"(50,55]",HS,559.2163333333334,75.77031638418079,7.380414389428177,8944.944004056855,2019
+1998,55,"(50,55]",HS,559.2163333333334,75.77031638418079,7.380414389428177,8373.441644639526,2019
+1998,55,"(50,55]",HS,559.2163333333334,75.77031638418079,7.380414389428177,9161.53355156403,2019
+1998,55,"(50,55]",HS,559.2163333333334,75.77031638418079,7.380414389428177,8351.776573881161,2019
+1998,35,"(30,35]",HS,250.89066666666668,88.70671186440678,2.8283166109253064,5372.582240015384,2019
+1998,35,"(30,35]",HS,250.70833333333334,88.70671186440678,2.826261148272018,5480.878898656923,2019
+1998,35,"(30,35]",HS,250.89066666666668,88.70671186440678,2.8283166109253064,5703.168140624138,2019
+1998,35,"(30,35]",HS,252.53166666666667,88.70671186440678,2.846815774804905,5420.029144021634,2019
+1998,35,"(30,35]",HS,250.89066666666668,88.70671186440678,2.8283166109253064,5644.251511087805,2019
+1998,42,"(40,45]",HS,225.54633333333334,44.35335593220339,5.085214604236343,7314.565092663487,2019
+1998,42,"(40,45]",HS,225.54633333333334,44.35335593220339,5.085214604236343,7024.119631092404,2019
+1998,42,"(40,45]",HS,225.364,44.35335593220339,5.0811036789297654,6608.030326397607,2019
+1998,42,"(40,45]",HS,225.364,44.35335593220339,5.0811036789297654,7142.037490896774,2019
+1998,42,"(40,45]",HS,225.18166666666667,44.35335593220339,5.0769927536231885,6559.659836067144,2019
+1998,24,"(20,25]",NoHS,0,46.201412429378536,0,6300.929045238667,2019
+1998,24,"(20,25]",NoHS,0,46.201412429378536,0,6313.185568125587,2019
+1998,24,"(20,25]",NoHS,0,46.201412429378536,0,6287.420559445289,2019
+1998,24,"(20,25]",NoHS,0,46.201412429378536,0,6291.865413774986,2019
+1998,24,"(20,25]",NoHS,0,46.201412429378536,0,6272.7421230675955,2019
+1998,21,"(20,25]",HS,-21.734133333333336,4.06572429378531,-5.345697780480391,6227.708563497776,2019
+1998,21,"(20,25]",HS,-20.585433333333334,4.06572429378531,-5.063165095773792,6238.794171696658,2019
+1998,21,"(20,25]",HS,-22.609333333333332,4.06572429378531,-5.560960778352083,6291.7448757273105,2019
+1998,21,"(20,25]",HS,-22.390533333333334,4.2505299435028245,-5.267703940671805,6242.064611283255,2019
+1998,21,"(20,25]",HS,-21.333000000000002,4.2505299435028245,-5.01890359168242,6170.225123975876,2019
+1998,76,"(75,80]",College,39912.76666666666,476.79857627118633,83.7099115916103,12.827327900564516,2019
+1998,76,"(75,80]",College,32914.81333333333,327.106,100.62430323299888,13.939333164601404,2019
+1998,76,"(75,80]",College,34876.173,314.16960451977405,111.0106531575841,13.902246643795191,2019
+1998,76,"(75,80]",College,32551.423,439.8374463276836,74.0078482898176,12.711287252851669,2019
+1998,76,"(75,80]",College,24629.222,245.7915141242938,100.20371162018759,13.739997953806727,2019
+1998,66,"(65,70]",NoHS,137.36993333333334,35.11307344632768,3.9122161591269147,7818.618386727969,2019
+1998,66,"(65,70]",NoHS,137.58873333333335,31.416960451977403,4.379441274837695,8145.767815414913,2019
+1998,66,"(65,70]",NoHS,133.90560000000002,53.593638418079095,2.4985353477107606,8343.757673077924,2019
+1998,66,"(65,70]",NoHS,133.55916666666667,75.77031638418079,1.76268455828371,7825.265711313477,2019
+1998,66,"(65,70]",NoHS,137.89870000000002,66.53003389830509,2.072728539576366,8166.450843232444,2019
+1998,53,"(50,55]",College,43624.79983333334,6671.48395480226,6.5389949415873785,20.795659224605267,2019
+1998,53,"(50,55]",College,35053.21866666667,7059.575819209041,4.965343466003606,22.619970068465086,2019
+1998,53,"(50,55]",College,44852.541333333334,6468.197740112994,6.934318203535595,27.033696461809864,2019
+1998,53,"(50,55]",College,49677.263666666666,6394.275480225989,7.769021497477139,24.73838124127179,2019
+1998,53,"(50,55]",College,63487.281500000005,6653.003389830509,9.54264980490524,26.89246887516341,2019
+1998,82,"(80,85]",HS,460.0817,12.19717288135593,37.720355731225304,5261.365007316046,2019
+1998,82,"(80,85]",HS,460.20933333333335,20.328621468926556,22.638491942839767,5072.247131240404,2019
+1998,82,"(80,85]",HS,459.89936666666665,14.230035028248587,32.31892021022456,4734.467207747617,2019
+1998,82,"(80,85]",HS,460.09993333333335,14.78445197740113,31.120526755852843,5137.426928693578,2019
+1998,82,"(80,85]",HS,459.89936666666665,16.44770282485876,27.961312990868436,4721.49229056608,2019
+1998,30,"(25,30]",HS,0.056523333333333335,22.176677966101696,0.002548773690078038,5342.314672874776,2019
+1998,30,"(25,30]",HS,0.056523333333333335,22.176677966101696,0.002548773690078038,5358.775166837647,2019
+1998,30,"(25,30]",HS,0.056523333333333335,22.176677966101696,0.002548773690078038,5393.643492462477,2019
+1998,30,"(25,30]",HS,0.056523333333333335,22.176677966101696,0.002548773690078038,5336.953122770979,2019
+1998,30,"(25,30]",HS,0.056523333333333335,22.176677966101696,0.002548773690078038,5417.2161710043965,2019
+1998,31,"(30,35]",College,148.237,86.85865536723163,1.7066462677008467,5752.5416344997775,2019
+1998,31,"(30,35]",College,289.12596666666667,86.85865536723163,3.3286949405820825,5736.353539559188,2019
+1998,31,"(30,35]",College,190.50186666666667,85.0105988700565,2.240919005380253,5787.411451125698,2019
+1998,31,"(30,35]",College,218.21653333333333,86.85865536723163,2.5123176545933252,5773.047025289836,2019
+1998,31,"(30,35]",College,171.2657,86.85865536723163,1.9717747100263292,5810.291160794258,2019
+1998,33,"(30,35]",HS,39.36394333333334,64.68197740112994,0.6085766841853799,7374.538792823811,2019
+1998,33,"(30,35]",HS,38.63461,64.68197740112994,0.5973010033444817,7404.037855238555,2019
+1998,33,"(30,35]",HS,38.06937666666666,64.68197740112994,0.5885623506927854,7587.950352400027,2019
+1998,33,"(30,35]",HS,36.97537666666666,64.68197740112994,0.571648829431438,7408.124188262649,2019
+1998,33,"(30,35]",HS,47.386610000000005,64.68197740112994,0.7326091734352604,7509.0630894089245,2019
+1998,58,"(55,60]",HS,4116.175,221.76677966101698,18.560827759197323,1158.9506650172775,2019
+1998,58,"(55,60]",HS,4037.954,221.76677966101698,18.208110367892974,1182.0502431528917,2019
+1998,58,"(55,60]",HS,3993.647,221.76677966101698,18.008319397993308,1129.4647059594447,2019
+1998,58,"(55,60]",HS,4083.902,221.76677966101698,18.415301003344478,1225.3082212874717,2019
+1998,58,"(55,60]",HS,4067.492,221.76677966101698,18.341304347826085,1140.682708587302,2019
+1998,53,"(50,55]",HS,85.69666666666667,101.64310734463277,0.8431134083307997,6399.0161651591325,2019
+1998,53,"(50,55]",HS,83.87333333333333,101.64310734463277,0.8251748251748252,6482.562783264771,2019
+1998,53,"(50,55]",HS,83.87333333333333,101.64310734463277,0.8251748251748252,6718.784634793342,2019
+1998,53,"(50,55]",HS,83.87333333333333,101.64310734463277,0.8251748251748252,6393.47539557341,2019
+1998,53,"(50,55]",HS,82.05,101.64310734463277,0.8072362420188507,6687.732977001843,2019
+1998,50,"(45,50]",College,683.2941666666667,168.17314124293785,4.063039803006358,5847.267296384851,2019
+1998,50,"(45,50]",College,657.4028333333334,168.17314124293785,3.909083391524864,6550.791038023041,2019
+1998,50,"(45,50]",College,679.6475,168.17314124293785,4.041355801389247,6786.444765740608,2019
+1998,50,"(45,50]",College,658.6791666666667,170.021197740113,3.8741002617420386,6444.152869554647,2019
+1998,50,"(45,50]",College,661.0495,168.17314124293785,3.930767393141975,6767.217954213816,2019
+1998,34,"(30,35]",HS,-32.63766666666667,77.61837288135592,-0.42048893135849663,8897.286983335787,2019
+1998,34,"(30,35]",HS,-32.63766666666667,77.61837288135592,-0.42048893135849663,8952.415246520342,2019
+1998,34,"(30,35]",HS,-32.63766666666667,77.61837288135592,-0.42048893135849663,9085.136837883032,2019
+1998,34,"(30,35]",HS,-32.82,77.61837288135592,-0.42283803153368377,8899.150138194844,2019
+1998,34,"(30,35]",HS,-32.63766666666667,77.61837288135592,-0.42048893135849663,9032.975638317817,2019
+1998,54,"(50,55]",HS,168985.07466666665,13694.098644067799,12.339992507639046,33.298020221494895,2019
+1998,54,"(50,55]",HS,166908.298,16059.610960451975,10.393047403889453,34.892343262385054,2019
+1998,54,"(50,55]",HS,177580.268,15375.830056497174,11.54931261255467,30.18795190638621,2019
+1998,54,"(50,55]",HS,169322.39133333333,13694.098644067799,12.364624772633924,29.311296248858962,2019
+1998,54,"(50,55]",HS,166147.968,16022.649830508477,10.369568689171516,29.895445829547914,2019
+1998,84,"(80,85]",HS,642.3603333333334,24.024734463276836,26.737458193979936,10553.334075500763,2019
+1998,84,"(80,85]",HS,642.178,24.024734463276836,26.729868793413942,10174.650373158365,2019
+1998,84,"(80,85]",HS,642.178,24.024734463276836,26.729868793413942,9881.289916979043,2019
+1998,84,"(80,85]",HS,642.3603333333334,24.024734463276836,26.737458193979936,10062.590158865458,2019
+1998,84,"(80,85]",HS,642.3603333333334,25.872790960451983,24.82763975155279,10318.796404198825,2019
+1998,41,"(40,45]",College,2043.045,604.3144745762711,3.3807646282716095,2553.883886854384,2019
+1998,41,"(40,45]",College,2314.7216666666664,715.1978644067797,3.2364773188837894,2784.965904367764,2019
+1998,41,"(40,45]",College,2586.3983333333335,700.4134124293786,3.6926739086312335,852.9934321054386,2019
+1998,41,"(40,45]",College,2145.1516666666666,914.7879661016949,2.344971453667106,2578.581938588389,2019
+1998,41,"(40,45]",College,2143.3283333333334,545.1766666666666,3.9314381270903014,2661.7306195775973,2019
+1998,58,"(55,60]",College,690.5875,203.28621468926553,3.3971191851626634,125.67189466409539,2019
+1998,58,"(55,60]",College,652.571,203.28621468926553,3.21010945576163,127.64627424132951,2019
+1998,58,"(55,60]",College,690.7515999999999,203.28621468926553,3.397926421404682,125.37208021120038,2019
+1998,58,"(55,60]",College,676.4566666666666,203.28621468926553,3.327607175433262,129.75412479080592,2019
+1998,58,"(55,60]",College,683.0024333333333,203.28621468926553,3.3598069321982367,122.35978533249525,2019
+1998,74,"(70,75]",HS,427.3893333333333,44.35335593220339,9.636008918617613,6207.808362675761,2019
+1998,74,"(70,75]",HS,425.2013333333333,44.35335593220339,9.586677814938684,6193.1065486639945,2019
+1998,74,"(70,75]",HS,425.019,44.35335593220339,9.582566889632107,6618.015178236479,2019
+1998,74,"(70,75]",HS,425.019,44.35335593220339,9.582566889632107,6384.678999935202,2019
+1998,74,"(70,75]",HS,425.2013333333333,44.35335593220339,9.586677814938684,6500.359751217724,2019
+1998,64,"(60,65]",College,6273.360666666667,744.766768361582,8.423255350755621,11.333225350380904,2019
+1998,64,"(60,65]",College,232087.54166666666,2032.8621468926553,114.16787017330495,15.874244413854168,2019
+1998,64,"(60,65]",College,9709.432333333334,1716.8444858757061,5.655394191618276,9.689090924677142,2019
+1998,64,"(60,65]",College,17827.076433333335,652.3639435028249,27.326888021450163,10.24960550108709,2019
+1998,64,"(60,65]",College,22764.31666666667,1097.745559322034,20.737334324290845,11.198182714031596,2019
+1998,71,"(70,75]",NoHS,36.649,9.79469943502825,3.7417176752697667,6878.272543266443,2019
+1998,71,"(70,75]",NoHS,36.649,9.609893785310735,3.8136737844095703,6959.6356255704595,2019
+1998,71,"(70,75]",NoHS,36.649,9.79469943502825,3.7417176752697667,6913.592727640096,2019
+1998,71,"(70,75]",NoHS,36.649,9.609893785310735,3.8136737844095703,6949.234763331663,2019
+1998,71,"(70,75]",NoHS,36.649,9.79469943502825,3.7417176752697667,6930.766400718126,2019
+1998,83,"(80,85]",NoHS,64.7101,10.903533333333334,5.934782608695651,11410.161702869327,2019
+1998,83,"(80,85]",NoHS,49.75876666666667,10.903533333333334,4.563545150501673,11496.055888346822,2019
+1998,83,"(80,85]",NoHS,49.75876666666667,10.903533333333334,4.563545150501673,11419.87390591752,2019
+1998,83,"(80,85]",NoHS,60.151766666666674,10.903533333333334,5.516722408026756,11426.516620513888,2019
+1998,83,"(80,85]",NoHS,66.53343333333333,10.903533333333334,6.10200668896321,11447.23362860229,2019
+1998,65,"(60,65]",HS,2035.6422666666667,205.13427118644066,9.923462593027812,141.44015566643603,2019
+1998,65,"(60,65]",NoHS,4476.356266666667,199.59010169491523,22.427746810355508,204.24782270085961,2019
+1998,65,"(60,65]",HS,2221.2028999999998,478.6466327683616,4.640590255807647,141.92933160999658,2019
+1998,65,"(60,65]",HS,1751.3663666666666,707.8056384180792,2.474360575285765,146.12580808855458,2019
+1998,65,"(60,65]",HS,2733.359,709.6536949152543,3.851680079431438,71.38536581585454,2019
+1998,28,"(25,30]",HS,-2.5526666666666666,24.024734463276836,-0.10625160792384873,8757.159310741177,2019
+1998,28,"(25,30]",HS,-2.5526666666666666,22.176677966101696,-0.11510590858416944,8901.7675292913409,2019
+1998,28,"(25,30]",HS,-2.5526666666666666,24.024734463276836,-0.10625160792384873,9155.878003854765,2019
+1998,28,"(25,30]",HS,-2.5526666666666666,22.176677966101696,-0.11510590858416944,8711.766396411567,2019
+1998,28,"(25,30]",HS,-2.5526666666666666,24.024734463276836,-0.10625160792384873,9109.829666169235,2019
+1998,57,"(55,60]",HS,31409.10466666667,7946.6429378531075,3.9524998055533955,221.0179552196265,2019
+1998,57,"(55,60]",HS,31102.055333333334,7946.6429378531075,3.9138609317881308,220.95350677744145,2019
+1998,57,"(55,60]",HS,29036.948,7946.6429378531075,3.653989266547406,218.70860629439773,2019
+1998,57,"(55,60]",HS,30363.97,8796.748926553671,3.451726342710998,213.37349522402116,2019
+1998,57,"(55,60]",HS,32343.380666666668,7946.6429378531075,4.070068445204947,202.69225601124634,2019
+1998,32,"(30,35]",NoHS,0,17.741342372881356,0,4411.151150112446,2019
+1998,32,"(30,35]",NoHS,0,17.741342372881356,0,4389.957720929658,2019
+1998,32,"(30,35]",NoHS,0,17.741342372881356,0,4428.2551940311605,2019
+1998,32,"(30,35]",NoHS,0,17.741342372881356,0,4389.2056253042365,2019
+1998,32,"(30,35]",NoHS,0,17.741342372881356,0,4418.017085089288,2019
+1998,39,"(35,40]",College,2416.8283333333334,295.68903954802266,8.173547240802675,2037.4491931116845,2019
+1998,39,"(35,40]",College,2415.005,295.68903954802266,8.167380852842808,1999.2419773676406,2019
+1998,39,"(35,40]",College,2416.8283333333334,295.68903954802266,8.173547240802675,1930.3250248292675,2019
+1998,39,"(35,40]",College,2415.005,295.68903954802266,8.167380852842808,2309.894655239158,2019
+1998,39,"(35,40]",College,2416.8283333333334,295.68903954802266,8.173547240802675,2103.3926778001655,2019
+1998,45,"(40,45]",HS,109.947,64.68197740112994,1.6998088867654086,5800.525027972513,2019
+1998,45,"(40,45]",HS,113.59366666666668,64.68197740112994,1.7561872909699,5909.328311696911,2019
+1998,45,"(40,45]",HS,109.76466666666667,64.68197740112994,1.696989966555184,6163.8459985788295,2019
+1998,45,"(40,45]",HS,111.58800000000001,64.68197740112994,1.7251791686574296,5784.491250033539,2019
+1998,45,"(40,45]",HS,111.77033333333333,64.68197740112994,1.727998088867654,6069.317751099743,2019
+1998,67,"(65,70]",HS,163.37066666666666,24.024734463276836,6.800102907126319,8790.66691171483,2019
+1998,67,"(65,70]",HS,114.77883333333332,24.024734463276836,4.777527656290197,9165.447952996245,2019
+1998,67,"(65,70]",HS,223.68653333333333,25.872790960451983,8.645628284758718,9324.343484241424,2019
+1998,67,"(65,70]",HS,139.485,24.024734463276836,5.805891432981735,8848.421467013302,2019
+1998,67,"(65,70]",HS,128.18033333333332,24.024734463276836,5.335348597890404,9242.079141505306,2019
+1998,56,"(55,60]",College,207.9694,66.53003389830509,3.125947603121516,6807.8311816046535,2019
+1998,56,"(55,60]",College,206.94833333333335,64.68197740112994,3.1994744386048737,6782.471495550939,2019
+1998,56,"(55,60]",College,207.86,64.68197740112994,3.2135690396559964,7186.83725287302,2019
+1998,56,"(55,60]",College,205.30733333333336,64.68197740112994,3.1741041567128527,6654.682300263148,2019
+1998,56,"(55,60]",College,209.0634,64.68197740112994,3.2321739130434786,7035.419966636962,2019
+1998,60,"(55,60]",College,2366.6866666666665,166.32508474576272,14.229282794500184,148.67743426051896,2019
+1998,60,"(55,60]",College,2340.613,166.32508474576272,14.07251950947603,155.0268161358013,2019
+1998,60,"(55,60]",College,2342.254,166.32508474576272,14.082385730211815,149.68251922346656,2019
+1998,60,"(55,60]",College,2346.083,166.32508474576272,14.10540691192865,154.56503531725795,2019
+1998,60,"(55,60]",College,2340.613,166.32508474576272,14.07251950947603,145.44787594851516,2019
+1998,53,"(50,55]",HS,433.9533333333333,55.441694915254246,7.827201783723521,807.142228790048,2019
+1998,53,"(50,55]",HS,486.83,55.441694915254246,8.780936454849497,744.479743031339,2019
+1998,53,"(50,55]",HS,614.4633333333334,57.289751412429375,10.725536735354408,754.2764236091315,2019
+1998,53,"(50,55]",HS,564.8686666666666,57.289751412429375,9.859855432085446,831.5643593852316,2019
+1998,53,"(50,55]",HS,586.931,57.289751412429375,10.244956305966125,836.0478085078082,2019
+1998,61,"(60,65]",HS,211.142,83.16254237288136,2.5389074693422518,8658.190880178718,2019
+1998,61,"(60,65]",HS,282.4343333333333,68.37809039548021,4.130479978306066,8536.876236873095,2019
+1998,61,"(60,65]",HS,200.01966666666667,86.85865536723163,2.302817903650466,9083.7241110093,2019
+1998,61,"(60,65]",HS,245.78533333333334,57.289751412429375,4.290214694141763,8517.79659131427,2019
+1998,61,"(60,65]",HS,226.458,86.85865536723163,2.607201309328969,8994.073982846361,2019
+1998,53,"(50,55]",College,6277.353766666667,227.31094915254238,27.61571226581831,36.08609141798307,2019
+1998,53,"(50,55]",College,8445.2971,280.90458757062146,30.064646409082908,38.93783411265225,2019
+1998,53,"(50,55]",College,8072.261333333333,205.13427118644066,39.35111030763205,38.594390992141214,2019
+1998,53,"(50,55]",College,6947.465233333333,412.11659887005646,16.858008758642413,39.31967876787233,2019
+1998,53,"(50,55]",College,5992.786133333334,310.4734915254237,19.302086319477628,41.44630034770513,2019
+1998,43,"(40,45]",College,6.199333333333334,110.88338983050849,0.055908584169453726,6633.643120363131,2019
+1998,43,"(40,45]",College,6.199333333333334,110.88338983050849,0.055908584169453726,6666.0661587185,2019
+1998,43,"(40,45]",College,6.199333333333334,110.88338983050849,0.055908584169453726,6649.107194602839,2019
+1998,43,"(40,45]",College,6.199333333333334,110.88338983050849,0.055908584169453726,6692.200070724344,2019
+1998,43,"(40,45]",College,6.199333333333334,110.88338983050849,0.055908584169453726,6637.494046617886,2019
+1998,51,"(50,55]",HS,151.88366666666667,155.23674576271185,0.9784002229654405,9590.897088416741,2019
+1998,51,"(50,55]",HS,149.87800000000001,155.23674576271185,0.9654801720019113,9779.396515261846,2019
+1998,51,"(50,55]",HS,154.254,155.23674576271185,0.9936693741041568,10196.60724740203,2019
+1998,51,"(50,55]",HS,152.24833333333333,155.23674576271185,0.9807493231406276,9533.096840626833,2019
+1998,51,"(50,55]",HS,152.97766666666666,155.23674576271185,0.9854475234910018,10200.289319649342,2019
+1998,70,"(65,70]",HS,96.0532,36.96112994350283,2.5987625418060194,4638.42950484824,2019
+1998,70,"(65,70]",HS,96.0532,36.96112994350283,2.5987625418060194,4580.794130487693,2019
+1998,70,"(65,70]",HS,96.0532,36.96112994350283,2.5987625418060194,4775.821241992558,2019
+1998,70,"(65,70]",HS,96.0532,36.96112994350283,2.5987625418060194,4868.175397795218,2019
+1998,70,"(65,70]",HS,96.0532,36.96112994350283,2.5987625418060194,4691.765574790733,2019
+1998,39,"(35,40]",HS,19.546133333333337,116.4275593220339,0.16788235918670705,7007.236360531766,2019
+1998,39,"(35,40]",HS,19.5826,118.27561581920904,0.16556751672240802,7103.080727020382,2019
+1998,39,"(35,40]",HS,21.023033333333334,116.4275593220339,0.18056750013271752,7394.488468400899,2019
+1998,39,"(35,40]",HS,19.600833333333334,116.4275593220339,0.16835217922174445,7042.329553000835,2019
+1998,39,"(35,40]",HS,19.4185,116.4275593220339,0.16678611243828637,7304.974043241277,2019
+1998,49,"(45,50]",College,3556.7763333333337,412.11659887005646,8.6305097709855,188.7117829841586,2019
+1998,49,"(45,50]",College,3558.5996666666665,412.11659887005646,8.634934085216791,187.75013769251072,2019
+1998,49,"(45,50]",College,3556.594,412.11659887005646,8.630067339562368,173.43276557384993,2019
+1998,49,"(45,50]",College,3556.7763333333337,412.11659887005646,8.6305097709855,193.93265332520684,2019
+1998,49,"(45,50]",College,3556.594,412.11659887005646,8.630067339562368,186.76590916532825,2019
+1998,19,"(15,20]",HS,18.561533333333333,10.164310734463278,1.8261477652781999,3523.1406205515123,2019
+1998,19,"(15,20]",HS,18.23333333333333,35.11307344632768,0.5192747755676816,3473.255691391937,2019
+1998,19,"(15,20]",HS,18.415666666666667,7.207420338983052,2.5550981905496952,3539.6989884740287,2019
+1998,19,"(15,20]",HS,18.78033333333333,13.306006779661017,1.4114176885916014,3559.9422271648973,2019
+1998,19,"(15,20]",HS,18.68916666666667,10.533922033898305,1.774188816522913,3607.017663970815,2019
+1998,42,"(40,45]",HS,-24.068,33.265016949152546,-0.7235228539576365,5323.541997959207,2019
+1998,42,"(40,45]",HS,-24.068,33.265016949152546,-0.7235228539576365,5345.500076315095,2019
+1998,42,"(40,45]",HS,-24.068,33.265016949152546,-0.7235228539576365,5368.4281220918765,2019
+1998,42,"(40,45]",HS,-24.068,33.265016949152546,-0.7235228539576365,5340.016485893555,2019
+1998,42,"(40,45]",HS,-24.068,33.265016949152546,-0.7235228539576365,5291.858253942049,2019
+1998,46,"(45,50]",College,11318.706333333334,925.8763050847457,12.224857976354983,2810.701533501007,2019
+1998,46,"(45,50]",College,12743.823666666667,759.5512203389831,16.77809649358364,2862.273308608086,2019
+1998,46,"(45,50]",College,10700.596333333335,792.8162372881355,13.49694397018812,2731.2258560006867,2019
+1998,46,"(45,50]",College,10796.8501,920.3321355932204,11.731471370431558,2971.954124441968,2019
+1998,46,"(45,50]",College,11636.859766666668,765.0953898305085,15.209684859354049,2773.834714413274,2019
+1998,70,"(65,70]",HS,163.73533333333336,15.154063276836158,10.804714903336325,8446.473442379445,2019
+1998,70,"(65,70]",HS,209.68333333333334,15.154063276836158,13.836772983114447,8420.793998655961,2019
+1998,70,"(65,70]",HS,157.90066666666667,15.154063276836158,10.419691655110531,9391.66512777655,2019
+1998,70,"(65,70]",HS,167.56433333333334,15.154063276836158,11.0573864099845,8703.286584538553,2019
+1998,70,"(65,70]",HS,219.16466666666665,15.154063276836158,14.462435761481359,8780.388015746981,2019
+1998,39,"(35,40]",HS,-26.073666666666668,68.37809039548021,-0.38131609870740313,5776.516160570799,2019
+1998,39,"(35,40]",HS,-26.073666666666668,68.37809039548021,-0.38131609870740313,5783.202919112231,2019
+1998,39,"(35,40]",HS,-26.073666666666668,68.37809039548021,-0.38131609870740313,5834.434263393133,2019
+1998,39,"(35,40]",HS,-26.073666666666668,68.37809039548021,-0.38131609870740313,5752.632087366609,2019
+1998,39,"(35,40]",HS,-26.073666666666668,68.37809039548021,-0.38131609870740313,5833.625620891234,2019
+1998,38,"(35,40]",HS,122.16333333333333,46.201412429378536,2.644147157190635,5884.775673720348,2019
+1998,38,"(35,40]",HS,121.98100000000001,46.201412429378536,2.640200668896321,6003.396760164082,2019
+1998,38,"(35,40]",HS,122.16333333333333,46.201412429378536,2.644147157190635,6246.877876919334,2019
+1998,38,"(35,40]",HS,122.528,46.201412429378536,2.652040133779264,5936.745913358509,2019
+1998,38,"(35,40]",HS,121.98100000000001,46.201412429378536,2.640200668896321,6182.344449084451,2019
+1998,30,"(25,30]",NoHS,7.019833333333334,83.16254237288136,0.08441099962839094,6089.358025114347,2019
+1998,30,"(25,30]",NoHS,7.019833333333334,83.16254237288136,0.08441099962839094,6089.721636877095,2019
+1998,30,"(25,30]",NoHS,7.019833333333334,83.16254237288136,0.08441099962839094,6094.7575818611995,2019
+1998,30,"(25,30]",NoHS,7.019833333333334,83.16254237288136,0.08441099962839094,6082.228658690276,2019
+1998,30,"(25,30]",NoHS,7.019833333333334,83.16254237288136,0.08441099962839094,6141.475679254448,2019
+1998,82,"(80,85]",College,586.384,818.6890282485875,0.7162475369365153,8735.894638302172,2019
+1998,82,"(80,85]",College,539.342,818.6890282485875,0.6587873800554143,8378.23337512558,2019
+1998,82,"(80,85]",College,573.0736666666667,818.6890282485875,0.6999894305321728,7820.5861706269525,2019
+1998,82,"(80,85]",College,564.6863333333334,820.5370847457626,0.6881911175389438,8515.074096156128,2019
+1998,82,"(80,85]",College,574.897,820.5370847457626,0.7006349995480432,7799.219309849676,2019
+1998,46,"(45,50]",HS,46.567933333333336,48.04946892655367,0.9691664522768202,6905.3869452579675,2019
+1998,46,"(45,50]",HS,51.618566666666666,48.04946892655367,1.0742796501157705,7034.914664112459,2019
+1998,46,"(45,50]",HS,44.27053333333333,49.89752542372881,0.8872290350551221,7337.911910716184,2019
+1998,46,"(45,50]",HS,59.732400000000005,49.89752542372881,1.1971014492753627,6886.299114358351,2019
+1998,46,"(45,50]",HS,33.34876666666667,48.04946892655367,0.694050681759712,7225.378282647628,2019
+1998,85,"(80,85]",HS,235.39233333333334,18.2957593220339,12.865950474646127,9730.580339656213,2019
+1998,85,"(80,85]",HS,233.56900000000002,15.523674576271185,15.045986622073581,9925.985199497733,2019
+1998,85,"(80,85]",HS,235.39233333333334,17.002119774011298,13.844881489021377,10372.476659203294,2019
+1998,85,"(80,85]",HS,236.304,17.741342372881356,13.319397993311037,9834.148898441108,2019
+1998,85,"(80,85]",HS,232.65733333333336,14.230035028248587,16.34973721930244,10274.21848410422,2019
+1998,32,"(30,35]",College,56.0675,101.64310734463277,0.5516114320462147,10794.55394659067,2019
+1998,32,"(30,35]",College,55.88516666666666,101.64310734463277,0.5498175737306171,10866.621470814565,2019
+1998,32,"(30,35]",College,56.0675,101.64310734463277,0.5516114320462147,11048.978439326758,2019
+1998,32,"(30,35]",College,56.0675,101.64310734463277,0.5516114320462147,10887.445889968762,2019
+1998,32,"(30,35]",College,56.0675,101.64310734463277,0.5516114320462147,11000.710634095552,2019
+1998,33,"(30,35]",HS,1401.961,388.0918644067797,3.612446249402771,3502.394453331549,2019
+1998,33,"(30,35]",HS,1466.6893333333333,388.0918644067797,3.779232361841057,3820.584889452536,2019
+1998,33,"(30,35]",HS,1612.556,388.0918644067797,4.155088389870999,3562.062983647763,2019
+1998,33,"(30,35]",HS,1552.386,388.0918644067797,4.000047778308647,3537.384810556461,2019
+1998,33,"(30,35]",HS,1316.2643333333333,388.0918644067797,3.3916308329351805,3652.1820431901338,2019
+1998,57,"(55,60]",NoHS,4.467166666666667,11.642755932203391,0.38368636194723155,5798.991639366102,2019
+1998,57,"(55,60]",NoHS,4.467166666666667,11.642755932203391,0.38368636194723155,5806.1279839264,2019
+1998,57,"(55,60]",NoHS,4.6495,11.642755932203391,0.3993470297818123,5829.345279020343,2019
+1998,57,"(55,60]",NoHS,4.467166666666667,11.642755932203391,0.38368636194723155,5797.095897749549,2019
+1998,57,"(55,60]",NoHS,4.467166666666667,11.642755932203391,0.38368636194723155,5829.670885936417,2019
+1998,84,"(80,85]",HS,87.33766666666668,24.024734463276836,3.6353228711088246,6766.366048496204,2019
+1998,84,"(80,85]",HS,89.161,24.024734463276836,3.711216876768716,6814.716676284128,2019
+1998,84,"(80,85]",HS,89.161,24.024734463276836,3.711216876768716,6822.110361059186,2019
+1998,84,"(80,85]",HS,87.33766666666668,24.024734463276836,3.6353228711088246,6753.042531277322,2019
+1998,84,"(80,85]",HS,89.161,24.024734463276836,3.711216876768716,6822.953515838318,2019
+1998,67,"(65,70]",NoHS,-1.3310333333333333,11.827561581920904,-0.11253658026755853,5810.980394280571,2019
+1998,67,"(65,70]",NoHS,-1.1304666666666667,11.642755932203391,-0.09709614057440144,6033.103509483347,2019
+1998,67,"(65,70]",NoHS,-1.1487,11.827561581920904,-0.09712061036789299,5973.951294491483,2019
+1998,67,"(65,70]",NoHS,-1.1487,11.642755932203391,-0.09866220735785952,5941.641932058416,2019
+1998,67,"(65,70]",NoHS,-1.1304666666666667,11.827561581920904,-0.09557901337792643,5924.778207668257,2019
+1998,69,"(65,70]",HS,16.41,48.04946892655367,0.34152302546951374,5672.765333697753,2019
+1998,69,"(65,70]",HS,13.857333333333335,49.89752542372881,0.2777158429332343,5927.251229160126,2019
+1998,69,"(65,70]",HS,15.133666666666667,40.65724293785311,0.37222560048647,5866.496556986784,2019
+1998,69,"(65,70]",HS,12.763333333333334,29.56890395480226,0.43164715719063546,5822.384152950571,2019
+1998,69,"(65,70]",HS,17.139333333333333,18.480564971751416,0.9274247491638794,5828.662127747036,2019
+1998,26,"(25,30]",HS,49.339400000000005,60.98586440677967,0.8090301003344481,11519.034199458783,2019
+1998,26,"(25,30]",HS,49.32116666666666,60.98586440677967,0.8087311239485151,11768.882255949691,2019
+1998,26,"(25,30]",HS,49.339400000000005,60.98586440677967,0.8090301003344481,11908.900279696363,2019
+1998,26,"(25,30]",HS,49.339400000000005,60.98586440677967,0.8090301003344481,11477.0818882774,2019
+1998,26,"(25,30]",HS,49.339400000000005,60.98586440677967,0.8090301003344481,11938.370905300499,2019
+1998,42,"(40,45]",HS,466.1351666666667,157.08480225988703,2.967410977769034,4841.498426576732,2019
+1998,42,"(40,45]",HS,466.1351666666667,157.08480225988703,2.967410977769034,4632.3857403673055,2019
+1998,42,"(40,45]",HS,466.33573333333334,157.08480225988703,2.9686877828054294,4325.699159512707,2019
+1998,42,"(40,45]",HS,466.15340000000003,157.08480225988703,2.967527050954161,4728.6719507282205,2019
+1998,42,"(40,45]",HS,466.3175,157.08480225988703,2.9685717096203024,4312.094714176648,2019
+1998,34,"(30,35]",HS,-0.1641,9.240282485875708,-0.01775919732441471,6723.114006731603,2019
+1998,34,"(30,35]",HS,-2.3521,11.27314463276836,-0.2086463073633423,6716.704298865903,2019
+1998,34,"(30,35]",HS,-0.34643333333333337,7.392225988700565,-0.04686454849498328,6741.620027560256,2019
+1998,34,"(30,35]",HS,-0.34643333333333337,12.936395480225992,-0.0267797419971333,6717.616092328874,2019
+1998,34,"(30,35]",HS,-0.34643333333333337,13.860423728813561,-0.02499442586399108,6738.161845572419,2019
+1998,38,"(35,40]",NoHS,40.040400000000005,110.88338983050849,0.36110367892976586,5132.024699133867,2019
+1998,38,"(35,40]",NoHS,37.287166666666664,110.88338983050849,0.3362736900780378,5105.042678222477,2019
+1998,38,"(35,40]",NoHS,38.92816666666666,110.88338983050849,0.35107302118171674,5126.687767806126,2019
+1998,38,"(35,40]",NoHS,36.940733333333334,110.88338983050849,0.333149386845039,5107.480116241899,2019
+1998,38,"(35,40]",NoHS,36.90426666666667,110.88338983050849,0.33282051282051284,5128.213937356684,2019
+1998,69,"(65,70]",College,85505.21666666667,6579.081129943504,12.99652869114276,33.298020221494895,2019
+1998,69,"(65,70]",College,86900.06666666668,6579.081129943504,13.208541580549397,34.892343262385054,2019
+1998,69,"(65,70]",College,87456.001,6579.081129943504,13.293041881176956,30.18795190638621,2019
+1998,69,"(65,70]",College,89117.24,6579.081129943504,13.545545075344782,29.311296248858962,2019
+1998,69,"(65,70]",College,87818.662,6579.081129943504,13.34816523242268,29.895445829547914,2019
+1998,51,"(50,55]",College,3306.068,554.4169491525424,5.9631438127090295,988.5859082189633,2019
+1998,51,"(50,55]",College,3174.788,554.4169491525424,5.726354515050167,1021.1001874181532,2019
+1998,51,"(50,55]",College,3052.6246666666666,554.4169491525424,5.5060089186176135,942.8621107542589,2019
+1998,51,"(50,55]",College,3063.5646666666667,554.4169491525424,5.525741360089185,1029.9302171209063,2019
+1998,51,"(50,55]",College,3078.1513333333337,554.4169491525424,5.552051282051282,969.8612621006496,2019
+1998,21,"(20,25]",HS,-4.923,12.19717288135593,-0.4036181210094254,5739.8265753179985,2019
+1998,21,"(20,25]",HS,-1.094,12.19717288135593,-0.08969291577987232,5768.366891728399,2019
+1998,21,"(20,25]",HS,-5.47,12.19717288135593,-0.44846457889936153,5777.427940493185,2019
+1998,21,"(20,25]",HS,-5.47,12.19717288135593,-0.44846457889936153,5732.529454704423,2019
+1998,21,"(20,25]",HS,-5.378833333333334,12.19717288135593,-0.4409901692510389,5745.09334322855,2019
+1998,64,"(60,65]",HS,938381.0344333333,6893.250734463278,136.130407928125,2.4561748366481653,2019
+1998,64,"(60,65]",HS,914367.5521000001,6616.042259887006,138.20461178789634,2.3770717503918735,2019
+1998,64,"(60,65]",HS,895103.1237666666,6597.561694915254,135.6718080342505,2.3034957165280963,2019
+1998,64,"(60,65]",HS,898302.3626666666,6394.275480225989,140.4854022077445,2.2918021842382674,2019
+1998,64,"(60,65]",HS,917554.1917666667,6431.236610169491,142.6715027582363,2.148480802965019,2019
+1998,37,"(35,40]",College,500.6326333333334,184.80564971751414,2.7089682274247493,6598.102443122999,2019
+1998,37,"(35,40]",College,549.0056666666667,62.833920903954805,8.737409010426914,6314.057016842677,2019
+1998,37,"(35,40]",College,437.9282,105.33922033898305,4.15731385319486,5894.6143530571335,2019
+1998,37,"(35,40]",College,442.45006666666666,62.833920903954805,7.041579775722997,6444.359375136676,2019
+1998,37,"(35,40]",College,410.26823333333334,164.47702824858757,2.4943801435496598,5875.839893935242,2019
+1998,53,"(50,55]",College,2322.7443333333335,110.88338983050849,20.94763099219621,932.7867624006267,2019
+1998,53,"(50,55]",College,2339.5190000000002,110.88338983050849,21.09891304347826,1022.644854565332,2019
+1998,53,"(50,55]",College,2347.5416666666665,110.88338983050849,21.17126532887402,933.7977421179581,2019
+1998,53,"(50,55]",College,2307.6106666666665,110.88338983050849,20.81114827201783,1196.789966191795,2019
+1998,53,"(50,55]",College,2285.366,110.88338983050849,20.610535117056852,935.7982165568862,2019
+1998,63,"(60,65]",NoHS,12986.509333333333,323.40988700564975,40.15495461060678,13.220731962776037,2019
+1998,63,"(60,65]",NoHS,12946.396,323.40988700564975,40.0309221213569,14.273433380186441,2019
+1998,63,"(60,65]",NoHS,12702.069333333335,323.40988700564975,39.275451505016726,14.098337919967872,2019
+1998,63,"(60,65]",NoHS,12723.949333333334,323.40988700564975,39.34310559006211,14.394860285423471,2019
+1998,63,"(60,65]",NoHS,13312.886,323.40988700564975,41.16412804586717,14.980199676924391,2019
+1998,67,"(65,70]",HS,89.45820333333334,12.012367231638418,7.447175199382558,10786.40037315358,2019
+1998,67,"(65,70]",HS,97.65408666666667,15.523674576271185,6.290655359133621,10883.589296355365,2019
+1998,67,"(65,70]",HS,107.5949,18.11095367231638,5.940874343048257,10772.220857923021,2019
+1998,67,"(65,70]",HS,124.96215,29.56890395480226,4.226133988294314,10774.420531120917,2019
+1998,67,"(65,70]",HS,131.78141666666667,15.338868926553674,8.591338598541322,10806.636028000983,2019
+1998,82,"(80,85]",HS,617.6541666666667,138.6042372881356,4.456243032329988,10553.334075500763,2019
+1998,82,"(80,85]",HS,188.18623333333335,101.64310734463277,1.8514411675281242,12163.815671648372,2019
+1998,82,"(80,85]",HS,609.3580000000001,42.50529943502825,14.336047695215939,9881.289916979043,2019
+1998,82,"(80,85]",HS,571.8338000000001,83.16254237288136,6.8760981047937575,10062.590158865458,2019
+1998,82,"(80,85]",HS,195.07843333333332,42.50529943502825,4.589508506616257,12569.389869008552,2019
+1998,63,"(60,65]",HS,178.13966666666667,55.441694915254246,3.2130992196209585,409.7514832549138,2019
+1998,63,"(60,65]",HS,167.19966666666667,55.441694915254246,3.0157748049052393,197.92305223529888,2019
+1998,63,"(60,65]",HS,169.023,55.441694915254246,3.048662207357859,191.66463944966364,2019
+1998,63,"(60,65]",HS,183.60966666666667,55.441694915254246,3.311761426978818,400.21092624822444,2019
+1998,63,"(60,65]",HS,161.72966666666667,55.441694915254246,2.91711259754738,191.14671794275017,2019
+1998,55,"(50,55]",College,6366.533,18.480564971751416,344.4988294314381,2682.844375489048,2019
+1998,55,"(50,55]",College,6366.533,18.480564971751416,344.4988294314381,2632.478609273642,2019
+1998,55,"(50,55]",College,6366.350666666667,18.480564971751416,344.4889632107023,2536.4250665529253,2019
+1998,55,"(50,55]",College,6366.533,18.480564971751416,344.4988294314381,2991.6620524667005,2019
+1998,55,"(50,55]",College,6366.533,18.480564971751416,344.4988294314381,2771.054615124245,2019
+1998,63,"(60,65]",College,195.24253333333334,77.61837288135592,2.515416467590381,6792.699111911837,2019
+1998,63,"(60,65]",College,193.58329999999998,77.61837288135592,2.4940396559961777,6747.925844665301,2019
+1998,63,"(60,65]",College,193.58329999999998,77.61837288135592,2.4940396559961777,6970.160453400448,2019
+1998,63,"(60,65]",College,199.05329999999998,75.77031638418079,2.6270617505506157,6779.244541316414,2019
+1998,63,"(60,65]",College,195.24253333333334,75.77031638418079,2.576768088751122,6945.79473229333,2019
+1998,25,"(20,25]",College,-13.128,36.96112994350283,-0.35518394648829427,4675.492465864845,2019
+1998,25,"(20,25]",College,-13.128,36.96112994350283,-0.35518394648829427,4659.551673062599,2019
+1998,25,"(20,25]",College,-13.128,36.96112994350283,-0.35518394648829427,4661.881027651406,2019
+1998,25,"(20,25]",College,-13.128,36.96112994350283,-0.35518394648829427,4695.050864057538,2019
+1998,25,"(20,25]",College,-13.128,36.96112994350283,-0.35518394648829427,4658.933596803887,2019
+1998,32,"(30,35]",NoHS,19.7467,64.68197740112994,0.30528905876731965,3773.0746417640053,2019
+1998,32,"(30,35]",NoHS,25.7637,64.68197740112994,0.39831342570473005,3745.8030614643094,2019
+1998,32,"(30,35]",NoHS,20.476033333333334,64.68197740112994,0.3165647396082179,3766.2013572125384,2019
+1998,32,"(30,35]",NoHS,31.233700000000002,64.68197740112994,0.48288103201146687,3773.8976705994232,2019
+1998,32,"(30,35]",NoHS,36.52136666666667,64.68197740112994,0.5646297181079791,3757.8454097582776,2019
+1998,40,"(35,40]",HS,228.33603333333332,92.40282485875707,2.4710936454849493,7847.927938490131,2019
+1998,40,"(35,40]",HS,220.67803333333333,116.4275593220339,1.8954106280193237,8000.042241663464,2019
+1998,40,"(35,40]",HS,227.47906666666668,123.81978531073446,1.837178655218889,8381.530642465394,2019
+1998,40,"(35,40]",HS,229.68529999999998,145.99646327683615,1.573225096312603,7872.245996321204,2019
+1998,40,"(35,40]",HS,220.58686666666668,101.64310734463277,2.1702097902097903,8190.940468096531,2019
+1998,53,"(50,55]",HS,-7.840333333333334,68.37809039548021,-0.11466148422670164,6174.643472544067,2019
+1998,53,"(50,55]",HS,-9.663666666666666,66.53003389830509,-0.1452526941657376,6332.460551325625,2019
+1998,53,"(50,55]",HS,-9.663666666666666,68.37809039548021,-0.14132694567477178,6544.693567070097,2019
+1998,53,"(50,55]",HS,-9.663666666666666,68.37809039548021,-0.14132694567477178,6164.576518335574,2019
+1998,53,"(50,55]",HS,-9.663666666666666,68.37809039548021,-0.14132694567477178,6528.862987644825,2019
+1998,35,"(30,35]",HS,18.306266666666666,29.56890395480226,0.6191053511705685,6089.0903215432,2019
+1998,35,"(30,35]",HS,18.123933333333333,33.265016949152546,0.5448346339650687,6118.851767171569,2019
+1998,35,"(30,35]",HS,18.123933333333333,31.416960451977403,0.576883730080661,6103.284956840297,2019
+1998,35,"(30,35]",HS,18.123933333333333,27.720847457627123,0.6538015607580824,6142.840358021503,2019
+1998,35,"(30,35]",HS,17.941599999999998,31.416960451977403,0.5710800708243162,6092.6251269828945,2019
+1998,84,"(80,85]",College,899.815,107.18727683615819,8.394792988121324,8095.413585557139,2019
+1998,84,"(80,85]",College,899.815,107.18727683615819,8.394792988121324,7765.128220611217,2019
+1998,84,"(80,85]",College,899.815,107.18727683615819,8.394792988121324,7246.541528286069,2019
+1998,84,"(80,85]",College,899.815,107.18727683615819,8.394792988121324,7890.806456220365,2019
+1998,84,"(80,85]",College,899.815,107.18727683615819,8.394792988121324,7226.453115917447,2019
+1998,49,"(45,50]",College,1388.4865666666667,206.98232768361586,6.7082372790253215,3422.0960453875646,2019
+1998,49,"(45,50]",College,1319.3822333333335,186.65370621468927,7.068609887744628,3737.664666838511,2019
+1998,49,"(45,50]",College,1226.2828333333332,201.4381581920904,6.087639225553065,3481.159422489544,2019
+1998,49,"(45,50]",College,1335.4093333333333,199.59010169491523,6.690759321194104,3457.6408107840093,2019
+1998,49,"(45,50]",College,1347.8991666666668,186.65370621468927,7.221389781118581,3570.2585916414655,2019
+1998,72,"(70,75]",NoHS,78565.79233333333,12308.056271186442,6.383281860455773,1.1600314631501494,2019
+1998,72,"(70,75]",NoHS,225839.89,8316.254237288134,27.156443701226316,1.1216032255767114,2019
+1998,72,"(70,75]",NoHS,380881.023,7318.303728813559,52.04498707813925,1.05552701391529,2019
+1998,72,"(70,75]",NoHS,282652.2216666667,4860.388587570622,58.15424354947417,1.071637807244353,2019
+1998,72,"(70,75]",NoHS,63805.362,8501.05988700565,7.505577286607533,1.014777499012694,2019
+1998,26,"(25,30]",HS,198.98036666666667,64.68197740112994,3.0762876254180602,5004.405940377052,2019
+1998,26,"(25,30]",HS,197.15703333333332,64.68197740112994,3.0480984233158144,4989.723961774694,2019
+1998,26,"(25,30]",HS,196.9747,64.68197740112994,3.0452795031055904,5001.841281581623,2019
+1998,26,"(25,30]",HS,197.1388,64.68197740112994,3.0478165312947922,5067.524355867226,2019
+1998,26,"(25,30]",HS,198.7798,64.68197740112994,3.073186813186813,5005.580959586562,2019
+1998,76,"(75,80]",College,81957.92166666668,2457.9151412429383,33.34448789197073,24.536113405023357,2019
+1998,76,"(75,80]",College,80054.17933333333,2088.30384180791,38.33454583123686,25.75983580138125,2019
+1998,76,"(75,80]",College,73695.30433333333,2051.3427118644067,35.925398475398474,22.59482456630162,2019
+1998,76,"(75,80]",College,73222.514,2180.7066666666665,33.57742474916388,21.34192801567523,2019
+1998,76,"(75,80]",College,77138.30466666668,2402.4734463276836,32.10786982248521,21.91752728842682,2019
+1998,38,"(35,40]",HS,0.38289999999999996,12.381978531073447,0.03092397544052313,7167.110782173644,2019
+1998,38,"(35,40]",HS,0.018233333333333334,20.328621468926556,8.96929157798723e-4,7135.459948910517,2019
+1998,38,"(35,40]",HS,1.9874333333333334,27.720847457627123,0.07169453734671125,7089.857344970098,2019
+1998,38,"(35,40]",HS,2.6438333333333337,18.480564971751416,0.1430602006688963,7161.435620602523,2019
+1998,38,"(35,40]",HS,-0.1641,14.414840677966104,-0.011384100848983789,7128.063353847634,2019
+1998,41,"(40,45]",HS,107.57666666666667,22.176677966101696,4.8508918617614265,7801.35416907827,2019
+1998,41,"(40,45]",HS,87.52,22.176677966101696,3.946488294314381,7989.1459841860415,2019
+1998,41,"(40,45]",HS,114.87,22.176677966101696,5.179765886287625,8429.35290938988,2019
+1998,41,"(40,45]",HS,125.81,22.176677966101696,5.6730769230769225,7798.150423387386,2019
+1998,41,"(40,45]",HS,98.46000000000001,22.176677966101696,4.439799331103679,8333.27417930519,2019
+1998,32,"(30,35]",College,523.1143333333333,256.8798531073446,2.036416351868338,8452.186865383099,2019
+1998,32,"(30,35]",College,524.7553333333334,255.03179661016952,2.0576074838834764,7998.848974170205,2019
+1998,32,"(30,35]",College,524.9376666666666,256.8798531073446,2.0435143523976804,7543.8969361241425,2019
+1998,32,"(30,35]",College,524.9376666666666,256.8798531073446,2.0435143523976804,8260.882547410176,2019
+1998,32,"(30,35]",College,524.9376666666666,255.03179661016952,2.0583224274150544,7520.069158771623,2019
+1998,75,"(70,75]",HS,610.2696666666667,46.201412429378536,13.208896321070233,7348.0423349987905,2019
+1998,75,"(70,75]",HS,610.2696666666667,46.201412429378536,13.208896321070233,7046.5084826137345,2019
+1998,75,"(70,75]",HS,610.2696666666667,46.201412429378536,13.208896321070233,6577.778357848249,2019
+1998,75,"(70,75]",HS,610.2696666666667,46.201412429378536,13.208896321070233,7160.335403140761,2019
+1998,75,"(70,75]",HS,610.2696666666667,46.201412429378536,13.208896321070233,6558.939409341469,2019
+1998,38,"(35,40]",HS,160.63931333333332,31.416960451977403,5.113139878024787,6316.061733724296,2019
+1998,38,"(35,40]",HS,160.63931333333332,31.416960451977403,5.113139878024787,6042.806366099112,2019
+1998,38,"(35,40]",HS,160.63931333333332,31.416960451977403,5.113139878024787,5642.686979290653,2019
+1998,38,"(35,40]",HS,160.63931333333332,31.416960451977403,5.113139878024787,6168.490915837718,2019
+1998,38,"(35,40]",HS,160.63931333333332,31.416960451977403,5.113139878024787,5625.394076541435,2019
+1998,49,"(45,50]",College,18227.134000000002,1108.8338983050849,16.43811036789298,3367.3833616380807,2019
+1998,49,"(45,50]",College,18407.097,1108.8338983050849,16.600409698996657,3497.7552259999707,2019
+1998,49,"(45,50]",College,18536.736,1108.8338983050849,16.71732441471572,3484.9668742741787,2019
+1998,49,"(45,50]",College,18353.491,1108.8338983050849,16.552065217391306,4017.2937360018414,2019
+1998,49,"(45,50]",College,18354.40266666667,1108.8338983050849,16.55288740245262,3268.9642418434514,2019
+1998,42,"(40,45]",HS,56.888,73.92225988700567,0.7695652173913041,6062.120804490096,2019
+1998,42,"(40,45]",HS,73.298,73.92225988700567,0.9915551839464881,6017.4850548370305,2019
+1998,42,"(40,45]",HS,36.83133333333333,73.92225988700567,0.4982441471571905,6019.160169762525,2019
+1998,42,"(40,45]",HS,38.654666666666664,73.92225988700567,0.5229096989966554,6120.315759681999,2019
+1998,42,"(40,45]",HS,64.18133333333334,73.92225988700567,0.8682274247491638,5995.379471413123,2019
+1998,57,"(55,60]",NoHS,39.80336666666667,17.741342372881356,2.24353748606466,11015.66333669457,2019
+1998,57,"(55,60]",NoHS,39.80336666666667,17.741342372881356,2.24353748606466,11033.66147938336,2019
+1998,57,"(55,60]",NoHS,39.8216,17.741342372881356,2.244565217391304,10991.870854501409,2019
+1998,57,"(55,60]",NoHS,39.8216,17.741342372881356,2.244565217391304,11051.957769987654,2019
+1998,57,"(55,60]",NoHS,39.80336666666667,17.741342372881356,2.24353748606466,11019.80469632811,2019
+1998,47,"(45,50]",HS,41167.45703333333,1247.43813559322,33.00160213055866,21.13849777945019,2019
+1998,47,"(45,50]",HS,30026.073513333333,696.7172994350283,43.096494859079336,23.397164300310926,2019
+1998,47,"(45,50]",HS,47481.095133333336,676.3886779661017,70.19794488001901,22.59482456630162,2019
+1998,47,"(45,50]",HS,45945.62966666667,641.275604519774,71.64724393511513,21.34192801567523,2019
+1998,47,"(45,50]",HS,33891.518299999996,839.0176497175141,40.394285282807594,18.153283260488458,2019
+1998,28,"(25,30]",College,4350.473333333333,182.957593220339,23.778588561197257,887.164313738672,2019
+1998,28,"(25,30]",College,4643.300666666667,157.08480225988703,29.559197324414715,970.689819365933,2019
+1998,28,"(25,30]",College,5426.0576666666675,160.78091525423727,33.74814515819014,890.1216290665054,2019
+1998,28,"(25,30]",College,4802.66,157.08480225988703,30.57367696242376,1139.021986781103,2019
+1998,28,"(25,30]",College,6958.934,157.08480225988703,44.300491835530195,890.7327343262901,2019
+1998,50,"(45,50]",College,2368.9476,181.10953672316384,13.080192478329124,511.06720910618617,2019
+1998,50,"(45,50]",College,2301.4478,157.08480225988703,14.650989573086758,542.3405868065059,2019
+1998,50,"(45,50]",College,2417.4665,171.86925423728815,14.06572985219549,507.1372864551261,2019
+1998,50,"(45,50]",College,2301.7395333333334,171.86925423728815,13.39238680907685,531.4982468080086,2019
+1998,50,"(45,50]",College,2118.6039333333333,170.021197740113,12.460822306238185,505.9800457588235,2019
+1998,48,"(45,50]",HS,231.74566666666666,66.53003389830509,3.4833240431066512,4608.050667631234,2019
+1998,48,"(45,50]",HS,233.56900000000002,66.53003389830509,3.5107302118171684,4597.042406931072,2019
+1998,48,"(45,50]",HS,235.39233333333334,66.53003389830509,3.5381363805276846,4607.354875331446,2019
+1998,48,"(45,50]",HS,231.74566666666666,66.53003389830509,3.4833240431066512,4616.307963770911,2019
+1998,48,"(45,50]",HS,231.74566666666666,66.53003389830509,3.4833240431066512,4574.145714075901,2019
+1998,54,"(50,55]",HS,705.1741666666667,46.201412429378536,15.263043478260869,5947.158545763848,2019
+1998,54,"(50,55]",HS,718.8491666666666,46.201412429378536,15.559030100334446,5698.769706439643,2019
+1998,54,"(50,55]",HS,706.9975000000001,46.201412429378536,15.302508361204014,5310.376385693148,2019
+1998,54,"(50,55]",HS,756.7745,46.201412429378536,16.379899665551836,5811.088272979832,2019
+1998,54,"(50,55]",HS,754.4041666666667,46.201412429378536,16.328595317725753,5301.280241622803,2019
+1998,74,"(70,75]",NoHS,242.868,48.04946892655367,5.054540776948803,353.1266833991366,2019
+1998,74,"(70,75]",NoHS,219.894,48.04946892655367,4.576408541291484,340.4065294535727,2019
+1998,74,"(70,75]",NoHS,209.68333333333334,48.04946892655367,4.363905325443787,337.4726801657308,2019
+1998,74,"(70,75]",NoHS,247.244,48.04946892655367,5.1456135837406745,343.07063540983006,2019
+1998,74,"(70,75]",NoHS,225.72866666666667,48.04946892655367,4.697838950347312,350.04421234831165,2019
+1998,28,"(25,30]",HS,14.404333333333334,73.92225988700567,0.19485785953177254,5050.433529969888,2019
+1998,28,"(25,30]",HS,15.498333333333335,73.92225988700567,0.2096571906354515,5046.294376638686,2019
+1998,28,"(25,30]",HS,14.586666666666666,73.92225988700567,0.19732441471571902,5052.445070802968,2019
+1998,28,"(25,30]",HS,16.227666666666668,73.92225988700567,0.21952341137123743,5061.0774485501,2019
+1998,28,"(25,30]",HS,15.498333333333335,73.92225988700567,0.2096571906354515,5011.286096133916,2019
+1998,62,"(60,65]",College,47009.36233333334,140.45229378531073,334.69985477908824,256.5424312737601,2019
+1998,62,"(60,65]",College,85742.25,210.6784406779661,406.9816053511706,243.26563600917376,2019
+1998,62,"(60,65]",College,73646.25666666667,214.37455367231638,343.54010494752623,254.51962476666486,2019
+1998,62,"(60,65]",College,48335.83733333334,291.9929265536723,165.53769950467805,253.59817743419003,2019
+1998,62,"(60,65]",College,78255.09633333333,541.4805536723164,144.52060337644252,244.72229009661538,2019
+1998,45,"(40,45]",College,98.46000000000001,59.13780790960452,1.6649247491638797,5220.698934066253,2019
+1998,45,"(40,45]",College,100.28333333333333,59.13780790960452,1.6957566889632107,5159.236021961485,2019
+1998,45,"(40,45]",College,102.10666666666667,59.13780790960452,1.7265886287625418,5163.336396976469,2019
+1998,45,"(40,45]",College,103.93,59.13780790960452,1.7574205685618731,5219.319559532489,2019
+1998,45,"(40,45]",College,87.52,59.13780790960452,1.479933110367893,5173.672101413331,2019
+1998,47,"(45,50]",HS,73.58973333333334,48.04946892655367,1.5315410342166198,4887.875546101614,2019
+1998,47,"(45,50]",HS,3.9566333333333334,64.68197740112994,0.06117056856187291,4886.232278191126,2019
+1998,47,"(45,50]",HS,7.6033,15.338868926553674,0.49568843937623397,4909.723737552553,2019
+1998,47,"(45,50]",HS,0.7475666666666667,24.024734463276836,0.0311165423205557,4855.09854369122,2019
+1998,47,"(45,50]",HS,19.272633333333335,33.265016949152546,0.5793664065403196,5891.052872741389,2019
+1998,19,"(15,20]",HS,125.81,24.024734463276836,5.236686390532545,6455.436180371614,2019
+1998,19,"(15,20]",HS,143.13166666666666,24.024734463276836,5.957679444301518,6469.985272556431,2019
+1998,19,"(15,20]",HS,171.211,24.024734463276836,7.126447131463855,6417.691233799677,2019
+1998,19,"(15,20]",HS,121.79866666666668,24.024734463276836,5.069719578080782,6465.355018898927,2019
+1998,19,"(15,20]",HS,110.8222,24.024734463276836,4.612837664008232,6381.049164215123,2019
+1998,75,"(70,75]",HS,505.2456666666667,59.13780790960452,8.543530518394649,7669.013190259537,2019
+1998,75,"(70,75]",HS,505.428,59.13780790960452,8.546613712374581,7354.479496850526,2019
+1998,75,"(70,75]",HS,505.2456666666667,60.98586440677967,8.284635654200871,6864.904162017834,2019
+1998,75,"(70,75]",HS,505.2456666666667,59.13780790960452,8.543530518394649,7474.698867621555,2019
+1998,75,"(70,75]",HS,505.428,59.13780790960452,8.546613712374581,6846.700314205217,2019
+1998,33,"(30,35]",HS,12.1434,55.441694915254246,0.2190301003344481,5676.209331057484,2019
+1998,33,"(30,35]",HS,12.325733333333334,55.441694915254246,0.22231884057971013,5693.698605865702,2019
+1998,33,"(30,35]",HS,12.1434,55.441694915254246,0.2190301003344481,5730.746201784175,2019
+1998,33,"(30,35]",HS,12.1434,55.441694915254246,0.2190301003344481,5670.512684081105,2019
+1998,33,"(30,35]",HS,12.325733333333334,55.441694915254246,0.22231884057971013,5755.792172695817,2019
+1998,59,"(55,60]",College,136540.75499600003,1796.3109152542374,76.01176045666627,14.88907941025208,2019
+1998,59,"(55,60]",College,129123.65306666667,1665.0989039548024,77.5471371460176,15.346942428237279,2019
+1998,59,"(55,60]",College,130245.5683,1689.123638418079,77.10836870531239,16.178579613961055,2019
+1998,59,"(55,60]",College,123486.8363,1807.3992542372882,68.32294304122124,15.10758998806865,2019
+1998,59,"(55,60]",College,140728.25806666666,1611.5052655367233,87.32720958240004,16.589108194601298,2019
+1998,67,"(65,70]",HS,399.7476,49.89752542372881,8.011371237458194,9125.449511841402,2019
+1998,67,"(65,70]",HS,301.19643333333335,49.89752542372881,6.0363000123869694,9515.646221873762,2019
+1998,67,"(65,70]",HS,330.7526666666667,49.89752542372881,6.628638672116934,9743.117018116664,2019
+1998,67,"(65,70]",HS,270.4732666666667,49.89752542372881,5.420574755357365,9103.32931384259,2019
+1998,67,"(65,70]",HS,343.07840000000004,49.89752542372881,6.87565960609439,9688.09283277028,2019
+1998,48,"(45,50]",College,630.5086666666666,118.27561581920904,5.330842391304348,4461.778763716162,2019
+1998,48,"(45,50]",College,617.7453333333334,118.27561581920904,5.22293060200669,4255.596777671688,2019
+1998,48,"(45,50]",College,619.0216666666666,118.27561581920904,5.233721780936455,3976.0654638310893,2019
+1998,48,"(45,50]",College,621.7566666666667,118.27561581920904,5.256845735785953,4348.669765881102,2019
+1998,48,"(45,50]",College,639.6253333333334,118.27561581920904,5.407922240802677,3972.6075158214308,2019
+1998,53,"(50,55]",College,132.00933333333336,138.6042372881356,0.9524191750278708,7193.172797038853,2019
+1998,53,"(50,55]",College,132.19166666666666,138.6042372881356,0.9537346711259753,7334.54736679388,2019
+1998,53,"(50,55]",College,132.00933333333336,138.6042372881356,0.9524191750278708,7647.455415060598,2019
+1998,53,"(50,55]",College,132.00933333333336,138.6042372881356,0.9524191750278708,7149.822611312577,2019
+1998,53,"(50,55]",College,132.19166666666666,138.6042372881356,0.9537346711259753,7650.21696923868,2019
+1998,52,"(50,55]",College,392.3813333333333,68.37809039548021,5.738407303624696,8328.93693776504,2019
+1998,52,"(50,55]",College,392.746,68.37809039548021,5.74374039591431,8492.633808300106,2019
+1998,52,"(50,55]",College,392.5636666666667,68.37809039548021,5.741073849769503,8854.948391150876,2019
+1998,52,"(50,55]",College,392.5636666666667,68.37809039548021,5.741073849769503,8278.741985781791,2019
+1998,52,"(50,55]",College,392.3813333333333,68.37809039548021,5.738407303624696,8858.145980204901,2019
+1998,76,"(75,80]",College,1524.489,158.93285875706215,9.592031578128646,1821.5937277176727,2019
+1998,76,"(75,80]",College,1524.489,158.93285875706215,9.592031578128646,1865.9473028180332,2019
+1998,76,"(75,80]",College,1526.3123333333333,158.93285875706215,9.60350392782142,1830.2227964342412,2019
+1998,76,"(75,80]",College,1526.3123333333333,158.93285875706215,9.60350392782142,2043.9367692586661,2019
+1998,76,"(75,80]",College,1526.13,158.93285875706215,9.602356692852144,1866.2970206459763,2019
+1998,65,"(60,65]",College,20452.33,524.8480451977401,38.96809788496868,410.0844390573279,2019
+1998,65,"(60,65]",College,6067.688666666667,1764.8939548022602,3.4379905093768053,353.1101158278783,2019
+1998,65,"(60,65]",College,10877.459666666666,1082.9611073446329,10.044183113221544,334.7816676765537,2019
+1998,65,"(60,65]",College,10961.880000000001,678.2367344632768,16.162321270720753,370.1779121172964,2019
+1998,65,"(60,65]",College,7551.152666666667,731.830372881356,10.318173372521198,348.4556492348632,2019
+1998,50,"(45,50]",College,3182.0813333333335,358.5229604519773,8.875530117574046,12.692276655246127,2019
+1998,50,"(45,50]",College,2919.849533333333,452.7738418079096,6.448803494642004,13.890857169548582,2019
+1998,50,"(45,50]",College,1140.3126666666667,613.5547570621469,1.8585344723375106,67.94824814611488,2019
+1998,50,"(45,50]",College,3623.145666666667,321.56183050847454,11.267337485103603,13.626228264247823,2019
+1998,50,"(45,50]",College,4239.7970000000005,1373.1059774011298,3.087742002277669,14.491548813545823,2019
+1998,57,"(55,60]",HS,732.3418333333334,133.06006779661018,5.503843831289483,7269.264268842349,2019
+1998,57,"(55,60]",HS,737.8118333333334,133.06006779661018,5.544953084355258,6930.183282666495,2019
+1998,57,"(55,60]",HS,715.9318333333334,133.06006779661018,5.380516072092159,6487.681138588286,2019
+1998,57,"(55,60]",HS,719.5785,133.06006779661018,5.407922240802675,7096.736489323147,2019
+1998,57,"(55,60]",HS,715.9318333333334,133.06006779661018,5.380516072092159,6470.039359570207,2019
+1998,62,"(60,65]",HS,34.096333333333334,27.720847457627123,1.229988851727982,8049.180866028783,2019
+1998,62,"(60,65]",HS,34.461,27.720847457627123,1.24314381270903,8021.461946019277,2019
+1998,62,"(60,65]",HS,34.278666666666666,27.720847457627123,1.2365663322185059,8425.621402490007,2019
+1998,62,"(60,65]",HS,34.278666666666666,27.720847457627123,1.2365663322185059,7847.200714108054,2019
+1998,62,"(60,65]",HS,34.461,27.720847457627123,1.24314381270903,8341.31761573864,2019
+1998,37,"(35,40]",NoHS,0,49.89752542372881,0,5612.430666919545,2019
+1998,37,"(35,40]",NoHS,0,49.89752542372881,0,5584.301898508106,2019
+1998,37,"(35,40]",NoHS,0,49.89752542372881,0,5606.389641489218,2019
+1998,37,"(35,40]",NoHS,0,49.89752542372881,0,5587.140201800459,2019
+1998,37,"(35,40]",NoHS,0,49.89752542372881,0,5608.575425368341,2019
+1998,51,"(50,55]",College,2446.731,232.8551186440678,10.507525083612041,2878.797230592255,2019
+1998,51,"(50,55]",College,2448.372,232.8551186440678,10.514572384137601,3144.1922244202856,2019
+1998,51,"(50,55]",College,2448.5543333333335,232.8551186440678,10.515355417529332,2928.568497321348,2019
+1998,51,"(50,55]",College,2448.5543333333335,232.8551186440678,10.515355417529332,2908.0793820182175,2019
+1998,51,"(50,55]",College,2446.731,232.8551186440678,10.507525083612041,3002.88492580016,2019
+1998,39,"(35,40]",College,11.2135,51.745581920903966,0.21670449116101284,5946.196176584487,2019
+1998,39,"(35,40]",College,11.2682,35.11307344632768,0.32091181130082735,5914.933585504807,2019
+1998,39,"(35,40]",College,11.012933333333333,48.04946892655367,0.22919989709287367,5940.012566310539,2019
+1998,39,"(35,40]",College,12.7451,14.78445197740113,0.8620610367892977,5917.757711552798,2019
+1998,39,"(35,40]",College,11.2135,60.98586440677967,0.18387047734873818,5941.780855451446,2019
+1998,21,"(20,25]",HS,-0.18233333333333335,36.96112994350283,-0.004933110367892976,5047.549686497803,2019
+1998,21,"(20,25]",HS,0.18233333333333335,36.96112994350283,0.004933110367892976,5028.2364239104245,2019
+1998,21,"(20,25]",HS,-5.834666666666667,36.96112994350283,-0.15785953177257522,5038.676366396988,2019
+1998,21,"(20,25]",HS,-3.829,36.96112994350283,-0.10359531772575249,5068.8157970418715,2019
+1998,21,"(20,25]",HS,2.188,36.96112994350283,0.05919732441471571,4995.126361118102,2019
+1998,39,"(35,40]",College,3439.3536666666664,129.36395480225988,26.586645962732916,771.0015511301932,2019
+1998,39,"(35,40]",College,3696.4436666666666,129.36395480225988,28.573984710941232,843.9336601828415,2019
+1998,39,"(35,40]",College,3659.977,129.36395480225988,28.29209268991878,772.2574284526188,2019
+1998,39,"(35,40]",College,3351.8336666666664,129.36395480225988,25.910105112279023,988.5142269543176,2019
+1998,39,"(35,40]",College,3340.8936666666664,129.36395480225988,25.82553750597229,772.699381794457,2019
+1998,51,"(50,55]",College,50898.35,7632.473333333333,6.668657429526995,16.988373072866104,2019
+1998,51,"(50,55]",College,49467.03333333334,7521.589943502825,6.576672446237664,17.31960725314636,2019
+1998,51,"(50,55]",College,50313.06,9425.088135593222,5.338205783985834,18.94060439607927,2019
+1998,51,"(50,55]",College,49904.63333333334,7761.837288135594,6.42948717948718,17.623763815881922,2019
+1998,51,"(50,55]",College,50765.246666666666,7613.9927683615815,6.667362080722149,18.931858893614667,2019
+1998,36,"(35,40]",NoHS,-19.983733333333333,29.56890395480226,-0.6758361204013378,6504.275811178677,2019
+1998,36,"(35,40]",NoHS,-19.983733333333333,36.96112994350283,-0.5406688963210701,6470.229953727652,2019
+1998,36,"(35,40]",NoHS,-20.020200000000003,27.720847457627123,-0.7222073578595317,6497.323452976407,2019
+1998,36,"(35,40]",NoHS,-20.038433333333334,31.416960451977403,-0.6378221522722801,6474.5471196475355,2019
+1998,36,"(35,40]",NoHS,-20.020200000000003,20.328621468926556,-0.9848282152629979,6500.641421422109,2019
+1998,42,"(40,45]",HS,6687.622,86.85865536723163,76.9943072653526,993.7146931365293,2019
+1998,42,"(40,45]",HS,6681.787333333333,86.85865536723163,76.9271329965132,1087.739491042529,2019
+1998,42,"(40,45]",HS,6685.7986666666675,88.70671186440678,75.36970457079153,995.3044876145484,2019
+1998,42,"(40,45]",HS,6689.81,86.85865536723163,77.01949761616737,1274.3299312635454,2019
+1998,42,"(40,45]",HS,6687.8043333333335,86.85865536723163,76.99640646125383,996.0861219997953,2019
+1998,42,"(40,45]",HS,68.68496666666667,121.97172881355934,0.5631220229046315,6299.7749947265065,2019
+1998,42,"(40,45]",HS,69.96130000000001,121.97172881355934,0.5735861964122834,6385.942766487615,2019
+1998,42,"(40,45]",HS,65.76763333333334,136.75618079096043,0.4809115972159451,6647.92953387552,2019
+1998,42,"(40,45]",HS,68.13796666666666,118.27561581920904,0.5760947951505015,6331.325124481943,2019
+1998,42,"(40,45]",HS,69.23196666666666,123.81978531073446,0.5591349273698397,6567.45262282622,2019
+1998,38,"(35,40]",College,845.662,214.37455367231638,3.9447872217737285,394.27666396512075,2019
+1998,38,"(35,40]",College,723.0428333333334,441.68550282485876,1.6370082982326026,377.0934284565653,2019
+1998,38,"(35,40]",College,775.1537,179.26148022598866,4.3241509499017345,388.56318390711493,2019
+1998,38,"(35,40]",College,1264.4816666666668,262.42402259887007,4.818467662160253,803.0187191834965,2019
+1998,38,"(35,40]",College,937.558,373.30741242937853,2.511490446703533,390.07343357187597,2019
+1998,48,"(45,50]",HS,465250.3394666666,1265.9187005649717,367.51991992773964,17.268444467120176,2019
+1998,48,"(45,50]",HS,464995.63803333335,1265.9187005649717,367.3187210409394,17.91468756555343,2019
+1998,48,"(45,50]",HS,465002.0197,1265.9187005649717,367.32376217562194,15.830599937145305,2019
+1998,48,"(45,50]",HS,425165.0854666667,1265.9187005649717,335.8549686302273,15.204111176697074,2019
+1998,48,"(45,50]",HS,464984.8803666667,1265.9187005649717,367.3102231281889,15.429581264837443,2019
+1998,49,"(45,50]",HS,811.5109666666667,109.03533333333333,7.442642140468228,6318.855944997659,2019
+1998,49,"(45,50]",HS,816.4704333333334,107.18727683615819,7.617232729788952,6054.942803628193,2019
+1998,49,"(45,50]",HS,835.9801,105.33922033898305,7.93607639500088,5642.274900980045,2019
+1998,49,"(45,50]",HS,810.7998666666667,123.81978531073446,6.548225428043729,6174.281280390614,2019
+1998,49,"(45,50]",HS,830.1636666666667,112.73144632768363,7.36408246066122,5632.610247920407,2019
+1998,50,"(45,50]",College,471.1311,81.31448587570623,5.7939381270903,10553.334075500763,2019
+1998,50,"(45,50]",College,450.78270000000003,72.07420338983052,6.2544250064316955,10174.650373158365,2019
+1998,50,"(45,50]",College,452.49663333333336,73.92225988700567,6.121249999999999,9881.289916979043,2019
+1998,50,"(45,50]",College,474.0119666666667,92.40282485875707,5.129842809364548,10062.590158865458,2019
+1998,50,"(45,50]",College,451.0379666666667,70.22614689265536,6.422650061608873,10318.796404198825,2019
+1998,25,"(20,25]",HS,50.1599,59.13780790960452,0.8481866638795987,8131.1317592327905,2019
+1998,25,"(20,25]",HS,61.57396666666667,55.441694915254246,1.110607580824972,8186.400469038628,2019
+1998,25,"(20,25]",HS,61.0452,59.13780790960452,1.0322533444816053,8377.523149625622,2019
+1998,25,"(20,25]",HS,52.639633333333336,57.289751412429375,0.9188315891681952,8127.8245055497855,2019
+1998,25,"(20,25]",HS,44.4164,60.98586440677967,0.728306476132563,8367.64419033044,2019
+1998,38,"(35,40]",College,55.6846,49.89752542372881,1.1159791898922335,8258.528575145665,2019
+1998,38,"(35,40]",College,54.17123333333333,62.833920903954805,0.8621335825300019,8371.488007179569,2019
+1998,38,"(35,40]",College,58.82073333333333,51.745581920903966,1.1367295747730528,8714.932845541922,2019
+1998,38,"(35,40]",College,56.6692,59.13780790960452,0.9582566889632107,8299.88840916401,2019
+1998,38,"(35,40]",College,52.2385,57.289751412429375,0.9118297550976374,8609.433701509572,2019
+1998,39,"(35,40]",NoHS,245.23833333333334,157.08480225988703,1.5611843399567182,7966.896091658213,2019
+1998,39,"(35,40]",NoHS,243.415,157.08480225988703,1.5495770214440288,8105.8808410745505,2019
+1998,39,"(35,40]",NoHS,243.77966666666666,157.08480225988703,1.5518984851465667,8501.478239983739,2019
+1998,39,"(35,40]",NoHS,243.6885,157.08480225988703,1.5513181192209324,8004.9713833870655,2019
+1998,39,"(35,40]",NoHS,244.14433333333335,157.08480225988703,1.5542199488491049,8362.71482883246,2019
+1998,25,"(20,25]",HS,90.07266666666668,33.265016949152546,2.707729468599034,7725.874322544844,2019
+1998,25,"(20,25]",HS,103.85706666666667,33.265016949152546,3.1221107395020438,7728.0571752053,2019
+1998,25,"(20,25]",HS,94.83156666666667,31.416960451977403,3.018483179224867,7861.281170896758,2019
+1998,25,"(20,25]",HS,93.8652,44.35335593220339,2.116304347826087,7762.828212790655,2019
+1998,25,"(20,25]",HS,91.58603333333335,40.65724293785311,2.252637579811493,7812.900680415626,2019
+1998,44,"(40,45]",HS,293.5566666666667,129.36395480225988,2.269230769230769,8029.609332349923,2019
+1998,44,"(40,45]",HS,305.0436666666667,129.36395480225988,2.358026755852843,7682.796625051946,2019
+1998,44,"(40,45]",HS,295.7446666666667,129.36395480225988,2.286144290492117,7174.157932076519,2019
+1998,44,"(40,45]",HS,281.158,129.36395480225988,2.1733874820831343,9846.073713050759,2019
+1998,44,"(40,45]",HS,292.098,129.36395480225988,2.2579550883898714,7151.595003906963,2019
+1998,53,"(50,55]",HS,23.88566666666667,73.92225988700567,0.3231187290969899,5689.2308563899915,2019
+1998,53,"(50,55]",HS,26.985333333333333,73.92225988700567,0.3650501672240802,5709.19337299927,2019
+1998,53,"(50,55]",HS,23.703333333333333,73.92225988700567,0.3206521739130434,5708.423152457061,2019
+1998,53,"(50,55]",HS,23.521,73.92225988700567,0.31818561872909695,5673.482026510863,2019
+1998,53,"(50,55]",HS,23.703333333333333,73.92225988700567,0.3206521739130434,5669.632145558161,2019
+1998,76,"(75,80]",NoHS,12.489833333333333,14.969257627118646,0.8343655807423922,5050.78165037892,2019
+1998,76,"(75,80]",NoHS,12.763333333333334,14.969257627118646,0.8526363598827367,5086.754552448892,2019
+1998,76,"(75,80]",NoHS,12.763333333333334,14.969257627118646,0.8526363598827367,5092.539871525526,2019
+1998,76,"(75,80]",NoHS,12.398666666666667,14.969257627118646,0.8282753210289442,5039.762726276654,2019
+1998,76,"(75,80]",NoHS,12.653933333333333,14.969257627118646,0.8453280482265988,5092.085097861198,2019
+1998,47,"(45,50]",College,400.5881566666667,177.41342372881357,2.257936001950948,6400.9898057449345,2019
+1998,47,"(45,50]",College,406.3316566666667,177.41342372881357,2.290309538740245,6033.6200843670285,2019
+1998,47,"(45,50]",College,396.12099,177.41342372881357,2.2327565844481603,6091.055711596936,2019
+1998,47,"(45,50]",College,356.5546566666667,177.41342372881357,2.0097388865663324,6078.011419896705,2019
+1998,47,"(45,50]",College,356.5546566666667,177.41342372881357,2.0097388865663324,6355.930995287539,2019
+1998,48,"(45,50]",College,308.8726666666667,240.24734463276835,1.2856444558785698,5524.956495073181,2019
+1998,48,"(45,50]",College,310.696,240.24734463276835,1.293233856444559,5480.912098446825,2019
+1998,48,"(45,50]",College,308.8726666666667,240.24734463276835,1.2856444558785698,5458.286404303734,2019
+1998,48,"(45,50]",College,310.696,240.24734463276835,1.293233856444559,5545.392850989073,2019
+1998,48,"(45,50]",College,308.8726666666667,240.24734463276835,1.2856444558785698,5477.908321580797,2019
+1998,41,"(40,45]",College,1748.3943333333332,395.4840903954802,4.4208967586659575,1385.163233849113,2019
+1998,41,"(40,45]",College,1744.5653333333332,393.636033898305,4.431924882629109,1407.616158424751,2019
+1998,41,"(40,45]",College,1748.3943333333332,395.4840903954802,4.4208967586659575,1378.497173748472,2019
+1998,41,"(40,45]",College,1750.2176666666667,395.4840903954802,4.425507142187354,1560.9062993657612,2019
+1998,41,"(40,45]",College,1748.3943333333332,395.4840903954802,4.4208967586659575,1431.0751769680696,2019
+1998,55,"(50,55]",College,2086.4403333333335,554.4169491525424,3.7633054626532885,3591.757076447043,2019
+1998,55,"(50,55]",College,2086.6226666666666,554.4169491525424,3.7636343366778147,3902.9929717745217,2019
+1998,55,"(50,55]",College,2086.9873333333335,554.4169491525424,3.764292084726867,3651.9256415090304,2019
+1998,55,"(50,55]",College,2086.6226666666666,554.4169491525424,3.7636343366778147,3625.8923261798855,2019
+1998,55,"(50,55]",College,2081.5173333333332,554.4169491525424,3.754425863991081,3741.6197839906877,2019
+1998,68,"(65,70]",College,38806.185666666664,1036.7596949152544,37.43026070263921,410.0844390573279,2019
+1998,68,"(65,70]",College,39809.019,874.1307231638418,45.54126510496581,409.24260336737694,2019
+1998,68,"(65,70]",College,43609.575000000004,863.0423841807909,50.53005020303224,401.4830055523254,2019
+1998,68,"(65,70]",College,39834.363333333335,933.2685310734463,42.68263849796351,396.0547782505392,2019
+1998,68,"(65,70]",College,41467.88766666666,953.5971525423727,43.48575030463302,378.47519618782866,2019
+1998,40,"(35,40]",HS,17.3399,40.65724293785311,0.42648981453329277,4804.172054304212,2019
+1998,40,"(35,40]",HS,16.610566666666667,38.80918644067796,0.42800605191909546,4823.987881143565,2019
+1998,40,"(35,40]",HS,15.881233333333334,40.65724293785311,0.39061264822134384,4844.679044437262,2019
+1998,40,"(35,40]",HS,15.534799999999999,38.80918644067796,0.40028666985188727,4819.039275145808,2019
+1998,40,"(35,40]",HS,16.6288,38.80918644067796,0.42847587195413284,4775.579407220501,2019
+1998,69,"(65,70]",College,495.3267333333333,114.57950282485875,4.322996008199374,9015.689689660285,2019
+1998,69,"(65,70]",College,537.9927333333333,116.4275593220339,4.620836651271433,8622.603945408915,2019
+1998,69,"(65,70]",College,506.5584666666667,97.9469943502825,5.171761216634063,7985.71885544142,2019
+1998,69,"(65,70]",College,427.40756666666664,105.33922033898305,4.0574400046940085,8761.028533566863,2019
+1998,69,"(65,70]",College,518.009,129.36395480225988,4.004276158623985,7964.079807420237,2019
+1998,31,"(30,35]",HS,0.1641,40.65724293785311,0.0040361812100942526,4901.259815429509,2019
+1998,31,"(30,35]",HS,0.1641,40.65724293785311,0.0040361812100942526,4915.771037083151,2019
+1998,31,"(30,35]",HS,0.1641,40.65724293785311,0.0040361812100942526,4916.015957733098,2019
+1998,31,"(30,35]",HS,0.1641,40.65724293785311,0.0040361812100942526,4940.485593404997,2019
+1998,31,"(30,35]",HS,0.1641,40.65724293785311,0.0040361812100942526,4921.735377697607,2019
+1998,53,"(50,55]",HS,3604.73,462.0141242937853,7.802207357859532,157.4560047522761,2019
+1998,53,"(50,55]",HS,3604.73,462.0141242937853,7.802207357859532,157.010295472491,2019
+1998,53,"(50,55]",HS,3604.73,462.0141242937853,7.802207357859532,147.54209426197204,2019
+1998,53,"(50,55]",HS,3604.73,462.0141242937853,7.802207357859532,164.8928659601079,2019
+1998,53,"(50,55]",HS,3604.73,462.0141242937853,7.802207357859532,156.49360032647812,2019
+1998,52,"(50,55]",NoHS,132.2646,42.50529943502825,3.1117202268431003,9207.148487729337,2019
+1998,52,"(50,55]",NoHS,132.44693333333333,42.50529943502825,3.1160098880325724,9362.024002595199,2019
+1998,52,"(50,55]",NoHS,132.44693333333333,42.50529943502825,3.1160098880325724,9775.67120032935,2019
+1998,52,"(50,55]",NoHS,132.44693333333333,42.50529943502825,3.1160098880325724,9197.080576827062,2019
+1998,52,"(50,55]",NoHS,132.44693333333333,42.50529943502825,3.1160098880325724,9688.95834788433,2019
+1998,29,"(25,30]",HS,8.4785,27.720847457627123,0.30585284280936453,6283.584949133439,2019
+1998,29,"(25,30]",HS,7.202166666666667,27.720847457627123,0.25981047937569673,6258.685160482134,2019
+1998,29,"(25,30]",HS,13.219166666666666,27.720847457627123,0.47686733556298766,6246.452490239468,2019
+1998,29,"(25,30]",HS,11.578166666666666,27.720847457627123,0.41767001114827196,6277.395713849843,2019
+1998,29,"(25,30]",HS,9.937166666666666,27.720847457627123,0.35847268673355626,6263.72928192084,2019
+1998,68,"(65,70]",HS,13568.699666666666,184.80564971751414,73.42145484949832,299.3795337464169,2019
+1998,68,"(65,70]",HS,13568.699666666666,184.80564971751414,73.42145484949832,299.06473041804315,2019
+1998,68,"(65,70]",HS,13568.699666666666,184.80564971751414,73.42145484949832,285.01372738225047,2019
+1998,68,"(65,70]",HS,13568.699666666666,184.80564971751414,73.42145484949832,305.7523090027176,2019
+1998,68,"(65,70]",HS,13568.699666666666,184.80564971751414,73.42145484949832,295.6368007403637,2019
+1998,63,"(60,65]",HS,5033.676333333333,524.8480451977401,9.59073083988883,2578.2076533218283,2019
+1998,63,"(60,65]",HS,5033.858666666667,526.6961016949153,9.557425335915038,2520.2262744593354,2019
+1998,63,"(60,65]",HS,5033.676333333333,526.6961016949153,9.557079152731324,2467.1385493662638,2019
+1998,63,"(60,65]",HS,5033.858666666667,524.8480451977401,9.591078242027416,2912.2160746417403,2019
+1998,63,"(60,65]",HS,5033.858666666667,526.6961016949153,9.557425335915038,2643.5531336169297,2019
+1998,57,"(55,60]",HS,11.487,55.441694915254246,0.20719063545150498,5300.679638165507,2019
+1998,57,"(55,60]",HS,12.9639,55.441694915254246,0.23382943143812707,5262.596985664968,2019
+1998,57,"(55,60]",HS,13.128,55.441694915254246,0.23678929765886284,5390.650694213805,2019
+1998,57,"(55,60]",HS,11.487,55.441694915254246,0.20719063545150498,5293.441223805148,2019
+1998,57,"(55,60]",HS,11.669333333333334,55.441694915254246,0.21047937569676697,5347.270545420748,2019
+1998,57,"(55,60]",College,2061.825333333333,277.2084745762712,7.437814938684503,1821.5937277176727,2019
+1998,57,"(55,60]",College,2061.643,277.2084745762712,7.4371571906354506,1865.9473028180332,2019
+1998,57,"(55,60]",College,2061.825333333333,277.2084745762712,7.437814938684503,1830.2227964342412,2019
+1998,57,"(55,60]",College,2061.643,277.2084745762712,7.4371571906354506,2043.9367692586661,2019
+1998,57,"(55,60]",College,2061.825333333333,277.2084745762712,7.437814938684503,1866.2970206459763,2019
+1998,51,"(50,55]",HS,82.96166666666667,59.13780790960452,1.4028532608695654,7342.4950067421905,2019
+1998,51,"(50,55]",HS,102.81776666666667,48.04946892655367,2.1398314895806534,7508.022281353905,2019
+1998,51,"(50,55]",HS,139.19326666666666,70.22614689265536,1.982071818341841,7889.910192832252,2019
+1998,51,"(50,55]",HS,111.6974,59.13780790960452,1.8887646321070235,7320.5308732268795,2019
+1998,51,"(50,55]",HS,91.82306666666666,49.89752542372881,1.8402328750154837,7735.7505020869285,2019
+1998,46,"(45,50]",HS,198.14163333333335,105.33922033898305,1.8809863286979993,6399.0161651591325,2019
+1998,46,"(45,50]",HS,198.14163333333335,105.33922033898305,1.8809863286979993,6482.562783264771,2019
+1998,46,"(45,50]",HS,198.14163333333335,105.33922033898305,1.8809863286979993,6718.784634793342,2019
+1998,46,"(45,50]",HS,198.14163333333335,105.33922033898305,1.8809863286979993,6393.47539557341,2019
+1998,46,"(45,50]",HS,198.14163333333335,105.33922033898305,1.8809863286979993,6687.732977001843,2019
+1998,71,"(70,75]",College,61847.4849,1835.1201016949153,33.70214562135618,15.134541716248247,2019
+1998,71,"(70,75]",College,20256.3399,2439.4345762711864,8.303702873213743,14.418271434568833,2019
+1998,71,"(70,75]",HS,34264.99166666666,3640.6712994350282,9.411723511535914,11.619529147179684,2019
+1998,71,"(70,75]",College,84526.21429999999,3917.8797740112996,21.57447884457626,13.033395147043223,2019
+1998,71,"(70,75]",HS,29489.225833333334,2846.007005649717,10.361613929548714,11.198182714031596,2019
+1998,45,"(40,45]",HS,48.04483333333334,66.53003389830509,0.7221525455221107,7155.442143712459,2019
+1998,45,"(40,45]",HS,48.22716666666666,60.98586440677967,0.7907925407925406,7295.19910549927,2019
+1998,45,"(40,45]",HS,48.22716666666666,79.46642937853107,0.6068872987477638,7557.6316657312,2019
+1998,45,"(40,45]",HS,46.2215,90.55476836158192,0.5104259094942325,7176.4429634231055,2019
+1998,45,"(40,45]",HS,48.22716666666666,81.31448587570623,0.5930944055944054,7536.219989272929,2019
+1998,21,"(20,25]",HS,0.2735,20.328621468926556,0.013453937366980844,5010.597179455593,2019
+1998,21,"(20,25]",HS,0.2735,20.328621468926556,0.013453937366980844,5015.723997413215,2019
+1998,21,"(20,25]",HS,0.2735,24.024734463276836,0.011384100848983792,5048.64969836646,2019
+1998,21,"(20,25]",HS,0.2735,22.176677966101696,0.012332775919732442,4983.098468423565,2019
+1998,21,"(20,25]",HS,0.2735,20.328621468926556,0.013453937366980844,5011.761394309729,2019
+1998,72,"(70,75]",College,19151.017,1108.8338983050849,17.2713127090301,410.0844390573279,2019
+1998,72,"(70,75]",College,18796.196333333333,1108.8338983050849,16.951318283166106,409.24260336737694,2019
+1998,72,"(70,75]",College,23010.649,1108.8338983050849,20.752115384615383,401.4830055523254,2019
+1998,72,"(70,75]",College,18528.16633333333,1108.8338983050849,16.70959587513935,396.0547782505392,2019
+1998,72,"(70,75]",College,22193.066333333332,1108.8338983050849,20.014779821627645,378.47519618782866,2019
+1998,30,"(25,30]",College,40.78796666666667,46.201412429378536,0.8828294314381271,5278.645019127895,2019
+1998,30,"(25,30]",College,20.5672,48.04946892655367,0.4280421919217906,5269.7347475066135,2019
+1998,30,"(25,30]",College,142.2929333333333,68.37809039548021,2.080972611407394,9898.107776613564,2019
+1998,30,"(25,30]",College,18.452133333333336,51.745581920903966,0.35659340659340655,5203.835617417941,2019
+1998,30,"(25,30]",College,103.01833333333333,66.53003389830509,1.548448532144184,10088.575280350666,2019
+1998,60,"(55,60]",College,3329.4066666666668,240.24734463276835,13.85824543349627,184.85193233772293,2019
+1998,60,"(55,60]",College,2676.6533333333336,145.99646327683615,18.333686126751623,127.64627424132951,2019
+1998,60,"(55,60]",College,2487.0266666666666,160.78091525423727,15.46841963633568,125.37208021120038,2019
+1998,60,"(55,60]",College,3940.2233333333334,155.23674576271185,25.382027392896962,192.01559982895907,2019
+1998,60,"(55,60]",College,2532.61,199.59010169491523,12.689056112969158,122.35978533249525,2019
+1998,44,"(40,45]",HS,2465.2013666666667,404.724372881356,6.09106229287885,182.33691989144364,2019
+1998,44,"(40,45]",HS,6013.426266666666,375.1554689265537,16.029157948498277,180.98444902747238,2019
+1998,44,"(40,45]",HS,2968.569,371.4593559322034,7.991638795986622,169.76309155991544,2019
+1998,44,"(40,45]",HS,4388.581,463.8621807909605,9.460958840224386,185.3697193082039,2019
+1998,44,"(40,45]",HS,9984.938,613.5547570621469,16.273915058226216,179.299402800348,2019
+1998,59,"(55,60]",HS,28408.809666666668,881.5229491525424,32.22696549644868,466.8321139745203,2019
+1998,59,"(55,60]",HS,28444,182.957593220339,155.46772068511197,472.64880654070583,2019
+1998,59,"(55,60]",HS,27572.81133333333,848.2579322033899,32.5052207430724,461.4263979654585,2019
+1998,59,"(55,60]",College,27339.607,1657.7066779661018,16.492427377769822,454.2407996241676,2019
+1998,59,"(55,60]",NoHS,26992.262,598.7703050847458,45.079493372971626,433.5662536044084,2019
+1998,63,"(60,65]",HS,3387.4616,231.00706214689265,14.663887625418061,3367.3833616380807,2019
+1998,63,"(60,65]",HS,4203.0386,203.28621468926553,20.675472788081482,3623.8764854168826,2019
+1998,63,"(60,65]",HS,1058.4085333333335,214.37455367231638,4.937192941990544,1252.4824420253085,2019
+1998,63,"(60,65]",HS,2939.6691666666666,173.71731073446327,16.922142958798833,4087.8618361036074,2019
+1998,63,"(60,65]",HS,844.5315333333333,147.84451977401133,5.712295150501671,1310.0431083852145,2019
+1998,70,"(65,70]",College,968.9193333333334,85.0105988700565,11.397629780427513,900.0413878172683,2019
+1998,70,"(65,70]",College,996.2693333333334,72.07420338983052,13.822828230854986,830.2705037486069,2019
+1998,70,"(65,70]",College,1096.3703333333333,62.833920903954805,17.448701554200273,877.5261082386385,2019
+1998,70,"(65,70]",College,951.0506666666666,60.98586440677967,15.594608290260462,944.3050749095613,2019
+1998,70,"(65,70]",College,965.0903333333334,53.593638418079095,18.00755391535002,922.2489533271058,2019
+1998,68,"(65,70]",HS,27.897000000000002,92.40282485875707,0.30190635451505016,8856.36967669698,2019
+1998,68,"(65,70]",HS,27.71466666666667,92.40282485875707,0.299933110367893,9175.303881120002,2019
+1998,68,"(65,70]",HS,27.71466666666667,92.40282485875707,0.299933110367893,9338.571339775284,2019
+1998,68,"(65,70]",HS,27.897000000000002,92.40282485875707,0.30190635451505016,8880.772410351696,2019
+1998,68,"(65,70]",HS,27.71466666666667,92.40282485875707,0.299933110367893,9239.579770992585,2019
+1998,40,"(35,40]",HS,146.41366666666667,42.50529943502825,3.4445979351461395,6826.339782531761,2019
+1998,40,"(35,40]",HS,146.41366666666667,42.50529943502825,3.4445979351461395,6963.940242826973,2019
+1998,40,"(35,40]",HS,146.596,42.50529943502825,3.4488875963356116,7246.378338305108,2019
+1998,40,"(35,40]",HS,146.41366666666667,42.50529943502825,3.4445979351461395,6886.625260520998,2019
+1998,40,"(35,40]",HS,146.41366666666667,42.50529943502825,3.4445979351461395,7171.519562005509,2019
+1998,52,"(50,55]",College,1160.0046666666667,369.6112994350283,3.1384448160535117,146.35463681873222,2019
+1998,52,"(50,55]",College,1160.0046666666667,369.6112994350283,3.1384448160535117,151.16105233492448,2019
+1998,52,"(50,55]",College,1158.1813333333332,369.6112994350283,3.133511705685618,144.76647532739747,2019
+1998,52,"(50,55]",College,1160.0046666666667,369.6112994350283,3.1384448160535117,150.59131910585626,2019
+1998,52,"(50,55]",College,1160.0046666666667,369.6112994350283,3.1384448160535117,145.75567090354554,2019
+1998,23,"(20,25]",NoHS,-1.094,9.240282485875708,-0.11839464882943142,4862.090421818106,2019
+1998,23,"(20,25]",NoHS,-1.094,9.240282485875708,-0.11839464882943142,4856.073701276828,2019
+1998,23,"(20,25]",NoHS,-1.094,9.240282485875708,-0.11839464882943142,4869.6529344864075,2019
+1998,23,"(20,25]",NoHS,-1.094,9.240282485875708,-0.11839464882943142,4872.482873111088,2019
+1998,23,"(20,25]",NoHS,-1.094,9.240282485875708,-0.11839464882943142,4791.266042565949,2019
+1998,51,"(50,55]",College,34621.818,2753.6041807909605,12.573273327198041,12.827327900564516,2019
+1998,51,"(50,55]",College,19030.49466666667,3308.021129943503,5.752833467237159,13.939333164601404,2019
+1998,51,"(50,55]",College,54395.868,4398.374463276836,12.36726623759872,16.178579613961055,2019
+1998,51,"(50,55]",College,27815.31466666667,3529.7879096045203,7.880165998354024,12.711287252851669,2019
+1998,51,"(50,55]",College,40434.604666666666,2236.148361581921,18.082254899250945,13.739997953806727,2019
+1998,34,"(30,35]",HS,2.4159166666666665,62.833920903954805,0.03844924257328349,5954.454893062259,2019
+1998,34,"(30,35]",HS,2.4250333333333334,62.833920903954805,0.03859433405469211,5972.801485283251,2019
+1998,34,"(30,35]",HS,2.4159166666666665,62.833920903954805,0.03844924257328349,6011.665139868,2019
+1998,34,"(30,35]",HS,2.4159166666666665,62.833920903954805,0.03844924257328349,5948.478998678491,2019
+1998,34,"(30,35]",HS,2.4341500000000003,62.833920903954805,0.03873942553610073,6037.938854480729,2019
+1998,50,"(45,50]",HS,1077.2253333333333,729.9823163841808,1.4756868887854029,552.1293889364304,2019
+1998,50,"(45,50]",HS,1075.402,729.9823163841808,1.4731891113839382,578.5535967973275,2019
+1998,50,"(45,50]",HS,1073.5786666666668,729.9823163841808,1.4706913339824734,554.877819282644,2019
+1998,50,"(45,50]",HS,1077.0430000000001,729.9823163841808,1.4754371110452567,585.290131992649,2019
+1998,50,"(45,50]",HS,1075.402,729.9823163841808,1.4731891113839382,551.255852098807,2019
+1998,94,"(90,95]",NoHS,595.8653333333334,9.79469943502825,60.83548936707263,8237.591110975842,2019
+1998,94,"(90,95]",NoHS,595.8653333333334,9.609893785310735,62.005402624131726,7901.505034877393,2019
+1998,94,"(90,95]",NoHS,595.8653333333334,9.609893785310735,62.005402624131726,7373.810546903437,2019
+1998,94,"(90,95]",NoHS,595.8653333333334,9.79469943502825,60.83548936707263,8029.390522821346,2019
+1998,94,"(90,95]",NoHS,595.8653333333334,9.609893785310735,62.005402624131726,7353.369327265615,2019
+1998,34,"(30,35]",NoHS,0.09116666666666667,8.685865536723163,0.010495979506155271,5258.836997973574,2019
+1998,34,"(30,35]",NoHS,0.1641,9.425088135593223,0.017410977769034032,5234.085886021813,2019
+1998,34,"(30,35]",NoHS,0.7293333333333334,8.501059887005649,0.08579322378944308,5279.523695849626,2019
+1998,34,"(30,35]",NoHS,0.8205,8.316254237288137,0.09866220735785952,5234.112167057585,2019
+1998,34,"(30,35]",NoHS,0.8205,7.946642937853107,0.10325114723496928,5268.0142054452035,2019
+1998,43,"(40,45]",HS,207.49533333333335,66.53003389830509,3.118821999256782,6702.57391119631,2019
+1998,43,"(40,45]",HS,207.31300000000002,66.53003389830509,3.11608138238573,6794.251131331209,2019
+1998,43,"(40,45]",HS,207.31300000000002,66.53003389830509,3.11608138238573,7072.988970959252,2019
+1998,43,"(40,45]",HS,207.49533333333335,66.53003389830509,3.118821999256782,6736.141312694085,2019
+1998,43,"(40,45]",HS,207.13066666666666,66.53003389830509,3.113340765514678,6987.366477313968,2019
+1998,76,"(75,80]",HS,34705.3449,1885.017627118644,18.411151386976194,14.877212580377346,2019
+1998,76,"(75,80]",HS,33964.14166666666,680.084790960452,49.94103987930783,16.271566775185565,2019
+1998,76,"(75,80]",HS,31084.551333333333,1029.3674689265536,30.197720708765907,13.603227854163862,2019
+1998,76,"(75,80]",HS,57200.70166666667,1570.84802259887,36.41389927208341,15.204111176697074,2019
+1998,76,"(75,80]",HS,89722.6049,3511.307344632768,25.552478348882243,15.429581264837443,2019
+1998,37,"(35,40]",College,417.908,49.89752542372881,8.375325157933855,141.67415169731936,2019
+1998,37,"(35,40]",College,390.7403333333333,38.80918644067796,10.068243350852047,144.38018161641372,2019
+1998,37,"(35,40]",College,390.558,31.416960451977403,12.431438127090301,130.73934947506643,2019
+1998,37,"(35,40]",College,390.558,44.35335593220339,8.805602006688963,141.42190997062139,2019
+1998,37,"(35,40]",College,390.7403333333333,22.176677966101696,17.61942586399108,135.2150979193271,2019
+1998,92,"(90,95]",NoHS,138.57333333333335,27.720847457627123,4.998885172798216,7898.19834497635,2019
+1998,92,"(90,95]",NoHS,140.39666666666665,27.720847457627123,5.064659977703455,8056.806186104882,2019
+1998,92,"(90,95]",NoHS,138.57333333333335,27.720847457627123,4.998885172798216,8419.218086011888,2019
+1998,92,"(90,95]",NoHS,138.57333333333335,27.720847457627123,4.998885172798216,7982.263733784947,2019
+1998,92,"(90,95]",NoHS,138.57333333333335,27.720847457627123,4.998885172798216,8339.463073581117,2019
+1998,38,"(35,40]",NoHS,40.93383333333334,66.53003389830509,0.6152684875510963,5453.384481437618,2019
+1998,38,"(35,40]",NoHS,40.93383333333334,66.53003389830509,0.6152684875510963,5475.878122662592,2019
+1998,38,"(35,40]",NoHS,40.93383333333334,66.53003389830509,0.6152684875510963,5499.365389049659,2019
+1998,38,"(35,40]",NoHS,40.93383333333334,66.53003389830509,0.6152684875510963,5470.260786137618,2019
+1998,38,"(35,40]",NoHS,40.93383333333334,66.53003389830509,0.6152684875510963,5420.927963201589,2019
+1998,51,"(50,55]",HS,7.658,42.50529943502825,0.18016576995783046,5183.4065749795245,2019
+1998,51,"(50,55]",HS,7.658,42.50529943502825,0.18016576995783046,5172.484304329302,2019
+1998,51,"(50,55]",HS,7.840333333333334,42.50529943502825,0.18445543114730262,5138.908866148338,2019
+1998,51,"(50,55]",HS,7.658,42.50529943502825,0.18016576995783046,5178.897662827278,2019
+1998,51,"(50,55]",HS,7.840333333333334,42.50529943502825,0.18445543114730262,5159.525317715239,2019
+1998,41,"(40,45]",HS,1081.0543333333333,110.88338983050849,9.74947045707915,5687.639943747859,2019
+1998,41,"(40,45]",HS,550.282,121.97172881355934,4.511553663727576,5441.980942745127,2019
+1998,41,"(40,45]",HS,655.1236666666666,103.49116384180793,6.330237697085521,5081.695201887533,2019
+1998,41,"(40,45]",HS,723.134,110.88338983050849,6.521571906354514,5555.094951638459,2019
+1998,41,"(40,45]",HS,1051.5163333333333,101.64310734463277,10.345180906050471,5065.7131277674325,2019
+1998,59,"(55,60]",College,842.1976666666667,415.8127118644068,2.025425492382014,125.38386507050382,2019
+1998,59,"(55,60]",College,851.3143333333334,170.021197740113,5.007107023411371,130.63203558695398,2019
+1998,59,"(55,60]",College,836.7276666666667,365.915186440678,2.286671058410189,123.07863157690542,2019
+1998,59,"(55,60]",College,860.6133333333333,373.30741242937853,2.3053743501440445,127.57000744766977,2019
+1998,59,"(55,60]",College,833.081,140.45229378531073,5.931416123921845,122.82493307682876,2019
+1998,28,"(25,30]",NoHS,0,17.371731073446327,0,4261.097816550355,2019
+1998,28,"(25,30]",NoHS,0,17.55653672316384,0,4230.298831027349,2019
+1998,28,"(25,30]",NoHS,0,17.371731073446327,0,4253.335516417037,2019
+1998,28,"(25,30]",NoHS,0,17.371731073446327,0,4262.027298923893,2019
+1998,28,"(25,30]",NoHS,0,17.55653672316384,0,4243.898780377298,2019
+1998,68,"(65,70]",HS,503.6046666666667,51.745581920903966,9.732322025800284,7299.009953130643,2019
+1998,68,"(65,70]",HS,501.78133333333335,51.745581920903966,9.697085523172477,6980.0848560043105,2019
+1998,68,"(65,70]",HS,503.6046666666667,51.745581920903966,9.732322025800284,6464.793908467775,2019
+1998,68,"(65,70]",HS,501.78133333333335,51.745581920903966,9.697085523172477,7090.890313262453,2019
+1998,68,"(65,70]",HS,503.6046666666667,51.745581920903966,9.732322025800284,6446.423421190893,2019
+1998,88,"(85,90]",HS,3946.605,170.021197740113,23.21242911153119,1156.0776227201272,2019
+1998,88,"(85,90]",HS,4219.558,114.57950282485875,36.826464559283636,1268.4115766981058,2019
+1998,88,"(85,90]",HS,6771.860000000001,267.96819209039546,25.271133663937267,1160.2437530432053,2019
+1998,88,"(85,90]",HS,6783.529333333333,162.62897175141245,41.71169048342961,1479.2320920309107,2019
+1998,88,"(85,90]",HS,3655.7833333333338,245.7915141242938,14.873513214474313,1161.3885946101234,2019
+1998,27,"(25,30]",College,29.2098,36.96112994350283,0.7902842809364548,5152.5835326268625,2019
+1998,27,"(25,30]",College,28.845133333333337,36.96112994350283,0.7804180602006688,5135.016128318215,2019
+1998,27,"(25,30]",College,29.2098,38.80918644067796,0.7526516961299571,5137.583172150191,2019
+1998,27,"(25,30]",College,29.0457,38.80918644067796,0.7484233158146203,5174.137685732227,2019
+1998,27,"(25,30]",College,29.0457,36.96112994350283,0.785844481605351,5134.334983053671,2019
+1998,68,"(65,70]",HS,14.349633333333333,44.35335593220339,0.3235298216276477,9641.279069639673,2019
+1998,68,"(65,70]",HS,14.349633333333333,46.201412429378536,0.3105886287625418,9634.27140018102,2019
+1998,68,"(65,70]",HS,14.349633333333333,46.201412429378536,0.3105886287625418,9567.813559112106,2019
+1998,68,"(65,70]",HS,14.349633333333333,46.201412429378536,0.3105886287625418,9574.064956087908,2019
+1998,68,"(65,70]",HS,14.349633333333333,44.35335593220339,0.3235298216276477,9566.87084341561,2019
+1998,69,"(65,70]",HS,6487.967000000001,1557.911627118644,4.164528261464669,24.93461473541667,2019
+1998,69,"(65,70]",HS,3459.209766666667,2014.381581920904,1.7172564511675004,27.34510474494477,2019
+1998,69,"(65,70]",HS,5410.960466666667,870.4346101694916,6.216389380028261,21.630808375156732,2019
+1998,69,"(65,70]",HS,2460.5883333333336,722.5900903954803,3.405233985407454,15.576478209994296,2019
+1998,69,"(65,70]",HS,3751.326,1249.2861920903956,3.0027755239358016,22.797055148777083,2019
+1998,37,"(35,40]",College,487.8693,120.12367231638417,4.061391818883458,4682.936742749192,2019
+1998,37,"(35,40]",College,496.9130333333333,112.73144632768363,4.407936290366796,4480.336189563835,2019
+1998,37,"(35,40]",College,501.7631,114.57950282485875,4.3791698133563495,4183.674463164471,2019
+1998,37,"(35,40]",College,512.539,116.4275593220339,4.402213728300684,4573.522865182306,2019
+1998,37,"(35,40]",College,530.7905666666667,138.6042372881356,3.829540691192865,4170.852934007986,2019
+1998,40,"(35,40]",HS,183.39086666666668,171.86925423728815,1.0670370769950013,4680.835745526401,2019
+1998,40,"(35,40]",HS,159.54166666666666,168.17314124293785,0.9486750707486493,4471.051288635323,2019
+1998,40,"(35,40]",HS,182.05983333333336,145.99646327683615,1.2470153676813007,4426.1275306134585,2019
+1998,40,"(35,40]",HS,194.00266666666667,182.957593220339,1.0603695821087125,4430.053433940548,2019
+1998,40,"(35,40]",HS,170.44520000000003,157.08480225988703,1.0850521345662012,4666.679015373502,2019
+1998,46,"(45,50]",HS,638.5678,112.73144632768363,5.664504632929437,45.74139979262904,2019
+1998,46,"(45,50]",HS,687.6701666666667,136.75618079096043,5.028439392569828,46.78927339351464,2019
+1998,46,"(45,50]",HS,710.0971666666667,131.21201129943503,5.411830514861745,47.82979979625332,2019
+1998,46,"(45,50]",HS,657.0199333333334,114.57950282485875,5.734183838601791,45.67059326296981,2019
+1998,46,"(45,50]",HS,725.3402333333333,114.57950282485875,6.330453662746791,53.06439496628953,2019
+1998,29,"(25,30]",HS,115.32583333333334,49.89752542372881,2.3112535612535616,11119.215648778109,2019
+1998,29,"(25,30]",HS,113.95833333333333,49.89752542372881,2.283847392543045,11358.174711240603,2019
+1998,29,"(25,30]",HS,118.99073333333334,49.89752542372881,2.384702093397746,11419.461030634211,2019
+1998,29,"(25,30]",HS,115.30760000000001,49.89752542372881,2.310888145670755,11177.913055748082,2019
+1998,29,"(25,30]",HS,115.48993333333334,49.89752542372881,2.3145423014988236,11412.087047251216,2019
+1998,41,"(40,45]",HS,44.525800000000004,62.833920903954805,0.7086267951996853,7527.304670853448,2019
+1998,41,"(40,45]",HS,71.96696666666666,48.04946892655367,1.4977682016979676,7630.2624862353205,2019
+1998,41,"(40,45]",HS,69.96130000000001,92.40282485875707,0.7571337792642141,7943.298145367839,2019
+1998,41,"(40,45]",HS,49.230000000000004,53.593638418079095,0.9185791719524854,7565.00243613442,2019
+1998,41,"(40,45]",HS,68.0468,66.53003389830509,1.022798216276477,7847.140071635949,2019
+1998,45,"(40,45]",College,7565.01,340.042395480226,22.24725534389996,210.4318284884508,2019
+1998,45,"(40,45]",College,11959.243333333334,622.7950395480226,19.20253466054008,209.38568558777993,2019
+1998,45,"(40,45]",College,12870.91,781.7278983050846,16.464693185322236,201.77189031955086,2019
+1998,45,"(40,45]",College,13780.753333333334,406.57242937853107,33.89495287321375,220.22539405255057,2019
+1998,45,"(40,45]",College,10682.91,929.5724180790961,11.492283755660019,206.02250552194423,2019
+1998,45,"(40,45]",HS,166032.18633333335,22638.69209039548,7.33400081905672,5.710780875736847,2019
+1998,45,"(40,45]",HS,151582.452,21622.261016949153,7.010481090815539,5.516363967594299,2019
+1998,45,"(40,45]",HS,165144.40533333336,21215.688587570625,7.784070012702038,5.272731554284505,2019
+1998,45,"(40,45]",HS,116178.78866666667,24320.42350282486,4.777005164123573,5.392648079705814,2019
+1998,45,"(40,45]",HS,132829.28633333332,24117.137288135596,5.507672189546251,5.02074925313436,2019
+1998,49,"(45,50]",HS,21.9347,40.65724293785311,0.5395028884159319,5323.04120393186,2019
+1998,49,"(45,50]",HS,21.9347,40.65724293785311,0.5395028884159319,5311.824700678521,2019
+1998,49,"(45,50]",HS,21.9347,40.65724293785311,0.5395028884159319,5277.344781287278,2019
+1998,49,"(45,50]",HS,21.9347,40.65724293785311,0.5395028884159319,5318.410827204867,2019
+1998,49,"(45,50]",HS,21.9347,40.65724293785311,0.5395028884159319,5298.516614826095,2019
+1998,29,"(25,30]",HS,-24.104466666666667,29.56890395480226,-0.8151964882943145,5305.122519869752,2019
+1998,29,"(25,30]",HS,-24.122700000000002,29.56890395480226,-0.8158131270903011,5305.439302844756,2019
+1998,29,"(25,30]",HS,-24.122700000000002,29.56890395480226,-0.8158131270903011,5309.826679155001,2019
+1998,29,"(25,30]",HS,-24.122700000000002,29.56890395480226,-0.8158131270903011,5298.9113294268955,2019
+1998,29,"(25,30]",HS,-24.122700000000002,29.56890395480226,-0.8158131270903011,5350.528051868545,2019
+1998,66,"(65,70]",NoHS,284.8046666666667,68.37809039548021,4.165145078188558,8028.75450640381,2019
+1998,66,"(65,70]",NoHS,720.399,68.37809039548021,10.535523818132516,6661.1557474024185,2019
+1998,66,"(65,70]",NoHS,200.93133333333336,68.37809039548021,2.9385338515773305,8516.175794193134,2019
+1998,66,"(65,70]",NoHS,242.868,68.37809039548021,3.551839464882944,8081.50330814717,2019
+1998,66,"(65,70]",NoHS,164.46466666666666,68.37809039548021,2.4052246226159273,8441.04153884116,2019
+1998,64,"(60,65]",HS,7308.649333333333,184.80564971751414,39.54775919732441,3367.3833616380807,2019
+1998,64,"(60,65]",HS,7424.066333333333,184.80564971751414,40.17229096989966,3623.8764854168826,2019
+1998,64,"(60,65]",HS,7077.815333333333,184.80564971751414,38.298695652173905,3484.9668742741787,2019
+1998,64,"(60,65]",HS,7482.777666666667,184.80564971751414,40.48998327759197,4087.8618361036074,2019
+1998,64,"(60,65]",HS,7373.924666666667,184.80564971751414,39.90096989966555,3268.9642418434514,2019
+1998,40,"(35,40]",HS,602.6116666666667,171.86925423728815,3.506221455029309,5226.716978003318,2019
+1998,40,"(35,40]",HS,633.7906666666667,240.24734463276835,2.6380756367378444,5001.709096591759,2019
+1998,40,"(35,40]",HS,733.3446666666666,125.66784180790961,5.835579382254574,4669.445675251305,2019
+1998,40,"(35,40]",HS,854.6692666666668,273.51236158192086,3.1247920997921006,5104.9287046896825,2019
+1998,40,"(35,40]",HS,449.4516666666667,162.62897175141245,2.763662967467315,4654.573401731592,2019
+1998,48,"(45,50]",College,130.6783,25.872790960451983,5.050800286669851,5594.689966101576,2019
+1998,48,"(45,50]",College,134.14263333333332,25.872790960451983,5.184698996655517,5704.647965052463,2019
+1998,48,"(45,50]",College,130.6783,25.872790960451983,5.050800286669851,5948.020892041082,2019
+1998,48,"(45,50]",College,132.33753333333334,24.024734463276836,5.508386930794958,5560.973154903703,2019
+1998,48,"(45,50]",College,130.5142,24.024734463276836,5.432492925135065,5950.168767517856,2019
+1998,37,"(35,40]",College,133.92383333333333,110.88338983050849,1.2077898550724635,7581.493929680534,2019
+1998,37,"(35,40]",College,135.74716666666666,110.88338983050849,1.2242335562987734,7735.245027248888,2019
+1998,37,"(35,40]",College,133.92383333333333,110.88338983050849,1.2077898550724635,8100.934265307912,2019
+1998,37,"(35,40]",College,130.64183333333332,110.88338983050849,1.1781911928651057,7580.107277421126,2019
+1998,37,"(35,40]",College,132.1005,110.88338983050849,1.1913461538461538,8042.92916269726,2019
+1998,53,"(50,55]",College,750.1193333333334,168.17314124293785,4.460399132639936,6143.3321856787425,2019
+1998,53,"(50,55]",College,753.766,168.17314124293785,4.4820831342570475,5886.749964195731,2019
+1998,53,"(50,55]",College,748.296,168.17314124293785,4.44955713183138,5485.545057737645,2019
+1998,53,"(50,55]",College,751.9426666666667,168.17314124293785,4.471241133448491,6002.77348359007,2019
+1998,53,"(50,55]",College,751.9426666666667,168.17314124293785,4.471241133448491,5476.148867237102,2019
+1998,73,"(70,75]",HS,277.2378333333333,53.593638418079095,5.172961596125014,8258.120668481775,2019
+1998,73,"(70,75]",HS,226.96853333333334,53.593638418079095,4.234990197209088,8186.237195435456,2019
+1998,73,"(70,75]",HS,239.05723333333333,25.872790960451983,9.239715719063543,8751.831496436265,2019
+1998,73,"(70,75]",HS,452.916,92.40282485875707,4.901538461538461,8461.220600452243,2019
+1998,73,"(70,75]",HS,300.85,60.98586440677967,4.933110367892977,8580.82292470645,2019
+1998,48,"(45,50]",HS,1.3675,29.56890395480226,0.046247909698996656,7186.2617477456515,2019
+1998,48,"(45,50]",HS,1.3675,29.56890395480226,0.046247909698996656,7217.823168328856,2019
+1998,48,"(45,50]",HS,1.5498333333333334,29.56890395480226,0.05241429765886288,7214.0246128119525,2019
+1998,48,"(45,50]",HS,1.5498333333333334,29.56890395480226,0.05241429765886288,7142.924644396236,2019
+1998,48,"(45,50]",HS,1.5498333333333334,29.56890395480226,0.05241429765886288,7279.22336688014,2019
+1998,48,"(45,50]",College,3532.3436666666666,120.12367231638417,29.405891432981736,988.5859082189633,2019
+1998,48,"(45,50]",College,3532.1613333333335,138.6042372881356,25.483790412486062,1021.1001874181532,2019
+1998,48,"(45,50]",College,3532.1613333333335,495.27914124293784,7.131657764688264,942.8621107542589,2019
+1998,48,"(45,50]",College,3532.3436666666666,497.127197740113,7.105512799791125,1029.9302171209063,2019
+1998,48,"(45,50]",College,3532.1613333333335,469.4063502824859,7.52474126352935,969.8612621006496,2019
+1998,32,"(30,35]",HS,120.86876666666666,77.61837288135592,1.5572185061315498,9993.992444132447,2019
+1998,32,"(30,35]",HS,139.2844333333333,77.61837288135592,1.7944776238254498,10053.938557210815,2019
+1998,32,"(30,35]",HS,159.177,77.61837288135592,2.050764452938366,10147.135688530627,2019
+1998,32,"(30,35]",HS,87.31943333333334,77.61837288135592,1.1249840738971175,10098.745394296562,2019
+1998,32,"(30,35]",HS,135.45543333333333,77.61837288135592,1.7451465201465204,10111.003324182915,2019
+1998,38,"(35,40]",HS,242.39393333333334,70.22614689265536,3.4516194331983807,7746.390264584258,2019
+1998,38,"(35,40]",HS,255.0114,166.32508474576272,1.533210702341137,7947.692028697371,2019
+1998,38,"(35,40]",HS,290.52993333333336,70.22614689265536,4.137062136947721,8205.239027244483,2019
+1998,38,"(35,40]",HS,245.6577,133.06006779661018,1.8462165551839462,7859.121313794751,2019
+1998,38,"(35,40]",HS,435.8131333333334,123.81978531073446,3.5197374332351625,5678.692132993834,2019
+1998,71,"(70,75]",College,54607.557,2679.681920903955,20.378372736708567,14.88907941025208,2019
+1998,71,"(70,75]",College,55626.98266666666,2716.6430508474577,20.476367938479736,15.346942428237279,2019
+1998,71,"(70,75]",College,55440.82033333334,3234.098870056497,17.1425867176302,16.178579613961055,2019
+1998,71,"(70,75]",College,55863.833666666666,2679.681920903955,20.847188328912466,15.10758998806865,2019
+1998,71,"(70,75]",College,56077.346,3215.6183050847453,17.43905547226387,16.589108194601298,2019
+1998,71,"(70,75]",HS,187.43866666666665,15.154063276836158,12.368871849253608,7563.788508779039,2019
+1998,71,"(70,75]",HS,187.43866666666665,17.002119774011298,11.024429256943435,7497.9489056506845,2019
+1998,71,"(70,75]",HS,189.44433333333333,15.154063276836158,12.501223590831225,8015.988765599512,2019
+1998,71,"(70,75]",HS,187.621,17.371731073446327,10.800362911833773,7749.812059807441,2019
+1998,71,"(70,75]",HS,189.262,17.371731073446327,10.89482672738917,7859.358374536154,2019
+1998,27,"(25,30]",HS,26.803,12.751589830508475,2.1019339828413552,8850.181603935309,2019
+1998,27,"(25,30]",HS,26.985333333333333,13.490812429378531,2.00027488889907,8898.876250855352,2019
+1998,27,"(25,30]",HS,27.16766666666667,15.154063276836158,1.79276449955135,8833.538637635012,2019
+1998,27,"(25,30]",HS,26.985333333333333,10.71872768361582,2.5175873601660705,8883.621526990019,2019
+1998,27,"(25,30]",HS,26.803,10.349116384180792,2.5898829431438126,8862.37430803801,2019
+1998,37,"(35,40]",HS,8.5332,35.11307344632768,0.2430205949656751,9116.237607342902,2019
+1998,37,"(35,40]",HS,8.5332,27.720847457627123,0.3078260869565217,9353.136943646981,2019
+1998,37,"(35,40]",HS,8.5332,36.96112994350283,0.23086956521739127,9656.227745119724,2019
+1998,37,"(35,40]",HS,8.5332,36.96112994350283,0.23086956521739127,9248.90366149542,2019
+1998,37,"(35,40]",HS,8.5332,42.50529943502825,0.2007561436672968,9581.411534284069,2019
+1998,48,"(45,50]",NoHS,144.97323333333335,25.872790960451983,5.603308647873865,7401.771881580084,2019
+1998,48,"(45,50]",NoHS,139.2115,24.024734463276836,5.79450733213275,7575.295861323745,2019
+1998,48,"(45,50]",NoHS,138.37276666666668,25.872790960451983,5.348196368848542,7957.489647636363,2019
+1998,48,"(45,50]",NoHS,145.9760666666667,24.024734463276836,6.07607409313095,7355.4885416503985,2019
+1998,48,"(45,50]",NoHS,144.49916666666667,25.872790960451983,5.5849856665074045,7926.385306427292,2019
+1998,42,"(40,45]",HS,1.5133666666666665,68.37809039548021,0.02213233300189822,4933.858491534739,2019
+1998,42,"(40,45]",HS,1.5133666666666665,68.37809039548021,0.02213233300189822,4935.226820540421,2019
+1998,42,"(40,45]",HS,1.5133666666666665,68.37809039548021,0.02213233300189822,4980.895859394226,2019
+1998,42,"(40,45]",HS,1.5133666666666665,68.37809039548021,0.02213233300189822,4929.58529719318,2019
+1998,42,"(40,45]",HS,1.5133666666666665,68.37809039548021,0.02213233300189822,4902.059312982079,2019
+1998,64,"(60,65]",College,330.0233333333333,55.441694915254246,5.95261984392419,9960.077603412037,2019
+1998,64,"(60,65]",College,330.0233333333333,55.441694915254246,5.95261984392419,9923.826309310334,2019
+1998,64,"(60,65]",College,330.0233333333333,55.441694915254246,5.95261984392419,10366.77216270849,2019
+1998,64,"(60,65]",College,330.0233333333333,55.441694915254246,5.95261984392419,9809.870371466757,2019
+1998,64,"(60,65]",College,330.0233333333333,55.441694915254246,5.95261984392419,10285.554053579142,2019
+1998,44,"(40,45]",HS,2167.6698333333334,92.40282485875707,23.45891304347826,2683.55032664235,2019
+1998,44,"(40,45]",HS,1566.6991666666668,38.80918644067796,40.36928651059087,2926.6528816058117,2019
+1998,44,"(40,45]",HS,1566.1521666666667,35.11307344632768,44.60310684738603,2731.5062111240068,2019
+1998,44,"(40,45]",HS,1567.2461666666668,90.55476836158192,17.30716333356085,2710.246926037099,2019
+1998,44,"(40,45]",HS,1835.0938333333334,77.61837288135592,23.64251871317089,2797.3993710810764,2019
+1998,66,"(65,70]",College,195155.01333333334,9683.81604519774,20.152697286119125,1.1600314631501494,2019
+1998,66,"(65,70]",College,307116.7966666667,10515.441468926554,29.206267523261488,1.1216032255767114,2019
+1998,66,"(65,70]",College,180176.33000000002,10219.752429378532,17.63020496289621,1.05552701391529,2019
+1998,66,"(65,70]",College,177900.81,4361.413333333333,40.78971571906355,1.071637807244353,2019
+1998,66,"(65,70]",College,69181.825,2993.8515254237286,23.10796791775053,1.014777499012694,2019
+1998,54,"(50,55]",College,601.153,147.84451977401133,4.066116220735785,6509.583330278809,2019
+1998,54,"(50,55]",College,871.7356666666667,147.84451977401133,5.896300167224079,6228.074876555929,2019
+1998,54,"(50,55]",College,682.109,147.84451977401133,4.613691471571905,6222.96186338597,2019
+1998,54,"(50,55]",College,609.3580000000001,147.84451977401133,4.1216137123745815,6078.038292437961,2019
+1998,54,"(50,55]",College,622.1213333333334,147.84451977401133,4.207943143812709,6439.958283454904,2019
+1998,86,"(85,90]",College,213.33,73.92225988700567,2.8858695652173907,6423.290979090671,2019
+1998,86,"(85,90]",College,213.33,73.92225988700567,2.8858695652173907,6527.685029690007,2019
+1998,86,"(85,90]",College,213.33,73.92225988700567,2.8858695652173907,6652.129561847343,2019
+1998,86,"(85,90]",College,213.33,73.92225988700567,2.8858695652173907,6649.654734779784,2019
+1998,86,"(85,90]",College,213.33,73.92225988700567,2.8858695652173907,6602.148353187639,2019
+1998,69,"(65,70]",HS,1054.6707,48.04946892655367,21.94968484692565,7530.7245644752475,2019
+1998,69,"(65,70]",HS,1124.1214666666665,48.04946892655367,23.395086184718288,7201.674860668942,2019
+1998,69,"(65,70]",HS,1056.4940333333334,48.04946892655367,21.987631849755598,6670.025469671644,2019
+1998,69,"(65,70]",HS,1056.3117,48.04946892655367,21.9838371494726,7315.99795163745,2019
+1998,69,"(65,70]",HS,1078.5563666666667,48.04946892655367,22.44679058399794,6651.071792298171,2019
+1998,73,"(70,75]",College,219667.90666666665,3086.2543502824856,71.17621612961368,24.536113405023357,2019
+1998,73,"(70,75]",College,217862.989,2494.87627118644,87.32416573764402,25.75983580138125,2019
+1998,73,"(70,75]",College,219713.67233333335,2809.045875706215,78.21647707269847,22.59482456630162,2019
+1998,73,"(70,75]",College,217434.50566666666,2476.395706214689,87.80281161084211,21.34192801567523,2019
+1998,73,"(70,75]",College,217862.62433333334,2624.240225988701,83.0193143812709,21.91752728842682,2019
+1998,56,"(55,60]",College,48671.69533333334,1977.4204519774014,24.6137311286844,17.65514345863118,2019
+1998,56,"(55,60]",College,55444.649333333335,1977.4204519774014,28.038877254399395,18.212895568678366,2019
+1998,56,"(55,60]",College,59904.522666666664,1977.4204519774014,30.29427687306598,19.6756376232697,2019
+1998,56,"(55,60]",College,46931.32366666666,1977.4204519774014,23.73360891445003,18.30449983333552,2019
+1998,56,"(55,60]",College,65061.638666666666,1977.4204519774014,32.90227862344887,19.64463151203668,2019
+1998,18,"(15,20]",HS,-0.3646666666666667,13.306006779661017,-0.02740616871051654,1391.4122117492427,2019
+1998,18,"(15,20]",HS,-0.3646666666666667,13.306006779661017,-0.02740616871051654,1380.7774006715674,2019
+1998,18,"(15,20]",HS,-0.3646666666666667,13.306006779661017,-0.02740616871051654,1390.4839705630197,2019
+1998,18,"(15,20]",HS,-0.3646666666666667,13.306006779661017,-0.02740616871051654,1391.7572751482153,2019
+1998,18,"(15,20]",HS,-0.3646666666666667,13.306006779661017,-0.02740616871051654,1376.2775991923763,2019
+1998,41,"(40,45]",College,137.66166666666666,73.92225988700567,1.8622491638795982,6408.472274692742,2019
+1998,41,"(40,45]",College,137.66166666666666,73.92225988700567,1.8622491638795982,6537.649661532366,2019
+1998,41,"(40,45]",College,137.66166666666666,73.92225988700567,1.8622491638795982,6802.798593734708,2019
+1998,41,"(40,45]",College,137.66166666666666,73.92225988700567,1.8622491638795982,6465.067437923448,2019
+1998,41,"(40,45]",College,137.66166666666666,73.92225988700567,1.8622491638795982,6732.522221957692,2019
+1998,62,"(60,65]",HS,1787.7783333333332,184.80564971751414,9.673829431438126,125.38386507050382,2019
+1998,62,"(60,65]",HS,1602.71,184.80564971751414,8.672408026755852,130.63203558695398,2019
+1998,62,"(60,65]",HS,1602.71,184.80564971751414,8.672408026755852,123.07863157690542,2019
+1998,62,"(60,65]",HS,1460.1253333333332,184.80564971751414,7.9008695652173895,127.57000744766977,2019
+1998,62,"(60,65]",HS,2012.96,184.80564971751414,10.892307692307691,122.82493307682876,2019
+1998,40,"(35,40]",College,728.7863333333333,129.36395480225988,5.633612040133779,4738.494691916561,2019
+1998,40,"(35,40]",College,728.604,129.36395480225988,5.632202580028667,4533.384786002243,2019
+1998,40,"(35,40]",College,728.7863333333333,129.36395480225988,5.633612040133779,4233.431950753632,2019
+1998,40,"(35,40]",College,730.6096666666666,129.36395480225988,5.647706641184902,4626.797174268111,2019
+1998,40,"(35,40]",College,730.792,129.36395480225988,5.649116101290015,4219.559535235092,2019
+1998,48,"(45,50]",College,213.33,62.833920903954805,3.395140664961637,6326.163297585909,2019
+1998,48,"(45,50]",College,201.97063333333332,68.37809039548021,2.9537331646027303,6432.577112801869,2019
+1998,48,"(45,50]",College,183.2997,46.201412429378536,3.967404682274247,6716.79102810285,2019
+1998,48,"(45,50]",College,209.19103333333334,60.98586440677967,3.430156075808249,6319.245710830552,2019
+1998,48,"(45,50]",College,200.43903333333333,75.77031638418079,2.6453503548413413,6657.21127164538,2019
+1998,52,"(50,55]",HS,519.3582666666666,44.35335593220339,11.709559643255293,10539.780332767627,2019
+1998,52,"(50,55]",HS,610.7072666666668,44.35335593220339,13.769133221850614,10174.650373158365,2019
+1998,52,"(50,55]",HS,497.4965,44.35335593220339,11.216659698996656,9881.289916979043,2019
+1998,52,"(50,55]",HS,519.3582666666666,44.35335593220339,11.709559643255293,10062.590158865458,2019
+1998,52,"(50,55]",HS,497.77000000000004,44.35335593220339,11.222826086956522,10318.796404198825,2019
+1998,68,"(65,70]",College,356.80809999999997,36.96112994350283,9.653603678929763,5725.538267813535,2019
+1998,68,"(65,70]",College,327.78063333333336,44.35335593220339,7.390210423634337,5909.459440952682,2019
+1998,68,"(65,70]",College,367.0552333333333,35.11307344632768,10.453520506953002,5865.437422742091,2019
+1998,68,"(65,70]",College,301.23290000000003,42.50529943502825,7.086949251126946,5881.04887960168,2019
+1998,68,"(65,70]",College,505.82913333333335,35.11307344632768,14.405720823798628,4812.367239962516,2019
+1998,57,"(55,60]",College,317.8434666666667,92.40282485875707,3.4397591973244146,6972.482931240597,2019
+1998,57,"(55,60]",College,209.86566666666667,107.18727683615819,1.957934494291316,6647.245561820282,2019
+1998,57,"(55,60]",College,380.62083333333334,94.25088135593221,4.038379565873172,6222.809397097654,2019
+1998,57,"(55,60]",College,375.789,112.73144632768363,3.333488678107352,6806.998921666398,2019
+1998,57,"(55,60]",College,334.0346666666667,121.97172881355934,2.738623695145434,6205.887876771657,2019
+1998,31,"(30,35]",College,-50.141666666666666,94.25088135593221,-0.5320020984982622,7197.909013431406,2019
+1998,31,"(30,35]",College,-50.0505,94.25088135593221,-0.5310348219555381,7288.801489143358,2019
+1998,31,"(30,35]",College,-50.141666666666666,94.25088135593221,-0.5320020984982622,7393.5320677419395,2019
+1998,31,"(30,35]",College,-49.97756666666667,94.25088135593221,-0.5302610007213587,7226.803720831342,2019
+1998,31,"(30,35]",College,-49.59466666666667,94.25088135593221,-0.5261984392419174,7364.291454162424,2019
+1998,35,"(30,35]",NoHS,13.5656,60.98586440677967,0.22243843113408326,6790.7862744533395,2019
+1998,35,"(30,35]",NoHS,15.826533333333334,60.98586440677967,0.25951150298976383,6924.365399986958,2019
+1998,35,"(30,35]",NoHS,4.904766666666666,60.98586440677967,0.08042464781595214,7191.336560673515,2019
+1998,35,"(30,35]",NoHS,9.608966666666667,60.98586440677967,0.15756055538664232,6793.729300001449,2019
+1998,35,"(30,35]",NoHS,9.754833333333334,60.98586440677967,0.1599523664741056,7107.232911993027,2019
+1998,64,"(60,65]",HS,128.80026666666666,64.68197740112994,1.9912852365026277,8390.675886555164,2019
+1998,64,"(60,65]",HS,128.03446666666667,85.0105988700565,1.5061000436236731,8366.776255785095,2019
+1998,64,"(60,65]",HS,140.8525,118.27561581920904,1.1908836747491638,8862.126892197453,2019
+1998,64,"(60,65]",HS,161.45616666666666,120.12367231638417,1.3440828402366864,8175.087409887911,2019
+1998,64,"(60,65]",HS,133.92383333333333,46.201412429378536,2.8986956521739127,8813.71258491858,2019
+1998,55,"(50,55]",HS,1220.1746666666668,147.84451977401133,8.253093645484949,6878.636586770936,2019
+1998,55,"(50,55]",HS,1221.8156666666669,147.84451977401133,8.264193143812708,6559.39658028469,2019
+1998,55,"(50,55]",HS,1222.1803333333332,147.84451977401133,8.266659698996653,6138.8293771918825,2019
+1998,55,"(50,55]",HS,1219.81,147.84451977401133,8.250627090301002,6717.245502061834,2019
+1998,55,"(50,55]",HS,1221.451,147.84451977401133,8.261726588628761,6122.700407717174,2019
+1998,45,"(40,45]",College,-108.76183333333333,131.21201129943503,-0.8289015026614536,5903.000726078057,2019
+1998,45,"(40,45]",College,-109.12650000000001,94.25088135593221,-1.1578300216407633,5928.9261787206815,2019
+1998,45,"(40,45]",College,-105.47983333333333,92.40282485875707,-1.1415217391304346,5925.805936686449,2019
+1998,45,"(40,45]",College,-106.39150000000001,105.33922033898305,-1.009989438479141,5867.402391155458,2019
+1998,45,"(40,45]",College,-109.12650000000001,123.81978531073446,-0.8813333000549095,5979.362056142386,2019
+1998,49,"(45,50]",HS,628.1383333333334,267.96819209039546,2.3440779610194906,4938.03508217343,2019
+1998,49,"(45,50]",HS,626.1326666666666,164.47702824858757,3.8068092142347147,4732.851681920392,2019
+1998,49,"(45,50]",HS,621.939,155.23674576271185,4.006390348781653,4409.270153028883,2019
+1998,49,"(45,50]",HS,627.2266666666667,103.49116384180793,6.060678451982799,4825.366011512915,2019
+1998,49,"(45,50]",HS,631.0556666666666,166.32508474576272,3.794109996283909,4401.186087443725,2019
+1998,68,"(65,70]",College,9779.995333333334,680.084790960452,14.380552930056712,162.0093394411526,2019
+1998,68,"(65,70]",College,9785.283,680.084790960452,14.388327940962629,160.64717240411966,2019
+1998,68,"(65,70]",College,9780.907000000001,680.084790960452,14.381893449178422,149.95879773770454,2019
+1998,68,"(65,70]",College,9778.172,680.084790960452,14.37787189181329,164.60121593974128,2019
+1998,68,"(65,70]",College,9780.36,680.084790960452,14.381089137705395,157.58918020816802,2019
+1998,74,"(70,75]",HS,368.75093333333336,133.06006779661018,2.7713117800074323,5773.713745395278,2019
+1998,74,"(70,75]",HS,368.93326666666667,133.06006779661018,2.7726820884429575,5560.967657892732,2019
+1998,74,"(70,75]",HS,370.5742666666667,133.06006779661018,2.78501486436269,5190.892904964514,2019
+1998,74,"(70,75]",HS,372.21526666666665,133.06006779661018,2.7973476402824224,5677.692124946708,2019
+1998,74,"(70,75]",HS,368.93326666666667,133.06006779661018,2.7726820884429575,5177.166439261319,2019
+1998,75,"(70,75]",College,464.95,83.16254237288136,5.590858416945373,7157.35474577376,2019
+1998,75,"(70,75]",College,621.2096666666666,68.37809039548021,9.084922715357498,6864.321387959142,2019
+1998,75,"(70,75]",College,581.0963333333334,49.89752542372881,11.645794624055496,6407.438718142353,2019
+1998,75,"(70,75]",College,695.9663333333334,86.85865536723163,8.012630754998934,6976.435558817943,2019
+1998,75,"(70,75]",College,599.3296666666666,57.289751412429375,10.461376631783365,6389.932760399222,2019
+1998,42,"(40,45]",College,173.7819,55.441694915254246,3.134498327759197,7092.949097580759,2019
+1998,42,"(40,45]",College,251.073,120.12367231638417,2.0901209158734244,7230.429846369337,2019
+1998,42,"(40,45]",College,124.89833333333333,105.33922033898305,1.1856774042128733,7575.218665712925,2019
+1998,42,"(40,45]",College,464.95,192.1978757062147,2.4191214304090556,5824.4052917687595,2019
+1998,42,"(40,45]",College,163.58946666666668,182.957593220339,0.8941387115300159,7402.963464608534,2019
+1998,47,"(45,50]",HS,409.156,79.46642937853107,5.148790542117134,8444.688052071406,2019
+1998,47,"(45,50]",HS,466.6821666666667,110.88338983050849,4.2087653288740245,7283.002446263275,2019
+1998,47,"(45,50]",HS,452.0043333333333,66.53003389830509,6.793989223337048,8918.171762305463,2019
+1998,47,"(45,50]",HS,458.8783,60.98586440677967,7.524338704773487,7514.929852395687,2019
+1998,47,"(45,50]",HS,459.2976666666667,134.9081242937853,3.4045219223897014,6841.009161570661,2019
+1998,48,"(45,50]",HS,41.4626,64.68197740112994,0.6410224558050646,7512.228408999991,2019
+1998,48,"(45,50]",HS,41.3532,64.68197740112994,0.6393311036789298,7733.794341946584,2019
+1998,48,"(45,50]",HS,40.22273333333333,64.68197740112994,0.6218537983755374,8104.707644962963,2019
+1998,48,"(45,50]",HS,41.38966666666666,64.68197740112994,0.6398948877209747,7431.272888419578,2019
+1998,48,"(45,50]",HS,40.78796666666667,64.68197740112994,0.6305924510272337,8076.381835428825,2019
+1998,39,"(35,40]",HS,24.797333333333334,64.68197740112994,0.38337314859053995,5672.283338882794,2019
+1998,39,"(35,40]",HS,24.797333333333334,64.68197740112994,0.38337314859053995,5663.804860831507,2019
+1998,39,"(35,40]",HS,25.162,64.68197740112994,0.389010989010989,5651.938311489297,2019
+1998,39,"(35,40]",HS,24.979666666666667,64.68197740112994,0.38619206880076445,5700.66810572749,2019
+1998,39,"(35,40]",HS,24.979666666666667,64.68197740112994,0.38619206880076445,5631.947294143617,2019
+1998,26,"(25,30]",HS,53.514833333333335,96.09893785310734,0.5568722665294572,6089.358025114347,2019
+1998,26,"(25,30]",HS,44.89046666666667,164.47702824858757,0.2729284882191575,6089.721636877095,2019
+1998,26,"(25,30]",HS,42.702466666666666,160.78091525423727,0.26559412601391613,6094.7575818611995,2019
+1998,26,"(25,30]",HS,50.871,38.80918644067796,1.3107978977544197,6082.228658690276,2019
+1998,26,"(25,30]",HS,44.106433333333335,38.80918644067796,1.1364946647555345,6141.475679254448,2019
+1998,24,"(20,25]",HS,24.43266666666667,18.480564971751416,1.3220735785953177,6294.8300200465055,2019
+1998,24,"(20,25]",HS,24.43266666666667,18.480564971751416,1.3220735785953177,6331.184106289151,2019
+1998,24,"(20,25]",HS,24.43266666666667,18.480564971751416,1.3220735785953177,6435.168433140409,2019
+1998,24,"(20,25]",HS,24.43266666666667,18.480564971751416,1.3220735785953177,6296.336182582615,2019
+1998,24,"(20,25]",HS,24.43266666666667,18.480564971751416,1.3220735785953177,6346.93374072564,2019
+1998,20,"(15,20]",HS,12.726866666666668,25.872790960451983,0.4919015766841853,4801.349126736625,2019
+1998,20,"(15,20]",HS,12.726866666666668,25.872790960451983,0.4919015766841853,4813.550408138793,2019
+1998,20,"(15,20]",HS,12.726866666666668,25.872790960451983,0.4919015766841853,4821.374680089769,2019
+1998,20,"(15,20]",HS,12.9092,25.872790960451983,0.4989488772097467,4839.919797643562,2019
+1998,20,"(15,20]",HS,12.726866666666668,25.872790960451983,0.4919015766841853,4788.291026730594,2019
+1998,50,"(45,50]",HS,-19.78316666666667,62.833920903954805,-0.31484851465669883,7186.2617477456515,2019
+1998,50,"(45,50]",HS,-17.959833333333332,62.833920903954805,-0.28583021837497535,7217.823168328856,2019
+1998,50,"(45,50]",HS,-17.7775,62.833920903954805,-0.28292838874680304,7214.0246128119525,2019
+1998,50,"(45,50]",HS,-17.959833333333332,62.833920903954805,-0.28583021837497535,7142.924644396236,2019
+1998,50,"(45,50]",HS,-19.78316666666667,62.833920903954805,-0.31484851465669883,7279.22336688014,2019
+1998,61,"(60,65]",College,265595.85,13379.929039548022,19.850318280086476,1.8806425768868902,2019
+1998,61,"(60,65]",College,441999.7033333333,11753.6393220339,37.60534854125912,1.820074969989756,2019
+1998,61,"(60,65]",College,260707.49333333335,12455.900790960452,20.930440737175353,1.7637393134810686,2019
+1998,61,"(60,65]",College,283169.1366666667,11753.6393220339,24.092038976883114,1.7547858162094887,2019
+1998,61,"(60,65]",College,276415.51,13509.292994350282,20.46113813029295,1.6450475810565979,2019
+1998,63,"(60,65]",NoHS,0.9116666666666666,33.265016949152546,0.027406168710516533,6125.598470780922,2019
+1998,63,"(60,65]",NoHS,0.9116666666666666,33.265016949152546,0.027406168710516533,6121.197345240161,2019
+1998,63,"(60,65]",NoHS,0.9116666666666666,33.265016949152546,0.027406168710516533,6307.788268087036,2019
+1998,63,"(60,65]",NoHS,0.9116666666666666,33.265016949152546,0.027406168710516533,6085.637040037103,2019
+1998,63,"(60,65]",NoHS,0.9116666666666666,33.265016949152546,0.027406168710516533,6288.349454833145,2019
+1998,55,"(50,55]",HS,-17.194033333333334,59.13780790960452,-0.2907451923076923,5324.665625908461,2019
+1998,55,"(50,55]",HS,-16.957,57.289751412429375,-0.2959866220735786,5320.201074619019,2019
+1998,55,"(50,55]",HS,-16.592333333333332,57.289751412429375,-0.28962131837307153,5447.204862504133,2019
+1998,55,"(50,55]",HS,-17.212266666666668,57.289751412429375,-0.3004423346639336,5337.622442161698,2019
+1998,55,"(50,55]",HS,-16.938766666666666,57.289751412429375,-0.29566835688855325,5413.0783938875265,2019
+1998,74,"(70,75]",HS,1140.1303333333333,92.40282485875707,12.33869565217391,3009.773826063535,2019
+1998,74,"(70,75]",HS,1131.0136666666667,92.40282485875707,12.240033444816053,3077.9999103424866,2019
+1998,74,"(70,75]",HS,1131.0136666666667,92.40282485875707,12.240033444816053,3003.5491933262556,2019
+1998,74,"(70,75]",HS,1134.8426666666667,92.40282485875707,12.281471571906353,3363.8596157361267,2019
+1998,74,"(70,75]",HS,1122.0793333333334,92.40282485875707,12.14334448160535,3091.049378010847,2019
+1998,24,"(20,25]",HS,-1.9145,25.872790960451983,-0.07399665551839464,4889.6590997826115,2019
+1998,24,"(20,25]",HS,-1.9145,24.024734463276836,-0.07968870594288655,4852.286565373811,2019
+1998,24,"(20,25]",HS,-3.7378333333333336,25.872790960451983,-0.14446966077400858,4886.397102421453,2019
+1998,24,"(20,25]",HS,-3.7378333333333336,24.024734463276836,-0.1555827116027785,4890.8717112391905,2019
+1998,24,"(20,25]",HS,-1.9145,25.872790960451983,-0.07399665551839464,4836.473497855682,2019
+1998,56,"(55,60]",NoHS,124.71600000000001,86.85865536723163,1.435849996442041,5302.376837344687,2019
+1998,56,"(55,60]",NoHS,95.72500000000001,86.85865536723163,1.1020778481463034,5262.795603126098,2019
+1998,56,"(55,60]",NoHS,99.37166666666667,85.0105988700565,1.1689326741311619,5438.247910638387,2019
+1998,56,"(55,60]",NoHS,102.836,86.85865536723163,1.1839464882943145,5309.242983302038,2019
+1998,56,"(55,60]",NoHS,110.31166666666667,86.85865536723163,1.2700135202447878,5334.202115556072,2019
+1998,41,"(40,45]",HS,86.51716666666667,49.89752542372881,1.7338969404186797,7002.483708420163,2019
+1998,41,"(40,45]",HS,97.45716666666668,49.89752542372881,1.9531462901028123,7138.210990594196,2019
+1998,41,"(40,45]",HS,97.27483333333333,49.89752542372881,1.949492134274743,7478.602280180979,2019
+1998,41,"(40,45]",HS,91.80483333333333,49.89752542372881,1.839867459432677,7024.182022308514,2019
+1998,41,"(40,45]",HS,88.3405,49.89752542372881,1.7704384986993686,7308.544068451311,2019
+1998,51,"(50,55]",HS,24368.12066666667,2125.2649717514123,11.46592118656391,14.635923813578808,2019
+1998,51,"(50,55]",HS,17854.08,2143.7455367231637,8.328451159035868,15.731066752257544,2019
+1998,51,"(50,55]",HS,20618.253333333334,2125.2649717514123,9.701497746110224,16.275653375010755,2019
+1998,51,"(50,55]",HS,21674.69266666667,2125.2649717514123,10.198583684746257,14.828356112193319,2019
+1998,51,"(50,55]",HS,23692.02866666667,2125.2649717514123,11.147799912752655,15.680390977537717,2019
+1998,79,"(75,80]",NoHS,0.054700000000000006,22.176677966101696,0.0024665551839464883,8192.928658592768,2019
+1998,79,"(75,80]",NoHS,0.1641,22.176677966101696,0.0073996655518394645,8328.43517413177,2019
+1998,79,"(75,80]",NoHS,0.1641,22.176677966101696,0.0073996655518394645,8413.24426344454,2019
+1998,79,"(75,80]",NoHS,0.12763333333333335,24.024734463276836,0.005312580396192437,8459.120258175166,2019
+1998,79,"(75,80]",NoHS,0.07293333333333334,22.176677966101696,0.0032887402452619844,8444.395754284544,2019
+1998,66,"(65,70]",NoHS,51.38153333333334,46.201412429378536,1.1121204013377926,8358.901623760263,2019
+1998,66,"(65,70]",NoHS,51.18096666666667,46.201412429378536,1.1077792642140467,8711.117391114636,2019
+1998,66,"(65,70]",NoHS,51.18096666666667,46.201412429378536,1.1077792642140467,8845.086855078076,2019
+1998,66,"(65,70]",NoHS,51.38153333333334,46.201412429378536,1.1121204013377926,8343.77946301433,2019
+1998,66,"(65,70]",NoHS,51.38153333333334,46.201412429378536,1.1121204013377926,8754.962146983144,2019
+1998,52,"(50,55]",College,4462.426,641.275604519774,6.958671074571338,184.42826699004786,2019
+1998,52,"(50,55]",College,3804.0203333333334,641.275604519774,5.931958593968368,185.53712073516473,2019
+1998,52,"(50,55]",College,4415.693966666667,641.275604519774,6.885797519107881,172.3483856761194,2019
+1998,52,"(50,55]",College,4643.8476666666675,641.275604519774,7.241578556764625,188.78345131410256,2019
+1998,52,"(50,55]",College,3977.4193333333337,641.275604519774,6.202355594537027,180.52794782762228,2019
+1998,52,"(50,55]",HS,641.4486666666667,17.55653672316384,36.53617320894209,5533.247383220714,2019
+1998,52,"(50,55]",HS,641.2663333333334,17.55653672316384,36.52578771343074,5302.544073047052,2019
+1998,52,"(50,55]",HS,641.2663333333334,17.55653672316384,36.52578771343074,4941.204165755663,2019
+1998,52,"(50,55]",HS,641.4486666666667,17.55653672316384,36.53617320894209,5406.981344037345,2019
+1998,52,"(50,55]",HS,639.6253333333334,17.55653672316384,36.432318253828555,4932.342710680521,2019
+1998,51,"(50,55]",College,12793.236,1108.8338983050849,11.537558528428093,182.33691989144364,2019
+1998,51,"(50,55]",College,12796.153333333334,1108.8338983050849,11.540189520624303,180.98444902747238,2019
+1998,51,"(50,55]",College,12787.766,1108.8338983050849,11.5326254180602,169.76309155991544,2019
+1998,51,"(50,55]",College,12801.623333333335,1108.8338983050849,11.545122630992196,185.3697193082039,2019
+1998,51,"(50,55]",College,12794.694666666666,1108.8338983050849,11.538874024526198,179.299402800348,2019
+1998,33,"(30,35]",HS,8.952566666666668,55.441694915254246,0.16147714604236343,4963.265068715965,2019
+1998,33,"(30,35]",HS,8.952566666666668,55.441694915254246,0.16147714604236343,4959.197355514536,2019
+1998,33,"(30,35]",HS,9.1349,55.441694915254246,0.1647658862876254,4965.241891159401,2019
+1998,33,"(30,35]",HS,9.1349,55.441694915254246,0.1647658862876254,4973.725277521789,2019
+1998,33,"(30,35]",HS,9.226066666666668,55.441694915254246,0.16641025641025642,4924.793303918951,2019
+1998,33,"(30,35]",HS,111.98913333333333,40.65724293785311,2.754469443599878,8855.78775811832,2019
+1998,33,"(30,35]",HS,60.37056666666667,177.41342372881357,0.34028184225195096,8908.90667503904,2019
+1998,33,"(30,35]",HS,194.14853333333332,138.6042372881356,1.4007402452619842,8991.48968870925,2019
+1998,33,"(30,35]",HS,268.97813333333335,179.26148022598866,1.500479260766128,8948.61051127487,2019
+1998,33,"(30,35]",HS,257.7099333333333,40.65724293785311,6.3385983581635745,8959.472399157445,2019
+1998,24,"(20,25]",HS,3.48439,92.40282485875707,0.037708695652173906,4519.890724576453,2019
+1998,24,"(20,25]",HS,5.581223333333334,92.40282485875707,0.060401003344481605,4531.37675843525,2019
+1998,24,"(20,25]",HS,3.557323333333333,92.40282485875707,0.03849799331103678,4538.742366160141,2019
+1998,24,"(20,25]",HS,5.654156666666667,92.40282485875707,0.06119030100334448,4556.20035611359,2019
+1998,24,"(20,25]",HS,3.64849,92.40282485875707,0.039484615384615375,4507.598099412168,2019
+1998,49,"(45,50]",HS,96.08966666666667,53.593638418079095,1.7929304578479992,5591.279710315321,2019
+1998,49,"(45,50]",HS,132.374,77.61837288135592,1.7054467271858578,5566.014772001896,2019
+1998,49,"(45,50]",HS,152.97766666666666,68.37809039548021,2.2372322154930853,5544.849703159203,2019
+1998,49,"(45,50]",HS,119.97533333333332,62.833920903954805,1.9094038953373988,5582.040310129707,2019
+1998,49,"(45,50]",HS,145.86666666666665,77.61837288135592,1.8792801401497052,5610.985985146491,2019
+1998,95,"(90,95]",NoHS,103.29183333333333,11.827561581920904,8.733146948160535,4865.347059727807,2019
+1998,95,"(90,95]",NoHS,113.02843333333334,12.012367231638418,9.409338821713405,4948.177618274218,2019
+1998,95,"(90,95]",NoHS,100.5386,12.012367231638418,8.369590944172884,5008.200430721334,2019
+1998,95,"(90,95]",NoHS,110.85866666666668,11.827561581920904,9.372909698996656,5065.592204600509,2019
+1998,95,"(90,95]",NoHS,130.58713333333333,12.381978531073447,10.546548195477461,5033.684955633605,2019
+1998,41,"(40,45]",HS,84.60266666666668,92.40282485875707,0.9155852842809364,2862.0423856391167,2019
+1998,41,"(40,45]",HS,84.785,92.40282485875707,0.9175585284280935,2944.4420857573,2019
+1998,41,"(40,45]",HS,84.60266666666668,92.40282485875707,0.9155852842809364,2784.9227706132797,2019
+1998,41,"(40,45]",HS,84.785,92.40282485875707,0.9175585284280935,2781.732790621125,2019
+1998,41,"(40,45]",HS,84.60266666666668,92.40282485875707,0.9155852842809364,2877.871529283582,2019
+1998,42,"(40,45]",HS,26.000733333333333,36.96112994350283,0.7034615384615382,11364.942809840073,2019
+1998,42,"(40,45]",HS,25.399033333333332,36.96112994350283,0.6871822742474915,11604.459751634478,2019
+1998,42,"(40,45]",HS,26.110133333333337,36.96112994350283,0.7064214046822742,12298.543384111053,2019
+1998,42,"(40,45]",HS,27.951700000000002,36.96112994350283,0.7562458193979932,11438.656507359594,2019
+1998,42,"(40,45]",HS,26.000733333333333,36.96112994350283,0.7034615384615382,12353.5472153662,2019
+1998,26,"(25,30]",HS,42.53836666666667,79.46642937853107,0.5352998366648518,6183.100243017927,2019
+1998,26,"(25,30]",HS,44.3617,79.46642937853107,0.5582445360504006,6162.019357834373,2019
+1998,26,"(25,30]",HS,44.3617,79.46642937853107,0.5582445360504006,6165.09981043467,2019
+1998,26,"(25,30]",HS,44.54403333333333,79.46642937853107,0.5605390059889555,6208.965226760537,2019
+1998,26,"(25,30]",HS,42.53836666666667,79.46642937853107,0.5352998366648518,6161.2019835164065,2019
+1998,38,"(35,40]",HS,56.942699999999995,83.16254237288136,0.684715719063545,5610.403880699484,2019
+1998,38,"(35,40]",HS,103.72943333333333,83.16254237288136,1.2473095503530285,5643.985993280748,2019
+1998,38,"(35,40]",HS,51.965,83.16254237288136,0.624860646599777,5590.280799072204,2019
+1998,38,"(35,40]",HS,50.561033333333334,83.16254237288136,0.6079784466740988,5638.478995524336,2019
+1998,38,"(35,40]",HS,138.20866666666666,83.16254237288136,1.6619100706057226,5623.252480512394,2019
+1998,35,"(30,35]",College,176.31633333333335,75.77031638418079,2.3269842564646384,6694.91464795389,2019
+1998,35,"(30,35]",College,174.493,75.77031638418079,2.3029203034505263,6688.901158435359,2019
+1998,35,"(30,35]",College,176.31633333333335,75.77031638418079,2.3269842564646384,6730.9335875411925,2019
+1998,35,"(30,35]",College,176.31633333333335,75.77031638418079,2.3269842564646384,6724.271957022371,2019
+1998,35,"(30,35]",College,176.31633333333335,75.77031638418079,2.3269842564646384,6737.90178939466,2019
+1998,31,"(30,35]",HS,117.76910000000001,4.620141242937854,25.490367892976586,5030.009868492258,2019
+1998,31,"(30,35]",HS,107.68606666666666,4.620141242937854,23.30795986622073,4959.197355514536,2019
+1998,31,"(30,35]",HS,108.9624,4.620141242937854,23.584214046822737,4965.241891159401,2019
+1998,31,"(30,35]",HS,112.88256666666666,4.620141242937854,24.432709030100327,5063.6602927657495,2019
+1998,31,"(30,35]",HS,109.14473333333333,4.620141242937854,23.62367892976588,4924.793303918951,2019
+1998,68,"(65,70]",HS,98.09533333333333,10.533922033898305,9.312327641847093,10786.40037315358,2019
+1998,68,"(65,70]",HS,97.913,10.533922033898305,9.295018482661503,10883.589296355365,2019
+1998,68,"(65,70]",HS,97.913,10.533922033898305,9.295018482661503,10772.220857923021,2019
+1998,68,"(65,70]",HS,97.913,10.533922033898305,9.295018482661503,10774.420531120917,2019
+1998,68,"(65,70]",HS,98.09533333333333,10.533922033898305,9.312327641847093,10806.636028000983,2019
+1998,77,"(75,80]",HS,250.41660000000002,116.4275593220339,2.1508361204013378,10198.219041212575,2019
+1998,77,"(75,80]",HS,344.7923333333333,138.6042372881356,2.4876031215161647,10344.795893237224,2019
+1998,77,"(75,80]",HS,358.81376666666665,116.4275593220339,3.081862823167171,10741.405148447277,2019
+1998,77,"(75,80]",HS,386.2549333333334,134.9081242937853,2.8630961652998583,10326.384695205004,2019
+1998,77,"(75,80]",HS,919.5070000000001,147.84451977401133,6.219418896321069,7539.010820721784,2019
+1998,58,"(55,60]",College,22542.216433333335,2032.8621468926553,11.088905594405595,221.0179552196265,2019
+1998,58,"(55,60]",College,22770.66186666667,2014.381581920904,11.304045902242951,220.95350677744145,2019
+1998,58,"(55,60]",College,22291.1799,2069.823276836158,10.769605381032012,218.70860629439773,2019
+1998,58,"(55,60]",College,21300.654066666666,1958.9398870056498,10.873561872909699,213.37349522402116,2019
+1998,58,"(55,60]",College,21867.8019,1995.901016949152,10.956355908584172,202.69225601124634,2019
+1998,64,"(60,65]",College,415476.038,2347.0317514124295,177.0219076712401,16.988373072866104,2019
+1998,64,"(60,65]",College,395894.89666666667,2199.187231638418,180.01873190747872,17.31960725314636,2019
+1998,64,"(60,65]",College,401139.8973333333,1077.4169378531076,372.3163087937492,18.94060439607927,2019
+1998,64,"(60,65]",HS,408794.7976666667,911.0918531073447,448.6867007672634,17.623763815881922,2019
+1998,64,"(60,65]",College,413872.5986666667,572.8975141242938,722.4199590031287,18.931858893614667,2019
+1998,59,"(55,60]",HS,810.3805,72.07420338983052,11.24369693851299,6558.491767632217,2019
+1998,59,"(55,60]",HS,752.5808333333334,72.07420338983052,10.4417502787068,6252.56536653453,2019
+1998,59,"(55,60]",HS,1186.5341666666668,72.07420338983052,16.462674727724895,5853.330098457157,2019
+1998,59,"(55,60]",HS,870.7328333333334,72.07420338983052,12.081060800960465,6402.833370878847,2019
+1998,59,"(55,60]",HS,791.0531666666667,72.07420338983052,10.975538118514706,5837.413293375191,2019
+1998,50,"(45,50]",HS,144.0615666666667,92.40282485875707,1.5590602006688965,6529.608324796745,2019
+1998,50,"(45,50]",HS,166.288,92.40282485875707,1.7995986622073579,6614.859975833577,2019
+1998,50,"(45,50]",HS,130.0219,92.40282485875707,1.4071204013377923,6855.902681216637,2019
+1998,50,"(45,50]",HS,145.68433333333334,92.40282485875707,1.5766220735785952,6523.954478286762,2019
+1998,50,"(45,50]",HS,127.26866666666668,92.40282485875707,1.377324414715719,6824.217316157223,2019
+1998,46,"(45,50]",HS,557.3018333333334,110.88338983050849,5.026017279821628,6178.625172852858,2019
+1998,46,"(45,50]",HS,567.5489666666667,110.88338983050849,5.118430880713489,5921.893233780246,2019
+1998,46,"(45,50]",HS,480.1748333333333,110.88338983050849,4.330448717948717,5517.0178234987725,2019
+1998,46,"(45,50]",HS,564.1940333333333,110.88338983050849,5.088174470457078,6037.6500796020855,2019
+1998,46,"(45,50]",HS,508.8011666666667,110.88338983050849,4.588614827201783,5506.902785777844,2019
+1998,71,"(70,75]",HS,289.91,22.176677966101696,13.072742474916389,7114.688577389177,2019
+1998,71,"(70,75]",HS,245.78533333333334,44.35335593220339,5.541527313266443,7052.758200598047,2019
+1998,71,"(70,75]",HS,296.1093333333333,85.0105988700565,3.4832048858513884,7540.039444637638,2019
+1998,71,"(70,75]",HS,262.19533333333334,20.328621468926556,12.897841289145635,7289.666980353645,2019
+1998,71,"(70,75]",HS,288.32370000000003,57.289751412429375,5.032727370805913,7392.70898280927,2019
+1998,66,"(65,70]",College,145.13733333333334,42.50529943502825,3.4145703068198343,5889.125066698914,2019
+1998,66,"(65,70]",College,181.604,42.50529943502825,4.272502544714265,6078.301130217579,2019
+1998,66,"(65,70]",College,163.553,40.65724293785311,4.0227272727272725,6033.021340125521,2019
+1998,66,"(65,70]",College,145.13733333333334,42.50529943502825,3.4145703068198343,6049.078838585768,2019
+1998,66,"(65,70]",College,163.73533333333336,42.50529943502825,3.8521157481459944,5980.87724796324,2019
+1998,42,"(40,45]",HS,705.3200333333333,210.6784406779661,3.347851023880772,5896.316919858276,2019
+1998,42,"(40,45]",HS,623.6347,210.6784406779661,2.9601258581235697,5641.089661561192,2019
+1998,42,"(40,45]",HS,642.3968000000001,210.6784406779661,3.0491814821334278,5267.845183593761,2019
+1998,42,"(40,45]",HS,570.3751333333333,210.6784406779661,2.7073255882180365,5757.3267961930005,2019
+1998,42,"(40,45]",HS,562.3524666666667,210.6784406779661,2.66924543800974,5250.58312809736,2019
+1998,61,"(60,65]",HS,180.96765666666667,92.40282485875707,1.9584645484949832,8129.302882310803,2019
+1998,61,"(60,65]",HS,181.89755666666667,92.40282485875707,1.9685280936454848,8105.174418356463,2019
+1998,61,"(60,65]",HS,182.62689000000003,92.40282485875707,1.9764210702341138,8529.962274601263,2019
+1998,61,"(60,65]",HS,181.36879000000002,92.40282485875707,1.962805685618729,7991.839501001664,2019
+1998,61,"(60,65]",HS,182.09812333333332,92.40282485875707,1.9706986622073575,8456.274593581606,2019
+1998,26,"(25,30]",HS,-4.011333333333334,114.57950282485875,-0.035009170352788874,5596.771769864393,2019
+1998,26,"(25,30]",HS,-2.005666666666667,118.27561581920904,-0.01695756688963211,5577.689934144144,2019
+1998,26,"(25,30]",HS,-2.735,112.73144632768363,-0.024261198530621194,5580.47827485902,2019
+1998,26,"(25,30]",HS,1.4586666666666668,125.66784180790961,0.011607318512689356,5620.184039623739,2019
+1998,26,"(25,30]",HS,5.287666666666667,131.21201129943503,0.040298648075745444,5576.950069460023,2019
+1998,81,"(80,85]",NoHS,0,22.176677966101696,0,4857.08542888445,2019
+1998,81,"(80,85]",NoHS,0,22.176677966101696,0,4949.939626076469,2019
+1998,81,"(80,85]",NoHS,0,22.176677966101696,0,5022.802660518057,2019
+1998,81,"(80,85]",NoHS,0,22.176677966101696,0,5014.094598742965,2019
+1998,81,"(80,85]",NoHS,0,22.176677966101696,0,5042.441605755523,2019
+1998,26,"(25,30]",HS,4.924823333333334,7.392225988700565,0.6662165551839466,6154.893827208436,2019
+1998,26,"(25,30]",HS,4.74249,7.392225988700565,0.6415510033444817,6082.939271364181,2019
+1998,26,"(25,30]",HS,4.74249,7.392225988700565,0.6415510033444817,6305.742765887992,2019
+1998,26,"(25,30]",HS,4.924823333333334,7.392225988700565,0.6662165551839466,6239.034883909724,2019
+1998,26,"(25,30]",HS,4.924823333333334,7.392225988700565,0.6662165551839466,6353.916229034295,2019
+1998,73,"(70,75]",College,252.89633333333336,70.22614689265536,3.6011705685618733,6211.236052060633,2019
+1998,73,"(70,75]",College,256.543,70.22614689265536,3.6530980461186413,6157.1698501659685,2019
+1998,73,"(70,75]",College,252.89633333333336,70.22614689265536,3.6011705685618733,6582.574110317338,2019
+1998,73,"(70,75]",College,252.9328,72.07420338983052,3.509338821713403,6363.994975097529,2019
+1998,73,"(70,75]",College,252.6593,72.07420338983052,3.505544121430409,6453.95227871907,2019
+1998,68,"(65,70]",College,1802.7296666666668,478.6466327683616,3.7663059619581363,111.95813302402499,2019
+1998,68,"(65,70]",College,1931.0923333333333,715.1978644067797,2.7000812354705173,116.99388595873718,2019
+1998,68,"(65,70]",College,2843.7618333333335,487.88691525423735,5.828731504003243,125.33590187503728,2019
+1998,68,"(65,70]",College,1784.4963333333333,715.1978644067797,2.495108587626282,95.95775329406861,2019
+1998,68,"(65,70]",College,2081.2438333333334,550.720836158192,3.7791267311620396,87.38348648103212,2019
+1998,73,"(70,75]",HS,137.5705,36.96112994350283,3.7220317725752503,6587.67460314613,2019
+1998,73,"(70,75]",HS,137.5705,35.11307344632768,3.917928181658159,6530.331661721155,2019
+1998,73,"(70,75]",HS,137.38816666666665,35.11307344632768,3.9127354339024816,6981.517998414897,2019
+1998,73,"(70,75]",HS,137.38816666666665,36.96112994350283,3.7170986622073565,6749.691642791612,2019
+1998,73,"(70,75]",HS,137.38816666666665,36.96112994350283,3.7170986622073565,6845.100904244256,2019
+1998,48,"(45,50]",College,1234.2143333333333,280.90458757062146,4.393713694772047,2573.6373746773106,2019
+1998,48,"(45,50]",College,1240.9606666666668,280.90458757062146,4.417730153142053,2810.8998216151094,2019
+1998,48,"(45,50]",College,1243.1486666666667,282.75264406779667,4.396594312195335,2618.1327600687564,2019
+1998,48,"(45,50]",College,1234.3966666666668,280.90458757062146,4.394362788241507,2599.815543295778,2019
+1998,48,"(45,50]",College,1241.3253333333332,282.75264406779667,4.390145801910506,2684.571457401481,2019
+1998,24,"(20,25]",NoHS,0.009116666666666667,36.96112994350283,2.466555183946488e-4,6587.694984093551,2019
+1998,24,"(20,25]",NoHS,0.018233333333333334,42.50529943502825,4.289661189472154e-4,6604.435762189647,2019
+1998,24,"(20,25]",NoHS,0.009116666666666667,25.872790960451983,3.523650262780697e-4,6615.171060899462,2019
+1998,24,"(20,25]",NoHS,0.009116666666666667,35.11307344632768,2.596373877838409e-4,6640.615904559806,2019
+1998,24,"(20,25]",NoHS,0.018233333333333334,18.480564971751416,9.866220735785952e-4,6569.778607333428,2019
+1998,49,"(45,50]",College,2435.3534,352.978790960452,6.899432663853333,2676.4486144128473,2019
+1998,49,"(45,50]",College,2439.310033333333,351.1307344632769,6.947013729977115,2662.024940765521,2019
+1998,49,"(45,50]",College,2448.080266666667,351.1307344632769,6.971990846681922,2882.1836578851917,2019
+1998,49,"(45,50]",College,2447.9161666666664,352.978790960452,6.935023376350487,3313.496205417357,2019
+1998,49,"(45,50]",College,2440.7869333333333,352.978790960452,6.9148260344253965,2719.9379078789507,2019
+1998,71,"(70,75]",College,466.044,66.53003389830509,7.005016722408025,6366.6150031536545,2019
+1998,63,"(60,65]",College,414.80833333333334,73.92225988700567,5.61141304347826,8137.67746715568,2019
+1998,68,"(65,70]",College,736.2620000000001,70.22614689265536,10.484157718711495,6943.667525614507,2019
+1998,81,"(80,85]",College,644.0013333333334,59.13780790960452,10.889841137123748,7690.73061187194,2019
+1998,68,"(65,70]",College,475.7076666666667,212.52649717514123,2.23834520866657,6923.936261518507,2019
+1998,45,"(40,45]",HS,145.39260000000002,79.46642937853107,1.8296103290036558,6729.651038795875,2019
+1998,45,"(40,45]",HS,162.09433333333334,110.88338983050849,1.461845039018952,6855.882393338662,2019
+1998,45,"(40,45]",HS,160.45333333333335,195.893988700565,0.8190824761784565,7151.168631680349,2019
+1998,45,"(40,45]",HS,124.40603333333334,107.18727683615819,1.1606417944873717,6711.048976078705,2019
+1998,45,"(40,45]",HS,60.73523333333333,49.89752542372881,1.2171993063297413,7041.498883549715,2019
+1998,48,"(45,50]",HS,-2.0239000000000003,36.96112994350283,-0.054757525083612035,5579.638756988621,2019
+1998,48,"(45,50]",HS,-2.005666666666667,36.96112994350283,-0.05426421404682274,5515.49649806887,2019
+1998,48,"(45,50]",HS,-2.005666666666667,36.96112994350283,-0.05426421404682274,5714.785834367629,2019
+1998,48,"(45,50]",HS,-2.0239000000000003,36.96112994350283,-0.054757525083612035,5623.577604471375,2019
+1998,48,"(45,50]",HS,-2.005666666666667,36.96112994350283,-0.05426421404682274,5762.2979261498485,2019
+1998,62,"(60,65]",College,132160.92526666666,7595.5122033898315,17.399870045325454,24.536113405023357,2019
+1998,62,"(60,65]",College,134509.03216666667,7706.395593220339,17.454208071669754,25.75983580138125,2019
+1998,62,"(60,65]",College,130446.60903333333,7854.240112994352,16.608431516820772,22.59482456630162,2019
+1998,62,"(60,65]",College,130406.93512333334,7429.187118644068,17.55332488477346,21.34192801567523,2019
+1998,62,"(60,65]",College,131760.7036,8094.487457627119,16.277831584734503,21.91752728842682,2019
+1998,54,"(50,55]",College,2259.677056666667,628.3392090395481,3.5962693783198896,812.1321375646023,2019
+1998,54,"(50,55]",College,2261.6827233333333,628.3392090395481,3.599461390910879,821.7216248559307,2019
+1998,54,"(50,55]",College,2219.38139,628.3392090395481,3.5321389435372805,777.0016222604294,2019
+1998,54,"(50,55]",College,2192.2137233333333,628.3392090395481,3.488901682077513,585.290131992649,2019
+1998,54,"(50,55]",College,2155.5647233333334,628.3392090395481,3.4305749065512487,551.255852098807,2019
+1998,64,"(60,65]",HS,159.724,129.36395480225988,1.2346870520783564,5656.7372377991505,2019
+1998,64,"(60,65]",HS,156.07733333333334,129.36395480225988,1.206497849976111,5393.404651329924,2019
+1998,64,"(60,65]",HS,176.13400000000001,129.36395480225988,1.3615384615384616,5048.814066734927,2019
+1998,64,"(60,65]",HS,157.90066666666667,129.36395480225988,1.2205924510272337,5523.998545760658,2019
+1998,64,"(60,65]",HS,179.78066666666666,129.36395480225988,1.3897276636407072,5035.750989610406,2019
+1998,38,"(35,40]",HS,42.848333333333336,29.56890395480226,1.449101170568562,5824.988614604567,2019
+1998,38,"(35,40]",HS,42.848333333333336,29.56890395480226,1.449101170568562,5831.396844725649,2019
+1998,38,"(35,40]",HS,42.848333333333336,29.56890395480226,1.449101170568562,5823.360737870431,2019
+1998,38,"(35,40]",HS,42.848333333333336,29.56890395480226,1.449101170568562,5842.037024912328,2019
+1998,38,"(35,40]",HS,42.848333333333336,29.56890395480226,1.449101170568562,5759.133225657473,2019
+1998,44,"(40,45]",College,6084.463333333333,110.88338983050849,54.8726309921962,1115.1813247223686,2019
+1998,44,"(40,45]",College,5267.61,110.88338983050849,47.505852842809354,1124.0741971914713,2019
+1998,44,"(40,45]",College,5499.173333333333,110.88338983050849,49.59420289855071,1087.2706940694702,2019
+1998,44,"(40,45]",College,5244.818333333333,110.88338983050849,47.30030657748048,1179.739566240512,2019
+1998,44,"(40,45]",College,5578.488333333333,110.88338983050849,50.30950390189519,1099.2949431568172,2019
+1998,27,"(25,30]",NoHS,-2.3338666666666668,36.96112994350283,-0.06314381270903009,5861.063773436781,2019
+1998,27,"(25,30]",NoHS,-0.09116666666666667,36.96112994350283,-0.002466555183946488,5841.080851018395,2019
+1998,27,"(25,30]",NoHS,1.0210666666666668,36.96112994350283,0.027625418060200666,5844.000863379797,2019
+1998,27,"(25,30]",NoHS,-2.3885666666666667,36.96112994350283,-0.06462374581939798,5885.581622615358,2019
+1998,27,"(25,30]",NoHS,-1.4586666666666668,36.96112994350283,-0.039464882943143806,5840.306048279306,2019
+1998,23,"(20,25]",HS,14.3314,35.11307344632768,0.40814997359619787,6017.554888890687,2019
+1998,23,"(20,25]",HS,7.6033,40.65724293785311,0.18700972940103372,6015.397191050307,2019
+1998,23,"(20,25]",HS,20.895400000000002,29.56890395480226,0.706668060200669,6029.85716581561,2019
+1998,23,"(20,25]",HS,11.778733333333333,25.872790960451983,0.455255613951266,6010.689041372063,2019
+1998,23,"(20,25]",HS,4.138966666666667,38.80918644067796,0.1066491479534958,6027.372117348452,2019
+1998,65,"(60,65]",NoHS,-4.923,11.642755932203391,-0.42283803153368366,4828.486733200108,2019
+1998,65,"(60,65]",NoHS,-4.923,11.457950282485875,-0.42965799978422703,4830.8151622643145,2019
+1998,65,"(60,65]",NoHS,-4.923,11.457950282485875,-0.42965799978422703,4822.190282073745,2019
+1998,65,"(60,65]",NoHS,-4.923,11.642755932203391,-0.42283803153368366,4784.311159415547,2019
+1998,65,"(60,65]",NoHS,-4.923,11.642755932203391,-0.42283803153368366,4814.2136342680315,2019
+1998,55,"(50,55]",HS,563.0453333333334,88.70671186440678,6.34726867335563,7396.795220046445,2019
+1998,55,"(50,55]",HS,504.6986666666667,88.70671186440678,5.689520624303233,7051.765444680523,2019
+1998,55,"(50,55]",HS,718.0286666666666,88.70671186440678,8.094411928651057,6601.50010514579,2019
+1998,55,"(50,55]",HS,688.8553333333334,88.70671186440678,7.765537904124861,7221.240637398689,2019
+1998,55,"(50,55]",HS,634.1553333333334,88.70671186440678,7.148899108138239,6583.548821234796,2019
+1998,49,"(45,50]",College,189.99133333333336,99.79505084745762,1.9038151864238826,339.695787079372,2019
+1998,49,"(45,50]",College,189.07966666666667,99.79505084745762,1.8946797968537101,331.8172015273029,2019
+1998,49,"(45,50]",College,189.262,99.79505084745762,1.8965068747677445,314.5474720175688,2019
+1998,49,"(45,50]",College,192.36166666666665,99.79505084745762,1.9275671993063297,359.2222596895515,2019
+1998,49,"(45,50]",College,192.17933333333335,99.79505084745762,1.9257401213922956,338.1634386990845,2019
+1998,25,"(20,25]",NoHS,8.569666666666667,29.56890395480226,0.2898202341137124,5704.786885146898,2019
+1998,25,"(20,25]",NoHS,8.569666666666667,29.56890395480226,0.2898202341137124,5668.211632704448,2019
+1998,25,"(20,25]",NoHS,8.387333333333334,29.56890395480226,0.2836538461538462,5639.042978953837,2019
+1998,25,"(20,25]",NoHS,8.569666666666667,29.56890395480226,0.2898202341137124,5727.692262360619,2019
+1998,25,"(20,25]",NoHS,8.569666666666667,29.56890395480226,0.2898202341137124,5653.964928071289,2019
+1998,60,"(55,60]",HS,296.9663,101.64310734463277,2.92165703861356,9242.69568216385,2019
+1998,60,"(55,60]",HS,346.9256333333334,101.64310734463277,3.413174217087261,9156.733269075456,2019
+1998,60,"(55,60]",HS,521.4186333333333,101.64310734463277,5.129896625114016,6821.550101182239,2019
+1998,60,"(55,60]",HS,513.5783,101.64310734463277,5.052760717543326,7461.948650475773,2019
+1998,60,"(55,60]",HS,355.1671,101.64310734463277,3.4942566129522654,9540.542062301778,2019
+1998,47,"(45,50]",HS,24162.3028,1757.5017288135593,13.74809617758459,278.5532903040755,2019
+1998,47,"(45,50]",HS,28675.7092,1299.1837175141243,22.07209712793237,258.0967764302206,2019
+1998,47,"(45,50]",HS,27498.911633333333,659.7561694915254,41.68041604601707,245.6994592659002,2019
+1998,47,"(45,50]",College,27904.876800000002,378.851581920904,73.65648747858717,236.7536274012698,2019
+1998,47,"(45,50]",HS,24201.267433333334,2550.3179661016948,9.489509839561826,222.0667508196072,2019
+1998,40,"(35,40]",HS,747.202,101.64310734463277,7.351231377318334,9170.84060388686,2019
+1998,40,"(35,40]",HS,747.202,103.49116384180793,7.219959388437648,8752.578482122193,2019
+1998,40,"(35,40]",HS,747.5666666666666,269.8162485875706,2.7706510285426305,8833.70998488213,2019
+1998,40,"(35,40]",HS,747.3843333333334,181.10953672316384,4.126697836325166,8833.687828558885,2019
+1998,40,"(35,40]",HS,747.3843333333334,79.46642937853107,9.405032278136424,9152.799679725409,2019
+1998,54,"(50,55]",HS,643.0896666666666,118.27561581920904,5.43721258361204,616.7771418333848,2019
+1998,54,"(50,55]",HS,643.272,118.27561581920904,5.438754180602007,595.8279234219556,2019
+1998,54,"(50,55]",HS,643.0896666666666,118.27561581920904,5.43721258361204,604.4768805468439,2019
+1998,54,"(50,55]",HS,643.0896666666666,118.27561581920904,5.43721258361204,601.9889161343174,2019
+1998,54,"(50,55]",HS,643.272,118.27561581920904,5.438754180602007,611.0591020984925,2019
+1998,49,"(45,50]",NoHS,199.80086666666668,92.40282485875707,2.162280936454849,598.403819463633,2019
+1998,49,"(45,50]",NoHS,200.4755,92.40282485875707,2.169581939799331,596.2897685370457,2019
+1998,49,"(45,50]",NoHS,198.74333333333334,92.40282485875707,2.1508361204013378,559.9053106886802,2019
+1998,49,"(45,50]",NoHS,202.35353333333333,92.40282485875707,2.18990635451505,625.0911581456819,2019
+1998,49,"(45,50]",NoHS,197.28466666666665,92.40282485875707,2.13505016722408,627.9900791318831,2019
+1998,76,"(75,80]",HS,2233.7656666666667,90.55476836158192,24.66756535390076,1124.4163571263578,2019
+1998,76,"(75,80]",HS,1542.7223333333334,64.68197740112994,23.850883898709988,1192.0903714611156,2019
+1998,76,"(75,80]",HS,3132.7601666666665,94.25088135593221,33.23852383762869,1585.4035340117,2019
+1998,76,"(75,80]",HS,4978.4293333333335,158.93285875706215,31.324103601151123,1768.8647991131688,2019
+1998,76,"(75,80]",HS,7507.575,49.89752542372881,150.4598662207358,1644.418721752345,2019
+1998,33,"(30,35]",HS,243.0321,81.31448587570623,2.9887921860747944,8388.910494993957,2019
+1998,33,"(30,35]",HS,201.9524,55.441694915254246,3.6426086956521737,8444.917256672245,2019
+1998,33,"(30,35]",HS,346.5245,70.22614689265536,4.9344085548318954,8586.634672190874,2019
+1998,33,"(30,35]",HS,218.8,79.46642937853107,2.7533639262658474,8461.100805270835,2019
+1998,33,"(30,35]",HS,249.06733333333335,70.22614689265536,3.546646717127267,8549.123692128345,2019
+1998,32,"(30,35]",NoHS,0.6564,60.98586440677967,0.010763149893584675,6089.358025114347,2019
+1998,32,"(30,35]",NoHS,0.6381666666666667,60.98586440677967,0.010464173507651766,6089.721636877095,2019
+1998,32,"(30,35]",NoHS,0.6564,60.98586440677967,0.010763149893584675,6094.7575818611995,2019
+1998,32,"(30,35]",NoHS,0.6564,60.98586440677967,0.010763149893584675,6082.228658690276,2019
+1998,32,"(30,35]",NoHS,0.6381666666666667,60.98586440677967,0.010464173507651766,6141.475679254448,2019
+1998,39,"(35,40]",College,8769.686333333335,145.99646327683615,60.06779983912622,759.796727698395,2019
+1998,39,"(35,40]",College,8383.960166666668,147.84451977401133,56.70795359531772,831.8743564045408,2019
+1998,39,"(35,40]",College,7456.521666666667,149.69257627118645,49.81223419629217,761.0065939879427,2019
+1998,39,"(35,40]",College,8969.250166666667,160.78091525423727,55.78553992234652,974.4189583256357,2019
+1998,39,"(35,40]",College,7674.957,151.54063276836158,50.646198711150994,761.5122794076566,2019
+1998,36,"(35,40]",HS,193.3098,72.07420338983052,2.682094160020581,7085.1934680543245,2019
+1998,36,"(35,40]",HS,169.36943333333332,70.22614689265536,2.4117716951240977,7077.979458306198,2019
+1998,36,"(35,40]",HS,214.6428,51.745581920903966,4.148041089345436,7076.764792796564,2019
+1998,36,"(35,40]",HS,296.474,77.61837288135592,3.8196368848542765,7180.421322745036,2019
+1998,36,"(35,40]",HS,175.58700000000002,70.22614689265536,2.500308044358388,7061.470986762562,2019
+1998,37,"(35,40]",College,297.2033333333333,133.06006779661018,2.233602749907097,7002.483708420163,2019
+1998,37,"(35,40]",College,301.397,129.36395480225988,2.3298375537505973,7138.210990594196,2019
+1998,37,"(35,40]",College,298.4796666666667,123.81978531073446,2.4105975141017324,7478.602280180979,2019
+1998,37,"(35,40]",College,302.3086666666667,96.09893785310734,3.1458065346025212,7024.182022308514,2019
+1998,37,"(35,40]",College,297.9326666666667,94.25088135593221,3.1610597416224016,7308.544068451311,2019
+1998,26,"(25,30]",College,302.83743333333337,232.8551186440678,1.300540160322769,7844.892759361037,2019
+1998,26,"(25,30]",College,292.098,214.37455367231638,1.3625591050628534,7891.271551229441,2019
+1998,26,"(25,30]",College,317.0776666666667,201.4381581920904,1.5740695283974102,8078.666183270759,2019
+1998,26,"(25,30]",College,387.7318333333333,219.9187231638418,1.7630687726595655,6784.078918324363,2019
+1998,26,"(25,30]",College,299.37309999999997,201.4381581920904,1.486178699641005,6187.362936599234,2019
+1998,43,"(40,45]",College,129.45666666666668,221.76677966101698,0.5837513935340022,5550.432254169724,2019
+1998,43,"(40,45]",College,164.1,221.76677966101698,0.7399665551839464,5305.994375289576,2019
+1998,43,"(40,45]",College,118.51666666666668,221.76677966101698,0.5344202898550724,5382.850871010809,2019
+1998,43,"(40,45]",College,359.1966666666667,221.76677966101698,1.6197045707915272,5367.494908669991,2019
+1998,43,"(40,45]",College,359.1966666666667,221.76677966101698,1.6197045707915272,5526.227725237278,2019
+1998,38,"(35,40]",College,540.6201566666666,334.4982259887006,1.616212328387442,75.15137064513105,2019
+1998,38,"(35,40]",College,540.6201566666666,336.3462824858757,1.60733204086883,393.605708907997,2019
+1998,38,"(35,40]",College,540.6201566666666,334.4982259887006,1.616212328387442,72.10395197176032,2019
+1998,38,"(35,40]",College,540.6201566666666,334.4982259887006,1.616212328387442,72.26100661885599,2019
+1998,38,"(35,40]",College,540.6201566666666,334.4982259887006,1.616212328387442,74.73834851999189,2019
+1998,50,"(45,50]",HS,364.6666666666667,103.49116384180793,3.523650262780697,5823.990431599663,2019
+1998,50,"(45,50]",HS,364.4843333333333,103.49116384180793,3.5218884376493063,5601.356242712844,2019
+1998,50,"(45,50]",HS,389.2816666666667,103.49116384180793,3.761496655518394,5258.876325829739,2019
+1998,50,"(45,50]",HS,393.65766666666667,103.49116384180793,3.803780458671762,5688.230176768457,2019
+1998,50,"(45,50]",HS,382.90000000000003,103.49116384180793,3.699832775919732,5226.347211127293,2019
+1998,71,"(70,75]",College,1414.3596666666667,99.79505084745762,14.17264337916512,2724.1617895357044,2019
+1998,71,"(70,75]",College,1344.526,123.81978531073446,10.85873309040084,2990.6429647066693,2019
+1998,71,"(70,75]",College,1492.3983333333333,94.25088135593221,15.83431700439373,2790.202018791585,2019
+1998,71,"(70,75]",College,1447.5443333333333,96.09893785310734,15.063062773347054,2770.0602352590254,2019
+1998,71,"(70,75]",College,1499.874,129.36395480225988,11.594218824653607,2858.946366659823,2019
+1998,41,"(40,45]",College,348.0743333333333,286.4487570621469,1.215136476426799,6652.21989256659,2019
+1998,41,"(40,45]",College,344.4276666666667,286.4487570621469,1.202405869025785,6344.814342005013,2019
+1998,41,"(40,45]",College,346.25100000000003,286.4487570621469,1.208771172726292,6327.432980403552,2019
+1998,41,"(40,45]",College,346.25100000000003,286.4487570621469,1.208771172726292,6312.780867061528,2019
+1998,41,"(40,45]",College,344.4276666666667,286.4487570621469,1.202405869025785,6595.2278125456,2019
+1998,75,"(70,75]",NoHS,85.69666666666667,29.56890395480226,2.898202341137124,10315.235877539415,2019
+1998,75,"(70,75]",NoHS,136.75,17.002119774011298,8.043114730260289,10883.589296355365,2019
+1998,75,"(70,75]",NoHS,40.11333333333334,16.26289717514124,2.4665551839464888,10324.59453544828,2019
+1998,75,"(70,75]",NoHS,85.69666666666667,7.577031638418079,11.31005791663268,10332.860060110437,2019
+1998,75,"(70,75]",NoHS,52.876666666666665,25.872790960451983,2.043717152412804,10350.699173297297,2019
+1998,39,"(35,40]",College,348.6213333333333,624.6430960451978,0.5581128416219746,141.83366899923334,2019
+1998,39,"(35,40]",College,348.6213333333333,624.6430960451978,0.5581128416219746,133.4542222954467,2019
+1998,39,"(35,40]",College,348.6213333333333,622.7950395480226,0.5597689628137312,135.44312356825407,2019
+1998,39,"(35,40]",College,346.798,624.6430960451978,0.5551938414042864,136.16323112417865,2019
+1998,39,"(35,40]",College,346.798,622.7950395480226,0.5568413008743289,140.67991573552698,2019
+1998,37,"(35,40]",HS,-8.624366666666667,92.40282485875707,-0.09333444816053511,11574.83412661507,2019
+1998,37,"(35,40]",HS,-11.5417,92.40282485875707,-0.12490635451505017,11909.824886976608,2019
+1998,37,"(35,40]",HS,-10.247133333333334,92.40282485875707,-0.11089632107023412,12246.122404032021,2019
+1998,37,"(35,40]",HS,-12.271033333333333,94.25088135593221,-0.1301954226506656,11598.10620015702,2019
+1998,37,"(35,40]",HS,-11.906366666666667,92.40282485875707,-0.12885284280936454,12158.667348948298,2019
+1998,40,"(35,40]",NoHS,2.990266666666667,36.96112994350283,0.0809030100334448,5170.983930849369,2019
+1998,40,"(35,40]",NoHS,1.8598,35.11307344632768,0.05296602710790354,5243.803145240088,2019
+1998,40,"(35,40]",NoHS,1.3492666666666666,33.265016949152546,0.04056112969156447,5213.849648317053,2019
+1998,40,"(35,40]",NoHS,5.725266666666666,27.720847457627123,0.20653288740245257,5182.07044806852,2019
+1998,40,"(35,40]",NoHS,4.284833333333333,40.65724293785311,0.10538917604134994,5145.551153187865,2019
+1998,67,"(65,70]",HS,64179.2365,2439.4345762711864,26.309062404986317,17.65514345863118,2019
+1998,67,"(65,70]",HS,66249.54033333334,2476.395706214689,26.752404782109522,18.212895568678366,2019
+1998,67,"(65,70]",HS,65076.49883333334,2254.628926553672,28.863507456549158,19.6756376232697,2019
+1998,67,"(65,70]",HS,60764.29726666667,2199.187231638418,27.63034287962677,18.30449983333552,2019
+1998,67,"(65,70]",HS,60741.26856666667,2217.6677966101697,27.38970582497213,19.64463151203668,2019
+1998,28,"(25,30]",NoHS,9.116666666666665,51.745581920903966,0.17618251313903482,4963.265068715965,2019
+1998,28,"(25,30]",NoHS,9.299,51.745581920903966,0.17970616340181553,4959.197355514536,2019
+1998,28,"(25,30]",NoHS,8.934333333333335,51.745581920903966,0.17265886287625418,4965.241891159401,2019
+1998,28,"(25,30]",NoHS,9.116666666666665,51.745581920903966,0.17618251313903482,4973.725277521789,2019
+1998,28,"(25,30]",NoHS,8.934333333333335,51.745581920903966,0.17265886287625418,4924.793303918951,2019
+1998,36,"(35,40]",HS,110.25696666666666,118.27561581920904,0.9322036998327758,6826.339782531761,2019
+1998,36,"(35,40]",HS,97.34776666666666,123.81978531073446,0.7862052613188238,6963.940242826973,2019
+1998,36,"(35,40]",HS,112.80963333333334,116.4275593220339,0.9689255189255189,7246.378338305108,2019
+1998,36,"(35,40]",HS,105.20633333333333,125.66784180790961,0.8371778477277199,6886.625260520998,2019
+1998,36,"(35,40]",HS,105.75333333333333,118.27561581920904,0.894126254180602,7171.519562005509,2019
+1998,49,"(45,50]",College,153.16,199.59010169491523,0.7673727238944631,4680.835745526401,2019
+1998,49,"(45,50]",College,505.7015,412.11659887005646,1.2270835520494325,4471.051288635323,2019
+1998,49,"(45,50]",College,149.33100000000002,437.9893898305085,0.34094661529994497,4426.1275306134585,2019
+1998,49,"(45,50]",College,383.447,280.90458757062146,1.3650435662735434,4430.053433940548,2019
+1998,49,"(45,50]",College,189.44433333333333,227.31094915254238,0.833414906055415,4666.679015373502,2019
+1998,54,"(50,55]",College,916.9908,227.31094915254238,4.034081083285749,789.8355259673465,2019
+1998,54,"(50,55]",College,876.4763333333334,194.04593220338984,4.516849816849817,730.7819163410023,2019
+1998,54,"(50,55]",College,861.7073333333334,406.57242937853107,2.1194435998783825,741.8227001546873,2019
+1998,54,"(50,55]",College,1264.9922,194.04593220338984,6.5190348781653125,1668.5319049342186,2019
+1998,54,"(50,55]",College,961.0790000000001,450.9257853107345,2.131346290915072,816.3649782532741,2019
+1998,53,"(50,55]",College,7524.386133333334,582.1377966101695,12.925438233264321,1042.8873658181496,2019
+1998,53,"(50,55]",College,7967.3832,580.2897401129943,13.73000873399655,1143.3517729179207,2019
+1998,53,"(50,55]",College,7861.7392666666665,582.1377966101695,13.50494558581515,1044.017675570392,2019
+1998,53,"(50,55]",College,7347.322233333333,582.1377966101695,12.62127674258109,1338.051938116263,2019
+1998,53,"(50,55]",College,7336.063150000001,582.1377966101695,12.601935817805384,1046.254274117985,2019
+1998,78,"(75,80]",HS,839.2803333333334,147.84451977401133,5.676776755852842,466.41005706259847,2019
+1998,78,"(75,80]",HS,966.9136666666667,112.73144632768363,8.57714238719228,452.53624274559814,2019
+1998,78,"(75,80]",HS,1034.1946666666668,164.47702824858757,6.287775731840217,536.969587223733,2019
+1998,78,"(75,80]",HS,1141.589,181.10953672316384,6.303306941505699,517.0902634749019,2019
+1998,78,"(75,80]",HS,1059.1743333333334,73.92225988700567,14.328219063545149,453.39959180889656,2019
+1998,44,"(40,45]",HS,167.382,83.16254237288136,2.0127090301003343,7821.8476759522655,2019
+1998,44,"(40,45]",HS,167.19966666666667,83.16254237288136,2.010516536603493,7979.51487021122,2019
+1998,44,"(40,45]",HS,167.382,83.16254237288136,2.0127090301003343,8303.141854963613,2019
+1998,44,"(40,45]",HS,167.382,83.16254237288136,2.0127090301003343,7890.924786223055,2019
+1998,44,"(40,45]",HS,167.382,83.16254237288136,2.0127090301003343,8217.366173694121,2019
+1998,55,"(50,55]",College,3063.2000000000003,199.59010169491523,15.347454477889263,2578.2076533218283,2019
+1998,55,"(50,55]",College,3063.2000000000003,199.59010169491523,15.347454477889263,2520.2262744593354,2019
+1998,55,"(50,55]",College,3063.2000000000003,199.59010169491523,15.347454477889263,2467.1385493662638,2019
+1998,55,"(50,55]",College,3063.2000000000003,199.59010169491523,15.347454477889263,2912.2160746417403,2019
+1998,55,"(50,55]",College,3063.2000000000003,199.59010169491523,15.347454477889263,2643.5531336169297,2019
+1998,75,"(70,75]",HS,6776.1813,138.6042372881356,48.88870234113712,298.995037894117,2019
+1998,75,"(70,75]",HS,7055.133066666666,109.03533333333333,64.70501672240803,301.07926025302294,2019
+1998,75,"(70,75]",HS,7036.899733333334,175.56536723163845,40.08136595669776,287.9865881446447,2019
+1998,75,"(70,75]",HS,6850.937966666667,125.66784180790961,54.51623795002951,309.1291856834658,2019
+1998,75,"(70,75]",HS,7009.677366666667,144.14840677966103,48.62819869650973,292.6523934319388,2019
+1998,61,"(60,65]",NoHS,285.18756666666667,29.56890395480226,9.644847408026756,8330.702947857173,2019
+1998,61,"(60,65]",NoHS,285.91690000000006,29.56890395480226,9.669512959866223,8253.222594424968,2019
+1998,61,"(60,65]",NoHS,285.73456666666664,27.720847457627123,10.307569676700108,8689.678726210244,2019
+1998,61,"(60,65]",NoHS,279.53523333333334,29.56890395480226,9.453689381270904,8158.796959448574,2019
+1998,61,"(60,65]",NoHS,282.8172333333333,29.56890395480226,9.564684364548494,8599.160311633836,2019
+1998,59,"(55,60]",HS,2646.386,46.201412429378536,57.27933110367892,4032.295661324217,2019
+1998,59,"(55,60]",HS,2646.5683333333336,46.201412429378536,57.283277591973246,4398.092791338016,2019
+1998,59,"(55,60]",HS,2646.5683333333336,46.201412429378536,57.283277591973246,4145.707642415227,2019
+1998,59,"(55,60]",HS,2646.5683333333336,46.201412429378536,57.283277591973246,4070.5572667068423,2019
+1998,59,"(55,60]",HS,2646.5683333333336,46.201412429378536,57.283277591973246,4230.299879997564,2019
+1998,49,"(45,50]",HS,169.75233333333335,133.06006779661018,1.2757571534745449,5309.824050559504,2019
+1998,49,"(45,50]",HS,163.73533333333336,73.92225988700567,2.2149665551839464,5409.423016155485,2019
+1998,49,"(45,50]",HS,150.06033333333335,70.22614689265536,2.1368157014610105,5642.409535234559,2019
+1998,49,"(45,50]",HS,177.04566666666665,177.41342372881357,0.9979271181716832,5295.14666544158,2019
+1998,49,"(45,50]",HS,176.13400000000001,44.35335593220339,3.9711538461538463,5555.877995503036,2019
+1998,27,"(25,30]",College,2.005666666666667,92.40282485875707,0.021705685618729098,5474.341822869232,2019
+1998,27,"(25,30]",College,3.829,92.40282485875707,0.041438127090301,5486.381109283773,2019
+1998,27,"(25,30]",College,2.005666666666667,92.40282485875707,0.021705685618729098,5524.242027485583,2019
+1998,27,"(25,30]",College,2.005666666666667,92.40282485875707,0.021705685618729098,5486.7974013803705,2019
+1998,27,"(25,30]",College,2.005666666666667,92.40282485875707,0.021705685618729098,5461.323761270998,2019
+1998,37,"(35,40]",HS,4.191843333333333,31.416960451977403,0.13342612630336415,5296.850700996749,2019
+1998,37,"(35,40]",HS,4.009510000000001,31.416960451977403,0.1276224670470195,5376.169263489089,2019
+1998,37,"(35,40]",HS,4.191843333333333,31.416960451977403,0.13342612630336415,5343.367357584169,2019
+1998,37,"(35,40]",HS,4.191843333333333,31.416960451977403,0.13342612630336415,5290.841688040566,2019
+1998,37,"(35,40]",HS,4.191843333333333,31.416960451977403,0.13342612630336415,5357.437743317555,2019
+1998,54,"(50,55]",College,1923.799,332.65016949152545,5.783249721293199,1512.5167370292415,2019
+1998,54,"(50,55]",College,1923.799,332.65016949152545,5.783249721293199,1513.0411325366672,2019
+1998,54,"(50,55]",College,1923.799,332.65016949152545,5.783249721293199,1457.821943284105,2019
+1998,54,"(50,55]",College,1923.799,332.65016949152545,5.783249721293199,1668.5245279335657,2019
+1998,54,"(50,55]",College,1923.799,332.65016949152545,5.783249721293199,1571.312077188988,2019
+1998,60,"(55,60]",College,3759.7133333333336,698.5653559322034,5.382049512484295,182.33691989144364,2019
+1998,60,"(55,60]",College,3800.3736666666664,377.00352542372883,10.080472489999343,180.98444902747238,2019
+1998,60,"(55,60]",College,1740.7363333333333,310.4734915254237,5.606714843127887,121.23240330619699,2019
+1998,60,"(55,60]",College,6725.729666666667,861.1943276836157,7.809770048947136,185.3697193082039,2019
+1998,60,"(55,60]",College,2697.9863333333337,280.90458757062146,9.604636067593736,179.299402800348,2019
+1998,40,"(35,40]",HS,70.563,96.09893785310734,0.7342745047594547,6720.3324018934945,2019
+1998,40,"(35,40]",HS,70.563,96.09893785310734,0.7342745047594547,6748.051838598406,2019
+1998,40,"(35,40]",HS,70.563,96.09893785310734,0.7342745047594547,6776.995742676721,2019
+1998,40,"(35,40]",HS,70.563,96.09893785310734,0.7342745047594547,6741.129464283955,2019
+1998,40,"(35,40]",HS,70.563,94.25088135593221,0.7486720440684635,6680.335480367665,2019
+1998,78,"(75,80]",HS,10075.74,175.56536723163845,57.39024819574018,1274.573089517935,2019
+1998,78,"(75,80]",HS,10290.893333333333,175.56536723163845,58.615736666079904,1398.4210318754697,2019
+1998,78,"(75,80]",HS,9873.35,175.56536723163845,56.237458193979926,1279.1662392276633,2019
+1998,78,"(75,80]",HS,9840.53,175.56536723163845,56.05051927477556,1630.8501960428885,2019
+1998,78,"(75,80]",HS,10287.246666666666,175.56536723163845,58.594965675057196,1280.4284245898552,2019
+1998,26,"(25,30]",HS,13.492666666666667,66.53003389830509,0.20280564845782234,4716.5956921284505,2019
+1998,26,"(25,30]",HS,13.693233333333334,66.53003389830509,0.20582032701597916,4700.5147605027205,2019
+1998,26,"(25,30]",HS,13.492666666666667,66.53003389830509,0.20280564845782234,4702.86459293197,2019
+1998,26,"(25,30]",HS,13.693233333333334,66.53003389830509,0.20582032701597916,4736.326032265683,2019
+1998,26,"(25,30]",HS,13.857333333333335,66.53003389830509,0.20828688219992567,4699.8912506071265,2019
+1998,78,"(75,80]",NoHS,132.921,27.720847457627123,4.794983277591972,10786.40037315358,2019
+1998,78,"(75,80]",NoHS,129.05553333333333,27.720847457627123,4.655540691192864,10883.589296355365,2019
+1998,78,"(75,80]",NoHS,179.59833333333336,27.720847457627123,6.478818283166109,11172.670223899488,2019
+1998,78,"(75,80]",NoHS,154.80100000000002,27.720847457627123,5.584280936454849,10774.420531120917,2019
+1998,78,"(75,80]",NoHS,126.53933333333333,27.720847457627123,4.564771460423634,10806.636028000983,2019
+1998,33,"(30,35]",HS,42.92126666666667,49.89752542372881,0.8601882819274125,5439.700621604325,2019
+1998,33,"(30,35]",HS,38.85523333333333,49.89752542372881,0.7787006069614766,5456.461176667915,2019
+1998,33,"(30,35]",HS,39.1105,51.745581920903966,0.7558229813664595,5491.965122839175,2019
+1998,33,"(30,35]",HS,43.06713333333333,51.745581920903966,0.8322861920688005,5434.241334905907,2019
+1998,33,"(30,35]",HS,42.356033333333336,51.745581920903966,0.8185439560439559,5515.967511685421,2019
+1998,67,"(65,70]",HS,733.1623333333334,49.89752542372881,14.693360584664935,7625.770848295293,2019
+1998,67,"(65,70]",HS,747.749,51.745581920903966,14.450489727663639,7293.28582356886,2019
+1998,67,"(65,70]",HS,813.389,49.89752542372881,16.301189149015237,6754.587185975104,2019
+1998,67,"(65,70]",HS,694.8723333333334,49.89752542372881,13.925987860770471,7410.36995416763,2019
+1998,67,"(65,70]",HS,776.9223333333334,49.89752542372881,15.570357983401465,6736.284157891289,2019
+1998,38,"(35,40]",College,5325.8108,1025.6713559322034,5.192511976859803,1929.1486436714422,2019
+1998,38,"(35,40]",College,1440.4333333333334,384.3957514124294,3.747266529457165,1330.5756124125508,2019
+1998,38,"(35,40]",College,2289.2861666666668,343.7385084745763,6.659964217643039,1804.0510391782348,2019
+1998,38,"(35,40]",College,4956.458166666667,681.9328474576272,7.268249630656841,2180.5099130765316,2019
+1998,38,"(35,40]",College,1621.7638333333332,813.1448587570621,1.9944340985101854,1366.19298925682,2019
+1998,70,"(65,70]",NoHS,250.6718666666667,24.024734463276836,10.433907898121946,6005.905940714022,2019
+1998,70,"(65,70]",NoHS,257.4729,94.25088135593221,2.7317824119614396,5953.627051225789,2019
+1998,70,"(65,70]",NoHS,253.89916666666667,33.265016949152546,7.632617985878855,6364.968361044555,2019
+1998,70,"(65,70]",NoHS,249.43200000000002,36.96112994350283,6.748494983277591,6153.614982147086,2019
+1998,70,"(65,70]",NoHS,279.6993333333333,83.16254237288136,3.363285024154589,6240.5984906956,2019
+1998,58,"(55,60]",HS,300.86823333333336,114.57950282485875,2.625846909051678,7998.022205591646,2019
+1998,58,"(55,60]",HS,312.5193333333333,97.9469943502825,3.190698554931532,7974.283393877112,2019
+1998,58,"(55,60]",HS,321.089,133.06006779661018,2.4131131549609806,8392.211321535504,2019
+1998,58,"(55,60]",HS,306.52056666666664,138.6042372881356,2.2114804905239684,7862.778729972281,2019
+1998,58,"(55,60]",HS,295.5623333333333,107.18727683615819,2.7574385883981085,8319.713627993266,2019
+1998,48,"(45,50]",College,1046.4657,317.8657175141243,3.2921628295869954,1536.201262184947,2019
+1998,48,"(45,50]",College,1204.0564,482.34274576271196,2.496267250989889,1572.3247147872942,2019
+1998,48,"(45,50]",College,1327.3684333333333,203.28621468926553,6.529554575858923,1504.9273518017321,2019
+1998,48,"(45,50]",College,700.0870666666667,402.8763163841808,1.7377220705102636,809.4850818716668,2019
+1998,48,"(45,50]",College,756.5192333333333,177.41342372881357,4.264160047380155,1576.0134355173925,2019
+1998,51,"(50,55]",HS,507.2513333333333,157.08480225988703,3.2291560102301786,6429.713063275301,2019
+1998,51,"(50,55]",HS,512.7213333333333,157.08480225988703,3.2639779657682464,6161.169866942958,2019
+1998,51,"(50,55]",HS,416.0846666666667,157.08480225988703,2.648790084595711,5741.262176761838,2019
+1998,51,"(50,55]",HS,472.608,157.08480225988703,3.008616958489081,6282.602001125123,2019
+1998,51,"(50,55]",HS,441.61133333333333,157.08480225988703,2.811292543773362,5731.427968390818,2019
+1998,68,"(65,70]",HS,7.475666666666667,88.70671186440678,0.08427396878483835,7955.873089522511,2019
+1998,68,"(65,70]",HS,7.475666666666667,88.70671186440678,0.08427396878483835,7990.511481489351,2019
+1998,68,"(65,70]",HS,7.475666666666667,88.70671186440678,0.08427396878483835,7936.595412612709,2019
+1998,68,"(65,70]",HS,7.475666666666667,88.70671186440678,0.08427396878483835,7916.021015115977,2019
+1998,68,"(65,70]",HS,7.475666666666667,88.70671186440678,0.08427396878483835,7937.754693429653,2019
+1998,27,"(25,30]",College,47.77133333333334,110.88338983050849,0.4308249721293199,7672.592436966613,2019
+1998,27,"(25,30]",College,51.418,110.88338983050849,0.4637123745819397,7674.7602354725705,2019
+1998,27,"(25,30]",College,49.59466666666667,110.88338983050849,0.4472686733556298,7807.065445095504,2019
+1998,27,"(25,30]",College,47.77133333333334,110.88338983050849,0.4308249721293199,7709.291472827075,2019
+1998,27,"(25,30]",College,49.59466666666667,112.73144632768363,0.439936400021931,7759.018613129959,2019
+1998,35,"(30,35]",HS,76.39766666666668,29.56890395480226,2.583716555183947,6633.643120363131,2019
+1998,35,"(30,35]",HS,76.58,29.56890395480226,2.5898829431438126,6666.0661587185,2019
+1998,35,"(30,35]",HS,76.39766666666668,29.56890395480226,2.583716555183947,6649.107194602839,2019
+1998,35,"(30,35]",HS,76.58,29.56890395480226,2.5898829431438126,6692.200070724344,2019
+1998,35,"(30,35]",HS,76.58,29.56890395480226,2.5898829431438126,6637.494046617886,2019
+1998,69,"(65,70]",College,6153.932333333333,500.82331073446335,12.287631588690466,325.4511081288359,2019
+1998,69,"(65,70]",College,11514.532333333334,750.3109378531074,15.346347430680266,322.7225586014854,2019
+1998,69,"(65,70]",College,8114.198,728.1342598870057,11.143821197562094,309.18240023578693,2019
+1998,69,"(65,70]",College,8279.209666666668,583.9858531073446,14.177072308539014,337.83218549515067,2019
+1998,69,"(65,70]",College,11148.042333333335,720.7420338983052,15.467451333504846,320.5427117284298,2019
+1998,24,"(20,25]",HS,-26.438333333333333,79.46642937853107,-0.33269814109045653,4805.267304802636,2019
+1998,24,"(20,25]",HS,-26.438333333333333,79.46642937853107,-0.33269814109045653,4786.881078806993,2019
+1998,24,"(20,25]",HS,-26.62066666666667,79.46642937853107,-0.33499261102901146,4796.819904060934,2019
+1998,24,"(20,25]",HS,-26.438333333333333,79.46642937853107,-0.33269814109045653,4825.512642054312,2019
+1998,24,"(20,25]",HS,-26.438333333333333,79.46642937853107,-0.33269814109045653,4755.360299007337,2019
+1998,57,"(55,60]",HS,9720.6276,983.1660564971752,9.887065908919455,15.06957697943885,2019
+1998,57,"(55,60]",HS,8040.225366666667,1027.5194124293785,7.824889018551046,16.374593874586886,2019
+1998,57,"(55,60]",HS,10982.046066666666,1245.5900790960452,8.816741760368389,16.036024128605952,2019
+1998,57,"(55,60]",HS,8827.613633333332,951.7490960451977,9.275147904016624,16.329318955791138,2019
+1998,57,"(55,60]",HS,10500.248466666668,1502.4699322033898,6.988657970191743,17.335727226598518,2019
+1998,56,"(55,60]",College,128.36266666666668,164.47702824858757,0.7804291458419451,6878.636586770936,2019
+1998,56,"(55,60]",College,98.27766666666668,157.08480225988703,0.6256344678339563,6559.39658028469,2019
+1998,56,"(55,60]",College,264.748,168.17314124293785,1.57425851740233,6138.8293771918825,2019
+1998,56,"(55,60]",College,183.60966666666667,138.6042372881356,1.3247045707915273,6717.245502061834,2019
+1998,56,"(55,60]",College,76.033,170.021197740113,0.447197179002472,6122.700407717174,2019
+1998,36,"(35,40]",College,267.5851066666667,184.80564971751414,1.4479270903010035,6373.327534764825,2019
+1998,36,"(35,40]",College,263.93844,184.80564971751414,1.4281946488294315,6098.0525014050545,2019
+1998,36,"(35,40]",College,263.93844,184.80564971751414,1.4281946488294315,5694.331616239851,2019
+1998,36,"(35,40]",College,263.93844,184.80564971751414,1.4281946488294315,6224.803251202424,2019
+1998,36,"(35,40]",College,265.76177333333334,184.80564971751414,1.4380608695652173,5676.422783391835,2019
+1998,41,"(40,45]",HS,40.879133333333336,24.024734463276836,1.7015436068947776,5293.19589603794,2019
+1998,41,"(40,45]",HS,51.81913333333333,24.024734463276836,2.1569076408541292,5296.824931180363,2019
+1998,41,"(40,45]",HS,42.702466666666666,24.024734463276836,1.7774376125546694,5340.449302107459,2019
+1998,41,"(40,45]",HS,49.9958,24.024734463276836,2.081013635194237,5221.436740203121,2019
+1998,41,"(40,45]",HS,30.3038,24.024734463276836,1.2613583740674041,5421.322535761281,2019
+1998,29,"(25,30]",HS,45.583333333333336,4.989752542372881,9.13538957017218,5376.090466692706,2019
+1998,29,"(25,30]",HS,45.583333333333336,4.989752542372881,9.13538957017218,5350.260974864203,2019
+1998,29,"(25,30]",HS,45.583333333333336,6.8378090395480235,6.666365362017535,5396.936020228306,2019
+1998,29,"(25,30]",HS,45.583333333333336,8.13144858757062,5.60580723624202,5349.344358320297,2019
+1998,29,"(25,30]",HS,45.583333333333336,5.35936384180791,8.505362703263753,5384.458324949613,2019
+1998,84,"(80,85]",HS,388.9717,1106.9858418079093,0.35137911011105477,4.029190555479162,2019
+1998,84,"(80,85]",HS,389.37283333333335,711.5017514124293,0.5472549189940495,4.188583602504194,2019
+1998,84,"(80,85]",HS,389.39106666666663,608.0105875706214,0.6404346809527198,3.663373620369039,2019
+1998,84,"(80,85]",HS,388.78936666666664,1071.8727683615818,0.362719697843386,3.7306718161130163,2019
+1998,84,"(80,85]",HS,386.6196,1007.190790960452,0.3838593476726704,3.642472598542495,2019
+1998,95,"(90,95]",College,625.4033333333334,212.52649717514123,2.942707575977898,314.73491801677267,2019
+1998,95,"(90,95]",HS,586.5663333333334,70.22614689265536,8.352534765006162,294.51908980983296,2019
+1998,95,"(90,95]",College,568.1871333333333,53.593638418079095,10.601764502364203,296.82381764641934,2019
+1998,95,"(90,95]",HS,614.4633333333334,51.745581920903966,11.87470138557095,297.0175130871005,2019
+1998,95,"(90,95]",College,601.7,212.52649717514123,2.831176385051622,305.94743240691,2019
+1998,29,"(25,30]",College,72.12195,162.62897175141245,0.44347541045910605,9029.730031865909,2019
+1998,29,"(25,30]",College,75.41306666666667,170.021197740113,0.44355096699142066,9090.01508774006,2019
+1998,29,"(25,30]",College,78.51273333333334,157.08480225988703,0.4998111351564037,9242.55813891585,2019
+1998,29,"(25,30]",College,83.07106666666667,160.78091525423727,0.5166724330142621,9107.434879605771,2019
+1998,29,"(25,30]",College,84.33828333333334,162.62897175141245,0.5185932274247491,9202.181736831526,2019
+1998,25,"(20,25]",HS,7.0563,40.65724293785311,0.17355579203405289,4449.817761423142,2019
+1998,25,"(20,25]",HS,7.0380666666666665,38.80918644067796,0.18135053352444658,4417.65471830271,2019
+1998,25,"(20,25]",HS,7.2386333333333335,40.65724293785311,0.1780404378230465,4441.711676444625,2019
+1998,25,"(20,25]",HS,7.0380666666666665,40.65724293785311,0.1731073274551535,4450.788409681588,2019
+1998,25,"(20,25]",HS,7.074533333333334,38.80918644067796,0.18229017359452146,4431.856996395652,2019
+1998,41,"(40,45]",HS,159.177,138.6042372881356,1.1484280936454847,552.2866680249607,2019
+1998,41,"(40,45]",HS,169.023,138.6042372881356,1.2194648829431436,552.7909893626709,2019
+1998,41,"(40,45]",HS,177.04566666666665,138.6042372881356,1.2773467112597545,529.2604292657184,2019
+1998,41,"(40,45]",HS,174.31066666666666,138.6042372881356,1.2576142697881827,591.6507992606837,2019
+1998,41,"(40,45]",HS,162.27666666666667,138.6042372881356,1.1707915273132663,581.0755552211748,2019
+1998,58,"(55,60]",College,1364.4732666666666,323.40988700564975,4.219021500238891,1823.9362255658507,2019
+1998,58,"(55,60]",College,1359.0032666666666,323.40988700564975,4.202107978977543,1853.4621967072108,2019
+1998,58,"(55,60]",College,1366.0960333333335,325.2579435028249,4.200038955609608,1811.3295640340366,2019
+1998,58,"(55,60]",College,1360.8083666666666,325.2579435028249,4.183782114624505,2021.6091381817964,2019
+1998,58,"(55,60]",College,1368.1017,323.40988700564975,4.230240802675585,1885.3291235541085,2019
+1998,39,"(35,40]",HS,251.71116666666666,86.85865536723163,2.89793994164947,131.60535739604452,2019
+1998,39,"(35,40]",HS,251.3465,86.85865536723163,2.893741549847008,133.58343066859302,2019
+1998,39,"(35,40]",HS,251.52883333333335,86.85865536723163,2.8958407457482394,128.5370542147975,2019
+1998,39,"(35,40]",HS,251.3465,86.85865536723163,2.893741549847008,131.11294746825868,2019
+1998,39,"(35,40]",HS,251.3465,86.85865536723163,2.893741549847008,132.5740732424163,2019
+1998,56,"(55,60]",College,23126.685933333334,1809.247310734463,12.7824901527393,1137.361481989933,2019
+1998,56,"(55,60]",College,25655.884476666666,1350.9292994350283,18.99128584108451,1175.502057019537,2019
+1998,56,"(55,60]",College,19953.92001,1594.872757062147,12.511292779717637,1154.3887531924051,2019
+1998,56,"(55,60]",College,27989.5524,1404.5229378531076,19.928156134483363,1214.7358267998663,2019
+1998,56,"(55,60]",College,26545.54533333333,1408.2190508474578,18.850437591622114,1202.1806832917837,2019
+1998,24,"(20,25]",HS,21.15066666666667,29.56890395480226,0.7153010033444818,3833.7146262818724,2019
+1998,24,"(20,25]",HS,21.15066666666667,29.56890395480226,0.7153010033444818,3828.730448226232,2019
+1998,24,"(20,25]",HS,22.974,29.56890395480226,0.7769648829431438,3853.91109903763,2019
+1998,24,"(20,25]",HS,21.15066666666667,29.56890395480226,0.7153010033444818,3849.2528803368887,2019
+1998,24,"(20,25]",HS,22.974,29.56890395480226,0.7769648829431438,3821.3902213548354,2019
+1998,35,"(30,35]",HS,0,14.599646327683615,0,6105.502610883262,2019
+1998,35,"(30,35]",HS,0,11.27314463276836,0,6079.899632069512,2019
+1998,35,"(30,35]",HS,0,25.872790960451983,0,6039.646928279277,2019
+1998,35,"(30,35]",HS,0,31.416960451977403,0,6101.063282629858,2019
+1998,35,"(30,35]",HS,0,11.642755932203391,0,6071.460430067069,2019
+1998,72,"(70,75]",College,15469.16,541.4805536723164,28.56826509297202,2294.1674784079605,2019
+1998,72,"(70,75]",College,15469.16,541.4805536723164,28.56826509297202,2382.777434216676,2019
+1998,72,"(70,75]",College,15469.16,541.4805536723164,28.56826509297202,2573.6468437481717,2019
+1998,72,"(70,75]",College,15469.16,541.4805536723164,28.56826509297202,2725.8831831394286,2019
+1998,72,"(70,75]",College,15469.16,541.4805536723164,28.56826509297202,2233.555794442772,2019
+1998,52,"(50,55]",College,1674.0023333333334,325.2579435028249,5.146691623593797,1090.9961191157795,2019
+1998,52,"(50,55]",College,1673.82,327.106,5.117056856187291,1158.8350524575364,2019
+1998,52,"(50,55]",College,1672.179,325.2579435028249,5.141085816357555,1113.4793849347677,2019
+1998,52,"(50,55]",College,1674.0023333333334,325.2579435028249,5.146691623593797,1127.1930006879193,2019
+1998,52,"(50,55]",College,1674.0023333333334,325.2579435028249,5.146691623593797,1080.601964399687,2019
+1998,49,"(45,50]",College,0,18.480564971751416,0,4967.101711305664,2019
+1998,49,"(45,50]",College,0,18.480564971751416,0,4984.530402971523,2019
+1998,49,"(45,50]",College,0,18.480564971751416,0,4983.857945855641,2019
+1998,49,"(45,50]",College,0,18.480564971751416,0,4953.351866762825,2019
+1998,49,"(45,50]",College,0,18.480564971751416,0,4949.990647865017,2019
+1998,50,"(45,50]",HS,307.94276666666667,99.79505084745762,3.085751889012759,7710.353993561905,2019
+1998,50,"(45,50]",HS,265.3314666666667,94.25088135593221,2.8151616499442587,7860.949250542342,2019
+1998,50,"(45,50]",HS,245.2201,97.9469943502825,2.503600050482741,8143.73372398022,2019
+1998,50,"(45,50]",HS,267.72003333333333,96.09893785310734,2.785879212760484,7732.983448300261,2019
+1998,50,"(45,50]",HS,282.98133333333334,97.9469943502825,2.889127279611283,8120.66155013364,2019
+1998,19,"(15,20]",HS,5.834666666666667,2.2176677966101694,2.6309921962095877,5944.302109044724,2019
+1998,19,"(15,20]",HS,5.834666666666667,2.2176677966101694,2.6309921962095877,5973.410613042815,2019
+1998,19,"(15,20]",HS,5.652333333333333,2.2176677966101694,2.548773690078038,5982.734303388172,2019
+1998,19,"(15,20]",HS,5.652333333333333,2.2176677966101694,2.548773690078038,5936.378315760672,2019
+1998,19,"(15,20]",HS,5.834666666666667,2.2176677966101694,2.6309921962095877,5949.730319149239,2019
+1998,57,"(55,60]",College,2408.7327333333333,181.10953672316384,13.299866903283052,1082.2253697305546,2019
+1998,57,"(55,60]",College,1613.0300666666667,175.56536723163845,9.187632459074106,3527.5898804602957,2019
+1998,57,"(55,60]",College,1725.8944,160.78091525423727,10.734448160535118,3299.735601340629,2019
+1998,57,"(55,60]",College,919.0694000000001,179.26148022598866,5.1269765196703805,6717.245502061834,2019
+1998,57,"(55,60]",College,778.1257333333333,179.26148022598866,4.3407302692824885,6122.700407717174,2019
+1998,65,"(60,65]",College,462.03266666666667,66.53003389830509,6.944723151244889,7434.1768169917705,2019
+1998,65,"(60,65]",College,462.03266666666667,66.53003389830509,6.944723151244889,7109.345698985622,2019
+1998,65,"(60,65]",College,462.03266666666667,66.53003389830509,6.944723151244889,6584.512325585604,2019
+1998,65,"(60,65]",College,462.03266666666667,66.53003389830509,6.944723151244889,7222.203109351435,2019
+1998,65,"(60,65]",College,462.03266666666667,66.53003389830509,6.944723151244889,6565.801644067484,2019
+1998,72,"(70,75]",College,1586.3,110.88338983050849,14.30602006688963,3570.815039868401,2019
+1998,72,"(70,75]",College,1588.1233333333332,125.66784180790961,12.637468030690536,3919.822643999917,2019
+1998,72,"(70,75]",College,1588.1233333333332,118.27561581920904,13.427309782608695,3657.0692367834645,2019
+1998,72,"(70,75]",College,1586.3,103.49116384180793,15.32787864309603,3630.7541589599996,2019
+1998,72,"(70,75]",College,1586.3,123.81978531073446,12.811361253931015,3747.473370028728,2019
+1998,45,"(40,45]",HS,95.08683333333333,73.92225988700567,1.2863085284280933,7970.6833427153615,2019
+1998,45,"(40,45]",HS,96.91016666666667,73.92225988700567,1.3109740802675582,8030.251351566825,2019
+1998,45,"(40,45]",HS,96.91016666666667,73.92225988700567,1.3109740802675582,8468.821986445118,2019
+1998,45,"(40,45]",HS,95.08683333333333,73.92225988700567,1.2863085284280933,7954.2654355054965,2019
+1998,45,"(40,45]",HS,96.91016666666667,73.92225988700567,1.3109740802675582,8328.593262030496,2019
+1998,69,"(65,70]",HS,743.373,70.22614689265536,10.585416299947193,6521.348867159921,2019
+1998,69,"(65,70]",HS,741.732,70.22614689265536,10.562048935046647,6237.016845849306,2019
+1998,69,"(65,70]",HS,741.732,70.22614689265536,10.562048935046647,5776.336631363459,2019
+1998,69,"(65,70]",HS,741.5496666666667,70.22614689265536,10.55945256116881,6337.143964488517,2019
+1998,69,"(65,70]",HS,741.732,70.22614689265536,10.562048935046647,5760.6843866482,2019
+1998,70,"(65,70]",HS,181.14816666666667,9.05547683615819,20.004265920414994,7968.138398317287,2019
+1998,70,"(65,70]",HS,135.2184,15.154063276836158,8.92291377763276,7995.687286342511,2019
+1998,70,"(65,70]",HS,133.2492,12.012367231638418,11.092667867249807,7928.012249017678,2019
+1998,70,"(65,70]",HS,147.89056666666667,31.416960451977403,4.707348022821169,8029.65694727855,2019
+1998,70,"(65,70]",HS,125.3724,22.176677966101696,5.653344481605351,7927.169308879273,2019
+1998,40,"(35,40]",NoHS,75.66833333333334,81.31448587570623,0.930564001216175,6798.418014791544,2019
+1998,40,"(35,40]",NoHS,60.717,35.11307344632768,1.7291850026403803,6917.018334582675,2019
+1998,40,"(35,40]",NoHS,38.837,33.265016949152546,1.1675027870680044,7254.5947824749555,2019
+1998,40,"(35,40]",NoHS,84.60266666666668,97.9469943502825,0.8637597021518268,6830.908930479393,2019
+1998,40,"(35,40]",NoHS,39.019333333333336,42.50529943502825,0.9179874945470409,7136.183338003813,2019
+1998,76,"(75,80]",NoHS,474.796,42.50529943502825,11.170277737385488,7117.7618042366175,2019
+1998,76,"(75,80]",NoHS,257.637,42.50529943502825,6.061291260724153,8717.92200080601,2019
+1998,76,"(75,80]",NoHS,286.9926666666667,42.50529943502825,6.751926712229171,9052.1585181238,2019
+1998,76,"(75,80]",NoHS,401.6803333333333,42.50529943502825,9.450123600407153,8702.40623906042,2019
+1998,76,"(75,80]",NoHS,398.76300000000003,42.50529943502825,9.3814890213756,9063.972723702813,2019
+1998,68,"(65,70]",HS,6793.74,301.233209039548,22.553091080698444,12.931159480455397,2019
+1998,68,"(65,70]",HS,6755.45,203.28621468926553,33.23122529644269,14.039727978978172,2019
+1998,68,"(65,70]",HS,7019.833333333333,319.71377401129945,21.956618400448505,11.343223109869806,2019
+1998,68,"(65,70]",HS,6852.086666666667,201.4381581920904,34.01583259181983,11.956680496345369,2019
+1998,68,"(65,70]",HS,6766.39,547.0247231638417,12.36944092922354,11.765973219552288,2019
+1998,49,"(45,50]",HS,9108.552833333335,2217.6677966101697,4.107266583054627,361.80232692733,2019
+1998,49,"(45,50]",HS,9057.317166666666,2217.6677966101697,4.08416318283166,360.77923443940966,2019
+1998,49,"(45,50]",HS,9053.6705,2217.6677966101697,4.08251881270903,340.4238264380128,2019
+1998,49,"(45,50]",HS,9059.1405,2217.6677966101697,4.084985367892976,372.3288940511015,2019
+1998,49,"(45,50]",HS,9093.6015,2217.6677966101697,4.1005246655518395,357.68183597376583,2019
+1998,50,"(45,50]",HS,286.81033333333335,85.0105988700565,3.373818525519849,5593.220125362064,2019
+1998,50,"(45,50]",HS,286.9926666666667,85.0105988700565,3.3759633561145854,5579.858374432134,2019
+1998,50,"(45,50]",HS,286.81033333333335,85.0105988700565,3.373818525519849,5592.375577466447,2019
+1998,50,"(45,50]",HS,286.81033333333335,85.0105988700565,3.373818525519849,5603.242774477867,2019
+1998,50,"(45,50]",HS,286.81033333333335,85.0105988700565,3.373818525519849,5552.066526529647,2019
+1998,55,"(50,55]",HS,4.923,33.265016949152546,0.14799331103678928,5480.528506855431,2019
+1998,55,"(50,55]",HS,4.923,33.265016949152546,0.14799331103678928,5487.272944893926,2019
+1998,55,"(50,55]",HS,4.923,33.265016949152546,0.14799331103678928,5509.215216158926,2019
+1998,55,"(50,55]",HS,5.105333333333333,33.265016949152546,0.15347454477889258,5478.736873651373,2019
+1998,55,"(50,55]",HS,4.923,33.265016949152546,0.14799331103678928,5509.5229417251185,2019
+1998,54,"(50,55]",College,24983.31333333333,935.1165875706214,26.71678982643066,12.827327900564516,2019
+1998,54,"(50,55]",College,10985.218666666666,2624.240225988701,4.186056809081916,12.02738793032553,2019
+1998,54,"(50,55]",College,62035.270000000004,1958.9398870056498,31.667776235249576,16.178579613961055,2019
+1998,54,"(50,55]",College,6397.712,935.1165875706214,6.841619628009043,11.880775170467038,2019
+1998,54,"(50,55]",College,29945.697333333334,2014.381581920904,14.865950722592126,13.739997953806727,2019
+1998,66,"(65,70]",HS,1057.5333333333333,51.745581920903966,20.43717152412804,9149.756077993905,2019
+1998,66,"(65,70]",HS,1079.4133333333332,51.745581920903966,20.860009555661723,8749.963932950335,2019
+1998,66,"(65,70]",HS,1079.4133333333332,49.89752542372881,21.632602502167718,8104.015166003466,2019
+1998,66,"(65,70]",HS,1046.5933333333335,51.745581920903966,20.225752508361204,8888.865361025211,2019
+1998,66,"(65,70]",HS,1064.8266666666668,49.89752542372881,21.340270035922217,8080.986634915459,2019
+1998,89,"(85,90]",HS,366.49,40.65724293785311,9.014138035877165,9704.512329790097,2019
+1998,89,"(85,90]",HS,412.0733333333333,40.65724293785311,10.135299483125568,9908.105149399715,2019
+1998,89,"(85,90]",HS,315.43666666666667,40.65724293785311,7.758437214958953,10349.739662642747,2019
+1998,89,"(85,90]",HS,375.6066666666667,40.65724293785311,9.238370325326846,9775.71796425623,2019
+1998,89,"(85,90]",HS,475.89,40.65724293785311,11.704925509273334,6846.700314205217,2019
+1998,33,"(30,35]",College,74.84783333333333,62.833920903954805,1.191201062364745,7294.704769704351,2019
+1998,33,"(30,35]",College,74.84783333333333,62.833920903954805,1.191201062364745,7343.406301541421,2019
+1998,33,"(30,35]",College,76.67116666666668,62.833920903954805,1.2202193586464687,7466.638836630552,2019
+1998,33,"(30,35]",College,76.67116666666668,62.833920903954805,1.2202193586464687,7357.478952480227,2019
+1998,33,"(30,35]",College,74.84783333333333,62.833920903954805,1.191201062364745,7434.020593136161,2019
+1998,83,"(80,85]",HS,586.2016666666666,18.480564971751416,31.71989966555183,1278.836527676075,2019
+1998,83,"(80,85]",HS,587.1133333333333,38.80918644067796,15.12820512820513,1193.860164685127,2019
+1998,83,"(80,85]",HS,614.4633333333334,49.89752542372881,12.314505140592098,1252.4824420253085,2019
+1998,83,"(80,85]",HS,584.2871666666666,48.04946892655367,12.160117056856187,1325.5158883897832,2019
+1998,83,"(80,85]",HS,589.4836666666666,13.306006779661017,44.30207172054998,1310.0431083852145,2019
+1998,56,"(55,60]",NoHS,36.12023333333333,10.903533333333334,3.312709030100334,9113.092765710939,2019
+1998,56,"(55,60]",NoHS,67.1169,11.088338983050848,6.052926421404682,9076.120838061226,2019
+1998,56,"(55,60]",NoHS,83.36280000000001,10.903533333333334,7.645484949832777,9786.249289659925,2019
+1998,56,"(55,60]",NoHS,81.4483,10.903533333333334,7.469899665551839,9914.786380922134,2019
+1998,56,"(55,60]",NoHS,78.42156666666666,10.903533333333334,7.192307692307692,9785.767819029454,2019
+1998,58,"(55,60]",NoHS,-0.40113333333333334,110.88338983050849,-0.003617614269788182,5846.897054698259,2019
+1998,58,"(55,60]",NoHS,-0.40113333333333334,110.88338983050849,-0.003617614269788182,5831.79796030292,2019
+1998,58,"(55,60]",NoHS,-0.21880000000000002,110.88338983050849,-0.0019732441471571904,5883.753462518619,2019
+1998,58,"(55,60]",NoHS,-0.40113333333333334,110.88338983050849,-0.003617614269788182,5823.1467199041645,2019
+1998,58,"(55,60]",NoHS,-0.40113333333333334,110.88338983050849,-0.003617614269788182,5875.992344604265,2019
+1998,40,"(35,40]",HS,19.692,90.55476836158192,0.2174595590744659,6089.0903215432,2019
+1998,40,"(35,40]",HS,20.69483333333333,64.68197740112994,0.31994744386048735,6118.851767171569,2019
+1998,40,"(35,40]",HS,19.619066666666665,55.441694915254246,0.35386845039018944,6103.284956840297,2019
+1998,40,"(35,40]",HS,19.673766666666666,49.89752542372881,0.39428341384863125,6142.840358021503,2019
+1998,40,"(35,40]",HS,19.272633333333335,79.46642937853107,0.24252547250525008,6092.6251269828945,2019
+1998,69,"(65,70]",NoHS,19.145,15.708480225988701,1.2187684438323825,7878.8370821678955,2019
+1998,69,"(65,70]",NoHS,19.145,15.708480225988701,1.2187684438323825,7871.166188518766,2019
+1998,69,"(65,70]",NoHS,19.145,15.708480225988701,1.2187684438323825,7819.086400332698,2019
+1998,69,"(65,70]",NoHS,19.145,15.708480225988701,1.2187684438323825,7821.736878408029,2019
+1998,69,"(65,70]",NoHS,18.962666666666667,15.708480225988701,1.207161125319693,7817.595555069098,2019
+1998,52,"(50,55]",HS,139.57616666666667,62.833920903954805,2.2213505803659257,480.5765475406705,2019
+1998,52,"(50,55]",HS,99.46283333333334,60.98586440677967,1.6309161852640113,481.4426834908744,2019
+1998,52,"(50,55]",HS,121.52516666666668,62.833920903954805,1.9340694471768642,457.64147214272543,2019
+1998,52,"(50,55]",HS,143.22283333333334,60.98586440677967,2.3484595115029894,500.365982467081,2019
+1998,52,"(50,55]",HS,99.46283333333334,60.98586440677967,1.6309161852640113,503.1849239141258,2019
+1998,69,"(65,70]",HS,253.62566666666666,40.65724293785311,6.238142292490117,9071.00186525421,2019
+1998,69,"(65,70]",HS,253.62566666666666,40.65724293785311,6.238142292490117,9450.553971656223,2019
+1998,69,"(65,70]",HS,253.62566666666666,40.65724293785311,6.238142292490117,9680.25777344443,2019
+1998,69,"(65,70]",HS,253.62566666666666,40.65724293785311,6.238142292490117,9078.713955898826,2019
+1998,69,"(65,70]",HS,253.62566666666666,40.65724293785311,6.238142292490117,9474.54999942379,2019
+1998,20,"(15,20]",HS,21.515333333333334,4.620141242937854,4.656856187290969,10569.421850074566,2019
+1998,20,"(15,20]",HS,25.162,4.620141242937854,5.446153846153845,10419.767062759809,2019
+1998,20,"(15,20]",HS,22.427,4.620141242937854,4.8541806020066876,10619.096953787697,2019
+1998,20,"(15,20]",HS,26.073666666666668,4.620141242937854,5.643478260869564,10679.826669793762,2019
+1998,20,"(15,20]",HS,24.797333333333334,4.620141242937854,5.367224080267557,10821.05298005679,2019
+1998,78,"(75,80]",NoHS,0.3646666666666667,12.936395480225992,0.028189202102245577,7646.729791578853,2019
+1998,78,"(75,80]",NoHS,0.3646666666666667,11.457950282485875,0.03182651850253534,7703.093924067393,2019
+1998,78,"(75,80]",NoHS,0.3646666666666667,18.480564971751416,0.019732441471571903,7709.6692389867,2019
+1998,78,"(75,80]",NoHS,0.3646666666666667,13.306006779661017,0.02740616871051654,7632.1671656695125,2019
+1998,78,"(75,80]",NoHS,0.3646666666666667,10.71872768361582,0.034021450813055014,7709.691172671363,2019
+1998,77,"(75,80]",HS,182.93503333333334,112.73144632768363,1.6227506990514828,8594.39655126959,2019
+1998,77,"(75,80]",HS,122.3092,94.25088135593221,1.29769820971867,8717.92200080601,2019
+1998,77,"(75,80]",HS,185.98,57.289751412429375,3.2463048872586038,9052.1585181238,2019
+1998,77,"(75,80]",HS,174.31066666666666,112.73144632768363,1.5462470530182575,8702.40623906042,2019
+1998,77,"(75,80]",HS,180.91113333333334,55.441694915254246,3.2630880713489403,9063.972723702813,2019
+1998,34,"(30,35]",College,168.38483333333335,73.92225988700567,2.2778637123745815,7012.678507374902,2019
+1998,34,"(30,35]",College,168.56716666666665,73.92225988700567,2.2803302675585275,6710.881455081408,2019
+1998,34,"(30,35]",College,168.38483333333335,73.92225988700567,2.2778637123745815,6259.903120003453,2019
+1998,34,"(30,35]",College,168.20250000000001,73.92225988700567,2.275397157190635,6849.117655784552,2019
+1998,34,"(30,35]",College,168.38483333333335,73.92225988700567,2.2778637123745815,6247.886716573261,2019
+1998,59,"(55,60]",HS,21275.929666666667,336.3462824858757,63.256027417398656,332.6865875660879,2019
+1998,59,"(55,60]",HS,21277.753,419.50882485875707,50.72063265215918,331.9952187860266,2019
+1998,59,"(55,60]",HS,21274.106333333333,364.06712994350283,58.434570395395816,327.528379851292,2019
+1998,59,"(55,60]",HS,21274.106333333333,397.33214689265543,53.54237380415337,320.9519548250197,2019
+1998,59,"(55,60]",HS,21274.106333333333,297.53709604519776,71.5006855148632,306.00137142802106,2019
+1998,55,"(50,55]",College,505.428,59.13780790960452,8.546613712374581,6620.945795507772,2019
+1998,55,"(50,55]",College,495.7643333333333,59.13780790960452,8.383204431438127,6312.253370429019,2019
+1998,55,"(50,55]",College,505.7926666666667,59.13780790960452,8.552780100334449,5908.897814610518,2019
+1998,55,"(50,55]",College,495.3996666666667,59.13780790960452,8.377038043478262,6465.181991191287,2019
+1998,55,"(50,55]",College,502.3283333333333,59.13780790960452,8.49419941471572,5894.084562493734,2019
+1998,74,"(70,75]",HS,1004.292,116.4275593220339,8.625895843287148,6501.223013328044,2019
+1998,74,"(70,75]",HS,1856.7003333333332,33.265016949152546,55.815403195837966,13310.446752006314,2019
+1998,74,"(70,75]",HS,350.42643333333336,44.35335593220339,7.90078734671126,2438.3549946439084,2019
+1998,74,"(70,75]",HS,3470.8973333333333,110.88338983050849,31.30222965440356,4087.8618361036074,2019
+1998,74,"(70,75]",HS,1704.2696666666668,51.745581920903966,32.93555900621118,12432.503903600358,2019
+1998,40,"(35,40]",HS,8.752,20.328621468926556,0.430525995743387,8656.239769485166,2019
+1998,40,"(35,40]",HS,8.569666666666667,18.480564971751416,0.4637123745819397,8699.593159005395,2019
+1998,40,"(35,40]",HS,8.569666666666667,20.328621468926556,0.42155670416539975,8733.487874182772,2019
+1998,40,"(35,40]",HS,8.752,20.328621468926556,0.430525995743387,8654.621933147791,2019
+1998,40,"(35,40]",HS,8.752,20.328621468926556,0.430525995743387,8746.161348201722,2019
+1998,29,"(25,30]",College,92.26066666666668,92.40282485875707,0.9984615384615385,2865.448107223054,2019
+1998,29,"(25,30]",College,95.90733333333333,92.40282485875707,1.0379264214046822,2917.221381459076,2019
+1998,29,"(25,30]",College,25.162,92.40282485875707,0.27230769230769225,1412.9096759400104,2019
+1998,29,"(25,30]",College,46.67733333333334,92.40282485875707,0.5051505016722407,2765.778329559561,2019
+1998,29,"(25,30]",College,28.444,92.40282485875707,0.3078260869565217,1481.72623964936,2019
+1998,59,"(55,60]",College,667.34,33.265016949152546,20.061315496098103,6889.172018178465,2019
+1998,59,"(55,60]",College,685.5733333333334,33.265016949152546,20.609438870308434,6567.820756831206,2019
+1998,59,"(55,60]",College,705.63,33.265016949152546,21.212374581939798,6148.4559798435275,2019
+1998,59,"(55,60]",College,672.8100000000001,31.416960451977403,21.415502655911865,6725.665299057435,2019
+1998,59,"(55,60]",College,669.1633333333334,33.265016949152546,20.116127833519137,6131.736646790364,2019
+1998,40,"(35,40]",HS,220.18573333333333,101.64310734463277,2.166263301915476,7581.493929680534,2019
+1998,40,"(35,40]",HS,220.18573333333333,101.64310734463277,2.166263301915476,7735.245027248888,2019
+1998,40,"(35,40]",HS,220.18573333333333,101.64310734463277,2.166263301915476,8100.934265307912,2019
+1998,40,"(35,40]",HS,220.18573333333333,101.64310734463277,2.166263301915476,7580.107277421126,2019
+1998,40,"(35,40]",HS,220.18573333333333,101.64310734463277,2.166263301915476,8042.92916269726,2019
+1998,20,"(15,20]",HS,1.5498333333333334,24.024734463276836,0.06450990481090815,4308.026270375157,2019
+1998,20,"(15,20]",HS,3.5555,24.024734463276836,0.14799331103678928,4275.099259158615,2019
+1998,20,"(15,20]",HS,3.1908333333333334,24.024734463276836,0.13281450990481092,4305.152292856685,2019
+1998,20,"(15,20]",HS,3.1908333333333334,24.024734463276836,0.13281450990481092,4309.094639744899,2019
+1998,20,"(15,20]",HS,3.3731666666666666,24.024734463276836,0.14040391047080011,4261.167181503884,2019
+1998,66,"(65,70]",College,3265.043,426.90105084745767,7.648243061286539,1718.2382517409376,2019
+1998,66,"(65,70]",College,3225.2943333333337,221.76677966101698,14.54363154960981,1684.644345050891,2019
+1998,66,"(65,70]",College,3643.9316666666664,364.06712994350283,10.008955401252907,1587.2378671015526,2019
+1998,66,"(65,70]",College,3526.8736666666664,284.6007005649717,12.392357642357643,1906.4679005012356,2019
+1998,66,"(65,70]",College,3570.8160000000003,297.53709604519776,12.001246390660379,1776.2312663578937,2019
+1998,62,"(60,65]",HS,49.230000000000004,24.024734463276836,2.0491381528170827,9600.319577847014,2019
+1998,62,"(60,65]",HS,55.6846,38.80918644067796,1.4348303870043002,9571.825010940389,2019
+1998,62,"(60,65]",HS,54.55413333333333,22.176677966101696,2.459977703455964,9974.848580003794,2019
+1998,62,"(60,65]",HS,34.04163333333333,40.65724293785311,0.8372833688051078,9270.35509590443,2019
+1998,62,"(60,65]",HS,50.068733333333334,29.56890395480226,1.6932901337792643,9892.787277861315,2019
+1998,51,"(50,55]",HS,-3.7743,36.96112994350283,-0.1021153846153846,10635.328237028774,2019
+1998,51,"(50,55]",HS,-3.7743,36.96112994350283,-0.1021153846153846,10552.630180859267,2019
+1998,51,"(50,55]",HS,-3.7743,36.96112994350283,-0.1021153846153846,10709.481735486075,2019
+1998,51,"(50,55]",HS,-3.7743,36.96112994350283,-0.1021153846153846,10679.149295951689,2019
+1998,51,"(50,55]",HS,-3.7743,36.96112994350283,-0.1021153846153846,10953.593625347705,2019
+1998,34,"(30,35]",HS,1.8598,49.89752542372881,0.03727238944630249,4200.359053799804,2019
+1998,34,"(30,35]",HS,3.5008000000000004,57.289751412429375,0.06110691552486785,4209.596570807122,2019
+1998,34,"(30,35]",HS,2.4068,48.04946892655367,0.05009004373552869,4238.64653803602,2019
+1998,34,"(30,35]",HS,2.0421333333333336,53.593638418079095,0.03810402491062162,4209.915983867821,2019
+1998,34,"(30,35]",HS,0.5834666666666667,57.289751412429375,0.010184485920811307,4190.370541086069,2019
+1998,80,"(75,80]",College,177.04566666666665,151.54063276836158,1.1683049188351415,6888.392361401466,2019
+1998,80,"(75,80]",College,87.52,109.03533333333333,0.802675585284281,6961.1690587714065,2019
+1998,80,"(75,80]",College,59.076,129.36395480225988,0.4566650740563784,6979.765535662091,2019
+1998,80,"(75,80]",College,134.10616666666667,77.61837288135592,1.7277631788501355,7144.721487745282,2019
+1998,80,"(75,80]",College,29.173333333333332,127.51589830508476,0.2287819301051815,7005.609323782484,2019
+1998,23,"(20,25]",HS,-37.26893333333334,42.50529943502825,-0.8768067471281082,5231.275179988698,2019
+1998,23,"(20,25]",HS,-37.98003333333333,42.50529943502825,-0.8935364257670495,5240.587090851999,2019
+1998,23,"(20,25]",HS,-37.45126666666667,42.50529943502825,-0.8810964083175804,5285.065682124242,2019
+1998,23,"(20,25]",HS,-35.97436666666667,42.50529943502825,-0.846350152682856,5243.334260097725,2019
+1998,23,"(20,25]",HS,-36.72193333333333,42.50529943502825,-0.8639377635596917,5182.989090913518,2019
+1998,34,"(30,35]",HS,122.94736666666667,49.89752542372881,2.4639972748668404,7891.980826899887,2019
+1998,34,"(30,35]",HS,156.04086666666666,48.04946892655367,3.2475045021867763,7945.623986429292,2019
+1998,34,"(30,35]",HS,103.51063333333333,46.201412429378536,2.240421404682274,8131.1254117463295,2019
+1998,34,"(30,35]",HS,130.3501,46.201412429378536,2.821344481605351,7888.770845383314,2019
+1998,34,"(30,35]",HS,101.65083333333332,42.50529943502825,2.3914861131307252,8121.5370100753325,2019
+1998,20,"(15,20]",HS,44.206716666666665,22.176677966101696,1.99338768115942,5169.719278199445,2019
+1998,20,"(15,20]",HS,44.389050000000005,20.328621468926556,2.183574034660991,5167.245073546479,2019
+1998,20,"(15,20]",HS,46.212383333333335,46.201412429378536,1.00023745819398,5146.43761241406,2019
+1998,20,"(15,20]",HS,44.389050000000005,33.265016949152546,1.3344063545150502,5210.377029548828,2019
+1998,20,"(15,20]",HS,44.389050000000005,24.024734463276836,1.8476395677900697,5127.890456429008,2019
+1998,33,"(30,35]",College,665.9725,280.90458757062146,2.370813897201197,7588.569170827413,2019
+1998,33,"(30,35]",College,666.1548333333334,279.0565310734463,2.3871680435890057,7255.371912648821,2019
+1998,33,"(30,35]",College,666.1548333333334,280.90458757062146,2.371462990670657,7395.864842214587,2019
+1998,33,"(30,35]",College,665.9725,280.90458757062146,2.370813897201197,7254.12530089697,2019
+1998,33,"(30,35]",College,667.7958333333333,279.0565310734463,2.3930485725043744,7565.115538408024,2019
+1998,48,"(45,50]",College,1571.3122,184.80564971751414,8.502511705685619,3155.873464024714,2019
+1998,48,"(45,50]",College,2505.6793666666667,184.80564971751414,13.55845652173913,1153.8048245171374,2019
+1998,48,"(45,50]",College,1422.4917333333335,184.80564971751414,7.697230769230769,3210.614954107274,2019
+1998,48,"(45,50]",College,1923.9813333333334,184.80564971751414,10.410836120401337,3188.8499971833285,2019
+1998,48,"(45,50]",College,1367.0988666666667,184.80564971751414,7.397494983277592,3292.5241664794885,2019
+1998,72,"(70,75]",HS,267.11833333333334,53.593638418079095,4.984142544112559,6207.808362675761,2019
+1998,72,"(70,75]",HS,267.11833333333334,53.593638418079095,4.984142544112559,6193.1065486639945,2019
+1998,72,"(70,75]",HS,267.11833333333334,53.593638418079095,4.984142544112559,6618.015178236479,2019
+1998,72,"(70,75]",HS,267.11833333333334,53.593638418079095,4.984142544112559,6384.678999935202,2019
+1998,72,"(70,75]",HS,267.11833333333334,55.441694915254246,4.818004459308806,6500.359751217724,2019
+1998,45,"(40,45]",NoHS,520.0146666666667,138.6042372881356,3.7517948717948717,6623.937771289794,2019
+1998,45,"(40,45]",NoHS,524.9376666666666,138.6042372881356,3.7873132664437,6372.297543127849,2019
+1998,45,"(40,45]",NoHS,537.3363333333334,138.6042372881356,3.8767670011148274,5980.984912519032,2019
+1998,45,"(40,45]",NoHS,538.9773333333334,138.6042372881356,3.8886064659977704,6471.3276155105,2019
+1998,45,"(40,45]",NoHS,533.5073333333333,138.6042372881356,3.8491415830546263,5944.53691817628,2019
+1998,32,"(30,35]",HS,140.72486666666668,53.593638418079095,2.625775573751586,8049.751723401903,2019
+1998,32,"(30,35]",HS,122.8562,62.833920903954805,1.955252803462522,8097.341635874119,2019
+1998,32,"(30,35]",HS,142.25646666666668,49.89752542372881,2.850972377059334,8289.629830053816,2019
+1998,32,"(30,35]",HS,87.93936666666667,53.593638418079095,1.6408545727136432,8072.887393705219,2019
+1998,32,"(30,35]",HS,95.15976666666667,77.61837288135592,1.2259953814301643,8149.932329823205,2019
+1998,55,"(50,55]",College,101007.8713,5100.6359322033895,19.802995673985752,29.171152638828563,2019
+1998,55,"(50,55]",College,99677.075,4767.9857627118645,20.905489227658084,30.043340904004076,2019
+1998,55,"(50,55]",College,88744.36833333333,4657.102372881356,19.055704862770078,32.28937243415807,2019
+1998,55,"(50,55]",College,89178.32166666667,4657.102372881356,19.148885836385837,30.125084445708545,2019
+1998,55,"(50,55]",College,96568.29166666667,4915.8302824858765,19.644350215002387,32.53636765465956,2019
+1998,77,"(75,80]",HS,83.87333333333333,20.328621468926556,4.125874125874126,8474.874075858797,2019
+1998,77,"(75,80]",HS,83.87333333333333,20.328621468926556,4.125874125874126,8536.074151417819,2019
+1998,77,"(75,80]",HS,83.691,20.328621468926556,4.116904834296138,8545.420344259612,2019
+1998,77,"(75,80]",HS,83.691,20.328621468926556,4.116904834296138,8458.708874302954,2019
+1998,77,"(75,80]",HS,83.87333333333333,20.328621468926556,4.125874125874126,8545.787488310065,2019
+1998,28,"(25,30]",HS,8.952566666666668,35.11307344632768,0.25496391480373176,4820.635913673128,2019
+1998,28,"(25,30]",HS,8.952566666666668,35.11307344632768,0.25496391480373176,4785.792616919828,2019
+1998,28,"(25,30]",HS,8.952566666666668,35.11307344632768,0.25496391480373176,4811.854321603112,2019
+1998,28,"(25,30]",HS,8.952566666666668,35.11307344632768,0.25496391480373176,4821.687449287636,2019
+1998,28,"(25,30]",HS,8.952566666666668,35.11307344632768,0.25496391480373176,4801.17841820462,2019
+1998,59,"(55,60]",HS,384.541,92.40282485875707,4.1615719063545145,11649.295381239861,2019
+1998,59,"(55,60]",HS,378.15933333333334,92.40282485875707,4.092508361204013,11756.014274263725,2019
+1998,59,"(55,60]",HS,384.7233333333333,92.40282485875707,4.163545150501672,12195.435823167034,2019
+1998,59,"(55,60]",HS,376.5001,92.40282485875707,4.074551839464882,11376.762780272207,2019
+1998,59,"(55,60]",HS,364.302,92.40282485875707,3.9425418060200665,12122.260145402386,2019
+1998,38,"(35,40]",College,-11.851666666666667,53.593638418079095,-0.22113943028485758,4918.738950918025,2019
+1998,38,"(35,40]",College,-9.116666666666665,51.745581920903966,-0.17618251313903482,4939.027333227739,2019
+1998,38,"(35,40]",College,-10.028333333333334,53.593638418079095,-0.1871179794718026,4960.211926469215,2019
+1998,38,"(35,40]",College,-11.304666666666666,53.593638418079095,-0.21093299504094107,4933.960715962834,2019
+1998,38,"(35,40]",College,-11.304666666666666,51.745581920903966,-0.21846631629240318,4889.464444232838,2019
+1998,33,"(30,35]",HS,6.199333333333334,51.745581920903966,0.1198041089345437,5610.5909551721215,2019
+1998,33,"(30,35]",HS,6.199333333333334,51.745581920903966,0.1198041089345437,5591.462003822605,2019
+1998,33,"(30,35]",HS,6.199333333333334,51.745581920903966,0.1198041089345437,5594.257229327248,2019
+1998,33,"(30,35]",HS,6.017,51.745581920903966,0.116280458671763,5634.0610329871815,2019
+1998,33,"(30,35]",HS,6.017,51.745581920903966,0.116280458671763,5590.720312312663,2019
+1998,29,"(25,30]",HS,107.13906666666666,46.201412429378536,2.31895652173913,7867.622867394656,2019
+1998,29,"(25,30]",HS,106.95673333333335,46.201412429378536,2.3150100334448163,7921.100461657722,2019
+1998,29,"(25,30]",HS,107.12083333333334,46.201412429378536,2.318561872909699,8106.029351852696,2019
+1998,29,"(25,30]",HS,106.95673333333335,46.201412429378536,2.3150100334448163,7864.422793225999,2019
+1998,29,"(25,30]",HS,106.95673333333335,46.201412429378536,2.3150100334448163,8096.470544006715,2019
+1998,22,"(20,25]",NoHS,3.282,29.56890395480226,0.11099498327759198,4819.115943027066,2019
+1998,22,"(20,25]",NoHS,3.282,29.56890395480226,0.11099498327759198,4812.850653543558,2019
+1998,22,"(20,25]",NoHS,3.282,29.56890395480226,0.11099498327759198,4844.503629210843,2019
+1998,22,"(20,25]",NoHS,3.282,29.56890395480226,0.11099498327759198,4838.648082255686,2019
+1998,22,"(20,25]",NoHS,3.282,29.56890395480226,0.11099498327759198,4803.62372671419,2019
+1998,55,"(50,55]",College,17560.52333333333,489.73497175141244,35.85719694579415,222.44476159591431,2019
+1998,55,"(50,55]",College,17560.52333333333,489.73497175141244,35.85719694579415,247.88158322566156,2019
+1998,55,"(50,55]",College,17560.52333333333,489.73497175141244,35.85719694579415,237.0396635759585,2019
+1998,55,"(50,55]",College,17560.52333333333,489.73497175141244,35.85719694579415,228.43395622055945,2019
+1998,55,"(50,55]",College,17560.52333333333,489.73497175141244,35.85719694579415,214.11507244989616,2019
+1998,40,"(35,40]",HS,3.7378333333333336,49.89752542372881,0.07491019447541188,9054.247661849464,2019
+1998,40,"(35,40]",HS,5.178266666666667,55.441694915254246,0.09340022296544034,9285.104752811778,2019
+1998,40,"(35,40]",HS,5.5794,60.98586440677967,0.09148677409546974,9567.548721583713,2019
+1998,40,"(35,40]",HS,6.108166666666667,66.53003389830509,0.0918106651802304,9109.543531072286,2019
+1998,40,"(35,40]",HS,3.3731666666666666,73.92225988700567,0.04563127090301002,9480.329401865605,2019
+1998,63,"(60,65]",HS,822.9615,103.49116384180793,7.951997730530337,7249.48017128532,2019
+1998,63,"(60,65]",HS,812.0032666666667,103.49116384180793,7.846112040133778,6912.002172253378,2019
+1998,63,"(60,65]",HS,786.5130666666666,103.49116384180793,7.599808886765406,6470.386713515018,2019
+1998,63,"(60,65]",HS,724.5015,105.33922033898305,6.877794402393945,7079.366822292328,2019
+1998,63,"(60,65]",HS,802.8866,103.49116384180793,7.758020783564261,6453.645522505225,2019
+1998,39,"(35,40]",College,1337.7796666666668,205.13427118644066,6.521483021483022,891.3889652834965,2019
+1998,39,"(35,40]",College,1336.3210000000001,205.13427118644066,6.514372231763537,914.1350445380331,2019
+1998,39,"(35,40]",College,1337.0503333333334,205.13427118644066,6.51792762662328,863.6514934446475,2019
+1998,39,"(35,40]",College,1336.5033333333333,205.13427118644066,6.5152610804784725,952.9713703561383,2019
+1998,39,"(35,40]",College,1336.5033333333333,205.13427118644066,6.5152610804784725,880.6678585449445,2019
+1998,73,"(70,75]",HS,8411.948333333334,282.75264406779667,29.750202199051298,356.44226048754206,2019
+1998,73,"(70,75]",HS,11843.644,476.79857627118633,24.839931554795058,353.1101158278783,2019
+1998,73,"(70,75]",HS,5746.417333333333,190.34981920903957,30.188719680488354,334.7816676765537,2019
+1998,73,"(70,75]",HS,4234.874,393.636033898305,10.758349427669698,370.1779121172964,2019
+1998,73,"(70,75]",HS,5135.600666666667,312.3215480225989,16.443312026280896,348.4556492348632,2019
+1998,57,"(55,60]",College,1973.7583333333332,295.68903954802266,6.675114966555182,4032.295661324217,2019
+1998,57,"(55,60]",College,1973.7583333333332,295.68903954802266,6.675114966555182,4398.092791338016,2019
+1998,57,"(55,60]",College,1973.7583333333332,295.68903954802266,6.675114966555182,4145.707642415227,2019
+1998,57,"(55,60]",College,1973.3936666666668,295.68903954802266,6.67388168896321,4070.5572667068423,2019
+1998,57,"(55,60]",College,1973.576,295.68903954802266,6.674498327759196,4230.299879997564,2019
+1998,48,"(45,50]",College,3731.4516666666664,541.4805536723164,6.891201616309198,1766.7849156639484,2019
+1998,48,"(45,50]",College,3731.4516666666664,508.21553672316384,7.342262085740346,1808.592718740283,2019
+1998,48,"(45,50]",College,3731.4516666666664,539.6324971751412,6.9148016218445045,1699.4687681613982,2019
+1998,48,"(45,50]",College,3731.4516666666664,541.4805536723164,6.891201616309198,1856.520572538932,2019
+1998,48,"(45,50]",College,3731.4516666666664,541.4805536723164,6.891201616309198,1751.552222802767,2019
+1998,51,"(50,55]",College,68096.3035,6671.48395480226,10.207069965443443,14.88907941025208,2019
+1998,51,"(50,55]",College,76675.21446666667,4047.2437288135593,18.94504497487821,15.346942428237279,2019
+1998,51,"(50,55]",College,65009.01726666667,7410.706553672316,8.772310277817164,16.178579613961055,2019
+1998,51,"(50,55]",College,54416.7087,7151.978644067797,7.608622929143657,15.10758998806865,2019
+1998,51,"(50,55]",College,50492.07486666667,3899.3992090395477,12.94868059408138,16.589108194601298,2019
+1998,91,"(90,95]",HS,0.6381666666666667,18.480564971751416,0.03453177257525083,6457.046920707131,2019
+1998,91,"(90,95]",HS,0.6199333333333333,18.480564971751416,0.033545150501672234,6503.675549746129,2019
+1998,91,"(90,95]",HS,0.5834666666666667,18.480564971751416,0.031571906354515046,6510.796458584332,2019
+1998,91,"(90,95]",HS,0.8934333333333333,18.480564971751416,0.04834448160535116,6444.730576653584,2019
+1998,91,"(90,95]",HS,0.6746333333333333,18.480564971751416,0.03650501672240802,6511.076187384925,2019
+1998,80,"(75,80]",HS,969.6486666666666,66.53003389830509,14.574600520252691,666.9921256576913,2019
+1998,80,"(75,80]",HS,1064.462,53.593638418079095,19.861722984661515,640.2178476203155,2019
+1998,80,"(75,80]",HS,1118.4873666666667,42.50529943502825,26.314068634579034,651.4320767897308,2019
+1998,80,"(75,80]",HS,1314.0763333333332,225.46289265536726,5.828348593672898,654.8519258992592,2019
+1998,80,"(75,80]",HS,839.4626666666667,77.61837288135592,10.815257206561556,653.0896554936214,2019
+1998,42,"(40,45]",HS,70.47183333333334,118.27561581920904,0.5958272366220736,8152.650005324324,2019
+1998,42,"(40,45]",HS,69.99776666666666,118.27561581920904,0.5918190844481606,8264.16123953428,2019
+1998,42,"(40,45]",HS,68.77613333333333,118.27561581920904,0.5814903846153846,8603.202939012095,2019
+1998,42,"(40,45]",HS,67.3357,118.27561581920904,0.5693117683946489,8193.479585068677,2019
+1998,42,"(40,45]",HS,70.41713333333334,118.27561581920904,0.5953647575250837,8499.056348087215,2019
+1998,44,"(40,45]",HS,1928.175,64.68197740112994,29.8100812231247,12677.183342975433,2019
+1998,44,"(40,45]",HS,1911.765,64.68197740112994,29.556378404204494,13310.446752006314,2019
+1998,44,"(40,45]",HS,2010.2250000000001,64.68197740112994,31.078595317725757,11563.862010738283,2019
+1998,44,"(40,45]",HS,1971.935,64.68197740112994,30.486622073578594,11849.545150295664,2019
+1998,44,"(40,45]",HS,1929.9983333333332,64.68197740112994,29.838270425226945,12559.287953020945,2019
+1998,51,"(50,55]",College,2802.0986666666668,713.3498079096046,3.928084981024832,164.6802356702881,2019
+1998,51,"(50,55]",College,6091.392,1110.68195480226,5.48437108720694,166.16681081994972,2019
+1998,51,"(50,55]",College,20439.110833333332,794.6642937853109,25.72043439371548,150.30761671519522,2019
+1998,51,"(50,55]",College,7037.884333333333,593.2261355932204,11.863746236155825,142.00231080673467,2019
+1998,51,"(50,55]",College,38304.039666666664,896.3074011299435,42.735382546633105,139.50095816350716,2019
+1998,53,"(50,55]",College,114507.15849,2106.7844067796614,54.35162616616792,14.88907941025208,2019
+1998,53,"(50,55]",College,113484.28672333334,1716.8444858757061,66.10050453431064,15.346942428237279,2019
+1998,53,"(50,55]",College,89044.30849,2069.823276836158,43.0202469392021,16.178579613961055,2019
+1998,53,"(50,55]",College,154438.15849,2383.9928813559322,64.78130018666874,15.10758998806865,2019
+1998,53,"(50,55]",College,134507.32005666668,702.2614689265538,191.53452952825205,16.589108194601298,2019
+1998,51,"(50,55]",College,726.2336666666666,264.27207909604516,2.748052950394088,101.98811107965898,2019
+1998,51,"(50,55]",College,728.057,267.96819209039546,2.7169530619305733,95.80499342002787,2019
+1998,51,"(50,55]",College,682.4736666666666,273.51236158192086,2.495220555003164,96.33492076898943,2019
+1998,51,"(50,55]",College,682.4736666666666,267.96819209039546,2.546845807865298,99.24425622138592,2019
+1998,51,"(50,55]",College,682.4736666666666,264.27207909604516,2.5824660289543235,101.9428980361801,2019
+1998,26,"(25,30]",College,21.952933333333334,48.04946892655367,0.4568819140725495,5439.700621604325,2019
+1998,26,"(25,30]",College,35.70086666666667,51.745581920903966,0.6899307214524605,5456.461176667915,2019
+1998,26,"(25,30]",College,26.547733333333333,70.22614689265536,0.37803203661327234,5491.965122839175,2019
+1998,26,"(25,30]",College,51.23566666666667,48.04946892655367,1.066310779521482,5434.241334905907,2019
+1998,26,"(25,30]",College,19.728466666666666,79.46642937853107,0.24826164735163722,5515.967511685421,2019
+1998,50,"(45,50]",College,254.33676666666668,120.12367231638417,2.1172909698996656,6399.0161651591325,2019
+1998,50,"(45,50]",College,252.89633333333336,120.12367231638417,2.105299717005403,6482.562783264771,2019
+1998,50,"(45,50]",College,252.51343333333332,120.12367231638417,2.1021121687676874,6718.784634793342,2019
+1998,50,"(45,50]",College,252.89633333333336,120.12367231638417,2.105299717005403,6393.47539557341,2019
+1998,50,"(45,50]",College,252.69576666666666,120.12367231638417,2.103630048880885,6687.732977001843,2019
+1998,30,"(25,30]",HS,23.612166666666667,120.12367231638417,0.19656547465912017,6112.490678754557,2019
+1998,30,"(25,30]",HS,22.718733333333333,120.12367231638417,0.18912786210445073,6130.58800687742,2019
+1998,30,"(25,30]",HS,22.299366666666664,120.12367231638417,0.1856367378440957,6130.893453894352,2019
+1998,30,"(25,30]",HS,24.268566666666665,120.12367231638417,0.20202984306663235,6161.410183386257,2019
+1998,30,"(25,30]",HS,22.335833333333333,120.12367231638417,0.1859403138667353,6138.0262937227735,2019
+1998,42,"(40,45]",College,156.13203333333334,101.64310734463277,1.536080875646093,6155.50882917436,2019
+1998,42,"(40,45]",College,156.13203333333334,101.64310734463277,1.536080875646093,6144.5726327616485,2019
+1998,42,"(40,45]",College,156.15026666666665,101.64310734463277,1.5362602614776526,6185.605712103512,2019
+1998,42,"(40,45]",College,156.13203333333334,101.64310734463277,1.536080875646093,6202.792789386381,2019
+1998,42,"(40,45]",College,155.9497,101.64310734463277,1.5342870173304957,6094.8483084956015,2019
+1998,53,"(50,55]",College,79222.74115666667,19386.112655367233,4.086571793171391,17.946207271687662,2019
+1998,53,"(50,55]",College,77528.86448999999,19034.981920903956,4.072967592622658,18.83866816423636,2019
+1998,53,"(50,55]",College,79295.85682333334,18979.5402259887,4.177965107645413,16.444942368718884,2019
+1998,53,"(50,55]",College,82132.96349,17963.109152542373,4.572313333539783,15.79138562042399,2019
+1998,53,"(50,55]",College,82550.32449,19755.723954802263,4.178552235233753,16.010495326213785,2019
+1998,47,"(45,50]",HS,6.017,36.96112994350283,0.1627926421404682,4246.802441025245,2019
+1998,47,"(45,50]",HS,4.558333333333333,36.96112994350283,0.12332775919732437,4248.600421090188,2019
+1998,47,"(45,50]",HS,5.123566666666667,36.96112994350283,0.13862040133779263,4239.979409865498,2019
+1998,47,"(45,50]",HS,6.199333333333334,36.96112994350283,0.16772575250836116,4242.431781655834,2019
+1998,47,"(45,50]",HS,4.959466666666667,36.96112994350283,0.13418060200668894,4257.868659039189,2019
+1998,42,"(40,45]",College,5812.969,757.703163841808,7.671828860429072,1388.4900761687977,2019
+1998,42,"(40,45]",College,5785.801333333333,757.703163841808,7.635973570438044,1444.489037070037,2019
+1998,42,"(40,45]",College,5800.570333333333,757.703163841808,7.655465372379475,1568.2603547380227,2019
+1998,42,"(40,45]",College,5800.388,757.703163841808,7.655224732849335,1656.291731277642,2019
+1998,42,"(40,45]",College,5822.268,757.703163841808,7.684101476466269,1348.564197734558,2019
+1998,27,"(25,30]",HS,5.433533333333334,88.70671186440678,0.061252787068004466,5526.196721678967,2019
+1998,27,"(25,30]",HS,5.433533333333334,88.70671186440678,0.061252787068004466,5521.984514929787,2019
+1998,27,"(25,30]",HS,5.433533333333334,88.70671186440678,0.061252787068004466,5585.389021251114,2019
+1998,27,"(25,30]",HS,5.433533333333334,88.70671186440678,0.061252787068004466,5498.852203582002,2019
+1998,27,"(25,30]",HS,5.433533333333334,86.85865536723163,0.06255603785668541,5600.894549803316,2019
+1998,74,"(70,75]",HS,32888.466166666665,853.8021016949153,38.520010786315126,15.210363786456199,2019
+1998,74,"(70,75]",HS,94102.1057,3271.06,28.768076923076922,18.212895568678366,2019
+1998,74,"(70,75]",HS,59783.909166666665,1136.554745762712,52.60099382766403,19.6756376232697,2019
+1998,74,"(70,75]",HS,22882.742166666667,855.6501581920903,26.74310516697126,15.401116629790682,2019
+1998,74,"(70,75]",HS,91837.1975,2143.7455367231637,42.83959822973129,19.64463151203668,2019
+1998,19,"(15,20]",NoHS,0.18233333333333335,18.480564971751416,0.009866220735785951,5560.501532494016,2019
+1998,19,"(15,20]",NoHS,0.18233333333333335,18.480564971751416,0.009866220735785951,5575.30142094381,2019
+1998,19,"(15,20]",NoHS,0.18233333333333335,18.480564971751416,0.009866220735785951,5620.420046000782,2019
+1998,19,"(15,20]",NoHS,0.18233333333333335,18.480564971751416,0.009866220735785951,5555.086860107208,2019
+1998,19,"(15,20]",NoHS,0.18233333333333335,18.480564971751416,0.009866220735785951,5599.733812819973,2019
+1998,46,"(45,50]",HS,1788.3253333333332,105.33922033898305,16.976823329226075,2952.86936591282,2019
+1998,46,"(45,50]",HS,1518.472,75.77031638418079,20.04046007015254,3225.889658371102,2019
+1998,46,"(45,50]",HS,1755.323,212.52649717514123,8.259313654209686,3003.8116876692343,2019
+1998,46,"(45,50]",HS,1301.4953333333333,319.71377401129945,4.070814081620816,2983.7336295992436,2019
+1998,46,"(45,50]",HS,1786.502,77.61837288135592,23.016483516483518,3080.3213561824114,2019
+1998,41,"(40,45]",HS,483.4021333333334,92.40282485875707,5.231464882943143,7596.9388530760025,2019
+1998,41,"(40,45]",HS,338.4106666666667,92.40282485875707,3.6623411371237458,9252.6972669612,2019
+1998,41,"(40,45]",HS,414.62600000000003,92.40282485875707,4.487157190635451,9632.294193402702,2019
+1998,41,"(40,45]",HS,431.4006666666667,92.40282485875707,4.668695652173914,7417.861051625002,2019
+1998,41,"(40,45]",HS,421.737,92.40282485875707,4.564113712374581,9515.689876366381,2019
+1998,35,"(30,35]",HS,811.5656666666666,184.80564971751414,4.391454849498327,936.5696249880384,2019
+1998,35,"(30,35]",HS,811.5656666666666,184.80564971751414,4.391454849498327,867.2512318355027,2019
+1998,35,"(30,35]",HS,811.5656666666666,184.80564971751414,4.391454849498327,902.1703373987069,2019
+1998,35,"(30,35]",HS,813.389,184.80564971751414,4.401321070234113,970.065951890673,2019
+1998,35,"(30,35]",HS,811.5656666666666,184.80564971751414,4.391454849498327,966.7300369007478,2019
+1998,28,"(25,30]",College,39.8216,48.04946892655367,0.82876254180602,6654.727752948301,2019
+1998,28,"(25,30]",College,57.7632,51.745581920903966,1.1162924032489248,6674.4304892047385,2019
+1998,28,"(25,30]",College,54.426500000000004,64.68197740112994,0.8414476827520306,6674.763032327904,2019
+1998,28,"(25,30]",College,48.66476666666667,70.22614689265536,0.6929721879950714,6707.9868910382065,2019
+1998,28,"(25,30]",College,52.31143333333333,59.13780790960452,0.8845683528428094,6682.528624074081,2019
+1998,22,"(20,25]",NoHS,13.4562,49.89752542372881,0.26967670011148276,7725.473195129825,2019
+1998,22,"(20,25]",NoHS,22.791666666666668,49.89752542372881,0.456769478508609,7828.300005640505,2019
+1998,22,"(20,25]",NoHS,20.05666666666667,49.89752542372881,0.40195714108757596,7975.798717055218,2019
+1998,22,"(20,25]",NoHS,18.962666666666667,49.89752542372881,0.3800322061191627,7867.0472760381745,2019
+1998,22,"(20,25]",NoHS,13.583833333333335,49.89752542372881,0.27223460919113096,7789.418670415302,2019
+1998,23,"(20,25]",NoHS,54.153,33.265016949152546,1.627926421404682,7165.656307731993,2019
+1998,23,"(20,25]",NoHS,54.153,33.265016949152546,1.627926421404682,7207.039615393491,2019
+1998,23,"(20,25]",NoHS,54.153,33.265016949152546,1.627926421404682,7325.409125806657,2019
+1998,23,"(20,25]",NoHS,54.153,33.265016949152546,1.627926421404682,7167.370832674356,2019
+1998,23,"(20,25]",NoHS,54.153,33.265016949152546,1.627926421404682,7224.968053013714,2019
+1998,34,"(30,35]",NoHS,128.0527,88.70671186440678,1.443551421404682,6501.405622381515,2019
+1998,34,"(30,35]",NoHS,128.0527,88.70671186440678,1.443551421404682,6544.81086260715,2019
+1998,34,"(30,35]",NoHS,128.03446666666667,88.70671186440678,1.4433458751393533,6654.641859444224,2019
+1998,34,"(30,35]",NoHS,127.85213333333333,88.70671186440678,1.4412904124860646,6557.353112749379,2019
+1998,34,"(30,35]",NoHS,126.64873333333334,88.70671186440678,1.427724358974359,6625.570849946025,2019
+1998,34,"(30,35]",HS,29.720333333333333,129.36395480225988,0.22974199713330148,5954.454893062259,2019
+1998,34,"(30,35]",HS,29.720333333333333,129.36395480225988,0.22974199713330148,5972.801485283251,2019
+1998,34,"(30,35]",HS,29.720333333333333,129.36395480225988,0.22974199713330148,6011.665139868,2019
+1998,34,"(30,35]",HS,29.90266666666667,129.36395480225988,0.2311514572384138,5948.478998678491,2019
+1998,34,"(30,35]",HS,29.720333333333333,129.36395480225988,0.22974199713330148,6037.938854480729,2019
+1998,30,"(25,30]",HS,13.656766666666666,46.201412429378536,0.2955919732441471,5304.130107684374,2019
+1998,30,"(25,30]",HS,12.7451,46.201412429378536,0.2758595317725752,5286.046015011769,2019
+1998,30,"(25,30]",HS,14.149066666666668,46.201412429378536,0.306247491638796,5288.688560133201,2019
+1998,30,"(25,30]",HS,12.982133333333334,46.201412429378536,0.28098996655518393,5326.318206471685,2019
+1998,30,"(25,30]",HS,13.146233333333333,46.201412429378536,0.28454180602006685,5285.344836062897,2019
+1998,81,"(80,85]",College,7413.308666666667,277.2084745762712,26.74272017837235,12.931159480455397,2019
+1998,81,"(80,85]",College,16688.56886666667,277.2084745762712,60.20223188405797,14.039727978978172,2019
+1998,81,"(80,85]",College,14457.9758,277.2084745762712,52.155605351170564,11.343223109869806,2019
+1998,81,"(80,85]",College,11792.645366666668,277.2084745762712,42.54071014492754,11.956680496345369,2019
+1998,81,"(80,85]",College,19540.225733333336,277.2084745762712,70.48927982162765,12.779614944940466,2019
+1998,58,"(55,60]",HS,162.82366666666667,101.64310734463277,1.6019154758285192,9586.574706127423,2019
+1998,58,"(55,60]",HS,165.37633333333335,101.64310734463277,1.6270294922468838,9551.68283550779,2019
+1998,58,"(55,60]",HS,188.35033333333334,101.64310734463277,1.8530556400121618,9978.018219974685,2019
+1998,58,"(55,60]",HS,181.05700000000002,101.64310734463277,1.7813013073882642,9442.000245186402,2019
+1998,58,"(55,60]",HS,170.117,101.64310734463277,1.673669808452417,9899.845789832963,2019
+1998,36,"(35,40]",NoHS,335.0375,40.65724293785311,8.240536637275767,5771.361763973057,2019
+1998,36,"(35,40]",NoHS,334.8551666666667,40.65724293785311,8.236051991486775,5542.064308395742,2019
+1998,36,"(35,40]",NoHS,334.6728333333333,40.65724293785311,8.231567345697778,5214.040595149284,2019
+1998,36,"(35,40]",NoHS,334.8551666666667,40.65724293785311,8.236051991486775,5634.033361733455,2019
+1998,36,"(35,40]",NoHS,335.0375,40.65724293785311,8.240536637275767,5174.772274745667,2019
+1998,39,"(35,40]",HS,953.9680000000001,129.36395480225988,7.374295269947445,6068.0909372782035,2019
+1998,39,"(35,40]",HS,1020.155,109.03533333333333,9.356187290969899,5806.862274667272,2019
+1998,39,"(35,40]",HS,1023.8016666666666,125.66784180790961,8.146886681093841,5421.112546049812,2019
+1998,39,"(35,40]",HS,916.772,120.12367231638417,7.631901209158735,5926.697722250219,2019
+1998,39,"(35,40]",HS,979.8593333333334,123.81978531073446,7.913592572255779,5403.846199212686,2019
+1998,56,"(55,60]",College,807.1896666666667,323.40988700564975,2.4958719541328236,125.54510378671962,2019
+1998,56,"(55,60]",College,845.4796666666666,323.40988700564975,2.6142666029622545,129.75797294686078,2019
+1998,56,"(55,60]",College,819.953,323.40988700564975,2.5353368370759672,121.80810145652224,2019
+1998,56,"(55,60]",College,829.0696666666666,323.40988700564975,2.5635260391782126,126.17645354443528,2019
+1998,56,"(55,60]",College,823.5996666666666,323.40988700564975,2.5466125179168655,124.07747580724234,2019
+1998,79,"(75,80]",NoHS,2048.1503333333335,112.73144632768363,18.168402872964528,3642.989293519193,2019
+1998,79,"(75,80]",NoHS,2046.327,110.88338983050849,18.45476588628762,3982.350774915148,2019
+1998,79,"(75,80]",NoHS,2046.327,112.73144632768363,18.152228740610777,3715.40143050433,2019
+1998,79,"(75,80]",NoHS,2046.327,110.88338983050849,18.45476588628762,3671.7970111297664,2019
+1998,79,"(75,80]",NoHS,2046.327,110.88338983050849,18.45476588628762,3806.60551264703,2019
+1998,70,"(65,70]",College,7500.281666666667,1921.9787570621468,3.9023749035245694,262.64948088473994,2019
+1998,70,"(65,70]",College,7537.842333333333,1921.9787570621468,3.9219176099819912,260.6892444893109,2019
+1998,70,"(65,70]",College,6129.135,1921.9787570621468,3.1889712503215852,250.57456937200817,2019
+1998,70,"(65,70]",College,7922.930333333333,1921.9787570621468,4.122277784924106,269.531251239284,2019
+1998,70,"(65,70]",College,6750.891666666667,1995.901016949152,3.38237798835625,255.46654311350304,2019
+1998,60,"(55,60]",HS,81.13833333333334,55.441694915254246,1.4634894091415829,8644.938790278047,2019
+1998,60,"(55,60]",HS,81.04716666666667,55.441694915254246,1.461845039018952,8620.314928278025,2019
+1998,60,"(55,60]",HS,81.19303333333335,55.441694915254246,1.4644760312151617,9130.676189922246,2019
+1998,60,"(55,60]",HS,81.24773333333334,55.441694915254246,1.4654626532887403,8422.81732951896,2019
+1998,60,"(55,60]",HS,81.41183333333333,55.441694915254246,1.4684225195094758,9080.794782433944,2019
+1998,38,"(35,40]",NoHS,204.0857,59.13780790960452,3.4510190217391306,2454.5843043955438,2019
+1998,38,"(35,40]",NoHS,257.7464,59.13780790960452,4.358403010033445,2550.8110601038975,2019
+1998,38,"(35,40]",NoHS,287.46673333333337,59.13780790960452,4.860963628762542,2342.183674398666,2019
+1998,38,"(35,40]",NoHS,224.47056666666668,59.13780790960452,3.7957201086956527,2320.1793936600575,2019
+1998,38,"(35,40]",NoHS,230.9434,59.13780790960452,3.9051734949832775,2451.8849779854268,2019
+1998,55,"(50,55]",NoHS,0,17.371731073446327,0,5306.002850840161,2019
+1998,55,"(50,55]",NoHS,0,17.371731073446327,0,5286.219540779837,2019
+1998,55,"(50,55]",NoHS,0,17.371731073446327,0,5416.6180856023475,2019
+1998,55,"(50,55]",NoHS,0,17.371731073446327,0,5270.505986112161,2019
+1998,55,"(50,55]",NoHS,0,17.371731073446327,0,5417.64005877458,2019
+1998,41,"(40,45]",HS,37.743,64.68197740112994,0.5835164835164836,6680.839085288113,2019
+1998,41,"(40,45]",HS,37.743,64.68197740112994,0.5835164835164836,6671.431107343129,2019
+1998,41,"(40,45]",HS,37.743,64.68197740112994,0.5835164835164836,6666.413307692458,2019
+1998,41,"(40,45]",HS,37.743,64.68197740112994,0.5835164835164836,6676.666367160459,2019
+1998,41,"(40,45]",HS,37.56066666666666,64.68197740112994,0.5806975633062589,6680.422328650614,2019
+1998,32,"(30,35]",HS,74.30083333333333,96.09893785310734,0.7731701826601491,10082.67582560991,2019
+1998,32,"(30,35]",HS,74.1185,96.09893785310734,0.7712728325186519,10207.988327999092,2019
+1998,32,"(30,35]",HS,74.31906666666667,96.09893785310734,0.773359917674299,10297.978709914618,2019
+1998,32,"(30,35]",HS,73.845,96.09893785310734,0.768426807306406,10227.116015046056,2019
+1998,32,"(30,35]",HS,74.30083333333333,96.09893785310734,0.7731701826601491,10279.746763494219,2019
+1998,78,"(75,80]",HS,304.67900000000003,12.19717288135593,24.97947704469444,10706.446637480267,2019
+1998,78,"(75,80]",HS,294.1036666666667,12.56678418079096,23.40325595120992,10921.448377517429,2019
+1998,78,"(75,80]",HS,297.568,18.2957593220339,16.264315394750177,11412.717841471851,2019
+1998,78,"(75,80]",HS,296.8386666666667,29.56890395480226,10.03887959866221,10820.401942225264,2019
+1998,78,"(75,80]",HS,294.1036666666667,10.164310734463278,28.934934630586802,11304.60549136801,2019
+1998,52,"(50,55]",HS,28749.95533333333,88.70671186440678,324.1012402452619,461.53841359426025,2019
+1998,52,"(50,55]",HS,27948.600333333332,92.40282485875707,302.4647826086956,461.05104733927936,2019
+1998,52,"(50,55]",HS,28588.590333333334,92.40282485875707,309.3908695652174,454.504819053991,2019
+1998,52,"(50,55]",HS,27905.752,92.40282485875707,302.0010702341137,446.026857431311,2019
+1998,52,"(50,55]",HS,28827.81166666667,92.40282485875707,311.9797658862876,430.61570954034903,2019
+1998,57,"(55,60]",HS,9.846,31.416960451977403,0.3133975998426126,5220.315842370122,2019
+1998,57,"(55,60]",HS,7.5486,31.416960451977403,0.2402714932126697,5200.852014357652,2019
+1998,57,"(55,60]",HS,9.663666666666666,31.416960451977403,0.30759394058626793,5329.144744025367,2019
+1998,57,"(55,60]",HS,7.585066666666667,31.416960451977403,0.24143222506393863,5185.3922189754,2019
+1998,57,"(55,60]",HS,7.694466666666666,31.416960451977403,0.2449144206177454,5330.150213281878,2019
+1998,28,"(25,30]",College,17.923366666666666,25.872790960451983,0.6927496416626849,6154.893827208436,2019
+1998,28,"(25,30]",College,59.3495,75.77031638418079,0.7832816706093483,6082.939271364181,2019
+1998,28,"(25,30]",College,42.447199999999995,53.593638418079095,0.7920193749279206,6305.742765887992,2019
+1998,28,"(25,30]",College,48.44596666666667,75.77031638418079,0.639379231584958,6239.034883909724,2019
+1998,28,"(25,30]",College,10.484166666666667,29.56890395480226,0.3545673076923077,6353.916229034295,2019
+1998,48,"(45,50]",HS,959.2556666666667,149.69257627118645,6.408171270490111,6688.70331709382,2019
+1998,48,"(45,50]",HS,617.7453333333334,170.021197740113,3.6333430274829146,6409.824407630545,2019
+1998,48,"(45,50]",HS,649.2343000000001,197.7420451977401,3.283238520926453,5973.0292909279415,2019
+1998,48,"(45,50]",HS,736.9913333333334,384.3957514124294,1.9172723179830204,6536.070330236378,2019
+1998,48,"(45,50]",HS,606.9329666666667,219.9187231638418,2.7598057952277903,5962.317381654715,2019
+1998,43,"(40,45]",HS,441.42900000000003,142.30035028248585,3.1020935586152985,5831.993460363023,2019
+1998,43,"(40,45]",HS,443.2523333333333,142.30035028248585,3.114906832298137,5579.550499523875,2019
+1998,43,"(40,45]",HS,441.24666666666667,142.30035028248585,3.1008122312470143,5210.377779636392,2019
+1998,43,"(40,45]",HS,441.42900000000003,142.30035028248585,3.1020935586152985,5694.5195926438455,2019
+1998,43,"(40,45]",HS,443.2523333333333,144.14840677966103,3.074972129319955,5193.304037479085,2019
+1998,48,"(45,50]",College,219.20113333333333,86.85865536723163,2.523653312459973,7202.355855404584,2019
+1998,48,"(45,50]",College,174.12833333333336,88.70671186440678,1.962966833890747,7296.391009962974,2019
+1998,48,"(45,50]",College,205.672,88.70671186440678,2.3185618729096986,7562.268418555051,2019
+1998,48,"(45,50]",College,180.1635666666667,86.85865536723163,2.0742154700064046,7196.119491369986,2019
+1998,48,"(45,50]",College,207.5135666666667,86.85865536723163,2.389094855191063,7527.31850070169,2019
+1998,33,"(30,35]",HS,52.71256666666667,46.201412429378536,1.1409297658862876,5398.675965854132,2019
+1998,33,"(30,35]",HS,35.1721,66.53003389830509,0.5286649944258639,5359.654626735863,2019
+1998,33,"(30,35]",HS,52.3479,88.70671186440678,0.5901233277591973,5388.841377451417,2019
+1998,33,"(30,35]",HS,48.683,75.77031638418079,0.6425075454767926,5399.85359058061,2019
+1998,33,"(30,35]",HS,48.701233333333334,62.833920903954805,0.7750786936848317,5376.8853317920175,2019
+1998,75,"(70,75]",HS,65815.22233333334,5950.741920903954,11.060002804378987,33.298020221494895,2019
+1998,75,"(70,75]",HS,70671.08720000001,5728.975141242938,12.335729420649479,34.892343262385054,2019
+1998,75,"(70,75]",HS,68893.33720000001,5839.858531073446,11.797090089327295,30.18795190638621,2019
+1998,75,"(70,75]",HS,66324.47933333334,5692.014011299434,11.652198888068456,29.311296248858962,2019
+1998,75,"(70,75]",HS,71301.45,6080.105875706215,11.727007959662908,29.895445829547914,2019
+1998,47,"(45,50]",HS,5950.557733333333,280.90458757062146,21.183554831895794,773.231131966627,2019
+1998,47,"(45,50]",HS,4844.687833333333,351.1307344632769,13.797390424221085,847.7187609956443,2019
+1998,47,"(45,50]",HS,5262.048833333333,192.1978757062147,27.378288204270646,774.0691809428106,2019
+1998,47,"(45,50]",HS,5311.789366666666,352.978790960452,15.048466091159009,992.0758929974288,2019
+1998,47,"(45,50]",HS,4861.745116666666,194.04593220338984,25.05460981047937,775.727468964503,2019
+1998,68,"(65,70]",HS,903.2793333333334,64.68197740112994,13.964930721452461,7766.01208281314,2019
+1998,68,"(65,70]",HS,903.097,64.68197740112994,13.962111801242235,7426.854845369882,2019
+1998,68,"(65,70]",HS,903.2793333333334,64.68197740112994,13.964930721452461,6878.222154621178,2019
+1998,68,"(65,70]",HS,903.097,64.68197740112994,13.962111801242235,7546.183706859481,2019
+1998,68,"(65,70]",HS,902.9146666666667,64.68197740112994,13.959292881032011,6860.137159006027,2019
+1998,36,"(35,40]",College,915.4956666666667,267.96819209039546,3.4164340906469843,128.29602056704658,2019
+1998,36,"(35,40]",College,915.4956666666667,267.96819209039546,3.4164340906469843,132.19016534978024,2019
+1998,36,"(35,40]",College,915.4956666666667,267.96819209039546,3.4164340906469843,123.853016514708,2019
+1998,36,"(35,40]",College,915.4956666666667,267.96819209039546,3.4164340906469843,131.04956952969357,2019
+1998,36,"(35,40]",College,915.4956666666667,267.96819209039546,3.4164340906469843,127.06902488122441,2019
+1998,62,"(60,65]",HS,227.005,96.09893785310734,2.362200926164137,7930.829214010101,2019
+1998,62,"(60,65]",HS,227.005,96.09893785310734,2.362200926164137,7857.0679174714915,2019
+1998,62,"(60,65]",HS,227.005,96.09893785310734,2.362200926164137,8272.574155331864,2019
+1998,62,"(60,65]",HS,227.005,96.09893785310734,2.362200926164137,7767.174712887254,2019
+1998,62,"(60,65]",HS,227.005,96.09893785310734,2.362200926164137,8186.400624572004,2019
+1998,35,"(30,35]",HS,5.471823333333334,40.65724293785311,0.13458422012769838,5605.829200451235,2019
+1998,35,"(30,35]",HS,5.471823333333334,40.65724293785311,0.13458422012769838,5633.22862666124,2019
+1998,35,"(30,35]",HS,5.471823333333334,40.65724293785311,0.13458422012769838,5618.897277427643,2019
+1998,35,"(30,35]",HS,5.471823333333334,40.65724293785311,0.13458422012769838,5655.313361155723,2019
+1998,35,"(30,35]",HS,5.471823333333334,40.65724293785311,0.13458422012769838,5609.083465785688,2019
+1998,32,"(30,35]",HS,24.487366666666667,99.79505084745762,0.24537656385482476,6654.727752948301,2019
+1998,32,"(30,35]",HS,21.752366666666667,53.593638418079095,0.4058759081997463,6674.4304892047385,2019
+1998,32,"(30,35]",HS,19.5826,64.68197740112994,0.30275203057811756,6674.763032327904,2019
+1998,32,"(30,35]",HS,36.52136666666667,90.55476836158192,0.40330694150569935,6707.9868910382065,2019
+1998,32,"(30,35]",HS,26.3107,62.833920903954805,0.41873401534526855,6682.528624074081,2019
+1998,38,"(35,40]",HS,28.079333333333334,70.22614689265536,0.399841577187115,5783.403465967532,2019
+1998,38,"(35,40]",HS,28.261666666666667,70.22614689265536,0.4024379510649534,5757.364394546226,2019
+1998,38,"(35,40]",HS,28.261666666666667,70.22614689265536,0.4024379510649534,5712.8805393078965,2019
+1998,38,"(35,40]",HS,28.261666666666667,70.22614689265536,0.4024379510649534,5811.371545532333,2019
+1998,38,"(35,40]",HS,28.079333333333334,70.22614689265536,0.399841577187115,5711.348781776587,2019
+1998,57,"(55,60]",HS,724.775,147.84451977401133,4.902278428093644,6743.176208395524,2019
+1998,57,"(55,60]",HS,724.775,147.84451977401133,4.902278428093644,6452.527292448902,2019
+1998,57,"(55,60]",HS,724.5926666666667,147.84451977401133,4.9010451505016714,6085.657030361347,2019
+1998,57,"(55,60]",HS,722.9516666666666,147.84451977401133,4.889945652173911,6581.634848276959,2019
+1998,57,"(55,60]",HS,724.5926666666667,147.84451977401133,4.9010451505016714,6043.203206526659,2019
+1998,34,"(30,35]",HS,19.6373,40.65724293785311,0.4829963514746123,5246.266868178008,2019
+1998,34,"(30,35]",HS,19.23616666666667,40.65724293785311,0.47313013073882637,5228.380056523087,2019
+1998,34,"(30,35]",HS,17.540466666666667,40.65724293785311,0.4314229249011857,5230.993773878579,2019
+1998,34,"(30,35]",HS,19.12676666666667,40.65724293785311,0.4704393432654302,5268.212914970315,2019
+1998,34,"(30,35]",HS,19.9655,40.65724293785311,0.4910687138948008,5227.6865267993735,2019
+1998,24,"(20,25]",NoHS,0,1.4969257627118646,0,6832.461635036593,2019
+1998,24,"(20,25]",NoHS,0,1.4969257627118646,0,6845.238095055945,2019
+1998,24,"(20,25]",NoHS,0,1.478445197740113,0,6817.233968111688,2019
+1998,24,"(20,25]",NoHS,0,1.478445197740113,0,6822.211972919626,2019
+1998,24,"(20,25]",NoHS,0,1.4969257627118646,0,6801.8669949443265,2019
+1998,25,"(20,25]",NoHS,10.128616666666668,59.13780790960452,0.1712714255852843,7544.683285219132,2019
+1998,25,"(20,25]",NoHS,10.128616666666668,59.13780790960452,0.1712714255852843,7639.954695426811,2019
+1998,25,"(20,25]",NoHS,10.128616666666668,59.13780790960452,0.1712714255852843,7749.73088797517,2019
+1998,25,"(20,25]",NoHS,10.128616666666668,59.13780790960452,0.1712714255852843,7574.970055383188,2019
+1998,25,"(20,25]",NoHS,10.1195,59.13780790960452,0.17111726588628765,7719.081546880239,2019
+1998,18,"(15,20]",College,30.44966666666667,42.50529943502825,0.7163734186418497,4428.907534099371,2019
+1998,18,"(15,20]",College,37.743,9.79469943502825,3.8534107402031927,4856.073701276828,2019
+1998,18,"(15,20]",College,30.632,9.609893785310735,3.1875482377154616,4869.6529344864075,2019
+1998,18,"(15,20]",College,30.632,18.480564971751416,1.6575250836120399,4872.482873111088,2019
+1998,18,"(15,20]",College,30.5773,13.490812429378531,2.2665276950565816,4791.266042565949,2019
+1998,25,"(20,25]",College,27.71466666666667,110.88338983050849,0.2499442586399108,7888.75667232584,2019
+1998,25,"(20,25]",College,25.891333333333332,110.88338983050849,0.23350055741360085,7935.394786450433,2019
+1998,25,"(20,25]",College,25.709,110.88338983050849,0.23185618729096985,8123.837216349811,2019
+1998,25,"(20,25]",College,25.891333333333332,110.88338983050849,0.23350055741360085,7911.429629175359,2019
+1998,25,"(20,25]",College,27.532333333333334,110.88338983050849,0.2482998885172798,7986.933666412032,2019
+1998,27,"(25,30]",NoHS,0.20056666666666667,14.78445197740113,0.013566053511705686,4820.635913673128,2019
+1998,27,"(25,30]",NoHS,0.21880000000000002,14.78445197740113,0.014799331103678932,4785.792616919828,2019
+1998,27,"(25,30]",NoHS,0.21880000000000002,14.78445197740113,0.014799331103678932,4811.854321603112,2019
+1998,27,"(25,30]",NoHS,0.21880000000000002,14.78445197740113,0.014799331103678932,4821.687449287636,2019
+1998,27,"(25,30]",NoHS,0.20056666666666667,14.78445197740113,0.013566053511705686,4801.17841820462,2019
+1998,28,"(25,30]",HS,91.1849,11.088338983050848,8.223494983277591,7960.013567920585,2019
+1998,28,"(25,30]",HS,91.1849,11.088338983050848,8.223494983277591,7937.588899819483,2019
+1998,28,"(25,30]",HS,91.1849,11.088338983050848,8.223494983277591,7864.649463411147,2019
+1998,28,"(25,30]",HS,91.1849,11.088338983050848,8.223494983277591,7969.557209877554,2019
+1998,28,"(25,30]",HS,91.1849,11.088338983050848,8.223494983277591,7869.93414980297,2019
+1998,69,"(65,70]",HS,609.7226666666667,107.18727683615819,5.688386575942798,5550.432254169724,2019
+1998,69,"(65,70]",HS,571.4326666666666,105.33922033898305,5.424690488763715,5305.994375289576,2019
+1998,69,"(65,70]",HS,600.606,105.33922033898305,5.701637035733145,5382.850871010809,2019
+1998,69,"(65,70]",HS,627.956,105.33922033898305,5.961274423516986,5367.494908669991,2019
+1998,69,"(65,70]",HS,573.4383333333334,107.18727683615819,5.349873140352901,5526.227725237278,2019
+1998,54,"(50,55]",HS,1673.0906666666667,304.9293220338983,5.486814634640722,511.06720910618617,2019
+1998,54,"(50,55]",HS,1543.087,317.8657175141243,4.854524772497472,542.3405868065059,2019
+1998,54,"(50,55]",HS,1771.3683333333333,360.3710169491526,4.915401766572335,507.1372864551261,2019
+1998,54,"(50,55]",HS,1609.6386666666667,341.8904519774011,4.708053873271266,531.4982468080086,2019
+1998,54,"(50,55]",HS,1582.5074666666667,186.65370621468927,8.478307228716183,505.9800457588235,2019
+1998,73,"(70,75]",HS,36.24786666666667,3.326501694915254,10.896692679301376,6460.977755785489,2019
+1998,73,"(70,75]",HS,36.24786666666667,3.326501694915254,10.896692679301376,6534.925139097692,2019
+1998,73,"(70,75]",HS,36.24786666666667,3.326501694915254,10.896692679301376,6542.088281651983,2019
+1998,73,"(70,75]",HS,36.24786666666667,3.326501694915254,10.896692679301376,6505.456676054185,2019
+1998,73,"(70,75]",HS,36.22963333333333,3.326501694915254,10.891211445559271,6543.472830216306,2019
+1998,66,"(65,70]",NoHS,400.80513333333334,29.56890395480226,13.554954013377927,10392.906713018014,2019
+1998,66,"(65,70]",NoHS,402.06323333333336,24.024734463276836,16.735387188062774,10835.997600087656,2019
+1998,66,"(65,70]",NoHS,386.38256666666666,42.50529943502825,9.09022102661044,11023.854386146277,2019
+1998,66,"(65,70]",NoHS,400.4951666666667,35.11307344632768,11.405870445344132,10461.187960788753,2019
+1998,66,"(65,70]",NoHS,371.9417666666667,42.50529943502825,8.750479860404246,10926.59604972531,2019
+1998,83,"(80,85]",HS,509.98633333333333,11.088338983050848,45.99303232998885,8644.75569509702,2019
+1998,83,"(80,85]",HS,509.98633333333333,11.088338983050848,45.99303232998885,8290.009986127086,2019
+1998,83,"(80,85]",HS,509.98633333333333,11.088338983050848,45.99303232998885,7738.562780082832,2019
+1998,83,"(80,85]",HS,509.98633333333333,11.088338983050848,45.99303232998885,8423.92401038284,2019
+1998,83,"(80,85]",HS,509.98633333333333,11.088338983050848,45.99303232998885,7716.399311233731,2019
+1998,68,"(65,70]",College,42352.022000000004,839.0176497175141,50.47810616887423,246.85375917283235,2019
+1998,68,"(65,70]",College,18640.84833333333,299.3851525423729,62.263770180436836,210.116394955445,2019
+1998,68,"(65,70]",College,17490.50733333333,462.0141242937853,37.85708361204013,210.53819292447616,2019
+1998,68,"(65,70]",College,44426.865933333334,574.7455706214689,77.2983180806332,244.16697664138556,2019
+1998,68,"(65,70]",College,44863.66366666667,310.4734915254237,144.50078635132985,235.8429508536513,2019
+1998,74,"(70,75]",HS,48757.75666666667,1722.3886553672314,28.308219817130066,15.134541716248247,2019
+1998,74,"(70,75]",HS,46724.74,1809.247310734463,25.825513031179863,15.874244413854168,2019
+1998,74,"(70,75]",HS,44952.46,1921.9787570621468,23.388635194237203,13.522093385409011,2019
+1998,74,"(70,75]",HS,48349.33,1940.4593220338984,24.91643573817487,13.033395147043223,2019
+1998,74,"(70,75]",HS,47240.74333333334,2032.8621468926553,23.238537549407116,13.520225057567519,2019
+1998,38,"(35,40]",HS,208.58933333333334,138.6042372881356,1.504927536231884,7075.580308127215,2019
+1998,38,"(35,40]",HS,402.2273333333333,138.6042372881356,2.9019843924191746,6769.307597984705,2019
+1998,38,"(35,40]",HS,232.65733333333336,138.6042372881356,1.678573021181717,6321.414224151767,2019
+1998,38,"(35,40]",HS,218.87293333333332,138.6042372881356,1.579121516164994,6908.792159627589,2019
+1998,38,"(35,40]",HS,389.09933333333333,138.6042372881356,2.8072686733556296,6300.699757543501,2019
+1998,51,"(50,55]",NoHS,0,17.741342372881356,0,6253.068379051955,2019
+1998,51,"(50,55]",NoHS,0,17.741342372881356,0,6229.928978567916,2019
+1998,51,"(50,55]",NoHS,0,17.741342372881356,0,6243.347422636537,2019
+1998,51,"(50,55]",NoHS,0,17.741342372881356,0,6226.249463393624,2019
+1998,51,"(50,55]",NoHS,0,17.741342372881356,0,6253.673966656198,2019
+1998,76,"(75,80]",NoHS,1.094,24.024734463276836,0.04553640339593517,5109.054751847637,2019
+1998,76,"(75,80]",NoHS,1.094,20.328621468926556,0.05381574946792338,5131.210925823205,2019
+1998,76,"(75,80]",NoHS,1.094,27.720847457627123,0.03946488294314381,5106.610269325038,2019
+1998,76,"(75,80]",NoHS,1.094,20.328621468926556,0.05381574946792338,5098.471523083355,2019
+1998,76,"(75,80]",NoHS,1.094,27.720847457627123,0.03946488294314381,5123.377077126045,2019
+1998,26,"(25,30]",NoHS,0,0,NA,5691.1256715839045,2019
+1998,26,"(25,30]",NoHS,0,0,NA,5686.126773393876,2019
+1998,26,"(25,30]",NoHS,0,0,NA,5707.2762643124315,2019
+1998,26,"(25,30]",NoHS,0,0,NA,5686.822961248769,2019
+1998,26,"(25,30]",NoHS,0,0,NA,5703.888787988961,2019
+1998,40,"(35,40]",HS,173.76366666666667,55.441694915254246,3.1341694537346707,487.7437439206959,2019
+1998,40,"(35,40]",HS,175.40466666666666,55.441694915254246,3.163768115942028,488.0069900215452,2019
+1998,40,"(35,40]",HS,175.40466666666666,55.441694915254246,3.163768115942028,465.6503725014777,2019
+1998,40,"(35,40]",HS,175.40466666666666,55.441694915254246,3.163768115942028,506.65595828206625,2019
+1998,40,"(35,40]",HS,173.76366666666667,55.441694915254246,3.1341694537346707,508.41710285553756,2019
+1998,77,"(75,80]",NoHS,58547.051,2217.6677966101697,26.400280100334445,1.8806425768868902,2019
+1998,77,"(75,80]",NoHS,531078.8356666667,722.5900903954803,734.9655672360554,1.820074969989756,2019
+1998,77,"(75,80]",NoHS,190300.206,1493.2296497175141,127.44202208682407,1.7637393134810686,2019
+1998,77,"(75,80]",NoHS,283382.5578333333,890.7632316384181,318.1345477317198,1.7547858162094887,2019
+1998,77,"(75,80]",NoHS,53715.4,1655.858621468927,32.43960523172479,1.6450475810565979,2019
+1998,30,"(25,30]",College,67.24453333333334,55.441694915254246,1.2128874024526197,5242.708592129335,2019
+1998,30,"(25,30]",College,67.0622,55.441694915254246,1.2095986622073578,5254.238465924383,2019
+1998,30,"(25,30]",College,67.24453333333334,55.441694915254246,1.2128874024526197,5290.497393040208,2019
+1998,30,"(25,30]",College,69.06786666666667,55.441694915254246,1.2457748049052397,5254.637143650814,2019
+1998,30,"(25,30]",College,68.90376666666667,55.441694915254246,1.2428149386845038,5230.241357601011,2019
+1998,30,"(25,30]",HS,195.3884,25.872790960451983,7.551887243191589,7043.532742249374,2019
+1998,30,"(25,30]",HS,191.3953,25.872790960451983,7.397551361681795,7085.1739155695905,2019
+1998,30,"(25,30]",HS,198.85273333333333,25.872790960451983,7.685785953177255,7253.426085101133,2019
+1998,30,"(25,30]",HS,188.42326666666668,25.872790960451983,7.282680363115144,7063.776453719572,2019
+1998,30,"(25,30]",HS,189.55373333333335,25.872790960451983,7.326373626373625,7131.19077267229,2019
+1998,44,"(40,45]",NoHS,13.693233333333334,92.40282485875707,0.14819063545150502,7084.522058342247,2019
+1998,44,"(40,45]",NoHS,13.693233333333334,92.40282485875707,0.14819063545150502,7181.423531850547,2019
+1998,44,"(40,45]",NoHS,15.516566666666668,92.40282485875707,0.16792307692307692,7476.045329312692,2019
+1998,44,"(40,45]",NoHS,13.693233333333334,92.40282485875707,0.14819063545150502,7120.0023080945075,2019
+1998,44,"(40,45]",NoHS,13.693233333333334,92.40282485875707,0.14819063545150502,7385.543612665152,2019
+1998,53,"(50,55]",College,329008.3748333333,11605.794802259887,28.34862932173061,1.3235907156682845,2019
+1998,53,"(50,55]",College,252266.50841666665,10090.388474576272,25.00067356695701,1.2657718272995417,2019
+1998,53,"(50,55]",College,299971.48153333337,17889.18689265537,16.768312798861217,1.2357277385891337,2019
+1998,53,"(50,55]",College,42765.46283333334,10182.791299435026,4.199777995617577,1.0518307050733446,2019
+1998,53,"(50,55]",College,315750.1523666667,11162.261242937851,28.287292824868775,1.1580866309604088,2019
+1998,53,"(50,55]",HS,216.73963333333333,114.57950282485875,1.8916091271981876,6200.332730872013,2019
+1998,53,"(50,55]",HS,54.280633333333334,114.57950282485875,0.4737377279102385,6205.865672097558,2019
+1998,53,"(50,55]",HS,60.13353333333333,114.57950282485875,0.5248192901068076,6201.550115480708,2019
+1998,53,"(50,55]",HS,172.99786666666668,114.57950282485875,1.5098500377602764,6185.255521725643,2019
+1998,53,"(50,55]",HS,80.00786666666667,114.57950282485875,0.6982738159456253,6262.3830482906715,2019
+1998,44,"(40,45]",College,249.24966666666666,140.45229378531073,1.7746215455025522,1957.4913485897073,2019
+1998,44,"(40,45]",College,240.31533333333334,140.45229378531073,1.7110103854955114,1802.7190549821557,2019
+1998,44,"(40,45]",College,229.37533333333334,160.78091525423727,1.4266328374274404,1823.9607310110648,2019
+1998,44,"(40,45]",College,245.603,140.45229378531073,1.7486578067241685,2016.9383381898238,2019
+1998,44,"(40,45]",College,221.89966666666666,142.30035028248585,1.5593754072014945,2033.0442608533772,2019
+1998,59,"(55,60]",College,485.5536666666667,184.80564971751414,2.627374581939799,8198.114700126109,2019
+1998,59,"(55,60]",College,553.564,184.80564971751414,2.995384615384615,7815.70669919313,2019
+1998,59,"(55,60]",College,483.7303333333333,184.80564971751414,2.617508361204013,7316.662614669482,2019
+1998,59,"(55,60]",College,430.3066666666667,184.80564971751414,2.328428093645485,9708.968379959942,2019
+1998,59,"(55,60]",College,416.9963333333333,184.80564971751414,2.256404682274247,10233.00076896412,2019
+1998,49,"(45,50]",College,214.78866666666667,110.88338983050849,1.9370680044593085,6211.118498161358,2019
+1998,49,"(45,50]",College,214.78866666666667,109.03533333333333,1.9698996655518397,6332.4313441276445,2019
+1998,49,"(45,50]",College,214.78866666666667,110.88338983050849,1.9370680044593085,6560.229947853154,2019
+1998,49,"(45,50]",College,214.78866666666667,109.03533333333333,1.9698996655518397,6229.347781154857,2019
+1998,49,"(45,50]",College,214.78866666666667,110.88338983050849,1.9370680044593085,6541.644030022288,2019
+1998,33,"(30,35]",HS,5.652333333333333,46.201412429378536,0.1223411371237458,4408.244404680836,2019
+1998,33,"(30,35]",HS,6.472833333333333,46.201412429378536,0.1401003344481605,4379.981709653787,2019
+1998,33,"(30,35]",HS,4.011333333333334,46.201412429378536,0.08682274247491639,4357.442295425537,2019
+1998,33,"(30,35]",HS,6.144633333333333,46.201412429378536,0.13299665551839462,4425.944014319606,2019
+1998,33,"(30,35]",HS,3.6466666666666665,46.201412429378536,0.07892976588628761,4368.972892453659,2019
+1998,72,"(70,75]",College,21471.573333333334,1478.4451977401131,14.523076923076921,12.827327900564516,2019
+1998,72,"(70,75]",College,18849.62,1478.4451977401131,12.749623745819395,13.939333164601404,2019
+1998,72,"(70,75]",College,18765.74666666667,1478.4451977401131,12.69289297658863,13.902246643795191,2019
+1998,72,"(70,75]",College,24131.81666666667,1478.4451977401131,16.322428929765888,12.711287252851669,2019
+1998,72,"(70,75]",College,18565.18,1478.4451977401131,12.557232441471571,13.739997953806727,2019
+1998,35,"(30,35]",College,15.4801,36.96112994350283,0.41882107023411363,5049.473196933522,2019
+1998,35,"(30,35]",College,19.564366666666665,35.11307344632768,0.5571818341841225,5074.7626741439735,2019
+1998,35,"(30,35]",College,21.752366666666667,27.720847457627123,0.7846934225195094,5094.534591323209,2019
+1998,35,"(30,35]",College,19.710233333333335,22.176677966101696,0.8887820512820513,5048.529459070414,2019
+1998,35,"(30,35]",College,15.243066666666667,29.56890395480226,0.515510033444816,5101.927451164765,2019
+1998,41,"(40,45]",College,2405.8883333333333,929.5724180790961,2.588166652260351,1129.4226313595414,2019
+1998,41,"(40,45]",College,2407.7116666666666,929.5724180790961,2.5901281275557357,1144.6399240143814,2019
+1998,41,"(40,45]",College,2356.8406666666665,929.5724180790961,2.5354029668144973,1092.4338328872145,2019
+1998,41,"(40,45]",College,2385.8316666666665,929.5724180790961,2.566590424011117,1188.3408044753521,2019
+1998,41,"(40,45]",College,2409.535,929.5724180790961,2.5920896028511202,1118.114413618539,2019
+1998,32,"(30,35]",HS,296.1093333333333,157.08480225988703,1.8850285264607511,7416.956697020551,2019
+1998,32,"(30,35]",HS,296.1093333333333,157.08480225988703,1.8850285264607511,7097.595647513075,2019
+1998,32,"(30,35]",HS,294.286,157.08480225988703,1.8734212079480619,6620.976066703994,2019
+1998,32,"(30,35]",HS,294.286,157.08480225988703,1.8734212079480619,7242.423902483903,2019
+1998,32,"(30,35]",HS,294.1036666666667,157.08480225988703,1.8722604760967931,6606.85987115354,2019
+1998,21,"(20,25]",College,649.836,85.0105988700565,7.6441762396393775,63.67627104936095,2019
+1998,21,"(20,25]",College,631.6026666666667,85.0105988700565,7.42969318016577,64.1157261002835,2019
+1998,21,"(20,25]",College,628.8676666666667,85.0105988700565,7.397520721244729,69.21439658241817,2019
+1998,21,"(20,25]",College,755.5893333333333,85.0105988700565,8.888177984586303,64.43680175773298,2019
+1998,21,"(20,25]",College,628.8676666666667,85.0105988700565,7.397520721244729,72.21444825205381,2019
+1998,28,"(25,30]",HS,289.8188333333333,109.03533333333333,2.658026755852843,7423.135833809296,2019
+1998,28,"(25,30]",HS,113.64836666666667,94.25088135593221,1.2058069381598793,8625.14413382309,2019
+1998,28,"(25,30]",HS,159.86986666666667,133.06006779661018,1.201486436269045,8769.886006119747,2019
+1998,28,"(25,30]",HS,116.511,110.88338983050849,1.0507525083612037,8641.673063002276,2019
+1998,28,"(25,30]",HS,116.1828,101.64310734463277,1.1430465186986927,8731.57448691752,2019
+1998,26,"(25,30]",College,-247.4628,25.872790960451983,-9.564596273291922,1312.1075035635533,2019
+1998,26,"(25,30]",College,-248.88500000000002,48.04946892655367,-5.179765886287626,1310.6972705048895,2019
+1998,26,"(25,30]",College,-232.83966666666666,46.201412429378536,-5.039665551839464,1311.9556955992289,2019
+1998,26,"(25,30]",College,-239.76833333333335,59.13780790960452,-4.05440008361204,1261.8612883515702,2019
+1998,26,"(25,30]",College,-239.76833333333335,66.53003389830509,-3.603911185432924,1344.7456302975759,2019
+1998,33,"(30,35]",HS,3.847233333333333,25.872790960451983,0.1486980410893454,5070.268768679586,2019
+1998,33,"(30,35]",HS,3.6649000000000003,25.872790960451983,0.14165074056378402,5085.280377269328,2019
+1998,33,"(30,35]",HS,3.6649000000000003,25.872790960451983,0.14165074056378402,5085.533743458631,2019
+1998,33,"(30,35]",HS,3.847233333333333,25.872790960451983,0.1486980410893454,5110.847159641471,2019
+1998,33,"(30,35]",HS,3.847233333333333,25.872790960451983,0.1486980410893454,5091.45038479434,2019
+1998,68,"(65,70]",NoHS,4.34865,18.480564971751416,0.23530936454849494,5672.765333697753,2019
+1998,68,"(65,70]",NoHS,4.503633333333333,59.13780790960452,0.07615489130434783,5927.251229160126,2019
+1998,68,"(65,70]",NoHS,4.521866666666667,48.04946892655367,0.09410856701826602,5866.496556986784,2019
+1998,68,"(65,70]",NoHS,4.29395,20.328621468926556,0.21122681666159923,5822.384152950571,2019
+1998,68,"(65,70]",NoHS,4.448933333333334,24.024734463276836,0.18518137381013636,5828.662127747036,2019
+1998,32,"(30,35]",College,53.3325,64.68197740112994,0.8245341614906833,7867.622867394656,2019
+1998,32,"(30,35]",College,55.1923,64.68197740112994,0.8532871476349738,7921.100461657722,2019
+1998,32,"(30,35]",College,54.37180000000001,64.68197740112994,0.8406020066889633,8106.029351852696,2019
+1998,32,"(30,35]",College,53.69716666666667,64.68197740112994,0.8301720019111324,7864.422793225999,2019
+1998,32,"(30,35]",College,53.89773333333333,64.68197740112994,0.8332728141423793,8096.470544006715,2019
+1998,87,"(85,90]",NoHS,0,9.240282485875708,0,5861.913791304226,2019
+1998,87,"(85,90]",NoHS,0,9.240282485875708,0,5882.496115366007,2019
+1998,87,"(85,90]",NoHS,0,9.240282485875708,0,5916.620904662449,2019
+1998,87,"(85,90]",NoHS,0,9.240282485875708,0,5827.648384051405,2019
+1998,87,"(85,90]",NoHS,0,9.240282485875708,0,5907.245487989337,2019
+1998,34,"(30,35]",College,8871.391866666667,1132.8586327683615,7.830978738262943,24.53020817016796,2019
+1998,34,"(30,35]",College,11059.428333333333,1132.8586327683615,9.76240813587434,26.43676998248344,2019
+1998,34,"(30,35]",College,7412.706966666667,1132.8586327683615,6.543364504847589,25.88029422940003,2019
+1998,34,"(30,35]",College,6537.561666666667,1132.8586327683615,5.770853906714607,26.719125504811366,2019
+1998,34,"(30,35]",College,7414.585,1132.8586327683615,6.545022287450829,27.97163603202594,2019
+1998,54,"(50,55]",HS,96.63666666666667,88.70671186440678,1.0893952062430323,6559.155310454434,2019
+1998,54,"(50,55]",HS,96.63666666666667,86.85865536723163,1.1125738276524586,6687.265858994391,2019
+1998,54,"(50,55]",HS,118.51666666666668,88.70671186440678,1.3360507246376812,6927.82903964899,2019
+1998,54,"(50,55]",HS,129.45666666666668,88.70671186440678,1.4593784838350057,6578.406061891235,2019
+1998,54,"(50,55]",HS,120.34,86.85865536723163,1.3854692948124956,6908.201669526183,2019
+1998,24,"(20,25]",HS,0,70.22614689265536,0,5965.228316244094,2019
+1998,24,"(20,25]",HS,0,70.22614689265536,0,5963.089380996636,2019
+1998,24,"(20,25]",HS,0,70.22614689265536,0,5977.423616830768,2019
+1998,24,"(20,25]",HS,0,70.22614689265536,0,5958.422171756949,2019
+1998,24,"(20,25]",HS,0,70.22614689265536,0,5974.960177484181,2019
+1998,52,"(50,55]",College,148.96633333333335,129.36395480225988,1.1515289058767322,7835.529994654896,2019
+1998,52,"(50,55]",College,149.14866666666666,129.36395480225988,1.1529383659818442,7937.831975963054,2019
+1998,52,"(50,55]",College,147.32533333333333,129.36395480225988,1.1388437649307215,8227.083222603564,2019
+1998,52,"(50,55]",College,147.143,129.36395480225988,1.1374343048256093,7828.745378838673,2019
+1998,52,"(50,55]",College,149.14866666666666,129.36395480225988,1.1529383659818442,8189.060784508499,2019
+1998,52,"(50,55]",HS,172.01326666666665,197.7420451977401,0.8698871628168662,5800.525027972513,2019
+1998,52,"(50,55]",HS,164.66523333333333,116.4275593220339,1.414314912140999,5909.328311696911,2019
+1998,52,"(50,55]",HS,168.29366666666667,166.32508474576272,1.0118357487922705,6163.8459985788295,2019
+1998,52,"(50,55]",HS,177.6109,59.13780790960452,3.0033392558528424,5784.491250033539,2019
+1998,52,"(50,55]",HS,188.11329999999998,88.70671186440678,2.120620819397993,6069.317751099743,2019
+1998,71,"(70,75]",College,15356.988533333333,790.9681807909604,19.415431500640764,186.39066253227105,2019
+1998,71,"(70,75]",College,17902.39833333333,1435.9398983050849,12.467373010851269,186.18460392767727,2019
+1998,71,"(70,75]",College,18000.366033333336,497.127197740113,36.20877335853092,179.83633704493724,2019
+1998,71,"(70,75]",College,28769.465,1201.2367231638418,23.9498713660921,176.10747682354042,2019
+1998,71,"(70,75]",College,33021.514800000004,1047.8480338983052,31.51364867017041,171.1655300389893,2019
+1998,36,"(35,40]",HS,6857.337866666667,138.6042372881356,49.474229654403565,3367.3833616380807,2019
+1998,36,"(35,40]",HS,6802.637866666666,138.6042372881356,49.07958082497212,3623.8764854168826,2019
+1998,36,"(35,40]",HS,6884.687866666666,138.6042372881356,49.67155406911928,3484.9668742741787,2019
+1998,36,"(35,40]",HS,6720.587866666667,138.6042372881356,48.48760758082497,4087.8618361036074,2019
+1998,36,"(35,40]",HS,6948.504533333334,138.6042372881356,50.13197770345596,3268.9642418434514,2019
+1998,45,"(40,45]",College,13686.487000000001,1940.4593220338984,7.053220258002867,15.06957697943885,2019
+1998,45,"(40,45]",College,17307.80933333333,2476.395706214689,6.989112963610043,16.374593874586886,2019
+1998,45,"(40,45]",College,20488.979,2032.8621468926553,10.07888263910003,19.231014675757358,2019
+1998,45,"(40,45]",College,19891.47266666667,2476.395706214689,8.032428992162933,17.470801434443565,2019
+1998,45,"(40,45]",College,13886.506666666666,2254.628926553672,6.159109600307035,17.335727226598518,2019
+1998,26,"(25,30]",HS,9.809533333333333,2.772084745762712,3.538684503901895,6154.893827208436,2019
+1998,26,"(25,30]",HS,9.809533333333333,2.772084745762712,3.538684503901895,6082.939271364181,2019
+1998,26,"(25,30]",HS,11.632866666666667,2.772084745762712,4.196432552954292,6305.742765887992,2019
+1998,26,"(25,30]",HS,9.809533333333333,2.772084745762712,3.538684503901895,6239.034883909724,2019
+1998,26,"(25,30]",HS,11.632866666666667,2.772084745762712,4.196432552954292,6353.916229034295,2019
+1998,48,"(45,50]",HS,523.8436666666666,101.64310734463277,5.153754940711463,283.51189449107085,2019
+1998,48,"(45,50]",HS,521.6556666666667,101.64310734463277,5.132228640924293,270.71030658015854,2019
+1998,48,"(45,50]",HS,523.8436666666666,101.64310734463277,5.153754940711463,276.36843089029105,2019
+1998,48,"(45,50]",HS,521.6556666666667,101.64310734463277,5.132228640924293,280.8505453899511,2019
+1998,48,"(45,50]",HS,527.1256666666667,101.64310734463277,5.186044390392217,282.6644873742854,2019
+1998,58,"(55,60]",College,835.9983333333333,118.27561581920904,7.068222198996656,6160.140294819429,2019
+1998,58,"(55,60]",College,989.1583333333334,112.73144632768363,8.774466801908,5873.373275483873,2019
+1998,58,"(55,60]",College,722.9516666666666,127.51589830508476,5.669502205419028,5498.116964974228,2019
+1998,58,"(55,60]",College,699.2483333333333,131.21201129943503,5.32914880587875,6015.588951680486,2019
+1998,58,"(55,60]",College,806.825,116.4275593220339,6.929845516802039,5483.8913814998205,2019
+1998,60,"(55,60]",HS,8407.754666666666,511.91164971751414,16.424229984424613,1939.3593389916168,2019
+1998,60,"(55,60]",HS,11692.125,511.91164971751414,22.840122912717483,1985.5419898883763,2019
+1998,60,"(55,60]",HS,8163.0633333333335,511.91164971751414,15.946234741557296,1862.3483259632321,2019
+1998,60,"(55,60]",HS,8825.298,511.91164971751414,17.239885056083455,2031.2838653024014,2019
+1998,60,"(55,60]",HS,10782.281666666666,511.91164971751414,21.06277845526001,1921.595858383292,2019
+1998,25,"(20,25]",HS,-11.669333333333334,44.35335593220339,-0.2630992196209588,4832.468148296067,2019
+1998,25,"(20,25]",HS,-11.669333333333334,44.35335593220339,-0.2630992196209588,4895.42731947985,2019
+1998,25,"(20,25]",HS,-11.669333333333334,44.35335593220339,-0.2630992196209588,4878.21153877854,2019
+1998,25,"(20,25]",HS,-11.669333333333334,44.35335593220339,-0.2630992196209588,4823.043006733076,2019
+1998,25,"(20,25]",HS,-11.669333333333334,44.35335593220339,-0.2630992196209588,4905.314926559952,2019
+1998,44,"(40,45]",HS,177.95733333333334,221.76677966101698,0.8024526198439241,7265.598366205666,2019
+1998,44,"(40,45]",HS,225.45516666666666,85.0105988700565,2.6520830303911587,7412.943168385316,2019
+1998,44,"(40,45]",HS,397.70546666666667,173.71731073446327,2.2893830498825873,5154.884606570659,2019
+1998,44,"(40,45]",HS,180.54646666666667,129.36395480225988,1.3956473960821787,7264.269491120632,2019
+1998,44,"(40,45]",HS,264.4745,105.33922033898305,2.5106935398697408,5139.086651002324,2019
+1998,65,"(60,65]",College,108526.07633333333,3418.9045197740115,31.74293862424297,17.65514345863118,2019
+1998,65,"(60,65]",College,116043.49733333333,3474.3462146892657,33.40009606489717,18.212895568678366,2019
+1998,65,"(60,65]",College,109223.86600000001,3751.554689265537,29.114293951925138,19.6756376232697,2019
+1998,65,"(60,65]",College,108972.793,3418.9045197740115,31.873599385338515,18.30449983333552,2019
+1998,65,"(60,65]",College,108804.864,3418.9045197740115,31.82448160535117,19.64463151203668,2019
+1998,84,"(80,85]",NoHS,-4.631266666666667,20.328621468926556,-0.22782000608087563,5700.897220660703,2019
+1998,84,"(80,85]",NoHS,-4.467166666666667,22.176677966101696,-0.20143534002229657,5795.186912419155,2019
+1998,84,"(80,85]",NoHS,-4.6495,20.328621468926556,-0.22871693523867434,5854.199741859922,2019
+1998,84,"(80,85]",NoHS,-4.6495,20.328621468926556,-0.22871693523867434,5886.121700631111,2019
+1998,84,"(80,85]",NoHS,-4.6495,20.328621468926556,-0.22871693523867434,5875.8759281114635,2019
+1998,47,"(45,50]",HS,172.0315,48.04946892655367,3.5802997170054027,6284.748020883595,2019
+1998,47,"(45,50]",HS,173.85483333333335,48.04946892655367,3.6182467198353487,6366.802735114477,2019
+1998,47,"(45,50]",HS,173.85483333333335,48.04946892655367,3.6182467198353487,6598.806339350837,2019
+1998,47,"(45,50]",HS,173.85483333333335,48.04946892655367,3.6182467198353487,6279.306193610575,2019
+1998,47,"(45,50]",HS,173.85483333333335,48.04946892655367,3.6182467198353487,6568.309175441042,2019
+1998,76,"(75,80]",NoHS,0,16.07809152542373,0,6338.058289391634,2019
+1998,76,"(75,80]",NoHS,0,16.07809152542373,0,6479.145836595784,2019
+1998,76,"(75,80]",NoHS,0,16.07809152542373,0,6586.99775232292,2019
+1998,76,"(75,80]",NoHS,0,15.893285875706214,0,6531.551077472067,2019
+1998,76,"(75,80]",NoHS,0,16.07809152542373,0,6540.221954911356,2019
+1998,54,"(50,55]",College,4872.493666666667,739.2225988700566,6.591375418060201,15.06957697943885,2019
+1998,54,"(50,55]",College,4870.123333333333,739.2225988700566,6.588168896321069,16.374593874586886,2019
+1998,54,"(50,55]",College,4871.035,739.2225988700566,6.589402173913043,16.036024128605952,2019
+1998,54,"(50,55]",College,4861.006666666667,739.2225988700566,6.575836120401338,16.329318955791138,2019
+1998,54,"(50,55]",College,4871.035,739.2225988700566,6.589402173913043,17.335727226598518,2019
+1998,51,"(50,55]",HS,45.583333333333336,48.04946892655367,0.9486750707486494,6399.0161651591325,2019
+1998,51,"(50,55]",HS,45.583333333333336,48.04946892655367,0.9486750707486494,6482.562783264771,2019
+1998,51,"(50,55]",HS,45.583333333333336,48.04946892655367,0.9486750707486494,6718.784634793342,2019
+1998,51,"(50,55]",HS,45.583333333333336,46.201412429378536,0.9866220735785952,6393.47539557341,2019
+1998,51,"(50,55]",HS,45.583333333333336,46.201412429378536,0.9866220735785952,6687.732977001843,2019
+1998,77,"(75,80]",College,1034.5593333333334,92.40282485875707,11.196187290969899,7624.05349426443,2019
+1998,77,"(75,80]",College,2347.3593333333333,109.03533333333333,21.528428093645488,3932.28693044737,2019
+1998,77,"(75,80]",College,2365.5926666666664,101.64310734463277,23.273517786561264,3668.6935210645606,2019
+1998,77,"(75,80]",College,1871.4693333333332,97.9469943502825,19.106960307944718,3625.637271600951,2019
+1998,77,"(75,80]",College,683.75,103.49116384180793,6.606844242713806,6806.591390318152,2019
+1998,47,"(45,50]",HS,40.040400000000005,99.79505084745762,0.4012263099219622,5318.700837003908,2019
+1998,47,"(45,50]",HS,37.37833333333334,99.79505084745762,0.3745509723770594,5341.418668016119,2019
+1998,47,"(45,50]",HS,39.712199999999996,99.79505084745762,0.39793756967670013,5304.359349631138,2019
+1998,47,"(45,50]",HS,39.4934,99.79505084745762,0.3957450761798588,5334.289590345453,2019
+1998,47,"(45,50]",HS,40.131566666666664,99.79505084745762,0.40213984887897936,5335.208683777508,2019
+1998,70,"(65,70]",College,169907.86366666667,3917.8797740112996,43.367299015586546,24.138170005778257,2019
+1998,70,"(65,70]",College,170042.24333333335,3696.1129943502824,46.00569397993311,24.904159637331603,2019
+1998,70,"(65,70]",College,168567.34900000002,4324.452203389831,38.98004673698654,27.033696461809864,2019
+1998,70,"(65,70]",College,160324.606,3714.593559322034,43.16073977936405,24.73838124127179,2019
+1998,70,"(65,70]",College,167614.65733333334,4324.452203389831,38.75974330389046,26.89246887516341,2019
+1998,43,"(40,45]",HS,748.843,73.92225988700567,10.130142140468225,299.42797957189265,2019
+1998,43,"(40,45]",HS,748.843,73.92225988700567,10.130142140468225,286.3844776949069,2019
+1998,43,"(40,45]",HS,748.843,73.92225988700567,10.130142140468225,295.7127523749736,2019
+1998,43,"(40,45]",HS,748.843,73.92225988700567,10.130142140468225,297.51535171969726,2019
+1998,43,"(40,45]",HS,748.843,73.92225988700567,10.130142140468225,296.0885720192367,2019
+1998,42,"(40,45]",HS,149.14866666666666,166.32508474576272,0.896729840208101,7527.304670853448,2019
+1998,42,"(40,45]",HS,150.60733333333334,166.32508474576272,0.9054998141954663,7630.2624862353205,2019
+1998,42,"(40,45]",HS,150.78966666666665,166.32508474576272,0.9065960609438869,7943.298145367839,2019
+1998,42,"(40,45]",HS,149.14866666666666,166.32508474576272,0.896729840208101,7565.00243613442,2019
+1998,42,"(40,45]",HS,149.14866666666666,166.32508474576272,0.896729840208101,7847.140071635949,2019
+1998,77,"(75,80]",College,171.39333333333335,57.289751412429375,2.9916927392383217,9781.857635673969,2019
+1998,77,"(75,80]",College,169.38766666666666,55.441694915254246,3.055239687848383,9922.45021300499,2019
+1998,77,"(75,80]",College,166.10566666666665,57.289751412429375,2.8993958355809686,10302.867152058509,2019
+1998,77,"(75,80]",College,167.382,55.441694915254246,3.0190635451505012,9904.790686638129,2019
+1998,77,"(75,80]",College,166.65266666666665,55.441694915254246,3.005908584169453,10316.31368973723,2019
+1998,52,"(50,55]",HS,3005.493323333333,184.80564971751414,16.26299481605351,2842.939395699347,2019
+1998,52,"(50,55]",HS,3008.97589,184.80564971751414,16.281839297658863,2934.2739185047135,2019
+1998,52,"(50,55]",HS,3004.3975,184.80564971751414,16.257065217391304,2772.819244001933,2019
+1998,52,"(50,55]",HS,3010.4345566666666,184.80564971751414,16.28973227424749,3026.685042482587,2019
+1998,52,"(50,55]",HS,3004.926266666667,184.80564971751414,16.259926421404682,2792.840805853901,2019
+1998,56,"(55,60]",College,98818.10266666667,11753.6393220339,8.40744725605267,17.268444467120176,2019
+1998,56,"(55,60]",College,98533.82676666667,11568.833672316383,8.517178961821621,17.91468756555343,2019
+1998,56,"(55,60]",College,99237.834,11347.066892655368,8.745681587920647,15.830599937145305,2019
+1998,56,"(55,60]",College,99170.37066666667,12326.536836158193,8.045274352790159,15.204111176697074,2019
+1998,56,"(55,60]",College,99216.6651,11310.105762711866,8.77239056659453,15.429581264837443,2019
+1998,60,"(55,60]",HS,296.2916666666667,44.35335593220339,6.680253623188406,9109.351226641444,2019
+1998,60,"(55,60]",HS,309.055,44.35335593220339,6.968018394648829,9082.313895654837,2019
+1998,60,"(55,60]",HS,319.995,44.35335593220339,7.214673913043478,9558.313109285566,2019
+1998,60,"(55,60]",HS,323.6416666666667,46.201412429378536,7.005016722408027,8955.315605226544,2019
+1998,60,"(55,60]",HS,334.5816666666667,44.35335593220339,7.543547937569677,9475.741826458176,2019
+1998,56,"(55,60]",HS,140.67016666666666,107.18727683615819,1.312377465113597,9352.107494243257,2019
+1998,56,"(55,60]",HS,140.67016666666666,107.18727683615819,1.312377465113597,9325.469364126408,2019
+1998,56,"(55,60]",HS,138.84683333333334,109.03533333333333,1.2734113712374584,9877.578927373057,2019
+1998,56,"(55,60]",HS,138.84683333333334,109.03533333333333,1.2734113712374584,9111.816171402035,2019
+1998,56,"(55,60]",HS,138.84683333333334,107.18727683615819,1.2953667397070696,9823.61714741003,2019
+1998,86,"(85,90]",HS,180.60116666666667,24.024734463276836,7.517301260612298,7778.0252976572765,2019
+1998,86,"(85,90]",HS,180.14533333333335,24.024734463276836,7.498327759197325,7772.504186178616,2019
+1998,86,"(85,90]",HS,217.34133333333335,24.024734463276836,9.04656547465912,7765.723418302671,2019
+1998,86,"(85,90]",HS,188.35033333333334,24.024734463276836,7.839850784666838,7449.829934722018,2019
+1998,86,"(85,90]",HS,208.58933333333334,24.024734463276836,8.68227424749164,7789.830346762744,2019
+1998,50,"(45,50]",HS,-0.547,42.50529943502825,-0.012868983568416462,5526.02650046865,2019
+1998,50,"(45,50]",HS,0,40.65724293785311,0,5549.6298840869285,2019
+1998,50,"(45,50]",HS,1.2763333333333333,42.50529943502825,0.030027628326305074,5511.12597462469,2019
+1998,50,"(45,50]",HS,2.005666666666667,40.65724293785311,0.04933110367892977,5542.222911343148,2019
+1998,50,"(45,50]",HS,2.005666666666667,40.65724293785311,0.04933110367892977,5543.177831504589,2019
+1998,70,"(65,70]",College,2018.7399666666665,114.57950282485875,17.618683245226023,11416.092591854427,2019
+1998,70,"(65,70]",College,2611.3233,116.4275593220339,22.428738652651695,11996.381733163431,2019
+1998,70,"(65,70]",College,1610.1309666666666,114.57950282485875,14.052521847016939,11563.862010738283,2019
+1998,70,"(65,70]",College,2292.0758666666666,116.4275593220339,19.68671232149493,11849.545150295664,2019
+1998,70,"(65,70]",College,2612.9643,114.57950282485875,22.80481443521416,11289.147238875019,2019
+1998,46,"(45,50]",HS,54.08006666666667,92.40282485875707,0.5852642140468227,6560.109690621264,2019
+1998,46,"(45,50]",HS,54.08006666666667,92.40282485875707,0.5852642140468227,6685.048421739344,2019
+1998,46,"(45,50]",HS,54.0983,92.40282485875707,0.5854615384615384,6912.207987979656,2019
+1998,46,"(45,50]",HS,53.91596666666667,92.40282485875707,0.5834882943143812,6524.593971893491,2019
+1998,46,"(45,50]",HS,53.91596666666667,92.40282485875707,0.5834882943143812,6883.1208403184455,2019
+1998,42,"(40,45]",College,1228.5620000000001,205.13427118644066,5.989062641236555,2220.0161049947783,2019
+1998,42,"(40,45]",College,718.0286666666666,205.13427118644066,3.500286239416674,4502.647218129116,2019
+1998,42,"(40,45]",College,716.2053333333334,205.13427118644066,3.4913977522673183,4203.536466005588,2019
+1998,42,"(40,45]",College,734.4386666666667,205.13427118644066,3.580282623760885,4595.567752347149,2019
+1998,42,"(40,45]",College,694.3253333333333,205.13427118644066,3.3847359064750373,4190.148122201981,2019
+1998,73,"(70,75]",HS,349.2595,36.96112994350283,9.449372909698994,6500.954872636321,2019
+1998,73,"(70,75]",HS,353.2708333333333,36.96112994350283,9.55790133779264,6485.558806286879,2019
+1998,73,"(70,75]",HS,409.6118333333333,36.96112994350283,11.08223244147157,6930.532565859222,2019
+1998,73,"(70,75]",HS,350.5358333333333,36.96112994350283,9.483904682274245,6686.177734545422,2019
+1998,73,"(70,75]",HS,348.3478333333333,36.96112994350283,9.424707357859528,6807.321188045362,2019
+1998,38,"(35,40]",HS,6.709866666666667,33.265016949152546,0.2017094017094017,6187.945442511866,2019
+1998,38,"(35,40]",HS,6.709866666666667,25.872790960451983,0.2593406593406593,6178.696193755679,2019
+1998,38,"(35,40]",HS,6.764566666666667,33.265016949152546,0.20335377183203268,6165.750867238383,2019
+1998,38,"(35,40]",HS,6.801033333333334,40.65724293785311,0.16727728792946184,6218.910642615567,2019
+1998,38,"(35,40]",HS,6.691633333333334,24.024734463276836,0.2785310007718035,6143.9424847432065,2019
+1998,73,"(70,75]",NoHS,0,22.176677966101696,0,4769.053900325534,2019
+1998,73,"(70,75]",NoHS,0,10.349116384180792,0,4805.042652306602,2019
+1998,73,"(70,75]",NoHS,0,11.827561581920904,0,4834.341117703859,2019
+1998,73,"(70,75]",NoHS,0,14.78445197740113,0,4781.90624640675,2019
+1998,73,"(70,75]",NoHS,0,8.870671186440678,0,4826.660784452735,2019
+1998,46,"(45,50]",HS,209.501,92.40282485875707,2.267257525083612,5854.90004354296,2019
+1998,46,"(45,50]",HS,199.67323333333334,92.40282485875707,2.1608996655518395,5845.351207606407,2019
+1998,46,"(45,50]",HS,197.83166666666665,92.40282485875707,2.1409698996655515,5818.602334461122,2019
+1998,46,"(45,50]",HS,211.88045000000002,92.40282485875707,2.2930083612040133,5898.9119367924295,2019
+1998,46,"(45,50]",HS,193.2551,92.40282485875707,2.091441471571906,5850.012009913435,2019
+1998,26,"(25,30]",College,-17.540466666666667,51.745581920903966,-0.33897515527950306,6626.465501810747,2019
+1998,26,"(25,30]",College,-15.735366666666668,51.745581920903966,-0.30409101767797414,6627.978817172354,2019
+1998,26,"(25,30]",College,-15.717133333333333,51.745581920903966,-0.3037386526516961,6831.204462643467,2019
+1998,26,"(25,30]",College,-15.735366666666668,49.89752542372881,-0.31535364796234366,6653.457227457264,2019
+1998,26,"(25,30]",College,-19.3638,49.89752542372881,-0.3880713489409142,6897.188647179399,2019
+1998,42,"(40,45]",College,751.9426666666667,231.00706214689265,3.255063545150502,5759.139592798397,2019
+1998,42,"(40,45]",College,788.5005,360.3710169491526,2.1880241831746847,5509.978664203908,2019
+1998,42,"(40,45]",College,518.7565666666667,284.6007005649717,1.8227522477522482,5145.140019560696,2019
+1998,42,"(40,45]",College,539.889,428.74910734463276,1.2592189482181986,5624.580911160702,2019
+1998,42,"(40,45]",College,540.6183333333333,258.72790960451977,2.0895246058289536,5129.3719278136405,2019
+1998,24,"(20,25]",HS,16.719966666666668,46.201412429378536,0.36189297658862873,4316.076020848881,2019
+1998,24,"(20,25]",HS,16.5194,46.201412429378536,0.35755183946488295,4327.044116834711,2019
+1998,24,"(20,25]",HS,16.537633333333336,46.201412429378536,0.3579464882943144,4334.077588397974,2019
+1998,24,"(20,25]",HS,16.719966666666668,46.201412429378536,0.36189297658862873,4350.748348025105,2019
+1998,24,"(20,25]",HS,16.719966666666668,46.201412429378536,0.36189297658862873,4304.337705049259,2019
+1998,49,"(45,50]",College,503.22176666666667,199.59010169491523,2.52127616747182,680.6857598173613,2019
+1998,49,"(45,50]",College,216.63023333333334,51.745581920903966,4.186448877209746,269.99550074062506,2019
+1998,49,"(45,50]",College,216.41143333333332,46.201412429378536,4.684086956521738,251.27766353366815,2019
+1998,49,"(45,50]",College,171.4298,188.50176271186442,0.909433405469211,274.5525906164079,2019
+1998,49,"(45,50]",College,544.6296666666666,90.55476836158192,6.014367619957682,706.0090459165565,2019
+1998,50,"(45,50]",College,7060.787223333334,247.63957062146892,28.51235449009135,12.548351017431266,2019
+1998,50,"(45,50]",College,7795.900523333334,303.08126553672315,25.722145872420263,13.550006173366151,2019
+1998,50,"(45,50]",College,11635.568846666665,343.7385084745763,33.850059157766026,13.1235344795162,2019
+1998,50,"(45,50]",College,10155.111523333333,500.82331073446335,20.276834775203938,13.379828003941384,2019
+1998,50,"(45,50]",College,14718.16729,232.8551186440678,63.20740285077241,14.392929622187243,2019
+1998,42,"(40,45]",HS,485.91833333333335,116.4275593220339,4.173567977915804,610.8875054360235,2019
+1998,42,"(40,45]",HS,386.5466666666667,114.57950282485875,3.3736109612687457,277.7642457383363,2019
+1998,42,"(40,45]",HS,384.9056666666667,114.57950282485875,3.359289027942605,255.0462838566695,2019
+1998,42,"(40,45]",HS,389.6463333333333,114.57950282485875,3.4006635019959,252.65018226452509,2019
+1998,42,"(40,45]",HS,519.2853333333334,114.57950282485875,4.532096234761032,606.4667633041469,2019
+1998,41,"(40,45]",College,378.3416666666667,90.55476836158192,4.178042454439971,5419.520522824341,2019
+1998,41,"(40,45]",College,378.524,90.55476836158192,4.180055968875845,5379.616276588063,2019
+1998,41,"(40,45]",College,380.165,92.40282485875707,4.114214046822743,5381.113825054944,2019
+1998,41,"(40,45]",College,378.3416666666667,90.55476836158192,4.178042454439971,5471.546664196146,2019
+1998,41,"(40,45]",College,380.3473333333333,92.40282485875707,4.116187290969899,5359.853941441899,2019
+1998,45,"(40,45]",HS,-10.666500000000001,55.441694915254246,-0.1923913043478261,10635.328237028774,2019
+1998,45,"(40,45]",HS,-10.666500000000001,55.441694915254246,-0.1923913043478261,10552.630180859267,2019
+1998,45,"(40,45]",HS,-10.666500000000001,55.441694915254246,-0.1923913043478261,10709.481735486075,2019
+1998,45,"(40,45]",HS,-10.666500000000001,55.441694915254246,-0.1923913043478261,10679.149295951689,2019
+1998,45,"(40,45]",HS,-10.666500000000001,55.441694915254246,-0.1923913043478261,10953.593625347705,2019
+1998,33,"(30,35]",College,8135.713333333333,1062.6324858757062,7.6561872909699,202.69268220041621,2019
+1998,33,"(30,35]",College,8137.536666666667,1062.6324858757062,7.657903155445689,207.07336556206943,2019
+1998,33,"(30,35]",College,8139.360000000001,1062.6324858757062,7.659619019921478,198.35417101066673,2019
+1998,33,"(30,35]",College,8137.536666666667,1062.6324858757062,7.657903155445689,215.89917605773985,2019
+1998,33,"(30,35]",College,8139.360000000001,1062.6324858757062,7.659619019921478,198.8930204102648,2019
+1998,32,"(30,35]",College,480.4483333333333,127.51589830508476,3.767752411419708,6771.4067513427335,2019
+1998,32,"(30,35]",College,480.4483333333333,125.66784180790961,3.8231605351170566,6479.841941800361,2019
+1998,32,"(30,35]",College,480.4483333333333,125.66784180790961,3.8231605351170566,6044.70591780157,2019
+1998,32,"(30,35]",College,480.6306666666667,127.51589830508476,3.7691822984828653,6612.064774365719,2019
+1998,32,"(30,35]",College,480.6306666666667,127.51589830508476,3.7691822984828653,6031.818354106875,2019
+1998,58,"(55,60]",NoHS,10.429466666666668,88.70671186440678,0.11757246376811595,6648.525401338647,2019
+1998,58,"(55,60]",NoHS,9.864233333333333,88.70671186440678,0.11120052954292084,6610.248571758093,2019
+1998,58,"(55,60]",NoHS,10.037450000000002,88.70671186440678,0.11315321906354515,6973.5765832604975,2019
+1998,58,"(55,60]",NoHS,10.046566666666667,88.70671186440678,0.11325599219620959,6634.047256891861,2019
+1998,58,"(55,60]",NoHS,10.247133333333334,88.70671186440678,0.1155170011148272,6983.23215066499,2019
+1998,35,"(30,35]",NoHS,42.64776666666667,64.68197740112994,0.6593454371715242,7816.352151872043,2019
+1998,35,"(30,35]",NoHS,42.8301,64.68197740112994,0.6621643573817487,7804.668890264409,2019
+1998,35,"(30,35]",NoHS,42.64776666666667,64.68197740112994,0.6593454371715242,7788.316898844931,2019
+1998,35,"(30,35]",NoHS,42.447199999999995,64.68197740112994,0.656244624940277,7855.466088915006,2019
+1998,35,"(30,35]",NoHS,42.8301,64.68197740112994,0.6621643573817487,7760.769468275497,2019
+1998,51,"(50,55]",HS,196.90176666666667,127.51589830508476,1.5441350395036595,6729.651038795875,2019
+1998,51,"(50,55]",HS,158.64823333333334,68.37809039548021,2.320161800596584,6855.882393338662,2019
+1998,51,"(50,55]",HS,299.26370000000003,59.13780790960452,5.060446279264215,5588.292414799658,2019
+1998,51,"(50,55]",HS,272.64303333333334,147.84451977401133,1.8441199832775916,6711.048976078705,2019
+1998,51,"(50,55]",HS,190.93946666666668,44.35335593220339,4.3049609810479375,7041.498883549715,2019
+1998,75,"(70,75]",HS,88.43166666666667,25.872790960451983,3.417940754897276,7998.138519295656,2019
+1998,75,"(70,75]",HS,75.66833333333334,25.872790960451983,2.9246297181079783,8161.05761402541,2019
+1998,75,"(70,75]",HS,75.66833333333334,24.024734463276836,3.149601234885516,8453.836939892954,2019
+1998,75,"(70,75]",HS,77.49166666666667,24.024734463276836,3.225495240545408,8061.790056874095,2019
+1998,75,"(70,75]",HS,77.49166666666667,24.024734463276836,3.225495240545408,8468.387032748966,2019
+1998,42,"(40,45]",College,14500.295366666667,295.68903954802266,49.03900188127089,2606.081571132173,2019
+1998,42,"(40,45]",College,14554.557766666669,295.68903954802266,49.22251358695652,2635.2128036423833,2019
+1998,42,"(40,45]",College,14547.920833333334,295.68903954802266,49.2000679347826,2467.896574759939,2019
+1998,42,"(40,45]",College,14503.2674,295.68903954802266,49.049053093645476,2711.31837005766,2019
+1998,42,"(40,45]",College,14508.263333333334,295.68903954802266,49.065948996655514,2604.07157591729,2019
+1998,79,"(75,80]",HS,185.7065,35.11307344632768,5.288813589156839,8481.160590728565,2019
+1998,79,"(75,80]",HS,185.7065,36.96112994350283,5.024372909698996,8651.475200821315,2019
+1998,79,"(75,80]",HS,185.7065,44.35335593220339,4.186977424749164,9040.636549884846,2019
+1998,79,"(75,80]",HS,185.7065,42.50529943502825,4.369019921477388,8571.430805715148,2019
+1998,79,"(75,80]",HS,187.52983333333336,36.96112994350283,5.073704013377926,8954.994858096852,2019
+1998,45,"(40,45]",College,8130.243333333333,746.6148248587571,10.88947481704692,354.151381960544,2019
+1998,45,"(40,45]",College,8132.0666666666675,746.6148248587571,10.891916950892416,358.8968123762861,2019
+1998,45,"(40,45]",College,8132.0666666666675,746.6148248587571,10.891916950892416,393.8708294662557,2019
+1998,45,"(40,45]",College,8132.0666666666675,746.6148248587571,10.891916950892416,410.30458201984567,2019
+1998,45,"(40,45]",College,8132.0666666666675,746.6148248587571,10.891916950892416,343.6317196789311,2019
+1998,42,"(40,45]",College,2697.804,240.24734463276835,11.229277077437613,907.8094520877594,2019
+1998,42,"(40,45]",College,2695.9806666666664,240.24734463276835,11.221687676871623,993.7059381307415,2019
+1998,42,"(40,45]",College,2697.804,240.24734463276835,11.229277077437613,909.261811063621,2019
+1998,42,"(40,45]",College,2695.9806666666664,240.24734463276835,11.221687676871623,1164.1658965793797,2019
+1998,42,"(40,45]",College,2695.9806666666664,240.24734463276835,11.221687676871623,909.9758742528896,2019
+1998,45,"(40,45]",HS,203.1375666666667,110.88338983050849,1.8319927536231884,5594.689966101576,2019
+1998,45,"(40,45]",HS,256.45183333333335,96.09893785310734,2.668622974015951,5704.647965052463,2019
+1998,45,"(40,45]",HS,273.1718,123.81978531073446,2.206204762142465,5948.020892041082,2019
+1998,45,"(40,45]",HS,229.97703333333334,99.79505084745762,2.304493372971634,5560.973154903703,2019
+1998,45,"(40,45]",HS,235.84816666666666,129.36395480225988,1.823136645962733,5950.168767517856,2019
+1998,60,"(55,60]",HS,56.742133333333335,13.306006779661017,4.264399851356373,6071.134745085501,2019
+1998,60,"(55,60]",HS,56.705666666666666,33.265016949152546,1.7046636937941284,6046.504077943438,2019
+1998,60,"(55,60]",HS,56.705666666666666,14.414840677966104,3.933839293371065,6071.165530742157,2019
+1998,60,"(55,60]",HS,56.742133333333335,46.201412429378536,1.2281471571906353,6056.787882714473,2019
+1998,60,"(55,60]",HS,56.742133333333335,15.154063276836158,3.74435108899584,6070.75271763676,2019
+1998,71,"(70,75]",NoHS,634.1553333333334,46.201412429378536,13.725886287625418,5656.144605785355,2019
+1998,71,"(70,75]",NoHS,634.1553333333334,48.04946892655367,13.19796758425521,5447.73063025892,2019
+1998,71,"(70,75]",NoHS,634.1553333333334,46.201412429378536,13.725886287625418,5085.191645851928,2019
+1998,71,"(70,75]",NoHS,634.1553333333334,46.201412429378536,13.725886287625418,5562.078257073126,2019
+1998,71,"(70,75]",NoHS,634.3376666666667,46.201412429378536,13.729832775919732,5071.744689808159,2019
+1998,93,"(90,95]",HS,246.15,20.328621468926556,12.10854363028276,8019.318171037492,2019
+1998,93,"(90,95]",HS,246.15,20.328621468926556,12.10854363028276,8186.5738887591415,2019
+1998,93,"(90,95]",HS,227.91666666666666,20.328621468926556,11.211614472484035,8496.61502615099,2019
+1998,93,"(90,95]",HS,220.62333333333333,20.328621468926556,10.852842809364548,8150.990391499605,2019
+1998,93,"(90,95]",HS,231.56333333333336,20.328621468926556,11.391000304043782,8522.990841970739,2019
+1998,37,"(35,40]",HS,802.9048333333334,55.441694915254246,14.481967670011146,7256.846228352013,2019
+1998,37,"(35,40]",HS,804.9105000000001,55.441694915254246,14.51814381270903,6865.987388703492,2019
+1998,37,"(35,40]",HS,804.7281666666667,55.441694915254246,14.514855072463765,6482.320312128747,2019
+1998,37,"(35,40]",HS,802.9048333333334,55.441694915254246,14.481967670011146,7092.30075343819,2019
+1998,37,"(35,40]",HS,803.9988333333334,55.441694915254246,14.50170011148272,6454.432052455595,2019
+1998,20,"(15,20]",HS,10.3383,88.70671186440678,0.11654473244147157,5231.275179988698,2019
+1998,20,"(15,20]",HS,8.624366666666667,29.56890395480226,0.2916701505016723,5240.587090851999,2019
+1998,20,"(15,20]",HS,7.7127,70.22614689265536,0.10982661503256469,5285.065682124242,2019
+1998,20,"(15,20]",HS,9.262533333333334,22.176677966101696,0.417670011148272,5243.334260097725,2019
+1998,20,"(15,20]",HS,8.806700000000001,44.35335593220339,0.19855769230769232,5182.989090913518,2019
+1998,68,"(65,70]",HS,386.91133333333335,48.04946892655367,8.052354000514535,8801.361163031219,2019
+1998,68,"(65,70]",HS,388.73466666666667,46.201412429378536,8.41391304347826,9118.31440943386,2019
+1998,68,"(65,70]",HS,387.82300000000004,46.201412429378536,8.394180602006688,9280.56778437782,2019
+1998,68,"(65,70]",HS,387.276,48.04946892655367,8.059943401080526,8825.612326894165,2019
+1998,68,"(65,70]",HS,387.82300000000004,48.04946892655367,8.07132750192951,9182.191070130662,2019
+1998,42,"(40,45]",College,902.4406,46.201412429378536,19.532749163879597,5369.895691056003,2019
+1998,42,"(40,45]",College,1245.2272666666665,46.201412429378536,26.95214715719063,5133.027944670522,2019
+1998,42,"(40,45]",College,1044.6606,46.201412429378536,22.611010033444813,4782.157889995896,2019
+1998,42,"(40,45]",College,772.9839333333333,46.201412429378536,16.730742474916386,5251.583110442879,2019
+1998,42,"(40,45]",College,745.6339333333334,46.201412429378536,16.13876923076923,4779.500937935577,2019
+1998,23,"(20,25]",HS,48.88356666666667,18.480564971751416,2.6451337792642136,1606.3719836429257,2019
+1998,23,"(20,25]",HS,67.02573333333333,18.480564971751416,3.6268227424749155,1604.2835538116642,2019
+1998,23,"(20,25]",HS,52.7855,18.480564971751416,2.856270903010033,1614.8345457180599,2019
+1998,23,"(20,25]",HS,50.54280000000001,18.480564971751416,2.734916387959866,1612.8826967298078,2019
+1998,23,"(20,25]",HS,66.1323,18.480564971751416,3.5784782608695647,1601.207911530165,2019
+1998,26,"(25,30]",College,-23.448066666666666,81.31448587570623,-0.2883627242322894,4022.4132242936553,2019
+1998,26,"(25,30]",College,-23.6304,81.31448587570623,-0.29060504712678625,4034.3224337782244,2019
+1998,26,"(25,30]",College,-23.721566666666668,81.31448587570623,-0.29172620857403464,4034.523437621798,2019
+1998,26,"(25,30]",College,-23.6304,81.31448587570623,-0.29060504712678625,4054.605414465882,2019
+1998,26,"(25,30]",College,-23.612166666666667,81.31448587570623,-0.2903808148373365,4039.217306416124,2019
+1998,63,"(60,65]",HS,11.669333333333334,48.04946892655367,0.24286081811165425,5450.065190077958,2019
+1998,63,"(60,65]",HS,11.669333333333334,48.04946892655367,0.24286081811165425,5446.149422300937,2019
+1998,63,"(60,65]",HS,11.669333333333334,48.04946892655367,0.24286081811165425,5612.163028684548,2019
+1998,63,"(60,65]",HS,11.669333333333334,48.04946892655367,0.24286081811165425,5414.5107207993315,2019
+1998,63,"(60,65]",HS,11.669333333333334,48.04946892655367,0.24286081811165425,5594.867934995858,2019
+1998,41,"(40,45]",HS,657.1293333333334,151.54063276836158,4.336324333142998,5963.358116499038,2019
+1998,41,"(40,45]",HS,583.2843333333334,171.86925423728815,3.393767756320351,5706.638156046067,2019
+1998,41,"(40,45]",HS,711.8293333333334,147.84451977401133,4.814715719063544,5327.546313345367,2019
+1998,41,"(40,45]",HS,454.7393333333333,144.14840677966103,3.1546608352628414,5824.4052917687595,2019
+1998,41,"(40,45]",HS,453.8276666666667,164.47702824858757,2.7592161136372177,5310.577976743663,2019
+1998,45,"(40,45]",HS,11.4323,38.80918644067796,0.29457716196846634,6267.717000000213,2019
+1998,45,"(40,45]",HS,9.608966666666667,38.80918644067796,0.2475951584647237,6295.244253985298,2019
+1998,45,"(40,45]",HS,11.4323,40.65724293785311,0.28118729096989964,6291.931228127836,2019
+1998,45,"(40,45]",HS,12.890966666666667,40.65724293785311,0.31706445728184857,6229.919225729172,2019
+1998,45,"(40,45]",HS,10.520633333333333,40.65724293785311,0.2587640620249315,6348.796306745411,2019
+1998,72,"(70,75]",College,5624.618666666667,175.56536723163845,32.03717655342369,3367.3833616380807,2019
+1998,72,"(70,75]",College,5624.618666666667,175.56536723163845,32.03717655342369,3623.8764854168826,2019
+1998,72,"(70,75]",College,5624.618666666667,175.56536723163845,32.03717655342369,3484.9668742741787,2019
+1998,72,"(70,75]",College,5624.618666666667,175.56536723163845,32.03717655342369,4087.8618361036074,2019
+1998,72,"(70,75]",College,5624.618666666667,175.56536723163845,32.03717655342369,3268.9642418434514,2019
+1998,45,"(40,45]",HS,458.0760333333333,70.22614689265536,6.5228700932934345,4716.765258257116,2019
+1998,45,"(40,45]",HS,400.80513333333334,51.745581920903966,7.745688007644528,4516.774965986382,2019
+1998,45,"(40,45]",HS,385.5620666666667,83.16254237288136,4.636246748420661,4728.846989591885,2019
+1998,45,"(40,45]",HS,475.08773333333335,55.441694915254246,8.569141583054625,4615.430149888311,2019
+1998,45,"(40,45]",HS,387.82300000000004,86.85865536723163,4.4649896819184525,4694.762130387536,2019
+1998,60,"(55,60]",HS,176.1887,36.96112994350283,4.766864548494983,3101.146750916566,2019
+1998,60,"(55,60]",HS,177.08213333333333,36.96112994350283,4.7910367892976575,3166.834564086482,2019
+1998,60,"(55,60]",HS,176.09753333333333,36.96112994350283,4.764397993311036,3004.504917558309,2019
+1998,60,"(55,60]",HS,176.37103333333332,36.96112994350283,4.771797658862875,2909.8927792281056,2019
+1998,60,"(55,60]",HS,176.86333333333334,36.96112994350283,4.785117056856187,3114.581113855699,2019
+1998,36,"(35,40]",College,385.8173333333333,314.16960451977405,1.2280542986425336,6240.15353780565,2019
+1998,36,"(35,40]",College,524.8829666666667,208.83038418079096,2.5134415603634537,5970.630519583286,2019
+1998,36,"(35,40]",College,668.7075,221.76677966101698,3.0153637123745813,5575.345592501213,2019
+1998,36,"(35,40]",College,485.7907,227.31094915254238,2.1371196671832937,6094.732746473897,2019
+1998,36,"(35,40]",College,443.96343333333334,325.2579435028249,1.364958003952569,5557.810974039361,2019
+1998,34,"(30,35]",College,371.96,395.4840903954802,0.9405182383646422,7012.678507374902,2019
+1998,34,"(30,35]",College,381.0766666666667,456.4699548022599,0.8348340622588115,6710.881455081408,2019
+1998,34,"(30,35]",College,361.7493333333333,264.27207909604516,1.3688518839020511,6259.903120003453,2019
+1998,34,"(30,35]",College,378.88866666666667,347.43462146892654,1.0905322706895326,6849.117655784552,2019
+1998,34,"(30,35]",College,350.08,447.22967231638415,0.7827745377152492,6247.886716573261,2019
+1998,54,"(50,55]",College,4398.791666666667,386.2438079096046,11.388639964154837,27.924709756455037,2019
+1998,54,"(50,55]",College,4400.615,386.2438079096046,11.393360643932724,30.532763886742572,2019
+1998,54,"(50,55]",College,5013.255,386.2438079096046,12.979509049303097,29.74434977174123,2019
+1998,54,"(50,55]",College,4783.515,386.2438079096046,12.384703397289208,30.644541111649822,2019
+1998,54,"(50,55]",College,5425.328333333333,386.2438079096046,14.046382679105788,32.04320273493679,2019
+1998,42,"(40,45]",HS,5.9076,70.22614689265536,0.08412251364196445,6659.434965630231,2019
+1998,42,"(40,45]",HS,5.9076,70.22614689265536,0.08412251364196445,6624.002996442371,2019
+1998,42,"(40,45]",HS,5.725266666666666,70.22614689265536,0.08152613976412604,6642.800244280021,2019
+1998,42,"(40,45]",HS,5.542933333333334,70.22614689265536,0.07892976588628764,6666.333029659993,2019
+1998,42,"(40,45]",HS,5.725266666666666,70.22614689265536,0.08152613976412604,6608.796845053468,2019
+1998,45,"(40,45]",HS,860.4674666666667,195.893988700565,4.392515933615195,6623.937771289794,2019
+1998,45,"(40,45]",HS,1022.7441333333334,151.54063276836158,6.748976262337875,3426.9695471659043,2019
+1998,45,"(40,45]",HS,869.1811766666666,112.73144632768363,7.710192718899061,5980.984912519032,2019
+1998,45,"(40,45]",HS,740.1256433333333,120.12367231638417,6.161363776691536,6471.3276155105,2019
+1998,45,"(40,45]",HS,876.8756433333333,316.01766101694915,2.7747678421248216,5944.53691817628,2019
+1998,47,"(45,50]",HS,12042.3691,2864.487570621469,4.204022116733197,22.39740994991027,2019
+1998,47,"(45,50]",HS,26643.695366666667,3381.9433898305087,7.878220388544693,28.00259224458871,2019
+1998,47,"(45,50]",College,12156.163333333334,875.978779661017,13.87723494630484,23.901343057963032,2019
+1998,47,"(45,50]",HS,23300.2855,1557.911627118644,14.956102191171047,26.089005045136595,2019
+1998,47,"(45,50]",HS,14997.080766666668,3603.7101694915254,4.1615668467541385,25.73097633766011,2019
+1998,40,"(35,40]",College,2118.7133333333336,301.233209039548,7.03346533434557,1876.8591478070412,2019
+1998,40,"(35,40]",College,2118.7133333333336,301.233209039548,7.03346533434557,1913.805275638831,2019
+1998,40,"(35,40]",College,2118.7133333333336,301.233209039548,7.03346533434557,1741.7002210681676,2019
+1998,40,"(35,40]",College,2118.7133333333336,301.233209039548,7.03346533434557,1963.8558368369843,2019
+1998,40,"(35,40]",College,2118.7133333333336,301.233209039548,7.03346533434557,1873.5403054519334,2019
+1998,72,"(70,75]",College,366.2712,35.11307344632768,10.431191691603592,7354.021349621148,2019
+1998,72,"(70,75]",College,580.5858000000001,42.50529943502825,13.659139159517233,6049.400759679648,2019
+1998,72,"(70,75]",College,323.0946666666667,31.416960451977403,10.28408420224277,7839.968966421184,2019
+1998,72,"(70,75]",College,323.8969333333334,38.80918644067796,8.345883102404844,7563.549473966528,2019
+1998,72,"(70,75]",College,308.7450333333333,25.872790960451983,11.933193979933106,7700.58957974473,2019
+1998,22,"(20,25]",NoHS,-1.8233333333333333,24.024734463276836,-0.07589400565989195,5555.688513997665,2019
+1998,22,"(20,25]",NoHS,-1.8233333333333333,24.024734463276836,-0.07589400565989195,5566.077453734271,2019
+1998,22,"(20,25]",NoHS,-1.8233333333333333,24.024734463276836,-0.07589400565989195,5543.306421166603,2019
+1998,22,"(20,25]",NoHS,-1.8233333333333333,24.024734463276836,-0.07589400565989195,5547.354192762168,2019
+1998,22,"(20,25]",NoHS,-1.8233333333333333,24.024734463276836,-0.07589400565989195,5530.811054067428,2019
+1998,31,"(30,35]",HS,3480.1963333333338,535.9363841807909,6.4936743166878115,1092.7665823804716,2019
+1998,31,"(30,35]",HS,3480.1963333333338,535.9363841807909,6.4936743166878115,1196.715867691174,2019
+1998,31,"(30,35]",HS,3480.1963333333338,535.9363841807909,6.4936743166878115,1093.6100594478664,2019
+1998,31,"(30,35]",HS,3482.0196666666666,535.9363841807909,6.497076461769116,1401.502399797356,2019
+1998,31,"(30,35]",HS,3480.1963333333338,535.9363841807909,6.4936743166878115,1095.59370758103,2019
+1998,35,"(30,35]",College,681.9266666666666,693.021186440678,0.9839910813823857,345.5549589243604,2019
+1998,35,"(30,35]",College,680.1033333333334,693.021186440678,0.9813600891861761,334.1433239219777,2019
+1998,35,"(30,35]",College,681.9266666666666,693.021186440678,0.9839910813823857,331.9007289543909,2019
+1998,35,"(30,35]",College,681.9266666666666,693.021186440678,0.9839910813823857,330.3134550277186,2019
+1998,35,"(30,35]",College,681.9266666666666,693.021186440678,0.9839910813823857,341.8032233245727,2019
+1998,45,"(40,45]",HS,25.9825,88.70671186440678,0.2929034280936455,5972.996776203874,2019
+1998,45,"(40,45]",HS,25.617833333333333,90.55476836158192,0.28289877824039317,5999.229645255018,2019
+1998,45,"(40,45]",HS,25.80016666666667,88.70671186440678,0.29084796544035674,5996.072404306509,2019
+1998,45,"(40,45]",HS,26.164833333333334,88.70671186440678,0.2949588907469342,5936.976326673589,2019
+1998,45,"(40,45]",HS,25.80016666666667,88.70671186440678,0.29084796544035674,6050.263576508659,2019
+1998,67,"(65,70]",College,10067.662633333333,487.88691525423735,20.63523804094456,317.41379299108996,2019
+1998,67,"(65,70]",College,15858.0223,498.975254237288,31.781179858788562,314.4846465913035,2019
+1998,67,"(65,70]",College,7651.271900000001,622.7950395480226,12.285377072933517,299.2892815975591,2019
+1998,67,"(65,70]",College,15850.364300000001,552.5688926553671,28.684865381819005,328.2208170838058,2019
+1998,67,"(65,70]",College,12083.266466666668,526.6961016949153,22.94162882121692,309.08108172553807,2019
+1998,81,"(80,85]",HS,11394.01,1132.8586327683615,10.0577509588787,216.21111620049282,2019
+1998,81,"(80,85]",HS,11390.363333333335,1132.8586327683615,10.054531963532604,214.78225288884127,2019
+1998,81,"(80,85]",HS,11390.363333333335,1132.8586327683615,10.054531963532604,206.45799266929959,2019
+1998,81,"(80,85]",HS,11395.833333333334,1134.7066892655366,10.042977133332608,224.59571638244105,2019
+1998,81,"(80,85]",HS,11392.186666666666,1132.8586327683615,10.05614146120565,212.32429477356413,2019
+1998,63,"(60,65]",HS,521.838,49.89752542372881,10.45819397993311,7709.1281459359725,2019
+1998,63,"(60,65]",HS,516.915,66.53003389830509,7.7696488294314365,7351.3447264651695,2019
+1998,63,"(60,65]",HS,517.6443333333333,90.55476836158192,5.716367483448228,6880.00038057317,2019
+1998,63,"(60,65]",HS,517.0973333333334,68.37809039548021,7.562324866672695,7528.251523375786,2019
+1998,63,"(60,65]",HS,523.6613333333333,68.37809039548021,7.6583205278857465,6861.924081444131,2019
+1998,58,"(55,60]",HS,0.8387333333333333,31.416960451977403,0.02669683257918552,6812.581479774339,2019
+1998,58,"(55,60]",HS,0.8387333333333333,31.416960451977403,0.02669683257918552,6807.686770058678,2019
+1998,58,"(55,60]",HS,0.8205,31.416960451977403,0.02611646665355105,7015.203777799901,2019
+1998,58,"(55,60]",HS,0.8205,31.416960451977403,0.02611646665355105,6768.138393227089,2019
+1998,58,"(55,60]",HS,0.8387333333333333,31.416960451977403,0.02669683257918552,6993.584910713855,2019
+1998,64,"(60,65]",College,30944.519333333334,1251.1342485875707,24.733172613784006,28.22184059674483,2019
+1998,64,"(60,65]",College,24980.76066666667,1142.0989152542375,21.87267699234774,30.639316426521578,2019
+1998,64,"(60,65]",College,25554.928333333333,550.720836158192,46.40269017530471,31.036640637792367,2019
+1998,64,"(60,65]",College,26351.907333333333,973.9257740112994,27.057408312337774,28.586895599279444,2019
+1998,64,"(60,65]",College,27226.74266666667,1252.9823050847456,21.729550813429235,30.381399923236962,2019
+1998,87,"(85,90]",HS,46.7685,18.480564971751416,2.5306856187290965,6916.047047382325,2019
+1998,87,"(85,90]",HS,46.7685,18.480564971751416,2.5306856187290965,6965.304825755727,2019
+1998,87,"(85,90]",HS,46.7685,18.480564971751416,2.5306856187290965,6973.226676607292,2019
+1998,87,"(85,90]",HS,46.7685,18.480564971751416,2.5306856187290965,6900.958809010926,2019
+1998,87,"(85,90]",HS,46.7685,18.480564971751416,2.5306856187290965,6972.603953972238,2019
+1998,51,"(50,55]",HS,46.495,68.37809039548021,0.6799692669257887,6450.2057220479855,2019
+1998,51,"(50,55]",HS,48.318333333333335,68.37809039548021,0.706634728373859,6558.706082775769,2019
+1998,51,"(50,55]",HS,46.495,68.37809039548021,0.6799692669257887,6848.492820253698,2019
+1998,51,"(50,55]",HS,48.318333333333335,68.37809039548021,0.706634728373859,6443.152496329136,2019
+1998,51,"(50,55]",HS,44.67166666666667,68.37809039548021,0.6533038054777186,6787.744833212828,2019
+1998,27,"(25,30]",College,118.51666666666668,29.56890395480226,4.008152173913044,5381.85288726338,2019
+1998,27,"(25,30]",College,94.81333333333333,31.416960451977403,3.0179028132992327,5361.98939990225,2019
+1998,27,"(25,30]",College,91.16666666666667,29.56890395480226,3.0831939799331107,5411.833476846729,2019
+1998,27,"(25,30]",College,91.16666666666667,29.56890395480226,3.0831939799331107,5418.763993756345,2019
+1998,27,"(25,30]",College,91.16666666666667,29.56890395480226,3.0831939799331107,5347.97364392961,2019
+1998,76,"(75,80]",HS,1231.6252,42.50529943502825,28.975803402646502,7709.007507732662,2019
+1998,76,"(75,80]",HS,471.3316666666667,64.68197740112994,7.286908743430484,7440.919404337832,2019
+1998,76,"(75,80]",HS,1051.0787333333335,49.89752542372881,21.064746686485822,7647.016886439569,2019
+1998,76,"(75,80]",HS,479.91956666666664,35.11307344632768,13.667831367716952,7445.542943553055,2019
+1998,76,"(75,80]",HS,276.5996666666667,59.13780790960452,4.677205267558529,3626.669258726033,2019
+1998,48,"(45,50]",College,797.6171666666667,3.6961129943502824,215.79891304347825,7700.519482932594,2019
+1998,48,"(45,50]",College,398.3983333333333,3.6961129943502824,107.78846153846153,3216.7625429826417,2019
+1998,48,"(45,50]",College,612.9681999999999,3.6961129943502824,165.84130434782605,3484.1508998350314,2019
+1998,48,"(45,50]",College,523.6613333333333,3.6961129943502824,141.6789297658863,3262.8146870908863,2019
+1998,48,"(45,50]",College,504.6986666666667,3.6961129943502824,136.5484949832776,2984.2011757203377,2019
+1998,42,"(40,45]",College,180.7835,203.28621468926553,0.8893052599574339,6277.977656363151,2019
+1998,42,"(40,45]",College,183.51850000000002,203.28621468926553,0.9027591973244148,6404.524626299983,2019
+1998,42,"(40,45]",College,194.27616666666665,203.28621468926553,0.9556780176345393,4614.7286111249905,2019
+1998,42,"(40,45]",College,175.13116666666667,203.28621468926553,0.8615004560656735,6333.420382022387,2019
+1998,42,"(40,45]",College,169.66116666666667,203.28621468926553,0.8345925813317118,6595.429030305869,2019
+1998,75,"(70,75]",NoHS,0.3646666666666667,15.154063276836158,0.024063953014112082,5050.78165037892,2019
+1998,75,"(70,75]",NoHS,0.3646666666666667,15.154063276836158,0.024063953014112082,5086.754552448892,2019
+1998,75,"(70,75]",NoHS,0.3646666666666667,15.154063276836158,0.024063953014112082,5092.539871525526,2019
+1998,75,"(70,75]",NoHS,0.3646666666666667,15.154063276836158,0.024063953014112082,5039.762726276654,2019
+1998,75,"(70,75]",NoHS,0.3646666666666667,15.154063276836158,0.024063953014112082,5092.085097861198,2019
+1998,60,"(55,60]",College,497.27770000000004,59.13780790960452,8.408794941471573,4988.889487204557,2019
+1998,60,"(55,60]",College,91.36723333333335,129.36395480225988,0.7062804586717631,5495.209469251432,2019
+1998,60,"(55,60]",College,602.247,85.0105988700565,7.084375454413261,4475.60938734012,2019
+1998,60,"(55,60]",College,197.10233333333335,171.86925423728815,1.1468155500413566,5543.708043509789,2019
+1998,60,"(55,60]",College,512.1743333333334,60.98586440677967,8.398246680855376,4464.403205677207,2019
+1998,36,"(35,40]",HS,401.1333333333333,332.65016949152545,1.2058714232627274,5896.316919858276,2019
+1998,36,"(35,40]",HS,400.951,332.65016949152545,1.2053232998885173,5641.089661561192,2019
+1998,36,"(35,40]",HS,401.3156666666667,332.65016949152545,1.2064195466369378,5267.845183593761,2019
+1998,36,"(35,40]",HS,401.1333333333333,332.65016949152545,1.2058714232627274,5757.3267961930005,2019
+1998,36,"(35,40]",HS,402.9566666666667,332.65016949152545,1.211352657004831,5250.58312809736,2019
+1998,32,"(30,35]",HS,1823.2239333333334,373.30741242937853,4.883974634921686,3172.8609613506896,2019
+1998,32,"(30,35]",HS,2199.085866666667,212.52649717514123,10.34734913479715,3460.7729036655596,2019
+1998,32,"(30,35]",HS,1653.0704666666666,316.01766101694915,5.230943300279685,3226.7346050465612,2019
+1998,32,"(30,35]",HS,2336.5652000000005,212.52649717514123,10.994230042169553,3203.6787720976426,2019
+1998,32,"(30,35]",HS,1844.6663333333333,336.3462824858757,5.484426109008049,3307.9323980494205,2019
+1998,43,"(40,45]",HS,490.659,134.9081242937853,3.636986301369863,6373.327534764825,2019
+1998,43,"(40,45]",HS,496.129,134.9081242937853,3.677532413982682,6098.0525014050545,2019
+1998,43,"(40,45]",HS,494.3056666666667,134.9081242937853,3.6640170431117425,5694.331616239851,2019
+1998,43,"(40,45]",HS,490.659,134.9081242937853,3.636986301369863,6224.803251202424,2019
+1998,43,"(40,45]",HS,483.3656666666667,134.9081242937853,3.582924817886105,5676.422783391835,2019
+1998,46,"(45,50]",College,2377.4443333333334,231.00706214689265,10.291652173913043,1626.905350109862,2019
+1998,46,"(45,50]",College,2561.601,231.00706214689265,11.088842809364548,1592.4417091246821,2019
+1998,46,"(45,50]",College,3108.601,231.00706214689265,13.456735785953178,1483.407243202924,2019
+1998,46,"(45,50]",College,1832.45,231.00706214689265,7.932441471571907,1216.1301294020504,2019
+1998,46,"(45,50]",College,2023.9,231.00706214689265,8.761204013377927,1153.6955172511377,2019
+1998,63,"(60,65]",NoHS,462.5796666666667,9.609893785310735,48.13577308978647,6155.069740544727,2019
+1998,63,"(60,65]",NoHS,462.762,9.609893785310735,48.15474659120144,5901.491198389797,2019
+1998,63,"(60,65]",NoHS,462.5796666666667,9.609893785310735,48.13577308978647,5481.390940524516,2019
+1998,63,"(60,65]",NoHS,462.762,9.609893785310735,48.15474659120144,6043.065061707223,2019
+1998,63,"(60,65]",NoHS,462.5796666666667,9.609893785310735,48.13577308978647,5480.7502865057195,2019
+1998,45,"(40,45]",NoHS,19.327333333333332,36.96112994350283,0.5229096989966554,6607.989546490496,2019
+1998,45,"(40,45]",NoHS,19.327333333333332,36.96112994350283,0.5229096989966554,6617.0195049478625,2019
+1998,45,"(40,45]",NoHS,19.327333333333332,36.96112994350283,0.5229096989966554,6576.2163184654,2019
+1998,45,"(40,45]",NoHS,19.327333333333332,36.96112994350283,0.5229096989966554,6567.040507812026,2019
+1998,45,"(40,45]",NoHS,19.509666666666668,36.96112994350283,0.5278428093645484,6657.418950974706,2019
+1998,53,"(50,55]",HS,1721.9560000000001,160.78091525423727,10.709952715949719,2765.3470992436673,2019
+1998,53,"(50,55]",HS,1378.0753333333332,160.78091525423727,8.571137508168993,3020.2831775950935,2019
+1998,53,"(50,55]",HS,1607.2683333333332,160.78091525423727,9.996636297235998,2813.156936842638,2019
+1998,53,"(50,55]",HS,1602.3453333333332,160.78091525423727,9.966016991504247,2793.475274317929,2019
+1998,53,"(50,55]",HS,1543.087,160.78091525423727,9.59745127436282,2884.5446392261615,2019
+1998,70,"(65,70]",College,12689.123666666666,946.2049265536723,13.41054491534281,192.1071176168304,2019
+1998,70,"(65,70]",College,12616.372666666666,866.7384971751412,14.556146643752095,190.6471069453121,2019
+1998,70,"(65,70]",College,12207.927766666668,1040.4558079096046,11.733249671789327,182.3729297077571,2019
+1998,70,"(65,70]",College,12732.883666666667,940.6607570621469,13.536105945818084,199.43240001319322,2019
+1998,70,"(65,70]",College,12785.942666666666,916.63602259887,13.948767396698672,186.61529837275322,2019
+1998,66,"(65,70]",College,7781.622,500.82331073446335,15.537659356526675,1466.2048528665446,2019
+1998,66,"(65,70]",College,7245.525533333333,556.2650056497175,13.02531250347226,1604.251298498591,2019
+1998,66,"(65,70]",College,5962.5735,591.3780790960453,10.08250679347826,1455.8862599835516,2019
+1998,66,"(65,70]",College,9996.607333333333,718.8939774011301,13.905537739336776,1870.731992708678,2019
+1998,66,"(65,70]",College,8750.723666666667,829.7773672316384,10.545869304511697,1457.6658596963143,2019
+1998,71,"(70,75]",HS,260.18966666666665,31.416960451977403,8.281821758803854,7259.886295677368,2019
+1998,71,"(70,75]",HS,260.18966666666665,31.416960451977403,8.281821758803854,7196.69203371333,2019
+1998,71,"(70,75]",HS,260.18966666666665,33.265016949152546,7.821720549981419,7693.9177924044825,2019
+1998,71,"(70,75]",HS,260.18966666666665,31.416960451977403,8.281821758803854,7438.435686266067,2019
+1998,71,"(70,75]",HS,260.18966666666665,31.416960451977403,8.281821758803854,7543.580586618302,2019
+1998,69,"(65,70]",NoHS,28.444,25.872790960451983,1.0993788819875774,6795.671499547876,2019
+1998,69,"(65,70]",NoHS,28.444,25.872790960451983,1.0993788819875774,6804.699816159063,2019
+1998,69,"(65,70]",NoHS,28.444,25.872790960451983,1.0993788819875774,6720.644559058632,2019
+1998,69,"(65,70]",NoHS,28.62633333333333,25.872790960451983,1.1064261825131387,6760.499419636738,2019
+1998,69,"(65,70]",NoHS,28.444,25.872790960451983,1.0993788819875774,6743.676519617836,2019
+1998,61,"(60,65]",College,2506.9557000000004,245.7915141242938,10.199520959589611,812.5208435470485,2019
+1998,61,"(60,65]",College,2535.7096666666666,245.7915141242938,10.316506148313929,886.3441512507292,2019
+1998,61,"(60,65]",College,2599.7086666666664,245.7915141242938,10.576885357205722,813.0411749752133,2019
+1998,61,"(60,65]",College,2530.422,245.7915141242938,10.294993336183268,1041.8607322419582,2019
+1998,61,"(60,65]",College,2518.0233333333335,243.94345762711868,10.322159724333638,814.0692387352763,2019
+1998,26,"(25,30]",NoHS,28.2252,33.265016949152546,0.8484949832775919,8406.801183315121,2019
+1998,26,"(25,30]",NoHS,22.591099999999997,33.265016949152546,0.6791248606465996,8538.110369543636,2019
+1998,26,"(25,30]",NoHS,19.23616666666667,33.265016949152546,0.5782701597918989,8785.278581060915,2019
+1998,26,"(25,30]",NoHS,59.3495,33.265016949152546,1.7841415830546263,8390.673794505838,2019
+1998,26,"(25,30]",NoHS,18.306266666666666,33.265016949152546,0.550315867707172,8603.934462672973,2019
+1998,24,"(20,25]",NoHS,16.77466666666667,11.457950282485875,1.4640198511166256,5183.716510490789,2019
+1998,24,"(20,25]",NoHS,16.592333333333332,12.381978531073447,1.3400389357560025,5208.979049610495,2019
+1998,24,"(20,25]",NoHS,16.77466666666667,11.27314463276836,1.488020176544767,5217.382497401063,2019
+1998,24,"(20,25]",NoHS,16.77466666666667,12.19717288135593,1.3752913752913756,5175.704095493468,2019
+1998,24,"(20,25]",NoHS,16.592333333333332,11.642755932203391,1.4251207729468596,5187.4961234361435,2019
+1998,57,"(55,60]",HS,55344.73066666666,2772.084745762712,19.965021181716832,32.75797024958856,2019
+1998,57,"(55,60]",HS,55300.606,2513.3568361581924,22.002687881172534,33.733308450685655,2019
+1998,57,"(55,60]",HS,55870.397666666664,2827.5264406779665,19.759460729665328,36.11853352727931,2019
+1998,57,"(55,60]",HS,55642.481,2716.6430508474577,20.48207289604805,33.976031628799,2019
+1998,57,"(55,60]",HS,55591.701166666666,2846.007005649717,19.53322709898797,36.681252218847234,2019
+1998,32,"(30,35]",NoHS,-0.3646666666666667,20.328621468926556,-0.01793858315597446,5563.588558652074,2019
+1998,32,"(30,35]",NoHS,-0.3646666666666667,20.328621468926556,-0.01793858315597446,5542.781426294526,2019
+1998,32,"(30,35]",NoHS,-0.3646666666666667,20.328621468926556,-0.01793858315597446,5530.669488789589,2019
+1998,32,"(30,35]",NoHS,-0.3646666666666667,18.480564971751416,-0.019732441471571903,5558.4685764500755,2019
+1998,32,"(30,35]",NoHS,-0.3646666666666667,20.328621468926556,-0.01793858315597446,5545.29695388397,2019
+1998,22,"(20,25]",HS,-17.084633333333336,42.50529943502825,-0.40194125345354087,5079.096875706969,2019
+1998,22,"(20,25]",HS,-17.102866666666664,42.50529943502825,-0.4023702195724879,5059.662905214382,2019
+1998,22,"(20,25]",HS,-17.084633333333336,42.50529943502825,-0.40194125345354087,5070.168097349075,2019
+1998,22,"(20,25]",HS,-17.102866666666664,42.50529943502825,-0.4023702195724879,5100.495899457394,2019
+1998,22,"(20,25]",HS,-17.26696666666667,40.65724293785311,-0.42469595621769535,5026.3459045055415,2019
+1998,85,"(80,85]",College,617.7818000000001,81.31448587570623,7.5974384311340835,6501.223013328044,2019
+1998,85,"(80,85]",College,228.73716666666667,66.53003389830509,3.438103864734299,3001.2739246790525,2019
+1998,85,"(80,85]",College,423.6515,170.021197740113,2.491756943434637,2833.659326235479,2019
+1998,85,"(80,85]",College,494.7068,88.70671186440678,5.57688127090301,6145.167093006547,2019
+1998,85,"(80,85]",College,564.0299333333334,99.79505084745762,5.651882819274125,6374.947910866092,2019
+1998,48,"(45,50]",HS,997.181,51.745581920903966,19.27084328714763,5947.158545763848,2019
+1998,48,"(45,50]",HS,897.3352666666667,175.56536723163845,5.111117760957577,5698.769706439643,2019
+1998,48,"(45,50]",HS,543.4992,59.13780790960452,9.190384615384614,5310.376385693148,2019
+1998,48,"(45,50]",HS,420.9165,40.65724293785311,10.35280480389176,6729.244821165,2019
+1998,48,"(45,50]",HS,533.5073333333333,48.04946892655367,11.103293028042192,5301.280241622803,2019
+1998,42,"(40,45]",College,1071.573,221.76677966101698,4.83198160535117,2813.640065069093,2019
+1998,42,"(40,45]",College,1104.5753333333332,221.76677966101698,4.980797101449274,3068.983368260225,2019
+1998,42,"(40,45]",College,1088.53,221.76677966101698,4.908444816053511,2863.6557815487304,2019
+1998,42,"(40,45]",College,1233.4850000000001,221.76677966101698,5.562081939799331,2841.63937348264,2019
+1998,42,"(40,45]",College,1087.6183333333333,221.76677966101698,4.904333890746933,2932.6191826355966,2019
+1998,39,"(35,40]",HS,235.39233333333334,145.99646327683615,1.6123153126455274,2388.0107132061685,2019
+1998,39,"(35,40]",HS,235.39233333333334,147.84451977401133,1.5921613712374578,2462.3562334933645,2019
+1998,39,"(35,40]",HS,235.39233333333334,147.84451977401133,1.5921613712374578,2369.179414135405,2019
+1998,39,"(35,40]",HS,235.57466666666667,147.84451977401133,1.593394648829431,2365.1916493482386,2019
+1998,39,"(35,40]",HS,235.39233333333334,145.99646327683615,1.6123153126455274,2411.4062299023844,2019
+1998,28,"(25,30]",HS,-0.8660833333333334,22.176677966101696,-0.039053790412486064,5856.1604317239635,2019
+1998,28,"(25,30]",HS,-1.2125166666666667,22.176677966101696,-0.05467530657748049,5873.498839656655,2019
+1998,28,"(25,30]",HS,-1.0301833333333335,22.176677966101696,-0.046453455964325534,5873.791477605492,2019
+1998,28,"(25,30]",HS,-1.0393,22.176677966101696,-0.04686454849498327,5903.028473316143,2019
+1998,28,"(25,30]",HS,-1.2034,22.176677966101696,-0.05426421404682274,5880.625198352786,2019
+1998,45,"(40,45]",HS,122.92913333333334,36.96112994350283,3.325903010033444,3634.1114442560574,2019
+1998,45,"(40,45]",HS,123.2938,36.96112994350283,3.3357692307692304,3751.771197065324,2019
+1998,45,"(40,45]",HS,122.9109,36.96112994350283,3.325409698996655,3515.498619099865,2019
+1998,45,"(40,45]",HS,123.16616666666667,36.96112994350283,3.332316053511705,3455.149380852329,2019
+1998,45,"(40,45]",HS,123.49436666666666,36.96112994350283,3.341195652173912,3631.9343787319326,2019
+1998,53,"(50,55]",HS,344.4276666666667,221.76677966101698,1.5531075808249721,2785.6557381004804,2019
+1998,53,"(50,55]",HS,346.25100000000003,221.76677966101698,1.561329431438127,2894.109218344805,2019
+1998,53,"(50,55]",HS,346.25100000000003,221.76677966101698,1.561329431438127,2715.2145135953897,2019
+1998,53,"(50,55]",HS,346.25100000000003,221.76677966101698,1.561329431438127,2664.85874044913,2019
+1998,53,"(50,55]",HS,346.43333333333334,221.76677966101698,1.5621516164994425,2828.9233188046883,2019
+1998,45,"(40,45]",College,2413.4551666666666,221.76677966101698,10.882852564102562,2915.207672214943,2019
+1998,45,"(40,45]",College,2286.8429,266.12013559322037,8.593272714604236,3184.7457900987024,2019
+1998,45,"(40,45]",College,2224.1202333333335,184.80564971751414,12.034914715719063,2965.5002618361027,2019
+1998,45,"(40,45]",College,2469.7597,443.53355932203397,5.568371655518394,2945.678284743417,2019
+1998,45,"(40,45]",College,2100.9176,242.09540112994353,8.678056626413746,3041.0341053657103,2019
+1998,49,"(45,50]",College,343.6983333333333,171.86925423728815,1.9997662459093033,6688.70331709382,2019
+1998,49,"(45,50]",College,342.60433333333333,171.86925423728815,1.9934009422087962,6409.824407630545,2019
+1998,49,"(45,50]",College,343.1513333333333,171.86925423728815,1.9965835940590495,5973.0292909279415,2019
+1998,49,"(45,50]",College,343.6983333333333,171.86925423728815,1.9997662459093033,6536.070330236378,2019
+1998,49,"(45,50]",College,344.4276666666667,171.86925423728815,2.0040097817096414,5962.317381654715,2019
+1998,53,"(50,55]",College,2988.9903333333336,373.30741242937853,8.00678002582867,3367.3833616380807,2019
+1998,53,"(50,55]",College,3043.6903333333335,375.1554689265537,8.113143977461819,3599.6290254888254,2019
+1998,53,"(50,55]",College,3065.5703333333336,375.1554689265537,8.171466464569914,3484.9668742741787,2019
+1998,53,"(50,55]",College,3098.3903333333337,375.1554689265537,8.258950195232055,4043.2067017851246,2019
+1998,53,"(50,55]",College,3089.2736666666665,373.30741242937853,8.275414748832743,3268.9642418434514,2019
+1998,20,"(15,20]",HS,-2.6256,27.720847457627123,-0.09471571906354513,5560.501532494016,2019
+1998,20,"(15,20]",HS,-2.716766666666667,27.720847457627123,-0.09800445930880713,5575.30142094381,2019
+1998,20,"(15,20]",HS,-2.6438333333333337,27.720847457627123,-0.09537346711259755,5620.420046000782,2019
+1998,20,"(15,20]",HS,-2.6620666666666666,27.720847457627123,-0.09603121516164993,5555.086860107208,2019
+1998,20,"(15,20]",HS,-2.6803000000000003,27.720847457627123,-0.09668896321070233,5599.733812819973,2019
+1998,28,"(25,30]",HS,13.128,70.22614689265536,0.18693891920436545,5728.460517845401,2019
+1998,28,"(25,30]",HS,13.128,70.22614689265536,0.18693891920436545,5708.929697753715,2019
+1998,28,"(25,30]",HS,13.128,70.22614689265536,0.18693891920436545,5711.783646485634,2019
+1998,28,"(25,30]",HS,13.128,70.22614689265536,0.18693891920436545,5752.423664542164,2019
+1998,28,"(25,30]",HS,13.128,70.22614689265536,0.18693891920436545,5708.172424488729,2019
+1998,70,"(65,70]",HS,65.11123333333333,27.720847457627123,2.348818283166109,7501.101763750351,2019
+1998,70,"(65,70]",HS,73.93616666666668,27.720847457627123,2.6671683389074694,7483.337071837979,2019
+1998,70,"(65,70]",HS,59.64123333333333,27.720847457627123,2.1514938684503897,7996.768332036403,2019
+1998,70,"(65,70]",HS,97.01956666666666,27.720847457627123,3.499877369007803,7714.820450216148,2019
+1998,70,"(65,70]",HS,116.16456666666667,27.720847457627123,4.19051282051282,7854.601357870214,2019
+1998,43,"(40,45]",College,11699.600666666667,537.7844406779662,21.755186245101076,184.85193233772293,2019
+1998,43,"(40,45]",College,8435.834,500.82331073446335,16.843932419257303,181.29643382570626,2019
+1998,43,"(40,45]",College,6050.914,696.7172994350283,8.684891282169565,175.55992747413535,2019
+1998,43,"(40,45]",College,7316.307333333333,639.4275480225989,11.44196454462853,192.01559982895907,2019
+1998,43,"(40,45]",College,8753.094000000001,571.0494576271187,15.32808390427639,179.84427419868038,2019
+1998,67,"(65,70]",HS,275.141,29.56890395480226,9.305079431438127,8625.333949015028,2019
+1998,67,"(65,70]",HS,251.43766666666667,29.56890395480226,8.50344899665552,8935.948130822524,2019
+1998,67,"(65,70]",HS,286.081,29.56890395480226,9.675062709030101,9094.956438438032,2019
+1998,67,"(65,70]",HS,286.081,29.56890395480226,9.675062709030101,8649.100089626188,2019
+1998,67,"(65,70]",HS,249.61433333333335,29.56890395480226,8.441785117056856,8998.54725837249,2019
+1998,75,"(70,75]",NoHS,8.8614,29.56890395480226,0.29968645484949835,6198.853137694214,2019
+1998,75,"(70,75]",NoHS,9.718366666666666,29.56890395480226,0.3286684782608696,6301.378745328546,2019
+1998,75,"(70,75]",NoHS,9.481333333333334,29.56890395480226,0.3206521739130435,6365.546164733578,2019
+1998,75,"(70,75]",NoHS,8.970799999999999,29.56890395480226,0.303386287625418,6400.2564088637455,2019
+1998,75,"(70,75]",NoHS,8.660833333333334,29.56890395480226,0.29290342809364556,6389.115699485343,2019
+1998,37,"(35,40]",College,15602.628,2494.87627118644,6.253868450390192,249.25070125765902,2019
+1998,37,"(35,40]",College,15624.508,2476.395706214689,6.309374532022163,249.5949241124224,2019
+1998,37,"(35,40]",College,15626.331333333334,2494.87627118644,6.26336925554317,275.95751008800465,2019
+1998,37,"(35,40]",College,15626.513666666666,2494.87627118644,6.263442338659731,292.3033231466263,2019
+1998,37,"(35,40]",College,15624.508,2494.87627118644,6.262638424377556,241.9111186306855,2019
+1998,35,"(30,35]",College,1286.6716333333334,125.66784180790961,10.238670568561872,3367.3833616380807,2019
+1998,35,"(30,35]",College,1382.5425,131.21201129943503,10.536706863253096,3623.8764854168826,2019
+1998,35,"(30,35]",College,1253.5963666666667,127.51589830508476,9.830902525325964,3484.9668742741787,2019
+1998,35,"(30,35]",College,1239.3561333333332,123.81978531073446,10.009354564967802,4087.8618361036074,2019
+1998,35,"(30,35]",College,1320.5856333333334,125.66784180790961,10.5085407239819,3268.9642418434514,2019
+1998,26,"(25,30]",HS,40.11333333333334,42.50529943502825,0.9437254616838738,5474.341822869232,2019
+1998,26,"(25,30]",HS,39.931,42.50529943502825,0.9394358004944016,5486.381109283773,2019
+1998,26,"(25,30]",HS,40.11333333333334,42.50529943502825,0.9437254616838738,5524.242027485583,2019
+1998,26,"(25,30]",HS,39.931,42.50529943502825,0.9394358004944016,5486.7974013803705,2019
+1998,26,"(25,30]",HS,39.931,42.50529943502825,0.9394358004944016,5461.323761270998,2019
+1998,47,"(45,50]",College,1429.4933333333333,351.1307344632769,4.071114240450624,784.5008464418868,2019
+1998,47,"(45,50]",College,1429.4933333333333,351.1307344632769,4.071114240450624,831.912116874101,2019
+1998,47,"(45,50]",College,1429.4933333333333,351.1307344632769,4.071114240450624,791.9704264021841,2019
+1998,47,"(45,50]",College,1429.4933333333333,351.1307344632769,4.071114240450624,821.5685691918064,2019
+1998,47,"(45,50]",College,1431.3166666666668,351.1307344632769,4.076306988206301,783.0520461896592,2019
+1998,31,"(30,35]",College,31.5072,18.480564971751416,1.7048829431438124,9134.03862495416,2019
+1998,31,"(30,35]",College,31.324866666666665,18.480564971751416,1.6950167224080264,9136.619337463944,2019
+1998,31,"(30,35]",College,31.324866666666665,18.480564971751416,1.6950167224080264,9294.125539560135,2019
+1998,31,"(30,35]",College,31.5072,18.480564971751416,1.7048829431438124,9177.727953405,2019
+1998,31,"(30,35]",College,31.324866666666665,18.480564971751416,1.6950167224080264,9236.926930017737,2019
+1998,35,"(30,35]",College,11.851666666666667,51.745581920903966,0.2290372670807453,5930.1143962240785,2019
+1998,35,"(30,35]",College,14.586666666666666,51.745581920903966,0.28189202102245575,5921.2505328120815,2019
+1998,35,"(30,35]",College,27.532333333333334,51.745581920903966,0.5320711896798852,5908.844594870768,2019
+1998,35,"(30,35]",College,13.492666666666667,51.745581920903966,0.2607501194457716,5959.789379725932,2019
+1998,35,"(30,35]",College,10.575333333333335,51.745581920903966,0.20437171524128045,5887.944894930859,2019
+1998,30,"(25,30]",College,30.814333333333334,64.68197740112994,0.47639751552795034,5799.892806780327,2019
+1998,30,"(25,30]",College,30.814333333333334,64.68197740112994,0.47639751552795034,5817.064622447312,2019
+1998,30,"(25,30]",College,30.814333333333334,66.53003389830509,0.4631642512077294,5817.35444864901,2019
+1998,30,"(25,30]",College,30.814333333333334,64.68197740112994,0.47639751552795034,5846.310527139527,2019
+1998,30,"(25,30]",College,30.814333333333334,64.68197740112994,0.47639751552795034,5824.122509098832,2019
+1998,46,"(45,50]",HS,47.2608,96.09893785310734,0.49179315667609985,6267.717000000213,2019
+1998,46,"(45,50]",HS,19.728466666666666,96.09893785310734,0.2052932853100077,6295.244253985298,2019
+1998,46,"(45,50]",HS,38.14413333333333,96.09893785310734,0.39692564960123483,6291.931228127836,2019
+1998,46,"(45,50]",HS,36.138466666666666,96.09893785310734,0.3760547980447646,6229.919225729172,2019
+1998,46,"(45,50]",HS,38.14413333333333,96.09893785310734,0.39692564960123483,6348.796306745411,2019
+1998,36,"(35,40]",College,244.32666666666665,72.07420338983052,3.3899322528085065,294.63934821768623,2019
+1998,36,"(35,40]",College,229.37533333333334,72.07420338983052,3.1824886373381354,284.6726528520817,2019
+1998,36,"(35,40]",College,233.38666666666666,70.22614689265536,3.323358563633163,287.09353635170385,2019
+1998,36,"(35,40]",College,222.81133333333335,81.31448587570623,2.7401185770750986,128.23234395274142,2019
+1998,36,"(35,40]",College,216.97666666666666,81.31448587570623,2.6683642444512006,293.3066281134939,2019
+1998,40,"(35,40]",HS,34.588633333333334,40.65724293785311,0.8507373061720886,5818.472095385137,2019
+1998,40,"(35,40]",HS,34.625099999999996,40.65724293785311,0.8516342353298872,5971.565102303999,2019
+1998,40,"(35,40]",HS,34.88036666666667,40.65724293785311,0.8579127394344784,6239.035484236815,2019
+1998,40,"(35,40]",HS,34.49746666666667,40.65724293785311,0.8484949832775919,5790.927325555465,2019
+1998,40,"(35,40]",HS,34.698033333333335,40.65724293785311,0.8534280936454849,6196.935609932971,2019
+1998,29,"(25,30]",College,-48.66476666666667,184.80564971751414,-0.2633294314381271,7402.236705387295,2019
+1998,29,"(25,30]",College,-26.246883333333336,184.80564971751414,-0.1420242474916388,7523.567420282418,2019
+1998,29,"(25,30]",College,-32.08155,184.80564971751414,-0.17359615384615382,7688.6926827398875,2019
+1998,29,"(25,30]",College,-38.08943333333333,184.80564971751414,-0.20610535117056852,7430.258595944017,2019
+1998,29,"(25,30]",College,-38.82788333333333,184.80564971751414,-0.21010117056856184,7625.596275320864,2019
+1998,59,"(55,60]",College,868484.4262999999,9036.996271186441,96.10321839670065,2.9783310761673327,2019
+1998,59,"(55,60]",College,868484.4262999999,9036.996271186441,96.10321839670065,2.9783310761673327,2019
+1998,59,"(55,60]",College,634977.839,12141.731186440678,52.29714191902995,2.8723302198447884,2019
+1998,59,"(55,60]",College,875871.3513333334,6301.872655367232,138.9858855029963,2.9052753115682632,2019
+1998,59,"(55,60]",College,868484.4262999999,9036.996271186441,96.10321839670065,2.9783310761673327,2019
+1998,36,"(35,40]",College,1389.38,412.11659887005646,3.3713274442461425,123.9620592556656,2019
+1998,36,"(35,40]",College,1389.38,351.1307344632769,3.9568737898257345,127.42661356585934,2019
+1998,36,"(35,40]",College,1336.5033333333333,343.7385084745763,3.888139677059733,60.38231825180579,2019
+1998,36,"(35,40]",College,1704.8166666666668,526.6961016949153,3.236812767705216,125.26318545461145,2019
+1998,36,"(35,40]",College,1436.7866666666669,286.4487570621469,5.015859315999569,121.98907379535663,2019
+1998,48,"(45,50]",HS,26.62066666666667,46.201412429378536,0.5761872909698996,5616.731487264302,2019
+1998,48,"(45,50]",HS,24.797333333333334,46.201412429378536,0.5367224080267559,5640.722300186301,2019
+1998,48,"(45,50]",HS,26.62066666666667,46.201412429378536,0.5761872909698996,5601.586382064849,2019
+1998,48,"(45,50]",HS,26.62066666666667,46.201412429378536,0.5761872909698996,5633.1937483359325,2019
+1998,48,"(45,50]",HS,24.797333333333334,46.201412429378536,0.5367224080267559,5634.164342693041,2019
+1998,35,"(30,35]",HS,-6.108166666666667,55.441694915254246,-0.11017279821627647,5612.430666919545,2019
+1998,35,"(30,35]",HS,-6.108166666666667,49.89752542372881,-0.12241422024030722,5584.301898508106,2019
+1998,35,"(30,35]",HS,-5.834666666666667,51.745581920903966,-0.1127568084089823,5606.389641489218,2019
+1998,35,"(30,35]",HS,-5.9076,75.77031638418079,-0.07796720776572315,5587.140201800459,2019
+1998,35,"(30,35]",HS,-5.834666666666667,55.441694915254246,-0.10523968784838349,5608.575425368341,2019
+1998,50,"(45,50]",NoHS,43.213,42.50529943502825,1.0166497019049003,2219.0544541295812,2019
+1998,50,"(45,50]",NoHS,57.982,42.50529943502825,1.3641122582521448,2301.031480589029,2019
+1998,50,"(45,50]",NoHS,50.50633333333334,42.50529943502825,1.1882361494837865,2107.904377912245,2019
+1998,50,"(45,50]",NoHS,56.15866666666667,42.50529943502825,1.3212156463574234,2084.252795931236,2019
+1998,50,"(45,50]",NoHS,52.512,42.50529943502825,1.2354224225679802,2220.338787268326,2019
+1998,61,"(60,65]",College,4990.281,238.39928813559317,20.93244924943611,1096.9903443821981,2019
+1998,61,"(60,65]",College,5047.351333333333,417.6607683615819,12.084810726018883,1196.5419816880014,2019
+1998,61,"(60,65]",College,4994.11,410.2685423728813,12.17278315104402,1097.6313485459152,2019
+1998,61,"(60,65]",College,4988.457666666667,389.9399209039548,12.792887825135919,1406.2373741503902,2019
+1998,61,"(60,65]",College,4980.617333333333,303.08126553672315,16.433273513337138,1098.8739108104494,2019
+1998,32,"(30,35]",HS,1157.2696666666668,138.6042372881356,8.349453734671126,141.65151073088333,2019
+1998,32,"(30,35]",HS,613.9163333333333,138.6042372881356,4.42927536231884,134.35318323959547,2019
+1998,32,"(30,35]",HS,719.6696666666667,138.6042372881356,5.192263099219621,136.85587498654687,2019
+1998,32,"(30,35]",HS,1241.69,138.6042372881356,8.958528428093645,286.89702403568157,2019
+1998,32,"(30,35]",HS,909.8433333333334,138.6042372881356,6.564325529542921,139.25977396826966,2019
+1998,77,"(75,80]",NoHS,7.840333333333334,16.632508474576273,0.4713861018208844,5013.167209208735,2019
+1998,77,"(75,80]",NoHS,7.840333333333334,16.44770282485876,0.4766825748750516,5124.762185615843,2019
+1998,77,"(75,80]",NoHS,7.840333333333334,16.632508474576273,0.4713861018208844,5210.069019773328,2019
+1998,77,"(75,80]",NoHS,7.658,16.44770282485876,0.46559693359888765,5166.212772397503,2019
+1998,77,"(75,80]",NoHS,7.658,16.44770282485876,0.46559693359888765,5173.071112360466,2019
+1998,52,"(50,55]",HS,407.47853333333336,171.86925423728815,2.3708634516488654,6574.84396979085,2019
+1998,52,"(50,55]",HS,391.45143333333334,121.97172881355934,3.209362014796797,6300.092323655428,2019
+1998,52,"(50,55]",HS,393.5482666666667,120.12367231638417,3.276192436326216,5871.023653334001,2019
+1998,52,"(50,55]",HS,410.48703333333333,125.66784180790961,3.2664445209521933,6423.044144250536,2019
+1998,52,"(50,55]",HS,385.65323333333333,168.17314124293785,2.293191591017678,5859.719569343475,2019
+1998,44,"(40,45]",HS,1861.1492666666666,147.84451977401133,12.588557692307688,4579.4880278205555,2019
+1998,44,"(40,45]",HS,1505.4169333333334,147.84451977401133,10.182433110367892,5022.88137868457,2019
+1998,44,"(40,45]",HS,1308.6792666666665,147.84451977401133,8.85172658862876,4651.233436707449,2019
+1998,44,"(40,45]",HS,1206.3902666666665,147.84451977401133,8.15985785953177,9533.552008913612,2019
+1998,44,"(40,45]",HS,1281.1469333333334,147.84451977401133,8.6655016722408,4775.8670518236995,2019
+1998,62,"(60,65]",College,67132.216,2919.929265536723,22.991041869522885,14.88907941025208,2019
+1998,62,"(60,65]",College,54916.065,1509.8621581920906,36.3715751812447,15.346942428237279,2019
+1998,62,"(60,65]",College,53977.23066666666,1519.1024406779661,35.53231778271448,16.178579613961055,2019
+1998,62,"(60,65]",College,30304.71166666667,2753.6041807909605,11.005471257659762,12.711287252851669,2019
+1998,62,"(60,65]",College,63274.58966666667,2882.9681355932207,21.947724251779434,16.589108194601298,2019
+1998,45,"(40,45]",HS,85.51615666666666,123.81978531073446,0.6906501772076075,6211.118498161358,2019
+1998,45,"(40,45]",HS,87.33949000000001,123.81978531073446,0.7053758797983328,6332.4313441276445,2019
+1998,45,"(40,45]",HS,85.69849,123.81978531073446,0.69212274746668,6560.229947853154,2019
+1998,45,"(40,45]",HS,87.15715666666667,123.81978531073446,0.7039033095392603,6229.347781154857,2019
+1998,45,"(40,45]",HS,87.15715666666667,123.81978531073446,0.7039033095392603,6541.644030022288,2019
+1998,43,"(40,45]",College,43635.831,13786.501468926555,3.165112708133456,31.762881731561624,2019
+1998,43,"(40,45]",College,45776.789000000004,12363.497966101695,3.702575850743135,38.00380767650884,2019
+1998,43,"(40,45]",College,49410.69233333334,11587.314237288134,4.264205778965506,40.88852409263954,2019
+1998,43,"(40,45]",College,50608.80466666666,13158.162259887007,3.8461909548682867,38.26294605589551,2019
+1998,43,"(40,45]",College,54452.026666666665,13527.773559322035,4.025202405102618,41.73463310184387,2019
+1998,64,"(60,65]",NoHS,338.11893333333336,75.77031638418079,4.462419446936945,10191.707312559154,2019
+1998,64,"(60,65]",NoHS,293.08259999999996,75.77031638418079,3.8680398074883753,10154.612965115572,2019
+1998,64,"(60,65]",NoHS,314.70733333333334,75.77031638418079,4.153438290235745,10607.859884757967,2019
+1998,64,"(60,65]",NoHS,333.123,75.77031638418079,4.396484215678277,10038.006889211898,2019
+1998,64,"(60,65]",NoHS,314.37913333333336,75.77031638418079,4.149106778693206,10524.752982413931,2019
+1998,25,"(20,25]",College,-34.807433333333336,114.57950282485875,-0.3037841191066998,11119.215648778109,2019
+1998,25,"(20,25]",College,-34.807433333333336,114.57950282485875,-0.3037841191066998,11358.174711240603,2019
+1998,25,"(20,25]",College,-34.98976666666667,114.57950282485875,-0.30537544503182656,11419.461030634211,2019
+1998,25,"(20,25]",College,-34.807433333333336,114.57950282485875,-0.3037841191066998,11177.913055748082,2019
+1998,25,"(20,25]",College,-34.82566666666666,114.57950282485875,-0.30394325169921244,11412.087047251216,2019
+1998,46,"(45,50]",College,1731.6196666666667,1149.4911412429378,1.5064228026970934,10.22065332682386,2019
+1998,46,"(45,50]",College,2230.119,667.148395480226,3.3427630420885874,11.65833923179079,2019
+1998,46,"(45,50]",College,3744.9443333333334,264.27207909604516,14.170790747713827,18.22201148001322,2019
+1998,46,"(45,50]",College,2838.93,258.72790960451977,10.972646918299091,18.08597877973916,2019
+1998,46,"(45,50]",College,8830.403333333334,1031.2155254237289,8.563101617098813,17.015940929825515,2019
+1998,54,"(50,55]",NoHS,9.736600000000001,27.720847457627123,0.3512374581939799,5636.161268582355,2019
+1998,54,"(50,55]",NoHS,8.241466666666668,27.720847457627123,0.2973021181716834,5624.284971032996,2019
+1998,54,"(50,55]",NoHS,8.989033333333333,27.720847457627123,0.32426978818283164,5587.77682112929,2019
+1998,54,"(50,55]",NoHS,8.770233333333334,27.720847457627123,0.31637681159420283,5631.258516759143,2019
+1998,54,"(50,55]",NoHS,9.1349,27.720847457627123,0.3295317725752508,5610.194056616439,2019
+1998,45,"(40,45]",HS,76.58,101.64310734463277,0.7534204925509274,6559.155310454434,2019
+1998,45,"(40,45]",HS,82.59700000000001,105.33922033898305,0.7841049111071995,6687.265858994391,2019
+1998,45,"(40,45]",HS,65.82233333333333,112.73144632768363,0.5838861779702834,6927.82903964899,2019
+1998,45,"(40,45]",HS,74.20966666666668,101.64310734463277,0.7301003344481607,6578.406061891235,2019
+1998,45,"(40,45]",HS,38.47233333333334,127.51589830508476,0.3017061703262081,6908.201669526183,2019
+1998,82,"(80,85]",College,55164.96823333333,8353.21536723164,6.604039978394056,1.8806425768868902,2019
+1998,82,"(80,85]",College,54857.0437,8094.487457627119,6.777086750355065,1.820074969989756,2019
+1998,82,"(80,85]",College,52836.57156666667,8353.21536723164,6.325297414686122,1.7637393134810686,2019
+1998,82,"(80,85]",College,55726.190233333335,8519.5404519774,6.540985461299052,1.7547858162094887,2019
+1998,82,"(80,85]",College,52231.04256666667,8334.734802259887,6.266671202604395,1.6450475810565979,2019
+1998,47,"(45,50]",College,3506.087666666667,171.86925423728815,20.399737476175062,162.0093394411526,2019
+1998,47,"(45,50]",College,2753.5433,622.7950395480226,4.421267231027262,160.64717240411966,2019
+1998,47,"(45,50]",College,2377.5172666666667,267.96819209039546,8.872386114634992,149.95879773770454,2019
+1998,47,"(45,50]",College,4147.354,371.4593559322034,11.165027704287926,164.60121593974128,2019
+1998,47,"(45,50]",College,2055.9542,186.65370621468927,11.014805125997551,107.21819388974927,2019
+1998,63,"(60,65]",College,5336.568466666667,221.76677966101698,24.0638768115942,2578.2076533218283,2019
+1998,63,"(60,65]",College,5334.763366666666,221.76677966101698,24.055737179487174,2520.2262744593354,2019
+1998,63,"(60,65]",College,5338.3918,221.76677966101698,24.072098662207356,2467.1385493662638,2019
+1998,63,"(60,65]",College,5336.568466666667,221.76677966101698,24.0638768115942,2912.2160746417403,2019
+1998,63,"(60,65]",College,5338.410033333334,221.76677966101698,24.072180880713486,2643.5531336169297,2019
+1998,67,"(65,70]",NoHS,58.16433333333334,3.6961129943502824,15.736622073578598,5641.426087737569,2019
+1998,67,"(65,70]",NoHS,51.053333333333335,3.6961129943502824,13.812709030100335,5665.855681255312,2019
+1998,67,"(65,70]",NoHS,76.39766666666668,3.6961129943502824,20.669732441471577,5627.91966268538,2019
+1998,67,"(65,70]",NoHS,69.10433333333333,3.6961129943502824,18.69648829431438,5611.971982578243,2019
+1998,67,"(65,70]",NoHS,65.45766666666667,3.6961129943502824,17.709866220735787,5627.543546362521,2019
+1998,49,"(45,50]",College,8252.042,822.385141242938,10.034279057532597,354.151381960544,2019
+1998,49,"(45,50]",College,8252.042,822.385141242938,10.034279057532597,358.8968123762861,2019
+1998,49,"(45,50]",College,8252.042,822.385141242938,10.034279057532597,393.8708294662557,2019
+1998,49,"(45,50]",College,8250.218666666668,822.385141242938,10.032061929277367,410.30458201984567,2019
+1998,49,"(45,50]",College,8250.218666666668,822.385141242938,10.032061929277367,343.6317196789311,2019
+1998,56,"(55,60]",NoHS,6.527533333333334,46.201412429378536,0.14128428093645484,6264.379003045031,2019
+1998,56,"(55,60]",NoHS,6.545766666666666,46.201412429378536,0.14167892976588625,6241.022409459147,2019
+1998,56,"(55,60]",NoHS,6.527533333333334,46.201412429378536,0.14128428093645484,6394.973684868735,2019
+1998,56,"(55,60]",NoHS,6.527533333333334,46.201412429378536,0.14128428093645484,6222.470655023542,2019
+1998,56,"(55,60]",NoHS,6.545766666666666,46.201412429378536,0.14167892976588625,6396.180247975046,2019
+1998,44,"(40,45]",HS,8340.473666666667,341.8904519774011,24.395164060381454,1158.9506650172775,2019
+1998,44,"(40,45]",HS,10822.030333333334,341.8904519774011,31.65350266654615,1182.0502431528917,2019
+1998,44,"(40,45]",HS,8845.719333333334,341.8904519774011,25.872963933833507,1129.4647059594447,2019
+1998,44,"(40,45]",HS,9835.789333333334,341.8904519774011,28.768833047093924,1225.3082212874717,2019
+1998,44,"(40,45]",HS,8358.707,341.8904519774011,24.448494983277595,1140.682708587302,2019
+1998,48,"(45,50]",College,48.081300000000006,90.55476836158192,0.5309637567401543,7196.330397204806,2019
+1998,48,"(45,50]",College,96.49080000000001,86.85865536723163,1.1108944709314739,7336.8859704493125,2019
+1998,48,"(45,50]",College,107.5949,85.0105988700565,1.2656645339537589,7600.818145775864,2019
+1998,48,"(45,50]",College,88.23110000000001,88.70671186440678,0.9946383779264215,7217.451221636703,2019
+1998,48,"(45,50]",College,93.55523333333333,81.31448587570623,1.150535877166312,7579.284116842775,2019
+1998,84,"(80,85]",HS,6934.136666666667,81.31448587570623,85.27553967771358,2150.3575711143103,2019
+1998,84,"(80,85]",HS,13450.73,49.89752542372881,269.56707543664066,2189.3534340063206,2019
+1998,84,"(80,85]",HS,6795.5633333333335,31.416960451977403,216.30238048396615,2073.356382708964,2019
+1998,84,"(80,85]",HS,10363.826666666666,86.85865536723163,119.3182950259731,2274.3648425549122,2019
+1998,84,"(80,85]",HS,1141.4066666666668,29.56890395480226,38.60158862876254,743.062341275013,2019
+1998,61,"(60,65]",HS,483.4021333333334,101.64310734463277,4.755877166311949,4988.889487204557,2019
+1998,61,"(60,65]",HS,505.44623333333334,101.64310734463277,4.9727546366676805,4782.610921521949,2019
+1998,61,"(60,65]",HS,490.659,101.64310734463277,4.827272727272727,4475.60938734012,2019
+1998,61,"(60,65]",HS,489.25503333333336,101.64310734463277,4.813460018242627,4881.7805095613385,2019
+1998,61,"(60,65]",HS,478.1691666666667,101.64310734463277,4.704393432654302,4464.403205677207,2019
+1998,40,"(35,40]",College,4127.297333333334,20.328621468926556,203.02888415931895,16.310940665240913,2019
+1998,40,"(35,40]",College,4125.474,20.328621468926556,202.93919124353906,17.66270821602728,2019
+1998,40,"(35,40]",College,4130.944,22.176677966101696,186.27424749163882,17.0807347531191,2019
+1998,40,"(35,40]",College,4125.474,20.328621468926556,202.93919124353906,17.90247840871065,2019
+1998,40,"(35,40]",College,4127.297333333334,20.328621468926556,203.02888415931895,18.965013548215033,2019
+1998,50,"(45,50]",College,8390.068333333335,608.0105875706214,13.799214199306709,857.7244546754986,2019
+1998,50,"(45,50]",College,8390.068333333335,608.0105875706214,13.799214199306709,869.2994415980768,2019
+1998,50,"(45,50]",College,8390.068333333335,608.0105875706214,13.799214199306709,831.3876066751696,2019
+1998,50,"(45,50]",College,8390.068333333335,608.0105875706214,13.799214199306709,917.5307988403787,2019
+1998,50,"(45,50]",College,8390.068333333335,608.0105875706214,13.799214199306709,848.7142973335483,2019
+1998,80,"(75,80]",College,280.26456666666667,62.833920903954805,4.460402321463702,2583.6866789494306,2019
+1998,80,"(75,80]",College,267.90236666666664,60.98586440677967,4.392860038512211,2691.771409779397,2019
+1998,80,"(75,80]",College,285.2058,60.98586440677967,4.676588628762541,2569.3376202940963,2019
+1998,80,"(75,80]",College,274.5210666666667,62.833920903954805,4.368994688176274,2559.005538984355,2019
+1998,80,"(75,80]",College,270.6556,60.98586440677967,4.438005472788081,2654.8454296464365,2019
+1998,78,"(75,80]",College,11133.455666666667,953.5971525423727,11.67521907650826,162.0093394411526,2019
+1998,78,"(75,80]",College,12118.055666666667,953.5971525423727,12.707730548857954,160.64717240411966,2019
+1998,78,"(75,80]",College,14853.238000000001,953.5971525423727,15.57600917787976,149.95879773770454,2019
+1998,78,"(75,80]",College,12209.222333333335,955.4452090395481,12.77856879475751,164.60121593974128,2019
+1998,78,"(75,80]",College,11133.455666666667,953.5971525423727,11.67521907650826,157.58918020816802,2019
+1998,44,"(40,45]",HS,797.1613333333333,184.80564971751414,4.3135117056856185,5595.7898513648015,2019
+1998,44,"(40,45]",HS,797.1613333333333,184.80564971751414,4.3135117056856185,5354.098014627036,2019
+1998,44,"(40,45]",HS,797.1613333333333,184.80564971751414,4.3135117056856185,4999.630553215636,2019
+1998,44,"(40,45]",HS,797.1613333333333,184.80564971751414,4.3135117056856185,5465.3853375364715,2019
+1998,44,"(40,45]",HS,797.1613333333333,184.80564971751414,4.3135117056856185,4983.906574720245,2019
+1998,53,"(50,55]",HS,15689.783333333335,133.06006779661018,117.9150408769974,31.496394690928508,2019
+1998,53,"(50,55]",HS,15689.783333333335,133.06006779661018,117.9150408769974,34.03718704767535,2019
+1998,53,"(50,55]",HS,15689.783333333335,133.06006779661018,117.9150408769974,32.420793590331485,2019
+1998,53,"(50,55]",HS,15689.783333333335,133.06006779661018,117.9150408769974,33.951536361289364,2019
+1998,53,"(50,55]",HS,15691.606666666667,133.06006779661018,117.92874396135264,36.45723149220223,2019
+1998,59,"(55,60]",NoHS,412.8026666666667,77.61837288135592,5.318362796623667,6005.537202489211,2019
+1998,59,"(55,60]",NoHS,412.0733333333333,97.9469943502825,4.207105445825708,5726.818053528321,2019
+1998,59,"(55,60]",NoHS,412.438,40.65724293785311,10.144268774703555,5359.6330812653305,2019
+1998,59,"(55,60]",NoHS,465.8616666666667,157.08480225988703,2.9656698799921304,5864.631348379309,2019
+1998,59,"(55,60]",NoHS,446.35200000000003,164.47702824858757,2.7137649844049454,5345.5513479165365,2019
+1998,49,"(45,50]",NoHS,-1.2763333333333333,12.012367231638418,-0.10625160792384873,6295.091269954235,2019
+1998,49,"(45,50]",NoHS,-1.2763333333333333,35.11307344632768,-0.03634923428973772,6272.413569924948,2019
+1998,49,"(45,50]",NoHS,-1.2763333333333333,24.024734463276836,-0.053125803961924366,6285.657144093837,2019
+1998,49,"(45,50]",NoHS,-1.2763333333333333,29.56890395480226,-0.043164715719063544,6269.8145947135945,2019
+1998,49,"(45,50]",NoHS,-1.2763333333333333,27.720847457627123,-0.04604236343366777,6296.886495488368,2019
+1998,60,"(55,60]",College,6461.4375,134.9081242937853,47.89509552389243,17.153329630576767,2019
+1998,60,"(55,60]",College,6457.7908333333335,133.06006779661018,48.53289901523597,18.686758894134645,2019
+1998,60,"(55,60]",College,6457.6085,133.06006779661018,48.531528706800444,21.332893182162632,2019
+1998,60,"(55,60]",College,6457.7908333333335,134.9081242937853,47.86806478215055,21.09820419040399,2019
+1998,60,"(55,60]",College,6457.7908333333335,133.06006779661018,48.53289901523597,19.418969895583434,2019
+1998,49,"(45,50]",HS,875.8700749999999,133.06006779661018,6.582516374024525,1737.7440168591602,2019
+1998,49,"(45,50]",HS,859.8794416666667,170.021197740113,5.057483732005235,1606.2933649087545,2019
+1998,49,"(45,50]",HS,1070.3650416666667,279.0565310734463,3.8356566590622165,1656.1125084004811,2019
+1998,49,"(45,50]",HS,912.4461416666668,439.8374463276836,2.074507637503162,1800.5950320169218,2019
+1998,49,"(45,50]",HS,875.8700749999999,112.73144632768363,7.769527523438784,1805.1175095528877,2019
+1998,72,"(70,75]",HS,2044.8683333333333,133.06006779661018,15.368009104422146,2959.5126144674814,2019
+1998,72,"(70,75]",HS,3025.7305,101.64310734463277,29.76818181818182,1087.379519871765,2019
+1998,72,"(70,75]",HS,1306.0719,38.80918644067796,33.65367892976589,5639.038178516767,2019
+1998,72,"(70,75]",HS,3870.097933333333,86.85865536723163,44.55627268198961,1273.9217837209487,2019
+1998,72,"(70,75]",HS,2088.5189333333333,97.9469943502825,21.32295071622389,3105.3569681619438,2019
+1998,32,"(30,35]",College,40.842666666666666,48.04946892655367,0.8500128633907899,5775.791947698686,2019
+1998,32,"(30,35]",College,48.683,48.04946892655367,1.0131849755595574,5793.588051879637,2019
+1998,32,"(30,35]",College,47.224333333333334,48.04946892655367,0.9828273732956008,5831.285605600343,2019
+1998,32,"(30,35]",College,44.12466666666666,48.04946892655367,0.9183174684846925,5769.995359550496,2019
+1998,32,"(30,35]",College,49.047666666666665,48.04946892655367,1.0207743761255466,5856.770979496307,2019
+1998,44,"(40,45]",HS,997.9103333333334,269.8162485875706,3.6984812388326387,2777.754139491094,2019
+1998,44,"(40,45]",HS,717.117,436.1413333333333,1.6442307692307692,5633.85415118672,2019
+1998,44,"(40,45]",HS,2230.666,408.4204858757063,5.461689795547753,2827.1319420095224,2019
+1998,44,"(40,45]",HS,954.3326666666667,206.98232768361586,4.610696368848542,2805.396337160293,2019
+1998,44,"(40,45]",HS,659.135,327.106,2.0150501672240804,5242.845430418516,2019
+1998,42,"(40,45]",College,445.258,99.79505084745762,4.461724266072093,10553.334075500763,2019
+1998,42,"(40,45]",College,445.258,101.64310734463277,4.380602006688963,10174.650373158365,2019
+1998,42,"(40,45]",College,445.258,99.79505084745762,4.461724266072093,9881.289916979043,2019
+1998,42,"(40,45]",College,447.0813333333333,101.64310734463277,4.398540589844937,10062.590158865458,2019
+1998,42,"(40,45]",College,447.0813333333333,101.64310734463277,4.398540589844937,10318.796404198825,2019
+1998,48,"(45,50]",College,657.8459033333334,316.01766101694915,2.0816744900154514,75.15137064513105,2019
+1998,48,"(45,50]",College,1072.53572,232.8551186440678,4.606021659499921,151.16105233492448,2019
+1998,48,"(45,50]",College,1110.6470333333334,123.81978531073446,8.969867219088504,144.76647532739747,2019
+1998,48,"(45,50]",College,411.3348833333334,170.021197740113,2.4193152900974266,402.12798390640467,2019
+1998,48,"(45,50]",College,511.9737666666667,243.94345762711868,2.0987394851525285,74.73834851999189,2019
+1998,51,"(50,55]",HS,1068.291,184.80564971751414,5.7806187290969895,394.27666396512075,2019
+1998,51,"(50,55]",HS,1070.1143333333332,184.80564971751414,5.790484949832774,377.0934284565653,2019
+1998,51,"(50,55]",HS,1070.1143333333332,184.80564971751414,5.790484949832774,388.56318390711493,2019
+1998,51,"(50,55]",HS,1070.1143333333332,184.80564971751414,5.790484949832774,385.3272640582595,2019
+1998,51,"(50,55]",HS,1070.1143333333332,184.80564971751414,5.790484949832774,390.07343357187597,2019
+1998,34,"(30,35]",College,2335.69,273.51236158192086,8.539614028744465,2174.7976294947534,2019
+1998,34,"(30,35]",College,2401.33,273.51236158192086,8.779603181777096,2370.6145142102187,2019
+1998,34,"(30,35]",College,2377.6266666666666,275.360418079096,8.634598549976433,2217.304885956547,2019
+1998,34,"(30,35]",College,2423.21,271.6643050847458,8.91986895092485,931.0748394929872,2019
+1998,34,"(30,35]",College,2368.51,297.53709604519776,7.960385550177611,2270.7527009289906,2019
+1998,49,"(45,50]",HS,431.4006666666667,83.16254237288136,5.18743961352657,1103.5275008117933,2019
+1998,49,"(45,50]",HS,433.0416666666667,83.16254237288136,5.207172054998142,1017.9953153136923,2019
+1998,49,"(45,50]",HS,429.57733333333334,83.16254237288136,5.165514678558156,1036.3516687272777,2019
+1998,49,"(45,50]",HS,433.0416666666667,83.16254237288136,5.207172054998142,1123.8524044050414,2019
+1998,49,"(45,50]",HS,431.4006666666667,83.16254237288136,5.18743961352657,1144.5055436478292,2019
+1998,34,"(30,35]",HS,0.07475666666666667,11.27314463276836,0.006631394265036461,5422.000218087279,2019
+1998,34,"(30,35]",HS,0.07475666666666667,11.088338983050848,0.006741917502787067,5401.722608592784,2019
+1998,34,"(30,35]",HS,0.07475666666666667,11.088338983050848,0.006741917502787067,5389.918909037918,2019
+1998,34,"(30,35]",HS,0.07475666666666667,11.088338983050848,0.006741917502787067,5417.010534841803,2019
+1998,34,"(30,35]",HS,0.07475666666666667,11.27314463276836,0.006631394265036461,5404.17411826047,2019
+1998,57,"(55,60]",College,5299.7006666666675,924.0282485875706,5.735431438127091,357.24022790722057,2019
+1998,57,"(55,60]",College,3396.87,924.0282485875706,3.6761538461538463,354.2971198257258,2019
+1998,57,"(55,60]",College,3888.2583333333337,924.0282485875706,4.2079431438127095,338.8148910317176,2019
+1998,57,"(55,60]",College,3719.6,924.0282485875706,4.025418060200669,369.63396890219866,2019
+1998,57,"(55,60]",College,3628.0686666666666,924.0282485875706,3.9263612040133777,351.6615372773043,2019
+1998,40,"(35,40]",HS,51.10803333333333,86.85865536723163,0.5884046111150644,7691.482525162249,2019
+1998,40,"(35,40]",HS,43.45003333333334,86.85865536723163,0.5002383832633602,7729.075930233659,2019
+1998,40,"(35,40]",HS,34.698033333333335,86.85865536723163,0.39947698000426957,7709.412590832714,2019
+1998,40,"(35,40]",HS,37.050133333333335,86.85865536723163,0.4265566071301502,7759.377308203494,2019
+1998,40,"(35,40]",HS,37.050133333333335,86.85865536723163,0.4265566071301502,7695.947542567732,2019
+1998,46,"(45,50]",HS,4981.346666666667,611.7067005649718,8.143358021198557,258.0073682458946,2019
+1998,46,"(45,50]",HS,4944.88,611.7067005649718,8.083743394396224,256.72795319083787,2019
+1998,46,"(45,50]",HS,4543.746666666667,611.7067005649718,7.4279824995705725,238.2910699427967,2019
+1998,46,"(45,50]",HS,4890.18,611.7067005649718,7.994321454192726,262.0983887444537,2019
+1998,46,"(45,50]",HS,4799.013333333333,611.7067005649718,7.845284887186896,255.6727213790056,2019
+1998,61,"(60,65]",College,6176.906333333333,267.96819209039546,23.050893783877292,354.151381960544,2019
+1998,61,"(60,65]",College,6181.008833333333,269.8162485875706,22.908215741970952,358.8968123762861,2019
+1998,61,"(60,65]",College,6180.006,267.96819209039546,23.062461077153735,393.8708294662557,2019
+1998,61,"(60,65]",College,6177.818,267.96819209039546,23.0542959289586,410.30458201984567,2019
+1998,61,"(60,65]",College,6183.2880000000005,269.8162485875706,22.91666284876529,343.6317196789311,2019
+1998,24,"(20,25]",College,9.5725,22.176677966101696,0.4316471571906354,5531.334798764253,2019
+1998,24,"(20,25]",College,5.561166666666667,22.176677966101696,0.2507664437012263,5545.39113389587,2019
+1998,24,"(20,25]",College,4.467166666666667,22.176677966101696,0.20143534002229657,5554.404989496669,2019
+1998,24,"(20,25]",College,5.378833333333334,22.176677966101696,0.24254459308807136,5575.769662501026,2019
+1998,24,"(20,25]",College,7.202166666666667,22.176677966101696,0.32476309921962093,5516.291376371387,2019
+1998,54,"(50,55]",HS,122.76503333333335,14.414840677966104,8.516572335134207,6399.0161651591325,2019
+1998,54,"(50,55]",HS,122.76503333333335,14.414840677966104,8.516572335134207,6482.562783264771,2019
+1998,54,"(50,55]",HS,122.76503333333335,14.414840677966104,8.516572335134207,6718.784634793342,2019
+1998,54,"(50,55]",HS,122.76503333333335,14.414840677966104,8.516572335134207,6393.47539557341,2019
+1998,54,"(50,55]",HS,122.76503333333335,14.414840677966104,8.516572335134207,6687.732977001843,2019
+1998,68,"(65,70]",College,48583.810666666664,6080.105875706215,7.990619186548881,16.988373072866104,2019
+1998,68,"(65,70]",College,40314.08233333334,5174.558192090396,7.7908259675107505,15.731066752257544,2019
+1998,68,"(65,70]",College,48835.503600000004,5987.703050847457,8.155966183574881,18.94060439607927,2019
+1998,68,"(65,70]",College,54397.87366666667,5266.9610169491525,10.328132957812592,17.623763815881922,2019
+1998,68,"(65,70]",College,42187.375,6098.5864406779665,6.917566129522651,15.680390977537717,2019
+1998,48,"(45,50]",College,1644.3731666666667,90.55476836158192,18.15887993993584,3392.7025770543287,2019
+1998,48,"(45,50]",College,1822.7863333333332,323.40988700564975,5.636149068322981,3665.3363304810073,2019
+1998,48,"(45,50]",College,1823.3333333333333,253.18374011299437,7.201620975026242,3450.7796707936127,2019
+1998,48,"(45,50]",College,1816.4046666666668,232.8551186440678,7.800578648404736,3430.585625883462,2019
+1998,48,"(45,50]",College,2091.181,166.32508474576272,12.572853957636566,3534.2812650435285,2019
+1998,40,"(35,40]",College,117.78733333333334,144.14840677966103,0.81712546093817,3127.65660825271,2019
+1998,40,"(35,40]",College,158.44766666666666,145.99646327683615,1.085284280936455,3178.817144008391,2019
+1998,40,"(35,40]",College,124.89833333333333,145.99646327683615,0.8554887600016934,2924.986502640141,2019
+1998,40,"(35,40]",College,176.681,145.99646327683615,1.210173151009695,3059.3374550323033,2019
+1998,40,"(35,40]",College,140.21433333333334,145.99646327683615,0.960395410863215,2974.941982589156,2019
+1998,55,"(50,55]",College,8994.503333333334,877.826836158192,10.246329871501498,1096.2066859761633,2019
+1998,55,"(50,55]",College,8994.503333333334,877.826836158192,10.246329871501498,1195.9825502859,2019
+1998,55,"(50,55]",College,8994.503333333334,877.826836158192,10.246329871501498,1096.8072234665092,2019
+1998,55,"(50,55]",College,8994.503333333334,877.826836158192,10.246329871501498,1405.6231837891041,2019
+1998,55,"(50,55]",College,8994.503333333334,877.826836158192,10.246329871501498,1098.150043615287,2019
+1998,28,"(25,30]",HS,55.5205,133.06006779661018,0.4172589186176142,5676.209331057484,2019
+1998,28,"(25,30]",HS,24.687933333333334,121.97172881355934,0.20240701327657848,5693.698605865702,2019
+1998,28,"(25,30]",HS,140.17786666666666,109.03533333333333,1.28561872909699,5787.411451125698,2019
+1998,28,"(25,30]",HS,53.788333333333334,49.89752542372881,1.0779759692803172,5670.512684081105,2019
+1998,28,"(25,30]",HS,54.9735,145.99646327683615,0.37653994327081836,5755.792172695817,2019
+1998,40,"(35,40]",College,294.3407,114.57950282485875,2.5688774409321398,5963.358116499038,2019
+1998,40,"(35,40]",College,283.89300000000003,114.57950282485875,2.4776944654223763,5706.638156046067,2019
+1998,40,"(35,40]",College,288.99833333333333,114.57950282485875,2.5222515913259254,5327.546313345367,2019
+1998,40,"(35,40]",College,287.722,114.57950282485875,2.511112309850038,5824.4052917687595,2019
+1998,40,"(35,40]",College,289.72766666666666,114.57950282485875,2.5286168950264325,5310.577976743663,2019
+1998,78,"(75,80]",College,137412.23466666666,537.7844406779662,255.51545242446176,17.268444467120176,2019
+1998,78,"(75,80]",HS,140804.18166666667,2679.681920903955,52.54511013723907,17.91468756555343,2019
+1998,78,"(75,80]",College,142265.6745,535.9363841807909,265.4525400761158,15.830599937145305,2019
+1998,78,"(75,80]",College,147488.52166666667,909.2437966101695,162.21009394458494,15.204111176697074,2019
+1998,78,"(75,80]",HS,154976.13116666666,1410.0671073446329,109.90691886892523,15.429581264837443,2019
+1998,25,"(20,25]",HS,3.810766666666667,29.56890395480226,0.128877508361204,5342.314672874776,2019
+1998,25,"(20,25]",HS,3.810766666666667,27.720847457627123,0.13746934225195093,5358.775166837647,2019
+1998,25,"(20,25]",HS,3.9931,29.56890395480226,0.13504389632107025,5393.643492462477,2019
+1998,25,"(20,25]",HS,3.9931,29.56890395480226,0.13504389632107025,5336.953122770979,2019
+1998,25,"(20,25]",HS,3.9931,29.56890395480226,0.13504389632107025,5417.2161710043965,2019
+1998,63,"(60,65]",HS,858.1518333333333,1386.042372881356,0.6191382385730212,789.8355259673465,2019
+1998,63,"(60,65]",HS,784.2521333333333,1386.042372881356,0.5658211817168338,730.7819163410023,2019
+1998,63,"(60,65]",HS,511.4997,1386.042372881356,0.3690361204013378,741.8227001546873,2019
+1998,63,"(60,65]",HS,860.2669000000001,1386.042372881356,0.6206642140468228,800.6423991908252,2019
+1998,63,"(60,65]",HS,675.9825999999999,1386.042372881356,0.4877070234113712,816.3649782532741,2019
+1998,34,"(30,35]",NoHS,164.9205,97.9469943502825,1.683772953871395,8283.26194761302,2019
+1998,34,"(30,35]",NoHS,164.9205,97.9469943502825,1.683772953871395,8370.558996909218,2019
+1998,34,"(30,35]",NoHS,164.9205,97.9469943502825,1.683772953871395,8629.983376585207,2019
+1998,34,"(30,35]",NoHS,166.74383333333336,97.9469943502825,1.702388464693633,8278.006595779849,2019
+1998,34,"(30,35]",NoHS,166.74383333333336,97.9469943502825,1.702388464693633,8583.014104185511,2019
+1998,56,"(55,60]",College,1109.316,147.84451977401133,7.503260869565216,567.9457770880483,2019
+1998,56,"(55,60]",College,2378.356,304.9293220338983,7.799695956217696,1121.1982873953189,2019
+1998,56,"(55,60]",College,909.8433333333334,428.74910734463276,2.1220879944643065,527.6268677311397,2019
+1998,56,"(55,60]",College,1625.5016666666668,168.17314124293785,9.665643720827669,1216.1301294020504,2019
+1998,56,"(55,60]",College,1079.4133333333332,184.80564971751414,5.840802675585283,591.5742222566957,2019
+1998,42,"(40,45]",HS,19798.118000000002,2106.7844067796614,9.397315613448336,14.635923813578808,2019
+1998,42,"(40,45]",HS,18925.653000000002,1790.766745762712,10.56846350580366,15.731066752257544,2019
+1998,42,"(40,45]",HS,21216.08786666667,2106.7844067796614,10.070364959220793,16.275653375010755,2019
+1998,42,"(40,45]",HS,20450.506666666668,1977.4204519774014,10.342012315193948,14.828356112193319,2019
+1998,42,"(40,45]",HS,20276.305399999997,1800.0070282485879,11.26457012766717,15.680390977537717,2019
+1998,41,"(40,45]",HS,765.253,101.64310734463277,7.528823350562481,5963.358116499038,2019
+1998,41,"(40,45]",HS,454.3746666666667,101.64310734463277,4.470294922468836,5706.638156046067,2019
+1998,41,"(40,45]",HS,892.7040000000001,101.64310734463277,8.782730313165096,5327.546313345367,2019
+1998,41,"(40,45]",HS,878.1173333333334,101.64310734463277,8.639221647917301,5824.4052917687595,2019
+1998,41,"(40,45]",HS,1035.1063333333334,101.64310734463277,10.183733657646702,5310.577976743663,2019
+1998,32,"(30,35]",College,61.719833333333334,81.31448587570623,0.7590262997871693,5180.359212745039,2019
+1998,32,"(30,35]",College,61.5375,81.31448587570623,0.7567839768926725,5277.612479291563,2019
+1998,32,"(30,35]",College,61.719833333333334,81.31448587570623,0.7590262997871693,4782.564999162549,2019
+1998,32,"(30,35]",College,61.5375,81.31448587570623,0.7567839768926725,5014.908326796147,2019
+1998,32,"(30,35]",College,61.719833333333334,81.31448587570623,0.7590262997871693,5037.574007099573,2019
+1998,63,"(60,65]",HS,2987.3858,160.78091525423727,18.580475147041867,2679.3987741086435,2019
+1998,63,"(60,65]",HS,2987.568133333333,160.78091525423727,18.5816091954023,2650.2112475921576,2019
+1998,63,"(60,65]",HS,2987.4040333333332,160.78091525423727,18.58058855187791,2562.8814713947713,2019
+1998,63,"(60,65]",HS,2987.4040333333332,158.93285875706215,18.7966419071323,3024.7034180564006,2019
+1998,63,"(60,65]",HS,3005.619133333333,160.78091525423727,18.69387998308538,2743.0812517787103,2019
+1998,37,"(35,40]",HS,295.7446666666667,160.78091525423727,1.8394264406258414,10553.334075500763,2019
+1998,37,"(35,40]",HS,295.7446666666667,160.78091525423727,1.8394264406258414,10174.650373158365,2019
+1998,37,"(35,40]",HS,295.7446666666667,160.78091525423727,1.8394264406258414,9881.289916979043,2019
+1998,37,"(35,40]",HS,294.286,160.78091525423727,1.8303540537423597,10062.590158865458,2019
+1998,37,"(35,40]",HS,297.75033333333334,160.78091525423727,1.851900972590628,10318.796404198825,2019
+1998,52,"(50,55]",HS,3025.2017333333333,64.68197740112994,46.77039655996178,773.231131966627,2019
+1998,52,"(50,55]",HS,3051.475966666667,77.61837288135592,39.313835801879286,847.7187609956443,2019
+1998,52,"(50,55]",HS,2865.1313,55.441694915254246,51.678277591973234,774.0691809428106,2019
+1998,52,"(50,55]",HS,3209.2490000000003,73.92225988700567,43.413837792642134,992.0758929974288,2019
+1998,52,"(50,55]",HS,2752.3216666666667,55.441694915254246,49.64353400222965,775.727468964503,2019
+1998,55,"(50,55]",College,36847.0687,2291.5900564971753,16.079258415147265,16.988373072866104,2019
+1998,55,"(50,55]",College,39017.7288,2162.2261016949155,18.045165937741185,17.31960725314636,2019
+1998,55,"(50,55]",College,37582.98426666667,1822.1837062146894,20.62524439137897,18.94060439607927,2019
+1998,55,"(50,55]",College,32889.73338333333,2180.7066666666665,15.082144648829432,17.623763815881922,2019
+1998,55,"(50,55]",College,35349.182133333336,2106.7844067796614,16.778737311506188,18.931858893614667,2019
+1998,30,"(25,30]",NoHS,2.3156333333333334,27.720847457627123,0.08353400222965439,5305.122519869752,2019
+1998,30,"(25,30]",NoHS,2.0421333333333336,42.50529943502825,0.04804420532208813,5305.439302844756,2019
+1998,30,"(25,30]",NoHS,2.2426999999999997,25.872790960451983,0.08668179646440513,5309.826679155001,2019
+1998,30,"(25,30]",NoHS,2.5891333333333333,27.720847457627123,0.09340022296544034,5298.9113294268955,2019
+1998,30,"(25,30]",NoHS,2.6620666666666666,18.480564971751416,0.14404682274247488,5350.528051868545,2019
+1998,51,"(50,55]",HS,2487.0266666666666,286.4487570621469,8.682274247491637,245.65601174102594,2019
+1998,51,"(50,55]",HS,2476.9983333333334,271.6643050847458,9.117864537119194,255.72668930469325,2019
+1998,51,"(50,55]",HS,2485.021,458.318011299435,5.422045258388176,245.6415747550427,2019
+1998,51,"(50,55]",HS,2511.0946666666664,301.233209039548,8.336048587315592,254.37923918611835,2019
+1998,51,"(50,55]",HS,2491.585,279.0565310734463,8.928603069835434,240.8976500043077,2019
+1998,37,"(35,40]",HS,163.29773333333335,105.33922033898305,1.5502082966613862,5878.237033546576,2019
+1998,37,"(35,40]",HS,163.29773333333335,105.33922033898305,1.5502082966613862,5996.726318772339,2019
+1998,37,"(35,40]",HS,163.4800666666667,105.33922033898305,1.551939212579945,6239.936900931234,2019
+1998,37,"(35,40]",HS,163.4800666666667,105.33922033898305,1.551939212579945,5930.149528469294,2019
+1998,37,"(35,40]",HS,163.4800666666667,105.33922033898305,1.551939212579945,6175.475176910938,2019
+1998,59,"(55,60]",HS,31.215466666666668,36.96112994350283,0.8445484949832774,4835.372022986859,2019
+1998,59,"(55,60]",HS,29.373900000000003,36.96112994350283,0.7947240802675585,4831.317727765932,2019
+1998,59,"(55,60]",HS,27.550566666666665,36.96112994350283,0.7453929765886286,4946.650897188802,2019
+1998,59,"(55,60]",HS,24.086233333333332,36.96112994350283,0.651663879598662,4847.138212869851,2019
+1998,59,"(55,60]",HS,22.0988,36.96112994350283,0.5978929765886286,4915.660374368146,2019
+1998,71,"(70,75]",HS,362.29633333333334,25.872790960451983,14.002986144290489,7078.389144412952,2019
+1998,71,"(70,75]",HS,362.4786666666667,25.872790960451983,14.010033444816052,7016.7747389446795,2019
+1998,71,"(70,75]",HS,362.29633333333334,27.720847457627123,13.069453734671123,7501.569854088225,2019
+1998,71,"(70,75]",HS,362.29633333333334,25.872790960451983,14.002986144290489,7252.474800387639,2019
+1998,71,"(70,75]",HS,362.29633333333334,25.872790960451983,14.002986144290489,7354.991078319814,2019
+1998,48,"(45,50]",NoHS,858.79,129.36395480225988,6.638557095078834,4972.972907946318,2019
+1998,48,"(45,50]",NoHS,899.815,129.36395480225988,6.955685618729097,4765.1607531753525,2019
+1998,48,"(45,50]",NoHS,746.1080000000001,129.36395480225988,5.767510750119446,4440.628812499521,2019
+1998,48,"(45,50]",NoHS,747.0196666666667,129.36395480225988,5.774558050645007,4858.157039568078,2019
+1998,48,"(45,50]",NoHS,745.9256666666666,129.36395480225988,5.766101290014333,4432.078814401876,2019
+1998,68,"(65,70]",HS,297.33096666666665,68.37809039548021,4.348336798336799,7525.897955636932,2019
+1998,68,"(65,70]",HS,301.8893,36.96112994350283,8.1677508361204,7846.756873477674,2019
+1998,68,"(65,70]",HS,294.833,70.22614689265536,4.198336560464708,7982.791097702956,2019
+1998,68,"(65,70]",HS,303.9496666666667,40.65724293785311,7.475904530252357,7575.342997067203,2019
+1998,68,"(65,70]",HS,296.5651666666667,27.720847457627123,10.698272017837235,7912.362647275094,2019
+1998,39,"(35,40]",HS,110.94983333333333,97.9469943502825,1.1327538335331606,7651.283825074932,2019
+1998,39,"(35,40]",HS,99.37166666666667,96.09893785310734,1.0340558271160278,7755.937416492145,2019
+1998,39,"(35,40]",HS,110.14756666666666,116.4275593220339,0.9460609438870308,8074.128957837148,2019
+1998,39,"(35,40]",HS,126.48463333333333,114.57950282485875,1.103902794260438,7689.602494817717,2019
+1998,39,"(35,40]",HS,124.1143,97.9469943502825,1.2671578216697166,7976.387103831425,2019
+1998,59,"(55,60]",College,811.9303333333334,92.40282485875707,8.786856187290969,7446.504370773122,2019
+1998,59,"(55,60]",College,1090.9003333333333,92.40282485875707,11.80591973244147,7099.85449582277,2019
+1998,59,"(55,60]",College,1337.0503333333334,92.40282485875707,14.469799331103678,6646.2369444952055,2019
+1998,59,"(55,60]",College,777.287,92.40282485875707,8.411939799331103,7271.767732162718,2019
+1998,59,"(55,60]",College,864.807,92.40282485875707,9.359096989966554,6629.040766413338,2019
+1998,44,"(40,45]",College,30.99666666666667,40.65724293785311,0.7623897841289146,6221.672332143035,2019
+1998,44,"(40,45]",College,30.99666666666667,40.65724293785311,0.7623897841289146,6252.83258084981,2019
+1998,44,"(40,45]",College,31.179000000000002,40.65724293785311,0.7668744299179081,6277.194407375036,2019
+1998,44,"(40,45]",College,30.99666666666667,40.65724293785311,0.7623897841289146,6220.509512275954,2019
+1998,44,"(40,45]",College,30.99666666666667,40.65724293785311,0.7623897841289146,6286.303466822972,2019
+1998,49,"(45,50]",College,1373.6993333333332,258.72790960451977,5.309436215957955,12677.183342975433,2019
+1998,49,"(45,50]",College,1371.6936666666668,258.72790960451977,5.301684185379838,13310.446752006314,2019
+1998,49,"(45,50]",College,1371.876,258.72790960451977,5.3023889154323935,11563.862010738283,2019
+1998,49,"(45,50]",College,1371.6936666666668,258.72790960451977,5.301684185379838,11849.545150295664,2019
+1998,49,"(45,50]",College,1369.8703333333333,258.72790960451977,5.294636884854276,12559.287953020945,2019
+1998,50,"(45,50]",College,1751.8586666666667,114.57950282485875,15.289459488617975,3530.0068943006313,2019
+1998,50,"(45,50]",College,864.9893333333334,127.51589830508476,6.783384227618632,7090.304281406931,2019
+1998,50,"(45,50]",College,1582.1063333333334,186.65370621468927,8.47615815093215,3590.766541682783,2019
+1998,50,"(45,50]",College,2267.315,88.70671186440678,25.559678093645484,3569.4123546768437,2019
+1998,50,"(45,50]",College,2293.9356666666667,72.07420338983052,31.82741617357002,3677.803066133577,2019
+1998,51,"(50,55]",College,662.964,186.65370621468927,3.5518394648829434,6178.625172852858,2019
+1998,51,"(50,55]",College,660.5936666666666,186.65370621468927,3.539140368886387,5921.893233780246,2019
+1998,51,"(50,55]",College,663.1463333333334,184.80564971751414,3.588344481605351,5517.0178234987725,2019
+1998,51,"(50,55]",College,662.7816666666666,186.65370621468927,3.5508626113447463,6037.6500796020855,2019
+1998,51,"(50,55]",College,661.323,186.65370621468927,3.5430477830391736,5506.902785777844,2019
+1998,18,"(15,20]",NoHS,73.91793333333334,46.201412429378536,1.59990635451505,5370.352880203998,2019
+1998,18,"(15,20]",NoHS,102.1249,46.201412429378536,2.2104280936454845,5911.25656733582,2019
+1998,18,"(15,20]",NoHS,107.50373333333334,46.201412429378536,2.3268494983277592,5803.440744621367,2019
+1998,18,"(15,20]",NoHS,60.18823333333333,46.201412429378536,1.302735785953177,5358.458421780591,2019
+1998,18,"(15,20]",NoHS,103.36476666666667,46.201412429378536,2.2372642140468226,5777.64939315369,2019
+1998,52,"(50,55]",HS,71.36526666666667,64.68197740112994,1.1033253702818921,6973.936033338525,2019
+1998,52,"(50,55]",HS,73.93616666666668,64.68197740112994,1.1430721452460586,7193.050163622732,2019
+1998,52,"(50,55]",HS,107.10260000000001,64.68197740112994,1.6558337314859055,7448.817515562388,2019
+1998,52,"(50,55]",HS,38.74583333333334,64.68197740112994,0.5990205446727187,7002.052955252448,2019
+1998,52,"(50,55]",HS,45.1275,64.68197740112994,0.6976827520305781,7377.244889286197,2019
+1998,47,"(45,50]",College,1179.8790000000001,175.56536723163845,6.720454145396936,12677.183342975433,2019
+1998,47,"(45,50]",College,1193.007,175.56536723163845,6.795229713078682,13310.446752006314,2019
+1998,47,"(45,50]",College,1178.6026666666667,175.56536723163845,6.713184298538988,11563.862010738283,2019
+1998,47,"(45,50]",College,1187.537,175.56536723163845,6.764073226544621,11849.545150295664,2019
+1998,47,"(45,50]",College,1193.007,175.56536723163845,6.795229713078682,12559.287953020945,2019
+1998,70,"(65,70]",NoHS,189.809,24.024734463276836,7.900565989194751,6987.640568780744,2019
+1998,70,"(65,70]",NoHS,189.809,22.176677966101696,8.558946488294314,6926.816091560357,2019
+1998,70,"(65,70]",NoHS,189.809,24.024734463276836,7.900565989194751,7405.395884930101,2019
+1998,70,"(65,70]",NoHS,189.809,22.176677966101696,8.558946488294314,7159.49435744843,2019
+1998,70,"(65,70]",NoHS,189.99133333333336,24.024734463276836,7.908155389760742,7260.696324170565,2019
+1998,33,"(30,35]",College,2668.9953333333337,240.24734463276835,11.109364548494986,184.85193233772293,2019
+1998,33,"(30,35]",College,2642.01,225.46289265536726,11.718158890290038,181.29643382570626,2019
+1998,33,"(30,35]",College,2681.7586666666666,210.6784406779661,12.729155665082438,175.55992747413535,2019
+1998,33,"(30,35]",College,2680.3,232.8551186440678,11.510590858416945,192.01559982895907,2019
+1998,33,"(30,35]",College,2681.7586666666666,255.03179661016952,10.515389462459405,179.84427419868038,2019
+1998,45,"(40,45]",College,4.2666,16.817314124293787,0.25370281892021024,10738.102695179452,2019
+1998,45,"(40,45]",College,4.230133333333333,16.817314124293787,0.25153441875849897,10742.168468342588,2019
+1998,45,"(40,45]",College,4.303066666666667,16.817314124293787,0.2558712190819214,10709.31571873158,2019
+1998,45,"(40,45]",College,4.230133333333333,17.002119774011298,0.24880034898938488,10737.415106889735,2019
+1998,45,"(40,45]",College,4.303066666666667,17.002119774011298,0.25309001017885713,10745.07461443129,2019
+1998,64,"(60,65]",HS,12916.949166666665,554.4169491525424,23.29825808249721,21.844285263773223,2019
+1998,64,"(60,65]",HS,12758.319166666666,554.4169491525424,23.012137681159416,23.544945025051295,2019
+1998,64,"(60,65]",HS,12721.8525,554.4169491525424,22.94636287625418,23.136555598181747,2019
+1998,64,"(60,65]",HS,12648.919166666667,554.4169491525424,22.8148132664437,23.690698223439934,2019
+1998,64,"(60,65]",HS,12647.095833333335,554.4169491525424,22.81152452619844,24.810915080284573,2019
+1998,81,"(80,85]",HS,589.3925,92.40282485875707,6.378511705685619,8095.413585557139,2019
+1998,81,"(80,85]",HS,569.974,48.04946892655367,11.862233084641112,7765.128220611217,2019
+1998,81,"(80,85]",HS,351.8121666666667,53.593638418079095,6.564438934378965,10314.802499344254,2019
+1998,81,"(80,85]",HS,716.57,46.201412429378536,15.509698996655517,7890.806456220365,2019
+1998,81,"(80,85]",HS,341.6926666666667,55.441694915254246,6.163099219620959,10217.090669914041,2019
+1998,67,"(65,70]",College,1017.967,149.69257627118645,6.800383996036169,294.63934821768623,2019
+1998,67,"(65,70]",College,1795.8192333333334,245.7915141242938,7.306270274348077,608.3934863730094,2019
+1998,67,"(65,70]",College,1348.5373333333332,158.93285875706215,8.48494983277592,576.4111149301759,2019
+1998,67,"(65,70]",College,822.9432666666668,419.50882485875707,1.9616828488500584,291.6986867839103,2019
+1998,67,"(65,70]",College,950.7407,267.96819209039546,3.547961019490255,293.3066281134939,2019
+1998,79,"(75,80]",College,12490.015666666666,354.82684745762714,35.20031180323299,988.5859082189633,2019
+1998,79,"(75,80]",College,10859.955666666667,354.82684745762714,30.606352773132663,1021.1001874181532,2019
+1998,79,"(75,80]",College,10819.842333333334,354.82684745762714,30.493302327201782,942.8621107542589,2019
+1998,79,"(75,80]",College,10876.365666666667,354.82684745762714,30.652600682831658,1029.9302171209063,2019
+1998,79,"(75,80]",College,12506.425666666666,354.82684745762714,35.24655971293199,969.8612621006496,2019
+1998,41,"(40,45]",College,12271.033333333335,1386.042372881356,8.853288740245263,184.42826699004786,2019
+1998,41,"(40,45]",College,12272.856666666667,1386.042372881356,8.854604236343366,185.53712073516473,2019
+1998,41,"(40,45]",College,12272.856666666667,1386.042372881356,8.854604236343366,172.3483856761194,2019
+1998,41,"(40,45]",College,12271.033333333335,1386.042372881356,8.853288740245263,188.78345131410256,2019
+1998,41,"(40,45]",College,12271.033333333335,1386.042372881356,8.853288740245263,180.52794782762228,2019
+1998,31,"(30,35]",College,7200.343333333333,2642.7207909604517,2.7245948031901213,162.0093394411526,2019
+1998,31,"(30,35]",College,8208.646666666667,2624.240225988701,3.128008855810448,160.64717240411966,2019
+1998,31,"(30,35]",College,10409.41,2624.240225988701,3.966637618352254,149.95879773770454,2019
+1998,31,"(30,35]",College,9457.630000000001,2642.7207909604517,3.5787473396169056,164.60121593974128,2019
+1998,31,"(30,35]",College,9488.626666666667,2624.240225988701,3.6157614583824014,157.58918020816802,2019
+1998,30,"(25,30]",HS,166.3974,195.893988700565,0.8494257588187039,5030.009868492258,2019
+1998,30,"(25,30]",HS,168.22073333333333,195.893988700565,0.8587335142298226,4996.349696903744,2019
+1998,30,"(25,30]",HS,202.86406666666667,195.893988700565,1.0355808670410802,5014.337883181511,2019
+1998,30,"(25,30]",HS,239.33073333333334,195.893988700565,1.2217359752634567,5063.6602927657495,2019
+1998,30,"(25,30]",HS,177.3374,195.893988700565,0.9052722912854168,4971.4239402596395,2019
+1998,35,"(30,35]",HS,-46.47676666666667,142.30035028248585,-0.32661034617556367,6633.643120363131,2019
+1998,35,"(30,35]",HS,-46.46765,142.30035028248585,-0.3265462798071494,6666.0661587185,2019
+1998,35,"(30,35]",HS,-46.47676666666667,142.30035028248585,-0.32661034617556367,6649.107194602839,2019
+1998,35,"(30,35]",HS,-46.47676666666667,142.30035028248585,-0.32661034617556367,6692.200070724344,2019
+1998,35,"(30,35]",HS,-46.47676666666667,144.14840677966103,-0.32242303404510764,6637.494046617886,2019
+1998,76,"(75,80]",HS,1463.2797,64.68197740112994,22.622680363115148,4426.542620382839,2019
+1998,76,"(75,80]",HS,921.3121,55.441694915254246,16.617675585284278,8997.035998529595,2019
+1998,76,"(75,80]",HS,786.1301666666667,68.37809039548021,11.496813703335445,8398.118439051976,2019
+1998,76,"(75,80]",HS,1080.2703000000001,182.957593220339,5.904484645788994,9144.105278824782,2019
+1998,76,"(75,80]",HS,654.0114333333333,112.73144632768363,5.801499533965678,8375.848926416578,2019
+1998,27,"(25,30]",HS,62.540333333333336,92.40282485875707,0.6768227424749164,9585.968972174696,2019
+1998,27,"(25,30]",HS,57.07033333333334,92.40282485875707,0.6176254180602007,9643.467672837523,2019
+1998,27,"(25,30]",HS,56.888,92.40282485875707,0.6156521739130434,9732.859856604075,2019
+1998,27,"(25,30]",HS,57.07033333333334,92.40282485875707,0.6176254180602007,9686.445186823683,2019
+1998,27,"(25,30]",HS,61.264,92.40282485875707,0.663010033444816,9698.202663749002,2019
+1998,60,"(55,60]",NoHS,6513.129,83.16254237288136,78.3180602006689,17.90414601484509,2019
+1998,60,"(55,60]",NoHS,21025.22133333333,92.40282485875707,227.53872909698993,22.473270114566738,2019
+1998,60,"(55,60]",NoHS,4642.024333333333,85.0105988700565,54.60524211138577,18.717777207584636,2019
+1998,60,"(55,60]",NoHS,2571.6293333333338,83.16254237288136,30.922928279450023,19.58772559724811,2019
+1998,60,"(55,60]",NoHS,6464.263666666667,73.92225988700567,87.44678093645483,20.806168959163664,2019
+1998,48,"(45,50]",NoHS,10.848833333333333,9.240282485875708,1.1740802675585282,10635.328237028774,2019
+1998,48,"(45,50]",NoHS,11.122333333333334,9.240282485875708,1.203678929765886,10552.630180859267,2019
+1998,48,"(45,50]",NoHS,11.031166666666666,9.240282485875708,1.1938127090301,10709.481735486075,2019
+1998,48,"(45,50]",NoHS,10.447700000000001,9.240282485875708,1.13066889632107,10679.149295951689,2019
+1998,48,"(45,50]",NoHS,9.207833333333333,9.240282485875708,0.996488294314381,10953.593625347705,2019
+1998,60,"(55,60]",HS,28908.403000000002,646.8197740112995,44.6931342570473,286.7612663831852,2019
+1998,60,"(55,60]",HS,30937.773,646.8197740112995,47.83059245102723,289.2720201220195,2019
+1998,60,"(55,60]",HS,29411.825333333334,646.8197740112995,45.471438127090295,330.93882148263026,2019
+1998,60,"(55,60]",HS,27769.002,646.8197740112995,42.931591017677974,312.73645466466934,2019
+1998,60,"(55,60]",HS,12642.628666666666,646.8197740112995,19.545828953655036,241.9111186306855,2019
+1998,55,"(50,55]",HS,23345.048333333332,739.2225988700566,31.58053929765886,1137.361481989933,2019
+1998,55,"(50,55]",HS,23345.048333333332,739.2225988700566,31.58053929765886,1175.502057019537,2019
+1998,55,"(50,55]",HS,23345.048333333332,739.2225988700566,31.58053929765886,1154.3887531924051,2019
+1998,55,"(50,55]",HS,23345.048333333332,739.2225988700566,31.58053929765886,1214.7358267998663,2019
+1998,55,"(50,55]",HS,23343.225000000002,739.2225988700566,31.578072742474916,1202.1806832917837,2019
+1998,51,"(50,55]",College,3685.3031,240.24734463276835,15.339620529971702,12.721433128327465,2019
+1998,51,"(50,55]",College,3706.3079,264.27207909604516,14.024591294992634,13.57336395888188,2019
+1998,51,"(50,55]",College,3123.169433333333,663.4522824858758,4.707451486384512,13.571658835012602,2019
+1998,51,"(50,55]",College,3198.8742333333334,328.95405649717515,9.724379955657435,13.859521983272524,2019
+1998,51,"(50,55]",College,3120.160933333333,147.84451977401133,21.104339464882937,14.436668171043834,2019
+1998,70,"(65,70]",College,1859.8,240.24734463276835,7.741188577308979,828.5419694443617,2019
+1998,70,"(65,70]",College,1942.7616666666668,240.24734463276835,8.086506303061489,880.0799647741078,2019
+1998,70,"(65,70]",College,1857.429666666667,240.24734463276835,7.7313223565731946,847.4041475595999,2019
+1998,70,"(65,70]",College,1897.1783333333333,240.24734463276835,7.896771288911758,870.3179176154606,2019
+1998,70,"(65,70]",College,1832.997,240.24734463276835,7.629624388988939,820.2401522977077,2019
+1998,28,"(25,30]",NoHS,0,4.989752542372881,0,5960.017328953831,2019
+1998,28,"(25,30]",NoHS,0,6.8378090395480235,0,5954.335145085631,2019
+1998,28,"(25,30]",NoHS,0,4.989752542372881,0,5976.422852453555,2019
+1998,28,"(25,30]",NoHS,0,8.501059887005649,0,5955.143446839002,2019
+1998,28,"(25,30]",NoHS,0,6.8378090395480235,0,5973.3571860743195,2019
+1998,31,"(30,35]",HS,83.28986666666667,88.70671186440678,0.9389353400222965,8796.270292592157,2019
+1998,31,"(30,35]",HS,83.10753333333334,90.55476836158192,0.9177598798716812,8856.060064123401,2019
+1998,31,"(30,35]",HS,82.9252,90.55476836158192,0.9157463654358065,9062.816860995994,2019
+1998,31,"(30,35]",HS,83.10753333333334,88.70671186440678,0.9368798773690078,8792.692500695124,2019
+1998,31,"(30,35]",HS,82.9252,88.70671186440678,0.9348244147157191,9052.12978830512,2019
+1998,43,"(40,45]",HS,25486.18866666667,3178.6571751412434,8.017910476783074,16.47231744255796,2019
+1998,43,"(40,45]",HS,29201.77733333333,3455.8656497175143,8.449916835083075,17.72255562400867,2019
+1998,43,"(40,45]",HS,30296.506666666668,3437.385084745763,8.813823857302118,18.425095931565252,2019
+1998,43,"(40,45]",HS,25524.843333333334,3160.176610169491,8.077030647968865,16.699318985138266,2019
+1998,43,"(40,45]",HS,25484.36533333333,3178.6571751412434,8.017336859298435,17.840594983961697,2019
+1998,61,"(60,65]",College,38039.474,2347.0317514124295,16.20748163168567,212.67091303284923,2019
+1998,61,"(60,65]",College,33762.11633333334,2420.954011299435,13.94579003804029,210.116394955445,2019
+1998,61,"(60,65]",College,35652.366,2291.5900564971753,15.557916172186859,210.53819292447616,2019
+1998,61,"(60,65]",College,36091.607,2494.87627118644,14.466291341508738,205.43823205422777,2019
+1998,61,"(60,65]",College,34696.57466666667,2642.7207909604517,13.12911102275651,195.33790630188793,2019
+1998,54,"(50,55]",College,51073.39,814.9929152542373,62.66728095920642,19.119932411046605,2019
+1998,54,"(50,55]",College,53864.731,973.9257740112994,55.306813350002855,19.512198871435135,2019
+1998,54,"(50,55]",College,47289.42633333334,999.7985649717516,47.29895399946834,21.441993446198993,2019
+1998,54,"(50,55]",College,52986.796,872.2826666666666,60.74498327759198,19.84743632088412,2019
+1998,54,"(50,55]",College,52540.079333333335,983.1660564971752,53.439679885332055,21.540000328966926,2019
+1998,35,"(30,35]",College,369.8631666666667,85.0105988700565,4.350788861422132,7007.236360531766,2019
+1998,35,"(30,35]",College,369.8631666666667,85.0105988700565,4.350788861422132,7103.080727020382,2019
+1998,35,"(30,35]",College,369.8631666666667,85.0105988700565,4.350788861422132,7394.488468400899,2019
+1998,35,"(30,35]",College,369.8631666666667,83.16254237288136,4.447473058342624,7042.329553000835,2019
+1998,35,"(30,35]",College,369.8631666666667,85.0105988700565,4.350788861422132,7304.974043241277,2019
+1998,53,"(50,55]",NoHS,78.4945,51.745581920903966,1.51693143812709,7382.546489613759,2019
+1998,53,"(50,55]",NoHS,78.4945,51.745581920903966,1.51693143812709,7555.6197574766,2019
+1998,53,"(50,55]",NoHS,78.67683333333333,49.89752542372881,1.5767682398117182,7936.820832116052,2019
+1998,53,"(50,55]",NoHS,78.67683333333333,51.745581920903966,1.5204550883898706,7336.383366216798,2019
+1998,53,"(50,55]",NoHS,78.31216666666667,51.745581920903966,1.5134077878643093,7905.7972814475625,2019
+1998,71,"(70,75]",NoHS,5.47,17.741342372881356,0.30831939799331104,3769.7498416805984,2019
+1998,71,"(70,75]",NoHS,5.47,17.741342372881356,0.30831939799331104,3806.229437745552,2019
+1998,71,"(70,75]",NoHS,5.287666666666667,17.741342372881356,0.2980420847268674,3917.6750308683777,2019
+1998,71,"(70,75]",NoHS,5.287666666666667,17.741342372881356,0.2980420847268674,3949.6950911633185,2019
+1998,71,"(70,75]",NoHS,5.287666666666667,17.741342372881356,0.2980420847268674,3861.79326047774,2019
+1998,62,"(60,65]",NoHS,19.874333333333333,11.642755932203391,1.7070127939693154,5936.279983162317,2019
+1998,62,"(60,65]",NoHS,25.34433333333333,11.642755932203391,2.1768328290067416,5920.811993137284,2019
+1998,62,"(60,65]",NoHS,18.051000000000002,11.642755932203391,1.550406115623507,5973.87302747639,2019
+1998,62,"(60,65]",NoHS,19.874333333333333,11.642755932203391,1.7070127939693154,5910.90747684127,2019
+1998,62,"(60,65]",NoHS,16.227666666666668,11.642755932203391,1.393799437277698,5964.723071278747,2019
+1998,60,"(55,60]",College,325.28266666666667,92.40282485875707,3.520267558528428,7535.734722877862,2019
+1998,60,"(55,60]",College,404.96233333333333,92.40282485875707,4.38257525083612,5873.373275483873,2019
+1998,60,"(55,60]",College,354.6383333333333,92.40282485875707,3.8379598662207353,7907.139619243599,2019
+1998,60,"(55,60]",College,313.61333333333334,92.40282485875707,3.3939799331103675,7408.308350573594,2019
+1998,60,"(55,60]",College,333.123,92.40282485875707,3.6051170568561868,7838.832308697143,2019
+1998,41,"(40,45]",College,-1.1122333333333334,42.50529943502825,-0.026166933255780137,5799.1336488880215,2019
+1998,41,"(40,45]",College,0.5287666666666666,44.35335593220339,0.011921683389074691,5827.477882865372,2019
+1998,41,"(40,45]",College,0.34643333333333337,42.50529943502825,0.008150356259997093,5812.652349192705,2019
+1998,41,"(40,45]",College,0.5287666666666666,44.35335593220339,0.011921683389074691,5850.324159902036,2019
+1998,41,"(40,45]",College,0.34643333333333337,42.50529943502825,0.008150356259997093,5802.5001302645705,2019
+1998,29,"(25,30]",College,102.10666666666667,110.88338983050849,0.9208472686733555,5137.525303686119,2019
+1998,29,"(25,30]",College,89.34333333333333,110.88338983050849,0.8057413600891861,5135.399252563654,2019
+1998,29,"(25,30]",College,80.04433333333333,110.88338983050849,0.7218784838350054,5117.339561023757,2019
+1998,29,"(25,30]",College,131.09766666666667,110.88338983050849,1.1823021181716833,5150.952082535249,2019
+1998,29,"(25,30]",College,80.59133333333332,110.88338983050849,0.7268115942028983,5145.77154627676,2019
+1998,69,"(65,70]",College,3896.2627666666667,92.40282485875707,42.16605685618729,1352.141180906495,2019
+1998,69,"(65,70]",College,4000.3386333333333,92.40282485875707,43.29238461538461,1479.5593673568576,2019
+1998,69,"(65,70]",College,4496.887,92.40282485875707,48.666120401337785,1342.739481445435,2019
+1998,69,"(65,70]",College,4082.4433333333336,92.40282485875707,44.180936454849494,1725.304632879774,2019
+1998,69,"(65,70]",College,4025.1906666666664,92.40282485875707,43.561337792642135,1344.272395545343,2019
+1998,50,"(45,50]",College,414.62600000000003,181.10953672316384,2.289365913589516,5533.247383220714,2019
+1998,50,"(45,50]",College,467.5026666666667,181.10953672316384,2.5813255067913454,5302.544073047052,2019
+1998,50,"(45,50]",College,458.386,181.10953672316384,2.5309876458944784,4941.204165755663,2019
+1998,50,"(45,50]",College,416.4493333333333,181.10953672316384,2.299433485768889,5406.981344037345,2019
+1998,50,"(45,50]",College,480.266,181.10953672316384,2.6517985120469594,4932.342710680521,2019
+1998,27,"(25,30]",HS,94.9045,46.201412429378536,2.054147157190635,6660.837693950601,2019
+1998,27,"(25,30]",HS,87.4106,46.201412429378536,1.8919464882943142,6592.7036606736465,2019
+1998,27,"(25,30]",HS,87.4106,46.201412429378536,1.8919464882943142,6635.600877076926,2019
+1998,27,"(25,30]",HS,87.22826666666667,46.201412429378536,1.888,6565.856803822471,2019
+1998,27,"(25,30]",HS,87.22826666666667,46.201412429378536,1.888,6664.601475026424,2019
+1998,58,"(55,60]",College,129308.065,3363.462824858757,38.44492171707891,43.523364558669535,2019
+1998,58,"(55,60]",College,131321.93666666668,3381.9433898305087,38.830317817131785,45.616857124781426,2019
+1998,58,"(55,60]",College,136487.44,3806.9963841807908,35.851738805727834,39.76649430557678,2019
+1998,58,"(55,60]",College,129393.76166666667,3585.229604519774,36.090788021928766,38.3016067385563,2019
+1998,58,"(55,60]",College,123985.755,3585.229604519774,34.582375099127674,38.933234804448105,2019
+1998,27,"(25,30]",HS,-34.461,36.96112994350283,-0.9323578595317723,4938.000887261345,2019
+1998,27,"(25,30]",HS,-34.461,36.96112994350283,-0.9323578595317723,4952.620888669013,2019
+1998,27,"(25,30]",HS,-34.461,36.96112994350283,-0.9323578595317723,4952.867645305526,2019
+1998,27,"(25,30]",HS,-34.461,36.96112994350283,-0.9323578595317723,4977.520711498514,2019
+1998,27,"(25,30]",HS,-34.461,36.96112994350283,-0.9323578595317723,4958.629939475377,2019
+1998,26,"(25,30]",HS,-11.304666666666666,66.53003389830509,-0.1699182460052025,4919.396339234363,2019
+1998,26,"(25,30]",HS,-10.575333333333335,66.53003389830509,-0.1589557785209959,4915.056422488795,2019
+1998,26,"(25,30]",HS,-11.304666666666666,66.53003389830509,-0.1699182460052025,4939.598917056781,2019
+1998,26,"(25,30]",HS,-12.216333333333335,66.53003389830509,-0.1836213303604608,4939.18745380447,2019
+1998,26,"(25,30]",HS,-12.763333333333334,66.53003389830509,-0.19184318097361575,4937.495382994613,2019
+1998,30,"(25,30]",HS,99.007,92.40282485875707,1.0714715719063546,4564.820122356465,2019
+1998,30,"(25,30]",HS,53.07723333333333,92.40282485875707,0.5744113712374581,4496.857596544475,2019
+1998,30,"(25,30]",HS,30.285566666666668,92.40282485875707,0.32775585284280934,4550.272455343313,2019
+1998,30,"(25,30]",HS,22.755200000000002,92.40282485875707,0.2462608695652174,4496.670831872603,2019
+1998,30,"(25,30]",HS,74.7202,92.40282485875707,0.8086354515050167,4491.30622921819,2019
+1998,55,"(50,55]",HS,364.302,70.22614689265536,5.187555007921141,7246.692847065597,2019
+1998,55,"(50,55]",HS,194.91433333333336,70.22614689265536,2.7755236754092594,7225.184044935826,2019
+1998,55,"(50,55]",HS,196.373,70.22614689265536,2.796294666431966,7603.852076369107,2019
+1998,55,"(50,55]",HS,321.089,70.22614689265536,4.572214398873438,7124.154061577114,2019
+1998,55,"(50,55]",HS,220.25866666666667,70.22614689265536,3.136419644428798,7538.164772218593,2019
+1998,41,"(40,45]",College,1070.479,316.01766101694915,3.387402452619844,2541.157860370966,2019
+1998,41,"(40,45]",College,1112.598,316.01766101694915,3.520682978348882,2771.361096095113,2019
+1998,41,"(40,45]",College,1104.94,316.01766101694915,3.4964501554890575,2586.569146901253,2019
+1998,41,"(40,45]",College,1096.4979666666666,316.01766101694915,3.4697363531459637,2566.4379055125146,2019
+1998,41,"(40,45]",College,1097.829,316.01766101694915,3.473948248547791,2648.9659351064874,2019
+1998,66,"(65,70]",College,7223.135,340.042395480226,21.24186600261742,3367.3833616380807,2019
+1998,66,"(65,70]",College,7744.608333333334,340.042395480226,22.775419877853714,3623.8764854168826,2019
+1998,66,"(65,70]",College,7314.301666666667,338.19433898305084,21.627510645685987,3484.9668742741787,2019
+1998,66,"(65,70]",College,8557.815,340.042395480226,25.166905990984443,4087.8618361036074,2019
+1998,66,"(65,70]",College,6814.708333333333,340.042395480226,20.040760869565215,3268.9642418434514,2019
+1998,42,"(40,45]",HS,11.450533333333333,24.024734463276836,0.4766143555441214,6579.203645041615,2019
+1998,42,"(40,45]",HS,11.122333333333334,24.024734463276836,0.4629534345253409,6733.553628551343,2019
+1998,42,"(40,45]",HS,11.249966666666667,24.024734463276836,0.46826601492153336,7045.4186905448005,2019
+1998,42,"(40,45]",HS,11.304666666666666,24.024734463276836,0.47054283509133005,6580.5555330686575,2019
+1998,42,"(40,45]",HS,11.122333333333334,24.024734463276836,0.4629534345253409,6933.300752293767,2019
+1998,30,"(25,30]",HS,-29.173333333333332,96.09893785310734,-0.3035760226395678,10794.55394659067,2019
+1998,30,"(25,30]",HS,-29.173333333333332,96.09893785310734,-0.3035760226395678,10866.621470814565,2019
+1998,30,"(25,30]",HS,-29.173333333333332,96.09893785310734,-0.3035760226395678,11048.978439326758,2019
+1998,30,"(25,30]",HS,-28.991,96.09893785310734,-0.3016786724980705,10887.445889968762,2019
+1998,30,"(25,30]",HS,-29.173333333333332,96.09893785310734,-0.3035760226395678,11000.710634095552,2019
+1998,62,"(60,65]",HS,511.2626666666667,86.85865536723163,5.886145307051875,6967.501989623396,2019
+1998,62,"(60,65]",HS,521.3821666666666,59.13780790960452,8.816393185618729,6644.13770771932,2019
+1998,62,"(60,65]",HS,390.1933333333333,36.96112994350283,10.556856187290968,8804.951493236606,2019
+1998,62,"(60,65]",HS,421.6823,125.66784180790961,3.3555306905370843,8152.982013512769,2019
+1998,62,"(60,65]",HS,350.9916666666667,85.0105988700565,4.128798894866948,8619.442650662904,2019
+1998,19,"(15,20]",HS,72.38633333333333,77.61837288135592,0.9325927695492913,10017.515051309641,2019
+1998,19,"(15,20]",HS,72.751,77.61837288135592,0.9372909698996658,10168.970067154554,2019
+1998,19,"(15,20]",HS,72.38633333333333,77.61837288135592,0.9325927695492913,10261.915814111013,2019
+1998,19,"(15,20]",HS,72.93333333333332,77.61837288135592,0.9396400700748526,10075.893125891958,2019
+1998,19,"(15,20]",HS,73.1339,75.77031638418079,0.9652051553960356,10224.26737633118,2019
+1998,79,"(75,80]",HS,177.86616666666666,110.88338983050849,1.6040830546265326,11514.980040918945,2019
+1998,79,"(75,80]",HS,179.78066666666666,110.88338983050849,1.621348940914158,11846.681807463969,2019
+1998,79,"(75,80]",HS,181.51283333333333,110.88338983050849,1.6369704570791526,12282.585741862005,2019
+1998,79,"(75,80]",HS,179.8536,110.88338983050849,1.6220066889632105,11623.091780647268,2019
+1998,79,"(75,80]",HS,179.963,110.88338983050849,1.622993311036789,12197.980838303472,2019
+1998,41,"(40,45]",College,138.02633333333335,116.4275593220339,1.1855125550777725,8426.774265597605,2019
+1998,41,"(40,45]",College,137.844,116.4275593220339,1.1839464882943143,8645.756845548838,2019
+1998,41,"(40,45]",College,139.84966666666665,116.4275593220339,1.2011732229123533,8925.924813519803,2019
+1998,41,"(40,45]",College,137.844,116.4275593220339,1.1839464882943143,8549.406752726976,2019
+1998,41,"(40,45]",College,137.844,116.4275593220339,1.1839464882943143,8856.766971515823,2019
+1998,46,"(45,50]",College,377.43,110.88338983050849,3.4038461538461533,6178.625172852858,2019
+1998,46,"(45,50]",College,375.4243333333333,101.64310734463277,3.6935542718151413,5921.893233780246,2019
+1998,46,"(45,50]",College,373.05400000000003,107.18727683615819,3.480394418175528,5517.0178234987725,2019
+1998,46,"(45,50]",College,380.165,118.27561581920904,3.2142297240802677,6037.6500796020855,2019
+1998,46,"(45,50]",College,373.601,110.88338983050849,3.3693143812709025,5506.902785777844,2019
+1998,85,"(80,85]",College,211.5796,48.04946892655367,4.403370208386931,9463.947263483107,2019
+1998,85,"(80,85]",College,211.61606666666668,48.04946892655367,4.40412914844353,9599.970582064789,2019
+1998,85,"(80,85]",College,209.75626666666668,48.04946892655367,4.365423205556985,9968.023970636734,2019
+1998,85,"(80,85]",College,215.15333333333334,46.201412429378536,4.65685618729097,9582.884990303099,2019
+1998,85,"(80,85]",College,213.42116666666666,48.04946892655367,4.441696681245176,9981.033495842228,2019
+1998,56,"(55,60]",College,42606.03056666667,3271.06,13.025144927536232,216.3494530805865,2019
+1998,56,"(55,60]",College,43456.23266666666,7429.187118644068,5.849392668763207,186.18460392767727,2019
+1998,56,"(55,60]",College,42404.679866666665,3973.3214689265537,10.672350626118067,179.83633704493724,2019
+1998,56,"(55,60]",College,44100.54396666667,8722.826666666666,5.055762959866222,176.10747682354042,2019
+1998,56,"(55,60]",College,47851.56,6689.964519774011,7.152737485910678,206.65821833083902,2019
+1998,48,"(45,50]",College,362.5151333333334,349.2826779661017,1.0378846596237903,6055.5702947319405,2019
+1998,48,"(45,50]",College,364.22906666666665,216.22261016949156,1.684509618957779,5802.653533663582,2019
+1998,48,"(45,50]",College,366.01593333333335,253.18374011299437,1.445653394526768,5407.180126037676,2019
+1998,48,"(45,50]",College,367.8028,251.33568361581922,1.4633926814873106,5917.019574160707,2019
+1998,48,"(45,50]",College,364.302,203.28621468926553,1.7920644572818487,5397.918166833942,2019
+1998,36,"(35,40]",College,4033.578,255.03179661016952,15.815980805583829,166.29543342112322,2019
+1998,36,"(35,40]",College,4035.4013333333337,255.03179661016952,15.823130240899616,166.10121731105176,2019
+1998,36,"(35,40]",College,4035.4013333333337,255.03179661016952,15.823130240899616,157.86925679183383,2019
+1998,36,"(35,40]",College,4015.3446666666664,255.03179661016952,15.744486452425958,174.67710074792583,2019
+1998,36,"(35,40]",College,4035.4013333333337,253.18374011299437,15.938627541928081,163.92567414901708,2019
+1998,23,"(20,25]",HS,-2.6438333333333337,55.441694915254246,-0.04768673355629877,3354.693461495221,2019
+1998,23,"(20,25]",HS,-3.7378333333333336,55.441694915254246,-0.06741917502787068,3396.5703637084252,2019
+1998,23,"(20,25]",HS,-2.2791666666666663,55.441694915254246,-0.041109253065774794,3368.2110437059223,2019
+1998,23,"(20,25]",HS,1.0028333333333335,55.441694915254246,0.018088071348940915,3378.4378347793436,2019
+1998,23,"(20,25]",HS,-0.2735,55.441694915254246,-0.004933110367892977,3349.047349732789,2019
+1998,52,"(50,55]",College,4113.4400000000005,462.0141242937853,8.903277591973245,20.5767141958923,2019
+1998,52,"(50,55]",College,4025.0083333333337,462.0141242937853,8.711872909698998,22.5413059355266,2019
+1998,52,"(50,55]",College,4062.3866666666668,462.0141242937853,8.792775919732442,22.26280096825753,2019
+1998,52,"(50,55]",College,4031.39,462.0141242937853,8.725685618729097,22.31268057630477,2019
+1998,52,"(50,55]",College,4002.2166666666667,462.0141242937853,8.662541806020068,23.492132358749664,2019
+1998,54,"(50,55]",College,871.5533333333334,99.79505084745762,8.733432429084605,599.8297067752085,2019
+1998,54,"(50,55]",College,871.5533333333334,97.9469943502825,8.898214173029595,554.9940190599397,2019
+1998,54,"(50,55]",College,875.2,99.79505084745762,8.769973987365294,564.5579445566216,2019
+1998,54,"(50,55]",College,871.5533333333334,99.79505084745762,8.733432429084605,618.1846633124446,2019
+1998,54,"(50,55]",College,878.8466666666667,99.79505084745762,8.806515545645981,619.6688106753311,2019
+1998,56,"(55,60]",College,36779.003666666664,929.5724180790961,39.56550662579705,17.118833351321562,2019
+1998,56,"(55,60]",College,34229.80133333334,864.8904406779662,39.57703741817454,18.636626689760874,2019
+1998,56,"(55,60]",College,34215.79813333333,946.2049265536723,36.16108643394649,19.140123680451413,2019
+1998,56,"(55,60]",College,32612.14,927.724361581921,35.152833482125004,17.344347369477255,2019
+1998,56,"(55,60]",College,37022.236333333334,802.0565197740112,46.15913644560209,18.512282200329754,2019
+1998,33,"(30,35]",NoHS,-5.834666666666667,31.416960451977403,-0.1857170962030297,4920.5580796136455,2019
+1998,33,"(30,35]",NoHS,-10.393,20.328621468926556,-0.5112496199452721,4898.126774459904,2019
+1998,33,"(30,35]",NoHS,-9.481333333333334,31.416960451977403,-0.30179028132992325,4939.457147495086,2019
+1998,33,"(30,35]",NoHS,-5.47,18.480564971751416,-0.2959866220735785,4897.43842066537,2019
+1998,33,"(30,35]",NoHS,-6.928666666666667,22.176677966101696,-0.3124303232998885,4928.491285473535,2019
+1998,36,"(35,40]",College,526.2869333333333,158.93285875706215,3.3113790153223923,5967.621213756129,2019
+1998,36,"(35,40]",College,648.0673666666667,158.93285875706215,4.077617251302792,5709.307486450731,2019
+1998,36,"(35,40]",College,533.3797,158.93285875706215,3.3560064556272846,5331.549354567733,2019
+1998,36,"(35,40]",College,498.3534666666667,158.93285875706215,3.1356226180290894,5826.950279381149,2019
+1998,36,"(35,40]",College,504.02403333333336,158.93285875706215,3.1713016255736175,5314.078548643711,2019
+1998,55,"(50,55]",HS,374.5126666666667,116.4275593220339,3.2167011732229125,8129.302882310803,2019
+1998,55,"(50,55]",HS,414.9542,101.64310734463277,4.082462754636668,6336.002002873605,2019
+1998,55,"(50,55]",HS,381.1131333333334,127.51589830508476,2.9887499394115653,5931.187831619664,2019
+1998,55,"(50,55]",HS,367.2375666666667,125.66784180790961,2.9222875270509543,7991.839501001664,2019
+1998,55,"(50,55]",HS,376.46363333333335,129.36395480225988,2.9101122790253227,8456.274593581606,2019
+1998,70,"(65,70]",College,6728.738166666667,406.57242937853107,16.54991258741259,1914.9052415976262,2019
+1998,70,"(65,70]",College,6727.534766666667,406.57242937853107,16.54695272119185,1949.8677893797558,2019
+1998,70,"(65,70]",College,6726.386066666667,406.57242937853107,16.544127394344788,1853.5463622703562,2019
+1998,70,"(65,70]",College,6728.738166666667,406.57242937853107,16.54991258741259,2016.5813856919606,2019
+1998,70,"(65,70]",College,6726.914833333333,406.57242937853107,16.545427941623593,1889.2526419326834,2019
+1998,70,"(65,70]",HS,1213.9753333333333,38.80918644067796,31.28061793279185,10553.334075500763,2019
+1998,70,"(65,70]",HS,1494.5863333333332,36.96112994350283,40.43670568561872,13310.446752006314,2019
+1998,70,"(65,70]",HS,707.4533333333334,38.80918644067796,18.229017359452143,9881.289916979043,2019
+1998,70,"(65,70]",HS,1008.8503333333334,38.80918644067796,25.995142538620804,10062.590158865458,2019
+1998,70,"(65,70]",HS,701.9833333333333,38.80918644067796,18.088071348940918,10318.796404198825,2019
+1998,44,"(40,45]",College,122.16333333333333,55.441694915254246,2.203455964325529,661.9182418945751,2019
+1998,44,"(40,45]",College,154.80100000000002,55.441694915254246,2.7921404682274247,661.0176998629028,2019
+1998,44,"(40,45]",College,90.98433333333332,55.441694915254246,1.6410813823857298,5713.2940916766875,2019
+1998,44,"(40,45]",College,227.73433333333335,55.441694915254246,4.107636566332218,695.8482325752199,2019
+1998,44,"(40,45]",College,122.16333333333333,55.441694915254246,2.203455964325529,693.4795041984128,2019
+1998,44,"(40,45]",College,669.3456666666666,157.08480225988703,4.261046626008262,5272.351939130168,2019
+1998,44,"(40,45]",College,680.2856666666667,157.08480225988703,4.330690537084398,5044.6299449267035,2019
+1998,44,"(40,45]",College,662.0523333333334,157.08480225988703,4.214617351957505,4710.650782525684,2019
+1998,44,"(40,45]",College,666.793,157.08480225988703,4.244796380090497,5149.484835536842,2019
+1998,44,"(40,45]",College,676.639,157.08480225988703,4.3074759000590195,4695.835653524584,2019
+1998,71,"(70,75]",College,7728.654166666667,273.51236158192086,28.257056178251837,1172.2434644796817,2019
+1998,71,"(70,75]",College,7891.696633333334,273.51236158192086,28.853162568923445,1211.7847685664879,2019
+1998,71,"(70,75]",College,7769.551533333333,273.51236158192086,28.40658275332189,1146.6651376430677,2019
+1998,71,"(70,75]",College,7735.473433333334,273.51236158192086,28.28198838470578,1247.873254604186,2019
+1998,71,"(70,75]",College,7810.157166666667,273.51236158192086,28.55504270993402,1148.498574381864,2019
+1998,25,"(20,25]",College,18.68916666666667,62.833920903954805,0.2974375368876648,6364.956133086946,2019
+1998,25,"(20,25]",College,18.68916666666667,60.98586440677967,0.30645079558123034,6343.255221866641,2019
+1998,25,"(20,25]",College,15.0425,62.833920903954805,0.239400944324218,6346.426276014283,2019
+1998,25,"(20,25]",College,16.86583333333333,62.833920903954805,0.2684192406059413,6391.5818516478885,2019
+1998,25,"(20,25]",College,14.130833333333333,60.98586440677967,0.23170669909800343,6342.413807127481,2019
+1998,58,"(55,60]",NoHS,0,7.207420338983052,0,4623.867162788867,2019
+1998,58,"(55,60]",NoHS,0,7.392225988700565,0,4576.819294149959,2019
+1998,58,"(55,60]",NoHS,0,6.8378090395480235,0,4966.605727046857,2019
+1998,58,"(55,60]",NoHS,0,6.8378090395480235,0,4616.780191967601,2019
+1998,58,"(55,60]",NoHS,0,6.8378090395480235,0,4983.1770016346945,2019
+1998,26,"(25,30]",HS,34.36983333333334,48.04946892655367,0.7153010033444818,4613.944579688621,2019
+1998,26,"(25,30]",HS,32.5465,48.04946892655367,0.6773540005145356,4627.605143505849,2019
+1998,26,"(25,30]",HS,34.36983333333334,48.04946892655367,0.7153010033444818,4627.835706738122,2019
+1998,26,"(25,30]",HS,34.36983333333334,48.04946892655367,0.7153010033444818,4650.870915465461,2019
+1998,26,"(25,30]",HS,34.36983333333334,48.04946892655367,0.7153010033444818,4633.21985035384,2019
+1998,85,"(80,85]",HS,311.243,25.872790960451983,12.029741997133298,11767.31432514325,2019
+1998,85,"(80,85]",HS,305.773,25.872790960451983,11.818322981366459,12163.815671648372,2019
+1998,85,"(80,85]",HS,314.8896666666667,25.872790960451983,12.170688007644529,12474.655710143245,2019
+1998,85,"(80,85]",HS,305.773,24.024734463276836,12.72742474916388,11945.711930131461,2019
+1998,85,"(80,85]",HS,303.9496666666667,25.872790960451983,11.747849976110844,12569.389869008552,2019
+1998,32,"(30,35]",HS,197.28466666666665,92.40282485875707,2.13505016722408,6189.771209172328,2019
+1998,32,"(30,35]",HS,108.48833333333333,92.40282485875707,1.1740802675585282,6226.364967612259,2019
+1998,32,"(30,35]",HS,194.09383333333335,92.40282485875707,2.1005183946488293,6374.222935049568,2019
+1998,32,"(30,35]",HS,165.37633333333335,92.40282485875707,1.7897324414715718,6207.561137466893,2019
+1998,32,"(30,35]",HS,218.61766666666665,92.40282485875707,2.3659197324414714,6266.804023928749,2019
+1998,21,"(20,25]",HS,-1.3310333333333333,20.328621468926556,-0.06547582851930676,4559.572332490928,2019
+1998,21,"(20,25]",HS,-1.3310333333333333,20.328621468926556,-0.06547582851930676,4567.68858133544,2019
+1998,21,"(20,25]",HS,-1.1487,20.328621468926556,-0.056506536941319546,4606.456060998697,2019
+1998,21,"(20,25]",HS,-1.3310333333333333,20.328621468926556,-0.06547582851930676,4570.083010313944,2019
+1998,21,"(20,25]",HS,-1.3310333333333333,20.328621468926556,-0.06547582851930676,4517.486242920723,2019
+1998,34,"(30,35]",HS,-15.735366666666668,35.11307344632768,-0.44813413131490937,5018.168309532377,2019
+1998,34,"(30,35]",HS,-17.5587,35.11307344632768,-0.5000616088716776,5001.059185337847,2019
+1998,34,"(30,35]",HS,-12.088700000000001,35.11307344632768,-0.34427917620137305,5003.559262808737,2019
+1998,34,"(30,35]",HS,-6.6187,35.11307344632768,-0.18849674353106846,5039.160180380708,2019
+1998,34,"(30,35]",HS,-1.4951333333333334,35.11307344632768,-0.042580531596549905,5000.39580908027,2019
+1998,39,"(35,40]",College,22913.95763333333,702.2614689265538,32.628812268966726,407.4487986189369,2019
+1998,39,"(35,40]",College,23402.0275,763.2473333333334,30.661132345914954,415.9491876712992,2019
+1998,39,"(35,40]",College,22861.627966666667,912.9399096045198,25.041766414363668,472.34499281566985,2019
+1998,39,"(35,40]",College,22572.702566666667,905.5476836158192,24.927127499829364,438.98645739716267,2019
+1998,39,"(35,40]",College,23222.42916666667,676.3886779661017,34.33296553173603,373.23568381635016,2019
+1998,48,"(45,50]",NoHS,117.51383333333334,64.68197740112994,1.8167940754897278,4931.86163433813,2019
+1998,48,"(45,50]",NoHS,118.06083333333333,114.57950282485875,1.0303835365195815,5081.86812444329,2019
+1998,48,"(45,50]",NoHS,117.69616666666667,42.50529943502825,2.7689762978042753,4696.903174837302,2019
+1998,48,"(45,50]",NoHS,118.24316666666667,40.65724293785311,2.908292794162359,4745.349483506825,2019
+1998,48,"(45,50]",NoHS,117.8785,42.50529943502825,2.7732659589937474,4953.948319397607,2019
+1998,80,"(75,80]",HS,26508.0029,1848.0564971751412,14.34371889632107,12.827327900564516,2019
+1998,80,"(75,80]",HS,32441.111333333334,1848.0564971751412,17.554177257525083,13.939333164601404,2019
+1998,80,"(75,80]",HS,39838.37466666666,1848.0564971751412,21.556903010033444,13.902246643795191,2019
+1998,80,"(75,80]",HS,35679.35133333334,1848.0564971751412,19.306418060200674,12.711287252851669,2019
+1998,80,"(75,80]",HS,28099.754666666668,1848.0564971751412,15.205030100334449,13.739997953806727,2019
+1998,60,"(55,60]",HS,25.34433333333333,18.480564971751416,1.3714046822742472,6071.134745085501,2019
+1998,60,"(55,60]",HS,25.34433333333333,18.480564971751416,1.3714046822742472,6046.504077943438,2019
+1998,60,"(55,60]",HS,25.34433333333333,18.480564971751416,1.3714046822742472,6071.165530742157,2019
+1998,60,"(55,60]",HS,25.526666666666667,18.480564971751416,1.3812709030100332,6056.787882714473,2019
+1998,60,"(55,60]",HS,25.34433333333333,18.480564971751416,1.3714046822742472,6070.75271763676,2019
+1998,65,"(60,65]",HS,173.399,66.53003389830509,2.6063266443701223,5045.537397709715,2019
+1998,65,"(60,65]",HS,173.38076666666666,64.68197740112994,2.680511227902532,6177.888559676989,2019
+1998,65,"(60,65]",HS,173.41723333333334,66.53003389830509,2.6066007060572276,5174.46945643984,2019
+1998,65,"(60,65]",HS,173.41723333333334,66.53003389830509,2.6066007060572276,5162.115054757427,2019
+1998,65,"(60,65]",HS,173.399,66.53003389830509,2.6063266443701223,5121.602812804583,2019
+1998,67,"(65,70]",College,97.01956666666666,194.04593220338984,0.4999824812868291,8119.012618847415,2019
+1998,67,"(65,70]",College,96.8737,194.04593220338984,0.4992307692307692,7764.4391439143465,2019
+1998,67,"(65,70]",College,97.0925,194.04593220338984,0.500358337314859,7190.8686045175755,2019
+1998,67,"(65,70]",College,97.2019,192.1978757062147,0.5057386802161049,7889.192044359979,2019
+1998,67,"(65,70]",College,97.11073333333334,194.04593220338984,0.5004523013218666,7171.961563677898,2019
+1998,45,"(40,45]",College,2257.6513333333337,600.6183615819209,3.758878312323129,1172.2434644796817,2019
+1998,45,"(40,45]",College,2256.0103333333336,602.466418079096,3.74462420748097,1211.7847685664879,2019
+1998,45,"(40,45]",College,2257.8336666666664,600.6183615819209,3.7591818883457675,1146.6651376430677,2019
+1998,45,"(40,45]",College,2257.6513333333337,602.466418079096,3.747348010751586,1247.873254604186,2019
+1998,45,"(40,45]",College,2257.8336666666664,602.466418079096,3.7476506555594313,1148.498574381864,2019
+1998,29,"(25,30]",HS,0.547,18.480564971751416,0.029598662207357854,4080.3148092001147,2019
+1998,29,"(25,30]",HS,0.547,20.328621468926556,0.02690787473396169,4060.710887228392,2019
+1998,29,"(25,30]",HS,0.547,20.328621468926556,0.02690787473396169,4096.136049806877,2019
+1998,29,"(25,30]",HS,0.547,18.480564971751416,0.029598662207357854,4060.0151987756717,2019
+1998,29,"(25,30]",HS,0.547,20.328621468926556,0.02690787473396169,4086.6657990464473,2019
+1998,49,"(45,50]",HS,340.6898333333333,70.22614689265536,4.851324590741067,7122.659823616207,2019
+1998,49,"(45,50]",HS,355.0941666666667,70.22614689265536,5.056438127090302,7283.2311917284005,2019
+1998,49,"(45,50]",HS,347.0715,70.22614689265536,4.942197676465411,7653.6853332312385,2019
+1998,49,"(45,50]",HS,351.0828333333333,70.22614689265536,4.999317901777856,7101.353298898603,2019
+1998,49,"(45,50]",HS,338.3195,70.22614689265536,4.817571730329168,7504.141202158004,2019
+1998,83,"(80,85]",HS,117.78733333333334,24.024734463276836,4.90275276562902,4865.347059727807,2019
+1998,83,"(80,85]",HS,117.78733333333334,24.024734463276836,4.90275276562902,4948.177618274218,2019
+1998,83,"(80,85]",HS,117.96966666666667,24.024734463276836,4.910342166195009,5008.200430721334,2019
+1998,83,"(80,85]",HS,117.78733333333334,24.024734463276836,4.90275276562902,5065.592204600509,2019
+1998,83,"(80,85]",HS,117.96966666666667,24.024734463276836,4.910342166195009,5033.684955633605,2019
+1998,64,"(60,65]",College,38451.547333333336,811.2968022598872,47.39516688125185,14.877212580377346,2019
+1998,64,"(60,65]",College,36404.308666666664,822.385141242938,44.266739318327,16.271566775185565,2019
+1998,64,"(60,65]",College,37551.367666666665,1458.1165762711867,25.753337063553623,13.603227854163862,2019
+1998,64,"(60,65]",College,44611.132,1426.6996158192092,31.26876288838442,12.792498654247364,2019
+1998,64,"(60,65]",College,53600.71233333334,1565.3038531073446,34.24300798016213,15.429581264837443,2019
+1998,27,"(25,30]",NoHS,-4.376,17.186925423728816,-0.25461214802028265,6724.777525976273,2019
+1998,27,"(25,30]",NoHS,-4.558333333333333,17.186925423728816,-0.2652209875211277,6744.6876594778005,2019
+1998,27,"(25,30]",NoHS,-4.558333333333333,17.371731073446327,-0.2623994876538817,6745.023703055253,2019
+1998,27,"(25,30]",NoHS,-4.558333333333333,17.186925423728816,-0.2652209875211277,6778.597286630073,2019
+1998,27,"(25,30]",NoHS,-4.558333333333333,17.186925423728816,-0.2652209875211277,6752.871037880858,2019
+1998,88,"(85,90]",HS,236.851,29.56890395480226,8.01013795986622,9700.78810090278,2019
+1998,88,"(85,90]",HS,235.02766666666668,29.56890395480226,7.948474080267559,9903.11356569628,2019
+1998,88,"(85,90]",HS,235.02766666666668,29.56890395480226,7.948474080267559,10278.163328313705,2019
+1998,88,"(85,90]",HS,236.851,29.56890395480226,8.01013795986622,9860.069012600672,2019
+1998,88,"(85,90]",HS,235.02766666666668,29.56890395480226,7.948474080267559,10310.069557097575,2019
+1998,39,"(35,40]",HS,104.84166666666667,64.68197740112994,1.620879120879121,5236.385875382949,2019
+1998,39,"(35,40]",HS,104.65933333333334,64.68197740112994,1.6180602006688964,5308.00870371266,2019
+1998,39,"(35,40]",HS,104.84166666666667,64.68197740112994,1.620879120879121,5525.772641224019,2019
+1998,39,"(35,40]",HS,105.024,64.68197740112994,1.6236980410893456,5262.610407839452,2019
+1998,39,"(35,40]",HS,105.024,64.68197740112994,1.6236980410893456,5458.880067970887,2019
+1998,39,"(35,40]",HS,1389.5623333333333,389.9399209039548,3.56352929987795,2433.4677393974894,2019
+1998,39,"(35,40]",HS,1389.5623333333333,382.5476949152542,3.632389769440809,2464.4470936111366,2019
+1998,39,"(35,40]",HS,1389.5623333333333,399.18020338983047,3.481040195714109,2364.9695473147012,2019
+1998,39,"(35,40]",HS,1389.5623333333333,413.9646553672317,3.356717331581461,2735.0011334654796,2019
+1998,39,"(35,40]",HS,1389.5623333333333,306.77737853107345,4.5295462787605265,2551.0109256997043,2019
+1998,38,"(35,40]",College,-7.8768,73.92225988700567,-0.10655518394648827,7451.893349630863,2019
+1998,38,"(35,40]",College,-15.170133333333334,73.92225988700567,-0.2052173913043478,7489.214963131983,2019
+1998,38,"(35,40]",College,13.638533333333333,73.92225988700567,0.18449832775919728,7518.393891782776,2019
+1998,38,"(35,40]",College,-0.5834666666666667,73.92225988700567,-0.007892976588628762,7450.500603569721,2019
+1998,38,"(35,40]",College,-15.170133333333334,73.92225988700567,-0.2052173913043478,7529.304099826169,2019
+1998,36,"(35,40]",College,966.549,269.8162485875706,3.5822490493425576,5550.432254169724,2019
+1998,36,"(35,40]",College,966.549,269.8162485875706,3.5822490493425576,5305.994375289576,2019
+1998,36,"(35,40]",College,966.549,269.8162485875706,3.5822490493425576,5382.850871010809,2019
+1998,36,"(35,40]",College,966.549,271.6643050847458,3.5578800081905664,5367.494908669991,2019
+1998,36,"(35,40]",College,966.9136666666667,269.8162485875706,3.5836005864296516,5526.227725237278,2019
+1998,38,"(35,40]",College,57.197966666666666,57.289751412429375,0.9983978854245334,1133.9004562237042,2019
+1998,38,"(35,40]",College,50.798066666666664,20.328621468926556,2.498844633627242,1130.9338898202545,2019
+1998,38,"(35,40]",College,2.9173333333333336,24.024734463276836,0.12143040905582712,1104.5742422259164,2019
+1998,38,"(35,40]",College,37.21423333333333,38.80918644067796,0.9589026915113873,1085.357156678871,2019
+1998,38,"(35,40]",College,67.02573333333333,109.03533333333333,0.6147157190635452,1164.665237643595,2019
+1998,79,"(75,80]",HS,25.709,14.599646327683615,1.760933068032683,5122.590558547633,2019
+1998,79,"(75,80]",HS,25.891333333333332,14.599646327683615,1.7734219550400068,5159.582604262398,2019
+1998,79,"(75,80]",HS,26.62066666666667,14.599646327683615,1.823377503069303,5165.231858608974,2019
+1998,79,"(75,80]",HS,26.256,14.599646327683615,1.798399729054655,5112.81959226238,2019
+1998,79,"(75,80]",HS,26.164833333333334,14.599646327683615,1.7921552855509928,5165.453776790842,2019
+1998,36,"(35,40]",HS,498.4993333333333,55.441694915254246,8.991415830546263,5613.293713119658,2019
+1998,36,"(35,40]",HS,576.7203333333334,55.441694915254246,10.402285395763657,5370.317362986463,2019
+1998,36,"(35,40]",HS,496.676,55.441694915254246,8.958528428093643,5014.988619618716,2019
+1998,36,"(35,40]",HS,510.898,55.441694915254246,9.21505016722408,5480.975115262682,2019
+1998,36,"(35,40]",HS,510.898,55.441694915254246,9.21505016722408,4998.555142770293,2019
+1998,60,"(55,60]",HS,9343.489333333335,3696.1129943502824,2.527923076923077,12.548351017431266,2019
+1998,60,"(55,60]",HS,9367.010333333334,3696.1129943502824,2.534286789297659,13.550006173366151,2019
+1998,60,"(55,60]",HS,9319.786,3696.1129943502824,2.521510033444816,13.1235344795162,2019
+1998,60,"(55,60]",HS,9881.372666666666,3696.1129943502824,2.6734498327759195,13.379828003941384,2019
+1998,60,"(55,60]",HS,10222.153666666667,3696.1129943502824,2.7656496655518397,14.392929622187243,2019
+1998,43,"(40,45]",HS,205.125,77.61837288135592,2.6427376970855234,10684.92826303918,2019
+1998,43,"(40,45]",HS,205.30733333333336,77.61837288135592,2.645086797260711,10833.460966949237,2019
+1998,43,"(40,45]",HS,205.30733333333336,77.61837288135592,2.645086797260711,10799.65071704133,2019
+1998,43,"(40,45]",HS,205.30733333333336,77.61837288135592,2.645086797260711,10717.29510276452,2019
+1998,43,"(40,45]",HS,205.125,77.61837288135592,2.6427376970855234,10666.834298183501,2019
+1998,67,"(65,70]",College,17253.291666666668,231.00706214689265,74.68729096989968,362.3185901653538,2019
+1998,67,"(65,70]",College,20898.135000000002,153.38868926553673,136.2429987508563,423.3036737313079,2019
+1998,67,"(65,70]",College,17251.468333333334,145.99646327683615,118.16360441979596,279.811274046509,2019
+1998,67,"(65,70]",College,20899.958333333332,255.03179661016952,81.95040230720758,341.67848272891604,2019
+1998,67,"(65,70]",College,17253.291666666668,153.38868926553673,112.48085989442721,283.9934941029169,2019
+1998,27,"(25,30]",NoHS,15.863,40.65724293785311,0.39016418364244443,5305.122519869752,2019
+1998,27,"(25,30]",NoHS,15.863,40.65724293785311,0.39016418364244443,5305.439302844756,2019
+1998,27,"(25,30]",NoHS,15.863,40.65724293785311,0.39016418364244443,5309.826679155001,2019
+1998,27,"(25,30]",NoHS,15.863,40.65724293785311,0.39016418364244443,5298.9113294268955,2019
+1998,27,"(25,30]",NoHS,15.863,40.65724293785311,0.39016418364244443,5350.528051868545,2019
+1998,32,"(30,35]",HS,92.99,92.40282485875707,1.0063545150501672,8395.934495663643,2019
+1998,32,"(30,35]",HS,92.99,92.40282485875707,1.0063545150501672,8398.306665748965,2019
+1998,32,"(30,35]",HS,92.99,92.40282485875707,1.0063545150501672,8543.085093973204,2019
+1998,32,"(30,35]",HS,94.81333333333333,92.40282485875707,1.026086956521739,8436.093373340233,2019
+1998,32,"(30,35]",HS,93.17233333333333,92.40282485875707,1.0083277591973243,8490.508594280178,2019
+1998,56,"(55,60]",HS,0.91349,36.96112994350283,0.024714882943143807,5190.801714320192,2019
+1998,56,"(55,60]",HS,0.91349,36.96112994350283,0.024714882943143807,5133.762431343167,2019
+1998,56,"(55,60]",HS,0.91349,36.96112994350283,0.024714882943143807,5284.676260311868,2019
+1998,56,"(55,60]",HS,0.91349,36.96112994350283,0.024714882943143807,5163.245326463554,2019
+1998,56,"(55,60]",HS,0.91349,36.96112994350283,0.024714882943143807,5233.827373586193,2019
+1998,44,"(40,45]",HS,-61.57396666666667,66.53003389830509,-0.9255063173541433,6401.322883760966,2019
+1998,44,"(40,45]",HS,-61.373400000000004,66.53003389830509,-0.9224916387959866,6391.754695374265,2019
+1998,44,"(40,45]",HS,-61.7563,66.53003389830509,-0.928246934225195,6378.362978261888,2019
+1998,44,"(40,45]",HS,-61.55573333333333,66.53003389830509,-0.9252322556670382,6433.355849446517,2019
+1998,44,"(40,45]",HS,-61.373400000000004,66.53003389830509,-0.9224916387959866,6355.802582534237,2019
+1998,61,"(60,65]",NoHS,2.188,22.176677966101696,0.09866220735785954,4633.709651789364,2019
+1998,61,"(60,65]",NoHS,2.188,20.328621468926556,0.10763149893584675,4608.583233464976,2019
+1998,61,"(60,65]",NoHS,2.188,22.176677966101696,0.09866220735785954,4774.4101746565975,2019
+1998,61,"(60,65]",NoHS,2.188,20.328621468926556,0.10763149893584675,4600.353565571598,2019
+1998,61,"(60,65]",NoHS,2.188,22.176677966101696,0.09866220735785954,4677.573549297203,2019
+1998,56,"(55,60]",College,575.2616666666667,94.25088135593221,6.103514984589153,687.7017286075601,2019
+1998,56,"(55,60]",College,666.4283333333334,94.25088135593221,7.070791527313267,727.5061835532445,2019
+1998,56,"(55,60]",College,757.595,94.25088135593221,8.03806807003738,677.5596772562069,2019
+1998,56,"(55,60]",College,730.245,94.25088135593221,7.747885107220145,714.9562668750507,2019
+1998,56,"(55,60]",College,577.085,94.25088135593221,6.1228605154436355,682.6606424556418,2019
+1998,62,"(60,65]",College,30566.36,1077.4169378531076,28.37003849309017,13.03880004061325,2019
+1998,62,"(60,65]",College,30586.234333333334,770.6395593220338,39.68941635988868,14.418271434568833,2019
+1998,62,"(60,65]",College,25141.761000000002,2679.681920903955,9.382367662322686,11.619529147179684,2019
+1998,62,"(60,65]",College,24731.511000000002,1493.2296497175141,16.562429633431574,10.966092522025658,2019
+1998,62,"(60,65]",College,28223.194333333333,2661.2013559322036,10.60543362133036,11.198182714031596,2019
+1998,40,"(35,40]",College,91.16666666666667,142.30035028248585,0.6406636841419452,373.8702513162572,2019
+1998,40,"(35,40]",College,104.11233333333332,79.46642937853107,1.3101423349148322,376.4476707808857,2019
+1998,40,"(35,40]",College,76.58,90.55476836158192,0.8456760630673674,359.64760242199833,2019
+1998,40,"(35,40]",College,98.64233333333333,38.80918644067796,2.5417263895524767,390.7693734780088,2019
+1998,40,"(35,40]",College,105.20633333333333,103.49116384180793,1.016573100812231,396.0074296412031,2019
+1998,41,"(40,45]",HS,579.82,118.27561581920904,4.902278428093646,7024.4051087462185,2019
+1998,41,"(40,45]",HS,540.436,118.27561581920904,4.56929347826087,6720.504279200837,2019
+1998,41,"(40,45]",HS,586.384,118.27561581920904,4.957775919732442,6275.511689942456,2019
+1998,41,"(40,45]",HS,569.427,118.27561581920904,4.814407399665552,6860.284292521533,2019
+1998,41,"(40,45]",HS,522.385,116.4275593220339,4.4867813346074215,6256.279396222452,2019
+1998,26,"(25,30]",HS,43.3224,55.441694915254246,0.7814046822742474,11519.034199458783,2019
+1998,26,"(25,30]",HS,43.90586666666667,85.0105988700565,0.5164752072124473,11768.882255949691,2019
+1998,26,"(25,30]",HS,53.405433333333335,57.289751412429375,0.93219872693926,11908.900279696363,2019
+1998,26,"(25,30]",HS,51.72796666666667,64.68197740112994,0.7997276636407071,11477.0818882774,2019
+1998,26,"(25,30]",HS,58.2008,73.92225988700567,0.7873244147157189,11938.370905300499,2019
+1998,70,"(65,70]",College,256577.73632333332,9000.035141242939,28.50852605536593,33.298020221494895,2019
+1998,70,"(65,70]",College,280645.67980000004,6874.770169491526,40.82255448268422,34.892343262385054,2019
+1998,70,"(65,70]",College,257895.91333333336,6874.770169491526,37.513386916963356,30.18795190638621,2019
+1998,70,"(65,70]",College,303083.5833333333,4694.063502824859,64.56742290574881,29.311296248858962,2019
+1998,70,"(65,70]",College,279943.7329333333,4712.544067796611,59.40395016066626,29.895445829547914,2019
+1998,48,"(45,50]",HS,14786.139333333334,406.57242937853107,36.36778656126482,218.69098967220174,2019
+1998,48,"(45,50]",HS,14784.316,406.57242937853107,36.36330191547583,220.18510982652782,2019
+1998,48,"(45,50]",HS,14784.316,406.57242937853107,36.36330191547583,209.60210738108208,2019
+1998,48,"(45,50]",HS,14789.786,406.57242937853107,36.37675585284281,228.7318265748921,2019
+1998,48,"(45,50]",HS,14786.139333333334,406.57242937853107,36.36778656126482,213.77912369345754,2019
+1998,63,"(60,65]",College,50956.149666666664,1330.6006779661018,38.29559875510962,14.88907941025208,2019
+1998,63,"(60,65]",College,87740.988,1506.16604519774,58.25452530931326,15.346942428237279,2019
+1998,63,"(60,65]",College,52815.038,929.5724180790961,56.81648570117755,16.178579613961055,2019
+1998,63,"(60,65]",College,29832.286,1524.6466101694916,19.5666889632107,12.711287252851669,2019
+1998,63,"(60,65]",College,43598.088,1559.7596836158193,27.951798253261266,13.739997953806727,2019
+1998,62,"(60,65]",HS,1.3675,15.893285875706214,0.08604262269580773,4829.192806298297,2019
+1998,62,"(60,65]",HS,1.3675,15.893285875706214,0.08604262269580773,4835.611523058505,2019
+1998,62,"(60,65]",HS,1.3675,15.893285875706214,0.08604262269580773,4854.742222420174,2019
+1998,62,"(60,65]",HS,1.3675,15.893285875706214,0.08604262269580773,4828.940730045644,2019
+1998,62,"(60,65]",HS,1.3675,15.893285875706214,0.08604262269580773,4855.655600851994,2019
+1998,39,"(35,40]",NoHS,31.9995,20.328621468926556,1.5741106719367588,6089.0903215432,2019
+1998,39,"(35,40]",NoHS,31.81716666666667,20.328621468926556,1.5651413803587715,6118.851767171569,2019
+1998,39,"(35,40]",NoHS,31.9995,20.328621468926556,1.5741106719367588,6103.284956840297,2019
+1998,39,"(35,40]",NoHS,31.81716666666667,20.328621468926556,1.5651413803587715,6142.840358021503,2019
+1998,39,"(35,40]",NoHS,31.9995,20.328621468926556,1.5741106719367588,6092.6251269828945,2019
+1998,64,"(60,65]",College,665266.87,14913.815932203392,44.60742126791908,1.6450475810565979,2019
+1998,64,"(60,65]",College,510316.3566666667,5562.650056497176,91.73979155323947,1.820074969989756,2019
+1998,64,"(60,65]",College,361027.29333333333,3455.8656497175143,104.46797703575197,1.7637393134810686,2019
+1998,64,"(60,65]",College,667245.1866666666,4416.855028248588,151.06793915562335,1.7547858162094887,2019
+1998,64,"(60,65]",College,665266.87,14913.815932203392,44.60742126791908,1.6450475810565979,2019
+1998,36,"(35,40]",HS,64.12663333333333,112.73144632768363,0.5688442348812982,6667.679199721063,2019
+1998,36,"(35,40]",HS,80.9013,97.9469943502825,0.8259702151826844,6783.9987440078385,2019
+1998,36,"(35,40]",HS,59.021300000000004,94.25088135593221,0.6262148337595907,7115.083336780725,2019
+1998,36,"(35,40]",HS,62.30330000000001,99.79505084745762,0.6243125232255669,6699.545290073319,2019
+1998,36,"(35,40]",HS,54.645300000000006,109.03533333333333,0.501170568561873,6998.949035596046,2019
+1998,42,"(40,45]",HS,628.2295,188.50176271186442,3.3327513279559313,1409.7685061184216,2019
+1998,42,"(40,45]",HS,628.2295,188.50176271186442,3.3327513279559313,1303.0943326266984,2019
+1998,42,"(40,45]",HS,628.2295,186.65370621468927,3.3657488658564856,1351.0505780478786,2019
+1998,42,"(40,45]",HS,628.0471666666666,188.50176271186442,3.331784051413207,1459.1529432539123,2019
+1998,42,"(40,45]",HS,628.2295,188.50176271186442,3.3327513279559313,1459.4574203953637,2019
+1998,41,"(40,45]",HS,481.7246666666667,110.88338983050849,4.344425863991081,6509.583330278809,2019
+1998,41,"(40,45]",HS,481.5423333333333,110.88338983050849,4.34278149386845,6228.074876555929,2019
+1998,41,"(40,45]",HS,481.7246666666667,110.88338983050849,4.344425863991081,6222.96186338597,2019
+1998,41,"(40,45]",HS,481.5423333333333,110.88338983050849,4.34278149386845,6078.038292437961,2019
+1998,41,"(40,45]",HS,481.7246666666667,110.88338983050849,4.344425863991081,6439.958283454904,2019
+1998,45,"(40,45]",HS,182.151,147.84451977401133,1.2320443143812707,6188.0884554206,2019
+1998,45,"(40,45]",HS,181.23933333333335,147.84451977401133,1.2258779264214046,5929.498670268253,2019
+1998,45,"(40,45]",HS,319.448,147.84451977401133,2.160702341137123,5525.669332629515,2019
+1998,45,"(40,45]",HS,336.58733333333333,147.84451977401133,2.276630434782608,6045.218031076407,2019
+1998,45,"(40,45]",HS,183.97433333333333,147.84451977401133,1.2443770903010032,5515.030194733275,2019
+1998,46,"(45,50]",College,117189.66290000001,5950.741920903954,19.69328605704315,57.73423644144312,2019
+1998,46,"(45,50]",College,135250.85533333334,2494.87627118644,54.211448036665445,60.71565003790194,2019
+1998,46,"(45,50]",College,125281.74386666666,3271.06,38.30004459308807,74.78777125628496,2019
+1998,46,"(45,50]",College,155733.94496666666,2735.1236158192087,56.93853984000724,67.5852399031331,2019
+1998,46,"(45,50]",College,153817.85866666667,5950.741920903954,25.848517833773034,64.25675976798009,2019
+1998,31,"(30,35]",HS,245.96766666666667,118.27561581920904,2.079614339464883,8049.33533325422,2019
+1998,31,"(30,35]",HS,245.96766666666667,118.27561581920904,2.079614339464883,7702.924803533904,2019
+1998,31,"(30,35]",HS,245.78533333333334,118.27561581920904,2.0780727424749164,7185.28010568307,2019
+1998,31,"(30,35]",HS,245.78533333333334,118.27561581920904,2.0780727424749164,7861.595920922855,2019
+1998,31,"(30,35]",HS,245.78533333333334,118.27561581920904,2.0780727424749164,7171.487364349273,2019
+1998,50,"(45,50]",HS,23.7945,31.416960451977403,0.7573775329529805,7167.0876154866,2019
+1998,50,"(45,50]",HS,23.97683333333333,31.416960451977403,0.7631811922093251,7215.375119533235,2019
+1998,50,"(45,50]",HS,23.7945,31.416960451977403,0.7573775329529805,7155.385168440431,2019
+1998,50,"(45,50]",HS,23.7945,31.416960451977403,0.7573775329529805,7195.459116145382,2019
+1998,50,"(45,50]",HS,23.97683333333333,31.416960451977403,0.7631811922093251,7179.279695167218,2019
+1998,70,"(65,70]",College,6733.57,369.6112994350283,18.21797658862876,1115.1813247223686,2019
+1998,70,"(65,70]",College,7209.46,369.6112994350283,19.505518394648828,1124.0741971914713,2019
+1998,70,"(65,70]",College,5717.973333333333,369.6112994350283,15.470234113712372,1087.2706940694702,2019
+1998,70,"(65,70]",College,7234.986666666667,369.6112994350283,19.57458193979933,1179.739566240512,2019
+1998,70,"(65,70]",College,5712.503333333333,369.6112994350283,15.455434782608693,1099.2949431568172,2019
+1998,30,"(25,30]",College,19.09941666666667,85.0105988700565,0.22467100479860408,5023.7689486600975,2019
+1998,30,"(25,30]",College,-20.959216666666666,85.0105988700565,-0.246548276864912,5006.64072944434,2019
+1998,30,"(25,30]",College,-31.169883333333335,85.0105988700565,-0.36665879017013236,5009.143597182681,2019
+1998,30,"(25,30]",College,-19.55525,85.0105988700565,-0.23003308128544425,5044.78424795602,2019
+1998,30,"(25,30]",College,11.505233333333333,85.0105988700565,0.13533881052784644,5005.976612810833,2019
+1998,59,"(55,60]",NoHS,176.49866666666665,147.84451977401133,1.1938127090301,376.27536984109935,2019
+1998,59,"(55,60]",NoHS,176.31633333333335,147.84451977401133,1.1925794314381268,371.58600006392487,2019
+1998,59,"(55,60]",NoHS,176.31633333333335,147.84451977401133,1.1925794314381268,358.159024512875,2019
+1998,59,"(55,60]",NoHS,176.49866666666665,147.84451977401133,1.1938127090301,383.3117568620566,2019
+1998,59,"(55,60]",NoHS,176.31633333333335,147.84451977401133,1.1925794314381268,394.8216481173845,2019
+1998,50,"(45,50]",HS,11.397656666666666,22.176677966101696,0.5139478818283165,10786.40037315358,2019
+1998,50,"(45,50]",HS,11.215323333333334,20.328621468926556,0.5517011249619945,10883.589296355365,2019
+1998,50,"(45,50]",HS,11.397656666666666,22.176677966101696,0.5139478818283165,10772.220857923021,2019
+1998,50,"(45,50]",HS,11.397656666666666,22.176677966101696,0.5139478818283165,10774.420531120917,2019
+1998,50,"(45,50]",HS,11.397656666666666,20.328621468926556,0.5606704165399816,10806.636028000983,2019
+1998,34,"(30,35]",HS,6.272266666666667,60.98586440677967,0.10284787676092023,5152.5835326268625,2019
+1998,34,"(30,35]",HS,6.436366666666667,60.98586440677967,0.1055386642343164,5135.016128318215,2019
+1998,34,"(30,35]",HS,6.272266666666667,64.68197740112994,0.0969708552317248,5137.583172150191,2019
+1998,34,"(30,35]",HS,6.4546,55.441694915254246,0.11642140468227423,5174.137685732227,2019
+1998,34,"(30,35]",HS,6.436366666666667,64.68197740112994,0.09950788342092691,5134.334983053671,2019
+1998,39,"(35,40]",HS,16.446466666666666,112.73144632768363,0.1458906738308021,7217.520614521416,2019
+1998,39,"(35,40]",HS,12.106933333333332,112.73144632768363,0.10739623882888315,7357.415899942238,2019
+1998,39,"(35,40]",HS,17.540466666666667,112.73144632768363,0.1555951532430506,7708.260150624599,2019
+1998,39,"(35,40]",HS,17.7228,112.73144632768363,0.15721256647842533,7239.885254599221,2019
+1998,39,"(35,40]",HS,14.9878,112.73144632768363,0.13295136794780416,7532.979678732654,2019
+1998,80,"(75,80]",College,152.066,13.860423728813561,10.971237458193979,9700.78810090278,2019
+1998,80,"(75,80]",College,118.57136666666668,13.860423728813561,8.554671125975473,9903.11356569628,2019
+1998,80,"(75,80]",College,171.4845,13.860423728813561,12.372240802675583,10278.163328313705,2019
+1998,80,"(75,80]",College,147.19770000000003,13.860423728813561,10.620000000000001,9860.069012600672,2019
+1998,80,"(75,80]",College,109.4547,13.860423728813561,7.896923076923076,10310.069557097575,2019
+1998,43,"(40,45]",HS,14.586666666666666,9.425088135593223,1.5476424683585805,8484.82276570173,2019
+1998,43,"(40,45]",HS,14.586666666666666,9.425088135593223,1.5476424683585805,8530.744958071682,2019
+1998,43,"(40,45]",HS,14.586666666666666,9.425088135593223,1.5476424683585805,8475.026048529664,2019
+1998,43,"(40,45]",HS,14.586666666666666,9.425088135593223,1.5476424683585805,8516.552194842909,2019
+1998,43,"(40,45]",HS,14.586666666666666,9.425088135593223,1.5476424683585805,8492.595759171649,2019
+1998,28,"(25,30]",HS,23.88566666666667,11.27314463276836,2.1188113383409184,4577.25613130884,2019
+1998,28,"(25,30]",HS,33.73166666666666,11.27314463276836,2.992214485443281,4587.322528209254,2019
+1998,28,"(25,30]",HS,21.697666666666667,11.27314463276836,1.9247217500959484,4618.979141110601,2019
+1998,28,"(25,30]",HS,33.54933333333334,11.27314463276836,2.976040353089534,4587.670602117172,2019
+1998,28,"(25,30]",HS,33.73166666666666,11.27314463276836,2.992214485443281,4566.37135206116,2019
+1998,33,"(30,35]",NoHS,6.017,46.201412429378536,0.1302341137123746,4334.522856521952,2019
+1998,33,"(30,35]",NoHS,6.017,31.416960451977403,0.1915207554593744,4344.055429355101,2019
+1998,33,"(30,35]",NoHS,6.017,24.024734463276836,0.25045021867764344,4374.033282515289,2019
+1998,33,"(30,35]",NoHS,6.017,25.872790960451983,0.232560917343526,4344.385044798577,2019
+1998,33,"(30,35]",NoHS,6.017,24.024734463276836,0.25045021867764344,4324.215300404537,2019
+1998,45,"(40,45]",College,100254.52466666668,9184.840790960452,10.915216381903463,1.3755398392421485,2019
+1998,45,"(40,45]",College,142218.72366666666,7891.201242937853,18.022442881423636,1.3310561704679393,2019
+1998,45,"(40,45]",College,95483.04366666668,7891.201242937853,12.099937731548568,1.283682963703911,2019
+1998,45,"(40,45]",College,102927.53133333333,7872.720677966102,13.073946802330145,1.2984065677975143,2019
+1998,45,"(40,45]",College,146775.963,7891.201242937853,18.59995183006587,1.2016878665785116,2019
+1998,78,"(75,80]",College,928.259,66.53003389830509,13.952480490523968,9381.817948572858,2019
+1998,78,"(75,80]",College,927.8943333333334,66.53003389830509,13.946999256781865,8997.035998529595,2019
+1998,78,"(75,80]",College,928.0766666666666,66.53003389830509,13.949739873652915,8398.118439051976,2019
+1998,78,"(75,80]",College,929.9,66.53003389830509,13.977146042363431,9144.105278824782,2019
+1998,78,"(75,80]",College,929.9,66.53003389830509,13.977146042363431,8375.848926416578,2019
+1998,25,"(20,25]",HS,-1.1851666666666667,48.04946892655367,-0.024665551839464884,5342.314672874776,2019
+1998,25,"(20,25]",HS,-1.3492666666666666,48.04946892655367,-0.02808078209416002,5358.775166837647,2019
+1998,25,"(20,25]",HS,-1.3492666666666666,49.89752542372881,-0.027040753127709653,5393.643492462477,2019
+1998,25,"(20,25]",HS,-1.3675,48.04946892655367,-0.02846025212245948,5336.953122770979,2019
+1998,25,"(20,25]",HS,-1.3492666666666666,48.04946892655367,-0.02808078209416002,5417.2161710043965,2019
+1998,50,"(45,50]",College,63.543166666666664,79.46642937853107,0.7996227735863731,6729.651038795875,2019
+1998,50,"(45,50]",College,66.27816666666668,79.46642937853107,0.8340398226646965,6855.882393338662,2019
+1998,50,"(45,50]",College,64.09016666666666,79.46642937853107,0.8065061834020377,7151.168631680349,2019
+1998,50,"(45,50]",College,69.1955,79.46642937853107,0.8707513416815742,6711.048976078705,2019
+1998,50,"(45,50]",College,64.63716666666667,79.46642937853107,0.8133895932177024,7041.498883549715,2019
+1998,40,"(35,40]",HS,183.70083333333335,66.53003389830509,2.761171497584541,5101.339296558186,2019
+1998,40,"(35,40]",HS,170.9375,64.68197740112994,2.6427376970855234,5096.145209539982,2019
+1998,40,"(35,40]",HS,262.1041666666667,66.53003389830509,3.939636752136752,5095.270650373122,2019
+1998,40,"(35,40]",HS,214.6975,64.68197740112994,3.319278547539417,5169.903351929569,2019
+1998,40,"(35,40]",HS,169.11416666666665,66.53003389830509,2.5419221479004084,5084.259110029595,2019
+1998,26,"(25,30]",HS,223.97826666666666,31.416960451977403,7.1292150304938025,5425.682095561906,2019
+1998,26,"(25,30]",HS,236.5228,40.65724293785311,5.817482517482516,5354.8086391135,2019
+1998,26,"(25,30]",HS,216.83079999999998,27.720847457627123,7.821939799331102,5396.774840525921,2019
+1998,26,"(25,30]",HS,210.83203333333333,36.96112994350283,5.704155518394647,5451.681414603678,2019
+1998,26,"(25,30]",HS,217.37779999999998,42.50529943502825,5.114134070088701,5382.56497991846,2019
+1998,49,"(45,50]",HS,70.9459,112.73144632768363,0.6293354898843138,6399.0161651591325,2019
+1998,49,"(45,50]",HS,70.80003333333335,112.73144632768363,0.6280415592960141,6482.562783264771,2019
+1998,49,"(45,50]",HS,70.76356666666666,112.73144632768363,0.627718076648939,6718.784634793342,2019
+1998,49,"(45,50]",HS,62.64973333333333,112.73144632768363,0.5557431876747628,6393.47539557341,2019
+1998,49,"(45,50]",HS,52.183800000000005,112.73144632768363,0.4629036679642524,6687.732977001843,2019
+1998,31,"(30,35]",College,1.094,64.68197740112994,0.01691352126134735,6761.791440611771,2019
+1998,31,"(30,35]",College,1.2763333333333333,64.68197740112994,0.019732441471571906,6801.766967046783,2019
+1998,31,"(30,35]",College,1.094,64.68197740112994,0.01691352126134735,6963.289049989415,2019
+1998,31,"(30,35]",College,1.2763333333333333,64.68197740112994,0.019732441471571906,6781.225403646307,2019
+1998,31,"(30,35]",College,1.2763333333333333,64.68197740112994,0.019732441471571906,6845.94314991798,2019
+1998,48,"(45,50]",College,69.01316666666668,147.84451977401133,0.4667955685618729,6696.85220707744,2019
+1998,48,"(45,50]",College,131.69936666666666,147.84451977401133,0.8907964046822741,6666.5915929297025,2019
+1998,48,"(45,50]",College,315.2543333333333,147.84451977401133,2.1323369565217383,6641.241521866247,2019
+1998,48,"(45,50]",College,160.45333333333335,147.84451977401133,1.0852842809364547,6685.785885818118,2019
+1998,48,"(45,50]",College,86.51716666666667,147.84451977401133,0.5851902173913043,6720.455034504036,2019
+1998,37,"(35,40]",HS,21.515333333333334,59.13780790960452,0.36381688963210707,4792.368189513078,2019
+1998,37,"(35,40]",HS,19.692,59.13780790960452,0.33298494983277593,4812.13532880792,2019
+1998,37,"(35,40]",HS,21.515333333333334,59.13780790960452,0.36381688963210707,4832.775653852873,2019
+1998,37,"(35,40]",HS,21.515333333333334,59.13780790960452,0.36381688963210707,4807.198881549575,2019
+1998,37,"(35,40]",HS,19.692,59.13780790960452,0.33298494983277593,4763.845794646893,2019
+1998,60,"(55,60]",NoHS,205.9455,49.89752542372881,4.127369007803791,6919.918894855104,2019
+1998,60,"(55,60]",NoHS,205.92726666666667,49.89752542372881,4.127003592220984,6899.379985672032,2019
+1998,60,"(55,60]",NoHS,206.1096,49.89752542372881,4.130657748049053,7260.972800614339,2019
+1998,60,"(55,60]",NoHS,206.1096,49.89752542372881,4.130657748049053,6802.905731064433,2019
+1998,60,"(55,60]",NoHS,206.29193333333333,49.89752542372881,4.134311903877122,7198.2475234795,2019
+1998,75,"(70,75]",College,6705.271866666666,428.74910734463276,15.639150616999192,1031.4437991999198,2019
+1998,75,"(70,75]",College,4459.9645,219.9187231638418,20.280058177117002,1131.9468423060719,2019
+1998,75,"(70,75]",College,7097.9267,275.360418079096,25.77685910529506,1035.1230308067084,2019
+1998,75,"(70,75]",College,5086.9359,321.56183050847454,15.819464306308387,1320.1264373352808,2019
+1998,75,"(70,75]",College,9245.740433333334,382.5476949152542,24.168856736626115,1036.2398986389048,2019
+1998,36,"(35,40]",HS,103.01833333333333,68.37809039548021,1.5065985718159633,248.4972778036275,2019
+1998,36,"(35,40]",HS,92.40653333333334,68.37809039548021,1.3514055861881953,250.29958227198273,2019
+1998,36,"(35,40]",HS,100.83033333333333,68.37809039548021,1.4746000180782792,237.5246698466521,2019
+1998,36,"(35,40]",HS,100.83033333333333,68.37809039548021,1.4746000180782792,259.8649133978494,2019
+1998,36,"(35,40]",HS,96.63666666666667,68.37809039548021,1.413269456747718,260.4356183005027,2019
+1998,52,"(50,55]",HS,606.8053333333334,177.41342372881357,3.420289855072464,5861.003784365303,2019
+1998,52,"(50,55]",HS,607.17,177.41342372881357,3.422345317725752,5616.082316242378,2019
+1998,52,"(50,55]",HS,606.9876666666667,177.41342372881357,3.4213175863991077,5233.598243303009,2019
+1998,52,"(50,55]",HS,604.982,177.41342372881357,3.4100125418060196,5725.685082348093,2019
+1998,52,"(50,55]",HS,605.1643333333334,177.41342372881357,3.4110402731326643,5223.521459830783,2019
+1998,20,"(15,20]",HS,18.087466666666668,0,Inf,6832.461635036593,2019
+1998,20,"(15,20]",HS,18.087466666666668,0,Inf,6845.238095055945,2019
+1998,20,"(15,20]",HS,17.7228,0,Inf,6817.233968111688,2019
+1998,20,"(15,20]",HS,17.7228,0,Inf,6822.211972919626,2019
+1998,20,"(15,20]",HS,17.923366666666666,0,Inf,6801.8669949443265,2019
+1998,26,"(25,30]",College,16.227666666666668,59.13780790960452,0.27440426421404684,5304.130107684374,2019
+1998,26,"(25,30]",College,10.393,59.13780790960452,0.1757420568561873,5286.046015011769,2019
+1998,26,"(25,30]",College,11.669333333333334,59.13780790960452,0.19732441471571907,5288.688560133201,2019
+1998,26,"(25,30]",College,10.210666666666667,59.13780790960452,0.17265886287625418,5326.318206471685,2019
+1998,26,"(25,30]",College,10.393,59.13780790960452,0.1757420568561873,5285.344836062897,2019
+1998,54,"(50,55]",NoHS,123.53083333333333,92.40282485875707,1.3368729096989964,2587.4148597736244,2019
+1998,54,"(50,55]",NoHS,123.3485,92.40282485875707,1.3348996655518393,2656.117514177159,2019
+1998,54,"(50,55]",NoHS,123.3485,92.40282485875707,1.3348996655518393,2506.358047188757,2019
+1998,54,"(50,55]",NoHS,123.3485,92.40282485875707,1.3348996655518393,2498.8733036024673,2019
+1998,54,"(50,55]",NoHS,123.53083333333333,92.40282485875707,1.3368729096989964,2606.096875920225,2019
+1998,19,"(15,20]",NoHS,8.5879,27.720847457627123,0.30979933110367885,9602.596311002697,2019
+1998,19,"(15,20]",NoHS,15.553033333333333,27.720847457627123,0.5610590858416945,9719.787219840375,2019
+1998,19,"(15,20]",NoHS,8.806700000000001,27.720847457627123,0.31769230769230766,9874.982106319043,2019
+1998,19,"(15,20]",NoHS,9.882466666666668,27.720847457627123,0.3564994425863991,9641.432052070106,2019
+1998,19,"(15,20]",NoHS,7.8768,27.720847457627123,0.28414715719063544,9757.083114543413,2019
+1998,68,"(65,70]",College,1135.7543333333333,92.40282485875707,12.291337792642139,7701.29215087079,2019
+1998,68,"(65,70]",College,1124.8143333333333,92.40282485875707,12.172943143812708,7366.608775614271,2019
+1998,68,"(65,70]",College,1117.3386666666668,92.40282485875707,12.092040133779264,6820.849794208645,2019
+1998,68,"(65,70]",College,1157.6343333333332,90.55476836158192,12.78380315336837,7483.780553509452,2019
+1998,68,"(65,70]",College,1157.452,92.40282485875707,12.526153846153845,6802.094321500791,2019
+1998,37,"(35,40]",College,887.9815666666667,92.40282485875707,9.609896321070234,6070.382232049151,2019
+1998,37,"(35,40]",College,888.1274333333333,90.55476836158192,9.807627465702,5829.778278680737,2019
+1998,37,"(35,40]",College,887.9451,92.40282485875707,9.609501672240802,5484.492926352841,2019
+1998,37,"(35,40]",College,887.7992333333333,90.55476836158192,9.804003139717425,5927.567146829605,2019
+1998,37,"(35,40]",College,889.969,90.55476836158192,9.827963961504334,5443.907769558404,2019
+1998,40,"(35,40]",College,3425.623966666667,295.68903954802266,11.585224707357858,740.2762587427674,2019
+1998,40,"(35,40]",College,3378.272,295.68903954802266,11.425083612040131,810.5020906955685,2019
+1998,40,"(35,40]",College,3033.917266666667,295.68903954802266,10.260499581939797,741.4550415115725,2019
+1998,40,"(35,40]",College,3545.143466666667,295.68903954802266,11.989431438127088,949.3844795863155,2019
+1998,40,"(35,40]",College,3200.3876,295.68903954802266,10.823490802675583,741.94773501361,2019
+1998,44,"(40,45]",College,8128.073566666667,1439.636011299435,5.645922651886262,427.9945007409445,2019
+1998,44,"(40,45]",College,9843.119133333334,1441.4840677966104,6.828461967241231,432.9581660494229,2019
+1998,44,"(40,45]",College,10248.993133333333,1439.636011299435,7.119155851125489,470.4440593817059,2019
+1998,44,"(40,45]",College,7927.5251333333335,1441.4840677966104,5.4995579281365226,499.6470893248126,2019
+1998,44,"(40,45]",College,9714.191233333333,1441.4840677966104,6.739020881571047,415.7494063180793,2019
+1998,50,"(45,50]",HS,1446.9973333333332,147.84451977401133,9.787290969899663,2898.5556850645635,2019
+1998,50,"(45,50]",HS,1560.044,147.84451977401133,10.551923076923075,3165.8460268910267,2019
+1998,50,"(45,50]",HS,1605.6273333333334,145.99646327683615,10.997713898649508,2948.5830616219223,2019
+1998,50,"(45,50]",HS,1591.223,177.41342372881357,8.969011287625417,2928.662520304625,2019
+1998,50,"(45,50]",HS,1448.6383333333333,147.84451977401133,9.798390468227423,3024.051108063203,2019
+1998,85,"(80,85]",College,733.8752566666667,59.13780790960452,12.409578281772577,1735.5122164468878,2019
+1998,85,"(80,85]",College,821.7945666666667,44.35335593220339,18.528351449275362,1617.113517130702,2019
+1998,85,"(80,85]",College,357.9768566666667,109.03533333333333,3.283127090301004,752.6816311341254,2019
+1998,85,"(80,85]",College,960.3131999999999,88.70671186440678,10.825710702341135,1820.4816761927955,2019
+1998,85,"(80,85]",College,454.21056666666664,27.720847457627123,16.385161649944255,805.0809647731461,2019
+1998,56,"(55,60]",College,9937.896,728.1342598870057,13.648438958966437,356.44226048754206,2019
+1998,56,"(55,60]",College,9972.484633333333,683.7809039548022,14.584327488023142,353.1101158278783,2019
+1998,56,"(55,60]",College,10264.819666666666,833.4734802259889,12.315712389413342,334.7816676765537,2019
+1998,56,"(55,60]",College,8183.575833333333,790.9681807909604,10.34627691995124,370.1779121172964,2019
+1998,56,"(55,60]",College,5869.875233333333,619.0989265536723,9.481320321469575,348.4556492348632,2019
+1998,67,"(65,70]",HS,843.8386666666667,109.03533333333333,7.739130434782609,5340.812668582816,2019
+1998,67,"(65,70]",HS,818.312,107.18727683615819,7.634413562449545,5045.751144889904,2019
+1998,67,"(65,70]",HS,821.9586666666667,109.03533333333333,7.538461538461539,5181.76085690501,2019
+1998,67,"(65,70]",HS,810.4716666666667,109.03533333333333,7.4331103678929775,5167.880216048004,2019
+1998,67,"(65,70]",HS,811.748,109.03533333333333,7.4448160535117065,5325.717789314062,2019
+1998,56,"(55,60]",HS,92.07833333333333,92.40282485875707,0.9964882943143811,9586.716629984716,2019
+1998,56,"(55,60]",HS,92.20596666666667,92.40282485875707,0.9978695652173912,9497.554623201522,2019
+1998,56,"(55,60]",HS,91.93246666666666,92.40282485875707,0.9949096989966553,9999.814910602714,2019
+1998,56,"(55,60]",HS,91.91423333333334,92.40282485875707,0.9947123745819398,9388.892507796494,2019
+1998,56,"(55,60]",HS,92.0601,92.40282485875707,0.9962909698996655,9895.649104215066,2019
+1998,75,"(70,75]",NoHS,7.293333333333333,12.936395480225992,0.5637840420449115,8003.871500411233,2019
+1998,75,"(70,75]",NoHS,7.293333333333333,12.936395480225992,0.5637840420449115,8018.306481126392,2019
+1998,75,"(70,75]",NoHS,7.293333333333333,12.936395480225992,0.5637840420449115,8028.064562949468,2019
+1998,75,"(70,75]",NoHS,7.293333333333333,12.936395480225992,0.5637840420449115,7970.142643276117,2019
+1998,75,"(70,75]",NoHS,7.293333333333333,12.936395480225992,0.5637840420449115,8026.3534920473685,2019
+1998,67,"(65,70]",HS,180.1635666666667,164.47702824858757,1.0953722144977642,8625.333949015028,2019
+1998,67,"(65,70]",HS,154.10813333333334,164.47702824858757,0.9369584006613807,8935.948130822524,2019
+1998,67,"(65,70]",HS,311.80823333333336,59.13780790960452,5.2725700250836125,9094.956438438032,2019
+1998,67,"(65,70]",HS,136.1300666666667,70.22614689265536,1.9384527371941564,8649.100089626188,2019
+1998,67,"(65,70]",HS,435.33906666666667,70.22614689265536,6.199102270726985,8998.54725837249,2019
+1998,71,"(70,75]",HS,4.376,40.65724293785311,0.10763149893584675,5579.055016778395,2019
+1998,71,"(70,75]",HS,4.376,38.80918644067796,0.11275680840898235,5642.7770021572205,2019
+1998,71,"(70,75]",HS,4.376,38.80918644067796,0.11275680840898235,5649.2577568973475,2019
+1998,71,"(70,75]",HS,4.376,40.65724293785311,0.10763149893584675,5616.266237130081,2019
+1998,71,"(70,75]",HS,4.376,40.65724293785311,0.10763149893584675,5649.25055369605,2019
+1998,23,"(20,25]",HS,10.575333333333335,9.240282485875708,1.1444816053511704,4106.846298970359,2019
+1998,23,"(20,25]",HS,10.757666666666667,9.240282485875708,1.1642140468227422,4075.456942066778,2019
+1998,23,"(20,25]",HS,10.575333333333335,9.240282485875708,1.1444816053511704,4104.106532962843,2019
+1998,23,"(20,25]",HS,10.575333333333335,9.240282485875708,1.1444816053511704,4107.864776694656,2019
+1998,23,"(20,25]",HS,10.393,9.240282485875708,1.1247491638795986,4062.175476736179,2019
+1998,39,"(35,40]",College,1311.159,351.1307344632769,3.7341049111071993,409.7514832549138,2019
+1998,39,"(35,40]",College,1311.5236666666667,351.1307344632769,3.7351434606583345,396.5426658775213,2019
+1998,39,"(35,40]",College,1311.5236666666667,351.1307344632769,3.7351434606583345,403.64226190600715,2019
+1998,39,"(35,40]",College,1311.3413333333333,351.1307344632769,3.7346241858827662,400.21092624822444,2019
+1998,39,"(35,40]",College,1311.3413333333333,351.1307344632769,3.7346241858827662,404.7594537976904,2019
+1998,34,"(30,35]",HS,11.122333333333334,147.84451977401133,0.07522993311036788,4631.115319574003,2019
+1998,34,"(30,35]",HS,11.122333333333334,147.84451977401133,0.07522993311036788,4691.451192099043,2019
+1998,34,"(30,35]",HS,11.122333333333334,147.84451977401133,0.07522993311036788,4674.952735555175,2019
+1998,34,"(30,35]",HS,11.122333333333334,147.84451977401133,0.07522993311036788,4622.082892221756,2019
+1998,34,"(30,35]",HS,11.122333333333334,147.84451977401133,0.07522993311036788,4700.926815572881,2019
+1998,31,"(30,35]",HS,28.261666666666667,55.441694915254246,0.5097547380156076,5822.443000561335,2019
+1998,31,"(30,35]",HS,28.261666666666667,55.441694915254246,0.5097547380156076,5780.358696139525,2019
+1998,31,"(30,35]",HS,28.261666666666667,55.441694915254246,0.5097547380156076,5811.836449849467,2019
+1998,31,"(30,35]",HS,28.261666666666667,55.441694915254246,0.5097547380156076,5823.7130624967685,2019
+1998,31,"(30,35]",HS,28.261666666666667,55.441694915254246,0.5097547380156076,5798.941918893308,2019
+1998,48,"(45,50]",College,22957.59,7225.900903954801,3.177124943331994,28.04045691758452,2019
+1998,48,"(45,50]",College,22956.13133333333,3622.190734463277,6.337637362637362,31.14142729410532,2019
+1998,48,"(45,50]",College,22956.9883,5414.805536723164,4.239669946465465,36.514626014898454,2019
+1998,48,"(45,50]",College,22959.595666666668,3622.190734463277,6.338593781994404,31.685667529484306,2019
+1998,48,"(45,50]",College,22959.595666666668,8796.748926553671,2.610009204350637,29.960807709099793,2019
+1998,46,"(45,50]",College,1980.3223333333333,221.76677966101698,8.929751950947601,2586.768747372684,2019
+1998,46,"(45,50]",College,1963.5476666666668,221.76677966101698,8.854110925306577,2822.74135128961,2019
+1998,46,"(45,50]",College,1995.6383333333333,221.76677966101698,8.998815496098103,2623.1334390337956,2019
+1998,46,"(45,50]",College,2019.5240000000001,221.76677966101698,9.106521739130434,2616.6438572314432,2019
+1998,46,"(45,50]",College,2025.7233333333334,221.76677966101698,9.13447603121516,2696.468399002499,2019
+1998,68,"(65,70]",NoHS,0.3646666666666667,8.13144858757062,0.04484645788993616,5480.984950312277,2019
+1998,68,"(65,70]",NoHS,0.3646666666666667,8.13144858757062,0.04484645788993616,5483.628031957511,2019
+1998,68,"(65,70]",NoHS,0.3646666666666667,8.13144858757062,0.04484645788993616,5473.837627399142,2019
+1998,68,"(65,70]",NoHS,0.3646666666666667,8.13144858757062,0.04484645788993616,5430.83970430388,2019
+1998,68,"(65,70]",NoHS,0.3646666666666667,8.13144858757062,0.04484645788993616,5464.783054197886,2019
+1998,84,"(80,85]",HS,64.27250000000001,136.75618079096043,0.46997875802223643,2583.6866789494306,2019
+1998,84,"(80,85]",HS,60.808166666666665,134.9081242937853,0.4507376185458377,2691.771409779397,2019
+1998,84,"(80,85]",HS,62.6315,134.9081242937853,0.4642529894167774,2569.3376202940963,2019
+1998,84,"(80,85]",HS,65.3665,136.75618079096043,0.4779783964566574,2559.005538984355,2019
+1998,84,"(80,85]",HS,65.3665,134.9081242937853,0.4845260457231869,2654.8454296464365,2019
+1998,56,"(55,60]",College,846.2090000000001,208.83038418079096,4.0521354367064255,6972.482931240597,2019
+1998,56,"(55,60]",College,798.9846666666666,210.6784406779661,3.7924367775626355,6647.245561820282,2019
+1998,56,"(55,60]",College,798.62,210.6784406779661,3.7907058616440765,6222.809397097654,2019
+1998,56,"(55,60]",College,805.184,210.6784406779661,3.8218623481781373,6806.998921666398,2019
+1998,56,"(55,60]",College,811.5656666666666,210.6784406779661,3.8521533767529186,6205.887876771657,2019
+1998,47,"(45,50]",HS,727.6923333333334,367.7632429378531,1.978697837011143,673.4576325994283,2019
+1998,47,"(45,50]",HS,770.7230000000001,260.5759661016949,2.9577670248345553,622.5880090595396,2019
+1998,47,"(45,50]",HS,833.0263000000001,212.52649717514123,3.919635015268286,641.6753075665737,2019
+1998,47,"(45,50]",HS,745.2145666666667,256.8798531073446,2.9010237963475376,707.0445750019015,2019
+1998,47,"(45,50]",HS,841.9971,218.07066666666665,3.861120401337793,700.5354038280645,2019
+1998,66,"(65,70]",HS,2211.7033333333334,133.06006779661018,16.62184132292828,3794.1019469882876,2019
+1998,66,"(65,70]",HS,2103.3973333333333,105.33922033898305,19.96784603649592,4136.657397060211,2019
+1998,66,"(65,70]",HS,2295.0296666666663,138.6042372881356,16.558149386845034,3828.2457940841923,2019
+1998,66,"(65,70]",HS,2090.634,131.21201129943503,15.933251684017145,3812.4676450818356,2019
+1998,66,"(65,70]",HS,2194.564,120.12367231638417,18.26920504244919,3922.150725495857,2019
+1998,50,"(45,50]",College,9577.058333333334,406.57242937853107,23.555602006688964,2407.7426101220613,2019
+1998,50,"(45,50]",College,9686.458333333334,406.57242937853107,23.82468075402858,2443.030757514319,2019
+1998,50,"(45,50]",College,9489.538333333334,406.57242937853107,23.34033900881727,2316.9523789090836,2019
+1998,50,"(45,50]",College,9657.285,406.57242937853107,23.75292642140468,2473.0644240757915,2019
+1998,50,"(45,50]",College,9513.241666666667,406.57242937853107,23.39863940407419,2380.3555111559353,2019
+1998,50,"(45,50]",HS,2494.2288333333336,173.71731073446327,14.357975165445103,953.3300064700923,2019
+1998,50,"(45,50]",HS,2797.6315,173.71731073446327,16.104506155269338,1045.142717239737,2019
+1998,50,"(45,50]",HS,2402.5334,173.71731073446327,13.830132356080552,2908.371475590494,2019
+1998,50,"(45,50]",HS,2624.378366666667,173.71731073446327,15.107178182594465,1222.8869993650671,2019
+1998,50,"(45,50]",HS,2890.384466666667,173.71731073446327,16.638436632747457,956.2319202094138,2019
+1998,67,"(65,70]",College,872.1003333333334,177.41342372881357,4.915638935340023,10553.334075500763,2019
+1998,67,"(65,70]",College,872.1003333333334,160.78091525423727,5.424153307961405,10174.650373158365,2019
+1998,67,"(65,70]",College,2298.494,173.71731073446327,13.231231765459334,11563.862010738283,2019
+1998,67,"(65,70]",College,872.1003333333334,151.54063276836158,5.754894363324905,10062.590158865458,2019
+1998,67,"(65,70]",College,872.1003333333334,144.14840677966103,6.05001715118772,10318.796404198825,2019
+1998,25,"(20,25]",College,-90.07266666666668,13.121201129943504,-6.864666258420086,4942.663465570991,2019
+1998,25,"(20,25]",College,-92.2242,11.457950282485875,-8.048926529291187,4925.811770317253,2019
+1998,25,"(20,25]",College,-95.72500000000001,11.457950282485875,-8.354461106915526,4928.2742308833895,2019
+1998,25,"(20,25]",College,-82.77933333333333,11.457950282485875,-7.224619700075521,4963.339486524484,2019
+1998,25,"(20,25]",College,-88.46813333333333,11.457950282485875,-7.721113388715072,4925.158375414968,2019
+1998,28,"(25,30]",HS,-3.3184666666666667,64.68197740112994,-0.051304347826086956,4613.944579688621,2019
+1998,28,"(25,30]",HS,-2.6256,64.68197740112994,-0.040592451027233634,4627.605143505849,2019
+1998,28,"(25,30]",HS,-1.4404333333333335,64.68197740112994,-0.022269469660774012,4627.835706738122,2019
+1998,28,"(25,30]",HS,-2.616483333333333,64.68197740112994,-0.04045150501672241,4650.870915465461,2019
+1998,28,"(25,30]",HS,-0.8113833333333333,64.68197740112994,-0.012544194935499284,4633.21985035384,2019
+1998,27,"(25,30]",College,25.4355,75.77031638418079,0.3356921445468636,5439.700621604325,2019
+1998,27,"(25,30]",College,28.7175,90.55476836158192,0.3171285236502628,5456.461176667915,2019
+1998,27,"(25,30]",College,27.988166666666668,75.77031638418079,0.3693816787666205,5491.965122839175,2019
+1998,27,"(25,30]",College,25.4355,81.31448587570623,0.31280404378230464,5434.241334905907,2019
+1998,27,"(25,30]",College,24.706166666666668,51.745581920903966,0.47745461060678446,5515.967511685421,2019
+1998,51,"(50,55]",HS,1.1851666666666667,27.720847457627123,0.04275362318840579,6723.511767699771,2019
+1998,51,"(50,55]",HS,0.12763333333333335,14.414840677966104,0.008854300660320726,6724.396517212705,2019
+1998,51,"(50,55]",HS,15.571266666666666,22.176677966101696,0.7021460423634336,6705.731807075221,2019
+1998,51,"(50,55]",HS,0.4558333333333333,20.328621468926556,0.022423228944968072,6721.214035365937,2019
+1998,51,"(50,55]",HS,0.03646666666666667,24.024734463276836,0.001517880113197839,6727.50257889486,2019
+1998,46,"(45,50]",College,693.8512666666668,195.893988700565,3.5419732441471576,10553.334075500763,2019
+1998,46,"(45,50]",College,646.0070000000001,179.26148022598866,3.603713408957695,10174.650373158365,2019
+1998,46,"(45,50]",College,734.2016333333333,192.1978757062147,3.8200299073835864,9881.289916979043,2019
+1998,46,"(45,50]",College,659.3538000000001,182.957593220339,3.6038613560352695,10062.590158865458,2019
+1998,46,"(45,50]",College,682.3642666666667,171.86925423728815,3.9702520947962743,10318.796404198825,2019
+1998,39,"(35,40]",College,157.71833333333333,184.80564971751414,0.8534280936454849,7092.949097580759,2019
+1998,39,"(35,40]",College,228.71893333333333,184.80564971751414,1.2376187290969898,5706.638156046067,2019
+1998,39,"(35,40]",College,152.97766666666666,184.80564971751414,0.8277759197324414,7575.218665712925,2019
+1998,39,"(35,40]",College,860.6133333333333,184.80564971751414,4.65685618729097,5824.4052917687595,2019
+1998,39,"(35,40]",College,168.29366666666667,184.80564971751414,0.9106521739130434,7402.963464608534,2019
+1998,71,"(70,75]",College,1081.0543333333333,170.021197740113,6.358350298095099,6311.730403430845,2019
+1998,71,"(70,75]",College,1086.5243333333333,170.021197740113,6.39052275701614,6078.561634980297,2019
+1998,71,"(70,75]",College,1099.2876666666668,170.021197740113,6.465591827831904,5674.282171230945,2019
+1998,71,"(70,75]",College,1091.9943333333333,170.021197740113,6.422695215937182,6205.05597140076,2019
+1998,71,"(70,75]",College,1093.8176666666668,170.021197740113,6.433419368910863,5658.528965275355,2019
+1998,80,"(75,80]",HS,52.36613333333333,40.65724293785311,1.287990270598966,6198.853137694214,2019
+1998,80,"(75,80]",HS,51.472699999999996,40.65724293785311,1.2660155062328973,6301.378745328546,2019
+1998,80,"(75,80]",HS,49.37586666666667,42.50529943502825,1.1616402501090592,6365.546164733578,2019
+1998,80,"(75,80]",HS,52.5667,40.65724293785311,1.292923380966859,6400.2564088637455,2019
+1998,80,"(75,80]",HS,50.415166666666664,40.65724293785311,1.2400045606567343,6389.115699485343,2019
+1998,49,"(45,50]",HS,183.792,46.201412429378536,3.978060200668896,10464.169911980833,2019
+1998,49,"(45,50]",HS,191.45000000000002,46.201412429378536,4.1438127090301,10743.595408481415,2019
+1998,49,"(45,50]",HS,184.339,46.201412429378536,3.989899665551839,11021.191595717077,2019
+1998,49,"(45,50]",HS,191.08533333333335,46.201412429378536,4.135919732441471,10418.756989756479,2019
+1998,49,"(45,50]",HS,182.51566666666665,46.201412429378536,3.9504347826086947,11010.45153371926,2019
+1998,30,"(25,30]",HS,51.60033333333334,83.16254237288136,0.6204756596060944,8385.229615474944,2019
+1998,30,"(25,30]",HS,53.368966666666665,83.16254237288136,0.6417428465254552,8442.225472385851,2019
+1998,30,"(25,30]",HS,47.224333333333334,83.16254237288136,0.5678558156819026,8639.32073647714,2019
+1998,30,"(25,30]",HS,47.862500000000004,83.16254237288136,0.5755295429208472,8381.819010118912,2019
+1998,30,"(25,30]",HS,46.987300000000005,83.16254237288136,0.5650055741360089,8629.133059717631,2019
+1998,74,"(70,75]",HS,15144.606666666667,911.0918531073447,16.62248061489617,356.44226048754206,2019
+1998,74,"(70,75]",HS,16261.580666666667,949.9010395480226,17.119236625326966,409.24260336737694,2019
+1998,74,"(70,75]",HS,14116.976,951.7490960451977,14.83266551936877,334.7816676765537,2019
+1998,74,"(70,75]",HS,14419.102333333334,953.5971525423727,15.120748100904828,370.1779121172964,2019
+1998,74,"(70,75]",HS,16653.597333333335,1010.8869039548023,16.474243823103215,378.47519618782866,2019
+1998,80,"(75,80]",HS,302.67333333333335,18.480564971751416,16.37792642140468,7329.484356767102,2019
+1998,80,"(75,80]",HS,302.67333333333335,18.480564971751416,16.37792642140468,7482.352486011322,2019
+1998,80,"(75,80]",HS,302.67333333333335,18.480564971751416,16.37792642140468,7765.723418302671,2019
+1998,80,"(75,80]",HS,302.67333333333335,18.480564971751416,16.37792642140468,7449.829934722018,2019
+1998,80,"(75,80]",HS,302.67333333333335,18.480564971751416,16.37792642140468,7789.830346762744,2019
+1998,68,"(65,70]",NoHS,0.9299,11.27314463276836,0.08248807500411207,4950.618805933157,2019
+1998,68,"(65,70]",NoHS,0.9299,11.27314463276836,0.08248807500411207,4953.4935543140555,2019
+1998,68,"(65,70]",NoHS,0.9299,11.27314463276836,0.08248807500411207,4944.440108110514,2019
+1998,68,"(65,70]",NoHS,0.9299,11.27314463276836,0.08248807500411207,4906.673836935783,2019
+1998,68,"(65,70]",NoHS,0.9299,11.27314463276836,0.08248807500411207,4936.914196919552,2019
+1998,71,"(70,75]",College,322.73,38.80918644067796,8.315814620162447,7078.389144412952,2019
+1998,71,"(70,75]",College,322.73,38.80918644067796,8.315814620162447,7016.7747389446795,2019
+1998,71,"(70,75]",College,322.73,38.80918644067796,8.315814620162447,7501.569854088225,2019
+1998,71,"(70,75]",College,324.55333333333334,38.80918644067796,8.36279662366619,7252.474800387639,2019
+1998,71,"(70,75]",College,322.73,38.80918644067796,8.315814620162447,7354.991078319814,2019
+1998,54,"(50,55]",College,12257.723,602.466418079096,20.345902497076146,259.03345005396545,2019
+1998,54,"(50,55]",College,12307.682333333334,530.3922146892655,23.20486989150828,262.4682084812246,2019
+1998,54,"(50,55]",College,14380.083,912.9399096045198,15.751401432575522,286.66666883319306,2019
+1998,54,"(50,55]",College,12507.337333333335,608.0105875706214,20.570920291549342,303.59383986973256,2019
+1998,54,"(50,55]",College,14031.826333333334,863.0423841807909,16.25855993926937,251.01892058614726,2019
+1998,42,"(40,45]",HS,154.0169666666667,96.09893785310734,1.6026916645227685,6277.977656363151,2019
+1998,42,"(40,45]",HS,154.0169666666667,96.09893785310734,1.6026916645227685,6404.524626299983,2019
+1998,42,"(40,45]",HS,154.0169666666667,96.09893785310734,1.6026916645227685,6664.274376415686,2019
+1998,42,"(40,45]",HS,154.0169666666667,96.09893785310734,1.6026916645227685,6333.420382022387,2019
+1998,42,"(40,45]",HS,154.0169666666667,96.09893785310734,1.6026916645227685,6595.429030305869,2019
+1998,35,"(30,35]",HS,96.63666666666667,73.92225988700567,1.3072742474916386,6913.24921187953,2019
+1998,35,"(30,35]",HS,74.75666666666667,73.92225988700567,1.01128762541806,7052.601530104939,2019
+1998,35,"(30,35]",HS,74.75666666666667,72.07420338983052,1.0372180773518567,7338.635481413007,2019
+1998,35,"(30,35]",HS,105.75333333333333,72.07420338983052,1.4672841094245774,6974.302213410953,2019
+1998,35,"(30,35]",HS,74.75666666666667,72.07420338983052,1.0372180773518567,7262.8236418705565,2019
+1998,76,"(75,80]",HS,30.99666666666667,35.11307344632768,0.8827671184650591,1112.3638269341347,2019
+1998,76,"(75,80]",HS,14.586666666666666,27.720847457627123,0.5261984392419174,1087.2775840130475,2019
+1998,76,"(75,80]",HS,52.876666666666665,44.35335593220339,1.1921683389074693,1121.6419800066903,2019
+1998,80,"(75,80]",HS,21.88,59.13780790960452,0.36998327759197325,1215.4661393223264,2019
+1998,78,"(75,80]",HS,7.311566666666667,85.0105988700565,0.08600770684891668,1223.8936150112113,2019
+1998,50,"(45,50]",NoHS,-1.2398666666666667,27.720847457627123,-0.044726867335562984,7297.527819985754,2019
+1998,50,"(45,50]",NoHS,-1.4222000000000001,27.720847457627123,-0.051304347826086956,7328.69783854892,2019
+1998,50,"(45,50]",NoHS,-1.4222000000000001,27.720847457627123,-0.051304347826086956,7277.850570542689,2019
+1998,50,"(45,50]",NoHS,-1.4222000000000001,27.720847457627123,-0.051304347826086956,7318.916381718229,2019
+1998,50,"(45,50]",NoHS,-1.4222000000000001,27.720847457627123,-0.051304347826086956,7320.177424611056,2019
+1998,52,"(50,55]",College,19964.953,367.7632429378531,54.28751617619873,1137.361481989933,2019
+1998,52,"(50,55]",College,16204.692666666666,415.8127118644068,38.97113340765514,2419.1598560010725,2019
+1998,52,"(50,55]",College,16110.244,367.7632429378531,43.80602006688964,2327.724294861366,2019
+1998,52,"(50,55]",College,16694.257666666665,367.7632429378531,45.394035394363115,2753.809150619891,2019
+1998,52,"(50,55]",College,14910.490666666667,410.2685423728813,36.34324625628974,2557.3216682514653,2019
+1998,21,"(20,25]",HS,41.91843333333333,27.720847457627123,1.5121627647714602,7727.94677002655,2019
+1998,21,"(20,25]",HS,67.44510000000001,27.720847457627123,2.433010033444816,7770.382819889423,2019
+1998,21,"(20,25]",HS,49.193533333333335,27.720847457627123,1.7746042363433665,7967.440178559007,2019
+1998,21,"(20,25]",HS,43.74176666666667,27.720847457627123,1.5779375696767,7750.3889376832785,2019
+1998,21,"(20,25]",HS,61.99333333333334,27.720847457627123,2.2363433667781494,7770.381759911621,2019
+1998,30,"(25,30]",HS,109.69173333333335,99.79505084745762,1.0991700730831169,9016.935567490209,2019
+1998,30,"(25,30]",HS,97.8583,99.79505084745762,0.9805927164622817,9019.48319394269,2019
+1998,30,"(25,30]",HS,86.71773333333334,99.79505084745762,0.8689582559147778,9174.970085787154,2019
+1998,30,"(25,30]",HS,89.1063,99.79505084745762,0.8928929765886289,9060.064776354278,2019
+1998,30,"(25,30]",HS,90.72906666666667,99.79505084745762,0.9091539700235354,9118.504791740252,2019
+1998,27,"(25,30]",NoHS,49.02943333333334,27.720847457627123,1.768684503901895,8653.040563068764,2019
+1998,27,"(25,30]",NoHS,49.430566666666664,27.720847457627123,1.7831549609810475,8684.659679811344,2019
+1998,27,"(25,30]",NoHS,49.685833333333335,27.720847457627123,1.7923634336677812,8751.777363879715,2019
+1998,27,"(25,30]",NoHS,49.230000000000004,27.720847457627123,1.7759197324414715,8634.812156937689,2019
+1998,27,"(25,30]",NoHS,49.5035,27.720847457627123,1.7857859531772573,8719.76340177769,2019
+1998,60,"(55,60]",HS,679.5563333333334,131.21201129943503,5.179071082010458,5687.06175121534,2019
+1998,60,"(55,60]",HS,689.2345866666667,127.51589830508476,5.405087489699966,5423.123162885593,2019
+1998,60,"(55,60]",HS,699.67864,103.49116384180793,6.760757286192067,5075.410120576507,2019
+1998,60,"(55,60]",HS,685.4584633333334,105.33922033898305,6.507153376752919,5553.628177096672,2019
+1998,60,"(55,60]",HS,667.7776,129.36395480225988,5.162006688963211,5062.075145799306,2019
+1998,76,"(75,80]",College,19689.994333333332,5229.99988700565,3.7648173534868876,15.210363786456199,2019
+1998,76,"(75,80]",College,21017.56333333333,5673.533446327684,3.704492717309598,16.54242337918642,2019
+1998,76,"(75,80]",College,19907.33566666667,5396.324971751413,3.6890542676501585,16.90726711735487,2019
+1998,76,"(75,80]",College,20618.618000000002,5839.858531073446,3.5306708014055297,15.401116629790682,2019
+1998,76,"(75,80]",College,20968.333333333332,5340.883276836158,3.926004791056694,16.270747867357453,2019
+1998,57,"(55,60]",HS,112.77316666666667,14.045229378531072,8.02928621721528,7189.06971964137,2019
+1998,57,"(55,60]",HS,116.1281,13.860423728813561,8.378394648829431,7162.289891198949,2019
+1998,57,"(55,60]",HS,110.58516666666668,24.024734463276836,4.602971443272447,7589.300130447977,2019
+1998,57,"(55,60]",HS,127.21396666666666,35.11307344632768,3.6229801091357157,7027.344501127705,2019
+1998,57,"(55,60]",HS,124.07783333333333,20.328621468926556,6.103602918820309,7429.4034763635955,2019
+1998,58,"(55,60]",NoHS,486.0095,77.61837288135592,6.2615265169613,6607.383352486302,2019
+1998,58,"(55,60]",NoHS,538.8861666666667,35.11307344632768,15.347165991902834,6299.796262108938,2019
+1998,58,"(55,60]",NoHS,443.5258333333333,36.96112994350283,11.999790969899662,5897.295315651266,2019
+1998,58,"(55,60]",NoHS,458.65950000000004,25.872790960451983,17.72748447204969,6452.3371859178205,2019
+1998,58,"(55,60]",NoHS,533.8537666666667,51.745581920903966,10.316895604395603,5882.036915853577,2019
+1998,42,"(40,45]",HS,153.61583333333334,64.68197740112994,2.3749402771141903,5672.283338882794,2019
+1998,42,"(40,45]",HS,77.30933333333333,64.68197740112994,1.1952221691352125,5663.804860831507,2019
+1998,42,"(40,45]",HS,96.272,64.68197740112994,1.4883898709985668,5651.938311489297,2019
+1998,42,"(40,45]",HS,156.89783333333335,64.68197740112994,2.4256808408982327,5700.66810572749,2019
+1998,42,"(40,45]",HS,90.34616666666668,64.68197740112994,1.3967749641662688,5631.947294143617,2019
+1998,69,"(65,70]",HS,1.1122333333333334,4.620141242937854,0.2407357859531772,7955.873089522511,2019
+1998,69,"(65,70]",HS,1.1122333333333334,4.620141242937854,0.2407357859531772,7990.511481489351,2019
+1998,69,"(65,70]",HS,1.1122333333333334,4.620141242937854,0.2407357859531772,7936.595412612709,2019
+1998,69,"(65,70]",HS,1.1122333333333334,4.620141242937854,0.2407357859531772,7916.021015115977,2019
+1998,69,"(65,70]",HS,1.1122333333333334,4.620141242937854,0.2407357859531772,7937.754693429653,2019
+1998,28,"(25,30]",College,9.5725,27.720847457627123,0.3453177257525083,5304.130107684374,2019
+1998,28,"(25,30]",College,9.299,27.720847457627123,0.33545150501672233,5286.046015011769,2019
+1998,28,"(25,30]",College,9.536033333333332,25.872790960451983,0.36857381748686086,5288.688560133201,2019
+1998,28,"(25,30]",College,8.970799999999999,27.720847457627123,0.32361204013377914,5326.318206471685,2019
+1998,28,"(25,30]",College,9.499566666666668,25.872790960451983,0.3671643573817487,5285.344836062897,2019
+1998,51,"(50,55]",College,4094.5502666666666,107.18727683615819,38.199965401914426,1170.9527624550383,2019
+1998,51,"(50,55]",College,5535.222456666667,541.4805536723164,10.222384569726163,1217.186471340561,2019
+1998,51,"(50,55]",College,7155.037146666667,195.893988700565,36.52504701205275,1289.5249185998957,2019
+1998,51,"(50,55]",College,2450.09505,583.9858531073446,4.195469867914144,923.7592846547761,2019
+1998,51,"(50,55]",College,8473.268856666667,351.1307344632769,24.131379070586163,1138.8087055680737,2019
+1998,69,"(65,70]",HS,4132.0380000000005,147.84451977401133,27.948536789297656,1224.920843239674,2019
+1998,69,"(65,70]",HS,2032.0685333333336,114.57950282485875,17.735009170352793,4004.088103966219,2019
+1998,69,"(65,70]",HS,1629.3671333333334,73.92225988700567,22.041630434782604,3706.610808783082,2019
+1998,69,"(65,70]",HS,3050.9836666666665,51.745581920903966,58.9612398471094,1562.5446830844387,2019
+1998,69,"(65,70]",HS,1985.2635666666667,99.79505084745762,19.893407035798344,3797.1821657911323,2019
+1998,27,"(25,30]",NoHS,4.011333333333334,22.176677966101696,0.18088071348940915,6415.794043695771,2019
+1998,27,"(25,30]",NoHS,4.011333333333334,22.176677966101696,0.18088071348940915,6374.660292077824,2019
+1998,27,"(25,30]",NoHS,4.011333333333334,22.176677966101696,0.18088071348940915,6341.856248953437,2019
+1998,27,"(25,30]",NoHS,4.011333333333334,22.176677966101696,0.18088071348940915,6441.554196643638,2019
+1998,27,"(25,30]",NoHS,4.011333333333334,22.176677966101696,0.18088071348940915,6358.637971775956,2019
+1998,35,"(30,35]",HS,15602.810333333335,402.8763163841808,38.72853701942254,427.9945007409445,2019
+1998,35,"(30,35]",HS,10134.086666666666,223.61483615819208,45.31938417313911,432.9581660494229,2019
+1998,35,"(30,35]",HS,10136.639333333334,351.1307344632769,28.868561872909698,470.4440593817059,2019
+1998,35,"(30,35]",HS,10139.009666666667,352.978790960452,28.724132798683218,499.6470893248126,2019
+1998,35,"(30,35]",HS,7390.517,242.09540112994353,30.52729199111542,415.7494063180793,2019
+1998,50,"(45,50]",College,6137.777599999999,1940.4593220338984,3.1630539894887715,11.149415382359729,2019
+1998,50,"(45,50]",College,12905.188666666667,737.3745423728814,17.501538126252086,12.02738793032553,2019
+1998,50,"(45,50]",College,14782.000366666667,685.6289604519775,21.55976660746964,11.592563698823714,2019
+1998,50,"(45,50]",College,8393.350333333334,1866.5370621468926,4.496749892380543,11.880775170467038,2019
+1998,50,"(45,50]",College,19271.101733333333,2273.109491525424,8.477858987954427,13.739997953806727,2019
+1998,32,"(30,35]",NoHS,34.71626666666667,73.92225988700567,0.4696321070234113,8868.852183699666,2019
+1998,32,"(30,35]",NoHS,36.77663333333333,70.22614689265536,0.523688611160007,8980.844698497454,2019
+1998,32,"(30,35]",NoHS,26.985333333333333,79.46642937853107,0.3395815509061212,9109.887732935771,2019
+1998,32,"(30,35]",NoHS,22.335833333333333,59.13780790960452,0.377691262541806,9065.46514445607,2019
+1998,32,"(30,35]",NoHS,20.530733333333334,60.98586440677967,0.336647410560454,9159.775380332714,2019
+1998,59,"(55,60]",HS,792.5118333333334,168.17314124293785,4.712475651438862,6741.640125075498,2019
+1998,59,"(55,60]",HS,770.8141666666667,140.45229378531073,5.4880852842809364,6427.320494090182,2019
+1998,59,"(55,60]",HS,1004.7478333333333,145.99646327683615,6.882001185385886,6016.6121023037485,2019
+1998,59,"(55,60]",HS,818.6219666666667,175.56536723163845,4.662775919732441,6583.036876287855,2019
+1998,59,"(55,60]",HS,817.3274,158.93285875706215,5.142595473283037,6001.5288169336845,2019
+1998,51,"(50,55]",HS,74.93900000000001,120.12367231638417,0.6238487265243119,6729.651038795875,2019
+1998,51,"(50,55]",HS,74.93900000000001,120.12367231638417,0.6238487265243119,6855.882393338662,2019
+1998,51,"(50,55]",HS,76.76233333333333,120.12367231638417,0.6390275276562902,7151.168631680349,2019
+1998,51,"(50,55]",HS,73.11566666666667,120.12367231638417,0.6086699253923334,6711.048976078705,2019
+1998,51,"(50,55]",HS,73.11566666666667,120.12367231638417,0.6086699253923334,7041.498883549715,2019
+1998,33,"(30,35]",College,2.6985333333333332,85.0105988700565,0.03174349280209394,5297.795389848794,2019
+1998,33,"(30,35]",College,2.6803000000000003,85.0105988700565,0.03152900974262033,5314.118713046869,2019
+1998,33,"(30,35]",College,0.8569666666666668,83.16254237288136,0.010304719435154219,5348.696469330092,2019
+1998,33,"(30,35]",College,0.8752000000000001,85.0105988700565,0.01029518685473317,5292.478519323262,2019
+1998,33,"(30,35]",College,2.862633333333333,85.0105988700565,0.0336738403373564,5372.07270891026,2019
+1998,75,"(70,75]",NoHS,14.586666666666666,22.176677966101696,0.6577480490523968,5995.914500994988,2019
+1998,75,"(70,75]",NoHS,14.586666666666666,22.176677966101696,0.6577480490523968,6095.083615649422,2019
+1998,75,"(70,75]",NoHS,14.586666666666666,22.176677966101696,0.6577480490523968,6157.15031604639,2019
+1998,75,"(70,75]",NoHS,14.586666666666666,22.176677966101696,0.6577480490523968,6190.724212941541,2019
+1998,75,"(70,75]",NoHS,14.586666666666666,22.176677966101696,0.6577480490523968,6179.94822915397,2019
+1998,44,"(40,45]",HS,18.2698,49.89752542372881,0.366146413972501,10519.031263893174,2019
+1998,44,"(40,45]",HS,18.087466666666668,49.89752542372881,0.3624922581444321,10793.680344909426,2019
+1998,44,"(40,45]",HS,18.2698,49.89752542372881,0.366146413972501,11215.401433011932,2019
+1998,44,"(40,45]",HS,18.2698,49.89752542372881,0.366146413972501,10576.753338303091,2019
+1998,44,"(40,45]",HS,18.087466666666668,60.98586440677967,0.29658457484544437,11164.152754016122,2019
+1998,50,"(45,50]",College,15449.650333333335,748.4628813559322,20.641839051983983,1172.2434644796817,2019
+1998,50,"(45,50]",College,17480.479,595.0741920903955,29.37529342113463,1175.502057019537,2019
+1998,50,"(45,50]",College,14840.657000000001,595.0741920903955,24.93917094247907,1146.6651376430677,2019
+1998,50,"(45,50]",College,17682.504333333334,668.9964519774012,26.431387313143258,1214.7358267998663,2019
+1998,50,"(45,50]",College,18163.135000000002,809.448745762712,22.438894488477573,1202.1806832917837,2019
+1998,46,"(45,50]",College,40785.596333333335,1044.151920903955,39.06097907479207,17.65514345863118,2019
+1998,46,"(45,50]",College,46368.643000000004,1094.0494463276834,42.382584402964845,18.212895568678366,2019
+1998,46,"(45,50]",College,42322.484000000004,996.102451977401,42.488083345226215,19.6756376232697,2019
+1998,46,"(45,50]",College,42426.596333333335,1227.1095141242938,34.574417234154005,18.30449983333552,2019
+1998,46,"(45,50]",College,48339.484000000004,1158.7314237288135,41.71759133315198,19.64463151203668,2019
+1998,81,"(80,85]",NoHS,435.7766666666667,29.56890395480226,14.737667224080269,10568.338265566275,2019
+1998,81,"(80,85]",NoHS,268.21233333333333,51.745581920903966,5.183289536550405,10788.75787781166,2019
+1998,81,"(80,85]",NoHS,194.54966666666667,103.49116384180793,1.8798674151935018,11197.348676469805,2019
+1998,81,"(80,85]",NoHS,206.58366666666666,103.49116384180793,1.9961478738652647,10741.863811796322,2019
+1998,81,"(80,85]",NoHS,206.03666666666666,51.745581920903966,3.981724796942187,11232.108307858425,2019
+1998,39,"(35,40]",HS,467.685,88.70671186440678,5.272261705685619,7427.405490734386,2019
+1998,39,"(35,40]",HS,467.685,88.70671186440678,5.272261705685619,7028.618977984021,2019
+1998,39,"(35,40]",HS,467.685,88.70671186440678,5.272261705685619,7285.352709490682,2019
+1998,39,"(35,40]",HS,465.8616666666667,88.70671186440678,5.251707079152731,7090.337467088408,2019
+1998,39,"(35,40]",HS,469.5083333333333,88.70671186440678,5.292816332218505,7349.423493591447,2019
+1998,57,"(55,60]",College,2693.428,195.893988700565,13.749416293304725,2682.844375489048,2019
+1998,57,"(55,60]",College,1995.6383333333333,194.04593220338984,10.284360566969262,2632.478609273642,2019
+1998,57,"(55,60]",College,2673.0066666666667,194.04593220338984,13.77512342729734,2536.4250665529253,2019
+1998,57,"(55,60]",College,1970.5675,194.04593220338984,10.15516005733397,2991.6620524667005,2019
+1998,57,"(55,60]",College,1706.8223333333333,194.04593220338984,8.795970695970695,2771.054615124245,2019
+1998,51,"(50,55]",HS,150.33383333333336,86.85865536723163,1.7307870205650042,6721.6556291876495,2019
+1998,51,"(50,55]",HS,139.02916666666667,86.85865536723163,1.6006368746886788,6809.414681734971,2019
+1998,51,"(50,55]",HS,136.11183333333335,86.85865536723163,1.567049740268982,7057.546878479421,2019
+1998,51,"(50,55]",HS,159.63283333333334,86.85865536723163,1.8378460115277877,6715.835493073808,2019
+1998,51,"(50,55]",HS,160.72683333333336,86.85865536723163,1.8504411869351745,7024.92959091476,2019
+1998,27,"(25,30]",College,-31.90833333333333,60.98586440677967,-0.5232086753825883,5439.700621604325,2019
+1998,27,"(25,30]",College,-32.09066666666667,60.98586440677967,-0.5261984392419176,5456.461176667915,2019
+1998,27,"(25,30]",College,-32.09066666666667,60.98586440677967,-0.5261984392419176,5491.965122839175,2019
+1998,27,"(25,30]",College,-32.09066666666667,60.98586440677967,-0.5261984392419176,5434.241334905907,2019
+1998,27,"(25,30]",College,-32.09066666666667,60.98586440677967,-0.5261984392419176,5515.967511685421,2019
+1998,84,"(80,85]",HS,266.97246666666666,66.53003389830509,4.012811222593831,7202.265901293523,2019
+1998,84,"(80,85]",HS,180.69233333333335,79.46642937853107,2.273819709107879,7325.761168820414,2019
+1998,84,"(80,85]",HS,208.22466666666665,92.40282485875707,2.2534448160535114,7462.498212821556,2019
+1998,84,"(80,85]",HS,115.59933333333333,92.40282485875707,1.2510367892976588,7431.689588690841,2019
+1998,84,"(80,85]",HS,171.39333333333335,90.55476836158192,1.8927035697222034,7524.497859166213,2019
+1998,70,"(65,70]",HS,1643.3703333333333,22.176677966101696,74.10353957636566,2927.941034375104,2019
+1998,70,"(65,70]",HS,5744.0470000000005,22.176677966101696,259.01295986622074,1075.8046259976386,2019
+1998,70,"(65,70]",HS,5744.0470000000005,22.176677966101696,259.01295986622074,984.0214763464415,2019
+1998,70,"(65,70]",HS,5744.0470000000005,22.176677966101696,259.01295986622074,1260.6002674025333,2019
+1998,70,"(65,70]",HS,1641.547,22.176677966101696,74.02132107023411,3072.794567298409,2019
+1998,40,"(35,40]",HS,86.04310000000001,55.441694915254246,1.5519565217391305,4940.913518756301,2019
+1998,40,"(35,40]",HS,71.3288,55.441694915254246,1.2865551839464882,4868.063679847844,2019
+1998,40,"(35,40]",HS,98.67880000000001,55.441694915254246,1.7798662207357858,4905.898581287124,2019
+1998,40,"(35,40]",HS,93.99283333333334,55.441694915254246,1.6953455964325528,4988.345143777386,2019
+1998,40,"(35,40]",HS,95.59736666666667,55.441694915254246,1.7242865105908582,4886.516193876929,2019
+1998,53,"(50,55]",College,74686.85123333333,391.78797740113,190.63078895059002,36.8681670933861,2019
+1998,53,"(50,55]",College,81814.79000000001,391.78797740113,208.82414652615637,38.00380767650884,2019
+1998,53,"(50,55]",College,74907.821,144.14840677966103,519.6576408541291,40.88852409263954,2019
+1998,53,"(50,55]",College,74263.81966666668,149.69257627118645,496.10890210165576,38.26294605589551,2019
+1998,53,"(50,55]",College,74979.66033333333,347.43462146892654,215.80940902298443,41.73463310184387,2019
+1998,43,"(40,45]",College,226.93206666666669,194.04593220338984,1.1694760312151617,5221.025389463213,2019
+1998,43,"(40,45]",College,212.30893333333333,194.04593220338984,1.0941168975951583,5191.780243520507,2019
+1998,43,"(40,45]",College,224.45233333333334,194.04593220338984,1.1566969262621436,5252.286335061213,2019
+1998,43,"(40,45]",College,208.64403333333334,194.04593220338984,1.075230132186654,5240.3573470251395,2019
+1998,43,"(40,45]",College,205.14323333333334,194.04593220338984,1.0571890428412167,5167.007619814972,2019
+1998,27,"(25,30]",HS,28.863366666666664,147.84451977401133,0.19522784280936448,5049.531867386301,2019
+1998,27,"(25,30]",HS,30.686700000000002,147.84451977401133,0.20756061872909695,5032.315811145374,2019
+1998,27,"(25,30]",HS,28.863366666666664,147.84451977401133,0.19522784280936448,5034.831514103404,2019
+1998,27,"(25,30]",HS,28.863366666666664,147.84451977401133,0.19522784280936448,5070.654937452195,2019
+1998,27,"(25,30]",HS,28.863366666666664,147.84451977401133,0.19522784280936448,5031.648288785405,2019
+1998,65,"(60,65]",NoHS,21.0595,46.201412429378536,0.455819397993311,5393.4687775111615,2019
+1998,65,"(60,65]",NoHS,20.877166666666668,46.201412429378536,0.45187290969899663,5578.177222624587,2019
+1998,65,"(60,65]",NoHS,20.877166666666668,46.201412429378536,0.45187290969899663,5550.789402728163,2019
+1998,65,"(60,65]",NoHS,21.0595,46.201412429378536,0.455819397993311,5492.96735322102,2019
+1998,65,"(60,65]",NoHS,21.0595,46.201412429378536,0.455819397993311,5496.360506295318,2019
+1998,39,"(35,40]",HS,2.5526666666666666,22.176677966101696,0.11510590858416944,6492.1798097184455,2019
+1998,39,"(35,40]",HS,2.3703333333333334,24.024734463276836,0.09866220735785954,6524.694851771494,2019
+1998,39,"(35,40]",HS,2.5526666666666666,59.13780790960452,0.043164715719063544,6550.115888086411,2019
+1998,39,"(35,40]",HS,2.5526666666666666,36.96112994350283,0.06906354515050166,6490.966432468665,2019
+1998,39,"(35,40]",HS,2.5526666666666666,24.024734463276836,0.10625160792384873,6559.620993575163,2019
+1998,46,"(45,50]",College,17.32166666666667,125.66784180790961,0.13783690733818613,5891.841930375467,2019
+1998,46,"(45,50]",College,19.692,125.66784180790961,0.1566987999213063,5917.718374582729,2019
+1998,46,"(45,50]",College,37.743,125.66784180790961,0.3003393665158371,5914.604030928828,2019
+1998,46,"(45,50]",College,21.15066666666667,125.66784180790961,0.16830611843399568,5856.310889116746,2019
+1998,46,"(45,50]",College,15.133666666666667,125.66784180790961,0.12042592956915207,5968.058910045598,2019
+1998,47,"(45,50]",College,6309.9185,1386.042372881356,4.552471571906354,1170.9527624550383,2019
+1998,47,"(45,50]",College,6309.9185,1386.042372881356,4.552471571906354,1217.186471340561,2019
+1998,47,"(45,50]",College,6309.9185,1386.042372881356,4.552471571906354,1289.5249185998957,2019
+1998,47,"(45,50]",College,6309.9185,1386.042372881356,4.552471571906354,1367.0177609114858,2019
+1998,47,"(45,50]",College,6309.9185,1386.042372881356,4.552471571906354,1138.8087055680737,2019
+1998,52,"(50,55]",College,106.30033333333333,168.17314124293785,0.6320886471388144,7202.355855404584,2019
+1998,52,"(50,55]",College,106.48266666666667,168.17314124293785,0.63317284721967,7296.391009962974,2019
+1998,52,"(50,55]",College,106.48266666666667,168.17314124293785,0.63317284721967,7562.268418555051,2019
+1998,52,"(50,55]",College,106.48266666666667,170.021197740113,0.6262905336629344,7196.119491369986,2019
+1998,52,"(50,55]",College,106.48266666666667,170.021197740113,0.6262905336629344,7527.31850070169,2019
+1998,66,"(65,70]",NoHS,29.355666666666668,36.96112994350283,0.7942307692307691,9610.307344458406,2019
+1998,66,"(65,70]",NoHS,29.538,36.96112994350283,0.7991638795986621,9655.8111097652,2019
+1998,66,"(65,70]",NoHS,29.355666666666668,36.96112994350283,0.7942307692307691,9516.777795569693,2019
+1998,66,"(65,70]",NoHS,29.538,36.96112994350283,0.7991638795986621,9594.766913676252,2019
+1998,66,"(65,70]",NoHS,29.355666666666668,36.96112994350283,0.7942307692307691,9539.792470230352,2019
+1998,63,"(60,65]",College,2615.0246666666667,197.7420451977401,13.224424092770294,908.3170928755817,2019
+1998,63,"(60,65]",College,7565.01,314.16960451977405,24.079382254574067,1373.6411494366278,2019
+1998,63,"(60,65]",College,5695.546333333333,356.6749039548023,15.968452700712216,1509.6740211365836,2019
+1998,63,"(60,65]",College,8239.643333333333,295.68903954802266,27.865907190635447,1594.694995657589,2019
+1998,63,"(60,65]",College,6196.051333333333,676.3886779661017,9.160489427417438,1299.6337999441757,2019
+1998,30,"(25,30]",HS,20.239,55.441694915254246,0.36505016722408024,5565.177551485425,2019
+1998,30,"(25,30]",HS,16.592333333333332,55.441694915254246,0.2992753623188405,5565.5098630380035,2019
+1998,30,"(25,30]",HS,12.945666666666666,53.593638418079095,0.24155230077269058,5570.112306819508,2019
+1998,30,"(25,30]",HS,15.680666666666667,55.441694915254246,0.2828316610925306,5558.661890915644,2019
+1998,30,"(25,30]",HS,8.350866666666667,55.441694915254246,0.15062430323299886,5612.808844909194,2019
+1998,52,"(50,55]",College,17842.593,1478.4451977401131,12.068484531772574,1680.1352569672981,2019
+1998,52,"(50,55]",College,17842.629466666665,1478.4451977401131,12.068509197324413,1659.1065327686872,2019
+1998,52,"(50,55]",College,17842.593,1478.4451977401131,12.068484531772574,1596.1873419388107,2019
+1998,52,"(50,55]",College,17842.593,1478.4451977401131,12.068484531772574,1889.1992125295315,2019
+1998,52,"(50,55]",College,17842.593,1478.4451977401131,12.068484531772574,1724.2030303340784,2019
+1998,42,"(40,45]",NoHS,1614.6528333333333,83.16254237288136,19.415626161278333,311.1451010250714,2019
+1998,42,"(40,45]",NoHS,1614.8351666666667,81.31448587570623,19.859132715110974,320.0916239668046,2019
+1998,42,"(40,45]",NoHS,1614.6528333333333,83.16254237288136,19.415626161278333,299.49635368313744,2019
+1998,42,"(40,45]",NoHS,1614.6528333333333,88.70671186440678,18.202149526198436,317.8574189773125,2019
+1998,42,"(40,45]",NoHS,1614.6528333333333,81.31448587570623,19.856890392216478,308.9978218208505,2019
+1998,27,"(25,30]",HS,170.56371666666666,44.35335593220339,3.845565078037904,4717.043871832713,2019
+1998,27,"(25,30]",HS,170.3905,44.35335593220339,3.841659698996655,4699.634079463292,2019
+1998,27,"(25,30]",HS,170.3905,44.35335593220339,3.841659698996655,4743.321021976071,2019
+1998,27,"(25,30]",HS,170.59106666666668,44.35335593220339,3.846181716833891,4749.395426647093,2019
+1998,27,"(25,30]",HS,170.38138333333333,44.35335593220339,3.8414541527313264,4687.349660471405,2019
+1998,39,"(35,40]",NoHS,-80.77366666666667,48.04946892655367,-1.6810522253666067,5590.623352501454,2019
+1998,39,"(35,40]",NoHS,-80.77366666666667,48.04946892655367,-1.6810522253666067,5565.452250118222,2019
+1998,39,"(35,40]",NoHS,-62.540333333333336,48.04946892655367,-1.301582197067147,5522.451190038612,2019
+1998,39,"(35,40]",NoHS,-62.358000000000004,48.04946892655367,-1.2977874967841523,5617.659162757421,2019
+1998,39,"(35,40]",NoHS,-69.65133333333333,48.04946892655367,-1.449575508103936,5520.970491091131,2019
+1998,71,"(70,75]",College,2460.5883333333336,94.25088135593221,26.106793888123814,606.0122755177929,2019
+1998,71,"(70,75]",College,2718.2253333333338,107.18727683615819,25.35958943605121,914.1350445380331,2019
+1998,71,"(70,75]",College,2481.192,105.33922033898305,23.554303819750043,616.7568298102512,2019
+1998,71,"(70,75]",College,2400.9653333333335,77.61837288135592,30.932951106864156,643.9683349759115,2019
+1998,71,"(70,75]",College,2891.442,68.37809039548021,42.28608876434964,880.6678585449445,2019
+1998,29,"(25,30]",HS,64.9836,36.96112994350283,1.7581605351170564,7647.254919443364,2019
+1998,29,"(25,30]",HS,65.16593333333334,36.96112994350283,1.7630936454849497,7694.637889401299,2019
+1998,29,"(25,30]",HS,64.9836,36.96112994350283,1.7581605351170564,7808.7126454888185,2019
+1998,29,"(25,30]",HS,64.9836,36.96112994350283,1.7581605351170564,7648.856308741959,2019
+1998,29,"(25,30]",HS,64.9836,36.96112994350283,1.7581605351170564,7763.879878969505,2019
+1998,54,"(50,55]",College,22318.876333333334,2254.628926553672,9.89913509512583,12.827327900564516,2019
+1998,54,"(50,55]",College,24016.035,3751.554689265537,6.401621991202201,13.939333164601404,2019
+1998,54,"(50,55]",College,24154.24366666667,2069.823276836158,11.669713031533686,13.902246643795191,2019
+1998,54,"(50,55]",College,24226.083,3104.7349152542374,7.802947324414715,12.711287252851669,2019
+1998,54,"(50,55]",College,23917.210333333333,3030.812655367232,7.891352271800309,13.739997953806727,2019
+1998,52,"(50,55]",College,1702.5922,280.90458757062146,6.061104999119873,4423.432766337427,2019
+1998,52,"(50,55]",College,1802.8755333333336,280.90458757062146,6.4181064073226555,4488.062504008952,2019
+1998,52,"(50,55]",College,1747.9932,280.90458757062146,6.222729273015314,4380.083868867567,2019
+1998,52,"(50,55]",College,1994.3073000000002,280.90458757062146,7.099589640908292,4903.3618740564925,2019
+1998,52,"(50,55]",College,2311.5855333333334,280.90458757062146,8.229077187114944,4584.615276131796,2019
+1998,42,"(40,45]",HS,334.217,101.64310734463277,3.2881422924901185,6910.967502753963,2019
+1998,42,"(40,45]",HS,334.217,101.64310734463277,3.2881422924901185,6611.974388812821,2019
+1998,42,"(40,45]",HS,359.7436666666667,101.64310734463277,3.539282456673761,6174.168015786035,2019
+1998,42,"(40,45]",HS,337.8636666666667,101.64310734463277,3.3240194588020677,6749.497084989761,2019
+1998,42,"(40,45]",HS,343.3336666666667,101.64310734463277,3.377835208269991,6155.246305713123,2019
+1998,41,"(40,45]",NoHS,16.957,68.37809039548021,0.24798879146705238,5453.384481437618,2019
+1998,41,"(40,45]",NoHS,24.7791,46.201412429378536,0.5363277591973243,5475.878122662592,2019
+1998,41,"(40,45]",NoHS,31.54366666666667,99.79505084745762,0.31608447912795745,5499.365389049659,2019
+1998,41,"(40,45]",NoHS,119.1366,46.201412429378536,2.5786354515050163,5569.174167906635,2019
+1998,41,"(40,45]",NoHS,17.139333333333333,66.53003389830509,0.2576179858788554,5420.927963201589,2019
+1998,76,"(75,80]",NoHS,715.6583333333334,18.480564971751416,38.724916387959865,6607.693407372752,2019
+1998,76,"(75,80]",NoHS,483.18333333333334,18.480564971751416,26.14548494983277,6338.105645680314,2019
+1998,76,"(75,80]",NoHS,472.4256666666667,18.480564971751416,25.563377926421403,5914.821296855747,2019
+1998,76,"(75,80]",NoHS,410.25,18.480564971751416,22.19899665551839,7982.263733784947,2019
+1998,76,"(75,80]",NoHS,718.5756666666666,18.480564971751416,38.88277591973243,5898.424596604443,2019
+1998,29,"(25,30]",HS,19.145,73.92225988700567,0.2589882943143812,7459.464880377105,2019
+1998,29,"(25,30]",HS,19.327333333333332,73.92225988700567,0.2614548494983277,7461.5724622610305,2019
+1998,29,"(25,30]",HS,19.327333333333332,73.92225988700567,0.2614548494983277,7590.202527363695,2019
+1998,29,"(25,30]",HS,19.145,73.92225988700567,0.2589882943143812,7495.1444986278875,2019
+1998,29,"(25,30]",HS,19.145,73.92225988700567,0.2589882943143812,7543.490329549875,2019
+1998,51,"(50,55]",College,6216.673233333334,162.62897175141245,38.22611166007905,361.80232692733,2019
+1998,51,"(50,55]",College,6487.6205666666665,267.96819209039546,24.210412870487833,360.77923443940966,2019
+1998,51,"(50,55]",College,6564.9846,186.65370621468927,35.17200238418491,340.4238264380128,2019
+1998,51,"(50,55]",College,6249.675566666667,208.83038418079096,29.927041465652472,372.3288940511015,2019
+1998,51,"(50,55]",College,7330.091733333334,267.96819209039546,27.35433514012225,357.68183597376583,2019
+1998,57,"(55,60]",College,364.61196666666666,439.8374463276836,0.8289698153508895,177.4250271223012,2019
+1998,57,"(55,60]",College,447.7377333333333,280.90458757062146,1.593913923604999,181.64721710199984,2019
+1998,57,"(55,60]",College,988.7936666666667,214.37455367231638,4.612458193979934,388.56318390711493,2019
+1998,57,"(55,60]",College,456.1068333333333,441.68550282485876,1.032650676592827,385.3272640582595,2019
+1998,57,"(55,60]",College,517.6443333333333,134.9081242937853,3.83701379025977,390.07343357187597,2019
+1998,37,"(35,40]",HS,562.8265333333334,53.593638418079095,10.501741436973822,7703.908240857003,2019
+1998,37,"(35,40]",HS,129.60253333333335,31.416960451977403,4.125240999409798,9607.333696446034,2019
+1998,37,"(35,40]",HS,496.8948,99.79505084745762,4.979152731326645,6868.254493771872,2019
+1998,37,"(35,40]",HS,136.56766666666667,147.84451977401133,0.9237249163879597,9500.267593389985,2019
+1998,37,"(35,40]",HS,275.8703333333333,190.34981920903957,1.4492807741013731,6864.519924030898,2019
+1998,49,"(45,50]",HS,151.6831,221.76677966101698,0.6839757525083611,807.142228790048,2019
+1998,49,"(45,50]",HS,155.87676666666667,221.76677966101698,0.7028860089186175,744.479743031339,2019
+1998,49,"(45,50]",HS,144.0251,221.76677966101698,0.6494439799331103,754.2764236091315,2019
+1998,49,"(45,50]",HS,149.4951,221.76677966101698,0.6741095317725752,831.5643593852316,2019
+1998,49,"(45,50]",HS,148.76576666666668,221.76677966101698,0.6708207915273132,836.0478085078082,2019
+1998,58,"(55,60]",HS,78.58566666666667,64.68197740112994,1.2149546106067846,9109.351226641444,2019
+1998,58,"(55,60]",HS,78.58566666666667,64.68197740112994,1.2149546106067846,9082.313895654837,2019
+1998,58,"(55,60]",HS,78.58566666666667,64.68197740112994,1.2149546106067846,9558.313109285566,2019
+1998,58,"(55,60]",HS,78.58566666666667,64.68197740112994,1.2149546106067846,8955.315605226544,2019
+1998,58,"(55,60]",HS,78.58566666666667,64.68197740112994,1.2149546106067846,9475.741826458176,2019
+1998,75,"(70,75]",HS,5.8529,15.893285875706214,0.3682624251380571,5122.590558547633,2019
+1998,75,"(70,75]",HS,5.8529,16.07809152542373,0.3640295236996886,5159.582604262398,2019
+1998,75,"(70,75]",HS,5.670566666666667,15.893285875706214,0.35679007544528274,5165.231858608974,2019
+1998,75,"(70,75]",HS,5.670566666666667,15.893285875706214,0.35679007544528274,5112.81959226238,2019
+1998,75,"(70,75]",HS,5.670566666666667,15.893285875706214,0.35679007544528274,5165.453776790842,2019
+1998,29,"(25,30]",HS,13.219166666666666,20.328621468926556,0.6502736394040741,5884.792766082211,2019
+1998,29,"(25,30]",HS,12.7998,25.872790960451983,0.49472049689440983,5864.728941179665,2019
+1998,29,"(25,30]",HS,15.680666666666667,20.328621468926556,0.7713590757069018,5867.660775448234,2019
+1998,29,"(25,30]",HS,14.5502,35.11307344632768,0.4143812709030101,5909.409877764202,2019
+1998,29,"(25,30]",HS,59.732400000000005,33.265016949152546,1.7956521739130435,5863.9510015887645,2019
+1998,59,"(55,60]",College,39890.33966666667,750.3109378531074,53.16507817519811,20.098270400755254,2019
+1998,59,"(55,60]",College,14050.242,765.0953898305085,18.36403955213029,19.105431846851566,2019
+1998,59,"(55,60]",College,18305.209133333334,2291.5900564971753,7.9879946596180815,22.613307339594833,2019
+1998,59,"(55,60]",College,11712.218133333334,827.9293107344635,14.146398709985665,17.663757432553233,2019
+1998,59,"(55,60]",College,17558.335333333333,1532.038836158192,11.460763865074979,22.504114863807175,2019
+1998,46,"(45,50]",College,7560.1417,2180.7066666666665,3.4668311036789303,14.317612436576573,2019
+1998,46,"(45,50]",College,5079.8249000000005,990.5582824858757,5.1282443343483255,15.291696459915979,2019
+1998,46,"(45,50]",College,6676.663766666667,1921.9787570621468,3.473848887316697,15.36399861952805,2019
+1998,46,"(45,50]",College,13402.557533333333,596.9222485875707,22.45276929289582,15.608242534038396,2019
+1998,46,"(45,50]",College,6349.430133333334,1371.257920903955,4.630368974749615,16.425531106105645,2019
+1998,41,"(40,45]",College,4010.6951666666664,462.0141242937853,8.680892976588629,844.0072121425828,2019
+1998,41,"(40,45]",College,1932.0951666666667,462.0141242937853,4.1818963210702345,608.3934863730094,2019
+1998,41,"(40,45]",College,1394.2118333333333,462.0141242937853,3.0176822742474916,576.4111149301759,2019
+1998,41,"(40,45]",College,4010.6951666666664,462.0141242937853,8.680892976588629,899.592332155313,2019
+1998,41,"(40,45]",College,3100.8518333333336,462.0141242937853,6.711595317725753,840.7400768120267,2019
+1998,44,"(40,45]",College,998.4208666666667,351.1307344632769,2.8434448160535113,573.7997115785307,2019
+1998,44,"(40,45]",College,912.0313333333334,351.1307344632769,2.5974124273895436,608.3934863730094,2019
+1998,44,"(40,45]",College,1200.8291000000002,351.1307344632769,3.419891744411195,576.4111149301759,2019
+1998,44,"(40,45]",College,1173.6614333333334,351.1307344632769,3.3425198028516103,607.8975657775095,2019
+1998,44,"(40,45]",College,955.7913333333333,351.1307344632769,2.722038373525787,572.0102893323026,2019
+1998,25,"(20,25]",HS,15.2613,70.22614689265536,0.21731649357507482,9934.236103620105,2019
+1998,25,"(20,25]",HS,6.162866666666667,70.22614689265536,0.08775743707093822,10000.55990028515,2019
+1998,25,"(20,25]",HS,7.4392,70.22614689265536,0.10593205421580708,10168.38315535469,2019
+1998,25,"(20,25]",HS,6.855733333333334,70.22614689265536,0.09762365780672418,10019.724628871634,2019
+1998,25,"(20,25]",HS,3.3002333333333334,70.22614689265536,0.0469943671888752,10123.9622579519,2019
+1998,55,"(50,55]",HS,11.8152,103.49116384180793,0.11416626851409459,5706.260673092432,2019
+1998,55,"(50,55]",HS,9.991866666666667,107.18727683615819,0.09321877522777074,5758.707217396711,2019
+1998,55,"(50,55]",HS,36.448433333333334,109.03533333333333,0.3342809364548495,5875.151168715037,2019
+1998,55,"(50,55]",HS,33.184666666666665,123.81978531073446,0.2680077871512005,5663.662158422824,2019
+1998,55,"(50,55]",HS,32.6012,103.49116384180793,0.3150143334925943,5863.9592464902335,2019
+1998,56,"(55,60]",NoHS,352.5415,107.18727683615819,3.2890237573520933,11532.032861584923,2019
+1998,56,"(55,60]",NoHS,350.7181666666667,109.03533333333333,3.2165551839464888,11700.282498417866,2019
+1998,56,"(55,60]",NoHS,348.89483333333334,107.18727683615819,3.2550023065390383,12218.737704401632,2019
+1998,56,"(55,60]",NoHS,351.0828333333333,109.03533333333333,3.2198996655518397,11237.723834255474,2019
+1998,56,"(55,60]",NoHS,349.0771666666667,109.03533333333333,3.2015050167224084,12013.58117919531,2019
+1998,25,"(20,25]",HS,2.1333,22.176677966101696,0.09619565217391304,5694.960747604875,2019
+1998,25,"(20,25]",HS,2.1333,22.176677966101696,0.09619565217391304,5675.544142839216,2019
+1998,25,"(20,25]",HS,2.1333,22.176677966101696,0.09619565217391304,5678.381401811903,2019
+1998,25,"(20,25]",HS,2.1333,22.176677966101696,0.09619565217391304,5718.783758936108,2019
+1998,25,"(20,25]",HS,1.9509666666666667,22.176677966101696,0.08797380156075808,5674.791298073005,2019
+1998,43,"(40,45]",HS,0.8752000000000001,14.414840677966104,0.060715204527913555,5433.908499017622,2019
+1998,43,"(40,45]",HS,0.8752000000000001,16.817314124293787,0.052041603881068765,5405.339300436832,2019
+1998,43,"(40,45]",HS,1.1487,17.55653672316384,0.0654286217215279,5428.257630559139,2019
+1998,43,"(40,45]",HS,0.8752000000000001,18.11095367231638,0.048324346460992436,5407.920117160453,2019
+1998,43,"(40,45]",HS,1.6045333333333334,14.969257627118646,0.1071885709566869,5429.873574787372,2019
+1998,31,"(30,35]",College,87.1371,53.593638418079095,1.625885134355899,5323.782198554701,2019
+1998,31,"(30,35]",College,58.984833333333334,38.80918644067796,1.5198678133460743,5339.544387548591,2019
+1998,31,"(30,35]",College,36.211400000000005,90.55476836158192,0.39988396696471235,5339.81042204693,2019
+1998,31,"(30,35]",College,91.65896666666666,27.720847457627123,3.3064994425863983,5463.424687934952,2019
+1998,31,"(30,35]",College,17.86866666666667,116.4275593220339,0.15347454477889264,5346.022895439433,2019
+1998,52,"(50,55]",College,2.6438333333333337,88.70671186440678,0.029804208472686736,7070.21030764819,2019
+1998,52,"(50,55]",College,1.8415666666666666,88.70671186440678,0.020760172798216275,7101.262040658247,2019
+1998,52,"(50,55]",College,2.3521,88.70671186440678,0.02651546822742475,7097.5248282782195,2019
+1998,52,"(50,55]",College,2.3338666666666668,88.70671186440678,0.026309921962095875,7027.573058190812,2019
+1998,52,"(50,55]",College,2.6620666666666666,88.70671186440678,0.030009754738015607,7161.670683138482,2019
+1998,40,"(35,40]",HS,56.3957,72.07420338983052,0.7824671983534859,5647.584015430583,2019
+1998,40,"(35,40]",HS,84.43856666666667,72.07420338983052,1.1715504673698653,5731.466423816598,2019
+1998,40,"(35,40]",HS,63.2879,72.07420338983052,0.8780936454849497,5659.952525761591,2019
+1998,40,"(35,40]",HS,69.01316666666668,72.07420338983052,0.9575293714089701,5692.037131206247,2019
+1998,40,"(35,40]",HS,69.61486666666667,72.07420338983052,0.9658777120315581,5656.736317944234,2019
+1998,36,"(35,40]",College,39.47516666666667,49.89752542372881,0.7911247367769108,8667.140782707362,2019
+1998,36,"(35,40]",College,39.47516666666667,49.89752542372881,0.7911247367769108,8835.891152842049,2019
+1998,36,"(35,40]",College,39.47516666666667,49.89752542372881,0.7911247367769108,9126.32605233668,2019
+1998,36,"(35,40]",College,39.47516666666667,49.89752542372881,0.7911247367769108,8759.947400956988,2019
+1998,36,"(35,40]",College,39.47516666666667,49.89752542372881,0.7911247367769108,9039.373537318887,2019
+1998,59,"(55,60]",College,929.7176666666667,295.68903954802266,3.1442412207357853,6558.491767632217,2019
+1998,59,"(55,60]",College,766.5293333333334,295.68903954802266,2.592349498327759,6252.56536653453,2019
+1998,59,"(55,60]",College,747.3843333333334,295.68903954802266,2.5276024247491637,5853.330098457157,2019
+1998,59,"(55,60]",College,804.2723333333333,295.68903954802266,2.7199937290969896,6402.833370878847,2019
+1998,59,"(55,60]",College,865.9010000000001,295.68903954802266,2.928417642140468,5837.413293375191,2019
+1998,59,"(55,60]",HS,758.142,136.75618079096043,5.543749435053784,6878.636586770936,2019
+1998,59,"(55,60]",HS,965.0903333333334,120.12367231638417,8.034139439156164,6559.39658028469,2019
+1998,59,"(55,60]",HS,954.6973333333334,109.03533333333333,8.755852842809366,6138.8293771918825,2019
+1998,59,"(55,60]",HS,980.224,101.64310734463277,9.64378230465187,6717.245502061834,2019
+1998,59,"(55,60]",HS,827.2463333333334,103.49116384180793,7.9934006211180115,6122.700407717174,2019
+1998,69,"(65,70]",HS,329.1116666666667,36.96112994350283,8.90426421404682,9644.932353572376,2019
+1998,69,"(65,70]",HS,330.935,36.96112994350283,8.953595317725751,10056.134123229182,2019
+1998,69,"(65,70]",HS,323.6416666666667,35.11307344632768,9.217127266326353,10230.47091309235,2019
+1998,69,"(65,70]",HS,316.3483333333333,35.11307344632768,9.009417356099277,9708.299420549063,2019
+1998,69,"(65,70]",HS,319.995,36.96112994350283,8.657608695652172,10140.212229789993,2019
+1998,35,"(30,35]",NoHS,2.735,25.872790960451983,0.1057095078834209,5799.1336488880215,2019
+1998,35,"(30,35]",NoHS,2.735,25.872790960451983,0.1057095078834209,5827.477882865372,2019
+1998,35,"(30,35]",NoHS,2.735,25.872790960451983,0.1057095078834209,5812.652349192705,2019
+1998,35,"(30,35]",NoHS,2.735,25.872790960451983,0.1057095078834209,5850.324159902036,2019
+1998,35,"(30,35]",NoHS,2.735,25.872790960451983,0.1057095078834209,5802.5001302645705,2019
+1998,33,"(30,35]",NoHS,16.957,22.176677966101696,0.7646321070234113,4369.828335333774,2019
+1998,33,"(30,35]",NoHS,16.41,22.176677966101696,0.7399665551839465,4341.81193827762,2019
+1998,33,"(30,35]",NoHS,16.77466666666667,22.176677966101696,0.7564102564102565,4319.468945939936,2019
+1998,33,"(30,35]",NoHS,16.227666666666668,22.176677966101696,0.7317447045707915,4387.373700024015,2019
+1998,33,"(30,35]",NoHS,16.045333333333335,22.176677966101696,0.7235228539576366,4330.899058472558,2019
+1998,47,"(45,50]",College,53.788333333333334,114.57950282485875,0.4694411479123962,6042.213563609252,2019
+1998,47,"(45,50]",College,77.30933333333333,114.57950282485875,0.6747221922537491,6155.550317353862,2019
+1998,47,"(45,50]",College,59.440666666666665,114.57950282485875,0.5187722515913259,6420.672907540135,2019
+1998,47,"(45,50]",College,49.95933333333333,114.57950282485875,0.4360233034847341,6025.511711609374,2019
+1998,47,"(45,50]",College,60.89933333333334,114.57950282485875,0.5315028589923402,6322.205983200014,2019
+1998,46,"(45,50]",HS,214.424,218.07066666666665,0.9832775919732443,5953.310452479217,2019
+1998,46,"(45,50]",HS,157.06193333333331,218.07066666666665,0.7202341137123746,6199.870691938651,2019
+1998,46,"(45,50]",HS,185.05010000000001,218.07066666666665,0.8485785953177258,5976.618188024994,2019
+1998,46,"(45,50]",HS,188.2227,218.07066666666665,0.8631270903010034,5821.782579559114,2019
+1998,46,"(45,50]",HS,172.63320000000002,218.07066666666665,0.7916387959866222,6037.904901379732,2019
+1998,75,"(70,75]",NoHS,-4.284833333333333,31.416960451977403,-0.13638599252409994,5375.86155217164,2019
+1998,75,"(70,75]",NoHS,-4.284833333333333,31.416960451977403,-0.13638599252409994,5474.473711967106,2019
+1998,75,"(70,75]",NoHS,-4.284833333333333,31.416960451977403,-0.13638599252409994,5593.114060908903,2019
+1998,75,"(70,75]",NoHS,-4.284833333333333,31.416960451977403,-0.13638599252409994,5518.1049631172245,2019
+1998,75,"(70,75]",NoHS,-4.284833333333333,31.416960451977403,-0.13638599252409994,5544.580433479142,2019
+1998,52,"(50,55]",HS,93.90166666666667,107.18727683615819,0.8760523584361666,5309.824050559504,2019
+1998,52,"(50,55]",HS,92.26066666666668,64.68197740112994,1.4263736263736266,5409.423016155485,2019
+1998,52,"(50,55]",HS,94.99566666666668,70.22614689265536,1.3527107903538111,5642.409535234559,2019
+1998,52,"(50,55]",HS,99.554,55.441694915254246,1.7956521739130433,5295.14666544158,2019
+1998,52,"(50,55]",HS,90.802,121.97172881355934,0.74445120097294,5555.877995503036,2019
+1998,58,"(55,60]",HS,4942.1997,1057.0883163841806,4.675294980938794,12.692276655246127,2019
+1998,58,"(55,60]",HS,8472.847666666667,1108.8338983050849,7.641223522853957,13.890857169548582,2019
+1998,58,"(55,60]",HS,5099.498666666667,462.0141242937853,11.037538461538464,13.323390621165922,2019
+1998,58,"(55,60]",HS,6207.5201,2236.148361581921,2.775987589485613,13.626228264247823,2019
+1998,58,"(55,60]",HS,5444.838,1398.9787683615818,3.892009030542142,14.491548813545823,2019
+1998,89,"(85,90]",College,2200.7633333333333,48.04946892655367,45.80203241574479,1559.6935884961927,2019
+1998,89,"(85,90]",College,5451.584333333333,38.80918644067796,140.47149227584012,2382.777434216676,2019
+1998,89,"(85,90]",College,11910.742666666667,85.0105988700565,140.1089137705395,2573.6468437481717,2019
+1998,89,"(85,90]",College,3835.9651333333336,121.97172881355934,31.449625012668488,2725.8831831394286,2019
+1998,89,"(85,90]",College,11493.928666666667,105.33922033898305,109.1134776741184,2233.555794442772,2019
+1998,31,"(30,35]",College,-2.862633333333333,55.441694915254246,-0.05163322185061314,8644.755985360654,2019
+1998,31,"(30,35]",College,-2.880866666666667,55.441694915254246,-0.05196209587513935,8592.163648629694,2019
+1998,31,"(30,35]",College,-2.5709,55.441694915254246,-0.04637123745819397,8844.638143677284,2019
+1998,31,"(30,35]",College,-2.4068,55.441694915254246,-0.04341137123745819,8626.606833239475,2019
+1998,31,"(30,35]",College,-2.735,55.441694915254246,-0.049331103678929754,8855.007273535757,2019
+1998,62,"(60,65]",HS,3228.1022666666668,68.37809039548021,47.20959956612131,3367.3833616380807,2019
+1998,62,"(60,65]",HS,1392.8261000000002,70.22614689265536,19.833440415419826,11996.381733163431,2019
+1998,62,"(60,65]",HS,1761.0482666666667,72.07420338983052,24.433822142183345,11563.862010738283,2019
+1998,62,"(60,65]",HS,2484.7292666666667,72.07420338983052,34.47459909098705,11849.545150295664,2019
+1998,62,"(60,65]",HS,1235.4542,66.53003389830509,18.56987179487179,5788.67508620566,2019
+1998,49,"(45,50]",HS,-5.1418,7.392225988700565,-0.6955685618729097,6633.092411654057,2019
+1998,49,"(45,50]",HS,-5.1418,7.392225988700565,-0.6955685618729097,6661.424419246583,2019
+1998,49,"(45,50]",HS,-5.1418,7.392225988700565,-0.6955685618729097,6615.206763639731,2019
+1998,49,"(45,50]",HS,-5.1418,7.392225988700565,-0.6955685618729097,6652.533558029046,2019
+1998,49,"(45,50]",HS,-5.1418,7.392225988700565,-0.6955685618729097,6653.679783744042,2019
+1998,65,"(60,65]",HS,89.34333333333333,38.80918644067796,2.3021181716833894,7517.5358461114665,2019
+1998,65,"(60,65]",HS,89.161,38.80918644067796,2.297419971333015,7838.038254014258,2019
+1998,65,"(60,65]",HS,89.161,38.80918644067796,2.297419971333015,7973.92132908912,2019
+1998,65,"(60,65]",HS,89.161,38.80918644067796,2.297419971333015,7566.925948602315,2019
+1998,65,"(60,65]",HS,89.34333333333333,38.80918644067796,2.3021181716833894,7903.571132501476,2019
+1998,53,"(50,55]",College,466.9556666666667,72.07420338983052,6.478818283166109,6530.112873349291,2019
+1998,53,"(50,55]",College,466.9556666666667,72.07420338983052,6.478818283166109,6252.307867035776,2019
+1998,53,"(50,55]",College,466.9556666666667,72.07420338983052,6.478818283166109,5812.886833053091,2019
+1998,53,"(50,55]",College,466.9556666666667,72.07420338983052,6.478818283166109,6389.800542160235,2019
+1998,53,"(50,55]",College,466.9556666666667,72.07420338983052,6.478818283166109,5817.065603589271,2019
+1998,29,"(25,30]",HS,37.925333333333334,33.265016949152546,1.1400966183574879,5092.313415582628,2019
+1998,29,"(25,30]",HS,54.33533333333334,35.11307344632768,1.5474388311916918,5107.390292036046,2019
+1998,29,"(25,30]",HS,44.307,25.872790960451983,1.7124940277114187,5107.64475981748,2019
+1998,29,"(25,30]",HS,39.931,33.265016949152546,1.2003901895206242,5133.068234331966,2019
+1998,29,"(25,30]",HS,63.08733333333334,36.96112994350283,1.7068561872909698,5113.587125680832,2019
+1998,74,"(70,75]",HS,3.099666666666667,27.720847457627123,0.11181716833890745,5210.59478775019,2019
+1998,74,"(70,75]",HS,3.099666666666667,27.720847457627123,0.11181716833890745,5255.531775499725,2019
+1998,74,"(70,75]",HS,3.282,27.720847457627123,0.11839464882943142,5230.393464734057,2019
+1998,74,"(70,75]",HS,3.099666666666667,27.720847457627123,0.11181716833890745,5245.927552838964,2019
+1998,74,"(70,75]",HS,3.282,27.720847457627123,0.11839464882943142,5248.028664647114,2019
+1998,36,"(35,40]",NoHS,62.175666666666665,14.78445197740113,4.205476588628763,5809.894922849839,2019
+1998,36,"(35,40]",NoHS,59.98766666666666,14.78445197740113,4.057483277591973,5924.179285789679,2019
+1998,36,"(35,40]",NoHS,65.64,14.78445197740113,4.439799331103679,6152.587945454799,2019
+1998,36,"(35,40]",NoHS,64.36366666666666,14.78445197740113,4.353469899665551,5812.4128447073035,2019
+1998,36,"(35,40]",NoHS,58.89366666666667,14.78445197740113,3.983486622073579,6080.63260159423,2019
+1998,60,"(55,60]",HS,719.9431666666667,64.68197740112994,11.130506450071668,7089.870313460722,2019
+1998,60,"(55,60]",HS,731.6125000000001,64.68197740112994,11.310917343526041,6760.826873484727,2019
+1998,60,"(55,60]",HS,723.2251666666666,64.68197740112994,11.181247013855709,6327.344614259484,2019
+1998,60,"(55,60]",HS,734.7121666666667,64.68197740112994,11.358838987099857,6923.523124464446,2019
+1998,60,"(55,60]",HS,734.7121666666667,64.68197740112994,11.358838987099857,6310.7203457110645,2019
+1998,47,"(45,50]",NoHS,6.928666666666667,27.720847457627123,0.2499442586399108,4882.068325655886,2019
+1998,47,"(45,50]",NoHS,3.920166666666667,27.720847457627123,0.1414158305462653,4853.114435832535,2019
+1998,47,"(45,50]",NoHS,4.138966666666667,27.720847457627123,0.14930880713489406,4845.446558854019,2019
+1998,47,"(45,50]",NoHS,4.850066666666667,27.720847457627123,0.17496098104793756,4858.56134239454,2019
+1998,47,"(45,50]",NoHS,6.017,27.720847457627123,0.21705685618729095,4857.163021946426,2019
+1998,43,"(40,45]",College,2992.637,1848.0564971751412,1.6193428093645486,166.29543342112322,2019
+1998,43,"(40,45]",College,2992.637,1848.0564971751412,1.6193428093645486,166.10121731105176,2019
+1998,43,"(40,45]",College,2992.637,1848.0564971751412,1.6193428093645486,157.86925679183383,2019
+1998,43,"(40,45]",College,2992.637,1848.0564971751412,1.6193428093645486,174.67710074792583,2019
+1998,43,"(40,45]",College,2992.637,1848.0564971751412,1.6193428093645486,163.92567414901708,2019
+1998,60,"(55,60]",College,3624.841366666667,462.0141242937853,7.84573712374582,15.050222984955653,2019
+1998,60,"(55,60]",College,3788.941366666667,462.0141242937853,8.200921070234115,16.484894771151723,2019
+1998,60,"(55,60]",College,3675.8947000000003,462.0141242937853,7.956238795986623,16.203289289321532,2019
+1998,60,"(55,60]",College,3592.003133333333,462.0141242937853,7.774660869565217,16.50966786819729,2019
+1998,60,"(55,60]",College,3743.3397999999997,462.0141242937853,8.102219397993311,17.160725769058864,2019
+1998,55,"(50,55]",College,208.31583333333336,221.76677966101698,0.9393464325529542,436.61212293723446,2019
+1998,55,"(50,55]",College,315.7101666666667,221.76677966101698,1.4236134336677813,867.2512318355027,2019
+1998,55,"(50,55]",College,237.48916666666665,221.76677966101698,1.0708960423634335,902.1703373987069,2019
+1998,55,"(50,55]",College,208.1335,221.76677966101698,0.9385242474916387,970.065951890673,2019
+1998,55,"(50,55]",College,177.31916666666666,221.76677966101698,0.7995749721293198,456.5360288844872,2019
+1998,68,"(65,70]",HS,4069.6800000000003,321.56183050847454,12.655979702456467,1000.6971292349763,2019
+1998,68,"(65,70]",HS,5254.846666666667,255.03179661016952,20.604672580097912,1095.159901492279,2019
+1998,68,"(65,70]",HS,4228.31,221.76677966101698,19.066471571906355,993.6471675607863,2019
+1998,68,"(65,70]",HS,4295.7733333333335,384.3957514124294,11.17539233341909,1276.8730140337682,2019
+1998,68,"(65,70]",HS,3883.7000000000003,236.55123163841807,16.418007943143813,994.7416389653378,2019
+1998,74,"(70,75]",NoHS,207.31300000000002,25.872790960451983,8.012780697563306,6005.905940714022,2019
+1998,74,"(70,75]",NoHS,207.31300000000002,25.872790960451983,8.012780697563306,5953.627051225789,2019
+1998,74,"(70,75]",NoHS,207.49533333333335,25.872790960451983,8.019827998088866,6364.968361044555,2019
+1998,74,"(70,75]",NoHS,207.49533333333335,25.872790960451983,8.019827998088866,6153.614982147086,2019
+1998,74,"(70,75]",NoHS,207.31300000000002,25.872790960451983,8.012780697563306,6240.5984906956,2019
+1998,31,"(30,35]",College,163.553,110.88338983050849,1.4749999999999996,5493.738985032758,2019
+1998,31,"(30,35]",College,163.553,110.88338983050849,1.4749999999999996,5258.486857349447,2019
+1998,31,"(30,35]",College,163.553,110.88338983050849,1.4749999999999996,4903.977337641412,2019
+1998,31,"(30,35]",College,163.553,110.88338983050849,1.4749999999999996,5365.9528557747635,2019
+1998,31,"(30,35]",College,163.553,110.88338983050849,1.4749999999999996,4893.972817692412,2019
+1998,75,"(70,75]",HS,499.04633333333334,9.240282485875708,54.007692307692295,8574.21791003007,2019
+1998,75,"(70,75]",HS,480.813,9.240282485875708,52.034448160535106,8222.558529555825,2019
+1998,75,"(70,75]",HS,444.34633333333335,9.240282485875708,48.08795986622073,11571.361396573213,2019
+1998,75,"(70,75]",HS,407.8796666666667,9.240282485875708,44.14147157190635,10929.585589836726,2019
+1998,75,"(70,75]",HS,440.6996666666667,9.240282485875708,47.69331103678929,11644.463704841914,2019
+1998,33,"(30,35]",College,341.875,147.84451977401133,2.3123954849498323,9352.238754610888,2019
+1998,33,"(30,35]",College,577.2126333333333,144.14840677966103,4.004294228625332,8950.428601742507,2019
+1998,33,"(30,35]",College,556.2625333333333,243.94345762711868,2.2802928955102866,8349.03328393067,2019
+1998,33,"(30,35]",College,602.0646666666667,275.360418079096,2.186460461044646,9134.675214824467,2019
+1998,33,"(30,35]",College,361.0747,86.85865536723163,4.157037643207857,8332.334834084304,2019
+1998,35,"(30,35]",NoHS,0,27.720847457627123,0,6244.073785133818,2019
+1998,35,"(30,35]",NoHS,0,27.720847457627123,0,6216.499195558967,2019
+1998,35,"(30,35]",NoHS,0,27.720847457627123,0,6176.769654262289,2019
+1998,35,"(30,35]",NoHS,0,27.720847457627123,0,6239.129515585092,2019
+1998,35,"(30,35]",NoHS,0,27.720847457627123,0,6210.0551922869245,2019
+1998,51,"(50,55]",HS,68.375,184.80564971751414,0.3699832775919732,6802.940762768174,2019
+1998,51,"(50,55]",HS,68.01033333333334,184.80564971751414,0.36801003344481603,6891.761087523226,2019
+1998,51,"(50,55]",HS,71.657,184.80564971751414,0.3877424749163879,7142.893952536132,2019
+1998,51,"(50,55]",HS,70.19833333333332,184.80564971751414,0.3798494983277591,6797.050243616645,2019
+1998,51,"(50,55]",HS,68.61203333333334,184.80564971751414,0.3712658862876254,7109.8822233750925,2019
+1998,64,"(60,65]",HS,245.62123333333335,53.593638418079095,4.583029639026641,8340.61231930776,2019
+1998,64,"(60,65]",HS,524.0442333333333,35.11307344632768,14.92447632459074,6644.13770771932,2019
+1998,64,"(60,65]",HS,101.37733333333333,44.35335593220339,2.285674470457079,8804.951493236606,2019
+1998,64,"(60,65]",HS,113.52073333333334,33.265016949152546,3.4126161278335188,8152.982013512769,2019
+1998,64,"(60,65]",HS,130.09483333333333,20.328621468926556,6.399589540893888,8619.442650662904,2019
+1998,30,"(25,30]",College,-34.461,101.64310734463277,-0.3390392216479173,6515.301147682527,2019
+1998,30,"(25,30]",College,14.769,101.64310734463277,0.14530252356339313,6535.375793556958,2019
+1998,30,"(25,30]",College,-34.461,101.64310734463277,-0.3390392216479173,6577.899990627318,2019
+1998,30,"(25,30]",College,47.589,101.64310734463277,0.4681970203709334,6508.762387672381,2019
+1998,30,"(25,30]",College,2.005666666666667,101.64310734463277,0.01973244147157191,6606.6484094237485,2019
+1998,56,"(55,60]",HS,310.2401666666667,22.176677966101696,13.989478818283168,9242.69568216385,2019
+1998,56,"(55,60]",HS,246.60583333333335,22.176677966101696,11.120052954292085,9156.733269075456,2019
+1998,56,"(55,60]",HS,252.07583333333335,22.176677966101696,11.366708472686733,9640.969861107986,2019
+1998,56,"(55,60]",HS,299.4825,22.176677966101696,13.504389632107022,9051.970512061493,2019
+1998,56,"(55,60]",HS,263.9275,22.176677966101696,11.901128762541806,9540.542062301778,2019
+1998,88,"(85,90]",HS,409.88533333333334,49.89752542372881,8.214542301498824,174.92875315155334,2019
+1998,88,"(85,90]",HS,404.96233333333333,64.68197740112994,6.2608217869087435,181.30917044684105,2019
+1998,88,"(85,90]",HS,404.4153333333333,68.37809039548021,5.914399349181958,177.00558329530992,2019
+1998,88,"(85,90]",HS,403.5036666666667,46.201412429378536,8.733578595317725,177.6248424568773,2019
+1998,88,"(85,90]",HS,408.4266666666667,60.98586440677967,6.697071044897132,176.11843948322226,2019
+1998,20,"(15,20]",HS,7.3845,24.024734463276836,0.3073707229225624,1848.3540436775481,2019
+1998,20,"(15,20]",HS,7.019833333333334,25.872790960451983,0.27132107023411367,1815.3511754365416,2019
+1998,20,"(15,20]",HS,7.202166666666667,25.872790960451983,0.2783683707596751,1888.8515930914625,2019
+1998,20,"(15,20]",HS,7.3845,25.872790960451983,0.2854156712852364,1874.6447705797696,2019
+1998,20,"(15,20]",HS,7.202166666666667,25.872790960451983,0.2783683707596751,1897.5243299684782,2019
+1998,52,"(50,55]",HS,-3.3002333333333334,46.201412429378536,-0.0714314381270903,4900.156654641625,2019
+1998,52,"(50,55]",HS,-3.282,46.201412429378536,-0.07103678929765886,4902.2312470208335,2019
+1998,52,"(50,55]",HS,-3.3002333333333334,46.201412429378536,-0.0714314381270903,4892.283926393361,2019
+1998,52,"(50,55]",HS,-3.282,46.201412429378536,-0.07103678929765886,4895.113586146776,2019
+1998,52,"(50,55]",HS,-3.282,46.201412429378536,-0.07103678929765886,4912.925367713584,2019
+1998,27,"(25,30]",HS,-20.858933333333336,31.416960451977403,-0.6639386189258313,4716.5956921284505,2019
+1998,27,"(25,30]",HS,-20.858933333333336,31.416960451977403,-0.6639386189258313,4700.5147605027205,2019
+1998,27,"(25,30]",HS,-20.858933333333336,31.416960451977403,-0.6639386189258313,4702.86459293197,2019
+1998,27,"(25,30]",HS,-20.858933333333336,31.416960451977403,-0.6639386189258313,4736.326032265683,2019
+1998,27,"(25,30]",HS,-20.858933333333336,31.416960451977403,-0.6639386189258313,4699.8912506071265,2019
+1998,52,"(50,55]",College,7676.670933333334,352.978790960452,21.748249838029032,354.151381960544,2019
+1998,52,"(50,55]",College,4283.9946,142.30035028248585,30.105299048777315,358.8968123762861,2019
+1998,52,"(50,55]",College,8216.322900000001,182.957593220339,44.90834600182426,393.8708294662557,2019
+1998,52,"(50,55]",College,4250.427033333333,308.6254350282486,13.772121643001622,410.30458201984567,2019
+1998,52,"(50,55]",College,6540.5337,227.31094915254238,28.773509258503957,343.6317196789311,2019
+1998,81,"(80,85]",HS,0,38.80918644067796,0,5883.803733377895,2019
+1998,31,"(30,35]",NoHS,0,42.50529943502825,0,4984.269712816814,2019
+1998,36,"(35,40]",NoHS,0,25.872790960451983,0,5213.849648317053,2019
+1998,68,"(65,70]",NoHS,0,33.265016949152546,0,5810.1309460536295,2019
+1998,21,"(20,25]",NoHS,0,20.328621468926556,0,4392.5886581439045,2019
+1998,36,"(35,40]",College,313745.525,375.1554689265537,836.3080135756298,24.865473274065657,2019
+1998,36,"(35,40]",College,400045.6056,513.7597062146892,778.6628666297731,23.996497727512576,2019
+1998,36,"(35,40]",College,368055.1493333333,216.22261016949156,1702.2047280107477,20.384705271034058,2019
+1998,36,"(35,40]",College,273306.17966666666,811.2968022598872,336.87570184594045,20.621721455724597,2019
+1998,36,"(35,40]",College,248656.42693333334,661.6042259887005,375.8386315651801,19.042510388804786,2019
+1998,58,"(55,60]",College,4177.439,255.03179661016952,16.380071251999418,3367.3833616380807,2019
+1998,58,"(55,60]",College,4177.439,253.18374011299437,16.499633815882625,3623.8764854168826,2019
+1998,58,"(55,60]",College,4177.439,253.18374011299437,16.499633815882625,3484.9668742741787,2019
+1998,58,"(55,60]",College,4177.439,253.18374011299437,16.499633815882625,4087.8618361036074,2019
+1998,58,"(55,60]",College,4177.439,255.03179661016952,16.380071251999418,3268.9642418434514,2019
+1998,65,"(60,65]",NoHS,561.769,44.35335593220339,12.665760869565217,7573.179331423339,2019
+1998,65,"(60,65]",NoHS,791.1443333333334,33.265016949152546,23.78307320698625,7242.987306596255,2019
+1998,65,"(60,65]",NoHS,664.2403333333334,42.50529943502825,15.627235713247057,6708.003831581014,2019
+1998,65,"(60,65]",NoHS,646.1893333333334,24.024734463276836,26.896835605865707,7359.26396052777,2019
+1998,65,"(60,65]",NoHS,569.427,35.11307344632768,16.216951240978702,6689.827031262158,2019
+1998,32,"(30,35]",College,373.36396666666667,55.441694915254246,6.734353400222965,6857.0501261533045,2019
+1998,32,"(30,35]",College,175.58700000000002,55.441694915254246,3.167056856187291,7790.624141804574,2019
+1998,32,"(30,35]",College,264.3833333333333,55.441694915254246,4.768673355629876,6120.9348520817075,2019
+1998,32,"(30,35]",College,179.06956666666667,55.441694915254246,3.2298717948717943,7767.096196711263,2019
+1998,32,"(30,35]",College,204.17686666666668,55.441694915254246,3.6827313266443698,6108.447638006686,2019
+1998,73,"(70,75]",College,19147.64383333333,1417.4593333333332,13.508425520967327,26.063622155637074,2019
+1998,73,"(70,75]",College,18685.88466666667,940.6607570621469,19.864637199308767,28.70699867364403,2019
+1998,73,"(70,75]",College,18732.562,953.5971525423727,19.64410437893755,29.09991684455319,2019
+1998,73,"(70,75]",College,18500.087,1476.5971412429378,12.528865513329789,26.569454990559223,2019
+1998,73,"(70,75]",College,19717.34433333333,1214.1731186440675,16.239318784583826,28.139202229515053,2019
+1998,57,"(55,60]",HS,83.144,66.53003389830509,1.249721293199554,8790.327939758667,2019
+1998,57,"(55,60]",HS,82.96166666666667,64.68197740112994,1.282608695652174,8708.572808190485,2019
+1998,57,"(55,60]",HS,83.144,64.68197740112994,1.2854276158623985,9169.109278368902,2019
+1998,57,"(55,60]",HS,83.144,64.68197740112994,1.2854276158623985,8608.937482989513,2019
+1998,57,"(55,60]",HS,83.144,66.53003389830509,1.249721293199554,9073.59674434939,2019
+1998,43,"(40,45]",College,-3.282,73.92225988700567,-0.04439799331103678,6073.82942593939,2019
+1998,43,"(40,45]",College,-3.282,73.92225988700567,-0.04439799331103678,6098.882223964878,2019
+1998,43,"(40,45]",College,-3.282,73.92225988700567,-0.04439799331103678,6125.041694327219,2019
+1998,43,"(40,45]",College,-3.282,73.92225988700567,-0.04439799331103678,6092.6257892687845,2019
+1998,43,"(40,45]",College,-3.282,73.92225988700567,-0.04439799331103678,6037.6802499191535,2019
+1998,42,"(40,45]",College,-9.299,64.68197740112994,-0.14376493072145247,8152.650005324324,2019
+1998,42,"(40,45]",College,-9.299,64.68197740112994,-0.14376493072145247,8264.16123953428,2019
+1998,42,"(40,45]",College,-9.299,64.68197740112994,-0.14376493072145247,8603.202939012095,2019
+1998,42,"(40,45]",College,-9.299,64.68197740112994,-0.14376493072145247,8193.479585068677,2019
+1998,42,"(40,45]",College,-9.299,64.68197740112994,-0.14376493072145247,8499.056348087215,2019
+1998,44,"(40,45]",College,1417.3317,157.08480225988703,9.022716899468817,483.90144726328134,2019
+1998,44,"(40,45]",College,1718.1634666666666,157.08480225988703,10.937808380877433,512.6576262337117,2019
+1998,44,"(40,45]",College,1895.0450333333335,157.08480225988703,12.063834349793428,473.9624347543857,2019
+1998,44,"(40,45]",College,1477.4834666666666,157.08480225988703,9.405642337202437,501.72729449762176,2019
+1998,44,"(40,45]",College,1625.1917,157.08480225988703,10.345951209915404,483.0398866145473,2019
+1998,58,"(55,60]",College,2062.6458333333335,157.08480225988703,13.130779067479834,6859.572551659588,2019
+1998,58,"(55,60]",College,2062.6458333333335,157.08480225988703,13.130779067479834,7454.147712764299,2019
+1998,58,"(55,60]",College,2064.6515,157.08480225988703,13.143547117843791,6974.280846739353,2019
+1998,58,"(55,60]",College,2064.6515,157.08480225988703,13.143547117843791,6926.2394412974445,2019
+1998,58,"(55,60]",College,2064.6515,157.08480225988703,13.143547117843791,7147.096006414309,2019
+1998,76,"(75,80]",College,14361.849666666667,626.4911525423728,22.92426574323458,162.0093394411526,2019
+1998,76,"(75,80]",College,12538.516333333335,744.766768361582,16.8354938297219,160.64717240411966,2019
+1998,76,"(75,80]",College,13158.449666666666,234.70317514124295,56.064216680272814,149.95879773770454,2019
+1998,76,"(75,80]",College,9876.449666666666,613.5547570621469,16.09709574082282,164.60121593974128,2019
+1998,76,"(75,80]",College,6430.349666666667,425.05299435028246,15.128348116911445,157.58918020816802,2019
+1998,47,"(45,50]",HS,80.77366666666667,64.68197740112994,1.2487816531294793,4968.1802535176985,2019
+1998,47,"(45,50]",HS,78.768,64.68197740112994,1.2177735308170092,5033.045640259583,2019
+1998,47,"(45,50]",HS,78.95033333333333,64.68197740112994,1.2205924510272337,5216.447698939091,2019
+1998,47,"(45,50]",HS,78.768,64.68197740112994,1.2177735308170092,4963.878413776309,2019
+1998,47,"(45,50]",HS,80.59133333333332,64.68197740112994,1.2459627329192546,5192.339268971578,2019
+1998,30,"(25,30]",HS,30.9055,51.745581920903966,0.5972587195413281,8341.246216130781,2019
+1998,30,"(25,30]",HS,30.9055,51.745581920903966,0.5972587195413281,8396.934757474204,2019
+1998,30,"(25,30]",HS,30.9055,53.593638418079095,0.5766635912812824,8537.846960156547,2019
+1998,30,"(25,30]",HS,30.723166666666668,51.745581920903966,0.5937350692785475,8413.02635406379,2019
+1998,30,"(25,30]",HS,30.723166666666668,51.745581920903966,0.5937350692785475,8500.54911072823,2019
+1998,28,"(25,30]",HS,45.656266666666674,88.70671186440678,0.5146878483835006,4898.954292822743,2019
+1998,28,"(25,30]",HS,46.02093333333333,88.70671186440678,0.518798773690078,4895.220186098816,2019
+1998,28,"(25,30]",HS,40.55093333333333,88.70671186440678,0.4571348940914158,4951.428061799053,2019
+1998,28,"(25,30]",HS,43.46826666666667,88.70671186440678,0.49002229654403573,4874.713472044362,2019
+1998,28,"(25,30]",HS,46.9326,88.70671186440678,0.5290760869565218,4965.173659266709,2019
+1998,40,"(35,40]",HS,34.60686666666667,107.18727683615819,0.32286356821589207,8888.463254270913,2019
+1998,40,"(35,40]",HS,35.90143333333334,107.18727683615819,0.3349411832545266,9067.630520194964,2019
+1998,40,"(35,40]",HS,38.3994,107.18727683615819,0.35824587706146926,9435.388456840275,2019
+1998,40,"(35,40]",HS,33.87753333333333,107.18727683615819,0.31605927805328105,8966.959970365353,2019
+1998,40,"(35,40]",HS,31.470733333333335,107.18727683615819,0.29360512051666476,9337.916091913263,2019
+1998,58,"(55,60]",College,62813.57806666667,3437.385084745763,18.273651778329196,48.18985231979501,2019
+1998,58,"(55,60]",College,58682.524666666664,3455.8656497175143,16.980557294368033,49.68466152990824,2019
+1998,58,"(55,60]",College,60664.852666666666,3455.8656497175143,17.554169871049666,53.8623244642646,2019
+1998,58,"(55,60]",College,61964.871100000004,3437.385084745763,18.026746952206278,49.99889121411865,2019
+1998,58,"(55,60]",College,57733.297333333336,3437.385084745763,16.795702520947962,54.351565094426654,2019
+1998,37,"(35,40]",HS,891.6646999999999,227.31094915254238,3.92266498083041,10553.334075500763,2019
+1998,37,"(35,40]",HS,1068.3457,227.31094915254238,4.6999306631862305,10174.650373158365,2019
+1998,37,"(35,40]",HS,1068.5280333333335,227.31094915254238,4.700732794953368,9881.289916979043,2019
+1998,37,"(35,40]",HS,891.6646999999999,227.31094915254238,3.92266498083041,10062.590158865458,2019
+1998,37,"(35,40]",HS,891.6646999999999,227.31094915254238,3.92266498083041,10318.796404198825,2019
+1998,66,"(65,70]",HS,45.401,27.720847457627123,1.637792642140468,6829.143634259322,2019
+1998,66,"(65,70]",HS,46.13033333333334,27.720847457627123,1.6641025641025642,7090.185757151684,2019
+1998,66,"(65,70]",HS,51.418,27.720847457627123,1.8548494983277588,7020.6692650875175,2019
+1998,66,"(65,70]",HS,50.68866666666666,27.720847457627123,1.8285395763656629,6982.698860471473,2019
+1998,66,"(65,70]",HS,52.147333333333336,27.720847457627123,1.881159420289855,6962.880380928445,2019
+1998,25,"(20,25]",HS,34.82566666666666,64.68197740112994,0.5384137601528906,5728.460517845401,2019
+1998,25,"(20,25]",HS,31.179000000000002,64.68197740112994,0.48203535594839947,5708.929697753715,2019
+1998,25,"(20,25]",HS,34.82566666666666,64.68197740112994,0.5384137601528906,5711.783646485634,2019
+1998,25,"(20,25]",HS,33.00233333333334,64.68197740112994,0.5102245580506451,5752.423664542164,2019
+1998,25,"(20,25]",HS,31.179000000000002,64.68197740112994,0.48203535594839947,5708.172424488729,2019
+1998,50,"(45,50]",College,853.1376666666666,116.4275593220339,7.327626479800393,6809.167691928051,2019
+1998,50,"(45,50]",College,853.1376666666666,114.57950282485875,7.445814003668142,6519.00159533585,2019
+1998,50,"(45,50]",College,853.1376666666666,114.57950282485875,7.445814003668142,6060.776729166585,2019
+1998,50,"(45,50]",College,853.1376666666666,114.57950282485875,7.445814003668142,6662.447745487798,2019
+1998,50,"(45,50]",College,852.9553333333334,116.4275593220339,7.326060413016935,6065.622699374819,2019
+1998,74,"(70,75]",HS,295.8358333333333,9.79469943502825,30.203666309080578,2743.6296356530393,2019
+1998,74,"(70,75]",HS,383.994,38.80918644067796,9.8944099378882,2780.7425418247494,2019
+1998,74,"(70,75]",HS,326.2855,36.96112994350283,8.82780100334448,2693.2864357671942,2019
+1998,74,"(70,75]",HS,230.3417,15.154063276836158,15.199995921363897,2640.033936182538,2019
+1998,74,"(70,75]",HS,211.81663333333333,17.55653672316384,12.064830135539518,2703.82854578193,2019
+1998,45,"(40,45]",College,1154.5346666666667,184.80564971751414,6.247290969899665,936.5696249880384,2019
+1998,45,"(40,45]",College,1156.358,184.80564971751414,6.257157190635451,867.2512318355027,2019
+1998,45,"(40,45]",College,1156.358,184.80564971751414,6.257157190635451,902.1703373987069,2019
+1998,45,"(40,45]",College,1156.1756666666668,184.80564971751414,6.256170568561873,970.065951890673,2019
+1998,45,"(40,45]",College,1156.358,184.80564971751414,6.257157190635451,966.7300369007478,2019
+1998,65,"(60,65]",College,219456.4,4860.388587570622,45.152027671452366,15.134541716248247,2019
+1998,65,"(60,65]",College,204692.87,2716.6430508474577,75.34772370486655,15.874244413854168,2019
+1998,65,"(60,65]",College,204576.17666666667,3455.8656497175143,59.196796809328774,13.522093385409011,2019
+1998,65,"(60,65]",College,200305.20066666667,1598.5688700564972,125.30282831016684,13.033395147043223,2019
+1998,65,"(60,65]",College,201800.334,4509.257853107344,44.75244942156917,13.520225057567519,2019
+1998,42,"(40,45]",College,10965.891333333335,2310.0706214689267,4.7469939799331105,18.07542807375502,2019
+1998,42,"(40,45]",College,10577.339,2310.0706214689267,4.578794648829431,19.517372299893747,2019
+1998,42,"(40,45]",College,10830.964666666667,2310.0706214689267,4.688585953177257,19.370665146510206,2019
+1998,42,"(40,45]",College,10575.698,2310.0706214689267,4.578084280936455,19.454535491164922,2019
+1998,42,"(40,45]",College,10604.871333333334,2310.0706214689267,4.590713043478261,20.507106651941257,2019
+1998,65,"(60,65]",College,2873.5733333333337,36.96112994350283,77.7458193979933,10.98151430367605,2019
+1998,65,"(60,65]",College,2871.75,36.96112994350283,77.69648829431436,10.950429031069635,2019
+1998,65,"(60,65]",College,2871.75,36.96112994350283,77.69648829431436,10.290084656226767,2019
+1998,65,"(60,65]",College,2873.5733333333337,36.96112994350283,77.7458193979933,11.500186156532639,2019
+1998,65,"(60,65]",College,2873.5733333333337,36.96112994350283,77.7458193979933,10.914392964071062,2019
+1998,25,"(20,25]",HS,52.512,75.77031638418079,0.693041846806428,5157.758019643701,2019
+1998,25,"(20,25]",HS,52.512,75.77031638418079,0.693041846806428,5158.06600309247,2019
+1998,25,"(20,25]",HS,52.512,75.77031638418079,0.693041846806428,5162.331507850297,2019
+1998,25,"(20,25]",HS,52.512,75.77031638418079,0.693041846806428,5151.719362252057,2019
+1998,25,"(20,25]",HS,54.33533333333334,75.77031638418079,0.7171057998205401,5201.90228698641,2019
+1998,63,"(60,65]",College,53918.70166666667,92.40282485875707,583.5178929765885,37.064479009437534,2019
+1998,63,"(60,65]",College,18726.563233333334,92.40282485875707,202.66223745819397,34.89931411965357,2019
+1998,63,"(60,65]",College,53597.795,92.40282485875707,580.0449832775919,41.18612712598796,2019
+1998,63,"(60,65]",College,53027.1099,92.40282485875707,573.8689264214047,38.88614395041056,2019
+1998,63,"(60,65]",College,19472.306566666666,92.40282485875707,210.73280602006687,34.755454402834616,2019
+1998,60,"(55,60]",NoHS,219.52933333333334,44.35335593220339,4.949554069119286,6986.682866359964,2019
+1998,60,"(55,60]",NoHS,219.71166666666667,44.35335593220339,4.953664994425864,6921.702676669786,2019
+1998,60,"(55,60]",NoHS,219.52933333333334,44.35335593220339,4.949554069119286,7287.74388555076,2019
+1998,60,"(55,60]",NoHS,219.52933333333334,44.35335593220339,4.949554069119286,6842.511044203233,2019
+1998,60,"(55,60]",NoHS,219.71166666666667,44.35335593220339,4.953664994425864,7211.829108590228,2019
+1998,33,"(30,35]",HS,112.86433333333333,73.92225988700567,1.526797658862876,4677.238823381829,2019
+1998,33,"(30,35]",HS,167.56433333333334,73.92225988700567,2.2667642140468223,4649.469430972918,2019
+1998,33,"(30,35]",HS,109.4,73.92225988700567,1.4799331103678928,4634.459343806269,2019
+1998,33,"(30,35]",HS,160.27100000000002,73.92225988700567,2.168102006688963,4735.438172430955,2019
+1998,33,"(30,35]",HS,114.87,73.92225988700567,1.5539297658862874,4653.1390530772005,2019
+1998,46,"(45,50]",NoHS,92.07833333333333,73.92225988700567,1.2456103678929764,7401.771881580084,2019
+1998,46,"(45,50]",NoHS,66.55166666666668,73.92225988700567,0.9002926421404681,7575.295861323745,2019
+1998,46,"(45,50]",NoHS,186.89166666666665,73.92225988700567,2.5282190635451496,7957.489647636363,2019
+1998,46,"(45,50]",NoHS,92.07833333333333,73.92225988700567,1.2456103678929764,7355.4885416503985,2019
+1998,46,"(45,50]",NoHS,48.318333333333335,73.92225988700567,0.6536371237458193,7926.385306427292,2019
+1998,68,"(65,70]",College,71207.00133333333,911.0918531073447,78.15567781719999,17.65514345863118,2019
+1998,68,"(65,70]",College,67133.31,761.3992768361583,88.17096632788906,18.212895568678366,2019
+1998,68,"(65,70]",College,100668.05666666667,826.081254237288,121.86217294037547,19.6756376232697,2019
+1998,68,"(65,70]",College,49007.55333333334,883.3710056497175,55.477883041099346,18.30449983333552,2019
+1998,68,"(65,70]",College,49705.89,761.3992768361583,65.28229210637399,19.64463151203668,2019
+1998,32,"(30,35]",College,74.93900000000001,64.68197740112994,1.1585762064022935,5439.700621604325,2019
+1998,32,"(30,35]",College,74.93900000000001,64.68197740112994,1.1585762064022935,5456.461176667915,2019
+1998,32,"(30,35]",College,74.93900000000001,64.68197740112994,1.1585762064022935,5491.965122839175,2019
+1998,32,"(30,35]",College,74.93900000000001,64.68197740112994,1.1585762064022935,5434.241334905907,2019
+1998,32,"(30,35]",College,74.93900000000001,64.68197740112994,1.1585762064022935,5515.967511685421,2019
+1998,39,"(35,40]",College,3478.5553333333337,572.8975141242938,6.071863199913691,3367.3833616380807,2019
+1998,39,"(35,40]",College,3339.982,572.8975141242938,5.829981659294422,3623.8764854168826,2019
+1998,39,"(35,40]",College,3476.732,572.8975141242938,6.068680548063437,3484.9668742741787,2019
+1998,39,"(35,40]",College,3668.1820000000002,572.8975141242938,6.402858992340058,4087.8618361036074,2019
+1998,39,"(35,40]",College,3998.205333333334,572.8975141242938,6.978918977235948,3268.9642418434514,2019
+1998,41,"(40,45]",College,82.05,36.96112994350283,2.219899665551839,5323.541997959207,2019
+1998,41,"(40,45]",College,67.64566666666667,36.96112994350283,1.830183946488294,5345.500076315095,2019
+1998,41,"(40,45]",College,64.36366666666666,36.96112994350283,1.74138795986622,5368.4281220918765,2019
+1998,41,"(40,45]",College,59.076,36.96112994350283,1.5983277591973242,5340.016485893555,2019
+1998,41,"(40,45]",College,69.83366666666667,36.96112994350283,1.8893812709030098,5291.858253942049,2019
+1998,55,"(50,55]",College,1246.2118666666668,364.06712994350283,3.423027689591362,6878.636586770936,2019
+1998,55,"(50,55]",College,1318.0876666666668,197.7420451977401,6.665692495233333,6559.39658028469,2019
+1998,55,"(50,55]",College,1267.7636666666667,234.70317514124295,5.401561635899191,6138.8293771918825,2019
+1998,55,"(50,55]",College,1053.8866666666668,245.7915141242938,4.287726003973144,6717.245502061834,2019
+1998,55,"(50,55]",College,1216.0721666666668,219.9187231638418,5.5296436300272624,6122.700407717174,2019
+1998,30,"(25,30]",HS,49.412333333333336,79.46642937853107,0.6218013533483706,4577.25613130884,2019
+1998,30,"(25,30]",HS,49.230000000000004,79.46642937853107,0.6195068834098157,4587.322528209254,2019
+1998,30,"(25,30]",HS,49.412333333333336,79.46642937853107,0.6218013533483706,4618.979141110601,2019
+1998,30,"(25,30]",HS,49.230000000000004,79.46642937853107,0.6195068834098157,4587.670602117172,2019
+1998,30,"(25,30]",HS,49.230000000000004,79.46642937853107,0.6195068834098157,4566.37135206116,2019
+1998,78,"(75,80]",NoHS,232.475,40.65724293785311,5.717923380966858,10356.171261200683,2019
+1998,78,"(75,80]",NoHS,232.475,40.65724293785311,5.717923380966858,10505.018327179616,2019
+1998,78,"(75,80]",NoHS,232.475,40.65724293785311,5.717923380966858,10907.770352227722,2019
+1998,78,"(75,80]",NoHS,232.475,40.65724293785311,5.717923380966858,10486.32197253426,2019
+1998,78,"(75,80]",NoHS,232.475,40.65724293785311,5.717923380966858,10922.006364676237,2019
+1998,32,"(30,35]",HS,45.756550000000004,83.16254237288136,0.55020624303233,7490.098648216886,2019
+1998,32,"(30,35]",HS,46.13033333333334,83.16254237288136,0.5547008547008547,7540.1046853760445,2019
+1998,32,"(30,35]",HS,45.756550000000004,83.16254237288136,0.55020624303233,7666.638091953491,2019
+1998,32,"(30,35]",HS,45.583333333333336,83.16254237288136,0.5481233742103307,7554.55428232359,2019
+1998,32,"(30,35]",HS,45.93888333333333,83.16254237288136,0.5523987365291713,7633.146145504992,2019
+1998,28,"(25,30]",HS,3407.81,369.6112994350283,9.219983277591972,740.7037924296084,2019
+1998,28,"(25,30]",HS,3407.81,369.6112994350283,9.219983277591972,810.4402074596393,2019
+1998,28,"(25,30]",HS,3407.81,369.6112994350283,9.219983277591972,743.1728893542861,2019
+1998,28,"(25,30]",HS,3407.81,369.6112994350283,9.219983277591972,950.9826896824303,2019
+1998,28,"(25,30]",HS,3407.81,369.6112994350283,9.219983277591972,743.6831082353735,2019
+1998,25,"(20,25]",NoHS,3.282,0.9794699435028248,3.350791948002777,4608.077542879463,2019
+1998,25,"(20,25]",NoHS,4.558333333333333,0.9609893785310735,4.743375353743246,4585.93797845503,2019
+1998,25,"(20,25]",NoHS,5.47,0.9609893785310735,5.692050424491896,4625.94516019569,2019
+1998,25,"(20,25]",NoHS,2.735,0.9794699435028248,2.792326623335647,4585.152307131683,2019
+1998,25,"(20,25]",NoHS,4.923,0.9794699435028248,5.026187922004166,4615.249992813953,2019
+1998,50,"(45,50]",College,361302.43433333334,13675.618079096046,26.41945923348097,15.134541716248247,2019
+1998,50,"(45,50]",College,373546.17236666667,10700.247118644069,34.91005097590702,15.874244413854168,2019
+1998,50,"(45,50]",College,353340.46643333335,11180.741807909604,31.602596008734352,13.522093385409011,2019
+1998,50,"(45,50]",College,361486.06223333336,16336.819435028252,22.127077040360778,13.033395147043223,2019
+1998,50,"(45,50]",College,358710.20133333333,9850.141129943504,36.41675754704549,13.520225057567519,2019
+1998,24,"(20,25]",HS,-8.569666666666667,118.27561581920904,-0.0724550585284281,5328.813981055973,2019
+1998,24,"(20,25]",HS,-8.569666666666667,94.25088135593221,-0.09092399501606663,5342.997207520069,2019
+1998,24,"(20,25]",HS,-8.569666666666667,107.18727683615819,-0.07995040941067928,5386.235889967081,2019
+1998,24,"(20,25]",HS,-8.752,112.73144632768363,-0.07763583529798783,5323.624920006528,2019
+1998,24,"(20,25]",HS,-8.752,120.12367231638417,-0.07285824543349628,5366.411583122617,2019
+1998,60,"(55,60]",HS,703.0773333333334,85.0105988700565,8.270466773302314,7249.48017128532,2019
+1998,60,"(55,60]",HS,714.0173333333333,85.0105988700565,8.399156608986477,6912.002172253378,2019
+1998,60,"(55,60]",HS,739.3616666666667,85.0105988700565,8.697288061654792,6470.386713515018,2019
+1998,60,"(55,60]",HS,730.4273333333334,85.0105988700565,8.592191362512725,7079.366822292328,2019
+1998,60,"(55,60]",HS,710.3706666666667,85.0105988700565,8.356259997091755,6453.645522505225,2019
+1998,62,"(60,65]",College,96356.05566666667,19663.321129943506,4.9002940566298685,1.2844077075007798,2019
+1998,62,"(60,65]",College,87901.259,19127.38474576271,4.5955712277640455,1.2216202550122364,2019
+1998,62,"(60,65]",College,97307.79920000001,19441.554350282488,5.005145033508399,1.4296743903907239,2019
+1998,62,"(60,65]",College,80589.69233333333,20088.374124293787,4.011757837378812,1.398915259902401,2019
+1998,62,"(60,65]",College,79789.249,16429.222259887007,4.856544499663294,1.4166494402783747,2019
+1998,52,"(50,55]",NoHS,31.470733333333335,55.441694915254246,0.5676365663322185,6723.712515971575,2019
+1998,52,"(50,55]",NoHS,31.288400000000003,55.441694915254246,0.5643478260869564,6890.91852350312,2019
+1998,52,"(50,55]",NoHS,31.288400000000003,55.441694915254246,0.5643478260869564,7069.254109559421,2019
+1998,52,"(50,55]",NoHS,31.288400000000003,55.441694915254246,0.5643478260869564,6725.2370266406415,2019
+1998,52,"(50,55]",NoHS,31.470733333333335,55.441694915254246,0.5676365663322185,7057.875629069611,2019
+1998,26,"(25,30]",College,-49.047666666666665,73.92225988700567,-0.6635033444816052,4200.359053799804,2019
+1998,26,"(25,30]",College,-49.047666666666665,73.92225988700567,-0.6635033444816052,4209.596570807122,2019
+1998,26,"(25,30]",College,-49.047666666666665,73.92225988700567,-0.6635033444816052,4238.64653803602,2019
+1998,26,"(25,30]",College,-49.047666666666665,73.92225988700567,-0.6635033444816052,4209.915983867821,2019
+1998,26,"(25,30]",College,-49.047666666666665,73.92225988700567,-0.6635033444816052,4190.370541086069,2019
+1998,59,"(55,60]",College,73737.42333333332,6911.731299435029,10.668444726628868,32.75797024958856,2019
+1998,59,"(55,60]",College,71171.99333333333,6856.289604519774,10.38054070621749,33.733308450685655,2019
+1998,59,"(55,60]",College,70259.41500000001,6523.639435028249,10.76997214511071,36.11853352727931,2019
+1998,59,"(55,60]",College,72943.36166666668,6560.600564971752,11.118397004098169,33.976031628799,2019
+1998,59,"(55,60]",College,76301.03,7151.978644067797,10.668520390967306,36.681252218847234,2019
+1998,82,"(80,85]",College,532.0486666666667,22.176677966101696,23.991360089186177,8651.957722846051,2019
+1998,82,"(80,85]",College,532.0486666666667,20.328621468926556,26.172392824566735,8297.73296897413,2019
+1998,82,"(80,85]",College,532.0486666666667,22.176677966101696,23.991360089186177,7745.443794556723,2019
+1998,82,"(80,85]",College,532.0486666666667,20.328621468926556,26.172392824566735,8433.258886139973,2019
+1998,82,"(80,85]",College,532.0486666666667,20.328621468926556,26.172392824566735,7724.282232545154,2019
+1998,60,"(55,60]",NoHS,37.56066666666666,29.56890395480226,1.2702759197324414,4720.768482443609,2019
+1998,60,"(55,60]",NoHS,10.210666666666667,29.56890395480226,0.34531772575250835,4668.894173972863,2019
+1998,60,"(55,60]",NoHS,6.199333333333334,29.56890395480226,0.20965719063545152,4806.142577315818,2019
+1998,60,"(55,60]",NoHS,9.116666666666665,29.56890395480226,0.308319397993311,4695.707358084971,2019
+1998,60,"(55,60]",NoHS,10.028333333333334,29.56890395480226,0.33915133779264217,4759.898117397486,2019
+1998,69,"(65,70]",NoHS,237.5074,27.720847457627123,8.56782608695652,2701.194819614089,2019
+1998,69,"(65,70]",NoHS,238.12733333333335,27.720847457627123,8.590189520624303,2881.4325823552504,2019
+1998,69,"(65,70]",NoHS,239.586,27.720847457627123,8.642809364548494,2677.8836771586534,2019
+1998,69,"(65,70]",NoHS,237.96323333333333,27.720847457627123,8.58426978818283,2574.2077552733144,2019
+1998,69,"(65,70]",NoHS,238.74726666666666,27.720847457627123,8.612552954292083,2713.0548269829496,2019
+1998,65,"(60,65]",HS,442.3406666666667,79.46642937853107,5.566384070934122,7530.053438381733,2019
+1998,65,"(60,65]",HS,866.2656666666667,121.97172881355934,7.102184047836221,6319.418389862405,2019
+1998,65,"(60,65]",HS,1269.04,59.13780790960452,21.45903010033445,5852.899836410883,2019
+1998,65,"(60,65]",HS,499.7756666666667,72.07420338983052,6.934182317125461,7550.801656350336,2019
+1998,65,"(60,65]",HS,388.37,72.07420338983052,5.388474401852328,7855.874581074754,2019
+1998,38,"(35,40]",HS,150.60733333333334,138.6042372881356,1.0865997770345597,7746.69317898656,2019
+1998,38,"(35,40]",HS,150.60733333333334,138.6042372881356,1.0865997770345597,7902.8454628095815,2019
+1998,38,"(35,40]",HS,150.60733333333334,138.6042372881356,1.0865997770345597,8223.362949109534,2019
+1998,38,"(35,40]",HS,150.60733333333334,138.6042372881356,1.0865997770345597,7815.106577089922,2019
+1998,38,"(35,40]",HS,150.60733333333334,138.6042372881356,1.0865997770345597,8138.411424541216,2019
+1998,35,"(30,35]",NoHS,1.2945666666666666,38.80918644067796,0.033357222487657275,4315.464349736621,2019
+1998,35,"(30,35]",NoHS,1.2945666666666666,38.80918644067796,0.033357222487657275,4292.50363300009,2019
+1998,35,"(30,35]",NoHS,1.2945666666666666,38.80918644067796,0.033357222487657275,4304.684674385013,2019
+1998,35,"(30,35]",NoHS,1.2945666666666666,38.80918644067796,0.033357222487657275,4319.934451112531,2019
+1998,35,"(30,35]",NoHS,1.2945666666666666,38.80918644067796,0.033357222487657275,4282.649703266687,2019
+1998,51,"(50,55]",NoHS,232.82143333333332,33.265016949152546,6.998987365291712,3032.204241772847,2019
+1998,51,"(50,55]",NoHS,232.82143333333332,33.265016949152546,6.998987365291712,3137.5034470608803,2019
+1998,51,"(50,55]",NoHS,233.00376666666668,33.265016949152546,7.004468599033816,2990.6922542626603,2019
+1998,51,"(50,55]",NoHS,233.00376666666668,33.265016949152546,7.004468599033816,2937.769756461023,2019
+1998,51,"(50,55]",NoHS,232.82143333333332,33.265016949152546,6.998987365291712,3043.2453632324105,2019
+1998,72,"(70,75]",College,16903.2299,646.8197740112995,26.132827998088864,17.82657433540392,2019
+1998,72,"(70,75]",College,16905.053233333336,646.8197740112995,26.135646918299095,19.650560389821674,2019
+1998,72,"(70,75]",College,16905.053233333336,646.8197740112995,26.135646918299095,22.160764616098483,2019
+1998,72,"(70,75]",College,16905.053233333336,646.8197740112995,26.135646918299095,21.913144043550208,2019
+1998,72,"(70,75]",College,16905.053233333336,646.8197740112995,26.135646918299095,20.150081937845773,2019
+1998,29,"(25,30]",HS,38.837,35.11307344632768,1.1060552719591623,6112.490678754557,2019
+1998,29,"(25,30]",HS,53.970666666666666,33.265016949152546,1.6224451876625787,6130.58800687742,2019
+1998,29,"(25,30]",HS,49.10236666666667,20.328621468926556,2.415430221951961,6130.893453894352,2019
+1998,29,"(25,30]",HS,38.43586666666667,24.024734463276836,1.5998456393105223,6161.410183386257,2019
+1998,29,"(25,30]",HS,38.7276,18.480564971751416,2.095585284280936,6138.0262937227735,2019
+1998,27,"(25,30]",HS,13.310333333333334,14.045229378531072,0.9476764654110194,5903.14846051282,2019
+1998,27,"(25,30]",HS,13.310333333333334,13.860423728813561,0.9603121516164994,5898.839667190977,2019
+1998,27,"(25,30]",HS,13.310333333333334,14.045229378531072,0.9476764654110194,5919.353153115442,2019
+1998,27,"(25,30]",HS,13.310333333333334,14.045229378531072,0.9476764654110194,5898.70319107151,2019
+1998,27,"(25,30]",HS,13.310333333333334,13.860423728813561,0.9603121516164994,5915.602474766912,2019
+1998,50,"(45,50]",HS,0.4740666666666667,42.50529943502825,0.0111531190926276,7091.2705976363195,2019
+1998,50,"(45,50]",HS,2.188,44.35335593220339,0.04933110367892977,7070.840885690195,2019
+1998,50,"(45,50]",HS,3.829,42.50529943502825,0.09008288497891523,7011.423886242259,2019
+1998,50,"(45,50]",HS,1.4222000000000001,44.35335593220339,0.03206521739130435,7087.660806261794,2019
+1998,50,"(45,50]",HS,1.5498333333333334,44.35335593220339,0.034942865105908584,7057.26276214924,2019
+1998,55,"(50,55]",HS,177.31916666666666,129.36395480225988,1.3706999522216914,5707.419503046677,2019
+1998,55,"(50,55]",HS,176.9545,129.36395480225988,1.3678810320114667,5664.814702395248,2019
+1998,55,"(50,55]",HS,177.13683333333336,129.36395480225988,1.3692904921165794,5853.669616421248,2019
+1998,55,"(50,55]",HS,177.13683333333336,129.36395480225988,1.3692904921165794,5714.810146252524,2019
+1998,55,"(50,55]",HS,177.13683333333336,129.36395480225988,1.3692904921165794,5741.675878842954,2019
+1998,53,"(50,55]",College,93.30908333333333,79.46642937853107,1.174194991055456,5847.018441703229,2019
+1998,53,"(50,55]",College,151.46429999999998,79.46642937853107,1.9060161779575326,5961.2198448467025,2019
+1998,53,"(50,55]",College,186.84608333333335,79.46642937853107,2.351258069534106,6175.664737078528,2019
+1998,53,"(50,55]",College,123.75875,79.46642937853107,1.55737147079412,5864.179111536463,2019
+1998,53,"(50,55]",College,358.77729999999997,79.46642937853107,4.514828498094423,4743.1569654716495,2019
+1998,69,"(65,70]",HS,189.17083333333335,22.176677966101696,8.530170011148272,9727.820234561652,2019
+1998,69,"(65,70]",HS,158.4112,36.96112994350283,4.285886287625417,10078.136980648202,2019
+1998,69,"(65,70]",HS,218.27123333333333,24.024734463276836,9.085271417545664,10257.469658249876,2019
+1998,69,"(65,70]",HS,250.59893333333332,27.720847457627123,9.040089186176141,9754.624152520222,2019
+1998,69,"(65,70]",HS,218.16183333333333,33.265016949152546,6.558296172426607,10148.737500378335,2019
+1998,69,"(65,70]",HS,21425.807666666668,462.0141242937853,46.374789297658864,261.5757715813767,2019
+1998,69,"(65,70]",HS,21365.63766666667,462.0141242937853,46.244555183946495,263.23060919085816,2019
+1998,69,"(65,70]",HS,21396.63433333333,462.0141242937853,46.31164548494983,260.1235548892652,2019
+1998,69,"(65,70]",HS,21387.335333333333,462.0141242937853,46.291518394648826,252.57719879508022,2019
+1998,69,"(65,70]",HS,21425.625333333333,462.0141242937853,46.37439464882943,243.73824468369972,2019
+1998,50,"(45,50]",College,817.0356666666667,103.49116384180793,7.894738413760151,409.7514832549138,2019
+1998,50,"(45,50]",College,817.0356666666667,103.49116384180793,7.894738413760151,396.5426658775213,2019
+1998,50,"(45,50]",College,815.2123333333334,101.64310734463277,8.020340529036181,403.64226190600715,2019
+1998,50,"(45,50]",College,817.0356666666667,103.49116384180793,7.894738413760151,400.21092624822444,2019
+1998,50,"(45,50]",College,813.389,103.49116384180793,7.8595019111323445,404.7594537976904,2019
+1998,30,"(25,30]",College,274.047,184.80564971751414,1.4828929765886287,7744.836877578266,2019
+1998,30,"(25,30]",College,258.00166666666667,184.80564971751414,1.3960702341137121,7790.624141804574,2019
+1998,30,"(25,30]",College,277.87600000000003,184.80564971751414,1.5036120401337794,7975.628692078635,2019
+1998,30,"(25,30]",College,297.9326666666667,184.80564971751414,1.6121404682274247,7767.096196711263,2019
+1998,30,"(25,30]",College,285.534,184.80564971751414,1.5450501672240802,7841.2227639621,2019
+1998,79,"(75,80]",NoHS,68.01033333333334,29.56890395480226,2.3000627090301005,8368.621375041406,2019
+1998,79,"(75,80]",NoHS,68.19266666666667,29.56890395480226,2.306229096989967,8587.143722906476,2019
+1998,79,"(75,80]",NoHS,68.19266666666667,29.56890395480226,2.306229096989967,8952.118577967425,2019
+1998,79,"(75,80]",NoHS,68.01033333333334,31.416960451977403,2.164764902616565,8419.194732281103,2019
+1998,79,"(75,80]",NoHS,68.01033333333334,31.416960451977403,2.164764902616565,8870.999384430032,2019
+1998,45,"(40,45]",College,3151.814,556.2650056497175,5.6660296225513616,1898.3481832606376,2019
+1998,45,"(40,45]",College,3151.6316666666667,554.4169491525424,5.684587513935339,1975.1821141188298,2019
+1998,45,"(40,45]",College,3151.6316666666667,554.4169491525424,5.684587513935339,2154.739542109568,2019
+1998,45,"(40,45]",College,3153.455,554.4169491525424,5.687876254180601,2238.4646763465234,2019
+1998,45,"(40,45]",College,3151.6316666666667,554.4169491525424,5.684587513935339,1846.1135649968924,2019
+1998,47,"(45,50]",College,13100.65,2494.87627118644,5.251021924934969,182.33691989144364,2019
+1998,47,"(45,50]",College,10053.86,2494.87627118644,4.029803047194353,180.98444902747238,2019
+1998,47,"(45,50]",College,12498.95,2494.87627118644,5.009847640282424,169.76309155991544,2019
+1998,47,"(45,50]",College,14296.756666666666,2494.87627118644,5.730447169577605,185.3697193082039,2019
+1998,47,"(45,50]",College,14152.713333333335,2513.3568361581924,5.631000393468424,179.299402800348,2019
+1998,31,"(30,35]",HS,1.641,27.720847457627123,0.05919732441471571,6283.584949133439,2019
+1998,31,"(30,35]",HS,1.641,27.720847457627123,0.05919732441471571,6258.685160482134,2019
+1998,31,"(30,35]",HS,1.641,27.720847457627123,0.05919732441471571,6246.452490239468,2019
+1998,31,"(30,35]",HS,1.4586666666666668,27.720847457627123,0.05261984392419174,6277.395713849843,2019
+1998,31,"(30,35]",HS,1.641,27.720847457627123,0.05919732441471571,6263.72928192084,2019
+1998,53,"(50,55]",HS,48.7924,81.31448587570623,0.6000456065673456,6627.552441463207,2019
+1998,53,"(50,55]",HS,44.45286666666667,72.07420338983052,0.6167652859960553,6714.082867158463,2019
+1998,53,"(50,55]",HS,44.142900000000004,90.55476836158192,0.48747184492526113,6958.7412128193555,2019
+1998,53,"(50,55]",HS,62.50386666666667,72.07420338983052,0.8672155046736986,6621.8137872626785,2019
+1998,53,"(50,55]",HS,57.088566666666665,57.289751412429375,0.9964882943143814,6926.580567323869,2019
+1998,57,"(55,60]",College,5502.455333333333,517.4558192090395,10.63367176301959,184.42826699004786,2019
+1998,57,"(55,60]",College,5500.6320000000005,517.4558192090395,10.63014811275681,185.53712073516473,2019
+1998,57,"(55,60]",College,5500.498896666667,517.4558192090395,10.629890886287626,172.3483856761194,2019
+1998,57,"(55,60]",College,5502.455333333333,517.4558192090395,10.63367176301959,188.78345131410256,2019
+1998,57,"(55,60]",College,5502.43163,517.4558192090395,10.633625955566174,180.52794782762228,2019
+1998,70,"(65,70]",College,16885.598266666668,816.8409717514126,20.671830687510404,216.21111620049282,2019
+1998,70,"(65,70]",College,16853.015300000003,816.8409717514126,20.63194169100622,214.78225288884127,2019
+1998,70,"(65,70]",College,16192.8957,816.8409717514126,19.82380446132659,206.45799266929959,2019
+1998,70,"(65,70]",College,16475.6947,816.8409717514126,20.17001505773392,224.59571638244105,2019
+1998,70,"(65,70]",College,16245.936466666668,816.8409717514126,19.888738479698542,212.32429477356413,2019
+1998,67,"(65,70]",College,22687.736666666668,1995.901016949152,11.367165242165244,212.67091303284923,2019
+1998,67,"(65,70]",College,22687.919,1995.901016949152,11.367256596060948,210.116394955445,2019
+1998,67,"(65,70]",College,22687.736666666668,1977.4204519774014,11.473400431344356,210.53819292447616,2019
+1998,67,"(65,70]",College,22687.736666666668,1977.4204519774014,11.473400431344356,205.43823205422777,2019
+1998,67,"(65,70]",College,22687.736666666668,1995.901016949152,11.367165242165244,195.33790630188793,2019
+1998,61,"(60,65]",College,1907.9360000000001,266.12013559322037,7.169453734671126,3226.9494630748036,2019
+1998,61,"(60,65]",College,1907.9360000000001,266.12013559322037,7.169453734671126,3506.6555209136795,2019
+1998,61,"(60,65]",College,1906.2585333333334,266.12013559322037,7.163150315867707,3280.9116988307806,2019
+1998,61,"(60,65]",College,1907.9360000000001,266.12013559322037,7.169453734671126,3258.3115752329004,2019
+1998,61,"(60,65]",College,1906.1126666666669,266.12013559322037,7.162602192493497,3362.209153231107,2019
+1998,56,"(55,60]",College,217.88833333333335,96.09893785310734,2.267333419089272,9984.819069920666,2019
+1998,56,"(55,60]",College,221.535,96.09893785310734,2.305280421919218,9947.624863695262,2019
+1998,56,"(55,60]",College,217.88833333333335,96.09893785310734,2.267333419089272,10540.694641312857,2019
+1998,56,"(55,60]",College,221.535,96.09893785310734,2.305280421919218,9760.20071053954,2019
+1998,56,"(55,60]",College,221.535,96.09893785310734,2.305280421919218,10318.615954753963,2019
+1998,51,"(50,55]",NoHS,0,33.265016949152546,0,5479.60124150078,2019
+1998,51,"(50,55]",NoHS,0,33.265016949152546,0,5468.054841088384,2019
+1998,51,"(50,55]",NoHS,0,33.265016949152546,0,5432.560806406937,2019
+1998,51,"(50,55]",NoHS,0,33.265016949152546,0,5474.834677221118,2019
+1998,51,"(50,55]",NoHS,0,33.265016949152546,0,5454.355340940781,2019
+1998,61,"(60,65]",HS,212.60066666666665,40.65724293785311,5.229096989966554,6807.8311816046535,2019
+1998,61,"(60,65]",HS,221.71733333333336,40.65724293785311,5.453329279416236,6782.471495550939,2019
+1998,61,"(60,65]",HS,218.43533333333335,40.65724293785311,5.37260565521435,7186.83725287302,2019
+1998,61,"(60,65]",HS,225.364,40.65724293785311,5.543022195196108,6654.682300263148,2019
+1998,61,"(60,65]",HS,215.88266666666667,38.80918644067796,5.562669214843129,7035.419966636962,2019
+1998,67,"(65,70]",College,1066.3765,0,Inf,10553.334075500763,2019
+1998,67,"(65,70]",College,1066.7411666666667,0,Inf,10174.650373158365,2019
+1998,67,"(65,70]",College,1066.3765,0,Inf,9587.824831713473,2019
+1998,67,"(65,70]",College,1066.3947333333333,0,Inf,10062.590158865458,2019
+1998,67,"(65,70]",College,1066.3582666666666,0,Inf,9562.615443859686,2019
+1998,60,"(55,60]",College,59569.394,312.3215480225989,190.73097702400506,350.74565291931157,2019
+1998,60,"(55,60]",College,59163.97583333334,312.3215480225989,189.43289762719914,332.63937689667944,2019
+1998,60,"(55,60]",College,59543.940266666665,312.3215480225989,190.6494785379272,349.70181964412177,2019
+1998,60,"(55,60]",College,59603.782066666674,312.3215480225989,190.84108171221627,342.7358547122605,2019
+1998,60,"(55,60]",College,59393.82523333334,312.3215480225989,190.16883596208268,369.4534653776576,2019
+1998,30,"(25,30]",HS,-23.703333333333333,66.53003389830509,-0.35628019323671495,1319.7283204125838,2019
+1998,30,"(25,30]",HS,-23.703333333333333,66.53003389830509,-0.35628019323671495,1275.2240481963727,2019
+1998,30,"(25,30]",HS,-23.703333333333333,66.53003389830509,-0.35628019323671495,1315.8431451186786,2019
+1998,30,"(25,30]",HS,-23.703333333333333,66.53003389830509,-0.35628019323671495,1422.5189240058558,2019
+1998,30,"(25,30]",HS,-23.703333333333333,66.53003389830509,-0.35628019323671495,1445.3406202217752,2019
+1998,46,"(45,50]",College,660.0466666666666,310.4734915254237,2.1259356585443543,8008.584155941307,2019
+1998,46,"(45,50]",College,714.7466666666667,310.4734915254237,2.3021181716833894,7673.918924314681,2019
+1998,46,"(45,50]",College,813.2066666666666,310.4734915254237,2.619246695333652,7151.285600887497,2019
+1998,46,"(45,50]",College,661.87,310.4734915254237,2.131808408982322,7823.682174497709,2019
+1998,46,"(45,50]",College,667.34,310.4734915254237,2.1494266602962258,7137.516497261633,2019
+1998,39,"(35,40]",HS,-1410.3483333333334,255.03179661016952,-5.530088216761184,86.2266844372957,2019
+1998,39,"(35,40]",HS,-1354.5543333333333,251.33568361581922,-5.389423076923077,88.26307410991473,2019
+1998,39,"(35,40]",HS,-1421.106,293.84098305084746,-4.836309711617341,93.2076744865578,2019
+1998,39,"(35,40]",HS,-1372.423,280.90458757062146,-4.885726544622425,88.17246698285086,2019
+1998,39,"(35,40]",HS,-1382.816,255.03179661016952,-5.422131743492802,99.37123256447288,2019
+1998,41,"(40,45]",HS,40.7515,57.289751412429375,0.7113226885316647,6216.77195100323,2019
+1998,41,"(40,45]",HS,40.93383333333334,55.441694915254246,0.7383221850613155,6337.269990833132,2019
+1998,41,"(40,45]",HS,40.93383333333334,57.289751412429375,0.7145053403819184,6639.467769447644,2019
+1998,41,"(40,45]",HS,41.116166666666665,55.441694915254246,0.7416109253065774,6236.035611553122,2019
+1998,41,"(40,45]",HS,40.93383333333334,57.289751412429375,0.7145053403819184,6488.490892565017,2019
+1998,79,"(75,80]",NoHS,113.1196,22.176677966101696,5.100836120401338,10375.695426071623,2019
+1998,79,"(75,80]",NoHS,113.15606666666667,22.176677966101696,5.102480490523969,10367.310154519508,2019
+1998,79,"(75,80]",NoHS,113.15606666666667,22.176677966101696,5.102480490523969,10279.447101577458,2019
+1998,79,"(75,80]",NoHS,113.10136666666668,22.176677966101696,5.100013935340023,10363.866030291614,2019
+1998,79,"(75,80]",NoHS,112.91903333333335,22.176677966101696,5.091792084726867,10277.44937439594,2019
+1998,29,"(25,30]",NoHS,-0.547,44.35335593220339,-0.012332775919732442,6415.794043695771,2019
+1998,29,"(25,30]",NoHS,-0.547,46.201412429378536,-0.011839464882943143,6374.660292077824,2019
+1998,29,"(25,30]",NoHS,-0.547,42.50529943502825,-0.012868983568416462,6341.856248953437,2019
+1998,29,"(25,30]",NoHS,-0.547,40.65724293785311,-0.013453937366980844,6441.554196643638,2019
+1998,29,"(25,30]",NoHS,-0.547,38.80918644067796,-0.014094601051122794,6358.637971775956,2019
+1998,76,"(75,80]",NoHS,1234.3966666666668,44.35335593220339,27.830964325529543,7946.51038147494,2019
+1998,76,"(75,80]",NoHS,1234.3966666666668,42.50529943502825,29.041006252726483,7620.595534546141,2019
+1998,76,"(75,80]",NoHS,1234.3966666666668,42.50529943502825,29.041006252726483,7113.305302511685,2019
+1998,76,"(75,80]",NoHS,1234.3966666666668,42.50529943502825,29.041006252726483,7745.164948391942,2019
+1998,76,"(75,80]",NoHS,1234.3966666666668,42.50529943502825,29.041006252726483,7094.44276282933,2019
+1998,66,"(65,70]",HS,499.2286666666667,184.80564971751414,2.701371237458194,6836.898010666427,2019
+1998,66,"(65,70]",HS,499.2286666666667,184.80564971751414,2.701371237458194,6538.807988116552,2019
+1998,66,"(65,70]",HS,499.2286666666667,184.80564971751414,2.701371237458194,6055.836795173247,2019
+1998,66,"(65,70]",HS,499.04633333333334,184.80564971751414,2.700384615384615,6643.77996740836,2019
+1998,66,"(65,70]",HS,499.2286666666667,184.80564971751414,2.701371237458194,6039.427183766764,2019
+1998,67,"(65,70]",College,732.7976666666666,55.441694915254246,13.217447045707912,8119.012618847415,2019
+1998,67,"(65,70]",College,575.8086666666667,55.441694915254246,10.385841694537346,7764.4391439143465,2019
+1998,67,"(65,70]",College,575.8086666666667,55.441694915254246,10.385841694537346,7190.8686045175755,2019
+1998,67,"(65,70]",College,586.931,55.441694915254246,10.586454849498327,7889.192044359979,2019
+1998,67,"(65,70]",College,732.6153333333334,55.441694915254246,13.214158305462652,7171.961563677898,2019
+1998,50,"(45,50]",College,3868.311066666667,462.0141242937853,8.372711705685619,11.333225350380904,2019
+1998,50,"(45,50]",College,7389.2406666666675,462.0141242937853,15.993538461538463,12.440634123637386,2019
+1998,50,"(45,50]",College,3727.8597000000004,462.0141242937853,8.068713712374583,9.689090924677142,2019
+1998,50,"(45,50]",College,5607.606966666667,462.0141242937853,12.13730635451505,10.24960550108709,2019
+1998,50,"(45,50]",College,7051.832833333333,462.0141242937853,15.263240802675584,10.309975573490402,2019
+1998,52,"(50,55]",NoHS,0,11.27314463276836,0,8605.342073890768,2019
+1998,52,"(50,55]",NoHS,0,11.27314463276836,0,8607.321414795077,2019
+1998,52,"(50,55]",NoHS,0,11.27314463276836,0,8583.066588623631,2019
+1998,52,"(50,55]",NoHS,0,11.27314463276836,0,8604.765175831224,2019
+1998,52,"(50,55]",NoHS,0,11.27314463276836,0,8612.071332898478,2019
+1998,45,"(40,45]",College,90.61966666666667,66.53003389830509,1.3620865849126718,5779.427441939541,2019
+1998,45,"(40,45]",College,90.43733333333333,48.04946892655367,1.8821713403653202,5804.810171740939,2019
+1998,45,"(40,45]",College,90.802,57.289751412429375,1.5849606214262597,5801.755248783118,2019
+1998,45,"(40,45]",College,90.61966666666667,62.833920903954805,1.4422093252016526,5744.574321757778,2019
+1998,45,"(40,45]",College,90.61966666666667,64.68197740112994,1.4010033444816055,5854.190225641588,2019
+1998,38,"(35,40]",College,23818.185100000002,4546.218983050848,5.239119626396933,14.436794001472233,2019
+1998,38,"(35,40]",College,23083.381766666665,4971.27197740113,4.64335523616516,15.703995874010564,2019
+1998,38,"(35,40]",College,23045.8211,4878.869152542373,4.723598928245668,15.738245474648314,2019
+1998,38,"(35,40]",College,22989.6442,5193.038757062147,4.427011866363561,14.315129670546758,2019
+1998,38,"(35,40]",College,25313.318433333334,4786.466327683615,5.288519066127762,15.632884341052364,2019
+1998,45,"(40,45]",HS,360.8376666666667,96.09893785310734,3.754855930023154,6178.625172852858,2019
+1998,45,"(40,45]",HS,361.9316666666667,116.4275593220339,3.1086425651643044,5921.893233780246,2019
+1998,45,"(40,45]",HS,350.7911,120.12367231638417,2.9202495497813223,5517.0178234987725,2019
+1998,45,"(40,45]",HS,355.3312,121.97172881355934,2.913225904530252,6037.6500796020855,2019
+1998,45,"(40,45]",HS,351.35633333333334,129.36395480225988,2.716029622551362,5506.902785777844,2019
+1998,37,"(35,40]",HS,-2.060366666666667,22.176677966101696,-0.09290691192865107,5996.362164416237,2019
+1998,37,"(35,40]",HS,-2.5709,22.176677966101696,-0.11592809364548494,6021.095432286953,2019
+1998,37,"(35,40]",HS,4.613033333333334,22.176677966101696,0.20801282051282052,6046.921257696541,2019
+1998,37,"(35,40]",HS,5.5247,22.176677966101696,0.2491220735785953,6014.918793849336,2019
+1998,37,"(35,40]",HS,-0.4558333333333333,22.176677966101696,-0.0205546265328874,5960.674044753734,2019
+1998,71,"(70,75]",NoHS,108405.46283333332,2901.4487005649717,37.362529557122464,24.536113405023357,2019
+1998,71,"(70,75]",NoHS,108542.03050000001,5784.4168361581915,18.76455891309691,25.75983580138125,2019
+1998,71,"(70,75]",NoHS,108548.77683333334,2956.8903954802263,36.71044993729097,22.59482456630162,2019
+1998,71,"(70,75]",NoHS,112576.24666666667,5562.650056497176,20.237880420893564,21.34192801567523,2019
+1998,71,"(70,75]",NoHS,109414.13083333333,5488.727796610169,19.93433358107271,21.91752728842682,2019
+1998,33,"(30,35]",College,936.0264000000001,125.66784180790961,7.44841628959276,10553.334075500763,2019
+1998,33,"(30,35]",College,1335.3364,125.66784180790961,10.62591973244147,13310.446752006314,2019
+1998,33,"(30,35]",College,1028.8340666666668,125.66784180790961,8.18693192996262,9881.289916979043,2019
+1998,33,"(30,35]",College,1049.0730666666666,125.66784180790961,8.347983474326185,9952.668069237228,2019
+1998,33,"(30,35]",College,1455.4940666666666,125.66784180790961,11.582072594924256,12559.287953020945,2019
+1998,55,"(50,55]",College,68.55733333333333,147.84451977401133,0.4637123745819397,6046.8312706948245,2019
+1998,55,"(50,55]",College,68.73966666666668,147.84451977401133,0.46494565217391304,6006.253036680607,2019
+1998,55,"(50,55]",College,68.73966666666668,147.84451977401133,0.46494565217391304,6164.261235221296,2019
+1998,55,"(50,55]",College,68.55733333333333,147.84451977401133,0.4637123745819397,6089.263421724756,2019
+1998,55,"(50,55]",College,68.55733333333333,147.84451977401133,0.4637123745819397,6123.098572375542,2019
+1998,51,"(50,55]",College,20003.425333333333,646.8197740112995,30.925809842331578,186.39066253227105,2019
+1998,51,"(50,55]",College,19987.015333333333,646.8197740112995,30.900439560439555,186.18460392767727,2019
+1998,51,"(50,55]",College,19983.18633333333,646.8197740112995,30.89451982799808,179.83633704493724,2019
+1998,51,"(50,55]",College,20001.966666666667,646.8197740112995,30.9235547061634,176.10747682354042,2019
+1998,51,"(50,55]",College,20003.425333333333,646.8197740112995,30.925809842331578,171.1655300389893,2019
+1998,41,"(40,45]",College,143.5875,81.31448587570623,1.7658292794162358,6624.028132553055,2019
+1998,41,"(40,45]",College,143.76983333333334,81.31448587570623,1.7680716023107326,6714.631010392784,2019
+1998,41,"(40,45]",College,143.5875,81.31448587570623,1.7658292794162358,6990.102391352704,2019
+1998,41,"(40,45]",College,143.76983333333334,81.31448587570623,1.7680716023107326,6657.202166111498,2019
+1998,41,"(40,45]",College,145.41083333333336,81.31448587570623,1.788252508361204,6905.483286185023,2019
+1998,53,"(50,55]",College,1901.0073333333332,269.8162485875706,7.045562835020846,240.77040800187896,2019
+1998,53,"(50,55]",College,1360.3890000000001,458.318011299435,2.968220681842702,252.69024861771263,2019
+1998,53,"(50,55]",College,1882.227,280.90458757062146,6.700591885231474,281.2737845996803,2019
+1998,53,"(50,55]",College,1466.8716666666667,358.5229604519773,4.091430196876186,277.26243068305774,2019
+1998,53,"(50,55]",College,2596.4266666666667,232.8551186440678,11.150395498221584,233.79506320506871,2019
+1998,25,"(20,25]",HS,-1.0028333333333335,15.523674576271185,-0.06460025481764614,4466.290535832217,2019
+1998,25,"(20,25]",HS,-1.4586666666666668,15.523674576271185,-0.09396400700748528,4444.83218880221,2019
+1998,25,"(20,25]",HS,-1.1851666666666667,15.523674576271185,-0.07634575569358179,4483.6083802857365,2019
+1998,25,"(20,25]",HS,-1.094,15.523674576271185,-0.07047300525561397,4444.070691982096,2019
+1998,25,"(20,25]",HS,-1.5498333333333334,15.523674576271185,-0.0998367574454531,4473.242294990577,2019
+1998,51,"(50,55]",HS,887.9633333333334,109.03533333333333,8.143812709030101,242.2537479069852,2019
+1998,51,"(50,55]",HS,887.9633333333334,280.90458757062146,3.161085196268263,231.97120173257218,2019
+1998,51,"(50,55]",HS,887.9633333333334,118.27561581920904,7.507577341137124,238.0217103209242,2019
+1998,51,"(50,55]",HS,887.9633333333334,262.42402259887007,3.3836968298082812,234.97862188936227,2019
+1998,51,"(50,55]",HS,887.9633333333334,168.17314124293785,5.280054393766769,239.22236320955545,2019
+1998,41,"(40,45]",College,151.15433333333334,109.03533333333333,1.3862876254180603,6595.497376513131,2019
+1998,41,"(40,45]",College,154.80100000000002,109.03533333333333,1.4197324414715722,6728.444681188242,2019
+1998,41,"(40,45]",College,154.80100000000002,109.03533333333333,1.4197324414715722,7001.331730045707,2019
+1998,41,"(40,45]",College,152.97766666666666,109.03533333333333,1.4030100334448161,6653.7442151685045,2019
+1998,41,"(40,45]",College,154.80100000000002,109.03533333333333,1.4197324414715722,6929.0044099265915,2019
+1998,44,"(40,45]",College,5197.958666666667,1016.4310734463277,5.1139312861052,1127.9721036236704,2019
+1998,44,"(40,45]",College,8326.251666666667,1016.4310734463277,8.191653998175738,1152.3503326406772,2019
+1998,44,"(40,45]",College,7586.343,1016.4310734463277,7.463706293706293,1103.8285601066045,2019
+1998,44,"(40,45]",College,5080.536,1016.4310734463277,4.998406810580724,1201.4654162387214,2019
+1998,44,"(40,45]",College,5624.618666666667,1016.4310734463277,5.533694131955002,1106.82722332524,2019
+1998,36,"(35,40]",NoHS,152.4489,55.441694915254246,2.749715719063545,11709.41382408434,2019
+1998,36,"(35,40]",NoHS,152.4489,55.441694915254246,2.749715719063545,12124.118391957261,2019
+1998,36,"(35,40]",NoHS,152.4489,55.441694915254246,2.749715719063545,12461.386801725208,2019
+1998,36,"(35,40]",NoHS,152.81356666666667,55.441694915254246,2.7562931995540687,11774.35441144268,2019
+1998,36,"(35,40]",NoHS,152.4489,55.441694915254246,2.749715719063545,12392.985882373761,2019
+1998,31,"(30,35]",College,988.0096333333333,97.9469943502825,10.087186849245914,10553.334075500763,2019
+1998,31,"(30,35]",College,709.6413333333334,94.25088135593221,7.529280608564496,10174.650373158365,2019
+1998,31,"(30,35]",College,682.8383333333334,125.66784180790961,5.433675978752705,9881.289916979043,2019
+1998,31,"(30,35]",College,791.2172666666668,101.64310734463277,7.784268774703558,10062.590158865458,2019
+1998,31,"(30,35]",College,1103.2625333333335,136.75618079096043,8.067368706499144,10318.796404198825,2019
+1998,55,"(50,55]",College,176.31633333333335,147.84451977401133,1.1925794314381268,291.6114855289944,2019
+1998,55,"(50,55]",College,176.31633333333335,147.84451977401133,1.1925794314381268,285.1934709130901,2019
+1998,55,"(50,55]",College,176.31633333333335,147.84451977401133,1.1925794314381268,281.25461595893205,2019
+1998,55,"(50,55]",College,176.31633333333335,147.84451977401133,1.1925794314381268,305.6139060823694,2019
+1998,55,"(50,55]",College,176.49866666666665,147.84451977401133,1.1938127090301,304.76796344048523,2019
+1998,53,"(50,55]",College,6091.756666666667,1110.68195480226,5.4846994140201115,166.29543342112322,2019
+1998,53,"(50,55]",College,6115.46,1110.68195480226,5.506040656876221,166.10121731105176,2019
+1998,53,"(50,55]",College,6102.696666666667,1110.68195480226,5.494549218415239,157.86925679183383,2019
+1998,53,"(50,55]",College,6142.81,1110.68195480226,5.530665167864039,174.67710074792583,2019
+1998,53,"(50,55]",College,6077.17,1110.68195480226,5.471566341493275,163.92567414901708,2019
+1998,43,"(40,45]",College,45530.82133333333,746.6148248587571,60.983012682539155,246.85375917283235,2019
+1998,43,"(40,45]",College,47724.9295,802.0565197740112,59.50319999075259,231.3341806621629,2019
+1998,43,"(40,45]",College,45868.32033333334,733.6784293785311,62.518289343993,245.0114001918085,2019
+1998,43,"(40,45]",College,47354.29141666667,792.8162372881355,59.72921490438213,244.16697664138556,2019
+1998,43,"(40,45]",College,46618.33938333333,711.5017514124293,65.52104656213353,235.8429508536513,2019
+1998,23,"(20,25]",HS,21.88,33.265016949152546,0.6577480490523968,5520.757458364627,2019
+1998,23,"(20,25]",HS,21.88,33.265016949152546,0.6577480490523968,5499.633577452698,2019
+1998,23,"(20,25]",HS,21.88,33.265016949152546,0.6577480490523968,5511.0522645241235,2019
+1998,23,"(20,25]",HS,21.88,33.265016949152546,0.6577480490523968,5544.017266724841,2019
+1998,23,"(20,25]",HS,21.88,33.265016949152546,0.6577480490523968,5463.419446347342,2019
+1998,45,"(40,45]",HS,82.41649000000001,55.441694915254246,1.4865434782608695,10464.169911980833,2019
+1998,45,"(40,45]",HS,85.88082333333334,55.441694915254246,1.5490295429208472,10743.595408481415,2019
+1998,45,"(40,45]",HS,80.68432333333334,55.441694915254246,1.4553004459308805,11021.191595717077,2019
+1998,45,"(40,45]",HS,81.50482333333333,55.441694915254246,1.4700997770345594,10418.756989756479,2019
+1998,45,"(40,45]",HS,88.79815666666667,55.441694915254246,1.6016493868450388,11010.45153371926,2019
+1998,43,"(40,45]",HS,1728.52,1572.6960790960452,1.0990807588161084,664.4705116736146,2019
+1998,43,"(40,45]",HS,1728.7023333333334,1572.6960790960452,1.0991966956050132,701.2900624877425,2019
+1998,43,"(40,45]",HS,1728.7023333333334,1574.54413559322,1.097906558638341,663.2231524807992,2019
+1998,43,"(40,45]",HS,1728.7023333333334,1574.54413559322,1.097906558638341,683.3879712150743,2019
+1998,43,"(40,45]",HS,1728.52,1572.6960790960452,1.0990807588161084,655.3693126043007,2019
+1998,57,"(55,60]",College,26770.727,5156.077627118644,5.192072140108605,36.88836299089857,2019
+1998,57,"(55,60]",College,20807.515333333333,5156.077627118644,4.035531820524808,40.05661956605624,2019
+1998,57,"(55,60]",College,33878.992,5137.597062146893,6.594326411780274,40.88446930796607,2019
+1998,57,"(55,60]",College,26704.175333333333,5137.597062146893,5.197794807632154,37.35501916474916,2019
+1998,57,"(55,60]",College,22748.818333333333,5156.077627118644,4.412039534409801,39.56609925282097,2019
+1998,50,"(45,50]",College,5986.550333333334,482.34274576271196,12.41140327272261,299.3795337464169,2019
+1998,50,"(45,50]",College,7788.550666666667,482.34274576271196,16.147336588116197,299.06473041804315,2019
+1998,50,"(45,50]",College,7020.198,482.34274576271196,14.554376657824932,285.01372738225047,2019
+1998,50,"(45,50]",College,4907.137,482.34274576271196,10.173547841463881,305.7523090027176,2019
+1998,50,"(45,50]",College,7751.537,482.34274576271196,16.07059931572675,295.6368007403637,2019
+1998,20,"(15,20]",HS,33.367,4.2505299435028245,7.850079976734041,4837.341243008405,2019
+1998,20,"(15,20]",HS,33.184666666666665,4.2505299435028245,7.80718336483932,4849.633988273606,2019
+1998,20,"(15,20]",HS,33.367,4.435335593220339,7.522993311036789,4857.5169129278875,2019
+1998,20,"(15,20]",HS,33.367,4.2505299435028245,7.850079976734041,4876.201049330271,2019
+1998,20,"(15,20]",HS,33.367,4.2505299435028245,7.850079976734041,4824.18525621237,2019
+1998,94,"(90,95]",HS,3546.3833333333337,86.85865536723163,40.829360278944,1476.0543415923198,2019
+1998,94,"(90,95]",HS,3533.62,86.85865536723163,40.68241656585783,1619.517615661984,2019
+1998,94,"(90,95]",HS,3540.9133333333334,86.85865536723163,40.76638440190707,1481.3306144013136,2019
+1998,94,"(90,95]",HS,3544.56,88.70671186440678,39.95819397993311,1889.0531266752969,2019
+1998,94,"(90,95]",HS,3573.7333333333336,86.85865536723163,41.14423966412866,1483.1079853342223,2019
+1998,49,"(45,50]",College,106.30033333333333,48.04946892655367,2.21231026498585,5702.038433200265,2019
+1998,49,"(45,50]",College,106.11800000000001,49.89752542372881,2.1267186919360834,5656.582357201378,2019
+1998,49,"(45,50]",College,106.30033333333333,49.89752542372881,2.130372847764152,5633.2314805570495,2019
+1998,49,"(45,50]",College,106.30033333333333,49.89752542372881,2.130372847764152,5723.129800520694,2019
+1998,49,"(45,50]",College,106.30033333333333,48.04946892655367,2.21231026498585,5653.482305436243,2019
+1998,30,"(25,30]",HS,-29.720333333333333,53.593638418079095,-0.5545496482527966,4619.5328131869765,2019
+1998,30,"(25,30]",HS,-76.033,85.0105988700565,-0.894394358004944,4589.91547914626,2019
+1998,30,"(25,30]",HS,-71.11,22.176677966101696,-3.2065217391304346,4566.29574438136,2019
+1998,30,"(25,30]",HS,-55.06466666666667,51.745581920903966,-1.0641423793597704,4638.0807701514495,2019
+1998,30,"(25,30]",HS,-14.586666666666666,40.65724293785311,-0.35877166311948916,4578.379006205611,2019
+1998,48,"(45,50]",College,24734.793,2180.7066666666665,11.342558528428095,28.22184059674483,2019
+1998,48,"(45,50]",College,18918.359666666667,1995.901016949152,9.47860615632355,30.639316426521578,2019
+1998,48,"(45,50]",College,136466.47166666665,2716.6430508474577,50.23349373194093,36.11853352727931,2019
+1998,48,"(45,50]",College,11777.639333333334,1434.0918418079093,8.21261162638348,26.719125504811366,2019
+1998,48,"(45,50]",College,18023.832333333332,3344.9822598870055,5.388319259409819,27.97163603202594,2019
+1998,57,"(55,60]",HS,125.8647,60.98586440677967,2.063833992094861,8598.038629422754,2019
+1998,57,"(55,60]",HS,126.06526666666666,60.98586440677967,2.067122732340123,8566.0102852257,2019
+1998,57,"(55,60]",HS,126.04703333333335,60.98586440677967,2.0668237559541907,9076.709259557716,2019
+1998,57,"(55,60]",HS,125.8647,60.98586440677967,2.063833992094861,8404.617264717765,2019
+1998,57,"(55,60]",HS,126.06526666666666,62.833920903954805,2.006325004918355,8885.474835334946,2019
+1998,21,"(20,25]",NoHS,0,12.936395480225992,0,1606.3719836429257,2019
+1998,21,"(20,25]",NoHS,0,12.936395480225992,0,1604.2835538116642,2019
+1998,21,"(20,25]",NoHS,0,12.936395480225992,0,1614.8345457180599,2019
+1998,21,"(20,25]",NoHS,0,12.936395480225992,0,1612.8826967298078,2019
+1998,21,"(20,25]",NoHS,0,12.936395480225992,0,1601.207911530165,2019
+1998,32,"(30,35]",HS,15.553033333333333,16.26289717514124,0.9563507145028886,7763.224878776583,2019
+1998,32,"(30,35]",HS,15.534799999999999,16.26289717514124,0.9552295530556401,7862.199975026032,2019
+1998,32,"(30,35]",HS,15.553033333333333,16.26289717514124,0.9563507145028886,8026.6622326714405,2019
+1998,32,"(30,35]",HS,15.534799999999999,16.44770282485876,0.944496636729172,7724.743797617981,2019
+1998,32,"(30,35]",HS,15.553033333333333,16.26289717514124,0.9563507145028886,8020.527800415036,2019
+1998,54,"(50,55]",NoHS,197.467,62.833920903954805,3.1426814873106435,6271.0333397998,2019
+1998,54,"(50,55]",NoHS,188.168,62.833920903954805,2.994688176273854,6376.519801600306,2019
+1998,54,"(50,55]",NoHS,189.62666666666667,62.833920903954805,3.0179028132992327,6658.256907433102,2019
+1998,54,"(50,55]",NoHS,197.10233333333335,62.833920903954805,3.1368778280542986,6264.176037018767,2019
+1998,54,"(50,55]",NoHS,177.04566666666665,62.833920903954805,2.8176765689553407,6599.196364486871,2019
+1998,40,"(35,40]",HS,663.8939,101.64310734463277,6.531617512921861,5513.0563267282805,2019
+1998,40,"(35,40]",HS,649.4531,101.64310734463277,6.389543934326543,5274.418839932192,2019
+1998,40,"(35,40]",HS,247.82746666666668,101.64310734463277,2.4382122225600487,6990.102391352704,2019
+1998,40,"(35,40]",HS,208.18820000000002,101.64310734463277,2.048227424749164,6657.202166111498,2019
+1998,40,"(35,40]",HS,239.8595,101.64310734463277,2.35982061416844,6905.483286185023,2019
+1998,42,"(40,45]",HS,0.09116666666666667,27.720847457627123,0.003288740245261984,5921.4271835527625,2019
+1998,42,"(40,45]",HS,0.09116666666666667,27.720847457627123,0.003288740245261984,5889.921834135188,2019
+1998,42,"(40,45]",HS,0.09116666666666667,27.720847457627123,0.003288740245261984,5906.635945001395,2019
+1998,42,"(40,45]",HS,0.09116666666666667,27.720847457627123,0.003288740245261984,5927.560794597924,2019
+1998,42,"(40,45]",HS,0.09116666666666667,27.720847457627123,0.003288740245261984,5876.400849448621,2019
+1998,47,"(45,50]",HS,7.019833333333334,36.96112994350283,0.18992474916387955,7929.503276137841,2019
+1998,47,"(45,50]",HS,6.108166666666667,36.96112994350283,0.16525919732441471,7963.372659086539,2019
+1998,47,"(45,50]",HS,6.2905,36.96112994350283,0.17019230769230764,7908.121951150371,2019
+1998,47,"(45,50]",HS,8.296166666666666,36.96112994350283,0.2244565217391304,7952.744115297787,2019
+1998,47,"(45,50]",HS,6.8375,36.96112994350283,0.1849916387959866,7954.114366154883,2019
+1998,37,"(35,40]",HS,89.52566666666668,53.593638418079095,1.6704532349210013,6216.77195100323,2019
+1998,37,"(35,40]",HS,73.11566666666667,90.55476836158192,0.8074192887857484,6337.269990833132,2019
+1998,37,"(35,40]",HS,89.52566666666668,81.31448587570623,1.1009805411979325,6639.467769447644,2019
+1998,37,"(35,40]",HS,96.819,72.07420338983052,1.3433239001800874,6236.035611553122,2019
+1998,37,"(35,40]",HS,107.759,59.13780790960452,1.8221676421404682,6488.490892565017,2019
+1998,79,"(75,80]",HS,52224.825000000004,2162.2261016949155,24.153267301260612,16.988373072866104,2019
+1998,79,"(75,80]",HS,52488.29666666667,2180.7066666666665,24.06939799331104,17.31960725314636,2019
+1998,79,"(75,80]",HS,52601.34333333334,1903.4981920903954,27.634039029775632,18.94060439607927,2019
+1998,79,"(75,80]",HS,52694.333333333336,2069.823276836158,25.458373148590542,17.623763815881922,2019
+1998,79,"(75,80]",HS,52252.175,2088.30384180791,25.021346967768665,18.931858893614667,2019
+1998,65,"(60,65]",HS,1727.6083333333333,184.80564971751414,9.34824414715719,3698.9276612303206,2019
+1998,65,"(60,65]",HS,1131.9253333333334,184.80564971751414,6.124949832775919,7497.128172514016,2019
+1998,65,"(60,65]",HS,1595.7813333333334,184.80564971751414,8.634916387959866,3732.3511585565293,2019
+1998,65,"(60,65]",HS,1340.6970000000001,184.80564971751414,7.254632107023411,7616.141441323163,2019
+1998,65,"(60,65]",HS,1091.6296666666667,184.80564971751414,5.9069063545150495,6923.936261518507,2019
+1998,59,"(55,60]",HS,32810.154,559.9611186440679,58.59362892811019,12.888569379859728,2019
+1998,59,"(55,60]",HS,30839.495333333332,547.0247231638417,56.37678523004611,13.371017584148674,2019
+1998,59,"(55,60]",HS,33844.348666666665,611.7067005649718,55.327738988976336,14.004821569167953,2019
+1998,59,"(55,60]",HS,31337.083000000002,569.2014011299434,55.05447270121184,13.232303368106917,2019
+1998,59,"(55,60]",HS,32236.533333333333,596.9222485875707,54.00457665903889,14.572121192868105,2019
+1998,18,"(15,20]",NoHS,3.9748666666666668,15.154063276836158,0.26229708785382166,1648.8662311119606,2019
+1998,18,"(15,20]",NoHS,6.3452,22.176677966101696,0.28612040133779265,1642.5572319993585,2019
+1998,18,"(15,20]",NoHS,4.248366666666667,15.154063276836158,0.28034505261440573,1645.9676132120276,2019
+1998,18,"(15,20]",NoHS,-1.094,8.870671186440678,-0.12332775919732443,1655.8131605571543,2019
+1998,18,"(15,20]",NoHS,1.6957,7.392225988700565,0.22938963210702343,1631.741278152625,2019
+1998,58,"(55,60]",HS,43.17653333333333,68.37809039548021,0.6314381270903011,2521.539265535764,2019
+1998,58,"(55,60]",HS,43.158300000000004,68.37809039548021,0.6311714724758205,2478.265691572244,2019
+1998,58,"(55,60]",HS,43.158300000000004,68.37809039548021,0.6311714724758205,2495.055156420375,2019
+1998,58,"(55,60]",HS,43.17653333333333,68.37809039548021,0.6314381270903011,2455.5864275580566,2019
+1998,58,"(55,60]",HS,43.17653333333333,68.37809039548021,0.6314381270903011,2627.1365292290093,2019
+1998,54,"(50,55]",College,277.5113333333333,110.88338983050849,2.5027313266443696,9486.328039228822,2019
+1998,54,"(50,55]",HS,277.5113333333333,110.88338983050849,2.5027313266443696,9565.633384527864,2019
+1998,54,"(50,55]",College,277.329,110.88338983050849,2.5010869565217386,10084.10996261462,2019
+1998,54,"(50,55]",HS,277.5113333333333,110.88338983050849,2.5027313266443696,9435.818365583487,2019
+1998,54,"(50,55]",HS,277.5113333333333,110.88338983050849,2.5027313266443696,10075.228979745652,2019
+1998,81,"(80,85]",College,13360.475,112.73144632768363,118.51595482208454,2294.1674784079605,2019
+1998,81,"(80,85]",College,13360.292666666666,293.84098305084746,45.46776466628805,2382.777434216676,2019
+1998,81,"(80,85]",College,13360.475,391.78797740113,34.10128888748659,2573.6468437481717,2019
+1998,81,"(80,85]",College,13360.292666666666,162.62897175141245,82.15198388567953,2725.8831831394286,2019
+1998,81,"(80,85]",College,13360.475,221.76677966101698,60.24561036789297,2233.555794442772,2019
+1998,36,"(35,40]",College,583.0473000000001,175.56536723163845,3.3209698996655517,7718.920988012966,2019
+1998,36,"(35,40]",College,475.2518333333333,173.71731073446327,2.735777058279371,7391.132002418743,2019
+1998,36,"(35,40]",College,749.1165,173.71731073446327,4.312273180103892,7568.077389300056,2019
+1998,36,"(35,40]",College,625.8591666666666,175.56536723163845,3.564821334272134,7364.2090498089065,2019
+1998,36,"(35,40]",College,469.0525,175.56536723163845,2.671668720295722,7626.12468056185,2019
+1998,50,"(45,50]",HS,-33.367,42.50529943502825,-0.785007997673404,8541.204383846205,2019
+1998,50,"(45,50]",HS,-33.367,42.50529943502825,-0.785007997673404,8520.163954220263,2019
+1998,50,"(45,50]",HS,-33.54933333333334,42.50529943502825,-0.7892976588628763,8753.449723999127,2019
+1998,50,"(45,50]",HS,-33.367,42.50529943502825,-0.785007997673404,8548.326047728497,2019
+1998,50,"(45,50]",HS,-33.367,42.50529943502825,-0.785007997673404,8776.704215735455,2019
+1998,49,"(45,50]",College,1718.6557666666668,201.4381581920904,8.531927526004111,3999.291412966185,2019
+1998,49,"(45,50]",College,1419.9390666666666,173.71731073446327,8.173849000213478,4384.218016995348,2019
+1998,49,"(45,50]",College,3111.0078,158.93285875706215,19.574352492805474,1350.043337117268,2019
+1998,49,"(45,50]",College,2803.7579,188.50176271186442,14.87390812512296,4039.050516895792,2019
+1998,49,"(45,50]",College,2464.5814333333333,356.6749039548023,6.909881816763996,4200.460340679826,2019
+1998,74,"(70,75]",HS,319.995,36.96112994350283,8.657608695652172,8278.723843934738,2019
+1998,74,"(70,75]",HS,319.995,42.50529943502825,7.5283553875236295,8252.846842506617,2019
+1998,74,"(70,75]",HS,319.995,44.35335593220339,7.214673913043478,8879.491179687484,2019
+1998,74,"(70,75]",HS,319.995,29.56890395480226,10.822010869565219,8466.214392288537,2019
+1998,74,"(70,75]",HS,319.995,44.35335593220339,7.214673913043478,8612.276488625617,2019
+1998,22,"(20,25]",HS,6.746333333333333,22.176677966101696,0.3042084726867335,7430.377627773358,2019
+1998,22,"(20,25]",HS,6.564,22.176677966101696,0.29598662207357856,7466.76325772919,2019
+1998,22,"(20,25]",HS,6.746333333333333,22.176677966101696,0.3042084726867335,7478.417870647505,2019
+1998,22,"(20,25]",HS,6.564,22.176677966101696,0.29598662207357856,7420.472886179663,2019
+1998,22,"(20,25]",HS,6.746333333333333,22.176677966101696,0.3042084726867335,7437.162890396209,2019
+1998,30,"(25,30]",College,9.390166666666666,18.480564971751416,0.5081103678929765,4494.680574260376,2019
+1998,30,"(25,30]",College,9.390166666666666,18.480564971751416,0.5081103678929765,4465.8637087119405,2019
+1998,30,"(25,30]",College,9.5725,18.480564971751416,0.5179765886287624,4442.882345160649,2019
+1998,30,"(25,30]",College,9.390166666666666,18.480564971751416,0.5081103678929765,4512.727235087732,2019
+1998,30,"(25,30]",College,9.390166666666666,18.480564971751416,0.5081103678929765,4454.639032339083,2019
+1998,22,"(20,25]",HS,-2.2791666666666663,18.480564971751416,-0.12332775919732437,3905.447332781202,2019
+1998,22,"(20,25]",HS,-2.2791666666666663,18.480564971751416,-0.12332775919732437,3900.369895676191,2019
+1998,22,"(20,25]",HS,-2.2791666666666663,18.480564971751416,-0.12332775919732437,3926.021702118668,2019
+1998,22,"(20,25]",HS,-2.4615,18.480564971751416,-0.13319397993311033,3921.276323400178,2019
+1998,22,"(20,25]",HS,-2.4615,18.480564971751416,-0.13319397993311033,3892.892325681707,2019
+1998,41,"(40,45]",HS,0.4558333333333333,73.92225988700567,0.006166387959866219,6187.945442511866,2019
+1998,41,"(40,45]",HS,0.6017,73.92225988700567,0.00813963210702341,6178.696193755679,2019
+1998,41,"(40,45]",HS,0.6381666666666667,73.92225988700567,0.008632943143812707,6165.750867238383,2019
+1998,41,"(40,45]",HS,0.4740666666666667,73.92225988700567,0.006413043478260869,6218.910642615567,2019
+1998,41,"(40,45]",HS,0.6017,73.92225988700567,0.00813963210702341,6143.9424847432065,2019
+1998,53,"(50,55]",College,970.1956666666666,168.17314124293785,5.7690286302326435,10553.334075500763,2019
+1998,53,"(50,55]",College,1179.8790000000001,168.17314124293785,7.015858723216584,10174.650373158365,2019
+1998,53,"(50,55]",College,1152.529,168.17314124293785,6.853228711088243,9881.289916979043,2019
+1998,53,"(50,55]",College,860.7956666666666,168.17314124293785,5.118508581719285,10062.590158865458,2019
+1998,53,"(50,55]",College,988.429,168.17314124293785,5.877448638318204,10318.796404198825,2019
+1998,82,"(80,85]",HS,2254.187,155.23674576271185,14.520962732919255,1301.8515239219455,2019
+1998,82,"(80,85]",HS,2256.0103333333336,171.86925423728815,13.126317114395656,1372.853030395418,2019
+1998,82,"(80,85]",HS,2257.8336666666664,68.37809039548021,33.01984091114526,1323.6674595913923,2019
+1998,82,"(80,85]",HS,2254.187,75.77031638418079,29.750265111346767,1362.7004941419787,2019
+1998,82,"(80,85]",HS,2257.8336666666664,192.1978757062147,11.747443401080524,1285.3817489365963,2019
+1998,81,"(80,85]",NoHS,-2.005666666666667,12.012367231638418,-0.16696681245176231,4860.9229412430905,2019
+1998,81,"(80,85]",NoHS,-2.060366666666667,12.012367231638418,-0.17152045279135583,4876.785987716581,2019
+1998,81,"(80,85]",NoHS,-1.3675,12.19717288135593,-0.11211614472484038,4906.467139393875,2019
+1998,81,"(80,85]",NoHS,-1.9327333333333334,12.012367231638418,-0.16089529199897093,4831.166618151101,2019
+1998,81,"(80,85]",NoHS,-1.6592333333333333,12.012367231638418,-0.13812709030100334,4898.241003994792,2019
+1998,50,"(45,50]",College,49237.658,255.03179661016952,193.0647811545732,23.805847373175478,2019
+1998,50,"(45,50]",College,55139.42333333334,238.39928813559317,231.29021803945977,25.074107589463175,2019
+1998,50,"(45,50]",College,53420.384666666665,243.94345762711868,218.98674875848786,30.927558731825656,2019
+1998,50,"(45,50]",College,58123.490666666665,229.1590056497175,253.63825655410508,27.864747106937422,2019
+1998,50,"(45,50]",College,53361.308666666664,219.9187231638418,242.64104437761725,26.424276254213254,2019
+1998,63,"(60,65]",NoHS,0,11.642755932203391,0,4959.191145337803,2019
+1998,63,"(60,65]",NoHS,0,11.642755932203391,0,4904.696922163044,2019
+1998,63,"(60,65]",NoHS,0,11.642755932203391,0,5048.87706340518,2019
+1998,63,"(60,65]",NoHS,0,11.642755932203391,0,4932.864307562604,2019
+1998,63,"(60,65]",NoHS,0,11.642755932203391,0,5000.2970245829365,2019
+1998,45,"(40,45]",NoHS,16.957,42.50529943502825,0.3989384906209103,6167.516547604143,2019
+1998,45,"(40,45]",NoHS,16.938766666666666,42.50529943502825,0.39850952450196303,6154.520599090703,2019
+1998,45,"(40,45]",NoHS,16.938766666666666,42.50529943502825,0.39850952450196303,6114.570603353591,2019
+1998,45,"(40,45]",NoHS,16.957,42.50529943502825,0.3989384906209103,6162.1515834809525,2019
+1998,45,"(40,45]",NoHS,17.1211,42.50529943502825,0.4027991856914352,6139.101248278396,2019
+1998,48,"(45,50]",College,636.3433333333334,118.27561581920904,5.380173494983278,5068.246958327712,2019
+1998,48,"(45,50]",College,664.0944666666667,118.27561581920904,5.614804556856187,4857.6530425440915,2019
+1998,48,"(45,50]",College,711.2458666666668,118.27561581920904,6.01346153846154,4525.538937989451,2019
+1998,48,"(45,50]",College,630.8368666666668,116.4275593220339,5.418277857408293,4952.6068980263535,2019
+1998,48,"(45,50]",College,624.4187333333333,118.27561581920904,5.279353051839465,4517.241702321602,2019
+1998,38,"(35,40]",HS,166.37916666666666,0,Inf,6062.120804490096,2019
+1998,38,"(35,40]",HS,257.3635,0,Inf,6017.4850548370305,2019
+1998,38,"(35,40]",HS,166.37916666666666,0,Inf,6019.160169762525,2019
+1998,38,"(35,40]",HS,166.19683333333336,0,Inf,6120.315759681999,2019
+1998,38,"(35,40]",HS,181.8775,0,Inf,5995.379471413123,2019
+1998,38,"(35,40]",College,1274.51,471.254406779661,2.70450521345662,511.06720910618617,2019
+1998,38,"(35,40]",College,1274.51,471.254406779661,2.70450521345662,542.3405868065059,2019
+1998,38,"(35,40]",College,1274.51,471.254406779661,2.70450521345662,507.1372864551261,2019
+1998,38,"(35,40]",College,1274.51,471.254406779661,2.70450521345662,531.4982468080086,2019
+1998,38,"(35,40]",College,1274.51,471.254406779661,2.70450521345662,505.9800457588235,2019
+1998,50,"(45,50]",HS,1071.573,153.38868926553673,6.985997501712537,1106.054317105649,2019
+1998,50,"(45,50]",HS,900.8178333333334,92.40282485875707,9.7488127090301,524.6185207353593,2019
+1998,50,"(45,50]",HS,202.20766666666665,120.12367231638417,1.6833290455364034,527.6268677311397,2019
+1998,50,"(45,50]",HS,401.6803333333333,60.98586440677967,6.586449782101955,583.5581217556004,2019
+1998,50,"(45,50]",HS,186.89166666666665,238.39928813559317,0.783943895672915,591.5742222566957,2019
+1998,70,"(65,70]",College,27794.419266666668,3215.6183050847453,8.643569176949988,14.436794001472233,2019
+1998,70,"(65,70]",College,29203.965333333334,5211.519322033899,5.60373348513959,15.703995874010564,2019
+1998,70,"(65,70]",College,24107.146966666667,2938.409830508475,8.204147262363012,15.738245474648314,2019
+1998,70,"(65,70]",College,46922.754,2420.954011299435,19.381927034134137,17.01378510190925,2019
+1998,70,"(65,70]",College,35527.83233333334,7188.939774011299,4.942012793286964,15.632884341052364,2019
+1998,78,"(75,80]",HS,505.6103333333333,44.35335593220339,11.399595875139353,7596.430115328403,2019
+1998,78,"(75,80]",HS,560.8573333333334,44.35335593220339,12.64520624303233,7285.420321463821,2019
+1998,78,"(75,80]",HS,553.1993333333334,35.11307344632768,15.754796690723465,6800.509709171303,2019
+1998,78,"(75,80]",HS,484.095,27.720847457627123,17.463210702341136,7404.412252717442,2019
+1998,78,"(75,80]",HS,495.9466666666667,42.50529943502825,11.667878435364258,6781.9298302466095,2019
+1998,30,"(25,30]",HS,173.76366666666667,203.28621468926553,0.8547734873821831,8325.295599544568,2019
+1998,30,"(25,30]",HS,179.963,334.4982259887006,0.5380088323878859,8327.647811461286,2019
+1998,30,"(25,30]",HS,313.7956666666667,216.22261016949156,1.4512620415630448,8471.208151531446,2019
+1998,30,"(25,30]",HS,175.58700000000002,334.4982259887006,0.5249265507492747,8365.116601932834,2019
+1998,30,"(25,30]",HS,250.16133333333335,334.4982259887006,0.7478704336739407,8419.074002347705,2019
+1998,40,"(35,40]",HS,13.492666666666667,96.09893785310734,0.14040391047080011,6810.423925541889,2019
+1998,40,"(35,40]",HS,13.310333333333334,96.09893785310734,0.1385065603293028,6844.532842242965,2019
+1998,40,"(35,40]",HS,13.128,96.09893785310734,0.1366092101878055,6871.200007818389,2019
+1998,40,"(35,40]",HS,13.128,96.09893785310734,0.1366092101878055,6809.151069013756,2019
+1998,40,"(35,40]",HS,13.492666666666667,96.09893785310734,0.14040391047080011,6881.1710498616885,2019
+1998,50,"(45,50]",College,3452.8463333333334,1866.5370621468926,1.8498675452829565,15.033651893824317,2019
+1998,50,"(45,50]",College,4404.626333333333,2642.7207909604517,1.666701358841827,16.558378531738175,2019
+1998,50,"(45,50]",College,5261.046,1940.4593220338984,2.7112374581939798,18.22201148001322,2019
+1998,50,"(45,50]",College,3286.0113333333334,789.1201242937854,4.164145903989097,18.08597877973916,2019
+1998,50,"(45,50]",College,5921.092666666667,1685.4275254237289,3.5131102212051872,17.015940929825515,2019
+1998,37,"(35,40]",College,2242.5176666666666,508.21553672316384,4.412532684706598,2813.640065069093,2019
+1998,37,"(35,40]",College,2242.5176666666666,508.21553672316384,4.412532684706598,3068.983368260225,2019
+1998,37,"(35,40]",College,2242.5176666666666,508.21553672316384,4.412532684706598,2863.6557815487304,2019
+1998,37,"(35,40]",College,2242.5176666666666,508.21553672316384,4.412532684706598,2841.63937348264,2019
+1998,37,"(35,40]",College,2242.3353333333334,508.21553672316384,4.412173913043478,2932.6191826355966,2019
+1998,19,"(15,20]",HS,2.735,35.11307344632768,0.07789121633515227,3523.1406205515123,2019
+1998,19,"(15,20]",HS,0.9116666666666666,35.11307344632768,0.025963738778384086,3473.255691391937,2019
+1998,19,"(15,20]",HS,-0.9116666666666666,35.11307344632768,-0.025963738778384086,3539.6989884740287,2019
+1998,19,"(15,20]",HS,0.9116666666666666,35.11307344632768,0.025963738778384086,3559.9422271648973,2019
+1998,19,"(15,20]",HS,0.9116666666666666,35.11307344632768,0.025963738778384086,3607.017663970815,2019
+1998,79,"(75,80]",HS,119.42833333333333,8112.9680225988695,0.014720671029475624,3.0778663895760694,2019
+1998,79,"(75,80]",HS,-27645.74466666667,11088.338983050848,-2.4932268673355633,2.9783310761673327,2019
+1998,79,"(75,80]",HS,96113.55233333333,14285.476723163842,6.728060546798946,2.8723302198447884,2019
+1998,79,"(75,80]",HS,-13308.51,6061.625310734464,-2.195534913125051,2.9052753115682632,2019
+1998,79,"(75,80]",HS,68991.10433333334,14303.957288135594,4.823218004891412,2.688860467568233,2019
+1998,50,"(45,50]",College,55.93986666666667,75.77031638418079,0.7382820784729587,5689.2308563899915,2019
+1998,50,"(45,50]",College,56.10396666666667,68.37809039548021,0.8204962487571186,5709.19337299927,2019
+1998,50,"(45,50]",College,56.03103333333333,53.593638418079095,1.0454791834851804,5708.423152457061,2019
+1998,50,"(45,50]",College,55.92163333333333,83.16254237288136,0.6724377554812336,5673.482026510863,2019
+1998,50,"(45,50]",College,56.1769,49.89752542372881,1.1258454106280196,5669.632145558161,2019
+1998,58,"(55,60]",College,532.778,70.22614689265536,7.586604471043831,10553.334075500763,2019
+1998,58,"(55,60]",College,530.7723333333333,72.07420338983052,7.364248349198181,10174.650373158365,2019
+1998,58,"(55,60]",College,530.7723333333333,72.07420338983052,7.364248349198181,9881.289916979043,2019
+1998,58,"(55,60]",College,530.9546666666666,70.22614689265536,7.560640732265446,10062.590158865458,2019
+1998,58,"(55,60]",College,530.9546666666666,70.22614689265536,7.560640732265446,10318.796404198825,2019
+1998,48,"(45,50]",HS,541.6029333333333,162.62897175141245,3.3302979629066582,7972.863442080006,2019
+1998,48,"(45,50]",HS,541.8946666666667,147.84451977401133,3.665301003344481,7639.69091887044,2019
+1998,48,"(45,50]",HS,576.7932666666667,64.68197740112994,8.917372193024367,7119.388698549247,2019
+1998,48,"(45,50]",HS,675.6908666666667,38.80918644067796,17.41059085841695,7788.786179543388,2019
+1998,48,"(45,50]",HS,542.8245666666667,162.62897175141245,3.3378097446032227,7105.681009300903,2019
+1998,27,"(25,30]",HS,60.954033333333335,86.85865536723163,0.7017611897815413,5694.960747604875,2019
+1998,27,"(25,30]",HS,57.125033333333334,86.85865536723163,0.6576780758556893,5675.544142839216,2019
+1998,27,"(25,30]",HS,56.3957,88.70671186440678,0.6357545986622073,5678.381401811903,2019
+1998,27,"(25,30]",HS,62.77736666666667,86.85865536723163,0.722753148793852,5718.783758936108,2019
+1998,27,"(25,30]",HS,56.942699999999995,88.70671186440678,0.6419209866220735,5674.791298073005,2019
+1998,20,"(15,20]",HS,7.348033333333334,22.176677966101696,0.33134057971014497,1585.2109134868083,2019
+1998,20,"(15,20]",HS,7.366266666666666,22.176677966101696,0.3321627647714604,1572.663927973018,2019
+1998,20,"(15,20]",HS,18.6527,22.176677966101696,0.8410953177257524,1588.567342471225,2019
+1998,20,"(15,20]",HS,7.348033333333334,22.176677966101696,0.33134057971014497,1563.5981219319692,2019
+1998,20,"(15,20]",HS,18.670933333333334,22.176677966101696,0.841917502787068,1616.6501362796316,2019
+1998,50,"(45,50]",HS,-2.3703333333333334,38.80918644067796,-0.06107660455486543,6623.693806794099,2019
+1998,50,"(45,50]",HS,-2.005666666666667,38.80918644067796,-0.05168020385411691,6609.736619485807,2019
+1998,50,"(45,50]",HS,-4.740666666666667,38.80918644067796,-0.12215320910973086,6566.8317424088,2019
+1998,50,"(45,50]",HS,-6.928666666666667,38.80918644067796,-0.17853161331422204,6617.932025798106,2019
+1998,50,"(45,50]",HS,-6.928666666666667,38.80918644067796,-0.17853161331422204,6593.176784146586,2019
+1998,34,"(30,35]",HS,1.7321666666666669,55.441694915254246,0.03124303232998885,4963.265068715965,2019
+1998,34,"(30,35]",HS,1.5133666666666665,55.441694915254246,0.027296544035674462,4959.197355514536,2019
+1998,34,"(30,35]",HS,1.5680666666666667,55.441694915254246,0.028283166109253063,4965.241891159401,2019
+1998,34,"(30,35]",HS,1.2763333333333333,55.441694915254246,0.023021181716833886,4973.725277521789,2019
+1998,34,"(30,35]",HS,1.6774666666666667,55.441694915254246,0.03025641025641025,4924.793303918951,2019
+1998,51,"(50,55]",NoHS,83.87333333333333,1.663250847457627,50.42735042735043,8085.9449983375935,2019
+1998,51,"(50,55]",NoHS,82.05,1.663250847457627,49.331103678929765,8140.423208005966,2019
+1998,51,"(50,55]",NoHS,82.05,1.663250847457627,49.331103678929765,8072.742237573674,2019
+1998,51,"(50,55]",NoHS,82.05,1.663250847457627,49.331103678929765,8117.953870860858,2019
+1998,51,"(50,55]",NoHS,82.05,1.663250847457627,49.331103678929765,8099.7001651503715,2019
+1998,57,"(55,60]",College,195.5525,103.49116384180793,1.8895574534161488,10781.542008763628,2019
+1998,57,"(55,60]",College,198.2875,105.33922033898305,1.8823710614328462,10681.267435223828,2019
+1998,57,"(55,60]",College,194.64083333333335,105.33922033898305,1.8477527430616676,11246.126145140475,2019
+1998,57,"(55,60]",College,194.64083333333335,105.33922033898305,1.8477527430616676,10559.062387633689,2019
+1998,57,"(55,60]",College,194.64083333333335,103.49116384180793,1.880748327759197,11128.977796984187,2019
+1998,63,"(60,65]",HS,604.7085,182.957593220339,3.305183946488294,6701.20016366631,2019
+1998,63,"(60,65]",HS,370.06373333333335,179.26148022598866,2.06437954694342,8173.285119244759,2019
+1998,63,"(60,65]",HS,601.7547,166.32508474576272,3.6179431438127083,5981.0297399439105,2019
+1998,63,"(60,65]",HS,474.8507,164.47702824858757,2.887033557551389,6543.952530018184,2019
+1998,63,"(60,65]",HS,617.6724,160.78091525423727,3.8417022258101725,5965.554689418335,2019
+1998,67,"(65,70]",College,22249.95433333333,6560.600564971752,3.391450845541476,12.827327900564516,2019
+1998,67,"(65,70]",College,30009.514,2328.551186440678,12.887633381111641,13.939333164601404,2019
+1998,67,"(65,70]",College,8053.025166666667,5414.805536723164,1.4872233383177145,11.592563698823714,2019
+1998,67,"(65,70]",College,11681.549666666666,3936.360338983051,2.967601708354923,11.880775170467038,2019
+1998,67,"(65,70]",College,22940.633,3511.307344632768,6.5333594437599025,13.739997953806727,2019
+1998,60,"(55,60]",NoHS,8.569666666666667,15.523674576271185,0.552038541168976,7771.052462934007,2019
+1998,60,"(55,60]",NoHS,8.569666666666667,15.523674576271185,0.552038541168976,7739.5252090358845,2019
+1998,60,"(55,60]",NoHS,8.569666666666667,15.523674576271185,0.552038541168976,7771.091868574471,2019
+1998,60,"(55,60]",NoHS,8.569666666666667,15.523674576271185,0.552038541168976,7752.688479124557,2019
+1998,60,"(55,60]",NoHS,8.569666666666667,15.523674576271185,0.552038541168976,7770.563467800299,2019
+1998,57,"(55,60]",HS,880.9799666666667,182.957593220339,4.8152140130401,6728.895999105167,2019
+1998,57,"(55,60]",HS,920.8562666666668,92.40282485875707,9.965672240802675,6415.170545337545,2019
+1998,57,"(55,60]",HS,1231.1146666666668,83.16254237288136,14.803716090672614,6005.238540214429,2019
+1998,57,"(55,60]",HS,894.4179333333334,203.28621468926553,4.399796290665856,6570.592567534749,2019
+1998,57,"(55,60]",NoHS,763.612,64.68197740112994,11.805637840420449,5990.183767681782,2019
+1998,75,"(70,75]",HS,204.55976666666666,55.441694915254246,3.68963768115942,9676.475320722991,2019
+1998,75,"(70,75]",HS,197.467,94.25088135593221,2.095120991540429,9870.793669454968,2019
+1998,75,"(70,75]",HS,192.1611,86.85865536723163,2.2123425603074076,10314.802499344254,2019
+1998,75,"(70,75]",HS,221.06093333333334,62.833920903954805,3.5181782411961438,9779.468006472744,2019
+1998,75,"(70,75]",HS,203.39283333333336,33.265016949152546,6.114316239316239,10217.090669914041,2019
+1998,56,"(55,60]",College,42168.777,5377.844406779661,7.841204358169845,17.29611605377403,2019
+1998,56,"(55,60]",College,43896.02066666666,5322.402711864407,8.247406865477517,19.190597023774114,2019
+1998,56,"(55,60]",College,43663.181000000004,5340.883276836158,8.175273402691788,21.85253448009228,2019
+1998,56,"(55,60]",College,42646.12566666667,4897.349717514124,8.708000883447973,19.350258566437198,2019
+1998,56,"(55,60]",College,42274.348,4841.90802259887,8.73092751921162,18.481868771183287,2019
+1998,50,"(45,50]",HS,131.09766666666667,42.50529943502825,3.0842663952304785,4115.011880307974,2019
+1998,50,"(45,50]",HS,147.50766666666667,46.201412429378536,3.192709030100334,4249.827060461872,2019
+1998,50,"(45,50]",HS,141.85533333333333,90.55476836158192,1.5665142311105045,3995.732459597527,2019
+1998,50,"(45,50]",HS,135.94773333333333,66.53003389830509,2.0434039390561125,4034.7732210192676,2019
+1998,50,"(45,50]",HS,166.10566666666665,103.49116384180793,1.6050226946966073,4150.97815119762,2019
+1998,46,"(45,50]",College,0.03646666666666667,57.289751412429375,6.365303700507067e-4,5762.730275293163,2019
+1998,46,"(45,50]",College,0.03646666666666667,62.833920903954805,5.803659256344678e-4,5782.950688515828,2019
+1998,46,"(45,50]",College,0.03646666666666667,57.289751412429375,6.365303700507067e-4,5782.170517461201,2019
+1998,46,"(45,50]",College,0.03646666666666667,46.201412429378536,7.892976588628762e-4,5746.77798560132,2019
+1998,46,"(45,50]",College,0.03646666666666667,64.68197740112994,5.637840420449116e-4,5742.878367870482,2019
+1998,61,"(60,65]",HS,584.3783333333333,55.441694915254246,10.540412486064659,7149.449058032165,2019
+1998,61,"(60,65]",HS,503.96933333333334,51.745581920903966,9.739369326325846,6817.640547018689,2019
+1998,61,"(60,65]",HS,582.9196666666667,81.31448587570623,7.168706293706292,6380.515579583453,2019
+1998,61,"(60,65]",HS,600.606,73.92225988700567,8.12483277591973,6981.703993440819,2019
+1998,61,"(60,65]",HS,519.1030000000001,81.31448587570623,6.383893280632411,6363.751611293608,2019
+1998,71,"(70,75]",College,259.825,4.620141242937854,56.23745819397992,7919.265271374863,2019
+1998,71,"(70,75]",College,264.201,4.620141242937854,57.18461538461538,7923.852067722577,2019
+1998,71,"(70,75]",College,267.11833333333334,4.620141242937854,57.816053511705675,8589.21552724887,2019
+1998,71,"(70,75]",College,278.05833333333334,4.620141242937854,60.1839464882943,8096.770137669986,2019
+1998,71,"(70,75]",College,265.6596666666667,4.620141242937854,57.50033444816052,8295.177493514839,2019
+1998,25,"(20,25]",College,-58.72956666666667,110.88338983050849,-0.5296516164994426,5023.7689486600975,2019
+1998,25,"(20,25]",College,-64.9289,110.88338983050849,-0.5855602006688962,5006.64072944434,2019
+1998,25,"(20,25]",College,-60.18823333333333,110.88338983050849,-0.5428065774804904,5009.143597182681,2019
+1998,25,"(20,25]",College,-63.306133333333335,110.88338983050849,-0.5709253065774804,5044.78424795602,2019
+1998,25,"(20,25]",College,-63.1238,110.88338983050849,-0.5692809364548495,5005.976612810833,2019
+1998,29,"(25,30]",NoHS,32.82,83.16254237288136,0.3946488294314381,6357.300191836739,2019
+1998,29,"(25,30]",NoHS,32.5465,81.31448587570623,0.40025463666768013,6371.281298663684,2019
+1998,29,"(25,30]",NoHS,33.00233333333334,83.16254237288136,0.3968413229282795,6415.248816647666,2019
+1998,29,"(25,30]",NoHS,32.7653,81.31448587570623,0.4029454241410763,6371.764734647615,2019
+1998,29,"(25,30]",NoHS,33.27583333333334,81.31448587570623,0.4092239282456674,6342.182442859123,2019
+1998,31,"(30,35]",HS,371.96,72.07420338983052,5.160792384872652,10553.334075500763,2019
+1998,31,"(30,35]",HS,371.96,90.55476836158192,4.107569449184356,10174.650373158365,2019
+1998,31,"(30,35]",HS,371.96,77.61837288135592,4.792164357381749,9881.289916979043,2019
+1998,31,"(30,35]",HS,371.96,46.201412429378536,8.050836120401337,10062.590158865458,2019
+1998,31,"(30,35]",HS,371.96,57.289751412429375,6.4926097745172076,10318.796404198825,2019
+1998,23,"(20,25]",College,1324.287,42.50529943502825,31.155809219136252,130.60434448289783,2019
+1998,23,"(20,25]",College,1324.287,42.50529943502825,31.155809219136252,134.22984877823245,2019
+1998,23,"(20,25]",College,1326.1103333333333,42.50529943502825,31.19870583103097,130.2374288975545,2019
+1998,23,"(20,25]",College,1306.0536666666667,42.50529943502825,30.726843100189036,134.7660114162198,2019
+1998,23,"(20,25]",College,1311.5236666666667,42.50529943502825,30.855532935873203,126.96655453942262,2019
+1998,45,"(40,45]",College,2421.2043333333336,275.360418079096,8.792855379228302,989.8571907928463,2019
+1998,45,"(40,45]",College,2423.9393333333337,275.360418079096,8.802787816210637,1014.2679772209816,2019
+1998,45,"(40,45]",College,2453.6596666666665,275.360418079096,8.91072029808534,933.1290263371411,2019
+1998,45,"(40,45]",College,2432.6913333333337,275.360418079096,8.83457161455411,1018.6794278261202,2019
+1998,45,"(40,45]",College,2422.8453333333337,275.360418079096,8.798814841417704,979.7517024446639,2019
+1998,83,"(80,85]",College,234.48066666666665,53.593638418079095,4.375158574558874,9143.910402393014,2019
+1998,83,"(80,85]",College,234.48066666666665,53.593638418079095,4.375158574558874,9275.333898648769,2019
+1998,83,"(80,85]",College,234.48066666666665,51.745581920903966,4.531414237935976,9630.941037478113,2019
+1998,83,"(80,85]",College,234.48066666666665,51.745581920903966,4.531414237935976,9258.826080516319,2019
+1998,83,"(80,85]",College,234.48066666666665,53.593638418079095,4.375158574558874,9643.510627052621,2019
+1998,47,"(45,50]",HS,215.15333333333334,166.32508474576272,1.2935711631363804,3634.1114442560574,2019
+1998,47,"(45,50]",HS,216.97666666666666,166.32508474576272,1.304533630620587,3751.771197065324,2019
+1998,47,"(45,50]",HS,215.15333333333334,166.32508474576272,1.2935711631363804,3515.498619099865,2019
+1998,47,"(45,50]",HS,215.15333333333334,166.32508474576272,1.2935711631363804,3455.149380852329,2019
+1998,47,"(45,50]",HS,215.15333333333334,166.32508474576272,1.2935711631363804,3631.9343787319326,2019
+1998,86,"(85,90]",NoHS,122.16333333333333,29.56890395480226,4.131479933110368,8519.540886749452,2019
+1998,86,"(85,90]",NoHS,122.16333333333333,29.56890395480226,4.131479933110368,8513.493421848954,2019
+1998,86,"(85,90]",NoHS,122.16333333333333,31.416960451977403,3.888451701750934,8440.98376809435,2019
+1998,86,"(85,90]",NoHS,121.98100000000001,29.56890395480226,4.125313545150502,8512.166207231938,2019
+1998,86,"(85,90]",NoHS,122.16333333333333,29.56890395480226,4.131479933110368,8440.459667307467,2019
+1998,70,"(65,70]",College,25758.138833333334,1293.639548022599,19.911372431915908,186.39066253227105,2019
+1998,70,"(65,70]",College,25756.3155,1293.639548022599,19.909962971810796,186.18460392767727,2019
+1998,70,"(65,70]",College,25758.138833333334,1293.639548022599,19.911372431915908,179.83633704493724,2019
+1998,70,"(65,70]",College,25756.3155,1293.639548022599,19.909962971810796,176.10747682354042,2019
+1998,70,"(65,70]",College,25756.3155,1293.639548022599,19.909962971810796,171.1655300389893,2019
+1998,57,"(55,60]",College,5844.0386,360.3710169491526,16.21672755338307,22.68343373447691,2019
+1998,57,"(55,60]",College,5842.5070000000005,360.3710169491526,16.212477489066117,24.6037592035214,2019
+1998,57,"(55,60]",College,5844.385033333333,360.3710169491526,16.217688877454762,24.01484372786235,2019
+1998,57,"(55,60]",College,5846.0625,360.3710169491526,16.2223437098019,24.562220505972224,2019
+1998,57,"(55,60]",College,5843.455133333334,360.3710169491526,16.215108481262327,26.17147990965622,2019
+1998,38,"(35,40]",NoHS,330.2056666666667,90.55476836158192,3.6464746433690536,7801.35416907827,2019
+1998,38,"(35,40]",NoHS,339.32233333333335,70.22614689265536,4.831851786657279,7989.1459841860415,2019
+1998,38,"(35,40]",NoHS,345.8863333333333,22.176677966101696,15.59685061315496,8429.35290938988,2019
+1998,38,"(35,40]",NoHS,349.7153333333333,79.46642937853107,4.400793342148246,7798.150423387386,2019
+1998,38,"(35,40]",NoHS,345.33933333333334,31.416960451977403,10.99213063151682,8333.27417930519,2019
+1998,79,"(75,80]",HS,108.98063333333333,18.480564971751416,5.897040133779263,9548.470949977389,2019
+1998,79,"(75,80]",HS,108.43363333333333,18.480564971751416,5.867441471571905,9541.693114916674,2019
+1998,79,"(75,80]",HS,106.79263333333333,18.480564971751416,5.778645484949831,9460.426256564528,2019
+1998,79,"(75,80]",HS,109.8923,18.480564971751416,5.946371237458193,9540.205608678556,2019
+1998,79,"(75,80]",HS,110.62163333333334,18.480564971751416,5.985836120401337,9459.838858580886,2019
+1998,30,"(25,30]",HS,3.5555,35.11307344632768,0.10125858123569795,4397.671463886165,2019
+1998,30,"(25,30]",HS,3.5555,35.11307344632768,0.10125858123569795,4365.885331395827,2019
+1998,30,"(25,30]",HS,3.5555,35.11307344632768,0.10125858123569795,4389.660372083057,2019
+1998,30,"(25,30]",HS,5.378833333333334,35.11307344632768,0.15318605879246613,4398.630737361282,2019
+1998,30,"(25,30]",HS,5.561166666666667,35.11307344632768,0.15837880654814293,4379.921176556264,2019
+1998,70,"(65,70]",College,9381.597,240.24734463276835,39.04974273218421,1098.0760997838772,2019
+1998,70,"(65,70]",College,1243.1486666666667,240.24734463276835,5.174453305891434,6722.212155630795,2019
+1998,70,"(65,70]",College,7091.125666666667,240.24734463276835,29.51593774118858,1106.8121493147737,2019
+1998,70,"(65,70]",College,9128.153666666667,240.24734463276835,37.99481605351171,1417.8707359116963,2019
+1998,70,"(65,70]",College,9274.932,240.24734463276835,38.605762799073844,1108.1483664318398,2019
+1998,75,"(70,75]",NoHS,10.721200000000001,25.872790960451983,0.41438127090301,6449.371866396874,2019
+1998,75,"(70,75]",NoHS,10.575333333333335,25.872790960451983,0.4087434304825609,6592.937295443243,2019
+1998,75,"(70,75]",NoHS,11.341133333333334,25.872790960451983,0.4383420926899187,6702.683384745042,2019
+1998,75,"(70,75]",NoHS,10.921766666666667,25.872790960451983,0.4221333014811275,6646.262915172067,2019
+1998,75,"(70,75]",NoHS,11.031166666666666,25.872790960451983,0.4263616817964643,6655.0860768503935,2019
+1998,53,"(50,55]",HS,6.381666666666667,31.416960451977403,0.20312807397206373,5616.731487264302,2019
+1998,53,"(50,55]",HS,6.381666666666667,31.416960451977403,0.20312807397206373,5640.722300186301,2019
+1998,53,"(50,55]",HS,6.381666666666667,31.416960451977403,0.20312807397206373,5601.586382064849,2019
+1998,53,"(50,55]",HS,6.381666666666667,31.416960451977403,0.20312807397206373,5633.1937483359325,2019
+1998,53,"(50,55]",HS,6.381666666666667,31.416960451977403,0.20312807397206373,5634.164342693041,2019
+1998,53,"(50,55]",College,2973.6743333333334,168.17314124293785,17.68221911867397,1042.8873658181496,2019
+1998,53,"(50,55]",College,2990.0843333333337,168.17314124293785,17.779797125950974,1143.3517729179207,2019
+1998,53,"(50,55]",College,2961.0933333333337,168.17314124293785,17.607409313094934,1044.017675570392,2019
+1998,53,"(50,55]",College,2971.851,170.021197740113,17.47929693180166,1338.051938116263,2019
+1998,53,"(50,55]",College,2990.1390333333334,168.17314124293785,17.78012238597523,1046.254274117985,2019
+1998,53,"(50,55]",HS,146.30426666666668,227.31094915254238,0.6436305299507845,598.403819463633,2019
+1998,53,"(50,55]",HS,131.9364,53.593638418079095,2.4617921808326604,596.2897685370457,2019
+1998,53,"(50,55]",HS,166.3427,68.37809039548021,2.43269004790744,559.9053106886802,2019
+1998,53,"(50,55]",HS,133.61386666666667,99.79505084745762,1.3388826954044346,625.0911581456819,2019
+1998,53,"(50,55]",HS,152.02953333333332,77.61837288135592,1.9586797260710305,627.9900791318831,2019
+1998,67,"(65,70]",HS,1155.4463333333333,449.07772881355936,2.572931720274715,141.65151073088333,2019
+1998,67,"(65,70]",HS,1949.3621333333333,291.9929265536723,6.676059438635113,287.1354193580437,2019
+1998,67,"(65,70]",HS,1761.3217666666667,752.1589943502825,2.341688100383753,274.7719384009464,2019
+1998,67,"(65,70]",HS,1919.8241333333333,208.83038418079096,9.193222245242254,286.89702403568157,2019
+1998,67,"(65,70]",HS,1149.247,752.1589943502825,1.5279309409744193,139.25977396826966,2019
+1998,82,"(80,85]",HS,1.3675,29.56890395480226,0.046247909698996656,6911.106421940212,2019
+1998,82,"(80,85]",HS,0.5105333333333334,7.577031638418079,0.06737906843951383,6479.145836595784,2019
+1998,82,"(80,85]",HS,57.161500000000004,29.56890395480226,1.9331626254180603,6586.99775232292,2019
+1998,82,"(80,85]",HS,0.29173333333333334,13.490812429378531,0.02162459339350346,6897.944735809602,2019
+1998,82,"(80,85]",HS,4.740666666666667,20.328621468926556,0.23320158102766797,6540.221954911356,2019
+1998,71,"(70,75]",HS,507.79833333333335,35.11307344632768,14.461802499559937,5288.505122162411,2019
+1998,71,"(70,75]",HS,524.3906666666667,35.11307344632768,14.934342545326528,5094.39451906885,2019
+1998,71,"(70,75]",HS,523.479,33.265016949152546,15.736622073578594,4754.2232978664,2019
+1998,71,"(70,75]",HS,501.052,33.265016949152546,15.062430323299887,5200.568560106122,2019
+1998,71,"(70,75]",HS,512.1743333333334,33.265016949152546,15.39678558156819,4741.461311812293,2019
+1998,37,"(35,40]",College,254.28206666666668,62.833920903954805,4.046891599449144,9363.995980976597,2019
+1998,37,"(35,40]",College,253.3704,62.833920903954805,4.032382451308282,9607.333696446034,2019
+1998,37,"(35,40]",College,254.28206666666668,62.833920903954805,4.046891599449144,9918.661808887471,2019
+1998,37,"(35,40]",College,254.28206666666668,62.833920903954805,4.046891599449144,9500.267593389985,2019
+1998,37,"(35,40]",College,254.28206666666668,62.833920903954805,4.046891599449144,9841.812265495502,2019
+1998,83,"(80,85]",HS,1847.5289666666665,88.70671186440678,20.827386426978816,2741.9482756682696,2019
+1998,83,"(80,85]",HS,1843.8823,88.70671186440678,20.786277173913042,2803.692016828928,2019
+1998,83,"(80,85]",HS,1843.8823,90.55476836158192,20.36206743566992,2740.8610819644878,2019
+1998,83,"(80,85]",HS,1845.7056333333333,90.55476836158192,20.382202580028665,3074.4469970066484,2019
+1998,83,"(80,85]",HS,1847.5289666666665,90.55476836158192,20.40233772438741,2817.5198157447708,2019
+1998,25,"(20,25]",HS,217.83363333333332,120.12367231638417,1.8134113712374582,5381.85288726338,2019
+1998,25,"(20,25]",HS,217.21370000000002,120.12367231638417,1.8082505788525858,5361.98939990225,2019
+1998,25,"(20,25]",HS,231.67273333333335,120.12367231638417,1.9286184718291746,5411.833476846729,2019
+1998,25,"(20,25]",HS,225.87453333333332,120.12367231638417,1.8803498842294828,5418.763993756345,2019
+1998,25,"(20,25]",HS,221.24326666666667,120.12367231638417,1.841795729354258,5347.97364392961,2019
+1998,44,"(40,45]",HS,1285.8146666666669,46.201412429378536,27.830635451505017,5164.991943720177,2019
+1998,44,"(40,45]",HS,1283.9913333333334,46.201412429378536,27.79117056856187,4941.907013304315,2019
+1998,44,"(40,45]",HS,1284.1736666666668,46.201412429378536,27.79511705685619,4614.7286111249905,2019
+1998,44,"(40,45]",HS,1285.8146666666669,46.201412429378536,27.830635451505017,5044.62676181761,2019
+1998,44,"(40,45]",HS,1285.997,46.201412429378536,27.834581939799328,4600.215160046746,2019
+1998,38,"(35,40]",HS,0.09116666666666667,35.11307344632768,0.002596373877838409,6524.865464677525,2019
+1998,38,"(35,40]",HS,0.09116666666666667,46.201412429378536,0.0019732441471571904,6495.488050694749,2019
+1998,38,"(35,40]",HS,0.09116666666666667,94.25088135593221,9.67276542724113e-4,6445.301136970284,2019
+1998,38,"(35,40]",HS,0.10940000000000001,77.61837288135592,0.0014094601051122793,6556.419195545446,2019
+1998,38,"(35,40]",HS,0.09116666666666667,105.33922033898305,8.654579592794696e-4,6443.573000264083,2019
+1998,30,"(25,30]",HS,-21.88,38.80918644067796,-0.5637840420449116,9624.785301409484,2019
+1998,30,"(25,30]",HS,-23.156333333333333,38.80918644067796,-0.5966714444975315,9690.206632845053,2019
+1998,30,"(25,30]",HS,-22.974,38.80918644067796,-0.5919732441471572,9916.43771867034,2019
+1998,30,"(25,30]",HS,-24.615000000000002,38.80918644067796,-0.6342570473005257,9620.870519608037,2019
+1998,30,"(25,30]",HS,-22.974,38.80918644067796,-0.5919732441471572,9904.74403751586,2019
+1998,36,"(35,40]",HS,-7.256866666666667,162.62897175141245,-0.04462222560048647,6244.875000340688,2019
+1998,36,"(35,40]",HS,-7.4392,162.62897175141245,-0.04574338704773487,6330.291854776985,2019
+1998,36,"(35,40]",HS,-5.433533333333334,162.62897175141245,-0.033410611128002435,6589.995513312462,2019
+1998,36,"(35,40]",HS,-5.615866666666667,162.62897175141245,-0.034531772575250835,6276.150183459473,2019
+1998,36,"(35,40]",HS,-7.256866666666667,162.62897175141245,-0.04462222560048647,6510.2199260356,2019
+1998,43,"(40,45]",College,28145.520333333334,2661.2013559322036,10.57624605165366,16.47231744255796,2019
+1998,43,"(40,45]",College,31956.761066666666,3788.5158192090394,8.435166326780324,17.72255562400867,2019
+1998,43,"(40,45]",College,28078.622233333335,853.8021016949153,32.88656958983046,18.425095931565252,2019
+1998,43,"(40,45]",College,16362.411,1424.851559322034,11.483589917103703,15.608242534038396,2019
+1998,43,"(40,45]",College,35173.194,3788.5158192090394,9.284161840280612,17.840594983961697,2019
+1998,82,"(80,85]",College,268.2488,66.53003389830509,4.0319955406911925,7836.25168404789,2019
+1998,82,"(80,85]",College,357.04513333333335,68.37809039548021,5.221630660761097,7993.61554196331,2019
+1998,82,"(80,85]",College,370.1731333333334,66.53003389830509,5.564000371609068,8353.184995264211,2019
+1998,82,"(80,85]",College,449.1234666666667,46.201412429378536,9.720989966555184,7919.657736396587,2019
+1998,82,"(80,85]",College,329.33046666666667,46.201412429378536,7.128147157190635,8274.055512415838,2019
+1998,51,"(50,55]",NoHS,59.27656666666667,77.61837288135592,0.7636924669533366,10966.475585934553,2019
+1998,51,"(50,55]",NoHS,82.9799,77.61837288135592,1.0690754897276638,11332.37952417174,2019
+1998,51,"(50,55]",NoHS,60.02413333333333,77.61837288135592,0.7733237776716038,11695.59672316449,2019
+1998,51,"(50,55]",NoHS,77.52813333333333,77.61837288135592,0.9988373944895684,10860.171524909425,2019
+1998,51,"(50,55]",NoHS,79.33323333333334,77.61837288135592,1.0220934862239213,11740.189305270427,2019
+1998,67,"(65,70]",College,1150.1586666666667,73.92225988700567,15.559030100334445,10553.334075500763,2019
+1998,67,"(65,70]",College,1135.025,73.92225988700567,15.354306020066888,10174.650373158365,2019
+1998,67,"(65,70]",College,1118.7973333333332,73.92225988700567,15.134782608695646,9881.289916979043,2019
+1998,67,"(65,70]",College,1007.7563333333334,73.92225988700567,13.632650501672238,10062.590158865458,2019
+1998,67,"(65,70]",College,1020.3373333333334,73.92225988700567,13.802842809364547,10318.796404198825,2019
+1998,50,"(45,50]",College,70.016,92.40282485875707,0.7577257525083612,6118.058545037759,2019
+1998,50,"(45,50]",College,69.83366666666667,92.40282485875707,0.755752508361204,6205.865672097558,2019
+1998,50,"(45,50]",College,70.016,92.40282485875707,0.7577257525083612,6140.829984111903,2019
+1998,50,"(45,50]",College,70.016,92.40282485875707,0.7577257525083612,6075.399998749721,2019
+1998,50,"(45,50]",College,70.016,92.40282485875707,0.7577257525083612,6203.643558345728,2019
+1998,43,"(40,45]",HS,17.139333333333333,24.024734463276836,0.7134036532029843,5233.7756674542125,2019
+1998,43,"(40,45]",HS,17.139333333333333,25.872790960451983,0.662446249402771,5227.574504555234,2019
+1998,43,"(40,45]",HS,16.957,27.720847457627123,0.6117056856187291,5222.4354207349,2019
+1998,43,"(40,45]",HS,17.139333333333333,33.265016949152546,0.5152359717577109,5230.845600916475,2019
+1998,43,"(40,45]",HS,17.139333333333333,38.80918644067796,0.4416308329351808,5232.77818088432,2019
+1998,29,"(25,30]",HS,53.35073333333333,83.16254237288136,0.641523597175771,7888.75667232584,2019
+1998,29,"(25,30]",HS,49.230000000000004,83.16254237288136,0.5919732441471572,7935.394786450433,2019
+1998,29,"(25,30]",HS,46.67733333333334,83.16254237288136,0.5612783351913787,8123.837216349811,2019
+1998,29,"(25,30]",HS,46.422066666666666,83.16254237288136,0.5582088442958008,7911.429629175359,2019
+1998,29,"(25,30]",HS,46.422066666666666,83.16254237288136,0.5582088442958008,7986.933666412032,2019
+1998,32,"(30,35]",College,2383.6436666666664,2568.7985310734466,0.9279216092009334,988.5859082189633,2019
+1998,32,"(30,35]",College,4301.243333333333,3104.7349152542374,1.3853818283166108,1021.1001874181532,2019
+1998,32,"(30,35]",College,8566.8405,11827.561581920905,0.7243116377508361,942.8621107542589,2019
+1998,32,"(30,35]",College,6684.722900000001,6653.003389830509,1.0047676978818283,1029.9302171209063,2019
+1998,32,"(30,35]",College,4537.200900000001,4767.9857627118645,0.9515969899665553,969.8612621006496,2019
+1998,42,"(40,45]",HS,407.1503333333333,129.36395480225988,3.147324414715719,5613.293713119658,2019
+1998,42,"(40,45]",HS,407.3326666666667,129.36395480225988,3.148733874820832,5370.317362986463,2019
+1998,42,"(40,45]",HS,407.3326666666667,129.36395480225988,3.148733874820832,5014.988619618716,2019
+1998,42,"(40,45]",HS,407.3326666666667,129.36395480225988,3.148733874820832,5480.975115262682,2019
+1998,42,"(40,45]",HS,407.1503333333333,129.36395480225988,3.147324414715719,4998.555142770293,2019
+1998,29,"(25,30]",HS,-1.2763333333333333,10.349116384180792,-0.1233277591973244,5422.000218087279,2019
+1998,29,"(25,30]",HS,-1.2763333333333333,6.28339209039548,-0.20312807397206376,5401.722608592784,2019
+1998,29,"(25,30]",HS,-1.2763333333333333,11.088338983050848,-0.11510590858416944,5389.918909037918,2019
+1998,29,"(25,30]",HS,-1.2763333333333333,7.207420338983052,-0.1770860132064145,5417.010534841803,2019
+1998,29,"(25,30]",HS,-1.2763333333333333,8.13144858757062,-0.15696260261477654,5404.17411826047,2019
+1998,46,"(45,50]",HS,3802.197,397.33214689265543,9.569316325736951,274.7657917838207,2019
+1998,46,"(45,50]",HS,3593.79,397.33214689265543,9.044800497783307,273.994625260354,2019
+1998,46,"(45,50]",HS,3421.1203333333337,397.33214689265543,8.610227891421015,259.07669810032604,2019
+1998,46,"(45,50]",HS,3371.8903333333337,397.33214689265543,8.486326514739051,287.47916953073667,2019
+1998,46,"(45,50]",HS,3477.6436666666664,397.33214689265543,8.752485027611415,271.5014531518377,2019
+1998,28,"(25,30]",HS,25.891333333333332,57.289751412429375,0.45193656273600175,10568.719355242529,2019
+1998,28,"(25,30]",HS,51.60033333333334,57.289751412429375,0.90069047362175,10551.729929946805,2019
+1998,28,"(25,30]",HS,155.71266666666665,57.289751412429375,2.7179846801165173,10892.177765568846,2019
+1998,28,"(25,30]",HS,29.90266666666667,55.441694915254246,0.5393534002229654,10664.660211125085,2019
+1998,28,"(25,30]",HS,106.11800000000001,57.289751412429375,1.8523033768475567,10954.727231533288,2019
+1998,24,"(20,25]",College,93.70110000000001,29.56890395480226,3.168906772575251,4907.021605500969,2019
+1998,24,"(20,25]",College,204.3045,46.201412429378536,4.422040133779263,4859.517219293821,2019
+1998,24,"(20,25]",College,122.65928,57.289751412429375,2.141033552702557,4881.189279457751,2019
+1998,24,"(20,25]",College,509.18041999999997,53.593638418079095,9.500762311152116,4762.897067913891,2019
+1998,24,"(20,25]",College,40.988533333333336,94.25088135593221,0.43488753360876126,4836.990905958309,2019
+1998,80,"(75,80]",HS,397.4866666666667,42.50529943502825,9.351461393049295,9036.755215159588,2019
+1998,80,"(75,80]",HS,201.6242,85.0105988700565,2.3717536716591536,9166.638592502497,2019
+1998,80,"(75,80]",HS,483.3656666666667,35.11307344632768,13.765974300299245,6699.589079783572,2019
+1998,80,"(75,80]",HS,237.21566666666666,42.50529943502825,5.580849207503272,9150.324225340682,2019
+1998,80,"(75,80]",HS,321.636,42.50529943502825,7.56696233822888,9530.500750385534,2019
+1998,39,"(35,40]",HS,876.3122333333333,70.22614689265536,12.478432494279177,6685.878787520314,2019
+1998,39,"(35,40]",HS,1087.5818666666667,59.13780790960452,18.390635451505016,6397.104125268169,2019
+1998,39,"(35,40]",HS,1187.9563666666668,57.289751412429375,20.73593159995685,3210.9134220089045,2019
+1998,39,"(35,40]",HS,1031.7514,83.16254237288136,12.40644370122631,6530.0707968773,2019
+1998,39,"(35,40]",HS,862.4549000000001,48.04946892655367,17.949311808592746,5954.797469525771,2019
+1998,69,"(65,70]",NoHS,1.0028333333333335,15.523674576271185,0.06460025481764614,6777.431714987926,2019
+1998,69,"(65,70]",NoHS,0.6564,15.523674576271185,0.042283803153368375,6808.461986220251,2019
+1998,69,"(65,70]",NoHS,0.20056666666666667,15.523674576271185,0.012920050963529226,6760.958898388655,2019
+1998,69,"(65,70]",NoHS,0.07293333333333334,15.523674576271185,0.004698200350374264,6743.919476272138,2019
+1998,69,"(65,70]",NoHS,0.7840333333333334,15.523674576271185,0.050505653766523335,6761.130075916478,2019
+1998,49,"(45,50]",HS,322.183,184.80564971751414,1.7433612040133777,8774.954583684892,2019
+1998,49,"(45,50]",HS,340.41633333333334,184.80564971751414,1.8420234113712373,8940.317130894811,2019
+1998,49,"(45,50]",HS,345.8863333333333,184.80564971751414,1.8716220735785951,9193.505726466916,2019
+1998,49,"(45,50]",HS,325.8296666666667,184.80564971751414,1.7630936454849497,8817.079124906388,2019
+1998,49,"(45,50]",HS,318.53633333333335,184.80564971751414,1.7236287625418059,9174.896351893445,2019
+1998,57,"(55,60]",HS,243.54263333333333,70.22614689265536,3.467976588628763,8092.682862765332,2019
+1998,57,"(55,60]",HS,399.2006,231.00706214689265,1.7280882943143814,6380.168734523645,2019
+1998,57,"(55,60]",HS,200.749,48.04946892655367,4.177965011577052,8441.402190270934,2019
+1998,57,"(55,60]",HS,201.296,60.98586440677967,3.3006993006993,7925.688474043442,2019
+1998,57,"(55,60]",HS,145.62963333333335,62.833920903954805,2.3176913240212476,8353.47001612042,2019
+1998,91,"(90,95]",College,83.87333333333333,29.56890395480226,2.8365384615384617,9730.580339656213,2019
+1998,91,"(90,95]",College,109.4,29.56890395480226,3.6998327759197327,9925.985199497733,2019
+1998,91,"(90,95]",College,102.10666666666667,29.56890395480226,3.4531772575250836,10372.476659203294,2019
+1998,91,"(90,95]",College,185.98,29.56890395480226,6.289715719063545,9834.148898441108,2019
+1998,91,"(90,95]",College,111.22333333333333,29.56890395480226,3.7614966555183944,10274.21848410422,2019
+1998,24,"(20,25]",College,-0.09116666666666667,20.328621468926556,-0.004484645788993615,5531.334798764253,2019
+1998,24,"(20,25]",College,-0.2735,22.176677966101696,-0.012332775919732442,5545.39113389587,2019
+1998,24,"(20,25]",College,-0.4558333333333333,59.13780790960452,-0.007707984949832776,5554.404989496669,2019
+1998,24,"(20,25]",College,-0.2735,55.441694915254246,-0.004933110367892977,5575.769662501026,2019
+1998,24,"(20,25]",College,-0.09116666666666667,27.720847457627123,-0.003288740245261984,5516.291376371387,2019
+1998,49,"(45,50]",College,554.7856333333333,157.08480225988703,3.5317588038559897,6044.123087638931,2019
+1998,49,"(45,50]",College,485.88186666666667,157.08480225988703,3.0931182372614594,5791.684430266896,2019
+1998,49,"(45,50]",College,515.4198666666666,157.08480225988703,3.281156797167027,5396.958609701581,2019
+1998,49,"(45,50]",College,406.7309666666667,157.08480225988703,2.5892445406256144,5905.834277790232,2019
+1998,49,"(45,50]",College,532.9238666666668,157.08480225988703,3.3925870548888453,5387.714158933874,2019
+1998,35,"(30,35]",HS,20.904516666666666,27.720847457627123,0.7541081382385729,7994.385887688487,2019
+1998,35,"(30,35]",HS,34.807433333333336,27.720847457627123,1.2556410256410255,8198.219573157288,2019
+1998,35,"(30,35]",HS,24.469133333333335,27.720847457627123,0.8826978818283165,8447.601538654777,2019
+1998,35,"(30,35]",HS,23.922133333333335,27.720847457627123,0.8629654403567446,8043.208996252781,2019
+1998,35,"(30,35]",HS,22.262900000000002,27.720847457627123,0.8031103678929765,8370.591838376067,2019
+1998,46,"(45,50]",College,1413.448,395.4840903954802,3.5739693057856408,2915.207672214943,2019
+1998,46,"(45,50]",College,1435.328,395.4840903954802,3.629293908042384,3184.7457900987024,2019
+1998,46,"(45,50]",College,1289.4613333333332,395.4840903954802,3.2604632263307596,2965.5002618361027,2019
+1998,46,"(45,50]",College,1391.568,395.4840903954802,3.518644703528897,2945.678284743417,2019
+1998,46,"(45,50]",College,1384.2746666666667,395.4840903954802,3.5002031694433158,3041.0341053657103,2019
+1998,39,"(35,40]",College,272.406,57.289751412429375,4.754881864278779,6913.24921187953,2019
+1998,39,"(35,40]",College,510.3874666666667,85.0105988700565,6.003809800785226,7052.601530104939,2019
+1998,39,"(35,40]",College,443.0153,55.441694915254246,7.990652173913043,7338.635481413007,2019
+1998,39,"(35,40]",College,349.49653333333333,62.833920903954805,5.56222703128074,6974.302213410953,2019
+1998,39,"(35,40]",College,624.2911,85.0105988700565,7.343685473316854,7262.8236418705565,2019
+1998,51,"(50,55]",College,23021.40666666667,988.7102259887007,23.28428093645485,25.76807049501636,2019
+1998,51,"(50,55]",College,23023.211766666667,988.7102259887007,23.28610664832932,28.00259224458871,2019
+1998,51,"(50,55]",College,23023.193533333335,988.7102259887007,23.286088206795235,28.663406554624366,2019
+1998,51,"(50,55]",College,23021.40666666667,988.7102259887007,23.28428093645485,26.089005045136595,2019
+1998,51,"(50,55]",College,23021.443133333334,988.7102259887007,23.284317819523018,27.947706799657595,2019
+1998,37,"(35,40]",College,132.00933333333336,60.98586440677967,2.1645890341542517,6305.339891367315,2019
+1998,37,"(35,40]",College,145.31966666666665,53.593638418079095,2.711509629800484,6299.67632471392,2019
+1998,37,"(35,40]",College,121.25166666666668,48.04946892655367,2.5234756881914073,6339.262901378204,2019
+1998,37,"(35,40]",College,128.54500000000002,49.89752542372881,2.576179858788555,6332.988908824065,2019
+1998,37,"(35,40]",College,121.98100000000001,66.53003389830509,1.8334726867335562,6345.825625987574,2019
+1998,62,"(60,65]",College,10297.6032,497.127197740113,20.71422212828387,140.24161964874554,2019
+1998,62,"(60,65]",College,5360.508833333333,219.9187231638418,24.37495432955791,139.96378608334717,2019
+1998,62,"(60,65]",College,11755.449366666668,391.78797740113,30.004619959613805,129.8102957833956,2019
+1998,62,"(60,65]",College,8218.675,373.30741242937853,22.015836617106526,144.16946884275183,2019
+1998,62,"(60,65]",College,6251.845333333333,367.7632429378531,16.999647064755212,138.42869705470315,2019
+1998,54,"(50,55]",College,188.35033333333334,131.21201129943503,1.4354656366291394,7421.215719104618,2019
+1998,54,"(50,55]",College,186.52700000000002,131.21201129943503,1.4215695510857789,7566.163653954172,2019
+1998,54,"(50,55]",College,181.05700000000002,131.21201129943503,1.3798812944556975,7838.343709649181,2019
+1998,54,"(50,55]",College,181.23933333333335,131.21201129943503,1.3812709030100334,7442.996569291169,2019
+1998,54,"(50,55]",College,180.87466666666666,131.21201129943503,1.3784916859013612,7816.136742320948,2019
+1998,61,"(60,65]",HS,27.35,96.09893785310734,0.28460252122459484,7789.207265657261,2019
+1998,61,"(60,65]",HS,27.35,96.09893785310734,0.28460252122459484,7716.763135110622,2019
+1998,61,"(60,65]",HS,25.162,97.9469943502825,0.2568940493468795,8124.849618822895,2019
+1998,61,"(60,65]",HS,25.526666666666667,97.9469943502825,0.260617151511327,7628.4751663010275,2019
+1998,61,"(60,65]",HS,27.35,96.09893785310734,0.28460252122459484,8040.214901091704,2019
+1998,27,"(25,30]",HS,25.289633333333335,24.024734463276836,1.0526498585027013,9200.603576716196,2019
+1998,27,"(25,30]",HS,35.008,97.9469943502825,0.3574178077869628,9257.611212457741,2019
+1998,27,"(25,30]",HS,28.352833333333333,105.33922033898305,0.269157425335915,9394.857403401802,2019
+1998,27,"(25,30]",HS,27.6782,27.720847457627123,0.9984615384615383,9202.530248216433,2019
+1998,27,"(25,30]",HS,24.724400000000003,83.16254237288136,0.2973021181716834,9340.917981172934,2019
+1998,29,"(25,30]",HS,463.49133333333333,35.11307344632768,13.19996479493047,6652.21989256659,2019
+1998,29,"(25,30]",HS,359.0143333333333,35.11307344632768,10.224520330927653,3005.5850630406776,2019
+1998,29,"(25,30]",HS,342.2396666666667,35.11307344632768,9.746787537405389,2764.734424909513,2019
+1998,29,"(25,30]",HS,413.3496666666667,35.11307344632768,11.771959162119346,2816.2356289378686,2019
+1998,29,"(25,30]",HS,310.51366666666667,40.65724293785311,7.637351778656125,2876.6772804406746,2019
+1998,45,"(40,45]",College,5240.715833333333,277.2084745762712,18.90532329988851,1949.8539280780321,2019
+1998,45,"(40,45]",College,5204.066833333333,277.2084745762712,18.773115942028983,1904.2136648156254,2019
+1998,45,"(40,45]",College,5233.4225,277.2084745762712,18.87901337792642,1743.7153915150418,2019
+1998,45,"(40,45]",College,5195.314833333333,277.2084745762712,18.741544035674465,2116.627633733676,2019
+1998,45,"(40,45]",College,5213.365833333333,277.2084745762712,18.806661092530657,2023.7186704972507,2019
+1998,46,"(45,50]",College,297.021,59.13780790960452,5.022522993311037,7110.0179504017015,2019
+1998,46,"(45,50]",College,176.86333333333334,59.13780790960452,2.9906981605351173,7202.847525932501,2019
+1998,46,"(45,50]",College,187.621,59.13780790960452,3.172606605351171,7465.316249451271,2019
+1998,46,"(45,50]",College,167.74666666666667,59.13780790960452,2.8365384615384617,7103.861539760325,2019
+1998,46,"(45,50]",College,255.13903333333334,59.13780790960452,4.314313336120402,7430.814407513537,2019
+1998,61,"(60,65]",College,15006.224783333333,251.33568361581922,59.70590632992327,356.44226048754206,2019
+1998,61,"(60,65]",College,14248.082783333333,293.84098305084746,48.48909309858859,353.1101158278783,2019
+1998,61,"(60,65]",College,13360.11945,214.37455367231638,62.321386662438016,334.7816676765537,2019
+1998,61,"(60,65]",College,13398.555316666667,347.43462146892654,38.564249181669396,370.1779121172964,2019
+1998,61,"(60,65]",College,11796.611116666667,210.6784406779661,55.993442322361084,348.4556492348632,2019
+1998,60,"(55,60]",College,41210.797666666665,890.7632316384181,46.26459220916193,36.88836299089857,2019
+1998,60,"(55,60]",College,34394.99533333334,783.57595480226,43.89490913106582,40.05661956605624,2019
+1998,60,"(55,60]",College,35260.714,674.5406214689266,52.27367022495075,40.88446930796607,2019
+1998,60,"(55,60]",College,38503.69466666666,724.4381468926554,53.1497338065661,37.35501916474916,2019
+1998,60,"(55,60]",College,35777.81133333334,661.6042259887005,54.07736215691039,39.56609925282097,2019
+1998,61,"(60,65]",College,132483.2906,8316.254237288134,15.930644593088074,29.171152638828563,2019
+1998,61,"(60,65]",College,166431.60573333333,7854.240112994352,21.19003281526657,30.043340904004076,2019
+1998,61,"(60,65]",College,135874.61766666666,12936.395480225989,10.50328260869565,32.28937243415807,2019
+1998,61,"(60,65]",College,144478.7271,3991.802033898304,36.193860785953184,30.125084445708545,2019
+1998,61,"(60,65]",College,142355.96596666667,5045.194237288136,28.21615170225538,32.53636765465956,2019
+1998,48,"(45,50]",College,4616.315333333333,462.0141242937853,9.99171906354515,1170.9527624550383,2019
+1998,48,"(45,50]",College,5085.276666666667,462.0141242937853,11.00675585284281,1217.186471340561,2019
+1998,48,"(45,50]",College,4403.35,462.0141242937853,9.530769230769232,1289.5249185998957,2019
+1998,48,"(45,50]",College,9907.993333333334,462.0141242937853,21.44521739130435,1367.0177609114858,2019
+1998,48,"(45,50]",College,12325.733333333334,462.0141242937853,26.678260869565218,1138.8087055680737,2019
+1998,44,"(40,45]",HS,47.16963333333333,55.441694915254246,0.8507971014492751,6221.672332143035,2019
+1998,44,"(40,45]",HS,47.16963333333333,55.441694915254246,0.8507971014492751,6252.83258084981,2019
+1998,44,"(40,45]",HS,47.16963333333333,55.441694915254246,0.8507971014492751,6277.194407375036,2019
+1998,44,"(40,45]",HS,47.35196666666667,55.441694915254246,0.8540858416945373,6220.509512275954,2019
+1998,44,"(40,45]",HS,47.35196666666667,55.441694915254246,0.8540858416945373,6286.303466822972,2019
+1998,27,"(25,30]",College,-66.02289999999999,97.9469943502825,-0.6740676468732251,5596.771769864393,2019
+1998,27,"(25,30]",College,-60.5529,97.9469943502825,-0.6182211144065123,5577.689934144144,2019
+1998,27,"(25,30]",College,-60.5529,97.9469943502825,-0.6182211144065123,5580.47827485902,2019
+1998,27,"(25,30]",College,-49.95933333333333,97.9469943502825,-0.5100649965293115,5620.184039623739,2019
+1998,27,"(25,30]",College,-50.88923333333333,97.9469943502825,-0.5195589070486527,5576.950069460023,2019
+1998,52,"(50,55]",College,71929.58833333333,4398.374463276836,16.35367541665496,27.013472507419625,2019
+1998,52,"(50,55]",College,71764.576666666675,5156.077627118644,13.918443797125425,28.30617105852402,2019
+1998,52,"(50,55]",College,68496.06933333333,4878.869152542373,14.039333130637479,24.627221681089985,2019
+1998,52,"(50,55]",College,71282.30500000001,4897.349717514124,14.555281756799397,23.753072418622548,2019
+1998,52,"(50,55]",College,73680.353,5193.038757062147,14.188292529070806,24.17079775752017,2019
+1998,80,"(75,80]",HS,113.41133333333333,20.328621468926556,5.578899361508056,9877.662055148172,2019
+1998,80,"(75,80]",HS,114.14066666666668,27.720847457627123,4.1175027870680045,9869.679276622863,2019
+1998,80,"(75,80]",HS,118.88133333333333,22.176677966101696,5.360646599777034,9786.033650141342,2019
+1998,80,"(75,80]",HS,113.229,22.176677966101696,5.105769230769231,9866.400470354743,2019
+1998,80,"(75,80]",HS,113.41133333333333,16.26289717514124,6.973624201885072,9784.1318138627,2019
+1998,50,"(45,50]",HS,151.33666666666667,77.61837288135592,1.9497531454053196,6559.155310454434,2019
+1998,50,"(45,50]",HS,151.33666666666667,77.61837288135592,1.9497531454053196,6687.265858994391,2019
+1998,50,"(45,50]",HS,149.51333333333335,77.61837288135592,1.9262621436534484,6927.82903964899,2019
+1998,50,"(45,50]",HS,149.51333333333335,77.61837288135592,1.9262621436534484,6578.406061891235,2019
+1998,50,"(45,50]",HS,149.51333333333335,77.61837288135592,1.9262621436534484,6908.201669526183,2019
+1998,71,"(70,75]",HS,343.13309999999996,44.35335593220339,7.736350334448159,5148.012857384037,2019
+1998,71,"(70,75]",HS,343.3154333333334,44.35335593220339,7.740461259754738,5117.156939383667,2019
+1998,71,"(70,75]",HS,343.3154333333334,44.35335593220339,7.740461259754738,5367.050388300468,2019
+1998,71,"(70,75]",HS,343.1513333333333,44.35335593220339,7.736761426978817,5375.091510400725,2019
+1998,71,"(70,75]",HS,343.3154333333334,42.50529943502825,8.07700305365712,5298.982785420072,2019
+1998,73,"(70,75]",HS,468.5966666666667,40.65724293785311,11.52553967771359,6979.384004750022,2019
+1998,73,"(70,75]",HS,466.7733333333333,40.65724293785311,11.480693219823653,6722.212155630795,2019
+1998,73,"(70,75]",HS,466.7733333333333,38.80918644067796,12.027392896958116,6274.858177749753,2019
+1998,73,"(70,75]",HS,466.7733333333333,40.65724293785311,11.480693219823653,6863.311093722278,2019
+1998,73,"(70,75]",HS,466.7733333333333,38.80918644067796,12.027392896958116,6258.265343502116,2019
+1998,61,"(60,65]",College,270.4003333333333,73.92225988700567,3.6579013377926413,7704.234090574068,2019
+1998,61,"(60,65]",College,379.8003333333333,73.92225988700567,5.137834448160533,6073.920639383061,2019
+1998,61,"(60,65]",College,436.8706666666667,199.59010169491523,2.1888393410132543,5686.092093403573,2019
+1998,61,"(60,65]",College,257.637,133.06006779661018,1.936245819397993,7545.255432403084,2019
+1998,61,"(60,65]",College,160.08866666666665,79.46642937853107,2.014544606051178,7952.503460736378,2019
+1998,47,"(45,50]",College,810.107,94.25088135593221,8.595219358646467,4943.613362348743,2019
+1998,47,"(45,50]",College,1089.9886666666669,109.03533333333333,9.99665551839465,4729.925890959099,2019
+1998,47,"(45,50]",College,924.0653333333333,92.40282485875707,10.000401337792642,4735.932936421111,2019
+1998,47,"(45,50]",College,1077.59,127.51589830508476,8.450632543260141,4692.919159924954,2019
+1998,47,"(45,50]",College,1889.7026666666668,101.64310734463277,18.59154758285193,9533.234810524884,2019
+1998,64,"(60,65]",NoHS,38.10766666666667,55.441694915254246,0.6873467112597547,11242.918750679011,2019
+1998,64,"(60,65]",NoHS,37.925333333333334,55.441694915254246,0.6840579710144926,11073.539187792192,2019
+1998,64,"(60,65]",NoHS,38.10766666666667,55.441694915254246,0.6873467112597547,11241.173637056494,2019
+1998,64,"(60,65]",NoHS,38.10766666666667,55.441694915254246,0.6873467112597547,11226.66399360251,2019
+1998,64,"(60,65]",NoHS,38.10766666666667,55.441694915254246,0.6873467112597547,11228.846254290971,2019
+1998,53,"(50,55]",College,20036.245333333332,323.40988700564975,61.953100812231234,206.91257411627095,2019
+1998,53,"(50,55]",College,19173.808666666668,323.40988700564975,59.28640229335881,231.76549075370062,2019
+1998,53,"(50,55]",College,15933.745333333334,323.40988700564975,49.267959866220735,967.0856973400776,2019
+1998,53,"(50,55]",College,15931.922,323.40988700564975,49.26232202580028,1239.4242347625973,2019
+1998,53,"(50,55]",College,15930.098666666667,323.40988700564975,49.25668418537983,969.0793533131022,2019
+1998,36,"(35,40]",HS,-3.282,42.50529943502825,-0.07721390141049876,5612.430666919545,2019
+1998,36,"(35,40]",HS,-3.282,42.50529943502825,-0.07721390141049876,5584.301898508106,2019
+1998,36,"(35,40]",HS,-3.282,42.50529943502825,-0.07721390141049876,5606.389641489218,2019
+1998,36,"(35,40]",HS,-3.282,42.50529943502825,-0.07721390141049876,5587.140201800459,2019
+1998,36,"(35,40]",HS,-3.282,42.50529943502825,-0.07721390141049876,5608.575425368341,2019
+1998,63,"(60,65]",NoHS,593.495,44.35335593220339,13.381061872909699,5656.7372377991505,2019
+1998,63,"(60,65]",NoHS,624.674,42.50529943502825,14.696379235131598,5393.404651329924,2019
+1998,63,"(60,65]",NoHS,456.745,44.35335593220339,10.297867892976589,5048.814066734927,2019
+1998,63,"(60,65]",NoHS,482.2716666666667,44.35335593220339,10.873397435897436,5523.998545760658,2019
+1998,63,"(60,65]",NoHS,600.7883333333334,44.35335593220339,13.5454988851728,5035.750989610406,2019
+1998,39,"(35,40]",HS,344.61,334.4982259887006,1.0302296790406327,7552.104626419289,2019
+1998,39,"(35,40]",HS,344.7923333333333,297.53709604519776,1.1588213298988346,7545.321193858623,2019
+1998,39,"(35,40]",HS,343.1513333333333,206.98232768361586,1.6578774486383177,7592.735286345499,2019
+1998,39,"(35,40]",HS,348.0743333333333,229.1590056497175,1.5189205955334988,7585.220727414407,2019
+1998,39,"(35,40]",HS,342.7866666666667,334.4982259887006,1.024778728357878,7600.595668773448,2019
+1998,38,"(35,40]",HS,1034.7963666666667,145.99646327683615,7.087818043266585,6910.967502753963,2019
+1998,38,"(35,40]",HS,1051.2063666666668,144.14840677966103,7.292528513849584,6611.974388812821,2019
+1998,38,"(35,40]",HS,1115.6976666666667,151.54063276836158,7.3623664246675915,6174.168015786035,2019
+1998,38,"(35,40]",HS,1041.5244666666667,151.54063276836158,6.8729056203605525,6749.497084989761,2019
+1998,38,"(35,40]",HS,1054.3060333333335,144.14840677966103,7.3140318154532205,6155.246305713123,2019
+1998,71,"(70,75]",College,15570.172666666665,1173.5158757062147,13.267969346641033,262.64948088473994,2019
+1998,71,"(70,75]",College,15526.412666666667,1238.1978531073446,12.539524784106225,260.6892444893109,2019
+1998,71,"(70,75]",College,15553.762666666666,1173.5158757062147,13.253985726700549,250.57456937200817,2019
+1998,71,"(70,75]",College,15530.460466666667,1175.3639322033898,13.213320607475653,269.531251239284,2019
+1998,71,"(70,75]",College,15537.936133333333,1173.5158757062147,13.240499302135728,255.46654311350304,2019
+1998,31,"(30,35]",NoHS,15.316,110.88338983050849,0.13812709030100334,5304.130107684374,2019
+1998,31,"(30,35]",NoHS,17.139333333333333,110.88338983050849,0.15457079152731323,5286.046015011769,2019
+1998,31,"(30,35]",NoHS,6.199333333333334,110.88338983050849,0.055908584169453726,5288.688560133201,2019
+1998,31,"(30,35]",NoHS,9.846,110.88338983050849,0.08879598662207357,5326.318206471685,2019
+1998,31,"(30,35]",NoHS,17.139333333333333,110.88338983050849,0.15457079152731323,5285.344836062897,2019
+1998,39,"(35,40]",HS,334.28993333333335,120.12367231638417,2.7828813995369184,7092.949097580759,2019
+1998,39,"(35,40]",HS,355.60470000000004,120.12367231638417,2.960321584769746,7230.429846369337,2019
+1998,39,"(35,40]",HS,343.4613,120.12367231638417,2.8592307692307695,7575.218665712925,2019
+1998,39,"(35,40]",HS,351.6298333333333,120.12367231638417,2.9272317983020324,7114.927732922438,2019
+1998,39,"(35,40]",HS,335.858,120.12367231638417,2.7959351685104195,7402.963464608534,2019
+1998,21,"(20,25]",HS,124.00489999999999,24.024734463276836,5.161551324929251,3885.2695022733797,2019
+1998,40,"(35,40]",HS,124.02313333333333,40.65724293785311,3.0504560656734565,4514.27571859001,2019
+1998,50,"(45,50]",HS,124.20546666666667,57.289751412429375,2.168022440392707,4281.9040531847495,2019
+1998,20,"(15,20]",HS,124.00489999999999,33.265016949152546,3.7277870680044587,3918.8551597461446,2019
+1998,42,"(40,45]",NoHS,124.20546666666667,66.53003389830509,1.8669082125603862,4518.825218296299,2019
+1998,34,"(30,35]",HS,176.88156666666669,94.25088135593221,1.8767099481933243,9029.730031865909,2019
+1998,34,"(30,35]",HS,175.71463333333332,134.9081242937853,1.3024762908324552,9090.01508774006,2019
+1998,34,"(30,35]",HS,181.45813333333334,60.98586440677967,2.975412992804297,9242.55813891585,2019
+1998,34,"(30,35]",HS,175.13116666666667,33.265016949152546,5.264725009290227,9107.434879605771,2019
+1998,34,"(30,35]",HS,176.49866666666665,31.416960451977403,5.617942160141648,9202.181736831526,2019
+1998,52,"(50,55]",NoHS,226.2939,73.92225988700567,3.061241638795986,7735.074483473038,2019
+1998,52,"(50,55]",NoHS,226.2939,73.92225988700567,3.061241638795986,7836.064900938769,2019
+1998,52,"(50,55]",NoHS,226.47623333333334,73.92225988700567,3.0637081939799327,8121.607798321333,2019
+1998,52,"(50,55]",NoHS,226.47623333333334,73.92225988700567,3.0637081939799327,7728.376849909507,2019
+1998,52,"(50,55]",NoHS,226.47623333333334,73.92225988700567,3.0637081939799327,8084.072827373714,2019
+1998,78,"(75,80]",HS,1730.3433333333332,81.31448587570623,21.2796442687747,2700.030911535184,2019
+1998,78,"(75,80]",HS,1547.8276666666668,101.64310734463277,15.228063241106721,2967.6625786229893,2019
+1998,78,"(75,80]",HS,2366.6866666666665,177.41342372881357,13.339952619843922,2767.843345767783,2019
+1998,78,"(75,80]",HS,1547.8276666666668,97.9469943502825,15.802707136997538,2726.944637508975,2019
+1998,78,"(75,80]",HS,1930.91,81.31448587570623,23.74619945272119,2836.024642686734,2019
+1998,85,"(80,85]",NoHS,42.848333333333336,9.240282485875708,4.637123745819397,9439.455336623596,2019
+1998,85,"(80,85]",NoHS,42.848333333333336,9.240282485875708,4.637123745819397,9456.479392511897,2019
+1998,85,"(80,85]",NoHS,42.848333333333336,9.240282485875708,4.637123745819397,9467.987695404481,2019
+1998,85,"(80,85]",NoHS,42.848333333333336,9.240282485875708,4.637123745819397,9399.676831875497,2019
+1998,85,"(80,85]",NoHS,42.848333333333336,9.240282485875708,4.637123745819397,9465.969724806459,2019
+1998,55,"(50,55]",College,31110.625,720.7420338983052,43.16471571906354,410.0844390573279,2019
+1998,55,"(50,55]",College,30818.162333333334,661.6042259887005,46.58096354701893,409.24260336737694,2019
+1998,55,"(50,55]",College,35151.13166666667,595.0741920903955,59.07016660088494,401.4830055523254,2019
+1998,55,"(50,55]",College,27744.022333333334,890.7632316384181,31.146348825268184,396.0547782505392,2019
+1998,55,"(50,55]",College,43419.583666666666,948.0529830508475,45.79868893713287,369.4534653776576,2019
+1998,66,"(65,70]",HS,25.9825,11.457950282485875,2.267639443305643,6086.096520671681,2019
+1998,66,"(65,70]",HS,25.80016666666667,11.457950282485875,2.251726184054375,6359.888505033854,2019
+1998,66,"(65,70]",HS,25.80016666666667,11.457950282485875,2.251726184054375,6335.341796850595,2019
+1998,66,"(65,70]",HS,25.9825,11.457950282485875,2.267639443305643,6190.80157229446,2019
+1998,66,"(65,70]",HS,25.9825,11.457950282485875,2.267639443305643,6314.646810516364,2019
+1998,69,"(65,70]",College,144.59033333333335,238.39928813559317,0.6065048870913382,9093.793353585508,2019
+1998,66,"(65,70]",College,89.89033333333333,157.08480225988703,0.5722408026755852,9481.49787890575,2019
+1998,69,"(65,70]",College,103.93,238.39928813559317,0.43594928832542595,9645.872566340015,2019
+1998,67,"(65,70]",College,166.47033333333334,49.89752542372881,3.3362442710268803,9153.539445251501,2019
+1998,68,"(65,70]",College,131.09766666666667,157.08480225988703,0.8345662010623647,9560.771522161695,2019
+1998,18,"(15,20]",HS,21.97116666666667,16.44770282485876,1.335819773777761,1506.6302399728186,2019
+1998,18,"(15,20]",HS,22.1535,14.414840677966104,1.5368536146128118,1510.458917921806,2019
+1998,18,"(15,20]",HS,30.9055,16.44770282485876,1.8790161963097964,1512.9141204942387,2019
+1998,18,"(15,20]",HS,9.390166666666666,17.186925423728816,0.5463552342935231,1518.7334504727248,2019
+1998,18,"(15,20]",HS,18.142166666666668,14.045229378531072,1.2916960042246086,1502.5326982556128,2019
+1998,64,"(60,65]",HS,954.6973333333334,308.6254350282486,3.0933851360823503,58.053032497665455,2019
+1998,64,"(60,65]",HS,941.934,308.6254350282486,3.0520297198245645,54.72085691975788,2019
+1998,64,"(60,65]",HS,989.3406666666666,308.6254350282486,3.205635551639196,56.151850312034426,2019
+1998,64,"(60,65]",HS,927.3473333333334,308.6254350282486,3.0047663869585244,56.64019031522137,2019
+1998,64,"(60,65]",HS,983.6883333333334,308.6254350282486,3.187321010153606,57.18828930838443,2019
+1998,41,"(40,45]",HS,417.4521666666667,121.97172881355934,3.42253217796696,7256.846228352013,2019
+1998,41,"(40,45]",HS,344.3365,121.97172881355934,2.82308452417148,6865.987388703492,2019
+1998,41,"(40,45]",HS,417.4521666666667,120.12367231638417,3.475186519166453,6482.320312128747,2019
+1998,41,"(40,45]",HS,417.26983333333334,121.97172881355934,3.4210372960372957,7092.30075343819,2019
+1998,41,"(40,45]",HS,417.26983333333334,120.12367231638417,3.4736686390532547,6454.432052455595,2019
+1998,70,"(65,70]",College,676.8213333333334,107.18727683615819,6.314381270903011,6228.492578113816,2019
+1998,70,"(65,70]",College,673.1746666666667,107.18727683615819,6.280359820089955,5998.989092928199,2019
+1998,70,"(65,70]",College,674.998,107.18727683615819,6.2973705454964835,5599.764615649767,2019
+1998,70,"(65,70]",College,676.8213333333334,107.18727683615819,6.314381270903011,6124.907610677677,2019
+1998,70,"(65,70]",College,673.1746666666667,107.18727683615819,6.280359820089955,5584.956955705718,2019
+1998,85,"(80,85]",HS,63549.73066666666,5987.703050847457,10.613373797431768,17.65514345863118,2019
+1998,85,"(80,85]",HS,66861.0681,5266.9610169491525,12.69443002992431,18.212895568678366,2019
+1998,85,"(80,85]",HS,65064.37366666667,5784.4168361581915,11.248216632651973,19.6756376232697,2019
+1998,85,"(80,85]",HS,65295.75466666667,6006.183615819209,10.871421661950091,18.30449983333552,2019
+1998,85,"(80,85]",HS,65167.939,5229.99988700565,12.460409255823297,19.64463151203668,2019
+1998,25,"(20,25]",College,65.27533333333334,33.265016949152546,1.9622816796729838,7550.019434255759,2019
+1998,25,"(20,25]",College,65.27533333333334,31.416960451977403,2.077710013771395,7600.425519691176,2019
+1998,25,"(20,25]",College,67.09866666666667,33.265016949152546,2.017094017094017,7727.971193468082,2019
+1998,25,"(20,25]",College,65.27533333333334,31.416960451977403,2.077710013771395,7614.990713408231,2019
+1998,25,"(20,25]",College,66.91633333333333,31.416960451977403,2.1299429470784967,7694.211311462064,2019
+1998,70,"(65,70]",College,763.2473333333334,166.32508474576272,4.588888888888889,6813.26220171031,2019
+1998,70,"(65,70]",College,766.1646666666667,166.32508474576272,4.6064288368636195,6561.565780101439,2019
+1998,70,"(65,70]",College,766.1646666666667,166.32508474576272,4.6064288368636195,6125.1621612469435,2019
+1998,70,"(65,70]",College,763.7943333333334,166.32508474576272,4.5921776291341505,6698.111390572306,2019
+1998,70,"(65,70]",College,766.7116666666666,166.32508474576272,4.6097175771088805,6108.157201302103,2019
+1998,51,"(50,55]",NoHS,268.0847,60.98586440677967,4.395849802371541,6856.088730014283,2019
+1998,51,"(50,55]",NoHS,277.52956666666665,85.0105988700565,3.2646466482477825,6945.6029634590495,2019
+1998,51,"(50,55]",NoHS,273.1900333333333,60.98586440677967,4.479563190432755,7198.697803704365,2019
+1998,51,"(50,55]",NoHS,277.52956666666665,81.31448587570623,3.41303967771359,6850.1521911883465,2019
+1998,51,"(50,55]",NoHS,272.2601333333334,55.441694915254246,4.9107469342251955,7165.428170445472,2019
+1998,42,"(40,45]",College,261.8306666666667,133.06006779661018,1.9677629134150871,6119.083300185319,2019
+1998,42,"(40,45]",College,261.8306666666667,133.06006779661018,1.9677629134150871,5855.659438638957,2019
+1998,42,"(40,45]",College,261.8306666666667,133.06006779661018,1.9677629134150871,5466.668115530529,2019
+1998,42,"(40,45]",College,261.8306666666667,133.06006779661018,1.9677629134150871,5976.501906831097,2019
+1998,42,"(40,45]",College,261.8306666666667,133.06006779661018,1.9677629134150871,5449.256673335888,2019
+1998,61,"(60,65]",College,8390.615333333335,382.5476949152542,21.93351429079218,3291.8735885360265,2019
+1998,61,"(60,65]",College,7535.836666666667,380.69963841807913,19.794704029613275,3340.579632416064,2019
+1998,61,"(60,65]",College,9192.335000000001,382.5476949152542,24.02925209635985,3183.4184247131698,2019
+1998,61,"(60,65]",College,6217.5666666666675,382.5476949152542,16.25304961788894,4087.8618361036074,2019
+1998,61,"(60,65]",College,8310.388666666668,380.69963841807913,21.829252849303504,3258.581687132293,2019
+1998,41,"(40,45]",HS,38.417633333333335,53.593638418079095,0.7168319686310691,5041.941487919274,2019
+1998,41,"(40,45]",HS,39.3293,53.593638418079095,0.7338426940375966,5019.240758966413,2019
+1998,41,"(40,45]",HS,38.59996666666667,53.593638418079095,0.7202341137123746,4980.459962055297,2019
+1998,41,"(40,45]",HS,38.782300000000006,53.593638418079095,0.7236362587936802,5066.323916280879,2019
+1998,41,"(40,45]",HS,38.782300000000006,53.593638418079095,0.7236362587936802,4979.124583693405,2019
+1998,30,"(25,30]",NoHS,53.24133333333334,40.65724293785311,1.3095165703861356,6213.394629091306,2019
+1998,30,"(25,30]",NoHS,59.076,40.65724293785311,1.453025235633931,6251.893292225768,2019
+1998,30,"(25,30]",NoHS,57.79966666666667,40.65724293785311,1.4216327151109758,6344.579031651943,2019
+1998,30,"(25,30]",NoHS,60.717,40.65724293785311,1.4933870477348736,6214.695757897889,2019
+1998,30,"(25,30]",NoHS,54.33533333333334,40.65724293785311,1.3364244451200973,6308.152408813711,2019
+1998,56,"(55,60]",HS,229.92233333333334,73.92225988700567,3.1103260869565212,9352.107494243257,2019
+1998,56,"(55,60]",HS,227.552,73.92225988700567,3.0782608695652165,9325.469364126408,2019
+1998,56,"(55,60]",HS,233.022,72.07420338983052,3.2330846411113967,9877.578927373057,2019
+1998,56,"(55,60]",HS,235.39233333333334,72.07420338983052,3.2659720435640165,9111.816171402035,2019
+1998,56,"(55,60]",HS,227.552,72.07420338983052,3.1571906354515047,9823.61714741003,2019
+1998,63,"(60,65]",College,82613.77466666668,6671.48395480226,12.383118242711163,16.988373072866104,2019
+1998,63,"(60,65]",College,88302.93933333333,6708.445084745763,13.16295180445378,17.31960725314636,2019
+1998,63,"(60,65]",College,88571.51633333333,6486.678305084746,13.65437164718101,18.94060439607927,2019
+1998,63,"(60,65]",College,88344.876,6708.445084745763,13.169203128886924,17.623763815881922,2019
+1998,63,"(60,65]",College,84912.998,6486.678305084746,13.090366749564074,18.931858893614667,2019
+1998,49,"(45,50]",HS,217.34133333333335,99.79505084745762,2.1778768735290477,5740.098091748236,2019
+1998,49,"(45,50]",HS,214.971,112.73144632768363,1.906930204506826,5730.736487872817,2019
+1998,49,"(45,50]",HS,197.8499,125.66784180790961,1.5743876647649024,5704.512102391289,2019
+1998,49,"(45,50]",HS,230.37816666666666,109.03533333333333,2.112876254180602,5783.247006772691,2019
+1998,49,"(45,50]",HS,223.723,114.57950282485875,1.9525569101305429,5735.30590190715,2019
+1998,19,"(15,20]",HS,7.475666666666667,13.860423728813561,0.5393534002229654,5070.390241516556,2019
+1998,19,"(15,20]",HS,6.746333333333333,17.55653672316384,0.3842633339200845,5083.275215410881,2019
+1998,19,"(15,20]",HS,7.111,18.480564971751416,0.38478260869565206,5091.53791639346,2019
+1998,19,"(15,20]",HS,6.928666666666667,16.44770282485876,0.4212543684942317,5111.122200016773,2019
+1998,19,"(15,20]",HS,6.381666666666667,16.632508474576273,0.3836863619472315,5056.600437631094,2019
+1998,28,"(25,30]",HS,16.77466666666667,88.70671186440678,0.18910256410256412,4553.301894265948,2019
+1998,28,"(25,30]",HS,20.786,86.85865536723163,0.23930833274034016,4520.390873406796,2019
+1998,28,"(25,30]",HS,20.786,86.85865536723163,0.23930833274034016,4545.007295685362,2019
+1998,28,"(25,30]",HS,17.32166666666667,86.85865536723163,0.19942361061695016,4554.2951157394555,2019
+1998,28,"(25,30]",HS,20.786,88.70671186440678,0.23432274247491638,4534.9234370331305,2019
+1998,52,"(50,55]",HS,223.63183333333336,68.37809039548021,3.270518846605804,5322.9024374194005,2019
+1998,52,"(50,55]",HS,246.78816666666665,55.441694915254246,4.451309921962095,5422.746720711508,2019
+1998,52,"(50,55]",HS,219.43816666666666,57.289751412429375,3.8303215017801273,5656.307098321608,2019
+1998,52,"(50,55]",HS,236.75983333333335,49.89752542372881,4.74492134274743,5308.188901099698,2019
+1998,52,"(50,55]",HS,234.02483333333336,70.22614689265536,3.3324458722055983,5569.562426678103,2019
+1998,43,"(40,45]",College,1578.8243333333332,221.76677966101698,7.119300445930879,2487.608552643889,2019
+1998,43,"(40,45]",College,1568.0666666666668,221.76677966101698,7.070791527313266,2712.9607619513786,2019
+1998,43,"(40,45]",College,1573.5366666666669,221.76677966101698,7.095457079152731,2532.062896280304,2019
+1998,43,"(40,45]",College,1535.976,221.76677966101698,6.926086956521739,2512.355876486321,2019
+1998,43,"(40,45]",College,1553.2976666666668,221.76677966101698,7.004194537346711,2593.144809536252,2019
+1998,33,"(30,35]",HS,53.3325,120.12367231638417,0.44397993311036793,5853.4634143162075,2019
+1998,33,"(30,35]",HS,60.26116666666667,120.12367231638417,0.5016593774118858,5836.991317719121,2019
+1998,33,"(30,35]",HS,60.078833333333336,120.12367231638417,0.500141497298688,5888.944982091334,2019
+1998,33,"(30,35]",HS,59.53183333333334,120.12367231638417,0.4955878569590945,5874.328548792769,2019
+1998,33,"(30,35]",HS,59.8965,120.12367231638417,0.49862361718549014,5912.226090162223,2019
+1998,47,"(45,50]",HS,6547.954666666667,218.07066666666665,30.026755852842815,857.7244546754986,2019
+1998,47,"(45,50]",HS,6547.954666666667,219.9187231638418,29.77443017340716,869.2994415980768,2019
+1998,47,"(45,50]",HS,6549.778,219.9187231638418,29.782721115201934,831.3876066751696,2019
+1998,47,"(45,50]",HS,6549.778,219.9187231638418,29.782721115201934,917.5307988403787,2019
+1998,47,"(45,50]",HS,6547.954666666667,218.07066666666665,30.026755852842815,848.7142973335483,2019
+1998,35,"(30,35]",College,1453.926,389.9399209039548,3.7285897700074493,1480.5935331409144,2019
+1998,35,"(30,35]",College,5375.186666666667,500.82331073446335,10.73270063804317,2229.409192563071,2019
+1998,35,"(30,35]",College,4038.1363333333334,362.2190734463277,11.148326052829159,2083.2021615761514,2019
+1998,35,"(30,35]",College,5901.036,316.01766101694915,18.673120929413837,2290.946768264245,2019
+1998,35,"(30,35]",College,1453.5613333333333,175.56536723163845,8.279317021651117,1473.9380526320622,2019
+1998,46,"(45,50]",HS,292.3715,170.021197740113,1.7196179293296496,8065.986759923979,2019
+1998,46,"(45,50]",HS,306.79406666666665,138.6042372881356,2.2134537346711256,8171.297623044727,2019
+1998,46,"(45,50]",HS,296.9663,170.021197740113,1.746642794823324,8469.056259318906,2019
+1998,46,"(45,50]",HS,291.6057,145.99646327683615,1.9973476990813261,8059.002596583127,2019
+1998,46,"(45,50]",HS,303.1291666666667,162.62897175141245,1.8639309060504714,8429.915514217544,2019
+1998,31,"(30,35]",College,-10.028333333333334,55.441694915254246,-0.18088071348940912,6654.727752948301,2019
+1998,31,"(30,35]",College,-9.663666666666666,55.441694915254246,-0.17430323299888514,6674.4304892047385,2019
+1998,31,"(30,35]",College,-9.846,55.441694915254246,-0.17759197324414713,6674.763032327904,2019
+1998,31,"(30,35]",College,-9.663666666666666,55.441694915254246,-0.17430323299888514,6707.9868910382065,2019
+1998,31,"(30,35]",College,-10.028333333333334,55.441694915254246,-0.18088071348940912,6682.528624074081,2019
+1998,74,"(70,75]",NoHS,168.02016666666665,12.751589830508475,13.176409286995296,7317.965382992639,2019
+1998,74,"(70,75]",NoHS,254.68320000000003,14.045229378531072,18.13307516282345,7254.265566959439,2019
+1998,74,"(70,75]",NoHS,203.7028,8.501059887005649,23.962047404391452,7755.4691315112195,2019
+1998,74,"(70,75]",NoHS,459.1153333333333,27.720847457627123,16.56209587513935,6215.847366009764,2019
+1998,74,"(70,75]",NoHS,218.01596666666669,20.328621468926556,10.72458193979933,7603.929228141916,2019
+1998,74,"(70,75]",College,4281.496633333334,92.40282485875707,46.33512709030101,1115.1813247223686,2019
+1998,74,"(70,75]",College,4248.858966666667,123.81978531073446,34.31486297608945,1124.0741971914713,2019
+1998,74,"(70,75]",College,4318.163866666667,171.86925423728815,25.12470241306146,1087.2706940694702,2019
+1998,74,"(70,75]",College,4268.915633333334,157.08480225988703,27.17586661420421,1179.739566240512,2019
+1998,74,"(70,75]",College,4234.290533333333,267.96819209039546,15.801466958828277,1099.2949431568172,2019
+1998,58,"(55,60]",College,24549.54233333333,1663.2508474576273,14.759975845410626,14.635923813578808,2019
+1998,58,"(55,60]",College,24547.536666666667,1663.2508474576273,14.758769973987365,15.731066752257544,2019
+1998,58,"(55,60]",College,24549.36,1663.2508474576273,14.759866220735784,16.275653375010755,2019
+1998,58,"(55,60]",College,24547.719,1663.2508474576273,14.758879598662206,14.828356112193319,2019
+1998,58,"(55,60]",College,24547.719,1663.2508474576273,14.758879598662206,15.680390977537717,2019
+1998,45,"(40,45]",College,162.44076666666666,55.441694915254246,2.9299386845039015,6729.651038795875,2019
+1998,45,"(40,45]",College,162.44076666666666,55.441694915254246,2.9299386845039015,6855.882393338662,2019
+1998,45,"(40,45]",College,162.44076666666666,55.441694915254246,2.9299386845039015,7151.168631680349,2019
+1998,45,"(40,45]",College,162.44076666666666,55.441694915254246,2.9299386845039015,6711.048976078705,2019
+1998,45,"(40,45]",College,162.44076666666666,55.441694915254246,2.9299386845039015,7041.498883549715,2019
+1998,41,"(40,45]",HS,9460.182666666666,147.84451977401133,63.987374581939775,457.666157700834,2019
+1998,41,"(40,45]",HS,9458.541666666666,147.84451977401133,63.97627508361202,454.62721311352726,2019
+1998,41,"(40,45]",HS,9456.353666666666,147.84451977401133,63.96147575250834,419.3880969575097,2019
+1998,41,"(40,45]",HS,9458.541666666666,147.84451977401133,63.97627508361202,470.37874952656693,2019
+1998,41,"(40,45]",HS,9460.182666666666,147.84451977401133,63.987374581939775,454.16464930317136,2019
+1998,22,"(20,25]",HS,13.675,40.65724293785311,0.3363484341745211,6708.221755691423,2019
+1998,22,"(20,25]",HS,12.945666666666666,36.96112994350283,0.35025083612040125,6720.6091683286695,2019
+1998,22,"(20,25]",HS,13.675,38.80918644067796,0.3523650262780698,6693.465052282831,2019
+1998,22,"(20,25]",HS,11.851666666666667,22.176677966101696,0.5344202898550724,6696.731986530703,2019
+1998,22,"(20,25]",HS,16.045333333333335,46.201412429378536,0.34729096989966557,6676.955464232271,2019
+1998,69,"(65,70]",HS,825273.3043333334,19201.30700564972,42.98005881008559,7.464479759337901,2019
+1998,69,"(65,70]",HS,943281.0786666666,18480.564971751413,51.04178795986622,7.2118741084757065,2019
+1998,69,"(65,70]",HS,925490.9976666666,38069.96384180791,24.31026731499821,6.945752728721308,2019
+1998,69,"(65,70]",HS,714412.632,34392.33141242938,20.772439746315406,7.046671845376451,2019
+1998,69,"(65,70]",HS,907868.2986666666,26778.338644067797,33.90308527851061,6.538588207750887,2019
+1998,44,"(40,45]",College,4895.5588333333335,203.28621468926553,24.082099422316816,2312.093976736359,2019
+1998,44,"(40,45]",College,4712.405,277.2084745762712,16.999498327759195,2259.814603456534,2019
+1998,44,"(40,45]",College,5076.16,218.07066666666665,23.27759197324415,2120.6257273637075,2019
+1998,44,"(40,45]",College,4020.8511333333336,277.2084745762712,14.504791527313266,2564.526188459556,2019
+1998,44,"(40,45]",College,4074.748866666667,184.80564971751414,22.04883277591973,2396.464421088354,2019
+1998,58,"(55,60]",HS,-2.224466666666667,51.745581920903966,-0.0429885332059245,5757.634781100807,2019
+1998,58,"(55,60]",HS,1.2398666666666667,49.89752542372881,0.02484825963086833,5716.269141303428,2019
+1998,58,"(55,60]",HS,-2.2426999999999997,53.593638418079095,-0.041846384500057655,5855.361962699607,2019
+1998,58,"(55,60]",HS,-2.2426999999999997,83.16254237288136,-0.026967670011148265,5749.772365500147,2019
+1998,58,"(55,60]",HS,-2.2426999999999997,57.289751412429375,-0.03914661775811846,5808.242145893124,2019
+1998,45,"(40,45]",HS,220.25866666666667,94.25088135593221,2.336940127221457,6770.044996029974,2019
+1998,45,"(40,45]",HS,222.99366666666666,94.25088135593221,2.36595842350318,6903.103414830909,2019
+1998,45,"(40,45]",HS,222.082,94.25088135593221,2.3562856580759393,7197.605107777539,2019
+1998,45,"(40,45]",HS,222.81133333333335,94.25088135593221,2.3640238704177325,6729.244821165,2019
+1998,45,"(40,45]",HS,218.43533333333335,94.25088135593221,2.317594596366975,7200.204217596276,2019
+1998,42,"(40,45]",HS,120.6135,134.9081242937853,0.8940417831126587,6744.46500604753,2019
+1998,42,"(40,45]",HS,135.74716666666666,134.9081242937853,1.0062193613414578,6836.715208916417,2019
+1998,42,"(40,45]",HS,128.63616666666667,134.9081242937853,0.9535094149447931,7117.195160370924,2019
+1998,42,"(40,45]",HS,130.2771666666667,134.9081242937853,0.965673248728639,6778.242203844258,2019
+1998,42,"(40,45]",HS,128.43560000000002,134.9081242937853,0.95202272414899,7031.037526039363,2019
+1998,46,"(45,50]",HS,0.7475666666666667,31.416960451977403,0.02379500295101318,5479.60124150078,2019
+1998,46,"(45,50]",HS,0.4558333333333333,31.416960451977403,0.014509148140861695,5468.054841088384,2019
+1998,46,"(45,50]",HS,0.7293333333333334,90.55476836158192,0.008054057743498738,5432.560806406937,2019
+1998,46,"(45,50]",HS,1.0575333333333332,44.35335593220339,0.023843366778149383,5474.834677221118,2019
+1998,46,"(45,50]",HS,-5.47,31.416960451977403,-0.17410977769034033,5454.355340940781,2019
+1998,52,"(50,55]",HS,-44.81753333333334,70.22614689265536,-0.638188699172681,6713.62796189172,2019
+1998,52,"(50,55]",HS,-37.123066666666666,70.22614689265536,-0.5286217215279,6845.5775606832885,2019
+1998,52,"(50,55]",HS,-45.16396666666667,70.22614689265536,-0.6431218095405739,7137.62507318142,2019
+1998,52,"(50,55]",HS,-24.870266666666666,70.22614689265536,-0.35414539693715896,6673.167788438783,2019
+1998,52,"(50,55]",HS,-37.21423333333333,70.22614689265536,-0.5299199084668192,7140.202523754541,2019
+1998,54,"(50,55]",College,7394.163666666667,591.3780790960453,12.503276546822741,20.34338200536257,2019
+1998,54,"(50,55]",College,6300.163666666667,591.3780790960453,10.653360158862874,21.988192006731754,2019
+1998,54,"(50,55]",College,3654.6893333333337,589.53002259887,6.199326909971589,21.928850127188348,2019
+1998,54,"(50,55]",College,4148.6303333333335,591.3780790960453,7.015191262541805,21.909204999973717,2019
+1998,54,"(50,55]",College,3565.1636666666664,591.3780790960453,6.028569188963209,23.332261586735076,2019
+1998,63,"(60,65]",College,17579.66833333333,480.4946892655367,36.586602778492406,221.0179552196265,2019
+1998,63,"(60,65]",College,18856.184,480.4946892655367,39.243272446616935,220.95350677744145,2019
+1998,63,"(60,65]",College,16485.850666666665,480.4946892655367,34.31016207872395,182.3729297077571,2019
+1998,63,"(60,65]",College,17579.85066666667,480.4946892655367,36.58698224852072,213.37349522402116,2019
+1998,63,"(60,65]",College,20679.517333333333,480.4946892655367,43.037972729611525,202.69225601124634,2019
+1998,43,"(40,45]",NoHS,35.83032333333333,66.53003389830509,0.5385586213303604,8044.46990101477,2019
+1998,43,"(40,45]",NoHS,36.01265666666667,68.37809039548021,0.5266695290608335,8202.70978831642,2019
+1998,43,"(40,45]",NoHS,35.83032333333333,66.53003389830509,0.5385586213303604,8518.967932776271,2019
+1998,43,"(40,45]",NoHS,35.64799,66.53003389830509,0.5358180044593087,8047.956254359272,2019
+1998,43,"(40,45]",NoHS,35.64799,66.53003389830509,0.5358180044593087,8419.337456564564,2019
+1998,42,"(40,45]",College,24236.111333333334,4250.529943502825,5.701903446270176,12.827327900564516,2019
+1998,42,"(40,45]",College,24235.929,4250.529943502825,5.7018605496582815,13.939333164601404,2019
+1998,42,"(40,45]",College,24511.434666666668,4250.529943502825,5.766677330231206,13.902246643795191,2019
+1998,42,"(40,45]",College,24236.111333333334,4250.529943502825,5.701903446270176,12.711287252851669,2019
+1998,42,"(40,45]",College,24236.111333333334,4250.529943502825,5.701903446270176,13.739997953806727,2019
+1998,83,"(80,85]",HS,423535.39013333333,2753.6041807909605,153.8112823505645,4.632948780631418,2019
+1998,83,"(80,85]",HS,514504.2616,1182.7561581920907,435.00450877926414,4.475111944004445,2019
+1998,83,"(80,85]",HS,100451.6817,1182.7561581920907,84.93017009824413,4.301475279108699,2019
+1998,83,"(80,85]",HS,428701.7869,1302.8798305084747,329.0416943001494,4.3700544417370955,2019
+1998,83,"(80,85]",HS,514504.2616,1182.7561581920907,435.00450877926414,4.475111944004445,2019
+1998,70,"(65,70]",HS,111.22333333333333,25.872790960451983,4.29885332059245,9756.90415684766,2019
+1998,70,"(65,70]",HS,111.27803333333334,25.872790960451983,4.300967510750119,9790.637489108383,2019
+1998,70,"(65,70]",HS,111.27803333333334,25.872790960451983,4.300967510750119,9707.770096502736,2019
+1998,70,"(65,70]",HS,111.29626666666667,25.872790960451983,4.301672240802675,9832.232992276791,2019
+1998,70,"(65,70]",HS,111.11393333333334,25.872790960451983,4.294624940277114,9706.737924905152,2019
+1998,45,"(40,45]",College,5054.899933333334,497.127197740113,10.168222451542317,1218.709915085335,2019
+1998,45,"(40,45]",College,4311.344599999999,140.45229378531073,30.696149445520152,1249.980542270601,2019
+1998,45,"(40,45]",College,7218.667833333333,242.09540112994353,29.817451300773566,1186.6295146114526,2019
+1998,45,"(40,45]",College,4628.9328,140.45229378531073,32.95733145572962,1287.9329829571989,2019
+1998,45,"(40,45]",College,3577.5623333333338,286.4487570621469,12.489362390764915,1205.5880488654343,2019
+1998,39,"(35,40]",College,6788.638313333334,1593.0247005649717,4.261477120176304,405.76690584934414,2019
+1998,39,"(35,40]",College,6768.5816466666665,1593.0247005649717,4.24888681529305,407.81940455420676,2019
+1998,39,"(35,40]",College,5326.32498,1593.0247005649717,3.34352943687,384.76622144527676,2019
+1998,39,"(35,40]",College,8983.931646666666,1593.0247005649717,5.6395432183069625,424.5622576405229,2019
+1998,39,"(35,40]",College,10384.616313333332,1593.0247005649717,6.518804328426541,399.1770449101626,2019
+1998,50,"(45,50]",HS,243.92553333333333,192.1978757062147,1.269137509647543,10553.334075500763,2019
+1998,50,"(45,50]",HS,209.28220000000002,236.55123163841807,0.8847225125418061,10174.650373158365,2019
+1998,50,"(45,50]",HS,180.10886666666667,242.09540112994353,0.7439582322755239,11695.59672316449,2019
+1998,50,"(45,50]",HS,200.1473,201.4381581920904,0.9935917891442422,10062.590158865458,2019
+1998,50,"(45,50]",HS,170.99220000000003,188.50176271186442,0.9071119417666733,11740.189305270427,2019
+1998,40,"(35,40]",HS,16.41,57.289751412429375,0.286438666522818,6981.271798300821,2019
+1998,40,"(35,40]",HS,16.592333333333332,57.289751412429375,0.28962131837307153,6970.8367483966285,2019
+1998,40,"(35,40]",HS,16.77466666666667,57.289751412429375,0.2928039702233251,6956.231764597947,2019
+1998,40,"(35,40]",HS,16.77466666666667,57.289751412429375,0.2928039702233251,7016.2068959388125,2019
+1998,40,"(35,40]",HS,16.77466666666667,57.289751412429375,0.2928039702233251,6931.627435569098,2019
+1998,23,"(20,25]",HS,10.575333333333335,15.708480225988701,0.6732244737359827,5578.870707125701,2019
+1998,23,"(20,25]",HS,15.680666666666667,18.11095367231638,0.8658112074261145,5557.524469525313,2019
+1998,23,"(20,25]",HS,13.492666666666667,15.708480225988701,0.8589415699390124,5569.06335332831,2019
+1998,23,"(20,25]",HS,12.398666666666667,17.371731073446327,0.7137266064185583,5602.375355625976,2019
+1998,23,"(20,25]",HS,7.658,15.708480225988701,0.487507377532953,5520.929136958841,2019
+1998,20,"(15,20]",HS,9.116666666666665,20.328621468926556,0.44846457889936137,4407.1879976729,2019
+1998,20,"(15,20]",HS,8.9161,27.720847457627123,0.32163879598662204,4373.503075732961,2019
+1998,20,"(15,20]",HS,9.4084,24.024734463276836,0.39161306920504246,4404.247867221029,2019
+1998,20,"(15,20]",HS,8.733766666666666,24.024734463276836,0.3635322871108824,4408.280958664292,2019
+1998,20,"(15,20]",HS,8.9161,27.720847457627123,0.32163879598662204,4359.250310877555,2019
+1998,44,"(40,45]",HS,1727.6083333333333,0,Inf,2829.3722448087365,2019
+1998,44,"(40,45]",HS,1727.426,0,Inf,3086.143273881011,2019
+1998,44,"(40,45]",HS,2046.6916666666668,0,Inf,2879.667619035371,2019
+1998,44,"(40,45]",HS,2055.9906666666666,0,Inf,2857.5281084825015,2019
+1998,44,"(40,45]",HS,2329.4906666666666,0,Inf,2949.0166219036573,2019
+1998,70,"(65,70]",HS,295.1976666666667,46.201412429378536,6.389364548494983,6905.7762460864615,2019
+1998,70,"(65,70]",HS,295.38,46.201412429378536,6.393311036789297,6889.4214503122785,2019
+1998,70,"(65,70]",HS,295.1976666666667,46.201412429378536,6.389364548494983,7362.104199106737,2019
+1998,70,"(65,70]",HS,295.38,46.201412429378536,6.393311036789297,7102.533132584482,2019
+1998,70,"(65,70]",HS,295.38,46.201412429378536,6.393311036789297,7231.220317765554,2019
+1998,51,"(50,55]",College,1983.7866666666669,462.0141242937853,4.293779264214048,2433.4677393974894,2019
+1998,51,"(50,55]",College,2005.6666666666667,462.0141242937853,4.34113712374582,2464.4470936111366,2019
+1998,51,"(50,55]",College,1987.4333333333334,462.0141242937853,4.3016722408026755,2364.9695473147012,2019
+1998,51,"(50,55]",College,1992.9033333333332,462.0141242937853,4.3135117056856185,2735.0011334654796,2019
+1998,51,"(50,55]",College,1985.6100000000001,462.0141242937853,4.297725752508361,2551.0109256997043,2019
+1998,51,"(50,55]",College,679.1916666666666,321.56183050847454,2.1121650713104985,920.7534827153593,2019
+1998,51,"(50,55]",College,679.5563333333334,321.56183050847454,2.1132991196709345,851.3215873576971,2019
+1998,51,"(50,55]",College,675.9096666666667,321.56183050847454,2.1019586360665823,881.6413385900996,2019
+1998,51,"(50,55]",College,674.0863333333334,321.56183050847454,2.096288394264407,955.5649381424653,2019
+1998,51,"(50,55]",College,677.3683333333333,321.56183050847454,2.106494829508323,958.9961782613806,2019
+1998,51,"(50,55]",College,885.046,201.4381581920904,4.393636279954588,443.5049596935819,2019
+1998,51,"(50,55]",College,885.046,201.4381581920904,4.393636279954588,427.73686213191405,2019
+1998,51,"(50,55]",College,885.2283333333334,203.28621468926553,4.3545910611128,429.93864036826506,2019
+1998,51,"(50,55]",College,885.2283333333334,201.4381581920904,4.394541437820257,438.7670720062679,2019
+1998,51,"(50,55]",College,885.046,203.28621468926553,4.3536941319550015,442.8004908420271,2019
+1998,38,"(35,40]",NoHS,2.5526666666666666,46.201412429378536,0.05525083612040133,6524.865464677525,2019
+1998,38,"(35,40]",NoHS,2.188,46.201412429378536,0.04735785953177257,6495.488050694749,2019
+1998,38,"(35,40]",NoHS,2.3703333333333334,46.201412429378536,0.051304347826086956,6445.301136970284,2019
+1998,38,"(35,40]",NoHS,2.188,46.201412429378536,0.04735785953177257,6556.419195545446,2019
+1998,38,"(35,40]",NoHS,1.8233333333333333,46.201412429378536,0.039464882943143806,6443.573000264083,2019
+1998,39,"(35,40]",HS,33.822833333333335,38.80918644067796,0.871516164994426,9447.765548163088,2019
+1998,39,"(35,40]",HS,34.91683333333334,31.416960451977403,1.1114007475900058,9445.037424155624,2019
+1998,39,"(35,40]",HS,33.822833333333335,38.80918644067796,0.871516164994426,9726.336380840236,2019
+1998,39,"(35,40]",HS,33.0935,18.480564971751416,1.79071906354515,9515.952184372902,2019
+1998,39,"(35,40]",HS,33.0935,20.328621468926556,1.627926421404682,9691.97554273168,2019
+1998,69,"(65,70]",College,5048.4818,271.6643050847458,18.583530134461807,2576.253017346642,2019
+1998,69,"(65,70]",College,2398.0297666666665,620.9469830508474,3.861891324255455,1883.7057862085778,2019
+1998,69,"(65,70]",College,3922.3546666666666,437.9893898305085,8.955364576718456,2878.8527867131565,2019
+1998,69,"(65,70]",College,6510.0111,299.3851525423729,21.744602378298026,3074.338045878901,2019
+1998,69,"(65,70]",College,6776.236,454.62189830508476,14.905212496941022,2518.0937316181894,2019
+1998,38,"(35,40]",College,443.4893666666666,81.31448587570623,5.454001976284584,10553.334075500763,2019
+1998,38,"(35,40]",College,445.67736666666667,83.16254237288136,5.359111854329245,10174.650373158365,2019
+1998,38,"(35,40]",College,443.85403333333335,83.16254237288136,5.337186919360832,9881.289916979043,2019
+1998,38,"(35,40]",College,443.4893666666666,81.31448587570623,5.454001976284584,10062.590158865458,2019
+1998,38,"(35,40]",College,440.5720333333333,83.16254237288136,5.297722036417688,10318.796404198825,2019
+1998,35,"(30,35]",College,41744.305,6819.32847457627,6.121468580906546,15.210363786456199,2019
+1998,35,"(30,35]",College,39684.303,6486.678305084746,6.11781579624389,16.54242337918642,2019
+1998,35,"(30,35]",College,37637.429000000004,6616.042259887006,5.688813269557744,16.90726711735487,2019
+1998,35,"(30,35]",College,39330.394,6468.197740112994,6.0805800286669855,15.401116629790682,2019
+1998,35,"(30,35]",College,39914.772333333334,6671.48395480226,5.982892652331409,16.270747867357453,2019
+1998,56,"(55,60]",HS,5.380656666666667,49.89752542372881,0.10783413848631242,5195.655798595284,2019
+1998,56,"(55,60]",HS,5.325956666666667,49.89752542372881,0.10673789173789176,5172.029584981034,2019
+1998,56,"(55,60]",HS,5.12539,49.89752542372881,0.102718320327016,5356.033291954927,2019
+1998,56,"(55,60]",HS,5.325956666666667,49.89752542372881,0.10673789173789176,5141.379674758026,2019
+1998,56,"(55,60]",HS,5.12539,49.89752542372881,0.102718320327016,5331.05139038353,2019
+1998,48,"(45,50]",HS,202.5905666666667,18.480564971751416,10.962357859531771,6749.149800580456,2019
+1998,48,"(45,50]",HS,200.76723333333334,18.480564971751416,10.863695652173911,6881.797545350621,2019
+1998,48,"(45,50]",HS,200.9495666666667,18.480564971751416,10.873561872909699,7175.39028267909,2019
+1998,48,"(45,50]",HS,202.95523333333335,18.480564971751416,10.982090301003343,6708.475552150048,2019
+1998,48,"(45,50]",HS,201.1319,18.480564971751416,10.883428093645483,7177.981370555919,2019
+1998,42,"(40,45]",HS,234.0613,145.99646327683615,1.6031984251301807,6744.46500604753,2019
+1998,42,"(40,45]",HS,218.3624,182.957593220339,1.1935137326441674,6836.715208916417,2019
+1998,42,"(40,45]",HS,323.14936666666665,162.62897175141245,1.9870344329583456,5014.988619618716,2019
+1998,42,"(40,45]",HS,248.9944,164.47702824858757,1.5138551726729548,6778.242203844258,2019
+1998,42,"(40,45]",HS,338.6294666666667,173.71731073446327,1.9493133138831569,4998.555142770293,2019
+1998,33,"(30,35]",HS,-12.343966666666667,36.96112994350283,-0.33397157190635446,5439.700621604325,2019
+1998,33,"(30,35]",HS,-12.343966666666667,36.96112994350283,-0.33397157190635446,5456.461176667915,2019
+1998,33,"(30,35]",HS,-12.343966666666667,36.96112994350283,-0.33397157190635446,5491.965122839175,2019
+1998,33,"(30,35]",HS,-12.343966666666667,36.96112994350283,-0.33397157190635446,5434.241334905907,2019
+1998,33,"(30,35]",HS,-12.343966666666667,36.96112994350283,-0.33397157190635446,5515.967511685421,2019
+1998,83,"(80,85]",HS,18.23333333333333,14.969257627118646,1.2180519426896235,11756.337109844992,2019
+1998,83,"(80,85]",HS,18.23333333333333,14.969257627118646,1.2180519426896235,11696.54549753465,2019
+1998,83,"(80,85]",HS,18.23333333333333,14.969257627118646,1.2180519426896235,11892.223272435176,2019
+1998,83,"(80,85]",HS,18.23333333333333,14.969257627118646,1.2180519426896235,11805.277934006663,2019
+1998,83,"(80,85]",HS,18.23333333333333,14.969257627118646,1.2180519426896235,12144.54742726246,2019
+1998,49,"(45,50]",HS,8.569666666666667,35.11307344632768,0.24405914451681043,5385.987086860549,2019
+1998,49,"(45,50]",HS,8.569666666666667,35.11307344632768,0.24405914451681043,5388.605192002446,2019
+1998,49,"(45,50]",HS,8.569666666666667,35.11307344632768,0.24405914451681043,5357.473912817899,2019
+1998,49,"(45,50]",HS,8.569666666666667,35.11307344632768,0.24405914451681043,5370.178795489027,2019
+1998,49,"(45,50]",HS,8.569666666666667,35.11307344632768,0.24405914451681043,5338.523505335042,2019
+1998,57,"(55,60]",College,92.99,133.06006779661018,0.6988573021181715,8527.480385224813,2019
+1998,57,"(55,60]",College,92.99,133.06006779661018,0.6988573021181715,8503.191086560273,2019
+1998,57,"(55,60]",College,92.99,133.06006779661018,0.6988573021181715,9006.618092075227,2019
+1998,57,"(55,60]",College,92.99,133.06006779661018,0.6988573021181715,8308.376879033338,2019
+1998,57,"(55,60]",College,92.99,133.06006779661018,0.6988573021181715,8957.414421087728,2019
+1998,45,"(40,45]",College,149.42216666666667,221.76677966101698,0.673780657748049,297.8016714125486,2019
+1998,45,"(40,45]",College,219.6205,221.76677966101698,0.9903219063545149,286.8406832960903,2019
+1998,45,"(40,45]",College,225.63750000000002,221.76677966101698,1.0174540133779264,277.49182659986275,2019
+1998,45,"(40,45]",College,220.53216666666665,221.76677966101698,0.9944328316610923,283.1528063541431,2019
+1998,45,"(40,45]",College,221.07916666666665,221.76677966101698,0.9968993868450388,295.5983830993272,2019
+1998,56,"(55,60]",College,4181.997333333334,277.2084745762712,15.086109253065775,1929.1486436714422,2019
+1998,56,"(55,60]",College,4180.174,277.2084745762712,15.07953177257525,1889.8210300269402,2019
+1998,56,"(55,60]",College,4149.177333333334,277.2084745762712,14.967714604236344,1804.0510391782348,2019
+1998,56,"(55,60]",College,4138.2373333333335,277.2084745762712,14.928249721293199,2180.5099130765316,2019
+1998,56,"(55,60]",College,4145.530666666667,277.2084745762712,14.954559643255294,2008.0289116277727,2019
+1998,44,"(40,45]",HS,14.8237,55.441694915254246,0.2673745819397993,9054.247661849464,2019
+1998,44,"(40,45]",HS,15.006033333333333,55.441694915254246,0.2706633221850613,9285.104752811778,2019
+1998,44,"(40,45]",HS,15.006033333333333,55.441694915254246,0.2706633221850613,9567.548721583713,2019
+1998,44,"(40,45]",HS,14.8237,55.441694915254246,0.2673745819397993,9109.543531072286,2019
+1998,44,"(40,45]",HS,14.8237,55.441694915254246,0.2673745819397993,9480.329401865605,2019
+1998,49,"(45,50]",HS,22.882833333333334,177.41342372881357,0.12898028149386845,8256.51138755569,2019
+1998,49,"(45,50]",HS,22.7005,177.41342372881357,0.1279525501672241,8418.784806814248,2019
+1998,49,"(45,50]",HS,23.2475,177.41342372881357,0.13103574414715718,8777.948827569531,2019
+1998,49,"(45,50]",HS,22.7005,177.41342372881357,0.1279525501672241,8206.752913485809,2019
+1998,49,"(45,50]",HS,22.7005,177.41342372881357,0.1279525501672241,8781.118611496882,2019
+1998,47,"(45,50]",HS,56.79683333333334,40.65724293785311,1.396967163271511,6627.552441463207,2019
+1998,47,"(45,50]",HS,56.6145,42.50529943502825,1.3319397993311037,6714.082867158463,2019
+1998,47,"(45,50]",HS,56.6145,42.50529943502825,1.3319397993311037,6958.7412128193555,2019
+1998,47,"(45,50]",HS,56.79683333333334,40.65724293785311,1.396967163271511,6621.8137872626785,2019
+1998,47,"(45,50]",HS,56.6145,42.50529943502825,1.3319397993311037,6926.580567323869,2019
+1998,43,"(40,45]",College,280.611,123.81978531073446,2.266285628712624,5140.029966799727,2019
+1998,43,"(40,45]",College,318.901,123.81978531073446,2.5755253831178555,4918.7539233313555,2019
+1998,43,"(40,45]",College,271.5308,123.81978531073446,2.1929516298108123,6529.349770072853,2019
+1998,43,"(40,45]",College,297.021,125.66784180790961,2.36354023214637,5020.261596506982,2019
+1998,43,"(40,45]",College,276.9825666666667,123.81978531073446,2.236981480557081,6380.876899868392,2019
+1998,84,"(80,85]",HS,33040.80566666667,1716.8444858757061,19.24507777989783,13.03880004061325,2019
+1998,84,"(80,85]",HS,32734.121,1718.6925423728815,19.045943467472217,14.418271434568833,2019
+1998,84,"(80,85]",HS,37438.321,1739.021163841808,21.528387220597175,11.619529147179684,2019
+1998,84,"(80,85]",HS,32941.981,2494.87627118644,13.203853586027503,10.966092522025658,2019
+1998,84,"(80,85]",HS,34639.50433333334,1602.2649830508474,21.61908591884521,11.198182714031596,2019
+1998,74,"(70,75]",HS,28813.772,4934.310847457627,5.839472398632146,15.210363786456199,2019
+1998,74,"(70,75]",HS,29440.99866666667,4490.777288135593,6.555880369406941,16.54242337918642,2019
+1998,74,"(70,75]",HS,29314.459333333332,4804.946892655367,6.100891432981734,16.90726711735487,2019
+1998,74,"(70,75]",HS,28599.71266666667,5008.233107344633,5.710539436498045,15.401116629790682,2019
+1998,74,"(70,75]",HS,28937.75866666667,4749.5051977401135,6.0927943989693265,16.270747867357453,2019
+1998,66,"(65,70]",College,393.7306,83.16254237288136,4.734470457079152,6360.442175871502,2019
+1998,66,"(65,70]",College,334.81870000000004,83.16254237288136,4.026075808249722,6084.029566942765,2019
+1998,66,"(65,70]",College,363.8097,83.16254237288136,4.374682274247491,5633.291122641507,2019
+1998,66,"(65,70]",College,384.7780333333333,85.0105988700565,4.526236004071543,6180.800901330085,2019
+1998,66,"(65,70]",College,399.18236666666667,83.16254237288136,4.800026012634708,5617.801111705359,2019
+1998,72,"(70,75]",College,244.87366666666665,55.441694915254246,4.416778149386844,4315.365192887241,2019
+1998,72,"(70,75]",College,244.87366666666665,55.441694915254246,4.416778149386844,4288.984913136237,2019
+1998,72,"(70,75]",College,181.42166666666665,55.441694915254246,3.2722965440356737,4469.576665537584,2019
+1998,72,"(70,75]",College,191.997,55.441694915254246,3.4630434782608694,4546.338655709273,2019
+1998,72,"(70,75]",College,228.46366666666665,55.441694915254246,4.120791527313266,4398.8005806403535,2019
+1998,72,"(70,75]",College,1597.6593666666668,195.893988700565,8.155734523884647,2981.3149617673967,2019
+1998,72,"(70,75]",College,1688.0784666666666,79.46642937853107,21.242661585128722,3272.7054651540484,2019
+1998,72,"(70,75]",College,1692.2721333333334,114.57950282485875,14.769414176286547,3053.3295928549765,2019
+1998,72,"(70,75]",College,1717.2518,72.07420338983052,23.826164136866474,3031.358828657104,2019
+1998,72,"(70,75]",College,1488.4417,138.6042372881356,10.738789297658862,3128.809053997734,2019
+1998,28,"(25,30]",College,7.147466666666666,57.289751412429375,0.1247599525299385,7421.40638455983,2019
+1998,28,"(25,30]",College,7.147466666666666,57.289751412429375,0.1247599525299385,7423.5032134745325,2019
+1998,28,"(25,30]",College,7.147466666666666,57.289751412429375,0.1247599525299385,7551.477002708458,2019
+1998,28,"(25,30]",College,7.147466666666666,57.289751412429375,0.1247599525299385,7456.903963934668,2019
+1998,28,"(25,30]",College,7.147466666666666,57.289751412429375,0.1247599525299385,7505.003132444084,2019
+1998,72,"(70,75]",HS,248.15566666666666,40.65724293785311,6.103602918820309,2961.9593062225476,2019
+1998,72,"(70,75]",HS,215.88266666666667,40.65724293785311,5.30982061416844,2968.806136909083,2019
+1998,72,"(70,75]",HS,249.24966666666666,40.65724293785311,6.13051079355427,2899.2731960553324,2019
+1998,72,"(70,75]",HS,212.05366666666666,40.65724293785311,5.215643052599574,3032.8099253689907,2019
+1998,72,"(70,75]",HS,203.30166666666665,40.65724293785311,5.00038005472788,2820.04741644606,2019
+1998,54,"(50,55]",NoHS,7.840333333333334,40.65724293785311,0.19283976892672544,5597.045031112799,2019
+1998,54,"(50,55]",NoHS,1.4586666666666668,40.65724293785311,0.03587716631194892,5604.693512358023,2019
+1998,54,"(50,55]",NoHS,1.1851666666666667,40.65724293785311,0.029150197628458496,5570.132732479593,2019
+1998,54,"(50,55]",NoHS,1.4586666666666668,40.65724293785311,0.03587716631194892,5562.360712705258,2019
+1998,54,"(50,55]",NoHS,3.099666666666667,40.65724293785311,0.07623897841289146,5638.912319311847,2019
+1998,23,"(20,25]",College,0.18233333333333335,48.04946892655367,0.0037947002829945976,5755.912453881734,2019
+1998,23,"(20,25]",College,0.18233333333333335,48.04946892655367,0.0037947002829945976,5766.158243266424,2019
+1998,23,"(20,25]",College,0.18233333333333335,48.04946892655367,0.0037947002829945976,5815.097530271312,2019
+1998,23,"(20,25]",College,0.18233333333333335,48.04946892655367,0.0037947002829945976,5769.180922274954,2019
+1998,23,"(20,25]",College,0.18233333333333335,48.04946892655367,0.0037947002829945976,5702.783820442563,2019
+1998,64,"(60,65]",College,612736.2537666666,73053.67333333332,8.38748040732791,1.3755398392421485,2019
+1998,64,"(60,65]",College,698024.512,76121.44711864406,9.169879691226155,1.3310561704679393,2019
+1998,64,"(60,65]",College,621623.0163333333,69856.53559322032,8.898566341066344,1.283682963703911,2019
+1998,64,"(60,65]",College,622793.5781,67657.34836158193,9.205113608230658,1.2984065677975143,2019
+1998,64,"(60,65]",College,688699.7847666667,69413.00203389832,9.921769187137814,1.2016878665785116,2019
+1998,25,"(20,25]",NoHS,9.371933333333333,57.289751412429375,0.1635883051030316,5439.700621604325,2019
+1998,25,"(20,25]",NoHS,9.390166666666666,57.289751412429375,0.16390657028805697,5456.461176667915,2019
+1998,25,"(20,25]",NoHS,9.390166666666666,57.289751412429375,0.16390657028805697,5491.965122839175,2019
+1998,25,"(20,25]",NoHS,9.1896,57.289751412429375,0.16040565325277809,5434.241334905907,2019
+1998,25,"(20,25]",NoHS,9.1896,57.289751412429375,0.16040565325277809,5515.967511685421,2019
+1998,45,"(40,45]",College,3651.571433333333,1313.9681694915253,2.779041013410854,2259.6124020692982,2019
+1998,45,"(40,45]",College,4147.5181,924.0282485875706,4.48851872909699,2233.1780954924334,2019
+1998,45,"(40,45]",College,4297.3961,1295.4876045197743,3.3172035649025036,2107.3666185571624,2019
+1998,45,"(40,45]",College,4000.201883333333,1313.9681694915253,3.0443674178814524,2496.4341823908208,2019
+1998,45,"(40,45]",College,3744.02355,1070.0247118644068,3.49900661964753,2316.4227664162263,2019
+1998,34,"(30,35]",HS,3.756066666666667,29.56890395480226,0.12702759197324415,3980.5030260715916,2019
+1998,34,"(30,35]",HS,7.658,36.96112994350283,0.20719063545150498,4006.2704642179524,2019
+1998,34,"(30,35]",HS,8.296166666666666,42.50529943502825,0.19517958412098296,3968.356130379953,2019
+1998,34,"(30,35]",HS,14.3314,29.56890395480226,0.484678093645485,3993.365943738875,2019
+1998,34,"(30,35]",HS,20.5125,31.416960451977403,0.6529116663387763,3970.528439623967,2019
+1998,68,"(65,70]",College,16447.378333333334,480.4946892655367,34.23009390275277,36.88836299089857,2019
+1998,68,"(65,70]",College,13913.856666666667,578.4416836158192,24.05403528267815,40.05661956605624,2019
+1998,68,"(65,70]",College,13296.658333333335,578.4416836158192,22.9870334555013,40.88446930796607,2019
+1998,68,"(65,70]",College,16575.741,583.9858531073446,28.38380572372042,37.35501916474916,2019
+1998,68,"(65,70]",College,15757.976,583.9858531073446,26.98348926802422,39.56609925282097,2019
+1998,37,"(35,40]",HS,52.147333333333336,97.9469943502825,0.5324036095159967,5235.2491084145795,2019
+1998,37,"(35,40]",HS,53.9342,97.9469943502825,0.5506468101217895,5256.843004016274,2019
+1998,37,"(35,40]",HS,54.06183333333334,97.9469943502825,0.5519498958793463,5279.390779774705,2019
+1998,37,"(35,40]",HS,27.988166666666668,97.9469943502825,0.28574809112134786,5251.450360945875,2019
+1998,37,"(35,40]",HS,130.733,97.9469943502825,1.3347321259544394,5253.366029132231,2019
+1998,80,"(75,80]",HS,126.66696666666667,35.11307344632768,3.607401865868685,8481.160590728565,2019
+1998,80,"(75,80]",HS,105.60746666666667,35.11307344632768,3.007639500088013,8651.475200821315,2019
+1998,80,"(75,80]",HS,113.02843333333334,35.11307344632768,3.2189843337440593,9040.636549884846,2019
+1998,80,"(75,80]",HS,112.28086666666667,35.11307344632768,3.1976940679457844,8571.430805715148,2019
+1998,80,"(75,80]",HS,108.54303333333334,35.11307344632768,3.09124273895441,8954.994858096852,2019
+1998,55,"(50,55]",College,225.50986666666668,206.98232768361586,1.0895126612517916,8340.61231930776,2019
+1998,55,"(50,55]",College,219.85753333333332,206.98232768361586,1.062204371715241,8309.542907586021,2019
+1998,55,"(50,55]",College,249.50493333333333,206.98232768361586,1.2054407548972763,8804.951493236606,2019
+1998,55,"(50,55]",College,289.60003333333333,206.98232768361586,1.399153428093645,8152.982013512769,2019
+1998,55,"(50,55]",College,233.2955,206.98232768361586,1.1271276278069755,8619.442650662904,2019
+1998,59,"(55,60]",HS,691.0433333333334,147.84451977401133,4.674122073578594,6034.7024178696165,2019
+1998,59,"(55,60]",HS,692.8666666666667,147.84451977401133,4.686454849498327,5753.774786009524,2019
+1998,59,"(55,60]",HS,694.69,147.84451977401133,4.69878762541806,5386.159755186635,2019
+1998,59,"(55,60]",HS,693.049,147.84451977401133,4.6876881270903,5893.09454886045,2019
+1998,59,"(55,60]",HS,694.3253333333333,147.84451977401133,4.696321070234113,5372.223844820955,2019
+1998,51,"(50,55]",HS,1443.2412666666667,97.9469943502825,14.734921436233986,2318.8445469865287,2019
+1998,51,"(50,55]",HS,1724.3992666666666,114.57950282485875,15.049805804293882,2532.6768203494785,2019
+1998,51,"(50,55]",HS,1889.7391333333333,118.27561581920904,15.97741952341137,2358.8664482140325,2019
+1998,51,"(50,55]",HS,2261.9908666666665,92.40282485875707,24.47967224080267,2342.9300151675147,2019
+1998,51,"(50,55]",HS,1435.8385333333335,120.12367231638417,11.953002315410345,2419.240885339325,2019
+1998,85,"(80,85]",College,660.0466666666666,88.70671186440678,7.440774804905239,8095.413585557139,2019
+1998,85,"(80,85]",College,658.2233333333334,88.70671186440678,7.420220178372352,7765.128220611217,2019
+1998,85,"(80,85]",College,658.2233333333334,88.70671186440678,7.420220178372352,7246.541528286069,2019
+1998,85,"(80,85]",College,660.0466666666666,90.55476836158192,7.288922257866357,7890.806456220365,2019
+1998,85,"(80,85]",College,660.0466666666666,90.55476836158192,7.288922257866357,7226.453115917447,2019
+1998,44,"(40,45]",HS,306.22883333333334,133.06006779661018,2.301433017465626,7110.770598335958,2019
+1998,44,"(40,45]",HS,287.37556666666666,123.81978531073446,2.3209179853242152,7254.104410972779,2019
+1998,44,"(40,45]",HS,305.91886666666664,116.4275593220339,2.6275468492859795,7548.310760078811,2019
+1998,44,"(40,45]",HS,241.04466666666667,103.49116384180793,2.3291328236980404,7173.567971166635,2019
+1998,44,"(40,45]",HS,305.4995,134.9081242937853,2.2645003894259403,7470.332868192917,2019
+1998,74,"(70,75]",HS,500.3226666666667,22.176677966101696,22.560758082497212,6108.895961999516,2019
+1998,74,"(70,75]",HS,490.4766666666667,22.176677966101696,22.116778149386846,5883.220329960843,2019
+1998,74,"(70,75]",HS,493.2116666666667,22.176677966101696,22.24010590858417,5491.932834177552,2019
+1998,74,"(70,75]",HS,497.95233333333334,22.176677966101696,22.453874024526197,6005.649630894667,2019
+1998,74,"(70,75]",HS,490.659,22.176677966101696,22.125,5476.685874928731,2019
+1998,55,"(50,55]",College,370.6836666666667,85.0105988700565,4.360440599098444,7881.569395988212,2019
+1998,55,"(50,55]",College,370.6836666666667,86.85865536723163,4.267665267202733,7808.2662442345245,2019
+1998,55,"(50,55]",College,370.866,85.0105988700565,4.36258542969318,8221.191697524759,2019
+1998,55,"(50,55]",College,372.6893333333333,85.0105988700565,4.384033735640541,7718.931382640629,2019
+1998,55,"(50,55]",College,370.6836666666667,85.0105988700565,4.360440599098444,8135.55340618678,2019
+1998,74,"(70,75]",College,5548.768,18.480564971751416,300.2488294314381,1388.4900761687977,2019
+1998,74,"(70,75]",College,8347.584666666668,18.480564971751416,451.69531772575243,1444.489037070037,2019
+1998,74,"(70,75]",College,5222.391333333333,18.480564971751416,282.5882943143812,1568.2603547380227,2019
+1998,74,"(70,75]",College,5114.814666666667,18.480564971751416,276.7672240802675,1656.291731277642,2019
+1998,74,"(70,75]",College,6688.351333333333,18.480564971751416,361.91270903010025,1348.564197734558,2019
+1998,59,"(55,60]",HS,270.4003333333333,27.720847457627123,9.754403567447044,7994.272659494231,2019
+1998,59,"(55,60]",HS,272.77066666666667,27.720847457627123,9.839910813823856,7949.35596707785,2019
+1998,59,"(55,60]",HS,336.0403333333333,27.720847457627123,12.122296544035672,8432.278721127548,2019
+1998,59,"(55,60]",HS,289.5453333333333,27.720847457627123,10.445039018952059,7827.525413707435,2019
+1998,59,"(55,60]",HS,270.4003333333333,27.720847457627123,9.754403567447044,8308.824340495734,2019
+1998,41,"(40,45]",College,533.872,382.5476949152542,1.3955697736416073,2980.964361094103,2019
+1998,41,"(40,45]",College,535.6953333333333,382.5476949152542,1.400336063852132,3250.689724194131,2019
+1998,41,"(40,45]",College,533.872,382.5476949152542,1.3955697736416073,3034.0651320604425,2019
+1998,41,"(40,45]",College,535.6953333333333,382.5476949152542,1.400336063852132,3009.7926145579713,2019
+1998,41,"(40,45]",College,535.6953333333333,382.5476949152542,1.400336063852132,3106.8460694846576,2019
+1998,69,"(65,70]",HS,127058.98333333334,859.3462711864407,147.8553961232783,32.75797024958856,2019
+1998,69,"(65,70]",HS,128441.07,709.6536949152543,180.9911946070234,33.733308450685655,2019
+1998,69,"(65,70]",HS,134332.07766666665,571.0494576271187,235.23720384020083,36.11853352727931,2019
+1998,69,"(65,70]",HS,130745.76333333334,792.8162372881355,164.91307466223856,33.976031628799,2019
+1998,69,"(65,70]",HS,125896.06133333333,643.1236610169491,195.7571598815977,36.681252218847234,2019
+1998,35,"(30,35]",HS,0,8.870671186440678,0,4654.597205525467,2019
+1998,35,"(30,35]",HS,0,8.13144858757062,0,4659.425726252649,2019
+1998,35,"(30,35]",HS,0,9.05547683615819,0,4670.5459565705005,2019
+1998,35,"(30,35]",HS,0,8.501059887005649,0,4677.143560509094,2019
+1998,35,"(30,35]",HS,0,7.946642937853107,0,4654.987293142006,2019
+1998,25,"(20,25]",NoHS,0,4.06572429378531,0,4078.999617370242,2019
+1998,25,"(20,25]",NoHS,0,4.06572429378531,0,4049.5168278234305,2019
+1998,25,"(20,25]",NoHS,0,4.06572429378531,0,4071.569039468289,2019
+1998,25,"(20,25]",NoHS,0,4.06572429378531,0,4079.8893782744112,2019
+1998,25,"(20,25]",NoHS,0,4.06572429378531,0,4062.535582750679,2019
+1998,84,"(80,85]",NoHS,225.364,40.65724293785311,5.543022195196108,9238.845825236578,2019
+1998,84,"(80,85]",NoHS,356.097,42.50529943502825,8.377708303039116,9431.536744397314,2019
+1998,84,"(80,85]",NoHS,228.3178,46.201412429378536,4.941792642140467,9788.72699508339,2019
+1998,84,"(80,85]",NoHS,211.98073333333335,18.480564971751416,11.470468227424748,9390.541931859398,2019
+1998,84,"(80,85]",NoHS,216.97666666666666,46.201412429378536,4.696321070234113,9819.113879688313,2019
+1998,40,"(35,40]",HS,75.30366666666667,35.11307344632768,2.144604823094526,8357.767063001964,2019
+1998,40,"(35,40]",HS,73.11566666666667,35.11307344632768,2.082291850026404,8570.865915956387,2019
+1998,40,"(35,40]",HS,73.845,35.11307344632768,2.1030628410491112,8831.583425296461,2019
+1998,40,"(35,40]",HS,74.75666666666667,35.11307344632768,2.1290265798274954,8408.809403765177,2019
+1998,40,"(35,40]",HS,74.93900000000001,35.11307344632768,2.1342193275831725,8751.073284109481,2019
+1998,76,"(75,80]",College,9508.865666666667,295.68903954802266,32.15832984949832,2679.3987741086435,2019
+1998,76,"(75,80]",College,7829.5756666666675,238.39928813559317,32.84227787716161,2650.2112475921576,2019
+1998,76,"(75,80]",College,6837.682333333333,314.16960451977405,21.764302577218174,2562.8814713947713,2019
+1998,76,"(75,80]",College,9751.369,214.37455367231638,45.48753027332488,3024.7034180564006,2019
+1998,76,"(75,80]",College,8329.169,231.00706214689265,36.05590635451505,2743.0812517787103,2019
+1998,20,"(15,20]",HS,108.98063333333333,5.544169491525424,19.65680044593088,9902.380838337669,2019
+1998,20,"(15,20]",HS,120.1212,5.544169491525424,21.666220735785952,9989.23376243656,2019
+1998,20,"(15,20]",HS,112.08941666666668,5.544169491525424,20.21753065774805,10084.646208243634,2019
+1998,20,"(15,20]",HS,106.81086666666667,5.544169491525424,19.265440356744705,9925.068878677343,2019
+1998,20,"(15,20]",HS,101.49585,5.544169491525424,18.306772575250836,10030.953564816302,2019
+1998,59,"(55,60]",HS,8832.224843333333,92.40282485875707,95.58392675585283,11.149415382359729,2019
+1998,59,"(55,60]",HS,8820.920176666667,92.40282485875707,95.46158561872909,12.02738793032553,2019
+1998,59,"(55,60]",HS,8823.29051,92.40282485875707,95.48723779264213,11.592563698823714,2019
+1998,59,"(55,60]",HS,8826.207843333334,92.40282485875707,95.51880969899665,11.880775170467038,2019
+1998,59,"(55,60]",HS,8818.36751,92.40282485875707,95.43396020066889,12.650181453643658,2019
+1998,35,"(30,35]",NoHS,-6.199333333333334,27.720847457627123,-0.2236343366778149,4484.018449578648,2019
+1998,35,"(30,35]",NoHS,-6.199333333333334,27.720847457627123,-0.2236343366778149,4477.316095388104,2019
+1998,35,"(30,35]",NoHS,-6.381666666666667,27.720847457627123,-0.23021181716833888,4467.935423971611,2019
+1998,35,"(30,35]",NoHS,-6.017,27.720847457627123,-0.21705685618729095,4506.457000443364,2019
+1998,35,"(30,35]",NoHS,-6.017,27.720847457627123,-0.21705685618729095,4452.132248204738,2019
+1998,42,"(40,45]",HS,817.0539,60.98586440677967,13.397430830039523,4358.176212885896,2019
+1998,42,"(40,45]",HS,158.83056666666667,60.98586440677967,2.6043832978615584,5112.780785104886,2019
+1998,42,"(40,45]",HS,827.2463333333334,60.98586440677967,13.56455862977602,3881.171620737048,2019
+1998,42,"(40,45]",HS,126.59403333333334,60.98586440677967,2.0757930475321777,5139.8170852513495,2019
+1998,42,"(40,45]",HS,68.1015,60.98586440677967,1.11667680145941,5101.927451164765,2019
+1998,40,"(35,40]",College,2439.1641666666665,231.00706214689265,10.558829431438127,2813.640065069093,2019
+1998,40,"(35,40]",College,2660.8815,437.9893898305085,6.075219084712755,1027.2273025734107,2019
+1998,40,"(35,40]",College,2680.062966666667,192.1978757062147,13.944290262413173,939.7173320277941,2019
+1998,40,"(35,40]",College,2456.577,170.021197740113,14.448651301439583,2841.63937348264,2019
+1998,40,"(35,40]",College,2390.39,121.97172881355934,19.597902097902093,2932.6191826355966,2019
+1998,69,"(65,70]",HS,4903.492156666666,182.957593220339,26.80124978885848,2259.6124020692982,2019
+1998,69,"(65,70]",HS,4904.22149,182.957593220339,26.80523614067092,2233.1780954924334,2019
+1998,69,"(65,70]",HS,4903.67449,182.957593220339,26.802246376811595,2107.3666185571624,2019
+1998,69,"(65,70]",HS,4906.227156666667,182.957593220339,26.81619860815513,2496.4341823908208,2019
+1998,69,"(65,70]",HS,4900.210156666666,182.957593220339,26.783311205702507,2316.4227664162263,2019
+1998,71,"(70,75]",HS,96184.115333333335,2679.681920903955,35.89385538000231,216.3494530805865,2019
+1998,71,"(70,75]",HS,96022.02100000001,2956.8903954802263,32.473987249163876,204.9857309357115,2019
+1998,71,"(70,75]",HS,96229.88100000001,2716.6430508474577,35.42235001023821,209.28246857591245,2019
+1998,71,"(70,75]",HS,96022.75033333333,2550.3179661016948,37.651285686588146,209.30685466859205,2019
+1998,71,"(70,75]",HS,96701.75966666668,2864.487570621469,33.75883374689827,206.65821833083902,2019
+1998,50,"(45,50]",College,1378.9323000000002,312.3215480225989,4.415104589262037,3127.517221400414,2019
+1998,50,"(45,50]",College,1377.1454333333334,312.3215480225989,4.409383348835368,3415.9212536167724,2019
+1998,50,"(45,50]",College,1378.6405666666667,314.16960451977405,4.3882048003147744,3181.4963402183926,2019
+1998,50,"(45,50]",College,1378.1118000000001,312.3215480225989,4.412477489066117,3160.002243572089,2019
+1998,50,"(45,50]",College,1377.4736333333333,312.3215480225989,4.410434188913736,3262.925728008571,2019
+1998,56,"(55,60]",HS,2103.3973333333333,282.75264406779667,7.4390014645769105,224.08403724195492,2019
+1998,56,"(55,60]",HS,2355.0173333333337,415.8127118644068,5.6636492010405055,231.3780286282868,2019
+1998,56,"(55,60]",HS,1826.98,264.27207909604516,6.9132539701101585,221.84398758548713,2019
+1998,56,"(55,60]",HS,1809.8406666666667,236.55123163841807,7.650945861204014,229.95377679820118,2019
+1998,56,"(55,60]",HS,1808.0173333333332,199.59010169491523,9.058652297782732,221.81964880250513,2019
+1998,48,"(45,50]",College,1162.9949333333334,358.5229604519773,3.2438506361410897,2167.016403237648,2019
+1998,48,"(45,50]",College,1255.8390666666667,280.90458757062146,4.4706961802499565,2194.8699245281555,2019
+1998,48,"(45,50]",College,1250.4237666666666,267.96819209039546,4.666314150616999,2114.243715100212,2019
+1998,48,"(45,50]",College,1186.4794666666667,389.9399209039548,3.0427237711803956,2425.007752668748,2019
+1998,48,"(45,50]",College,1273.8353666666667,273.51236158192086,4.657322832866312,2262.7534325824445,2019
+1998,47,"(45,50]",College,357.00866666666667,325.2579435028249,1.0976170568561872,655.2035907399899,2019
+1998,47,"(45,50]",College,328.58290000000005,325.2579435028249,1.0102225220431742,630.4894470724765,2019
+1998,47,"(45,50]",College,355.53176666666667,325.2579435028249,1.093076352994831,619.4980079675395,2019
+1998,47,"(45,50]",College,357.7744666666667,325.2579435028249,1.0999714958954088,636.7930763324506,2019
+1998,47,"(45,50]",College,362.2781,325.2579435028249,1.1138178397689267,653.6167417051709,2019
+1998,34,"(30,35]",College,179.963,168.17314124293785,1.0701054798044765,6711.298583858816,2019
+1998,34,"(30,35]",College,175.95166666666665,166.32508474576272,1.0578781122259382,6692.412473065873,2019
+1998,34,"(30,35]",College,177.04566666666665,166.32508474576272,1.064455592716462,6751.980036651343,2019
+1998,34,"(30,35]",College,184.15666666666667,166.32508474576272,1.107209215904868,6735.221539817176,2019
+1998,34,"(30,35]",College,174.493,166.32508474576272,1.049108138238573,6778.673031305532,2019
+1998,42,"(40,45]",HS,17.850433333333335,33.265016949152546,0.5366127833519138,8195.108244790168,2019
+1998,42,"(40,45]",HS,88.6687,55.441694915254246,1.5993143812709028,8371.488007179569,2019
+1998,42,"(40,45]",HS,13.729700000000001,31.416960451977403,0.4370155420027543,8629.603878203476,2019
+1998,42,"(40,45]",NoHS,20.093133333333334,55.441694915254246,0.36241917502787063,8152.475165098695,2019
+1998,42,"(40,45]",HS,14.623133333333334,36.96112994350283,0.39563545150501667,8528.679499723792,2019
+1998,28,"(25,30]",NoHS,2.3703333333333334,0.8685865536723163,2.7289546716003703,3909.883975776514,2019
+1998,28,"(25,30]",NoHS,2.3703333333333334,0.8685865536723163,2.7289546716003703,3891.098890810329,2019
+1998,28,"(25,30]",NoHS,2.3703333333333334,0.8685865536723163,2.7289546716003703,3925.0443783478595,2019
+1998,28,"(25,30]",NoHS,2.3703333333333334,0.8501059887005651,2.7882797731568996,3890.4322605965804,2019
+1998,28,"(25,30]",NoHS,2.3703333333333334,0.8501059887005651,2.7882797731568996,3915.969690872446,2019
+1998,54,"(50,55]",College,23742.060933333334,569.2014011299434,41.71117795248231,343.99179330762587,2019
+1998,54,"(50,55]",College,23185.543133333333,617.2508700564972,37.56259287445176,348.940613035089,2019
+1998,54,"(50,55]",College,24253.360066666668,617.2508700564972,39.29254901568101,345.36455287264573,2019
+1998,54,"(50,55]",College,23156.807399999998,609.8586440677966,37.9707783520827,330.73850999473024,2019
+1998,54,"(50,55]",College,23886.5054,650.5158870056498,36.71932673304955,317.86447504065575,2019
+1998,52,"(50,55]",HS,285.44283333333334,203.28621468926553,1.404142596533901,5891.0602152429265,2019
+1998,52,"(50,55]",HS,285.44283333333334,203.28621468926553,1.404142596533901,5644.882739540428,2019
+1998,52,"(50,55]",HS,285.44283333333334,203.28621468926553,1.404142596533901,5260.437209737514,2019
+1998,52,"(50,55]",HS,285.44283333333334,203.28621468926553,1.404142596533901,5755.047571136058,2019
+1998,52,"(50,55]",HS,287.2661666666667,203.28621468926553,1.4131118881118885,5250.308750450524,2019
+1998,63,"(60,65]",HS,402.9566666666667,85.0105988700565,4.74007561436673,4852.621649980292,2019
+1998,63,"(60,65]",HS,410.25,59.13780790960452,6.937186454849498,4816.397752661394,2019
+1998,63,"(60,65]",HS,361.02,77.61837288135592,4.651218346870521,4976.967944500023,2019
+1998,63,"(60,65]",HS,421.19,68.37809039548021,6.159721594504204,4858.905399616852,2019
+1998,63,"(60,65]",HS,341.14566666666667,81.31448587570623,4.195386135603527,4881.747462573903,2019
+1998,58,"(55,60]",College,23936.72,1940.4593220338984,12.335594839942667,1137.361481989933,2019
+1998,58,"(55,60]",College,23934.896666666667,1940.4593220338984,12.334655199872591,1175.502057019537,2019
+1998,58,"(55,60]",College,23936.72,1940.4593220338984,12.335594839942667,1154.3887531924051,2019
+1998,58,"(55,60]",College,23936.72,1940.4593220338984,12.335594839942667,1214.7358267998663,2019
+1998,58,"(55,60]",College,23934.896666666667,1940.4593220338984,12.334655199872591,1202.1806832917837,2019
+1998,59,"(55,60]",NoHS,0.03646666666666667,18.11095367231638,0.002013514435874685,5799.9240494091955,2019
+1998,59,"(55,60]",NoHS,5.506466666666666,18.11095367231638,0.3040406798170774,5853.2314587697865,2019
+1998,59,"(55,60]",NoHS,0.03646666666666667,18.2957593220339,0.0019931759062193845,5971.586737708243,2019
+1998,59,"(55,60]",NoHS,0.03646666666666667,18.2957593220339,0.0019931759062193845,5756.626316645879,2019
+1998,59,"(55,60]",NoHS,0.03646666666666667,18.2957593220339,0.0019931759062193845,5960.21110967624,2019
+1998,32,"(30,35]",HS,109.52763333333333,112.73144632768363,0.97158013048961,5221.874241757736,2019
+1998,32,"(30,35]",HS,87.0277,66.53003389830509,1.308096432552954,5135.016128318215,2019
+1998,32,"(30,35]",HS,36.01083333333334,83.16254237288136,0.4330174656261613,5137.583172150191,2019
+1998,32,"(30,35]",HS,82.52406666666667,62.833920903954805,1.3133680897108007,5174.137685732227,2019
+1998,32,"(30,35]",HS,138.46393333333333,85.0105988700565,1.6287843536425766,5182.949674609464,2019
+1998,62,"(60,65]",College,233.55076666666668,36.96112994350283,6.3188210702341125,10069.931404285944,2019
+1998,62,"(60,65]",College,208.93576666666667,149.69257627118645,1.3957657211280399,10033.280279720842,2019
+1998,62,"(60,65]",College,226.7862,49.89752542372881,4.545039018952063,10481.111565493595,2019
+1998,62,"(60,65]",College,232.60263333333333,125.66784180790961,1.8509320283297264,9918.067474872536,2019
+1998,62,"(60,65]",College,236.46810000000002,62.833920903954805,3.763382844776707,10398.997668365098,2019
+1998,71,"(70,75]",NoHS,1.3675,1.8480564971751412,0.7399665551839465,3921.222099230792,2019
+1998,71,"(70,75]",NoHS,1.3492666666666666,1.8480564971751412,0.7301003344481605,3950.8128508853856,2019
+1998,71,"(70,75]",NoHS,15.006033333333333,1.8480564971751412,8.11989966555184,3974.902700232954,2019
+1998,71,"(70,75]",NoHS,1.3675,2.032862146892655,0.6726968683490423,3931.789583795643,2019
+1998,71,"(70,75]",NoHS,1.3310333333333333,1.8480564971751412,0.7202341137123746,3968.5877595543193,2019
+1998,31,"(30,35]",NoHS,17.139333333333333,77.61837288135592,0.2208154164675904,8874.923491519805,2019
+1998,31,"(30,35]",NoHS,13.128,77.61837288135592,0.1691352126134735,8968.456044086552,2019
+1998,31,"(30,35]",NoHS,16.592333333333332,77.61837288135592,0.213768115942029,9246.410735851769,2019
+1998,31,"(30,35]",NoHS,12.945666666666666,77.61837288135592,0.16678611243828637,8869.292757427924,2019
+1998,31,"(30,35]",NoHS,16.592333333333332,77.61837288135592,0.213768115942029,9196.08651555837,2019
+1998,32,"(30,35]",College,0.20056666666666667,162.62897175141245,0.001233277591973244,5799.892806780327,2019
+1998,32,"(30,35]",College,2.5526666666666666,162.62897175141245,0.015696260261477652,5817.064622447312,2019
+1998,32,"(30,35]",College,1.7139333333333335,162.62897175141245,0.010538917604134996,5817.35444864901,2019
+1998,32,"(30,35]",College,3.282,162.62897175141245,0.020180906050471265,5846.310527139527,2019
+1998,32,"(30,35]",College,1.0575333333333332,162.62897175141245,0.00650273639404074,5824.122509098832,2019
+1998,36,"(35,40]",HS,185.45123333333333,96.09893785310734,1.9297948289169025,7002.483708420163,2019
+1998,36,"(35,40]",HS,210.46736666666666,96.09893785310734,2.1901112683303317,7138.210990594196,2019
+1998,36,"(35,40]",HS,202.0071,96.09893785310734,2.102074221764857,7478.602280180979,2019
+1998,36,"(35,40]",HS,178.23083333333335,96.09893785310734,1.8546597633136097,7024.182022308514,2019
+1998,36,"(35,40]",HS,193.6744666666667,96.09893785310734,2.015365320298431,7308.544068451311,2019
+1998,52,"(50,55]",HS,37.37833333333334,42.50529943502825,0.8793805438417915,4825.534260782442,2019
+1998,52,"(50,55]",HS,37.37833333333334,42.50529943502825,0.8793805438417915,4823.911951554858,2019
+1998,52,"(50,55]",HS,37.37833333333334,42.50529943502825,0.8793805438417915,4847.103794496681,2019
+1998,52,"(50,55]",HS,37.37833333333334,42.50529943502825,0.8793805438417915,4793.175305116468,2019
+1998,52,"(50,55]",HS,37.37833333333334,42.50529943502825,0.8793805438417915,4806.523643387909,2019
+1998,80,"(75,80]",NoHS,117.96966666666667,49.89752542372881,2.3642388207605602,10849.975265641437,2019
+1998,80,"(75,80]",NoHS,101.55966666666667,86.85865536723163,1.169252116985697,11077.598971187726,2019
+1998,80,"(75,80]",NoHS,103.383,73.92225988700567,1.3985367892976586,11571.361396573213,2019
+1998,80,"(75,80]",NoHS,105.20633333333333,46.201412429378536,2.277123745819398,10929.585589836726,2019
+1998,80,"(75,80]",NoHS,125.263,55.441694915254246,2.259364548494983,11644.463704841914,2019
+1998,70,"(65,70]",College,3177.3406666666665,890.7632316384181,3.566986774726266,166.29543342112322,2019
+1998,70,"(65,70]",College,3614.7583333333337,1254.830361581921,2.8806749055516425,166.10121731105176,2019
+1998,70,"(65,70]",College,4154.647333333333,1273.3109265536725,3.2628694584269766,157.86925679183383,2019
+1998,70,"(65,70]",College,3299.504,731.830372881356,4.508563899868247,174.67710074792583,2019
+1998,70,"(65,70]",College,3395.9583333333335,1241.8939661016948,2.734499422678771,163.92567414901708,2019
+1998,40,"(35,40]",College,44.76283333333334,29.56890395480226,1.5138482441471575,6633.643120363131,2019
+1998,40,"(35,40]",College,47.862500000000004,29.56890395480226,1.6186768394648832,6666.0661587185,2019
+1998,40,"(35,40]",College,42.027833333333334,29.56890395480226,1.421352424749164,6649.107194602839,2019
+1998,40,"(35,40]",College,42.210166666666666,29.56890395480226,1.4275188127090301,6692.200070724344,2019
+1998,40,"(35,40]",College,42.027833333333334,29.56890395480226,1.421352424749164,6637.494046617886,2019
+1998,64,"(60,65]",College,20075.629333333334,746.6148248587571,26.88887049240041,186.39066253227105,2019
+1998,64,"(60,65]",College,13305.592666666666,778.0317853107346,17.1016055100533,160.64717240411966,2019
+1998,64,"(60,65]",College,11896.156,480.4946892655367,24.758142526369955,149.95879773770454,2019
+1998,64,"(60,65]",College,11422.089333333333,480.4946892655367,23.771520452791357,164.60121593974128,2019
+1998,64,"(60,65]",College,13507.982666666667,480.4946892655367,28.112657576537178,157.58918020816802,2019
+1998,52,"(50,55]",College,977.1243333333334,166.32508474576272,5.874786324786325,9170.84060388686,2019
+1998,52,"(50,55]",College,977.3066666666666,249.487627118644,3.917255047689831,8752.578482122193,2019
+1998,52,"(50,55]",College,977.3066666666666,170.021197740113,5.7481459938926855,8833.70998488213,2019
+1998,52,"(50,55]",College,977.3066666666666,120.12367231638417,8.135837406740416,8833.687828558885,2019
+1998,52,"(50,55]",College,977.1243333333334,134.9081242937853,7.242887249736566,9152.799679725409,2019
+1998,39,"(35,40]",NoHS,281.4132666666667,166.32508474576272,1.6919472315124489,6515.43020138527,2019
+1998,39,"(35,40]",NoHS,281.21270000000004,166.32508474576272,1.6907413600891863,6233.404080753084,2019
+1998,39,"(35,40]",NoHS,281.4132666666667,166.32508474576272,1.6919472315124489,5820.968932286245,2019
+1998,39,"(35,40]",NoHS,281.57736666666665,166.32508474576272,1.6929338535860272,6361.846114618651,2019
+1998,39,"(35,40]",NoHS,281.21270000000004,166.32508474576272,1.6907413600891863,5801.894360948251,2019
+1998,32,"(30,35]",HS,115.00675,92.40282485875707,1.2446237458193978,8385.229615474944,2019
+1998,32,"(30,35]",HS,116.65686666666667,92.40282485875707,1.2624816053511705,8442.225472385851,2019
+1998,32,"(30,35]",HS,116.83008333333333,92.40282485875707,1.2643561872909699,8639.32073647714,2019
+1998,32,"(30,35]",HS,115.01586666666667,92.40282485875707,1.2447224080267558,8381.819010118912,2019
+1998,32,"(30,35]",HS,114.82441666666668,92.40282485875707,1.242650501672241,8629.133059717631,2019
+1998,39,"(35,40]",HS,101.92433333333334,120.12367231638417,0.8484949832775921,8152.650005324324,2019
+1998,39,"(35,40]",HS,105.55276666666667,120.12367231638417,0.878700797530229,8264.16123953428,2019
+1998,39,"(35,40]",HS,68.01033333333334,120.12367231638417,0.566169282222794,8603.202939012095,2019
+1998,39,"(35,40]",HS,211.32433333333336,120.12367231638417,1.7592230511962956,8193.479585068677,2019
+1998,39,"(35,40]",HS,127.43276666666667,120.12367231638417,1.0608464111139697,8499.056348087215,2019
+1998,23,"(20,25]",HS,-72.33163333333333,49.89752542372881,-1.4496036169949214,7725.473195129825,2019
+1998,23,"(20,25]",HS,-73.15213333333334,49.89752542372881,-1.4660473182212315,7770.08957363513,2019
+1998,23,"(20,25]",HS,-72.69630000000001,49.89752542372881,-1.4569119286510595,7897.706701856985,2019
+1998,23,"(20,25]",HS,-73.18860000000001,49.89752542372881,-1.4667781493868453,7727.321667330527,2019
+1998,23,"(20,25]",HS,-72.98803333333335,49.89752542372881,-1.4627585779759698,7789.418670415302,2019
+1998,60,"(55,60]",HS,3484.6635,110.88338983050849,31.426379598662205,3053.815908906566,2019
+1998,60,"(55,60]",HS,3482.6578333333337,110.88338983050849,31.408291527313263,3004.196222650102,2019
+1998,60,"(55,60]",HS,3482.8401666666664,110.88338983050849,31.40993589743589,3374.233199912076,2019
+1998,60,"(55,60]",HS,3482.8401666666664,110.88338983050849,31.40993589743589,3865.3600326203864,2019
+1998,60,"(55,60]",HS,3484.6635,110.88338983050849,31.426379598662205,3104.0535794513457,2019
+1998,62,"(60,65]",HS,728.4216666666666,260.5759661016949,2.7954292084726866,673.4576325994283,2019
+1998,62,"(60,65]",HS,726.5983333333334,240.24734463276835,3.0243761255466945,622.5880090595396,2019
+1998,62,"(60,65]",HS,728.4216666666666,194.04593220338984,3.753862079949036,641.6753075665737,2019
+1998,62,"(60,65]",HS,724.775,214.37455367231638,3.3808816745473416,707.0445750019015,2019
+1998,62,"(60,65]",HS,724.775,229.1590056497175,3.1627602761894487,700.5354038280645,2019
+1998,34,"(30,35]",College,3.6466666666666665,35.11307344632768,0.10385495511353635,5246.238075405425,2019
+1998,34,"(30,35]",College,3.6466666666666665,24.024734463276836,0.1517880113197839,5225.448952579922,2019
+1998,34,"(30,35]",College,3.6466666666666665,49.89752542372881,0.07308311656137743,5215.235754077718,2019
+1998,34,"(30,35]",College,3.6466666666666665,62.833920903954805,0.05803659256344678,5241.070610961911,2019
+1998,34,"(30,35]",College,3.6466666666666665,59.13780790960452,0.06166387959866221,5229.660348170644,2019
+1998,30,"(25,30]",NoHS,-17.483943333333333,40.65724293785311,-0.43003268470659767,4022.4132242936553,2019
+1998,30,"(25,30]",NoHS,-17.483943333333333,40.65724293785311,-0.43003268470659767,4034.3224337782244,2019
+1998,30,"(25,30]",NoHS,-17.483943333333333,40.65724293785311,-0.43003268470659767,4034.523437621798,2019
+1998,30,"(25,30]",NoHS,-17.84861,40.65724293785311,-0.4390019762845849,4054.605414465882,2019
+1998,30,"(25,30]",NoHS,-17.66627666666667,40.65724293785311,-0.4345173304955913,4039.217306416124,2019
+1998,92,"(90,95]",HS,283.71066666666667,15.708480225988701,18.06098760574464,10568.338265566275,2019
+1998,92,"(90,95]",HS,282.799,15.708480225988701,18.00295101318119,10788.75787781166,2019
+1998,92,"(90,95]",HS,283.1636666666667,15.708480225988701,18.026165650206572,11197.348676469805,2019
+1998,92,"(90,95]",HS,282.252,15.708480225988701,17.968129057643125,10741.863811796322,2019
+1998,92,"(90,95]",HS,283.5283333333333,15.708480225988701,18.049380287231948,11232.108307858425,2019
+1998,46,"(45,50]",College,178.74136666666666,182.957593220339,0.9769551704334313,2324.2757616962067,2019
+1998,46,"(45,50]",College,121.61633333333333,157.08480225988703,0.77420814479638,2420.2642356842525,2019
+1998,46,"(45,50]",College,125.17183333333332,140.45229378531073,0.8912053335680338,2309.877458165661,2019
+1998,46,"(45,50]",College,153.32410000000002,144.14840677966103,1.0636544893233857,2265.8185073899886,2019
+1998,46,"(45,50]",College,152.86826666666667,142.30035028248585,1.0742648655692135,2370.391883538994,2019
+1998,84,"(80,85]",NoHS,49.047666666666665,4.435335593220339,11.058389074693423,7878.284153537779,2019
+1998,84,"(80,85]",NoHS,48.86533333333334,4.435335593220339,11.01727982162765,7894.442143215182,2019
+1998,84,"(80,85]",NoHS,49.047666666666665,4.435335593220339,11.058389074693423,7901.8093689099405,2019
+1998,84,"(80,85]",NoHS,49.047666666666665,4.435335593220339,11.058389074693423,7847.263959085733,2019
+1998,84,"(80,85]",NoHS,48.86533333333334,4.435335593220339,11.01727982162765,7900.853244562214,2019
+1998,63,"(60,65]",College,1333.9506666666668,133.06006779661018,10.02517651430695,3429.7945538104964,2019
+1998,63,"(60,65]",College,1323.0106666666668,133.06006779661018,9.942958008175399,3726.9959391003017,2019
+1998,63,"(60,65]",College,1319.364,134.9081242937853,9.77972236221194,3487.249947471007,2019
+1998,63,"(60,65]",College,1345.073,134.9081242937853,9.97028909149219,3462.390548231832,2019
+1998,63,"(60,65]",College,1335.7740000000001,133.06006779661018,10.038879598662207,3572.8995264499413,2019
+1998,77,"(75,80]",College,107086.19,8796.748926553671,12.173382563727834,17.65514345863118,2019
+1998,77,"(75,80]",College,108847.53,3326.5016949152546,32.72132107023411,18.212895568678366,2019
+1998,77,"(75,80]",College,106703.29000000001,4952.791412429378,21.544071032795888,19.6756376232697,2019
+1998,77,"(75,80]",College,106719.7,3603.7101694915254,29.613841008489835,18.30449983333552,2019
+1998,77,"(75,80]",College,106604.83,7281.3425988700565,14.640820501502471,19.64463151203668,2019
+1998,61,"(60,65]",HS,9.116666666666665,11.827561581920904,0.7707984949832775,8673.534894483193,2019
+1998,61,"(60,65]",HS,9.116666666666665,11.827561581920904,0.7707984949832775,8569.179089636385,2019
+1998,61,"(60,65]",HS,9.116666666666665,11.827561581920904,0.7707984949832775,9028.973116446983,2019
+1998,61,"(60,65]",HS,9.116666666666665,11.827561581920904,0.7707984949832775,8601.440640839308,2019
+1998,61,"(60,65]",HS,9.116666666666665,11.827561581920904,0.7707984949832775,8965.474869563739,2019
+1998,26,"(25,30]",NoHS,-0.7293333333333334,36.96112994350283,-0.019732441471571903,4654.451917344992,2019
+1998,26,"(25,30]",NoHS,-0.7293333333333334,36.96112994350283,-0.019732441471571903,4664.688084823889,2019
+1998,26,"(25,30]",NoHS,-0.7293333333333334,36.96112994350283,-0.019732441471571903,4696.878589001155,2019
+1998,26,"(25,30]",NoHS,-0.7293333333333334,36.96112994350283,-0.019732441471571903,4665.042029025743,2019
+1998,26,"(25,30]",NoHS,-0.7293333333333334,36.96112994350283,-0.019732441471571903,4643.38356543593,2019
+1998,77,"(75,80]",College,26560.77016666667,1352.7773559322034,19.634251009741032,15.461122807023534,2019
+1998,77,"(75,80]",College,25986.1102,1594.872757062147,16.293531935342603,17.11080061364524,2019
+1998,77,"(75,80]",College,24772.080166666667,1591.1766440677966,15.568403582984708,14.131132046699694,2019
+1998,77,"(75,80]",College,24294.366833333333,1563.4557966101693,15.538889481882084,13.286622082032142,2019
+1998,77,"(75,80]",College,25508.889166666668,1480.2932542372882,17.232321429317032,13.260759435712192,2019
+1998,33,"(30,35]",NoHS,0,27.720847457627123,0,5616.7338842328345,2019
+1998,33,"(30,35]",NoHS,0,27.720847457627123,0,5611.248128075585,2019
+1998,33,"(30,35]",NoHS,0,27.720847457627123,0,5632.357788832273,2019
+1998,33,"(30,35]",NoHS,0,27.720847457627123,0,5610.945527730405,2019
+1998,33,"(30,35]",NoHS,0,27.720847457627123,0,5628.270285351346,2019
+1998,54,"(50,55]",College,4436.607599999999,317.8657175141243,13.957490083223144,3367.3833616380807,2019
+1998,54,"(50,55]",College,4436.425266666667,319.71377401129945,13.876240648017477,3623.8764854168826,2019
+1998,54,"(50,55]",College,4436.7899333333335,319.71377401129945,13.877381251570746,3484.9668742741787,2019
+1998,54,"(50,55]",College,4436.607599999999,317.8657175141243,13.957490083223144,4087.8618361036074,2019
+1998,54,"(50,55]",College,4436.607599999999,317.8657175141243,13.957490083223144,3268.9642418434514,2019
+1998,73,"(70,75]",College,349.1683333333333,94.25088135593221,3.7046691586333522,685.9074235064646,2019
+1998,73,"(70,75]",College,354.6383333333333,94.25088135593221,3.7627057511967994,662.0278646500012,2019
+1998,73,"(70,75]",College,344.9746666666667,94.25088135593221,3.6601744376680436,640.9942444860544,2019
+1998,73,"(70,75]",College,338.2283333333333,94.25088135593221,3.5885959735064588,750.3675540794948,2019
+1998,73,"(70,75]",College,381.98833333333334,94.25088135593221,4.052888714014034,686.4755148597836,2019
+1998,44,"(40,45]",HS,135.14729,64.68197740112994,2.0894118490205447,6624.028132553055,2019
+1998,44,"(40,45]",HS,130.76217333333335,64.68197740112994,2.0216168179646443,6714.631010392784,2019
+1998,44,"(40,45]",HS,145.34884,64.68197740112994,2.247130434782609,6990.102391352704,2019
+1998,44,"(40,45]",HS,95.58095666666667,64.68197740112994,1.4777061634018156,6657.202166111498,2019
+1998,44,"(40,45]",HS,100.50395666666667,64.68197740112994,1.5538170090778787,6905.483286185023,2019
+1998,85,"(80,85]",College,2168.308,96.09893785310734,22.563287882685877,3937.478059906914,2019
+1998,85,"(80,85]",College,2168.308,99.79505084745762,21.727610553697513,4304.912089374519,2019
+1998,85,"(80,85]",College,2168.308,147.84451977401133,14.666137123745816,4015.372329705835,2019
+1998,85,"(80,85]",College,2168.308,160.78091525423727,13.486103102295008,3968.626444732619,2019
+1998,85,"(80,85]",College,2168.308,168.17314124293785,12.893307361534786,4113.774929363466,2019
+1998,67,"(65,70]",NoHS,178.46786666666668,22.176677966101696,8.047547380156075,10225.751941992974,2019
+1998,67,"(65,70]",NoHS,163.15186666666668,22.176677966101696,7.356911928651059,10190.166585793328,2019
+1998,67,"(65,70]",NoHS,188.86086666666668,22.176677966101696,8.516192865105909,9645.872566340015,2019
+1998,67,"(65,70]",NoHS,164.61053333333334,22.176677966101696,7.422686733556298,10185.779074543352,2019
+1998,67,"(65,70]",NoHS,184.6672,22.176677966101696,8.327090301003345,9560.771522161695,2019
+1998,42,"(40,45]",HS,132.55633333333336,120.12367231638417,1.103498842294829,6148.195550350158,2019
+1998,42,"(40,45]",HS,113.41133333333333,120.12367231638417,0.9441214304090558,6102.926027314546,2019
+1998,42,"(40,45]",HS,125.263,120.12367231638417,1.0427836377669155,6104.62492683559,2019
+1998,42,"(40,45]",HS,115.23466666666667,120.12367231638417,0.9593002315410343,6207.216803159686,2019
+1998,42,"(40,45]",HS,110.67633333333333,120.12367231638417,0.9213532287110883,6080.506571479207,2019
+1998,63,"(60,65]",HS,185.90706666666668,29.56890395480226,6.287249163879599,7762.980972741336,2019
+1998,63,"(60,65]",HS,156.7155,25.872790960451983,6.057154801720017,7690.7807618803545,2019
+1998,63,"(60,65]",HS,158.5206,57.289751412429375,2.766997518610422,8097.493216722697,2019
+1998,63,"(60,65]",HS,178.41316666666665,24.024734463276836,7.426228453820427,7602.79005902504,2019
+1998,63,"(60,65]",HS,164.647,36.96112994350283,4.454598662207356,8013.1434644343735,2019
+1998,62,"(60,65]",College,3592.149,462.0141242937853,7.774976588628762,11.333225350380904,2019
+1998,62,"(60,65]",College,3962.2856666666667,462.0141242937853,8.576113712374582,12.440634123637386,2019
+1998,62,"(60,65]",College,3892.9990000000003,462.0141242937853,8.426147157190636,9.689090924677142,2019
+1998,62,"(60,65]",College,10819.842333333334,462.0141242937853,23.41885618729097,10.24960550108709,2019
+1998,62,"(60,65]",College,4009.8746666666666,462.0141242937853,8.679117056856187,10.309975573490402,2019
+1998,39,"(35,40]",College,110706.783,15431.271751412429,7.174184006568802,17.65514345863118,2019
+1998,39,"(35,40]",College,106633.274,17778.30350282486,5.997944291088104,18.212895568678366,2019
+1998,39,"(35,40]",College,109180.47066666668,16761.87242937853,6.513620189311672,19.6756376232697,2019
+1998,39,"(35,40]",College,106795.55066666668,16650.989039548025,6.413766198092792,18.30449983333552,2019
+1998,39,"(35,40]",College,104941.403,18905.617966101694,5.550805225629911,19.64463151203668,2019
+1998,52,"(50,55]",College,73.27976666666666,33.265016949152546,2.202907840951319,10966.475585934553,2019
+1998,52,"(50,55]",College,60.47996666666667,36.96112994350283,1.6363127090301,11332.37952417174,2019
+1998,52,"(50,55]",College,92.97176666666667,27.720847457627123,3.353857302118171,11695.59672316449,2019
+1998,52,"(50,55]",College,78.18453333333335,35.11307344632768,2.2266502376342197,10860.171524909425,2019
+1998,52,"(50,55]",College,65.9682,36.96112994350283,1.7847993311036785,11740.189305270427,2019
+1998,68,"(65,70]",College,0.6928666666666667,81.31448587570623,0.008520826999087868,5406.707028470129,2019
+1998,68,"(65,70]",College,0.4740666666666667,92.40282485875707,0.005130434782608695,5705.964164011763,2019
+1998,68,"(65,70]",College,1.9692,85.0105988700565,0.02316417042314963,5627.336802810129,2019
+1998,68,"(65,70]",College,0.8569666666666668,66.53003389830509,0.012880899293942772,5494.51163266085,2019
+1998,68,"(65,70]",College,0,57.289751412429375,0,5615.575361885244,2019
+1998,38,"(35,40]",HS,7.475666666666667,44.35335593220339,0.1685479375696767,6067.748263463799,2019
+1998,38,"(35,40]",HS,7.475666666666667,44.35335593220339,0.1685479375696767,6079.7690397583065,2019
+1998,38,"(35,40]",HS,7.293333333333333,44.35335593220339,0.1644370122630992,6069.014203296969,2019
+1998,38,"(35,40]",HS,7.475666666666667,44.35335593220339,0.1685479375696767,6065.598912157542,2019
+1998,38,"(35,40]",HS,7.4939,44.35335593220339,0.16895903010033445,6097.759453901768,2019
+1998,75,"(70,75]",HS,331.3908333333333,57.289751412429375,5.7844697378357965,7925.870083544581,2019
+1998,75,"(70,75]",HS,341.78383333333335,59.13780790960452,5.779447115384616,7600.801769146116,2019
+1998,75,"(70,75]",HS,345.9775,59.13780790960452,5.8503605769230775,7094.829174794581,2019
+1998,75,"(70,75]",HS,355.8235,59.13780790960452,6.016853051839465,7725.04762589687,2019
+1998,75,"(70,75]",HS,346.3421666666667,59.13780790960452,5.856526964882944,7076.015628748437,2019
+1998,52,"(50,55]",HS,235.02766666666668,116.4275593220339,2.0186600838774753,5309.824050559504,2019
+1998,52,"(50,55]",HS,232.475,116.4275593220339,1.996735148909062,5409.423016155485,2019
+1998,52,"(50,55]",HS,225.911,116.4275593220339,1.9403567447045709,5642.409535234559,2019
+1998,52,"(50,55]",HS,258.91333333333336,116.4275593220339,2.223814832510485,5295.14666544158,2019
+1998,52,"(50,55]",HS,242.50333333333336,116.4275593220339,2.082868821999257,5555.877995503036,2019
+1998,34,"(30,35]",HS,571.7973333333334,924.0282485875706,0.6188093645484951,482.7959590041108,2019
+1998,34,"(30,35]",HS,571.7973333333334,924.0282485875706,0.6188093645484951,465.4690144757128,2019
+1998,34,"(30,35]",HS,575.444,924.0282485875706,0.6227558528428093,463.6766632134039,2019
+1998,34,"(30,35]",HS,575.444,924.0282485875706,0.6227558528428093,463.6571470801667,2019
+1998,34,"(30,35]",HS,571.7973333333334,924.0282485875706,0.6188093645484951,479.1921436520803,2019
+1998,46,"(45,50]",HS,1058.445,127.51589830508476,8.300494401628615,5068.246958327712,2019
+1998,46,"(45,50]",HS,1063.0033333333333,77.61837288135592,13.695254021340979,4857.6530425440915,2019
+1998,46,"(45,50]",HS,1058.992,66.53003389830509,15.917502787068003,4525.538937989451,2019
+1998,46,"(45,50]",HS,1068.6374333333333,110.88338983050849,9.63748885172798,4952.6068980263535,2019
+1998,46,"(45,50]",HS,1066.6864666666665,79.46642937853107,13.423108034533715,4517.241702321602,2019
+1998,62,"(60,65]",College,1655.222,258.72790960451977,6.3975394171046345,1064.6480401111003,2019
+1998,62,"(60,65]",College,1645.923,258.72790960451977,6.361598184424271,1126.845814155076,2019
+1998,62,"(60,65]",College,1646.1053333333332,258.72790960451977,6.362302914476827,1058.1168742140244,2019
+1998,62,"(60,65]",College,1642.4586666666669,258.72790960451977,6.3482083134257055,1128.3535256348455,2019
+1998,62,"(60,65]",College,1662.5153333333333,258.72790960451977,6.42572861920688,1068.0807976427473,2019
+1998,22,"(20,25]",College,-12.034,12.012367231638418,-1.0018008747105738,4841.908776079167,2019
+1998,22,"(20,25]",College,-12.034,38.80918644067796,-0.31008122312470143,4823.382350105256,2019
+1998,22,"(20,25]",College,-12.034,31.416960451977403,-0.3830415109187488,4833.396961607281,2019
+1998,22,"(20,25]",College,-12.034,15.338868926553674,-0.7845428536890034,4862.308489538521,2019
+1998,22,"(20,25]",College,-12.034,35.11307344632768,-0.34272135187467,4791.621215779124,2019
+1998,42,"(40,45]",HS,784.2156666666666,192.1978757062147,4.080251479289941,5164.991943720177,2019
+1998,42,"(40,45]",HS,784.2156666666666,192.1978757062147,4.080251479289941,4941.907013304315,2019
+1998,42,"(40,45]",HS,784.2156666666666,190.34981920903957,4.119865571321881,4614.7286111249905,2019
+1998,42,"(40,45]",HS,786.039,192.1978757062147,4.089738229997427,5044.62676181761,2019
+1998,42,"(40,45]",HS,786.2213333333334,192.1978757062147,4.090686905068177,4600.215160046746,2019
+1998,26,"(25,30]",HS,51.3086,73.92225988700567,0.6940886287625416,6815.210723336721,2019
+1998,26,"(25,30]",HS,51.3086,73.92225988700567,0.6940886287625416,6795.216186681876,2019
+1998,26,"(25,30]",HS,51.3086,73.92225988700567,0.6940886287625416,6811.718063002498,2019
+1998,26,"(25,30]",HS,51.49093333333334,73.92225988700567,0.6965551839464882,6901.168039192725,2019
+1998,26,"(25,30]",HS,51.3086,73.92225988700567,0.6940886287625416,6816.810913971172,2019
+1998,80,"(75,80]",NoHS,21.88,10.533922033898305,2.077099102270727,6758.86416163963,2019
+1998,80,"(75,80]",NoHS,21.88,10.533922033898305,2.077099102270727,6807.002445062094,2019
+1998,80,"(75,80]",NoHS,21.88,10.533922033898305,2.077099102270727,6814.744253850792,2019
+1998,80,"(75,80]",NoHS,21.88,10.533922033898305,2.077099102270727,6744.118837772968,2019
+1998,80,"(75,80]",NoHS,21.88,10.533922033898305,2.077099102270727,6814.135684002744,2019
+1998,31,"(30,35]",HS,0,27.720847457627123,0,4282.9496011077335,2019
+1998,31,"(30,35]",HS,0,27.720847457627123,0,4251.992672062847,2019
+1998,31,"(30,35]",HS,0,27.720847457627123,0,4275.147494305459,2019
+1998,31,"(30,35]",HS,0,29.56890395480226,0,4283.88385005774,2019
+1998,31,"(30,35]",HS,0,27.720847457627123,0,4265.662364745613,2019
+1998,79,"(75,80]",College,12698.258566666667,205.13427118644066,61.902179939136474,12.721433128327465,2019
+1998,79,"(75,80]",College,13174.495,306.77737853107345,42.944805979771935,13.57336395888188,2019
+1998,79,"(75,80]",College,2153.3566666666666,323.40988700564975,6.658289536550405,9.691887690674303,2019
+1998,79,"(75,80]",College,7041.713333333333,1099.593615819209,6.403923442286614,13.859521983272524,2019
+1998,79,"(75,80]",College,12028.438833333334,186.65370621468927,64.44253948806252,14.436668171043834,2019
+1998,61,"(60,65]",College,621.2096666666666,66.53003389830509,9.337281679672982,6835.224155218295,2019
+1998,61,"(60,65]",College,623.033,66.53003389830509,9.3646878483835,6517.0306135662095,2019
+1998,61,"(60,65]",College,623.033,66.53003389830509,9.3646878483835,6100.650324281128,2019
+1998,61,"(60,65]",College,621.2096666666666,66.53003389830509,9.337281679672982,6674.831569172253,2019
+1998,61,"(60,65]",College,621.2096666666666,66.53003389830509,9.337281679672982,6084.865772772108,2019
+1998,21,"(20,25]",HS,2.098656666666667,42.50529943502825,0.04937400029082449,1989.9700383811166,2019
+1998,21,"(20,25]",HS,2.00749,38.80918644067796,0.05172718585762065,1978.009084056493,2019
+1998,21,"(20,25]",HS,1.9710233333333333,38.80918644067796,0.050787545787545796,2046.2508400753918,2019
+1998,21,"(20,25]",HS,1.84339,38.80918644067796,0.04749880554228381,1999.1663822710907,2019
+1998,21,"(20,25]",HS,1.13229,33.265016949152546,0.03403846153846154,2059.766417221778,2019
+1998,41,"(40,45]",HS,258.20223333333337,88.70671186440678,2.9107406633221853,6299.7749947265065,2019
+1998,41,"(40,45]",HS,262.68763333333334,90.55476836158192,2.900870247764658,6385.942766487615,2019
+1998,41,"(40,45]",HS,261.97653333333335,90.55476836158192,2.8930175414647468,6647.92953387552,2019
+1998,41,"(40,45]",HS,259.51503333333335,88.70671186440678,2.925539994425864,6331.325124481943,2019
+1998,41,"(40,45]",HS,260.08026666666666,88.70671186440678,2.9319119286510587,6567.45262282622,2019
+1998,45,"(40,45]",HS,207.13066666666666,112.73144632768363,1.8373814353857116,6080.232849152986,2019
+1998,45,"(40,45]",HS,207.31300000000002,110.88338983050849,1.869648829431438,6198.989293952234,2019
+1998,45,"(40,45]",HS,207.13066666666666,112.73144632768363,1.8373814353857116,6421.987543586823,2019
+1998,45,"(40,45]",HS,207.13066666666666,110.88338983050849,1.8680044593088068,6098.077990137882,2019
+1998,45,"(40,45]",HS,206.94833333333335,110.88338983050849,1.866360089186176,6403.793283058649,2019
+1998,24,"(20,25]",HS,-11.487,48.04946892655367,-0.23906611782865964,6057.059627584259,2019
+1998,24,"(20,25]",HS,-9.299,48.04946892655367,-0.19352971443272446,6033.883712464915,2019
+1998,24,"(20,25]",HS,-6.928666666666667,48.04946892655367,-0.14419861075379473,6046.411643456622,2019
+1998,24,"(20,25]",HS,-9.846,48.04946892655367,-0.20491381528170827,6082.578960253096,2019
+1998,24,"(20,25]",HS,-8.569666666666667,48.04946892655367,-0.17835091330074607,5994.151637089287,2019
+1998,48,"(45,50]",College,5074.336666666667,615.402813559322,8.245553245553246,891.3889652834965,2019
+1998,48,"(45,50]",College,4875.593333333333,615.402813559322,7.922604879126618,914.1350445380331,2019
+1998,48,"(45,50]",College,5513.76,615.402813559322,8.95959504655157,863.6514934446475,2019
+1998,48,"(45,50]",College,5149.093333333333,615.402813559322,8.367029236594455,952.9713703561383,2019
+1998,48,"(45,50]",College,4921.176666666667,615.402813559322,7.996675605371259,880.6678585449445,2019
+1998,52,"(50,55]",College,12411.794666666667,739.2225988700566,16.790334448160532,184.42826699004786,2019
+1998,52,"(50,55]",College,4225.939666666667,739.2225988700566,5.716734949832776,185.53712073516473,2019
+1998,52,"(50,55]",College,4513.114666666667,739.2225988700566,6.105217391304348,172.3483856761194,2019
+1998,52,"(50,55]",College,4881.245666666667,739.2225988700566,6.603214882943143,188.78345131410256,2019
+1998,52,"(50,55]",College,4238.520666666667,739.2225988700566,5.7337541806020065,180.52794782762228,2019
+1998,25,"(20,25]",College,-14.586666666666666,46.201412429378536,-0.31571906354515045,5439.700621604325,2019
+1998,25,"(20,25]",College,-15.680666666666667,46.201412429378536,-0.33939799331103676,5456.461176667915,2019
+1998,25,"(20,25]",College,-16.38994333333333,46.201412429378536,-0.35474983277591965,5491.965122839175,2019
+1998,25,"(20,25]",College,-15.680666666666667,46.201412429378536,-0.33939799331103676,5434.241334905907,2019
+1998,25,"(20,25]",College,-17.8869,46.201412429378536,-0.3871505016722408,5515.967511685421,2019
+1998,62,"(60,65]",College,1716.8506666666667,134.9081242937853,12.726073212076786,10809.270539879593,2019
+1998,62,"(60,65]",College,1715.2096666666669,134.9081242937853,12.713909378292941,11339.805156259134,2019
+1998,62,"(60,65]",College,1715.2096666666669,134.9081242937853,12.713909378292941,10807.401349019588,2019
+1998,62,"(60,65]",College,1715.0273333333332,134.9081242937853,12.712557841205845,11185.81343398643,2019
+1998,62,"(60,65]",College,1715.0273333333332,134.9081242937853,12.712557841205845,10777.319081947266,2019
+1998,22,"(20,25]",HS,214.971,17.55653672316384,12.244499207885935,4641.777192836935,2019
+1998,22,"(20,25]",HS,216.79433333333336,16.44770282485876,13.180827477358987,4596.840611304695,2019
+1998,22,"(20,25]",HS,214.971,16.07809152542373,13.370430169530618,4617.341208750189,2019
+1998,22,"(20,25]",HS,214.971,18.2957593220339,11.749771967163271,4682.648923694951,2019
+1998,22,"(20,25]",HS,214.971,16.44770282485876,13.069971064597345,4575.531936535002,2019
+1998,83,"(80,85]",HS,37203.658,1866.5370621468926,19.93191496407166,186.39066253227105,2019
+1998,83,"(80,85]",HS,40668.356,1940.4593220338984,20.958107978977544,186.18460392767727,2019
+1998,83,"(80,85]",HS,37297.01266666666,2069.823276836158,18.019418896321067,179.83633704493724,2019
+1998,83,"(80,85]",HS,39479.54266666667,1755.653672316384,22.48709030100335,176.10747682354042,2019
+1998,83,"(80,85]",HS,38953.87566666667,1848.0564971751412,21.078292642140468,171.1655300389893,2019
+1998,25,"(20,25]",HS,47.042,83.16254237288136,0.5656633221850613,7725.874322544844,2019
+1998,25,"(20,25]",HS,47.042,83.16254237288136,0.5656633221850613,7728.0571752053,2019
+1998,25,"(20,25]",HS,47.042,83.16254237288136,0.5656633221850613,7861.281170896758,2019
+1998,25,"(20,25]",HS,47.042,83.16254237288136,0.5656633221850613,7762.828212790655,2019
+1998,25,"(20,25]",HS,47.042,83.16254237288136,0.5656633221850613,7812.900680415626,2019
+1998,25,"(20,25]",NoHS,0,10.349116384180792,0,5422.000218087279,2019
+1998,25,"(20,25]",NoHS,0,10.349116384180792,0,5401.722608592784,2019
+1998,25,"(20,25]",NoHS,0,10.349116384180792,0,5389.918909037918,2019
+1998,25,"(20,25]",NoHS,0,10.349116384180792,0,5417.010534841803,2019
+1998,25,"(20,25]",NoHS,0,10.349116384180792,0,5404.17411826047,2019
+1998,77,"(75,80]",NoHS,0,18.480564971751416,0,6521.634636973912,2019
+1998,77,"(75,80]",NoHS,0,18.480564971751416,0,6548.451898494442,2019
+1998,77,"(75,80]",NoHS,0,18.480564971751416,0,6518.563067618923,2019
+1998,77,"(75,80]",NoHS,0,18.480564971751416,0,6507.703713550991,2019
+1998,77,"(75,80]",NoHS,0,20.328621468926556,0,6540.755491826601,2019
+1998,67,"(65,70]",NoHS,2.188,12.936395480225992,0.16913521261347345,7287.966718582995,2019
+1998,67,"(65,70]",NoHS,10.210666666666667,12.936395480225992,0.7892976588628761,7319.526480553963,2019
+1998,67,"(65,70]",NoHS,0.547,12.936395480225992,0.04228380315336836,7270.518226883107,2019
+1998,67,"(65,70]",NoHS,0.9116666666666666,12.936395480225992,0.07047300525561394,7249.9159607093025,2019
+1998,67,"(65,70]",NoHS,0.3646666666666667,12.936395480225992,0.028189202102245577,7270.0323349826085,2019
+1998,70,"(65,70]",College,2700.3566666666666,110.88338983050849,24.35312151616499,326.7501165340538,2019
+1998,70,"(65,70]",College,2698.5333333333338,110.88338983050849,24.336677814938685,342.275275425237,2019
+1998,70,"(65,70]",College,2700.3566666666666,110.88338983050849,24.35312151616499,375.7975397023508,2019
+1998,70,"(65,70]",College,2698.5333333333338,110.88338983050849,24.336677814938685,380.7960198563487,2019
+1998,70,"(65,70]",College,2700.3566666666666,110.88338983050849,24.35312151616499,318.89581134243633,2019
+1998,44,"(40,45]",College,6609.6745,648.6678305084746,10.189613526570048,405.76690584934414,2019
+1998,44,"(40,45]",College,6405.278833333333,648.6678305084746,9.87451285862657,407.81940455420676,2019
+1998,44,"(40,45]",College,5951.2688333333335,648.6678305084746,9.174601473096457,384.76622144527676,2019
+1998,44,"(40,45]",College,9039.9955,648.6678305084746,13.936247605980048,424.5622576405229,2019
+1998,44,"(40,45]",College,8492.9955,648.6678305084746,13.092980876425694,399.1770449101626,2019
+1998,61,"(60,65]",College,43039.418666666665,1781.5264632768362,24.158731039842348,302.17647281776647,2019
+1998,61,"(60,65]",College,42759.537000000004,1995.901016949152,21.42367614269789,302.1299597564726,2019
+1998,61,"(60,65]",College,43122.745,1940.4593220338984,22.222957477305304,300.49862623794763,2019
+1998,61,"(60,65]",College,43123.47433333334,1783.3745197740113,24.180829015544045,288.37252695763203,2019
+1998,61,"(60,65]",College,42760.631,1805.551197740113,23.682868175391874,277.47505381708066,2019
+1998,38,"(35,40]",College,1837.2636000000002,240.24734463276835,7.647383586313354,943.469326760836,2019
+1998,38,"(35,40]",College,1833.4346,240.24734463276835,7.631445845124776,1032.9709386405057,2019
+1998,38,"(35,40]",College,1841.8219333333334,240.24734463276835,7.666357087728326,944.9716650732526,2019
+1998,38,"(35,40]",College,1877.1946,240.24734463276835,7.813591458708516,1209.9741484533174,2019
+1998,38,"(35,40]",College,1834.7109333333333,240.24734463276835,7.636758425520967,945.5995944458036,2019
+1998,32,"(30,35]",HS,61.62866666666667,96.09893785310734,0.6413043478260869,8567.942105992424,2019
+1998,32,"(30,35]",HS,63.452,96.09893785310734,0.6602778492410599,8625.14413382309,2019
+1998,32,"(30,35]",HS,61.62866666666667,96.09893785310734,0.6413043478260869,8769.886006119747,2019
+1998,32,"(30,35]",HS,59.80533333333334,96.09893785310734,0.622330846411114,8641.673063002276,2019
+1998,32,"(30,35]",HS,59.80533333333334,96.09893785310734,0.622330846411114,8731.57448691752,2019
+1998,36,"(35,40]",College,261.10133333333334,151.54063276836158,1.722979035810425,6910.967502753963,2019
+1998,36,"(35,40]",College,261.10133333333334,170.021197740113,1.535698705831031,6611.974388812821,2019
+1998,36,"(35,40]",College,261.10133333333334,157.08480225988703,1.6621680110171158,6174.168015786035,2019
+1998,36,"(35,40]",College,261.28366666666665,179.26148022598866,1.4575561148846674,6749.497084989761,2019
+1998,36,"(35,40]",College,261.466,145.99646327683615,1.7909063968502605,6155.246305713123,2019
+1998,47,"(45,50]",HS,206.40133333333335,462.0141242937853,0.446742474916388,680.2203618544424,2019
+1998,47,"(45,50]",HS,187.49336666666667,282.75264406779667,0.6631003125888035,637.5299149303665,2019
+1998,47,"(45,50]",HS,173.399,462.0141242937853,0.37531103678929767,630.1721989505565,2019
+1998,47,"(45,50]",HS,187.63923333333335,430.59716384180786,0.4357651398797136,649.5532253802801,2019
+1998,47,"(45,50]",HS,169.75233333333335,190.34981920903957,0.8917914082540508,677.0461753731759,2019
+1998,27,"(25,30]",College,62.175666666666665,70.22614689265536,0.8853634923428974,8020.654427826905,2019
+1998,27,"(25,30]",College,74.02733333333333,70.22614689265536,1.054127794402394,8075.172204091083,2019
+1998,27,"(25,30]",College,52.6214,70.22614689265536,0.7493135011441648,8263.698109180206,2019
+1998,27,"(25,30]",College,80.22666666666667,70.22614689265536,1.1424045062488999,8017.39210965497,2019
+1998,27,"(25,30]",College,187.621,70.22614689265536,2.671668720295723,8253.953374872672,2019
+1998,47,"(45,50]",College,1357.7269333333334,155.23674576271185,8.74616977225673,103.00396304381249,2019
+1998,47,"(45,50]",College,2004.8279333333335,179.26148022598866,11.183818915284629,105.12501110411726,2019
+1998,47,"(45,50]",College,1272.6866666666667,109.03533333333333,11.672240802675587,101.42765873192897,2019
+1998,47,"(45,50]",College,1961.8337333333334,502.67136723163844,3.9028157584103873,107.28211416743761,2019
+1998,47,"(45,50]",College,1946.2077666666667,236.55123163841807,8.227426055602006,102.60961190657108,2019
+1998,64,"(60,65]",HS,225.52810000000002,129.36395480225988,1.7433612040133781,12208.48996779374,2019
+1998,64,"(60,65]",HS,217.25016666666667,62.833920903954805,3.457530001967342,12400.282250238593,2019
+1998,64,"(60,65]",HS,270.3821,64.68197740112994,4.180176779741997,12941.694916765937,2019
+1998,64,"(60,65]",HS,256.14186666666666,142.30035028248585,1.800008686965209,11858.765427914012,2019
+1998,64,"(60,65]",HS,171.10160000000002,160.78091525423727,1.064190981432361,12925.685061953589,2019
+1998,61,"(60,65]",College,172.76083333333335,162.62897175141245,1.0623004712678625,9996.843543500092,2019
+1998,61,"(60,65]",College,141.92826666666667,140.45229378531073,1.0105087132547088,9903.867119324977,2019
+1998,61,"(60,65]",College,191.7235,166.32508474576272,1.1527034559643254,10427.614477785399,2019
+1998,61,"(60,65]",College,216.4479,164.47702824858757,1.3159764758934276,9790.556357284486,2019
+1998,61,"(60,65]",College,186.59811,157.08480225988703,1.1878813692701158,10318.99238022774,2019
+1998,43,"(40,45]",HS,351.02813333333336,123.81978531073446,2.8349922627664355,1957.4913485897073,2019
+1998,43,"(40,45]",HS,351.3928,123.81978531073446,2.8379374032845806,1802.7190549821557,2019
+1998,43,"(40,45]",HS,350.91873333333336,123.81978531073446,2.8341087206109923,1823.9607310110648,2019
+1998,43,"(40,45]",HS,351.17400000000004,121.97172881355934,2.879142596533901,2016.9383381898238,2019
+1998,43,"(40,45]",HS,351.1922333333333,123.81978531073446,2.8363175759996007,2033.0442608533772,2019
+1998,57,"(55,60]",College,1757.511,231.00706214689265,7.608040133779264,1001.2989490318175,2019
+1998,57,"(55,60]",College,1757.511,231.00706214689265,7.608040133779264,1061.691813316911,2019
+1998,57,"(55,60]",College,1757.511,231.00706214689265,7.608040133779264,1012.1497132830611,2019
+1998,57,"(55,60]",College,1757.511,231.00706214689265,7.608040133779264,1059.8268539510586,2019
+1998,57,"(55,60]",College,1757.511,231.00706214689265,7.608040133779264,992.3832313112609,2019
+1998,48,"(45,50]",College,54562.88533333334,2420.954011299435,22.53776200566775,15.134541716248247,2019
+1998,48,"(45,50]",College,57617.515666666666,2864.487570621469,20.114423346639335,15.874244413854168,2019
+1998,48,"(45,50]",College,50828.151666666665,6283.39209039548,8.089285362974621,13.522093385409011,2019
+1998,48,"(45,50]",College,61433.38766666666,2217.6677966101697,27.701799052396872,13.033395147043223,2019
+1998,48,"(45,50]",College,58575.130333333334,3160.176610169491,18.535397719493833,13.520225057567519,2019
+1998,28,"(25,30]",HS,40.29566666666666,40.65724293785311,0.9911067193675887,6815.989770158337,2019
+1998,28,"(25,30]",HS,7.475666666666667,118.27561581920904,0.06320547658862877,6861.495263975046,2019
+1998,28,"(25,30]",HS,27.532333333333334,83.16254237288136,0.33106651802303977,6976.640663965272,2019
+1998,28,"(25,30]",HS,38.47233333333334,83.16254237288136,0.4626161278335192,6874.644397197856,2019
+1998,28,"(25,30]",HS,9.481333333333334,92.40282485875707,0.10260869565217391,6946.162992695879,2019
+1998,32,"(30,35]",NoHS,0,18.480564971751416,0,5704.786885146898,2019
+1998,32,"(30,35]",NoHS,0,18.480564971751416,0,5668.211632704448,2019
+1998,32,"(30,35]",NoHS,0,18.480564971751416,0,5639.042978953837,2019
+1998,32,"(30,35]",NoHS,0,20.328621468926556,0,5727.692262360619,2019
+1998,32,"(30,35]",NoHS,0,18.480564971751416,0,5653.964928071289,2019
+1998,60,"(55,60]",College,2.8261666666666665,38.80918644067796,0.07282210543080109,6702.564628278892,2019
+1998,60,"(55,60]",NoHS,1.641,29.56890395480226,0.05549749163879599,6697.748963570406,2019
+1998,60,"(55,60]",HS,6.2175666666666665,42.50529943502825,0.14627744656100042,6901.914764740187,2019
+1998,60,"(55,60]",NoHS,0.7657999999999999,36.96112994350283,0.020719063545150494,6658.839256223162,2019
+1998,60,"(55,60]",HS,0.5287666666666666,29.56890395480226,0.017882525083612037,6880.645022240291,2019
+1998,23,"(20,25]",HS,11.122333333333334,73.92225988700567,0.15045986622073576,5560.501532494016,2019
+1998,23,"(20,25]",HS,11.122333333333334,73.92225988700567,0.15045986622073576,5575.30142094381,2019
+1998,23,"(20,25]",HS,11.122333333333334,73.92225988700567,0.15045986622073576,5620.420046000782,2019
+1998,23,"(20,25]",HS,11.122333333333334,73.92225988700567,0.15045986622073576,5555.086860107208,2019
+1998,23,"(20,25]",HS,11.122333333333334,73.92225988700567,0.15045986622073576,5599.733812819973,2019
+1998,75,"(70,75]",HS,6668.659333333333,110.88338983050849,60.1411928651059,157.4560047522761,2019
+1998,75,"(70,75]",HS,6668.659333333333,129.36395480225988,51.54959388437649,157.010295472491,2019
+1998,75,"(70,75]",HS,6668.659333333333,103.49116384180793,64.4369923554706,147.54209426197204,2019
+1998,75,"(70,75]",HS,6668.477,134.9081242937853,49.429765886287626,164.8928659601079,2019
+1998,75,"(70,75]",HS,6668.659333333333,97.9469943502825,68.08436928125197,156.49360032647812,2019
+1998,46,"(45,50]",College,1219.6823666666667,138.6042372881356,8.799748049052395,5076.404268800843,2019
+1998,46,"(45,50]",College,1219.6823666666667,138.6042372881356,8.799748049052395,4859.964876482305,2019
+1998,46,"(45,50]",College,1221.4874666666665,138.6042372881356,8.812771460423631,4518.5911583823345,2019
+1998,46,"(45,50]",College,1217.8590333333334,138.6042372881356,8.78659308807135,4965.963081068334,2019
+1998,46,"(45,50]",College,1217.8408000000002,138.6042372881356,8.78646153846154,4521.241426201306,2019
+1998,53,"(50,55]",College,41431.056333333334,2901.4487005649717,14.279437828856274,23.404925069174354,2019
+1998,53,"(50,55]",College,41330.59066666666,2772.084745762712,14.90956967670011,25.48356599492869,2019
+1998,53,"(50,55]",College,40623.13733333334,2772.084745762712,14.654363433667783,26.297917441154617,2019
+1998,53,"(50,55]",College,40455.390666666666,2531.8374011299434,15.978668554549229,23.44074306940464,2019
+1998,53,"(50,55]",College,40925.810666666664,2494.87627118644,16.403944010900535,25.342342134316528,2019
+1998,23,"(20,25]",College,13.109766666666667,11.088338983050848,1.1823021181716833,5328.813981055973,2019
+1998,23,"(20,25]",College,13.109766666666667,11.088338983050848,1.1823021181716833,5342.997207520069,2019
+1998,23,"(20,25]",College,13.292100000000001,11.088338983050848,1.1987458193979934,5386.235889967081,2019
+1998,23,"(20,25]",College,13.292100000000001,11.088338983050848,1.1987458193979934,5323.624920006528,2019
+1998,23,"(20,25]",College,13.292100000000001,11.088338983050848,1.1987458193979934,5366.411583122617,2019
+1998,64,"(60,65]",College,1297.484,123.81978531073446,10.478809963560126,6160.140294819429,2019
+1998,64,"(60,65]",College,1297.484,123.81978531073446,10.478809963560126,5873.373275483873,2019
+1998,64,"(60,65]",College,1297.484,123.81978531073446,10.478809963560126,5498.116964974228,2019
+1998,64,"(60,65]",College,1297.484,123.81978531073446,10.478809963560126,6015.588951680486,2019
+1998,64,"(60,65]",College,1297.484,123.81978531073446,10.478809963560126,5483.8913814998205,2019
+1998,77,"(75,80]",HS,109.85583333333334,25.872790960451983,4.24599856665074,9700.78810090278,2019
+1998,77,"(75,80]",HS,109.85583333333334,25.872790960451983,4.24599856665074,9903.11356569628,2019
+1998,77,"(75,80]",HS,109.85583333333334,25.872790960451983,4.24599856665074,10278.163328313705,2019
+1998,77,"(75,80]",HS,109.85583333333334,25.872790960451983,4.24599856665074,9860.069012600672,2019
+1998,77,"(75,80]",HS,109.85583333333334,25.872790960451983,4.24599856665074,10310.069557097575,2019
+1998,71,"(70,75]",College,3981.2483333333334,88.70671186440678,44.881027034559644,1172.2434644796817,2019
+1998,71,"(70,75]",College,5213.821666666667,86.85865536723163,60.02650679570199,1211.7847685664879,2019
+1998,71,"(70,75]",College,4621.238333333333,86.85865536723163,53.204120116701056,1146.6651376430677,2019
+1998,71,"(70,75]",College,5109.891666666667,86.85865536723163,58.8299651320003,1247.873254604186,2019
+1998,71,"(70,75]",College,3144.520666666667,88.70671186440678,35.44850891861761,1148.498574381864,2019
+1998,52,"(50,55]",College,581.461,133.06006779661018,4.369913600891861,5142.9890705355865,2019
+1998,52,"(50,55]",College,989.6141666666666,107.18727683615819,9.232571214392804,5659.38020071938,2019
+1998,52,"(50,55]",College,496.85833333333335,92.40282485875707,5.377090301003344,5865.605626405855,2019
+1998,52,"(50,55]",College,901.2919,136.75618079096043,6.590502124197778,5581.605497274025,2019
+1998,52,"(50,55]",College,1204.3116666666667,123.81978531073446,9.726326561174064,4583.602871794938,2019
+1998,72,"(70,75]",HS,239.47660000000002,31.416960451977403,7.622526067283101,7473.412363998269,2019
+1998,72,"(70,75]",HS,253.44333333333336,31.416960451977403,8.067086366319103,7408.359447263615,2019
+1998,72,"(70,75]",HS,253.27923333333334,31.416960451977403,8.061863072988393,7920.209493029955,2019
+1998,72,"(70,75]",HS,252.13053333333332,31.416960451977403,8.02530001967342,7657.2132072710465,2019
+1998,72,"(70,75]",HS,251.40120000000002,31.416960451977403,8.002085382648042,7765.450604704063,2019
+1998,66,"(65,70]",HS,653.8291,72.07420338983052,9.071610496526883,294.63934821768623,2019
+1998,66,"(65,70]",HS,595.1724666666667,53.593638418079095,11.105281974397416,284.6726528520817,2019
+1998,66,"(65,70]",HS,641.2663333333334,90.55476836158192,7.081530270971265,287.09353635170385,2019
+1998,66,"(65,70]",HS,608.4281,90.55476836158192,6.7188963210702335,291.6986867839103,2019
+1998,66,"(65,70]",HS,648.5779,57.289751412429375,11.321010896536844,293.3066281134939,2019
+1998,39,"(35,40]",HS,55.247,33.265016949152546,1.660813823857302,4898.635216677797,2019
+1998,39,"(35,40]",HS,47.042,33.265016949152546,1.4141583054626532,4872.571700335089,2019
+1998,39,"(35,40]",HS,126.904,33.265016949152546,3.8149386845039013,4934.71522531448,2019
+1998,39,"(35,40]",HS,12.781566666666668,33.265016949152546,0.38423448532144183,4903.709385816394,2019
+1998,39,"(35,40]",HS,82.59700000000001,35.11307344632768,2.352314733321599,4861.386158455297,2019
+1998,53,"(50,55]",HS,7870.965333333334,850.1059887005649,9.258804711356698,292.14937456498217,2019
+1998,53,"(50,55]",HS,3784.8753333333334,822.385141242938,4.602314832212243,290.8091526212587,2019
+1998,53,"(50,55]",HS,4133.496666666667,933.2685310734463,4.429053942183517,270.84276404763676,2019
+1998,53,"(50,55]",HS,842.2706,633.8833785310735,1.3287469407256451,206.82418025101546,2019
+1998,53,"(50,55]",HS,3086.174,1105.1377853107342,2.7925694343463725,292.2111937143625,2019
+1998,52,"(50,55]",College,1155.9933333333333,103.49116384180793,11.169971333014809,10553.334075500763,2019
+1998,52,"(50,55]",College,677.3683333333333,103.49116384180793,6.545180363115144,10174.650373158365,2019
+1998,52,"(50,55]",College,1024.7133333333334,103.49116384180793,9.901457238413759,9881.289916979043,2019
+1998,52,"(50,55]",College,1425.8466666666668,103.49116384180793,13.777472527472526,11849.545150295664,2019
+1998,52,"(50,55]",College,656.4,103.49116384180793,6.342570473005254,10318.796404198825,2019
+1998,43,"(40,45]",HS,2258.1071666666667,990.5582824858757,2.279630796685469,1087.3120372789976,2019
+1998,43,"(40,45]",HS,2048.3326666666667,1075.5688813559325,1.9044179337769651,1190.1929700779579,2019
+1998,43,"(40,45]",HS,3147.2739,1075.5688813559325,2.9261481570871974,1089.051573470511,2019
+1998,43,"(40,45]",HS,2693.5191666666665,1075.5688813559325,2.5042739831511676,1394.358243163664,2019
+1998,43,"(40,45]",HS,2219.9447999999998,925.8763050847457,2.397668876294234,1089.9068294928886,2019
+1998,26,"(25,30]",HS,1828.0831166666667,18.11095367231638,100.93798204900692,1794.1016864148035,2019
+1998,26,"(25,30]",HS,1469.2511166666668,17.92614802259887,81.96134020618558,1948.1024281063067,2019
+1998,26,"(25,30]",HS,1373.8360833333334,18.11095367231638,75.856639478533907,1831.2200027794545,2019
+1998,26,"(25,30]",HS,1609.2922333333333,17.92614802259887,89.77345447022722,1806.4106994067017,2019
+1998,26,"(25,30]",HS,1612.7565666666667,17.92614802259887,89.96671034030963,1871.9857231068424,2019
+1998,72,"(70,75]",NoHS,562.316,48.04946892655367,11.702855672755339,6254.232152484962,2019
+1998,72,"(70,75]",NoHS,564.3216666666666,86.85865536723163,6.497011314310111,6024.675265054057,2019
+1998,72,"(70,75]",NoHS,595.136,46.201412429378536,12.881337792642139,5622.385820333894,2019
+1998,72,"(70,75]",NoHS,558.3046666666667,83.16254237288136,6.71341508732813,6150.237609398168,2019
+1998,72,"(70,75]",NoHS,570.521,73.92225988700567,7.71785117056856,5607.293384633176,2019
+1998,38,"(35,40]",HS,9.098433333333332,22.176677966101696,0.4102703455964325,4918.738950918025,2019
+1998,38,"(35,40]",HS,6.746333333333333,31.416960451977403,0.2147353924847531,4939.027333227739,2019
+1998,38,"(35,40]",HS,8.4785,40.65724293785311,0.20853602918820308,4960.211926469215,2019
+1998,38,"(35,40]",HS,8.168533333333334,44.35335593220339,0.18416945373467114,4933.960715962834,2019
+1998,38,"(35,40]",HS,7.8585666666666665,44.35335593220339,0.1771808807134894,4889.464444232838,2019
+1998,38,"(35,40]",College,690.6786666666667,92.40282485875707,7.4746488294314375,4841.498426576732,2019
+1998,38,"(35,40]",College,612.2753333333334,92.40282485875707,6.626153846153846,4632.3857403673055,2019
+1998,38,"(35,40]",College,610.452,92.40282485875707,6.606421404682274,4325.699159512707,2019
+1998,38,"(35,40]",College,646.7363333333334,92.40282485875707,6.999096989966555,4728.6719507282205,2019
+1998,38,"(35,40]",College,499.411,92.40282485875707,5.404715719063544,4312.094714176648,2019
+1998,66,"(65,70]",College,541.3476666666667,166.32508474576272,3.2547565960609437,10553.334075500763,2019
+1998,66,"(65,70]",College,559.7633333333334,164.47702824858757,3.403291871782346,10174.650373158365,2019
+1998,66,"(65,70]",College,541.3476666666667,166.32508474576272,3.2547565960609437,9881.289916979043,2019
+1998,66,"(65,70]",College,541.3476666666667,164.47702824858757,3.291326894893089,10062.590158865458,2019
+1998,66,"(65,70]",College,574.1676666666666,166.32508474576272,3.4520810107766624,10318.796404198825,2019
+1998,45,"(40,45]",HS,9.207833333333333,73.92225988700567,0.12456103678929763,6746.559729302481,2019
+1998,45,"(40,45]",HS,9.207833333333333,73.92225988700567,0.12456103678929763,6878.330578866138,2019
+1998,45,"(40,45]",HS,9.207833333333333,73.92225988700567,0.12456103678929763,7125.766992571783,2019
+1998,45,"(40,45]",HS,9.207833333333333,73.92225988700567,0.12456103678929763,6766.360502154329,2019
+1998,45,"(40,45]",HS,9.390166666666666,72.07420338983052,0.1302847097161478,7105.578840501107,2019
+1998,67,"(65,70]",HS,2051.797,177.41342372881357,11.565060618729097,3564.9941463796013,2019
+1998,67,"(65,70]",HS,2117.8016666666667,177.41342372881357,11.93709935897436,3669.081541478651,2019
+1998,67,"(65,70]",HS,1754.776,177.41342372881357,9.890886287625419,4107.866341067019,2019
+1998,67,"(65,70]",HS,1435.5103333333334,177.41342372881357,8.091328734671126,4464.822726319082,2019
+1998,67,"(65,70]",HS,1437.3336666666669,177.41342372881357,8.10160604793757,3629.5025676097416,2019
+1998,33,"(30,35]",College,645.0041666666666,179.26148022598866,3.598119160086888,5480.240852275625,2019
+1998,33,"(30,35]",College,645.0041666666666,179.26148022598866,3.598119160086888,5245.5667397582165,2019
+1998,33,"(30,35]",College,644.8218333333334,179.26148022598866,3.5971020239285605,4891.928250977155,2019
+1998,33,"(30,35]",College,645.0041666666666,179.26148022598866,3.598119160086888,5352.768693911032,2019
+1998,33,"(30,35]",College,644.8218333333334,179.26148022598866,3.5971020239285605,4881.948312162936,2019
+1998,57,"(55,60]",HS,168.0019333333333,73.92225988700567,2.2726839464882937,4532.523244236125,2019
+1998,57,"(55,60]",HS,168.0019333333333,72.07420338983052,2.3309578938341473,4528.722877430739,2019
+1998,57,"(55,60]",HS,80.48193333333333,72.07420338983052,1.1166538032758766,4636.832505553556,2019
+1998,57,"(55,60]",HS,138.82860000000002,73.92225988700567,1.878035117056856,4543.552494702736,2019
+1998,57,"(55,60]",HS,80.66426666666666,72.07420338983052,1.1191836034645397,4607.7829796085225,2019
+1998,25,"(20,25]",HS,-9.025500000000001,64.68197740112994,-0.13953655040611565,6724.777525976273,2019
+1998,25,"(20,25]",HS,-9.116666666666665,64.68197740112994,-0.14094601051122788,6744.6876594778005,2019
+1998,25,"(20,25]",HS,-9.116666666666665,64.68197740112994,-0.14094601051122788,6745.023703055253,2019
+1998,25,"(20,25]",HS,-9.025500000000001,64.68197740112994,-0.13953655040611565,6778.597286630073,2019
+1998,25,"(20,25]",HS,-8.934333333333335,64.68197740112994,-0.13812709030100337,6752.871037880858,2019
+1998,50,"(45,50]",HS,11.304666666666666,33.265016949152546,0.339836492010405,6180.001394669192,2019
+1998,50,"(45,50]",HS,11.304666666666666,33.265016949152546,0.339836492010405,6166.979138576616,2019
+1998,50,"(45,50]",HS,38.654666666666664,33.265016949152546,1.1620215533259008,6126.94827243029,2019
+1998,50,"(45,50]",HS,21.333000000000002,33.265016949152546,0.6413043478260869,6174.625570298436,2019
+1998,50,"(45,50]",HS,11.304666666666666,33.265016949152546,0.339836492010405,6151.528574514176,2019
+1998,48,"(45,50]",College,4088.7156,635.7314350282486,6.431513961266236,157.4560047522761,2019
+1998,48,"(45,50]",College,4088.7156,635.7314350282486,6.431513961266236,157.010295472491,2019
+1998,48,"(45,50]",College,4088.7156,635.7314350282486,6.431513961266236,147.54209426197204,2019
+1998,48,"(45,50]",College,4088.7156,635.7314350282486,6.431513961266236,164.8928659601079,2019
+1998,48,"(45,50]",College,4088.7156,635.7314350282486,6.431513961266236,156.49360032647812,2019
+1998,32,"(30,35]",HS,62.870356666666666,90.55476836158192,0.69427991263395,7294.704769704351,2019
+1998,32,"(30,35]",HS,64.34725666666667,92.40282485875707,0.6963775919732441,7343.406301541421,2019
+1998,32,"(30,35]",HS,62.906823333333335,90.55476836158192,0.6946826155211249,7466.638836630552,2019
+1998,32,"(30,35]",HS,66.17059,90.55476836158192,0.7307245239232817,7357.478952480227,2019
+1998,32,"(30,35]",HS,64.34725666666667,90.55476836158192,0.7105893795645348,7434.020593136161,2019
+1998,70,"(65,70]",College,1891.1066333333333,59.13780790960452,31.97796300167224,1819.5880567255244,2019
+1998,70,"(65,70]",College,2164.3513666666668,81.31448587570623,26.61704545454545,1874.2650280307626,2019
+1998,70,"(65,70]",College,5476.436366666667,70.22614689265536,77.98286833303996,2882.1836578851917,2019
+1998,70,"(65,70]",College,3146.5810333333334,97.9469943502825,32.12534549126017,3313.496205417357,2019
+1998,70,"(65,70]",College,4325.7307,127.51589830508476,33.92306965246473,2719.9379078789507,2019
+1998,48,"(45,50]",NoHS,-1.4404333333333335,24.024734463276836,-0.05995626447131464,4825.534260782442,2019
+1998,48,"(45,50]",NoHS,8.5879,24.024734463276836,0.35746076665809107,4823.911951554858,2019
+1998,48,"(45,50]",NoHS,9.590733333333334,46.201412429378536,0.20758528428093645,4847.103794496681,2019
+1998,48,"(45,50]",NoHS,13.437966666666668,13.675618079096047,0.9826222543613847,4793.175305116468,2019
+1998,48,"(45,50]",NoHS,-2.188,16.07809152542373,-0.13608580325222006,4806.523643387909,2019
+1998,59,"(55,60]",College,15321.652333333333,29.56890395480226,518.1677466555184,1137.361481989933,2019
+1998,59,"(55,60]",College,15321.287666666667,29.56890395480226,518.1554138795987,1157.8707487609845,2019
+1998,59,"(55,60]",College,15323.111,27.720847457627123,552.7648829431438,1154.3887531924051,2019
+1998,59,"(55,60]",College,15323.475666666667,29.56890395480226,518.229410535117,1214.7358267998663,2019
+1998,59,"(55,60]",College,15323.293333333335,29.56890395480226,518.2232441471573,1142.2457493799075,2019
+1998,40,"(35,40]",HS,361.1111666666667,116.4275593220339,3.101595264638743,5613.293713119658,2019
+1998,40,"(35,40]",HS,361.1111666666667,116.4275593220339,3.101595264638743,5370.317362986463,2019
+1998,40,"(35,40]",HS,361.1111666666667,116.4275593220339,3.101595264638743,5014.988619618716,2019
+1998,40,"(35,40]",HS,360.92883333333333,118.27561581920904,3.0515912416387962,5480.975115262682,2019
+1998,40,"(35,40]",HS,361.1111666666667,116.4275593220339,3.101595264638743,4998.555142770293,2019
+1998,76,"(75,80]",College,32265.70666666667,1313.9681694915253,24.555927164622823,302.17647281776647,2019
+1998,76,"(75,80]",College,32265.70666666667,1313.9681694915253,24.555927164622823,302.1299597564726,2019
+1998,76,"(75,80]",College,32265.70666666667,1313.9681694915253,24.555927164622823,300.49862623794763,2019
+1998,76,"(75,80]",College,32265.70666666667,1313.9681694915253,24.555927164622823,288.37252695763203,2019
+1998,76,"(75,80]",College,32265.70666666667,1313.9681694915253,24.555927164622823,277.47505381708066,2019
+1998,49,"(45,50]",College,1543.4516666666668,206.98232768361586,7.456924868609651,211.98031087569353,2019
+1998,49,"(45,50]",College,1951.8783333333333,184.80564971751414,10.561789297658862,218.0561672241722,2019
+1998,49,"(45,50]",College,1301.313,216.22261016949156,6.018394648829431,203.25319330986736,2019
+1998,49,"(45,50]",College,1740.554,262.42402259887007,6.632601629845966,215.67807831962892,2019
+1998,49,"(45,50]",College,1463.5896666666667,197.7420451977401,7.401509705248023,210.45772777775892,2019
+1998,35,"(30,35]",HS,101.37733333333333,38.80918644067796,2.6121993948080906,5164.690044279562,2019
+1998,35,"(30,35]",HS,105.024,38.80918644067796,2.706163401815576,5170.047717957246,2019
+1998,35,"(30,35]",HS,102.289,38.80918644067796,2.635690396559962,5182.386603638812,2019
+1998,35,"(30,35]",HS,104.11233333333332,38.80918644067796,2.6826724000637046,5189.707232658506,2019
+1998,35,"(30,35]",HS,101.37733333333333,38.80918644067796,2.6121993948080906,5165.122881223466,2019
+1998,55,"(50,55]",HS,178.7049,79.46642937853107,2.2488099867776308,9025.481646279215,2019
+1998,55,"(50,55]",HS,178.72313333333332,79.46642937853107,2.249039433771486,9033.221837503526,2019
+1998,55,"(50,55]",HS,176.8998,81.31448587570623,2.1755016722408023,9639.518286276738,2019
+1998,55,"(50,55]",HS,178.52256666666668,79.46642937853107,2.246515516839076,8791.579344558833,2019
+1998,55,"(50,55]",HS,178.52256666666668,79.46642937853107,2.246515516839076,9545.936700937647,2019
+1998,31,"(30,35]",College,7.293333333333333,92.40282485875707,0.07892976588628761,4521.068131091769,2019
+1998,31,"(30,35]",College,7.293333333333333,92.40282485875707,0.07892976588628761,4575.943448049747,2019
+1998,31,"(30,35]",College,7.293333333333333,92.40282485875707,0.07892976588628761,4561.636706781349,2019
+1998,31,"(30,35]",College,7.293333333333333,92.40282485875707,0.07892976588628761,4527.060263104549,2019
+1998,31,"(30,35]",College,7.293333333333333,92.40282485875707,0.07892976588628761,4515.005223736682,2019
+1998,86,"(85,90]",NoHS,0.18233333333333335,9.240282485875708,0.019732441471571903,6076.47883523359,2019
+1998,86,"(85,90]",NoHS,0.18233333333333335,9.240282485875708,0.019732441471571903,6119.757003485766,2019
+1998,86,"(85,90]",NoHS,0.18233333333333335,9.240282485875708,0.019732441471571903,6126.717187345942,2019
+1998,86,"(85,90]",NoHS,0.18233333333333335,9.240282485875708,0.019732441471571903,6063.22222195484,2019
+1998,86,"(85,90]",NoHS,0.18233333333333335,9.240282485875708,0.019732441471571903,6126.1700596462315,2019
+1998,78,"(75,80]",NoHS,201.47833333333335,40.65724293785311,4.955533596837944,8481.160590728565,2019
+1998,78,"(75,80]",NoHS,241.59166666666667,40.65724293785311,5.94215567041654,8651.475200821315,2019
+1998,78,"(75,80]",NoHS,206.94833333333335,40.65724293785311,5.0900729705077525,9040.636549884846,2019
+1998,78,"(75,80]",NoHS,232.475,40.65724293785311,5.717923380966858,8571.430805715148,2019
+1998,78,"(75,80]",NoHS,206.94833333333335,40.65724293785311,5.0900729705077525,8954.994858096852,2019
+1998,28,"(25,30]",College,0.6017,62.833920903954805,0.00957603777296872,5353.6869952368525,2019
+1998,28,"(25,30]",College,-1.0393,64.68197740112994,-0.01606784519827998,5314.990833975178,2019
+1998,28,"(25,30]",College,-0.8569666666666668,64.68197740112994,-0.013248924988055424,5343.93436174521,2019
+1998,28,"(25,30]",College,-0.8569666666666668,62.833920903954805,-0.013638599252409995,5354.854806423019,2019
+1998,28,"(25,30]",College,0.41936666666666667,64.68197740112994,0.006483516483516484,5332.077949809017,2019
+1998,19,"(15,20]",HS,456.85440000000006,27.720847457627123,16.480535117056856,1848.3540436775481,2019
+1998,19,"(15,20]",HS,455.76040000000006,27.720847457627123,16.441070234113713,1815.3511754365416,2019
+1998,19,"(15,20]",HS,453.9370666666667,27.720847457627123,16.37529542920847,1888.8515930914625,2019
+1998,19,"(15,20]",HS,457.7660666666667,27.720847457627123,16.513422519509476,1874.6447705797696,2019
+1998,19,"(15,20]",HS,486.7570666666667,27.720847457627123,17.559241917502785,3536.283033041401,2019
+1998,42,"(40,45]",HS,340.5986666666667,38.80918644067796,8.776238254499125,6408.472274692742,2019
+1998,42,"(40,45]",HS,340.5986666666667,40.65724293785311,8.377318333840073,6537.649661532366,2019
+1998,42,"(40,45]",HS,340.5986666666667,38.80918644067796,8.776238254499125,6802.798593734708,2019
+1998,42,"(40,45]",HS,340.5986666666667,40.65724293785311,8.377318333840073,6465.067437923448,2019
+1998,42,"(40,45]",HS,340.5986666666667,40.65724293785311,8.377318333840073,6732.522221957692,2019
+1998,53,"(50,55]",College,335.6756666666667,118.27561581920904,2.8380800585284285,6837.837748426187,2019
+1998,53,"(50,55]",College,335.6756666666667,118.27561581920904,2.8380800585284285,6552.096035616108,2019
+1998,53,"(50,55]",College,337.499,118.27561581920904,2.853496028428094,6105.864617186843,2019
+1998,53,"(50,55]",College,330.2056666666667,120.12367231638417,2.7488808850012867,6679.965929406108,2019
+1998,53,"(50,55]",College,339.32233333333335,118.27561581920904,2.8689119983277593,6094.108369802579,2019
+1998,50,"(45,50]",HS,662.964,103.49116384180793,6.405996177735307,5872.690197768848,2019
+1998,50,"(45,50]",HS,622.8506666666666,103.49116384180793,6.018394648829429,5627.834153132529,2019
+1998,50,"(45,50]",HS,629.0500000000001,103.49116384180793,6.078296703296703,5244.327473484008,2019
+1998,50,"(45,50]",HS,701.4363333333334,103.49116384180793,6.777741280458671,5738.6782371122745,2019
+1998,50,"(45,50]",HS,618.8393333333333,103.49116384180793,5.979634495938843,5234.922403232574,2019
+1998,50,"(45,50]",College,270.52796666666666,190.34981920903957,1.4212147287073413,6262.921149098444,2019
+1998,50,"(45,50]",College,306.99463333333335,190.34981920903957,1.6127918303730882,6001.204231824451,2019
+1998,50,"(45,50]",College,272.34218333333337,190.34981920903957,1.4307456895152126,5592.491376870254,2019
+1998,50,"(45,50]",College,288.75218333333333,190.34981920903957,1.5169553852647983,6118.3229894806545,2019
+1998,50,"(45,50]",College,268.7046333333334,190.34981920903957,1.4116358736240544,5581.723579638756,2019
+1998,45,"(40,45]",HS,0,2.2176677966101694,0,7821.830984143295,2019
+1998,45,"(40,45]",HS,0,2.2176677966101694,0,7823.630107278739,2019
+1998,45,"(40,45]",HS,0,2.2176677966101694,0,7801.5836680746015,2019
+1998,45,"(40,45]",HS,0,2.2176677966101694,0,7821.30661229636,2019
+1998,45,"(40,45]",HS,0,2.032862146892655,0,7827.9475482676335,2019
+1998,53,"(50,55]",HS,139.02916666666667,77.61837288135592,1.7911888835801881,7421.215719104618,2019
+1998,53,"(50,55]",HS,135.94773333333333,77.61837288135592,1.7514890906195255,7566.163653954172,2019
+1998,53,"(50,55]",HS,136.65883333333335,77.61837288135592,1.7606505813027555,7838.343709649181,2019
+1998,53,"(50,55]",HS,136.65883333333335,77.61837288135592,1.7606505813027555,7442.996569291169,2019
+1998,53,"(50,55]",HS,138.1175,77.61837288135592,1.7794433827042526,7816.136742320948,2019
+1998,45,"(40,45]",HS,12.034,42.50529943502825,0.28311763850516214,5250.744913037478,2019
+1998,45,"(40,45]",HS,13.675,42.50529943502825,0.3217245892104115,5291.640876117141,2019
+1998,45,"(40,45]",HS,12.216333333333335,42.50529943502825,0.2874072996946343,5204.9362895654,2019
+1998,45,"(40,45]",HS,12.581,42.50529943502825,0.29598662207357856,5241.205470639569,2019
+1998,45,"(40,45]",HS,13.857333333333335,42.50529943502825,0.3260142503998837,5231.98616025401,2019
+1998,32,"(30,35]",College,-21.278299999999998,24.024734463276836,-0.885683046050939,6515.301147682527,2019
+1998,32,"(30,35]",College,-21.460633333333334,46.201412429378536,-0.46450167224080263,6535.375793556958,2019
+1998,32,"(30,35]",College,-21.442400000000003,38.80918644067796,-0.5525083612040135,6577.899990627318,2019
+1998,32,"(30,35]",College,-21.387700000000002,16.817314124293787,-1.271766694843618,6508.762387672381,2019
+1998,32,"(30,35]",College,-21.205366666666666,18.11095367231638,-1.170858644461129,6606.6484094237485,2019
+1998,25,"(20,25]",HS,0.5488233333333334,0.9240282485875706,0.5939464882943145,3735.8787856768295,2019
+1998,25,"(20,25]",HS,0.5488233333333334,0.9240282485875706,0.5939464882943145,3693.4429811171117,2019
+1998,25,"(20,25]",HS,0.5488233333333334,0.9240282485875706,0.5939464882943145,3736.1353073643513,2019
+1998,25,"(20,25]",HS,0.5488233333333334,0.9240282485875706,0.5939464882943145,3731.250480749658,2019
+1998,25,"(20,25]",HS,0.5488233333333334,0.9240282485875706,0.5939464882943145,3734.235705627576,2019
+1998,57,"(55,60]",College,1889.1556666666668,510.06359322033904,3.703764965343415,2493.691585999689,2019
+1998,57,"(55,60]",College,1888.9733333333334,510.06359322033904,3.7034074935776253,2534.4085598304036,2019
+1998,57,"(55,60]",College,1889.1556666666668,510.06359322033904,3.703764965343415,2488.7088573173864,2019
+1998,57,"(55,60]",College,1888.9733333333334,510.06359322033904,3.7034074935776253,2732.188152450977,2019
+1998,57,"(55,60]",College,1888.9733333333334,510.06359322033904,3.7034074935776253,2580.9165594962838,2019
+1998,39,"(35,40]",College,849.491,171.86925423728815,4.9426583234437365,7630.975317009429,2019
+1998,39,"(35,40]",College,849.491,171.86925423728815,4.9426583234437365,7300.66184594522,2019
+1998,39,"(35,40]",College,849.6733333333334,171.86925423728815,4.943719207393822,6817.6112505833935,2019
+1998,39,"(35,40]",College,849.491,170.021197740113,4.9963828704376905,7451.0951956703475,2019
+1998,39,"(35,40]",College,849.6733333333334,171.86925423728815,4.943719207393822,6795.270809727806,2019
+1998,37,"(35,40]",HS,2077.4148333333333,168.17314124293785,12.352833621228271,2620.3867364927346,2019
+1998,37,"(35,40]",HS,2079.238166666667,166.32508474576272,12.501049795615014,2854.9571484179096,2019
+1998,37,"(35,40]",HS,2077.597166666667,166.32508474576272,12.491183574879228,2658.5937320832527,2019
+1998,37,"(35,40]",HS,2075.5915,168.17314124293785,12.341991620419714,2649.335816337297,2019
+1998,37,"(35,40]",HS,2075.5915,166.32508474576272,12.479124860646598,2729.2194720939506,2019
+1998,32,"(30,35]",HS,29.5927,110.88338983050849,0.26688127090301,8385.229615474944,2019
+1998,32,"(30,35]",HS,50.287533333333336,110.88338983050849,0.4535172798216276,8442.225472385851,2019
+1998,32,"(30,35]",HS,63.67080000000001,110.88338983050849,0.5742140468227425,8639.32073647714,2019
+1998,32,"(30,35]",HS,71.40173333333334,110.88338983050849,0.6439353400222965,8381.819010118912,2019
+1998,32,"(30,35]",HS,49.230000000000004,110.88338983050849,0.4439799331103679,8629.133059717631,2019
+1998,76,"(75,80]",HS,1471.5211666666669,66.53003389830509,22.11814845782237,4045.4996273906045,2019
+1998,76,"(75,80]",HS,1485.0138333333332,66.53003389830509,22.32095410628019,4422.0247861724365,2019
+1998,76,"(75,80]",HS,1359.0215,66.53003389830509,20.4271878483835,4125.561735177962,2019
+1998,76,"(75,80]",HS,1518.3808333333334,66.53003389830509,22.822486993682645,4077.2384099885917,2019
+1998,76,"(75,80]",HS,1523.8508333333332,66.53003389830509,22.90470549981419,4227.175041791604,2019
+1998,40,"(35,40]",NoHS,0,22.176677966101696,0,5940.427631885628,2019
+1998,40,"(35,40]",NoHS,0,22.176677966101696,0,5931.548353069118,2019
+1998,40,"(35,40]",NoHS,0,22.176677966101696,0,5919.120839597714,2019
+1998,40,"(35,40]",NoHS,0,22.176677966101696,0,5970.154224020582,2019
+1998,40,"(35,40]",NoHS,0,22.176677966101696,0,5898.184792377412,2019
+1998,44,"(40,45]",College,6.3999,51.745581920903966,0.12368012422360246,7668.441387758098,2019
+1998,44,"(40,45]",College,6.3999,60.98586440677967,0.10494071146245057,7657.642665243242,2019
+1998,44,"(40,45]",College,6.3999,66.53003389830509,0.09619565217391303,7651.883103902903,2019
+1998,44,"(40,45]",College,6.3999,66.53003389830509,0.09619565217391303,7663.651833035848,2019
+1998,44,"(40,45]",College,6.3999,53.593638418079095,0.11941529235382309,7667.963023617483,2019
+1998,41,"(40,45]",HS,-0.547,27.720847457627123,-0.019732441471571906,6964.719748527888,2019
+1998,41,"(40,45]",HS,-0.547,27.720847457627123,-0.019732441471571906,6978.517509149422,2019
+1998,41,"(40,45]",HS,-0.547,27.720847457627123,-0.019732441471571906,6966.172827293472,2019
+1998,41,"(40,45]",HS,-0.547,27.720847457627123,-0.019732441471571906,6962.252667027598,2019
+1998,41,"(40,45]",HS,-0.547,27.720847457627123,-0.019732441471571906,6999.167375826268,2019
+1998,52,"(50,55]",College,3775.3940000000002,739.2225988700566,5.107249163879598,1170.9527624550383,2019
+1998,52,"(50,55]",College,5236.066333333333,739.2225988700566,7.08320652173913,1217.186471340561,2019
+1998,52,"(50,55]",College,3777.3996666666667,739.2225988700566,5.109962374581939,1289.5249185998957,2019
+1998,52,"(50,55]",College,3939.494,739.2225988700566,5.329239130434782,1367.0177609114858,2019
+1998,52,"(50,55]",College,4871.217333333333,739.2225988700566,6.589648829431437,1138.8087055680737,2019
+1998,54,"(50,55]",HS,141.91003333333333,94.25088135593221,1.5056626664043542,7613.251057214549,2019
+1998,54,"(50,55]",HS,142.67583333333334,94.25088135593221,1.513787789363237,7791.732864458989,2019
+1998,54,"(50,55]",HS,141.91003333333333,94.25088135593221,1.5056626664043542,8184.84647215426,2019
+1998,54,"(50,55]",HS,141.94650000000001,94.25088135593221,1.5060495770214442,7565.645336275212,2019
+1998,54,"(50,55]",HS,141.87356666666668,94.25088135593221,1.5052757557872647,8152.853435570243,2019
+1998,50,"(45,50]",College,11349.703,890.7632316384181,12.741548592125895,465.9005653825946,2019
+1998,50,"(45,50]",College,14322.830333333335,888.9151751412429,16.112707639463494,461.6420737898673,2019
+1998,50,"(45,50]",College,17259.491,888.9151751412429,19.41635319394517,441.0068401644302,2019
+1998,50,"(45,50]",College,18936.228333333333,888.9151751412429,21.302626912994807,517.5320202384021,2019
+1998,50,"(45,50]",College,12092.893666666667,924.0282485875706,13.087147157190635,453.7984042100662,2019
+1998,35,"(30,35]",College,-124.53366666666668,157.08480225988703,-0.792779854416683,5151.745944023254,2019
+1998,35,"(30,35]",College,-124.53366666666668,164.47702824858757,-0.7571492991620007,5153.174700729026,2019
+1998,35,"(30,35]",College,-124.53366666666668,160.78091525423727,-0.7745550301772193,5200.860560809162,2019
+1998,35,"(30,35]",College,-124.53366666666668,140.45229378531073,-0.8866616792818167,5147.284038264317,2019
+1998,35,"(30,35]",College,-124.53366666666668,175.56536723163845,-0.7093293434254532,5118.542460499555,2019
+1998,52,"(50,55]",HS,310.25840000000005,46.201412429378536,6.715344481605352,7892.816289226906,2019
+1998,52,"(50,55]",HS,301.6705,46.201412429378536,6.529464882943143,8041.55508824852,2019
+1998,52,"(50,55]",HS,299.13606666666664,46.201412429378536,6.474608695652172,8269.290861957652,2019
+1998,52,"(50,55]",HS,306.19236666666666,46.201412429378536,6.627337792642139,7930.706088194916,2019
+1998,52,"(50,55]",HS,308.98206666666664,46.201412429378536,6.687719063545149,8252.552271077779,2019
+1998,41,"(40,45]",College,4039.2303333333334,184.80564971751414,21.85663879598662,13.438689787106375,2019
+1998,41,"(40,45]",College,4039.2121,184.80564971751414,21.856540133779262,14.76385092088788,2019
+1998,41,"(40,45]",College,4041.0536666666667,184.80564971751414,21.866505016722407,11.783422678734386,2019
+1998,41,"(40,45]",College,4039.2303333333334,184.80564971751414,21.85663879598662,12.418519587477107,2019
+1998,41,"(40,45]",College,4041.0536666666667,184.80564971751414,21.866505016722407,12.20895473484407,2019
+1998,49,"(45,50]",College,50038.1378,2956.8903954802263,16.922554138795984,33.298020221494895,2019
+1998,49,"(45,50]",College,46210.04946666667,2587.279096045198,17.860481127568082,34.892343262385054,2019
+1998,49,"(45,50]",College,49167.860799999995,2605.7596610169494,18.868916245641497,30.18795190638621,2019
+1998,49,"(45,50]",College,47494.42370000001,2919.929265536723,16.265607616104315,29.311296248858962,2019
+1998,49,"(45,50]",College,48815.95746666667,2846.007005649717,17.152437562437566,29.895445829547914,2019
+1998,35,"(30,35]",NoHS,0.34643333333333337,20.328621468926556,0.017041653998175737,4873.642178853501,2019
+1998,35,"(30,35]",NoHS,1.3675,20.328621468926556,0.06726968683490421,4847.711639640334,2019
+1998,35,"(30,35]",NoHS,1.3675,20.328621468926556,0.06726968683490421,4861.468221149242,2019
+1998,35,"(30,35]",NoHS,0.21880000000000002,20.328621468926556,0.010763149893584676,4878.690459373002,2019
+1998,35,"(30,35]",NoHS,1.8233333333333333,20.328621468926556,0.08969291577987229,4836.583166854061,2019
+1998,41,"(40,45]",NoHS,10.757666666666667,36.96112994350283,0.29105351170568555,6964.719748527888,2019
+1998,41,"(40,45]",NoHS,10.575333333333335,36.96112994350283,0.2861204013377926,6978.517509149422,2019
+1998,41,"(40,45]",NoHS,10.575333333333335,36.96112994350283,0.2861204013377926,6966.172827293472,2019
+1998,41,"(40,45]",NoHS,10.575333333333335,36.96112994350283,0.2861204013377926,6962.252667027598,2019
+1998,41,"(40,45]",NoHS,10.575333333333335,36.96112994350283,0.2861204013377926,6999.167375826268,2019
+1998,43,"(40,45]",HS,4.923,88.70671186440678,0.055497491638795984,5919.948940037925,2019
+1998,43,"(40,45]",HS,6.199333333333334,85.0105988700565,0.07292424022102661,5948.883678923033,2019
+1998,43,"(40,45]",HS,2.005666666666667,59.13780790960452,0.03391513377926422,5933.749279948139,2019
+1998,43,"(40,45]",HS,6.017,57.289751412429375,0.10502751105836661,5972.205920091406,2019
+1998,43,"(40,45]",HS,2.005666666666667,62.833920903954805,0.031920125909895736,5923.385556447099,2019
+1998,41,"(40,45]",HS,113.95833333333333,92.40282485875707,1.233277591973244,8778.571934258589,2019
+1998,41,"(40,45]",HS,148.784,90.55476836158192,1.6430277796737423,8956.599521234693,2019
+1998,41,"(40,45]",HS,146.94243333333333,90.55476836158192,1.622691283871408,9380.029166059408,2019
+1998,41,"(40,45]",HS,121.25166666666668,90.55476836158192,1.3389870998566653,8776.966336902717,2019
+1998,41,"(40,45]",HS,115.05233333333334,90.55476836158192,1.2705276090369257,9312.865362916571,2019
+1998,37,"(35,40]",NoHS,403.86833333333334,42.50529943502825,9.501599534680821,7507.174335941925,2019
+1998,37,"(35,40]",NoHS,403.86833333333334,42.50529943502825,9.501599534680821,7681.1253702146005,2019
+1998,37,"(35,40]",NoHS,403.86833333333334,42.50529943502825,9.501599534680821,8107.533605198046,2019
+1998,37,"(35,40]",NoHS,407.515,42.50529943502825,9.587392758470262,7528.721025239222,2019
+1998,37,"(35,40]",NoHS,425.74833333333333,42.50529943502825,10.016358877417478,7889.35481941514,2019
+1998,42,"(40,45]",College,160.12695666666667,110.88338983050849,1.4441022853957635,11458.321138502444,2019
+1998,42,"(40,45]",College,180.18362333333332,110.88338983050849,1.6249829988851723,11853.363940649113,2019
+1998,42,"(40,45]",College,158.30362333333332,110.88338983050849,1.4276585841694533,11324.1036149307,2019
+1998,42,"(40,45]",College,172.89029000000002,110.88338983050849,1.5592081939799332,11161.920161828577,2019
+1998,42,"(40,45]",College,185.65362333333331,110.88338983050849,1.6743141025641022,11413.115852191888,2019
+1998,59,"(55,60]",NoHS,186.8005,42.50529943502825,4.394757888614222,6986.682866359964,2019
+1998,59,"(55,60]",NoHS,186.8005,42.50529943502825,4.394757888614222,6921.702676669786,2019
+1998,59,"(55,60]",NoHS,186.61816666666667,42.50529943502825,4.3904682274247495,7287.74388555076,2019
+1998,59,"(55,60]",NoHS,186.8005,42.50529943502825,4.394757888614222,6842.511044203233,2019
+1998,59,"(55,60]",NoHS,186.8005,42.50529943502825,4.394757888614222,7211.829108590228,2019
+1998,46,"(45,50]",College,35154.176633333336,4398.374463276836,7.992538363171357,2.651661686083415,2019
+1998,46,"(45,50]",College,13667.323766666668,5414.805536723164,2.52406548563471,2.3341159586354703,2019
+1998,46,"(45,50]",College,24761.559533333337,5340.883276836158,4.63622929951048,2.468192147365653,2019
+1998,46,"(45,50]",College,24697.597,4379.893898305085,5.638857372676855,2.4444526931911676,2019
+1998,46,"(45,50]",College,23545.924966666666,5839.858531073446,4.03193413699674,2.2270598810418605,2019
+1998,49,"(45,50]",College,201.296,92.40282485875707,2.178461538461538,7165.288802313873,2019
+1998,49,"(45,50]",College,199.47266666666667,92.40282485875707,2.1587290969899664,7154.46188182516,2019
+1998,49,"(45,50]",College,255.996,92.40282485875707,2.7704347826086955,7167.704696648036,2019
+1998,49,"(45,50]",College,219.52933333333334,92.40282485875707,2.375785953177257,7154.645796400301,2019
+1998,49,"(45,50]",College,275.8703333333333,92.40282485875707,2.9855183946488286,7229.481297840111,2019
+1998,42,"(40,45]",HS,34.64333333333334,40.65724293785311,0.8520826999087868,10793.577069844961,2019
+1998,42,"(40,45]",HS,34.64333333333334,40.65724293785311,0.8520826999087868,10885.063825113262,2019
+1998,42,"(40,45]",HS,34.64333333333334,40.65724293785311,0.8520826999087868,10779.055121614725,2019
+1998,42,"(40,45]",HS,36.46666666666666,40.65724293785311,0.8969291577987227,10849.895034673898,2019
+1998,42,"(40,45]",HS,34.64333333333334,40.65724293785311,0.8520826999087868,10763.33013126917,2019
+1998,31,"(30,35]",HS,435.94076666666666,96.09893785310734,4.536374453305892,7067.6209615179305,2019
+1998,31,"(30,35]",HS,437.7641,97.9469943502825,4.469397993311036,6764.972278465082,2019
+1998,31,"(30,35]",HS,423.35976666666664,96.09893785310734,4.405457293542578,6308.900572224159,2019
+1998,31,"(30,35]",HS,425.18309999999997,97.9469943502825,4.340950968637596,6903.225833137134,2019
+1998,31,"(30,35]",HS,426.8241,97.9469943502825,4.35770492837761,6296.029892511471,2019
+1998,72,"(70,75]",College,2685.587666666667,262.42402259887007,10.233772198407838,3367.3833616380807,2019
+1998,72,"(70,75]",College,2678.2943333333337,291.9929265536723,9.172463062529108,3623.8764854168826,2019
+1998,72,"(70,75]",College,2676.471,266.12013559322037,10.057378762541806,3484.9668742741787,2019
+1998,72,"(70,75]",College,2672.8243333333335,280.90458757062146,9.515061168808309,4087.8618361036074,2019
+1998,72,"(70,75]",College,2674.6476666666667,297.53709604519776,8.989291426909574,3268.9642418434514,2019
+1998,54,"(50,55]",HS,200.27493333333334,79.46642937853107,2.5202457805086724,6975.1978731400795,2019
+1998,54,"(50,55]",HS,200.27493333333334,79.46642937853107,2.5202457805086724,7112.288365207399,2019
+1998,54,"(50,55]",HS,200.45726666666667,79.46642937853107,2.522540250447227,7415.714351811939,2019
+1998,54,"(50,55]",HS,198.63393333333332,79.46642937853107,2.4995955510616783,6933.16132934919,2019
+1998,54,"(50,55]",HS,200.29316666666665,79.46642937853107,2.5204752275025277,7418.392222533667,2019
+1998,52,"(50,55]",College,0,138.6042372881356,0,5762.730275293163,2019
+1998,52,"(50,55]",College,0,138.6042372881356,0,5782.950688515828,2019
+1998,52,"(50,55]",College,-2.2426999999999997,138.6042372881356,-0.01618060200668896,5782.170517461201,2019
+1998,52,"(50,55]",College,0,138.6042372881356,0,5746.77798560132,2019
+1998,52,"(50,55]",College,0,138.6042372881356,0,5742.878367870482,2019
+1998,25,"(20,25]",HS,2.9538,33.265016949152546,0.08879598662207358,5092.313415582628,2019
+1998,25,"(20,25]",HS,2.8079333333333336,33.265016949152546,0.08441099962839094,5107.390292036046,2019
+1998,25,"(20,25]",HS,2.9538,33.265016949152546,0.08879598662207358,5107.64475981748,2019
+1998,25,"(20,25]",HS,2.9538,33.265016949152546,0.08879598662207358,5133.068234331966,2019
+1998,25,"(20,25]",HS,2.990266666666667,33.265016949152546,0.08989223337049423,5113.587125680832,2019
+1998,21,"(20,25]",NoHS,14.3861,10.164310734463278,1.4153542110063848,9408.891286133747,2019
+1998,21,"(20,25]",NoHS,14.367866666666668,10.164310734463278,1.4135603526907874,9498.570667558779,2019
+1998,21,"(20,25]",NoHS,14.3861,10.164310734463278,1.4153542110063848,9551.48766753919,2019
+1998,21,"(20,25]",NoHS,10.739433333333332,10.164310734463278,1.0565825478868955,9384.228996588841,2019
+1998,21,"(20,25]",NoHS,8.9161,10.164310734463278,0.877196716327151,9468.90713451889,2019
+1998,61,"(60,65]",HS,481.36,127.51589830508476,3.774901846735495,6692.338531227528,2019
+1998,61,"(60,65]",HS,445.0756666666667,127.51589830508476,3.4903543211671755,8017.416233724965,2019
+1998,61,"(60,65]",HS,367.03700000000003,94.25088135593221,3.8942553610072794,8441.402190270934,2019
+1998,61,"(60,65]",HS,681.1973333333334,121.97172881355934,5.584878889226715,6533.5034326698315,2019
+1998,61,"(60,65]",HS,518.9206666666666,101.64310734463277,5.1053207661903315,5956.544170529374,2019
+1998,37,"(35,40]",HS,123.98666666666668,101.64310734463277,1.2198236546062635,4536.257758508443,2019
+1998,37,"(35,40]",HS,72.56866666666667,101.64310734463277,0.7139556096077836,4480.708029617799,2019
+1998,37,"(35,40]",HS,152.79533333333336,103.49116384180793,1.4764094601051123,4535.812421592302,2019
+1998,37,"(35,40]",HS,80.77366666666667,103.49116384180793,0.7804885332059244,4579.074627669809,2019
+1998,37,"(35,40]",HS,155.895,103.49116384180793,1.506360487338748,4518.825218296299,2019
+1998,26,"(25,30]",HS,101.92433333333334,57.289751412429375,1.7791023842917253,3810.000793010192,2019
+1998,26,"(25,30]",HS,102.25253333333335,57.289751412429375,1.7848311576221818,3787.380308768411,2019
+1998,26,"(25,30]",HS,102.27076666666666,57.289751412429375,1.785149422807207,3775.153341925879,2019
+1998,26,"(25,30]",HS,102.30723333333334,57.289751412429375,1.7857859531772577,3857.409012774674,2019
+1998,26,"(25,30]",HS,101.90610000000001,57.289751412429375,1.7787841191067,3790.3695217753398,2019
+1998,24,"(20,25]",HS,-21.260066666666667,116.4275593220339,-0.18260338695121303,9211.01591332968,2019
+1998,24,"(20,25]",HS,-24.9432,116.4275593220339,-0.21423793597706642,9209.76473390501,2019
+1998,24,"(20,25]",HS,-27.277066666666666,114.57950282485875,-0.2380623583989643,9383.292630089989,2019
+1998,24,"(20,25]",HS,-26.018966666666667,116.4275593220339,-0.22347772999946913,9255.349758008128,2019
+1998,24,"(20,25]",HS,-29.847966666666668,116.4275593220339,-0.256365132452089,9250.791958390257,2019
+1998,41,"(40,45]",HS,3.1908333333333334,44.35335593220339,0.0719411928651059,5323.541997959207,2019
+1998,41,"(40,45]",HS,3.1908333333333334,29.56890395480226,0.10791178929765886,5345.500076315095,2019
+1998,41,"(40,45]",HS,3.1908333333333334,38.80918644067796,0.08221850613154962,5368.4281220918765,2019
+1998,41,"(40,45]",HS,3.1908333333333334,31.416960451977403,0.10156403698603186,5340.016485893555,2019
+1998,41,"(40,45]",HS,3.1908333333333334,27.720847457627123,0.11510590858416944,5291.858253942049,2019
+1998,54,"(50,55]",HS,233.16786666666667,44.35335593220339,5.257051282051282,8256.51138755569,2019
+1998,54,"(50,55]",HS,233.3319666666667,44.35335593220339,5.260751114827202,8418.784806814248,2019
+1998,54,"(50,55]",HS,233.14963333333333,44.35335593220339,5.256640189520624,8777.948827569531,2019
+1998,54,"(50,55]",HS,233.14963333333333,44.35335593220339,5.256640189520624,8206.752913485809,2019
+1998,54,"(50,55]",HS,233.14963333333333,44.35335593220339,5.256640189520624,8781.118611496882,2019
+1998,26,"(25,30]",HS,8.050016666666666,46.201412429378536,0.1742374581939799,7787.259624774757,2019
+1998,26,"(25,30]",HS,8.0409,46.201412429378536,0.17404013377926422,7886.541145394959,2019
+1998,26,"(25,30]",HS,8.241466666666668,48.04946892655367,0.17152045279135583,8051.5125739906525,2019
+1998,26,"(25,30]",HS,8.241466666666668,46.201412429378536,0.17838127090301004,7748.659407171463,2019
+1998,26,"(25,30]",HS,8.0409,46.201412429378536,0.17404013377926422,8045.359149688617,2019
+1998,65,"(60,65]",HS,25.162,79.46642937853107,0.3166368515205724,6261.832325897225,2019
+1998,65,"(60,65]",HS,25.162,79.46642937853107,0.3166368515205724,6501.189131243651,2019
+1998,65,"(60,65]",HS,25.162,81.31448587570623,0.30944055944055937,6437.447520215494,2019
+1998,65,"(60,65]",HS,25.162,79.46642937853107,0.3166368515205724,6402.631396879124,2019
+1998,65,"(60,65]",HS,25.162,81.31448587570623,0.30944055944055937,6384.459280066393,2019
+1998,49,"(45,50]",College,2167.9433333333336,724.4381468926554,2.99258583031875,1823.9362255658507,2019
+1998,49,"(45,50]",College,2167.9433333333336,724.4381468926554,2.99258583031875,1853.4621967072108,2019
+1998,49,"(45,50]",College,2167.9433333333336,724.4381468926554,2.99258583031875,1811.3295640340366,2019
+1998,49,"(45,50]",College,2167.9433333333336,722.5900903954803,3.0002395025190536,2021.6091381817964,2019
+1998,49,"(45,50]",College,2167.9433333333336,724.4381468926554,2.99258583031875,1885.3291235541085,2019
+1998,78,"(75,80]",College,925.8886666666666,190.34981920903957,4.864142611293307,7484.117206018052,2019
+1998,78,"(75,80]",College,713.1056666666666,188.50176271186442,3.7830185585940055,7176.999392871667,2019
+1998,78,"(75,80]",College,724.4103333333334,188.50176271186442,3.842989704242901,6699.589079783572,2019
+1998,78,"(75,80]",College,856.0550000000001,190.34981920903957,4.497272461603403,7292.934219535195,2019
+1998,78,"(75,80]",College,796.979,188.50176271186442,4.227965768247098,6680.401261826762,2019
+1998,41,"(40,45]",HS,9.299,31.416960451977403,0.29598662207357856,4654.597205525467,2019
+1998,41,"(40,45]",HS,9.299,31.416960451977403,0.29598662207357856,4659.425726252649,2019
+1998,41,"(40,45]",HS,9.481333333333334,31.416960451977403,0.30179028132992325,4670.5459565705005,2019
+1998,41,"(40,45]",HS,9.299,31.416960451977403,0.29598662207357856,4677.143560509094,2019
+1998,41,"(40,45]",HS,9.299,31.416960451977403,0.29598662207357856,4654.987293142006,2019
+1998,51,"(50,55]",HS,64899.362,2587.279096045198,25.084020544672715,22.9067873302101,2019
+1998,51,"(50,55]",HS,65180.702333333335,2587.279096045198,25.19276039178213,23.84429724724721,2019
+1998,51,"(50,55]",HS,64853.778666666665,2679.681920903955,24.20204359358782,29.77218152174276,2019
+1998,51,"(50,55]",HS,65061.821,2624.240225988701,24.792631541758915,26.82846984475386,2019
+1998,51,"(50,55]",HS,65307.424,2587.279096045198,25.24173913043478,25.465515558494335,2019
+1998,40,"(35,40]",HS,1928.9043333333334,151.54063276836158,12.728627946814585,259.61105200179094,2019
+1998,40,"(35,40]",HS,1935.833,151.54063276836158,12.7743494575414,267.6838540571799,2019
+1998,40,"(35,40]",HS,1914.1353333333334,153.38868926553673,12.478986178829029,254.7864534133743,2019
+1998,40,"(35,40]",HS,1925.0753333333332,153.38868926553673,12.550308256437118,270.2609379244718,2019
+1998,40,"(35,40]",HS,1915.7763333333332,151.54063276836158,12.641997715963782,258.9133201337018,2019
+1998,45,"(40,45]",HS,12.982133333333334,72.07420338983052,0.18012177343281022,4775.826535978132,2019
+1998,45,"(40,45]",HS,12.982133333333334,72.07420338983052,0.18012177343281022,4796.225581442982,2019
+1998,45,"(40,45]",HS,12.982133333333334,72.07420338983052,0.18012177343281022,4762.948869408929,2019
+1998,45,"(40,45]",HS,14.805466666666668,72.07420338983052,0.20541977531944086,4789.82416136691,2019
+1998,45,"(40,45]",HS,12.982133333333334,72.07420338983052,0.18012177343281022,4790.649443881636,2019
+1998,20,"(15,20]",HS,-4.284833333333333,22.176677966101696,-0.19321348940914157,4889.6590997826115,2019
+1998,20,"(15,20]",HS,-4.284833333333333,24.024734463276836,-0.17835091330074607,4852.286565373811,2019
+1998,20,"(15,20]",HS,-7.9315,24.024734463276836,-0.33013892462052996,4886.397102421453,2019
+1998,20,"(15,20]",HS,-7.9315,22.176677966101696,-0.3576505016722408,4890.8717112391905,2019
+1998,20,"(15,20]",HS,-6.108166666666667,22.176677966101696,-0.2754319955406912,4836.473497855682,2019
+1998,67,"(65,70]",College,19755.81666666667,109.03533333333333,181.1872909698997,221.0179552196265,2019
+1998,67,"(65,70]",College,20846.170000000002,197.7420451977401,105.42102960022505,220.95350677744145,2019
+1998,67,"(65,70]",College,19808.693333333333,186.65370621468927,106.12536838968177,218.70860629439773,2019
+1998,67,"(65,70]",College,13596.596666666666,83.16254237288136,163.49424005945744,213.37349522402116,2019
+1998,67,"(65,70]",College,20665.66,92.40282485875707,223.64749163879597,202.69225601124634,2019
+1998,54,"(50,55]",HS,162.64133333333334,73.92225988700567,2.200167224080267,3707.046874815428,2019
+1998,54,"(50,55]",HS,162.459,73.92225988700567,2.1977006688963208,3853.056154597736,2019
+1998,54,"(50,55]",HS,162.55016666666666,73.92225988700567,2.1989339464882938,3634.9101297804896,2019
+1998,54,"(50,55]",HS,162.459,73.92225988700567,2.1977006688963208,3631.823825615486,2019
+1998,54,"(50,55]",HS,162.82366666666667,73.92225988700567,2.2026337792642137,3752.885717126469,2019
+1998,63,"(60,65]",College,5351.118666666667,694.8692429378531,7.700900163666122,27.924709756455037,2019
+1998,63,"(60,65]",College,6275.5486666666675,1783.3745197740113,3.518917982220528,30.532763886742572,2019
+1998,63,"(60,65]",College,6219.025333333333,1094.0494463276834,5.684409744192354,29.74434977174123,2019
+1998,63,"(60,65]",College,7522.708666666667,1027.5194124293785,7.321232645990232,30.644541111649822,2019
+1998,63,"(60,65]",College,10744.538666666665,1788.9186892655366,6.0061637966776305,32.04320273493679,2019
+1998,25,"(20,25]",HS,-54.51766666666666,9.609893785310735,-5.6730769230769225,4938.000887261345,2019
+1998,25,"(20,25]",HS,-56.341,9.79469943502825,-5.752192844071432,4952.620888669013,2019
+1998,25,"(20,25]",HS,-54.51766666666666,9.79469943502825,-5.566037735849056,4952.867645305526,2019
+1998,25,"(20,25]",HS,-56.341,9.609893785310735,-5.8628119372266525,4977.520711498514,2019
+1998,25,"(20,25]",HS,-56.341,9.609893785310735,-5.8628119372266525,4958.629939475377,2019
+1998,48,"(45,50]",NoHS,0,4.2505299435028245,0,6407.625426934342,2019
+1998,48,"(45,50]",NoHS,0,11.827561581920904,0,6390.743446141828,2019
+1998,48,"(45,50]",NoHS,0,4.989752542372881,0,6335.245370429717,2019
+1998,48,"(45,50]",NoHS,0,6.28339209039548,0,6406.142828175123,2019
+1998,48,"(45,50]",NoHS,0,7.392225988700565,0,6377.251208301844,2019
+1998,30,"(25,30]",NoHS,0.018233333333333334,0,Inf,5352.84656239202,2019
+1998,30,"(25,30]",NoHS,0.018233333333333334,0,Inf,5332.827579007611,2019
+1998,30,"(25,30]",NoHS,0.018233333333333334,0,Inf,5321.174427025986,2019
+1998,30,"(25,30]",NoHS,0.018233333333333334,0,Inf,5347.920518914764,2019
+1998,30,"(25,30]",NoHS,0.018233333333333334,0,Inf,5335.247821458648,2019
+1998,56,"(55,60]",College,17935.218333333334,3492.826779661017,5.134871971828494,343.99179330762587,2019
+1998,56,"(55,60]",College,17844.59866666667,4102.6854237288135,4.349492301666215,348.940613035089,2019
+1998,56,"(55,60]",College,17835.11733333333,3548.2684745762717,5.026428372352284,345.36455287264573,2019
+1998,56,"(55,60]",College,18206.311533333337,3308.021129943503,5.5036865903103465,330.73850999473024,2019
+1998,56,"(55,60]",College,17660.186733333336,4232.049378531075,4.1729632983306795,317.86447504065575,2019
+1998,56,"(55,60]",HS,157.71833333333333,70.22614689265536,2.2458634043302235,7261.686586577298,2019
+1998,56,"(55,60]",HS,157.90066666666667,72.07420338983052,2.190806963382214,7234.636254813247,2019
+1998,56,"(55,60]",HS,156.07733333333334,70.22614689265536,2.222496039429678,7665.959728866369,2019
+1998,56,"(55,60]",HS,155.895,70.22614689265536,2.2198996655518397,7098.327779973517,2019
+1998,56,"(55,60]",HS,155.895,70.22614689265536,2.2198996655518397,7504.447957039918,2019
+1998,40,"(35,40]",College,574.5141,377.00352542372883,1.5238958292347038,5735.435231421322,2019
+1998,40,"(35,40]",College,644.5483333333334,170.021197740113,3.790988076196016,5487.711869323544,2019
+1998,40,"(35,40]",College,575.5534,151.54063276836158,3.79801370421731,5124.3985175765065,2019
+1998,40,"(35,40]",College,515.1828333333333,182.957593220339,2.815859261511435,5601.776415987977,2019
+1998,40,"(35,40]",College,474.0666666666667,112.73144632768363,4.205274411974341,5108.282140329318,2019
+1998,33,"(30,35]",College,303.4026666666667,295.68903954802266,1.026086956521739,5877.888375977816,2019
+1998,33,"(30,35]",College,303.4026666666667,295.68903954802266,1.026086956521739,5860.643765450348,2019
+1998,33,"(30,35]",College,303.4026666666667,295.68903954802266,1.026086956521739,5874.876074757332,2019
+1998,33,"(30,35]",College,303.4026666666667,295.68903954802266,1.026086956521739,5952.023649003227,2019
+1998,33,"(30,35]",College,303.4026666666667,295.68903954802266,1.026086956521739,5879.268486191778,2019
+1998,67,"(65,70]",HS,11.578166666666666,13.860423728813561,0.8353400222965439,7595.7043132147155,2019
+1998,67,"(65,70]",HS,11.395833333333334,14.045229378531072,0.8113668368245028,7630.481021406158,2019
+1998,67,"(65,70]",HS,11.395833333333334,14.045229378531072,0.8113668368245028,7577.242652609978,2019
+1998,67,"(65,70]",HS,11.395833333333334,14.045229378531072,0.8113668368245028,7558.1459774227,2019
+1998,67,"(65,70]",HS,11.578166666666666,14.045229378531072,0.8243487062136948,7577.43449724097,2019
+1998,66,"(65,70]",HS,12849.03,554.4169491525424,23.175752508361203,13.220731962776037,2019
+1998,66,"(65,70]",HS,12849.03,554.4169491525424,23.175752508361203,14.273433380186441,2019
+1998,66,"(65,70]",HS,12849.03,554.4169491525424,23.175752508361203,14.098337919967872,2019
+1998,66,"(65,70]",HS,12849.03,554.4169491525424,23.175752508361203,14.394860285423471,2019
+1998,66,"(65,70]",HS,12849.03,554.4169491525424,23.175752508361203,14.980199676924391,2019
+1998,52,"(50,55]",College,599.6578666666667,129.36395480225988,4.6354323936932635,6429.713063275301,2019
+1998,52,"(50,55]",College,603.8150666666667,121.97172881355934,4.950450998277085,6161.169866942958,2019
+1998,52,"(50,55]",College,635.2311,121.97172881355934,5.208019154758285,5741.262176761838,2019
+1998,52,"(50,55]",College,609.5950333333334,116.4275593220339,5.235831077135425,6282.602001125123,2019
+1998,52,"(50,55]",College,603.3227666666668,110.88338983050849,5.44105629877369,5731.427968390818,2019
+1998,57,"(55,60]",College,31130.317,583.9858531073446,53.30662863553618,28.687107647947688,2019
+1998,57,"(55,60]",College,31131.958000000002,585.8339096045197,53.14127005897683,31.692045493903937,2019
+1998,57,"(55,60]",College,31130.13466666667,585.8339096045197,53.138157686504975,25.94049435040958,2019
+1998,57,"(55,60]",College,31130.317,585.8339096045197,53.13846892375216,24.662061034680686,2019
+1998,57,"(55,60]",College,31130.317,585.8339096045197,53.13846892375216,24.761027519237324,2019
+1998,35,"(30,35]",HS,291.9156666666667,97.9469943502825,2.9803432826402476,1103.5275008117933,2019
+1998,35,"(30,35]",HS,292.098,97.9469943502825,2.982204833722471,1017.9953153136923,2019
+1998,35,"(30,35]",HS,292.098,97.9469943502825,2.982204833722471,1036.3516687272777,2019
+1998,35,"(30,35]",HS,291.9156666666667,97.9469943502825,2.9803432826402476,1123.8524044050414,2019
+1998,35,"(30,35]",HS,291.9156666666667,97.9469943502825,2.9803432826402476,1144.5055436478292,2019
+1998,20,"(15,20]",HS,4.412466666666666,38.80918644067796,0.11369644847905717,5139.323315784348,2019
+1998,20,"(15,20]",HS,3.5190333333333332,27.720847457627123,0.12694537346711257,5119.658902973377,2019
+1998,20,"(15,20]",HS,1.3675,27.720847457627123,0.049331103678929754,5130.288662593209,2019
+1998,20,"(15,20]",HS,4.795366666666667,22.176677966101696,0.2162346711259755,5160.976082877961,2019
+1998,20,"(15,20]",HS,17.32166666666667,24.024734463276836,0.7209930537689736,5085.946839048408,2019
+1998,41,"(40,45]",College,1391.021,367.7632429378531,3.7823818087090975,1089.5949428983345,2019
+1998,41,"(40,45]",College,1122.0064,201.4381581920904,5.569979442177288,1166.6410808840005,2019
+1998,41,"(40,45]",College,2169.7666666666664,190.34981920903957,11.398837549111924,1575.4812051285762,2019
+1998,41,"(40,45]",College,3394.135,432.4452203389831,7.8487050853271585,1686.4904583169732,2019
+1998,41,"(40,45]",College,2741.3816666666667,317.8657175141243,8.624338881543128,1572.234233348147,2019
+1998,20,"(15,20]",HS,3.044966666666667,81.31448587570623,0.03744679233809668,4858.266579644521,2019
+1998,20,"(15,20]",HS,21.278299999999998,86.85865536723163,0.24497616167366398,4839.677564379718,2019
+1998,20,"(15,20]",HS,50.451633333333334,72.07420338983052,0.69999571220307,4849.72600903625,2019
+1998,20,"(15,20]",HS,68.68496666666667,66.53003389830509,1.0323903753251578,4966.952613740463,2019
+1998,20,"(15,20]",HS,21.278299999999998,96.09893785310734,0.22142076151273474,4807.809128900186,2019
+1998,39,"(35,40]",HS,54.882333333333335,70.22614689265536,0.7815085372293611,6925.120316289239,2019
+1998,39,"(35,40]",HS,53.69716666666667,70.22614689265536,0.7646321070234114,7019.841506701867,2019
+1998,39,"(35,40]",HS,53.0043,86.85865536723163,0.6102362484878674,7307.834313898257,2019
+1998,39,"(35,40]",HS,55.06466666666667,77.61837288135592,0.7094282529065139,6959.802260443405,2019
+1998,39,"(35,40]",HS,52.32966666666667,70.22614689265536,0.7451593029396234,7219.368885820872,2019
+1998,49,"(45,50]",HS,9.11849,14.599646327683615,0.6245692392362728,6225.473864078182,2019
+1998,49,"(45,50]",HS,9.11849,14.78445197740113,0.6167621237458194,6226.29307659083,2019
+1998,49,"(45,50]",HS,10.030156666666667,14.599646327683615,0.6870136742728928,6209.010937560489,2019
+1998,49,"(45,50]",HS,9.11849,14.599646327683615,0.6245692392362728,6223.3463341377055,2019
+1998,49,"(45,50]",HS,9.793123333333334,14.599646327683615,0.6707781211633717,6229.169059632215,2019
+1998,41,"(40,45]",HS,79.77083333333333,59.13780790960452,1.3488973662207357,6244.875000340688,2019
+1998,41,"(40,45]",HS,79.77083333333333,59.13780790960452,1.3488973662207357,6330.291854776985,2019
+1998,41,"(40,45]",HS,77.9475,59.13780790960452,1.318065426421405,6589.995513312462,2019
+1998,41,"(40,45]",HS,79.77083333333333,59.13780790960452,1.3488973662207357,6276.150183459473,2019
+1998,41,"(40,45]",HS,79.77083333333333,59.13780790960452,1.3488973662207357,6510.2199260356,2019
+1998,55,"(50,55]",HS,792.056,170.021197740113,4.658572051766759,5164.3915937104975,2019
+1998,55,"(50,55]",HS,793.8793333333334,168.17314124293785,4.72060715204528,4923.978695118654,2019
+1998,55,"(50,55]",HS,793.697,170.021197740113,4.668223789443071,4609.380253730459,2019
+1998,55,"(50,55]",HS,792.056,170.021197740113,4.658572051766759,5043.206084024279,2019
+1998,55,"(50,55]",HS,791.8736666666666,170.021197740113,4.657499636469391,4597.454148123309,2019
+1998,68,"(65,70]",College,23524.646666666667,5562.650056497176,4.229035878176424,20.795659224605267,2019
+1998,68,"(65,70]",College,22775.256666666668,5174.558192090396,4.401391543239369,22.619970068465086,2019
+1998,68,"(65,70]",College,23854.670000000002,6024.66418079096,3.9595020210517684,23.23004397624981,2019
+1998,68,"(65,70]",College,22346.77333333333,5266.9610169491525,4.242821099571671,20.81448267901815,2019
+1998,68,"(65,70]",College,22379.593333333334,5969.222485875707,3.7491638795986617,22.273799349732734,2019
+1998,81,"(80,85]",College,45598.102333333336,452.7738418079096,100.7083407275954,12.827327900564516,2019
+1998,81,"(80,85]",College,47271.74,482.34274576271196,98.00445930880711,13.939333164601404,2019
+1998,81,"(80,85]",College,49131.54,395.4840903954802,124.2313943675179,13.902246643795191,2019
+1998,81,"(80,85]",College,44004.691333333336,384.3957514124294,114.47756946231027,12.711287252851669,2019
+1998,81,"(80,85]",College,47604.863,382.5476949152542,124.44164121952402,13.739997953806727,2019
+1998,54,"(50,55]",HS,-41.7361,57.289751412429375,-0.7285090085230338,4894.4468416506625,2019
+1998,54,"(50,55]",HS,-41.7361,57.289751412429375,-0.7285090085230338,4964.692543379167,2019
+1998,54,"(50,55]",HS,-41.754333333333335,57.289751412429375,-0.7288272737080592,4912.663992930897,2019
+1998,54,"(50,55]",HS,-41.7361,57.289751412429375,-0.7285090085230338,4860.320004581041,2019
+1998,54,"(50,55]",HS,-41.7361,57.289751412429375,-0.7285090085230338,4962.914852375659,2019
+1998,64,"(60,65]",College,60800.052833333335,1223.4134011299436,49.69706296921258,32.75797024958856,2019
+1998,64,"(60,65]",College,38531.956333333335,2624.240225988701,14.683090348108719,30.639316426521578,2019
+1998,64,"(60,65]",College,11170.104666666666,957.2932655367232,11.66842499451195,25.88029422940003,2019
+1998,64,"(60,65]",College,8102.619833333333,2587.279096045198,3.1317146440516,26.719125504811366,2019
+1998,64,"(60,65]",College,36706.52616666666,1491.381593220339,24.61243073773379,30.381399923236962,2019
+1998,45,"(40,45]",HS,4.193666666666667,22.176677966101696,0.18910256410256412,6633.092411654057,2019
+1998,45,"(40,45]",HS,4.193666666666667,22.176677966101696,0.18910256410256412,6661.424419246583,2019
+1998,45,"(40,45]",HS,4.193666666666667,20.328621468926556,0.20629370629370627,6615.206763639731,2019
+1998,45,"(40,45]",HS,4.193666666666667,25.872790960451983,0.16208791208791207,6652.533558029046,2019
+1998,45,"(40,45]",HS,4.193666666666667,38.80918644067796,0.10805860805860808,6653.679783744042,2019
+1998,38,"(35,40]",HS,239.03900000000002,35.11307344632768,6.807692307692308,286.4689453494549,2019
+1998,38,"(35,40]",HS,229.6670666666667,60.98586440677967,3.765906557210905,301.5647457333942,2019
+1998,38,"(35,40]",HS,237.21566666666666,75.77031638418079,3.130720287135982,280.02206784366746,2019
+1998,38,"(35,40]",HS,231.7639,66.53003389830509,3.4835981047937565,282.4950049222422,2019
+1998,38,"(35,40]",HS,240.86233333333334,49.89752542372881,4.82713984887898,287.3211634530541,2019
+1998,51,"(50,55]",HS,914.5840000000001,105.33922033898305,8.68227424749164,673.4576325994283,2019
+1998,51,"(50,55]",HS,882.6756666666666,103.49116384180793,8.528995461060676,622.5880090595396,2019
+1998,51,"(50,55]",HS,805.184,109.03533333333333,7.384615384615385,641.6753075665737,2019
+1998,51,"(50,55]",HS,861.1603333333334,133.06006779661018,6.47196674098848,707.0445750019015,2019
+1998,51,"(50,55]",HS,912.3960000000001,103.49116384180793,8.816172957477304,700.5354038280645,2019
+1998,65,"(60,65]",HS,77.76516666666667,99.79505084745762,0.779248730335687,8801.230871223719,2019
+1998,65,"(60,65]",HS,77.76516666666667,99.79505084745762,0.779248730335687,9170.281271641079,2019
+1998,65,"(60,65]",HS,77.76516666666667,99.79505084745762,0.779248730335687,9260.338849237403,2019
+1998,65,"(60,65]",HS,77.58283333333333,99.79505084745762,0.7774216524216524,8875.533907443893,2019
+1998,65,"(60,65]",HS,75.94183333333334,99.79505084745762,0.7609779511953426,9186.085188176638,2019
+1998,56,"(55,60]",HS,574.5323333333334,170.021197740113,3.3791806020066897,7381.852204471492,2019
+1998,56,"(55,60]",HS,733.1623333333334,170.021197740113,4.312181910716883,7037.519458718225,2019
+1998,56,"(55,60]",HS,919.1423333333333,170.021197740113,5.406045514032281,6588.163745823325,2019
+1998,56,"(55,60]",HS,554.4756666666666,168.17314124293785,3.297052445881877,7206.6522774258865,2019
+1998,56,"(55,60]",HS,908.3846666666667,170.021197740113,5.342773011487568,6570.2487271200425,2019
+1998,50,"(45,50]",HS,227.36966666666666,48.04946892655367,4.731991252894263,6055.5702947319405,2019
+1998,50,"(45,50]",HS,305.0436666666667,83.16254237288136,3.6680416202155333,5802.653533663582,2019
+1998,50,"(45,50]",HS,349.2230333333333,66.53003389830509,5.249103493125231,5407.180126037676,2019
+1998,50,"(45,50]",HS,305.7547666666667,68.37809039548021,4.4715312302268835,5917.019574160707,2019
+1998,50,"(45,50]",HS,247.244,79.46642937853107,3.1113012366804074,5397.918166833942,2019
+1998,59,"(55,60]",College,4145.713,578.4416836158192,7.167037088484511,1602.6951069570543,2019
+1998,59,"(55,60]",College,4140.881166666667,578.4416836158192,7.158683898404694,1656.98426198447,2019
+1998,59,"(55,60]",College,4112.254833333333,578.4416836158192,7.109195187365767,1575.4812051285762,2019
+1998,59,"(55,60]",College,4175.980333333334,578.4416836158192,7.219362732003377,1686.4904583169732,2019
+1998,59,"(55,60]",College,4130.214666666667,578.4416836158192,7.140243837285093,1572.234233348147,2019
+1998,71,"(70,75]",NoHS,206.219,24.024734463276836,8.58361204013378,8572.687749142098,2019
+1998,71,"(70,75]",NoHS,225.2546,35.11307344632768,6.415120577363141,8552.38524405405,2019
+1998,71,"(70,75]",NoHS,255.04786666666666,31.416960451977403,8.118158567774936,9139.163828448161,2019
+1998,71,"(70,75]",NoHS,237.1792,22.176677966101696,10.694983277591973,8816.93767707696,2019
+1998,71,"(70,75]",NoHS,237.6715,31.416960451977403,7.565069840645288,8976.687286181155,2019
+1998,51,"(50,55]",HS,237.21566666666666,59.13780790960452,4.011235367892977,6581.845188651796,2019
+1998,51,"(50,55]",HS,237.21566666666666,57.289751412429375,4.140630057179847,6667.778852861104,2019
+1998,51,"(50,55]",HS,237.03333333333336,59.13780790960452,4.008152173913044,6910.749899785956,2019
+1998,51,"(50,55]",HS,235.21,57.289751412429375,4.105620886827058,6576.1461113721,2019
+1998,51,"(50,55]",HS,236.851,57.289751412429375,4.13426475347934,6878.811051819379,2019
+1998,35,"(30,35]",HS,-0.18233333333333335,55.441694915254246,-0.003288740245261984,6925.120316289239,2019
+1998,35,"(30,35]",HS,-0.18233333333333335,55.441694915254246,-0.003288740245261984,7019.841506701867,2019
+1998,35,"(30,35]",HS,-0.3646666666666667,55.441694915254246,-0.006577480490523968,7307.834313898257,2019
+1998,35,"(30,35]",HS,-0.3646666666666667,55.441694915254246,-0.006577480490523968,6959.802260443405,2019
+1998,35,"(30,35]",HS,-0.547,55.441694915254246,-0.009866220735785953,7219.368885820872,2019
+1998,74,"(70,75]",College,751.7420999999999,184.80564971751414,4.06774414715719,6813.26220171031,2019
+1998,74,"(70,75]",College,825.423,186.65370621468927,4.42221596741614,6561.565780101439,2019
+1998,74,"(70,75]",College,796.6234499999999,164.47702824858757,4.843372101762428,6125.1621612469435,2019
+1998,74,"(70,75]",College,839.34415,188.50176271186442,4.452712472949045,6698.111390572306,2019
+1998,74,"(70,75]",College,824.5569166666667,151.54063276836158,5.441160575903418,6108.157201302103,2019
+1998,43,"(40,45]",HS,62.430933333333336,31.416960451977403,1.9871729293724179,8680.92119557672,2019
+1998,43,"(40,45]",HS,62.430933333333336,31.416960451977403,1.9871729293724179,8952.360076945408,2019
+1998,43,"(40,45]",HS,62.61326666666667,31.416960451977403,1.9929765886287625,9283.699788836768,2019
+1998,43,"(40,45]",HS,62.430933333333336,31.416960451977403,1.9871729293724179,8717.34295483318,2019
+1998,43,"(40,45]",HS,62.430933333333336,31.416960451977403,1.9871729293724179,9100.048864173892,2019
+1998,28,"(25,30]",HS,0,14.78445197740113,0,4932.308923505543,2019
+1998,28,"(25,30]",HS,0,14.78445197740113,0,4927.976545067041,2019
+1998,28,"(25,30]",HS,0,14.78445197740113,0,4946.306103893347,2019
+1998,28,"(25,30]",HS,0,14.78445197740113,0,4928.579907875612,2019
+1998,28,"(25,30]",HS,0,14.78445197740113,0,4943.3702910748325,2019
+1998,34,"(30,35]",NoHS,48.318333333333335,46.201412429378536,1.045819397993311,6515.301147682527,2019
+1998,34,"(30,35]",NoHS,30.085,83.16254237288136,0.36176142697881825,6535.375793556958,2019
+1998,34,"(30,35]",NoHS,61.08166666666666,79.46642937853107,0.7686474294158824,6577.899990627318,2019
+1998,34,"(30,35]",NoHS,61.08166666666666,86.85865536723163,0.703230626912403,6508.762387672381,2019
+1998,34,"(30,35]",NoHS,16.41,49.89752542372881,0.32887402452619846,6606.6484094237485,2019
+1998,65,"(60,65]",College,1931.8216666666667,131.21201129943503,14.722902633190447,1538.1767565535763,2019
+1998,65,"(60,65]",College,1904.2893333333334,219.9187231638418,8.65905961046626,1561.804245706983,2019
+1998,65,"(60,65]",College,1906.295,127.51589830508476,14.949469245310453,1489.3921162782708,2019
+1998,65,"(60,65]",College,1926.3516666666667,386.2438079096046,4.987398185338688,1668.5319049342186,2019
+1998,65,"(60,65]",College,1909.7593333333332,277.2084745762712,6.8892530657748035,1592.0852877239522,2019
+1998,60,"(55,60]",HS,613.187,55.441694915254246,11.060033444816051,339.7903763073425,2019
+1998,60,"(55,60]",HS,613.187,55.441694915254246,11.060033444816051,323.7106024305999,2019
+1998,60,"(55,60]",HS,613.187,55.441694915254246,11.060033444816051,324.8655343166195,2019
+1998,60,"(55,60]",HS,613.187,55.441694915254246,11.060033444816051,330.31199462856983,2019
+1998,60,"(55,60]",HS,613.187,55.441694915254246,11.060033444816051,337.34344320198795,2019
+1998,87,"(85,90]",HS,159.39579999999998,13.121201129943504,12.147957982005744,9877.662055148172,2019
+1998,87,"(85,90]",HS,159.08583333333334,13.121201129943504,12.124334636582033,9869.679276622863,2019
+1998,87,"(85,90]",HS,159.5599,13.121201129943504,12.16046445899477,9786.033650141342,2019
+1998,87,"(85,90]",HS,159.65106666666668,12.936395480225992,12.341232680363113,9866.400470354743,2019
+1998,87,"(85,90]",HS,159.08583333333334,13.121201129943504,12.124334636582033,9784.1318138627,2019
+1998,88,"(85,90]",NoHS,27.495866666666664,5.544169491525424,4.959420289855072,8526.615416210432,2019
+1998,88,"(85,90]",NoHS,27.459400000000002,5.544169491525424,4.952842809364548,8590.802647305598,2019
+1998,88,"(85,90]",NoHS,27.404700000000002,5.544169491525424,4.942976588628762,8533.873176651749,2019
+1998,88,"(85,90]",NoHS,27.422933333333336,5.544169491525424,4.946265328874025,8538.837161751857,2019
+1998,88,"(85,90]",NoHS,27.422933333333336,5.544169491525424,4.946265328874025,8554.318621624585,2019
+1998,57,"(55,60]",HS,136.65883333333335,59.13780790960452,2.3108538879598663,9228.393372671457,2019
+1998,57,"(55,60]",HS,95.41503333333334,60.98586440677967,1.5645434275869057,9194.016909379676,2019
+1998,57,"(55,60]",HS,89.89033333333333,62.833920903954805,1.430602006688963,9742.157157787944,2019
+1998,57,"(55,60]",HS,89.14276666666666,48.04946892655367,1.8552289683560585,9020.79155589567,2019
+1998,57,"(55,60]",HS,169.7705666666667,53.593638418079095,3.1677372852035526,9536.902614375578,2019
+1998,58,"(55,60]",HS,4.011333333333334,129.36395480225988,0.031008122312470143,4633.709651789364,2019
+1998,58,"(55,60]",HS,4.066033333333333,116.4275593220339,0.034923289271115356,4608.583233464976,2019
+1998,58,"(55,60]",HS,4.558333333333333,118.27561581920904,0.03853992474916387,4774.4101746565975,2019
+1998,58,"(55,60]",HS,3.427866666666667,99.79505084745762,0.0343490647838474,4600.353565571598,2019
+1998,58,"(55,60]",HS,4.448933333333334,99.79505084745762,0.04458070110244024,4677.573549297203,2019
+1998,33,"(30,35]",HS,131.46233333333333,68.37809039548021,1.9225797704058576,7611.698849369612,2019
+1998,33,"(30,35]",HS,218.07066666666665,68.37809039548021,3.1891891891891895,7613.849443126417,2019
+1998,33,"(30,35]",HS,127.26866666666668,68.37809039548021,1.8612492090752966,7745.104611457845,2019
+1998,33,"(30,35]",HS,133.28566666666666,68.37809039548021,1.9492452318539277,7648.106623055877,2019
+1998,33,"(30,35]",HS,205.30733333333336,70.22614689265536,2.9235169864460486,7697.439103535651,2019
+1998,51,"(50,55]",HS,5.761733333333334,55.441694915254246,0.1039241917502787,5985.626277458491,2019
+1998,51,"(50,55]",HS,5.707033333333334,55.441694915254246,0.10293756967670012,5987.892618112353,2019
+1998,51,"(50,55]",HS,5.9076,55.441694915254246,0.10655518394648829,5969.579859616695,2019
+1998,51,"(50,55]",HS,5.7435,55.441694915254246,0.10359531772575249,5985.243002437582,2019
+1998,51,"(50,55]",HS,6.035233333333334,55.441694915254246,0.10885730211817168,5989.512560190435,2019
+1998,28,"(25,30]",College,-23.211033333333333,35.11307344632768,-0.6610367892976589,4504.248073186149,2019
+1998,28,"(25,30]",College,-20.5125,42.50529943502825,-0.48258688381561726,4496.857596544475,2019
+1998,28,"(25,30]",College,-27.7329,38.80918644067796,-0.7145962732919255,4550.272455343313,2019
+1998,28,"(25,30]",College,-26.985333333333333,33.265016949152546,-0.8112225938312894,4496.670831872603,2019
+1998,28,"(25,30]",College,-6.746333333333333,25.872790960451983,-0.2607501194457716,4491.30622921819,2019
+1998,68,"(65,70]",HS,1224.0948333333333,184.80564971751414,6.623687290969899,8086.356737779152,2019
+1998,68,"(65,70]",HS,1096.0968333333333,184.80564971751414,5.931078595317725,7734.939194656571,2019
+1998,68,"(65,70]",HS,1061.8181666666667,184.80564971751414,5.745593645484949,7161.892265642998,2019
+1998,68,"(65,70]",HS,1095.9145,184.80564971751414,5.930091973244147,7857.969561132557,2019
+1998,68,"(65,70]",HS,1064.5531666666668,184.80564971751414,5.760392976588629,7142.199019350002,2019
+1998,65,"(60,65]",College,8815.816666666666,735.5264858757062,11.985722929026403,11.149415382359729,2019
+1998,65,"(60,65]",College,6335.171666666667,981.318,6.455778520995913,12.02738793032553,2019
+1998,65,"(60,65]",College,23489.091666666667,1118.0741807909606,21.008527046076452,13.902246643795191,2019
+1998,65,"(60,65]",College,10248.956666666667,848.2579322033899,12.082358770338308,11.880775170467038,2019
+1998,65,"(60,65]",College,9258.886666666665,3104.7349152542374,2.982182672400063,12.650181453643658,2019
+1998,30,"(25,30]",HS,32.273,129.36395480225988,0.24947443860487342,7642.0681752876335,2019
+1998,30,"(25,30]",HS,32.273,129.36395480225988,0.24947443860487342,7732.693863639557,2019
+1998,30,"(25,30]",HS,32.273,129.36395480225988,0.24947443860487342,7897.538341615628,2019
+1998,30,"(25,30]",HS,32.273,129.36395480225988,0.24947443860487342,7629.1458061903,2019
+1998,30,"(25,30]",HS,32.273,129.36395480225988,0.24947443860487342,7767.674176763246,2019
+1998,43,"(40,45]",HS,61.938633333333335,31.416960451977403,1.9715030493802872,5809.894922849839,2019
+1998,43,"(40,45]",HS,40.2592,33.265016949152546,1.2102564102564102,5924.179285789679,2019
+1998,43,"(40,45]",HS,36.9225,40.65724293785311,0.9081407722712069,6152.587945454799,2019
+1998,43,"(40,45]",HS,49.3941,25.872790960451983,1.9091137123745816,5812.4128447073035,2019
+1998,43,"(40,45]",HS,50.178133333333335,22.176677966101696,2.2626532887402453,6080.63260159423,2019
+1998,38,"(35,40]",HS,638.896,129.36395480225988,4.9387482083134255,6265.131543793176,2019
+1998,38,"(35,40]",HS,638.896,129.36395480225988,4.9387482083134255,5927.54892503327,2019
+1998,38,"(35,40]",HS,637.0726666666667,129.36395480225988,4.924653607262303,5596.613972936314,2019
+1998,38,"(35,40]",HS,638.896,129.36395480225988,4.9387482083134255,6121.768708826861,2019
+1998,38,"(35,40]",HS,637.0726666666667,129.36395480225988,4.924653607262303,5571.349992267975,2019
+1998,57,"(55,60]",HS,226.458,60.98586440677967,3.713286713286713,9109.351226641444,2019
+1998,57,"(55,60]",HS,226.458,60.98586440677967,3.713286713286713,9082.313895654837,2019
+1998,57,"(55,60]",HS,226.458,60.98586440677967,3.713286713286713,9558.313109285566,2019
+1998,57,"(55,60]",HS,226.27566666666667,60.98586440677967,3.710296949427384,8955.315605226544,2019
+1998,57,"(55,60]",HS,228.28133333333335,60.98586440677967,3.7431843518800036,9475.741826458176,2019
+1998,55,"(50,55]",College,1784.0368533333333,184.80564971751414,9.653583946488293,828.5419694443617,2019
+1998,55,"(50,55]",College,1789.5068533333333,184.80564971751414,9.68318260869565,880.0799647741078,2019
+1998,55,"(50,55]",College,1800.9938533333334,184.80564971751414,9.745339799331102,847.4041475595999,2019
+1998,55,"(50,55]",College,1789.5068533333333,184.80564971751414,9.68318260869565,870.3179176154606,2019
+1998,55,"(50,55]",College,1787.68352,184.80564971751414,9.673316387959865,820.2401522977077,2019
+1998,80,"(75,80]",HS,0.8934333333333333,0,Inf,8009.3180649267,2019
+1998,80,"(75,80]",HS,0.7657999999999999,0,Inf,8066.550492764157,2019
+1998,80,"(75,80]",HS,0.8205,0,Inf,8075.302365277527,2019
+1998,80,"(75,80]",HS,0.7475666666666667,0,Inf,7993.547075538196,2019
+1998,80,"(75,80]",HS,0.7840333333333334,0,Inf,8076.300403922733,2019
+1998,47,"(45,50]",College,368.31333333333333,231.00706214689265,1.59438127090301,8030.871409188447,2019
+1998,47,"(45,50]",College,377.6123333333333,231.00706214689265,1.6346354515050168,8228.260051125382,2019
+1998,47,"(45,50]",College,383.6293333333333,231.00706214689265,1.6606822742474916,8515.416740040519,2019
+1998,47,"(45,50]",College,369.5896666666667,231.00706214689265,1.5999063545150503,8054.092356552594,2019
+1998,47,"(45,50]",College,406.6033333333333,231.00706214689265,1.760133779264214,8406.705120802975,2019
+1998,74,"(70,75]",HS,7.019833333333334,18.480564971751416,0.3798494983277591,5208.787587727517,2019
+1998,74,"(70,75]",HS,10.484166666666667,18.480564971751416,0.5673076923076922,5268.798959938971,2019
+1998,74,"(70,75]",HS,91.6225,18.480564971751416,4.95777591973244,4911.622709179494,2019
+1998,74,"(70,75]",HS,27.805833333333332,18.480564971751416,1.5045986622073575,5244.970118905415,2019
+1998,74,"(70,75]",HS,11.7605,18.480564971751416,0.6363712374581939,5275.31765744226,2019
+1998,18,"(15,20]",HS,5.014166666666667,20.328621468926556,0.24665551839464883,1585.2109134868083,2019
+1998,18,"(15,20]",HS,5.014166666666667,20.328621468926556,0.24665551839464883,1572.663927973018,2019
+1998,18,"(15,20]",HS,5.014166666666667,20.328621468926556,0.24665551839464883,1588.567342471225,2019
+1998,18,"(15,20]",HS,5.1965,20.328621468926556,0.25562480997263604,1563.5981219319692,2019
+1998,18,"(15,20]",HS,5.014166666666667,20.328621468926556,0.24665551839464883,1616.6501362796316,2019
+1998,33,"(30,35]",HS,14.1673,73.92225988700567,0.1916513377926421,5092.313415582628,2019
+1998,33,"(30,35]",HS,14.531966666666667,73.92225988700567,0.19658444816053508,5107.390292036046,2019
+1998,33,"(30,35]",HS,14.531966666666667,73.92225988700567,0.19658444816053508,5107.64475981748,2019
+1998,33,"(30,35]",HS,14.349633333333333,73.92225988700567,0.19411789297658857,5133.068234331966,2019
+1998,33,"(30,35]",HS,14.531966666666667,73.92225988700567,0.19658444816053508,5113.587125680832,2019
+1998,35,"(30,35]",HS,388.37,75.77031638418079,5.125621992005874,5687.639943747859,2019
+1998,35,"(30,35]",HS,392.34486666666663,57.289751412429375,6.848430251375553,5441.980942745127,2019
+1998,35,"(30,35]",HS,387.3854,55.441694915254246,6.987257525083611,5081.695201887533,2019
+1998,35,"(30,35]",HS,391.7067,48.04946892655367,8.152154617957294,5555.094951638459,2019
+1998,35,"(30,35]",HS,391.9619666666667,81.31448587570623,4.820321526299787,5065.7131277674325,2019
+1998,55,"(50,55]",HS,518.556,131.21201129943503,3.952046728531726,5656.7372377991505,2019
+1998,55,"(50,55]",HS,517.6443333333333,129.36395480225988,4.00145723841376,5393.404651329924,2019
+1998,55,"(50,55]",HS,517.6443333333333,129.36395480225988,4.00145723841376,5048.814066734927,2019
+1998,55,"(50,55]",HS,518.3736666666667,129.36395480225988,4.00709507883421,5523.998545760658,2019
+1998,55,"(50,55]",HS,518.3736666666667,129.36395480225988,4.00709507883421,5035.750989610406,2019
+1998,54,"(50,55]",College,33392.508433333336,5581.130621468926,5.983108208376709,221.0179552196265,2019
+1998,54,"(50,55]",College,32811.06566666667,5544.169491525424,5.918120958751394,220.95350677744145,2019
+1998,54,"(50,55]",College,33290.602333333336,5322.402711864407,6.254807111668525,218.70860629439773,2019
+1998,54,"(50,55]",College,32955.291333333334,5655.052881355933,5.827583229501387,213.37349522402116,2019
+1998,54,"(50,55]",College,33104.62233333333,5821.377966101696,5.686733025428676,202.69225601124634,2019
+1998,19,"(15,20]",HS,23.101633333333336,9.425088135593223,2.451078759262902,1620.6968072727018,2019
+1998,19,"(15,20]",HS,8.824933333333332,18.480564971751416,0.47752508361204,1618.6912337589429,2019
+1998,19,"(15,20]",HS,28.261666666666667,29.56890395480226,0.9557901337792643,1623.2176448288023,2019
+1998,19,"(15,20]",HS,25.781933333333335,14.78445197740113,1.7438545150501674,1624.1609577036966,2019
+1998,19,"(15,20]",HS,58.3102,16.632508474576273,3.505797101449275,1597.0886808553164,2019
+1998,62,"(60,65]",College,1965.5351,277.2084745762712,7.0904581939799325,3226.9494630748036,2019
+1998,62,"(60,65]",College,1965.5715666666667,277.2084745762712,7.090589743589743,3506.6555209136795,2019
+1998,62,"(60,65]",College,1965.5351,277.2084745762712,7.0904581939799325,3280.9116988307806,2019
+1998,62,"(60,65]",College,1965.5533333333333,277.2084745762712,7.090523968784837,3258.3115752329004,2019
+1998,62,"(60,65]",College,1965.5533333333333,277.2084745762712,7.090523968784837,3362.209153231107,2019
+1998,42,"(40,45]",HS,293.4655,73.92225988700567,3.9699205685618724,9501.06797595528,2019
+1998,42,"(40,45]",HS,304.0408333333333,72.07420338983052,4.21844181459566,9686.05501814296,2019
+1998,42,"(40,45]",HS,255.1755,73.92225988700567,3.4519439799331098,10004.434722807942,2019
+1998,42,"(40,45]",HS,260.0985,72.07420338983052,3.6087599691278616,9602.804178321754,2019
+1998,42,"(40,45]",HS,262.8335,73.92225988700567,3.5555392976588625,9909.115888537637,2019
+1998,35,"(30,35]",College,199.1444666666667,31.416960451977403,6.338756639779658,6882.107141652006,2019
+1998,35,"(30,35]",College,198.87096666666667,31.416960451977403,6.330051150895141,6976.240001621407,2019
+1998,35,"(30,35]",College,199.05329999999998,31.416960451977403,6.335854810151484,7262.444033411103,2019
+1998,35,"(30,35]",College,198.87096666666667,31.416960451977403,6.330051150895141,6916.573669979078,2019
+1998,35,"(30,35]",College,199.23563333333334,31.416960451977403,6.34165846940783,7174.528080105769,2019
+1998,46,"(45,50]",HS,153.06883333333334,129.36395480225988,1.1832417582417583,7349.910605869282,2019
+1998,46,"(45,50]",HS,153.25116666666665,127.51589830508476,1.2018200765837814,7493.465840479561,2019
+1998,46,"(45,50]",HS,152.8865,129.36395480225988,1.181832298136646,7763.030714184676,2019
+1998,46,"(45,50]",HS,153.06883333333334,129.36395480225988,1.1832417582417583,7371.482179564259,2019
+1998,46,"(45,50]",HS,153.06883333333334,129.36395480225988,1.1832417582417583,7741.037117600524,2019
+1998,49,"(45,50]",HS,275.141,101.64310734463277,2.7069321982365464,6453.2310558992,2019
+1998,49,"(45,50]",HS,212.41833333333335,107.18727683615819,1.9817495098604545,6579.272738295202,2019
+1998,49,"(45,50]",HS,211.32433333333336,109.03533333333333,1.9381270903010037,6815.951047441468,2019
+1998,49,"(45,50]",HS,231.19866666666667,118.27561581920904,1.954744983277592,6472.170925614333,2019
+1998,49,"(45,50]",HS,229.55766666666665,120.12367231638417,1.9110110625160792,6796.640641081637,2019
+1998,33,"(30,35]",HS,169.57,83.16254237288136,2.0390189520624302,5638.8263273478,2019
+1998,33,"(30,35]",HS,164.46466666666666,83.16254237288136,1.9776291341508732,5392.550944666142,2019
+1998,33,"(30,35]",HS,163.91766666666666,83.16254237288136,1.971051653660349,5046.373033398487,2019
+1998,33,"(30,35]",HS,175.04,83.16254237288136,2.10479375696767,5513.522523505412,2019
+1998,33,"(30,35]",HS,166.288,83.16254237288136,1.9995540691192866,5030.4110626507645,2019
+1998,42,"(40,45]",NoHS,-34.278666666666666,55.441694915254246,-0.6182831661092529,6536.131797758723,2019
+1998,42,"(40,45]",NoHS,-34.278666666666666,55.441694915254246,-0.6182831661092529,6664.70170625395,2019
+1998,42,"(40,45]",NoHS,-34.278666666666666,55.441694915254246,-0.6182831661092529,6921.661448752758,2019
+1998,42,"(40,45]",NoHS,-34.278666666666666,55.441694915254246,-0.6182831661092529,6538.964459852507,2019
+1998,42,"(40,45]",NoHS,-34.278666666666666,55.441694915254246,-0.6182831661092529,6840.711686791309,2019
+1998,48,"(45,50]",HS,105.69863333333333,68.37809039548021,1.5457968001446265,5767.629300476305,2019
+1998,48,"(45,50]",HS,105.5163,68.37809039548021,1.5431302539998195,5699.727416604989,2019
+1998,48,"(45,50]",HS,105.69863333333333,68.37809039548021,1.5457968001446265,5704.257354718267,2019
+1998,48,"(45,50]",HS,105.69863333333333,68.37809039548021,1.5457968001446265,5766.105420038505,2019
+1998,48,"(45,50]",HS,105.68039999999999,68.37809039548021,1.5455301455301458,5715.67584724273,2019
+1998,30,"(25,30]",HS,2.735,18.2957593220339,0.14948819296645383,5211.585148513804,2019
+1998,30,"(25,30]",HS,2.735,18.2957593220339,0.14948819296645383,5186.6669736730855,2019
+1998,30,"(25,30]",HS,2.735,18.2957593220339,0.14948819296645383,5231.641151784361,2019
+1998,30,"(25,30]",HS,2.9173333333333336,18.2957593220339,0.15945407249755078,5186.762063320429,2019
+1998,30,"(25,30]",HS,10.393,18.2957593220339,0.5680551332725247,5220.656923785367,2019
+1998,63,"(60,65]",HS,25.9278,17.002119774011298,1.5249745528573508,4289.485867535696,2019
+1998,63,"(60,65]",HS,23.265733333333333,18.480564971751416,1.2589297658862872,4278.729907582071,2019
+1998,63,"(60,65]",HS,167.34553333333332,14.230035028248587,11.760022586109542,4316.8920150475415,2019
+1998,63,"(60,65]",HS,51.1445,14.78445197740113,3.45934364548495,4272.32570749391,2019
+1998,63,"(60,65]",HS,177.04566666666665,17.741342372881356,9.979271181716832,4310.850147653623,2019
+1998,83,"(80,85]",NoHS,0,0,NA,8009.3180649267,2019
+1998,83,"(80,85]",NoHS,0,0,NA,8066.550492764157,2019
+1998,83,"(80,85]",NoHS,0,0,NA,8075.302365277527,2019
+1998,83,"(80,85]",NoHS,0,0,NA,7993.547075538196,2019
+1998,83,"(80,85]",NoHS,0,0,NA,8076.300403922733,2019
+1998,68,"(65,70]",HS,639.8076666666666,73.92225988700567,8.655142140468225,7545.740279142323,2019
+1998,68,"(65,70]",HS,639.6253333333334,73.92225988700567,8.65267558528428,7216.744602088807,2019
+1998,68,"(65,70]",HS,639.99,73.92225988700567,8.657608695652172,6683.699472766706,2019
+1998,68,"(65,70]",HS,639.6253333333334,73.92225988700567,8.65267558528428,7332.599963846102,2019
+1998,68,"(65,70]",HS,640.7193333333333,73.92225988700567,8.667474916387958,6665.588530412175,2019
+1998,44,"(40,45]",NoHS,108.58861666666667,49.89752542372881,2.1762325034064167,6937.163995893794,2019
+1998,44,"(40,45]",NoHS,108.77095,49.89752542372881,2.1798866592344854,7032.049918703402,2019
+1998,44,"(40,45]",NoHS,111.05923333333334,49.89752542372881,2.22574631487675,7320.543582627169,2019
+1998,44,"(40,45]",NoHS,107.95045,49.89752542372881,2.1634429580081758,6971.906256433,2019
+1998,44,"(40,45]",NoHS,111.24156666666667,49.89752542372881,2.2294004707048187,7231.92430173233,2019
+1998,49,"(45,50]",College,768.1703333333334,134.9081242937853,5.69402574792688,104.51212907154334,2019
+1998,49,"(45,50]",College,808.466,134.9081242937853,5.992715444174646,98.52473442326081,2019
+1998,49,"(45,50]",College,784.7626666666666,134.9081242937853,5.817015622852431,101.3753309673588,2019
+1998,49,"(45,50]",College,811.9303333333334,134.9081242937853,6.018394648829432,99.14218233003238,2019
+1998,49,"(45,50]",College,808.2836666666666,134.9081242937853,5.9913639070875515,103.13797993336784,2019
+1998,37,"(35,40]",College,315.619,60.98586440677967,5.175281240498632,7821.8476759522655,2019
+1998,37,"(35,40]",College,317.4423333333333,60.98586440677967,5.205178879091921,7979.51487021122,2019
+1998,37,"(35,40]",College,317.26,62.833920903954805,5.04918355301987,8303.141854963613,2019
+1998,37,"(35,40]",College,315.43666666666667,62.833920903954805,5.020165256738147,7890.924786223055,2019
+1998,37,"(35,40]",College,317.4423333333333,60.98586440677967,5.205178879091921,8217.366173694121,2019
+1998,49,"(45,50]",HS,183.06266666666667,253.18374011299437,0.7230427458926347,5711.955015273334,2019
+1998,49,"(45,50]",HS,182.88033333333334,77.61837288135592,2.3561474757126932,5666.419885281096,2019
+1998,49,"(45,50]",HS,183.06266666666667,57.289751412429375,3.1953824576545475,5643.0283984431635,2019
+1998,49,"(45,50]",HS,183.06266666666667,123.81978531073446,1.4784605401088204,5733.083063208512,2019
+1998,49,"(45,50]",HS,183.245,48.04946892655367,3.8136737844095703,5663.314442125125,2019
+1998,30,"(25,30]",NoHS,544.8849333333334,44.35335593220339,12.285089186176142,4585.106266623921,2019
+1998,30,"(25,30]",NoHS,909.3510333333334,44.35335593220339,20.502417781493868,4384.852040851376,2019
+1998,30,"(25,30]",NoHS,544.8849333333334,42.50529943502825,12.819223498618584,4103.363940637681,2019
+1998,30,"(25,30]",NoHS,663.4198333333334,44.35335593220339,14.957601727982162,4483.217819830814,2019
+1998,30,"(25,30]",NoHS,727.2182666666668,42.50529943502825,17.10888468809074,4090.384762373563,2019
+1998,48,"(45,50]",College,203.11933333333334,101.64310734463277,1.998358163575555,5309.824050559504,2019
+1998,48,"(45,50]",College,126.53933333333333,101.64310734463277,1.2449376710246276,5409.423016155485,2019
+1998,48,"(45,50]",College,68.55733333333333,101.64310734463277,0.6744907266646397,5642.409535234559,2019
+1998,48,"(45,50]",College,113.776,101.64310734463277,1.1193675889328063,5295.14666544158,2019
+1998,48,"(45,50]",College,102.836,101.64310734463277,1.0117360899969596,5555.877995503036,2019
+1998,41,"(40,45]",NoHS,0,0,NA,5944.3786329777395,2019
+1998,41,"(40,45]",NoHS,0,0,NA,5913.26349065468,2019
+1998,41,"(40,45]",NoHS,0,0,NA,5938.024743513928,2019
+1998,41,"(40,45]",NoHS,0,0,NA,5917.20902888125,2019
+1998,41,"(40,45]",NoHS,0,0,NA,5941.05709658537,2019
+1998,80,"(75,80]",College,2568.8943333333336,271.6643050847458,9.456134962346141,1461.924183045554,2019
+1998,80,"(75,80]",College,2285.366,138.6042372881356,16.48842809364548,1541.468869249991,2019
+1998,80,"(75,80]",College,2015.695,181.10953672316384,11.129701044297317,1480.6397249035585,2019
+1998,80,"(75,80]",College,2202.7690000000002,144.14840677966103,15.281258039619244,1536.8971055662355,2019
+1998,80,"(75,80]",College,1927.8103333333333,121.97172881355934,15.805386642343162,1449.1295595958745,2019
+1998,51,"(50,55]",HS,27.406523333333336,46.201412429378536,0.5931966555183946,7070.332631286275,2019
+1998,51,"(50,55]",HS,41.628523333333334,46.201412429378536,0.9010227424749163,7278.865274385479,2019
+1998,51,"(50,55]",HS,27.406523333333336,46.201412429378536,0.5931966555183946,7627.960148358293,2019
+1998,51,"(50,55]",HS,27.406523333333336,46.201412429378536,0.5931966555183946,6994.139200032679,2019
+1998,51,"(50,55]",HS,32.51185666666667,46.201412429378536,0.7036983277591973,7601.3005628727315,2019
+1998,27,"(25,30]",HS,153.57936666666666,92.40282485875707,1.6620635451505015,5711.424940291908,2019
+1998,27,"(25,30]",HS,148.1276,92.40282485875707,1.6030635451505015,5658.499900971955,2019
+1998,27,"(25,30]",HS,183.1720666666667,118.27561581920904,1.5486883361204016,5674.794183070686,2019
+1998,27,"(25,30]",HS,179.48893333333334,101.64310734463277,1.765874125874126,5761.543103792912,2019
+1998,27,"(25,30]",HS,154.70983333333334,109.03533333333333,1.4188963210702341,5668.8511950601805,2019
+1998,50,"(45,50]",NoHS,0,27.720847457627123,0,5890.15446232971,2019
+1998,50,"(45,50]",NoHS,0,27.720847457627123,0,5869.807549276995,2019
+1998,50,"(45,50]",NoHS,0,27.720847457627123,0,5880.783172070105,2019
+1998,50,"(45,50]",NoHS,0,27.720847457627123,0,5866.521371065796,2019
+1998,50,"(45,50]",NoHS,0,27.720847457627123,0,5891.052872741389,2019
+1998,47,"(45,50]",College,7966.143333333333,646.8197740112995,12.315862398471094,1043.2062373741753,2019
+1998,47,"(45,50]",College,7966.143333333333,646.8197740112995,12.315862398471094,1143.6746920489309,2019
+1998,47,"(45,50]",College,7966.143333333333,646.8197740112995,12.315862398471094,1044.3671726212133,2019
+1998,47,"(45,50]",College,7967.966666666667,646.8197740112995,12.318681318681318,1338.176011122387,2019
+1998,47,"(45,50]",College,7966.143333333333,646.8197740112995,12.315862398471094,1046.381732210839,2019
+1998,37,"(35,40]",HS,2019.2869666666666,46.201412429378536,43.70617391304347,2487.608552643889,2019
+1998,37,"(35,40]",HS,1198.0576333333333,46.201412429378536,25.931190635451504,2712.9607619513786,2019
+1998,37,"(35,40]",HS,1562.3596333333332,46.201412429378536,33.816274247491634,2532.062896280304,2019
+1998,37,"(35,40]",HS,923.0989666666667,46.201412429378536,19.979886287625416,5149.484835536842,2019
+1998,37,"(35,40]",HS,773.2209666666666,46.201412429378536,16.735872909698994,4695.835653524584,2019
+1998,51,"(50,55]",College,-53.42366666666666,12.936395480225992,-4.129718107978976,6496.146637513598,2019
+1998,51,"(50,55]",College,-53.42366666666666,12.751589830508475,-4.189569095051136,6497.0014679611495,2019
+1998,51,"(50,55]",College,-53.42366666666666,12.936395480225992,-4.129718107978976,6478.967931590722,2019
+1998,51,"(50,55]",College,-53.42366666666666,12.751589830508475,-4.189569095051136,6493.926606272476,2019
+1998,51,"(50,55]",College,-53.42366666666666,12.936395480225992,-4.129718107978976,6500.002493741956,2019
+1998,49,"(45,50]",NoHS,83.691,88.70671186440678,0.9434573578595318,8036.322037786837,2019
+1998,49,"(45,50]",NoHS,83.87333333333333,88.70671186440678,0.9455128205128205,8187.765178568264,2019
+1998,49,"(45,50]",NoHS,85.51433333333333,88.70671186440678,0.9640119843924191,8419.641602646345,2019
+1998,49,"(45,50]",NoHS,82.05,88.70671186440678,0.9249581939799331,8074.900742180287,2019
+1998,49,"(45,50]",NoHS,80.22666666666667,88.70671186440678,0.9044035674470458,8402.598673755034,2019
+1998,28,"(25,30]",HS,-0.6381666666666667,24.024734463276836,-0.026562901980962183,4675.492465864845,2019
+1998,28,"(25,30]",HS,-0.4558333333333333,24.024734463276836,-0.018973501414972987,4659.551673062599,2019
+1998,28,"(25,30]",HS,-0.6381666666666667,24.024734463276836,-0.026562901980962183,4661.881027651406,2019
+1998,28,"(25,30]",HS,-0.6381666666666667,24.024734463276836,-0.026562901980962183,4695.050864057538,2019
+1998,28,"(25,30]",HS,-0.6381666666666667,24.024734463276836,-0.026562901980962183,4658.933596803887,2019
+1998,56,"(55,60]",College,297.9326666666667,118.27561581920904,2.5189694816053514,9228.393372671457,2019
+1998,56,"(55,60]",College,297.9326666666667,118.27561581920904,2.5189694816053514,9194.016909379676,2019
+1998,56,"(55,60]",College,297.9326666666667,118.27561581920904,2.5189694816053514,9742.157157787944,2019
+1998,56,"(55,60]",College,297.9326666666667,118.27561581920904,2.5189694816053514,9020.79155589567,2019
+1998,56,"(55,60]",College,297.9326666666667,118.27561581920904,2.5189694816053514,9536.902614375578,2019
+1998,44,"(40,45]",NoHS,415.90233333333333,127.51589830508476,3.2615723910619936,5666.746978665104,2019
+1998,44,"(40,45]",NoHS,377.3388333333333,110.88338983050849,3.4030239687848374,5421.583284234119,2019
+1998,44,"(40,45]",NoHS,322.1465333333333,103.49116384180793,3.1127926421404672,5062.597665997419,2019
+1998,44,"(40,45]",NoHS,517.6443333333333,120.12367231638417,4.309261641368665,5534.346992462814,2019
+1998,44,"(40,45]",NoHS,412.9303,103.49116384180793,3.990005375059722,5047.08253829003,2019
+1998,50,"(45,50]",College,38523.386666666665,7706.395593220339,4.998885172798216,20.795659224605267,2019
+1998,50,"(45,50]",College,71556.86253333333,18000.070282485878,3.975365729708199,24.904159637331603,2019
+1998,50,"(45,50]",College,38900.19673333334,4324.452203389831,8.995404482177058,23.23004397624981,2019
+1998,50,"(45,50]",College,38342.58493333333,9462.049265536725,4.052249555811036,20.81448267901815,2019
+1998,50,"(45,50]",College,64887.25506666667,18000.070282485878,3.6048334283340084,26.89246887516341,2019
+1998,38,"(35,40]",HS,177.73853333333332,68.37809039548021,2.599349181957878,5156.2866638656315,2019
+1998,38,"(35,40]",NoHS,408.75486666666666,59.13780790960452,6.911904264214047,5118.320623911878,2019
+1998,38,"(35,40]",HS,241.19053333333332,64.68197740112994,3.7288676540850454,5119.745434308987,2019
+1998,38,"(35,40]",HS,286.6827,42.50529943502825,6.744634288207068,5205.7858211800185,2019
+1998,38,"(35,40]",HS,475.76236666666665,110.88338983050849,4.290654960981047,4095.3736445023787,2019
+1998,25,"(20,25]",College,112.86433333333333,110.88338983050849,1.017865105908584,5440.464323472055,2019
+1998,25,"(20,25]",College,112.86433333333333,110.88338983050849,1.017865105908584,5390.0501464061435,2019
+1998,25,"(20,25]",College,112.86433333333333,110.88338983050849,1.017865105908584,5405.571397470716,2019
+1998,25,"(20,25]",College,112.86433333333333,110.88338983050849,1.017865105908584,5488.204788125911,2019
+1998,25,"(20,25]",College,112.86433333333333,110.88338983050849,1.017865105908584,5399.910355859562,2019
+1998,36,"(35,40]",HS,-13.126176666666666,29.56890395480226,-0.4439182692307692,5930.1143962240785,2019
+1998,36,"(35,40]",HS,-13.126176666666666,29.56890395480226,-0.4439182692307692,5921.2505328120815,2019
+1998,36,"(35,40]",HS,-13.126176666666666,29.56890395480226,-0.4439182692307692,5908.844594870768,2019
+1998,36,"(35,40]",HS,-13.126176666666666,31.416960451977403,-0.41780542986425334,5959.789379725932,2019
+1998,36,"(35,40]",HS,-13.126176666666666,29.56890395480226,-0.4439182692307692,5887.944894930859,2019
+1998,75,"(70,75]",College,16318.833333333334,1238.1978531073446,13.179503818699148,162.0093394411526,2019
+1998,75,"(70,75]",College,18328.146666666667,1238.1978531073446,14.802276244197076,186.18460392767727,2019
+1998,75,"(70,75]",College,16227.666666666666,1238.1978531073446,13.10587530574552,149.95879773770454,2019
+1998,75,"(70,75]",College,15675.196666666667,1238.1978531073446,12.659686517246543,164.60121593974128,2019
+1998,75,"(70,75]",College,16435.526666666665,1238.1978531073446,13.273748315279787,157.58918020816802,2019
+1998,77,"(75,80]",College,441.7025,44.35335593220339,9.958716555183946,7329.484356767102,2019
+1998,77,"(75,80]",College,456.2891666666667,36.96112994350283,12.345108695652172,5754.746154453051,2019
+1998,77,"(75,80]",College,450.8191666666667,40.65724293785311,11.088286713286713,7765.723418302671,2019
+1998,77,"(75,80]",College,454.4658333333333,33.265016949152546,13.661975102192491,7449.829934722018,2019
+1998,77,"(75,80]",College,443.5258333333333,31.416960451977403,14.117401141058428,7789.830346762744,2019
+1998,75,"(70,75]",NoHS,234.29833333333335,25.872790960451983,9.055781175346391,11632.069160381347,2019
+1998,75,"(70,75]",NoHS,250.526,25.872790960451983,9.682990922121355,11948.82051819084,2019
+1998,75,"(70,75]",NoHS,265.1126666666667,25.872790960451983,10.246774964166269,12259.162098509098,2019
+1998,75,"(70,75]",NoHS,266.2066666666667,25.872790960451983,10.289058767319636,11766.898698709338,2019
+1998,75,"(70,75]",NoHS,231.74566666666666,25.872790960451983,8.957118967988531,12331.736003498394,2019
+1998,57,"(55,60]",College,155864.18566666666,2088.30384180791,74.63673750258974,35.833677489373386,2019
+1998,57,"(55,60]",College,152295.74,2531.8374011299434,60.1522593560042,37.675273664758564,2019
+1998,57,"(55,60]",College,153633.24616666665,2273.109491525424,67.58726173967425,46.31575033016894,2019
+1998,57,"(55,60]",College,149735.41533333334,1866.5370621468926,80.22097089307593,41.9135705926683,2019
+1998,57,"(55,60]",College,150563.938,1921.9787570621468,78.33798237715462,39.89232214344442,2019
+1998,56,"(55,60]",HS,1250.442,131.21201129943503,9.529935465636628,7149.449058032165,2019
+1998,56,"(55,60]",HS,1159.093,136.75618079096043,8.475616921269097,6817.640547018689,2019
+1998,56,"(55,60]",HS,1236.22,101.64310734463277,12.162359379750685,6380.515579583453,2019
+1998,56,"(55,60]",HS,1144.871,123.81978531073446,9.246268656716419,6981.703993440819,2019
+1998,56,"(55,60]",HS,1277.0626666666667,131.21201129943503,9.732818314569693,6363.751611293608,2019
+1998,44,"(40,45]",College,37.287166666666664,53.593638418079095,0.6957386691269749,487.7437439206959,2019
+1998,44,"(40,45]",College,39.292833333333334,53.593638418079095,0.7331622650213355,488.0069900215452,2019
+1998,44,"(40,45]",College,39.292833333333334,53.593638418079095,0.7331622650213355,465.6503725014777,2019
+1998,44,"(40,45]",College,37.469500000000004,53.593638418079095,0.6991408142082806,506.65595828206625,2019
+1998,44,"(40,45]",College,39.292833333333334,53.593638418079095,0.7331622650213355,508.41710285553756,2019
+1998,26,"(25,30]",College,5727.09,184.80564971751414,30.989799331103676,3367.3833616380807,2019
+1998,26,"(25,30]",College,5735.659666666667,184.80564971751414,31.036170568561875,3623.8764854168826,2019
+1998,26,"(25,30]",College,5725.813666666667,184.80564971751414,30.982892976588627,3484.9668742741787,2019
+1998,26,"(25,30]",College,5733.836333333333,184.80564971751414,31.02630434782608,4087.8618361036074,2019
+1998,26,"(25,30]",College,5724.3550000000005,184.80564971751414,30.974999999999998,3268.9642418434514,2019
+1998,43,"(40,45]",College,555.1138333333333,112.73144632768363,4.924214595098415,5831.993460363023,2019
+1998,43,"(40,45]",College,557.1195,112.73144632768363,4.942006140687537,5579.550499523875,2019
+1998,43,"(40,45]",College,555.2961666666666,112.73144632768363,4.925832008333789,5210.377779636392,2019
+1998,43,"(40,45]",College,556.9371666666666,112.73144632768363,4.940388727452162,5694.5195926438455,2019
+1998,43,"(40,45]",College,557.1195,114.57950282485875,4.862296364224836,5193.304037479085,2019
+1998,63,"(60,65]",NoHS,1.5863,20.328621468926556,0.07803283672848889,5088.239977777042,2019
+1998,63,"(60,65]",NoHS,1.5315999999999999,38.80918644067796,0.03946488294314381,5074.9817006330295,2019
+1998,63,"(60,65]",NoHS,1.641,33.265016949152546,0.04933110367892976,5120.462587139768,2019
+1998,63,"(60,65]",NoHS,1.6045333333333334,36.96112994350283,0.04341137123745818,5066.492115249443,2019
+1998,63,"(60,65]",NoHS,1.6045333333333334,35.11307344632768,0.045696180249955996,5112.619767553798,2019
+1998,28,"(25,30]",College,-117.605,51.745581920903966,-2.2727544194935496,8035.845066886609,2019
+1998,28,"(25,30]",College,-116.14633333333333,81.31448587570623,-1.428359683794466,8090.466096553498,2019
+1998,28,"(25,30]",College,-114.68766666666667,75.77031638418079,-1.51362264458765,8279.349058414402,2019
+1998,28,"(25,30]",College,-115.78166666666668,53.593638418079095,-2.1603621266289936,8032.576570079468,2019
+1998,28,"(25,30]",College,-117.96966666666667,49.89752542372881,-2.3642388207605602,8269.585868163793,2019
+1998,49,"(45,50]",HS,2196.205,210.6784406779661,10.42444111952121,2779.528366992167,2019
+1998,49,"(45,50]",HS,2194.3816666666667,210.6784406779661,10.415786539928416,3035.7718099007748,2019
+1998,49,"(45,50]",HS,2196.205,210.6784406779661,10.42444111952121,2827.5833832553953,2019
+1998,49,"(45,50]",HS,2196.205,210.6784406779661,10.42444111952121,2807.8007891239195,2019
+1998,49,"(45,50]",HS,2194.3816666666667,210.6784406779661,10.415786539928416,2899.3371764351637,2019
+1998,62,"(60,65]",HS,33.00233333333334,46.201412429378536,0.7143143812709031,7310.313948051575,2019
+1998,62,"(60,65]",HS,35.555,46.201412429378536,0.7695652173913042,7283.08247568816,2019
+1998,62,"(60,65]",HS,32.09066666666667,46.201412429378536,0.6945819397993311,7717.294276335258,2019
+1998,62,"(60,65]",HS,39.384,46.201412429378536,0.8524414715719063,7145.86122095921,2019
+1998,62,"(60,65]",HS,38.47233333333334,46.201412429378536,0.8327090301003345,7554.700952555648,2019
+1998,30,"(25,30]",NoHS,69.61486666666667,24.024734463276836,2.8976331360946745,9134.03862495416,2019
+1998,30,"(25,30]",NoHS,69.50546666666666,24.024734463276836,2.8930794957550807,9136.619337463944,2019
+1998,30,"(25,30]",NoHS,69.32313333333333,24.024734463276836,2.8854900951890916,9294.125539560135,2019
+1998,30,"(25,30]",NoHS,69.50546666666666,24.024734463276836,2.8930794957550807,9177.727953405,2019
+1998,30,"(25,30]",NoHS,69.50546666666666,24.024734463276836,2.8930794957550807,9236.926930017737,2019
+1998,46,"(45,50]",NoHS,114.32300000000001,42.50529943502825,2.6896175657990407,6445.027818452287,2019
+1998,46,"(45,50]",NoHS,78.03866666666667,42.50529943502825,1.8359749890940817,6565.920356103799,2019
+1998,46,"(45,50]",NoHS,118.33433333333333,42.50529943502825,2.7839901119674275,6848.717786393562,2019
+1998,46,"(45,50]",NoHS,94.81333333333333,42.50529943502825,2.23062381852552,6427.212509604682,2019
+1998,46,"(45,50]",NoHS,78.4398,42.50529943502825,1.8454122437109206,6743.686400149343,2019
+1998,43,"(40,45]",College,138.79213333333334,75.77031638418079,1.8317481034342118,8573.767581654349,2019
+1998,43,"(40,45]",College,47.3155,59.13780790960452,0.8000888377926422,8789.891265078253,2019
+1998,43,"(40,45]",College,115.78166666666668,49.89752542372881,2.320388950823734,9136.898436632227,2019
+1998,43,"(40,45]",College,28.261666666666667,60.98586440677967,0.46341339819600685,8649.110118158398,2019
+1998,43,"(40,45]",College,155.895,59.13780790960452,2.63613085284281,8952.43221635315,2019
+1998,63,"(60,65]",College,31911.250666666667,3067.7737853107346,10.402087278881412,17.118833351321562,2019
+1998,63,"(60,65]",College,31591.620333333332,3326.5016949152546,9.496950018580453,18.636626689760874,2019
+1998,63,"(60,65]",College,31879.889333333333,3474.3462146892657,9.17579520387106,19.140123680451413,2019
+1998,63,"(60,65]",College,31364.068333333333,3455.8656497175143,9.075604063455724,17.344347369477255,2019
+1998,63,"(60,65]",College,32042.166,3215.6183050847453,9.964542728635683,18.512282200329754,2019
+1998,33,"(30,35]",College,134.7261,147.84451977401133,0.9112688127090299,6189.771209172328,2019
+1998,33,"(30,35]",College,130.53243333333333,147.84451977401133,0.8829034280936453,6226.364967612259,2019
+1998,33,"(30,35]",College,152.59476666666666,147.84451977401133,1.0321300167224077,6374.222935049568,2019
+1998,33,"(30,35]",College,128.6544,147.84451977401133,0.870200668896321,6207.561137466893,2019
+1998,33,"(30,35]",College,181.7681,147.84451977401133,1.2294544314381268,6266.804023928749,2019
+1998,39,"(35,40]",HS,27.6782,81.31448587570623,0.34038461538461534,8501.426475173957,2019
+1998,39,"(35,40]",HS,28.1158,86.85865536723163,0.3236960079698285,8617.708243454541,2019
+1998,39,"(35,40]",HS,27.769366666666667,55.441694915254246,0.5008751393534001,8971.254400623842,2019
+1998,39,"(35,40]",HS,27.988166666666668,57.289751412429375,0.4885370590139174,8544.002774902532,2019
+1998,39,"(35,40]",HS,28.3346,59.13780790960452,0.47912834448160535,8862.65234058083,2019
+1998,81,"(80,85]",NoHS,1196.4713333333332,4.620141242937854,258.9685618729096,7157.35474577376,2019
+1998,81,"(80,85]",NoHS,1171.127,4.620141242937854,253.48294314381263,6864.321387959142,2019
+1998,81,"(80,85]",NoHS,1196.4713333333332,4.620141242937854,258.9685618729096,6407.438718142353,2019
+1998,81,"(80,85]",NoHS,1196.6536666666668,4.620141242937854,259.0080267558528,6976.435558817943,2019
+1998,81,"(80,85]",NoHS,1170.9446666666668,4.620141242937854,253.44347826086954,6389.932760399222,2019
+1998,64,"(60,65]",College,11729.685666666666,1681.7314124293785,6.974767540152156,295.60454675519264,2019
+1998,64,"(60,65]",College,11906.731333333335,1681.7314124293785,7.080043368003236,293.6914392903194,2019
+1998,64,"(60,65]",College,11511.068000000001,1681.7314124293785,6.84477195045757,283.6666751442691,2019
+1998,64,"(60,65]",College,11760.682333333334,1681.7314124293785,6.9931989415267015,303.539266716632,2019
+1998,64,"(60,65]",College,11447.251333333334,1681.7314124293785,6.806824947627624,290.66080904294404,2019
+1998,92,"(90,95]",College,255106.21333333335,2735.1236158192087,93.27045105305977,17.268444467120176,2019
+1998,92,"(90,95]",College,291070.9163333333,3141.69604519774,92.64770116073184,17.91468756555343,2019
+1998,92,"(90,95]",College,251667.40666666665,2809.045875706215,89.59177521563103,15.830599937145305,2019
+1998,92,"(90,95]",College,249375.84133333334,2439.4345762711864,102.2269028073376,15.204111176697074,2019
+1998,92,"(90,95]",College,252497.20566666668,3049.2932203389832,82.80515759602716,15.429581264837443,2019
+1998,27,"(25,30]",College,229.55766666666665,110.88338983050849,2.0702619843924186,5752.5416344997775,2019
+1998,27,"(25,30]",College,247.791,110.88338983050849,2.234698996655518,5736.353539559188,2019
+1998,27,"(25,30]",College,235.02766666666668,110.88338983050849,2.1195930880713485,5787.411451125698,2019
+1998,27,"(25,30]",College,240.49766666666667,110.88338983050849,2.1689241917502784,5773.047025289836,2019
+1998,27,"(25,30]",College,231.381,110.88338983050849,2.0867056856187287,5810.291160794258,2019
+1998,62,"(60,65]",HS,153.1053,57.289751412429375,2.672472758657892,8143.2621365393625,2019
+1998,62,"(60,65]",HS,155.11096666666668,57.289751412429375,2.7074819290106813,8067.525091012797,2019
+1998,62,"(60,65]",HS,153.1053,57.289751412429375,2.672472758657892,8494.160960095329,2019
+1998,62,"(60,65]",HS,153.28763333333333,57.289751412429375,2.6756554105081456,7975.224032766593,2019
+1998,62,"(60,65]",HS,155.2933,55.441694915254246,2.8010200668896315,8405.67920979246,2019
+1998,44,"(40,45]",College,10726.67,2032.8621468926553,5.276634235329888,988.5859082189633,2019
+1998,44,"(40,45]",College,10726.487666666666,1714.996429378531,6.254524780878791,1021.1001874181532,2019
+1998,44,"(40,45]",College,10270.654333333334,733.6784293785311,13.99885007118607,942.8621107542589,2019
+1998,44,"(40,45]",College,10726.487666666666,1127.314463276836,9.515080322386096,1029.9302171209063,2019
+1998,44,"(40,45]",College,10728.493333333334,2032.8621468926553,5.277531164487686,969.8612621006496,2019
+1998,60,"(55,60]",HS,1326.4750000000001,162.62897175141245,8.156449528732137,4174.634701170319,2019
+1998,60,"(55,60]",HS,1533.4233333333332,164.47702824858757,9.323024313253917,4562.299739228206,2019
+1998,60,"(55,60]",HS,1432.046,133.06006779661018,10.762402452619844,4235.378320699022,2019
+1998,60,"(55,60]",HS,1692.0533333333333,138.6042372881356,12.207803790412484,4238.210234214757,2019
+1998,60,"(55,60]",HS,1792.1543333333334,182.957593220339,9.795462991115166,4350.726149486736,2019
+1998,51,"(50,55]",College,3127.9283333333337,831.6254237288136,3.7612225938312895,3367.3833616380807,2019
+1998,51,"(50,55]",College,3127.9283333333337,831.6254237288136,3.7612225938312895,3623.8764854168826,2019
+1998,51,"(50,55]",College,3127.9283333333337,831.6254237288136,3.7612225938312895,3484.9668742741787,2019
+1998,51,"(50,55]",College,3127.9283333333337,831.6254237288136,3.7612225938312895,4087.8618361036074,2019
+1998,51,"(50,55]",College,3127.9283333333337,831.6254237288136,3.7612225938312895,3268.9642418434514,2019
+1998,75,"(70,75]",HS,588.9366666666666,66.53003389830509,8.85219249349684,7824.30434710572,2019
+1998,75,"(70,75]",HS,588.7543333333334,66.53003389830509,8.84945187662579,7503.2266335521945,2019
+1998,75,"(70,75]",HS,588.7543333333334,66.53003389830509,8.84945187662579,7004.115851983377,2019
+1998,75,"(70,75]",HS,588.7543333333334,66.53003389830509,8.84945187662579,7624.43122499218,2019
+1998,75,"(70,75]",HS,588.572,66.53003389830509,8.846711259754738,6984.055860494974,2019
+1998,60,"(55,60]",College,1358.748,85.0105988700565,15.983277591973245,1538.1767565535763,2019
+1998,60,"(55,60]",College,1363.8168666666668,175.56536723163845,7.7681429325822915,1561.804245706983,2019
+1998,60,"(55,60]",College,947.8963000000001,38.80918644067796,24.424534161490687,1489.3921162782708,2019
+1998,60,"(55,60]",College,1370.7273,38.80918644067796,35.319660774008604,1668.5319049342186,2019
+1998,60,"(55,60]",College,860.5039333333334,60.98586440677967,14.109891557717644,1592.0852877239522,2019
+1998,71,"(70,75]",College,165.7957,40.65724293785311,4.077888415931894,4622.811893618351,2019
+1998,71,"(70,75]",College,165.4128,42.50529943502825,3.8915806310891377,4565.370577800446,2019
+1998,71,"(70,75]",College,165.43103333333332,46.201412429378536,3.5806488294314374,4759.74103221834,2019
+1998,71,"(70,75]",College,165.7957,46.201412429378536,3.588541806020067,4851.784231198379,2019
+1998,71,"(70,75]",College,165.59513333333334,40.65724293785311,4.072955305564001,4675.968380793872,2019
+1998,57,"(55,60]",HS,136.07536666666667,5.544169491525424,24.54386845039019,8832.659423792371,2019
+1998,57,"(55,60]",HS,122.528,5.544169491525424,22.100334448160535,8773.892220402653,2019
+1998,57,"(55,60]",HS,123.76786666666668,5.544169491525424,22.32396878483835,8724.398199370033,2019
+1998,57,"(55,60]",HS,130.9518,5.544169491525424,23.61973244147157,8838.988450892153,2019
+1998,57,"(55,60]",HS,137.91693333333333,5.544169491525424,24.87603121516165,8723.968970420594,2019
+1998,94,"(90,95]",HS,12048.586666666666,421.3568813559322,28.594730974593674,13.220731962776037,2019
+1998,94,"(90,95]",HS,21621.08666666667,157.08480225988703,137.63958292347039,16.54242337918642,2019
+1998,94,"(90,95]",HS,15111.786666666667,674.5406214689266,22.403078755669583,14.098337919967872,2019
+1998,94,"(90,95]",HS,11683.92,273.51236158192086,42.71806923980838,14.394860285423471,2019
+1998,94,"(90,95]",HS,12595.586666666666,397.33214689265543,31.700396671074117,14.980199676924391,2019
+1998,27,"(25,30]",HS,9.207833333333333,64.68197740112994,0.14235547061634019,4129.987109206073,2019
+1998,27,"(25,30]",HS,9.025500000000001,64.68197740112994,0.13953655040611565,4100.135784814364,2019
+1998,27,"(25,30]",HS,9.536033333333332,64.68197740112994,0.14742952699474438,4122.463649086507,2019
+1998,27,"(25,30]",HS,9.025500000000001,64.68197740112994,0.13953655040611565,4130.887992120807,2019
+1998,27,"(25,30]",HS,9.481333333333334,64.68197740112994,0.14658385093167703,4113.317274167412,2019
+1998,39,"(35,40]",HS,338.0824666666667,181.10953672316384,1.8667292334994199,4019.8350675418988,2019
+1998,39,"(35,40]",HS,336.2409,181.10953672316384,1.8565609855982528,4159.030219788075,2019
+1998,39,"(35,40]",HS,336.2409,181.10953672316384,1.8565609855982528,3906.222483005609,2019
+1998,39,"(35,40]",HS,338.0824666666667,181.10953672316384,1.8667292334994199,3846.2543560552635,2019
+1998,39,"(35,40]",HS,336.25913333333335,181.10953672316384,1.8566616613200466,4010.687646094563,2019
+1998,37,"(35,40]",HS,1.2763333333333333,12.936395480225992,0.09866220735785951,5039.247167907363,2019
+1998,37,"(35,40]",HS,1.2763333333333333,12.751589830508475,0.10009209442101691,5063.87732983237,2019
+1998,37,"(35,40]",HS,1.2763333333333333,12.936395480225992,0.09866220735785951,5050.99445230341,2019
+1998,37,"(35,40]",HS,1.2763333333333333,12.751589830508475,0.10009209442101691,5083.729956763347,2019
+1998,37,"(35,40]",HS,1.2763333333333333,12.936395480225992,0.09866220735785951,5042.172524136366,2019
+1998,54,"(50,55]",College,240.15123333333335,44.35335593220339,5.4144997212932,7282.2401535091485,2019
+1998,54,"(50,55]",College,239.95066666666665,44.35335593220339,5.409977703455963,7452.961882454978,2019
+1998,54,"(50,55]",College,239.9689,44.35335593220339,5.410388795986622,7828.983594774125,2019
+1998,54,"(50,55]",College,239.95066666666665,44.35335593220339,5.409977703455963,7236.70424644975,2019
+1998,54,"(50,55]",College,239.9689,44.35335593220339,5.410388795986622,7798.381559731019,2019
+1998,34,"(30,35]",College,68044.065,922.1801920903955,73.78608387343249,32.83130552963704,2019
+1998,34,"(30,35]",College,63778.37666666666,1003.4946779661018,63.55626797735853,33.846705292624655,2019
+1998,34,"(30,35]",College,68229.13333333333,885.2190621468927,77.07598745993953,36.55366521769563,2019
+1998,34,"(30,35]",College,59055.943333333336,996.102451977401,59.2870173304956,33.926106899971366,2019
+1998,34,"(30,35]",College,68143.43666666668,1020.1271864406781,66.79896151422616,37.018729852309036,2019
+1998,69,"(65,70]",College,60896.963,521.1519322033898,116.850690244076,20.07614114255581,2019
+1998,69,"(65,70]",College,63559.39433333334,613.5547570621469,103.59204879719547,21.128484713693602,2019
+1998,69,"(65,70]",College,49832.42933333333,541.4805536723164,92.02995194447931,25.430635631169316,2019
+1998,69,"(65,70]",College,66723.78933333333,547.0247231638417,121.97582030190728,22.998124955382725,2019
+1998,69,"(65,70]",College,61043.74133333334,585.8339096045197,104.19974045978711,22.314247914326522,2019
+1998,29,"(25,30]",HS,204.4686,40.65724293785311,5.029081787777439,6945.636652589671,2019
+1998,29,"(25,30]",HS,204.48683333333335,40.65724293785311,5.029530252356339,6648.211564668942,2019
+1998,29,"(25,30]",HS,206.29193333333333,40.65724293785311,5.073928245667376,6200.011473531665,2019
+1998,29,"(25,30]",HS,204.48683333333335,40.65724293785311,5.029530252356339,6784.078918324363,2019
+1998,29,"(25,30]",HS,204.48683333333335,40.65724293785311,5.029530252356339,6187.362936599234,2019
+1998,59,"(55,60]",HS,80.409,48.04946892655367,1.6734628248006176,8049.180866028783,2019
+1998,59,"(55,60]",HS,80.59133333333332,48.04946892655367,1.677257525083612,8021.461946019277,2019
+1998,59,"(55,60]",HS,80.409,48.04946892655367,1.6734628248006176,8425.621402490007,2019
+1998,59,"(55,60]",HS,80.59133333333332,48.04946892655367,1.677257525083612,7847.200714108054,2019
+1998,59,"(55,60]",HS,80.59133333333332,48.04946892655367,1.677257525083612,8341.31761573864,2019
+1998,36,"(35,40]",HS,9769.42,842.7137627118644,11.592809364548495,27.924709756455037,2019
+1998,36,"(35,40]",HS,9769.42,842.7137627118644,11.592809364548495,30.532763886742572,2019
+1998,36,"(35,40]",HS,9771.243333333334,842.7137627118644,11.594973009446694,29.74434977174123,2019
+1998,36,"(35,40]",HS,9769.42,842.7137627118644,11.592809364548495,30.644541111649822,2019
+1998,36,"(35,40]",HS,9769.42,842.7137627118644,11.592809364548495,32.04320273493679,2019
+1998,52,"(50,55]",NoHS,2.6803000000000003,14.414840677966104,0.18594031386673526,4846.8414526940105,2019
+1998,52,"(50,55]",NoHS,2.862633333333333,14.599646327683615,0.19607552601498665,4884.591572417059,2019
+1998,52,"(50,55]",NoHS,2.6803000000000003,16.44770282485876,0.16295892675961068,4804.55656953695,2019
+1998,52,"(50,55]",NoHS,2.6803000000000003,18.2957593220339,0.14649842910712477,4838.035813567463,2019
+1998,52,"(50,55]",NoHS,2.6985333333333332,15.523674576271185,0.17383341296384774,4829.525680913515,2019
+1998,49,"(45,50]",NoHS,58.89366666666667,59.13780790960452,0.9958716555183947,7458.534230332931,2019
+1998,49,"(45,50]",NoHS,58.711333333333336,59.13780790960452,0.9927884615384616,7628.83148959559,2019
+1998,49,"(45,50]",NoHS,58.711333333333336,60.98586440677967,0.9627039627039626,7946.998098809512,2019
+1998,49,"(45,50]",NoHS,58.89366666666667,59.13780790960452,0.9958716555183947,7416.464628664185,2019
+1998,49,"(45,50]",NoHS,58.89366666666667,60.98586440677967,0.9656937265632917,7879.7784056788105,2019
+1998,38,"(35,40]",College,391.30556666666666,197.7420451977401,1.978868815053293,7116.410928955547,2019
+1998,38,"(35,40]",College,391.2873333333333,197.7420451977401,1.978776607382865,6848.965614002505,2019
+1998,38,"(35,40]",College,391.12323333333336,197.7420451977401,1.977946738349014,6343.896976366273,2019
+1998,38,"(35,40]",College,391.2873333333333,197.7420451977401,1.978776607382865,6990.009804593787,2019
+1998,38,"(35,40]",College,391.30556666666666,197.7420451977401,1.978868815053293,6340.193161971874,2019
+1998,30,"(25,30]",NoHS,-0.7293333333333334,46.201412429378536,-0.015785953177257523,6142.77345503252,2019
+1998,30,"(25,30]",NoHS,-0.7293333333333334,46.201412429378536,-0.015785953177257523,6143.140256372657,2019
+1998,30,"(25,30]",NoHS,-0.7293333333333334,46.201412429378536,-0.015785953177257523,6148.220376319911,2019
+1998,30,"(25,30]",NoHS,-0.7293333333333334,46.201412429378536,-0.015785953177257523,6135.581550296368,2019
+1998,30,"(25,30]",NoHS,-0.7111000000000001,46.201412429378536,-0.015391304347826087,6195.348281651356,2019
+1998,88,"(85,90]",HS,65.65823333333334,40.65724293785311,1.6149209486166007,8666.112548767253,2019
+1998,88,"(85,90]",HS,90.802,33.265016949152546,2.729654403567447,9416.444505040858,2019
+1998,88,"(85,90]",HS,50.23283333333334,40.65724293785311,1.235519914867741,8691.990285616534,2019
+1998,88,"(85,90]",HS,52.38436666666667,42.50529943502825,1.2324196597353498,8631.990334949234,2019
+1998,88,"(85,90]",HS,50.706900000000005,20.328621468926556,2.4943599878382487,8690.938548836475,2019
+1998,56,"(55,60]",College,18214.18833333333,2254.628926553672,8.078574757388015,448.58803584680146,2019
+1998,56,"(55,60]",College,17682.68666666667,2624.240225988701,6.7382118799755055,394.37342077069536,2019
+1998,56,"(55,60]",College,18175.89833333333,3714.593559322034,4.893105542521505,514.8322711641397,2019
+1998,56,"(55,60]",College,18281.46933333333,3178.6571751412434,5.751318347981642,488.581776945866,2019
+1998,56,"(55,60]",College,17629.99233333333,1958.9398870056498,8.999761784564901,378.95939127285,2019
+1998,49,"(45,50]",College,3436.4563900000003,2217.6677966101697,1.54958122909699,381.86425649927617,2019
+1998,49,"(45,50]",College,3620.9959566666666,2217.6677966101697,1.6327945791527312,380.1922807518526,2019
+1998,49,"(45,50]",College,3535.098723333333,2217.6677966101697,1.594061440914158,356.7803230774508,2019
+1998,49,"(45,50]",College,3474.5640566666666,2217.6677966101697,1.5667648968784837,399.94347917316964,2019
+1998,49,"(45,50]",College,3529.811056666667,2217.6677966101697,1.5916771042363433,380.55050532562603,2019
+1998,58,"(55,60]",College,10858.497,905.5476836158192,11.991082519964507,11.149415382359729,2019
+1998,58,"(55,60]",College,29444.09833333333,1417.4593333333332,20.77244661692822,13.939333164601404,2019
+1998,58,"(55,60]",College,15628.519333333334,1201.2367231638418,13.010357602263957,13.902246643795191,2019
+1998,58,"(55,60]",College,15594.423,559.9611186440679,27.84911752044769,12.711287252851669,2019
+1998,58,"(55,60]",College,18290.40366666667,558.1130621468926,32.77186094930121,13.739997953806727,2019
+1998,55,"(50,55]",HS,12660.315,1663.2508474576273,7.611789297658863,208.0456107944621,2019
+1998,55,"(50,55]",HS,12658.491666666667,1663.2508474576273,7.610693050910442,204.24782270085961,2019
+1998,55,"(50,55]",HS,12660.315,1663.2508474576273,7.611789297658863,198.74523196814184,2019
+1998,55,"(50,55]",HS,12660.315,1663.2508474576273,7.611789297658863,216.2431039155938,2019
+1998,55,"(50,55]",HS,12660.315,1663.2508474576273,7.611789297658863,204.62046263766325,2019
+1998,53,"(50,55]",College,-34.1875,46.201412429378536,-0.7399665551839464,6623.693806794099,2019
+1998,53,"(50,55]",College,-32.36416666666667,46.201412429378536,-0.7005016722408026,6609.736619485807,2019
+1998,53,"(50,55]",College,-32.36416666666667,46.201412429378536,-0.7005016722408026,6566.8317424088,2019
+1998,53,"(50,55]",College,-32.36416666666667,46.201412429378536,-0.7005016722408026,6617.932025798106,2019
+1998,53,"(50,55]",College,-32.36416666666667,46.201412429378536,-0.7005016722408026,6593.176784146586,2019
+1998,44,"(40,45]",College,380.3473333333333,59.13780790960452,6.431542642140468,6873.744914265146,2019
+1998,44,"(40,45]",College,168.11133333333333,103.49116384180793,1.6244027711419011,7012.300933198616,2019
+1998,44,"(40,45]",College,199.7644,81.31448587570623,2.456688963210702,7296.70040410622,2019
+1998,44,"(40,45]",College,118.77193333333334,44.35335593220339,2.6778567447045707,6934.449041357233,2019
+1998,44,"(40,45]",College,149.75036666666668,77.61837288135592,1.9293159738811916,7221.321775255335,2019
+1998,54,"(50,55]",College,3398.6933333333336,286.4487570621469,11.864926097745172,356.44226048754206,2019
+1998,54,"(50,55]",College,2157.0033333333336,306.77737853107345,7.031168150864327,248.61598064132463,2019
+1998,54,"(50,55]",College,2629.2466666666664,304.9293220338983,8.622478970305057,239.0766201436712,2019
+1998,54,"(50,55]",College,3756.0666666666666,249.487627118644,15.055122011643753,370.1779121172964,2019
+1998,54,"(50,55]",College,1938.2033333333334,443.53355932203397,4.369913600891861,237.0770969954292,2019
+1998,50,"(45,50]",HS,1978.1343333333332,72.07420338983052,27.445802246805588,2318.8445469865287,2019
+1998,50,"(45,50]",HS,2571.2646666666665,70.22614689265536,36.61406442527724,2532.6768203494785,2019
+1998,50,"(45,50]",HS,1906.4773333333333,72.07420338983052,26.451590772661003,2358.8664482140325,2019
+1998,50,"(45,50]",HS,2219.9083333333338,70.22614689265536,31.610851962682634,2342.9300151675147,2019
+1998,50,"(45,50]",HS,2164.8436666666666,70.22614689265536,30.826747051575428,2419.240885339325,2019
+1998,25,"(20,25]",HS,1.0028333333333335,35.11307344632768,0.028560112656222502,5676.209331057484,2019
+1998,25,"(20,25]",HS,1.0028333333333335,35.11307344632768,0.028560112656222502,5693.698605865702,2019
+1998,25,"(20,25]",HS,1.0028333333333335,35.11307344632768,0.028560112656222502,5730.746201784175,2019
+1998,25,"(20,25]",HS,1.0028333333333335,35.11307344632768,0.028560112656222502,5670.512684081105,2019
+1998,25,"(20,25]",HS,1.0028333333333335,35.11307344632768,0.028560112656222502,5755.792172695817,2019
+1998,30,"(25,30]",HS,0.9116666666666666,31.416960451977403,0.02901829628172339,6097.441803648953,2019
+1998,30,"(25,30]",HS,0.9116666666666666,20.328621468926556,0.044846457889936145,6068.743735091286,2019
+1998,30,"(25,30]",HS,0.9116666666666666,40.65724293785311,0.022423228944968072,6121.427322967675,2019
+1998,30,"(25,30]",HS,0.9116666666666666,22.176677966101696,0.0411092530657748,6068.774207054232,2019
+1998,30,"(25,30]",HS,0.9116666666666666,42.50529943502825,0.021448305947360767,6108.082462125312,2019
+1998,48,"(45,50]",College,58.54723333333333,72.07420338983052,0.81231884057971,5073.7048489688395,2019
+1998,48,"(45,50]",College,60.3888,72.07420338983052,0.837869822485207,5063.013737484883,2019
+1998,48,"(45,50]",College,58.565466666666666,72.07420338983052,0.8125718205985764,5030.1488905852975,2019
+1998,48,"(45,50]",College,58.565466666666666,70.22614689265536,0.833955289561697,5069.291363528425,2019
+1998,48,"(45,50]",College,60.37056666666667,70.22614689265536,0.8596593909522972,5050.329015136673,2019
+1998,26,"(25,30]",HS,-9.21695,27.720847457627123,-0.3324916387959866,6364.956133086946,2019
+1998,26,"(25,30]",HS,-9.1896,27.720847457627123,-0.331505016722408,6343.255221866641,2019
+1998,26,"(25,30]",HS,-9.034616666666667,25.872790960451983,-0.34919374104156703,6346.426276014283,2019
+1998,26,"(25,30]",HS,-9.399283333333333,27.720847457627123,-0.3390691192865105,6391.5818516478885,2019
+1998,26,"(25,30]",HS,-9.043733333333334,25.872790960451983,-0.34954610606784514,6342.413807127481,2019
+1998,22,"(20,25]",College,291.3686666666667,7.946642937853107,36.66562961810687,3199.9316150516324,2019
+1998,22,"(20,25]",College,234.84533333333334,7.946642937853107,29.552772808586766,3241.922304466727,2019
+1998,22,"(20,25]",College,342.422,7.946642937853107,43.09014544606052,2964.925360353597,2019
+1998,22,"(20,25]",College,236.66866666666667,7.946642937853107,29.782219802442253,3126.8891589934346,2019
+1998,22,"(20,25]",College,245.78533333333334,7.946642937853107,30.929454771719687,3012.8374940966864,2019
+1998,32,"(30,35]",College,18.23333333333333,14.78445197740113,1.233277591973244,5278.474891221217,2019
+1998,32,"(30,35]",College,18.051000000000002,14.78445197740113,1.220944816053512,5326.137308656556,2019
+1998,32,"(30,35]",College,18.23333333333333,14.78445197740113,1.233277591973244,5292.70924360342,2019
+1998,32,"(30,35]",College,18.051000000000002,14.78445197740113,1.220944816053512,5269.485379309115,2019
+1998,32,"(30,35]",College,18.23333333333333,14.78445197740113,1.233277591973244,5295.811606336282,2019
+1998,63,"(60,65]",NoHS,145.0097,46.201412429378536,3.138642140468227,7998.022205591646,2019
+1998,63,"(60,65]",NoHS,144.82736666666668,48.04946892655367,3.014130434782609,7974.283393877112,2019
+1998,63,"(60,65]",NoHS,144.82736666666668,48.04946892655367,3.014130434782609,8392.211321535504,2019
+1998,63,"(60,65]",NoHS,145.0097,46.201412429378536,3.138642140468227,7862.778729972281,2019
+1998,63,"(60,65]",NoHS,145.0097,48.04946892655367,3.0179251350656036,8319.713627993266,2019
+1998,28,"(25,30]",College,-2.6602433333333333,129.36395480225988,-0.020564022933588152,9993.992444132447,2019
+1998,28,"(25,30]",College,3.3567566666666666,129.36395480225988,0.025948160535117056,10053.938557210815,2019
+1998,28,"(25,30]",College,6.091756666666667,129.36395480225988,0.047090062111801244,10147.135688530627,2019
+1998,28,"(25,30]",College,5.18009,129.36395480225988,0.040042761586239844,10098.745394296562,2019
+1998,28,"(25,30]",College,1.89809,129.36395480225988,0.014672479694218825,10111.003324182915,2019
+1998,52,"(50,55]",College,315.072,112.73144632768363,2.7948900707275617,282.0142973196797,2019
+1998,52,"(50,55]",College,315.072,112.73144632768363,2.7948900707275617,283.9858818754275,2019
+1998,52,"(50,55]",College,315.072,112.73144632768363,2.7948900707275617,275.35433619234107,2019
+1998,52,"(50,55]",College,315.072,112.73144632768363,2.7948900707275617,298.4697164782157,2019
+1998,52,"(50,55]",College,315.072,112.73144632768363,2.7948900707275617,300.4840766482271,2019
+1998,23,"(20,25]",College,82.05,5.544169491525424,14.799331103678929,5506.834442108496,2019
+1998,23,"(20,25]",College,82.05,5.544169491525424,14.799331103678929,5543.473954270678,2019
+1998,23,"(20,25]",College,82.05,5.544169491525424,14.799331103678929,5545.842135036815,2019
+1998,23,"(20,25]",College,82.05,5.544169491525424,14.799331103678929,5521.391244247819,2019
+1998,23,"(20,25]",College,82.05,5.544169491525424,14.799331103678929,5529.655256294664,2019
+1998,34,"(30,35]",HS,-9.973633333333334,59.13780790960452,-0.16865071070234114,6089.358025114347,2019
+1998,34,"(30,35]",HS,-9.9554,59.13780790960452,-0.1683423913043478,6089.721636877095,2019
+1998,34,"(30,35]",HS,-9.973633333333334,59.13780790960452,-0.16865071070234114,6094.7575818611995,2019
+1998,34,"(30,35]",HS,-9.9554,59.13780790960452,-0.1683423913043478,6082.228658690276,2019
+1998,34,"(30,35]",HS,-9.9554,59.13780790960452,-0.1683423913043478,6141.475679254448,2019
+1998,45,"(40,45]",College,531.1734666666667,83.16254237288136,6.3871720549981426,6059.376212372862,2019
+1998,45,"(40,45]",College,591.2887666666668,212.52649717514123,2.78218845426785,5806.165094884357,2019
+1998,45,"(40,45]",College,1234.3237333333334,109.03533333333333,11.320401337792644,5410.735407675706,2019
+1998,45,"(40,45]",College,709.5137,127.51589830508476,5.56411952886433,5919.47749292833,2019
+1998,45,"(40,45]",College,523.8436666666666,48.04946892655367,10.902173913043478,5400.317563853164,2019
+1998,76,"(75,80]",NoHS,1520.2953333333332,107.18727683615819,14.183542843962634,4426.542620382839,2019
+1998,76,"(75,80]",NoHS,1476.5353333333333,136.75618079096043,10.796845340323603,4838.532440307567,2019
+1998,76,"(75,80]",NoHS,1516.8310000000001,96.09893785310734,15.78405582711603,4514.145726312929,2019
+1998,76,"(75,80]",NoHS,1634.6183333333333,127.51589830508476,12.818937521205951,4461.270858382872,2019
+1998,76,"(75,80]",NoHS,1669.991,99.79505084745762,16.734206614641398,4625.329924545926,2019
+1998,43,"(40,45]",College,371270.4153333333,2106.7844067796614,176.22610749281225,7.464479759337901,2019
+1998,43,"(40,45]",College,17778.95866666667,3954.840903954803,4.495492764042134,5.651940639831454,2019
+1998,43,"(40,45]",College,149095.24300000002,8020.565197740114,18.589119260823328,6.945752728721308,2019
+1998,43,"(40,45]",College,52783.312,8242.33197740113,6.403929390944403,7.046671845376451,2019
+1998,43,"(40,45]",College,49679.99866666667,8242.33197740113,6.027420249861271,6.538588207750887,2019
+1998,53,"(50,55]",HS,2.771466666666667,59.13780790960452,0.04686454849498328,6088.445814567671,2019
+1998,53,"(50,55]",HS,2.5891333333333333,64.68197740112994,0.04002866698518873,6075.616480795763,2019
+1998,53,"(50,55]",HS,2.771466666666667,57.289751412429375,0.04837630812385371,6036.178664543431,2019
+1998,53,"(50,55]",HS,2.771466666666667,64.68197740112994,0.04284758719541329,6083.149632042821,2019
+1998,53,"(50,55]",HS,2.771466666666667,51.745581920903966,0.0535594839942666,6060.3948139884,2019
+1998,38,"(35,40]",HS,1017.967,133.06006779661018,7.65043199554069,807.142228790048,2019
+1998,38,"(35,40]",HS,1027.0836666666667,134.9081242937853,7.613208411600311,744.479743031339,2019
+1998,38,"(35,40]",HS,1027.0836666666667,134.9081242937853,7.613208411600311,754.2764236091315,2019
+1998,38,"(35,40]",HS,1397.2203333333332,134.9081242937853,10.356828698401062,1732.973005230202,2019
+1998,38,"(35,40]",HS,1222.1803333333332,133.06006779661018,9.185177443329616,836.0478085078082,2019
+1998,64,"(60,65]",College,1008.3033333333334,173.71731073446327,5.804276666903864,6509.737301149576,2019
+1998,64,"(60,65]",College,1010.1266666666667,173.71731073446327,5.814772646410019,6206.695832422303,2019
+1998,64,"(60,65]",College,1008.3033333333334,173.71731073446327,5.804276666903864,5810.1431753227935,2019
+1998,64,"(60,65]",College,1010.1266666666667,173.71731073446327,5.814772646410019,6356.982457050622,2019
+1998,64,"(60,65]",College,1010.1266666666667,173.71731073446327,5.814772646410019,5795.110269099563,2019
+1998,45,"(40,45]",College,541.7123333333334,181.10953672316384,2.991075694491844,7718.920988012966,2019
+1998,45,"(40,45]",College,542.077,181.10953672316384,2.993089208927718,7391.132002418743,2019
+1998,45,"(40,45]",College,541.8946666666667,181.10953672316384,2.992082451709781,7568.077389300056,2019
+1998,45,"(40,45]",College,541.8946666666667,181.10953672316384,2.992082451709781,7364.2090498089065,2019
+1998,45,"(40,45]",College,541.8946666666667,181.10953672316384,2.992082451709781,7626.12468056185,2019
+1998,38,"(35,40]",College,626.4973333333334,345.58656497175144,1.8128521095273014,283.51189449107085,2019
+1998,38,"(35,40]",College,791.3266666666666,310.4734915254237,2.548773690078038,270.71030658015854,2019
+1998,38,"(35,40]",College,941.3870000000001,364.06712994350283,2.585751150196085,276.36843089029105,2019
+1998,38,"(35,40]",College,690.4963333333334,197.7420451977401,3.4919044791048046,280.8505453899511,2019
+1998,38,"(35,40]",College,998.4573333333334,330.80211299435024,3.0182918854281504,282.6644873742854,2019
+1998,72,"(70,75]",College,2558.1366666666668,308.6254350282486,8.288807001381851,7.579948652839799,2019
+1998,72,"(70,75]",College,2175.2366666666667,338.19433898305084,6.431913299340242,8.468182334116623,2019
+1998,72,"(70,75]",College,2350.2766666666666,395.4840903954802,5.942784359078549,8.27856246475437,2019
+1998,72,"(70,75]",College,2403.1533333333336,195.893988700565,12.26762163185461,8.028408032750852,2019
+1998,72,"(70,75]",College,3081.4333333333334,752.1589943502825,4.096784531567141,12.650181453643658,2019
+1998,75,"(70,75]",HS,19.509666666666668,38.80918644067796,0.5027074374900463,7386.231716115755,2019
+1998,75,"(70,75]",HS,19.509666666666668,22.176677966101696,0.8797380156075808,7439.570318563007,2019
+1998,75,"(70,75]",HS,19.509666666666668,20.328621468926556,0.9597141988446336,7447.71594354517,2019
+1998,75,"(70,75]",HS,19.509666666666668,18.480564971751416,1.0556856187290968,7372.143020123296,2019
+1998,75,"(70,75]",HS,19.327333333333332,35.11307344632768,0.5504312621017426,7448.035926002203,2019
+1998,54,"(50,55]",HS,962.9023333333334,96.09893785310734,10.019906097247235,10553.334075500763,2019
+1998,54,"(50,55]",HS,963.0846666666666,134.9081242937853,7.138818894030329,10174.650373158365,2019
+1998,54,"(50,55]",HS,963.267,133.06006779661018,7.239339464882943,9881.289916979043,2019
+1998,54,"(50,55]",HS,963.0846666666666,125.66784180790961,7.663732048003147,10062.590158865458,2019
+1998,54,"(50,55]",HS,963.0846666666666,103.49116384180793,9.30596034400382,10318.796404198825,2019
+1998,48,"(45,50]",College,25203.754333333334,1077.4169378531076,23.39275859497352,17.315180983397887,2019
+1998,48,"(45,50]",College,28022.263,1212.3250621468926,23.11447966799902,19.105431846851566,2019
+1998,48,"(45,50]",College,29418.754,1123.6183502824858,26.182158730857246,19.431605466508675,2019
+1998,48,"(45,50]",College,25659.040666666668,1199.3886666666667,21.39343265430222,17.663757432553233,2019
+1998,48,"(45,50]",College,26091.17066666667,1099.593615819209,23.72801214131138,18.639126862863503,2019
+1998,58,"(55,60]",HS,349.3506666666667,125.66784180790961,2.779952783789101,8341.02390476241,2019
+1998,58,"(55,60]",HS,366.4353,127.51589830508476,2.8736440308273954,7953.913975073815,2019
+1998,58,"(55,60]",HS,334.25346666666667,96.09893785310734,3.478222279392848,10540.694641312857,2019
+1998,58,"(55,60]",HS,369.3891,120.12367231638417,3.075073321327502,8145.321329318447,2019
+1998,58,"(55,60]",HS,352.7056,107.18727683615819,3.2905547226386807,7424.376883158073,2019
+1998,64,"(60,65]",HS,763.2473333333334,68.37809039548021,11.162162162162165,6967.501989623396,2019
+1998,64,"(60,65]",HS,613.6610666666667,114.57950282485875,5.355766533606646,6644.13770771932,2019
+1998,64,"(60,65]",HS,550.0996666666666,173.71731073446327,3.166637017007045,6218.137178783824,2019
+1998,64,"(60,65]",HS,559.5445333333333,59.13780790960452,9.46170568561873,6804.0258865275055,2019
+1998,64,"(60,65]",HS,726.7806666666667,142.30035028248585,5.107370889979586,6201.7998384565635,2019
+1998,47,"(45,50]",College,663.4563,116.4275593220339,5.698447204968945,4680.835745526401,2019
+1998,47,"(45,50]",College,613.8616333333333,79.46642937853107,7.72479194213269,4471.051288635323,2019
+1998,47,"(45,50]",College,693.9971333333333,110.88338983050849,6.258801560758081,4426.1275306134585,2019
+1998,47,"(45,50]",College,1025.6979333333334,81.31448587570623,12.61396321070234,4430.053433940548,2019
+1998,47,"(45,50]",College,523.6613333333333,81.31448587570623,6.4399513529948305,4666.679015373502,2019
+1998,51,"(50,55]",College,2863.1803333333337,262.42402259887007,10.910511564369495,893.7468810657114,2019
+1998,51,"(50,55]",College,2863.1803333333337,264.27207909604516,10.834214280702579,979.8212974122537,2019
+1998,51,"(50,55]",College,2862.979766666667,262.42402259887007,10.909747279664609,894.7414900116579,2019
+1998,51,"(50,55]",College,2862.961533333333,264.27207909604516,10.833386346095377,1146.4565619047505,2019
+1998,51,"(50,55]",College,2863.1803333333337,264.27207909604516,10.834214280702579,896.4674251963254,2019
+1998,49,"(45,50]",College,11964.07699,295.68903954802266,40.46168572324414,361.3376609152109,2019
+1998,49,"(45,50]",College,6742.050323333334,206.98232768361586,32.57307229455327,363.2094793252022,2019
+1998,49,"(45,50]",College,8050.83899,206.98232768361586,38.89626269111323,343.9746471142547,2019
+1998,49,"(45,50]",College,3394.5926566666667,284.6007005649717,11.927562546149504,376.4410748028705,2019
+1998,49,"(45,50]",College,11993.979656666666,946.2049265536723,12.67587952680811,354.0710937295739,2019
+1998,55,"(50,55]",College,42752.48070000001,2328.551186440678,18.36012064022934,36.88836299089857,2019
+1998,55,"(50,55]",College,44752.33093333333,2513.3568361581924,17.80580070824316,40.05661956605624,2019
+1998,55,"(50,55]",College,97585.93046666667,2402.4734463276836,40.618942372009265,47.57883086247027,2019
+1998,55,"(50,55]",College,35776.352666666666,2716.6430508474577,13.16932405069051,37.35501916474916,2019
+1998,55,"(50,55]",College,60201.106066666674,2735.1236158192087,22.010378513965478,47.770480283188945,2019
+1998,48,"(45,50]",HS,3138.9048,181.10953672316384,17.33152685823493,927.3182870928702,2019
+1998,48,"(45,50]",HS,3986.9371333333333,179.26148022598866,22.24090266524153,1016.7259232937382,2019
+1998,48,"(45,50]",HS,3097.3327999999997,179.26148022598866,17.278295348757027,928.402270552075,2019
+1998,48,"(45,50]",HS,3348.0958333333338,181.10953672316384,18.486579414374447,1189.8472667890392,2019
+1998,48,"(45,50]",HS,3445.243033333333,181.10953672316384,19.022979660091462,930.3161802884575,2019
+1998,70,"(65,70]",HS,856.6384666666667,73.92225988700567,11.58836956521739,5723.739235846106,2019
+1998,70,"(65,70]",HS,856.4743666666667,75.77031638418079,11.303560649318868,5513.653691943658,2019
+1998,70,"(65,70]",HS,858.2794666666667,73.92225988700567,11.610568561872908,5145.487013321619,2019
+1998,70,"(65,70]",HS,856.6567,73.92225988700567,11.588616220735783,5628.56565864794,2019
+1998,70,"(65,70]",HS,856.6567,73.92225988700567,11.588616220735783,5131.674739603835,2019
+1998,30,"(25,30]",HS,120.08473333333335,51.745581920903966,2.320676063067367,7611.698849369612,2019
+1998,30,"(25,30]",HS,179.12426666666667,55.441694915254246,3.230858416945373,7613.849443126417,2019
+1998,30,"(25,30]",HS,95.25093333333334,53.593638418079095,1.777280590473994,7745.104611457845,2019
+1998,30,"(25,30]",HS,89.8721,90.55476836158192,0.9924612654426319,7648.106623055877,2019
+1998,30,"(25,30]",HS,108.34246666666667,48.04946892655367,2.25481090815539,7697.439103535651,2019
+1998,49,"(45,50]",HS,109.81936666666667,123.81978531073446,0.886929067039385,5834.378814561301,2019
+1998,49,"(45,50]",HS,110.09286666666667,40.65724293785311,2.7078291273943442,5808.015400730457,2019
+1998,49,"(45,50]",HS,103.60180000000001,44.35335593220339,2.3358277591973247,5785.930111554758,2019
+1998,49,"(45,50]",HS,105.6257,123.81978531073446,0.8530599510807167,5824.737701346603,2019
+1998,49,"(45,50]",HS,105.60746666666667,86.85865536723163,1.2158542659930265,5854.9418839024365,2019
+1998,77,"(75,80]",HS,398.3983333333333,160.78091525423727,2.47789566755084,8303.105200713399,2019
+1998,77,"(75,80]",HS,398.3983333333333,164.47702824858757,2.422212618841832,8390.828510118521,2019
+1998,77,"(75,80]",HS,411.1616666666667,157.08480225988703,2.6174503246114496,8496.433880847386,2019
+1998,77,"(75,80]",HS,400.2216666666667,109.03533333333333,3.6705685618729103,8612.078265889768,2019
+1998,77,"(75,80]",HS,367.4016666666667,147.84451977401133,2.4850543478260865,8524.35191147424,2019
+1998,23,"(20,25]",HS,10.0648,88.70671186440678,0.11346153846153846,5451.733101934579,2019
+1998,23,"(20,25]",HS,21.0048,88.70671186440678,0.23678929765886286,5449.778289231149,2019
+1998,23,"(20,25]",HS,21.0048,88.70671186440678,0.23678929765886286,5462.878613953852,2019
+1998,23,"(20,25]",HS,20.822466666666667,88.70671186440678,0.23473383500557413,5445.512839904358,2019
+1998,23,"(20,25]",HS,21.0048,88.70671186440678,0.23678929765886286,5460.627230918969,2019
+1998,24,"(20,25]",HS,178.322,22.176677966101696,8.040969899665551,2944.332435324114,2019
+1998,24,"(20,25]",HS,178.13966666666667,22.176677966101696,8.032748049052397,2960.7543054932826,2019
+1998,24,"(20,25]",HS,178.13966666666667,22.176677966101696,8.032748049052397,2992.907755852034,2019
+1998,24,"(20,25]",HS,178.13966666666667,22.176677966101696,8.032748049052397,2975.2825550018233,2019
+1998,24,"(20,25]",HS,178.13966666666667,22.176677966101696,8.032748049052397,2958.344844784509,2019
+1998,52,"(50,55]",College,214963.7249,3843.9575141242935,55.92250281386674,29.909802791615522,2019
+1998,52,"(50,55]",College,177970.04196666667,2716.6430508474577,65.51101437899574,30.830324947713912,2019
+1998,52,"(50,55]",College,241341.88823333333,2383.9928813559322,101.23431580721267,33.35670966234048,2019
+1998,52,"(50,55]",College,82402.46856666666,2846.007005649717,28.95371248316901,31.007244473226404,2019
+1998,52,"(50,55]",College,97479.97656666666,1737.1731073446329,56.11414093076211,33.74291127620322,2019
+1998,67,"(65,70]",HS,149.8233,51.745581920903966,2.8953834209268985,9093.793353585508,2019
+1998,67,"(65,70]",HS,171.83093333333332,59.13780790960452,2.905602006688963,9481.49787890575,2019
+1998,67,"(65,70]",HS,138.02633333333335,51.745581920903966,2.667403248924988,9645.872566340015,2019
+1998,67,"(65,70]",HS,125.40886666666667,55.441694915254246,2.2619955406911925,9153.539445251501,2019
+1998,67,"(65,70]",HS,167.94723333333334,81.31448587570623,2.0654036181210094,9560.771522161695,2019
+1998,41,"(40,45]",College,1038.5706666666667,323.40988700564975,3.2113139034878166,1538.1767565535763,2019
+1998,41,"(40,45]",College,1038.3883333333333,323.40988700564975,3.210750119445771,1561.804245706983,2019
+1998,41,"(40,45]",College,1038.5706666666667,323.40988700564975,3.2113139034878166,1489.3921162782708,2019
+1998,41,"(40,45]",College,1038.3883333333333,323.40988700564975,3.210750119445771,1668.5319049342186,2019
+1998,41,"(40,45]",College,1038.3883333333333,323.40988700564975,3.210750119445771,1592.0852877239522,2019
+1998,61,"(60,65]",HS,109.76466666666667,16.44770282485876,6.673556048250723,9746.163517171477,2019
+1998,61,"(60,65]",HS,109.76466666666667,15.893285875706214,6.906354515050168,9682.271142663176,2019
+1998,61,"(60,65]",HS,109.76466666666667,17.741342372881356,6.186942586399108,9627.24491763666,2019
+1998,61,"(60,65]",HS,109.76466666666667,14.78445197740113,7.42433110367893,9755.827281327796,2019
+1998,61,"(60,65]",HS,109.76466666666667,15.338868926553674,7.155981786678486,9628.044675867906,2019
+1998,65,"(60,65]",College,1557.856,443.53355932203397,3.512374581939799,1090.9961191157795,2019
+1998,65,"(60,65]",College,1557.4913333333334,443.53355932203397,3.5115523968784834,1158.8350524575364,2019
+1998,65,"(60,65]",College,1557.856,443.53355932203397,3.512374581939799,1113.4793849347677,2019
+1998,65,"(60,65]",College,1557.6736666666668,443.53355932203397,3.5119634894091414,1127.1930006879193,2019
+1998,65,"(60,65]",College,1557.856,443.53355932203397,3.512374581939799,1080.601964399687,2019
+1998,52,"(50,55]",HS,30.267333333333333,62.833920903954805,0.4817037182766083,4647.7290505076035,2019
+1998,52,"(50,55]",HS,30.632,64.68197740112994,0.4735785953177258,4620.164947369182,2019
+1998,52,"(50,55]",HS,30.44966666666667,62.833920903954805,0.48460554790478066,4612.865128478594,2019
+1998,52,"(50,55]",HS,30.44966666666667,62.833920903954805,0.48460554790478066,4625.350402421212,2019
+1998,52,"(50,55]",HS,30.44966666666667,62.833920903954805,0.48460554790478066,4624.019201353326,2019
+1998,62,"(60,65]",College,6687.075,219.9187231638418,30.407029032348724,2262.5181746952267,2019
+1998,62,"(60,65]",College,3471.0796666666665,304.9293220338983,11.383226918009527,2218.235837774609,2019
+1998,62,"(60,65]",College,4307.807333333333,206.98232768361586,20.812440277114185,2085.612454334969,2019
+1998,62,"(60,65]",College,3715.5886666666665,425.05299435028246,8.741471571906354,2469.163543557741,2019
+1998,62,"(60,65]",College,3255.5616666666665,397.33214689265543,8.19355215057945,2340.045156626072,2019
+1998,28,"(25,30]",College,263.28933333333333,73.92225988700567,3.5617056856187284,6744.218937740334,2019
+1998,28,"(25,30]",College,265.295,73.92225988700567,3.5888377926421398,6724.43267753018,2019
+1998,28,"(25,30]",College,263.4716666666667,73.92225988700567,3.5641722408026753,6740.762659288295,2019
+1998,28,"(25,30]",College,264.9303333333333,73.92225988700567,3.583904682274246,6829.280864798336,2019
+1998,28,"(25,30]",College,265.295,73.92225988700567,3.5888377926421398,6745.802459720639,2019
+1998,41,"(40,45]",College,1375.705,107.18727683615819,12.834592319225003,12677.183342975433,2019
+1998,41,"(40,45]",College,1374.2463333333333,114.57950282485875,11.99382349768044,13310.446752006314,2019
+1998,41,"(40,45]",College,1375.705,92.40282485875707,14.888127090301001,11563.862010738283,2019
+1998,41,"(40,45]",College,1374.9756666666667,96.09893785310734,14.30791741703113,11849.545150295664,2019
+1998,41,"(40,45]",College,1373.8816666666667,129.36395480225988,10.620281892021023,12559.287953020945,2019
+1998,24,"(20,25]",College,30.3585,42.50529943502825,0.7142285880471135,5560.501532494016,2019
+1998,24,"(20,25]",College,30.3585,42.50529943502825,0.7142285880471135,5575.30142094381,2019
+1998,24,"(20,25]",College,30.3585,42.50529943502825,0.7142285880471135,5620.420046000782,2019
+1998,24,"(20,25]",College,30.3585,42.50529943502825,0.7142285880471135,5555.086860107208,2019
+1998,24,"(20,25]",College,30.3585,42.50529943502825,0.7142285880471135,5599.733812819973,2019
+1998,55,"(50,55]",College,4096.847666666667,310.4734915254237,13.195482959069917,249.25070125765902,2019
+1998,55,"(50,55]",College,6251.353033333334,465.7102372881356,13.423267372723895,249.5949241124224,2019
+1998,55,"(50,55]",College,5784.707333333333,1014.5830169491526,5.701561367277689,275.95751008800465,2019
+1998,55,"(50,55]",College,2697.257,707.8056384180792,3.8107311578193626,292.3033231466263,2019
+1998,55,"(50,55]",College,2963.6642333333334,508.21553672316384,5.83151048951049,241.9111186306855,2019
+1998,53,"(50,55]",College,509.7128333333333,186.65370621468927,2.7307940660286762,6004.191522233647,2019
+1998,53,"(50,55]",College,511.95553333333334,188.50176271186442,2.7159190766607644,5749.614507768302,2019
+1998,53,"(50,55]",College,511.992,188.50176271186442,2.7161125319693094,5344.234949287643,2019
+1998,53,"(50,55]",College,534.5831,188.50176271186442,2.8359580956128267,5875.197314284143,2019
+1998,53,"(50,55]",College,513.9065,186.65370621468927,2.7532616974071993,5347.862265528713,2019
+1998,30,"(25,30]",HS,-2.188,31.416960451977403,-0.06964391107613614,4397.671463886165,2019
+1998,30,"(25,30]",HS,-3.282,31.416960451977403,-0.1044658666142042,4365.885331395827,2019
+1998,30,"(25,30]",HS,-3.829,31.416960451977403,-0.12187684438323824,4389.660372083057,2019
+1998,30,"(25,30]",HS,-3.865466666666667,31.416960451977403,-0.12303757623450717,4398.630737361282,2019
+1998,30,"(25,30]",HS,-3.1543666666666668,31.416960451977403,-0.10040330513476294,4379.921176556264,2019
+1998,64,"(60,65]",College,80129.84766666667,8020.565197740114,9.990548756993356,15.134541716248247,2019
+1998,64,"(60,65]",College,88645.54366666668,7687.915028248587,11.53050512927708,15.874244413854168,2019
+1998,64,"(60,65]",College,75661.04000000001,5229.99988700565,14.46673836226763,13.522093385409011,2019
+1998,64,"(60,65]",College,84735.77,7817.278983050847,10.839547901990086,13.033395147043223,2019
+1998,64,"(60,65]",College,79725.97933333334,5248.480451977402,15.190297470441376,13.520225057567519,2019
+1998,53,"(50,55]",HS,206.03666666666666,147.84451977401133,1.3936036789297654,6548.490699362066,2019
+1998,53,"(50,55]",HS,206.03666666666666,147.84451977401133,1.3936036789297654,6538.595775364007,2019
+1998,53,"(50,55]",HS,206.03666666666666,147.84451977401133,1.3936036789297654,6550.698630125842,2019
+1998,53,"(50,55]",HS,206.03666666666666,147.84451977401133,1.3936036789297654,6538.763858314742,2019
+1998,53,"(50,55]",HS,206.03666666666666,147.84451977401133,1.3936036789297654,6607.157414901381,2019
+1998,64,"(60,65]",College,757.9049666666667,96.09893785310734,7.886715333161822,6889.172018178465,2019
+1998,64,"(60,65]",College,767.0216333333333,138.6042372881356,5.533897435897435,6567.820756831206,2019
+1998,64,"(60,65]",College,763.1926333333333,109.03533333333333,6.999498327759198,6148.4559798435275,2019
+1998,64,"(60,65]",College,755.8993,127.51589830508476,5.927882797731568,6725.665299057435,2019
+1998,64,"(60,65]",College,756.0816333333333,109.03533333333333,6.93428093645485,6131.736646790364,2019
+1998,59,"(55,60]",College,1147.2413333333334,136.75618079096043,8.388954171562869,754.6778830477181,2019
+1998,59,"(55,60]",College,1093.0883333333334,77.61837288135592,14.082855550246856,729.2317967567158,2019
+1998,59,"(55,60]",College,1298.7603333333334,72.07420338983052,18.01976674384701,742.8309432425958,2019
+1998,59,"(55,60]",College,2442.9567,94.25088135593221,25.91972260476097,1561.9289219578955,2019
+1998,59,"(55,60]",College,1529.5943333333332,166.32508474576272,9.196413972500928,1457.0349120680896,2019
+1998,30,"(25,30]",HS,38.92816666666666,20.328621468926556,1.9149437519002732,8448.328877575794,2019
+1998,30,"(25,30]",HS,38.92816666666666,20.328621468926556,1.9149437519002732,8424.528544891427,2019
+1998,30,"(25,30]",HS,38.92816666666666,22.176677966101696,1.755365105908584,8347.114562909526,2019
+1998,30,"(25,30]",HS,38.92816666666666,20.328621468926556,1.9149437519002732,8458.457984172699,2019
+1998,30,"(25,30]",HS,38.92816666666666,22.176677966101696,1.755365105908584,8352.723443883413,2019
+1998,69,"(65,70]",NoHS,0,7.022614689265536,0,5641.3274704668165,2019
+1998,69,"(65,70]",NoHS,0,7.022614689265536,0,5648.69046937146,2019
+1998,69,"(65,70]",NoHS,0,7.022614689265536,0,5579.206712210937,2019
+1998,69,"(65,70]",NoHS,0,7.022614689265536,0,5610.93468527842,2019
+1998,69,"(65,70]",NoHS,0,7.022614689265536,0,5597.135212635263,2019
+1998,20,"(15,20]",HS,6.8922,35.11307344632768,0.1962858651645837,5560.501532494016,2019
+1998,20,"(15,20]",HS,6.7828,35.11307344632768,0.1931702165111776,5575.30142094381,2019
+1998,20,"(15,20]",HS,3.701366666666667,35.11307344632768,0.1054127794402394,5620.420046000782,2019
+1998,20,"(15,20]",HS,5.4882333333333335,35.11307344632768,0.1563017074458722,5555.086860107208,2019
+1998,20,"(15,20]",HS,2.880866666666667,35.11307344632768,0.08204541453969373,5599.733812819973,2019
+1998,41,"(40,45]",HS,94.5763,112.73144632768363,0.8389522451888809,6170.974949646754,2019
+1998,41,"(40,45]",HS,99.8275,110.88338983050849,0.9002926421404681,6164.691779872643,2019
+1998,41,"(40,45]",HS,118.152,120.12367231638417,0.9835863133521997,6163.633845397609,2019
+1998,41,"(40,45]",HS,130.36833333333334,120.12367231638417,1.085284280936455,6253.915339130058,2019
+1998,41,"(40,45]",HS,92.47946666666667,96.09893785310734,0.9623359917674299,6150.313433704395,2019
+1998,50,"(45,50]",College,2280.1148,138.6042372881356,16.450541806020063,1275.9858235705137,2019
+1998,50,"(45,50]",College,2280.6253333333334,138.6042372881356,16.45422519509476,1347.4623185007142,2019
+1998,50,"(45,50]",College,2280.3518333333336,138.6042372881356,16.452251950947602,1243.7951129354055,2019
+1998,50,"(45,50]",College,2280.3518333333336,138.6042372881356,16.452251950947602,1327.0713189505545,2019
+1998,50,"(45,50]",College,2280.8076666666666,138.6042372881356,16.455540691192862,1274.6916220063804,2019
+1998,29,"(25,30]",HS,79.13266666666668,55.441694915254246,1.4273132664437012,7763.224878776583,2019
+1998,29,"(25,30]",HS,86.24366666666667,55.441694915254246,1.5555741360089184,7862.199975026032,2019
+1998,29,"(25,30]",HS,71.83933333333333,55.441694915254246,1.2957636566332216,8026.6622326714405,2019
+1998,29,"(25,30]",HS,73.845,55.441694915254246,1.3319397993311035,7724.743797617981,2019
+1998,29,"(25,30]",HS,84.785,55.441694915254246,1.5292642140468224,8020.527800415036,2019
+1998,84,"(80,85]",College,970.0133333333334,99.79505084745762,9.720054502663201,359.4801990032273,2019
+1998,84,"(80,85]",College,742.0966666666667,99.79505084745762,7.436207110120154,345.6589743327071,2019
+1998,84,"(80,85]",College,605.3466666666667,99.79505084745762,6.065898674594328,354.86882293845554,2019
+1998,84,"(80,85]",College,742.0966666666667,99.79505084745762,7.436207110120154,352.7997942620867,2019
+1998,84,"(80,85]",College,778.5633333333334,99.79505084745762,7.801622692927042,349.7619315161527,2019
+1998,65,"(60,65]",HS,869.183,249.487627118644,3.4838721664808627,7569.343666366016,2019
+1998,65,"(60,65]",HS,869.0006666666667,249.487627118644,3.483141335315249,7238.606528113045,2019
+1998,65,"(60,65]",HS,869.183,249.487627118644,3.4838721664808627,6704.23072987229,2019
+1998,65,"(60,65]",HS,869.0006666666667,249.487627118644,3.483141335315249,7353.515891366615,2019
+1998,65,"(60,65]",HS,869.0006666666667,249.487627118644,3.483141335315249,6685.179854149386,2019
+1998,59,"(55,60]",NoHS,957.6146666666666,238.39928813559317,4.016852039096731,76.34409958953398,2019
+1998,59,"(55,60]",NoHS,789.6856666666666,90.55476836158192,8.720531021773258,72.53840812084722,2019
+1998,59,"(55,60]",NoHS,905.0115000000001,197.7420451977401,4.57672772168912,74.55248981293929,2019
+1998,59,"(55,60]",NoHS,1036.9296666666667,75.77031638418079,13.685170079125541,74.1677880665416,2019
+1998,59,"(55,60]",NoHS,1322.646,186.65370621468927,7.086095566078347,74.58052216250506,2019
+1998,28,"(25,30]",HS,-2.206233333333333,40.65724293785311,-0.05426421404682273,5193.804198723088,2019
+1998,28,"(25,30]",HS,-2.206233333333333,40.65724293785311,-0.05426421404682273,5176.096255187354,2019
+1998,28,"(25,30]",HS,-2.3703333333333334,40.65724293785311,-0.05830039525691699,5178.683835368905,2019
+1998,28,"(25,30]",HS,-2.3703333333333334,40.65724293785311,-0.05830039525691699,5215.53078504424,2019
+1998,28,"(25,30]",HS,-2.005666666666667,40.65724293785311,-0.04933110367892977,5175.409660760979,2019
+1998,49,"(45,50]",HS,275.688,88.70671186440678,3.107859531772575,6318.855944997659,2019
+1998,49,"(45,50]",HS,277.329,88.70671186440678,3.126358695652174,6054.942803628193,2019
+1998,49,"(45,50]",HS,277.329,88.70671186440678,3.126358695652174,5642.274900980045,2019
+1998,49,"(45,50]",HS,277.329,88.70671186440678,3.126358695652174,6174.281280390614,2019
+1998,49,"(45,50]",HS,277.329,88.70671186440678,3.126358695652174,5632.610247920407,2019
+1998,65,"(60,65]",HS,0.7475666666666667,88.70671186440678,0.008427396878483834,5039.484786641693,2019
+1998,65,"(60,65]",HS,1.8233333333333333,88.70671186440678,0.0205546265328874,5241.403175253996,2019
+1998,65,"(60,65]",HS,0.21880000000000002,88.70671186440678,0.0024665551839464883,5249.037571908603,2019
+1998,65,"(60,65]",HS,2.5526666666666666,88.70671186440678,0.02877647714604236,5122.7016137901355,2019
+1998,65,"(60,65]",HS,3.4643333333333337,88.70671186440678,0.039053790412486064,5141.620666782919,2019
+1998,26,"(25,30]",College,-118.699,55.441694915254246,-2.1409698996655515,5439.700621604325,2019
+1998,26,"(25,30]",College,-118.71723333333334,55.441694915254246,-2.1412987736900777,5456.461176667915,2019
+1998,26,"(25,30]",College,-118.699,55.441694915254246,-2.1409698996655515,5491.965122839175,2019
+1998,26,"(25,30]",College,-118.33433333333333,55.441694915254246,-2.1343924191750276,5434.241334905907,2019
+1998,26,"(25,30]",College,-118.152,55.441694915254246,-2.1311036789297657,5515.967511685421,2019
+1998,24,"(20,25]",HS,5.47,49.89752542372881,0.10962467484206616,4862.090421818106,2019
+1998,24,"(20,25]",HS,9.481333333333334,49.89752542372881,0.19001610305958136,4856.073701276828,2019
+1998,24,"(20,25]",HS,16.77466666666667,49.89752542372881,0.33618233618233623,4869.6529344864075,2019
+1998,24,"(20,25]",HS,5.47,49.89752542372881,0.10962467484206616,4872.482873111088,2019
+1998,24,"(20,25]",HS,12.216333333333335,49.89752542372881,0.24482844048061445,4791.266042565949,2019
+1998,56,"(55,60]",HS,-15.170133333333334,20.328621468926556,-0.7462450592885375,5758.998598307151,2019
+1998,56,"(55,60]",HS,-15.170133333333334,20.328621468926556,-0.7462450592885375,5766.085726703887,2019
+1998,56,"(55,60]",HS,-15.170133333333334,22.176677966101696,-0.6840579710144927,5789.142902540258,2019
+1998,56,"(55,60]",HS,-15.170133333333334,22.176677966101696,-0.6840579710144927,5757.115930769167,2019
+1998,56,"(55,60]",HS,-15.170133333333334,20.328621468926556,-0.7462450592885375,5789.466263891662,2019
+1998,41,"(40,45]",HS,122.16333333333333,79.46642937853107,1.5372948588317648,7217.520614521416,2019
+1998,41,"(40,45]",HS,119.11836666666667,81.31448587570623,1.4649095469747642,7357.415899942238,2019
+1998,41,"(40,45]",HS,136.29416666666665,81.31448587570623,1.6761363636363633,7708.260150624599,2019
+1998,41,"(40,45]",HS,117.3315,79.46642937853107,1.4764914054600606,7239.885254599221,2019
+1998,41,"(40,45]",HS,121.98100000000001,79.46642937853107,1.53500038889321,7532.979678732654,2019
+1998,88,"(85,90]",HS,442.48653333333334,68.37809039548021,6.471174184217664,9447.516810245546,2019
+1998,88,"(85,90]",HS,545.3954666666667,68.37809039548021,7.976172828346743,7503.2266335521945,2019
+1998,88,"(85,90]",HS,429.13973333333337,70.22614689265536,6.11082555888048,9950.71838480022,2019
+1998,88,"(85,90]",HS,483.5844666666667,68.37809039548021,7.072213685257165,7624.43122499218,2019
+1998,88,"(85,90]",HS,273.13533333333334,68.37809039548021,3.994486124920908,9963.705324039249,2019
+1998,31,"(30,35]",HS,-1.094,31.416960451977403,-0.03482195553806807,4129.987109206073,2019
+1998,31,"(30,35]",HS,-0.547,31.416960451977403,-0.017410977769034035,4100.135784814364,2019
+1998,31,"(30,35]",HS,-3.829,31.416960451977403,-0.12187684438323824,4122.463649086507,2019
+1998,31,"(30,35]",HS,-10.393,31.416960451977403,-0.33080857761164667,4130.887992120807,2019
+1998,31,"(30,35]",HS,-6.746333333333333,31.416960451977403,-0.2147353924847531,4113.317274167412,2019
+1998,66,"(65,70]",College,1442.8948333333333,120.12367231638417,12.011744275791099,4018.504616538138,2019
+1998,66,"(65,70]",College,1430.3138333333334,107.18727683615819,13.344063545150503,4380.3407487546065,2019
+1998,66,"(65,70]",College,1525.6741666666667,129.36395480225988,11.793657429526995,4054.69824667533,2019
+1998,66,"(65,70]",College,1436.969,116.4275593220339,12.34217232043319,4037.6949847305027,2019
+1998,66,"(65,70]",College,1580.1918333333333,110.88338983050849,14.250933667781492,4154.659540850213,2019
+1998,63,"(60,65]",College,1640.6353333333334,110.88338983050849,14.796042363433665,766.8537169070426,2019
+1998,63,"(60,65]",College,1633.342,110.88338983050849,14.730267558528427,811.3409816088872,2019
+1998,63,"(60,65]",College,1611.462,110.88338983050849,14.532943143812707,788.2737522632406,2019
+1998,63,"(60,65]",College,1633.5243333333333,110.88338983050849,14.731911928651057,811.8876470939999,2019
+1998,63,"(60,65]",College,1667.9853333333333,110.88338983050849,15.042697881828314,753.0467236150232,2019
+1998,51,"(50,55]",College,1513.1843333333334,179.26148022598866,8.441212977967798,1755.0528056389,2019
+1998,51,"(50,55]",College,1513.1843333333334,179.26148022598866,8.441212977967798,1762.5553929342736,2019
+1998,51,"(50,55]",College,1536.8876666666667,181.10953672316384,8.485956589993858,1743.6627650997646,2019
+1998,51,"(50,55]",College,1529.959,179.26148022598866,8.534789504534016,1946.426414474295,2019
+1998,51,"(50,55]",College,1531.6000000000001,179.26148022598866,8.543943729958972,1816.9231076326826,2019
+1998,41,"(40,45]",HS,12.945666666666666,0,Inf,5998.274496960205,2019
+1998,41,"(40,45]",HS,14.586666666666666,0,Inf,5967.325284978775,2019
+1998,41,"(40,45]",HS,10.210666666666667,0,Inf,5992.3724564385775,2019
+1998,41,"(40,45]",HS,8.569666666666667,0,Inf,5971.227404494303,2019
+1998,41,"(40,45]",HS,11.851666666666667,0,Inf,5994.949225179054,2019
+1998,26,"(25,30]",HS,7.0563,138.6042372881356,0.05090969899665552,6089.358025114347,2019
+1998,26,"(25,30]",HS,1.2398666666666667,138.6042372881356,0.008945373467112596,6089.721636877095,2019
+1998,26,"(25,30]",HS,3.282,138.6042372881356,0.023678929765886286,6094.7575818611995,2019
+1998,26,"(25,30]",HS,7.658,138.6042372881356,0.05525083612040133,6082.228658690276,2019
+1998,26,"(25,30]",HS,2.6985333333333332,138.6042372881356,0.019469342251950943,6141.475679254448,2019
+1998,48,"(45,50]",HS,63.579633333333334,73.92225988700567,0.8600877926421403,5492.921434218529,2019
+1998,48,"(45,50]",HS,63.03263333333333,48.04946892655367,1.3118278878312322,5595.9548469528945,2019
+1998,48,"(45,50]",HS,66.1323,51.745581920903966,1.2780279503105587,5836.975384045563,2019
+1998,48,"(45,50]",HS,65.34826666666667,51.745581920903966,1.2628762541806018,5477.737932365199,2019
+1998,48,"(45,50]",HS,65.87703333333334,51.745581920903966,1.273094839942666,5747.459998073947,2019
+1998,26,"(25,30]",HS,6.928666666666667,42.50529943502825,0.16300712519994184,5342.314672874776,2019
+1998,26,"(25,30]",HS,6.928666666666667,42.50529943502825,0.16300712519994184,5358.775166837647,2019
+1998,26,"(25,30]",HS,6.746333333333333,42.50529943502825,0.15871746401046968,5393.643492462477,2019
+1998,26,"(25,30]",HS,6.928666666666667,42.50529943502825,0.16300712519994184,5336.953122770979,2019
+1998,26,"(25,30]",HS,6.746333333333333,42.50529943502825,0.15871746401046968,5417.2161710043965,2019
+1998,35,"(30,35]",HS,-4.394233333333334,31.416960451977403,-0.13986818807790677,5816.943462452962,2019
+1998,35,"(30,35]",HS,-4.4033500000000005,31.416960451977403,-0.14015837104072398,5840.9366798238925,2019
+1998,35,"(30,35]",HS,-4.2119,31.416960451977403,-0.13406452882156206,5865.989764037224,2019
+1998,35,"(30,35]",HS,-4.221016666666666,31.416960451977403,-0.1343547117843793,5834.944854181196,2019
+1998,35,"(30,35]",HS,-4.2119,31.416960451977403,-0.13406452882156206,5782.323176241769,2019
+1998,41,"(40,45]",College,267.7929666666667,77.61837288135592,3.450123427297341,7821.8476759522655,2019
+1998,41,"(40,45]",College,268.7593333333333,77.61837288135592,3.462573658225832,7979.51487021122,2019
+1998,41,"(40,45]",College,266.7536666666667,77.61837288135592,3.436733556298774,8303.141854963613,2019
+1998,41,"(40,45]",College,265.5138,77.61837288135592,3.420759675107502,7890.924786223055,2019
+1998,41,"(40,45]",College,263.4716666666667,77.61837288135592,3.394449753145406,8217.366173694121,2019
+1998,32,"(30,35]",College,135.8748,101.64310734463277,1.3367832167832168,8143.596218690704,2019
+1998,32,"(30,35]",College,124.26016666666668,105.33922033898305,1.1796191984979172,8107.161769740933,2019
+1998,32,"(30,35]",College,125.81,107.18727683615819,1.1737400530503979,8334.443960326322,2019
+1998,32,"(30,35]",College,130.75123333333335,112.73144632768363,1.1598470310872306,8219.477303104048,2019
+1998,32,"(30,35]",College,111.15039999999999,109.03533333333333,1.0193979933110369,8287.733916809717,2019
+1998,60,"(55,60]",HS,1420.6501666666668,155.23674576271185,9.15150700748527,186.7999820486942,2019
+1998,60,"(55,60]",HS,1439.0658333333333,155.23674576271185,9.27013656633222,192.9127470331652,2019
+1998,60,"(55,60]",HS,1281.3475,155.23674576271185,8.254150740563786,185.01365911006278,2019
+1998,60,"(55,60]",HS,1402.4168333333332,155.23674576271185,9.034051998725912,194.26342480129455,2019
+1998,60,"(55,60]",HS,1413.5391666666667,155.23674576271185,9.10569955406912,184.7201400941967,2019
+1998,41,"(40,45]",College,332.029,81.31448587570623,4.083269990878686,7821.8476759522655,2019
+1998,41,"(40,45]",College,332.19309999999996,79.46642937853107,4.180294781053123,7979.51487021122,2019
+1998,41,"(40,45]",College,332.13840000000005,81.31448587570623,4.084615384615384,8303.141854963613,2019
+1998,41,"(40,45]",College,332.50306666666665,81.31448587570623,4.089100030404378,7890.924786223055,2019
+1998,41,"(40,45]",College,330.7526666666667,79.46642937853107,4.16216846853854,8217.366173694121,2019
+1998,44,"(40,45]",College,-1.2763333333333333,101.64310734463277,-0.012557008209182123,9759.881240300516,2019
+1998,44,"(40,45]",College,-1.2763333333333333,101.64310734463277,-0.012557008209182123,9956.613924854038,2019
+1998,44,"(40,45]",College,-3.099666666666667,101.64310734463277,-0.030495591365156585,10360.426561994836,2019
+1998,44,"(40,45]",College,-3.099666666666667,101.64310734463277,-0.030495591365156585,9846.073713050759,2019
+1998,44,"(40,45]",College,-3.099666666666667,101.64310734463277,-0.030495591365156585,10253.398082640791,2019
+1998,70,"(65,70]",HS,444.711,86.85865536723163,5.11993880310254,7070.497956818823,2019
+1998,70,"(65,70]",HS,446.35200000000003,86.85865536723163,5.138831566213621,7008.952240825248,2019
+1998,70,"(65,70]",HS,446.53433333333334,85.0105988700565,5.252690126508652,7493.206892719283,2019
+1998,70,"(65,70]",HS,444.5286666666667,85.0105988700565,5.229096989966556,7244.389537200783,2019
+1998,70,"(65,70]",HS,444.711,86.85865536723163,5.11993880310254,7346.791527098756,2019
+1998,27,"(25,30]",College,-6.3087333333333335,72.07420338983052,-0.08753108652774204,5875.6865344877315,2019
+1998,27,"(25,30]",College,-3.756066666666667,31.416960451977403,-0.11955538068070037,5888.608466540869,2019
+1998,27,"(25,30]",College,-3.9384,27.720847457627123,-0.14207357859531772,5929.245111905686,2019
+1998,27,"(25,30]",College,-4.6677333333333335,48.04946892655367,-0.0971443272446617,5889.0552785861355,2019
+1998,27,"(25,30]",College,-7.0380666666666665,101.64310734463277,-0.06924293098206141,5861.714069538917,2019
+1998,51,"(50,55]",College,216.24733333333336,123.81978531073446,1.7464683272600212,7349.623206623354,2019
+1998,51,"(50,55]",College,216.24733333333336,123.81978531073446,1.7464683272600212,7535.989284867338,2019
+1998,51,"(50,55]",College,216.24733333333336,123.81978531073446,1.7464683272600212,7745.92134384913,2019
+1998,51,"(50,55]",College,216.24733333333336,123.81978531073446,1.7464683272600212,7412.998420457121,2019
+1998,51,"(50,55]",College,216.24733333333336,123.81978531073446,1.7464683272600212,7744.131869378574,2019
+1998,44,"(40,45]",HS,172.76083333333335,221.76677966101698,0.7790203455964325,9168.742741412547,2019
+1998,44,"(40,45]",HS,173.12550000000002,221.76677966101698,0.7806647157190635,9294.15200325756,2019
+1998,44,"(40,45]",HS,175.49583333333334,221.76677966101698,0.7913531215161649,9675.449632751432,2019
+1998,44,"(40,45]",HS,171.66683333333336,221.76677966101698,0.7740872352285396,9214.661051737587,2019
+1998,44,"(40,45]",HS,171.30216666666666,221.76677966101698,0.7724428651059084,9558.322894946949,2019
+1998,70,"(65,70]",NoHS,176.86333333333334,62.833920903954805,2.814774739327169,5918.221206606851,2019
+1998,70,"(65,70]",NoHS,175.04,90.55476836158192,1.932973858439697,5899.722483675354,2019
+1998,70,"(65,70]",NoHS,171.39333333333335,72.07420338983052,2.378012177343281,6347.69246977665,2019
+1998,70,"(65,70]",NoHS,162.27666666666667,55.441694915254246,2.9269788182831658,6052.252798942032,2019
+1998,70,"(65,70]",NoHS,176.86333333333334,77.61837288135592,2.278627169931518,6156.668384280933,2019
+1998,54,"(50,55]",College,890.5524666666666,375.1554689265537,2.373822429444618,425.4464770930341,2019
+1998,54,"(50,55]",College,1991.9916666666668,243.94345762711868,8.16579254079254,880.0799647741078,2019
+1998,54,"(50,55]",College,1277.7008333333333,608.0105875706214,2.101445039696659,847.4041475595999,2019
+1998,54,"(50,55]",College,1382.8342333333335,151.54063276836158,9.125171302716373,870.3179176154606,2019
+1998,54,"(50,55]",College,834.2661666666667,608.0105875706214,1.3721244065832412,420.5901148990979,2019
+1998,83,"(80,85]",College,3546.3833333333337,340.042395480226,10.429238766904174,2150.3575711143103,2019
+1998,83,"(80,85]",College,3546.5656666666664,340.042395480226,10.429774974552856,2189.3534340063206,2019
+1998,83,"(80,85]",College,3546.5656666666664,340.042395480226,10.429774974552856,2073.356382708964,2019
+1998,83,"(80,85]",College,3546.3833333333337,340.042395480226,10.429238766904174,2274.3648425549122,2019
+1998,83,"(80,85]",College,3546.3833333333337,340.042395480226,10.429238766904174,2129.9289889826314,2019
+1998,48,"(45,50]",College,4751.6066666666675,694.8692429378531,6.83813064826016,857.7244546754986,2019
+1998,48,"(45,50]",College,4302.884333333333,524.8480451977401,8.198343068444109,869.2994415980768,2019
+1998,48,"(45,50]",College,4745.772,571.0494576271187,8.310614670260088,831.3876066751696,2019
+1998,48,"(45,50]",College,4833.474333333334,478.6466327683616,10.098210250384163,917.5307988403787,2019
+1998,48,"(45,50]",College,4833.656666666667,471.254406779661,10.257000459046495,848.7142973335483,2019
+1998,68,"(65,70]",HS,1634.436,75.77031638418079,21.57092748185007,3911.203860735356,2019
+1998,68,"(65,70]",HS,1634.436,75.77031638418079,21.57092748185007,4264.332010046359,2019
+1998,68,"(65,70]",HS,1634.2536666666667,75.77031638418079,21.56852108654866,3946.4015302887165,2019
+1998,68,"(65,70]",HS,1634.436,75.77031638418079,21.57092748185007,3930.136401371383,2019
+1998,68,"(65,70]",HS,1634.2536666666667,75.77031638418079,21.56852108654866,4043.204762097218,2019
+1998,40,"(35,40]",College,8305.283333333333,733.6784293785311,11.320059307683882,151.50946564452516,2019
+1998,40,"(35,40]",College,8303.460000000001,733.6784293785311,11.317574113543888,149.30940783302037,2019
+1998,40,"(35,40]",College,8303.460000000001,733.6784293785311,11.317574113543888,142.03028601624823,2019
+1998,40,"(35,40]",College,8301.636666666667,733.6784293785311,11.315088919403891,158.76057532653527,2019
+1998,40,"(35,40]",College,8303.460000000001,733.6784293785311,11.317574113543888,150.8154916176105,2019
+1998,27,"(25,30]",HS,77.4552,42.50529943502825,1.8222480732877708,6103.829728320809,2019
+1998,27,"(25,30]",HS,98.7882,33.265016949152546,2.969732441471572,6128.590679531548,2019
+1998,27,"(25,30]",HS,83.58160000000001,29.56890395480226,2.826672240802676,6086.060070510648,2019
+1998,27,"(25,30]",HS,94.6857,44.35335593220339,2.1348035117056856,6240.194394906559,2019
+1998,27,"(25,30]",HS,120.63173333333334,31.416960451977403,3.839700963997639,6139.801927314604,2019
+1998,21,"(20,25]",HS,3.4096333333333333,22.176677966101696,0.15374860646599775,5087.930081869124,2019
+1998,21,"(20,25]",HS,3.427866666666667,22.176677966101696,0.1545707915273133,5068.462313189162,2019
+1998,21,"(20,25]",HS,3.4096333333333333,22.176677966101696,0.15374860646599775,5078.98577521123,2019
+1998,21,"(20,25]",HS,3.4096333333333333,22.176677966101696,0.15374860646599775,5109.366321288614,2019
+1998,21,"(20,25]",HS,3.427866666666667,22.176677966101696,0.1545707915273133,5035.0873699084095,2019
+1998,44,"(40,45]",College,480.0836666666667,282.75264406779667,1.6978927579950596,7630.975317009429,2019
+1998,44,"(40,45]",College,481.907,282.75264406779667,1.7043412682798869,7300.66184594522,2019
+1998,44,"(40,45]",College,481.907,282.75264406779667,1.7043412682798869,6817.6112505833935,2019
+1998,44,"(40,45]",College,481.907,282.75264406779667,1.7043412682798869,7451.0951956703475,2019
+1998,44,"(40,45]",College,478.26033333333334,282.75264406779667,1.691444247710232,6795.270809727806,2019
+1998,57,"(55,60]",College,10562.8435,277.2084745762712,38.10433110367893,210.4318284884508,2019
+1998,57,"(55,60]",College,10952.489833333335,279.0565310734463,39.248283461427725,209.38568558777993,2019
+1998,57,"(55,60]",College,11122.059833333335,277.2084745762712,40.12164437012263,201.77189031955086,2019
+1998,57,"(55,60]",College,10812.093166666666,277.2084745762712,39.00347268673355,220.22539405255057,2019
+1998,57,"(55,60]",College,10560.473166666667,277.2084745762712,38.095780379041244,206.02250552194423,2019
+1998,34,"(30,35]",HS,-3.4643333333333337,92.40282485875707,-0.037491638795986625,10148.781558458773,2019
+1998,34,"(30,35]",HS,-3.4643333333333337,92.40282485875707,-0.037491638795986625,10209.65612988875,2019
+1998,34,"(30,35]",HS,-3.4643333333333337,92.40282485875707,-0.037491638795986625,10304.296718515074,2019
+1998,34,"(30,35]",HS,-3.6466666666666665,92.40282485875707,-0.039464882943143806,10255.156944948474,2019
+1998,34,"(30,35]",HS,-3.6466666666666665,92.40282485875707,-0.039464882943143806,10267.604728301414,2019
+1998,36,"(35,40]",College,8940.715,1670.6430734463277,5.351660771894516,202.69268220041621,2019
+1998,36,"(35,40]",College,8940.715,1670.6430734463277,5.351660771894516,207.07336556206943,2019
+1998,36,"(35,40]",College,8940.715,1670.6430734463277,5.351660771894516,198.35417101066673,2019
+1998,36,"(35,40]",College,8940.715,1670.6430734463277,5.351660771894516,215.89917605773985,2019
+1998,36,"(35,40]",College,8940.715,1670.6430734463277,5.351660771894516,198.8930204102648,2019
+1998,42,"(40,45]",NoHS,11.5417,24.024734463276836,0.48040905582711607,6635.725292180259,2019
+1998,42,"(40,45]",NoHS,11.523466666666668,24.024734463276836,0.47965011577051714,6692.092401791961,2019
+1998,42,"(40,45]",NoHS,11.5417,24.024734463276836,0.48040905582711607,6620.464786843893,2019
+1998,42,"(40,45]",NoHS,11.523466666666668,22.176677966101696,0.5196209587513936,6625.2958099920115,2019
+1998,42,"(40,45]",NoHS,11.523466666666668,24.024734463276836,0.47965011577051714,6642.208434562001,2019
+1998,44,"(40,45]",HS,225.89276666666666,101.64310734463277,2.2224110671936756,5729.207411763243,2019
+1998,44,"(40,45]",HS,225.89276666666666,101.64310734463277,2.2224110671936756,5687.02292287075,2019
+1998,44,"(40,45]",HS,225.89276666666666,101.64310734463277,2.2224110671936756,5688.606045536269,2019
+1998,44,"(40,45]",HS,225.89276666666666,101.64310734463277,2.2224110671936756,5784.206475517587,2019
+1998,44,"(40,45]",HS,225.89276666666666,101.64310734463277,2.2224110671936756,5666.131311423517,2019
+1998,33,"(30,35]",HS,12.070466666666668,46.201412429378536,0.26125752508361205,4951.447698478893,2019
+1998,33,"(30,35]",HS,362.18693333333334,46.201412429378536,7.839304347826086,4951.743362589689,2019
+1998,33,"(30,35]",HS,1.4404333333333335,46.201412429378536,0.031177257525083612,4955.838247156889,2019
+1998,33,"(30,35]",HS,362.0228333333333,46.201412429378536,7.835752508361203,4945.65058738336,2019
+1998,33,"(30,35]",HS,61.1546,46.201412429378536,1.3236521739130434,4993.826195124651,2019
+1998,53,"(50,55]",HS,3060.465,739.2225988700566,4.140112876254181,1173.7509234433908,2019
+1998,53,"(50,55]",HS,3053.1716666666666,739.2225988700566,4.130246655518394,1203.6766824505603,2019
+1998,53,"(50,55]",HS,3051.3483333333334,739.2225988700566,4.127780100334448,1134.8282121207162,2019
+1998,53,"(50,55]",HS,3060.465,739.2225988700566,4.140112876254181,1234.2416912023505,2019
+1998,53,"(50,55]",HS,3063.0176666666666,739.2225988700566,4.143566053511705,1160.2107203134442,2019
+1998,54,"(50,55]",HS,550.8290000000001,210.6784406779661,2.614548494983278,6574.84396979085,2019
+1998,54,"(50,55]",HS,550.6466666666666,210.6784406779661,2.613683037023998,6300.092323655428,2019
+1998,54,"(50,55]",HS,550.6466666666666,210.6784406779661,2.613683037023998,5871.023653334001,2019
+1998,54,"(50,55]",HS,550.8290000000001,210.6784406779661,2.614548494983278,6423.044144250536,2019
+1998,54,"(50,55]",HS,550.8290000000001,210.6784406779661,2.614548494983278,5859.719569343475,2019
+1998,54,"(50,55]",HS,7726.375,325.2579435028249,23.75460816357555,15.050222984955653,2019
+1998,54,"(50,55]",HS,7839.7863333333335,1824.0317627118643,4.298053626915792,16.484894771151723,2019
+1998,54,"(50,55]",HS,3622.9633333333336,510.06359322033904,7.1029639862343075,16.203289289321532,2019
+1998,54,"(50,55]",HS,2978.4879333333333,388.0918644067797,7.674698200350374,16.50966786819729,2019
+1998,54,"(50,55]",HS,9361.905,768.7915028248588,12.177430376897352,17.160725769058864,2019
+1998,38,"(35,40]",College,-28.681033333333332,85.0105988700565,-0.3373818525519849,4918.738950918025,2019
+1998,38,"(35,40]",College,-31.288400000000003,77.61837288135592,-0.4031055900621119,4939.027333227739,2019
+1998,38,"(35,40]",College,-28.462233333333334,86.85865536723163,-0.3276844801821675,4960.211926469215,2019
+1998,38,"(35,40]",College,-28.97276666666667,62.833920903954805,-0.4611007279165847,4933.960715962834,2019
+1998,38,"(35,40]",College,-30.8508,59.13780790960452,-0.5216764214046823,4889.464444232838,2019
+1998,68,"(65,70]",HS,2133.391166666667,129.36395480225988,16.491387959866223,2076.1418416037113,2019
+1998,68,"(65,70]",HS,2135.2145,129.36395480225988,16.505482560917343,2115.1792499119074,2019
+1998,68,"(65,70]",HS,2133.391166666667,129.36395480225988,16.491387959866223,2409.6309532424266,2019
+1998,68,"(65,70]",HS,2135.2145,129.36395480225988,16.505482560917343,2612.0086518011017,2019
+1998,68,"(65,70]",HS,2133.391166666667,129.36395480225988,16.491387959866223,2111.8900300525493,2019
+1998,18,"(15,20]",HS,18.707400000000003,22.176677966101696,0.8435618729096991,5937.711646521158,2019
+1998,18,"(15,20]",HS,20.877166666666668,22.176677966101696,0.9414018952062431,5966.6487368207945,2019
+1998,18,"(15,20]",HS,16.86583333333333,22.176677966101696,0.7605211817168337,5976.274504301713,2019
+1998,18,"(15,20]",HS,13.948500000000001,22.176677966101696,0.6289715719063546,5928.533789331233,2019
+1998,18,"(15,20]",HS,18.8715,22.176677966101696,0.8509615384615384,5942.041021354746,2019
+1998,45,"(40,45]",HS,6347.953233333334,66.53003389830509,95.41485042735042,773.231131966627,2019
+1998,45,"(40,45]",HS,10436.814699999999,73.92225988700567,141.18635869565213,847.7187609956443,2019
+1998,45,"(40,45]",HS,4117.1596,53.593638418079095,76.82179679391074,774.0691809428106,2019
+1998,45,"(40,45]",HS,10648.521933333333,77.61837288135592,137.19073897117377,992.0758929974288,2019
+1998,45,"(40,45]",HS,6058.371433333334,48.04946892655367,126.08612683303319,775.727468964503,2019
+1998,53,"(50,55]",College,1092.9242333333334,432.4452203389831,2.5273125518108794,2851.746708040044,2019
+1998,53,"(50,55]",College,1096.8079333333333,456.4699548022599,2.402804219192179,3114.7205595765677,2019
+1998,53,"(50,55]",College,1111.5222333333334,432.4452203389831,2.5703191550181512,2900.9661890196376,2019
+1998,53,"(50,55]",College,1095.1122333333335,432.4452203389831,2.5323721521882057,2881.367345907291,2019
+1998,53,"(50,55]",College,1092.9424666666666,434.2932768361582,2.5166000142318365,2975.2154967386805,2019
+1998,56,"(55,60]",HS,594.2243333333333,83.16254237288136,7.145336306205871,6645.35683588794,2019
+1998,56,"(55,60]",HS,608.811,83.16254237288136,7.320735785953177,6336.002002873605,2019
+1998,56,"(55,60]",HS,667.34,83.16254237288136,8.024526198439242,5931.187831619664,2019
+1998,56,"(55,60]",HS,667.1576666666666,83.16254237288136,8.0223337049424,6489.419599024523,2019
+1998,56,"(55,60]",HS,594.4066666666666,83.16254237288136,7.1475287997027115,5915.841739832491,2019
+1998,31,"(30,35]",HS,0,33.265016949152546,0,4613.944579688621,2019
+1998,31,"(30,35]",HS,0,33.265016949152546,0,4627.605143505849,2019
+1998,31,"(30,35]",HS,0,33.265016949152546,0,4627.835706738122,2019
+1998,31,"(30,35]",HS,0,33.265016949152546,0,4650.870915465461,2019
+1998,31,"(30,35]",HS,0,33.265016949152546,0,4633.21985035384,2019
+1998,65,"(60,65]",HS,257.45466666666664,20.328621468926556,12.664639708117965,10052.080898041759,2019
+1998,65,"(60,65]",HS,257.45466666666664,18.480564971751416,13.93110367892976,10414.07486860154,2019
+1998,65,"(60,65]",HS,257.45466666666664,18.480564971751416,13.93110367892976,10599.385301920385,2019
+1998,65,"(60,65]",HS,255.81366666666665,18.480564971751416,13.842307692307688,10079.778279901953,2019
+1998,65,"(60,65]",HS,257.637,18.480564971751416,13.940969899665548,10487.02873890947,2019
+1998,51,"(50,55]",NoHS,615.1015,116.4275593220339,5.283126293995859,6258.447098045985,2019
+1998,51,"(50,55]",NoHS,645.3870666666667,171.86925423728815,3.7551048297191354,5998.398427975454,2019
+1998,51,"(50,55]",NoHS,623.1606333333333,218.07066666666665,2.857608695652174,5588.292414799658,2019
+1998,51,"(50,55]",NoHS,647.3927333333332,140.45229378531073,4.609342545326527,6115.650741482947,2019
+1998,51,"(50,55]",NoHS,654.7954666666667,175.56536723163845,3.7296391480373168,5578.0467004699885,2019
+1998,37,"(35,40]",HS,274.40984333333336,44.35335593220339,6.186901477146042,359.61436634204506,2019
+1998,37,"(35,40]",HS,429.21084333333334,55.441694915254246,7.741661649944257,143.94529616727357,2019
+1998,37,"(35,40]",HS,274.40984333333336,55.441694915254246,4.949521181716833,360.6994656414019,2019
+1998,37,"(35,40]",HS,274.40984333333336,42.50529943502825,6.455897193543697,361.1890479263601,2019
+1998,37,"(35,40]",HS,274.40984333333336,29.56890395480226,9.280352215719065,366.07455760318237,2019
+1998,69,"(65,70]",College,1703.358,55.441694915254246,30.723411371237454,672.0917793659944,2019
+1998,69,"(65,70]",College,1160.1870000000001,171.86925423728815,6.750404574387744,336.39414665944753,2019
+1998,69,"(65,70]",College,1783.0376666666668,101.64310734463277,17.542140468227426,673.3232684605655,2019
+1998,69,"(65,70]",College,1665.1044666666667,53.593638418079095,31.069069311498097,695.9731086285062,2019
+1998,69,"(65,70]",College,1022.1606666666667,90.55476836158192,11.28776192751348,338.3527731939444,2019
+1998,85,"(80,85]",HS,1234.3966666666668,27.720847457627123,44.52954292084726,404.58477563276773,2019
+1998,85,"(80,85]",HS,1234.3966666666668,27.720847457627123,44.52954292084726,389.4179902752022,2019
+1998,85,"(80,85]",HS,1334.68,27.720847457627123,48.14715719063545,401.73453901406685,2019
+1998,85,"(80,85]",HS,1338.3266666666668,27.720847457627123,48.27870680044593,397.31419030523296,2019
+1998,85,"(80,85]",HS,1332.8566666666668,27.720847457627123,48.08138238573021,397.9467712206041,2019
+1998,55,"(50,55]",HS,174.12833333333336,340.042395480226,0.5120783044932384,336.17122670170113,2019
+1998,55,"(50,55]",HS,172.305,341.8904519774011,0.5039772213685259,343.6054337768546,2019
+1998,55,"(50,55]",HS,175.95166666666665,341.8904519774011,0.5146434059477538,331.57608092769135,2019
+1998,55,"(50,55]",HS,175.95166666666665,340.042395480226,0.5174403809800785,332.2280055979235,2019
+1998,55,"(50,55]",HS,175.95166666666665,341.8904519774011,0.5146434059477538,336.23006872239716,2019
+1998,53,"(50,55]",HS,367.8028,118.27561581920904,3.109709448160535,10553.334075500763,2019
+1998,53,"(50,55]",HS,363.2444666666667,118.27561581920904,3.071169523411372,10174.650373158365,2019
+1998,53,"(50,55]",HS,368.7144666666667,118.27561581920904,3.117417433110368,9881.289916979043,2019
+1998,53,"(50,55]",HS,366.89113333333336,118.27561581920904,3.1020014632107027,10062.590158865458,2019
+1998,53,"(50,55]",HS,370.90246666666667,118.27561581920904,3.1359165969899667,10318.796404198825,2019
+1998,38,"(35,40]",HS,-21.807066666666667,49.89752542372881,-0.4370370370370371,6810.423925541889,2019
+1998,38,"(35,40]",HS,-21.807066666666667,49.89752542372881,-0.4370370370370371,6844.532842242965,2019
+1998,38,"(35,40]",HS,-21.989400000000003,49.89752542372881,-0.440691192865106,6871.200007818389,2019
+1998,38,"(35,40]",HS,-21.807066666666667,49.89752542372881,-0.4370370370370371,6809.151069013756,2019
+1998,38,"(35,40]",HS,-21.989400000000003,49.89752542372881,-0.440691192865106,6881.1710498616885,2019
+1998,39,"(35,40]",HS,982.7766666666666,144.14840677966103,6.817811508446959,6373.327534764825,2019
+1998,39,"(35,40]",HS,984.4176666666666,144.14840677966103,6.829195609295943,6098.0525014050545,2019
+1998,39,"(35,40]",HS,983.6883333333334,144.14840677966103,6.824136008918617,5694.331616239851,2019
+1998,39,"(35,40]",HS,985.3293333333334,144.14840677966103,6.835520109767601,6224.803251202424,2019
+1998,39,"(35,40]",HS,986.4233333333334,144.14840677966103,6.843109510333591,5676.422783391835,2019
+1998,57,"(55,60]",College,42133.039666666664,3585.229604519774,11.751838602903147,331.3406519407809,2019
+1998,57,"(55,60]",College,43702.74733333334,3529.7879096045203,12.381125566898387,345.08713869160755,2019
+1998,57,"(55,60]",College,42687.88,3566.7490395480227,11.968288075969985,339.51458487617407,2019
+1998,57,"(55,60]",College,40784.867,3825.4769491525426,10.661380931607773,324.2413169726818,2019
+1998,57,"(55,60]",College,52126.729666666666,3585.229604519774,14.539300244802261,369.4534653776576,2019
+1998,47,"(45,50]",College,191134.19866666666,4731.024632768363,40.400169836956515,29.171152638828563,2019
+1998,47,"(45,50]",College,200973.08766666666,4878.869152542373,41.19255536130536,30.043340904004076,2019
+1998,47,"(45,50]",College,191693.962,5765.936271186441,33.24593838435811,32.28937243415807,2019
+1998,47,"(45,50]",College,190897.34766666667,5340.883276836158,35.74265487032901,30.125084445708545,2019
+1998,47,"(45,50]",College,201277.402,5544.169491525424,36.30433779264214,32.53636765465956,2019
+1998,56,"(55,60]",College,386739.0283333333,2347.0317514124295,164.7779277381297,1.5150354057313873,2019
+1998,56,"(55,60]",College,56749.1714,2513.3568361581924,22.579034772771983,1.464846990715889,2019
+1998,56,"(55,60]",College,467944.93439999997,2051.3427118644067,228.11640965380096,1.378549503687558,2019
+1998,56,"(55,60]",College,171490.33466666666,8186.890282485874,20.946944291354935,1.3995906763482278,2019
+1998,56,"(55,60]",College,34816.914666666664,6597.561694915254,5.277239725321567,1.0977096217371014,2019
+1998,78,"(75,80]",NoHS,365.2136666666667,22.176677966101696,16.468366778149388,10706.446637480267,2019
+1998,78,"(75,80]",NoHS,363.39033333333333,22.176677966101696,16.386148272017834,10921.448377517429,2019
+1998,78,"(75,80]",NoHS,365.2136666666667,22.176677966101696,16.468366778149388,11412.717841471851,2019
+1998,78,"(75,80]",NoHS,365.2136666666667,22.176677966101696,16.468366778149388,10820.401942225264,2019
+1998,78,"(75,80]",NoHS,363.39033333333333,22.176677966101696,16.386148272017834,11304.60549136801,2019
+1998,55,"(50,55]",College,1755.5053333333333,277.2084745762712,6.332798216276476,148.86862759003503,2019
+1998,55,"(50,55]",College,1762.981,277.2084745762712,6.359765886287625,153.98952732997307,2019
+1998,55,"(50,55]",College,1762.981,277.2084745762712,6.359765886287625,148.13735946070616,2019
+1998,55,"(50,55]",College,1728.1553333333334,277.2084745762712,6.234136008918617,152.87659214335366,2019
+1998,55,"(50,55]",College,1627.872,277.2084745762712,5.872374581939799,146.93112267301734,2019
+1998,64,"(60,65]",NoHS,130.36833333333334,68.37809039548021,1.9065804935370156,9600.319577847014,2019
+1998,64,"(60,65]",NoHS,124.62483333333333,88.70671186440678,1.404908723522854,9571.825010940389,2019
+1998,64,"(60,65]",NoHS,147.81763333333333,49.89752542372881,2.9624241298154343,10073.47924031011,2019
+1998,64,"(60,65]",NoHS,126.33876666666667,42.50529943502825,2.972306238185255,9437.981870675252,2019
+1998,64,"(60,65]",NoHS,270.3821,75.77031638418079,3.5684435924626805,9986.457598112653,2019
+1998,83,"(80,85]",College,710.9723666666667,53.593638418079095,13.265984315534542,303.1597699510986,2019
+1998,83,"(80,85]",College,781.2071666666667,46.201412429378536,16.908729096989966,291.2666115546475,2019
+1998,83,"(80,85]",College,676.8213333333334,46.201412429378536,14.649364548494983,291.7960583718235,2019
+1998,83,"(80,85]",College,1060.9976666666669,53.593638418079095,19.797082228116714,291.1827522257588,2019
+1998,83,"(80,85]",College,750.1193333333334,48.04946892655367,15.611396964239775,295.36000818946565,2019
+1998,26,"(25,30]",HS,-26.894166666666667,27.720847457627123,-0.9701783723522852,4262.59183522675,2019
+1998,26,"(25,30]",HS,-27.988166666666668,27.720847457627123,-1.009643255295429,4248.058800740653,2019
+1998,26,"(25,30]",HS,-24.8885,27.720847457627123,-0.8978260869565217,4250.182446094397,2019
+1998,26,"(25,30]",HS,-27.805833333333332,27.720847457627123,-1.003065774804905,4280.422998265714,2019
+1998,26,"(25,30]",HS,-25.9825,27.720847457627123,-0.9372909698996654,4247.4953078394965,2019
+1998,22,"(20,25]",HS,-13.930266666666666,57.289751412429375,-0.24315460135936995,8047.367908143569,2019
+1998,22,"(20,25]",HS,-13.747933333333332,55.441694915254246,-0.24797101449275358,8093.84330240001,2019
+1998,22,"(20,25]",HS,-13.200933333333333,55.441694915254246,-0.23810479375696764,8226.777810907446,2019
+1998,22,"(20,25]",HS,-13.383266666666668,55.441694915254246,-0.24139353400222963,8049.293400018474,2019
+1998,22,"(20,25]",HS,-13.383266666666668,55.441694915254246,-0.24139353400222963,8113.977778204052,2019
+1998,45,"(40,45]",College,22.882833333333334,81.31448587570623,0.2814115232593493,10635.328237028774,2019
+1998,45,"(40,45]",College,35.646166666666666,81.31448587570623,0.43837412587412583,10552.630180859267,2019
+1998,45,"(40,45]",College,22.882833333333334,79.46642937853107,0.28795597728863653,10709.481735486075,2019
+1998,45,"(40,45]",College,21.241833333333332,79.46642937853107,0.2673057478416427,10679.149295951689,2019
+1998,45,"(40,45]",College,52.05616666666666,79.46642937853107,0.6550711674574161,10953.593625347705,2019
+1998,86,"(85,90]",College,2428.3153333333335,308.6254350282486,7.8681633388740915,8.791270351144588,2019
+1998,86,"(85,90]",College,2428.3153333333335,153.38868926553673,15.831123826409316,9.885020516185179,2019
+1998,86,"(85,90]",College,2421.022,306.77737853107345,7.891787887335294,8.100501623832441,2019
+1998,86,"(85,90]",College,2342.6186666666667,291.9929265536723,8.022861013504933,8.079700891951237,2019
+1998,86,"(85,90]",College,2260.5686666666666,186.65370621468927,12.111030166561806,8.005158706258491,2019
+1998,49,"(45,50]",College,14819.779833333334,927.724361581921,15.974335101067302,210.4318284884508,2019
+1998,49,"(45,50]",College,10410.522233333333,1195.6925536723165,8.706688187828567,209.38568558777993,2019
+1998,49,"(45,50]",College,8417.436566666667,1716.8444858757061,4.902853249619291,201.77189031955086,2019
+1998,49,"(45,50]",College,23405.40066666667,1509.8621581920906,15.501680428028147,235.6199998745013,2019
+1998,49,"(45,50]",College,24386.6275,1273.3109265536725,19.152138720747917,223.77139922323423,2019
+1998,37,"(35,40]",College,409.88533333333334,70.22614689265536,5.836648477380743,10553.334075500763,2019
+1998,37,"(35,40]",College,409.88533333333334,70.22614689265536,5.836648477380743,10174.650373158365,2019
+1998,37,"(35,40]",College,409.70300000000003,70.22614689265536,5.834052103502905,9881.289916979043,2019
+1998,37,"(35,40]",College,409.88533333333334,70.22614689265536,5.836648477380743,10062.590158865458,2019
+1998,37,"(35,40]",College,409.70300000000003,70.22614689265536,5.834052103502905,10318.796404198825,2019
+1998,46,"(45,50]",HS,186.70933333333335,53.593638418079095,3.4837965632568335,6263.58724843564,2019
+1998,46,"(45,50]",HS,241.00820000000002,48.04946892655367,5.015834834062259,6345.365684106055,2019
+1998,46,"(45,50]",HS,124.46073333333334,24.024734463276836,5.180524826344224,6576.5881312522615,2019
+1998,46,"(45,50]",HS,163.09716666666665,42.50529943502825,3.837101933982841,6258.163743817446,2019
+1998,46,"(45,50]",HS,127.35983333333333,22.176677966101696,5.74296265328874,6546.193651418845,2019
+1998,42,"(40,45]",HS,17.686333333333334,29.56890395480226,0.5981396321070235,6171.860132415468,2019
+1998,42,"(40,45]",HS,17.631633333333337,33.265016949152546,0.5300353028613899,6114.20990452375,2019
+1998,42,"(40,45]",HS,18.68916666666667,25.872790960451983,0.7223483038700429,6349.9455782703735,2019
+1998,42,"(40,45]",HS,16.829366666666665,38.80918644067796,0.43364389233954453,6260.137398886399,2019
+1998,42,"(40,45]",HS,16.264133333333334,24.024734463276836,0.6769745304862362,6363.214390892853,2019
+1998,37,"(35,40]",College,125.20830000000001,103.49116384180793,1.2098453177257524,6801.606670323036,2019
+1998,37,"(35,40]",College,125.02596666666666,103.49116384180793,1.2080834925943618,6938.708578285247,2019
+1998,37,"(35,40]",College,123.38496666666666,103.49116384180793,1.1922270664118486,7220.123347452356,2019
+1998,37,"(35,40]",College,125.02596666666666,103.49116384180793,1.2080834925943618,6861.673722693398,2019
+1998,37,"(35,40]",College,123.38496666666666,105.33922033898305,1.171310802088834,7145.535798570813,2019
+1998,57,"(55,60]",College,4257.100433333334,155.23674576271185,27.423277990125822,1388.4900761687977,2019
+1998,57,"(55,60]",College,4000.6121333333335,121.97172881355934,32.79950339515557,1444.489037070037,2019
+1998,57,"(55,60]",College,5950.120133333334,415.8127118644068,14.309615756224451,1568.2603547380227,2019
+1998,57,"(55,60]",College,5477.111,142.30035028248585,38.48979281587978,1656.291731277642,2019
+1998,57,"(55,60]",College,4219.630933333334,153.38868926553673,27.509400813958177,1348.564197734558,2019
+1998,27,"(25,30]",HS,-2.5526666666666666,31.416960451977403,-0.0812512295888255,9012.836163108048,2019
+1998,27,"(25,30]",HS,1.094,31.416960451977403,0.03482195553806807,9068.680377751201,2019
+1998,27,"(25,30]",HS,-2.5526666666666666,31.416960451977403,-0.0812512295888255,9203.125626117286,2019
+1998,27,"(25,30]",HS,8.387333333333334,31.416960451977403,0.2669683257918552,9014.723514783078,2019
+1998,27,"(25,30]",HS,4.740666666666667,31.416960451977403,0.15089514066496162,9150.287008386616,2019
+1998,58,"(55,60]",HS,167.69196666666667,55.441694915254246,3.0246544035674465,8027.105919226818,2019
+1998,58,"(55,60]",HS,167.69196666666667,55.441694915254246,3.0246544035674465,8003.280784570906,2019
+1998,58,"(55,60]",HS,167.69196666666667,55.441694915254246,3.0246544035674465,8422.728449966427,2019
+1998,58,"(55,60]",HS,167.69196666666667,55.441694915254246,3.0246544035674465,7891.370649209441,2019
+1998,58,"(55,60]",HS,167.50963333333334,55.441694915254246,3.0213656633221846,8349.96712847918,2019
+1998,28,"(25,30]",College,-100.62976666666667,85.0105988700565,-1.1837320052348408,5474.341822869232,2019
+1998,28,"(25,30]",College,-100.63888333333334,59.13780790960452,-1.7017689172240804,5486.381109283773,2019
+1998,28,"(25,30]",College,-100.62976666666667,77.61837288135592,-1.2964683866857782,5524.242027485583,2019
+1998,28,"(25,30]",College,-100.62976666666667,90.55476836158192,-1.1112586171592382,5486.7974013803705,2019
+1998,28,"(25,30]",College,-100.45655000000001,59.13780790960452,-1.6986857232441472,5461.323761270998,2019
+1998,74,"(70,75]",HS,2906.2657000000004,325.2579435028249,8.93526432806324,1602.6951069570543,2019
+1998,74,"(70,75]",HS,2885.8261333333335,325.2579435028249,8.872423228944967,1656.98426198447,2019
+1998,74,"(70,75]",HS,2897.3131333333336,325.2579435028249,8.907739814533292,1575.4812051285762,2019
+1998,74,"(70,75]",HS,2874.9043666666666,325.2579435028249,8.838844443599877,1686.4904583169732,2019
+1998,74,"(70,75]",HS,2997.596466666667,325.2579435028249,9.216059212526604,1572.234233348147,2019
+1998,58,"(55,60]",HS,155.76736666666667,13.675618079096047,11.390151857543161,6597.112597380283,2019
+1998,58,"(55,60]",HS,153.94403333333332,13.675618079096047,11.25682455030281,6572.537853990252,2019
+1998,58,"(55,60]",HS,155.76736666666667,13.675618079096047,11.390151857543161,6964.387528345707,2019
+1998,58,"(55,60]",HS,155.9497,13.675618079096047,11.403484588267196,6448.704038557204,2019
+1998,58,"(55,60]",HS,152.30303333333333,13.675618079096047,11.136829973786494,6817.656967636714,2019
+1998,28,"(25,30]",HS,13.583833333333335,46.201412429378536,0.2940133779264214,5323.782198554701,2019
+1998,28,"(25,30]",HS,13.766166666666667,46.201412429378536,0.2979598662207358,5339.544387548591,2019
+1998,28,"(25,30]",HS,13.766166666666667,46.201412429378536,0.2979598662207358,5339.81042204693,2019
+1998,28,"(25,30]",HS,13.766166666666667,46.201412429378536,0.2979598662207358,5366.3895089961825,2019
+1998,28,"(25,30]",HS,15.589500000000001,46.201412429378536,0.3374247491638796,5346.022895439433,2019
+1998,42,"(40,45]",College,4916.436,406.57242937853107,12.092398905442383,3173.67400261004,2019
+1998,42,"(40,45]",College,5189.936,406.57242937853107,12.765095773791426,3159.142772189857,2019
+1998,42,"(40,45]",College,4369.436,406.57242937853107,10.747005168744298,3484.9668742741787,2019
+1998,42,"(40,45]",College,5188.112666666667,406.57242937853107,12.760611128002433,4014.663542478995,2019
+1998,42,"(40,45]",College,4641.112666666667,406.57242937853107,11.415217391304349,3220.9192506979207,2019
+1998,90,"(85,90]",HS,9.390166666666666,0,Inf,7646.729791578853,2019
+1998,90,"(85,90]",HS,9.4084,0,Inf,7703.093924067393,2019
+1998,90,"(85,90]",HS,9.390166666666666,0,Inf,7709.6692389867,2019
+1998,90,"(85,90]",HS,9.4084,0,Inf,7632.1671656695125,2019
+1998,90,"(85,90]",HS,9.4084,0,Inf,7709.691172671363,2019
+1998,75,"(70,75]",College,8867.325833333334,554.4169491525424,15.993965997770346,1388.4900761687977,2019
+1998,75,"(70,75]",College,8892.378433333333,554.4169491525424,16.039153288740245,1444.489037070037,2019
+1998,75,"(70,75]",College,9233.36,554.4169491525424,16.65418060200669,1568.2603547380227,2019
+1998,75,"(70,75]",College,8940.532666666666,554.4169491525424,16.12600891861761,1656.291731277642,2019
+1998,75,"(70,75]",College,8997.056,554.4169491525424,16.227959866220736,1348.564197734558,2019
+1998,58,"(55,60]",NoHS,15523.9147,0,Inf,17.82657433540392,2019
+1998,58,"(55,60]",NoHS,16007.061566666667,0,Inf,19.650560389821674,2019
+1998,58,"(55,60]",NoHS,18643.6198,0,Inf,26.57603818380152,2019
+1998,58,"(55,60]",NoHS,21692.4337,0,Inf,23.444957467344494,2019
+1998,58,"(55,60]",NoHS,18324.518233333336,0,Inf,21.886016861465155,2019
+1998,68,"(65,70]",College,704.9918333333334,59.13780790960452,11.921169523411372,8041.39410768655,2019
+1998,68,"(65,70]",College,806.7338333333333,51.745581920903966,15.590390587673193,7691.930554167923,2019
+1998,68,"(65,70]",College,646.8092666666668,64.68197740112994,9.999837553750599,7122.069942296968,2019
+1998,68,"(65,70]",College,615.8855333333333,66.53003389830509,9.257255667038274,7814.276833973311,2019
+1998,68,"(65,70]",College,758.0326,85.0105988700565,8.916918714555765,7102.4861965092205,2019
+1998,57,"(55,60]",College,623.58,121.97172881355934,5.112496199452721,8915.921979752664,2019
+1998,57,"(55,60]",College,621.7566666666667,121.97172881355934,5.097547380156075,8500.03125054645,2019
+1998,57,"(55,60]",College,621.7566666666667,121.97172881355934,5.097547380156075,7957.292061742289,2019
+1998,57,"(55,60]",College,625.4033333333334,121.97172881355934,5.127445018749366,8704.312638745976,2019
+1998,57,"(55,60]",College,623.58,120.12367231638417,5.19114998713661,7935.654008771315,2019
+1998,55,"(50,55]",College,560.8573333333334,103.49116384180793,5.419374104156712,7139.833624603928,2019
+1998,55,"(50,55]",College,556.299,118.27561581920904,4.70341241638796,6832.087713938467,2019
+1998,55,"(50,55]",College,739.1793333333334,97.9469943502825,7.546728087335142,6443.636848623877,2019
+1998,55,"(50,55]",College,855.6356333333333,120.12367231638417,7.122956007203499,6968.789831724431,2019
+1998,55,"(50,55]",College,434.1356666666667,121.97172881355934,3.5593138745312656,6398.68574108341,2019
+1998,44,"(40,45]",College,67.281,110.88338983050849,0.606772575250836,6882.107141652006,2019
+1998,44,"(40,45]",College,67.281,110.88338983050849,0.606772575250836,6976.240001621407,2019
+1998,44,"(40,45]",College,67.46333333333332,110.88338983050849,0.6084169453734669,7262.444033411103,2019
+1998,44,"(40,45]",College,67.46333333333332,110.88338983050849,0.6084169453734669,6916.573669979078,2019
+1998,44,"(40,45]",College,67.46333333333332,110.88338983050849,0.6084169453734669,7174.528080105769,2019
+1998,48,"(45,50]",College,40306.05966666667,5414.805536723164,7.4436763044048995,15.210363786456199,2019
+1998,48,"(45,50]",College,40063.374,4841.90802259887,8.274294722867575,16.54242337918642,2019
+1998,48,"(45,50]",College,40857.435666666664,4694.063502824859,8.704065388565558,16.90726711735487,2019
+1998,48,"(45,50]",College,39789.14466666667,5045.194237288136,7.886543668149019,15.401116629790682,2019
+1998,48,"(45,50]",College,40035.84166666667,4694.063502824859,8.529037078977169,16.270747867357453,2019
+1998,57,"(55,60]",HS,392.25370000000004,25.872790960451983,15.160857620640227,9760.451881765694,2019
+1998,57,"(55,60]",HS,365.943,44.35335593220339,8.250627090301002,12400.282250238593,2019
+1998,57,"(55,60]",HS,384.5957,25.872790960451983,14.864870998566648,12941.694916765937,2019
+1998,57,"(55,60]",HS,501.50783333333334,44.35335593220339,11.30710005574136,9584.880811836283,2019
+1998,57,"(55,60]",HS,241.1540666666667,44.35335593220339,5.437109810479376,12925.685061953589,2019
+1998,40,"(35,40]",College,196.73766666666666,85.0105988700565,2.3142722117202266,5789.4550408803325,2019
+1998,40,"(35,40]",College,195.826,66.53003389830509,2.9434225195094754,5901.670510517566,2019
+1998,40,"(35,40]",College,196.373,48.04946892655367,4.0868922047851814,6183.096380170116,2019
+1998,40,"(35,40]",College,196.19066666666666,72.07420338983052,2.7220650030014575,5807.3945917526125,2019
+1998,40,"(35,40]",College,196.92000000000002,57.289751412429375,3.4372639982738162,6042.497071105312,2019
+1998,38,"(35,40]",HS,334.4905,96.09893785310734,3.4806888345767946,7278.172050742367,2019
+1998,38,"(35,40]",HS,314.90790000000004,114.57950282485875,2.748379005286439,7419.242926845151,2019
+1998,38,"(35,40]",HS,418.32736666666665,107.18727683615819,3.9027707300196055,5466.668115530529,2019
+1998,38,"(35,40]",HS,295.98170000000005,131.21201129943503,2.2557515662537098,7300.724628979791,2019
+1998,38,"(35,40]",HS,351.6116,97.9469943502825,3.589815106960308,5449.256673335888,2019
+1998,35,"(30,35]",HS,689.0376666666666,110.88338983050849,6.214074693422518,5963.358116499038,2019
+1998,35,"(30,35]",HS,688.8553333333334,110.88338983050849,6.2124303232998885,5706.638156046067,2019
+1998,35,"(30,35]",HS,689.0376666666666,110.88338983050849,6.214074693422518,5327.546313345367,2019
+1998,35,"(30,35]",HS,690.6786666666667,110.88338983050849,6.228874024526197,5824.4052917687595,2019
+1998,35,"(30,35]",HS,688.8553333333334,110.88338983050849,6.2124303232998885,5310.577976743663,2019
+1998,41,"(40,45]",NoHS,27.040033333333334,29.56890395480226,0.9144753344481605,6735.758910147384,2019
+1998,41,"(40,45]",NoHS,27.040033333333334,29.56890395480226,0.9144753344481605,6912.157100931222,2019
+1998,41,"(40,45]",NoHS,27.0218,29.56890395480226,0.9138586956521739,7175.428166742105,2019
+1998,41,"(40,45]",NoHS,24.9432,29.56890395480226,0.8435618729096991,6764.312800368561,2019
+1998,41,"(40,45]",NoHS,25.216700000000003,29.56890395480226,0.8528114548494985,7104.252612993601,2019
+1998,61,"(60,65]",HS,8525.906666666666,554.4169491525424,15.378149386845037,1744.5068728416486,2019
+1998,61,"(60,65]",HS,5947.713333333333,696.7172994350283,8.53676711939888,1776.0977628968158,2019
+1998,61,"(60,65]",HS,6075.346666666667,750.3109378531074,8.097105293507093,1691.4366174697202,2019
+1998,61,"(60,65]",HS,4809.953333333333,668.9964519774012,7.189803950553409,1843.0830336846307,2019
+1998,61,"(60,65]",HS,5820.08,487.88691525423735,11.929157798723015,1722.0710848103492,2019
+1998,87,"(85,90]",College,9381.8705,334.4982259887006,28.047594190580018,11.333225350380904,2019
+1998,87,"(85,90]",College,11221.613833333335,397.33214689265543,28.242401026678074,12.440634123637386,2019
+1998,87,"(85,90]",College,9509.3215,556.2650056497175,17.09494827720308,9.689090924677142,2019
+1998,87,"(85,90]",College,11223.254833333334,522.999988700565,21.459378730042424,10.24960550108709,2019
+1998,87,"(85,90]",College,8614.064833333334,345.58656497175144,24.925925097919983,10.309975573490402,2019
+1998,37,"(35,40]",College,3482.2567000000004,356.6749039548023,9.763111061049786,184.85193233772293,2019
+1998,37,"(35,40]",College,3491.9021333333335,310.4734915254237,11.24702181876095,181.29643382570626,2019
+1998,37,"(35,40]",College,3736.3929,334.4982259887006,11.170142648607696,175.55992747413535,2019
+1998,37,"(35,40]",College,3349.1716,321.56183050847454,10.415326951908662,192.01559982895907,2019
+1998,37,"(35,40]",College,3368.9365333333335,312.3215480225989,10.786756644436089,179.84427419868038,2019
+1998,45,"(40,45]",HS,-2.5526666666666666,22.176677966101696,-0.11510590858416944,6944.401739789078,2019
+1998,45,"(40,45]",HS,-1.2398666666666667,22.176677966101696,-0.05590858416945373,6947.031102073008,2019
+1998,45,"(40,45]",HS,-2.735,22.176677966101696,-0.1233277591973244,6925.785012514006,2019
+1998,45,"(40,45]",HS,-4.193666666666667,24.024734463276836,-0.1745562130177515,6943.957071913299,2019
+1998,45,"(40,45]",HS,-1.0028333333333335,22.176677966101696,-0.04522017837235229,6948.910525889985,2019
+1998,34,"(30,35]",HS,1.4769,31.416960451977403,0.0470096399763919,6357.300191836739,2019
+1998,34,"(30,35]",HS,1.2945666666666666,33.265016949152546,0.03891675956893348,6371.281298663684,2019
+1998,34,"(30,35]",HS,1.4951333333333334,33.265016949152546,0.04494611668524712,6415.248816647666,2019
+1998,34,"(30,35]",HS,1.2945666666666666,33.265016949152546,0.03891675956893348,6371.764734647615,2019
+1998,34,"(30,35]",HS,1.2945666666666666,33.265016949152546,0.03891675956893348,6342.182442859123,2019
+1998,57,"(55,60]",College,-130.186,81.31448587570623,-1.6010185466707205,4788.230670859781,2019
+1998,57,"(55,60]",College,-130.36833333333334,81.31448587570623,-1.6032608695652173,4780.58351538253,2019
+1998,57,"(55,60]",College,-130.36833333333334,81.31448587570623,-1.6032608695652173,4928.23784609221,2019
+1998,57,"(55,60]",College,-130.36833333333334,81.31448587570623,-1.6032608695652173,4772.607009535707,2019
+1998,57,"(55,60]",College,-130.3501,81.31448587570623,-1.6030366372757674,4835.957967779284,2019
+1998,63,"(60,65]",College,4278.451666666667,415.8127118644068,10.289371980676329,2785.6072150703762,2019
+1998,63,"(60,65]",College,4276.628333333333,417.6607683615819,10.2394782016752,2733.746601152406,2019
+1998,63,"(60,65]",College,4278.451666666667,415.8127118644068,10.289371980676329,2652.2048125217543,2019
+1998,63,"(60,65]",College,4276.628333333333,417.6607683615819,10.2394782016752,3121.803661874191,2019
+1998,63,"(60,65]",College,4278.451666666667,415.8127118644068,10.289371980676329,2879.4341133519742,2019
+1998,36,"(35,40]",HS,97.0378,60.98586440677967,1.5911523259349345,6937.163995893794,2019
+1998,36,"(35,40]",HS,97.0378,60.98586440677967,1.5911523259349345,7032.049918703402,2019
+1998,36,"(35,40]",HS,97.0378,60.98586440677967,1.5911523259349345,7320.543582627169,2019
+1998,36,"(35,40]",HS,97.05603333333335,60.98586440677967,1.5914513023208676,6971.906256433,2019
+1998,36,"(35,40]",HS,97.05603333333335,60.98586440677967,1.5914513023208676,7231.92430173233,2019
+1998,25,"(20,25]",HS,142.78523333333334,48.04946892655367,2.9716297916130694,5313.211281472432,2019
+1998,25,"(20,25]",HS,181.62223333333336,48.04946892655367,3.779900951890919,5293.601138395819,2019
+1998,25,"(20,25]",HS,250.54423333333335,48.04946892655367,5.214297658862876,5342.809490516094,2019
+1998,25,"(20,25]",HS,182.89856666666668,48.04946892655367,3.806463853871881,5349.651613740562,2019
+1998,25,"(20,25]",HS,216.46613333333335,48.04946892655367,4.505068175971187,5279.764143161624,2019
+1998,74,"(70,75]",College,252.44050000000001,51.745581920903966,4.878493788819875,6860.592546555599,2019
+1998,74,"(70,75]",College,221.02446666666668,51.745581920903966,4.271368848542761,6800.873969024474,2019
+1998,74,"(70,75]",College,333.4876666666667,51.745581920903966,6.4447563306258955,7270.752310791771,2019
+1998,74,"(70,75]",College,335.11043333333333,51.745581920903966,6.476116817964643,7029.321720591596,2019
+1998,74,"(70,75]",College,320.35966666666667,51.745581920903966,6.191053511705684,7128.683651383044,2019
+1998,25,"(20,25]",HS,-0.12763333333333335,55.441694915254246,-0.002302118171683389,6484.234897392474,2019
+1998,25,"(20,25]",HS,-0.4923,55.441694915254246,-0.008879598662207357,6524.411707317062,2019
+1998,25,"(20,25]",HS,2.060366666666667,55.441694915254246,0.037162764771460424,6621.137594204071,2019
+1998,25,"(20,25]",HS,-1.2216333333333336,55.441694915254246,-0.022034559643255295,6485.592742067936,2019
+1998,25,"(20,25]",HS,-1.4039666666666668,55.441694915254246,-0.025323299888517278,6583.123144277468,2019
+1998,57,"(55,60]",HS,52187.81133333334,997.950508474576,52.29498947107644,350.74565291931157,2019
+1998,57,"(55,60]",HS,52374.52066666666,1001.6466214689267,52.28842142936478,332.63937689667944,2019
+1998,57,"(55,60]",HS,52380.53766666666,1162.427536723164,45.061335878471425,349.70181964412177,2019
+1998,57,"(55,60]",HS,52544.82,1256.6784180790962,41.81246311233523,342.7358547122605,2019
+1998,57,"(55,60]",HS,50500.316333333336,1190.148384180791,42.4319496665905,335.0119632149632,2019
+1998,39,"(35,40]",College,640.0994000000001,79.46642937853107,8.054966166290738,5616.138175665015,2019
+1998,39,"(35,40]",College,730.6826,73.92225988700567,9.884473244147154,5373.567459625972,2019
+1998,39,"(35,40]",College,1005.7689,75.77031638418079,13.273917122114366,5017.811025781682,2019
+1998,39,"(35,40]",College,778.8550666666666,53.593638418079095,14.532602929304579,5485.259463661259,2019
+1998,39,"(35,40]",College,661.1224333333333,25.872790960451983,25.552806975633057,5002.029869189506,2019
+1998,46,"(45,50]",College,5776.867,739.2225988700566,7.814786789297658,184.42826699004786,2019
+1998,46,"(45,50]",College,5968.134666666667,739.2225988700566,8.073528428093645,185.53712073516473,2019
+1998,46,"(45,50]",College,5436.815333333333,739.2225988700566,7.354774247491638,172.3483856761194,2019
+1998,46,"(45,50]",College,5654.521333333333,739.2225988700566,7.649280936454849,188.78345131410256,2019
+1998,46,"(45,50]",College,5667.467000000001,739.2225988700566,7.666793478260869,180.52794782762228,2019
+1998,48,"(45,50]",College,346.0686666666667,147.84451977401133,2.340760869565217,6746.559729302481,2019
+1998,48,"(45,50]",College,344.063,147.84451977401133,2.327194816053511,6878.330578866138,2019
+1998,48,"(45,50]",College,344.4276666666667,147.84451977401133,2.329661371237458,7125.766992571783,2019
+1998,48,"(45,50]",College,346.25100000000003,147.84451977401133,2.3419941471571906,6766.360502154329,2019
+1998,48,"(45,50]",College,344.4276666666667,147.84451977401133,2.329661371237458,7105.578840501107,2019
+1998,60,"(55,60]",HS,37.925333333333334,10.903533333333334,3.4782608695652173,5046.247018953612,2019
+1998,60,"(55,60]",HS,37.925333333333334,11.088338983050848,3.420289855072464,5009.99233374853,2019
+1998,60,"(55,60]",HS,39.931,10.903533333333334,3.6622073578595313,5131.899464369642,2019
+1998,60,"(55,60]",HS,39.931,10.903533333333334,3.6622073578595313,5039.356048477882,2019
+1998,60,"(55,60]",HS,39.748666666666665,11.088338983050848,3.584726867335563,5090.601562690665,2019
+1998,27,"(25,30]",College,33.6405,73.92225988700567,0.455079431438127,5069.353847425544,2019
+1998,27,"(25,30]",College,33.45816666666666,73.92225988700567,0.45261287625418045,5135.399252563654,2019
+1998,27,"(25,30]",College,33.45816666666666,73.92225988700567,0.45261287625418045,5117.339561023757,2019
+1998,27,"(25,30]",College,33.6405,73.92225988700567,0.455079431438127,5059.466689108373,2019
+1998,27,"(25,30]",College,33.6405,73.92225988700567,0.455079431438127,5145.77154627676,2019
+1998,64,"(60,65]",College,2946.1420000000003,822.385141242938,3.5824358348051555,1566.0004808563858,2019
+1998,64,"(60,65]",College,3788.7043333333336,334.4982259887006,11.32653042369593,1600.4629104293392,2019
+1998,64,"(60,65]",College,20664.38366666667,343.7385084745763,60.11658035746395,1154.3887531924051,2019
+1998,64,"(60,65]",College,2858.2573333333335,820.5370847457626,3.483398113832897,1669.784905822491,2019
+1998,64,"(60,65]",College,3176.0643333333337,158.93285875706215,19.983685929843666,1569.8639493002966,2019
+1998,44,"(40,45]",HS,896.3506666666666,129.36395480225988,6.928905876731964,7024.4051087462185,2019
+1998,44,"(40,45]",HS,882.8580000000001,129.36395480225988,6.824605828953656,6720.504279200837,2019
+1998,44,"(40,45]",HS,905.4673333333334,129.36395480225988,6.999378881987578,6275.511689942456,2019
+1998,44,"(40,45]",HS,971.472,129.36395480225988,7.509603440038223,6860.284292521533,2019
+1998,44,"(40,45]",HS,883.952,129.36395480225988,6.833062589584329,6256.279396222452,2019
+1998,31,"(30,35]",HS,2.735,48.04946892655367,0.05692050424491896,6154.893827208436,2019
+1998,31,"(30,35]",HS,2.9173333333333336,48.04946892655367,0.06071520452791356,6082.939271364181,2019
+1998,31,"(30,35]",HS,2.735,48.04946892655367,0.05692050424491896,6305.742765887992,2019
+1998,31,"(30,35]",HS,2.735,48.04946892655367,0.05692050424491896,6239.034883909724,2019
+1998,31,"(30,35]",HS,2.735,48.04946892655367,0.05692050424491896,6353.916229034295,2019
+1998,44,"(40,45]",College,569.974,144.14840677966103,3.9540776948803704,5666.746978665104,2019
+1998,44,"(40,45]",College,569.974,144.14840677966103,3.9540776948803704,5421.583284234119,2019
+1998,44,"(40,45]",College,569.974,144.14840677966103,3.9540776948803704,5062.597665997419,2019
+1998,44,"(40,45]",College,569.974,144.14840677966103,3.9540776948803704,5534.346992462814,2019
+1998,44,"(40,45]",College,569.974,144.14840677966103,3.9540776948803704,5047.08253829003,2019
+1998,59,"(55,60]",HS,22098.8,2919.929265536723,7.5682655264383385,209.77740801791657,2019
+1998,59,"(55,60]",HS,24396.2,1977.4204519774014,12.337386303253835,209.75481519514582,2019
+1998,59,"(55,60]",HS,24695.22666666667,4139.646553672316,5.965539894887722,203.58640514682756,2019
+1998,59,"(55,60]",HS,26540.440000000002,4767.9857627118645,5.566384070934122,198.32777881061762,2019
+1998,59,"(55,60]",HS,24224.806666666667,2328.551186440678,10.403381642512077,194.74609408752488,2019
+1998,54,"(50,55]",HS,1581.1946666666668,158.93285875706215,9.94882165357393,2610.704610258841,2019
+1998,54,"(50,55]",HS,1581.1946666666668,158.93285875706215,9.94882165357393,2851.6648724971064,2019
+1998,54,"(50,55]",HS,1581.1946666666668,158.93285875706215,9.94882165357393,2655.9896516776803,2019
+1998,54,"(50,55]",HS,1581.1946666666668,158.93285875706215,9.94882165357393,2637.9845339088074,2019
+1998,54,"(50,55]",HS,1581.1946666666668,158.93285875706215,9.94882165357393,2723.7492627015336,2019
+1998,43,"(40,45]",College,1164.7453333333333,439.8374463276836,2.648126809252129,797.9765239530605,2019
+1998,43,"(40,45]",College,1164.7453333333333,439.8374463276836,2.648126809252129,847.4785778394746,2019
+1998,43,"(40,45]",College,1164.7453333333333,439.8374463276836,2.648126809252129,810.411440030314,2019
+1998,43,"(40,45]",College,1164.7453333333333,439.8374463276836,2.648126809252129,834.0361437557127,2019
+1998,43,"(40,45]",College,1164.7453333333333,439.8374463276836,2.648126809252129,789.3669971454356,2019
+1998,76,"(75,80]",HS,3431.331,554.4169491525424,6.189080267558528,990.8568702539472,2019
+1998,76,"(75,80]",HS,3431.513333333334,554.4169491525424,6.189409141583055,997.7616437301183,2019
+1998,76,"(75,80]",HS,3431.513333333334,554.4169491525424,6.189409141583055,960.4314141543113,2019
+1998,76,"(75,80]",HS,3429.69,554.4169491525424,6.186120401337792,1047.5635816902113,2019
+1998,76,"(75,80]",HS,3431.513333333334,554.4169491525424,6.189409141583055,966.1883207272531,2019
+1998,59,"(55,60]",HS,2439.62,184.80564971751414,13.201003344481604,242.32786559127095,2019
+1998,59,"(55,60]",HS,2439.62,184.80564971751414,13.201003344481604,248.61598064132463,2019
+1998,59,"(55,60]",HS,2437.7966666666666,184.80564971751414,13.191137123745818,239.0766201436712,2019
+1998,59,"(55,60]",HS,2437.7966666666666,184.80564971751414,13.191137123745818,250.14692059631102,2019
+1998,59,"(55,60]",HS,2437.7966666666666,184.80564971751414,13.191137123745818,237.0770969954292,2019
+1998,39,"(35,40]",College,8338.103333333333,924.0282485875706,9.023645484949832,17.153329630576767,2019
+1998,39,"(35,40]",College,8354.513333333332,924.0282485875706,9.041404682274246,18.686758894134645,2019
+1998,39,"(35,40]",College,8347.22,924.0282485875706,9.033511705685617,21.332893182162632,2019
+1998,39,"(35,40]",College,8325.34,924.0282485875706,9.009832775919733,21.09820419040399,2019
+1998,39,"(35,40]",College,8336.28,924.0282485875706,9.021672240802676,19.418969895583434,2019
+1998,55,"(50,55]",College,1875.4806666666668,286.4487570621469,6.547351386341568,3123.9040143086527,2019
+1998,55,"(50,55]",College,1875.663,286.4487570621469,6.547987916711619,3394.6782817422472,2019
+1998,55,"(50,55]",College,1875.663,286.4487570621469,6.547987916711619,3176.1430861714457,2019
+1998,55,"(50,55]",College,1875.663,286.4487570621469,6.547987916711619,3154.2646472187585,2019
+1998,55,"(50,55]",College,1875.4806666666668,286.4487570621469,6.547351386341568,3254.844487312158,2019
+1998,48,"(45,50]",HS,113.57543333333334,73.92225988700567,1.5364172240802674,5898.351340529917,2019
+1998,48,"(45,50]",HS,113.57543333333334,73.92225988700567,1.5364172240802674,6008.989600224518,2019
+1998,48,"(45,50]",HS,113.6666,73.92225988700567,1.5376505016722406,6267.799747990275,2019
+1998,48,"(45,50]",HS,104.82343333333334,73.92225988700567,1.418022575250836,5882.047151660105,2019
+1998,48,"(45,50]",HS,113.84893333333333,73.92225988700567,1.540117056856187,6171.6772741543,2019
+1998,49,"(45,50]",NoHS,16.227666666666668,2.2176677966101694,7.317447045707916,5280.368854600691,2019
+1998,49,"(45,50]",NoHS,16.719966666666668,2.2176677966101694,7.5394370122631,5260.828916409803,2019
+1998,49,"(45,50]",NoHS,15.680666666666667,2.2176677966101694,7.070791527313267,5272.16004695917,2019
+1998,49,"(45,50]",NoHS,17.7228,2.2176677966101694,7.991638795986622,5257.721770261932,2019
+1998,49,"(45,50]",NoHS,17.2305,2.2176677966101694,7.769648829431438,5280.880239688831,2019
+1998,85,"(80,85]",HS,1258.1000000000001,9240.282485875707,0.13615384615384615,67.26645062705836,2019
+1998,85,"(80,85]",HS,17759.26666666667,9240.282485875707,1.921939799331104,14.76385092088788,2019
+1998,85,"(80,85]",HS,4049.6233333333334,9240.282485875707,0.43825752508361204,11.783422678734386,2019
+1998,85,"(80,85]",HS,19128.59,9240.282485875707,2.0701304347826084,13.286622082032142,2019
+1998,85,"(80,85]",HS,183234.06,9240.282485875707,19.82991973244147,16.010495326213785,2019
+1998,44,"(40,45]",College,1704.8166666666668,133.06006779661018,12.81238387216648,2840.7983599951517,2019
+1998,44,"(40,45]",College,1712.2923333333333,133.06006779661018,12.868566518023039,3097.913381918135,2019
+1998,44,"(40,45]",College,1597.4223333333332,133.06006779661018,12.005272203641766,2891.3184819191397,2019
+1998,44,"(40,45]",College,1712.1100000000001,133.06006779661018,12.867196209587513,2868.8820750186246,2019
+1998,44,"(40,45]",College,1723.2323333333334,133.06006779661018,12.950785024154587,2961.3055874862903,2019
+1998,33,"(30,35]",HS,42.46543333333334,70.22614689265536,0.6046954761485654,5877.888375977816,2019
+1998,33,"(30,35]",HS,80.57310000000001,70.22614689265536,1.147337616616793,5860.643765450348,2019
+1998,33,"(30,35]",HS,61.79276666666667,70.22614689265536,0.8799111071994369,5874.876074757332,2019
+1998,33,"(30,35]",HS,62.5221,70.22614689265536,0.8902966027107904,5952.023649003227,2019
+1998,33,"(30,35]",HS,46.841433333333335,70.22614689265536,0.6670084492166872,5879.268486191778,2019
+1998,30,"(25,30]",College,-1.0921766666666668,123.81978531073446,-0.008820695851844458,5439.700621604325,2019
+1998,30,"(25,30]",College,-3.0978433333333335,123.81978531073446,-0.025018968701642292,5456.461176667915,2019
+1998,30,"(25,30]",College,-2.5508433333333334,123.81978531073446,-0.0206012579244247,5491.965122839175,2019
+1998,30,"(25,30]",College,-4.191843333333333,123.81978531073446,-0.03385439025607747,5434.241334905907,2019
+1998,30,"(25,30]",College,-0.18051,123.81978531073446,-0.001457844556481805,5515.967511685421,2019
+1998,44,"(40,45]",NoHS,1379.3516666666667,48.04946892655367,28.70690764085413,2986.998699853857,2019
+1998,44,"(40,45]",NoHS,1343.979,60.98586440677967,22.03754940711462,3257.2700655275107,2019
+1998,44,"(40,45]",NoHS,1467.9656666666667,60.98586440677967,24.070588831458394,3040.2069622228437,2019
+1998,44,"(40,45]",NoHS,1355.2836666666667,75.77031638418079,17.88673627538951,3015.8853100862675,2019
+1998,44,"(40,45]",NoHS,1457.208,72.07420338983052,20.218163107795213,3113.1352294297963,2019
+1998,71,"(70,75]",NoHS,206.766,31.416960451977403,6.5813495966948645,5667.4991211085035,2019
+1998,71,"(70,75]",NoHS,204.94266666666667,31.416960451977403,6.523313004131418,5654.07690941599,2019
+1998,71,"(70,75]",NoHS,204.76033333333334,31.416960451977403,6.517509344875074,6042.00275118851,2019
+1998,71,"(70,75]",NoHS,206.766,31.416960451977403,6.5813495966948645,5828.975462299187,2019
+1998,71,"(70,75]",NoHS,201.11366666666666,31.416960451977403,6.4014361597481795,5934.587703837558,2019
+1998,58,"(55,60]",HS,10.210666666666667,48.04946892655367,0.21250321584769746,5457.602917251588,2019
+1998,58,"(55,60]",HS,15.133666666666667,48.04946892655367,0.31496012348855157,5437.254369817051,2019
+1998,58,"(55,60]",HS,12.216333333333335,48.04946892655367,0.25424491896063806,5571.378586979133,2019
+1998,58,"(55,60]",HS,20.60366666666667,48.04946892655367,0.42880113197838954,5421.091856489126,2019
+1998,58,"(55,60]",HS,17.959833333333332,48.04946892655367,0.3737779778749678,5572.429759381958,2019
+1998,50,"(45,50]",HS,109.61880000000001,125.66784180790961,0.8722899862286052,7092.505596287332,2019
+1998,50,"(45,50]",HS,102.5078,125.66784180790961,0.8157043084792446,7185.106527613524,2019
+1998,50,"(45,50]",HS,93.57346666666666,125.66784180790961,0.7446094825890222,7446.928776642036,2019
+1998,50,"(45,50]",HS,102.32546666666666,125.66784180790961,0.8142533936651583,7086.364349214311,2019
+1998,50,"(45,50]",HS,113.2837,125.66784180790961,0.9014533739917371,7412.511914584497,2019
+1998,74,"(70,75]",College,4221.016666666667,545.1766666666666,7.742474916387962,356.44226048754206,2019
+1998,74,"(70,75]",College,4222.84,545.1766666666666,7.745819397993312,353.1101158278783,2019
+1998,74,"(70,75]",College,4224.663333333333,545.1766666666666,7.749163879598663,334.7816676765537,2019
+1998,74,"(70,75]",College,4222.84,545.1766666666666,7.745819397993312,370.1779121172964,2019
+1998,74,"(70,75]",College,4222.84,545.1766666666666,7.745819397993312,348.4556492348632,2019
+1998,24,"(20,25]",College,-58.16433333333334,68.37809039548021,-0.8506282201934378,4841.908776079167,2019
+1998,24,"(20,25]",College,-62.905,59.13780790960452,-1.0637019230769231,4823.382350105256,2019
+1998,24,"(20,25]",College,-59.076,62.833920903954805,-0.9401927995278379,4833.396961607281,2019
+1998,24,"(20,25]",College,-59.076,57.289751412429375,-1.0311791994821449,4862.308489538521,2019
+1998,24,"(20,25]",College,-74.57433333333333,53.593638418079095,-1.3914773382539498,4791.621215779124,2019
+1998,44,"(40,45]",NoHS,11.851666666666667,44.35335593220339,0.2672101449275362,6613.63532749872,2019
+1998,44,"(40,45]",NoHS,12.343966666666667,44.35335593220339,0.2783096432552954,6743.729780179255,2019
+1998,44,"(40,45]",NoHS,16.227666666666668,44.35335593220339,0.3658723522853958,7003.7364757783,2019
+1998,44,"(40,45]",NoHS,18.051000000000002,44.35335593220339,0.4069816053511706,6616.501578467022,2019
+1998,44,"(40,45]",NoHS,12.526299999999999,42.50529943502825,0.2946997237167369,6921.826835332494,2019
+1998,53,"(50,55]",College,7831.216666666667,308.6254350282486,25.37450183245549,11.149415382359729,2019
+1998,53,"(50,55]",College,7949.733333333334,188.50176271186442,42.17325726277133,12.02738793032553,2019
+1998,53,"(50,55]",College,7714.5233333333335,177.41342372881357,43.4833124303233,11.592563698823714,2019
+1998,53,"(50,55]",College,7840.333333333333,214.37455367231638,36.57305962403414,11.880775170467038,2019
+1998,53,"(50,55]",College,7647.971666666667,164.47702824858757,46.49872233286987,12.650181453643658,2019
+1998,51,"(50,55]",NoHS,209.26396666666668,75.77031638418079,2.7618198874296436,6521.6744074026665,2019
+1998,51,"(50,55]",NoHS,277.1466666666667,245.7915141242938,1.1275680840898232,6649.052895361277,2019
+1998,51,"(50,55]",NoHS,217.19546666666668,68.37809039548021,3.176389767694116,6888.241428698469,2019
+1998,51,"(50,55]",NoHS,266.51663333333335,59.13780790960452,4.506704640468228,6540.815154499864,2019
+1998,51,"(50,55]",NoHS,196.40946666666667,245.7915141242938,0.7990896974878668,6868.726215022936,2019
+1998,36,"(35,40]",College,298.66200000000003,166.32508474576272,1.7956521739130435,6917.741256788175,2019
+1998,36,"(35,40]",College,298.66200000000003,166.32508474576272,1.7956521739130435,6545.146849309464,2019
+1998,36,"(35,40]",College,298.66200000000003,166.32508474576272,1.7956521739130435,6179.408141201942,2019
+1998,36,"(35,40]",College,298.66200000000003,166.32508474576272,1.7956521739130435,6760.884822931007,2019
+1998,36,"(35,40]",College,298.66200000000003,166.32508474576272,1.7956521739130435,6152.823071262434,2019
+1998,43,"(40,45]",NoHS,60.808166666666665,70.22614689265536,0.8658906882591093,347.26381679260106,2019
+1998,43,"(40,45]",NoHS,65.18416666666667,142.30035028248585,0.4580745341614908,3172.7725011893244,2019
+1998,43,"(40,45]",NoHS,60.62583333333334,145.99646327683615,0.41525549299352277,331.98322194032073,2019
+1998,43,"(40,45]",NoHS,65.00183333333334,77.61837288135592,0.8374542124542126,366.4296123572704,2019
+1998,43,"(40,45]",NoHS,63.36083333333334,101.64310734463277,0.6233657646701125,364.815022863612,2019
+1998,36,"(35,40]",HS,10.94,36.96112994350283,0.2959866220735785,6162.009768974716,2019
+1998,36,"(35,40]",HS,11.122333333333334,22.176677966101696,0.5015328874024526,6283.220456986765,2019
+1998,36,"(35,40]",HS,11.122333333333334,33.265016949152546,0.3343552582683017,6525.472065813539,2019
+1998,36,"(35,40]",HS,10.94,38.80918644067796,0.2818920210224558,6164.6802921578765,2019
+1998,36,"(35,40]",HS,11.122333333333334,18.480564971751416,0.601839464882943,6449.155791993347,2019
+1998,85,"(80,85]",HS,127.63333333333333,27.720847457627123,4.604236343366777,10092.593377531453,2019
+1998,85,"(80,85]",HS,127.998,27.720847457627123,4.617391304347826,10085.429305544829,2019
+1998,85,"(80,85]",HS,127.998,27.720847457627123,4.617391304347826,9999.531431349638,2019
+1998,85,"(80,85]",HS,127.81566666666667,27.720847457627123,4.610813823857302,10083.857033325905,2019
+1998,85,"(80,85]",HS,127.81566666666667,27.720847457627123,4.610813823857302,9998.910560319006,2019
+1998,47,"(45,50]",College,772.9657,88.70671186440678,8.713722826086956,3127.517221400414,2019
+1998,47,"(45,50]",College,792.6941666666667,177.41342372881357,4.468061942586399,3415.9212536167724,2019
+1998,47,"(45,50]",College,944.4866666666667,190.34981920903957,4.961846933142838,3181.4963402183926,2019
+1998,47,"(45,50]",College,769.0637666666668,173.71731073446327,4.427099195901232,3160.002243572089,2019
+1998,47,"(45,50]",College,1093.5988666666667,170.021197740113,6.432132470554021,3262.925728008571,2019
+1998,68,"(65,70]",NoHS,372.3246666666667,42.50529943502825,8.759488148902138,248.903319058124,2019
+1998,68,"(65,70]",NoHS,224.36116666666666,42.50529943502825,5.278428093645485,256.7692073759929,2019
+1998,68,"(65,70]",NoHS,326.012,42.50529943502825,7.669914206776211,242.94227374805433,2019
+1998,68,"(65,70]",NoHS,348.6213333333333,42.50529943502825,8.201832194270757,261.81732952715845,2019
+1998,68,"(65,70]",NoHS,315.5278333333333,42.50529943502825,7.423258688381561,261.05688638584854,2019
+1998,51,"(50,55]",College,559.7633333333334,255.03179661016952,2.1948766419465855,55.80764279994236,2019
+1998,51,"(50,55]",College,575.0793333333334,223.61483615819208,2.571740512451975,56.81308720363312,2019
+1998,51,"(50,55]",College,572.5266666666666,223.61483615819208,2.5603250504436277,59.121166469889644,2019
+1998,51,"(50,55]",College,556.1166666666667,236.55123163841807,2.3509354096989967,55.237053291704946,2019
+1998,51,"(50,55]",College,569.6093333333334,314.16960451977405,1.8130631516820777,63.278165234519484,2019
+1998,77,"(75,80]",College,363.39033333333333,27.720847457627123,13.108918617614268,9267.219394749718,2019
+1998,77,"(75,80]",College,274.5575333333333,27.720847457627123,9.90437012263099,9453.31926174035,2019
+1998,77,"(75,80]",College,402.592,27.720847457627123,14.52307692307692,9878.549224449818,2019
+1998,77,"(75,80]",College,368.96973333333335,27.720847457627123,13.310189520624302,9365.856117653704,2019
+1998,77,"(75,80]",College,360.6553333333333,27.720847457627123,13.010256410256408,9784.970009830944,2019
+1998,64,"(60,65]",HS,235.55643333333333,59.13780790960452,3.983178302675585,3598.423853863677,2019
+1998,64,"(60,65]",HS,223.96003333333334,40.65724293785311,5.508490422620857,3689.0744206691415,2019
+1998,64,"(60,65]",HS,158.84879999999998,170.021197740113,0.934288207067035,3593.609889355739,2019
+1998,64,"(60,65]",HS,186.3264333333333,121.97172881355934,1.5276198439241915,3394.5513379969425,2019
+1998,64,"(60,65]",HS,140.6154666666667,86.85865536723163,1.6188998790293891,3601.4197806487887,2019
+1998,39,"(35,40]",College,45.583333333333336,51.745581920903966,0.8809125656951743,4484.018449578648,2019
+1998,39,"(35,40]",College,45.401,49.89752542372881,0.9098848011891492,4477.316095388104,2019
+1998,39,"(35,40]",College,45.583333333333336,51.745581920903966,0.8809125656951743,4467.935423971611,2019
+1998,39,"(35,40]",College,45.583333333333336,51.745581920903966,0.8809125656951743,4506.457000443364,2019
+1998,39,"(35,40]",College,45.401,51.745581920903966,0.8773889154323936,4452.132248204738,2019
+1998,58,"(55,60]",College,1327.3866666666668,2587.279096045198,0.5130434782608696,56.556775216341485,2019
+1998,58,"(55,60]",College,1331.0333333333333,2587.279096045198,0.5144529383659818,52.92406087083268,2019
+1998,58,"(55,60]",College,1305.5066666666667,2587.279096045198,0.5045867176301958,53.338212484546276,2019
+1998,58,"(55,60]",College,1338.3266666666668,2587.279096045198,0.5172718585762064,53.373018884700606,2019
+1998,58,"(55,60]",College,1453.1966666666667,2587.279096045198,0.5616698518872432,107.21819388974927,2019
+1998,62,"(60,65]",College,1494.404,147.84451977401133,10.107943143812706,125.54510378671962,2019
+1998,62,"(60,65]",College,1105.6693333333333,147.84451977401133,7.47859531772575,60.714894578677786,2019
+1998,62,"(60,65]",College,1052.6103333333333,147.84451977401133,7.119711538461536,60.66905668131724,2019
+1998,62,"(60,65]",College,812.4773333333334,147.84451977401133,5.495484949832775,60.54557194169396,2019
+1998,62,"(60,65]",College,673.904,147.84451977401133,4.558193979933109,63.62253744829741,2019
+1998,85,"(80,85]",NoHS,45.401,20.328621468926556,2.2333536029188203,6512.627330402705,2019
+1998,85,"(80,85]",NoHS,44.489333333333335,20.328621468926556,2.188507145028884,6559.164809710931,2019
+1998,85,"(80,85]",NoHS,44.307,20.328621468926556,2.179537853450897,6566.281231316457,2019
+1998,85,"(80,85]",NoHS,44.854,20.328621468926556,2.206445728184858,6499.803445062347,2019
+1998,85,"(80,85]",NoHS,42.483666666666664,20.328621468926556,2.089844937671024,6567.092767792454,2019
+1998,61,"(60,65]",HS,1114.9683333333332,369.6112994350283,3.016596989966555,1090.9961191157795,2019
+1998,61,"(60,65]",HS,1133.2016666666668,369.6112994350283,3.065928093645485,1158.8350524575364,2019
+1998,61,"(60,65]",HS,1125.726,369.6112994350283,3.045702341137124,1113.4793849347677,2019
+1998,61,"(60,65]",HS,1145.7826666666667,369.6112994350283,3.099966555183946,1127.1930006879193,2019
+1998,61,"(60,65]",HS,1119.709,369.6112994350283,3.0294230769230768,1080.601964399687,2019
+1998,26,"(25,30]",HS,5.4882333333333335,55.441694915254246,0.09899108138238571,5175.899373970733,2019
+1998,26,"(25,30]",HS,5.7435,55.441694915254246,0.10359531772575249,5191.223724423689,2019
+1998,26,"(25,30]",HS,5.342366666666667,55.441694915254246,0.09636008918617613,5191.482369075566,2019
+1998,26,"(25,30]",HS,5.9623,55.441694915254246,0.10754180602006687,5217.323148125226,2019
+1998,26,"(25,30]",HS,5.779966666666667,55.441694915254246,0.10425306577480489,5197.522273779371,2019
+1998,35,"(30,35]",HS,-11.122333333333334,17.186925423728816,-0.6471392095515517,5775.415761819307,2019
+1998,35,"(30,35]",HS,-13.128,17.002119774011298,-0.7721390141049878,5766.783129623735,2019
+1998,35,"(30,35]",HS,-10.757666666666667,17.002119774011298,-0.6327250254471427,5754.700824841886,2019
+1998,35,"(30,35]",HS,-11.669333333333334,17.002119774011298,-0.6863457903155447,5804.316615326867,2019
+1998,35,"(30,35]",HS,-10.210666666666667,18.11095367231638,-0.5637840420449117,5734.346334458515,2019
+1998,39,"(35,40]",HS,-0.8205,20.328621468926556,-0.04036181210094253,7024.6652992725885,2019
+1998,39,"(35,40]",HS,-0.8205,40.65724293785311,-0.020180906050471265,7014.6095649462095,2019
+1998,39,"(35,40]",HS,-0.8205,27.720847457627123,-0.029598662207357854,7009.700341848552,2019
+1998,39,"(35,40]",HS,-0.8205,40.65724293785311,-0.020180906050471265,7018.782749003566,2019
+1998,39,"(35,40]",HS,-0.8205,27.720847457627123,-0.029598662207357854,7022.935487196804,2019
+1998,52,"(50,55]",College,10856.126666666667,951.7490960451977,11.406500633178558,184.665434483542,2019
+1998,52,"(50,55]",College,10852.48,951.7490960451977,11.402669091145242,184.29568661943344,2019
+1998,52,"(50,55]",College,10850.656666666666,951.7490960451977,11.400753320128583,170.56924812482072,2019
+1998,52,"(50,55]",College,10856.126666666667,951.7490960451977,11.406500633178558,186.72121175867437,2019
+1998,52,"(50,55]",College,10856.126666666667,949.9010395480226,11.428692268651666,182.36893371724233,2019
+1998,35,"(30,35]",HS,97.73066666666668,53.593638418079095,1.8235497635797489,5156.2866638656315,2019
+1998,35,"(30,35]",HS,97.5848,55.441694915254246,1.7601337792642138,5118.320623911878,2019
+1998,35,"(30,35]",HS,100.11923333333334,53.593638418079095,1.8681178641448508,5119.745434308987,2019
+1998,35,"(30,35]",HS,103.93,53.593638418079095,1.9392226963441357,5205.7858211800185,2019
+1998,35,"(30,35]",HS,99.91866666666667,53.593638418079095,1.8643755045554147,5099.518173633876,2019
+1998,63,"(60,65]",HS,152.57653333333332,29.56890395480226,5.160033444816053,8129.302882310803,2019
+1998,63,"(60,65]",HS,68.2656,81.31448587570623,0.8395256916996047,8044.905176754648,2019
+1998,63,"(60,65]",HS,186.1441,79.46642937853107,2.3424243602706696,8529.962274601263,2019
+1998,63,"(60,65]",HS,195.42486666666667,38.80918644067796,5.035531135531136,7991.839501001664,2019
+1998,63,"(60,65]",HS,49.722300000000004,20.328621468926556,2.4459258133171176,8376.956983555026,2019
+1998,65,"(60,65]",College,93926.50046666666,4694.063502824859,20.009635662181022,26.84928691492819,2019
+1998,65,"(60,65]",College,83718.53233333334,3899.3992090395477,21.469597711169936,27.78157409242066,2019
+1998,65,"(60,65]",College,93872.67566666668,3880.918644067797,24.188261665870364,29.22036777511601,2019
+1998,65,"(60,65]",College,87637.45913333334,4065.7242937853107,21.55518987534205,28.091750532277207,2019
+1998,65,"(60,65]",College,90969.58256666666,4675.582937853107,19.456308181421605,30.760507173130797,2019
+1998,53,"(50,55]",HS,57.982,66.53003389830509,0.8715161649944257,6293.8705328054875,2019
+1998,53,"(50,55]",HS,59.623000000000005,66.53003389830509,0.8961817168338907,6320.753617896913,2019
+1998,53,"(50,55]",HS,57.79966666666667,66.53003389830509,0.8687755481233741,6276.899571749717,2019
+1998,53,"(50,55]",HS,57.982,66.53003389830509,0.8715161649944257,6312.317442738254,2019
+1998,53,"(50,55]",HS,59.98766666666666,66.53003389830509,0.9016629505759939,6313.4050495140755,2019
+1998,27,"(25,30]",HS,-20.786,62.833920903954805,-0.33080857761164667,5702.460982435084,2019
+1998,27,"(25,30]",HS,-20.968333333333334,62.833920903954805,-0.333710407239819,5675.1957808249335,2019
+1998,27,"(25,30]",HS,-20.968333333333334,62.833920903954805,-0.333710407239819,5724.40604768007,2019
+1998,27,"(25,30]",HS,-20.968333333333334,62.833920903954805,-0.333710407239819,5675.299826904648,2019
+1998,27,"(25,30]",HS,-20.968333333333334,62.833920903954805,-0.333710407239819,5712.387222351217,2019
+1998,75,"(70,75]",College,48604.96133333334,674.5406214689266,72.05638887616256,243.4951776915404,2019
+1998,75,"(70,75]",College,57506.11,676.3886779661017,85.01932671747355,230.9360881781824,2019
+1998,75,"(70,75]",College,57664.193,848.2579322033899,67.97955057162217,236.921337132091,2019
+1998,75,"(70,75]",College,57994.034,696.7172994350283,83.23897518696273,235.71607705136208,2019
+1998,75,"(70,75]",College,62032.352666666666,763.2473333333334,81.27424749163879,235.1284211362553,2019
+1998,37,"(35,40]",HS,289.4541666666667,166.32508474576272,1.7402917131178002,6277.977656363151,2019
+1998,37,"(35,40]",HS,289.07126666666665,166.32508474576272,1.7379895949461164,6404.524626299983,2019
+1998,37,"(35,40]",HS,289.27183333333335,166.32508474576272,1.7391954663693794,6664.274376415686,2019
+1998,37,"(35,40]",HS,289.43593333333337,166.32508474576272,1.7401820884429582,6333.420382022387,2019
+1998,37,"(35,40]",HS,289.0895,166.32508474576272,1.7380992196209586,6595.429030305869,2019
+1998,83,"(80,85]",NoHS,147.32533333333333,31.416960451977403,4.6893566791265,6439.429919813331,2019
+1998,83,"(80,85]",NoHS,156.442,31.416960451977403,4.979539641943734,6549.058600035052,2019
+1998,83,"(80,85]",NoHS,57.79966666666667,31.416960451977403,1.8397599842612629,6563.600102465779,2019
+1998,83,"(80,85]",NoHS,61.62866666666667,31.416960451977403,1.9616368286445012,6585.383206998107,2019
+1998,83,"(80,85]",NoHS,74.20966666666668,31.416960451977403,2.362089317332284,6599.74012685943,2019
+1998,25,"(20,25]",College,-30.1944,36.96112994350283,-0.8169230769230768,5278.645019127895,2019
+1998,25,"(20,25]",College,-30.1944,36.96112994350283,-0.8169230769230768,5269.7347475066135,2019
+1998,25,"(20,25]",College,-30.212633333333336,36.96112994350283,-0.8174163879598662,5303.2737270369435,2019
+1998,25,"(20,25]",College,-30.212633333333336,36.96112994350283,-0.8174163879598662,5203.835617417941,2019
+1998,25,"(20,25]",College,-30.1944,36.96112994350283,-0.8169230769230768,5413.400700769033,2019
+1998,59,"(55,60]",HS,464.2206666666667,155.23674576271185,2.9904045230132192,6160.140294819429,2019
+1998,59,"(55,60]",HS,464.2206666666667,155.23674576271185,2.9904045230132192,5873.373275483873,2019
+1998,59,"(55,60]",HS,464.2206666666667,155.23674576271185,2.9904045230132192,5498.116964974228,2019
+1998,59,"(55,60]",HS,464.2206666666667,155.23674576271185,2.9904045230132192,6015.588951680486,2019
+1998,59,"(55,60]",HS,464.2206666666667,155.23674576271185,2.9904045230132192,5483.8913814998205,2019
+1998,76,"(75,80]",HS,3349.4633333333336,99.79505084745762,33.56342128081259,356.44226048754206,2019
+1998,76,"(75,80]",HS,3582.85,158.93285875706215,22.543167146301624,353.1101158278783,2019
+1998,76,"(75,80]",HS,3854.5266666666666,99.79505084745762,38.624427102687974,334.7816676765537,2019
+1998,76,"(75,80]",HS,3427.6843333333336,151.54063276836158,22.618912635614652,370.1779121172964,2019
+1998,76,"(75,80]",HS,3852.7033333333334,99.79505084745762,38.60615632354763,348.4556492348632,2019
+1998,55,"(50,55]",HS,135.2184,70.22614689265536,1.9254708678049641,8239.822548971426,2019
+1998,55,"(50,55]",HS,132.921,70.22614689265536,1.8927565569442,8163.187435787229,2019
+1998,55,"(50,55]",HS,129.73016666666666,70.22614689265536,1.8473200140820278,8594.88222779109,2019
+1998,55,"(50,55]",HS,132.8663,70.22614689265536,1.8919776447808485,8069.791898681974,2019
+1998,55,"(50,55]",HS,138.48216666666667,70.22614689265536,1.9719459602182716,8505.351286861827,2019
+1998,50,"(45,50]",College,2302.5053333333335,177.41342372881357,12.978191192865106,1821.5937277176727,2019
+1998,50,"(45,50]",College,2298.8586666666665,179.26148022598866,12.824052684205084,1865.9473028180332,2019
+1998,50,"(45,50]",College,2335.3253333333337,177.41342372881357,13.163182831661093,1830.2227964342412,2019
+1998,50,"(45,50]",College,2299.2233333333334,177.41342372881357,12.959692028985506,2043.9367692586661,2019
+1998,50,"(45,50]",College,2382.732,179.26148022598866,13.291935317036172,1866.2970206459763,2019
+1998,20,"(15,20]",HS,1.5954166666666667,5.544169491525424,0.2877647714604236,4045.798579743806,2019
+1998,20,"(15,20]",HS,0.06381666666666667,5.544169491525424,0.011510590858416946,4014.875821419144,2019
+1998,20,"(15,20]",HS,4.9321166666666665,5.544169491525424,0.8896042363433667,4043.099539990401,2019
+1998,20,"(15,20]",HS,0.09116666666666667,5.544169491525424,0.016443701226309924,4046.8019179333764,2019
+1998,20,"(15,20]",HS,4.02045,5.544169491525424,0.7251672240802676,4001.791783288737,2019
+1998,47,"(45,50]",HS,8.569666666666667,8.316254237288137,1.0304719435154217,5668.206708551279,2019
+1998,47,"(45,50]",HS,8.569666666666667,7.207420338983052,1.1890060886716403,5670.352864475928,2019
+1998,47,"(45,50]",HS,8.752,8.501059887005649,1.029518685473317,5653.0112370929955,2019
+1998,47,"(45,50]",HS,8.752,7.022614689265536,1.2462594613624365,5667.8437587204635,2019
+1998,47,"(45,50]",HS,8.569666666666667,7.207420338983052,1.1890060886716403,5671.886900536452,2019
+1998,72,"(70,75]",NoHS,39.748666666666665,11.088338983050848,3.584726867335563,9040.015330952097,2019
+1998,72,"(70,75]",NoHS,36.102000000000004,11.088338983050848,3.255852842809365,9146.949667556983,2019
+1998,72,"(70,75]",NoHS,40.11333333333334,11.088338983050848,3.617614269788183,9086.436144640622,2019
+1998,72,"(70,75]",NoHS,38.29,11.088338983050848,3.453177257525083,9133.279962917859,2019
+1998,72,"(70,75]",NoHS,36.46666666666666,11.088338983050848,3.288740245261984,9109.007257799854,2019
+1998,26,"(25,30]",College,64.7101,129.36395480225988,0.5002173913043478,8341.246216130781,2019
+1998,26,"(25,30]",College,64.1084,129.36395480225988,0.49556617295747735,8396.934757474204,2019
+1998,26,"(25,30]",College,70.72710000000001,129.36395480225988,0.5467295747730531,8537.846960156547,2019
+1998,26,"(25,30]",College,64.1084,129.36395480225988,0.49556617295747735,8413.02635406379,2019
+1998,26,"(25,30]",College,64.7101,129.36395480225988,0.5002173913043478,8500.54911072823,2019
+1998,75,"(70,75]",NoHS,1537.07,149.69257627118645,10.268177876873528,3595.369801977754,2019
+1998,75,"(70,75]",NoHS,1535.0643333333333,149.69257627118645,10.254779305503941,3929.9085640019366,2019
+1998,75,"(70,75]",NoHS,1538.8933333333332,149.69257627118645,10.280358396300423,3666.6299632401074,2019
+1998,75,"(70,75]",NoHS,1538.8933333333332,149.69257627118645,10.280358396300423,3622.805410438993,2019
+1998,75,"(70,75]",NoHS,1538.8933333333332,149.69257627118645,10.280358396300423,3756.1399711802032,2019
+1998,64,"(60,65]",HS,510.46040000000005,138.6042372881356,3.6828628762541804,9381.680238900622,2019
+1998,64,"(60,65]",HS,508.7282333333333,138.6042372881356,3.6703656633221846,8944.944004056855,2019
+1998,64,"(60,65]",HS,506.4490666666667,138.6042372881356,3.653921962095875,8373.441644639526,2019
+1998,64,"(60,65]",HS,506.4490666666667,138.6042372881356,3.653921962095875,9161.53355156403,2019
+1998,64,"(60,65]",HS,508.27240000000006,138.6042372881356,3.667076923076923,8351.776573881161,2019
+1998,42,"(40,45]",College,16357.123333333335,3271.06,5.000557413600893,18.07542807375502,2019
+1998,42,"(40,45]",College,16357.123333333335,3271.06,5.000557413600893,19.517372299893747,2019
+1998,42,"(40,45]",College,16357.123333333335,3271.06,5.000557413600893,19.370665146510206,2019
+1998,42,"(40,45]",College,16355.300000000001,3271.06,5,19.454535491164922,2019
+1998,42,"(40,45]",College,16355.300000000001,3271.06,5,20.507106651941257,2019
+1998,23,"(20,25]",HS,51.3633,73.92225988700567,0.6948285953177257,5328.813981055973,2019
+1998,23,"(20,25]",HS,51.545633333333335,57.289751412429375,0.899735678066674,5342.997207520069,2019
+1998,23,"(20,25]",HS,48.081300000000006,57.289751412429375,0.8392652929118569,5386.235889967081,2019
+1998,23,"(20,25]",HS,51.545633333333335,75.77031638418079,0.6802879517089486,5323.624920006528,2019
+1998,23,"(20,25]",HS,51.72796666666667,46.201412429378536,1.11961872909699,5366.411583122617,2019
+1998,36,"(35,40]",College,19746.335333333333,5156.077627118644,3.8297203342084125,14.635923813578808,2019
+1998,36,"(35,40]",College,33762.11633333334,4971.27197740113,6.791444219268691,15.731066752257544,2019
+1998,36,"(35,40]",College,23199.72866666667,5156.077627118644,4.499491734695101,16.275653375010755,2019
+1998,36,"(35,40]",College,17306.715333333334,5932.2613559322035,2.917389220558664,14.828356112193319,2019
+1998,36,"(35,40]",College,17188.198666666667,5045.194237288136,3.406845774069854,15.680390977537717,2019
+1998,31,"(30,35]",HS,97.0925,110.88338983050849,0.8756270903010033,6943.523882982848,2019
+1998,31,"(30,35]",HS,98.55116666666667,110.88338983050849,0.8887820512820512,6989.880830950499,2019
+1998,31,"(30,35]",HS,102.19783333333334,110.88338983050849,0.921669453734671,7107.180718686264,2019
+1998,31,"(30,35]",HS,99.8275,110.88338983050849,0.9002926421404681,7003.275997852419,2019
+1998,31,"(30,35]",HS,104.02116666666667,110.88338983050849,0.9381131549609809,7076.1327791363465,2019
+1998,56,"(55,60]",College,51485.31746666667,5747.45570621469,8.957932013463958,350.74565291931157,2019
+1998,56,"(55,60]",College,47659.10716666667,4472.296723163842,10.656517247574559,332.63937689667944,2019
+1998,56,"(55,60]",College,50964.08116666666,3770.035254237288,13.51819750475441,349.70181964412177,2019
+1998,56,"(55,60]",College,52634.6921,3492.826779661017,15.069367999150607,342.7358547122605,2019
+1998,56,"(55,60]",College,49146.98363333334,2698.1624858757064,18.21498293398085,369.4534653776576,2019
+1998,46,"(45,50]",HS,199.45443333333333,60.98586440677967,3.2705026857200763,5309.824050559504,2019
+1998,46,"(45,50]",HS,201.0772,60.98586440677967,3.2971115840681056,5409.423016155485,2019
+1998,46,"(45,50]",HS,201.44186666666667,60.98586440677967,3.3030911117867636,5642.409535234559,2019
+1998,46,"(45,50]",HS,199.25386666666668,60.98586440677967,3.267213945474815,5295.14666544158,2019
+1998,46,"(45,50]",HS,201.4601,60.98586440677967,3.3033900881726965,5555.877995503036,2019
+1998,53,"(50,55]",HS,43.814699999999995,77.61837288135592,0.5644887720974677,5711.955015273334,2019
+1998,53,"(50,55]",HS,54.645300000000006,59.13780790960452,0.9240332357859533,5666.419885281096,2019
+1998,53,"(50,55]",HS,56.6692,81.31448587570623,0.6969139556096077,5643.0283984431635,2019
+1998,53,"(50,55]",HS,53.42366666666666,49.89752542372881,1.0706676576241794,5733.083063208512,2019
+1998,53,"(50,55]",HS,48.37303333333333,60.98586440677967,0.7931843518800039,5663.314442125125,2019
+1998,43,"(40,45]",College,40318.51303333333,4065.7242937853107,9.916686454849497,17.65514345863118,2019
+1998,43,"(40,45]",College,45705.733700000004,4305.971638418079,10.614499476079063,18.212895568678366,2019
+1998,43,"(40,45]",College,41026.513366666666,3751.554689265537,10.935869729970179,19.6756376232697,2019
+1998,43,"(40,45]",College,39936.88936666667,3954.840903954803,10.098229065733129,18.30449983333552,2019
+1998,43,"(40,45]",College,40024.591700000004,3770.035254237288,10.616503295298054,19.64463151203668,2019
+1998,56,"(55,60]",HS,549.9173333333334,62.833920903954805,8.751918158567776,6441.375844779241,2019
+1998,56,"(55,60]",HS,664.7873333333334,62.833920903954805,10.58007082431635,6140.912415056537,2019
+1998,56,"(55,60]",HS,662.964,62.833920903954805,10.551052528034626,5748.8063480993205,2019
+1998,56,"(55,60]",HS,512.539,62.833920903954805,8.157043084792445,6288.497062216371,2019
+1998,56,"(55,60]",HS,508.5276666666667,62.833920903954805,8.093202832972654,5733.173771675725,2019
+1998,48,"(45,50]",HS,31.142533333333333,18.480564971751416,1.6851505016722403,4094.427965653527,2019
+1998,48,"(45,50]",HS,32.418866666666666,18.480564971751416,1.754214046822742,4070.145303408882,2019
+1998,48,"(45,50]",HS,32.236533333333334,20.328621468926556,1.585770750988142,4063.7145105883355,2019
+1998,48,"(45,50]",HS,32.7653,20.328621468926556,1.6117816965643053,4074.7134423750176,2019
+1998,48,"(45,50]",HS,31.6713,20.328621468926556,1.5579659470963816,4073.54071762686,2019
+1998,46,"(45,50]",HS,1280.0164666666665,147.84451977401133,8.657855351170566,8008.584155941307,2019
+1998,46,"(45,50]",HS,1259.9598,147.84451977401133,8.52219481605351,7673.918924314681,2019
+1998,46,"(45,50]",HS,1269.0764666666666,147.84451977401133,8.583858695652172,7151.285600887497,2019
+1998,46,"(45,50]",HS,1325.4174666666665,147.84451977401133,8.964941471571903,3817.056368670991,2019
+1998,46,"(45,50]",HS,1298.2498,147.84451977401133,8.781183110367891,7137.516497261633,2019
+1998,26,"(25,30]",HS,0,35.11307344632768,0,5704.786885146898,2019
+1998,26,"(25,30]",HS,0,35.11307344632768,0,6144.735403958954,2019
+1998,26,"(25,30]",HS,0,35.11307344632768,0,6133.046282368399,2019
+1998,26,"(25,30]",HS,0,35.11307344632768,0,6161.936456374642,2019
+1998,26,"(25,30]",HS,0,35.11307344632768,0,5653.964928071289,2019
+1998,46,"(45,50]",College,24589.291,911.0918531073447,26.98881667763403,6.430842823917284,2019
+1998,46,"(45,50]",College,301754.9203333333,4786.466327683615,63.04336010640358,7.2118741084757065,2019
+1998,46,"(45,50]",College,61474.23033333334,8279.293107344633,7.42505785654563,6.945752728721308,2019
+1998,46,"(45,50]",College,65823.06266666666,1644.770282485876,40.01960843260305,7.046671845376451,2019
+1998,46,"(45,50]",College,25366.76033333333,1188.300327683616,21.34709529431958,5.415612915498331,2019
+1998,22,"(20,25]",HS,16.811133333333334,12.56678418079096,1.3377434585874486,1585.2109134868083,2019
+1998,22,"(20,25]",HS,15.316,25.872790960451983,0.5919732441471571,1572.663927973018,2019
+1998,22,"(20,25]",HS,15.7536,9.609893785310735,1.639310522253666,1588.567342471225,2019
+1998,22,"(20,25]",HS,13.948500000000001,18.2957593220339,0.7623897841289146,1563.5981219319692,2019
+1998,22,"(20,25]",HS,16.665266666666668,8.685865536723163,1.9186650537251835,1616.6501362796316,2019
+1998,54,"(50,55]",HS,672.7917666666667,142.30035028248585,4.727969856230727,5619.143358986197,2019
+1998,54,"(50,55]",HS,671.5154333333334,142.30035028248585,4.71900056465274,5385.658800509022,2019
+1998,54,"(50,55]",HS,673.3387666666667,140.45229378531073,4.7940745467347305,5017.445337278413,2019
+1998,54,"(50,55]",HS,675.2897333333333,140.45229378531073,4.807965146981165,5490.933727092184,2019
+1998,54,"(50,55]",HS,671.0778333333334,140.45229378531073,4.777977028692132,5008.246228181268,2019
+1998,31,"(30,35]",HS,0.38289999999999996,38.80918644067796,0.009866220735785953,4157.1871061950205,2019
+1998,31,"(30,35]",HS,0.10940000000000001,38.80918644067796,0.0028189202102245586,4153.519614354053,2019
+1998,31,"(30,35]",HS,0.12763333333333335,38.80918644067796,0.0032887402452619853,4174.259504969936,2019
+1998,31,"(30,35]",HS,0.14586666666666667,38.80918644067796,0.003758560280299411,4173.911793663664,2019
+1998,31,"(30,35]",HS,0.7840333333333334,38.80918644067796,0.020202261506609337,4172.481891604867,2019
+1998,48,"(45,50]",HS,922.6431333333334,0,Inf,9094.936841427494,2019
+1998,48,"(45,50]",HS,989.9059000000001,0,Inf,8675.84556484613,2019
+1998,48,"(45,50]",HS,902.4588333333334,0,Inf,8693.690433309002,2019
+1998,48,"(45,50]",HS,826.9181333333333,0,Inf,8531.671512682728,2019
+1998,48,"(45,50]",HS,978.8018000000001,0,Inf,9028.520517924771,2019
+1998,31,"(30,35]",HS,80.956,55.441694915254246,1.460200668896321,10794.55394659067,2019
+1998,31,"(30,35]",HS,59.623000000000005,55.441694915254246,1.0754180602006689,10866.621470814565,2019
+1998,31,"(30,35]",HS,76.033,55.441694915254246,1.3714046822742474,11048.978439326758,2019
+1998,31,"(30,35]",HS,86.24366666666667,55.441694915254246,1.5555741360089184,10887.445889968762,2019
+1998,31,"(30,35]",HS,96.45433333333332,55.441694915254246,1.7397435897435893,11000.710634095552,2019
+1998,49,"(45,50]",HS,575.4987,131.21201129943503,4.386021480050873,353.1266833991366,2019
+1998,49,"(45,50]",HS,866.6485666666666,121.97172881355934,7.105323299888516,340.4065294535727,2019
+1998,49,"(45,50]",HS,699.9047333333333,131.21201129943503,5.33415139667436,337.4726801657308,2019
+1998,49,"(45,50]",HS,657.1475666666666,114.57950282485875,5.73529776674938,343.07063540983006,2019
+1998,49,"(45,50]",HS,818.8553533333334,136.75618079096043,5.987702702702704,350.04421234831165,2019
+1998,67,"(65,70]",College,1134.6603333333333,240.24734463276835,4.722883972215076,486.8252370988927,2019
+1998,67,"(65,70]",College,1135.2073333333333,240.24734463276835,4.725160792384873,469.5858230467478,2019
+1998,67,"(65,70]",College,1132.6546666666668,240.24734463276835,4.714535631592488,471.14458480045715,2019
+1998,67,"(65,70]",College,1134.2956666666669,240.24734463276835,4.72136609210188,480.0703462032974,2019
+1998,67,"(65,70]",College,1135.2073333333333,240.24734463276835,4.725160792384873,485.78830720249806,2019
+1998,68,"(65,70]",College,6681.969666666667,190.34981920903957,35.10363022372309,2150.3575711143103,2019
+1998,68,"(65,70]",College,6681.787333333333,190.34981920903957,35.10267233821475,2189.3534340063206,2019
+1998,68,"(65,70]",College,6683.610666666667,190.34981920903957,35.11225119329805,2073.356382708964,2019
+1998,68,"(65,70]",College,6682.152,190.34981920903957,35.104588109231415,2274.3648425549122,2019
+1998,68,"(65,70]",College,6681.787333333333,190.34981920903957,35.10267233821475,2129.9289889826314,2019
+1998,37,"(35,40]",NoHS,14.586666666666666,49.89752542372881,0.29233246624550974,5041.941487919274,2019
+1998,37,"(35,40]",NoHS,14.404333333333334,49.89752542372881,0.2886783104174409,5019.240758966413,2019
+1998,37,"(35,40]",NoHS,14.586666666666666,49.89752542372881,0.29233246624550974,4980.459962055297,2019
+1998,37,"(35,40]",NoHS,14.769,49.89752542372881,0.2959866220735786,5066.323916280879,2019
+1998,37,"(35,40]",NoHS,14.586666666666666,49.89752542372881,0.29233246624550974,4979.124583693405,2019
+1998,76,"(75,80]",HS,1313.9851666666668,31.416960451977403,41.824070430847925,7596.430115328403,2019
+1998,76,"(75,80]",HS,1215.5251666666668,36.96112994350283,32.88658026755852,7285.420321463821,2019
+1998,76,"(75,80]",HS,1270.2251666666668,33.265016949152546,38.18501486436269,6800.509709171303,2019
+1998,76,"(75,80]",HS,1211.8785,29.56890395480226,40.98489757525084,7404.412252717442,2019
+1998,76,"(75,80]",HS,1312.3441666666668,35.11307344632768,37.3748019714839,6781.9298302466095,2019
+1998,91,"(90,95]",NoHS,39.748666666666665,51.745581920903966,0.7681557572861919,8192.928658592768,2019
+1998,91,"(90,95]",NoHS,117.78733333333334,59.13780790960452,1.9917433110367895,8390.828510118521,2019
+1998,91,"(90,95]",NoHS,55.794000000000004,59.13780790960452,0.9434573578595319,8413.24426344454,2019
+1998,91,"(90,95]",NoHS,203.30166666666665,59.13780790960452,3.4377612876254178,8612.078265889768,2019
+1998,91,"(90,95]",NoHS,110.58516666666668,51.745581920903966,2.137093884376493,8524.35191147424,2019
+1998,89,"(85,90]",NoHS,0.18233333333333335,11.088338983050848,0.016443701226309924,5732.783815466759,2019
+1998,89,"(85,90]",NoHS,0.18233333333333335,11.088338983050848,0.016443701226309924,5751.492076672805,2019
+1998,89,"(85,90]",NoHS,0.18233333333333335,11.088338983050848,0.016443701226309924,5786.496874736212,2019
+1998,89,"(85,90]",NoHS,0.18233333333333335,11.088338983050848,0.016443701226309924,5697.69036315502,2019
+1998,89,"(85,90]",NoHS,0.18233333333333335,11.088338983050848,0.016443701226309924,5776.795289985797,2019
+1998,46,"(45,50]",NoHS,697.5161666666667,9.240282485875708,75.48645484949832,339.7903763073425,2019
+1998,46,"(45,50]",NoHS,712.3763333333334,9.240282485875708,77.09464882943142,323.7106024305999,2019
+1998,46,"(45,50]",NoHS,668.3975333333333,9.240282485875708,72.33518394648827,324.8655343166195,2019
+1998,46,"(45,50]",NoHS,723.5716,9.240282485875708,78.30622073578594,330.31199462856983,2019
+1998,46,"(45,50]",NoHS,660.9401,9.240282485875708,71.52812709030098,337.34344320198795,2019
+1998,43,"(40,45]",College,10478.332,964.6854915254239,10.861915196248027,981.7719521067696,2019
+1998,43,"(40,45]",College,7035.514,977.6218870056499,7.196559419868369,1074.747428448048,2019
+1998,43,"(40,45]",College,7073.621666666667,1188.300327683616,5.952722137555459,983.4262486266853,2019
+1998,43,"(40,45]",College,9309.028333333334,1186.4522711864408,7.846104356161243,1259.0924535436388,2019
+1998,43,"(40,45]",College,9133.076666666666,1188.300327683616,7.685831985311327,984.1192109588899,2019
+1998,42,"(40,45]",College,215.88266666666667,77.61837288135592,2.7813346074215644,8353.793086318423,2019
+1998,42,"(40,45]",College,220.441,77.61837288135592,2.8400621118012426,8038.047136897452,2019
+1998,42,"(40,45]",College,214.05933333333334,77.61837288135592,2.757843605669693,7447.012235604021,2019
+1998,42,"(40,45]",College,194.87786666666668,77.61837288135592,2.510718267240007,8204.882146608576,2019
+1998,42,"(40,45]",College,218.8,77.61837288135592,2.8189202102245585,7443.563052863023,2019
+1998,54,"(50,55]",HS,22499.021666666667,1496.9257627118643,15.030151946818615,986.8062540627052,2019
+1998,54,"(50,55]",HS,22444.321666666667,1496.9257627118643,14.993610388537926,1007.4884593756999,2019
+1998,54,"(50,55]",HS,22176.291666666668,1496.9257627118643,14.814556752962552,997.0318787867081,2019
+1998,54,"(50,55]",HS,22956.678333333333,1496.9257627118643,15.33588298443371,981.6697462965321,2019
+1998,54,"(50,55]",HS,22887.39166666667,1496.9257627118643,15.289597010611507,921.8312600069963,2019
+1998,55,"(50,55]",HS,830.2548333333334,157.08480225988703,5.285392484753098,7089.870313460722,2019
+1998,55,"(50,55]",HS,830.2548333333334,157.08480225988703,5.285392484753098,6760.826873484727,2019
+1998,55,"(50,55]",HS,828.4315,157.08480225988703,5.273785166240408,6327.344614259484,2019
+1998,55,"(50,55]",HS,830.2548333333334,157.08480225988703,5.285392484753098,6923.523124464446,2019
+1998,55,"(50,55]",HS,828.4315,157.08480225988703,5.273785166240408,6310.7203457110645,2019
+1998,43,"(40,45]",College,2880.502,508.21553672316384,5.667874733961691,1200.5918585287634,2019
+1998,43,"(40,45]",College,2880.502,508.21553672316384,5.667874733961691,1314.1606266143617,2019
+1998,43,"(40,45]",College,2880.502,508.21553672316384,5.667874733961691,1202.5474915445525,2019
+1998,43,"(40,45]",College,2880.502,508.21553672316384,5.667874733961691,1539.2992805027466,2019
+1998,43,"(40,45]",College,2880.502,508.21553672316384,5.667874733961691,1203.2356945491806,2019
+1998,62,"(60,65]",NoHS,0,18.480564971751416,0,5064.029624379306,2019
+1998,62,"(60,65]",NoHS,0,18.480564971751416,0,5121.806377678757,2019
+1998,62,"(60,65]",NoHS,0,18.480564971751416,0,5089.633967386052,2019
+1998,62,"(60,65]",NoHS,0,18.480564971751416,0,5058.981426047397,2019
+1998,62,"(60,65]",NoHS,0,18.480564971751416,0,5096.395985436928,2019
+1998,27,"(25,30]",HS,17.923366666666666,59.13780790960452,0.3030779682274248,5403.705158802719,2019
+1998,27,"(25,30]",HS,17.923366666666666,59.13780790960452,0.3030779682274248,5415.589099596256,2019
+1998,27,"(25,30]",HS,17.905133333333335,59.13780790960452,0.30276964882943147,5452.961489853192,2019
+1998,27,"(25,30]",HS,17.923366666666666,59.13780790960452,0.3030779682274248,5416.000020182278,2019
+1998,27,"(25,30]",HS,17.905133333333335,59.13780790960452,0.30276964882943147,5390.855072181874,2019
+1998,85,"(80,85]",College,1426.9406666666669,88.70671186440678,16.086050724637683,3097.5817479833336,2019
+1998,85,"(80,85]",College,1426.9406666666669,88.70671186440678,16.086050724637683,3386.135967072246,2019
+1998,85,"(80,85]",College,1428.7640000000001,88.70671186440678,16.10660535117057,3159.152753491547,2019
+1998,85,"(80,85]",College,1428.7640000000001,88.70671186440678,16.10660535117057,3122.0765386845624,2019
+1998,85,"(80,85]",College,1428.7640000000001,88.70671186440678,16.10660535117057,3236.7022814820302,2019
+1998,70,"(65,70]",HS,1224.9700333333335,57.289751412429375,21.382009925558318,6306.7913167564675,2019
+1998,70,"(65,70]",HS,1230.1118333333334,57.289751412429375,21.471760707735463,6073.94664858061,2019
+1998,70,"(65,70]",HS,1201.3578666666667,57.289751412429375,20.969856510950482,5669.677514975282,2019
+1998,70,"(65,70]",HS,1232.8468333333333,57.289751412429375,21.519500485489267,6201.52107741734,2019
+1998,70,"(65,70]",HS,1225.3711666666668,57.289751412429375,21.389011759628875,5655.140886209229,2019
+1998,31,"(30,35]",HS,242.68566666666666,123.81978531073446,1.959991014825538,7296.774510708179,2019
+1998,31,"(30,35]",HS,92.7165,112.73144632768363,0.8224546301880584,8327.647811461286,2019
+1998,31,"(30,35]",HS,79.9714,96.09893785310734,0.8321777720607152,8471.208151531446,2019
+1998,31,"(30,35]",HS,147.89056666666667,101.64310734463277,1.4549984797810886,8365.116601932834,2019
+1998,31,"(30,35]",HS,157.1531,129.36395480225988,1.2148136645962733,8419.074002347705,2019
+1998,70,"(65,70]",HS,831.7135000000001,66.53003389830509,12.501323857302118,5550.432254169724,2019
+1998,70,"(65,70]",HS,834.9955,68.37809039548021,12.211448070143724,5305.994375289576,2019
+1998,70,"(65,70]",HS,830.4371666666666,66.53003389830509,12.482139539204754,5382.850871010809,2019
+1998,70,"(65,70]",HS,828.0668333333334,66.53003389830509,12.446511519881085,5367.494908669991,2019
+1998,70,"(65,70]",HS,827.8845,68.37809039548021,12.10745277049625,5526.227725237278,2019
+1998,35,"(30,35]",College,-56.1222,86.85865536723163,-0.6461324983989184,6295.447096645976,2019
+1998,35,"(30,35]",College,-56.286300000000004,86.85865536723163,-0.6480217747100264,6326.976834436625,2019
+1998,35,"(30,35]",College,-56.65096666666667,86.85865536723163,-0.6522201665124885,6351.627536350785,2019
+1998,35,"(30,35]",College,-56.48686666666667,86.85865536723163,-0.6503308902013806,6294.270488402187,2019
+1998,35,"(30,35]",College,-56.48686666666667,86.85865536723163,-0.6503308902013806,6360.844608352219,2019
+1998,38,"(35,40]",College,5928.021333333333,759.5512203389831,7.80463670466844,12.721433128327465,2019
+1998,38,"(35,40]",College,3172.9646666666667,885.2190621468927,3.584383575034387,13.57336395888188,2019
+1998,38,"(35,40]",College,7596.189,646.8197740112995,11.74390348781653,13.571658835012602,2019
+1998,38,"(35,40]",College,5432.074666666667,521.1519322033898,10.42320738157926,13.859521983272524,2019
+1998,38,"(35,40]",College,2897.4590000000003,587.6819661016949,4.930318041269642,14.436668171043834,2019
+1998,66,"(65,70]",College,4788.073333333333,86.85865536723163,55.12488436632747,184.85193233772293,2019
+1998,66,"(65,70]",College,4627.62,86.85865536723163,53.27759197324415,181.29643382570626,2019
+1998,66,"(65,70]",College,4685.966666666667,86.85865536723163,53.94933466163809,175.55992747413535,2019
+1998,66,"(65,70]",College,4830.01,86.85865536723163,55.60769942361062,192.01559982895907,2019
+1998,66,"(65,70]",College,4633.09,86.85865536723163,53.34056785028108,179.84427419868038,2019
+1998,34,"(30,35]",College,12681.283333333335,482.34274576271196,26.291021156088622,617.4287377336176,2019
+1998,34,"(30,35]",College,12679.460000000001,482.34274576271196,26.287240994887167,604.3494013421385,2019
+1998,34,"(30,35]",College,12683.106666666667,482.34274576271196,26.29480131729007,562.9696046262545,2019
+1998,34,"(30,35]",College,12681.283333333335,482.34274576271196,26.291021156088622,682.9988005599391,2019
+1998,34,"(30,35]",College,12683.106666666667,482.34274576271196,26.29480131729007,643.537214603588,2019
+1998,57,"(55,60]",HS,241.227,138.6042372881356,1.740401337792642,262.5588620431199,2019
+1998,57,"(55,60]",HS,241.227,138.6042372881356,1.740401337792642,270.4873099992036,2019
+1998,57,"(55,60]",HS,243.05033333333336,138.6042372881356,1.7535562987736901,252.16727366813242,2019
+1998,57,"(55,60]",HS,243.05033333333336,138.6042372881356,1.7535562987736901,253.47753389263335,2019
+1998,57,"(55,60]",HS,241.227,138.6042372881356,1.740401337792642,261.72061594683794,2019
+1998,56,"(55,60]",NoHS,146.79656666666668,9.609893785310735,15.275565989194751,8729.151704813663,2019
+1998,56,"(55,60]",NoHS,146.74186666666668,9.609893785310735,15.26987393877026,8671.073179531159,2019
+1998,56,"(55,60]",NoHS,145.86666666666665,9.609893785310735,15.178801131978386,8622.159166509078,2019
+1998,56,"(55,60]",NoHS,145.86666666666665,9.609893785310735,15.178801131978386,8735.406563633314,2019
+1998,56,"(55,60]",NoHS,145.86666666666665,9.609893785310735,15.178801131978386,8621.734967585968,2019
+1998,21,"(20,25]",NoHS,0,1.8480564971751412,0,7544.290444225272,2019
+1998,21,"(20,25]",NoHS,0,1.8480564971751412,0,7558.221742591877,2019
+1998,21,"(20,25]",NoHS,0,1.8480564971751412,0,7527.694562251151,2019
+1998,21,"(20,25]",NoHS,0,1.8480564971751412,0,7531.368665720855,2019
+1998,21,"(20,25]",NoHS,0,1.8480564971751412,0,7509.127327609228,2019
+1998,30,"(25,30]",College,5151.408966666667,138.6042372881356,37.16631661092531,1092.7665823804716,2019
+1998,30,"(25,30]",College,7997.4682,279.0565310734463,28.65895368668188,1196.715867691174,2019
+1998,30,"(25,30]",College,5438.2010666666665,121.97172881355934,44.58575048140265,1093.6100594478664,2019
+1998,30,"(25,30]",College,14740.738333333335,194.04593220338984,75.96520146520147,1401.502399797356,2019
+1998,30,"(25,30]",College,5269.652133333334,345.58656497175144,15.24842880904262,1095.59370758103,2019
+1998,73,"(70,75]",NoHS,16.227666666666668,33.265016949152546,0.4878298030471943,6674.097551738771,2019
+1998,73,"(70,75]",NoHS,16.227666666666668,33.265016949152546,0.4878298030471943,6751.994106171236,2019
+1998,73,"(70,75]",NoHS,16.227666666666668,33.265016949152546,0.4878298030471943,6757.832996007736,2019
+1998,73,"(70,75]",NoHS,16.227666666666668,31.416960451977403,0.5165256738146764,6720.478980365066,2019
+1998,73,"(70,75]",NoHS,16.227666666666668,33.265016949152546,0.4878298030471943,6758.447147428565,2019
+1998,42,"(40,45]",HS,148.47403333333332,68.37809039548021,2.171368525716352,7584.821991881456,2019
+1998,42,"(40,45]",HS,154.70983333333334,81.31448587570623,1.902610975980541,7737.71139243706,2019
+1998,42,"(40,45]",HS,155.80383333333336,59.13780790960452,2.6345892558528434,8051.531498991023,2019
+1998,42,"(40,45]",HS,159.4505,57.289751412429375,2.783229043046715,7651.805856413659,2019
+1998,42,"(40,45]",HS,139.2844333333333,79.46642937853107,1.752745586062067,7968.355080756535,2019
+1998,56,"(55,60]",HS,5.160033333333334,29.56890395480226,0.17450877926421407,4811.923254165452,2019
+1998,56,"(55,60]",HS,4.722433333333334,31.416960451977403,0.15031477473932717,4799.857273434886,2019
+1998,56,"(55,60]",HS,5.232966666666666,35.11307344632768,0.14903186058792464,4842.667329933932,2019
+1998,56,"(55,60]",HS,5.433533333333334,22.176677966101696,0.24501114827201786,4792.673074610086,2019
+1998,56,"(55,60]",HS,4.8683000000000005,31.416960451977403,0.1549577021444029,4835.889594067865,2019
+1998,47,"(45,50]",HS,15.881233333333334,27.720847457627123,0.5728985507246376,6007.135910664538,2019
+1998,47,"(45,50]",HS,15.334233333333334,57.289751412429375,0.2676610206063222,6009.6924076624,2019
+1998,47,"(45,50]",HS,15.516566666666668,36.96112994350283,0.41980769230769227,6191.002700898511,2019
+1998,47,"(45,50]",HS,15.6989,72.07420338983052,0.21781579624388986,5997.1187455822965,2019
+1998,47,"(45,50]",HS,15.516566666666668,35.11307344632768,0.4419028340080972,6254.98580801192,2019
+1998,71,"(70,75]",College,12975.934000000001,112.73144632768363,115.1048303086792,11.333225350380904,2019
+1998,71,"(70,75]",College,4306.6951,275.360418079096,15.640211218603401,12.440634123637386,2019
+1998,71,"(70,75]",College,3882.059,99.79505084745762,38.90031586770718,9.689090924677142,2019
+1998,71,"(70,75]",College,7640.678333333333,103.49116384180793,73.82928213091255,10.24960550108709,2019
+1998,71,"(70,75]",College,4055.0933333333337,412.11659887005646,9.83967485039819,10.309975573490402,2019
+1998,34,"(30,35]",HS,31.5619,79.46642937853107,0.3971727463638485,5085.840153469389,2019
+1998,34,"(30,35]",HS,31.379566666666665,77.61837288135592,0.40428014014970537,5097.025038930946,2019
+1998,34,"(30,35]",HS,31.379566666666665,77.61837288135592,0.40428014014970537,5132.199053318132,2019
+1998,34,"(30,35]",HS,31.5619,77.61837288135592,0.40662924032489256,5097.411787718093,2019
+1998,34,"(30,35]",HS,33.38523333333333,77.61837288135592,0.43012024207676386,5073.7459542873,2019
+1998,34,"(30,35]",HS,6931.948666666667,382.5476949152542,18.120482122372483,2846.5953038832586,2019
+1998,34,"(30,35]",HS,6930.125333333333,247.63957062146892,27.984725203414367,2914.6406088311637,2019
+1998,34,"(30,35]",HS,6931.948666666667,247.63957062146892,27.992088054709733,2744.19566960282,2019
+1998,34,"(30,35]",HS,6933.772,308.6254350282486,22.466625277872346,2993.6220299516567,2019
+1998,34,"(30,35]",HS,6931.948666666667,349.2826779661017,19.846242324503194,2821.3216066241034,2019
+1998,49,"(45,50]",NoHS,113.75776666666667,51.745581920903966,2.1984053989488768,6559.155310454434,2019
+1998,49,"(45,50]",NoHS,112.11676666666666,51.745581920903966,2.1666925465838505,6687.265858994391,2019
+1998,49,"(45,50]",NoHS,111.55153333333334,51.745581920903966,2.15576923076923,6927.82903964899,2019
+1998,49,"(45,50]",NoHS,113.19253333333334,51.745581920903966,2.187482083134257,6578.406061891235,2019
+1998,49,"(45,50]",NoHS,115.01586666666667,51.745581920903966,2.2227185857620637,6908.201669526183,2019
+1998,68,"(65,70]",College,4878.875333333333,3696.1129943502824,1.3200016722408028,12.931159480455397,2019
+1998,68,"(65,70]",College,4547.211,3696.1129943502824,1.2302683946488295,14.039727978978172,2019
+1998,68,"(65,70]",College,4710.399333333333,3696.1129943502824,1.2744197324414714,11.343223109869806,2019
+1998,68,"(65,70]",College,5412.018,3696.1129943502824,1.4642458193979933,11.956680496345369,2019
+1998,68,"(65,70]",College,5203.793333333333,3696.1129943502824,1.4079096989966555,11.765973219552288,2019
+1998,57,"(55,60]",College,10560.199666666666,332.65016949152545,31.74566146413972,3367.3833616380807,2019
+1998,57,"(55,60]",College,10561.840666666667,332.65016949152545,31.750594574507616,3623.8764854168826,2019
+1998,57,"(55,60]",College,10561.840666666667,332.65016949152545,31.750594574507616,3484.9668742741787,2019
+1998,57,"(55,60]",College,10562.023000000001,332.65016949152545,31.75114269788183,4087.8618361036074,2019
+1998,57,"(55,60]",College,10562.023000000001,332.65016949152545,31.75114269788183,3268.9642418434514,2019
+1998,43,"(40,45]",HS,197.467,59.13780790960452,3.339099080267559,6140.852765912614,2019
+1998,43,"(40,45]",HS,197.28466666666665,59.13780790960452,3.3360158862876252,6135.336944474332,2019
+1998,43,"(40,45]",HS,197.28466666666665,59.13780790960452,3.3360158862876252,6173.890827847807,2019
+1998,43,"(40,45]",HS,197.28466666666665,59.13780790960452,3.3360158862876252,6167.78050466251,2019
+1998,43,"(40,45]",HS,197.28466666666665,59.13780790960452,3.3360158862876252,6180.282350947862,2019
+1998,31,"(30,35]",HS,-18.670933333333334,64.68197740112994,-0.28865742952699475,6515.301147682527,2019
+1998,31,"(30,35]",HS,-18.342733333333335,70.22614689265536,-0.261195212110544,6535.375793556958,2019
+1998,31,"(30,35]",HS,-17.7228,77.61837288135592,-0.22833253702818923,6577.899990627318,2019
+1998,31,"(30,35]",HS,-18.488599999999998,73.92225988700567,-0.2501086956521738,6508.762387672381,2019
+1998,31,"(30,35]",HS,-18.6527,77.61837288135592,-0.2403129479216436,6606.6484094237485,2019
+1998,18,"(15,20]",HS,-0.8387333333333333,0,-Inf,1660.377146913645,2019
+1998,18,"(15,20]",HS,-0.8387333333333333,0,-Inf,1654.1547961132042,2019
+1998,18,"(15,20]",HS,-0.8205,0,-Inf,1740.7791044045055,2019
+1998,18,"(15,20]",HS,-0.8387333333333333,0,-Inf,1699.807993401666,2019
+1998,18,"(15,20]",HS,-0.8387333333333333,0,-Inf,1725.9052463223677,2019
+1998,52,"(50,55]",College,317.13236666666666,97.9469943502825,3.2377957973117937,6746.559729302481,2019
+1998,52,"(50,55]",College,309.45613333333336,121.97172881355934,2.5371136110266543,6878.330578866138,2019
+1998,52,"(50,55]",College,297.9873666666667,121.97172881355934,2.443085537650755,7125.766992571783,2019
+1998,52,"(50,55]",College,306.5570333333333,114.57950282485875,2.6754962779156326,6766.360502154329,2019
+1998,52,"(50,55]",College,302.8921333333334,118.27561581920904,2.560900919732442,7105.578840501107,2019
+1998,29,"(25,30]",College,49.230000000000004,75.77031638418079,0.6497267313810262,8385.229615474944,2019
+1998,29,"(25,30]",College,49.047666666666665,73.92225988700567,0.6635033444816052,8442.225472385851,2019
+1998,29,"(25,30]",College,49.230000000000004,73.92225988700567,0.6659698996655518,8639.32073647714,2019
+1998,29,"(25,30]",College,49.230000000000004,73.92225988700567,0.6659698996655518,8381.819010118912,2019
+1998,29,"(25,30]",College,49.230000000000004,73.92225988700567,0.6659698996655518,8629.133059717631,2019
+1998,58,"(55,60]",HS,463.6736666666667,24.024734463276836,19.299845639310522,9381.680238900622,2019
+1998,58,"(55,60]",HS,485.3713333333333,25.872790960451983,18.75991399904443,8944.944004056855,2019
+1998,58,"(55,60]",HS,483.7303333333333,40.65724293785311,11.897765278200058,8373.441644639526,2019
+1998,58,"(55,60]",HS,485.3713333333333,24.024734463276836,20.202984306663236,9161.53355156403,2019
+1998,58,"(55,60]",HS,479.9013333333333,27.720847457627123,17.31192865105908,8351.776573881161,2019
+1998,85,"(80,85]",College,5317.149966666667,60.98586440677967,87.18659673659673,162.0093394411526,2019
+1998,85,"(80,85]",College,7391.848033333334,238.39928813559317,31.006166549998714,160.64717240411966,2019
+1998,85,"(80,85]",College,12959.615166666666,212.52649717514123,60.97882070670351,149.95879773770454,2019
+1998,85,"(80,85]",College,5145.811333333333,85.0105988700565,60.531409044641556,164.60121593974128,2019
+1998,85,"(80,85]",College,2337.878,166.32508474576272,14.056075808249721,107.21819388974927,2019
+1998,59,"(55,60]",HS,194.44026666666667,72.07420338983052,2.697778921190292,8239.822548971426,2019
+1998,59,"(55,60]",HS,194.42203333333333,72.07420338983052,2.697525941171426,8163.187435787229,2019
+1998,59,"(55,60]",HS,198.25103333333334,73.92225988700567,2.6818854515050163,8594.88222779109,2019
+1998,59,"(55,60]",HS,194.23970000000003,72.07420338983052,2.694996140982763,8069.791898681974,2019
+1998,59,"(55,60]",HS,190.7936,72.07420338983052,2.6471829174170307,8505.351286861827,2019
+1998,45,"(40,45]",HS,121.03286666666668,99.79505084745762,1.2128143193360588,7141.7590907031245,2019
+1998,45,"(40,45]",HS,148.63813333333334,99.79505084745762,1.4894339155208722,7235.003083834787,2019
+1998,45,"(40,45]",HS,92.9353,133.06006779661018,0.6984462095875138,7498.643542310632,2019
+1998,45,"(40,45]",HS,119.08189999999999,105.33922033898305,1.1304611864108431,7135.575196095427,2019
+1998,45,"(40,45]",HS,104.13056666666667,114.57950282485875,0.9088062358398965,7463.9876743474715,2019
+1998,56,"(55,60]",HS,274092.5833333333,946.2049265536723,289.67570939590297,32.75797024958856,2019
+1998,56,"(55,60]",HS,182167.41,1605.9610960451978,113.4320192740666,33.733308450685655,2019
+1998,56,"(55,60]",HS,138928.88333333336,722.5900903954803,192.2651378422534,36.11853352727931,2019
+1998,56,"(55,60]",HS,272940.2366666667,1755.653672316384,155.463597958106,33.976031628799,2019
+1998,56,"(55,60]",HS,184641.67333333334,1097.745559322034,168.20079276601012,36.681252218847234,2019
+1998,64,"(60,65]",College,2501.6133333333337,277.2084745762712,9.024303232998886,1146.5072697180215,2019
+1998,64,"(60,65]",College,2501.6133333333337,277.2084745762712,9.024303232998886,1250.5525573251018,2019
+1998,64,"(60,65]",College,2501.6133333333337,277.2084745762712,9.024303232998886,1147.177208097502,2019
+1998,64,"(60,65]",College,2501.6133333333337,277.2084745762712,9.024303232998886,1469.7133668214694,2019
+1998,64,"(60,65]",College,2501.6133333333337,277.2084745762712,9.024303232998886,1148.4758582421098,2019
+1998,46,"(45,50]",College,625.4945,190.34981920903957,3.2860262363217196,63.39049517220027,2019
+1998,46,"(45,50]",College,625.3121666666666,221.76677966101698,2.819683667781493,58.81923621841789,2019
+1998,46,"(45,50]",College,625.3121666666666,199.59010169491523,3.132981853090549,59.38307390090065,2019
+1998,46,"(45,50]",College,625.4945,212.52649717514123,2.9431365420968447,60.54530425444,2019
+1998,46,"(45,50]",College,625.3121666666666,377.00352542372883,1.6586374516361726,62.79240329947199,2019
+1998,34,"(30,35]",HS,-3.537266666666667,44.35335593220339,-0.07975195094760312,5941.686510529402,2019
+1998,34,"(30,35]",HS,-1.7139333333333335,44.35335593220339,-0.03864269788182832,5936.8169183712125,2019
+1998,34,"(30,35]",HS,-3.537266666666667,44.35335593220339,-0.07975195094760312,5944.053029158421,2019
+1998,34,"(30,35]",HS,-3.537266666666667,44.35335593220339,-0.07975195094760312,5954.2087676924575,2019
+1998,34,"(30,35]",HS,-1.5315999999999999,44.35335593220339,-0.03453177257525083,5895.6307059801975,2019
+1998,30,"(25,30]",HS,-31.361333333333334,79.46642937853107,-0.39464882943143814,4261.097816550355,2019
+1998,30,"(25,30]",HS,-31.361333333333334,79.46642937853107,-0.39464882943143814,4230.298831027349,2019
+1998,30,"(25,30]",HS,-31.361333333333334,79.46642937853107,-0.39464882943143814,4253.335516417037,2019
+1998,30,"(25,30]",HS,-31.361333333333334,79.46642937853107,-0.39464882943143814,4262.027298923893,2019
+1998,30,"(25,30]",HS,-31.361333333333334,79.46642937853107,-0.39464882943143814,4243.898780377298,2019
+1998,47,"(45,50]",College,56.35923333333333,160.78091525423727,0.35053434821051016,5779.427441939541,2019
+1998,47,"(45,50]",College,91.23960000000001,158.93285875706215,0.5740763786264292,5848.297509255397,2019
+1998,47,"(45,50]",College,88.8875,171.86925423728815,0.5171809256661991,5859.122631007869,2019
+1998,47,"(45,50]",College,66.25993333333334,168.17314124293785,0.3939983093829248,5744.574321757778,2019
+1998,47,"(45,50]",College,61.227533333333334,173.71731073446327,0.352454991816694,5854.190225641588,2019
+1998,38,"(35,40]",HS,212.88328333333334,70.22614689265536,3.0313963210702344,7584.821991881456,2019
+1998,38,"(35,40]",HS,115.75431666666667,62.833920903954805,1.8422265394452095,7737.71139243706,2019
+1998,38,"(35,40]",HS,171.47538333333333,83.16254237288136,2.061930509104422,8051.531498991023,2019
+1998,38,"(35,40]",HS,140.47871666666668,72.07420338983052,1.9490845553554583,7651.805856413659,2019
+1998,38,"(35,40]",HS,147.79028333333332,86.85865536723163,1.7015032377428307,7968.355080756535,2019
+1998,26,"(25,30]",HS,-35.5003,36.96112994350283,-0.9604765886287624,6572.452921385853,2019
+1998,26,"(25,30]",HS,-35.682633333333335,36.96112994350283,-0.9654096989966554,6592.7036606736465,2019
+1998,26,"(25,30]",HS,-35.5003,36.96112994350283,-0.9604765886287624,6635.600877076926,2019
+1998,26,"(25,30]",HS,-35.682633333333335,36.96112994350283,-0.9654096989966554,6565.856803822471,2019
+1998,26,"(25,30]",HS,-35.682633333333335,36.96112994350283,-0.9654096989966554,6664.601475026424,2019
+1998,57,"(55,60]",NoHS,85.55080000000001,110.88338983050849,0.7715384615384615,10781.542008763628,2019
+1998,57,"(55,60]",NoHS,96.74606666666666,110.88338983050849,0.8725027870680043,10681.267435223828,2019
+1998,57,"(55,60]",NoHS,157.55423333333334,110.88338983050849,1.4209002229654402,11246.126145140475,2019
+1998,57,"(55,60]",NoHS,209.86566666666667,110.88338983050849,1.8926700111482717,10559.062387633689,2019
+1998,57,"(55,60]",NoHS,197.75873333333334,110.88338983050849,1.783483835005574,11128.977796984187,2019
+1998,18,"(15,20]",NoHS,0,9.240282485875708,0,6832.461635036593,2019
+1998,18,"(15,20]",NoHS,0,12.936395480225992,0,6845.238095055945,2019
+1998,18,"(15,20]",NoHS,0,13.306006779661017,0,6817.233968111688,2019
+1998,18,"(15,20]",NoHS,0,10.903533333333334,0,6822.211972919626,2019
+1998,18,"(15,20]",NoHS,0,17.92614802259887,0,6801.8669949443265,2019
+1998,51,"(50,55]",College,9096.61,924.0282485875706,9.8445150501672245,17.82657433540392,2019
+1998,51,"(50,55]",College,9096.61,924.0282485875706,9.8445150501672245,19.650560389821674,2019
+1998,51,"(50,55]",College,9096.61,924.0282485875706,9.8445150501672245,22.160764616098483,2019
+1998,51,"(50,55]",College,9098.433333333334,924.0282485875706,9.846488294314382,21.913144043550208,2019
+1998,51,"(50,55]",College,9098.433333333334,924.0282485875706,9.846488294314382,20.150081937845773,2019
+1998,55,"(50,55]",College,37.48773333333333,60.98586440677967,0.6146954494780581,5596.0490771421255,2019
+1998,55,"(50,55]",College,40.5327,66.53003389830509,0.6092391304347825,5592.028422729625,2019
+1998,55,"(50,55]",College,40.11333333333334,51.745581920903966,0.7752030578117534,5762.4888220817975,2019
+1998,55,"(50,55]",College,41.644933333333334,51.745581920903966,0.8048017200191112,5559.542256020579,2019
+1998,55,"(50,55]",College,41.53553333333333,72.07420338983052,0.5762884829774462,5744.730466961221,2019
+1998,64,"(60,65]",HS,28984.983,979.4699435028249,29.59251908878652,23.805847373175478,2019
+1998,64,"(60,65]",HS,30950.536333333333,925.8763050847457,33.428370683382404,25.074107589463175,2019
+1998,64,"(60,65]",HS,32242.003333333334,940.6607570621469,34.27590987640531,30.927558731825656,2019
+1998,64,"(60,65]",HS,29626.249333333333,931.4204745762712,31.807599405425492,27.864747106937422,2019
+1998,64,"(60,65]",HS,28237.781,1007.190790960452,28.036178699641003,26.424276254213254,2019
+1998,68,"(65,70]",College,92.80766666666668,101.64310734463277,0.9130738826391002,4459.314331684876,2019
+1998,68,"(65,70]",College,24.469133333333335,221.76677966101698,0.11033723522853957,2193.891017912508,2019
+1998,68,"(65,70]",College,25.891333333333332,51.745581920903966,0.5003583373148589,2230.405835418286,2019
+1998,68,"(65,70]",College,447.446,75.77031638418079,5.905294069663105,533.2779961711976,2019
+1998,68,"(65,70]",College,1316.2643333333333,57.289751412429375,22.975563706980257,1308.0681009620591,2019
+1998,44,"(40,45]",HS,5.287666666666667,22.176677966101696,0.23843366778149389,6524.865464677525,2019
+1998,44,"(40,45]",HS,5.105333333333333,22.176677966101696,0.23021181716833888,6495.488050694749,2019
+1998,44,"(40,45]",HS,5.287666666666667,22.176677966101696,0.23843366778149389,6445.301136970284,2019
+1998,44,"(40,45]",HS,5.105333333333333,22.176677966101696,0.23021181716833888,6556.419195545446,2019
+1998,44,"(40,45]",HS,5.287666666666667,22.176677966101696,0.23843366778149389,6443.573000264083,2019
+1998,52,"(50,55]",HS,275.9615,70.22614689265536,3.929611864108432,7349.623206623354,2019
+1998,52,"(50,55]",HS,275.3051,72.07420338983052,3.8197453048623613,7535.989284867338,2019
+1998,52,"(50,55]",HS,273.8464333333334,31.416960451977403,8.716515837104074,7745.92134384913,2019
+1998,52,"(50,55]",HS,278.2406666666667,62.833920903954805,4.42819201259099,7412.998420457121,2019
+1998,52,"(50,55]",HS,274.2658,40.65724293785311,6.745804195804196,7744.131869378574,2019
+1998,56,"(55,60]",HS,161638.59116666665,1848.0564971751412,87.46409615384614,5.618159541765944,2019
+1998,56,"(55,60]",HS,161718.81783333333,1848.0564971751412,87.50750752508361,5.333124400553282,2019
+1998,56,"(55,60]",HS,161481.7845,1848.0564971751412,87.3792466555184,6.30858734684417,2019
+1998,56,"(55,60]",HS,161509.13450000001,1848.0564971751412,87.39404598662209,6.250859060052635,2019
+1998,56,"(55,60]",HS,161580.2445,1848.0564971751412,87.43252424749164,6.160382110768987,2019
+1998,48,"(45,50]",HS,5757.4485,92.40282485875707,62.30814381270903,311.803766368443,2019
+1998,48,"(45,50]",HS,6196.871833333334,92.40282485875707,67.06366220735785,309.70590976046117,2019
+1998,48,"(45,50]",HS,5527.7085,92.40282485875707,59.82185618729096,284.61772203392775,2019
+1998,48,"(45,50]",HS,4789.2585,92.40282485875707,51.830217391304345,319.1694726103631,2019
+1998,48,"(45,50]",HS,11951.311833333335,92.40282485875707,129.3392474916388,309.3305304422003,2019
+1998,41,"(40,45]",HS,4198.589666666667,556.2650056497175,7.547822753586151,12.987066445020375,2019
+1998,41,"(40,45]",HS,4196.766333333333,554.4169491525424,7.569693422519508,14.056542086650214,2019
+1998,41,"(40,45]",HS,4196.948666666667,554.4169491525424,7.570022296544035,13.407218600769719,2019
+1998,41,"(40,45]",HS,4197.714466666667,554.4169491525424,7.571403567447046,13.9978932671579,2019
+1998,41,"(40,45]",HS,4198.5532,556.2650056497175,7.547757197302193,14.992289681152064,2019
+1998,66,"(65,70]",College,390.7403333333333,70.22614689265536,5.5640292202077095,10977.481971994235,2019
+1998,66,"(65,70]",College,375.97133333333335,70.22614689265536,5.353722936102799,11548.976755447518,2019
+1998,66,"(65,70]",College,410.6146666666667,70.22614689265536,5.847033972892097,11662.394527433231,2019
+1998,66,"(65,70]",College,394.387,70.22614689265536,5.615956697764478,11030.716318605115,2019
+1998,66,"(65,70]",College,392.5636666666667,70.22614689265536,5.589992958986095,11568.880077854721,2019
+1998,61,"(60,65]",College,2186.9607,214.37455367231638,10.201587187175644,3148.3789614723332,2019
+1998,61,"(60,65]",College,2187.3071333333332,219.9187231638418,9.945979595851718,3422.039952010871,2019
+1998,61,"(60,65]",College,2187.3071333333332,402.8763163841808,5.429227394065846,3201.0033596611984,2019
+1998,61,"(60,65]",College,2186.9607,192.1978757062147,11.378693401080525,3179.1834035684337,2019
+1998,61,"(60,65]",College,2186.5960333333333,449.07772881355936,4.869081437438925,3279.9247331668157,2019
+1998,61,"(60,65]",HS,129.8031,36.96112994350283,3.511881270903009,4917.411281988724,2019
+1998,61,"(60,65]",HS,171.94033333333334,53.593638418079095,3.208222811671088,4853.389619445852,2019
+1998,61,"(60,65]",HS,72.8057,31.416960451977403,2.31740114105843,4934.518709129158,2019
+1998,61,"(60,65]",HS,149.51333333333335,112.73144632768363,1.326278853007292,4933.1517249647895,2019
+1998,61,"(60,65]",HS,93.42760000000001,110.88338983050849,0.8425752508361204,4941.15591867342,2019
+1998,36,"(35,40]",College,385.088,101.64310734463277,3.7886287625418062,482.7959590041108,2019
+1998,36,"(35,40]",College,385.088,101.64310734463277,3.7886287625418062,465.4690144757128,2019
+1998,36,"(35,40]",College,385.088,94.25088135593221,4.085776116466653,463.6766632134039,2019
+1998,36,"(35,40]",College,385.088,101.64310734463277,3.7886287625418062,463.6571470801667,2019
+1998,36,"(35,40]",College,385.088,101.64310734463277,3.7886287625418062,479.1921436520803,2019
+1998,38,"(35,40]",HS,70.38066666666667,112.73144632768363,0.6243215088546521,6744.46500604753,2019
+1998,38,"(35,40]",HS,76.21533333333333,114.57950282485875,0.6651742367029885,6836.715208916417,2019
+1998,38,"(35,40]",HS,71.11,114.57950282485875,0.620617110799439,7117.195160370924,2019
+1998,38,"(35,40]",HS,67.46333333333332,112.73144632768363,0.5984428970886561,6778.242203844258,2019
+1998,38,"(35,40]",HS,67.46333333333332,114.57950282485875,0.5887905922969036,7031.037526039363,2019
+1998,23,"(20,25]",HS,9.025500000000001,15.893285875706214,0.5678813097923311,5288.625600419474,2019
+1998,23,"(20,25]",HS,9.025500000000001,15.893285875706214,0.5678813097923311,5248.203694067,2019
+1998,23,"(20,25]",HS,9.025500000000001,18.11095367231638,0.4983448228789845,5285.097443875087,2019
+1998,23,"(20,25]",HS,9.025500000000001,16.44770282485876,0.5487392431701176,5289.937153609941,2019
+1998,23,"(20,25]",HS,9.025500000000001,16.632508474576273,0.5426421404682275,5231.100376230124,2019
+1998,60,"(55,60]",HS,44.945166666666665,27.720847457627123,1.621348940914158,10593.887614135083,2019
+1998,60,"(55,60]",HS,44.945166666666665,25.872790960451983,1.7371595795508834,10565.582391914211,2019
+1998,60,"(55,60]",HS,44.945166666666665,25.872790960451983,1.7371595795508834,11453.544954211156,2019
+1998,60,"(55,60]",HS,44.945166666666665,25.872790960451983,1.7371595795508834,10598.683505684223,2019
+1998,60,"(55,60]",HS,44.945166666666665,25.872790960451983,1.7371595795508834,11414.933516063853,2019
+1998,42,"(40,45]",HS,1336.5033333333333,238.39928813559317,5.606154883202407,767.839860608785,2019
+1998,42,"(40,45]",HS,1247.5246666666667,425.05299435028246,2.9349861858368476,377.0934284565653,2019
+1998,42,"(40,45]",HS,1369.8703333333333,205.13427118644066,6.6779203953117,780.1364701653963,2019
+1998,42,"(40,45]",HS,1185.5313333333334,208.83038418079096,5.677005949033652,385.3272640582595,2019
+1998,42,"(40,45]",HS,1380.628,266.12013559322037,5.187987736900779,760.7261350805742,2019
+1998,50,"(45,50]",College,1879.9660666666666,526.6961016949153,3.569356333978759,107.04672757926713,2019
+1998,50,"(45,50]",College,1954.8138999999999,388.0918644067797,5.036987577639751,110.5470130419742,2019
+1998,50,"(45,50]",College,1717.0330000000001,565.5052881355933,3.0362810676109904,105.36378968979493,2019
+1998,50,"(45,50]",College,2658.0553333333337,903.6996271186441,2.941304005854553,164.8928659601079,2019
+1998,50,"(45,50]",College,2034.2930000000001,282.75264406779667,7.194602924781952,106.4727994659597,2019
+1998,32,"(30,35]",HS,67.281,107.18727683615819,0.627695767500865,5596.771769864393,2019
+1998,32,"(30,35]",HS,67.281,107.18727683615819,0.627695767500865,5577.689934144144,2019
+1998,32,"(30,35]",HS,67.281,107.18727683615819,0.627695767500865,5580.47827485902,2019
+1998,32,"(30,35]",HS,67.281,107.18727683615819,0.627695767500865,5620.184039623739,2019
+1998,32,"(30,35]",HS,67.281,107.18727683615819,0.627695767500865,5576.950069460023,2019
+1998,94,"(90,95]",NoHS,0.547,7.022614689265536,0.07789121633515228,6691.275519027187,2019
+1998,94,"(90,95]",NoHS,0.8205,9.609893785310735,0.08538075636737844,6738.93241960833,2019
+1998,94,"(90,95]",NoHS,0.8569666666666668,9.240282485875708,0.09274247491638796,6746.596810308001,2019
+1998,94,"(90,95]",NoHS,0.5105333333333334,7.022614689265536,0.07269846857947546,6676.6776484013635,2019
+1998,94,"(90,95]",NoHS,0.8569666666666668,12.56678418079096,0.06819299626204998,6745.994326158526,2019
+1998,63,"(60,65]",College,-11.487,92.40282485875707,-0.124314381270903,5846.810272613643,2019
+1998,63,"(60,65]",College,-11.487,92.40282485875707,-0.124314381270903,5804.803952849412,2019
+1998,63,"(60,65]",College,-11.487,92.40282485875707,-0.124314381270903,5946.051073916464,2019
+1998,63,"(60,65]",College,-11.487,92.40282485875707,-0.124314381270903,5838.826082221365,2019
+1998,63,"(60,65]",College,-11.487,92.40282485875707,-0.124314381270903,5898.201455206336,2019
+1998,81,"(80,85]",HS,390.011,16.632508474576273,23.44871794871795,4831.081699420055,2019
+1998,81,"(80,85]",HS,391.83433333333335,16.632508474576273,23.558342623560012,5000.24558085483,2019
+1998,81,"(80,85]",HS,390.011,16.632508474576273,23.44871794871795,4755.65408616369,2019
+1998,81,"(80,85]",HS,391.83433333333335,16.632508474576273,23.558342623560012,4827.245033332564,2019
+1998,81,"(80,85]",HS,390.011,16.632508474576273,23.44871794871795,4869.898762091872,2019
+1998,60,"(55,60]",College,698.3366666666666,92.40282485875707,7.557525083612038,6878.636586770936,2019
+1998,60,"(55,60]",College,698.519,92.40282485875707,7.559498327759196,6559.39658028469,2019
+1998,60,"(55,60]",College,698.1543333333334,92.40282485875707,7.555551839464883,6138.8293771918825,2019
+1998,60,"(55,60]",College,698.1543333333334,92.40282485875707,7.555551839464883,6717.245502061834,2019
+1998,60,"(55,60]",College,698.3366666666666,92.40282485875707,7.557525083612038,6122.700407717174,2019
+1998,29,"(25,30]",College,132.22813333333335,109.03533333333333,1.2127090301003347,6034.528976173285,2019
+1998,29,"(25,30]",College,111.2598,107.18727683615819,1.0379944643063084,6017.547347148267,2019
+1998,29,"(25,30]",College,113.97656666666667,109.03533333333333,1.0453177257525084,6071.108097576072,2019
+1998,29,"(25,30]",College,139.50323333333333,109.03533333333333,1.2794314381270904,6056.039533202243,2019
+1998,29,"(25,30]",College,123.11146666666666,109.03533333333333,1.1290969899665553,6095.109361666597,2019
+1998,46,"(45,50]",NoHS,124.18723333333334,75.77031638418079,1.638995839791174,6814.131391332585,2019
+1998,46,"(45,50]",NoHS,137.33346666666668,75.77031638418079,1.8124969410229221,6942.542554393064,2019
+1998,46,"(45,50]",NoHS,135.51013333333333,75.77031638418079,1.78843298800881,7139.154438883386,2019
+1998,46,"(45,50]",NoHS,137.15113333333335,75.77031638418079,1.810090545721511,6846.842917750803,2019
+1998,46,"(45,50]",NoHS,124.20546666666667,73.92225988700567,1.6802173913043474,7124.703455434434,2019
+1998,24,"(20,25]",HS,6.746333333333333,55.441694915254246,0.12168338907469341,7788.226789878463,2019
+1998,24,"(20,25]",HS,-1.4586666666666668,55.441694915254246,-0.02630992196209587,7692.561276464587,2019
+1998,24,"(20,25]",HS,9.299,55.441694915254246,0.16772575250836116,7948.092453155876,2019
+1998,24,"(20,25]",HS,-4.376,55.441694915254246,-0.07892976588628763,7776.117783105541,2019
+1998,24,"(20,25]",HS,4.558333333333333,55.441694915254246,0.08221850613154959,7933.3395906574315,2019
+1998,45,"(40,45]",College,7244.504466666667,1199.3886666666667,6.040164183642445,218.97221767871497,2019
+1998,45,"(40,45]",College,7239.0527,1201.2367231638418,6.026333161821456,218.71184503707983,2019
+1998,45,"(40,45]",College,7244.504466666667,1199.3886666666667,6.040164183642445,207.4384028670532,2019
+1998,45,"(40,45]",College,7237.211133333334,1201.2367231638418,6.024800102907127,226.23319749980843,2019
+1998,45,"(40,45]",College,7240.8578,1199.3886666666667,6.037123745819398,215.9591980528625,2019
+1998,68,"(65,70]",HS,3627.8863333333334,147.84451977401133,24.538524247491633,15.06957697943885,2019
+1998,68,"(65,70]",HS,3627.8863333333334,147.84451977401133,24.538524247491633,16.374593874586886,2019
+1998,68,"(65,70]",HS,3627.8863333333334,147.84451977401133,24.538524247491633,16.036024128605952,2019
+1998,68,"(65,70]",HS,3627.8863333333334,147.84451977401133,24.538524247491633,16.329318955791138,2019
+1998,68,"(65,70]",HS,3627.8863333333334,147.84451977401133,24.538524247491633,17.335727226598518,2019
+1998,71,"(70,75]",College,376.7189,33.265016949152546,11.324777034559643,7524.138512139759,2019
+1998,71,"(70,75]",College,374.89556666666664,33.265016949152546,11.269964697138608,7500.620135794027,2019
+1998,71,"(70,75]",College,376.7189,33.265016949152546,11.324777034559643,8070.147381741624,2019
+1998,71,"(70,75]",College,374.89556666666664,33.265016949152546,11.269964697138608,7694.5397578057255,2019
+1998,71,"(70,75]",College,374.71323333333333,33.265016949152546,11.264483463396505,7827.288653037787,2019
+1998,52,"(50,55]",HS,27.149433333333334,55.441694915254246,0.4896934225195094,5762.730275293163,2019
+1998,52,"(50,55]",HS,27.149433333333334,55.441694915254246,0.4896934225195094,5782.950688515828,2019
+1998,52,"(50,55]",HS,27.149433333333334,55.441694915254246,0.4896934225195094,5782.170517461201,2019
+1998,52,"(50,55]",HS,27.149433333333334,55.441694915254246,0.4896934225195094,5746.77798560132,2019
+1998,52,"(50,55]",HS,27.149433333333334,55.441694915254246,0.4896934225195094,5742.878367870482,2019
+1998,57,"(55,60]",HS,3515.567176666667,205.13427118644066,17.137883184187533,857.7244546754986,2019
+1998,57,"(55,60]",HS,3515.567176666667,206.98232768361586,16.984866370042997,869.2994415980768,2019
+1998,57,"(55,60]",HS,3513.743843333333,206.98232768361586,16.976057244386045,831.3876066751696,2019
+1998,57,"(55,60]",HS,3515.567176666667,205.13427118644066,17.137883184187533,917.5307988403787,2019
+1998,57,"(55,60]",HS,3513.743843333333,206.98232768361586,16.976057244386045,848.7142973335483,2019
+1998,62,"(60,65]",HS,3800.1913333333337,277.2084745762712,13.708784838350056,1566.0004808563858,2019
+1998,62,"(60,65]",HS,3076.328,277.2084745762712,11.09752508361204,1600.4629104293392,2019
+1998,62,"(60,65]",HS,2430.1386666666667,277.2084745762712,8.766465997770345,1481.69290469807,2019
+1998,62,"(60,65]",HS,4396.603666666667,277.2084745762712,15.860278706800445,1669.784905822491,2019
+1998,62,"(60,65]",HS,5309.9113333333335,277.2084745762712,19.1549386845039,1569.8639493002966,2019
+1998,59,"(55,60]",HS,96.72783333333334,46.201412429378536,2.093612040133779,8082.849703694237,2019
+1998,59,"(55,60]",HS,98.00416666666668,46.201412429378536,2.12123745819398,8058.859116734029,2019
+1998,59,"(55,60]",HS,98.89760000000001,46.201412429378536,2.1405752508361204,8481.219612792356,2019
+1998,59,"(55,60]",HS,145.04616666666666,46.201412429378536,3.13943143812709,7946.171827747317,2019
+1998,59,"(55,60]",HS,104.7505,46.201412429378536,2.267257525083612,8407.953004410516,2019
+1998,74,"(70,75]",HS,165.01166666666666,35.11307344632768,4.69943671888752,7070.497956818823,2019
+1998,74,"(70,75]",HS,165.01166666666666,35.11307344632768,4.69943671888752,7008.952240825248,2019
+1998,74,"(70,75]",HS,163.18833333333333,36.96112994350283,4.415133779264213,7493.206892719283,2019
+1998,74,"(70,75]",HS,165.01166666666666,35.11307344632768,4.69943671888752,7244.389537200783,2019
+1998,74,"(70,75]",HS,165.01166666666666,36.96112994350283,4.464464882943142,7346.791527098756,2019
+1998,41,"(40,45]",HS,0.18233333333333335,14.045229378531072,0.012981869389192045,6235.4498296431075,2019
+1998,41,"(40,45]",HS,0.18233333333333335,14.230035028248587,0.012813273682838902,6226.66905020426,2019
+1998,41,"(40,45]",HS,0.18233333333333335,14.230035028248587,0.012813273682838902,6221.985770517756,2019
+1998,41,"(40,45]",HS,0.18233333333333335,14.045229378531072,0.012981869389192045,6231.555292713529,2019
+1998,41,"(40,45]",HS,0.18233333333333335,14.230035028248587,0.012813273682838902,6235.060856780396,2019
+1998,58,"(55,60]",College,152.066,131.21201129943503,1.1589335343162654,2061.2138113670253,2019
+1998,58,"(55,60]",College,153.88933333333335,131.21201129943503,1.1728296198596262,2105.6243139214293,2019
+1998,58,"(55,60]",College,153.88933333333335,131.21201129943503,1.1728296198596262,1984.2869347376168,2019
+1998,58,"(55,60]",College,153.88933333333335,131.21201129943503,1.1728296198596262,1935.1031232075165,2019
+1998,58,"(55,60]",College,150.24266666666665,131.21201129943503,1.145037448772905,2048.314747198068,2019
+1998,34,"(30,35]",NoHS,504.9174666666667,693.021186440678,0.7285743589743591,856.4072143099218,2019
+1998,34,"(30,35]",NoHS,504.9174666666667,693.021186440678,0.7285743589743591,824.2767420207267,2019
+1998,34,"(30,35]",NoHS,504.9174666666667,693.021186440678,0.7285743589743591,816.0627816869472,2019
+1998,34,"(30,35]",NoHS,504.9174666666667,693.021186440678,0.7285743589743591,832.1091560210494,2019
+1998,34,"(30,35]",NoHS,504.9174666666667,693.021186440678,0.7285743589743591,851.2137340923722,2019
+1998,44,"(40,45]",HS,90.98433333333332,49.89752542372881,1.8234237582063668,7411.425806176068,2019
+1998,44,"(40,45]",HS,90.98433333333332,49.89752542372881,1.8234237582063668,7583.158221959607,2019
+1998,44,"(40,45]",HS,90.98433333333332,49.89752542372881,1.8234237582063668,8004.127931107277,2019
+1998,44,"(40,45]",HS,90.98433333333332,49.89752542372881,1.8234237582063668,7432.6976831765905,2019
+1998,44,"(40,45]",HS,90.98433333333332,49.89752542372881,1.8234237582063668,7788.731856505697,2019
+1998,28,"(25,30]",HS,253.62566666666666,145.99646327683615,1.7372041827187672,7423.135833809296,2019
+1998,28,"(25,30]",HS,325.0091666666667,157.08480225988703,2.069004524886878,7104.207775789483,2019
+1998,28,"(25,30]",HS,239.95066666666665,179.26148022598866,1.3385511843602387,6626.863339759856,2019
+1998,28,"(25,30]",HS,267.6653333333333,160.78091525423727,1.6647829931188252,7250.449512309782,2019
+1998,28,"(25,30]",HS,216.42966666666666,155.23674576271185,1.3941909539735629,6613.609308861369,2019
+1998,23,"(20,25]",HS,171.30216666666666,36.96112994350283,4.63465719063545,8616.961001520709,2019
+1998,23,"(20,25]",HS,171.30216666666666,36.96112994350283,4.63465719063545,8671.903393095676,2019
+1998,23,"(20,25]",HS,171.30216666666666,36.96112994350283,4.63465719063545,8888.342942655074,2019
+1998,23,"(20,25]",HS,171.30216666666666,36.96112994350283,4.63465719063545,8613.713308973893,2019
+1998,23,"(20,25]",HS,171.30216666666666,36.96112994350283,4.63465719063545,8806.696929410824,2019
+1998,87,"(85,90]",NoHS,140.39666666666665,9.609893785310735,14.609596089529196,10786.40037315358,2019
+1998,87,"(85,90]",NoHS,140.39666666666665,9.609893785310735,14.609596089529196,10883.589296355365,2019
+1998,87,"(85,90]",NoHS,140.39666666666665,9.609893785310735,14.609596089529196,10772.220857923021,2019
+1998,87,"(85,90]",NoHS,140.39666666666665,9.609893785310735,14.609596089529196,10774.420531120917,2019
+1998,87,"(85,90]",NoHS,140.39666666666665,9.609893785310735,14.609596089529196,10806.636028000983,2019
+1998,58,"(55,60]",HS,65.3665,53.593638418079095,1.2196690116480222,8320.753596790115,2019
+1998,58,"(55,60]",HS,67.37216666666667,53.593638418079095,1.2570926075423827,8297.053129583337,2019
+1998,58,"(55,60]",HS,67.37216666666667,53.593638418079095,1.2570926075423827,8788.275844574011,2019
+1998,58,"(55,60]",HS,67.18983333333333,53.593638418079095,1.253690462461077,8106.96169052307,2019
+1998,58,"(55,60]",HS,67.37216666666667,53.593638418079095,1.2570926075423827,8740.264989802194,2019
+1998,55,"(50,55]",NoHS,18.789450000000002,22.176677966101696,0.8472617056856188,4563.409534715361,2019
+1998,55,"(50,55]",NoHS,16.063566666666667,22.176677966101696,0.724345039018952,4513.264369841772,2019
+1998,55,"(50,55]",NoHS,18.616233333333334,25.872790960451983,0.7195293836598183,4645.937826455662,2019
+1998,55,"(50,55]",NoHS,18.087466666666668,13.306006779661017,1.3593459680416202,4539.183781159723,2019
+1998,55,"(50,55]",NoHS,19.163233333333334,22.176677966101696,0.8641164994425864,4601.2348485180855,2019
+1998,47,"(45,50]",HS,636.3798,184.80564971751414,3.4435083612040134,5533.247383220714,2019
+1998,47,"(45,50]",HS,636.3798,184.80564971751414,3.4435083612040134,5302.544073047052,2019
+1998,47,"(45,50]",HS,636.3798,184.80564971751414,3.4435083612040134,4941.204165755663,2019
+1998,47,"(45,50]",HS,636.1974666666667,184.80564971751414,3.442521739130435,5406.981344037345,2019
+1998,47,"(45,50]",HS,636.3798,184.80564971751414,3.4435083612040134,4932.342710680521,2019
+1998,42,"(40,45]",College,9.846,59.13780790960452,0.16649247491638797,7611.362907367458,2019
+1998,42,"(40,45]",College,9.846,59.13780790960452,0.16649247491638797,7648.564714429503,2019
+1998,42,"(40,45]",College,9.846,59.13780790960452,0.16649247491638797,7629.106201501507,2019
+1998,42,"(40,45]",College,9.846,59.13780790960452,0.16649247491638797,7678.550453013345,2019
+1998,42,"(40,45]",College,9.846,59.13780790960452,0.16649247491638797,7615.781414170231,2019
+1998,53,"(50,55]",HS,3460.522566666667,107.18727683615819,32.284825856302625,1087.288876982571,2019
+1998,53,"(50,55]",HS,3305.9039,107.18727683615819,30.842316341829083,1196.4329351775,2019
+1998,53,"(50,55]",HS,3383.5232,107.18727683615819,31.566462922384964,1240.4576675363471,2019
+1998,53,"(50,55]",HS,3364.2323333333334,107.18727683615819,31.3864894475839,1394.4054244891954,2019
+1998,53,"(50,55]",HS,3377.105066666667,107.18727683615819,31.506585168953986,1246.0936886484637,2019
+1998,53,"(50,55]",College,14191.003333333334,2494.87627118644,5.688058961972007,12.721433128327465,2019
+1998,53,"(50,55]",College,54937.03333333334,2568.7985310734466,21.38627559490869,17.31960725314636,2019
+1998,53,"(50,55]",College,10407.586666666666,1541.2791186440677,6.752564503581081,13.571658835012602,2019
+1998,53,"(50,55]",College,11270.388,2254.628926553672,4.998777345249192,13.859521983272524,2019
+1998,53,"(50,55]",College,17581.30933333333,1535.7349491525424,11.448140411882365,14.436668171043834,2019
+1998,24,"(20,25]",HS,9.390166666666666,94.25088135593221,0.09962948390058363,5979.40501818795,2019
+1998,24,"(20,25]",HS,9.5725,94.25088135593221,0.10156403698603186,5956.526230180878,2019
+1998,24,"(20,25]",HS,9.5725,94.25088135593221,0.10156403698603186,5968.893546675202,2019
+1998,24,"(20,25]",HS,9.5725,94.25088135593221,0.10156403698603186,6004.5971799302515,2019
+1998,24,"(20,25]",HS,9.390166666666666,94.25088135593221,0.09962948390058363,5917.303540379027,2019
+1998,72,"(70,75]",College,35276.577,1556.0635706214691,22.670395776896857,25.546027106954202,2019
+1998,72,"(70,75]",College,35684.456666666665,1637.378056497175,21.793657564341636,28.22536449724394,2019
+1998,72,"(70,75]",College,35734.23366666667,1611.5052655367233,22.174444248412136,23.19037351208987,2019
+1998,72,"(70,75]",College,34803.23966666667,1524.6466101694916,22.827086247086246,21.866787722355205,2019
+1998,72,"(70,75]",College,34355.976,1624.4416610169492,21.149405869394,21.963096844853755,2019
+1998,24,"(20,25]",College,3820.4303333333337,25.872790960451983,147.66208791208788,1098.496444081525,2019
+1998,24,"(20,25]",College,3818.607,25.872790960451983,147.59161490683226,1209.7364911007987,2019
+1998,24,"(20,25]",College,3820.4303333333337,25.872790960451983,147.66208791208788,1103.455020972147,2019
+1998,24,"(20,25]",College,3820.4303333333337,25.872790960451983,147.66208791208788,1407.733525526503,2019
+1998,24,"(20,25]",College,3816.7836666666667,25.872790960451983,147.52114190157664,1099.821095076633,2019
+1998,56,"(55,60]",HS,21150.520800000002,924.0282485875706,22.88947424749164,1137.361481989933,2019
+1998,56,"(55,60]",HS,23990.873,924.0282485875706,25.963354515050167,1175.502057019537,2019
+1998,56,"(55,60]",HS,21684.174,924.0282485875706,23.467003344481604,1119.0440882321582,2019
+1998,56,"(55,60]",HS,26302.31266666667,924.0282485875706,28.46483612040134,1089.8890552071086,2019
+1998,56,"(55,60]",HS,23347.236333333334,924.0282485875706,25.26679933110368,1064.157572455288,2019
+1998,46,"(45,50]",College,3527.4206666666664,419.50882485875707,8.408454024427975,628.2111372565486,2019
+1998,46,"(45,50]",College,3529.244,419.50882485875707,8.412800377175019,635.5531432320181,2019
+1998,46,"(45,50]",College,3529.244,419.50882485875707,8.412800377175019,693.2057405952412,2019
+1998,46,"(45,50]",College,3529.244,419.50882485875707,8.412800377175019,736.3591861058312,2019
+1998,46,"(45,50]",College,3529.244,419.50882485875707,8.412800377175019,610.4107572198848,2019
+1998,24,"(20,25]",HS,2.5526666666666666,18.480564971751416,0.1381270903010033,1821.166820216516,2019
+1998,24,"(20,25]",HS,2.5526666666666666,18.480564971751416,0.1381270903010033,1830.2222640706227,2019
+1998,24,"(20,25]",HS,2.5526666666666666,18.480564971751416,0.1381270903010033,1833.0972083133195,2019
+1998,24,"(20,25]",HS,2.735,18.480564971751416,0.14799331103678925,1818.8515457443384,2019
+1998,24,"(20,25]",HS,2.5526666666666666,18.480564971751416,0.1381270903010033,1822.8378921282915,2019
+1998,85,"(80,85]",HS,229462.124,14211.554463276836,16.146166458633243,24.536113405023357,2019
+1998,85,"(80,85]",HS,228355.543,14211.554463276836,16.06830157742975,25.75983580138125,2019
+1998,85,"(80,85]",HS,228849.66633333336,12437.4202259887,18.400091190546004,22.59482456630162,2019
+1998,85,"(80,85]",HS,228018.22633333335,13379.929039548022,17.041811332434083,21.34192801567523,2019
+1998,85,"(80,85]",HS,228590.753,12418.93966101695,18.406624014572383,21.91752728842682,2019
+1998,38,"(35,40]",HS,369.4438,75.77031638418079,4.8758381597193905,8426.774265597605,2019
+1998,38,"(35,40]",HS,259.6062,57.289751412429375,4.531459704390981,8645.756845548838,2019
+1998,38,"(35,40]",HS,634.6111666666667,199.59010169491523,3.1795723398984275,6180.826042137595,2019
+1998,38,"(35,40]",HS,397.5049,48.04946892655367,8.272826086956522,8549.406752726976,2019
+1998,38,"(35,40]",HS,537.4821999999999,168.17314124293785,3.196004998346135,6177.465257249369,2019
+1998,53,"(50,55]",HS,99453.16966666667,674.5406214689266,147.43836990882852,27.16682622033857,2019
+1998,53,"(50,55]",HS,101371.86333333333,829.7773672316384,122.16754437583332,28.056924644252824,2019
+1998,53,"(50,55]",HS,89026.07333333333,778.0317853107346,114.42472533146909,30.603898916797483,2019
+1998,53,"(50,55]",HS,92412.18566666667,711.5017514124293,129.88328627893847,27.85973822035848,2019
+1998,53,"(50,55]",HS,100675.897,729.9823163841808,137.91552855509929,30.59730117749432,2019
+1998,58,"(55,60]",HS,221.2615,81.31448587570623,2.7210588324718756,9435.730796696453,2019
+1998,58,"(55,60]",HS,221.44383333333334,48.04946892655367,4.608663493696938,9443.822814781448,2019
+1998,58,"(55,60]",HS,221.44383333333334,29.56890395480226,7.489078177257525,10077.678192015035,2019
+1998,58,"(55,60]",HS,221.2615,29.56890395480226,7.48291178929766,9191.196572567696,2019
+1998,58,"(55,60]",HS,221.44383333333334,42.50529943502825,5.2097935146139305,9979.842898410314,2019
+1998,49,"(45,50]",College,2191.3002333333334,369.6112994350283,5.928661371237458,1089.4570012775007,2019
+1998,49,"(45,50]",College,2466.623566666667,369.6112994350283,6.673561036789298,1194.67476651452,2019
+1998,49,"(45,50]",College,2016.2602333333334,369.6112994350283,5.455082775919732,3323.5396647161906,2019
+1998,49,"(45,50]",College,2010.7902333333334,369.6112994350283,5.440283444816053,3301.324483032192,2019
+1998,49,"(45,50]",College,2080.0769,369.6112994350283,5.627741638795986,3408.193079935816,2019
+1998,55,"(50,55]",College,649636.5273333334,19829.646214689266,32.760873305550966,33.298020221494895,2019
+1998,55,"(50,55]",College,646281.2293333334,13731.059774011299,47.067104795257414,34.892343262385054,2019
+1998,55,"(50,55]",College,648180.778,30104.840338983053,21.53078278115511,30.18795190638621,2019
+1998,55,"(50,55]",College,647509.2443333333,10496.960903954803,61.68540116114748,29.311296248858962,2019
+1998,55,"(50,55]",College,649353.7283333334,19441.554350282488,33.40029900047052,29.895445829547914,2019
+1998,57,"(55,60]",HS,329.294,57.289751412429375,5.747869241557881,7089.870313460722,2019
+1998,57,"(55,60]",HS,358.46733333333333,57.289751412429375,6.257093537598447,6760.826873484727,2019
+1998,57,"(55,60]",HS,354.8206666666667,57.289751412429375,6.193440500593376,6327.344614259484,2019
+1998,57,"(55,60]",HS,360.473,57.289751412429375,6.292102707951236,6923.523124464446,2019
+1998,57,"(55,60]",HS,360.473,57.289751412429375,6.292102707951236,6310.7203457110645,2019
+1998,42,"(40,45]",College,74.57433333333333,64.68197740112994,1.1529383659818442,2873.3468733930154,2019
+1998,42,"(40,45]",College,74.57433333333333,64.68197740112994,1.1529383659818442,2932.217973664804,2019
+1998,42,"(40,45]",College,76.39766666666668,64.68197740112994,1.18112756808409,2655.561030299716,2019
+1998,42,"(40,45]",College,74.57433333333333,64.68197740112994,1.1529383659818442,2775.133122361284,2019
+1998,42,"(40,45]",College,76.39766666666668,64.68197740112994,1.18112756808409,2765.430237178941,2019
+1998,52,"(50,55]",HS,8.569666666666667,29.56890395480226,0.2898202341137124,6709.7158029229395,2019
+1998,52,"(50,55]",HS,8.569666666666667,29.56890395480226,0.2898202341137124,6695.577353444683,2019
+1998,52,"(50,55]",HS,8.569666666666667,29.56890395480226,0.2898202341137124,6652.1152701806905,2019
+1998,52,"(50,55]",HS,8.569666666666667,29.56890395480226,0.2898202341137124,6703.879193603512,2019
+1998,52,"(50,55]",HS,8.569666666666667,29.56890395480226,0.2898202341137124,6678.802455312255,2019
+1998,76,"(75,80]",HS,3571.5453333333335,554.4169491525424,6.441984392419174,354.151381960544,2019
+1998,76,"(75,80]",HS,3569.722,554.4169491525424,6.438695652173913,358.8968123762861,2019
+1998,76,"(75,80]",HS,3797.6386666666667,554.4169491525424,6.84978818283166,393.8708294662557,2019
+1998,76,"(75,80]",HS,3571.5453333333335,554.4169491525424,6.441984392419174,410.30458201984567,2019
+1998,76,"(75,80]",HS,3434.6130000000003,554.4169491525424,6.195,343.6317196789311,2019
+1998,36,"(35,40]",College,952.1264333333334,234.70317514124295,4.056725831511864,567.9457770880483,2019
+1998,36,"(35,40]",College,1012.3146666666667,186.65370621468927,5.423490844067684,524.6185207353593,2019
+1998,36,"(35,40]",College,1110.41,336.3462824858757,3.3013892462053,527.6268677311397,2019
+1998,36,"(35,40]",College,810.4716666666667,199.59010169491523,4.060680663941534,583.5581217556004,2019
+1998,36,"(35,40]",College,762.8826666666666,238.39928813559317,3.2000207409711967,591.5742222566957,2019
+1998,77,"(75,80]",NoHS,2.5526666666666666,29.56890395480226,0.08632943143812709,5555.13122330916,2019
+1998,77,"(75,80]",NoHS,2.735,29.56890395480226,0.09249581939799331,5678.790521300424,2019
+1998,77,"(75,80]",NoHS,2.5526666666666666,29.56890395480226,0.08632943143812709,5773.3197157624445,2019
+1998,77,"(75,80]",NoHS,18.962666666666667,31.416960451977403,0.6035805626598465,5724.722252528603,2019
+1998,77,"(75,80]",NoHS,3.099666666666667,29.56890395480226,0.10482859531772576,5732.322034638076,2019
+1998,38,"(35,40]",HS,31.361333333333334,79.46642937853107,0.39464882943143814,3081.32449812858,2019
+1998,38,"(35,40]",HS,209.3916,73.92225988700567,2.832591973244147,3208.268059597696,2019
+1998,38,"(35,40]",HS,33.23936666666667,46.201412429378536,0.7194448160535116,3016.992218846369,2019
+1998,38,"(35,40]",HS,208.75343333333333,60.98586440677967,3.4229806425458595,6312.780867061528,2019
+1998,38,"(35,40]",HS,34.16926666666667,79.46642937853107,0.4299836664851832,3123.935243136237,2019
+1998,44,"(40,45]",College,16970.675,245.7915141242938,69.04499962280282,299.3795337464169,2019
+1998,44,"(40,45]",College,19077.536666666667,402.8763163841808,47.35333374244423,346.6058415366983,2019
+1998,44,"(40,45]",College,16460.506333333335,325.2579435028249,50.60754598662207,285.01372738225047,2019
+1998,44,"(40,45]",College,20740.963666666667,303.08126553672315,68.4336711803573,327.1255765884028,2019
+1998,44,"(40,45]",College,16394.319333333333,454.62189830508476,36.061437855181225,295.6368007403637,2019
+1998,41,"(40,45]",College,34542.138333333336,5451.766666666667,6.335953177257525,1137.361481989933,2019
+1998,41,"(40,45]",College,35611.15866666666,6061.625310734464,5.874853169100252,212.65654121034567,2019
+1998,41,"(40,45]",College,34487.43833333334,6505.158870056497,5.301552048494984,1130.7163760614137,2019
+1998,41,"(40,45]",College,36507.874,5728.975141242938,6.37249649368864,198.01234471406545,2019
+1998,41,"(40,45]",College,34476.68066666667,6135.547570621469,5.61916931941814,1053.415068042447,2019
+1998,35,"(30,35]",HS,51.60033333333334,144.14840677966103,0.3579667266958237,11764.159150815116,2019
+1998,35,"(30,35]",HS,48.22716666666666,144.14840677966103,0.3345660749506903,11698.130167098574,2019
+1998,35,"(30,35]",HS,47.62546666666667,144.14840677966103,0.33039190463939627,11899.768103793202,2019
+1998,35,"(30,35]",HS,49.95933333333333,144.14840677966103,0.34658262584683985,11887.97356379024,2019
+1998,35,"(30,35]",HS,50.68866666666666,144.14840677966103,0.35164222622416597,12095.880060713156,2019
+1998,72,"(70,75]",College,395.68156666666664,107.18727683615819,3.691497520470534,8008.061869798036,2019
+1998,72,"(70,75]",College,442.3406666666667,107.18727683615819,4.126801983623573,7712.985960876055,2019
+1998,72,"(70,75]",College,404.78000000000003,107.18727683615819,3.7763810402491065,7199.697348280228,2019
+1998,72,"(70,75]",College,397.74193333333335,107.18727683615819,3.71071964017991,7874.881197652025,2019
+1998,72,"(70,75]",College,409.52066666666667,107.18727683615819,3.8206089263060776,7180.658928391034,2019
+1998,41,"(40,45]",College,932.088,219.9187231638418,4.238329445490571,7427.405490734386,2019
+1998,41,"(40,45]",College,931.9056666666667,219.9187231638418,4.237500351311093,7028.618977984021,2019
+1998,41,"(40,45]",College,931.9056666666667,219.9187231638418,4.237500351311093,7285.352709490682,2019
+1998,41,"(40,45]",College,930.0823333333334,219.9187231638418,4.229209409516315,7090.337467088408,2019
+1998,41,"(40,45]",College,930.2646666666667,219.9187231638418,4.230038503695793,7349.423493591447,2019
+1998,64,"(60,65]",College,1533.241,75.77031638418079,20.23537808956685,3225.0051332051917,2019
+1998,64,"(60,65]",College,1533.241,75.77031638418079,20.23537808956685,3504.805809754581,2019
+1998,64,"(60,65]",College,1533.4233333333332,75.77031638418079,20.237784484868257,3279.213646359577,2019
+1998,64,"(60,65]",College,1533.241,75.77031638418079,20.23537808956685,3256.5495098924916,2019
+1998,64,"(60,65]",College,1533.241,75.77031638418079,20.23537808956685,3360.198111606713,2019
+1998,38,"(35,40]",HS,139.97729999999999,79.46642937853107,1.7614645718285757,8126.5949876724335,2019
+1998,38,"(35,40]",HS,186.34466666666665,79.46642937853107,2.3449482772030796,8290.405059623143,2019
+1998,38,"(35,40]",HS,164.68346666666667,70.22614689265536,2.345044886463651,8626.640887923662,2019
+1998,38,"(35,40]",HS,127.25043333333333,55.441694915254246,2.2952118171683384,8198.363413924886,2019
+1998,38,"(35,40]",HS,153.56113333333334,64.68197740112994,2.374094601051123,8537.523296997939,2019
+1998,37,"(35,40]",College,583.102,145.99646327683615,3.9939460649422123,5426.220461296167,2019
+1998,37,"(35,40]",College,581.2786666666666,144.14840677966103,4.032501500728925,5191.852619638414,2019
+1998,37,"(35,40]",College,581.2786666666666,144.14840677966103,4.032501500728925,4848.12659649172,2019
+1998,37,"(35,40]",College,581.2786666666666,144.14840677966103,4.032501500728925,5299.767599416789,2019
+1998,37,"(35,40]",College,581.2786666666666,145.99646327683615,3.981457177934888,4832.879102194938,2019
+1998,60,"(55,60]",HS,687.3966666666666,166.32508474576272,4.132850241545893,8145.5056844500605,2019
+1998,60,"(55,60]",HS,687.2143333333333,166.32508474576272,4.131753994797473,7765.73276666969,2019
+1998,60,"(55,60]",HS,687.3966666666666,166.32508474576272,4.132850241545893,7269.499286703227,2019
+1998,60,"(55,60]",HS,687.3966666666666,166.32508474576272,4.132850241545893,7953.875214623173,2019
+1998,60,"(55,60]",HS,687.3966666666666,166.32508474576272,4.132850241545893,7251.275088371272,2019
+1998,45,"(40,45]",College,101.55966666666667,166.32508474576272,0.6106094388703084,6729.651038795875,2019
+1998,45,"(40,45]",College,98.64233333333333,166.32508474576272,0.5930694908955778,6855.882393338662,2019
+1998,45,"(40,45]",College,100.648,166.32508474576272,0.6051282051282051,7151.168631680349,2019
+1998,45,"(40,45]",College,99.18933333333334,166.32508474576272,0.5963582311408399,6711.048976078705,2019
+1998,45,"(40,45]",College,97.366,166.32508474576272,0.5853957636566332,7041.498883549715,2019
+1998,80,"(75,80]",College,11888.862666666666,369.6112994350283,32.16585284280936,1744.5068728416486,2019
+1998,80,"(75,80]",College,8965.877,369.6112994350283,24.257583612040133,1776.0977628968158,2019
+1998,80,"(75,80]",College,9040.633666666667,369.6112994350283,24.459841137123743,1691.4366174697202,2019
+1998,80,"(75,80]",College,10233.276,369.6112994350283,27.68658862876254,1843.0830336846307,2019
+1998,80,"(75,80]",College,9303.376,369.6112994350283,25.170702341137122,1722.0710848103492,2019
+1998,39,"(35,40]",NoHS,445.805,112.73144632768363,3.954575360491255,5616.138175665015,2019
+1998,39,"(35,40]",NoHS,563.41,127.51589830508476,4.418351025156317,5373.567459625972,2019
+1998,39,"(35,40]",NoHS,452.916,101.64310734463277,4.455944055944056,5017.811025781682,2019
+1998,39,"(35,40]",NoHS,565.598,107.18727683615819,5.276727021104832,5485.259463661259,2019
+1998,39,"(35,40]",NoHS,453.2806666666667,116.4275593220339,3.8932420236768066,5002.029869189506,2019
+1998,75,"(70,75]",College,7586.707666666667,190.34981920903957,39.85665811605026,1388.4900761687977,2019
+1998,75,"(70,75]",College,7586.707666666667,192.1978757062147,39.473421018780556,1444.489037070037,2019
+1998,75,"(70,75]",College,7586.707666666667,192.1978757062147,39.473421018780556,1568.2603547380227,2019
+1998,75,"(70,75]",College,7586.707666666667,192.1978757062147,39.473421018780556,1656.291731277642,2019
+1998,75,"(70,75]",College,7588.531,190.34981920903957,39.866236971133546,1348.564197734558,2019
+1998,47,"(45,50]",College,893.4333333333334,323.40988700564975,2.762541806020067,687.7017286075601,2019
+1998,47,"(45,50]",College,893.4333333333334,323.40988700564975,2.762541806020067,727.5061835532445,2019
+1998,47,"(45,50]",College,893.4333333333334,323.40988700564975,2.762541806020067,677.5596772562069,2019
+1998,47,"(45,50]",College,893.4333333333334,323.40988700564975,2.762541806020067,714.9562668750507,2019
+1998,47,"(45,50]",College,893.4333333333334,323.40988700564975,2.762541806020067,682.6606424556418,2019
+1998,28,"(25,30]",NoHS,20.60366666666667,64.68197740112994,0.3185379837553751,5219.3943212589775,2019
+1998,28,"(25,30]",NoHS,20.05666666666667,64.68197740112994,0.31008122312470143,5234.84744775007,2019
+1998,28,"(25,30]",NoHS,21.88,64.68197740112994,0.33827042522694695,5235.108265886146,2019
+1998,28,"(25,30]",NoHS,20.05666666666667,64.68197740112994,0.31008122312470143,5261.166194312454,2019
+1998,28,"(25,30]",NoHS,20.05666666666667,64.68197740112994,0.31008122312470143,5241.198926085321,2019
+1998,47,"(45,50]",HS,121.94453333333334,73.92225988700567,1.649632107023411,6559.155310454434,2019
+1998,47,"(45,50]",HS,174.3289,75.77031638418079,2.300754547679256,6687.265858994391,2019
+1998,47,"(45,50]",HS,173.58133333333333,49.89752542372881,3.478756348321566,6927.82903964899,2019
+1998,47,"(45,50]",HS,184.2843,51.745581920903966,3.5613533205924504,6578.406061891235,2019
+1998,47,"(45,50]",HS,127.74273333333333,62.833920903954805,2.033021837497541,6908.201669526183,2019
+1998,38,"(35,40]",HS,212.60066666666665,116.4275593220339,1.8260338695121303,6264.8367139203965,2019
+1998,38,"(35,40]",HS,289.1806666666667,116.4275593220339,2.4837819185645276,5993.657752561032,2019
+1998,38,"(35,40]",HS,212.60066666666665,116.4275593220339,1.8260338695121303,5597.085495570711,2019
+1998,38,"(35,40]",HS,229.01066666666665,116.4275593220339,1.9669798800233582,6117.159707842596,2019
+1998,38,"(35,40]",HS,281.88733333333334,116.4275593220339,2.4211392472262037,5578.744561645099,2019
+1998,45,"(40,45]",HS,363.208,149.69257627118645,2.4263594698377307,673.4576325994283,2019
+1998,45,"(40,45]",HS,385.088,147.84451977401133,2.6046822742474913,622.5880090595396,2019
+1998,45,"(40,45]",HS,365.0313333333333,147.84451977401133,2.469021739130434,641.6753075665737,2019
+1998,45,"(40,45]",HS,315.80133333333333,147.84451977401133,2.1360367892976586,707.0445750019015,2019
+1998,45,"(40,45]",HS,365.0313333333333,149.69257627118645,2.4385399892646267,700.5354038280645,2019
+1998,53,"(50,55]",College,801.6285,179.26148022598866,4.471839120091026,3127.517221400414,2019
+1998,53,"(50,55]",College,801.4461666666666,179.26148022598866,4.470821983932697,3415.9212536167724,2019
+1998,53,"(50,55]",College,801.4461666666666,179.26148022598866,4.470821983932697,3181.4963402183926,2019
+1998,53,"(50,55]",College,801.2638333333334,179.26148022598866,4.46980484777437,3160.002243572089,2019
+1998,53,"(50,55]",College,801.0815,181.10953672316384,4.4231878370077125,3262.925728008571,2019
+1998,53,"(50,55]",HS,997.8191666666667,66.53003389830509,14.998025826830172,8008.584155941307,2019
+1998,53,"(50,55]",HS,1240.0125333333335,46.201412429378536,26.839277591973246,7673.918924314681,2019
+1998,53,"(50,55]",HS,1621.2168333333334,149.69257627118645,10.83030884842479,3843.94975698076,2019
+1998,53,"(50,55]",HS,894.1991333333333,66.53003389830509,13.440533259011518,7823.682174497709,2019
+1998,53,"(50,55]",HS,1370.1438333333333,77.61837288135592,17.652313266443702,3941.4952360952493,2019
+1998,42,"(40,45]",College,4011.5521333333336,354.82684745762714,11.305661231884057,844.0072121425828,2019
+1998,42,"(40,45]",College,4008.178966666667,352.978790960452,11.35529688840638,864.103320663174,2019
+1998,42,"(40,45]",College,4034.9090333333334,352.978790960452,11.431024006723984,807.1549372233096,2019
+1998,42,"(40,45]",College,4012.3908666666666,352.978790960452,11.367229333380028,899.592332155313,2019
+1998,42,"(40,45]",College,4018.2437666666665,352.978790960452,11.38381078288886,840.7400768120267,2019
+1998,21,"(20,25]",HS,0.21880000000000002,13.860423728813561,0.015785953177257523,9521.562361805969,2019
+1998,21,"(20,25]",HS,0.21880000000000002,13.860423728813561,0.015785953177257523,9446.960320846129,2019
+1998,21,"(20,25]",HS,0.21880000000000002,13.860423728813561,0.015785953177257523,9660.172065256838,2019
+1998,21,"(20,25]",HS,0.21880000000000002,13.860423728813561,0.015785953177257523,9613.241396254287,2019
+1998,21,"(20,25]",HS,0.21880000000000002,13.860423728813561,0.015785953177257523,9783.27846929459,2019
+1998,56,"(55,60]",HS,-25.709,25.872790960451983,-0.9936693741041565,10625.51382861594,2019
+1998,56,"(55,60]",HS,-30.44966666666667,25.872790960451983,-1.176899187768753,10508.117917681979,2019
+1998,56,"(55,60]",HS,-26.256,25.872790960451983,-1.0148112756808407,11059.379791903919,2019
+1998,56,"(55,60]",HS,-24.797333333333334,25.872790960451983,-0.9584328714763496,10465.271199618155,2019
+1998,56,"(55,60]",HS,-30.44966666666667,25.872790960451983,-1.176899187768753,10869.81412804948,2019
+1998,58,"(55,60]",College,45465.72833333334,476.79857627118633,95.35625858805842,202.53571559390758,2019
+1998,58,"(55,60]",College,45289.776666666665,478.6466327683616,94.62048527265918,198.13259595488466,2019
+1998,58,"(55,60]",College,45324.23766666667,432.4452203389831,104.80920018294599,202.42190965768623,2019
+1998,58,"(55,60]",College,45279.019,432.4452203389831,104.70463510848124,205.55870260685532,2019
+1998,58,"(55,60]",College,45310.92733333334,432.4452203389831,104.77842094731727,198.11973813182306,2019
+1998,34,"(30,35]",HS,148368.64466666666,6560.600564971752,22.61510104102878,24.138170005778257,2019
+1998,34,"(30,35]",HS,148434.64933333333,6412.756045197741,23.146779370235077,24.904159637331603,2019
+1998,34,"(30,35]",HS,157398.52066666665,6542.12,24.059253065774804,27.033696461809864,2019
+1998,34,"(30,35]",HS,147542.857,6689.964519774011,22.0543556791515,24.73838124127179,2019
+1998,34,"(30,35]",HS,146649.97066666666,6301.872655367232,23.270855932286505,26.89246887516341,2019
+1998,27,"(25,30]",College,8.934333333333335,105.33922033898305,0.08481488000938803,5084.075760054158,2019
+1998,27,"(25,30]",College,4.886533333333334,96.09893785310734,0.050848983792127614,5084.379343739246,2019
+1998,27,"(25,30]",College,8.460266666666666,105.33922033898305,0.08031449862113477,5088.5839127130275,2019
+1998,27,"(25,30]",College,6.600466666666667,105.33922033898305,0.06265915625183359,5078.123369199218,2019
+1998,27,"(25,30]",College,10.648266666666666,105.33922033898305,0.10108548964384204,5127.589394987722,2019
+1998,31,"(30,35]",HS,19.4185,92.40282485875707,0.2101505016722408,7459.464880377105,2019
+1998,31,"(30,35]",HS,21.424166666666668,94.25088135593221,0.22730998754016657,7461.5724622610305,2019
+1998,31,"(30,35]",HS,19.600833333333334,92.40282485875707,0.21212374581939797,7590.202527363695,2019
+1998,31,"(30,35]",HS,19.4185,94.25088135593221,0.2060299036002361,7495.1444986278875,2019
+1998,31,"(30,35]",HS,21.424166666666668,94.25088135593221,0.22730998754016657,7543.490329549875,2019
+1998,41,"(40,45]",HS,20.858933333333336,73.92225988700567,0.2821739130434782,6216.77195100323,2019
+1998,41,"(40,45]",HS,17.212266666666668,75.77031638418079,0.22716371645321806,6337.269990833132,2019
+1998,41,"(40,45]",HS,18.306266666666666,73.92225988700567,0.24764214046822736,6639.467769447644,2019
+1998,41,"(40,45]",HS,17.41283333333333,73.92225988700567,0.23555602006688955,6236.035611553122,2019
+1998,41,"(40,45]",HS,21.223599999999998,73.92225988700567,0.2871070234113711,6488.490892565017,2019
+1998,44,"(40,45]",HS,752.5808333333334,157.08480225988703,4.790920716112532,5385.846803960834,2019
+1998,44,"(40,45]",HS,750.6663333333333,157.08480225988703,4.778733031674207,5153.2227703545605,2019
+1998,44,"(40,45]",HS,750.8486666666666,157.08480225988703,4.779893763525476,4812.054232067678,2019
+1998,44,"(40,45]",HS,752.4896666666666,157.08480225988703,4.790340350186897,5260.334811430758,2019
+1998,44,"(40,45]",HS,752.4896666666666,157.08480225988703,4.790340350186897,4796.920186370038,2019
+1998,45,"(40,45]",College,1749.944166666667,175.56536723163845,9.96747931702165,1090.9961191157795,2019
+1998,45,"(40,45]",College,1679.9281666666668,175.56536723163845,9.568676289385671,1158.8350524575364,2019
+1998,45,"(40,45]",College,1745.3858333333333,175.56536723163845,9.941515578243266,1113.4793849347677,2019
+1998,45,"(40,45]",College,1759.2431666666669,175.56536723163845,10.020445344129554,1127.1930006879193,2019
+1998,45,"(40,45]",College,1782.7641666666668,175.56536723163845,10.154418236226016,1080.601964399687,2019
+1998,54,"(50,55]",HS,181.23933333333335,48.04946892655367,3.77193208129663,7155.442143712459,2019
+1998,54,"(50,55]",HS,183.06266666666667,49.89752542372881,3.6687724513811477,7295.19910549927,2019
+1998,54,"(50,55]",HS,183.06266666666667,49.89752542372881,3.6687724513811477,7557.6316657312,2019
+1998,54,"(50,55]",HS,183.06266666666667,49.89752542372881,3.6687724513811477,7176.4429634231055,2019
+1998,54,"(50,55]",HS,183.06266666666667,49.89752542372881,3.6687724513811477,7536.219989272929,2019
+1998,45,"(40,45]",College,293.92133333333334,96.09893785310734,3.0585284280936453,5891.0602152429265,2019
+1998,45,"(40,45]",College,293.92133333333334,96.09893785310734,3.0585284280936453,5644.882739540428,2019
+1998,45,"(40,45]",College,293.92133333333334,96.09893785310734,3.0585284280936453,5260.437209737514,2019
+1998,45,"(40,45]",College,293.92133333333334,96.09893785310734,3.0585284280936453,5755.047571136058,2019
+1998,45,"(40,45]",College,293.92133333333334,96.09893785310734,3.0585284280936453,5250.308750450524,2019
+1998,64,"(60,65]",NoHS,9.536033333333332,18.11095367231638,0.52653402498123,4321.086221790926,2019
+1998,64,"(60,65]",NoHS,9.335466666666667,18.480564971751416,0.5051505016722407,4314.185130252095,2019
+1998,64,"(60,65]",NoHS,9.353700000000002,18.11095367231638,0.5164664528018568,4447.434160609019,2019
+1998,64,"(60,65]",NoHS,9.536033333333332,17.92614802259887,0.5319622108057787,4306.9868200866085,2019
+1998,64,"(60,65]",NoHS,9.335466666666667,17.92614802259887,0.5207737130641658,4364.157197125778,2019
+1998,38,"(35,40]",College,1106.7633333333333,240.24734463276835,4.606766143555442,7.780482599842427,2019
+1998,38,"(35,40]",College,1106.7633333333333,240.24734463276835,4.606766143555442,8.755680993689525,2019
+1998,38,"(35,40]",College,1106.7633333333333,240.24734463276835,4.606766143555442,8.715263948044706,2019
+1998,38,"(35,40]",College,1106.7633333333333,240.24734463276835,4.606766143555442,8.519858318031336,2019
+1998,38,"(35,40]",College,1106.7633333333333,240.24734463276835,4.606766143555442,8.952811241348382,2019
+1998,37,"(35,40]",HS,20.895400000000002,33.265016949152546,0.6281493868450391,6110.286889285438,2019
+1998,37,"(35,40]",HS,20.713066666666666,44.35335593220339,0.46700111482720175,6140.889281853788,2019
+1998,37,"(35,40]",HS,20.895400000000002,38.80918644067796,0.5384137601528907,6164.814963128756,2019
+1998,37,"(35,40]",HS,20.713066666666666,46.201412429378536,0.44832107023411366,6109.144887166215,2019
+1998,37,"(35,40]",HS,20.713066666666666,29.56890395480226,0.7005016722408027,6173.760944779205,2019
+1998,46,"(45,50]",College,7665.840333333334,2180.7066666666665,3.515301003344482,208.0456107944621,2019
+1998,46,"(45,50]",College,7665.840333333334,2180.7066666666665,3.515301003344482,204.24782270085961,2019
+1998,46,"(45,50]",College,7664.017,2180.7066666666665,3.514464882943144,198.74523196814184,2019
+1998,46,"(45,50]",College,7664.017,2180.7066666666665,3.514464882943144,216.2431039155938,2019
+1998,46,"(45,50]",College,7665.840333333334,2180.7066666666665,3.515301003344482,204.62046263766325,2019
+1998,44,"(40,45]",College,80.60956666666667,53.593638418079095,1.5040883404451622,5896.717514405425,2019
+1998,44,"(40,45]",College,76.23356666666666,70.22614689265536,1.0855439183242386,6016.301701677684,2019
+1998,44,"(40,45]",College,69.30489999999999,90.55476836158192,0.7653368370759674,6300.726665265706,2019
+1998,44,"(40,45]",College,62.7956,79.46642937853107,0.7902154468382981,5895.639007090074,2019
+1998,44,"(40,45]",College,63.8896,90.55476836158192,0.7055354583304894,6255.611585353807,2019
+1998,29,"(25,30]",HS,-13.857333333333335,51.745581920903966,-0.267797419971333,4698.232934902836,2019
+1998,29,"(25,30]",HS,-27.897000000000002,51.745581920903966,-0.5391184902054467,4759.443240389095,2019
+1998,29,"(25,30]",HS,-13.675,51.745581920903966,-0.26427376970855226,4742.705675772251,2019
+1998,29,"(25,30]",HS,-13.492666666666667,51.745581920903966,-0.2607501194457716,4689.069602802451,2019
+1998,29,"(25,30]",HS,-13.675,51.745581920903966,-0.26427376970855226,4769.056191743466,2019
+1998,36,"(35,40]",HS,163.91766666666666,160.78091525423727,1.0195094760312153,6503.591246150432,2019
+1998,36,"(35,40]",HS,163.91766666666666,160.78091525423727,1.0195094760312153,6592.546798784444,2019
+1998,36,"(35,40]",HS,164.1,160.78091525423727,1.0206435243916503,6863.009608712973,2019
+1998,36,"(35,40]",HS,164.1,160.78091525423727,1.0206435243916503,6536.162115405941,2019
+1998,36,"(35,40]",HS,165.741,160.78091525423727,1.030849959635567,6779.9290328740635,2019
+1998,76,"(75,80]",NoHS,160703.13,7650.953898305085,21.0043260142504,33.298020221494895,2019
+1998,76,"(75,80]",NoHS,162710.62,8223.851412429378,19.78520912404645,34.892343262385054,2019
+1998,76,"(75,80]",NoHS,165860.06366666665,6800.847909604519,24.388144812418204,30.18795190638621,2019
+1998,76,"(75,80]",NoHS,157007.23333333334,6634.522824858757,23.665188511379622,29.311296248858962,2019
+1998,76,"(75,80]",NoHS,158750.34,7096.5369491525435,22.370113921404677,29.895445829547914,2019
+1998,51,"(50,55]",College,1739.0953333333332,1267.766757062147,1.371778620669481,110.47517246966174,2019
+1998,51,"(50,55]",College,3949.34,1674.339186440678,2.3587454871647213,12.440634123637386,2019
+1998,51,"(50,55]",College,2001.6553333333334,1537.5830056497175,1.301819365834834,6.919241207599612,2019
+1998,51,"(50,55]",College,4086.09,1402.6748813559325,2.9130699168506347,10.24960550108709,2019
+1998,51,"(50,55]",College,2280.443,1016.4310734463277,2.243578595317726,7.014548578632544,2019
+1998,57,"(55,60]",NoHS,-8.6973,20.328621468926556,-0.42783520826999083,5941.800375983116,2019
+1998,57,"(55,60]",NoHS,-8.6973,20.328621468926556,-0.42783520826999083,5937.531305864076,2019
+1998,57,"(55,60]",NoHS,-8.514966666666668,38.80918644067796,-0.21940595636247814,6118.52358291505,2019
+1998,57,"(55,60]",NoHS,-9.426633333333333,33.265016949152546,-0.28337978446674095,5903.03798478966,2019
+1998,57,"(55,60]",NoHS,-9.608966666666667,36.96112994350283,-0.25997491638795983,6099.668029706399,2019
+1998,43,"(40,45]",HS,2769.8986,110.88338983050849,24.980284280936452,361.80232692733,2019
+1998,43,"(40,45]",HS,249.79666666666665,158.93285875706215,1.5717119079100879,118.8561359571996,2019
+1998,43,"(40,45]",HS,3419.4793333333337,88.70671186440678,38.548146599777034,340.4238264380128,2019
+1998,43,"(40,45]",HS,847.1206666666667,164.47702824858757,5.150388936905791,251.60044196910744,2019
+1998,43,"(40,45]",HS,319.7215,81.31448587570623,3.9319131955001514,124.78345702837836,2019
+1998,45,"(40,45]",College,1768.6333333333332,131.21201129943503,13.47920297705968,2915.207672214943,2019
+1998,45,"(40,45]",College,1768.451,131.21201129943503,13.477813368505347,3184.7457900987024,2019
+1998,45,"(40,45]",College,1768.2686666666668,131.21201129943503,13.476423759951011,2965.5002618361027,2019
+1998,45,"(40,45]",College,1768.2686666666668,131.21201129943503,13.476423759951011,2945.678284743417,2019
+1998,45,"(40,45]",College,1768.2686666666668,131.21201129943503,13.476423759951011,3041.0341053657103,2019
+1998,51,"(50,55]",College,31816.61966666667,3012.33209039548,10.562122206947496,33.887094531588176,2019
+1998,51,"(50,55]",College,32761.288666666667,2809.045875706215,11.662781640556238,37.56772081687108,2019
+1998,51,"(50,55]",College,31631.18666666667,3197.1377401129944,9.893595221064436,43.61350880574765,2019
+1998,51,"(50,55]",College,31896.84633333333,2790.565310734463,11.430245409643625,38.58512005029185,2019
+1998,51,"(50,55]",College,32510.945,3160.176610169491,10.287698761955056,36.24865605976854,2019
+1998,45,"(40,45]",NoHS,2514.8325,199.59010169491523,12.599986064659978,1201.1516731660445,2019
+1998,45,"(40,45]",NoHS,2508.4508333333333,199.59010169491523,12.568012201164377,1273.3847947011295,2019
+1998,45,"(40,45]",NoHS,2515.725933333333,199.59010169491523,12.604462405549363,1213.636493155598,2019
+1998,45,"(40,45]",NoHS,2516.6558333333337,199.59010169491523,12.609121454230152,1254.5397470856153,2019
+1998,45,"(40,45]",NoHS,2517.3669333333332,199.59010169491523,12.612684256162519,1191.6951759277858,2019
+1998,34,"(30,35]",HS,-16.045333333333335,12.56678418079096,-1.2768050363958294,5258.836997973574,2019
+1998,34,"(30,35]",HS,-16.227666666666668,13.490812429378531,-1.20286800751363,5234.085886021813,2019
+1998,34,"(30,35]",HS,-15.863,12.19717288135593,-1.3005472788081485,5279.523695849626,2019
+1998,34,"(30,35]",HS,-15.680666666666667,12.56678418079096,-1.247786740114106,5234.112167057585,2019
+1998,34,"(30,35]",HS,-16.227666666666668,13.490812429378531,-1.20286800751363,5268.0142054452035,2019
+1998,68,"(65,70]",NoHS,0.18233333333333335,10.164310734463278,0.01793858315597446,7530.89893429073,2019
+1998,68,"(65,70]",NoHS,0.18233333333333335,10.164310734463278,0.01793858315597446,7563.510688291695,2019
+1998,68,"(65,70]",NoHS,0.18233333333333335,10.164310734463278,0.01793858315597446,7512.868826220593,2019
+1998,68,"(65,70]",NoHS,0.18233333333333335,10.164310734463278,0.01793858315597446,7491.5798178643,2019
+1998,68,"(65,70]",NoHS,0.18233333333333335,10.164310734463278,0.01793858315597446,7512.3667379239605,2019
+1998,71,"(70,75]",College,261.01016666666663,157.08480225988703,1.661587645091481,392.0211071165982,2019
+1998,71,"(70,75]",College,261.3566,157.08480225988703,1.6637930356088924,381.91292733575125,2019
+1998,71,"(70,75]",College,261.81243333333333,157.08480225988703,1.6666948652370646,380.8450653209614,2019
+1998,71,"(70,75]",College,261.86713333333336,157.08480225988703,1.6670430847924453,420.1908888570709,2019
+1998,71,"(70,75]",College,262.4506,157.08480225988703,1.6707574267165057,406.2787275295794,2019
+1998,47,"(45,50]",HS,476.6193333333333,88.70671186440678,5.372979375696766,7615.941778364756,2019
+1998,47,"(45,50]",HS,491.0236666666667,88.70671186440678,5.535360925306578,7217.021095908052,2019
+1998,47,"(45,50]",HS,452.7336666666667,88.70671186440678,5.103713768115942,6799.584517891077,2019
+1998,47,"(45,50]",HS,460.20933333333335,88.70671186440678,5.18798773690078,7446.946458702303,2019
+1998,47,"(45,50]",HS,458.2036666666667,88.70671186440678,5.165377647714605,6779.511302022913,2019
+1998,46,"(45,50]",HS,67.57273333333333,68.37809039548021,0.9882220012654797,5512.314393485061,2019
+1998,46,"(45,50]",HS,103.82060000000001,27.720847457627123,3.745217391304348,5659.38020071938,2019
+1998,46,"(45,50]",HS,94.4669,49.89752542372881,1.8932181345224826,5865.605626405855,2019
+1998,46,"(45,50]",HS,108.1966,35.11307344632768,3.0813765182186237,5581.605497274025,2019
+1998,46,"(45,50]",HS,86.9183,101.64310734463277,0.8551322590453025,5783.733484583108,2019
+1998,63,"(60,65]",College,3839.0283333333336,522.999988700565,7.340398501483153,329.60724751488976,2019
+1998,63,"(60,65]",College,3817.1483333333335,522.999988700565,7.298562936525757,328.62699444421844,2019
+1998,63,"(60,65]",College,3811.696566666667,521.1519322033898,7.313983372470885,310.6506193840891,2019
+1998,63,"(60,65]",College,3910.138333333334,522.999988700565,7.476364087594691,340.29525039014305,2019
+1998,63,"(60,65]",College,4147.153433333333,522.999988700565,7.929547844995684,326.0302691238727,2019
+1998,82,"(80,85]",College,11450.533333333335,970.2296610169492,11.80187928014015,13.438689787106375,2019
+1998,82,"(80,85]",College,11452.356666666667,970.2296610169492,11.803758560280299,14.76385092088788,2019
+1998,82,"(80,85]",College,11457.826666666666,970.2296610169492,11.809396400700747,11.783422678734386,2019
+1998,82,"(80,85]",College,11452.356666666667,970.2296610169492,11.803758560280299,12.418519587477107,2019
+1998,82,"(80,85]",College,11448.710000000001,970.2296610169492,11.8,12.20895473484407,2019
+1998,49,"(45,50]",HS,322.65706666666665,110.88338983050849,2.9098773690078032,10553.334075500763,2019
+1998,49,"(45,50]",HS,320.99783333333335,110.88338983050849,2.8949136008918614,10174.650373158365,2019
+1998,49,"(45,50]",HS,320.99783333333335,110.88338983050849,2.8949136008918614,9881.289916979043,2019
+1998,49,"(45,50]",HS,322.8394,110.88338983050849,2.9115217391304347,10062.590158865458,2019
+1998,49,"(45,50]",HS,321.01606666666663,110.88338983050849,2.895078037904124,10318.796404198825,2019
+1998,52,"(50,55]",HS,1528.318,81.31448587570623,18.79515050167224,2896.809221891933,2019
+1998,52,"(50,55]",HS,1530.3236666666667,81.31448587570623,18.819816053511705,3164.176087916695,2019
+1998,52,"(50,55]",HS,1530.1413333333333,81.31448587570623,18.817573730617205,2947.0570075205205,2019
+1998,52,"(50,55]",HS,1530.1413333333333,81.31448587570623,18.817573730617205,2927.0787261825376,2019
+1998,52,"(50,55]",HS,1528.5003333333332,81.31448587570623,18.79739282456673,3022.2423292587187,2019
+1998,43,"(40,45]",HS,-17.704566666666665,72.07420338983052,-0.24564359831918356,6964.719748527888,2019
+1998,43,"(40,45]",HS,-13.675,85.0105988700565,-0.16086229460520576,6978.517509149422,2019
+1998,43,"(40,45]",HS,-11.851666666666667,35.11307344632768,-0.33752860411899316,6966.172827293472,2019
+1998,43,"(40,45]",HS,-12.325733333333334,147.84451977401133,-0.08336956521739129,6962.252667027598,2019
+1998,43,"(40,45]",HS,-12.9639,40.65724293785311,-0.318858315597446,6999.167375826268,2019
+1998,68,"(65,70]",HS,159.724,51.745581920903966,3.0867176301958903,10977.481971994235,2019
+1998,68,"(65,70]",HS,159.724,77.61837288135592,2.0578117534639273,11548.976755447518,2019
+1998,68,"(65,70]",HS,159.724,70.22614689265536,2.274423516986446,11662.394527433231,2019
+1998,68,"(65,70]",HS,159.724,42.50529943502825,3.7577432019776063,11030.716318605115,2019
+1998,68,"(65,70]",HS,159.724,44.35335593220339,3.6011705685618725,11568.880077854721,2019
+1998,49,"(45,50]",HS,590.3041666666667,27.720847457627123,21.294593088071345,6044.123087638931,2019
+1998,49,"(45,50]",HS,603.7968333333334,27.720847457627123,21.78132664437012,5791.684430266896,2019
+1998,49,"(45,50]",HS,617.3989,27.720847457627123,22.27200668896321,5396.958609701581,2019
+1998,49,"(45,50]",HS,623.2335666666667,27.720847457627123,22.482486064659973,5905.834277790232,2019
+1998,49,"(45,50]",HS,605.4560666666666,27.720847457627123,21.841181716833887,5387.714158933874,2019
+1998,29,"(25,30]",HS,-1.641,44.35335593220339,-0.03699832775919732,4069.583539686891,2019
+1998,29,"(25,30]",HS,-1.641,44.35335593220339,-0.03699832775919732,4065.993332162746,2019
+1998,29,"(25,30]",HS,-1.641,44.35335593220339,-0.03699832775919732,4086.2961752413066,2019
+1998,29,"(25,30]",HS,-1.641,44.35335593220339,-0.03699832775919732,4085.9557911853517,2019
+1998,29,"(25,30]",HS,-1.641,44.35335593220339,-0.03699832775919732,4084.5560211646175,2019
+1998,46,"(45,50]",NoHS,19.509666666666668,36.96112994350283,0.5278428093645484,7880.474908320165,2019
+1998,46,"(45,50]",NoHS,19.509666666666668,36.96112994350283,0.5278428093645484,8112.901916667298,2019
+1998,46,"(45,50]",NoHS,19.509666666666668,36.96112994350283,0.5278428093645484,8501.997244770053,2019
+1998,46,"(45,50]",NoHS,19.509666666666668,36.96112994350283,0.5278428093645484,7795.550979774593,2019
+1998,46,"(45,50]",NoHS,19.509666666666668,36.96112994350283,0.5278428093645484,8472.282915127975,2019
+1998,59,"(55,60]",College,8510.226,1112.530011299435,7.649434993722153,298.995037894117,2019
+1998,59,"(55,60]",College,8449.873666666666,1112.530011299435,7.595187168746319,301.07926025302294,2019
+1998,59,"(55,60]",College,8510.226,1112.530011299435,7.649434993722153,287.9865881446447,2019
+1998,59,"(55,60]",College,8373.293666666666,1112.530011299435,7.526353070589673,309.1291856834658,2019
+1998,59,"(55,60]",College,8327.892666666667,1112.530011299435,7.485544283825376,292.6523934319388,2019
+1998,65,"(60,65]",College,33796.212666666666,3289.540564971752,10.273839765510502,536.0154874735761,2019
+1998,65,"(60,65]",College,40695.34133333334,2180.7066666666665,18.661538461538466,332.63937689667944,2019
+1998,65,"(60,65]",College,32711.694,1517.254384180791,21.559795338908827,528.8723032152741,2019
+1998,65,"(60,65]",College,42831.92333333334,2735.1236158192087,15.659958871915398,342.7358547122605,2019
+1998,65,"(60,65]",College,44899.03633333334,1508.0141016949153,29.773618352023085,369.4534653776576,2019
+1998,45,"(40,45]",HS,113.61189999999999,94.25088135593221,1.2054200275427895,5594.689966101576,2019
+1998,45,"(40,45]",HS,134.98136666666667,92.40282485875707,1.4607926421404682,5704.647965052463,2019
+1998,45,"(40,45]",HS,114.52356666666667,123.81978531073446,0.9249213797234563,5948.020892041082,2019
+1998,45,"(40,45]",HS,110.56693333333334,114.57950282485875,0.9649800409968714,5560.973154903703,2019
+1998,45,"(40,45]",HS,128.98260000000002,99.79505084745762,1.29247491638796,5950.168767517856,2019
+1998,29,"(25,30]",HS,-3.6466666666666665,25.872790960451983,-0.14094601051122788,6515.301147682527,2019
+1998,29,"(25,30]",HS,-3.6466666666666665,25.872790960451983,-0.14094601051122788,6535.375793556958,2019
+1998,29,"(25,30]",HS,-3.6466666666666665,25.872790960451983,-0.14094601051122788,6577.899990627318,2019
+1998,29,"(25,30]",HS,-3.6466666666666665,25.872790960451983,-0.14094601051122788,6508.762387672381,2019
+1998,29,"(25,30]",HS,-3.6466666666666665,25.872790960451983,-0.14094601051122788,6606.6484094237485,2019
+1998,57,"(55,60]",College,7138.897,554.4169491525424,12.876404682274247,11.149415382359729,2019
+1998,57,"(55,60]",College,10957.321666666667,554.4169491525424,19.763684503901892,12.02738793032553,2019
+1998,57,"(55,60]",College,6556.706666666667,554.4169491525424,11.826309921962094,11.592563698823714,2019
+1998,57,"(55,60]",College,9600.944,554.4169491525424,17.317190635451503,11.880775170467038,2019
+1998,57,"(55,60]",College,7864.219,554.4169491525424,14.184665551839464,12.650181453643658,2019
+1998,25,"(20,25]",HS,0,51.745581920903966,0,4510.303617161432,2019
+1998,25,"(20,25]",HS,0,51.745581920903966,0,4569.065510423745,2019
+1998,25,"(20,25]",HS,0,51.745581920903966,0,4552.997448392803,2019
+1998,25,"(20,25]",HS,0,51.745581920903966,0,4501.506818345737,2019
+1998,25,"(20,25]",HS,0,51.745581920903966,0,4578.293943723235,2019
+1998,36,"(35,40]",College,-1.9692,46.201412429378536,-0.042622073578595314,5372.582240015384,2019
+1998,36,"(35,40]",College,-22.080566666666666,46.201412429378536,-0.4779197324414715,5480.878898656923,2019
+1998,36,"(35,40]",College,18.999133333333337,46.201412429378536,0.4112240802675586,5703.168140624138,2019
+1998,36,"(35,40]",College,4.959466666666667,46.201412429378536,0.10734448160535116,5420.029144021634,2019
+1998,36,"(35,40]",College,1.6774666666666667,46.201412429378536,0.036307692307692305,5644.251511087805,2019
+1998,65,"(60,65]",HS,5473.646666666667,88.70671186440678,61.70498885172799,2682.844375489048,2019
+1998,65,"(60,65]",HS,4135.32,68.37809039548021,60.47726656422309,2632.478609273642,2019
+1998,65,"(60,65]",HS,5460.883333333333,64.68197740112994,84.42666029622552,2536.4250665529253,2019
+1998,65,"(60,65]",HS,3251.0033333333336,83.16254237288136,39.092159048680784,2991.6620524667005,2019
+1998,65,"(60,65]",HS,3376.8133333333335,64.68197740112994,52.20640229335882,2771.054615124245,2019
+1998,39,"(35,40]",HS,94.44866666666667,101.64310734463277,0.929218607479477,5941.552494570792,2019
+1998,39,"(35,40]",HS,96.08966666666667,101.64310734463277,0.9453633323198541,6022.820530284347,2019
+1998,39,"(35,40]",HS,94.26633333333334,101.64310734463277,0.9274247491638796,6269.910010880265,2019
+1998,39,"(35,40]",HS,96.272,101.64310734463277,0.9471571906354516,5971.308597337849,2019
+1998,39,"(35,40]",HS,98.09533333333333,101.64310734463277,0.965095773791426,6194.009237916063,2019
+1998,22,"(20,25]",HS,-21.679433333333336,59.13780790960452,-0.3665917642140469,5392.001493278587,2019
+1998,22,"(20,25]",HS,-21.861766666666668,59.13780790960452,-0.36967495819397994,5406.3529002794285,2019
+1998,22,"(20,25]",HS,-21.861766666666668,59.13780790960452,-0.36967495819397994,5450.104294332684,2019
+1998,22,"(20,25]",HS,-21.6612,60.98586440677967,-0.35518394648829427,5386.750901866162,2019
+1998,22,"(20,25]",HS,-21.6612,59.13780790960452,-0.3662834448160535,5430.044916675935,2019
+1998,61,"(60,65]",College,96892.22506666667,5710.494576271187,16.967396391423406,17.65514345863118,2019
+1998,61,"(60,65]",College,91475.86753333334,4564.699548022599,20.039844149865274,18.212895568678366,2019
+1998,61,"(60,65]",College,111366.33736666666,2217.6677966101697,50.21777271460423,19.6756376232697,2019
+1998,61,"(60,65]",College,75953.22916666667,10496.960903954803,7.235735167695134,18.30449983333552,2019
+1998,61,"(60,65]",College,32667.478166666668,7669.434463276836,4.259437683845751,16.270747867357453,2019
+1998,79,"(75,80]",College,1447.5443333333333,92.40282485875707,15.665585284280935,3376.9932442769664,2019
+1998,79,"(75,80]",College,1446.268,92.40282485875707,15.651772575250835,3691.5759503202476,2019
+1998,79,"(75,80]",College,1449.55,92.40282485875707,15.687290969899664,3444.118145752109,2019
+1998,79,"(75,80]",College,1450.097,92.40282485875707,15.693210702341135,3403.6975411924177,2019
+1998,79,"(75,80]",College,1450.2793333333334,92.40282485875707,15.695183946488294,3528.6628820746364,2019
+1998,34,"(30,35]",NoHS,72.76923333333333,35.11307344632768,2.072425629290618,8904.24189355708,2019
+1998,34,"(30,35]",NoHS,72.5869,35.11307344632768,2.0672328815349412,8939.859956564584,2019
+1998,34,"(30,35]",NoHS,72.5869,35.11307344632768,2.0672328815349412,9161.921485831665,2019
+1998,34,"(30,35]",NoHS,72.76923333333333,35.11307344632768,2.072425629290618,8944.793919043637,2019
+1998,34,"(30,35]",NoHS,72.5869,35.11307344632768,2.0672328815349412,9066.670610932611,2019
+1998,36,"(35,40]",HS,69.70603333333334,31.416960451977403,2.2187389337005707,11709.41382408434,2019
+1998,36,"(35,40]",HS,69.90660000000001,31.416960451977403,2.22512295888255,12124.118391957261,2019
+1998,36,"(35,40]",HS,70.03423333333333,29.56890395480226,2.3685096153846152,12461.386801725208,2019
+1998,36,"(35,40]",HS,69.97953333333334,29.56890395480226,2.3666596989966555,11774.35441144268,2019
+1998,36,"(35,40]",HS,69.54193333333333,24.024734463276836,2.894597375868279,12392.985882373761,2019
+1998,67,"(65,70]",HS,38.29,33.265016949152546,1.1510590858416945,5956.403590806733,2019
+1998,67,"(65,70]",HS,39.20166666666667,33.265016949152546,1.178465254552211,6223.6137806126435,2019
+1998,67,"(65,70]",HS,34.82566666666666,33.265016949152546,1.0469156447417314,6159.821374933188,2019
+1998,67,"(65,70]",HS,32.09066666666667,33.265016949152546,0.9646971386101821,6113.503350769625,2019
+1998,67,"(65,70]",HS,36.46666666666666,33.265016949152546,1.0962467484206613,6120.095224295318,2019
+1998,91,"(90,95]",College,452.18666666666667,83.16254237288136,5.437383872166481,139.08385289046518,2019
+1998,91,"(90,95]",College,512.3566666666667,81.31448587570623,6.300927333536029,328.139776277599,2019
+1998,91,"(90,95]",College,479.5366666666667,103.49116384180793,4.633600095556616,330.33207602026044,2019
+1998,91,"(90,95]",College,516.0033333333333,90.55476836158192,5.698245853525356,327.9226385984864,2019
+1998,91,"(90,95]",College,470.42,138.6042372881356,3.3939799331103675,336.05018447029266,2019
+1998,53,"(50,55]",HS,240.33356666666668,110.88338983050849,2.1674442586399105,2158.868937668959,2019
+1998,53,"(50,55]",HS,243.96200000000002,110.88338983050849,2.200167224080267,2221.23829487476,2019
+1998,53,"(50,55]",HS,242.321,110.88338983050849,2.185367892976588,2132.1998414141253,2019
+1998,53,"(50,55]",HS,247.97333333333336,110.88338983050849,2.2363433667781494,2124.687996772007,2019
+1998,53,"(50,55]",HS,239.76833333333335,110.88338983050849,2.1623467112597545,2183.6826899245234,2019
+1998,67,"(65,70]",HS,1382.6336666666668,162.62897175141245,8.501767254484646,3443.8292046634915,2019
+1998,67,"(65,70]",HS,1384.6393333333333,162.62897175141245,8.514100030404377,3753.8325974683307,2019
+1998,67,"(65,70]",HS,1380.9926666666668,162.62897175141245,8.491676801459409,3474.94763323414,2019
+1998,67,"(65,70]",HS,1384.457,162.62897175141245,8.512978868957129,3459.538287229003,2019
+1998,67,"(65,70]",HS,1382.6336666666668,162.62897175141245,8.501767254484646,3559.8582804291864,2019
+1998,76,"(75,80]",HS,202.79113333333333,17.55653672316384,11.550748107727513,9447.516810245546,2019
+1998,76,"(75,80]",HS,181.14816666666667,12.19717288135593,14.85165197121719,9583.303977387139,2019
+1998,76,"(75,80]",HS,192.90866666666665,20.328621468926556,9.489510489510486,9950.71838480022,2019
+1998,76,"(75,80]",HS,179.23366666666666,46.201412429378536,3.8793979933110365,9566.248048091722,2019
+1998,76,"(75,80]",HS,189.24376666666666,25.872790960451983,7.3143932154801705,9963.705324039249,2019
+1998,67,"(65,70]",HS,89.03336666666667,195.893988700565,0.4544976967249321,7598.50846513759,2019
+1998,67,"(65,70]",HS,114.21360000000001,195.893988700565,0.5830377989524831,7872.14476766308,2019
+1998,67,"(65,70]",HS,53.20486666666667,195.893988700565,0.27160030289644727,8012.223514594564,2019
+1998,67,"(65,70]",HS,77.25463333333333,195.893988700565,0.3943695967691045,7619.445303257133,2019
+1998,67,"(65,70]",HS,69.5237,195.893988700565,0.3549047138259607,7927.291618023922,2019
+1998,64,"(60,65]",HS,597.5063333333334,109.03533333333333,5.479933110367893,7287.21306398938,2019
+1998,64,"(60,65]",HS,578.9265666666666,109.03533333333333,5.309531772575251,6947.29484106796,2019
+1998,64,"(60,65]",HS,578.9812666666668,109.03533333333333,5.310033444816055,6503.700099438959,2019
+1998,64,"(60,65]",HS,579.2183000000001,109.03533333333333,5.312207357859533,7114.25929008378,2019
+1998,64,"(60,65]",HS,581.461,109.03533333333333,5.332775919732442,6486.014760486074,2019
+1998,70,"(65,70]",HS,393.9494,73.92225988700567,5.3292391304347815,2364.4791374946676,2019
+1998,70,"(65,70]",HS,393.9494,73.92225988700567,5.3292391304347815,2387.089711700372,2019
+1998,70,"(65,70]",HS,393.9494,73.92225988700567,5.3292391304347815,2251.7726157822744,2019
+1998,70,"(65,70]",HS,395.77273333333335,73.92225988700567,5.353904682274247,2263.10193097502,2019
+1998,70,"(65,70]",HS,395.7545,73.92225988700567,5.353658026755852,2338.3259482956573,2019
+1998,60,"(55,60]",College,5896.66,615.402813559322,9.581789147006539,2679.3987741086435,2019
+1998,60,"(55,60]",College,4082.4433333333336,720.7420338983052,5.664222622416602,2650.2112475921576,2019
+1998,60,"(55,60]",College,3905.58,554.4169491525424,7.044481605351169,2562.8814713947713,2019
+1998,60,"(55,60]",College,4217.37,643.1236610169491,6.557634644216354,3024.7034180564006,2019
+1998,60,"(55,60]",College,5139.976666666667,548.872779661017,9.364604799387408,2743.0812517787103,2019
+1998,33,"(30,35]",College,2.2609333333333335,88.70671186440678,0.025487736900780378,1130.7833892776077,2019
+1998,33,"(30,35]",College,9.007266666666666,88.70671186440678,0.10153985507246376,1125.1498197035044,2019
+1998,33,"(30,35]",College,0.09116666666666667,88.70671186440678,0.0010277313266443702,5471.434236993835,2019
+1998,33,"(30,35]",College,0.07293333333333334,88.70671186440678,8.221850613154961e-4,5395.6807776486,2019
+1998,33,"(30,35]",College,2.2609333333333335,88.70671186440678,0.025487736900780378,1162.96338615386,2019
+1998,36,"(35,40]",HS,3.0631999999999997,29.56890395480226,0.1035953177257525,5739.54360750215,2019
+1998,36,"(35,40]",HS,3.0814333333333335,29.56890395480226,0.10421195652173913,5730.964594150149,2019
+1998,36,"(35,40]",HS,3.0631999999999997,29.56890395480226,0.1035953177257525,5718.95733475369,2019
+1998,36,"(35,40]",HS,3.0631999999999997,29.56890395480226,0.1035953177257525,5768.264952569161,2019
+1998,36,"(35,40]",HS,3.0814333333333335,29.56890395480226,0.10421195652173913,5698.729269800138,2019
+1998,47,"(45,50]",NoHS,-3.4643333333333337,22.176677966101696,-0.15621516164994426,5231.210185640303,2019
+1998,47,"(45,50]",NoHS,-3.4643333333333337,22.176677966101696,-0.15621516164994426,5200.185653975748,2019
+1998,47,"(45,50]",NoHS,-3.4643333333333337,22.176677966101696,-0.15621516164994426,5191.969407607083,2019
+1998,47,"(45,50]",NoHS,-3.4643333333333337,22.176677966101696,-0.15621516164994426,5206.022096890252,2019
+1998,47,"(45,50]",NoHS,-3.4643333333333337,22.176677966101696,-0.15621516164994426,5204.523775342288,2019
+1998,24,"(20,25]",HS,-7.749166666666667,27.720847457627123,-0.27954292084726867,5338.035909185697,2019
+1998,24,"(20,25]",HS,-7.566833333333333,44.35335593220339,-0.17060340022296544,5347.537859066209,2019
+1998,24,"(20,25]",HS,-10.356533333333333,31.416960451977403,-0.3296478457603777,5392.924176786499,2019
+1998,24,"(20,25]",HS,-10.666500000000001,33.265016949152546,-0.32065217391304346,5350.341092996324,2019
+1998,24,"(20,25]",HS,-9.645433333333333,24.024734463276836,-0.4014792899408284,5288.764389617499,2019
+1998,62,"(60,65]",HS,3169.6826666666666,648.6678305084746,4.886449608857635,260.1606245393191,2019
+1998,62,"(60,65]",HS,3607.2826666666665,648.6678305084746,5.561062992501119,258.99856585301643,2019
+1998,62,"(60,65]",HS,3601.8126666666667,650.5158870056498,5.5368558072362415,242.12895777802913,2019
+1998,62,"(60,65]",HS,3605.4593333333337,648.6678305084746,5.558252103402605,271.37652253664265,2019
+1998,62,"(60,65]",HS,3603.636,648.6678305084746,5.55544121430409,259.1921010431696,2019
+1998,59,"(55,60]",HS,295.927,83.16254237288136,3.5584169453734673,8330.702947857173,2019
+1998,59,"(55,60]",HS,293.92133333333334,83.16254237288136,3.5342995169082125,8253.222594424968,2019
+1998,59,"(55,60]",HS,294.1036666666667,83.16254237288136,3.536492010405054,8689.678726210244,2019
+1998,59,"(55,60]",HS,295.7446666666667,83.16254237288136,3.556224451876626,8158.796959448574,2019
+1998,59,"(55,60]",HS,295.7446666666667,83.16254237288136,3.556224451876626,8599.160311633836,2019
+1998,24,"(20,25]",HS,175.51406666666668,0,Inf,7111.866919448397,2019
+1998,24,"(20,25]",HS,175.2041,0,Inf,7159.841905671734,2019
+1998,24,"(20,25]",HS,176.681,0,Inf,6606.546048352198,2019
+1998,24,"(20,25]",HS,175.91520000000003,0,Inf,7119.185294883068,2019
+1998,24,"(20,25]",HS,175.38643333333331,0,Inf,6722.145884259895,2019
+1998,37,"(35,40]",HS,587.9338333333334,240.24734463276835,2.4472022125032162,5963.358116499038,2019
+1998,37,"(35,40]",HS,824.5295666666667,240.24734463276835,3.432002829945974,5706.638156046067,2019
+1998,37,"(35,40]",HS,574.9699333333334,240.24734463276835,2.393241574479033,5327.546313345367,2019
+1998,37,"(35,40]",HS,475.9811666666667,240.24734463276835,1.9812130177514795,5824.4052917687595,2019
+1998,37,"(35,40]",HS,724.0821333333333,240.24734463276835,3.0139027527656292,5310.577976743663,2019
+1998,90,"(85,90]",HS,4689.613333333333,328.95405649717515,14.256134681146893,1391.5749180218413,2019
+1998,90,"(85,90]",HS,5601.28,328.95405649717515,17.027545000187892,1526.7917146502273,2019
+1998,90,"(85,90]",HS,5601.28,327.106,17.123745819397993,1396.5897045282745,2019
+1998,90,"(85,90]",HS,4689.613333333333,327.106,14.336677814938684,1780.5571500984934,2019
+1998,90,"(85,90]",HS,4323.123333333333,327.106,13.216276477146042,1397.9677545642946,2019
+1998,61,"(60,65]",HS,735919.031,41008.37367231638,17.945579526768665,44.17020126990173,2019
+1998,61,"(60,65]",HS,737585.5576666667,41156.218192090404,17.92160674783329,46.44141302252127,2019
+1998,61,"(60,65]",HS,735568.951,37016.57163841808,19.87134190019319,56.77366540087313,2019
+1998,61,"(60,65]",HS,737164.3676666666,36314.31016949153,20.299555856246858,51.72135472992454,2019
+1998,61,"(60,65]",HS,735295.451,42098.727005649715,17.465978268210396,49.340479682064625,2019
+1998,45,"(40,45]",HS,497.4053333333333,77.61837288135592,6.408345277910496,7049.205569953762,2019
+1998,45,"(40,45]",HS,477.531,77.61837288135592,6.152293358815099,6755.295873449946,2019
+1998,45,"(40,45]",HS,504.88100000000003,77.61837288135592,6.504658385093169,6294.958731313641,2019
+1998,45,"(40,45]",HS,497.4053333333333,77.61837288135592,6.408345277910496,6888.3460953879785,2019
+1998,45,"(40,45]",HS,490.2943333333333,77.61837288135592,6.316730371078198,6283.669480328222,2019
+1998,32,"(30,35]",College,84.785,129.36395480225988,0.6553989488772097,5085.651434940009,2019
+1998,32,"(30,35]",College,86.60833333333333,129.36395480225988,0.6694935499283325,5038.52513896736,2019
+1998,32,"(30,35]",College,84.60266666666668,129.36395480225988,0.6539894887720976,5053.0341345337965,2019
+1998,32,"(30,35]",College,84.42033333333333,127.51589830508476,0.662037710241869,5130.278391048166,2019
+1998,32,"(30,35]",College,84.785,129.36395480225988,0.6553989488772097,5047.742291286371,2019
+1998,71,"(70,75]",College,4913.883333333333,151.54063276836158,32.42617668651603,1151.9263151911703,2019
+1998,71,"(70,75]",College,7737.497333333333,160.78091525423727,48.12447622342675,1269.3772003770423,2019
+1998,71,"(70,75]",College,7023.844666666667,142.30035028248585,49.35929288103202,1161.0907850739343,2019
+1998,71,"(70,75]",College,8113.833333333333,162.62897175141245,49.891684402553956,1487.4038443761915,2019
+1998,71,"(70,75]",College,5316.84,157.08480225988703,33.84694078300216,1162.4925309640969,2019
+1998,89,"(85,90]",NoHS,653.4826666666667,18.480564971751416,35.36053511705685,8651.957722846051,2019
+1998,89,"(85,90]",NoHS,393.84000000000003,18.480564971751416,21.311036789297656,10788.75787781166,2019
+1998,89,"(85,90]",HS,587.3321333333333,20.328621468926556,28.89188203101246,7745.443794556723,2019
+1998,89,"(85,90]",HS,400.404,13.860423728813561,28.888294314381266,10741.863811796322,2019
+1998,89,"(85,90]",NoHS,317.2964666666667,31.416960451977403,10.099527837891008,11232.108307858425,2019
+1998,24,"(20,25]",NoHS,2.4615,12.56678418079096,0.1958734999016329,7414.0020631907555,2019
+1998,24,"(20,25]",NoHS,2.4615,12.381978531073447,0.1987969849747916,7433.735247843353,2019
+1998,24,"(20,25]",NoHS,2.4615,12.381978531073447,0.1987969849747916,7493.893414747174,2019
+1998,24,"(20,25]",NoHS,2.4615,12.381978531073447,0.1987969849747916,7406.7824999890045,2019
+1998,24,"(20,25]",NoHS,2.4615,12.381978531073447,0.1987969849747916,7466.311770432189,2019
+1998,24,"(20,25]",NoHS,86.51716666666667,105.33922033898305,0.8213196033562166,5052.618693172657,2019
+1998,24,"(20,25]",NoHS,65.73116666666667,96.09893785310734,0.6839947260097762,5050.806989807448,2019
+1998,24,"(20,25]",NoHS,16.318833333333334,107.18727683615819,0.15224599238842118,5062.948256509785,2019
+1998,24,"(20,25]",NoHS,24.523833333333332,109.03533333333333,0.22491638795986624,5046.853808571251,2019
+1998,24,"(20,25]",NoHS,17.7775,94.25088135593221,0.18861892583120204,5060.8616943478355,2019
+1998,49,"(45,50]",HS,293.3743333333333,127.51589830508476,2.3006882846202314,5189.74351355641,2019
+1998,49,"(45,50]",HS,398.3983333333333,127.51589830508476,3.1243032329988845,4972.872880592077,2019
+1998,49,"(45,50]",HS,406.6033333333333,127.51589830508476,3.188648150840967,4634.1946763788565,2019
+1998,49,"(45,50]",HS,468.9613333333333,127.51589830508476,3.677669526440792,5069.922851107763,2019
+1998,49,"(45,50]",HS,239.586,125.66784180790961,1.9065020657092269,5891.574278597216,2019
+1998,22,"(20,25]",HS,-8.660833333333334,27.720847457627123,-0.3124303232998885,5328.813981055973,2019
+1998,22,"(20,25]",HS,-8.660833333333334,27.720847457627123,-0.3124303232998885,5342.997207520069,2019
+1998,22,"(20,25]",HS,-8.660833333333334,27.720847457627123,-0.3124303232998885,5386.235889967081,2019
+1998,22,"(20,25]",HS,-8.660833333333334,27.720847457627123,-0.3124303232998885,5323.624920006528,2019
+1998,22,"(20,25]",HS,-8.660833333333334,27.720847457627123,-0.3124303232998885,5366.411583122617,2019
+1998,32,"(30,35]",HS,28.753966666666667,60.98586440677967,0.47148576061619535,5526.196721678967,2019
+1998,32,"(30,35]",HS,37.743,51.745581920903966,0.7293956043956042,5521.984514929787,2019
+1998,32,"(30,35]",HS,49.412333333333336,77.61837288135592,0.6366061474757128,5585.389021251114,2019
+1998,32,"(30,35]",HS,32.03596666666667,79.46642937853107,0.40313836820409116,5498.852203582002,2019
+1998,32,"(30,35]",HS,152.15716666666665,62.833920903954805,2.421576824709817,5653.9268824956525,2019
+1998,70,"(65,70]",NoHS,127.63333333333333,0,Inf,8229.59350298948,2019
+1998,70,"(65,70]",NoHS,127.63333333333333,0,Inf,8241.606258844524,2019
+1998,70,"(65,70]",NoHS,127.63333333333333,0,Inf,8930.154646238234,2019
+1998,70,"(65,70]",NoHS,127.63333333333333,0,Inf,8386.528238391631,2019
+1998,70,"(65,70]",NoHS,127.63333333333333,0,Inf,8761.931742421653,2019
+1998,43,"(40,45]",College,1197.7476666666669,245.7915141242938,4.873022858148717,2487.608552643889,2019
+1998,43,"(40,45]",College,1261.382,245.7915141242938,5.131918424824604,2712.9607619513786,2019
+1998,43,"(40,45]",College,1234.2143333333333,245.7915141242938,5.021387079739482,2532.062896280304,2019
+1998,43,"(40,45]",College,1221.451,245.7915141242938,4.969459602182714,2512.355876486321,2019
+1998,43,"(40,45]",College,1281.621,245.7915141242938,5.214260567807479,2593.144809536252,2019
+1998,61,"(60,65]",College,15269.869666666666,508.21553672316384,30.04605047126786,3291.8735885360265,2019
+1998,61,"(60,65]",College,15409.719333333334,508.21553672316384,30.321228336880512,3340.579632416064,2019
+1998,61,"(60,65]",College,15353.560666666666,508.21553672316384,30.210726664639708,3183.4184247131698,2019
+1998,61,"(60,65]",College,15228.8629,508.21553672316384,29.96536272423229,3342.326264801565,2019
+1998,61,"(60,65]",College,15757.976,508.21553672316384,31.006482213438737,3258.581687132293,2019
+1998,28,"(25,30]",College,12.8545,62.833920903954805,0.2045789887861499,3965.694071760202,2019
+1998,28,"(25,30]",College,13.948500000000001,31.416960451977403,0.44397993311036793,3937.0302485946277,2019
+1998,28,"(25,30]",College,14.313166666666666,109.03533333333333,0.13127090301003344,3958.469898801214,2019
+1998,28,"(25,30]",College,13.948500000000001,33.265016949152546,0.419314381270903,3966.559117083553,2019
+1998,28,"(25,30]",College,12.8545,109.03533333333333,0.11789297658862877,3949.6873714383823,2019
+1998,46,"(45,50]",HS,195.40663333333333,103.49116384180793,1.8881479933110363,5401.766891553436,2019
+1998,46,"(45,50]",HS,193.32803333333334,105.33922033898305,1.835290148448043,5472.293257472231,2019
+1998,46,"(45,50]",HS,192.5987,103.49116384180793,1.8610158862876252,5671.70131391629,2019
+1998,46,"(45,50]",HS,191.2859,103.49116384180793,1.8483307453416145,5397.089618527491,2019
+1998,46,"(45,50]",HS,195.6619,103.49116384180793,1.890614548494983,5645.488875526267,2019
+1998,38,"(35,40]",HS,-1.8233333333333333,144.14840677966103,-0.012649000943315322,5087.866257153379,2019
+1998,38,"(35,40]",HS,1.094,144.14840677966103,0.007589400565989194,5118.320623911878,2019
+1998,38,"(35,40]",HS,-0.18233333333333335,144.14840677966103,-0.0012649000943315324,5069.617384134879,2019
+1998,38,"(35,40]",HS,-0.547,144.14840677966103,-0.003794700282994597,5205.7858211800185,2019
+1998,38,"(35,40]",HS,-4.923,144.14840677966103,-0.034152302546951376,5051.68604740104,2019
+1998,35,"(30,35]",HS,72.93333333333332,64.68197740112994,1.127568084089823,8778.571934258589,2019
+1998,35,"(30,35]",HS,45.76566666666667,64.68197740112994,0.7075489727663641,8956.599521234693,2019
+1998,35,"(30,35]",HS,43.76,62.833920903954805,0.6964391107613613,9380.029166059408,2019
+1998,35,"(30,35]",HS,43.76,64.68197740112994,0.6765408504538939,8776.966336902717,2019
+1998,35,"(30,35]",HS,43.76,64.68197740112994,0.6765408504538939,9312.865362916571,2019
+1998,47,"(45,50]",College,1243.5133333333333,240.24734463276835,5.175971186004631,2952.86936591282,2019
+1998,47,"(45,50]",College,740.2733333333334,240.24734463276835,3.0812966297916136,5998.398427975454,2019
+1998,47,"(45,50]",College,844.568,240.24734463276835,3.515410342166195,5588.292414799658,2019
+1998,47,"(45,50]",College,627.2266666666667,240.24734463276835,2.6107537947002832,6115.650741482947,2019
+1998,47,"(45,50]",College,816.8533333333334,240.24734463276835,3.4000514535631594,5578.0467004699885,2019
+1998,70,"(65,70]",HS,273.5,59.13780790960452,4.624790969899665,6717.980813553337,2019
+1998,70,"(65,70]",HS,275.3233333333333,60.98586440677967,4.514543427586905,6696.982263247322,2019
+1998,70,"(65,70]",HS,275.3233333333333,60.98586440677967,4.514543427586905,7205.488732778514,2019
+1998,70,"(65,70]",HS,273.5,59.13780790960452,4.624790969899665,6870.124782878537,2019
+1998,70,"(65,70]",HS,275.3233333333333,59.13780790960452,4.655622909698996,6988.650582177756,2019
+1998,29,"(25,30]",HS,1.641,51.745581920903966,0.03171285236502627,6993.801636946843,2019
+1998,29,"(25,30]",HS,1.641,51.745581920903966,0.03171285236502627,7082.116721818609,2019
+1998,29,"(25,30]",HS,1.641,51.745581920903966,0.03171285236502627,7183.877509663291,2019
+1998,29,"(25,30]",HS,1.641,53.593638418079095,0.03061930573174951,7021.876992100076,2019
+1998,29,"(25,30]",HS,1.641,53.593638418079095,0.03061930573174951,7155.466057012786,2019
+1998,42,"(40,45]",College,1575.3600000000001,373.30741242937853,4.220007285009438,2436.9538076881186,2019
+1998,42,"(40,45]",College,1575.3600000000001,373.30741242937853,4.220007285009438,2657.717208730112,2019
+1998,42,"(40,45]",College,1573.5366666666669,373.30741242937853,4.215123017318454,2480.50293517359,2019
+1998,42,"(40,45]",College,1575.3600000000001,373.30741242937853,4.220007285009438,2461.197206033011,2019
+1998,42,"(40,45]",College,1575.3600000000001,373.30741242937853,4.220007285009438,2540.3410479392633,2019
+1998,34,"(30,35]",HS,164.19116666666665,116.4275593220339,1.410243138504008,7744.836877578266,2019
+1998,34,"(30,35]",HS,160.1069,116.4275593220339,1.3751632425545468,7790.624141804574,2019
+1998,34,"(30,35]",HS,164.8475666666667,116.4275593220339,1.4158809789244573,7975.628692078635,2019
+1998,34,"(30,35]",HS,154.9104,116.4275593220339,1.3305303392259915,7767.096196711263,2019
+1998,34,"(30,35]",HS,177.228,116.4275593220339,1.5222169135212613,7841.2227639621,2019
+1998,55,"(50,55]",College,56.249833333333335,90.55476836158192,0.6211692034673402,9527.030752685218,2019
+1998,55,"(50,55]",College,57.69026666666667,90.55476836158192,0.6370759675107502,9492.355601799518,2019
+1998,55,"(50,55]",College,59.3495,90.55476836158192,0.6553989488772097,9916.0429399035,2019
+1998,55,"(50,55]",College,56.6145,90.55476836158192,0.6251962323390895,9383.354269930891,2019
+1998,55,"(50,55]",College,57.14326666666667,90.55476836158192,0.6310354242031261,9838.356052897194,2019
+1998,36,"(35,40]",HS,668.981,184.80564971751414,3.619916387959866,1333.6209480511502,2019
+1998,36,"(35,40]",HS,645.2776666666666,184.80564971751414,3.4916555183946483,1228.0671478993677,2019
+1998,36,"(35,40]",HS,654.3943333333334,184.80564971751414,3.5409866220735786,1237.8309067562855,2019
+1998,36,"(35,40]",HS,659.8643333333334,184.80564971751414,3.5705852842809365,1368.5676624116065,2019
+1998,36,"(35,40]",HS,648.9243333333334,184.80564971751414,3.5113879598662208,1384.701915015064,2019
+1998,63,"(60,65]",HS,94.99566666666668,46.201412429378536,2.0561204013377927,8361.568655903779,2019
+1998,63,"(60,65]",HS,94.26633333333334,46.201412429378536,2.040334448160535,8336.75080733343,2019
+1998,63,"(60,65]",HS,94.44866666666667,46.201412429378536,2.0442809364548493,8773.675458266775,2019
+1998,63,"(60,65]",HS,96.819,46.201412429378536,2.0955852842809364,8220.177749804056,2019
+1998,63,"(60,65]",HS,93.71933333333332,46.201412429378536,2.0284949832775916,8697.882415141152,2019
+1998,59,"(55,60]",HS,12200.652666666667,49.89752542372881,244.5141830794005,184.42826699004786,2019
+1998,59,"(55,60]",HS,12570.242333333334,53.593638418079095,234.54728405028257,185.53712073516473,2019
+1998,59,"(55,60]",HS,12197.006,55.441694915254246,219.99698996655513,172.3483856761194,2019
+1998,59,"(55,60]",HS,12745.282333333334,127.51589830508476,99.95053560176433,188.78345131410256,2019
+1998,59,"(55,60]",HS,12332.297333333334,33.265016949152546,370.7287253808993,180.52794782762228,2019
+1998,36,"(35,40]",College,20.69483333333333,72.07420338983052,0.28713232141325784,5940.427631885628,2019
+1998,36,"(35,40]",College,20.69483333333333,70.22614689265536,0.29468843513465937,5931.548353069118,2019
+1998,36,"(35,40]",College,20.5125,70.22614689265536,0.29209206125682097,5919.120839597714,2019
+1998,36,"(35,40]",College,20.69483333333333,72.07420338983052,0.28713232141325784,5970.154224020582,2019
+1998,36,"(35,40]",College,20.5125,72.07420338983052,0.2846025212245948,5898.184792377412,2019
+1998,64,"(60,65]",HS,514.0888333333334,40.65724293785311,12.644458802067497,6878.636586770936,2019
+1998,64,"(60,65]",HS,411.98216666666667,40.65724293785311,10.133057160231072,6559.39658028469,2019
+1998,64,"(60,65]",HS,322.6388333333333,40.65724293785311,7.9355807236242,8692.650762973713,2019
+1998,64,"(60,65]",HS,459.3888333333333,40.65724293785311,11.299065065369412,6717.245502061834,2019
+1998,64,"(60,65]",HS,550.5555,40.65724293785311,13.54138795986622,6122.700407717174,2019
+1998,63,"(60,65]",HS,2544.6440000000002,77.61837288135592,32.784042044911615,3384.195022500561,2019
+1998,63,"(60,65]",HS,3236.599,77.61837288135592,41.69887720974678,3623.8764854168826,2019
+1998,63,"(60,65]",HS,3720.147,77.61837288135592,47.928690874343054,3484.9668742741787,2019
+1998,63,"(60,65]",HS,3381.7363333333337,77.61837288135592,43.56876094919574,4087.8618361036074,2019
+1998,63,"(60,65]",HS,2788.2413333333334,77.61837288135592,35.922439878961626,3268.9642418434514,2019
+1998,65,"(60,65]",HS,5.47,44.35335593220339,0.1233277591973244,6573.890340964501,2019
+1998,65,"(60,65]",HS,5.47,44.35335593220339,0.1233277591973244,6863.586504956744,2019
+1998,65,"(60,65]",HS,5.47,44.35335593220339,0.1233277591973244,6839.772930278339,2019
+1998,65,"(60,65]",HS,5.652333333333333,44.35335593220339,0.1274386845039019,6708.935144970205,2019
+1998,65,"(60,65]",HS,5.47,44.35335593220339,0.1233277591973244,6710.455414205811,2019
+1998,68,"(65,70]",College,85109.46216666668,948.0529830508475,89.77289633410916,17.268444467120176,2019
+1998,68,"(65,70]",College,83801.0564,888.9151751412429,94.27340059380194,17.91468756555343,2019
+1998,68,"(65,70]",College,83808.69616666668,887.0671186440679,94.47841590022296,15.830599937145305,2019
+1998,68,"(65,70]",College,88906.7544,935.1165875706214,95.07558264042197,15.204111176697074,2019
+1998,68,"(65,70]",College,90469.33283333333,916.63602259887,98.697117070342,15.429581264837443,2019
+1998,55,"(50,55]",HS,131.09766666666667,86.85865536723163,1.5093218529851278,9586.716629984716,2019
+1998,55,"(50,55]",HS,132.82983333333334,88.70671186440678,1.4974045429208473,9497.554623201522,2019
+1998,55,"(50,55]",HS,131.1159,88.70671186440678,1.478083193979933,9999.814910602714,2019
+1998,55,"(50,55]",HS,132.8663,86.85865536723163,1.529684053227069,9388.892507796494,2019
+1998,55,"(50,55]",HS,131.04296666666667,86.85865536723163,1.5086920942147586,9895.649104215066,2019
+1998,55,"(50,55]",College,1807.6526666666668,190.34981920903957,9.496476929571061,7.704912166324552,2019
+1998,55,"(50,55]",College,1040.5945666666667,182.957593220339,5.687627107192324,58.765114705631234,2019
+1998,55,"(50,55]",College,1394.2118333333333,338.19433898305084,4.122516768097666,99.21000386087442,2019
+1998,55,"(50,55]",College,925.1593333333334,340.042395480226,2.7207176094227137,47.6532883721125,2019
+1998,55,"(50,55]",College,1168.5743333333332,73.92225988700567,15.808152173913038,51.57209327738732,2019
+1998,51,"(50,55]",HS,479.2631666666667,42.50529943502825,11.275374436527557,7492.191165389832,2019
+1998,51,"(50,55]",HS,520.4705,42.50529943502825,12.244837865348263,7180.878419919453,2019
+1998,51,"(50,55]",HS,474.8871666666667,42.50529943502825,11.172422567980224,6689.9271342964985,2019
+1998,51,"(50,55]",HS,496.7671666666667,40.65724293785311,12.218417452113103,7321.244989073108,2019
+1998,51,"(50,55]",HS,489.47383333333335,42.50529943502825,11.515595463137997,6677.66165546744,2019
+1998,43,"(40,45]",HS,353.81783333333334,110.88338983050849,3.19090022296544,6020.918655420925,2019
+1998,43,"(40,45]",HS,354.0001666666667,110.88338983050849,3.1925445930880714,5760.432230495143,2019
+1998,43,"(40,45]",HS,353.81783333333334,110.88338983050849,3.19090022296544,5379.010011714817,2019
+1998,43,"(40,45]",HS,353.81783333333334,110.88338983050849,3.19090022296544,5880.243670300867,2019
+1998,43,"(40,45]",HS,353.81783333333334,110.88338983050849,3.19090022296544,5362.525188551483,2019
+1998,37,"(35,40]",HS,10.994700000000002,42.50529943502825,0.2586665697251709,5685.915875329083,2019
+1998,37,"(35,40]",HS,10.885299999999999,42.50529943502825,0.25609277301148753,5655.663579580391,2019
+1998,37,"(35,40]",HS,2.3338666666666668,42.50529943502825,0.05490766322524357,5671.712924674112,2019
+1998,37,"(35,40]",HS,12.1434,42.50529943502825,0.28569143521884544,5691.805535935171,2019
+1998,37,"(35,40]",HS,11.031166666666666,42.50529943502825,0.25952450196306526,5642.680361329738,2019
+1998,49,"(45,50]",HS,1029.454,149.69257627118645,6.877121268425615,5142.9890705355865,2019
+1998,49,"(45,50]",HS,1020.155,210.6784406779661,4.842237282168632,4928.072226930079,2019
+1998,49,"(45,50]",HS,1020.155,236.55123163841807,4.312617579431438,4592.445177510907,2019
+1998,49,"(45,50]",HS,1031.095,121.97172881355934,8.453557312252963,5024.247873444048,2019
+1998,49,"(45,50]",HS,1069.385,92.40282485875707,11.573076923076922,4583.602871794938,2019
+1998,81,"(80,85]",NoHS,19.145,11.088338983050848,1.7265886287625416,8526.615416210432,2019
+1998,81,"(80,85]",NoHS,19.145,11.088338983050848,1.7265886287625416,8590.802647305598,2019
+1998,81,"(80,85]",NoHS,19.509666666666668,11.088338983050848,1.7594760312151616,8533.873176651749,2019
+1998,81,"(80,85]",NoHS,19.145,11.088338983050848,1.7265886287625416,8538.837161751857,2019
+1998,81,"(80,85]",NoHS,19.145,11.088338983050848,1.7265886287625416,8554.318621624585,2019
+1998,62,"(60,65]",College,444.34633333333335,144.14840677966103,3.0825615298859446,6878.636586770936,2019
+1998,62,"(60,65]",College,444.34633333333335,144.14840677966103,3.0825615298859446,6559.39658028469,2019
+1998,62,"(60,65]",College,444.34633333333335,144.14840677966103,3.0825615298859446,6138.8293771918825,2019
+1998,62,"(60,65]",College,444.34633333333335,144.14840677966103,3.0825615298859446,6717.245502061834,2019
+1998,62,"(60,65]",College,444.34633333333335,144.14840677966103,3.0825615298859446,6122.700407717174,2019
+1998,52,"(50,55]",College,643.272,151.54063276836158,4.2448813116893716,10553.334075500763,2019
+1998,52,"(50,55]",College,635.614,219.9187231638418,2.89022230965965,10174.650373158365,2019
+1998,52,"(50,55]",College,692.5020000000001,118.27561581920904,5.8549853678929775,9881.289916979043,2019
+1998,52,"(50,55]",College,681.562,260.5759661016949,2.6155980929338933,10062.590158865458,2019
+1998,52,"(50,55]",College,648.742,120.12367231638417,5.400617442757911,10318.796404198825,2019
+1998,34,"(30,35]",College,340.0516666666667,151.54063276836158,2.2439636185659517,6351.112551358072,2019
+1998,34,"(30,35]",College,933.9113333333333,240.24734463276835,3.887290969899666,6077.64486740131,2019
+1998,34,"(30,35]",College,3416.9266666666667,395.4840903954802,8.639858719094802,1000.0370422045505,2019
+1998,34,"(30,35]",College,541.53,240.24734463276835,2.254051968098791,6201.660765769168,2019
+1998,34,"(30,35]",College,546.2706666666667,413.9646553672317,1.319607023411371,5657.42963951822,2019
+1998,58,"(55,60]",NoHS,913.2165,79.46642937853107,11.49185268725208,6620.945795507772,2019
+1998,58,"(55,60]",NoHS,554.0198333333334,79.46642937853107,6.971746908298981,6312.253370429019,2019
+1998,58,"(55,60]",NoHS,559.4898333333334,81.31448587570623,6.880567801763454,5908.897814610518,2019
+1998,58,"(55,60]",NoHS,714.4731666666667,81.31448587570623,8.786542262085739,6465.181991191287,2019
+1998,58,"(55,60]",NoHS,514.0888333333334,79.46642937853107,6.469257991755464,5894.084562493734,2019
+1998,37,"(35,40]",HS,59.714166666666664,157.08480225988703,0.38013968129057635,6277.977656363151,2019
+1998,37,"(35,40]",HS,59.714166666666664,157.08480225988703,0.38013968129057635,6404.524626299983,2019
+1998,37,"(35,40]",HS,59.714166666666664,157.08480225988703,0.38013968129057635,6664.274376415686,2019
+1998,37,"(35,40]",HS,57.89083333333334,157.08480225988703,0.3685323627778871,6333.420382022387,2019
+1998,37,"(35,40]",HS,57.89083333333334,157.08480225988703,0.3685323627778871,6595.429030305869,2019
+1998,51,"(50,55]",HS,0,35.11307344632768,0,4887.875546101614,2019
+1998,51,"(50,55]",HS,0,35.11307344632768,0,4886.232278191126,2019
+1998,51,"(50,55]",HS,0,35.11307344632768,0,4909.723737552553,2019
+1998,51,"(50,55]",HS,3.099666666666667,35.11307344632768,0.0882767118465059,4855.09854369122,2019
+1998,51,"(50,55]",HS,6.564,35.11307344632768,0.18693891920436545,4868.619329720724,2019
+1998,58,"(55,60]",NoHS,151.6284,77.61837288135592,1.9535117056856188,7840.536638470128,2019
+1998,58,"(55,60]",NoHS,151.42783333333335,75.77031638418079,1.9985112978220088,7796.4837286470865,2019
+1998,58,"(55,60]",NoHS,151.61016666666666,75.77031638418079,2.0009176931234194,8270.119506153464,2019
+1998,58,"(55,60]",NoHS,151.4460666666667,75.77031638418079,1.9987519373521498,7676.996070660917,2019
+1998,58,"(55,60]",NoHS,151.4460666666667,77.61837288135592,1.951162605510432,8149.039248354928,2019
+1998,24,"(20,25]",College,34.278666666666666,12.936395480225992,2.649784997611084,5969.910108602655,2019
+1998,24,"(20,25]",College,35.37266666666667,12.936395480225992,2.734352603917821,5934.027245668099,2019
+1998,24,"(20,25]",College,34.82566666666666,12.936395480225992,2.692068800764452,6138.7525135004935,2019
+1998,24,"(20,25]",College,33.914,12.936395480225992,2.6215957955088385,5997.499140242347,2019
+1998,24,"(20,25]",College,34.278666666666666,12.936395480225992,2.649784997611084,6179.299244895233,2019
+1998,53,"(50,55]",College,804.9834333333333,147.84451977401133,5.444797240802674,6188.0884554206,2019
+1998,53,"(50,55]",College,801.3367666666668,147.84451977401133,5.4201316889632105,5929.498670268253,2019
+1998,53,"(50,55]",College,806.8067666666667,147.84451977401133,5.457130016722407,5525.669332629515,2019
+1998,53,"(50,55]",College,804.6187666666667,147.84451977401133,5.442330685618728,6045.218031076407,2019
+1998,53,"(50,55]",College,802.7954333333333,147.84451977401133,5.429997909698995,5515.030194733275,2019
+1998,37,"(35,40]",HS,248.39270000000002,64.68197740112994,3.840215002388916,5727.8507215341415,2019
+1998,37,"(35,40]",HS,989.1401,68.37809039548021,14.465746180963574,5479.915670643548,2019
+1998,37,"(35,40]",HS,712.4310333333333,33.265016949152546,21.41682460052025,5117.335320656904,2019
+1998,37,"(35,40]",HS,566.5826,103.49116384180793,5.474695413282368,5592.831744273774,2019
+1998,37,"(35,40]",HS,294.3771666666667,49.89752542372881,5.8996345844171945,5100.5664667479105,2019
+1998,39,"(35,40]",HS,189.22553333333332,40.65724293785311,4.654165399817573,3354.0415944847286,2019
+1998,39,"(35,40]",HS,317.26,57.289751412429375,5.537814219441148,3478.0830081595873,2019
+1998,39,"(35,40]",HS,225.87453333333332,25.872790960451983,8.730195891065454,3323.087444802568,2019
+1998,39,"(35,40]",HS,114.04950000000001,101.64310734463277,1.1220583764062027,3270.31004375511,2019
+1998,39,"(35,40]",HS,191.1765,75.77031638418079,2.5231054735296516,3360.607684385605,2019
+1998,37,"(35,40]",College,328.3823333333333,144.14840677966103,2.2780850698910893,5770.04705822231,2019
+1998,37,"(35,40]",College,315.072,147.84451977401133,2.1311036789297653,5520.414233753474,2019
+1998,37,"(35,40]",College,315.619,184.80564971751414,1.7078428093645486,5154.884606570659,2019
+1998,37,"(35,40]",College,319.448,158.93285875706215,2.0099556661740685,5635.233530501479,2019
+1998,37,"(35,40]",College,330.57033333333334,168.17314124293785,1.9656547465912015,5139.086651002324,2019
+1998,58,"(55,60]",College,13503.606666666667,739.2225988700566,18.26730769230769,17.153329630576767,2019
+1998,58,"(55,60]",College,14887.516666666666,739.2225988700566,20.139423076923073,18.686758894134645,2019
+1998,58,"(55,60]",College,13355.916666666666,739.2225988700566,18.067516722408023,21.332893182162632,2019
+1998,58,"(55,60]",College,13866.45,739.2225988700566,18.758152173913043,21.09820419040399,2019
+1998,58,"(55,60]",College,14231.116666666667,739.2225988700566,19.25146321070234,19.418969895583434,2019
+1998,59,"(55,60]",College,150574.14866666665,5747.45570621469,26.19840088612631,14.88907941025208,2019
+1998,59,"(55,60]",College,143302.513,6172.508700564971,23.216251276710796,15.346942428237279,2019
+1998,59,"(55,60]",College,142707.924,5876.81966101695,24.283189247176118,16.178579613961055,2019
+1998,59,"(55,60]",College,156312.17866666667,5026.713672316385,31.0962964784576,15.10758998806865,2019
+1998,59,"(55,60]",College,156087.36166666666,5137.597062146893,30.381394215731092,16.589108194601298,2019
+1998,43,"(40,45]",College,4613.033333333333,1201.2367231638418,3.840236686390532,295.60454675519264,2019
+1998,43,"(40,45]",College,4683.778666666667,1201.2367231638418,3.899130434782609,293.6914392903194,2019
+1998,43,"(40,45]",College,4412.466666666667,1201.2367231638418,3.6732698739387706,283.6666751442691,2019
+1998,43,"(40,45]",College,4586.595,1201.2367231638418,3.818227424749164,303.539266716632,2019
+1998,43,"(40,45]",College,4109.2463333333335,1201.2367231638418,3.4208464111139696,290.66080904294404,2019
+1998,84,"(80,85]",NoHS,67.46333333333332,20.328621468926556,3.318637883855274,9715.765314463368,2019
+1998,84,"(80,85]",NoHS,58.346666666666664,20.328621468926556,2.8701733049559133,9969.464430802229,2019
+1998,84,"(80,85]",NoHS,42.30133333333334,20.328621468926556,2.0808756460930375,10393.19133617138,2019
+1998,84,"(80,85]",NoHS,55.06466666666667,20.328621468926556,2.7087260565521434,9774.47974878715,2019
+1998,84,"(80,85]",NoHS,61.99333333333334,18.480564971751416,3.354515050167224,10299.013930887126,2019
+1998,43,"(40,45]",College,11474.236666666666,3252.5794350282486,3.527734493767102,262.64948088473994,2019
+1998,43,"(40,45]",College,11474.236666666666,3252.5794350282486,3.527734493767102,260.6892444893109,2019
+1998,43,"(40,45]",College,11474.236666666666,3252.5794350282486,3.527734493767102,250.57456937200817,2019
+1998,43,"(40,45]",College,11472.413333333334,3252.5794350282486,3.5271739130434785,269.531251239284,2019
+1998,43,"(40,45]",College,11474.236666666666,3252.5794350282486,3.527734493767102,255.46654311350304,2019
+1998,37,"(35,40]",HS,10.575333333333335,46.201412429378536,0.2288963210702341,6991.17778383791,2019
+1998,37,"(35,40]",HS,10.393,46.201412429378536,0.22494983277591973,7025.348332557784,2019
+1998,37,"(35,40]",HS,10.393,46.201412429378536,0.22494983277591973,7007.475328084816,2019
+1998,37,"(35,40]",HS,10.210666666666667,46.201412429378536,0.22100334448160533,7052.890788747379,2019
+1998,37,"(35,40]",HS,10.575333333333335,46.201412429378536,0.2288963210702341,6995.23626416177,2019
+1998,91,"(90,95]",HS,85.69666666666667,11.088338983050848,7.728539576365663,6691.275519027187,2019
+1998,91,"(90,95]",HS,85.69666666666667,11.27314463276836,7.601842206261309,6738.93241960833,2019
+1998,91,"(90,95]",HS,85.69666666666667,11.27314463276836,7.601842206261309,6746.596810308001,2019
+1998,91,"(90,95]",HS,85.69666666666667,11.088338983050848,7.728539576365663,6676.6776484013635,2019
+1998,91,"(90,95]",HS,85.69666666666667,11.088338983050848,7.728539576365663,6745.994326158526,2019
+1998,43,"(40,45]",College,3.3731666666666666,55.441694915254246,0.060841694537346704,7167.039388120893,2019
+1998,43,"(40,45]",College,3.3914,55.441694915254246,0.0611705685618729,7114.268058383476,2019
+1998,43,"(40,45]",College,3.2090666666666667,55.441694915254246,0.057881828316610914,7116.24848982617,2019
+1998,43,"(40,45]",College,3.2090666666666667,55.441694915254246,0.057881828316610914,7235.84130571735,2019
+1998,43,"(40,45]",College,3.0085,55.441694915254246,0.05426421404682274,7088.133378424742,2019
+1998,60,"(55,60]",College,541.6576333333334,157.08480225988703,3.448186110564627,7379.672996251407,2019
+1998,60,"(55,60]",College,569.0988000000001,157.08480225988703,3.622876254180602,7061.589367689167,2019
+1998,60,"(55,60]",College,545.3043,157.08480225988703,3.4714007475900055,6660.089765337919,2019
+1998,60,"(55,60]",College,548.1487,157.08480225988703,3.4895081644698007,7202.883546264852,2019
+1998,60,"(55,60]",College,554.9679666666667,157.08480225988703,3.532919535707259,6613.628672277589,2019
+1998,67,"(65,70]",HS,87.81173333333334,53.593638418079095,1.6384730711567295,7844.982556823695,2019
+1998,67,"(65,70]",HS,85.97016666666667,53.593638418079095,1.604111405835544,8221.554206610985,2019
+1998,67,"(65,70]",HS,88.9969,53.593638418079095,1.660587014185215,8401.403270559433,2019
+1998,67,"(65,70]",HS,87.42883333333333,53.593638418079095,1.6313285664859878,7815.9119353731685,2019
+1998,67,"(65,70]",HS,91.25783333333332,53.593638418079095,1.702773613193403,8304.178681457794,2019
+1998,47,"(45,50]",HS,79.49733333333333,118.27561581920904,0.672136287625418,6729.651038795875,2019
+1998,47,"(45,50]",HS,119.97533333333332,125.66784180790961,0.9547019476686994,6855.882393338662,2019
+1998,47,"(45,50]",HS,116.14633333333333,105.33922033898305,1.102593440122044,7151.168631680349,2019
+1998,47,"(45,50]",HS,111.58800000000001,120.12367231638417,0.9289426292770776,6711.048976078705,2019
+1998,47,"(45,50]",HS,92.443,138.6042372881356,0.6669565217391303,7041.498883549715,2019
+1998,21,"(20,25]",HS,6.108166666666667,49.89752542372881,0.12241422024030722,5231.275179988698,2019
+1998,21,"(20,25]",HS,6.2905,51.745581920903966,0.12156593406593404,5240.587090851999,2019
+1998,21,"(20,25]",HS,6.108166666666667,49.89752542372881,0.12241422024030722,5285.065682124242,2019
+1998,21,"(20,25]",HS,6.108166666666667,49.89752542372881,0.12241422024030722,5243.334260097725,2019
+1998,21,"(20,25]",HS,6.2905,51.745581920903966,0.12156593406593404,5182.989090913518,2019
+1998,35,"(30,35]",College,76.96289999999999,134.9081242937853,0.5704838044623631,8621.706923404226,2019
+1998,35,"(30,35]",College,76.59823333333334,136.75618079096043,0.5601080177167135,8839.039040229349,2019
+1998,35,"(30,35]",College,76.96289999999999,134.9081242937853,0.5704838044623631,9187.986466779545,2019
+1998,35,"(30,35]",College,76.78056666666667,134.9081242937853,0.5691322673752692,8697.470729970872,2019
+1998,35,"(30,35]",College,76.96289999999999,134.9081242937853,0.5704838044623631,9002.48882255633,2019
+1998,57,"(55,60]",College,7652.53,4250.529943502825,1.800370801221463,262.64948088473994,2019
+1998,57,"(55,60]",College,7437.376666666667,4250.529943502825,1.7497527991856916,260.6892444893109,2019
+1998,57,"(55,60]",College,7482.96,4250.529943502825,1.760476952159372,250.57456937200817,2019
+1998,57,"(55,60]",College,7667.116666666667,4250.529943502825,1.8038025301730407,269.531251239284,2019
+1998,57,"(55,60]",College,8349.043333333333,4250.529943502825,1.9642358586592992,255.46654311350304,2019
+1998,57,"(55,60]",NoHS,107.02966666666667,0,Inf,10786.40037315358,2019
+1998,57,"(55,60]",NoHS,107.212,0,Inf,10883.589296355365,2019
+1998,57,"(55,60]",NoHS,79.49733333333333,0,Inf,10772.220857923021,2019
+1998,57,"(55,60]",NoHS,103.01833333333333,0,Inf,10774.420531120917,2019
+1998,57,"(55,60]",NoHS,121.78043333333333,0,Inf,10806.636028000983,2019
+1998,60,"(55,60]",College,23648.63333333333,702.2614689265538,33.67496919556415,302.17647281776647,2019
+1998,60,"(55,60]",College,23705.15666666667,550.720836158192,43.043871069111816,302.1299597564726,2019
+1998,60,"(55,60]",College,24436.31333333333,524.8480451977401,46.55883461302934,300.49862623794763,2019
+1998,60,"(55,60]",College,24439.96,522.999988700565,46.730326057411624,288.37252695763203,2019
+1998,60,"(55,60]",College,23685.100000000002,678.2367344632768,34.921582386337754,277.47505381708066,2019
+1998,47,"(45,50]",HS,141.87356666666668,72.07420338983052,1.9684375267987309,6643.819251232737,2019
+1998,47,"(45,50]",HS,136.03889999999998,70.22614689265536,1.9371545502552365,6768.440616974549,2019
+1998,47,"(45,50]",HS,123.64023333333334,70.22614689265536,1.7606011265622252,7059.960694852116,2019
+1998,47,"(45,50]",HS,127.2869,70.22614689265536,1.8125286041189932,6625.4544442493625,2019
+1998,47,"(45,50]",HS,128.36266666666668,70.22614689265536,1.8278472099982401,6951.689704319664,2019
+1998,57,"(55,60]",HS,68.61203333333334,46.201412429378536,1.4850635451505017,8049.180866028783,2019
+1998,57,"(55,60]",HS,68.61203333333334,46.201412429378536,1.4850635451505017,8021.461946019277,2019
+1998,57,"(55,60]",HS,68.79436666666668,46.201412429378536,1.4890100334448162,8425.621402490007,2019
+1998,57,"(55,60]",HS,68.61203333333334,46.201412429378536,1.4850635451505017,7847.200714108054,2019
+1998,57,"(55,60]",HS,68.79436666666668,46.201412429378536,1.4890100334448162,8341.31761573864,2019
+1998,72,"(70,75]",NoHS,3601.6303333333335,145.99646327683615,24.66929850556708,833.2267002533338,2019
+1998,72,"(70,75]",NoHS,3709.207,142.30035028248585,26.06604265299918,918.182840428859,2019
+1998,72,"(70,75]",NoHS,3293.3046666666664,142.30035028248585,23.143334925943623,839.8556667933675,2019
+1998,72,"(70,75]",NoHS,3224.018,157.08480225988703,20.524060594137318,1075.8887793860488,2019
+1998,72,"(70,75]",NoHS,3665.447,147.84451977401133,24.792579431438124,840.8695963192852,2019
+1998,33,"(30,35]",HS,30.44966666666667,88.70671186440678,0.34326226309921964,7056.250555959372,2019
+1998,33,"(30,35]",HS,30.44966666666667,88.70671186440678,0.34326226309921964,7058.244214496366,2019
+1998,33,"(30,35]",HS,30.632,88.70671186440678,0.34531772575250835,7179.9213029938865,2019
+1998,33,"(30,35]",HS,30.632,88.70671186440678,0.34531772575250835,7090.001546165224,2019
+1998,33,"(30,35]",HS,30.632,88.70671186440678,0.34531772575250835,7135.734088886757,2019
+1998,61,"(60,65]",College,102774.37133333333,15689.999661016947,6.550310615282194,14.88907941025208,2019
+1998,61,"(60,65]",College,110676.698,15486.713446327683,7.146558137307333,15.346942428237279,2019
+1998,61,"(60,65]",College,106971.32,13860.42372881356,7.717752508361205,16.178579613961055,2019
+1998,61,"(60,65]",College,105147.98666666668,13804.982033898306,7.616669576858158,15.10758998806865,2019
+1998,61,"(60,65]",College,105054.085,13509.292994350282,7.776431012632167,16.589108194601298,2019
+1998,35,"(30,35]",College,278.97,223.61483615819208,1.2475469194836786,6155.50882917436,2019
+1998,35,"(30,35]",College,278.97,223.61483615819208,1.2475469194836786,6144.5726327616485,2019
+1998,35,"(30,35]",College,278.97,223.61483615819208,1.2475469194836786,6185.605712103512,2019
+1998,35,"(30,35]",College,278.97,223.61483615819208,1.2475469194836786,6202.792789386381,2019
+1998,35,"(30,35]",College,278.97,223.61483615819208,1.2475469194836786,6094.8483084956015,2019
+1998,27,"(25,30]",HS,281.6503,105.33922033898305,2.6737458193979933,7127.012736737657,2019
+1998,27,"(25,30]",HS,246.29586666666668,97.9469943502825,2.5145832018678616,8097.341635874119,2019
+1998,27,"(25,30]",HS,104.76873333333334,136.75618079096043,0.7660987074030554,8289.629830053816,2019
+1998,27,"(25,30]",HS,167.67373333333333,121.97172881355934,1.3746934225195093,8072.887393705219,2019
+1998,27,"(25,30]",HS,235.62936666666667,121.97172881355934,1.9318359177054827,8149.932329823205,2019
+1998,55,"(50,55]",College,672.8100000000001,120.12367231638417,5.6009776177000266,6620.945795507772,2019
+1998,55,"(50,55]",College,672.8100000000001,120.12367231638417,5.6009776177000266,6312.253370429019,2019
+1998,55,"(50,55]",College,672.8100000000001,120.12367231638417,5.6009776177000266,5908.897814610518,2019
+1998,55,"(50,55]",College,672.8100000000001,120.12367231638417,5.6009776177000266,6465.181991191287,2019
+1998,55,"(50,55]",College,672.8100000000001,120.12367231638417,5.6009776177000266,5894.084562493734,2019
+1998,36,"(35,40]",HS,26.438333333333333,64.68197740112994,0.4087434304825609,7167.110782173644,2019
+1998,36,"(35,40]",HS,4.558333333333333,64.68197740112994,0.07047300525561394,7135.459948910517,2019
+1998,36,"(35,40]",HS,4.558333333333333,64.68197740112994,0.07047300525561394,7089.857344970098,2019
+1998,36,"(35,40]",HS,4.558333333333333,64.68197740112994,0.07047300525561394,7161.435620602523,2019
+1998,36,"(35,40]",HS,4.558333333333333,64.68197740112994,0.07047300525561394,7128.063353847634,2019
+1998,26,"(25,30]",HS,7.183933333333334,60.98586440677967,0.11779669605756561,6626.465501810747,2019
+1998,26,"(25,30]",HS,6.855733333333334,60.98586440677967,0.11241512111077329,6627.978817172354,2019
+1998,26,"(25,30]",HS,6.855733333333334,60.98586440677967,0.11241512111077329,6831.204462643467,2019
+1998,26,"(25,30]",HS,7.2204,60.98586440677967,0.11839464882943142,6653.457227457264,2019
+1998,26,"(25,30]",HS,7.019833333333334,60.98586440677967,0.11510590858416944,6897.188647179399,2019
+1998,53,"(50,55]",HS,1.0393,59.13780790960452,0.017574205685618727,4979.709683629582,2019
+1998,53,"(50,55]",HS,1.0393,59.13780790960452,0.017574205685618727,4950.176716060405,2019
+1998,53,"(50,55]",HS,1.0393,59.13780790960452,0.017574205685618727,4942.355481555732,2019
+1998,53,"(50,55]",HS,1.0393,59.13780790960452,0.017574205685618727,4955.732560744122,2019
+1998,53,"(50,55]",HS,1.0393,59.13780790960452,0.017574205685618727,4954.306273889495,2019
+1998,69,"(65,70]",College,99976.24753333333,2513.3568361581924,39.77797585087546,24.138170005778257,2019
+1998,69,"(65,70]",College,99280.79173333333,2753.6041807909605,36.05485219186999,24.904159637331603,2019
+1998,69,"(65,70]",College,99799.0013,2568.7985310734466,38.85045872332234,27.033696461809864,2019
+1998,69,"(65,70]",College,96494.86603333334,2531.8374011299434,38.11258416131631,24.73838124127179,2019
+1998,69,"(65,70]",College,97872.30320000001,2624.240225988701,37.295481652456544,26.89246887516341,2019
+1998,65,"(60,65]",HS,0.547,8.870671186440678,0.061663879598662215,9241.670781817213,2019
+1998,65,"(60,65]",HS,0.547,8.870671186440678,0.061663879598662215,9281.90729783086,2019
+1998,65,"(60,65]",HS,0.547,8.870671186440678,0.061663879598662215,9219.277520708853,2019
+1998,65,"(60,65]",HS,0.547,8.870671186440678,0.061663879598662215,9195.377968006158,2019
+1998,65,"(60,65]",HS,0.547,8.870671186440678,0.061663879598662215,9220.62416004477,2019
+1998,49,"(45,50]",HS,810.8363333333334,73.92225988700567,10.968770903010032,6258.447098045985,2019
+1998,49,"(45,50]",HS,792.6030000000001,73.92225988700567,10.722115384615384,5998.398427975454,2019
+1998,49,"(45,50]",HS,794.4263333333333,73.92225988700567,10.746780936454847,5588.292414799658,2019
+1998,49,"(45,50]",HS,796.2496666666666,73.92225988700567,10.77144648829431,6115.650741482947,2019
+1998,49,"(45,50]",HS,814.4830000000001,73.92225988700567,11.018102006688961,5578.0467004699885,2019
+1998,45,"(40,45]",HS,1020.702,166.32508474576272,6.136789297658862,10553.334075500763,2019
+1998,45,"(40,45]",HS,925.8886666666666,166.32508474576272,5.5667409884801184,10174.650373158365,2019
+1998,45,"(40,45]",HS,927.5296666666667,166.32508474576272,5.576607209215904,9881.289916979043,2019
+1998,45,"(40,45]",HS,1130.102,166.32508474576272,6.79453734671126,10062.590158865458,2019
+1998,45,"(40,45]",HS,1155.9933333333333,166.32508474576272,6.950204384986994,10318.796404198825,2019
+1998,22,"(20,25]",College,21.15066666666667,12.936395480225992,1.6349737219302436,1989.9700383811166,2019
+1998,22,"(20,25]",College,16.41,12.936395480225992,1.268514094601051,1978.009084056493,2019
+1998,22,"(20,25]",College,16.41,12.936395480225992,1.268514094601051,2046.2508400753918,2019
+1998,22,"(20,25]",College,23.703333333333333,12.936395480225992,1.8322981366459623,1999.1663822710907,2019
+1998,22,"(20,25]",College,15.680666666666667,12.936395480225992,1.2121356903965597,2059.766417221778,2019
+1998,58,"(55,60]",NoHS,2903.1113333333337,92.40282485875707,31.417993311036792,227.35966164813394,2019
+1998,58,"(55,60]",NoHS,2901.288,92.40282485875707,31.398260869565213,227.12540223332084,2019
+1998,58,"(55,60]",NoHS,2901.288,92.40282485875707,31.398260869565213,216.9073069182053,2019
+1998,58,"(55,60]",NoHS,2901.1056666666664,92.40282485875707,31.396287625418054,236.0746675280664,2019
+1998,58,"(55,60]",NoHS,2903.1113333333337,92.40282485875707,31.417993311036792,224.4056391279991,2019
+1998,35,"(30,35]",College,129.73016666666666,134.9081242937853,0.961618637467357,8563.58120151282,2019
+1998,35,"(30,35]",College,130.16776666666667,134.9081242937853,0.9648623264763825,8730.315252991133,2019
+1998,35,"(30,35]",College,131.7723,134.9081242937853,0.9767558528428094,9017.279882726678,2019
+1998,35,"(30,35]",College,130.76946666666666,134.9081242937853,0.9693223988637926,8655.278917212114,2019
+1998,35,"(30,35]",College,130.11306666666667,134.9081242937853,0.9644568653502543,8931.366322338195,2019
+1998,20,"(15,20]",HS,13.365033333333333,9.240282485875708,1.4463879598662204,5328.813981055973,2019
+1998,20,"(15,20]",HS,13.292100000000001,9.240282485875708,1.4384949832775917,5342.997207520069,2019
+1998,20,"(15,20]",HS,13.365033333333333,9.240282485875708,1.4463879598662204,5386.235889967081,2019
+1998,20,"(15,20]",HS,13.602066666666667,9.240282485875708,1.472040133779264,5323.624920006528,2019
+1998,20,"(15,20]",HS,13.365033333333333,9.240282485875708,1.4463879598662204,5366.411583122617,2019
+1998,66,"(65,70]",College,8780.444,545.1766666666666,16.105685618729098,20.105598491775517,2019
+1998,66,"(65,70]",College,10419.620666666666,565.5052881355933,18.425328436837383,21.77239997394083,2019
+1998,66,"(65,70]",College,8957.489666666666,585.8339096045197,15.290152242490743,20.937497779086762,2019
+1998,66,"(65,70]",College,10432.566333333334,559.9611186440679,18.630876298332172,22.09166203758618,2019
+1998,66,"(65,70]",College,13151.521,742.9187118644068,17.702503369440425,23.45671586329443,2019
+1998,46,"(45,50]",College,268.03000000000003,208.83038418079096,1.283481812531447,6378.508996138397,2019
+1998,46,"(45,50]",College,268.03000000000003,208.83038418079096,1.283481812531447,6368.106199255279,2019
+1998,46,"(45,50]",College,268.03000000000003,210.6784406779661,1.2722232001408205,6338.965150437214,2019
+1998,46,"(45,50]",College,268.03000000000003,208.83038418079096,1.283481812531447,6426.4569124035825,2019
+1998,46,"(45,50]",College,268.03000000000003,208.83038418079096,1.283481812531447,6373.183821285286,2019
+1998,81,"(80,85]",College,221.535,27.720847457627123,7.991638795986621,9267.219394749718,2019
+1998,81,"(80,85]",College,221.535,27.720847457627123,7.991638795986621,9453.31926174035,2019
+1998,81,"(80,85]",College,221.535,27.720847457627123,7.991638795986621,9878.549224449818,2019
+1998,81,"(80,85]",College,221.535,27.720847457627123,7.991638795986621,9365.856117653704,2019
+1998,81,"(80,85]",College,221.535,27.720847457627123,7.991638795986621,9784.970009830944,2019
+1998,47,"(45,50]",College,-925.524,121.97172881355934,-7.588020674977196,10464.169911980833,2019
+1998,47,"(45,50]",College,-319.448,66.53003389830509,-4.801560758082497,10743.595408481415,2019
+1998,47,"(45,50]",College,-945.216,184.80564971751414,-5.114648829431438,11021.191595717077,2019
+1998,47,"(45,50]",College,-177.42856666666668,109.03533333333333,-1.6272575250836123,10418.756989756479,2019
+1998,47,"(45,50]",College,-199.47266666666667,129.36395480225988,-1.5419493549928334,11010.45153371926,2019
+1998,56,"(55,60]",College,804.2723333333333,125.66784180790961,6.3999852449340935,567.9457770880483,2019
+1998,56,"(55,60]",College,817.9473333333334,118.27561581920904,6.915604096989967,524.6185207353593,2019
+1998,56,"(55,60]",College,883.2226666666667,118.27561581920904,7.4674958193979935,527.6268677311397,2019
+1998,56,"(55,60]",College,913.8546666666666,118.27561581920904,7.726484113712375,583.5581217556004,2019
+1998,56,"(55,60]",College,1038.0236666666667,133.06006779661018,7.801165923448532,591.5742222566957,2019
+1998,25,"(20,25]",HS,-5.232966666666666,79.46642937853107,-0.06585128723652484,8131.1317592327905,2019
+1998,25,"(20,25]",HS,-5.232966666666666,79.46642937853107,-0.06585128723652484,8186.400469038628,2019
+1998,25,"(20,25]",HS,-1.5863,77.61837288135592,-0.020437171524128047,8377.523149625622,2019
+1998,25,"(20,25]",HS,-5.232966666666666,77.61837288135592,-0.06741917502787068,8127.8245055497855,2019
+1998,25,"(20,25]",HS,-3.4096333333333333,79.46642937853107,-0.04290658785097612,8367.64419033044,2019
+1998,46,"(45,50]",College,515.274,145.99646327683615,3.52935946826976,6178.625172852858,2019
+1998,46,"(45,50]",College,515.0916666666667,145.99646327683615,3.5281105795690277,5921.893233780246,2019
+1998,46,"(45,50]",College,515.274,145.99646327683615,3.52935946826976,5517.0178234987725,2019
+1998,46,"(45,50]",College,515.274,147.84451977401133,3.485242474916387,6037.6500796020855,2019
+1998,46,"(45,50]",College,515.274,147.84451977401133,3.485242474916387,5506.902785777844,2019
+1998,48,"(45,50]",College,10956.41,3326.5016949152546,3.293673355629877,11.333225350380904,2019
+1998,48,"(45,50]",College,11005.64,3326.5016949152546,3.308472686733556,12.440634123637386,2019
+1998,48,"(45,50]",College,10954.586666666666,3326.5016949152546,3.2931252322556666,9.689090924677142,2019
+1998,48,"(45,50]",College,11003.816666666666,3326.5016949152546,3.3079245633593453,10.24960550108709,2019
+1998,48,"(45,50]",College,10958.233333333334,3326.5016949152546,3.2942214790040873,10.309975573490402,2019
+1998,37,"(35,40]",HS,17.631633333333337,99.79505084745762,0.17667843428712998,7493.84999524556,2019
+1998,37,"(35,40]",HS,52.32966666666667,131.21201129943503,0.3988176550944463,7596.350220498496,2019
+1998,37,"(35,40]",HS,5.652333333333333,134.9081242937853,0.04189764969991295,7907.994610526354,2019
+1998,37,"(35,40]",HS,12.034,120.12367231638417,0.10018008747105739,7531.380214962247,2019
+1998,37,"(35,40]",HS,38.10766666666667,110.88338983050849,0.34367335562987733,7812.263905860069,2019
+1998,77,"(75,80]",HS,5682.236,40.65724293785311,139.759501368197,1249.4821220758583,2019
+1998,77,"(75,80]",HS,6604.842666666667,40.65724293785311,162.4518090605047,1371.026929971221,2019
+1998,77,"(75,80]",HS,6604.842666666667,40.65724293785311,162.4518090605047,1254.0551114731898,2019
+1998,77,"(75,80]",HS,6455.329333333333,40.65724293785311,158.77439951352991,1599.1849709993714,2019
+1998,77,"(75,80]",HS,6457.152666666667,40.65724293785311,158.81924597141986,1255.458566119692,2019
+1998,52,"(50,55]",College,443.07,153.38868926553673,2.8885441431276946,4968.1802535176985,2019
+1998,52,"(50,55]",College,441.24666666666667,153.38868926553673,2.8766571301930126,5033.045640259583,2019
+1998,52,"(50,55]",College,441.24666666666667,153.38868926553673,2.8766571301930126,5216.447698939091,2019
+1998,52,"(50,55]",College,441.24666666666667,153.38868926553673,2.8766571301930126,4963.878413776309,2019
+1998,52,"(50,55]",College,441.24666666666667,151.54063276836158,2.911738314707562,5192.339268971578,2019
+1998,27,"(25,30]",HS,282.2155333333333,64.68197740112994,4.363124701385571,9709.21325631451,2019
+1998,27,"(25,30]",HS,487.4134666666667,64.68197740112994,7.5355375059722896,7770.49433029045,2019
+1998,27,"(25,30]",HS,538.8861666666667,64.68197740112994,8.331318681318681,7248.308888741095,2019
+1998,27,"(25,30]",HS,140.8525,64.68197740112994,2.177615862398471,9705.264134316265,2019
+1998,27,"(25,30]",HS,304.2231666666667,64.68197740112994,4.703368370759676,9991.627771205258,2019
+1998,26,"(25,30]",HS,-0.10940000000000001,7.022614689265536,-0.015578243267030455,10568.719355242529,2019
+1998,26,"(25,30]",HS,-0.10940000000000001,6.468197740112996,-0.016913521261347347,10551.729929946805,2019
+1998,26,"(25,30]",HS,-0.10940000000000001,7.392225988700565,-0.014799331103678932,10749.840521662683,2019
+1998,26,"(25,30]",HS,-0.12763333333333335,6.468197740112996,-0.019732441471571903,10664.660211125085,2019
+1998,26,"(25,30]",HS,-0.12763333333333335,6.468197740112996,-0.019732441471571903,10919.86558934764,2019
+1998,55,"(50,55]",College,344.4276666666667,101.64310734463277,3.388598358163576,5302.376837344687,2019
+1998,55,"(50,55]",College,344.4276666666667,101.64310734463277,3.388598358163576,5262.795603126098,2019
+1998,55,"(50,55]",College,344.4276666666667,101.64310734463277,3.388598358163576,5438.247910638387,2019
+1998,55,"(50,55]",College,344.4276666666667,101.64310734463277,3.388598358163576,5309.242983302038,2019
+1998,55,"(50,55]",College,344.4276666666667,101.64310734463277,3.388598358163576,5334.202115556072,2019
+1998,53,"(50,55]",College,13616.653333333334,979.4699435028249,13.902063482047074,295.60454675519264,2019
+1998,53,"(50,55]",College,13616.653333333334,979.4699435028249,13.902063482047074,293.6914392903194,2019
+1998,53,"(50,55]",College,13616.653333333334,979.4699435028249,13.902063482047074,283.6666751442691,2019
+1998,53,"(50,55]",College,13618.476666666666,979.4699435028249,13.903925033129298,303.539266716632,2019
+1998,53,"(50,55]",College,13616.653333333334,979.4699435028249,13.902063482047074,290.66080904294404,2019
+1998,26,"(25,30]",College,-34.552166666666665,92.40282485875707,-0.37392976588628757,4623.491042414344,2019
+1998,26,"(25,30]",College,-20.5125,92.40282485875707,-0.2219899665551839,4633.659120093046,2019
+1998,26,"(25,30]",College,-38.21706666666667,92.40282485875707,-0.41359197324414715,4665.635496765828,2019
+1998,26,"(25,30]",College,-25.9825,92.40282485875707,-0.28118729096989964,4634.010709899072,2019
+1998,26,"(25,30]",College,-32.345933333333335,92.40282485875707,-0.3500535117056856,4612.4963158999,2019
+1998,33,"(30,35]",HS,31.388683333333336,55.441694915254246,0.5661566332218506,7544.683285219132,2019
+1998,33,"(30,35]",HS,39.41135,55.441694915254246,0.7108612040133778,7639.954695426811,2019
+1998,33,"(30,35]",HS,37.21423333333333,55.441694915254246,0.6712318840579709,7749.73088797517,2019
+1998,33,"(30,35]",HS,36.494016666666674,55.441694915254246,0.6582413600891862,7574.970055383188,2019
+1998,33,"(30,35]",HS,29.7568,55.441694915254246,0.5367224080267557,7719.081546880239,2019
+1998,55,"(50,55]",HS,344.24533333333335,125.66784180790961,2.7393271689946883,6652.21989256659,2019
+1998,55,"(50,55]",HS,344.24533333333335,125.66784180790961,2.7393271689946883,6344.814342005013,2019
+1998,55,"(50,55]",HS,344.24533333333335,125.66784180790961,2.7393271689946883,6327.432980403552,2019
+1998,55,"(50,55]",HS,344.24533333333335,125.66784180790961,2.7393271689946883,6312.780867061528,2019
+1998,55,"(50,55]",HS,344.24533333333335,125.66784180790961,2.7393271689946883,6595.2278125456,2019
+1998,56,"(55,60]",College,1687.1303333333333,73.92225988700567,22.82303511705685,3180.8501836756814,2019
+1998,56,"(55,60]",College,929.5353333333334,96.09893785310734,9.672691021353229,6427.320494090182,2019
+1998,56,"(55,60]",College,1874.9336666666668,85.0105988700565,22.05529300567108,3234.0415303267696,2019
+1998,56,"(55,60]",College,2159.3736666666664,99.79505084745762,21.638083735909824,3211.764265646922,2019
+1998,56,"(55,60]",College,2010.0426666666667,116.4275593220339,17.26432022084196,3314.1775924872336,2019
+1998,49,"(45,50]",HS,181.23933333333335,40.65724293785311,4.457737914259654,7735.074483473038,2019
+1998,49,"(45,50]",HS,174.6935666666667,40.65724293785311,4.296739130434783,7836.064900938769,2019
+1998,49,"(45,50]",HS,175.62346666666667,24.024734463276836,7.310110625160792,8121.607798321333,2019
+1998,49,"(45,50]",HS,172.99786666666668,22.176677966101696,7.800891861761428,7728.376849909507,2019
+1998,49,"(45,50]",HS,176.57160000000002,35.11307344632768,5.028656926597431,8084.072827373714,2019
+1998,76,"(75,80]",College,20419.2365,462.0141242937853,44.19613043478261,221.0179552196265,2019
+1998,76,"(75,80]",College,24909.69989666667,462.0141242937853,53.91545103678931,220.95350677744145,2019
+1998,76,"(75,80]",College,28669.13608333333,462.0141242937853,62.05251003344481,218.70860629439773,2019
+1998,76,"(75,80]",College,24194.47734,462.0141242937853,52.36739759197325,213.37349522402116,2019
+1998,76,"(75,80]",College,25321.705766666666,462.0141242937853,54.80721137123746,202.69225601124634,2019
+1998,60,"(55,60]",College,8598.84,1053.3922033898307,8.162999471923955,401.16566193425894,2019
+1998,60,"(55,60]",College,8598.84,1053.3922033898307,8.162999471923955,397.8124158847421,2019
+1998,60,"(55,60]",College,8598.84,1053.3922033898307,8.162999471923955,378.99457557511573,2019
+1998,60,"(55,60]",College,8597.016666666666,1053.3922033898307,8.161268556005396,416.8849863685161,2019
+1998,60,"(55,60]",College,8597.016666666666,1053.3922033898307,8.161268556005396,396.4605293820811,2019
+1998,35,"(30,35]",NoHS,0.18233333333333335,36.96112994350283,0.004933110367892976,5089.491127392195,2019
+1998,35,"(30,35]",NoHS,0.18233333333333335,38.80918644067796,0.004698200350374264,5062.412149410078,2019
+1998,35,"(30,35]",NoHS,0.18233333333333335,36.96112994350283,0.004933110367892976,5076.77799675041,2019
+1998,35,"(30,35]",NoHS,0.18233333333333335,36.96112994350283,0.004933110367892976,5094.762991425234,2019
+1998,35,"(30,35]",NoHS,0.18233333333333335,38.80918644067796,0.004698200350374264,5050.790807212876,2019
+1998,28,"(25,30]",NoHS,4.558333333333333,33.265016949152546,0.13703084355258266,6415.794043695771,2019
+1998,28,"(25,30]",NoHS,4.558333333333333,33.265016949152546,0.13703084355258266,6374.660292077824,2019
+1998,28,"(25,30]",NoHS,4.558333333333333,33.265016949152546,0.13703084355258266,6341.856248953437,2019
+1998,28,"(25,30]",NoHS,4.558333333333333,33.265016949152546,0.13703084355258266,6441.554196643638,2019
+1998,28,"(25,30]",NoHS,4.558333333333333,33.265016949152546,0.13703084355258266,6358.637971775956,2019
+1998,81,"(80,85]",HS,219.71166666666667,31.416960451977403,6.993409403895337,11555.320093081778,2019
+1998,81,"(80,85]",HS,212.41833333333335,31.416960451977403,6.7612630336415505,11788.379096193632,2019
+1998,81,"(80,85]",HS,201.47833333333335,31.416960451977403,6.41304347826087,12144.44026138879,2019
+1998,81,"(80,85]",HS,212.41833333333335,33.265016949152546,6.3856373095503525,11766.898698709338,2019
+1998,81,"(80,85]",HS,221.535,31.416960451977403,7.051445996458784,12192.022456073513,2019
+1998,20,"(15,20]",HS,28.553400000000003,46.201412429378536,0.6180200668896321,5328.813981055973,2019
+1998,20,"(15,20]",HS,26.456566666666667,46.201412429378536,0.5726354515050167,5342.997207520069,2019
+1998,20,"(15,20]",HS,28.2799,46.201412429378536,0.6121003344481605,5386.235889967081,2019
+1998,20,"(15,20]",HS,26.547733333333333,46.201412429378536,0.5746086956521739,5323.624920006528,2019
+1998,20,"(15,20]",HS,28.371066666666668,46.201412429378536,0.6140735785953176,5366.411583122617,2019
+1998,26,"(25,30]",HS,85.78783333333332,46.201412429378536,1.856822742474916,8658.307448653137,2019
+1998,26,"(25,30]",HS,108.39716666666668,46.201412429378536,2.3461872909698998,8660.75374905362,2019
+1998,26,"(25,30]",HS,84.69383333333333,46.201412429378536,1.8331438127090298,8810.056503159865,2019
+1998,26,"(25,30]",HS,73.75383333333333,46.201412429378536,1.596354515050167,8699.72129125712,2019
+1998,26,"(25,30]",HS,120.0665,46.201412429378536,2.59876254180602,8755.836987851433,2019
+1998,82,"(80,85]",NoHS,144.64503333333332,36.96112994350283,3.913436454849497,11086.614997215285,2019
+1998,82,"(80,85]",NoHS,131.91816666666665,27.720847457627123,4.75880713489409,11317.844100352733,2019
+1998,82,"(80,85]",NoHS,133.7415,27.720847457627123,4.82458193979933,11746.472401444003,2019
+1998,82,"(80,85]",NoHS,130.00366666666667,18.480564971751416,7.034615384615384,11268.650325276481,2019
+1998,82,"(80,85]",NoHS,144.77266666666665,22.176677966101696,6.528149386845038,11782.936662992704,2019
+1998,89,"(85,90]",HS,7557.716666666667,147.84451977401133,51.11935618729096,1476.0543415923198,2019
+1998,89,"(85,90]",HS,8287.05,175.56536723163845,47.20207709910226,1619.517615661984,2019
+1998,89,"(85,90]",HS,8287.05,151.54063276836158,54.6853332245697,1481.3306144013136,2019
+1998,89,"(85,90]",HS,7557.716666666667,182.957593220339,41.308570656396746,1889.0531266752969,2019
+1998,89,"(85,90]",HS,7557.716666666667,140.45229378531073,53.80984861820102,1483.1079853342223,2019
+1998,78,"(75,80]",NoHS,0.9116666666666666,14.045229378531072,0.06490934694596022,5956.92786154015,2019
+1998,78,"(75,80]",NoHS,0.9116666666666666,14.045229378531072,0.06490934694596022,6000.836444733754,2019
+1998,78,"(75,80]",NoHS,0.9116666666666666,14.045229378531072,0.06490934694596022,6005.958722845939,2019
+1998,78,"(75,80]",NoHS,0.9116666666666666,14.045229378531072,0.06490934694596022,5945.583337229634,2019
+1998,78,"(75,80]",NoHS,0.9116666666666666,14.045229378531072,0.06490934694596022,6005.975809545855,2019
+1998,35,"(30,35]",HS,20.54896666666667,46.201412429378536,0.44476923076923075,5653.18473753942,2019
+1998,35,"(30,35]",HS,14.677833333333334,51.745581920903966,0.2836538461538461,5644.73480655862,2019
+1998,35,"(30,35]",HS,17.139333333333333,97.9469943502825,0.17498580172903386,5632.908211936878,2019
+1998,35,"(30,35]",HS,12.252799999999999,75.77031638418079,0.1617097642548332,5681.473932757346,2019
+1998,35,"(30,35]",HS,24.633233333333333,48.04946892655367,0.5126640082325701,5612.984504428865,2019
+1998,33,"(30,35]",College,758.5066666666667,517.4558192090395,1.4658385093167703,6945.636652589671,2019
+1998,33,"(30,35]",College,769.4466666666666,517.4558192090395,1.4869804108934543,6648.211564668942,2019
+1998,33,"(30,35]",College,754.86,517.4558192090395,1.458791208791209,6200.011473531665,2019
+1998,33,"(30,35]",College,758.5066666666667,517.4558192090395,1.4658385093167703,6784.078918324363,2019
+1998,33,"(30,35]",College,754.86,517.4558192090395,1.458791208791209,6187.362936599234,2019
+1998,66,"(65,70]",HS,13250.163333333334,277.2084745762712,47.79855072463768,24.86710759225891,2019
+1998,66,"(65,70]",HS,13248.34,277.2084745762712,47.79197324414715,27.192892613301503,2019
+1998,66,"(65,70]",HS,13250.163333333334,277.2084745762712,47.79855072463768,26.59095743370184,2019
+1998,66,"(65,70]",HS,13248.34,277.2084745762712,47.79197324414715,27.17119523770207,2019
+1998,66,"(65,70]",HS,13250.163333333334,277.2084745762712,47.79855072463768,28.422405505584482,2019
+1998,39,"(35,40]",HS,23.903900000000004,29.56890395480226,0.8084134615384617,6981.271798300821,2019
+1998,39,"(35,40]",HS,27.532333333333334,29.56890395480226,0.9311245819397994,6970.8367483966285,2019
+1998,39,"(35,40]",HS,27.040033333333334,29.56890395480226,0.9144753344481605,6956.231764597947,2019
+1998,39,"(35,40]",HS,19.764933333333335,29.56890395480226,0.6684364548494984,7016.2068959388125,2019
+1998,39,"(35,40]",HS,20.6766,29.56890395480226,0.6992683946488295,6931.627435569098,2019
+1998,41,"(40,45]",HS,123.74963333333334,46.201412429378536,2.67848160535117,6595.497376513131,2019
+1998,41,"(40,45]",HS,123.38496666666666,46.201412429378536,2.670588628762541,6728.444681188242,2019
+1998,41,"(40,45]",HS,123.54906666666666,46.201412429378536,2.6741404682274243,7001.331730045707,2019
+1998,41,"(40,45]",HS,123.74963333333334,46.201412429378536,2.67848160535117,6653.7442151685045,2019
+1998,41,"(40,45]",HS,123.71316666666668,46.201412429378536,2.6776923076923076,6929.0044099265915,2019
+1998,66,"(65,70]",HS,223.3948,83.16254237288136,2.6862430323299886,9785.04270847177,2019
+1998,66,"(65,70]",HS,214.0958,83.16254237288136,2.574425863991081,10137.420141369943,2019
+1998,66,"(65,70]",HS,193.49213333333333,83.16254237288136,2.3266740988480117,10317.80771711096,2019
+1998,66,"(65,70]",HS,198.7798,83.16254237288136,2.39025641025641,9812.004296541334,2019
+1998,66,"(65,70]",HS,204.7968,83.16254237288136,2.4626086956521736,10208.435958289056,2019
+1998,41,"(40,45]",HS,480.10190000000006,101.64310734463277,4.723408330799636,6119.083300185319,2019
+1998,41,"(40,45]",HS,499.24690000000004,107.18727683615819,4.657706723561296,5855.659438638957,2019
+1998,41,"(40,45]",HS,551.3030666666666,92.40282485875707,5.966301003344481,5466.668115530529,2019
+1998,41,"(40,45]",HS,456.8908666666666,107.18727683615819,4.262547572367662,5976.501906831097,2019
+1998,41,"(40,45]",HS,513.6147666666667,131.21201129943503,3.9143883367092185,5449.256673335888,2019
+1998,54,"(50,55]",HS,245183.63333333336,9794.699435028248,25.03227740266297,16.988373072866104,2019
+1998,54,"(50,55]",HS,244584.66833333333,12271.095141242939,19.931771819720353,17.31960725314636,2019
+1998,54,"(50,55]",HS,245110.7,11088.338983050848,22.10526755852843,18.94060439607927,2019
+1998,54,"(50,55]",HS,244910.13333333336,11125.300112994351,22.013800153335037,17.623763815881922,2019
+1998,54,"(50,55]",HS,245148.99,12363.497966101695,19.82844909039099,18.931858893614667,2019
+1998,39,"(35,40]",College,16592.333333333336,354.82684745762714,46.76177536231884,847.3626968371109,2019
+1998,39,"(35,40]",College,16854.893333333333,354.82684745762714,47.501741917502784,927.6093877343186,2019
+1998,39,"(35,40]",College,14575.726666666666,354.82684745762714,41.07842112597547,848.7905122859795,2019
+1998,39,"(35,40]",College,14252.996666666666,354.82684745762714,40.168878901895205,1086.7167010755709,2019
+1998,39,"(35,40]",College,16554.043333333335,354.82684745762714,46.653863573021184,849.3886047751397,2019
+1998,48,"(45,50]",HS,125.44533333333334,48.04946892655367,2.6107537947002832,6767.2791921058115,2019
+1998,48,"(45,50]",HS,125.62766666666667,48.04946892655367,2.6145484949832776,6894.216356315979,2019
+1998,48,"(45,50]",HS,129.639,48.04946892655367,2.698031901209159,7191.153657362488,2019
+1998,48,"(45,50]",HS,124.35133333333333,48.04946892655367,2.5879855930023155,6748.573117863566,2019
+1998,48,"(45,50]",HS,123.98666666666668,48.04946892655367,2.5803961924363263,7080.870702087482,2019
+1998,75,"(70,75]",HS,12430.028,789.1201242937854,15.75175644028103,13.220731962776037,2019
+1998,75,"(70,75]",HS,14975.036666666667,674.5406214689266,22.20034819260549,14.273433380186441,2019
+1998,75,"(70,75]",HS,33261.976,530.3922146892655,62.71203663780547,16.90726711735487,2019
+1998,75,"(70,75]",HS,15280.080333333335,469.4063502824859,32.55192505201064,14.394860285423471,2019
+1998,75,"(70,75]",HS,9193.976,593.2261355932204,15.498265245522457,14.980199676924391,2019
+1998,41,"(40,45]",HS,38.381166666666665,36.96112994350283,1.0384197324414712,7002.483708420163,2019
+1998,41,"(40,45]",HS,38.381166666666665,36.96112994350283,1.0384197324414712,7138.210990594196,2019
+1998,41,"(40,45]",HS,38.74583333333334,36.96112994350283,1.0482859531772575,7478.602280180979,2019
+1998,41,"(40,45]",HS,38.381166666666665,36.96112994350283,1.0384197324414712,7024.182022308514,2019
+1998,41,"(40,45]",HS,38.74583333333334,36.96112994350283,1.0482859531772575,7308.544068451311,2019
+1998,67,"(65,70]",HS,519.65,12.936395480225992,40.16961299569994,7718.920988012966,2019
+1998,67,"(65,70]",HS,519.65,12.936395480225992,40.16961299569994,7391.132002418743,2019
+1998,67,"(65,70]",HS,518.009,12.936395480225992,40.04276158623984,7568.077389300056,2019
+1998,67,"(65,70]",HS,519.8323333333333,12.751589830508475,40.76608017061702,7364.2090498089065,2019
+1998,67,"(65,70]",HS,518.1913333333333,12.936395480225992,40.05685618729096,7626.12468056185,2019
+1998,52,"(50,55]",College,1159.64,194.04593220338984,5.976110845676064,6511.729484669277,2019
+1998,52,"(50,55]",College,1087.6183333333333,194.04593220338984,5.604953017996496,6240.22932517447,2019
+1998,52,"(50,55]",College,859.1546666666667,194.04593220338984,4.427584010192706,5814.9912027236,2019
+1998,52,"(50,55]",College,960.7143333333333,194.04593220338984,4.950963529224398,6363.1349553959135,2019
+1998,52,"(50,55]",College,1403.9666666666667,194.04593220338984,7.235228539576365,3205.4085339766743,2019
+1998,84,"(80,85]",HS,544.6296666666666,199.59010169491523,2.7287408646104296,7624.05349426443,2019
+1998,84,"(80,85]",HS,539.1596666666667,199.59010169491523,2.701334695899914,7311.912755830056,2019
+1998,84,"(80,85]",HS,577.085,199.59010169491523,2.891350798959495,6825.23883243086,2019
+1998,84,"(80,85]",HS,531.8663333333334,199.59010169491523,2.6647931376192253,7431.337384963791,2019
+1998,84,"(80,85]",HS,552.2876666666666,199.59010169491523,2.767109500805153,6806.591390318152,2019
+1998,68,"(65,70]",HS,501.599,33.265016949152546,15.078874024526197,7545.740279142323,2019
+1998,68,"(65,70]",HS,353.4167,33.265016949152546,10.624275362318839,9069.258855420074,2019
+1998,68,"(65,70]",HS,559.7633333333334,33.265016949152546,16.827387588257153,6683.699472766706,2019
+1998,68,"(65,70]",HS,402.33673333333337,35.11307344632768,11.458317197676466,8755.559483589193,2019
+1998,68,"(65,70]",HS,403.9595,33.265016949152546,12.143673355629875,9145.085818657584,2019
+1998,75,"(70,75]",NoHS,3.6466666666666665,11.088338983050848,0.3288740245261984,5679.323358736113,2019
+1998,75,"(70,75]",NoHS,0.4558333333333333,11.088338983050848,0.0411092530657748,5719.772888561302,2019
+1998,75,"(70,75]",NoHS,0.7293333333333334,11.088338983050848,0.0657748049052397,5726.278158447045,2019
+1998,75,"(70,75]",NoHS,9.116666666666665,11.088338983050848,0.822185061315496,5666.933190763309,2019
+1998,75,"(70,75]",NoHS,0.3646666666666667,11.088338983050848,0.03288740245261985,5725.766790727443,2019
+1998,59,"(55,60]",College,15742.842333333334,2587.279096045198,6.084709746774964,12.548351017431266,2019
+1998,59,"(55,60]",College,3929.3562666666667,441.68550282485876,8.896276290564083,13.550006173366151,2019
+1998,59,"(55,60]",College,14043.823866666668,985.0141129943502,14.257484924733479,13.1235344795162,2019
+1998,59,"(55,60]",College,13165.196,2328.551186440678,5.653814301640388,13.379828003941384,2019
+1998,59,"(55,60]",College,6643.679666666667,888.9151751412429,7.47391860602563,14.392929622187243,2019
+1998,58,"(55,60]",HS,320.99783333333335,114.57950282485875,2.801529291185673,8234.233896324125,2019
+1998,58,"(55,60]",HS,319.3568333333333,107.18727683615819,2.9794285549532926,8203.560752273803,2019
+1998,58,"(55,60]",HS,318.26283333333333,114.57950282485875,2.7776594023087715,8692.650762973713,2019
+1998,58,"(55,60]",HS,317.5335,99.79505084745762,3.18185618729097,8048.9966781431185,2019
+1998,58,"(55,60]",HS,315.1631666666667,121.97172881355934,2.5839034154251546,8509.507950298907,2019
+1998,63,"(60,65]",HS,93.19056666666667,22.176677966101696,4.202187848383501,6807.8311816046535,2019
+1998,63,"(60,65]",HS,106.48266666666667,22.176677966101696,4.8015607580824975,6782.471495550939,2019
+1998,63,"(60,65]",HS,134.92666666666665,22.176677966101696,6.0841694537346696,7186.83725287302,2019
+1998,63,"(60,65]",HS,80.48193333333333,24.024734463276836,3.3499614098276305,6536.489349015426,2019
+1998,63,"(60,65]",HS,72.05813333333333,27.720847457627123,2.599420289855072,6969.429595686795,2019
+1998,55,"(50,55]",College,44920.58813333333,123.81978531073446,362.79006639045576,36.236391643041586,2019
+1998,55,"(50,55]",College,22099.5658,144.14840677966103,153.3112040133779,39.44794106516867,2019
+1998,55,"(50,55]",College,44907.059,125.66784180790961,357.3472604760968,38.88025811978906,2019
+1998,55,"(50,55]",College,22108.7007,140.45229378531073,157.4107485477909,36.32487991497127,2019
+1998,55,"(50,55]",College,18990.199,149.69257627118645,126.861327883067,39.59803169147705,2019
+1998,82,"(80,85]",HS,5.47,0,Inf,998.3008364320576,2019
+1998,82,"(80,85]",HS,2.735,0,Inf,1009.0310213128962,2019
+1998,82,"(80,85]",HS,10.028333333333334,0,Inf,1024.5881449959902,2019
+1998,82,"(80,85]",HS,4.011333333333334,0,Inf,1004.7679233516141,2019
+1998,82,"(80,85]",HS,2.735,0,Inf,1051.3332706110796,2019
+1998,56,"(55,60]",College,2058.361,109.03533333333333,18.877926421404684,1311.5349245899388,2019
+1998,56,"(55,60]",College,2064.195666666667,109.03533333333333,18.931438127090306,1889.8210300269402,2019
+1998,56,"(55,60]",College,2011.319,109.03533333333333,18.44648829431438,1288.3215141580358,2019
+1998,56,"(55,60]",College,1834.4556666666667,109.03533333333333,16.824414715719065,1473.474840694955,2019
+1998,56,"(55,60]",College,1828.9856666666667,109.03533333333333,16.774247491638796,1366.19298925682,2019
+1998,47,"(45,50]",College,309973.7776666667,8427.137627118645,36.78280709088776,14.88907941025208,2019
+1998,47,"(45,50]",College,312358.333,9332.685310734463,33.46928805589589,15.346942428237279,2019
+1998,47,"(45,50]",College,310833.4793333333,8833.710056497175,35.187195113418504,16.178579613961055,2019
+1998,47,"(45,50]",College,310467.7186666667,8390.17649717514,37.00371723660367,15.10758998806865,2019
+1998,47,"(45,50]",College,310370.8996666667,9055.476836158194,34.274385024912974,16.589108194601298,2019
+1998,44,"(40,45]",College,142967.56666666665,2032.8621468926553,70.32821526299786,350.74565291931157,2019
+1998,44,"(40,45]",College,143106.14,2032.8621468926553,70.39638187899058,332.63937689667944,2019
+1998,44,"(40,45]",College,142663.98166666666,2032.8621468926553,70.17887655822439,349.70181964412177,2019
+1998,44,"(40,45]",College,142728.52766666666,2014.381581920904,70.85476205087294,342.7358547122605,2019
+1998,44,"(40,45]",College,143261.12333333335,2032.8621468926553,70.47262085740347,369.4534653776576,2019
+1998,24,"(20,25]",HS,0,10.903533333333334,0,6107.360541616184,2019
+1998,24,"(20,25]",HS,0,10.903533333333334,0,6137.124405880077,2019
+1998,24,"(20,25]",HS,0,11.088338983050848,0,6147.025195274284,2019
+1998,24,"(20,25]",HS,0,10.903533333333334,0,6097.9204599491695,2019
+1998,24,"(20,25]",HS,0,10.903533333333334,0,6111.813612866962,2019
+1998,26,"(25,30]",College,347.345,101.64310734463277,3.417300091213135,7423.135833809296,2019
+1998,26,"(25,30]",College,349.3506666666667,101.64310734463277,3.437032532684707,7104.207775789483,2019
+1998,26,"(25,30]",College,349.3506666666667,101.64310734463277,3.437032532684707,6626.863339759856,2019
+1998,26,"(25,30]",College,349.1683333333333,101.64310734463277,3.435238674369109,7250.449512309782,2019
+1998,26,"(25,30]",College,349.3506666666667,101.64310734463277,3.437032532684707,6613.609308861369,2019
+1998,19,"(15,20]",HS,0.09116666666666667,17.741342372881356,0.005138656633221851,5350.373166605473,2019
+1998,19,"(15,20]",HS,0.09116666666666667,18.480564971751416,0.004933110367892976,5357.170576761136,2019
+1998,19,"(15,20]",HS,0.09116666666666667,18.480564971751416,0.004933110367892976,5390.809439846493,2019
+1998,19,"(15,20]",HS,0.09116666666666667,33.265016949152546,0.0027406168710516535,5322.487947730335,2019
+1998,19,"(15,20]",HS,0.09116666666666667,25.872790960451983,0.003523650262780697,5351.914283123837,2019
+1998,67,"(65,70]",HS,4521.046166666667,1023.8232994350283,4.415846141772213,1172.2434644796817,2019
+1998,67,"(65,70]",HS,4484.761833333333,1023.8232994350283,4.3804061069992635,1211.7847685664879,2019
+1998,67,"(65,70]",HS,4496.795833333333,1023.8232994350283,4.392160088381246,1146.6651376430677,2019
+1998,67,"(65,70]",HS,4495.428333333333,1023.8232994350283,4.390824408678749,1247.873254604186,2019
+1998,67,"(65,70]",HS,4554.413166666667,1023.8232994350283,4.448436726513167,1148.498574381864,2019
+1998,28,"(25,30]",College,1315.8814333333335,70.22614689265536,18.737770638972016,3419.0312107949953,2019
+1998,28,"(25,30]",College,1314.2404333333334,72.07420338983052,18.234546779864505,3729.2811488559755,2019
+1998,28,"(25,30]",College,1316.0637666666667,72.07420338983052,18.259844781751134,3477.084706198408,2019
+1998,28,"(25,30]",College,1314.2404333333334,72.07420338983052,18.234546779864505,3452.24005860639,2019
+1998,28,"(25,30]",College,1314.4227666666666,72.07420338983052,18.237076580053166,3564.582328031248,2019
+1998,62,"(60,65]",College,5223.120666666667,149.69257627118645,34.892315950286964,2177.8184878916145,2019
+1998,62,"(60,65]",College,5540.380666666667,293.84098305084746,18.855030394817106,2229.409192563071,2019
+1998,62,"(60,65]",College,5622.248333333333,733.6784293785311,7.663096130679089,2083.2021615761514,2019
+1998,62,"(60,65]",College,2798.9990000000003,447.22967231638415,6.258527046076454,2290.946768264245,2019
+1998,62,"(60,65]",College,4579.484,369.6112994350283,12.39,2166.3924840102854,2019
+1998,36,"(35,40]",HS,380.6573,25.872790960451983,14.712649307214523,5727.8507215341415,2019
+1998,36,"(35,40]",HS,551.4307,55.441694915254246,9.946137123745817,5479.915670643548,2019
+1998,36,"(35,40]",HS,173.03433333333334,48.04946892655367,3.601170568561873,7262.444033411103,2019
+1998,36,"(35,40]",HS,311.7717666666667,33.265016949152546,9.372361575622444,6916.573669979078,2019
+1998,36,"(35,40]",HS,247.44456666666667,79.46642937853107,3.113825153612818,7174.528080105769,2019
+1998,69,"(65,70]",College,86385.88666666667,3622.190734463277,23.8490717357177,33.298020221494895,2019
+1998,69,"(65,70]",College,89275.87,3529.7879096045203,25.292134339596206,34.892343262385054,2019
+1998,69,"(65,70]",College,87603.87333333334,3991.802033898304,21.945946364424632,30.18795190638621,2019
+1998,69,"(65,70]",College,87797.14666666667,3529.7879096045203,24.8732073753699,29.311296248858962,2019
+1998,69,"(65,70]",College,86849.01333333334,3363.462824858757,25.821309125656953,29.895445829547914,2019
+1998,25,"(20,25]",HS,4.923,33.265016949152546,0.14799331103678928,5565.177551485425,2019
+1998,25,"(20,25]",HS,4.740666666666667,33.265016949152546,0.14251207729468598,5565.5098630380035,2019
+1998,25,"(20,25]",HS,4.740666666666667,33.265016949152546,0.14251207729468598,5570.112306819508,2019
+1998,25,"(20,25]",HS,4.740666666666667,33.265016949152546,0.14251207729468598,5558.661890915644,2019
+1998,25,"(20,25]",HS,4.740666666666667,33.265016949152546,0.14251207729468598,5612.808844909194,2019
+1998,62,"(60,65]",NoHS,106.84733333333332,70.22614689265536,1.5214750924133074,8027.105919226818,2019
+1998,62,"(60,65]",NoHS,74.392,70.22614689265536,1.0593205421580707,8003.280784570906,2019
+1998,62,"(60,65]",NoHS,132.374,70.22614689265536,1.8849674353106847,8422.728449966427,2019
+1998,62,"(60,65]",NoHS,200.01966666666667,70.22614689265536,2.8482221439887345,7891.370649209441,2019
+1998,62,"(60,65]",NoHS,127.57863333333333,70.22614689265536,1.8166828023235346,8349.96712847918,2019
+1998,47,"(45,50]",College,383.81166666666667,59.13780790960452,6.490123327759197,567.9457770880483,2019
+1998,47,"(45,50]",College,383.81166666666667,59.13780790960452,6.490123327759197,524.6185207353593,2019
+1998,47,"(45,50]",College,383.81166666666667,57.289751412429375,6.699482144783688,527.6268677311397,2019
+1998,47,"(45,50]",College,383.81166666666667,57.289751412429375,6.699482144783688,583.5581217556004,2019
+1998,47,"(45,50]",College,383.81166666666667,57.289751412429375,6.699482144783688,591.5742222566957,2019
+1998,62,"(60,65]",NoHS,0,12.19717288135593,0,5936.279983162317,2019
+1998,62,"(60,65]",NoHS,0,12.19717288135593,0,5920.811993137284,2019
+1998,62,"(60,65]",NoHS,0,12.19717288135593,0,5973.87302747639,2019
+1998,62,"(60,65]",NoHS,0,12.19717288135593,0,5910.90747684127,2019
+1998,62,"(60,65]",NoHS,0,12.19717288135593,0,5964.723071278747,2019
+1998,37,"(35,40]",HS,12.398666666666667,86.85865536723163,0.14274532128371167,8199.096796216936,2019
+1998,37,"(35,40]",HS,12.398666666666667,86.85865536723163,0.14274532128371167,8395.454775313676,2019
+1998,37,"(35,40]",HS,12.398666666666667,86.85865536723163,0.14274532128371167,8801.223357342049,2019
+1998,37,"(35,40]",HS,12.216333333333335,86.85865536723163,0.14064612538248064,8269.621197860684,2019
+1998,37,"(35,40]",HS,12.398666666666667,86.85865536723163,0.14274532128371167,8673.123364925686,2019
+1998,34,"(30,35]",College,175.49583333333334,129.36395480225988,1.3566053511705687,6906.911920458711,2019
+1998,34,"(30,35]",College,175.49583333333334,129.36395480225988,1.3566053511705687,6908.863385164407,2019
+1998,34,"(30,35]",College,175.13116666666667,129.36395480225988,1.353786430960344,7027.965297196206,2019
+1998,34,"(30,35]",College,175.3135,129.36395480225988,1.3551958910654565,6939.9486039964295,2019
+1998,34,"(30,35]",College,175.3135,129.36395480225988,1.3551958910654565,6984.713262219839,2019
+1998,55,"(50,55]",College,7962.496666666667,693.021186440678,11.489542920847269,249.25070125765902,2019
+1998,55,"(50,55]",College,7962.496666666667,693.021186440678,11.489542920847269,249.5949241124224,2019
+1998,55,"(50,55]",College,7962.496666666667,693.021186440678,11.489542920847269,275.95751008800465,2019
+1998,55,"(50,55]",College,7962.496666666667,693.021186440678,11.489542920847269,292.3033231466263,2019
+1998,55,"(50,55]",College,7962.496666666667,693.021186440678,11.489542920847269,241.9111186306855,2019
+1998,21,"(20,25]",HS,10.611799999999999,66.53003389830509,0.15950390189520622,4318.459175594748,2019
+1998,21,"(20,25]",HS,7.585066666666667,33.265016949152546,0.22801932367149758,4301.935606494628,2019
+1998,21,"(20,25]",HS,5.47,51.745581920903966,0.1057095078834209,4310.867557287382,2019
+1998,21,"(20,25]",HS,10.484166666666667,20.328621468926556,0.5157342657342657,4336.653514613128,2019
+1998,21,"(20,25]",HS,5.5794,53.593638418079095,0.10410563948794833,4273.608108332004,2019
+1998,26,"(25,30]",HS,3.829,22.176677966101696,0.17265886287625418,5177.191824253753,2019
+1998,26,"(25,30]",HS,4.011333333333334,20.328621468926556,0.19732441471571907,5139.771360582233,2019
+1998,26,"(25,30]",HS,4.011333333333334,22.176677966101696,0.18088071348940915,5167.760706143411,2019
+1998,26,"(25,30]",HS,4.011333333333334,20.328621468926556,0.19732441471571907,5178.321136171067,2019
+1998,26,"(25,30]",HS,4.011333333333334,20.328621468926556,0.19732441471571907,5156.295164920016,2019
+1998,61,"(60,65]",College,5400.895666666667,497.127197740113,10.864212803521031,1173.7509234433908,2019
+1998,61,"(60,65]",College,5834.119666666667,497.127197740113,11.735667839514617,1203.6766824505603,2019
+1998,61,"(60,65]",College,5395.243333333333,497.127197740113,10.852842809364548,1134.8282121207162,2019
+1998,61,"(60,65]",College,5400.166333333334,498.975254237288,10.82251331599158,1234.2416912023505,2019
+1998,61,"(60,65]",College,5493.5027666666665,497.127197740113,11.05049732068481,1160.2107203134442,2019
+1998,32,"(30,35]",HS,55.155833333333334,48.04946892655367,1.1478968356058656,9134.03862495416,2019
+1998,32,"(30,35]",HS,50.23283333333334,48.04946892655367,1.0454399279650117,9136.619337463944,2019
+1998,32,"(30,35]",HS,53.69716666666667,48.04946892655367,1.117539233341909,9294.125539560135,2019
+1998,32,"(30,35]",HS,50.0505,48.04946892655367,1.041645227682017,9177.727953405,2019
+1998,32,"(30,35]",HS,50.23283333333334,48.04946892655367,1.0454399279650117,9236.926930017737,2019
+1998,64,"(60,65]",College,1158.9471333333333,837.169593220339,1.384363625624783,677.0221431518303,2019
+1998,64,"(60,65]",College,1341.9004,192.1978757062147,6.98186905068176,654.122594016799,2019
+1998,64,"(60,65]",College,1392.5890666666667,380.69963841807913,3.6579731792057664,662.4108236998088,2019
+1998,64,"(60,65]",College,1623.6236333333334,336.3462824858757,4.827238229997428,1372.6356628251829,2019
+1998,64,"(60,65]",College,1042.1261666666667,510.06359322033904,2.0431298773690076,670.3817474199843,2019
+1998,76,"(75,80]",HS,6334.661133333334,365.915186440678,17.311828992263777,14.879559123679812,2019
+1998,76,"(75,80]",HS,5666.92,615.402813559322,9.208472686733558,16.08039181383768,2019
+1998,76,"(75,80]",HS,6846.434333333334,471.254406779661,14.528106761099089,15.960233525854424,2019
+1998,76,"(75,80]",HS,7909.984666666667,238.39928813559317,33.17956495812918,16.211126967413303,2019
+1998,76,"(75,80]",HS,6872.143333333333,267.96819209039546,25.64536962288087,17.043942054616345,2019
+1998,71,"(70,75]",HS,257.637,118.27561581920904,2.1782765468227425,4116.194488803472,2019
+1998,71,"(70,75]",HS,257.45466666666664,118.27561581920904,2.1767349498327757,4091.031760443157,2019
+1998,71,"(70,75]",HS,257.45466666666664,118.27561581920904,2.1767349498327757,4263.288508767264,2019
+1998,71,"(70,75]",HS,257.45466666666664,118.27561581920904,2.1767349498327757,4336.507637802989,2019
+1998,71,"(70,75]",HS,257.81933333333336,118.27561581920904,2.1798181438127093,4195.779012450878,2019
+1998,51,"(50,55]",College,309.41966666666667,184.80564971751414,1.6742976588628762,5928.803122682337,2019
+1998,51,"(50,55]",College,309.38320000000004,184.80564971751414,1.6741003344481606,5681.180915389119,2019
+1998,51,"(50,55]",College,309.38320000000004,184.80564971751414,1.6741003344481606,5293.986339163972,2019
+1998,51,"(50,55]",College,309.38320000000004,184.80564971751414,1.6741003344481606,5793.152819772431,2019
+1998,51,"(50,55]",College,309.3649666666667,184.80564971751414,1.6740016722408027,5284.918269605436,2019
+1998,46,"(45,50]",HS,299.75600000000003,97.9469943502825,3.060389979175869,7445.960160868608,2019
+1998,46,"(45,50]",HS,299.75600000000003,97.9469943502825,3.060389979175869,7585.627675805047,2019
+1998,46,"(45,50]",HS,299.75600000000003,97.9469943502825,3.060389979175869,7912.34440362194,2019
+1998,46,"(45,50]",HS,299.75600000000003,96.09893785310734,3.1192436326215596,7425.378080593784,2019
+1998,46,"(45,50]",HS,299.93833333333333,97.9469943502825,3.062251530258093,7791.0013249503145,2019
+1998,30,"(25,30]",NoHS,2.735,6.468197740112996,0.4228380315336836,4767.28956352493,2019
+1998,30,"(25,30]",NoHS,2.735,6.468197740112996,0.4228380315336836,4762.633443328474,2019
+1998,30,"(25,30]",NoHS,2.735,6.468197740112996,0.4228380315336836,4780.550593666931,2019
+1998,30,"(25,30]",NoHS,2.735,6.468197740112996,0.4228380315336836,4762.376606615672,2019
+1998,30,"(25,30]",NoHS,2.735,6.468197740112996,0.4228380315336836,4777.081262007796,2019
+1998,40,"(35,40]",College,4026.1023333333337,221.76677966101698,18.154668338907467,1096.8498637110995,2019
+1998,40,"(35,40]",College,4026.1023333333337,221.76677966101698,18.154668338907467,1200.633260978921,2019
+1998,40,"(35,40]",College,4026.1023333333337,221.76677966101698,18.154668338907467,1098.6046589944817,2019
+1998,40,"(35,40]",College,4024.279,221.76677966101698,18.146446488294313,1406.5894578026061,2019
+1998,40,"(35,40]",College,4027.743333333334,221.76677966101698,18.162068004459307,1099.4674172638838,2019
+1998,24,"(20,25]",College,-8.022666666666668,59.13780790960452,-0.1356605351170569,4670.781410108239,2019
+1998,24,"(20,25]",College,-8.022666666666668,59.13780790960452,-0.1356605351170569,4679.095616235123,2019
+1998,24,"(20,25]",College,-8.022666666666668,59.13780790960452,-0.1356605351170569,4718.808644151703,2019
+1998,24,"(20,25]",College,-8.022666666666668,59.13780790960452,-0.1356605351170569,4681.5484459184945,2019
+1998,24,"(20,25]",College,-8.022666666666668,59.13780790960452,-0.1356605351170569,4627.66883058233,2019
+1998,61,"(60,65]",HS,618.7664000000001,168.17314124293785,3.6793413943915625,7319.745253624344,2019
+1998,61,"(60,65]",HS,1124.0303000000001,73.92225988700567,15.205572742474915,6978.309539174766,2019
+1998,61,"(60,65]",HS,2561.2727999999997,208.83038418079096,12.264847426524994,3511.4669527990213,2019
+1998,61,"(60,65]",HS,1602.163,328.95405649717515,4.87047649468265,3486.4349189013337,2019
+1998,61,"(60,65]",HS,2875.032,170.021197740113,16.90984440889923,1153.6029807899795,2019
+1998,35,"(30,35]",HS,103.78413333333333,134.9081242937853,0.7692949099738855,7606.539473710967,2019
+1998,35,"(30,35]",HS,107.79546666666666,134.9081242937853,0.7990287258899528,7710.581055800996,2019
+1998,35,"(30,35]",HS,104.33113333333333,134.9081242937853,0.7733495212351674,8026.91182783558,2019
+1998,35,"(30,35]",HS,101.41380000000001,134.9081242937853,0.7517249278416641,7644.634057658225,2019
+1998,35,"(30,35]",HS,102.14313333333334,134.9081242937853,0.7571310761900399,7929.741563638652,2019
+1998,59,"(55,60]",HS,4441.64,667.148395480226,6.657649227804594,210.4318284884508,2019
+1998,59,"(55,60]",HS,4441.64,667.148395480226,6.657649227804594,209.38568558777993,2019
+1998,59,"(55,60]",HS,4439.8166666666675,667.148395480226,6.6549162026700275,201.77189031955086,2019
+1998,59,"(55,60]",HS,4437.993333333333,667.148395480226,6.652183177535459,220.22539405255057,2019
+1998,59,"(55,60]",HS,4439.8166666666675,667.148395480226,6.6549162026700275,206.02250552194423,2019
+1998,53,"(50,55]",HS,486.5382666666667,145.99646327683615,3.332534609034334,4950.19773248302,2019
+1998,53,"(50,55]",HS,399.89346666666665,144.14840677966103,2.7741788868879165,4744.508954300285,2019
+1998,53,"(50,55]",HS,428.0457333333334,160.78091525423727,2.6622919309575988,4420.130426416857,2019
+1998,53,"(50,55]",HS,526.7063,177.41342372881357,2.968807483277592,4837.251151743226,2019
+1998,53,"(50,55]",HS,514.2894,144.14840677966103,3.5677772060715203,4412.026449336307,2019
+1998,51,"(50,55]",HS,13.365033333333333,60.98586440677967,0.21914969088882127,4772.221791264057,2019
+1998,51,"(50,55]",HS,13.437966666666668,60.98586440677967,0.22034559643255294,4743.91936394432,2019
+1998,51,"(50,55]",HS,13.802633333333333,60.98586440677967,0.22632512415121106,4736.424014193211,2019
+1998,51,"(50,55]",HS,14.677833333333334,60.98586440677967,0.24067599067599066,4749.243715111956,2019
+1998,51,"(50,55]",HS,13.638533333333333,60.98586440677967,0.2236343366778149,4747.876856873085,2019
+1998,37,"(35,40]",College,2795.17,295.68903954802266,9.453072742474914,924.8008196413039,2019
+1998,37,"(35,40]",College,2820.6966666666667,295.68903954802266,9.539402173913041,1011.4091022199785,2019
+1998,37,"(35,40]",College,2795.17,295.68903954802266,9.453072742474914,923.3384588914539,2019
+1998,37,"(35,40]",College,2802.4633333333336,295.68903954802266,9.47773829431438,1187.572708022257,2019
+1998,37,"(35,40]",College,2842.5766666666664,295.68903954802266,9.613398829431436,926.389235611369,2019
+1998,44,"(40,45]",College,1542.54,473.10246327683615,3.260477633779264,797.9765239530605,2019
+1998,44,"(40,45]",College,2275.52,626.4911525423728,3.632166217776068,847.4785778394746,2019
+1998,44,"(40,45]",College,1495.8626666666669,578.4416836158192,2.586021562823897,810.411440030314,2019
+1998,44,"(40,45]",College,1940.8836333333334,576.5936271186441,3.3661205085327155,834.0361437557127,2019
+1998,44,"(40,45]",College,2635.2636666666667,389.9399209039548,6.758127407313477,1160.2107203134442,2019
+1998,46,"(45,50]",College,561.8784,465.7102372881356,1.206497849976111,1547.4706026282672,2019
+1998,46,"(45,50]",College,1687.9508333333333,255.03179661016952,6.618589743589743,3057.404925997703,2019
+1998,46,"(45,50]",College,1172.5856666666668,306.77737853107345,3.822269009146956,1480.5372299022836,2019
+1998,46,"(45,50]",College,2614.4776666666667,275.360418079096,9.49474759264663,4087.8618361036074,2019
+1998,46,"(45,50]",College,766.4564,162.62897175141245,4.71291425965339,1601.1440013080864,2019
+1998,28,"(25,30]",NoHS,277.329,66.53003389830509,4.1684782608695645,10553.334075500763,2019
+1998,28,"(25,30]",NoHS,277.329,68.37809039548021,4.05581668625147,10174.650373158365,2019
+1998,28,"(25,30]",NoHS,277.5113333333333,70.22614689265536,3.951681042070058,9881.289916979043,2019
+1998,28,"(25,30]",NoHS,277.5113333333333,51.745581920903966,5.36299569995222,10062.590158865458,2019
+1998,28,"(25,30]",NoHS,277.5113333333333,48.04946892655367,5.775533830717777,10318.796404198825,2019
+1998,40,"(35,40]",HS,210.77733333333336,129.36395480225988,1.629335881509795,248.4972778036275,2019
+1998,40,"(35,40]",HS,210.77733333333336,129.36395480225988,1.629335881509795,250.29958227198273,2019
+1998,40,"(35,40]",HS,210.95966666666666,129.36395480225988,1.630745341614907,237.5246698466521,2019
+1998,40,"(35,40]",HS,210.77733333333336,129.36395480225988,1.629335881509795,259.8649133978494,2019
+1998,40,"(35,40]",HS,210.95966666666666,129.36395480225988,1.630745341614907,260.4356183005027,2019
+1998,86,"(85,90]",HS,12.4169,17.186925423728816,0.722461970007552,6051.412464376218,2019
+1998,86,"(85,90]",HS,12.4169,31.416960451977403,0.39522919535707257,6190.819510214342,2019
+1998,86,"(85,90]",HS,12.4169,20.328621468926556,0.6108087564609302,6251.047726683674,2019
+1998,86,"(85,90]",HS,12.4169,40.65724293785311,0.3054043782304651,6271.793540557335,2019
+1998,86,"(85,90]",HS,12.4169,40.65724293785311,0.3054043782304651,6285.466797590102,2019
+1998,50,"(45,50]",College,171.11983333333336,57.289751412429375,2.9869187614629418,7216.935518169768,2019
+1998,50,"(45,50]",College,136.03889999999998,83.16254237288136,1.6358193979933107,7311.161027227315,2019
+1998,50,"(45,50]",College,170.3358,62.833920903954805,2.7108892386385994,7577.5766490140695,2019
+1998,50,"(45,50]",College,148.20053333333334,55.441694915254246,2.6730880713489404,7210.686529920778,2019
+1998,50,"(45,50]",College,142.4388,59.13780790960452,2.4085911371237456,7542.5559823631975,2019
+1998,26,"(25,30]",NoHS,4.923,27.720847457627123,0.17759197324414713,5565.177551485425,2019
+1998,26,"(25,30]",NoHS,4.376,27.720847457627123,0.15785953177257525,5565.5098630380035,2019
+1998,26,"(25,30]",NoHS,3.4643333333333337,27.720847457627123,0.1249721293199554,5570.112306819508,2019
+1998,26,"(25,30]",NoHS,1.9145,27.720847457627123,0.06906354515050167,5558.661890915644,2019
+1998,26,"(25,30]",NoHS,2.4615,27.720847457627123,0.08879598662207357,5612.808844909194,2019
+1998,37,"(35,40]",College,52.2385,92.40282485875707,0.5653344481605351,5089.491127392195,2019
+1998,37,"(35,40]",College,52.2385,92.40282485875707,0.5653344481605351,5062.412149410078,2019
+1998,37,"(35,40]",College,52.2385,92.40282485875707,0.5653344481605351,5076.77799675041,2019
+1998,37,"(35,40]",College,52.2385,92.40282485875707,0.5653344481605351,5094.762991425234,2019
+1998,37,"(35,40]",College,52.2385,92.40282485875707,0.5653344481605351,5050.790807212876,2019
+1998,51,"(50,55]",College,1802.5473333333332,232.8551186440678,7.741068110633328,1186.0059085777082,2019
+1998,51,"(50,55]",College,3877.3183333333336,317.8657175141243,12.197975810842344,1776.0977628968158,2019
+1998,51,"(50,55]",College,3696.9906666666666,291.9929265536723,12.661233648025062,1691.4366174697202,2019
+1998,51,"(50,55]",College,3632.991666666667,223.61483615819208,16.24664860830869,1843.0830336846307,2019
+1998,51,"(50,55]",College,3852.7033333333334,208.83038418079096,18.448959659040458,1722.0710848103492,2019
+1998,56,"(55,60]",HS,1191.2748333333334,354.82684745762714,3.357341311315496,577.3744669156629,2019
+1998,56,"(55,60]",HS,1316.082,354.82684745762714,3.7090823578595318,557.7895491721267,2019
+1998,56,"(55,60]",HS,1201.2484666666667,354.82684745762714,3.3854497630992193,563.905498354131,2019
+1998,56,"(55,60]",HS,1228.5620000000001,354.82684745762714,3.462426839464883,573.5659593311368,2019
+1998,56,"(55,60]",HS,1335.9928,354.82684745762714,3.7651964882943143,573.6837386327181,2019
+1998,37,"(35,40]",HS,11.487,53.593638418079095,0.21433514012224658,7132.608594711407,2019
+1998,37,"(35,40]",HS,12.763333333333334,53.593638418079095,0.2381501556913851,7270.85805300108,2019
+1998,37,"(35,40]",HS,12.763333333333334,53.593638418079095,0.2381501556913851,7617.574723652117,2019
+1998,37,"(35,40]",HS,11.487,53.593638418079095,0.21433514012224658,7154.710121337553,2019
+1998,37,"(35,40]",HS,12.034,53.593638418079095,0.2245415753661631,7444.35637526442,2019
+1998,60,"(55,60]",College,3121.5466666666666,221.76677966101698,14.075808249721291,3367.3833616380807,2019
+1998,60,"(55,60]",College,3121.5466666666666,221.76677966101698,14.075808249721291,3623.8764854168826,2019
+1998,60,"(55,60]",College,3123.37,221.76677966101698,14.084030100334445,3484.9668742741787,2019
+1998,60,"(55,60]",College,3121.5466666666666,221.76677966101698,14.075808249721291,4087.8618361036074,2019
+1998,60,"(55,60]",College,3123.37,221.76677966101698,14.084030100334445,3268.9642418434514,2019
+1998,68,"(65,70]",College,407.7885,64.68197740112994,6.3045150501672245,4423.705325868272,2019
+1998,68,"(65,70]",College,407.6061666666667,64.68197740112994,6.3016961299570005,4698.0998999625435,2019
+1998,68,"(65,70]",College,407.7885,64.68197740112994,6.3045150501672245,4466.092706959232,2019
+1998,68,"(65,70]",College,407.6061666666667,64.68197740112994,6.3016961299570005,4267.36735063077,2019
+1998,68,"(65,70]",College,407.7885,64.68197740112994,6.3045150501672245,4437.898015386598,2019
+1998,22,"(20,25]",HS,3.3002333333333334,40.65724293785311,0.08117208878078443,4921.360948595615,2019
+1998,22,"(20,25]",HS,3.3002333333333334,40.65724293785311,0.08117208878078443,4902.530517556619,2019
+1998,22,"(20,25]",HS,3.1179,40.65724293785311,0.07668744299179081,4912.709461489829,2019
+1998,22,"(20,25]",HS,3.3002333333333334,40.65724293785311,0.08117208878078443,4942.0954063940335,2019
+1998,22,"(20,25]",HS,3.3002333333333334,40.65724293785311,0.08117208878078443,4870.248206306161,2019
+1998,35,"(30,35]",NoHS,82.76110000000001,22.176677966101696,3.731897993311037,7549.756507974598,2019
+1998,35,"(30,35]",NoHS,40.82443333333334,22.176677966101696,1.8408723522853958,7698.265065241508,2019
+1998,35,"(30,35]",NoHS,37.17776666666667,22.176677966101696,1.6764353400222967,7995.074179293197,2019
+1998,35,"(30,35]",NoHS,40.82443333333334,22.176677966101696,1.8408723522853958,7553.028459908732,2019
+1998,35,"(30,35]",NoHS,55.4111,22.176677966101696,2.498620401337792,7901.570711019044,2019
+1998,70,"(65,70]",College,921.148,129.36395480225988,7.1205924510272345,408.7746570880812,2019
+1998,70,"(65,70]",College,1092.1766666666667,129.36395480225988,8.442666029622552,400.99336911036676,2019
+1998,70,"(65,70]",College,1748.212,129.36395480225988,13.513903487816531,920.8845313112022,2019
+1998,70,"(65,70]",College,978.4006666666667,129.36395480225988,7.56316292403249,443.264433693858,2019
+1998,70,"(65,70]",College,839.4626666666667,129.36395480225988,6.4891543239369325,397.292993053244,2019
+1998,71,"(70,75]",NoHS,446.7166666666667,90.55476836158192,4.933110367892977,7259.886295677368,2019
+1998,71,"(70,75]",NoHS,912.3960000000001,109.03533333333333,8.36789297658863,6040.806589406056,2019
+1998,71,"(70,75]",NoHS,444.164,131.21201129943503,3.385086438362617,7693.9177924044825,2019
+1998,71,"(70,75]",NoHS,419.73133333333334,70.22614689265536,5.976852666784017,7438.435686266067,2019
+1998,71,"(70,75]",NoHS,516.7326666666667,88.70671186440678,5.825181159420289,5623.3828185722105,2019
+1998,32,"(30,35]",HS,208.954,203.28621468926553,1.0278808148373366,7459.464880377105,2019
+1998,32,"(30,35]",HS,212.60066666666665,203.28621468926553,1.045819397993311,7461.5724622610305,2019
+1998,32,"(30,35]",HS,212.60066666666665,203.28621468926553,1.045819397993311,7590.202527363695,2019
+1998,32,"(30,35]",HS,212.60066666666665,203.28621468926553,1.045819397993311,7495.1444986278875,2019
+1998,32,"(30,35]",HS,212.60066666666665,203.28621468926553,1.045819397993311,7543.490329549875,2019
+1998,73,"(70,75]",HS,128.78203333333335,73.92225988700567,1.7421279264214045,8137.974385522291,2019
+1998,73,"(70,75]",HS,131.24353333333332,66.53003389830509,1.9726960237829798,8119.676343301859,2019
+1998,73,"(70,75]",HS,131.84523333333334,72.07420338983052,1.8292985164222622,8732.789440125693,2019
+1998,73,"(70,75]",HS,134.87196666666668,49.89752542372881,2.702979066022545,8295.051658640998,2019
+1998,73,"(70,75]",HS,124.53366666666668,83.16254237288136,1.4974730583426237,8605.013893137319,2019
+1998,42,"(40,45]",College,1926.1693333333333,369.6112994350283,5.21133779264214,4680.835745526401,2019
+1998,42,"(40,45]",College,677.4777333333333,369.6112994350283,1.832946488294314,4471.051288635323,2019
+1998,42,"(40,45]",College,673.4117,369.6112994350283,1.8219456521739128,4426.1275306134585,2019
+1998,42,"(40,45]",College,2048.0044666666668,369.6112994350283,5.540968227424749,4430.053433940548,2019
+1998,42,"(40,45]",College,614.9920999999999,369.6112994350283,1.6638887959866218,4666.679015373502,2019
+1998,40,"(35,40]",College,5675.125,506.36748022598874,11.20752264238459,33.076049090145176,2019
+1998,40,"(35,40]",College,2115.0666666666666,1191.9964406779661,1.7743900858157682,25.625583412962538,2019
+1998,40,"(35,40]",College,8039.988333333333,953.5971525423727,8.431220995048095,40.680476795835844,2019
+1998,40,"(35,40]",College,20247.022666666668,428.74910734463276,47.22347480106101,43.51752977132237,2019
+1998,40,"(35,40]",College,6024.111,567.3533446327683,10.617917488261632,37.62504974143589,2019
+1998,36,"(35,40]",College,1040.4851666666666,188.50176271186442,5.519763591055151,5963.358116499038,2019
+1998,36,"(35,40]",College,1008.9597333333332,369.6112994350283,2.729785953177257,5706.638156046067,2019
+1998,36,"(35,40]",College,989.1948000000001,231.00706214689265,4.2820976588628765,5327.546313345367,2019
+1998,36,"(35,40]",College,1059.1196333333332,338.19433898305084,3.1316894201070964,5824.4052917687595,2019
+1998,36,"(35,40]",College,872.465,186.65370621468927,4.67424418027087,5310.577976743663,2019
+1998,81,"(80,85]",HS,14000.829666666667,787.27206779661,17.783978676967045,12.931159480455397,2019
+1998,81,"(80,85]",HS,19068.930533333336,439.8374463276836,43.35449537674602,16.271566775185565,2019
+1998,81,"(80,85]",HS,22052.852,870.4346101694916,25.335449374773656,13.603227854163862,2019
+1998,81,"(80,85]",HS,6849.4428333333335,778.0317853107346,8.803551426369767,11.956680496345369,2019
+1998,81,"(80,85]",HS,16395.231,323.40988700564975,50.694897276636404,11.765973219552288,2019
+1998,56,"(55,60]",HS,17119.86013333333,2106.7844067796614,8.126061726221907,1127.9721036236704,2019
+1998,56,"(55,60]",HS,16676.936,657.9081129943503,25.348427342076587,1152.3503326406772,2019
+1998,56,"(55,60]",HS,61699.776666666665,1173.5158757062147,52.576857240670996,276.8230419801741,2019
+1998,56,"(55,60]",HS,34713.695766666664,504.51942372881365,68.80546939125533,1214.7358267998663,2019
+1998,56,"(55,60]",HS,34568.02966666666,630.1872655367232,54.85358330309241,1202.1806832917837,2019
+1998,48,"(45,50]",College,825.0583333333334,212.52649717514123,3.8821433764722997,5420.574818770678,2019
+1998,48,"(45,50]",College,825.2406666666667,212.52649717514123,3.8830013087101936,5194.569280408774,2019
+1998,48,"(45,50]",College,827.064,212.52649717514123,3.8915806310891377,4840.587275479772,2019
+1998,48,"(45,50]",College,825.2406666666667,212.52649717514123,3.8830013087101936,5296.879913218688,2019
+1998,48,"(45,50]",College,825.0583333333334,212.52649717514123,3.8821433764722997,4831.906264689679,2019
+1998,52,"(50,55]",HS,486.57473333333337,72.07420338983052,6.751024783466255,7425.706151014654,2019
+1998,52,"(50,55]",HS,499.21043333333336,72.07420338983052,6.9263399365406055,7115.398408643372,2019
+1998,52,"(50,55]",HS,487.5411,72.07420338983052,6.764432724466168,6630.803203182573,2019
+1998,52,"(50,55]",HS,473.8478666666667,73.92225988700567,6.4100836120401326,7254.261641697497,2019
+1998,52,"(50,55]",HS,474.0666666666667,72.07420338983052,6.5774804905239685,6618.036237699332,2019
+1998,33,"(30,35]",College,271.6766666666667,147.84451977401133,1.8375836120401334,5686.0408384133025,2019
+1998,33,"(30,35]",College,242.321,147.84451977401133,1.639025919732441,5633.351021407235,2019
+1998,33,"(30,35]",College,226.458,147.84451977401133,1.531730769230769,5649.572884499999,2019
+1998,33,"(30,35]",College,227.36966666666666,147.84451977401133,1.537897157190635,5735.936254599655,2019
+1998,33,"(30,35]",College,228.28133333333335,147.84451977401133,1.5440635451505014,5643.6563097602075,2019
+1998,39,"(35,40]",HS,350.9916666666667,64.68197740112994,5.426421404682275,7002.483708420163,2019
+1998,39,"(35,40]",HS,350.9916666666667,64.68197740112994,5.426421404682275,7138.210990594196,2019
+1998,39,"(35,40]",HS,350.9916666666667,64.68197740112994,5.426421404682275,7478.602280180979,2019
+1998,39,"(35,40]",HS,350.9916666666667,64.68197740112994,5.426421404682275,7024.182022308514,2019
+1998,39,"(35,40]",HS,350.9916666666667,64.68197740112994,5.426421404682275,7308.544068451311,2019
+1998,38,"(35,40]",HS,3.4643333333333337,42.50529943502825,0.08150356259997092,6492.1798097184455,2019
+1998,38,"(35,40]",HS,3.4643333333333337,25.872790960451983,0.1338987099856665,6524.694851771494,2019
+1998,38,"(35,40]",HS,3.4643333333333337,27.720847457627123,0.1249721293199554,6550.115888086411,2019
+1998,38,"(35,40]",HS,3.4643333333333337,42.50529943502825,0.08150356259997092,6490.966432468665,2019
+1998,38,"(35,40]",HS,3.4643333333333337,36.96112994350283,0.09372909698996655,6559.620993575163,2019
+1998,28,"(25,30]",College,207.67766666666665,369.6112994350283,0.56188127090301,6956.884071292239,2019
+1998,28,"(25,30]",College,207.86,369.6112994350283,0.5623745819397993,6892.417958742981,2019
+1998,28,"(25,30]",College,207.6959,369.6112994350283,0.5619306020066889,6912.265445626002,2019
+1998,28,"(25,30]",College,207.71413333333334,369.6112994350283,0.5619799331103679,7017.931227997889,2019
+1998,28,"(25,30]",College,207.89646666666667,369.6112994350283,0.5624732441471572,6905.026502795032,2019
+1998,32,"(30,35]",HS,115.5264,107.18727683615819,1.0777995617575826,6501.405622381515,2019
+1998,32,"(30,35]",HS,89.3798,120.12367231638417,0.7440648314895807,6544.81086260715,2019
+1998,32,"(30,35]",HS,69.96130000000001,125.66784180790961,0.5567160141648633,6654.641859444224,2019
+1998,32,"(30,35]",HS,96.80076666666666,123.81978531073446,0.7817875505416063,6557.353112749379,2019
+1998,32,"(30,35]",HS,91.1302,105.33922033898305,0.8651117760957577,6625.570849946025,2019
+1998,37,"(35,40]",College,9853.658,924.0282485875706,10.66380602006689,308.5503594698028,2019
+1998,37,"(35,40]",College,7333.629,924.0282485875706,7.936585284280937,307.6470502155673,2019
+1998,37,"(35,40]",College,7136.891333333333,924.0282485875706,7.723672240802675,289.8003182178426,2019
+1998,37,"(35,40]",College,9986.761333333334,924.0282485875706,10.807852842809366,324.22818180642776,2019
+1998,37,"(35,40]",College,7606.7643333333335,924.0282485875706,8.232177257525084,306.08866320146404,2019
+1998,28,"(25,30]",HS,42.30133333333334,0,Inf,4350.386715980787,2019
+1998,28,"(25,30]",HS,42.30133333333334,0,Inf,4329.911293623679,2019
+1998,28,"(25,30]",HS,42.30133333333334,0,Inf,4367.499841120842,2019
+1998,28,"(25,30]",HS,44.12466666666666,0,Inf,4329.933034679532,2019
+1998,28,"(25,30]",HS,44.12466666666666,0,Inf,4357.978584960514,2019
+1998,43,"(40,45]",College,132.08226666666667,162.62897175141245,0.8121693523867436,6902.00887516852,2019
+1998,43,"(40,45]",College,131.28,162.62897175141245,0.8072362420188506,6895.80936999032,2019
+1998,43,"(40,45]",College,128.90966666666668,162.62897175141245,0.7926611432046214,6939.141990940462,2019
+1998,43,"(40,45]",College,131.64466666666667,162.62897175141245,0.8094785649133475,6932.274295774546,2019
+1998,43,"(40,45]",College,132.19166666666666,162.62897175141245,0.8128420492550926,6946.325740631923,2019
+1998,53,"(50,55]",HS,604.6173333333334,107.18727683615819,5.640756544804521,6688.70331709382,2019
+1998,53,"(50,55]",HS,604.6173333333334,107.18727683615819,5.640756544804521,6409.824407630545,2019
+1998,53,"(50,55]",HS,604.6173333333334,107.18727683615819,5.640756544804521,5973.0292909279415,2019
+1998,53,"(50,55]",HS,604.6173333333334,107.18727683615819,5.640756544804521,6536.070330236378,2019
+1998,53,"(50,55]",HS,604.6173333333334,107.18727683615819,5.640756544804521,5962.317381654715,2019
+1998,57,"(55,60]",HS,14158.493300000002,437.9893898305085,32.326110240887346,140.24161964874554,2019
+1998,57,"(55,60]",HS,9625.139633333332,1164.275593220339,8.267062961193394,139.96378608334717,2019
+1998,57,"(55,60]",NoHS,14867.396183333334,1221.5653446327685,12.170774366395296,129.8102957833956,2019
+1998,57,"(55,60]",College,9033.2674,1145.7950282485876,7.883842377818535,144.16946884275183,2019
+1998,57,"(55,60]",HS,9497.3422,319.71377401129945,29.705764881009912,138.42869705470315,2019
+1998,59,"(55,60]",College,47540.8093,3529.7879096045203,13.468460575390917,32.75797024958856,2019
+1998,59,"(55,60]",College,48080.57066666667,3308.021129943503,14.534541581809007,33.733308450685655,2019
+1998,59,"(55,60]",College,51783.943,3123.215480225989,16.58032989649918,36.11853352727931,2019
+1998,59,"(55,60]",College,51339.596666666665,2938.409830508475,17.471897940724844,33.976031628799,2019
+1998,59,"(55,60]",College,51777.2149,3030.812655367232,17.08360785953177,36.681252218847234,2019
+1998,81,"(80,85]",College,80879.42,3363.462824858757,24.046473593296337,15.134541716248247,2019
+1998,81,"(80,85]",College,97165.43333333333,3566.7490395480227,27.242015700001733,15.874244413854168,2019
+1998,81,"(80,85]",College,105742.39333333333,2328.551186440678,45.411238519934166,13.522093385409011,2019
+1998,81,"(80,85]",College,96381.40000000001,942.508813559322,102.26047609679324,13.033395147043223,2019
+1998,81,"(80,85]",College,55279.82,997.950508474576,55.393348197696035,13.520225057567519,2019
+1998,44,"(40,45]",HS,73.845,59.13780790960452,1.2486935618729098,6595.497376513131,2019
+1998,44,"(40,45]",HS,74.02733333333333,60.98586440677967,1.213844126887605,6728.444681188242,2019
+1998,44,"(40,45]",HS,74.02733333333333,59.13780790960452,1.2517767558528428,7001.331730045707,2019
+1998,44,"(40,45]",HS,73.845,59.13780790960452,1.2486935618729098,6653.7442151685045,2019
+1998,44,"(40,45]",HS,73.845,59.13780790960452,1.2486935618729098,6929.0044099265915,2019
+1998,51,"(50,55]",College,375826.196,5950.741920903954,63.15619144560544,4.557808461712144,2019
+1998,51,"(50,55]",College,374774.1326666667,12825.512090395481,29.220987826858018,4.326460118291598,2019
+1998,51,"(50,55]",College,375528.9926666667,3418.9045197740115,109.83898219289523,5.146522677889382,2019
+1998,51,"(50,55]",College,374861.6526666667,5544.169491525424,67.61367112597549,5.065525136501361,2019
+1998,51,"(50,55]",College,374743.136,3049.2932203389832,122.8950805716023,4.980736897433123,2019
+1998,69,"(65,70]",HS,7579.1955333333335,173.71731073446327,43.6294776915961,2150.3575711143103,2019
+1998,69,"(65,70]",HS,23583.905,582.1377966101695,40.51258162127727,1175.502057019537,2019
+1998,69,"(65,70]",HS,8648.434666666666,334.4982259887006,25.854949278441946,2073.356382708964,2019
+1998,69,"(65,70]",HS,6696.6475,175.56536723163845,38.143328639324054,2274.3648425549122,2019
+1998,69,"(65,70]",HS,3191.9273333333335,175.56536723163845,18.180848442175673,2129.9289889826314,2019
+1998,47,"(45,50]",College,2651.0172666666667,192.1978757062147,13.793166323642913,1819.5880567255244,2019
+1998,47,"(45,50]",College,2666.0962333333337,304.9293220338983,8.74332522549914,1874.2650280307626,2019
+1998,47,"(45,50]",College,2713.2111666666665,314.16960451977405,8.636135156403697,2882.1836578851917,2019
+1998,47,"(45,50]",College,2657.4354,227.31094915254238,11.69074965331593,2239.0878684573613,2019
+1998,47,"(45,50]",College,2661.629066666667,227.31094915254238,11.709198683960084,1850.5510948773178,2019
+1998,93,"(90,95]",HS,21611.97,495.27914124293784,43.63593820196676,13.03880004061325,2019
+1998,93,"(90,95]",HS,41774.39,1031.2155254237289,40.50985363397705,14.418271434568833,2019
+1998,93,"(90,95]",HS,59768.86666666667,652.3639435028249,91.61889963712848,13.522093385409011,2019
+1998,93,"(90,95]",HS,64037.29,517.4558192090395,123.75412087912089,13.033395147043223,2019
+1998,93,"(90,95]",HS,70670.576666666675,426.90105084745767,165.54322489105098,13.520225057567519,2019
+1998,44,"(40,45]",HS,300.1206666666667,255.03179661016952,1.1767970529785274,7351.751699236488,2019
+1998,44,"(40,45]",HS,294.3771666666667,219.9187231638418,1.3385725527669263,7500.843672835848,2019
+1998,44,"(40,45]",HS,320.8155,155.23674576271185,2.066620879120879,7855.451419307547,2019
+1998,44,"(40,45]",HS,322.0371333333334,107.18727683615819,3.0044343213008884,7350.407066740717,2019
+1998,44,"(40,45]",HS,306.5388,118.27561581920904,2.5917328595317723,7799.204047003686,2019
+1998,41,"(40,45]",HS,55.21053333333333,44.35335593220339,1.244788182831661,4600.646029423058,2019
+1998,41,"(40,45]",HS,48.354800000000004,31.416960451977403,1.5391304347826087,4623.132455051472,2019
+1998,41,"(40,45]",HS,51.436233333333334,25.872790960451983,1.9880434782608691,4611.370865001152,2019
+1998,41,"(40,45]",HS,42.246633333333335,38.80918644067796,1.088573021181717,4641.257168172367,2019
+1998,41,"(40,45]",HS,47.60723333333333,42.50529943502825,1.1200305365711793,4603.316771315881,2019
+1998,43,"(40,45]",HS,403.5766,70.22614689265536,5.746813941207534,4716.793377624692,2019
+1998,43,"(40,45]",HS,118.88133333333333,101.64310734463277,1.1695956217695347,5718.999756592986,2019
+1998,43,"(40,45]",HS,240.93526666666668,120.12367231638417,2.0057267815796247,5991.714825516876,2019
+1998,43,"(40,45]",HS,284.4035333333333,234.70317514124295,1.211758354620388,5627.64190198072,2019
+1998,43,"(40,45]",HS,261.0284,40.65724293785311,6.420218911523258,5855.467399828545,2019
+1998,62,"(60,65]",HS,1597.6046666666668,142.30035028248585,11.226990400903448,146.35463681873222,2019
+1998,62,"(60,65]",HS,1597.6046666666668,142.30035028248585,11.226990400903448,151.16105233492448,2019
+1998,62,"(60,65]",HS,1597.6046666666668,142.30035028248585,11.226990400903448,144.76647532739747,2019
+1998,62,"(60,65]",HS,1597.6046666666668,142.30035028248585,11.226990400903448,150.59131910585626,2019
+1998,62,"(60,65]",HS,1597.6046666666668,142.30035028248585,11.226990400903448,145.75567090354554,2019
+1998,51,"(50,55]",College,27144.1092,1724.2367118644067,15.74268139242276,17.315180983397887,2019
+1998,51,"(50,55]",College,26833.1397,1724.2367118644067,15.562329415307188,19.105431846851566,2019
+1998,51,"(50,55]",College,26150.1555,1722.3886553672314,15.182494043090704,19.431605466508675,2019
+1998,51,"(50,55]",College,27816.882733333336,1726.0847683615818,16.115594809249963,17.663757432553233,2019
+1998,51,"(50,55]",College,27336.562033333335,1958.9398870056498,13.954773300940241,18.639126862863503,2019
+1998,79,"(75,80]",HS,327.2883333333333,46.201412429378536,7.083946488294313,9730.580339656213,2019
+1998,79,"(75,80]",HS,427.207,46.201412429378536,9.246622073578594,9925.985199497733,2019
+1998,79,"(75,80]",HS,317.3876333333334,46.201412429378536,6.869652173913044,10372.476659203294,2019
+1998,79,"(75,80]",HS,305.226,46.201412429378536,6.606421404682274,9834.148898441108,2019
+1998,79,"(75,80]",HS,383.08233333333334,46.201412429378536,8.291571906354514,10274.21848410422,2019
+1998,38,"(35,40]",College,212.78300000000002,194.04593220338984,1.0965599617773532,7101.709598666879,2019
+1998,38,"(35,40]",College,212.60066666666665,195.893988700565,1.0852842809364547,6812.367291271007,2019
+1998,38,"(35,40]",College,212.78300000000002,194.04593220338984,1.0965599617773532,7168.558371996939,2019
+1998,38,"(35,40]",College,212.78300000000002,194.04593220338984,1.0965599617773532,6996.202549712578,2019
+1998,38,"(35,40]",College,212.78300000000002,194.04593220338984,1.0965599617773532,7059.593151375897,2019
+1998,73,"(70,75]",College,8567.843333333334,299.3851525423729,28.618130393492713,1388.4900761687977,2019
+1998,73,"(70,75]",College,8443.856666666667,299.3851525423729,28.203992732978236,1444.489037070037,2019
+1998,73,"(70,75]",College,8443.856666666667,299.3851525423729,28.203992732978236,1568.2603547380227,2019
+1998,73,"(70,75]",College,8485.793333333335,299.3851525423729,28.34406870638755,1656.291731277642,2019
+1998,73,"(70,75]",College,8443.856666666667,299.3851525423729,28.203992732978236,1348.564197734558,2019
+1998,44,"(40,45]",HS,950.3213333333334,73.92225988700567,12.855685618729096,4987.207938840176,2019
+1998,44,"(40,45]",HS,953.5668666666667,73.92225988700567,12.899590301003341,4748.843967946763,2019
+1998,44,"(40,45]",HS,962.5011999999999,73.92225988700567,13.020451505016718,4446.337691850836,2019
+1998,44,"(40,45]",HS,961.3525,73.92225988700567,13.004912207357856,4857.034100021452,2019
+1998,44,"(40,45]",HS,962.5559000000001,73.92225988700567,13.021191471571905,4435.8685398377065,2019
+1998,35,"(30,35]",College,4.923,316.01766101694915,0.015578243267030452,596.2952286336931,2019
+1998,35,"(30,35]",College,4.923,316.01766101694915,0.015578243267030452,599.3039906141479,2019
+1998,35,"(30,35]",College,4.740666666666667,316.01766101694915,0.015001271294177474,565.9550070821253,2019
+1998,35,"(30,35]",College,4.923,316.01766101694915,0.015578243267030452,626.3544570271254,2019
+1998,35,"(30,35]",College,4.923,316.01766101694915,0.015578243267030452,626.9725427668883,2019
+1998,37,"(35,40]",HS,54.736466666666665,27.720847457627123,1.974559643255295,7821.8476759522655,2019
+1998,37,"(35,40]",HS,48.081300000000006,27.720847457627123,1.7344816053511705,7979.51487021122,2019
+1998,37,"(35,40]",HS,47.99013333333333,27.720847457627123,1.7311928651059083,8303.141854963613,2019
+1998,37,"(35,40]",HS,47.62546666666667,27.720847457627123,1.7180379041248603,7890.924786223055,2019
+1998,37,"(35,40]",HS,55.11936666666667,27.720847457627123,1.9883723522853956,8217.366173694121,2019
+1998,39,"(35,40]",HS,644.8218333333334,44.35335593220339,14.538287346711261,583.4624004283316,2019
+1998,39,"(35,40]",HS,646.5722333333333,44.35335593220339,14.577752229654402,561.5224318262926,2019
+1998,39,"(35,40]",HS,645.2411999999999,44.35335593220339,14.547742474916385,553.820987399033,2019
+1998,39,"(35,40]",HS,639.8806,44.35335593220339,14.426881270903008,564.6170043795579,2019
+1998,39,"(35,40]",HS,643.7096,44.35335593220339,14.513210702341137,579.7597771875744,2019
+1998,31,"(30,35]",HS,2.3703333333333334,20.328621468926556,0.11660079051383399,6283.584949133439,2019
+1998,31,"(30,35]",HS,2.188,20.328621468926556,0.10763149893584675,6258.685160482134,2019
+1998,31,"(30,35]",HS,2.3703333333333334,27.720847457627123,0.08550724637681158,6246.452490239468,2019
+1998,31,"(30,35]",HS,2.188,27.720847457627123,0.07892976588628763,6277.395713849843,2019
+1998,31,"(30,35]",HS,2.3703333333333334,42.50529943502825,0.055765595463137994,6263.72928192084,2019
+1998,56,"(55,60]",College,1901.7366666666667,766.9434463276837,2.4796308981746384,110.14231976569559,2019
+1998,56,"(55,60]",College,2107.8462666666665,364.06712994350283,5.789718690049742,113.10764691877148,2019
+1998,56,"(55,60]",College,2141.505,266.12013559322037,8.047136287625417,107.0896228361481,2019
+1998,56,"(55,60]",College,1399.4083333333333,325.2579435028249,4.302457053815749,111.22891438397858,2019
+1998,56,"(55,60]",College,6745.239333333333,373.30741242937853,18.068859896023046,157.58918020816802,2019
+1998,56,"(55,60]",NoHS,179.8536,51.745581920903966,3.4757286192068793,4696.022669258361,2019
+1998,56,"(55,60]",NoHS,108.70713333333333,79.46642937853107,1.367962977366415,4643.108912790861,2019
+1998,56,"(55,60]",NoHS,15.352466666666668,48.04946892655367,0.3195137638281451,4774.4101746565975,2019
+1998,56,"(55,60]",NoHS,28.316366666666667,86.85865536723163,0.3260051234611827,4600.353565571598,2019
+1998,56,"(55,60]",NoHS,60.64406666666667,81.31448587570623,0.7457965947096381,4677.573549297203,2019
+1998,66,"(65,70]",HS,1865.27,44.35335593220339,42.054765886287626,11416.092591854427,2019
+1998,66,"(65,70]",HS,1601.7071666666668,57.289751412429375,27.958005178552167,11996.381733163431,2019
+1998,66,"(65,70]",HS,1820.6895,131.21201129943503,13.875936219322623,11563.862010738283,2019
+1998,66,"(65,70]",HS,1848.9147,44.35335593220339,41.68601588628762,11849.545150295664,2019
+1998,66,"(65,70]",HS,1699.4378333333334,85.0105988700565,19.990893558237605,11289.147238875019,2019
+1998,41,"(40,45]",College,722.04,203.28621468926553,3.551839464882943,5619.524093450059,2019
+1998,41,"(40,45]",College,722.04,203.28621468926553,3.551839464882943,5376.403429534571,2019
+1998,41,"(40,45]",College,722.04,203.28621468926553,3.551839464882943,5020.409357719067,2019
+1998,41,"(40,45]",College,722.04,203.28621468926553,3.551839464882943,5488.227440319539,2019
+1998,41,"(40,45]",College,722.04,203.28621468926553,3.551839464882943,5005.023522725394,2019
+1998,72,"(70,75]",College,135397.46956666667,3733.074124293785,36.26969758932415,17.268444467120176,2019
+1998,72,"(70,75]",College,134756.85963333334,2014.381581920904,66.89738470743457,17.91468756555343,2019
+1998,72,"(70,75]",College,134839.1649,1903.4981920903954,70.83755869078158,15.830599937145305,2019
+1998,72,"(70,75]",College,134228.25706666667,3178.6571751412434,42.227975421949125,15.204111176697074,2019
+1998,72,"(70,75]",College,133996.96723333333,2864.487570621469,46.77868691336714,15.429581264837443,2019
+1998,50,"(45,50]",HS,77.674,77.61837288135592,1.0007166746297183,1870.5987555483866,2019
+1998,50,"(45,50]",HS,79.49733333333333,77.61837288135592,1.0242076763815895,1792.3845353340635,2019
+1998,50,"(45,50]",HS,79.49733333333333,79.46642937853107,1.0003888932099245,1814.954837005341,2019
+1998,50,"(45,50]",HS,81.32066666666667,77.61837288135592,1.047698678133461,1955.2173398574537,2019
+1998,50,"(45,50]",HS,77.674,77.61837288135592,1.0007166746297183,2008.3632881562376,2019
+1998,45,"(40,45]",HS,116.05516666666668,125.66784180790961,0.923507279165847,7259.388081482184,2019
+1998,45,"(40,45]",HS,114.04950000000001,125.66784180790961,0.9075472162108991,7354.167858258875,2019
+1998,45,"(40,45]",HS,112.4085,125.66784180790961,0.8944889828841235,7622.150630815214,2019
+1998,45,"(40,45]",HS,112.22616666666667,125.66784180790961,0.8930380680700374,7253.10233447754,2019
+1998,45,"(40,45]",HS,116.05516666666668,125.66784180790961,0.923507279165847,7586.923960235877,2019
+1998,58,"(55,60]",HS,2968.2955,231.00706214689265,12.849371237458195,1129.4226313595414,2019
+1998,58,"(55,60]",HS,2966.4721666666665,231.00706214689265,12.841478260869565,1144.6399240143814,2019
+1998,58,"(55,60]",HS,2968.2955,231.00706214689265,12.849371237458195,1092.4338328872145,2019
+1998,58,"(55,60]",HS,2966.6545,231.00706214689265,12.842267558528428,1188.3408044753521,2019
+1998,58,"(55,60]",HS,2966.6545,231.00706214689265,12.842267558528428,1118.114413618539,2019
+1998,63,"(60,65]",NoHS,3.6466666666666665,11.27314463276836,0.3234826470749493,5599.026423355439,2019
+1998,63,"(60,65]",NoHS,3.6466666666666665,12.012367231638418,0.3035760226395678,5605.916687084744,2019
+1998,63,"(60,65]",NoHS,3.6466666666666665,12.381978531073447,0.294514051814506,5628.333385847917,2019
+1998,63,"(60,65]",NoHS,3.6466666666666665,11.827561581920904,0.30831939799331104,5597.196052135228,2019
+1998,63,"(60,65]",NoHS,3.6466666666666665,11.457950282485875,0.31826518502535334,5628.647764940027,2019
+1998,78,"(75,80]",College,214314.6,3843.9575141242935,55.75363390789813,33.298020221494895,2019
+1998,78,"(75,80]",College,395428.1233333333,3474.3462146892657,113.81367857396995,34.892343262385054,2019
+1998,78,"(75,80]",College,152767.98333333334,3825.4769491525426,39.934362528880484,30.18795190638621,2019
+1998,78,"(75,80]",College,135774.51666666666,3843.9575141242935,35.321544571649085,29.311296248858962,2019
+1998,78,"(75,80]",College,218422.57,3289.540564971752,66.39911126977564,29.895445829547914,2019
+1998,60,"(55,60]",NoHS,33.184666666666665,48.04946892655367,0.6906354515050167,5605.240967949094,2019
+1998,60,"(55,60]",NoHS,33.184666666666665,48.04946892655367,0.6906354515050167,5612.269753340364,2019
+1998,60,"(55,60]",NoHS,33.184666666666665,48.04946892655367,0.6906354515050167,5634.417092819212,2019
+1998,60,"(55,60]",NoHS,33.367,48.04946892655367,0.6944301517880113,5604.602158589531,2019
+1998,60,"(55,60]",NoHS,33.184666666666665,48.04946892655367,0.6906354515050167,5635.931516211581,2019
+1998,32,"(30,35]",HS,0.18233333333333335,16.07809152542373,0.01134048360435167,4261.097816550355,2019
+1998,32,"(30,35]",HS,0.18233333333333335,14.78445197740113,0.012332775919732442,4230.298831027349,2019
+1998,32,"(30,35]",HS,0.18233333333333335,17.92614802259887,0.010171361583284489,4253.335516417037,2019
+1998,32,"(30,35]",HS,0.18233333333333335,16.632508474576273,0.010962467484206614,4262.027298923893,2019
+1998,32,"(30,35]",HS,0.18233333333333335,16.26289717514124,0.01121161447248404,4243.898780377298,2019
+1998,75,"(70,75]",College,1712.8575666666668,62.833920903954805,27.26007771001377,12677.183342975433,2019
+1998,75,"(70,75]",College,1704.4884666666667,83.16254237288136,20.495867707172053,13310.446752006314,2019
+1998,75,"(70,75]",College,1726.3502333333333,85.0105988700565,20.30747055402065,11563.862010738283,2019
+1998,75,"(70,75]",College,1695.7182333333335,88.70671186440678,19.116008221850613,11849.545150295664,2019
+1998,75,"(70,75]",College,1721.8830666666668,81.31448587570623,21.17560048647005,12559.287953020945,2019
+1998,69,"(65,70]",HS,412.0733333333333,284.6007005649717,1.4478999261607959,8028.75450640381,2019
+1998,69,"(65,70]",HS,206.5289666666667,68.37809039548021,3.020396818222906,8371.052196024255,2019
+1998,69,"(65,70]",HS,333.8523333333333,188.50176271186442,1.7710833497278509,8516.175794193134,2019
+1998,69,"(65,70]",HS,309.055,225.46289265536726,1.3707577169800975,8081.50330814717,2019
+1998,69,"(65,70]",HS,351.9033333333333,140.45229378531073,2.505500792114064,8441.04153884116,2019
+1998,37,"(35,40]",HS,19.309099999999997,92.40282485875707,0.20896655518394644,6624.028132553055,2019
+1998,37,"(35,40]",HS,17.303433333333334,92.40282485875707,0.18726086956521737,6714.631010392784,2019
+1998,37,"(35,40]",HS,28.97276666666667,92.40282485875707,0.3135484949832776,6990.102391352704,2019
+1998,37,"(35,40]",HS,15.844766666666667,92.40282485875707,0.17147491638795984,6657.202166111498,2019
+1998,37,"(35,40]",HS,18.397433333333336,92.40282485875707,0.19910033444816053,6905.483286185023,2019
+1998,41,"(40,45]",College,150.425,131.21201129943503,1.146427057327241,8734.852810564167,2019
+1998,41,"(40,45]",College,416.814,133.06006779661018,3.1325250836120397,6994.916903201733,2019
+1998,41,"(40,45]",College,423.925,133.06006779661018,3.185967112597547,6480.92204768544,2019
+1998,41,"(40,45]",College,288.99833333333333,133.06006779661018,2.1719388703084355,8828.384480417055,2019
+1998,41,"(40,45]",College,194.00266666666667,131.21201129943503,1.4785435018135569,9109.993633162741,2019
+1998,30,"(25,30]",HS,75.66833333333334,77.61837288135592,0.9748765727026598,5512.8524125736285,2019
+1998,30,"(25,30]",HS,75.66833333333334,77.61837288135592,0.9748765727026598,5497.33882155275,2019
+1998,30,"(25,30]",HS,75.66833333333334,77.61837288135592,0.9748765727026598,5546.2693202513265,2019
+1998,30,"(25,30]",HS,75.66833333333334,77.61837288135592,0.9748765727026598,5532.503412126553,2019
+1998,30,"(25,30]",HS,75.66833333333334,77.61837288135592,0.9748765727026598,5568.195708734783,2019
+1998,80,"(75,80]",HS,1593.4474666666665,48.04946892655367,33.162644713146385,3599.3604218240666,2019
+1998,80,"(75,80]",HS,1608.0888333333332,48.04946892655367,33.46735914587085,3934.362245866876,2019
+1998,80,"(75,80]",HS,1575.4511666666667,48.04946892655367,32.78810779521482,3670.5932505472565,2019
+1998,80,"(75,80]",HS,1542.0841666666668,48.04946892655367,32.09367764342681,3627.599039656735,2019
+1998,80,"(75,80]",HS,1604.0775,48.04946892655367,33.38387573964497,3761.0006038638894,2019
+1998,38,"(35,40]",College,3627.084066666667,203.28621468926553,17.84225296442688,1173.7509234433908,2019
+1998,38,"(35,40]",College,3627.1752333333334,203.28621468926553,17.84270142900578,1203.6766824505603,2019
+1998,38,"(35,40]",College,3625.1513333333337,203.28621468926553,17.832745515354212,1134.8282121207162,2019
+1998,38,"(35,40]",College,3627.2481666666667,203.28621468926553,17.843060200668898,1234.2416912023505,2019
+1998,38,"(35,40]",College,3625.2425000000003,203.28621468926553,17.83319397993311,1160.2107203134442,2019
+1998,24,"(20,25]",College,15.060733333333333,55.441694915254246,0.27164994425863986,4536.711444158501,2019
+1998,24,"(20,25]",College,11.012933333333333,55.441694915254246,0.19863991081382382,4593.895165201031,2019
+1998,24,"(20,25]",College,13.8391,51.745581920903966,0.2674450549450549,4584.952315780475,2019
+1998,24,"(20,25]",College,12.781566666666668,57.289751412429375,0.22310389470277273,4527.998325969385,2019
+1998,24,"(20,25]",College,10.7759,53.593638418079095,0.20106677430515513,4573.469307253733,2019
+1998,51,"(50,55]",College,1149.9763333333333,630.1872655367232,1.8248168381408212,5533.247383220714,2019
+1998,51,"(50,55]",College,1139.0363333333332,728.1342598870057,1.5643218511790569,5302.544073047052,2019
+1998,51,"(50,55]",College,1168.392,729.9823163841808,1.600575758858643,4941.204165755663,2019
+1998,51,"(50,55]",College,1159.093,717.0459209039547,1.6164836396234876,5406.981344037345,2019
+1998,51,"(50,55]",College,1139.2186666666669,474.9505197740113,2.398604947750609,4932.342710680521,2019
+1998,42,"(40,45]",HS,655.8894666666666,88.70671186440678,7.393910256410256,5571.565652783567,2019
+1998,42,"(40,45]",HS,656.0900333333334,88.70671186440678,7.396171265328874,5330.920101057231,2019
+1998,42,"(40,45]",HS,655.8894666666666,88.70671186440678,7.393910256410256,4977.987130826503,2019
+1998,42,"(40,45]",HS,655.8894666666666,88.70671186440678,7.393910256410256,5441.72566066223,2019
+1998,42,"(40,45]",HS,655.8894666666666,88.70671186440678,7.393910256410256,4962.331221502343,2019
+1998,52,"(50,55]",College,183186.65333333335,13250.565084745762,13.82481819920423,3.3359762863521008,2019
+1998,52,"(50,55]",College,219616.85333333336,12141.731186440678,18.087771007366005,3.2230834273393016,2019
+1998,52,"(50,55]",College,183161.12666666665,13841.943163841806,13.2323276073784,3.104150207506885,2019
+1998,52,"(50,55]",College,182820.528,13472.33186440678,13.57007308311656,3.1492523165426816,2019
+1998,52,"(50,55]",College,183201.60466666665,15043.17988700565,12.178382897948113,2.922182913014316,2019
+1998,36,"(35,40]",HS,50.415166666666664,3.6961129943502824,13.64005016722408,6985.33874012832,2019
+1998,36,"(35,40]",HS,32.5465,3.6961129943502824,8.805602006688964,7080.883592878976,2019
+1998,36,"(35,40]",HS,37.287166666666664,3.6961129943502824,10.088210702341136,7371.3806847858505,2019
+1998,36,"(35,40]",HS,34.91683333333334,3.6961129943502824,9.44690635451505,7020.322266336992,2019
+1998,36,"(35,40]",HS,36.9225,3.6961129943502824,9.989548494983278,7282.145992291422,2019
+1998,76,"(75,80]",HS,951.4882666666667,33.265016949152546,28.603270159791897,8651.957722846051,2019
+1998,76,"(75,80]",HS,951.7617666666667,33.265016949152546,28.611492010405055,8297.73296897413,2019
+1998,76,"(75,80]",HS,959.8026666666666,33.265016949152546,28.853214418431804,7745.443794556723,2019
+1998,76,"(75,80]",HS,955.2443333333334,33.265016949152546,28.716183574879228,8433.258886139973,2019
+1998,76,"(75,80]",HS,953.0563333333334,33.265016949152546,28.65040876997399,7724.282232545154,2019
+1998,32,"(30,35]",HS,54.7,62.833920903954805,0.8705488884517018,7867.622867394656,2019
+1998,32,"(30,35]",HS,56.705666666666666,62.833920903954805,0.9024690143615974,7921.100461657722,2019
+1998,32,"(30,35]",HS,54.153,62.833920903954805,0.8618433995671847,8106.029351852696,2019
+1998,32,"(30,35]",HS,54.7,62.833920903954805,0.8705488884517018,7864.422793225999,2019
+1998,32,"(30,35]",HS,58.529,62.833920903954805,0.9314873106433209,8096.470544006715,2019
+1998,37,"(35,40]",HS,123.25733333333334,164.47702824858757,0.7493893502686859,7953.135797741581,2019
+1998,37,"(35,40]",HS,112.682,75.77031638418079,1.4871522962721266,8114.4237139959005,2019
+1998,37,"(35,40]",HS,137.11466666666666,147.84451977401133,0.9274247491638794,8498.03889551971,2019
+1998,37,"(35,40]",HS,111.95266666666667,105.33922033898305,1.0627823739951887,7951.681172330597,2019
+1998,37,"(35,40]",HS,115.78166666666668,96.09893785310734,1.2048173398507849,8437.19040545914,2019
+1998,49,"(45,50]",HS,655.1236666666666,120.12367231638417,5.453743246719835,6011.285927478594,2019
+1998,49,"(45,50]",HS,635.4316666666666,120.12367231638417,5.289812194494469,5760.084421928948,2019
+1998,49,"(45,50]",HS,665.8813333333334,120.12367231638417,5.543298173398509,5367.79306540765,2019
+1998,49,"(45,50]",HS,682.4736666666666,120.12367231638417,5.681425263699511,5872.497515273394,2019
+1998,49,"(45,50]",HS,687.7613333333334,120.12367231638417,5.725443786982249,5357.45790288098,2019
+1998,44,"(40,45]",College,132.4834,110.88338983050849,1.1947993311036786,652.4355547273551,2019
+1998,44,"(40,45]",College,334.8734,110.88338983050849,3.02005016722408,542.2290934896886,2019
+1998,44,"(40,45]",College,272.88006666666666,110.88338983050849,2.4609643255295426,554.5915510570376,2019
+1998,44,"(40,45]",College,223.65006666666667,110.88338983050849,2.016984392419175,243.84071787678954,2019
+1998,44,"(40,45]",College,133.57739999999998,110.88338983050849,1.2046655518394644,648.5769166439763,2019
+1998,49,"(45,50]",College,3657.6066666666666,924.0282485875706,3.9583277591973243,1626.905350109862,2019
+1998,49,"(45,50]",College,3657.6066666666666,924.0282485875706,3.9583277591973243,1592.4417091246821,2019
+1998,49,"(45,50]",College,3657.6066666666666,924.0282485875706,3.9583277591973243,1483.407243202924,2019
+1998,49,"(45,50]",College,3657.6066666666666,924.0282485875706,3.9583277591973243,1799.6804081849946,2019
+1998,49,"(45,50]",College,3657.6066666666666,924.0282485875706,3.9583277591973243,1695.7003674245566,2019
+1998,35,"(30,35]",NoHS,0,27.720847457627123,0,4654.597205525467,2019
+1998,35,"(30,35]",NoHS,0,14.045229378531072,0,4659.425726252649,2019
+1998,35,"(30,35]",NoHS,0,8.13144858757062,0,4670.5459565705005,2019
+1998,35,"(30,35]",NoHS,0,8.13144858757062,0,4677.143560509094,2019
+1998,35,"(30,35]",NoHS,0,9.05547683615819,0,4654.987293142006,2019
+1998,28,"(25,30]",HS,34.88036666666667,101.64310734463277,0.34316509577379145,7835.572345779103,2019
+1998,28,"(25,30]",HS,34.698033333333335,101.64310734463277,0.341371237458194,7837.786192293699,2019
+1998,28,"(25,30]",HS,34.698033333333335,101.64310734463277,0.341371237458194,7972.901806767006,2019
+1998,28,"(25,30]",HS,33.05703333333334,101.64310734463277,0.325226512617817,7873.050936342513,2019
+1998,28,"(25,30]",HS,32.8747,101.64310734463277,0.3234326543022195,7923.834372135953,2019
+1998,27,"(25,30]",HS,2.3703333333333334,22.176677966101696,0.1068840579710145,5110.8309166988165,2019
+1998,27,"(25,30]",HS,2.5526666666666666,22.176677966101696,0.11510590858416944,5125.9626181509675,2019
+1998,27,"(25,30]",HS,2.5526666666666666,22.176677966101696,0.11510590858416944,5126.218011269678,2019
+1998,27,"(25,30]",HS,2.5526666666666666,24.024734463276836,0.10625160792384873,5151.733934771349,2019
+1998,27,"(25,30]",HS,2.5526666666666666,24.024734463276836,0.10625160792384873,5132.181985733587,2019
+1998,37,"(35,40]",HS,204.06929000000002,59.13780790960452,3.450741534280937,6826.339782531761,2019
+1998,37,"(35,40]",HS,98.33419,59.13780790960452,1.6627973453177258,6963.940242826973,2019
+1998,37,"(35,40]",HS,113.81429,59.13780790960452,1.924560514214047,7246.378338305108,2019
+1998,37,"(35,40]",HS,184.19495666666666,59.13780790960452,3.1146733904682273,6886.625260520998,2019
+1998,37,"(35,40]",HS,174.73185666666666,59.13780790960452,2.9546556229096987,7171.519562005509,2019
+1998,46,"(45,50]",College,1244.1697333333334,101.64310734463277,12.240571602310734,2919.6726515872206,2019
+1998,46,"(45,50]",College,1254.5627333333334,101.64310734463277,12.342821526299788,3188.835931693771,2019
+1998,46,"(45,50]",College,1118.3597333333335,101.64310734463277,11.002809364548495,2970.1506097982237,2019
+1998,46,"(45,50]",College,1194.7574,101.64310734463277,11.754435998783825,2949.370573965877,2019
+1998,46,"(45,50]",College,1202.0507333333335,101.64310734463277,11.826190331407725,3045.522241216873,2019
+1998,37,"(35,40]",HS,34.98976666666667,33.265016949152546,1.0518487551096245,6245.613983416874,2019
+1998,37,"(35,40]",HS,35.1721,31.416960451977403,1.1195258705488884,6404.859050410185,2019
+1998,37,"(35,40]",HS,35.008,31.416960451977403,1.1143025772181783,6599.688711225247,2019
+1998,37,"(35,40]",HS,35.1721,33.265016949152546,1.0573299888517278,6283.757037035618,2019
+1998,37,"(35,40]",HS,35.1721,31.416960451977403,1.1195258705488884,6539.524882799087,2019
+1998,26,"(25,30]",College,-12.581,53.593638418079095,-0.23474801061007958,5304.130107684374,2019
+1998,26,"(25,30]",College,-10.028333333333334,53.593638418079095,-0.1871179794718026,5286.046015011769,2019
+1998,26,"(25,30]",College,-12.763333333333334,53.593638418079095,-0.2381501556913851,5288.688560133201,2019
+1998,26,"(25,30]",College,-5.47,53.593638418079095,-0.10206435243916503,5326.318206471685,2019
+1998,26,"(25,30]",College,-9.481333333333334,53.593638418079095,-0.17691154422788608,5285.344836062897,2019
+1998,54,"(50,55]",NoHS,128.18033333333332,48.04946892655367,2.667674298945202,6666.591547263075,2019
+1998,54,"(50,55]",NoHS,129.639,25.872790960451983,5.010630673674151,6655.977689644087,2019
+1998,54,"(50,55]",NoHS,129.639,51.745581920903966,2.5053153368370755,6588.357879014809,2019
+1998,54,"(50,55]",NoHS,129.639,38.80918644067796,3.340420449116102,6675.782255191998,2019
+1998,54,"(50,55]",NoHS,129.82133333333334,33.265016949152546,3.9026384243775545,6593.278049290539,2019
+1998,54,"(50,55]",College,633.6812666666667,121.97172881355934,5.195312658356136,7252.947696136842,2019
+1998,54,"(50,55]",College,633.6812666666667,121.97172881355934,5.195312658356136,6950.02130766754,2019
+1998,54,"(50,55]",College,633.6812666666667,121.97172881355934,5.195312658356136,6476.350323578884,2019
+1998,54,"(50,55]",College,633.6812666666667,121.97172881355934,5.195312658356136,7087.001124525006,2019
+1998,54,"(50,55]",College,633.6812666666667,121.97172881355934,5.195312658356136,6465.256982671444,2019
+1998,39,"(35,40]",NoHS,0.43760000000000004,10.349116384180792,0.04228380315336837,7321.284875865744,2019
+1998,39,"(35,40]",NoHS,0.41936666666666667,10.349116384180792,0.04052197802197802,7312.610358074047,2019
+1998,39,"(35,40]",NoHS,0.43760000000000004,10.349116384180792,0.04228380315336837,7305.42153321027,2019
+1998,39,"(35,40]",NoHS,0.40113333333333334,10.349116384180792,0.038760152890587665,7317.186142333578,2019
+1998,39,"(35,40]",NoHS,0.4740666666666667,10.349116384180792,0.045807453416149065,7319.889538388164,2019
+1998,49,"(45,50]",NoHS,6.472833333333333,27.720847457627123,0.23350055741360085,5778.330041217401,2019
+1998,49,"(45,50]",NoHS,6.472833333333333,27.720847457627123,0.23350055741360085,5757.5139434476405,2019
+1998,49,"(45,50]",NoHS,6.472833333333333,27.720847457627123,0.23350055741360085,5769.6703585322675,2019
+1998,49,"(45,50]",NoHS,6.472833333333333,27.720847457627123,0.23350055741360085,5755.128316949764,2019
+1998,49,"(45,50]",NoHS,6.472833333333333,27.720847457627123,0.23350055741360085,5779.977897489822,2019
+1998,39,"(35,40]",College,74.1185,134.9081242937853,0.5493998259036973,11709.41382408434,2019
+1998,39,"(35,40]",College,74.1185,136.75618079096043,0.5419755039320258,12124.118391957261,2019
+1998,39,"(35,40]",College,74.1185,136.75618079096043,0.5419755039320258,12461.386801725208,2019
+1998,39,"(35,40]",College,75.94183333333334,134.9081242937853,0.562915196774637,11774.35441144268,2019
+1998,39,"(35,40]",College,74.1185,136.75618079096043,0.5419755039320258,12392.985882373761,2019
+1998,27,"(25,30]",College,7.3845,75.77031638418079,0.09745900970715393,5184.787183450672,2019
+1998,27,"(25,30]",College,7.566833333333333,86.85865536723163,0.08711662990108875,5167.109982852331,2019
+1998,27,"(25,30]",College,7.658,73.92225988700567,0.10359531772575249,5169.693070710121,2019
+1998,27,"(25,30]",College,7.6033,62.833920903954805,0.12100629549478653,5206.47605002861,2019
+1998,27,"(25,30]",College,7.566833333333333,66.53003389830509,0.11373560014864362,5166.424580429387,2019
+1998,55,"(50,55]",NoHS,2302.632966666667,134.9081242937853,17.068156411783573,3384.195022500561,2019
+1998,55,"(50,55]",NoHS,2026.0515333333335,134.9081242937853,15.018009804370735,3432.919919155218,2019
+1998,55,"(50,55]",NoHS,2109.9066333333335,134.9081242937853,15.63958171072525,3325.054508533056,2019
+1998,55,"(50,55]",NoHS,2018.1382666666666,134.9081242937853,14.959353094790856,3752.4246303001833,2019
+1998,55,"(50,55]",NoHS,2024.7752,134.9081242937853,15.008549044761077,3520.362957902925,2019
+1998,72,"(70,75]",College,60037.64423333333,855.6501581920903,70.16611129972479,350.74565291931157,2019
+1998,72,"(70,75]",College,63709.10823333333,920.3321355932204,69.2240396368081,332.63937689667944,2019
+1998,72,"(70,75]",College,65055.986333333334,960.9893785310734,67.69688384358118,349.70181964412177,2019
+1998,72,"(70,75]",College,63996.812,973.9257740112994,65.71015338922277,342.7358547122605,2019
+1998,72,"(70,75]",College,60211.025,863.0423841807909,69.76601161616524,369.4534653776576,2019
+1998,76,"(75,80]",HS,970.378,73.92225988700567,13.127006688963208,6357.2083022598745,2019
+1998,76,"(75,80]",HS,970.9250000000001,73.92225988700567,13.134406354515049,6096.476424836601,2019
+1998,76,"(75,80]",HS,970.378,75.77031638418079,12.80683579411045,5690.6442393954485,2019
+1998,76,"(75,80]",HS,970.7426666666667,73.92225988700567,13.1319397993311,6196.131955867468,2019
+1998,76,"(75,80]",HS,970.7426666666667,73.92225988700567,13.1319397993311,5675.554207656498,2019
+1998,34,"(30,35]",College,9242.841333333334,140.45229378531073,65.8076923076923,1170.9527624550383,2019
+1998,34,"(30,35]",College,16283.096,129.36395480225988,125.87042522694696,1217.186471340561,2019
+1998,34,"(30,35]",College,5824.638333333333,308.6254350282486,18.872839605070794,1289.5249185998957,2019
+1998,34,"(30,35]",College,9982.057133333334,291.9929265536723,34.18595529401804,1367.0177609114858,2019
+1998,34,"(30,35]",College,17610.118,190.34981920903957,92.51449816540571,1138.8087055680737,2019
+1998,55,"(50,55]",College,26966.917666666668,776.1837288135594,34.74295668100016,14.436794001472233,2019
+1998,55,"(50,55]",College,35983.848,842.7137627118644,42.699964794930466,15.703995874010564,2019
+1998,55,"(50,55]",College,26486.469333333334,742.9187118644068,35.65190768565201,15.738245474648314,2019
+1998,55,"(50,55]",College,27461.22333333333,920.3321355932204,29.83838363487394,14.315129670546758,2019
+1998,55,"(50,55]",College,29858.90666666667,796.5123502824858,37.487060503301805,15.632884341052364,2019
+1998,41,"(40,45]",HS,141.8918,57.289751412429375,2.4767396698672997,8667.140782707362,2019
+1998,41,"(40,45]",HS,211.90779999999998,73.92225988700567,2.866630434782608,8835.891152842049,2019
+1998,41,"(40,45]",HS,190.75713333333334,72.07420338983052,2.6466769573792983,9126.32605233668,2019
+1998,41,"(40,45]",HS,217.9248,92.40282485875707,2.3584214046822742,8759.947400956988,2019
+1998,41,"(40,45]",HS,217.56013333333334,51.745581920903966,4.204419493549928,9039.373537318887,2019
+1998,74,"(70,75]",NoHS,0.5834666666666667,18.480564971751416,0.031571906354515046,4409.671595087861,2019
+1998,74,"(70,75]",NoHS,0.6017,18.480564971751416,0.03255852842809364,4461.138961390676,2019
+1998,74,"(70,75]",NoHS,0.5834666666666667,18.480564971751416,0.031571906354515046,4464.996799316965,2019
+1998,74,"(70,75]",NoHS,0.5834666666666667,18.480564971751416,0.031571906354515046,4440.316467561994,2019
+1998,74,"(70,75]",NoHS,0.5834666666666667,18.480564971751416,0.031571906354515046,4465.402577934154,2019
+1998,32,"(30,35]",HS,91.16666666666667,3.6961129943502824,24.665551839464886,5894.75853013683,2019
+1998,32,"(30,35]",HS,91.16666666666667,3.6961129943502824,24.665551839464886,5857.402918384686,2019
+1998,32,"(30,35]",HS,91.16666666666667,3.6961129943502824,24.665551839464886,5788.026521962023,2019
+1998,32,"(30,35]",HS,91.16666666666667,3.6961129943502824,24.665551839464886,5907.513981263581,2019
+1998,32,"(30,35]",HS,91.16666666666667,3.6961129943502824,24.665551839464886,5803.443735354216,2019
+1998,43,"(40,45]",HS,286.2633333333333,64.68197740112994,4.425704730052556,6985.33874012832,2019
+1998,43,"(40,45]",HS,256.90766666666667,64.68197740112994,3.9718585762064027,7080.883592878976,2019
+1998,43,"(40,45]",HS,309.41966666666667,64.68197740112994,4.783707596751075,7371.3806847858505,2019
+1998,43,"(40,45]",HS,431.76533333333333,64.68197740112994,6.675203057811753,5676.7242134095995,2019
+1998,43,"(40,45]",HS,247.06166666666667,64.68197740112994,3.819636884854276,7282.145992291422,2019
+1998,66,"(65,70]",College,1747.3915,136.75618079096043,12.777422489379013,3014.7999810128777,2019
+1998,66,"(65,70]",College,1747.2091666666668,136.75618079096043,12.77608921630661,3286.183422873573,2019
+1998,66,"(65,70]",College,1747.2091666666668,134.9081242937853,12.951104137077932,3042.041703028853,2019
+1998,66,"(65,70]",College,1747.3915,136.75618079096043,12.777422489379013,3028.552039842073,2019
+1998,66,"(65,70]",College,1749.0325,136.75618079096043,12.789421947030645,3116.3742562242232,2019
+1998,64,"(60,65]",NoHS,3.3184666666666667,92.40282485875707,0.03591304347826087,5046.247018953612,2019
+1998,64,"(60,65]",NoHS,6.855733333333334,92.40282485875707,0.07419397993311037,5009.99233374853,2019
+1998,64,"(60,65]",NoHS,5.8529,92.40282485875707,0.06334113712374581,5131.899464369642,2019
+1998,64,"(60,65]",NoHS,4.485399999999999,92.40282485875707,0.04854180602006688,5039.356048477882,2019
+1998,64,"(60,65]",NoHS,4.084266666666667,92.40282485875707,0.04420066889632107,5090.601562690665,2019
+1998,21,"(20,25]",HS,16.2459,14.414840677966104,1.127025984049395,5555.688513997665,2019
+1998,21,"(20,25]",HS,16.428233333333335,14.414840677966104,1.1396749849927106,5566.077453734271,2019
+1998,21,"(20,25]",HS,16.419116666666664,14.414840677966104,1.1390425349455446,5543.306421166603,2019
+1998,21,"(20,25]",HS,16.419116666666664,14.414840677966104,1.1390425349455446,5547.354192762168,2019
+1998,21,"(20,25]",HS,16.428233333333335,14.414840677966104,1.1396749849927106,5530.811054067428,2019
+1998,41,"(40,45]",HS,152.41243333333333,136.75618079096043,1.114482961222092,6882.107141652006,2019
+1998,41,"(40,45]",HS,152.59476666666666,118.27561581920904,1.29016252090301,6976.240001621407,2019
+1998,41,"(40,45]",HS,152.77710000000002,133.06006779661018,1.1481814381270903,7262.444033411103,2019
+1998,41,"(40,45]",HS,152.77710000000002,96.09893785310734,1.5897896835605867,6916.573669979078,2019
+1998,41,"(40,45]",HS,152.79533333333336,127.51589830508476,1.1982453589258883,7174.528080105769,2019
+1998,43,"(40,45]",HS,127.66980000000001,112.73144632768363,1.1325127474093974,5596.4732035299585,2019
+1998,43,"(40,45]",HS,152.32126666666667,110.88338983050849,1.3737068004459307,5704.94815746117,2019
+1998,43,"(40,45]",HS,154.38163333333333,90.55476836158192,1.7048426728550952,5976.993164662936,2019
+1998,43,"(40,45]",HS,137.89870000000002,99.79505084745762,1.381819026384244,5613.814769364937,2019
+1998,43,"(40,45]",HS,145.46553333333333,103.49116384180793,1.40558408982322,5841.0804992980875,2019
+1998,49,"(45,50]",College,3446.1,924.0282485875706,3.72943143812709,406.28870612201246,2019
+1998,49,"(45,50]",College,3179.8933333333334,924.0282485875706,3.4413377926421407,405.0906733986043,2019
+1998,49,"(45,50]",College,3271.06,924.0282485875706,3.54,380.79431285814894,2019
+1998,49,"(45,50]",College,3088.7266666666665,924.0282485875706,3.342675585284281,419.92440895540994,2019
+1998,49,"(45,50]",College,3356.5743333333335,924.0282485875706,3.6325451505016724,403.2477681194106,2019
+1998,45,"(40,45]",College,92.35183333333333,66.53003389830509,1.3881224451876624,1286.839611358206,2019
+1998,45,"(40,45]",College,42.702466666666666,66.53003389830509,0.6418524712002972,1283.1394088960992,2019
+1998,45,"(40,45]",College,111.22333333333333,66.53003389830509,1.6717762913415084,2389.9358460941685,2019
+1998,45,"(40,45]",College,128.18033333333332,66.53003389830509,1.926653660349312,2492.944720209142,2019
+1998,45,"(40,45]",College,91.896,66.53003389830509,1.3812709030100334,1343.7615055165745,2019
+1998,58,"(55,60]",HS,61.446333333333335,110.88338983050849,0.5541527313266443,10232.976449529782,2019
+1998,58,"(55,60]",HS,57.79966666666667,110.88338983050849,0.5212653288740244,10203.829291168624,2019
+1998,58,"(55,60]",HS,60.17,110.88338983050849,0.5426421404682273,10807.941697034456,2019
+1998,58,"(55,60]",HS,61.62866666666667,110.88338983050849,0.5557971014492753,9970.05224242735,2019
+1998,58,"(55,60]",HS,59.623000000000005,110.88338983050849,0.5377090301003344,10748.89729192296,2019
+1998,82,"(80,85]",College,154.98333333333335,8.13144858757062,19.059744603222867,8338.286148731144,2019
+1998,82,"(80,85]",College,120.70466666666667,17.002119774011298,7.099389268576415,8331.547439587788,2019
+1998,82,"(80,85]",College,156.989,11.642755932203391,13.483835005574134,8260.937495169892,2019
+1998,82,"(80,85]",College,158.63,18.11095367231638,8.758787796054879,8328.77961611527,2019
+1998,82,"(80,85]",College,131.48056666666668,25.872790960451983,5.0818084089823214,8259.33204896098,2019
+1998,49,"(45,50]",College,-62.886766666666674,55.441694915254246,-1.1342865105908584,6053.320206117985,2019
+1998,49,"(45,50]",College,-61.9751,55.441694915254246,-1.1178428093645483,6044.173496421767,2019
+1998,49,"(45,50]",College,-67.99210000000001,55.441694915254246,-1.2263712374581939,6055.361182049636,2019
+1998,49,"(45,50]",College,-43.9241,55.441694915254246,-0.792257525083612,6044.328869616706,2019
+1998,49,"(45,50]",College,-31.90833333333333,55.441694915254246,-0.5755295429208471,6107.5507809030005,2019
+1998,27,"(25,30]",College,52.512,101.64310734463277,0.5166311948920644,4172.711146326593,2019
+1998,27,"(25,30]",College,57.435,101.64310734463277,0.5650653694131955,4226.567210012287,2019
+1998,27,"(25,30]",College,54.153,101.64310734463277,0.5327759197324414,4184.684668528301,2019
+1998,27,"(25,30]",College,55.611666666666665,101.64310734463277,0.547126786257221,4202.119952580406,2019
+1998,27,"(25,30]",College,53.788333333333334,101.64310734463277,0.5291882031012466,4194.498565692766,2019
+1998,60,"(55,60]",College,1848.313,360.3710169491526,5.128916902495497,7.579948652839799,2019
+1998,60,"(55,60]",College,1831.903,441.68550282485876,4.147528022277886,8.468182334116623,2019
+1998,60,"(55,60]",College,1822.604,460.1660677966102,3.960752709835999,8.27856246475437,2019
+1998,60,"(55,60]",College,1799.083,377.00352542372883,4.772058823529412,8.028408032750852,2019
+1998,60,"(55,60]",College,1831.7206666666668,310.4734915254237,5.899765089982482,8.606743217050987,2019
+1998,46,"(45,50]",HS,19.436733333333333,55.441694915254246,0.35057971014492745,4365.002752042728,2019
+1998,46,"(45,50]",HS,18.616233333333334,55.441694915254246,0.3357803790412486,4383.647040925989,2019
+1998,46,"(45,50]",HS,15.006033333333333,55.441694915254246,0.2706633221850613,4353.2328417264725,2019
+1998,46,"(45,50]",HS,23.0834,55.441694915254246,0.4163545150501672,4377.7962806359055,2019
+1998,46,"(45,50]",HS,20.074900000000003,55.441694915254246,0.3620903010033445,4378.550571107065,2019
+1998,63,"(60,65]",College,5777.961,545.1766666666666,10.598327759197327,1218.709915085335,2019
+1998,63,"(60,65]",College,5778.143333333333,545.1766666666666,10.59866220735786,1249.980542270601,2019
+1998,63,"(60,65]",College,5776.137666666667,545.1766666666666,10.594983277591975,1186.6295146114526,2019
+1998,63,"(60,65]",College,5776.137666666667,545.1766666666666,10.594983277591975,1287.9329829571989,2019
+1998,63,"(60,65]",College,5776.137666666667,545.1766666666666,10.594983277591975,1205.5880488654343,2019
+1998,40,"(35,40]",College,677.9153333333334,1602.2649830508474,0.4230981395115591,5666.746978665104,2019
+1998,40,"(35,40]",College,677.9153333333334,1940.4593220338984,0.34935817805383024,5421.583284234119,2019
+1998,40,"(35,40]",College,677.9153333333334,1138.4028022598868,0.595496894409938,5062.597665997419,2019
+1998,40,"(35,40]",College,677.9153333333334,918.4840790960453,0.7380806578602046,5534.346992462814,2019
+1998,40,"(35,40]",College,677.9153333333334,2291.5900564971753,0.2958274894810659,5047.08253829003,2019
+1998,41,"(40,45]",HS,277.91246666666666,110.88338983050849,2.5063489409141577,5884.775673720348,2019
+1998,41,"(40,45]",HS,277.7119,110.88338983050849,2.504540133779264,6003.396760164082,2019
+1998,41,"(40,45]",HS,314.7438,110.88338983050849,2.8385117056856184,4325.699159512707,2019
+1998,41,"(40,45]",HS,306.52056666666664,110.88338983050849,2.7643506131549604,4728.6719507282205,2019
+1998,41,"(40,45]",HS,276.43556666666666,110.88338983050849,2.493029542920847,6182.344449084451,2019
+1998,51,"(50,55]",College,6460.434666666667,332.65016949152545,19.42110739502044,3367.3833616380807,2019
+1998,51,"(50,55]",College,6460.434666666667,332.65016949152545,19.42110739502044,3623.8764854168826,2019
+1998,51,"(50,55]",College,6458.611333333333,332.65016949152545,19.415626161278333,3484.9668742741787,2019
+1998,51,"(50,55]",College,6460.434666666667,332.65016949152545,19.42110739502044,4087.8618361036074,2019
+1998,51,"(50,55]",College,6462.258,332.65016949152545,19.42658862876254,3268.9642418434514,2019
+1998,73,"(70,75]",College,133795.653,4065.7242937853107,32.90819626026148,15.134541716248247,2019
+1998,73,"(70,75]",College,144870.57966666666,3806.9963841807908,38.05377390654934,15.874244413854168,2019
+1998,73,"(70,75]",College,135787.46233333336,3566.7490395480227,38.07037187862825,13.522093385409011,2019
+1998,73,"(70,75]",College,142574.456,3733.074124293785,38.19223815358125,13.033395147043223,2019
+1998,73,"(70,75]",College,141940.66533333334,3733.074124293785,38.02246100864267,13.520225057567519,2019
+1998,32,"(30,35]",College,-77.98396666666666,120.12367231638417,-0.6491973244147157,7672.592436966613,2019
+1998,32,"(30,35]",College,-76.16063333333334,120.12367231638417,-0.6340185232827374,7674.7602354725705,2019
+1998,32,"(30,35]",College,-75.9783,120.12367231638417,-0.6325006431695396,7807.065445095504,2019
+1998,32,"(30,35]",College,-75.79596666666666,120.12367231638417,-0.6309827630563416,7709.291472827075,2019
+1998,32,"(30,35]",College,-77.98396666666666,120.12367231638417,-0.6491973244147157,7759.018613129959,2019
+1998,73,"(70,75]",HS,550.8290000000001,88.70671186440678,6.209552675585285,5295.998251144292,2019
+1998,73,"(70,75]",HS,573.256,60.98586440677967,9.399817573730616,5100.854716664451,2019
+1998,73,"(70,75]",HS,471.6963333333333,55.441694915254246,8.507971014492751,4761.399847454215,2019
+1998,73,"(70,75]",HS,615.922,73.92225988700567,8.332023411371235,5207.921433277587,2019
+1998,73,"(70,75]",HS,577.8143333333334,103.49116384180793,5.5832238413760145,4748.809105764519,2019
+1998,85,"(80,85]",College,12488.210566666667,5599.611186440678,2.2301924456659714,11.333225350380904,2019
+1998,85,"(80,85]",College,12488.2288,5599.611186440678,2.230195701844432,12.440634123637386,2019
+1998,85,"(80,85]",College,12488.119400000001,5599.611186440678,2.230176164773668,9.689090924677142,2019
+1998,85,"(80,85]",College,12488.192333333334,5599.611186440678,2.2301891894875108,10.24960550108709,2019
+1998,85,"(80,85]",College,12486.678966666666,5599.611186440678,2.229918926675276,10.309975573490402,2019
+1998,31,"(30,35]",HS,0.4558333333333333,33.265016949152546,0.013703084355258266,8385.229615474944,2019
+1998,31,"(30,35]",HS,2.4615,33.265016949152546,0.07399665551839464,8442.225472385851,2019
+1998,31,"(30,35]",HS,0.4558333333333333,33.265016949152546,0.013703084355258266,8639.32073647714,2019
+1998,31,"(30,35]",HS,2.4615,33.265016949152546,0.07399665551839464,8381.819010118912,2019
+1998,31,"(30,35]",HS,0.4558333333333333,33.265016949152546,0.013703084355258266,8629.133059717631,2019
+1998,55,"(50,55]",HS,130.53243333333333,27.720847457627123,4.708818283166108,2866.5058540964255,2019
+1998,55,"(50,55]",HS,130.53243333333333,27.720847457627123,4.708818283166108,2933.0877778863705,2019
+1998,55,"(50,55]",HS,130.53243333333333,27.720847457627123,4.708818283166108,2789.829672886942,2019
+1998,55,"(50,55]",HS,130.53243333333333,27.720847457627123,4.708818283166108,2654.9636608354804,2019
+1998,55,"(50,55]",HS,130.53243333333333,27.720847457627123,4.708818283166108,2826.6485609757065,2019
+1998,67,"(65,70]",College,3539.8740333333335,188.50176271186442,18.77899698340875,182.33691989144364,2019
+1998,67,"(65,70]",College,2648.2093333333337,367.7632429378531,7.200853767163578,180.98444902747238,2019
+1998,67,"(65,70]",College,2622.318,345.58656497175144,7.588020674977197,121.23240330619699,2019
+1998,67,"(65,70]",College,3502.4592333333335,149.69257627118645,23.397681572319254,185.3697193082039,2019
+1998,67,"(65,70]",College,2234.1668,201.4381581920904,11.09108035960848,121.98907379535663,2019
+1998,67,"(65,70]",College,1908.1183333333333,109.03533333333333,17.5,3794.1019469882876,2019
+1998,67,"(65,70]",College,2035.7516666666668,129.36395480225988,15.736622073578596,4136.657397060211,2019
+1998,67,"(65,70]",College,2024.8116666666667,129.36395480225988,15.65205446727186,3828.2457940841923,2019
+1998,67,"(65,70]",College,1926.3516666666667,127.51589830508476,15.106756822257767,3812.4676450818356,2019
+1998,67,"(65,70]",College,2035.7516666666668,129.36395480225988,15.736622073578596,3922.150725495857,2019
+1998,38,"(35,40]",HS,614.1169,96.09893785310734,6.390465011577052,6119.083300185319,2019
+1998,38,"(35,40]",HS,406.6033333333333,96.09893785310734,4.231090815538976,5855.659438638957,2019
+1998,38,"(35,40]",HS,322.3471,97.9469943502825,3.2910361582633936,5466.668115530529,2019
+1998,38,"(35,40]",HS,463.1266666666667,109.03533333333333,4.247491638795988,5976.501906831097,2019
+1998,38,"(35,40]",HS,366.3988333333333,110.88338983050849,3.304361761426978,5449.256673335888,2019
+1998,50,"(45,50]",College,138.75566666666666,171.86925423728815,0.8073326860143129,6559.155310454434,2019
+1998,50,"(45,50]",College,124.169,171.86925423728815,0.722461970007552,6687.265858994391,2019
+1998,50,"(45,50]",College,124.169,171.86925423728815,0.722461970007552,6927.82903964899,2019
+1998,50,"(45,50]",College,118.699,171.86925423728815,0.6906354515050167,6578.406061891235,2019
+1998,50,"(45,50]",College,118.699,171.86925423728815,0.6906354515050167,6908.201669526183,2019
+1998,68,"(65,70]",College,206.219,29.56890395480226,6.974184782608695,10561.633402240626,2019
+1998,68,"(65,70]",College,197.10233333333335,29.56890395480226,6.665865384615385,10941.977298161588,2019
+1998,68,"(65,70]",College,166.835,29.56890395480226,5.6422449832775925,11136.681348216076,2019
+1998,68,"(65,70]",College,266.2066666666667,29.56890395480226,9.002926421404684,10590.734798894357,2019
+1998,68,"(65,70]",College,189.62666666666667,29.56890395480226,6.41304347826087,11018.62929104568,2019
+1998,47,"(45,50]",HS,876.4763333333334,99.79505084745762,8.782763532763534,5847.267296384851,2019
+1998,47,"(45,50]",HS,876.4763333333334,99.79505084745762,8.782763532763534,5603.471234629702,2019
+1998,47,"(45,50]",HS,876.4763333333334,99.79505084745762,8.782763532763534,5221.624757063786,2019
+1998,47,"(45,50]",HS,876.4763333333334,99.79505084745762,8.782763532763534,5713.835474088265,2019
+1998,47,"(45,50]",HS,876.4763333333334,99.79505084745762,8.782763532763534,5212.260401402337,2019
+1998,51,"(50,55]",College,8017.0143333333335,277.2084745762712,28.920523968784835,17.337447624733578,2019
+1998,51,"(50,55]",College,8017.196666666667,277.2084745762712,28.92118171683389,18.977596862690557,2019
+1998,51,"(50,55]",College,8017.0143333333335,277.2084745762712,28.920523968784835,19.231014675757358,2019
+1998,51,"(50,55]",College,8017.196666666667,277.2084745762712,28.92118171683389,17.470801434443565,2019
+1998,51,"(50,55]",College,8017.0143333333335,277.2084745762712,28.920523968784835,18.82920474256186,2019
+1998,45,"(40,45]",HS,31.735116666666666,64.68197740112994,0.49063306258958433,4780.521301977349,2019
+1998,45,"(40,45]",HS,29.920900000000003,64.68197740112994,0.46258480649785005,4752.169653077175,2019
+1998,45,"(40,45]",HS,28.097566666666665,64.68197740112994,0.4343956043956044,4744.661267943748,2019
+1998,45,"(40,45]",HS,29.911783333333332,64.68197740112994,0.46244386048733876,4757.5032639798965,2019
+1998,45,"(40,45]",HS,40.85178333333334,64.68197740112994,0.6315790731008123,4756.134028597823,2019
+1998,85,"(80,85]",College,176.86333333333334,48.04946892655367,3.6808592745047597,9463.947263483107,2019
+1998,85,"(80,85]",College,196.92000000000002,57.289751412429375,3.4372639982738162,9599.970582064789,2019
+1998,85,"(80,85]",College,183.97433333333333,49.89752542372881,3.6870432305214917,9968.023970636734,2019
+1998,85,"(80,85]",College,187.80333333333334,79.46642937853107,2.363304036711519,9582.884990303099,2019
+1998,85,"(80,85]",College,199.108,75.77031638418079,2.6277836691410394,9981.033495842228,2019
+1998,52,"(50,55]",College,88506.423333333325,13139.681694915254,6.735811824694598,24.536113405023357,2019
+1998,52,"(50,55]",College,85446.87,14488.762937853107,5.897457938024708,25.75983580138125,2019
+1998,52,"(50,55]",College,86903.71333333333,14488.762937853107,5.998007815166201,22.59482456630162,2019
+1998,52,"(50,55]",College,85346.58666666667,13195.123389830507,6.468040058832899,21.34192801567523,2019
+1998,52,"(50,55]",College,84504.20666666668,12862.473220338981,6.5698256640910335,21.91752728842682,2019
+1998,28,"(25,30]",College,-36.9225,36.96112994350283,-0.9989548494983276,4615.175054734371,2019
+1998,28,"(25,30]",College,-36.557833333333335,36.96112994350283,-0.9890886287625417,4614.896455489388,2019
+1998,28,"(25,30]",College,-37.743,36.96112994350283,-1.021153846153846,4589.082788761292,2019
+1998,28,"(25,30]",College,-37.925333333333334,36.96112994350283,-1.026086956521739,4651.332667795731,2019
+1998,28,"(25,30]",College,-37.925333333333334,36.96112994350283,-1.026086956521739,4609.493844454061,2019
+1998,67,"(65,70]",College,522133.38,5266.9610169491525,99.13370885407498,1.5358692204994726,2019
+1998,67,"(65,70]",College,302256.1546666667,5137.597062146893,58.83220326748634,1.2868418731850526,2019
+1998,67,"(65,70]",College,522133.38,5266.9610169491525,99.13370885407498,1.5358692204994726,2019
+1998,67,"(65,70]",College,522133.38,5266.9610169491525,99.13370885407498,1.5358692204994726,2019
+1998,67,"(65,70]",College,227455.47273333333,4712.544067796611,48.26596196471899,1.4744525294460686,2019
+1998,72,"(70,75]",NoHS,25.891333333333332,40.65724293785311,0.6368197020370933,5255.74817705062,2019
+1998,72,"(70,75]",NoHS,93.84696666666666,42.50529943502825,2.2078886142213174,5260.242057738431,2019
+1998,72,"(70,75]",NoHS,26.7483,44.35335593220339,0.6030727424749164,5430.5001990836345,2019
+1998,72,"(70,75]",NoHS,33.4217,33.265016949152546,1.0047101449275362,5490.9615606205425,2019
+1998,72,"(70,75]",NoHS,49.193533333333335,29.56890395480226,1.6636914715719064,5337.138435638328,2019
+1998,53,"(50,55]",HS,163.13363333333334,31.416960451977403,5.192533936651584,3707.046874815428,2019
+1998,53,"(50,55]",HS,182.82563333333334,59.13780790960452,3.09151860367893,3853.056154597736,2019
+1998,53,"(50,55]",HS,180.21826666666666,49.89752542372881,3.611767620463273,3634.9101297804896,2019
+1998,53,"(50,55]",HS,177.84793333333332,55.441694915254246,3.207837235228539,3631.823825615486,2019
+1998,53,"(50,55]",HS,170.20816666666667,57.289751412429375,2.9710055022116735,3752.885717126469,2019
+1998,58,"(55,60]",HS,314.8896666666667,59.13780790960452,5.324676003344482,8129.302882310803,2019
+1998,58,"(55,60]",HS,412.51093333333336,79.46642937853107,5.191008788986545,8105.174418356463,2019
+1998,58,"(55,60]",HS,511.5361666666667,60.98586440677967,8.387782507347724,5931.187831619664,2019
+1998,58,"(55,60]",HS,444.03636666666665,96.09893785310734,4.620616799588372,7991.839501001664,2019
+1998,58,"(55,60]",HS,424.5631666666667,153.38868926553673,2.7678909618406737,8456.274593581606,2019
+1998,53,"(50,55]",College,3412.0036666666665,554.4169491525424,6.1542196209587505,208.0456107944621,2019
+1998,53,"(50,55]",College,3299.1393333333335,554.4169491525424,5.950646599777034,204.24782270085961,2019
+1998,53,"(50,55]",College,4347.5560000000005,554.4169491525424,7.8416722408026756,198.74523196814184,2019
+1998,53,"(50,55]",College,5519.594666666667,554.4169491525424,9.955674470457078,216.2431039155938,2019
+1998,53,"(50,55]",College,4345.003333333333,554.4169491525424,7.837068004459308,204.62046263766325,2019
+1998,78,"(75,80]",NoHS,0,16.44770282485876,0,6376.9037127766105,2019
+1998,78,"(75,80]",NoHS,0,16.44770282485876,0,6404.558101885402,2019
+1998,78,"(75,80]",NoHS,0,16.44770282485876,0,6373.852614201369,2019
+1998,78,"(75,80]",NoHS,0,16.44770282485876,0,6363.694179100012,2019
+1998,78,"(75,80]",NoHS,0,16.44770282485876,0,6394.780226863766,2019
+1998,59,"(55,60]",College,1253.5052,101.64310734463277,12.332417148069323,797.9765239530605,2019
+1998,59,"(55,60]",College,1137.7235333333335,103.49116384180793,10.993436454849498,847.4785778394746,2019
+1998,59,"(55,60]",College,1277.6078433333332,103.49116384180793,12.345091077400856,810.411440030314,2019
+1998,59,"(55,60]",College,1179.0402666666666,101.64310734463277,11.599805411979325,834.0361437557127,2019
+1998,59,"(55,60]",College,986.8426999999999,101.64310734463277,9.708899361508056,789.3669971454356,2019
+1998,68,"(65,70]",HS,419.3666666666667,36.96112994350283,11.346153846153843,8471.310130560396,2019
+1998,68,"(65,70]",HS,371.7776666666667,36.96112994350283,10.058612040133777,8776.377630624216,2019
+1998,68,"(65,70]",HS,395.481,36.96112994350283,10.699916387959863,8932.546504213193,2019
+1998,68,"(65,70]",HS,353.7266666666667,36.96112994350283,9.570234113712374,8494.65187580918,2019
+1998,68,"(65,70]",HS,395.6633333333333,36.96112994350283,10.704849498327755,8837.858916625757,2019
+1998,40,"(35,40]",HS,49.81346666666667,92.40282485875707,0.5390903010033444,11764.159150815116,2019
+1998,40,"(35,40]",HS,22.244666666666667,92.40282485875707,0.24073578595317724,11698.130167098574,2019
+1998,40,"(35,40]",HS,42.210166666666666,92.40282485875707,0.4568060200668896,11899.768103793202,2019
+1998,40,"(35,40]",HS,22.627566666666667,92.40282485875707,0.24487959866220732,11887.97356379024,2019
+1998,40,"(35,40]",HS,33.2029,92.40282485875707,0.35932775919732435,12095.880060713156,2019
+1998,45,"(40,45]",College,106.30033333333333,145.99646327683615,0.7281021125269886,226.78190101994946,2019
+1998,45,"(40,45]",College,126.904,49.89752542372881,2.543292456335935,230.55416221368986,2019
+1998,45,"(40,45]",College,317.1870666666667,94.25088135593221,3.365348547445734,536.0978109943501,2019
+1998,45,"(40,45]",College,599.0014666666667,55.441694915254246,10.804169453734671,99.24425622138592,2019
+1998,45,"(40,45]",College,106.7197,214.37455367231638,0.4978188790220275,228.2121007321194,2019
+1998,31,"(30,35]",HS,87.88466666666667,38.80918644067796,2.2645325688803952,8303.03119070442,2019
+1998,31,"(30,35]",HS,370.6836666666667,73.92225988700567,5.01450668896321,7062.615584545732,2019
+1998,31,"(30,35]",HS,168.11133333333333,77.61837288135592,2.165870361522536,8646.358667176572,2019
+1998,31,"(30,35]",HS,110.494,120.12367231638417,0.9198353485978905,8324.997879542045,2019
+1998,31,"(30,35]",HS,91.27606666666667,57.289751412429375,1.5932355162369187,8464.365545801622,2019
+1998,72,"(70,75]",HS,1590.2748666666666,110.88338983050849,14.341867335562986,12677.183342975433,2019
+1998,72,"(70,75]",HS,1595.7448666666667,110.88338983050849,14.391198439241915,13310.446752006314,2019
+1998,72,"(70,75]",HS,1579.1525333333334,110.88338983050849,14.241560758082496,11563.862010738283,2019
+1998,72,"(70,75]",HS,1582.9815333333336,110.88338983050849,14.276092530657747,11849.545150295664,2019
+1998,72,"(70,75]",HS,1590.2748666666666,110.88338983050849,14.341867335562986,12559.287953020945,2019
+1998,75,"(70,75]",HS,553.9286666666667,55.441694915254246,9.991192865105907,8306.81456852668,2019
+1998,75,"(70,75]",HS,579.82,55.441694915254246,10.45819397993311,7967.904239572175,2019
+1998,75,"(70,75]",HS,571.7973333333334,55.441694915254246,10.313489409141583,7435.775343954531,2019
+1998,75,"(70,75]",HS,544.265,55.441694915254246,9.816889632107022,8096.864395526078,2019
+1998,75,"(70,75]",HS,596.0476666666666,55.441694915254246,10.750891861761424,7415.16234935473,2019
+1998,74,"(70,75]",College,34907.71666666667,10256.713559322036,3.4034017294886856,1.305242278236481,2019
+1998,74,"(70,75]",College,36799.789666666664,10459.9997740113,3.51814440360684,1.3304923983544155,2019
+1998,74,"(70,75]",College,34699.85666666667,11642.755932203392,2.9803816955990863,1.184587007527397,2019
+1998,74,"(70,75]",College,33952.29,11420.989152542374,2.972797675098224,1.1775934571646143,2019
+1998,74,"(70,75]",College,34456.988666666664,10515.441468926554,3.2767990548459713,1.0977096217371014,2019
+1998,48,"(45,50]",HS,19.78316666666667,29.56890395480226,0.669053093645485,5174.064276448463,2019
+1998,48,"(45,50]",HS,21.63385,25.872790960451983,0.8361622073578593,5192.219163578777,2019
+1998,48,"(45,50]",HS,19.537016666666666,25.872790960451983,0.7551182513139033,5191.518687417234,2019
+1998,48,"(45,50]",HS,19.272633333333335,25.872790960451983,0.7448996655518394,5159.741521733394,2019
+1998,48,"(45,50]",HS,20.421333333333333,29.56890395480226,0.6906354515050167,5156.240252052347,2019
+1998,35,"(30,35]",College,273.1718,136.75618079096043,1.997509717074935,5272.351939130168,2019
+1998,35,"(30,35]",College,273.1718,136.75618079096043,1.997509717074935,5044.6299449267035,2019
+1998,35,"(30,35]",College,273.1718,136.75618079096043,1.997509717074935,4710.650782525684,2019
+1998,35,"(30,35]",College,275.1774666666667,136.75618079096043,2.0121757208713738,5149.484835536842,2019
+1998,35,"(30,35]",College,273.1718,136.75618079096043,1.997509717074935,4695.835653524584,2019
+1998,46,"(45,50]",College,170.99220000000003,171.86925423728815,0.9948969683892546,7319.36880696437,2019
+1998,46,"(45,50]",College,172.63320000000002,170.021197740113,1.0153628035480589,7463.2236322493845,2019
+1998,46,"(45,50]",College,170.64576666666667,170.021197740113,1.0036734768067472,7781.621295221468,2019
+1998,46,"(45,50]",College,170.62753333333333,170.021197740113,1.0035662352770103,7275.258091688402,2019
+1998,46,"(45,50]",College,170.97396666666668,171.86925423728815,0.9947908799942461,7784.4312977169075,2019
+1998,31,"(30,35]",HS,0,24.024734463276836,0,3913.4899266096277,2019
+1998,31,"(30,35]",HS,0,22.176677966101696,0,3910.037425673556,2019
+1998,31,"(30,35]",HS,0,22.176677966101696,0,3929.5615295762377,2019
+1998,31,"(30,35]",HS,0,22.176677966101696,0,3929.2342013469083,2019
+1998,31,"(30,35]",HS,0,22.176677966101696,0,3927.8881211344496,2019
+1998,85,"(80,85]",HS,138.57333333333335,25.872790960451983,5.3559483994266595,9827.265818147422,2019
+1998,85,"(80,85]",HS,137.844,25.872790960451983,5.327759197324413,9819.323768085611,2019
+1998,85,"(80,85]",HS,137.844,25.872790960451983,5.327759197324413,9736.104905021659,2019
+1998,85,"(80,85]",HS,137.844,25.872790960451983,5.327759197324413,9816.061690421571,2019
+1998,85,"(80,85]",HS,137.844,25.872790960451983,5.327759197324413,9734.212771989725,2019
+1998,76,"(75,80]",College,5138.098633333334,243.94345762711868,21.062662156683896,18.373420725590623,2019
+1998,76,"(75,80]",College,5886.7593,243.94345762711868,24.13165475828519,20.187965104674344,2019
+1998,76,"(75,80]",College,4605.776466666667,377.00352542372883,12.216799462259821,16.19004568377364,2019
+1998,76,"(75,80]",College,6565.5498333333335,450.9257853107345,14.560156121497888,16.783527264029484,2019
+1998,76,"(75,80]",College,7400.8553,218.07066666666665,33.93787625418061,16.713417861969003,2019
+1998,45,"(40,45]",HS,172.26671,70.22614689265536,2.45302807604295,7141.7590907031245,2019
+1998,45,"(40,45]",HS,171.90204333333332,68.37809039548021,2.5139930398626054,7235.003083834787,2019
+1998,45,"(40,45]",HS,171.71971,51.745581920903966,3.3185385809842325,7498.643542310632,2019
+1998,45,"(40,45]",HS,175.00171,86.85865536723163,2.0147872340425534,7135.575196095427,2019
+1998,45,"(40,45]",HS,171.92027666666667,72.07420338983052,2.385323299888517,7463.9876743474715,2019
+1998,53,"(50,55]",HS,6.746333333333333,25.872790960451983,0.2607501194457716,5692.897673190191,2019
+1998,53,"(50,55]",HS,6.746333333333333,25.872790960451983,0.2607501194457716,5671.831177321394,2019
+1998,53,"(50,55]",HS,6.564,25.872790960451983,0.2537028189202102,5684.047552448843,2019
+1998,53,"(50,55]",HS,6.564,25.872790960451983,0.2537028189202102,5668.481285379645,2019
+1998,53,"(50,55]",HS,6.746333333333333,25.872790960451983,0.2607501194457716,5693.449010238521,2019
+1998,25,"(20,25]",College,462.762,142.30035028248585,3.2520088607045134,2817.395624193129,2019
+1998,25,"(20,25]",College,279.6993333333333,120.12367231638417,2.328428093645485,3354.158817486379,2019
+1998,25,"(20,25]",College,342.969,59.13780790960452,5.79948787625418,3470.455481508993,2019
+1998,25,"(20,25]",College,276.69083333333333,72.07420338983052,3.8389717862962005,3369.8366181380065,2019
+1998,25,"(20,25]",College,311.0606666666667,72.07420338983052,4.315839121859189,3462.0600739786037,2019
+1998,37,"(35,40]",College,7519.426666666667,794.6642937853109,9.462394026600295,354.151381960544,2019
+1998,37,"(35,40]",College,6122.972133333334,794.6642937853109,7.705105390059889,358.8968123762861,2019
+1998,37,"(35,40]",College,10735.349066666666,792.8162372881355,13.540778508002589,393.8708294662557,2019
+1998,37,"(35,40]",College,7000.2325,792.8162372881355,8.82957761302243,410.30458201984567,2019
+1998,37,"(35,40]",College,6216.780809999999,794.6642937853109,7.823153573928597,343.6317196789311,2019
+1998,54,"(50,55]",HS,209.90213333333332,129.36395480225988,1.6225704730052557,6521.6744074026665,2019
+1998,54,"(50,55]",HS,200.202,129.36395480225988,1.5475871954132825,6649.052895361277,2019
+1998,54,"(50,55]",HS,218.14360000000002,129.36395480225988,1.6862780697563309,6888.241428698469,2019
+1998,54,"(50,55]",HS,195.6983666666667,129.36395480225988,1.5127735308170094,6540.815154499864,2019
+1998,54,"(50,55]",HS,201.38716666666667,129.36395480225988,1.5567486860965123,6868.726215022936,2019
+1998,59,"(55,60]",HS,604.8543666666667,129.36395480225988,4.675602006688964,6645.35683588794,2019
+1998,59,"(55,60]",HS,695.3281666666667,96.09893785310734,7.235544764599949,6336.002002873605,2019
+1998,59,"(55,60]",HS,858.8811666666667,112.73144632768363,7.618825045232742,5931.187831619664,2019
+1998,59,"(55,60]",HS,699.9959,121.97172881355934,5.7390012161751285,6489.419599024523,2019
+1998,59,"(55,60]",HS,753.1460666666667,131.21201129943503,5.739917094540487,5915.841739832491,2019
+1998,51,"(50,55]",College,264.0186666666667,140.45229378531073,1.8797746875550083,6905.3869452579675,2019
+1998,51,"(50,55]",College,256.36066666666665,145.99646327683615,1.755937513229753,7034.914664112459,2019
+1998,51,"(50,55]",College,286.81033333333335,162.62897175141245,1.763586956521739,7337.911910716184,2019
+1998,51,"(50,55]",College,269.8533333333333,181.10953672316384,1.4900006825472663,6886.299114358351,2019
+1998,51,"(50,55]",College,253.808,171.86925423728815,1.4767504585176394,7225.378282647628,2019
+1998,38,"(35,40]",College,589.1554666666667,155.23674576271185,3.7952062430323306,5887.299835903583,2019
+1998,38,"(35,40]",College,707.271,384.3957514124294,1.8399552997170052,5633.85415118672,2019
+1998,38,"(35,40]",College,1725.2744666666665,107.18727683615819,16.095888594164457,2827.1319420095224,2019
+1998,38,"(35,40]",College,765.1618333333333,232.8551186440678,3.2859996283909325,5750.11925304213,2019
+1998,38,"(35,40]",College,1799.3018000000002,109.03533333333333,16.502006688963213,2895.215765246426,2019
+1998,53,"(50,55]",College,1.6428233333333333,92.40282485875707,0.017778929765886284,7070.21030764819,2019
+1998,53,"(50,55]",College,1.6428233333333333,92.40282485875707,0.017778929765886284,7101.262040658247,2019
+1998,53,"(50,55]",College,1.6610566666666666,92.40282485875707,0.017976254180602006,7097.5248282782195,2019
+1998,53,"(50,55]",College,1.6610566666666666,92.40282485875707,0.017976254180602006,7027.573058190812,2019
+1998,53,"(50,55]",College,1.6428233333333333,92.40282485875707,0.017778929765886284,7161.670683138482,2019
+1998,29,"(25,30]",HS,-28.62633333333333,55.441694915254246,-0.5163322185061314,10186.86870716961,2019
+1998,29,"(25,30]",HS,-45.52863333333333,55.441694915254246,-0.8211984392419174,10294.227811026027,2019
+1998,29,"(25,30]",HS,-39.20166666666667,55.441694915254246,-0.7070791527313266,10613.271457346998,2019
+1998,29,"(25,30]",HS,-40.842666666666666,55.441694915254246,-0.7366778149386843,10180.405603687785,2019
+1998,29,"(25,30]",HS,-21.697666666666667,55.441694915254246,-0.3913600891861761,10555.508004466592,2019
+1998,63,"(60,65]",HS,111.77033333333333,35.11307344632768,3.183154374229889,8239.822548971426,2019
+1998,63,"(60,65]",HS,111.77033333333333,36.96112994350283,3.0239966555183937,8163.187435787229,2019
+1998,63,"(60,65]",HS,111.77033333333333,35.11307344632768,3.183154374229889,8594.88222779109,2019
+1998,63,"(60,65]",HS,111.77033333333333,36.96112994350283,3.0239966555183937,8069.791898681974,2019
+1998,63,"(60,65]",HS,111.77033333333333,36.96112994350283,3.0239966555183937,8505.351286861827,2019
+1998,71,"(70,75]",NoHS,-3.537266666666667,16.632508474576273,-0.2126718691936083,6114.358573755946,2019
+1998,71,"(70,75]",NoHS,-2.2791666666666663,16.817314124293787,-0.13552501010694987,6151.6785155494135,2019
+1998,71,"(70,75]",NoHS,-1.4039666666666668,16.817314124293787,-0.08348340622588114,6158.91150126817,2019
+1998,71,"(70,75]",NoHS,-3.3731666666666666,16.817314124293787,-0.20057701495828584,6143.911307169718,2019
+1998,71,"(70,75]",NoHS,-0.7293333333333334,16.817314124293787,-0.04336800323422397,6159.45204179916,2019
+1998,35,"(30,35]",College,366.85649,145.99646327683615,2.5127765547605945,5613.293713119658,2019
+1998,35,"(30,35]",College,315.80315666666667,145.99646327683615,2.1630877185555226,5370.317362986463,2019
+1998,35,"(30,35]",College,293.92315666666667,145.99646327683615,2.013221074467635,5014.988619618716,2019
+1998,35,"(30,35]",College,315.6208233333333,145.99646327683615,2.16183882985479,5480.975115262682,2019
+1998,35,"(30,35]",College,366.6741566666667,145.99646327683615,2.5115276660598624,4998.555142770293,2019
+1998,64,"(60,65]",College,2229.3896666666665,227.31094915254238,9.807665116784946,7.579948652839799,2019
+1998,64,"(60,65]",College,2291.5653333333335,297.53709604519776,7.701780261326575,8.468182334116623,2019
+1998,64,"(60,65]",College,2750.6806666666666,885.2190621468927,3.1073445933208115,11.592563698823714,2019
+1998,64,"(60,65]",College,3799.462,741.0706553672317,5.126990216765778,11.880775170467038,2019
+1998,64,"(60,65]",College,1719.4033333333332,628.3392090395481,2.7364253393665154,8.606743217050987,2019
+1998,47,"(45,50]",HS,8868.146333333334,216.22261016949156,41.01396392533516,2682.844375489048,2019
+1998,47,"(45,50]",HS,8864.499666666667,216.22261016949156,40.997098590744066,2632.478609273642,2019
+1998,47,"(45,50]",HS,8857.206333333334,216.22261016949156,40.9633679215619,2536.4250665529253,2019
+1998,47,"(45,50]",HS,8839.228266666667,216.22261016949156,40.880221822027835,2991.6620524667005,2019
+1998,47,"(45,50]",HS,8850.460000000001,218.07066666666665,40.58528428093646,2771.054615124245,2019
+1998,71,"(70,75]",College,204462.3095,2568.7985310734466,79.59452912586318,1.5150354057313873,2019
+1998,71,"(70,75]",College,200653.36616666667,2753.6041807909605,72.86935702902292,1.464846990715889,2019
+1998,71,"(70,75]",College,207960.00983333334,1461.8126892655366,142.26173528280108,1.378549503687558,2019
+1998,71,"(70,75]",College,201061.79283333334,4028.763163841808,49.90658042097512,1.3995906763482278,2019
+1998,71,"(70,75]",College,200572.41016666667,1508.0141016949153,133.00433327595252,1.3253294318145419,2019
+1998,21,"(20,25]",HS,17.595166666666668,24.024734463276836,0.7323771546179574,4580.183975836958,2019
+1998,21,"(20,25]",HS,15.771833333333335,18.480564971751416,0.8534280936454849,4562.658978299944,2019
+1998,21,"(20,25]",HS,14.860166666666666,25.872790960451983,0.5743549928332535,4572.132259447331,2019
+1998,21,"(20,25]",HS,15.771833333333335,22.176677966101696,0.7111900780379041,4599.481002075825,2019
+1998,21,"(20,25]",HS,15.771833333333335,25.872790960451983,0.6095914954610606,4532.614662055565,2019
+1998,29,"(25,30]",College,491.1148333333333,382.5476949152542,1.283800268204805,7423.135833809296,2019
+1998,29,"(25,30]",College,491.1148333333333,382.5476949152542,1.283800268204805,7104.207775789483,2019
+1998,29,"(25,30]",College,491.1148333333333,382.5476949152542,1.283800268204805,6626.863339759856,2019
+1998,29,"(25,30]",College,492.9381666666667,382.5476949152542,1.2885665584153299,7250.449512309782,2019
+1998,29,"(25,30]",College,491.1148333333333,384.3957514124294,1.2776281515307435,6613.609308861369,2019
+1998,37,"(35,40]",HS,316.166,60.98586440677967,5.184250532076618,8417.595576913245,2019
+1998,37,"(35,40]",HS,308.8726666666667,60.98586440677967,5.064659977703456,8620.221366996873,2019
+1998,37,"(35,40]",HS,312.5193333333333,60.98586440677967,5.124455254890036,9095.20093928825,2019
+1998,37,"(35,40]",HS,307.0493333333333,60.98586440677967,5.034762339110165,8414.138762240731,2019
+1998,37,"(35,40]",HS,334.39933333333335,60.98586440677967,5.483226918009526,8991.532797082647,2019
+1998,35,"(30,35]",College,270.18153333333333,44.35335593220339,6.09156911928651,7251.863770601197,2019
+1998,35,"(30,35]",College,271.82253333333335,44.35335593220339,6.128567447045708,7398.9300380793165,2019
+1998,35,"(30,35]",College,270.18153333333333,44.35335593220339,6.09156911928651,7748.719744616838,2019
+1998,35,"(30,35]",College,272.00486666666666,44.35335593220339,6.132678372352284,7250.537407568305,2019
+1998,35,"(30,35]",College,272.00486666666666,44.35335593220339,6.132678372352284,7693.236602899162,2019
+1998,45,"(40,45]",HS,285.0234666666667,157.08480225988703,1.8144560299036003,7349.910605869282,2019
+1998,45,"(40,45]",HS,183.81023333333334,157.08480225988703,1.170133779264214,7493.465840479561,2019
+1998,45,"(40,45]",HS,173.5084,157.08480225988703,1.104552429667519,7763.030714184676,2019
+1998,45,"(40,45]",HS,178.50433333333334,157.08480225988703,1.1363564823922878,7371.482179564259,2019
+1998,45,"(40,45]",HS,248.92146666666667,157.08480225988703,1.584631123352351,7741.037117600524,2019
+1998,32,"(30,35]",HS,220.53216666666665,92.40282485875707,2.3866387959866215,10991.41927053155,2019
+1998,32,"(30,35]",HS,216.3385,92.40282485875707,2.3412541806020064,11157.419242647606,2019
+1998,32,"(30,35]",HS,211.4155,92.40282485875707,2.287976588628762,11222.19539400379,2019
+1998,32,"(30,35]",HS,218.70883333333336,92.40282485875707,2.3669063545150504,11010.59286874338,2019
+1998,32,"(30,35]",HS,218.70883333333336,92.40282485875707,2.3669063545150504,11196.31471235016,2019
+1998,38,"(35,40]",NoHS,17.139333333333333,83.16254237288136,0.20609438870308433,5672.283338882794,2019
+1998,38,"(35,40]",NoHS,17.686333333333334,83.16254237288136,0.2126718691936083,5663.804860831507,2019
+1998,38,"(35,40]",NoHS,17.504,83.16254237288136,0.210479375696767,5651.938311489297,2019
+1998,38,"(35,40]",NoHS,17.32166666666667,83.16254237288136,0.2082868821999257,5700.66810572749,2019
+1998,38,"(35,40]",NoHS,17.32166666666667,83.16254237288136,0.2082868821999257,5631.947294143617,2019
+1998,42,"(40,45]",HS,0,11.088338983050848,0,5171.157784491227,2019
+1998,42,"(40,45]",HS,0,10.903533333333334,0,5143.97001832541,2019
+1998,42,"(40,45]",HS,0,10.903533333333334,0,5165.780157609304,2019
+1998,42,"(40,45]",HS,0,10.903533333333334,0,5146.426042473244,2019
+1998,42,"(40,45]",HS,0,10.903533333333334,0,5167.317964618134,2019
+1998,47,"(45,50]",College,2428.4976666666666,120.12367231638417,20.21664522768202,2816.342306823436,2019
+1998,47,"(45,50]",College,2455.8476666666666,120.12367231638417,20.444327244661693,3076.2823161750157,2019
+1998,47,"(45,50]",College,2432.1443333333336,120.12367231638417,20.247002829945977,2865.194320763645,2019
+1998,47,"(45,50]",College,2428.4976666666666,120.12367231638417,20.21664522768202,2845.770991631519,2019
+1998,47,"(45,50]",College,2433.9676666666664,120.12367231638417,20.26218163107795,2938.2911615439034,2019
+1998,35,"(30,35]",College,1706.4576666666667,221.76677966101698,7.694829988851727,606.0122755177929,2019
+1998,35,"(30,35]",College,1768.8156666666669,221.76677966101698,7.976017279821627,643.619568936974,2019
+1998,35,"(30,35]",College,1742.6508333333334,221.76677966101698,7.858033723522853,616.7568298102512,2019
+1998,35,"(30,35]",College,1702.5375000000001,221.76677966101698,7.677153010033444,643.9683349759115,2019
+1998,35,"(30,35]",College,1725.785,221.76677966101698,7.78198160535117,599.1757624807292,2019
+1998,89,"(85,90]",HS,511.08033333333333,99.79505084745762,5.121299393038524,9330.847419245069,2019
+1998,89,"(85,90]",HS,508.71000000000004,97.9469943502825,5.1937275194043035,8947.947288833317,2019
+1998,89,"(85,90]",HS,507.4336666666667,99.79505084745762,5.084757834757835,8352.73443136804,2019
+1998,89,"(85,90]",HS,507.2513333333333,97.9469943502825,5.178835110746513,9092.489410288088,2019
+1998,89,"(85,90]",HS,508.71000000000004,99.79505084745762,5.097547380156077,8328.81195704879,2019
+1998,29,"(25,30]",HS,0,29.56890395480226,0,6036.042384497735,2019
+1998,29,"(25,30]",HS,0,27.720847457627123,0,6030.740522776166,2019
+1998,29,"(25,30]",HS,0,29.56890395480226,0,6053.171801043727,2019
+1998,29,"(25,30]",HS,0,27.720847457627123,0,6031.478903835066,2019
+1998,29,"(25,30]",HS,0,29.56890395480226,0,6049.579023121594,2019
+1998,71,"(70,75]",NoHS,251.98466666666667,40.65724293785311,6.197780480389175,8251.21195888425,2019
+1998,71,"(70,75]",NoHS,263.28933333333333,44.35335593220339,5.936176142697882,8231.670797736211,2019
+1998,71,"(70,75]",NoHS,255.996,44.35335593220339,5.771739130434782,8796.44518523847,2019
+1998,71,"(70,75]",NoHS,245.78533333333334,36.96112994350283,6.649832775919731,8486.302514531095,2019
+1998,71,"(70,75]",NoHS,247.97333333333336,18.480564971751416,13.418060200668895,8640.06151330013,2019
+1998,47,"(45,50]",HS,4004.404666666667,101.64310734463277,39.39671632715111,292.14937456498217,2019
+1998,47,"(45,50]",HS,4004.404666666667,101.64310734463277,39.39671632715111,290.8091526212587,2019
+1998,47,"(45,50]",HS,4008.2336666666665,101.64310734463277,39.43438735177865,270.84276404763676,2019
+1998,47,"(45,50]",HS,4009.8746666666666,101.64310734463277,39.450532076619034,306.0671026378461,2019
+1998,47,"(45,50]",HS,4008.051333333334,101.64310734463277,39.43259349346307,292.2111937143625,2019
+1998,34,"(30,35]",HS,112.60906666666666,138.6042372881356,0.8124503901895205,10186.86870716961,2019
+1998,34,"(30,35]",HS,112.60906666666666,138.6042372881356,0.8124503901895205,10294.227811026027,2019
+1998,34,"(30,35]",HS,113.26546666666667,138.6042372881356,0.8171861761426978,10613.271457346998,2019
+1998,34,"(30,35]",HS,117.3315,138.6042372881356,0.8465217391304347,10180.405603687785,2019
+1998,34,"(30,35]",HS,115.0888,138.6042372881356,0.8303411371237458,10555.508004466592,2019
+1998,70,"(65,70]",College,2098.6566666666668,221.76677966101698,9.463350055741358,2490.4889152635387,2019
+1998,70,"(65,70]",College,1971.0233333333333,245.7915141242938,8.019086176980913,2551.480588520212,2019
+1998,70,"(65,70]",College,2098.6566666666668,421.3568813559322,4.9807105556533475,2514.6675540401548,2019
+1998,70,"(65,70]",College,1971.0233333333333,195.893988700565,10.061683599419448,2762.3637625371985,2019
+1998,70,"(65,70]",College,2189.8233333333337,219.9187231638418,9.957421095528515,2554.8626101120853,2019
+1998,51,"(50,55]",College,522.5855666666666,194.04593220338984,2.693102404841535,5533.247383220714,2019
+1998,51,"(50,55]",College,569.8099000000001,192.1978757062147,2.9647044635966044,5302.544073047052,2019
+1998,51,"(50,55]",College,584.3965666666667,194.04593220338984,3.01164038859691,4941.204165755663,2019
+1998,51,"(50,55]",College,509.8222333333334,192.1978757062147,2.6525903653202985,5406.981344037345,2019
+1998,51,"(50,55]",College,589.8665666666667,194.04593220338984,3.039829590699156,4932.342710680521,2019
+1998,47,"(45,50]",NoHS,-2.7897,13.306006779661017,-0.2096571906354515,4304.648526578542,2019
+1998,47,"(45,50]",NoHS,-2.7897,13.306006779661017,-0.2096571906354515,4288.7192291262345,2019
+1998,47,"(45,50]",NoHS,-2.771466666666667,13.306006779661017,-0.2082868821999257,4297.956563821385,2019
+1998,47,"(45,50]",NoHS,-2.7897,13.306006779661017,-0.2096571906354515,4286.186229546924,2019
+1998,47,"(45,50]",NoHS,-2.7897,13.306006779661017,-0.2096571906354515,4305.065416596417,2019
+1998,57,"(55,60]",HS,1473.6909333333333,399.18020338983047,3.6917936330979813,1480.5935331409144,2019
+1998,57,"(55,60]",HS,708.1462,206.98232768361586,3.4212882226469175,734.4628980856943,2019
+1998,57,"(55,60]",HS,1107.8573333333334,125.66784180790961,8.815758410387566,740.9653932860058,2019
+1998,57,"(55,60]",HS,1395.5975666666666,258.72790960451977,5.394074295269947,742.8544462950674,2019
+1998,57,"(55,60]",HS,1173.9714,188.50176271186442,6.227906747983473,755.7832583227027,2019
+1998,36,"(35,40]",HS,10.2289,57.289751412429375,0.1785467687992232,6492.1798097184455,2019
+1998,36,"(35,40]",HS,8.387333333333334,57.289751412429375,0.14640198511166255,6524.694851771494,2019
+1998,36,"(35,40]",HS,23.356900000000003,57.289751412429375,0.4076977020174777,6550.115888086411,2019
+1998,36,"(35,40]",HS,-26.985333333333333,57.289751412429375,-0.47103247383752295,6490.966432468665,2019
+1998,36,"(35,40]",HS,9.663666666666666,57.289751412429375,0.16868054806343727,6559.620993575163,2019
+1998,42,"(40,45]",College,8857.571,809.448745762712,10.942720025656296,1602.6951069570543,2019
+1998,42,"(40,45]",College,8855.747666666666,809.448745762712,10.940467463844472,1656.98426198447,2019
+1998,42,"(40,45]",College,8857.571,809.448745762712,10.942720025656296,1575.4812051285762,2019
+1998,42,"(40,45]",College,8855.93,809.448745762712,10.940692720025655,1686.4904583169732,2019
+1998,42,"(40,45]",College,8857.571,809.448745762712,10.942720025656296,1572.234233348147,2019
+1998,38,"(35,40]",HS,307.17696666666666,48.04946892655367,6.392931566760998,6744.46500604753,2019
+1998,38,"(35,40]",HS,349.73356666666666,103.49116384180793,3.3793567845198274,6836.715208916417,2019
+1998,38,"(35,40]",HS,298.66200000000003,48.04946892655367,6.215719063545151,7117.195160370924,2019
+1998,38,"(35,40]",HS,263.3987333333333,195.893988700565,1.3445983466902252,6778.242203844258,2019
+1998,38,"(35,40]",HS,259.09566666666666,48.04946892655367,5.392269102135323,7031.037526039363,2019
+1998,32,"(30,35]",HS,0.547,49.89752542372881,0.010962467484206616,5676.209331057484,2019
+1998,32,"(30,35]",HS,0.547,27.720847457627123,0.019732441471571906,5693.698605865702,2019
+1998,32,"(30,35]",HS,0.547,35.11307344632768,0.015578243267030454,5730.746201784175,2019
+1998,32,"(30,35]",HS,0.547,49.89752542372881,0.010962467484206616,5670.512684081105,2019
+1998,32,"(30,35]",HS,0.547,27.720847457627123,0.019732441471571906,5755.792172695817,2019
+1998,43,"(40,45]",College,512.1743333333334,85.0105988700565,6.02482914061364,4420.108752462307,2019
+1998,43,"(40,45]",College,512.1743333333334,85.0105988700565,6.02482914061364,4229.19661470525,2019
+1998,43,"(40,45]",College,512.1743333333334,85.0105988700565,6.02482914061364,3949.2031249094375,2019
+1998,43,"(40,45]",College,512.1743333333334,85.0105988700565,6.02482914061364,4317.10235868349,2019
+1998,43,"(40,45]",College,512.1743333333334,85.0105988700565,6.02482914061364,3936.782770175413,2019
+1998,47,"(45,50]",HS,87.66586666666667,18.480564971751416,4.743678929765886,5854.90004354296,2019
+1998,47,"(45,50]",HS,86.02486666666667,18.480564971751416,4.654882943143812,5845.351207606407,2019
+1998,47,"(45,50]",HS,87.8482,18.480564971751416,4.7535451505016715,5818.602334461122,2019
+1998,47,"(45,50]",HS,87.8482,18.480564971751416,4.7535451505016715,5898.9119367924295,2019
+1998,47,"(45,50]",HS,86.00663333333333,18.480564971751416,4.653896321070233,5850.012009913435,2019
+1998,35,"(30,35]",HS,251.3465,48.04946892655367,5.230994340108053,6913.24921187953,2019
+1998,35,"(30,35]",HS,265.7326,40.65724293785311,6.535922772879293,7052.601530104939,2019
+1998,35,"(30,35]",HS,328.34586666666667,15.708480225988701,20.902459177650993,7338.635481413007,2019
+1998,35,"(30,35]",HS,895.0014,55.441694915254246,16.143110367892973,5555.094951638459,2019
+1998,35,"(30,35]",HS,506.99606666666665,31.416960451977403,16.13765492819201,5065.7131277674325,2019
+1998,84,"(80,85]",NoHS,2.188,48.04946892655367,0.04553640339593517,6911.106421940212,2019
+1998,84,"(80,85]",NoHS,2.188,48.04946892655367,0.04553640339593517,6962.0482661829155,2019
+1998,84,"(80,85]",NoHS,2.188,48.04946892655367,0.04553640339593517,6967.991028959119,2019
+1998,84,"(80,85]",NoHS,2.188,46.201412429378536,0.04735785953177257,6897.944735809602,2019
+1998,84,"(80,85]",NoHS,2.188,48.04946892655367,0.04553640339593517,6968.010852600475,2019
+1998,51,"(50,55]",College,57.79966666666667,251.33568361581922,0.22996999803265786,77.54594038410043,2019
+1998,51,"(50,55]",College,34.278666666666666,981.318,0.03493125232255667,159.49472216672103,2019
+1998,51,"(50,55]",College,14.9878,1042.3038644067797,0.014379491923432719,89.14588699312765,2019
+1998,51,"(50,55]",College,66.4605,744.766768361582,0.08923666149364713,84.61020768678915,2019
+1998,51,"(50,55]",College,49.9411,713.3498079096046,0.0700092709723257,77.93227217945932,2019
+1998,43,"(40,45]",HS,873.3766666666667,103.49116384180793,8.439142379359769,6264.8367139203965,2019
+1998,43,"(40,45]",HS,875.0176666666666,103.49116384180793,8.454998805542282,5993.657752561032,2019
+1998,43,"(40,45]",HS,873.3766666666667,103.49116384180793,8.439142379359769,5597.085495570711,2019
+1998,43,"(40,45]",HS,875.0176666666666,103.49116384180793,8.454998805542282,6117.159707842596,2019
+1998,43,"(40,45]",HS,875.0176666666666,103.49116384180793,8.454998805542282,5578.744561645099,2019
+1998,48,"(45,50]",College,4497.981,924.0282485875706,4.867795986622073,12.692276655246127,2019
+1998,48,"(45,50]",College,4501.627666666667,924.0282485875706,4.871742474916388,13.890857169548582,2019
+1998,48,"(45,50]",College,4497.981,924.0282485875706,4.867795986622073,13.323390621165922,2019
+1998,48,"(45,50]",College,4507.0976666666675,924.0282485875706,4.877662207357861,13.626228264247823,2019
+1998,48,"(45,50]",College,4501.627666666667,924.0282485875706,4.871742474916388,14.491548813545823,2019
+1998,67,"(65,70]",College,51284.89666666667,2624.240225988701,19.542759903905033,17.946207271687662,2019
+1998,67,"(65,70]",College,51202.846666666665,2753.6041807909605,18.59484635586182,18.83866816423636,2019
+1998,67,"(65,70]",College,50759.776666666665,2809.045875706215,18.070113096285862,16.444942368718884,2019
+1998,67,"(65,70]",College,51097.09333333334,2735.1236158192087,18.681822290517946,15.79138562042399,2019
+1998,67,"(65,70]",College,50531.86,2531.8374011299434,19.95857237018773,16.010495326213785,2019
+1998,52,"(50,55]",College,7304.23322,855.6501581920903,8.536471535788843,166.29543342112322,2019
+1998,52,"(50,55]",College,7161.346609333334,866.7384971751412,8.262407442006404,166.10121731105176,2019
+1998,52,"(50,55]",College,7269.954553333334,881.5229491525424,8.24703946768754,157.86925679183383,2019
+1998,52,"(50,55]",College,7558.154266666666,885.2190621468927,8.53817387115018,174.67710074792583,2019
+1998,52,"(50,55]",College,7424.937886666667,851.9540451977401,8.715185905295309,163.92567414901708,2019
+1998,59,"(55,60]",College,54530.338833333335,554.4169491525424,98.3561900780379,350.74565291931157,2019
+1998,59,"(55,60]",College,6866.746266666667,554.4169491525424,12.385527313266444,2148.9774236723415,2019
+1998,59,"(55,60]",College,57264.95593333333,554.4169491525424,103.28860981047936,349.70181964412177,2019
+1998,59,"(55,60]",College,12560.852166666666,554.4169491525424,22.655967112597544,937.0709792740557,2019
+1998,59,"(55,60]",College,57254.39883333334,554.4169491525424,103.26956800445932,369.4534653776576,2019
+1998,53,"(50,55]",HS,322.3653333333333,70.22614689265536,4.590389016018306,7457.500027277431,2019
+1998,53,"(50,55]",HS,304.132,70.22614689265536,4.330751628234466,7554.866386530293,2019
+1998,53,"(50,55]",HS,322.3653333333333,70.22614689265536,4.590389016018306,7830.162528741869,2019
+1998,53,"(50,55]",HS,326.012,70.22614689265536,4.642316493575075,7451.0427394272065,2019
+1998,53,"(50,55]",HS,322.3653333333333,70.22614689265536,4.590389016018306,7793.974506575591,2019
+1998,59,"(55,60]",College,2757.0623333333338,288.29681355932206,9.563277163193552,1898.3481832606376,2019
+1998,59,"(55,60]",College,2755.239,288.29681355932206,9.556952662721892,1975.1821141188298,2019
+1998,59,"(55,60]",College,2757.2446666666665,288.29681355932206,9.563909613240716,2154.739542109568,2019
+1998,59,"(55,60]",College,2757.0623333333338,288.29681355932206,9.563277163193552,2238.4646763465234,2019
+1998,59,"(55,60]",College,2757.0623333333338,288.29681355932206,9.563277163193552,1846.1135649968924,2019
+1998,54,"(50,55]",College,1223.4566666666667,245.7915141242938,4.977619634370206,3128.473486013038,2019
+1998,54,"(50,55]",College,1245.3366666666668,203.28621468926553,6.126026147765279,3416.8860190974797,2019
+1998,54,"(50,55]",College,1188.8133333333333,206.98232768361586,5.743549928332535,3182.5613830947,2019
+1998,54,"(50,55]",College,1241.69,197.7420451977401,6.279342356140406,3160.2952598344245,2019
+1998,54,"(50,55]",College,1236.22,362.2190734463277,3.41290696880759,3263.3232282154554,2019
+1998,46,"(45,50]",NoHS,99.29873333333335,110.88338983050849,0.8955239687848383,7092.505596287332,2019
+1998,46,"(45,50]",NoHS,119.70183333333333,112.73144632768363,1.061831789023521,7185.106527613524,2019
+1998,46,"(45,50]",NoHS,93.8105,110.88338983050849,0.8460284280936454,7446.928776642036,2019
+1998,46,"(45,50]",NoHS,99.09816666666667,112.73144632768363,0.8790640934261746,7086.364349214311,2019
+1998,46,"(45,50]",NoHS,109.30883333333333,112.73144632768363,0.9696392346071603,7412.511914584497,2019
+1998,28,"(25,30]",HS,446.53433333333334,258.72790960451977,1.7258838987099858,353.1266833991366,2019
+1998,28,"(25,30]",HS,448.3576666666667,258.72790960451977,1.7329311992355474,340.4065294535727,2019
+1998,28,"(25,30]",HS,448.1753333333333,258.72790960451977,1.732226469182991,337.4726801657308,2019
+1998,28,"(25,30]",HS,446.53433333333334,258.72790960451977,1.7258838987099858,343.07063540983006,2019
+1998,28,"(25,30]",HS,452.0043333333333,258.72790960451977,1.7470258002866699,350.04421234831165,2019
+1998,74,"(70,75]",HS,770.5406666666667,40.65724293785311,18.952113104287015,6306.7913167564675,2019
+1998,74,"(70,75]",HS,770.176,40.65724293785311,18.943143812709028,6073.94664858061,2019
+1998,74,"(70,75]",HS,769.9936666666666,40.65724293785311,18.938659166920033,5669.677514975282,2019
+1998,74,"(70,75]",HS,770.3583333333333,40.65724293785311,18.94762845849802,6201.52107741734,2019
+1998,74,"(70,75]",HS,770.176,40.65724293785311,18.943143812709028,5655.140886209229,2019
+1998,61,"(60,65]",HS,292246.36463333335,500.82331073446335,583.5318731565242,15.134541716248247,2019
+1998,61,"(60,65]",HS,126863.17556666667,1995.901016949152,63.561857271150764,15.874244413854168,2019
+1998,61,"(60,65]",HS,176014.0429,473.10246327683615,372.04211891199833,13.522093385409011,2019
+1998,61,"(60,65]",HS,32860.8609,425.05299435028246,77.31003271775484,10.966092522025658,2019
+1998,61,"(60,65]",HS,54455.69339,1055.2402598870058,51.605018743154346,13.520225057567519,2019
+1998,51,"(50,55]",HS,607.8081666666667,155.23674576271185,3.9153627169931524,8354.770834439874,2019
+1998,51,"(50,55]",HS,635.1581666666666,155.23674576271185,4.091545230132187,7972.55852235036,2019
+1998,51,"(50,55]",HS,720.8548333333334,155.23674576271185,4.643583771301164,8061.120477308107,2019
+1998,51,"(50,55]",HS,574.9881666666666,155.23674576271185,3.70394370122631,8073.673731792701,2019
+1998,51,"(50,55]",HS,627.8648333333334,155.23674576271185,4.044563226628445,8342.860728987756,2019
+1998,45,"(40,45]",HS,398.79946666666666,155.23674576271185,2.5689759515846475,5722.744206838161,2019
+1998,45,"(40,45]",HS,383.4834666666667,70.22614689265536,5.460693539869742,5483.600373392821,2019
+1998,45,"(40,45]",HS,390.39390000000003,49.89752542372881,7.823913043478262,5110.139001731434,2019
+1998,45,"(40,45]",HS,383.7569666666667,129.36395480225988,2.966490683229814,5590.617638329268,2019
+1998,45,"(40,45]",HS,383.51993333333337,138.6042372881356,2.7670144927536233,5100.29992699938,2019
+1998,47,"(45,50]",College,661.323,323.40988700564975,2.044844720496894,6258.447098045985,2019
+1998,47,"(45,50]",College,510.5333333333333,238.39928813559317,2.1415052759845485,5998.398427975454,2019
+1998,47,"(45,50]",College,557.0283333333334,240.24734463276835,2.3185618729096995,5588.292414799658,2019
+1998,47,"(45,50]",College,812.4773333333334,190.34981920903957,4.268337825112836,6115.650741482947,2019
+1998,47,"(45,50]",College,751.3956666666667,208.83038418079096,3.598114659484417,5578.0467004699885,2019
+1998,48,"(45,50]",College,686.7585,96.09893785310734,7.146369307949576,7049.205569953762,2019
+1998,48,"(45,50]",College,688.2354,97.9469943502825,7.026610714961822,6755.295873449946,2019
+1998,48,"(45,50]",College,681.3979,92.40282485875707,7.374210702341137,6294.958731313641,2019
+1998,48,"(45,50]",College,668.6528000000001,123.81978531073446,5.400209654070784,6888.3460953879785,2019
+1998,48,"(45,50]",College,677.6418333333334,136.75618079096043,4.955109373587636,6283.669480328222,2019
+1998,49,"(45,50]",College,1296.1529666666665,116.4275593220339,11.132698943568508,175.40673984148378,2019
+1998,49,"(45,50]",College,1142.7741666666668,116.4275593220339,9.815323565323567,180.7557160772257,2019
+1998,49,"(45,50]",College,1464.1366666666668,136.75618079096043,10.706182771400165,170.17008131814399,2019
+1998,49,"(45,50]",College,1471.0471000000002,116.4275593220339,12.634870202261508,177.11241727708835,2019
+1998,49,"(45,50]",College,1470.6459666666665,114.57950282485875,12.835157514294961,173.9508218579668,2019
+1998,49,"(45,50]",College,66158.15486666666,2032.8621468926553,32.54433900881727,19.870363582697635,2019
+1998,49,"(45,50]",College,63997.26783333334,2032.8621468926553,31.481361356035272,20.51857384330544,2019
+1998,49,"(45,50]",College,68086.07459999999,1604.1130395480225,42.444686204398685,22.274098763990136,2019
+1998,49,"(45,50]",College,65264.99503333333,1766.742011299435,36.94087456794615,20.614063977660088,2019
+1998,49,"(45,50]",College,68318.60429999999,1726.0847683615818,39.580098006918135,22.35096783731165,2019
+1998,24,"(20,25]",College,328.2,72.07420338983052,4.5536403395935166,5400.474595044239,2019
+1998,24,"(20,25]",College,328.2,72.07420338983052,4.5536403395935166,5383.024825310808,2019
+1998,24,"(20,25]",College,328.2,72.07420338983052,4.5536403395935166,5439.4946435343245,2019
+1998,24,"(20,25]",College,328.2,70.22614689265536,4.6734729801091355,5419.886828660331,2019
+1998,24,"(20,25]",College,328.2,72.07420338983052,4.5536403395935166,5417.223702849125,2019
+1998,42,"(40,45]",College,8707.693,1016.4310734463277,8.566929157798722,210.70243553870668,2019
+1998,42,"(40,45]",College,10308.579666666667,1016.4310734463277,10.14193675889328,207.98468005096615,2019
+1998,42,"(40,45]",College,8206.276333333333,1016.4310734463277,8.073618121009426,199.6890164623008,2019
+1998,42,"(40,45]",College,10795.409666666666,1016.4310734463277,10.620896929157798,217.81968785551067,2019
+1998,42,"(40,45]",College,9958.499666666667,1016.4310734463277,9.79751596229857,208.12347952721143,2019
+1998,28,"(25,30]",NoHS,2.206233333333333,18.480564971751416,0.11938127090301,3986.71531025427,2019
+1998,28,"(25,30]",NoHS,2.206233333333333,20.328621468926556,0.10852842809364546,3983.198209508232,2019
+1998,28,"(25,30]",NoHS,2.206233333333333,18.480564971751416,0.11938127090301,4003.0876292863586,2019
+1998,28,"(25,30]",NoHS,2.206233333333333,18.480564971751416,0.11938127090301,4002.754176412373,2019
+1998,28,"(25,30]",NoHS,2.206233333333333,20.328621468926556,0.10852842809364546,4001.382909667735,2019
+1998,37,"(35,40]",HS,45.856833333333334,51.745581920903966,0.8861980410893453,6744.46500604753,2019
+1998,37,"(35,40]",HS,42.884800000000006,51.745581920903966,0.82876254180602,6836.715208916417,2019
+1998,37,"(35,40]",HS,72.45926666666666,51.745581920903966,1.4002986144290488,7117.195160370924,2019
+1998,37,"(35,40]",HS,43.4865,51.745581920903966,0.8403905876731962,6778.242203844258,2019
+1998,37,"(35,40]",HS,61.902166666666666,51.745581920903966,1.1962792642140465,7031.037526039363,2019
+1998,56,"(55,60]",College,15294.302333333335,1293.639548022599,11.822692307692307,218.69098967220174,2019
+1998,56,"(55,60]",College,15578.742333333334,1293.639548022599,12.042568084089822,220.18510982652782,2019
+1998,56,"(55,60]",College,15292.479000000001,1293.639548022599,11.821282847587195,209.60210738108208,2019
+1998,56,"(55,60]",College,15565.979000000001,1293.639548022599,12.032701863354037,228.7318265748921,2019
+1998,56,"(55,60]",College,15571.449,1293.639548022599,12.036930243669373,213.77912369345754,2019
+1998,38,"(35,40]",HS,20.60366666666667,73.92225988700567,0.27872073578595313,6659.434965630231,2019
+1998,38,"(35,40]",HS,233.2955,73.92225988700567,3.1559573578595312,6673.627401975117,2019
+1998,38,"(35,40]",HS,9.025500000000001,73.92225988700567,0.12209448160535116,6642.800244280021,2019
+1998,38,"(35,40]",HS,31.20635,73.92225988700567,0.4221509197324414,6666.333029659993,2019
+1998,38,"(35,40]",HS,105.04223333333334,73.92225988700567,1.4209824414715717,6671.3725478928045,2019
+1998,57,"(55,60]",HS,269.9445,55.441694915254246,4.868979933110367,8759.608923116206,2019
+1998,57,"(55,60]",HS,269.9445,55.441694915254246,4.868979933110367,8783.51404751602,2019
+1998,57,"(55,60]",HS,271.76783333333333,55.441694915254246,4.9018673355629865,9171.434808003793,2019
+1998,57,"(55,60]",HS,271.76783333333333,55.441694915254246,4.9018673355629865,8660.32590776528,2019
+1998,57,"(55,60]",HS,269.9445,55.441694915254246,4.868979933110367,9115.931678119761,2019
+1998,43,"(40,45]",NoHS,84.4021,110.88338983050849,0.7611789297658862,7092.949097580759,2019
+1998,43,"(40,45]",NoHS,52.85843333333334,96.09893785310734,0.5500418060200669,7230.429846369337,2019
+1998,43,"(40,45]",NoHS,76.5253,92.40282485875707,0.8281705685618729,7575.218665712925,2019
+1998,43,"(40,45]",NoHS,70.30773333333335,101.64310734463277,0.6917117664943753,7114.927732922438,2019
+1998,43,"(40,45]",NoHS,33.859300000000005,114.57950282485875,0.29550922429604065,7402.963464608534,2019
+1998,66,"(65,70]",HS,16735.282666666666,1829.5759322033898,9.147082868821999,18.373420725590623,2019
+1998,66,"(65,70]",HS,50288.26266666666,787.27206779661,63.87659962001665,25.75983580138125,2019
+1998,66,"(65,70]",HS,10865.717400000001,389.9399209039548,27.865106436938294,16.19004568377364,2019
+1998,66,"(65,70]",HS,4950.313533333333,1214.1731186440675,4.077106845242641,16.783527264029484,2019
+1998,66,"(65,70]",HS,10721.382333333335,1269.6148135593219,8.444594548543668,16.713417861969003,2019
+1998,48,"(45,50]",HS,1337.3238333333334,162.62897175141245,8.223158634843417,3534.976237595696,2019
+1998,48,"(45,50]",HS,1337.2144333333333,153.38868926553673,8.717816416166338,3861.81773534787,2019
+1998,48,"(45,50]",HS,1337.1050333333335,175.56536723163845,7.61599542334096,3595.9609526581635,2019
+1998,48,"(45,50]",HS,1336.9044666666666,162.62897175141245,8.220579963514744,3571.9248544162947,2019
+1998,48,"(45,50]",HS,1337.7979,155.23674576271185,8.617791447682754,3687.5531725045685,2019
+1998,21,"(20,25]",HS,10.320066666666667,27.720847457627123,0.3722853957636566,5079.096875706969,2019
+1998,21,"(20,25]",HS,10.301833333333335,27.720847457627123,0.3716276477146042,5059.662905214382,2019
+1998,21,"(20,25]",HS,10.301833333333335,27.720847457627123,0.3716276477146042,5070.168097349075,2019
+1998,21,"(20,25]",HS,10.301833333333335,27.720847457627123,0.3716276477146042,5100.495899457394,2019
+1998,21,"(20,25]",HS,10.320066666666667,27.720847457627123,0.3722853957636566,5026.3459045055415,2019
+1998,37,"(35,40]",HS,17.139333333333333,72.07420338983052,0.23780121773432808,6401.322883760966,2019
+1998,37,"(35,40]",HS,16.957,72.07420338983052,0.23527141754566502,6391.754695374265,2019
+1998,37,"(35,40]",HS,16.957,72.07420338983052,0.23527141754566502,6378.362978261888,2019
+1998,37,"(35,40]",HS,17.139333333333333,72.07420338983052,0.23780121773432808,6433.355849446517,2019
+1998,37,"(35,40]",HS,16.957,72.07420338983052,0.23527141754566502,6355.802582534237,2019
+1998,60,"(55,60]",NoHS,-3.0814333333333335,10.164310734463278,-0.30316205533596835,5758.998598307151,2019
+1998,60,"(55,60]",NoHS,-2.8991,9.979505084745762,-0.29050538833147527,5766.085726703887,2019
+1998,60,"(55,60]",NoHS,-2.8991,10.164310734463278,-0.2852234721799939,5789.142902540258,2019
+1998,60,"(55,60]",NoHS,-3.0814333333333335,9.979505084745762,-0.3087761674718197,5757.115930769167,2019
+1998,60,"(55,60]",NoHS,-2.880866666666667,10.164310734463278,-0.28342961386439647,5789.466263891662,2019
+1998,79,"(75,80]",NoHS,87.33766666666668,13.121201129943504,6.656224975269678,9029.044236543317,2019
+1998,79,"(75,80]",NoHS,49.047666666666665,13.121201129943504,3.738047011163973,9045.328116091376,2019
+1998,79,"(75,80]",NoHS,90.802,12.936395480225992,7.019111323459149,9056.336057990473,2019
+1998,79,"(75,80]",NoHS,45.401,12.936395480225992,3.5095556617295744,8990.995231995283,2019
+1998,79,"(75,80]",NoHS,45.218666666666664,12.936395480225992,3.495461060678451,9054.405825244216,2019
+1998,46,"(45,50]",HS,27869.412966666667,1733.4769943502824,16.077174982707106,212.18348888114593,2019
+1998,46,"(45,50]",HS,27920.211033333337,1733.4769943502824,16.10647913086265,215.0312067184099,2019
+1998,46,"(45,50]",HS,25965.360666666667,1733.4769943502824,14.978774308105912,206.68678892594508,2019
+1998,46,"(45,50]",HS,30072.728966666666,1731.6289378531076,17.366728118987872,201.9801438717035,2019
+1998,46,"(45,50]",HS,25639.531,1733.4769943502824,14.790811232894296,196.08047859598156,2019
+1998,48,"(45,50]",NoHS,135.85656666666668,118.27561581920904,1.1486439172240803,7342.4950067421905,2019
+1998,48,"(45,50]",NoHS,134.03323333333333,118.27561581920904,1.1332279473244147,7508.022281353905,2019
+1998,48,"(45,50]",NoHS,137.6799,118.27561581920904,1.164059887123746,7889.910192832252,2019
+1998,48,"(45,50]",NoHS,135.85656666666668,120.12367231638417,1.13097247234371,7320.5308732268795,2019
+1998,48,"(45,50]",NoHS,135.85656666666668,118.27561581920904,1.1486439172240803,7735.7505020869285,2019
+1998,68,"(65,70]",College,22355.160666666667,498.975254237288,44.80214294562121,221.0179552196265,2019
+1998,68,"(65,70]",College,22168.451333333334,633.8833785310735,34.972444591787976,220.95350677744145,2019
+1998,68,"(65,70]",College,22322.88766666667,480.4946892655367,46.458136094674565,218.70860629439773,2019
+1998,68,"(65,70]",College,21719.182,515.6077627118644,42.123458122055595,213.37349522402116,2019
+1998,68,"(65,70]",College,22321.79366666667,572.8975141242938,38.96297874635883,202.69225601124634,2019
+1998,59,"(55,60]",College,809.7423333333334,221.76677966101698,3.651323857302118,6324.259909374045,2019
+1998,59,"(55,60]",College,721.6571,221.76677966101698,3.2541262541806018,6029.259451611837,2019
+1998,59,"(55,60]",College,555.8614,221.76677966101698,2.506513377926421,5644.282586538865,2019
+1998,59,"(55,60]",College,1119.162,221.76677966101698,5.046571906354514,6174.160741299585,2019
+1998,59,"(55,60]",College,730.7300066666668,221.76677966101698,3.2950381828316613,5628.934238804105,2019
+1998,80,"(75,80]",College,19774.779333333332,646.8197740112995,30.572317247969416,28.687107647947688,2019
+1998,80,"(75,80]",College,19772.956000000002,646.8197740112995,30.5694983277592,31.692045493903937,2019
+1998,80,"(75,80]",College,19767.030166666667,646.8197740112995,30.560336837075965,25.94049435040958,2019
+1998,80,"(75,80]",College,19768.8535,646.8197740112995,30.56315575728619,24.662061034680686,2019
+1998,80,"(75,80]",College,19774.779333333332,646.8197740112995,30.572317247969416,24.761027519237324,2019
+1998,77,"(75,80]",College,273.3176666666667,81.31448587570623,3.3612420188507146,6415.659551827269,2019
+1998,77,"(75,80]",College,812.842,49.89752542372881,16.29022668153103,5525.323675270326,2019
+1998,77,"(75,80]",College,340.234,70.22614689265536,4.844833656046471,6565.041134182405,2019
+1998,77,"(75,80]",College,632.879,79.46642937853107,7.964105156723964,5596.325633317524,2019
+1998,77,"(75,80]",College,1075.949,138.6042372881356,7.762742474916387,5143.237791982623,2019
+1998,56,"(55,60]",NoHS,76.54353333333334,59.13780790960452,1.29432483277592,9197.725542404887,2019
+1998,56,"(55,60]",NoHS,73.77206666666666,59.13780790960452,1.2474602842809364,9170.425908915437,2019
+1998,56,"(55,60]",NoHS,81.59416666666667,59.13780790960452,1.3797293060200668,9651.043026034784,2019
+1998,56,"(55,60]",NoHS,66.29639999999999,59.13780790960452,1.1210493311036789,9042.195545341598,2019
+1998,56,"(55,60]",NoHS,83.23516666666667,59.13780790960452,1.407478051839465,9567.67067840706,2019
+1998,21,"(20,25]",HS,-22.0441,12.936395480225992,-1.704037267080745,1989.9700383811166,2019
+1998,21,"(20,25]",HS,-22.0441,10.71872768361582,-2.0565967016491755,1978.009084056493,2019
+1998,21,"(20,25]",HS,-22.0441,12.19717288135593,-1.8073122529644272,2046.2508400753918,2019
+1998,21,"(20,25]",HS,-22.0441,9.425088135593223,-2.3388746803069047,1999.1663822710907,2019
+1998,21,"(20,25]",HS,-22.226433333333336,10.164310734463278,-2.1867132867132866,2059.766417221778,2019
+1998,73,"(70,75]",HS,754.8399433333334,73.92225988700567,10.211267140468227,1514.7466217766842,2019
+1998,73,"(70,75]",HS,711.0799433333334,73.92225988700567,9.61929389632107,1423.1222940046998,2019
+1998,73,"(70,75]",HS,711.0799433333334,73.92225988700567,9.61929389632107,1712.9835854878625,2019
+1998,73,"(70,75]",HS,711.0799433333334,73.92225988700567,9.61929389632107,1759.3461495522708,2019
+1998,73,"(70,75]",HS,711.0799433333334,73.92225988700567,9.61929389632107,1538.24939174003,2019
+1998,40,"(35,40]",College,216.10146666666668,121.97172881355934,1.7717340630384109,6113.664516253116,2019
+1998,40,"(35,40]",College,217.9248,121.97172881355934,1.786682882335056,6232.164052055976,2019
+1998,40,"(35,40]",College,216.10146666666668,121.97172881355934,1.7717340630384109,6529.349770072853,2019
+1998,40,"(35,40]",College,216.10146666666668,121.97172881355934,1.7717340630384109,6132.608681952811,2019
+1998,40,"(35,40]",College,216.11970000000002,121.97172881355934,1.7718835512313773,6380.876899868392,2019
+1998,78,"(75,80]",HS,4287.841833333333,674.5406214689266,6.356684381729051,262.64948088473994,2019
+1998,78,"(75,80]",HS,4287.841833333333,674.5406214689266,6.356684381729051,260.6892444893109,2019
+1998,78,"(75,80]",HS,4287.841833333333,674.5406214689266,6.356684381729051,250.57456937200817,2019
+1998,78,"(75,80]",HS,4289.665166666667,674.5406214689266,6.359387455903239,269.531251239284,2019
+1998,78,"(75,80]",HS,4289.665166666667,674.5406214689266,6.359387455903239,255.46654311350304,2019
+1998,46,"(45,50]",HS,40.07686666666667,51.745581920903966,0.7744983277591971,8408.889468245823,2019
+1998,46,"(45,50]",HS,375.16906666666665,90.55476836158192,4.14300730325575,8688.41758882467,2019
+1998,46,"(45,50]",HS,166.30623333333335,42.50529943502825,3.912599970917552,9000.968848800647,2019
+1998,46,"(45,50]",HS,65.51236666666667,27.720847457627123,2.3632887402452614,8395.179866129114,2019
+1998,46,"(45,50]",HS,142.78523333333334,64.68197740112994,2.2074964166268516,8975.468025086868,2019
+1998,80,"(75,80]",HS,22627.56666666667,352.978790960452,64.10460697963543,17.118833351321562,2019
+1998,80,"(75,80]",HS,23402.483333333334,504.51942372881365,46.38569345927205,18.636626689760874,2019
+1998,80,"(75,80]",HS,35978.013333333336,212.52649717514123,169.2871891813291,19.140123680451413,2019
+1998,80,"(75,80]",HS,28531.52,219.9187231638418,129.7366572046879,17.344347369477255,2019
+1998,80,"(75,80]",HS,21652.083333333332,258.72790960451977,83.68669374104157,18.512282200329754,2019
+1998,54,"(50,55]",NoHS,304.2231666666667,46.201412429378536,6.584715719063546,7259.388081482184,2019
+1998,54,"(50,55]",NoHS,306.15590000000003,46.201412429378536,6.626548494983278,7354.167858258875,2019
+1998,54,"(50,55]",NoHS,304.7701666666667,46.201412429378536,6.596555183946488,7622.150630815214,2019
+1998,54,"(50,55]",NoHS,304.7701666666667,46.201412429378536,6.596555183946488,7253.10233447754,2019
+1998,54,"(50,55]",NoHS,304.2231666666667,46.201412429378536,6.584715719063546,7586.923960235877,2019
+1998,63,"(60,65]",College,7069.610333333333,674.5406214689266,10.480629495578869,2175.0214958421666,2019
+1998,63,"(60,65]",College,7069.428,674.5406214689266,10.48035918816145,2244.426715112516,2019
+1998,63,"(60,65]",College,7069.428,674.5406214689266,10.48035918816145,2104.9311850276376,2019
+1998,63,"(60,65]",College,7069.428,674.5406214689266,10.48035918816145,2316.249094659818,2019
+1998,63,"(60,65]",College,7069.428,674.5406214689266,10.48035918816145,2144.5230903962083,2019
+1998,61,"(60,65]",College,524.573,310.4734915254237,1.6895903010033446,7588.569170827413,2019
+1998,61,"(60,65]",College,516.7326666666667,310.4734915254237,1.664337474120083,7255.371912648821,2019
+1998,61,"(60,65]",College,507.5613,312.3215480225989,1.6251241811957016,7395.864842214587,2019
+1998,61,"(60,65]",College,542.8428,310.4734915254237,1.7484352603917823,7254.12530089697,2019
+1998,61,"(60,65]",College,499.81213333333335,310.4734915254237,1.6098383500557416,7565.115538408024,2019
+1998,20,"(15,20]",HS,-15.591323333333333,22.176677966101696,-0.7030504459308807,4837.341243008405,2019
+1998,20,"(15,20]",HS,-15.591323333333333,22.176677966101696,-0.7030504459308807,4849.633988273606,2019
+1998,20,"(15,20]",HS,-15.591323333333333,22.176677966101696,-0.7030504459308807,4857.5169129278875,2019
+1998,20,"(15,20]",HS,-15.591323333333333,22.176677966101696,-0.7030504459308807,4876.201049330271,2019
+1998,20,"(15,20]",HS,-15.591323333333333,22.176677966101696,-0.7030504459308807,4824.18525621237,2019
+1998,29,"(25,30]",HS,82.6517,94.25088135593221,0.8769329136336809,5110.8309166988165,2019
+1998,29,"(25,30]",HS,67.0622,94.25088135593221,0.7115286248278576,5125.9626181509675,2019
+1998,29,"(25,30]",HS,106.665,94.25088135593221,1.1317135549872124,5176.905724799404,2019
+1998,29,"(25,30]",HS,106.70146666666666,94.25088135593221,1.1321004656043019,5244.8877066635005,2019
+1998,29,"(25,30]",HS,88.8875,94.25088135593221,0.9430946291560102,5180.7762915332905,2019
+1998,43,"(40,45]",HS,220.84213333333332,81.31448587570623,2.7159014898145326,6316.061733724296,2019
+1998,43,"(40,45]",HS,220.84213333333332,81.31448587570623,2.7159014898145326,6042.806366099112,2019
+1998,43,"(40,45]",HS,220.84213333333332,81.31448587570623,2.7159014898145326,5642.686979290653,2019
+1998,43,"(40,45]",HS,220.64156666666668,83.16254237288136,2.653136380527685,6168.490915837718,2019
+1998,43,"(40,45]",HS,220.8239,81.31448587570623,2.7156772575250834,5625.394076541435,2019
+1998,76,"(75,80]",HS,336.7696666666667,59.13780790960452,5.694659280936455,9388.836574829067,2019
+1998,76,"(75,80]",HS,374.7497,20.328621468926556,18.43458498023715,9523.78034331952,2019
+1998,76,"(75,80]",HS,298.66200000000003,25.872790960451983,11.543478260869565,9888.912673404197,2019
+1998,76,"(75,80]",HS,418.60086666666666,101.64310734463277,4.118339920948617,9506.830351485385,2019
+1998,76,"(75,80]",HS,352.3774,49.89752542372881,7.062021553325902,9901.818948415026,2019
+1998,59,"(55,60]",HS,1455.7493333333332,199.59010169491523,7.293695032825467,3287.416648216011,2019
+1998,59,"(55,60]",HS,1455.9316666666668,199.59010169491523,7.2946085717824865,3573.162966328543,2019
+1998,59,"(55,60]",HS,1455.7493333333332,199.59010169491523,7.293695032825467,3342.3650279458516,2019
+1998,59,"(55,60]",HS,1455.9316666666668,199.59010169491523,7.2946085717824865,3319.5814660555925,2019
+1998,59,"(55,60]",HS,1455.9316666666668,199.59010169491523,7.2946085717824865,3424.771701455417,2019
+1998,49,"(45,50]",College,710.3706666666667,327.106,2.1716833890746936,76.44227509721627,2019
+1998,49,"(45,50]",College,719.4873333333334,327.106,2.1995540691192867,72.05305158310836,2019
+1998,49,"(45,50]",College,712.194,327.106,2.177257525083612,73.782890877337607,2019
+1998,49,"(45,50]",College,713.835,327.106,2.182274247491639,73.35759127638468,2019
+1998,49,"(45,50]",College,712.194,327.106,2.177257525083612,75.34107857825055,2019
+1998,90,"(85,90]",HS,117.605,64.68197740112994,1.81820353559484,3497.6474151163593,2019
+1998,90,"(85,90]",HS,81.32066666666667,66.53003389830509,1.2223151244890373,1718.0837336266238,2019
+1998,90,"(85,90]",HS,243.415,31.416960451977403,7.747885107220145,413.94255501328945,2019
+1998,90,"(85,90]",HS,5561.6225,18.11095367231638,307.0861204013379,3313.496205417357,2019
+1998,90,"(85,90]",HS,82.96166666666667,42.50529943502825,1.95179584120983,1874.1448265944746,2019
+1998,46,"(45,50]",College,1264.664,277.2084745762712,4.562140468227424,2329.8707001143016,2019
+1998,46,"(45,50]",College,954.6973333333334,277.2084745762712,3.44396878483835,4732.851681920392,2019
+1998,46,"(45,50]",College,684.844,277.2084745762712,2.4705016722408026,4409.270153028883,2019
+1998,46,"(45,50]",College,1091.4473333333333,277.2084745762712,3.937279821627647,2354.2231975439904,2019
+1998,46,"(45,50]",College,594.042,277.2084745762712,2.142943143812709,4401.186087443725,2019
+1998,28,"(25,30]",HS,22.244666666666667,48.04946892655367,0.4629534345253409,7568.279128355423,2019
+1998,28,"(25,30]",HS,22.244666666666667,48.04946892655367,0.4629534345253409,7591.598161495529,2019
+1998,28,"(25,30]",HS,22.06233333333333,48.04946892655367,0.45915873424234627,7640.994956185849,2019
+1998,28,"(25,30]",HS,22.244666666666667,48.04946892655367,0.4629534345253409,7560.683599033228,2019
+1998,28,"(25,30]",HS,22.06233333333333,48.04946892655367,0.45915873424234627,7674.389584157516,2019
+1998,89,"(85,90]",NoHS,3554.2236666666668,182.957593220339,19.42648896996723,1388.4900761687977,2019
+1998,89,"(85,90]",NoHS,4784.426666666667,101.64310734463277,47.07084220127699,1444.489037070037,2019
+1998,89,"(85,90]",NoHS,3530.338,116.4275593220339,30.322185061315498,1568.2603547380227,2019
+1998,89,"(85,90]",NoHS,4939.774666666667,123.81978531073446,39.89487345879299,1656.291731277642,2019
+1998,89,"(85,90]",NoHS,3373.7136666666665,103.49116384180793,32.599050406115616,1348.564197734558,2019
+1998,35,"(30,35]",HS,699.8135666666667,64.68197740112994,10.819297658862878,7312.679912747129,2019
+1998,35,"(30,35]",HS,702.7126666666667,64.68197740112994,10.864118490205447,6996.832626388411,2019
+1998,35,"(30,35]",HS,699.0842333333333,64.68197740112994,10.808021978021976,6533.608103374309,2019
+1998,35,"(30,35]",HS,700.5246666666667,64.68197740112994,10.830291447682752,7142.26492324008,2019
+1998,35,"(30,35]",HS,700.5064333333333,66.53003389830509,10.529175956893347,6513.059722404701,2019
+1998,63,"(60,65]",College,8715.533333333335,2217.6677966101697,3.9300445930880716,182.33691989144364,2019
+1998,63,"(60,65]",College,8719.18,2217.6677966101697,3.931688963210702,180.98444902747238,2019
+1998,63,"(60,65]",College,8717.356666666667,2217.6677966101697,3.9308667781493862,169.76309155991544,2019
+1998,63,"(60,65]",College,8717.356666666667,2217.6677966101697,3.9308667781493862,185.3697193082039,2019
+1998,63,"(60,65]",College,8717.356666666667,2217.6677966101697,3.9308667781493862,179.299402800348,2019
+1998,41,"(40,45]",HS,554.2021666666666,332.65016949152545,1.6660209959122998,5309.872426393334,2019
+1998,41,"(40,45]",HS,1250.8978333333332,332.65016949152545,3.760400408769973,2731.9985863923976,2019
+1998,41,"(40,45]",HS,1252.9035000000001,332.65016949152545,3.7664297658862878,2549.939352906563,2019
+1998,41,"(40,45]",HS,1250.7155,332.65016949152545,3.7598522853957634,2529.539841070231,2019
+1998,41,"(40,45]",HS,1252.7211666666667,332.65016949152545,3.765881642512077,2611.1071157598935,2019
+1998,79,"(75,80]",HS,132.374,15.523674576271185,8.527233635929289,10262.506017573874,2019
+1998,79,"(75,80]",HS,132.374,15.523674576271185,8.527233635929289,10254.212221714533,2019
+1998,79,"(75,80]",HS,132.55633333333336,15.523674576271185,8.538979136805226,10167.307674837177,2019
+1998,79,"(75,80]",HS,132.374,15.523674576271185,8.527233635929289,10250.80566975222,2019
+1998,79,"(75,80]",HS,132.55633333333336,15.523674576271185,8.538979136805226,10165.33174104383,2019
+1998,22,"(20,25]",HS,-12.4716,57.289751412429375,-0.2176933865573417,5070.390241516556,2019
+1998,22,"(20,25]",HS,-15.224833333333335,49.89752542372881,-0.30512201164375086,5083.275215410881,2019
+1998,22,"(20,25]",HS,5.287666666666667,48.04946892655367,0.11004630820684334,5091.53791639346,2019
+1998,22,"(20,25]",HS,-17.2852,64.68197740112994,-0.2672336359292881,5111.122200016773,2019
+1998,22,"(20,25]",HS,-13.219166666666666,81.31448587570623,-0.16256840985101853,5056.600437631094,2019
+1998,25,"(20,25]",HS,0,1.293639548022599,0,2051.631277983933,2019
+1998,25,"(20,25]",HS,0,1.293639548022599,0,2027.6464260095709,2019
+1998,25,"(20,25]",HS,0,1.293639548022599,0,2101.914257598876,2019
+1998,25,"(20,25]",HS,0,1.293639548022599,0,2079.6782969150913,2019
+1998,25,"(20,25]",HS,0,1.293639548022599,0,2117.972078665238,2019
+1998,61,"(60,65]",HS,93792.26666666668,776.1837288135594,120.83771301162606,27.16682622033857,2019
+1998,61,"(60,65]",HS,83928.03333333333,879.6748926553672,95.40801270340911,28.056924644252824,2019
+1998,61,"(60,65]",HS,463017.2666666667,796.5123502824858,581.3058221915279,30.603898916797483,2019
+1998,61,"(60,65]",HS,74111.20666666668,757.703163841808,97.81034342115997,27.85973822035848,2019
+1998,61,"(60,65]",HS,32710.600000000002,885.2190621468927,36.95198329853862,25.342342134316528,2019
+1998,42,"(40,45]",College,572.162,221.76677966101698,2.5800167224080264,5831.993460363023,2019
+1998,42,"(40,45]",College,575.8086666666667,221.76677966101698,2.5964604236343365,5579.550499523875,2019
+1998,42,"(40,45]",College,579.6376666666666,221.76677966101698,2.6137263099219616,5210.377779636392,2019
+1998,42,"(40,45]",College,577.6320000000001,221.76677966101698,2.6046822742474913,5694.5195926438455,2019
+1998,42,"(40,45]",College,579.4553333333333,221.76677966101698,2.612904124860646,5193.304037479085,2019
+1998,48,"(45,50]",College,16153.821666666667,192.1978757062147,84.04786789297658,289.16863946004435,2019
+1998,48,"(45,50]",College,11109.57,190.34981920903957,58.363964022469716,286.45812824770235,2019
+1998,48,"(45,50]",College,15983.34,450.9257853107345,35.44561105323756,273.1136703212822,2019
+1998,48,"(45,50]",College,8597.016666666666,140.45229378531073,61.209514170040485,299.98205059385333,2019
+1998,48,"(45,50]",College,22033.16,291.9929265536723,75.45785529825156,306.00137142802106,2019
+1998,38,"(35,40]",HS,153.88933333333335,171.86925423728815,0.8953860538713274,5789.4550408803325,2019
+1998,38,"(35,40]",HS,152.43066666666667,173.71731073446327,0.8774638867145805,5901.670510517566,2019
+1998,38,"(35,40]",HS,145.86666666666665,171.86925423728815,0.8487071600676087,6183.096380170116,2019
+1998,38,"(35,40]",HS,165.19400000000002,173.71731073446327,0.9509357432576675,5807.3945917526125,2019
+1998,38,"(35,40]",HS,150.24266666666665,173.71731073446327,0.8648687113071941,6042.497071105312,2019
+1998,33,"(30,35]",College,163.0698166666667,86.85865536723163,1.8774158542659936,7611.698849369612,2019
+1998,33,"(30,35]",College,163.24303333333333,86.85865536723163,1.8794100903721627,7613.849443126417,2019
+1998,33,"(30,35]",College,163.26126666666667,86.85865536723163,1.8796200099622857,7745.104611457845,2019
+1998,33,"(30,35]",College,163.26126666666667,86.85865536723163,1.8796200099622857,7648.106623055877,2019
+1998,33,"(30,35]",College,163.0789333333333,86.85865536723163,1.8775208140610544,7697.439103535651,2019
+1998,51,"(50,55]",College,80162.85,1430.3957288135593,56.04242824920277,33.298020221494895,2019
+1998,51,"(50,55]",College,83215.47466666668,1539.4310621468926,54.05599296574818,34.892343262385054,2019
+1998,51,"(50,55]",College,83170.98533333333,1552.3674576271187,53.57686733556298,30.18795190638621,2019
+1998,51,"(50,55]",College,80708.75600000001,1537.5830056497175,52.49066600205815,29.311296248858962,2019
+1998,51,"(50,55]",College,85293.163,1485.8374237288135,57.40410198173015,29.895445829547914,2019
+1998,50,"(45,50]",HS,154.98333333333335,177.41342372881357,0.8735716276477147,4953.606525636102,2019
+1998,50,"(45,50]",HS,154.80100000000002,177.41342372881357,0.8725438963210703,4922.83799413515,2019
+1998,50,"(45,50]",HS,154.61866666666666,177.41342372881357,0.8715161649944257,4958.270769647571,2019
+1998,50,"(45,50]",HS,154.61866666666666,177.41342372881357,0.8715161649944257,4942.8885475965735,2019
+1998,50,"(45,50]",HS,154.80100000000002,177.41342372881357,0.8725438963210703,4914.718080152505,2019
+1998,43,"(40,45]",College,380.5296666666667,323.40988700564975,1.1766172957477306,6598.102443122999,2019
+1998,43,"(40,45]",College,380.5296666666667,323.40988700564975,1.1766172957477306,6314.057016842677,2019
+1998,43,"(40,45]",College,380.5296666666667,293.84098305084746,1.2950190362003324,5894.6143530571335,2019
+1998,43,"(40,45]",College,380.5296666666667,199.59010169491523,1.9065558032949341,6444.359375136676,2019
+1998,43,"(40,45]",College,380.3473333333333,201.4381581920904,1.8881593077843575,5875.839893935242,2019
+1998,49,"(45,50]",College,27904.566833333334,2347.0317514124295,11.88930095067548,410.0844390573279,2019
+1998,49,"(45,50]",College,27837.28583333333,2125.2649717514123,13.098265958993748,409.24260336737694,2019
+1998,49,"(45,50]",College,28831.859466666665,2125.2649717514123,13.566242256798022,401.4830055523254,2019
+1998,49,"(45,50]",College,28546.47133333333,2494.87627118644,11.442038895082375,396.0547782505392,2019
+1998,49,"(45,50]",College,27412.358,2162.2261016949155,12.677840665466082,378.47519618782866,2019
+1998,48,"(45,50]",College,1140.8596666666667,378.851581920904,3.0113630801859856,677.0221431518303,2019
+1998,48,"(45,50]",College,1140.8596666666667,378.851581920904,3.0113630801859856,654.122594016799,2019
+1998,48,"(45,50]",College,1140.8596666666667,378.851581920904,3.0113630801859856,662.4108236998088,2019
+1998,48,"(45,50]",College,1140.6773333333333,377.00352542372883,3.0256410256410255,658.6570547732923,2019
+1998,48,"(45,50]",College,1140.8596666666667,378.851581920904,3.0113630801859856,670.3817474199843,2019
+1998,65,"(60,65]",College,34363.816333333336,694.8692429378531,49.453644239664136,20.509354661393694,2019
+1998,65,"(60,65]",College,89165.55651000001,678.2367344632768,131.46671653012314,25.074107589463175,2019
+1998,65,"(60,65]",College,34250.220843333336,718.8939774011301,47.6429375123591,26.57603818380152,2019
+1998,65,"(60,65]",College,45205.71917666667,639.4275480225989,70.69717173816383,27.864747106937422,2019
+1998,65,"(60,65]",College,42414.37817666667,755.8551073446329,56.11442955736727,26.424276254213254,2019
+1998,51,"(50,55]",NoHS,63.08733333333334,55.441694915254246,1.1379041248606465,7779.142288032049,2019
+1998,51,"(50,55]",NoHS,62.905,55.441694915254246,1.1346153846153844,7960.557228426204,2019
+1998,51,"(50,55]",NoHS,64.72833333333334,55.441694915254246,1.1675027870680044,8308.543313516804,2019
+1998,51,"(50,55]",NoHS,63.08733333333334,55.441694915254246,1.1379041248606465,7800.196285291863,2019
+1998,51,"(50,55]",NoHS,62.905,55.441694915254246,1.1346153846153844,8249.640672006559,2019
+1998,49,"(45,50]",College,388.37,109.03533333333333,3.5618729096989967,6461.8641528867065,2019
+1998,49,"(45,50]",College,386.5466666666667,123.81978531073446,3.1218489492337644,6446.427281564154,2019
+1998,49,"(45,50]",College,388.37,134.9081242937853,2.878773995510148,6460.888444144736,2019
+1998,49,"(45,50]",College,388.37,127.51589830508476,3.0456594445252287,6473.443349769143,2019
+1998,49,"(45,50]",College,386.5466666666667,120.12367231638417,3.217905839979419,6414.319275499949,2019
+1998,62,"(60,65]",HS,2831.272,219.9187231638418,12.874174418931451,888.9933926917589,2019
+1998,62,"(60,65]",HS,2982.791,199.59010169491523,14.94458379784467,969.7647763386354,2019
+1998,62,"(60,65]",HS,4198.042666666667,188.50176271186442,22.270575119679982,889.5626964890977,2019
+1998,62,"(60,65]",HS,3407.4453333333336,184.80564971751414,18.437993311036788,1139.9182118513459,2019
+1998,62,"(60,65]",HS,4124.7446666666665,221.76677966101698,18.59947045707915,890.6875191902263,2019
+1998,48,"(45,50]",HS,4107.222433333333,101.64310734463277,40.40827303131651,773.231131966627,2019
+1998,48,"(45,50]",HS,5258.949166666667,60.98586440677967,86.2322641126989,847.7187609956443,2019
+1998,48,"(45,50]",HS,2883.218766666667,101.64310734463277,28.366102158710856,774.0691809428106,2019
+1998,48,"(45,50]",HS,4294.734033333333,62.833920903954805,68.35056561085972,992.0758929974288,2019
+1998,48,"(45,50]",HS,6787.048366666666,75.77031638418079,89.57397422301982,775.727468964503,2019
+1998,52,"(50,55]",College,7569.386,1386.042372881356,5.461150501672241,227.35966164813394,2019
+1998,52,"(50,55]",College,10120.047,1386.042372881356,7.301397993311037,227.12540223332084,2019
+1998,52,"(50,55]",College,8351.778333333334,1386.042372881356,6.025629877369008,216.9073069182053,2019
+1998,52,"(50,55]",College,7438.106,1386.042372881356,5.366434782608695,236.0746675280664,2019
+1998,52,"(50,55]",College,8103.622666666667,1386.042372881356,5.8465908584169455,224.4056391279991,2019
+1998,42,"(40,45]",HS,256.78003333333334,105.33922033898305,2.437648888106554,6170.974949646754,2019
+1998,42,"(40,45]",HS,214.56986666666668,40.65724293785311,5.277531164487686,6164.691779872643,2019
+1998,42,"(40,45]",HS,81.86766666666668,33.265016949152546,2.4610739502043852,6103.284956840297,2019
+1998,42,"(40,45]",HS,44.56226666666667,53.593638418079095,0.8314842578710646,6142.840358021503,2019
+1998,42,"(40,45]",HS,116.05516666666668,138.6042372881356,0.8373132664437012,6150.313433704395,2019
+1998,24,"(20,25]",HS,4.193666666666667,38.80918644067796,0.10805860805860808,4316.076020848881,2019
+1998,24,"(20,25]",HS,4.376,33.265016949152546,0.13154960981047936,4327.044116834711,2019
+1998,24,"(20,25]",HS,4.193666666666667,31.416960451977403,0.1334841628959276,4334.077588397974,2019
+1998,24,"(20,25]",HS,4.193666666666667,31.416960451977403,0.1334841628959276,4350.748348025105,2019
+1998,24,"(20,25]",HS,4.376,20.328621468926556,0.2152629978716935,4304.337705049259,2019
+1998,40,"(35,40]",College,3385.2006666666666,460.1660677966102,7.35647607151012,36.546925079583794,2019
+1998,40,"(35,40]",College,3370.614,406.57242937853107,8.290316205533596,39.65022913198226,2019
+1998,40,"(35,40]",College,3640.4673333333335,408.4204858757063,8.913527747090603,38.77766476137423,2019
+1998,40,"(35,40]",College,3669.750066666667,437.9893898305085,8.378627774720234,39.60635044870573,2019
+1998,40,"(35,40]",College,3664.1706666666664,406.57242937853107,9.012344177561568,42.15584370546985,2019
+1998,43,"(40,45]",College,110.12933333333334,77.61837288135592,1.4188565058130278,8710.765972268991,2019
+1998,43,"(40,45]",College,100.88503333333334,151.54063276836158,0.6657292601354108,8788.978429554925,2019
+1998,43,"(40,45]",College,121.25166666666668,60.98586440677967,1.988192966453836,9306.35545227899,2019
+1998,43,"(40,45]",College,121.47046666666667,120.12367231638417,1.0112117314124003,8715.324588833442,2019
+1998,43,"(40,45]",College,105.75333333333333,40.65724293785311,2.6010945576162965,9228.249448305234,2019
+1998,48,"(45,50]",HS,1030.4750666666666,116.4275593220339,8.850783033391728,4573.80451592058,2019
+1998,48,"(45,50]",HS,1031.3685,162.62897175141245,6.3418497263605955,4382.672935365248,2019
+1998,48,"(45,50]",HS,1035.471,112.73144632768363,9.185289763693184,4084.1903811064576,2019
+1998,48,"(45,50]",HS,1030.3656666666666,160.78091525423727,6.408507284819129,4468.204636932984,2019
+1998,48,"(45,50]",HS,1031.5326,55.441694915254246,18.60571906354515,4076.3266704782263,2019
+1998,82,"(80,85]",HS,2397.6833333333334,181.10953672316384,13.23885741587605,796.0741895358094,2019
+1998,82,"(80,85]",HS,2397.6833333333334,179.26148022598866,13.375340482019105,856.9904815278467,2019
+1998,82,"(80,85]",HS,2395.86,181.10953672316384,13.228789843696676,920.8845313112022,2019
+1998,82,"(80,85]",HS,2397.6833333333334,181.10953672316384,13.23885741587605,923.7592846547761,2019
+1998,82,"(80,85]",HS,2397.6833333333334,181.10953672316384,13.23885741587605,774.8058111327333,2019
+1998,44,"(40,45]",College,3912.8733333333334,1053.3922033898307,3.714545561227483,182.33691989144364,2019
+1998,44,"(40,45]",College,3344.285066666667,465.7102372881356,7.181042628868716,180.98444902747238,2019
+1998,44,"(40,45]",College,3773.1513,519.3038757062147,7.265786905342838,169.76309155991544,2019
+1998,44,"(40,45]",College,1316.6654666666666,909.2437966101695,1.4480884792125512,125.26318545461145,2019
+1998,44,"(40,45]",College,5606.895866666667,1297.3356610169492,4.3218544245300095,179.299402800348,2019
+1998,34,"(30,35]",College,289.1806666666667,96.09893785310734,3.009197324414716,6945.636652589671,2019
+1998,34,"(30,35]",College,287.3573333333333,103.49116384180793,2.776636407071189,6648.211564668942,2019
+1998,34,"(30,35]",College,289.1806666666667,125.66784180790961,2.301150895140665,6200.011473531665,2019
+1998,34,"(30,35]",College,289.1806666666667,105.33922033898305,2.7452326468344777,6784.078918324363,2019
+1998,34,"(30,35]",College,287.3573333333333,105.33922033898305,2.727923487648888,6187.362936599234,2019
+1998,79,"(75,80]",College,3669.6589,382.5476949152542,9.592683340603946,188.7117829841586,2019
+1998,65,"(60,65]",HS,2791.687433333333,221.76677966101698,12.588393255295426,187.75013769251072,2019
+1998,44,"(40,45]",HS,676.5660666666666,249.487627118644,2.7118221231264714,61.68756912909423,2019
+1998,66,"(65,70]",College,3258.3331333333335,364.06712994350283,8.949814101149348,193.93265332520684,2019
+1998,41,"(40,45]",College,1540.0420333333334,201.4381581920904,7.645234880795312,65.15649791734765,2019
+1998,70,"(65,70]",HS,1.0028333333333335,3.8809186440677963,0.25840101927058456,5918.569882126627,2019
+1998,70,"(65,70]",HS,1.0210666666666668,3.8809186440677963,0.2630992196209588,5986.169685741795,2019
+1998,70,"(65,70]",HS,1.0028333333333335,3.8809186440677963,0.25840101927058456,5993.04482852189,2019
+1998,70,"(65,70]",HS,1.0210666666666668,3.8809186440677963,0.2630992196209588,5958.045601112786,2019
+1998,70,"(65,70]",HS,1.0210666666666668,3.8809186440677963,0.2630992196209588,5993.0371869678775,2019
+1998,51,"(50,55]",College,6477.209333333333,308.6254350282486,20.98728295916528,1075.806432292118,2019
+1998,51,"(50,55]",College,6475.203666666667,308.6254350282486,20.980784250896203,1179.41452617546,2019
+1998,51,"(50,55]",College,6475.386,308.6254350282486,20.981375042557026,1077.0036467656264,2019
+1998,51,"(50,55]",College,6477.209333333333,308.6254350282486,20.98728295916528,1379.9940114699618,2019
+1998,51,"(50,55]",College,6471.739333333333,308.6254350282486,20.969559209340513,1079.0811613424273,2019
+1998,60,"(55,60]",HS,4472.272,462.0141242937853,9.679946488294314,259.03345005396545,2019
+1998,60,"(55,60]",HS,4545.205333333333,462.0141242937853,9.837806020066889,262.4682084812246,2019
+1998,60,"(55,60]",HS,4572.555333333333,462.0141242937853,9.897003344481604,286.66666883319306,2019
+1998,60,"(55,60]",HS,4654.423,462.0141242937853,10.07420066889632,303.59383986973256,2019
+1998,60,"(55,60]",HS,4545.205333333333,462.0141242937853,9.837806020066889,251.01892058614726,2019
+1998,49,"(45,50]",HS,204.1951,83.16254237288136,2.4553734671125973,7193.172797038853,2019
+1998,49,"(45,50]",HS,234.29833333333335,83.16254237288136,2.8173541434411,7334.54736679388,2019
+1998,49,"(45,50]",HS,210.23033333333333,83.16254237288136,2.527945001858045,7647.455415060598,2019
+1998,49,"(45,50]",HS,253.62566666666666,83.16254237288136,3.04975845410628,7149.822611312577,2019
+1998,49,"(45,50]",HS,203.66633333333334,83.16254237288136,2.449015235971758,7650.21696923868,2019
+1998,44,"(40,45]",HS,346.32393333333334,166.32508474576272,2.082211073950204,379.49192396600307,2019
+1998,44,"(40,45]",HS,211.5796,166.32508474576272,1.2720847268673354,372.991996763002,2019
+1998,44,"(40,45]",HS,346.32393333333334,166.32508474576272,2.082211073950204,348.67984617921263,2019
+1998,44,"(40,45]",HS,209.57393333333331,166.32508474576272,1.260026012634708,402.997671630154,2019
+1998,44,"(40,45]",HS,392.0713666666666,166.32508474576272,2.357259383128948,958.9961782613806,2019
+1998,41,"(40,45]",College,15983.34,1774.1342372881359,9.009092809364548,1170.9527624550383,2019
+1998,41,"(40,45]",College,16371.710000000001,2347.0317514124295,6.975495746978116,1217.186471340561,2019
+1998,41,"(40,45]",College,13609.36,2069.823276836158,6.5751313903487825,1289.5249185998957,2019
+1998,41,"(40,45]",College,17117.45333333333,824.2331977401129,20.767731001694735,1367.0177609114858,2019
+1998,41,"(40,45]",College,14913.043333333335,445.38161581920906,33.48374248879391,1138.8087055680737,2019
+1998,64,"(60,65]",HS,13373.785333333335,4139.646553672316,3.230658743430483,17.82657433540392,2019
+1998,64,"(60,65]",HS,14021.980333333335,4139.646553672316,3.3872409519828004,19.650560389821674,2019
+1998,64,"(60,65]",HS,15047.787666666667,4139.646553672316,3.6350416567128527,22.160764616098483,2019
+1998,64,"(60,65]",HS,13313.068333333335,4139.646553672316,3.215991549211658,21.913144043550208,2019
+1998,64,"(60,65]",HS,17524.968333333334,4158.127118644067,4.214630248978076,20.150081937845773,2019
+1998,33,"(30,35]",HS,21.351233333333333,46.201412429378536,0.462133779264214,5838.288288738591,2019
+1998,33,"(30,35]",HS,21.342116666666666,46.201412429378536,0.46193645484949825,5810.238161870249,2019
+1998,33,"(30,35]",HS,21.533566666666665,46.201412429378536,0.4660802675585283,5860.925993932202,2019
+1998,33,"(30,35]",HS,21.342116666666666,46.201412429378536,0.46193645484949825,5809.242741189237,2019
+1998,33,"(30,35]",HS,21.342116666666666,46.201412429378536,0.46193645484949825,5847.375555622546,2019
+1998,37,"(35,40]",HS,946.8023000000001,227.31094915254238,4.1652296272126605,5164.991943720177,2019
+1998,37,"(35,40]",HS,769.6472333333332,144.14840677966103,5.339269788182831,4941.907013304315,2019
+1998,37,"(35,40]",HS,837.1105666666666,219.9187231638418,3.806454287400579,4614.7286111249905,2019
+1998,37,"(35,40]",HS,756.501,242.09540112994353,3.124805330746253,5044.62676181761,2019
+1998,37,"(35,40]",HS,625.221,264.27207909604516,2.365823140070632,4600.215160046746,2019
+1998,25,"(20,25]",HS,0,73.92225988700567,0,5613.20599195067,2019
+1998,25,"(20,25]",HS,0,73.92225988700567,0,5607.854452386952,2019
+1998,25,"(20,25]",HS,0,73.92225988700567,0,5628.656883739585,2019
+1998,25,"(20,25]",HS,0,73.92225988700567,0,5608.615719342212,2019
+1998,25,"(20,25]",HS,0,73.92225988700567,0,5625.769607421505,2019
+1998,43,"(40,45]",College,409.1013,245.7915141242938,1.6644240199160105,5967.621213756129,2019
+1998,43,"(40,45]",College,409.08306666666664,177.41342372881357,2.3058180044593084,5709.307486450731,2019
+1998,43,"(40,45]",College,407.3509,332.65016949152545,1.2245624303232998,5331.549354567733,2019
+1998,43,"(40,45]",College,409.63006666666666,280.90458757062146,1.4582533884879423,5826.950279381149,2019
+1998,43,"(40,45]",College,409.5936,336.3462824858757,1.217773530817009,5314.078548643711,2019
+1998,39,"(35,40]",HS,26.493033333333333,92.40282485875707,0.28671237458193977,8430.581247878294,2019
+1998,39,"(35,40]",HS,28.316366666666667,92.40282485875707,0.3064448160535117,8545.894001331984,2019
+1998,39,"(35,40]",HS,26.493033333333333,92.40282485875707,0.28671237458193977,8896.493940247521,2019
+1998,39,"(35,40]",HS,26.493033333333333,92.40282485875707,0.28671237458193977,8472.802745075729,2019
+1998,39,"(35,40]",HS,28.316366666666667,92.40282485875707,0.3064448160535117,8788.796897456741,2019
+1998,26,"(25,30]",College,-11.851666666666667,18.480564971751416,-0.6413043478260868,6154.893827208436,2019
+1998,26,"(25,30]",College,-11.851666666666667,18.480564971751416,-0.6413043478260868,6082.939271364181,2019
+1998,26,"(25,30]",College,-11.851666666666667,18.480564971751416,-0.6413043478260868,6305.742765887992,2019
+1998,26,"(25,30]",College,-11.851666666666667,18.480564971751416,-0.6413043478260868,6239.034883909724,2019
+1998,26,"(25,30]",College,-11.851666666666667,18.480564971751416,-0.6413043478260868,6353.916229034295,2019
+1998,22,"(20,25]",HS,3.8836999999999997,46.201412429378536,0.0840602006688963,6519.07315435558,2019
+1998,22,"(20,25]",HS,3.8836999999999997,46.201412429378536,0.0840602006688963,6535.639549328752,2019
+1998,22,"(20,25]",HS,3.8836999999999997,46.201412429378536,0.0840602006688963,6546.2630219989505,2019
+1998,22,"(20,25]",HS,3.8836999999999997,46.201412429378536,0.0840602006688963,6571.442815177519,2019
+1998,22,"(20,25]",HS,3.8836999999999997,46.201412429378536,0.0840602006688963,6501.343406539041,2019
+1998,41,"(40,45]",HS,29.9756,129.36395480225988,0.23171524128045867,5527.148544683842,2019
+1998,41,"(40,45]",HS,29.9756,129.36395480225988,0.23171524128045867,5609.915740135174,2019
+1998,41,"(40,45]",HS,29.9756,129.36395480225988,0.23171524128045867,5575.687664488056,2019
+1998,41,"(40,45]",HS,29.9756,129.36395480225988,0.23171524128045867,5520.878270309388,2019
+1998,41,"(40,45]",HS,29.9756,129.36395480225988,0.23171524128045867,5590.369806088683,2019
+1998,32,"(30,35]",HS,190.72066666666666,73.92225988700567,2.580016722408026,4456.810296343272,2019
+1998,32,"(30,35]",HS,191.997,73.92225988700567,2.597282608695652,4398.592814214147,2019
+1998,32,"(30,35]",HS,189.809,73.92225988700567,2.5676839464882937,4433.065051116174,2019
+1998,32,"(30,35]",HS,188.53266666666667,73.92225988700567,2.5504180602006685,4478.1668798589335,2019
+1998,32,"(30,35]",HS,191.63233333333335,73.92225988700567,2.592349498327759,4421.392665607866,2019
+1998,70,"(65,70]",College,29128.297000000002,554.4169491525424,52.53861204013378,248.74944453489337,2019
+1998,70,"(65,70]",College,28536.443,554.4169491525424,51.47108695652173,248.92531929667285,2019
+1998,70,"(65,70]",College,29130.30266666667,554.4169491525424,52.54222965440357,247.59233679800286,2019
+1998,70,"(65,70]",College,28079.698,554.4169491525424,50.64725752508361,240.29582461873866,2019
+1998,70,"(65,70]",College,29675.661666666667,554.4169491525424,53.52589186176142,230.61608929664334,2019
+1998,39,"(35,40]",HS,55.611666666666665,33.265016949152546,1.6717762913415084,4476.064712422818,2019
+1998,39,"(35,40]",HS,55.611666666666665,29.56890395480226,1.8807483277591972,4480.708029617799,2019
+1998,39,"(35,40]",HS,55.611666666666665,36.96112994350283,1.5045986622073575,4491.401730559456,2019
+1998,39,"(35,40]",HS,55.611666666666665,29.56890395480226,1.8807483277591972,4497.746275720318,2019
+1998,39,"(35,40]",HS,55.42933333333334,38.80918644067796,1.4282529065137763,4476.439837774817,2019
+1998,28,"(25,30]",HS,19.600833333333334,29.56890395480226,0.6628867056856188,5439.700621604325,2019
+1998,28,"(25,30]",HS,19.600833333333334,29.56890395480226,0.6628867056856188,5456.461176667915,2019
+1998,28,"(25,30]",HS,19.600833333333334,29.56890395480226,0.6628867056856188,5491.965122839175,2019
+1998,28,"(25,30]",HS,19.78316666666667,29.56890395480226,0.669053093645485,5434.241334905907,2019
+1998,28,"(25,30]",HS,19.600833333333334,29.56890395480226,0.6628867056856188,5515.967511685421,2019
+1998,48,"(45,50]",HS,6.527533333333334,66.53003389830509,0.09811408398364921,6425.294990617806,2019
+1998,48,"(45,50]",HS,6.162866666666667,22.176677966101696,0.2778985507246377,6550.791038023041,2019
+1998,48,"(45,50]",HS,5.9076,22.176677966101696,0.2663879598662207,6786.444765740608,2019
+1998,48,"(45,50]",HS,6.326966666666666,77.61837288135592,0.08151377607899347,6444.152869554647,2019
+1998,48,"(45,50]",HS,5.980533333333334,35.11307344632768,0.17032212638619962,6767.217954213816,2019
+1998,55,"(50,55]",HS,3787.428,271.6643050847458,13.941573953996311,1566.0004808563858,2019
+1998,55,"(50,55]",HS,3705.2139,456.4699548022599,8.117103570606474,1600.4629104293392,2019
+1998,55,"(50,55]",HS,3697.9023333333334,391.78797740113,9.438529374645043,1481.69290469807,2019
+1998,55,"(50,55]",HS,3776.3056666666666,391.78797740113,9.638646115984097,1669.784905822491,2019
+1998,55,"(50,55]",HS,3767.9183333333335,280.90458757062146,13.41351654638268,1569.8639493002966,2019
+1998,74,"(70,75]",HS,219.16466666666665,25.872790960451983,8.470855231724794,8278.723843934738,2019
+1998,74,"(70,75]",HS,219.54756666666668,9.609893785310735,22.845993053768975,8252.846842506617,2019
+1998,74,"(70,75]",HS,219.32876666666667,7.392225988700565,29.670192307692307,8879.491179687484,2019
+1998,74,"(70,75]",HS,219.14643333333333,7.761837288135593,28.23383500557414,8466.214392288537,2019
+1998,74,"(70,75]",HS,219.16466666666665,10.349116384180792,21.177138079311987,8612.276488625617,2019
+1998,73,"(70,75]",HS,628.3389000000001,120.12367231638417,5.230766658091074,6530.429516741515,2019
+1998,73,"(70,75]",HS,600.9889000000001,99.79505084745762,6.022231512448905,6290.735012779991,2019
+1998,73,"(70,75]",HS,593.6955666666667,99.79505084745762,5.949148395887526,5870.67979256718,2019
+1998,73,"(70,75]",HS,601.0071333333333,110.88338983050849,5.420172798216275,6421.8424004982835,2019
+1998,73,"(70,75]",HS,606.4771333333333,123.81978531073446,4.89806319572705,5854.92084963438,2019
+1998,51,"(50,55]",HS,101.55966666666667,110.88338983050849,0.9159141583054625,123.38193930569427,2019
+1998,51,"(50,55]",HS,101.742,110.88338983050849,0.9175585284280936,129.84993798408442,2019
+1998,51,"(50,55]",HS,101.742,110.88338983050849,0.9175585284280936,123.19696456300599,2019
+1998,51,"(50,55]",HS,101.92433333333334,110.88338983050849,0.9192028985507246,123.13682534262757,2019
+1998,51,"(50,55]",HS,101.92433333333334,110.88338983050849,0.9192028985507246,125.80944637755843,2019
+1998,51,"(50,55]",HS,42.31956666666667,120.12367231638417,0.35229997427321846,7193.172797038853,2019
+1998,51,"(50,55]",HS,65.29356666666666,120.12367231638417,0.5435528685361461,7334.54736679388,2019
+1998,51,"(50,55]",HS,37.21423333333333,120.12367231638417,0.30979933110367897,7647.455415060598,2019
+1998,51,"(50,55]",HS,57.63556666666667,120.12367231638417,0.47980190378183696,7149.822611312577,2019
+1998,51,"(50,55]",HS,71.31056666666667,120.12367231638417,0.5936429122716749,7650.21696923868,2019
+1998,83,"(80,85]",NoHS,213251.59666666665,2365.5123163841813,90.15027957775916,33.197695996425345,2019
+1998,83,"(80,85]",NoHS,217509.08000000002,2125.2649717514123,102.34445252290244,31.424162243105393,2019
+1998,83,"(80,85]",NoHS,214712.08666666667,1995.901016949152,107.57652050043357,32.585588731396136,2019
+1998,83,"(80,85]",NoHS,214031.98333333334,1885.017627118644,113.54375696767002,32.82947350892442,2019
+1998,83,"(80,85]",NoHS,214265.37,2254.628926553672,95.03354076429629,31.86961363203593,2019
+1998,67,"(65,70]",College,64290.14986666667,4620.141242937853,13.91519143812709,32.75797024958856,2019
+1998,67,"(65,70]",College,60226.70566666667,8611.943276836158,6.9933932134296,33.733308450685655,2019
+1998,67,"(65,70]",College,118122.24320000001,7632.473333333333,15.476273291925468,36.11853352727931,2019
+1998,67,"(65,70]",College,92716.86466666668,8593.462711864406,10.789232207717484,33.976031628799,2019
+1998,67,"(65,70]",College,191494.94516666667,9499.010395480227,20.159462638106266,36.681252218847234,2019
+1998,45,"(40,45]",College,210.50383333333335,53.593638418079095,3.9277764963672013,7141.7590907031245,2019
+1998,45,"(40,45]",College,178.34023333333334,51.745581920903966,3.4464823220258,7235.003083834787,2019
+1998,45,"(40,45]",College,129.11023333333333,51.745581920903966,2.4950967510750113,7498.643542310632,2019
+1998,45,"(40,45]",College,141.30833333333334,53.593638418079095,2.6366624380117636,7135.575196095427,2019
+1998,45,"(40,45]",College,173.36253333333332,49.89752542372881,3.4743713613278833,7463.9876743474715,2019
+1998,55,"(50,55]",HS,1.9874333333333334,33.265016949152546,0.05974544778892604,5343.085073043819,2019
+1998,55,"(50,55]",HS,2.005666666666667,33.265016949152546,0.060293571163136384,5304.6977593392785,2019
+1998,55,"(50,55]",HS,1.9874333333333334,33.265016949152546,0.05974544778892604,5433.7758975027045,2019
+1998,55,"(50,55]",HS,1.9874333333333334,33.265016949152546,0.05974544778892604,5335.788751371622,2019
+1998,55,"(50,55]",HS,1.9692,33.265016949152546,0.059197324414715716,5390.04870753753,2019
+1998,36,"(35,40]",College,30.267333333333333,48.04946892655367,0.6299202469771031,9210.443459214028,2019
+1998,36,"(35,40]",College,30.44966666666667,48.04946892655367,0.6337149472600978,9432.154441393119,2019
+1998,36,"(35,40]",College,30.44966666666667,48.04946892655367,0.6337149472600978,9951.872032348674,2019
+1998,36,"(35,40]",College,30.44966666666667,48.04946892655367,0.6337149472600978,9206.66104940362,2019
+1998,36,"(35,40]",College,30.44966666666667,48.04946892655367,0.6337149472600978,9838.439454888514,2019
+1998,75,"(70,75]",HS,449511.83666666667,82072.18903954803,5.477029940678942,1.3755398392421485,2019
+1998,75,"(70,75]",HS,398298.05,82072.18903954803,4.853020915624324,1.3310561704679393,2019
+1998,75,"(70,75]",HS,497580.37333333335,82072.18903954803,6.062715996201404,1.283682963703911,2019
+1998,75,"(70,75]",HS,464324.5966666667,91330.95209039548,5.083978498407615,1.2984065677975143,2019
+1998,75,"(70,75]",HS,525432.7016666667,82072.18903954803,6.402079776542539,1.2016878665785116,2019
+1998,73,"(70,75]",College,43614.13333333334,138.6042372881356,314.6666666666667,21.13849777945019,2019
+1998,73,"(70,75]",College,48404.39466666667,138.6042372881356,349.22738015607575,25.75983580138125,2019
+1998,73,"(70,75]",College,41184.724,138.6042372881356,297.1389966555184,19.4157232272074,2019
+1998,73,"(70,75]",College,67148.626,138.6042372881356,484.4630100334448,21.34192801567523,2019
+1998,73,"(70,75]",College,62371.675,138.6042372881356,449.9983277591973,21.91752728842682,2019
+1998,35,"(30,35]",HS,1.8233333333333333,44.35335593220339,0.0411092530657748,5347.6071823664515,2019
+1998,35,"(30,35]",HS,1.8233333333333333,44.35335593220339,0.0411092530657748,5339.614004414322,2019
+1998,35,"(30,35]",HS,1.8233333333333333,46.201412429378536,0.039464882943143806,5328.426685181286,2019
+1998,35,"(30,35]",HS,0,44.35335593220339,0,5374.3672318879535,2019
+1998,35,"(30,35]",HS,1.8233333333333333,44.35335593220339,0.0411092530657748,5309.579934842187,2019
+1998,48,"(45,50]",College,260.7366666666667,147.84451977401133,1.7635869565217388,294.63934821768623,2019
+1998,48,"(45,50]",College,439.0586666666667,147.84451977401133,2.9697324414715713,284.6726528520817,2019
+1998,48,"(45,50]",College,240.68,147.84451977401133,1.627926421404682,287.09353635170385,2019
+1998,48,"(45,50]",College,395.6633333333333,147.84451977401133,2.676212374581939,291.6986867839103,2019
+1998,48,"(45,50]",College,325.28266666666667,147.84451977401133,2.200167224080267,293.3066281134939,2019
+1998,31,"(30,35]",NoHS,7.111,31.416960451977403,0.22634271099744244,6089.358025114347,2019
+1998,31,"(30,35]",NoHS,10.210666666666667,31.416960451977403,0.325004918355302,6089.721636877095,2019
+1998,31,"(30,35]",NoHS,3.099666666666667,31.416960451977403,0.09866220735785954,6094.7575818611995,2019
+1998,31,"(30,35]",NoHS,3.4643333333333337,31.416960451977403,0.11026952587054889,6082.228658690276,2019
+1998,31,"(30,35]",NoHS,4.558333333333333,31.416960451977403,0.14509148140861694,6141.475679254448,2019
+1998,46,"(45,50]",College,847.6676666666666,179.26148022598866,4.728666000068959,10553.334075500763,2019
+1998,46,"(45,50]",College,849.1263333333334,181.10953672316384,4.688468363934203,10106.571500106827,2019
+1998,46,"(45,50]",College,827.4286666666667,179.26148022598866,4.615763886494501,9881.289916979043,2019
+1998,46,"(45,50]",College,802.0843333333333,181.10953672316384,4.428725001706368,9952.668069237228,2019
+1998,46,"(45,50]",College,814.6653333333334,181.10953672316384,4.498191249744045,10318.796404198825,2019
+1998,38,"(35,40]",College,51.23566666666667,66.53003389830509,0.7701133407655146,6744.46500604753,2019
+1998,38,"(35,40]",College,51.23566666666667,66.53003389830509,0.7701133407655146,6836.715208916417,2019
+1998,38,"(35,40]",College,51.23566666666667,57.289751412429375,0.8943251699212429,7117.195160370924,2019
+1998,38,"(35,40]",College,49.412333333333336,86.85865536723163,0.5688820892336156,6778.242203844258,2019
+1998,38,"(35,40]",College,49.412333333333336,79.46642937853107,0.6218013533483706,7031.037526039363,2019
+1998,79,"(75,80]",HS,24992.977,2439.4345762711864,10.245397537245363,15.461122807023534,2019
+1998,79,"(75,80]",HS,21256.967,986.8621694915253,21.53995528165045,17.11080061364524,2019
+1998,79,"(75,80]",HS,22555.180333333334,890.7632316384181,25.321184723629248,14.131132046699694,2019
+1998,79,"(75,80]",HS,38186.617,1812.9434237288137,21.06332525339306,13.286622082032142,2019
+1998,79,"(75,80]",HS,31864.20866666667,1221.5653446327685,26.084735300219084,13.260759435712192,2019
+1998,47,"(45,50]",College,417.50686666666667,129.36395480225988,3.2273817486860965,7282.2401535091485,2019
+1998,47,"(45,50]",College,417.50686666666667,129.36395480225988,3.2273817486860965,7452.961882454978,2019
+1998,47,"(45,50]",College,417.50686666666667,129.36395480225988,3.2273817486860965,7828.983594774125,2019
+1998,47,"(45,50]",College,417.50686666666667,129.36395480225988,3.2273817486860965,7236.70424644975,2019
+1998,47,"(45,50]",College,417.50686666666667,129.36395480225988,3.2273817486860965,7798.381559731019,2019
+1998,66,"(65,70]",HS,520.197,75.77031638418079,6.865445794926177,6521.348867159921,2019
+1998,66,"(65,70]",HS,518.556,66.53003389830509,7.794314381270903,6237.016845849306,2019
+1998,66,"(65,70]",HS,520.197,44.35335593220339,11.728469899665551,5776.336631363459,2019
+1998,66,"(65,70]",HS,520.3793333333333,48.04946892655367,10.83007460766658,6337.143964488517,2019
+1998,66,"(65,70]",HS,520.3793333333333,129.36395480225988,4.022599139990445,5760.6843866482,2019
+1998,71,"(70,75]",HS,273.13533333333334,42.50529943502825,6.425912461829286,7368.784580989326,2019
+1998,71,"(70,75]",HS,272.406,42.50529943502825,6.408753817071397,7304.642405175242,2019
+1998,71,"(70,75]",HS,283.1636666666667,42.50529943502825,6.661843827250255,7809.32654962192,2019
+1998,71,"(70,75]",HS,282.98133333333334,42.50529943502825,6.657554166060782,7550.012212212483,2019
+1998,71,"(70,75]",HS,270.7103,42.50529943502825,6.368859968009307,7656.73428593787,2019
+1998,33,"(30,35]",HS,9.918933333333333,59.13780790960452,0.16772575250836122,3965.694071760202,2019
+1998,33,"(30,35]",HS,9.918933333333333,60.98586440677967,0.16264315394750176,3937.0302485946277,2019
+1998,33,"(30,35]",HS,9.918933333333333,86.85865536723163,0.11419625702696934,3958.469898801214,2019
+1998,33,"(30,35]",HS,9.918933333333333,73.92225988700567,0.13418060200668894,3966.559117083553,2019
+1998,33,"(30,35]",HS,9.736600000000001,53.593638418079095,0.1816745473417138,3949.6873714383823,2019
+1998,72,"(70,75]",HS,18.160400000000003,53.593638418079095,0.338853650098028,7891.540934557047,2019
+1998,72,"(70,75]",HS,40.5874,97.9469943502825,0.41438127090301,7920.345835635713,2019
+1998,72,"(70,75]",HS,22.736966666666667,57.289751412429375,0.39687668572661566,8498.194509741998,2019
+1998,72,"(70,75]",HS,38.873466666666666,38.80918644067796,1.001656314699793,8007.24631840662,2019
+1998,72,"(70,75]",HS,37.26893333333334,25.872790960451983,1.440468227424749,8377.330443176528,2019
+1998,48,"(45,50]",HS,210.41266666666667,83.16254237288136,2.5301374953548863,7545.779315011768,2019
+1998,48,"(45,50]",HS,210.41266666666667,79.46642937853107,2.6478183090923233,7694.084010898584,2019
+1998,48,"(45,50]",HS,210.41266666666667,77.61837288135592,2.7108616021659504,8022.330689343966,2019
+1998,48,"(45,50]",HS,210.41266666666667,81.31448587570623,2.5876406202493154,7500.304120131153,2019
+1998,48,"(45,50]",HS,210.41266666666667,85.0105988700565,2.4751345063254324,8025.227613828089,2019
+1998,31,"(30,35]",HS,-3.272883333333333,29.56890395480226,-0.11068666387959866,5474.341822869232,2019
+1998,31,"(30,35]",HS,-3.0905500000000004,29.56890395480226,-0.10452027591973245,5486.381109283773,2019
+1998,31,"(30,35]",HS,-3.0814333333333335,29.56890395480226,-0.10421195652173913,5524.242027485583,2019
+1998,31,"(30,35]",HS,-3.0814333333333335,29.56890395480226,-0.10421195652173913,5486.7974013803705,2019
+1998,31,"(30,35]",HS,-3.0905500000000004,29.56890395480226,-0.10452027591973245,5461.323761270998,2019
+1998,52,"(50,55]",HS,2057.6316666666667,336.3462824858757,6.117598956227719,1538.1767565535763,2019
+1998,52,"(50,55]",HS,1920.881666666667,352.978790960452,5.441918086466232,1561.804245706983,2019
+1998,52,"(50,55]",HS,1965.1886666666667,218.07066666666665,9.011705685618729,1489.3921162782708,2019
+1998,52,"(50,55]",HS,1920.881666666667,341.8904519774011,5.618412727108381,1668.5319049342186,2019
+1998,52,"(50,55]",HS,1782.3083333333334,393.636033898305,4.527807872878296,1592.0852877239522,2019
+1998,29,"(25,30]",HS,27.897000000000002,83.16254237288136,0.3354515050167224,5180.359212745039,2019
+1998,29,"(25,30]",HS,26.073666666666668,83.16254237288136,0.3135265700483092,5277.612479291563,2019
+1998,29,"(25,30]",HS,25.891333333333332,83.16254237288136,0.31133407655146783,4782.564999162549,2019
+1998,29,"(25,30]",HS,31.54366666666667,83.16254237288136,0.3793013749535489,5014.908326796147,2019
+1998,29,"(25,30]",HS,27.897000000000002,83.16254237288136,0.3354515050167224,5037.574007099573,2019
+1998,22,"(20,25]",HS,3.4643333333333337,6.653003389830508,0.5207172054998143,1417.1385962096622,2019
+1998,22,"(20,25]",HS,3.4643333333333337,6.653003389830508,0.5207172054998143,1418.5886053289908,2019
+1998,22,"(20,25]",HS,3.6466666666666665,6.653003389830508,0.5481233742103307,1427.9009247905144,2019
+1998,22,"(20,25]",HS,3.4643333333333337,6.653003389830508,0.5207172054998143,1409.3611829884826,2019
+1998,22,"(20,25]",HS,3.4643333333333337,6.653003389830508,0.5207172054998143,1417.467869097701,2019
+1998,40,"(35,40]",NoHS,17.81396666666667,33.265016949152546,0.5355165366034932,6644.731720417245,2019
+1998,40,"(35,40]",NoHS,17.86866666666667,33.265016949152546,0.5371609067261242,6662.051341150507,2019
+1998,40,"(35,40]",NoHS,17.978066666666667,33.265016949152546,0.5404496469713861,6879.090724487416,2019
+1998,40,"(35,40]",NoHS,17.978066666666667,33.265016949152546,0.5404496469713861,6675.9614582239765,2019
+1998,40,"(35,40]",NoHS,17.86866666666667,33.265016949152546,0.5371609067261242,6907.281820286943,2019
+1998,20,"(15,20]",NoHS,-0.9116666666666666,18.480564971751416,-0.049331103678929754,5299.927162302182,2019
+1998,20,"(15,20]",NoHS,-0.9116666666666666,20.328621468926556,-0.044846457889936145,5279.648236618034,2019
+1998,20,"(15,20]",NoHS,-0.9116666666666666,20.328621468926556,-0.044846457889936145,5290.610176211301,2019
+1998,20,"(15,20]",NoHS,-0.9116666666666666,20.328621468926556,-0.044846457889936145,5322.256578337555,2019
+1998,20,"(15,20]",NoHS,-0.9116666666666666,18.480564971751416,-0.049331103678929754,5244.8826707419885,2019
+1998,61,"(60,65]",HS,0,72.07420338983052,0,4633.709651789364,2019
+1998,61,"(60,65]",HS,0,27.720847457627123,0,4608.583233464976,2019
+1998,61,"(60,65]",HS,0,31.416960451977403,0,4774.4101746565975,2019
+1998,61,"(60,65]",HS,0,40.65724293785311,0,4600.353565571598,2019
+1998,61,"(60,65]",HS,0,60.98586440677967,0,4677.573549297203,2019
+1998,43,"(40,45]",HS,377.1929666666667,83.16254237288136,4.535611296915644,7092.949097580759,2019
+1998,43,"(40,45]",HS,303.32973333333337,83.16254237288136,3.647432181345225,7230.429846369337,2019
+1998,43,"(40,45]",HS,394.55109999999996,83.16254237288136,4.744336677814938,7575.218665712925,2019
+1998,43,"(40,45]",HS,305.15306666666663,83.16254237288136,3.6693571163136376,7114.927732922438,2019
+1998,43,"(40,45]",HS,303.3479666666667,83.16254237288136,3.6476514306949093,7402.963464608534,2019
+1998,32,"(30,35]",NoHS,0,15.523674576271185,0,5258.836997973574,2019
+1998,32,"(30,35]",NoHS,0,15.523674576271185,0,5234.085886021813,2019
+1998,32,"(30,35]",NoHS,0,15.523674576271185,0,5279.523695849626,2019
+1998,32,"(30,35]",NoHS,0,15.523674576271185,0,5234.112167057585,2019
+1998,32,"(30,35]",NoHS,0,15.523674576271185,0,5268.0142054452035,2019
+1998,71,"(70,75]",College,4497.7075,184.80564971751414,24.3375,1028.1759711303873,2019
+1998,71,"(70,75]",College,4220.560833333333,184.80564971751414,22.83783444816053,1132.8977317433782,2019
+1998,71,"(70,75]",College,4636.463166666667,184.80564971751414,25.088319397993313,1036.2978481052246,2019
+1998,71,"(70,75]",College,4497.7075,184.80564971751414,24.3375,1327.2487414202371,2019
+1998,71,"(70,75]",College,4100.220833333334,184.80564971751414,22.18666387959866,1037.4117093602536,2019
+1998,51,"(50,55]",College,1592.2258333333332,462.0141242937853,3.446270903010033,3128.473486013038,2019
+1998,51,"(50,55]",College,1597.6958333333332,462.0141242937853,3.4581103678929765,3416.8860190974797,2019
+1998,51,"(50,55]",College,1586.3911666666668,462.0141242937853,3.4336421404682276,3182.5613830947,2019
+1998,51,"(50,55]",College,1608.6358333333333,462.0141242937853,3.481789297658863,3160.2952598344245,2019
+1998,51,"(50,55]",College,1571.9868333333334,462.0141242937853,3.402464882943144,3263.3232282154554,2019
+1998,82,"(80,85]",HS,396.75733333333335,40.65724293785311,9.758589236850106,9431.321790759303,2019
+1998,82,"(80,85]",HS,396.9396666666667,40.65724293785311,9.7630738826391,9628.027104295103,2019
+1998,82,"(80,85]",HS,396.9396666666667,40.65724293785311,9.7630738826391,9992.658818955857,2019
+1998,82,"(80,85]",HS,367.7663333333333,40.65724293785311,9.04553055640012,9586.178233114591,2019
+1998,82,"(80,85]",HS,382.353,40.65724293785311,9.404302219519609,10023.678763692333,2019
+1998,39,"(35,40]",HS,-1.6227666666666667,64.68197740112994,-0.025088389870998568,5087.866257153379,2019
+1998,39,"(35,40]",HS,2.935566666666667,64.68197740112994,0.04538461538461539,5080.26131928057,2019
+1998,39,"(35,40]",HS,24.4509,64.68197740112994,0.37801720019111323,5069.617384134879,2019
+1998,39,"(35,40]",HS,24.4509,64.68197740112994,0.37801720019111323,5113.326532816323,2019
+1998,39,"(35,40]",HS,2.0239000000000003,64.68197740112994,0.0312900143334926,5051.68604740104,2019
+1998,38,"(35,40]",NoHS,0,79.46642937853107,0,6606.077697454823,2019
+1998,38,"(35,40]",NoHS,0,79.46642937853107,0,6639.163178823786,2019
+1998,38,"(35,40]",NoHS,0,79.46642937853107,0,6665.030198217615,2019
+1998,38,"(35,40]",NoHS,0,79.46642937853107,0,6604.843032885554,2019
+1998,38,"(35,40]",NoHS,0,79.46642937853107,0,6674.702059937643,2019
+1998,82,"(80,85]",HS,262.19533333333334,60.98586440677967,4.299280429715211,6567.202231182615,2019
+1998,82,"(80,85]",HS,200.38433333333336,81.31448587570623,2.4643128610519915,6679.808237064384,2019
+1998,82,"(80,85]",HS,247.82746666666668,48.04946892655367,5.157756624646257,6804.488418656731,2019
+1998,82,"(80,85]",HS,219.347,59.13780790960452,3.709082357859532,6776.396361531406,2019
+1998,82,"(80,85]",HS,217.88833333333335,57.289751412429375,3.803268961052973,6861.02121283391,2019
+1998,41,"(40,45]",HS,1385.8974333333333,456.4699548022599,3.0361197243172247,672.9560629452508,2019
+1998,41,"(40,45]",HS,1629.8776666666668,319.71377401129945,5.0979275813405,714.1206566645141,2019
+1998,41,"(40,45]",HS,1914.2265,325.2579435028249,5.885256726968683,666.3726103132212,2019
+1998,41,"(40,45]",HS,1287.2915666666668,282.75264406779667,4.552712746191006,688.3704121837844,2019
+1998,41,"(40,45]",HS,2444.7982666666667,232.8551186440678,10.499224929659713,979.7517024446639,2019
+1998,59,"(55,60]",College,3976.69,134.9081242937853,29.477023869519403,2679.3987741086435,2019
+1998,59,"(55,60]",College,3958.4566666666665,134.9081242937853,29.341870160810007,2650.2112475921576,2019
+1998,59,"(55,60]",College,3956.6333333333337,134.9081242937853,29.32835478993907,2562.8814713947713,2019
+1998,59,"(55,60]",College,3974.866666666667,134.9081242937853,29.463508498648466,3024.7034180564006,2019
+1998,59,"(55,60]",College,3974.866666666667,134.9081242937853,29.463508498648466,2743.0812517787103,2019
+1998,32,"(30,35]",HS,3.7378333333333336,38.80918644067796,0.09631310718267241,5175.899373970733,2019
+1998,32,"(30,35]",HS,3.7378333333333336,40.65724293785311,0.0919352386743691,5191.223724423689,2019
+1998,32,"(30,35]",HS,3.7378333333333336,40.65724293785311,0.0919352386743691,5191.482369075566,2019
+1998,32,"(30,35]",HS,3.7378333333333336,40.65724293785311,0.0919352386743691,5217.323148125226,2019
+1998,32,"(30,35]",HS,3.7378333333333336,38.80918644067796,0.09631310718267241,5197.522273779371,2019
+1998,28,"(25,30]",College,-63.81666666666666,48.04946892655367,-1.328145099048109,5799.892806780327,2019
+1998,28,"(25,30]",College,-63.81666666666666,48.04946892655367,-1.328145099048109,5817.064622447312,2019
+1998,28,"(25,30]",College,-63.81666666666666,48.04946892655367,-1.328145099048109,5817.35444864901,2019
+1998,28,"(25,30]",College,-63.81666666666666,48.04946892655367,-1.328145099048109,5846.310527139527,2019
+1998,28,"(25,30]",College,-63.81666666666666,48.04946892655367,-1.328145099048109,5824.122509098832,2019
+1998,51,"(50,55]",HS,0,4.620141242937854,0,6826.131397800386,2019
+1998,51,"(50,55]",HS,0,4.804946892655368,0,6801.029979789439,2019
+1998,51,"(50,55]",HS,0,4.620141242937854,0,6815.321957467553,2019
+1998,51,"(50,55]",HS,0,4.804946892655368,0,6798.30247201327,2019
+1998,51,"(50,55]",HS,0,4.804946892655368,0,6828.048018595617,2019
+1998,29,"(25,30]",HS,188.4415,157.08480225988703,1.1996163682864447,8693.361309473092,2019
+1998,29,"(25,30]",HS,195.91716666666667,157.08480225988703,1.2472063741884714,8695.8175139194,2019
+1998,29,"(25,30]",HS,190.26483333333334,157.08480225988703,1.2112236867991342,8845.72473235006,2019
+1998,29,"(25,30]",HS,180.4006,157.08480225988703,1.1484280936454847,8734.942819381948,2019
+1998,29,"(25,30]",HS,180.4006,157.08480225988703,1.1484280936454847,8791.285704930906,2019
+1998,43,"(40,45]",College,339.8693333333333,114.57950282485875,2.966231524436293,8152.650005324324,2019
+1998,43,"(40,45]",College,339.687,114.57950282485875,2.9646401985111663,8264.16123953428,2019
+1998,43,"(40,45]",College,339.687,114.57950282485875,2.9646401985111663,8603.202939012095,2019
+1998,43,"(40,45]",College,339.687,114.57950282485875,2.9646401985111663,8193.479585068677,2019
+1998,43,"(40,45]",College,338.046,112.73144632768363,2.9986841383847795,8499.056348087215,2019
+1998,67,"(65,70]",College,2171.59,38.80918644067796,55.95556617295749,4417.75171148942,2019
+1998,67,"(65,70]",College,2155.18,38.80918644067796,55.532728141423796,4518.294540407702,2019
+1998,67,"(65,70]",College,2133.3,36.96112994350283,57.71739130434782,4425.770719074218,2019
+1998,67,"(65,70]",College,2133.3,36.96112994350283,57.71739130434782,4957.516978964052,2019
+1998,67,"(65,70]",College,2133.3,38.80918644067796,54.968944099378895,4538.334301293278,2019
+1998,73,"(70,75]",HS,162634.04,2032.8621468926553,80.0024931590149,17.946207271687662,2019
+1998,73,"(70,75]",HS,161886.47333333336,2088.30384180791,77.52055524314085,18.83866816423636,2019
+1998,73,"(70,75]",HS,160407.75,2199.187231638418,72.93956043956045,16.444942368718884,2019
+1998,73,"(70,75]",HS,179859.07,2014.381581920904,89.287487343131545,15.79138562042399,2019
+1998,73,"(70,75]",HS,180925.72,2254.628926553672,80.24634025988269,16.010495326213785,2019
+1998,65,"(60,65]",College,1931.8216666666667,497.127197740113,3.8859705834814937,664.4705116736146,2019
+1998,65,"(60,65]",College,1933.645,497.127197740113,3.8896383235319716,701.2900624877425,2019
+1998,65,"(60,65]",College,1933.645,497.127197740113,3.8896383235319716,663.2231524807992,2019
+1998,65,"(60,65]",College,1929.9983333333332,497.127197740113,3.8823028434310154,683.3879712150743,2019
+1998,65,"(60,65]",College,1931.8216666666667,497.127197740113,3.8859705834814937,655.3693126043007,2019
+1998,47,"(45,50]",College,516.0033333333333,129.36395480225988,3.98877209746775,6318.855944997659,2019
+1998,47,"(45,50]",College,517.8266666666667,129.36395480225988,4.002866698518873,6054.942803628193,2019
+1998,47,"(45,50]",College,516.1856666666667,129.36395480225988,3.9901815575728627,5642.274900980045,2019
+1998,47,"(45,50]",College,516.0033333333333,129.36395480225988,3.98877209746775,6174.281280390614,2019
+1998,47,"(45,50]",College,518.009,129.36395480225988,4.004276158623985,5632.610247920407,2019
+1998,52,"(50,55]",College,72.91510000000001,60.98586440677967,1.1956065673456977,6284.748020883595,2019
+1998,52,"(50,55]",College,230.1776,60.98586440677967,3.774277896017026,6366.802735114477,2019
+1998,52,"(50,55]",College,273.75526666666667,60.98586440677967,4.4888314583966755,6598.806339350837,2019
+1998,52,"(50,55]",College,254.42793333333333,60.98586440677967,4.171916489307793,6279.306193610575,2019
+1998,52,"(50,55]",College,160.70860000000002,60.98586440677967,2.6351778656126483,6568.309175441042,2019
+1998,43,"(40,45]",NoHS,181.604,55.441694915254246,3.275585284280936,7953.135797741581,2019
+1998,43,"(40,45]",NoHS,181.604,55.441694915254246,3.275585284280936,8114.4237139959005,2019
+1998,43,"(40,45]",NoHS,181.78633333333335,55.441694915254246,3.278874024526198,8498.03889551971,2019
+1998,43,"(40,45]",NoHS,181.78633333333335,55.441694915254246,3.278874024526198,7951.681172330597,2019
+1998,43,"(40,45]",NoHS,181.604,55.441694915254246,3.275585284280936,8437.19040545914,2019
+1998,30,"(25,30]",HS,50.706900000000005,96.09893785310734,0.5276530743503988,7731.5996457198735,2019
+1998,30,"(25,30]",HS,41.77256666666667,96.09893785310734,0.4346829174170312,7779.505221982081,2019
+1998,30,"(25,30]",HS,44.99986666666667,96.09893785310734,0.46826601492153336,7894.838155569707,2019
+1998,30,"(25,30]",HS,49.63113333333333,96.09893785310734,0.5164587085155646,7733.218697401046,2019
+1998,30,"(25,30]",HS,44.379933333333334,96.09893785310734,0.46181502444044253,7849.510909990897,2019
+1998,50,"(45,50]",College,201.58773333333335,81.31448587570623,2.4791121921556702,6399.0161651591325,2019
+1998,50,"(45,50]",College,228.39073333333334,81.31448587570623,2.808733657646701,6482.562783264771,2019
+1998,50,"(45,50]",College,199.2174,81.31448587570623,2.4499619945272118,6718.784634793342,2019
+1998,50,"(45,50]",College,206.87539999999998,81.31448587570623,2.544139556096077,6393.47539557341,2019
+1998,50,"(45,50]",College,227.1144,81.31448587570623,2.793037397385223,6687.732977001843,2019
+1998,72,"(70,75]",College,0.547,22.176677966101696,0.024665551839464884,6168.484094075657,2019
+1998,72,"(70,75]",College,0.3646666666666667,22.176677966101696,0.016443701226309924,6240.47939430539,2019
+1998,72,"(70,75]",College,0.547,22.176677966101696,0.024665551839464884,6245.8759439968335,2019
+1998,72,"(70,75]",College,0.3646666666666667,22.176677966101696,0.016443701226309924,6211.351778061976,2019
+1998,72,"(70,75]",College,0.3646666666666667,22.176677966101696,0.016443701226309924,6246.443568794251,2019
+1998,52,"(50,55]",College,3779.0406666666668,1108.8338983050849,3.4081215161649943,14.481830946168603,2019
+1998,52,"(50,55]",College,3948.6106666666665,1108.8338983050849,3.561047937569676,15.676359751208546,2019
+1998,52,"(50,55]",College,3791.804,1108.8338983050849,3.419632107023411,15.597974419965292,2019
+1998,52,"(50,55]",College,3795.4506666666666,1108.8338983050849,3.422920847268673,15.895680834604011,2019
+1998,52,"(50,55]",College,4712.587333333333,1108.8338983050849,4.250039018952061,16.53807751867354,2019
+1998,38,"(35,40]",HS,6.472833333333333,44.35335593220339,0.14593784838350055,6524.865464677525,2019
+1998,38,"(35,40]",HS,6.491066666666667,42.50529943502825,0.15271193834520866,6495.488050694749,2019
+1998,38,"(35,40]",HS,6.6734,42.50529943502825,0.15700159953468082,6445.301136970284,2019
+1998,38,"(35,40]",HS,6.491066666666667,42.50529943502825,0.15271193834520866,6556.419195545446,2019
+1998,38,"(35,40]",HS,6.6734,42.50529943502825,0.15700159953468082,6443.573000264083,2019
+1998,57,"(55,60]",HS,4.558333333333333,11.088338983050848,0.411092530657748,5369.410709611421,2019
+1998,57,"(55,60]",HS,4.558333333333333,12.936395480225992,0.35236502627806965,5364.908641088941,2019
+1998,57,"(55,60]",HS,4.558333333333333,12.56678418079096,0.3627287035215424,5492.979687562436,2019
+1998,57,"(55,60]",HS,4.558333333333333,11.27314463276836,0.4043533088436866,5382.476406659905,2019
+1998,57,"(55,60]",HS,4.558333333333333,11.088338983050848,0.411092530657748,5458.566441934459,2019
+1998,68,"(65,70]",HS,495.3996666666667,83.16254237288136,5.9570048309178745,7780.720444524134,2019
+1998,68,"(65,70]",HS,492.84700000000004,83.16254237288136,5.926309921962096,7440.920863588227,2019
+1998,68,"(65,70]",HS,497.0406666666667,83.16254237288136,5.976737272389446,6891.249095385618,2019
+1998,68,"(65,70]",HS,489.3826666666667,83.16254237288136,5.884652545522111,7560.475726793849,2019
+1998,68,"(65,70]",HS,487.1946666666667,83.16254237288136,5.858342623560015,6873.129847872044,2019
+1998,45,"(40,45]",College,215.70033333333336,105.33922033898305,2.0476735316552253,6941.612000089872,2019
+1998,45,"(40,45]",College,211.87133333333335,105.33922033898305,2.0113242973654875,6886.27416848326,2019
+1998,45,"(40,45]",College,212.05366666666666,105.33922033898305,2.013055213284046,6857.847014330255,2019
+1998,45,"(40,45]",College,215.518,105.33922033898305,2.045942615736666,6967.288447242053,2019
+1998,45,"(40,45]",College,213.69466666666665,105.33922033898305,2.0286334565510766,6882.500192424368,2019
+1998,32,"(30,35]",College,544.6661333333333,351.1307344632769,1.5511776095757785,1175.205226025935,2019
+1998,32,"(30,35]",College,597.9074666666667,351.1307344632769,1.7028058440415417,1086.4623094970605,2019
+1998,32,"(30,35]",College,543.7544666666666,351.1307344632769,1.5485812356979403,1126.7504420920163,2019
+1998,32,"(30,35]",College,543.1892333333333,349.2826779661017,1.5551565181999962,1232.6827243813786,2019
+1998,32,"(30,35]",College,543.3715666666667,351.1307344632769,1.5474907586692481,1215.362032229049,2019
+1998,60,"(55,60]",College,45883.27166666667,3899.3992090395477,11.766754109274201,20.07614114255581,2019
+1998,60,"(55,60]",College,49632.227333333336,4139.646553672316,11.989484292881032,21.128484713693602,2019
+1998,60,"(55,60]",College,49055.871666666666,3973.3214689265537,12.346313292369915,25.430635631169316,2019
+1998,60,"(55,60]",College,47250.954,3825.4769491525426,12.351650428966117,22.998124955382725,2019
+1998,60,"(55,60]",College,48190.153,3899.3992090395477,12.358353278701518,22.314247914326522,2019
+1998,23,"(20,25]",HS,-0.6928666666666667,25.872790960451983,-0.0267797419971333,4106.846298970359,2019
+1998,23,"(20,25]",HS,3.6649000000000003,86.85865536723163,0.04219383761474419,4075.456942066778,2019
+1998,23,"(20,25]",HS,-1.5498333333333334,44.35335593220339,-0.034942865105908584,4104.106532962843,2019
+1998,23,"(20,25]",HS,3.4825666666666666,44.35335593220339,0.07851867335562987,4107.864776694656,2019
+1998,23,"(20,25]",HS,-3.282,60.98586440677967,-0.05381574946792338,4062.175476736179,2019
+1998,53,"(50,55]",College,3267.4133333333334,412.11659887005646,7.928371102479116,3367.3833616380807,2019
+1998,53,"(50,55]",College,3460.6866666666665,412.11659887005646,8.397348410996296,3623.8764854168826,2019
+1998,53,"(50,55]",College,3725.07,412.11659887005646,9.03887397453395,3484.9668742741787,2019
+1998,53,"(50,55]",College,3269.2366666666667,412.11659887005646,7.932795416710411,4087.8618361036074,2019
+1998,53,"(50,55]",College,3721.4233333333336,412.11659887005646,9.03002534607136,3268.9642418434514,2019
+1998,46,"(45,50]",HS,7657.088333333333,221.76677966101698,34.52766164994425,2037.4491931116845,2019
+1998,46,"(45,50]",HS,7709.235666666667,221.76677966101698,34.76280657748049,1999.2419773676406,2019
+1998,46,"(45,50]",HS,7578.502666666667,221.76677966101698,34.17329988851728,1930.3250248292675,2019
+1998,46,"(45,50]",HS,7664.017,221.76677966101698,34.55890468227424,2309.894655239158,2019
+1998,46,"(45,50]",HS,7795.844,221.76677966101698,35.153344481605345,2103.3926778001655,2019
+1998,53,"(50,55]",College,5356.953333333333,288.29681355932206,18.58138238573021,192.1071176168304,2019
+1998,53,"(50,55]",College,2371.245,646.8197740112995,3.666005733397037,190.6471069453121,2019
+1998,53,"(50,55]",College,3625.516,462.0141242937853,7.847197324414716,182.3729297077571,2019
+1998,53,"(50,55]",College,2863.9096666666665,408.4204858757063,7.012159687646603,199.43240001319322,2019
+1998,53,"(50,55]",College,4161.940666666666,419.50882485875707,9.920984780398685,186.61529837275322,2019
+1998,28,"(25,30]",College,88.50460000000001,153.38868926553673,0.5769956078494581,7835.572345779103,2019
+1998,28,"(25,30]",College,90.34616666666668,155.23674576271185,0.581989568402612,7837.786192293699,2019
+1998,28,"(25,30]",College,84.85793333333334,155.23674576271185,0.5466356107660456,7972.901806767006,2019
+1998,28,"(25,30]",College,90.34616666666668,153.38868926553673,0.5890014909134867,7873.050936342513,2019
+1998,28,"(25,30]",College,88.52283333333332,153.38868926553673,0.5771144779788048,7923.834372135953,2019
+1998,46,"(45,50]",HS,11167.916666666666,1007.190790960452,11.088183854438341,17.153329630576767,2019
+1998,46,"(45,50]",HS,11166.093333333334,1007.190790960452,11.086373538707006,18.686758894134645,2019
+1998,46,"(45,50]",HS,11166.093333333334,1007.190790960452,11.086373538707006,21.332893182162632,2019
+1998,46,"(45,50]",HS,11166.093333333334,1007.190790960452,11.086373538707006,21.09820419040399,2019
+1998,46,"(45,50]",HS,11166.093333333334,1007.190790960452,11.086373538707006,19.418969895583434,2019
+1998,25,"(20,25]",NoHS,-15.133666666666667,35.11307344632768,-0.4309980637211759,4951.447698478893,2019
+1998,25,"(20,25]",NoHS,-9.663666666666666,35.11307344632768,-0.2752156310508713,4951.743362589689,2019
+1998,25,"(20,25]",NoHS,-37.925333333333334,35.11307344632768,-1.080091533180778,4955.838247156889,2019
+1998,25,"(20,25]",NoHS,-15.133666666666667,35.11307344632768,-0.4309980637211759,4945.65058738336,2019
+1998,25,"(20,25]",NoHS,-8.387333333333334,35.11307344632768,-0.23886639676113364,4993.826195124651,2019
+1998,47,"(45,50]",College,3491.6833333333334,739.2225988700566,4.723453177257524,531.0541394050672,2019
+1998,47,"(45,50]",College,3497.1533333333336,739.2225988700566,4.730852842809364,529.5993803582253,2019
+1998,47,"(45,50]",College,3513.5633333333335,739.2225988700566,4.753051839464883,501.61915325783195,2019
+1998,47,"(45,50]",College,3497.1533333333336,739.2225988700566,4.730852842809364,548.7229031147646,2019
+1998,47,"(45,50]",College,3513.5633333333335,739.2225988700566,4.753051839464883,525.1549058701582,2019
+1998,55,"(50,55]",College,16958.823333333334,924.0282485875706,18.353143812709032,401.16566193425894,2019
+1998,55,"(50,55]",College,16958.823333333334,924.0282485875706,18.353143812709032,397.8124158847421,2019
+1998,55,"(50,55]",College,16958.823333333334,924.0282485875706,18.353143812709032,378.99457557511573,2019
+1998,55,"(50,55]",College,16958.823333333334,924.0282485875706,18.353143812709032,416.8849863685161,2019
+1998,55,"(50,55]",College,16958.823333333334,924.0282485875706,18.353143812709032,396.4605293820811,2019
+1998,50,"(45,50]",College,793.697,133.06006779661018,5.964952619843924,5550.432254169724,2019
+1998,50,"(45,50]",College,515.0916666666667,77.61837288135592,6.636207994903648,5305.994375289576,2019
+1998,50,"(45,50]",College,465.3146666666667,114.57950282485875,4.061063760923509,5382.850871010809,2019
+1998,50,"(45,50]",College,928.806,218.07066666666665,4.259197324414716,5367.494908669991,2019
+1998,50,"(45,50]",College,218.61766666666665,295.68903954802266,0.7393499163879597,5526.227725237278,2019
+1998,55,"(50,55]",HS,52.69433333333334,20.328621468926556,2.5921252660383094,7344.229348762007,2019
+1998,55,"(50,55]",HS,52.512,15.154063276836158,3.4652092340321397,7360.758935120364,2019
+1998,55,"(50,55]",HS,52.32966666666667,12.56678418079096,4.164125516427307,7671.0576337311095,2019
+1998,55,"(50,55]",HS,52.512,17.741342372881356,2.959866220735786,7200.545110693978,2019
+1998,55,"(50,55]",HS,52.32966666666667,36.96112994350283,1.415802675585284,7614.12101509682,2019
+1998,68,"(65,70]",College,2721.3250000000003,88.70671186440678,30.67778010033445,362.3185901653538,2019
+1998,68,"(65,70]",College,3048.6680333333334,90.55476836158192,33.666565422155486,365.24254325360863,2019
+1998,68,"(65,70]",College,2712.573,88.70671186440678,30.579117892976587,279.811274046509,2019
+1998,68,"(65,70]",College,4238.703,88.70671186440678,47.78334030100335,319.35437797441506,2019
+1998,68,"(65,70]",College,2972.0333333333338,88.70671186440678,33.50404124860647,283.9934941029169,2019
+1998,54,"(50,55]",HS,594.7713333333334,38.80918644067796,15.32552954292085,5862.02818262727,2019
+1998,54,"(50,55]",HS,590.9423333333334,36.96112994350283,15.988210702341135,5613.212319160344,2019
+1998,54,"(50,55]",HS,592.948,38.80918644067796,15.278547539417106,5759.621826425291,2019
+1998,54,"(50,55]",HS,592.948,38.80918644067796,15.278547539417106,5685.985524398325,2019
+1998,54,"(50,55]",HS,593.1303333333334,36.96112994350283,16.04740802675585,5788.67508620566,2019
+1998,35,"(30,35]",HS,4.303066666666667,73.92225988700567,0.058210702341137115,6320.602481080897,2019
+1998,35,"(30,35]",HS,4.303066666666667,73.92225988700567,0.058210702341137115,6327.919061083881,2019
+1998,35,"(30,35]",HS,4.303066666666667,73.92225988700567,0.058210702341137115,6383.975852542591,2019
+1998,35,"(30,35]",HS,4.303066666666667,73.92225988700567,0.058210702341137115,6294.468782471487,2019
+1998,35,"(30,35]",HS,4.303066666666667,73.92225988700567,0.058210702341137115,6383.091044526521,2019
+1998,40,"(35,40]",HS,49.95933333333333,131.21201129943503,0.3807527438880776,5967.621213756129,2019
+1998,40,"(35,40]",HS,49.95933333333333,131.21201129943503,0.3807527438880776,5709.307486450731,2019
+1998,40,"(35,40]",HS,49.95933333333333,131.21201129943503,0.3807527438880776,5331.549354567733,2019
+1998,40,"(35,40]",HS,49.777,131.21201129943503,0.37936313533374155,5826.950279381149,2019
+1998,40,"(35,40]",HS,49.95933333333333,131.21201129943503,0.3807527438880776,5314.078548643711,2019
+1998,31,"(30,35]",HS,24.487366666666667,55.441694915254246,0.4416778149386844,7784.078252532578,2019
+1998,31,"(30,35]",HS,24.469133333333335,55.441694915254246,0.44134894091415827,7876.388008692852,2019
+1998,31,"(30,35]",HS,24.43266666666667,55.441694915254246,0.4406911928651059,8044.2957382016,2019
+1998,31,"(30,35]",HS,24.250333333333334,55.441694915254246,0.43740245261984384,7770.915751236525,2019
+1998,31,"(30,35]",HS,24.323266666666665,55.441694915254246,0.4387179487179486,7912.018349643413,2019
+1998,77,"(75,80]",College,877.7526666666666,64.68197740112994,13.570281892021022,10539.780332767627,2019
+1998,77,"(75,80]",College,914.2193333333333,64.68197740112994,14.134065934065935,10174.650373158365,2019
+1998,77,"(75,80]",College,888.6926666666667,64.68197740112994,13.739417104634496,9881.289916979043,2019
+1998,77,"(75,80]",College,886.5046666666666,64.68197740112994,13.705590062111801,10062.590158865458,2019
+1998,77,"(75,80]",College,875.7470000000001,64.68197740112994,13.539273769708554,10318.796404198825,2019
+1998,50,"(45,50]",HS,12.125166666666667,42.50529943502825,0.2852624690998982,4887.875546101614,2019
+1998,50,"(45,50]",HS,13.5109,44.35335593220339,0.30461956521739125,4886.232278191126,2019
+1998,50,"(45,50]",HS,11.7605,36.96112994350283,0.31818561872909695,4909.723737552553,2019
+1998,50,"(45,50]",HS,11.85349,35.11307344632768,0.33758053159654994,4855.09854369122,2019
+1998,50,"(45,50]",HS,12.362200000000001,38.80918644067796,0.3185379837553751,5891.052872741389,2019
+1998,64,"(60,65]",College,22683.543,2772.084745762712,8.182846153846155,410.0844390573279,2019
+1998,64,"(60,65]",College,22687.18966666667,2772.084745762712,8.18416164994426,409.24260336737694,2019
+1998,64,"(60,65]",College,22683.725333333332,2772.084745762712,8.182911928651059,401.4830055523254,2019
+1998,64,"(60,65]",College,22685.36633333333,2772.084745762712,8.183503901895206,396.0547782505392,2019
+1998,64,"(60,65]",College,22685.36633333333,2772.084745762712,8.183503901895206,378.47519618782866,2019
+1998,64,"(60,65]",College,63635.60966666666,3954.840903954803,16.09056121651611,19.870363582697635,2019
+1998,64,"(60,65]",College,61832.880000000005,4139.646553672316,14.936753463927378,20.51857384330544,2019
+1998,64,"(60,65]",College,62606.338,4010.282598870057,15.611452922953623,22.274098763990136,2019
+1998,64,"(60,65]",College,61980.20533333334,3696.1129943502824,16.76902341137124,20.614063977660088,2019
+1998,64,"(60,65]",College,62292.907,3954.840903954803,15.75105257400056,22.35096783731165,2019
+1998,66,"(65,70]",HS,1284.7206666666668,83.16254237288136,15.448309178743962,579.9582241740359,2019
+1998,66,"(65,70]",HS,1961.9978333333333,83.16254237288136,23.592326272761053,613.0269332010705,2019
+1998,66,"(65,70]",HS,757.8685,83.16254237288136,9.113099219620958,277.49182659986275,2019
+1998,66,"(65,70]",HS,1353.0045,83.16254237288136,16.269397993311035,590.088024130414,2019
+1998,66,"(65,70]",HS,940.1106666666667,83.16254237288136,11.304496469713861,295.5983830993272,2019
+1998,40,"(35,40]",HS,4.011333333333334,48.04946892655367,0.08348340622588116,5063.421620721764,2019
+1998,40,"(35,40]",HS,4.011333333333334,48.04946892655367,0.08348340622588116,5068.674241983401,2019
+1998,40,"(35,40]",HS,4.193666666666667,48.04946892655367,0.08727810650887576,5080.7711887507785,2019
+1998,40,"(35,40]",HS,4.193666666666667,48.04946892655367,0.08727810650887576,5087.948276037297,2019
+1998,40,"(35,40]",HS,4.193666666666667,48.04946892655367,0.08727810650887576,5063.845970667496,2019
+1998,36,"(35,40]",HS,3.4643333333333337,27.720847457627123,0.1249721293199554,7008.33120503401,2019
+1998,36,"(35,40]",HS,3.4643333333333337,27.720847457627123,0.1249721293199554,6998.462051688692,2019
+1998,36,"(35,40]",HS,3.4643333333333337,27.720847457627123,0.1249721293199554,6993.198281461111,2019
+1998,36,"(35,40]",HS,3.4643333333333337,27.720847457627123,0.1249721293199554,7003.953941895275,2019
+1998,36,"(35,40]",HS,3.6466666666666665,27.720847457627123,0.13154960981047936,7007.894019149093,2019
+1998,61,"(60,65]",College,12534.505000000001,831.6254237288136,15.072296544035675,1170.9527624550383,2019
+1998,61,"(60,65]",College,12534.505000000001,831.6254237288136,15.072296544035675,1217.186471340561,2019
+1998,61,"(60,65]",College,12534.505000000001,831.6254237288136,15.072296544035675,1289.5249185998957,2019
+1998,61,"(60,65]",College,12534.505000000001,831.6254237288136,15.072296544035675,1367.0177609114858,2019
+1998,61,"(60,65]",College,12534.505000000001,831.6254237288136,15.072296544035675,1138.8087055680737,2019
+1998,52,"(50,55]",College,1112.5797666666667,425.05299435028246,2.6175083612040138,677.0221431518303,2019
+1998,52,"(50,55]",College,1270.9362666666666,160.78091525423727,7.904770691577289,1397.9703406776566,2019
+1998,52,"(50,55]",College,980.8621666666667,465.7102372881356,2.106164065403196,662.4108236998088,2019
+1998,52,"(50,55]",College,1020.2279333333333,401.0282598870056,2.54403002327266,658.6570547732923,2019
+1998,52,"(50,55]",College,1222.2350333333334,267.96819209039546,4.561119824703034,670.3817474199843,2019
+1998,50,"(45,50]",HS,1983.3308333333332,277.2084745762712,7.154654403567446,797.9765239530605,2019
+1998,50,"(45,50]",HS,1586.2453,277.2084745762712,5.722210702341137,847.4785778394746,2019
+1998,50,"(45,50]",HS,1300.219,277.2084745762712,4.6904013377926415,810.411440030314,2019
+1998,50,"(45,50]",HS,1581.8875333333335,277.2084745762712,5.706490523968785,834.0361437557127,2019
+1998,50,"(45,50]",HS,1368.4116666666669,277.2084745762712,4.936399108138239,789.3669971454356,2019
+1998,54,"(50,55]",College,10724.8649,1641.0741694915253,6.535271287173462,249.25070125765902,2019
+1998,54,"(50,55]",College,10724.883133333333,1641.0741694915253,6.535282397782398,249.5949241124224,2019
+1998,54,"(50,55]",College,10723.041566666667,1641.0741694915253,6.534160226279792,275.95751008800465,2019
+1998,54,"(50,55]",College,10721.218233333333,1641.0741694915253,6.533049165386123,292.3033231466263,2019
+1998,54,"(50,55]",College,10724.8649,1641.0741694915253,6.535271287173462,241.9111186306855,2019
+1998,45,"(40,45]",HS,-3.4643333333333337,64.68197740112994,-0.05355948399426661,4887.875546101614,2019
+1998,45,"(40,45]",HS,-6.746333333333333,64.68197740112994,-0.10430004777830865,4886.232278191126,2019
+1998,45,"(40,45]",HS,-3.4643333333333337,64.68197740112994,-0.05355948399426661,4909.723737552553,2019
+1998,45,"(40,45]",HS,-3.4643333333333337,64.68197740112994,-0.05355948399426661,4855.09854369122,2019
+1998,45,"(40,45]",HS,-3.4643333333333337,64.68197740112994,-0.05355948399426661,4868.619329720724,2019
+1998,78,"(75,80]",NoHS,257.09000000000003,33.265016949152546,7.728539576365663,11767.31432514325,2019
+1998,78,"(75,80]",NoHS,274.22933333333333,33.265016949152546,8.243775548123374,12163.815671648372,2019
+1998,78,"(75,80]",NoHS,326.012,33.265016949152546,9.800445930880713,12474.655710143245,2019
+1998,78,"(75,80]",NoHS,328.9293333333333,33.265016949152546,9.888145670754366,11945.711930131461,2019
+1998,78,"(75,80]",NoHS,258.36633333333333,33.265016949152546,7.766908212560385,12569.389869008552,2019
+1998,51,"(50,55]",HS,496.85833333333335,51.745581920903966,9.6019469660774,5856.991982812591,2019
+1998,51,"(50,55]",HS,367.4016666666667,51.745581920903966,7.100155279503105,5858.8512782028265,2019
+1998,51,"(50,55]",HS,369.225,51.745581920903966,7.135391782130911,5871.994341355316,2019
+1998,51,"(50,55]",HS,369.225,51.745581920903966,7.135391782130911,5883.404898188188,2019
+1998,51,"(50,55]",HS,360.2906666666667,51.745581920903966,6.962732919254658,5829.669837979682,2019
+1998,74,"(70,75]",HS,7822.7564,144.14840677966103,54.26876768716233,1.135546326956022,2019
+1998,74,"(70,75]",HS,7644.944933333334,123.81978531073446,61.74251485049669,1.1357047570919312,2019
+1998,74,"(70,75]",HS,7591.867700000001,364.06712994350283,20.85293363665688,1.2232790112232084,2019
+1998,74,"(70,75]",HS,7686.6992666666665,378.851581920904,20.28947385594257,1.3225663877474858,2019
+1998,74,"(70,75]",HS,7722.673633333334,99.79505084745762,77.38533692555433,1.2907455506920589,2019
+1998,41,"(40,45]",HS,269.124,116.4275593220339,2.3115145723841377,5613.293713119658,2019
+1998,41,"(40,45]",HS,268.9416666666667,116.4275593220339,2.30994850560068,5370.317362986463,2019
+1998,41,"(40,45]",HS,268.9416666666667,114.57950282485875,2.347205739561981,5014.988619618716,2019
+1998,41,"(40,45]",HS,269.124,116.4275593220339,2.3115145723841377,5480.975115262682,2019
+1998,41,"(40,45]",HS,269.124,114.57950282485875,2.348797065487108,4998.555142770293,2019
+1998,33,"(30,35]",HS,110.12933333333334,105.33922033898305,1.0454732148095993,7043.532742249374,2019
+1998,33,"(30,35]",HS,112.9555,105.33922033898305,1.0723024115472628,7085.1739155695905,2019
+1998,33,"(30,35]",HS,98.7335,105.33922033898305,0.9372909698996655,7253.426085101133,2019
+1998,33,"(30,35]",HS,116.41983333333333,105.33922033898305,1.1051898139998826,7063.776453719572,2019
+1998,33,"(30,35]",HS,101.70553333333335,105.33922033898305,0.9655048993721764,7131.19077267229,2019
+1998,21,"(20,25]",HS,69.39606666666667,27.720847457627123,2.5033890746934224,3199.9316150516324,2019
+1998,21,"(20,25]",HS,1.641,27.720847457627123,0.05919732441471571,1572.663927973018,2019
+1998,21,"(20,25]",HS,4.339533333333334,27.720847457627123,0.15654403567447045,1588.567342471225,2019
+1998,21,"(20,25]",HS,38.47233333333334,27.720847457627123,1.3878483835005573,1563.5981219319692,2019
+1998,21,"(20,25]",HS,22.8646,27.720847457627123,0.8248160535117055,1616.6501362796316,2019
+1998,60,"(55,60]",NoHS,387.0936666666667,81.31448587570623,4.760451505016722,6919.918894855104,2019
+1998,60,"(55,60]",NoHS,345.157,81.31448587570623,4.244717239282456,6899.379985672032,2019
+1998,60,"(55,60]",NoHS,330.57033333333334,81.31448587570623,4.065331407722711,7260.972800614339,2019
+1998,60,"(55,60]",NoHS,689.5846666666666,81.31448587570623,8.480465186986924,5523.998545760658,2019
+1998,60,"(55,60]",NoHS,312.337,81.31448587570623,3.8410991182730307,7198.2475234795,2019
+1998,30,"(25,30]",College,12.581,59.13780790960452,0.2127403846153846,4504.248073186149,2019
+1998,30,"(25,30]",College,12.216333333333335,59.13780790960452,0.20657399665551843,4496.857596544475,2019
+1998,30,"(25,30]",College,26.438333333333333,59.13780790960452,0.447063127090301,4550.272455343313,2019
+1998,30,"(25,30]",College,12.216333333333335,59.13780790960452,0.20657399665551843,4496.670831872603,2019
+1998,30,"(25,30]",College,14.586666666666666,59.13780790960452,0.24665551839464883,4491.30622921819,2019
+1998,57,"(55,60]",College,232884.77593333335,3289.540564971752,70.7955324865657,33.298020221494895,2019
+1998,57,"(55,60]",College,424288.6638333333,3733.074124293785,113.65664053445478,34.892343262385054,2019
+1998,57,"(55,60]",College,219307.36073333333,1698.363920903955,129.12860314213864,30.18795190638621,2019
+1998,57,"(55,60]",College,79790.36123333333,981.318,81.30938312894834,29.311296248858962,2019
+1998,57,"(55,60]",College,112579.21870000001,2014.381581920904,55.887732349421626,29.895445829547914,2019
+1998,67,"(65,70]",HS,667.8870000000001,27.720847457627123,24.093311036789295,7427.405490734386,2019
+1998,67,"(65,70]",HS,668.0693333333334,27.720847457627123,24.09988851727982,7028.618977984021,2019
+1998,67,"(65,70]",HS,667.8870000000001,27.720847457627123,24.093311036789295,7285.352709490682,2019
+1998,67,"(65,70]",HS,668.0693333333334,27.720847457627123,24.09988851727982,7090.337467088408,2019
+1998,67,"(65,70]",HS,667.8870000000001,27.720847457627123,24.093311036789295,7349.423493591447,2019
+1998,27,"(25,30]",HS,2.5526666666666666,24.024734463276836,0.10625160792384873,4942.663465570991,2019
+1998,27,"(25,30]",HS,3.6466666666666665,20.328621468926556,0.17938583155974458,4925.811770317253,2019
+1998,27,"(25,30]",HS,2.005666666666667,36.96112994350283,0.05426421404682274,4928.2742308833895,2019
+1998,27,"(25,30]",HS,2.005666666666667,36.96112994350283,0.05426421404682274,4963.339486524484,2019
+1998,27,"(25,30]",HS,1.8233333333333333,33.265016949152546,0.054812337421033065,4925.158375414968,2019
+1998,41,"(40,45]",College,9412.776,646.8197740112995,14.552393693263257,367.8202624682988,2019
+1998,41,"(40,45]",College,9406.759,646.8197740112995,14.543091256569516,375.99368321193367,2019
+1998,41,"(40,45]",College,9414.599333333334,646.8197740112995,14.555212613473483,350.73698870971236,2019
+1998,41,"(40,45]",College,9412.776,646.8197740112995,14.552393693263257,392.0867890582534,2019
+1998,41,"(40,45]",College,9412.776,646.8197740112995,14.552393693263257,367.3814141378084,2019
+1998,68,"(65,70]",HS,392.4542666666667,129.36395480225988,3.0337219302436695,678.5877734238131,2019
+1998,68,"(65,70]",HS,363.02566666666667,35.11307344632768,10.338760781552544,732.2539987560456,2019
+1998,68,"(65,70]",HS,658.2051,145.99646327683615,4.508363320773888,766.4102225393938,2019
+1998,68,"(65,70]",HS,655.4883333333333,79.46642937853107,8.248619429104767,725.8367853559249,2019
+1998,68,"(65,70]",HS,427.53520000000003,44.35335593220339,9.639297658862876,647.5793366293894,2019
+1998,35,"(30,35]",College,214.78866666666667,142.30035028248585,1.5094036398384227,6277.977656363151,2019
+1998,35,"(30,35]",College,212.96533333333335,142.30035028248585,1.496590366155584,6404.524626299983,2019
+1998,35,"(30,35]",College,212.96533333333335,142.30035028248585,1.496590366155584,6664.274376415686,2019
+1998,35,"(30,35]",College,212.96533333333335,142.30035028248585,1.496590366155584,6333.420382022387,2019
+1998,35,"(30,35]",College,212.96533333333335,142.30035028248585,1.496590366155584,6595.429030305869,2019
+1998,38,"(35,40]",HS,4225.228566666667,316.01766101694915,13.370229224119385,184.42826699004786,2019
+1998,38,"(35,40]",HS,8413.224666666667,410.2685423728813,20.506628702280878,185.53712073516473,2019
+1998,38,"(35,40]",HS,3879.5063333333337,521.1519322033898,7.444098531748856,172.3483856761194,2019
+1998,38,"(35,40]",HS,9165.349666666667,519.3038757062147,17.649299563194038,188.78345131410256,2019
+1998,38,"(35,40]",HS,5032.217666666667,388.0918644067797,12.966563146997931,180.52794782762228,2019
+1998,44,"(40,45]",HS,-14.4955,44.35335593220339,-0.3268185618729097,5282.9666041312485,2019
+1998,44,"(40,45]",HS,-14.4955,44.35335593220339,-0.3268185618729097,5255.19099435858,2019
+1998,44,"(40,45]",HS,-14.513733333333334,44.35335593220339,-0.32722965440356744,5290.6531296594585,2019
+1998,44,"(40,45]",HS,-14.4955,44.35335593220339,-0.3268185618729097,5293.232746258868,2019
+1998,44,"(40,45]",HS,-14.513733333333334,44.35335593220339,-0.32722965440356744,5279.043761123778,2019
+1998,52,"(50,55]",College,648.4138,308.6254350282486,2.100973304227665,7588.569170827413,2019
+1998,52,"(50,55]",College,476.0176333333334,351.1307344632769,1.3556706565745467,7255.371912648821,2019
+1998,52,"(50,55]",College,479.35433333333333,301.233209039548,1.5913063996552927,7395.864842214587,2019
+1998,52,"(50,55]",College,432.13,225.46289265536726,1.9166346839190742,7254.12530089697,2019
+1998,52,"(50,55]",College,432.9687333333333,332.65016949152545,1.3015737643998513,7565.115538408024,2019
+1998,69,"(65,70]",NoHS,433.771,75.77031638418079,5.724814422057264,8195.640932626311,2019
+1998,69,"(65,70]",NoHS,379.8003333333333,49.89752542372881,7.61160658986746,8545.053653361405,2019
+1998,69,"(65,70]",NoHS,354.2736666666667,64.68197740112994,5.4771619684663175,8693.19380392825,2019
+1998,69,"(65,70]",NoHS,343.47953333333334,62.833920903954805,5.466466653551052,8249.486175791986,2019
+1998,69,"(65,70]",NoHS,357.738,86.85865536723163,4.118622358215328,8616.4978010658,2019
+1998,73,"(70,75]",HS,131.28,83.16254237288136,1.5785953177257523,4741.303837915964,2019
+1998,73,"(70,75]",HS,238.85666666666665,22.176677966101696,10.770624303232998,4759.621712342147,2019
+1998,73,"(70,75]",HS,57.982,85.0105988700565,0.6820561291260724,4893.94979633645,2019
+1998,73,"(70,75]",HS,58.346666666666664,44.35335593220339,1.3154960981047936,4857.910051892304,2019
+1998,73,"(70,75]",HS,187.80333333333334,35.11307344632768,5.348530188347122,4885.419556310538,2019
+1998,48,"(45,50]",NoHS,121.6528,92.40282485875707,1.3165484949832775,6648.328474375306,2019
+1998,48,"(45,50]",NoHS,114.72413333333333,92.40282485875707,1.241565217391304,6735.130155407727,2019
+1998,48,"(45,50]",NoHS,116.72980000000001,92.40282485875707,1.2632709030100335,6980.555455368356,2019
+1998,48,"(45,50]",NoHS,127.66980000000001,92.40282485875707,1.381665551839465,6642.57183065759,2019
+1998,48,"(45,50]",NoHS,114.72413333333333,92.40282485875707,1.241565217391304,6948.293992771056,2019
+1998,32,"(30,35]",HS,29.90266666666667,55.441694915254246,0.5393534002229654,4881.37551485341,2019
+1998,32,"(30,35]",HS,34.26043333333333,62.833920903954805,0.5452537871335825,4848.406006993638,2019
+1998,32,"(30,35]",HS,32.96586666666667,48.04946892655367,0.6860818111654233,4884.205273819112,2019
+1998,32,"(30,35]",HS,35.31796666666667,85.0105988700565,0.4154536862003781,4923.424872579524,2019
+1998,32,"(30,35]",HS,31.361333333333334,68.37809039548021,0.45864593690680655,4880.097868417787,2019
+1998,59,"(55,60]",HS,23.156333333333333,64.68197740112994,0.3580028666985189,5966.5939445274025,2019
+1998,59,"(55,60]",HS,23.156333333333333,64.68197740112994,0.3580028666985189,5961.59115814416,2019
+1998,59,"(55,60]",HS,23.156333333333333,64.68197740112994,0.3580028666985189,6103.906203813919,2019
+1998,59,"(55,60]",HS,23.156333333333333,64.68197740112994,0.3580028666985189,5981.112802015985,2019
+1998,59,"(55,60]",HS,23.156333333333333,64.68197740112994,0.3580028666985189,6065.6655338260825,2019
+1998,41,"(40,45]",HS,37.72476666666667,60.98586440677967,0.618582142495186,7378.467272291474,2019
+1998,41,"(40,45]",HS,89.34333333333333,60.98586440677967,1.4649842910712474,7555.172214119589,2019
+1998,41,"(40,45]",HS,59.623000000000005,60.98586440677967,0.977652782000608,7920.32831326478,2019
+1998,41,"(40,45]",HS,39.748666666666665,60.98586440677967,0.6517685213337386,7441.933042041424,2019
+1998,41,"(40,45]",HS,40.131566666666664,60.98586440677967,0.6580470254383297,7805.049566700771,2019
+1998,83,"(80,85]",College,23349.60666666667,632.0353220338983,36.9435154217763,15.210363786456199,2019
+1998,83,"(80,85]",College,19384.950666666668,632.0353220338983,30.670676132918697,16.54242337918642,2019
+1998,83,"(80,85]",College,23006.45533333333,632.0353220338983,36.400584795321635,16.90726711735487,2019
+1998,83,"(80,85]",College,19760.922,633.8833785310735,31.1743810758895,15.401116629790682,2019
+1998,83,"(80,85]",College,17283.376666666667,633.8833785310735,27.265861910937332,14.980199676924391,2019
+1998,69,"(65,70]",HS,408.9736666666667,35.11307344632768,11.647333215983103,2387.3732283648287,2019
+1998,69,"(65,70]",HS,408.9736666666667,40.65724293785311,10.059060504712678,2528.610988418528,2019
+1998,69,"(65,70]",HS,454.557,35.11307344632768,12.945520154902306,2352.1296594084297,2019
+1998,69,"(65,70]",HS,408.9736666666667,42.50529943502825,9.621710047986042,2408.3444970848877,2019
+1998,69,"(65,70]",HS,408.9736666666667,35.11307344632768,11.647333215983103,2355.310336210762,2019
+1998,40,"(35,40]",HS,354.8206666666667,110.88338983050849,3.1999442586399103,10298.466001167531,2019
+1998,40,"(35,40]",HS,355.003,110.88338983050849,3.2015886287625412,9827.58311133472,2019
+1998,40,"(35,40]",HS,364.302,110.88338983050849,3.285451505016722,9881.289916979043,2019
+1998,40,"(35,40]",HS,353.1796666666667,110.88338983050849,3.185144927536232,9962.915045199445,2019
+1998,40,"(35,40]",HS,352.9973333333333,110.88338983050849,3.1835005574136,10318.796404198825,2019
+1998,62,"(60,65]",College,507.9806666666667,51.745581920903966,9.816889632107022,8074.675188873279,2019
+1998,62,"(60,65]",College,623.2153333333334,49.89752542372881,12.489904620339406,7698.2046448208375,2019
+1998,62,"(60,65]",College,557.5753333333333,49.89752542372881,11.17440852223461,7206.286239285533,2019
+1998,62,"(60,65]",College,544.812,49.89752542372881,10.91861761426979,7884.711071225282,2019
+1998,62,"(60,65]",College,548.4586666666667,51.745581920903966,10.599139990444336,7188.220512268848,2019
+1998,82,"(80,85]",HS,635.067,55.441694915254246,11.45468227424749,8651.957722846051,2019
+1998,82,"(80,85]",HS,633.0613333333334,55.441694915254246,11.41850613154961,8297.73296897413,2019
+1998,82,"(80,85]",HS,633.0613333333334,55.441694915254246,11.41850613154961,7745.443794556723,2019
+1998,82,"(80,85]",HS,629.2323333333334,57.289751412429375,10.983331535224945,8433.258886139973,2019
+1998,82,"(80,85]",HS,643.819,55.441694915254246,11.612541806020065,7724.282232545154,2019
+1998,32,"(30,35]",HS,210.95966666666666,138.6042372881356,1.5220289855072462,6761.791440611771,2019
+1998,32,"(30,35]",HS,195.37016666666665,138.6042372881356,1.4095540691192863,6801.766967046783,2019
+1998,32,"(30,35]",HS,203.39283333333336,138.6042372881356,1.4674358974358974,6963.289049989415,2019
+1998,32,"(30,35]",HS,212.32716666666667,138.6042372881356,1.5318952062430322,6781.225403646307,2019
+1998,32,"(30,35]",HS,201.5695,138.6042372881356,1.4542809364548495,6845.94314991798,2019
+1998,70,"(65,70]",College,1003.8726333333333,129.36395480225988,7.760064500716674,7430.53211452493,2019
+1998,70,"(65,70]",College,1022.8170666666666,129.36395480225988,7.90650740563784,7156.03242722297,2019
+1998,70,"(65,70]",College,1024.3486666666668,129.36395480225988,7.918346870520785,6680.091386236873,2019
+1998,70,"(65,70]",College,979.5676,129.36395480225988,7.572183468705208,7304.948836670192,2019
+1998,70,"(65,70]",College,980.2604666666667,129.36395480225988,7.577539417104635,6661.545805979501,2019
+1998,62,"(60,65]",HS,24391.094666666668,565.5052881355933,43.13150589109668,272.125787911956,2019
+1998,62,"(60,65]",HS,26569.24866666667,558.1130621468926,47.605495138319796,303.24369367116253,2019
+1998,62,"(60,65]",HS,25089.431333333334,532.2402711864407,47.139295336306205,289.98032929257994,2019
+1998,62,"(60,65]",HS,17251.286,567.3533446327683,30.406599631780203,1628.8786762463583,2019
+1998,62,"(60,65]",HS,25868.177,567.3533446327683,45.59447343479351,261.93573800626507,2019
+1998,45,"(40,45]",College,17982.625,1885.017627118644,9.539764902616566,186.39066253227105,2019
+1998,45,"(40,45]",College,14465.415,1885.017627118644,7.673888451701751,160.64717240411966,2019
+1998,45,"(40,45]",College,14806.378333333334,1639.2261129943504,9.032541768314525,149.95879773770454,2019
+1998,45,"(40,45]",College,31331.248333333333,1201.2367231638418,26.082492925135064,176.10747682354042,2019
+1998,45,"(40,45]",College,23470.858333333334,1160.5794802259886,20.223395926975268,171.1655300389893,2019
+1998,58,"(55,60]",HS,1207.776,53.593638418079095,22.53580901856764,7034.754896731627,2019
+1998,58,"(55,60]",HS,1193.1893333333333,51.745581920903966,23.05876731963688,6706.769195598096,2019
+1998,58,"(55,60]",HS,1204.1293333333333,51.745581920903966,23.27018633540372,6278.203918210787,2019
+1998,58,"(55,60]",HS,1187.7193333333332,51.745581920903966,22.953057811753457,6869.255854904038,2019
+1998,58,"(55,60]",HS,1185.896,53.593638418079095,22.12755160881098,6262.464837861306,2019
+1998,38,"(35,40]",NoHS,3.6466666666666665,55.441694915254246,0.06577480490523968,7010.4740610602075,2019
+1998,38,"(35,40]",NoHS,3.6466666666666665,55.441694915254246,0.06577480490523968,7000.438641341736,2019
+1998,38,"(35,40]",NoHS,3.6466666666666665,55.441694915254246,0.06577480490523968,6995.539335863132,2019
+1998,38,"(35,40]",NoHS,3.6466666666666665,55.441694915254246,0.06577480490523968,7004.603394727089,2019
+1998,38,"(35,40]",NoHS,3.6466666666666665,55.441694915254246,0.06577480490523968,7008.747743553089,2019
+1998,43,"(40,45]",College,881.4011566666667,249.487627118644,3.532845162888642,294.63934821768623,2019
+1998,43,"(40,45]",College,881.4011566666667,249.487627118644,3.532845162888642,284.6726528520817,2019
+1998,43,"(40,45]",College,883.4068233333334,249.487627118644,3.5408843057103936,287.09353635170385,2019
+1998,43,"(40,45]",College,881.58349,249.487627118644,3.5335759940542557,291.6986867839103,2019
+1998,43,"(40,45]",College,883.4068233333334,249.487627118644,3.5408843057103936,293.3066281134939,2019
+1998,58,"(55,60]",HS,1936.7811333333334,304.9293220338983,6.351573933313064,3071.43346513326,2019
+1998,58,"(55,60]",HS,1613.65,358.5229604519773,4.500827500603387,3337.9103003706077,2019
+1998,58,"(55,60]",HS,1636.8063333333332,131.21201129943503,12.474515992274718,3123.0606206013877,2019
+1998,58,"(55,60]",HS,1696.247,232.8551186440678,7.284559643255296,3101.475728693272,2019
+1998,58,"(55,60]",HS,1607.2683333333332,107.18727683615819,14.994954445853995,3200.1886828655142,2019
+1998,47,"(45,50]",HS,-854.2316666666667,83.16254237288136,-10.271832032701598,714.5630032947453,2019
+1998,47,"(45,50]",HS,-867.7243333333333,81.31448587570623,-10.671214654910306,689.320052738044,2019
+1998,47,"(45,50]",HS,-841.4683333333334,77.61837288135592,-10.841097308488614,694.2379743582724,2019
+1998,47,"(45,50]",HS,-888.6926666666667,83.16254237288136,-10.686213303604607,707.5077929134039,2019
+1998,47,"(45,50]",HS,-852.773,85.0105988700565,-10.031372691580632,713.2431314193508,2019
+1998,65,"(60,65]",HS,4.1025,27.720847457627123,0.14799331103678928,8467.612553459097,2019
+1998,65,"(60,65]",HS,4.1025,29.56890395480226,0.13874372909698998,8848.540531835259,2019
+1998,65,"(60,65]",HS,4.1025,36.96112994350283,0.11099498327759195,8814.38859000313,2019
+1998,65,"(60,65]",HS,4.1025,24.024734463276836,0.17076151273475687,8613.28914707214,2019
+1998,65,"(60,65]",HS,4.1025,36.96112994350283,0.11099498327759195,8785.59556552805,2019
+1998,60,"(55,60]",College,13363.210000000001,532.2402711864407,25.10747630992196,11.333225350380904,2019
+1998,60,"(55,60]",College,16207.792333333335,587.6819661016949,27.57918954165878,12.440634123637386,2019
+1998,60,"(55,60]",College,8121.126666666667,805.75263276836165,10.078932834218035,9.689090924677142,2019
+1998,60,"(55,60]",College,23420.716666666667,1293.639548022599,18.104515050167223,10.966092522025658,2019
+1998,60,"(55,60]",College,9245.758666666667,559.9611186440679,16.51142973829155,10.309975573490402,2019
+1998,40,"(35,40]",College,5333.7970000000005,504.51942372881365,10.572034988422947,325.4511081288359,2019
+1998,40,"(35,40]",College,13745.471833333335,515.6077627118644,26.658775967682,322.7225586014854,2019
+1998,40,"(35,40]",College,3982.8346333333334,766.9434463276837,5.193126888826208,309.18240023578693,2019
+1998,40,"(35,40]",College,9317.233333333334,291.9929265536723,31.9091063037128,337.83218549515067,2019
+1998,40,"(35,40]",College,5693.376566666667,291.9929265536723,19.49833728461962,320.5427117284298,2019
+1998,74,"(70,75]",HS,0.21880000000000002,10.533922033898305,0.020770991022707273,5397.735729285501,2019
+1998,74,"(70,75]",HS,0.21880000000000002,10.533922033898305,0.020770991022707273,5459.386750145825,2019
+1998,74,"(70,75]",HS,0.23703333333333335,10.349116384180792,0.022903726708074532,5465.656880357537,2019
+1998,74,"(70,75]",HS,0.21880000000000002,10.349116384180792,0.021141901576684184,5433.737584979441,2019
+1998,74,"(70,75]",HS,0.23703333333333335,10.533922033898305,0.02250190694126621,5465.649911260281,2019
+1998,52,"(50,55]",HS,2.005666666666667,55.441694915254246,0.03617614269788183,5815.029840917663,2019
+1998,52,"(50,55]",HS,2.005666666666667,59.13780790960452,0.03391513377926422,5794.94243789134,2019
+1998,52,"(50,55]",HS,2.5526666666666666,57.289751412429375,0.04455712590354947,5805.778074625961,2019
+1998,52,"(50,55]",HS,2.005666666666667,59.13780790960452,0.03391513377926422,5791.698172484907,2019
+1998,52,"(50,55]",HS,2.2791666666666663,55.441694915254246,0.041109253065774794,5815.916792760217,2019
+1998,74,"(70,75]",College,27184.806,428.74910734463276,63.4049273440203,28.22184059674483,2019
+1998,74,"(70,75]",College,25168.199333333334,522.999988700565,48.12275311107697,30.639316426521578,2019
+1998,74,"(70,75]",College,26141.13,502.67136723163844,52.004414223883536,31.036640637792367,2019
+1998,74,"(70,75]",College,26324.01033333333,524.8480451977401,50.15548895378962,28.586895599279444,2019
+1998,74,"(70,75]",College,25890.42166666667,489.73497175141244,52.866189184072695,30.381399923236962,2019
+1998,45,"(40,45]",College,15078.419666666667,826.081254237288,18.252949802847674,262.64948088473994,2019
+1998,45,"(40,45]",College,10210.666666666666,530.3922146892655,19.251162411289663,260.6892444893109,2019
+1998,45,"(40,45]",College,16631.352666666666,883.3710056497175,18.827143476861504,250.57456937200817,2019
+1998,45,"(40,45]",College,16417.293333333335,474.9505197740113,34.566323542808064,269.531251239284,2019
+1998,45,"(40,45]",College,16980.70333333333,737.3745423728814,23.028599927913426,255.46654311350304,2019
+1998,47,"(45,50]",HS,419.8589666666667,88.70671186440678,4.733113851727982,6924.600917983441,2019
+1998,47,"(45,50]",HS,419.69486666666666,86.85865536723163,4.83192912545364,6636.8724717282985,2019
+1998,47,"(45,50]",HS,419.67663333333337,86.85865536723163,4.831719205863517,6183.114465817488,2019
+1998,47,"(45,50]",HS,419.8772,86.85865536723163,4.834028321354872,6766.605209742998,2019
+1998,47,"(45,50]",HS,419.8772,86.85865536723163,4.834028321354872,6171.778189942475,2019
+1998,73,"(70,75]",NoHS,289.5818,46.201412429378536,6.2678127090301,4994.559426711274,2019
+1998,73,"(70,75]",NoHS,287.75846666666666,46.201412429378536,6.228347826086956,4960.258254138704,2019
+1998,73,"(70,75]",NoHS,289.5818,46.201412429378536,6.2678127090301,5204.526792438465,2019
+1998,73,"(70,75]",NoHS,289.5818,46.201412429378536,6.2678127090301,5231.985287806945,2019
+1998,73,"(70,75]",NoHS,289.5818,46.201412429378536,6.2678127090301,5057.890015868141,2019
+1998,49,"(45,50]",College,125.19006666666667,471.254406779661,0.2656528296937504,248.47765543663087,2019
+1998,49,"(45,50]",College,123.36673333333334,471.254406779661,0.261783723522854,239.87700350776808,2019
+1998,49,"(45,50]",College,50.852766666666675,471.254406779661,0.10790937110630207,236.06684181998025,2019
+1998,49,"(45,50]",College,117.31326666666666,471.254406779661,0.24893829103547774,240.75304980274547,2019
+1998,49,"(45,50]",College,126.26583333333333,469.4063502824859,0.26899046691069967,247.68575501083455,2019
+1998,70,"(65,70]",HS,294.1036666666667,35.11307344632768,8.375902129906708,8171.932009974739,2019
+1998,70,"(65,70]",HS,295.5623333333333,33.265016949152546,8.88507989594946,8152.578605760497,2019
+1998,70,"(65,70]",HS,297.3856666666667,42.50529943502825,6.996437400029083,8711.926483216757,2019
+1998,70,"(65,70]",HS,291.9156666666667,36.96112994350283,7.897909698996655,8404.763749906557,2019
+1998,70,"(65,70]",HS,293.192,31.416960451977403,9.332284084202243,8557.045389273419,2019
+1998,44,"(40,45]",HS,5.105333333333333,22.176677966101696,0.23021181716833888,5042.029627193482,2019
+1998,44,"(40,45]",HS,4.923,22.176677966101696,0.22198996655518394,5034.4932022700195,2019
+1998,44,"(40,45]",HS,5.105333333333333,22.176677966101696,0.23021181716833888,5023.945158425698,2019
+1998,44,"(40,45]",HS,4.923,22.176677966101696,0.22198996655518394,5067.260531018559,2019
+1998,44,"(40,45]",HS,4.923,22.176677966101696,0.22198996655518394,5006.175365255508,2019
+1998,29,"(25,30]",College,97.27483333333333,68.37809039548021,1.4226023682545423,7405.416887930927,2019
+1998,29,"(25,30]",College,97.27483333333333,70.22614689265536,1.3851654638267912,7383.690798244055,2019
+1998,29,"(25,30]",College,97.27483333333333,68.37809039548021,1.4226023682545423,7401.621758642512,2019
+1998,29,"(25,30]",College,97.27483333333333,68.37809039548021,1.4226023682545423,7498.818219793138,2019
+1998,29,"(25,30]",College,97.45716666666668,68.37809039548021,1.4252689143993496,7407.1556571677575,2019
+1998,42,"(40,45]",HS,53.04076666666667,14.78445197740113,3.5876045150501676,8618.94727217379,2019
+1998,42,"(40,45]",HS,65.8041,14.78445197740113,4.450898829431439,8838.705463988617,2019
+1998,42,"(40,45]",HS,34.807433333333336,14.78445197740113,2.3543269230769233,9107.570395135368,2019
+1998,42,"(40,45]",HS,100.44743333333334,14.78445197740113,6.794126254180602,8828.384480417055,2019
+1998,42,"(40,45]",HS,125.9741,14.78445197740113,8.520714882943144,9109.993633162741,2019
+1998,32,"(30,35]",HS,-4.193666666666667,46.201412429378536,-0.09076923076923077,4675.492465864845,2019
+1998,32,"(30,35]",HS,-4.193666666666667,46.201412429378536,-0.09076923076923077,4659.551673062599,2019
+1998,32,"(30,35]",HS,-4.193666666666667,46.201412429378536,-0.09076923076923077,4661.881027651406,2019
+1998,32,"(30,35]",HS,-4.193666666666667,46.201412429378536,-0.09076923076923077,4695.050864057538,2019
+1998,32,"(30,35]",HS,-4.193666666666667,46.201412429378536,-0.09076923076923077,4658.933596803887,2019
+1998,52,"(50,55]",College,43942.24216666666,447.22967231638415,98.25430843859698,23.673372195327477,2019
+1998,52,"(50,55]",College,37420.06943333333,426.90105084745767,87.65513544426587,26.124606208823614,2019
+1998,52,"(50,55]",College,42027.72393333333,445.38161581920906,94.3634008243245,26.69840408760002,2019
+1998,52,"(50,55]",College,41927.45883333334,469.4063502824859,89.32017815289812,23.872423147233462,2019
+1998,52,"(50,55]",College,45814.787266666666,491.5830282485876,93.19847235144718,25.51598581590351,2019
+1998,66,"(65,70]",HS,20567.56466666667,1217.8692316384183,16.888155257027723,298.0162535081259,2019
+1998,66,"(65,70]",HS,21626.556666666667,1256.6784180790962,17.209300609876056,304.191718462084,2019
+1998,66,"(65,70]",HS,20092.221666666668,1308.424,15.356047937569677,343.78165505172876,2019
+1998,66,"(65,70]",HS,22110.65166666667,1167.9717062146892,18.9308110367893,324.8162221243954,2019
+1998,66,"(65,70]",HS,21686.72666666667,1193.8444971751414,18.16545347235884,272.6442674248767,2019
+1998,72,"(70,75]",NoHS,6.0717,7.022614689265536,0.8645925013201902,4180.763820585711,2019
+1998,72,"(70,75]",NoHS,6.0717,9.240282485875708,0.6570903010033443,4212.727686633759,2019
+1998,72,"(70,75]",NoHS,6.0717,8.316254237288137,0.7301003344481605,4238.23493669277,2019
+1998,72,"(70,75]",NoHS,6.0717,7.577031638418079,0.8013296353699323,4193.1827273502495,2019
+1998,72,"(70,75]",NoHS,6.0717,7.392225988700565,0.8213628762541806,4232.0613720626825,2019
+1998,72,"(70,75]",HS,872.2826666666666,55.441694915254246,15.73333333333333,6410.3118885562635,2019
+1998,72,"(70,75]",HS,805.9133333333334,118.27561581920904,6.813858695652175,6173.645274801507,2019
+1998,72,"(70,75]",HS,583.4849,44.35335593220339,13.155372073578596,5762.740410002629,2019
+1998,72,"(70,75]",HS,749.2623666666667,94.25088135593221,7.949658994032395,6303.31372850079,2019
+1998,72,"(70,75]",HS,719.852,53.593638418079095,13.431668780994118,5747.965174939594,2019
+1998,41,"(40,45]",College,392.3084,378.851581920904,1.035520026103271,6305.339891367315,2019
+1998,41,"(40,45]",College,1089.8975,367.7632429378531,2.963584645636208,5133.027944670522,2019
+1998,41,"(40,45]",College,383.08233333333334,413.9646553672317,0.9253986502627805,6339.262901378204,2019
+1998,41,"(40,45]",College,594.6619333333333,297.53709604519776,1.9986144290492114,5251.583110442879,2019
+1998,41,"(40,45]",College,388.4611666666667,441.68550282485876,0.8794972082674467,6345.825625987574,2019
+1998,42,"(40,45]",College,218.38063333333335,94.25088135593221,2.3170142304413406,6244.875000340688,2019
+1998,42,"(40,45]",College,216.5573,94.25088135593221,2.297668699586858,6330.291854776985,2019
+1998,42,"(40,45]",College,216.75786666666667,94.25088135593221,2.299796707980851,6589.995513312462,2019
+1998,42,"(40,45]",College,218.21653333333333,94.25088135593221,2.3152731326644367,6276.150183459473,2019
+1998,42,"(40,45]",College,216.37496666666667,94.25088135593221,2.2957341465014096,6510.2199260356,2019
+1998,29,"(25,30]",College,66.55166666666668,88.70671186440678,0.7502438684503903,9709.21325631451,2019
+1998,29,"(25,30]",College,65.27533333333334,88.70671186440678,0.735855629877369,9775.208459171346,2019
+1998,29,"(25,30]",College,63.452,88.70671186440678,0.7153010033444815,10003.424028526813,2019
+1998,29,"(25,30]",College,64.36366666666666,88.70671186440678,0.7255783166109252,9705.264134316265,2019
+1998,29,"(25,30]",College,63.63433333333334,88.70671186440678,0.7173564659977704,9991.627771205258,2019
+1998,38,"(35,40]",HS,2.188,24.024734463276836,0.09107280679187034,7321.284875865744,2019
+1998,38,"(35,40]",HS,2.188,24.024734463276836,0.09107280679187034,7312.610358074047,2019
+1998,38,"(35,40]",HS,2.188,24.024734463276836,0.09107280679187034,7305.42153321027,2019
+1998,38,"(35,40]",HS,2.188,24.024734463276836,0.09107280679187034,7317.186142333578,2019
+1998,38,"(35,40]",HS,2.188,24.024734463276836,0.09107280679187034,7319.889538388164,2019
+1998,46,"(45,50]",College,724.9938000000001,369.6112994350283,1.9615033444816055,5485.354235693052,2019
+1998,46,"(45,50]",College,720.5084,134.9081242937853,5.340733953360517,5257.428833191349,2019
+1998,46,"(45,50]",College,420.16893333333337,369.6112994350283,1.1367859531772575,6267.799747990275,2019
+1998,46,"(45,50]",College,578.2519333333333,260.5759661016949,2.2191299603880545,5360.197213984078,2019
+1998,46,"(45,50]",College,479.5366666666667,83.16254237288136,5.76625789669268,4889.002274201518,2019
+1998,77,"(75,80]",HS,11420.448333333334,831.6254237288136,13.732683017465625,162.0093394411526,2019
+1998,77,"(75,80]",HS,12131.548333333334,885.2190621468927,13.704571955230028,160.64717240411966,2019
+1998,77,"(75,80]",HS,11451.445,887.0671186440679,12.909333193979931,149.95879773770454,2019
+1998,77,"(75,80]",HS,12038.558333333334,901.851570621469,13.348713608202203,164.60121593974128,2019
+1998,77,"(75,80]",HS,11644.718333333334,744.766768361582,15.635389262803223,157.58918020816802,2019
+1998,39,"(35,40]",HS,-4.722433333333334,64.68197740112994,-0.07301003344481606,11709.41382408434,2019
+1998,39,"(35,40]",HS,-13.656766666666666,64.68197740112994,-0.2111371237458194,12104.059596370576,2019
+1998,39,"(35,40]",HS,-0.8934333333333333,64.68197740112994,-0.013812709030100335,12461.386801725208,2019
+1998,39,"(35,40]",HS,-13.656766666666666,64.68197740112994,-0.2111371237458194,11774.35441144268,2019
+1998,39,"(35,40]",HS,4.394233333333334,64.68197740112994,0.06793597706641186,12392.985882373761,2019
+1998,72,"(70,75]",College,1067.9263333333333,75.77031638418079,14.094257280365447,5301.889239671555,2019
+1998,72,"(70,75]",College,944.1220000000001,46.201412429378536,20.434916387959866,5106.528637838541,2019
+1998,72,"(70,75]",College,847.303,85.0105988700565,9.967027773738549,4766.69617697415,2019
+1998,72,"(70,75]",College,1450.8263333333332,103.49116384180793,14.018842570473002,2543.692535203166,2019
+1998,72,"(70,75]",College,685.0263333333334,83.16254237288136,8.23719806763285,4754.091430008899,2019
+1998,32,"(30,35]",HS,184.79483333333334,157.08480225988703,1.1764017312610662,7744.836877578266,2019
+1998,32,"(30,35]",HS,184.43016666666665,157.08480225988703,1.1740802675585282,7790.624141804574,2019
+1998,32,"(30,35]",HS,184.43016666666665,157.08480225988703,1.1740802675585282,7975.628692078635,2019
+1998,32,"(30,35]",HS,184.43016666666665,157.08480225988703,1.1740802675585282,7767.096196711263,2019
+1998,32,"(30,35]",HS,184.6125,157.08480225988703,1.1752409994097972,7841.2227639621,2019
+1998,54,"(50,55]",College,17434.16633333333,1848.0564971751412,9.433784280936454,298.0162535081259,2019
+1998,54,"(50,55]",College,17432.343,1848.0564971751412,9.432797658862876,304.191718462084,2019
+1998,54,"(50,55]",College,17432.343,1848.0564971751412,9.432797658862876,343.78165505172876,2019
+1998,54,"(50,55]",College,17434.16633333333,1848.0564971751412,9.433784280936454,324.8162221243954,2019
+1998,54,"(50,55]",College,17434.16633333333,1848.0564971751412,9.433784280936454,272.6442674248767,2019
+1998,27,"(25,30]",College,4.193666666666667,4.06572429378531,1.0314685314685317,4494.068177564566,2019
+1998,27,"(25,30]",College,4.193666666666667,3.8809186440677963,1.0805860805860807,4534.647730915896,2019
+1998,27,"(25,30]",College,4.193666666666667,4.06572429378531,1.0314685314685317,4506.187236835928,2019
+1998,27,"(25,30]",College,4.193666666666667,4.06572429378531,1.0314685314685317,4486.414550286126,2019
+1998,27,"(25,30]",College,4.193666666666667,3.8809186440677963,1.0805860805860807,4508.828573570561,2019
+1998,69,"(65,70]",College,19354.683333333334,868.5865536723164,22.282964491567636,221.0179552196265,2019
+1998,69,"(65,70]",College,16322.48,628.3392090395481,25.977178831398778,220.95350677744145,2019
+1998,69,"(65,70]",College,17779.323333333334,624.6430960451978,28.463171122677167,218.70860629439773,2019
+1998,69,"(65,70]",College,16014.336666666666,805.75263276836165,19.87500383541468,213.37349522402116,2019
+1998,69,"(65,70]",College,22237.373333333333,630.1872655367232,35.28692905972008,202.69225601124634,2019
+1998,41,"(40,45]",HS,26.073666666666668,73.92225988700567,0.35271739130434776,4331.579439108434,2019
+1998,41,"(40,45]",HS,24.43266666666667,73.92225988700567,0.33051839464882943,4367.995528755508,2019
+1998,41,"(40,45]",HS,24.615000000000002,73.92225988700567,0.3329849498327759,4315.435573255635,2019
+1998,41,"(40,45]",HS,24.068,73.92225988700567,0.3255852842809364,4349.129461340558,2019
+1998,41,"(40,45]",HS,23.33866666666667,73.92225988700567,0.31571906354515045,4305.2476929521945,2019
+1998,79,"(75,80]",HS,266.7536666666667,49.89752542372881,5.346029976464759,9975.131971022649,2019
+1998,79,"(75,80]",HS,266.936,49.89752542372881,5.349684132292828,10175.447799746105,2019
+1998,79,"(75,80]",HS,266.936,49.89752542372881,5.349684132292828,10633.160606077541,2019
+1998,79,"(75,80]",HS,266.7536666666667,49.89752542372881,5.346029976464759,10081.303443418557,2019
+1998,79,"(75,80]",HS,266.7536666666667,49.89752542372881,5.346029976464759,10532.432979396255,2019
+1998,52,"(50,55]",College,1025.4426666666666,182.957593220339,5.604810648288908,75.33287079184258,2019
+1998,52,"(50,55]",College,1117.3386666666668,168.17314124293785,6.643978095483113,77.86875833735665,2019
+1998,52,"(50,55]",College,1064.0973333333334,164.47702824858757,6.469580248769306,82.63550568464521,2019
+1998,52,"(50,55]",College,1111.6863333333333,149.69257627118645,7.426462694578636,76.75807266607116,2019
+1998,52,"(50,55]",College,998.6396666666667,158.93285875706215,6.283405926732519,85.84060590261413,2019
+1998,61,"(60,65]",College,134307.098,3640.6712994350282,36.89075089554012,24.138170005778257,2019
+1998,61,"(60,65]",College,109461.99333333333,3492.826779661017,31.339084426040944,24.904159637331603,2019
+1998,61,"(60,65]",College,107066.13333333333,4195.08824858757,25.521783330632214,27.033696461809864,2019
+1998,61,"(60,65]",College,111422.62366666668,3603.7101694915254,30.91886373381357,24.73838124127179,2019
+1998,61,"(60,65]",College,107968.68333333333,3511.307344632768,30.748855835240278,26.89246887516341,2019
+1998,39,"(35,40]",HS,-8.4238,3.326501694915254,-2.532329988851728,5139.479807045884,2019
+1998,39,"(35,40]",HS,-8.4238,3.326501694915254,-2.532329988851728,5145.42914736503,2019
+1998,39,"(35,40]",HS,-8.970799999999999,3.511307344632768,-2.554831895792994,5191.0106799186415,2019
+1998,39,"(35,40]",HS,-9.335466666666667,3.326501694915254,-2.8063916759568936,5118.229678329754,2019
+1998,39,"(35,40]",HS,-8.788466666666668,3.326501694915254,-2.6419546636937947,5190.291214813011,2019
+1998,44,"(40,45]",HS,272.2327833333333,55.441694915254246,4.910253623188405,8258.528575145665,2019
+1998,44,"(40,45]",HS,273.6823333333333,55.441694915254246,4.936399108138238,8371.488007179569,2019
+1998,44,"(40,45]",HS,274.047,55.441694915254246,4.942976588628762,8714.932845541922,2019
+1998,44,"(40,45]",HS,272.2327833333333,55.441694915254246,4.910253623188405,8299.88840916401,2019
+1998,44,"(40,45]",HS,272.05045,55.441694915254246,4.906964882943143,8609.433701509572,2019
+1998,63,"(60,65]",HS,1040.0658,55.441694915254246,18.75963210702341,4680.835745526401,2019
+1998,63,"(60,65]",HS,1008.3945,55.441694915254246,18.188377926421403,4471.051288635323,2019
+1998,63,"(60,65]",HS,896.7700333333333,55.441694915254246,16.175011148272016,4426.1275306134585,2019
+1998,63,"(60,65]",HS,1011.4394666666667,55.441694915254246,18.243299888517278,4430.053433940548,2019
+1998,63,"(60,65]",HS,993.9537,55.441694915254246,17.927909698996654,4666.679015373502,2019
+1998,52,"(50,55]",College,58764.66583333334,373.30741242937853,157.41628447961855,243.4951776915404,2019
+1998,52,"(50,55]",College,58795.753666666664,401.0282598870056,146.6124947983293,230.9360881781824,2019
+1998,52,"(50,55]",College,58795.206666666665,369.6112994350283,159.0730769230769,236.921337132091,2019
+1998,52,"(50,55]",College,58896.8575,412.11659887005646,142.9130922207058,235.71607705136208,2019
+1998,52,"(50,55]",College,58733.66916666667,380.69963841807913,154.27823732831118,235.1284211362553,2019
+1998,24,"(20,25]",College,-19.4185,46.201412429378536,-0.4203010033444816,5233.413215233062,2019
+1998,24,"(20,25]",College,-19.23616666666667,46.201412429378536,-0.41635451505016724,5247.342522031109,2019
+1998,24,"(20,25]",College,-19.23616666666667,46.201412429378536,-0.41635451505016724,5289.807110386397,2019
+1998,24,"(20,25]",College,-18.3245,46.201412429378536,-0.3966220735785953,5228.317052978689,2019
+1998,24,"(20,25]",College,-19.23616666666667,46.201412429378536,-0.41635451505016724,5270.337714421088,2019
+1998,57,"(55,60]",College,1.3675,48.04946892655367,0.02846025212245948,5463.072585508416,2019
+1998,57,"(55,60]",College,1.3675,86.85865536723163,0.015743969259232903,5454.347658010845,2019
+1998,57,"(55,60]",College,1.3675,57.289751412429375,0.0238698888769015,5622.812041136898,2019
+1998,57,"(55,60]",College,1.3675,73.92225988700567,0.018499163879598657,5445.246962280974,2019
+1998,57,"(55,60]",College,1.3675,51.745581920903966,0.026427376970855225,5517.526454861067,2019
+1998,51,"(50,55]",College,39923.43316666666,2291.5900564971753,17.421716878843455,248.74944453489337,2019
+1998,51,"(50,55]",College,41173.82046666667,2383.9928813559322,17.270949417956498,248.92531929667285,2019
+1998,51,"(50,55]",College,47445.92303333333,2273.109491525424,20.872695842510264,288.132733890242,2019
+1998,51,"(50,55]",College,47248.36486666667,2069.823276836158,22.82724587912088,285.5958426531767,2019
+1998,51,"(50,55]",College,45123.08753333333,2254.628926553672,20.013531717747686,278.43637747398066,2019
+1998,51,"(50,55]",HS,455.6145333333333,131.21201129943503,3.4723538555749207,4680.835745526401,2019
+1998,51,"(50,55]",HS,451.27500000000003,103.49116384180793,4.360517200191112,4471.051288635323,2019
+1998,51,"(50,55]",HS,422.72159999999997,66.53003389830509,6.353846153846153,4426.1275306134585,2019
+1998,51,"(50,55]",HS,437.56353333333334,291.9929265536723,1.498541552008806,4430.053433940548,2019
+1998,51,"(50,55]",HS,415.53766666666667,194.04593220338984,2.141439719700589,4666.679015373502,2019
+1998,65,"(60,65]",HS,6749.797666666667,153.38868926553673,44.004533182898825,2259.6124020692982,2019
+1998,65,"(60,65]",HS,6749.797666666667,142.30035028248585,47.433457846501334,2233.1780954924334,2019
+1998,65,"(60,65]",HS,6749.797666666667,149.69257627118645,45.09106486642719,2107.3666185571624,2019
+1998,65,"(60,65]",HS,6749.9800000000005,175.56536723163845,38.44710438303115,2496.4341823908208,2019
+1998,65,"(60,65]",HS,3467.98,175.56536723163845,19.75321246259461,2316.4227664162263,2019
+1998,40,"(35,40]",HS,71.0553,92.40282485875707,0.7689732441471572,5888.024998108391,2019
+1998,40,"(35,40]",HS,79.00503333333334,36.96112994350283,2.1375167224080265,5968.560889403779,2019
+1998,40,"(35,40]",HS,82.79756666666667,62.833920903954805,1.317720834153059,6213.4243387880615,2019
+1998,40,"(35,40]",HS,76.99936666666667,57.289751412429375,1.3440338763620674,5917.513027895025,2019
+1998,40,"(35,40]",HS,65.9135,49.89752542372881,1.3209773318468971,6138.207356526716,2019
+1998,39,"(35,40]",HS,61.902166666666666,125.66784180790961,0.49258557938225456,7527.304670853448,2019
+1998,39,"(35,40]",HS,64.09016666666666,123.81978531073446,0.5176084460639944,7630.2624862353205,2019
+1998,39,"(35,40]",HS,60.62583333333334,123.81978531073446,0.4896296111416164,7943.298145367839,2019
+1998,39,"(35,40]",HS,61.17283333333334,125.66784180790961,0.4867819201259099,7565.00243613442,2019
+1998,39,"(35,40]",HS,62.26683333333334,125.66784180790961,0.4954874090104269,7847.140071635949,2019
+1998,55,"(50,55]",HS,48.50066666666667,35.11307344632768,1.3812709030100334,7488.614282375177,2019
+1998,55,"(50,55]",HS,48.318333333333335,35.11307344632768,1.3760781552543568,7460.718627780874,2019
+1998,55,"(50,55]",HS,48.318333333333335,35.11307344632768,1.3760781552543568,7905.520959802244,2019
+1998,55,"(50,55]",HS,48.50066666666667,35.11307344632768,1.3812709030100334,7320.150513290728,2019
+1998,55,"(50,55]",HS,48.683,35.11307344632768,1.3864636507657102,7738.961945329361,2019
+1998,49,"(45,50]",College,55.53873333333333,40.65724293785311,1.366023107327455,5420.034113736249,2019
+1998,49,"(45,50]",College,58.83896666666667,40.65724293785311,1.4471951961082394,5554.343903467207,2019
+1998,49,"(45,50]",College,56.979166666666664,40.65724293785311,1.4014518090605044,5779.824848209211,2019
+1998,49,"(45,50]",College,56.7239,40.65724293785311,1.3951733049559134,5380.44853774418,2019
+1998,49,"(45,50]",College,55.1923,42.50529943502825,1.298480442053221,5693.550349596281,2019
+1998,37,"(35,40]",HS,121.98100000000001,62.833920903954805,1.9413240212472949,7651.283825074932,2019
+1998,37,"(35,40]",HS,121.98100000000001,62.833920903954805,1.9413240212472949,7755.937416492145,2019
+1998,37,"(35,40]",HS,121.98100000000001,62.833920903954805,1.9413240212472949,8074.128957837148,2019
+1998,37,"(35,40]",HS,121.61633333333333,62.833920903954805,1.93552036199095,7689.602494817717,2019
+1998,37,"(35,40]",HS,121.98100000000001,62.833920903954805,1.9413240212472949,7976.387103831425,2019
+1998,45,"(40,45]",College,5383.5740000000005,2069.823276836158,2.6009824414715723,184.665434483542,2019
+1998,45,"(40,45]",College,3009.2293333333337,807.6006892655366,3.7261351721604443,184.29568661943344,2019
+1998,45,"(40,45]",College,1552.2036666666668,609.8586440677966,2.545185973446843,170.56924812482072,2019
+1998,45,"(40,45]",College,2910.2223333333336,672.6925649717514,4.326229372634056,186.72121175867437,2019
+1998,45,"(40,45]",College,4140.79,445.38161581920906,9.297173149780042,182.36893371724233,2019
+1998,46,"(45,50]",HS,4.485399999999999,27.720847457627123,0.16180602006688957,4887.875546101614,2019
+1998,46,"(45,50]",HS,6.636933333333333,27.720847457627123,0.23942028985507244,4886.232278191126,2019
+1998,46,"(45,50]",HS,46.67733333333334,62.833920903954805,0.7428683848121188,4909.723737552553,2019
+1998,46,"(45,50]",HS,15.735366666666668,60.98586440677967,0.2580166210600993,4855.09854369122,2019
+1998,46,"(45,50]",HS,30.99666666666667,75.77031638418079,0.40908720123990544,4868.619329720724,2019
+1998,43,"(40,45]",HS,1653.9821333333334,340.042395480226,4.864046822742475,687.7017286075601,2019
+1998,43,"(40,45]",HS,1941.303,766.9434463276837,2.531220534311158,727.5061835532445,2019
+1998,43,"(40,45]",HS,2132.0236666666665,613.5547570621469,3.4748710561308775,677.5596772562069,2019
+1998,43,"(40,45]",HS,1803.823666666667,521.1519322033898,3.46122417514647,714.9562668750507,2019
+1998,43,"(40,45]",HS,1810.4970666666668,321.56183050847454,5.630323299888518,682.6606424556418,2019
+1998,19,"(15,20]",HS,-1.4586666666666668,66.53003389830509,-0.021924934968413228,4315.518485060058,2019
+1998,19,"(15,20]",HS,-5.47,49.89752542372881,-0.10962467484206616,4282.534209513753,2019
+1998,19,"(15,20]",HS,-15.133666666666667,66.53003389830509,-0.22747120029728723,4312.639509323097,2019
+1998,19,"(15,20]",HS,-19.78316666666667,46.201412429378536,-0.42819397993311037,4316.588712462268,2019
+1998,19,"(15,20]",HS,-21.88,51.745581920903966,-0.4228380315336836,4268.577902174653,2019
+1998,74,"(70,75]",HS,119.61066666666667,18.480564971751416,6.472240802675584,8190.651669849441,2019
+1998,74,"(70,75]",HS,119.61066666666667,18.480564971751416,6.472240802675584,8219.161535664007,2019
+1998,74,"(70,75]",HS,119.61066666666667,18.480564971751416,6.472240802675584,8149.168702654407,2019
+1998,74,"(70,75]",HS,119.61066666666667,18.480564971751416,6.472240802675584,8255.646324998805,2019
+1998,74,"(70,75]",HS,119.61066666666667,18.480564971751416,6.472240802675584,8150.037123111304,2019
+1998,41,"(40,45]",HS,175.76933333333335,175.56536723163845,1.0011617672944904,5452.913890596165,2019
+1998,41,"(40,45]",HS,149.14866666666666,175.56536723163845,0.8495335328287271,5216.879721988354,2019
+1998,41,"(40,45]",HS,159.35933333333335,175.56536723163845,0.9076923076923077,4871.703228567128,2019
+1998,41,"(40,45]",HS,155.16566666666665,173.71731073446327,0.8932078559738134,5324.375824157183,2019
+1998,41,"(40,45]",HS,157.536,173.71731073446327,0.9068526293318153,4855.739279634947,2019
+1998,40,"(35,40]",HS,3.2273,55.441694915254246,0.058210702341137115,3803.28821252162,2019
+1998,40,"(35,40]",HS,3.026733333333333,55.441694915254246,0.054593088071348925,3783.0525631828823,2019
+1998,40,"(35,40]",HS,3.3914,55.441694915254246,0.0611705685618729,3793.787911076173,2019
+1998,40,"(35,40]",HS,3.573733333333333,55.441694915254246,0.06445930880713488,3807.2277848350386,2019
+1998,40,"(35,40]",HS,3.3549333333333333,55.441694915254246,0.0605128205128205,3774.368136255717,2019
+1998,71,"(70,75]",HS,69.7425,31.416960451977403,2.2198996655518397,4913.196038591863,2019
+1998,71,"(70,75]",HS,69.7425,38.80918644067796,1.7970616340181562,4912.029757331475,2019
+1998,71,"(70,75]",HS,69.7425,27.720847457627123,2.5158862876254178,5106.709026403516,2019
+1998,71,"(70,75]",HS,69.7425,36.96112994350283,1.8869147157190633,5152.605825875329,2019
+1998,71,"(70,75]",HS,69.7425,33.265016949152546,2.096571906354515,5027.931914031994,2019
+1998,67,"(65,70]",College,11771.257666666666,702.2614689265538,16.76193011793698,21.844285263773223,2019
+1998,67,"(65,70]",College,11747.919,626.4911525423728,18.751931216148225,23.544945025051295,2019
+1998,67,"(65,70]",College,22377.95233333333,1203.084779661017,18.60047829683173,27.74624412427776,2019
+1998,67,"(65,70]",College,7293.151,680.084790960452,10.723884869856041,23.690698223439934,2019
+1998,67,"(65,70]",College,14784.863000000001,558.1130621468926,26.49080267558529,26.948382020005873,2019
+1998,31,"(30,35]",HS,10.575333333333335,62.833920903954805,0.16830611843399568,4942.663465570991,2019
+1998,31,"(30,35]",HS,10.575333333333335,35.11307344632768,0.30117936982925547,4925.811770317253,2019
+1998,31,"(30,35]",HS,10.575333333333335,35.11307344632768,0.30117936982925547,4928.2742308833895,2019
+1998,31,"(30,35]",HS,10.393,38.80918644067796,0.26779741997133305,4963.339486524484,2019
+1998,31,"(30,35]",HS,10.575333333333335,20.328621468926556,0.5202189115232594,4925.158375414968,2019
+1998,75,"(70,75]",HS,571.7973333333334,53.593638418079095,10.669126974974054,6528.890933584853,2019
+1998,75,"(70,75]",HS,573.803,53.593638418079095,10.706550570868412,6294.831704775527,2019
+1998,75,"(70,75]",HS,572.162,53.593638418079095,10.675931265136663,5875.38630853516,2019
+1998,75,"(70,75]",HS,571.7973333333334,53.593638418079095,10.669126974974054,6376.846563120293,2019
+1998,75,"(70,75]",HS,572.7090000000001,53.593638418079095,10.68613770038058,5860.059728125376,2019
+1998,30,"(25,30]",College,447.57363333333336,68.37809039548021,6.54557082165778,10298.466001167531,2019
+1998,30,"(25,30]",College,284.8958333333333,49.89752542372881,5.709618481357612,4283.765895805829,2019
+1998,30,"(25,30]",College,377.7399666666667,256.8798531073446,1.4704927696638679,3880.74216400197,2019
+1998,30,"(25,30]",College,-68.4844,251.33568361581922,-0.2724818020853826,2093.991718775891,2019
+1998,30,"(25,30]",College,17.5587,97.9469943502825,0.17926736921814854,2174.1887473427646,2019
+1998,50,"(45,50]",HS,95.72500000000001,133.06006779661018,0.7194119286510591,6570.418381572441,2019
+1998,50,"(45,50]",HS,109.947,133.06006779661018,0.8262959866220735,6656.202855490211,2019
+1998,50,"(45,50]",HS,95.54266666666668,133.06006779661018,0.7180416202155333,6898.752077957103,2019
+1998,50,"(45,50]",HS,110.12933333333334,133.06006779661018,0.8276662950575994,6564.729198517659,2019
+1998,50,"(45,50]",HS,110.12933333333334,133.06006779661018,0.8276662950575994,6866.868679343044,2019
+1998,75,"(70,75]",NoHS,696.878,55.441694915254246,12.569565217391304,10553.334075500763,2019
+1998,75,"(70,75]",NoHS,696.878,55.441694915254246,12.569565217391304,10174.650373158365,2019
+1998,75,"(70,75]",NoHS,696.878,55.441694915254246,12.569565217391304,9881.289916979043,2019
+1998,75,"(70,75]",NoHS,696.878,55.441694915254246,12.569565217391304,10062.590158865458,2019
+1998,75,"(70,75]",NoHS,696.878,55.441694915254246,12.569565217391304,10318.796404198825,2019
+1998,42,"(40,45]",College,2478.931066666667,924.0282485875706,2.6827438127090306,989.8571907928463,2019
+1998,42,"(40,45]",College,3017.0696666666668,924.0282485875706,3.2651270903010037,1014.2679772209816,2019
+1998,42,"(40,45]",College,3947.699,924.0282485875706,4.272270903010034,933.1290263371411,2019
+1998,42,"(40,45]",College,2714.0316666666668,924.0282485875706,2.9371739130434786,1018.6794278261202,2019
+1998,42,"(40,45]",College,2526.9576666666667,924.0282485875706,2.7347190635451506,979.7517024446639,2019
+1998,36,"(35,40]",HS,266.5713333333333,86.85865536723163,3.0690244075998008,5619.524093450059,2019
+1998,36,"(35,40]",HS,264.5656666666667,86.85865536723163,3.0459332526862597,5376.403429534571,2019
+1998,36,"(35,40]",HS,266.389,86.85865536723163,3.06692521169857,5020.409357719067,2019
+1998,36,"(35,40]",HS,266.5713333333333,86.85865536723163,3.0690244075998008,5488.227440319539,2019
+1998,36,"(35,40]",HS,266.5713333333333,86.85865536723163,3.0690244075998008,5005.023522725394,2019
+1998,68,"(65,70]",NoHS,24.979666666666667,25.872790960451983,0.9654801720019109,9598.738695799138,2019
+1998,68,"(65,70]",NoHS,27.25883333333333,25.872790960451983,1.0535714285714284,10003.196992779802,2019
+1998,68,"(65,70]",NoHS,44.67166666666667,24.024734463276836,1.8594031386673526,10157.037525385917,2019
+1998,68,"(65,70]",NoHS,38.2353,25.872790960451983,1.4778189202102243,9581.373535153702,2019
+1998,68,"(65,70]",NoHS,39.6028,24.024734463276836,1.6484178029328531,10053.545037739043,2019
+1998,36,"(35,40]",HS,78.95033333333333,60.98586440677967,1.29456775108949,6492.1798097184455,2019
+1998,36,"(35,40]",HS,76.88996666666667,60.98586440677967,1.2607834194790715,6524.694851771494,2019
+1998,36,"(35,40]",HS,77.21816666666668,60.98586440677967,1.266164994425864,6550.115888086411,2019
+1998,36,"(35,40]",HS,77.85633333333332,60.98586440677967,1.2766291679335156,6490.966432468665,2019
+1998,36,"(35,40]",HS,77.69223333333333,60.98586440677967,1.2739383804601194,6559.620993575163,2019
+1998,71,"(70,75]",NoHS,53.20486666666667,29.56890395480226,1.7993520066889632,6976.677272012086,2019
+1998,71,"(70,75]",NoHS,53.059000000000005,29.56890395480226,1.7944188963210703,6956.834394351618,2019
+1998,71,"(70,75]",NoHS,53.296033333333334,29.56890395480226,1.8024352006688964,7419.839992762487,2019
+1998,71,"(70,75]",NoHS,53.168400000000005,29.56890395480226,1.7981187290969902,7115.722872023389,2019
+1998,71,"(70,75]",NoHS,53.31426666666667,29.56890395480226,1.8030518394648831,7277.8805735997685,2019
+1998,40,"(35,40]",College,646.554,377.00352542372883,1.7149813102498523,5666.746978665104,2019
+1998,40,"(35,40]",College,262.7423333333333,182.957593220339,1.4360832404310664,5421.583284234119,2019
+1998,40,"(35,40]",College,516.7326666666667,338.19433898305084,1.5279163696840106,5062.597665997419,2019
+1998,40,"(35,40]",College,510.7156666666667,238.39928813559317,2.1422700992974004,5534.346992462814,2019
+1998,40,"(35,40]",College,302.491,317.8657175141243,0.9516314070156334,5047.08253829003,2019
+1998,80,"(75,80]",HS,1453.1966666666667,51.745581920903966,28.083492594362156,12677.183342975433,2019
+1998,80,"(75,80]",HS,813.2066666666666,66.53003389830509,12.223151244890373,7440.919404337832,2019
+1998,80,"(75,80]",HS,815.03,125.66784180790961,6.485589218965178,7647.016886439569,2019
+1998,80,"(75,80]",HS,995.5400000000001,70.22614689265536,14.176201372997713,7445.542943553055,2019
+1998,80,"(75,80]",HS,291.7333333333333,92.40282485875707,3.1571906354515042,3255.51961614345,2019
+1998,37,"(35,40]",HS,206.219,72.07420338983052,2.861204013377926,7584.821991881456,2019
+1998,37,"(35,40]",HS,190.81183333333334,59.13780790960452,3.2265625,7737.71139243706,2019
+1998,37,"(35,40]",HS,125.55473333333335,57.289751412429375,2.1915740640845836,8051.531498991023,2019
+1998,37,"(35,40]",HS,171.57566666666665,81.31448587570623,2.1100258437214956,7651.805856413659,2019
+1998,37,"(35,40]",HS,140.579,59.13780790960452,2.3771425585284285,7968.355080756535,2019
+1998,46,"(45,50]",College,5312.828666666667,369.6112994350283,14.374096989966555,1336.0518693715908,2019
+1998,46,"(45,50]",College,5311.0053333333335,369.6112994350283,14.369163879598661,1373.6411494366278,2019
+1998,46,"(45,50]",College,5314.287333333333,369.6112994350283,14.378043478260867,1509.6740211365836,2019
+1998,46,"(45,50]",College,5303.712,369.6112994350283,14.34943143812709,1594.694995657589,2019
+1998,46,"(45,50]",College,5315.563666666667,369.6112994350283,14.381496655518394,1299.6337999441757,2019
+1998,60,"(55,60]",NoHS,412.2556666666667,94.25088135593221,4.374024526198439,4045.6947869330957,2019
+1998,60,"(55,60]",NoHS,412.2556666666667,94.25088135593221,4.374024526198439,4105.318012222664,2019
+1998,60,"(55,60]",NoHS,412.2556666666667,94.25088135593221,4.374024526198439,3890.0546663507353,2019
+1998,60,"(55,60]",NoHS,412.2556666666667,94.25088135593221,4.374024526198439,3772.8507263398706,2019
+1998,60,"(55,60]",NoHS,412.2556666666667,94.25088135593221,4.374024526198439,3998.6782771974795,2019
+1998,70,"(65,70]",NoHS,1077.59,42.50529943502825,25.351897629780424,6272.527104469049,2019
+1998,70,"(65,70]",NoHS,1077.59,44.35335593220339,24.295568561872905,6040.806589406056,2019
+1998,70,"(65,70]",NoHS,1077.59,38.80918644067796,27.766364070711898,5639.038178516767,2019
+1998,70,"(65,70]",NoHS,1077.59,59.13780790960452,18.22167642140468,6166.515246627523,2019
+1998,70,"(65,70]",NoHS,1077.59,62.833920903954805,17.149813102498523,5623.3828185722105,2019
+1998,31,"(30,35]",HS,70.47183333333334,177.41342372881357,0.39721815774804903,6501.405622381515,2019
+1998,31,"(30,35]",HS,68.1015,179.26148022598866,0.3799003551356757,6544.81086260715,2019
+1998,31,"(30,35]",HS,67.73683333333334,171.86925423728815,0.3941183874563959,6654.641859444224,2019
+1998,31,"(30,35]",HS,68.922,168.17314124293785,0.40982763056341653,6557.353112749379,2019
+1998,31,"(30,35]",HS,67.5545,182.957593220339,0.369235836627141,6625.570849946025,2019
+1998,31,"(30,35]",HS,-6.946899999999999,44.35335593220339,-0.156626254180602,5398.675965854132,2019
+1998,31,"(30,35]",HS,-6.7828,22.176677966101696,-0.30585284280936453,5359.654626735863,2019
+1998,31,"(30,35]",HS,-7.311566666666667,20.328621468926556,-0.35966859227728787,5388.841377451417,2019
+1998,31,"(30,35]",HS,-5.378833333333334,36.96112994350283,-0.14552675585284278,5399.85359058061,2019
+1998,31,"(30,35]",HS,-7.2751,20.328621468926556,-0.35787473396169045,5376.8853317920175,2019
+1998,73,"(70,75]",HS,7.658,36.96112994350283,0.20719063545150498,7134.10412630344,2019
+1998,73,"(70,75]",HS,7.658,36.96112994350283,0.20719063545150498,7215.5873304410925,2019
+1998,73,"(70,75]",HS,7.475666666666667,36.96112994350283,0.202257525083612,7223.874464909929,2019
+1998,73,"(70,75]",HS,7.475666666666667,36.96112994350283,0.202257525083612,7181.687224132266,2019
+1998,73,"(70,75]",HS,7.475666666666667,36.96112994350283,0.202257525083612,7223.8652539614905,2019
+1998,64,"(60,65]",HS,174.85766666666666,40.65724293785311,4.300775311644876,5153.104203787318,2019
+1998,64,"(60,65]",HS,178.13966666666667,35.11307344632768,5.073314557296251,5086.013964743963,2019
+1998,64,"(60,65]",HS,175.40466666666666,25.872790960451983,6.77950310559006,5222.162422134968,2019
+1998,64,"(60,65]",HS,181.78633333333335,46.201412429378536,3.934648829431438,5169.599090673542,2019
+1998,64,"(60,65]",HS,171.94033333333334,27.720847457627123,6.202564102564102,5177.986927663898,2019
+1998,63,"(60,65]",College,466.044,97.9469943502825,4.758124566163942,673.4576325994283,2019
+1998,63,"(60,65]",College,466.22633333333334,97.9469943502825,4.759986117246166,622.5880090595396,2019
+1998,63,"(60,65]",College,466.044,99.79505084745762,4.670011148272018,641.6753075665737,2019
+1998,63,"(60,65]",College,466.044,99.79505084745762,4.670011148272018,707.0445750019015,2019
+1998,63,"(60,65]",College,466.044,99.79505084745762,4.670011148272018,700.5354038280645,2019
+1998,79,"(75,80]",College,380.3473333333333,75.77031638418079,5.01974059874378,4687.490849625058,2019
+1998,79,"(75,80]",College,380.3473333333333,75.77031638418079,5.01974059874378,4860.755517124382,2019
+1998,79,"(75,80]",College,380.5296666666667,77.61837288135592,4.902572065615544,4677.105620771855,2019
+1998,79,"(75,80]",College,382.1706666666667,75.77031638418079,5.043804551757892,4552.1684970139495,2019
+1998,79,"(75,80]",College,382.1706666666667,77.61837288135592,4.923713967192229,4703.608669775175,2019
+1998,66,"(65,70]",College,18950.997333333333,1848.0564971751412,10.254555183946488,28.22184059674483,2019
+1998,66,"(65,70]",College,21315.31366666667,1848.0564971751412,11.533908026755855,30.639316426521578,2019
+1998,66,"(65,70]",College,18487.87066666667,1848.0564971751412,10.003953177257527,31.036640637792367,2019
+1998,66,"(65,70]",College,19154.11666666667,1848.0564971751412,10.364464882943144,28.586895599279444,2019
+1998,66,"(65,70]",College,20998.053666666667,1848.0564971751412,11.362235785953178,30.381399923236962,2019
+1998,37,"(35,40]",NoHS,1.6045333333333334,48.04946892655367,0.033393362490352456,6673.432022388237,2019
+1998,37,"(35,40]",NoHS,4.795366666666667,48.04946892655367,0.09980061744275792,6663.879074795242,2019
+1998,37,"(35,40]",NoHS,18.470366666666667,48.04946892655367,0.3844031386673527,6659.215312860797,2019
+1998,37,"(35,40]",NoHS,6.436366666666667,48.04946892655367,0.1339529199897093,6667.843599642647,2019
+1998,37,"(35,40]",NoHS,2.4250333333333334,48.04946892655367,0.05046951376382815,6671.788700919176,2019
+1998,50,"(45,50]",College,419.73133333333334,351.1307344632769,1.1953705333568032,6262.921149098444,2019
+1998,50,"(45,50]",College,314.3426666666667,423.20493785310737,0.7427670108513093,6001.204231824451,2019
+1998,50,"(45,50]",College,303.585,223.61483615819208,1.3576245888498852,5592.491376870254,2019
+1998,50,"(45,50]",College,326.1943333333333,341.8904519774011,0.9540902106119498,6118.3229894806545,2019
+1998,50,"(45,50]",College,428.6656666666667,378.851581920904,1.13148707072355,5581.723579638756,2019
+1998,69,"(65,70]",HS,23.06516666666667,29.56890395480226,0.7800480769230771,5207.537250723259,2019
+1998,69,"(65,70]",HS,23.06516666666667,29.56890395480226,0.7800480769230771,5437.021389815231,2019
+1998,69,"(65,70]",HS,23.97683333333333,29.56890395480226,0.810880016722408,5418.157357898255,2019
+1998,69,"(65,70]",HS,25.80016666666667,29.56890395480226,0.8725438963210703,5314.513608846262,2019
+1998,69,"(65,70]",HS,22.1535,29.56890395480226,0.7492161371237459,5315.717897062967,2019
+1998,76,"(75,80]",College,52933.007666666665,1641.0741694915253,32.255097698032486,15.134541716248247,2019
+1998,76,"(75,80]",College,54038.312333333335,1663.2508474576273,32.48957450761798,15.874244413854168,2019
+1998,76,"(75,80]",College,54357.39566666666,1729.7808813559325,31.424440085184226,13.522093385409011,2019
+1998,76,"(75,80]",College,54486.48766666667,1666.9469604519777,32.68639552388226,13.033395147043223,2019
+1998,76,"(75,80]",College,55381.926666666666,1674.339186440678,33.076886162115066,13.520225057567519,2019
+1998,61,"(60,65]",College,32836.227666666666,1703.9080903954803,19.271126096387814,410.0844390573279,2019
+1998,61,"(60,65]",College,32091.396,1759.3497853107344,18.240486495601587,409.24260336737694,2019
+1998,61,"(60,65]",College,32441.840666666667,1709.4522598870058,18.97791557443731,401.4830055523254,2019
+1998,61,"(60,65]",College,32264.977333333332,1408.2190508474578,22.911902316558255,396.0547782505392,2019
+1998,61,"(60,65]",College,33177.920333333335,1419.3073898305086,23.37613442377369,378.47519618782866,2019
+1998,47,"(45,50]",HS,97.00133333333333,101.64310734463277,0.9543326238978413,9590.897088416741,2019
+1998,47,"(45,50]",HS,97.00133333333333,101.64310734463277,0.9543326238978413,9779.396515261846,2019
+1998,47,"(45,50]",HS,97.00133333333333,101.64310734463277,0.9543326238978413,10196.60724740203,2019
+1998,47,"(45,50]",HS,98.82466666666667,101.64310734463277,0.9722712070538159,9533.096840626833,2019
+1998,47,"(45,50]",HS,97.00133333333333,101.64310734463277,0.9543326238978413,10200.289319649342,2019
+1998,37,"(35,40]",College,6.8375,22.176677966101696,0.30831939799331104,6107.790619989439,2019
+1998,37,"(35,40]",College,6.8375,22.176677966101696,0.30831939799331104,6132.983498164629,2019
+1998,37,"(35,40]",College,6.8375,22.176677966101696,0.30831939799331104,6159.289236521495,2019
+1998,37,"(35,40]",College,7.019833333333334,22.176677966101696,0.316541248606466,6126.692081255853,2019
+1998,37,"(35,40]",College,6.8375,22.176677966101696,0.30831939799331104,6071.43931956045,2019
+1998,50,"(45,50]",College,603.1586666666666,101.64310734463277,5.93408330799635,64.46592217671113,2019
+1998,50,"(45,50]",College,655.1236666666666,121.97172881355934,5.371110773284685,60.714894578677786,2019
+1998,50,"(45,50]",College,709.6413333333334,173.71731073446327,4.085035223795631,60.66905668131724,2019
+1998,50,"(45,50]",College,918.7776666666666,134.9081242937853,6.8103953818664955,60.54557194169396,2019
+1998,50,"(45,50]",College,738.6323333333333,162.62897175141245,4.541825022803283,63.62253744829741,2019
+1998,50,"(45,50]",HS,4.193666666666667,31.416960451977403,0.1334841628959276,5318.700837003908,2019
+1998,50,"(45,50]",HS,4.193666666666667,129.36395480225988,0.03241758241758242,5341.418668016119,2019
+1998,50,"(45,50]",HS,4.193666666666667,129.36395480225988,0.03241758241758242,5304.359349631138,2019
+1998,50,"(45,50]",HS,4.376,60.98586440677967,0.07175433262389784,5334.289590345453,2019
+1998,50,"(45,50]",HS,4.376,94.25088135593221,0.046429274050757426,5335.208683777508,2019
+1998,71,"(70,75]",HS,40.51446666666667,16.817314124293787,2.4090925796611415,9204.379243594056,2019
+1998,71,"(70,75]",NoHS,49.84993333333333,7.946642937853107,6.273080812009023,9313.257840835311,2019
+1998,71,"(70,75]",NoHS,51.49093333333334,7.392225988700565,6.965551839464884,9251.644072064255,2019
+1998,71,"(70,75]",NoHS,51.3633,17.186925423728816,2.9885100873880677,9299.339596115573,2019
+1998,71,"(70,75]",NoHS,42.666000000000004,14.414840677966104,2.9598662207357855,9274.625569092952,2019
+1998,42,"(40,45]",NoHS,245.8218,64.68197740112994,3.800468227424749,6882.107141652006,2019
+1998,42,"(40,45]",NoHS,205.70846666666668,64.68197740112994,3.180305781175347,6976.240001621407,2019
+1998,42,"(40,45]",NoHS,251.8388,64.68197740112994,3.8934925943621597,7262.444033411103,2019
+1998,42,"(40,45]",NoHS,243.81613333333334,64.68197740112994,3.7694601051122794,6916.573669979078,2019
+1998,42,"(40,45]",NoHS,231.5998,64.68197740112994,3.5805924510272336,7174.528080105769,2019
+1998,58,"(55,60]",College,1653.034,277.2084745762712,5.9631438127090295,224.08403724195492,2019
+1998,58,"(55,60]",College,1653.034,277.2084745762712,5.9631438127090295,231.3780286282868,2019
+1998,58,"(55,60]",College,1653.2163333333333,277.2084745762712,5.963801560758082,221.84398758548713,2019
+1998,58,"(55,60]",College,1653.034,277.2084745762712,5.9631438127090295,229.95377679820118,2019
+1998,58,"(55,60]",College,1653.2163333333333,277.2084745762712,5.963801560758082,221.81964880250513,2019
+1998,27,"(25,30]",NoHS,7.658,42.50529943502825,0.18016576995783046,8088.361736390519,2019
+1998,27,"(25,30]",NoHS,7.840333333333334,44.35335593220339,0.17676978818283165,8214.69708967985,2019
+1998,27,"(25,30]",NoHS,7.658,42.50529943502825,0.18016576995783046,8452.502868702697,2019
+1998,27,"(25,30]",NoHS,7.840333333333334,44.35335593220339,0.17676978818283165,8072.845233536638,2019
+1998,27,"(25,30]",NoHS,7.658,44.35335593220339,0.17265886287625418,8278.027845884317,2019
+1998,28,"(25,30]",HS,103.62003333333334,73.92225988700567,1.4017433110367892,6205.016953979874,2019
+1998,28,"(25,30]",HS,103.43769999999999,73.92225988700567,1.3992767558528425,6241.700844846977,2019
+1998,28,"(25,30]",HS,103.45593333333333,73.92225988700567,1.3995234113712371,6389.922994539683,2019
+1998,28,"(25,30]",HS,103.45593333333333,73.92225988700567,1.3995234113712371,6222.850699840188,2019
+1998,28,"(25,30]",HS,101.59613333333333,73.92225988700567,1.374364548494983,6282.23950476949,2019
+1998,38,"(35,40]",HS,79.315,116.4275593220339,0.6812390508042682,7217.520614521416,2019
+1998,38,"(35,40]",HS,80.04433333333333,116.4275593220339,0.6875033179381005,7357.415899942238,2019
+1998,38,"(35,40]",HS,78.95033333333333,116.4275593220339,0.6781069172373521,7708.260150624599,2019
+1998,38,"(35,40]",HS,81.32066666666667,116.4275593220339,0.6984657854223072,7239.885254599221,2019
+1998,38,"(35,40]",HS,79.315,116.4275593220339,0.6812390508042682,7532.979678732654,2019
+1998,43,"(40,45]",College,120.6135,184.80564971751414,0.6526505016722407,5610.257622921237,2019
+1998,43,"(40,45]",College,126.0835,153.38868926553673,0.8219869444332514,5718.999756592986,2019
+1998,43,"(40,45]",College,140.67016666666666,103.49116384180793,1.3592480888676537,5991.714825516876,2019
+1998,43,"(40,45]",College,140.67016666666666,92.40282485875707,1.5223578595317724,5627.64190198072,2019
+1998,43,"(40,45]",College,115.1435,57.289751412429375,2.0098446434351063,5855.467399828545,2019
+1998,79,"(75,80]",NoHS,0,25.872790960451983,0,6841.322616912551,2019
+1998,79,"(75,80]",NoHS,0,17.186925423728816,0,6869.4544501072405,2019
+1998,79,"(75,80]",NoHS,0,10.71872768361582,0,6838.100480428768,2019
+1998,79,"(75,80]",NoHS,0,20.328621468926556,0,6826.708805070445,2019
+1998,79,"(75,80]",NoHS,0,10.349116384180792,0,6861.380768593843,2019
+1998,72,"(70,75]",College,676.5113666666667,73.92225988700567,9.151659698996655,7527.032530068784,2019
+1998,72,"(70,75]",College,676.5296,73.92225988700567,9.151906354515047,7248.967911819345,2019
+1998,72,"(70,75]",College,680.5409333333333,73.92225988700567,9.206170568561872,6766.845818450778,2019
+1998,72,"(70,75]",College,685.6462666666667,73.92225988700567,9.275234113712374,7399.818300579418,2019
+1998,72,"(70,75]",College,663.7662666666668,73.92225988700567,8.979247491638795,6748.059386505563,2019
+1998,60,"(55,60]",College,2485.7503333333334,247.63957062146892,10.037775170967903,10115.780540388765,2019
+1998,60,"(55,60]",College,2558.866,247.63957062146892,10.333025507911945,10647.409762855696,2019
+1998,60,"(55,60]",College,2522.3993333333337,247.63957062146892,10.185768482004693,10475.243811627997,2019
+1998,60,"(55,60]",College,2604.0846666666666,247.63957062146892,10.515624220036939,10788.098250493207,2019
+1998,60,"(55,60]",College,2604.2670000000003,247.63957062146892,10.516360505166476,10057.148181654662,2019
+1998,41,"(40,45]",HS,78.768,157.08480225988703,0.5014361597481801,6173.344048211875,2019
+1998,41,"(40,45]",HS,76.76233333333333,179.26148022598866,0.428214322656277,6167.799042535136,2019
+1998,41,"(40,45]",HS,75.30366666666667,179.26148022598866,0.4200772333896495,6206.556914695864,2019
+1998,41,"(40,45]",HS,82.41466666666668,179.26148022598866,0.459745543564459,6200.414261760431,2019
+1998,41,"(40,45]",HS,69.65133333333333,173.71731073446327,0.4009464171351313,6212.982255376193,2019
+1998,64,"(60,65]",NoHS,34.64333333333334,53.593638418079095,0.6464075654480453,5042.132347878896,2019
+1998,64,"(60,65]",NoHS,34.64333333333334,53.593638418079095,0.6464075654480453,5037.904691147604,2019
+1998,64,"(60,65]",NoHS,34.64333333333334,53.593638418079095,0.6464075654480453,5158.169502534596,2019
+1998,64,"(60,65]",NoHS,34.64333333333334,53.593638418079095,0.6464075654480453,5054.401659596442,2019
+1998,64,"(60,65]",NoHS,34.64333333333334,53.593638418079095,0.6464075654480453,5125.853826129789,2019
+1998,37,"(35,40]",College,2581.6576666666665,184.80564971751414,13.969581939799328,292.14937456498217,2019
+1998,37,"(35,40]",College,2582.7516666666666,184.80564971751414,13.975501672240801,290.8091526212587,2019
+1998,37,"(35,40]",College,2582.387,184.80564971751414,13.973528428093646,270.84276404763676,2019
+1998,37,"(35,40]",College,2582.2046666666665,184.80564971751414,13.972541806020065,306.0671026378461,2019
+1998,37,"(35,40]",College,2581.84,184.80564971751414,13.97056856187291,292.2111937143625,2019
+1998,38,"(35,40]",HS,340.5986666666667,249.487627118644,1.3651926173665307,673.4576325994283,2019
+1998,38,"(35,40]",HS,342.0573333333333,249.487627118644,1.3710392666914408,622.5880090595396,2019
+1998,38,"(35,40]",HS,341.51033333333334,249.487627118644,1.3688467731945997,641.6753075665737,2019
+1998,38,"(35,40]",HS,342.2396666666667,249.487627118644,1.3717700978570548,707.0445750019015,2019
+1998,38,"(35,40]",HS,342.0573333333333,249.487627118644,1.3710392666914408,700.5354038280645,2019
+1998,60,"(55,60]",HS,779.2015,175.56536723163845,4.438241506776976,10553.334075500763,2019
+1998,60,"(55,60]",HS,778.4721666666667,177.41342372881357,4.387898899108138,10174.650373158365,2019
+1998,60,"(55,60]",HS,777.3781666666666,140.45229378531073,5.534820014082028,9632.605792387407,2019
+1998,60,"(55,60]",HS,764.0678333333334,142.30035028248585,5.369402336793643,10062.590158865458,2019
+1998,60,"(55,60]",HS,763.8855,145.99646327683615,5.2322192117183866,9607.682816276016,2019
+1998,49,"(45,50]",College,783.1216666666667,103.49116384180793,7.567038939321546,6178.625172852858,2019
+1998,49,"(45,50]",College,205.125,103.49116384180793,1.982053272814142,6768.440616974549,2019
+1998,49,"(45,50]",College,192.30696666666668,103.49116384180793,1.8581969660774007,7059.960694852116,2019
+1998,49,"(45,50]",College,440.1526666666667,103.49116384180793,4.253045867176301,6037.6500796020855,2019
+1998,49,"(45,50]",College,345.5216666666667,103.49116384180793,3.3386586239847107,5506.902785777844,2019
+1998,84,"(80,85]",NoHS,180.69233333333335,20.328621468926556,8.888567953785344,7767.128445900513,2019
+1998,84,"(80,85]",NoHS,180.69233333333335,20.328621468926556,8.888567953785344,7878.76374538471,2019
+1998,84,"(80,85]",NoHS,180.51,20.328621468926556,8.879598662207357,8180.827764170792,2019
+1998,84,"(80,85]",NoHS,181.05700000000002,20.328621468926556,8.906506536941318,7864.741479400695,2019
+1998,84,"(80,85]",NoHS,181.96866666666665,22.176677966101696,8.20540691192865,8191.504773507177,2019
+1998,54,"(50,55]",HS,830.0907333333333,145.99646327683615,5.68569069895432,6509.583330278809,2019
+1998,54,"(50,55]",HS,746.1080000000001,140.45229378531073,5.312180954057385,6228.074876555929,2019
+1998,54,"(50,55]",HS,808.9765333333334,170.021197740113,4.758092191362513,6222.96186338597,2019
+1998,54,"(50,55]",HS,842.1065,153.38868926553673,5.4900169238828225,6078.038292437961,2019
+1998,54,"(50,55]",HS,715.3848333333334,155.23674576271185,4.608347268673357,6439.958283454904,2019
+1998,29,"(25,30]",HS,39.6575,48.04946892655367,0.8253473115513249,4588.8745603197995,2019
+1998,29,"(25,30]",HS,37.83416666666667,48.04946892655367,0.787400308721379,4555.70642214629,2019
+1998,29,"(25,30]",HS,15.954166666666666,48.04946892655367,0.33203627476202724,4580.5151601969055,2019
+1998,29,"(25,30]",HS,23.2475,48.04946892655367,0.48382428608181116,4589.875541334982,2019
+1998,29,"(25,30]",HS,15.954166666666666,48.04946892655367,0.33203627476202724,4570.352521410014,2019
+1998,48,"(45,50]",College,-10.94,57.289751412429375,-0.190959111015212,4775.826535978132,2019
+1998,48,"(45,50]",College,-10.94,70.22614689265536,-0.15578243267030453,4796.225581442982,2019
+1998,48,"(45,50]",College,-10.94,72.07420338983052,-0.15178801131978387,4762.948869408929,2019
+1998,48,"(45,50]",College,-10.94,72.07420338983052,-0.15178801131978387,4789.82416136691,2019
+1998,48,"(45,50]",College,-10.94,60.98586440677967,-0.17938583155974458,4790.649443881636,2019
+1998,63,"(60,65]",HS,2498.0578333333337,423.20493785310737,5.902714287800675,1172.2434644796817,2019
+1998,63,"(60,65]",HS,2498.0578333333337,423.20493785310737,5.902714287800675,1211.7847685664879,2019
+1998,63,"(60,65]",HS,2498.0578333333337,423.20493785310737,5.902714287800675,1146.6651376430677,2019
+1998,63,"(60,65]",HS,2498.0578333333337,423.20493785310737,5.902714287800675,1247.873254604186,2019
+1998,63,"(60,65]",HS,2498.0578333333337,423.20493785310737,5.902714287800675,1148.498574381864,2019
+1998,29,"(25,30]",HS,569.2446666666666,123.81978531073446,4.597364348824439,6537.909981915362,2019
+1998,29,"(25,30]",HS,582.008,123.81978531073446,4.700444266959518,6256.399130672475,2019
+1998,29,"(25,30]",HS,603.888,123.81978531073446,4.877152698048221,5836.267796185952,2019
+1998,29,"(25,30]",HS,594.7713333333334,123.81978531073446,4.803524185094594,6384.062555513223,2019
+1998,29,"(25,30]",HS,556.4813333333334,123.81978531073446,4.494284430689363,5823.82463121061,2019
+1998,47,"(45,50]",College,398.216,184.80564971751414,2.154782608695652,6188.0884554206,2019
+1998,47,"(45,50]",College,389.2816666666667,184.80564971751414,2.1064381270903008,5929.498670268253,2019
+1998,47,"(45,50]",College,419.73133333333334,184.80564971751414,2.2712040133779263,5525.669332629515,2019
+1998,47,"(45,50]",College,409.73946666666666,184.80564971751414,2.217137123745819,6045.218031076407,2019
+1998,47,"(45,50]",College,391.7067,184.80564971751414,2.119560200668896,5515.030194733275,2019
+1998,19,"(15,20]",HS,35.1721,29.56890395480226,1.189496237458194,1989.9700383811166,2019
+1998,19,"(15,20]",HS,16.957,24.024734463276836,0.7058142526369952,1978.009084056493,2019
+1998,19,"(15,20]",HS,14.185533333333334,31.416960451977403,0.45152469014361596,2046.2508400753918,2019
+1998,19,"(15,20]",HS,30.613766666666667,10.903533333333334,2.8076923076923075,1999.1663822710907,2019
+1998,19,"(15,20]",HS,23.33866666666667,25.872790960451983,0.9020544672718585,2059.766417221778,2019
+1998,42,"(40,45]",HS,479.3908,177.41342372881357,2.7021112040133777,5773.673524899934,2019
+1998,42,"(40,45]",HS,1021.796,116.4275593220339,8.776238254499125,5523.754993706381,2019
+1998,42,"(40,45]",HS,1086.7249,73.92225988700567,14.700915551839461,5158.274001072178,2019
+1998,42,"(40,45]",HS,871.8286566666667,210.6784406779661,4.138195886874376,5637.574395878209,2019
+1998,42,"(40,45]",HS,940.44069,129.36395480225988,7.269727424749164,5141.370996338957,2019
+1998,39,"(35,40]",College,770.2307,208.83038418079096,3.6883076331133275,5887.299835903583,2019
+1998,39,"(35,40]",College,935.2241333333333,260.5759661016949,3.58906520553144,3029.840725204777,2019
+1998,39,"(35,40]",College,1141.8078,251.33568361581922,4.542959374385205,2827.1319420095224,2019
+1998,39,"(35,40]",College,821.7945666666667,280.90458757062146,2.925529176201373,5750.11925304213,2019
+1998,39,"(35,40]",College,1170.6529333333333,269.8162485875706,4.338704356989051,2895.215765246426,2019
+1998,44,"(40,45]",HS,513.8153333333333,110.88338983050849,4.633835005574135,5363.942074355817,2019
+1998,44,"(40,45]",HS,513.8153333333333,110.88338983050849,4.633835005574135,5127.217378169325,2019
+1998,44,"(40,45]",HS,517.462,110.88338983050849,4.666722408026755,4776.9944015970195,2019
+1998,44,"(40,45]",HS,515.821,110.88338983050849,4.651923076923077,5244.643495021654,2019
+1998,44,"(40,45]",HS,513.8153333333333,110.88338983050849,4.633835005574135,4773.324018302336,2019
+1998,36,"(35,40]",HS,764.0678333333334,97.9469943502825,7.800829810058686,5896.316919858276,2019
+1998,36,"(35,40]",HS,787.133,97.9469943502825,8.036316021959992,5641.089661561192,2019
+1998,36,"(35,40]",HS,791.1443333333334,97.9469943502825,8.077270145768916,5267.845183593761,2019
+1998,36,"(35,40]",HS,771.5435,97.9469943502825,7.87715340442986,5757.3267961930005,2019
+1998,36,"(35,40]",HS,770.3218666666667,97.9469943502825,7.864681012178961,5250.58312809736,2019
+1998,55,"(50,55]",College,1009.5796666666666,262.42402259887007,3.8471312826793533,409.7514832549138,2019
+1998,55,"(50,55]",College,657.3116666666666,306.77737853107345,2.142634081476407,396.5426658775213,2019
+1998,55,"(50,55]",College,888.875,218.07066666666665,4.076086956521739,403.64226190600715,2019
+1998,55,"(50,55]",College,881.3993333333334,452.7738418079096,1.946665756603645,400.21092624822444,2019
+1998,55,"(50,55]",College,930.0823333333334,386.2438079096046,2.408018754700677,404.7594537976904,2019
+1998,52,"(50,55]",HS,13777.653666666667,2383.9928813559322,5.779234398900728,295.60454675519264,2019
+1998,52,"(50,55]",HS,13777.836000000001,2383.9928813559322,5.779310881232014,293.6914392903194,2019
+1998,52,"(50,55]",HS,13779.477,2383.9928813559322,5.77999922221358,283.6666751442691,2019
+1998,52,"(50,55]",HS,13779.659333333335,2383.9928813559322,5.780075704544866,303.539266716632,2019
+1998,52,"(50,55]",HS,13777.653666666667,2383.9928813559322,5.779234398900728,290.66080904294404,2019
+1998,53,"(50,55]",College,19888.19066666667,9240.282485875707,2.1523357859531775,186.39066253227105,2019
+1998,53,"(50,55]",College,17049.07833333333,9240.282485875707,1.8450819397993308,186.18460392767727,2019
+1998,53,"(50,55]",College,21474.49066666667,9240.282485875707,2.3240080267558527,179.83633704493724,2019
+1998,53,"(50,55]",College,22810.793433333332,9240.282485875707,2.468625117056856,176.10747682354042,2019
+1998,53,"(50,55]",College,20950.9752,9240.282485875707,2.2673522408026754,171.1655300389893,2019
+1998,40,"(35,40]",HS,311.243,92.40282485875707,3.368327759197324,6408.472274692742,2019
+1998,40,"(35,40]",HS,311.243,92.40282485875707,3.368327759197324,6537.649661532366,2019
+1998,40,"(35,40]",HS,311.243,92.40282485875707,3.368327759197324,6802.798593734708,2019
+1998,40,"(35,40]",HS,311.243,92.40282485875707,3.368327759197324,6465.067437923448,2019
+1998,40,"(35,40]",HS,311.4253333333333,92.40282485875707,3.3703010033444807,6732.522221957692,2019
+1998,45,"(40,45]",HS,69.28666666666668,70.22614689265536,0.9866220735785954,6453.2310558992,2019
+1998,45,"(40,45]",HS,78.40333333333334,70.22614689265536,1.116440767470516,6579.272738295202,2019
+1998,45,"(40,45]",HS,60.17,70.22614689265536,0.856803379686675,6815.951047441468,2019
+1998,45,"(40,45]",HS,63.63433333333334,70.22614689265536,0.9061344833656048,6472.170925614333,2019
+1998,45,"(40,45]",HS,80.22666666666667,70.22614689265536,1.1424045062488999,6796.640641081637,2019
+1998,36,"(35,40]",NoHS,6.928666666666667,27.720847457627123,0.2499442586399108,7338.08182969772,2019
+1998,36,"(35,40]",NoHS,6.746333333333333,27.720847457627123,0.24336677814938681,7305.043007837327,2019
+1998,36,"(35,40]",NoHS,6.746333333333333,27.720847457627123,0.24336677814938681,7248.601126899885,2019
+1998,36,"(35,40]",NoHS,6.746333333333333,25.872790960451983,0.2607501194457716,7373.56821028204,2019
+1998,36,"(35,40]",NoHS,6.928666666666667,27.720847457627123,0.2499442586399108,7246.657606587988,2019
+1998,59,"(55,60]",HS,354.65656666666666,64.68197740112994,5.483081700907788,9242.69568216385,2019
+1998,59,"(55,60]",HS,399.3647,64.68197740112994,6.17428093645485,7286.824284858735,2019
+1998,59,"(55,60]",HS,507.79833333333335,64.68197740112994,7.8506927854753945,6821.550101182239,2019
+1998,59,"(55,60]",HS,570.0104666666667,64.68197740112994,8.812508361204015,7461.948650475773,2019
+1998,59,"(55,60]",HS,314.6161666666667,64.68197740112994,4.864046822742475,9540.542062301778,2019
+1998,46,"(45,50]",HS,460.574,129.36395480225988,3.5602962255136172,9170.84060388686,2019
+1998,46,"(45,50]",HS,482.454,129.36395480225988,3.7294314381270905,8752.578482122193,2019
+1998,46,"(45,50]",HS,466.4086666666667,129.36395480225988,3.6053989488772102,8833.70998488213,2019
+1998,46,"(45,50]",HS,460.7563333333333,129.36395480225988,3.5617056856187292,8833.687828558885,2019
+1998,46,"(45,50]",HS,498.6816666666667,129.36395480225988,3.8548733874820833,9152.799679725409,2019
+1998,37,"(35,40]",HS,48.66476666666667,77.61837288135592,0.6269748367574456,5884.775673720348,2019
+1998,37,"(35,40]",HS,50.4881,77.61837288135592,0.6504658385093168,6003.396760164082,2019
+1998,37,"(35,40]",HS,50.4881,77.61837288135592,0.6504658385093168,6246.877876919334,2019
+1998,37,"(35,40]",HS,50.670433333333335,77.61837288135592,0.652814938684504,5936.745913358509,2019
+1998,37,"(35,40]",HS,48.8471,77.61837288135592,0.6293239369326327,6182.344449084451,2019
+1998,49,"(45,50]",College,83.27163333333333,138.6042372881356,0.6007870680044592,7445.960160868608,2019
+1998,49,"(45,50]",College,83.5269,138.6042372881356,0.602628762541806,7585.627675805047,2019
+1998,49,"(45,50]",College,81.7218,138.6042372881356,0.5896053511705686,7912.34440362194,2019
+1998,49,"(45,50]",College,81.43006666666666,138.6042372881356,0.5875005574136007,7425.378080593784,2019
+1998,49,"(45,50]",College,81.57593333333334,138.6042372881356,0.5885529542920847,7791.0013249503145,2019
+1998,35,"(30,35]",HS,386.01790000000005,170.021197740113,2.2704104260578744,5770.04705822231,2019
+1998,35,"(30,35]",HS,384.37690000000003,171.86925423728815,2.2364494551731577,5520.414233753474,2019
+1998,35,"(30,35]",HS,384.541,170.021197740113,2.261723862149193,5154.884606570659,2019
+1998,35,"(30,35]",HS,388.00533333333334,171.86925423728815,2.2575610457798394,5635.233530501479,2019
+1998,35,"(30,35]",HS,386.182,170.021197740113,2.271375599825505,5139.086651002324,2019
+1998,36,"(35,40]",HS,96.819,64.68197740112994,1.4968466316292404,6913.24921187953,2019
+1998,36,"(35,40]",HS,96.72783333333334,66.53003389830509,1.4538972500929022,7052.601530104939,2019
+1998,36,"(35,40]",HS,96.72783333333334,51.745581920903966,1.8692964644051597,7338.635481413007,2019
+1998,36,"(35,40]",HS,96.5455,81.31448587570623,1.1873099726360594,6974.302213410953,2019
+1998,36,"(35,40]",HS,96.67313333333334,57.289751412429375,1.6874420110044235,7262.8236418705565,2019
+1998,37,"(35,40]",College,6681.6050000000005,3326.5016949152546,2.008598104793757,988.5859082189633,2019
+1998,37,"(35,40]",College,7463.8150000000005,3326.5016949152546,2.2437430323299887,1021.1001874181532,2019
+1998,37,"(35,40]",College,6543.031666666667,3326.5016949152546,1.9669407283537717,942.8621107542589,2019
+1998,37,"(35,40]",College,6707.131666666667,3326.5016949152546,2.0162718320327015,1029.9302171209063,2019
+1998,37,"(35,40]",College,7018.921666666667,3326.5016949152546,2.110000929022668,969.8612621006496,2019
+1998,21,"(20,25]",HS,51.489110000000004,53.593638418079095,0.9607317495098605,8047.367908143569,2019
+1998,21,"(20,25]",HS,51.671443333333336,83.16254237288136,0.6213307320698624,8093.84330240001,2019
+1998,21,"(20,25]",HS,52.12727666666667,77.61837288135592,0.6715842490842492,8226.777810907446,2019
+1998,21,"(20,25]",HS,51.489110000000004,66.53003389830509,0.7739227982162764,8049.293400018474,2019
+1998,21,"(20,25]",HS,51.306776666666664,77.61837288135592,0.661013298295907,8113.977778204052,2019
+1998,47,"(45,50]",HS,136.76823333333334,83.16254237288136,1.6445893719806763,6284.748020883595,2019
+1998,47,"(45,50]",HS,138.391,77.61837288135592,1.782967032967033,6366.802735114477,2019
+1998,47,"(45,50]",HS,140.23256666666668,90.55476836158192,1.54859395263122,6598.806339350837,2019
+1998,47,"(45,50]",HS,138.93800000000002,86.85865536723163,1.5995872767380632,6279.306193610575,2019
+1998,47,"(45,50]",HS,137.844,127.51589830508476,1.0809946197469824,6568.309175441042,2019
+1998,52,"(50,55]",HS,167.50963333333334,125.66784180790961,1.332955439700964,5594.689966101576,2019
+1998,52,"(50,55]",HS,179.92653333333334,49.89752542372881,3.605920971138363,5704.647965052463,2019
+1998,52,"(50,55]",HS,184.30253333333334,118.27561581920904,1.558246237458194,5948.020892041082,2019
+1998,52,"(50,55]",HS,175.60523333333333,107.18727683615819,1.638302963902664,5560.973154903703,2019
+1998,52,"(50,55]",HS,180.65586666666667,99.79505084745762,1.810268797225319,5950.168767517856,2019
+1998,53,"(50,55]",HS,356.0058333333333,147.84451977401133,2.4079744983277585,5872.690197768848,2019
+1998,53,"(50,55]",HS,444.5833666666666,147.84451977401133,3.0071007525083604,5627.834153132529,2019
+1998,53,"(50,55]",HS,360.98353333333336,147.84451977401133,2.4416429765886285,5244.327473484008,2019
+1998,53,"(50,55]",HS,369.15206666666666,147.84451977401133,2.4968938127090294,5738.6782371122745,2019
+1998,53,"(50,55]",HS,379.25333333333333,147.84451977401133,2.5652173913043472,5234.922403232574,2019
+1998,80,"(75,80]",College,2871.5676666666664,123.81978531073446,23.191509010133277,1349.4059811120885,2019
+1998,80,"(75,80]",College,2871.5676666666664,123.81978531073446,23.191509010133277,1480.5252990547658,2019
+1998,80,"(75,80]",College,2871.5676666666664,123.81978531073446,23.191509010133277,1354.2688043910537,2019
+1998,80,"(75,80]",College,2871.5676666666664,125.66784180790961,22.85045740704308,1726.6008728227814,2019
+1998,80,"(75,80]",College,2871.5676666666664,125.66784180790961,22.85045740704308,1355.6050953350739,2019
+1998,38,"(35,40]",NoHS,-2.0330166666666667,40.65724293785311,-0.0500038005472788,8702.236513887203,2019
+1998,38,"(35,40]",HS,27.185900000000004,40.65724293785311,0.668660687138948,8878.716034641233,2019
+1998,38,"(35,40]",HS,-14.841933333333333,40.65724293785311,-0.36505016722408024,9298.463681963678,2019
+1998,38,"(35,40]",HS,18.205983333333332,40.65724293785311,0.4477918820310124,8700.644878249721,2019
+1998,38,"(35,40]",HS,12.234566666666668,40.65724293785311,0.3009197324414716,9231.88391198535,2019
+1998,78,"(75,80]",College,4119.274666666666,194.04593220338984,21.22834846313107,988.5859082189633,2019
+1998,78,"(75,80]",College,4119.457,194.04593220338984,21.229288103201146,1021.1001874181532,2019
+1998,78,"(75,80]",College,4119.274666666666,194.04593220338984,21.22834846313107,942.8621107542589,2019
+1998,78,"(75,80]",College,4119.457,194.04593220338984,21.229288103201146,1029.9302171209063,2019
+1998,78,"(75,80]",College,4119.274666666666,194.04593220338984,21.22834846313107,969.8612621006496,2019
+1998,68,"(65,70]",HS,24155.52,4435.335593220339,5.4461538461538455,12.827327900564516,2019
+1998,68,"(65,70]",HS,24186.51666666667,4435.335593220339,5.453142419175028,13.939333164601404,2019
+1998,68,"(65,70]",HS,24004.183333333334,4435.335593220339,5.412033166109253,13.902246643795191,2019
+1998,68,"(65,70]",HS,24215.999966666666,4435.335593220339,5.459789785395763,12.711287252851669,2019
+1998,68,"(65,70]",HS,23991.420000000002,4435.335593220339,5.409155518394649,13.739997953806727,2019
+1998,46,"(45,50]",College,1859.8,554.4169491525424,3.354515050167224,125.54510378671962,2019
+1998,46,"(45,50]",College,1631.8833333333332,554.4169491525424,2.9434225195094754,129.75797294686078,2019
+1998,46,"(45,50]",College,3090.55,554.4169491525424,5.5744147157190636,170.56924812482072,2019
+1998,46,"(45,50]",College,1795.9833333333333,554.4169491525424,3.2394091415830544,126.17645354443528,2019
+1998,46,"(45,50]",College,1546.1866666666667,554.4169491525424,2.7888517279821627,124.07747580724234,2019
+1998,48,"(45,50]",HS,336.6785,57.289751412429375,5.876766641493149,6847.842051708966,2019
+1998,48,"(45,50]",HS,336.6785,57.289751412429375,5.876766641493149,6976.290372862473,2019
+1998,48,"(45,50]",HS,336.6785,57.289751412429375,5.876766641493149,7276.7626423085485,2019
+1998,48,"(45,50]",HS,336.6785,57.289751412429375,5.876766641493149,6828.913286073301,2019
+1998,48,"(45,50]",HS,336.6785,57.289751412429375,5.876766641493149,7165.166794512012,2019
+1998,48,"(45,50]",College,31807.138333333332,7151.978644067797,4.4473200936800525,14.436794001472233,2019
+1998,48,"(45,50]",College,35526.009,8611.943276836158,4.125202391376117,15.703995874010564,2019
+1998,48,"(45,50]",College,26060.356333333333,6320.353220338982,4.123243658197892,15.738245474648314,2019
+1998,48,"(45,50]",College,24800.61533333333,6320.353220338982,3.92392869017583,14.315129670546758,2019
+1998,48,"(45,50]",College,28454.75766666667,6320.353220338982,4.502083455573159,15.632884341052364,2019
+1998,42,"(40,45]",HS,41.025,44.35335593220339,0.9249581939799331,6551.766003293109,2019
+1998,42,"(40,45]",HS,42.119,51.745581920903966,0.813963210702341,6641.380486044718,2019
+1998,42,"(40,45]",HS,42.119,97.9469943502825,0.4300182999936896,6913.846724493167,2019
+1998,42,"(40,45]",HS,40.7515,25.872790960451983,1.5750716674629714,6584.578138282724,2019
+1998,42,"(40,45]",HS,41.754333333333335,38.80918644067796,1.0758878802357066,6830.150736889767,2019
+1998,43,"(40,45]",College,220.1128,48.04946892655367,4.580962181631078,7828.3968804059305,2019
+1998,43,"(40,45]",College,220.1128,49.89752542372881,4.411296915644742,7935.473008713823,2019
+1998,43,"(40,45]",College,218.3077,49.89752542372881,4.37512077294686,8261.030095156422,2019
+1998,43,"(40,45]",College,220.13103333333333,55.441694915254246,3.970496098104793,7867.602556411916,2019
+1998,43,"(40,45]",College,220.13103333333333,55.441694915254246,3.970496098104793,8161.025698185037,2019
+1998,48,"(45,50]",College,15.316,49.89752542372881,0.30694908955778527,6749.399671550734,2019
+1998,48,"(45,50]",College,17.686333333333334,49.89752542372881,0.3544531153226806,6757.811352642847,2019
+1998,48,"(45,50]",College,9.299,49.89752542372881,0.18636194723151245,6673.0545672066755,2019
+1998,48,"(45,50]",College,17.631633333333337,49.89752542372881,0.35335686857425996,6768.048826418044,2019
+1998,48,"(45,50]",College,12.982133333333334,49.89752542372881,0.2601758949585037,6733.882287255261,2019
+1998,49,"(45,50]",HS,501.599,70.22614689265536,7.142624537933463,4950.19773248302,2019
+1998,49,"(45,50]",HS,532.5956666666666,70.22614689265536,7.584008097165992,4744.508954300285,2019
+1998,49,"(45,50]",HS,507.069,70.22614689265536,7.220515754268615,4420.130426416857,2019
+1998,49,"(45,50]",HS,510.7156666666667,70.22614689265536,7.272443231825384,4837.251151743226,2019
+1998,49,"(45,50]",HS,505.2456666666667,70.22614689265536,7.194552015490231,4412.026449336307,2019
+1998,79,"(75,80]",NoHS,365.79713333333336,53.593638418079095,6.825383462115097,9893.272860142457,2019
+1998,79,"(75,80]",NoHS,176.36191666666667,48.04946892655367,3.6704238487265246,10100.825723008185,2019
+1998,79,"(75,80]",NoHS,144.09803333333332,27.720847457627123,5.198182831661091,10551.050380929148,2019
+1998,79,"(75,80]",NoHS,420.3148,31.416960451977403,13.378595317725752,9965.863501177604,2019
+1998,79,"(75,80]",NoHS,176.04283333333333,88.70671186440678,1.9845491917502787,10617.706853842848,2019
+1998,40,"(35,40]",HS,0,29.56890395480226,0,6504.275811178677,2019
+1998,40,"(35,40]",HS,0,22.176677966101696,0,6470.229953727652,2019
+1998,40,"(35,40]",HS,0,44.35335593220339,0,6497.323452976407,2019
+1998,40,"(35,40]",HS,0,18.480564971751416,0,6474.5471196475355,2019
+1998,40,"(35,40]",HS,0,33.265016949152546,0,6500.641421422109,2019
+1998,42,"(40,45]",HS,746.9832,386.2438079096046,1.933968091405162,148.86862759003503,2019
+1998,42,"(40,45]",HS,392.65483333333333,243.94345762711868,1.6096141177662915,153.98952732997307,2019
+1998,42,"(40,45]",HS,500.14033333333333,243.94345762711868,2.050230566534914,148.13735946070616,2019
+1998,42,"(40,45]",HS,640.9563666666667,291.9929265536723,2.1951092248423016,152.87659214335366,2019
+1998,42,"(40,45]",HS,546.1795,243.94345762711868,2.238959410155062,146.93112267301734,2019
+1998,35,"(30,35]",College,14.003200000000001,134.9081242937853,0.10379804828881661,7953.135797741581,2019
+1998,35,"(30,35]",College,14.003200000000001,134.9081242937853,0.10379804828881661,8114.4237139959005,2019
+1998,35,"(30,35]",College,13.820866666666667,134.9081242937853,0.10244651120172264,8498.03889551971,2019
+1998,35,"(30,35]",College,13.820866666666667,134.9081242937853,0.10244651120172264,7951.681172330597,2019
+1998,35,"(30,35]",College,14.003200000000001,134.9081242937853,0.10379804828881661,8437.19040545914,2019
+1998,54,"(50,55]",NoHS,14.513733333333334,11.088338983050848,1.3089186176142698,7587.296275363891,2019
+1998,54,"(50,55]",NoHS,-7.348033333333334,11.088338983050848,-0.6626811594202899,7588.29469061414,2019
+1998,54,"(50,55]",NoHS,-7.530366666666667,10.903533333333334,-0.6906354515050167,7567.232083661147,2019
+1998,54,"(50,55]",NoHS,1.7504000000000002,10.903533333333334,0.1605351170568562,7584.703348247733,2019
+1998,54,"(50,55]",NoHS,56.46863333333333,10.903533333333334,5.178929765886287,7591.7997949474575,2019
+1998,71,"(70,75]",College,601.8823333333333,97.9469943502825,6.144980122420647,8791.28487506128,2019
+1998,71,"(70,75]",College,600.9706666666666,97.9469943502825,6.135672367009527,8466.713519079609,2019
+1998,71,"(70,75]",College,603.1586666666666,97.9469943502825,6.158010979996212,7903.186847398574,2019
+1998,71,"(70,75]",College,600.2413333333334,97.9469943502825,6.128226162680633,8644.544541282154,2019
+1998,71,"(70,75]",College,604.6173333333334,97.9469943502825,6.172903388654004,7882.923667885107,2019
+1998,24,"(20,25]",HS,9.663666666666666,29.56890395480226,0.3268185618729097,3833.7146262818724,2019
+1998,24,"(20,25]",HS,9.663666666666666,29.56890395480226,0.3268185618729097,3828.730448226232,2019
+1998,24,"(20,25]",HS,9.663666666666666,29.56890395480226,0.3268185618729097,3853.91109903763,2019
+1998,24,"(20,25]",HS,9.663666666666666,31.416960451977403,0.30759394058626793,3849.2528803368887,2019
+1998,24,"(20,25]",HS,9.663666666666666,31.416960451977403,0.30759394058626793,3821.3902213548354,2019
+1998,85,"(80,85]",College,22093.147666666668,4047.2437288135593,5.4588132435362935,0.9993971784818804,2019
+1998,85,"(80,85]",College,51610.17933333333,4342.932768361583,11.883715932541092,1.1216032255767114,2019
+1998,85,"(80,85]",College,25084.326,9462.049265536725,2.651045803720735,0.9070139182042981,2019
+1998,85,"(80,85]",College,21326.436,3714.593559322034,5.741256926071982,0.9016591004691727,2019
+1998,85,"(80,85]",College,27258.651,5008.233107344633,5.442768021325699,0.8404936899827502,2019
+1998,41,"(40,45]",HS,137.47933333333336,101.64310734463277,1.3525691699604745,7084.522058342247,2019
+1998,41,"(40,45]",HS,137.47933333333336,101.64310734463277,1.3525691699604745,7181.423531850547,2019
+1998,41,"(40,45]",HS,137.47933333333336,101.64310734463277,1.3525691699604745,7476.045329312692,2019
+1998,41,"(40,45]",HS,137.47933333333336,101.64310734463277,1.3525691699604745,7120.0023080945075,2019
+1998,41,"(40,45]",HS,137.47933333333336,101.64310734463277,1.3525691699604745,7385.543612665152,2019
+1998,58,"(55,60]",HS,3406.5336666666667,77.61837288135592,43.888238573021184,17.226621186660406,2019
+1998,58,"(55,60]",HS,3408.357,77.61837288135592,43.911729574773055,18.685381916283724,2019
+1998,58,"(55,60]",HS,3408.357,77.61837288135592,43.911729574773055,18.276295415364523,2019
+1998,58,"(55,60]",HS,3406.5336666666667,77.61837288135592,43.888238573021184,18.964756336956746,2019
+1998,58,"(55,60]",HS,3406.5336666666667,77.61837288135592,43.888238573021184,19.865685399598963,2019
+1998,42,"(40,45]",College,3788.7043333333336,868.5865536723164,4.3619191631680065,210.4318284884508,2019
+1998,42,"(40,45]",College,3730.357666666667,866.7384971751412,4.303902132909271,209.38568558777993,2019
+1998,42,"(40,45]",College,3553.4943333333335,866.7384971751412,4.099845968437792,201.77189031955086,2019
+1998,42,"(40,45]",College,3588.1376666666665,868.5865536723164,4.13100761403259,220.22539405255057,2019
+1998,42,"(40,45]",College,3610.0176666666666,866.7384971751412,4.1650597941967185,206.02250552194423,2019
+1998,25,"(20,25]",College,-27.532333333333334,60.98586440677967,-0.4514543427586905,4615.175054734371,2019
+1998,25,"(20,25]",College,-27.532333333333334,33.265016949152546,-0.8276662950575994,4614.896455489388,2019
+1998,25,"(20,25]",College,-27.532333333333334,73.92225988700567,-0.37244983277591964,4589.082788761292,2019
+1998,25,"(20,25]",College,-27.532333333333334,27.720847457627123,-0.9931995540691192,4651.332667795731,2019
+1998,25,"(20,25]",College,-27.532333333333334,24.024734463276836,-1.1459994854643685,4609.493844454061,2019
+1998,61,"(60,65]",College,3755.6108333333336,221.76677966101698,16.934956800445928,401.16566193425894,2019
+1998,61,"(60,65]",College,19934.503333333334,604.3144745762711,32.98696981784338,461.05104733927936,2019
+1998,61,"(60,65]",College,7280.57,330.80211299435024,22.00883765251023,378.99457557511573,2019
+1998,61,"(60,65]",College,5477.293333333333,280.90458757062146,19.49876782256645,416.8849863685161,2019
+1998,61,"(60,65]",College,10126.3375,234.70317514124295,43.145294024701755,396.4605293820811,2019
+1998,85,"(80,85]",HS,10.757666666666667,20.328621468926556,0.5291882031012466,6569.3169593995235,2019
+1998,85,"(80,85]",HS,10.757666666666667,20.328621468926556,0.5291882031012466,6721.462082674594,2019
+1998,85,"(80,85]",HS,10.757666666666667,22.176677966101696,0.4850891861761427,6830.672898812081,2019
+1998,85,"(80,85]",HS,10.757666666666667,22.176677966101696,0.4850891861761427,6747.722675309425,2019
+1998,85,"(80,85]",HS,10.757666666666667,20.328621468926556,0.5291882031012466,6890.284651937606,2019
+1998,37,"(35,40]",College,48.22716666666666,110.88338983050849,0.43493589743589733,5799.1336488880215,2019
+1998,37,"(35,40]",College,48.22716666666666,38.80918644067796,1.2426739926739927,5827.477882865372,2019
+1998,37,"(35,40]",College,48.22716666666666,55.441694915254246,0.8698717948717947,5812.652349192705,2019
+1998,37,"(35,40]",College,48.22716666666666,110.88338983050849,0.43493589743589733,5850.324159902036,2019
+1998,37,"(35,40]",College,48.22716666666666,35.11307344632768,1.373481781376518,5802.5001302645705,2019
+1998,64,"(60,65]",College,4782.6033333333335,578.4416836158192,8.268082105420625,210.4318284884508,2019
+1998,64,"(60,65]",College,5025.1066666666675,578.4416836158192,8.68731768301153,209.38568558777993,2019
+1998,64,"(60,65]",College,5076.16,578.4416836158192,8.775577804609615,201.77189031955086,2019
+1998,64,"(60,65]",College,4738.843333333333,578.4416836158192,8.192430572622266,220.22539405255057,2019
+1998,64,"(60,65]",College,5577.576666666667,578.4416836158192,9.642418284590809,206.02250552194423,2019
+1998,83,"(80,85]",NoHS,627.8101333333333,17.741342372881356,35.38684503901895,7818.181633544305,2019
+1998,83,"(80,85]",NoHS,629.4329,17.741342372881356,35.4783131270903,7497.530008109044,2019
+1998,83,"(80,85]",NoHS,642.1962333333333,17.741342372881356,36.19772505574136,6998.4320412563175,2019
+1998,83,"(80,85]",NoHS,627.7919,17.741342372881356,35.385817307692314,7620.087741840948,2019
+1998,83,"(80,85]",NoHS,671.5519,17.741342372881356,37.852372491638796,6979.874114037049,2019
+1998,41,"(40,45]",HS,509.98633333333333,70.22614689265536,7.26205773631403,5831.993460363023,2019
+1998,41,"(40,45]",HS,509.80400000000003,70.22614689265536,7.259461362436191,5579.550499523875,2019
+1998,41,"(40,45]",HS,509.80400000000003,70.22614689265536,7.259461362436191,5210.377779636392,2019
+1998,41,"(40,45]",HS,511.8096666666667,70.22614689265536,7.288021475092414,5694.5195926438455,2019
+1998,41,"(40,45]",HS,509.80400000000003,70.22614689265536,7.259461362436191,5193.304037479085,2019
+1998,57,"(55,60]",College,74699.50516666667,4010.282598870057,18.626992817841344,43.523364558669535,2019
+1998,57,"(55,60]",College,78237.66526666666,6505.158870056497,12.027018375646092,45.616857124781426,2019
+1998,57,"(55,60]",College,68770.49923333334,1958.9398870056498,35.10597731431817,39.76649430557678,2019
+1998,57,"(55,60]",College,72018.02,6930.21186440678,10.391892976588629,38.3016067385563,2019
+1998,57,"(55,60]",College,68447.751,6948.692429378531,9.850450526577955,38.933234804448105,2019
+1998,41,"(40,45]",HS,681.562,203.28621468926553,3.352721191851627,5354.197875706929,2019
+1998,41,"(40,45]",HS,681.562,203.28621468926553,3.352721191851627,5123.701997368531,2019
+1998,41,"(40,45]",HS,681.562,203.28621468926553,3.352721191851627,4783.334590408654,2019
+1998,41,"(40,45]",HS,681.562,203.28621468926553,3.352721191851627,5229.439156800557,2019
+1998,41,"(40,45]",HS,681.562,203.28621468926553,3.352721191851627,4768.099578522356,2019
+1998,30,"(25,30]",HS,11.578166666666666,73.92225988700567,0.15662625418060197,7197.909013431406,2019
+1998,30,"(25,30]",HS,11.578166666666666,73.92225988700567,0.15662625418060197,7288.801489143358,2019
+1998,30,"(25,30]",HS,11.578166666666666,73.92225988700567,0.15662625418060197,7393.5320677419395,2019
+1998,30,"(25,30]",HS,11.578166666666666,73.92225988700567,0.15662625418060197,7226.803720831342,2019
+1998,30,"(25,30]",HS,11.395833333333334,73.92225988700567,0.1541596989966555,7364.291454162424,2019
+1998,68,"(65,70]",HS,125278.88123333333,550.720836158192,227.4816440708402,29.65207010847164,2019
+1998,68,"(65,70]",HS,49892.7999,1082.9611073446329,46.07072180305226,31.07559298856903,2019
+1998,68,"(65,70]",HS,51597.06956666667,1508.0141016949153,34.21524341760116,26.987530415473685,2019
+1998,68,"(65,70]",HS,44916.923233333335,2328.551186440678,19.289643918883048,25.98906441921244,2019
+1998,68,"(65,70]",HS,64652.31856666667,1674.339186440678,38.61363282317068,26.517339454686095,2019
+1998,49,"(45,50]",College,188.168,166.32508474576272,1.1313266443701226,10553.334075500763,2019
+1998,49,"(45,50]",College,208.8446,164.47702824858757,1.2697493517718237,10174.650373158365,2019
+1998,49,"(45,50]",College,175.4776,164.47702824858757,1.0668821164180227,11021.191595717077,2019
+1998,49,"(45,50]",College,164.4099666666667,164.47702824858757,0.9995922738717073,10062.590158865458,2019
+1998,49,"(45,50]",College,213.76760000000002,164.47702824858757,1.2996805832174665,10318.796404198825,2019
+1998,31,"(30,35]",College,856.9666666666667,131.21201129943503,6.531160205379433,648.0235937009659,2019
+1998,31,"(30,35]",College,882.8580000000001,129.36395480225988,6.824605828953656,592.0519203971932,2019
+1998,31,"(30,35]",College,847.85,129.36395480225988,6.553989488772098,617.703902870074,2019
+1998,31,"(30,35]",College,848.2146666666666,129.36395480225988,6.556808408982322,680.7499090710455,2019
+1998,31,"(30,35]",College,875.5646666666667,127.51589830508476,6.866317677281759,675.1176476447582,2019
+1998,59,"(55,60]",College,93939.8655,4546.218983050848,20.663295334040296,15.134541716248247,2019
+1998,59,"(55,60]",College,105412.6435,10441.519209039549,10.095527421789445,15.874244413854168,2019
+1998,59,"(55,60]",College,39487.838833333335,2014.381581920904,19.602958638888037,11.619529147179684,2019
+1998,59,"(55,60]",College,38830.891833333335,3049.2932203389832,12.734390898956116,10.966092522025658,2019
+1998,59,"(55,60]",College,47089.680166666665,9036.996271186441,5.210766802771337,13.520225057567519,2019
+1998,37,"(35,40]",HS,264.201,240.24734463276835,1.0997041420118345,7527.304670853448,2019
+1998,37,"(35,40]",HS,394.13173333333333,140.45229378531073,2.8061608871677524,5993.657752561032,2019
+1998,37,"(35,40]",HS,361.7493333333333,138.6042372881356,2.6099442586399104,7943.298145367839,2019
+1998,37,"(35,40]",HS,246.93403333333333,147.84451977401133,1.6702278428093642,7565.00243613442,2019
+1998,37,"(35,40]",HS,319.448,112.73144632768363,2.8337079883765552,7847.140071635949,2019
+1998,27,"(25,30]",HS,11.031166666666666,29.56890395480226,0.3730664715719063,5563.588558652074,2019
+1998,27,"(25,30]",HS,12.763333333333334,29.56890395480226,0.43164715719063546,5542.781426294526,2019
+1998,27,"(25,30]",HS,6.6734,29.56890395480226,0.2256897993311037,5530.669488789589,2019
+1998,27,"(25,30]",HS,7.019833333333334,29.56890395480226,0.2374059364548495,5558.4685764500755,2019
+1998,27,"(25,30]",HS,7.311566666666667,29.56890395480226,0.24727215719063547,5545.29695388397,2019
+1998,27,"(25,30]",HS,85.78783333333332,134.9081242937853,0.6358981994777111,7356.977163711519,2019
+1998,27,"(25,30]",HS,87.61116666666668,97.9469943502825,0.894475295008519,7318.501299022011,2019
+1998,27,"(25,30]",HS,89.4345,105.33922033898305,0.8490142580531597,7575.216224876225,2019
+1998,27,"(25,30]",HS,89.61683333333333,134.9081242937853,0.6642804783066844,7383.333351958301,2019
+1998,27,"(25,30]",HS,85.78783333333332,129.36395480225988,0.6631509794553272,7438.313052290369,2019
+1998,53,"(50,55]",HS,25.526666666666667,31.416960451977403,0.8125122958882549,6476.697347843244,2019
+1998,53,"(50,55]",HS,23.521,33.265016949152546,0.7070791527313266,6603.197363574996,2019
+1998,53,"(50,55]",HS,27.35,33.265016949152546,0.8221850613154961,6840.736321015298,2019
+1998,53,"(50,55]",HS,27.16766666666667,33.265016949152546,0.8167038275733928,6495.70608980366,2019
+1998,53,"(50,55]",HS,27.16766666666667,33.265016949152546,0.8167038275733928,6821.355695004364,2019
+1998,37,"(35,40]",HS,108.61596666666667,60.98586440677967,1.7810023310023309,5467.164654413951,2019
+1998,37,"(35,40]",HS,99.73633333333333,31.416960451977403,3.174601613220539,5426.909601653249,2019
+1998,37,"(35,40]",HS,127.26866666666668,42.50529943502825,2.9941835102515633,5428.420315380027,2019
+1998,37,"(35,40]",HS,111.041,24.024734463276836,4.62194494468742,5519.648168410362,2019
+1998,37,"(35,40]",HS,141.85533333333333,60.98586440677967,2.326036282558021,5406.973531710386,2019
+1998,77,"(75,80]",HS,1890.7966666666669,103.49116384180793,18.270126612517913,4045.4996273906045,2019
+1998,77,"(75,80]",HS,1540.7166666666667,103.49116384180793,14.887422360248443,4422.0247861724365,2019
+1998,77,"(75,80]",HS,1486.0166666666669,103.49116384180793,14.35887482083134,4125.561735177962,2019
+1998,77,"(75,80]",HS,1461.4016666666669,103.49116384180793,14.121028428093645,4077.2384099885917,2019
+1998,77,"(75,80]",HS,1478.7233333333334,103.49116384180793,14.288401815575726,4227.175041791604,2019
+1998,68,"(65,70]",College,58861.576,1293.639548022599,45.500754897276636,17.268444467120176,2019
+1998,68,"(65,70]",College,49682.916,1293.639548022599,38.40553272814142,17.91468756555343,2019
+1998,68,"(65,70]",College,57158.58266666667,1293.639548022599,44.18431915910177,15.830599937145305,2019
+1998,68,"(65,70]",College,38068.282666666666,1293.639548022599,29.4272718585762,12.792498654247364,2019
+1998,68,"(65,70]",College,451427.066,1293.639548022599,348.9589249880554,15.429581264837443,2019
+1998,26,"(25,30]",College,72.20400000000001,55.441694915254246,1.3023411371237457,6183.100243017927,2019
+1998,26,"(25,30]",College,72.20400000000001,55.441694915254246,1.3023411371237457,6162.019357834373,2019
+1998,26,"(25,30]",College,72.20400000000001,55.441694915254246,1.3023411371237457,6165.09981043467,2019
+1998,26,"(25,30]",College,72.20400000000001,55.441694915254246,1.3023411371237457,6208.965226760537,2019
+1998,26,"(25,30]",College,72.20400000000001,55.441694915254246,1.3023411371237457,6161.2019835164065,2019
+1998,39,"(35,40]",College,1620.3963333333334,1016.4310734463277,1.5942018850714503,184.665434483542,2019
+1998,39,"(35,40]",College,2039.7630000000001,1016.4310734463277,2.006789297658863,184.29568661943344,2019
+1998,39,"(35,40]",College,1620.3963333333334,1016.4310734463277,1.5942018850714503,170.56924812482072,2019
+1998,39,"(35,40]",College,2495.5963333333334,1016.4310734463277,2.4552538765582246,186.72121175867437,2019
+1998,39,"(35,40]",College,2495.5963333333334,1016.4310734463277,2.4552538765582246,182.36893371724233,2019
+1998,50,"(45,50]",HS,96057.72186666666,772.4876158192092,124.34855899249489,15.134541716248247,2019
+1998,50,"(45,50]",HS,95099.1773,785.424011299435,121.08004839661616,15.874244413854168,2019
+1998,50,"(45,50]",HS,99560.49106666667,729.9823163841808,136.3875382075272,13.522093385409011,2019
+1998,50,"(45,50]",HS,99314.74220000001,809.448745762712,122.69429376460347,13.033395147043223,2019
+1998,50,"(45,50]",HS,98789.09343333334,857.4982146892655,115.2061797226387,13.520225057567519,2019
+1998,40,"(35,40]",HS,34.096333333333334,92.40282485875707,0.3689966555183946,7612.1364038390075,2019
+1998,40,"(35,40]",HS,34.096333333333334,55.441694915254246,0.614994425863991,7812.423495026489,2019
+1998,40,"(35,40]",HS,34.096333333333334,68.37809039548021,0.49864412907891176,8162.347151595086,2019
+1998,40,"(35,40]",HS,34.096333333333334,88.70671186440678,0.38437151616499443,7576.100389277359,2019
+1998,40,"(35,40]",HS,34.096333333333334,90.55476836158192,0.37652719950856595,8107.26912070799,2019
+1998,68,"(65,70]",College,25066.238533333337,1162.427536723164,21.563699879300902,14.62115757148077,2019
+1998,68,"(65,70]",College,30492.752033333334,1105.1377853107342,27.59181021465085,15.991311506715181,2019
+1998,68,"(65,70]",College,23977.56266666667,968.3816045197741,24.76044831371748,15.812981919377819,2019
+1998,68,"(65,70]",College,31448.124,957.2932655367232,32.85108663369533,14.419498333074008,2019
+1998,68,"(65,70]",College,33359.524333333335,996.102451977401,33.49005342483604,15.900512794107081,2019
+1998,51,"(50,55]",HS,187.80333333333334,101.64310734463277,1.8476740650653696,6521.6744074026665,2019
+1998,51,"(50,55]",HS,187.80333333333334,101.64310734463277,1.8476740650653696,6649.052895361277,2019
+1998,51,"(50,55]",HS,187.80333333333334,101.64310734463277,1.8476740650653696,6888.241428698469,2019
+1998,51,"(50,55]",HS,184.15666666666667,101.64310734463277,1.8117968987534205,6540.815154499864,2019
+1998,51,"(50,55]",HS,187.80333333333334,101.64310734463277,1.8476740650653696,6868.726215022936,2019
+1998,29,"(25,30]",College,-13.128,99.79505084745762,-0.1315496098104794,5596.771769864393,2019
+1998,29,"(25,30]",College,-13.128,99.79505084745762,-0.1315496098104794,5577.689934144144,2019
+1998,29,"(25,30]",College,-13.128,99.79505084745762,-0.1315496098104794,5580.47827485902,2019
+1998,29,"(25,30]",College,-12.945666666666666,99.79505084745762,-0.12972253189644495,5620.184039623739,2019
+1998,29,"(25,30]",College,-13.128,99.79505084745762,-0.1315496098104794,5576.950069460023,2019
+1998,73,"(70,75]",NoHS,190771.173,1848.0564971751412,103.22799832775921,14.88907941025208,2019
+1998,73,"(70,75]",NoHS,222223.673,1848.0564971751412,120.24722909698997,15.346942428237279,2019
+1998,73,"(70,75]",NoHS,116472.163,1848.0564971751412,63.02413545150502,16.178579613961055,2019
+1998,73,"(70,75]",NoHS,222862.022,1848.0564971751412,120.59264548494983,15.10758998806865,2019
+1998,73,"(70,75]",NoHS,115602.25066666667,1848.0564971751412,62.55341806020068,16.589108194601298,2019
+1998,43,"(40,45]",HS,115.78166666666668,20.328621468926556,5.695500152021891,5596.4732035299585,2019
+1998,43,"(40,45]",HS,204.031,64.68197740112994,3.1543717152412807,5704.94815746117,2019
+1998,43,"(40,45]",HS,189.99133333333336,36.96112994350283,5.140301003344481,5976.993164662936,2019
+1998,43,"(40,45]",HS,164.28233333333336,27.720847457627123,5.926309921962096,5613.814769364937,2019
+1998,43,"(40,45]",HS,162.459,83.16254237288136,1.9535117056856186,5841.0804992980875,2019
+1998,52,"(50,55]",HS,1326.6573333333333,208.83038418079096,6.352798413591026,10809.270539879593,2019
+1998,52,"(50,55]",HS,1326.6573333333333,208.83038418079096,6.352798413591026,11339.805156259134,2019
+1998,52,"(50,55]",HS,1326.6573333333333,206.98232768361586,6.409519827998087,10807.401349019588,2019
+1998,52,"(50,55]",HS,1326.6573333333333,208.83038418079096,6.352798413591026,11185.81343398643,2019
+1998,52,"(50,55]",HS,1326.6573333333333,208.83038418079096,6.352798413591026,10777.319081947266,2019
+1998,65,"(60,65]",HS,453.11656666666664,49.89752542372881,9.080942648333954,7517.5358461114665,2019
+1998,65,"(60,65]",HS,839.1527,38.80918644067796,21.622527472527473,6237.016845849306,2019
+1998,65,"(60,65]",HS,724.3921,40.65724293785311,17.81704925509273,5776.336631363459,2019
+1998,65,"(60,65]",HS,584.3418666666668,48.04946892655367,12.161255466941087,6337.143964488517,2019
+1998,65,"(60,65]",HS,641.2663333333334,57.289751412429375,11.193386557341677,5760.6843866482,2019
+1998,60,"(55,60]",HS,158.81233333333336,73.92225988700567,2.1483695652173913,8558.416341824322,2019
+1998,60,"(55,60]",HS,158.81233333333336,73.92225988700567,2.1483695652173913,8526.535593645352,2019
+1998,60,"(55,60]",HS,158.81233333333336,73.92225988700567,2.1483695652173913,9034.881117090565,2019
+1998,60,"(55,60]",HS,158.81233333333336,73.92225988700567,2.1483695652173913,8365.886319583622,2019
+1998,60,"(55,60]",HS,158.99466666666666,73.92225988700567,2.1508361204013373,8844.527957267946,2019
+1998,42,"(40,45]",HS,431.76533333333333,144.14840677966103,2.9952834233770687,5494.493843390047,2019
+1998,42,"(40,45]",HS,433.5886666666667,144.14840677966103,3.0079324243203844,5256.659849993992,2019
+1998,42,"(40,45]",HS,431.76533333333333,144.14840677966103,2.9952834233770687,4908.851291847376,2019
+1998,42,"(40,45]",HS,433.40633333333335,144.14840677966103,3.0066675242260525,5364.975639204166,2019
+1998,42,"(40,45]",HS,431.76533333333333,144.14840677966103,2.9952834233770687,4892.765613458924,2019
+1998,56,"(55,60]",College,82741.8456,2014.381581920904,41.075557055628856,14.88907941025208,2019
+1998,56,"(55,60]",College,110951.47433333333,3899.3992090395477,28.45347921190699,15.346942428237279,2019
+1998,56,"(55,60]",College,71381.5308,2846.007005649717,25.081291317378277,16.178579613961055,2019
+1998,56,"(55,60]",College,89369.6258,2328.551186440678,38.37992753623188,15.10758998806865,2019
+1998,56,"(55,60]",College,69907.62106666666,3843.9575141242935,18.186366735271417,16.589108194601298,2019
+1998,39,"(35,40]",HS,5.287666666666667,85.0105988700565,0.062200087247346235,1133.9004562237042,2019
+1998,39,"(35,40]",HS,-2.5526666666666666,53.593638418079095,-0.04763003113827702,1130.9338898202545,2019
+1998,39,"(35,40]",HS,1.4586666666666668,48.04946892655367,0.03035760226395678,1104.5742422259164,2019
+1998,39,"(35,40]",HS,3.282,57.289751412429375,0.057287733304563604,1085.357156678871,2019
+1998,39,"(35,40]",HS,-0.9116666666666666,75.77031638418079,-0.012031976507056041,1164.665237643595,2019
+1998,22,"(20,25]",HS,11.286433333333333,129.36395480225988,0.08724558050645007,4412.4303479517275,2019
+1998,22,"(20,25]",HS,9.846,129.36395480225988,0.07611084567606308,4403.348031447897,2019
+1998,22,"(20,25]",HS,11.359366666666666,129.36395480225988,0.08780936454849499,4462.672333109879,2019
+1998,22,"(20,25]",HS,11.122333333333334,129.36395480225988,0.08597706641184903,4405.139084246789,2019
+1998,22,"(20,25]",HS,11.122333333333334,129.36395480225988,0.08597706641184903,4369.532220914539,2019
+1998,62,"(60,65]",NoHS,12.763333333333334,64.68197740112994,0.19732441471571907,5872.336105698024,2019
+1998,62,"(60,65]",NoHS,13.310333333333334,64.68197740112994,0.20578117534639276,5881.015006006251,2019
+1998,62,"(60,65]",NoHS,11.669333333333334,64.68197740112994,0.18041089345437172,5902.858330641599,2019
+1998,62,"(60,65]",NoHS,12.398666666666667,64.68197740112994,0.19168657429526997,5872.047237144167,2019
+1998,62,"(60,65]",NoHS,12.034,64.68197740112994,0.18604873387482085,5903.732052757985,2019
+1998,27,"(25,30]",NoHS,239.11193333333333,46.201412429378536,5.175424749163879,257.190046912962,2019
+1998,27,"(25,30]",NoHS,149.5498,46.201412429378536,3.2369096989966555,259.58123145751495,2019
+1998,27,"(25,30]",NoHS,137.35170000000002,46.201412429378536,2.9728896321070235,236.0415998100562,2019
+1998,27,"(25,30]",NoHS,239.03900000000002,46.201412429378536,5.173846153846154,250.23490319562524,2019
+1998,27,"(25,30]",NoHS,193.7474,46.201412429378536,4.193538461538461,250.39436595774654,2019
+1998,39,"(35,40]",HS,-22.06233333333333,64.68197740112994,-0.3410893454371715,6187.945442511866,2019
+1998,39,"(35,40]",HS,-23.88566666666667,64.68197740112994,-0.36927854753941713,6178.696193755679,2019
+1998,39,"(35,40]",HS,-20.239,64.68197740112994,-0.31290014333492594,6165.750867238383,2019
+1998,39,"(35,40]",HS,-22.06233333333333,64.68197740112994,-0.3410893454371715,6218.910642615567,2019
+1998,39,"(35,40]",HS,-22.06233333333333,64.68197740112994,-0.3410893454371715,6143.9424847432065,2019
+1998,83,"(80,85]",College,1636.9855670000002,271.6643050847458,6.025766125179168,4346.051407925462,2019
+1998,83,"(80,85]",College,1328.663,190.34981920903957,6.980111699191479,8833.230017692598,2019
+1998,83,"(80,85]",College,1818.228,271.6643050847458,6.69292198484745,4432.190064375457,2019
+1998,83,"(80,85]",College,1312.4353333333333,253.18374011299437,5.18372677782389,8975.919035055118,2019
+1998,83,"(80,85]",College,1499.2540666666666,271.6643050847458,5.518774600141058,4540.388975045921,2019
+1998,56,"(55,60]",College,3266.6475333333333,258.72790960451977,12.625802675585284,3367.3833616380807,2019
+1998,56,"(55,60]",College,3215.411866666667,258.72790960451977,12.42777353081701,3623.8764854168826,2019
+1998,56,"(55,60]",College,3180.9508666666666,258.72790960451977,12.294579550883899,3484.9668742741787,2019
+1998,56,"(55,60]",College,3233.6452000000004,258.72790960451977,12.498246536072624,4087.8618361036074,2019
+1998,56,"(55,60]",College,3204.6542000000004,258.72790960451977,12.386194457716199,3268.9642418434514,2019
+1998,26,"(25,30]",HS,39.25636666666667,27.720847457627123,1.4161315496098104,4129.987109206073,2019
+1998,26,"(25,30]",HS,4.959466666666667,27.720847457627123,0.17890746934225193,4100.135784814364,2019
+1998,26,"(25,30]",HS,12.307500000000001,27.720847457627123,0.4439799331103679,4122.463649086507,2019
+1998,26,"(25,30]",HS,61.209300000000006,27.720847457627123,2.2080602006688963,4130.887992120807,2019
+1998,26,"(25,30]",HS,17.048166666666667,27.720847457627123,0.614994425863991,4113.317274167412,2019
+1998,52,"(50,55]",College,2594.7856666666667,388.0918644067797,6.686008918617614,1042.8873658181496,2019
+1998,52,"(50,55]",College,3141.6033333333335,388.0918644067797,8.094999203694856,1143.3517729179207,2019
+1998,52,"(50,55]",College,2155.3623333333335,386.2438079096046,5.580315565441423,3181.4963402183926,2019
+1998,52,"(50,55]",College,3324.119,388.0918644067797,8.56528905876732,1338.051938116263,2019
+1998,52,"(50,55]",College,2228.1133333333337,386.2438079096046,5.768670688579156,3262.925728008571,2019
+1998,62,"(60,65]",College,22064.521333333334,554.4169491525424,39.797703455964324,13.03880004061325,2019
+1998,62,"(60,65]",College,22567.94366666667,554.4169491525424,40.70572463768116,14.418271434568833,2019
+1998,62,"(60,65]",College,21521.897333333334,554.4169491525424,38.81897435897436,11.619529147179684,2019
+1998,62,"(60,65]",College,22444.86866666667,554.4169491525424,40.48373467112597,10.966092522025658,2019
+1998,62,"(60,65]",College,21663.02333333333,554.4169491525424,39.07352285395763,11.198182714031596,2019
+1998,57,"(55,60]",College,65272.39776666667,1848.0564971751412,35.31948177257525,17.946207271687662,2019
+1998,57,"(55,60]",College,59424.621333333336,1848.0564971751412,32.155197324414715,18.83866816423636,2019
+1998,57,"(55,60]",College,72665.121,1848.0564971751412,39.3197508361204,16.444942368718884,2019
+1998,57,"(55,60]",College,67683.22733333333,1848.0564971751412,36.6240033444816,15.79138562042399,2019
+1998,57,"(55,60]",College,67233.44382,1848.0564971751412,36.38062143812709,16.010495326213785,2019
+1998,27,"(25,30]",HS,14.422566666666668,20.328621468926556,0.7094709638187899,9053.61152317904,2019
+1998,27,"(25,30]",HS,14.003200000000001,20.328621468926556,0.6888415931894193,9029.447435277534,2019
+1998,27,"(25,30]",HS,15.443633333333333,20.328621468926556,0.7596989966555182,8944.318258491574,2019
+1998,27,"(25,30]",HS,16.045333333333335,20.328621468926556,0.7892976588628763,9064.493590467842,2019
+1998,27,"(25,30]",HS,14.003200000000001,20.328621468926556,0.6888415931894193,8949.969371439267,2019
+1998,89,"(85,90]",NoHS,753.0366666666666,92.40282485875707,8.149498327759195,466.41005706259847,2019
+1998,89,"(85,90]",NoHS,725.6866666666666,94.25088135593221,7.699521280083939,452.53624274559814,2019
+1998,89,"(85,90]",NoHS,763.612,94.25088135593221,8.10190832185717,536.969587223733,2019
+1998,89,"(85,90]",NoHS,968.19,94.25088135593221,10.27247688373008,517.0902634749019,2019
+1998,89,"(85,90]",NoHS,785.3096666666667,92.40282485875707,8.49876254180602,453.39959180889656,2019
+1998,64,"(60,65]",College,5127.377433333334,325.2579435028249,15.76403447096382,2037.4491931116845,2019
+1998,64,"(60,65]",College,3787.8838333333338,327.106,11.579988851727984,1407.616158424751,2019
+1998,64,"(60,65]",College,4650.302266666667,327.106,14.216499442586398,1930.3250248292675,2019
+1998,64,"(60,65]",College,3465.172066666667,327.106,10.593422519509478,1560.9062993657612,2019
+1998,64,"(60,65]",College,4573.758733333333,327.106,13.982497212931994,2103.3926778001655,2019
+1998,60,"(55,60]",HS,175.9334333333333,33.265016949152546,5.28884243775548,8598.038629422754,2019
+1998,60,"(55,60]",HS,174.83943333333332,33.265016949152546,5.25595503530286,8566.0102852257,2019
+1998,60,"(55,60]",HS,177.9391,33.265016949152546,5.349136008918617,9076.709259557716,2019
+1998,60,"(55,60]",HS,172.08620000000002,33.265016949152546,5.173188405797101,8404.617264717765,2019
+1998,60,"(55,60]",HS,175.00353333333334,33.265016949152546,5.260888145670754,8885.474835334946,2019
+1998,65,"(60,65]",College,19734.483666666667,7429.187118644068,2.6563449475032863,25.13170423941856,2019
+1998,65,"(60,65]",College,19734.483666666667,7429.187118644068,2.6563449475032863,27.28778974684085,2019
+1998,65,"(60,65]",College,19734.483666666667,7429.187118644068,2.6563449475032863,27.74624412427776,2019
+1998,65,"(60,65]",College,19732.660333333333,7447.667683615819,2.649508701461447,25.346769551479515,2019
+1998,65,"(60,65]",College,19734.483666666667,7429.187118644068,2.6563449475032863,26.948382020005873,2019
+1998,61,"(60,65]",College,108442.93233333333,968.3816045197741,111.98367650437845,24.536113405023357,2019
+1998,61,"(60,65]",College,108243.095,970.2296610169492,111.56440516005733,25.75983580138125,2019
+1998,61,"(60,65]",College,104822.88633333333,953.5971525423727,109.92365702211508,22.59482456630162,2019
+1998,61,"(60,65]",College,108752.899,970.2296610169492,112.08985188724319,21.34192801567523,2019
+1998,61,"(60,65]",College,106727.72266666667,1018.2791299435028,104.81185318272038,21.91752728842682,2019
+1998,48,"(45,50]",College,4917.6941,2846.007005649717,1.7279276158623986,216.21111620049282,2019
+1998,48,"(45,50]",College,4618.868,2846.007005649717,1.6229292446683756,214.78225288884127,2019
+1998,48,"(45,50]",College,5092.387666666667,2347.0317514124295,2.1697140073209913,206.45799266929959,2019
+1998,48,"(45,50]",College,4899.442533333333,2919.929265536723,1.6779319249820075,224.59571638244105,2019
+1998,48,"(45,50]",College,5007.584433333333,2661.2013559322036,1.8817006921218877,212.32429477356413,2019
+1998,55,"(50,55]",NoHS,-0.8752000000000001,12.012367231638418,-0.07285824543349628,4183.663985363431,2019
+1998,55,"(50,55]",NoHS,-0.8752000000000001,12.012367231638418,-0.07285824543349628,4172.762735257769,2019
+1998,55,"(50,55]",NoHS,-0.8752000000000001,11.827561581920904,-0.07399665551839466,4210.1581308624745,2019
+1998,55,"(50,55]",NoHS,-0.8752000000000001,11.827561581920904,-0.07399665551839466,4165.782409491865,2019
+1998,55,"(50,55]",NoHS,-0.8752000000000001,11.827561581920904,-0.07399665551839466,4203.709590308403,2019
+1998,44,"(40,45]",HS,182.35156666666668,97.9469943502825,1.8617372373319871,7527.304670853448,2019
+1998,44,"(40,45]",HS,146.86950000000002,136.75618079096043,1.0739514598210254,7630.2624862353205,2019
+1998,44,"(40,45]",HS,136.84116666666665,55.441694915254246,2.468199554069119,7943.298145367839,2019
+1998,44,"(40,45]",HS,203.22873333333334,253.18374011299437,0.8026926738764251,7565.00243613442,2019
+1998,44,"(40,45]",HS,159.9975,251.33568361581922,0.6365888746803069,7847.140071635949,2019
+1998,53,"(50,55]",College,390.9044333333334,223.61483615819208,1.7481149285497115,6509.583330278809,2019
+1998,53,"(50,55]",College,1085.7038333333333,430.59716384180786,2.521391045975857,6228.074876555929,2019
+1998,53,"(50,55]",College,675.8185,155.23674576271185,4.353469899665552,6222.96186338597,2019
+1998,53,"(50,55]",College,558.6693333333334,96.09893785310734,5.8134808335477235,6078.038292437961,2019
+1998,53,"(50,55]",College,854.2316666666667,110.88338983050849,7.703874024526198,6439.958283454904,2019
+1998,60,"(55,60]",HS,572.9825,73.92225988700567,7.7511496655518375,673.4576325994283,2019
+1998,60,"(55,60]",HS,570.4298333333334,73.92225988700567,7.716617892976587,622.5880090595396,2019
+1998,60,"(55,60]",HS,572.2531666666666,73.92225988700567,7.741283444816052,641.6753075665737,2019
+1998,60,"(55,60]",HS,576.9938333333333,73.92225988700567,7.80541387959866,707.0445750019015,2019
+1998,60,"(55,60]",HS,572.0708333333334,73.92225988700567,7.738816889632107,700.5354038280645,2019
+1998,52,"(50,55]",HS,21.97116666666667,59.13780790960452,0.37152487458193983,6659.593186602088,2019
+1998,52,"(50,55]",HS,22.1535,59.13780790960452,0.37460806856187295,6830.625208087137,2019
+1998,52,"(50,55]",HS,21.97116666666667,59.13780790960452,0.37152487458193983,7105.135163801778,2019
+1998,52,"(50,55]",HS,22.1535,59.13780790960452,0.37460806856187295,6589.3271859161805,2019
+1998,52,"(50,55]",HS,22.1535,59.13780790960452,0.37460806856187295,7110.653811495818,2019
+1998,48,"(45,50]",HS,121.61633333333333,48.04946892655367,2.5310650887573964,6521.6744074026665,2019
+1998,48,"(45,50]",HS,110.12933333333334,48.04946892655367,2.291998970928737,6649.052895361277,2019
+1998,48,"(45,50]",HS,86.2072,48.04946892655367,1.7941342937998457,6888.241428698469,2019
+1998,48,"(45,50]",HS,114.14066666666668,48.04946892655367,2.375482377154618,6540.815154499864,2019
+1998,48,"(45,50]",HS,85.0038,48.04946892655367,1.7690892719320812,6868.726215022936,2019
+1998,75,"(70,75]",HS,409.70300000000003,29.56890395480226,13.8558737458194,10055.662451301476,2019
+1998,75,"(70,75]",HS,417.7256666666667,24.024734463276836,17.387316696681246,10266.622116448016,2019
+1998,75,"(70,75]",HS,437.4176666666667,38.80918644067796,11.27098264054786,10724.236826090288,2019
+1998,75,"(70,75]",HS,465.3146666666667,40.65724293785311,11.444816053511705,7745.164948391942,2019
+1998,75,"(70,75]",HS,495.9466666666667,31.416960451977403,15.785953177257525,7094.44276282933,2019
+1998,61,"(60,65]",College,1020.155,423.20493785310737,2.4105460705992314,5340.812668582816,2019
+1998,61,"(60,65]",College,1020.155,421.3568813559322,2.421118641084316,5045.751144889904,2019
+1998,61,"(60,65]",College,1020.155,421.3568813559322,2.421118641084316,5181.76085690501,2019
+1998,61,"(60,65]",College,1018.3316666666666,423.20493785310737,2.4062376772648273,5167.880216048004,2019
+1998,61,"(60,65]",College,1020.155,421.3568813559322,2.421118641084316,5325.717789314062,2019
+1998,52,"(50,55]",HS,381.4413333333333,46.201412429378536,8.256053511705684,6005.403706048566,2019
+1998,52,"(50,55]",HS,381.4413333333333,46.201412429378536,8.256053511705684,6118.574531536653,2019
+1998,52,"(50,55]",HS,381.6236666666667,46.201412429378536,8.26,6291.851750886026,2019
+1998,52,"(50,55]",HS,381.6236666666667,46.201412429378536,8.26,6034.232900952609,2019
+1998,52,"(50,55]",HS,381.4413333333333,46.201412429378536,8.256053511705684,6279.115866504523,2019
+1998,62,"(60,65]",HS,133605.11466666666,7909.681807909606,16.89133873034726,14.88907941025208,2019
+1998,62,"(60,65]",HS,127112.954,7946.6429378531075,15.995805397837753,15.346942428237279,2019
+1998,62,"(60,65]",HS,130860.26866666667,7724.876158192091,16.940112176153367,16.178579613961055,2019
+1998,62,"(60,65]",HS,119052.54433333332,7928.162372881356,15.016410958049754,15.10758998806865,2019
+1998,62,"(60,65]",HS,114913.57766666668,7577.031638418079,15.166041683660985,16.589108194601298,2019
+1998,47,"(45,50]",HS,403.4489666666667,181.10953672316384,2.227651696129957,4938.03508217343,2019
+1998,47,"(45,50]",HS,406.18396666666666,181.10953672316384,2.2427530543990173,4732.851681920392,2019
+1998,47,"(45,50]",HS,405.08996666666667,181.10953672316384,2.236712511091393,4409.270153028883,2019
+1998,47,"(45,50]",HS,398.89063333333337,181.10953672316384,2.202482765681524,4825.366011512915,2019
+1998,47,"(45,50]",HS,393.0559666666667,181.10953672316384,2.1702665347075287,4401.186087443725,2019
+1998,50,"(45,50]",College,1924.8018333333332,134.9081242937853,14.267501259907453,672.0917793659944,2019
+1998,50,"(45,50]",College,2885.6985,321.56183050847454,8.974008188213586,1021.1001874181532,2019
+1998,50,"(45,50]",College,2295.9413333333337,227.31094915254238,10.100443211789978,673.3232684605655,2019
+1998,50,"(45,50]",College,2115.6136666666666,304.9293220338983,6.938046011959055,695.9731086285062,2019
+1998,50,"(45,50]",College,5052.821333333333,286.4487570621469,17.63952961484518,969.8612621006496,2019
+1998,54,"(50,55]",HS,1328.663,96.09893785310734,13.825990481090816,5969.085371914029,2019
+1998,54,"(50,55]",HS,2755.239,123.81978531073446,22.252009184845008,1029.6703521694676,2019
+1998,54,"(50,55]",HS,944.8513333333334,133.06006779661018,7.100938312894835,5330.408612290364,2019
+1998,54,"(50,55]",HS,685.2086666666667,105.33922033898305,6.504782021944493,5832.87371982985,2019
+1998,54,"(50,55]",HS,679.1734333333334,105.33922033898305,6.447488705040192,5320.84916587499,2019
+1998,42,"(40,45]",College,7712.7,4620.141242937853,1.669364548494983,11.149415382359729,2019
+1998,42,"(40,45]",College,7712.7,4620.141242937853,1.669364548494983,12.02738793032553,2019
+1998,42,"(40,45]",College,7712.7,4620.141242937853,1.669364548494983,11.592563698823714,2019
+1998,42,"(40,45]",College,7712.7,4620.141242937853,1.669364548494983,11.880775170467038,2019
+1998,42,"(40,45]",College,7712.7,4620.141242937853,1.669364548494983,12.650181453643658,2019
+1998,45,"(40,45]",HS,46.67733333333334,29.56890395480226,1.5785953177257526,7068.850325100842,2019
+1998,45,"(40,45]",HS,46.67733333333334,27.720847457627123,1.6838350055741358,7076.2080263279695,2019
+1998,45,"(40,45]",HS,46.85966666666666,35.11307344632768,1.334536173208942,7072.414998560409,2019
+1998,45,"(40,45]",HS,46.67733333333334,25.872790960451983,1.804108934543717,7058.314614933572,2019
+1998,45,"(40,45]",HS,46.67733333333334,29.56890395480226,1.5785953177257526,7079.070516845399,2019
+1998,48,"(45,50]",HS,184.37546666666668,114.57950282485875,1.6091487754881866,7445.960160868608,2019
+1998,48,"(45,50]",HS,208.0788,59.13780790960452,3.5185409698996657,7585.627675805047,2019
+1998,48,"(45,50]",HS,209.90213333333332,53.593638418079095,3.9165494175988926,7912.34440362194,2019
+1998,48,"(45,50]",HS,177.8114666666667,83.16254237288136,2.1381196581196584,7425.378080593784,2019
+1998,48,"(45,50]",HS,175.44113333333334,134.9081242937853,1.3004489852018144,7791.0013249503145,2019
+1998,44,"(40,45]",College,131.1159,101.64310734463277,1.2899635147461235,6076.999806474242,2019
+1998,44,"(40,45]",College,54.007133333333336,101.64310734463277,0.5313408330799635,6066.2030932653115,2019
+1998,44,"(40,45]",College,196.7559,101.64310734463277,1.935752508361204,6106.712825626952,2019
+1998,44,"(40,45]",College,415.3918,101.64310734463277,4.086768014594101,5358.647337126631,2019
+1998,44,"(40,45]",College,77.69223333333333,101.64310734463277,0.7643630282760717,6017.1129664654545,2019
+1998,80,"(75,80]",HS,96.63666666666667,8.870671186440678,10.893952062430325,10786.40037315358,2019
+1998,80,"(75,80]",HS,96.63666666666667,9.05547683615819,10.671626510135829,10883.589296355365,2019
+1998,80,"(75,80]",HS,96.63666666666667,8.870671186440678,10.893952062430325,10772.220857923021,2019
+1998,80,"(75,80]",HS,96.63666666666667,8.870671186440678,10.893952062430325,10774.420531120917,2019
+1998,80,"(75,80]",HS,96.63666666666667,8.870671186440678,10.893952062430325,10806.636028000983,2019
+1998,47,"(45,50]",HS,0.5105333333333334,49.89752542372881,0.010231636318592842,5583.359781792357,2019
+1998,47,"(45,50]",HS,0.8205,51.745581920903966,0.015856426182513136,5692.411519475915,2019
+1998,47,"(45,50]",HS,0.6017,49.89752542372881,0.012058714232627278,5897.186482756034,2019
+1998,47,"(45,50]",HS,0.9116666666666666,49.89752542372881,0.01827077914034436,5599.746628307516,2019
+1998,47,"(45,50]",HS,0.8752000000000001,49.89752542372881,0.017539947974730588,5880.479046542203,2019
+1998,47,"(45,50]",College,59.6777,86.85865536723163,0.687066818472924,7193.172797038853,2019
+1998,47,"(45,50]",College,59.87826666666667,86.85865536723163,0.6893759339642781,7334.54736679388,2019
+1998,47,"(45,50]",College,57.85436666666667,86.85865536723163,0.6660748594606135,7647.455415060598,2019
+1998,47,"(45,50]",College,59.87826666666667,86.85865536723163,0.6893759339642781,7149.822611312577,2019
+1998,47,"(45,50]",College,57.8726,86.85865536723163,0.6662847790507365,7650.21696923868,2019
+1998,37,"(35,40]",NoHS,233.022,29.56890395480226,7.88064381270903,7801.35416907827,2019
+1998,37,"(35,40]",NoHS,233.022,29.56890395480226,7.88064381270903,7989.1459841860415,2019
+1998,37,"(35,40]",NoHS,233.022,29.56890395480226,7.88064381270903,8429.35290938988,2019
+1998,37,"(35,40]",NoHS,233.022,31.416960451977403,7.417076529608498,7798.150423387386,2019
+1998,37,"(35,40]",NoHS,233.022,31.416960451977403,7.417076529608498,8333.27417930519,2019
+1998,19,"(15,20]",HS,1.094,12.936395480225992,0.08456760630673672,9521.562361805969,2019
+1998,19,"(15,20]",HS,1.094,12.936395480225992,0.08456760630673672,9446.960320846129,2019
+1998,19,"(15,20]",HS,1.094,12.936395480225992,0.08456760630673672,9660.172065256838,2019
+1998,19,"(15,20]",HS,1.094,12.936395480225992,0.08456760630673672,9613.241396254287,2019
+1998,19,"(15,20]",HS,1.094,12.936395480225992,0.08456760630673672,9783.27846929459,2019
+1998,50,"(45,50]",College,1067.0146666666667,131.21201129943503,8.131989259974564,2700.1132697284474,2019
+1998,50,"(45,50]",College,1067.0146666666667,133.06006779661018,8.019044964697137,2949.0354713130114,2019
+1998,50,"(45,50]",College,1067.0146666666667,133.06006779661018,8.019044964697137,2746.7952855086182,2019
+1998,50,"(45,50]",College,1067.0146666666667,131.21201129943503,8.131989259974564,2727.577908359902,2019
+1998,50,"(45,50]",College,1067.0146666666667,133.06006779661018,8.019044964697137,2816.4989702843573,2019
+1998,84,"(80,85]",HS,1332.7290333333335,90.55476836158192,14.717381066138833,8574.21791003007,2019
+1998,84,"(80,85]",HS,1130.6490000000001,64.68197740112994,17.480124223602488,8222.558529555825,2019
+1998,84,"(80,85]",HS,1093.0518666666667,88.70671186440678,12.32208751393534,7675.196633039207,2019
+1998,84,"(80,85]",HS,1364.5826666666667,86.85865536723163,15.710382124813208,8356.967880071314,2019
+1998,84,"(80,85]",HS,1114.6401333333333,188.50176271186442,5.913154960981047,7654.844111264349,2019
+1998,53,"(50,55]",HS,74.02733333333333,144.14840677966103,0.5135494382986021,6847.842051708966,2019
+1998,53,"(50,55]",HS,74.02733333333333,144.14840677966103,0.5135494382986021,6976.290372862473,2019
+1998,53,"(50,55]",HS,72.20400000000001,144.14840677966103,0.5009004373552869,7276.7626423085485,2019
+1998,53,"(50,55]",HS,70.563,144.14840677966103,0.48951633650630305,6828.913286073301,2019
+1998,53,"(50,55]",HS,74.20966666666668,144.14840677966103,0.5148143383929338,7165.166794512012,2019
+1998,69,"(65,70]",HS,219.2740666666667,62.833920903954805,3.4897403108400553,8687.353775962893,2019
+1998,69,"(65,70]",HS,219.4564,62.833920903954805,3.4926421404682273,9050.853141711708,2019
+1998,69,"(65,70]",HS,219.2740666666667,62.833920903954805,3.4897403108400553,9270.841872775858,2019
+1998,69,"(65,70]",HS,217.45073333333335,62.833920903954805,3.460722014558332,8694.739692180014,2019
+1998,69,"(65,70]",HS,221.0974,62.833920903954805,3.5187586071217782,9073.834283765398,2019
+1998,35,"(30,35]",NoHS,0.9116666666666666,33.265016949152546,0.027406168710516533,6089.0903215432,2019
+1998,35,"(30,35]",NoHS,1.094,33.265016949152546,0.03288740245261984,6118.851767171569,2019
+1998,35,"(30,35]",NoHS,0.9116666666666666,33.265016949152546,0.027406168710516533,6103.284956840297,2019
+1998,35,"(30,35]",NoHS,1.094,33.265016949152546,0.03288740245261984,6142.840358021503,2019
+1998,35,"(30,35]",NoHS,0.9116666666666666,33.265016949152546,0.027406168710516533,6092.6251269828945,2019
+1998,47,"(45,50]",NoHS,0,16.632508474576273,0,6607.989546490496,2019
+1998,47,"(45,50]",NoHS,0,16.632508474576273,0,6617.0195049478625,2019
+1998,47,"(45,50]",NoHS,0,16.632508474576273,0,6576.2163184654,2019
+1998,47,"(45,50]",NoHS,0,16.632508474576273,0,6567.040507812026,2019
+1998,47,"(45,50]",NoHS,0,16.632508474576273,0,6657.418950974706,2019
+1998,44,"(40,45]",HS,434.2997666666667,277.2084745762712,1.566690078037904,8149.45183829304,2019
+1998,44,"(40,45]",HS,526.9798000000001,377.00352542372883,1.3978113318906158,6484.024679513253,2019
+1998,44,"(40,45]",HS,468.52555666666666,290.14487005649715,1.6147986920307609,6120.286630740361,2019
+1998,44,"(40,45]",HS,532.4133333333334,262.42402259887007,2.0288284893306328,6696.683938219116,2019
+1998,44,"(40,45]",HS,464.0383333333333,210.6784406779661,2.2025905063662496,6093.220180448743,2019
+1998,24,"(20,25]",NoHS,0.5834666666666667,33.265016949152546,0.01753994797473058,5820.422429528024,2019
+1998,24,"(20,25]",NoHS,0.5834666666666667,33.265016949152546,0.01753994797473058,5832.610774013719,2019
+1998,24,"(20,25]",NoHS,0.6017,33.265016949152546,0.01808807134894091,5807.406861871146,2019
+1998,24,"(20,25]",NoHS,0.6017,33.265016949152546,0.01808807134894091,5812.067465153838,2019
+1998,24,"(20,25]",NoHS,0.5834666666666667,33.265016949152546,0.01753994797473058,5793.616619315257,2019
+1998,74,"(70,75]",HS,338.2283333333333,20.328621468926556,16.63803587716631,8071.285355296806,2019
+1998,74,"(70,75]",HS,338.2283333333333,20.328621468926556,16.63803587716631,8001.028205204411,2019
+1998,74,"(70,75]",HS,338.4106666666667,20.328621468926556,16.6470051687443,8553.826254781281,2019
+1998,74,"(70,75]",HS,338.4106666666667,20.328621468926556,16.6470051687443,8269.790266084987,2019
+1998,74,"(70,75]",HS,338.4106666666667,20.328621468926556,16.6470051687443,8386.6866553442,2019
+1998,48,"(45,50]",HS,44.489333333333335,114.57950282485875,0.3882835257309311,6559.155310454434,2019
+1998,48,"(45,50]",HS,44.307,112.73144632768363,0.39303141619606335,6687.265858994391,2019
+1998,48,"(45,50]",HS,44.489333333333335,112.73144632768363,0.3946488294314381,6927.82903964899,2019
+1998,48,"(45,50]",HS,44.489333333333335,112.73144632768363,0.3946488294314381,6578.406061891235,2019
+1998,48,"(45,50]",HS,44.307,112.73144632768363,0.39303141619606335,6908.201669526183,2019
+1998,41,"(40,45]",College,5509.9310000000005,462.0141242937853,11.92589297658863,1263.0392381287406,2019
+1998,41,"(40,45]",College,5509.9310000000005,462.0141242937853,11.92589297658863,1382.5473926650916,2019
+1998,41,"(40,45]",College,5526.341,462.0141242937853,11.961411371237459,1265.0599114871675,2019
+1998,41,"(40,45]",College,5528.164333333333,462.0141242937853,11.965357859531773,1619.709074067823,2019
+1998,41,"(40,45]",College,5526.341,462.0141242937853,11.961411371237459,1266.0533907073666,2019
+1998,27,"(25,30]",College,6.089933333333334,85.0105988700565,0.07163734186418497,4414.093536443137,2019
+1998,27,"(25,30]",College,15.170133333333334,38.80918644067796,0.3908902691511388,4442.667784830232,2019
+1998,27,"(25,30]",College,11.778733333333333,62.833920903954805,0.1874581939799331,4400.623496749879,2019
+1998,27,"(25,30]",College,14.149066666666668,62.833920903954805,0.22518197914617352,4428.3575933633465,2019
+1998,27,"(25,30]",College,10.8306,49.89752542372881,0.217056856187291,4403.032432537735,2019
+1998,24,"(20,25]",HS,14.404333333333334,17.741342372881356,0.8119077480490524,1712.817564628084,2019
+1998,24,"(20,25]",HS,14.404333333333334,17.741342372881356,0.8119077480490524,1715.9804561838632,2019
+1998,24,"(20,25]",HS,14.404333333333334,17.741342372881356,0.8119077480490524,1709.0497194800314,2019
+1998,24,"(20,25]",HS,14.404333333333334,17.741342372881356,0.8119077480490524,1709.883869358498,2019
+1998,24,"(20,25]",HS,14.404333333333334,17.741342372881356,0.8119077480490524,1704.8343083878467,2019
+1998,46,"(45,50]",HS,106.48266666666667,60.98586440677967,1.7460220938481807,5097.400694002952,2019
+1998,46,"(45,50]",HS,96.819,60.98586440677967,1.5875646093037397,5196.960891639354,2019
+1998,46,"(45,50]",HS,102.10666666666667,60.98586440677967,1.674267761224283,5383.912849014998,2019
+1998,46,"(45,50]",HS,110.12933333333334,60.98586440677967,1.805817371034762,5112.361277963758,2019
+1998,46,"(45,50]",HS,98.46000000000001,60.98586440677967,1.6144724840377014,5368.659578532746,2019
+1998,43,"(40,45]",NoHS,52.074400000000004,27.720847457627123,1.8785284280936454,6386.00358585586,2019
+1998,43,"(40,45]",NoHS,84.71206666666667,22.176677966101696,3.819871794871795,6352.428672952019,2019
+1998,43,"(40,45]",NoHS,75.77773333333334,25.872790960451983,2.9288580984233157,6379.362607958349,2019
+1998,43,"(40,45]",NoHS,70.30773333333335,24.024734463276836,2.9264728582454342,6355.461684062617,2019
+1998,43,"(40,45]",NoHS,57.362066666666664,25.872790960451983,2.2170807453416144,6381.261687716116,2019
+1998,49,"(45,50]",College,51.60033333333334,92.40282485875707,0.558428093645485,5800.525027972513,2019
+1998,49,"(45,50]",College,44.307,92.40282485875707,0.4794983277591973,5909.328311696911,2019
+1998,49,"(45,50]",College,44.489333333333335,92.40282485875707,0.4814715719063545,6163.8459985788295,2019
+1998,49,"(45,50]",College,49.777,92.40282485875707,0.538695652173913,5784.491250033539,2019
+1998,49,"(45,50]",College,49.777,92.40282485875707,0.538695652173913,6069.317751099743,2019
+1998,24,"(20,25]",HS,14.039666666666667,49.89752542372881,0.28136999876130314,4850.513945074418,2019
+1998,24,"(20,25]",HS,12.216333333333335,49.89752542372881,0.24482844048061445,4848.774709843949,2019
+1998,24,"(20,25]",HS,12.216333333333335,49.89752542372881,0.24482844048061445,4860.430325877301,2019
+1998,24,"(20,25]",HS,12.216333333333335,49.89752542372881,0.24482844048061445,4844.97965585749,2019
+1998,24,"(20,25]",HS,15.863,49.89752542372881,0.31791155704199187,4858.427226201985,2019
+1998,21,"(20,25]",HS,11.067633333333333,38.80918644067796,0.2851807612677178,5328.813981055973,2019
+1998,21,"(20,25]",HS,11.0494,20.328621468926556,0.543539069626026,5342.997207520069,2019
+1998,21,"(20,25]",HS,11.0494,31.416960451977403,0.3517017509344875,5386.235889967081,2019
+1998,21,"(20,25]",HS,11.0494,29.56890395480226,0.373683110367893,5323.624920006528,2019
+1998,21,"(20,25]",HS,11.1041,25.872790960451983,0.4291806020066889,5366.411583122617,2019
+1998,55,"(50,55]",College,3511.193,229.1590056497175,15.322081670083074,891.3889652834965,2019
+1998,55,"(50,55]",College,3652.5013333333336,402.8763163841808,9.066061182535055,914.1350445380331,2019
+1998,55,"(50,55]",College,3619.3166666666666,277.2084745762712,13.056298773690077,863.6514934446475,2019
+1998,55,"(50,55]",College,3609.4706666666666,375.1554689265537,9.621266289931956,952.9713703561383,2019
+1998,55,"(50,55]",College,3532.1613333333335,338.19433898305084,10.444176398559863,880.6678585449445,2019
+1998,34,"(30,35]",HS,49.84993333333333,25.872790960451983,1.926731963688485,6943.523882982848,2019
+1998,34,"(30,35]",HS,49.85905,24.024734463276836,2.0753215847697453,6989.880830950499,2019
+1998,34,"(30,35]",HS,49.85905,24.024734463276836,2.0753215847697453,7107.180718686264,2019
+1998,34,"(30,35]",HS,49.685833333333335,24.024734463276836,2.0681116542320557,7003.275997852419,2019
+1998,34,"(30,35]",HS,49.6676,25.872790960451983,1.9196846631629236,7076.1327791363465,2019
+1998,87,"(85,90]",HS,610.8166666666666,129.36395480225988,4.721691352126134,7709.007507732662,2019
+1998,87,"(85,90]",HS,610.8166666666666,129.36395480225988,4.721691352126134,7440.919404337832,2019
+1998,87,"(85,90]",HS,565.2333333333333,129.36395480225988,4.369326325848065,7647.016886439569,2019
+1998,87,"(85,90]",HS,608.9933333333333,129.36395480225988,4.7075967510750125,7445.542943553055,2019
+1998,87,"(85,90]",HS,610.8166666666666,129.36395480225988,4.721691352126134,7549.140143539965,2019
+1998,49,"(45,50]",College,1645.8318333333332,73.92225988700567,22.26436036789297,2329.8707001143016,2019
+1998,49,"(45,50]",College,1021.8871666666666,73.92225988700567,13.82380852842809,4732.851681920392,2019
+1998,49,"(45,50]",College,1431.4078333333332,73.92225988700567,19.3636914715719,2370.065171372049,2019
+1998,49,"(45,50]",College,1052.975,73.92225988700567,14.244356187290965,4825.366011512915,2019
+1998,49,"(45,50]",College,1128.0598666666667,73.92225988700567,15.26008361204013,4401.186087443725,2019
+1998,54,"(50,55]",College,3803.0357333333336,924.0282485875706,4.115713712374582,36.08609141798307,2019
+1998,54,"(50,55]",College,3775.649266666667,924.0282485875706,4.086075585284281,38.93783411265225,2019
+1998,54,"(50,55]",College,3771.7473333333337,924.0282485875706,4.081852842809365,38.594390992141214,2019
+1998,54,"(50,55]",College,3801.2124,924.0282485875706,4.113740468227425,39.31967876787233,2019
+1998,54,"(50,55]",College,3775.6128,924.0282485875706,4.086036120401338,41.44630034770513,2019
+1998,66,"(65,70]",College,1158.8195,101.64310734463277,11.40086652477957,7950.9912385132675,2019
+1998,66,"(65,70]",College,1160.6428333333333,101.64310734463277,11.418805107935542,7603.57827849862,2019
+1998,66,"(65,70]",College,1174.7736666666667,101.64310734463277,11.557829127394346,7042.259163240958,2019
+1998,66,"(65,70]",College,1173.0415,101.64310734463277,11.54078747339617,7724.281391043504,2019
+1998,66,"(65,70]",College,1166.8421666666668,101.64310734463277,11.479796290665858,7022.24773918158,2019
+1998,74,"(70,75]",NoHS,25.162,10.349116384180792,2.4313186813186807,6878.272543266443,2019
+1998,74,"(70,75]",NoHS,25.162,10.349116384180792,2.4313186813186807,6959.6356255704595,2019
+1998,74,"(70,75]",NoHS,25.162,10.349116384180792,2.4313186813186807,6913.592727640096,2019
+1998,74,"(70,75]",NoHS,25.162,10.349116384180792,2.4313186813186807,6949.234763331663,2019
+1998,74,"(70,75]",NoHS,25.162,10.349116384180792,2.4313186813186807,6930.766400718126,2019
+1998,35,"(30,35]",College,8.496733333333333,27.720847457627123,0.3065105908584169,7865.428736856986,2019
+1998,35,"(30,35]",College,8.186766666666667,27.720847457627123,0.2953288740245262,7830.015599619825,2019
+1998,35,"(30,35]",College,9.663666666666666,27.720847457627123,0.3486064659977703,7769.517556317701,2019
+1998,35,"(30,35]",College,8.569666666666667,27.720847457627123,0.30914158305462647,7903.4653251770305,2019
+1998,35,"(30,35]",College,11.7605,27.720847457627123,0.42424749163879594,7767.4343660689865,2019
+1998,37,"(35,40]",College,47.589,73.92225988700567,0.6437709030100333,6000.431952292839,2019
+1998,37,"(35,40]",College,47.589,73.92225988700567,0.6437709030100333,5991.462983789976,2019
+1998,37,"(35,40]",College,47.589,72.07420338983052,0.6602778492410598,5978.909939877596,2019
+1998,37,"(35,40]",College,47.589,72.07420338983052,0.6602778492410598,6030.458813039684,2019
+1998,37,"(35,40]",College,47.77133333333334,72.07420338983052,0.662807649429723,5957.7624174297,2019
+1998,53,"(50,55]",HS,4247.8926,168.17314124293785,25.25904296372524,2581.523126903102,2019
+1998,53,"(50,55]",HS,4422.914366666666,144.14840677966103,30.683061058228276,2503.363369267753,2019
+1998,53,"(50,55]",HS,4284.359266666666,168.17314124293785,25.475882979896358,2441.6704904679195,2019
+1998,53,"(50,55]",HS,4329.942599999999,164.47702824858757,26.325515764157675,2880.403502399444,2019
+1998,53,"(50,55]",HS,4375.525933333333,155.23674576271185,28.18614827201784,2670.511530230936,2019
+1998,47,"(45,50]",College,13176.336566666667,462.0141242937853,28.51933712374582,11.012169991705253,2019
+1998,47,"(45,50]",College,12857.253233333333,462.0141242937853,27.828701672240804,11.82578803686208,2019
+1998,47,"(45,50]",College,9449.972,462.0141242937853,20.453859531772576,11.748167324772838,2019
+1998,47,"(45,50]",College,16522.2991,462.0141242937853,35.76145886287625,12.139156514337856,2019
+1998,47,"(45,50]",College,11019.333233333333,462.0141242937853,23.850641471571905,12.681385626150497,2019
+1998,58,"(55,60]",HS,177.41033333333334,25.872790960451983,6.8570234113712365,11649.295381239861,2019
+1998,58,"(55,60]",HS,176.681,27.720847457627123,6.373578595317725,11756.014274263725,2019
+1998,58,"(55,60]",HS,185.79766666666666,27.720847457627123,6.702452619843923,12195.435823167034,2019
+1998,58,"(55,60]",HS,186.34466666666665,27.720847457627123,6.7221850613154945,11376.762780272207,2019
+1998,58,"(55,60]",HS,185.06833333333336,25.872790960451983,7.153010033444815,12122.260145402386,2019
+1998,41,"(40,45]",HS,684.4793333333334,110.88338983050849,6.172965440356744,6368.022275165853,2019
+1998,41,"(40,45]",HS,684.4793333333334,110.88338983050849,6.172965440356744,6092.3768361305965,2019
+1998,41,"(40,45]",HS,684.4793333333334,110.88338983050849,6.172965440356744,5689.272799816961,2019
+1998,41,"(40,45]",HS,686.3026666666666,110.88338983050849,6.189409141583053,6217.912941566835,2019
+1998,41,"(40,45]",HS,684.4793333333334,110.88338983050849,6.172965440356744,5670.629779875816,2019
+1998,47,"(45,50]",College,9480.968666666666,606.1625310734463,15.6409678603475,1129.4226313595414,2019
+1998,47,"(45,50]",College,9480.968666666666,606.1625310734463,15.6409678603475,1144.6399240143814,2019
+1998,47,"(45,50]",College,9480.968666666666,606.1625310734463,15.6409678603475,1092.4338328872145,2019
+1998,47,"(45,50]",College,9480.968666666666,606.1625310734463,15.6409678603475,1188.3408044753521,2019
+1998,47,"(45,50]",College,9480.968666666666,606.1625310734463,15.6409678603475,1118.114413618539,2019
+1998,59,"(55,60]",College,11278.957666666667,646.8197740112995,17.43755852842809,857.5481253919672,2019
+1998,59,"(55,60]",College,11974.012333333334,781.7278983050846,15.317366003304953,2233.1780954924334,2019
+1998,59,"(55,60]",College,15883.421333333334,722.5900903954803,21.981233266899896,799.769151382929,2019
+1998,59,"(55,60]",College,18372.453666666668,693.021186440678,26.51066666666667,1013.6532761438023,2019
+1998,59,"(55,60]",College,10643.526,650.5158870056498,16.361669580419576,2316.4227664162263,2019
+1998,80,"(75,80]",NoHS,44.39816666666667,22.176677966101696,2.002020624303233,11369.450041570042,2019
+1998,80,"(75,80]",NoHS,44.39816666666667,20.328621468926556,2.1840224992398904,11390.220453954833,2019
+1998,80,"(75,80]",NoHS,44.39816666666667,20.328621468926556,2.1840224992398904,11403.485500601946,2019
+1998,80,"(75,80]",NoHS,44.39816666666667,22.176677966101696,2.002020624303233,11323.95003220197,2019
+1998,80,"(75,80]",NoHS,44.39816666666667,20.328621468926556,2.1840224992398904,11403.482431835318,2019
+1998,41,"(40,45]",HS,36.46666666666666,94.25088135593221,0.38691061708964514,6744.46500604753,2019
+1998,41,"(40,45]",HS,36.284333333333336,94.25088135593221,0.384976064004197,6836.715208916417,2019
+1998,41,"(40,45]",HS,36.284333333333336,94.25088135593221,0.384976064004197,7117.195160370924,2019
+1998,41,"(40,45]",HS,36.284333333333336,94.25088135593221,0.384976064004197,6778.242203844258,2019
+1998,41,"(40,45]",HS,36.46666666666666,94.25088135593221,0.38691061708964514,7031.037526039363,2019
+1998,73,"(70,75]",HS,12471.235333333334,192.1978757062147,64.88747748906613,192.1071176168304,2019
+1998,73,"(70,75]",HS,12596.863,253.18374011299437,49.7538388301638,190.6471069453121,2019
+1998,73,"(70,75]",HS,9002.526,421.3568813559322,21.365560640732266,182.3729297077571,2019
+1998,73,"(70,75]",HS,11176.668666666666,343.7385084745763,32.515032186140175,199.43240001319322,2019
+1998,73,"(70,75]",HS,11408.049666666666,201.4381581920904,56.63301218127703,186.61529837275322,2019
+1998,92,"(90,95]",College,1305.5066666666667,144.14840677966103,9.056684675413772,7721.119002225076,2019
+1998,92,"(90,95]",College,1305.5066666666667,144.14840677966103,9.056684675413772,7405.004249264946,2019
+1998,92,"(90,95]",College,1305.5066666666667,144.14840677966103,9.056684675413772,6912.134245051066,2019
+1998,92,"(90,95]",College,1305.5066666666667,144.14840677966103,9.056684675413772,7525.949331042226,2019
+1998,92,"(90,95]",College,1305.5066666666667,144.14840677966103,9.056684675413772,6893.249393344866,2019
+1998,75,"(70,75]",NoHS,93.90166666666667,0,Inf,10786.40037315358,2019
+1998,75,"(70,75]",NoHS,93.08116666666668,0,Inf,10883.589296355365,2019
+1998,75,"(70,75]",NoHS,94.81333333333333,0,Inf,10772.220857923021,2019
+1998,75,"(70,75]",NoHS,92.62533333333333,0,Inf,10774.420531120917,2019
+1998,75,"(70,75]",NoHS,93.90166666666667,0,Inf,10806.636028000983,2019
+1998,70,"(65,70]",HS,1405.1518333333333,25.872790960451983,54.31002150023888,4316.305926874571,2019
+1998,70,"(65,70]",HS,1405.3341666666668,31.416960451977403,44.731703718276606,4765.251243873396,2019
+1998,70,"(65,70]",HS,1405.3341666666668,22.176677966101696,63.36991360089186,4410.997446643069,2019
+1998,70,"(65,70]",HS,1633.2508333333333,46.201412429378536,35.35066889632107,4413.648839678094,2019
+1998,70,"(65,70]",HS,1405.3341666666668,40.65724293785311,34.565407418668286,4531.833972727133,2019
+1998,65,"(60,65]",HS,1537.07,530.3922146892655,2.8979874844137834,3384.195022500561,2019
+1998,65,"(60,65]",HS,2375.8033333333337,506.36748022598874,4.691856065229598,3623.8764854168826,2019
+1998,65,"(60,65]",HS,2897.2766666666666,340.042395480226,8.520339537589065,3484.9668742741787,2019
+1998,65,"(60,65]",HS,1912.6766666666667,377.00352542372883,5.073365466587973,3752.4246303001833,2019
+1998,65,"(60,65]",HS,1650.1166666666668,160.78091525423727,10.263137661938263,3520.362957902925,2019
+1998,37,"(35,40]",College,-7.730933333333334,66.53003389830509,-0.11620215533259011,5277.211620705637,2019
+1998,37,"(35,40]",College,-8.059133333333333,66.53003389830509,-0.12113526570048308,5303.004873626089,2019
+1998,37,"(35,40]",College,-7.7127,66.53003389830509,-0.11592809364548494,5289.513637983406,2019
+1998,37,"(35,40]",College,-7.183933333333334,66.53003389830509,-0.10798030471943515,5323.79498573031,2019
+1998,37,"(35,40]",College,-7.913266666666667,66.53003389830509,-0.11894277220364176,5280.275118758421,2019
+1998,32,"(30,35]",HS,179.81713333333335,110.88338983050849,1.6216778149386843,7867.622867394656,2019
+1998,32,"(30,35]",HS,176.5169,110.88338983050849,1.5919147157190632,7921.100461657722,2019
+1998,32,"(30,35]",HS,177.4468,110.88338983050849,1.6003010033444813,8106.029351852696,2019
+1998,32,"(30,35]",HS,177.79323333333335,110.88338983050849,1.6034253065774804,7864.422793225999,2019
+1998,32,"(30,35]",HS,179.45246666666668,110.88338983050849,1.6183890746934224,8096.470544006715,2019
+1998,41,"(40,45]",College,30.44966666666667,120.12367231638417,0.2534859789040391,6173.344048211875,2019
+1998,41,"(40,45]",College,31.361333333333334,120.12367231638417,0.26107537947002835,6167.799042535136,2019
+1998,41,"(40,45]",College,34.096333333333334,120.12367231638417,0.2838435811679959,6206.556914695864,2019
+1998,41,"(40,45]",College,35.008,120.12367231638417,0.29143298173398513,6200.414261760431,2019
+1998,41,"(40,45]",College,30.44966666666667,120.12367231638417,0.2534859789040391,6212.982255376193,2019
+1998,71,"(70,75]",College,7050.319466666667,676.3886779661017,10.423473509147065,21.844285263773223,2019
+1998,71,"(70,75]",College,4227.4348,184.80564971751414,22.875030100334445,23.544945025051295,2019
+1998,71,"(70,75]",College,6943.526833333333,360.3710169491526,19.2677171769145,23.136555598181747,2019
+1998,71,"(70,75]",College,4401.6543,184.80564971751414,23.817747491638794,23.690698223439934,2019
+1998,71,"(70,75]",College,5010.7388,615.402813559322,8.142209768296725,24.810915080284573,2019
+1998,58,"(55,60]",HS,44.854,42.50529943502825,1.0552566526101497,8991.223322319645,2019
+1998,58,"(55,60]",HS,39.56633333333334,42.50529943502825,0.9308564781154575,8861.013436182406,2019
+1998,58,"(55,60]",HS,39.931,42.50529943502825,0.9394358004944016,9410.485132988259,2019
+1998,58,"(55,60]",HS,46.13033333333334,42.50529943502825,1.085284280936455,8771.795931549133,2019
+1998,58,"(55,60]",HS,39.58456666666667,42.50529943502825,0.9312854442344045,9304.762324309902,2019
+1998,79,"(75,80]",NoHS,111.6427,17.741342372881356,6.2927989130434785,10786.40037315358,2019
+1998,79,"(75,80]",NoHS,111.58800000000001,17.741342372881356,6.289715719063546,10883.589296355365,2019
+1998,79,"(75,80]",NoHS,111.49683333333333,17.92614802259887,6.219787608178464,10772.220857923021,2019
+1998,79,"(75,80]",NoHS,111.6427,17.741342372881356,6.2927989130434785,10774.420531120917,2019
+1998,79,"(75,80]",NoHS,111.51506666666667,17.741342372881356,6.285604793756968,10806.636028000983,2019
+1998,71,"(70,75]",College,728.0934666666667,46.201412429378536,15.759117056856187,7134.999587510069,2019
+1998,71,"(70,75]",College,566.9290333333333,46.201412429378536,12.270816053511705,6871.417501397742,2019
+1998,71,"(70,75]",College,2681.0658,46.201412429378536,58.02995317725752,3447.863154372901,2019
+1998,71,"(70,75]",College,1782.5271333333333,46.201412429378536,38.581658862876246,3422.225233741284,2019
+1998,71,"(70,75]",College,692.3561333333333,46.201412429378536,14.985605351170568,6396.59796166321,2019
+1998,25,"(20,25]",HS,9.536033333333332,46.201412429378536,0.2064013377926421,5954.454893062259,2019
+1998,25,"(20,25]",HS,9.718366666666666,46.201412429378536,0.21034782608695649,5972.801485283251,2019
+1998,25,"(20,25]",HS,9.5178,46.201412429378536,0.20600668896321067,6011.665139868,2019
+1998,25,"(20,25]",HS,9.700133333333333,46.201412429378536,0.20995317725752508,5948.478998678491,2019
+1998,25,"(20,25]",HS,9.700133333333333,46.201412429378536,0.20995317725752508,6037.938854480729,2019
+1998,57,"(55,60]",College,4758.9000000000005,258.72790960451977,18.393454371715244,2177.8184878916145,2019
+1998,57,"(55,60]",College,4784.426666666667,258.72790960451977,18.4921165790731,2229.409192563071,2019
+1998,57,"(55,60]",College,4970.224333333334,258.72790960451977,19.210236502627808,2083.2021615761514,2019
+1998,57,"(55,60]",College,7843.9800000000005,258.72790960451977,30.317486860965126,2290.946768264245,2019
+1998,57,"(55,60]",College,5014.166666666667,258.72790960451977,19.380076445293838,2166.3924840102854,2019
+1998,51,"(50,55]",College,10329.402133333333,678.2367344632768,15.22978866885987,18.07542807375502,2019
+1998,51,"(50,55]",College,11063.330266666668,439.8374463276836,25.153225035833735,19.517372299893747,2019
+1998,51,"(50,55]",College,17154.467,367.7632429378531,46.645409320851755,19.370665146510206,2019
+1998,51,"(50,55]",College,25248.973,177.41342372881357,142.31715091973246,20.81448267901815,2019
+1998,51,"(50,55]",College,12262.463666666667,255.03179661016952,48.082097329261785,20.507106651941257,2019
+1998,43,"(40,45]",College,2708.6528333333335,415.8127118644068,6.514117428465254,973.3442934721522,2019
+1998,43,"(40,45]",College,2708.6528333333335,415.8127118644068,6.514117428465254,982.6002030462071,2019
+1998,43,"(40,45]",College,2364.0428333333334,415.8127118644068,5.685354886659234,652.2477211344527,2019
+1998,43,"(40,45]",College,2617.4861666666666,415.8127118644068,6.294868078781121,1018.6749239872768,2019
+1998,43,"(40,45]",College,2591.9595,415.8127118644068,6.233478260869564,966.9680981090135,2019
+1998,59,"(55,60]",College,123578.96933333333,5082.155367231638,24.31625174825175,17.946207271687662,2019
+1998,59,"(55,60]",College,134664.836,4287.491073446327,31.408773497866456,18.83866816423636,2019
+1998,59,"(55,60]",College,130389.11933333334,4712.544067796611,27.668519902944453,16.444942368718884,2019
+1998,59,"(55,60]",College,121688.17266666668,4934.310847457627,24.661634912880643,15.79138562042399,2019
+1998,59,"(55,60]",College,123226.88366666668,4287.491073446327,28.741023959174264,16.010495326213785,2019
+1998,32,"(30,35]",College,-32.273,118.27561581920904,-0.2728626672240803,4397.671463886165,2019
+1998,32,"(30,35]",College,-33.914,116.4275593220339,-0.29128842172320435,4365.885331395827,2019
+1998,32,"(30,35]",College,-33.914,118.27561581920904,-0.28673704013377926,4389.660372083057,2019
+1998,32,"(30,35]",College,-34.096333333333334,116.4275593220339,-0.2928544885066624,4398.630737361282,2019
+1998,32,"(30,35]",College,-34.096333333333334,118.27561581920904,-0.28827863712374585,4379.921176556264,2019
+1998,50,"(45,50]",College,11082.22,277.2084745762712,39.977926421404675,2259.6124020692982,2019
+1998,50,"(45,50]",College,11294.456,277.2084745762712,40.74354515050167,2233.1780954924334,2019
+1998,50,"(45,50]",College,11068.180333333334,277.2084745762712,39.92727982162764,2107.3666185571624,2019
+1998,50,"(45,50]",College,11068.727333333334,277.2084745762712,39.9292530657748,2496.4341823908208,2019
+1998,50,"(45,50]",College,11092.795333333333,277.2084745762712,40.01607580824972,2316.4227664162263,2019
+1998,26,"(25,30]",NoHS,-13.292100000000001,29.56890395480226,-0.44952968227424756,11731.819740916875,2019
+1998,26,"(25,30]",NoHS,-13.091533333333333,29.56890395480226,-0.44274665551839465,11638.301024360511,2019
+1998,26,"(25,30]",NoHS,-13.091533333333333,29.56890395480226,-0.44274665551839465,11816.932241595296,2019
+1998,26,"(25,30]",NoHS,-13.292100000000001,29.56890395480226,-0.44952968227424756,11847.899980067168,2019
+1998,26,"(25,30]",NoHS,-13.273866666666667,29.56890395480226,-0.4489130434782609,12078.205117874964,2019
+1998,71,"(70,75]",College,15635.630333333334,1191.9964406779661,13.117178709393068,18.07542807375502,2019
+1998,71,"(70,75]",College,25848.485,1143.9469717514123,22.595876940366654,22.619970068465086,2019
+1998,71,"(70,75]",College,21684.0646,1463.660745762712,14.814952619843924,23.23004397624981,2019
+1998,71,"(70,75]",College,30729.183666666668,1472.9010282485876,20.863033616865923,20.81448267901815,2019
+1998,71,"(70,75]",College,29833.38,561.8091751412429,53.10233673649006,22.273799349732734,2019
+1998,30,"(25,30]",HS,296.2916666666667,88.70671186440678,3.340126811594203,5381.85288726338,2019
+1998,30,"(25,30]",HS,385.4526666666667,88.70671186440678,4.345248049052397,5361.98939990225,2019
+1998,30,"(25,30]",HS,431.036,90.55476836158192,4.759948126407754,4354.398192778186,2019
+1998,30,"(25,30]",HS,271.312,88.70671186440678,3.0585284280936453,5418.763993756345,2019
+1998,30,"(25,30]",HS,462.21500000000003,88.70671186440678,5.210597826086957,4340.100927965355,2019
+1998,65,"(60,65]",College,594.4066666666666,177.41342372881357,3.3504041248606464,8519.60758809321,2019
+1998,65,"(60,65]",College,594.4066666666666,177.41342372881357,3.3504041248606464,8147.349337322436,2019
+1998,65,"(60,65]",College,594.2243333333333,177.41342372881357,3.349376393534002,7545.887400032569,2019
+1998,65,"(60,65]",College,594.2243333333333,179.26148022598866,3.314846739992415,8276.684551347418,2019
+1998,65,"(60,65]",College,594.4066666666666,177.41342372881357,3.3504041248606464,7524.444855933287,2019
+1998,28,"(25,30]",HS,8.296166666666666,40.65724293785311,0.20405138339920945,5278.645019127895,2019
+1998,28,"(25,30]",HS,8.277933333333333,40.65724293785311,0.2036029188203101,5269.7347475066135,2019
+1998,28,"(25,30]",HS,8.6426,38.80918644067796,0.2226946966077401,5303.2737270369435,2019
+1998,28,"(25,30]",HS,15.571266666666666,38.80918644067796,0.4012263099219621,5203.835617417941,2019
+1998,28,"(25,30]",HS,8.277933333333333,40.65724293785311,0.2036029188203101,5413.400700769033,2019
+1998,25,"(20,25]",College,214.33283333333335,221.76677966101698,0.9664785395763656,4985.551202844614,2019
+1998,25,"(20,25]",College,174.2195,221.76677966101698,0.7855978260869565,4951.878077499655,2019
+1998,25,"(20,25]",College,196.82883333333334,221.76677966101698,0.8875487736900779,4988.441353002558,2019
+1998,25,"(20,25]",College,106.57383333333333,221.76677966101698,0.48056716833890734,5028.497955322962,2019
+1998,25,"(20,25]",College,90.60143333333333,221.76677966101698,0.4085437569676699,4984.2462895666795,2019
+1998,59,"(55,60]",College,2378.356,231.00706214689265,10.29559866220736,2612.18696468876,2019
+1998,59,"(55,60]",College,2152.2626666666665,231.00706214689265,9.316869565217392,2838.5403431087425,2019
+1998,59,"(55,60]",College,2276.2493333333337,231.00706214689265,9.853591973244148,2655.945921097476,2019
+1998,59,"(55,60]",College,2165.026,231.00706214689265,9.372120401337792,2637.012600858098,2019
+1998,59,"(55,60]",College,2320.0093333333334,231.00706214689265,10.043023411371237,2721.1780247204993,2019
+1998,31,"(30,35]",College,922.789,306.77737853107345,3.0080086231212473,4865.648801462048,2019
+1998,31,"(30,35]",College,801.355,306.77737853107345,2.6121710923963413,4654.182725105719,2019
+1998,31,"(30,35]",College,819.7706666666667,306.77737853107345,2.6722005077164845,4354.398192778186,2019
+1998,31,"(30,35]",College,827.9756666666666,306.77737853107345,2.6989462868195186,4757.834451637504,2019
+1998,31,"(30,35]",College,807.919,306.77737853107345,2.6335677156787685,4340.100927965355,2019
+1998,70,"(65,70]",College,315.43666666666667,44.35335593220339,7.111900780379041,7292.737845967172,2019
+1998,70,"(65,70]",College,288.0866666666667,44.35335593220339,6.495261984392419,7275.466617671436,2019
+1998,70,"(65,70]",College,306.32,44.35335593220339,6.906354515050166,7774.635899795612,2019
+1998,70,"(65,70]",College,304.49666666666667,44.35335593220339,6.865245261984392,7500.5199028260195,2019
+1998,70,"(65,70]",College,278.97,44.35335593220339,6.289715719063546,7636.418007864219,2019
+1998,31,"(30,35]",HS,0.41936666666666667,33.265016949152546,0.012606837606837605,5822.443000561335,2019
+1998,31,"(30,35]",HS,0.23703333333333335,31.416960451977403,0.007544757033248082,5780.358696139525,2019
+1998,31,"(30,35]",HS,0.41936666666666667,33.265016949152546,0.012606837606837605,5811.836449849467,2019
+1998,31,"(30,35]",HS,0.41936666666666667,31.416960451977403,0.01334841628959276,5823.7130624967685,2019
+1998,31,"(30,35]",HS,0.41936666666666667,33.265016949152546,0.012606837606837605,5798.941918893308,2019
+1998,43,"(40,45]",HS,536.5158333333334,94.25088135593221,5.692422453931406,5967.621213756129,2019
+1998,43,"(40,45]",HS,603.5233333333334,96.09893785310734,6.2802289683560595,5709.307486450731,2019
+1998,43,"(40,45]",HS,587.7515,75.77031638418079,7.757015254099029,5331.549354567733,2019
+1998,43,"(40,45]",HS,588.6631666666666,75.77031638418079,7.769047230606085,5826.950279381149,2019
+1998,43,"(40,45]",HS,603.0128000000001,83.16254237288136,7.251014492753623,5314.078548643711,2019
+1998,32,"(30,35]",HS,-5.47,73.92225988700567,-0.07399665551839463,5368.273073066206,2019
+1998,32,"(30,35]",HS,-5.47,73.92225988700567,-0.07399665551839463,5349.9702890518165,2019
+1998,32,"(30,35]",HS,-5.47,73.92225988700567,-0.07399665551839463,5352.6447905311825,2019
+1998,32,"(30,35]",HS,-5.652333333333333,73.92225988700567,-0.07646321070234112,5390.7294930340895,2019
+1998,32,"(30,35]",HS,-5.47,73.92225988700567,-0.07399665551839463,5349.260630730054,2019
+1998,39,"(35,40]",HS,64.72833333333334,81.31448587570623,0.7960246275463666,6801.606670323036,2019
+1998,39,"(35,40]",HS,62.905,81.31448587570623,0.7736013986013985,6938.708578285247,2019
+1998,39,"(35,40]",HS,66.55166666666668,81.31448587570623,0.8184478564913348,7220.123347452356,2019
+1998,39,"(35,40]",HS,64.72833333333334,81.31448587570623,0.7960246275463666,6861.673722693398,2019
+1998,39,"(35,40]",HS,64.72833333333334,81.31448587570623,0.7960246275463666,7145.535798570813,2019
+1998,60,"(55,60]",HS,75548.17566666668,2753.6041807909605,27.43610581131737,29.171152638828563,2019
+1998,60,"(55,60]",HS,74260.90233333333,2661.2013559322036,27.905029496469712,30.043340904004076,2019
+1998,60,"(55,60]",HS,63912.39166666666,3123.215480225989,20.463651026102788,32.28937243415807,2019
+1998,60,"(55,60]",HS,14917.419333333335,1413.7632203389833,10.551568408857412,23.690698223439934,2019
+1998,60,"(55,60]",HS,102933.36600000001,6098.5864406779665,16.87823350562481,32.53636765465956,2019
+1998,65,"(60,65]",HS,355.3676666666667,131.21201129943503,2.708347072400961,11105.116302353093,2019
+1998,65,"(60,65]",HS,285.3516666666667,131.21201129943503,2.174737387535918,11756.777519216197,2019
+1998,65,"(60,65]",HS,238.49200000000002,131.21201129943503,1.817607989071553,11911.84749847575,2019
+1998,65,"(60,65]",HS,204.39566666666667,131.21201129943503,1.5577511894107117,11198.342307434858,2019
+1998,65,"(60,65]",HS,333.23240000000004,131.21201129943503,2.5396485939045648,11859.334878928132,2019
+1998,57,"(55,60]",HS,859.5193333333334,314.16960451977405,2.7358449734408814,248.47765543663087,2019
+1998,57,"(55,60]",HS,817.5826666666667,314.16960451977405,2.6023608105449534,239.87700350776808,2019
+1998,57,"(55,60]",HS,830.346,314.16960451977405,2.642986425339366,236.06684181998025,2019
+1998,57,"(55,60]",HS,817.5826666666667,314.16960451977405,2.6023608105449534,240.75304980274547,2019
+1998,57,"(55,60]",HS,817.5826666666667,314.16960451977405,2.6023608105449534,247.68575501083455,2019
+1998,41,"(40,45]",HS,6.472833333333333,46.201412429378536,0.1401003344481605,5775.415761819307,2019
+1998,41,"(40,45]",HS,-1.9692,48.04946892655367,-0.04098276305634165,5766.783129623735,2019
+1998,41,"(40,45]",HS,8.843166666666667,46.201412429378536,0.19140468227424748,5754.700824841886,2019
+1998,41,"(40,45]",HS,1.7321666666666669,46.201412429378536,0.037491638795986625,5804.316615326867,2019
+1998,41,"(40,45]",HS,9.207833333333333,46.201412429378536,0.19929765886287623,5734.346334458515,2019
+1998,43,"(40,45]",NoHS,7.749166666666667,27.720847457627123,0.27954292084726867,5437.611285448674,2019
+1998,43,"(40,45]",NoHS,7.767399999999999,27.720847457627123,0.280200668896321,5429.8274022133755,2019
+1998,43,"(40,45]",NoHS,7.9315,27.720847457627123,0.2861204013377926,5426.027299890869,2019
+1998,43,"(40,45]",NoHS,7.9497333333333335,27.720847457627123,0.286778149386845,5433.057755797465,2019
+1998,43,"(40,45]",NoHS,7.730933333333334,27.720847457627123,0.27888517279821623,5436.2722827682255,2019
+1998,74,"(70,75]",College,22235.55,1811.0953672316384,12.277404272745887,13.03880004061325,2019
+1998,74,"(70,75]",College,56596.26666666666,892.6112881355933,63.40527777200744,15.874244413854168,2019
+1998,74,"(70,75]",College,15179.25,449.07772881355936,33.80094140963706,9.689090924677142,2019
+1998,74,"(70,75]",College,15534.800000000001,680.084790960452,22.84244583393922,10.24960550108709,2019
+1998,74,"(70,75]",College,10380.236666666666,1809.247310734463,5.737323253200146,10.309975573490402,2019
+1998,52,"(50,55]",NoHS,994.2636666666666,83.16254237288136,11.955667038275733,5785.862712808658,2019
+1998,52,"(50,55]",NoHS,994.2636666666666,83.16254237288136,11.955667038275733,5544.0812633990945,2019
+1998,52,"(50,55]",NoHS,994.2636666666666,83.16254237288136,11.955667038275733,5166.500832250689,2019
+1998,52,"(50,55]",NoHS,994.0813333333334,83.16254237288136,11.953474544778892,5652.278865885442,2019
+1998,52,"(50,55]",NoHS,994.2636666666666,83.16254237288136,11.955667038275733,5156.553238305684,2019
+1998,35,"(30,35]",HS,381.6236666666667,92.40282485875707,4.13,1249.5568299823276,2019
+1998,35,"(30,35]",HS,379.8003333333333,92.40282485875707,4.110267558528427,1153.1364284228284,2019
+1998,35,"(30,35]",HS,383.6293333333333,92.40282485875707,4.151705685618729,1177.9222383401006,2019
+1998,35,"(30,35]",HS,382.7176666666667,92.40282485875707,4.141839464882943,1312.3859740481014,2019
+1998,35,"(30,35]",HS,383.447,92.40282485875707,4.1497324414715715,1308.0681009620591,2019
+1998,65,"(60,65]",NoHS,143.13166666666666,22.176677966101696,6.454152731326643,10011.548331614667,2019
+1998,65,"(60,65]",NoHS,143.11343333333332,24.024734463276836,5.956920504244918,10372.082649709779,2019
+1998,65,"(60,65]",NoHS,143.11343333333332,22.176677966101696,6.453330546265327,10556.6458638683,2019
+1998,65,"(60,65]",NoHS,143.314,24.024734463276836,5.965268844867507,10039.134030532652,2019
+1998,65,"(60,65]",NoHS,143.314,24.024734463276836,5.965268844867507,10444.742351315288,2019
+1998,51,"(50,55]",HS,679.374,238.39928813559317,2.849731663685153,648.0235937009659,2019
+1998,51,"(50,55]",HS,412.8026666666667,129.36395480225988,3.1910176779742003,592.0519203971932,2019
+1998,51,"(50,55]",HS,653.8473333333334,79.46642937853107,8.227969199657775,617.703902870074,2019
+1998,51,"(50,55]",HS,527.0345,157.08480225988703,3.355095416092858,680.7499090710455,2019
+1998,51,"(50,55]",HS,481.7246666666667,60.98586440677967,7.89895611634742,675.1176476447582,2019
+1998,52,"(50,55]",College,2682.5427000000004,393.636033898305,6.814779311319424,15.033651893824317,2019
+1998,52,"(50,55]",College,5382.552933333333,493.43108474576263,10.908418824295719,16.558378531738175,2019
+1998,52,"(50,55]",College,3701.512533333333,312.3215480225989,11.851607923848725,18.22201148001322,2019
+1998,52,"(50,55]",College,2807.751,471.254406779661,5.958036592563447,18.08597877973916,2019
+1998,52,"(50,55]",College,2433.0742333333333,404.724372881356,6.011682014630197,17.015940929825515,2019
+1998,65,"(60,65]",HS,67158.83666666667,1297.3356610169492,51.7667390827926,26.575349610872536,2019
+1998,65,"(60,65]",HS,61878.64566666666,1371.257920903955,45.12546088038294,27.36591211987845,2019
+1998,65,"(60,65]",HS,63869.543333333335,1033.063581920904,61.825374982798955,29.465368658680564,2019
+1998,65,"(60,65]",HS,55886.99,1620.745548022599,34.48227272207243,27.53324632675326,2019
+1998,65,"(60,65]",HS,64531.41333333334,1419.3073898305086,45.46683389074693,29.657197083779106,2019
+1998,48,"(45,50]",HS,139.66733333333335,85.0105988700565,1.6429402355678349,6080.232849152986,2019
+1998,48,"(45,50]",HS,142.03766666666667,85.0105988700565,1.6708230332994038,6198.989293952234,2019
+1998,48,"(45,50]",HS,138.02633333333335,85.0105988700565,1.6236367602152104,6421.987543586823,2019
+1998,48,"(45,50]",HS,139.66733333333335,85.0105988700565,1.6429402355678349,6098.077990137882,2019
+1998,48,"(45,50]",HS,139.84966666666665,85.0105988700565,1.6450850661625707,6403.793283058649,2019
+1998,67,"(65,70]",HS,246.35056666666668,85.0105988700565,2.8978806165479134,8730.041629838372,2019
+1998,67,"(65,70]",HS,256.4700666666667,138.6042372881356,1.850376811594203,9102.237974589047,2019
+1998,67,"(65,70]",HS,266.5713333333333,59.13780790960452,4.5076295986622075,9260.03767471386,2019
+1998,67,"(65,70]",HS,239.18486666666666,136.75618079096043,1.748987616378921,8787.397877906034,2019
+1998,67,"(65,70]",HS,237.16096666666667,138.6042372881356,1.711065774804905,9178.340672205375,2019
+1998,75,"(70,75]",HS,-12.763333333333334,18.480564971751416,-0.6906354515050166,6257.220981554767,2019
+1998,75,"(70,75]",HS,-19.145,20.328621468926556,-0.941775615688659,6396.509060062898,2019
+1998,75,"(70,75]",HS,-1.4586666666666668,18.480564971751416,-0.07892976588628761,6502.985403317465,2019
+1998,75,"(70,75]",HS,-2.188,20.328621468926556,-0.10763149893584675,6448.245910338219,2019
+1998,75,"(70,75]",HS,-20.968333333333334,18.480564971751416,-1.1346153846153844,6456.806197063957,2019
+2001,47,"(45,50]",HS,822.0652486610559,172.17983894793457,4.774457065845207,4709.417507249176,2019
+2001,47,"(45,50]",HS,828.1588370313696,172.17983894793457,4.809847901424721,4663.888069815517,2019
+2001,47,"(45,50]",HS,876.7233970925785,172.17983894793457,5.091905082787832,4487.814507649352,2019
+2001,47,"(45,50]",HS,616.6075286916603,172.17983894793457,3.5811830958798616,4650.963861608876,2019
+2001,47,"(45,50]",HS,984.8845906656466,172.17983894793457,5.7200924143242204,4908.029974735652,2019
+2001,79,"(75,80]",HS,262.3273052792655,6.37065404107358,41.1774526740834,2082.553067896714,2019
+2001,79,"(75,80]",HS,262.1598990053558,7.2315532358132515,36.252225553294096,2190.726242461926,2019
+2001,79,"(75,80]",HS,262.1598990053558,4.993215329490104,52.503223215115575,2144.283121126692,2019
+2001,79,"(75,80]",HS,262.1598990053558,10.675150014771946,24.557959245779866,2134.287598925942,2019
+2001,79,"(75,80]",HS,262.1598990053558,12.569128243199225,20.85744483888153,2089.543264088979,2019
+2001,47,"(45,50]",College,2849.2547819433817,521.7049120122418,5.461429854960851,983.2938419334308,2019
+2001,47,"(45,50]",College,2514.274827850038,523.4267104017212,4.8034897300528945,988.3403355364848,2019
+2001,47,"(45,50]",College,2515.9488905891353,523.4267104017212,4.806688005390835,992.6177338040918,2019
+2001,47,"(45,50]",College,2842.391124713083,521.7049120122418,5.448273649082274,986.950589024905,2019
+2001,47,"(45,50]",College,2743.6214231063504,521.7049120122418,5.258952637658837,979.8991214082192,2019
+2001,58,"(55,60]",College,74522.02445294568,2117.812019059595,35.188214904001185,31.36574549056442,2019
+2001,58,"(55,60]",College,75962.78980872226,1945.6321801116608,39.042728931612714,34.21214188710958,2019
+2001,58,"(55,60]",College,78534.81980107115,1997.2861317960408,39.320765588278256,33.339071345827016,2019
+2001,58,"(55,60]",College,74859.16394797247,1773.452341163726,42.21098149096606,32.80550343108766,2019
+2001,58,"(55,60]",College,78672.94671767406,2152.2479868491823,36.553848440508276,34.65309021574954,2019
+2001,65,"(60,65]",HS,593.204131599082,44.76675812646299,13.250995971683306,11278.96182332654,2019
+2001,65,"(60,65]",HS,420.39063504208116,142.9092663267857,2.9416611381993127,10975.865095714917,2019
+2001,65,"(60,65]",HS,402.0094261667942,80.92452430552926,4.967708239457966,11301.029545397105,2019
+2001,65,"(60,65]",HS,464.7700382555471,191.1196212322074,2.4318279581082813,10564.45135366439,2019
+2001,65,"(60,65]",HS,399.38114766641166,49.93215329490103,7.99847635866318,10952.428169702784,2019
+2001,47,"(45,50]",College,47418.83319663351,5922.98645980895,8.005899307452248,19.270734741404556,2019
+2001,47,"(45,50]",College,47403.142206579956,5940.204443703743,7.980052312311307,19.64136827306466,2019
+2001,47,"(45,50]",College,45753.314873756695,5922.98645980895,7.724703607583884,19.67141309273777,2019
+2001,47,"(45,50]",College,47654.11936648814,5922.98645980895,8.045623553227784,20.142964361366275,2019
+2001,47,"(45,50]",College,44059.92173221117,5922.98645980895,7.438801697620689,20.23014452227178,2019
+2001,39,"(35,40]",College,88216.32639632747,7179.899284128872,12.286568781170674,14.608140502550564,2019
+2001,39,"(35,40]",College,88316.65297628156,7179.899284128872,12.300542038452411,15.874372334474874,2019
+2001,39,"(35,40]",College,84339.28079571539,7162.681300234078,11.774819688397857,15.508857024996303,2019
+2001,39,"(35,40]",College,89120.4039785769,7145.4633163392855,12.472305858010401,15.245517375064313,2019
+2001,39,"(35,40]",College,85333.33925019127,7128.245332444491,11.971156332371613,16.088342421621903,2019
+2001,79,"(75,80]",NoHS,161.71446059678652,41.323161347504296,3.913409703504043,8581.967461343349,2019
+2001,79,"(75,80]",NoHS,163.72333588370316,41.323161347504296,3.96202348864074,8525.342440174243,2019
+2001,79,"(75,80]",NoHS,161.71446059678652,41.323161347504296,3.913409703504043,8599.268773231423,2019
+2001,79,"(75,80]",NoHS,163.89074215761283,41.323161347504296,3.9660746374021305,8624.561652155939,2019
+2001,79,"(75,80]",NoHS,161.37964804896708,41.323161347504296,3.9053074059812602,8582.177043513728,2019
+2001,49,"(45,50]",College,2354.736648814078,344.35967789586914,6.8380150173276855,635.1469436408456,2019
+2001,49,"(45,50]",College,2355.406273909717,344.35967789586914,6.839959568733154,626.8980383666656,2019
+2001,49,"(45,50]",College,2354.4018362662587,344.35967789586914,6.837042741624953,663.1398498771632,2019
+2001,49,"(45,50]",College,2352.2255547054324,344.35967789586914,6.830722949557182,643.6369999791767,2019
+2001,49,"(45,50]",College,2355.573680183627,344.35967789586914,6.840445706584522,643.9833451371017,2019
+2001,32,"(30,35]",HS,96.89475133894415,132.5784759899096,0.7308482814836301,4668.098753757716,2019
+2001,32,"(30,35]",HS,98.56881407804133,132.5784759899096,0.7434752386619928,4676.3230276388495,2019
+2001,32,"(30,35]",HS,98.58555470543229,132.5784759899096,0.7436015082337764,4698.328923105543,2019
+2001,32,"(30,35]",HS,96.91149196633512,132.5784759899096,0.7309745510554138,4698.858965452082,2019
+2001,32,"(30,35]",HS,96.91149196633512,132.5784759899096,0.7309745510554138,4662.160147388655,2019
+2001,68,"(65,70]",College,313168.6174506503,7093.809364654904,44.146748432657546,12.57883120315518,2019
+2001,68,"(65,70]",College,315351.59526243305,7093.809364654904,44.4544784123578,13.27890672793472,2019
+2001,68,"(65,70]",College,329119.5023963275,7093.809364654904,46.395312515187435,13.458992248041634,2019
+2001,68,"(65,70]",College,314395.7010858455,7111.027348549699,44.21241624812015,13.265107818905388,2019
+2001,68,"(65,70]",College,322280.4404957919,7111.027348549699,45.32122078837474,13.646603181231054,2019
+2001,47,"(45,50]",HS,177.78546289211937,266.8787503692986,0.6661656750344691,6779.36550846639,2019
+2001,47,"(45,50]",HS,177.78546289211937,266.8787503692986,0.6661656750344691,7115.76397253677,2019
+2001,47,"(45,50]",HS,177.78546289211937,266.8787503692986,0.6661656750344691,7284.30963898852,2019
+2001,47,"(45,50]",HS,177.78546289211937,266.8787503692986,0.6661656750344691,6999.026260894281,2019
+2001,47,"(45,50]",HS,177.78546289211937,266.8787503692986,0.6661656750344691,7067.849864915159,2019
+2001,76,"(75,80]",HS,3592.538638102525,959.0417029399956,3.7459670701382413,34.72231801925988,2019
+2001,76,"(75,80]",HS,12005.038714613618,2066.1580673752146,5.810319599537929,1.5246172632741726,2019
+2001,76,"(75,80]",HS,3795.669410864575,1243.1384372040877,3.0532958335688845,30.074021918218886,2019
+2001,76,"(75,80]",HS,22778.201622035194,1070.958598256153,21.2689843091274,1.8637299612482707,2019
+2001,76,"(75,80]",HS,4494.52364192808,1244.8602355935673,3.6104644629322795,28.869559923130602,2019
+2001,56,"(55,60]",College,6.445141545524101,22.383379063231494,0.2879431888865851,4941.183397458034,2019
+2001,56,"(55,60]",College,5.4407039020658,22.383379063231494,0.24306892568348096,5059.4963641594895,2019
+2001,56,"(55,60]",College,8.11920428462127,20.661580673752148,0.3929614298549609,4971.24748486543,2019
+2001,56,"(55,60]",College,7.951798010711554,20.661580673752148,0.3848591323321782,5027.519300602017,2019
+2001,56,"(55,60]",College,6.612547819433818,20.661580673752148,0.32004075214991656,4975.9621327633085,2019
+2001,41,"(40,45]",College,187.49502677888296,227.27738741127362,0.824961202319693,5609.851443103738,2019
+2001,41,"(40,45]",College,189.0016832440704,227.27738741127362,0.8315903548383333,5831.449095071608,2019
+2001,41,"(40,45]",College,187.32762050497323,227.27738741127362,0.8242246298176218,5900.137322631544,2019
+2001,41,"(40,45]",College,187.49502677888296,227.27738741127362,0.824961202319693,5714.354810866627,2019
+2001,41,"(40,45]",College,189.0016832440704,227.27738741127362,0.8315903548383333,5826.030007763472,2019
+2001,58,"(55,60]",HS,6913.042081101759,206.6158067375215,33.458437620331146,1752.6060585704029,2019
+2001,58,"(55,60]",HS,6912.874674827851,206.6158067375215,33.45762739057888,1761.570811991336,2019
+2001,58,"(55,60]",HS,6914.716143840857,206.6158067375215,33.46653991785393,1815.728464429661,2019
+2001,58,"(55,60]",HS,6914.046518745218,206.6158067375215,33.46329899884482,1739.6583075792034,2019
+2001,58,"(55,60]",HS,6911.200612088753,206.6158067375215,33.44952509305609,1725.2995247620486,2019
+2001,29,"(25,30]",College,34.48569242540169,67.15013718969449,0.5135610122133033,5831.205194275129,2019
+2001,29,"(25,30]",College,36.15975516449885,67.15013718969449,0.5384911584372499,5840.976498283121,2019
+2001,29,"(25,30]",College,36.15975516449885,67.15013718969449,0.5384911584372499,5861.409437482035,2019
+2001,29,"(25,30]",College,32.811629686304514,65.42833880021514,0.5014895729890764,5891.4588538375265,2019
+2001,29,"(25,30]",College,34.48569242540169,67.15013718969449,0.5135610122133033,5845.674920462143,2019
+2001,63,"(60,65]",HS,43.86044376434583,82.64632269500859,0.5307004877422667,7505.25026577521,2019
+2001,63,"(60,65]",HS,43.69303749043612,82.64632269500859,0.5286749133615711,7844.341751054737,2019
+2001,63,"(60,65]",HS,42.18638102524866,82.64632269500859,0.5104447439353099,7888.872694904067,2019
+2001,63,"(60,65]",HS,43.69303749043612,82.64632269500859,0.5286749133615711,7697.738566566976,2019
+2001,63,"(60,65]",HS,43.86044376434583,82.64632269500859,0.5307004877422667,7762.337103105109,2019
+2001,79,"(75,80]",College,2114.508645753634,246.21716969554646,8.587982098763769,2122.5755980665986,2019
+2001,79,"(75,80]",College,2134.5973986228,246.21716969554646,8.669571668223957,2054.1320957144217,2019
+2001,79,"(75,80]",College,2134.5973986228,246.21716969554646,8.669571668223957,2221.8465075290223,2019
+2001,79,"(75,80]",College,2134.5973986228,246.21716969554646,8.669571668223957,2102.3075166180097,2019
+2001,79,"(75,80]",College,2112.834583014537,246.21716969554646,8.58118296797542,2106.518048088329,2019
+2001,65,"(60,65]",NoHS,0,12.569128243199225,0,6098.942555339316,2019
+2001,65,"(60,65]",NoHS,0,12.224768565303355,0,6063.320468741439,2019
+2001,65,"(60,65]",NoHS,0,13.257847598990962,0,6063.229448885705,2019
+2001,65,"(60,65]",NoHS,0,12.74130808214716,0,6074.744349869894,2019
+2001,65,"(60,65]",NoHS,0,13.257847598990962,0,6078.508739043543,2019
+2001,45,"(40,45]",HS,25.780566182096404,103.30790336876075,0.2495507637017071,193.45125164297076,2019
+2001,45,"(40,45]",HS,50.054475899005354,103.30790336876075,0.48451739186240533,199.3241586134569,2019
+2001,45,"(40,45]",HS,41.68416220351951,103.30790336876075,0.40349441663457836,196.94691399143838,2019
+2001,45,"(40,45]",HS,35.82494261667942,103.30790336876075,0.3467783339750995,198.17483981071325,2019
+2001,45,"(40,45]",HS,23.43687834736037,103.30790336876075,0.22686433063791556,198.02729632110467,2019
+2001,79,"(75,80]",NoHS,58.25738332058148,27.548774231669533,2.114699653446284,10461.755373957976,2019
+2001,79,"(75,80]",NoHS,58.25738332058148,27.548774231669533,2.114699653446284,10428.44207072308,2019
+2001,79,"(75,80]",NoHS,58.25738332058148,27.548774231669533,2.114699653446284,10417.781442082267,2019
+2001,79,"(75,80]",NoHS,58.25738332058148,27.548774231669533,2.114699653446284,10559.67263130553,2019
+2001,79,"(75,80]",NoHS,58.25738332058148,27.548774231669533,2.114699653446284,10373.153135440856,2019
+2001,88,"(85,90]",College,70728.98332058148,3305.852907800344,21.395078756738542,1.723908682705586,2019
+2001,88,"(85,90]",College,58125.299770466714,6456.743960547547,9.00226184058529,1.7558858000022828,2019
+2001,88,"(85,90]",College,144607.21346595258,7076.591380760111,20.43458576103627,1.5509071336575402,2019
+2001,88,"(85,90]",College,419200.37643458304,3719.0845212753866,112.71601224347182,2.0199460627954804,2019
+2001,88,"(85,90]",College,109111.89380260138,9314.929287083261,11.713657768063106,1.6026189947150349,2019
+2001,72,"(70,75]",HS,261.99081866870694,516.5395168438037,0.507203824926197,7968.9621462606865,2019
+2001,72,"(70,75]",HS,260.81897475133894,516.5395168438037,0.5049351816198178,8932.750134433807,2019
+2001,72,"(70,75]",HS,260.81897475133894,516.5395168438037,0.5049351816198178,8853.941963122226,2019
+2001,72,"(70,75]",HS,263.162662586075,516.5395168438037,0.5094724682325762,8479.527767591344,2019
+2001,72,"(70,75]",HS,260.81897475133894,516.5395168438037,0.5049351816198178,8645.846733094855,2019
+2001,68,"(65,70]",HS,609.1914307574599,75.75912913709122,8.041162005110792,9092.488444545406,2019
+2001,68,"(65,70]",HS,609.1914307574599,75.75912913709122,8.041162005110792,8182.137425694801,2019
+2001,68,"(65,70]",HS,605.8433052792656,75.75912913709122,7.996967654986523,7720.012101526188,2019
+2001,68,"(65,70]",HS,605.8433052792656,75.75912913709122,7.996967654986523,8631.983938850077,2019
+2001,68,"(65,70]",HS,609.1914307574599,75.75912913709122,8.041162005110792,8238.863675721004,2019
+2001,50,"(45,50]",College,476.8567712318286,106.75150014771945,4.466979579415454,7460.5191597368075,2019
+2001,50,"(45,50]",College,704.0103442999235,108.47329853719879,6.490171809963878,6806.463866438278,2019
+2001,50,"(45,50]",College,550.1472379495027,106.75150014771945,5.153531680474989,6354.0233568900985,2019
+2001,50,"(45,50]",College,571.5752410099465,108.47329853719879,5.269271320387993,7123.796451236723,2019
+2001,50,"(45,50]",College,833.214506503443,108.47329853719879,7.681286710551246,6832.826149430008,2019
+2001,25,"(20,25]",HS,1690.4685539403213,151.51825827418244,11.156863688871773,3981.727833185084,2019
+2001,25,"(20,25]",HS,1688.7944912012242,151.51825827418244,11.145815101340707,3604.200723190543,2019
+2001,25,"(20,25]",HS,1688.7944912012242,151.51825827418244,11.145815101340707,3377.884136424661,2019
+2001,25,"(20,25]",HS,1687.120428462127,151.51825827418244,11.13476651380964,3800.4549952474285,2019
+2001,25,"(20,25]",HS,1688.6270849273144,153.24005666366176,11.019488779187741,3620.9433616957926,2019
+2001,29,"(25,30]",HS,145.6434583014537,37.87956456854561,3.8449084608114252,6395.723370314436,2019
+2001,29,"(25,30]",HS,118.0381637337414,37.87956456854561,3.1161436272622254,6412.540975313888,2019
+2001,29,"(25,30]",HS,139.04765110941085,37.87956456854561,3.670782721321804,6467.878689229307,2019
+2001,29,"(25,30]",HS,103.7249273144606,37.87956456854561,2.7382819336997235,6370.340694381603,2019
+2001,29,"(25,30]",HS,110.20355011476664,37.87956456854561,2.9093140686806453,6408.2353590533285,2019
+2001,21,"(20,25]",NoHS,-0.5691813312930375,10.15861049792814,-0.05602944727619221,5716.535141824148,2019
+2001,21,"(20,25]",NoHS,-0.5691813312930375,10.330790336876074,-0.05509562315492235,5693.202148672064,2019
+2001,21,"(20,25]",NoHS,-0.5859219586840092,12.569128243199225,-0.046615958350256614,5697.105596454169,2019
+2001,21,"(20,25]",NoHS,-0.5859219586840092,12.396948404251289,-0.04726340221623241,5645.076579411563,2019
+2001,21,"(20,25]",NoHS,-0.6026625860749808,10.15861049792814,-0.05932529711596822,5696.8902432113155,2019
+2001,29,"(25,30]",HS,51.510910482019895,111.91689531615746,0.4602603595865052,6687.650375588279,2019
+2001,29,"(25,30]",HS,49.83684774292272,111.91689531615746,0.4453022718521371,6774.4305056462545,2019
+2001,29,"(25,30]",HS,51.52765110941087,111.91689531615746,0.4604099404638489,6828.509863409983,2019
+2001,29,"(25,30]",HS,49.853588370313695,111.91689531615746,0.4454518527294808,6684.553399918853,2019
+2001,29,"(25,30]",HS,49.83684774292272,111.91689531615746,0.4453022718521371,6767.442793861099,2019
+2001,31,"(30,35]",HS,17.12566182096404,77.48092752657055,0.22103067642151203,6958.517113672472,2019
+2001,31,"(30,35]",HS,-2.812425401683244,77.48092752657055,-0.036298292902066494,6976.814589254798,2019
+2001,31,"(30,35]",HS,8.253129303749043,77.48092752657055,0.1065182047661832,7037.021763176558,2019
+2001,31,"(30,35]",HS,9.090160673297628,77.48092752657055,0.11732126812989348,6930.900880974038,2019
+2001,31,"(30,35]",HS,12.78983932670237,77.48092752657055,0.16507080819749284,6972.1300989009715,2019
+2001,47,"(45,50]",HS,-5.189594491201225,51.653951684380374,-0.10046848928250547,6219.955272988935,2019
+2001,47,"(45,50]",HS,-5.189594491201225,51.653951684380374,-0.10046848928250547,6587.350704465767,2019
+2001,47,"(45,50]",HS,-5.189594491201225,51.653951684380374,-0.10046848928250547,6616.83604730596,2019
+2001,47,"(45,50]",HS,-5.189594491201225,51.653951684380374,-0.10046848928250547,6376.693118864967,2019
+2001,47,"(45,50]",HS,-5.189594491201225,51.653951684380374,-0.10046848928250547,6491.317649750428,2019
+2001,72,"(70,75]",HS,69811.42953328232,3753.520489064974,18.59892059645392,13.09645278129155,2019
+2001,72,"(70,75]",HS,69809.75547054324,3770.738472959767,18.513550056879826,14.258243659434806,2019
+2001,72,"(70,75]",HS,69793.01484315225,3753.520489064974,18.59401461813737,13.928130064776862,2019
+2001,72,"(70,75]",HS,69794.68890589137,3753.520489064974,18.594460616166153,13.670522615213553,2019
+2001,72,"(70,75]",HS,69793.01484315225,3753.520489064974,18.59401461813737,14.453762593205095,2019
+2001,65,"(60,65]",NoHS,401.85876052027544,39.60136295802496,10.14759923657732,8454.67587827492,2019
+2001,65,"(60,65]",NoHS,402.19357306809485,37.87956456854561,10.617692617355688,8848.928809343935,2019
+2001,65,"(60,65]",NoHS,400.7706197398623,39.60136295802496,10.120121879760928,9210.21114796495,2019
+2001,65,"(60,65]",NoHS,402.10986993114005,37.87956456854561,10.615482899849477,8505.382777419985,2019
+2001,65,"(60,65]",NoHS,401.85876052027544,39.60136295802496,10.14759923657732,8905.085321711127,2019
+2001,89,"(85,90]",NoHS,0.5022188217291507,0,Inf,5847.456221215303,2019
+2001,89,"(85,90]",NoHS,0.5357000765110942,0,Inf,5845.16345626468,2019
+2001,89,"(85,90]",NoHS,0.5022188217291507,0,Inf,5872.07517676133,2019
+2001,89,"(85,90]",NoHS,0.5357000765110942,0,Inf,5888.455125090191,2019
+2001,89,"(85,90]",NoHS,0.5022188217291507,0,Inf,5885.36123691717,2019
+2001,24,"(20,25]",HS,434.4192807957154,115.36049209511619,3.765754400887361,9061.804739682359,2019
+2001,24,"(20,25]",HS,432.7452180566182,115.36049209511619,3.751242823234616,9069.315860954388,2019
+2001,24,"(20,25]",HS,434.2518745218057,115.36049209511619,3.7643032431220864,9137.180992982532,2019
+2001,24,"(20,25]",HS,432.7452180566182,115.36049209511619,3.751242823234616,8916.029785400051,2019
+2001,24,"(20,25]",HS,434.4192807957154,115.36049209511619,3.765754400887361,9040.643819762983,2019
+2001,51,"(50,55]",College,18342.3036572303,1893.9782284272803,9.684537753351771,13.320738771092886,2019
+2001,51,"(50,55]",College,18257.278010711554,1148.4395257827236,15.897465735749762,12.998412833584856,2019
+2001,51,"(50,55]",College,17551.442938026015,1773.452341163726,9.896766059418823,13.694486302358774,2019
+2001,51,"(50,55]",College,17977.324498852337,2927.057262114888,6.141774105868763,13.391308383673046,2019
+2001,51,"(50,55]",College,17985.125631216528,3564.1226662222457,5.046157867029777,12.899301421829723,2019
+2001,43,"(40,45]",HS,0,34.43596778958692,0,5549.578061447494,2019
+2001,43,"(40,45]",HS,0,34.43596778958692,0,5551.808898861444,2019
+2001,43,"(40,45]",HS,0,34.43596778958692,0,5566.40818401516,2019
+2001,43,"(40,45]",HS,0,34.43596778958692,0,5542.741599690564,2019
+2001,43,"(40,45]",HS,0,34.43596778958692,0,5560.5674203918925,2019
+2001,36,"(35,40]",HS,407.8016832440704,132.5784759899096,3.075926768649141,7753.141659479598,2019
+2001,36,"(35,40]",HS,393.9069625095639,132.5784759899096,2.9711230240687314,7958.753219852746,2019
+2001,36,"(35,40]",HS,404.3698546289212,132.5784759899096,3.0500415064334976,8038.294612797387,2019
+2001,36,"(35,40]",HS,397.9247130833971,130.8566776004303,3.0409201913138637,7846.999522174386,2019
+2001,36,"(35,40]",HS,389.8892119357307,132.5784759899096,2.940818326840661,7975.84195787292,2019
+2001,60,"(55,60]",HS,513.1002295332823,110.19509692667813,4.656289107624182,5916.346941909819,2019
+2001,60,"(55,60]",HS,513.1002295332823,111.91689531615746,4.584653890583811,6183.65086928311,2019
+2001,60,"(55,60]",HS,513.1002295332823,111.91689531615746,4.584653890583811,6218.754364054601,2019
+2001,60,"(55,60]",HS,513.1002295332823,111.91689531615746,4.584653890583811,6068.084396280383,2019
+2001,60,"(55,60]",HS,514.7742922723795,110.19509692667813,4.6714809154794,6119.007062489408,2019
+2001,80,"(75,80]",HS,222.48293802601378,24.105177452710844,9.229674349524176,10158.77766164071,2019
+2001,80,"(75,80]",HS,175.2743687834736,17.045804055845522,10.282552128913315,10508.766907805795,2019
+2001,80,"(75,80]",HS,157.36189747513387,15.496185505314111,10.154879561887647,10700.800549335836,2019
+2001,80,"(75,80]",HS,621.5794950267789,56.819346852818406,10.939574800760786,8807.056846387091,2019
+2001,80,"(75,80]",HS,195.6979342004591,15.324005666366176,12.770677488718619,10614.454414025804,2019
+2001,88,"(85,90]",HS,50.22188217291507,22.383379063231494,2.2437131601552087,5919.091712938128,2019
+2001,88,"(85,90]",HS,63.78179035960214,22.383379063231494,2.849515713397115,5930.576176066017,2019
+2001,88,"(85,90]",HS,174.1527467482785,22.383379063231494,7.780449335031546,5836.448436764344,2019
+2001,88,"(85,90]",HS,64.45141545524102,22.383379063231494,2.8794318888658514,6044.166102978692,2019
+2001,88,"(85,90]",HS,70.3106350420811,22.383379063231494,3.141198424217292,5973.040022908737,2019
+2001,53,"(50,55]",College,289.5291507268554,125.69128243199225,2.3034942847648234,6027.432289437775,2019
+2001,53,"(50,55]",College,285.67880642693194,123.96948404251289,2.3044284537714463,6282.631795177315,2019
+2001,53,"(50,55]",College,287.01805661820964,123.96948404251289,2.3152315171351563,6311.151132241465,2019
+2001,53,"(50,55]",College,289.3617444529457,123.96948404251289,2.334136878021649,6139.445332263602,2019
+2001,53,"(50,55]",College,294.2165263963275,123.96948404251289,2.373297982715099,6221.191176452735,2019
+2001,78,"(75,80]",College,18165.757000765112,148.07466149522375,122.67971317530962,1461.0710593148456,2019
+2001,78,"(75,80]",College,7500.972915072685,488.99074261213417,15.339703314224973,1434.7745263077823,2019
+2001,78,"(75,80]",College,3733.9969395562357,390.8482344118115,9.553572488757784,1458.2108906091098,2019
+2001,78,"(75,80]",College,3867.25233358837,418.39700864348106,9.243020991298918,1447.307452835343,2019
+2001,78,"(75,80]",College,15741.37934200459,225.5555890217943,69.78935618608669,1411.6393588282385,2019
+2001,73,"(70,75]",HS,1633.885233358837,72.31553235813253,22.593835377816895,7540.192686953521,2019
+2001,73,"(70,75]",HS,1632.21117061974,72.31553235813253,22.57068595632323,6892.712481687515,2019
+2001,73,"(70,75]",HS,1632.21117061974,72.31553235813253,22.57068595632323,6340.016347242754,2019
+2001,73,"(70,75]",HS,1633.885233358837,72.31553235813253,22.593835377816895,7082.411999123449,2019
+2001,73,"(70,75]",HS,1632.21117061974,72.31553235813253,22.57068595632323,6865.388020580137,2019
+2001,48,"(45,50]",HS,119.52807957153787,103.30790336876075,1.1570080862533694,7135.884523569611,2019
+2001,48,"(45,50]",HS,117.01698546289212,103.30790336876075,1.1327011936850213,7506.216881634113,2019
+2001,48,"(45,50]",HS,116.01254781943382,103.30790336876075,1.122978436657682,7558.343949187036,2019
+2001,48,"(45,50]",HS,119.19326702371843,103.30790336876075,1.1537671672442562,7342.182422862422,2019
+2001,48,"(45,50]",HS,116.51476664116296,103.30790336876075,1.1278398151713516,7451.760411381944,2019
+2001,48,"(45,50]",HS,-54.90925784238715,41.323161347504296,-1.3287767937363626,4905.706867823306,2019
+2001,48,"(45,50]",HS,-46.70635042081102,46.488556515942335,-1.0046848928250547,4927.027021308047,2019
+2001,48,"(45,50]",HS,-30.534904361132366,43.04495973698364,-0.7093723527146708,4917.158280919996,2019
+2001,48,"(45,50]",HS,-21.042968630451416,41.323161347504296,-0.5092293993068926,4881.264645957707,2019
+2001,48,"(45,50]",HS,-51.962907421576126,39.60136295802496,-1.3121494701243908,4923.140073791173,2019
+2001,64,"(60,65]",HS,62976.56618209641,2152.2479868491823,29.260831728917985,18.01293583972238,2019
+2001,64,"(60,65]",HS,62141.20887528692,2152.2479868491823,28.872699268386597,19.60781902692309,2019
+2001,64,"(60,65]",HS,62055.83167559296,2152.2479868491823,28.833030419715055,19.13956903634376,2019
+2001,64,"(60,65]",HS,62767.30833970926,2152.2479868491823,29.163604158644592,18.800585208567487,2019
+2001,64,"(60,65]",HS,62348.792654934965,2152.2479868491823,28.969149018097802,19.8680209352054,2019
+2001,79,"(75,80]",HS,180.29655700076512,16.87362421689759,10.685111549433019,8440.628874766651,2019
+2001,79,"(75,80]",HS,179.92826319816373,16.87362421689759,10.663284952024707,8731.42462160079,2019
+2001,79,"(75,80]",HS,180.96618209640397,16.87362421689759,10.724796271993586,8890.979713129713,2019
+2001,79,"(75,80]",HS,180.54766641162968,16.87362421689759,10.699993320393231,8661.686643934312,2019
+2001,79,"(75,80]",HS,181.1335883703137,16.87362421689759,10.73471745263373,8819.237254814636,2019
+2001,29,"(25,30]",HS,0.6696250956388676,16.701444377949656,0.04009384341170819,5109.131454335982,2019
+2001,29,"(25,30]",HS,0.6696250956388676,16.701444377949656,0.04009384341170819,5089.465943685777,2019
+2001,29,"(25,30]",HS,0.6696250956388676,16.701444377949656,0.04009384341170819,5099.4021018677395,2019
+2001,29,"(25,30]",HS,0.6696250956388676,16.701444377949656,0.04009384341170819,5127.809965096449,2019
+2001,29,"(25,30]",HS,0.6696250956388676,16.87362421689759,0.03968472256056831,5088.745202421122,2019
+2001,57,"(55,60]",HS,821.6299923488906,129.1348792109509,6.362572198690798,9802.59285460902,2019
+2001,57,"(55,60]",HS,791.4968630451416,129.1348792109509,6.129226030034657,8815.755533990266,2019
+2001,57,"(55,60]",HS,711.1418515684775,129.1348792109509,5.506969580284945,7973.66955421569,2019
+2001,57,"(55,60]",HS,734.5787299158378,129.1348792109509,5.688461044795278,9116.44155424407,2019
+2001,57,"(55,60]",HS,711.1418515684775,129.1348792109509,5.506969580284945,8959.177135928512,2019
+2001,19,"(15,20]",HS,169.68299923488905,6.887193557917383,24.637466307277627,5478.0174458828415,2019
+2001,19,"(15,20]",HS,169.68299923488905,6.887193557917383,24.637466307277627,5397.313238287707,2019
+2001,19,"(15,20]",HS,169.51559296097935,6.887193557917383,24.61315941470928,5397.966231330865,2019
+2001,19,"(15,20]",HS,169.68299923488905,6.887193557917383,24.637466307277627,5382.592731635895,2019
+2001,19,"(15,20]",HS,169.51559296097935,6.887193557917383,24.61315941470928,5409.566238643254,2019
+2001,33,"(30,35]",HS,-0.6194032134659526,10.330790336876074,-0.059957001668591976,5196.615838188352,2019
+2001,33,"(30,35]",HS,-0.6863657230298393,10.330790336876074,-0.06643883968681813,5193.417715194569,2019
+2001,33,"(30,35]",HS,-0.7365876052027545,10.330790336876074,-0.07130021820048775,5115.983436680289,2019
+2001,33,"(30,35]",HS,-0.6194032134659526,10.330790336876074,-0.059957001668591976,5197.7076668090585,2019
+2001,33,"(30,35]",HS,-0.5859219586840092,10.330790336876074,-0.05671608265947889,5186.384179667618,2019
+2001,68,"(65,70]",College,462.87834736036723,68.87193557917384,6.720855795148247,9443.076422534887,2019
+2001,68,"(65,70]",College,441.95256312165264,56.819346852818406,7.778205621871391,10430.370490209227,2019
+2001,68,"(65,70]",College,426.8859984697781,72.31553235813253,5.903102480884536,10889.194470086566,2019
+2001,68,"(65,70]",College,428.8948737566947,80.92452430552926,5.2999369157538565,10103.046037984555,2019
+2001,68,"(65,70]",College,453.67100229533287,70.59373396865318,6.426505254655935,8553.992862432822,2019
+2001,41,"(40,45]",HS,723.3625095638868,68.87193557917384,10.503008278783211,7238.339023908678,2019
+2001,41,"(40,45]",HS,713.0670237184391,68.87193557917384,10.35352088948787,6582.233487989225,2019
+2001,41,"(40,45]",HS,712.8996174445294,68.87193557917384,10.351090200231035,6149.512337613587,2019
+2001,41,"(40,45]",HS,713.2344299923489,68.87193557917384,10.355951578744705,6882.8540395390255,2019
+2001,41,"(40,45]",HS,712.3973986228003,68.87193557917384,10.343798132460531,6617.900181722054,2019
+2001,64,"(60,65]",HS,7574.79908186687,860.899194739673,8.798706199460915,1377.2768080910696,2019
+2001,64,"(60,65]",HS,6553.620811017598,860.899194739673,7.612529842125529,1403.580446927317,2019
+2001,64,"(60,65]",HS,9186.921499617445,860.899194739673,10.671309202926453,1399.780285171635,2019
+2001,64,"(60,65]",HS,6739.441775057383,860.899194739673,7.828375048132459,1399.742957227751,2019
+2001,64,"(60,65]",HS,9334.239020657997,860.899194739673,10.842429726607625,1395.3683720027577,2019
+2001,60,"(55,60]",College,84051.42570772763,1739.0163733741392,48.33273969965345,31.36574549056442,2019
+2001,60,"(55,60]",College,215257.8673909717,4011.7902474868765,53.65631154964211,34.21214188710958,2019
+2001,60,"(55,60]",College,40601.378423871465,4579.983716015059,8.864961305844513,32.69089802233964,2019
+2001,60,"(55,60]",College,199959.49527161437,1387.7695019203527,144.08696472643086,32.80550343108766,2019
+2001,60,"(55,60]",College,180909.48159143075,2668.787503692986,67.78714354031327,34.65309021574954,2019
+2001,59,"(55,60]",College,1248.8508033664882,98.14250820032271,12.72487147788609,3566.3174715470077,2019
+2001,59,"(55,60]",College,1289.6979342004593,280.65313748513336,4.59534479378046,3627.603415273289,2019
+2001,59,"(55,60]",College,923.0781943381791,201.45041156908349,4.5821608759614145,6851.360424222146,2019
+2001,59,"(55,60]",College,1036.9144605967865,259.9915568113812,3.988262054790678,7673.162474101031,2019
+2001,59,"(55,60]",College,1235.4583014537109,389.1264360223322,3.17495340096299,3843.670317323476,2019
+2001,54,"(50,55]",College,2764.1286916602908,80.92452430552926,34.15687290572592,291.54813904352244,2019
+2001,54,"(50,55]",College,2764.1286916602908,82.64632269500859,33.44527138685663,276.92530405765785,2019
+2001,54,"(50,55]",College,2764.1286916602908,82.64632269500859,33.44527138685663,299.94604932800024,2019
+2001,54,"(50,55]",College,2764.1286916602908,82.64632269500859,33.44527138685663,287.20012587781537,2019
+2001,54,"(50,55]",College,2764.1286916602908,82.64632269500859,33.44527138685663,286.7864102730782,2019
+2001,41,"(40,45]",HS,36.410864575363426,55.097548463339066,0.6608436417019637,3763.744750192715,2019
+2001,41,"(40,45]",HS,36.4276052027544,53.37575007385973,0.6824748158545219,3722.7302187453956,2019
+2001,41,"(40,45]",HS,36.410864575363426,53.37575007385973,0.6821611785310593,3735.448191049247,2019
+2001,41,"(40,45]",HS,36.4276052027544,53.37575007385973,0.6824748158545219,3721.174478245653,2019
+2001,41,"(40,45]",HS,36.4276052027544,53.37575007385973,0.6824748158545219,3764.5959857627254,2019
+2001,47,"(45,50]",HS,502.72104055087993,115.36049209511619,4.357826769119362,6117.328707119361,2019
+2001,47,"(45,50]",HS,502.8884468247896,115.36049209511619,4.359277926884636,6376.334397691588,2019
+2001,47,"(45,50]",HS,503.6752563121653,113.63869370563681,4.4322513739629645,6405.279087727553,2019
+2001,47,"(45,50]",HS,502.72104055087993,115.36049209511619,4.357826769119362,6231.012373653613,2019
+2001,47,"(45,50]",HS,502.2188217291507,115.36049209511619,4.353473295823538,6313.977420017085,2019
+2001,40,"(35,40]",HS,6.52884468247896,34.43596778958692,0.18959376203311512,5952.00361179496,2019
+2001,40,"(35,40]",HS,6.361438408569243,36.157766179066265,0.17593560335185288,5915.997608590268,2019
+2001,40,"(35,40]",HS,6.52884468247896,34.43596778958692,0.18959376203311512,5845.498631768828,2019
+2001,40,"(35,40]",HS,6.361438408569243,34.43596778958692,0.18473238351944551,5895.379043741709,2019
+2001,40,"(35,40]",HS,6.52884468247896,36.157766179066265,0.18056548765058583,5950.248815733188,2019
+2001,40,"(35,40]",HS,26.83522570772762,70.59373396865318,0.38013608572743407,5650.461701743053,2019
+2001,40,"(35,40]",HS,44.47984697781178,70.59373396865318,0.6300820834546428,5860.1671638356365,2019
+2001,40,"(35,40]",HS,22.48266258607498,70.59373396865318,0.3184795777491852,5914.939708003883,2019
+2001,40,"(35,40]",HS,35.35620504973221,70.59373396865318,0.5008405571156211,5738.992944915396,2019
+2001,40,"(35,40]",HS,29.731354246365722,70.59373396865318,0.4211613775744996,5870.634012808818,2019
+2001,50,"(45,50]",HS,14563.173986228003,516.5395168438037,28.193726735977414,1358.7590490127375,2019
+2001,50,"(45,50]",HS,14563.173986228003,516.5395168438037,28.193726735977414,1358.5689359130422,2019
+2001,50,"(45,50]",HS,14563.173986228003,516.5395168438037,28.193726735977414,1368.369126537344,2019
+2001,50,"(45,50]",HS,14563.173986228003,516.5395168438037,28.193726735977414,1355.2502889804252,2019
+2001,50,"(45,50]",HS,14563.173986228003,516.5395168438037,28.193726735977414,1350.4597819459168,2019
+2001,40,"(35,40]",College,11857.888599846978,540.6446942965146,21.932867787182172,489.7562672020599,2019
+2001,40,"(35,40]",College,4112.000306044377,390.8482344118115,10.520708408041132,490.32562600650664,2019
+2001,40,"(35,40]",College,20670.154858454476,278.93133909565404,74.1048134837443,500.62144852941356,2019
+2001,40,"(35,40]",College,10442.133741392503,556.1408798018288,18.776058586294496,492.05647228813297,2019
+2001,40,"(35,40]",College,2985.3560826319817,492.4343393910929,6.062444967431491,295.08749218488964,2019
+2001,67,"(65,70]",NoHS,82.02907421576128,14.807466149522373,5.539710399297938,8234.977769178387,2019
+2001,67,"(65,70]",NoHS,80.18760520275441,14.807466149522373,5.415349553599413,8163.49607142859,2019
+2001,67,"(65,70]",NoHS,81.86166794185158,14.807466149522373,5.5284048678708,8229.437238806551,2019
+2001,67,"(65,70]",NoHS,78.34613618974751,14.807466149522373,5.290988707900888,8224.712551452503,2019
+2001,67,"(65,70]",NoHS,85.37719969395563,14.807466149522373,5.765821027840712,8170.754861187129,2019
+2001,41,"(40,45]",HS,26.885447589900533,43.04495973698364,0.6245899114362726,4186.492357667112,2019
+2001,41,"(40,45]",HS,27.01937260902831,43.04495973698364,0.6277011936850212,4150.147167758501,2019
+2001,41,"(40,45]",HS,24.17346595256312,43.04495973698364,0.5615864458991143,4171.28882945328,2019
+2001,41,"(40,45]",HS,21.829778117827086,43.04495973698364,0.5071390065460147,4161.868236356977,2019
+2001,41,"(40,45]",HS,24.190206579954094,43.04495973698364,0.561975356180208,4177.052909865308,2019
+2001,41,"(40,45]",HS,-10.144820198928844,36.157766179066265,-0.280570988503218,5487.303207680407,2019
+2001,41,"(40,45]",HS,-9.977413925019128,36.157766179066265,-0.27594110420448503,5495.799782502647,2019
+2001,41,"(40,45]",HS,-10.144820198928844,36.157766179066265,-0.280570988503218,5520.254546175793,2019
+2001,41,"(40,45]",HS,-9.977413925019128,36.157766179066265,-0.27594110420448503,5474.227350937977,2019
+2001,41,"(40,45]",HS,-9.977413925019128,36.157766179066265,-0.27594110420448503,5529.436590518721,2019
+2001,44,"(40,45]",NoHS,55.930436113236425,20.661580673752148,2.7069776023617,6097.577336934057,2019
+2001,44,"(40,45]",NoHS,52.163794950267786,20.661580673752148,2.5246759080990886,6259.283706533288,2019
+2001,44,"(40,45]",NoHS,53.60348890589135,20.661580673752148,2.59435566679502,6321.840256673755,2019
+2001,44,"(40,45]",NoHS,52.364682478959445,20.661580673752148,2.534398665126428,6171.393294593117,2019
+2001,44,"(40,45]",NoHS,54.607926549349656,20.661580673752148,2.6429694519317164,6272.723407011507,2019
+2001,72,"(70,75]",HS,392.9025248661056,43.04495973698364,9.127724297266077,9042.243341770307,2019
+2001,72,"(70,75]",HS,394.57658760520275,43.04495973698364,9.166615325375433,9972.860998077069,2019
+2001,72,"(70,75]",HS,394.57658760520275,43.04495973698364,9.166615325375433,9858.632541683077,2019
+2001,72,"(70,75]",HS,402.94690130068864,43.04495973698364,9.36107046592222,9496.01970652256,2019
+2001,72,"(70,75]",HS,402.94690130068864,43.04495973698364,9.36107046592222,9744.294462774697,2019
+2001,61,"(60,65]",College,30990.249426166796,3443.596778958692,8.999383904505198,518.168941545861,2019
+2001,61,"(60,65]",College,31609.652639632746,3443.596778958692,9.179254909510973,501.87667679059757,2019
+2001,61,"(60,65]",College,31073.952563121653,3443.596778958692,9.023690797073545,507.05376799946964,2019
+2001,61,"(60,65]",College,31243.032899770467,3443.596778958692,9.072790720061608,527.0150524400958,2019
+2001,61,"(60,65]",College,30941.701606732975,3443.596778958692,8.985285906815555,520.2073436215508,2019
+2001,29,"(25,30]",NoHS,21.59540933435348,29.27057262114888,0.7377856803098597,9625.249654334135,2019
+2001,29,"(25,30]",NoHS,34.98791124713083,29.27057262114888,1.195327187478765,9685.778270996308,2019
+2001,29,"(25,30]",NoHS,18.91690895179801,29.27057262114888,0.6462773788760787,9778.090590434047,2019
+2001,29,"(25,30]",NoHS,28.79387911247131,29.27057262114888,0.9837142404131464,9651.605054431591,2019
+2001,29,"(25,30]",NoHS,22.93465952563122,29.27057262114888,0.7835398310267504,9617.6686200187,2019
+2001,68,"(65,70]",HS,618.7001071155319,46.488556515942335,13.308653859866801,5698.862118685038,2019
+2001,68,"(65,70]",HS,620.374169854629,46.488556515942335,13.344664071079167,5644.595773238657,2019
+2001,68,"(65,70]",HS,620.374169854629,46.488556515942335,13.344664071079167,5425.948840336717,2019
+2001,68,"(65,70]",HS,620.374169854629,46.488556515942335,13.344664071079167,5625.839512332758,2019
+2001,68,"(65,70]",HS,618.7001071155319,46.488556515942335,13.308653859866801,5933.374840342871,2019
+2001,70,"(65,70]",NoHS,-0.753328232593726,16.52926453900172,-0.045575423565652674,9939.020570958097,2019
+2001,70,"(65,70]",NoHS,-0.753328232593726,16.52926453900172,-0.045575423565652674,9943.055167676426,2019
+2001,70,"(65,70]",NoHS,-0.753328232593726,16.52926453900172,-0.045575423565652674,9841.138092884237,2019
+2001,70,"(65,70]",NoHS,-0.753328232593726,16.52926453900172,-0.045575423565652674,9829.903401010351,2019
+2001,70,"(65,70]",NoHS,-0.753328232593726,16.52926453900172,-0.045575423565652674,9917.014802417314,2019
+2001,92,"(90,95]",HS,101.11338944146901,13.602207276886833,7.433601575332783,7362.657365230679,2019
+2001,92,"(90,95]",HS,94.40039785768937,13.602207276886833,6.940079351539994,7322.346155380376,2019
+2001,92,"(90,95]",HS,101.09664881407805,13.602207276886833,7.432370846595147,7403.20983161592,2019
+2001,92,"(90,95]",HS,94.41713848508033,13.602207276886833,6.941310080277631,7393.935585092881,2019
+2001,92,"(90,95]",HS,94.7352104055088,13.602207276886833,6.964693926292751,7395.6529210705385,2019
+2001,59,"(55,60]",HS,1515.026778882938,146.35286310574438,10.351876599696483,7625.629827762427,2019
+2001,59,"(55,60]",HS,1601.4084162203521,146.35286310574438,10.942105143944373,3432.4754494181566,2019
+2001,59,"(55,60]",HS,1521.8904361132365,146.35286310574438,10.398774604181297,6482.0013698236035,2019
+2001,59,"(55,60]",HS,1534.1110941086458,146.35286310574438,10.482275929239622,7257.510321810846,2019
+2001,59,"(55,60]",HS,1543.48584544759,146.35286310574438,10.54633174024327,6970.413389960477,2019
+2001,37,"(35,40]",HS,17.945952563121654,60.2629436317771,0.2977941580945047,7947.129634934206,2019
+2001,37,"(35,40]",HS,18.11335883703137,60.2629436317771,0.30057208867374446,7878.136331917414,2019
+2001,37,"(35,40]",HS,17.945952563121654,60.2629436317771,0.2977941580945047,7918.269099836756,2019
+2001,37,"(35,40]",HS,17.945952563121654,58.54114524229776,0.30655280980316657,7900.38618780009,2019
+2001,37,"(35,40]",HS,17.945952563121654,58.54114524229776,0.30655280980316657,7929.210931410062,2019
+2001,55,"(50,55]",HS,637.483091048202,113.63869370563681,5.609736175773913,665.1696578330127,2019
+2001,55,"(50,55]",HS,433.5822494261668,122.24768565303354,3.546752211381497,237.76848114284104,2019
+2001,55,"(50,55]",HS,447.3095638867636,111.91689531615746,3.996801042623146,633.1522703198026,2019
+2001,55,"(50,55]",HS,514.7575516449886,118.80408887407486,4.332826896139916,656.5094391888363,2019
+2001,55,"(50,55]",HS,543.9699464422341,99.86430658980206,5.447090807695883,692.6201458204748,2019
+2001,55,"(50,55]",College,37448.783473603675,4115.098150855636,9.100337853622543,32.54014495187054,2019
+2001,55,"(50,55]",College,37296.44376434583,3994.5722635920815,9.336780336728056,32.79658701299551,2019
+2001,55,"(50,55]",College,37196,3701.8665373805934,10.047904111183746,32.69089802233964,2019
+2001,55,"(50,55]",College,38098.31981637337,8161.3243661321,4.668154101860471,33.75568849037757,2019
+2001,55,"(50,55]",College,37355.03596021423,5750.806620861015,6.495616775690051,33.27193653416163,2019
+2001,71,"(70,75]",HS,888.9273144605968,61.984742021256444,14.341066615325376,7273.058275153155,2019
+2001,71,"(70,75]",HS,1121.4546289211935,61.984742021256444,18.092430368373766,6652.435673427768,2019
+2001,71,"(70,75]",HS,948.3565416985463,61.984742021256444,15.299838488854663,6119.598348324273,2019
+2001,71,"(70,75]",HS,967.6082631981637,61.984742021256444,15.610426560561333,6833.004060409429,2019
+2001,71,"(70,75]",HS,960.9120122417751,61.984742021256444,15.50239592692423,6622.590264446774,2019
+2001,77,"(75,80]",NoHS,6.52884468247896,18.939782284272805,0.34471593096930025,6262.287545810648,2019
+2001,77,"(75,80]",NoHS,7.700688599846978,9.125531464240535,0.8438619306747261,6281.589423105253,2019
+2001,77,"(75,80]",NoHS,3.247681713848508,25.826975842190187,0.12574765755358747,6253.343347259688,2019
+2001,77,"(75,80]",NoHS,6.696250956388676,15.496185505314111,0.43212253454841054,6352.718540519913,2019
+2001,77,"(75,80]",NoHS,4.101453710788064,14.63528631057444,0.28024417314095446,6308.204275621453,2019
+2001,41,"(40,45]",College,339.8514766641163,149.7964598847031,2.268755062207056,360.9227677601698,2019
+2001,41,"(40,45]",College,308.37909716908956,149.7964598847031,2.0586541057542083,378.59055293924547,2019
+2001,41,"(40,45]",College,376.9989288446825,149.7964598847031,2.5167412443181565,371.8385120249826,2019
+2001,41,"(40,45]",College,366.4690742157613,149.7964598847031,2.4464468285687726,369.30631592230014,2019
+2001,41,"(40,45]",College,284.2725937260903,151.51825827418244,1.8761606486505407,363.1151991501892,2019
+2001,59,"(55,60]",HS,1957.983779648049,120.5258872635542,16.245338027394247,11372.833544071005,2019
+2001,59,"(55,60]",HS,1862.72960979342,120.5258872635542,15.455016777600528,11057.720725793351,2019
+2001,59,"(55,60]",HS,1854.1918898240244,120.5258872635542,15.384179547829914,13377.496463922676,2019
+2001,59,"(55,60]",HS,1758.2680948737566,120.5258872635542,14.588302436877717,11305.465226834665,2019
+2001,59,"(55,60]",HS,1791.0797245600613,120.5258872635542,14.860539633643217,11291.18149259581,2019
+2001,61,"(60,65]",College,10810.42754399388,705.9373396865317,15.313579458474603,301.96871782530707,2019
+2001,61,"(60,65]",College,10810.26013771997,707.6591380760111,15.276083577626066,291.1328201627975,2019
+2001,61,"(60,65]",College,10812.101606732977,707.6591380760111,15.278685775370608,303.0070020196549,2019
+2001,61,"(60,65]",College,10811.934200459067,707.6591380760111,15.278449211939288,295.45792084587,2019
+2001,61,"(60,65]",College,10810.26013771997,707.6591380760111,15.276083577626066,292.42508373123707,2019
+2001,45,"(40,45]",College,1987.2798775822496,303.0365165483649,6.557889129065005,142.79190283829467,2019
+2001,45,"(40,45]",College,4316.403366488141,323.69809722211704,13.334657829410366,235.69937991085098,2019
+2001,45,"(40,45]",College,4885.919510328998,466.60736354890275,10.471158177118928,245.5275906668638,2019
+2001,45,"(40,45]",College,4282.503596021424,420.1188070329604,10.193553643232734,239.58875832244925,2019
+2001,45,"(40,45]",College,2594.9646518745217,488.99074261213417,5.3067766436896315,140.4538791893427,2019
+2001,35,"(30,35]",HS,42.18638102524866,148.07466149522375,0.2848993919638939,4637.40297332384,2019
+2001,35,"(30,35]",HS,13.226769701606733,148.07466149522375,0.08932500380582245,4655.280343727042,2019
+2001,35,"(30,35]",HS,50.89318133129304,148.07466149522375,0.34369946091644205,4687.263347675104,2019
+2001,35,"(30,35]",HS,108.31185921958684,148.07466149522375,0.7314678833358704,4579.683733573927,2019
+2001,35,"(30,35]",HS,106.48713083397092,148.07466149522375,0.7191448540802894,4603.513328352462,2019
+2001,47,"(45,50]",College,27105.08462127008,612.960226654647,44.219972916026705,19.270734741404556,2019
+2001,47,"(45,50]",College,13646.624636572304,828.1850253395654,16.477748593651558,19.806988471879478,2019
+2001,47,"(45,50]",College,9482.226166794186,928.0493319293674,10.217372978525956,20.15728956818216,2019
+2001,47,"(45,50]",College,85537.90971690895,612.960226654647,139.54887445756341,19.575962334687564,2019
+2001,47,"(45,50]",College,32167.450344299923,1422.2054697099395,22.618004943308588,20.23014452227178,2019
+2001,35,"(30,35]",College,208.92302983932672,82.64632269500859,2.527916827108202,5864.326641624402,2019
+2001,35,"(30,35]",College,217.96296863045143,82.64632269500859,2.6372978436657686,6019.847255625819,2019
+2001,35,"(30,35]",College,226.16587605202756,82.64632269500859,2.7365509883198564,6080.010829341363,2019
+2001,35,"(30,35]",College,209.927467482785,82.64632269500859,2.540070273392376,5935.318916614501,2019
+2001,35,"(30,35]",College,221.47850038255547,82.64632269500859,2.6798349056603774,6032.772847088597,2019
+2001,77,"(75,80]",HS,173.01438408569243,75.75912913709122,2.283743042671614,9022.040555945092,2019
+2001,77,"(75,80]",HS,195.748156082632,56.819346852818406,3.445096906687204,9237.539943855363,2019
+2001,77,"(75,80]",HS,147.23381790359605,41.323161347504296,3.5629853356436922,9412.378930339892,2019
+2001,77,"(75,80]",HS,162.8026013771997,55.097548463339066,2.9548066278398153,9225.854257571526,2019
+2001,77,"(75,80]",HS,169.14729915837796,108.47329853719879,1.5593450318132642,9333.805480545754,2019
+2001,50,"(45,50]",College,11606.611782708493,1167.3793080669964,9.942451183178232,281.0197025005382,2019
+2001,50,"(45,50]",College,11355.33496557001,1167.3793080669964,9.727202535714571,281.2625503227631,2019
+2001,50,"(45,50]",College,11690.314919663351,1167.3793080669964,10.014152931167459,287.22942258935757,2019
+2001,50,"(45,50]",College,11357.009028309105,1167.3793080669964,9.728636570674356,282.16210953872474,2019
+2001,50,"(45,50]",College,11020.522417750575,1167.3793080669964,9.440395543757662,285.3353666721919,2019
+2001,49,"(45,50]",HS,2208.590971690895,683.5539606233003,3.2310411451306433,643.3529459066046,2019
+2001,49,"(45,50]",HS,1840.966794185157,299.5929197694062,6.144894197106298,634.7896248976535,2019
+2001,49,"(45,50]",HS,2664.9404743687837,476.93815388577883,5.5876017732206975,671.5346107653914,2019
+2001,49,"(45,50]",HS,2002.1790359602142,1036.5226304665664,1.9316307981225458,651.8166324433345,2019
+2001,49,"(45,50]",HS,1834.6053557765874,673.2231702864241,2.7251072701434964,652.3771932659919,2019
+2001,42,"(40,45]",HS,-1.3559908186687069,32.71416940010757,-0.041449648379709374,4946.837483514404,2019
+2001,42,"(40,45]",HS,-0.8872532517214996,17.21798389479346,-0.05153061224489795,4892.930474671159,2019
+2001,42,"(40,45]",HS,-0.9876970160673297,36.157766179066265,-0.02731631736252452,4909.646204956467,2019
+2001,42,"(40,45]",HS,-1.1551032899770466,27.548774231669533,-0.041929389680400456,4890.8857038565675,2019
+2001,42,"(40,45]",HS,-0.9039938791124713,24.105177452710844,-0.03750206281973705,4947.95629584216,2019
+2001,22,"(20,25]",NoHS,-0.31807192042846216,15.496185505314111,-0.020525820391049505,5493.893070173433,2019
+2001,22,"(20,25]",NoHS,-0.3348125478194338,15.496185505314111,-0.02160612672742053,5471.468827830068,2019
+2001,22,"(20,25]",NoHS,-0.31807192042846216,15.496185505314111,-0.020525820391049505,5475.220247910213,2019
+2001,22,"(20,25]",NoHS,-0.31807192042846216,15.496185505314111,-0.020525820391049505,5425.217606609718,2019
+2001,22,"(20,25]",NoHS,-0.31807192042846216,15.496185505314111,-0.020525820391049505,5475.013282036793,2019
+2001,55,"(50,55]",College,2358.4195868400916,325.41989561159636,7.247312222283342,763.7676744514521,2019
+2001,55,"(50,55]",College,3039.9305279265495,244.49537130606709,12.433489074609383,737.6168099107603,2019
+2001,55,"(50,55]",College,3444.049273144606,266.8787503692986,12.904921311190332,1309.5839953610405,2019
+2001,55,"(50,55]",College,3200.3057383320584,208.33760512700084,15.361152569557373,763.4425063491225,2019
+2001,55,"(50,55]",College,2175.6119357306807,411.5098150855637,5.286901687334757,752.2389171625309,2019
+2001,47,"(45,50]",College,488.9954001530222,127.41308082147161,3.837874392490295,8589.359436041315,2019
+2001,47,"(45,50]",College,520.3154399387911,129.1348792109509,4.029240148889745,7984.393175633265,2019
+2001,47,"(45,50]",College,523.1446059678653,129.1348792109509,4.0511487613913495,7454.6028700337365,2019
+2001,47,"(45,50]",College,511.0913542463657,129.1348792109509,3.957810293928893,8748.983010418366,2019
+2001,47,"(45,50]",College,518.4572302983933,129.1348792109509,4.014850468489283,8865.474478829135,2019
+2001,64,"(60,65]",College,20712.00642693191,492.4343393910929,42.06044292634589,1366.696752931393,2019
+2001,64,"(60,65]",College,18183.167253251722,492.4343393910929,36.9250594419058,1403.580446927317,2019
+2001,64,"(60,65]",College,16555.810864575364,492.4343393910929,33.62034192222871,1399.780285171635,2019
+2001,64,"(60,65]",College,17495.629686304514,492.4343393910929,35.52885793451831,1399.742957227751,2019
+2001,64,"(60,65]",College,17663.37077276205,492.4343393910929,35.8694943870146,1395.3683720027577,2019
+2001,49,"(45,50]",College,26.550635042081105,37.87956456854561,0.7009223929709105,5135.809367765146,2019
+2001,49,"(45,50]",College,27.052853863810252,37.87956456854561,0.7141806980081912,5158.129544436792,2019
+2001,49,"(45,50]",College,24.206947207345063,34.43596778958692,0.7029553330766268,5147.797910138494,2019
+2001,49,"(45,50]",College,25.713603672532518,34.43596778958692,0.7467077396996534,5110.220681892027,2019
+2001,49,"(45,50]",College,23.202509563886764,32.71416940010757,0.7092495389416938,5154.060279393643,2019
+2001,44,"(40,45]",College,145.97827084927314,192.84141962168675,0.7569860828428405,6703.092274307002,2019
+2001,44,"(40,45]",College,147.65233358837034,192.84141962168675,0.765667115902965,6943.949358887316,2019
+2001,44,"(40,45]",College,145.97827084927314,194.5632180111661,0.7502870909592756,7030.140358131852,2019
+2001,44,"(40,45]",College,145.97827084927314,194.5632180111661,0.7502870909592756,6853.014739698517,2019
+2001,44,"(40,45]",College,147.65233358837034,194.5632180111661,0.758891300717983,6976.600923343108,2019
+2001,40,"(35,40]",NoHS,43.60933435348125,68.87193557917384,0.6331945514054678,7016.768362674421,2019
+2001,40,"(35,40]",NoHS,43.27452180566182,68.87193557917384,0.6283331728917981,7211.408482617029,2019
+2001,40,"(35,40]",NoHS,43.44192807957154,68.87193557917384,0.630763862148633,7391.050421590526,2019
+2001,40,"(35,40]",NoHS,43.60933435348125,68.87193557917384,0.6331945514054678,7126.163575085047,2019
+2001,40,"(35,40]",NoHS,43.44192807957154,68.87193557917384,0.630763862148633,7217.802829456776,2019
+2001,42,"(40,45]",HS,35.07161438408569,61.984742021256444,0.5658104436743251,7526.720284753648,2019
+2001,42,"(40,45]",HS,33.16318286151492,61.984742021256444,0.5350217130877508,7726.327201563717,2019
+2001,42,"(40,45]",HS,21.46148431522571,61.984742021256444,0.34623818080691404,7803.545681768056,2019
+2001,42,"(40,45]",HS,33.56495791889824,61.984742021256444,0.5415035511059769,7617.837139063248,2019
+2001,42,"(40,45]",HS,35.40642693190512,61.984742021256444,0.5712119753561802,7742.916883107847,2019
+2001,40,"(35,40]",College,9640.927314460596,557.8626781913081,17.281900531002055,495.6589620314802,2019
+2001,40,"(35,40]",College,8485.82402448355,557.8626781913081,15.211313386290925,496.9306612203465,2019
+2001,40,"(35,40]",College,8636.489671002295,557.8626781913081,15.48138997038368,506.6564122388286,2019
+2001,40,"(35,40]",College,11633.061973986229,557.8626781913081,20.852913142895172,498.60711198874435,2019
+2001,40,"(35,40]",College,9239.152257077278,557.8626781913081,16.56169630675471,504.1585065744751,2019
+2001,34,"(30,35]",College,17394.851109410865,7179.899284128872,2.4227151971145457,22.91904211909669,2019
+2001,34,"(30,35]",College,26845.437490436114,7971.926543289372,3.367496845920405,22.19133287963158,2019
+2001,34,"(30,35]",College,18626.62647283856,7352.079123076806,2.533518228112243,23.57018541297596,2019
+2001,34,"(30,35]",College,27216.577199693955,7541.476945919534,3.608918703175248,23.802759193282533,2019
+2001,34,"(30,35]",College,20378.03091048202,7782.528720446643,2.6184331137698025,22.20111724077838,2019
+2001,74,"(70,75]",College,34796.0636572303,6284.564121599612,5.5367505182481365,18.449019495623023,2019
+2001,74,"(70,75]",College,41705.17169089518,8385.158156764415,4.9736893343211515,18.56285479045389,2019
+2001,74,"(70,75]",College,34097.226166794186,6439.525976652753,5.294990080080059,18.532850934210636,2019
+2001,74,"(70,75]",College,35791.461361897476,4425.021860961919,8.088425885000502,19.102367464008402,2019
+2001,74,"(70,75]",College,37784.76786534047,4442.239844856712,8.505791939417277,18.83070519899378,2019
+2001,36,"(35,40]",HS,24.27390971690895,41.323161347504296,0.5874165704017456,9835.946007741752,2019
+2001,36,"(35,40]",HS,28.459066564651877,39.60136295802496,0.7186385628902915,10085.062013432278,2019
+2001,36,"(35,40]",HS,25.780566182096404,41.323161347504296,0.6238769092542678,10181.103007174494,2019
+2001,36,"(35,40]",HS,25.780566182096404,39.60136295802496,0.6510019922653228,10047.286636402081,2019
+2001,36,"(35,40]",HS,27.454628921193574,39.60136295802496,0.6932748489059282,10038.826299197875,2019
+2001,73,"(70,75]",HS,122.20657995409334,17.21798389479346,7.097612629957643,8580.053373879335,2019
+2001,73,"(70,75]",HS,122.8762050497322,13.430027437938898,9.149363664188462,8635.60272037288,2019
+2001,73,"(70,75]",HS,123.7132364192808,14.463106471626503,8.553711241909165,8467.545029778226,2019
+2001,73,"(70,75]",HS,122.20657995409334,16.012725022157916,7.631841537588864,8486.412301242335,2019
+2001,73,"(70,75]",HS,121.03473603672533,16.012725022157916,7.558659495447602,8516.961301415271,2019
+2001,81,"(80,85]",College,3834.6081101759755,111.91689531615746,34.26299576434348,3687.287979209405,2019
+2001,81,"(80,85]",College,3822.8896710022955,111.91689531615746,34.158289150202904,3633.9889219487354,2019
+2001,81,"(80,85]",College,3837.9562356541696,111.91689531615746,34.292911939812214,3732.726985571312,2019
+2001,81,"(80,85]",College,3847.833205814843,111.91689531615746,34.381164657444984,3619.162569798528,2019
+2001,81,"(80,85]",College,3836.114766641163,111.91689531615746,34.27645804330441,3597.716146931495,2019
+2001,64,"(60,65]",College,60453.58622800306,3581.340650117039,16.880155264210185,14.608140502550564,2019
+2001,64,"(60,65]",College,298416.7498087223,8987.787593082187,33.20247020951082,15.874372334474874,2019
+2001,64,"(60,65]",College,99994.61331293038,2324.427825797117,43.01902266147549,15.508857024996303,2019
+2001,64,"(60,65]",College,62140.204437643464,6301.782105494406,9.86073516941574,15.245517375064313,2019
+2001,64,"(60,65]",College,236280.56312165264,7179.899284128872,32.90861804203153,16.088342421621903,2019
+2001,45,"(40,45]",HS,149.22595256312167,67.15013718969449,2.2222732344026146,6477.359695575437,2019
+2001,45,"(40,45]",HS,150.0797245600612,67.15013718969449,2.234987608976827,6413.740389003381,2019
+2001,45,"(40,45]",HS,149.3766182096404,68.87193557917384,2.1689040238737003,6167.004127042232,2019
+2001,45,"(40,45]",HS,149.89557765876052,67.15013718969449,2.232245292892193,6396.30574802131,2019
+2001,45,"(40,45]",HS,148.87439938791127,67.15013718969449,2.217037903695586,6746.536873001195,2019
+2001,36,"(35,40]",HS,440.4626472838562,92.97711303188467,4.737323336043013,5421.302524826506,2019
+2001,36,"(35,40]",HS,440.4626472838562,96.42070981084338,4.5681332168986195,5393.275740205056,2019
+2001,36,"(35,40]",HS,440.1445753634277,101.5861049792814,4.3327241993695464,5434.586199465715,2019
+2001,36,"(35,40]",HS,440.2115378729916,87.81171786344665,5.013129780213972,5414.053599108394,2019
+2001,36,"(35,40]",HS,441.3666411629687,108.47329853719879,4.0688966512031595,5477.59426880985,2019
+2001,55,"(50,55]",College,6540.56312165264,344.35967789586914,18.993405852907202,1676.6241520158644,2019
+2001,55,"(50,55]",College,4915.048201989289,344.35967789586914,14.273007316134002,1712.1315404397578,2019
+2001,55,"(50,55]",College,5166.1576128538645,344.35967789586914,15.002214093184447,1705.8818969614636,2019
+2001,55,"(50,55]",College,5502.644223412394,344.35967789586914,15.979351174432036,1704.484496278114,2019
+2001,55,"(50,55]",College,7009.3006885998475,344.35967789586914,20.354591836734695,1701.014628037347,2019
+2001,33,"(30,35]",HS,523.9816373374139,129.1348792109509,4.057630599409576,6630.368838097774,2019
+2001,33,"(30,35]",HS,474.93159908186686,129.1348792109509,3.677794891541523,6016.021832426728,2019
+2001,33,"(30,35]",HS,602.8299923488906,129.1348792109509,4.668219740726481,5622.696279512829,2019
+2001,33,"(30,35]",HS,544.07039020658,130.8566776004303,4.157757939322701,6269.493256094694,2019
+2001,33,"(30,35]",HS,653.0518745218056,129.1348792109509,5.05713002182005,6058.181416582224,2019
+2001,51,"(50,55]",HS,133.08798775822495,43.04495973698364,3.091836734693878,7144.022853164334,2019
+2001,51,"(50,55]",HS,133.08798775822495,68.87193557917384,1.9323979591836735,7446.49843705672,2019
+2001,51,"(50,55]",HS,133.08798775822495,67.15013718969449,1.9819466248037678,7480.301022628754,2019
+2001,51,"(50,55]",HS,133.08798775822495,58.54114524229776,2.273409363745498,7276.786474450042,2019
+2001,51,"(50,55]",HS,133.08798775822495,61.984742021256444,2.1471088435374153,7373.675854702686,2019
+2001,47,"(45,50]",HS,9.709563886763581,17.21798389479346,0.5639199075856758,6313.1562262990865,2019
+2001,47,"(45,50]",HS,12.555470543228768,17.21798389479346,0.7292067770504428,6420.375501137974,2019
+2001,47,"(45,50]",HS,10.211782708492732,17.21798389479346,0.5930881786676935,6414.114699556563,2019
+2001,47,"(45,50]",HS,22.599846977811783,17.21798389479346,1.312572198690797,6338.424151017068,2019
+2001,47,"(45,50]",HS,9.709563886763581,17.21798389479346,0.5639199075856758,6382.794273346023,2019
+2001,47,"(45,50]",HS,124.38453557765877,75.75912913709122,1.6418422042916652,10045.508797458895,2019
+2001,47,"(45,50]",HS,124.55194185156849,75.75912913709122,1.6440519217978786,10562.882471675206,2019
+2001,47,"(45,50]",HS,124.21712930374905,77.48092752657055,1.6031962093013308,10639.604813291826,2019
+2001,47,"(45,50]",HS,124.21712930374905,77.48092752657055,1.6031962093013308,10430.459929862624,2019
+2001,47,"(45,50]",HS,124.21712930374905,75.75912913709122,1.6396324867854517,10431.846514415278,2019
+2001,24,"(20,25]",NoHS,9.543831675592962,41.323161347504296,0.23095599088692084,5131.7754396233095,2019
+2001,24,"(20,25]",NoHS,9.543831675592962,41.323161347504296,0.23095599088692084,5148.822324128091,2019
+2001,24,"(20,25]",NoHS,9.543831675592962,41.323161347504296,0.23095599088692084,5157.730828316547,2019
+2001,24,"(20,25]",NoHS,9.543831675592962,41.323161347504296,0.23095599088692084,5102.997612325386,2019
+2001,24,"(20,25]",NoHS,9.711237949502678,41.323161347504296,0.23500713964831219,5111.313633492657,2019
+2001,42,"(40,45]",College,2513.43779648049,172.17983894793457,14.597747400847133,1103.362204131493,2019
+2001,42,"(40,45]",College,2006.8664116296864,172.17983894793457,11.655641124374279,634.7896248976535,2019
+2001,42,"(40,45]",College,2621.0800306044375,172.17983894793457,15.222920677705044,1114.0823654812543,2019
+2001,42,"(40,45]",College,1960.997092578424,172.17983894793457,11.389237581825183,651.8166324433345,2019
+2001,42,"(40,45]",College,1904.9159908186687,172.17983894793457,11.06352522140932,652.3771932659919,2019
+2001,38,"(35,40]",HS,201.75804131599082,137.74387115834767,1.464733346168656,8098.921710786303,2019
+2001,38,"(35,40]",HS,201.42322876817138,137.74387115834767,1.4623026569118212,8399.496815876944,2019
+2001,38,"(35,40]",HS,201.64085692425402,137.74387115834767,1.4638826049287639,8478.003417732576,2019
+2001,38,"(35,40]",HS,201.5906350420811,137.74387115834767,1.4635180015402385,8225.815342715563,2019
+2001,38,"(35,40]",HS,200.97123182861517,137.74387115834767,1.4590212264150944,8414.499163449053,2019
+2001,72,"(70,75]",HS,423.03565416985464,86.08991947396729,4.913881401617251,7062.193743222902,2019
+2001,72,"(70,75]",HS,476.60566182096403,86.08991947396729,5.536137851366962,7887.529779749379,2019
+2001,72,"(70,75]",HS,451.49472073450653,86.08991947396729,5.244455140546785,7810.964708050764,2019
+2001,72,"(70,75]",HS,418.0134659525631,86.08991947396729,4.855544859453215,7464.401295373746,2019
+2001,72,"(70,75]",HS,451.49472073450653,86.08991947396729,5.244455140546785,7683.097997285535,2019
+2001,51,"(50,55]",College,1405.2082631981639,254.82616164294322,5.514379897803078,7210.0394917008525,2019
+2001,51,"(50,55]",College,1404.8734506503445,254.82616164294322,5.513066011718302,6548.529674075434,2019
+2001,51,"(50,55]",College,1405.2082631981639,254.82616164294322,5.514379897803078,6117.607540057926,2019
+2001,51,"(50,55]",College,1405.2082631981639,254.82616164294322,5.514379897803078,6854.978985528762,2019
+2001,51,"(50,55]",College,1405.3756694720735,254.82616164294322,5.5150368408454655,6578.625901201221,2019
+2001,59,"(55,60]",HS,90.56679418515685,58.54114524229776,1.547062221114861,5724.432072263877,2019
+2001,59,"(55,60]",HS,79.51798010711553,55.097548463339066,1.443221746245668,6058.729211565411,2019
+2001,59,"(55,60]",HS,80.18760520275441,55.097548463339066,1.4553751925298424,6103.890501663243,2019
+2001,59,"(55,60]",HS,70.3106350420811,53.37575007385973,1.3172767585427352,5909.086128004595,2019
+2001,59,"(55,60]",HS,78.66420811017598,63.706540410735805,1.234790142472083,5976.986335455067,2019
+2001,62,"(60,65]",HS,3.013312930374904,130.8566776004303,0.023027582433171875,5767.806823699177,2019
+2001,62,"(60,65]",HS,3.013312930374904,75.75912913709122,0.03977491511184233,5905.912674419838,2019
+2001,62,"(60,65]",HS,3.1807192042846215,79.20272591604991,0.04015921380857511,5802.9004105079275,2019
+2001,62,"(60,65]",HS,3.013312930374904,82.64632269500859,0.036460338852522145,5868.586084703791,2019
+2001,62,"(60,65]",HS,3.013312930374904,75.75912913709122,0.03977491511184233,5808.403784118936,2019
+2001,44,"(40,45]",HS,163.38852333588372,130.8566776004303,1.2486066919319863,6000.401770977793,2019
+2001,44,"(40,45]",HS,115.17551644988524,129.1348792109509,0.8919009113079196,6223.094551239601,2019
+2001,44,"(40,45]",HS,147.4849273144606,129.1348792109509,1.1420998588114493,6281.259226690234,2019
+2001,44,"(40,45]",HS,203.0638102524866,130.8566776004303,1.5518031939687493,6094.415863340246,2019
+2001,44,"(40,45]",HS,136.93833205814843,129.1348792109509,1.0604286997817998,6234.209625092039,2019
+2001,22,"(20,25]",HS,7.533282325937261,30.992371010628222,0.24306892568348096,7039.240401509455,2019
+2001,22,"(20,25]",HS,7.700688599846978,30.992371010628222,0.2484704573653361,6974.422457274432,2019
+2001,22,"(20,25]",HS,6.863657230298394,30.992371010628222,0.22146279895606044,6974.165805348105,2019
+2001,22,"(20,25]",HS,7.365876052027544,30.992371010628222,0.23766739400162581,6954.943135615191,2019
+2001,22,"(20,25]",HS,6.863657230298394,30.992371010628222,0.22146279895606044,6944.93440075097,2019
+2001,56,"(55,60]",HS,68.26827850038255,37.87956456854561,1.8022455980677001,6452.021570695826,2019
+2001,56,"(55,60]",HS,67.7158377964805,30.992371010628222,2.1849195653104014,6813.4457600797105,2019
+2001,56,"(55,60]",HS,67.89998469778118,74.03733074761188,0.9171047093694871,6969.971499444553,2019
+2001,56,"(55,60]",HS,69.13879112471308,51.653951684380374,1.3384995507637016,6707.598988459091,2019
+2001,56,"(55,60]",HS,67.46472838561593,37.87956456854561,1.7810323100080514,6750.905794594754,2019
+2001,34,"(30,35]",HS,-8.519305279265495,51.653951684380374,-0.16493036837376462,10191.525378162021,2019
+2001,34,"(30,35]",HS,-8.519305279265495,53.37575007385973,-0.1596100339100948,10246.21222953383,2019
+2001,34,"(30,35]",HS,-8.519305279265495,53.37575007385973,-0.1596100339100948,10274.94557607903,2019
+2001,34,"(30,35]",HS,-8.519305279265495,44.76675812646299,-0.19030427120049767,10263.840069367323,2019
+2001,34,"(30,35]",HS,-8.519305279265495,43.04495973698364,-0.19791644204851758,10265.4857315662,2019
+2001,32,"(30,35]",HS,-1.6908033664881408,61.984742021256444,-0.027277734993368417,4729.763808489957,2019
+2001,32,"(30,35]",HS,-8.822310635042081,84.36812108448795,-0.1045692439470975,4754.013051481465,2019
+2001,32,"(30,35]",HS,1.3225095638867637,82.64632269500859,0.01600203760749583,4767.658610353624,2019
+2001,32,"(30,35]",HS,4.235378729915838,46.488556515942335,0.0911058343672899,4761.166318729487,2019
+2001,32,"(30,35]",HS,-7.951798010711554,53.37575007385973,-0.14897772864471412,4731.169021034983,2019
+2001,62,"(60,65]",College,14626.286151491966,2720.4414553773663,5.376438490371071,209.41371697501842,2019
+2001,62,"(60,65]",College,17385.1415455241,2737.6594392721604,6.3503667754036455,196.4381247756557,2019
+2001,62,"(60,65]",College,14040.364192807958,2737.6594392721604,5.128601458383281,209.75370225208076,2019
+2001,62,"(60,65]",College,15461.643458301452,2720.4414553773663,5.6835053104117215,206.44987499851882,2019
+2001,62,"(60,65]",College,14961.0986993114,2737.6594392721604,5.4649232423478455,199.0858788589583,2019
+2001,71,"(70,75]",HS,3059.4835807192044,108.47329853719879,28.204946488928005,1886.157879972973,2019
+2001,71,"(70,75]",HS,3060.43779648049,108.47329853719879,28.2137432690956,1835.3338439357808,2019
+2001,71,"(70,75]",HS,3058.8976587605202,108.47329853719879,28.19954495724615,1981.433712671421,2019
+2001,71,"(70,75]",HS,3060.236908951798,108.47329853719879,28.211891315376104,1881.0795484383568,2019
+2001,71,"(70,75]",HS,3060.370833970926,108.47329853719879,28.213125951189102,1879.0614474235117,2019
+2001,52,"(50,55]",College,1799.6174445294569,323.69809722211704,5.559555215100893,2600.889594913487,2019
+2001,52,"(50,55]",College,1799.6174445294569,321.97629883263767,5.589285456892878,2644.8037608213954,2019
+2001,52,"(50,55]",College,1799.6174445294569,321.97629883263767,5.589285456892878,3318.430747054082,2019
+2001,52,"(50,55]",College,1799.6174445294569,321.97629883263767,5.589285456892878,2734.128005153473,2019
+2001,52,"(50,55]",College,1797.9433817903596,321.97629883263767,5.584086121584139,2797.264908600463,2019
+2001,71,"(70,75]",HS,17830.944452945678,926.3275335398881,19.24907098983242,154.22308491104334,2019
+2001,71,"(70,75]",HS,18420.21453710788,926.3275335398881,19.885206765598852,144.64233727491833,2019
+2001,71,"(70,75]",HS,17889.53664881408,926.3275335398881,19.312323126627376,154.5729760293955,2019
+2001,71,"(70,75]",HS,18092.098240244835,926.3275335398881,19.530994799547088,152.02422930013876,2019
+2001,71,"(70,75]",HS,18028.483856159142,926.3275335398881,19.462321051026848,146.72053401841268,2019
+2001,56,"(55,60]",College,10291.635501147668,184.23242767429,55.862236800909756,3687.287979209405,2019
+2001,56,"(55,60]",College,10502.90221882173,320.25450044315835,32.79548672786217,3633.9889219487354,2019
+2001,56,"(55,60]",College,9298.246671767407,380.51744407493544,24.435796089117794,3732.726985571312,2019
+2001,56,"(55,60]",College,10219.315990818668,442.5021860961919,23.094385320386134,3619.162569798528,2019
+2001,56,"(55,60]",College,9159.13205814843,301.3147181588855,30.39722757027339,3597.716146931495,2019
+2001,30,"(25,30]",College,793.4052945677124,125.69128243199225,6.312333514434464,7006.761914666409,2019
+2001,30,"(25,30]",College,816.1892884468248,125.69128243199225,6.493602998190746,6357.539630531729,2019
+2001,30,"(25,30]",College,761.9329150726855,125.69128243199225,6.061939223867371,5941.885754930312,2019
+2001,30,"(25,30]",College,862.209273144606,125.69128243199225,6.859738053918905,6625.4001313847275,2019
+2001,30,"(25,30]",College,900.0430910482021,125.69128243199225,7.160743956409134,6402.092531857755,2019
+2001,56,"(55,60]",NoHS,2845.7225095638864,158.40545183209983,17.964801568699666,1743.6073201750557,2019
+2001,56,"(55,60]",NoHS,2612.575791889824,151.51825827418244,17.24264667273427,1683.9475103706488,2019
+2001,56,"(55,60]",NoHS,2501.250619739862,160.12725022157917,15.62039325772914,1823.160761279146,2019
+2001,56,"(55,60]",NoHS,2611.7555011476666,146.35286310574438,17.84560578948561,1726.4399569128577,2019
+2001,56,"(55,60]",NoHS,2275.620443764346,170.45804055845522,13.350032866205375,1728.0090429010131,2019
+2001,69,"(65,70]",NoHS,0.08370313695485845,11.363869370563684,0.007365725020711543,6462.004130725722,2019
+2001,69,"(65,70]",NoHS,0.08370313695485845,10.50297017582401,0.007969472973228883,6440.5806354517645,2019
+2001,69,"(65,70]",NoHS,0.08370313695485845,17.21798389479346,0.0048613785136696185,6455.045828561154,2019
+2001,69,"(65,70]",NoHS,0.08370313695485845,13.257847598990962,0.0063134785891813235,6472.124524727615,2019
+2001,69,"(65,70]",NoHS,0.08370313695485845,22.383379063231494,0.0037395219335920145,6424.339274874639,2019
+2001,51,"(50,55]",HS,1934.7143075745985,430.4495973698365,4.4946361185983825,2756.7448674605866,2019
+2001,51,"(50,55]",HS,1934.7143075745985,430.4495973698365,4.4946361185983825,2803.2905384926044,2019
+2001,51,"(50,55]",HS,1933.0402448355012,430.4495973698365,4.490747015787447,3517.2838354444016,2019
+2001,51,"(50,55]",HS,1934.881713848508,430.4495973698365,4.495025028879476,2897.9674338840214,2019
+2001,51,"(50,55]",HS,1933.0402448355012,430.4495973698365,4.490747015787447,2964.8877425604214,2019
+2001,48,"(45,50]",College,989.0362662586075,168.7362421689759,5.86143352219594,7491.730974513755,2019
+2001,48,"(45,50]",College,988.8688599846978,168.7362421689759,5.860441404131926,6807.292942619541,2019
+2001,48,"(45,50]",College,990.542922723795,168.7362421689759,5.870362584772067,6354.797322567982,2019
+2001,48,"(45,50]",College,989.0362662586075,170.45804055845522,5.80222712298184,7124.6641808058175,2019
+2001,48,"(45,50]",College,989.0362662586075,168.7362421689759,5.86143352219594,6833.658436726668,2019
+2001,28,"(25,30]",College,37.83381790359602,86.08991947396729,0.4394686176357336,8309.974335318955,2019
+2001,28,"(25,30]",College,35.992348890589135,86.08991947396729,0.4180785521755872,8408.222432519136,2019
+2001,28,"(25,30]",College,39.173068094873756,86.08991947396729,0.4550250288794763,8501.087270102682,2019
+2001,28,"(25,30]",College,37.16419280795715,86.08991947396729,0.4316904120138621,8360.903903001765,2019
+2001,28,"(25,30]",College,38.67084927314461,86.08991947396729,0.44919137466307285,8423.999409925724,2019
+2001,43,"(40,45]",College,84.37276205049731,77.48092752657055,1.0889487870619947,9835.946007741752,2019
+2001,43,"(40,45]",College,86.76667176740627,77.48092752657055,1.119845548282206,10085.062013432278,2019
+2001,43,"(40,45]",College,162.0994950267789,77.48092752657055,2.0921212510161302,10181.103007174494,2019
+2001,43,"(40,45]",College,163.47222647283854,77.48092752657055,2.1098382749326143,10047.286636402081,2019
+2001,43,"(40,45]",College,85.31023718439174,77.48092752657055,1.1010482180293502,10038.826299197875,2019
+2001,45,"(40,45]",HS,-16.857811782708495,65.42833880021514,-0.25765306122448983,7337.273447031436,2019
+2001,45,"(40,45]",HS,-16.841071155317522,65.42833880021514,-0.2573971991974546,7385.669125061131,2019
+2001,45,"(40,45]",HS,-16.857811782708495,65.42833880021514,-0.25765306122448983,7383.201206941549,2019
+2001,45,"(40,45]",HS,-16.841071155317522,65.42833880021514,-0.2573971991974546,7340.803816969097,2019
+2001,45,"(40,45]",HS,-16.857811782708495,65.42833880021514,-0.25765306122448983,7345.083965386974,2019
+2001,29,"(25,30]",College,960.6106809487376,87.81171786344665,10.939436151819217,6326.1322400515655,2019
+2001,29,"(25,30]",College,925.421882172915,177.34523411637264,5.218194257003039,5726.320670278974,2019
+2001,29,"(25,30]",College,936.0521805661822,82.64632269500859,11.325999149659866,5366.750976924819,2019
+2001,29,"(25,30]",College,966.4029380260138,70.59373396865318,13.689641894493645,6038.127636932892,2019
+2001,29,"(25,30]",College,948.1221729150726,74.03733074761188,12.806001558148488,5752.921219002786,2019
+2001,75,"(70,75]",College,31996.19372609028,1343.0027437938897,23.824369588183604,243.00953715394547,2019
+2001,75,"(70,75]",College,38580.449885233356,1339.5591470149309,28.800855842167106,233.72853117648705,2019
+2001,75,"(70,75]",College,21968.55791889824,1303.4013808358648,16.854791042809786,245.5275906668638,2019
+2001,75,"(70,75]",College,22852.797857689366,2014.5041156908349,11.34413063725732,239.58875832244925,2019
+2001,75,"(70,75]",College,47432.22402448355,1382.604106751915,34.30643941591768,243.66319312651004,2019
+2001,50,"(45,50]",College,1187.931660290742,175.6234357268933,6.764083935460975,8586.624298947834,2019
+2001,50,"(45,50]",College,1301.9855547054324,228.99918580075305,5.6855466544682836,7802.157764340543,2019
+2001,50,"(45,50]",College,1537.5931446059678,239.32997613762907,6.4245740104104625,4843.113590521911,2019
+2001,50,"(45,50]",College,989.6891507268554,390.8482344118115,2.532157148454927,8165.91182796992,2019
+2001,50,"(45,50]",College,1310.6069778117826,325.41989561159636,4.027433465150061,7832.376493913745,2019
+2001,48,"(45,50]",College,194333.57306809488,27720.954070617467,7.010349375892394,18.01293583972238,2019
+2001,48,"(45,50]",College,186933.04391736802,27720.954070617467,6.743384208247931,19.60781902692309,2019
+2001,48,"(45,50]",College,192463.97980107117,27720.954070617467,6.942906052612068,19.13956903634376,2019
+2001,48,"(45,50]",College,194498.97046671767,27720.954070617467,7.016315887658239,18.800585208567487,2019
+2001,48,"(45,50]",College,193472.2677888294,27720.954070617467,6.97927882626155,19.8680209352054,2019
+2001,41,"(40,45]",College,1912.7840856924256,110.19509692667813,17.358159655371583,2729.9146224300675,2019
+2001,41,"(40,45]",College,1909.1011476664116,161.84904861105852,11.795566078699643,2780.217841902728,2019
+2001,41,"(40,45]",College,1906.590053557766,110.19509692667813,17.301949966307276,3490.6228478106955,2019
+2001,41,"(40,45]",College,1924.3351185921958,259.9915568113812,7.401529273461228,2870.3520314218977,2019
+2001,41,"(40,45]",College,1910.607804131599,266.8787503692986,7.159085545356305,2941.9938630516385,2019
+2001,22,"(20,25]",HS,16.790849273144605,15.496185505314111,1.0835472553801395,7208.215758045566,2019
+2001,22,"(20,25]",HS,16.790849273144605,15.496185505314111,1.0835472553801395,7207.327519009555,2019
+2001,22,"(20,25]",HS,16.790849273144605,15.496185505314111,1.0835472553801395,7224.317858655444,2019
+2001,22,"(20,25]",HS,16.790849273144605,15.496185505314111,1.0835472553801395,7194.094275172456,2019
+2001,22,"(20,25]",HS,16.790849273144605,15.496185505314111,1.0835472553801395,7195.152293573524,2019
+2001,35,"(30,35]",College,32.00807957153788,92.97711303188467,0.3442576191902338,4068.2555536978557,2019
+2001,35,"(30,35]",College,32.05830145371079,92.97711303188467,0.3447977723584193,4074.810687868246,2019
+2001,35,"(30,35]",College,31.79045141545524,91.25531464240532,0.3483682187720229,4095.9565332990765,2019
+2001,35,"(30,35]",College,31.97459831675593,91.25531464240532,0.35038614947581026,4048.1633804176936,2019
+2001,35,"(30,35]",College,31.823932670237184,92.97711303188467,0.34227705757355353,4107.986180135695,2019
+2001,42,"(40,45]",HS,508.0445600612089,228.99918580075305,2.2185430847044447,5154.170748086506,2019
+2001,42,"(40,45]",HS,526.6601377199694,228.99918580075305,2.2998341058653557,4688.384083508176,2019
+2001,42,"(40,45]",HS,515.4439173680183,223.83379063231493,2.302797606705963,4382.740848387645,2019
+2001,42,"(40,45]",HS,521.4705432287682,68.87193557917384,7.571597035040431,4901.358382380831,2019
+2001,42,"(40,45]",HS,545.7444529456772,117.08229048459552,4.661204104283223,4712.348126735526,2019
+2001,58,"(55,60]",NoHS,8356.720306044377,516.5395168438037,16.1782787832114,1994.206237567935,2019
+2001,58,"(55,60]",NoHS,11126.373404743688,516.5395168438037,21.540217237838537,2014.972384763728,2019
+2001,58,"(55,60]",NoHS,9897.561132364193,516.5395168438037,19.16128545757926,2013.3133039505242,2019
+2001,58,"(55,60]",NoHS,8259.825554705432,516.5395168438037,15.990694390963935,2014.9280804542475,2019
+2001,58,"(55,60]",NoHS,11283.048936495792,516.5395168438037,21.843534847901427,1996.4840393660859,2019
+2001,61,"(60,65]",College,55182.15685386382,3839.610408538941,14.371811455439271,12.741347796184815,2019
+2001,61,"(60,65]",College,59343.70941698546,3736.302505170181,15.883004476984251,13.446065715628222,2019
+2001,61,"(60,65]",College,62300.27162050498,3495.2507306430716,17.824263957465135,13.629371123236291,2019
+2001,61,"(60,65]",College,59289.82133741392,3323.070891695137,17.841876766935144,13.433686857337898,2019
+2001,61,"(60,65]",College,59811.44254628922,3271.416940010757,18.28303870863142,13.82447659277727,2019
+2001,47,"(45,50]",HS,960.2926090283091,89.53351625292598,10.725509833831937,5556.830680307614,2019
+2001,47,"(45,50]",HS,796.6529762815609,101.5861049792814,7.842145108763045,5049.163457961046,2019
+2001,47,"(45,50]",HS,935.9517368018363,127.41308082147161,7.3458057113717485,4713.534542192282,2019
+2001,47,"(45,50]",HS,975.8781331293037,91.25531464240532,10.693932040598368,5284.566763205223,2019
+2001,47,"(45,50]",HS,989.3041162968631,94.69891142136402,10.446837259775267,5068.719497420332,2019
+2001,71,"(70,75]",College,6011.023596021423,196.28501640064542,30.623955441163556,3687.287979209405,2019
+2001,71,"(70,75]",College,6311.43415455241,227.27738741127362,27.769740872335216,3633.9889219487354,2019
+2001,71,"(70,75]",College,6445.911614384086,216.94659707439757,29.711973828165586,3732.726985571312,2019
+2001,71,"(70,75]",College,5998.2672379495025,198.00681479012476,30.2932363429375,3619.162569798528,2019
+2001,71,"(70,75]",College,6030.744055087987,206.6158067375215,29.188202733923756,3597.716146931495,2019
+2001,49,"(45,50]",College,3648.703442999235,499.3215329490102,7.3073224410128415,1390.082972487838,2019
+2001,49,"(45,50]",College,3729.0584544758995,499.3215329490102,7.468250833189491,1395.3466383714385,2019
+2001,49,"(45,50]",College,7700.102677888294,499.3215329490102,15.421130814069288,1436.2586381667875,2019
+2001,49,"(45,50]",College,3620.2443764345835,499.3215329490102,7.250326968783612,1378.3163063932657,2019
+2001,49,"(45,50]",College,3685.532823259373,499.3215329490102,7.381081287427139,1365.9612394181736,2019
+2001,41,"(40,45]",College,24914.372639632747,1432.5362600468156,17.391791980761827,541.2480715375518,2019
+2001,41,"(40,45]",College,12380.63143075746,1682.197026521321,7.359798665415451,535.5138346828326,2019
+2001,41,"(40,45]",College,42899.66567712318,2617.1335520086054,16.391851934418256,538.2045194209416,2019
+2001,41,"(40,45]",College,8323.741270084163,2152.2479868491823,3.867463842895649,538.3772948506355,2019
+2001,41,"(40,45]",College,20068.346044376434,2031.722099585628,9.87750541694132,543.1130817382898,2019
+2001,74,"(70,75]",NoHS,6.194032134659525,16.701444377949656,0.37086805155830077,5367.092569270226,2019
+2001,74,"(70,75]",NoHS,4.787819433817904,17.21798389479346,0.2780708509819022,5437.916989442186,2019
+2001,74,"(70,75]",NoHS,5.8592195868400925,29.27057262114888,0.20017440938639608,5306.792918197609,2019
+2001,74,"(70,75]",NoHS,5.875960214231063,12.224768565303355,0.48066024177409467,5320.729593959285,2019
+2001,74,"(70,75]",NoHS,4.65389441469013,24.105177452710844,0.19306617525716485,5360.46984346129,2019
+2001,30,"(25,30]",HS,-50.25536342769702,55.097548463339066,-0.9121161436272622,5831.205194275129,2019
+2001,30,"(25,30]",HS,-52.23075745983168,46.488556515942335,-1.1235185898258675,5840.976498283121,2019
+2001,30,"(25,30]",HS,-51.15935730680948,48.21035490542169,-1.0611694812695966,5861.409437482035,2019
+2001,30,"(25,30]",HS,-51.310022953328236,51.653951684380374,-0.9933416762931588,5891.4588538375265,2019
+2001,30,"(25,30]",HS,-37.482264728385616,55.097548463339066,-0.6802891557566423,5845.674920462143,2019
+2001,24,"(20,25]",HS,-3.348125478194338,37.87956456854561,-0.08838870024853851,9256.166297160791,2019
+2001,24,"(20,25]",HS,-3.1807192042846215,37.87956456854561,-0.08396926523611159,9239.0361921689655,2019
+2001,24,"(20,25]",HS,-3.348125478194338,37.87956456854561,-0.08838870024853851,9260.830710333878,2019
+2001,24,"(20,25]",HS,-3.1807192042846215,37.87956456854561,-0.08396926523611159,9190.650719765279,2019
+2001,24,"(20,25]",HS,-3.348125478194338,37.87956456854561,-0.08838870024853851,9201.477848920858,2019
+2001,24,"(20,25]",College,40.5123182861515,68.87193557917384,0.588226800154024,5518.320403887657,2019
+2001,24,"(20,25]",College,44.697475133894415,68.87193557917384,0.6489940315748941,5536.651324967938,2019
+2001,24,"(20,25]",College,39.34047436878347,68.87193557917384,0.5712119753561801,5546.230851782712,2019
+2001,24,"(20,25]",College,38.33603672532518,68.87193557917384,0.5566278398151714,5487.374920511376,2019
+2001,24,"(20,25]",College,34.48569242540169,68.87193557917384,0.5007219869079708,5496.317336216508,2019
+2001,37,"(35,40]",HS,235.37322111706197,241.0517745271084,0.9764425986027835,7843.681957630375,2019
+2001,37,"(35,40]",HS,235.03840856924253,241.0517745271084,0.9750536333131636,8134.784355320233,2019
+2001,37,"(35,40]",HS,237.04728385615914,241.0517745271084,0.983387425050883,8210.81679994922,2019
+2001,37,"(35,40]",HS,237.04728385615914,241.0517745271084,0.983387425050883,7966.576501724577,2019
+2001,37,"(35,40]",HS,236.7124713083397,241.0517745271084,0.981998459761263,8149.3138997677,2019
+2001,41,"(40,45]",NoHS,795.8494261667942,44.76675812646299,17.777687272296436,636.0665369780653,2019
+2001,41,"(40,45]",NoHS,796.0168324407039,43.04495973698364,18.49268386599923,630.2831693488441,2019
+2001,41,"(40,45]",NoHS,795.8494261667942,44.76675812646299,17.777687272296436,606.859478356989,2019
+2001,41,"(40,45]",NoHS,796.0168324407039,43.04495973698364,18.49268386599923,629.8348271711357,2019
+2001,41,"(40,45]",NoHS,795.8494261667942,44.76675812646299,17.777687272296436,664.404730412056,2019
+2001,58,"(55,60]",HS,662.2257383320582,60.2629436317771,10.988937785356732,10051.580217947665,2019
+2001,58,"(55,60]",HS,684.8590665646519,56.819346852818406,12.053272423892372,9972.791282373746,2019
+2001,58,"(55,60]",HS,698.4524560061209,61.984742021256444,11.268135241517992,9571.066040705447,2019
+2001,58,"(55,60]",HS,670.7969395562357,56.819346852818406,11.805784063196464,9941.39006240817,2019
+2001,58,"(55,60]",HS,660.7525631216527,58.54114524229776,11.286977054972933,10483.668510291813,2019
+2001,72,"(70,75]",College,87131.61744452946,12190.332597513769,7.1475996858609125,13.09645278129155,2019
+2001,72,"(70,75]",College,86610.98393267023,11105.59961214178,7.798857059278297,14.258243659434806,2019
+2001,72,"(70,75]",College,85847.61132364193,11811.536951828313,7.268115205816085,13.928130064776862,2019
+2001,72,"(70,75]",College,90501.50573833207,10761.239934245912,8.409951482479785,13.670522615213553,2019
+2001,72,"(70,75]",College,87007.73680183628,10623.496063087565,8.190122751036135,14.453762593205095,2019
+2001,41,"(40,45]",HS,527.0786534047437,120.5258872635542,4.373157214368227,154.68012756743636,2019
+2001,41,"(40,45]",HS,527.2460596786534,120.5258872635542,4.374546179657847,163.6420008626108,2019
+2001,41,"(40,45]",HS,527.0786534047437,120.5258872635542,4.373157214368227,161.3247152671208,2019
+2001,41,"(40,45]",HS,527.2460596786534,120.5258872635542,4.374546179657847,158.93700768670655,2019
+2001,41,"(40,45]",HS,527.4134659525631,120.5258872635542,4.3759351449474675,156.6101631786682,2019
+2001,53,"(50,55]",NoHS,66.62769701606733,82.64632269500859,0.8061786035168785,888.1651436413383,2019
+2001,53,"(50,55]",NoHS,66.62769701606733,82.64632269500859,0.8061786035168785,901.1653881362957,2019
+2001,53,"(50,55]",NoHS,66.62769701606733,82.64632269500859,0.8061786035168785,909.8913227695095,2019
+2001,53,"(50,55]",NoHS,66.62769701606733,82.64632269500859,0.8061786035168785,894.3453970121418,2019
+2001,53,"(50,55]",NoHS,66.62769701606733,82.64632269500859,0.8061786035168785,892.0768609313766,2019
+2001,59,"(55,60]",College,33517.58194338179,1893.9782284272803,17.696920397661636,229.0726364972449,2019
+2001,59,"(55,60]",College,32935.510328997705,1876.760244532487,17.549130436318546,228.64693387927187,2019
+2001,59,"(55,60]",College,33044.99403213466,1911.1962123220737,17.290215321212624,230.0081691772312,2019
+2001,59,"(55,60]",College,33670.256465187456,1911.1962123220737,17.617372956321745,239.18084844703466,2019
+2001,59,"(55,60]",College,33404.58270849273,1928.4141962168671,17.32230698883327,240.85465666822728,2019
+2001,54,"(50,55]",College,1420.1911247130836,203.1722099585628,6.990085528934952,6896.559581478139,2019
+2001,54,"(50,55]",College,1420.1911247130836,204.89400834804215,6.931345314406086,6260.1213395504765,2019
+2001,54,"(50,55]",College,1418.5170619739863,204.89400834804215,6.923174930349498,5847.61193144238,2019
+2001,54,"(50,55]",College,1418.5170619739863,203.1722099585628,6.981845904335511,6555.489228693831,2019
+2001,54,"(50,55]",College,1418.5170619739863,204.89400834804215,6.923174930349498,6292.190523438596,2019
+2001,28,"(25,30]",HS,0.1674062739097169,14.463106471626503,0.011574710746832428,5720.755703788113,2019
+2001,28,"(25,30]",HS,0.1674062739097169,14.463106471626503,0.011574710746832428,5704.538900203976,2019
+2001,28,"(25,30]",HS,0.1674062739097169,14.463106471626503,0.011574710746832428,5712.142895601813,2019
+2001,28,"(25,30]",HS,0.1674062739097169,14.463106471626503,0.011574710746832428,5744.442107457935,2019
+2001,28,"(25,30]",HS,0.1674062739097169,14.463106471626503,0.011574710746832428,5696.639721985333,2019
+2001,36,"(35,40]",HS,407.8016832440704,258.2697584219018,1.5789757412398924,562.9816205517737,2019
+2001,36,"(35,40]",HS,859.7986228003061,258.2697584219018,3.3290720061609558,554.7862444912597,2019
+2001,36,"(35,40]",HS,662.2592195868401,258.2697584219018,2.5642151200102687,536.3474062883513,2019
+2001,36,"(35,40]",HS,771.0732976281561,258.2697584219018,2.985534591194969,559.7929231225035,2019
+2001,36,"(35,40]",HS,555.1192042846213,258.2697584219018,2.149377486843795,599.4081851271933,2019
+2001,50,"(45,50]",HS,16.489517980107117,25.826975842190187,0.6384610447952767,5232.969863481159,2019
+2001,50,"(45,50]",HS,21.05970925784239,39.60136295802496,0.5317925365388156,5309.94879568049,2019
+2001,50,"(45,50]",HS,8.80557000765111,37.87956456854561,0.2324622816536563,5295.915095693186,2019
+2001,50,"(45,50]",HS,13.794276970160674,41.323161347504296,0.3338146579386472,5225.223146567823,2019
+2001,50,"(45,50]",HS,6.679510328997705,34.43596778958692,0.19396900269541778,5303.848156525915,2019
+2001,68,"(65,70]",HS,933.1225707727621,77.48092752657055,12.043255037864203,8795.228697897253,2019
+2001,68,"(65,70]",HS,952.3742922723795,77.48092752657055,12.29172549522954,7912.345967027211,2019
+2001,68,"(65,70]",HS,927.7655700076511,75.75912913709122,12.246254419435012,7469.124094951202,2019
+2001,68,"(65,70]",HS,947.1846977811783,77.48092752657055,12.224746502374536,8348.475008009726,2019
+2001,68,"(65,70]",HS,934.4618209640398,75.75912913709122,12.33464311968355,7968.944336441401,2019
+2001,33,"(30,35]",HS,19.923020657995412,68.87193557917384,0.28927632845591067,6973.760351812013,2019
+2001,33,"(30,35]",HS,18.24895791889824,68.87193557917384,0.2649694358875625,7087.98350263352,2019
+2001,33,"(30,35]",HS,20.090426931905128,68.87193557917384,0.2917070177127455,7131.5135722463865,2019
+2001,33,"(30,35]",HS,20.090426931905128,68.87193557917384,0.2917070177127455,6970.876352953301,2019
+2001,33,"(30,35]",HS,19.923020657995412,68.87193557917384,0.28927632845591067,7068.054814654008,2019
+2001,38,"(35,40]",HS,99.64021423106351,117.08229048459552,0.8510272033341639,7755.6981124883505,2019
+2001,38,"(35,40]",HS,99.64021423106351,117.08229048459552,0.8510272033341639,8034.377677055751,2019
+2001,38,"(35,40]",HS,99.64021423106351,117.08229048459552,0.8510272033341639,8134.103496543066,2019
+2001,38,"(35,40]",HS,99.64021423106351,117.08229048459552,0.8510272033341639,7929.163333355648,2019
+2001,38,"(35,40]",HS,99.64021423106351,117.08229048459552,0.8510272033341639,8072.156610487749,2019
+2001,26,"(25,30]",HS,-4.570191277735272,53.37575007385973,-0.08562298930527779,5499.947903114578,2019
+2001,26,"(25,30]",HS,-4.670635042081101,53.37575007385973,-0.08750481324605311,5459.107958149843,2019
+2001,26,"(25,30]",HS,-2.996572302983933,53.37575007385973,-0.05614108089979753,5465.120138175226,2019
+2001,26,"(25,30]",HS,-4.5534506503443,53.37575007385973,-0.08530935198181523,5501.011332152847,2019
+2001,26,"(25,30]",HS,-3.1639785768936495,53.37575007385973,-0.059277454134423084,5449.605311953945,2019
+2001,43,"(40,45]",College,766.8044376434583,123.96948404251289,6.185428967184358,6173.525886316353,2019
+2001,43,"(40,45]",College,768.4785003825555,123.96948404251289,6.198932796388997,5615.619256555818,2019
+2001,43,"(40,45]",College,768.4785003825555,123.96948404251289,6.198932796388997,5249.528081812612,2019
+2001,43,"(40,45]",College,768.4785003825555,123.96948404251289,6.198932796388997,5870.714093625103,2019
+2001,43,"(40,45]",College,768.4785003825555,123.96948404251289,6.198932796388997,5644.322737374684,2019
+2001,40,"(35,40]",College,355.75507268553946,141.18746793730637,2.519735482780319,1121.8860339548692,2019
+2001,40,"(35,40]",College,479.1334965570008,167.01444377949653,2.868814730716251,1113.5753115413188,2019
+2001,40,"(35,40]",College,493.6141392501913,154.9618550531411,3.185391263423609,1070.4657039159174,2019
+2001,40,"(35,40]",College,449.06732976281563,167.01444377949653,2.6887933737976812,1112.977659258073,2019
+2001,40,"(35,40]",College,348.4394185156848,134.30027437938898,2.5944803175261395,1173.935430970898,2019
+2001,73,"(70,75]",College,4180.636878347361,189.39782284272803,22.073310113067528,1499.7071204803296,2019
+2001,73,"(70,75]",College,2269.1920428462126,278.93133909565404,8.1353068830607,3356.4172768225535,2019
+2001,73,"(70,75]",College,1915.6299923488905,180.7888308953313,10.595953206080276,4146.8628792726,2019
+2001,73,"(70,75]",College,2612.7264575363424,179.06703250585196,14.590773192440981,3404.630649804794,2019
+2001,73,"(70,75]",College,2115.847895944912,318.532702053679,6.6424824901913855,3517.806144251857,2019
+2001,47,"(45,50]",College,6423.384756541698,235.88637935867035,27.23084212834011,3116.039933289272,2019
+2001,47,"(45,50]",College,6384.4869043611325,464.8855651594233,13.733459119496857,3116.284872446261,2019
+2001,47,"(45,50]",College,5958.421196633512,566.4716701387047,10.51848046553599,3136.934179259644,2019
+2001,47,"(45,50]",College,6846.115061667942,452.83297643306787,15.118411021198783,3109.8725369391427,2019
+2001,47,"(45,50]",College,6217.921009946443,117.08229048459552,53.10727168225781,3096.5706211637676,2019
+2001,65,"(60,65]",College,2823.9764345830145,1534.122365026097,1.8407765240649339,163.85811729325172,2019
+2001,65,"(60,65]",College,2641.671002295333,1716.6329943109079,1.5388676618998312,160.98654832358233,2019
+2001,65,"(60,65]",College,3991.6351951032902,1435.9798568257745,2.7797292393270596,287.22942258935757,2019
+2001,65,"(60,65]",College,1956.6445294567714,1825.1062928481062,1.0720715484485004,165.98593198134114,2019
+2001,65,"(60,65]",College,4109.154399387911,1842.3242767429003,2.230418635449242,285.3353666721919,2019
+2001,77,"(75,80]",College,4450.160979342005,163.57084700053784,27.20632105871147,3687.287979209405,2019
+2001,77,"(75,80]",College,4450.495791889824,142.9092663267857,31.14210790021851,3633.9889219487354,2019
+2001,77,"(75,80]",College,4450.998010711553,136.02207276886833,32.722615676315904,3732.726985571312,2019
+2001,77,"(75,80]",College,4450.160979342005,156.68365344262045,28.402203303050438,3619.162569798528,2019
+2001,77,"(75,80]",College,4450.998010711553,134.30027437938898,33.14213639011483,3597.716146931495,2019
+2001,31,"(30,35]",NoHS,-2.17628156082632,41.323161347504296,-0.052664933898087546,3868.202549568131,2019
+2001,31,"(30,35]",NoHS,-2.17628156082632,41.323161347504296,-0.052664933898087546,3879.3443362205994,2019
+2001,31,"(30,35]",NoHS,-2.17628156082632,41.323161347504296,-0.052664933898087546,3883.9845887827178,2019
+2001,31,"(30,35]",NoHS,-2.17628156082632,41.323161347504296,-0.052664933898087546,3872.620614556849,2019
+2001,31,"(30,35]",NoHS,-2.17628156082632,41.323161347504296,-0.052664933898087546,3878.972984595116,2019
+2001,23,"(20,25]",HS,2.4608722264728384,46.488556515942335,0.05293501048218029,6714.118978065952,2019
+2001,23,"(20,25]",HS,2.4608722264728384,41.323161347504296,0.05955188679245283,6713.291624561435,2019
+2001,23,"(20,25]",HS,2.4608722264728384,41.323161347504296,0.05955188679245283,6729.117338675627,2019
+2001,23,"(20,25]",HS,2.4608722264728384,37.87956456854561,0.06496569468267581,6700.965471103987,2019
+2001,23,"(20,25]",HS,2.4608722264728384,36.157766179066265,0.06805929919137466,6701.950966220141,2019
+2001,23,"(20,25]",NoHS,0.08370313695485845,20.661580673752148,0.004051148761391349,7542.581883949375,2019
+2001,23,"(20,25]",NoHS,0.08370313695485845,20.661580673752148,0.004051148761391349,7492.971753730993,2019
+2001,23,"(20,25]",NoHS,0.10044376434583015,20.661580673752148,0.004861378513669619,7365.884793703552,2019
+2001,23,"(20,25]",NoHS,2.5110941086457537,20.661580673752148,0.12153446284174048,7425.032234388517,2019
+2001,23,"(20,25]",NoHS,1.1718439173680184,20.661580673752148,0.05671608265947889,7456.150252166607,2019
+2001,64,"(60,65]",College,367.2893649579189,99.86430658980206,3.677884296203843,6352.532923432233,2019
+2001,64,"(60,65]",College,266.84560061208873,98.14250820032271,2.7189604739611832,6639.543982092943,2019
+2001,64,"(60,65]",College,313.7193573068095,98.14250820032271,3.1965695910936374,6677.235501615536,2019
+2001,64,"(60,65]",College,308.8645753634277,98.14250820032271,3.1471029325334903,6515.45730634472,2019
+2001,64,"(60,65]",College,384.19739862280034,98.14250820032271,3.9146890136392196,6570.134274551277,2019
+2001,36,"(35,40]",College,326.9444529456771,103.30790336876075,3.1647574123989215,5564.729499805517,2019
+2001,36,"(35,40]",College,333.6407039020658,103.30790336876075,3.2295757925811834,5771.253184554487,2019
+2001,36,"(35,40]",College,328.6185156847743,103.30790336876075,3.1809620074444873,5825.194686753932,2019
+2001,36,"(35,40]",College,321.9222647283856,103.30790336876075,3.1161436272622254,5651.917493732382,2019
+2001,36,"(35,40]",College,325.2703902065799,103.30790336876075,3.148552817353356,5781.561224202489,2019
+2001,44,"(40,45]",HS,269.0218821729151,146.35286310574438,1.8381730050510776,5597.219270971483,2019
+2001,44,"(40,45]",HS,269.0218821729151,146.35286310574438,1.8381730050510776,5818.317932955006,2019
+2001,44,"(40,45]",HS,267.5152257077276,146.35286310574438,1.8278783211397769,5886.8514894825985,2019
+2001,44,"(40,45]",HS,267.34781943381796,146.35286310574438,1.826734467371855,5701.487319752512,2019
+2001,44,"(40,45]",HS,267.34781943381796,146.35286310574438,1.826734467371855,5812.911048259429,2019
+2001,54,"(50,55]",HS,10.044376434583015,82.64632269500859,0.12153446284174048,4842.474605820324,2019
+2001,54,"(50,55]",HS,6.863657230298394,63.706540410735805,0.10773865895159694,4936.058560794128,2019
+2001,54,"(50,55]",HS,14.229533282325939,65.42833880021514,0.21748272297995663,4943.128607349286,2019
+2001,54,"(50,55]",HS,22.599846977811783,89.53351625292598,0.25241773051746097,4876.028101975293,2019
+2001,54,"(50,55]",HS,25.947972456006124,68.87193557917384,0.3767568348093955,4893.864582089152,2019
+2001,23,"(20,25]",College,20.642867635807193,68.87193557917384,0.29972829226030034,7020.421158994625,2019
+2001,23,"(20,25]",College,22.333671002295333,68.87193557917384,0.3242782537543319,7019.556061121313,2019
+2001,23,"(20,25]",College,20.659608263198162,68.87193557917384,0.2999713611859838,7036.103753914135,2019
+2001,23,"(20,25]",College,22.333671002295333,68.87193557917384,0.3242782537543319,7006.6675810654215,2019
+2001,23,"(20,25]",College,22.333671002295333,68.87193557917384,0.3242782537543319,7007.6980350666345,2019
+2001,35,"(30,35]",College,346.6816526396328,84.36812108448795,4.109154597534046,5756.346414274334,2019
+2001,35,"(30,35]",College,374.58827850038256,139.46566954782702,2.6858816202931206,5983.7308400927695,2019
+2001,35,"(30,35]",College,515.5945830145371,53.37575007385973,9.659715925323262,5454.676775465617,2019
+2001,35,"(30,35]",College,401.6746136189748,96.42070981084338,4.165854144892458,5863.578770140194,2019
+2001,35,"(30,35]",College,286.2982096403979,168.7362421689759,1.6967203130770983,5978.170239404636,2019
+2001,25,"(20,25]",College,3.8001224177505737,49.93215329490103,0.07610571880020714,5725.247929360531,2019
+2001,25,"(20,25]",College,3.967528691660291,49.93215329490103,0.07945839363722067,5734.841681625293,2019
+2001,25,"(20,25]",College,3.8001224177505737,49.93215329490103,0.07610571880020714,5754.903339368736,2019
+2001,25,"(20,25]",College,3.8001224177505737,49.93215329490103,0.07610571880020714,5784.406735842708,2019
+2001,25,"(20,25]",College,3.967528691660291,49.93215329490103,0.07945839363722067,5739.454730035615,2019
+2001,44,"(40,45]",NoHS,19.42080183626626,34.43596778958692,0.5639685213708125,1741.2275799942151,2019
+2001,44,"(40,45]",NoHS,47.879868400918134,34.43596778958692,1.3904028686946477,1836.3110248103822,2019
+2001,44,"(40,45]",NoHS,19.42080183626626,34.43596778958692,0.5639685213708125,1809.1846012042483,2019
+2001,44,"(40,45]",NoHS,19.42080183626626,34.43596778958692,0.5639685213708125,1789.7018034577825,2019
+2001,44,"(40,45]",NoHS,19.42080183626626,34.43596778958692,0.5639685213708125,1763.5572720372213,2019
+2001,47,"(45,50]",College,70739.86472838561,728.3207187497634,97.12735462176305,31.584079995904624,2019
+2001,47,"(45,50]",College,68396.00948737568,757.5912913709121,90.28088134910912,34.33829147261212,2019
+2001,47,"(45,50]",College,55243.06595256312,492.4343393910929,112.18361826852392,33.208577180210895,2019
+2001,47,"(45,50]",College,94021.8922723795,347.8032746748279,270.33067000385057,33.12585803860169,2019
+2001,47,"(45,50]",College,40767.94766641163,478.65995227525815,85.1710018200303,33.567747483460664,2019
+2001,59,"(55,60]",College,309.3835348125478,258.2697584219018,1.1979084841483765,6837.057496404584,2019
+2001,59,"(55,60]",College,311.04085692425406,258.2697584219018,1.2043255037864207,6213.462342173094,2019
+2001,59,"(55,60]",College,309.3835348125478,258.2697584219018,1.1979084841483765,5813.358016480095,2019
+2001,59,"(55,60]",College,309.3835348125478,258.2697584219018,1.1979084841483765,6505.301566288128,2019
+2001,59,"(55,60]",College,311.04085692425406,258.2697584219018,1.2043255037864207,6251.417452068176,2019
+2001,60,"(55,60]",NoHS,11248.02754399388,2152.2479868491823,5.226176357335387,283.56493255561656,2019
+2001,60,"(55,60]",NoHS,11254.723794950267,2152.2479868491823,5.229287639584135,279.52526925459836,2019
+2001,60,"(55,60]",NoHS,11432.174445294568,2152.2479868491823,5.311736619175972,287.6598486162453,2019
+2001,60,"(55,60]",NoHS,11380.278500382556,2135.0300029543887,5.33026631224614,281.3408969256135,2019
+2001,60,"(55,60]",NoHS,11373.582249426168,2152.2479868491823,5.284512899499423,282.9030071146053,2019
+2001,83,"(80,85]",HS,90.19850038255548,24.105177452710844,3.7418724902359863,5800.06010478251,2019
+2001,83,"(80,85]",HS,90.21524100994645,24.105177452710844,3.7425669728807964,5794.370722493071,2019
+2001,83,"(80,85]",HS,88.69184391736802,24.105177452710844,3.679369052203091,5820.485398404805,2019
+2001,83,"(80,85]",HS,88.69184391736802,22.383379063231494,3.9623974408340987,5839.437521405816,2019
+2001,83,"(80,85]",HS,88.69184391736802,24.105177452710844,3.679369052203091,5837.279171674349,2019
+2001,43,"(40,45]",HS,35.6575363427697,53.37575007385973,0.6680474989752443,9835.946007741752,2019
+2001,43,"(40,45]",HS,35.6575363427697,53.37575007385973,0.6680474989752443,10085.062013432278,2019
+2001,43,"(40,45]",HS,35.49013006885999,53.37575007385973,0.6649111257406188,10181.103007174494,2019
+2001,43,"(40,45]",HS,35.6575363427697,53.37575007385973,0.6680474989752443,10047.286636402081,2019
+2001,43,"(40,45]",HS,35.6575363427697,53.37575007385973,0.6680474989752443,10038.826299197875,2019
+2001,37,"(35,40]",College,103.8421117061974,44.76675812646299,2.3196254554071265,7104.291163899657,2019
+2001,37,"(35,40]",College,84.59039020657995,60.2629436317771,1.4036883216898621,7343.896665126054,2019
+2001,37,"(35,40]",College,106.13557765876052,34.43596778958692,3.082113977666538,7410.356905030907,2019
+2001,37,"(35,40]",College,79.5347207345065,55.097548463339066,1.4435255824027722,7239.069300809439,2019
+2001,37,"(35,40]",College,107.44134659525632,79.20272591604991,1.3565359695970267,7194.205066702905,2019
+2001,65,"(60,65]",College,25.613159908186688,25.826975842190187,0.9917212167886023,7886.641613993228,2019
+2001,65,"(60,65]",College,25.613159908186688,25.826975842190187,0.9917212167886023,7994.979597427325,2019
+2001,65,"(60,65]",College,25.613159908186688,25.826975842190187,0.9917212167886023,8160.027017302174,2019
+2001,65,"(60,65]",College,25.613159908186688,25.826975842190187,0.9917212167886023,7894.827865801679,2019
+2001,65,"(60,65]",College,25.613159908186688,25.826975842190187,0.9917212167886023,8022.641073286167,2019
+2001,55,"(50,55]",HS,87.55348125478194,13.774387115834767,6.356252406623026,7447.777106075029,2019
+2001,55,"(50,55]",HS,65.79066564651875,13.774387115834767,4.7763043896804005,7810.421032911047,2019
+2001,55,"(50,55]",HS,64.11660290742158,13.774387115834767,4.65476992683866,7840.409630014236,2019
+2001,55,"(50,55]",HS,60.76847742922724,13.774387115834767,4.411701001155179,7639.169975181231,2019
+2001,55,"(50,55]",HS,59.09441469013007,13.774387115834767,4.290166538313438,7714.998547354975,2019
+2001,28,"(25,30]",HS,57.08553940321347,117.08229048459552,0.4875676685768647,6261.387432155175,2019
+2001,28,"(25,30]",HS,58.759602142310634,117.08229048459552,0.501865840675893,6277.851799746692,2019
+2001,28,"(25,30]",HS,58.759602142310634,117.08229048459552,0.501865840675893,6332.027198895824,2019
+2001,28,"(25,30]",HS,55.24407039020658,117.08229048459552,0.4718396792679336,6236.537894600439,2019
+2001,28,"(25,30]",HS,55.41147666411629,117.08229048459552,0.4732694964778364,6273.636618760804,2019
+2001,64,"(60,65]",NoHS,-0.016740627390971693,14.63528631057444,-0.0011438537679222633,5118.098868616845,2019
+2001,64,"(60,65]",NoHS,-0.016740627390971693,14.63528631057444,-0.0011438537679222633,5147.080645750384,2019
+2001,64,"(60,65]",NoHS,-0.016740627390971693,14.63528631057444,-0.0011438537679222633,5111.8750903714745,2019
+2001,64,"(60,65]",NoHS,-0.016740627390971693,14.63528631057444,-0.0011438537679222633,5136.1151759500945,2019
+2001,64,"(60,65]",NoHS,-0.016740627390971693,14.63528631057444,-0.0011438537679222633,5134.157289583609,2019
+2001,32,"(30,35]",College,193.60535577658763,149.7964598847031,1.292456149668716,11278.96182332654,2019
+2001,32,"(30,35]",College,193.60535577658763,149.7964598847031,1.292456149668716,11042.086600875853,2019
+2001,32,"(30,35]",College,193.60535577658763,149.7964598847031,1.292456149668716,10408.773231555759,2019
+2001,32,"(30,35]",College,193.4379495026779,149.7964598847031,1.2913385913897113,11161.037161086704,2019
+2001,32,"(30,35]",College,193.60535577658763,149.7964598847031,1.292456149668716,11386.752961154238,2019
+2001,29,"(25,30]",College,6.779954093343535,60.2629436317771,0.11250618845921119,5323.2637041958815,2019
+2001,29,"(25,30]",College,5.105891354246366,60.2629436317771,0.08472688266681337,5332.183854702578,2019
+2001,29,"(25,30]",College,6.779954093343535,60.2629436317771,0.11250618845921119,5350.836932408438,2019
+2001,29,"(25,30]",College,6.779954093343535,60.2629436317771,0.11250618845921119,5378.268820343802,2019
+2001,29,"(25,30]",College,6.779954093343535,60.2629436317771,0.11250618845921119,5336.47300924599,2019
+2001,58,"(55,60]",NoHS,69.80841622035196,41.323161347504296,1.689329033500193,6089.835376407478,2019
+2001,58,"(55,60]",NoHS,9.542157612853863,43.04495973698364,0.2216788602233346,6468.993684082532,2019
+2001,58,"(55,60]",NoHS,83.2009181331293,30.992371010628222,2.684561245882001,6523.0354663949765,2019
+2001,58,"(55,60]",NoHS,16.23840856924254,32.71416940010757,0.4963723324483716,6328.605401106774,2019
+2001,58,"(55,60]",NoHS,39.67528691660291,20.661580673752148,1.9202445128994996,6341.09753219522,2019
+2001,25,"(20,25]",NoHS,48.88263198163734,68.87193557917384,0.7097612629957644,6369.273716101052,2019
+2001,25,"(20,25]",NoHS,49.05003825554706,68.87193557917384,0.7121919522525991,6430.631330230006,2019
+2001,25,"(20,25]",NoHS,48.88263198163734,68.87193557917384,0.7097612629957644,6609.752781634963,2019
+2001,25,"(20,25]",NoHS,49.05003825554706,68.87193557917384,0.7121919522525991,6430.054863546799,2019
+2001,25,"(20,25]",NoHS,49.21744452945677,68.87193557917384,0.7146226415094339,6446.080944690514,2019
+2001,50,"(45,50]",College,163.22111706197398,103.30790336876075,1.579948016942626,7373.639950495257,2019
+2001,50,"(45,50]",College,163.22111706197398,103.30790336876075,1.579948016942626,7685.83744695909,2019
+2001,50,"(45,50]",College,163.38852333588372,103.30790336876075,1.5815684764471827,7720.7264864438375,2019
+2001,50,"(45,50]",College,163.22111706197398,103.30790336876075,1.579948016942626,7510.670747009458,2019
+2001,50,"(45,50]",College,163.22111706197398,103.30790336876075,1.579948016942626,7610.674263192659,2019
+2001,81,"(80,85]",College,665.3729762815609,123.96948404251289,5.3672319556753525,5664.941999754758,2019
+2001,81,"(80,85]",College,8620.753481254782,185.95422606376934,46.359545914801984,1149.4919332631996,2019
+2001,81,"(80,85]",College,1228.9294567712318,118.80408887407486,10.344168019956136,4829.05753360545,2019
+2001,81,"(80,85]",College,1869.760673297628,63.706540410735805,29.349587361716736,2651.0361031743605,2019
+2001,81,"(80,85]",College,745.4601377199695,173.90163733741394,4.286676934924913,5207.018845849435,2019
+2001,77,"(75,80]",HS,0,49.93215329490103,0,10546.144820089097,2019
+2001,77,"(75,80]",HS,3.348125478194338,49.93215329490103,0.0670534967402706,10616.07103555628,2019
+2001,77,"(75,80]",HS,3.348125478194338,49.93215329490103,0.0670534967402706,10552.005543867983,2019
+2001,77,"(75,80]",HS,3.348125478194338,48.21035490542169,0.06944826448099455,10664.749323584707,2019
+2001,77,"(75,80]",HS,3.348125478194338,49.93215329490103,0.0670534967402706,10556.256706376142,2019
+2001,51,"(50,55]",College,173.265493496557,1033.0790336876073,0.16771755872160188,39.79367724303644,2019
+2001,51,"(50,55]",College,151.50267788829382,1033.0790336876073,0.14665158516236687,39.19597598164709,2019
+2001,51,"(50,55]",College,153.17674062739098,1033.0790336876073,0.1482720446669234,37.93223383211499,2019
+2001,51,"(50,55]",College,139.95164498852333,1033.0790336876073,0.13547041458092673,39.53922595445068,2019
+2001,51,"(50,55]",College,173.265493496557,1033.0790336876073,0.16771755872160188,42.37982570104919,2019
+2001,55,"(50,55]",College,684.4572915072686,387.4046376328528,1.7667761947546314,103.62725527534255,2019
+2001,55,"(50,55]",College,680.0042846212701,414.9534118645223,1.6387485080934434,106.41362488980808,2019
+2001,55,"(50,55]",College,968.7801071155318,308.2019117168029,3.1433293249839203,101.3565512703924,2019
+2001,55,"(50,55]",College,910.2381331293037,370.18665373805936,2.4588626411512386,105.22612741854047,2019
+2001,55,"(50,55]",College,721.8558530986994,368.46485534858,1.9590901075648037,112.52051292434882,2019
+2001,56,"(55,60]",HS,136.40263198163734,51.653951684380374,2.640700808625337,7445.337857898817,2019
+2001,56,"(55,60]",HS,144.77294567712318,61.984742021256444,2.335622299234159,7781.722466438188,2019
+2001,56,"(55,60]",HS,128.1997245600612,46.488556515942335,2.757661974643107,7825.897931659018,2019
+2001,56,"(55,60]",HS,129.70638102524867,80.92452430552926,1.6028068393154131,7636.289576007783,2019
+2001,56,"(55,60]",HS,128.0323182861515,58.54114524229776,2.1870484042673675,7700.372439685959,2019
+2001,90,"(85,90]",NoHS,184.1469013006886,24.105177452710844,7.6393090929094,7645.2156499163,2019
+2001,90,"(85,90]",NoHS,185.82096403978576,24.105177452710844,7.708757357390394,7592.49808888979,2019
+2001,90,"(85,90]",NoHS,195.86534047436876,24.105177452710844,8.12544694427636,7653.836255259199,2019
+2001,90,"(85,90]",NoHS,177.4506503442999,24.105177452710844,7.361516034985421,7682.664888541219,2019
+2001,90,"(85,90]",NoHS,177.28324407039023,24.105177452710844,7.354571208537323,7645.450364612446,2019
+2001,50,"(45,50]",College,77710.92982402448,8402.376140659208,9.248684958053744,12.57883120315518,2019
+2001,50,"(45,50]",College,79108.58806426932,8144.106382237305,9.713599546883255,13.27890672793472,2019
+2001,50,"(45,50]",College,76793.52670237185,8161.3243661321,9.409444258955073,13.458992248041634,2019
+2001,50,"(45,50]",College,78907.88468247897,8832.825738029045,8.933481427438016,13.265107818905388,2019
+2001,50,"(45,50]",College,79490.45851568478,8970.56960918739,8.861249840174365,13.646603181231054,2019
+2001,46,"(45,50]",College,2516.116296863045,509.65232328588644,4.936926963544213,77.93382592507984,2019
+2001,46,"(45,50]",College,2489.3312930374905,507.930524896407,4.900928711746931,75.23609628413409,2019
+2001,46,"(45,50]",College,2459.030757459832,509.65232328588644,4.824918174817096,81.63205572693222,2019
+2001,46,"(45,50]",College,2377.16908951798,509.65232328588644,4.664295600953282,77.93713483311623,2019
+2001,46,"(45,50]",College,2587.933588370314,509.65232328588644,5.077841246136394,78.94925573786429,2019
+2001,25,"(20,25]",HS,63.84875286916603,103.30790336876075,0.6180432550378642,7619.336719465484,2019
+2001,25,"(20,25]",HS,59.83100229533282,103.30790336876075,0.5791522269285072,7692.73666162368,2019
+2001,25,"(20,25]",HS,67.86650344299923,103.30790336876075,0.6569342831472211,7907.0133143107305,2019
+2001,25,"(20,25]",HS,58.40804896710023,103.30790336876075,0.5653783211397767,7692.047054933397,2019
+2001,25,"(20,25]",HS,53.38586074980872,103.30790336876075,0.5167645360030805,7711.218488596038,2019
+2001,69,"(65,70]",NoHS,3.1639785768936495,25.826975842190187,0.12250673854447439,5404.210917470742,2019
+2001,69,"(65,70]",NoHS,3.1639785768936495,25.826975842190187,0.12250673854447439,5374.255236514579,2019
+2001,69,"(65,70]",NoHS,3.1639785768936495,27.548774231669533,0.11485006738544473,5377.333648134134,2019
+2001,69,"(65,70]",NoHS,3.1639785768936495,25.826975842190187,0.12250673854447439,5383.116403215236,2019
+2001,69,"(65,70]",NoHS,3.1639785768936495,27.548774231669533,0.11485006738544473,5386.070899119439,2019
+2001,77,"(75,80]",HS,290.4833664881408,20.661580673752148,14.059106661532539,7151.521231837697,2019
+2001,77,"(75,80]",HS,263.73184391736805,20.661580673752148,12.764359517391865,7389.482317875745,2019
+2001,77,"(75,80]",HS,307.1402907421576,20.661580673752148,14.865285265049417,7547.37028953594,2019
+2001,77,"(75,80]",HS,257.05233358837035,20.661580673752148,12.441077846232835,7387.216172891205,2019
+2001,77,"(75,80]",HS,374.8059066564652,20.661580673752148,18.140233923758185,7485.525009143933,2019
+2001,31,"(30,35]",College,672.3035960214231,92.97711303188467,7.230850411443404,11278.96182332654,2019
+2001,31,"(30,35]",College,491.5885233358837,92.97711303188467,5.287199261255865,9991.981894720551,2019
+2001,31,"(30,35]",College,469.5243764345831,92.97711303188467,5.049891969366364,10069.615798291947,2019
+2001,31,"(30,35]",College,470.41162968630454,92.97711303188467,5.0594346753376405,10063.939485863113,2019
+2001,31,"(30,35]",College,536.5538485080336,92.97711303188467,5.770816397837961,11386.752961154238,2019
+2001,87,"(85,90]",NoHS,361.4301453710788,37.87956456854561,9.541560191829733,8898.301505361665,2019
+2001,87,"(85,90]",NoHS,361.26273909716906,39.60136295802496,9.122482463042639,9226.06436570877,2019
+2001,87,"(85,90]",NoHS,361.26273909716906,37.87956456854561,9.537140756817305,9417.297789924702,2019
+2001,87,"(85,90]",NoHS,361.26273909716906,37.87956456854561,9.537140756817305,9157.962625351774,2019
+2001,87,"(85,90]",NoHS,361.26273909716906,37.87956456854561,9.537140756817305,9293.592454146437,2019
+2001,45,"(40,45]",College,287.18546289211935,266.8787503692986,1.0760896568000298,58.75269626734713,2019
+2001,45,"(40,45]",College,494.35072685539404,230.72098419023237,2.1426344404278184,60.23006801813299,2019
+2001,45,"(40,45]",College,463.6484162203519,194.5632180111661,2.3830219347715706,57.460209707797574,2019
+2001,45,"(40,45]",College,371.69214996174446,167.01444377949653,2.225509013175393,59.547538286369786,2019
+2001,45,"(40,45]",College,302.16832440703905,203.1722099585628,1.4872522401989259,63.6825153096359,2019
+2001,40,"(35,40]",HS,85.71201224177506,75.75912913709122,1.131375363181293,10029.075686463502,2019
+2001,40,"(35,40]",HS,85.71201224177506,75.75912913709122,1.131375363181293,10369.82065225311,2019
+2001,40,"(35,40]",HS,85.71201224177506,75.75912913709122,1.131375363181293,10494.97497635392,2019
+2001,40,"(35,40]",HS,85.71201224177506,75.75912913709122,1.131375363181293,10345.04460302922,2019
+2001,40,"(35,40]",HS,84.03794950267789,75.75912913709122,1.1092781881191585,10359.212811470825,2019
+2001,40,"(35,40]",HS,16.405814843152257,63.706540410735805,0.25752167261601216,5262.388401992363,2019
+2001,40,"(35,40]",HS,16.23840856924254,63.706540410735805,0.25489390044646104,5270.536717313929,2019
+2001,40,"(35,40]",HS,17.91247130833971,63.706540410735805,0.28117162214197255,5293.989123688501,2019
+2001,40,"(35,40]",HS,17.91247130833971,63.706540410735805,0.28117162214197255,5249.848501377581,2019
+2001,40,"(35,40]",HS,17.91247130833971,63.706540410735805,0.28117162214197255,5302.794812353414,2019
+2001,71,"(70,75]",HS,192.51721499617446,15.840545183209981,12.153446284174048,9153.099878581368,2019
+2001,71,"(70,75]",HS,190.8431522570773,15.840545183209981,12.047764142572534,9209.601711809188,2019
+2001,71,"(70,75]",HS,190.8431522570773,15.840545183209981,12.047764142572534,9025.068228623915,2019
+2001,71,"(70,75]",HS,192.51721499617446,15.840545183209981,12.153446284174048,9052.620655515038,2019
+2001,71,"(70,75]",HS,192.51721499617446,15.840545183209981,12.153446284174048,9085.851052875318,2019
+2001,34,"(30,35]",NoHS,12.053251721499617,17.21798389479346,0.700038505968425,6681.58935944016,2019
+2001,34,"(30,35]",NoHS,12.053251721499617,17.21798389479346,0.700038505968425,6675.478564186842,2019
+2001,34,"(30,35]",NoHS,11.8858454475899,17.21798389479346,0.6903157489410857,6572.083387175378,2019
+2001,34,"(30,35]",HS,12.220657995409335,17.21798389479346,0.7097612629957644,6682.562061181156,2019
+2001,34,"(30,35]",NoHS,12.053251721499617,17.21798389479346,0.700038505968425,6668.475798966564,2019
+2001,51,"(50,55]",College,1333.2235654169854,296.1493229904475,4.501862614286609,8624.310323383193,2019
+2001,51,"(50,55]",College,1350.9686304514155,296.1493229904475,4.561781930850445,7828.429299634221,2019
+2001,51,"(50,55]",College,1359.506350420811,296.1493229904475,4.590611035989648,7312.576561060933,2019
+2001,51,"(50,55]",College,1339.0827850038256,296.1493229904475,4.521647294284103,8197.793807464512,2019
+2001,51,"(50,55]",College,1357.832287681714,297.8711213799269,4.558455621314945,7868.532570025966,2019
+2001,65,"(60,65]",College,48070.66133129304,1163.9357112880377,41.300100052860266,23.01708660149429,2019
+2001,65,"(60,65]",College,23949.208508033662,941.8237190452021,25.42854679038322,22.49026593011436,2019
+2001,65,"(60,65]",College,23279.868003060445,869.5081866870696,26.77360415864459,23.279331977239398,2019
+2001,65,"(60,65]",College,39995.066381025244,795.4708559394577,50.278481081234254,24.119640096465332,2019
+2001,65,"(60,65]",College,15955.458485080337,852.2902027922762,18.720687428773683,22.498499339647026,2019
+2001,35,"(30,35]",HS,191.88107115531753,137.74387115834767,1.3930280130920292,7655.4640633734325,2019
+2001,35,"(30,35]",HS,193.370986993114,137.74387115834767,1.403844580284944,7858.485236026226,2019
+2001,35,"(30,35]",HS,190.67574598316756,137.74387115834767,1.3842775317674239,7937.024530415855,2019
+2001,35,"(30,35]",HS,185.48615149196633,137.74387115834767,1.3466018482864843,7748.13946213214,2019
+2001,35,"(30,35]",HS,190.94359602142313,137.74387115834767,1.386222083172892,7875.358682371929,2019
+2001,81,"(80,85]",HS,251404.04590665648,9091.095496450946,27.65387801775942,18.01293583972238,2019
+2001,81,"(80,85]",HS,60897.380260137725,9108.31348034574,6.6859117652839215,19.60781902692309,2019
+2001,81,"(80,85]",HS,114701.75669472074,9091.095496450946,12.616934531102322,19.13956903634376,2019
+2001,81,"(80,85]",HS,72955.65416985462,9091.095496450946,8.024957410065227,18.800585208567487,2019
+2001,81,"(80,85]",HS,279036.1254781944,8643.427915186316,32.28303957830596,19.8680209352054,2019
+2001,31,"(30,35]",HS,8.537719969395562,77.48092752657055,0.1101912463098447,6343.316206093305,2019
+2001,31,"(30,35]",NoHS,8.537719969395562,77.48092752657055,0.1101912463098447,6381.360656131849,2019
+2001,31,"(30,35]",HS,8.537719969395562,77.48092752657055,0.1101912463098447,6424.670645027362,2019
+2001,31,"(30,35]",HS,8.537719969395562,77.48092752657055,0.1101912463098447,6318.454655834765,2019
+2001,31,"(30,35]",NoHS,8.537719969395562,77.48092752657055,0.1101912463098447,6365.712212200307,2019
+2001,28,"(25,30]",HS,-1.9251721499617445,4.304495973698365,-0.4472468232576049,4523.16612812874,2019
+2001,28,"(25,30]",HS,-1.9251721499617445,4.304495973698365,-0.4472468232576049,4479.5444793914,2019
+2001,28,"(25,30]",HS,-1.9251721499617445,4.304495973698365,-0.4472468232576049,4476.991516444202,2019
+2001,28,"(25,30]",HS,-1.9251721499617445,4.304495973698365,-0.4472468232576049,4499.33520759412,2019
+2001,28,"(25,30]",HS,-1.9251721499617445,4.304495973698365,-0.4472468232576049,4492.908262770984,2019
+2001,30,"(25,30]",HS,106.47039020657995,96.42070981084338,1.1042274052478132,8177.967879832472,2019
+2001,30,"(25,30]",HS,97.43045141545525,96.42070981084338,1.0104722481984707,8284.086632513134,2019
+2001,30,"(25,30]",HS,107.30742157612855,96.42070981084338,1.1129084383079377,8350.217369904569,2019
+2001,30,"(25,30]",HS,103.9592960979342,96.42070981084338,1.0781843060674403,8174.180754889213,2019
+2001,30,"(25,30]",HS,106.63779648048968,96.42070981084338,1.1059636118598382,8275.541735677447,2019
+2001,49,"(45,50]",College,2328.9560826319816,249.6607664745051,9.328482466506449,2518.1723636335246,2019
+2001,49,"(45,50]",College,2328.9560826319816,249.6607664745051,9.328482466506449,2561.7874882116016,2019
+2001,49,"(45,50]",College,2328.9560826319816,249.6607664745051,9.328482466506449,3211.9727795890303,2019
+2001,49,"(45,50]",College,2329.1234889058915,249.6607664745051,9.329153001473852,2647.866714923605,2019
+2001,49,"(45,50]",College,2329.1234889058915,249.6607664745051,9.329153001473852,2707.513809909215,2019
+2001,42,"(40,45]",HS,144.13680183626627,108.47329853719879,1.3287767937363626,7678.95313272583,2019
+2001,42,"(40,45]",HS,167.07146136189746,108.47329853719879,1.5402081767118347,7882.59723017652,2019
+2001,42,"(40,45]",HS,212.27115531752105,108.47329853719879,1.9568977635978022,7961.377504723266,2019
+2001,42,"(40,45]",HS,151.08416220351953,108.47329853719879,1.392823526535502,7771.912885097942,2019
+2001,42,"(40,45]",HS,196.0327467482785,108.47329853719879,1.8071981712721026,7899.522448896586,2019
+2001,60,"(55,60]",College,1703.5262433052792,218.6683954638769,7.790454764582999,2847.5677226358957,2019
+2001,60,"(55,60]",College,1791.247130833971,334.02888755899306,5.362551556315972,2897.369474049965,2019
+2001,60,"(55,60]",College,2071.6526396327467,216.94659707439757,9.549136366136752,3640.8163414016262,2019
+2001,60,"(55,60]",College,1874.9502677888293,284.09673426409205,6.599689618557543,2995.716456632914,2019
+2001,60,"(55,60]",College,1945.9305279265493,273.76594392721603,7.10800803055291,3069.0040609691014,2019
+2001,43,"(40,45]",HS,89.76324407039021,25.826975842190187,3.4755615453728663,5670.477911613859,2019
+2001,43,"(40,45]",HS,89.76324407039021,25.826975842190187,3.4755615453728663,5701.168449925097,2019
+2001,43,"(40,45]",HS,89.76324407039021,25.826975842190187,3.4755615453728663,5787.918698625879,2019
+2001,43,"(40,45]",HS,89.76324407039021,25.826975842190187,3.4755615453728663,5711.4800403250065,2019
+2001,43,"(40,45]",HS,89.76324407039021,25.826975842190187,3.4755615453728663,5717.255222449589,2019
+2001,55,"(50,55]",College,111143.80419280796,3822.3924246441475,29.077026073050334,22.186381816816397,2019
+2001,55,"(50,55]",College,103660.9781178271,3805.1744407493547,27.242109325587997,23.460982960666353,2019
+2001,55,"(50,55]",College,107249.63293037491,3822.3924246441475,28.05824756215592,23.740899046028453,2019
+2001,55,"(50,55]",College,111857.35669472073,3822.3924246441475,29.263703007975245,23.440699074076043,2019
+2001,55,"(50,55]",College,104845.71231828615,3805.1744407493547,27.5534575223413,24.112156722472083,2019
+2001,72,"(70,75]",NoHS,201.72456006120888,25.826975842190187,7.8106148119625205,6767.287460261618,2019
+2001,72,"(70,75]",NoHS,203.39862280030604,25.826975842190187,7.875433192144782,7621.3955380166035,2019
+2001,72,"(70,75]",NoHS,203.39862280030604,24.105177452710844,8.437964134440838,7394.940390058482,2019
+2001,72,"(70,75]",NoHS,203.39862280030604,25.826975842190187,7.875433192144782,7298.642469506827,2019
+2001,72,"(70,75]",NoHS,203.39862280030604,25.826975842190187,7.875433192144782,7170.824598140326,2019
+2001,26,"(25,30]",HS,141.6926702371844,146.35286310574438,0.9681578291694037,5176.676478065399,2019
+2001,26,"(25,30]",HS,141.6926702371844,146.35286310574438,0.9681578291694037,5121.034289498142,2019
+2001,26,"(25,30]",HS,141.6926702371844,146.35286310574438,0.9681578291694037,5136.057158679949,2019
+2001,26,"(25,30]",HS,141.6926702371844,146.35286310574438,0.9681578291694037,5177.420800144326,2019
+2001,26,"(25,30]",HS,141.6926702371844,146.35286310574438,0.9681578291694037,5121.246037697032,2019
+2001,37,"(35,40]",HS,78.34613618974751,67.15013718969449,1.1667308432807084,6411.128517227015,2019
+2001,37,"(35,40]",HS,111.65998469778118,70.59373396865318,1.5817265700573833,6688.698946129723,2019
+2001,37,"(35,40]",HS,96.09120122417751,67.15013718969449,1.4309903932545442,6773.530662541851,2019
+2001,37,"(35,40]",HS,127.89839326702372,75.75912913709122,1.6882241747470856,6574.532489728718,2019
+2001,37,"(35,40]",HS,107.80964039785769,67.15013718969449,1.6055014168221715,6639.9508254078755,2019
+2001,57,"(55,60]",College,32897.09058913543,957.3199045505163,34.36373821620409,518.168941545861,2019
+2001,57,"(55,60]",College,34957.86182096404,957.3199045505163,36.51638460121391,501.87667679059757,2019
+2001,57,"(55,60]",College,41767.94904361133,957.3199045505163,43.630085246396646,507.05376799946964,2019
+2001,57,"(55,60]",College,28283.373680183628,957.3199045505163,29.544328437904277,527.0150524400958,2019
+2001,57,"(55,60]",College,38726.17704667177,957.3199045505163,40.45270223944064,520.2073436215508,2019
+2001,44,"(40,45]",HS,88.39051262433053,96.42070981084338,0.916717091149128,4948.229888571514,2019
+2001,44,"(40,45]",HS,98.26748278500384,115.36049209511619,0.8518296082161392,4875.810829260776,2019
+2001,44,"(40,45]",HS,128.7354246365723,125.69128243199225,1.0242191991813525,4910.083574014773,2019
+2001,44,"(40,45]",HS,39.34047436878347,108.47329853719879,0.3626742700674159,4923.791725570448,2019
+2001,44,"(40,45]",HS,57.4203519510329,115.36049209511619,0.4977471134891579,4996.554353599942,2019
+2001,49,"(45,50]",HS,269.1892884468248,103.30790336876075,2.6056988833269155,7453.913055328056,2019
+2001,49,"(45,50]",HS,270.69594491201224,103.30790336876075,2.6202830188679247,7849.686996909326,2019
+2001,49,"(45,50]",HS,277.55960214231067,103.30790336876075,2.6867218585547428,7880.263664889794,2019
+2001,49,"(45,50]",HS,280.907727620505,103.30790336876075,2.7191310486458735,7619.157779634101,2019
+2001,49,"(45,50]",HS,271.03075745983165,103.30790336876075,2.6235239378770374,7770.12096332731,2019
+2001,51,"(50,55]",College,553.2777352716145,172.17983894793457,3.2133711975356185,1387.0675936417654,2019
+2001,51,"(50,55]",College,551.4362662586075,172.17983894793457,3.202676164805545,1386.8432860396583,2019
+2001,51,"(50,55]",College,488.1566947207345,172.17983894793457,2.8351559491721217,1310.6234113527762,2019
+2001,51,"(50,55]",College,609.693649579189,172.17983894793457,3.541028109356951,1386.3497649350093,2019
+2001,51,"(50,55]",College,536.3697016067331,172.17983894793457,3.1151713515594923,1470.0310777996517,2019
+2001,51,"(50,55]",College,354.9013006885998,206.6158067375215,1.7176870748299318,6086.178234368081,2019
+2001,51,"(50,55]",College,354.9013006885998,206.6158067375215,1.7176870748299318,6343.865024143432,2019
+2001,51,"(50,55]",College,353.22723794950264,206.6158067375215,1.709584777307149,6372.662322920654,2019
+2001,51,"(50,55]",College,351.55317521040547,206.6158067375215,1.7014824797843664,6199.283004438503,2019
+2001,51,"(50,55]",College,354.9013006885998,206.6158067375215,1.7176870748299318,6281.825578749257,2019
+2001,54,"(50,55]",College,44606.72419280796,5027.65129727969,8.872278834640602,18.687378031860785,2019
+2001,54,"(50,55]",College,33662.42185156848,7489.822994235154,4.494421547408814,18.796529751732592,2019
+2001,54,"(50,55]",College,67487.66304514155,6732.231702864242,10.024560357366902,19.13956903634376,2019
+2001,54,"(50,55]",College,34109.597490436114,4683.29161938382,7.283252947405378,19.34512905952876,2019
+2001,54,"(50,55]",College,65749.66785003825,5285.921055701591,12.438639767258389,19.8680209352054,2019
+2001,76,"(75,80]",NoHS,90.90160673297629,39.60136295802496,2.2954161155848722,8729.30976210504,2019
+2001,76,"(75,80]",NoHS,115.84514154552411,39.60136295802496,2.9252816795298924,8685.237137500142,2019
+2001,76,"(75,80]",NoHS,57.92257077276206,39.60136295802496,1.4626408397649462,8774.874923940715,2019
+2001,76,"(75,80]",NoHS,119.36067329762815,39.60136295802496,3.0140546784751634,9252.575260880174,2019
+2001,76,"(75,80]",NoHS,88.89273144605968,39.60136295802496,2.244688687616146,8765.87721665398,2019
+2001,76,"(75,80]",HS,239.24030604437644,67.15013718969449,3.5627671968642316,8428.388326163837,2019
+2001,76,"(75,80]",HS,160.92932517214996,48.21035490542169,3.338065556411243,8886.237108730416,2019
+2001,76,"(75,80]",HS,169.4318898240245,55.097548463339066,3.0751257460531383,8958.02711562827,2019
+2001,76,"(75,80]",HS,165.88287681713848,32.71416940010757,5.070673651784447,8991.76806200263,2019
+2001,76,"(75,80]",HS,157.897597551645,43.04495973698364,3.668201771274548,8948.21229423714,2019
+2001,19,"(15,20]",NoHS,-0.6026625860749808,11.536049209511617,-0.052241679549882465,7182.918337503778,2019
+2001,19,"(15,20]",NoHS,-0.6026625860749808,11.70822904845955,-0.051473419556501844,7190.745823472626,2019
+2001,19,"(15,20]",NoHS,-0.6026625860749808,11.70822904845955,-0.051473419556501844,7082.243069642922,2019
+2001,19,"(15,20]",NoHS,-0.6026625860749808,11.536049209511617,-0.052241679549882465,7107.132571963861,2019
+2001,19,"(15,20]",NoHS,-0.6026625860749808,11.536049209511617,-0.052241679549882465,7155.014771152344,2019
+2001,54,"(50,55]",HS,3323.3493496557,172.17983894793457,19.301617250673853,3351.6340959045083,2019
+2001,54,"(50,55]",HS,3394.831828615149,172.17983894793457,19.71677897574124,3409.68490320591,2019
+2001,54,"(50,55]",HS,3590.864575363428,172.17983894793457,20.855313823642668,1585.5094192739266,2019
+2001,54,"(50,55]",HS,3883.992960979342,172.17983894793457,22.557768579129768,1521.128947416893,2019
+2001,54,"(50,55]",HS,3350.134353481255,172.17983894793457,19.457181363111285,3603.643551758353,2019
+2001,67,"(65,70]",College,154.76710022953327,18.939782284272805,8.171535337977385,8731.216014222517,2019
+2001,67,"(65,70]",College,154.70013771996938,10.847329853719879,14.261586934863791,8677.204472160665,2019
+2001,67,"(65,70]",College,154.68339709257845,13.774387115834767,11.229784366576821,8734.569193266714,2019
+2001,67,"(65,70]",College,154.61643458301455,27.548774231669533,5.612461494031575,8785.30162093609,2019
+2001,67,"(65,70]",College,154.61643458301455,18.939782284272805,8.163580354955018,8601.064040107747,2019
+2001,27,"(25,30]",NoHS,0.8872532517214996,27.548774231669533,0.03220663265306122,4167.002847788641,2019
+2001,27,"(25,30]",NoHS,1.3727314460596787,18.939782284272805,0.07247873420380159,4179.005284609195,2019
+2001,27,"(25,30]",NoHS,1.7745065034429992,39.60136295802496,0.0448092280390417,4184.003974670801,2019
+2001,27,"(25,30]",NoHS,0.5691813312930375,15.496185505314111,0.0367304154366149,4171.762187340745,2019
+2001,27,"(25,30]",NoHS,0.2678500382555471,15.840545183209981,0.016909142656242156,4178.605247832144,2019
+2001,41,"(40,45]",HS,544.1038714613619,87.81171786344665,6.196255860834899,7753.141659479598,2019
+2001,41,"(40,45]",HS,521.3868400918133,86.08991947396729,6.056305352329611,7958.753219852746,2019
+2001,41,"(40,45]",HS,534.0929762815608,87.81171786344665,6.082251768631981,8038.294612797387,2019
+2001,41,"(40,45]",HS,523.1948278500382,86.08991947396729,6.077306507508664,7846.999522174386,2019
+2001,41,"(40,45]",HS,580.4477735271614,87.81171786344665,6.610140282528104,7269.006210979971,2019
+2001,21,"(20,25]",HS,4.603672532517215,34.43596778958692,0.1336879091259145,6107.6030620807505,2019
+2001,21,"(20,25]",HS,7.114766641162969,34.43596778958692,0.2066085868309588,6113.8109644478045,2019
+2001,21,"(20,25]",HS,5.94292272379495,34.43596778958692,0.17257893723527143,6109.665887276296,2019
+2001,21,"(20,25]",HS,5.4407039020658,34.43596778958692,0.1579948016942626,6055.701205889583,2019
+2001,21,"(20,25]",HS,4.938485080336649,34.43596778958692,0.14341066615325376,6085.768176172989,2019
+2001,78,"(75,80]",College,94095.71843917368,6594.487831705895,14.268844046806366,18.01293583972238,2019
+2001,78,"(75,80]",College,100775.73098699312,6611.705815600688,15.242016780179053,19.60781902692309,2019
+2001,78,"(75,80]",College,94087.3481254782,6611.705815600688,14.230419614779874,19.13956903634376,2019
+2001,78,"(75,80]",College,100790.797551645,6594.487831705895,15.284097889611532,18.800585208567487,2019
+2001,78,"(75,80]",College,100819.25661820965,6594.487831705895,15.288413473670666,19.8680209352054,2019
+2001,77,"(75,80]",HS,162.3840856924254,43.04495973698364,3.7724297266076245,9929.523877461732,2019
+2001,77,"(75,80]",HS,157.86411629686305,43.04495973698364,3.6674239507123607,9858.197070885719,2019
+2001,77,"(75,80]",HS,161.9153481254782,43.04495973698364,3.7615402387370045,9942.71901259905,2019
+2001,77,"(75,80]",HS,159.87299158377965,43.04495973698364,3.714093184443589,9976.603750269835,2019
+2001,77,"(75,80]",HS,157.86411629686305,43.04495973698364,3.6674239507123607,9929.122184371248,2019
+2001,53,"(50,55]",College,912.2804896710023,370.18665373805936,2.4643797404876824,383.87870550397076,2019
+2001,53,"(50,55]",College,995.9836266258607,370.18665373805936,2.690490369030455,380.0995672904181,2019
+2001,53,"(50,55]",College,1531.683703136955,370.18665373805936,4.137598391704203,794.791356736737,2019
+2001,53,"(50,55]",College,962.5023718439174,370.18665373805936,2.6000461176133465,379.83279118179513,2019
+2001,53,"(50,55]",College,923.9989288446825,370.18665373805936,2.4960352284836707,401.00316033870854,2019
+2001,47,"(45,50]",HS,491.5048201989288,86.08991947396729,5.7092029264536,6796.66510876276,2019
+2001,47,"(45,50]",HS,491.3374139250192,86.08991947396729,5.707258375048133,7149.3929322567055,2019
+2001,47,"(45,50]",HS,491.3374139250192,86.08991947396729,5.707258375048133,7199.0420290279435,2019
+2001,47,"(45,50]",HS,491.5048201989288,86.08991947396729,5.7092029264536,6993.156199601364,2019
+2001,47,"(45,50]",HS,491.3374139250192,86.08991947396729,5.707258375048133,7097.5251658870575,2019
+2001,33,"(30,35]",HS,175.77658760520274,72.31553235813253,2.430689256834809,6544.235424036787,2019
+2001,33,"(30,35]",HS,175.60918133129306,72.31553235813253,2.428374314685443,6561.44354265175,2019
+2001,33,"(30,35]",HS,175.44177505738332,72.31553235813253,2.426059372536076,6618.066227330608,2019
+2001,33,"(30,35]",HS,175.60918133129306,72.31553235813253,2.428374314685443,6518.263349045632,2019
+2001,33,"(30,35]",HS,175.60918133129306,72.31553235813253,2.428374314685443,6557.037947721638,2019
+2001,75,"(70,75]",College,87107.51094108645,612.960226654647,142.109564622966,232.6198827127451,2019
+2001,75,"(70,75]",College,87315.26212700842,585.4114524229775,149.1519541778976,205.7612511507222,2019
+2001,75,"(70,75]",College,87265.37505738331,590.5768475914157,147.76294636893203,211.399025465056,2019
+2001,75,"(70,75]",College,87077.2104055088,621.5692186020439,140.09253965528092,238.02261183877985,2019
+2001,75,"(70,75]",College,87044.06396327468,638.7872024968373,136.26457077262071,216.14594743840863,2019
+2001,22,"(20,25]",HS,-10.965110941086458,22.383379063231494,-0.4898773733005539,6746.00120598013,2019
+2001,22,"(20,25]",HS,-11.299923488905891,32.71416940010757,-0.34541373649757817,6683.8834340277945,2019
+2001,22,"(20,25]",HS,-10.546595256312164,34.43596778958692,-0.30626684636118595,6683.637473653413,2019
+2001,22,"(20,25]",HS,-5.608110175975517,22.383379063231494,-0.250547969550665,6665.215577851619,2019
+2001,22,"(20,25]",HS,-3.934047436878348,25.826975842190187,-0.15232319342831474,6655.623784758447,2019
+2001,28,"(25,30]",HS,4.8547819433817905,72.31553235813253,0.06713332233162807,3953.0915322292158,2019
+2001,28,"(25,30]",HS,4.8547819433817905,80.92452430552926,0.05999147953039104,3964.4778290700283,2019
+2001,28,"(25,30]",HS,4.8547819433817905,68.87193557917384,0.07048998844820947,3969.2199135073506,2019
+2001,28,"(25,30]",HS,4.8547819433817905,77.48092752657055,0.06265776750951954,3957.606553113446,2019
+2001,28,"(25,30]",HS,4.8547819433817905,84.36812108448795,0.05754284771282405,3964.0983280104665,2019
+2001,79,"(75,80]",HS,468.40275439938796,68.87193557917384,6.801068540623797,8190.706586835501,2019
+2001,79,"(75,80]",HS,426.7185921958684,110.19509692667813,3.8723918222949556,8492.405671491983,2019
+2001,79,"(75,80]",HS,711.3092578423872,49.93215329490103,14.24551538247049,6864.787114930243,2019
+2001,79,"(75,80]",HS,409.27485845447586,110.19509692667813,3.7140931844435885,8429.719396703384,2019
+2001,79,"(75,80]",HS,426.73533282325934,53.37575007385973,7.994929012384015,8554.56391128972,2019
+2001,35,"(30,35]",HS,350.71614384085694,137.74387115834767,2.5461469965344627,7395.624732459069,2019
+2001,35,"(30,35]",HS,324.88535577658763,137.74387115834767,2.3586193203696575,7698.089804682002,2019
+2001,35,"(30,35]",HS,339.41622035195104,137.74387115834767,2.464111234116288,7776.982323895436,2019
+2001,35,"(30,35]",HS,332.3851568477429,137.74387115834767,2.413066759722757,7562.078343368221,2019
+2001,35,"(30,35]",HS,338.4954858454476,137.74387115834767,2.457426838659992,7662.755361125518,2019
+2001,59,"(55,60]",College,5524.239632746749,1038.2444288560457,5.32075056625485,119.82668655930804,2019
+2001,59,"(55,60]",College,5524.407039020658,1038.2444288560457,5.320911806006547,118.06414997552056,2019
+2001,59,"(55,60]",College,5524.407039020658,1038.2444288560457,5.320911806006547,121.6249441206678,2019
+2001,59,"(55,60]",College,5525.913695485845,1038.2444288560457,5.322362963771821,118.79955085837415,2019
+2001,59,"(55,60]",College,5524.239632746749,1038.2444288560457,5.32075056625485,119.57908688581236,2019
+2001,42,"(40,45]",HS,5.808997704667177,30.992371010628222,0.18743314936037309,4711.2537121808555,2019
+2001,42,"(40,45]",HS,3.297903596021423,25.826975842190187,0.1276922089590553,4659.913922593731,2019
+2001,42,"(40,45]",HS,1.9586534047436879,22.383379063231494,0.08750481324605314,4675.833597865242,2019
+2001,42,"(40,45]",HS,5.808997704667177,27.548774231669533,0.2108622930304197,4657.966530118663,2019
+2001,42,"(40,45]",HS,2.310206579954093,29.27057262114888,0.07892590998663615,4712.319243189286,2019
+2001,77,"(75,80]",HS,4396.256159143076,454.55477482254724,9.671565238445293,983.2938419334308,2019
+2001,77,"(75,80]",HS,4397.930221882173,454.55477482254724,9.675248100955649,988.3403355364848,2019
+2001,77,"(75,80]",HS,4396.256159143076,454.55477482254724,9.671565238445293,992.6177338040918,2019
+2001,77,"(75,80]",HS,4396.256159143076,454.55477482254724,9.671565238445293,986.950589024905,2019
+2001,77,"(75,80]",HS,4396.0887528691665,454.55477482254724,9.671196952194258,979.8991214082192,2019
+2001,66,"(65,70]",HS,974.6393267023718,55.097548463339066,17.689341066615324,7104.866955651762,2019
+2001,66,"(65,70]",HS,906.1534200459067,55.097548463339066,16.446347347901426,6395.433380273316,2019
+2001,66,"(65,70]",HS,1057.99091048202,55.097548463339066,19.20214129283789,6037.767788852529,2019
+2001,66,"(65,70]",HS,740.2705432287681,55.097548463339066,13.435634867154407,6745.464068395495,2019
+2001,66,"(65,70]",HS,806.0612088752869,55.097548463339066,14.629710964574508,6437.804465214559,2019
+2001,21,"(20,25]",HS,102.40241775057383,92.97711303188467,1.1013723099302615,6026.884776828232,2019
+2001,21,"(20,25]",HS,80.02019892884468,92.97711303188467,0.8606440479755844,5938.094449855713,2019
+2001,21,"(20,25]",HS,64.26726855394033,92.97711303188467,0.6912160042213952,5938.8128692236805,2019
+2001,21,"(20,25]",HS,92.6091507268554,92.97711303188467,0.9960424421340864,5921.899029099308,2019
+2001,21,"(20,25]",HS,2.862647283856159,92.97711303188467,0.03078873058657425,6038.923962724226,2019
+2001,37,"(35,40]",College,190.92685539403215,123.96948404251289,1.5401117207889448,6593.169199031249,2019
+2001,37,"(35,40]",College,190.92685539403215,123.96948404251289,1.5401117207889448,6837.8613439423325,2019
+2001,37,"(35,40]",College,190.92685539403215,123.96948404251289,1.5401117207889448,6901.771988810744,2019
+2001,37,"(35,40]",College,189.25279265493498,123.96948404251289,1.5266078915843069,6696.470751443466,2019
+2001,37,"(35,40]",College,190.92685539403215,123.96948404251289,1.5401117207889448,6850.0744532249955,2019
+2001,88,"(85,90]",NoHS,125.55470543228768,10.675150014771946,11.76139962984585,8980.950244933472,2019
+2001,88,"(85,90]",NoHS,125.55470543228768,10.675150014771946,11.76139962984585,9195.46815456096,2019
+2001,88,"(85,90]",NoHS,125.55470543228768,10.675150014771946,11.76139962984585,9369.510847979964,2019
+2001,88,"(85,90]",NoHS,125.55470543228768,10.675150014771946,11.76139962984585,9183.835689993522,2019
+2001,88,"(85,90]",NoHS,125.55470543228768,10.675150014771946,11.76139962984585,9291.295255975234,2019
+2001,88,"(85,90]",NoHS,103.54078041315991,17.21798389479346,6.013525221409318,8345.313307876775,2019
+2001,88,"(85,90]",NoHS,103.54078041315991,17.21798389479346,6.013525221409318,8661.824844060717,2019
+2001,88,"(85,90]",NoHS,103.54078041315991,17.21798389479346,6.013525221409318,8803.994721787642,2019
+2001,88,"(85,90]",NoHS,103.3733741392502,17.21798389479346,6.003802464381979,8564.299228233296,2019
+2001,88,"(85,90]",NoHS,103.54078041315991,17.21798389479346,6.013525221409318,8733.347155448846,2019
+2001,31,"(30,35]",HS,0,24.105177452710844,0,5526.895146709865,2019
+2001,31,"(30,35]",HS,0,24.105177452710844,0,5536.156520799701,2019
+2001,31,"(30,35]",HS,0,24.105177452710844,0,5555.52313691576,2019
+2001,31,"(30,35]",HS,0,24.105177452710844,0,5584.004380137949,2019
+2001,31,"(30,35]",HS,0,24.105177452710844,0,5540.609748884341,2019
+2001,72,"(70,75]",College,123.04361132364194,72.31553235813253,1.7014824797843666,8978.359910282988,2019
+2001,72,"(70,75]",College,123.04361132364194,65.42833880021514,1.880585898709037,9902.402754671906,2019
+2001,72,"(70,75]",College,123.04361132364194,48.21035490542169,2.5522237196765496,9788.981322098452,2019
+2001,72,"(70,75]",College,123.04361132364194,46.488556515942335,2.646750524109015,9428.930345907644,2019
+2001,72,"(70,75]",College,123.04361132364194,80.92452430552926,1.5204737053392212,9675.451041493465,2019
+2001,45,"(40,45]",College,33695.034267788826,623.2910169915232,54.05987468009198,366.5238559756359,2019
+2001,45,"(40,45]",College,17531.354185156848,668.0577751179861,26.242272507135514,347.0640763287968,2019
+2001,45,"(40,45]",College,13934.948462127008,519.9831136227624,26.798848072279018,369.9936353274847,2019
+2001,45,"(40,45]",College,41384.16346442234,519.9831136227624,79.58751424848334,376.57100058552925,2019
+2001,45,"(40,45]",College,24261.28728385616,519.9831136227624,46.65783685709696,361.9683243107386,2019
+2001,62,"(60,65]",NoHS,84.13839326702372,20.661580673752148,4.072214734950584,6373.510163168758,2019
+2001,62,"(60,65]",NoHS,140.83889824024484,32.71416940010757,4.305134466895001,6628.910656173843,2019
+2001,62,"(60,65]",NoHS,82.86610558530987,24.105177452710844,3.4376890918092298,6872.131523946623,2019
+2001,62,"(60,65]",NoHS,152.8084468247896,34.43596778958692,4.437466307277628,6497.225530244969,2019
+2001,62,"(60,65]",NoHS,167.85827084927314,29.27057262114888,5.734710865478267,6560.6922525801665,2019
+2001,59,"(55,60]",NoHS,569.1813312930375,129.1348792109509,4.407649852393789,7566.233030208716,2019
+2001,59,"(55,60]",NoHS,885.5791889824025,129.1348792109509,6.857784623283277,6872.080743779961,2019
+2001,59,"(55,60]",NoHS,1214.3651109410864,129.1348792109509,9.403850596842512,6428.9438496499815,2019
+2001,59,"(55,60]",NoHS,613.5439938791125,129.1348792109509,4.751187267359775,7197.506172711795,2019
+2001,59,"(55,60]",NoHS,2045.7046671767407,129.1348792109509,15.841612116544734,3605.7094682912007,2019
+2001,40,"(35,40]",HS,9.575638867635808,165.29264539001719,0.0579314272878963,4780.60331018365,2019
+2001,40,"(35,40]",HS,13.86123947972456,194.5632180111661,0.07124285680209635,4728.507799511033,2019
+2001,40,"(35,40]",HS,12.840061208875287,220.39019385335627,0.05826058312475934,4744.661812211146,2019
+2001,40,"(35,40]",HS,14.196052027543994,94.69891142136402,0.14990723562152133,4726.531741442141,2019
+2001,40,"(35,40]",HS,16.42255547054323,96.42070981084338,0.17032186863963913,4781.684525795719,2019
+2001,36,"(35,40]",College,289.3952257077276,153.24005666366176,1.8885089969844202,4973.513012938467,2019
+2001,36,"(35,40]",College,137.15596021423107,154.9618550531411,0.8850949813887821,4975.970701414099,2019
+2001,36,"(35,40]",College,87.78785003825556,153.24005666366176,0.5728779533861458,5092.7641096508105,2019
+2001,36,"(35,40]",College,53.21845447589901,153.24005666366176,0.3472881414596791,5041.235676513725,2019
+2001,36,"(35,40]",College,146.31308339709258,153.24005666366176,0.9547965889769096,5001.76877592362,2019
+2001,48,"(45,50]",HS,178.03657230298393,75.75912913709122,2.350034567858018,6062.798003108661,2019
+2001,48,"(45,50]",HS,219.72073450650345,75.75912913709122,2.90025422690517,6384.70911810164,2019
+2001,48,"(45,50]",HS,288.5247130833971,77.48092752657055,3.7238159414709284,6409.579298394552,2019
+2001,48,"(45,50]",HS,377.08263198163735,75.75912913709122,4.977388682745826,6197.203298302009,2019
+2001,48,"(45,50]",HS,377.08263198163735,75.75912913709122,4.977388682745826,6319.992400058959,2019
+2001,50,"(45,50]",College,32013.754644223412,926.3275335398881,34.55986515038084,207.80502897288798,2019
+2001,50,"(45,50]",College,32042.063045141545,860.899194739673,37.21929726607624,194.79556708313498,2019
+2001,50,"(45,50]",College,32221.522570772762,872.9517834660282,36.910999188108875,204.6977452387666,2019
+2001,50,"(45,50]",College,31919.856465187455,946.9891142136402,33.70667728497918,213.1017896887116,2019
+2001,50,"(45,50]",College,32646.064881407805,922.8839367609295,35.37396587049351,204.86089829700504,2019
+2001,47,"(45,50]",College,7.683947972456006,34.43596778958692,0.2231372737774355,6572.068315991304,2019
+2001,47,"(45,50]",College,25.596419280795715,24.105177452710844,1.0618639639144065,6615.416802933495,2019
+2001,47,"(45,50]",College,12.019770466717675,34.43596778958692,0.34904697728147865,6613.2062642916835,2019
+2001,47,"(45,50]",College,28.10751338944147,27.548774231669533,1.0202818155564113,6575.230503223186,2019
+2001,47,"(45,50]",College,24.424575363427696,27.548774231669533,0.8865939064304966,6579.064274447327,2019
+2001,52,"(50,55]",HS,297.64835501147667,103.30790336876075,2.8811769991015272,6300.519146030549,2019
+2001,52,"(50,55]",HS,342.5132364192808,103.30790336876075,3.31546014632268,6635.052333890897,2019
+2001,52,"(50,55]",HS,300.66166794185153,103.30790336876075,2.910345270183545,6660.89766916685,2019
+2001,52,"(50,55]",HS,289.1106350420811,103.30790336876075,2.7985335643691442,6440.19444698225,2019
+2001,52,"(50,55]",HS,271.1981637337414,103.30790336876075,2.6251443973815944,6567.798085788437,2019
+2001,66,"(65,70]",College,31301.027455241012,4872.689442226549,6.423768193389764,10.719873855226902,2019
+2001,66,"(65,70]",College,31530.63687834736,5130.959200648452,6.145173961695605,10.435442962152202,2019
+2001,66,"(65,70]",College,32318.84420811018,3942.9183119077015,8.196681151244382,10.829210793767967,2019
+2001,66,"(65,70]",College,32232.165424636572,3891.2643602233215,8.283211429712978,11.208984887044869,2019
+2001,66,"(65,70]",College,33792.40612700841,3684.6485534858007,9.17113413572094,10.748342561587899,2019
+2001,43,"(40,45]",HS,989.2036725325172,189.39782284272803,5.222888297686142,4196.9366148595545,2019
+2001,43,"(40,45]",HS,989.2036725325172,189.39782284272803,5.222888297686142,4156.257989867276,2019
+2001,43,"(40,45]",HS,988.8688599846978,189.39782284272803,5.22112052368117,3998.5232729105437,2019
+2001,43,"(40,45]",HS,989.0362662586075,189.39782284272803,5.222004410683656,4142.719466576536,2019
+2001,43,"(40,45]",HS,988.8688599846978,189.39782284272803,5.22112052368117,4372.725630245511,2019
+2001,81,"(80,85]",NoHS,579.2257077276205,13.085667760043028,44.26413067709705,8980.950244933472,2019
+2001,81,"(80,85]",NoHS,579.2257077276205,13.257847598990962,43.68927183713476,9195.46815456096,2019
+2001,81,"(80,85]",NoHS,579.3931140015302,13.085667760043028,44.27692377844881,9369.510847979964,2019
+2001,81,"(80,85]",NoHS,579.3931140015302,13.085667760043028,44.27692377844881,9183.835689993522,2019
+2001,81,"(80,85]",NoHS,579.0583014537108,13.085667760043028,44.25133757574529,9291.295255975234,2019
+2001,58,"(55,60]",College,163.22111706197398,98.14250820032271,1.6631031757290802,5451.9070769739355,2019
+2001,58,"(55,60]",College,184.1469013006886,98.14250820032271,1.8763215315917827,5557.424742661935,2019
+2001,58,"(55,60]",College,159.87299158377965,98.14250820032271,1.6289882387910477,5487.100995567179,2019
+2001,58,"(55,60]",College,168.2433052792655,98.14250820032271,1.714275581136129,5583.472829049513,2019
+2001,58,"(55,60]",College,174.93955623565418,98.14250820032271,1.7825054550121937,5491.364776393441,2019
+2001,54,"(50,55]",College,24277.25784238715,1205.258872635542,20.142774630067663,1449.8473079898063,2019
+2001,54,"(50,55]",College,24277.25784238715,1205.258872635542,20.142774630067663,1499.9110352301152,2019
+2001,54,"(50,55]",College,24278.931905126243,1205.258872635542,20.14416359535728,1486.94076987342,2019
+2001,54,"(50,55]",College,24277.25784238715,1205.258872635542,20.142774630067663,1444.8433514020944,2019
+2001,54,"(50,55]",College,24278.931905126243,1205.258872635542,20.14416359535728,1435.8447710207934,2019
+2001,33,"(30,35]",HS,4.017750573833205,32.71416940010757,0.12281377297691666,4991.740342783985,2019
+2001,33,"(30,35]",HS,8.70512624330528,32.71416940010757,0.2660965081166528,5005.804023946699,2019
+2001,33,"(30,35]",HS,3.348125478194338,34.43596778958692,0.09722757027339236,5008.103666442506,2019
+2001,33,"(30,35]",HS,3.348125478194338,32.71416940010757,0.10234481081409723,5010.2777073547495,2019
+2001,33,"(30,35]",HS,6.361438408569243,32.71416940010757,0.19445514054678475,4995.290048541181,2019
+2001,23,"(20,25]",HS,6060.609334353481,559.5844765807874,10.830553004946536,2110.128482266581,2019
+2001,23,"(20,25]",HS,6064.292272379495,559.5844765807874,10.83713456354966,2019.6500272930039,2019
+2001,23,"(20,25]",HS,6027.1280795715375,559.5844765807874,10.770720654009063,2104.5330145941944,2019
+2001,23,"(20,25]",HS,7288.534353481255,559.5844765807874,13.02490447557833,2107.318853615325,2019
+2001,23,"(20,25]",HS,6091.579495026778,559.5844765807874,10.885897929563697,2005.5924067752374,2019
+2001,30,"(25,30]",HS,7.03106350420811,58.54114524229776,0.12010464563183765,8210.297168396088,2019
+2001,30,"(25,30]",College,7.198469778117827,113.63869370563681,0.06334523517811928,8289.390055277208,2019
+2001,30,"(25,30]",HS,7.365876052027544,44.76675812646299,0.16453896507804863,8520.286137125822,2019
+2001,30,"(25,30]",NoHS,7.365876052027544,29.27057262114888,0.2516478289428979,8288.646962267278,2019
+2001,30,"(25,30]",NoHS,7.03106350420811,61.984742021256444,0.11343216531895778,8309.305344133023,2019
+2001,72,"(70,75]",HS,101.24731446059678,22.383379063231494,4.523325730872901,8710.62529196664,2019
+2001,72,"(70,75]",HS,93.78099464422341,30.992371010628222,3.025938048175245,9642.173580008082,2019
+2001,72,"(70,75]",HS,98.11681713848509,24.105177452710844,4.070362781231091,9540.24834935482,2019
+2001,72,"(70,75]",HS,124.68419280795716,20.661580673752148,6.034591194968554,9209.356809980593,2019
+2001,72,"(70,75]",HS,101.81649579188984,25.826975842190187,3.94225388268515,9361.222432117384,2019
+2001,70,"(65,70]",College,1384.952104055088,146.35286310574438,9.463102222020884,4424.8080223289535,2019
+2001,70,"(65,70]",College,1384.7846977811782,146.35286310574438,9.461958368252962,4533.248638976959,2019
+2001,70,"(65,70]",College,1384.952104055088,146.35286310574438,9.463102222020884,5596.8377627061745,2019
+2001,70,"(65,70]",College,1384.7846977811782,146.35286310574438,9.461958368252962,4597.600454083906,2019
+2001,70,"(65,70]",College,1384.952104055088,146.35286310574438,9.463102222020884,4747.805638317748,2019
+2001,43,"(40,45]",College,899.6413159908187,244.49537130606709,3.679584244008526,6400.702269981839,2019
+2001,43,"(40,45]",College,887.9228768171386,246.21716969554646,3.606258970140372,5818.8359019804775,2019
+2001,43,"(40,45]",College,1235.6257077276207,316.81090366419966,3.900199435803854,5438.970435675464,2019
+2001,43,"(40,45]",College,1816.8602907421578,289.2621294325301,6.281016786768616,2975.3197682228188,2019
+2001,43,"(40,45]",College,821.96480489671,173.90163733741394,4.726607624181748,5851.645603652029,2019
+2001,44,"(40,45]",College,9116.945677123183,516.5395168438037,17.650044923629835,2436.204640661848,2019
+2001,44,"(40,45]",College,9116.945677123183,516.5395168438037,17.650044923629835,2452.1410082017364,2019
+2001,44,"(40,45]",College,9116.945677123183,516.5395168438037,17.650044923629835,2495.493899596385,2019
+2001,44,"(40,45]",College,9116.945677123183,516.5395168438037,17.650044923629835,2437.213496552925,2019
+2001,44,"(40,45]",College,9116.945677123183,516.5395168438037,17.650044923629835,2429.5734845251327,2019
+2001,34,"(30,35]",HS,216.7911247130834,74.03733074761188,2.9281326396289096,4982.374052602626,2019
+2001,34,"(30,35]",HS,216.7911247130834,74.03733074761188,2.9281326396289096,4979.68347391873,2019
+2001,34,"(30,35]",HS,216.7911247130834,74.03733074761188,2.9281326396289096,4991.0892900241515,2019
+2001,34,"(30,35]",HS,216.7911247130834,74.03733074761188,2.9281326396289096,5000.6287949539565,2019
+2001,34,"(30,35]",HS,216.7911247130834,74.03733074761188,2.9281326396289096,4978.095181330011,2019
+2001,58,"(55,60]",HS,-3.682938026013772,56.819346852818406,-0.06481838018226159,3971.187060408733,2019
+2001,58,"(55,60]",HS,-3.850344299923489,56.819346852818406,-0.0677646701905462,4066.529486985405,2019
+2001,58,"(55,60]",HS,-3.682938026013772,56.819346852818406,-0.06481838018226159,3998.5425602544224,2019
+2001,58,"(55,60]",HS,-3.850344299923489,56.819346852818406,-0.0677646701905462,4030.2227651230396,2019
+2001,58,"(55,60]",HS,-3.682938026013772,56.819346852818406,-0.06481838018226159,4007.423698061653,2019
+2001,60,"(55,60]",NoHS,21.260596786534048,44.76675812646299,0.47491928556618584,5536.266143185605,2019
+2001,60,"(55,60]",NoHS,21.260596786534048,44.76675812646299,0.47491928556618584,5610.925789921979,2019
+2001,60,"(55,60]",NoHS,21.09319051262433,44.76675812646299,0.4711797636325938,5516.596052687621,2019
+2001,60,"(55,60]",NoHS,21.09319051262433,44.76675812646299,0.4711797636325938,5613.243530679454,2019
+2001,60,"(55,60]",NoHS,21.260596786534048,44.76675812646299,0.47491928556618584,5520.276137733052,2019
+2001,49,"(45,50]",College,63.36327467482785,49.93215329490103,1.2689874258096212,5086.6579400263145,2019
+2001,49,"(45,50]",College,60.01514919663351,49.93215329490103,1.2019339290693505,5184.96089592709,2019
+2001,49,"(45,50]",College,61.68921193573068,49.93215329490103,1.2354606774394858,5192.3874518460225,2019
+2001,49,"(45,50]",College,63.36327467482785,49.93215329490103,1.2689874258096212,5121.903381980139,2019
+2001,49,"(45,50]",College,63.36327467482785,49.93215329490103,1.2689874258096212,5140.639272321047,2019
+2001,81,"(80,85]",NoHS,212.10374904361132,215.22479868491826,0.9854986522911049,10281.096732898444,2019
+2001,81,"(80,85]",NoHS,173.60030604437642,216.94659707439757,0.8001983362976817,10724.878205929823,2019
+2001,81,"(80,85]",NoHS,270.69594491201224,216.94659707439757,1.2477538185085355,10802.888610807087,2019
+2001,81,"(80,85]",NoHS,175.2743687834736,216.94659707439757,0.8079148101289032,10637.925459147593,2019
+2001,81,"(80,85]",NoHS,270.69594491201224,216.94659707439757,1.2477538185085355,10617.896473540426,2019
+2001,85,"(80,85]",HS,1055.496557000765,137.74387115834767,7.662747882171736,7948.478221910334,2019
+2001,85,"(80,85]",HS,1054.1573068094874,137.74387115834767,7.6530251251443975,7173.6451673230285,2019
+2001,85,"(80,85]",HS,1054.3247130833972,137.74387115834767,7.654240469772815,6784.404620646739,2019
+2001,85,"(80,85]",HS,1052.8180566182098,137.74387115834767,7.643302368117059,7586.939342150256,2019
+2001,85,"(80,85]",HS,1053.9899005355776,137.74387115834767,7.651809780515979,7291.442514386884,2019
+2001,39,"(35,40]",HS,287.6039785768936,249.6607664745051,1.151979073997849,8760.395309521351,2019
+2001,39,"(35,40]",HS,280.907727620505,249.6607664745051,1.125157675301741,9075.175889539621,2019
+2001,39,"(35,40]",HS,290.952104055088,249.6607664745051,1.1653897733459033,9187.82050110181,2019
+2001,39,"(35,40]",HS,292.7935730680949,249.6607664745051,1.1727656579873331,8956.33175330892,2019
+2001,39,"(35,40]",HS,290.952104055088,249.6607664745051,1.1653897733459033,9117.848823224787,2019
+2001,29,"(25,30]",HS,101.78301453710789,86.08991947396729,1.1822872545244514,6938.991455763886,2019
+2001,29,"(25,30]",HS,85.54460596786534,86.08991947396729,0.99366576819407,7029.03303198032,2019
+2001,29,"(25,30]",HS,85.37719969395563,86.08991947396729,0.9917212167886024,7085.144847099347,2019
+2001,29,"(25,30]",HS,106.80520275439939,86.08991947396729,1.2406237966884868,6935.778086867198,2019
+2001,29,"(25,30]",HS,99.43932670237186,86.08991947396729,1.1550635348479017,7021.782701946681,2019
+2001,38,"(35,40]",HS,269.1892884468248,82.64632269500859,3.2571236041586444,6371.086565315807,2019
+2001,38,"(35,40]",HS,271.3153481254782,82.64632269500859,3.2828483987934796,6607.536562277867,2019
+2001,38,"(35,40]",HS,269.5743228768171,82.64632269500859,3.2617824252342444,6669.294457246144,2019
+2001,38,"(35,40]",HS,269.13906656465184,82.64632269500859,3.2565159318444357,6470.908534520911,2019
+2001,38,"(35,40]",HS,271.0474980872226,82.64632269500859,3.2796074797843664,6619.338288294998,2019
+2001,37,"(35,40]",NoHS,0.5022188217291507,18.939782284272805,0.02651661007456155,6151.73757739593,2019
+2001,37,"(35,40]",NoHS,0.5022188217291507,25.826975842190187,0.019445514054678474,6170.551111218295,2019
+2001,37,"(35,40]",NoHS,0.5022188217291507,18.939782284272805,0.02651661007456155,6082.06845147335,2019
+2001,37,"(35,40]",NoHS,0.5022188217291507,32.71416940010757,0.015351721622114583,6121.713384172192,2019
+2001,37,"(35,40]",NoHS,0.5022188217291507,22.383379063231494,0.022437131601552085,6176.027397931895,2019
+2001,45,"(40,45]",HS,1536.957000765111,199.7286131796041,7.695226919655306,417.4572666667714,2019
+2001,45,"(40,45]",HS,1536.957000765111,199.7286131796041,7.695226919655306,413.58020096117343,2019
+2001,45,"(40,45]",HS,1538.7984697781178,199.7286131796041,7.704446775457092,398.45272648000224,2019
+2001,45,"(40,45]",HS,1537.1244070390208,199.7286131796041,7.696065088364559,413.11162648474453,2019
+2001,45,"(40,45]",HS,1538.7984697781178,199.7286131796041,7.704446775457092,436.24270730870774,2019
+2001,74,"(70,75]",College,70258.90650344301,2651.5695197981922,26.497101425720995,14.608140502550564,2019
+2001,74,"(70,75]",College,70223.58377964805,1928.4141962168671,36.4151974806095,15.874372334474874,2019
+2001,74,"(70,75]",College,68850.85233358838,3546.904682327452,19.41153160293244,15.508857024996303,2019
+2001,74,"(70,75]",College,69478.62586074982,3805.1744407493547,18.258985742337572,15.245517375064313,2019
+2001,74,"(70,75]",College,66018.50558530987,2117.812019059595,31.172977106166908,16.088342421621903,2019
+2001,41,"(40,45]",HS,128.5010558530987,63.706540410735805,2.017077917347459,6991.46912576631,2019
+2001,41,"(40,45]",HS,137.70840091813312,58.54114524229776,2.3523352737321344,7176.88130309856,2019
+2001,41,"(40,45]",HS,148.50610558530988,51.653951684380374,2.8750192529842127,7248.608509619148,2019
+2001,41,"(40,45]",HS,129.55571537872993,129.1348792109509,1.0032588884610452,7076.106344852677,2019
+2001,41,"(40,45]",HS,133.72413159908186,117.08229048459552,1.1421379872703796,7192.291234906044,2019
+2001,81,"(80,85]",College,989747.6023014537,23846.90769428894,41.504232539906496,3.34267309681318,2019
+2001,81,"(80,85]",College,970094.4405570008,24070.741484921255,40.30180961249995,3.4116247034810647,2019
+2001,81,"(80,85]",College,983377.2913603673,23795.25374260456,41.32661504675048,3.0105098118198286,2019
+2001,81,"(80,85]",College,987591.5768997705,24122.39543660563,40.94085844397959,3.917867124551686,2019
+2001,81,"(80,85]",College,976365.5130589136,21935.711481966864,44.51031888624056,3.1118211256917494,2019
+2001,57,"(55,60]",College,170.0178117827085,96.42070981084338,1.7632914351724516,6311.845191396047,2019
+2001,57,"(55,60]",College,175.49199693955623,117.08229048459552,1.4988773811411356,6704.826018159947,2019
+2001,57,"(55,60]",College,147.26729915837797,89.53351625292598,1.6448287224904476,6760.837936830969,2019
+2001,57,"(55,60]",College,199.49805661820963,92.97711303188467,2.14566843508892,6559.319768145084,2019
+2001,57,"(55,60]",College,172.662830910482,113.63869370563681,1.5194017572723773,6572.267309854729,2019
+2001,35,"(30,35]",NoHS,4.386044376434583,67.15013718969449,0.06531698310674051,6206.722879795701,2019
+2001,35,"(30,35]",NoHS,5.141046671767406,67.15013718969449,0.0765604790537405,6371.3237644652345,2019
+2001,35,"(30,35]",NoHS,6.093588370313695,67.15013718969449,0.0907457322551662,6435.00006565556,2019
+2001,35,"(30,35]",NoHS,5.842478959449121,67.15013718969449,0.08700621032157421,6281.860129883763,2019
+2001,35,"(30,35]",NoHS,5.725294567712318,67.15013718969449,0.08526110008589792,6385.004033176298,2019
+2001,32,"(30,35]",College,272.53741392501917,204.89400834804215,1.3301385244124606,7964.531119917499,2019
+2001,32,"(30,35]",College,272.53741392501917,203.1722099585628,1.3414108847888373,7985.473917256464,2019
+2001,32,"(30,35]",College,272.53741392501917,203.1722099585628,1.3414108847888373,8054.38542562941,2019
+2001,32,"(30,35]",College,272.3700076511094,203.1722099585628,1.340586922328893,7932.922324372627,2019
+2001,32,"(30,35]",College,272.3700076511094,203.1722099585628,1.340586922328893,7980.112175868962,2019
+2001,32,"(30,35]",HS,441.6010099464422,122.24768565303354,3.612346586256081,8542.667276638724,2019
+2001,32,"(30,35]",HS,439.1401377199694,122.24768565303354,3.5922163710022943,8596.388047676315,2019
+2001,32,"(30,35]",HS,441.41686304514155,122.24768565303354,3.6108402436180427,8678.317707561695,2019
+2001,32,"(30,35]",HS,440.16131599081865,122.24768565303354,3.6005697256314164,8566.058401239203,2019
+2001,32,"(30,35]",HS,421.78010711553173,122.24768565303354,3.4502093423072124,8535.93890531379,2019
+2001,49,"(45,50]",College,213.71084927314462,39.60136295802496,5.396552878739683,6291.213615897173,2019
+2001,49,"(45,50]",College,558.4003672532517,24.105177452710844,23.16516310028054,5870.15829448664,2019
+2001,49,"(45,50]",College,466.6617291507269,49.93215329490103,9.345916375658918,6747.010237862002,2019
+2001,49,"(45,50]",College,702.6041315990819,22.383379063231494,31.389547110571375,6181.362258607238,2019
+2001,49,"(45,50]",College,325.7223871461362,53.37575007385973,6.102441402610952,6547.342884115218,2019
+2001,59,"(55,60]",College,5654.314307574598,378.79564568545607,14.927083697973186,2990.3188104891906,2019
+2001,59,"(55,60]",College,5692.4829380260135,378.79564568545607,15.027846816256519,2942.055571155666,2019
+2001,59,"(55,60]",College,5680.764498852334,378.79564568545607,14.996910771169533,3024.64120391865,2019
+2001,59,"(55,60]",College,5652.138026013772,378.79564568545607,14.92133843245703,2934.80257284236,2019
+2001,59,"(55,60]",College,5648.957306809488,378.79564568545607,14.912941505933421,2913.289124085256,2019
+2001,52,"(50,55]",College,405.6254016832441,34.43596778958692,11.779120138621487,7649.251478300134,2019
+2001,52,"(50,55]",College,433.08003060443764,32.71416940010757,13.238301278803476,8046.226138978954,2019
+2001,52,"(50,55]",College,386.2062739097169,34.43596778958692,11.21520023103581,8102.103311209199,2019
+2001,52,"(50,55]",College,488.49150726855396,32.71416940010757,14.932107897776786,7870.390778680286,2019
+2001,52,"(50,55]",College,368.62861514919666,30.992371010628222,11.894172763445003,7987.8519830907,2019
+2001,75,"(70,75]",College,277095.65239479725,1721.798389479346,160.93385502502886,17.78317985079869,2019
+2001,75,"(70,75]",College,280975.35975516454,1721.798389479346,163.18714285714285,19.364058268294023,2019
+2001,75,"(70,75]",College,286602.55424636573,1721.798389479346,166.45535040431264,18.90030794244316,2019
+2001,75,"(70,75]",College,284256.3050956389,1721.798389479346,165.09267683866,18.56465708175563,2019
+2001,75,"(70,75]",College,281432.0440703902,1721.798389479346,163.45237966884866,19.6123879178756,2019
+2001,38,"(35,40]",HS,182.99179801071156,106.75150014771945,1.7141847913846,6615.09156554341,2019
+2001,38,"(35,40]",HS,171.6081713848508,106.75150014771945,1.6075481014073307,6790.522295245047,2019
+2001,38,"(35,40]",HS,179.59345065034432,106.75150014771945,1.6823506030531505,6858.388151524907,2019
+2001,38,"(35,40]",HS,154.90102524866106,106.75150014771945,1.4510430769995153,6695.172438967558,2019
+2001,38,"(35,40]",HS,181.35121652639634,106.75150014771945,1.6988165625349347,6805.102651403615,2019
+2001,41,"(40,45]",College,613.1254781943381,108.47329853719879,5.6523170813698345,7366.430384022913,2019
+2001,41,"(40,45]",College,666.6954858454476,108.47329853719879,6.146171406568018,6696.77291334377,2019
+2001,41,"(40,45]",College,527.7482785003825,108.47329853719879,4.865236750585229,6259.59392972605,2019
+2001,41,"(40,45]",College,716.9173680183627,108.47329853719879,6.609159836441315,7003.5603811378,2019
+2001,41,"(40,45]",College,529.4223412394797,108.47329853719879,4.880669698247672,6734.532892341316,2019
+2001,66,"(65,70]",College,43328.09181331293,2720.4414553773663,15.926860593771782,170.70316365473857,2019
+2001,66,"(65,70]",College,46333.034429992345,1578.8891231525602,29.34533764947307,159.69056269811,2019
+2001,66,"(65,70]",College,31105.7597551645,1485.9120101206754,20.933783119929362,167.96700212053682,2019
+2001,66,"(65,70]",College,45126.035195103286,1542.731356973494,29.25074089608889,175.001726293633,2019
+2001,66,"(65,70]",College,40731.620504973216,3030.3651654836485,13.441159160919941,168.05053491723305,2019
+2001,18,"(15,20]",HS,10.712327467482785,49.93215329490103,0.2145376628204958,6324.2208388287345,2019
+2001,18,"(15,20]",HS,6.311216526396327,32.71416940010757,0.1929199683845733,6282.624284204414,2019
+2001,18,"(15,20]",HS,9.374751338944147,39.60136295802496,0.23672799718739013,6176.065812143375,2019
+2001,18,"(15,20]",HS,5.842478959449121,39.60136295802496,0.14753226967571278,6225.65910562014,2019
+2001,18,"(15,20]",HS,5.524407039020658,25.826975842190187,0.2139006546014632,6251.75059783371,2019
+2001,43,"(40,45]",College,925.1372915072686,280.65313748513336,3.296372525164714,8849.054586126478,2019
+2001,43,"(40,45]",College,850.5577964804896,296.1493229904475,2.872057203750302,8044.6167236714555,2019
+2001,43,"(40,45]",College,782.2392960979342,225.5555890217943,3.4680554779884014,7519.447749247813,2019
+2001,43,"(40,45]",College,643.2586074980873,297.8711213799269,2.1595198773150877,8413.150587065727,2019
+2001,43,"(40,45]",College,763.6906809487375,294.4275246009682,2.5938155136268337,8089.976565263796,2019
+2001,37,"(35,40]",College,22.331996939556237,30.992371010628222,0.7205643263594748,4659.570317448157,2019
+2001,37,"(35,40]",College,43.34148431522571,49.93215329490103,0.8680075153028031,4608.793735612693,2019
+2001,37,"(35,40]",College,115.39314460596788,36.157766179066265,3.1913792471166365,4557.853139050203,2019
+2001,37,"(35,40]",College,76.88970160673298,117.08229048459552,0.6567150445083695,4606.867706422248,2019
+2001,37,"(35,40]",College,58.525233358837035,125.69128243199225,0.46562682969284896,4660.624159368487,2019
+2001,68,"(65,70]",HS,1720.0994644223413,211.78120190595953,8.122059224057779,5362.372540951232,2019
+2001,68,"(65,70]",HS,1720.0994644223413,211.78120190595953,8.122059224057779,4851.600452770124,2019
+2001,68,"(65,70]",HS,1720.0994644223413,211.78120190595953,8.122059224057779,4551.1023041944845,2019
+2001,68,"(65,70]",HS,1720.0994644223413,211.78120190595953,8.122059224057779,5105.122693620487,2019
+2001,68,"(65,70]",HS,1720.0994644223413,211.78120190595953,8.122059224057779,4868.588049508679,2019
+2001,72,"(70,75]",HS,188.49946442234125,43.04495973698364,4.379129765113593,7498.292955535796,2019
+2001,72,"(70,75]",HS,217.29334353481255,43.04495973698364,5.048055448594533,8385.843770901218,2019
+2001,72,"(70,75]",HS,209.42524866105583,43.04495973698364,4.865267616480554,8291.8786675724,2019
+2001,72,"(70,75]",HS,208.92302983932672,43.04495973698364,4.853600308047748,7955.51355584548,2019
+2001,72,"(70,75]",HS,272.03519510329,43.04495973698364,6.319792067770505,8138.5659471810795,2019
+2001,47,"(45,50]",College,1368.755547054323,168.7362421689759,8.111805320896167,35.4633117161779,2019
+2001,47,"(45,50]",College,1409.8286763580718,259.9915568113812,5.422594078241067,34.92978088361595,2019
+2001,47,"(45,50]",College,1387.9737872991584,228.99918580075305,6.0610424550015765,33.79661069161266,2019
+2001,47,"(45,50]",College,1561.624315225708,154.9618550531411,10.077475612886667,35.21848931292467,2019
+2001,47,"(45,50]",College,1407.3175822494263,172.17983894793457,8.173532922603005,37.757583185562396,2019
+2001,54,"(50,55]",College,14074.84988523336,654.2833880021514,21.5118557850151,18.687378031860785,2019
+2001,54,"(50,55]",College,10934.47559296098,609.5166298756884,17.939585332054154,18.796529751732592,2019
+2001,54,"(50,55]",College,-746.2971690895181,578.5242588650602,-1.290001512734474,19.23100953311062,2019
+2001,54,"(50,55]",College,-4423.71078806427,588.8550492019364,-7.512393404895887,18.741276091598614,2019
+2001,54,"(50,55]",College,-5401.028615149196,616.4038234336058,-8.762159496453794,18.5383937669174,2019
+2001,24,"(20,25]",HS,-7.4328385615914305,22.383379063231494,-0.33206954770297087,5604.812225358477,2019
+2001,24,"(20,25]",HS,-7.4328385615914305,22.383379063231494,-0.33206954770297087,5604.121567201844,2019
+2001,24,"(20,25]",HS,-7.4328385615914305,22.383379063231494,-0.33206954770297087,5617.332556794376,2019
+2001,24,"(20,25]",HS,-7.4328385615914305,22.383379063231494,-0.33206954770297087,5593.83194084645,2019
+2001,24,"(20,25]",HS,-7.4328385615914305,22.383379063231494,-0.33206954770297087,5594.6546124572915,2019
+2001,83,"(80,85]",NoHS,789.9902065799541,30.992371010628222,25.489828006674372,11081.094460427732,2019
+2001,83,"(80,85]",NoHS,790.659831675593,72.31553235813253,10.933471771457908,10008.170321496498,2019
+2001,83,"(80,85]",NoHS,791.1620504973221,58.54114524229776,13.51463226800154,9463.92312644495,2019
+2001,83,"(80,85]",NoHS,790.1576128538638,39.60136295802496,19.95278833436574,10580.520641075695,2019
+2001,83,"(80,85]",NoHS,789.1531752104055,29.27057262114888,26.960633309927744,10162.087839874897,2019
+2001,69,"(65,70]",NoHS,250.94200459066568,25.826975842190187,9.716275189321012,6653.533344172602,2019
+2001,69,"(65,70]",NoHS,250.94200459066568,25.826975842190187,9.716275189321012,6892.667461427685,2019
+2001,69,"(65,70]",NoHS,250.94200459066568,25.826975842190187,9.716275189321012,7178.682989670384,2019
+2001,69,"(65,70]",NoHS,250.94200459066568,25.826975842190187,9.716275189321012,6669.962465601528,2019
+2001,69,"(65,70]",NoHS,250.94200459066568,25.826975842190187,9.716275189321012,6938.909279906109,2019
+2001,61,"(60,65]",College,1578.390053557766,349.52507306430715,4.515813528683154,8695.067142575223,2019
+2001,61,"(60,65]",College,3005.0263198163734,347.8032746748279,8.64001732768579,3911.0064489569704,2019
+2001,61,"(60,65]",College,1848.2489671002297,349.52507306430715,5.287886648292556,4911.659009766436,2019
+2001,61,"(60,65]",College,1856.4518745218056,349.52507306430715,5.31135537215165,4044.709706183386,2019
+2001,61,"(60,65]",College,3368.297934200459,347.8032746748279,9.684491721216787,4143.953370267766,2019
+2001,44,"(40,45]",College,1938.6483550114767,747.2605010340361,2.5943407316843787,998.3564365972254,2019
+2001,44,"(40,45]",College,1938.9831675592961,747.2605010340361,2.594788785003611,987.0409547874326,2019
+2001,44,"(40,45]",College,1937.811323641928,748.9822994235153,2.5872591717233417,1042.2081736691814,2019
+2001,44,"(40,45]",College,1938.6483550114767,748.9822994235153,2.5883767300023464,1013.079056498995,2019
+2001,44,"(40,45]",College,1938.3302830910484,748.9822994235153,2.5879520578563247,1013.7506644698394,2019
+2001,52,"(50,55]",HS,702.1019127773527,61.984742021256444,11.327011936850212,8233.89557067146,2019
+2001,52,"(50,55]",HS,733.23947972456,84.36812108448795,8.69095424076446,7476.210023164463,2019
+2001,52,"(50,55]",HS,729.8913542463657,70.59373396865318,10.339322107121726,6980.139312996262,2019
+2001,52,"(50,55]",HS,730.7283856159144,125.69128243199225,5.813675948539147,7827.909954527153,2019
+2001,52,"(50,55]",HS,733.23947972456,101.5861049792814,7.217911149109468,7512.865758430378,2019
+2001,58,"(55,60]",HS,490.83519510329,58.54114524229776,8.38444811887019,6121.296382754793,2019
+2001,58,"(55,60]",HS,365.447895944912,58.54114524229776,6.242581938435751,5553.325710782697,2019
+2001,58,"(55,60]",HS,490.66778882938024,58.54114524229776,8.381588484450383,5278.339473925682,2019
+2001,58,"(55,60]",HS,365.28048967100233,58.54114524229776,6.239722304015946,5845.565980161901,2019
+2001,58,"(55,60]",HS,365.447895944912,58.54114524229776,6.242581938435751,5586.1606380252,2019
+2001,44,"(40,45]",HS,446.13771996939556,154.9618550531411,2.8790163864287854,7844.0480336445235,2019
+2001,44,"(40,45]",HS,498.36847742922726,108.47329853719879,4.5943885191093505,8135.164017505522,2019
+2001,44,"(40,45]",HS,452.3317521040551,148.07466149522375,3.0547545916128627,8211.200010678984,2019
+2001,44,"(40,45]",HS,463.7153787299158,146.35286310574438,3.168474937144669,7966.948313405356,2019
+2001,44,"(40,45]",HS,455.6798775822494,134.30027437938898,3.392992901079154,8149.694240067905,2019
+2001,75,"(70,75]",NoHS,162.30038255547055,39.60136295802496,4.098353451306691,8052.7334420749085,2019
+2001,75,"(70,75]",NoHS,162.30038255547055,39.60136295802496,4.098353451306691,8320.681635659263,2019
+2001,75,"(70,75]",NoHS,162.46778882938028,39.60136295802496,4.1025807369707525,8498.466152865078,2019
+2001,75,"(70,75]",NoHS,162.30038255547055,39.60136295802496,4.098353451306691,8318.12991821202,2019
+2001,75,"(70,75]",NoHS,162.30038255547055,39.60136295802496,4.098353451306691,8428.827324774904,2019
+2001,66,"(65,70]",HS,86.21423106350422,30.992371010628222,2.781788816155393,10656.61753403806,2019
+2001,66,"(65,70]",HS,86.21423106350422,30.992371010628222,2.781788816155393,11236.931578246116,2019
+2001,66,"(65,70]",HS,86.38163733741392,30.992371010628222,2.787190347837248,11612.150302019483,2019
+2001,66,"(65,70]",HS,86.21423106350422,30.992371010628222,2.781788816155393,10905.303501718148,2019
+2001,66,"(65,70]",HS,86.38163733741392,30.992371010628222,2.787190347837248,11259.575293917103,2019
+2001,83,"(80,85]",NoHS,0.8370313695485845,20.661580673752148,0.04051148761391349,5800.06010478251,2019
+2001,83,"(80,85]",NoHS,0.8370313695485845,20.661580673752148,0.04051148761391349,5794.370722493071,2019
+2001,83,"(80,85]",NoHS,0.8370313695485845,20.661580673752148,0.04051148761391349,5820.485398404805,2019
+2001,83,"(80,85]",NoHS,0.8370313695485845,20.661580673752148,0.04051148761391349,5839.437521405816,2019
+2001,83,"(80,85]",NoHS,0.8370313695485845,20.661580673752148,0.04051148761391349,5837.279171674349,2019
+2001,72,"(70,75]",NoHS,50.59017597551645,27.548774231669533,1.8363857335386986,8394.285670822563,2019
+2001,72,"(70,75]",NoHS,50.47299158377965,25.826975842190187,1.954274162495187,8453.201254289228,2019
+2001,72,"(70,75]",NoHS,50.12143840856925,27.548774231669533,1.819370908740855,8307.381620227445,2019
+2001,72,"(70,75]",NoHS,51.56113236419281,27.548774231669533,1.8716307277628033,8294.933702341234,2019
+2001,72,"(70,75]",NoHS,50.30558530986993,27.548774231669533,1.8260553041971506,8369.154384740967,2019
+2001,62,"(60,65]",HS,355.90573833205815,123.96948404251289,2.870914088906003,5704.51018969285,2019
+2001,62,"(60,65]",HS,358.9190512624331,123.96948404251289,2.8952209814743513,6016.91277049158,2019
+2001,62,"(60,65]",HS,356.4079571537873,123.96948404251289,2.874965237667394,6065.557540973954,2019
+2001,62,"(60,65]",HS,358.2494261667942,122.24768565303354,2.9305211321839395,5910.128179342073,2019
+2001,62,"(60,65]",HS,356.4079571537873,122.24768565303354,2.9154577058035547,5969.191935688088,2019
+2001,95,"(90,95]",College,13637.919510328997,891.891565750301,15.291006254618116,244.8907549895053,2019
+2001,95,"(90,95]",College,13679.771078806427,891.891565750301,15.337930757645816,235.69937991085098,2019
+2001,95,"(90,95]",College,13644.783167559297,891.891565750301,15.298701873114661,245.5275906668638,2019
+2001,95,"(90,95]",College,13633.064728385616,891.891565750301,15.285563012266904,239.58875832244925,2019
+2001,95,"(90,95]",College,13703.207957153789,891.891565750301,15.364208479341329,236.7943387558627,2019
+2001,53,"(50,55]",HS,10977.331599081866,258.2697584219018,42.503356436914395,219.54883366126714,2019
+2001,53,"(50,55]",HS,10977.331599081866,258.2697584219018,42.503356436914395,211.70343736036466,2019
+2001,53,"(50,55]",HS,10975.657536342771,258.2697584219018,42.49687459889618,220.50240142053212,2019
+2001,53,"(50,55]",HS,10977.331599081866,258.2697584219018,42.503356436914395,214.8371523524081,2019
+2001,53,"(50,55]",HS,10977.331599081866,258.2697584219018,42.503356436914395,212.73597155617898,2019
+2001,36,"(35,40]",College,480.12119357306807,344.35967789586914,1.3942433577204467,202.36706995078725,2019
+2001,36,"(35,40]",College,478.4471308339709,344.35967789586914,1.389381979206777,205.8882340541676,2019
+2001,36,"(35,40]",College,467.2309104820199,344.35967789586914,1.3568107431651908,201.51232714835243,2019
+2001,36,"(35,40]",College,481.962662586075,344.35967789586914,1.3995908740854834,205.16827878112727,2019
+2001,36,"(35,40]",College,492.6766641162969,344.35967789586914,1.430703696572969,198.97977004435106,2019
+2001,41,"(40,45]",College,1864.1525631216527,688.7193557917383,2.7066940219484024,11372.833544071005,2019
+2001,41,"(40,45]",College,1780.616832440704,688.7193557917383,2.5854026280323454,11057.720725793351,2019
+2001,41,"(40,45]",College,1946.1816373374138,688.7193557917383,2.825797795533308,13377.496463922676,2019
+2001,41,"(40,45]",College,1573.016312165264,688.7193557917383,2.2839728532922603,11305.465226834665,2019
+2001,41,"(40,45]",College,1696.7462892119358,688.7193557917383,2.4636250962649213,11291.18149259581,2019
+2001,51,"(50,55]",HS,1.4413680183626625,14.290926632678572,0.1008589614522781,5473.743290660931,2019
+2001,51,"(50,55]",HS,1.4413680183626625,14.290926632678572,0.1008589614522781,5466.0659237401505,2019
+2001,51,"(50,55]",HS,1.4413680183626625,14.463106471626503,0.0996582595302272,5479.536263098764,2019
+2001,51,"(50,55]",HS,1.4413680183626625,14.290926632678572,0.1008589614522781,5465.023953323287,2019
+2001,51,"(50,55]",HS,1.4413680183626625,14.463106471626503,0.0996582595302272,5473.078179627683,2019
+2001,45,"(40,45]",College,5472.845906656466,602.629436317771,9.081610649650697,1167.903272191011,2019
+2001,45,"(40,45]",College,5469.66518745218,602.629436317771,9.07633258155014,1171.5877596503549,2019
+2001,45,"(40,45]",College,5469.497781178271,602.629436317771,9.076054788492216,1211.1570044235582,2019
+2001,45,"(40,45]",College,5471.339250191278,602.629436317771,9.07911051212938,1156.541979221263,2019
+2001,45,"(40,45]",College,5469.497781178271,602.629436317771,9.076054788492216,1148.254116471163,2019
+2001,50,"(45,50]",College,1843.896403978577,526.8703071806799,3.499715924105491,94.87252964499852,2019
+2001,50,"(45,50]",College,1594.3271308339708,618.1256218230851,2.579293066887763,47.43798243912839,2019
+2001,50,"(45,50]",College,1506.1040244835501,630.1782105494405,2.38996524994161,45.861601414660505,2019
+2001,50,"(45,50]",College,1774.3558377964805,585.4114524229775,3.0309551178962155,94.90502332691422,2019
+2001,50,"(45,50]",College,1886.467819433818,852.2902027922762,2.213410189690513,96.24257047622352,2019
+2001,49,"(45,50]",HS,934.5790053557766,53.37575007385973,17.509430856944114,6697.665826326629,2019
+2001,49,"(45,50]",HS,902.9057383320581,32.71416940010757,27.59983685629167,6083.1654890692325,2019
+2001,49,"(45,50]",HS,801.2231675592961,44.76675812646299,17.897725926364743,5682.866370855115,2019
+2001,49,"(45,50]",HS,807.2330527926549,51.653951684380374,15.627711461943267,6367.837311350484,2019
+2001,49,"(45,50]",HS,884.5914919663351,43.04495973698364,20.550408163265306,6111.122960336038,2019
+2001,53,"(50,55]",College,439.2740627390972,265.1569519798192,1.6566567818011795,6092.758597330965,2019
+2001,53,"(50,55]",College,481.2930374904361,275.48774231669535,1.747057903350019,5533.757549806143,2019
+2001,53,"(50,55]",College,297.1461361897475,215.22479868491826,1.3806314978821714,5816.887838543204,2019
+2001,53,"(50,55]",College,456.1820964039786,287.54033104305074,1.5864977784131393,5792.7189159890295,2019
+2001,53,"(50,55]",College,358.8353481254782,237.60817774814973,1.5101978034856274,5706.2873046065,2019
+2001,51,"(50,55]",NoHS,41.83482785003826,49.93215329490103,0.8378334417696812,7140.424908677693,2019
+2001,51,"(50,55]",NoHS,41.83482785003826,49.93215329490103,0.8378334417696812,7442.748156780879,2019
+2001,51,"(50,55]",NoHS,41.83482785003826,49.93215329490103,0.8378334417696812,7476.533718355524,2019
+2001,51,"(50,55]",NoHS,41.83482785003826,49.93215329490103,0.8378334417696812,7273.121666216034,2019
+2001,51,"(50,55]",NoHS,41.83482785003826,49.93215329490103,0.8378334417696812,7369.962250066611,2019
+2001,41,"(40,45]",College,7271.124100994645,137.74387115834767,52.78727859068156,369.3612393273137,2019
+2001,41,"(40,45]",College,4298.156082631982,137.74387115834767,31.203973334616865,347.0640763287968,2019
+2001,41,"(40,45]",College,5257.22662586075,137.74387115834767,38.166682710820176,369.9936353274847,2019
+2001,41,"(40,45]",College,4549.098087222647,137.74387115834767,33.02577493261455,364.8164387193219,2019
+2001,41,"(40,45]",College,4977.825554705432,137.74387115834767,36.138272525991525,351.7644536539717,2019
+2001,65,"(60,65]",NoHS,53.21845447589901,16.012725022157916,3.3235101709582193,8693.284915174168,2019
+2001,65,"(60,65]",NoHS,64.98711553175211,16.184904861105853,4.0152917851203105,8615.327486888376,2019
+2001,65,"(60,65]",NoHS,44.88162203519511,16.012725022157916,2.8028722140103763,8689.182820808966,2019
+2001,65,"(60,65]",NoHS,62.442540168324406,16.012725022157916,3.899557388384447,8681.092021651055,2019
+2001,65,"(60,65]",NoHS,54.90925784238715,16.012725022157916,3.429101403190613,8624.874033329534,2019
+2001,60,"(55,60]",HS,487.78840091813316,228.99918580075305,2.1300879267865462,52.35920191968332,2019
+2001,60,"(55,60]",HS,515.1425860749808,201.45041156908349,2.557168198677632,53.674465957009275,2019
+2001,60,"(55,60]",HS,488.19017597551647,210.0594035164802,2.324057708453007,51.195517415288975,2019
+2001,60,"(55,60]",HS,502.20208110175975,198.00681479012476,2.5362868527230416,53.04034892249632,2019
+2001,60,"(55,60]",HS,494.0661361897475,177.34523411637264,2.7859002732802223,56.73685130823702,2019
+2001,24,"(20,25]",NoHS,0,13.774387115834767,0,6293.109231356533,2019
+2001,24,"(20,25]",NoHS,0,13.774387115834767,0,6273.804841047147,2019
+2001,24,"(20,25]",NoHS,0,13.774387115834767,0,6274.225751185719,2019
+2001,24,"(20,25]",NoHS,0,13.774387115834767,0,6217.443391410078,2019
+2001,24,"(20,25]",NoHS,0,13.774387115834767,0,6270.063905893704,2019
+2001,64,"(60,65]",College,101507.12899770467,6250.128153810026,16.240807628212675,17.78317985079869,2019
+2001,64,"(60,65]",College,102523.28508033665,6267.346137704819,16.35832501153063,19.364058268294023,2019
+2001,64,"(60,65]",College,104751.46258607498,6250.128153810026,16.759890358763183,18.90030794244316,2019
+2001,64,"(60,65]",College,102193.49472073451,6267.346137704819,16.305704595750804,18.56465708175563,2019
+2001,64,"(60,65]",College,108292.27268553941,6250.128153810026,17.326408358447075,19.6123879178756,2019
+2001,39,"(35,40]",HS,413.32609028309105,151.51825827418244,2.7278962614205198,6782.675859057257,2019
+2001,39,"(35,40]",HS,413.32609028309105,151.51825827418244,2.7278962614205198,6169.719843488872,2019
+2001,39,"(35,40]",HS,413.4934965570008,151.51825827418244,2.729001120173627,5767.505967841503,2019
+2001,39,"(35,40]",HS,413.32609028309105,151.51825827418244,2.7278962614205198,6449.985225868663,2019
+2001,39,"(35,40]",HS,413.32609028309105,151.51825827418244,2.7278962614205198,6201.255534762568,2019
+2001,34,"(30,35]",HS,21.930221882172916,25.826975842190187,0.8491207803876267,6536.030843640513,2019
+2001,34,"(30,35]",HS,27.789441469013006,25.826975842190187,1.0759851110255423,6532.349833497257,2019
+2001,34,"(30,35]",HS,40.84713083397093,25.826975842190187,1.5815684764471827,6544.258157836558,2019
+2001,34,"(30,35]",HS,25.780566182096404,25.826975842190187,0.9982030548068284,6567.505800398419,2019
+2001,34,"(30,35]",HS,49.21744452945677,25.826975842190187,1.9056603773584906,6568.541796731457,2019
+2001,50,"(45,50]",College,18046.396327467482,3822.3924246441475,4.721230664626892,13.320738771092886,2019
+2001,50,"(45,50]",College,18044.722264728385,3822.3924246441475,4.720792702598633,12.998412833584856,2019
+2001,50,"(45,50]",College,18046.396327467482,3805.1744407493547,4.74259369930846,13.694486302358774,2019
+2001,50,"(45,50]",College,18044.722264728385,3805.1744407493547,4.742153755551567,13.391308383673046,2019
+2001,50,"(45,50]",College,18044.722264728385,3822.3924246441475,4.720792702598633,12.899301421829723,2019
+2001,80,"(75,80]",NoHS,222.1816067329763,8.436812108448795,26.334781891193135,7776.683568825491,2019
+2001,80,"(75,80]",NoHS,223.06885998469778,8.436812108448795,26.43994640597864,7962.436507826574,2019
+2001,80,"(75,80]",NoHS,211.51782708492732,8.436812108448795,25.070823477639035,8113.141602195537,2019
+2001,80,"(75,80]",NoHS,214.4809181331293,8.436812108448795,25.422033272300062,7952.363854755419,2019
+2001,80,"(75,80]",NoHS,229.7483703136955,8.436812108448795,27.23165662106198,8045.414035225411,2019
+2001,63,"(60,65]",HS,198.54384085692425,36.157766179066265,5.491042778297302,9157.594950121656,2019
+2001,63,"(60,65]",HS,198.71124713083398,36.157766179066265,5.495672662596036,9571.340310137883,2019
+2001,63,"(60,65]",HS,198.54384085692425,36.157766179066265,5.491042778297302,9625.67512004801,2019
+2001,63,"(60,65]",HS,198.71124713083398,36.157766179066265,5.495672662596036,9392.46118760429,2019
+2001,63,"(60,65]",HS,198.71124713083398,36.157766179066265,5.495672662596036,9471.281641425066,2019
+2001,66,"(65,70]",HS,329.974506503443,101.5861049792814,3.2482248095912496,7135.4912006467985,2019
+2001,66,"(65,70]",HS,330.0414690130069,204.89400834804215,1.6107912167562444,7469.230500582812,2019
+2001,66,"(65,70]",NoHS,329.48902830910487,139.46566954782702,2.3625099236060603,7922.484215437302,2019
+2001,66,"(65,70]",NoHS,329.74013771996937,204.89400834804215,1.6093205476260584,7223.639739743865,2019
+2001,66,"(65,70]",HS,329.6229533282326,113.63869370563681,2.9006225131562062,7500.193692946717,2019
+2001,42,"(40,45]",HS,62.090986993114,34.43596778958692,1.8030852907200614,5597.219270971483,2019
+2001,42,"(40,45]",HS,65.60651874521805,34.43596778958692,1.9051742395071234,5818.317932955006,2019
+2001,42,"(40,45]",HS,55.39473603672533,36.157766179066265,1.5320287144507398,5886.8514894825985,2019
+2001,42,"(40,45]",HS,63.76504973221117,36.157766179066265,1.7635229293873882,5701.487319752512,2019
+2001,42,"(40,45]",HS,97.41371078806428,36.157766179066265,2.6941296734327156,5812.911048259429,2019
+2001,45,"(40,45]",College,871.5170619739862,258.2697584219018,3.3744448722885383,1164.4734655765437,2019
+2001,45,"(40,45]",College,873.0237184391736,258.2697584219018,3.380278526504942,1159.5395766828465,2019
+2001,45,"(40,45]",College,871.3496557000765,258.2697584219018,3.373796688486716,1110.5688227402018,2019
+2001,45,"(40,45]",College,871.3496557000765,258.2697584219018,3.373796688486716,1159.8926774665945,2019
+2001,45,"(40,45]",College,873.0237184391736,258.2697584219018,3.380278526504942,1221.7612484781982,2019
+2001,45,"(40,45]",HS,5.8592195868400925,44.76675812646299,0.13088326767572053,870.8640770601065,2019
+2001,45,"(40,45]",HS,5.8592195868400925,44.76675812646299,0.13088326767572053,889.885345892733,2019
+2001,45,"(40,45]",HS,6.026625860749808,44.76675812646299,0.1346227896093125,899.8535933658935,2019
+2001,45,"(40,45]",HS,5.8592195868400925,44.76675812646299,0.13088326767572053,882.5273870081525,2019
+2001,45,"(40,45]",HS,5.8592195868400925,44.76675812646299,0.13088326767572053,882.1208938084756,2019
+2001,53,"(50,55]",College,46277.95776587605,3443.596778958692,13.438843376973429,13.21841064784427,2019
+2001,53,"(50,55]",College,48298.21667941852,3443.596778958692,14.02551453600308,12.889723937197008,2019
+2001,53,"(50,55]",College,54330.86916602907,3443.596778958692,15.77736089718906,13.364390893692592,2019
+2001,53,"(50,55]",College,48145.374751338946,3443.596778958692,13.981130150173275,13.822782807955917,2019
+2001,53,"(50,55]",College,42916.10497322112,3443.596778958692,12.462581343858297,13.273480227856766,2019
+2001,55,"(50,55]",HS,2410.985156847743,301.3147181588855,8.001551240442268,917.3999938851224,2019
+2001,55,"(50,55]",HS,2410.985156847743,299.5929197694062,8.047537167111477,890.8203553982681,2019
+2001,55,"(50,55]",HS,2410.985156847743,301.3147181588855,8.001551240442268,962.4194410901616,2019
+2001,55,"(50,55]",HS,2410.985156847743,301.3147181588855,8.001551240442268,914.1998184077065,2019
+2001,55,"(50,55]",HS,2409.3110941086456,301.3147181588855,7.995995379283789,912.1621183705125,2019
+2001,76,"(75,80]",HS,3273.1274674827855,351.2468714537866,9.318595362673372,18.892819920825733,2019
+2001,76,"(75,80]",HS,3273.1274674827855,351.2468714537866,9.318595362673372,18.67849313469558,2019
+2001,76,"(75,80]",HS,3273.1274674827855,351.2468714537866,9.318595362673372,19.951265002019476,2019
+2001,76,"(75,80]",HS,3273.1274674827855,351.2468714537866,9.318595362673372,18.984692410817807,2019
+2001,76,"(75,80]",HS,3273.1274674827855,349.52507306430715,9.364499773326937,18.925317103034367,2019
+2001,69,"(65,70]",College,19047.351920428464,946.9891142136402,20.113591206637032,281.0197025005382,2019
+2001,69,"(65,70]",College,19045.728079571538,946.9891142136402,20.11187646585221,281.2625503227631,2019
+2001,69,"(65,70]",College,19059.154062739097,946.9891142136402,20.126054013372073,287.22942258935757,2019
+2001,69,"(65,70]",College,19042.363213465953,946.9891142136402,20.108323240102216,282.16210953872474,2019
+2001,69,"(65,70]",College,19045.39326702372,946.9891142136402,20.111522911051214,285.3353666721919,2019
+2001,68,"(65,70]",HS,778.255026778883,146.35286310574438,5.31766178169381,7034.206329586688,2019
+2001,68,"(65,70]",HS,586.574843152257,180.7888308953313,3.2445303188660906,6331.828343130701,2019
+2001,68,"(65,70]",HS,554.1147666411629,141.18746793730637,3.9246738732308377,7341.003991939673,2019
+2001,68,"(65,70]",HS,559.6224330527926,230.72098419023237,2.4255376467680843,6767.051026385883,2019
+2001,68,"(65,70]",HS,559.3043611323642,134.30027437938898,4.164580926710307,7061.547286014233,2019
+2001,52,"(50,55]",College,19452.759693955624,1456.6414374995268,13.354528570427233,281.0197025005382,2019
+2001,52,"(50,55]",College,19451.10237184392,1456.6414374995268,13.353390800987865,281.2625503227631,2019
+2001,52,"(50,55]",College,19450.934965570006,1456.6414374995268,13.353275874781865,287.22942258935757,2019
+2001,52,"(50,55]",College,19452.943840856926,1456.6414374995268,13.354654989253829,282.16210953872474,2019
+2001,52,"(50,55]",College,19454.450497322112,1456.6414374995268,13.355689325107802,285.3353666721919,2019
+2001,40,"(35,40]",HS,193.11987758224944,77.48092752657055,2.4924827792752327,6326.899654232378,2019
+2001,40,"(35,40]",HS,178.20397857689366,58.54114524229776,3.044080839883123,6561.709743325616,2019
+2001,40,"(35,40]",HS,211.09931140015303,74.03733074761188,2.8512550259243667,6623.039314084874,2019
+2001,40,"(35,40]",HS,179.0577505738332,80.92452430552926,2.212651258817457,6426.0293044064665,2019
+2001,40,"(35,40]",HS,182.723947972456,53.37575007385973,3.4233513855937985,6573.429618026986,2019
+2001,78,"(75,80]",College,899.6413159908187,106.75150014771945,8.42743488143888,8892.250832550522,2019
+2001,78,"(75,80]",College,884.4073450650345,106.75150014771945,8.284729899263418,8031.260918445367,2019
+2001,78,"(75,80]",College,897.7998469778117,108.47329853719879,8.276689831368307,7594.518628178523,2019
+2001,78,"(75,80]",College,884.4073450650345,106.75150014771945,8.284729899263418,8490.555135633385,2019
+2001,78,"(75,80]",College,902.8220351951032,108.47329853719879,8.322988674355635,8154.775178325753,2019
+2001,34,"(30,35]",HS,44.98206579954093,96.42070981084338,0.46651871665108086,5870.607736823061,2019
+2001,34,"(30,35]",HS,44.98206579954093,96.42070981084338,0.46651871665108086,5960.481622813031,2019
+2001,34,"(30,35]",HS,44.814659525631214,96.42070981084338,0.46478251003905596,6022.541700162174,2019
+2001,34,"(30,35]",HS,44.98206579954093,96.42070981084338,0.46651871665108086,5884.993479477849,2019
+2001,34,"(30,35]",HS,44.98206579954093,96.42070981084338,0.46651871665108086,5938.193990820673,2019
+2001,82,"(80,85]",College,38676.03886763581,4511.111780435886,8.573504880851953,1.6033815069551594,2019
+2001,82,"(80,85]",College,38304.22953328233,4511.111780435886,8.491084104677446,1.5118688631517379,2019
+2001,82,"(80,85]",College,38925.306809487374,4493.893796541093,8.66182170113762,1.3657530133935691,2019
+2001,82,"(80,85]",College,39111.12777352716,4511.111780435886,8.66995314617277,1.8637299612482707,2019
+2001,82,"(80,85]",College,39303.64498852334,4493.893796541093,8.746011091489295,1.382407277587228,2019
+2001,43,"(40,45]",HS,707.1241009946442,258.2697584219018,2.73792837889873,8356.879940082214,2019
+2001,43,"(40,45]",HS,707.1241009946442,258.2697584219018,2.73792837889873,7597.1840233757375,2019
+2001,43,"(40,45]",HS,707.2915072685539,258.2697584219018,2.738576562700552,7101.224367482644,2019
+2001,43,"(40,45]",HS,707.1241009946442,258.2697584219018,2.73792837889873,7945.220440177718,2019
+2001,43,"(40,45]",HS,707.2915072685539,258.2697584219018,2.738576562700552,7640.02100065946,2019
+2001,51,"(50,55]",NoHS,118.85845447589901,105.0297017582401,1.1316651621985014,6087.080297378133,2019
+2001,51,"(50,55]",NoHS,125.55470543228768,103.30790336876075,1.2153446284174045,6344.805280205388,2019
+2001,51,"(50,55]",NoHS,138.947207345065,105.0297017582401,1.3229325135559944,6373.606847174741,2019
+2001,51,"(50,55]",NoHS,140.6212700841622,105.0297017582401,1.3388714595024525,6200.201831273964,2019
+2001,51,"(50,55]",NoHS,135.5990818668707,105.0297017582401,1.2910546216630792,6282.756639633766,2019
+2001,76,"(75,80]",NoHS,155.7045753634277,68.87193557917384,2.260784077782056,6127.523585346175,2019
+2001,76,"(75,80]",NoHS,160.54261667941853,68.87193557917384,2.331030997304582,6353.226732847661,2019
+2001,76,"(75,80]",NoHS,150.66564651874523,68.87193557917384,2.1876203311513285,6484.913360512908,2019
+2001,76,"(75,80]",NoHS,172.76327467482784,68.87193557917384,2.5084713130535228,6306.330702185052,2019
+2001,76,"(75,80]",NoHS,162.3840856924254,68.87193557917384,2.357768579129765,6399.727736924208,2019
+2001,41,"(40,45]",HS,28.12425401683244,67.15013718969449,0.4188264565623056,5166.036021061419,2019
+2001,41,"(40,45]",HS,28.12425401683244,67.15013718969449,0.4188264565623056,5168.144552464832,2019
+2001,41,"(40,45]",HS,27.789441469013006,67.15013718969449,0.41384042731751625,5206.908995276206,2019
+2001,41,"(40,45]",HS,27.956847742922726,67.15013718969449,0.41633344193991095,5187.713873539136,2019
+2001,41,"(40,45]",HS,27.956847742922726,67.15013718969449,0.41633344193991095,5214.9117839554765,2019
+2001,42,"(40,45]",HS,14.011905126243306,51.653951684380374,0.27126492106276473,7601.562459451345,2019
+2001,42,"(40,45]",HS,13.827758224942617,43.04495973698364,0.3212398921832884,7604.6650574772575,2019
+2001,42,"(40,45]",HS,14.011905126243306,72.31553235813253,0.1937606579019748,7661.704987519396,2019
+2001,42,"(40,45]",HS,13.827758224942617,82.64632269500859,0.16731244384546273,7633.460330260673,2019
+2001,42,"(40,45]",HS,13.928201989288448,46.488556515942335,0.299604957286898,7673.48068899481,2019
+2001,60,"(55,60]",College,1833.26610558531,180.7888308953313,10.140372591084953,438.42902419894955,2019
+2001,60,"(55,60]",College,1833.26610558531,156.68365344262045,11.70042991279033,426.4556363837595,2019
+2001,60,"(55,60]",College,1833.26610558531,94.69891142136402,19.35889312843491,460.328377995081,2019
+2001,60,"(55,60]",College,1833.26610558531,161.84904861105852,11.327011936850212,436.93952322663637,2019
+2001,60,"(55,60]",College,1834.1031369548584,130.8566776004303,14.016121840990616,436.5825159122334,2019
+2001,73,"(70,75]",NoHS,79417.73053404744,2513.825648639845,31.592378165533464,21.922169018772912,2019
+2001,73,"(70,75]",NoHS,71768.26825401683,2496.6076647450514,28.746314155590667,23.149147465899446,2019
+2001,73,"(70,75]",NoHS,71885.28523947972,2496.6076647450514,28.793184549812118,23.45811280132555,2019
+2001,73,"(70,75]",NoHS,87984.41178882938,2496.6076647450514,35.241585224330464,23.132738015614066,2019
+2001,73,"(70,75]",NoHS,77806.11033511859,2513.825648639845,30.951275549765004,23.79344552017681,2019
+2001,41,"(40,45]",College,518.2898240244836,198.00681479012476,2.6175352831862853,9896.437326216655,2019
+2001,41,"(40,45]",College,516.9505738332058,165.29264539001719,3.1274868437941215,8996.785412993839,2019
+2001,41,"(40,45]",College,517.452792654935,115.36049209511619,4.48552865246352,8409.456926038252,2019
+2001,41,"(40,45]",College,517.7039020657995,151.51825827418244,3.416775693982567,9408.939304256744,2019
+2001,41,"(40,45]",College,516.5320581484316,198.00681479012476,2.6086579832917582,9047.514089721575,2019
+2001,77,"(75,80]",College,1734.6638102524864,63.706540410735805,27.22897522088896,3323.1569620817063,2019
+2001,77,"(75,80]",College,1881.9813312930373,63.706540410735805,29.54141473009397,3323.9638384952295,2019
+2001,77,"(75,80]",College,1907.092272379495,63.706540410735805,29.93558055552664,4084.04147517593,2019
+2001,77,"(75,80]",College,1881.9813312930373,63.706540410735805,29.54141473009397,3428.2787183982364,2019
+2001,77,"(75,80]",College,1748.056312165264,63.706540410735805,27.439196994453056,3591.7790892929493,2019
+2001,22,"(20,25]",College,-2.259984697781178,22.383379063231494,-0.10096709220698438,5627.620076785774,2019
+2001,22,"(20,25]",College,-0.4017750573833206,20.661580673752148,-0.019445514054678478,5633.340113867499,2019
+2001,22,"(20,25]",College,-1.5903596021423108,36.157766179066265,-0.04398390083796322,5629.520789122079,2019
+2001,22,"(20,25]",College,0.050221882172915074,27.548774231669533,0.001823016942626107,5579.797072416471,2019
+2001,22,"(20,25]",College,-1.5903596021423108,17.21798389479346,-0.09236619175972276,5607.501146157858,2019
+2001,76,"(75,80]",HS,25.763825554705434,20.661580673752148,1.2469435887562574,5453.506204951081,2019
+2001,76,"(75,80]",HS,25.763825554705434,20.661580673752148,1.2469435887562574,5470.658678246269,2019
+2001,76,"(75,80]",HS,24.089762815608264,18.939782284272805,1.2719133965764693,5450.069602087834,2019
+2001,76,"(75,80]",HS,23.922356541698548,20.661580673752148,1.1578183160056477,5518.0846011655285,2019
+2001,76,"(75,80]",HS,25.763825554705434,20.661580673752148,1.2469435887562574,5504.873949250139,2019
+2001,52,"(50,55]",College,11944.437643458301,654.2833880021514,18.255755628964597,1582.7818805619813,2019
+2001,52,"(50,55]",College,11944.437643458301,654.2833880021514,18.255755628964597,1568.6553855559712,2019
+2001,52,"(50,55]",College,11944.437643458301,654.2833880021514,18.255755628964597,1609.3910344934425,2019
+2001,52,"(50,55]",College,11944.437643458301,654.2833880021514,18.255755628964597,1564.4761014838975,2019
+2001,52,"(50,55]",College,8680.01530221882,654.2833880021514,13.266446101777353,1550.7229102070855,2019
+2001,63,"(60,65]",HS,55.91369548584545,20.661580673752148,2.7061673726094213,7478.526904194316,2019
+2001,63,"(60,65]",HS,55.57888293802601,20.661580673752148,2.689962777563856,7484.800450568878,2019
+2001,63,"(60,65]",HS,55.41147666411629,20.661580673752148,2.681860480041073,7477.581378747799,2019
+2001,63,"(60,65]",HS,55.07666411629687,20.661580673752148,2.665655884995508,7485.428670250114,2019
+2001,63,"(60,65]",HS,55.41147666411629,20.661580673752148,2.681860480041073,7487.610541508579,2019
+2001,88,"(85,90]",HS,359.2873450650344,27.548774231669533,13.041863207547168,8180.034005340826,2019
+2001,88,"(85,90]",HS,81.22552410099465,13.946566954782698,5.824051493413579,8513.514785971955,2019
+2001,88,"(85,90]",HS,145.14123947972456,25.826975842190187,5.61975356180208,8533.942985946647,2019
+2001,88,"(85,90]",HS,125.05248661055853,51.653951684380374,2.42096649980747,8364.826237178007,2019
+2001,88,"(85,90]",HS,123.2947207345065,18.939782284272805,6.5098277733048615,8462.702617734223,2019
+2001,47,"(45,50]",HS,926.4263198163734,430.4495973698365,2.1522294955718135,2451.8980630744336,2019
+2001,47,"(45,50]",HS,912.1967865340474,430.4495973698365,2.1191721216788597,2384.9136091375794,2019
+2001,47,"(45,50]",HS,937.307727620505,430.4495973698365,2.1775086638428953,2571.620283977761,2019
+2001,47,"(45,50]",HS,940.9906656465187,430.4495973698365,2.186064690026954,2440.3488209516563,2019
+2001,47,"(45,50]",HS,916.5493496557001,430.4495973698365,2.129283788987293,2436.0668853306643,2019
+2001,39,"(35,40]",College,7401.031369548585,1317.1757679516995,5.618863897760362,1617.262458972047,2019
+2001,39,"(35,40]",College,9076.76817138485,1088.1765821509466,8.341264019340718,1631.309521752739,2019
+2001,39,"(35,40]",College,7402.705432287682,1773.452341163726,4.1741778228052535,1631.3945271286193,2019
+2001,39,"(35,40]",College,7402.705432287682,795.4708559394577,9.30606744045327,1633.9183445242784,2019
+2001,39,"(35,40]",College,8238.06273909717,1112.2817596036575,7.406453147296654,1616.674301349702,2019
+2001,37,"(35,40]",College,-4.35256312165264,91.25531464240532,-0.04769654390770193,7319.579622301969,2019
+2001,37,"(35,40]",College,-3.013312930374904,87.81171786344665,-0.03431561303766789,7322.5671282795665,2019
+2001,37,"(35,40]",College,0.8370313695485845,92.97711303188467,0.009002552803091887,7377.491140523237,2019
+2001,37,"(35,40]",College,-6.52884468247896,92.97711303188467,-0.07021991186411672,7350.294229518082,2019
+2001,37,"(35,40]",College,-2.17628156082632,99.86430658980206,-0.02179238644058795,7388.830017894509,2019
+2001,40,"(35,40]",College,218.13037490436116,111.91689531615746,1.9490388317881584,6510.898725318845,2019
+2001,40,"(35,40]",College,285.09288446824786,111.91689531615746,2.5473623411628803,6683.5662845021,2019
+2001,40,"(35,40]",College,164.89517980107115,111.91689531615746,1.4733716418352538,6750.363200730263,2019
+2001,40,"(35,40]",College,213.44299923488904,111.91689531615746,1.9071561861319275,6589.7182626651675,2019
+2001,40,"(35,40]",College,357.3119510328998,111.91689531615746,3.192654246023519,6697.91698870429,2019
+2001,62,"(60,65]",College,5741.080979342004,602.629436317771,9.526718466362285,313.2379130398481,2019
+2001,62,"(60,65]",College,5738.720550879878,602.629436317771,9.522801584245558,306.9161349652556,2019
+2001,62,"(60,65]",College,5742.135638867637,602.629436317771,9.528468562627209,316.60850175098983,2019
+2001,62,"(60,65]",College,5738.670328997705,602.629436317771,9.522718246328182,308.53994444742,2019
+2001,62,"(60,65]",College,5738.58662586075,602.629436317771,9.52257934979922,311.3887393874046,2019
+2001,26,"(25,30]",HS,-1.3392501912777353,55.097548463339066,-0.024306892568348094,5631.014987698819,2019
+2001,26,"(25,30]",HS,-1.1718439173680184,55.097548463339066,-0.021268530997304583,5640.450834575271,2019
+2001,26,"(25,30]",HS,-1.3392501912777353,55.097548463339066,-0.024306892568348094,5660.182293688524,2019
+2001,26,"(25,30]",HS,-1.1718439173680184,55.097548463339066,-0.021268530997304583,5689.200088163583,2019
+2001,26,"(25,30]",HS,-1.3392501912777353,55.097548463339066,-0.024306892568348094,5644.987955946784,2019
+2001,74,"(70,75]",HS,666.3271920428463,127.41308082147161,5.2296607832322115,7836.944373378601,2019
+2001,74,"(70,75]",HS,1005.6094873756695,129.1348792109509,7.7872801950969075,7168.204398724554,2019
+2001,74,"(70,75]",HS,778.2717674062739,137.74387115834767,5.650137177512514,6594.055764282598,2019
+2001,74,"(70,75]",HS,747.1342004590665,103.30790336876075,7.2321107688358355,7362.7723989838705,2019
+2001,74,"(70,75]",HS,691.0530986993114,111.91689531615746,6.1746986167471345,7136.045051014686,2019
+2001,39,"(35,40]",HS,189.23605202754402,44.76675812646299,4.227155593732414,6301.717596340115,2019
+2001,39,"(35,40]",HS,153.9300688599847,110.19509692667813,1.3968867322872545,6574.551068846522,2019
+2001,39,"(35,40]",HS,148.35543993879114,34.43596778958692,4.308153638814016,6657.935065689756,2019
+2001,39,"(35,40]",HS,210.14509563886764,79.20272591604991,2.6532558470475966,6462.332952288599,2019
+2001,39,"(35,40]",HS,163.0871920428462,79.20272591604991,2.059110846963888,6526.6348729200245,2019
+2001,79,"(75,80]",College,6076.847742922724,537.2010975175559,11.312053849115843,525.8151160753052,2019
+2001,79,"(75,80]",College,6433.423106350421,592.298645980895,10.861789318623456,507.9747695410557,2019
+2001,79,"(75,80]",College,6250.9502677888295,468.3291619383821,13.34734365444291,527.8056177459368,2019
+2001,79,"(75,80]",College,7161.640397857689,606.0730330967298,11.816464364476492,515.5502197683851,2019
+2001,79,"(75,80]",College,6229.187452180567,439.05858931723316,14.18759956812914,510.03735303754456,2019
+2001,40,"(35,40]",College,7666.202907421576,3323.070891695137,2.3069633953884616,9.68495240752639,2019
+2001,40,"(35,40]",College,6422.8765110941085,1336.1155502359723,4.807126531803151,9.452073028249506,2019
+2001,40,"(35,40]",College,10110.669319051261,1807.888308953313,5.592529842125529,9.965667775871463,2019
+2001,40,"(35,40]",College,14272.556694720734,1391.2130986993116,10.259072968810164,9.737259881829502,2019
+2001,40,"(35,40]",College,8418.191889824026,2376.0817774814973,3.5428881150491374,9.384097237332224,2019
+2001,39,"(35,40]",College,22746.662280030603,1602.9943006052708,14.190108019374582,32.7920490613639,2019
+2001,39,"(35,40]",College,14622.100994644223,2135.0300029543887,6.848663004459239,33.073134816897166,2019
+2001,39,"(35,40]",College,14708.315225707729,1842.3242767429003,7.983564788990891,33.49835085937403,2019
+2001,39,"(35,40]",College,36574.085692425404,2066.1580673752146,17.701494512899504,33.75568849037757,2019
+2001,39,"(35,40]",College,32971.5026778883,5940.204443703743,5.550566986433623,33.27193653416163,2019
+2001,35,"(30,35]",HS,-12.120214231063505,87.81171786344665,-0.13802502132928643,6162.748319444747,2019
+2001,35,"(30,35]",HS,-16.82433052792655,87.81171786344665,-0.19159550612697906,6109.2461895247,2019
+2001,35,"(30,35]",HS,-17.159143075745984,86.08991947396729,-0.1993165190604544,6140.367884955762,2019
+2001,35,"(30,35]",HS,-16.506258607498086,87.81171786344665,-0.18797330252855857,6126.50025083334,2019
+2001,35,"(30,35]",HS,-16.991736801836264,86.08991947396729,-0.19737196765498652,6148.852930152918,2019
+2001,28,"(25,30]",HS,129.7398622800306,67.15013718969449,1.932086332355874,6548.0665363392545,2019
+2001,28,"(25,30]",HS,129.40504973221118,24.105177452710844,5.3683508443808785,6565.284728894207,2019
+2001,28,"(25,30]",HS,139.28201989288448,37.87956456854561,3.6769699303392023,6621.940561503999,2019
+2001,28,"(25,30]",HS,137.44055087987758,70.59373396865318,1.9469228096208568,6522.079256831514,2019
+2001,28,"(25,30]",HS,124.55026778882939,55.097548463339066,2.260541008856373,6560.876554850135,2019
+2001,42,"(40,45]",College,5767.146136189747,688.7193557917383,8.373724489795919,329.98639954994576,2019
+2001,42,"(40,45]",College,5767.146136189747,688.7193557917383,8.373724489795919,326.8970278536106,2019
+2001,42,"(40,45]",College,5675.072685539403,688.7193557917383,8.240036580670004,334.7557563186679,2019
+2001,42,"(40,45]",College,5750.405508798776,688.7193557917383,8.349417597227571,329.3675060298786,2019
+2001,42,"(40,45]",College,5700.1836266258615,688.7193557917383,8.276496919522527,330.5896592044981,2019
+2001,58,"(55,60]",HS,170.08477429227239,55.097548463339066,3.086975356180208,5603.991880009374,2019
+2001,58,"(55,60]",HS,160.54261667941853,55.097548463339066,2.9137887466307277,5917.626825824429,2019
+2001,58,"(55,60]",HS,171.59143075745985,55.097548463339066,3.1143206103196,5947.404164799896,2019
+2001,58,"(55,60]",HS,150.16342769701606,55.097548463339066,2.7254103292260297,5767.947838921371,2019
+2001,58,"(55,60]",HS,164.392960979342,55.097548463339066,2.9836710627647287,5853.654267421568,2019
+2001,41,"(40,45]",HS,147.65233358837034,77.48092752657055,1.905660377358491,5132.690579553773,2019
+2001,41,"(40,45]",HS,149.3263963274675,77.48092752657055,1.9272665040859116,5335.439652723069,2019
+2001,41,"(40,45]",HS,149.3263963274675,77.48092752657055,1.9272665040859116,5398.285420048427,2019
+2001,41,"(40,45]",HS,149.3263963274675,77.48092752657055,1.9272665040859116,5228.30513489242,2019
+2001,41,"(40,45]",HS,147.65233358837034,77.48092752657055,1.905660377358491,5330.481500326635,2019
+2001,49,"(45,50]",HS,40.5123182861515,63.706540410735805,0.6359208650313771,8042.671959625935,2019
+2001,49,"(45,50]",HS,40.5123182861515,63.706540410735805,0.6359208650313771,8383.196051869741,2019
+2001,49,"(45,50]",HS,40.5123182861515,63.706540410735805,0.6359208650313771,8421.250676376247,2019
+2001,49,"(45,50]",HS,40.5123182861515,63.706540410735805,0.6359208650313771,8192.135962768089,2019
+2001,49,"(45,50]",HS,40.5123182861515,63.706540410735805,0.6359208650313771,8301.213091685491,2019
+2001,54,"(50,55]",HS,1046.79143075746,61.984742021256444,16.887888803320074,561.8391433644522,2019
+2001,54,"(50,55]",HS,963.0882938026015,61.984742021256444,15.537505882856289,564.8976006365209,2019
+2001,54,"(50,55]",HS,897.632440703902,61.984742021256444,14.481506439053609,532.825557685945,2019
+2001,54,"(50,55]",HS,919.3952563121653,61.984742021256444,14.832605998374195,565.6406252792465,2019
+2001,54,"(50,55]",HS,877.8785003825554,61.984742021256444,14.162816069824157,597.7147054361565,2019
+2001,75,"(70,75]",NoHS,238.8552716143841,32.71416940010757,7.301278803477697,10844.2246721878,2019
+2001,75,"(70,75]",NoHS,238.8552716143841,86.08991947396729,2.774485945321525,11143.768953524968,2019
+2001,75,"(70,75]",NoHS,240.52933435348126,36.157766179066265,6.652217760419531,11364.831314797362,2019
+2001,75,"(70,75]",NoHS,237.18120887528693,29.27057262114888,8.103060091961312,11163.872618522746,2019
+2001,75,"(70,75]",NoHS,237.18120887528693,20.661580673752148,11.479335130278528,11188.232977173513,2019
+2001,44,"(40,45]",College,2190.544575363428,354.6904682327453,6.1759330220456015,1724.301088002506,2019
+2001,44,"(40,45]",College,2187.347115531752,354.6904682327453,6.166918232762971,1731.4050902832514,2019
+2001,44,"(40,45]",College,2190.511094108646,354.6904682327453,6.175838626346307,1813.7802966986433,2019
+2001,44,"(40,45]",College,2179.997980107116,354.6904682327453,6.146198376767817,1771.8437388137245,2019
+2001,44,"(40,45]",College,2188.803550114767,354.6904682327453,6.171024445682285,1782.7151952236277,2019
+2001,32,"(30,35]",College,697.7493496557,172.17983894793457,4.052445128994994,6468.674414494824,2019
+2001,32,"(30,35]",College,701.5996939556236,172.17983894793457,4.074807470157875,5871.0668529985505,2019
+2001,32,"(30,35]",College,701.7671002295333,172.17983894793457,4.075779745860609,5490.44394736455,2019
+2001,32,"(30,35]",College,700.7626625860751,172.17983894793457,4.069946091644206,6116.994096916079,2019
+2001,32,"(30,35]",College,698.2515684774293,172.17983894793457,4.055361956103196,5910.403780462134,2019
+2001,64,"(60,65]",HS,1373.3173680183627,213.5030002954389,6.432309457562695,6882.24973993649,2019
+2001,64,"(60,65]",HS,1367.0563733741392,120.5258872635542,11.342429451564993,6252.660503450002,2019
+2001,64,"(60,65]",HS,1402.144728385616,161.84904861105852,8.663286812115452,5846.595295796013,2019
+2001,64,"(60,65]",HS,1337.60960979342,203.1722099585628,6.583624847444574,6547.878501086287,2019
+2001,64,"(60,65]",HS,1379.3272532517215,105.0297017582401,13.132735123124412,6292.778190554005,2019
+2001,79,"(75,80]",College,13520.735118592196,191.1196212322074,70.74488234865592,1698.2858819950748,2019
+2001,79,"(75,80]",College,13520.735118592196,191.1196212322074,70.74488234865592,1733.6843821730283,2019
+2001,79,"(75,80]",College,13520.735118592196,191.1196212322074,70.74488234865592,1727.4768450424774,2019
+2001,79,"(75,80]",College,13520.735118592196,191.1196212322074,70.74488234865592,1726.1458624221693,2019
+2001,79,"(75,80]",College,13520.735118592196,191.1196212322074,70.74488234865592,1723.186099645399,2019
+2001,21,"(20,25]",HS,-3.013312930374904,86.08991947396729,-0.035001925298421256,7661.334896297645,2019
+2001,21,"(20,25]",HS,-6.361438408569243,86.08991947396729,-0.07389295340777821,7746.812131511401,2019
+2001,21,"(20,25]",HS,-1.3225095638867637,86.08991947396729,-0.015361956103195996,7799.776542811856,2019
+2001,21,"(20,25]",HS,-8.01876052027544,86.08991947396729,-0.09314401232190991,7564.619810439892,2019
+2001,21,"(20,25]",HS,-3.013312930374904,86.08991947396729,-0.035001925298421256,7719.538835931386,2019
+2001,70,"(65,70]",College,3324.0691966335116,68.87193557917384,48.26449509048902,3589.2579529052687,2019
+2001,70,"(65,70]",College,3379.4974139250194,134.30027437938898,25.163741694065145,3673.480766289284,2019
+2001,70,"(65,70]",College,3537.7967865340474,94.69891142136402,37.35836804704729,1683.0820997873227,2019
+2001,70,"(65,70]",College,3214.7026778882937,237.60817774814973,13.529427767825752,3727.621911359234,2019
+2001,70,"(65,70]",College,3634.0553940321347,160.12725022157917,22.694796725750553,1610.438688536095,2019
+2001,55,"(50,55]",College,21176.89364957919,922.8839367609295,22.946432163403234,522.2808069297469,2019
+2001,55,"(50,55]",College,25052.348890589135,1095.0637757088641,22.87752498649869,507.6509741490384,2019
+2001,55,"(50,55]",College,20113.86381025249,643.9525976652753,31.235006867240898,528.1841577746234,2019
+2001,55,"(50,55]",College,24898.335118592197,2014.5041156908349,12.359535492958672,531.398960149374,2019
+2001,55,"(50,55]",College,20082.05661820964,757.5912913709121,26.507771204536706,519.4318138436971,2019
+2001,85,"(80,85]",NoHS,437.11452180566187,37.87956456854561,11.539586760947946,10392.057563348237,2019
+2001,85,"(80,85]",NoHS,425.5467482785004,37.87956456854561,11.234203801589246,10750.08374659999,2019
+2001,85,"(80,85]",NoHS,496.9622647283856,37.87956456854561,13.119534777890571,10946.527130179002,2019
+2001,85,"(80,85]",NoHS,767.4740627390972,37.87956456854561,20.260899814471244,9009.29666537787,2019
+2001,85,"(80,85]",NoHS,553.6795103289977,37.87956456854561,14.616839360100814,10858.198195497942,2019
+2001,49,"(45,50]",College,152973.6768171385,3305.852907800344,46.27358841531896,12.741347796184815,2019
+2001,49,"(45,50]",College,151827.27865340473,3891.2643602233215,39.01746697176115,13.446065715628222,2019
+2001,49,"(45,50]",College,152561.68997704668,3495.2507306430716,43.648282121659896,13.629371123236291,2019
+2001,49,"(45,50]",College,153342.30543228769,3064.801133273236,50.033362284918205,13.433686857337898,2019
+2001,49,"(45,50]",College,152389.59632746747,3357.5068594847244,45.38772449473257,13.82447659277727,2019
+2001,26,"(25,30]",College,106.72149961744452,86.08991947396729,1.2396515209857528,5262.555981810327,2019
+2001,26,"(25,30]",College,105.71706197398623,86.08991947396729,1.2279842125529459,5223.478794088373,2019
+2001,26,"(25,30]",College,104.54521805661821,86.08991947396729,1.2143723527146708,5229.231472934365,2019
+2001,26,"(25,30]",College,104.54521805661821,86.08991947396729,1.2143723527146708,5263.573510511536,2019
+2001,26,"(25,30]",College,104.21040550879879,86.08991947396729,1.2104832499037352,5214.386306584455,2019
+2001,22,"(20,25]",HS,3.348125478194338,51.653951684380374,0.06481838018226158,6636.1129203773,2019
+2001,22,"(20,25]",HS,3.348125478194338,51.653951684380374,0.06481838018226158,6660.496105439413,2019
+2001,22,"(20,25]",HS,3.348125478194338,51.653951684380374,0.06481838018226158,6543.3302732502525,2019
+2001,22,"(20,25]",HS,3.348125478194338,51.653951684380374,0.06481838018226158,6555.682700943556,2019
+2001,22,"(20,25]",HS,3.348125478194338,51.653951684380374,0.06481838018226158,6625.377597895336,2019
+2001,50,"(45,50]",College,10409.656924254017,860.899194739673,12.091609549480168,18.721255848770337,2019
+2001,50,"(45,50]",College,17288.380719204284,860.899194739673,20.081771274547553,18.788404244055418,2019
+2001,50,"(45,50]",College,11978.086304514156,860.899194739673,13.913459761262995,19.29133250408,2019
+2001,50,"(45,50]",College,15892.212394797245,860.899194739673,18.460015402387366,18.68680922597634,2019
+2001,50,"(45,50]",College,15162.15363427697,860.899194739673,17.61199653446284,18.46256719226991,2019
+2001,38,"(35,40]",NoHS,27.940107115531752,53.37575007385973,0.523460692859006,7829.218079686907,2019
+2001,38,"(35,40]",NoHS,30.049426166794188,25.826975842190187,1.1634899242715955,7858.880253989376,2019
+2001,38,"(35,40]",NoHS,27.923366488140783,48.21035490542169,0.5791985257714946,7745.200902118937,2019
+2001,38,"(35,40]",NoHS,29.79831675592961,39.60136295802496,0.7524568482027757,7793.550254744131,2019
+2001,38,"(35,40]",NoHS,30.769273144605968,24.105177452710844,1.2764591011606798,7857.793714352437,2019
+2001,44,"(40,45]",HS,78.1787299158378,101.5861049792814,0.7695809375876991,3763.744750192715,2019
+2001,44,"(40,45]",HS,80.35501147666412,92.97711303188467,0.8642450690968212,3722.7302187453956,2019
+2001,44,"(40,45]",HS,81.69426166794186,87.81171786344665,0.9303343979101074,3735.448191049247,2019
+2001,44,"(40,45]",HS,83.0335118592196,94.69891142136402,0.8768159064655023,3721.174478245653,2019
+2001,44,"(40,45]",HS,80.28804896710022,99.86430658980206,0.8039714259158445,3764.5959857627254,2019
+2001,33,"(30,35]",NoHS,92.843519510329,191.1196212322074,0.48578748174435504,1472.9342262241157,2019
+2001,33,"(30,35]",NoHS,92.843519510329,191.1196212322074,0.48578748174435504,1508.9740410358297,2019
+2001,33,"(30,35]",NoHS,92.843519510329,191.1196212322074,0.48578748174435504,1482.3783948780765,2019
+2001,33,"(30,35]",NoHS,93.01092578423872,191.1196212322074,0.4866634058008721,1487.8000943803186,2019
+2001,33,"(30,35]",NoHS,92.843519510329,191.1196212322074,0.48578748174435504,1440.7621599713277,2019
+2001,47,"(45,50]",HS,43.15733741392502,60.2629436317771,0.7161505033280159,9230.276934236308,2019
+2001,47,"(45,50]",HS,43.15733741392502,60.2629436317771,0.7161505033280159,9461.463386495996,2019
+2001,47,"(45,50]",HS,43.15733741392502,60.2629436317771,0.7161505033280159,9526.528523272274,2019
+2001,47,"(45,50]",HS,43.15733741392502,60.2629436317771,0.7161505033280159,9308.201502651724,2019
+2001,47,"(45,50]",HS,43.15733741392502,60.2629436317771,0.7161505033280159,9341.918192557248,2019
+2001,50,"(45,50]",College,22201.269380260135,1205.258872635542,18.42033266406293,313.2379130398481,2019
+2001,50,"(45,50]",College,22204.450099464426,1205.258872635542,18.422971698113212,306.9161349652556,2019
+2001,50,"(45,50]",College,21448.275960214232,1205.258872635542,17.795576076791903,316.60850175098983,2019
+2001,50,"(45,50]",College,22202.776036725325,1205.258872635542,18.421582732823587,308.53994444742,2019
+2001,50,"(45,50]",College,22202.776036725325,1205.258872635542,18.421582732823587,311.3887393874046,2019
+2001,50,"(45,50]",HS,106.85542463657231,49.93215329490103,2.1400123484657363,5965.775355312009,2019
+2001,50,"(45,50]",HS,100.1759143075746,34.43596778958692,2.9090489025798996,6218.364326688207,2019
+2001,50,"(45,50]",HS,126.22433052792655,29.27057262114888,4.312328705066933,6246.59192843253,2019
+2001,50,"(45,50]",HS,108.814078041316,30.992371010628222,3.5109955932058363,6076.642573436523,2019
+2001,50,"(45,50]",HS,103.92581484315225,29.27057262114888,3.5505220956307046,6157.552207795631,2019
+2001,51,"(50,55]",College,400.1846977811783,189.39782284272803,2.1129318794413137,527.9889606715922,2019
+2001,51,"(50,55]",College,400.01729150726857,189.39782284272803,2.112047992438828,522.7097885026417,2019
+2001,51,"(50,55]",College,400.01729150726857,189.39782284272803,2.112047992438828,503.4911841140628,2019
+2001,51,"(50,55]",College,400.1846977811783,189.39782284272803,2.1129318794413137,522.3705747484918,2019
+2001,51,"(50,55]",College,400.1846977811783,189.39782284272803,2.1129318794413137,551.2155837150973,2019
+2001,23,"(20,25]",College,136.1933741392502,51.653951684380374,2.636649659863946,7670.987572119595,2019
+2001,23,"(20,25]",College,139.03928079571537,51.653951684380374,2.691745283018868,7774.436406935854,2019
+2001,23,"(20,25]",College,137.03877582249427,51.653951684380374,2.6530163008599668,7846.452780847771,2019
+2001,23,"(20,25]",College,136.3607804131599,51.653951684380374,2.6398905788730582,7596.228582746842,2019
+2001,23,"(20,25]",College,136.3691507268554,51.653951684380374,2.640052624823514,7726.067079353219,2019
+2001,69,"(65,70]",HS,71.81729150726856,16.52926453900172,4.344857046592223,9736.46845087213,2019
+2001,69,"(65,70]",HS,64.95363427697016,16.52926453900172,3.929614298549609,9654.843437862675,2019
+2001,69,"(65,70]",HS,74.99801071155318,16.52926453900172,4.537286612758312,9738.55228566581,2019
+2001,69,"(65,70]",HS,75.78482019892886,16.52926453900172,4.58488761070466,9724.958932198988,2019
+2001,69,"(65,70]",HS,76.58837031369549,16.52926453900172,4.633501395841356,9660.475061268877,2019
+2001,69,"(65,70]",College,3906.425401683244,129.1348792109509,30.250738031061488,3378.222256891321,2019
+2001,69,"(65,70]",College,4217.801071155317,129.1348792109509,32.66198177384161,3354.2556167605485,2019
+2001,69,"(65,70]",College,3805.981637337414,129.1348792109509,29.47291746887435,3432.3138467958097,2019
+2001,69,"(65,70]",College,4450.495791889824,129.1348792109509,34.46393274290849,3344.052465457542,2019
+2001,69,"(65,70]",College,4283.089517980107,129.1348792109509,33.16756513926326,3312.380940135091,2019
+2001,26,"(25,30]",College,92.0734506503443,141.18746793730637,0.6521361420776317,9893.556945139673,2019
+2001,26,"(25,30]",College,92.0734506503443,141.18746793730637,0.6521361420776317,10035.414950690309,2019
+2001,26,"(25,30]",College,92.0734506503443,141.18746793730637,0.6521361420776317,10101.941248409214,2019
+2001,26,"(25,30]",College,91.90604437643458,141.18746793730637,0.6509504400011269,10038.314147768306,2019
+2001,26,"(25,30]",College,92.0734506503443,141.18746793730637,0.6521361420776317,9939.832863691934,2019
+2001,63,"(60,65]",HS,42837.591430757464,3202.545004431583,13.37610911680558,170.35675008960655,2019
+2001,63,"(60,65]",HS,41563.62968630452,3874.046376328528,10.72873828776794,972.085507979123,2019
+2001,63,"(60,65]",HS,43314.69931140015,3736.302505170181,11.592931581814534,166.8640708026392,2019
+2001,63,"(60,65]",HS,43430.20964039786,3546.904682327452,12.244538133993293,176.8298272395556,2019
+2001,63,"(60,65]",HS,41255.602142310636,3064.801133273236,13.461102482120683,167.57574966235742,2019
+2001,51,"(50,55]",NoHS,58.592195868400914,20.661580673752148,2.8358041329739443,5997.195416454517,2019
+2001,51,"(50,55]",NoHS,58.592195868400914,18.939782284272805,3.093604508698848,6295.0031748526435,2019
+2001,51,"(50,55]",NoHS,58.592195868400914,18.939782284272805,3.093604508698848,6317.665286375052,2019
+2001,51,"(50,55]",NoHS,58.592195868400914,18.939782284272805,3.093604508698848,6150.084339212031,2019
+2001,51,"(50,55]",NoHS,58.592195868400914,20.661580673752148,2.8358041329739443,6182.730098330906,2019
+2001,44,"(40,45]",HS,772.4125478194338,103.30790336876075,7.4768001540238735,7999.362312845749,2019
+2001,44,"(40,45]",HS,772.4125478194338,103.30790336876075,7.4768001540238735,7279.572220598902,2019
+2001,44,"(40,45]",HS,772.4125478194338,103.30790336876075,7.4768001540238735,6800.141013033053,2019
+2001,44,"(40,45]",HS,772.4125478194338,103.30790336876075,7.4768001540238735,7608.985658836554,2019
+2001,44,"(40,45]",HS,772.5799540933436,103.30790336876075,7.4784206135284315,7311.5167559003985,2019
+2001,62,"(60,65]",HS,747.3016067329763,61.984742021256444,12.056218713900655,7480.611147973116,2019
+2001,62,"(60,65]",HS,747.1342004590665,80.92452430552926,9.232481832556385,6794.314108017061,2019
+2001,62,"(60,65]",HS,747.3016067329763,65.42833880021514,11.421680886853252,6356.191890914868,2019
+2001,62,"(60,65]",HS,747.1342004590665,56.819346852818406,13.149292306974248,7116.056920032231,2019
+2001,62,"(60,65]",HS,747.3016067329763,67.15013718969449,11.128817274369835,6839.402668364451,2019
+2001,47,"(45,50]",College,1520.0489671002297,277.20954070617466,5.4833934042385275,5961.833672893141,2019
+2001,47,"(45,50]",College,1518.3749043611324,277.20954070617466,5.47735442471844,5414.84478188801,2019
+2001,47,"(45,50]",College,1518.3749043611324,277.20954070617466,5.47735442471844,5058.524113750515,2019
+2001,47,"(45,50]",College,1518.3749043611324,277.20954070617466,5.47735442471844,5668.241427795476,2019
+2001,47,"(45,50]",College,1518.3749043611324,277.20954070617466,5.47735442471844,5439.730734386898,2019
+2001,20,"(15,20]",HS,30.635348125478195,94.69891142136402,0.32350264290965103,8763.6260487277,2019
+2001,20,"(15,20]",HS,27.287222647283855,94.69891142136402,0.28814716281023556,8851.312882422944,2019
+2001,20,"(15,20]",HS,27.287222647283855,94.69891142136402,0.28814716281023556,8938.897613812076,2019
+2001,20,"(15,20]",HS,30.635348125478195,94.69891142136402,0.32350264290965103,8710.061254986003,2019
+2001,20,"(15,20]",HS,30.635348125478195,94.69891142136402,0.32350264290965103,8845.825331129883,2019
+2001,59,"(55,60]",HS,10863.026595256311,134.30027437938898,80.8861087250575,1584.5917583795078,2019
+2001,59,"(55,60]",HS,11024.57364957919,136.02207276886833,81.04988716289,1591.5381807810638,2019
+2001,59,"(55,60]",HS,12517.335394032134,136.02207276886833,92.02429531640695,1640.6773844357735,2019
+2001,59,"(55,60]",HS,10842.100811017597,136.02207276886833,79.7083928388647,1572.3719255051012,2019
+2001,59,"(55,60]",HS,12521.520550879877,136.02207276886833,92.05506353484789,1560.3670354920891,2019
+2001,57,"(55,60]",NoHS,4.519969395562356,56.819346852818406,0.07954983022368467,4483.504499310315,2019
+2001,57,"(55,60]",NoHS,4.519969395562356,56.819346852818406,0.07954983022368467,4613.649444832337,2019
+2001,57,"(55,60]",NoHS,4.519969395562356,56.819346852818406,0.07954983022368467,4467.193973531431,2019
+2001,57,"(55,60]",NoHS,4.519969395562356,56.819346852818406,0.07954983022368467,4558.426885403827,2019
+2001,57,"(55,60]",NoHS,4.519969395562356,56.819346852818406,0.07954983022368467,4522.059326478705,2019
+2001,39,"(35,40]",College,1598.5206579954095,378.79564568545607,4.2200080074911615,2729.9146224300675,2019
+2001,39,"(35,40]",College,1600.1947207345067,378.79564568545607,4.224427442503589,2780.217841902728,2019
+2001,39,"(35,40]",College,1600.0273144605967,378.79564568545607,4.223985499002345,3490.6228478106955,2019
+2001,39,"(35,40]",College,1601.8687834736038,378.79564568545607,4.228846877516015,2870.3520314218977,2019
+2001,39,"(35,40]",College,1601.8687834736038,378.79564568545607,4.228846877516015,2941.9938630516385,2019
+2001,42,"(40,45]",College,4838.0413159908185,699.0501461286143,6.920878770692217,1377.2768080910696,2019
+2001,42,"(40,45]",College,5370.393267023718,996.9212675085412,5.386978332245989,1403.580446927317,2019
+2001,42,"(40,45]",College,5181.224177505738,886.726170581863,5.843093786332998,1399.780285171635,2019
+2001,42,"(40,45]",College,5276.645753634277,742.0951058655979,7.110471032522803,1399.742957227751,2019
+2001,42,"(40,45]",College,5678.420811017597,717.9899284128873,7.908775020799685,1395.3683720027577,2019
+2001,72,"(70,75]",College,2026.4529456771234,241.0517745271084,8.406712415424392,9223.146732002675,2019
+2001,72,"(70,75]",College,2181.3037490436113,241.0517745271084,9.049108861873592,8952.26418251111,2019
+2001,72,"(70,75]",College,1914.290742157613,241.0517745271084,7.941409043401729,9658.0002538738,2019
+2001,72,"(70,75]",College,2131.081866870696,241.0517745271084,8.840764068430607,9167.675614179785,2019
+2001,72,"(70,75]",College,2163.8934965570006,241.0517745271084,8.976882666813356,9143.154961935485,2019
+2001,71,"(70,75]",College,4444.971384850804,325.41989561159636,13.659187544439758,3190.9080748881775,2019
+2001,71,"(70,75]",College,3328.0367253251725,148.07466149522375,22.475396477151634,1816.1541640801097,2019
+2001,71,"(70,75]",College,3329.2085692425403,149.7964598847031,22.22488149456269,1952.06250980589,2019
+2001,71,"(70,75]",College,3747.8916602907425,189.39782284272803,19.788462211642805,3172.7268341181984,2019
+2001,71,"(70,75]",College,2816.4431522570776,172.17983894793457,16.357566422795536,1858.4740723350667,2019
+2001,53,"(50,55]",HS,505.2321346595257,68.87193557917384,7.335820177127455,6499.6712493505065,2019
+2001,53,"(50,55]",HS,505.2321346595257,68.87193557917384,7.335820177127455,6774.865197727229,2019
+2001,53,"(50,55]",HS,505.2321346595257,68.87193557917384,7.335820177127455,6805.618975831254,2019
+2001,53,"(50,55]",HS,505.2321346595257,68.87193557917384,7.335820177127455,6620.460321553459,2019
+2001,53,"(50,55]",HS,505.2321346595257,68.87193557917384,7.335820177127455,6708.6108121298585,2019
+2001,55,"(50,55]",NoHS,2965.6021423106354,1377.4387115834766,2.152983009241433,69.86903440003181,2019
+2001,55,"(50,55]",NoHS,2962.254016832441,1377.4387115834766,2.1505523199845977,67.5765044564433,2019
+2001,55,"(50,55]",NoHS,2962.254016832441,1377.4387115834766,2.1505523199845977,73.31177841070442,2019
+2001,55,"(50,55]",NoHS,2965.6021423106354,1377.4387115834766,2.152983009241433,69.88554983668234,2019
+2001,55,"(50,55]",NoHS,2962.254016832441,1377.4387115834766,2.1505523199845977,70.92799055617613,2019
+2001,75,"(70,75]",HS,1218.7176740627392,74.03733074761188,16.46085375791387,7496.403118800998,2019
+2001,75,"(70,75]",HS,1054.3247130833972,74.03733074761188,14.240447385623842,6770.5658028170965,2019
+2001,75,"(70,75]",HS,1119.7805661820964,74.03733074761188,15.124539943226083,6402.380477355508,2019
+2001,75,"(70,75]",HS,1300.5793420045907,74.03733074761188,17.56653473148803,7157.763000355881,2019
+2001,75,"(70,75]",HS,1069.726090283091,74.03733074761188,14.44846916388319,6874.691597334087,2019
+2001,47,"(45,50]",HS,57.252945677123186,60.2629436317771,0.9500522581000056,8878.571986121311,2019
+2001,47,"(45,50]",HS,18.582096403978575,60.2629436317771,0.30835029429561583,9441.40564077279,2019
+2001,47,"(45,50]",HS,52.23075745983168,60.2629436317771,0.8667143407228122,9338.760106640435,2019
+2001,47,"(45,50]",HS,51.89594491201225,60.2629436317771,0.8611584795643327,9104.4657719801,2019
+2001,47,"(45,50]",HS,53.402601377199694,60.2629436317771,0.8861598547774906,9138.887916685871,2019
+2001,58,"(55,60]",HS,420.3571537872992,118.80408887407486,3.5382381008186705,6400.149052559047,2019
+2001,58,"(55,60]",HS,420.5245600612089,118.80408887407486,3.5396471960400238,6758.342005776581,2019
+2001,58,"(55,60]",HS,418.85049732211166,118.80408887407486,3.5255562438264882,6792.349800918356,2019
+2001,58,"(55,60]",HS,420.5245600612089,118.80408887407486,3.5396471960400238,6587.398177390091,2019
+2001,58,"(55,60]",HS,420.5245600612089,118.80408887407486,3.5396471960400238,6685.2808883055895,2019
+2001,30,"(25,30]",College,87.31911247130834,158.40545183209983,0.5512380505934942,6280.755712682699,2019
+2001,30,"(25,30]",College,86.88385615914308,158.40545183209983,0.5484903149118547,6362.255905874395,2019
+2001,30,"(25,30]",College,84.28905891354246,158.40545183209983,0.5321095829636202,6413.044929842004,2019
+2001,30,"(25,30]",College,87.6371843917368,158.40545183209983,0.5532460112839228,6277.847165355109,2019
+2001,30,"(25,30]",College,84.23883703136956,158.40545183209983,0.5317925365388156,6355.693345296554,2019
+2001,41,"(40,45]",HS,250.05475133894416,61.984742021256444,4.034133936593506,7987.283790125361,2019
+2001,41,"(40,45]",HS,249.87060443764346,60.2629436317771,4.146339182573299,8283.715679497538,2019
+2001,41,"(40,45]",HS,249.87060443764346,60.2629436317771,4.146339182573299,8361.140123245914,2019
+2001,41,"(40,45]",HS,249.88734506503442,60.2629436317771,4.146616975631223,8112.428282882824,2019
+2001,41,"(40,45]",HS,249.88734506503442,61.984742021256444,4.031433170752578,8298.51123029499,2019
+2001,27,"(25,30]",HS,55.997398622800304,43.04495973698364,1.30090489025799,9955.277974403009,2019
+2001,27,"(25,30]",HS,55.997398622800304,43.04495973698364,1.30090489025799,9991.981894720551,2019
+2001,27,"(25,30]",HS,54.49074215761286,43.04495973698364,1.2659029649595688,10069.615798291947,2019
+2001,27,"(25,30]",HS,54.32333588370314,43.04495973698364,1.2620138621486332,10063.939485863113,2019
+2001,27,"(25,30]",HS,56.667023718439175,43.04495973698364,1.3164613015017328,9902.54586351079,2019
+2001,53,"(50,55]",HS,450.99250191277736,158.40545183209983,2.847076894744772,6131.102777233717,2019
+2001,53,"(50,55]",HS,449.3184391736802,156.68365344262045,2.867679105645991,6456.640611438959,2019
+2001,53,"(50,55]",HS,449.3184391736802,156.68365344262045,2.867679105645991,6481.790984482226,2019
+2001,53,"(50,55]",HS,447.644376434583,156.68365344262045,2.8569947572642995,6267.0223111209325,2019
+2001,53,"(50,55]",HS,450.99250191277736,156.68365344262045,2.8783634540276823,6391.194781061388,2019
+2001,52,"(50,55]",College,1723.1127773527162,251.3825648639845,6.854543704274162,2859.526854118402,2019
+2001,52,"(50,55]",College,1806.8159143075745,251.3825648639845,7.187514835347423,2899.8064259462217,2019
+2001,52,"(50,55]",College,2196.872532517215,251.3825648639845,8.739160306148822,3698.516957660948,2019
+2001,52,"(50,55]",College,1856.8703902065802,251.3825648639845,7.386631571729235,3015.5494396530867,2019
+2001,52,"(50,55]",College,1857.0377964804898,251.3825648639845,7.387297513991381,3070.187368899558,2019
+2001,37,"(35,40]",College,470.74644223412395,201.45041156908349,2.336785706057943,8093.160309492545,2019
+2001,37,"(35,40]",College,472.4205049732211,244.49537130606709,1.9322267838838965,7357.438259582146,2019
+2001,37,"(35,40]",College,472.4205049732211,251.3825648639845,1.8792890637774882,6877.129695744616,2019
+2001,37,"(35,40]",College,489.16113236419284,218.6683954638769,2.2369996877075007,7694.491625780451,2019
+2001,37,"(35,40]",College,470.41162968630454,251.3825648639845,1.87129775663173,7398.9234223243375,2019
+2001,54,"(50,55]",College,3803.3031369548585,189.39782284272803,20.08102880946547,1940.068690030375,2019
+2001,54,"(50,55]",College,3803.4705432287683,189.39782284272803,20.081912696467953,1922.4063000937629,2019
+2001,54,"(50,55]",College,3803.3031369548585,189.39782284272803,20.08102880946547,1970.45104057374,2019
+2001,54,"(50,55]",College,3805.1446059678656,189.39782284272803,20.09075156649281,1916.4511055537325,2019
+2001,54,"(50,55]",College,3803.4705432287683,189.39782284272803,20.081912696467953,1899.122227029236,2019
+2001,32,"(30,35]",HS,52.06335118592196,105.0297017582401,0.49570121893483654,6644.5602024892305,2019
+2001,32,"(30,35]",HS,50.389288446824786,103.30790336876075,0.4877583108715184,6723.118254570332,2019
+2001,32,"(30,35]",HS,50.389288446824786,105.0297017582401,0.47976227298837876,6797.371913982452,2019
+2001,32,"(30,35]",HS,52.06335118592196,105.0297017582401,0.49570121893483654,6685.282900887573,2019
+2001,32,"(30,35]",HS,60.60107115531752,105.0297017582401,0.5769898432617712,6735.7333448174595,2019
+2001,63,"(60,65]",College,1535.4503442999235,344.35967789586914,4.458856372737775,635.1469436408456,2019
+2001,63,"(60,65]",College,1528.7540933435348,344.35967789586914,4.439410858683096,626.8980383666656,2019
+2001,63,"(60,65]",College,1624.1756694720734,344.35967789586914,4.716509433962265,663.1398498771632,2019
+2001,63,"(60,65]",College,1617.4794185156848,344.35967789586914,4.697063919907586,643.6369999791767,2019
+2001,63,"(60,65]",College,1530.428156082632,344.35967789586914,4.444272237196766,643.9833451371017,2019
+2001,69,"(65,70]",HS,2916.719510328998,425.28420220139844,6.858283226207754,3402.098549138933,2019
+2001,69,"(65,70]",HS,2692.395103289977,396.01362958024953,6.7987435335085635,3367.730663110292,2019
+2001,69,"(65,70]",HS,2842.893343534812,425.28420220139844,6.684690681711534,3600.545458023588,2019
+2001,69,"(65,70]",HS,2928.2705432287685,408.066218306605,7.175969026253922,3440.549030395619,2019
+2001,69,"(65,70]",HS,2833.0163733741397,401.17902474868754,7.061726058955449,3455.043460847783,2019
+2001,54,"(50,55]",HS,660.7525631216527,120.5258872635542,5.48224599812971,5981.141268698274,2019
+2001,54,"(50,55]",HS,660.9199693955624,120.5258872635542,5.48363496341933,5434.709399700891,2019
+2001,54,"(50,55]",HS,660.7525631216527,118.80408887407486,5.5616988386823145,5073.452403660499,2019
+2001,54,"(50,55]",HS,660.7525631216527,120.5258872635542,5.48224599812971,5688.087719967792,2019
+2001,54,"(50,55]",HS,660.7525631216527,120.5258872635542,5.48224599812971,5455.758706651477,2019
+2001,40,"(35,40]",HS,0.28459066564651875,9.469891142136403,0.030052158084503094,5764.91426081818,2019
+2001,40,"(35,40]",HS,0.28459066564651875,9.469891142136403,0.030052158084503094,5752.673474369356,2019
+2001,40,"(35,40]",HS,0.28459066564651875,9.469891142136403,0.030052158084503094,5760.999636373094,2019
+2001,40,"(35,40]",HS,0.28459066564651875,9.469891142136403,0.030052158084503094,5725.4749188474525,2019
+2001,40,"(35,40]",HS,0.28459066564651875,9.469891142136403,0.030052158084503094,5790.280923921796,2019
+2001,34,"(30,35]",College,775.7606732976282,344.35967789586914,2.2527628032345013,211.5817659927142,2019
+2001,34,"(30,35]",College,837.0313695485846,344.35967789586914,2.43068925683481,212.62830576932478,2019
+2001,34,"(30,35]",College,850.5912777352717,344.35967789586914,2.470066422795534,200.72117207818548,2019
+2001,34,"(30,35]",College,809.6771843917368,344.35967789586914,2.351254331921448,212.74780343240218,2019
+2001,34,"(30,35]",College,823.6388676358072,344.35967789586914,2.3917982287254524,225.09022301383692,2019
+2001,50,"(45,50]",College,490.1655700076511,206.6158067375215,2.372352714670774,428.18877444050975,2019
+2001,50,"(45,50]",College,490.1655700076511,206.6158067375215,2.372352714670774,423.1827004406844,2019
+2001,50,"(45,50]",College,491.8396327467483,206.6158067375215,2.380455012193557,407.98059626857525,2019
+2001,50,"(45,50]",College,491.8396327467483,206.6158067375215,2.380455012193557,423.5937118553805,2019
+2001,50,"(45,50]",College,491.8396327467483,206.6158067375215,2.380455012193557,446.35271363282357,2019
+2001,69,"(65,70]",NoHS,200.21790359602142,32.71416940010757,6.120219686683014,6749.206376256383,2019
+2001,69,"(65,70]",NoHS,202.22677888293802,20.661580673752148,9.7875754075215,7080.199671168409,2019
+2001,69,"(65,70]",NoHS,193.11987758224944,32.71416940010757,5.903248687757129,7387.027307061826,2019
+2001,69,"(65,70]",NoHS,193.33750573833206,20.661580673752148,9.357343409061738,6809.476030128823,2019
+2001,69,"(65,70]",NoHS,189.03516449885234,29.27057262114888,6.458198373689099,7105.818589551328,2019
+2001,29,"(25,30]",NoHS,3.0970160673297626,25.826975842190187,0.11991400333718392,5333.984328549319,2019
+2001,29,"(25,30]",NoHS,3.0551644988523337,25.826975842190187,0.1182935438326274,5316.585087323542,2019
+2001,29,"(25,30]",NoHS,3.0719051262433053,25.826975842190187,0.11894172763445,5327.480086632904,2019
+2001,29,"(25,30]",NoHS,3.239311400153022,25.826975842190187,0.12542356565267615,5354.666770429371,2019
+2001,29,"(25,30]",NoHS,3.0719051262433053,25.826975842190187,0.11894172763445,5313.045556518632,2019
+2001,58,"(55,60]",HS,17.812027543993878,30.992371010628222,0.5747229709493861,7511.629205611806,2019
+2001,58,"(55,60]",HS,13.693833205814842,29.27057262114888,0.46783619108020563,7949.612221405453,2019
+2001,58,"(55,60]",HS,11.668217291507268,29.27057262114888,0.3986330381209087,7999.241749626321,2019
+2001,58,"(55,60]",HS,11.333404743687836,29.27057262114888,0.38719450044168613,7782.770165953616,2019
+2001,58,"(55,60]",HS,16.13796480489671,29.27057262114888,0.5513375161385309,7872.509297556508,2019
+2001,72,"(70,75]",NoHS,225.83106350420812,20.661580673752148,10.92999935823386,1501.6685743621003,2019
+2001,72,"(70,75]",NoHS,225.83106350420812,20.661580673752148,10.92999935823386,1679.2436599729822,2019
+2001,72,"(70,75]",NoHS,225.83106350420812,18.939782284272805,11.923635663527847,1643.6313945076658,2019
+2001,72,"(70,75]",NoHS,225.83106350420812,18.939782284272805,11.923635663527847,1609.7406314568357,2019
+2001,72,"(70,75]",NoHS,225.66365723029838,18.939782284272805,11.914796793502992,1585.2563389116185,2019
+2001,22,"(20,25]",HS,23.11043611323642,30.992371010628222,0.7456814486801011,6864.625022988075,2019
+2001,22,"(20,25]",HS,33.33058913542463,30.992371010628222,1.0754449578573566,6871.602379161357,2019
+2001,22,"(20,25]",HS,38.34440703902066,30.992371010628222,1.2372208317289182,6866.943530152258,2019
+2001,22,"(20,25]",HS,29.982463657230298,30.992371010628222,0.9674143242202542,6806.290062918159,2019
+2001,22,"(20,25]",HS,105.31528691660291,30.992371010628222,3.398103581055064,6840.0837581657015,2019
+2001,49,"(45,50]",HS,242.65539403213464,120.5258872635542,2.013305187304032,6161.754979775825,2019
+2001,49,"(45,50]",HS,226.3165416985463,120.5258872635542,1.877742175037131,6481.532751394606,2019
+2001,49,"(45,50]",HS,235.10537107880643,120.5258872635542,1.9506628527421752,6526.5438802903245,2019
+2001,49,"(45,50]",HS,246.43877582249428,120.5258872635542,2.044695802849442,6339.8908652552145,2019
+2001,49,"(45,50]",HS,246.74010711553174,120.5258872635542,2.0471959403707576,6434.51020980933,2019
+2001,45,"(40,45]",HS,830.5025248661057,189.39782284272803,4.3849634193299964,8554.665191739838,2019
+2001,45,"(40,45]",HS,837.366182096404,189.39782284272803,4.4212027864318975,7773.118413396214,2019
+2001,45,"(40,45]",HS,885.244376434583,189.39782284272803,4.673994469142717,7256.422266212279,2019
+2001,45,"(40,45]",HS,875.5348125478195,189.39782284272803,4.622729022998565,8135.518597466855,2019
+2001,45,"(40,45]",HS,882.2310635042081,189.39782284272803,4.658084503097981,7803.224669943405,2019
+2001,46,"(45,50]",College,407.29946442234126,68.87193557917384,5.9138669618790916,2060.627542139215,2019
+2001,46,"(45,50]",College,373.81820964039787,239.32997613762907,1.5619364346797495,2193.511163404389,2019
+2001,46,"(45,50]",College,347.03320581484314,154.9618550531411,2.2394750352971378,2144.5524148439677,2019
+2001,46,"(45,50]",College,348.70726855394037,287.54033104305074,1.2127247238291996,2113.0810661436535,2019
+2001,46,"(45,50]",College,482.6155470543229,106.75150014771945,4.520925199051014,6659.732173982785,2019
+2001,31,"(30,35]",College,310.0364192807957,84.36812108448795,3.674805309108626,5728.294305537406,2019
+2001,31,"(30,35]",College,329.1207345065034,61.984742021256444,5.3097056432635945,5815.989496974518,2019
+2001,31,"(30,35]",College,435.92593726090286,139.46566954782702,3.125686333233503,5353.223145955515,2019
+2001,31,"(30,35]",College,460.70206579954095,142.9092663267857,3.223738233643082,5964.114140351531,2019
+2001,31,"(30,35]",College,293.1283856159143,72.31553235813253,4.053463703540714,5794.242154765819,2019
+2001,74,"(70,75]",HS,16961.43626625861,137.74387115834767,123.13750240662304,2066.753528412639,2019
+2001,74,"(70,75]",HS,16974.661361897477,211.78120190595953,80.15187943562147,2045.9488573681544,2019
+2001,74,"(70,75]",HS,16964.28217291507,80.92452430552926,209.6309161962657,2095.23818352263,2019
+2001,74,"(70,75]",HS,16964.616985462893,117.08229048459552,144.8948164171329,2036.1514946274497,2019
+2001,74,"(70,75]",HS,16960.31464422341,175.6234357268933,96.57204674322557,2016.3493510692174,2019
+2001,40,"(35,40]",College,201.74130068859986,89.53351625292598,2.2532489410858685,6614.045676315587,2019
+2001,40,"(35,40]",College,181.2675133894415,89.53351625292598,2.024577174846717,6789.44866927184,2019
+2001,40,"(35,40]",College,194.6097934200459,89.53351625292598,2.1735971239003584,6857.303795516103,2019
+2001,40,"(35,40]",College,200.8875286916603,89.53351625292598,2.2437131601552087,6694.113888430054,2019
+2001,40,"(35,40]",College,196.40104055087988,89.53351625292598,2.1936035662450757,6804.02672018077,2019
+2001,68,"(65,70]",College,24088.088752869167,688.7193557917383,34.975187716596075,1366.696752931393,2019
+2001,68,"(65,70]",College,24302.368783473605,688.7193557917383,35.28631594147093,1391.844120983435,2019
+2001,68,"(65,70]",College,24478.14537107881,688.7193557917383,35.541538313438586,1366.039622318366,2019
+2001,68,"(65,70]",College,26654.426931905127,688.7193557917383,38.70143434732384,1444.8433514020944,2019
+2001,68,"(65,70]",College,31048.841622035194,688.7193557917383,45.08199364651521,1435.8447710207934,2019
+2001,71,"(70,75]",College,91824.01530221883,1997.2861317960408,45.974391871257296,232.6198827127451,2019
+2001,71,"(70,75]",College,92281.03442999235,2066.1580673752146,44.66310486458735,205.7612511507222,2019
+2001,71,"(70,75]",College,91582.4480489671,2066.1580673752146,44.324995988961625,211.399025465056,2019
+2001,71,"(70,75]",College,92302.79724560061,1911.1962123220737,48.295824704180504,238.02261183877985,2019
+2001,71,"(70,75]",College,91198.75286916603,1997.2861317960408,45.66133585835115,216.14594743840863,2019
+2001,56,"(55,60]",College,69594.13618974751,5320.357023491178,13.080726703577568,12.57883120315518,2019
+2001,56,"(55,60]",College,73216.80795715378,5217.049120122418,14.03414195867026,13.27890672793472,2019
+2001,56,"(55,60]",College,71202.91048201988,8195.760333921688,8.687773626971001,13.458992248041634,2019
+2001,56,"(55,60]",College,71418.86457536343,3615.776617906626,19.7520123952546,13.265107818905388,2019
+2001,56,"(55,60]",College,73806.078041316,3615.776617906626,20.41223389625392,13.646603181231054,2019
+2001,70,"(65,70]",College,14636.816006120887,2961.493229904475,4.942376993579353,1701.6798495909989,2019
+2001,70,"(65,70]",College,14637.167559296098,2961.493229904475,4.942495701659339,1720.1911268622443,2019
+2001,70,"(65,70]",College,14637.653037490438,2961.493229904475,4.942659631865032,1743.5390100460722,2019
+2001,70,"(65,70]",College,14638.171996939556,2961.493229904475,4.942834867602152,1667.2938720227085,2019
+2001,70,"(65,70]",College,14637.268003060444,2961.493229904475,4.94252961825362,1668.740400701155,2019
+2001,25,"(20,25]",HS,2.6785003825554705,16.87362421689759,0.15873889024227325,5645.107650566985,2019
+2001,25,"(20,25]",HS,3.515531752104055,16.701444377949656,0.21049267791146803,5705.449676029213,2019
+2001,25,"(20,25]",HS,1.841469013006886,15.324005666366176,0.12016890707947374,5775.989349368873,2019
+2001,25,"(20,25]",HS,2.17628156082632,15.496185505314111,0.14043982372823344,5691.9246249527305,2019
+2001,25,"(20,25]",HS,3.013312930374904,13.946566954782698,0.21606126727420533,5685.799747122897,2019
+2001,54,"(50,55]",College,1184.7676817138486,201.45041156908349,5.8811876952038675,6766.233550674588,2019
+2001,54,"(50,55]",College,1363.222769701607,120.5258872635542,11.3106221464327,6130.308247643294,2019
+2001,54,"(50,55]",College,3973.5887987758224,165.29264539001719,24.039719307534334,1434.943228710271,2019
+2001,54,"(50,55]",College,1227.9082785003825,108.47329853719879,11.319912780925486,6454.441475263375,2019
+2001,54,"(50,55]",College,13292.526885998472,464.8855651594233,28.593115988533786,1343.0962197107017,2019
+2001,81,"(80,85]",College,24728.417750573833,1721.798389479346,14.361970542934152,302.5833408951793,2019
+2001,81,"(80,85]",College,24739.466564651873,1721.798389479346,14.368387562572195,310.9711953904298,2019
+2001,81,"(80,85]",College,24722.558530986997,1721.798389479346,14.358567577974586,303.2480180004804,2019
+2001,81,"(80,85]",College,24741.475439938793,1721.798389479346,14.369554293415478,301.17459059997486,2019
+2001,81,"(80,85]",College,24733.439938791125,1721.798389479346,14.364887370042355,300.517546044401,2019
+2001,52,"(50,55]",College,8.286610558530986,43.04495973698364,0.1925105891413169,5075.571571675235,2019
+2001,52,"(50,55]",College,4.101453710788064,43.04495973698364,0.09528301886792453,5173.660276334433,2019
+2001,52,"(50,55]",College,4.101453710788064,43.04495973698364,0.09528301886792453,5181.0706460785805,2019
+2001,52,"(50,55]",College,4.268859984697781,43.04495973698364,0.09917212167886022,5110.74019620654,2019
+2001,52,"(50,55]",College,14.145830145371079,43.04495973698364,0.3286291875240662,5129.435251684133,2019
+2001,25,"(20,25]",HS,6.964100994644224,60.2629436317771,0.11556191209637495,6416.372742938398,2019
+2001,25,"(20,25]",HS,5.290038255547055,60.2629436317771,0.08778260630397713,6444.189886575019,2019
+2001,25,"(20,25]",HS,5.306778882938026,60.2629436317771,0.0880603993619011,6357.285825333598,2019
+2001,25,"(20,25]",HS,5.290038255547055,60.2629436317771,0.08778260630397713,6458.990319178876,2019
+2001,25,"(20,25]",HS,5.290038255547055,60.2629436317771,0.08778260630397713,6444.92975855064,2019
+2001,27,"(25,30]",College,82.196480489671,117.08229048459552,0.7020402500622891,6717.750522463185,2019
+2001,27,"(25,30]",College,75.16541698546288,98.14250820032271,0.7658803342588276,6804.9212373325445,2019
+2001,27,"(25,30]",College,79.93649579188983,118.80408887407486,0.6728429681963023,6859.243998462212,2019
+2001,27,"(25,30]",College,66.96250956388677,110.19509692667813,0.6076723142087024,6714.639607754294,2019
+2001,27,"(25,30]",College,81.27574598316757,123.96948404251289,0.6556109078851667,6797.902074867515,2019
+2001,59,"(55,60]",College,1691.9752104055087,206.6158067375215,8.188992106276473,2707.692281942648,2019
+2001,59,"(55,60]",College,10300.005814843153,206.6158067375215,49.851005968425106,1244.395632559663,2019
+2001,59,"(55,60]",College,9999.00933435348,206.6158067375215,48.39421287382878,1282.816709197216,2019
+2001,59,"(55,60]",College,2201.8947207345063,206.6158067375215,10.656951931716081,2848.380035302108,2019
+2001,59,"(55,60]",College,1857.5400153022188,206.6158067375215,8.990309331279681,2918.2697658249244,2019
+2001,55,"(50,55]",HS,121.87176740627392,129.1348792109509,0.9437556154537289,7716.235892478762,2019
+2001,55,"(50,55]",HS,183.64468247895945,129.1348792109509,1.4221152611988195,7759.059981325836,2019
+2001,55,"(50,55]",HS,267.34781943381796,129.1348792109509,2.070299063021436,6920.233223426355,2019
+2001,55,"(50,55]",HS,83.2009181331293,129.1348792109509,0.6442946990116802,7347.208686006154,2019
+2001,55,"(50,55]",HS,83.36832440703903,129.1348792109509,0.6455910666153255,7339.203059512081,2019
+2001,63,"(60,65]",HS,173.09808722264728,53.37575007385973,3.243009924602829,7174.5484581990695,2019
+2001,63,"(60,65]",HS,174.77214996174447,53.37575007385973,3.274373656949085,7498.698647299973,2019
+2001,63,"(60,65]",HS,174.77214996174447,53.37575007385973,3.274373656949085,7541.267436244065,2019
+2001,63,"(60,65]",HS,169.74996174445295,53.37575007385973,3.180282459910318,7358.555199182044,2019
+2001,63,"(60,65]",HS,173.09808722264728,53.37575007385973,3.243009924602829,7420.307347919186,2019
+2001,38,"(35,40]",HS,55.24407039020658,80.92452430552926,0.6826616636216911,8847.021803739657,2019
+2001,38,"(35,40]",HS,56.918133129303754,70.59373396865318,0.8062774120232539,9114.785549143558,2019
+2001,38,"(35,40]",HS,56.918133129303754,84.36812108448795,0.6746402835296613,9214.105005433395,2019
+2001,38,"(35,40]",HS,55.24407039020658,136.02207276886833,0.4061404834204998,9014.415159155704,2019
+2001,38,"(35,40]",HS,55.24407039020658,210.0594035164802,0.2629926081165532,9076.218488981867,2019
+2001,56,"(55,60]",HS,40.5123182861515,43.04495973698364,0.9411628802464383,6645.2671113102915,2019
+2001,56,"(55,60]",HS,40.5123182861515,43.04495973698364,0.9411628802464383,6945.504067448707,2019
+2001,56,"(55,60]",HS,40.34491201224177,43.04495973698364,0.9372737774355024,6984.932468383852,2019
+2001,56,"(55,60]",HS,40.34491201224177,43.04495973698364,0.9372737774355024,6815.699292685579,2019
+2001,56,"(55,60]",HS,40.34491201224177,43.04495973698364,0.9372737774355024,6872.895857103054,2019
+2001,43,"(40,45]",NoHS,41.33260902830911,60.2629436317771,0.6858710600143023,5090.388130313063,2019
+2001,43,"(40,45]",NoHS,39.67528691660291,60.2629436317771,0.6583695472798284,5214.076594457111,2019
+2001,43,"(40,45]",NoHS,41.349349655700074,60.2629436317771,0.6861488530722262,5353.744106391269,2019
+2001,43,"(40,45]",NoHS,41.33260902830911,60.2629436317771,0.6858710600143023,5169.493824672232,2019
+2001,43,"(40,45]",NoHS,41.349349655700074,60.2629436317771,0.6861488530722262,5228.0160817097985,2019
+2001,26,"(25,30]",HS,36.193236419280794,108.47329853719879,0.3336603284620227,5426.841348911622,2019
+2001,26,"(25,30]",HS,34.15087987758225,108.47329853719879,0.31483213231384194,5374.504609475205,2019
+2001,26,"(25,30]",HS,32.96229533282326,108.47329853719879,0.3038747394735073,5371.441594655138,2019
+2001,26,"(25,30]",HS,34.40198928844683,108.47329853719879,0.3171470744632085,5398.249291649863,2019
+2001,26,"(25,30]",HS,31.656526396327468,108.47329853719879,0.2918370402968016,5390.53831908654,2019
+2001,57,"(55,60]",HS,14.698270849273145,63.706540410735805,0.23071839648659054,6693.144186661695,2019
+2001,57,"(55,60]",HS,14.974491201224177,61.984742021256444,0.2415835044709708,6845.6040131587215,2019
+2001,57,"(55,60]",HS,14.438791124713083,72.31553235813253,0.19966376038285932,6746.631708493561,2019
+2001,57,"(55,60]",HS,14.463902065799541,70.59373396865318,0.20488931882002684,6855.003276456506,2019
+2001,57,"(55,60]",HS,14.555975516449886,74.03733074761188,0.1966031915179411,6752.178060996755,2019
+2001,30,"(25,30]",HS,21.528446824789594,137.74387115834767,0.15629331921447823,5831.205194275129,2019
+2001,30,"(25,30]",HS,121.13517980107115,137.74387115834767,0.8794233731228339,5746.232942779968,2019
+2001,30,"(25,30]",HS,23.5373221117062,137.74387115834767,0.1708774547554871,5861.409437482035,2019
+2001,30,"(25,30]",HS,12.990726855394032,137.74387115834767,0.0943107431651906,5891.4588538375265,2019
+2001,30,"(25,30]",HS,8.052241775057384,137.74387115834767,0.058458076626877166,5845.674920462143,2019
+2001,72,"(70,75]",College,6674.655547054323,344.35967789586914,19.38280227185214,369.3612393273137,2019
+2001,72,"(70,75]",College,4756.514460596787,344.35967789586914,13.81263477088949,347.0640763287968,2019
+2001,72,"(70,75]",College,13769.668247895945,344.35967789586914,39.98629668848672,369.9936353274847,2019
+2001,72,"(70,75]",College,4599.152563121653,344.35967789586914,13.355665190604546,364.8164387193219,2019
+2001,72,"(70,75]",College,4557.3009946442235,344.35967789586914,13.234130727762803,351.7644536539717,2019
+2001,74,"(70,75]",HS,970.9563886763581,120.5258872635542,8.055998679795369,8370.994806057057,2019
+2001,74,"(70,75]",HS,970.9563886763581,120.5258872635542,8.055998679795369,7659.965246375321,2019
+2001,74,"(70,75]",HS,970.9563886763581,120.5258872635542,8.055998679795369,7041.391394343865,2019
+2001,74,"(70,75]",HS,970.9563886763581,120.5258872635542,8.055998679795369,7866.5702404350695,2019
+2001,74,"(70,75]",HS,970.9563886763581,120.5258872635542,8.055998679795369,7620.113473793004,2019
+2001,68,"(65,70]",NoHS,1.7577658760520276,11.019509692667812,0.15951398247978438,6234.613617855459,2019
+2001,68,"(65,70]",NoHS,5.64159143075746,16.87362421689759,0.33434378757278804,6196.4028344086055,2019
+2001,68,"(65,70]",NoHS,5.608110175975517,16.012725022157916,0.35022834453318763,6199.3523291537895,2019
+2001,68,"(65,70]",NoHS,1.422953328232594,27.548774231669533,0.0516521467077397,6208.907011559333,2019
+2001,68,"(65,70]",NoHS,4.65389441469013,27.548774231669533,0.16893290335001926,6213.28312526738,2019
+2001,67,"(65,70]",HS,13.442723794950266,18.939782284272805,0.7097612629957643,6296.5451425480715,2019
+2001,67,"(65,70]",HS,32.30941086457536,55.097548463339066,0.5864037832113977,6259.768918751882,2019
+2001,67,"(65,70]",HS,12.78983932670237,39.60136295802496,0.32296462473422505,6259.674949899852,2019
+2001,67,"(65,70]",HS,32.30941086457536,60.2629436317771,0.5361406017932779,6271.562927725687,2019
+2001,67,"(65,70]",HS,26.282785003825555,56.819346852818406,0.462567531300685,6275.4492811633445,2019
+2001,29,"(25,30]",NoHS,-1.1048814078041316,27.548774231669533,-0.04010637273777436,4132.524832710361,2019
+2001,29,"(25,30]",NoHS,0.4017750573833206,27.548774231669533,0.014584135541008856,4101.8387080949415,2019
+2001,29,"(25,30]",NoHS,0.5691813312930375,27.548774231669533,0.02066085868309588,4106.356111476079,2019
+2001,29,"(25,30]",NoHS,0.5691813312930375,27.548774231669533,0.02066085868309588,4133.3238669895745,2019
+2001,29,"(25,30]",NoHS,-1.08814078041316,27.548774231669533,-0.03949870042356565,4094.698654757566,2019
+2001,35,"(30,35]",HS,183.5107574598317,18.939782284272805,9.689169321244792,7977.313489725495,2019
+2001,35,"(30,35]",HS,183.8623106350421,17.21798389479346,10.678504043126685,7982.33722169884,2019
+2001,35,"(30,35]",HS,197.40547819433817,17.21798389479346,11.465075086638429,6858.388151524907,2019
+2001,35,"(30,35]",HS,190.59204284621268,17.21798389479346,11.06935887562572,6695.172438967558,2019
+2001,35,"(30,35]",HS,184.11342004590665,18.939782284272805,9.720989253334265,7951.001155858617,2019
+2001,39,"(35,40]",HS,190.27397092578423,48.21035490542169,3.94674487045492,7176.774102718414,2019
+2001,39,"(35,40]",HS,190.08982402448356,46.488556515942335,4.088959483164335,7367.100526059503,2019
+2001,39,"(35,40]",HS,189.77175210405508,48.21035490542169,3.936327630782771,7440.728822052428,2019
+2001,39,"(35,40]",HS,189.92241775057383,48.21035490542169,3.9394528026844156,7263.654583936099,2019
+2001,39,"(35,40]",HS,189.92241775057383,48.21035490542169,3.9394528026844156,7382.918889486593,2019
+2001,55,"(50,55]",College,789.0694720734507,153.24005666366176,5.1492376683554495,6133.261409134127,2019
+2001,55,"(50,55]",College,879.9710788064269,163.57084700053784,5.379754980443022,5572.189737273461,2019
+2001,55,"(50,55]",College,914.9589900535578,130.8566776004303,6.992069543805606,5210.316198560637,2019
+2001,55,"(50,55]",College,754.2489671002296,132.5784759899096,5.689075556711292,5835.279456566498,2019
+2001,55,"(50,55]",College,933.7084927314461,136.02207276886833,6.864389534175265,5607.941456760023,2019
+2001,49,"(45,50]",College,502.72104055087993,103.30790336876075,4.866239892183289,5697.138412618561,2019
+2001,49,"(45,50]",College,825.6477429227238,103.30790336876075,7.992106276472853,5176.652797768429,2019
+2001,49,"(45,50]",College,1306.2711553175209,103.30790336876075,12.644445514054677,4832.549387313984,2019
+2001,49,"(45,50]",College,525.3208875286916,103.30790336876075,5.085001925298421,5417.999941476921,2019
+2001,49,"(45,50]",College,2524.8214231063507,103.30790336876075,24.439770247721732,2708.6805495625977,2019
+2001,56,"(55,60]",College,236526.39923488908,5113.741216753658,46.25310300411378,45.173435275854125,2019
+2001,56,"(55,60]",College,239873.10175975517,5010.433313384896,47.87472195647371,49.19646794481896,2019
+2001,56,"(55,60]",College,222295.4429992349,4304.495973698365,51.64261840585291,48.0083713195233,2019
+2001,56,"(55,60]",College,228966.58301453711,4046.226215276463,56.58768710213913,47.17180535841821,2019
+2001,56,"(55,60]",College,224134.56832440704,3925.700328012908,57.09416144809464,49.828386355754084,2019
+2001,68,"(65,70]",HS,40.59602142310635,77.48092752657055,0.5239485731399478,5550.654391248458,2019
+2001,68,"(65,70]",HS,48.129303749043615,77.48092752657055,0.6211761434133403,5646.290542708359,2019
+2001,68,"(65,70]",HS,46.62264728385616,77.48092752657055,0.6017306293586617,5759.246125524742,2019
+2001,68,"(65,70]",HS,38.921958684009184,77.48092752657055,0.5023424464125273,5536.102474858289,2019
+2001,68,"(65,70]",HS,42.43749043611324,77.48092752657055,0.5477153125401104,5634.068423376091,2019
+2001,52,"(50,55]",HS,432.5778117827085,129.1348792109509,3.3498138878192796,5763.546930350966,2019
+2001,52,"(50,55]",HS,432.4104055087988,129.1348792109509,3.3485175202156343,6007.573616558571,2019
+2001,52,"(50,55]",HS,432.5778117827085,129.1348792109509,3.3498138878192796,6034.844356352654,2019
+2001,52,"(50,55]",HS,432.4104055087988,129.1348792109509,3.3485175202156343,5870.655960886137,2019
+2001,52,"(50,55]",HS,432.4104055087988,129.1348792109509,3.3485175202156343,5948.822912702561,2019
+2001,35,"(30,35]",NoHS,39.005661820964036,20.661580673752148,1.8878353228083686,6450.117007953827,2019
+2001,35,"(30,35]",NoHS,28.96128538638103,20.661580673752148,1.401697471441407,6667.424855059212,2019
+2001,35,"(30,35]",NoHS,29.12869166029074,20.661580673752148,1.4097997689641895,6862.413801572859,2019
+2001,35,"(30,35]",NoHS,48.21300688599847,20.661580673752148,2.3334616865614173,6616.758398723908,2019
+2001,35,"(30,35]",NoHS,38.00122417750574,20.661580673752148,1.8392215376716727,6702.293974175521,2019
+2001,47,"(45,50]",HS,60.34996174445295,94.69891142136402,0.6372825287919628,5989.004555412354,2019
+2001,47,"(45,50]",HS,60.63455241009947,94.69891142136402,0.6402877446004132,6306.997523863928,2019
+2001,47,"(45,50]",HS,60.450405508798774,94.69891142136402,0.6383431931949453,6331.564996339805,2019
+2001,47,"(45,50]",HS,61.01958684009181,94.69891142136402,0.6443536248118459,6121.773934298435,2019
+2001,47,"(45,50]",HS,60.34996174445295,94.69891142136402,0.6372825287919628,6243.068506441576,2019
+2001,38,"(35,40]",College,929.8246671767406,354.6904682327453,2.6215101629587534,1121.8860339548692,2019
+2001,38,"(35,40]",College,851.7128997704667,246.21716969554646,3.4591937711883802,1113.5753115413188,2019
+2001,38,"(35,40]",College,791.9656006120888,113.63869370563681,6.969154385596435,1070.4657039159174,2019
+2001,38,"(35,40]",College,1023.1369242540169,189.39782284272803,5.402052193089929,1112.977659258073,2019
+2001,38,"(35,40]",College,1059.6649732211172,377.0738472959767,2.8102319501075184,1173.935430970898,2019
+2001,61,"(60,65]",College,3441.3707727620504,246.21716969554646,13.97697316160928,3190.9080748881775,2019
+2001,61,"(60,65]",College,4956.5649579188985,216.94659707439757,22.846935719480964,3173.0362399083137,2019
+2001,61,"(60,65]",College,3438.0226472838563,211.78120190595953,16.233842363452514,3238.4904420832568,2019
+2001,61,"(60,65]",College,3898.5573068094873,189.39782284272803,20.583960513879653,3172.7268341181984,2019
+2001,61,"(60,65]",College,3443.2122417750575,234.16458096919104,14.704240186640694,3133.2430374545993,2019
+2001,49,"(45,50]",HS,2587.4313695485844,129.1348792109509,20.036657681940703,2944.1618964236627,2019
+2001,49,"(45,50]",HS,2324.6035195103286,129.1348792109509,18.001360544217686,2992.108422104541,2019
+2001,49,"(45,50]",HS,2257.1387911247134,129.1348792109509,17.478924399948664,3753.830090171437,2019
+2001,49,"(45,50]",HS,3503.813312930375,129.1348792109509,27.132973944294704,1335.5541754110811,2019
+2001,49,"(45,50]",HS,2026.9551644988524,129.1348792109509,15.696418944936468,3166.249923628777,2019
+2001,41,"(40,45]",HS,166.4185768936496,34.43596778958692,4.832696380438969,7202.9363294198465,2019
+2001,41,"(40,45]",HS,171.6081713848508,34.43596778958692,4.983399114362726,7487.463253895839,2019
+2001,41,"(40,45]",HS,158.21566947207344,34.43596778958692,4.594488833269156,7575.657555422862,2019
+2001,41,"(40,45]",HS,191.5295179801071,34.43596778958692,5.56190315748941,7337.116550026471,2019
+2001,41,"(40,45]",HS,176.6303596021423,34.43596778958692,5.129240469772815,7480.505254875726,2019
+2001,62,"(60,65]",College,534.4445294567712,108.47329853719879,4.926968541235002,6149.821463078088,2019
+2001,62,"(60,65]",College,534.4445294567712,108.47329853719879,4.926968541235002,5585.615653835846,2019
+2001,62,"(60,65]",College,534.4445294567712,108.47329853719879,4.926968541235002,5225.434732666527,2019
+2001,62,"(60,65]",College,534.4445294567712,108.47329853719879,4.926968541235002,5850.120894354613,2019
+2001,62,"(60,65]",College,534.4445294567712,108.47329853719879,4.926968541235002,5622.683025829754,2019
+2001,72,"(70,75]",HS,189.0016832440704,27.548774231669533,6.86062042741625,5877.723120665165,2019
+2001,72,"(70,75]",HS,301.1638867635807,27.548774231669533,10.932024932614555,6265.020401921727,2019
+2001,72,"(70,75]",HS,160.54261667941853,29.27057262114888,5.4847788171872525,6065.851238293673,2019
+2001,72,"(70,75]",HS,143.8019892884468,29.27057262114888,4.912851933226119,6101.715624314415,2019
+2001,72,"(70,75]",HS,138.77980107115533,29.27057262114888,4.741273868037782,6097.025316581015,2019
+2001,78,"(75,80]",HS,469.23978576893654,168.7362421689759,2.7809069334318246,5936.1400664167695,2019
+2001,78,"(75,80]",HS,469.23978576893654,168.7362421689759,2.7809069334318246,5355.920998764009,2019
+2001,78,"(75,80]",HS,469.23978576893654,168.7362421689759,2.7809069334318246,5067.7969692534,2019
+2001,78,"(75,80]",HS,469.23978576893654,168.7362421689759,2.7809069334318246,5665.247814755479,2019
+2001,78,"(75,80]",HS,469.23978576893654,168.7362421689759,2.7809069334318246,5445.060440795165,2019
+2001,44,"(40,45]",College,6941.333741392502,349.52507306430715,19.859329920275577,230.84596413888525,2019
+2001,44,"(40,45]",College,6952.382555470543,406.3444199171256,17.109580480737225,230.5749335033823,2019
+2001,44,"(40,45]",College,7012.146595256312,414.9534118645223,16.898635834197457,235.68928410458275,2019
+2001,44,"(40,45]",College,6949.369242540169,365.0212585696213,19.038258949005023,231.71488299586844,2019
+2001,44,"(40,45]",College,7052.324100994645,396.01362958024953,17.808286316987832,234.06497481304714,2019
+2001,29,"(25,30]",HS,14.899158377964804,43.04495973698364,0.34613015017327686,6877.500284167491,2019
+2001,29,"(25,30]",HS,15.903596021423107,43.04495973698364,0.3694647670388911,6844.55682030243,2019
+2001,29,"(25,30]",HS,16.23840856924254,43.04495973698364,0.37724297266076245,6736.125534045629,2019
+2001,29,"(25,30]",HS,14.229533282325939,43.04495973698364,0.3305737389295341,6853.700217901183,2019
+2001,29,"(25,30]",HS,13.05768936495792,43.04495973698364,0.30335001925298427,6827.934678898981,2019
+2001,83,"(80,85]",HS,10.8814078041316,51.653951684380374,0.21065973559235016,6634.074949735614,2019
+2001,83,"(80,85]",HS,9.860229533282325,51.653951684380374,0.19089012963676036,6586.552617600522,2019
+2001,83,"(80,85]",HS,10.462892119357306,51.653951684380374,0.20255743806956744,6561.142303293642,2019
+2001,83,"(80,85]",HS,11.048814078041316,51.653951684380374,0.2139006546014632,6706.271544050234,2019
+2001,83,"(80,85]",HS,5.8592195868400925,51.653951684380374,0.11343216531895778,6616.843559058466,2019
+2001,42,"(40,45]",College,1147.7374139250192,148.07466149522375,7.751072346446257,7264.585513499776,2019
+2001,42,"(40,45]",College,1146.9003825554705,148.07466149522375,7.745419580732687,6608.0789247079065,2019
+2001,42,"(40,45]",College,642.1704667176741,148.07466149522375,4.3368018554503855,6177.287721490567,2019
+2001,42,"(40,45]",College,680.673909716909,148.07466149522375,4.596829078274574,6908.2571845981975,2019
+2001,42,"(40,45]",College,881.5614384085692,148.07466149522375,5.953492849531211,6641.855229332452,2019
+2001,38,"(35,40]",College,3469.1602142310635,1069.2367998666737,3.244520030234316,271.07006334077505,2019
+2001,38,"(35,40]",College,3469.662433052793,1270.6872114357573,2.730540137515353,267.98541211157965,2019
+2001,38,"(35,40]",College,3469.495026778883,1070.958598256153,3.239616388932568,274.68754365541923,2019
+2001,38,"(35,40]",College,3471.5039020657996,1200.093477467104,2.8926945835858504,270.4805164914605,2019
+2001,38,"(35,40]",College,3476.3586840091816,1002.0866626769795,3.469119801198051,271.1877646210336,2019
+2001,67,"(65,70]",College,1710.3564192807958,110.19509692667813,15.521166249518675,2715.8746099179207,2019
+2001,67,"(65,70]",College,1258.5268859984699,110.19509692667813,11.420897309395457,5556.764214912156,2019
+2001,67,"(65,70]",College,1258.3594797245603,110.19509692667813,11.419378128609937,5212.589673972977,2019
+2001,67,"(65,70]",College,1057.4719510328998,110.19509692667813,9.596361185983827,5847.135058380367,2019
+2001,67,"(65,70]",College,1258.3594797245603,110.19509692667813,11.419378128609937,5576.220901540226,2019
+2001,65,"(60,65]",HS,152440.15302218823,8178.542350026892,18.639036945463392,18.01293583972238,2019
+2001,65,"(60,65]",HS,154713.53022188216,8178.542350026892,18.917005451634477,19.60781902692309,2019
+2001,65,"(60,65]",HS,153334.93955623565,8178.542350026892,18.748443548223662,19.13956903634376,2019
+2001,65,"(60,65]",HS,154582.9533282326,8178.542350026892,18.901039661147482,18.800585208567487,2019
+2001,65,"(60,65]",HS,155535.49502677887,8178.542350026892,19.01750805585392,19.8680209352054,2019
+2001,58,"(55,60]",NoHS,555.2029074215761,137.74387115834767,4.030690460146323,9243.072070931576,2019
+2001,58,"(55,60]",NoHS,519.4951491966335,137.74387115834767,3.77145745090489,9165.462085221483,2019
+2001,58,"(55,60]",NoHS,463.31360367253257,137.74387115834767,3.3635877936080094,8801.081440870514,2019
+2001,58,"(55,60]",NoHS,639.0734506503443,137.74387115834767,4.639578118983442,9140.546267755304,2019
+2001,58,"(55,60]",NoHS,562.5687834736036,137.74387115834767,4.084165623796688,9636.801106672629,2019
+2001,48,"(45,50]",HS,18.91690895179801,48.21035490542169,0.3923826943176192,6560.97003593009,2019
+2001,48,"(45,50]",HS,18.883427697016067,49.93215329490103,0.3781817216151262,6664.8015845765985,2019
+2001,48,"(45,50]",HS,18.883427697016067,48.21035490542169,0.39168821167280926,6678.5264624507745,2019
+2001,48,"(45,50]",HS,18.900168324407037,48.21035490542169,0.39203545299521414,6630.671742052387,2019
+2001,48,"(45,50]",HS,18.900168324407037,48.21035490542169,0.39203545299521414,6645.076375879119,2019
+2001,47,"(45,50]",College,3082.4517214996176,359.8558634011833,8.565795461454421,904.2016927513141,2019
+2001,47,"(45,50]",College,3082.284315225708,359.8558634011833,8.5653302577689,908.3310395420788,2019
+2001,47,"(45,50]",College,3082.284315225708,359.8558634011833,8.5653302577689,912.7624318657641,2019
+2001,47,"(45,50]",College,3082.284315225708,359.8558634011833,8.5653302577689,907.445283440092,2019
+2001,47,"(45,50]",College,3082.284315225708,359.8558634011833,8.5653302577689,900.7431824407631,2019
+2001,28,"(25,30]",College,153.00933435348125,103.30790336876075,1.481099987164677,7963.164608794299,2019
+2001,28,"(25,30]",College,152.84192807957155,103.30790336876075,1.4794795276601207,8013.241163204126,2019
+2001,28,"(25,30]",College,152.84192807957155,103.30790336876075,1.4794795276601207,8089.6130207144715,2019
+2001,28,"(25,30]",College,153.00933435348125,103.30790336876075,1.481099987164677,7984.96896679473,2019
+2001,28,"(25,30]",College,152.84192807957155,103.30790336876075,1.4794795276601207,7956.892665070572,2019
+2001,20,"(15,20]",HS,3.3313848508033668,11.363869370563684,0.2931558558243194,5741.060957052464,2019
+2001,20,"(15,20]",HS,1.8247283856159142,11.191689531615747,0.16304315630461183,5688.196763227757,2019
+2001,20,"(15,20]",HS,4.168416220351951,12.052588726355422,0.3458523571153528,5687.987443149204,2019
+2001,20,"(15,20]",HS,2.494353481254782,10.15861049792814,0.24554081306331293,5672.309825622424,2019
+2001,20,"(15,20]",HS,1.9921346595256313,11.536049209511617,0.17268777406766705,5664.1469055229545,2019
+2001,28,"(25,30]",HS,3.8168630451415457,46.488556515942335,0.08210328156419801,5603.270285643522,2019
+2001,28,"(25,30]",HS,3.515531752104055,48.21035490542169,0.07292067770504428,5561.663118790429,2019
+2001,28,"(25,30]",HS,3.6327161438408573,48.21035490542169,0.0753513669618791,5567.788244024629,2019
+2001,28,"(25,30]",HS,3.515531752104055,46.488556515942335,0.07562144354597185,5604.353692329548,2019
+2001,28,"(25,30]",HS,3.46530986993114,48.21035490542169,0.07187895373782935,5551.981955258985,2019
+2001,46,"(45,50]",HS,131.4139250191278,101.5861049792814,1.2936210621120852,7906.162407531243,2019
+2001,46,"(45,50]",HS,131.5813312930375,101.5861049792814,1.2952689870319731,8325.949039812078,2019
+2001,46,"(45,50]",HS,131.5813312930375,101.5861049792814,1.2952689870319731,8358.380878115036,2019
+2001,46,"(45,50]",HS,131.5813312930375,101.5861049792814,1.2952689870319731,8081.432982550553,2019
+2001,46,"(45,50]",HS,131.5813312930375,101.5861049792814,1.2952689870319731,8241.5555167117709,2019
+2001,28,"(25,30]",HS,0,0,NA,5294.4708841417505,2019
+2001,28,"(25,30]",HS,0,0,NA,5291.212538787442,2019
+2001,28,"(25,30]",HS,0,0,NA,5212.320131537398,2019
+2001,28,"(25,30]",HS,0,0,NA,5295.5832724773145,2019
+2001,28,"(25,30]",HS,0,0,NA,5284.046558037746,2019
+2001,48,"(45,50]",HS,11.18273909716909,98.14250820032271,0.11394388937302827,5700.038000738465,2019
+2001,48,"(45,50]",HS,11.032073450650346,98.14250820032271,0.11240871721081681,5790.244749088098,2019
+2001,48,"(45,50]",HS,11.18273909716909,98.14250820032271,0.11394388937302827,5802.168645251297,2019
+2001,48,"(45,50]",HS,11.350145371078806,98.14250820032271,0.11564963621992988,5760.593432547732,2019
+2001,48,"(45,50]",HS,11.032073450650346,98.14250820032271,0.11240871721081681,5773.107886927107,2019
+2001,31,"(30,35]",College,381.9206732976282,249.6607664745051,1.529758474632534,7251.537441638667,2019
+2001,31,"(30,35]",College,368.4612088752869,249.6607664745051,1.4758474632533563,6584.426243116186,2019
+2001,31,"(30,35]",College,368.2938026013772,249.6607664745051,1.4751769282859535,6153.154566397367,2019
+2001,31,"(30,35]",College,368.2938026013772,249.6607664745051,1.4751769282859535,6859.091612705107,2019
+2001,31,"(30,35]",College,374.9900535577659,249.6607664745051,1.501998326982062,6623.773905386103,2019
+2001,58,"(55,60]",College,368.8797245600612,98.14250820032271,3.7586131771477214,8104.437139852593,2019
+2001,58,"(55,60]",College,347.116908951798,96.42070981084338,3.6000244100335546,8501.513009870874,2019
+2001,58,"(55,60]",College,350.88355011476665,98.14250820032271,3.575245391105797,8557.412882374383,2019
+2001,58,"(55,60]",College,340.83917368018365,98.14250820032271,3.4729005802916997,8368.264291791034,2019
+2001,58,"(55,60]",College,348.3724560061209,96.42070981084338,3.6130459596237414,8359.093877388517,2019
+2001,73,"(70,75]",NoHS,345.02433052792657,25.826975842190187,13.359068155564113,6908.757694423768,2019
+2001,73,"(70,75]",NoHS,344.85692425401686,25.826975842190187,13.352586317545887,7716.16214977581,2019
+2001,73,"(70,75]",NoHS,344.85692425401686,25.826975842190187,13.352586317545887,7641.26056147975,2019
+2001,73,"(70,75]",NoHS,345.02433052792657,25.826975842190187,13.359068155564113,7302.226724262269,2019
+2001,73,"(70,75]",NoHS,345.02433052792657,25.826975842190187,13.359068155564113,7516.171934067385,2019
+2001,44,"(40,45]",College,2868.673909716909,449.38937965410923,6.383492889673762,254.02985305266816,2019
+2001,44,"(40,45]",College,2114.006426931905,259.9915568113812,8.131057996108602,248.477456631287,2019
+2001,44,"(40,45]",College,3983.9345065034427,1126.0561467194923,3.53795369627858,256.54893154754114,2019
+2001,44,"(40,45]",College,4472.007498087223,408.066218306605,10.959024044296488,250.19705672943414,2019
+2001,44,"(40,45]",College,4329.628462127009,1120.8907515510539,3.862667665100995,252.15036172146847,2019
+2001,40,"(35,40]",College,2764.0449885233356,414.9534118645223,6.661097148481251,1702.9003013775698,2019
+2001,40,"(35,40]",College,2767.39311400153,414.9534118645223,6.669165826512239,1713.1877566901032,2019
+2001,40,"(35,40]",College,2765.7190512624334,414.9534118645223,6.665131487496746,1764.3509172218041,2019
+2001,40,"(35,40]",College,2765.7190512624334,414.9534118645223,6.665131487496746,1689.383795844809,2019
+2001,40,"(35,40]",College,2765.7190512624334,414.9534118645223,6.665131487496746,1676.2496975128547,2019
+2001,67,"(65,70]",College,204343.79862280033,1544.4531553629733,132.30818812032922,31.36574549056442,2019
+2001,67,"(65,70]",College,225242.79785768935,1546.1749537524524,145.67743275820223,34.21214188710958,2019
+2001,67,"(65,70]",College,215864.36358071922,1546.1749537524524,139.61186155346286,33.339071345827016,2019
+2001,67,"(65,70]",College,224678.80612088752,1546.1749537524524,145.31266696282245,32.80550343108766,2019
+2001,67,"(65,70]",College,221762.42142310634,1544.4531553629733,143.5863694881625,34.65309021574954,2019
+2001,44,"(40,45]",College,1532.9727314460597,137.74387115834767,11.129153831343858,2210.3151145793795,2019
+2001,44,"(40,45]",College,1534.7974598316755,137.74387115834767,11.142401087793607,2154.3658476899986,2019
+2001,44,"(40,45]",College,1531.2819280795716,137.74387115834767,11.116878850596843,2322.0596052614933,2019
+2001,44,"(40,45]",College,1531.2986687069626,137.74387115834767,11.117000385059685,2208.5290195752264,2019
+2001,44,"(40,45]",College,1531.2819280795716,137.74387115834767,11.116878850596843,2205.2492277446117,2019
+2001,64,"(60,65]",College,32851.80719204285,1046.8534208034423,31.381477615872566,153.03836391983182,2019
+2001,64,"(60,65]",College,32850.13312930375,1046.8534208034423,31.379878478203594,143.43288068889962,2019
+2001,64,"(60,65]",College,32850.13312930375,1046.8534208034423,31.379878478203594,150.8471093875498,2019
+2001,64,"(60,65]",College,32850.13312930375,1046.8534208034423,31.379878478203594,156.92252339769675,2019
+2001,64,"(60,65]",College,32850.13312930375,1046.8534208034423,31.379878478203594,150.97655629770856,2019
+2001,61,"(60,65]",HS,1621.8319816373375,141.18746793730637,11.487081717178357,6464.485426725629,2019
+2001,61,"(60,65]",HS,1984.9361897475135,149.7964598847031,13.250888514156475,2906.8570357318185,2019
+2001,61,"(60,65]",HS,2119.363427697016,146.35286310574438,14.481188701895855,3652.3849475189027,2019
+2001,61,"(60,65]",HS,2200.8902830910483,132.5784759899096,16.600660602393376,3006.6337412431585,2019
+2001,61,"(60,65]",HS,2184.6518745218054,154.9618550531411,14.097997689641895,3080.6685728171515,2019
+2001,36,"(35,40]",HS,2213.445753634277,258.2697584219018,8.570286227698627,87.24137001807287,2019
+2001,36,"(35,40]",HS,2215.1198163733743,258.2697584219018,8.576768065716855,84.34584766101698,2019
+2001,36,"(35,40]",HS,2220.1420045906657,258.2697584219018,8.596213579771533,91.4798719850318,2019
+2001,36,"(35,40]",HS,2225.164192807957,258.2697584219018,8.615659093826212,87.25980484784634,2019
+2001,36,"(35,40]",HS,2230.186381025249,258.2697584219018,8.63510460788089,88.46812628268354,2019
+2001,59,"(55,60]",College,17305.89141545524,774.8092752657057,22.335679202498607,1461.0710593148456,2019
+2001,59,"(55,60]",College,17304.217352716143,774.8092752657057,22.333518589825864,1434.7745263077823,2019
+2001,59,"(55,60]",College,17304.217352716143,774.8092752657057,22.333518589825864,1458.2108906091098,2019
+2001,59,"(55,60]",College,17304.217352716143,774.8092752657057,22.333518589825864,1447.307452835343,2019
+2001,59,"(55,60]",College,17304.217352716143,774.8092752657057,22.333518589825864,1411.6393588282385,2019
+2001,34,"(30,35]",HS,-3.682938026013772,15.324005666366176,-0.24033781415894748,6679.562146669246,2019
+2001,34,"(30,35]",HS,-3.682938026013772,15.324005666366176,-0.24033781415894748,6660.627384730569,2019
+2001,34,"(30,35]",HS,-3.682938026013772,15.151825827418245,-0.24306892568348093,6669.505820107419,2019
+2001,34,"(30,35]",HS,-3.682938026013772,15.324005666366176,-0.24033781415894748,6707.218423835378,2019
+2001,34,"(30,35]",HS,-3.682938026013772,15.324005666366176,-0.24033781415894748,6651.40429349035,2019
+2001,37,"(35,40]",HS,242.43776587605203,125.69128243199225,1.9288351680811895,6695.66183770876,2019
+2001,37,"(35,40]",HS,739.0149961744453,89.53351625292598,8.2540597879209745,6280.857743274686,2019
+2001,37,"(35,40]",HS,453.7714460596787,198.00681479012476,2.291696104200499,7009.061943205919,2019
+2001,37,"(35,40]",HS,646.355623565417,87.81171786344665,7.360698996579763,6568.591621602015,2019
+2001,37,"(35,40]",HS,283.5025248661056,153.24005666366176,1.8500549467189888,6956.560755131456,2019
+2001,34,"(30,35]",HS,85.00890589135425,92.97711303188467,0.914299262682012,8589.076576163032,2019
+2001,34,"(30,35]",HS,85.00890589135425,92.97711303188467,0.914299262682012,8700.529947750478,2019
+2001,34,"(30,35]",HS,85.00890589135425,92.97711303188467,0.914299262682012,8769.985095513275,2019
+2001,34,"(30,35]",HS,85.32697781178271,92.97711303188467,0.917720232747187,8585.099071406465,2019
+2001,34,"(30,35]",HS,85.00890589135425,92.97711303188467,0.914299262682012,8691.555496598847,2019
+2001,70,"(65,70]",College,12366.301453710788,688.7193557917383,17.95550154023874,369.3612393273137,2019
+2001,70,"(65,70]",College,14676.508033664883,719.7117268023666,20.392203554708875,347.0640763287968,2019
+2001,70,"(65,70]",College,12135.280795715378,650.8397912231927,18.645572934175167,369.9936353274847,2019
+2001,70,"(65,70]",College,14475.620504973222,626.7346137704818,23.09689011412154,364.8164387193219,2019
+2001,70,"(65,70]",College,14423.72456006121,607.7948314862091,23.731239248599113,351.7644536539717,2019
+2001,52,"(50,55]",College,230.20036725325173,74.03733074761188,3.109247253091671,6069.460620698592,2019
+2001,52,"(50,55]",College,235.7080336648814,118.80408887407486,1.984006071665746,6429.825880204952,2019
+2001,52,"(50,55]",College,264.66931905126245,53.37575007385973,4.95860608394301,6476.20750915513,2019
+2001,52,"(50,55]",College,367.80832440703904,55.097548463339066,6.6755842077397,6263.994682024637,2019
+2001,52,"(50,55]",College,345.0745524100995,103.30790336876075,3.3402531767423955,6307.000488408074,2019
+2001,72,"(70,75]",College,280196.92058148433,4356.149925382745,64.32214808512711,2.098595515668425,2019
+2001,72,"(70,75]",College,288837.42800306046,1465.2504294469234,197.1249570710487,2.1418846822606694,2019
+2001,72,"(70,75]",College,356780.77092578425,5888.5504920193625,60.58889558802667,1.8900569119319979,2019
+2001,72,"(70,75]",College,285528.81040550885,5888.5504920193625,48.488810751046536,2.4597135706771867,2019
+2001,72,"(70,75]",College,290844.2944146902,1515.1825827418243,191.9532983862499,1.9536621353027155,2019
+2001,32,"(30,35]",HS,97.0973129303749,96.42070981084338,1.007017197040541,7932.947767664742,2019
+2001,32,"(30,35]",HS,97.0973129303749,98.14250820032271,0.9893502286714089,8009.368843242494,2019
+2001,32,"(30,35]",HS,97.26471920428462,98.14250820032271,0.9910559755183106,8232.465099016797,2019
+2001,32,"(30,35]",HS,97.0973129303749,96.42070981084338,1.007017197040541,8008.6508524178735,2019
+2001,32,"(30,35]",HS,97.26471920428462,96.42070981084338,1.008753403652566,8028.6113801483825,2019
+2001,60,"(55,60]",HS,31.08734506503443,34.43596778958692,0.9027579899884481,5086.812020844533,2019
+2001,60,"(55,60]",HS,26.081897475133893,34.43596778958692,0.7574027724297265,5155.410527250888,2019
+2001,60,"(55,60]",HS,18.197061973986226,34.43596778958692,0.5284318444358875,5068.7388194831055,2019
+2001,60,"(55,60]",HS,31.1040856924254,34.43596778958692,0.9032441278398151,5157.540105425307,2019
+2001,60,"(55,60]",HS,18.046396327467484,34.43596778958692,0.5240566037735849,5072.120141905596,2019
+2001,23,"(20,25]",HS,-18.381208875286916,91.25531464240532,-0.20142617388714118,6055.004036358751,2019
+2001,23,"(20,25]",HS,-18.381208875286916,91.25531464240532,-0.20142617388714118,5999.249027070053,2019
+2001,23,"(20,25]",HS,-18.381208875286916,91.25531464240532,-0.20142617388714118,5999.028260572363,2019
+2001,23,"(20,25]",HS,-18.56535577658761,91.25531464240532,-0.20344410459092863,5982.493331207339,2019
+2001,23,"(20,25]",HS,-18.381208875286916,91.25531464240532,-0.20142617388714118,5973.8840315464395,2019
+2001,47,"(45,50]",College,210.09487375669474,106.75150014771945,1.968074204727539,8258.126347189427,2019
+2001,47,"(45,50]",College,209.7600612088753,106.75150014771945,1.9649378314929136,8607.772707519425,2019
+2001,47,"(45,50]",College,209.7600612088753,106.75150014771945,1.9649378314929136,8646.846773805748,2019
+2001,47,"(45,50]",College,209.927467482785,106.75150014771945,1.966506018110226,8411.59432754481,2019
+2001,47,"(45,50]",College,209.927467482785,106.75150014771945,1.966506018110226,8523.593513475853,2019
+2001,22,"(20,25]",HS,-20.909043611323643,25.826975842190187,-0.8095815684764472,5965.509116226129,2019
+2001,22,"(20,25]",HS,-20.909043611323643,27.548774231669533,-0.7589827204466693,5971.572591174792,2019
+2001,22,"(20,25]",HS,-20.91741392501913,25.826975842190187,-0.8099056603773586,5967.523949604152,2019
+2001,22,"(20,25]",HS,-20.909043611323643,25.826975842190187,-0.8095815684764472,5914.814761483305,2019
+2001,22,"(20,25]",HS,-20.91741392501913,25.826975842190187,-0.8099056603773586,5944.18222094323,2019
+2001,45,"(40,45]",NoHS,-1.506656465187452,14.118746793730637,-0.10671318688543065,6272.169926704993,2019
+2001,45,"(40,45]",NoHS,-1.506656465187452,14.118746793730637,-0.10671318688543065,6265.188398974731,2019
+2001,45,"(40,45]",NoHS,-1.506656465187452,14.118746793730637,-0.10671318688543065,6277.545660821428,2019
+2001,45,"(40,45]",NoHS,-1.506656465187452,14.118746793730637,-0.10671318688543065,6263.157179562038,2019
+2001,45,"(40,45]",NoHS,-1.506656465187452,14.118746793730637,-0.10671318688543065,6271.854061171105,2019
+2001,55,"(50,55]",HS,37135.7337413925,1377.4387115834766,26.959989892183287,23.01708660149429,2019
+2001,55,"(50,55]",HS,37135.7337413925,1377.4387115834766,26.959989892183287,22.49026593011436,2019
+2001,55,"(50,55]",HS,37135.7337413925,1377.4387115834766,26.959989892183287,23.279331977239398,2019
+2001,55,"(50,55]",HS,37135.7337413925,1377.4387115834766,26.959989892183287,24.119640096465332,2019
+2001,55,"(50,55]",HS,37135.7337413925,1377.4387115834766,26.959989892183287,23.151128605760825,2019
+2001,50,"(45,50]",HS,199.66546289211936,129.1348792109509,1.5461776408676682,6061.413636001123,2019
+2001,50,"(45,50]",HS,201.32278500382557,129.1348792109509,1.559011680143756,6421.301117676799,2019
+2001,50,"(45,50]",HS,201.30604437643458,129.1348792109509,1.5588820433833914,6467.621253146464,2019
+2001,50,"(45,50]",HS,201.70781943381792,129.1348792109509,1.56199332563214,6255.6897810620385,2019
+2001,50,"(45,50]",HS,201.38974751338947,129.1348792109509,1.559530227185214,6298.638569682693,2019
+2001,49,"(45,50]",College,3514.0250956388677,275.48774231669535,12.75564954755487,3640.256417911027,2019
+2001,49,"(45,50]",College,3478.869778117827,275.48774231669535,12.628038361571043,3588.811847678132,2019
+2001,49,"(45,50]",College,3445.3885233358837,275.48774231669535,12.506503898729303,3686.064684027104,2019
+2001,49,"(45,50]",College,3490.4208110175978,275.48774231669535,12.669967751251443,3573.745778978048,2019
+2001,49,"(45,50]",College,3478.869778117827,275.48774231669535,12.628038361571043,3551.425928236058,2019
+2001,29,"(25,30]",HS,45.4173221117062,37.87956456854561,1.198992718871425,5090.713895041214,2019
+2001,29,"(25,30]",HS,45.58472838561591,37.87956456854561,1.2034121538838518,5099.244363688582,2019
+2001,29,"(25,30]",HS,44.71421576128539,37.87956456854561,1.180431091819232,5117.082571062686,2019
+2001,29,"(25,30]",HS,45.08250956388677,37.87956456854561,1.1901538488465713,5143.316081337541,2019
+2001,29,"(25,30]",HS,44.68073450650345,37.87956456854561,1.1795472048167466,5103.346144070963,2019
+2001,25,"(20,25]",HS,-3.348125478194338,37.87956456854561,-0.08838870024853851,4283.541531713686,2019
+2001,25,"(20,25]",HS,-4.536710022953328,37.87956456854561,-0.11976668883676969,4305.503017249239,2019
+2001,25,"(20,25]",HS,-3.3146442234123947,37.87956456854561,-0.08750481324605312,4317.861206900789,2019
+2001,25,"(20,25]",HS,-3.0635348125478195,37.87956456854561,-0.08087566072741274,4311.9814205237035,2019
+2001,25,"(20,25]",HS,-2.661759755164499,37.87956456854561,-0.07026901669758812,4284.814171646931,2019
+2001,62,"(60,65]",College,160.37521040550882,79.20272591604991,2.0248698330849977,6801.113723029395,2019
+2001,62,"(60,65]",College,170.75439938791126,79.20272591604991,2.1559156886708744,7093.009705056579,2019
+2001,62,"(60,65]",College,160.37521040550882,79.20272591604991,2.0248698330849977,7251.875130999193,2019
+2001,62,"(60,65]",College,166.4018362662586,79.20272591604991,2.1009609750380873,6999.21335075873,2019
+2001,62,"(60,65]",College,161.2122417750574,79.20272591604991,2.035438047245149,7022.545379532904,2019
+2001,57,"(55,60]",College,4344.695026778883,750.7040978129947,5.787493420425121,164.8103080219313,2019
+2001,57,"(55,60]",College,4076.844988523336,750.7040978129947,5.430694997403497,162.36084482647135,2019
+2001,57,"(55,60]",College,4009.882478959449,750.7040978129947,5.341495391648091,167.13291760721836,2019
+2001,57,"(55,60]",College,3716.9214996174446,750.7040978129947,4.95124711646819,163.3808115109518,2019
+2001,57,"(55,60]",College,4009.882478959449,750.7040978129947,5.341495391648091,164.37241073663125,2019
+2001,34,"(30,35]",HS,109.65110941086458,149.7964598847031,0.732000672747954,6427.256536551489,2019
+2001,34,"(30,35]",HS,109.985921958684,149.7964598847031,0.734235789305963,6440.1041513610235,2019
+2001,34,"(30,35]",HS,108.32859984697781,149.7964598847031,0.7231719623438184,6280.032408089463,2019
+2001,34,"(30,35]",HS,109.96918133129303,149.7964598847031,0.7341240334780625,6277.647354014226,2019
+2001,34,"(30,35]",HS,109.66785003825555,149.7964598847031,0.7321124285758545,6503.1086506101365,2019
+2001,32,"(30,35]",College,162.46778882938028,180.7888308953313,0.8986605423840697,7560.006235996365,2019
+2001,32,"(30,35]",College,162.46778882938028,180.7888308953313,0.8986605423840697,7579.885331965479,2019
+2001,32,"(30,35]",College,160.9611323641928,180.7888308953313,0.8903267506463501,7645.2967699004175,2019
+2001,32,"(30,35]",College,162.46778882938028,180.7888308953313,0.8986605423840697,7530.002876371842,2019
+2001,32,"(30,35]",College,162.46778882938028,180.7888308953313,0.8986605423840697,7574.795917696763,2019
+2001,76,"(75,80]",College,3826.053649579189,86.08991947396729,44.44252791682711,1824.566635136986,2019
+2001,76,"(75,80]",College,4409.682142310635,86.08991947396729,51.221817481709664,1821.7845214808476,2019
+2001,76,"(75,80]",College,4428.364682478959,86.08991947396729,51.43882941855988,1899.2470914037974,2019
+2001,76,"(75,80]",College,3820.612945677123,86.08991947396729,44.37932999614941,1816.986977005407,2019
+2001,76,"(75,80]",College,4158.756878347361,86.08991947396729,48.307129380053915,1802.0108211062063,2019
+2001,89,"(85,90]",College,96544.87222647284,8918.91565750301,10.824732056441723,18.01293583972238,2019
+2001,89,"(85,90]",College,94944.46824789594,8454.030092343588,11.230675454288082,19.60781902692309,2019
+2001,89,"(85,90]",College,94432.2050497322,8746.735818555078,10.796279550298797,19.13956903634376,2019
+2001,89,"(85,90]",College,98349.51185921958,9056.65952866136,10.859358414432563,18.800585208567487,2019
+2001,89,"(85,90]",College,100557.60061208876,7920.27259160499,12.69622976343942,19.8680209352054,2019
+2001,56,"(55,60]",College,907.3420045906657,223.83379063231493,4.053641776013745,468.4322734844712,2019
+2001,56,"(55,60]",College,907.3420045906657,223.83379063231493,4.053641776013745,464.09336712909806,2019
+2001,56,"(55,60]",College,907.3420045906657,223.83379063231493,4.053641776013745,447.2105836232305,2019
+2001,56,"(55,60]",College,907.3420045906657,223.83379063231493,4.053641776013745,463.7937135479735,2019
+2001,56,"(55,60]",College,905.6679418515686,223.83379063231493,4.04616273214656,489.64706793432106,2019
+2001,55,"(50,55]",College,1514.6919663351187,349.52507306430715,4.333571703614061,1668.0314240763632,2019
+2001,55,"(50,55]",College,1496.27727620505,347.8032746748279,4.302079322294956,1631.256219076706,2019
+2001,55,"(50,55]",College,1551.5213465952563,349.52507306430715,4.438941484205914,1753.100211532686,2019
+2001,55,"(50,55]",College,1596.72104055088,347.8032746748279,4.590874085483249,1673.5867154246475,2019
+2001,55,"(50,55]",College,1548.173221117062,349.52507306430715,4.429362413243019,1669.6526169816648,2019
+2001,48,"(45,50]",College,48936.20198928845,5165.395168438037,9.473854447439354,10.719873855226902,2019
+2001,48,"(45,50]",College,48936.20198928845,5165.395168438037,9.473854447439354,10.435442962152202,2019
+2001,48,"(45,50]",College,48936.20198928845,5165.395168438037,9.473854447439354,10.829210793767967,2019
+2001,48,"(45,50]",College,48936.20198928845,5165.395168438037,9.473854447439354,11.208984887044869,2019
+2001,48,"(45,50]",College,48936.20198928845,5165.395168438037,9.473854447439354,10.748342561587899,2019
+2001,36,"(35,40]",College,206.83045141545523,129.1348792109509,1.6016621743036838,6021.200846579627,2019
+2001,36,"(35,40]",College,208.50451415455242,129.1348792109509,1.6146258503401365,6281.889319288224,2019
+2001,36,"(35,40]",College,206.83045141545523,129.1348792109509,1.6016621743036838,6361.561533205789,2019
+2001,36,"(35,40]",College,206.99785768936496,129.1348792109509,1.6029585419073293,6174.666517236203,2019
+2001,36,"(35,40]",College,206.83045141545523,129.1348792109509,1.6016621743036838,6236.106080819231,2019
+2001,50,"(45,50]",College,569.516143840857,172.17983894793457,3.3076819407008093,6806.297521501592,2019
+2001,50,"(45,50]",College,569.516143840857,172.17983894793457,3.3076819407008093,6184.480094267374,2019
+2001,50,"(45,50]",College,569.6835501147667,172.17983894793457,3.3086542164035433,5773.384203648164,2019
+2001,50,"(45,50]",College,569.6835501147667,172.17983894793457,3.3086542164035433,6472.81440301547,2019
+2001,50,"(45,50]",College,569.6835501147667,172.17983894793457,3.3086542164035433,6208.433356578177,2019
+2001,77,"(75,80]",College,2382.1912777352713,103.30790336876075,23.059138749839555,3185.718194133778,2019
+2001,77,"(75,80]",College,2383.865340474369,103.30790336876075,23.075343344885127,3214.429879564192,2019
+2001,77,"(75,80]",College,2383.865340474369,103.30790336876075,23.075343344885127,4150.3362790837255,2019
+2001,77,"(75,80]",College,2382.1912777352713,103.30790336876075,23.059138749839555,3374.6706602086024,2019
+2001,77,"(75,80]",College,2383.865340474369,103.30790336876075,23.075343344885127,3438.024544790632,2019
+2001,72,"(70,75]",HS,198.87865340474372,41.323161347504296,4.812764728532923,7882.362334972177,2019
+2001,72,"(70,75]",HS,200.55271614384088,41.323161347504296,4.8532762161468375,8693.606324441756,2019
+2001,72,"(70,75]",HS,200.55271614384088,41.323161347504296,4.8532762161468375,8594.030362124675,2019
+2001,72,"(70,75]",HS,199.0460596786534,41.323161347504296,4.816815877294314,8277.931176777249,2019
+2001,72,"(70,75]",HS,200.55271614384088,41.323161347504296,4.8532762161468375,8494.358838966564,2019
+2001,34,"(30,35]",College,329.1207345065034,137.74387115834767,2.3893675394686174,272.1928451464288,2019
+2001,34,"(30,35]",College,304.34460596786533,153.24005666366176,1.9860643006407568,282.37897634189585,2019
+2001,34,"(30,35]",College,307.8601377199694,142.9092663267857,2.154234960635766,277.6700563768103,2019
+2001,34,"(30,35]",College,315.0586074980872,167.01444377949653,1.8864153325208708,276.8680699359319,2019
+2001,34,"(30,35]",College,311.87788829380264,167.01444377949653,1.8673707569003095,268.90597292665046,2019
+2001,49,"(45,50]",College,820.792960979342,394.2918311907702,2.081688982753025,6065.302222796564,2019
+2001,49,"(45,50]",College,824.1410864575363,394.2918311907702,2.0901804736065963,5507.17128756292,2019
+2001,49,"(45,50]",College,819.2863045141546,394.2918311907702,2.0778678118689182,5141.752664600947,2019
+2001,49,"(45,50]",College,820.792960979342,394.2918311907702,2.081688982753025,5766.2426295713985,2019
+2001,49,"(45,50]",College,822.6344299923489,394.2918311907702,2.0863593027224896,5534.172858165602,2019
+2001,70,"(65,70]",College,6366.293190512624,258.2697584219018,24.64978179951226,1678.1299944953516,2019
+2001,70,"(65,70]",College,6356.2488140780415,258.2697584219018,24.610890771402907,1678.5044210730782,2019
+2001,70,"(65,70]",College,6527.170619739863,258.2697584219018,25.272686433063797,1646.8290344082457,2019
+2001,70,"(65,70]",College,6355.076970160673,258.2697584219018,24.606353484790148,1606.794586161683,2019
+2001,70,"(65,70]",College,6367.130221882173,258.2697584219018,24.653022718521374,1645.4251824221035,2019
+2001,47,"(45,50]",NoHS,0.1674062739097169,20.661580673752148,0.008102297522782699,5149.005520870995,2019
+2001,47,"(45,50]",NoHS,0.1674062739097169,20.661580673752148,0.008102297522782699,5248.513384112219,2019
+2001,47,"(45,50]",NoHS,0.1674062739097169,20.661580673752148,0.008102297522782699,5256.030967932186,2019
+2001,47,"(45,50]",NoHS,0.1674062739097169,20.661580673752148,0.008102297522782699,5184.682969078736,2019
+2001,47,"(45,50]",NoHS,0.1674062739097169,20.661580673752148,0.008102297522782699,5203.6485067542,2019
+2001,66,"(65,70]",HS,0,15.496185505314111,0,5672.490893264367,2019
+2001,66,"(65,70]",HS,0,15.324005666366176,0,5685.429004049578,2019
+2001,66,"(65,70]",HS,0,15.496185505314111,0,5779.274134931925,2019
+2001,66,"(65,70]",HS,0,15.324005666366176,0,5590.693106749442,2019
+2001,66,"(65,70]",HS,0,15.324005666366176,0,5717.520623632584,2019
+2001,45,"(40,45]",HS,11.701698546289212,37.87956456854561,0.3089185073686421,6521.194050664643,2019
+2001,45,"(40,45]",HS,14.53086457536343,37.87956456854561,0.3836069590786572,6624.39611889493,2019
+2001,45,"(40,45]",HS,11.852364192807958,37.87956456854561,0.3128959988798264,6638.037789478551,2019
+2001,45,"(40,45]",HS,11.684957918898242,37.87956456854561,0.30847656386739947,6590.473189084223,2019
+2001,45,"(40,45]",HS,11.684957918898242,37.87956456854561,0.30847656386739947,6604.7904945891205,2019
+2001,65,"(60,65]",HS,423.20306044376434,44.76675812646299,9.453511448120613,10451.403296460088,2019
+2001,65,"(60,65]",HS,421.36159143075747,44.76675812646299,9.4123767068511,10928.36179212846,2019
+2001,65,"(60,65]",HS,423.03565416985464,44.76675812646299,9.44977192618702,11264.86710316344,2019
+2001,65,"(60,65]",HS,421.5289977046672,44.76675812646299,9.416116228784693,10591.419790170632,2019
+2001,65,"(60,65]",HS,421.5289977046672,44.76675812646299,9.416116228784693,10911.34265078632,2019
+2001,37,"(35,40]",NoHS,53.402601377199694,27.548774231669533,1.9384746823257604,6930.229227127691,2019
+2001,37,"(35,40]",NoHS,53.402601377199694,29.27057262114888,1.82444675983601,6942.433177986464,2019
+2001,37,"(35,40]",NoHS,53.402601377199694,27.548774231669533,1.9384746823257604,6929.818172283427,2019
+2001,37,"(35,40]",NoHS,53.235195103289975,27.548774231669533,1.9323979591836733,6932.784022954103,2019
+2001,37,"(35,40]",NoHS,53.235195103289975,27.548774231669533,1.9323979591836733,6938.156352960966,2019
+2001,42,"(40,45]",College,7716.7596021423105,516.5395168438037,14.939340264407653,164.8103080219313,2019
+2001,42,"(40,45]",College,7716.927008416221,516.5395168438037,14.939664356308565,162.36084482647135,2019
+2001,42,"(40,45]",College,7716.927008416221,516.5395168438037,14.939664356308565,167.13291760721836,2019
+2001,42,"(40,45]",College,7716.7596021423105,516.5395168438037,14.939340264407653,163.3808115109518,2019
+2001,42,"(40,45]",College,7716.7596021423105,516.5395168438037,14.939340264407653,164.37241073663125,2019
+2001,48,"(45,50]",College,7575.803519510329,645.6743960547547,11.733163907072264,1333.3591269231874,2019
+2001,48,"(45,50]",College,9972.893955623565,645.6743960547547,15.445701450391478,1338.0201228619185,2019
+2001,48,"(45,50]",College,9979.590206579953,645.6743960547547,15.456072391220637,1377.9275492970335,2019
+2001,48,"(45,50]",College,10024.789900535578,645.6743960547547,15.526076241817481,1321.866077298315,2019
+2001,48,"(45,50]",College,8764.38806426932,645.6743960547547,13.574005904248494,1310.1284810465022,2019
+2001,64,"(60,65]",HS,678.7822188217292,75.75912913709122,8.959741572443729,6663.663650272254,2019
+2001,64,"(60,65]",HS,678.4474062739098,77.48092752657055,8.756314978821718,6052.316188416316,2019
+2001,64,"(60,65]",HS,680.2721346595256,77.48092752657055,8.779865656954605,5662.040710286214,2019
+2001,64,"(60,65]",HS,679.9373221117063,75.75912913709122,8.974988623236602,6338.921900002164,2019
+2001,64,"(60,65]",HS,680.1047283856159,75.75912913709122,8.977198340742813,6092.48068763794,2019
+2001,64,"(60,65]",HS,283.9210405508799,61.984742021256444,4.580498866213153,6857.325501171758,2019
+2001,64,"(60,65]",HS,273.87666411629687,58.54114524229776,4.678361910802057,7241.1049494732815,2019
+2001,64,"(60,65]",HS,292.7935730680949,80.92452430552926,3.618106817194963,7277.541994759141,2019
+2001,64,"(60,65]",HS,267.0130068859985,80.92452430552926,3.299531374171507,7057.950234788327,2019
+2001,64,"(60,65]",HS,291.1195103289977,65.42833880021514,4.449440650142877,7162.824918826553,2019
+2001,83,"(80,85]",HS,2.4290650344299927,24.105177452710844,0.1007694317619231,8491.766221883829,2019
+2001,83,"(80,85]",HS,2.4290650344299927,24.105177452710844,0.1007694317619231,8813.832257351489,2019
+2001,83,"(80,85]",HS,2.4290650344299927,22.383379063231494,0.10852092651284027,8958.497091481968,2019
+2001,83,"(80,85]",HS,2.4290650344299927,24.105177452710844,0.1007694317619231,8714.595152679818,2019
+2001,83,"(80,85]",HS,2.4290650344299927,22.383379063231494,0.10852092651284027,8886.609722444806,2019
+2001,80,"(75,80]",College,439.77628156082636,123.96948404251289,3.5474559320583583,2150.878760542085,2019
+2001,80,"(75,80]",College,472.0856924254017,167.01444377949653,2.826615960525428,2280.939110276288,2019
+2001,80,"(75,80]",College,512.2631981637338,134.30027437938898,3.814312372263855,2238.3705200019026,2019
+2001,80,"(75,80]",College,439.4414690130069,136.02207276886833,3.23066293629943,2225.4659424432493,2019
+2001,80,"(75,80]",College,436.93037490436114,110.19509692667813,3.9650618502117827,2184.335364896168,2019
+2001,75,"(70,75]",HS,27.404407039020658,15.496185505314111,1.7684614726393704,5891.1276622433015,2019
+2001,75,"(70,75]",HS,47.15834736036725,15.496185505314111,3.0432229495571814,5888.8177738896875,2019
+2001,75,"(70,75]",HS,23.43687834736037,15.496185505314111,1.5124288709194371,5915.930483255716,2019
+2001,75,"(70,75]",HS,34.15087987758225,15.496185505314111,2.203824926196894,5932.4327644282,2019
+2001,75,"(70,75]",HS,71.98469778117827,15.496185505314111,4.645317246395414,5929.315769702551,2019
+2001,58,"(55,60]",HS,25.110941086457537,15.496185505314111,1.6204595045565398,4715.036174596555,2019
+2001,58,"(55,60]",HS,12.555470543228768,15.496185505314111,0.8102297522782699,4746.5639772009,2019
+2001,58,"(55,60]",HS,6.696250956388676,15.496185505314111,0.43212253454841054,4711.184044361076,2019
+2001,58,"(55,60]",HS,25.110941086457537,15.496185505314111,1.6204595045565398,4733.917899691371,2019
+2001,58,"(55,60]",HS,5.273297628156082,15.496185505314111,0.34029649595687333,4728.759753219947,2019
+2001,47,"(45,50]",College,166.4018362662586,146.35286310574438,1.1369906453147298,6536.300979960337,2019
+2001,47,"(45,50]",College,168.07589900535578,146.35286310574438,1.1484291829939524,6883.353270884405,2019
+2001,47,"(45,50]",College,168.07589900535578,146.35286310574438,1.1484291829939524,6910.165805911466,2019
+2001,47,"(45,50]",College,168.2433052792655,146.35286310574438,1.1495730367618748,6681.203294408825,2019
+2001,47,"(45,50]",College,166.4018362662586,146.35286310574438,1.1369906453147298,6813.582193677927,2019
+2001,75,"(70,75]",College,1790.4100994644223,223.83379063231493,7.99883741595332,4065.306947381084,2019
+2001,75,"(70,75]",College,1751.9066564651876,204.89400834804215,8.550306915218918,4110.841697568319,2019
+2001,75,"(70,75]",College,1465.8930374904362,137.74387115834767,10.642165238737004,7851.743395145333,2019
+2001,75,"(70,75]",College,1673.8953328232594,303.0365165483649,5.523741336157104,4291.866115807437,2019
+2001,75,"(70,75]",College,2582.4091813312934,440.78038770671253,5.858720699364652,4394.482735392208,2019
+2001,38,"(35,40]",College,1362.6870696250958,249.6607664745051,5.458154634658029,6477.359695575437,2019
+2001,38,"(35,40]",College,1581.9892884468247,249.6607664745051,6.336555441955573,11057.720725793351,2019
+2001,38,"(35,40]",College,1491.5899005355777,249.6607664745051,5.974466559558112,13377.496463922676,2019
+2001,38,"(35,40]",College,1304.0948737566946,249.6607664745051,5.223467396067081,6396.30574802131,2019
+2001,38,"(35,40]",College,1280.6579954093343,249.6607664745051,5.129592500630702,6746.536873001195,2019
+2001,44,"(40,45]",HS,2252.1166029074216,86.08991947396729,26.160050057758955,1131.223185204794,2019
+2001,44,"(40,45]",HS,2250.4425401683247,86.08991947396729,26.140604543704278,1100.3297608318555,2019
+2001,44,"(40,45]",HS,2252.2840091813314,86.08991947396729,26.161994609164424,1187.7273292916257,2019
+2001,44,"(40,45]",HS,2252.1166029074216,86.08991947396729,26.160050057758955,1127.3800134682874,2019
+2001,44,"(40,45]",HS,2252.1166029074216,86.08991947396729,26.160050057758955,1126.4588724647274,2019
+2001,76,"(75,80]",HS,119.69548584544759,41.323161347504296,2.896571364394815,7703.3761607536635,2019
+2001,76,"(75,80]",HS,119.69548584544759,41.323161347504296,2.896571364394815,7987.124761906018,2019
+2001,76,"(75,80]",HS,119.69548584544759,41.323161347504296,2.896571364394815,8152.678041973753,2019
+2001,76,"(75,80]",HS,119.69548584544759,41.323161347504296,2.896571364394815,7928.168193300674,2019
+2001,76,"(75,80]",HS,119.69548584544759,41.323161347504296,2.896571364394815,8045.584712531262,2019
+2001,40,"(35,40]",College,65650.2117827085,5854.114524229776,11.214370937054067,17.78317985079869,2019
+2001,40,"(35,40]",College,65650.2117827085,5854.114524229776,11.214370937054067,19.364058268294023,2019
+2001,40,"(35,40]",College,65648.70512624331,5854.114524229776,11.214113569956284,18.90030794244316,2019
+2001,40,"(35,40]",College,65647.03106350421,5854.114524229776,11.213827606514304,18.56465708175563,2019
+2001,40,"(35,40]",College,65648.70512624331,5854.114524229776,11.214113569956284,19.6123879178756,2019
+2001,41,"(40,45]",College,68.46916602907422,96.42070981084338,0.7101085043181692,9286.546369844706,2019
+2001,41,"(40,45]",College,84.54016832440705,96.42070981084338,0.8767843390725563,10058.66066772414,2019
+2001,41,"(40,45]",College,83.70313695485845,96.42070981084338,0.8681033060124318,10152.674783754195,2019
+2001,41,"(40,45]",College,68.63657230298394,96.42070981084338,0.7118447109301941,9439.215614053861,2019
+2001,41,"(40,45]",College,87.0512624330528,96.42070981084338,0.9028274382529291,10076.626449098316,2019
+2001,54,"(50,55]",HS,1103.2743075745984,77.48092752657055,14.239301758439227,417.4572666667714,2019
+2001,54,"(50,55]",HS,1101.5835042081103,77.48092752657055,14.217479570444533,413.58020096117343,2019
+2001,54,"(50,55]",HS,1101.6002448355011,77.48092752657055,14.217695631711806,398.45272648000224,2019
+2001,54,"(50,55]",HS,1103.2743075745984,77.48092752657055,14.239301758439227,413.11162648474453,2019
+2001,54,"(50,55]",HS,1101.5835042081103,77.48092752657055,14.217479570444533,436.24270730870774,2019
+2001,34,"(30,35]",HS,-35.992348890589135,68.87193557917384,-0.522598190219484,4694.581422644171,2019
+2001,34,"(30,35]",HS,-36.15975516449885,68.87193557917384,-0.5250288794763187,4718.650287448112,2019
+2001,34,"(30,35]",HS,-36.15975516449885,68.87193557917384,-0.5250288794763187,4732.1943437216705,2019
+2001,34,"(30,35]",HS,-36.15975516449885,68.87193557917384,-0.5250288794763187,4725.750345060607,2019
+2001,34,"(30,35]",HS,-36.15975516449885,68.87193557917384,-0.5250288794763187,4695.9761825044625,2019
+2001,47,"(45,50]",NoHS,-1.0044376434583013,30.992371010628222,-0.03240919009113079,5139.442708416393,2019
+2001,47,"(45,50]",NoHS,-1.0044376434583013,30.992371010628222,-0.03240919009113079,5137.460272396549,2019
+2001,47,"(45,50]",NoHS,-0.8370313695485845,30.992371010628222,-0.02700765840927566,5146.937421490993,2019
+2001,47,"(45,50]",NoHS,-1.0044376434583013,30.992371010628222,-0.03240919009113079,5133.733058859851,2019
+2001,47,"(45,50]",NoHS,-1.0044376434583013,30.992371010628222,-0.03240919009113079,5137.655474869089,2019
+2001,54,"(50,55]",HS,231.807467482785,151.51825827418244,1.529897915426891,7676.985689791298,2019
+2001,54,"(50,55]",HS,236.4948431522571,151.51825827418244,1.5608339605138797,8075.399678125521,2019
+2001,54,"(50,55]",HS,242.20339709257846,151.51825827418244,1.5985096439948192,8131.479446559666,2019
+2001,54,"(50,55]",HS,233.31412394797246,151.51825827418244,1.5398416442048517,7898.926784195763,2019
+2001,54,"(50,55]",HS,229.6311859219587,151.51825827418244,1.5155347516365036,8016.813872615137,2019
+2001,56,"(55,60]",HS,18.799724560061208,20.661580673752148,0.909888011808497,4412.970680619307,2019
+2001,56,"(55,60]",HS,17.862249426166795,22.383379063231494,0.7980139806285359,4462.485462738483,2019
+2001,56,"(55,60]",HS,20.59097169089518,20.661580673752148,0.996582595302272,4380.138686753969,2019
+2001,56,"(55,60]",HS,17.845508798775825,22.383379063231494,0.7972660762418177,4449.895519108421,2019
+2001,56,"(55,60]",HS,21.09319051262433,22.383379063231494,0.9423595272651876,4411.166225171061,2019
+2001,72,"(70,75]",HS,103.33989288446826,39.60136295802496,2.6095034404245703,8362.697557595711,2019
+2001,72,"(70,75]",HS,101.83323641928081,39.60136295802496,2.5714578694480252,9349.861183017647,2019
+2001,72,"(70,75]",HS,100.49398622800307,39.60136295802496,2.537639584135541,9219.967265692812,2019
+2001,72,"(70,75]",HS,101.81649579188984,39.60136295802496,2.5710351408816194,8813.718576322002,2019
+2001,72,"(70,75]",HS,101.83323641928081,41.323161347504296,2.4643137915543583,9116.008188983564,2019
+2001,60,"(55,60]",HS,109.985921958684,77.48092752657055,1.4195225259915287,6591.237016764947,2019
+2001,60,"(55,60]",HS,106.63779648048968,77.48092752657055,1.3763102725366878,6976.154096983087,2019
+2001,60,"(55,60]",HS,53.06778882938026,77.48092752657055,0.6849142172592309,7028.153799881116,2019
+2001,60,"(55,60]",HS,64.78622800306044,77.48092752657055,0.8361571043511745,6803.851758651933,2019
+2001,60,"(55,60]",HS,99.94154552410099,77.48092752657055,1.2898857656270055,6882.033551211243,2019
+2001,77,"(75,80]",NoHS,13.55990818668707,25.826975842190187,0.5250288794763188,8497.095243326074,2019
+2001,77,"(75,80]",NoHS,57.08553940321347,25.826975842190187,2.21030676421512,8444.64827205356,2019
+2001,77,"(75,80]",NoHS,57.08553940321347,25.826975842190187,2.21030676421512,8511.786214978107,2019
+2001,77,"(75,80]",NoHS,10.211782708492732,25.826975842190187,0.39539211911179567,8094.806776113504,2019
+2001,77,"(75,80]",NoHS,38.67084927314461,25.826975842190187,1.4973045822102429,8494.82896683517,2019
+2001,68,"(65,70]",College,5508.252333588371,96.42070981084338,57.1272742587601,1613.7729110838602,2019
+2001,68,"(65,70]",College,5511.767865340475,96.42070981084338,57.163734597612624,1605.4311346708375,2019
+2001,68,"(65,70]",College,5511.600459066564,96.42070981084338,57.161998391000594,1669.978341116336,2019
+2001,68,"(65,70]",College,5506.745677123183,96.42070981084338,57.11164839925188,1597.8572989084946,2019
+2001,68,"(65,70]",College,5508.41973986228,98.14250820032271,56.126747123874374,1574.796200548416,2019
+2001,50,"(45,50]",College,11696.843764345831,316.81090366419966,36.92058457919673,3254.2010593292825,2019
+2001,50,"(45,50]",College,11394.005814843153,318.532702053679,35.77028588079801,3259.8372077980703,2019
+2001,50,"(45,50]",College,10928.11415455241,342.6378795063898,31.894063114958694,3275.3970364209385,2019
+2001,50,"(45,50]",College,10098.950879877582,318.532702053679,31.704596780068478,3252.228847173108,2019
+2001,50,"(45,50]",College,12983.360979342004,318.532702053679,40.759899676341725,3237.745490472736,2019
+2001,36,"(35,40]",College,1704.195868400918,344.35967789586914,4.948883326915672,3117.1214263054703,2019
+2001,36,"(35,40]",College,2005.5271614384085,344.35967789586914,5.823931459376204,3173.609327700408,2019
+2001,36,"(35,40]",College,1652.299923488906,344.35967789586914,4.798180592991915,3982.193412919854,2019
+2001,36,"(35,40]",College,1628.8630451415456,344.35967789586914,4.73012129380054,3277.2668240539665,2019
+2001,36,"(35,40]",College,2022.2677888293802,344.35967789586914,5.872545244512899,3359.302747979663,2019
+2001,59,"(55,60]",College,1941.7621117061976,111.91689531615746,17.350035543970858,1886.157879972973,2019
+2001,59,"(55,60]",College,1848.0145983167558,111.91689531615746,16.512382630846243,1835.3338439357808,2019
+2001,59,"(55,60]",College,1948.4583626625863,111.91689531615746,17.40986789490833,1981.433712671421,2019
+2001,59,"(55,60]",College,3133.6947819433817,111.91689531615746,28.000194010840914,3197.6768588869536,2019
+2001,59,"(55,60]",College,3438.3742004590667,111.91689531615746,30.7225659784959,3167.951753930955,2019
+2001,60,"(55,60]",College,9332.899770466716,344.35967789586914,27.102185213708122,18.721255848770337,2019
+2001,60,"(55,60]",College,9456.78041315991,344.35967789586914,27.46192722371968,18.788404244055418,2019
+2001,60,"(55,60]",College,9334.573833205815,344.35967789586914,27.1070465922218,19.29133250408,2019
+2001,60,"(55,60]",College,9361.35883703137,344.35967789586914,27.18482864844051,18.68680922597634,2019
+2001,60,"(55,60]",College,9341.270084162205,344.35967789586914,27.126492106276476,18.46256719226991,2019
+2001,71,"(70,75]",College,1754.2503442999234,211.78120190595953,8.283314706462429,1284.9358846004102,2019
+2001,71,"(70,75]",College,2758.687987758225,117.08229048459552,23.56195780198872,1209.2401522064304,2019
+2001,71,"(70,75]",College,1308.9496557000766,215.22479868491826,6.08177897574124,610.6112251999918,2019
+2001,71,"(70,75]",College,15488.2610558531,110.19509692667813,140.55308709568735,2203.782658135882,2019
+2001,71,"(70,75]",College,13146.247283856159,105.0297017582401,125.1669486229382,2097.028799014579,2019
+2001,83,"(80,85]",NoHS,52414.904361132365,3271.416940010757,16.022080132946922,9.610553906013468,2019
+2001,83,"(80,85]",NoHS,51703.42769701607,3271.416940010757,15.804597409966966,9.373037579908969,2019
+2001,83,"(80,85]",NoHS,52147.05432287682,3271.416940010757,15.940204284295646,9.72545276491913,2019
+2001,83,"(80,85]",NoHS,51658.228003060445,3271.416940010757,15.790780860507063,10.050999098434168,2019
+2001,83,"(80,85]",NoHS,52942.23412394797,3271.416940010757,16.183273209979124,9.656308125742381,2019
+2001,36,"(35,40]",HS,-4.35256312165264,68.87193557917384,-0.06319792067770505,5975.160067287475,2019
+2001,36,"(35,40]",HS,5.524407039020658,68.87193557917384,0.0802127454755487,5984.412042741557,2019
+2001,36,"(35,40]",HS,-3.013312930374904,68.87193557917384,-0.04375240662302656,6011.040993580328,2019
+2001,36,"(35,40]",HS,-5.8592195868400925,68.87193557917384,-0.08507412398921833,5960.9216820377615,2019
+2001,36,"(35,40]",HS,-6.52884468247896,68.87193557917384,-0.09479688101655756,6021.039381243167,2019
+2001,26,"(25,30]",HS,-24.608722264728385,30.992371010628222,-0.7940251572327044,5073.012842619295,2019
+2001,26,"(25,30]",HS,-21.930221882172916,30.992371010628222,-0.7076006503230223,5087.305500140249,2019
+2001,26,"(25,30]",HS,-25.110941086457537,30.992371010628222,-0.8102297522782699,5089.642584025538,2019
+2001,26,"(25,30]",HS,-18.91690895179801,30.992371010628222,-0.61037308004963,5091.852021358174,2019
+2001,26,"(25,30]",HS,-26.282785003825555,30.992371010628222,-0.8480404740512558,5076.6203425406,2019
+2001,64,"(60,65]",College,16263.519510328997,2840.9673426409204,5.724641486097012,32.7920490613639,2019
+2001,64,"(60,65]",College,14671.48584544759,1825.1062928481062,8.038702130905763,33.073134816897166,2019
+2001,64,"(60,65]",College,17308.134659525633,2840.9673426409204,6.092338479130933,33.49835085937403,2019
+2001,64,"(60,65]",College,14370.1545524101,2100.594035164802,6.8409956002196735,32.70201380995977,2019
+2001,64,"(60,65]",College,14422.050497322112,647.3961944442341,22.277008454927532,32.334002151253344,2019
+2001,70,"(65,70]",HS,12989.052792654935,1422.2054697099395,9.13303532386503,209.41371697501842,2019
+2001,70,"(65,70]",HS,12765.565416985464,1485.9120101206754,8.591064161294943,196.4381247756557,2019
+2001,70,"(65,70]",HS,13772.011935730681,1615.0468893316265,8.527313991131312,209.75370225208076,2019
+2001,70,"(65,70]",HS,13133.52440703902,1621.9340828895438,8.097446465667145,206.44987499851882,2019
+2001,70,"(65,70]",HS,13506.84039785769,1522.0697762997418,8.873995534353073,199.0858788589583,2019
+2001,46,"(45,50]",HS,418.34827850038255,154.9618550531411,2.699685534591195,5240.46887585431,2019
+2001,46,"(45,50]",HS,547.4185156847743,154.9618550531411,3.5326017199332567,5187.647778958247,2019
+2001,46,"(45,50]",HS,948.523947972456,154.9618550531411,6.121015701878236,4989.435600454865,2019
+2001,46,"(45,50]",HS,262.6604437643458,154.9618550531411,1.6950006417661405,1730.5484225019077,2019
+2001,46,"(45,50]",HS,543.4007651109412,154.9618550531411,3.5066743678603527,5454.078710289949,2019
+2001,27,"(25,30]",HS,0,22.383379063231494,0,5936.942432402635,2019
+2001,27,"(25,30]",HS,0,22.383379063231494,0,6026.7140606895355,2019
+2001,27,"(25,30]",HS,0,22.383379063231494,0,6297.018754195014,2019
+2001,27,"(25,30]",HS,0,22.383379063231494,0,6165.031792577934,2019
+2001,27,"(25,30]",HS,0,22.383379063231494,0,5954.349646346039,2019
+2001,39,"(35,40]",HS,44.54680948737567,98.14250820032271,0.45389923596052123,5864.326641624402,2019
+2001,39,"(35,40]",HS,39.52462127008417,34.43596778958692,1.147771467077397,6019.847255625819,2019
+2001,39,"(35,40]",HS,45.651690895179804,46.488556515942335,0.9819984597612631,6080.010829341363,2019
+2001,39,"(35,40]",HS,48.34693190512624,34.43596778958692,1.4039661147477858,5935.318916614501,2019
+2001,39,"(35,40]",HS,41.44979342004591,48.21035490542169,0.8597695142747125,6032.772847088597,2019
+2001,76,"(75,80]",HS,85.54460596786534,24.105177452710844,3.548806314978821,8377.295667346476,2019
+2001,76,"(75,80]",HS,85.71201224177506,24.105177452710844,3.5557511414269207,8328.935357097103,2019
+2001,76,"(75,80]",HS,85.54460596786534,24.105177452710844,3.548806314978821,8415.968073963644,2019
+2001,76,"(75,80]",HS,85.54460596786534,24.105177452710844,3.548806314978821,8412.341576154335,2019
+2001,76,"(75,80]",HS,85.54460596786534,24.105177452710844,3.548806314978821,8414.891138932278,2019
+2001,39,"(35,40]",HS,-1.9251721499617445,25.826975842190187,-0.07454113720960082,4269.488501023828,2019
+2001,39,"(35,40]",HS,-1.9251721499617445,25.826975842190187,-0.07454113720960082,4276.367879566732,2019
+2001,39,"(35,40]",HS,-1.9251721499617445,25.826975842190187,-0.07454113720960082,4298.55968701828,2019
+2001,39,"(35,40]",HS,-1.9251721499617445,25.826975842190187,-0.07454113720960082,4248.402484757653,2019
+2001,39,"(35,40]",HS,-1.7745065034429992,25.826975842190187,-0.06870748299319727,4311.184370537395,2019
+2001,51,"(50,55]",College,167.1719051262433,58.54114524229776,2.85563093161793,5763.546930350966,2019
+2001,51,"(50,55]",College,171.92624330527926,58.54114524229776,2.9368445491404107,6007.573616558571,2019
+2001,51,"(50,55]",College,163.17089517980108,58.54114524229776,2.787285668984575,6034.844356352654,2019
+2001,51,"(50,55]",College,168.07589900535578,58.54114524229776,2.8710729574848806,5870.655960886137,2019
+2001,51,"(50,55]",College,161.9153481254782,58.54114524229776,2.7658384108360328,5948.822912702561,2019
+2001,42,"(40,45]",College,108.64667176740627,67.15013718969449,1.6179664899341448,6920.551767612809,2019
+2001,42,"(40,45]",College,107.30742157612855,67.15013718969449,1.5980223729549876,7177.394054662589,2019
+2001,42,"(40,45]",College,132.28443764345832,67.15013718969449,1.9699801546162734,7244.478170504536,2019
+2001,42,"(40,45]",College,105.9681713848508,67.15013718969449,1.57807825597583,7028.98273905649,2019
+2001,42,"(40,45]",College,118.87519510328998,67.15013718969449,1.7702896833624595,7190.213603574914,2019
+2001,46,"(45,50]",College,458.1240091813313,132.5784759899096,3.455493101430722,5799.538062579332,2019
+2001,46,"(45,50]",College,350.08,170.45804055845522,2.053760555108264,5267.439539332061,2019
+2001,46,"(45,50]",College,208.47103289977048,165.29264539001719,1.2612238881401618,5536.943879602325,2019
+2001,46,"(45,50]",College,536.5538485080336,160.12725022157917,3.350796618099461,5513.938112338565,2019
+2001,46,"(45,50]",College,248.51461361897475,134.30027437938898,1.8504401034724482,5431.666114849178,2019
+2001,30,"(25,30]",HS,83.87054322876818,105.0297017582401,0.7985411919175343,6010.9858556967165,2019
+2001,30,"(25,30]",HS,98.76970160673298,101.5861049792814,0.9722757027339238,6082.053213884505,2019
+2001,30,"(25,30]",HS,93.07788829380262,96.42070981084338,0.9653308762858244,6149.226613305697,2019
+2001,30,"(25,30]",HS,90.23198163733743,99.86430658980206,0.9035458685751465,6047.825549614542,2019
+2001,30,"(25,30]",HS,97.0956388676358,91.25531464240532,1.0639998256333505,6093.465425789125,2019
+2001,45,"(40,45]",HS,101.51516449885233,56.819346852818406,1.786630261023792,5185.910382724711,2019
+2001,45,"(40,45]",HS,98.83666411629686,55.097548463339066,1.7938486715440893,5273.985115977616,2019
+2001,45,"(40,45]",HS,93.51314460596787,53.37575007385973,1.751978088861838,5268.842212054218,2019
+2001,45,"(40,45]",HS,91.40382555470543,46.488556515942335,1.9661575321952682,5206.666592209758,2019
+2001,45,"(40,45]",HS,104.79632746748278,46.488556515942335,2.2542392218942084,5243.1142057045645,2019
+2001,76,"(75,80]",NoHS,115.51032899770466,60.2629436317771,1.9167720996754498,7567.478490983313,2019
+2001,76,"(75,80]",NoHS,118.6910482019893,60.2629436317771,1.969552780681006,7802.359678040232,2019
+2001,76,"(75,80]",NoHS,116.8495791889824,51.653951684380374,2.2621614683609295,8101.565212752651,2019
+2001,76,"(75,80]",NoHS,117.35179801071156,55.097548463339066,2.1298914613015016,7843.407645850459,2019
+2001,76,"(75,80]",NoHS,117.01698546289212,61.984742021256444,1.8878353228083689,7907.919236130067,2019
+2001,32,"(30,35]",HS,0,41.323161347504296,0,4675.631196861783,2019
+2001,32,"(30,35]",HS,0,41.323161347504296,0,4712.08127426904,2019
+2001,32,"(30,35]",HS,0,39.60136295802496,0,4645.627259702255,2019
+2001,32,"(30,35]",HS,0,41.323161347504296,0,4689.479806790636,2019
+2001,32,"(30,35]",HS,0,39.60136295802496,0,4686.207602044667,2019
+2001,54,"(50,55]",College,8707.469931140015,797.1926543289371,10.92266704146918,1778.6308543552382,2019
+2001,54,"(50,55]",College,13653.153481254783,781.696468823623,17.466054953275467,1750.1830588256094,2019
+2001,54,"(50,55]",College,8572.875286916602,802.3580494973751,10.684600587339965,1777.0900094775393,2019
+2001,54,"(50,55]",College,10127.409946442234,797.1926543289371,12.703842529717376,1762.4043771518125,2019
+2001,54,"(50,55]",College,15237.319051262433,743.8169042550774,20.485308903435588,1720.8496674133792,2019
+2001,58,"(55,60]",HS,40.445355776587604,94.69891142136402,0.42709419960093814,5160.99669981019,2019
+2001,58,"(55,60]",HS,40.34491201224177,94.69891142136402,0.42603353519795567,5284.5729327840745,2019
+2001,58,"(55,60]",HS,40.59602142310635,94.69891142136402,0.42868519620541184,5192.398217101007,2019
+2001,58,"(55,60]",HS,42.688599846977816,94.69891142136402,0.4507823712675465,5251.173338756734,2019
+2001,58,"(55,60]",HS,40.76342769701606,94.69891142136402,0.4304529702103826,5197.32260065136,2019
+2001,53,"(50,55]",College,62.944758990053565,111.91689531615746,0.5624240988122391,5544.852253228803,2019
+2001,53,"(50,55]",College,62.944758990053565,111.91689531615746,0.5624240988122391,5581.425359888482,2019
+2001,53,"(50,55]",College,63.279571537873,113.63869370563681,0.5568488115657928,5579.560329036768,2019
+2001,53,"(50,55]",College,63.11216526396328,113.63869370563681,0.5553756665616505,5547.520189737489,2019
+2001,53,"(50,55]",College,63.11216526396328,111.91689531615746,0.5639199075856759,5550.754741478045,2019
+2001,43,"(40,45]",College,0.0016740627390971691,2.2383379063231494,7.479043867184029e-4,4413.18971408858,2019
+2001,43,"(40,45]",College,0.0016740627390971691,2.2383379063231494,7.479043867184029e-4,4430.2027335807825,2019
+2001,43,"(40,45]",College,0.0016740627390971691,2.2383379063231494,7.479043867184029e-4,4460.6393949753565,2019
+2001,43,"(40,45]",College,0.0016740627390971691,2.2383379063231494,7.479043867184029e-4,4415.506780571115,2019
+2001,43,"(40,45]",College,0.0016740627390971691,2.2383379063231494,7.479043867184029e-4,4445.235835902249,2019
+2001,33,"(30,35]",College,141.12348890589138,225.5555890217943,0.6256705476371739,4308.6780458345165,2019
+2001,33,"(30,35]",College,39.34047436878347,306.4801133273235,0.1283622416530742,4387.4354854116045,2019
+2001,33,"(30,35]",College,316.23045141545526,180.7888308953313,1.7491702880613165,4336.580640415663,2019
+2001,33,"(30,35]",College,62.107727620504974,206.6158067375215,0.3005952380952381,4394.037170813126,2019
+2001,33,"(30,35]",College,167.4062739097169,237.60817774814973,0.7045476106767563,4303.196683028166,2019
+2001,34,"(30,35]",College,1031.892272379495,223.83379063231493,4.610082639732235,1040.2322025433327,2019
+2001,34,"(30,35]",College,1036.2448355011477,223.83379063231493,4.629528153786914,1011.2545644036305,2019
+2001,34,"(30,35]",College,1032.8967100229534,223.83379063231493,4.614570066052546,1092.1756166121652,2019
+2001,34,"(30,35]",College,1034.5707727620506,223.83379063231493,4.622049109919731,1036.5622020421215,2019
+2001,34,"(30,35]",College,1036.2448355011477,223.83379063231493,4.629528153786914,1035.4638834805285,2019
+2001,35,"(30,35]",HS,142.29533282325937,103.30790336876075,1.3773905788730587,7661.479614112461,2019
+2001,35,"(30,35]",HS,177.4506503442999,103.30790336876075,1.7176870748299318,7423.845549414073,2019
+2001,35,"(30,35]",HS,169.0803366488141,103.30790336876075,1.6366640996021051,7689.273667050914,2019
+2001,35,"(30,35]",HS,145.6434583014537,103.30790336876075,1.4097997689641895,7654.054721357716,2019
+2001,35,"(30,35]",HS,180.79877582249426,103.30790336876075,1.7500962649210627,7973.071819790576,2019
+2001,27,"(25,30]",College,136.4361132364193,194.5632180111661,0.7012430953346441,9893.556945139673,2019
+2001,27,"(25,30]",College,136.4361132364193,194.5632180111661,0.7012430953346441,10035.414950690309,2019
+2001,27,"(25,30]",College,136.4361132364193,194.5632180111661,0.7012430953346441,10101.941248409214,2019
+2001,27,"(25,30]",College,136.4361132364193,194.5632180111661,0.7012430953346441,10038.314147768306,2019
+2001,27,"(25,30]",College,136.4361132364193,194.5632180111661,0.7012430953346441,9939.832863691934,2019
+2001,28,"(25,30]",College,233.61545524100995,137.74387115834767,1.696013428956488,5821.521678186871,2019
+2001,28,"(25,30]",College,316.983779648049,137.74387115834767,2.301255053908356,5910.644099416238,2019
+2001,28,"(25,30]",College,228.12452945677126,137.74387115834767,1.6561501251443975,5972.185272295467,2019
+2001,28,"(25,30]",College,597.5901759755164,137.74387115834767,4.338415720061609,6061.179455405092,2019
+2001,28,"(25,30]",College,298.28449885233357,137.74387115834767,2.1655010589141312,5888.542821556175,2019
+2001,85,"(80,85]",NoHS,408.47130833970925,20.661580673752148,19.769605955589785,9949.522509577777,2019
+2001,85,"(80,85]",NoHS,406.7972456006121,20.661580673752148,19.688582980361957,10187.17562114583,2019
+2001,85,"(80,85]",NoHS,408.47130833970925,20.661580673752148,19.769605955589785,10379.988369081577,2019
+2001,85,"(80,85]",NoHS,406.7972456006121,20.661580673752148,19.688582980361957,10174.288625349263,2019
+2001,85,"(80,85]",NoHS,406.7972456006121,20.661580673752148,19.688582980361957,10293.33742769706,2019
+2001,59,"(55,60]",NoHS,177.4506503442999,70.59373396865318,2.513688402190144,5841.123495447668,2019
+2001,59,"(55,60]",NoHS,177.61805661820964,70.59373396865318,2.516059806343154,6182.235216258586,2019
+2001,59,"(55,60]",NoHS,177.61805661820964,68.87193557917384,2.5789613015017325,6228.317110382774,2019
+2001,59,"(55,60]",NoHS,177.4506503442999,68.87193557917384,2.5765306122448974,6029.541687837931,2019
+2001,59,"(55,60]",NoHS,177.4506503442999,68.87193557917384,2.5765306122448974,6098.826027677757,2019
+2001,46,"(45,50]",HS,4.185156847742923,56.819346852818406,0.07365725020711544,4327.835295089514,2019
+2001,46,"(45,50]",HS,4.201897475133895,56.819346852818406,0.07395187920794391,4401.613277907078,2019
+2001,46,"(45,50]",HS,4.185156847742923,56.819346852818406,0.07365725020711544,4400.559294743786,2019
+2001,46,"(45,50]",HS,4.201897475133895,56.819346852818406,0.07395187920794391,4334.025074844328,2019
+2001,46,"(45,50]",HS,4.185156847742923,56.819346852818406,0.07365725020711544,4384.639164146862,2019
+2001,36,"(35,40]",HS,885.4117827084928,27.548774231669533,32.139788698498265,8345.817012364045,2019
+2001,36,"(35,40]",HS,870.512624330528,22.383379063231494,38.89102810935695,7512.549983678118,2019
+2001,36,"(35,40]",HS,929.1048201989288,22.383379063231494,41.508693462871356,6789.148045261662,2019
+2001,36,"(35,40]",HS,871.5170619739862,27.548774231669533,31.635420677705042,7757.337748377659,2019
+2001,36,"(35,40]",HS,850.5912777352717,16.357084700053786,52.001398374642804,7627.203131448376,2019
+2001,51,"(50,55]",NoHS,5.23981637337414,17.21798389479346,0.30432229495571816,6539.000533339258,2019
+2001,51,"(50,55]",NoHS,5.089150726855395,17.21798389479346,0.29557181363111285,6624.215222267523,2019
+2001,51,"(50,55]",NoHS,5.089150726855395,17.21798389479346,0.29557181363111285,6909.914049827907,2019
+2001,51,"(50,55]",NoHS,5.156113236419281,17.21798389479346,0.29946091644204853,6713.3081796355345,2019
+2001,51,"(50,55]",NoHS,5.290038255547055,17.21798389479346,0.3072391220639199,6539.664678112745,2019
+2001,42,"(40,45]",HS,295.3046671767407,129.1348792109509,2.2867924528301895,7044.092199139139,2019
+2001,42,"(40,45]",HS,279.40107115531754,129.1348792109509,2.163637530483892,7305.519439533944,2019
+2001,42,"(40,45]",HS,278.2292272379495,129.1348792109509,2.154562957258375,7373.801090037572,2019
+2001,42,"(40,45]",HS,356.575363427697,129.1348792109509,2.761262995764344,7154.458797893002,2019
+2001,42,"(40,45]",HS,355.57092578423874,129.1348792109509,2.7534847901424726,7318.567833292424,2019
+2001,54,"(50,55]",College,2087.38882938026,91.25531464240532,22.87416176865905,3584.8252762671764,2019
+2001,54,"(50,55]",College,1980.0814078041315,91.25531464240532,21.698258513088398,3469.392946025467,2019
+2001,54,"(50,55]",College,2161.0475899005355,91.25531464240532,23.681334050174005,3753.53202749753,2019
+2001,54,"(50,55]",College,1821.0454475899005,91.25531464240532,19.955500177999287,3552.3644056416247,2019
+2001,54,"(50,55]",College,1960.327467482785,91.25531464240532,21.48178958304575,3559.712805345395,2019
+2001,56,"(55,60]",College,1476.3559296097935,154.9618550531411,9.527221580456084,3413.9071709799196,2019
+2001,56,"(55,60]",College,1461.289364957919,154.9618550531411,9.429994010182691,3475.1026438844274,2019
+2001,56,"(55,60]",College,1427.8081101759756,154.9618550531411,9.213932742908485,4363.67079901769,2019
+2001,56,"(55,60]",College,1431.9932670237185,154.9618550531411,9.240940401317761,3592.4612506891,2019
+2001,56,"(55,60]",College,1478.0299923488906,154.9618550531411,9.538024643819792,3678.3127842770095,2019
+2001,52,"(50,55]",HS,4.821300688599846,18.939782284272805,0.2545594567157909,5303.1782602127005,2019
+2001,52,"(50,55]",HS,4.75433817903596,18.939782284272805,0.2510239087058494,5298.86143289702,2019
+2001,52,"(50,55]",HS,5.03892884468248,18.939782284272805,0.26604998774810096,5312.433701604008,2019
+2001,52,"(50,55]",HS,4.787819433817904,17.21798389479346,0.2780708509819022,5295.8995411835895,2019
+2001,52,"(50,55]",HS,5.223075745983167,18.939782284272805,0.27577274477544017,5302.877893635842,2019
+2001,66,"(65,70]",NoHS,299.6572302983933,37.87956456854561,7.910788672244198,7864.2883586235475,2019
+2001,66,"(65,70]",NoHS,299.6572302983933,37.87956456854561,7.910788672244198,8249.967291944731,2019
+2001,66,"(65,70]",NoHS,299.6572302983933,37.87956456854561,7.910788672244198,8607.487994460127,2019
+2001,66,"(65,70]",NoHS,299.6572302983933,37.87956456854561,7.910788672244198,7934.515569187859,2019
+2001,66,"(65,70]",NoHS,297.98316755929613,37.87956456854561,7.866594322119929,8279.818884912482,2019
+2001,42,"(40,45]",HS,392.23289977046676,165.29264539001719,2.372960386984983,6832.6145800500035,2019
+2001,42,"(40,45]",HS,388.61692425401685,165.29264539001719,2.3510841836734695,7086.193256172679,2019
+2001,42,"(40,45]",HS,405.1231828615149,165.29264539001719,2.450945000641766,7152.42495609819,2019
+2001,42,"(40,45]",HS,397.8410099464422,165.29264539001719,2.406888757861635,6939.667754607877,2019
+2001,42,"(40,45]",HS,395.8153940321347,165.29264539001719,2.3946340328584266,7098.849911270317,2019
+2001,55,"(50,55]",College,11711.408110175975,416.6752102540017,28.106803145396626,474.61514848782474,2019
+2001,55,"(50,55]",College,11708.059984697782,416.6752102540017,28.098767809010397,475.04749578022773,2019
+2001,55,"(50,55]",College,11711.408110175975,416.6752102540017,28.106803145396626,485.2382166254089,2019
+2001,55,"(50,55]",College,11711.408110175975,416.6752102540017,28.106803145396626,476.7821199434188,2019
+2001,55,"(50,55]",College,11709.734047436878,416.6752102540017,28.10278547720351,482.1757684358251,2019
+2001,42,"(40,45]",College,369.96786534047436,110.19509692667813,3.3573895360030805,6208.872726042662,2019
+2001,42,"(40,45]",College,368.2938026013772,113.63869370563681,3.2409190091130795,6134.363465477324,2019
+2001,42,"(40,45]",College,368.2938026013772,129.1348792109509,2.85200872801951,6176.897628399024,2019
+2001,42,"(40,45]",College,368.2938026013772,106.75150014771945,3.450010558088116,6172.047465825789,2019
+2001,42,"(40,45]",College,368.2938026013772,105.0297017582401,3.5065681082207085,6185.154808819136,2019
+2001,41,"(40,45]",College,807.5678653404744,230.72098419023237,3.5001925298421255,10971.175988818257,2019
+2001,41,"(40,45]",College,805.8938026013773,228.99918580075305,3.5191994232790287,10804.487547092112,2019
+2001,41,"(40,45]",College,804.2197398622801,230.72098419023237,3.48568095218938,10408.773231555759,2019
+2001,41,"(40,45]",College,807.4004590665647,230.72098419023237,3.499466950959488,10759.25308507739,2019
+2001,41,"(40,45]",College,805.7263963274676,228.99918580075305,3.518468388916071,11386.752961154238,2019
+2001,49,"(45,50]",HS,0.0016740627390971691,46.488556515942335,3.601021121236755e-5,5216.569595992649,2019
+2001,49,"(45,50]",HS,0.0016740627390971691,46.488556515942335,3.601021121236755e-5,5331.501876133607,2019
+2001,49,"(45,50]",HS,0.0016740627390971691,46.488556515942335,3.601021121236755e-5,5248.775301661482,2019
+2001,49,"(45,50]",HS,0.0016740627390971691,46.488556515942335,3.601021121236755e-5,5233.5258949846575,2019
+2001,49,"(45,50]",HS,0.0016740627390971691,46.488556515942335,3.601021121236755e-5,5282.2854763725645,2019
+2001,57,"(55,60]",HS,2546.8353481254785,525.1485087912005,4.849743083128705,573.3429942868568,2019
+2001,57,"(55,60]",HS,2548.5094108645753,525.1485087912005,4.852930872317996,565.6974204507626,2019
+2001,57,"(55,60]",HS,2546.8353481254785,525.1485087912005,4.849743083128705,598.3194637687418,2019
+2001,57,"(55,60]",HS,2567.175210405509,525.1485087912005,4.888474721778597,580.5879237529209,2019
+2001,57,"(55,60]",HS,2546.8353481254785,525.1485087912005,4.849743083128705,581.2243381287574,2019
+2001,49,"(45,50]",HS,43316.04023565417,258.2697584219018,167.71626883583625,310.2008805789515,2019
+2001,49,"(45,50]",HS,43512.40779495027,258.2697584219018,168.47658843537417,1499.9110352301152,2019
+2001,49,"(45,50]",HS,19081.43751185922,258.2697584219018,73.8818111282249,1880.36694392992,2019
+2001,49,"(45,50]",HS,19096.035338944148,258.2697584219018,73.93833275574383,1863.8276863356161,2019
+2001,49,"(45,50]",HS,43813.57168171385,258.2697584219018,169.64267109485309,319.51613276104524,2019
+2001,57,"(55,60]",HS,148.3219586840092,86.08991947396729,1.722872545244513,6231.423197407605,2019
+2001,57,"(55,60]",HS,140.28645753634277,86.08991947396729,1.6295340777820562,6580.173181118569,2019
+2001,57,"(55,60]",HS,152.3397092578424,86.08991947396729,1.7695417789757415,6613.284435528248,2019
+2001,57,"(55,60]",HS,146.98270849273143,86.08991947396729,1.70731613400077,6413.735910843536,2019
+2001,57,"(55,60]",HS,153.3943687834736,86.08991947396729,1.7817924528301887,6509.038159340406,2019
+2001,48,"(45,50]",College,3387.298546289212,383.96104085389413,8.82198500857319,1349.2443236788192,2019
+2001,48,"(45,50]",College,3375.747513389442,383.96104085389413,8.791901141537926,1354.3533505899818,2019
+2001,48,"(45,50]",College,3376.082325937261,383.96104085389413,8.792773137683874,1394.0634143679956,2019
+2001,48,"(45,50]",College,3374.073450650344,385.6828392433735,8.74831106634028,1337.823345398427,2019
+2001,48,"(45,50]",College,3379.597857689365,383.96104085389413,8.801929097216346,1325.8312526135053,2019
+2001,63,"(60,65]",HS,276.7225707727621,89.53351625292598,3.0907148781138005,6706.593601575629,2019
+2001,63,"(60,65]",HS,276.5551644988523,89.53351625292598,3.0888451171470037,7009.601323502613,2019
+2001,63,"(60,65]",HS,276.7225707727621,89.53351625292598,3.0907148781138005,7049.393593249291,2019
+2001,63,"(60,65]",HS,276.3877582249426,89.53351625292598,3.0869753561802082,6878.598632820894,2019
+2001,63,"(60,65]",HS,276.7225707727621,89.53351625292598,3.0907148781138005,6936.32304126513,2019
+2001,40,"(35,40]",College,7.03106350420811,20.661580673752148,0.34029649595687333,5528.617785207904,2019
+2001,40,"(35,40]",College,6.863657230298394,20.661580673752148,0.33219419843409065,5480.620883226819,2019
+2001,40,"(35,40]",College,6.863657230298394,20.661580673752148,0.33219419843409065,5508.540238350104,2019
+2001,40,"(35,40]",College,6.863657230298394,20.661580673752148,0.33219419843409065,5496.0995471724245,2019
+2001,40,"(35,40]",College,6.863657230298394,20.661580673752148,0.33219419843409065,5516.152194794485,2019
+2001,29,"(25,30]",NoHS,39.82762662586075,30.992371010628222,1.2850784024301547,8210.866110246872,2019
+2001,29,"(25,30]",NoHS,39.82762662586075,30.992371010628222,1.2850784024301547,8214.64201335267,2019
+2001,29,"(25,30]",NoHS,39.66022035195103,30.992371010628222,1.2796768707482995,8423.28851161206,2019
+2001,29,"(25,30]",NoHS,39.60999846977812,30.992371010628222,1.278056411243743,8206.031411620148,2019
+2001,29,"(25,30]",NoHS,39.89458913542464,30.992371010628222,1.2872390151028967,8213.4373676008,2019
+2001,46,"(45,50]",HS,586.6585462892119,53.37575007385973,10.991106363421812,4754.997232404943,2019
+2001,46,"(45,50]",HS,586.6585462892119,55.097548463339066,10.647634289564882,4312.874892108386,2019
+2001,46,"(45,50]",HS,586.5078806426932,53.37575007385973,10.988283627510649,4047.017505464283,2019
+2001,46,"(45,50]",HS,586.5078806426932,53.37575007385973,10.988283627510649,4513.602916948848,2019
+2001,46,"(45,50]",HS,586.4911400153022,53.37575007385973,10.987969990187187,4342.206558637334,2019
+2001,32,"(30,35]",HS,1.1718439173680184,17.21798389479346,0.06805929919137466,4178.035446704159,2019
+2001,32,"(30,35]",HS,-1.1718439173680184,17.21798389479346,-0.06805929919137466,4137.74225615896,2019
+2001,32,"(30,35]",HS,-3.1807192042846215,17.21798389479346,-0.18473238351944551,4135.38409168183,2019
+2001,32,"(30,35]",HS,-0.8370313695485845,17.21798389479346,-0.04861378513669618,4156.022894456288,2019
+2001,32,"(30,35]",HS,2.17628156082632,17.21798389479346,0.1263958413554101,4150.086344145195,2019
+2001,45,"(40,45]",College,3569.1017597551645,201.45041156908349,17.71702391648483,10.802859972264065,2019
+2001,45,"(40,45]",College,4491.510328997705,344.35967789586914,13.043078552175588,10.523436838855918,2019
+2001,45,"(40,45]",College,3376.58454475899,287.54033104305074,11.742994565355234,6.688742618692727,2019
+2001,45,"(40,45]",College,3826.9074215761284,265.1569519798192,14.432612054868507,10.85909945745182,2019
+2001,45,"(40,45]",College,4009.38026013772,378.79564568545607,10.58454685476249,10.445347271925723,2019
+2001,43,"(40,45]",HS,87.60370313695486,43.04495973698364,2.0351675009626495,5913.94206016528,2019
+2001,43,"(40,45]",HS,44.6472532517215,41.323161347504296,1.080441374663073,6113.185890225372,2019
+2001,43,"(40,45]",HS,49.80336648814078,44.76675812646299,1.1125077752436243,6291.966109348901,2019
+2001,43,"(40,45]",HS,103.02182096403979,46.488556515942335,2.216068398009099,6066.731153545186,2019
+2001,43,"(40,45]",HS,69.79167559296098,39.60136295802496,1.7623553933468383,6145.156465315494,2019
+2001,66,"(65,70]",College,66766.4768171385,2066.1580673752146,32.314312187139016,10.33298516436616,2019
+2001,66,"(65,70]",College,66511.34965570008,2066.1580673752146,32.1908331728918,10.885853919327733,2019
+2001,66,"(65,70]",College,53540.71155317521,2066.1580673752146,25.91317305223977,11.043925163074842,2019
+2001,66,"(65,70]",College,46057.651109410865,2066.1580673752146,22.291446059555902,11.208984887044869,2019
+2001,66,"(65,70]",College,52806.300229533284,2066.1580673752146,25.55772525991529,11.194517760457467,2019
+2001,53,"(50,55]",HS,6504.73817903596,137.74387115834767,47.22343088178667,10.680934952041166,2019
+2001,53,"(50,55]",HS,6717.344146901301,68.87193557917384,97.53383711975357,10.522454086426379,2019
+2001,53,"(50,55]",HS,6421.035042081102,153.24005666366176,41.90180545400268,10.833963798980687,2019
+2001,53,"(50,55]",HS,6929.9501147666415,70.59373396865318,98.16664631798416,10.593722785169197,2019
+2001,53,"(50,55]",HS,7124.308798775823,187.6760244532487,37.96067622132807,10.655504539404081,2019
+2001,44,"(40,45]",College,6230.861514919664,2858.185326535714,2.1800061238407618,230.84596413888525,2019
+2001,44,"(40,45]",College,5713.576128538639,2668.787503692986,2.140888369955408,230.5749335033823,2019
+2001,44,"(40,45]",College,6287.779648048967,2961.493229904475,2.123178802016638,235.68928410458275,2019
+2001,44,"(40,45]",College,5601.413925019127,2909.839278220095,1.9249908291998272,231.71488299586844,2019
+2001,44,"(40,45]",College,6185.66182096404,2565.479600324226,2.4111132359743945,234.06497481304714,2019
+2001,54,"(50,55]",HS,21.042968630451416,60.2629436317771,0.34918587381044064,7904.128403946363,2019
+2001,54,"(50,55]",HS,21.712593726090283,60.2629436317771,0.36029759612739976,8296.63033169942,2019
+2001,54,"(50,55]",HS,21.712593726090283,60.2629436317771,0.36029759612739976,8326.498332813111,2019
+2001,54,"(50,55]",HS,21.21037490436113,60.2629436317771,0.3519638043896804,8105.631538845179,2019
+2001,54,"(50,55]",HS,21.21037490436113,60.2629436317771,0.3519638043896804,8148.657695907183,2019
+2001,64,"(60,65]",College,4466.399387911247,210.0594035164802,21.262553892574658,545.4380532870903,2019
+2001,64,"(60,65]",College,3719.7674062739097,206.6158067375215,18.003305095623155,535.5138346828326,2019
+2001,64,"(60,65]",College,4230.356541698547,210.0594035164802,20.13885820334939,551.4979678240477,2019
+2001,64,"(60,65]",College,4650.546289211936,208.33760512700084,22.32216448094909,538.3772948506355,2019
+2001,64,"(60,65]",College,4434.592195868401,210.0594035164802,21.111133906083314,543.1130817382898,2019
+2001,59,"(55,60]",NoHS,254.50775822494262,108.47329853719879,2.346271033121245,5837.903913270613,2019
+2001,59,"(55,60]",NoHS,272.2026013771997,120.5258872635542,2.258457560921943,6101.663739894542,2019
+2001,59,"(55,60]",NoHS,226.18261667941852,111.91689531615746,2.0209872337904686,6136.301808200559,2019
+2001,59,"(55,60]",NoHS,336.46986993114007,103.30790336876075,3.2569615582081894,5987.629527295155,2019
+2001,59,"(55,60]",NoHS,217.46074980872226,123.96948404251289,1.7541474136824542,6037.8770254988085,2019
+2001,57,"(55,60]",HS,81243.7713848508,568.1934685281841,142.98610576305992,17.098067017104142,2019
+2001,57,"(55,60]",HS,81242.09732211172,568.1934685281841,142.98315947305167,19.252244131856756,2019
+2001,57,"(55,60]",HS,81245.44544758991,568.1934685281841,142.98905205306824,18.663586654020015,2019
+2001,57,"(55,60]",HS,81241.9299158378,568.1934685281841,142.98286484405082,18.360279571863618,2019
+2001,57,"(55,60]",HS,81245.27804131599,568.1934685281841,142.98875742406742,19.81362073623405,2019
+2001,45,"(40,45]",HS,396.0832440703902,144.63106471626506,2.7385765627005516,5693.132358952682,2019
+2001,45,"(40,45]",HS,394.9114001530222,146.35286310574438,2.6983510385286196,5995.415658599701,2019
+2001,45,"(40,45]",HS,395.0788064269319,144.63106471626506,2.7316317362524525,6018.769434880214,2019
+2001,45,"(40,45]",HS,396.7528691660291,146.35286310574438,2.710933429975764,5819.3425897549405,2019
+2001,45,"(40,45]",HS,395.0788064269319,146.35286310574438,2.6994948922965416,5934.644898718689,2019
+2001,23,"(20,25]",NoHS,50.640397857689365,44.76675812646299,1.1312053849115844,5917.165267828221,2019
+2001,23,"(20,25]",NoHS,50.640397857689365,44.76675812646299,1.1312053849115844,5923.179605023848,2019
+2001,23,"(20,25]",NoHS,50.640397857689365,44.76675812646299,1.1312053849115844,5919.163773211856,2019
+2001,23,"(20,25]",NoHS,50.807804131599084,44.76675812646299,1.1349449068451765,5866.881734718988,2019
+2001,23,"(20,25]",NoHS,50.640397857689365,44.76675812646299,1.1312053849115844,5896.011203425683,2019
+2001,63,"(60,65]",HS,1657.1547054322878,501.04333133848974,3.3074079661041615,78.26065922775845,2019
+2001,63,"(60,65]",HS,1656.9872991583782,185.95422606376934,8.910726764500351,78.61028311942188,2019
+2001,63,"(60,65]",HS,1749.228156082632,211.78120190595953,8.259600664932332,162.63376140963015,2019
+2001,63,"(60,65]",HS,1640.2466717674063,275.48774231669535,5.953973334616865,78.0073935339237,2019
+2001,63,"(60,65]",HS,1656.9872991583782,401.17902474868754,4.130293950927201,82.07060491775323,2019
+2001,54,"(50,55]",College,16519.148890589135,2444.953713060671,6.7564260224419295,13.320738771092886,2019
+2001,54,"(50,55]",College,17913.64315225708,3478.0327467482784,5.150510204081633,12.998412833584856,2019
+2001,54,"(50,55]",College,17796.29135424637,4321.713957593158,4.117878121706474,13.694486302358774,2019
+2001,54,"(50,55]",College,14868.523029839327,3047.583149378442,4.8787915869897684,13.391308383673046,2019
+2001,54,"(50,55]",College,14582.258301453712,2703.223471482573,5.39439615528942,12.899301421829723,2019
+2001,48,"(45,50]",College,28.291660290742158,65.42833880021514,0.4324068256895608,5079.154304526988,2019
+2001,48,"(45,50]",College,28.12425401683244,65.42833880021514,0.4298482054192084,5112.65572956717,2019
+2001,48,"(45,50]",College,28.291660290742158,65.42833880021514,0.4324068256895608,5110.947337883148,2019
+2001,48,"(45,50]",College,28.291660290742158,65.42833880021514,0.4324068256895608,5081.598167876896,2019
+2001,48,"(45,50]",College,28.12425401683244,65.42833880021514,0.4298482054192084,5084.561057895596,2019
+2001,44,"(40,45]",NoHS,18.91690895179801,55.097548463339066,0.3433348575279168,5443.570362976936,2019
+2001,44,"(40,45]",NoHS,18.247283856159143,55.097548463339066,0.3311814112437428,5451.999221587198,2019
+2001,44,"(40,45]",NoHS,17.577658760520276,55.097548463339066,0.31902796495956875,5476.259085080511,2019
+2001,44,"(40,45]",NoHS,18.41469013006886,55.097548463339066,0.33421977281478626,5430.598718520693,2019
+2001,44,"(40,45]",NoHS,18.079877582249424,56.819346852818406,0.3181993208947387,5485.3679501395345,2019
+2001,31,"(30,35]",NoHS,7.098026013771997,27.548774231669533,0.2576530612244898,4447.934093219779,2019
+2001,31,"(30,35]",NoHS,7.098026013771997,29.27057262114888,0.2424969987995198,4450.4959213872135,2019
+2001,31,"(30,35]",NoHS,6.93061973986228,29.27057262114888,0.23677772995990848,4445.107435776511,2019
+2001,31,"(30,35]",NoHS,7.098026013771997,29.27057262114888,0.2424969987995198,4440.071898536333,2019
+2001,31,"(30,35]",NoHS,7.098026013771997,27.548774231669533,0.2576530612244898,4462.164799061728,2019
+2001,58,"(55,60]",HS,566.1680183626627,51.653951684380374,10.960788088820436,11278.96182332654,2019
+2001,58,"(55,60]",HS,644.8489671002296,51.653951684380374,12.484020023103582,11042.086600875853,2019
+2001,58,"(55,60]",HS,554.9517980107115,51.653951684380374,10.743646515209857,10408.773231555759,2019
+2001,58,"(55,60]",HS,563.4895179801072,51.653951684380374,10.908933384674626,11161.037161086704,2019
+2001,58,"(55,60]",HS,554.7843917368018,51.653951684380374,10.740405596200745,11386.752961154238,2019
+2001,27,"(25,30]",HS,9.843488905891354,86.08991947396729,0.11433962264150943,4560.810321519559,2019
+2001,27,"(25,30]",HS,9.659342004590666,86.08991947396729,0.11220061609549481,4584.193349129982,2019
+2001,27,"(25,30]",HS,10.211782708492732,86.08991947396729,0.11861763573353871,4597.3514703950095,2019
+2001,27,"(25,30]",HS,7.901576128538638,86.08991947396729,0.09178282633808241,4591.091092107933,2019
+2001,27,"(25,30]",HS,7.935057383320582,86.08991947396729,0.09217173661917598,4562.165337993697,2019
+2001,74,"(70,75]",College,622.7513389441469,111.91689531615746,5.564408637184918,7351.628143622402,2019
+2001,74,"(70,75]",College,621.0772762050498,111.91689531615746,5.54945054945055,6724.301039562255,2019
+2001,74,"(70,75]",College,622.7513389441469,111.91689531615746,5.564408637184918,6185.707544637886,2019
+2001,74,"(70,75]",College,621.0772762050498,111.91689531615746,5.54945054945055,6906.82008249608,2019
+2001,74,"(70,75]",College,622.7513389441469,111.91689531615746,5.564408637184918,6694.133214649841,2019
+2001,77,"(75,80]",College,58695.1507268554,2582.6975842190186,22.72629636760365,9.263701445867104,2019
+2001,77,"(75,80]",College,58693.47666411629,2582.6975842190186,22.725648183801823,9.777593365736227,2019
+2001,77,"(75,80]",College,58695.1507268554,2582.6975842190186,22.72629636760365,9.918282556157946,2019
+2001,77,"(75,80]",College,58693.47666411629,2582.6975842190186,22.725648183801823,9.768074661061458,2019
+2001,77,"(75,80]",College,58695.31813312931,2582.6975842190186,22.72636118598383,10.057151806864544,2019
+2001,60,"(55,60]",College,346160.3495026779,2582.6975842190186,134.03053908355795,31.36574549056442,2019
+2001,60,"(55,60]",College,268550.1312930375,2582.6975842190186,103.98047875754075,34.21214188710958,2019
+2001,60,"(55,60]",College,287530.65462892124,2582.6975842190186,111.3295867026056,33.339071345827016,2019
+2001,60,"(55,60]",College,348371.51853098697,2582.6975842190186,134.88668617635733,32.80550343108766,2019
+2001,60,"(55,60]",College,269006.765386381,2582.6975842190186,104.1572838531639,34.65309021574954,2019
+2001,46,"(45,50]",College,2315.5635807192043,163.57084700053784,14.15633423180593,2922.9844897874805,2019
+2001,46,"(45,50]",College,2315.730986993114,167.01444377949653,13.865453397853988,2971.4472822549324,2019
+2001,46,"(45,50]",College,2314.056924254017,163.57084700053784,14.147123198832663,3726.0795217523714,2019
+2001,46,"(45,50]",College,2313.889517980107,170.45804055845522,13.57454016483666,3072.524958098891,2019
+2001,46,"(45,50]",College,2315.5635807192043,156.68365344262045,14.778590681555643,3143.6987179158014,2019
+2001,49,"(45,50]",HS,621.7469013006886,68.87193557917384,9.027579899884481,6617.6527293920635,2019
+2001,49,"(45,50]",HS,653.5540933435349,68.87193557917384,9.489410858683096,6010.4934683134825,2019
+2001,49,"(45,50]",College,603.4996174445295,68.87193557917384,8.762634770889488,5614.976489575861,2019
+2001,49,"(45,50]",HS,647.0252486610558,68.87193557917384,9.394613977666538,6291.764482805667,2019
+2001,49,"(45,50]",HS,601.6581484315226,68.87193557917384,8.735897189064305,6038.1169480201625,2019
+2001,48,"(45,50]",HS,521.6379495026779,172.17983894793457,3.0296110897189066,11278.96182332654,2019
+2001,48,"(45,50]",HS,521.4705432287682,172.17983894793457,3.0286388140161726,11042.086600875853,2019
+2001,48,"(45,50]",HS,521.4705432287682,172.17983894793457,3.0286388140161726,10408.773231555759,2019
+2001,48,"(45,50]",HS,521.4705432287682,172.17983894793457,3.0286388140161726,11161.037161086704,2019
+2001,48,"(45,50]",HS,521.4705432287682,172.17983894793457,3.0286388140161726,11386.752961154238,2019
+2001,42,"(40,45]",HS,2.4273909716908952,82.64632269500859,0.029370828520087284,5621.56293926354,2019
+2001,42,"(40,45]",HS,27.153297628156086,82.64632269500859,0.32854816454883845,5623.857395195586,2019
+2001,42,"(40,45]",HS,12.136954858454475,82.64632269500859,0.1468541426004364,5666.039980485583,2019
+2001,42,"(40,45]",HS,19.921346595256313,82.64632269500859,0.24104335130278529,5645.152285445936,2019
+2001,42,"(40,45]",HS,83.48550879877581,82.64632269500859,1.0101539436529328,5674.748433168984,2019
+2001,72,"(70,75]",HS,4531.353022188217,10330.790336876074,0.43862597869336417,1712.1997581599458,2019
+2001,72,"(70,75]",HS,4531.185615914308,10330.790336876074,0.43860977409831864,1724.4773498622878,2019
+2001,72,"(70,75]",HS,4531.353022188217,10330.790336876074,0.43862597869336417,1729.0333645228984,2019
+2001,72,"(70,75]",HS,4531.185615914308,10330.790336876074,0.43860977409831864,1722.1491020298677,2019
+2001,72,"(70,75]",HS,4531.353022188217,10330.790336876074,0.43862597869336417,1709.104936381611,2019
+2001,47,"(45,50]",HS,122.8762050497322,51.653951684380374,2.3788345526890002,6069.795977812596,2019
+2001,47,"(45,50]",HS,122.8762050497322,51.653951684380374,2.3788345526890002,6392.0786581848715,2019
+2001,47,"(45,50]",HS,122.7087987758225,51.653951684380374,2.375593633679887,6416.977544842809,2019
+2001,47,"(45,50]",HS,123.04361132364194,51.653951684380374,2.3820754716981134,6204.356410098644,2019
+2001,47,"(45,50]",HS,122.8762050497322,51.653951684380374,2.3788345526890002,6327.287240975971,2019
+2001,27,"(25,30]",College,-23.395026778882936,30.992371010628222,-0.7548640525392547,5352.889082974166,2019
+2001,27,"(25,30]",College,-23.395026778882936,30.992371010628222,-0.7548640525392547,5313.1411254658415,2019
+2001,27,"(25,30]",College,-25.077459831675593,30.992371010628222,-0.8091494459418989,5318.992550495618,2019
+2001,27,"(25,30]",College,-23.395026778882936,30.992371010628222,-0.7548640525392547,5353.924077812253,2019
+2001,27,"(25,30]",College,-25.06908951798011,30.992371010628222,-0.8088793693578061,5303.892563119896,2019
+2001,50,"(45,50]",College,268.538078041316,113.63869370563681,2.3630866325947193,6405.219267373937,2019
+2001,50,"(45,50]",College,289.1290497322112,113.63869370563681,2.544283468104223,6676.414149820259,2019
+2001,50,"(45,50]",College,317.58811629686306,113.63869370563681,2.7947181188084156,6706.7210198909725,2019
+2001,50,"(45,50]",College,277.9128293802601,113.63869370563681,2.445582752826688,6524.253055835145,2019
+2001,50,"(45,50]",College,293.98383167559297,113.63869370563681,2.58700467322435,6611.1225603081375,2019
+2001,74,"(70,75]",College,65599.82249426167,898.7787593082185,72.98773120178456,164.54235202541452,2019
+2001,74,"(70,75]",College,46972.52639632747,1017.5828481822934,46.16088653639791,159.69056269811,2019
+2001,74,"(70,75]",College,66075.08890589136,566.4716701387047,116.64323635057053,171.297339816561,2019
+2001,74,"(70,75]",College,44830.89793420046,513.0959200648451,87.37332763927401,175.001726293633,2019
+2001,74,"(70,75]",College,20599.342004590664,773.0874768762262,26.645551274255972,163.31319795449969,2019
+2001,59,"(55,60]",College,1713.4032134659526,430.4495973698365,3.9804967269926834,2736.7265964860444,2019
+2001,59,"(55,60]",College,1713.5706197398624,430.4495973698365,3.980885637273777,2697.5285480767034,2019
+2001,59,"(55,60]",College,1714.407651109411,430.4495973698365,3.982830188679245,2601.72589784708,2019
+2001,59,"(55,60]",College,1727.2979342004592,430.4495973698365,4.0127762803234495,2692.0005613642834,2019
+2001,59,"(55,60]",College,1717.923182861515,430.4495973698365,3.99099730458221,2849.0368378542853,2019
+2001,58,"(55,60]",College,61605.50879877582,7507.040978129948,8.206363729497339,22.186381816816397,2019
+2001,58,"(55,60]",College,61162.71920428462,7248.771219708047,8.437667205994124,23.460982960666353,2019
+2001,58,"(55,60]",College,61475.76893649579,8178.542350026892,7.516714630241372,23.740899046028453,2019
+2001,58,"(55,60]",College,59470.24177505739,7575.912913709121,7.849910954948018,23.440699074076043,2019
+2001,58,"(55,60]",College,62210.68247895945,8075.234446658133,7.703885613464116,24.112156722472083,2019
+2001,61,"(60,65]",HS,848.9172149961745,60.2629436317771,14.086885967324937,5304.615233607792,2019
+2001,61,"(60,65]",HS,857.1201224177505,60.2629436317771,14.223004565707685,4820.791255751836,2019
+2001,61,"(60,65]",HS,830.5025248661057,60.2629436317771,13.781313603608561,4510.365388744054,2019
+2001,61,"(60,65]",HS,857.1201224177505,60.2629436317771,14.223004565707685,5047.218310785231,2019
+2001,61,"(60,65]",HS,857.1201224177505,60.2629436317771,14.223004565707685,4850.23919505154,2019
+2001,25,"(20,25]",HS,-3.3816067329762816,34.43596778958692,-0.0981998459761263,5309.52762260032,2019
+2001,25,"(20,25]",HS,-3.2309410864575363,34.43596778958692,-0.09382460531382364,5270.101646260991,2019
+2001,25,"(20,25]",HS,-3.3816067329762816,34.43596778958692,-0.0981998459761263,5275.905671404348,2019
+2001,25,"(20,25]",HS,-3.2309410864575363,34.43596778958692,-0.09382460531382364,5310.5542333887915,2019
+2001,25,"(20,25]",HS,-3.3816067329762816,34.43596778958692,-0.0981998459761263,5260.928002554954,2019
+2001,74,"(70,75]",NoHS,162.30038255547055,25.826975842190187,6.2841419586702605,9282.443803075545,2019
+2001,74,"(70,75]",NoHS,162.30038255547055,25.826975842190187,6.2841419586702605,9346.545058136056,2019
+2001,74,"(70,75]",NoHS,162.30038255547055,25.826975842190187,6.2841419586702605,9158.100715818215,2019
+2001,74,"(70,75]",NoHS,162.30038255547055,25.826975842190187,6.2841419586702605,9183.54181238144,2019
+2001,74,"(70,75]",NoHS,162.30038255547055,25.826975842190187,6.2841419586702605,9211.504323522551,2019
+2001,41,"(40,45]",HS,9.542157612853863,32.71416940010757,0.2916827108201771,6171.763438688208,2019
+2001,41,"(40,45]",HS,6.445141545524101,32.71416940010757,0.19701376081713717,6257.157802770909,2019
+2001,41,"(40,45]",HS,14.56434583014537,32.71416940010757,0.44519992704132294,6563.874100193408,2019
+2001,41,"(40,45]",HS,8.70512624330528,32.71416940010757,0.2660965081166528,6369.94692812106,2019
+2001,41,"(40,45]",HS,11.383626625860751,32.71416940010757,0.34797235676793065,6232.954645432129,2019
+2001,83,"(80,85]",College,158.11522570772763,80.92452430552926,1.9538604281535978,7964.9909174877685,2019
+2001,83,"(80,85]",College,158.11522570772763,82.64632269500859,1.9131550025670647,7962.792135316068,2019
+2001,83,"(80,85]",College,158.11522570772763,80.92452430552926,1.9538604281535978,7941.494528553798,2019
+2001,83,"(80,85]",College,158.11522570772763,80.92452430552926,1.9538604281535978,8079.609478628069,2019
+2001,83,"(80,85]",College,158.11522570772763,82.64632269500859,1.9131550025670647,8010.80520007713,2019
+2001,51,"(50,55]",College,1777.8546289211936,344.35967789586914,5.162783981517135,2552.3919899689818,2019
+2001,51,"(50,55]",College,1779.5286916602909,344.35967789586914,5.167645360030805,2593.077252611492,2019
+2001,51,"(50,55]",College,1779.5286916602909,344.35967789586914,5.167645360030805,3265.687480418432,2019
+2001,51,"(50,55]",College,1777.8546289211936,344.35967789586914,5.162783981517135,2679.55475953527,2019
+2001,51,"(50,55]",College,1779.5286916602909,344.35967789586914,5.167645360030805,2746.599037549652,2019
+2001,56,"(55,60]",HS,32.14200459066564,72.31553235813253,0.44446889267836504,4305.646978182435,2019
+2001,56,"(55,60]",HS,32.14200459066564,72.31553235813253,0.44446889267836504,4418.8961260530205,2019
+2001,56,"(55,60]",HS,32.14200459066564,72.31553235813253,0.44446889267836504,4352.283755813777,2019
+2001,56,"(55,60]",HS,32.14200459066564,72.31553235813253,0.44446889267836504,4393.64818870819,2019
+2001,56,"(55,60]",HS,32.14200459066564,72.31553235813253,0.44446889267836504,4334.158584905284,2019
+2001,30,"(25,30]",College,250.8080795715379,237.60817774814973,1.0555532303159163,9160.819167504606,2019
+2001,30,"(25,30]",College,257.6549961744453,237.60817774814973,1.0843692275925956,9308.085175616132,2019
+2001,30,"(25,30]",College,262.7943687834736,237.60817774814973,1.1059988392403721,9391.460701473148,2019
+2001,30,"(25,30]",College,254.97649579188982,237.60817774814973,1.0730964658217674,9319.891436206559,2019
+2001,30,"(25,30]",College,250.12171384850802,237.60817774814973,1.0526645851121417,9199.2632039953,2019
+2001,50,"(45,50]",HS,187.66243305279266,101.5861049792814,1.8473238351944552,5857.5885291750365,2019
+2001,50,"(45,50]",HS,182.80765110941087,101.5861049792814,1.799534012517703,6168.603815125511,2019
+2001,50,"(45,50]",HS,179.79433817903595,101.5861049792814,1.7698713639597188,6192.632206427281,2019
+2001,50,"(45,50]",HS,173.76771231828616,101.5861049792814,1.7105460668437507,5987.444565114427,2019
+2001,50,"(45,50]",HS,168.57811782708492,99.86430658980206,1.6880717804363123,6106.077584652669,2019
+2001,36,"(35,40]",HS,177.61805661820964,120.5258872635542,1.4736921722867045,6991.46912576631,2019
+2001,36,"(35,40]",HS,179.2921193573068,120.5258872635542,1.4875818251829034,7176.88130309856,2019
+2001,36,"(35,40]",HS,179.2921193573068,120.5258872635542,1.4875818251829034,7248.608509619148,2019
+2001,36,"(35,40]",HS,180.96618209640397,120.5258872635542,1.5014714780791023,7076.106344852677,2019
+2001,36,"(35,40]",HS,179.2921193573068,120.5258872635542,1.4875818251829034,7192.291234906044,2019
+2001,25,"(20,25]",HS,112.61420045906657,136.02207276886833,0.8279112218090006,8517.266418869707,2019
+2001,25,"(20,25]",HS,12.337842387146136,103.30790336876075,0.11942786548581696,8712.142762017551,2019
+2001,25,"(20,25]",HS,93.34573833205815,41.323161347504296,2.2589205493518163,8652.513505358127,2019
+2001,25,"(20,25]",HS,172.51216526396328,106.75150014771945,1.61601630914082,8540.587992051429,2019
+2001,25,"(20,25]",HS,30.48468247895945,185.95422606376934,0.16393648654430326,8510.55805375565,2019
+2001,57,"(55,60]",College,6940.831522570773,1377.4387115834766,5.038940363881402,522.2808069297469,2019
+2001,57,"(55,60]",College,6940.831522570773,1377.4387115834766,5.038940363881402,511.9315952390874,2019
+2001,57,"(55,60]",College,6940.6641162968635,1377.4387115834766,5.0388188294185605,528.1841577746234,2019
+2001,57,"(55,60]",College,6940.831522570773,1377.4387115834766,5.038940363881402,514.8114854287991,2019
+2001,57,"(55,60]",College,6940.6641162968635,1377.4387115834766,5.0388188294185605,519.4318138436971,2019
+2001,56,"(55,60]",HS,561.6480489671002,51.653951684380374,10.87328327557438,6013.637527707482,2019
+2001,56,"(55,60]",HS,561.6480489671002,51.653951684380374,10.87328327557438,5467.487467210637,2019
+2001,56,"(55,60]",HS,561.81545524101,51.653951684380374,10.876524194583494,5111.762250812075,2019
+2001,56,"(55,60]",HS,561.6480489671002,51.653951684380374,10.87328327557438,5723.33530668804,2019
+2001,56,"(55,60]",HS,561.6480489671002,51.653951684380374,10.87328327557438,5496.928187215829,2019
+2001,54,"(50,55]",College,21386.15149196634,3150.891052747203,6.787334482199933,154.22308491104334,2019
+2001,54,"(50,55]",College,21242.18209640398,3116.455084957616,6.81613612817169,144.64233727491833,2019
+2001,54,"(50,55]",College,21997.184391736802,3013.1471815888553,7.300401562242147,150.8471093875498,2019
+2001,54,"(50,55]",College,21434.699311400153,3133.6730688524094,6.8401198339588785,152.02422930013876,2019
+2001,54,"(50,55]",College,21310.81866870696,3133.6730688524094,6.80058774494662,146.72053401841268,2019
+2001,60,"(55,60]",HS,0,10.50297017582401,0,4674.202895760131,2019
+2001,60,"(55,60]",HS,0,15.496185505314111,0,4726.64877739284,2019
+2001,60,"(55,60]",HS,0,16.357084700053786,0,4639.4273642858525,2019
+2001,60,"(55,60]",HS,0.6696250956388676,17.21798389479346,0.03889102810935695,4713.313553745979,2019
+2001,60,"(55,60]",HS,0,24.105177452710844,0,5035.434474987577,2019
+2001,70,"(65,70]",HS,409.30833970925784,34.43596778958692,11.886070465922216,9041.091846692147,2019
+2001,70,"(65,70]",HS,426.8859984697781,34.43596778958692,12.396515209857526,10063.023438074044,2019
+2001,70,"(65,70]",HS,423.7052792654935,34.43596778958692,12.304149018097805,9971.579770805109,2019
+2001,70,"(65,70]",HS,419.18530986993113,34.43596778958692,12.172891798228724,9591.065544618888,2019
+2001,70,"(65,70]",HS,416.84162203519514,32.71416940010757,12.741928946355106,9857.45839436492,2019
+2001,40,"(35,40]",HS,133.92501912777354,134.30027437938898,0.9972058489578706,6469.4035115272645,2019
+2001,40,"(35,40]",HS,203.9008416220352,134.30027437938898,1.5182459050383577,6640.970627041305,2019
+2001,40,"(35,40]",HS,133.92501912777354,134.30027437938898,0.9972058489578706,6707.341833634525,2019
+2001,40,"(35,40]",HS,121.7043611323642,134.30027437938898,0.9062108152404648,6547.720716754606,2019
+2001,40,"(35,40]",HS,122.37398622800306,134.30027437938898,0.9111968444852542,6655.2298714367835,2019
+2001,50,"(45,50]",NoHS,3.36486610558531,68.87193557917384,0.04885685406237967,5445.091979315189,2019
+2001,50,"(45,50]",NoHS,3.36486610558531,68.87193557917384,0.04885685406237967,5468.756295154964,2019
+2001,50,"(45,50]",NoHS,3.532272379495027,68.87193557917384,0.05128754331921447,5457.802481447631,2019
+2001,50,"(45,50]",NoHS,3.36486610558531,68.87193557917384,0.04885685406237967,5417.962321995065,2019
+2001,50,"(45,50]",NoHS,3.532272379495027,68.87193557917384,0.05128754331921447,5464.441975665764,2019
+2001,37,"(35,40]",HS,41.650680948737566,46.488556515942335,0.8959340549637046,6299.141247415034,2019
+2001,37,"(35,40]",HS,29.11195103289977,46.488556515942335,0.6262175729830717,6554.866683678131,2019
+2001,37,"(35,40]",HS,29.078469778117825,46.488556515942335,0.6254973687588242,6604.045346423792,2019
+2001,37,"(35,40]",HS,30.769273144605968,46.488556515942335,0.6618676820833155,6398.15306721756,2019
+2001,37,"(35,40]",HS,29.095210405508798,46.488556515942335,0.625857470870948,6554.872892151228,2019
+2001,75,"(70,75]",College,2209.00948737567,111.91689531615746,19.737944669885376,11372.833544071005,2019
+2001,75,"(70,75]",College,2125.4737566947206,111.91689531615746,18.991536091940404,11057.720725793351,2019
+2001,75,"(70,75]",College,1958.0674827850037,111.91689531615746,17.4957273185036,13377.496463922676,2019
+2001,75,"(70,75]",College,1874.3643458301453,111.91689531615746,16.747822931785198,11305.465226834665,2019
+2001,75,"(70,75]",College,2041.7706197398625,111.91689531615746,18.243631705222004,11291.18149259581,2019
+2001,48,"(45,50]",College,405.4579954093344,172.17983894793457,2.3548517520215637,4196.9366148595545,2019
+2001,48,"(45,50]",College,443.9614384085693,172.17983894793457,2.578475163650366,4156.257989867276,2019
+2001,48,"(45,50]",College,408.8061208875287,172.17983894793457,2.3742972660762423,3998.5232729105437,2019
+2001,48,"(45,50]",College,410.4801836266259,172.17983894793457,2.3840200231035813,4142.719466576536,2019
+2001,48,"(45,50]",College,418.85049732211166,172.17983894793457,2.432633808240277,4372.725630245511,2019
+2001,30,"(25,30]",NoHS,0,0.637065404107358,0,5294.4708841417505,2019
+2001,30,"(25,30]",NoHS,0,0.637065404107358,0,5291.212538787442,2019
+2001,30,"(25,30]",NoHS,0,0.6542833880021514,0,5212.320131537398,2019
+2001,30,"(25,30]",NoHS,0,0.637065404107358,0,5295.5832724773145,2019
+2001,30,"(25,30]",NoHS,0,0.637065404107358,0,5284.046558037746,2019
+2001,23,"(20,25]",HS,7.91831675592961,48.21035490542169,0.16424514549755212,10095.420725514488,2019
+2001,23,"(20,25]",HS,7.767651109410865,48.21035490542169,0.16111997359590735,10111.079876108979,2019
+2001,23,"(20,25]",HS,7.951798010711554,48.21035490542169,0.16493962814236204,10123.798231744848,2019
+2001,23,"(20,25]",HS,8.085723029839327,48.21035490542169,0.16771755872160185,10151.93114019057,2019
+2001,23,"(20,25]",HS,8.085723029839327,48.21035490542169,0.16771755872160185,10144.667229566881,2019
+2001,54,"(50,55]",College,746.6319816373374,154.9618550531411,4.818166260214778,5820.987934538918,2019
+2001,54,"(50,55]",College,713.150726855394,154.9618550531411,4.602104992940573,5286.921419173931,2019
+2001,54,"(50,55]",College,679.6694720734507,154.9618550531411,4.386043725666368,4939.018672492864,2019
+2001,54,"(50,55]",College,729.8913542463657,154.9618550531411,4.710135626577675,5534.331679072073,2019
+2001,54,"(50,55]",College,691.3879112471309,154.9618550531411,4.46166516921234,5311.219451823545,2019
+2001,34,"(30,35]",HS,-2.0088752869166027,56.819346852818406,-0.03535548009941541,5107.492331561194,2019
+2001,34,"(30,35]",HS,-2.0088752869166027,56.819346852818406,-0.03535548009941541,5121.882131262197,2019
+2001,34,"(30,35]",HS,-2.0088752869166027,56.819346852818406,-0.03535548009941541,5124.235099486925,2019
+2001,34,"(30,35]",HS,-2.0088752869166027,56.819346852818406,-0.03535548009941541,5126.459553590156,2019
+2001,34,"(30,35]",HS,-2.0088752869166027,56.819346852818406,-0.03535548009941541,5111.124350394141,2019
+2001,46,"(45,50]",College,6370.813159908187,361.5776617906626,17.619487687258193,522.2808069297469,2019
+2001,46,"(45,50]",College,6370.645753634277,361.5776617906626,17.61902469882832,511.9315952390874,2019
+2001,46,"(45,50]",College,6370.645753634277,361.5776617906626,17.61902469882832,528.1841577746234,2019
+2001,46,"(45,50]",College,6370.645753634277,361.5776617906626,17.61902469882832,514.8114854287991,2019
+2001,46,"(45,50]",College,6370.813159908187,361.5776617906626,17.619487687258193,519.4318138436971,2019
+2001,46,"(45,50]",NoHS,37.16419280795715,8.60899194739673,4.316904120138621,5902.204417893674,2019
+2001,46,"(45,50]",NoHS,37.16419280795715,8.60899194739673,4.316904120138621,6159.410534974023,2019
+2001,46,"(45,50]",NoHS,37.16419280795715,8.60899194739673,4.316904120138621,6278.751740990048,2019
+2001,46,"(45,50]",NoHS,37.16419280795715,8.60899194739673,4.316904120138621,6032.589630450821,2019
+2001,46,"(45,50]",NoHS,37.16419280795715,8.60899194739673,4.316904120138621,6091.503632534713,2019
+2001,80,"(75,80]",HS,3726.965876052028,198.00681479012476,18.822412147795955,3099.767027750531,2019
+2001,80,"(75,80]",HS,4423.5433817903595,359.8558634011833,12.292542186144114,3051.0979970844605,2019
+2001,80,"(75,80]",HS,3887.8433052792657,235.88637935867035,16.481847387074925,3097.3476417967727,2019
+2001,80,"(75,80]",HS,3926.3467482785004,318.532702053679,12.326353692930512,3073.4193261603314,2019
+2001,80,"(75,80]",HS,4368.131905126243,278.93133909565404,15.66024068607177,3000.3761570739116,2019
+2001,27,"(25,30]",HS,15.083305279265495,51.653951684380374,0.2920068027210885,4768.560705296586,2019
+2001,27,"(25,30]",HS,17.276327467482783,51.653951684380374,0.33446284174046975,4733.151686848424,2019
+2001,27,"(25,30]",HS,16.42255547054323,51.653951684380374,0.3179341547939931,4738.3643626641315,2019
+2001,27,"(25,30]",HS,17.460474368783476,51.653951684380374,0.33802785265049423,4769.482718743639,2019
+2001,27,"(25,30]",HS,15.953817903596022,51.653951684380374,0.3088595815684765,4724.912709671849,2019
+2001,52,"(50,55]",College,921.2283550114767,139.46566954782702,6.605413059703266,876.9803732155017,2019
+2001,52,"(50,55]",College,921.2367253251722,129.1348792109509,7.1339109228597115,878.9310003521057,2019
+2001,52,"(50,55]",College,921.2367253251722,111.91689531615746,8.231435680222743,841.676517369818,2019
+2001,52,"(50,55]",College,921.2367253251722,130.8566776004303,7.040043673874713,883.6810971521458,2019
+2001,52,"(50,55]",College,921.2367253251722,117.08229048459552,7.868284106095269,951.693769937554,2019
+2001,53,"(50,55]",College,10821.308951798012,575.0806620861015,18.817028054019033,557.3151726650204,2019
+2001,53,"(50,55]",College,9768.323488905891,854.0120011817556,11.438157163352253,552.1233249206199,2019
+2001,53,"(50,55]",College,7921.664881407804,845.4030092343587,9.370282332661768,565.5280184627541,2019
+2001,53,"(50,55]",College,11734.175363427697,795.4708559394577,14.751232274335857,556.5472203979613,2019
+2001,53,"(50,55]",College,7681.436878347361,662.8923799495481,11.587758602583403,558.6490200038755,2019
+2001,65,"(60,65]",College,148983.21346595258,11398.30533835327,13.070645946345248,1.723908682705586,2019
+2001,65,"(60,65]",College,148553.81637337414,11312.215418879303,13.132159428775386,1.7558858000022828,2019
+2001,65,"(60,65]",College,151801.49808722263,11467.177273932442,13.237913259813528,1.5509071336575402,2019
+2001,65,"(60,65]",College,147814.71767406273,11449.95929003765,12.909628229217633,2.0199460627954804,2019
+2001,65,"(60,65]",College,149734.03060443766,11157.253563826162,13.420330527389153,1.6026189947150349,2019
+2001,53,"(50,55]",HS,0,15.151825827418245,0,7215.6142546752135,2019
+2001,53,"(50,55]",HS,0,15.324005666366176,0,7196.70933365587,2019
+2001,53,"(50,55]",HS,0,15.324005666366176,0,7197.948939766395,2019
+2001,53,"(50,55]",HS,0,15.324005666366176,0,7168.237872788918,2019
+2001,53,"(50,55]",HS,0,15.324005666366176,0,7231.04051267108,2019
+2001,20,"(15,20]",HS,3.1807192042846215,12.052588726355422,0.2639034050277793,5779.010797320581,2019
+2001,20,"(15,20]",HS,4.134934965570008,12.052588726355422,0.3430744265361131,5712.99923405818,2019
+2001,20,"(15,20]",HS,7.533282325937261,12.052588726355422,0.6250343803289509,5703.2521339626455,2019
+2001,20,"(15,20]",HS,2.0925784238714615,12.224768565303355,0.17117529977709928,5678.624336129297,2019
+2001,20,"(15,20]",HS,0.48547819433817907,12.052588726355422,0.04027999339897684,5715.765396432549,2019
+2001,20,"(15,20]",HS,-0.13392501912777355,5.165395168438037,-0.025927352072904638,5182.963422522932,2019
+2001,20,"(15,20]",HS,-0.8370313695485845,5.165395168438037,-0.16204595045565395,5123.760294193218,2019
+2001,20,"(15,20]",HS,-1.0044376434583013,5.165395168438037,-0.19445514054678475,5115.018510340824,2019
+2001,20,"(15,20]",HS,-1.0044376434583013,5.165395168438037,-0.19445514054678475,5092.93082443328,2019
+2001,20,"(15,20]",HS,-0.8370313695485845,5.165395168438037,-0.16204595045565395,5126.241154484007,2019
+2001,39,"(35,40]",College,136.26870696250958,79.20272591604991,1.7205052652726391,5168.975208675698,2019
+2001,39,"(35,40]",College,249.4353481254782,79.20272591604991,3.1493278197251007,5171.529485857268,2019
+2001,39,"(35,40]",College,146.98270849273143,79.20272591604991,1.855778406522576,5216.5893948392995,2019
+2001,39,"(35,40]",College,158.86855394032136,79.20272591604991,2.0058470475967254,5171.432782017414,2019
+2001,39,"(35,40]",College,168.91293037490436,79.20272591604991,2.1326656175185414,5198.341440953066,2019
+2001,37,"(35,40]",HS,0,103.30790336876075,0,4536.878312011755,2019
+2001,37,"(35,40]",HS,0,103.30790336876075,0,4533.747010258552,2019
+2001,37,"(35,40]",HS,0,103.30790336876075,0,4546.318643987322,2019
+2001,37,"(35,40]",HS,0,103.30790336876075,0,4501.35069759657,2019
+2001,37,"(35,40]",HS,0,103.30790336876075,0,4583.081633650305,2019
+2001,50,"(45,50]",College,2479.7891354246367,1695.9714136371556,1.4621644654413821,851.9272879471112,2019
+2001,50,"(45,50]",College,1304.7644988523336,416.6752102540017,3.131370589714133,821.2234381997605,2019
+2001,50,"(45,50]",College,1594.2099464422342,1439.4234536047331,1.1075336742984636,878.9647095940143,2019
+2001,50,"(45,50]",College,1511.3773221117062,1695.9714136371556,0.8911573095860316,851.3994909349979,2019
+2001,50,"(45,50]",College,2617.2296863045144,1497.9645988470306,1.7471906133956514,837.3098149453699,2019
+2001,68,"(65,70]",HS,1707.0417750573833,215.22479868491826,7.931436272622255,1941.5981141855805,2019
+2001,68,"(65,70]",HS,1968.1955623565416,215.22479868491826,9.144836349634192,3741.7748516207785,2019
+2001,68,"(65,70]",HS,2015.404131599082,215.22479868491826,9.364181748170965,4018.915559093559,2019
+2001,68,"(65,70]",HS,1847.1608263198164,215.22479868491826,8.58247208317289,3840.354366130278,2019
+2001,68,"(65,70]",HS,1796.604131599082,215.22479868491826,8.347570273392375,3828.4718363435704,2019
+2001,34,"(30,35]",NoHS,16.740627390971692,11.536049209511617,1.4511577652745131,7577.995571694788,2019
+2001,34,"(30,35]",NoHS,16.740627390971692,11.536049209511617,1.4511577652745131,7574.532053743262,2019
+2001,34,"(30,35]",NoHS,16.740627390971692,11.536049209511617,1.4511577652745131,7563.690800837829,2019
+2001,34,"(30,35]",NoHS,16.740627390971692,11.536049209511617,1.4511577652745131,7538.40610970547,2019
+2001,34,"(30,35]",NoHS,16.740627390971692,11.70822904845955,1.4298172099028292,7581.831426652282,2019
+2001,49,"(45,50]",HS,206.24452945677123,189.39782284272803,1.0889487870619947,5645.057506988544,2019
+2001,49,"(45,50]",HS,203.16425401683244,189.39782284272803,1.0726852662162636,5945.585604240435,2019
+2001,49,"(45,50]",HS,199.21346595256313,189.39782284272803,1.0518255329576085,6082.60592274791,2019
+2001,49,"(45,50]",HS,198.0416220351951,189.39782284272803,1.0456383239402107,5806.658940746989,2019
+2001,49,"(45,50]",HS,195.39660290742157,189.39782284272803,1.0316729093009416,5872.449760413189,2019
+2001,78,"(75,80]",College,63498.873756694724,3874.046376328528,16.39083985795576,18.138322479662882,2019
+2001,78,"(75,80]",College,63500.547819433814,3874.046376328528,16.39127198049031,19.680118453571602,2019
+2001,78,"(75,80]",College,63500.547819433814,3874.046376328528,16.39127198049031,19.442655111678324,2019
+2001,78,"(75,80]",College,63498.873756694724,3874.046376328528,16.39083985795576,18.984178004458474,2019
+2001,78,"(75,80]",College,63498.873756694724,3874.046376328528,16.39083985795576,20.04466163441753,2019
+2001,45,"(40,45]",HS,231.18806426931906,137.74387115834767,1.6783909318444359,5948.122350469514,2019
+2001,45,"(40,45]",HS,233.44804896710025,137.74387115834767,1.6947980843280708,6278.370915298185,2019
+2001,45,"(40,45]",HS,232.2762050497322,137.74387115834767,1.6862906719291488,6318.015569854667,2019
+2001,45,"(40,45]",HS,230.76954858454476,137.74387115834767,1.6753525702733922,6097.708013827672,2019
+2001,45,"(40,45]",HS,233.28064269319052,137.74387115834767,1.6935827396996534,6197.88674584397,2019
+2001,41,"(40,45]",HS,72.82172915072685,154.9618550531411,0.4699332563213965,5894.932871301431,2019
+2001,41,"(40,45]",HS,71.56618209640398,154.9618550531411,0.4618309587986138,6170.814305519711,2019
+2001,41,"(40,45]",HS,71.48247895944911,154.9618550531411,0.46129080563042824,6237.6613921258195,2019
+2001,41,"(40,45]",HS,71.51596021423106,154.9618550531411,0.4615068668977025,6045.47988955701,2019
+2001,41,"(40,45]",HS,73.49135424636572,154.9618550531411,0.4742544816668806,6114.924527238892,2019
+2001,74,"(70,75]",HS,878.2133129303749,115.36049209511619,7.612773636630094,527.9889606715922,2019
+2001,74,"(70,75]",HS,909.5182861514919,115.36049209511619,7.884140138736428,522.7097885026417,2019
+2001,74,"(70,75]",HS,966.7712318286152,89.53351625292598,10.797869583246943,503.4911841140628,2019
+2001,74,"(70,75]",HS,951.7046671767406,89.53351625292598,10.629591096235302,522.3705747484918,2019
+2001,74,"(70,75]",HS,901.6501912777353,118.80408887407486,7.589386862210019,551.2155837150973,2019
+2001,46,"(45,50]",College,15043.96480489671,389.1264360223322,38.66086549831152,2436.204640661848,2019
+2001,46,"(45,50]",College,11754.431522570772,401.17902474868754,29.29971608045599,2452.1410082017364,2019
+2001,46,"(45,50]",College,21824.086304514156,390.8482344118115,55.83775077648049,967.1804552842519,2019
+2001,46,"(45,50]",College,15353.833817903596,480.3817506647374,31.961734176324217,2437.213496552925,2019
+2001,46,"(45,50]",College,21417.289058913546,421.8406054224397,50.771046655088696,941.6316302314424,2019
+2001,47,"(45,50]",College,772.4125478194338,130.8566776004303,5.902736963703058,11144.643118863061,2019
+2001,47,"(45,50]",College,740.7727620504974,130.8566776004303,5.660947348154753,11042.086600875853,2019
+2001,47,"(45,50]",College,770.9058913542465,130.8566776004303,5.891223172486472,10408.773231555759,2019
+2001,47,"(45,50]",College,744.1208875286917,132.5784759899096,5.612682465782197,11014.404809943942,2019
+2001,47,"(45,50]",College,814.5989288446825,130.8566776004303,6.225123117767464,11386.752961154238,2019
+2001,42,"(40,45]",HS,79.08272379495027,89.53351625292598,0.8832750807144338,6962.373876593675,2019
+2001,42,"(40,45]",HS,79.08272379495027,89.53351625292598,0.8832750807144338,7212.547528551624,2019
+2001,42,"(40,45]",HS,78.91531752104055,89.53351625292598,0.8814053197476378,7302.07247270879,2019
+2001,42,"(40,45]",HS,79.06598316755931,89.53351625292598,0.8830881046177544,7118.095476989556,2019
+2001,42,"(40,45]",HS,79.08272379495027,89.53351625292598,0.8832750807144338,7246.462084713753,2019
+2001,71,"(70,75]",HS,2213.110941086458,101.5861049792814,21.785567440919447,1743.6073201750557,2019
+2001,71,"(70,75]",HS,1953.798622800306,87.81171786344665,22.249862209034553,1683.9475103706488,2019
+2001,71,"(70,75]",HS,1105.216220351951,89.53351625292598,12.34416190278724,840.4741477145601,2019
+2001,71,"(70,75]",HS,1352.9775057383322,103.30790336876075,13.096553715825955,870.0311768889715,2019
+2001,71,"(70,75]",HS,1247.1767406273912,91.25531464240532,13.666894312014591,919.8828934969418,2019
+2001,63,"(60,65]",College,15861.744452945677,576.8024604755808,27.499439651952024,1377.2768080910696,2019
+2001,63,"(60,65]",College,15861.744452945677,576.8024604755808,27.499439651952024,1403.580446927317,2019
+2001,63,"(60,65]",College,15861.744452945677,576.8024604755808,27.499439651952024,1399.780285171635,2019
+2001,63,"(60,65]",College,15861.744452945677,576.8024604755808,27.499439651952024,1399.742957227751,2019
+2001,63,"(60,65]",College,15861.744452945677,576.8024604755808,27.499439651952024,1395.3683720027577,2019
+2001,43,"(40,45]",HS,127.22876817138486,156.68365344262045,0.8120104770085518,8412.066319162728,2019
+2001,43,"(40,45]",HS,127.21202754399388,154.9618550531411,0.8209247850083431,8756.101656110342,2019
+2001,43,"(40,45]",HS,140.4371231828615,154.9618550531411,0.9062689855816541,8845.837023671176,2019
+2001,43,"(40,45]",HS,133.92501912777354,154.9618550531411,0.8642450690968213,8601.397020041364,2019
+2001,43,"(40,45]",HS,144.1200612088753,154.9618550531411,0.9300357249818169,8715.910909107823,2019
+2001,48,"(45,50]",NoHS,32.409854628921195,27.548774231669533,1.1764536003080477,7261.618380820624,2019
+2001,48,"(45,50]",NoHS,34.301545524100995,27.548774231669533,1.2451205718136311,7622.21464993691,2019
+2001,48,"(45,50]",NoHS,36.39412394797245,27.548774231669533,1.3210796110897187,7649.654743872796,2019
+2001,48,"(45,50]",NoHS,30.11638867635807,27.548774231669533,1.0932024932614555,7446.741748432372,2019
+2001,48,"(45,50]",NoHS,42.53793420045907,27.548774231669533,1.5440953504043127,7486.270399411968,2019
+2001,24,"(20,25]",College,54.407039020658,180.7888308953313,0.30094247941764307,8068.295849559792,2019
+2001,24,"(20,25]",College,54.407039020658,180.7888308953313,0.30094247941764307,8321.89607048704,2019
+2001,24,"(20,25]",College,54.407039020658,180.7888308953313,0.30094247941764307,8141.896553968193,2019
+2001,24,"(20,25]",College,54.407039020658,180.7888308953313,0.30094247941764307,8149.917103355465,2019
+2001,24,"(20,25]",College,54.407039020658,180.7888308953313,0.30094247941764307,7939.998304822419,2019
+2001,49,"(45,50]",College,94.0823259372609,127.41308082147161,0.7384039796438717,9852.062666698475,2019
+2001,49,"(45,50]",College,88.89273144605968,127.41308082147161,0.697673511015829,10272.822292668625,2019
+2001,49,"(45,50]",College,88.74206579954092,127.41308082147161,0.6964910135395309,10321.407416769878,2019
+2001,49,"(45,50]",College,92.09019127773527,127.41308082147161,0.7227687352350424,10130.243482386666,2019
+2001,49,"(45,50]",College,90.39938791124713,127.41308082147161,0.7094984857788091,10109.213609565659,2019
+2001,41,"(40,45]",College,81.86166794185158,61.984742021256444,1.3206744962135801,6780.852281782548,2019
+2001,41,"(40,45]",College,79.51798010711553,60.2629436317771,1.3195170251388966,7056.133679656594,2019
+2001,41,"(40,45]",College,80.35501147666412,60.2629436317771,1.3334066780350955,7109.073157340276,2019
+2001,41,"(40,45]",College,81.86166794185158,61.984742021256444,1.3206744962135801,6887.435782272703,2019
+2001,41,"(40,45]",College,80.35501147666412,60.2629436317771,1.3334066780350955,7056.140362907108,2019
+2001,31,"(30,35]",HS,34.48569242540169,49.93215329490103,0.6906510164247873,5925.256669903153,2019
+2001,31,"(30,35]",HS,33.280367253251725,58.54114524229776,0.5684953226573649,6015.967183411315,2019
+2001,31,"(30,35]",HS,32.46007651109411,56.819346852818406,0.5712856326063874,6078.60497216037,2019
+2001,31,"(30,35]",HS,34.93768936495792,49.93215329490103,0.6997032384847237,5939.776328077916,2019
+2001,31,"(30,35]",HS,38.436480489671006,67.15013718969449,0.5723961573018177,5993.472077957286,2019
+2001,46,"(45,50]",College,21131.02433052793,2634.351535903399,8.021338094986422,18.721255848770337,2019
+2001,46,"(45,50]",College,19142.07039020658,3460.8147628534853,5.531087822343806,18.788404244055418,2019
+2001,46,"(45,50]",College,18933.314766641164,2014.5041156908349,9.398498925453103,19.29133250408,2019
+2001,46,"(45,50]",College,25114.456618209642,3116.455084957616,8.058661502753923,19.288907245187993,2019
+2001,46,"(45,50]",College,20468.262892119357,2238.3379063231496,9.144402565089896,18.46256719226991,2019
+2001,35,"(30,35]",College,170.23543993879113,177.34523411637264,0.9599098661263369,7228.2720233733025,2019
+2001,35,"(30,35]",College,171.9095026778883,177.34523411637264,0.9693494360557925,6577.865355565021,2019
+2001,35,"(30,35]",College,173.58356541698546,177.34523411637264,0.978789005985248,6144.64842535856,2019
+2001,35,"(30,35]",College,171.8927620504973,177.34523411637264,0.9692550403564978,6875.525324774411,2019
+2001,35,"(30,35]",College,175.24088752869167,177.34523411637264,0.9881341802154091,6606.730630294316,2019
+2001,34,"(30,35]",NoHS,0,37.87956456854561,0,4848.811833749076,2019
+2001,34,"(30,35]",NoHS,0,37.87956456854561,0,4812.806909352879,2019
+2001,34,"(30,35]",NoHS,0,37.87956456854561,0,4818.107310405259,2019
+2001,34,"(30,35]",NoHS,0,37.87956456854561,0,4849.749363957716,2019
+2001,34,"(30,35]",NoHS,0,37.87956456854561,0,4804.429276666481,2019
+2001,81,"(80,85]",HS,188.24835501147666,22.383379063231494,8.410184828648442,5876.21263626608,2019
+2001,81,"(80,85]",HS,187.27739862280032,22.383379063231494,8.366806374218774,5874.590473514663,2019
+2001,81,"(80,85]",HS,200.80382555470544,22.383379063231494,8.971113118687244,5858.878055600426,2019
+2001,81,"(80,85]",HS,186.35666411629686,22.383379063231494,8.32567163294926,5960.773063804613,2019
+2001,81,"(80,85]",HS,182.82439173680183,22.383379063231494,8.167863807351678,5910.01235670041,2019
+2001,40,"(35,40]",College,2189.506656465188,342.6378795063898,6.39014769651105,9278.390480040809,2019
+2001,40,"(35,40]",College,2243.076664116297,342.6378795063898,6.546493538156706,9022.938162262375,2019
+2001,40,"(35,40]",College,2172.766029074216,342.6378795063898,6.341289620996783,9734.989870294432,2019
+2001,40,"(35,40]",College,2251.4469778117827,342.6378795063898,6.57092257591384,9229.105878195422,2019
+2001,40,"(35,40]",College,2204.4058148431523,342.6378795063898,6.4336313837187475,9219.782473540079,2019
+2001,39,"(35,40]",College,106.70475899005355,61.984742021256444,1.7214681470072306,7216.190587979955,2019
+2001,39,"(35,40]",College,103.55752104055088,46.488556515942335,2.2275916655970565,7313.5965815513655,2019
+2001,39,"(35,40]",College,127.02788064269319,48.21035490542169,2.634867154408933,7262.200561461961,2019
+2001,39,"(35,40]",College,120.71666411629685,56.819346852818406,2.124569724974038,7246.112222092986,2019
+2001,39,"(35,40]",College,103.54078041315991,46.488556515942335,2.2272315634849327,7379.77829548881,2019
+2001,55,"(50,55]",HS,1025.5643152257078,234.16458096919104,4.379673095653356,5736.686893387194,2019
+2001,55,"(50,55]",HS,1019.1024330527927,408.066218306605,2.497394754414782,5211.8939175945125,2019
+2001,55,"(50,55]",HS,1018.0142922723795,230.72098419023237,4.412317743205421,4873.4189940398355,2019
+2001,55,"(50,55]",HS,1027.4894873756693,228.99918580075305,4.486869609526317,5457.9723485913655,2019
+2001,55,"(50,55]",HS,1038.940076511094,185.95422606376934,5.587074295126856,5245.333943530661,2019
+2001,47,"(45,50]",HS,712.3973986228003,105.0297017582401,6.782818447515103,6361.949113581378,2019
+2001,47,"(45,50]",HS,189.25279265493498,139.46566954782702,1.3569847925193836,6035.777021346619,2019
+2001,47,"(45,50]",HS,288.2233817903596,142.9092663267857,2.0168278040927667,6073.88982134195,2019
+2001,47,"(45,50]",HS,287.8216067329763,111.91689531615746,2.5717440241699006,5862.094866530234,2019
+2001,47,"(45,50]",HS,101.4816832440704,146.35286310574438,0.6934041541144761,5958.402729969503,2019
+2001,65,"(60,65]",HS,40.67972456006121,111.91689531615746,0.3634815319451439,1508.7261753150615,2019
+2001,65,"(60,65]",HS,40.67972456006121,111.91689531615746,0.3634815319451439,1546.2792664232356,2019
+2001,65,"(60,65]",HS,40.67972456006121,111.91689531615746,0.3634815319451439,1587.5525803169005,2019
+2001,65,"(60,65]",HS,40.67972456006121,111.91689531615746,0.3634815319451439,1501.8798395884492,2019
+2001,65,"(60,65]",HS,40.67972456006121,111.91689531615746,0.3634815319451439,1541.4365888121044,2019
+2001,28,"(25,30]",NoHS,9.542157612853863,24.105177452710844,0.39585510754166886,4965.4477452027695,2019
+2001,28,"(25,30]",NoHS,9.542157612853863,25.826975842190187,0.36946476703889103,4992.658734690103,2019
+2001,28,"(25,30]",NoHS,9.542157612853863,24.105177452710844,0.39585510754166886,4910.414539339976,2019
+2001,28,"(25,30]",NoHS,9.542157612853863,25.826975842190187,0.36946476703889103,4965.680254452487,2019
+2001,28,"(25,30]",NoHS,9.374751338944147,24.105177452710844,0.38891028109356945,4978.739536008728,2019
+2001,41,"(40,45]",HS,158.13196633511862,49.93215329490103,3.166936651042981,5621.394109287965,2019
+2001,41,"(40,45]",HS,98.18377964804897,49.93215329490103,1.9663437919084354,5541.521067211536,2019
+2001,41,"(40,45]",HS,122.42420811017597,49.93215329490103,2.4518111083079943,5570.629508862266,2019
+2001,41,"(40,45]",HS,90.63375669472074,49.93215329490103,1.8151381567591254,5630.535343262125,2019
+2001,41,"(40,45]",HS,98.13355776587605,49.93215329490103,1.9653379894573313,5696.236732477248,2019
+2001,45,"(40,45]",HS,37.95100229533282,58.54114524229776,0.6482791229699426,6627.502338419853,2019
+2001,45,"(40,45]",HS,45.534506503443005,58.54114524229776,0.7778205621871391,6671.216460787883,2019
+2001,45,"(40,45]",HS,39.75899005355777,58.54114524229776,0.6791631747038438,6668.987276714722,2019
+2001,45,"(40,45]",HS,40.79690895179801,58.54114524229776,0.6968929081066388,6630.691198040016,2019
+2001,45,"(40,45]",HS,39.67528691660291,58.54114524229776,0.6777333574939409,6634.557306323023,2019
+2001,61,"(60,65]",HS,428.2252486610559,94.69891142136402,4.521965904715231,6004.261185195891,2019
+2001,61,"(60,65]",HS,437.7674062739097,94.69891142136402,4.622729022998565,6340.297741243719,2019
+2001,61,"(60,65]",HS,431.4059678653405,94.69891142136402,4.5555536108096755,6372.201948893735,2019
+2001,61,"(60,65]",HS,427.72302983932667,94.69891142136402,4.516662582700318,6179.927820918289,2019
+2001,61,"(60,65]",HS,447.14215761285385,94.69891142136402,4.721724367276928,6271.755895081136,2019
+2001,21,"(20,25]",College,4.4530068859984695,15.840545183209981,0.28111449666002575,5638.342878634074,2019
+2001,21,"(20,25]",College,4.4530068859984695,16.184904861105853,0.2751333371566209,5586.424521902451,2019
+2001,21,"(20,25]",College,4.4530068859984695,16.87362421689759,0.26390340502777926,5586.218946942856,2019
+2001,21,"(20,25]",College,4.4530068859984695,16.701444377949656,0.26662405868785943,5570.821830661155,2019
+2001,21,"(20,25]",College,4.4530068859984695,16.357084700053786,0.2722371967654986,5562.804960128687,2019
+2001,55,"(50,55]",HS,0.016740627390971693,48.21035490542169,3.4724132240497276e-4,4723.838618829206,2019
+2001,55,"(50,55]",HS,0.016740627390971693,48.21035490542169,3.4724132240497276e-4,4742.763392384617,2019
+2001,55,"(50,55]",HS,0.016740627390971693,48.21035490542169,3.4724132240497276e-4,4702.914977170446,2019
+2001,55,"(50,55]",HS,0.016740627390971693,48.21035490542169,3.4724132240497276e-4,4715.620546087475,2019
+2001,55,"(50,55]",HS,0.016740627390971693,48.21035490542169,3.4724132240497276e-4,4750.750957244362,2019
+2001,51,"(50,55]",HS,6983.972119357307,258.2697584219018,27.041385573097166,522.2808069297469,2019
+2001,51,"(50,55]",HS,7677.034093343535,258.2697584219018,29.724866512642798,511.9315952390874,2019
+2001,51,"(50,55]",HS,10601.63843917368,258.2697584219018,41.048702348864076,528.1841577746234,2019
+2001,51,"(50,55]",HS,6756.316327467483,258.2697584219018,26.159920420998592,514.8114854287991,2019
+2001,51,"(50,55]",HS,6657.529885233359,258.2697584219018,25.777427159543066,519.4318138436971,2019
+2001,39,"(35,40]",College,74.49579188982403,115.36049209511619,0.6457652055471583,6744.468003818503,2019
+2001,39,"(35,40]",College,74.49579188982403,115.36049209511619,0.6457652055471583,6994.775297976977,2019
+2001,39,"(35,40]",College,74.49579188982403,115.36049209511619,0.6457652055471583,7060.152552284626,2019
+2001,39,"(35,40]",College,74.49579188982403,115.36049209511619,0.6457652055471583,6850.140100795982,2019
+2001,39,"(35,40]",College,74.49579188982403,115.36049209511619,0.6457652055471583,7007.26867139081,2019
+2001,43,"(40,45]",HS,6190.014384085693,838.5158156764414,7.382108087123114,2002.41537893142,2019
+2001,43,"(40,45]",HS,5191.770772762051,838.5158156764414,6.191619377594903,2012.4629968854078,2019
+2001,43,"(40,45]",HS,5190.180413159908,838.5158156764414,6.189722741213799,2073.8456880967015,2019
+2001,43,"(40,45]",HS,5227.42830910482,838.5158156764414,6.234143961718583,1985.5629678944856,2019
+2001,43,"(40,45]",HS,5201.815149196634,838.5158156764414,6.20359813368608,1971.5234164286562,2019
+2001,58,"(55,60]",College,30342.387146136192,952.1545093820783,31.867083385266486,1449.8473079898063,2019
+2001,58,"(55,60]",College,19683.629686304514,952.1545093820783,20.672726424494527,1845.0665218577974,2019
+2001,58,"(55,60]",College,29060.05508798776,952.1545093820783,30.520314509508463,1486.94076987342,2019
+2001,58,"(55,60]",College,15458.29533282326,952.1545093820783,16.235070233354524,1840.438554036859,2019
+2001,58,"(55,60]",College,32753.037490436116,952.1545093820783,34.39886821697869,1435.8447710207934,2019
+2001,32,"(30,35]",HS,-3.1807192042846215,63.706540410735805,-0.04992767122147176,7215.26202721935,2019
+2001,32,"(30,35]",HS,-3.1807192042846215,63.706540410735805,-0.04992767122147176,7234.23461557495,2019
+2001,32,"(30,35]",HS,-3.1807192042846215,63.706540410735805,-0.04992767122147176,7296.663223375644,2019
+2001,32,"(30,35]",HS,-3.1807192042846215,63.706540410735805,-0.04992767122147176,7186.62685224329,2019
+2001,32,"(30,35]",HS,-3.1807192042846215,63.706540410735805,-0.04992767122147176,7229.377283931632,2019
+2001,55,"(50,55]",College,404.28615149196634,158.40545183209983,2.5522237196765496,8585.565077598485,2019
+2001,55,"(50,55]",College,405.9602142310635,158.40545183209983,2.562791933836701,7788.944744016592,2019
+2001,55,"(50,55]",College,404.6209640397858,158.40545183209983,2.55433736250858,7403.256470756195,2019
+2001,55,"(50,55]",College,404.6209640397858,158.40545183209983,2.55433736250858,8198.833057563814,2019
+2001,55,"(50,55]",College,404.78837031369545,158.40545183209983,2.555394183924595,7834.9981266714385,2019
+2001,42,"(40,45]",NoHS,15942.099464422341,723.1553235813252,22.045194088417038,983.2938419334308,2019
+2001,42,"(40,45]",NoHS,15948.79571537873,723.1553235813252,22.054453857014504,988.3403355364848,2019
+2001,42,"(40,45]",NoHS,15916.988523335884,723.1553235813252,22.010469956176543,992.6177338040918,2019
+2001,42,"(40,45]",NoHS,15928.706962509563,723.1553235813252,22.026674551222104,986.950589024905,2019
+2001,42,"(40,45]",NoHS,15938.751338944146,723.1553235813252,22.040564204118304,979.8991214082192,2019
+2001,36,"(35,40]",NoHS,41.650680948737566,20.661580673752148,2.0158516236683353,6307.575867992934,2019
+2001,36,"(35,40]",College,83.13395562356541,10.15861049792814,8.18359515216384,6492.515935113095,2019
+2001,36,"(35,40]",College,38.90521805661821,22.383379063231494,1.7381297947335683,6328.125048820001,2019
+2001,36,"(35,40]",NoHS,62.024024483550114,20.661580673752148,3.0019012321909897,6260.488273846306,2019
+2001,36,"(35,40]",NoHS,46.28783473603673,41.323161347504296,1.1201426325247081,6562.808823795209,2019
+2001,50,"(45,50]",NoHS,49.5522570772762,77.48092752657055,0.6395413511316477,6457.648329680992,2019
+2001,50,"(45,50]",NoHS,49.05003825554706,68.87193557917384,0.7121919522525991,6731.063041425203,2019
+2001,50,"(45,50]",NoHS,47.375975516449884,74.03733074761188,0.6398930787760474,6761.6179843116915,2019
+2001,50,"(45,50]",NoHS,49.05003825554706,70.59373396865318,0.6948214168318041,6577.656453235405,2019
+2001,50,"(45,50]",NoHS,47.878194338179036,77.48092752657055,0.6179352244042271,6665.237016373605,2019
+2001,43,"(40,45]",HS,154.85080336648815,86.08991947396729,1.798710050057759,5759.655253197887,2019
+2001,43,"(40,45]",HS,156.69227237949502,86.08991947396729,1.8201001155179053,5973.413213187815,2019
+2001,43,"(40,45]",HS,155.01820964039786,86.08991947396729,1.800654601463227,6029.244221059677,2019
+2001,43,"(40,45]",HS,156.94338179035958,86.08991947396729,1.823016942626107,5849.897337247832,2019
+2001,43,"(40,45]",HS,154.8675439938791,86.08991947396729,1.798904505198306,5984.082331014813,2019
+2001,53,"(50,55]",College,1282.3320581484315,206.6158067375215,6.206359902451546,6477.359695575437,2019
+2001,53,"(50,55]",College,1282.3320581484315,206.6158067375215,6.206359902451546,6413.740389003381,2019
+2001,53,"(50,55]",College,1282.3320581484315,206.6158067375215,6.206359902451546,6167.004127042232,2019
+2001,53,"(50,55]",College,1282.3320581484315,206.6158067375215,6.206359902451546,6396.30574802131,2019
+2001,53,"(50,55]",College,1282.4994644223411,206.6158067375215,6.207170132203824,6746.536873001195,2019
+2001,74,"(70,75]",College,25445.084009181333,1418.761872930981,17.93471088746911,207.80502897288798,2019
+2001,74,"(70,75]",College,24762.568630451417,917.7185415924914,26.982748531463276,194.79556708313498,2019
+2001,74,"(70,75]",College,8980.676970160672,874.6735818555076,10.267461092296077,209.75370225208076,2019
+2001,74,"(70,75]",College,25253.906044376432,637.065404107358,39.64099428654684,213.1017896887116,2019
+2001,74,"(70,75]",College,20681.873297628157,805.8016462763339,25.66620879120879,199.0858788589583,2019
+2001,68,"(65,70]",HS,29101.57184391737,6301.782105494406,4.617990809067209,19.51970971410038,2019
+2001,68,"(65,70]",HS,32186.36725325172,6301.782105494406,5.107502403992837,19.888619895860824,2019
+2001,68,"(65,70]",HS,29600.275133894414,6301.782105494406,4.697127675691371,19.92043569223572,2019
+2001,68,"(65,70]",HS,33110.28247895945,6319.000089389199,5.239797754483008,20.398950336721853,2019
+2001,68,"(65,70]",HS,30271.574292272377,6301.782105494406,4.80365296443353,20.493829541500492,2019
+2001,20,"(15,20]",HS,28.12425401683244,51.653951684380374,0.5444743935309974,8206.479497635666,2019
+2001,20,"(15,20]",HS,28.12425401683244,51.653951684380374,0.5444743935309974,8205.468246629496,2019
+2001,20,"(15,20]",HS,27.956847742922726,51.653951684380374,0.5412334745218843,8224.811573555615,2019
+2001,20,"(15,20]",HS,27.956847742922726,51.653951684380374,0.5412334745218843,8190.402334636616,2019
+2001,20,"(15,20]",HS,27.956847742922726,51.653951684380374,0.5412334745218843,8191.606877703574,2019
+2001,58,"(55,60]",HS,165.56480489671003,132.5784759899096,1.2488060649400659,5268.420147393916,2019
+2001,58,"(55,60]",HS,171.08921193573067,142.9092663267857,1.1971876725229758,5506.450372848605,2019
+2001,58,"(55,60]",HS,277.55960214231067,37.87956456854561,7.327423250603844,5537.709519905719,2019
+2001,58,"(55,60]",HS,124.80137719969396,58.54114524229776,2.131857459965118,5403.540124225785,2019
+2001,58,"(55,60]",HS,149.92905891354246,70.59373396865318,2.1238295594353707,5448.8860113498495,2019
+2001,78,"(75,80]",College,22168.441009946444,860.899194739673,25.750333076626877,170.70316365473857,2019
+2001,78,"(75,80]",College,24955.2532517215,860.899194739673,28.9874278013092,159.69056269811,2019
+2001,78,"(75,80]",College,22043.555929609796,860.899194739673,25.605269541778977,172.1157236483978,2019
+2001,78,"(75,80]",College,24739.299158377966,860.899194739673,28.736580670003846,175.001726293633,2019
+2001,78,"(75,80]",College,22791.3597551645,860.899194739673,26.47390065460146,168.05053491723305,2019
+2001,57,"(55,60]",NoHS,1971.2105493496556,49.93215329490103,39.47777973258269,3163.6461156440573,2019
+2001,57,"(55,60]",NoHS,2032.3138393267022,49.93215329490103,40.701506048092625,3218.012290097147,2019
+2001,57,"(55,60]",NoHS,2306.1905034429997,49.93215329490103,46.18648208144677,4041.3584749802767,2019
+2001,57,"(55,60]",NoHS,2084.7120030604437,49.93215329490103,41.75089327207786,3328.0245671404055,2019
+2001,57,"(55,60]",NoHS,2062.781781178271,49.93215329490103,41.31169286842909,3409.683172132729,2019
+2001,63,"(60,65]",HS,164.5603672532517,32.71416940010757,5.030247451512879,7225.0286440647105,2019
+2001,63,"(60,65]",HS,164.72777352716145,32.71416940010757,5.035364692053584,7620.701106676637,2019
+2001,63,"(60,65]",HS,164.5603672532517,32.71416940010757,5.030247451512879,7682.311980955397,2019
+2001,63,"(60,65]",HS,164.5603672532517,32.71416940010757,5.030247451512879,7485.4534334944665,2019
+2001,63,"(60,65]",HS,164.5603672532517,32.71416940010757,5.030247451512879,7560.260440097251,2019
+2001,33,"(30,35]",HS,67.69909716908953,67.15013718969449,1.0081751132964072,6046.208488659542,2019
+2001,33,"(30,35]",HS,66.02503442999235,68.87193557917384,0.9586638428956487,6042.803340289314,2019
+2001,33,"(30,35]",HS,67.69909716908953,68.87193557917384,0.9829707354639969,6053.81923256835,2019
+2001,33,"(30,35]",HS,66.02503442999235,68.87193557917384,0.9586638428956487,6075.324653390472,2019
+2001,33,"(30,35]",HS,66.02503442999235,68.87193557917384,0.9586638428956487,6076.283010223978,2019
+2001,53,"(50,55]",HS,28.459066564651877,77.48092752657055,0.36730415436614905,6308.424722983507,2019
+2001,53,"(50,55]",HS,40.34491201224177,77.48092752657055,0.5207076541308348,6335.841074380918,2019
+2001,53,"(50,55]",HS,40.01009946442234,77.48092752657055,0.5163864287853507,6323.150506532877,2019
+2001,53,"(50,55]",HS,38.33603672532518,77.48092752657055,0.4947803020579302,6276.993591679486,2019
+2001,53,"(50,55]",HS,61.772915072685535,77.48092752657055,0.7972660762418174,6330.842708911263,2019
+2001,61,"(60,65]",College,375.99449120122415,103.30790336876075,3.6395520472339875,7445.337857898817,2019
+2001,61,"(60,65]",College,330.4599846977812,103.30790336876075,3.1987870619946093,7781.722466438188,2019
+2001,61,"(60,65]",College,318.40673297628155,103.30790336876075,3.082113977666538,7825.897931659018,2019
+2001,61,"(60,65]",College,392.065493496557,103.30790336876075,3.795116159671416,7636.289576007783,2019
+2001,61,"(60,65]",College,404.28615149196634,103.30790336876075,3.913409703504043,7700.372439685959,2019
+2001,44,"(40,45]",College,7165.323335883703,774.8092752657057,9.247854361870534,714.9118547692785,2019
+2001,44,"(40,45]",College,7165.490742157613,774.8092752657057,9.248070423137808,718.6927471728146,2019
+2001,44,"(40,45]",College,7163.816679418515,774.8092752657057,9.245909810465065,722.3417034508368,2019
+2001,44,"(40,45]",College,7165.323335883703,774.8092752657057,9.247854361870534,717.6441689280448,2019
+2001,44,"(40,45]",College,7163.649273144606,774.8092752657057,9.245693749197791,712.8656302665728,2019
+2001,54,"(50,55]",College,1375.5756786534048,139.46566954782702,9.863184847663733,6806.297521501592,2019
+2001,54,"(50,55]",College,1478.3380198928844,141.18746793730637,10.470745325281515,6184.480094267374,2019
+2001,54,"(50,55]",College,1587.865248661056,130.8566776004303,12.134384563159923,5773.384203648164,2019
+2001,54,"(50,55]",College,1691.8563519510328,141.18746793730637,11.983049038759543,3164.7352731565034,2019
+2001,54,"(50,55]",College,1476.7744452945676,139.46566954782702,10.588802606996676,6208.433356578177,2019
+2001,46,"(45,50]",NoHS,65.20474368783474,25.826975842190187,2.5246759080990886,6143.384874791568,2019
+2001,46,"(45,50]",NoHS,40.93083397092579,25.826975842190187,1.5848093954562958,6462.209289573613,2019
+2001,46,"(45,50]",NoHS,49.117000765110944,25.826975842190187,1.901771274547555,6507.086226316935,2019
+2001,46,"(45,50]",NoHS,53.988523335883706,25.826975842190187,2.0903927608779362,6320.989681880392,2019
+2001,46,"(45,50]",NoHS,40.26120887528692,25.826975842190187,1.5588820433833912,6415.32693678656,2019
+2001,41,"(40,45]",College,1396.837949502678,311.6455084957616,4.482137272713735,6477.359695575437,2019
+2001,41,"(40,45]",College,1421.2792654934965,301.3147181588855,4.7169261235491495,6413.740389003381,2019
+2001,41,"(40,45]",College,1395.6661055853099,309.9237101062822,4.503256963162624,6167.004127042232,2019
+2001,41,"(40,45]",College,1420.1074215761287,290.98392782200943,4.880363778870932,6396.30574802131,2019
+2001,41,"(40,45]",College,1422.9533282325938,308.2019117168029,4.616951661027012,6746.536873001195,2019
+2001,35,"(30,35]",HS,1320.1658760520277,74.03733074761188,17.831084166883077,6516.814243621442,2019
+2001,35,"(30,35]",HS,1328.3687834736038,74.03733074761188,17.941878374869034,5938.105070853183,2019
+2001,35,"(30,35]",HS,1328.3687834736038,74.03733074761188,17.941878374869034,5477.434034160344,2019
+2001,35,"(30,35]",HS,1308.2800306044378,74.03733074761188,17.67054562061771,6166.260388995396,2019
+2001,35,"(30,35]",HS,1316.8177505738333,74.03733074761188,17.78586204117452,5973.135739317285,2019
+2001,58,"(55,60]",College,7414.808905891355,516.5395168438037,14.354775702733926,3687.287979209405,2019
+2001,58,"(55,60]",College,7414.808905891355,516.5395168438037,14.354775702733926,3633.9889219487354,2019
+2001,58,"(55,60]",College,7414.808905891355,516.5395168438037,14.354775702733926,3732.726985571312,2019
+2001,58,"(55,60]",College,7414.808905891355,516.5395168438037,14.354775702733926,3619.162569798528,2019
+2001,58,"(55,60]",College,7414.808905891355,516.5395168438037,14.354775702733926,3597.716146931495,2019
+2001,28,"(25,30]",HS,-6.194032134659525,77.48092752657055,-0.07994266889145596,5992.840560138464,2019
+2001,28,"(25,30]",HS,-6.194032134659525,77.48092752657055,-0.07994266889145596,5935.04529495297,2019
+2001,28,"(25,30]",HS,-6.194032134659525,77.48092752657055,-0.07994266889145596,5931.6628191682885,2019
+2001,28,"(25,30]",HS,-6.194032134659525,77.48092752657055,-0.07994266889145596,5961.266458476096,2019
+2001,28,"(25,30]",HS,-6.194032134659525,77.48092752657055,-0.07994266889145596,5952.7512603775085,2019
+2001,28,"(25,30]",NoHS,-11.551032899770467,94.69891142136402,-0.12197640634298317,6681.575168072876,2019
+2001,28,"(25,30]",NoHS,-11.383626625860751,94.69891142136402,-0.1202086323380124,6692.771430259561,2019
+2001,28,"(25,30]",NoHS,-11.551032899770467,94.69891142136402,-0.12197640634298317,6716.1841236246055,2019
+2001,28,"(25,30]",NoHS,-11.551032899770467,94.69891142136402,-0.12197640634298317,6750.615673783922,2019
+2001,28,"(25,30]",NoHS,-11.383626625860751,94.69891142136402,-0.1202086323380124,6698.155027631731,2019
+2001,30,"(25,30]",HS,32.644223412394794,32.71416940010757,0.9978619054374479,4249.023506757678,2019
+2001,30,"(25,30]",HS,27.956847742922726,67.15013718969449,0.41633344193991095,4261.26219198343,2019
+2001,30,"(25,30]",HS,23.604284621270082,74.03733074761188,0.3188159862453098,4266.359273111183,2019
+2001,30,"(25,30]",HS,22.93465952563122,74.03733074761188,0.309771561103599,4253.87652615128,2019
+2001,30,"(25,30]",HS,22.93465952563122,123.96948404251289,0.1850024601035383,4260.8542811344705,2019
+2001,47,"(45,50]",College,1810.1640397857689,258.2697584219018,7.008811449107946,3377.1660587640026,2019
+2001,47,"(45,50]",College,1810.1640397857689,258.2697584219018,7.008811449107946,3433.1591365260733,2019
+2001,47,"(45,50]",College,1812.0055087987757,258.2697584219018,7.015941470927995,4305.048260462243,2019
+2001,47,"(45,50]",College,1810.1640397857689,258.2697584219018,7.008811449107946,3549.9425465481318,2019
+2001,47,"(45,50]",College,1808.4899770466718,258.2697584219018,7.002329611089721,3632.175485781335,2019
+2001,42,"(40,45]",HS,96.9282325937261,103.30790336876075,0.9382460531382365,6210.614435230287,2019
+2001,42,"(40,45]",HS,96.9282325937261,103.30790336876075,0.9382460531382365,6441.108833522916,2019
+2001,42,"(40,45]",HS,87.72088752869166,103.30790336876075,0.8491207803876267,6501.311197758162,2019
+2001,42,"(40,45]",HS,93.58010711553175,103.30790336876075,0.9058368630471055,6307.92213251906,2019
+2001,42,"(40,45]",HS,93.41270084162204,103.30790336876075,0.9042164035425492,6452.613302848705,2019
+2001,75,"(70,75]",NoHS,156.52486610558532,10.330790336876074,15.151296367603647,8888.421385583762,2019
+2001,75,"(70,75]",NoHS,156.52486610558532,10.330790336876074,15.151296367603647,8827.131303226306,2019
+2001,75,"(70,75]",NoHS,156.52486610558532,10.330790336876074,15.151296367603647,8898.443806977111,2019
+2001,75,"(70,75]",NoHS,156.52486610558532,10.330790336876074,15.151296367603647,8931.960329246025,2019
+2001,75,"(70,75]",NoHS,156.52486610558532,10.330790336876074,15.151296367603647,8888.694267765275,2019
+2001,70,"(65,70]",College,4570.191277735272,172.17983894793457,26.54312668463612,1868.844944523591,2019
+2001,70,"(65,70]",College,4570.191277735272,172.17983894793457,26.54312668463612,1868.2927902803408,2019
+2001,70,"(65,70]",College,4571.865340474369,172.17983894793457,26.55284944166346,1880.36694392992,2019
+2001,70,"(65,70]",College,4571.865340474369,172.17983894793457,26.55284944166346,1863.8276863356161,2019
+2001,70,"(65,70]",College,4571.865340474369,172.17983894793457,26.55284944166346,1856.330699140442,2019
+2001,41,"(40,45]",College,1987.2966182096404,382.2392424644148,5.199091033659767,1253.1642591223647,2019
+2001,41,"(40,45]",College,1987.2966182096404,382.2392424644148,5.199091033659767,1219.3701856945113,2019
+2001,41,"(40,45]",College,1987.2966182096404,382.2392424644148,5.199091033659767,1316.4026419603185,2019
+2001,41,"(40,45]",College,1987.2966182096404,382.2392424644148,5.199091033659767,1249.8080997186114,2019
+2001,41,"(40,45]",College,1987.2966182096404,382.2392424644148,5.199091033659767,1248.0908063566023,2019
+2001,50,"(45,50]",College,9334.573833205815,309.9237101062822,30.118940658024222,1573.3579612305853,2019
+2001,50,"(45,50]",College,9336.247895944913,309.9237101062822,30.124342189706077,1556.368576429962,2019
+2001,50,"(45,50]",College,9334.573833205815,309.9237101062822,30.118940658024222,1596.663091263162,2019
+2001,50,"(45,50]",College,9336.247895944913,309.9237101062822,30.124342189706077,1554.0627222000635,2019
+2001,50,"(45,50]",College,9334.573833205815,309.9237101062822,30.118940658024222,1537.8345326191723,2019
+2001,75,"(70,75]",HS,178.4718286151492,18.939782284272805,9.423119333496691,7098.086672417308,2019
+2001,75,"(70,75]",HS,213.10818668706963,18.939782284272805,11.251881541638953,7359.539848547756,2019
+2001,75,"(70,75]",HS,212.5222647283856,18.939782284272805,11.220945496551964,7512.084850414673,2019
+2001,75,"(70,75]",HS,214.28003060443763,18.939782284272805,11.31375363181293,7305.215767114336,2019
+2001,75,"(70,75]",HS,202.6452945677123,18.939782284272805,10.699452165085587,7413.406333546538,2019
+2001,78,"(75,80]",HS,2616.0578423871466,87.81171786344665,29.79167138553535,3569.2977259434933,2019
+2001,78,"(75,80]",HS,2493.834521805662,106.75150014771945,23.361119219446756,3609.2767687066507,2019
+2001,78,"(75,80]",HS,2828.7809946442235,129.1348792109509,21.905630856116037,4583.932297863048,2019
+2001,78,"(75,80]",HS,2580.9025248661055,110.19509692667813,23.42121017038891,3768.2143477687614,2019
+2001,78,"(75,80]",HS,2716.501606732976,92.97711303188467,29.21688486715441,3858.3106853070312,2019
+2001,72,"(70,75]",College,8207.5947972456,637.065404107358,12.883441392875353,983.2938419334308,2019
+2001,72,"(70,75]",College,8207.259984697781,637.065404107358,12.882915838441445,988.3403355364848,2019
+2001,72,"(70,75]",College,8207.427390971692,637.065404107358,12.883178615658402,992.6177338040918,2019
+2001,72,"(70,75]",College,8207.259984697781,637.065404107358,12.882915838441445,986.950589024905,2019
+2001,72,"(70,75]",College,8207.259984697781,637.065404107358,12.882915838441445,979.8991214082192,2019
+2001,60,"(55,60]",HS,5008.4609028309105,223.83379063231493,22.37580344184118,3687.287979209405,2019
+2001,60,"(55,60]",HS,4997.7469013006885,223.83379063231493,22.3279375610912,3633.9889219487354,2019
+2001,60,"(55,60]",HS,5221.40168324407,223.83379063231493,23.327137821746987,3732.726985571312,2019
+2001,60,"(55,60]",HS,5390.046763580719,223.83379063231493,24.080576700927107,3619.162569798528,2019
+2001,60,"(55,60]",HS,5038.560550879878,223.83379063231493,22.51027665057315,3597.716146931495,2019
+2001,20,"(15,20]",HS,0.8370313695485845,58.54114524229776,0.014298172099028289,6405.113540652366,2019
+2001,20,"(15,20]",HS,0.8370313695485845,58.54114524229776,0.014298172099028289,6431.316750045208,2019
+2001,20,"(15,20]",HS,0.8370313695485845,58.54114524229776,0.014298172099028289,6696.096708326584,2019
+2001,20,"(15,20]",HS,0.8370313695485845,58.54114524229776,0.014298172099028289,6504.330143000416,2019
+2001,20,"(15,20]",HS,2.5110941086457537,58.54114524229776,0.04289451629708487,6322.143401072363,2019
+2001,65,"(60,65]",NoHS,0,20.661580673752148,0,6389.343203526117,2019
+2001,65,"(60,65]",NoHS,0,20.661580673752148,0,6352.024974204495,2019
+2001,65,"(60,65]",NoHS,0,20.661580673752148,0,6351.929620445817,2019
+2001,65,"(60,65]",NoHS,0,20.661580673752148,0,6363.992802493364,2019
+2001,65,"(60,65]",NoHS,0,20.661580673752148,0,6367.936432747929,2019
+2001,58,"(55,60]",HS,661.5895944912012,87.81171786344665,7.53418348471464,9288.905092097977,2019
+2001,58,"(55,60]",HS,812.0878347360367,86.08991947396729,9.43301886792453,8436.708935522343,2019
+2001,58,"(55,60]",HS,803.7175210405509,86.08991947396729,9.335791297651136,7892.679094524055,2019
+2001,58,"(55,60]",HS,854.1068094873757,86.08991947396729,9.921101270696958,8836.226887432384,2019
+2001,58,"(55,60]",HS,971.1237949502678,86.08991947396729,11.280342703118984,8492.696788589634,2019
+2001,56,"(55,60]",HS,804.0523335883704,27.548774231669533,29.186501251443975,9518.23409738936,2019
+2001,56,"(55,60]",HS,616.5907880642694,34.43596778958692,17.90542934154794,8644.998507752134,2019
+2001,56,"(55,60]",HS,771.5755164498852,27.548774231669533,28.00761696187909,8087.537393525413,2019
+2001,56,"(55,60]",HS,398.25952563121655,103.30790336876075,3.855073161340008,9267.119063573822,2019
+2001,56,"(55,60]",HS,387.54552410099467,55.097548463339066,7.03380703696573,9404.81997551091,2019
+2001,27,"(25,30]",College,80.35501147666412,86.08991947396729,0.9333846746245669,4370.767536094367,2019
+2001,27,"(25,30]",College,128.90283091048204,86.08991947396729,1.4973045822102429,4321.916712529095,2019
+2001,27,"(25,30]",College,123.88064269319052,86.08991947396729,1.4389680400462073,4342.254838622941,2019
+2001,27,"(25,30]",College,95.42157612853865,86.08991947396729,1.1083943011166733,4342.744710443666,2019
+2001,27,"(25,30]",College,100.44376434583015,86.08991947396729,1.1667308432807086,4308.827200002034,2019
+2001,47,"(45,50]",College,365.61530221882174,123.96948404251289,2.9492362982929023,521.2544323926219,2019
+2001,47,"(45,50]",College,365.61530221882174,125.69128243199225,2.908835801056013,516.2115576482415,2019
+2001,47,"(45,50]",College,365.61530221882174,123.96948404251289,2.9492362982929023,497.19711075997174,2019
+2001,47,"(45,50]",College,365.61530221882174,125.69128243199225,2.908835801056013,515.8153579914156,2019
+2001,47,"(45,50]",College,365.447895944912,125.69128243199225,2.9075039165317196,544.1233371685576,2019
+2001,72,"(70,75]",NoHS,4906.677888293802,168.7362421689759,29.07898045625643,1461.0710593148456,2019
+2001,72,"(70,75]",NoHS,5484.396939556235,161.84904861105852,33.88587691198518,1434.7745263077823,2019
+2001,72,"(70,75]",NoHS,6733.582555470543,165.29264539001719,40.73733915736106,1458.2108906091098,2019
+2001,72,"(70,75]",NoHS,6655.236419280795,139.46566954782702,47.719531558255724,1447.307452835343,2019
+2001,72,"(70,75]",NoHS,8882.57689364958,148.07466149522375,59.98714975239767,1411.6393588282385,2019
+2001,53,"(50,55]",College,28190.04468247896,2341.64580969191,12.038560471358357,217.86228905619365,2019
+2001,53,"(50,55]",College,28190.04468247896,2341.64580969191,12.038560471358357,209.93323562398342,2019
+2001,53,"(50,55]",College,28190.21208875287,2324.427825797117,12.127807013790841,215.18735500683434,2019
+2001,53,"(50,55]",College,28190.21208875287,2341.64580969191,12.038631962218851,221.75930917009774,2019
+2001,53,"(50,55]",College,28190.04468247896,2324.427825797117,12.127734993368417,218.9069485132089,2019
+2001,38,"(35,40]",HS,19.670237184391734,77.48092752657055,0.2538719890471912,4150.1734223431695,2019
+2001,38,"(35,40]",HS,19.502830910482018,77.48092752657055,0.2517113763744491,4181.6452225723615,2019
+2001,38,"(35,40]",HS,19.670237184391734,77.48092752657055,0.2538719890471912,4243.299916167811,2019
+2001,38,"(35,40]",HS,19.670237184391734,77.48092752657055,0.2538719890471912,4165.611124073518,2019
+2001,38,"(35,40]",HS,19.502830910482018,77.48092752657055,0.2517113763744491,4167.797781498556,2019
+2001,44,"(40,45]",HS,4.8547819433817905,43.04495973698364,0.11278398151713516,5328.4496645954705,2019
+2001,44,"(40,45]",HS,4.687375669472074,43.04495973698364,0.10889487870619947,5282.190529636459,2019
+2001,44,"(40,45]",HS,4.687375669472074,43.04495973698364,0.10889487870619947,5309.099041713457,2019
+2001,44,"(40,45]",HS,4.687375669472074,43.04495973698364,0.10889487870619947,5297.108775916751,2019
+2001,44,"(40,45]",HS,4.687375669472074,43.04495973698364,0.10889487870619947,5316.435401060183,2019
+2001,64,"(60,65]",College,205842.75439938792,6301.782105494406,32.664213226274114,31.36574549056442,2019
+2001,64,"(60,65]",College,206118.97475133897,6112.3842826516775,33.72153405608856,34.21214188710958,2019
+2001,64,"(60,65]",College,201880.24789594492,6043.512347072504,33.40445692871569,33.339071345827016,2019
+2001,64,"(60,65]",College,205621.77811782708,6181.256218230852,33.26537047782796,32.80550343108766,2019
+2001,64,"(60,65]",College,207711.00841622034,6319.000089389199,32.87086651019464,34.65309021574954,2019
+2001,68,"(65,70]",NoHS,64.01615914307575,24.105177452710844,2.6557016337532318,7950.439063353157,2019
+2001,68,"(65,70]",NoHS,64.28400918133129,24.105177452710844,2.66681335607019,7883.78710476555,2019
+2001,68,"(65,70]",NoHS,64.36771231828615,24.105177452710844,2.67028576929424,7952.14064556737,2019
+2001,68,"(65,70]",NoHS,64.30074980872226,24.105177452710844,2.667507838715,7941.040817231265,2019
+2001,68,"(65,70]",NoHS,64.53511859219587,24.105177452710844,2.6772305957423397,7888.385679592209,2019
+2001,36,"(35,40]",College,86.59926549349656,36.157766179066265,2.3950391477345656,7753.141659479598,2019
+2001,36,"(35,40]",College,86.9842999234889,25.826975842190187,3.367963034270312,7958.753219852746,2019
+2001,36,"(35,40]",College,86.78341239479724,37.87956456854561,2.291035110442118,8038.294612797387,2019
+2001,36,"(35,40]",College,87.11822494261668,20.661580673752148,4.216435630856116,7846.999522174386,2019
+2001,36,"(35,40]",College,86.73319051262433,68.87193557917384,1.2593401039661147,7975.84195787292,2019
+2001,71,"(70,75]",NoHS,625.4298393267024,34.43596778958692,18.162110127069695,11278.96182332654,2019
+2001,71,"(70,75]",NoHS,514.9584391736802,34.43596778958692,14.954086445899113,10358.390928257695,2019
+2001,71,"(70,75]",NoHS,503.08933435348126,34.43596778958692,14.609414709279937,10314.461034354828,2019
+2001,71,"(70,75]",NoHS,575.375363427697,34.43596778958692,16.70855795148248,11161.037161086704,2019
+2001,71,"(70,75]",NoHS,516.230726855394,34.43596778958692,14.991032922603,9907.27103193167,2019
+2001,38,"(35,40]",NoHS,4.938485080336649,15.840545183209981,0.3117623177244647,5597.431751136939,2019
+2001,38,"(35,40]",NoHS,4.938485080336649,13.085667760043028,0.3773964898769836,5616.2311993225785,2019
+2001,38,"(35,40]",NoHS,4.955225707727621,14.63528631057444,0.33858071530498995,5538.95124872665,2019
+2001,38,"(35,40]",NoHS,4.955225707727621,14.463106471626503,0.3426114381062399,5570.472260763835,2019
+2001,38,"(35,40]",NoHS,4.938485080336649,15.66836534426205,0.31518827725989834,5619.497636002193,2019
+2001,36,"(35,40]",HS,103.50729915837796,118.80408887407486,0.8712435753628769,5786.716332982018,2019
+2001,36,"(35,40]",HS,105.18973221117062,118.80408887407486,0.8854049823374797,6001.478610236696,2019
+2001,36,"(35,40]",HS,108.3972364192808,117.08229048459552,0.9258209415841808,6057.571933697256,2019
+2001,36,"(35,40]",HS,103.33989288446826,117.08229048459552,0.8826261636730164,5877.382409116389,2019
+2001,36,"(35,40]",HS,100.33495026778883,118.80408887407486,0.8445412209182278,6012.197855690442,2019
+2001,59,"(55,60]",HS,331.53138485080336,58.54114524229776,5.663220004983125,5932.963457092681,2019
+2001,59,"(55,60]",HS,331.69879112471307,58.54114524229776,5.6660796394029305,6265.009739855114,2019
+2001,59,"(55,60]",HS,331.69879112471307,58.54114524229776,5.6660796394029305,6296.535100307743,2019
+2001,59,"(55,60]",HS,331.86619739862283,58.54114524229776,5.668939273822737,6106.544135584998,2019
+2001,59,"(55,60]",HS,331.69879112471307,58.54114524229776,5.6660796394029305,6197.281795313506,2019
+2001,75,"(70,75]",HS,125.55470543228768,27.548774231669533,4.557542356565268,9389.59503369535,2019
+2001,75,"(70,75]",HS,125.55470543228768,27.548774231669533,4.557542356565268,9327.64117288811,2019
+2001,75,"(70,75]",HS,125.7221117061974,27.548774231669533,4.563619079707355,9408.524528932006,2019
+2001,75,"(70,75]",HS,125.7221117061974,27.548774231669533,4.563619079707355,9436.197657664688,2019
+2001,75,"(70,75]",HS,125.7221117061974,27.548774231669533,4.563619079707355,9389.824339121526,2019
+2001,50,"(45,50]",College,510.2543228768171,258.2697584219018,1.9756642279553334,6424.059465798126,2019
+2001,50,"(45,50]",College,716.164039785769,258.2697584219018,2.772930304197151,5834.662083089409,2019
+2001,50,"(45,50]",College,511.9283856159143,258.2697584219018,1.9821460659735595,5450.715584981659,2019
+2001,50,"(45,50]",College,461.70650344299924,258.2697584219018,1.7876909254267748,6107.704776169675,2019
+2001,50,"(45,50]",College,463.38056618209646,258.2697584219018,1.794172763445001,5861.477463639649,2019
+2001,39,"(35,40]",College,144.03635807192043,111.91689531615746,1.286993868665028,6695.66183770876,2019
+2001,39,"(35,40]",College,145.7104208110176,111.91689531615746,1.301951956399396,6944.157789687202,2019
+2001,39,"(35,40]",College,150.73260902830913,111.91689531615746,1.3468262196025003,7009.061943205919,2019
+2001,39,"(35,40]",College,140.6882325937261,111.91689531615746,1.2570776931962917,6800.569241323426,2019
+2001,39,"(35,40]",College,143.8689517980107,111.91689531615746,1.2854980598915908,6956.560755131456,2019
+2001,29,"(25,30]",HS,15.401377199693956,103.30790336876075,0.14908227441920163,5257.804513738772,2019
+2001,29,"(25,30]",HS,15.401377199693956,103.30790336876075,0.14908227441920163,5218.762608113664,2019
+2001,29,"(25,30]",HS,15.401377199693956,103.30790336876075,0.14908227441920163,5224.510092968377,2019
+2001,29,"(25,30]",HS,15.401377199693956,103.30790336876075,0.14908227441920163,5258.821123731438,2019
+2001,29,"(25,30]",HS,15.401377199693956,103.30790336876075,0.14908227441920163,5209.678330054779,2019
+2001,38,"(35,40]",College,356.77625095638865,154.9618550531411,2.3023488640739314,6253.579325364195,2019
+2001,38,"(35,40]",College,336.486610558531,154.9618550531411,2.1714157361057635,6485.668278688762,2019
+2001,38,"(35,40]",College,174.2699311400153,154.9618550531411,1.1245988961622386,6546.287121517566,2019
+2001,38,"(35,40]",College,287.9387911247131,154.9618550531411,1.8581268985581656,6351.560195101002,2019
+2001,38,"(35,40]",College,272.7048201989288,154.9618550531411,1.759819021948402,6497.252335673025,2019
+2001,70,"(65,70]",College,181744.62127008417,17837.83131500602,10.18871734240429,31.95317271540186,2019
+2001,70,"(65,70]",College,179782.6197398623,19043.090187641566,9.440832237224619,33.736487472397755,2019
+2001,70,"(65,70]",College,153643.80413159908,16391.520667843375,9.373370979119409,34.1869719476668,2019
+2001,70,"(65,70]",College,160586.14231063504,16529.264539001717,9.715262402130666,33.70593280210816,2019
+2001,70,"(65,70]",College,152461.9158377965,18939.782284272806,8.049824097735149,34.671362743048334,2019
+2001,58,"(55,60]",College,4243.414231063504,1033.0790336876073,4.107540752149918,162.70814346411981,2019
+2001,58,"(55,60]",College,4891.778729915838,1033.0790336876073,4.7351447182646655,160.34240500650904,2019
+2001,58,"(55,60]",College,3943.2547819433817,1033.0790336876073,3.8169923629829294,165.0436122201656,2019
+2001,58,"(55,60]",College,3947.1051262433057,1033.0790336876073,3.8207194198434102,161.3305493308568,2019
+2001,58,"(55,60]",College,3946.602907421576,1033.0790336876073,3.8202332819920426,162.25750379852155,2019
+2001,27,"(25,30]",HS,42.58815608263198,46.488556515942335,0.9160997732426305,3528.5688824953345,2019
+2001,27,"(25,30]",HS,24.17346595256312,46.488556515942335,0.5199874499065874,3546.6596641302035,2019
+2001,27,"(25,30]",HS,23.08532517214996,46.488556515942335,0.4965808126185485,3556.8397273152063,2019
+2001,27,"(25,30]",HS,25.84752869166029,46.488556515942335,0.5559976611189549,3551.996251165319,2019
+2001,27,"(25,30]",HS,26.366488140780415,46.488556515942335,0.567160826594789,3529.617220099586,2019
+2001,38,"(35,40]",College,9093.173986228003,2582.6975842190186,3.5208047747400846,1515.59688936874,2019
+2001,38,"(35,40]",College,9098.530986993113,2582.6975842190186,3.522878962905917,1512.558604401761,2019
+2001,38,"(35,40]",College,9249.19663351186,2582.6975842190186,3.581215505069953,1523.6676454188985,2019
+2001,38,"(35,40]",College,9148.75286916603,2582.6975842190186,3.542324476960596,1511.3900477527018,2019
+2001,38,"(35,40]",College,9148.75286916603,2582.6975842190186,3.542324476960596,1503.1836352970631,2019
+2001,63,"(60,65]",HS,2572.1973986228004,175.6234357268933,14.64609428677131,3486.707392826229,2019
+2001,63,"(60,65]",HS,2640.8339709257843,175.6234357268933,15.036910990811418,3546.625264628612,2019
+2001,63,"(60,65]",HS,2578.893649579189,175.6234357268933,14.684222745702053,4454.048890644017,2019
+2001,63,"(60,65]",HS,2588.938026013772,175.6234357268933,14.741415434098165,3667.8716384792124,2019
+2001,63,"(60,65]",HS,2600.6564651874523,175.6234357268933,14.808140237226965,3757.868955279814,2019
+2001,83,"(80,85]",College,3963.6783473603673,51.653951684380374,76.73523937877037,1453.8651143846078,2019
+2001,83,"(80,85]",College,1896.2108645753635,51.653951684380374,36.70988961622385,3209.66729044791,2019
+2001,83,"(80,85]",College,2677.9981637337414,51.653951684380374,51.84498138878193,4078.9328308057957,2019
+2001,83,"(80,85]",College,1951.45493496557,51.653951684380374,37.77939288923116,3352.8013870194204,2019
+2001,83,"(80,85]",College,3046.291966335119,51.653951684380374,58.975003208830714,3435.4000008818657,2019
+2001,71,"(70,75]",HS,465.72425401683245,41.323161347504296,11.270295854190733,8190.112984373305,2019
+2001,71,"(70,75]",HS,498.20107115531755,39.60136295802496,12.58040213624416,9033.030329364028,2019
+2001,71,"(70,75]",HS,464.0501912777353,39.60136295802496,11.71803586077581,8929.566628096925,2019
+2001,71,"(70,75]",HS,498.03366488140784,41.323161347504296,12.052167565139266,8601.125999228918,2019
+2001,71,"(70,75]",HS,465.389441469013,39.60136295802496,11.751854146088293,8826.003635012017,2019
+2001,35,"(30,35]",College,2243.2440703902066,203.1722099585628,11.041096963249643,3048.3296819944385,2019
+2001,35,"(30,35]",College,2279.152716143841,203.1722099585628,11.217836910907634,3102.6715146873653,2019
+2001,35,"(30,35]",College,2529.877092578424,203.1722099585628,12.451885487165764,3895.0934282301278,2019
+2001,35,"(30,35]",College,2260.855210405509,204.89400834804215,11.034267076102678,3204.4401532647826,2019
+2001,35,"(30,35]",College,2350.015791889824,204.89400834804215,11.469421730956533,3284.932554997381,2019
+2001,58,"(55,60]",HS,449.0840703902066,113.63869370563681,3.951858788112158,5952.6512146934565,2019
+2001,58,"(55,60]",HS,502.97214996174444,103.30790336876075,4.868670581440123,6221.5953898059,2019
+2001,58,"(55,60]",HS,465.8916602907422,129.1348792109509,3.6077910409446807,6256.914288924424,2019
+2001,58,"(55,60]",HS,467.58246365723033,103.30790336876075,4.526105442176871,6105.319770297447,2019
+2001,58,"(55,60]",HS,496.66093343534817,122.24768565303354,4.062743035029585,6156.554911481833,2019
+2001,49,"(45,50]",College,38170.33799540933,3684.6485534858007,10.359288665210395,252.07842989523698,2019
+2001,49,"(45,50]",College,23120.162417750576,976.259686834789,23.68238976732752,246.39976138616174,2019
+2001,49,"(45,50]",College,34402.10647283856,1389.491300309832,24.75877788163733,250.36501033046915,2019
+2001,49,"(45,50]",College,25027.27143075746,365.0212585696213,68.56387359144442,258.2585267454051,2019
+2001,49,"(45,50]",College,12336.70402448355,599.1858395388124,20.58911144158379,252.15036172146847,2019
+2001,66,"(65,70]",NoHS,105.29854628921194,43.04495973698364,2.4462456680785523,9939.020570958097,2019
+2001,66,"(65,70]",NoHS,101.9504208110176,43.04495973698364,2.368463611859838,9943.055167676426,2019
+2001,66,"(65,70]",NoHS,110.48814078041316,43.04495973698364,2.566807855217559,9943.793919395064,2019
+2001,66,"(65,70]",NoHS,106.97260902830911,43.04495973698364,2.4851366961879093,9945.91635890896,2019
+2001,66,"(65,70]",NoHS,108.64667176740627,43.04495973698364,2.5240277242972664,9942.521478729606,2019
+2001,69,"(65,70]",HS,2887.055118592196,68.87193557917384,41.91918078552175,851.9272879471112,2019
+2001,69,"(65,70]",HS,4257.057842387147,80.92452430552926,52.60528719717514,1434.7745263077823,2019
+2001,69,"(65,70]",HS,3357.4165263963278,113.63869370563681,29.544659630576078,878.9647095940143,2019
+2001,69,"(65,70]",HS,5476.02662586075,196.28501640064542,27.898342554499457,1447.307452835343,2019
+2001,69,"(65,70]",HS,2853.6073450650347,173.90163733741394,16.409318444358874,837.3098149453699,2019
+2001,73,"(70,75]",College,514939.3548584545,3013.1471815888553,170.89751141426922,5.895764114880169,2019
+2001,73,"(70,75]",College,274307.23305279267,6077.94831486209,45.131550786972554,6.027609853466183,2019
+2001,73,"(70,75]",College,274561.3557765876,1513.460784352345,181.41293029543584,5.310368577550248,2019
+2001,73,"(70,75]",College,274310.07895944914,5509.754846333906,49.786258483346174,6.923241449115482,2019
+2001,73,"(70,75]",College,280571.24100994645,2152.2479868491823,130.3619484020023,5.498270718252857,2019
+2001,68,"(65,70]",College,1196.1178270849273,86.08991947396729,13.89381979206777,4196.9366148595545,2019
+2001,68,"(65,70]",College,1196.1178270849273,86.08991947396729,13.89381979206777,4156.257989867276,2019
+2001,68,"(65,70]",College,1196.1178270849273,86.08991947396729,13.89381979206777,3998.5232729105437,2019
+2001,68,"(65,70]",College,1197.7918898240243,86.08991947396729,13.913265306122447,4142.719466576536,2019
+2001,68,"(65,70]",College,1196.1178270849273,86.08991947396729,13.89381979206777,4372.725630245511,2019
+2001,37,"(35,40]",HS,127.74772762050497,74.03733074761188,1.7254502064099004,5514.324322126661,2019
+2001,37,"(35,40]",HS,124.73441469013007,72.31553235813253,1.724863395492968,5732.148507734068,2019
+2001,37,"(35,40]",HS,73.50809487375669,72.31553235813253,1.0164910977868236,5799.667080680085,2019
+2001,37,"(35,40]",HS,73.34068859984698,72.31553235813253,1.0141761556374571,5617.048158656675,2019
+2001,37,"(35,40]",HS,103.30641162968631,72.31553235813253,1.428550800374058,5726.821699127797,2019
+2001,43,"(40,45]",College,718.0055087987758,454.55477482254724,1.5795797306915909,522.502129490021,2019
+2001,43,"(40,45]",College,724.5343534812548,454.55477482254724,1.5939428944819782,516.6969427466975,2019
+2001,43,"(40,45]",College,712.3136954858454,454.55477482254724,1.567057998156381,497.96526663817775,2019
+2001,43,"(40,45]",College,713.9877582249426,454.55477482254724,1.5707408606667368,517.2278571466138,2019
+2001,43,"(40,45]",College,709.3003825554706,454.55477482254724,1.5604288456377409,545.0213841462902,2019
+2001,45,"(40,45]",College,3141.7135424636576,118.80408887407486,26.444490019141377,2944.1618964236627,2019
+2001,45,"(40,45]",College,3281.497781178271,103.30790336876075,31.76424720831729,2992.108422104541,2019
+2001,45,"(40,45]",College,3365.3683244070394,120.5258872635542,27.922369217228674,3753.830090171437,2019
+2001,45,"(40,45]",College,3363.8616679418515,106.75150014771945,31.511141888283,3094.302335441047,2019
+2001,45,"(40,45]",College,3447.8996174445297,115.36049209511619,29.88804533359387,3166.249923628777,2019
+2001,49,"(45,50]",College,5456.105279265494,1136.3869370563682,4.801274197500613,154.22308491104334,2019
+2001,49,"(45,50]",College,5456.105279265494,1136.3869370563682,4.801274197500613,144.64233727491833,2019
+2001,49,"(45,50]",College,5456.105279265494,1136.3869370563682,4.801274197500613,154.5729760293955,2019
+2001,49,"(45,50]",College,5456.105279265494,1136.3869370563682,4.801274197500613,152.02422930013876,2019
+2001,49,"(45,50]",College,5456.105279265494,1136.3869370563682,4.801274197500613,146.72053401841268,2019
+2001,68,"(65,70]",College,230.90347360367252,58.54114524229776,3.944293755237944,8825.579976388795,2019
+2001,68,"(65,70]",College,212.85707727620508,58.54114524229776,3.6360251647828945,9237.128665442178,2019
+2001,68,"(65,70]",College,219.0008875286917,56.819346852818406,3.8543365888379375,9614.260352033467,2019
+2001,68,"(65,70]",College,215.50209640397858,56.819346852818406,3.7927591276647887,8878.511372009702,2019
+2001,68,"(65,70]",College,246.6396633511859,58.54114524229776,4.213099390699676,9295.748747184782,2019
+2001,24,"(20,25]",NoHS,11.048814078041316,51.653951684380374,0.2139006546014632,5661.810040638647,2019
+2001,24,"(20,25]",NoHS,11.048814078041316,51.653951684380374,0.2139006546014632,5667.564829153199,2019
+2001,24,"(20,25]",NoHS,11.048814078041316,51.653951684380374,0.2139006546014632,5663.722300535942,2019
+2001,24,"(20,25]",NoHS,11.048814078041316,51.653951684380374,0.2139006546014632,5613.696493061308,2019
+2001,24,"(20,25]",NoHS,9.391491966335119,51.653951684380374,0.18181555641124375,5641.5688797426,2019
+2001,33,"(30,35]",HS,233.86656465187454,96.42070981084338,2.4254806369987345,6510.150169641836,2019
+2001,33,"(30,35]",HS,232.19250191277735,96.42070981084338,2.408118570878486,6527.268660811782,2019
+2001,33,"(30,35]",HS,233.86656465187454,96.42070981084338,2.4254806369987345,6583.596429662168,2019
+2001,33,"(30,35]",HS,233.86656465187454,96.42070981084338,2.4254806369987345,6484.313368632416,2019
+2001,33,"(30,35]",HS,233.6991583779648,96.42070981084338,2.4237444303867095,6522.886012156403,2019
+2001,62,"(60,65]",College,9083.46442234124,602.629436317771,15.073051322955058,2831.656335077639,2019
+2001,62,"(60,65]",College,9085.138485080337,602.629436317771,15.075829253534298,2891.760029193,2019
+2001,62,"(60,65]",College,9024.872226472839,602.629436317771,14.975823752681666,2881.874294050196,2019
+2001,62,"(60,65]",College,9085.138485080337,602.629436317771,15.075829253534298,2880.1447964601252,2019
+2001,62,"(60,65]",College,9085.138485080337,602.629436317771,15.075829253534298,2874.470294237173,2019
+2001,42,"(40,45]",College,843.2254016832441,223.83379063231493,3.767194395900596,6782.675859057257,2019
+2001,42,"(40,45]",College,723.6973221117063,223.83379063231493,3.2331906637836565,6169.719843488872,2019
+2001,42,"(40,45]",College,755.3371078806426,223.83379063231493,3.374544592873434,5767.505967841503,2019
+2001,42,"(40,45]",College,678.6650344299924,223.83379063231493,3.032004383756406,6449.985225868663,2019
+2001,42,"(40,45]",College,669.7925019127773,223.83379063231493,2.99236545126033,6201.255534762568,2019
+2001,72,"(70,75]",HS,383.36036725325175,49.93215329490103,7.677625376760985,749.6355639576634,2019
+2001,72,"(70,75]",HS,371.6419280795715,49.93215329490103,7.442938138170037,335.47025666836817,2019
+2001,72,"(70,75]",HS,378.33817903596025,49.93215329490103,7.577045131650579,821.8226489613265,2019
+2001,72,"(70,75]",HS,386.7084927314461,49.93215329490103,7.744678873501256,321.0994723096802,2019
+2001,72,"(70,75]",HS,380.0122417750574,49.93215329490103,7.610571880020714,318.5956508708257,2019
+2001,22,"(20,25]",HS,-15.85337413925019,11.536049209511617,-1.3742464037149638,7964.9295457522485,2019
+2001,22,"(20,25]",HS,-15.85337413925019,13.257847598990962,-1.1957728447909426,7973.025275693751,2019
+2001,22,"(20,25]",HS,-15.85337413925019,11.363869370563684,-1.3950683189227662,7967.6196775733115,2019
+2001,22,"(20,25]",HS,-15.85337413925019,13.085667760043028,-1.211506698011876,7897.244297766345,2019
+2001,22,"(20,25]",HS,-15.85337413925019,13.774387115834767,-1.150931363111282,7936.454655336625,2019
+2001,49,"(45,50]",College,-25.74708492731446,56.819346852818406,-0.45313940327417424,5403.0723394102415,2019
+2001,49,"(45,50]",College,77.37517980107116,55.097548463339066,1.4043307181363112,5364.698295035164,2019
+2001,49,"(45,50]",College,-32.77814843152257,56.819346852818406,-0.5768835836221281,5359.067149675293,2019
+2001,49,"(45,50]",College,111.19124713083397,55.097548463339066,2.0180797554871006,5316.097176193983,2019
+2001,49,"(45,50]",College,111.02384085692427,55.097548463339066,2.015041393916057,5341.060141605976,2019
+2001,28,"(25,30]",HS,241.06503442999235,137.74387115834767,1.7500962649210627,7532.440503178497,2019
+2001,28,"(25,30]",HS,242.73909716908952,137.74387115834767,1.7622497112052367,7605.003341336167,2019
+2001,28,"(25,30]",HS,239.39097169089519,137.74387115834767,1.7379428186368886,7816.836234015919,2019
+2001,28,"(25,30]",HS,237.71690895179802,137.74387115834767,1.7257893723527147,7604.321599400291,2019
+2001,28,"(25,30]",HS,241.06503442999235,137.74387115834767,1.7500962649210627,7623.274388696975,2019
+2001,54,"(50,55]",College,86985.97398622801,17217.98389479346,5.052041778975742,12.741347796184815,2019
+2001,54,"(50,55]",College,83736.6182096404,17217.98389479346,4.863323065075086,13.446065715628222,2019
+2001,54,"(50,55]",College,95769.78117827084,17217.98389479346,5.56219484020023,13.629371123236291,2019
+2001,54,"(50,55]",College,96496.32440703902,17217.98389479346,5.604391605698883,13.433686857337898,2019
+2001,54,"(50,55]",College,83597.67100229533,17217.98389479346,4.855253176742395,13.82447659277727,2019
+2001,59,"(55,60]",College,638.1527161438408,241.0517745271084,2.6473678420155125,11278.96182332654,2019
+2001,59,"(55,60]",College,529.840856924254,87.81171786344665,6.033828625789938,11042.086600875853,2019
+2001,59,"(55,60]",College,1143.5522570772762,48.21035490542169,23.720054733483686,10408.773231555759,2019
+2001,59,"(55,60]",College,927.7655700076511,70.59373396865318,13.142321815979038,11161.037161086704,2019
+2001,59,"(55,60]",College,465.55684774292274,137.74387115834767,3.3798734116288025,9150.997029701568,2019
+2001,52,"(50,55]",HS,1896.3782708492731,43.04495973698364,44.055756642279555,3009.7243407921437,2019
+2001,52,"(50,55]",HS,1891.3560826319817,43.04495973698364,43.939083557951484,3061.8532196429574,2019
+2001,52,"(50,55]",HS,1890.0000918133128,43.04495973698364,43.9075818251829,3838.9559016293706,2019
+2001,52,"(50,55]",HS,1893.6160673297627,43.04495973698364,43.99158644589912,3164.7352731565034,2019
+2001,52,"(50,55]",HS,2901.987758224943,43.04495973698364,67.41759722757028,3236.0255931633124,2019
+2001,67,"(65,70]",HS,319.7459831675593,34.43596778958692,9.28523296110897,8361.366327500087,2019
+2001,67,"(65,70]",HS,317.90451415455243,34.43596778958692,9.231757797458606,8693.492381420947,2019
+2001,67,"(65,70]",HS,317.7371078806427,34.43596778958692,9.226896418944937,9062.323223677606,2019
+2001,67,"(65,70]",HS,318.741545524101,34.43596778958692,9.256064690026953,8438.453361527341,2019
+2001,67,"(65,70]",HS,318.9089517980107,34.43596778958692,9.260926068540623,8696.112443070548,2019
+2001,42,"(40,45]",NoHS,0,44.76675812646299,0,5074.502911882771,2019
+2001,42,"(40,45]",NoHS,0,44.76675812646299,0,5107.591064323055,2019
+2001,42,"(40,45]",NoHS,0,44.76675812646299,0,5055.643498486149,2019
+2001,42,"(40,45]",NoHS,0,44.76675812646299,0,5058.619203205373,2019
+2001,42,"(40,45]",NoHS,0,44.76675812646299,0,5121.391571621965,2019
+2001,54,"(50,55]",NoHS,659.9624055087988,163.57084700053784,4.034719007761994,5994.279664111233,2019
+2001,54,"(50,55]",NoHS,1469.7065524100994,58.54114524229776,25.105531269111417,5442.684246094316,2019
+2001,54,"(50,55]",NoHS,438.8689395562357,39.60136295802496,11.082167551187826,6130.67426499661,2019
+2001,54,"(50,55]",NoHS,734.2238286151493,77.48092752657055,9.476187909125917,5698.721953682675,2019
+2001,54,"(50,55]",NoHS,624.9242723794949,123.96948404251289,5.040952434432892,5469.36963778912,2019
+2001,37,"(35,40]",College,3569.1017597551645,645.6743960547547,5.527711461943268,983.2938419334308,2019
+2001,37,"(35,40]",College,3456.9395562356544,645.6743960547547,5.3539982030548074,988.3403355364848,2019
+2001,37,"(35,40]",College,2815.7735271614383,645.6743960547547,4.360980618662559,992.6177338040918,2019
+2001,37,"(35,40]",College,2954.720734506503,645.6743960547547,4.576177640867668,986.950589024905,2019
+2001,37,"(35,40]",College,2944.6763580719207,645.6743960547547,4.5606212296239255,979.8991214082192,2019
+2001,25,"(20,25]",HS,15.300933435348126,51.653951684380374,0.2962199974329354,5878.620471014777,2019
+2001,25,"(20,25]",HS,14.631308339709259,51.653951684380374,0.28325632139648316,5821.926750292909,2019
+2001,25,"(20,25]",HS,14.463902065799541,51.653951684380374,0.28001540238737005,5818.608742548333,2019
+2001,25,"(20,25]",HS,21.997184391736802,51.653951684380374,0.42585675779745863,5847.648153543008,2019
+2001,25,"(20,25]",HS,119.92985462892119,51.653951684380374,2.32179437812861,5754.833911482221,2019
+2001,23,"(20,25]",College,123.11057383320582,61.984742021256444,1.9861431994181322,5259.787268500162,2019
+2001,23,"(20,25]",College,123.54583014537107,61.984742021256444,1.9931651906045438,5259.591242316539,2019
+2001,23,"(20,25]",College,124.21545524100995,61.984742021256444,2.003968253968254,5278.334337635825,2019
+2001,23,"(20,25]",College,124.21545524100995,61.984742021256444,2.003968253968254,5230.032370918716,2019
+2001,23,"(20,25]",College,122.54139250191278,61.984742021256444,1.9769605955589784,5230.596380544032,2019
+2001,55,"(50,55]",College,26826.3699158378,1429.092663267857,18.771609851032938,295.8269948124768,2019
+2001,55,"(50,55]",College,34177.07895944912,1305.1231792253443,26.186860752664682,285.1094078746763,2019
+2001,55,"(50,55]",College,29940.10986993114,1479.0248165627581,20.24314232908662,292.00669838906794,2019
+2001,55,"(50,55]",College,20264.043978576894,1599.5507038263122,12.668584953326539,291.7502259500151,2019
+2001,55,"(50,55]",College,26002.73104820199,1537.5659618050558,16.911619855108896,297.03601152116664,2019
+2001,74,"(70,75]",HS,72793.27008416221,3443.596778958692,21.138732190989604,14.608140502550564,2019
+2001,74,"(70,75]",HS,72794.9441469013,3443.596778958692,21.139218328840965,15.874372334474874,2019
+2001,74,"(70,75]",HS,72793.27008416221,3443.596778958692,21.138732190989604,15.508857024996303,2019
+2001,74,"(70,75]",HS,72794.9441469013,3443.596778958692,21.139218328840965,15.245517375064313,2019
+2001,74,"(70,75]",HS,72794.9441469013,3443.596778958692,21.139218328840965,16.088342421621903,2019
+2001,38,"(35,40]",HS,346.86579954093344,60.2629436317771,5.755872160184829,5814.59949175986,2019
+2001,38,"(35,40]",HS,907.676817138485,60.2629436317771,15.0619396006381,5894.124384559739,2019
+2001,38,"(35,40]",HS,154.34858454475898,60.2629436317771,2.561251994059079,6115.480209312977,2019
+2001,38,"(35,40]",HS,589.7723029839327,60.2629436317771,9.786649430661754,6161.870581524581,2019
+2001,38,"(35,40]",HS,740.437949502678,60.2629436317771,12.28678695197756,5924.251406796638,2019
+2001,50,"(45,50]",NoHS,195.39660290742157,27.548774231669533,7.092751251443973,6641.579323952511,2019
+2001,50,"(45,50]",NoHS,195.41334353481253,27.548774231669533,7.093358923758181,6922.781613652684,2019
+2001,50,"(45,50]",NoHS,195.39660290742157,27.548774231669533,7.092751251443973,6954.206842553224,2019
+2001,50,"(45,50]",NoHS,195.39660290742157,27.548774231669533,7.092751251443973,6765.005597947939,2019
+2001,50,"(45,50]",NoHS,195.41334353481253,27.548774231669533,7.093358923758181,6855.080688386866,2019
+2001,44,"(40,45]",HS,303.50757459831675,36.157766179066265,8.393980233602875,7987.283790125361,2019
+2001,44,"(40,45]",HS,303.17276205049734,36.157766179066265,8.384720465005408,8283.715679497538,2019
+2001,44,"(40,45]",HS,303.34016832440705,36.157766179066265,8.389350349304141,8361.140123245914,2019
+2001,44,"(40,45]",HS,303.34016832440705,36.157766179066265,8.389350349304141,8112.428282882824,2019
+2001,44,"(40,45]",HS,303.34016832440705,36.157766179066265,8.389350349304141,8298.51123029499,2019
+2001,41,"(40,45]",HS,460.36725325172154,55.097548463339066,8.355494320369658,7389.4033704433095,2019
+2001,41,"(40,45]",HS,458.69319051262437,53.37575007385973,8.593662662874035,7654.92114638306,2019
+2001,41,"(40,45]",HS,458.69319051262437,53.37575007385973,8.593662662874035,7749.9370038792695,2019
+2001,41,"(40,45]",HS,460.36725325172154,53.37575007385973,8.62502639522029,7554.675982803959,2019
+2001,41,"(40,45]",HS,460.36725325172154,53.37575007385973,8.62502639522029,7690.91581430143,2019
+2001,59,"(55,60]",HS,2696.915072685539,163.57084700053784,16.487749022151064,3312.716765658105,2019
+2001,59,"(55,60]",HS,2696.915072685539,163.57084700053784,16.487749022151064,3368.6681207008087,2019
+2001,59,"(55,60]",HS,2698.589135424637,163.57084700053784,16.49798350323248,4232.637720395113,2019
+2001,59,"(55,60]",HS,2696.915072685539,163.57084700053784,16.487749022151064,3484.2963070591322,2019
+2001,59,"(55,60]",HS,2696.915072685539,163.57084700053784,16.487749022151064,3570.093019411716,2019
+2001,34,"(30,35]",College,6.04336648814078,79.20272591604991,0.0763025062362927,9893.556945139673,2019
+2001,34,"(30,35]",College,4.369303749043611,79.20272591604991,0.05516607791599001,10021.937483926386,2019
+2001,34,"(30,35]",College,4.369303749043611,79.20272591604991,0.05516607791599001,10101.941248409214,2019
+2001,34,"(30,35]",College,4.369303749043611,79.20272591604991,0.05516607791599001,9888.9753501964,2019
+2001,34,"(30,35]",College,5.691813312930376,79.20272591604991,0.07186385628902915,9939.832863691934,2019
+2001,46,"(45,50]",HS,70052.32716143841,726.5989203602841,96.4112733978506,12.741347796184815,2019
+2001,46,"(45,50]",HS,52846.47773527162,726.5989203602841,72.73129130038852,12.889723937197008,2019
+2001,46,"(45,50]",HS,65969.45554705433,848.8466060133176,77.71658045130869,13.629371123236291,2019
+2001,46,"(45,50]",HS,52777.84116296863,726.5989203602841,72.63682849514659,13.822782807955917,2019
+2001,46,"(45,50]",HS,70099.36832440704,857.4555979607142,81.75276771313209,13.82447659277727,2019
+2001,36,"(35,40]",NoHS,0.9876970160673297,13.085667760043028,0.07547929797539671,5059.033747916774,2019
+2001,36,"(35,40]",NoHS,0.9876970160673297,13.085667760043028,0.07547929797539671,5049.755230863578,2019
+2001,36,"(35,40]",NoHS,0.9876970160673297,13.085667760043028,0.07547929797539671,5054.582119296204,2019
+2001,36,"(35,40]",NoHS,0.9876970160673297,13.085667760043028,0.07547929797539671,5025.208567623487,2019
+2001,36,"(35,40]",NoHS,1.0044376434583013,13.085667760043028,0.07675860811057292,5081.655984912466,2019
+2001,23,"(20,25]",College,-28.459066564651877,22.383379063231494,-1.271437457421285,6136.3331717821475,2019
+2001,23,"(20,25]",College,-28.459066564651877,22.383379063231494,-1.271437457421285,6142.570276065928,2019
+2001,23,"(20,25]",College,-28.459066564651877,22.383379063231494,-1.271437457421285,6138.405700488804,2019
+2001,23,"(20,25]",College,-28.459066564651877,22.383379063231494,-1.271437457421285,6084.1871697277165,2019
+2001,23,"(20,25]",College,-28.459066564651877,22.383379063231494,-1.271437457421285,6114.395574768068,2019
+2001,56,"(55,60]",College,12034,4183.97008643481,2.8762155922233794,15.37873080728871,2019
+2001,56,"(55,60]",College,12869.357306809487,4166.752102540017,3.0885824234574533,15.402459567533606,2019
+2001,56,"(55,60]",College,11950.296863045141,4183.97008643481,2.8562099193276196,15.829716560097808,2019
+2001,56,"(55,60]",College,12288.45753634277,4183.97008643481,2.9370328378264894,15.345830169904364,2019
+2001,56,"(55,60]",College,11886.682478959448,4183.97008643481,2.841005607926842,15.1451268563127,2019
+2001,39,"(35,40]",HS,0.4017750573833206,61.984742021256444,0.006481838018226159,6170.773992552457,2019
+2001,39,"(35,40]",HS,2.243244070390207,61.984742021256444,0.03619026226842939,6334.421520876337,2019
+2001,39,"(35,40]",HS,0.4017750573833206,60.2629436317771,0.006667033390175478,6397.729013564034,2019
+2001,39,"(35,40]",HS,2.243244070390207,61.984742021256444,0.03619026226842939,6245.476053155906,2019
+2001,39,"(35,40]",HS,2.243244070390207,61.984742021256444,0.03619026226842939,6348.0225544665755,2019
+2001,21,"(20,25]",HS,-3.5657536342769705,39.60136295802496,-0.09004118464448946,5695.427727285323,2019
+2001,21,"(20,25]",HS,-3.0970160673297626,39.60136295802496,-0.07820478478511994,5701.2166855575315,2019
+2001,21,"(20,25]",HS,-3.431828615149197,39.60136295802496,-0.08665935611324102,5697.351341458646,2019
+2001,21,"(20,25]",HS,-2.0925784238714615,39.60136295802496,-0.05284107080075672,5647.028499659676,2019
+2001,21,"(20,25]",HS,-1.7577658760520276,39.60136295802496,-0.04438649947263565,5675.066382031363,2019
+2001,46,"(45,50]",HS,11.551032899770467,41.323161347504296,0.27952926453600313,5022.127956176168,2019
+2001,46,"(45,50]",HS,11.383626625860751,41.323161347504296,0.2754781157746118,5119.183828386334,2019
+2001,46,"(45,50]",HS,11.551032899770467,41.323161347504296,0.27952926453600313,5126.516170080692,2019
+2001,46,"(45,50]",HS,11.383626625860751,41.323161347504296,0.2754781157746118,5056.92627001033,2019
+2001,46,"(45,50]",HS,11.383626625860751,41.323161347504296,0.2754781157746118,5075.424474484534,2019
+2001,41,"(40,45]",College,1006.4465187452181,208.33760512700084,4.830844235401942,6674.806146232183,2019
+2001,41,"(40,45]",College,1309.4518745218056,208.33760512700084,6.2852401213097115,6068.021914502516,2019
+2001,41,"(40,45]",College,857.45493496557,208.33760512700084,4.115699297027403,5671.889077465988,2019
+2001,41,"(40,45]",College,842.3883703136955,208.33760512700084,4.043381269551326,6346.005519704295,2019
+2001,41,"(40,45]",College,1342.933129303749,208.33760512700084,6.4459468490343275,6102.236659875127,2019
+2001,25,"(20,25]",College,193.35424636572304,25.826975842190187,7.486522911051213,4158.606167002639,2019
+2001,25,"(20,25]",HS,374.1530221882173,25.826975842190187,14.486907970735464,4165.93281493477,2019
+2001,25,"(20,25]",HS,425.0445294567712,25.826975842190187,16.457386728276216,4185.536910183301,2019
+2001,25,"(20,25]",HS,105.29854628921194,25.826975842190187,4.077076113464254,4240.992221326,2019
+2001,25,"(20,25]",NoHS,65.12104055087988,25.826975842190187,2.521434989089976,4214.272233477068,2019
+2001,49,"(45,50]",HS,1555.7065034429993,34.43596778958692,45.176790527531764,9243.072070931576,2019
+2001,49,"(45,50]",HS,1557.3805661820966,34.43596778958692,45.225404312668466,9165.462085221483,2019
+2001,49,"(45,50]",HS,1554.0324407039022,34.43596778958692,45.12817674239507,8801.081440870514,2019
+2001,49,"(45,50]",HS,1555.7065034429993,34.43596778958692,45.176790527531764,9140.546267755304,2019
+2001,49,"(45,50]",HS,1552.358377964805,34.43596778958692,45.079562957258375,9636.801106672629,2019
+2001,68,"(65,70]",NoHS,2271.7031369548586,70.59373396865318,32.17995435633986,3970.7085596354964,2019
+2001,68,"(65,70]",NoHS,8465.735271614383,70.59373396865318,119.92190801769394,1807.4936254406614,2019
+2001,68,"(65,70]",NoHS,8465.735271614383,70.59373396865318,119.92190801769394,1880.1648610176155,2019
+2001,68,"(65,70]",NoHS,513.937260902831,68.87193557917384,7.462216018482866,9327.50981511612,2019
+2001,68,"(65,70]",NoHS,8465.735271614383,68.87193557917384,122.9199557181363,1773.0029226342626,2019
+2001,50,"(45,50]",College,29414.45416985463,12758.526066041952,2.305474317142639,13.21841064784427,2019
+2001,50,"(45,50]",College,35172.89517980107,9642.070981084336,3.6478569021948397,12.889723937197008,2019
+2001,50,"(45,50]",College,23944.11935730681,9125.531464240532,2.623860259661002,13.364390893692592,2019
+2001,50,"(45,50]",College,85591.47972456006,13137.321711727409,6.515139204374843,13.433686857337898,2019
+2001,50,"(45,50]",College,32859.005661820964,10606.278079192769,3.0980712948006945,13.273480227856766,2019
+2001,69,"(65,70]",College,23347.65080336649,213.5030002954389,109.35514147838076,1449.8473079898063,2019
+2001,69,"(65,70]",College,29326.23106350421,292.70572621148875,100.19015153231105,1499.9110352301152,2019
+2001,69,"(65,70]",College,23508.863045141545,421.8406054224397,55.72925589180609,1486.94076987342,2019
+2001,69,"(65,70]",College,27615.004131599086,278.93133909565404,99.0028736861621,1444.8433514020944,2019
+2001,69,"(65,70]",College,22420.722264728385,354.6904682327453,63.21208003259922,1435.8447710207934,2019
+2001,38,"(35,40]",HS,237.04728385615914,110.19509692667813,2.151159992298806,8962.812961233409,2019
+2001,38,"(35,40]",HS,243.74353481254784,110.19509692667813,2.2119272237196768,9295.449643489836,2019
+2001,38,"(35,40]",HS,236.87987758224943,110.19509692667813,2.149640811513285,9382.330343635007,2019
+2001,38,"(35,40]",HS,241.90206579954094,110.19509692667813,2.195216235078937,9103.242012108029,2019
+2001,38,"(35,40]",HS,237.04728385615914,110.19509692667813,2.151159992298806,9312.052253080337,2019
+2001,67,"(65,70]",College,2833.5185921958687,206.6158067375215,13.713948787061996,2149.998953152172,2019
+2001,67,"(65,70]",College,3227.760367253252,206.6158067375215,15.62203985367732,3633.9889219487354,2019
+2001,67,"(65,70]",College,2859.801377199694,206.6158067375215,13.841154858169682,2249.9731088251224,2019
+2001,67,"(65,70]",College,2906.0055087987757,206.6158067375215,14.064778269798484,2129.024599093268,2019
+2001,67,"(65,70]",College,3189.256924254017,153.24005666366176,20.812162261555038,2133.974957820451,2019
+2001,55,"(50,55]",College,15095.358530986992,516.5395168438037,29.224014888974462,3254.2010593292825,2019
+2001,55,"(50,55]",College,9465.485539403213,516.5395168438037,18.324804261327174,3259.8372077980703,2019
+2001,55,"(50,55]",College,16933.981637337412,516.5395168438037,32.783516236683354,3275.3970364209385,2019
+2001,55,"(50,55]",College,9360.019586840092,516.5395168438037,18.12062636375305,3252.228847173108,2019
+2001,55,"(50,55]",College,9550.929701606734,516.5395168438037,18.49022076755231,3237.745490472736,2019
+2001,36,"(35,40]",College,29.79831675592961,118.80408887407486,0.25081894940092525,5129.057804547488,2019
+2001,36,"(35,40]",College,87.88829380260137,118.80408887407486,0.7397749912105941,5217.94156527237,2019
+2001,36,"(35,40]",College,30.97016067329763,118.80408887407486,0.2606826159503999,5470.292207091845,2019
+2001,36,"(35,40]",College,96.25860749808723,118.80408887407486,0.8102297522782699,5274.40543503177,2019
+2001,36,"(35,40]",College,28.79387911247131,118.80408887407486,0.24236437807280417,5168.624266794541,2019
+2001,48,"(45,50]",HS,27.588553940321347,82.64632269500859,0.3338146579386472,4548.669686483539,2019
+2001,48,"(45,50]",HS,25.914491201224177,82.64632269500859,0.3135589141316904,4568.438159912577,2019
+2001,48,"(45,50]",HS,27.588553940321347,82.64632269500859,0.3338146579386472,4559.287666119043,2019
+2001,48,"(45,50]",HS,27.588553940321347,82.64632269500859,0.3338146579386472,4526.00636870571,2019
+2001,48,"(45,50]",HS,25.914491201224177,82.64632269500859,0.3135589141316904,4564.83410430564,2019
+2001,51,"(50,55]",NoHS,0,13.430027437938898,0,5196.175967488579,2019
+2001,51,"(50,55]",NoHS,0,13.430027437938898,0,5190.39212441158,2019
+2001,51,"(50,55]",NoHS,0,13.430027437938898,0,5200.629491667588,2019
+2001,51,"(50,55]",NoHS,0,13.257847598990962,0,5188.709361728127,2019
+2001,51,"(50,55]",NoHS,0,13.430027437938898,0,5195.914288848599,2019
+2001,35,"(30,35]",HS,0,17.21798389479346,0,5829.930500970939,2019
+2001,35,"(30,35]",HS,0,17.21798389479346,0,5779.317741383849,2019
+2001,35,"(30,35]",HS,0,17.21798389479346,0,5808.7587167459305,2019
+2001,35,"(30,35]",HS,0,17.21798389479346,0,5795.640001043796,2019
+2001,35,"(30,35]",HS,0,17.21798389479346,0,5816.785529010995,2019
+2001,44,"(40,45]",College,262.6269625095639,37.87956456854561,6.933209647495361,6479.700243703,2019
+2001,44,"(40,45]",College,264.30102524866106,37.87956456854561,6.97740399761963,5894.124384559739,2019
+2001,44,"(40,45]",College,262.6269625095639,37.87956456854561,6.933209647495361,5509.877016380887,2019
+2001,44,"(40,45]",College,264.30102524866106,37.87956456854561,6.97740399761963,6161.870581524581,2019
+2001,44,"(40,45]",College,264.30102524866106,37.87956456854561,6.97740399761963,5924.251406796638,2019
+2001,59,"(55,60]",College,8.70512624330528,103.30790336876075,0.08426389423694007,5561.983910749956,2019
+2001,59,"(55,60]",College,8.872532517214998,160.12725022157917,0.0554092604783849,5685.578641443213,2019
+2001,59,"(55,60]",College,9.876970160673299,96.42070981084338,0.10243619010946696,5702.924084825733,2019
+2001,59,"(55,60]",College,8.70512624330528,153.24005666366176,0.05680711971029668,5685.757899881484,2019
+2001,59,"(55,60]",College,9.20734506503443,70.59373396865318,0.13042722841552634,5597.441452696245,2019
+2001,27,"(25,30]",HS,88.15614384085693,122.24768565303354,0.7211273029009638,7230.077098358456,2019
+2001,27,"(25,30]",HS,88.22310635042082,122.24768565303354,0.7216750638602506,7323.89585318078,2019
+2001,27,"(25,30]",HS,88.39051262433053,122.24768565303354,0.7230444662584673,7382.361518115764,2019
+2001,27,"(25,30]",HS,88.18962509563887,122.24768565303354,0.7214011833806072,7226.7289309746775,2019
+2001,27,"(25,30]",HS,87.98873756694721,122.24768565303354,0.719757900502747,7316.341377077751,2019
+2001,41,"(40,45]",HS,193.11987758224944,94.69891142136402,2.039304092134281,6620.662254989596,2019
+2001,41,"(40,45]",HS,199.12976281560827,94.69891142136402,2.102767178912732,6866.374749087768,2019
+2001,41,"(40,45]",HS,228.844376434583,94.69891142136402,2.416547064795043,6930.551896890148,2019
+2001,41,"(40,45]",HS,188.91798010711554,94.69891142136402,1.9949329646095146,6724.394567674343,2019
+2001,41,"(40,45]",HS,178.84012241775056,94.69891142136402,1.888512969510274,6878.638786184783,2019
+2001,67,"(65,70]",HS,41.44979342004591,101.5861049792814,0.4080262101642704,8469.815030976819,2019
+2001,67,"(65,70]",HS,43.29126243305279,101.5861049792814,0.42615338428303845,8774.227985113495,2019
+2001,67,"(65,70]",HS,43.29126243305279,101.5861049792814,0.42615338428303845,9138.320038897898,2019
+2001,67,"(65,70]",HS,41.78460596786534,101.5861049792814,0.41132206000404636,8490.728974354939,2019
+2001,67,"(65,70]",HS,44.96532517214996,101.5861049792814,0.4426326334819185,8833.092896274013,2019
+2001,60,"(55,60]",HS,1.2722876817138487,13.774387115834767,0.09236619175972277,4568.765175436487,2019
+2001,60,"(55,60]",HS,1.2722876817138487,13.774387115834767,0.09236619175972277,4688.9349816376935,2019
+2001,60,"(55,60]",HS,1.2722876817138487,13.774387115834767,0.09236619175972277,4618.251927744872,2019
+2001,60,"(55,60]",HS,1.2722876817138487,13.774387115834767,0.09236619175972277,4662.144142194243,2019
+2001,60,"(55,60]",HS,1.2722876817138487,13.774387115834767,0.09236619175972277,4599.0191271773465,2019
+2001,45,"(40,45]",College,11207.850038255547,860.899194739673,13.018771659607237,15.952650916852747,2019
+2001,45,"(40,45]",College,8381.195103289976,860.899194739673,9.735396611474776,16.237480050454682,2019
+2001,45,"(40,45]",College,8640.507421576129,860.899194739673,10.036607624181746,16.540287220525368,2019
+2001,45,"(40,45]",College,8782.16661055853,860.899194739673,10.201155564112435,16.02529921880758,2019
+2001,45,"(40,45]",College,9221.909410864575,860.899194739673,10.71195032730073,16.12728258285788,2019
+2001,47,"(45,50]",College,22549.457689364957,3478.0327467482784,6.483394301116673,217.86228905619365,2019
+2001,47,"(45,50]",College,22547.783626625864,3460.8147628534853,6.515166274901963,209.93323562398342,2019
+2001,47,"(45,50]",College,22551.131752104055,3460.8147628534853,6.516133713412145,215.18735500683434,2019
+2001,47,"(45,50]",College,22551.131752104055,3478.0327467482784,6.4838756257219865,221.75930917009774,2019
+2001,47,"(45,50]",College,22546.109563886766,3460.8147628534853,6.514682555646872,218.9069485132089,2019
+2001,64,"(60,65]",College,80.35501147666412,77.48092752657055,1.0370940829161854,4561.17891753951,2019
+2001,64,"(60,65]",College,80.35501147666412,77.48092752657055,1.0370940829161854,4681.149186424553,2019
+2001,64,"(60,65]",College,80.35501147666412,77.48092752657055,1.0370940829161854,4610.583499009366,2019
+2001,64,"(60,65]",College,80.35501147666412,77.48092752657055,1.0370940829161854,4654.402832133985,2019
+2001,64,"(60,65]",College,80.35501147666412,77.48092752657055,1.0370940829161854,4591.382633763438,2019
+2001,61,"(60,65]",College,4244.418668706963,451.1111780435886,9.408808460731262,1765.4780635845138,2019
+2001,61,"(60,65]",College,4212.611476664117,451.1111780435886,9.338299917403228,1746.4577159415596,2019
+2001,61,"(60,65]",College,4246.09273144606,451.1111780435886,9.412519436695893,1792.043536008547,2019
+2001,61,"(60,65]",College,4179.130221882173,451.1111780435886,9.264080398110561,1744.7209780774751,2019
+2001,61,"(60,65]",College,4246.09273144606,451.1111780435886,9.412519436695893,1726.0945736160259,2019
+2001,69,"(65,70]",HS,519.1268553940322,103.30790336876075,5.02504492362983,11095.78955353685,2019
+2001,69,"(65,70]",HS,519.1268553940322,103.30790336876075,5.02504492362983,9992.13633528409,2019
+2001,69,"(65,70]",HS,509.08247895944913,103.30790336876075,4.927817353356437,9426.581545847313,2019
+2001,69,"(65,70]",HS,536.2022953328233,103.30790336876075,5.190331793094597,10537.263381903696,2019
+2001,69,"(65,70]",HS,534.1934200459067,103.30790336876075,5.170886279039919,10051.099916708343,2019
+2001,45,"(40,45]",College,741.6097934200459,235.88637935867035,3.143928002271009,326.54560435998917,2019
+2001,45,"(40,45]",College,721.5210405508799,234.16458096919104,3.0812560873405967,328.117926241058,2019
+2001,45,"(40,45]",College,718.1729150726856,234.16458096919104,3.0669579152415682,309.57636409851085,2019
+2001,45,"(40,45]",College,708.1285386381024,234.16458096919104,3.024063398944483,328.4798811390723,2019
+2001,45,"(40,45]",College,883.9051262433053,234.16458096919104,3.7747174341434686,347.2844211425292,2019
+2001,59,"(55,60]",College,330.3762815608263,43.04495973698364,7.675144397381595,6400.149052559047,2019
+2001,59,"(55,60]",College,330.3762815608263,43.04495973698364,7.675144397381595,6758.342005776581,2019
+2001,59,"(55,60]",College,330.4934659525631,43.04495973698364,7.677866769349249,6792.349800918356,2019
+2001,59,"(55,60]",College,330.3762815608263,43.04495973698364,7.675144397381595,6587.398177390091,2019
+2001,59,"(55,60]",College,330.3762815608263,43.04495973698364,7.675144397381595,6685.2808883055895,2019
+2001,77,"(75,80]",HS,253.4530986993114,39.60136295802496,6.400110495387654,11103.441092498682,2019
+2001,77,"(75,80]",HS,253.2856924254017,39.60136295802496,6.395883209723594,11562.915579465192,2019
+2001,77,"(75,80]",HS,253.4530986993114,39.60136295802496,6.400110495387654,11620.14616558679,2019
+2001,77,"(75,80]",HS,253.2856924254017,39.60136295802496,6.395883209723594,11457.948665004085,2019
+2001,77,"(75,80]",HS,253.2856924254017,39.60136295802496,6.395883209723594,11472.670579219764,2019
+2001,60,"(55,60]",NoHS,0.0016740627390971691,12.569128243199225,1.3318845242930462e-4,5434.417939005288,2019
+2001,60,"(55,60]",NoHS,0.0016740627390971691,8.092452430552926,2.0686717079445183e-4,5482.9317979052275,2019
+2001,60,"(55,60]",NoHS,0.0016740627390971691,8.26463226950086,2.0255743806956746e-4,5353.785075677182,2019
+2001,60,"(55,60]",NoHS,0.0016740627390971691,8.953351625292598,1.8697609667960073e-4,5434.824323802095,2019
+2001,60,"(55,60]",NoHS,0.0016740627390971691,9.814250820032271,1.7057468469016207e-4,5462.531769986328,2019
+2001,53,"(50,55]",HS,387.8803366488141,75.75912913709122,5.119915461896594,9852.062666698475,2019
+2001,53,"(50,55]",HS,388.04774292272384,77.48092752657055,5.008300175416079,10272.822292668625,2019
+2001,53,"(50,55]",HS,388.04774292272384,75.75912913709122,5.122125179402808,10321.407416769878,2019
+2001,53,"(50,55]",HS,387.8803366488141,77.48092752657055,5.0061395627433365,10130.243482386666,2019
+2001,53,"(50,55]",HS,388.04774292272384,75.75912913709122,5.122125179402808,10109.213609565659,2019
+2001,29,"(25,30]",HS,95.00306044376435,53.37575007385973,1.7798918106500055,7474.377570306124,2019
+2001,29,"(25,30]",HS,93.32899770466717,53.37575007385973,1.7485280783037496,7521.38037553078,2019
+2001,29,"(25,30]",HS,95.00306044376435,53.37575007385973,1.7798918106500055,7593.064451751881,2019
+2001,29,"(25,30]",HS,95.00306044376435,55.097548463339066,1.724270191567193,7494.843554921509,2019
+2001,29,"(25,30]",HS,96.67712318286152,53.37575007385973,1.8112555429962611,7468.490604785024,2019
+2001,58,"(55,60]",HS,148313.5883703137,9332.147270978054,15.892761233157191,18.01293583972238,2019
+2001,58,"(55,60]",HS,141637.42616679418,10744.021950351118,13.182905509809148,19.60781902692309,2019
+2001,58,"(55,60]",HS,148867.70313695483,11191.689531615748,13.301629098664137,19.13956903634376,2019
+2001,58,"(55,60]",HS,143584.3611323642,9383.801222662434,15.30130037128232,18.800585208567487,2019
+2001,58,"(55,60]",HS,150752.69778117826,9745.378884453097,15.469146922720016,19.8680209352054,2019
+2001,24,"(20,25]",NoHS,8.053915837796481,12.913487921095093,0.623682454113721,6253.987297660808,2019
+2001,24,"(20,25]",NoHS,8.053915837796481,12.913487921095093,0.623682454113721,6212.852692959821,2019
+2001,24,"(20,25]",HS,8.23806273909717,12.913487921095093,0.6379424977538186,6107.47760443725,2019
+2001,24,"(20,25]",NoHS,8.070656465187453,12.913487921095093,0.6249788217173662,6156.520140325401,2019
+2001,24,"(20,25]",HS,8.23806273909717,12.913487921095093,0.6379424977538186,6182.321873857349,2019
+2001,64,"(60,65]",HS,51.72853863810253,49.93215329490103,1.0359765246371808,7286.559033833236,2019
+2001,64,"(60,65]",HS,51.72853863810253,49.93215329490103,1.0359765246371808,7558.546473678808,2019
+2001,64,"(60,65]",HS,51.39372609028309,49.93215329490103,1.0292711749631538,7340.378257789385,2019
+2001,64,"(60,65]",HS,51.56113236419281,49.93215329490103,1.0326238498001674,7303.220865621673,2019
+2001,64,"(60,65]",HS,51.72853863810253,49.93215329490103,1.0359765246371808,7547.028816479241,2019
+2001,33,"(30,35]",HS,215.38491201224178,48.21035490542169,4.467606854062379,5365.33431741634,2019
+2001,33,"(30,35]",HS,278.84863045141543,48.21035490542169,5.78399870729963,5362.436932757137,2019
+2001,33,"(30,35]",HS,267.0130068859985,48.21035490542169,5.538499092359316,5374.7194342157745,2019
+2001,33,"(30,35]",HS,289.0604131599082,48.21035490542169,5.9958159139666645,5384.992174204918,2019
+2001,33,"(30,35]",HS,239.0896403978577,48.21035490542169,4.959300566587821,5360.726559219866,2019
+2001,48,"(45,50]",College,5180.38714613619,983.1468803927065,5.269189425762043,2990.3188104891906,2019
+2001,48,"(45,50]",College,1858.5444529456772,328.86349239055505,5.65141615274975,1683.9475103706488,2019
+2001,48,"(45,50]",College,3187.917674062739,256.54796003242257,12.426205508162488,3024.64120391865,2019
+2001,48,"(45,50]",College,3083.623565416986,516.5395168438037,5.969772814786293,2934.80257284236,2019
+2001,48,"(45,50]",College,2617.0622800306046,984.8686787821858,2.6572702903565437,1728.0090429010131,2019
+2001,42,"(40,45]",College,5.357000765110941,29.27057262114888,0.1830166028675621,4264.988676763724,2019
+2001,42,"(40,45]",College,5.357000765110941,29.27057262114888,0.1830166028675621,4271.592612073406,2019
+2001,42,"(40,45]",College,5.357000765110941,29.27057262114888,0.1830166028675621,4290.599998071853,2019
+2001,42,"(40,45]",College,5.357000765110941,29.27057262114888,0.1830166028675621,4254.825509387189,2019
+2001,42,"(40,45]",College,5.524407039020658,29.27057262114888,0.18873587170717343,4297.736712350248,2019
+2001,79,"(75,80]",HS,202.39418515684773,24.105177452710844,8.39629517575224,7929.189264347791,2019
+2001,79,"(75,80]",HS,202.39418515684773,24.105177452710844,8.39629517575224,8221.25553698984,2019
+2001,79,"(75,80]",HS,202.39418515684773,24.105177452710844,8.39629517575224,8391.661767141044,2019
+2001,79,"(75,80]",HS,202.39418515684773,24.105177452710844,8.39629517575224,8160.570743583294,2019
+2001,79,"(75,80]",HS,202.39418515684773,24.105177452710844,8.39629517575224,8281.429154793106,2019
+2001,34,"(30,35]",HS,-139.6084621270084,49.93215329490103,-2.7959631803274334,4655.397984941879,2019
+2001,34,"(30,35]",HS,-150.4982402448355,46.488556515942335,-3.2373179879918426,4663.198998192739,2019
+2001,34,"(30,35]",HS,-157.1861208875287,56.819346852818406,-2.7664190032788416,4679.511829040546,2019
+2001,34,"(30,35]",HS,-143.61784238714614,51.653951684380374,-2.7803844179181105,4703.502065653621,2019
+2001,34,"(30,35]",HS,-146.3047130833971,46.488556515942335,-3.147112408904862,4666.950028111238,2019
+2001,83,"(80,85]",NoHS,125.35381790359602,12.913487921095093,9.707200616095495,10335.518313880424,2019
+2001,83,"(80,85]",NoHS,108.91452180566182,12.913487921095093,8.434167629315878,9745.387121773038,2019
+2001,83,"(80,85]",NoHS,140.33667941851567,12.913487921095093,10.867449621357975,10347.172455304051,2019
+2001,83,"(80,85]",NoHS,103.54078041315991,12.913487921095093,8.018033628545759,9842.97773308491,2019
+2001,83,"(80,85]",NoHS,122.8762050497322,12.913487921095093,9.515338210756001,10335.83562318229,2019
+2001,69,"(65,70]",College,17005.129303749043,401.17902474868754,42.387882353524454,301.96871782530707,2019
+2001,69,"(65,70]",College,11914.471920428463,387.4046376328528,30.75459290634493,291.1328201627975,2019
+2001,69,"(65,70]",College,13739.200306044377,253.10436325346384,54.28274775447337,303.0070020196549,2019
+2001,69,"(65,70]",College,15826.923947972457,404.6226215276463,39.11527212249813,295.45792084587,2019
+2001,69,"(65,70]",College,9870.441315990818,263.43515359033995,37.468201116924746,292.42508373123707,2019
+2001,67,"(65,70]",NoHS,128.06579954093345,48.21035490542169,2.656396116398042,8182.505333851029,2019
+2001,67,"(65,70]",NoHS,128.23320581484316,49.93215329490103,2.5681489251523644,8476.592112819268,2019
+2001,67,"(65,70]",NoHS,128.06579954093345,48.21035490542169,2.656396116398042,8828.333580750716,2019
+2001,67,"(65,70]",NoHS,128.23320581484316,48.21035490542169,2.6598685296220914,8202.709842759132,2019
+2001,67,"(65,70]",NoHS,128.23320581484316,48.21035490542169,2.6598685296220914,8533.460231873341,2019
+2001,43,"(40,45]",College,18660.609946442237,1561.6711392577668,11.949129030655762,2.1940255534643414,2019
+2001,43,"(40,45]",College,18660.593205814843,1561.6711392577668,11.949118310967746,2.0705760280195924,2019
+2001,43,"(40,45]",College,18659.940321346596,1563.392937647246,11.93554088163401,1.8990867778927474,2019
+2001,43,"(40,45]",College,18661.112165263963,1561.6711392577668,11.949450621296135,2.451954054776227,2019
+2001,43,"(40,45]",College,18663.020596786533,1561.6711392577668,11.95067266572956,1.8229172432359317,2019
+2001,23,"(20,25]",HS,6.361438408569243,30.992371010628222,0.20525820391049504,5518.320403887657,2019
+2001,23,"(20,25]",HS,-0.6696250956388676,48.21035490542169,-0.013889652896198909,5536.651324967938,2019
+2001,23,"(20,25]",HS,-4.017750573833205,56.819346852818406,-0.07071096019883082,5546.230851782712,2019
+2001,23,"(20,25]",HS,-0.5022188217291507,34.43596778958692,-0.014584135541008854,5487.374920511376,2019
+2001,23,"(20,25]",HS,5.189594491201225,37.87956456854561,0.1370024853852347,5496.317336216508,2019
+2001,28,"(25,30]",HS,216.45631216526397,17.21798389479346,12.571524836349633,5932.675736964721,2019
+2001,28,"(25,30]",HS,218.13037490436116,17.21798389479346,12.668752406623028,6023.499829921062,2019
+2001,28,"(25,30]",HS,223.15256312165263,17.21798389479346,12.960435117443202,6086.21604800765,2019
+2001,28,"(25,30]",HS,219.13481254781942,17.21798389479346,12.72708894878706,5947.213575333812,2019
+2001,28,"(25,30]",HS,226.50068859984697,17.21798389479346,13.154890257989987,6000.976558143577,2019
+2001,53,"(50,55]",HS,63.58090283091048,17.21798389479346,3.692703118983442,6558.179443739759,2019
+2001,53,"(50,55]",HS,54.992960979342,17.21798389479346,3.193925683480939,6906.3933964354965,2019
+2001,53,"(50,55]",HS,49.30114766641163,17.21798389479346,2.8633519445514053,6933.295679024396,2019
+2001,53,"(50,55]",HS,55.82999234889059,17.21798389479346,3.2425394686176356,6703.566778698771,2019
+2001,53,"(50,55]",HS,62.526243305279266,17.21798389479346,3.631449749711205,6836.3887798020205,2019
+2001,61,"(60,65]",College,3085.8165876052026,459.72016999098537,6.712380245717111,4106.285606593821,2019
+2001,61,"(60,65]",College,1345.4442234123949,177.34523411637264,7.5865823523034415,8436.606286220718,2019
+2001,61,"(60,65]",College,2034.3545218056618,203.1722099585628,10.012956605731516,5245.521000226997,2019
+2001,61,"(60,65]",College,1385.604988523336,222.1119922428356,6.238316871285592,8834.938806159951,2019
+2001,61,"(60,65]",College,1309.7866870696253,204.89400834804215,6.392508485874135,8490.736385083994,2019
+2001,54,"(50,55]",College,1466.4454781943382,58.54114524229776,25.049825590613604,8268.711931508778,2019
+2001,54,"(50,55]",College,1502.5566855394034,32.71416940010757,45.9298436455019,8040.857384998252,2019
+2001,54,"(50,55]",College,1464.2859372609028,43.04495973698364,34.01759337697343,8673.616855503527,2019
+2001,54,"(50,55]",College,1469.475531752104,30.992371010628222,47.414104950156165,8220.574856814781,2019
+2001,54,"(50,55]",College,1506.1040244835501,51.653951684380374,29.15757604928764,8214.20800909197,2019
+2001,38,"(35,40]",HS,152.6745218056618,137.74387115834767,1.108394301116673,8422.818810608514,2019
+2001,38,"(35,40]",HS,152.84192807957155,137.74387115834767,1.1096096457450904,8677.743638603584,2019
+2001,38,"(35,40]",HS,154.34858454475898,137.74387115834767,1.120547747400847,8772.300858338695,2019
+2001,38,"(35,40]",HS,154.5159908186687,137.74387115834767,1.1217630920292645,8582.18587605117,2019
+2001,38,"(35,40]",HS,154.34858454475898,137.74387115834767,1.120547747400847,8641.025817962243,2019
+2001,25,"(20,25]",HS,239.65882172915073,111.91689531615746,2.1413998400521312,9625.249654334135,2019
+2001,25,"(20,25]",HS,336.11831675592964,111.91689531615746,3.0032848553064193,9685.778270996308,2019
+2001,25,"(20,25]",HS,161.48009181331292,111.91689531615746,1.442857142857143,9778.090590434047,2019
+2001,25,"(20,25]",HS,169.74996174445295,111.91689531615746,1.5167500962649212,9651.605054431591,2019
+2001,25,"(20,25]",HS,150.6154246365723,111.91689531615746,1.3457791534610943,9617.6686200187,2019
+2001,44,"(40,45]",College,101761.85438408569,4683.29161938382,21.72870336813971,31.36574549056442,2019
+2001,44,"(40,45]",College,97935.18300535578,2289.9918580075296,42.76660751561229,34.21214188710958,2019
+2001,44,"(40,45]",College,95505.99911247131,6525.615896126721,14.635553276918872,33.339071345827016,2019
+2001,44,"(40,45]",College,107912.5969303749,4528.32976433068,23.830551781010847,32.80550343108766,2019
+2001,44,"(40,45]",College,106904.69230298394,3340.288875589931,32.004624834761756,34.65309021574954,2019
+2001,66,"(65,70]",NoHS,273.37444529456775,58.54114524229776,4.66978300754264,6774.532190038294,2019
+2001,66,"(65,70]",NoHS,273.37444529456775,58.54114524229776,4.66978300754264,7106.767508690989,2019
+2001,66,"(65,70]",NoHS,291.7891354246366,58.54114524229776,4.984342793721262,7414.746488777573,2019
+2001,66,"(65,70]",NoHS,283.41882172915075,58.54114524229776,4.8413610727309795,6835.028000579475,2019
+2001,66,"(65,70]",NoHS,306.8557000765111,58.54114524229776,5.2417098915037705,7132.48255985162,2019
+2001,62,"(60,65]",HS,211.43412394797247,32.71416940010757,6.46307480291024,6263.932694840632,2019
+2001,62,"(60,65]",HS,212.43856159143078,30.992371010628222,6.854543704274164,6546.940744668148,2019
+2001,62,"(60,65]",HS,213.61040550879878,30.992371010628222,6.892354426047149,6584.106571953342,2019
+2001,62,"(60,65]",HS,209.59265493496557,32.71416940010757,6.406785156962487,6424.584734147316,2019
+2001,62,"(60,65]",HS,213.77781178270848,32.71416940010757,6.534716170480108,6478.499110181561,2019
+2001,54,"(50,55]",HS,259.4797245600612,91.25531464240532,2.8434478098822296,5415.68099842444,2019
+2001,54,"(50,55]",HS,259.4797245600612,91.25531464240532,2.8434478098822296,5476.949380516821,2019
+2001,54,"(50,55]",HS,259.4797245600612,91.25531464240532,2.8434478098822296,5472.471920128184,2019
+2001,54,"(50,55]",HS,259.4797245600612,91.25531464240532,2.8434478098822296,5407.39580239683,2019
+2001,54,"(50,55]",HS,259.4797245600612,91.25531464240532,2.8434478098822296,5480.422826706226,2019
+2001,50,"(45,50]",College,775.5932670237185,141.18746793730637,5.493357720446669,6288.877368722897,2019
+2001,50,"(45,50]",College,400.9045447589901,139.46566954782702,2.8745751270459268,6428.878391312366,2019
+2001,50,"(45,50]",College,600.6704514154552,139.46566954782702,4.306941295036532,5332.356503594506,2019
+2001,50,"(45,50]",College,656.0651874521806,139.46566954782702,4.704133924708946,5977.86002776811,2019
+2001,50,"(45,50]",College,510.4217291507269,141.18746793730637,3.61520563126309,5737.761577355131,2019
+2001,69,"(65,70]",HS,1258.895179801071,130.8566776004303,9.62041221652514,7969.456508755044,2019
+2001,69,"(65,70]",HS,1156.9447589900535,48.21035490542169,23.997847791407665,7169.466449635615,2019
+2001,69,"(65,70]",HS,1319.1614384085692,139.46566954782702,9.458682145115208,6767.858082807904,2019
+2001,69,"(65,70]",HS,739.8520275439939,189.39782284272803,3.90633860748416,7564.647921738346,2019
+2001,69,"(65,70]",HS,1812.1729150726856,98.14250820032271,18.464709617710042,3763.6764847148524,2019
+2001,66,"(65,70]",College,21432.523029839325,1279.296203383154,16.753370308737015,282.46378812830255,2019
+2001,66,"(65,70]",College,20484.83611323642,1413.596477762543,14.491289724815994,282.421730201525,2019
+2001,66,"(65,70]",College,21567.619892884468,1284.461598551592,16.791175319842136,283.85439531716236,2019
+2001,66,"(65,70]",College,21431.853404743688,1375.7169131939972,15.578679886245949,294.9548913860308,2019
+2001,66,"(65,70]",College,21285.038102524864,1348.168138962328,15.788118326923046,297.43930329297586,2019
+2001,56,"(55,60]",College,131263.76159143075,5854.114524229776,22.422479274728758,30.992217645997158,2019
+2001,56,"(55,60]",College,126453.34231063505,6525.615896126721,19.37799348344904,33.75740560388185,2019
+2001,56,"(55,60]",College,126848.42111706198,6215.692186020438,20.407770739090598,32.94195787638806,2019
+2001,56,"(55,60]",College,127187.41882172915,6181.256218230852,20.57630590471328,32.37450870997933,2019
+2001,56,"(55,60]",College,132851.61009946442,6680.577751179862,19.886245628381676,34.19505039073404,2019
+2001,34,"(30,35]",HS,265.70723794950266,111.91689531615746,2.3741476851988983,10150.750746952683,2019
+2001,34,"(30,35]",HS,264.20058148431525,111.91689531615746,2.3606854062379674,10274.112352587184,2019
+2001,34,"(30,35]",HS,265.70723794950266,111.91689531615746,2.3741476851988983,10380.050742056188,2019
+2001,34,"(30,35]",HS,264.04991583779645,111.91689531615746,2.3593391783418736,10362.190970668194,2019
+2001,34,"(30,35]",HS,265.70723794950266,111.91689531615746,2.3741476851988983,10218.583021369237,2019
+2001,35,"(30,35]",College,92.14041315990819,445.9457828751505,0.20661797173156438,7471.1696157286015,2019
+2001,35,"(30,35]",College,95.5052792654935,315.0891052747202,0.30310562208180525,7669.303341380864,2019
+2001,35,"(30,35]",College,91.82234123947973,356.4122666222246,0.2576295763041339,7745.951913567614,2019
+2001,35,"(30,35]",College,93.47966335118593,287.54033104305074,0.3251010493452833,7561.613985606096,2019
+2001,35,"(30,35]",College,99.00407039020659,502.765129727969,0.19691912691672692,7685.770583419629,2019
+2001,47,"(45,50]",College,66157.28538638103,1980.0681479012476,33.41162043160168,10.33298516436616,2019
+2001,47,"(45,50]",College,72232.45906656465,1945.6321801116608,37.12544426687022,10.885853919327733,2019
+2001,47,"(45,50]",College,67210.27084927315,2152.2479868491823,31.227939930689256,11.043925163074842,2019
+2001,47,"(45,50]",College,60934.20964039786,2048.940083480422,29.73938092757318,10.89346443861697,2019
+2001,47,"(45,50]",College,54087.29303749044,1928.4141962168671,28.047549713955668,10.748342561587899,2019
+2001,49,"(45,50]",HS,344.187299158378,239.32997613762907,1.438128665338811,5676.2084581428635,2019
+2001,49,"(45,50]",HS,444.04514154552413,199.7286131796041,2.2232425012945973,5991.359960838845,2019
+2001,49,"(45,50]",HS,512.9328232593726,234.16458096919104,2.190479965571134,5358.2921070693865,2019
+2001,49,"(45,50]",HS,411.31721499617447,275.48774231669535,1.4930508760107817,5818.955926594559,2019
+2001,49,"(45,50]",HS,429.2296863045142,251.3825648639845,1.7074759601436853,5914.555064018494,2019
+2001,59,"(55,60]",NoHS,0,12.396948404251289,0,6200.450911377435,2019
+2001,59,"(55,60]",NoHS,0,12.396948404251289,0,6223.427900288118,2019
+2001,59,"(55,60]",NoHS,0,12.396948404251289,0,6167.513596140706,2019
+2001,59,"(55,60]",NoHS,0,12.396948404251289,0,6189.2646725361765,2019
+2001,59,"(55,60]",NoHS,0,12.396948404251289,0,6235.814864322919,2019
+2001,39,"(35,40]",NoHS,0,18.939782284272805,0,7718.190542189649,2019
+2001,39,"(35,40]",NoHS,0,18.939782284272805,0,7747.432071909725,2019
+2001,39,"(35,40]",NoHS,0,18.939782284272805,0,7635.364827196603,2019
+2001,39,"(35,40]",NoHS,0,18.939782284272805,0,7683.028529031774,2019
+2001,39,"(35,40]",NoHS,0,18.939782284272805,0,7746.360940685101,2019
+2001,40,"(35,40]",College,-171.10595256312166,172.17983894793457,-0.9937629957643436,7457.458244685882,2019
+2001,40,"(35,40]",College,-201.2390818668707,172.17983894793457,-1.1687726222564498,7535.329009767804,2019
+2001,40,"(35,40]",College,-212.4218209640398,172.17983894793457,-1.233720639199076,7919.166753177307,2019
+2001,40,"(35,40]",College,-198.94561591430758,172.17983894793457,-1.1554524451289951,7696.545641726059,2019
+2001,40,"(35,40]",College,-192.03173680183627,172.17983894793457,-1.115297458606084,7519.581464722299,2019
+2001,64,"(60,65]",HS,136.46959449120124,61.984742021256444,2.201664313524152,6727.920585400634,2019
+2001,64,"(60,65]",HS,119.72896710022954,63.706540410735805,1.879382655662979,7104.457713474881,2019
+2001,64,"(60,65]",HS,121.23562356541699,61.984742021256444,1.9558946219997435,7140.207153545652,2019
+2001,64,"(60,65]",HS,124.56700841622036,61.984742021256444,2.009639862234202,6924.759320124371,2019
+2001,64,"(60,65]",HS,129.60593726090283,61.984742021256444,2.090932914046122,7027.654909010674,2019
+2001,26,"(25,30]",HS,24.52501912777353,51.653951684380374,0.4747946348350661,5257.804513738772,2019
+2001,26,"(25,30]",HS,20.339862280030605,51.653951684380374,0.39377165960723914,5218.762608113664,2019
+2001,26,"(25,30]",HS,33.732364192807964,51.653951684380374,0.6530451803362856,5224.510092968377,2019
+2001,26,"(25,30]",HS,20.339862280030605,51.653951684380374,0.39377165960723914,5258.821123731438,2019
+2001,26,"(25,30]",HS,93.99862280030604,51.653951684380374,1.8197760236169938,5209.678330054779,2019
+2001,42,"(40,45]",College,2166.5719969395564,249.6607664745051,8.678063548125824,2916.08297561765,2019
+2001,42,"(40,45]",College,2169.920122417751,249.6607664745051,8.691474247473879,2893.686051690446,2019
+2001,42,"(40,45]",College,2168.246059678653,249.6607664745051,8.684768897799849,3044.018465924954,2019
+2001,42,"(40,45]",College,2168.246059678653,249.6607664745051,8.684768897799849,2974.0157698466387,2019
+2001,42,"(40,45]",College,2169.920122417751,249.6607664745051,8.691474247473879,2969.959179512135,2019
+2001,57,"(55,60]",College,533.1889824024483,86.08991947396729,6.193396226415095,7236.670771900167,2019
+2001,57,"(55,60]",College,624.5928079571538,86.08991947396729,7.255121293800539,6503.41188899561,2019
+2001,57,"(55,60]",College,464.71981637337416,86.08991947396729,5.398074701578746,5882.951792264198,2019
+2001,57,"(55,60]",College,570.1857689364957,86.08991947396729,6.6231420870234885,6727.929683243556,2019
+2001,57,"(55,60]",College,452.8339709257843,86.08991947396729,5.260011551790528,7123.213243257235,2019
+2001,25,"(20,25]",College,32.644223412394794,48.21035490542169,0.6771205786896968,4455.874640538147,2019
+2001,25,"(20,25]",College,32.644223412394794,48.21035490542169,0.6771205786896968,4478.7196685930685,2019
+2001,25,"(20,25]",College,32.644223412394794,48.21035490542169,0.6771205786896968,4491.575046196762,2019
+2001,25,"(20,25]",College,32.644223412394794,48.21035490542169,0.6771205786896968,4485.458707458021,2019
+2001,25,"(20,25]",College,32.644223412394794,48.21035490542169,0.6771205786896968,4457.1984806277305,2019
+2001,46,"(45,50]",College,1703.3588370313696,451.1111780435886,3.7759180440143796,955.9699807652694,2019
+2001,46,"(45,50]",College,1701.5173680183627,449.38937965410923,3.7862874492672804,943.5749701030858,2019
+2001,46,"(45,50]",College,1701.5173680183627,449.38937965410923,3.7862874492672804,998.1502717176136,2019
+2001,46,"(45,50]",College,1703.1914307574598,451.1111780435886,3.775546946417916,968.7346381829653,2019
+2001,46,"(45,50]",College,1703.1914307574598,449.38937965410923,3.7900126435306287,969.5482656125054,2019
+2001,49,"(45,50]",HS,205.7423106350421,51.653951684380374,3.9830894621999744,5899.262314668136,2019
+2001,49,"(45,50]",HS,216.62371843917367,51.653951684380374,4.193749197792324,6149.035145724132,2019
+2001,49,"(45,50]",HS,198.2090283091048,51.653951684380374,3.8372481067898856,6176.948035044628,2019
+2001,49,"(45,50]",HS,197.53940321346596,51.653951684380374,3.8242844307534334,6008.893462819176,2019
+2001,49,"(45,50]",HS,202.22677888293802,51.653951684380374,3.9150301630085997,6088.901027375437,2019
+2001,56,"(55,60]",College,40152.3947972456,4407.8038770671255,9.109387785184827,10.719873855226902,2019
+2001,56,"(55,60]",College,10682.194338179035,5905.768475914157,1.8087729618499027,10.523436838855918,2019
+2001,56,"(55,60]",College,163331.6052027544,5027.65129727969,32.48666137429384,11.043925163074842,2019
+2001,56,"(55,60]",College,85692.92792654935,5234.267104017211,16.371523696370307,10.89346443861697,2019
+2001,56,"(55,60]",College,80513.71262433052,5905.768475914157,13.633062818614434,11.194517760457467,2019
+2001,92,"(90,95]",College,52461.77811782709,1377.4387115834766,38.086469965344634,46.864823675000224,2019
+2001,92,"(90,95]",College,5509.340474368783,1377.4387115834766,3.999699172121679,47.5585954899599,2019
+2001,92,"(90,95]",College,67822.47559296098,1377.4387115834766,49.238107672314214,48.0083713195233,2019
+2001,92,"(90,95]",College,68516.03978576894,1377.4387115834766,49.74162495186754,47.17180535841821,2019
+2001,92,"(90,95]",College,18230.54322876817,1377.4387115834766,13.235103003465536,46.49372225072672,2019
+2001,73,"(70,75]",College,5201.647742922724,161.84904861105852,32.13888365462604,1377.2768080910696,2019
+2001,73,"(70,75]",College,2837.8711553175212,156.68365344262045,18.112107376643383,803.3688494469027,2019
+2001,73,"(70,75]",College,4140.459372609028,111.91689531615746,36.99583839341252,1399.780285171635,2019
+2001,73,"(70,75]",College,3525.2413159908187,142.9092663267857,24.66768885321803,1399.742957227751,2019
+2001,73,"(70,75]",College,5114.596480489671,185.95422606376934,27.504599324006335,1395.3683720027577,2019
+2001,84,"(80,85]",HS,14.882417750573834,11.191689531615747,1.3297739995853206,5889.532162902453,2019
+2001,84,"(80,85]",HS,14.313236419280797,11.191689531615747,1.2789165012884691,5921.290912194489,2019
+2001,84,"(80,85]",HS,14.212792654934965,11.191689531615747,1.269941648647848,5908.870063733031,2019
+2001,84,"(80,85]",HS,15.25071155317521,11.191689531615747,1.36268179260093,5991.995707989477,2019
+2001,84,"(80,85]",HS,15.903596021423107,11.191689531615747,1.4210183347649656,5930.261259398172,2019
+2001,65,"(60,65]",HS,2188,36.157766179066265,60.512587784439916,719.9646438037876,2019
+2001,65,"(60,65]",HS,2231.8604437643457,41.323161347504296,54.009915286869465,721.579950530539,2019
+2001,65,"(60,65]",HS,1845.3193573068095,41.323161347504296,44.65581279681684,757.7465976571158,2019
+2001,65,"(60,65]",HS,2194.6962509563887,36.157766179066265,60.697783156389235,738.3526350375685,2019
+2001,65,"(60,65]",HS,2054.0749808722267,36.157766179066265,56.808680345453546,743.5683814239092,2019
+2001,22,"(20,25]",HS,8.855791889824024,34.43596778958692,0.2571669233731228,5604.812225358477,2019
+2001,22,"(20,25]",HS,8.80557000765111,34.43596778958692,0.25570850981902193,5604.121567201844,2019
+2001,22,"(20,25]",HS,8.738607498087221,34.43596778958692,0.25376395841355404,5617.332556794376,2019
+2001,22,"(20,25]",HS,8.604682478959448,34.43596778958692,0.24987485560261838,5593.83194084645,2019
+2001,22,"(20,25]",HS,7.583504208110176,34.43596778958692,0.2202204466692337,5594.6546124572915,2019
+2001,39,"(35,40]",HS,17.69484315225708,12.74130808214716,1.3887775916077802,5625.244210735565,2019
+2001,39,"(35,40]",HS,18.464912012241776,9.642070981084336,1.915035893063425,5625.874572797429,2019
+2001,39,"(35,40]",HS,16.42255547054323,11.191689531615747,1.4673884067415066,5643.438305768365,2019
+2001,39,"(35,40]",HS,17.360030604437647,9.642070981084336,1.8004462566697843,5617.436839633899,2019
+2001,39,"(35,40]",HS,16.82433052792655,14.290926632678572,1.1772735918645703,5635.982358835011,2019
+2001,53,"(50,55]",College,19.084315225707726,68.87193557917384,0.27709857527916826,5054.919220954156,2019
+2001,53,"(50,55]",College,11.417107880642694,68.87193557917384,0.165773007316134,5088.260794612206,2019
+2001,53,"(50,55]",College,10.245263963274674,68.87193557917384,0.14875818251829032,5086.560554485067,2019
+2001,53,"(50,55]",College,10.948370313695486,68.87193557917384,0.15896707739699653,5057.351423458778,2019
+2001,53,"(50,55]",College,15.33441469013007,68.87193557917384,0.22265113592606853,5060.300176106783,2019
+2001,21,"(20,25]",NoHS,4.151675592960979,43.04495973698364,0.09644974971120523,5072.223939009069,2019
+2001,21,"(20,25]",NoHS,3.8336036725325173,51.653951684380374,0.07421704530868951,5089.073003565374,2019
+2001,21,"(20,25]",NoHS,3.8670849273144605,56.819346852818406,0.06805929919137467,5097.878129342425,2019
+2001,21,"(20,25]",NoHS,3.7666411629686305,84.36812108448795,0.04464531288063935,5043.78006295671,2019
+2001,21,"(20,25]",NoHS,4.402785003825555,46.488556515942335,0.09470685548852666,5051.999581160146,2019
+2001,50,"(45,50]",HS,79519.65416985462,2703.223471482573,29.416603920741466,1.723908682705586,2019
+2001,50,"(45,50]",HS,79338.85539403214,2427.7357291658777,32.68018608487152,1.7558858000022828,2019
+2001,50,"(45,50]",HS,78761.30374904361,2531.0436325346386,31.118113783826967,1.5509071336575402,2019
+2001,50,"(45,50]",HS,79427.9155317521,2617.1335520086054,30.34920226779888,2.0199460627954804,2019
+2001,50,"(45,50]",HS,79037.52410099465,2531.0436325346386,31.22724677086853,1.6026189947150349,2019
+2001,75,"(70,75]",HS,1300.2445294567713,136.02207276886833,9.559070105233399,11278.96182332654,2019
+2001,75,"(70,75]",HS,1487.5721499617446,136.02207276886833,10.936255562650185,11042.086600875853,2019
+2001,75,"(70,75]",HS,1222.7354246365724,137.74387115834767,8.876877165960723,10408.773231555759,2019
+2001,75,"(70,75]",HS,1266.9306809487375,153.24005666366176,8.267620807067793,11161.037161086704,2019
+2001,75,"(70,75]",HS,1336.7390971690895,139.46566954782702,9.584717884358495,11386.752961154238,2019
+2001,39,"(35,40]",College,771.4081101759755,103.30790336876075,7.467077396996534,4681.377528253194,2019
+2001,39,"(35,40]",College,769.7340474368783,103.30790336876075,7.450872801950969,4627.357227524379,2019
+2001,39,"(35,40]",College,769.7340474368783,103.30790336876075,7.450872801950969,4452.322419612857,2019
+2001,39,"(35,40]",College,771.4081101759755,103.30790336876075,7.467077396996534,4620.0063732328,2019
+2001,39,"(35,40]",College,771.4081101759755,103.30790336876075,7.467077396996534,4867.238326459339,2019
+2001,37,"(35,40]",HS,43.76,22.383379063231494,1.9550220668819052,6403.651249694332,2019
+2001,37,"(35,40]",HS,44.09481254781944,22.383379063231494,1.9699801546162734,6413.566703592058,2019
+2001,37,"(35,40]",HS,45.601469013006884,22.383379063231494,2.0372915494209294,6442.105271997995,2019
+2001,37,"(35,40]",HS,43.592593726090286,22.383379063231494,1.9475430230147213,6388.391800161406,2019
+2001,37,"(35,40]",HS,43.090374904361134,22.383379063231494,1.9251058914131691,6452.8206648797,2019
+2001,26,"(25,30]",HS,-2.5278347360367253,25.826975842190187,-0.09787575407521498,5162.305714050029,2019
+2001,26,"(25,30]",HS,-2.5278347360367253,25.826975842190187,-0.09787575407521498,5170.9561485371705,2019
+2001,26,"(25,30]",HS,-2.3687987758224947,25.826975842190187,-0.09171800795790015,5189.045218509351,2019
+2001,26,"(25,30]",HS,-2.3604284621270084,25.826975842190187,-0.09139391605698884,5215.647656356699,2019
+2001,26,"(25,30]",HS,-2.5278347360367253,25.826975842190187,-0.09787575407521498,5175.115613151039,2019
+2001,34,"(30,35]",College,111.62650344299924,77.48092752657055,1.440696530184401,7339.390502091405,2019
+2001,34,"(30,35]",College,51.02543228768172,77.48092752657055,0.6585547426517778,7434.627726908462,2019
+2001,34,"(30,35]",College,43.994368783473604,77.48092752657055,0.5678090103966116,7493.977349337761,2019
+2001,34,"(30,35]",College,187.29413925019128,77.48092752657055,2.417293458263809,7335.991712899861,2019
+2001,34,"(30,35]",College,43.84370313695486,77.48092752657055,0.5658644589911437,7426.959032729326,2019
+2001,65,"(60,65]",NoHS,1120.01493496557,75.75912913709122,14.783894003570554,7095.834850455045,2019
+2001,65,"(60,65]",NoHS,1118.340872226473,75.75912913709122,14.76179682850842,6383.540688954692,2019
+2001,65,"(60,65]",NoHS,1120.01493496557,74.03733074761188,15.127705492025683,6025.957126958992,2019
+2001,65,"(60,65]",NoHS,1120.18234123948,74.03733074761188,15.129966598311112,6735.401880357153,2019
+2001,65,"(60,65]",NoHS,1120.01493496557,74.03733074761188,15.127705492025683,6429.203251687615,2019
+2001,63,"(60,65]",College,23233.47972456006,1033.0790336876073,22.48954723398794,301.96871782530707,2019
+2001,63,"(60,65]",College,22732.934965570006,1033.0790336876073,22.00502984212553,291.1328201627975,2019
+2001,63,"(60,65]",College,22731.26090283091,1033.0790336876073,22.003409382620976,303.0070020196549,2019
+2001,63,"(60,65]",College,23735.698546289215,1033.0790336876073,22.975685085354904,304.9777177652073,2019
+2001,63,"(60,65]",College,23233.47972456006,1033.0790336876073,22.48954723398794,292.42508373123707,2019
+2001,37,"(35,40]",HS,129.7398622800306,58.54114524229776,2.2162166753493846,8798.775693253716,2019
+2001,37,"(35,40]",HS,129.90726855394033,58.54114524229776,2.2190763097691906,9032.117231319291,2019
+2001,37,"(35,40]",HS,129.7398622800306,60.2629436317771,2.152896198910831,9122.386041768936,2019
+2001,37,"(35,40]",HS,129.90726855394033,58.54114524229776,2.2190763097691906,8905.291776303731,2019
+2001,37,"(35,40]",HS,129.90726855394033,60.2629436317771,2.1556741294900714,9051.510656504091,2019
+2001,79,"(75,80]",HS,5512.856006120887,559.5844765807874,9.85169574360949,2957.208265151808,2019
+2001,79,"(75,80]",HS,7547.478377964805,502.765129727969,15.011936850211782,3024.9695791728795,2019
+2001,79,"(75,80]",HS,4567.680183626626,581.9678556440189,7.848681227542932,3009.0789231342715,2019
+2001,79,"(75,80]",HS,7387.806273909717,509.65232328588644,14.495776701807696,3011.985179399793,2019
+2001,79,"(75,80]",HS,9157.792807957154,575.0806620861015,15.924362288130709,3005.519450793768,2019
+2001,25,"(20,25]",HS,18.247283856159143,48.21035490542169,0.37849304142142026,4307.146964982476,2019
+2001,25,"(20,25]",HS,10.111338944146901,39.60136295802496,0.25532805410925646,4309.627705520647,2019
+2001,25,"(20,25]",HS,24.926794185156847,44.76675812646299,0.556814815911851,4304.40977761129,2019
+2001,25,"(20,25]",HS,14.229533282325939,82.64632269500859,0.17217382235913237,4299.533626461895,2019
+2001,25,"(20,25]",HS,15.384636572302984,91.25531464240532,0.16858893788914642,4320.927236945173,2019
+2001,45,"(40,45]",HS,300.4942616679419,58.54114524229776,5.133043783551157,6055.48865504372,2019
+2001,45,"(40,45]",HS,298.8201989288447,58.54114524229776,5.1044474393531,6377.011671936735,2019
+2001,45,"(40,45]",HS,300.4942616679419,58.54114524229776,5.133043783551157,6401.851868581159,2019
+2001,45,"(40,45]",HS,300.66166794185153,60.2629436317771,4.989163320314648,6189.7319103532,2019
+2001,45,"(40,45]",HS,300.4942616679419,58.54114524229776,5.133043783551157,6312.372976783414,2019
+2001,77,"(75,80]",HS,490.5003825554706,22.383379063231494,21.913598530849207,8362.327911251561,2019
+2001,77,"(75,80]",HS,815.2685539403213,22.383379063231494,36.42294363318622,6686.9502225752485,2019
+2001,77,"(75,80]",HS,413.4934965570008,34.43596778958692,12.007604928763959,8825.197210876371,2019
+2001,77,"(75,80]",HS,505.56694720734504,30.992371010628222,16.312625679202498,8637.927789965213,2019
+2001,77,"(75,80]",HS,435.0889058913543,27.548774231669533,15.793403446284175,8752.881056363836,2019
+2001,26,"(25,30]",HS,0,22.383379063231494,0,4955.602256008767,2019
+2001,26,"(25,30]",HS,0,44.76675812646299,0,4907.810170825501,2019
+2001,26,"(25,30]",HS,0,44.76675812646299,0,4905.013132515999,2019
+2001,26,"(25,30]",HS,0,18.939782284272805,0,4929.492986479683,2019
+2001,26,"(25,30]",HS,0,12.74130808214716,0,4922.451595258897,2019
+2001,62,"(60,65]",HS,448.69903596021425,34.43596778958692,13.029952830188678,6962.6218650386745,2019
+2001,62,"(60,65]",HS,389.102402448355,55.097548463339066,7.062063799576434,7277.19708985455,2019
+2001,62,"(60,65]",HS,493.8987299158378,67.15013718969449,7.355141040451013,7318.508453544855,2019
+2001,62,"(60,65]",HS,422.3995103289977,75.75912913709122,5.575559211677809,7141.193292292531,2019
+2001,62,"(60,65]",HS,486.18130068859983,55.097548463339066,8.824009674624566,7201.121364911369,2019
+2001,38,"(35,40]",HS,15.870114766641164,56.819346852818406,0.2793082927853818,5081.916128930881,2019
+2001,38,"(35,40]",HS,15.870114766641164,56.819346852818406,0.2793082927853818,5037.797284078017,2019
+2001,38,"(35,40]",HS,16.204927314460598,56.819346852818406,0.285200872801951,5063.460809143899,2019
+2001,38,"(35,40]",HS,15.53530221882173,56.819346852818406,0.27341571276881255,5052.02530182414,2019
+2001,38,"(35,40]",HS,15.53530221882173,56.819346852818406,0.27341571276881255,5070.457734185617,2019
+2001,44,"(40,45]",HS,20.172456006120886,6.198474202125644,3.254422838317717,7061.481014897683,2019
+2001,44,"(40,45]",HS,20.339862280030605,6.198474202125644,3.281430496726993,7073.916096692476,2019
+2001,44,"(40,45]",HS,20.339862280030605,6.198474202125644,3.281430496726993,7061.062175075259,2019
+2001,44,"(40,45]",HS,20.339862280030605,6.198474202125644,3.281430496726993,7064.084196067297,2019
+2001,44,"(40,45]",HS,20.339862280030605,6.198474202125644,3.281430496726993,7069.558272768928,2019
+2001,67,"(65,70]",NoHS,33176.24055087988,2410.517745271084,13.763118158314539,32.766654360164445,2019
+2001,67,"(65,70]",NoHS,17112.101912777354,2410.517745271084,7.098932146982783,33.19508456977111,2019
+2001,67,"(65,70]",NoHS,22271.0610558531,2410.517745271084,9.2391193134935925,34.02881649696852,2019
+2001,67,"(65,70]",NoHS,14981.187452180566,2410.517745271084,6.2149251884042025,33.02135781335282,2019
+2001,67,"(65,70]",NoHS,42303.56541698546,2410.517745271084,17.549576434347323,33.567747483460664,2019
+2001,83,"(80,85]",College,22511.791277735272,898.7787593082185,25.047088668475418,212.1193104651286,2019
+2001,83,"(80,85]",College,11822.900688599848,850.5684044027969,13.899999844105391,198.9109486876447,2019
+2001,83,"(80,85]",College,18627.96572302984,854.0120011817556,21.812299706857786,212.40899762628118,2019
+2001,83,"(80,85]",College,13416.608416220352,883.2825738029044,15.189486144231498,209.07353414150452,2019
+2001,83,"(80,85]",College,12785.486763580719,952.1545093820783,13.427953801193613,201.6808165143614,2019
+2001,26,"(25,30]",College,36.36064269319051,84.36812108448795,0.4309760870077719,5135.446650541273,2019
+2001,26,"(25,30]",College,36.17649579188982,84.36812108448795,0.4287934272669406,5165.732858331038,2019
+2001,26,"(25,30]",College,36.36064269319051,84.36812108448795,0.4309760870077719,5384.529656630287,2019
+2001,26,"(25,30]",College,36.34390206579954,84.36812108448795,0.43077766339496903,5279.224656088984,2019
+2001,26,"(25,30]",College,36.36064269319051,82.64632269500859,0.43995475548710056,5090.727552343877,2019
+2001,47,"(45,50]",College,9943.932670237184,1720.0765910898665,5.781098773012519,10.802859972264065,2019
+2001,47,"(45,50]",College,16191.53481254782,3305.852907800344,4.897838852522141,10.523436838855918,2019
+2001,47,"(45,50]",College,6783.30221882173,848.8466060133176,7.991199082105191,11.096688211252678,2019
+2001,47,"(45,50]",College,11094.013771996939,1305.1231792253443,8.500357627991704,10.85909945745182,2019
+2001,47,"(45,50]",College,8783.807192042847,1127.7779451089716,7.788596354572363,10.445347271925723,2019
+2001,72,"(70,75]",College,322700.7039020658,9883.122755611445,32.65169439677784,14.608140502550564,2019
+2001,72,"(70,75]",College,228255.1063504208,7644.784849288295,29.857623314496628,15.874372334474874,2019
+2001,72,"(70,75]",College,243140.87222647283,9865.90477171665,24.644558999140504,15.508857024996303,2019
+2001,72,"(70,75]",College,320367.0604437643,7507.040978129948,42.67554438254443,15.245517375064313,2019
+2001,72,"(70,75]",College,300132.6641162969,9883.122755611445,30.368201583440563,16.088342421621903,2019
+2001,58,"(55,60]",College,21395.8610558531,602.629436317771,35.50417514714781,10.802859972264065,2019
+2001,58,"(55,60]",College,21412.601683244073,602.629436317771,35.53195445294021,10.523436838855918,2019
+2001,58,"(55,60]",College,21412.601683244073,602.629436317771,35.53195445294021,11.096688211252678,2019
+2001,58,"(55,60]",College,21412.601683244073,602.629436317771,35.53195445294021,10.85909945745182,2019
+2001,58,"(55,60]",College,21394.186993114003,602.629436317771,35.50139721656857,10.445347271925723,2019
+2001,56,"(55,60]",NoHS,137600.42387146136,4218.406054224397,32.61905613227193,10.33298516436616,2019
+2001,56,"(55,60]",NoHS,138487.34231063502,4235.62403811919,32.6958533298271,10.885853919327733,2019
+2001,56,"(55,60]",NoHS,129535.96143840857,4235.62403811919,30.582497472067526,11.043925163074842,2019
+2001,56,"(55,60]",NoHS,130634.31400153022,4218.406054224397,30.967695457081565,10.89346443861697,2019
+2001,56,"(55,60]",NoHS,129844.32379495027,4218.406054224397,30.78042325131824,11.194517760457467,2019
+2001,54,"(50,55]",College,35337.79035960215,4821.035490542168,7.329917074646572,10.719873855226902,2019
+2001,54,"(50,55]",College,35349.50879877582,4821.035490542168,7.332347763903405,10.435442962152202,2019
+2001,54,"(50,55]",College,35338.62739097169,4821.035490542168,7.3300906953077725,10.829210793767967,2019
+2001,54,"(50,55]",College,35331.09410864575,4821.035490542168,7.3285281093569505,11.208984887044869,2019
+2001,54,"(50,55]",College,35342.47773527162,4821.035490542168,7.330889350349305,10.748342561587899,2019
+2001,47,"(45,50]",HS,696.5775057383321,86.08991947396729,8.091278398151715,8883.307218875401,2019
+2001,47,"(45,50]",HS,654.3911247130834,86.08991947396729,7.601251443973816,8063.525070676713,2019
+2001,47,"(45,50]",HS,712.6485080336649,86.08991947396729,8.277955333076628,7532.180744624321,2019
+2001,47,"(45,50]",HS,670.7969395562357,86.08991947396729,7.791817481709665,8443.981973985128,2019
+2001,47,"(45,50]",HS,702.2693190512625,86.08991947396729,8.157393145937622,8104.832683461193,2019
+2001,48,"(45,50]",HS,102.11782708492731,123.96948404251289,0.8237335814829077,7331.274319833143,2019
+2001,48,"(45,50]",HS,186.65799540933435,123.96948404251289,1.5056769563171182,7641.678069393462,2019
+2001,48,"(45,50]",HS,158.61744452945678,123.96948404251289,1.2794878171394346,7676.366652092843,2019
+2001,48,"(45,50]",HS,198.0416220351951,123.96948404251289,1.5975029949086554,7467.517798800863,2019
+2001,48,"(45,50]",HS,233.19693955623566,123.96948404251289,1.88108340820605,7566.946739596611,2019
+2001,39,"(35,40]",College,127074.75439938791,1668.422639405486,76.1646068556519,14.608140502550564,2019
+2001,39,"(35,40]",College,126749.98622800306,1670.1444377949656,75.89163150185185,15.874372334474874,2019
+2001,39,"(35,40]",College,140467.25631216526,1668.422639405486,84.19165084107128,15.508857024996303,2019
+2001,39,"(35,40]",College,133429.49655700076,1668.422639405486,79.97343922673339,15.245517375064313,2019
+2001,39,"(35,40]",College,127237.13848508033,1670.1444377949656,76.18331421267203,16.088342421621903,2019
+2001,65,"(60,65]",College,525.7896250956389,65.42833880021514,8.036114545122915,9624.827962609337,2019
+2001,65,"(60,65]",College,525.7728844682479,65.42833880021514,8.03585868309588,9533.622886131065,2019
+2001,65,"(60,65]",College,524.0988217291507,65.42833880021514,8.010272480392354,9166.462526890335,2019
+2001,65,"(60,65]",College,525.7896250956389,65.42833880021514,8.036114545122915,9506.236303437254,2019
+2001,65,"(60,65]",College,525.7728844682479,65.42833880021514,8.03585868309588,10026.550884408589,2019
+2001,36,"(35,40]",HS,70.64544758990054,51.653951684380374,1.3676678218457194,8422.818810608514,2019
+2001,36,"(35,40]",HS,92.40826319816374,51.653951684380374,1.7889872930304198,8677.743638603584,2019
+2001,36,"(35,40]",HS,68.13435348125479,51.653951684380374,1.3190540367090233,8772.300858338695,2019
+2001,36,"(35,40]",HS,69.64100994644224,51.653951684380374,1.3482223077910411,8582.18587605117,2019
+2001,36,"(35,40]",HS,152.4736342769702,51.653951684380374,2.951829033500193,8641.025817962243,2019
+2001,50,"(45,50]",NoHS,-0.2008875286916603,8.092452430552926,-0.02482406049533422,5123.743003915767,2019
+2001,50,"(45,50]",NoHS,-0.2008875286916603,5.854114524229775,-0.0343156130376679,5133.165708766303,2019
+2001,50,"(45,50]",NoHS,-0.2008875286916603,6.542833880021514,-0.030703443244229172,5059.214037570098,2019
+2001,50,"(45,50]",NoHS,-0.2008875286916603,7.575912913709122,-0.026516610074561554,5098.018117074147,2019
+2001,50,"(45,50]",NoHS,-0.2008875286916603,5.854114524229775,-0.0343156130376679,5133.517022620535,2019
+2001,66,"(65,70]",College,87123.07972456007,15943.853086578743,5.464367944904031,2.098595515668425,2019
+2001,66,"(65,70]",College,61620.69254781944,15203.479779102623,4.053065051102174,2.1418846822606694,2019
+2001,66,"(65,70]",College,66478.45432287682,16701.444377949658,3.98040150411458,1.8900569119319979,2019
+2001,66,"(65,70]",College,187804.56097934203,16288.21276447461,11.530090114549152,2.4597135706771867,2019
+2001,66,"(65,70]",College,46111.05371078807,17476.25365321536,2.6384976223038707,1.8757958430340422,2019
+2001,62,"(60,65]",HS,4709.808110175975,218.6683954638769,21.538586315524576,1309.875691234458,2019
+2001,62,"(60,65]",HS,4254.463045141545,218.6683954638769,19.456232054551133,1288.703853066279,2019
+2001,62,"(60,65]",HS,4518.964957918898,218.6683954638769,20.665834897322473,1309.5839953610405,2019
+2001,62,"(60,65]",HS,4381.69181331293,218.6683954638769,20.038066333352536,1297.787984389032,2019
+2001,62,"(60,65]",HS,4244.586074980873,218.6683954638769,19.41106334080208,1268.21642808313,2019
+2001,60,"(55,60]",NoHS,539.299311400153,87.81171786344665,6.141541522269284,9789.09188161818,2019
+2001,60,"(55,60]",NoHS,664.686610558531,91.25531464240532,7.28381259944348,11042.086600875853,2019
+2001,60,"(55,60]",NoHS,549.8459066564651,101.5861049792814,5.4126093993721565,10386.17472247508,2019
+2001,60,"(55,60]",NoHS,555.5377199693955,94.69891142136402,5.866358035495502,10226.932522863775,2019
+2001,60,"(55,60]",NoHS,557.2117827084927,91.25531464240532,6.10607486141484,10164.968737463309,2019
+2001,67,"(65,70]",HS,183.64468247895945,67.15013718969449,2.7348370407669598,5834.892492537065,2019
+2001,67,"(65,70]",HS,168.57811782708492,46.488556515942335,3.626228269085412,5901.961699990656,2019
+2001,67,"(65,70]",HS,64.61882172915072,77.48092752657055,0.8339964916784324,6104.579044902265,2019
+2001,67,"(65,70]",HS,79.85279265493497,58.54114524229776,1.364045618247299,5802.393545061744,2019
+2001,67,"(65,70]",HS,166.90405508798779,55.097548463339066,3.029246486330382,5915.734109036192,2019
+2001,48,"(45,50]",NoHS,7.047804131599082,34.43596778958692,0.20466403542549094,5355.781546343931,2019
+2001,48,"(45,50]",NoHS,7.047804131599082,34.43596778958692,0.20466403542549094,5379.05771992612,2019
+2001,48,"(45,50]",NoHS,7.047804131599082,34.43596778958692,0.20466403542549094,5368.283570740268,2019
+2001,48,"(45,50]",NoHS,7.215210405508799,34.43596778958692,0.20952541393916055,5329.096869834204,2019
+2001,48,"(45,50]",NoHS,7.215210405508799,34.43596778958692,0.20952541393916055,5374.814163932383,2019
+2001,79,"(75,80]",NoHS,515.6113236419282,36.157766179066265,14.26004364009755,10796.827258548708,2019
+2001,79,"(75,80]",NoHS,515.6113236419282,36.157766179066265,14.26004364009755,11095.062306202977,2019
+2001,79,"(75,80]",NoHS,515.6113236419282,36.157766179066265,14.26004364009755,11315.158458779595,2019
+2001,79,"(75,80]",NoHS,515.6113236419282,36.157766179066265,14.26004364009755,11115.078103072385,2019
+2001,79,"(75,80]",NoHS,515.6113236419282,36.157766179066265,14.26004364009755,11139.331988643678,2019
+2001,27,"(25,30]",HS,0,13.774387115834767,0,4454.560959245118,2019
+2001,27,"(25,30]",HS,0,13.774387115834767,0,4430.106298619716,2019
+2001,27,"(25,30]",HS,0,13.774387115834767,0,4431.773957156894,2019
+2001,27,"(25,30]",HS,0,13.774387115834767,0,4447.413064572654,2019
+2001,27,"(25,30]",HS,0,13.774387115834767,0,4448.107241092983,2019
+2001,45,"(40,45]",HS,680.1716908951797,120.5258872635542,5.6433659717256175,6519.612215591686,2019
+2001,45,"(40,45]",HS,680.3390971690895,120.5258872635542,5.644754937015238,5923.986108790289,2019
+2001,45,"(40,45]",HS,680.3390971690895,120.5258872635542,5.644754937015238,5530.20582196127,2019
+2001,45,"(40,45]",HS,678.4976281560826,120.5258872635542,5.629476318829418,6200.175604701949,2019
+2001,45,"(40,45]",HS,678.4976281560826,120.5258872635542,5.629476318829418,5946.930445424333,2019
+2001,27,"(25,30]",HS,15.066564651874522,70.59373396865318,0.2134263737708613,6416.372742938398,2019
+2001,27,"(25,30]",HS,14.06212700841622,68.87193557917384,0.204177897574124,6444.189886575019,2019
+2001,27,"(25,30]",HS,14.229533282325939,70.59373396865318,0.20156935300581347,6357.285825333598,2019
+2001,27,"(25,30]",HS,19.586534047436878,68.87193557917384,0.28439064304967265,6458.990319178876,2019
+2001,27,"(25,30]",HS,13.05768936495792,68.87193557917384,0.18959376203311512,6444.92975855064,2019
+2001,78,"(75,80]",HS,346.02876817138485,37.87956456854561,9.134972170686456,8964.583396552327,2019
+2001,78,"(75,80]",HS,346.02876817138485,37.87956456854561,9.134972170686456,9262.872660020552,2019
+2001,78,"(75,80]",HS,346.02876817138485,36.157766179066265,9.569970845481048,9460.78857795968,2019
+2001,78,"(75,80]",HS,346.19617444529456,36.157766179066265,9.574600729779782,9260.031999265448,2019
+2001,78,"(75,80]",HS,346.02876817138485,36.157766179066265,9.569970845481048,9383.264208558507,2019
+2001,37,"(35,40]",College,499.6240244835501,182.51062928481065,2.737506447933392,6782.675859057257,2019
+2001,37,"(35,40]",College,518.021973986228,182.51062928481065,2.838311258999862,6169.719843488872,2019
+2001,37,"(35,40]",College,519.6960367253251,182.51062928481065,2.8474836712898046,5767.505967841503,2019
+2001,37,"(35,40]",College,499.60728385615914,182.51062928481065,2.7374147238104927,6449.985225868663,2019
+2001,37,"(35,40]",College,514.6905891354246,182.51062928481065,2.820058158542876,6201.255534762568,2019
+2001,30,"(25,30]",HS,327.59733741392506,84.36812108448795,3.882951678938807,7336.22434819595,2019
+2001,30,"(25,30]",HS,329.2714001530222,84.36812108448795,3.9027940402190913,7422.959884764394,2019
+2001,30,"(25,30]",HS,330.9454628921194,86.08991947396729,3.8441836734693884,7504.942963782591,2019
+2001,30,"(25,30]",HS,327.614078041316,84.36812108448795,3.8831501025516095,7381.186067619045,2019
+2001,30,"(25,30]",HS,327.58059678653404,84.36812108448795,3.8827532553260036,7436.888140270453,2019
+2001,49,"(45,50]",NoHS,-19.084315225707726,0,-Inf,5013.129597461865,2019
+2001,49,"(45,50]",NoHS,-19.251721499617446,0,-Inf,4996.3569583712515,2019
+2001,49,"(45,50]",NoHS,-19.251721499617446,0,-Inf,4997.854301955134,2019
+2001,49,"(45,50]",NoHS,-19.251721499617446,0,-Inf,4978.588988675048,2019
+2001,49,"(45,50]",NoHS,-19.084315225707726,0,-Inf,5025.341719555293,2019
+2001,78,"(75,80]",NoHS,0.3348125478194338,12.913487921095093,0.025927352072904634,5154.822540485263,2019
+2001,78,"(75,80]",NoHS,0.3348125478194338,12.913487921095093,0.025927352072904634,5171.035588136484,2019
+2001,78,"(75,80]",NoHS,0.3348125478194338,12.913487921095093,0.025927352072904634,5151.574157291699,2019
+2001,78,"(75,80]",NoHS,0.3348125478194338,12.913487921095093,0.025927352072904634,5215.8640356122705,2019
+2001,78,"(75,80]",NoHS,0.3348125478194338,12.913487921095093,0.025927352072904634,5203.37691930421,2019
+2001,36,"(35,40]",HS,1.08814078041316,13.774387115834767,0.0789974008471313,4039.518629425088,2019
+2001,36,"(35,40]",HS,1.08814078041316,13.774387115834767,0.0789974008471313,3995.498916385278,2019
+2001,36,"(35,40]",HS,1.08814078041316,13.774387115834767,0.0789974008471313,4009.1487490545305,2019
+2001,36,"(35,40]",HS,1.08814078041316,13.774387115834767,0.0789974008471313,3993.8291850011433,2019
+2001,36,"(35,40]",HS,1.08814078041316,13.774387115834767,0.0789974008471313,4040.432235998148,2019
+2001,58,"(55,60]",College,32225.707727620505,2410.517745271084,13.368790912591452,207.80502897288798,2019
+2001,58,"(55,60]",College,32225.707727620505,2410.517745271084,13.368790912591452,194.79556708313498,2019
+2001,58,"(55,60]",College,32225.707727620505,2410.517745271084,13.368790912591452,204.6977452387666,2019
+2001,58,"(55,60]",College,32222.35960214231,2410.517745271084,13.367401947301833,213.1017896887116,2019
+2001,58,"(55,60]",College,32224.03366488141,2410.517745271084,13.368096429946641,204.86089829700504,2019
+2001,56,"(55,60]",HS,368.0426931905126,55.097548463339066,6.67983791393916,7339.5128670815875,2019
+2001,56,"(55,60]",HS,333.30589135424634,118.80408887407486,2.8055085857148434,7750.278580106171,2019
+2001,56,"(55,60]",HS,376.1618974751339,55.097548463339066,6.827198450134771,7789.277773402207,2019
+2001,56,"(55,60]",HS,480.62341239479724,98.14250820032271,4.897199197454553,7554.244953750365,2019
+2001,56,"(55,60]",HS,406.9311706197399,189.39782284272803,2.1485525256414744,7666.494123313363,2019
+2001,51,"(50,55]",NoHS,335.14736036725327,136.02207276886833,2.463918932751032,5447.461278797417,2019
+2001,51,"(50,55]",NoHS,333.30589135424634,136.02207276886833,2.450380916637015,5749.912399215374,2019
+2001,51,"(50,55]",NoHS,333.30589135424634,136.02207276886833,2.450380916637015,5786.220112453773,2019
+2001,51,"(50,55]",NoHS,333.30589135424634,134.30027437938898,2.4817960565939,5584.4561254051805,2019
+2001,51,"(50,55]",NoHS,333.4732976281561,136.02207276886833,2.4516116453746535,5676.202685321643,2019
+2001,76,"(75,80]",HS,1216.8762050497323,120.5258872635542,10.09638869024699,8430.501255974923,2019
+2001,76,"(75,80]",HS,1207.3340474368783,105.0297017582401,11.495167816585342,7614.220126603844,2019
+2001,76,"(75,80]",HS,1605.7609793420045,115.36049209511619,13.919505284513127,7200.156635147438,2019
+2001,76,"(75,80]",HS,1451.5798010711553,117.08229048459552,12.397945027067431,8049.6644868429485,2019
+2001,76,"(75,80]",HS,1210.0795103289977,117.08229048459552,10.335290720061609,7731.3206383483775,2019
+2001,28,"(25,30]",NoHS,0.48547819433817907,16.87362421689759,0.028771423856412032,3258.667017290868,2019
+2001,28,"(25,30]",NoHS,0.45199693955623566,16.87362421689759,0.026787187728383614,3298.630426402536,2019
+2001,28,"(25,30]",NoHS,0.41851568477429224,16.87362421689759,0.024802951600355196,3340.523450645835,2019
+2001,28,"(25,30]",NoHS,0.45199693955623566,16.87362421689759,0.026787187728383614,3272.646742200918,2019
+2001,28,"(25,30]",NoHS,0.45199693955623566,16.87362421689759,0.026787187728383614,3266.767344315996,2019
+2001,69,"(65,70]",HS,1274.3970007651108,103.30790336876075,12.335910024387111,6394.740615836667,2019
+2001,69,"(65,70]",HS,1289.5974904361133,103.30790336876075,12.483047747400848,6334.00596159324,2019
+2001,69,"(65,70]",HS,1315.2943534812548,103.30790336876075,12.731788281350276,6089.911265090963,2019
+2001,69,"(65,70]",HS,1249.9724254016833,89.53351625292598,13.960944210775748,6316.038649050427,2019
+2001,69,"(65,70]",HS,1327.7828615149197,87.81171786344665,15.12079360045905,6659.732173982785,2019
+2001,46,"(45,50]",College,748454.7011476664,5372.010975175559,139.32486448861113,1.5455142054781237,2019
+2001,46,"(45,50]",College,400622.96740627394,4803.817506647375,83.39679158334059,1.5771236208314843,2019
+2001,46,"(45,50]",College,446081.97368018364,6628.923799495481,67.29327220719212,1.3928322532831945,2019
+2001,46,"(45,50]",College,725536.6148431523,5096.523232858864,142.35913027245576,1.8112680372607364,2019
+2001,46,"(45,50]",College,108050.37061973986,5974.64041149333,18.084832421359604,1.4397924826513564,2019
+2001,52,"(50,55]",NoHS,55.57888293802601,51.653951684380374,1.0759851110255423,5902.204417893674,2019
+2001,52,"(50,55]",NoHS,55.41147666411629,51.653951684380374,1.0727441920164291,6159.410534974023,2019
+2001,52,"(50,55]",NoHS,55.41147666411629,51.653951684380374,1.0727441920164291,6278.751740990048,2019
+2001,52,"(50,55]",NoHS,55.41147666411629,51.653951684380374,1.0727441920164291,6032.589630450821,2019
+2001,52,"(50,55]",NoHS,55.41147666411629,51.653951684380374,1.0727441920164291,6091.503632534713,2019
+2001,63,"(60,65]",HS,531.3475133894415,30.992371010628222,17.14446155820819,6439.590785840389,2019
+2001,63,"(60,65]",HS,531.5149196633512,30.992371010628222,17.149863089890044,5852.247822673042,2019
+2001,63,"(60,65]",HS,531.5149196633512,30.992371010628222,17.149863089890044,5475.403232663023,2019
+2001,63,"(60,65]",HS,531.5149196633512,30.992371010628222,17.149863089890044,6127.12121368171,2019
+2001,63,"(60,65]",HS,531.5149196633512,30.992371010628222,17.149863089890044,5887.996443491933,2019
+2001,58,"(55,60]",College,353.24397857689365,158.40545183209983,2.229998869933535,4638.791274982455,2019
+2001,58,"(55,60]",College,334.6618821729151,158.40545183209983,2.1126916927558557,4808.552612354191,2019
+2001,58,"(55,60]",College,327.9656312165264,158.40545183209983,2.0704188361152496,4940.258969516619,2019
+2001,58,"(55,60]",College,326.2915684774292,158.40545183209983,2.0598506219550985,4864.94713791683,2019
+2001,58,"(55,60]",College,326.45897475133893,158.40545183209983,2.0609074433711134,4664.278917165184,2019
+2001,44,"(40,45]",College,75428.46246365723,1602.9943006052708,47.05472903751209,10.33298516436616,2019
+2001,44,"(40,45]",College,156375.20489671,1690.8060184687174,92.48559751303203,10.885853919327733,2019
+2001,44,"(40,45]",College,74204.95697016068,1928.4141962168671,38.47978153019969,11.043925163074842,2019
+2001,44,"(40,45]",College,202360.63693955625,1945.6321801116608,104.0076531464147,10.89346443861697,2019
+2001,44,"(40,45]",College,154575.905524101,1911.1962123220737,80.87913973850632,11.194517760457467,2019
+2001,69,"(65,70]",College,46731.461361897476,649.1179928337134,71.99224467325591,362.1590030520461,2019
+2001,69,"(65,70]",College,46733.13542463657,650.8397912231927,71.80436115746089,339.5875428979944,2019
+2001,69,"(65,70]",College,46733.13542463657,650.8397912231927,71.80436115746089,356.7743193170114,2019
+2001,69,"(65,70]",College,46733.13542463657,649.1179928337134,71.99482365389977,371.6236564999315,2019
+2001,69,"(65,70]",College,46733.13542463657,649.1179928337134,71.99482365389977,357.18387631789835,2019
+2001,74,"(70,75]",HS,456.85172149961744,86.08991947396729,5.306680785521756,1891.8281369301549,2019
+2001,74,"(70,75]",HS,458.5257842387146,86.08991947396729,5.326126299576434,2115.865411288958,2019
+2001,74,"(70,75]",HS,461.87390971690894,86.08991947396729,5.365017327685791,2066.9059992233624,2019
+2001,74,"(70,75]",HS,456.85172149961744,86.08991947396729,5.306680785521756,2023.103846739524,2019
+2001,74,"(70,75]",HS,456.85172149961744,86.08991947396729,5.306680785521756,1991.9256803655655,2019
+2001,76,"(75,80]",HS,1116.5998469778117,327.1416940010757,3.4131994406501427,7258.449408935472,2019
+2001,76,"(75,80]",HS,1114.9257842387146,325.41989561159636,3.426114381062398,6550.881699736765,2019
+2001,76,"(75,80]",HS,1114.9257842387146,327.1416940010757,3.408082200109438,6195.432173792511,2019
+2001,76,"(75,80]",HS,1116.5998469778117,327.1416940010757,3.4131994406501427,6928.296693555565,2019
+2001,76,"(75,80]",HS,1114.9257842387146,327.1416940010757,3.408082200109438,6658.452741676954,2019
+2001,37,"(35,40]",HS,206.86393267023718,86.08991947396729,2.402882171736619,5382.897486330421,2019
+2001,37,"(35,40]",HS,188.66687069625095,101.5861049792814,1.8572113847137832,5385.557474367698,2019
+2001,37,"(35,40]",HS,178.97404743687835,101.5861049792814,1.7617965318522677,5432.482224632807,2019
+2001,37,"(35,40]",HS,212.60596786534046,103.30790336876075,2.057983570786805,5385.456768360135,2019
+2001,37,"(35,40]",HS,187.17695485845448,122.24768565303354,1.5311288214461976,5413.479064211375,2019
+2001,38,"(35,40]",HS,61.60550879877582,43.04495973698364,1.431189834424336,5592.571811634546,2019
+2001,38,"(35,40]",HS,61.60550879877582,43.04495973698364,1.431189834424336,5760.170468604442,2019
+2001,38,"(35,40]",HS,61.60550879877582,43.04495973698364,1.431189834424336,5807.110408564384,2019
+2001,38,"(35,40]",HS,61.60550879877582,43.04495973698364,1.431189834424336,5660.554813818873,2019
+2001,38,"(35,40]",HS,61.60550879877582,43.04495973698364,1.431189834424336,5762.251996624873,2019
+2001,29,"(25,30]",College,13.727314460596787,111.91689531615746,0.1226563194218181,5795.515476216117,2019
+2001,29,"(25,30]",College,13.727314460596787,111.91689531615746,0.1226563194218181,5883.148608419371,2019
+2001,29,"(25,30]",College,13.727314460596787,111.91689531615746,0.1226563194218181,6147.014234933604,2019
+2001,29,"(25,30]",College,13.727314460596787,111.91689531615746,0.1226563194218181,6018.1714025464,2019
+2001,29,"(25,30]",College,13.727314460596787,111.91689531615746,0.1226563194218181,5812.508023972047,2019
+2001,62,"(60,65]",NoHS,-0.5691813312930375,18.939782284272805,-0.030052158084503094,5248.342610916033,2019
+2001,62,"(60,65]",NoHS,-0.5524407039020658,18.939782284272805,-0.02916827108201771,5361.998643710353,2019
+2001,62,"(60,65]",NoHS,-0.8370313695485845,18.939782284272805,-0.044194350124269255,5259.678319471391,2019
+2001,62,"(60,65]",NoHS,-0.36829380260137723,18.939782284272805,-0.019445514054678474,5310.883786294133,2019
+2001,62,"(60,65]",NoHS,-0.5691813312930375,18.939782284272805,-0.030052158084503094,5298.425223692661,2019
+2001,37,"(35,40]",College,205.24009181331294,96.42070981084338,2.128589306342483,9328.958989871668,2019
+2001,37,"(35,40]",College,207.08156082631982,94.69891142136402,2.1867364441488433,9675.18444171577,2019
+2001,37,"(35,40]",College,207.08156082631982,94.69891142136402,2.1867364441488433,9765.614365019006,2019
+2001,37,"(35,40]",College,205.40749808722265,94.69891142136402,2.1690587040991356,9475.124804361187,2019
+2001,37,"(35,40]",College,205.40749808722265,96.42070981084338,2.130325512954508,9692.465295914615,2019
+2001,78,"(75,80]",NoHS,189.92241775057383,30.992371010628222,6.128037693064647,8189.555916589629,2019
+2001,78,"(75,80]",NoHS,175.96073450650346,36.157766179066265,4.866471386398225,8385.170675394838,2019
+2001,78,"(75,80]",NoHS,212.10374904361132,56.819346852818406,3.7329494404966104,8543.876862463727,2019
+2001,78,"(75,80]",NoHS,191.1779648048967,61.984742021256444,3.0842745903392803,8374.563254529043,2019
+2001,78,"(75,80]",NoHS,172.679571537873,36.157766179066265,4.775725654143058,8472.553567400015,2019
+2001,49,"(45,50]",HS,137.03877582249427,86.08991947396729,1.59180978051598,6766.043065513717,2019
+2001,49,"(45,50]",HS,137.03877582249427,86.08991947396729,1.59180978051598,7052.515109199276,2019
+2001,49,"(45,50]",HS,137.03877582249427,86.08991947396729,1.59180978051598,7084.529249468271,2019
+2001,49,"(45,50]",HS,137.03877582249427,86.08991947396729,1.59180978051598,6891.782358012591,2019
+2001,49,"(45,50]",HS,137.03877582249427,86.08991947396729,1.59180978051598,6983.545463038208,2019
+2001,44,"(40,45]",NoHS,42.35378729915838,20.661580673752148,2.0498812732640226,8624.897655940424,2019
+2001,44,"(40,45]",NoHS,36.99678653404744,20.661580673752148,1.7906077525349764,8834.469169379663,2019
+2001,44,"(40,45]",NoHS,36.99678653404744,20.661580673752148,1.7906077525349764,9071.114777819326,2019
+2001,44,"(40,45]",NoHS,48.715225707727626,20.661580673752148,2.3577685791297656,8758.930366292507,2019
+2001,44,"(40,45]",NoHS,44.02785003825555,20.661580673752148,2.13090424849185,8858.087535573546,2019
+2001,51,"(50,55]",College,0,12.913487921095093,0,5742.750444859755,2019
+2001,51,"(50,55]",College,0,12.913487921095093,0,5738.075802452671,2019
+2001,51,"(50,55]",College,0,12.74130808214716,0,5752.773055369771,2019
+2001,51,"(50,55]",College,0,12.913487921095093,0,5734.86840414918,2019
+2001,51,"(50,55]",College,0,15.324005666366176,0,5742.425181365253,2019
+2001,74,"(70,75]",HS,694.9034429992349,80.92452430552926,8.587056259677697,8370.994806057057,2019
+2001,74,"(70,75]",HS,677.3257842387146,82.64632269500859,8.195473944294699,7659.965246375321,2019
+2001,74,"(70,75]",HS,677.1583779648049,82.64632269500859,8.193448369914003,7041.391394343865,2019
+2001,74,"(70,75]",HS,673.8102524866106,82.64632269500859,8.152936882300091,7866.5702404350695,2019
+2001,74,"(70,75]",HS,674.14506503443,80.92452430552926,8.330540967892576,7620.113473793004,2019
+2001,41,"(40,45]",HS,442.2873756694721,158.40545183209983,2.7921221811119854,7823.383129840945,2019
+2001,41,"(40,45]",HS,590.776740627391,144.63106471626506,4.084715422557163,7104.021714848027,2019
+2001,41,"(40,45]",HS,458.8605967865341,142.9092663267857,3.2108526520405842,6746.486592830355,2019
+2001,41,"(40,45]",HS,408.63871461361896,132.5784759899096,3.0822402472383224,7466.846329040674,2019
+2001,41,"(40,45]",HS,706.6218821729151,148.07466149522375,4.772064815395223,7138.94289194007,2019
+2001,43,"(40,45]",College,790.676572302984,101.5861049792814,7.783314189123044,5741.971337613228,2019
+2001,43,"(40,45]",College,790.626350420811,101.5861049792814,7.782819811647077,5219.987988527629,2019
+2001,43,"(40,45]",College,788.784881407804,101.5861049792814,7.764692637528308,4879.216534448001,2019
+2001,43,"(40,45]",College,790.592869166029,103.30790336876075,7.652782056218713,5459.122108444505,2019
+2001,43,"(40,45]",College,790.5761285386382,101.5861049792814,7.782325434171111,5249.421066125569,2019
+2001,60,"(55,60]",College,919915.8898240244,8350.722188974829,110.16003993505588,1.5455142054781237,2019
+2001,60,"(55,60]",College,918335.072379495,8075.234446658133,113.72240378228773,1.5771236208314843,2019
+2001,60,"(55,60]",College,916221.2333588371,8850.043721923837,103.52731151927772,1.3928322532831945,2019
+2001,60,"(55,60]",College,920275.8970160674,9418.23719045202,97.712117289743,1.8112680372607364,2019
+2001,60,"(55,60]",College,915422.5380260138,9383.801222662434,97.55348779290148,1.4397924826513564,2019
+2001,49,"(45,50]",College,3549.6324100994643,778.2528720446644,4.561027061517543,1639.5062022671311,2019
+2001,49,"(45,50]",College,3548.092272379495,776.531073655185,4.569156847360121,1648.5371310557039,2019
+2001,49,"(45,50]",College,3549.7998163733746,776.531073655185,4.571355785756549,1655.9408822629005,2019
+2001,49,"(45,50]",College,3600.055179801071,776.531073655185,4.636073560914137,1646.7673243758122,2019
+2001,49,"(45,50]",College,3549.9337413925023,776.531073655185,4.571528251513131,1634.583122749571,2019
+2001,42,"(40,45]",HS,566.6702371843917,198.00681479012476,2.861872394568984,6394.740615836667,2019
+2001,42,"(40,45]",HS,564.8287681713848,198.00681479012476,2.852572366108051,6334.00596159324,2019
+2001,42,"(40,45]",HS,564.9961744452945,198.00681479012476,2.853417823240863,6089.911265090963,2019
+2001,42,"(40,45]",HS,564.8287681713848,198.00681479012476,2.852572366108051,6316.038649050427,2019
+2001,42,"(40,45]",HS,564.8287681713848,198.00681479012476,2.852572366108051,6659.732173982785,2019
+2001,50,"(45,50]",College,1839.4601377199695,172.17983894793457,10.683365421640355,187.7679469450406,2019
+2001,50,"(45,50]",College,2032.4126090283091,172.17983894793457,11.804010396611476,181.95147356684436,2019
+2001,50,"(45,50]",College,1588.2000612088755,172.17983894793457,9.22407681940701,196.956224079649,2019
+2001,50,"(45,50]",College,1953.6479571537875,172.17983894793457,11.346554678475165,188.28096496593375,2019
+2001,50,"(45,50]",College,1720.7188676358073,172.17983894793457,9.993730265691184,190.86824780440847,2019
+2001,43,"(40,45]",College,2360.4284621270085,432.17139575931583,5.461787812170647,464.9700132848824,2019
+2001,43,"(40,45]",College,2360.4284621270085,430.4495973698365,5.4836349634193295,457.9852286762234,2019
+2001,43,"(40,45]",College,2360.4284621270085,430.4495973698365,5.4836349634193295,484.8202695286229,2019
+2001,43,"(40,45]",College,2360.4284621270085,430.4495973698365,5.4836349634193295,470.80254051315814,2019
+2001,43,"(40,45]",College,2360.4284621270085,430.4495973698365,5.4836349634193295,470.6526234339973,2019
+2001,64,"(60,65]",NoHS,149.99602142310636,37.87956456854561,3.9598137711345256,7666.874729696114,2019
+2001,64,"(60,65]",NoHS,160.04039785768936,37.87956456854561,4.224979871880141,7648.055418381688,2019
+2001,64,"(60,65]",NoHS,138.27758224942616,36.157766179066265,3.824284430753433,7749.490628932709,2019
+2001,64,"(60,65]",NoHS,148.3219586840092,37.87956456854561,3.9156194210102564,7705.472848817566,2019
+2001,64,"(60,65]",NoHS,151.67008416220352,37.87956456854561,4.004008121258795,7629.593950096611,2019
+2001,37,"(35,40]",HS,166.0670237184392,68.87193557917384,2.411243742780131,5412.203360532358,2019
+2001,37,"(35,40]",HS,166.0670237184392,68.87193557917384,2.411243742780131,5625.993613060515,2019
+2001,37,"(35,40]",HS,166.0670237184392,68.87193557917384,2.411243742780131,5692.261794989983,2019
+2001,37,"(35,40]",HS,166.0670237184392,68.87193557917384,2.411243742780131,5513.024832175525,2019
+2001,37,"(35,40]",HS,166.0670237184392,68.87193557917384,2.411243742780131,5620.7654527718505,2019
+2001,79,"(75,80]",HS,1430.3192042846213,77.48092752657055,18.4602746759081,1653.484280467909,2019
+2001,79,"(75,80]",HS,1434.5043611323642,77.48092752657055,18.514289992726653,1664.0973471763023,2019
+2001,79,"(75,80]",HS,1465.6419280795717,77.48092752657055,18.916163949856674,1589.6779382267605,2019
+2001,79,"(75,80]",HS,1457.2716143840858,77.48092752657055,18.80813331621957,1657.9543914562405,2019
+2001,79,"(75,80]",HS,1438.6895179801072,77.48092752657055,18.568305309545206,1759.0505840035617,2019
+2001,33,"(30,35]",HS,-5.022188217291507,68.87193557917384,-0.07292067770504428,6621.257311885946,2019
+2001,33,"(30,35]",HS,-5.022188217291507,68.87193557917384,-0.07292067770504428,6572.091067227225,2019
+2001,33,"(30,35]",HS,-3.348125478194338,68.87193557917384,-0.04861378513669618,6579.328988686602,2019
+2001,33,"(30,35]",HS,-3.348125478194338,68.87193557917384,-0.04861378513669618,6622.537548975342,2019
+2001,33,"(30,35]",HS,-6.696250956388676,68.87193557917384,-0.09722757027339236,6560.6510560279785,2019
+2001,63,"(60,65]",HS,24.223687834736037,82.64632269500859,0.2931006128866641,5205.112952123724,2019
+2001,63,"(60,65]",HS,51.72853863810253,79.20272591604991,0.6531156350973532,5323.677649887095,2019
+2001,63,"(60,65]",HS,56.09784238714614,98.14250820032271,0.5715957683967331,5246.709036848579,2019
+2001,63,"(60,65]",HS,32.19222647283856,68.87193557917384,0.46742154408933384,5330.987252932734,2019
+2001,63,"(60,65]",HS,44.51332823259373,65.42833880021514,0.6803371298867114,5251.022314800809,2019
+2001,63,"(60,65]",NoHS,151.33527161438408,32.71416940010757,4.625985448797195,7234.968817823229,2019
+2001,63,"(60,65]",NoHS,98.8701453710788,27.548774231669533,3.5889126877165958,6867.236692910707,2019
+2001,63,"(60,65]",NoHS,174.5210405508799,24.105177452710844,7.239981572143682,7208.9322239234125,2019
+2001,63,"(60,65]",NoHS,109.65110941086458,36.157766179066265,3.0325742156700954,6867.813078784273,2019
+2001,63,"(60,65]",NoHS,98.98732976281562,34.43596778958692,2.874533115132846,6869.814925922925,2019
+2001,48,"(45,50]",HS,365.26374904361137,137.74387115834767,2.6517604447439354,2945.0242034573052,2019
+2001,48,"(45,50]",HS,365.24700841622035,137.74387115834767,2.6516389102810933,3174.502100895907,2019
+2001,48,"(45,50]",HS,367.10521805661824,137.74387115834767,2.6651292356565266,3106.0051216814195,2019
+2001,48,"(45,50]",HS,366.93781178270854,137.74387115834767,2.6639138910281095,3039.6096213506216,2019
+2001,48,"(45,50]",HS,365.41441469013006,137.74387115834767,2.652854254909511,2993.4733248449684,2019
+2001,42,"(40,45]",College,9579.070696250958,3099.2371010628226,3.090783436015916,19.670818293990614,2019
+2001,42,"(40,45]",College,9446.81973986228,3099.2371010628226,3.04811133572926,20.056324972997537,2019
+2001,42,"(40,45]",College,9540.567253251722,3099.2371010628226,3.078359913147649,20.41246293185652,2019
+2001,42,"(40,45]",College,9448.493802601377,3099.2371010628226,3.0486514888974456,19.762202622835613,2019
+2001,42,"(40,45]",College,9429.24208110176,3099.2371010628226,3.042439727463312,19.916109415570965,2019
+2001,36,"(35,40]",NoHS,10.814445294567713,44.76675812646299,0.24157311691004416,5025.312384263801,2019
+2001,36,"(35,40]",NoHS,11.48407039020658,101.5861049792814,0.11304764950431724,4970.550213474605,2019
+2001,36,"(35,40]",NoHS,11.651476664116297,36.157766179066265,0.3222399471918147,4987.531116262444,2019
+2001,36,"(35,40]",NoHS,13.576648814078043,74.03733074761188,0.1833757197481889,4968.473005130532,2019
+2001,36,"(35,40]",NoHS,10.814445294567713,32.71416940010757,0.33057373892953407,5026.448945039257,2019
+2001,37,"(35,40]",NoHS,0,16.701444377949656,0,4768.661735176027,2019
+2001,37,"(35,40]",NoHS,0,16.701444377949656,0,4761.340997140027,2019
+2001,37,"(35,40]",NoHS,0,16.701444377949656,0,4768.693722707972,2019
+2001,37,"(35,40]",NoHS,0,16.701444377949656,0,4737.08360293549,2019
+2001,37,"(35,40]",NoHS,0,16.701444377949656,0,4789.955451228361,2019
+2001,32,"(30,35]",HS,7.61698546289212,80.92452430552926,0.0941245627114756,5603.270285643522,2019
+2001,32,"(30,35]",HS,5.94292272379495,80.92452430552926,0.0734378456320304,5561.663118790429,2019
+2001,32,"(30,35]",HS,5.94292272379495,80.92452430552926,0.0734378456320304,5567.788244024629,2019
+2001,32,"(30,35]",HS,5.94292272379495,80.92452430552926,0.0734378456320304,5604.353692329548,2019
+2001,32,"(30,35]",HS,4.268859984697781,80.92452430552926,0.052751128552585215,5551.981955258985,2019
+2001,47,"(45,50]",College,661.1543381790359,84.36812108448795,7.836542164035424,5939.3586908343295,2019
+2001,47,"(45,50]",College,770.1358224942617,82.64632269500859,9.318452380952381,5391.254239808588,2019
+2001,47,"(45,50]",College,770.1358224942617,84.36812108448795,9.128279883381923,5035.998650532203,2019
+2001,47,"(45,50]",College,629.3471461361897,82.64632269500859,7.614944326787319,5645.626846707895,2019
+2001,47,"(45,50]",College,770.1358224942617,82.64632269500859,9.318452380952381,5418.8724143177205,2019
+2001,45,"(40,45]",College,18369.490436113236,3667.4305695910075,5.008817505210959,10.802859972264065,2019
+2001,45,"(40,45]",College,18369.490436113236,3667.4305695910075,5.008817505210959,10.523436838855918,2019
+2001,45,"(40,45]",College,18367.98377964805,3667.4305695910075,5.0084066844914945,11.096688211252678,2019
+2001,45,"(40,45]",College,18369.490436113236,3667.4305695910075,5.008817505210959,10.85909945745182,2019
+2001,45,"(40,45]",College,18369.490436113236,3667.4305695910075,5.008817505210959,10.445347271925723,2019
+2001,36,"(35,40]",HS,36.05931140015302,53.37575007385973,0.6755747947383456,5699.503623491707,2019
+2001,36,"(35,40]",HS,36.05931140015302,53.37575007385973,0.6755747947383456,5924.642672744201,2019
+2001,36,"(35,40]",HS,36.05931140015302,53.37575007385973,0.6755747947383456,5994.428620881977,2019
+2001,36,"(35,40]",HS,34.385248661055854,53.37575007385973,0.64421106239209,5805.677080894731,2019
+2001,36,"(35,40]",HS,34.385248661055854,53.37575007385973,0.64421106239209,5919.136981896232,2019
+2001,54,"(50,55]",HS,2722.3608263198166,499.3215329490102,5.452119819951404,943.0000079645904,2019
+2001,54,"(50,55]",HS,2724.0348890589134,499.3215329490102,5.455472494788417,933.7143848443341,2019
+2001,54,"(50,55]",HS,2724.0348890589134,499.3215329490102,5.455472494788417,983.354483226977,2019
+2001,54,"(50,55]",HS,2722.3608263198166,499.3215329490102,5.452119819951404,961.1760403997514,2019
+2001,54,"(50,55]",HS,2724.0348890589134,501.04333133848974,5.43672516662763,958.92569984283125,2019
+2001,48,"(45,50]",HS,126.05692425401683,77.48092752657055,1.6269413425747659,8682.642461267915,2019
+2001,48,"(45,50]",HS,137.77536342769702,77.48092752657055,1.7781842296667096,9143.657179943842,2019
+2001,48,"(45,50]",HS,126.89395562356542,77.48092752657055,1.6377444059384763,9179.27421407889,2019
+2001,48,"(45,50]",HS,128.06579954093345,77.48092752657055,1.6528686946476707,8875.126710696417,2019
+2001,48,"(45,50]",HS,126.05692425401683,77.48092752657055,1.6269413425747659,9050.9751998179745,2019
+2001,54,"(50,55]",College,5146.319969395562,192.84141962168675,26.68679778178117,785.5483812608352,2019
+2001,54,"(50,55]",College,5783.38454475899,192.84141962168675,29.990364912811483,770.0596264599105,2019
+2001,54,"(50,55]",College,5342.771231828615,192.84141962168675,27.70551701138676,794.1588698322697,2019
+2001,54,"(50,55]",College,5288.866411629686,192.84141962168675,27.425987746850755,774.1453812904921,2019
+2001,54,"(50,55]",College,5362.859984697781,192.84141962168675,27.809689408108255,780.9533955912558,2019
+2001,26,"(25,30]",College,46.87375669472074,51.653951684380374,0.9074573225516622,5998.798120259705,2019
+2001,26,"(25,30]",College,46.70635042081102,51.653951684380374,0.9042164035425492,6062.084763376836,2019
+2001,26,"(25,30]",College,46.70635042081102,51.653951684380374,0.9042164035425492,6320.309145671662,2019
+2001,26,"(25,30]",College,46.87375669472074,51.653951684380374,0.9074573225516622,6191.083470072897,2019
+2001,26,"(25,30]",College,46.70635042081102,51.653951684380374,0.9042164035425492,5976.1949666974915,2019
+2001,52,"(50,55]",College,2194.8971384850806,1055.4624127508391,2.0795597379584048,2876.6163821745185,2019
+2001,52,"(50,55]",College,3786.328140780413,1057.1842111403184,3.5815216505138094,1320.8605171001943,2019
+2001,52,"(50,55]",College,2494.219556235654,864.3427915186317,2.885683296847266,3667.7090164110114,2019
+2001,52,"(50,55]",College,3198.799081866871,452.83297643306787,7.063971151269893,3023.312271089091,2019
+2001,52,"(50,55]",College,2939.8215761285387,466.60736354890275,6.300418308380234,3093.609224218665,2019
+2001,43,"(40,45]",College,16204.927314460596,1117.4471547720955,14.501739295014454,172.02463374934786,2019
+2001,43,"(40,45]",College,15996.004284621271,2444.953713060671,6.542456897720556,161.037107519999,2019
+2001,43,"(40,45]",College,16340.526396327468,6749.449686759035,2.421016105710671,172.1157236483978,2019
+2001,43,"(40,45]",College,16089.416985462893,1807.888308953313,8.899563599024516,169.53909477072477,2019
+2001,43,"(40,45]",College,16320.437643458301,2462.1716969554645,6.628472605561554,163.31319795449969,2019
+2001,34,"(30,35]",HS,11.8858454475899,68.87193557917384,0.17257893723527143,6428.802255292821,2019
+2001,34,"(30,35]",HS,11.8858454475899,68.87193557917384,0.17257893723527143,6549.148011014191,2019
+2001,34,"(30,35]",HS,11.718439173680185,68.87193557917384,0.17014824797843667,6605.248087552738,2019
+2001,34,"(30,35]",HS,11.718439173680185,68.87193557917384,0.17014824797843667,6444.875239270853,2019
+2001,34,"(30,35]",HS,11.8858454475899,68.87193557917384,0.17257893723527143,6513.032465681569,2019
+2001,42,"(40,45]",HS,142.46273909716908,84.36812108448795,1.6885849449521815,5501.55103763852,2019
+2001,42,"(40,45]",HS,147.4849273144606,79.20272591604991,1.8621193350186669,5435.529954929328,2019
+2001,42,"(40,45]",HS,142.46273909716908,82.64632269500859,1.723763797972019,5473.218578691167,2019
+2001,42,"(40,45]",HS,169.2477429227238,80.92452430552926,2.091427096731908,5468.920952034145,2019
+2001,42,"(40,45]",HS,142.46273909716908,77.48092752657055,1.8386813845034868,5480.535091931594,2019
+2001,61,"(60,65]",NoHS,69.97582249426166,17.21798389479346,4.0641124374278,8219.327858007087,2019
+2001,61,"(60,65]",NoHS,70.36085692425401,17.21798389479346,4.086474778590681,8228.685953767166,2019
+2001,61,"(60,65]",NoHS,69.32293802601377,18.939782284272805,3.66017607729198,8225.58178866761,2019
+2001,61,"(60,65]",NoHS,69.07182861514919,17.21798389479346,4.011609549480169,8227.444052009307,2019
+2001,61,"(60,65]",NoHS,69.89211935730681,18.939782284272805,3.690228235376483,8229.259618333384,2019
+2001,50,"(45,50]",HS,175.44177505738332,51.653951684380374,3.396483121550507,6655.2164544945845,2019
+2001,50,"(45,50]",HS,158.53374139250192,51.653951684380374,3.0691503016300863,7008.58269699309,2019
+2001,50,"(45,50]",HS,160.37521040550882,51.653951684380374,3.10480041073033,7035.883034729352,2019
+2001,50,"(45,50]",HS,162.049273144606,51.653951684380374,3.137209600821461,6802.75498896057,2019
+2001,50,"(45,50]",HS,157.02708492731446,51.653951684380374,3.0399820305480683,6937.54226869947,2019
+2001,55,"(50,55]",College,3879.4729915837797,860.899194739673,4.506303427031189,313.2379130398481,2019
+2001,55,"(50,55]",College,3656.8226472838564,860.899194739673,4.247678090103966,306.9161349652556,2019
+2001,55,"(50,55]",College,3492.5970925784236,860.899194739673,4.056917597227569,316.60850175098983,2019
+2001,55,"(50,55]",College,3191.0983932670238,860.899194739673,3.7067038891028106,308.53994444742,2019
+2001,55,"(50,55]",College,3435.3441469013005,860.899194739673,3.990413939160569,311.3887393874046,2019
+2001,50,"(45,50]",NoHS,169.81692425401684,43.04495973698364,3.9451058914131694,5010.529396217362,2019
+2001,50,"(45,50]",NoHS,135.33123182861516,43.04495973698364,3.1439507123604162,5288.721411215511,2019
+2001,50,"(45,50]",NoHS,144.03635807192043,46.488556515942335,3.098318572712104,5322.116942671328,2019
+2001,50,"(45,50]",NoHS,162.4510482019893,32.71416940010757,4.965770220699998,5136.536112176989,2019
+2001,50,"(45,50]",NoHS,155.5873909716909,49.93215329490103,3.115975993520375,5220.923831875427,2019
+2001,19,"(15,20]",HS,0,0.9986430658980207,0,5532.49071511032,2019
+2001,19,"(15,20]",HS,0,0.9986430658980207,0,5513.1564694691015,2019
+2001,19,"(15,20]",HS,0,0.9986430658980207,0,5517.4702903340785,2019
+2001,19,"(15,20]",HS,0,0.9986430658980207,0,5464.5389093414615,2019
+2001,19,"(15,20]",HS,0,0.9986430658980207,0,5513.835990910934,2019
+2001,32,"(30,35]",College,-24.458056618209643,37.87956456854561,-0.6456794553155739,5109.5091559536595,2019
+2001,32,"(30,35]",College,-25.696863045141544,39.60136295802496,-0.6488883494332925,5123.904637836277,2019
+2001,32,"(30,35]",College,-26.567375669472074,43.04495973698364,-0.6172006160954948,5126.258535190881,2019
+2001,32,"(30,35]",College,-20.85882172915073,36.157766179066265,-0.5768835836221281,5128.483867676891,2019
+2001,32,"(30,35]",College,-24.62546289211936,36.157766179066265,-0.6810559803436199,5113.14260898243,2019
+2001,55,"(50,55]",College,18933.649579188983,11742.665016249137,1.6123809674370497,1.802300478322715,2019
+2001,55,"(50,55]",College,10158.380107115532,2686.0054875877795,3.781965507538284,1.6974280060621225,2019
+2001,55,"(50,55]",College,15972.232593726092,7007.719445180936,2.279234024517044,1.558316690187869,2019
+2001,55,"(50,55]",College,10114.687069625097,8798.389770239457,1.1496066136826553,2.01357385597425,2019
+2001,55,"(50,55]",College,10759.368630451416,5285.921055701591,2.035476602293551,1.4953669557355684,2019
+2001,34,"(30,35]",HS,1.456434583014537,27.548774231669533,0.052867491336157105,5291.49893581174,2019
+2001,34,"(30,35]",HS,0.8872532517214996,27.548774231669533,0.03220663265306122,5314.439371451564,2019
+2001,34,"(30,35]",HS,1.422953328232594,27.548774231669533,0.0516521467077397,5242.77072531769,2019
+2001,34,"(30,35]",HS,1.5233970925784237,27.548774231669533,0.05529818059299191,5326.645095232039,2019
+2001,34,"(30,35]",HS,1.2722876817138487,27.548774231669533,0.046183095879861386,5315.049534222415,2019
+2001,36,"(35,40]",College,150121.62635042082,14067.092842046255,10.671830209416854,14.608140502550564,2019
+2001,36,"(35,40]",College,148547.33775057385,8781.171786344665,16.916573478447983,15.874372334474874,2019
+2001,36,"(35,40]",College,162747.40752869166,17855.049298900816,9.11492344850096,15.508857024996303,2019
+2001,36,"(35,40]",College,152055.16881407803,20678.798657646945,7.353191610956983,15.245517375064313,2019
+2001,36,"(35,40]",College,149163.5602448355,12500.256307620051,11.932840141358273,16.088342421621903,2019
+2001,52,"(50,55]",HS,304.2609028309105,101.5861049792814,2.9951035418964516,7847.629291311039,2019
+2001,52,"(50,55]",HS,336.15179801071156,99.86430658980206,3.3660855363615845,8294.467974920306,2019
+2001,52,"(50,55]",HS,311.074338179036,101.5861049792814,3.0621740861358937,8334.216245626227,2019
+2001,52,"(50,55]",HS,326.54267788829384,99.86430658980206,3.269863768539296,8075.616281971484,2019
+2001,52,"(50,55]",HS,310.5051568477429,101.5861049792814,3.056571141408274,8158.1363650313,2019
+2001,44,"(40,45]",NoHS,0,6.026294363177711,0,4599.939502958676,2019
+2001,44,"(40,45]",NoHS,0,6.026294363177711,0,4592.877783349966,2019
+2001,44,"(40,45]",NoHS,0,6.026294363177711,0,4599.97035872492,2019
+2001,44,"(40,45]",NoHS,0,6.026294363177711,0,4569.47865125863,2019
+2001,44,"(40,45]",NoHS,0,6.026294363177711,0,4620.479816168858,2019
+2001,76,"(75,80]",HS,662.4266258607498,60.2629436317771,10.992271302051819,7167.147199906294,2019
+2001,76,"(75,80]",HS,664.100688599847,60.2629436317771,11.020050607844217,6470.416610636634,2019
+2001,76,"(75,80]",HS,664.100688599847,60.2629436317771,11.020050607844217,6122.930216485253,2019
+2001,76,"(75,80]",HS,664.100688599847,60.2629436317771,11.020050607844217,6841.588749031054,2019
+2001,76,"(75,80]",HS,662.4266258607498,60.2629436317771,10.992271302051819,6574.6564543516415,2019
+2001,46,"(45,50]",College,328.6519969395562,154.9618550531411,2.120857399563599,5956.948336124378,2019
+2001,46,"(45,50]",College,351.2351032899771,158.40545183209983,2.2173170129413537,6266.097218354582,2019
+2001,46,"(45,50]",College,325.57172149961747,149.7964598847031,2.173427341007971,6309.612251046152,2019
+2001,46,"(45,50]",College,354.5330068859985,168.7362421689759,2.1011076359692895,6129.163276525839,2019
+2001,46,"(45,50]",College,319.2102830910482,170.45804055845522,1.872661929265703,6220.637629036903,2019
+2001,46,"(45,50]",College,608.572027543994,120.5258872635542,5.049305517355191,5798.503591100411,2019
+2001,46,"(45,50]",College,823.6556082631981,120.5258872635542,6.833848121458827,5264.923546219428,2019
+2001,46,"(45,50]",College,939.4672685539404,120.5258872635542,7.794734308817867,4915.578844229787,2019
+2001,46,"(45,50]",College,621.8473450650345,120.5258872635542,5.159450464822048,5512.598938443281,2019
+2001,46,"(45,50]",College,823.6890895179802,120.5258872635542,6.8341259145167514,5290.7373801148815,2019
+2001,50,"(45,50]",HS,1939.7699770466718,110.19509692667813,17.60305159799769,270.42632226782007,2019
+2001,50,"(45,50]",HS,1705.7360061208876,110.19509692667813,15.479236859838275,261.64307006503225,2019
+2001,50,"(45,50]",HS,1682.4648599846978,110.19509692667813,15.268055538842896,130.74725453609094,2019
+2001,50,"(45,50]",HS,1360.8790818668706,110.19509692667813,12.349724441663456,136.4349208325221,2019
+2001,50,"(45,50]",HS,1785.4213925019128,110.19509692667813,16.20236691374663,274.45335280145827,2019
+2001,61,"(60,65]",College,19904.60596786534,1773.452341163726,11.223648646122674,12.250965647820438,2019
+2001,61,"(60,65]",College,13710.573833205815,1773.452341163726,7.731007772224113,11.488115787309775,2019
+2001,61,"(60,65]",College,36643.559296097934,1773.452341163726,20.6622746185853,11.971992847428647,2019
+2001,61,"(60,65]",College,17395.185921958684,1790.6703250585194,9.714343102988657,12.075056622706953,2019
+2001,61,"(60,65]",College,8527.67559296098,1790.6703250585194,4.762281182429431,11.648089697840131,2019
+2001,31,"(30,35]",HS,465.79121652639634,144.63106471626506,3.220547518198654,7982.879545345694,2019
+2001,31,"(30,35]",HS,492.7938485080337,144.63106471626506,3.4072476025450613,8003.87059001391,2019
+2001,31,"(30,35]",HS,494.6855394032135,144.63106471626506,3.420327025688982,8072.940854458432,2019
+2001,31,"(30,35]",HS,477.7440244835501,144.63106471626506,3.3031909529310375,7951.197930494927,2019
+2001,31,"(30,35]",HS,482.78295332823257,144.63106471626506,3.338030832279003,7998.496496422551,2019
+2001,77,"(75,80]",College,7156.618209640398,198.00681479012476,36.143292427717604,2042.412280207449,2019
+2001,77,"(75,80]",College,7156.618209640398,198.00681479012476,36.143292427717604,2039.2979937863322,2019
+2001,77,"(75,80]",College,7154.944146901301,196.28501640064542,36.45181011828763,2126.0092714236016,2019
+2001,77,"(75,80]",College,7154.944146901301,196.28501640064542,36.45181011828763,2033.927642513442,2019
+2001,77,"(75,80]",College,7156.618209640398,196.28501640064542,36.46033885252214,2017.163396072789,2019
+2001,42,"(40,45]",College,1088.8773680183626,70.59373396865318,15.424561172835446,7140.977812396833,2019
+2001,42,"(40,45]",College,1105.802142310635,70.59373396865318,15.664310132704713,6491.815478575386,2019
+2001,42,"(40,45]",College,1107.7273144605967,70.59373396865318,15.691581280464323,6068.016533996829,2019
+2001,42,"(40,45]",College,1101.8011323641929,70.59373396865318,15.607633573447787,6789.213592238438,2019
+2001,42,"(40,45]",College,1110.3221117061976,70.59373396865318,15.728338044835976,6528.419798193051,2019
+2001,54,"(50,55]",College,2363.9439938791124,294.4275246009682,8.028950408365926,2618.5746137815067,2019
+2001,54,"(50,55]",College,2378.6757459831674,294.4275246009682,8.078985649208374,2657.6086433367614,2019
+2001,54,"(50,55]",College,2367.074491201224,294.4275246009682,8.039582897044946,3349.0275657126817,2019
+2001,54,"(50,55]",College,2390.6118133129307,294.4275246009682,8.119525565936405,2747.7081842309153,2019
+2001,54,"(50,55]",College,2403.970833970926,294.4275246009682,8.164898432063987,2818.4551039730372,2019
+2001,70,"(65,70]",College,318974.2402448355,7662.00283318309,41.630660701846985,1.723908682705586,2019
+2001,70,"(65,70]",College,576903.7827084927,6921.6295257069705,83.34797182742429,1.7558858000022828,2019
+2001,70,"(65,70]",College,642634.182096404,6611.705815600688,97.19642706728919,1.5509071336575402,2019
+2001,70,"(65,70]",College,92406.58913542464,8918.91565750301,10.360742570503835,2.0199460627954804,2019
+2001,70,"(65,70]",College,146897.3312930375,6973.28347739135,21.06573349116027,1.6026189947150349,2019
+2001,26,"(25,30]",HS,23.821912777352715,61.984742021256444,0.38431897916399266,5995.906715912336,2019
+2001,26,"(25,30]",HS,11.601254781943382,61.984742021256444,0.18716307277628033,5951.384021405927,2019
+2001,26,"(25,30]",HS,3.7331599081866873,61.984742021256444,0.06022707825268473,5957.938350869857,2019
+2001,26,"(25,30]",HS,13.292058148431522,61.984742021256444,0.21444080776964874,5997.066039859542,2019
+2001,26,"(25,30]",HS,9.642601377199693,61.984742021256444,0.1555641124374278,5941.024472343165,2019
+2001,66,"(65,70]",HS,65424.882938026014,12362.512436461704,5.292199564957637,18.815228015970348,2019
+2001,66,"(65,70]",HS,65433.2532517215,12362.512436461704,5.292876637174026,20.74704558576057,2019
+2001,66,"(65,70]",HS,65252.2870696251,12345.294452566908,5.285599895598882,20.315404805630212,2019
+2001,66,"(65,70]",HS,65481.63366488141,12345.294452566908,5.304177548496308,19.824742589761655,2019
+2001,66,"(65,70]",HS,65446.64575363428,12362.512436461704,5.293959952720248,21.34455033113702,2019
+2001,42,"(40,45]",College,10787.660290742157,344.35967789586914,31.326723142087022,3687.287979209405,2019
+2001,42,"(40,45]",College,11626.36572302984,344.35967789586914,33.7622737774355,3633.9889219487354,2019
+2001,42,"(40,45]",College,9952.30298393267,344.35967789586914,28.900895263765886,3732.726985571312,2019
+2001,42,"(40,45]",College,11626.36572302984,344.35967789586914,33.7622737774355,3619.162569798528,2019
+2001,42,"(40,45]",College,11626.36572302984,344.35967789586914,33.7622737774355,3597.716146931495,2019
+2001,39,"(35,40]",HS,-12.555470543228768,27.548774231669533,-0.4557542356565268,4815.019628231645,2019
+2001,39,"(35,40]",HS,-12.555470543228768,25.826975842190187,-0.48613785136696186,4762.5490737522405,2019
+2001,39,"(35,40]",HS,-12.555470543228768,25.826975842190187,-0.48613785136696186,4778.819381740367,2019
+2001,39,"(35,40]",HS,-12.555470543228768,25.826975842190187,-0.48613785136696186,4760.558789729307,2019
+2001,39,"(35,40]",HS,-12.555470543228768,25.826975842190187,-0.48613785136696186,4816.108627685617,2019
+2001,66,"(65,70]",HS,303.8423871461362,123.96948404251289,2.4509450006417666,6707.156869876204,2019
+2001,66,"(65,70]",HS,302.33573068094876,122.24768565303354,2.47314073117953,7036.087980897221,2019
+2001,66,"(65,70]",HS,302.33573068094876,123.96948404251289,2.4387915543575924,7341.003991939673,2019
+2001,66,"(65,70]",HS,302.33573068094876,123.96948404251289,2.4387915543575924,6767.051026385883,2019
+2001,66,"(65,70]",HS,302.33573068094876,122.24768565303354,2.47314073117953,7061.547286014233,2019
+2001,30,"(25,30]",College,1573.669196633512,154.9618550531411,10.155203653788561,2999.9622632893515,2019
+2001,30,"(25,30]",College,1572.2295026778884,154.9618550531411,10.14591301929577,3046.681162979915,2019
+2001,30,"(25,30]",College,1571.308768171385,154.9618550531411,10.13997133444573,3826.2814819753958,2019
+2001,30,"(25,30]",College,1572.0453557765875,154.9618550531411,10.14472468232576,3135.9644713889206,2019
+2001,30,"(25,30]",College,1571.5933588370312,154.9618550531411,10.141807855217559,3230.7518990590797,2019
+2001,48,"(45,50]",College,1461.9338791124715,253.10436325346384,5.776012156884318,566.849495594937,2019
+2001,48,"(45,50]",College,1461.9422494261669,325.41989561159636,4.492479621378351,561.6814596042875,2019
+2001,48,"(45,50]",College,1466.286442234124,299.5929197694062,4.894262666029326,540.6956422688152,2019
+2001,48,"(45,50]",College,1465.114598316756,385.6828392433735,3.798754959362451,561.0082290226909,2019
+2001,48,"(45,50]",College,1461.9338791124715,296.1493229904475,4.9364755061743875,591.9400672946446,2019
+2001,51,"(50,55]",College,37.16419280795715,63.706540410735805,0.5833654216403541,6657.858573141331,2019
+2001,51,"(50,55]",College,35.6575363427697,63.706540410735805,0.5597154721143939,6939.750120911491,2019
+2001,51,"(50,55]",College,37.83381790359602,63.706540410735805,0.5938765103185587,6971.252376541238,2019
+2001,51,"(50,55]",College,40.01009946442234,63.706540410735805,0.6280375485227235,6781.587378654156,2019
+2001,51,"(50,55]",College,39.507880642693195,63.706540410735805,0.6201542320140703,6871.883253152328,2019
+2001,20,"(15,20]",HS,18.749502677888294,24.105177452710844,0.7778205621871389,4904.678474506629,2019
+2001,20,"(15,20]",HS,11.8858454475899,34.43596778958692,0.34515787447054286,4920.970981548622,2019
+2001,20,"(15,20]",HS,9.542157612853863,25.826975842190187,0.36946476703889103,4929.4852568218175,2019
+2001,20,"(15,20]",HS,12.220657995409335,36.157766179066265,0.33798155380750683,4877.174155240945,2019
+2001,20,"(15,20]",HS,9.542157612853863,22.383379063231494,0.4263055004294896,4885.1221667025775,2019
+2001,51,"(50,55]",HS,3169.83779648049,146.35286310574438,21.65887109560806,6.034810910235409,2019
+2001,51,"(50,55]",HS,3163.3089517980106,146.35286310574438,21.61426079865909,6.072822932236683,2019
+2001,51,"(50,55]",HS,3171.511859219587,146.35286310574438,21.670309633287282,6.495101349772979,2019
+2001,51,"(50,55]",HS,3166.4896710022954,146.35286310574438,21.635994020249612,6.155985488194219,2019
+2001,51,"(50,55]",HS,3166.657077276205,146.35286310574438,21.637137874017537,6.23581106455072,2019
+2001,59,"(55,60]",College,2531.01545524101,344.35967789586914,7.349918174817097,132.79285006046464,2019
+2001,59,"(55,60]",College,1861.3903596021423,344.35967789586914,5.405366769349249,127.74212640000027,2019
+2001,59,"(55,60]",College,1864.4036725325172,344.35967789586914,5.414117250673855,138.87828116459093,2019
+2001,59,"(55,60]",College,2117.521958684009,344.35967789586914,6.1491576819407,131.97684272024802,2019
+2001,59,"(55,60]",College,1672.2212700841624,344.35967789586914,4.8560309973045825,134.3666949191213,2019
+2001,37,"(35,40]",HS,0.1674062739097169,12.052588726355422,0.013889652896198909,4874.88576951518,2019
+2001,37,"(35,40]",HS,0.1674062739097169,12.052588726355422,0.013889652896198909,4867.401958824482,2019
+2001,37,"(35,40]",HS,0.1674062739097169,12.052588726355422,0.013889652896198909,4874.918469583447,2019
+2001,37,"(35,40]",HS,0.1674062739097169,12.052588726355422,0.013889652896198909,4842.604220511248,2019
+2001,37,"(35,40]",HS,0.1674062739097169,12.052588726355422,0.013889652896198909,4896.653812443853,2019
+2001,64,"(60,65]",HS,2537.7117061973986,129.1348792109509,19.65163650365807,11372.833544071005,2019
+2001,64,"(60,65]",HS,3036.4149961744456,129.1348792109509,23.51351559491722,11057.720725793351,2019
+2001,64,"(60,65]",HS,2374.155776587605,129.1348792109509,18.385085354896678,13377.496463922676,2019
+2001,64,"(60,65]",HS,2470.749196633512,129.1348792109509,19.13308946219998,11305.465226834665,2019
+2001,64,"(60,65]",HS,2630.957000765111,129.1348792109509,20.373713258888465,11291.18149259581,2019
+2001,73,"(70,75]",College,18320.607804131596,254.82616164294322,71.89453267283453,495.6589620314802,2019
+2001,73,"(70,75]",College,18541.918898240245,532.0357023491179,34.850892179549966,496.9306612203465,2019
+2001,73,"(70,75]",College,18278.42142310635,390.8482344118115,46.76603298621418,506.6564122388286,2019
+2001,73,"(70,75]",College,18425.90635042081,290.98392782200943,63.32276317918034,498.60711198874435,2019
+2001,73,"(70,75]",College,18444.036449885236,470.05096032786145,39.23837627524574,504.1585065744751,2019
+2001,43,"(40,45]",HS,-76.67207345065036,94.69891142136402,-0.809640494276613,6863.722572470336,2019
+2001,43,"(40,45]",HS,-63.02846212700842,82.64632269500859,-0.7626287543319216,7110.351462618533,2019
+2001,43,"(40,45]",HS,-58.441530221882175,89.53351625292598,-0.6527335535084862,7198.6079094715915,2019
+2001,43,"(40,45]",HS,-66.99599081866872,92.97711303188467,-0.7205643263594748,7017.237721556437,2019
+2001,43,"(40,45]",HS,-55.11014537107881,98.14250820032271,-0.5615318620000135,7143.785476475195,2019
+2001,40,"(35,40]",HS,232.86212700841622,189.39782284272803,1.229486820457171,11278.96182332654,2019
+2001,40,"(35,40]",HS,230.01622035195103,189.39782284272803,1.2144607414149193,11042.086600875853,2019
+2001,40,"(35,40]",HS,298.98760520275437,189.39782284272803,1.5786221864388978,10408.773231555759,2019
+2001,40,"(35,40]",HS,214.94965570007653,189.39782284272803,1.1349109111912348,11161.037161086704,2019
+2001,40,"(35,40]",HS,208.0859984697781,189.39782284272803,1.0986715440893338,10038.826299197875,2019
+2001,23,"(20,25]",HS,5.507666411629686,41.323161347504296,0.13328279424977538,5910.686593038767,2019
+2001,23,"(20,25]",HS,5.524407039020658,41.323161347504296,0.13368790912591452,5916.694345166544,2019
+2001,23,"(20,25]",HS,5.691813312930376,41.323161347504296,0.1377390578873059,5912.68291026881,2019
+2001,23,"(20,25]",HS,5.507666411629686,41.323161347504296,0.13328279424977538,5860.458115119566,2019
+2001,23,"(20,25]",HS,5.691813312930376,41.323161347504296,0.1377390578873059,5889.555690116014,2019
+2001,42,"(40,45]",College,29622.54016832441,1404.9874858151463,21.083846274358798,243.00953715394547,2019
+2001,42,"(40,45]",College,28536.073450650347,998.6430658980204,28.574847635866327,233.72853117648705,2019
+2001,42,"(40,45]",College,26984.55210405509,1098.5073724878225,24.564743742176592,239.60933067590364,2019
+2001,42,"(40,45]",College,29773.205814843153,1291.3487921095093,23.055897830830446,247.30842383981312,2019
+2001,42,"(40,45]",College,29771.531752104056,1293.0705904989888,23.023902925992143,243.66319312651004,2019
+2001,34,"(30,35]",HS,58.50849273144606,65.42833880021514,0.8942377844881746,7000.6902658839535,2019
+2001,34,"(30,35]",HS,56.667023718439175,65.42833880021514,0.8660929615142978,7083.458812447041,2019
+2001,34,"(30,35]",HS,57.00183626625861,65.42833880021514,0.8712102020550027,7161.692262790073,2019
+2001,34,"(30,35]",HS,58.50849273144606,65.42833880021514,0.8942377844881746,7043.595588371815,2019
+2001,34,"(30,35]",HS,56.83442999234889,65.42833880021514,0.8686515817846502,7096.750036667307,2019
+2001,46,"(45,50]",College,41.04801836266259,51.653951684380374,0.794673341034527,4834.051661023545,2019
+2001,46,"(45,50]",College,42.35378729915838,53.37575007385973,0.7935024283602666,4927.472837139272,2019
+2001,46,"(45,50]",College,48.5478194338179,24.105177452710844,2.013999669948842,5520.089900019629,2019
+2001,46,"(45,50]",College,46.87375669472074,20.661580673752148,2.268643306379156,5502.909440541238,2019
+2001,46,"(45,50]",College,44.94858454475899,18.939782284272805,2.373236601673259,5510.160567812495,2019
+2001,65,"(60,65]",NoHS,234.20137719969398,16.184904861105853,14.470358597071908,7504.0455243454635,2019
+2001,65,"(60,65]",NoHS,390.89364957918895,12.396948404251289,31.531441192829334,7872.057497132495,2019
+2001,65,"(60,65]",NoHS,331.46442234123947,58.54114524229776,5.662076151215203,8213.20109528523,2019
+2001,65,"(60,65]",NoHS,364.27605202754404,14.63528631057444,24.890257989988452,7571.055806915341,2019
+2001,65,"(60,65]",NoHS,259.94846212700844,18.939782284272805,13.724997374593062,7900.541665360967,2019
+2001,53,"(50,55]",College,14016.257689364958,1033.0790336876073,13.567459247850087,503.4909857584169,2019
+2001,53,"(50,55]",College,14016.425095638868,1033.0790336876073,13.567621293800542,485.6052584829645,2019
+2001,53,"(50,55]",College,14016.257689364958,1033.0790336876073,13.567459247850087,505.49336886549537,2019
+2001,53,"(50,55]",College,14016.425095638868,1033.0790336876073,13.567621293800542,492.98359531625584,2019
+2001,53,"(50,55]",College,14017.931752104056,1033.0790336876073,13.569079707354643,487.79828055033215,2019
+2001,42,"(40,45]",College,8.152685539403214,34.43596778958692,0.23674913361571043,6677.074051359836,2019
+2001,42,"(40,45]",College,8.387054322876816,34.43596778958692,0.24355506353484785,6619.106783370898,2019
+2001,42,"(40,45]",College,10.128079571537874,34.43596778958692,0.294113400077012,6652.82580842688,2019
+2001,42,"(40,45]",College,9.224085692425403,34.43596778958692,0.267861956103196,6637.800820361018,2019
+2001,42,"(40,45]",College,8.70512624330528,34.43596778958692,0.2527916827108202,6662.018991755785,2019
+2001,39,"(35,40]",HS,140.95608263198164,34.43596778958692,4.093280708509819,4767.959799617407,2019
+2001,39,"(35,40]",HS,140.95608263198164,34.43596778958692,4.093280708509819,4759.354800556599,2019
+2001,39,"(35,40]",HS,140.95608263198164,34.43596778958692,4.093280708509819,4789.282084753837,2019
+2001,39,"(35,40]",HS,140.95608263198164,34.43596778958692,4.093280708509819,4756.362354267805,2019
+2001,39,"(35,40]",HS,140.95608263198164,34.43596778958692,4.093280708509819,4797.032400236433,2019
+2001,74,"(70,75]",College,26873.896557000764,1136.3869370563682,23.648544065996894,366.5238559756359,2019
+2001,74,"(70,75]",College,26912.90221882173,1143.2741306142857,23.540200462999476,344.1620288315377,2019
+2001,74,"(70,75]",College,26940.69166029074,1212.1460661934595,22.225614892183284,361.075213886859,2019
+2001,74,"(70,75]",College,29980.7895944912,1175.9883000143934,25.494122342989513,376.57100058552925,2019
+2001,74,"(70,75]",College,27138.73328232594,1322.3411631201375,20.52324622360737,361.9683243107386,2019
+2001,57,"(55,60]",NoHS,533.7916449885233,22.383379063231494,23.847679274902994,5891.0774817621295,2019
+2001,57,"(55,60]",NoHS,536.0851109410864,67.15013718969449,7.983380725294471,6157.239720521418,2019
+2001,57,"(55,60]",NoHS,645.9203672532517,103.30790336876075,6.252380952380952,5257.773489629924,2019
+2001,57,"(55,60]",NoHS,642.9907574598317,22.383379063231494,28.726259589467137,5888.429120634377,2019
+2001,57,"(55,60]",NoHS,529.2884162203519,46.488556515942335,11.385348479014247,6092.87201553777,2019
+2001,77,"(75,80]",HS,190.8431522570773,14.463106471626503,13.195170251388967,8381.722337182333,2019
+2001,77,"(75,80]",HS,242.73909716908952,14.463106471626503,16.78333058290702,8116.414746500396,2019
+2001,77,"(75,80]",HS,194.1912777352716,14.463106471626503,13.426664466325613,8392.860631453785,2019
+2001,77,"(75,80]",HS,159.03596021423107,14.463106471626503,10.995975209490807,8421.46345935669,2019
+2001,77,"(75,80]",HS,241.06503442999235,14.463106471626503,16.667583475438697,8198.042176391129,2019
+2001,75,"(70,75]",College,31691.68171384851,1205.258872635542,26.29450189779416,241.3296602319537,2019
+2001,75,"(70,75]",College,32543.779648048967,1205.258872635542,27.001485230210683,232.86987583681918,2019
+2001,75,"(70,75]",College,39109.45371078807,1205.258872635542,32.4490070960999,235.8741282958295,2019
+2001,75,"(70,75]",College,34887.467482785,1205.258872635542,28.94603663567853,244.91674562390713,2019
+2001,75,"(70,75]",College,27407.755164498853,1205.258872635542,22.740139721656856,241.5159462639227,2019
+2001,92,"(90,95]",HS,611.0328997704668,20.661580673752148,29.57338595815685,8291.525518223118,2019
+2001,92,"(90,95]",HS,504.06029074215763,24.105177452710844,20.910872435227457,9403.994297571106,2019
+2001,92,"(90,95]",HS,541.2244835501148,25.826975842190187,20.95578231292517,9581.983766833131,2019
+2001,92,"(90,95]",HS,576.9824636572303,30.992371010628222,18.616919094681897,9392.098042957394,2019
+2001,92,"(90,95]",HS,702.1019127773527,30.992371010628222,22.654023873700424,7606.132895482163,2019
+2001,40,"(35,40]",HS,116.01254781943382,58.54114524229776,1.981726652925321,5339.171543950779,2019
+2001,40,"(35,40]",HS,123.7132364192808,61.984742021256444,1.9958659564454715,5275.099088076038,2019
+2001,40,"(35,40]",HS,191.84758990053558,72.31553235813253,2.652923703173992,5311.675323785423,2019
+2001,40,"(35,40]",HS,186.65799540933435,53.37575007385973,3.497056156607499,5307.504542528153,2019
+2001,40,"(35,40]",HS,198.54384085692425,82.64632269500859,2.40233121550507,5318.775888521982,2019
+2001,25,"(20,25]",HS,26.41671002295333,60.2629436317771,0.43835744540403765,8435.873841838695,2019
+2001,25,"(20,25]",HS,26.266044376434586,60.2629436317771,0.4358573078827219,8517.439232259969,2019
+2001,25,"(20,25]",HS,26.266044376434586,60.2629436317771,0.4358573078827219,8582.907723957145,2019
+2001,25,"(20,25]",HS,26.584116296863044,60.2629436317771,0.4411353759832774,8459.39179051451,2019
+2001,25,"(20,25]",HS,26.600856924254018,60.2629436317771,0.4414131690412014,8442.474153098576,2019
+2001,47,"(45,50]",College,22174.132823259373,17355.727765951804,1.2776262178276523,17.875572338876292,2019
+2001,47,"(45,50]",College,21879.16296863045,17424.59970153098,1.2556479542372545,18.61128916750527,2019
+2001,47,"(45,50]",College,21708.40856924254,18371.588815744617,1.1816293510030138,18.75275311497085,2019
+2001,47,"(45,50]",College,21659.860749808722,16804.752281318415,1.2889128258015239,18.30235946157829,2019
+2001,47,"(45,50]",College,21649.81637337414,17734.523411637263,1.2207723811268416,18.487634191375456,2019
+2001,59,"(55,60]",College,5797.2792654934965,304.7583149378442,19.022546658573887,797.4321746364299,2019
+2001,59,"(55,60]",College,5797.111859219586,303.0365165483649,19.1300768806665,800.1543903451652,2019
+2001,59,"(55,60]",College,3484.728997704667,303.0365165483649,11.49936990233486,804.3214810538013,2019
+2001,59,"(55,60]",College,6231.464177505738,303.0365165483649,20.563410141071863,800.3246806621946,2019
+2001,59,"(55,60]",College,2965.8365110941086,303.0365165483649,9.787059806770047,793.4837926371905,2019
+2001,27,"(25,30]",HS,14.648048967100229,60.2629436317771,0.24306892568348093,4348.863094149667,2019
+2001,27,"(25,30]",HS,14.480642693190514,60.2629436317771,0.2402909951042412,4306.922432912387,2019
+2001,27,"(25,30]",HS,14.815455241009946,60.2629436317771,0.24584685626272074,4304.4678499881065,2019
+2001,27,"(25,30]",HS,14.648048967100229,60.2629436317771,0.24306892568348093,4325.950513033504,2019
+2001,27,"(25,30]",HS,14.648048967100229,60.2629436317771,0.24306892568348093,4319.771234546327,2019
+2001,44,"(40,45]",College,92.70959449120122,172.17983894793457,0.5384462841740469,5857.7061351834045,2019
+2001,44,"(40,45]",College,93.83121652639633,172.17983894793457,0.5449605313823643,6089.0944239178825,2019
+2001,44,"(40,45]",College,92.91048201989288,172.17983894793457,0.5396130150173277,6160.81743763286,2019
+2001,44,"(40,45]",College,91.03553175210406,172.17983894793457,0.5287235271467078,5966.826675130061,2019
+2001,44,"(40,45]",College,94.88587605202754,172.17983894793457,0.551085868309588,6083.435910266689,2019
+2001,53,"(50,55]",HS,275.2159143075746,41.323161347504296,6.660088563727379,6193.604573540378,2019
+2001,53,"(50,55]",HS,306.35348125478197,41.323161347504296,7.41360223334617,6455.839759273362,2019
+2001,53,"(50,55]",HS,342.3458301453711,41.323161347504296,8.28459921704531,6485.145355419897,2019
+2001,53,"(50,55]",HS,253.4530986993114,41.323161347504296,6.133439224746502,6308.705741173229,2019
+2001,53,"(50,55]",HS,274.04407039020657,41.323161347504296,6.631730522397638,6392.705263710373,2019
+2001,52,"(50,55]",College,395.0788064269319,258.2697584219018,1.5297137723013736,6212.5356836947185,2019
+2001,52,"(50,55]",College,396.7528691660291,258.2697584219018,1.5361956103195997,6289.724443598659,2019
+2001,52,"(50,55]",College,396.7528691660291,258.2697584219018,1.5361956103195997,6314.212296216805,2019
+2001,52,"(50,55]",College,396.9202754399388,258.2697584219018,1.5368437941214224,6278.224572304312,2019
+2001,52,"(50,55]",College,395.0788064269319,258.2697584219018,1.5297137723013736,6282.304199439578,2019
+2001,70,"(65,70]",College,9208.851721499619,92.97711303188467,99.04428542905634,2024.2415054814385,2019
+2001,70,"(65,70]",College,3006.951491966335,96.42070981084338,31.1857431651906,4532.292501628703,2019
+2001,70,"(65,70]",College,2018.6685539403213,103.30790336876075,19.540310935695032,5595.65729676591,2019
+2001,70,"(65,70]",College,9218.259954093342,44.76675812646299,205.91752317763098,1983.9849883071456,2019
+2001,70,"(65,70]",College,2067.216373374139,74.03733074761188,27.921270965604315,4746.804247338654,2019
+2001,65,"(60,65]",College,289.78026013772,141.18746793730637,2.052450294429783,8206.731281915978,2019
+2001,65,"(60,65]",College,289.78026013772,141.18746793730637,2.052450294429783,8589.422222287227,2019
+2001,65,"(60,65]",College,289.61285386381024,141.18746793730637,2.0512645923532777,8940.109476612795,2019
+2001,65,"(60,65]",College,286.2647283856159,142.9092663267857,2.003122230933746,8255.951133914337,2019
+2001,65,"(60,65]",College,277.89441469013,141.18746793730637,1.9682654469979428,8643.93187036391,2019
+2001,30,"(25,30]",HS,89.0601377199694,20.661580673752148,4.310422282120396,4434.705588941428,2019
+2001,30,"(25,30]",HS,84.38950267788829,11.363869370563684,7.426123965881376,4391.93705823209,2019
+2001,30,"(25,30]",HS,43.592593726090286,14.63528631057444,2.9785952116695738,4389.4340241339405,2019
+2001,30,"(25,30]",HS,49.853588370313695,24.105177452710844,2.0681693162440173,4411.340734878856,2019
+2001,30,"(25,30]",HS,90.14827850038256,22.383379063231494,4.0274651224786,4405.039483206998,2019
+2001,67,"(65,70]",HS,230.18362662586077,12.396948404251289,18.56776515637702,8491.550914765989,2019
+2001,67,"(65,70]",HS,447.81178270849273,12.569128243199225,35.62791102483899,8887.523378485235,2019
+2001,67,"(65,70]",HS,580.0627390971691,12.396948404251289,46.79076819407009,9250.381448643697,2019
+2001,67,"(65,70]",HS,213.44299923488904,12.396948404251289,17.217382235913234,8542.478971857647,2019
+2001,67,"(65,70]",HS,489.663351185922,12.396948404251289,39.49870042356566,8943.924817266241,2019
+2001,30,"(25,30]",HS,20.172456006120886,72.31553235813253,0.2789505289986614,4944.866876924687,2019
+2001,30,"(25,30]",HS,12.639173680183626,72.31553235813253,0.1747781322771696,4921.180793820846,2019
+2001,30,"(25,30]",HS,9.291048201989287,72.31553235813253,0.1284792892898399,4843.219579181867,2019
+2001,30,"(25,30]",HS,11.46732976281561,72.31553235813253,0.15857353723160422,4927.754822473771,2019
+2001,30,"(25,30]",HS,20.172456006120886,72.31553235813253,0.2789505289986614,4909.229609080263,2019
+2001,89,"(85,90]",College,213636.18607498088,442.5021860961919,482.79125569910804,12.741347796184815,2019
+2001,89,"(85,90]",College,96531.81453710789,581.9678556440189,165.8713855085408,13.446065715628222,2019
+2001,89,"(85,90]",College,82170.86732976281,442.5021860961919,185.69595792211604,13.629371123236291,2019
+2001,89,"(85,90]",College,90088.34705432289,964.2070981084336,93.43256986082845,13.433686857337898,2019
+2001,89,"(85,90]",College,223267.4038255547,399.4572263592082,558.9269365846534,13.82447659277727,2019
+2001,48,"(45,50]",HS,10520.915133894416,6611.705815600688,1.5912557859228598,1.802300478322715,2019
+2001,48,"(45,50]",HS,13027.974751338945,2737.6594392721604,4.758800369560426,1.6974280060621225,2019
+2001,48,"(45,50]",HS,8573.377505738334,3787.9564568545607,2.263325252914202,33.48717336261707,2019
+2001,48,"(45,50]",HS,10384.54598316756,4356.149925382745,2.3838816755727574,2.01357385597425,2019
+2001,48,"(45,50]",HS,11888.356541698548,2462.1716969554645,4.828402729346126,1.4953669557355684,2019
+2001,55,"(50,55]",College,17885.10038255547,430.4495973698365,41.54981324605313,1358.7590490127375,2019
+2001,55,"(50,55]",College,17883.258913542464,430.4495973698365,41.54553523296111,1358.5689359130422,2019
+2001,55,"(50,55]",College,17883.426319816375,430.4495973698365,41.5459241432422,1368.369126537344,2019
+2001,55,"(50,55]",College,17883.426319816375,430.4495973698365,41.5459241432422,1355.2502889804252,2019
+2001,55,"(50,55]",College,17883.258913542464,430.4495973698365,41.54553523296111,1350.4597819459168,2019
+2001,86,"(85,90]",HS,933.1225707727621,30.992371010628222,30.10813759466051,6774.5542934135665,2019
+2001,86,"(85,90]",HS,932.9551644988524,30.992371010628222,30.102736062978654,6118.609805451585,2019
+2001,86,"(85,90]",HS,931.5824330527927,30.992371010628222,30.05844350318744,5785.878035581585,2019
+2001,86,"(85,90]",HS,933.2899770466718,30.992371010628222,30.113539126342364,6468.52274308502,2019
+2001,86,"(85,90]",HS,933.1225707727621,30.992371010628222,30.10813759466051,6212.709047064015,2019
+2001,81,"(80,85]",HS,1678.750114766641,53.37575007385973,31.451550796825114,10630.803489048336,2019
+2001,81,"(80,85]",HS,1674.8997704667177,53.37575007385973,31.379414212428728,9591.711617933066,2019
+2001,81,"(80,85]",HS,1701.1825554705433,51.653951684380374,32.93421897060711,9075.721445206404,2019
+2001,81,"(80,85]",HS,1675.0671767406275,53.37575007385973,31.382550585663356,10145.673040323038,2019
+2001,81,"(80,85]",HS,1684.9441469013007,53.37575007385973,31.56759660650626,9751.347994560656,2019
+2001,49,"(45,50]",College,150465.763427697,2289.9918580075296,65.7058071632682,12.57883120315518,2019
+2001,49,"(45,50]",College,180546.4945677123,2427.7357291658777,74.36826521054024,13.27890672793472,2019
+2001,49,"(45,50]",College,145191.12654934966,2634.351535903399,55.11456028952462,13.458992248041634,2019
+2001,49,"(45,50]",College,181039.33863810255,2376.0817774814973,76.19238544474395,13.265107818905388,2019
+2001,49,"(45,50]",College,178311.6208110176,1773.452341163726,100.54491833370096,13.646603181231054,2019
+2001,28,"(25,30]",HS,-5.022188217291507,41.323161347504296,-0.12153446284174048,9173.947847644595,2019
+2001,28,"(25,30]",HS,-5.022188217291507,43.04495973698364,-0.11667308432807086,9295.507737987315,2019
+2001,28,"(25,30]",HS,-5.022188217291507,43.04495973698364,-0.11667308432807086,9377.661321348165,2019
+2001,28,"(25,30]",HS,-5.022188217291507,41.323161347504296,-0.12153446284174048,9200.367213205252,2019
+2001,28,"(25,30]",HS,-5.022188217291507,41.323161347504296,-0.12153446284174048,9225.833364693342,2019
+2001,63,"(60,65]",College,908.346442234124,321.97629883263767,2.8211593385210003,8180.50343052433,2019
+2001,63,"(60,65]",College,908.346442234124,323.69809722211704,2.806153171826739,7356.963556286317,2019
+2001,63,"(60,65]",College,908.346442234124,321.97629883263767,2.8211593385210003,6654.222215447767,2019
+2001,63,"(60,65]",College,908.346442234124,321.97629883263767,2.8211593385210003,7607.893392573499,2019
+2001,63,"(60,65]",College,908.346442234124,321.97629883263767,2.8211593385210003,7476.652390053951,2019
+2001,35,"(30,35]",College,589.6048967100229,154.9618550531411,3.804838916698755,5972.67932697855,2019
+2001,35,"(30,35]",College,589.4374904361132,154.9618550531411,3.803758610362384,5432.923366557156,2019
+2001,35,"(30,35]",College,589.6048967100229,154.9618550531411,3.804838916698755,5078.742428233962,2019
+2001,35,"(30,35]",College,589.6048967100229,154.9618550531411,3.804838916698755,5679.719069343429,2019
+2001,35,"(30,35]",College,589.4374904361132,154.9618550531411,3.803758610362384,5460.693021962532,2019
+2001,58,"(55,60]",College,2837.9883397092576,330.58529078003437,8.58473870090489,192.40981924578506,2019
+2001,58,"(55,60]",College,2652.8537413925023,187.6760244532487,14.135283124847657,187.10640329115867,2019
+2001,58,"(55,60]",College,2409.277612853864,285.8185326535714,8.429396059401256,201.78048184419748,2019
+2001,58,"(55,60]",College,2828.1783320581485,285.8185326535714,9.895013825034447,193.7551875484411,2019
+2001,58,"(55,60]",College,2842.089793420046,349.52507306430715,8.13129017756373,196.08830303593965,2019
+2001,53,"(50,55]",NoHS,-43.006671767406274,39.60136295802496,-1.0859896870971522,4508.227324710478,2019
+2001,53,"(50,55]",NoHS,-43.15733741392502,39.60136295802496,-1.0897942441948067,4595.351734709508,2019
+2001,53,"(50,55]",NoHS,-42.9899311400153,39.60136295802496,-1.0855669585307461,4601.933777912918,2019
+2001,53,"(50,55]",NoHS,-42.9899311400153,39.60136295802496,-1.0855669585307461,4539.464822171709,2019
+2001,53,"(50,55]",NoHS,-43.17407804131599,39.60136295802496,-1.0902169727612125,4556.070155925923,2019
+2001,29,"(25,30]",College,233.39782708492734,113.63869370563681,2.053858764775207,7552.829020134466,2019
+2001,29,"(25,30]",College,130.10815608263198,111.91689531615746,1.1625425787150856,7642.125454727846,2019
+2001,29,"(25,30]",College,163.807039020658,111.91689531615746,1.4636488848079148,7726.529113746384,2019
+2001,29,"(25,30]",College,139.81771996939554,111.91689531615746,1.24929948757442,7599.118250552751,2019
+2001,29,"(25,30]",College,113.3675286916603,113.63869370563681,0.9976137968051716,7656.464947005219,2019
+2001,44,"(40,45]",HS,235.20581484315227,82.64632269500859,2.845932004877423,9774.964816363938,2019
+2001,44,"(40,45]",HS,329.4555470543229,80.92452430552926,4.0711459212348124,10128.899669214992,2019
+2001,44,"(40,45]",HS,117.35179801071156,72.31553235813253,1.622774446705906,10197.720471732297,2019
+2001,44,"(40,45]",HS,177.95286916602907,63.706540410735805,2.793321816232867,10021.703700678461,2019
+2001,44,"(40,45]",HS,291.9565416985463,72.31553235813253,4.0372591084951495,9945.65861232369,2019
+2001,35,"(30,35]",College,803.600336648814,285.8185326535714,2.8115753348395502,644.2844202503923,2019
+2001,35,"(30,35]",College,803.600336648814,284.09673426409205,2.82861518535373,638.217368956329,2019
+2001,35,"(30,35]",College,803.600336648814,285.8185326535714,2.8115753348395502,614.5417797818023,2019
+2001,35,"(30,35]",College,803.600336648814,284.09673426409205,2.82861518535373,637.8390553301026,2019
+2001,35,"(30,35]",College,803.600336648814,285.8185326535714,2.8115753348395502,673.0647562423943,2019
+2001,48,"(45,50]",HS,396.4180566182096,72.31553235813253,5.481783009699836,3458.6243362552714,2019
+2001,48,"(45,50]",HS,359.5886763580719,72.31553235813253,4.9724957368392095,3720.9057360197403,2019
+2001,48,"(45,50]",HS,453.5035960214231,72.31553235813253,6.271178282633808,10288.144073263953,2019
+2001,48,"(45,50]",HS,634.1349655700077,72.31553235813253,8.769000861800246,10672.497103391346,2019
+2001,48,"(45,50]",HS,267.5152257077276,72.31553235813253,3.699277554687643,3518.628458609117,2019
+2001,77,"(75,80]",College,9584.695547054323,170.45804055845522,56.22906092110944,970.7518748123473,2019
+2001,77,"(75,80]",College,9580.836832440704,402.90082313816697,23.77964075083347,976.0534723395485,2019
+2001,77,"(75,80]",College,10335.14941392502,533.7575007385972,19.363005483995185,980.2091573954942,2019
+2001,77,"(75,80]",College,9752.587299158378,392.57003280129084,24.84292351498693,974.5653679724034,2019
+2001,77,"(75,80]",College,9756.5916572303,132.5784759899096,73.59106811555793,967.2911938294571,2019
+2001,43,"(40,45]",HS,55.07666411629687,25.826975842190187,2.1325247079964065,8487.695567750756,2019
+2001,43,"(40,45]",HS,70.3106350420811,43.04495973698364,1.633423180592992,8531.198770515233,2019
+2001,43,"(40,45]",HS,58.25738332058148,32.71416940010757,1.7807997081652918,8527.489791534734,2019
+2001,43,"(40,45]",HS,66.46029074215761,34.43596778958692,1.9299672699268384,8546.66271101388,2019
+2001,43,"(40,45]",HS,76.00244835501148,29.27057262114888,2.5965480531835374,8473.530521777506,2019
+2001,45,"(40,45]",College,14614.902524866106,633.6218073283993,23.065655815238316,19.058387641699063,2019
+2001,45,"(40,45]",College,14819.13817903596,771.365678486747,19.211560213708122,18.879960762778133,2019
+2001,45,"(40,45]",College,14753.180107115531,451.1111780435886,32.704088981120314,19.333842176261207,2019
+2001,45,"(40,45]",College,14577.40351951033,712.8245332444492,20.45019894750353,19.02264340305631,2019
+2001,45,"(40,45]",College,15047.815149196635,769.6438800972677,19.551659590010498,19.093228945342894,2019
+2001,60,"(55,60]",HS,695.7404743687836,149.7964598847031,4.644572207542744,6924.820826952065,2019
+2001,60,"(55,60]",HS,692.2249426166795,149.7964598847031,4.621103483683649,6291.337181052476,2019
+2001,60,"(55,60]",HS,695.2382555470543,148.07466149522375,4.69518720169068,5882.7602021111525,2019
+2001,60,"(55,60]",HS,696.2426931905126,158.40545183209983,4.395320269206944,6588.381289559598,2019
+2001,60,"(55,60]",HS,694.4681866870696,149.7964598847031,4.636078764622309,6331.703021538453,2019
+2001,48,"(45,50]",College,2251.279571537873,440.78038770671253,5.107485800924143,313.2379130398481,2019
+2001,48,"(45,50]",College,2763.475807192043,445.9457828751505,6.196887409440356,306.9161349652556,2019
+2001,48,"(45,50]",College,2286.6525172149964,457.9983716015061,4.992708836974994,316.60850175098983,2019
+2001,48,"(45,50]",College,2804.892119357307,452.83297643306787,6.194098630915169,308.53994444742,2019
+2001,48,"(45,50]",College,2740.5746289211934,482.1035490542168,5.684618240827328,311.3887393874046,2019
+2001,36,"(35,40]",HS,30.50142310635042,86.08991947396729,0.3542972660762418,6191.779497942642,2019
+2001,36,"(35,40]",HS,25.04397857689365,53.37575007385973,0.4692014358999838,6466.660131950523,2019
+2001,36,"(35,40]",HS,53.62022953328233,72.31553235813253,0.7414759704420851,6426.965132414154,2019
+2001,36,"(35,40]",HS,25.24486610558531,60.2629436317771,0.41891193134935917,6331.451899509848,2019
+2001,36,"(35,40]",HS,32.51029839326703,55.097548463339066,0.59004981709665,6332.5669871787995,2019
+2001,40,"(35,40]",College,296624.66564651876,17217.98389479346,17.227607335386985,22.186381816816397,2019
+2001,40,"(35,40]",College,334245.8775822494,17217.98389479346,19.41260252214093,23.460982960666353,2019
+2001,40,"(35,40]",College,337558.8477429227,17217.98389479346,19.605015883711975,23.740899046028453,2019
+2001,40,"(35,40]",College,406637.3726090283,17217.98389479346,23.617014343473237,23.440699074076043,2019
+2001,40,"(35,40]",College,243364.3596021423,17217.98389479346,14.134312187139006,24.112156722472083,2019
+2001,37,"(35,40]",College,-2.6785003825554705,61.984742021256444,-0.04321225345484106,5670.477911613859,2019
+2001,37,"(35,40]",College,-3.26442234123948,53.37575007385973,-0.06115927807519843,5701.168449925097,2019
+2001,37,"(35,40]",College,-3.398347360367253,51.653951684380374,-0.06579065588499551,5787.918698625879,2019
+2001,37,"(35,40]",College,-3.0970160673297626,61.984742021256444,-0.049964168057159974,5711.4800403250065,2019
+2001,37,"(35,40]",College,-2.862647283856159,80.92452430552926,-0.035374286205851264,5717.255222449589,2019
+2001,55,"(50,55]",College,352401.59020658,19680.155591748924,17.906443298361292,14.608140502550564,2019
+2001,55,"(50,55]",College,642702.818668707,19662.937607854128,32.68600203521914,15.874372334474874,2019
+2001,55,"(50,55]",College,344733.2110175976,19662.937607854128,17.53213166276325,15.508857024996303,2019
+2001,55,"(50,55]",College,649239.8662586075,19662.937607854128,33.01845732345081,15.245517375064313,2019
+2001,55,"(50,55]",College,340353.36067329766,19662.937607854128,17.30938517230241,16.088342421621903,2019
+2001,57,"(55,60]",HS,315.3934200459067,216.94659707439757,1.4537836698021527,9067.551824844291,2019
+2001,57,"(55,60]",HS,546.9497781178271,244.49537130606709,2.237055757726955,8244.049584331817,2019
+2001,57,"(55,60]",HS,214.73202754399387,216.94659707439757,0.9897920983307967,7707.675913614822,2019
+2001,57,"(55,60]",HS,202.69551644988525,216.94659707439757,0.9343106514843135,8629.825004457643,2019
+2001,57,"(55,60]",HS,492.49251721499616,216.94659707439757,2.2701094364070875,8288.441228021318,2019
+2001,78,"(75,80]",HS,91.06901300688601,34.43596778958692,2.644589911436273,5941.575979597723,2019
+2001,78,"(75,80]",HS,80.85723029839326,34.43596778958692,2.3480458221024256,5953.104067616713,2019
+2001,78,"(75,80]",HS,96.9282325937261,34.43596778958692,2.814738159414709,5944.335815264186,2019
+2001,78,"(75,80]",HS,130.07467482785006,34.43596778958692,3.7772911051212943,5988.46711919612,2019
+2001,78,"(75,80]",HS,183.64468247895945,34.43596778958692,5.332932229495571,5909.005170546875,2019
+2001,44,"(40,45]",HS,126.12388676358073,101.5861049792814,1.2415466346436241,11278.96182332654,2019
+2001,44,"(40,45]",HS,125.956480489671,101.5861049792814,1.239898709723736,11042.086600875853,2019
+2001,44,"(40,45]",HS,124.28241775057384,101.5861049792814,1.223419460524856,10408.773231555759,2019
+2001,44,"(40,45]",HS,124.28241775057384,101.5861049792814,1.223419460524856,11161.037161086704,2019
+2001,44,"(40,45]",HS,124.44982402448355,101.5861049792814,1.2250673854447438,11386.752961154238,2019
+2001,82,"(80,85]",College,339.1818515684774,29.27057262114888,11.587810595936485,6613.475096341851,2019
+2001,82,"(80,85]",College,459.37955623565415,29.27057262114888,15.694245622777412,6771.4437760860765,2019
+2001,82,"(80,85]",College,348.2385309869931,30.992371010628222,11.236266204595045,6899.606942258404,2019
+2001,82,"(80,85]",College,408.1699770466718,29.27057262114888,13.944721284740313,6762.877754381501,2019
+2001,82,"(80,85]",College,342.71412394797244,29.27057262114888,11.708487168452285,6842.009822158476,2019
+2001,58,"(55,60]",College,29250.898240244835,1422.2054697099395,20.567280089430813,22.74298112075382,2019
+2001,58,"(55,60]",College,30390.934965570006,1422.2054697099395,21.368877854033478,22.19133287963158,2019
+2001,58,"(55,60]",College,27424.495791889825,1422.2054697099395,19.28307574114666,23.00204362112986,2019
+2001,58,"(55,60]",College,32610.742157612854,1422.2054697099395,22.92969817101312,23.802759193282533,2019
+2001,58,"(55,60]",College,27431.192042846214,1422.2054697099395,19.287784098060627,22.845120142172913,2019
+2001,73,"(70,75]",College,757.8482019892884,86.08991947396729,8.802984212552946,7073.805953109152,2019
+2001,73,"(70,75]",College,758.0156082631981,86.08991947396729,8.804928763958413,6468.249160879513,2019
+2001,73,"(70,75]",College,757.8482019892884,86.08991947396729,8.802984212552946,5946.668929468292,2019
+2001,73,"(70,75]",College,758.0156082631981,87.81171786344665,8.632283101920011,6645.378713948245,2019
+2001,73,"(70,75]",College,758.0156082631981,86.08991947396729,8.804928763958413,6441.198576944371,2019
+2001,74,"(70,75]",HS,1214.5325172149962,18.939782284272805,64.1260020303147,7214.860411187427,2019
+2001,74,"(70,75]",HS,1209.0918133129303,30.992371010628222,39.01256257219869,6599.203933530187,2019
+2001,74,"(70,75]",HS,1191.8489671002296,30.992371010628222,38.45620480896762,6070.630288571837,2019
+2001,74,"(70,75]",HS,1212.0214231063505,30.992371010628222,39.107089376631166,6778.327440789387,2019
+2001,74,"(70,75]",HS,1256.3840856924255,41.323161347504296,30.40387145424208,6569.5973427995295,2019
+2001,44,"(40,45]",HS,424.0400918133129,198.00681479012476,2.1415429174130685,6695.66183770876,2019
+2001,44,"(40,45]",HS,578.388676358072,198.00681479012476,2.921054393865832,6280.857743274686,2019
+2001,44,"(40,45]",HS,436.2607498087223,198.00681479012476,2.2032612881083526,7009.061943205919,2019
+2001,44,"(40,45]",HS,408.40434583014536,198.00681479012476,2.062577221208418,6800.569241323426,2019
+2001,44,"(40,45]",HS,403.1143075745983,198.00681479012476,2.035860775811555,6956.560755131456,2019
+2001,30,"(25,30]",HS,50.13817903596022,86.08991947396729,0.5823931459376205,7272.894761924222,2019
+2001,30,"(25,30]",HS,65.8743687834736,86.08991947396729,0.765180978051598,7367.269126296138,2019
+2001,30,"(25,30]",HS,50.47299158377965,86.08991947396729,0.5862822487485561,7426.081034173942,2019
+2001,30,"(25,30]",HS,50.9752104055088,86.08991947396729,0.5921159029649595,7269.526766162034,2019
+2001,30,"(25,30]",HS,50.389288446824786,86.08991947396729,0.5853099730458221,7359.669911387175,2019
+2001,48,"(45,50]",HS,41.18194338179036,68.87193557917384,0.5979495571813631,6378.551894153315,2019
+2001,48,"(45,50]",HS,41.349349655700074,68.87193557917384,0.6003802464381979,6670.951883688605,2019
+2001,48,"(45,50]",HS,41.349349655700074,68.87193557917384,0.6003802464381979,6688.991538188209,2019
+2001,48,"(45,50]",HS,41.349349655700074,68.87193557917384,0.6003802464381979,6497.4121061167525,2019
+2001,48,"(45,50]",HS,41.18194338179036,68.87193557917384,0.5979495571813631,6593.9425230183915,2019
+2001,58,"(55,60]",HS,73.16491201224179,44.76675812646299,1.6343580610763901,6220.024054161911,2019
+2001,58,"(55,60]",HS,72.66269319051263,29.27057262114888,2.482448639833292,6614.25031778796,2019
+2001,58,"(55,60]",HS,72.33625095638867,39.60136295802496,1.8266101354405582,6641.316723056919,2019
+2001,58,"(55,60]",HS,75.01475133894415,30.992371010628222,2.420426346639285,6445.4310365479705,2019
+2001,58,"(55,60]",HS,75.3411935730681,24.105177452710844,3.1255191429671596,6489.51911293665,2019
+2001,72,"(70,75]",HS,173687.35730680948,9159.967432030118,18.96156930640039,1.723908682705586,2019
+2001,72,"(70,75]",HS,180062.85784238714,9366.58323876764,19.22396387800403,1.7558858000022828,2019
+2001,72,"(70,75]",HS,161151.13848508033,2754.877423166953,58.49666381882942,1.5509071336575402,2019
+2001,72,"(70,75]",HS,147724.1508798776,2961.493229904475,49.881643958592655,2.0199460627954804,2019
+2001,72,"(70,75]",HS,156111.2052027544,4545.547748225473,34.343760939195576,1.6026189947150349,2019
+2001,40,"(35,40]",College,2363.1906656465185,750.7040978129947,3.1479655866154665,635.1469436408456,2019
+2001,40,"(35,40]",College,2361.5166029074217,750.7040978129947,3.1457355964715816,626.8980383666656,2019
+2001,40,"(35,40]",College,2363.1906656465185,750.7040978129947,3.1479655866154665,663.1398498771632,2019
+2001,40,"(35,40]",College,2363.1906656465185,750.7040978129947,3.1479655866154665,643.6369999791767,2019
+2001,40,"(35,40]",College,2363.1906656465185,750.7040978129947,3.1479655866154665,643.9833451371017,2019
+2001,34,"(30,35]",HS,52.06335118592196,25.826975842190187,2.0158516236683353,5819.278297553151,2019
+2001,34,"(30,35]",HS,48.715225707727626,25.826975842190187,1.8862148633038123,5743.861957911537,2019
+2001,34,"(30,35]",HS,48.715225707727626,25.826975842190187,1.8862148633038123,5751.095061058148,2019
+2001,34,"(30,35]",HS,48.715225707727626,25.826975842190187,1.8862148633038123,5788.331753089216,2019
+2001,34,"(30,35]",HS,50.389288446824786,25.826975842190187,1.9510332434860735,5771.281823651291,2019
+2001,64,"(60,65]",HS,127.39617444529458,25.826975842190187,4.932678731870107,6123.748977848265,2019
+2001,64,"(60,65]",HS,100.29309869931141,36.157766179066265,2.7737636833709227,6481.36554823509,2019
+2001,64,"(60,65]",HS,125.65514919663352,30.992371010628222,4.054389680400463,6529.67713628151,2019
+2001,64,"(60,65]",HS,119.84615149196634,39.60136295802496,3.026313806900939,6321.283872283751,2019
+2001,64,"(60,65]",HS,110.9401377199694,39.60136295802496,2.801422209572918,6393.920567194533,2019
+2001,46,"(45,50]",College,5050.479877582249,1291.3487921095093,3.9110114234372992,162.70814346411981,2019
+2001,46,"(45,50]",College,5048.805814843153,1291.3487921095093,3.909715055833655,160.34240500650904,2019
+2001,46,"(45,50]",College,5050.647283856159,1291.3487921095093,3.9111410601976644,165.0436122201656,2019
+2001,46,"(45,50]",College,5047.299158377965,1291.3487921095093,3.908548324990374,161.3305493308568,2019
+2001,46,"(45,50]",College,5048.973221117061,1291.3487921095093,3.9098446925940182,162.25750379852155,2019
+2001,51,"(50,55]",College,699.1723029839327,299.5929197694062,2.333741076131168,8200.679145795464,2019
+2001,51,"(50,55]",College,1086.5504208110176,299.5929197694062,3.626756004939386,7451.472225013252,2019
+2001,51,"(50,55]",College,763.456312165264,299.5929197694062,2.5483122657000337,6956.156602022471,2019
+2001,51,"(50,55]",College,663.0125478194338,299.5929197694062,2.213044781998681,7798.876543631137,2019
+2001,51,"(50,55]",College,594.0411629686305,299.5929197694062,1.9828277765237519,7480.332705779105,2019
+2001,59,"(55,60]",HS,2.4273909716908952,68.87193557917384,0.035244994224104736,6166.894257059597,2019
+2001,59,"(55,60]",HS,2.259984697781178,68.87193557917384,0.03281430496726992,6300.4420811787095,2019
+2001,59,"(55,60]",HS,2.4273909716908952,68.87193557917384,0.035244994224104736,6180.213912648456,2019
+2001,59,"(55,60]",HS,2.4273909716908952,68.87193557917384,0.035244994224104736,6240.381230731395,2019
+2001,59,"(55,60]",HS,2.259984697781178,68.87193557917384,0.03281430496726992,6225.742202021947,2019
+2001,43,"(40,45]",College,21.7628156082632,41.323161347504296,0.5266493389808754,5785.004494741033,2019
+2001,43,"(40,45]",College,22.26503442999235,41.323161347504296,0.5388027852650495,5734.78176195652,2019
+2001,43,"(40,45]",College,22.09762815608263,41.323161347504296,0.5347516365036581,5763.995862325441,2019
+2001,43,"(40,45]",College,22.767253251721502,41.323161347504296,0.5509562315492236,5750.978240710666,2019
+2001,43,"(40,45]",College,21.59540933435348,41.323161347504296,0.5225981902194841,5771.960819201702,2019
+2001,54,"(50,55]",College,10738.308921193573,1150.161324172203,9.336350210629954,1801.6104954712341,2019
+2001,54,"(50,55]",College,12008.855577658762,1010.695654624376,11.881772245396505,1772.2149048492101,2019
+2001,54,"(50,55]",College,9235.770650344299,1633.9866716158992,5.652292525257114,1799.5863889504158,2019
+2001,54,"(50,55]",College,11106.318133129305,1336.1155502359723,8.312393438702072,1784.8018155507725,2019
+2001,54,"(50,55]",College,9828.506044376434,1382.604106751915,7.108691487591534,1743.2796741363704,2019
+2001,30,"(25,30]",NoHS,-1.3057689364957918,91.25531464240532,-0.014308963172310576,7972.527791745107,2019
+2001,30,"(25,30]",NoHS,-5.156113236419281,91.25531464240532,-0.056502059706046895,8020.343543853218,2019
+2001,30,"(25,30]",NoHS,-7.332394797245601,91.25531464240532,-0.08035033165989786,8074.777231046358,2019
+2001,30,"(25,30]",NoHS,-8.336832440703901,91.25531464240532,-0.09135722640782906,7941.280823449296,2019
+2001,30,"(25,30]",NoHS,-5.825738332058148,91.25531464240532,-0.06383998953800103,8000.675967763929,2019
+2001,59,"(55,60]",College,999.7502677888294,246.21716969554646,4.060440906802093,1091.2714583766588,2019
+2001,59,"(55,60]",College,873.0237184391736,201.45041156908349,4.3336904185960785,1075.1310774987637,2019
+2001,59,"(55,60]",College,1082.6163733741391,196.28501640064542,5.51553242945639,1037.2339462229868,2019
+2001,59,"(55,60]",College,960.0749808722265,177.34523411637264,5.413593354542769,1072.911785989313,2019
+2001,59,"(55,60]",College,995.3977046671768,211.78120190595953,4.700123031264968,1135.9935105167963,2019
+2001,37,"(35,40]",College,165.56480489671003,148.07466149522375,1.1181170581440123,5215.380123337529,2019
+2001,37,"(35,40]",College,142.6301453710788,148.07466149522375,0.9632312775922128,5217.957331759788,2019
+2001,37,"(35,40]",College,142.29533282325937,148.07466149522375,0.960970171306785,5263.421769907962,2019
+2001,37,"(35,40]",College,144.80642693190512,149.7964598847031,0.9666879113389011,5217.859759752988,2019
+2001,37,"(35,40]",College,152.3397092578424,149.7964598847031,1.0169780338941041,5245.009993463357,2019
+2001,76,"(75,80]",College,1080.2726855394033,51.653951684380374,20.9136503658067,7240.929142131169,2019
+2001,76,"(75,80]",College,1080.2726855394033,51.653951684380374,20.9136503658067,6533.175432013093,2019
+2001,76,"(75,80]",College,1080.2726855394033,51.653951684380374,20.9136503658067,6181.720503643961,2019
+2001,76,"(75,80]",College,1081.9467482785003,51.653951684380374,20.94605955589783,6910.49361037395,2019
+2001,76,"(75,80]",College,1080.2726855394033,51.653951684380374,20.9136503658067,6641.908106157406,2019
+2001,45,"(40,45]",HS,183.5609793420046,46.488556515942335,3.948519659436102,6830.125132616178,2019
+2001,45,"(40,45]",HS,183.5609793420046,48.21035490542169,3.8075011001705263,6824.075882603613,2019
+2001,45,"(40,45]",HS,183.5609793420046,46.488556515942335,3.948519659436102,6791.239871162035,2019
+2001,45,"(40,45]",HS,183.5609793420046,48.21035490542169,3.8075011001705263,6836.103881790572,2019
+2001,45,"(40,45]",HS,183.7283856159143,46.488556515942335,3.9521206805573383,6793.800662491858,2019
+2001,48,"(45,50]",HS,1900.8982402448357,182.51062928481065,10.41527415522991,3395.518073791102,2019
+2001,48,"(45,50]",HS,1899.0567712318289,182.51062928481065,10.405184501710975,3450.8150650070647,2019
+2001,48,"(45,50]",HS,1900.8982402448357,182.51062928481065,10.41527415522991,4329.312845397897,2019
+2001,48,"(45,50]",HS,1902.4048967100232,182.51062928481065,10.42352932629086,3568.675866135922,2019
+2001,48,"(45,50]",HS,1900.730833970926,182.51062928481065,10.414356914000917,3651.6534144677144,2019
+2001,62,"(60,65]",College,23527.277735271615,258.2697584219018,91.09575150815044,282.46378812830255,2019
+2001,62,"(60,65]",College,23528.951798010712,258.2697584219018,91.10223334616867,282.421730201525,2019
+2001,62,"(60,65]",College,23532.299923488907,258.2697584219018,91.11519702220512,283.85439531716236,2019
+2001,62,"(60,65]",College,23532.299923488907,258.2697584219018,91.11519702220512,294.9548913860308,2019
+2001,62,"(60,65]",College,23549.710175975517,258.2697584219018,91.18260813759468,297.43930329297586,2019
+2001,40,"(35,40]",NoHS,2.5947972456006125,43.04495973698364,0.060281093569503286,4259.675281540236,2019
+2001,40,"(35,40]",NoHS,2.5947972456006125,43.04495973698364,0.060281093569503286,4276.096496872074,2019
+2001,40,"(35,40]",NoHS,2.5947972456006125,43.04495973698364,0.060281093569503286,4305.474407769759,2019
+2001,40,"(35,40]",NoHS,2.5947972456006125,43.04495973698364,0.060281093569503286,4261.911748010243,2019
+2001,40,"(35,40]",NoHS,2.5947972456006125,43.04495973698364,0.060281093569503286,4290.606667182492,2019
+2001,54,"(50,55]",HS,341.67620504973223,61.984742021256444,5.512263081333163,5855.068789604764,2019
+2001,54,"(50,55]",HS,333.4732976281561,63.706540410735805,5.234522161745881,6102.970481307972,2019
+2001,54,"(50,55]",HS,335.14736036725327,61.984742021256444,5.406933213536988,6130.67426499661,2019
+2001,54,"(50,55]",HS,336.6540168324407,63.706540410735805,5.2844498329673515,5963.878650849898,2019
+2001,54,"(50,55]",HS,348.3724560061209,63.706540410735805,5.468393884835932,6043.28684956669,2019
+2001,56,"(55,60]",College,30.30053557765876,55.097548463339066,0.5499434443588757,6667.512209933278,2019
+2001,56,"(55,60]",College,21.59540933435348,84.36812108448795,0.25596646051566563,6775.369640582101,2019
+2001,56,"(55,60]",College,21.7628156082632,94.69891142136402,0.22981062064620017,6548.720601160543,2019
+2001,56,"(55,60]",College,22.432440703902067,63.706540410735805,0.35212147071985345,6735.522140677436,2019
+2001,56,"(55,60]",College,21.59540933435348,53.37575007385973,0.40459214726669723,6661.314364245367,2019
+2001,65,"(60,65]",College,13952.643305279267,258.2697584219018,54.02352714670776,1765.4780635845138,2019
+2001,65,"(60,65]",College,13952.810711553175,258.2697584219018,54.02417533050957,1746.4577159415596,2019
+2001,65,"(60,65]",College,13950.801836266259,258.2697584219018,54.0163971248877,1792.043536008547,2019
+2001,65,"(60,65]",College,13952.643305279267,258.2697584219018,54.02352714670776,1744.7209780774751,2019
+2001,65,"(60,65]",College,13952.643305279267,258.2697584219018,54.02352714670776,1726.0945736160259,2019
+2001,45,"(40,45]",College,35709.31510328998,3185.32702053679,11.210564840928722,14.385379358881877,2019
+2001,45,"(40,45]",College,33343.79749043612,3185.32702053679,10.467935403636213,14.941597027739505,2019
+2001,45,"(40,45]",College,30062.634521805663,3185.32702053679,9.437848713172164,14.829144515667561,2019
+2001,45,"(40,45]",College,29893.621147666414,3185.32702053679,9.384788737524588,15.319703252612552,2019
+2001,45,"(40,45]",College,30017.48504973221,3185.32702053679,9.423674510089604,15.404820690982964,2019
+2001,58,"(55,60]",College,2330.964957918898,241.0517745271084,9.669976346333682,2922.4339748209118,2019
+2001,58,"(55,60]",College,2323.5990818668706,242.77357291658777,9.571054435423305,2973.545078933066,2019
+2001,58,"(55,60]",College,2332.806426931905,241.0517745271084,9.677615655426592,3736.5381295817447,2019
+2001,58,"(55,60]",College,2355.406273909717,241.0517745271084,9.771370812475935,3074.4777313637123,2019
+2001,58,"(55,60]",College,2371.6446824789596,242.77357291658777,9.76895736215,3149.692161961011,2019
+2001,73,"(70,75]",NoHS,0.9374751338944147,12.052588726355422,0.0777820562187139,1.7569626691271694,2019
+2001,73,"(70,75]",NoHS,0.6194032134659526,12.052588726355422,0.05139171571593597,1.7973713452029023,2019
+2001,73,"(70,75]",NoHS,1.674062739097169,12.052588726355422,0.1388965289619891,1.6148794064026024,2019
+2001,73,"(70,75]",NoHS,4.687375669472074,12.052588726355422,0.38891028109356945,2.1038900095982207,2019
+2001,73,"(70,75]",NoHS,0.5357000765110942,12.052588726355422,0.04444688926783651,1.5682807973353015,2019
+2001,49,"(45,50]",HS,354.9850038255547,12.913487921095093,27.48947503529714,6951.659017540855,2019
+2001,49,"(45,50]",HS,348.5566029074216,12.913487921095093,26.991669875497372,7245.989979740972,2019
+2001,49,"(45,50]",HS,361.26273909716906,12.913487921095093,27.9756128866641,7278.882378552931,2019
+2001,49,"(45,50]",HS,347.3680183626626,12.913487921095093,26.89962777563856,7080.847773523548,2019
+2001,49,"(45,50]",HS,345.99528691660294,12.913487921095093,26.793325632139652,7175.128257752243,2019
+2001,69,"(65,70]",College,5432.166182096405,590.5768475914157,9.198068302627723,1994.206237567935,2019
+2001,69,"(65,70]",College,5433.672838561592,590.5768475914157,9.20061946336376,2014.972384763728,2019
+2001,69,"(65,70]",College,5309.239755164499,588.8550492019364,9.01620825423847,2013.3133039505242,2019
+2001,69,"(65,70]",College,5423.14298393267,588.8550492019364,9.209639946677113,2014.9280804542475,2019
+2001,69,"(65,70]",College,5414.253710788064,588.8550492019364,9.194544087082035,1996.4840393660859,2019
+2001,59,"(55,60]",College,1374.388768171385,206.6158067375215,6.6519052432293675,6740.94090809587,2019
+2001,59,"(55,60]",College,1374.388768171385,206.6158067375215,6.6519052432293675,6126.112367095602,2019
+2001,59,"(55,60]",College,1374.4389900535577,206.6158067375215,6.652148312155051,5731.632780228243,2019
+2001,59,"(55,60]",College,1374.388768171385,206.6158067375215,6.6519052432293675,6413.848862723802,2019
+2001,59,"(55,60]",College,1374.388768171385,206.6158067375215,6.6519052432293675,6163.533897205239,2019
+2001,44,"(40,45]",HS,54.6414078041316,61.984742021256444,0.8815299704787577,7192.220454587284,2019
+2001,44,"(40,45]",HS,54.97622035195103,61.984742021256444,0.8869315021606127,7450.6530077226025,2019
+2001,44,"(40,45]",HS,54.13918898240245,61.984742021256444,0.873427672955975,7543.133409662465,2019
+2001,44,"(40,45]",HS,52.96734506503443,61.984742021256444,0.8545223120694819,7353.082841388081,2019
+2001,44,"(40,45]",HS,50.45625095638868,61.984742021256444,0.8140108244555685,7485.687174066001,2019
+2001,41,"(40,45]",HS,896.9628156082632,258.2697584219018,3.4729688101655762,217.02086490854305,2019
+2001,41,"(40,45]",HS,896.9628156082632,258.2697584219018,3.4729688101655762,217.56510688005037,2019
+2001,41,"(40,45]",HS,896.9628156082632,258.2697584219018,3.4729688101655762,205.52085109723893,2019
+2001,41,"(40,45]",HS,896.9628156082632,258.2697584219018,3.4729688101655762,218.14595854357543,2019
+2001,41,"(40,45]",HS,897.1302218821729,258.2697584219018,3.473616993967399,230.306731026557,2019
+2001,80,"(75,80]",NoHS,80.85723029839326,13.774387115834767,5.870114555256064,7751.776731221829,2019
+2001,80,"(75,80]",NoHS,80.68982402448354,13.774387115834767,5.85796110897189,7707.027406070634,2019
+2001,80,"(75,80]",NoHS,80.68982402448354,14.290926632678572,5.646227574912665,7787.561532625439,2019
+2001,80,"(75,80]",NoHS,80.68982402448354,14.118746793730637,5.715084008753063,7784.205819463304,2019
+2001,80,"(75,80]",NoHS,80.85723029839326,13.946566954782698,5.7976440051911755,7786.565010567642,2019
+2001,40,"(35,40]",College,48.68174445294568,129.1348792109509,0.37698369914003343,5490.3471957181655,2019
+2001,40,"(35,40]",College,54.23963274674828,98.14250820032271,0.5526619783961251,5475.682923615624,2019
+2001,40,"(35,40]",College,53.73741392501913,151.51825827418244,0.3546596597472608,5544.630015903936,2019
+2001,40,"(35,40]",College,67.21361897475134,86.08991947396729,0.7807373892953409,5477.478126758418,2019
+2001,40,"(35,40]",College,42.688599846977816,94.69891142136402,0.4507823712675465,5469.147426322485,2019
+2001,19,"(15,20]",HS,3.348125478194338,82.64632269500859,0.04051148761391349,5511.376505538247,2019
+2001,19,"(15,20]",HS,5.357000765110941,82.64632269500859,0.06481838018226159,5516.9783900920875,2019
+2001,19,"(15,20]",HS,4.35256312165264,82.64632269500859,0.052664933898087546,5513.237956945977,2019
+2001,19,"(15,20]",HS,6.361438408569243,82.64632269500859,0.07697182646643565,5464.541328481347,2019
+2001,19,"(15,20]",HS,4.35256312165264,82.64632269500859,0.052664933898087546,5491.673149578479,2019
+2001,57,"(55,60]",College,3854.931231828615,289.2621294325301,13.326774712580448,785.5483812608352,2019
+2001,57,"(55,60]",College,3903.663198163734,268.60054875877796,14.533340368077564,770.0596264599105,2019
+2001,57,"(55,60]",College,4090.8066717674064,290.98392782200943,14.058531350465833,794.1588698322697,2019
+2001,57,"(55,60]",College,4431.311032899771,289.2621294325301,15.319361167647653,774.1453812904921,2019
+2001,57,"(55,60]",College,4260.3222647283865,339.1942827274312,12.560124040038389,780.9533955912558,2019
+2001,45,"(40,45]",NoHS,5.993144605967866,43.04495973698364,0.1392298806314979,5426.823178778162,2019
+2001,45,"(40,45]",NoHS,4.8547819433817905,43.04495973698364,0.11278398151713516,5450.4080985916535,2019
+2001,45,"(40,45]",NoHS,5.608110175975517,44.76675812646299,0.1252739847753325,5439.491035969241,2019
+2001,45,"(40,45]",NoHS,3.7833817903596025,43.04495973698364,0.08789372352714672,5399.784544033985,2019
+2001,45,"(40,45]",NoHS,4.720856924254017,41.323161347504296,0.11424239507123606,5446.10825405393,2019
+2001,39,"(35,40]",HS,5.725294567712318,60.2629436317771,0.09500522581000055,5487.303207680407,2019
+2001,39,"(35,40]",HS,6.495363427697016,60.2629436317771,0.10778370647450355,5495.799782502647,2019
+2001,39,"(35,40]",HS,5.758775822494262,60.2629436317771,0.09556081192584852,5520.254546175793,2019
+2001,39,"(35,40]",HS,5.373741392501913,61.984742021256444,0.08669458349377487,5474.227350937977,2019
+2001,39,"(35,40]",HS,5.557888293802602,60.2629436317771,0.09222729523076079,5529.436590518721,2019
+2001,46,"(45,50]",College,1255.8818668706963,304.7583149378442,4.1209109163332744,5792.165364652609,2019
+2001,46,"(45,50]",College,1595.7166029074215,304.7583149378442,5.236006778790825,2602.989297411177,2019
+2001,46,"(45,50]",College,1592.3684774292271,304.7583149378442,5.225020612658239,3265.650227388348,2019
+2001,46,"(45,50]",College,1101.8680948737567,304.7583149378442,3.6155472742342862,5505.712987787376,2019
+2001,46,"(45,50]",College,1717.923182861515,304.7583149378442,5.637001842630241,2754.4839629633925,2019
+2001,45,"(40,45]",College,66787.90482019894,13137.321711727409,5.0838295876227795,18.01293583972238,2019
+2001,45,"(40,45]",College,67034.99648048967,12087.024694145008,5.546029579385374,19.60781902692309,2019
+2001,45,"(40,45]",College,67787.98990053558,13034.013808358648,5.200853006390363,19.13956903634376,2019
+2001,45,"(40,45]",College,66445.39158377965,12241.986549198147,5.427664155384311,18.800585208567487,2019
+2001,45,"(40,45]",College,68703.2,11208.907515510542,6.129339536875527,19.8680209352054,2019
+2001,54,"(50,55]",College,3814.3519510328997,602.629436317771,6.329514824797844,3325.0625150500805,2019
+2001,54,"(50,55]",College,3814.3519510328997,602.629436317771,6.329514824797844,3360.944276883906,2019
+2001,54,"(50,55]",College,3814.3519510328997,602.629436317771,6.329514824797844,3358.7227945631967,2019
+2001,54,"(50,55]",College,3814.3519510328997,602.629436317771,6.329514824797844,3361.989709269633,2019
+2001,54,"(50,55]",College,3814.3519510328997,602.629436317771,6.329514824797844,3330.3623243347893,2019
+2001,25,"(20,25]",HS,109.65110941086458,94.69891142136402,1.1578919732558548,7470.4077244481405,2019
+2001,25,"(20,25]",HS,54.741851568477436,94.69891142136402,0.5780620996254421,7567.345051835968,2019
+2001,25,"(20,25]",HS,75.23237949502678,94.69891142136402,0.7944376378338642,7627.7541386276525,2019
+2001,25,"(20,25]",HS,77.50910482019893,94.69891142136402,0.8184793643014667,7466.9482626545405,2019
+2001,25,"(20,25]",HS,71.49921958684008,94.69891142136402,0.755016277523016,7559.539461955455,2019
+2001,58,"(55,60]",College,3643.2627390971693,607.7948314862091,5.9942311950703635,1712.1997581599458,2019
+2001,58,"(55,60]",College,3643.0953328232595,607.7948314862091,5.993955762859957,1724.4773498622878,2019
+2001,58,"(55,60]",College,3643.2627390971693,607.7948314862091,5.9942311950703635,1729.0333645228984,2019
+2001,58,"(55,60]",College,3643.2627390971693,607.7948314862091,5.9942311950703635,1722.1491020298677,2019
+2001,58,"(55,60]",College,3643.430145371079,607.7948314862091,5.99450662728077,1709.104936381611,2019
+2001,31,"(30,35]",HS,1021.1782708492732,163.57084700053784,6.243033459659932,8635.710927871589,2019
+2001,31,"(30,35]",HS,1021.1782708492732,163.57084700053784,6.243033459659932,7833.285070765654,2019
+2001,31,"(30,35]",HS,1021.1782708492732,163.57084700053784,6.243033459659932,7324.742267925147,2019
+2001,31,"(30,35]",HS,1021.1782708492732,163.57084700053784,6.243033459659932,8164.413582001604,2019
+2001,31,"(30,35]",HS,1021.1782708492732,163.57084700053784,6.243033459659932,7889.9051085091,2019
+2001,68,"(65,70]",HS,968.9475133894414,103.30790336876075,9.37921961237325,7103.599650885783,2019
+2001,68,"(65,70]",HS,845.7364957918899,175.6234357268933,4.815624362952728,6392.3786007705,2019
+2001,68,"(65,70]",HS,493.01147666411634,127.41308082147161,3.8693945196640613,6031.338461819432,2019
+2001,68,"(65,70]",HS,849.4194338179036,86.08991947396729,9.866653831343859,6743.825792954616,2019
+2001,68,"(65,70]",HS,566.1680183626627,92.97711303188467,6.089326716011353,6436.696564146515,2019
+2001,43,"(40,45]",HS,252.53236419280796,284.09673426409205,0.8888956954994691,1685.9150339600812,2019
+2001,43,"(40,45]",HS,250.77459831675594,284.09673426409205,0.8827084864820715,1763.6835342294478,2019
+2001,43,"(40,45]",HS,250.94200459066568,284.09673426409205,0.8832977444837284,1733.1375519372439,2019
+2001,43,"(40,45]",HS,253.95531752104057,285.8185326535714,0.8885194223176881,1716.376913277676,2019
+2001,43,"(40,45]",HS,250.10497322111706,284.09673426409205,0.8803514544754437,1687.0253889771543,2019
+2001,69,"(65,70]",HS,23.018362662586075,20.661580673752148,1.114065909382621,9196.688287552228,2019
+2001,69,"(65,70]",HS,24.692425401683245,20.661580673752148,1.1950888846104482,9114.216566604464,2019
+2001,69,"(65,70]",HS,50.9752104055088,20.661580673752148,2.4671495956873315,9192.348652584435,2019
+2001,69,"(65,70]",HS,25.027237949502677,20.661580673752148,1.2112934796560133,9183.789338288563,2019
+2001,69,"(65,70]",HS,111.24146901300689,20.661580673752148,5.383976703889103,9124.31592636302,2019
+2001,37,"(35,40]",HS,-78.1787299158378,29.27057262114888,-2.670898548098485,5756.275888768803,2019
+2001,37,"(35,40]",HS,-78.26243305279266,29.27057262114888,-2.6737581825182906,5758.625328151085,2019
+2001,37,"(35,40]",HS,-77.92762050497322,24.105177452710844,-3.232816711590296,5801.8187605210815,2019
+2001,37,"(35,40]",HS,-72.93891354246367,24.105177452710844,-3.0258608834369327,5780.430520875327,2019
+2001,37,"(35,40]",HS,-73.10631981637337,27.548774231669533,-2.653704996149403,5810.73589918012,2019
+2001,53,"(50,55]",College,1665.0228003060442,285.8185326535714,5.825454300838316,11372.833544071005,2019
+2001,53,"(50,55]",College,1817.7140627390972,285.8185326535714,6.359678799912781,11057.720725793351,2019
+2001,53,"(50,55]",College,1797.3407192042848,285.8185326535714,6.288398105320783,11918.993276816753,2019
+2001,53,"(50,55]",College,1665.0060596786536,285.8185326535714,5.825395730012851,11305.465226834665,2019
+2001,53,"(50,55]",College,1762.6039173680183,285.8185326535714,6.166863642479042,11291.18149259581,2019
+2001,47,"(45,50]",NoHS,-43.35822494261668,141.18746793730637,-0.3070968378147393,6274.646424801946,2019
+2001,47,"(45,50]",NoHS,-43.35822494261668,141.18746793730637,-0.3070968378147393,6562.28327081264,2019
+2001,47,"(45,50]",NoHS,-43.35822494261668,141.18746793730637,-0.3070968378147393,6580.029062567398,2019
+2001,47,"(45,50]",NoHS,-43.35822494261668,141.18746793730637,-0.3070968378147393,6391.570425174386,2019
+2001,47,"(45,50]",NoHS,-43.35822494261668,141.18746793730637,-0.3070968378147393,6486.528378852197,2019
+2001,37,"(35,40]",College,38.45322111706198,68.87193557917384,0.5583293222949558,5801.7305354727005,2019
+2001,37,"(35,40]",College,40.127283856159146,68.87193557917384,0.5826362148633039,5791.125589263435,2019
+2001,37,"(35,40]",College,87.00104055087988,68.87193557917384,1.2632292067770503,5824.822639567339,2019
+2001,37,"(35,40]",College,39.79247130833971,68.87193557917384,0.5777748363496341,5794.26009124673,2019
+2001,37,"(35,40]",College,51.84572302983933,68.87193557917384,0.7527844628417404,5871.183152722851,2019
+2001,55,"(50,55]",College,13769.166029074217,1721.798389479346,7.9969676549865225,13.150832014261088,2019
+2001,55,"(50,55]",College,13687.136954858453,1721.798389479346,7.949326145552559,12.836818983246996,2019
+2001,55,"(50,55]",College,13553.211935730682,1721.798389479346,7.871544089333846,13.523293431354869,2019
+2001,55,"(50,55]",College,13511.360367253252,1721.798389479346,7.847237196765498,13.223261151766664,2019
+2001,55,"(50,55]",College,13762.469778117826,1721.798389479346,7.993078552175585,12.73333182905233,2019
+2001,51,"(50,55]",College,1616.307574598317,115.36049209511619,14.010928223725424,2913.3590269042716,2019
+2001,51,"(50,55]",College,1717.5883703136953,120.5258872635542,14.250783871500083,2961.662230153325,2019
+2001,51,"(50,55]",College,1481.5455241009947,115.36049209511619,12.84274622267944,3713.809446333967,2019
+2001,51,"(50,55]",College,1398.6794185156848,125.69128243199225,11.127895200468402,6263.523100705018,2019
+2001,51,"(50,55]",College,1714.5750573833207,113.63869370563681,15.087951132425529,3133.346437419268,2019
+2001,34,"(30,35]",HS,4.603672532517215,53.37575007385973,0.0862502639522029,7624.823571099068,2019
+2001,34,"(30,35]",HS,4.771078806426932,53.37575007385973,0.08938663718682846,7657.879757355487,2019
+2001,34,"(30,35]",HS,4.771078806426932,53.37575007385973,0.08938663718682846,7554.608304600956,2019
+2001,34,"(30,35]",HS,4.603672532517215,53.37575007385973,0.0862502639522029,7675.467683104429,2019
+2001,34,"(30,35]",HS,4.603672532517215,53.37575007385973,0.0862502639522029,7658.758975802628,2019
+2001,45,"(40,45]",HS,0.5022188217291507,12.74130808214716,0.03941658254326717,6115.455724525603,2019
+2001,45,"(40,45]",HS,0.6696250956388676,12.74130808214716,0.0525554433910229,6108.6486347587615,2019
+2001,45,"(40,45]",HS,0.6696250956388676,12.74130808214716,0.0525554433910229,6120.697142465496,2019
+2001,45,"(40,45]",HS,0.6696250956388676,12.74130808214716,0.0525554433910229,6106.668166670321,2019
+2001,45,"(40,45]",HS,0.5022188217291507,12.74130808214716,0.03941658254326717,6115.147751095362,2019
+2001,44,"(40,45]",HS,214.63158377964805,110.19509692667813,1.9477416851174432,6637.379102128536,2019
+2001,44,"(40,45]",HS,203.04706962509565,110.19509692667813,1.8426143747593378,6617.857302241975,2019
+2001,44,"(40,45]",HS,191.4792960979342,110.19509692667813,1.7376389824797842,6679.698610289475,2019
+2001,44,"(40,45]",HS,208.42081101759757,110.19509692667813,1.8913800779745862,6664.900718491357,2019
+2001,44,"(40,45]",HS,204.95550114766644,110.19509692667813,1.859933035714286,6689.663964319293,2019
+2001,46,"(45,50]",HS,116.6821729150727,68.87193557917384,1.6941904120138622,8538.685302099777,2019
+2001,46,"(45,50]",HS,126.39173680183626,68.87193557917384,1.8351703889102808,8992.056452641775,2019
+2001,46,"(45,50]",HS,116.6821729150727,68.87193557917384,1.6941904120138622,9027.082960669706,2019
+2001,46,"(45,50]",HS,114.8407039020658,68.87193557917384,1.667452830188679,8727.978186013006,2019
+2001,46,"(45,50]",HS,118.85845447589901,68.87193557917384,1.7257893723527147,8900.911128507963,2019
+2001,25,"(20,25]",College,69.80841622035196,34.43596778958692,2.027194840200231,5323.2637041958815,2019
+2001,25,"(20,25]",College,89.89716908951797,34.43596778958692,2.6105602618405848,5332.183854702578,2019
+2001,25,"(20,25]",College,116.8495791889824,34.43596778958692,3.3932422025413937,5273.6781175064,2019
+2001,25,"(20,25]",College,69.80841622035196,36.157766179066265,1.9306617525716487,5378.268820343802,2019
+2001,25,"(20,25]",College,69.97582249426166,34.43596778958692,2.0320562187139,5336.47300924599,2019
+2001,47,"(45,50]",HS,767.0388064269318,211.78120190595953,3.621845562891516,7638.260797432544,2019
+2001,47,"(45,50]",HS,246.53921958684012,98.14250820032271,2.512053381432017,7808.301372204129,2019
+2001,47,"(45,50]",HS,378.9241009946442,68.87193557917384,5.501865132845591,7838.716831908865,2019
+2001,47,"(45,50]",HS,416.2724407039021,72.31553235813253,5.756335148614702,7578.987565896687,2019
+2001,47,"(45,50]",HS,548.8749502677889,58.54114524229776,9.375883372216812,6968.893929987132,2019
+2001,51,"(50,55]",College,252.4486610558531,198.00681479012476,1.2749493562806584,6018.3578548708165,2019
+2001,51,"(50,55]",College,255.79678653404744,378.79564568545607,0.6752896698988343,6361.039064894015,2019
+2001,51,"(50,55]",College,255.79678653404744,179.06703250585196,1.4284973786321495,6391.522069167086,2019
+2001,51,"(50,55]",College,252.28125478194337,256.54796003242257,0.98336878122149185,6193.201396164088,2019
+2001,51,"(50,55]",College,254.12272379495028,272.04414553773665,0.9341231118671495,6256.486163019414,2019
+2001,28,"(25,30]",HS,-39.574843152257074,74.03733074761188,-0.5345255258751153,6800.512061674757,2019
+2001,28,"(25,30]",HS,-39.742249426166794,74.03733074761188,-0.536786632160543,6811.907625464871,2019
+2001,28,"(25,30]",HS,-39.90965570007651,74.03733074761188,-0.5390477384459708,6835.737081786201,2019
+2001,28,"(25,30]",HS,-39.742249426166794,74.03733074761188,-0.536786632160543,6870.781538560323,2019
+2001,28,"(25,30]",HS,-39.742249426166794,74.03733074761188,-0.536786632160543,6817.387054782611,2019
+2001,26,"(25,30]",HS,-28.442325937260904,67.15013718969449,-0.4235631843448555,5648.960703568517,2019
+2001,26,"(25,30]",HS,-28.442325937260904,48.21035490542169,-0.5899630067660487,5658.426621937833,2019
+2001,26,"(25,30]",HS,-28.442325937260904,56.819346852818406,-0.5005746724075566,5678.220964058804,2019
+2001,26,"(25,30]",HS,-28.442325937260904,61.984742021256444,-0.45886011637359353,5707.331236549988,2019
+2001,26,"(25,30]",HS,-28.442325937260904,60.2629436317771,-0.471970405412839,5662.97820285015,2019
+2001,24,"(20,25]",College,78.5972456006121,61.984742021256444,1.2680095623154926,6220.844112021416,2019
+2001,24,"(20,25]",College,61.8566182096404,63.706540410735805,0.970961816649148,6163.562032741764,2019
+2001,24,"(20,25]",College,73.57505738332058,63.706540410735805,1.1549058685177283,6163.33521968614,2019
+2001,24,"(20,25]",College,55.16036725325172,61.984742021256444,0.889902344585633,6146.347416314677,2019
+2001,24,"(20,25]",College,80.27130833970926,63.706540410735805,1.260016755299774,6137.5023171566,2019
+2001,66,"(65,70]",HS,695.2047742922724,55.097548463339066,12.617707932229496,9174.317385484017,2019
+2001,66,"(65,70]",HS,749.0593726090284,51.653951684380374,14.501492106276475,8253.380970368271,2019
+2001,66,"(65,70]",HS,696.7616526396328,53.37575007385973,13.053899039835043,7791.055513432073,2019
+2001,66,"(65,70]",HS,1262.1763427697015,44.76675812646299,28.19449957051035,8708.307883633976,2019
+2001,66,"(65,70]",HS,1124.14986993114,55.097548463339066,20.402901785714285,8312.418821724064,2019
+2001,37,"(35,40]",HS,2.059097169089518,49.93215329490103,0.04123790049526642,4780.60331018365,2019
+2001,37,"(35,40]",HS,1.841469013006886,48.21035490542169,0.038196545464547,4728.507799511033,2019
+2001,37,"(35,40]",HS,0.36829380260137723,49.93215329490103,0.007375884641429767,4744.661812211146,2019
+2001,37,"(35,40]",HS,3.7164192807957153,49.93215329490103,0.07442938138170037,4726.531741442141,2019
+2001,37,"(35,40]",HS,1.8582096403978576,49.93215329490103,0.037214690690850184,4781.684525795719,2019
+2001,50,"(45,50]",HS,15.15026778882938,46.488556515942335,0.3258924114719263,6619.463839223451,2019
+2001,50,"(45,50]",HS,15.15026778882938,46.488556515942335,0.3258924114719263,6994.348676205646,2019
+2001,50,"(45,50]",HS,15.15026778882938,46.488556515942335,0.3258924114719263,7008.765886452746,2019
+2001,50,"(45,50]",HS,15.15026778882938,46.488556515942335,0.3258924114719263,6766.545123742404,2019
+2001,50,"(45,50]",HS,15.15026778882938,46.488556515942335,0.3258924114719263,6911.115136503601,2019
+2001,55,"(50,55]",College,234.56967100229534,79.20272591604991,2.961636336240813,6711.286268798502,2019
+2001,55,"(50,55]",College,509.08247895944913,167.01444377949653,3.048134445375116,6443.914519150943,2019
+2001,55,"(50,55]",College,628.024636572303,60.2629436317771,10.421406568018044,6028.387348775333,2019
+2001,55,"(50,55]",College,546.7488905891355,89.53351625292598,6.106639317555761,6749.064258302776,2019
+2001,55,"(50,55]",College,994.9791889824024,222.1119922428356,4.479628402479904,6486.677750884278,2019
+2001,45,"(40,45]",HS,0,86.08991947396729,0,6516.701961554847,2019
+2001,45,"(40,45]",HS,1.674062739097169,86.08991947396729,0.019445514054678474,6619.83293960085,2019
+2001,45,"(40,45]",HS,3.348125478194338,86.08991947396729,0.03889102810935695,6633.465213193772,2019
+2001,45,"(40,45]",HS,3.348125478194338,86.08991947396729,0.03889102810935695,6585.933377416132,2019
+2001,45,"(40,45]",HS,3.348125478194338,86.08991947396729,0.03889102810935695,6600.240820522881,2019
+2001,55,"(50,55]",College,1782.2071920428464,421.8406054224397,4.224835563798104,3458.873939168164,2019
+2001,55,"(50,55]",College,1784.0486610558532,421.8406054224397,4.229200883279766,3518.3135026067494,2019
+2001,55,"(50,55]",College,1783.0442234123948,421.8406054224397,4.226819799926131,4418.493408229989,2019
+2001,55,"(50,55]",College,1783.3790359602142,421.8406054224397,4.227613494377343,3638.5919990453463,2019
+2001,55,"(50,55]",College,1784.0486610558532,421.8406054224397,4.229200883279766,3727.8708913083246,2019
+2001,58,"(55,60]",College,4320.755929609793,344.35967789586914,12.547217943781286,1573.3579612305853,2019
+2001,58,"(55,60]",College,4320.755929609793,344.35967789586914,12.547217943781286,1556.368576429962,2019
+2001,58,"(55,60]",College,4320.755929609793,344.35967789586914,12.547217943781286,1596.663091263162,2019
+2001,58,"(55,60]",College,4322.429992348891,344.35967789586914,12.552079322294956,1554.0627222000635,2019
+2001,58,"(55,60]",College,4320.755929609793,344.35967789586914,12.547217943781286,1537.8345326191723,2019
+2001,53,"(50,55]",HS,2358.6204743687836,172.17983894793457,13.6985868309588,643.3529459066046,2019
+2001,53,"(50,55]",HS,2937.5615914307577,172.17983894793457,17.06100789372353,634.7896248976535,2019
+2001,53,"(50,55]",HS,2366.538791124713,172.17983894793457,13.744575471698115,671.5346107653914,2019
+2001,53,"(50,55]",HS,2292.7126243305283,172.17983894793457,13.315801886792457,651.8166324433345,2019
+2001,53,"(50,55]",HS,2584.334353481255,172.17983894793457,15.00950616095495,652.3771932659919,2019
+2001,72,"(70,75]",NoHS,212.3548584544759,22.383379063231494,9.48716714552294,6846.180221373458,2019
+2001,72,"(70,75]",NoHS,212.43856159143078,22.383379063231494,9.490906667456533,7646.271447230375,2019
+2001,72,"(70,75]",NoHS,212.43856159143078,22.383379063231494,9.490906667456533,7572.048295250999,2019
+2001,72,"(70,75]",NoHS,212.10374904361132,25.826975842190187,8.212488769092543,7236.085325727831,2019
+2001,72,"(70,75]",NoHS,212.5222647283856,20.661580673752148,10.285866705172635,7448.092683433771,2019
+2001,45,"(40,45]",College,1536.1199693955623,258.2697584219018,5.947734565524324,187.7679469450406,2019
+2001,45,"(40,45]",College,1537.7940321346596,258.2697584219018,5.95421640354255,181.95147356684436,2019
+2001,45,"(40,45]",College,1537.7940321346596,258.2697584219018,5.95421640354255,196.956224079649,2019
+2001,45,"(40,45]",College,1536.1199693955623,258.2697584219018,5.947734565524324,188.28096496593375,2019
+2001,45,"(40,45]",College,1536.1199693955623,258.2697584219018,5.947734565524324,190.86824780440847,2019
+2001,48,"(45,50]",HS,66.35984697781178,144.63106471626506,0.4588215340044373,7472.856190766162,2019
+2001,48,"(45,50]",HS,117.55268553940321,43.04495973698364,2.730927993839045,7796.342253675369,2019
+2001,48,"(45,50]",HS,83.53573068094873,139.46566954782702,0.5989698464990467,7833.7034350497615,2019
+2001,48,"(45,50]",HS,132.71969395562357,53.37575007385973,2.486516700411144,7590.633737326348,2019
+2001,48,"(45,50]",HS,75.01475133894415,60.2629436317771,1.2447906925573466,7668.198062401971,2019
+2001,42,"(40,45]",HS,38.16863045141545,29.27057262114888,1.30399329543138,5276.617766581794,2019
+2001,42,"(40,45]",HS,39.507880642693195,29.27057262114888,1.3497474461482708,5219.117053943973,2019
+2001,42,"(40,45]",HS,38.16863045141545,29.27057262114888,1.30399329543138,5236.947136233677,2019
+2001,42,"(40,45]",HS,44.5300688599847,29.27057262114888,1.5213255113366102,5216.93596874665,2019
+2001,42,"(40,45]",HS,37.33159908186688,29.27057262114888,1.2753969512333236,5277.811164389134,2019
+2001,43,"(40,45]",College,34930.993114001525,387.4046376328528,90.16668805887133,9.610553906013468,2019
+2001,43,"(40,45]",College,34930.993114001525,387.4046376328528,90.16668805887133,9.373037579908969,2019
+2001,43,"(40,45]",College,34930.993114001525,387.4046376328528,90.16668805887133,9.72545276491913,2019
+2001,43,"(40,45]",College,34932.66717674062,387.4046376328528,90.17100928421681,10.050999098434168,2019
+2001,43,"(40,45]",College,34930.993114001525,387.4046376328528,90.16668805887133,9.656308125742381,2019
+2001,53,"(50,55]",College,209.8270237184392,241.0517745271084,0.8704645470047859,5416.543557948855,2019
+2001,53,"(50,55]",College,130.91170619739864,44.76675812646299,2.9243061520689557,5717.278080701801,2019
+2001,53,"(50,55]",College,153.59525631216528,115.36049209511619,1.3314372496393656,5753.379725152355,2019
+2001,53,"(50,55]",College,457.73897475133896,137.74387115834767,3.3231168174817096,5552.7608738485815,2019
+2001,53,"(50,55]",College,517.0677582249426,161.84904861105852,3.1947531521641173,5498.495412482357,2019
+2001,63,"(60,65]",College,9597.40168324407,1119.1689531615748,8.575471698113207,3254.2010593292825,2019
+2001,63,"(60,65]",College,9599.07574598317,1119.1689531615748,8.576967506886646,3259.8372077980703,2019
+2001,63,"(60,65]",College,9597.40168324407,1119.1689531615748,8.575471698113207,3275.3970364209385,2019
+2001,63,"(60,65]",College,9599.07574598317,1119.1689531615748,8.576967506886646,3252.228847173108,2019
+2001,63,"(60,65]",College,9595.727620504973,1119.1689531615748,8.57397588933977,3237.745490472736,2019
+2001,54,"(50,55]",College,42974.86457536343,1721.798389479346,24.959289564882553,46.864823675000224,2019
+2001,54,"(50,55]",College,39969.92195868401,1721.798389479346,23.21405467847516,47.160924533994866,2019
+2001,54,"(50,55]",College,39784.10099464423,1721.798389479346,23.1061320754717,47.074999622675264,2019
+2001,54,"(50,55]",College,51387.0298393267,1721.798389479346,29.844974971120518,48.5380988148029,2019
+2001,54,"(50,55]",College,47859.77964804897,1721.798389479346,27.796390065460145,47.84239726114928,2019
+2001,36,"(35,40]",HS,51.56113236419281,55.097548463339066,0.9358153638814016,776.4950936702752,2019
+2001,36,"(35,40]",HS,51.56113236419281,55.097548463339066,0.9358153638814016,782.373532136464,2019
+2001,36,"(35,40]",HS,51.56113236419281,55.097548463339066,0.9358153638814016,794.2708338636673,2019
+2001,36,"(35,40]",HS,51.56113236419281,55.097548463339066,0.9358153638814016,779.5061820463125,2019
+2001,36,"(35,40]",HS,51.56113236419281,55.097548463339066,0.9358153638814016,779.7369184852502,2019
+2001,55,"(50,55]",HS,99.5230298393267,103.30790336876075,0.9633631754588627,7369.174957853094,2019
+2001,55,"(50,55]",HS,104.54521805661821,103.30790336876075,1.011976960595559,7414.779304333844,2019
+2001,55,"(50,55]",HS,92.82677888293803,103.30790336876075,0.8985447952766012,7428.064904856854,2019
+2001,55,"(50,55]",HS,94.5008416220352,103.30790336876075,0.9147493903221666,7547.382376960214,2019
+2001,55,"(50,55]",HS,92.82677888293803,103.30790336876075,0.8985447952766012,7434.171458194726,2019
+2001,55,"(50,55]",College,1155.1032899770466,108.47329853719879,10.64873388708583,7045.60462785681,2019
+2001,55,"(50,55]",College,1081.1097169089517,108.47329853719879,9.966597600405839,6402.988282027784,2019
+2001,55,"(50,55]",College,1128.318286151492,108.47329853719879,10.40180672448674,5990.679786712288,2019
+2001,55,"(50,55]",College,1207.1666411629687,108.47329853719879,11.128698559387818,6703.729322906307,2019
+2001,55,"(50,55]",College,1091.4889058913543,108.47329853719879,10.062281875912989,6442.101116469827,2019
+2001,43,"(40,45]",HS,901.4827850038256,86.08991947396729,10.47140931844436,6528.417324117379,2019
+2001,43,"(40,45]",HS,899.2395409334354,86.08991947396729,10.44535232961109,5934.940809048649,2019
+2001,43,"(40,45]",HS,900.9136036725325,86.08991947396729,10.46479784366577,5547.495777791695,2019
+2001,43,"(40,45]",HS,901.2316755929611,86.08991947396729,10.468492491336159,6206.827803855881,2019
+2001,43,"(40,45]",HS,899.2395409334354,86.08991947396729,10.44535232961109,5968.405172138342,2019
+2001,41,"(40,45]",HS,1.5903596021423108,27.548774231669533,0.057728869849826725,7516.16272915577,2019
+2001,41,"(40,45]",HS,1.5903596021423108,25.826975842190187,0.06157746117314851,7450.91088144252,2019
+2001,41,"(40,45]",HS,1.5903596021423108,27.548774231669533,0.057728869849826725,7488.867279325752,2019
+2001,41,"(40,45]",HS,1.5903596021423108,25.826975842190187,0.06157746117314851,7471.954144255212,2019
+2001,41,"(40,45]",HS,1.5903596021423108,29.27057262114888,0.054333053976307506,7499.215743543388,2019
+2001,57,"(55,60]",College,2382.8609028309106,258.2697584219018,9.226248235143116,2850.8770750912763,2019
+2001,57,"(55,60]",College,2382.693496557001,258.2697584219018,9.225600051341292,2900.736704513658,2019
+2001,57,"(55,60]",College,2383.0283091048204,258.2697584219018,9.22689641894494,3645.047582120933,2019
+2001,57,"(55,60]",College,2382.8609028309106,259.9915568113812,9.165147253453425,2999.1979828254516,2019
+2001,57,"(55,60]",College,2382.693496557001,258.2697584219018,9.225600051341292,3072.5707596797247,2019
+2001,38,"(35,40]",HS,104.29410864575364,84.36812108448795,1.236179107761703,6828.63010531376,2019
+2001,38,"(35,40]",HS,113.66885998469778,84.36812108448795,1.3472963309312942,7099.814036578054,2019
+2001,38,"(35,40]",HS,115.34292272379496,84.36812108448795,1.3671386922115785,7194.361322457856,2019
+2001,38,"(35,40]",HS,101.44820198928845,84.36812108448795,1.2024470935852198,7028.369855839259,2019
+2001,38,"(35,40]",HS,113.66885998469778,84.36812108448795,1.3472963309312942,7087.79740453103,2019
+2001,40,"(35,40]",HS,272.2026013771997,237.60817774814973,1.1455944149604058,5667.833552915955,2019
+2001,40,"(35,40]",HS,262.15822494261664,230.72098419023237,1.1362565302099434,5144.470232255403,2019
+2001,40,"(35,40]",HS,255.62938026013774,91.25531464240532,2.8012547133484937,4889.051240250521,2019
+2001,40,"(35,40]",HS,307.35791889824026,235.88637935867035,1.3029913797222512,5408.115537376109,2019
+2001,40,"(35,40]",HS,275.71813312930374,235.88637935867035,1.1688599141626077,5173.480891087542,2019
+2001,46,"(45,50]",HS,69.25597551644988,36.157766179066265,1.9153831343858294,7136.615669209234,2019
+2001,46,"(45,50]",HS,57.604498852333585,29.27057262114888,1.9680004077102538,7249.557178310926,2019
+2001,46,"(45,50]",HS,44.59703136954858,36.157766179066265,1.2334011771824631,7264.48624793911,2019
+2001,46,"(45,50]",HS,56.44939556235654,29.27057262114888,1.9285374527169359,7212.432855594615,2019
+2001,46,"(45,50]",HS,50.90824789594492,37.87956456854561,1.3439501872790283,7339.305574787056,2019
+2001,54,"(50,55]",HS,779.2762050497322,123.96948404251289,6.28603249475891,1615.7577430126942,2019
+2001,54,"(50,55]",HS,779.2762050497322,125.69128243199225,6.19992246058413,1601.3020260221049,2019
+2001,54,"(50,55]",HS,779.1087987758225,123.96948404251289,6.284682111838446,1541.4741000229692,2019
+2001,54,"(50,55]",HS,777.4347360367253,123.96948404251289,6.271178282633809,1600.3767666932904,2019
+2001,54,"(50,55]",HS,779.2762050497322,123.96948404251289,6.28603249475891,1688.025738741791,2019
+2001,49,"(45,50]",HS,262.77762815608264,120.5258872635542,2.180258815116343,5465.728782877891,2019
+2001,49,"(45,50]",HS,140.5710482019893,120.5258872635542,1.1663141536938226,5756.709887885172,2019
+2001,49,"(45,50]",HS,162.6686763580719,120.5258872635542,1.349657571923648,5889.3774289648245,2019
+2001,49,"(45,50]",HS,110.32073450650344,122.24768565303354,0.9024361804248673,5622.196561417682,2019
+2001,49,"(45,50]",HS,251.3940015302219,122.24768565303354,2.05643158140216,5685.897378681897,2019
+2001,44,"(40,45]",College,2117.3545524100996,172.17983894793457,12.29734308817867,1743.6073201750557,2019
+2001,44,"(40,45]",College,2117.3545524100996,172.17983894793457,12.29734308817867,1683.9475103706488,2019
+2001,44,"(40,45]",College,2117.9404743687837,172.17983894793457,12.300746053138239,1823.160761279146,2019
+2001,44,"(40,45]",College,2117.521958684009,172.17983894793457,12.2983153638814,1726.4399569128577,2019
+2001,44,"(40,45]",College,2117.3545524100996,172.17983894793457,12.29734308817867,1728.0090429010131,2019
+2001,49,"(45,50]",HS,-2.059097169089518,2.9270572621148876,-0.703470067272192,7121.313497969571,2019
+2001,49,"(45,50]",HS,-1.5233970925784237,3.099237101062822,-0.491539383048817,7253.220566304348,2019
+2001,49,"(45,50]",HS,-1.841469013006886,3.099237101062822,-0.5941684850040646,7145.1461943057675,2019
+2001,49,"(45,50]",HS,-2.37716908951798,2.9270572621148876,-0.812136175224807,7170.6760433900445,2019
+2001,49,"(45,50]",HS,-2.2265034429992347,2.9270572621148876,-0.7606627556683051,7226.771020074336,2019
+2001,52,"(50,55]",NoHS,194.35868400918133,99.86430658980206,1.9462277428863544,7351.806139104221,2019
+2001,52,"(50,55]",NoHS,165.84939556235653,103.30790336876075,1.6053892311641638,7716.609643244725,2019
+2001,52,"(50,55]",NoHS,246.57270084162207,98.14250820032271,2.5123945308013975,7899.387082194128,2019
+2001,52,"(50,55]",NoHS,184.63237949502678,101.5861049792814,1.8174963941444822,7590.014754084904,2019
+2001,52,"(50,55]",NoHS,157.99804131599083,115.36049209511619,1.3696026988660854,7664.649731934094,2019
+2001,75,"(70,75]",HS,459.3628156082632,68.87193557917384,6.669811320754716,9270.514853739667,2019
+2001,75,"(70,75]",HS,459.3628156082632,68.87193557917384,6.669811320754716,8282.165594624983,2019
+2001,75,"(70,75]",HS,459.53022188217295,68.87193557917384,6.672242010011552,7576.633340612412,2019
+2001,75,"(70,75]",HS,459.3628156082632,68.87193557917384,6.669811320754716,8649.692737318932,2019
+2001,75,"(70,75]",HS,459.3628156082632,68.87193557917384,6.669811320754716,8500.578538732445,2019
+2001,39,"(35,40]",HS,58.17368018362662,58.54114524229776,0.9937229608824661,6007.96180247109,2019
+2001,39,"(35,40]",HS,56.667023718439175,58.54114524229776,0.9679862511042152,6245.285418264321,2019
+2001,39,"(35,40]",HS,58.34108645753635,58.54114524229776,0.9965825953022719,6318.848194684512,2019
+2001,39,"(35,40]",HS,58.34108645753635,58.54114524229776,0.9965825953022719,6119.881386816032,2019
+2001,39,"(35,40]",HS,58.34108645753635,58.54114524229776,0.9965825953022719,6239.481758420248,2019
+2001,26,"(25,30]",HS,18.91690895179801,60.2629436317771,0.3139061554540954,7054.834379223854,2019
+2001,26,"(25,30]",HS,18.749502677888294,60.2629436317771,0.31112822487485564,7085.419469760467,2019
+2001,26,"(25,30]",HS,19.084315225707726,60.2629436317771,0.31668408603333514,6989.868013586902,2019
+2001,26,"(25,30]",HS,18.91690895179801,60.2629436317771,0.3139061554540954,7101.692620486635,2019
+2001,26,"(25,30]",HS,18.91690895179801,60.2629436317771,0.3139061554540954,7086.232962750815,2019
+2001,39,"(35,40]",College,2938.900841622035,700.7719445180937,4.193804938414102,1874.8762690925087,2019
+2001,39,"(35,40]",College,2938.900841622035,700.7719445180937,4.193804938414102,1841.0364558177032,2019
+2001,39,"(35,40]",College,3030.97429227238,699.0501461286143,4.335846732967749,1950.7919818141308,2019
+2001,39,"(35,40]",College,2905.4195868400916,699.0501461286143,4.156239152413452,1888.035540317876,2019
+2001,39,"(35,40]",College,3022.6039785768935,700.7719445180937,4.313249127939154,1895.0750302879183,2019
+2001,28,"(25,30]",NoHS,0,17.21798389479346,0,5530.793777856204,2019
+2001,28,"(25,30]",NoHS,0,17.21798389479346,0,5614.424092418018,2019
+2001,28,"(25,30]",NoHS,0,17.21798389479346,0,5866.237131534925,2019
+2001,28,"(25,30]",NoHS,0,17.21798389479346,0,5743.279451823268,2019
+2001,28,"(25,30]",NoHS,0,17.21798389479346,0,5547.0101571902105,2019
+2001,53,"(50,55]",NoHS,0,12.569128243199225,0,5660.493879117874,2019
+2001,53,"(50,55]",NoHS,0,12.74130808214716,0,5641.555326051715,2019
+2001,53,"(50,55]",NoHS,0,12.74130808214716,0,5643.246027244796,2019
+2001,53,"(50,55]",NoHS,0,12.74130808214716,0,5621.492911594959,2019
+2001,53,"(50,55]",NoHS,0,12.74130808214716,0,5674.282998472754,2019
+2001,33,"(30,35]",HS,199.7156847742923,215.22479868491826,0.9279399306892568,919.3819102898678,2019
+2001,33,"(30,35]",HS,321.101973986228,215.22479868491826,1.4919376203311512,912.03521541475925,2019
+2001,33,"(30,35]",HS,213.94521805661822,215.22479868491826,0.9940546784751635,877.0275065911458,2019
+2001,33,"(30,35]",HS,189.0016832440704,215.22479868491826,0.8781594147092798,911.4944823314152,2019
+2001,33,"(30,35]",HS,229.71488905891354,215.22479868491826,1.067325375433192,961.4104702778666,2019
+2001,34,"(30,35]",NoHS,0,10.675150014771946,0,7347.790757760568,2019
+2001,34,"(30,35]",NoHS,0,14.63528631057444,0,7379.645913174568,2019
+2001,34,"(30,35]",NoHS,0,10.15861049792814,0,7280.126623447466,2019
+2001,34,"(30,35]",NoHS,0,17.21798389479346,0,7396.594816590002,2019
+2001,34,"(30,35]",NoHS,0,14.290926632678572,0,7380.4931869665015,2019
+2001,46,"(45,50]",HS,716.3314460596787,203.1722099585628,3.5257353661003896,11278.96182332654,2019
+2001,46,"(45,50]",HS,753.997857689365,203.1722099585628,3.7111269195877905,11042.086600875853,2019
+2001,46,"(45,50]",HS,826.6521805661821,311.6455084957616,2.652540011105036,10408.773231555759,2019
+2001,46,"(45,50]",HS,850.9260902830911,185.95422606376934,4.575997589811606,11161.037161086704,2019
+2001,46,"(45,50]",HS,837.0313695485846,289.2621294325301,2.8936776867081067,11386.752961154238,2019
+2001,35,"(30,35]",HS,1.422953328232594,9.469891142136403,0.1502607904225155,5043.3670892883,2019
+2001,35,"(30,35]",HS,1.5903596021423108,9.642070981084336,0.1649396281423621,5066.69064987674,2019
+2001,35,"(30,35]",HS,1.422953328232594,9.642070981084336,0.14757756202211345,5302.356862590735,2019
+2001,35,"(30,35]",HS,1.5903596021423108,9.469891142136403,0.16793853047222318,5153.076166615834,2019
+2001,35,"(30,35]",HS,1.422953328232594,9.642070981084336,0.14757756202211345,5034.257351305214,2019
+2001,76,"(75,80]",College,1364.4615761285388,105.0297017582401,12.991197283119869,7496.403118800998,2019
+2001,76,"(75,80]",College,1365.3237184391737,106.75150014771945,12.789738004148706,6770.5658028170965,2019
+2001,76,"(75,80]",College,1364.7796480489671,105.0297017582401,12.994225682849695,6402.380477355508,2019
+2001,76,"(75,80]",College,1364.9470543228767,106.75150014771945,12.786209584259751,7157.763000355881,2019
+2001,76,"(75,80]",College,1365.1981637337415,105.0297017582401,12.99821041933631,6874.691597334087,2019
+2001,74,"(70,75]",College,96808.03488905892,886.726170581863,109.17466755890854,232.6198827127451,2019
+2001,74,"(70,75]",College,99737.64468247896,976.259686834789,102.16302693584173,205.7612511507222,2019
+2001,74,"(70,75]",College,101125.44269319052,976.259686834789,103.58457289274901,211.399025465056,2019
+2001,74,"(70,75]",College,99483.1871461362,915.9967432030122,108.60648565001257,238.02261183877985,2019
+2001,74,"(70,75]",College,98744.92547819435,976.259686834789,101.14616716208297,216.14594743840863,2019
+2001,56,"(55,60]",NoHS,116.17995409334354,67.15013718969449,1.7301521479419053,7044.52234413372,2019
+2001,56,"(55,60]",NoHS,83.68639632746749,70.59373396865318,1.1854649360894842,7389.667823133766,2019
+2001,56,"(55,60]",NoHS,74.96452945677123,43.04495973698364,1.7415402387370043,7438.256996458191,2019
+2001,56,"(55,60]",NoHS,86.03008416220352,56.819346852818406,1.5140984352574651,7273.845643796373,2019
+2001,56,"(55,60]",NoHS,113.1833817903596,25.826975842190187,4.382370684122706,7265.874554867101,2019
+2001,46,"(45,50]",HS,1305.4676052027546,194.5632180111661,6.709734854035119,7365.920278900643,2019
+2001,46,"(45,50]",HS,1308.698546289212,192.84141962168675,6.786397594752185,6688.106078864997,2019
+2001,46,"(45,50]",HS,1307.3090742157615,194.5632180111661,6.719199484769697,6244.328613820146,2019
+2001,46,"(45,50]",HS,1307.1918898240244,192.84141962168675,6.778584664998074,7002.731596553113,2019
+2001,46,"(45,50]",HS,1303.8102830910482,192.84141962168675,6.761048978216623,6720.897753402982,2019
+2001,64,"(60,65]",College,5716.422035195103,189.39782284272803,30.182089473868448,1286.9416067148964,2019
+2001,64,"(60,65]",College,5716.137444529457,189.39782284272803,30.180586865964226,1292.9702387856958,2019
+2001,64,"(60,65]",College,5716.422035195103,189.39782284272803,30.182089473868448,1333.6745805115966,2019
+2001,64,"(60,65]",College,5715.417597551645,189.39782284272803,30.176786151853534,1277.099537357272,2019
+2001,64,"(60,65]",College,5715.082785003825,189.39782284272803,30.175018377848563,1267.2593047066712,2019
+2001,35,"(30,35]",College,2019.4218821729153,344.35967789586914,5.864280901039662,2180.3824243254053,2019
+2001,35,"(30,35]",College,2019.4218821729153,344.35967789586914,5.864280901039662,2217.5471842952875,2019
+2001,35,"(30,35]",College,2019.4218821729153,344.35967789586914,5.864280901039662,2796.5808558495137,2019
+2001,35,"(30,35]",College,2019.4218821729153,344.35967789586914,5.864280901039662,2288.8818119404505,2019
+2001,35,"(30,35]",College,2019.4218821729153,344.35967789586914,5.864280901039662,2351.7331102214143,2019
+2001,44,"(40,45]",HS,1329.7080336648814,561.3062749702667,2.368952732152011,2817.734021252015,2019
+2001,44,"(40,45]",HS,1334.7302218821728,118.80408887407486,11.234716199851556,2869.6554592786933,2019
+2001,44,"(40,45]",HS,1332.0517214996175,311.6455084957616,4.274252909753498,3602.913685586425,2019
+2001,44,"(40,45]",HS,1333.558377964805,525.1485087912005,2.5393928681896516,2962.6892011398436,2019
+2001,44,"(40,45]",HS,1330.2102524866107,101.5861049792814,13.0944114134301,3036.6356991985385,2019
+2001,29,"(25,30]",HS,-13.518056618209641,72.31553235813253,-0.18693157856134368,5309.52762260032,2019
+2001,29,"(25,30]",HS,-13.492945677123183,72.31553235813253,-0.1865843372389387,5270.101646260991,2019
+2001,29,"(25,30]",HS,-13.501315990818668,72.31553235813253,-0.186700084346407,5275.905671404348,2019
+2001,29,"(25,30]",HS,-13.518056618209641,72.31553235813253,-0.18693157856134368,5310.5542333887915,2019
+2001,29,"(25,30]",HS,-13.325539403213467,72.31553235813253,-0.1842693950895722,5260.928002554954,2019
+2001,61,"(60,65]",NoHS,26.199081866870696,17.21798389479346,1.5216114747785905,4821.980272643432,2019
+2001,61,"(60,65]",NoHS,24.357612853863813,58.54114524229776,0.4160768080817233,4887.0073747397555,2019
+2001,61,"(60,65]",NoHS,24.34087222647284,49.93215329490103,0.48747892130176734,4804.8480058973455,2019
+2001,61,"(60,65]",NoHS,24.357612853863813,44.76675812646299,0.5441004413376382,4889.026081919031,2019
+2001,61,"(60,65]",NoHS,24.34087222647284,29.27057262114888,0.8315816892794854,4808.0532884888535,2019
+2001,46,"(45,50]",College,5454.096403978577,1928.4141962168671,2.8282805709885035,3687.287979209405,2019
+2001,46,"(45,50]",College,5452.4223412394795,1928.4141962168671,2.8274124676824908,3633.9889219487354,2019
+2001,46,"(45,50]",College,5452.4223412394795,1911.1962123220737,2.852884652076027,3732.726985571312,2019
+2001,46,"(45,50]",College,5452.4223412394795,1928.4141962168671,2.8274124676824908,3619.162569798528,2019
+2001,46,"(45,50]",College,5454.096403978577,1911.1962123220737,2.8537605761325437,3597.716146931495,2019
+2001,42,"(40,45]",HS,490.38319816373377,98.14250820032271,4.996644238628917,6494.829636446984,2019
+2001,42,"(40,45]",HS,453.62078041315993,98.14250820032271,4.622062231049322,6735.872107313306,2019
+2001,42,"(40,45]",HS,467.0969854628921,99.86430658980206,4.677316665117576,6798.829501222875,2019
+2001,42,"(40,45]",HS,532.6532823259373,99.86430658980206,5.333770398204826,6596.590407912762,2019
+2001,42,"(40,45]",HS,448.69903596021425,99.86430658980206,4.4930871828236825,6747.903053543826,2019
+2001,56,"(55,60]",HS,172.2610558530987,120.5258872635542,1.429245283018868,5701.206651815551,2019
+2001,56,"(55,60]",HS,172.2610558530987,120.5258872635542,1.429245283018868,5818.173264653238,2019
+2001,56,"(55,60]",HS,172.42846212700843,120.5258872635542,1.430634248308488,5727.154254666614,2019
+2001,56,"(55,60]",HS,172.42846212700843,120.5258872635542,1.430634248308488,5800.534742645918,2019
+2001,56,"(55,60]",HS,172.42846212700843,120.5258872635542,1.430634248308488,5732.3278266620655,2019
+2001,30,"(25,30]",College,155.60413159908185,43.04495973698364,3.6149210627647284,6077.437542771459,2019
+2001,30,"(25,30]",College,165.64850803366488,43.04495973698364,3.8482672314208703,6083.349953723607,2019
+2001,30,"(25,30]",College,172.51216526396328,43.04495973698364,4.007720446669234,6012.295857721695,2019
+2001,30,"(25,30]",College,132.1672532517215,43.04495973698364,3.070446669233731,6117.500716381299,2019
+2001,30,"(25,30]",College,130.66059678653406,43.04495973698364,3.0354447439353103,6094.909347441986,2019
+2001,59,"(55,60]",College,133.92501912777354,117.08229048459552,1.1438537679222633,8693.012728698828,2019
+2001,59,"(55,60]",College,150.33083397092577,118.80408887407486,1.2653675087754541,8193.585482650846,2019
+2001,59,"(55,60]",College,116.51476664116296,118.80408887407486,0.9807302740620447,8259.827939610826,2019
+2001,59,"(55,60]",College,116.51476664116296,117.08229048459552,0.9951527780923689,8048.170598109993,2019
+2001,59,"(55,60]",College,178.45508798775822,118.80408887407486,1.5020955059628445,9071.44606141467,2019
+2001,42,"(40,45]",HS,1792.0841622035196,275.48774231669535,6.505132123604159,918.0527136887076,2019
+2001,42,"(40,45]",HS,1792.0841622035196,275.48774231669535,6.505132123604159,907.1368478005201,2019
+2001,42,"(40,45]",HS,1792.2515684774291,275.48774231669535,6.505739795918367,958.3633605486342,2019
+2001,42,"(40,45]",HS,1792.0841622035196,275.48774231669535,6.505132123604159,931.4689324824482,2019
+2001,42,"(40,45]",HS,1792.0841622035196,275.48774231669535,6.505132123604159,931.8602086342705,2019
+2001,64,"(60,65]",College,1886.919816373374,113.63869370563681,16.604553914190035,11372.833544071005,2019
+2001,64,"(60,65]",College,2348.7769854628923,113.63869370563681,20.66881366611825,11057.720725793351,2019
+2001,64,"(60,65]",College,1939.6527926549352,113.63869370563681,17.068594590494865,13377.496463922676,2019
+2001,64,"(60,65]",College,2007.7704055087988,113.63869370563681,17.668017292680368,11305.465226834665,2019
+2001,64,"(60,65]",College,1885.2290130068861,113.63869370563681,16.589675149648198,11291.18149259581,2019
+2001,70,"(65,70]",College,623.5046671767406,87.81171786344665,7.100472264377448,264.82213179606424,2019
+2001,70,"(65,70]",College,1024.7775057383321,105.0297017582401,9.757025761124122,265.64229931000506,2019
+2001,70,"(65,70]",College,1465.7256312165266,87.81171786344665,16.691686108405626,544.146748859426,2019
+2001,70,"(65,70]",College,759.2376740627392,180.7888308953313,4.199582852008729,266.36648166583115,2019
+2001,70,"(65,70]",College,1125.7234889058914,244.49537130606709,4.604273213404416,281.21727389240834,2019
+2001,41,"(40,45]",HS,19.837643458301454,25.826975842190187,0.7680978051597998,4779.007404435994,2019
+2001,41,"(40,45]",HS,19.670237184391734,29.27057262114888,0.6720140886543295,4797.430665476756,2019
+2001,41,"(40,45]",HS,19.837643458301454,29.27057262114888,0.6777333574939409,4830.390279632164,2019
+2001,41,"(40,45]",HS,19.670237184391734,98.14250820032271,0.2004252545109404,4781.516536966885,2019
+2001,41,"(40,45]",HS,19.837643458301454,122.24768565303354,0.1622741841886901,4813.7098902462185,2019
+2001,62,"(60,65]",HS,775.0910482019893,30.992371010628222,25.009091686989265,5978.013682291579,2019
+2001,62,"(60,65]",HS,775.0910482019893,30.992371010628222,25.009091686989265,5435.098929084103,2019
+2001,62,"(60,65]",HS,775.258454475899,30.992371010628222,25.01449321867112,5081.480973068484,2019
+2001,62,"(60,65]",HS,776.7651109410864,30.992371010628222,25.06310700380781,5689.431166092692,2019
+2001,62,"(60,65]",HS,775.258454475899,30.992371010628222,25.01449321867112,5464.36524688205,2019
+2001,45,"(40,45]",College,653.3866870696252,172.17983894793457,3.794792067770505,5878.096575253158,2019
+2001,45,"(40,45]",College,651.5284774292272,172.17983894793457,3.783999807470158,5338.790431652127,2019
+2001,45,"(40,45]",College,653.2192807957155,172.17983894793457,3.793819792067771,4987.474475188265,2019
+2001,45,"(40,45]",College,653.2192807957155,172.17983894793457,3.793819792067771,5588.627988050525,2019
+2001,45,"(40,45]",College,651.5452180566183,172.17983894793457,3.784097035040432,5363.326847825681,2019
+2001,58,"(55,60]",HS,20.925784238714613,61.984742021256444,0.33759573011594574,7757.571825356363,2019
+2001,58,"(55,60]",HS,20.925784238714613,61.984742021256444,0.33759573011594574,7792.41384440345,2019
+2001,58,"(55,60]",HS,20.925784238714613,61.984742021256444,0.33759573011594574,7791.853030543595,2019
+2001,58,"(55,60]",HS,20.925784238714613,61.984742021256444,0.33759573011594574,7817.015483585844,2019
+2001,58,"(55,60]",HS,20.925784238714613,61.984742021256444,0.33759573011594574,7745.723960241143,2019
+2001,36,"(35,40]",College,-0.8370313695485845,36.157766179066265,-0.02314942149366485,5363.815208885282,2019
+2001,36,"(35,40]",College,-0.8370313695485845,36.157766179066265,-0.02314942149366485,5444.228763941084,2019
+2001,36,"(35,40]",College,-1.0044376434583013,36.157766179066265,-0.027779305792397815,5693.802081999802,2019
+2001,36,"(35,40]",College,-1.0044376434583013,36.157766179066265,-0.027779305792397815,5499.78404980392,2019
+2001,36,"(35,40]",College,-1.0044376434583013,36.157766179066265,-0.027779305792397815,5407.429802583976,2019
+2001,46,"(45,50]",College,166.73664881407805,137.74387115834767,1.210483249903735,7160.530526235151,2019
+2001,46,"(45,50]",College,166.90405508798779,137.74387115834767,1.2116985945321526,7463.705039589759,2019
+2001,46,"(45,50]",College,165.06258607498089,137.74387115834767,1.198329803619561,7497.585732699108,2019
+2001,46,"(45,50]",College,166.73664881407805,137.74387115834767,1.210483249903735,7293.600924038932,2019
+2001,46,"(45,50]",College,166.90405508798779,137.74387115834767,1.2116985945321526,7390.7141863040115,2019
+2001,37,"(35,40]",HS,4.185156847742923,34.43596778958692,0.12153446284174046,5957.332880444983,2019
+2001,37,"(35,40]",HS,4.35256312165264,34.43596778958692,0.1263958413554101,5905.61407233775,2019
+2001,37,"(35,40]",HS,4.35256312165264,34.43596778958692,0.1263958413554101,5935.698425920985,2019
+2001,37,"(35,40]",HS,4.35256312165264,34.43596778958692,0.1263958413554101,5922.293024880865,2019
+2001,37,"(35,40]",HS,4.185156847742923,34.43596778958692,0.12153446284174046,5943.900649364961,2019
+2001,44,"(40,45]",College,9131.510022953327,316.81090366419966,28.823218889688764,31.126555796803906,2019
+2001,44,"(40,45]",College,5304.652823259373,755.8694929814328,7.017948035362338,32.473375280873015,2019
+2001,44,"(40,45]",College,22296.841622035194,478.65995227525815,46.58179886587457,32.665279601829816,2019
+2001,44,"(40,45]",College,7729.4824789594495,571.6370653071428,13.521660767057448,31.936139724001464,2019
+2001,44,"(40,45]",College,3157.818026013772,711.1027348549698,4.440733906975921,19.126307021327012,2019
+2001,46,"(45,50]",HS,5.357000765110941,103.30790336876075,0.05185470414580927,6744.53699043895,2019
+2001,46,"(45,50]",HS,5.524407039020658,103.30790336876075,0.0534751636503658,6851.27360359004,2019
+2001,46,"(45,50]",HS,5.524407039020658,103.30790336876075,0.0534751636503658,6865.3824847470505,2019
+2001,46,"(45,50]",HS,5.357000765110941,103.30790336876075,0.05185470414580927,6816.188854822436,2019
+2001,46,"(45,50]",HS,5.524407039020658,103.30790336876075,0.0534751636503658,6830.996510572433,2019
+2001,29,"(25,30]",College,44.14503442999234,79.20272591604991,0.5573676148063819,7079.291210895322,2019
+2001,29,"(25,30]",College,51.99638867635807,56.819346852818406,0.9151176765732023,7153.976934169297,2019
+2001,29,"(25,30]",College,69.4736036725325,55.097548463339066,1.2609200519830572,7458.712243371449,2019
+2001,29,"(25,30]",College,52.214016832440706,46.488556515942335,1.123158487713744,7306.2106636968965,2019
+2001,29,"(25,30]",College,112.07850038255548,70.59373396865318,1.5876550804399072,7052.616816601054,2019
+2001,54,"(50,55]",HS,1913.9559296097934,259.9915568113812,7.3616080194416895,3074.0804409299485,2019
+2001,54,"(50,55]",HS,1910.4403978576893,259.9915568113812,7.348086304370555,3127.32397712726,2019
+2001,54,"(50,55]",HS,1913.7885233358836,259.9915568113812,7.360964128247826,3921.0432300538914,2019
+2001,54,"(50,55]",HS,1912.1144605967866,259.9915568113812,7.354525216309191,3232.4059290330156,2019
+2001,54,"(50,55]",HS,1912.1144605967866,259.9915568113812,7.354525216309191,3305.2206301637134,2019
+2001,70,"(65,70]",HS,37924.58558530987,785.1400656025817,48.30295541751954,17.738254596905286,2019
+2001,70,"(65,70]",HS,30491.76376434583,657.7269847811101,46.35930176179925,18.455667053800376,2019
+2001,70,"(65,70]",HS,37742.12948737567,702.4937429075732,53.725929758695926,18.300731946273483,2019
+2001,70,"(65,70]",HS,38482.734843152255,848.8466060133176,45.33532274328078,18.892070323687236,2019
+2001,70,"(65,70]",HS,31346.20538638103,736.92971069716,42.53622147589419,19.023917565317454,2019
+2001,48,"(45,50]",College,27665.008385615914,4907.125410016135,5.6377218990873414,22.74298112075382,2019
+2001,48,"(45,50]",College,27666.046304514155,4889.907426121342,5.657785289906555,22.19133287963158,2019
+2001,48,"(45,50]",College,27666.280673297628,4907.125410016135,5.637981172608071,23.00204362112986,2019
+2001,48,"(45,50]",College,27665.0418668707,4889.907426121342,5.657579879546824,23.802759193282533,2019
+2001,48,"(45,50]",College,27663.367804131598,4889.907426121342,5.6572375289472685,22.845120142172913,2019
+2001,37,"(35,40]",College,160.4421729150727,111.91689531615746,1.4335831284618348,5726.79675414329,2019
+2001,37,"(35,40]",College,157.09404743687836,111.91689531615746,1.4036669529930987,5697.190640397714,2019
+2001,37,"(35,40]",College,157.09404743687836,111.91689531615746,1.4036669529930987,5740.828973237972,2019
+2001,37,"(35,40]",College,158.76811017597552,111.91689531615746,1.4186250407274668,5719.139346337065,2019
+2001,37,"(35,40]",College,158.76811017597552,111.91689531615746,1.4186250407274668,5786.260577689865,2019
+2001,71,"(70,75]",College,21609.53842387146,354.6904682327453,60.925061030090724,284.6504344729279,2019
+2001,71,"(70,75]",College,32302.714613618973,256.54796003242257,125.91296617418651,282.421730201525,2019
+2001,71,"(70,75]",College,19032.888018362664,406.3444199171256,46.839299582960784,290.8654916977788,2019
+2001,71,"(70,75]",College,10138.626166794185,363.29946018014203,27.90707743349508,285.7479542794914,2019
+2001,71,"(70,75]",College,48668.854169854625,201.45041156908349,241.5922300221491,297.43930329297586,2019
+2001,55,"(50,55]",College,1626.820688599847,299.5929197694062,5.430103921855014,3597.97683859816,2019
+2001,55,"(50,55]",College,1807.786870696251,299.5929197694062,6.034144171656951,3673.16301097051,2019
+2001,55,"(50,55]",College,1633.7178270849274,299.5929197694062,5.453125622402506,4617.083191248466,2019
+2001,55,"(50,55]",College,1625.3475133894415,299.5929197694062,5.425186665427393,3810.4085268960857,2019
+2001,55,"(50,55]",College,1609.1091048201988,299.5929197694062,5.370985088895675,3867.1722415825707,2019
+2001,28,"(25,30]",HS,28.927804131599082,48.21035490542169,0.6000330051157928,5631.014987698819,2019
+2001,28,"(25,30]",HS,75.13193573068095,48.21035490542169,1.5584190549535177,5640.450834575271,2019
+2001,28,"(25,30]",HS,22.38221882172915,48.21035490542169,0.4642616480554485,5660.182293688524,2019
+2001,28,"(25,30]",HS,25.077459831675593,48.21035490542169,0.5201675009626492,5689.200088163583,2019
+2001,28,"(25,30]",HS,51.02543228768172,48.21035490542169,1.058391550690357,5644.987955946784,2019
+2001,37,"(35,40]",HS,-6.687880642693191,34.43596778958692,-0.19421207162110127,5166.036021061419,2019
+2001,37,"(35,40]",HS,-8.52097934200459,34.43596778958692,-0.24744416634578356,5168.144552464832,2019
+2001,37,"(35,40]",HS,-6.520474368783473,34.43596778958692,-0.18935069310743163,5206.908995276206,2019
+2001,37,"(35,40]",HS,-11.710068859984698,34.43596778958692,-0.34005342703118985,5187.713873539136,2019
+2001,37,"(35,40]",HS,-11.032073450650346,34.43596778958692,-0.3203648440508279,5214.9117839554765,2019
+2001,38,"(35,40]",HS,6.311216526396327,22.383379063231494,0.2819599537928379,6079.8720194093485,2019
+2001,38,"(35,40]",HS,4.905003825554705,24.105177452710844,0.20348341492931402,6163.994946342534,2019
+2001,38,"(35,40]",HS,4.419525631216526,25.826975842190187,0.1711205236811706,6466.144543150838,2019
+2001,38,"(35,40]",HS,6.0601071155317525,17.21798389479346,0.3519638043896804,6275.104753794224,2019
+2001,38,"(35,40]",HS,4.319081866870696,17.21798389479346,0.2508471313053523,6140.15214994451,2019
+2001,31,"(30,35]",NoHS,24.94353481254782,39.60136295802496,0.6298655639450201,5562.380895196206,2019
+2001,31,"(30,35]",NoHS,25.278347360367253,39.60136295802496,0.6383201352731411,5641.253206199769,2019
+2001,31,"(30,35]",NoHS,24.94353481254782,41.323161347504296,0.603621165447311,5770.267277948695,2019
+2001,31,"(30,35]",NoHS,25.110941086457537,41.323161347504296,0.6076723142087024,5578.9478445890145,2019
+2001,31,"(30,35]",NoHS,25.110941086457537,39.60136295802496,0.6340928496090806,5628.346305178374,2019
+2001,45,"(40,45]",College,409.3920428462127,163.57084700053784,2.502842348458748,5481.08585621478,2019
+2001,45,"(40,45]",College,437.1480030604438,163.57084700053784,2.6725300447885214,5785.4038629845545,2019
+2001,45,"(40,45]",College,430.31782708492733,163.57084700053784,2.63077336197637,5821.935686400551,2019
+2001,45,"(40,45]",College,408.77263963274675,163.57084700053784,2.4990555904586267,5618.926306598282,2019
+2001,45,"(40,45]",College,453.4366335118592,163.57084700053784,2.772111545710638,5711.239174221914,2019
+2001,95,"(90,95]",HS,353.5620504973221,34.43596778958692,10.267231420870234,8190.706586835501,2019
+2001,95,"(90,95]",HS,328.6185156847743,70.59373396865318,4.655066352357786,8492.405671491983,2019
+2001,95,"(90,95]",HS,271.5329762815608,60.2629436317771,4.505803399526927,8668.432171201486,2019
+2001,95,"(90,95]",HS,373.9856159143076,70.59373396865318,5.29771687782338,8429.719396703384,2019
+2001,95,"(90,95]",HS,296.4765110941086,34.43596778958692,8.609501347708893,8554.56391128972,2019
+2001,46,"(45,50]",College,3527.2501912777357,619.8474202125644,5.690513626834383,797.4321746364299,2019
+2001,46,"(45,50]",College,3527.2501912777357,619.8474202125644,5.690513626834383,800.1543903451652,2019
+2001,46,"(45,50]",College,3527.2501912777357,619.8474202125644,5.690513626834383,804.3214810538013,2019
+2001,46,"(45,50]",College,3527.2501912777357,619.8474202125644,5.690513626834383,800.3246806621946,2019
+2001,46,"(45,50]",College,3527.2501912777357,619.8474202125644,5.690513626834383,793.4837926371905,2019
+2001,39,"(35,40]",HS,0,51.653951684380374,0,5463.823646928623,2019
+2001,39,"(35,40]",HS,0,51.653951684380374,0,5404.282901829453,2019
+2001,39,"(35,40]",HS,0,51.653951684380374,0,5422.745566655808,2019
+2001,39,"(35,40]",HS,0,51.653951684380374,0,5402.024435250247,2019
+2001,39,"(35,40]",HS,0,51.653951684380374,0,5465.059384563674,2019
+2001,75,"(70,75]",College,459.53022188217295,106.75150014771945,4.304672264523582,6477.359695575437,2019
+2001,75,"(70,75]",College,467.5657230298394,106.75150014771945,4.379945222154595,6413.740389003381,2019
+2001,75,"(70,75]",College,465.0546289211936,106.75150014771945,4.356422422894903,6167.004127042232,2019
+2001,75,"(70,75]",College,472.7553175210406,106.75150014771945,4.428559007291291,6396.30574802131,2019
+2001,75,"(70,75]",College,460.1998469778118,106.75150014771945,4.310945010992832,6746.536873001195,2019
+2001,34,"(30,35]",College,-16.104483550114768,56.819346852818406,-0.28343309879698025,4899.734360054704,2019
+2001,34,"(30,35]",College,-16.841071155317522,56.819346852818406,-0.2963967748334326,4863.351309681966,2019
+2001,34,"(30,35]",College,-19.686977811782707,55.097548463339066,-0.35731132075471694,4868.707375878978,2019
+2001,34,"(30,35]",College,-19.00061208875287,55.097548463339066,-0.3448540383134386,4900.681736264455,2019
+2001,34,"(30,35]",College,-21.16015302218822,55.097548463339066,-0.3840489025798999,4854.885694571113,2019
+2001,55,"(50,55]",College,288917.3310175976,2152.2479868491823,134.23979614940316,18.575238746142322,2019
+2001,55,"(50,55]",College,39850.293435348125,2221.119922428356,17.94153167190527,19.64136827306466,2019
+2001,55,"(50,55]",College,147929.39097169088,2186.6839546387696,67.65010126766498,20.061444752109736,2019
+2001,55,"(50,55]",College,147016.49107880643,2031.722099585628,72.36053154552515,19.575962334687564,2019
+2001,55,"(50,55]",College,288261.550420811,2135.0300029543887,135.01522227880804,21.069919464656127,2019
+2001,33,"(30,35]",HS,195.6979342004591,115.36049209511619,1.6964034276059057,7124.658277806378,2019
+2001,33,"(30,35]",HS,189.0016832440704,113.63869370563681,1.6631807096766666,7217.109099431797,2019
+2001,33,"(30,35]",HS,270.19372609028306,113.63869370563681,2.3776560366856865,7274.722300228932,2019
+2001,33,"(30,35]",HS,189.83871461361898,113.63869370563681,1.6705464346973782,7121.358928692696,2019
+2001,33,"(30,35]",HS,190.0061208875287,113.63869370563681,1.6720195797015207,7209.664772079579,2019
+2001,83,"(80,85]",NoHS,0.9876970160673297,8.26463226950086,0.1195088884610448,5448.313354041757,2019
+2001,83,"(80,85]",NoHS,0.38503442999234894,20.661580673752148,0.018635284302400208,5444.546875557935,2019
+2001,83,"(80,85]",NoHS,7.365876052027544,22.383379063231494,0.32907793015609726,5466.40081635598,2019
+2001,83,"(80,85]",NoHS,0.23436878347360368,16.87362421689759,0.01388965289619891,5486.159764706588,2019
+2001,83,"(80,85]",NoHS,1.456434583014537,7.7480927526570555,0.1879733025285586,5483.665436859574,2019
+2001,42,"(40,45]",HS,2879.89013006886,507.930524896407,5.669850479366675,3447.0692477303724,2019
+2001,42,"(40,45]",HS,2857.424208110176,507.930524896407,5.625620174516881,3508.519313793615,2019
+2001,42,"(40,45]",HS,2930.112012241775,507.930524896407,5.768725974559955,4404.594704042659,2019
+2001,42,"(40,45]",HS,2797.559724560061,507.930524896407,5.5077605842464905,3623.599892674466,2019
+2001,42,"(40,45]",HS,2937.94662586075,507.930524896407,5.784150551810107,3714.6211769952815,2019
+2001,44,"(40,45]",HS,290.4498852333588,151.51825827418244,1.916929936640179,8311.55791696452,2019
+2001,44,"(40,45]",HS,290.4498852333588,151.51825827418244,1.916929936640179,8789.629572524409,2019
+2001,44,"(40,45]",HS,290.4498852333588,151.51825827418244,1.916929936640179,8648.859577238076,2019
+2001,44,"(40,45]",HS,288.77582249426166,151.51825827418244,1.9058813491091118,8517.306977232785,2019
+2001,44,"(40,45]",HS,290.6172915072686,151.51825827418244,1.918034795393286,8390.783818440064,2019
+2001,36,"(35,40]",College,2790.3277735271613,165.29264539001719,16.88113688871775,4176.378749581716,2019
+2001,36,"(35,40]",College,1318.8266258607498,165.29264539001719,7.978737485560262,8588.522334479005,2019
+2001,36,"(35,40]",College,756.8437643458302,165.29264539001719,4.578810887562573,8023.906194473624,2019
+2001,36,"(35,40]",College,442.95700076511093,165.29264539001719,2.6798349056603774,9321.67515154456,2019
+2001,36,"(35,40]",College,1765.8013771996941,165.29264539001719,10.682879283788989,4500.857904243495,2019
+2001,30,"(25,30]",HS,-15.736189747513391,70.59373396865318,-0.2229119903828996,6812.719963001136,2019
+2001,30,"(25,30]",HS,-15.568783473603673,70.59373396865318,-0.22054058622989,6824.135983474078,2019
+2001,30,"(25,30]",HS,-15.736189747513391,70.59373396865318,-0.2229119903828996,6848.0082171111135,2019
+2001,30,"(25,30]",HS,-15.568783473603673,70.59373396865318,-0.22054058622989,6883.115583746503,2019
+2001,30,"(25,30]",HS,-15.568783473603673,70.59373396865318,-0.22054058622989,6829.625249158826,2019
+2001,72,"(70,75]",HS,40187.550114766644,2565.479600324226,15.664731892503738,23.01708660149429,2019
+2001,72,"(70,75]",HS,40185.87605202755,2410.517745271084,16.671055888662742,22.49026593011436,2019
+2001,72,"(70,75]",HS,40182.52792654935,3512.4687145378653,11.439967496432537,23.279331977239398,2019
+2001,72,"(70,75]",HS,40184.20198928845,5578.626781913081,7.203242582847254,24.119640096465332,2019
+2001,72,"(70,75]",HS,40185.87605202755,4545.547748225473,8.84071145610903,23.151128605760825,2019
+2001,46,"(45,50]",College,4829.336189747513,568.1934685281841,8.499457415899464,2717.4090784790587,2019
+2001,46,"(45,50]",College,4831.010252486611,568.1934685281841,8.50240370590775,2730.083754395034,2019
+2001,46,"(45,50]",College,4827.662127008416,568.1934685281841,8.49651112589118,2778.711709008645,2019
+2001,46,"(45,50]",College,4827.662127008416,568.1934685281841,8.49651112589118,2718.007332586415,2019
+2001,46,"(45,50]",College,4829.336189747513,568.1934685281841,8.499457415899464,2704.334591458497,2019
+2001,64,"(60,65]",NoHS,213.44299923488904,84.36812108448795,2.5299010632362298,6004.261185195891,2019
+2001,64,"(60,65]",NoHS,213.27559296097937,84.36812108448795,2.5279168271082018,6340.297741243719,2019
+2001,64,"(60,65]",NoHS,213.27559296097937,86.08991947396729,2.477358490566038,6372.201948893735,2019
+2001,64,"(60,65]",NoHS,214.28003060443763,86.08991947396729,2.4890257989988447,6179.927820918289,2019
+2001,64,"(60,65]",NoHS,213.77781178270848,86.08991947396729,2.4831921447824414,6271.755895081136,2019
+2001,66,"(65,70]",HS,756294.6717674063,64464.131702106715,11.732022937380078,1.723908682705586,2019
+2001,66,"(65,70]",HS,865482.5680183626,73538.00921466284,11.769186809122823,1.7558858000022828,2019
+2001,66,"(65,70]",HS,795706.9634276971,51275.15603869492,15.51837234443938,1.5509071336575402,2019
+2001,66,"(65,70]",HS,848185.6495791889,74588.30623224528,11.371563351206783,2.0199460627954804,2019
+2001,66,"(65,70]",HS,752934.4930374905,44525.706351935885,16.910107772041094,1.6026189947150349,2019
+2001,32,"(30,35]",HS,33.899770466717676,98.14250820032271,0.3454137364975782,6429.592679635746,2019
+2001,32,"(30,35]",HS,33.74910482019893,99.86430658980206,0.33794962357096386,6528.024137732833,2019
+2001,32,"(30,35]",HS,33.899770466717676,99.86430658980206,0.33945832724762,6595.993424203603,2019
+2001,32,"(30,35]",HS,32.05830145371079,99.86430658980206,0.32101861564404555,6445.348197600973,2019
+2001,32,"(30,35]",HS,32.22570772762051,99.86430658980206,0.3226949530625523,6503.614331810077,2019
+2001,32,"(30,35]",HS,100.9459831675593,72.31553235813253,1.3959101160679905,3874.980504132288,2019
+2001,32,"(30,35]",HS,100.9459831675593,72.31553235813253,1.3959101160679905,3894.847319397647,2019
+2001,32,"(30,35]",HS,100.9459831675593,72.31553235813253,1.3959101160679905,3906.0267940476688,2019
+2001,32,"(30,35]",HS,100.9459831675593,72.31553235813253,1.3959101160679905,3900.7078173525724,2019
+2001,32,"(30,35]",HS,99.27192042846212,72.31553235813253,1.3727606945743256,3876.1317606086377,2019
+2001,79,"(75,80]",HS,322066.234123948,14015.438890361873,22.97938984596667,14.608140502550564,2019
+2001,79,"(75,80]",HS,50099.67559296098,4097.880166960844,12.225754183074844,15.217557417545217,2019
+2001,79,"(75,80]",HS,313771.0858454476,7730.874768762264,40.586750559365655,15.508857024996303,2019
+2001,79,"(75,80]",HS,77435.44605967867,10416.880256350041,7.433650397629816,15.245517375064313,2019
+2001,79,"(75,80]",HS,633008.1539403213,3150.891052747203,200.89814066672133,16.088342421621903,2019
+2001,32,"(30,35]",HS,54.072226472838565,89.53351625292598,0.6039327922751104,7526.791010229084,2019
+2001,32,"(30,35]",HS,53.904820198928846,89.53351625292598,0.6020630313083144,7546.582766500307,2019
+2001,32,"(30,35]",HS,54.072226472838565,89.53351625292598,0.6039327922751104,7611.706816355008,2019
+2001,32,"(30,35]",HS,54.072226472838565,89.53351625292598,0.6039327922751104,7496.9194717079545,2019
+2001,32,"(30,35]",HS,53.904820198928846,89.53351625292598,0.6020630313083144,7541.51571280098,2019
+2001,57,"(55,60]",College,1578.1389441469014,120.5258872635542,13.093775785246715,107.83266675727104,2019
+2001,57,"(55,60]",College,1578.2059066564652,120.5258872635542,13.094331371362562,104.28085961858149,2019
+2001,57,"(55,60]",College,1578.1891660290742,120.5258872635542,13.0941924748336,113.07025348148682,2019
+2001,57,"(55,60]",College,1577.9715378729916,120.5258872635542,13.092386819957094,107.90239303686201,2019
+2001,57,"(55,60]",College,1577.820872226473,120.5258872635542,13.091136751196439,109.4325013911875,2019
+2001,41,"(40,45]",College,74.49579188982403,41.323161347504296,1.8027611988191505,9250.471178266836,2019
+2001,41,"(40,45]",College,59.429227237949505,41.323161347504296,1.438157810293929,9300.579319513356,2019
+2001,41,"(40,45]",College,64.45141545524102,41.323161347504296,1.5596922731356697,9291.973303480572,2019
+2001,41,"(40,45]",College,59.429227237949505,41.323161347504296,1.438157810293929,9316.19298655327,2019
+2001,41,"(40,45]",College,71.14766641162969,41.323161347504296,1.7217382235913234,9235.690290210892,2019
+2001,42,"(40,45]",College,10656.581178270848,946.9891142136402,11.253118983442432,313.2379130398481,2019
+2001,42,"(40,45]",College,10640.342769701609,946.9891142136402,11.235971575594219,306.9161349652556,2019
+2001,42,"(40,45]",College,10657.08339709258,946.9891142136402,11.253649315643926,316.60850175098983,2019
+2001,42,"(40,45]",College,10638.367375669472,946.9891142136402,11.233885602268352,308.53994444742,2019
+2001,42,"(40,45]",College,10637.83167559296,946.9891142136402,11.233319914586762,311.3887393874046,2019
+2001,52,"(50,55]",HS,38354.61882172916,4080.66218306605,9.399116393631731,31.158612899581744,2019
+2001,52,"(50,55]",HS,38356.292884468254,4080.66218306605,9.399526636544277,31.35233493622863,2019
+2001,52,"(50,55]",HS,38357.966947207344,4080.66218306605,9.39993687945682,31.308935746313466,2019
+2001,52,"(50,55]",HS,38357.966947207344,4080.66218306605,9.39993687945682,32.2781370975615,2019
+2001,52,"(50,55]",HS,38359.64100994644,4080.66218306605,9.400347122369366,31.821185909787907,2019
+2001,45,"(40,45]",College,17837.30421729151,2582.6975842190186,6.9064625786163525,15.272420679401336,2019
+2001,45,"(40,45]",College,17957.669328232594,2582.6975842190186,6.953066993967399,15.345875101421958,2019
+2001,45,"(40,45]",College,17952.144921193572,2582.6975842190186,6.950927987421384,15.582951566412515,2019
+2001,45,"(40,45]",College,17626.204905891354,2582.6975842190186,6.82472660120652,15.197423224631342,2019
+2001,45,"(40,45]",College,17959.34339097169,2582.6975842190186,6.953715177769221,15.011662603019342,2019
+2001,37,"(35,40]",College,50772.64881407804,13774.387115834768,3.6860187235271464,23.01708660149429,2019
+2001,37,"(35,40]",College,49173.91889824025,13774.387115834768,3.5699533115132844,22.49026593011436,2019
+2001,37,"(35,40]",College,52031.87880642694,13774.387115834768,3.777436946476704,23.279331977239398,2019
+2001,37,"(35,40]",College,90275.50726855395,13774.387115834768,6.553867443203696,23.440699074076043,2019
+2001,37,"(35,40]",College,19129.51491966335,13774.387115834768,1.388774306892568,22.498499339647026,2019
+2001,44,"(40,45]",College,1658.159143075746,103.30790336876075,16.050651392632524,1147.9584782204806,2019
+2001,44,"(40,45]",College,1658.159143075746,103.30790336876075,16.050651392632524,1138.9741511104671,2019
+2001,44,"(40,45]",College,1658.159143075746,103.30790336876075,16.050651392632524,1198.3927970717987,2019
+2001,44,"(40,45]",College,1658.159143075746,103.30790336876075,16.050651392632524,1170.4360794213985,2019
+2001,44,"(40,45]",College,1658.159143075746,103.30790336876075,16.050651392632524,1168.9720616875086,2019
+2001,55,"(50,55]",College,10130.59066564652,559.5844765807874,18.10377358490566,1265.5495535374607,2019
+2001,55,"(50,55]",College,10125.735883703137,559.5844765807874,18.095097894019727,1210.832044991766,2019
+2001,55,"(50,55]",College,10149.005355776588,559.5844765807874,18.13668137792127,1261.5165275753661,2019
+2001,55,"(50,55]",College,10147.83351185922,559.5844765807874,18.13458724563846,1262.9711271610659,2019
+2001,55,"(50,55]",College,10127.242540168325,559.5844765807874,18.097790349811913,1202.3115924482374,2019
+2001,56,"(55,60]",NoHS,674.8146901300688,129.1348792109509,5.22565781029393,11144.643118863061,2019
+2001,56,"(55,60]",NoHS,674.6472838561592,129.1348792109509,5.224361442690285,11042.086600875853,2019
+2001,56,"(55,60]",NoHS,674.8146901300688,129.1348792109509,5.22565781029393,10408.773231555759,2019
+2001,56,"(55,60]",NoHS,674.8146901300688,129.1348792109509,5.22565781029393,11014.404809943942,2019
+2001,56,"(55,60]",NoHS,674.6472838561592,129.1348792109509,5.224361442690285,11386.752961154238,2019
+2001,45,"(40,45]",College,381.0166794185157,153.24005666366176,2.486403931935293,5992.530638444785,2019
+2001,45,"(40,45]",College,592.1159908186687,94.69891142136402,6.252616655581615,5570.464374049242,2019
+2001,45,"(40,45]",College,844.9329456771231,130.8566776004303,6.456934114261394,5200.846050133879,2019
+2001,45,"(40,45]",College,456.1151338944147,208.33760512700084,2.189307751792437,6103.895073382607,2019
+2001,45,"(40,45]",College,298.4686457536343,86.08991947396729,3.4669407008086255,6185.16757091482,2019
+2001,58,"(55,60]",HS,263.0789594491201,36.157766179066265,7.275863175458861,7652.145626749983,2019
+2001,58,"(55,60]",HS,262.91155317521043,36.157766179066265,7.27123329116013,7997.8739281741655,2019
+2001,58,"(55,60]",HS,263.0789594491201,36.157766179066265,7.275863175458861,8043.27644709957,2019
+2001,58,"(55,60]",HS,263.0789594491201,36.157766179066265,7.275863175458861,7848.401375318557,2019
+2001,58,"(55,60]",HS,262.91155317521043,36.157766179066265,7.27123329116013,7914.2642568161855,2019
+2001,40,"(35,40]",HS,1186.910482019893,137.74387115834767,8.6167934154794,1615.7577430126942,2019
+2001,40,"(35,40]",HS,1189.4215761285386,137.74387115834767,8.63502358490566,1601.3020260221049,2019
+2001,40,"(35,40]",HS,1206.999234889059,137.74387115834767,8.762634770889488,1541.4741000229692,2019
+2001,40,"(35,40]",HS,1190.2586074980873,137.74387115834767,8.641100308047747,1600.3767666932904,2019
+2001,40,"(35,40]",HS,1186.910482019893,137.74387115834767,8.6167934154794,1688.025738741791,2019
+2001,70,"(65,70]",HS,95.0867635807192,46.488556515942335,2.0453799968624766,4576.401769541347,2019
+2001,70,"(65,70]",HS,95.0867635807192,84.36812108448795,1.1270461207201399,4945.155742193105,2019
+2001,70,"(65,70]",HS,93.41270084162204,46.488556515942335,2.0093697856501094,4779.651621928684,2019
+2001,70,"(65,70]",HS,91.90604437643458,60.2629436317771,1.5250838880026405,4755.544938247322,2019
+2001,70,"(65,70]",HS,92.0734506503443,75.75912913709122,1.2153446284174045,4811.892876111275,2019
+2001,69,"(65,70]",College,33079.98194338179,1721.798389479346,19.212459568733152,32.54014495187054,2019
+2001,69,"(65,70]",College,29863.940015302218,1721.798389479346,17.34462071621101,32.79658701299551,2019
+2001,69,"(65,70]",College,29909.692149961746,1721.798389479346,17.371193011166728,32.69089802233964,2019
+2001,69,"(65,70]",College,41039.145830145375,1721.798389479346,23.835047169811318,33.75568849037757,2019
+2001,69,"(65,70]",College,33116.81132364193,1721.798389479346,19.233849634193298,33.27193653416163,2019
+2001,51,"(50,55]",HS,325.87305279265496,148.07466149522375,2.200734747606809,8124.155853734672,2019
+2001,51,"(50,55]",HS,325.90653404743693,148.07466149522375,2.2009608582353524,8545.776717225337,2019
+2001,51,"(50,55]",HS,325.94001530221885,149.7964598847031,2.175885969221781,8605.12302805749,2019
+2001,51,"(50,55]",HS,327.614078041316,148.07466149522375,2.2124925002910336,8359.02460484984,2019
+2001,51,"(50,55]",HS,327.71452180566183,148.07466149522375,2.2131708321766617,8483.778397309761,2019
+2001,27,"(25,30]",College,2695.910635042081,1057.1842111403184,2.550085979939268,1131.223185204794,2019
+2001,27,"(25,30]",College,2240.230757459832,1110.559961214178,2.0172082874395922,1100.3297608318555,2019
+2001,27,"(25,30]",College,2637.6532517214996,1077.8457918140705,2.4471527112261504,1187.7273292916257,2019
+2001,27,"(25,30]",College,2470.9166029074217,1003.8084610664588,2.461541916355525,1127.3800134682874,2019
+2001,27,"(25,30]",College,3627.191736801836,1165.657509677517,3.1117130947025,1899.122227029236,2019
+2001,42,"(40,45]",College,1302.0859984697781,1756.2343572689326,0.7414078839082804,4196.9366148595545,2019
+2001,42,"(40,45]",College,1302.0859984697781,1773.452341163726,0.7342097491130544,4156.257989867276,2019
+2001,42,"(40,45]",College,1302.0859984697781,1773.452341163726,0.7342097491130544,3998.5232729105437,2019
+2001,42,"(40,45]",College,1303.7600612088754,1756.2343572689326,0.7423610953815489,4142.719466576536,2019
+2001,42,"(40,45]",College,1302.0859984697781,1756.2343572689326,0.7414078839082804,4372.725630245511,2019
+2001,40,"(35,40]",HS,2.845906656465188,17.21798389479346,0.16528686946476706,5413.865648127081,2019
+2001,40,"(35,40]",HS,2.845906656465188,17.21798389479346,0.16528686946476706,5403.96967766938,2019
+2001,40,"(35,40]",HS,2.845906656465188,17.21798389479346,0.16528686946476706,5435.4139686387925,2019
+2001,40,"(35,40]",HS,2.845906656465188,17.21798389479346,0.16528686946476706,5406.89462782134,2019
+2001,40,"(35,40]",HS,2.845906656465188,17.21798389479346,0.16528686946476706,5478.675128057963,2019
+2001,32,"(30,35]",NoHS,2.1260596786534047,41.323161347504296,0.05144958926967014,6234.364919848021,2019
+2001,32,"(30,35]",NoHS,2.1260596786534047,41.323161347504296,0.05144958926967014,6268.529661277042,2019
+2001,32,"(30,35]",NoHS,2.1260596786534047,41.323161347504296,0.05144958926967014,6165.268011439455,2019
+2001,32,"(30,35]",NoHS,2.293465952563122,41.323161347504296,0.055500738031061495,6234.656846696182,2019
+2001,32,"(30,35]",NoHS,2.293465952563122,41.323161347504296,0.055500738031061495,6251.05341977286,2019
+2001,52,"(50,55]",College,287.1017597551645,65.42833880021514,4.388033763654419,5828.428611129052,2019
+2001,52,"(50,55]",College,384.36480489671004,65.42833880021514,5.874592140729181,6137.89561826066,2019
+2001,52,"(50,55]",College,242.73909716908952,65.42833880021514,3.709999392011025,6161.804392775134,2019
+2001,52,"(50,55]",College,308.36235654169855,65.42833880021514,4.712978537989177,5957.6382050476495,2019
+2001,52,"(50,55]",College,294.80244835501145,65.42833880021514,4.50573029609063,6075.6806523546675,2019
+2001,55,"(50,55]",College,12444.982402448355,1191.4844855197075,10.444938690930618,15.952650916852747,2019
+2001,55,"(50,55]",College,13174.873756694722,1596.1071070473536,8.25437948275726,16.237480050454682,2019
+2001,55,"(50,55]",College,14097.282325937262,2531.0436325346386,5.569750811375763,16.540287220525368,2019
+2001,55,"(50,55]",College,12523.663351185922,2341.64580969191,5.348231273641533,16.02529921880758,2019
+2001,55,"(50,55]",College,13005.793420045908,1386.0477035308734,9.383366378310377,16.12728258285788,2019
+2001,44,"(40,45]",College,9619.164498852333,2772.0954070617468,3.469997632241693,9.935294783020755,2019
+2001,44,"(40,45]",College,12374.671767406275,4924.343393910929,2.512958739373834,9.300709435297744,2019
+2001,44,"(40,45]",College,9639.2532517215,2083.3760512700087,4.62674669119168,9.940555686526793,2019
+2001,44,"(40,45]",College,16343.874521805663,1296.5141872779475,12.60601286293665,9.791742305046638,2019
+2001,44,"(40,45]",College,9135.86258607498,2376.0817774814973,3.844927675746262,9.432165197921414,2019
+2001,21,"(20,25]",HS,35.69101759755165,68.87193557917384,0.5182229495571814,5711.041459963779,2019
+2001,21,"(20,25]",HS,35.69101759755165,68.87193557917384,0.5182229495571814,5716.846288378017,2019
+2001,21,"(20,25]",HS,35.69101759755165,68.87193557917384,0.5182229495571814,5712.970347629968,2019
+2001,21,"(20,25]",HS,35.50687069625096,68.87193557917384,0.515549191374663,5662.509548255711,2019
+2001,21,"(20,25]",HS,35.69101759755165,68.87193557917384,0.5182229495571814,5690.62429509152,2019
+2001,49,"(45,50]",HS,19.419127773527162,14.807466149522373,1.3114416455480833,6939.01220165705,2019
+2001,49,"(45,50]",HS,82.2634429992349,20.661580673752148,3.9814690026954183,7257.104321752458,2019
+2001,49,"(45,50]",HS,48.74870696250956,46.488556515942335,1.048617350504143,7276.72905551078,2019
+2001,49,"(45,50]",HS,72.65432287681715,14.979645988470308,4.850202930879575,7068.31623097158,2019
+2001,49,"(45,50]",HS,54.741851568477436,61.984742021256444,0.8831504299833143,7173.3284268158295,2019
+2001,49,"(45,50]",College,16808.929150726854,946.9891142136402,17.74986522911051,11.613610585259336,2019
+2001,49,"(45,50]",College,16819.860780413157,946.9891142136402,17.761408793362968,11.90579941655004,2019
+2001,49,"(45,50]",College,16823.828309104818,946.9891142136402,17.76559841775475,12.094003812305202,2019
+2001,49,"(45,50]",College,16841.740780413158,946.9891142136402,17.784513599607937,11.748500498173389,2019
+2001,49,"(45,50]",College,16837.337995409336,946.9891142136402,17.77986435397487,11.800094987329532,2019
+2001,48,"(45,50]",HS,950.1980107115531,125.69128243199225,7.55977655988733,6871.180961501615,2019
+2001,48,"(45,50]",HS,970.9563886763581,161.84904861105852,5.999147953039103,6237.084745926308,2019
+2001,48,"(45,50]",HS,969.1986228003061,94.69891142136402,10.234527601778277,5826.093329416983,2019
+2001,48,"(45,50]",HS,957.5471461361897,125.69128243199225,7.618246290503794,6531.365712043292,2019
+2001,48,"(45,50]",HS,934.6794491201225,53.37575007385973,17.511312680884892,6269.035918562406,2019
+2001,32,"(30,35]",HS,25.947972456006124,55.097548463339066,0.47094604351174435,5258.881639597807,2019
+2001,32,"(30,35]",HS,25.947972456006124,55.097548463339066,0.47094604351174435,5273.697962077133,2019
+2001,32,"(30,35]",HS,25.947972456006124,56.819346852818406,0.4566749512841158,5276.120673770526,2019
+2001,32,"(30,35]",HS,25.947972456006124,55.097548463339066,0.47094604351174435,5278.411062102452,2019
+2001,32,"(30,35]",HS,25.947972456006124,55.097548463339066,0.47094604351174435,5262.6213137696595,2019
+2001,52,"(50,55]",College,23398.70971690895,1534.122365026097,15.252179519924354,1449.8473079898063,2019
+2001,52,"(50,55]",College,23278.91378729916,1663.2572442370479,13.995979195615902,1499.9110352301152,2019
+2001,52,"(50,55]",College,23525.938485080336,1530.6787682471386,15.369611817390748,1486.94076987342,2019
+2001,52,"(50,55]",College,23346.746809487377,1535.8441634155765,15.201247213497464,1444.8433514020944,2019
+2001,52,"(50,55]",College,23624.256189747513,1697.6932120266351,13.915503709616571,1435.8447710207934,2019
+2001,46,"(45,50]",College,527.3297628156083,158.40545183209983,3.328987460447674,9381.615873519155,2019
+2001,46,"(45,50]",College,421.86381025248664,168.7362421689759,2.500137521315804,8515.848088518233,2019
+2001,46,"(45,50]",College,497.19663351185926,132.5784759899096,3.750206281973707,7954.698030237519,2019
+2001,46,"(45,50]",College,639.4919663351186,130.8566776004303,4.886964716373143,8917.646701954012,2019
+2001,46,"(45,50]",College,535.7000765110942,156.68365344262045,3.418991482141271,8559.47284968518,2019
+2001,44,"(40,45]",College,314.4224636572303,215.22479868491826,1.4609025798998843,6007.96180247109,2019
+2001,44,"(40,45]",College,299.6907115531752,215.22479868491826,1.3924543704274162,6245.285418264321,2019
+2001,44,"(40,45]",College,294.48437643458306,215.22479868491826,1.3682641509433962,6318.848194684512,2019
+2001,44,"(40,45]",College,292.8270543228768,215.22479868491826,1.3605637273777433,6119.881386816032,2019
+2001,44,"(40,45]",College,297.8325019127774,215.22479868491826,1.383820562187139,6239.481758420248,2019
+2001,52,"(50,55]",HS,-17.82876817138485,27.548774231669533,-0.647171014632268,5157.868691978671,2019
+2001,52,"(50,55]",HS,-17.82876817138485,25.826975842190187,-0.6903157489410859,5257.547841736269,2019
+2001,52,"(50,55]",HS,-17.82876817138485,27.548774231669533,-0.647171014632268,5265.078365847608,2019
+2001,52,"(50,55]",HS,-17.82876817138485,27.548774231669533,-0.647171014632268,5193.607553080003,2019
+2001,52,"(50,55]",HS,-17.82876817138485,27.548774231669533,-0.647171014632268,5212.605736827584,2019
+2001,46,"(45,50]",HS,32.19222647283856,58.54114524229776,0.549907698928628,6419.279353690261,2019
+2001,46,"(45,50]",HS,19.335424636572306,58.54114524229776,0.33028777548755356,6782.826999315543,2019
+2001,46,"(45,50]",HS,25.696863045141544,58.54114524229776,0.4389538834401685,6796.80820720864,2019
+2001,46,"(45,50]",HS,36.076052027543994,58.54114524229776,0.6162512174681193,6561.912635774565,2019
+2001,46,"(45,50]",HS,23.687987758224942,58.54114524229776,0.4046382704025006,6702.110591473274,2019
+2001,70,"(65,70]",HS,56.88465187452181,24.105177452710844,2.359852027064195,9051.019953487963,2019
+2001,70,"(65,70]",HS,57.21946442234124,24.105177452710844,2.3737416799603936,9150.459523424532,2019
+2001,70,"(65,70]",HS,56.047620504973224,24.105177452710844,2.3251278948236975,8996.228607757952,2019
+2001,70,"(65,70]",HS,55.37799540933435,24.105177452710844,2.2973485890312997,9005.526298690942,2019
+2001,70,"(65,70]",HS,55.54540168324407,24.105177452710844,2.3042934154793993,8999.850245416535,2019
+2001,61,"(60,65]",College,20800.062127008416,1980.0681479012476,10.504720329477156,15.952650916852747,2019
+2001,61,"(60,65]",College,20800.062127008416,1980.0681479012476,10.504720329477156,16.237480050454682,2019
+2001,61,"(60,65]",College,20800.062127008416,1980.0681479012476,10.504720329477156,16.540287220525368,2019
+2001,61,"(60,65]",College,20800.062127008416,1980.0681479012476,10.504720329477156,16.02529921880758,2019
+2001,61,"(60,65]",College,20800.062127008416,1980.0681479012476,10.504720329477156,16.12728258285788,2019
+2001,43,"(40,45]",NoHS,0.008370313695485847,11.363869370563684,7.365725020711544e-4,5591.220425356036,2019
+2001,43,"(40,45]",NoHS,0.008370313695485847,11.191689531615747,7.47904386718403e-4,5591.846974729474,2019
+2001,43,"(40,45]",NoHS,0.016740627390971693,11.191689531615747,0.001495808773436806,5609.304475035895,2019
+2001,43,"(40,45]",NoHS,0.016740627390971693,11.363869370563684,0.0014731450041423088,5583.460276438652,2019
+2001,43,"(40,45]",NoHS,0.016740627390971693,11.191689531615747,0.001495808773436806,5601.893624729239,2019
+2001,40,"(35,40]",College,1106.555470543229,516.5395168438037,2.142247465023746,106.4572551525475,2019
+2001,40,"(35,40]",College,1108.2295332823257,516.5395168438037,2.1454883840328582,102.98445937048591,2019
+2001,40,"(35,40]",College,1104.8814078041316,516.5395168438037,2.139006546014633,111.65677794897992,2019
+2001,40,"(35,40]",College,939.1491966335118,516.5395168438037,1.8181555641124376,53.69452154708002,2019
+2001,40,"(35,40]",College,773.4169854628922,516.5395168438037,1.4973045822102429,57.50541259973892,2019
+2001,66,"(65,70]",College,5608.1101759755165,494.15613778057224,11.348862732260086,1515.59688936874,2019
+2001,66,"(65,70]",College,9687.801071155318,979.7032836137477,9.888505257858027,1512.558604401761,2019
+2001,66,"(65,70]",College,3651.130833970926,671.5013718969449,5.437264891442789,1523.6676454188985,2019
+2001,66,"(65,70]",College,5748.731446059679,511.37412167536576,11.241733209388196,1511.3900477527018,2019
+2001,66,"(65,70]",College,3922.328997704667,485.54714583317553,8.078163019523345,1503.1836352970631,2019
+2001,55,"(50,55]",College,33370.59923488906,662.8923799495481,50.34090033955263,521.7758750896248,2019
+2001,55,"(50,55]",College,44801.43442999235,704.2155412970524,63.61892318859546,503.7272342610839,2019
+2001,55,"(50,55]",College,9588.361744452946,2100.594035164802,4.5645953401465755,527.8056177459368,2019
+2001,55,"(50,55]",College,34455.559296097934,625.0128153810025,55.12776450046727,532.1614968661991,2019
+2001,55,"(50,55]",College,88474.03161438409,1045.1316224139628,84.6534826015825,216.14594743840863,2019
+2001,44,"(40,45]",HS,327.11185921958685,129.1348792109509,2.5331022975227833,5809.930068063864,2019
+2001,44,"(40,45]",HS,325.4377964804897,129.1348792109509,2.520138621486331,6018.693838655706,2019
+2001,44,"(40,45]",HS,323.7637337413925,129.1348792109509,2.5071749454498784,6093.400206644511,2019
+2001,44,"(40,45]",HS,323.7637337413925,129.1348792109509,2.5071749454498784,5939.875920502017,2019
+2001,44,"(40,45]",HS,325.6052027543994,129.1348792109509,2.521434989089976,6046.994703143003,2019
+2001,47,"(45,50]",College,3256.7718745218053,645.6743960547547,5.043984854319086,1712.1997581599458,2019
+2001,47,"(45,50]",College,3191.483427697016,645.6743960547547,4.942868181234758,1724.4773498622878,2019
+2001,47,"(45,50]",College,3383.9839020657996,645.6743960547547,5.241006802721088,1729.0333645228984,2019
+2001,47,"(45,50]",College,3146.2837337413926,645.6743960547547,4.872864330637916,1722.1491020298677,2019
+2001,47,"(45,50]",College,3120.319020657995,645.6743960547547,4.83265100757284,1709.104936381611,2019
+2001,22,"(20,25]",HS,11.383626625860751,30.992371010628222,0.36730415436614905,5273.463353190162,2019
+2001,22,"(20,25]",HS,11.551032899770467,30.992371010628222,0.37270568604800414,5213.226476679656,2019
+2001,22,"(20,25]",HS,13.05768936495792,30.992371010628222,0.42131947118470037,5204.332052191383,2019
+2001,22,"(20,25]",HS,14.731752104055088,30.992371010628222,0.47533478800325163,5181.8586923208395,2019
+2001,22,"(20,25]",HS,10.714001530221882,30.992371010628222,0.3456980276387285,5215.750655370752,2019
+2001,69,"(65,70]",HS,162.5180107115532,18.939782284272805,8.58077502012812,8367.413030842135,2019
+2001,69,"(65,70]",HS,168.07589900535578,18.939782284272805,8.874225504953268,8285.415022467514,2019
+2001,69,"(65,70]",HS,223.31996939556237,20.661580673752148,10.80846489539212,8332.745244532685,2019
+2001,69,"(65,70]",HS,163.55592960979342,20.661580673752148,7.915944679758697,8362.93265592711,2019
+2001,69,"(65,70]",HS,155.43672532517215,20.661580673752148,7.522983249903736,8265.319224899442,2019
+2001,38,"(35,40]",HS,151.50267788829382,129.1348792109509,1.173212681298935,6051.253943917958,2019
+2001,38,"(35,40]",HS,151.50267788829382,129.1348792109509,1.173212681298935,6033.456050089955,2019
+2001,38,"(35,40]",HS,151.50267788829382,129.1348792109509,1.173212681298935,6089.836355246771,2019
+2001,38,"(35,40]",HS,151.50267788829382,129.1348792109509,1.173212681298935,6076.3452166923435,2019
+2001,38,"(35,40]",HS,151.50267788829382,129.1348792109509,1.173212681298935,6098.921701578145,2019
+2001,55,"(50,55]",College,10555.13297628156,516.5395168438037,20.43431844435888,1377.2768080910696,2019
+2001,55,"(50,55]",College,10591.46013771997,516.5395168438037,20.504646386856635,1403.580446927317,2019
+2001,55,"(50,55]",College,10635.320581484317,516.5395168438037,20.589558464895397,1399.780285171635,2019
+2001,55,"(50,55]",College,11022.531293037491,516.5395168438037,21.339183031703254,1399.742957227751,2019
+2001,55,"(50,55]",College,10626.4480489671,516.5395168438037,20.572381594147096,1395.3683720027577,2019
+2001,26,"(25,30]",HS,19.00061208875287,13.774387115834767,1.3794161532537543,5831.205194275129,2019
+2001,26,"(25,30]",HS,19.00061208875287,13.774387115834767,1.3794161532537543,5840.976498283121,2019
+2001,26,"(25,30]",HS,19.00061208875287,13.774387115834767,1.3794161532537543,5861.409437482035,2019
+2001,26,"(25,30]",HS,19.00061208875287,13.774387115834767,1.3794161532537543,5891.4588538375265,2019
+2001,26,"(25,30]",HS,19.00061208875287,13.774387115834767,1.3794161532537543,5845.674920462143,2019
+2001,30,"(25,30]",HS,893.6146901300688,130.8566776004303,6.828957501570637,7113.708706737407,2019
+2001,30,"(25,30]",HS,915.0594338179036,130.8566776004303,6.992837129886711,6452.706520133118,2019
+2001,30,"(25,30]",HS,838.8728385615915,130.8566776004303,6.410623087368016,6033.791922999097,2019
+2001,30,"(25,30]",HS,1170.5214078041315,130.8566776004303,8.945064396165614,6725.475235193466,2019
+2001,30,"(25,30]",HS,775.7606732976282,130.8566776004303,5.9283231664065825,6499.347550482032,2019
+2001,21,"(20,25]",College,4.519969395562356,55.097548463339066,0.0820357624181748,7020.421158994625,2019
+2001,21,"(20,25]",College,4.519969395562356,55.097548463339066,0.0820357624181748,7019.556061121313,2019
+2001,21,"(20,25]",College,2.845906656465188,55.097548463339066,0.0516521467077397,7036.103753914135,2019
+2001,21,"(20,25]",College,2.845906656465188,55.097548463339066,0.0516521467077397,7006.6675810654215,2019
+2001,21,"(20,25]",College,4.519969395562356,55.097548463339066,0.0820357624181748,7007.6980350666345,2019
+2001,70,"(65,70]",College,229713.96832440703,2720.4414553773663,84.43996023893197,18.01293583972238,2019
+2001,70,"(65,70]",College,226519.85661820963,2617.1335520086054,86.55265469519486,19.60781902692309,2019
+2001,70,"(65,70]",College,224775.65065034432,2496.6076647450514,90.03242833242602,19.13956903634376,2019
+2001,70,"(65,70]",College,224460.92685539403,2599.9155681138122,86.33392930457201,18.800585208567487,2019
+2001,70,"(65,70]",College,224717.05845447592,2806.531374851334,80.06931989719142,19.8680209352054,2019
+2001,48,"(45,50]",HS,235.33973986228003,111.91689531615746,2.1028079736974616,7378.143451500384,2019
+2001,48,"(45,50]",HS,235.17233358837032,111.91689531615746,2.101312164924025,7761.048367283052,2019
+2001,48,"(45,50]",HS,236.8463963274675,111.91689531615746,2.116270252658393,7814.9451169909835,2019
+2001,48,"(45,50]",HS,235.00492731446062,111.91689531615746,2.0998163561505883,7591.445038668459,2019
+2001,48,"(45,50]",HS,235.33973986228003,111.91689531615746,2.1028079736974616,7704.743133074774,2019
+2001,72,"(70,75]",HS,123.88064269319052,103.30790336876075,1.1991400333718394,8764.498627637691,2019
+2001,72,"(70,75]",HS,123.88064269319052,103.30790336876075,1.1991400333718394,9701.808340597934,2019
+2001,72,"(70,75]",HS,123.88064269319052,103.30790336876075,1.1991400333718394,9599.252724412028,2019
+2001,72,"(70,75]",HS,122.20657995409334,103.30790336876075,1.1829354383262738,9266.3146923494,2019
+2001,72,"(70,75]",HS,122.20657995409334,103.30790336876075,1.1829354383262738,9419.119570551518,2019
+2001,81,"(80,85]",College,1481.378117827085,223.83379063231493,6.618205918071148,5593.073712632397,2019
+2001,81,"(80,85]",College,1564.9138485080337,223.83379063231493,6.991410207043631,5075.168657440443,2019
+2001,81,"(80,85]",College,1471.333741392502,223.83379063231493,6.573331654868044,4772.024755460005,2019
+2001,81,"(80,85]",College,1498.1187452180568,223.83379063231493,6.692996356742989,5353.705802503291,2019
+2001,81,"(80,85]",College,1509.6697781178273,223.83379063231493,6.744601759426558,5140.927718500285,2019
+2001,51,"(50,55]",College,5463.136342769702,134.30027437938898,40.678519593613935,1712.1997581599458,2019
+2001,51,"(50,55]",College,5489.0843152257075,136.02207276886833,40.354364578408386,1724.4773498622878,2019
+2001,51,"(50,55]",College,5811.341392501913,163.57084700053784,35.52797762600572,1729.0333645228984,2019
+2001,51,"(50,55]",College,5443.717214996175,170.45804055845522,31.935819496466404,1722.1491020298677,2019
+2001,51,"(50,55]",College,5853.912807957154,165.29264539001719,35.41544630824028,1709.104936381611,2019
+2001,53,"(50,55]",College,506.95641928079573,187.6760244532487,2.7012316610909557,5718.289137018444,2019
+2001,53,"(50,55]",College,480.00400918133136,187.6760244532487,2.5576202958247523,6035.777021346619,2019
+2001,53,"(50,55]",College,469.9596327467483,189.39782284272803,2.4813359820772223,6073.88982134195,2019
+2001,53,"(50,55]",College,450.038286151492,187.6760244532487,2.3979530015225756,5862.094866530234,2019
+2001,53,"(50,55]",College,649.2517521040552,189.39782284272803,3.42797896173907,5804.806377122557,2019
+2001,45,"(40,45]",HS,152.281117061974,94.69891142136402,1.6080556236216614,7287.495751512302,2019
+2001,45,"(40,45]",HS,152.281117061974,94.69891142136402,1.6080556236216614,7674.433578184583,2019
+2001,45,"(40,45]",HS,152.28948737566947,94.69891142136402,1.60814401232191,7704.327586385254,2019
+2001,45,"(40,45]",HS,152.281117061974,94.69891142136402,1.6080556236216614,7449.051194593214,2019
+2001,45,"(40,45]",HS,152.281117061974,94.69891142136402,1.6080556236216614,7596.643949114636,2019
+2001,87,"(85,90]",College,30334.853863810255,1010.695654624376,30.013836237461785,10.719873855226902,2019
+2001,87,"(85,90]",College,33334.77429227238,771.365678486747,43.21526770243137,10.435442962152202,2019
+2001,87,"(85,90]",College,31461.498087222648,1258.6346227094016,24.996529985403555,10.829210793767967,2019
+2001,87,"(85,90]",College,30681.719663351185,805.8016462763339,38.07602007905242,11.208984887044869,2019
+2001,87,"(85,90]",College,30483.8454475899,1663.2572442370479,18.32779959516914,10.748342561587899,2019
+2001,43,"(40,45]",College,480.45600612088754,203.1722099585628,2.364772260039289,8086.294718793823,2019
+2001,43,"(40,45]",College,610.3632746748278,203.1722099585628,3.0041671289558356,7353.327844411096,2019
+2001,43,"(40,45]",College,189.33649579188983,203.1722099585628,0.9319015421966677,8175.601929085182,2019
+2001,43,"(40,45]",College,190.67574598316756,203.1722099585628,0.9384932418762196,7981.039203126866,2019
+2001,43,"(40,45]",College,372.8137719969396,203.1722099585628,1.8349643982952952,8112.082479914456,2019
+2001,65,"(60,65]",College,153.14325937260904,27.548774231669533,5.5589863303812095,906.4418116336665,2019
+2001,65,"(60,65]",College,445.50157612853866,108.47329853719879,4.107016031929394,383.1991700216699,2019
+2001,65,"(60,65]",College,200.43553175210405,34.43596778958692,5.820528494416634,966.3735956515729,2019
+2001,65,"(60,65]",College,463.3470849273145,36.157766179066265,12.814593762033114,364.5830637584948,2019
+2001,65,"(60,65]",College,612.4223718439174,77.48092752657055,7.904169340692253,1099.5175303278163,2019
+2001,68,"(65,70]",NoHS,4.218638102524866,11.536049209511617,0.3656917568491773,6234.613617855459,2019
+2001,68,"(65,70]",NoHS,5.892700841622036,18.939782284272805,0.3111282248748556,6196.4028344086055,2019
+2001,68,"(65,70]",NoHS,9.40823259372609,14.118746793730637,0.6663645669956891,6199.3523291537895,2019
+2001,68,"(65,70]",NoHS,12.840061208875287,11.363869370563684,1.1299022181771508,6208.907011559333,2019
+2001,68,"(65,70]",NoHS,3.6327161438408573,22.383379063231494,0.16229525191789346,6213.28312526738,2019
+2001,35,"(30,35]",HS,93.74751338944148,110.19509692667813,0.8507412398921834,5319.321586465985,2019
+2001,35,"(30,35]",HS,95.42157612853865,110.19509692667813,0.8659330477474009,5321.950158126948,2019
+2001,35,"(30,35]",HS,95.42157612853865,110.19509692667813,0.8659330477474009,5368.320693263198,2019
+2001,35,"(30,35]",HS,93.74751338944148,110.19509692667813,0.8507412398921834,5321.8506415299325,2019
+2001,35,"(30,35]",HS,93.74751338944148,110.19509692667813,0.8507412398921834,5349.541973865793,2019
+2001,34,"(30,35]",College,-7.449579188982402,105.0297017582401,-0.07092830946173706,6113.959420394278,2019
+2001,34,"(30,35]",College,-29.2123947972456,105.0297017582401,-0.278134606765688,6124.204533402447,2019
+2001,34,"(30,35]",College,-17.661361897475135,105.0297017582401,-0.16815587973512944,6145.628262621269,2019
+2001,34,"(30,35]",College,-9.291048201989287,105.0297017582401,-0.08846115000284059,6177.134770467091,2019
+2001,34,"(30,35]",College,-10.79770466717674,105.0297017582401,-0.10280620135465258,6129.130781336687,2019
+2001,53,"(50,55]",HS,478.27972456006125,192.84141962168675,2.480171145277518,6365.871142213692,2019
+2001,53,"(50,55]",HS,459.76626472838564,180.7888308953313,2.5431121073766434,6635.400037949505,2019
+2001,53,"(50,55]",HS,535.1978576893649,192.84141962168675,2.775326269321744,5524.8638318578,2019
+2001,53,"(50,55]",HS,503.0558530986993,189.39782284272803,2.6560804424685824,6195.884444065945,2019
+2001,53,"(50,55]",HS,479.2339403213466,182.51062928481065,2.62578646624189,6570.509543470796,2019
+2001,41,"(40,45]",HS,246.03700076511095,94.69891142136402,2.5980974551055414,5847.8893930444265,2019
+2001,41,"(40,45]",HS,364.8954552410099,92.97711303188467,3.924572868979877,6058.017127009185,2019
+2001,41,"(40,45]",HS,161.81490436113236,91.25531464240532,1.7732107438917184,6133.211590941903,2019
+2001,41,"(40,45]",HS,164.00792654934966,101.5861049792814,1.61447204401428,5978.684249994642,2019
+2001,41,"(40,45]",HS,162.65193573068095,94.69891142136402,1.7175692232296007,6086.502895910089,2019
+2001,57,"(55,60]",HS,326.6598622800306,86.08991947396729,3.7944031574894113,7746.449766467628,2019
+2001,57,"(55,60]",HS,425.2119357306809,86.08991947396729,4.939160569888332,8179.9902506057015,2019
+2001,57,"(55,60]",HS,333.3561132364193,86.08991947396729,3.872185213708125,8221.151741466416,2019
+2001,57,"(55,60]",HS,368.34402448355013,86.08991947396729,4.278596457450905,7973.087603712791,2019
+2001,57,"(55,60]",HS,372.0269625095639,86.08991947396729,4.321376588371198,8091.560391906591,2019
+2001,65,"(60,65]",HS,73.8094261667942,201.45041156908349,0.36639004900460426,2727.412099244107,2019
+2001,65,"(60,65]",HS,75.65089517980107,201.45041156908349,0.37553110262005135,2915.876180184822,2019
+2001,65,"(60,65]",HS,75.6341545524101,201.45041156908349,0.3754480021326382,2925.208770734601,2019
+2001,65,"(60,65]",HS,75.65089517980107,201.45041156908349,0.37553110262005135,2766.881261130743,2019
+2001,65,"(60,65]",HS,75.65089517980107,201.45041156908349,0.37553110262005135,2805.0145603561828,2019
+2001,44,"(40,45]",College,1133.3404743687834,347.8032746748279,3.2585675779745853,1969.7876479365764,2019
+2001,44,"(40,45]",College,1136.8560061208875,347.8032746748279,3.2686753946861757,1919.8788936444028,2019
+2001,44,"(40,45]",College,1145.0589135424636,347.8032746748279,3.292260300346553,2068.8933013826345,2019
+2001,44,"(40,45]",College,1153.5966335118592,347.8032746748279,3.3168078552175584,1967.187110916085,2019
+2001,44,"(40,45]",College,1156.2751338944147,347.8032746748279,3.3245090489025797,1964.7292027301344,2019
+2001,53,"(50,55]",College,6448.911534812549,1361.9425260781625,4.735083464485669,904.2016927513141,2019
+2001,53,"(50,55]",College,7078.004223412395,1399.822090646708,5.056359855088733,908.3310395420788,2019
+2001,53,"(50,55]",College,6451.352318286152,1089.8983805404262,5.919223694127565,912.7624318657641,2019
+2001,53,"(50,55]",College,6858.367192042846,1646.0392603422547,4.166587855636451,907.445283440092,2019
+2001,53,"(50,55]",College,6845.744758990054,1367.1079212466007,5.00746477479828,900.7431824407631,2019
+2001,65,"(60,65]",HS,13668.554858454476,833.3504205080034,16.401929514983912,713.8557585682681,2019
+2001,65,"(60,65]",HS,13668.554858454476,833.3504205080034,16.401929514983912,714.5776907564995,2019
+2001,65,"(60,65]",HS,13670.228921193573,833.3504205080034,16.40393834908047,729.5868837457498,2019
+2001,65,"(60,65]",HS,13668.722264728387,831.6286221185239,16.436089260502047,716.9588994865874,2019
+2001,65,"(60,65]",HS,13668.554858454476,833.3504205080034,16.401929514983912,724.93981615283,2019
+2001,66,"(65,70]",College,563.3221117061973,27.548774231669533,20.44817337312283,5499.349533344605,2019
+2001,66,"(65,70]",College,482.9671002295333,27.548774231669533,17.531346264921062,5575.372792012115,2019
+2001,66,"(65,70]",College,563.3221117061973,27.548774231669533,20.44817337312283,5697.318021654779,2019
+2001,66,"(65,70]",College,511.4261667941852,27.548774231669533,18.56438919907586,5484.660291834503,2019
+2001,66,"(65,70]",College,529.840856924254,27.548774231669533,19.23282874470543,5573.2355263019,2019
+2001,43,"(40,45]",NoHS,123.91412394797247,101.5861049792814,1.2197940257011024,5415.499751899379,2019
+2001,43,"(40,45]",College,13.492945677123183,65.42833880021514,0.20622479379040592,5426.573952698314,2019
+2001,43,"(40,45]",NoHS,8.487498087222647,129.1348792109509,0.06572583750481326,5445.1127704959845,2019
+2001,43,"(40,45]",HS,23.520581484315226,65.42833880021514,0.35948614798451656,5424.3061706198405,2019
+2001,43,"(40,45]",NoHS,3.850344299923489,87.81171786344665,0.04384772777035342,5487.60112024916,2019
+2001,57,"(55,60]",College,3246.50986993114,404.6226215276463,8.02355008643361,464.9700132848824,2019
+2001,57,"(55,60]",College,3246.50986993114,404.6226215276463,8.02355008643361,457.9852286762234,2019
+2001,57,"(55,60]",College,3246.50986993114,404.6226215276463,8.02355008643361,484.8202695286229,2019
+2001,57,"(55,60]",College,3246.50986993114,404.6226215276463,8.02355008643361,470.80254051315814,2019
+2001,57,"(55,60]",College,3246.50986993114,404.6226215276463,8.02355008643361,470.6526234339973,2019
+2001,38,"(35,40]",College,30745.417750573833,6456.743960547547,4.761752663329482,22.039867755748375,2019
+2001,38,"(35,40]",College,33010.50833970926,6456.743960547547,5.112562700551918,21.49986978725547,2019
+2001,38,"(35,40]",College,31293.00367253252,6456.743960547547,4.846561031959953,22.29523057440703,2019
+2001,38,"(35,40]",College,30288.649732211168,6456.743960547547,4.691009883198562,23.06387707065965,2019
+2001,38,"(35,40]",College,32474.70781943382,6473.961944442341,5.016203075971457,22.141673858656468,2019
+2001,54,"(50,55]",NoHS,174.2699311400153,77.48092752657055,2.2491977923244773,7895.87744479787,2019
+2001,54,"(50,55]",NoHS,176.78102524866105,77.48092752657055,2.281606982415608,8260.22171420214,2019
+2001,54,"(50,55]",NoHS,176.78102524866105,77.48092752657055,2.281606982415608,8305.131208449366,2019
+2001,54,"(50,55]",NoHS,173.9351185921959,77.48092752657055,2.244876566978993,8096.768945308378,2019
+2001,54,"(50,55]",NoHS,185.82096403978576,77.48092752657055,2.3982800667436788,8127.381192008489,2019
+2001,53,"(50,55]",NoHS,24.94353481254782,12.052588726355422,2.0695582815336375,7057.772089851804,2019
+2001,53,"(50,55]",NoHS,24.94353481254782,12.052588726355422,2.0695582815336375,7046.325823611985,2019
+2001,53,"(50,55]",NoHS,24.94353481254782,12.052588726355422,2.0695582815336375,7149.976153370757,2019
+2001,53,"(50,55]",NoHS,24.94353481254782,12.052588726355422,2.0695582815336375,7083.334679315046,2019
+2001,53,"(50,55]",NoHS,24.94353481254782,12.052588726355422,2.0695582815336375,7039.91741564508,2019
+2001,54,"(50,55]",College,1189.9237949502678,401.17902474868754,2.9660668219024595,4681.377528253194,2019
+2001,54,"(50,55]",College,1155.7729150726857,299.5929197694062,3.8578111791235687,4627.357227524379,2019
+2001,54,"(50,55]",College,1224.07467482785,334.02888755899306,3.6645772878301295,4452.322419612857,2019
+2001,54,"(50,55]",College,1302.5882172915071,402.90082313816697,3.2330244628088285,4620.0063732328,2019
+2001,54,"(50,55]",College,1161.7995409334353,401.17902474868754,2.895962822735378,4867.238326459339,2019
+2001,55,"(50,55]",HS,6997.565508798776,344.35967789586914,20.32051357335387,1363.2527919491663,2019
+2001,55,"(50,55]",HS,6180.639632746749,344.35967789586914,17.948209472468236,1368.8321116197226,2019
+2001,55,"(50,55]",HS,6607.525631216527,344.35967789586914,19.187860993453988,1411.7880767356485,2019
+2001,55,"(50,55]",HS,6448.4729303749045,344.35967789586914,18.725981420870237,1352.528523949395,2019
+2001,55,"(50,55]",HS,6530.502004590666,344.35967789586914,18.964188968040048,1342.316310364657,2019
+2001,47,"(45,50]",HS,339.6840703902066,132.5784759899096,2.562135881061565,6536.300979960337,2019
+2001,47,"(45,50]",HS,568.8465187452181,132.5784759899096,4.290640049207628,6112.068787516561,2019
+2001,47,"(45,50]",HS,490.19905126243304,142.9092663267857,3.43014182258491,5709.315271873769,2019
+2001,47,"(45,50]",HS,317.1511859219587,160.12725022157917,1.9806196976660413,6681.203294408825,2019
+2001,47,"(45,50]",HS,408.13649579188984,130.8566776004303,3.118958109559613,6813.582193677927,2019
+2001,71,"(70,75]",HS,1677.076052027544,87.81171786344665,19.09854507840872,8897.410269426484,2019
+2001,71,"(70,75]",HS,1642.9251721499618,87.81171786344665,18.70963479731515,8747.248124344389,2019
+2001,71,"(70,75]",HS,1677.076052027544,87.81171786344665,19.09854507840872,8434.26388270677,2019
+2001,71,"(70,75]",HS,1688.7944912012242,87.81171786344665,19.23199468466632,8724.748619873413,2019
+2001,71,"(70,75]",HS,1705.5351185921959,86.08991947396729,19.81108971890643,9220.54498064543,2019
+2001,57,"(55,60]",HS,821.2951798010712,118.80408887407486,6.913021155960333,5886.745761422242,2019
+2001,57,"(55,60]",HS,961.7490436113237,129.1348792109509,7.447631882941858,5349.826753070167,2019
+2001,57,"(55,60]",HS,988.7014537107881,139.46566954782702,7.089210247341424,5005.3346313294105,2019
+2001,57,"(55,60]",HS,1040.2625860749808,206.6158067375215,5.034767680657168,5601.102000715716,2019
+2001,57,"(55,60]",HS,847.410558530987,68.87193557917384,12.304149018097805,5382.5063206204895,2019
+2001,50,"(45,50]",College,130.07467482785006,172.17983894793457,0.755458221024259,8042.671959625935,2019
+2001,50,"(45,50]",College,133.92501912777354,172.17983894793457,0.7778205621871391,8383.196051869741,2019
+2001,50,"(45,50]",College,134.09242540168327,172.17983894793457,0.7787928378898731,8421.250676376247,2019
+2001,50,"(45,50]",College,129.5724560061209,172.17983894793457,0.752541393916057,8192.135962768089,2019
+2001,50,"(45,50]",College,137.77536342769702,172.17983894793457,0.8001829033500193,8301.213091685491,2019
+2001,70,"(65,70]",College,19722.9701606733,232.44278257971166,84.85086067970167,1831.91233864662,2019
+2001,70,"(65,70]",College,21313.32976281561,232.44278257971166,91.69280081005151,1851.84031584248,2019
+2001,70,"(65,70]",College,20616.919663351186,232.44278257971166,88.69675123718251,1876.9750527296878,2019
+2001,70,"(65,70]",College,20360.78806426932,232.44278257971166,87.59483877408407,1794.8947430049266,2019
+2001,70,"(65,70]",College,22071.680183626628,232.44278257971166,94.955325945892,1796.4519770139498,2019
+2001,80,"(75,80]",NoHS,0,9.297711303188466,0,4815.83596881394,2019
+2001,80,"(75,80]",NoHS,0,9.297711303188466,0,4801.75013137693,2019
+2001,80,"(75,80]",NoHS,0,9.297711303188466,0,4812.975777076701,2019
+2001,80,"(75,80]",NoHS,0,9.297711303188466,0,4822.8072646657665,2019
+2001,80,"(75,80]",NoHS,0,9.297711303188466,0,4859.13647682757,2019
+2001,35,"(30,35]",HS,35.15531752104055,61.984742021256444,0.567160826594789,6494.829636446984,2019
+2001,35,"(30,35]",HS,33.481254781943385,61.984742021256444,0.5401531681855133,6735.872107313306,2019
+2001,35,"(30,35]",HS,31.807192042846214,61.984742021256444,0.5131455097762376,6798.829501222875,2019
+2001,35,"(30,35]",HS,23.102065799540934,61.984742021256444,0.37270568604800414,6596.590407912762,2019
+2001,35,"(30,35]",HS,31.6397857689365,61.984742021256444,0.51044474393531,6747.903053543826,2019
+2001,31,"(30,35]",HS,548.757765876052,61.984742021256444,8.85311042656056,6357.381929671314,2019
+2001,31,"(30,35]",HS,766.1515531752104,146.35286310574438,5.234961154273031,5770.05610848326,2019
+2001,31,"(30,35]",HS,916.9009028309106,72.31553235813253,12.679169646295176,5395.981757658856,2019
+2001,31,"(30,35]",HS,688.6926702371844,75.75912913709122,9.090556848811564,6011.752214410589,2019
+2001,31,"(30,35]",HS,508.58026013771996,98.14250820032271,5.1820589208871235,5808.716250546587,2019
+2001,71,"(70,75]",College,2513.43779648049,89.53351625292598,28.072591155475255,3554.8792016589564,2019
+2001,71,"(70,75]",College,2330.630145371079,89.53351625292598,26.030812179734014,3638.295309259049,2019
+2001,71,"(70,75]",College,2324.6035195103286,89.53351625292598,25.96350078492935,4494.689066437741,2019
+2001,71,"(70,75]",College,2416.342157612854,89.53351625292598,26.98812979473357,3691.9178777922957,2019
+2001,71,"(70,75]",College,2489.4986993114003,89.53351625292598,27.805215337223427,3815.2379033297643,2019
+2001,49,"(45,50]",HS,49.36811017597552,80.92452430552926,0.6100512866728385,6962.606755249643,2019
+2001,49,"(45,50]",HS,49.183963274674824,80.92452430552926,0.6077757477940995,7323.946483972943,2019
+2001,49,"(45,50]",HS,49.36811017597552,80.92452430552926,0.6100512866728385,7374.807771242455,2019
+2001,49,"(45,50]",HS,49.535516449885236,80.92452430552926,0.612119958380783,7163.895206942722,2019
+2001,49,"(45,50]",HS,49.51877582249426,80.92452430552926,0.6119130912099886,7270.812357938194,2019
+2001,64,"(60,65]",College,3759.4426931905127,506.2087265069277,7.426665121189022,545.4380532870903,2019
+2001,64,"(60,65]",College,2809.07727620505,690.4411541812177,4.068525259819262,306.5126293073277,2019
+2001,64,"(60,65]",College,3288.8636572302985,774.8092752657057,4.2447396568690365,332.42602579087105,2019
+2001,64,"(60,65]",College,3799.452792654935,607.7948314862091,6.251209447379358,538.3772948506355,2019
+2001,64,"(60,65]",College,4600.056557000765,557.8626781913081,8.245858231482668,543.1130817382898,2019
+2001,77,"(75,80]",College,2768.062739097169,72.31553235813253,38.277568439774825,3632.7026032149515,2019
+2001,77,"(75,80]",College,2811.5548890589134,151.51825827418244,18.55588178667693,3669.655098820093,2019
+2001,77,"(75,80]",College,2741.076847742923,75.75912913709122,36.181472503238,4663.497897385598,2019
+2001,77,"(75,80]",College,3061.3417903596023,72.31553235813253,42.33311559124998,3833.3022060644544,2019
+2001,77,"(75,80]",College,3430.958102524866,161.84904861105852,21.198506459990657,3927.7382946328407,2019
+2001,62,"(60,65]",College,119.86289211935731,60.2629436317771,1.9889982947356843,5651.379863056229,2019
+2001,62,"(60,65]",College,125.7221117061974,60.2629436317771,2.0862258650090766,5981.410877046203,2019
+2001,62,"(60,65]",College,127.56358071920428,60.2629436317771,2.116783101380714,6025.995842371432,2019
+2001,62,"(60,65]",College,130.07467482785006,60.2629436317771,2.1584520600693113,5833.677460280059,2019
+2001,62,"(60,65]",College,123.21101759755165,60.2629436317771,2.04455690632048,5900.711160783242,2019
+2001,41,"(40,45]",College,46.53894414690131,191.1196212322074,0.24350688771173948,4405.868324160264,2019
+2001,41,"(40,45]",College,47.208569242540165,191.1196212322074,0.24701058393780762,4412.967449970021,2019
+2001,41,"(40,45]",College,46.03672532517215,191.1196212322074,0.24087911554218827,4435.868127998126,2019
+2001,41,"(40,45]",College,46.87375669472074,191.1196212322074,0.24525873582477356,4384.108759489323,2019
+2001,41,"(40,45]",College,48.5478194338179,191.1196212322074,0.254017976389944,4448.896080458022,2019
+2001,32,"(30,35]",NoHS,59.01071155317521,44.76675812646299,1.3181814815911852,4556.139522827084,2019
+2001,32,"(30,35]",NoHS,58.84330527926549,44.76675812646299,1.3144419596575931,4522.307841029056,2019
+2001,32,"(30,35]",NoHS,58.67589900535578,44.76675812646299,1.3107024377240013,4527.288312028877,2019
+2001,32,"(30,35]",NoHS,58.84330527926549,44.76675812646299,1.3144419596575931,4557.020464093496,2019
+2001,32,"(30,35]",NoHS,58.86004590665647,44.76675812646299,1.3148159118509524,4514.4358788455465,2019
+2001,40,"(35,40]",HS,517.3690895179801,198.00681479012476,2.612885268955819,6760.062571937992,2019
+2001,40,"(35,40]",HS,516.6994644223413,198.00681479012476,2.6095034404245703,6147.309499449913,2019
+2001,40,"(35,40]",HS,516.3646518745218,198.00681479012476,2.6078125261589458,5743.180590444942,2019
+2001,40,"(35,40]",HS,517.0342769701607,198.00681479012476,2.6111943546901943,6428.066415114491,2019
+2001,40,"(35,40]",HS,514.5231828615149,198.00681479012476,2.5985124976980125,6180.619500621682,2019
+2001,78,"(75,80]",College,13.610130068859984,41.323161347504296,0.3293583943011167,9263.291513227628,2019
+2001,78,"(75,80]",College,13.091170619739861,39.60136295802496,0.330573738929534,9288.22510393317,2019
+2001,78,"(75,80]",College,14.112348890589136,41.323161347504296,0.34151184058529077,9166.508344191108,2019
+2001,78,"(75,80]",College,14.263014537107882,41.323161347504296,0.34515787447054297,9296.596604336497,2019
+2001,78,"(75,80]",College,13.107911247130835,41.323161347504296,0.31720494801694266,9338.933671324394,2019
+2001,65,"(60,65]",HS,544.2712777352716,87.81171786344665,6.1981622837814365,7599.209749413072,2019
+2001,65,"(60,65]",HS,613.0752563121653,117.08229048459552,5.236276586106141,6838.367612518441,2019
+2001,65,"(60,65]",HS,700.4948125478195,123.96948404251289,5.650542292388654,6452.138112168678,2019
+2001,65,"(60,65]",HS,550.0133129303749,118.80408887407486,4.629582349756966,7214.334877075133,2019
+2001,65,"(60,65]",HS,700.0595562356542,117.08229048459552,5.979209608371651,6885.777589982354,2019
+2001,77,"(75,80]",HS,129.5724560061209,27.548774231669533,4.703383711975356,6299.938443873043,2019
+2001,77,"(75,80]",HS,126.14062739097169,29.27057262114888,4.309469070647126,6233.86869487048,2019
+2001,77,"(75,80]",HS,126.00670237184391,27.548774231669533,4.573949509048902,6221.184425002497,2019
+2001,77,"(75,80]",HS,126.14062739097169,29.27057262114888,4.309469070647126,6368.183115747903,2019
+2001,77,"(75,80]",HS,126.559143075746,29.27057262114888,4.323767242746155,6273.717256912541,2019
+2001,73,"(70,75]",HS,2318.911706197399,77.48092752657055,29.92880674282292,3551.4532897839854,2019
+2001,73,"(70,75]",HS,2534.028768171385,77.48092752657055,32.70519402729646,3636.9313515831395,2019
+2001,73,"(70,75]",HS,2736.590359602142,77.48092752657055,35.31953536131434,4493.438798712331,2019
+2001,73,"(70,75]",HS,2656.235348125478,77.48092752657055,34.28244127839815,3689.1741787713845,2019
+2001,73,"(70,75]",HS,2557.465646518745,77.48092752657055,33.00767980148034,3811.808365774233,2019
+2001,40,"(35,40]",College,2107.6449885233355,396.01362958024953,5.322152651052217,1886.157879972973,2019
+2001,40,"(35,40]",College,2107.6449885233355,396.01362958024953,5.322152651052217,1835.3338439357808,2019
+2001,40,"(35,40]",College,2107.6449885233355,396.01362958024953,5.322152651052217,1981.433712671421,2019
+2001,40,"(35,40]",College,2107.6449885233355,396.01362958024953,5.322152651052217,1881.0795484383568,2019
+2001,40,"(35,40]",College,2107.6449885233355,396.01362958024953,5.322152651052217,1879.0614474235117,2019
+2001,41,"(40,45]",NoHS,10.37918898240245,67.15013718969449,0.15456690658846994,7330.0226204981345,2019
+2001,41,"(40,45]",NoHS,8.872532517214998,67.15013718969449,0.13212977498691786,7352.484983265911,2019
+2001,41,"(40,45]",NoHS,12.220657995409335,67.15013718969449,0.18199006743481136,7282.26182759673,2019
+2001,41,"(40,45]",NoHS,8.872532517214998,67.15013718969449,0.13212977498691786,7333.890529501425,2019
+2001,41,"(40,45]",NoHS,8.872532517214998,67.15013718969449,0.13212977498691786,7413.906726531362,2019
+2001,52,"(50,55]",HS,328.4511094108646,68.87193557917384,4.769012321909896,5416.718139931223,2019
+2001,52,"(50,55]",HS,649.7037490436113,68.87193557917384,9.433505005775894,5053.583123182452,2019
+2001,52,"(50,55]",HS,264.66931905126245,68.87193557917384,3.8429197150558334,5697.47380019881,2019
+2001,52,"(50,55]",HS,418.34827850038255,68.87193557917384,6.074292452830188,5554.533429312415,2019
+2001,52,"(50,55]",HS,288.10619739862284,68.87193557917384,4.183216211012708,5575.533997414418,2019
+2001,41,"(40,45]",HS,448.9836266258608,87.81171786344665,5.113026342612517,9624.827962609337,2019
+2001,41,"(40,45]",HS,278.2292272379495,87.81171786344665,3.1684749371446688,3255.3061896732415,2019
+2001,41,"(40,45]",HS,403.7839326702372,87.81171786344665,4.5982921470474984,3194.297164249606,2019
+2001,41,"(40,45]",HS,467.3983167559296,87.81171786344665,5.322732866731598,9506.236303437254,2019
+2001,41,"(40,45]",HS,323.42892119357305,87.81171786344665,3.683209132709687,3113.034967590752,2019
+2001,50,"(45,50]",HS,-13.275317521040552,51.653951684380374,-0.2570048774226672,4937.314674047646,2019
+2001,50,"(45,50]",HS,-13.275317521040552,51.653951684380374,-0.2570048774226672,4969.880543784068,2019
+2001,50,"(45,50]",HS,-13.275317521040552,51.653951684380374,-0.2570048774226672,4968.2198603661545,2019
+2001,50,"(45,50]",HS,-13.258576893649579,51.653951684380374,-0.2566807855217559,4939.690290470267,2019
+2001,50,"(45,50]",HS,-13.275317521040552,51.653951684380374,-0.2570048774226672,4942.570439308014,2019
+2001,24,"(20,25]",HS,61.4381025248661,137.74387115834767,0.44603147862918746,5912.256659167656,2019
+2001,24,"(20,25]",HS,28.291660290742158,137.74387115834767,0.20539324220254138,5934.4642185030325,2019
+2001,24,"(20,25]",HS,20.021790359602143,137.74387115834767,0.1453552175587216,5934.245836022945,2019
+2001,24,"(20,25]",HS,52.23075745983168,137.74387115834767,0.37918752406623024,5917.889464378855,2019
+2001,24,"(20,25]",HS,19.352165263963276,137.74387115834767,0.14049383904505197,5909.37313499272,2019
+2001,71,"(70,75]",NoHS,31.472379495026782,34.43596778958692,0.9139391605698883,7220.629304544386,2019
+2001,71,"(70,75]",NoHS,77.42540168324408,34.43596778958692,2.2483875625721987,7259.8492194479795,2019
+2001,71,"(70,75]",NoHS,54.407039020658,34.43596778958692,1.579948016942626,7253.9389365139605,2019
+2001,71,"(70,75]",NoHS,38.838255547054324,34.43596778958692,1.1278398151713516,7160.961008157932,2019
+2001,71,"(70,75]",NoHS,37.66641162968631,34.43596778958692,1.0938101655756642,7187.672092547172,2019
+2001,62,"(60,65]",HS,132.29448201989288,16.52926453900172,8.003652050442819,8824.427821429706,2019
+2001,62,"(60,65]",HS,144.16358684009182,16.52926453900172,8.721718168399436,8854.051882667281,2019
+2001,62,"(60,65]",HS,129.8654169854629,16.52926453900172,7.856696629123348,8832.643321531958,2019
+2001,62,"(60,65]",HS,112.4802754399388,16.52926453900172,6.804917131947119,8898.377315842761,2019
+2001,62,"(60,65]",HS,114.82396327467482,16.52926453900172,6.946707338595815,8771.854921377688,2019
+2001,49,"(45,50]",College,211.7689364957919,91.25531464240532,2.3206203093554976,8213.426065714995,2019
+2001,49,"(45,50]",College,251.94644223412394,91.25531464240532,2.760896099272746,8542.653855849847,2019
+2001,49,"(45,50]",College,220.13925019127774,91.25531464240532,2.4123444322549243,8724.109409629287,2019
+2001,49,"(45,50]",College,290.4498852333588,91.25531464240532,3.182827064610109,8394.452281800714,2019
+2001,49,"(45,50]",College,208.42081101759757,91.25531464240532,2.2839306601957268,8463.553733215165,2019
+2001,29,"(25,30]",HS,1317.8221882172916,163.57084700053784,8.056583507285735,3991.4497971565165,2019
+2001,29,"(25,30]",HS,1319.4962509563886,163.57084700053784,8.066817988367145,4057.736999299717,2019
+2001,29,"(25,30]",HS,1316.1481254781943,163.57084700053784,8.046349026204325,5092.901476494843,2019
+2001,29,"(25,30]",HS,1316.1481254781943,163.57084700053784,8.046349026204325,4174.415005398865,2019
+2001,29,"(25,30]",HS,1314.4740627390972,163.57084700053784,8.036114545122915,4297.5427973335445,2019
+2001,70,"(65,70]",HS,155.68783473603673,58.54114524229776,2.659460010419262,8367.36552080722,2019
+2001,70,"(65,70]",HS,155.68783473603673,58.54114524229776,2.659460010419262,9228.525500263284,2019
+2001,70,"(65,70]",HS,155.68783473603673,58.54114524229776,2.659460010419262,9122.822610902755,2019
+2001,70,"(65,70]",HS,155.68783473603673,58.54114524229776,2.659460010419262,8787.273785280213,2019
+2001,70,"(65,70]",HS,155.68783473603673,58.54114524229776,2.659460010419262,9017.018280825303,2019
+2001,26,"(25,30]",HS,13.727314460596787,68.87193557917384,0.19931651906045436,9640.477992661905,2019
+2001,26,"(25,30]",HS,11.383626625860751,68.87193557917384,0.16528686946476706,9681.623316403704,2019
+2001,26,"(25,30]",HS,14.06212700841622,68.87193557917384,0.204177897574124,9760.254714411194,2019
+2001,26,"(25,30]",HS,13.05768936495792,68.87193557917384,0.18959376203311512,9646.080992774458,2019
+2001,26,"(25,30]",HS,13.05768936495792,68.87193557917384,0.18959376203311512,9610.259280533934,2019
+2001,62,"(60,65]",College,7303.8185462892125,337.4724843379518,21.64270832514754,3640.256417911027,2019
+2001,62,"(60,65]",College,6927.6399081866875,285.8185326535714,24.237896135949264,3588.811847678132,2019
+2001,62,"(60,65]",College,8695.567345065036,717.9899284128873,12.110987913558256,3686.064684027104,2019
+2001,62,"(60,65]",College,3300.883427697016,249.6607664745051,13.22147438025308,2102.3075166180097,2019
+2001,62,"(60,65]",College,9999.042815608263,440.78038770671253,22.684863243646515,3551.425928236058,2019
+2001,38,"(35,40]",College,557.044376434583,430.4495973698365,1.2940989603388524,7052.736556586325,2019
+2001,38,"(35,40]",College,603.4159143075747,430.4495973698365,1.4018271082017713,6411.59593926732,2019
+2001,38,"(35,40]",College,620.1565416985463,430.4495973698365,1.440718136311128,5993.0338896999565,2019
+2001,38,"(35,40]",College,660.3340474368783,430.4495973698365,1.5340566037735845,6705.319096402743,2019
+2001,38,"(35,40]",College,560.7273144605967,430.4495973698365,1.3026549865229107,6447.747938318251,2019
+2001,63,"(60,65]",College,8772.088752869167,411.5098150855637,21.316839675003184,154.22308491104334,2019
+2001,63,"(60,65]",College,12682.766273909718,194.5632180111661,65.18583730035677,144.64233727491833,2019
+2001,63,"(60,65]",College,4609.531752104055,198.00681479012476,23.279662151981384,154.5729760293955,2019
+2001,63,"(60,65]",College,4081.364957918898,161.84904861105852,25.21710811984368,152.02422930013876,2019
+2001,63,"(60,65]",College,4573.371996939557,249.6607664745051,18.318344774474532,146.72053401841268,2019
+2001,53,"(50,55]",HS,52303.24437643458,3099.2371010628226,16.876167479570444,13.049809091861508,2019
+2001,53,"(50,55]",HS,52300.51565416986,3099.2371010628226,16.875287029906303,12.729481287000361,2019
+2001,53,"(50,55]",HS,52301.77120122418,3099.2371010628226,16.87569214478244,13.197324499539812,2019
+2001,53,"(50,55]",HS,52301.06809487376,3099.2371010628226,16.875465280451802,13.6493210130687,2019
+2001,53,"(50,55]",HS,52301.06809487376,3099.2371010628226,16.875465280451802,13.102696242266045,2019
+2001,27,"(25,30]",College,-41.5167559296098,63.706540410735805,-0.6516874980486841,4213.020545324667,2019
+2001,27,"(25,30]",College,-43.19081866870696,61.984742021256444,-0.696797586959312,4234.62047358079,2019
+2001,27,"(25,30]",College,-46.53894414690131,68.87193557917384,-0.675731613400077,4246.775207349451,2019
+2001,27,"(25,30]",College,-45.032287681713846,60.2629436317771,-0.7472633258155015,4240.992221326,2019
+2001,27,"(25,30]",College,-41.851568477429225,67.15013718969449,-0.623253655598669,4214.272233477068,2019
+2001,61,"(60,65]",HS,1303.425248661056,84.36812108448795,15.449262492829245,6641.110577991958,2019
+2001,61,"(60,65]",HS,1053.3202754399388,74.03733074761188,14.226880747911274,6031.832212689994,2019
+2001,61,"(60,65]",HS,1115.260596786534,63.706540410735805,17.506218193549728,5642.877616214404,2019
+2001,61,"(60,65]",HS,1167.6587605202756,70.59373396865318,16.540543967241753,6317.467911431769,2019
+2001,61,"(60,65]",HS,1045.1173680183626,46.488556515942335,22.481174859881058,6071.86077575073,2019
+2001,60,"(55,60]",HS,446.8073450650344,137.74387115834767,3.2437548132460527,6799.375178653259,2019
+2001,60,"(55,60]",HS,446.8073450650344,137.74387115834767,3.2437548132460527,6181.8655352714295,2019
+2001,60,"(55,60]",HS,446.8073450650344,137.74387115834767,3.2437548132460527,5779.661512222587,2019
+2001,60,"(55,60]",HS,446.8073450650344,137.74387115834767,3.2437548132460527,6471.1422735582955,2019
+2001,60,"(55,60]",HS,446.63993879112473,137.74387115834767,3.2425394686176356,6215.152959051573,2019
+2001,35,"(30,35]",HS,145.10775822494261,51.653951684380374,2.809228597099217,6170.773992552457,2019
+2001,35,"(30,35]",HS,145.0575363427697,51.653951684380374,2.8082563213964833,6334.421520876337,2019
+2001,35,"(30,35]",HS,145.12449885233357,51.653951684380374,2.809552689000128,6397.729013564034,2019
+2001,35,"(30,35]",HS,144.99057383320581,51.653951684380374,2.806959953792838,6245.476053155906,2019
+2001,35,"(30,35]",HS,145.20820198928845,51.653951684380374,2.811173148504685,6348.0225544665755,2019
+2001,37,"(35,40]",HS,1.0546595256312166,17.21798389479346,0.06125336927223719,4252.22443488809,2019
+2001,37,"(35,40]",HS,0.1674062739097169,17.21798389479346,0.009722757027339237,4259.0759960364485,2019
+2001,37,"(35,40]",HS,2.17628156082632,44.76675812646299,0.048613785136696196,4281.178068890651,2019
+2001,37,"(35,40]",HS,0.3515531752104055,48.21035490542169,0.007292067770504428,4231.223681851757,2019
+2001,37,"(35,40]",HS,1.1048814078041316,24.105177452710844,0.045835854557456396,4293.751703350572,2019
+2001,42,"(40,45]",HS,29.748094873756695,51.653951684380374,0.5759113079193942,5468.685105703642,2019
+2001,42,"(40,45]",HS,29.748094873756695,51.653951684380374,0.5759113079193942,5684.217813967559,2019
+2001,42,"(40,45]",HS,29.580688599846976,51.653951684380374,0.5726703889102811,5744.259196614502,2019
+2001,42,"(40,45]",HS,29.748094873756695,51.653951684380374,0.5759113079193942,5591.275716337203,2019
+2001,42,"(40,45]",HS,29.748094873756695,51.653951684380374,0.5759113079193942,5700.769179536018,2019
+2001,48,"(45,50]",College,19462.653404743687,516.5395168438037,37.67892439994866,1698.2858819950748,2019
+2001,48,"(45,50]",College,19459.305279265493,516.5395168438037,37.67244256193044,1733.6843821730283,2019
+2001,48,"(45,50]",College,19459.305279265493,516.5395168438037,37.67244256193044,1727.4768450424774,2019
+2001,48,"(45,50]",College,19479.39403213466,516.5395168438037,37.7113335900398,1726.1458624221693,2019
+2001,48,"(45,50]",College,19471.023718439174,516.5395168438037,37.69512899499423,1723.186099645399,2019
+2001,52,"(50,55]",College,1796.7213159908188,361.5776617906626,4.969115921301135,527.2256205143403,2019
+2001,52,"(50,55]",College,1579.1099005355777,361.5776617906626,4.367277261308836,519.9024136816129,2019
+2001,52,"(50,55]",College,1612.7418209640398,361.5776617906626,4.460291636870382,550.185141957138,2019
+2001,52,"(50,55]",College,1602.530038255547,361.5776617906626,4.43204934264811,533.8177806372121,2019
+2001,52,"(50,55]",College,1567.3747207345066,361.5776617906626,4.334821772374719,534.2732211921461,2019
+2001,37,"(35,40]",HS,230.01789441469012,427.0060005908778,0.5386760235134832,6957.041374872271,2019
+2001,37,"(35,40]",HS,243.24968630451414,425.28420220139844,0.5719697205900922,6331.0402941432485,2019
+2001,37,"(35,40]",HS,234.70359602142312,427.0060005908778,0.5496494093681294,5914.0792143726285,2019
+2001,37,"(35,40]",HS,244.60735118592197,425.28420220139844,0.5751620914197166,6617.530995480542,2019
+2001,37,"(35,40]",HS,238.05172149961746,425.28420220139844,0.5597473883755626,6358.822440407172,2019
+2001,23,"(20,25]",HS,0,17.21798389479346,0,5273.463353190162,2019
+2001,23,"(20,25]",HS,0,17.21798389479346,0,5213.226476679656,2019
+2001,23,"(20,25]",HS,0,17.21798389479346,0,5204.332052191383,2019
+2001,23,"(20,25]",HS,0,17.21798389479346,0,5181.8586923208395,2019
+2001,23,"(20,25]",HS,0,17.21798389479346,0,5215.750655370752,2019
+2001,49,"(45,50]",HS,194.5093496557001,63.706540410735805,3.0532084838014755,6359.157501439267,2019
+2001,49,"(45,50]",HS,196.35081866870695,65.42833880021514,3.001005715096366,6628.40214382721,2019
+2001,49,"(45,50]",HS,194.67675592960978,75.75912913709122,2.569680487975636,6658.491068516642,2019
+2001,49,"(45,50]",HS,194.5093496557001,61.984742021256444,3.1380198305737395,6477.335283841421,2019
+2001,49,"(45,50]",HS,196.35081866870695,53.37575007385973,3.678652166892319,6563.580084832014,2019
+2001,30,"(25,30]",HS,0.10044376434583015,43.04495973698364,0.0023334616865614173,3715.340295076843,2019
+2001,30,"(25,30]",HS,0.11718439173680184,43.04495973698364,0.002722371967654987,3726.041784561587,2019
+2001,30,"(25,30]",HS,0.1674062739097169,43.04495973698364,0.003889102810935695,3730.4986652710263,2019
+2001,30,"(25,30]",HS,0.13392501912777355,43.04495973698364,0.003111282248748557,3719.5837685424945,2019
+2001,30,"(25,30]",HS,0.13392501912777355,43.04495973698364,0.003111282248748557,3725.685107877752,2019
+2001,24,"(20,25]",HS,10.714001530221882,55.097548463339066,0.19445514054678475,6645.918929647191,2019
+2001,24,"(20,25]",HS,10.8814078041316,55.097548463339066,0.19749350211782826,6645.099980156554,2019
+2001,24,"(20,25]",HS,10.8814078041316,55.097548463339066,0.19749350211782826,6660.764941315312,2019
+2001,24,"(20,25]",HS,10.8814078041316,55.097548463339066,0.19749350211782826,6632.899032145321,2019
+2001,24,"(20,25]",HS,10.714001530221882,55.097548463339066,0.19445514054678475,6633.874516891563,2019
+2001,40,"(35,40]",HS,118.02142310635043,125.69128243199225,0.9389785896265976,5857.7061351834045,2019
+2001,40,"(35,40]",HS,118.18882938026015,125.69128243199225,0.9403104741508906,6089.0944239178825,2019
+2001,40,"(35,40]",HS,117.8540168324407,125.69128243199225,0.9376467051023045,6160.81743763286,2019
+2001,40,"(35,40]",HS,118.18882938026015,125.69128243199225,0.9403104741508906,5966.826675130061,2019
+2001,40,"(35,40]",HS,117.8540168324407,125.69128243199225,0.9376467051023045,6083.435910266689,2019
+2001,57,"(55,60]",College,93200.0948737567,5406.446942965146,17.238695923027304,9.263701445867104,2019
+2001,57,"(55,60]",College,94797.1507268554,5423.664926859939,17.47843054562346,9.777593365736227,2019
+2001,57,"(55,60]",College,99795.90206579954,5406.446942965146,18.458685180597897,9.918282556157946,2019
+2001,57,"(55,60]",College,97291.50420811017,5406.446942965146,17.995460833053325,9.768074661061458,2019
+2001,57,"(55,60]",College,99444.34889058913,5423.664926859939,18.335267799842306,10.057151806864544,2019
+2001,67,"(65,70]",College,21445.915531752107,1206.9806710250214,17.768234443671155,209.41371697501842,2019
+2001,67,"(65,70]",College,20770.933435348128,1070.958598256153,19.394711867638524,196.4381247756557,2019
+2001,67,"(65,70]",College,22773.11247130834,1148.4395257827236,19.829613976223285,209.75370225208076,2019
+2001,67,"(65,70]",College,20009.904514154554,1206.9806710250214,16.578479667914863,206.44987499851882,2019
+2001,67,"(65,70]",College,18653.244070390207,1206.9806710250214,15.454467928263545,199.0858788589583,2019
+2001,26,"(25,30]",HS,3.3313848508033668,44.76675812646299,0.07441648647848109,5406.564019545894,2019
+2001,26,"(25,30]",HS,3.4485692425401684,44.76675812646299,0.0770341518319955,5403.51911087392,2019
+2001,26,"(25,30]",HS,3.247681713848508,44.76675812646299,0.07254672551168508,5413.369602624367,2019
+2001,26,"(25,30]",HS,3.348125478194338,44.76675812646299,0.07479043867184029,5432.59990780821,2019
+2001,26,"(25,30]",HS,3.4485692425401684,44.76675812646299,0.0770341518319955,5433.456877524629,2019
+2001,29,"(25,30]",HS,21.712593726090283,108.47329853719879,0.20016533118188876,4951.957047247216,2019
+2001,29,"(25,30]",HS,62.57646518745218,108.47329853719879,0.5768835836221281,4965.908643336263,2019
+2001,29,"(25,30]",HS,22.04740627390972,108.47329853719879,0.2032519207143774,4968.18995808448,2019
+2001,29,"(25,30]",HS,81.07485845447589,108.47329853719879,0.7474176552921257,4970.346672271736,2019
+2001,29,"(25,30]",HS,64.28400918133129,108.47329853719879,0.5926251902378201,4955.4784624717495,2019
+2001,67,"(65,70]",HS,1371.9781178270848,137.74387115834767,9.960356902194839,7931.661902334844,2019
+2001,67,"(65,70]",HS,861.3889824024483,137.74387115834767,6.253555785521755,7139.6713841182745,2019
+2001,67,"(65,70]",HS,1266.5121652639632,137.74387115834767,9.194689786291875,6740.384168332814,2019
+2001,67,"(65,70]",HS,749.226778882938,137.74387115834767,5.439274884482094,7530.4352212114145,2019
+2001,67,"(65,70]",HS,767.6414690130069,137.74387115834767,5.572962793608009,7186.973201631085,2019
+2001,39,"(35,40]",HS,925.9241009946443,254.82616164294322,3.633551967446846,6516.071509900619,2019
+2001,39,"(35,40]",HS,1093.3303749043612,270.3223471482573,4.044543066595705,5927.208749411501,2019
+2001,39,"(35,40]",HS,1035.0729915837796,303.0365165483649,3.4156708352294602,5540.804558727263,2019
+2001,39,"(35,40]",HS,1003.9354246365723,285.8185326535714,3.512492403189964,6196.457835065164,2019
+2001,39,"(35,40]",HS,1141.878194338179,254.82616164294322,4.481008492127089,5957.504877919417,2019
+2001,56,"(55,60]",College,3085.632440703902,168.7362421689759,18.286720155909876,1162.789927804849,2019
+2001,56,"(55,60]",College,3030.3214078041315,168.7362421689759,17.958924347559584,1153.3119102354835,2019
+2001,56,"(55,60]",College,3609.51363427697,168.7362421689759,21.39145442543594,2013.3133039505242,2019
+2001,56,"(55,60]",College,3401.4443764345833,168.7362421689759,20.158350883672682,2014.9280804542475,2019
+2001,56,"(55,60]",College,3174.0899158377965,168.7362421689759,18.810955340934985,1184.2087506901282,2019
+2001,26,"(25,30]",College,141.17371078806426,60.2629436317771,2.342628857472908,6290.822491988718,2019
+2001,26,"(25,30]",College,156.10635042081103,60.2629436317771,2.590420265141097,6307.364259302009,2019
+2001,26,"(25,30]",College,146.07871461361898,60.2629436317771,2.4240222234446342,6361.794339403688,2019
+2001,26,"(25,30]",College,154.68339709257845,60.2629436317771,2.5668078552175593,6265.856135656566,2019
+2001,26,"(25,30]",College,148.3052180566182,60.2629436317771,2.460968700148523,6303.129262563486,2019
+2001,41,"(40,45]",HS,231.69028309104823,29.27057262114888,7.915468074022062,5755.352661166063,2019
+2001,41,"(40,45]",HS,229.84881407804133,29.27057262114888,7.852556116786337,5982.697832227457,2019
+2001,41,"(40,45]",HS,230.01622035195103,29.27057262114888,7.858275385625948,6053.167607993771,2019
+2001,41,"(40,45]",HS,230.01622035195103,29.27057262114888,7.858275385625948,5862.566504857833,2019
+2001,41,"(40,45]",HS,230.18362662586077,29.27057262114888,7.86399465446556,5977.138191499656,2019
+2001,59,"(55,60]",HS,0.8537719969395563,37.87956456854561,0.022539118563377324,5826.325742474512,2019
+2001,59,"(55,60]",HS,0.6863657230298393,37.87956456854561,0.018119683550950397,5965.832785244034,2019
+2001,59,"(55,60]",HS,0.8537719969395563,37.87956456854561,0.022539118563377324,5861.775381214055,2019
+2001,59,"(55,60]",HS,0.6863657230298393,37.87956456854561,0.018119683550950397,5928.127488033348,2019
+2001,59,"(55,60]",HS,0.8537719969395563,37.87956456854561,0.022539118563377324,5867.334590861735,2019
+2001,52,"(50,55]",College,4912.034889058913,482.1035490542168,10.18875488200671,3687.287979209405,2019
+2001,52,"(50,55]",College,4912.202295332823,482.1035490542168,10.189102123329118,3633.9889219487354,2019
+2001,52,"(50,55]",College,4912.034889058913,482.1035490542168,10.18875488200671,3732.726985571312,2019
+2001,52,"(50,55]",College,4910.360826319817,482.1035490542168,10.185282468782663,3619.162569798528,2019
+2001,52,"(50,55]",College,4910.528232593727,482.1035490542168,10.185629710105069,3597.716146931495,2019
+2001,72,"(70,75]",HS,224.0565570007651,17.21798389479346,13.012938005390835,9700.756138846056,2019
+2001,72,"(70,75]",HS,143.78524866105585,17.21798389479346,8.35087601078167,9760.6386390713,2019
+2001,72,"(70,75]",HS,192.2493649579189,17.21798389479346,11.165614170196381,9565.063987469266,2019
+2001,72,"(70,75]",HS,150.39779648048966,17.21798389479346,8.734924913361569,9594.264955212404,2019
+2001,72,"(70,75]",HS,146.79856159143077,17.21798389479346,8.525885637273777,9629.483622709231,2019
+2001,42,"(40,45]",HS,329.0872532517215,142.9092663267857,2.302770574017286,7395.624732459069,2019
+2001,42,"(40,45]",HS,329.07051262433055,142.9092663267857,2.302653432366354,7698.089804682002,2019
+2001,42,"(40,45]",HS,330.7445753634277,142.9092663267857,2.3143675974595337,7776.982323895436,2019
+2001,42,"(40,45]",HS,329.07051262433055,142.9092663267857,2.302653432366354,7562.078343368221,2019
+2001,42,"(40,45]",HS,329.07051262433055,142.9092663267857,2.302653432366354,7662.755361125518,2019
+2001,40,"(35,40]",College,660.8195256312165,215.22479868491826,3.070368887177512,1149.6205423751558,2019
+2001,40,"(35,40]",College,591.898362662586,215.22479868491826,2.7501401617250667,1145.1243963670481,2019
+2001,40,"(35,40]",College,591.898362662586,215.22479868491826,2.7501401617250667,1096.6857561530621,2019
+2001,40,"(35,40]",College,597.5232134659526,215.22479868491826,2.7762749326145553,1145.3372099818498,2019
+2001,40,"(35,40]",College,544.9743840856925,215.22479868491826,2.5321170581440122,387.81575606510893,2019
+2001,45,"(40,45]",College,3860.388676358072,371.9084521275387,10.379943381964946,1337.4760474106715,2019
+2001,45,"(40,45]",College,3778.359602142311,304.7583149378442,12.397888480624102,1342.5405127557071,2019
+2001,45,"(40,45]",College,4114.8462127008415,413.231613475043,9.957723655499935,1381.904220434263,2019
+2001,45,"(40,45]",College,3637.7383320581484,309.9237101062822,11.737528344671203,1326.1546843187948,2019
+2001,45,"(40,45]",College,4046.209640397858,239.32997613762907,16.90640556480499,1314.2671880539026,2019
+2001,48,"(45,50]",HS,693.698117827085,94.69891142136402,7.325301921797879,7233.391760908588,2019
+2001,48,"(45,50]",HS,729.5398010711554,84.36812108448795,8.647102622335034,6567.772874968592,2019
+2001,48,"(45,50]",HS,693.5809334353481,103.30790336876075,6.713725773328199,6131.979907112658,2019
+2001,48,"(45,50]",HS,728.8199540933435,89.53351625292598,8.140191345043098,6876.7376127401585,2019
+2001,48,"(45,50]",HS,714.6741239479725,91.25531464240532,7.831589061398857,6599.974557779208,2019
+2001,54,"(50,55]",College,441.38338179035964,122.24768565303354,3.6105663631383997,7176.113667777147,2019
+2001,54,"(50,55]",College,441.21597551644993,122.24768565303354,3.609196960740183,6517.716491299172,2019
+2001,54,"(50,55]",College,441.21597551644993,122.24768565303354,3.609196960740183,6088.822000605992,2019
+2001,54,"(50,55]",College,441.38338179035964,122.24768565303354,3.6105663631383997,6822.723848739089,2019
+2001,54,"(50,55]",College,441.38338179035964,122.24768565303354,3.6105663631383997,6547.671104872994,2019
+2001,59,"(55,60]",HS,828.4099464422341,60.2629436317771,13.746589471368061,6407.934882276264,2019
+2001,59,"(55,60]",HS,826.735883703137,60.2629436317771,13.718810165575666,5823.4791945305105,2019
+2001,59,"(55,60]",HS,826.735883703137,60.2629436317771,13.718810165575666,5448.487106705297,2019
+2001,59,"(55,60]",HS,826.735883703137,60.2629436317771,13.718810165575666,6097.001355958376,2019
+2001,59,"(55,60]",HS,826.735883703137,60.2629436317771,13.718810165575666,5859.052081373312,2019
+2001,30,"(25,30]",HS,-2.6115378729915837,30.992371010628222,-0.08426389423694006,5105.655360643309,2019
+2001,30,"(25,30]",HS,0.7365876052027545,30.992371010628222,0.023766739400162586,5108.596009367409,2019
+2001,30,"(25,30]",HS,-2.778944146901301,30.992371010628222,-0.0896654259187952,5102.410722025591,2019
+2001,30,"(25,30]",HS,-2.6115378729915837,30.992371010628222,-0.08426389423694006,5096.630573946681,2019
+2001,30,"(25,30]",HS,-2.6115378729915837,30.992371010628222,-0.08426389423694006,5121.990377764729,2019
+2001,47,"(45,50]",College,2859.633970925784,380.51744407493544,7.515119255249268,167.33495605722078,2019
+2001,47,"(45,50]",College,3823.5592960979343,867.7863882975903,4.4061065576275436,283.29067360766425,2019
+2001,47,"(45,50]",College,2210.599846977812,313.3673068852409,7.054341019011794,175.48275321645562,2019
+2001,47,"(45,50]",College,2328.7886763580723,251.3825648639845,9.263922808720285,167.7061447818625,2019
+2001,47,"(45,50]",College,2683.1877582249426,278.93133909565404,9.619527755197117,170.05081131749625,2019
+2001,44,"(40,45]",NoHS,64.46815608263198,6.198474202125644,10.400649253412057,5782.424446297346,2019
+2001,44,"(40,45]",NoHS,64.3342310635042,6.198474202125644,10.379043126684637,5955.712622805551,2019
+2001,44,"(40,45]",NoHS,64.78622800306044,6.198474202125644,10.451963804389681,6004.246046331277,2019
+2001,44,"(40,45]",NoHS,64.78622800306044,6.198474202125644,10.451963804389681,5852.7152868987205,2019
+2001,44,"(40,45]",NoHS,64.78622800306044,6.198474202125644,10.451963804389681,5957.86481305297,2019
+2001,65,"(60,65]",HS,169.91736801836268,43.04495973698364,3.947439353099731,8240.576130375244,2019
+2001,65,"(60,65]",HS,169.91736801836268,36.157766179066265,4.699332563213965,8676.257072910808,2019
+2001,65,"(60,65]",HS,169.91736801836268,39.60136295802496,4.2906949490214465,9060.338666791455,2019
+2001,65,"(60,65]",HS,169.91736801836268,43.04495973698364,3.947439353099731,8370.1475585108,2019
+2001,65,"(60,65]",HS,170.08477429227239,70.59373396865318,2.409346619457723,8652.229037615318,2019
+2001,47,"(45,50]",College,20794.052241775058,1628.8212764474613,12.766319142839233,474.61514848782474,2019
+2001,47,"(45,50]",College,20792.37817903596,1628.8212764474613,12.765291367254946,475.04749578022773,2019
+2001,47,"(45,50]",College,20792.37817903596,1628.8212764474613,12.765291367254946,485.2382166254089,2019
+2001,47,"(45,50]",College,20790.704116296864,1628.8212764474613,12.76426359167066,476.7821199434188,2019
+2001,47,"(45,50]",College,20792.37817903596,1628.8212764474613,12.765291367254946,482.1757684358251,2019
+2001,68,"(65,70]",College,14387.06258607498,774.8092752657057,18.568521370812473,353.67955162252485,2019
+2001,68,"(65,70]",College,15342.617597551645,774.8092752657057,19.801799084413638,331.78053439163034,2019
+2001,68,"(65,70]",College,14385.555929609794,774.8092752657057,18.566576819407008,354.3526686570997,2019
+2001,68,"(65,70]",College,21081.47207345065,774.8092752657057,27.20859538784067,348.84772170424463,2019
+2001,68,"(65,70]",College,15512.702371843918,774.8092752657057,20.02131733196423,336.4265276439537,2019
+2001,63,"(60,65]",College,83.13395562356541,77.48092752657055,1.0729602532837035,5247.184113890701,2019
+2001,63,"(60,65]",College,106.52061208875287,77.48092752657055,1.3747978436657684,5469.285525193516,2019
+2001,63,"(60,65]",College,148.15455241009946,77.48092752657055,1.9121422153767167,5496.806822806703,2019
+2001,63,"(60,65]",College,121.31932670237185,77.48092752657055,1.565796003936166,5330.946772076808,2019
+2001,63,"(60,65]",College,117.77031369548585,77.48092752657055,1.5199910152740344,5410.159764482234,2019
+2001,42,"(40,45]",College,49.88706962509564,44.76675812646299,1.1143775362104205,4483.005053279319,2019
+2001,42,"(40,45]",College,50.556694720734505,44.76675812646299,1.1293356239447885,4479.910934235885,2019
+2001,42,"(40,45]",College,50.389288446824786,44.76675812646299,1.1255961020111964,4492.333285830558,2019
+2001,42,"(40,45]",College,49.88706962509564,44.76675812646299,1.1143775362104205,4447.899312282798,2019
+2001,42,"(40,45]",College,49.88706962509564,44.76675812646299,1.1143775362104205,4528.659732585029,2019
+2001,36,"(35,40]",HS,29.262616679418517,55.097548463339066,0.5311056026184059,5828.8283907663845,2019
+2001,36,"(35,40]",HS,29.262616679418517,55.097548463339066,0.5311056026184059,5837.853785331577,2019
+2001,36,"(35,40]",HS,29.262616679418517,55.097548463339066,0.5311056026184059,5863.8305931354525,2019
+2001,36,"(35,40]",HS,29.279357306809487,55.097548463339066,0.5314094387755102,5814.938703586864,2019
+2001,36,"(35,40]",HS,29.279357306809487,55.097548463339066,0.5314094387755102,5873.584120273599,2019
+2001,61,"(60,65]",HS,628.9453710788065,65.42833880021514,9.612736355714084,5253.012688240524,2019
+2001,61,"(60,65]",HS,628.610558530987,63.706540410735805,9.86728449666455,5192.525637445985,2019
+2001,61,"(60,65]",HS,628.7779648048968,63.706540410735805,9.869912268834101,4997.144141398641,2019
+2001,61,"(60,65]",HS,628.610558530987,63.706540410735805,9.86728449666455,5186.806119909753,2019
+2001,61,"(60,65]",HS,628.7779648048968,63.706540410735805,9.869912268834101,5463.080380623696,2019
+2001,44,"(40,45]",HS,238.38653404743687,87.81171786344665,2.714746275868838,7510.017337876462,2019
+2001,44,"(40,45]",HS,233.3643458301454,87.81171786344665,2.6575535874727247,7709.181296319322,2019
+2001,44,"(40,45]",HS,236.54506503443,87.81171786344665,2.6937756234569297,7786.228416871118,2019
+2001,44,"(40,45]",HS,235.03840856924253,87.81171786344665,2.6766178169380956,7600.9319899094335,2019
+2001,44,"(40,45]",HS,234.87100229533283,87.81171786344665,2.6747113939915588,7725.734162815325,2019
+2001,34,"(30,35]",College,-5.357000765110941,103.30790336876075,-0.05185470414580927,4973.368489330357,2019
+2001,34,"(30,35]",College,-5.357000765110941,103.30790336876075,-0.05185470414580927,4998.866680332537,2019
+2001,34,"(30,35]",College,-5.357000765110941,103.30790336876075,-0.05185470414580927,5013.215048509458,2019
+2001,34,"(30,35]",College,-5.357000765110941,103.30790336876075,-0.05185470414580927,5006.388373881634,2019
+2001,34,"(30,35]",College,-5.357000765110941,103.30790336876075,-0.05185470414580927,4974.846076811509,2019
+2001,53,"(50,55]",HS,204.62068859984697,58.54114524229776,3.4953311513284557,6950.079491549759,2019
+2001,53,"(50,55]",HS,205.7423106350421,58.54114524229776,3.514490701941154,7319.1018203932135,2019
+2001,53,"(50,55]",HS,211.26671767406273,58.54114524229776,3.6088586377947403,7347.611714655944,2019
+2001,53,"(50,55]",HS,202.27700076511096,58.54114524229776,3.4552962694511766,7104.1548021901635,2019
+2001,53,"(50,55]",HS,204.73787299158377,58.54114524229776,3.4973328954223195,7244.913906727246,2019
+2001,76,"(75,80]",NoHS,183.76186687069625,43.04495973698364,4.269068155564113,5641.42624809906,2019
+2001,76,"(75,80]",NoHS,163.05371078806425,43.04495973698364,3.787986137851367,5652.857894635959,2019
+2001,76,"(75,80]",NoHS,153.31066564651877,43.04495973698364,3.5616403542549104,5651.324477689881,2019
+2001,76,"(75,80]",NoHS,131.4139250191278,43.04495973698364,3.052945706584521,5739.288904572435,2019
+2001,76,"(75,80]",NoHS,170.08477429227239,43.04495973698364,3.9513284559106663,5671.528081867678,2019
+2001,45,"(40,45]",HS,14422.050497322112,5957.422427598537,2.420854097992125,15.37873080728871,2019
+2001,45,"(40,45]",HS,14422.050497322112,5957.422427598537,2.420854097992125,15.402459567533606,2019
+2001,45,"(40,45]",HS,14423.72456006121,5957.422427598537,2.4211351025304872,15.829716560097808,2019
+2001,45,"(40,45]",HS,14422.050497322112,5957.422427598537,2.420854097992125,15.345830169904364,2019
+2001,45,"(40,45]",HS,14423.72456006121,5957.422427598537,2.4211351025304872,15.1451268563127,2019
+2001,22,"(20,25]",NoHS,-1.2555470543228768,58.54114524229776,-0.021447258148542436,5591.875078426394,2019
+2001,22,"(20,25]",NoHS,-4.603672532517215,58.54114524229776,-0.07863994654465559,5630.2032508335105,2019
+2001,22,"(20,25]",NoHS,-1.2722876817138487,58.54114524229776,-0.021733221590523003,5691.022918686058,2019
+2001,22,"(20,25]",NoHS,0.41851568477429224,58.54114524229776,0.007149086049514144,5629.864305868618,2019
+2001,22,"(20,25]",NoHS,-2.946350420811018,58.54114524229776,-0.05032956578857958,5618.881354162387,2019
+2001,33,"(30,35]",NoHS,-0.3348125478194338,11.70822904845955,-0.028596344198056584,5974.881621266991,2019
+2001,33,"(30,35]",NoHS,-0.3348125478194338,9.986430658980208,-0.03352674837013529,5940.30204441897,2019
+2001,33,"(30,35]",NoHS,-0.3348125478194338,12.224768565303355,-0.02738804796433588,5939.047062282409,2019
+2001,33,"(30,35]",NoHS,-0.3348125478194338,12.74130808214716,-0.02627772169551145,5964.909357759664,2019
+2001,33,"(30,35]",NoHS,-0.3348125478194338,10.15861049792814,-0.032958498397760126,5966.262744318881,2019
+2001,29,"(25,30]",NoHS,-13.241836266258607,44.76675812646299,-0.29579618494712834,4600.926600416222,2019
+2001,29,"(25,30]",NoHS,-13.074429992348891,44.76675812646299,-0.29205666301353633,4566.762351507359,2019
+2001,29,"(25,30]",NoHS,-13.074429992348891,44.76675812646299,-0.29205666301353633,4571.791780784246,2019
+2001,29,"(25,30]",NoHS,-13.074429992348891,44.76675812646299,-0.29205666301353633,4601.816201378998,2019
+2001,29,"(25,30]",NoHS,-13.074429992348891,46.488556515942335,-0.28123974956859055,4558.813007544973,2019
+2001,40,"(35,40]",College,-25.947972456006124,68.87193557917384,-0.3767568348093955,5386.163186467964,2019
+2001,40,"(35,40]",College,-29.296097934200457,68.87193557917384,-0.4253706199460916,5339.403009411284,2019
+2001,40,"(35,40]",College,-29.296097934200457,68.87193557917384,-0.4253706199460916,5366.602973054511,2019
+2001,40,"(35,40]",College,-27.62203519510329,68.87193557917384,-0.40106372737774354,5354.482838250702,2019
+2001,40,"(35,40]",College,-25.947972456006124,68.87193557917384,-0.3767568348093955,5374.018794001187,2019
+2001,60,"(55,60]",College,33265.233726090286,1325.7847598990961,25.090976101295706,23.01708660149429,2019
+2001,60,"(55,60]",College,40267.838163733744,1325.7847598990961,30.3728322890048,22.49026593011436,2019
+2001,60,"(55,60]",College,43287.847345065034,1325.7847598990961,32.65073536398142,23.279331977239398,2019
+2001,60,"(55,60]",College,45261.5673144606,1325.7847598990961,34.13945361531038,24.119640096465332,2019
+2001,60,"(55,60]",College,47364.19011476664,1325.7847598990961,35.725399436912724,23.151128605760825,2019
+2001,47,"(45,50]",HS,1723.1127773527162,125.69128243199225,13.709087408548324,9278.390480040809,2019
+2001,47,"(45,50]",HS,1723.1127773527162,125.69128243199225,13.709087408548324,9022.938162262375,2019
+2001,47,"(45,50]",HS,1721.4387146136191,125.69128243199225,13.695768563305394,9734.989870294432,2019
+2001,47,"(45,50]",HS,1721.4387146136191,125.69128243199225,13.695768563305394,9229.105878195422,2019
+2001,47,"(45,50]",HS,1723.1127773527162,125.69128243199225,13.709087408548324,9219.782473540079,2019
+2001,76,"(75,80]",College,13027.857566947207,289.2621294325301,45.03824123989218,18.591839505612054,2019
+2001,76,"(75,80]",College,155663.7282325937,461.44196838046474,337.3419387467743,19.364058268294023,2019
+2001,76,"(75,80]",College,65602.83580719204,263.43515359033995,249.02840381435587,18.90030794244316,2019
+2001,76,"(75,80]",College,127276.21110941087,509.65232328588644,249.73144493646512,18.56465708175563,2019
+2001,76,"(75,80]",College,22135.46197398623,559.5844765807874,39.55696217529101,18.29986847290145,2019
+2001,52,"(50,55]",HS,4096.598928844683,656.0051863916307,6.244766068661903,525.8151160753052,2019
+2001,52,"(50,55]",HS,4588.940780413161,587.133250812457,7.815842100686896,507.9747695410557,2019
+2001,52,"(50,55]",HS,4533.194491201224,659.4487831705895,6.874217690426088,527.8056177459368,2019
+2001,52,"(50,55]",HS,4365.285998469779,502.765129727969,8.682555213866369,515.5502197683851,2019
+2001,52,"(50,55]",HS,4302.0064269319055,650.8397912231927,6.609931483824438,510.03735303754456,2019
+2001,40,"(35,40]",HS,24.407834736036726,74.03733074761188,0.32966929641536297,5696.638560149075,2019
+2001,40,"(35,40]",HS,25.32856924254017,37.87956456854561,0.6686605173801939,5928.699392977025,2019
+2001,40,"(35,40]",HS,27.3207039020658,53.37575007385973,0.5118561118908914,6087.125405862546,2019
+2001,40,"(35,40]",HS,22.398959449120124,44.76675812646299,0.5003480347146115,5822.737978560867,2019
+2001,40,"(35,40]",HS,27.789441469013006,82.64632269500859,0.336245347195482,5915.7399611796,2019
+2001,41,"(40,45]",HS,9.542157612853863,16.357084700053786,0.5833654216403542,8569.326579805638,2019
+2001,41,"(40,45]",HS,9.542157612853863,16.184904861105853,0.5895714367641877,8907.062274957869,2019
+2001,41,"(40,45]",HS,9.542157612853863,16.357084700053786,0.5833654216403542,9001.145990926107,2019
+2001,41,"(40,45]",HS,9.542157612853863,16.357084700053786,0.5833654216403542,8761.423758164132,2019
+2001,41,"(40,45]",HS,9.542157612853863,16.357084700053786,0.5833654216403542,8932.997953124812,2019
+2001,30,"(25,30]",College,30.65208875286917,58.54114524229776,0.5235990622664161,5350.376070726086,2019
+2001,30,"(25,30]",College,27.29559296097934,58.54114524229776,0.4662633921493125,5310.64677362759,2019
+2001,30,"(25,30]",College,17.25121652639633,58.54114524229776,0.2946853269609731,5316.4954515982445,2019
+2001,30,"(25,30]",College,18.933649579188984,58.54114524229776,0.3234246528800199,5351.410579666808,2019
+2001,30,"(25,30]",College,18.925279265493497,58.54114524229776,0.32328167115902967,5301.402553189367,2019
+2001,67,"(65,70]",College,5987.955011476664,230.72098419023237,25.953231053052026,1700.8957694191722,2019
+2001,67,"(65,70]",College,5989.629074215762,232.44278257971166,25.768186939345973,1693.3357956951506,2019
+2001,67,"(65,70]",College,5988.038714613619,232.44278257971166,25.761344999215623,1761.1928462214717,2019
+2001,67,"(65,70]",College,5987.787605202754,232.44278257971166,25.76026469287925,1684.6707255163553,2019
+2001,67,"(65,70]",College,5989.629074215762,230.72098419023237,25.9604868418784,1659.321185825771,2019
+2001,55,"(50,55]",College,1336.3038408569241,106.75150014771945,12.517892854037534,6244.409424069951,2019
+2001,55,"(50,55]",College,2067.1326702371844,301.3147181588855,6.860377358490566,2809.551390835634,2019
+2001,55,"(50,55]",College,3375.412700841622,149.7964598847031,22.533327579567935,1309.3558588162455,2019
+2001,55,"(50,55]",College,2435.4264728385615,358.1340650117039,6.800320636237078,2904.9175166180603,2019
+2001,55,"(50,55]",College,1585.337413925019,237.60817774814973,6.672065873108882,2975.9838036546016,2019
+2001,40,"(35,40]",College,1455.0953328232592,817.8542350026893,1.7791621911922662,2786.8249921021916,2019
+2001,40,"(35,40]",College,1538.7984697781178,817.8542350026893,1.8815070020063636,2838.1768798344265,2019
+2001,40,"(35,40]",College,1404.8734506503445,817.8542350026893,1.717755304703808,3563.3916571436544,2019
+2001,40,"(35,40]",College,2698.923947972456,817.8542350026893,3.3000060798897515,2930.190091504505,2019
+2001,40,"(35,40]",College,1647.6125478194338,817.8542350026893,2.01455525606469,3003.325436187193,2019
+2001,74,"(70,75]",HS,1924.6699311400155,180.7888308953313,10.645955956506594,3743.7717299164237,2019
+2001,74,"(70,75]",HS,4200.809334353481,113.63869370563681,36.96636416144503,3633.9889219487354,2019
+2001,74,"(70,75]",HS,2307.6954858454474,98.14250820032271,23.513720284538838,3919.211235053104,2019
+2001,74,"(70,75]",HS,781.6868553940321,99.86430658980206,7.827489941975489,1872.1444511465118,2019
+2001,74,"(70,75]",HS,2084.3755164498853,94.69891142136402,22.010554135891063,3722.002658073903,2019
+2001,76,"(75,80]",College,15729.66090283091,1608.1596957737088,9.78115602832786,209.41371697501842,2019
+2001,76,"(75,80]",College,16836.885998469777,1200.093477467104,14.02964545229044,196.4381247756557,2019
+2001,76,"(75,80]",College,15654.328079571538,1441.1452519942127,10.862422131224843,209.75370225208076,2019
+2001,76,"(75,80]",College,18941.18286151492,943.5455174346814,20.07447707770617,206.44987499851882,2019
+2001,76,"(75,80]",College,15780.887222647283,1463.528631057444,10.782766314072797,199.0858788589583,2019
+2001,46,"(45,50]",College,938.6804590665647,137.74387115834767,6.814680400462072,6733.455195650835,2019
+2001,46,"(45,50]",College,2350.804275439939,351.2468714537866,6.692740822744192,3026.0033520172137,2019
+2001,46,"(45,50]",College,1247.879846977812,94.69891142136402,13.17734098785312,5709.315271873769,2019
+2001,46,"(45,50]",College,950.1980107115531,86.08991947396729,11.037273777435503,6400.45119388656,2019
+2001,46,"(45,50]",College,1102.1526855394034,287.54033104305074,3.833036852748105,6143.379531710187,2019
+2001,47,"(45,50]",College,667.7334047436879,86.08991947396729,7.756232190989604,7179.341136285354,2019
+2001,47,"(45,50]",College,511.44290742157614,127.41308082147161,4.014053377597851,6516.806839728595,2019
+2001,47,"(45,50]",College,714.2388676358072,120.5258872635542,5.926020408163266,6087.3831933805095,2019
+2001,47,"(45,50]",College,734.6624330527927,91.25531464240532,8.050626266882688,6824.285780758808,2019
+2001,47,"(45,50]",College,522.3075745983167,101.5861049792814,5.1415257500505795,6550.19096530237,2019
+2001,40,"(35,40]",College,1007.2835501147667,315.0891052747202,3.1968212586612137,820.5870934433018,2019
+2001,40,"(35,40]",College,1009.4598316755929,315.0891052747202,3.2037281352380114,808.5195886677445,2019
+2001,40,"(35,40]",College,1009.2924254016832,315.0891052747202,3.2031968370397963,781.652551860336,2019
+2001,40,"(35,40]",College,1007.618362662586,315.0891052747202,3.197883855057644,815.655398730885,2019
+2001,40,"(35,40]",College,1007.4509563886763,315.0891052747202,3.1973525568594283,873.4463699288029,2019
+2001,81,"(80,85]",HS,298.2007957153787,43.04495973698364,6.927658837119754,9890.109120862131,2019
+2001,81,"(80,85]",HS,252.11384850803367,82.64632269500859,3.0505150173276863,10230.842223897864,2019
+2001,81,"(80,85]",HS,367.4232899770467,74.03733074761188,4.962676075256781,10417.797164036,2019
+2001,81,"(80,85]",HS,290.2322570772762,51.653951684380374,5.618781286099345,10149.128382521467,2019
+2001,81,"(80,85]",HS,290.98558530987,37.87956456854561,7.681861938600483,10333.734619424406,2019
+2001,82,"(80,85]",College,184816.69380260137,2410.517745271084,76.67095343528247,31.36574549056442,2019
+2001,82,"(80,85]",College,15396.522417750575,1101.9509692667814,13.972057602522142,33.073134816897166,2019
+2001,82,"(80,85]",College,24940.186687069625,1558.227542478808,16.005484441248615,32.69089802233964,2019
+2001,82,"(80,85]",College,71399.27804131599,1647.761058731734,43.33108715184187,32.80550343108766,2019
+2001,82,"(80,85]",College,11851.694567712319,1668.422639405486,7.1035325748968905,32.334002151253344,2019
+2001,41,"(40,45]",HS,322.7425554705432,49.93215329490103,6.4636218182783844,3628.5629694362224,2019
+2001,41,"(40,45]",HS,322.7425554705432,48.21035490542169,6.694465454645469,3804.6308959788184,2019
+2001,41,"(40,45]",HS,305.49970925784237,49.93215329490103,6.118296310065991,3731.4462802927796,2019
+2001,41,"(40,45]",HS,314.79075745983164,49.93215329490103,6.304369763520241,3703.43598682879,2019
+2001,41,"(40,45]",HS,283.251415455241,49.93215329490103,5.672725824226893,3639.7241981448738,2019
+2001,89,"(85,90]",NoHS,0,8.60899194739673,0,6076.025761562267,2019
+2001,89,"(85,90]",NoHS,0,8.60899194739673,0,6073.643375379593,2019
+2001,89,"(85,90]",NoHS,0,8.60899194739673,0,6101.607040405826,2019
+2001,89,"(85,90]",NoHS,0,8.60899194739673,0,6118.627259840412,2019
+2001,89,"(85,90]",NoHS,0,8.60899194739673,0,6115.412435559303,2019
+2001,44,"(40,45]",College,1169.3328232593726,855.7337995712348,1.3664679645063296,36.374961448385,2019
+2001,44,"(40,45]",College,1169.3328232593726,702.4937429075732,1.6645455351952099,35.74078006098187,2019
+2001,44,"(40,45]",College,1169.3328232593726,719.7117268023666,1.6247238716737935,34.60476103057374,2019
+2001,44,"(40,45]",College,1169.3328232593726,743.8169042550774,1.5720707832399208,36.11210543974296,2019
+2001,44,"(40,45]",College,1169.3328232593726,855.7337995712348,1.3664679645063296,38.63262223697568,2019
+2001,34,"(30,35]",College,401.94246365723035,258.2697584219018,1.5562893081761011,4308.6780458345165,2019
+2001,34,"(30,35]",College,402.77949502677893,258.2697584219018,1.559530227185214,4316.269090965267,2019
+2001,34,"(30,35]",College,401.7750573833206,258.2697584219018,1.5556411243742783,4336.580640415663,2019
+2001,34,"(30,35]",College,400.7706197398623,258.2697584219018,1.5517520215633427,4337.069872101271,2019
+2001,34,"(30,35]",College,400.1009946442234,258.2697584219018,1.5491592863560522,4303.196683028166,2019
+2001,48,"(45,50]",HS,217.628156082632,44.76675812646299,4.861378513669619,6104.887742119767,2019
+2001,48,"(45,50]",HS,240.3954093343535,44.76675812646299,5.369953496638133,6429.033659395107,2019
+2001,48,"(45,50]",HS,206.07712318286153,44.76675812646299,4.603351500251771,6454.076495843995,2019
+2001,48,"(45,50]",HS,224.6592195868401,44.76675812646299,5.018438434880483,6240.226118671512,2019
+2001,48,"(45,50]",HS,186.9928079571538,44.76675812646299,4.177045999822281,6363.867658732311,2019
+2001,47,"(45,50]",College,65647.51654169854,3374.7248433795176,19.45270195005226,17.78317985079869,2019
+2001,47,"(45,50]",College,104052.17309869932,3374.7248433795176,30.832787242736913,19.364058268294023,2019
+2001,47,"(45,50]",College,66072.72847742922,3374.7248433795176,19.57870094418206,18.90030794244316,2019
+2001,47,"(45,50]",College,110323.24560061209,3374.7248433795176,32.69103429781617,18.56465708175563,2019
+2001,47,"(45,50]",College,101546.2016220352,3374.7248433795176,30.090216635364197,19.6123879178756,2019
+2001,56,"(55,60]",College,1214.3651109410864,237.60817774814973,5.1107883678491905,4196.9366148595545,2019
+2001,56,"(55,60]",College,1168.9980107115532,237.60817774814973,4.919855965355789,4156.257989867276,2019
+2001,56,"(55,60]",College,1185.069013006886,237.60817774814973,4.987492535980758,3998.5232729105437,2019
+2001,56,"(55,60]",College,1484.5588370313696,237.60817774814973,6.247928211481476,4142.719466576536,2019
+2001,56,"(55,60]",College,1354.8189747513388,235.88637935867035,5.743523549069814,4372.725630245511,2019
+2001,40,"(35,40]",College,755.152960979342,70.59373396865318,10.69716699381087,7941.446507931623,2019
+2001,40,"(35,40]",College,755.152960979342,70.59373396865318,10.69716699381087,7148.552831335425,2019
+2001,40,"(35,40]",College,755.152960979342,70.59373396865318,10.69716699381087,6460.201075101433,2019
+2001,40,"(35,40]",College,758.5010864575363,72.31553235813253,10.488771384564606,7381.480169219499,2019
+2001,40,"(35,40]",College,755.152960979342,70.59373396865318,10.69716699381087,7257.650818822401,2019
+2001,44,"(40,45]",College,1530.7797092578423,416.6752102540017,3.673795972466641,11372.833544071005,2019
+2001,44,"(40,45]",College,1000.4198928844683,199.7286131796041,5.008896206498214,11042.086600875853,2019
+2001,44,"(40,45]",College,916.9176434583014,334.02888755899306,2.745024989182602,10408.773231555759,2019
+2001,44,"(40,45]",College,842.5390359602143,411.5098150855637,2.0474336335939602,11161.037161086704,2019
+2001,44,"(40,45]",College,2263.8685233358838,351.2468714537866,6.445234697652645,11291.18149259581,2019
+2001,45,"(40,45]",HS,94.41713848508033,70.59373396865318,1.3374719422973973,9362.685753297226,2019
+2001,45,"(40,45]",HS,94.41713848508033,80.92452430552926,1.1667308432807082,9859.808139467343,2019
+2001,45,"(40,45]",HS,94.41713848508033,70.59373396865318,1.3374719422973973,9898.21477656641,2019
+2001,45,"(40,45]",HS,94.41713848508033,84.36812108448795,1.1191091762080263,9570.245784462579,2019
+2001,45,"(40,45]",HS,96.09120122417751,72.31553235813253,1.3287767937363624,9759.867106678901,2019
+2001,57,"(55,60]",College,5354.489671002295,284.09673426409205,18.847417182996697,983.2938419334308,2019
+2001,57,"(55,60]",College,5599.90726855394,628.4564121599612,8.910573844425338,988.3403355364848,2019
+2001,57,"(55,60]",College,5444.219433817903,430.4495973698365,12.647751251443971,992.6177338040918,2019
+2001,57,"(55,60]",College,5690.139250191278,518.2613152332832,10.979286091669788,986.950589024905,2019
+2001,57,"(55,60]",College,5447.400153022188,444.2239844856712,12.26273308796972,979.8991214082192,2019
+2001,71,"(70,75]",College,6330.133435348125,139.46566954782702,45.388470552441795,15.37873080728871,2019
+2001,71,"(70,75]",College,6330.133435348125,139.46566954782702,45.388470552441795,15.402459567533606,2019
+2001,71,"(70,75]",College,6330.133435348125,139.46566954782702,45.388470552441795,15.829716560097808,2019
+2001,71,"(70,75]",College,6330.133435348125,139.46566954782702,45.388470552441795,15.345830169904364,2019
+2001,71,"(70,75]",College,6330.133435348125,139.46566954782702,45.388470552441795,15.1451268563127,2019
+2001,40,"(35,40]",College,69.4736036725325,75.75912913709122,0.9170327650785869,5135.924772401457,2019
+2001,40,"(35,40]",College,-27.956847742922726,87.81171786344665,-0.3183726320716966,6261.6056287886995,2019
+2001,40,"(35,40]",College,-86.38163733741392,75.75912913709122,-1.140214233206147,6267.02396326064,2019
+2001,40,"(35,40]",College,7.03106350420811,75.75912913709122,0.09280813526096544,6261.43139486215,2019
+2001,40,"(35,40]",College,-11.048814078041316,89.53351625292598,-0.12340422380853648,6248.804531992601,2019
+2001,67,"(65,70]",College,825.480336648814,158.40545183209983,5.211186402370628,9627.684095834153,2019
+2001,67,"(65,70]",College,747.9712318286151,241.0517745271084,3.1029484570108368,8670.05737757134,2019
+2001,67,"(65,70]",College,710.8740015302219,56.819346852818406,12.511125891179802,8179.332240318928,2019
+2001,67,"(65,70]",College,665.4064575363428,111.91689531615746,5.945540712656617,9143.057606318082,2019
+2001,67,"(65,70]",College,617.0595256312165,234.16458096919104,2.6351531178509138,8721.219373062751,2019
+2001,45,"(40,45]",College,86.21423106350422,68.87193557917384,1.251804967269927,6034.448479747096,2019
+2001,45,"(40,45]",College,84.37276205049731,68.87193557917384,1.2250673854447438,6289.9450486825635,2019
+2001,45,"(40,45]",College,86.0468247895945,68.87193557917384,1.249374278013092,6318.497583481125,2019
+2001,45,"(40,45]",College,86.21423106350422,67.15013718969449,1.2839025305332583,6146.59191057031,2019
+2001,45,"(40,45]",College,84.54016832440705,68.87193557917384,1.227498074701579,6228.432910436402,2019
+2001,41,"(40,45]",HS,179.8278194338179,142.9092663267857,1.2583356143093745,5972.031742970799,2019
+2001,41,"(40,45]",HS,181.4851415455241,142.9092663267857,1.2699326377516225,6130.408671859859,2019
+2001,41,"(40,45]",HS,181.50188217291506,142.9092663267857,1.2700497794025543,6191.677218780411,2019
+2001,41,"(40,45]",HS,179.8278194338179,142.9092663267857,1.2583356143093745,6044.327872715228,2019
+2001,41,"(40,45]",HS,179.8278194338179,142.9092663267857,1.2583356143093745,6143.571656671189,2019
+2001,32,"(30,35]",NoHS,59.261820964039785,29.27057262114888,2.0246211692224056,6891.529754626538,2019
+2001,32,"(30,35]",NoHS,59.261820964039785,29.27057262114888,2.0246211692224056,7004.40605132192,2019
+2001,32,"(30,35]",NoHS,59.261820964039785,29.27057262114888,2.0246211692224056,7047.42283922747,2019
+2001,32,"(30,35]",NoHS,59.261820964039785,29.27057262114888,2.0246211692224056,6888.679762234422,2019
+2001,32,"(30,35]",NoHS,59.261820964039785,29.27057262114888,2.0246211692224056,6984.712351043585,2019
+2001,68,"(65,70]",HS,201.8919663351186,25.826975842190187,7.817096649980748,9182.204809300265,2019
+2001,68,"(65,70]",HS,201.8919663351186,24.105177452710844,8.375460696407943,9512.221708283801,2019
+2001,68,"(65,70]",HS,201.8919663351186,25.826975842190187,7.817096649980748,9906.937271145584,2019
+2001,68,"(65,70]",HS,201.8919663351186,24.105177452710844,8.375460696407943,9204.877808741898,2019
+2001,68,"(65,70]",HS,201.8919663351186,25.826975842190187,7.817096649980748,9576.037702892932,2019
+2001,24,"(20,25]",HS,0,48.21035490542169,0,9110.885095280277,2019
+2001,24,"(20,25]",HS,0,48.21035490542169,0,9160.381887451424,2019
+2001,24,"(20,25]",HS,0,48.21035490542169,0,9159.613532317013,2019
+2001,24,"(20,25]",HS,0,48.21035490542169,0,9130.780967291867,2019
+2001,24,"(20,25]",HS,0,48.21035490542169,0,9132.72062932525,2019
+2001,87,"(85,90]",College,27636.432134659524,1219.0332597513768,22.670777777052617,32.54014495187054,2019
+2001,87,"(85,90]",College,17616.831828615148,909.1095496450945,19.378117670738966,33.073134816897166,2019
+2001,87,"(85,90]",College,15212.040703902067,1110.559961214178,13.697631136702158,33.49835085937403,2019
+2001,87,"(85,90]",College,50451.3961744453,957.3199045505163,52.700665613062114,33.75568849037757,2019
+2001,87,"(85,90]",College,40555.006885998475,482.1035490542168,84.12094655921669,33.27193653416163,2019
+2001,21,"(20,25]",HS,15.85337413925019,30.992371010628222,0.511525050271681,6151.542433415068,2019
+2001,21,"(20,25]",HS,15.685967865340475,30.992371010628222,0.506123518589826,6157.7949967275945,2019
+2001,21,"(20,25]",HS,15.702708492731446,30.992371010628222,0.5066636717580114,6153.620099005668,2019
+2001,21,"(20,25]",HS,15.85337413925019,30.992371010628222,0.511525050271681,6099.26718443643,2019
+2001,21,"(20,25]",HS,15.85337413925019,30.992371010628222,0.511525050271681,6129.550462780257,2019
+2001,51,"(50,55]",College,2411.6547819433817,439.05858931723316,5.4927857935627085,3377.1660587640026,2019
+2001,51,"(50,55]",College,2411.6547819433817,439.05858931723316,5.4927857935627085,3433.1591365260733,2019
+2001,51,"(50,55]",College,2413.328844682479,439.05858931723316,5.496598639455783,4305.048260462243,2019
+2001,51,"(50,55]",College,2413.328844682479,439.05858931723316,5.496598639455783,3549.9425465481318,2019
+2001,51,"(50,55]",College,2411.6547819433817,439.05858931723316,5.4927857935627085,3632.175485781335,2019
+2001,55,"(50,55]",HS,244.32945677123183,118.80408887407486,2.056574475565452,7670.477044943835,2019
+2001,55,"(50,55]",HS,246.1709257842387,118.80408887407486,2.07207452300034,8099.765613499466,2019
+2001,55,"(50,55]",HS,244.49686304514154,118.80408887407486,2.057983570786805,8140.523416144674,2019
+2001,55,"(50,55]",HS,246.003519510329,118.80408887407486,2.070665427778987,7894.892148702713,2019
+2001,55,"(50,55]",HS,244.49686304514154,118.80408887407486,2.057983570786805,8012.203023966469,2019
+2001,66,"(65,70]",HS,112.83182861514919,43.04495973698364,2.6212552945706586,9382.603942272222,2019
+2001,66,"(65,70]",HS,112.83182861514919,43.04495973698364,2.6212552945706586,9855.96518164835,2019
+2001,66,"(65,70]",HS,102.62004590665647,43.04495973698364,2.3840200231035813,10267.527323639002,2019
+2001,66,"(65,70]",HS,87.72088752869166,43.04495973698364,2.0378898729303043,9627.24764281188,2019
+2001,66,"(65,70]",HS,91.06901300688601,43.04495973698364,2.1156719291490185,10000.026956930322,2019
+2001,23,"(20,25]",HS,43.44360214231064,60.2629436317771,0.7209007646185159,5552.697056225525,2019
+2001,23,"(20,25]",HS,93.66548431522571,60.2629436317771,1.5542799383904506,5468.181874286189,2019
+2001,23,"(20,25]",HS,58.51016679418516,60.2629436317771,0.9709145167500964,5554.572463529241,2019
+2001,23,"(20,25]",HS,93.66548431522571,60.2629436317771,1.5542799383904506,5434.133539745896,2019
+2001,23,"(20,25]",HS,41.769539403213464,60.2629436317771,0.6931214588261181,5532.845977910403,2019
+2001,45,"(40,45]",HS,98.10007651109412,37.87956456854561,2.5897889172821786,5455.93081867118,2019
+2001,45,"(40,45]",HS,94.75195103289977,37.87956456854561,2.50140021703364,5548.5914348479455,2019
+2001,45,"(40,45]",HS,91.40382555470543,37.87956456854561,2.4130115167851014,5543.1807497526925,2019
+2001,45,"(40,45]",HS,93.07788829380262,37.87956456854561,2.457205866909371,5477.767764289345,2019
+2001,45,"(40,45]",HS,96.25860749808723,37.87956456854561,2.5411751321454825,5516.113135315378,2019
+2001,41,"(40,45]",College,98441.58530986993,5234.267104017211,18.807138297225546,18.138322479662882,2019
+2001,41,"(40,45]",College,96911.49196633512,5062.087265069277,19.14457157526083,19.680118453571602,2019
+2001,41,"(40,45]",College,99278.61667941853,4648.855651594234,21.355495657382452,19.442655111678324,2019
+2001,41,"(40,45]",College,106346.50956388676,5681.934685281841,18.716601906628863,18.984178004458474,2019
+2001,41,"(40,45]",College,104412.96710022954,4821.035490542168,21.657788519720558,20.04466163441753,2019
+2001,56,"(55,60]",NoHS,381.6026013771997,56.819346852818406,6.716068073884786,6623.244743253565,2019
+2001,56,"(55,60]",NoHS,381.31801071155314,56.819346852818406,6.711059380870702,6993.923546979224,2019
+2001,56,"(55,60]",NoHS,381.3682325937261,65.42833880021514,5.828792837889872,7029.116782098079,2019
+2001,56,"(55,60]",NoHS,381.4854169854629,48.21035490542169,7.912935254964519,6817.020977452381,2019
+2001,56,"(55,60]",NoHS,381.43519510328997,60.2629436317771,6.329514824797844,6918.315673123146,2019
+2001,62,"(60,65]",HS,414.8327467482785,61.984742021256444,6.692497753818509,7154.296942578489,2019
+2001,62,"(60,65]",HS,363.2716143840857,61.984742021256444,5.860661874812819,7546.095844559646,2019
+2001,62,"(60,65]",HS,429.2296863045142,61.984742021256444,6.92476361613828,7607.103559711644,2019
+2001,62,"(60,65]",HS,388.54996174445296,61.984742021256444,6.268477516792881,7412.172221221076,2019
+2001,62,"(60,65]",HS,362.9368018362662,60.2629436317771,6.022553495791848,7486.246880988891,2019
+2001,60,"(55,60]",HS,18180.823565416984,754.1476945919534,24.107775831966283,209.41371697501842,2019
+2001,60,"(55,60]",HS,18180.656159143076,728.3207187497634,24.96243164735451,196.4381247756557,2019
+2001,60,"(55,60]",HS,18180.823565416984,611.2384282651677,29.744241730707696,209.75370225208076,2019
+2001,60,"(55,60]",HS,18180.823565416984,788.5836623815404,23.05503452926033,206.44987499851882,2019
+2001,60,"(55,60]",HS,18180.656159143076,807.5234446658133,22.514090803477522,199.0858788589583,2019
+2001,73,"(70,75]",HS,960.9120122417751,68.87193557917384,13.952156334231805,8102.700605472649,2019
+2001,73,"(70,75]",HS,969.2823259372609,68.87193557917384,14.073690797073546,7409.064758013394,2019
+2001,73,"(70,75]",HS,959.2379495026779,68.87193557917384,13.927849441663458,6811.619975830654,2019
+2001,73,"(70,75]",HS,964.2601377199694,68.87193557917384,14.000770119368502,7611.95804437309,2019
+2001,73,"(70,75]",HS,960.9120122417751,68.87193557917384,13.952156334231805,7378.079630023938,2019
+2001,37,"(35,40]",HS,6.110328997704667,72.31553235813253,0.08449538845187671,7319.579622301969,2019
+2001,37,"(35,40]",HS,6.110328997704667,72.31553235813253,0.08449538845187671,7322.5671282795665,2019
+2001,37,"(35,40]",HS,6.110328997704667,72.31553235813253,0.08449538845187671,7377.491140523237,2019
+2001,37,"(35,40]",HS,6.110328997704667,72.31553235813253,0.08449538845187671,7350.294229518082,2019
+2001,37,"(35,40]",HS,5.94292272379495,72.31553235813253,0.0821804463025102,7388.830017894509,2019
+2001,67,"(65,70]",HS,63.94919663351186,111.91689531615746,0.5713989514528599,5843.680576489891,2019
+2001,67,"(65,70]",HS,64.11660290742158,111.91689531615746,0.5728947602262967,5870.129672048335,2019
+2001,67,"(65,70]",HS,63.94919663351186,111.91689531615746,0.5713989514528599,5977.001459619909,2019
+2001,67,"(65,70]",HS,63.94919663351186,111.91689531615746,0.5713989514528599,5791.038699045824,2019
+2001,67,"(65,70]",HS,63.94919663351186,111.91689531615746,0.5713989514528599,5875.459850364408,2019
+2001,29,"(25,30]",HS,30.752532517215,56.819346852818406,0.5412334745218843,5237.112257809529,2019
+2001,29,"(25,30]",HS,22.6500688599847,56.819346852818406,0.39863303812090883,5240.128620331295,2019
+2001,29,"(25,30]",HS,33.33058913542463,56.819346852818406,0.5866063406494673,5233.78407847177,2019
+2001,29,"(25,30]",HS,59.12789594491202,56.819346852818406,1.0406296309261271,5227.855107121814,2019
+2001,29,"(25,30]",HS,97.36348890589136,56.819346852818406,1.7135622688183338,5253.867857699322,2019
+2001,90,"(85,90]",College,65373.82402448355,285.8185326535714,228.72493052688225,18.01293583972238,2019
+2001,90,"(85,90]",College,65124.388676358074,321.97629883263767,202.26454218050858,19.60781902692309,2019
+2001,90,"(85,90]",College,65333.64651874522,612.960226654647,106.58708946796867,19.13956903634376,2019
+2001,90,"(85,90]",College,64853.19051262433,812.6888398342512,79.8007642455767,18.800585208567487,2019
+2001,90,"(85,90]",College,65216.46212700842,320.25450044315835,203.63948683551325,19.8680209352054,2019
+2001,50,"(45,50]",HS,65.62493343534813,34.43596778958692,1.9057089911436271,6192.449234824146,2019
+2001,50,"(45,50]",HS,60.26793267023719,49.93215329490103,1.206996468073241,6454.63550389491,2019
+2001,50,"(45,50]",HS,63.030136189747516,46.488556515942335,1.3558204623568506,6483.935633452569,2019
+2001,50,"(45,50]",HS,63.61605814843153,18.939782284272805,3.3588589981447123,6307.528931787748,2019
+2001,50,"(45,50]",HS,65.62493343534813,49.93215329490103,1.314282062857674,6391.512785274762,2019
+2001,64,"(60,65]",College,8099.149013006886,1258.6346227094016,6.434869077073569,1801.6104954712341,2019
+2001,64,"(60,65]",College,4885.7688446824795,413.231613475043,11.823318171608268,1772.2149048492101,2019
+2001,64,"(60,65]",College,3631.2597092578426,463.16376676994406,7.840120427774111,1799.5863889504158,2019
+2001,64,"(60,65]",College,3035.0757459831675,330.58529078003437,9.180915880503145,1049.9354191832983,2019
+2001,64,"(60,65]",College,4536.241285386381,284.09673426409205,15.967241922497987,1743.2796741363704,2019
+2001,70,"(65,70]",College,1780.0309104820199,125.69128243199225,14.16192814680796,3492.646644632305,2019
+2001,70,"(65,70]",College,1803.4677888293802,99.86430658980206,18.05918300957338,3576.709320211138,2019
+2001,70,"(65,70]",College,1646.1058913542463,89.53351625292598,18.38535958650514,6645.760863901708,2019
+2001,70,"(65,70]",College,1781.7049732211171,94.69891142136402,18.81441873490391,3628.0870859303177,2019
+2001,70,"(65,70]",College,1622.669013006886,87.81171786344665,18.47895762078416,7191.999979732112,2019
+2001,23,"(20,25]",College,-20.7583779648049,72.31553235813253,-0.2870528265214442,8042.5858084099455,2019
+2001,23,"(20,25]",College,-24.106503442999234,67.15013718969449,-0.35899410562483336,8041.594753354817,2019
+2001,23,"(20,25]",College,-20.724896710022954,68.87193557917384,-0.3009193299961494,8060.551769779241,2019
+2001,23,"(20,25]",College,-21.59540933435348,72.31553235813253,-0.29862753726827657,8026.829726522099,2019
+2001,23,"(20,25]",College,-22.398959449120124,72.31553235813253,-0.3097392595852357,8028.010213353114,2019
+2001,49,"(45,50]",College,23402.560061208875,516.5395168438037,45.3064272878963,18.687378031860785,2019
+2001,49,"(45,50]",College,23082.981484315223,516.5395168438037,44.68773584905661,18.796529751732592,2019
+2001,49,"(45,50]",College,23402.560061208875,516.5395168438037,45.3064272878963,18.767460349100556,2019
+2001,49,"(45,50]",College,23822.749808722267,516.5395168438037,46.11989795918368,19.34512905952876,2019
+2001,49,"(45,50]",College,23402.727467482786,516.5395168438037,45.30675137979721,19.076149558376407,2019
+2001,43,"(40,45]",College,52.11357306809488,48.21035490542169,1.0809622366466802,4780.553847203124,2019
+2001,43,"(40,45]",College,13.610130068859984,32.71416940010757,0.41603165595930525,4728.458875541811,2019
+2001,43,"(40,45]",College,86.49882172915073,25.826975842190187,3.3491657040174565,4744.61272110285,2019
+2001,43,"(40,45]",College,30.752532517215,20.661580673752148,1.488392054935182,4726.482837918399,2019
+2001,43,"(40,45]",College,62.526243305279266,63.706540410735805,0.9814729053273527,4781.635051628289,2019
+2001,49,"(45,50]",College,28209.128997704665,1324.0629615096168,21.304975531935668,3.473676611509613,2019
+2001,49,"(45,50]",College,38928.15271614384,1739.0163733741392,22.385155949172123,3.4956239602432917,2019
+2001,49,"(45,50]",College,36001.891048201986,1773.452341163726,20.300455903189267,3.489255103361065,2019
+2001,49,"(45,50]",College,212518.41438408569,1807.888308953313,117.5506325980527,3.4964304599236358,2019
+2001,49,"(45,50]",College,66742.70512624331,2410.517745271084,27.688120221134277,3.693339411102496,2019
+2001,56,"(55,60]",HS,5.4574445294567715,84.36812108448795,0.06468609777372636,5561.983910749956,2019
+2001,56,"(55,60]",HS,3.1974598316755927,77.48092752657055,0.04126770204937321,5685.578641443213,2019
+2001,56,"(55,60]",HS,2.8961285386381026,48.21035490542169,0.06007274877606028,5702.924084825733,2019
+2001,56,"(55,60]",HS,0.7365876052027545,67.15013718969449,0.010969264338536577,5685.757899881484,2019
+2001,56,"(55,60]",HS,1.573618974751339,43.04495973698364,0.036557566422795534,5597.441452696245,2019
+2001,26,"(25,30]",HS,101.61560826319817,180.7888308953313,0.5620679538661827,4793.9555341951755,2019
+2001,26,"(25,30]",HS,99.94154552410099,180.7888308953313,0.5528081852687167,4742.427072073389,2019
+2001,26,"(25,30]",HS,99.94154552410099,180.7888308953313,0.5528081852687167,4756.33927368745,2019
+2001,26,"(25,30]",HS,98.26748278500384,180.7888308953313,0.5435484166712508,4794.644827212543,2019
+2001,26,"(25,30]",HS,99.94154552410099,180.7888308953313,0.5528081852687167,4742.623165349493,2019
+2001,25,"(20,25]",NoHS,12.555470543228768,27.548774231669533,0.4557542356565268,7261.66015681062,2019
+2001,25,"(20,25]",NoHS,-2.5110941086457537,27.548774231669533,-0.09115084713130535,7356.242999807588,2019
+2001,25,"(20,25]",NoHS,2.5110941086457537,27.548774231669533,0.09115084713130535,7547.333432790232,2019
+2001,25,"(20,25]",NoHS,2.5110941086457537,27.548774231669533,0.09115084713130535,7331.32056599543,2019
+2001,25,"(20,25]",NoHS,2.5110941086457537,27.548774231669533,0.09115084713130535,7360.776295739223,2019
+2001,46,"(45,50]",College,4550.68844682479,344.35967789586914,13.21492828263381,1898.3935698811324,2019
+2001,46,"(45,50]",College,4701.856312165264,344.35967789586914,13.653910762418176,1909.3779965177298,2019
+2001,46,"(45,50]",College,4517.374598316756,344.35967789586914,13.118186850211785,1917.4963806562832,2019
+2001,46,"(45,50]",College,4742.2012241775055,344.35967789586914,13.771069984597613,1908.0276735709897,2019
+2001,46,"(45,50]",College,4651.634429992349,344.35967789586914,13.508069407008088,1892.9754678156398,2019
+2001,70,"(65,70]",College,8859.140015302219,549.2536862439113,16.129413852250547,525.8151160753052,2019
+2001,70,"(65,70]",College,9767.653863810252,549.2536862439113,17.783501701384406,507.9747695410557,2019
+2001,70,"(65,70]",College,12309.383320581484,549.2536862439113,22.411107342327718,527.8056177459368,2019
+2001,70,"(65,70]",College,12024.156511094108,547.53188785443206,21.96065065399602,515.5502197683851,2019
+2001,70,"(65,70]",College,9715.255700076512,547.53188785443206,17.743725827817777,510.03735303754456,2019
+2001,52,"(50,55]",College,10700.609028309105,344.35967789586914,31.073931459376205,2831.656335077639,2019
+2001,52,"(50,55]",College,10700.609028309105,344.35967789586914,31.073931459376205,2891.760029193,2019
+2001,52,"(50,55]",College,10702.283091048203,344.35967789586914,31.078792837889875,2881.874294050196,2019
+2001,52,"(50,55]",College,10700.609028309105,344.35967789586914,31.073931459376205,2880.1447964601252,2019
+2001,52,"(50,55]",College,10700.609028309105,344.35967789586914,31.073931459376205,2874.470294237173,2019
+2001,39,"(35,40]",College,14631.099081866872,688.7193557917383,21.243920268579135,1573.3579612305853,2019
+2001,39,"(35,40]",College,14678.056541698548,688.7193557917383,21.31210110223335,1556.368576429962,2019
+2001,39,"(35,40]",College,14670.565110941086,688.7193557917383,21.301223767809013,1596.663091263162,2019
+2001,39,"(35,40]",College,14609.210711553174,688.7193557917383,21.212139006546014,1554.0627222000635,2019
+2001,39,"(35,40]",College,14636.832746748278,688.7193557917383,21.25224537928379,1537.8345326191723,2019
+2001,64,"(60,65]",HS,950.8174139250191,80.92452430552926,11.74943469961248,7583.959408044728,2019
+2001,64,"(60,65]",HS,924.0324100994645,80.92452430552926,11.41844722634136,6890.177666073323,2019
+2001,64,"(60,65]",HS,906.1199387911247,80.92452430552926,11.197099353591295,6442.710316262281,2019
+2001,64,"(60,65]",HS,929.7242234123947,80.92452430552926,11.48878206441147,7215.495897059003,2019
+2001,64,"(60,65]",HS,860.401285386381,80.92452430552926,10.632145110151647,6934.385726233633,2019
+2001,87,"(85,90]",NoHS,64.45141545524102,14.463106471626503,4.456263637530485,5891.1276622433015,2019
+2001,87,"(85,90]",NoHS,15.568783473603673,14.463106471626503,1.0764480994554158,5888.8177738896875,2019
+2001,87,"(85,90]",NoHS,107.97704667176741,14.463106471626503,7.465688431706916,5915.930483255716,2019
+2001,87,"(85,90]",NoHS,43.86044376434583,14.463106471626503,3.032574215670096,5932.4327644282,2019
+2001,87,"(85,90]",NoHS,69.4736036725325,14.463106471626503,4.803504959935457,5929.315769702551,2019
+2001,50,"(45,50]",HS,71.48247895944911,89.53351625292598,0.798387932821895,6890.278956837287,2019
+2001,50,"(45,50]",HS,81.27574598316757,89.53351625292598,0.9077689493794616,7182.0111074039205,2019
+2001,50,"(45,50]",HS,85.29349655700076,89.53351625292598,0.9526432125825657,7214.613080947517,2019
+2001,50,"(45,50]",HS,68.80397857689366,89.53351625292598,0.7684717573531591,7018.327033499483,2019
+2001,50,"(45,50]",HS,76.3372609028309,89.53351625292598,0.8526110008589792,7111.775062938536,2019
+2001,23,"(20,25]",College,487.1522570772762,99.86430658980206,4.878141887854686,417.40487371865595,2019
+2001,23,"(20,25]",College,487.1522570772762,99.86430658980206,4.878141887854686,405.83766687480295,2019
+2001,23,"(20,25]",College,485.47819433817904,99.86430658980206,4.861378513669619,408.83550620010635,2019
+2001,23,"(20,25]",College,480.45600612088754,99.86430658980206,4.811088391114416,418.3150713895569,2019
+2001,23,"(20,25]",College,483.80413159908187,99.86430658980206,4.844615139484551,389.33273368644967,2019
+2001,52,"(50,55]",HS,51.89594491201225,86.08991947396729,0.6028109356950329,7037.561428666542,2019
+2001,52,"(50,55]",HS,43.35822494261668,86.08991947396729,0.5036388140161725,7335.52947077206,2019
+2001,52,"(50,55]",HS,43.35822494261668,86.08991947396729,0.5036388140161725,7368.828324555213,2019
+2001,52,"(50,55]",HS,45.032287681713846,86.08991947396729,0.523084328070851,7168.346584242658,2019
+2001,52,"(50,55]",HS,41.68416220351951,86.08991947396729,0.4841932999614941,7263.792102731076,2019
+2001,52,"(50,55]",HS,10.228523335883704,29.27057262114888,0.3494473261002514,4263.4885108947,2019
+2001,52,"(50,55]",HS,10.220153022188217,29.27057262114888,0.34916136265827086,4282.01758975771,2019
+2001,52,"(50,55]",HS,10.220153022188217,29.27057262114888,0.34916136265827086,4273.440790858977,2019
+2001,52,"(50,55]",HS,10.0527467482785,29.27057262114888,0.3434420938186595,4242.24608143194,2019
+2001,52,"(50,55]",HS,10.220153022188217,29.27057262114888,0.34916136265827086,4278.639492262864,2019
+2001,51,"(50,55]",College,55.210589135424634,17.21798389479346,3.20656526761648,870.8640770601065,2019
+2001,51,"(50,55]",College,55.19384850803366,17.21798389479346,3.205592991913746,889.885345892733,2019
+2001,51,"(50,55]",College,55.02644223412395,17.21798389479346,3.195870234886407,899.8535933658935,2019
+2001,51,"(50,55]",College,55.210589135424634,17.21798389479346,3.20656526761648,882.5273870081525,2019
+2001,51,"(50,55]",College,55.210589135424634,17.21798389479346,3.20656526761648,882.1208938084756,2019
+2001,31,"(30,35]",College,91.06901300688601,86.08991947396729,1.0578359645745092,7135.439566416952,2019
+2001,31,"(30,35]",College,90.90160673297629,86.08991947396729,1.0558914131690413,7228.030287943727,2019
+2001,31,"(30,35]",College,92.57566947207346,86.08991947396729,1.0753369272237199,7285.730671104053,2019
+2001,31,"(30,35]",College,91.06901300688601,86.08991947396729,1.0578359645745092,7132.1352246097795,2019
+2001,31,"(30,35]",College,92.74307574598316,86.08991947396729,1.0772814786291875,7220.57469556818,2019
+2001,43,"(40,45]",HS,397.72382555470546,60.2629436317771,6.5998074701578755,6227.758062436015,2019
+2001,43,"(40,45]",HS,446.9914919663351,98.14250820032271,4.554514655912017,5664.950426158188,2019
+2001,43,"(40,45]",HS,559.7898393267025,196.28501640064542,2.851923440677165,5295.643273798599,2019
+2001,43,"(40,45]",HS,335.48217291507274,60.2629436317771,5.566972880796524,5922.28617844933,2019
+2001,43,"(40,45]",HS,325.0192807957154,98.14250820032271,3.311707503259497,5693.90605660041,2019
+2001,75,"(70,75]",College,3207.7050956388675,94.69891142136402,33.87267126404593,3434.7052012255504,2019
+2001,75,"(70,75]",College,3209.529824024484,79.20272591604991,40.52297173996752,3469.643632117447,2019
+2001,75,"(70,75]",College,3302.4737872991586,82.64632269500859,39.95911348029779,4409.317864302733,2019
+2001,75,"(70,75]",College,3158.521132364193,79.20272591604991,39.8789447690479,3624.3712913319077,2019
+2001,75,"(70,75]",College,3703.8972915072686,79.20272591604991,46.764770387236105,1552.547560383528,2019
+2001,36,"(35,40]",College,471.06451415455246,146.35286310574438,3.218690117556457,6428.833208972247,2019
+2001,36,"(35,40]",College,948.0217291507269,334.02888755899306,2.838142940506294,5456.395739119895,2019
+2001,36,"(35,40]",College,835.1899005355777,203.1722099585628,4.110748712660632,5111.198156418896,2019
+2001,36,"(35,40]",College,1130.661973986228,220.39019385335627,5.13027351270697,5683.483047267097,2019
+2001,36,"(35,40]",College,433.4148431522571,439.05858931723316,0.9871458017169132,6495.586582622551,2019
+2001,47,"(45,50]",NoHS,354.56648814078045,189.39782284272803,1.872072671264046,6622.994572814458,2019
+2001,47,"(45,50]",NoHS,347.8702371843918,189.39782284272803,1.8367171911646307,7016.225093134855,2019
+2001,47,"(45,50]",NoHS,347.8702371843918,189.39782284272803,1.8367171911646307,7066.836720100144,2019
+2001,47,"(45,50]",NoHS,360.9279265493497,189.39782284272803,1.9056603773584908,6835.270113081766,2019
+2001,47,"(45,50]",NoHS,347.8702371843918,189.39782284272803,1.8367171911646307,6882.198042938607,2019
+2001,51,"(50,55]",HS,698.4691966335118,101.5861049792814,6.875637143248729,6957.428320915473,2019
+2001,51,"(50,55]",HS,597.5064728385616,87.81171786344665,6.804404780780237,6253.296657862993,2019
+2001,51,"(50,55]",HS,604.2194644223412,91.25531464240532,6.621197535618021,5647.4466989508865,2019
+2001,51,"(50,55]",HS,671.5000459066564,99.86430658980206,6.724124653114336,6465.519268875309,2019
+2001,51,"(50,55]",HS,569.0474062739097,110.19509692667813,5.163999326145552,6345.475586835855,2019
+2001,55,"(50,55]",College,111.50931905126242,86.08991947396729,1.2952656911821332,5408.380711123446,2019
+2001,55,"(50,55]",College,111.50931905126242,86.08991947396729,1.2952656911821332,5711.834051546735,2019
+2001,55,"(50,55]",College,111.50931905126242,86.08991947396729,1.2952656911821332,5850.083897753766,2019
+2001,55,"(50,55]",College,111.50931905126242,86.08991947396729,1.2952656911821332,5601.784342388554,2019
+2001,55,"(50,55]",College,111.50931905126242,86.08991947396729,1.2952656911821332,5637.730461460334,2019
+2001,67,"(65,70]",HS,29.095210405508798,55.097548463339066,0.5280672410473624,7855.322143658872,2019
+2001,67,"(65,70]",HS,21.026228003060446,27.548774231669533,0.7632364266461302,8279.349646362136,2019
+2001,67,"(65,70]",HS,24.7761285386381,37.87956456854561,0.6540763818391849,8609.318928240546,2019
+2001,67,"(65,70]",HS,21.109931140015302,25.826975842190187,0.8173597740983186,7956.040318023505,2019
+2001,67,"(65,70]",HS,27.01937260902831,53.37575007385973,0.5062106400685654,8264.108351888408,2019
+2001,57,"(55,60]",College,71.81729150726856,75.75912913709122,0.9479688101655757,6695.532669728787,2019
+2001,57,"(55,60]",College,71.81729150726856,75.75912913709122,0.9479688101655757,7046.92546939296,2019
+2001,57,"(55,60]",College,71.81729150726856,75.75912913709122,0.9479688101655757,7222.008772258268,2019
+2001,57,"(55,60]",College,71.98469778117827,74.03733074761188,0.9722757027339236,6960.411077287901,2019
+2001,57,"(55,60]",College,71.81729150726856,74.03733074761188,0.9700145964484961,6994.706779392176,2019
+2001,47,"(45,50]",HS,3559.224789594491,793.7490575499784,4.484068051155305,44.82895055276686,2019
+2001,47,"(45,50]",HS,7397.8506503443,578.5242588650602,12.787451065331792,46.69615165683267,2019
+2001,47,"(45,50]",HS,5611.6257077276205,686.997557402259,8.16833429356989,47.03810901370487,2019
+2001,47,"(45,50]",HS,4178.795409334353,762.7566865393503,5.478543135811332,45.921726826244836,2019
+2001,47,"(45,50]",HS,3512.3510328997704,461.44196838046474,7.611685268306139,46.36641879410127,2019
+2001,41,"(40,45]",College,24012.755929609793,688.7193557917383,34.865806700038505,15.26059346607228,2019
+2001,41,"(40,45]",College,16479.473603672533,688.7193557917383,23.927705044281865,15.402459567533606,2019
+2001,41,"(40,45]",College,19827.599081866872,688.7193557917383,28.789083557951486,15.829716560097808,2019
+2001,41,"(40,45]",College,32213.989288446825,688.7193557917383,46.77375336927224,15.840280230196834,2019
+2001,41,"(40,45]",College,41203.70619739863,688.7193557917383,59.826554678475176,15.584451847558572,2019
+2001,28,"(25,30]",College,158.18218821729153,41.323161347504296,3.8279304646386865,5588.047743463401,2019
+2001,28,"(25,30]",College,158.0147819433818,41.323161347504296,3.823879315877295,5527.983876698286,2019
+2001,28,"(25,30]",College,158.18218821729153,41.323161347504296,3.8279304646386865,5544.200557533458,2019
+2001,28,"(25,30]",College,158.18218821729153,41.323161347504296,3.8279304646386865,5588.851214055233,2019
+2001,28,"(25,30]",College,158.34959449120123,41.323161347504296,3.8319816134000773,5528.212451740592,2019
+2001,20,"(15,20]",HS,19.837643458301454,25.826975842190187,0.7680978051597998,5868.551777503491,2019
+2001,20,"(15,20]",HS,19.837643458301454,25.826975842190187,0.7680978051597998,5801.5174198070235,2019
+2001,20,"(15,20]",HS,19.837643458301454,25.826975842190187,0.7680978051597998,5791.619296478081,2019
+2001,20,"(15,20]",HS,19.837643458301454,25.826975842190187,0.7680978051597998,5766.609911339383,2019
+2001,20,"(15,20]",HS,19.837643458301454,25.826975842190187,0.7680978051597998,5804.326441573603,2019
+2001,54,"(50,55]",College,464.82026013771997,123.96948404251289,3.74947321695974,9065.84072776332,2019
+2001,54,"(50,55]",College,381.1171231828616,123.96948404251289,3.074281756727849,9569.703578491326,2019
+2001,54,"(50,55]",College,464.65285386381026,123.96948404251289,3.7481228340392763,9626.29499279705,2019
+2001,54,"(50,55]",College,280.67335883703134,123.96948404251289,2.2640520044495784,9381.29343989052,2019
+2001,54,"(50,55]",College,330.89524100994646,123.96948404251289,2.6691668805887137,9391.253326327453,2019
+2001,40,"(35,40]",College,1592.9878806426932,225.5555890217943,7.062506797332213,3640.1013800174237,2019
+2001,40,"(35,40]",College,4426.272104055088,148.07466149522375,29.892164259297395,1674.4515781084374,2019
+2001,40,"(35,40]",College,1480.8926396327468,123.96948404251289,11.945622352714672,4650.312180827224,2019
+2001,40,"(35,40]",College,1704.5809028309104,421.8406054224397,4.040817505284748,3827.1154239453413,2019
+2001,40,"(35,40]",College,5105.8076511094105,132.5784759899096,38.51158804614715,1640.029468405625,2019
+2001,78,"(75,80]",College,429.64820198928845,98.14250820032271,4.37779928257301,9209.60143670034,2019
+2001,78,"(75,80]",College,416.84162203519514,65.42833880021514,6.370964473177553,9429.580881505508,2019
+2001,78,"(75,80]",College,399.59877582249425,43.04495973698364,9.283288409703504,9608.054628229916,2019
+2001,78,"(75,80]",College,467.06350420811015,39.60136295802496,11.7941270027289,9417.652259313985,2019
+2001,78,"(75,80]",College,407.96908951798014,58.54114524229776,6.968929081066389,9527.847700359953,2019
+2001,64,"(60,65]",HS,-19.00061208875287,34.43596778958692,-0.5517664613015018,8632.631777276154,2019
+2001,64,"(60,65]",HS,35.624055087987756,34.43596778958692,1.0345013477088947,9099.876513663821,2019
+2001,64,"(60,65]",HS,10.513114001530223,34.43596778958692,0.30529457065845206,9069.770720722945,2019
+2001,64,"(60,65]",HS,-11.601254781943382,34.43596778958692,-0.33689353099730457,8640.598641036342,2019
+2001,64,"(60,65]",HS,-9.876970160673299,34.43596778958692,-0.2868213323065075,8643.117224094352,2019
+2001,36,"(35,40]",HS,324.78491201224176,199.7286131796041,1.6261311128224873,10502.722491220487,2019
+2001,36,"(35,40]",HS,216.45631216526397,199.7286131796041,1.0837521410646236,10488.851799530255,2019
+2001,36,"(35,40]",HS,324.85187452180566,199.7286131796041,1.6264663803061887,10497.939297218398,2019
+2001,36,"(35,40]",HS,253.2856924254017,199.7286131796041,1.2681492571003679,10592.884624370623,2019
+2001,36,"(35,40]",HS,266.678194338179,199.7286131796041,1.3352027538406384,10475.582447408297,2019
+2001,37,"(35,40]",NoHS,35.992348890589135,34.43596778958692,1.045196380438968,5388.22308205567,2019
+2001,37,"(35,40]",NoHS,36.15975516449885,34.43596778958692,1.0500577589526374,5341.44502193844,2019
+2001,37,"(35,40]",NoHS,33.98347360367253,34.43596778958692,0.9868598382749324,5368.655387993022,2019
+2001,37,"(35,40]",NoHS,34.48569242540169,34.43596778958692,1.0014439738159415,5356.530617939347,2019
+2001,37,"(35,40]",NoHS,35.49013006885999,34.43596778958692,1.0306122448979593,5376.0740450618705,2019
+2001,32,"(30,35]",HS,0.5022188217291507,51.653951684380374,0.009722757027339237,5859.911732240726,2019
+2001,32,"(30,35]",HS,0.5022188217291507,51.653951684380374,0.009722757027339237,5856.611503854266,2019
+2001,32,"(30,35]",HS,0.5022188217291507,51.653951684380374,0.009722757027339237,5867.2879726740375,2019
+2001,32,"(30,35]",HS,0.5022188217291507,51.653951684380374,0.009722757027339237,5888.130764982421,2019
+2001,32,"(30,35]",HS,0.5189594491201224,51.653951684380374,0.010046848928250545,5889.059592769766,2019
+2001,41,"(40,45]",HS,4.304015302218821,67.15013718969449,0.06409540594176712,6125.207422914786,2019
+2001,41,"(40,45]",HS,4.705790359602142,67.15013718969449,0.07007864103551434,6072.031205691372,2019
+2001,41,"(40,45]",HS,4.304015302218821,67.15013718969449,0.06409540594176712,6102.963320713266,2019
+2001,41,"(40,45]",HS,4.488162203519511,67.15013718969449,0.06683772202640127,6089.180162443293,2019
+2001,41,"(40,45]",HS,4.555124713083397,67.15013718969449,0.06783492787535914,6111.396678548341,2019
+2001,60,"(55,60]",HS,86.0468247895945,39.60136295802496,2.1728248313271163,6125.392178523882,2019
+2001,60,"(55,60]",HS,86.21423106350422,39.60136295802496,2.177052116991177,6402.140888850958,2019
+2001,60,"(55,60]",HS,86.80015302218821,39.60136295802496,2.1918476168153886,6438.484712907141,2019
+2001,60,"(55,60]",HS,86.21423106350422,39.60136295802496,2.177052116991177,6282.49104803179,2019
+2001,60,"(55,60]",HS,86.21423106350422,39.60136295802496,2.177052116991177,6335.212990197953,2019
+2001,38,"(35,40]",HS,1.7577658760520276,20.661580673752148,0.08507412398921833,7310.831026755579,2019
+2001,38,"(35,40]",HS,0.41851568477429224,20.661580673752148,0.020255743806956744,7557.402470990384,2019
+2001,38,"(35,40]",HS,0.7700688599846979,20.661580673752148,0.037270568604800415,7625.794879568882,2019
+2001,38,"(35,40]",HS,0.25110941086457533,20.661580673752148,0.012153446284174047,7449.527507842307,2019
+2001,38,"(35,40]",HS,2.0925784238714615,20.661580673752148,0.10127871903478373,7512.015021202297,2019
+2001,29,"(25,30]",HS,-1.506656465187452,55.097548463339066,-0.027345254139391605,3758.810534480714,2019
+2001,29,"(25,30]",HS,-1.506656465187452,44.76675812646299,-0.03365569740232813,3769.637233575596,2019
+2001,29,"(25,30]",HS,-1.506656465187452,32.71416940010757,-0.04605516486634375,3774.146260698567,2019
+2001,29,"(25,30]",HS,-1.506656465187452,15.496185505314111,-0.09722757027339238,3763.103657451605,2019
+2001,29,"(25,30]",HS,-1.506656465187452,24.105177452710844,-0.06250343803289508,3769.2763837017965,2019
+2001,29,"(25,30]",College,889.7643458301454,2582.6975842190186,0.34450969066872034,134.483618832396,2019
+2001,29,"(25,30]",College,1123.63091048202,2582.6975842190186,0.4350609677833398,7.439915528613571,2019
+2001,29,"(25,30]",College,876.371843917368,2582.6975842190186,0.3393242202541394,8.2546154697583,2019
+2001,29,"(25,30]",College,1145.0589135424636,2582.6975842190186,0.44335772044666927,7.8776303669804335,2019
+2001,29,"(25,30]",College,1066.0431522570773,2582.6975842190186,0.41276344500064177,7.651183440650276,2019
+2001,64,"(60,65]",HS,983.1770466717674,60.2629436317771,16.31478629187524,7491.4953525614865,2019
+2001,64,"(60,65]",HS,983.1770466717674,60.2629436317771,16.31478629187524,6804.199758176724,2019
+2001,64,"(60,65]",HS,983.0096403978577,60.2629436317771,16.312008361296,6365.440078205342,2019
+2001,64,"(60,65]",HS,983.1770466717674,60.2629436317771,16.31478629187524,7126.410702343336,2019
+2001,64,"(60,65]",HS,983.0096403978577,60.2629436317771,16.312008361296,6849.353921869311,2019
+2001,31,"(30,35]",HS,24.575241009946442,36.157766179066265,0.679667015054,6113.959420394278,2019
+2001,31,"(30,35]",HS,24.608722264728385,36.157766179066265,0.6805929919137466,6124.204533402447,2019
+2001,31,"(30,35]",HS,24.575241009946442,36.157766179066265,0.679667015054,6145.628262621269,2019
+2001,31,"(30,35]",HS,24.62546289211936,39.60136295802496,0.6218337211833052,6177.134770467091,2019
+2001,31,"(30,35]",HS,24.591981637337412,39.60136295802496,0.6209882640504929,6129.130781336687,2019
+2001,33,"(30,35]",College,5.524407039020658,103.30790336876075,0.0534751636503658,5831.205194275129,2019
+2001,33,"(30,35]",College,5.524407039020658,103.30790336876075,0.0534751636503658,5840.976498283121,2019
+2001,33,"(30,35]",College,5.524407039020658,103.30790336876075,0.0534751636503658,5861.409437482035,2019
+2001,33,"(30,35]",College,5.524407039020658,103.30790336876075,0.0534751636503658,5891.4588538375265,2019
+2001,33,"(30,35]",College,5.524407039020658,103.30790336876075,0.0534751636503658,5845.674920462143,2019
+2001,36,"(35,40]",College,76853.54185156847,7420.95105865598,10.356292777584702,10.33298516436616,2019
+2001,36,"(35,40]",College,41421.33435348126,8660.64589908111,4.782707298756556,10.435442962152202,2019
+2001,36,"(35,40]",College,47111.47360367254,9642.070981084336,4.886032647560373,10.829210793767967,2019
+2001,36,"(35,40]",College,13335.583779648048,9039.441544766563,1.4752663329482738,10.85909945745182,2019
+2001,36,"(35,40]",College,27990.328997704666,9504.32710992599,2.9450090126288413,10.748342561587899,2019
+2001,77,"(75,80]",HS,391.1782402448355,43.04495973698364,9.087666538313439,8052.7334420749085,2019
+2001,77,"(75,80]",HS,392.5174904361133,43.04495973698364,9.118779360800925,8320.681635659263,2019
+2001,77,"(75,80]",HS,391.1949808722265,43.04495973698364,9.088055448594533,8498.466152865078,2019
+2001,77,"(75,80]",HS,391.1949808722265,43.04495973698364,9.088055448594533,8318.12991821202,2019
+2001,77,"(75,80]",HS,391.8646059678653,43.04495973698364,9.103611859838274,8428.827324774904,2019
+2001,24,"(20,25]",NoHS,-26.952410099464423,46.488556515942335,-0.5797644005191175,5123.132744329259,2019
+2001,24,"(20,25]",NoHS,-28.459066564651877,46.488556515942335,-0.6121735906102483,5169.872962217139,2019
+2001,24,"(20,25]",NoHS,-28.626472838561593,46.488556515942335,-0.6157746117314851,5256.991849940294,2019
+2001,24,"(20,25]",NoHS,-26.785003825554703,46.488556515942335,-0.5761633793978808,5134.119579902899,2019
+2001,24,"(20,25]",NoHS,-26.785003825554703,46.488556515942335,-0.5761633793978808,5128.363906305206,2019
+2001,71,"(70,75]",NoHS,96.05771996939556,29.27057262114888,3.281716460168973,7945.555999222079,2019
+2001,71,"(70,75]",NoHS,87.08474368783473,29.27057262114888,2.9751636503658063,8824.830119305376,2019
+2001,71,"(70,75]",NoHS,98.36792654934965,29.27057262114888,3.360642370155609,8715.593265330592,2019
+2001,71,"(70,75]",NoHS,97.26304514154552,29.27057262114888,3.3228951958141746,8400.899406911089,2019
+2001,71,"(70,75]",NoHS,90.16501912777353,29.27057262114888,3.080398197014655,8552.427131164435,2019
+2001,70,"(65,70]",College,12662.108339709259,1081.2893885930291,11.710193841988184,313.2379130398481,2019
+2001,70,"(65,70]",College,9649.632440703903,1081.2893885930291,8.924190454934529,306.9161349652556,2019
+2001,70,"(65,70]",College,9248.192195868402,1083.0111869825082,8.539332102040207,316.60850175098983,2019
+2001,70,"(65,70]",College,10376.008263198164,1083.0111869825082,9.580702755349975,308.53994444742,2019
+2001,70,"(65,70]",College,10745.97612853864,1083.0111869825082,9.922313137391626,311.3887393874046,2019
+2001,36,"(35,40]",College,55.49517980107116,60.2629436317771,0.9208839870179879,5311.011478621835,2019
+2001,36,"(35,40]",College,55.32777352716144,60.2629436317771,0.9181060564387481,5331.485636240904,2019
+2001,36,"(35,40]",College,55.32777352716144,60.2629436317771,0.9181060564387481,5368.114348920412,2019
+2001,36,"(35,40]",College,55.32777352716144,60.2629436317771,0.9181060564387481,5313.799930395434,2019
+2001,36,"(35,40]",College,55.32777352716144,60.2629436317771,0.9181060564387481,5349.577081241268,2019
+2001,31,"(30,35]",College,18.41469013006886,61.984742021256444,0.29708424250203225,5831.205194275129,2019
+2001,31,"(30,35]",College,20.08875286916603,61.984742021256444,0.32409190091130796,5840.976498283121,2019
+2001,31,"(30,35]",College,20.08875286916603,61.984742021256444,0.32409190091130796,5861.409437482035,2019
+2001,31,"(30,35]",College,20.08875286916603,61.984742021256444,0.32409190091130796,5891.4588538375265,2019
+2001,31,"(30,35]",College,18.41469013006886,61.984742021256444,0.29708424250203225,5845.674920462143,2019
+2001,75,"(70,75]",College,1503.308339709258,53.37575007385973,28.164631646937533,11278.96182332654,2019
+2001,75,"(70,75]",College,1461.4567712318287,53.37575007385973,27.38053833828114,10966.428183792978,2019
+2001,75,"(70,75]",College,1535.115531752104,51.653951684380374,29.719227313566936,10371.391992040726,2019
+2001,75,"(70,75]",College,1489.9158377964804,53.37575007385973,27.913721788167482,11161.037161086704,2019
+2001,75,"(70,75]",College,1466.64636572303,51.653951684380374,28.39369143883969,11146.506249641776,2019
+2001,42,"(40,45]",College,3952.4621270084162,215.22479868491826,18.36434347323835,714.9118547692785,2019
+2001,42,"(40,45]",College,5052.321346595257,215.22479868491826,23.474624566807854,718.6927471728146,2019
+2001,42,"(40,45]",College,4071.3205814843154,215.22479868491826,18.91659607239122,722.3417034508368,2019
+2001,42,"(40,45]",College,5228.097934200459,215.22479868491826,24.29133615710435,717.6441689280448,2019
+2001,42,"(40,45]",College,5979.752104055088,215.22479868491826,27.783750481324603,712.8656302665728,2019
+2001,60,"(55,60]",NoHS,-2.0758377964804895,34.43596778958692,-0.060281093569503265,5556.482013353952,2019
+2001,60,"(55,60]",NoHS,-3.0802754399387915,34.43596778958692,-0.089449364651521,5698.139989168062,2019
+2001,60,"(55,60]",NoHS,-2.5780566182096405,34.43596778958692,-0.07486522911051213,5520.712772247845,2019
+2001,60,"(55,60]",NoHS,-2.912869166029074,32.71416940010757,-0.08903998540826459,5670.063494475174,2019
+2001,60,"(55,60]",NoHS,-1.573618974751339,34.43596778958692,-0.04569695802849441,5616.501579049625,2019
+2001,63,"(60,65]",College,3181.38882938026,165.29264539001719,19.247007765370302,133.65795322180617,2019
+2001,63,"(60,65]",College,2334.145677123183,134.30027437938898,17.380051440024484,75.23609628413409,2019
+2001,63,"(60,65]",College,5557.0177811782705,607.7948314862091,9.142917137992082,135.42836405662325,2019
+2001,63,"(60,65]",College,2947.857077276205,285.8185326535714,10.313736656290159,77.93713483311623,2019
+2001,63,"(60,65]",College,3144.894261667942,199.7286131796041,15.745837372034044,78.94925573786429,2019
+2001,31,"(30,35]",College,136.93833205814843,137.74387115834767,0.994151906045437,5651.301979307817,2019
+2001,31,"(30,35]",College,136.93833205814843,137.74387115834767,0.994151906045437,5641.819685846923,2019
+2001,31,"(30,35]",College,136.93833205814843,137.74387115834767,0.994151906045437,5671.9179060336155,2019
+2001,31,"(30,35]",College,136.93833205814843,137.74387115834767,0.994151906045437,5709.413736561676,2019
+2001,31,"(30,35]",College,136.93833205814843,137.74387115834767,0.994151906045437,5656.437514888134,2019
+2001,61,"(60,65]",HS,140.8723794950268,51.653951684380374,2.7272333461686564,5766.267096942341,2019
+2001,61,"(60,65]",HS,116.12973221117062,34.43596778958692,3.3723382749326145,6103.007330841915,2019
+2001,61,"(60,65]",HS,258.55899005355775,67.15013718969449,3.850461084288577,6148.498666551595,2019
+2001,61,"(60,65]",HS,245.98677888293804,77.48092752657055,3.1748042613271727,5952.2706327504875,2019
+2001,61,"(60,65]",HS,127.46313695485846,72.31553235813253,1.7625969525276417,6020.667065296921,2019
+2001,67,"(65,70]",HS,3233.619586840092,118.80408887407486,27.21808329566445,4137.831683109063,2019
+2001,67,"(65,70]",HS,3235.6284621270083,118.80408887407486,27.234992438320692,4167.698874695625,2019
+2001,67,"(65,70]",HS,3245.0032134659527,118.80408887407486,27.31390177071649,5283.992974501133,2019
+2001,67,"(65,70]",HS,3237.4699311400154,118.80408887407486,27.250492485755583,4342.714483901036,2019
+2001,67,"(65,70]",HS,3232.447742922724,118.80408887407486,27.20821962911498,4419.168997003975,2019
+2001,73,"(70,75]",College,842.8905891354246,86.08991947396729,9.790816326530614,7381.4231235359375,2019
+2001,73,"(70,75]",College,867.499311400153,86.08991947396729,10.076665383134387,6747.57654194237,2019
+2001,73,"(70,75]",College,842.8905891354246,86.08991947396729,9.790816326530614,6206.518216717022,2019
+2001,73,"(70,75]",College,814.4315225707728,86.08991947396729,9.46024258760108,6933.281664166634,2019
+2001,73,"(70,75]",College,873.0237184391736,86.08991947396729,10.140835579514825,6720.827436524261,2019
+2001,26,"(25,30]",HS,23.102065799540934,94.69891142136402,0.24395281268596633,5414.588932265549,2019
+2001,26,"(25,30]",HS,23.102065799540934,94.69891142136402,0.24395281268596633,5374.382821608546,2019
+2001,26,"(25,30]",HS,24.7761285386381,94.69891142136402,0.26163055273567404,5380.301692841086,2019
+2001,26,"(25,30]",HS,24.7761285386381,94.69891142136402,0.26163055273567404,5415.6358569278,2019
+2001,26,"(25,30]",HS,24.7761285386381,94.69891142136402,0.26163055273567404,5365.027656100446,2019
+2001,52,"(50,55]",College,27730.012241775057,891.891565750301,31.091237216092825,499.62323573864614,2019
+2001,52,"(50,55]",College,27899.92960979342,588.8550492019364,47.37996158410401,481.5447704602822,2019
+2001,52,"(50,55]",HS,27755.457995409335,1807.888308953313,15.352418541540606,493.3088271098137,2019
+2001,52,"(50,55]",College,27769.35271614384,2203.9019385335628,12.600085435117443,508.8677648742746,2019
+2001,52,"(50,55]",HS,27799.48584544759,2307.209841902323,12.048962925074283,501.9481769074699,2019
+2001,56,"(55,60]",College,781.6198928844682,122.24768565303354,6.393739797274211,9226.41638146963,2019
+2001,56,"(55,60]",College,983.8466717674063,122.24768565303354,8.047977894320098,8388.486286466099,2019
+2001,56,"(55,60]",College,699.4234123947972,123.96948404251289,5.641899841697685,7842.71528700702,2019
+2001,56,"(55,60]",College,884.4073450650345,123.96948404251289,7.134072968810167,8781.020536567103,2019
+2001,56,"(55,60]",College,754.5000765110941,123.96948404251289,6.0861758225302705,8433.655676886894,2019
+2001,21,"(20,25]",HS,2.17628156082632,48.21035490542169,0.04514137191264646,6136.3331717821475,2019
+2001,21,"(20,25]",HS,3.850344299923489,48.21035490542169,0.07986550415314372,6142.570276065928,2019
+2001,21,"(20,25]",HS,3.850344299923489,48.21035490542169,0.07986550415314372,6138.405700488804,2019
+2001,21,"(20,25]",HS,2.17628156082632,48.21035490542169,0.04514137191264646,6084.1871697277165,2019
+2001,21,"(20,25]",HS,2.17628156082632,48.21035490542169,0.04514137191264646,6114.395574768068,2019
+2001,30,"(25,30]",HS,5.357000765110941,41.323161347504296,0.12963676036452318,4566.0681859314345,2019
+2001,30,"(25,30]",HS,5.357000765110941,41.323161347504296,0.12963676036452318,4589.478170328054,2019
+2001,30,"(25,30]",HS,5.189594491201225,41.323161347504296,0.12558561160313184,4602.651460743439,2019
+2001,30,"(25,30]",HS,5.357000765110941,41.323161347504296,0.12963676036452318,4596.383865269528,2019
+2001,30,"(25,30]",HS,5.189594491201225,41.323161347504296,0.12558561160313184,4567.424764516773,2019
+2001,30,"(25,30]",HS,5.022188217291507,129.1348792109509,0.038891028109356955,5172.457598906778,2019
+2001,30,"(25,30]",HS,5.022188217291507,129.1348792109509,0.038891028109356955,5181.125044826358,2019
+2001,30,"(25,30]",HS,5.022188217291507,129.1348792109509,0.038891028109356955,5199.249687692842,2019
+2001,30,"(25,30]",HS,5.189594491201225,129.1348792109509,0.04018739571300219,5225.904440319843,2019
+2001,30,"(25,30]",HS,5.022188217291507,129.1348792109509,0.038891028109356955,5185.292689197133,2019
+2001,45,"(40,45]",College,267.43152257077276,92.97711303188467,2.876315620587858,1836.3891432177788,2019
+2001,45,"(40,45]",College,267.6826319816373,92.97711303188467,2.879016386428785,1954.7635282600554,2019
+2001,45,"(40,45]",College,267.5152257077276,92.97711303188467,2.877215875868167,1910.739119478801,2019
+2001,45,"(40,45]",College,267.43152257077276,92.97711303188467,2.876315620587858,1882.1694443653294,2019
+2001,45,"(40,45]",College,267.5152257077276,92.97711303188467,2.877215875868167,1848.1466812453793,2019
+2001,42,"(40,45]",HS,0.6361438408569243,43.04495973698364,0.014778590681555643,5639.199030635157,2019
+2001,42,"(40,45]",HS,0.7198469778117828,43.04495973698364,0.01672314208702349,5590.242113437992,2019
+2001,42,"(40,45]",HS,0.3515531752104055,43.04495973698364,0.00816711590296496,5618.719900556576,2019
+2001,42,"(40,45]",HS,0.6361438408569243,43.04495973698364,0.014778590681555643,5606.030375551375,2019
+2001,42,"(40,45]",HS,0.7365876052027545,43.04495973698364,0.01711205236811706,5626.484108369465,2019
+2001,51,"(50,55]",HS,15.83663351185922,70.59373396865318,0.22433483287470535,5076.5305637080255,2019
+2001,51,"(50,55]",HS,15.81989288446825,72.31553235813253,0.21876203311513284,5162.747648511153,2019
+2001,51,"(50,55]",HS,15.81989288446825,70.59373396865318,0.2240976924594044,5157.713217326166,2019
+2001,51,"(50,55]",HS,15.81989288446825,70.59373396865318,0.2240976924594044,5096.848988837114,2019
+2001,51,"(50,55]",HS,15.970558530986994,72.31553235813253,0.22084548104956267,5132.527859127074,2019
+2001,62,"(60,65]",College,39217.430757459835,1721.798389479346,22.777016750096262,18.817459411240698,2019
+2001,62,"(60,65]",College,45144.14855394032,1721.798389479346,26.219183865999227,18.865837731481182,2019
+2001,62,"(60,65]",College,40740.15822494262,1721.798389479346,23.66139872930304,19.064653869519162,2019
+2001,62,"(60,65]",College,41379.114491201224,1721.798389479346,24.032496919522522,19.534039473301,2019
+2001,62,"(60,65]",College,42393.57977046671,1721.798389479346,24.62168627262225,19.24574996333149,2019
+2001,85,"(80,85]",HS,239.9768936495792,72.31553235813253,3.3184695711168564,9898.055746111528,2019
+2001,85,"(80,85]",HS,250.35608263198165,72.31553235813253,3.4619959843775785,10134.479528687329,2019
+2001,85,"(80,85]",HS,247.00795715378732,61.984742021256444,3.9849799982886243,10326.294897293392,2019
+2001,85,"(80,85]",HS,239.47467482785004,68.87193557917384,3.4771009819021947,10121.659194578679,2019
+2001,85,"(80,85]",HS,261.7397092578424,68.87193557917384,3.800382653061224,10240.092182796148,2019
+2001,43,"(40,45]",HS,143.31651109410865,61.984742021256444,2.3121256364180893,6615.09156554341,2019
+2001,43,"(40,45]",HS,191.14448355011476,61.984742021256444,3.083734437171095,6790.522295245047,2019
+2001,43,"(40,45]",HS,448.0796327467483,61.984742021256444,7.228869849826724,6858.388151524907,2019
+2001,43,"(40,45]",HS,586.6585462892119,61.984742021256444,9.464563812946563,6450.323977428054,2019
+2001,43,"(40,45]",HS,963.5570313695487,61.984742021256444,15.545068027210887,6202.020263275291,2019
+2001,88,"(85,90]",NoHS,399.26396327467484,25.826975842190187,15.459183673469388,8704.994344515271,2019
+2001,88,"(85,90]",NoHS,399.26396327467484,25.826975842190187,15.459183673469388,8912.920804319232,2019
+2001,88,"(85,90]",NoHS,399.26396327467484,25.826975842190187,15.459183673469388,9081.615721961305,2019
+2001,88,"(85,90]",NoHS,399.26396327467484,25.826975842190187,15.459183673469388,8901.645768213844,2019
+2001,88,"(85,90]",NoHS,399.26396327467484,25.826975842190187,15.459183673469388,9005.803445143694,2019
+2001,77,"(75,80]",NoHS,424.3749043611324,24.105177452710844,17.60513504593212,10391.572573583353,2019
+2001,77,"(75,80]",NoHS,424.3749043611324,24.105177452710844,17.60513504593212,10749.582048013648,2019
+2001,77,"(75,80]",NoHS,424.3749043611324,24.105177452710844,17.60513504593212,10946.016263722884,2019
+2001,77,"(75,80]",NoHS,424.3749043611324,24.105177452710844,17.60513504593212,10663.725026361786,2019
+2001,77,"(75,80]",NoHS,424.3749043611324,25.826975842190187,16.431459376203314,10857.69145128893,2019
+2001,43,"(40,45]",College,2.845906656465188,34.43596778958692,0.08264343473238353,5276.617766581794,2019
+2001,43,"(40,45]",College,2.845906656465188,34.43596778958692,0.08264343473238353,5219.117053943973,2019
+2001,43,"(40,45]",College,2.845906656465188,34.43596778958692,0.08264343473238353,5236.947136233677,2019
+2001,43,"(40,45]",College,2.845906656465188,34.43596778958692,0.08264343473238353,5216.93596874665,2019
+2001,43,"(40,45]",College,2.845906656465188,34.43596778958692,0.08264343473238353,5277.811164389134,2019
+2001,26,"(25,30]",HS,266.3433817903596,149.7964598847031,1.7780352218961755,5907.90051172818,2019
+2001,26,"(25,30]",HS,265.00413159908186,149.7964598847031,1.7690947556641392,5984.562470111771,2019
+2001,26,"(25,30]",HS,274.88110175975515,149.7964598847031,1.8350306941254053,6032.336418727942,2019
+2001,26,"(25,30]",HS,268.3522570772762,149.7964598847031,1.7914459212442293,5905.164629450457,2019
+2001,26,"(25,30]",HS,265.23850038255546,149.7964598847031,1.7706593372547454,5978.3894939971615,2019
+2001,27,"(25,30]",HS,4.2856006120887535,24.105177452710844,0.17778755707134605,4955.602256008767,2019
+2001,27,"(25,30]",HS,21.327559296097935,8.953351625292598,2.3820754716981134,4907.810170825501,2019
+2001,27,"(25,30]",HS,-8.186166794185157,20.661580673752148,-0.39620234886407396,4905.013132515999,2019
+2001,27,"(25,30]",HS,21.896740627390972,17.21798389479346,1.2717366191759722,4929.492986479683,2019
+2001,27,"(25,30]",HS,-4.469747513389441,41.323161347504296,-0.10816567192914901,4922.451595258897,2019
+2001,70,"(65,70]",College,8050.718377964805,375.3520489064974,21.448446602113236,1026.33606512087,2019
+2001,70,"(65,70]",College,6935.842815608263,136.02207276886833,50.99056847482245,980.2823399339155,2019
+2001,70,"(65,70]",College,3856.7559602142314,542.3664926859939,7.1109775626333205,1022.2110761054837,2019
+2001,70,"(65,70]",College,7598.2359602142315,432.17139575931583,17.581533703461087,1024.151538355529,2019
+2001,70,"(65,70]",College,9108.742769701608,309.9237101062822,29.390274034141967,973.5846695489097,2019
+2001,43,"(40,45]",HS,68.03390971690895,41.323161347504296,1.6463868566294444,6448.657046461232,2019
+2001,43,"(40,45]",HS,68.03390971690895,41.323161347504296,1.6463868566294444,6619.6739704217325,2019
+2001,43,"(40,45]",HS,68.01716908951798,41.323161347504296,1.6459817417533051,6685.832333911791,2019
+2001,43,"(40,45]",HS,68.1845753634277,41.323161347504296,1.6500328905146966,6526.723099451829,2019
+2001,43,"(40,45]",HS,68.1845753634277,41.323161347504296,1.6500328905146966,6633.887487430571,2019
+2001,45,"(40,45]",College,220.97628156082632,86.08991947396729,2.566807855217559,7324.797369864235,2019
+2001,45,"(40,45]",College,220.97628156082632,84.36812108448795,2.6191916889975086,7415.805623870949,2019
+2001,45,"(40,45]",College,220.97628156082632,86.08991947396729,2.566807855217559,7444.677660601743,2019
+2001,45,"(40,45]",College,220.97628156082632,86.08991947396729,2.566807855217559,7402.246872452963,2019
+2001,45,"(40,45]",College,220.97628156082632,86.08991947396729,2.566807855217559,7407.056895868819,2019
+2001,27,"(25,30]",College,132.58576893649578,94.69891142136402,1.4000770119368502,8145.1030269090015,2019
+2001,27,"(25,30]",College,132.58576893649578,94.69891142136402,1.4000770119368502,8433.116376798649,2019
+2001,27,"(25,30]",College,132.58576893649578,94.69891142136402,1.4000770119368502,8263.454294828443,2019
+2001,27,"(25,30]",College,132.58576893649578,94.69891142136402,1.4000770119368502,8239.75700507673,2019
+2001,27,"(25,30]",College,132.41836266258608,94.69891142136402,1.3983092379318796,8034.560174557269,2019
+2001,64,"(60,65]",College,31779.57000765111,860.899194739673,36.914391605698874,10.719873855226902,2019
+2001,64,"(60,65]",College,31784.592195868405,860.899194739673,36.920225259915284,10.435442962152202,2019
+2001,64,"(60,65]",College,31220.433052792654,860.899194739673,36.26491143627262,10.829210793767967,2019
+2001,64,"(60,65]",College,31285.721499617448,860.899194739673,36.34074894108587,11.208984887044869,2019
+2001,64,"(60,65]",College,31622.208110175976,860.899194739673,36.7316037735849,10.748342561587899,2019
+2001,55,"(50,55]",College,0.8370313695485845,14.463106471626503,0.05787355373416213,4446.591202153589,2019
+2001,55,"(50,55]",College,0.8370313695485845,14.463106471626503,0.05787355373416213,4496.483216055837,2019
+2001,55,"(50,55]",College,0.8370313695485845,14.463106471626503,0.05787355373416213,4413.509075478256,2019
+2001,55,"(50,55]",College,0.8370313695485845,14.463106471626503,0.05787355373416213,4483.7973550717825,2019
+2001,55,"(50,55]",College,0.8370313695485845,14.463106471626503,0.05787355373416213,4444.7729993370385,2019
+2001,46,"(45,50]",College,573.1990818668708,215.22479868491826,2.6632576049287637,6079.03902273218,2019
+2001,46,"(45,50]",College,576.2123947972457,215.22479868491826,2.6772583750481322,5521.296724663747,2019
+2001,46,"(45,50]",College,611.2003060443765,215.22479868491826,2.8398228725452443,5157.971049198755,2019
+2001,46,"(45,50]",College,579.8953328232594,215.22479868491826,2.694370427416249,5779.674965859027,2019
+2001,46,"(45,50]",College,606.178117827085,215.22479868491826,2.81648825567963,5546.671917038943,2019
+2001,29,"(25,30]",NoHS,8.537719969395562,51.653951684380374,0.16528686946476703,7166.165796807205,2019
+2001,29,"(25,30]",NoHS,8.537719969395562,51.653951684380374,0.16528686946476703,7131.839615167984,2019
+2001,29,"(25,30]",NoHS,8.537719969395562,51.653951684380374,0.16528686946476703,7018.857202551279,2019
+2001,29,"(25,30]",NoHS,8.537719969395562,51.653951684380374,0.16528686946476703,7141.366783533158,2019
+2001,29,"(25,30]",NoHS,8.370313695485846,51.653951684380374,0.16204595045565398,7114.519801823985,2019
+2001,62,"(60,65]",College,857.1201224177505,215.22479868491826,3.982441278398151,566.849495594937,2019
+2001,62,"(60,65]",College,857.2038255547055,215.22479868491826,3.982830188679245,561.6814596042875,2019
+2001,62,"(60,65]",College,857.2373068094874,213.5030002954389,4.015106605636777,540.6956422688152,2019
+2001,62,"(60,65]",College,857.1703442999235,213.5030002954389,4.014792968313314,561.0082290226909,2019
+2001,62,"(60,65]",College,856.9527161438408,215.22479868491826,3.9816634578359635,591.9400672946446,2019
+2001,61,"(60,65]",College,55734.90558530987,6095.166298756884,9.144115657135895,9.610553906013468,2019
+2001,61,"(60,65]",College,52427.12501912777,6112.3842826516775,8.57719714513496,9.373037579908969,2019
+2001,61,"(60,65]",College,55523.4714613619,6095.166298756884,9.109426837572252,9.72545276491913,2019
+2001,61,"(60,65]",College,54424.95149196634,6112.3842826516775,8.904046109541346,10.050999098434168,2019
+2001,61,"(60,65]",College,54966.510788064275,6095.166298756884,9.018049400764463,9.656308125742381,2019
+2001,44,"(40,45]",HS,2.17628156082632,72.31553235813253,0.030094247941764306,4150.1734223431695,2019
+2001,44,"(40,45]",HS,2.17628156082632,72.31553235813253,0.030094247941764306,4181.6452225723615,2019
+2001,44,"(40,45]",HS,2.17628156082632,72.31553235813253,0.030094247941764306,4243.299916167811,2019
+2001,44,"(40,45]",HS,2.17628156082632,72.31553235813253,0.030094247941764306,4165.611124073518,2019
+2001,44,"(40,45]",HS,2.17628156082632,72.31553235813253,0.030094247941764306,4167.797781498556,2019
+2001,56,"(55,60]",NoHS,27.203519510329,134.30027437938898,0.20255743806956744,7403.891857468783,2019
+2001,56,"(55,60]",NoHS,25.52945677123183,165.29264539001719,0.1544500465280452,7738.403912082964,2019
+2001,56,"(55,60]",NoHS,29.044988523335885,108.47329853719879,0.26776164194339014,7782.333465515041,2019
+2001,56,"(55,60]",NoHS,27.203519510329,99.86430658980206,0.2724048305073493,7593.780603669438,2019
+2001,56,"(55,60]",NoHS,29.2123947972456,103.30790336876075,0.2827701835451162,7657.506736941783,2019
+2001,41,"(40,45]",HS,0,44.76675812646299,0,5147.22087479998,2019
+2001,41,"(40,45]",HS,0,49.93215329490103,0,5136.291652146734,2019
+2001,41,"(40,45]",HS,0,53.37575007385973,0,5143.725690700244,2019
+2001,41,"(40,45]",HS,0,46.488556515942335,0,5112.007340808706,2019
+2001,41,"(40,45]",HS,0,48.21035490542169,0,5169.869575534069,2019
+2001,67,"(65,70]",HS,1478.6996174445294,103.30790336876075,14.313518803747913,7344.076637533498,2019
+2001,67,"(65,70]",HS,1481.8803366488141,103.30790336876075,14.344307534334488,6610.757550865144,2019
+2001,67,"(65,70]",HS,1480.3736801836267,103.30790336876075,14.32972339879348,6241.049922221446,2019
+2001,67,"(65,70]",HS,1482.0477429227237,103.30790336876075,14.345927993839044,6972.573221039371,2019
+2001,67,"(65,70]",HS,1482.0477429227237,103.30790336876075,14.345927993839044,6654.555203511742,2019
+2001,40,"(35,40]",College,1698.1859831675595,413.231613475043,4.109525815042999,3113.3514665390308,2019
+2001,40,"(35,40]",College,1696.5119204284622,413.231613475043,4.105474666281607,3172.079203291675,2019
+2001,40,"(35,40]",College,1696.3445141545526,413.231613475043,4.105069551405468,3979.766340284451,2019
+2001,40,"(35,40]",College,1698.0185768936497,413.231613475043,4.1091207001668595,3274.371795375449,2019
+2001,40,"(35,40]",College,1696.3445141545526,413.231613475043,4.105069551405468,3354.2420247853806,2019
+2001,58,"(55,60]",NoHS,0.1674062739097169,20.661580673752148,0.008102297522782699,3884.654671627444,2019
+2001,58,"(55,60]",NoHS,0.1674062739097169,14.807466149522373,0.01130553142713865,3977.919581381471,2019
+2001,58,"(55,60]",NoHS,0.1674062739097169,20.661580673752148,0.008102297522782699,3911.4140935971873,2019
+2001,58,"(55,60]",NoHS,0.1674062739097169,17.21798389479346,0.009722757027339237,3942.4039850248455,2019
+2001,58,"(55,60]",NoHS,0.1674062739097169,20.661580673752148,0.008102297522782699,3920.1017109134764,2019
+2001,78,"(75,80]",College,95297.52807957155,4425.021860961919,21.536058142514037,30.034074018195753,2019
+2001,78,"(75,80]",College,123898.88997704667,4631.6376676994405,26.75055754924541,32.705553504863516,2019
+2001,78,"(75,80]",College,120137.27100229534,2066.1580673752146,58.14524691952254,31.929708443462165,2019
+2001,78,"(75,80]",College,100071.28538638103,4373.367909277539,22.88197276384926,31.36954346539318,2019
+2001,78,"(75,80]",College,129527.08890589136,2892.621294325301,44.77844685717953,33.1421173808693,2019
+2001,51,"(50,55]",HS,537.3741392501913,118.80408887407486,4.523195660544776,7014.931187288981,2019
+2001,51,"(50,55]",HS,486.9848508033665,130.8566776004303,3.7215131832276107,7311.941072398789,2019
+2001,51,"(50,55]",HS,511.9283856159143,117.08229048459552,4.3723810278828505,7345.132849162948,2019
+2001,51,"(50,55]",HS,553.9473603672533,142.9092663267857,3.8762172293331973,7145.29578530844,2019
+2001,51,"(50,55]",HS,486.8174445294568,141.18746793730637,3.448021638475915,7240.434385677037,2019
+2001,51,"(50,55]",HS,10261.502371843917,883.2825738029044,11.617462719392071,164.8103080219313,2019
+2001,51,"(50,55]",HS,10261.502371843917,883.2825738029044,11.617462719392071,162.36084482647135,2019
+2001,51,"(50,55]",HS,10259.828309104822,883.2825738029044,11.615567445117737,167.13291760721836,2019
+2001,51,"(50,55]",HS,10261.502371843917,885.0043721923838,11.594860651844614,163.3808115109518,2019
+2001,51,"(50,55]",HS,10261.502371843917,885.0043721923838,11.594860651844614,164.37241073663125,2019
+2001,47,"(45,50]",College,122902.32042846213,19955.64333406562,6.1587751580356045,13.09645278129155,2019
+2001,47,"(45,50]",College,20156.8537413925,23261.496241865963,0.8665329835969133,13.783551358949916,2019
+2001,47,"(45,50]",College,16240.45092578424,9900.340739506239,1.640393129195895,13.994672583562851,2019
+2001,47,"(45,50]",College,18859.354674827853,9676.506948873925,1.948983737052197,13.627397009504119,2019
+2001,47,"(45,50]",College,24820.94319816373,23278.71422576076,1.0662506080639242,13.877685040117786,2019
+2001,37,"(35,40]",NoHS,-30.97016067329763,20.661580673752148,-1.4989250417147995,7651.6262630956135,2019
+2001,37,"(35,40]",NoHS,-30.80275439938791,20.661580673752148,-1.4908227441920165,7675.0741586593285,2019
+2001,37,"(35,40]",NoHS,-30.80275439938791,20.661580673752148,-1.4908227441920165,7601.769972572215,2019
+2001,37,"(35,40]",NoHS,-30.80275439938791,20.661580673752148,-1.4908227441920165,7655.663876026039,2019
+2001,37,"(35,40]",NoHS,-30.97016067329763,20.661580673752148,-1.4989250417147995,7739.190771694164,2019
+2001,50,"(45,50]",College,1101.9517980107116,185.95422606376934,5.925930382635235,574.1731051812989,2019
+2001,50,"(45,50]",College,1101.784391736802,185.95422606376934,5.925030127354926,568.7520796573788,2019
+2001,50,"(45,50]",College,1101.784391736802,185.95422606376934,5.925030127354926,547.5403683563734,2019
+2001,50,"(45,50]",College,1104.128079571538,185.95422606376934,5.937633701279254,568.1377773906722,2019
+2001,50,"(45,50]",College,1101.6169854628922,185.95422606376934,5.924129872074617,599.6555696656235,2019
+2001,34,"(30,35]",College,458.9442999234889,103.30790336876075,4.4424897317417535,7782.95972099871,2019
+2001,34,"(30,35]",College,425.46304514154554,103.30790336876075,4.118397830830445,6990.377849151434,2019
+2001,34,"(30,35]",College,425.46304514154554,103.30790336876075,4.118397830830445,6319.698850314722,2019
+2001,34,"(30,35]",College,425.46304514154554,103.30790336876075,4.118397830830445,7193.7234337277305,2019
+2001,34,"(30,35]",College,458.9442999234889,103.30790336876075,4.4424897317417535,7108.280082694751,2019
+2001,76,"(75,80]",NoHS,0,2.066158067375215,0,5403.251719915478,2019
+2001,76,"(75,80]",NoHS,0,2.066158067375215,0,5389.060869477839,2019
+2001,76,"(75,80]",NoHS,0,2.066158067375215,0,5404.834788159383,2019
+2001,76,"(75,80]",NoHS,0,2.066158067375215,0,5411.422440943658,2019
+2001,76,"(75,80]",NoHS,0,2.066158067375215,0,5451.799610318525,2019
+2001,78,"(75,80]",College,2238.5566947207344,70.59373396865318,31.71041633404397,3931.2883663522603,2019
+2001,78,"(75,80]",College,1413.7459831675594,70.59373396865318,20.02650807216582,8023.706099186039,2019
+2001,78,"(75,80]",College,2679.1700076511092,117.08229048459552,22.882794627284873,5045.794119841664,2019
+2001,78,"(75,80]",College,1754.2503442999234,129.1348792109509,13.584636118598384,4149.024183622407,2019
+2001,78,"(75,80]",College,1542.9836266258608,48.21035490542169,32.005232686066336,8155.462168807321,2019
+2001,46,"(45,50]",College,54567.74904361133,1842.3242767429003,29.61897084702334,207.80502897288798,2019
+2001,46,"(45,50]",College,54567.74904361133,1842.3242767429003,29.61897084702334,194.79556708313498,2019
+2001,46,"(45,50]",College,54567.74904361133,1842.3242767429003,29.61897084702334,204.6977452387666,2019
+2001,46,"(45,50]",College,54567.74904361133,1825.1062928481062,29.898395100297158,213.1017896887116,2019
+2001,46,"(45,50]",College,54567.74904361133,1842.3242767429003,29.61897084702334,204.86089829700504,2019
+2001,43,"(40,45]",HS,3.8336036725325173,27.548774231669533,0.13915695995379285,5954.2269886765735,2019
+2001,43,"(40,45]",HS,3.8168630451415457,27.548774231669533,0.13854928763958413,5918.207535393495,2019
+2001,43,"(40,45]",HS,3.8336036725325173,27.548774231669533,0.13915695995379285,5847.682223608999,2019
+2001,43,"(40,45]",HS,3.8336036725325173,27.548774231669533,0.13915695995379285,5897.581268459491,2019
+2001,43,"(40,45]",HS,3.8168630451415457,27.548774231669533,0.13854928763958413,5952.471537108986,2019
+2001,24,"(20,25]",HS,1.1718439173680184,94.69891142136402,0.012374418034795394,5088.3609847925245,2019
+2001,24,"(20,25]",HS,1.0044376434583013,94.69891142136402,0.010606644029824622,5105.263653868153,2019
+2001,24,"(20,25]",HS,1.0044376434583013,94.69891142136402,0.010606644029824622,5114.096792745473,2019
+2001,24,"(20,25]",HS,1.0044376434583013,94.69891142136402,0.010606644029824622,5059.826615864527,2019
+2001,24,"(20,25]",HS,1.0044376434583013,94.69891142136402,0.010606644029824622,5068.072284084831,2019
+2001,34,"(30,35]",HS,1.2220657995409336,37.87956456854561,0.03226187559071656,4644.049283802391,2019
+2001,34,"(30,35]",HS,1.0714001530221884,37.87956456854561,0.028284384079532328,4657.133383524392,2019
+2001,34,"(30,35]",HS,1.0546595256312166,37.87956456854561,0.027842440578289634,4659.272848390808,2019
+2001,34,"(30,35]",HS,1.08814078041316,37.87956456854561,0.028726327580775018,4661.295460235201,2019
+2001,34,"(30,35]",HS,1.0546595256312166,37.87956456854561,0.027842440578289634,4647.351740931046,2019
+2001,46,"(45,50]",HS,143.63458301453713,168.7362421689759,0.8512372989241904,5721.929190216744,2019
+2001,46,"(45,50]",HS,106.80520275439939,168.7362421689759,0.6329713248410646,5793.022322061472,2019
+2001,46,"(45,50]",HS,100.27635807192044,168.7362421689759,0.5942787203445106,5815.576358904951,2019
+2001,46,"(45,50]",HS,131.91614384085693,168.7362421689759,0.7817890344431958,5782.430600324474,2019
+2001,46,"(45,50]",HS,66.62769701606733,168.7362421689759,0.3948629894776547,5786.18805762999,2019
+2001,39,"(35,40]",College,2421.699158377965,344.35967789586914,7.032470157874472,3904.5692452977187,2019
+2001,39,"(35,40]",College,2423.3732211170623,344.35967789586914,7.037331536388141,3935.11134797633,2019
+2001,39,"(35,40]",College,2421.699158377965,344.35967789586914,7.032470157874472,4776.243091219185,2019
+2001,39,"(35,40]",College,2423.3732211170623,344.35967789586914,7.037331536388141,4012.780583526742,2019
+2001,39,"(35,40]",College,2420.0250956388677,344.35967789586914,7.0276087793608015,4206.139929448165,2019
+2001,47,"(45,50]",HS,201.30604437643458,86.08991947396729,2.3383230650750866,6056.491173111837,2019
+2001,47,"(45,50]",HS,201.30604437643458,86.08991947396729,2.3383230650750866,6392.756535518147,2019
+2001,47,"(45,50]",HS,201.13863810252485,86.08991947396729,2.3363785136696187,6433.123475912952,2019
+2001,47,"(45,50]",HS,201.30604437643458,86.08991947396729,2.3383230650750866,6208.802137206456,2019
+2001,47,"(45,50]",HS,201.30604437643458,86.08991947396729,2.3383230650750866,6310.80602523044,2019
+2001,71,"(70,75]",College,1132.3360367253254,172.17983894793457,6.576472853292262,979.0282970673625,2019
+2001,71,"(70,75]",College,1119.2783473603672,172.17983894793457,6.5006353484790145,985.2662481325558,2019
+2001,71,"(70,75]",College,1294.0504973221116,172.17983894793457,7.515691182133231,940.9858099705236,2019
+2001,71,"(70,75]",College,1244.4982402448356,172.17983894793457,7.227897574123991,981.1859317790735,2019
+2001,71,"(70,75]",College,1148.7418515684774,172.17983894793457,6.671755872160185,1040.9468418743072,2019
+2001,60,"(55,60]",HS,432.7452180566182,92.97711303188467,4.654319799198506,7217.295301036416,2019
+2001,60,"(55,60]",HS,275.0485080336649,65.42833880021514,4.203813104189044,7596.07107989271,2019
+2001,60,"(55,60]",HS,487.3531446059679,122.24768565303354,3.9866042616887314,6412.363680827717,2019
+2001,60,"(55,60]",HS,280.9579495026779,82.64632269500859,3.399521483121551,7502.814882602409,2019
+2001,60,"(55,60]",HS,383.86258607498087,67.15013718969449,5.716482529150992,7539.783145151853,2019
+2001,61,"(60,65]",HS,47.57686304514154,11.019509692667812,4.31751179245283,8723.783922610413,2019
+2001,61,"(60,65]",HS,45.90280030604438,11.019509692667812,4.165593713900655,8731.102083486385,2019
+2001,61,"(60,65]",HS,47.57686304514154,11.019509692667812,4.31751179245283,8722.680956773103,2019
+2001,61,"(60,65]",HS,47.57686304514154,10.847329853719879,4.386043725666367,8731.834908657065,2019
+2001,61,"(60,65]",HS,47.57686304514154,10.847329853719879,4.386043725666367,8734.380085487966,2019
+2001,78,"(75,80]",HS,577.5516449885233,89.53351625292598,6.450675335446225,8658.74254453064,2019
+2001,78,"(75,80]",HS,577.5516449885233,89.53351625292598,6.450675335446225,8946.85520096065,2019
+2001,78,"(75,80]",HS,579.2257077276205,89.53351625292598,6.469372945114185,9138.018906298968,2019
+2001,78,"(75,80]",HS,579.2257077276205,89.53351625292598,6.469372945114185,8944.111453811809,2019
+2001,78,"(75,80]",HS,577.5516449885233,89.53351625292598,6.450675335446225,9063.139402603349,2019
+2001,46,"(45,50]",College,2258.1432287681714,583.6896540334982,3.8687395145067547,464.9700132848824,2019
+2001,46,"(45,50]",College,2042.1891354246366,537.2010975175559,3.8015356723240816,457.9852286762234,2019
+2001,46,"(45,50]",College,2112.499770466718,175.6234357268933,12.028575581175867,484.8202695286229,2019
+2001,46,"(45,50]",College,1869.760673297628,225.5555890217943,8.289578109797858,470.80254051315814,2019
+2001,46,"(45,50]",College,1928.3528691660292,623.2910169915232,3.0938242596110688,470.6526234339973,2019
+2001,55,"(50,55]",HS,39.29025248661056,24.105177452710844,1.6299507673689422,7015.212887757176,2019
+2001,55,"(50,55]",HS,43.86044376434583,25.826975842190187,1.6982415607752535,7432.713270779941,2019
+2001,55,"(50,55]",HS,45.36710022953328,37.87956456854561,1.1976668883676969,7456.467403311915,2019
+2001,55,"(50,55]",HS,47.878194338179036,25.826975842190187,1.8538056732126813,7220.814789629047,2019
+2001,55,"(50,55]",HS,53.73741392501913,25.826975842190187,2.080670003850597,7339.260162375671,2019
+2001,54,"(50,55]",College,50959.306809487374,3632.9946018014193,14.026804990081521,13.681388244315333,2019
+2001,54,"(50,55]",College,55819.11094108646,3632.9946018014193,15.364490471141512,13.718696140833796,2019
+2001,54,"(50,55]",College,53684.68094873757,3632.9946018014193,14.776977901953952,13.873613257978542,2019
+2001,54,"(50,55]",College,56041.76128538638,3632.9946018014193,15.425776096005784,14.203841285990631,2019
+2001,54,"(50,55]",College,49094.56832440704,3632.9946018014193,13.513526361988953,14.001067434213638,2019
+2001,40,"(35,40]",College,615.8876817138485,167.01444377949653,3.6876312477918614,7064.733829611048,2019
+2001,40,"(35,40]",College,615.8876817138485,167.01444377949653,3.6876312477918614,6424.364407828666,2019
+2001,40,"(35,40]",College,615.8876817138485,167.01444377949653,3.6876312477918614,6002.021693602468,2019
+2001,40,"(35,40]",College,617.5617444529456,167.01444377949653,3.697654708644788,6717.774839889826,2019
+2001,40,"(35,40]",College,615.8876817138485,167.01444377949653,3.6876312477918614,6459.1756672864485,2019
+2001,39,"(35,40]",College,3142.6342769701605,1091.6201789299055,2.8788715504057696,309.242546203524,2019
+2001,39,"(35,40]",College,4440.032899770466,1093.3419773193848,4.06097359460795,303.1006106689578,2019
+2001,39,"(35,40]",College,3278.2333588370316,1091.6201789299055,3.0030897395563185,312.65062284978126,2019
+2001,39,"(35,40]",College,3571.194338179036,1091.6201789299055,3.271462370437133,304.66808352753003,2019
+2001,39,"(35,40]",College,4590.698546289213,1093.3419773193848,4.198776450113547,307.38223852495236,2019
+2001,45,"(40,45]",HS,17.159143075745984,44.76675812646299,0.38330099819318153,6273.928665769352,2019
+2001,45,"(40,45]",HS,17.159143075745984,44.76675812646299,0.38330099819318153,6373.2176010787825,2019
+2001,45,"(40,45]",HS,17.159143075745984,44.76675812646299,0.38330099819318153,6386.342017782014,2019
+2001,45,"(40,45]",HS,17.159143075745984,44.76675812646299,0.38330099819318153,6340.580933604581,2019
+2001,45,"(40,45]",HS,17.159143075745984,44.76675812646299,0.38330099819318153,6354.355367048193,2019
+2001,61,"(60,65]",NoHS,48.949594491201225,30.992371010628222,1.5794078637744406,5914.291505504027,2019
+2001,61,"(60,65]",NoHS,48.51433817903597,34.43596778958692,1.4088274932614555,6202.267617767024,2019
+2001,61,"(60,65]",NoHS,58.70938026013772,27.548774231669533,2.131106805929919,6226.081609859344,2019
+2001,61,"(60,65]",NoHS,51.02543228768172,46.488556515942335,1.0975912377529629,6066.276883670829,2019
+2001,61,"(60,65]",NoHS,74.3283856159143,44.76675812646299,1.6603477385148544,6126.492472012725,2019
+2001,69,"(65,70]",NoHS,156.19005355776588,37.87956456854561,4.123332866594322,8152.084437714048,2019
+2001,69,"(65,70]",NoHS,156.19005355776588,37.87956456854561,4.123332866594322,8551.877411586142,2019
+2001,69,"(65,70]",NoHS,156.02264728385614,37.87956456854561,4.118913431581895,8922.481695435989,2019
+2001,69,"(65,70]",NoHS,156.02264728385614,36.157766179066265,4.315052166419128,8224.881634896883,2019
+2001,69,"(65,70]",NoHS,156.02264728385614,36.157766179066265,4.315052166419128,8582.821432885476,2019
+2001,25,"(20,25]",HS,5.189594491201225,22.383379063231494,0.23185035988270494,9457.849953507714,2019
+2001,25,"(20,25]",HS,5.022188217291507,22.383379063231494,0.22437131601552088,9526.909824100094,2019
+2001,25,"(20,25]",HS,5.8592195868400925,22.383379063231494,0.26176653535144107,9611.469092759762,2019
+2001,25,"(20,25]",HS,5.022188217291507,22.383379063231494,0.22437131601552088,9478.996543015051,2019
+2001,25,"(20,25]",HS,5.189594491201225,22.383379063231494,0.23185035988270494,9491.451023283931,2019
+2001,71,"(70,75]",College,18215.978882938027,530.3139039596384,34.34942728622937,15.272420679401336,2019
+2001,71,"(70,75]",College,19689.154093343535,623.2910169915232,31.58902271426657,15.345875101421958,2019
+2001,71,"(70,75]",College,19299.097475133894,564.7498717492255,34.17282312142528,15.582951566412515,2019
+2001,71,"(70,75]",College,19677.435654169854,637.065404107358,30.887622412555025,15.197423224631342,2019
+2001,71,"(70,75]",College,18438.62922723795,674.9449686759036,27.318714981179223,15.011662603019342,2019
+2001,68,"(65,70]",HS,659.2459066564652,37.87956456854561,17.403735078937235,8173.940733476442,2019
+2001,68,"(65,70]",HS,659.2459066564652,37.87956456854561,17.403735078937235,7355.555830363509,2019
+2001,68,"(65,70]",HS,659.2459066564652,37.87956456854561,17.403735078937235,6940.115653097307,2019
+2001,68,"(65,70]",HS,659.2459066564652,36.157766179066265,18.232484368410436,7759.957635228942,2019
+2001,68,"(65,70]",HS,659.2459066564652,36.157766179066265,18.232484368410436,7406.551441584188,2019
+2001,66,"(65,70]",College,6912.564973221117,397.73542796972885,17.379806995084238,2990.3188104891906,2019
+2001,66,"(65,70]",College,12908.722892119358,397.73542796972885,32.45555206890402,2942.055571155666,2019
+2001,66,"(65,70]",College,7084.3238102524865,397.73542796972885,17.81164893058424,3024.64120391865,2019
+2001,66,"(65,70]",College,6176.312180566182,396.01362958024953,15.596211138269911,2934.80257284236,2019
+2001,66,"(65,70]",College,10284.294736036725,397.73542796972885,25.85712514606431,2913.289124085256,2019
+2001,79,"(75,80]",College,40676.0416220352,721.433525191846,56.38224479686952,317.6584590423769,2019
+2001,79,"(75,80]",College,33432.70696250957,719.7117268023666,46.452914017462184,326.46420798331394,2019
+2001,79,"(75,80]",College,33845.53083397093,721.433525191846,46.91427505392214,318.35625127510855,2019
+2001,79,"(75,80]",College,37373.283244070386,721.433525191846,51.8041953125646,316.1795228701929,2019
+2001,79,"(75,80]",College,45453.31446059678,721.433525191846,63.004161677279534,315.4897434513118,2019
+2001,50,"(45,50]",College,195.36312165263965,94.69891142136402,2.0629922638008895,6700.361766173944,2019
+2001,50,"(45,50]",College,195.36312165263965,94.69891142136402,2.0629922638008895,7048.091716757721,2019
+2001,50,"(45,50]",College,197.03718439173682,94.69891142136402,2.080670003850597,7097.0373252889085,2019
+2001,50,"(45,50]",College,197.03718439173682,94.69891142136402,2.080670003850597,6894.068734426856,2019
+2001,50,"(45,50]",College,195.36312165263965,94.69891142136402,2.0629922638008895,6996.958875412941,2019
+2001,26,"(25,30]",NoHS,14.899158377964804,58.54114524229776,0.2545074633627036,5734.900849432996,2019
+2001,26,"(25,30]",NoHS,14.899158377964804,58.54114524229776,0.2545074633627036,5751.058303849227,2019
+2001,26,"(25,30]",NoHS,14.899158377964804,56.819346852818406,0.26221981073733097,5753.700312607087,2019
+2001,26,"(25,30]",NoHS,14.899158377964804,58.54114524229776,0.2545074633627036,5756.198020464095,2019
+2001,26,"(25,30]",NoHS,14.899158377964804,58.54114524229776,0.2545074633627036,5738.97902841753,2019
+2001,84,"(80,85]",HS,521.3031369548585,72.31553235813253,7.208729853127235,8006.382582372976,2019
+2001,84,"(80,85]",HS,521.3031369548585,72.31553235813253,7.208729853127235,7225.9048985574555,2019
+2001,84,"(80,85]",HS,527.9993879112471,72.31553235813253,7.3013275391018935,6833.828749355476,2019
+2001,84,"(80,85]",HS,525.3208875286916,72.31553235813253,7.264288464712029,7642.20990567335,2019
+2001,84,"(80,85]",HS,529.6734506503443,70.59373396865318,7.503122740122279,7344.560394798487,2019
+2001,46,"(45,50]",College,3484.728997704667,731.764315528722,4.762092006613966,309.242546203524,2019
+2001,46,"(45,50]",College,3558.387758224943,731.764315528722,4.8627511381911255,303.1006106689578,2019
+2001,46,"(45,50]",College,3466.3143075745984,731.764315528722,4.736927223719676,312.65062284978126,2019
+2001,46,"(45,50]",College,3611.9577658760522,731.764315528722,4.935957779338151,304.66808352753003,2019
+2001,46,"(45,50]",College,3519.8843152257077,731.764315528722,4.810133864866701,307.38223852495236,2019
+2001,42,"(40,45]",NoHS,3504.985156847743,61.984742021256444,56.545934411500454,1316.5778433637056,2019
+2001,42,"(40,45]",NoHS,3500.381484315226,61.984742021256444,56.47166335087495,1323.184100644782,2019
+2001,42,"(40,45]",NoHS,3497.1170619739864,61.984742021256444,56.41899841697686,1363.542905348904,2019
+2001,42,"(40,45]",NoHS,3500.180596786534,61.984742021256444,56.46842243186583,1305.4974695252238,2019
+2001,42,"(40,45]",NoHS,3499.9629686304515,61.984742021256444,56.46491143627263,1296.2665364305435,2019
+2001,73,"(70,75]",College,202.7289977046672,82.64632269500859,2.452970575022462,8111.331980930268,2019
+2001,73,"(70,75]",College,204.23565416985463,82.64632269500859,2.471200744448723,8946.141272419825,2019
+2001,73,"(70,75]",College,204.40306044376436,82.64632269500859,2.473226318829419,8843.672792369,2019
+2001,73,"(70,75]",College,204.5704667176741,82.64632269500859,2.475251893210115,8518.391446207239,2019
+2001,73,"(70,75]",College,204.40306044376436,80.92452430552926,2.525848155400257,8741.10597559208,2019
+2001,58,"(55,60]",HS,1893.3649579188982,344.35967789586914,5.498219098960339,1897.4728609086774,2019
+2001,58,"(55,60]",HS,1826.4024483550115,344.35967789586914,5.303763958413555,1865.836527393969,2019
+2001,58,"(55,60]",HS,1960.327467482785,344.35967789586914,5.692674239507125,1974.3086706205127,2019
+2001,58,"(55,60]",HS,2017.2456006120888,344.35967789586914,5.857961108971891,1913.1705426257595,2019
+2001,58,"(55,60]",HS,1960.327467482785,344.35967789586914,5.692674239507125,1920.4594009891116,2019
+2001,47,"(45,50]",HS,48.34693190512624,77.48092752657055,0.6239849398879048,4191.535696930554,2019
+2001,47,"(45,50]",HS,49.71966335118593,77.48092752657055,0.6417019638043898,4272.539836314407,2019
+2001,47,"(45,50]",HS,48.46411629686305,77.48092752657055,0.6254973687588243,4278.659507541857,2019
+2001,47,"(45,50]",HS,48.49759755164499,77.48092752657055,0.6259294912933728,4220.57883878231,2019
+2001,47,"(45,50]",HS,51.226319816373376,77.48092752657055,0.6611474778590682,4236.017689615924,2019
+2001,55,"(50,55]",HS,336.9386074980872,153.24005666366176,2.1987632661714254,5930.999476189604,2019
+2001,55,"(50,55]",HS,202.15981637337416,156.68365344262045,1.290241910573062,6198.965413414145,2019
+2001,55,"(50,55]",HS,179.92826319816373,168.7362421689759,1.0663284952024705,6234.155846150152,2019
+2001,55,"(50,55]",HS,205.29031369548585,142.9092663267857,1.4365080653766393,6083.112726346582,2019
+2001,55,"(50,55]",HS,290.8181790359602,141.18746793730637,2.0598016473041123,6134.16150857273,2019
+2001,45,"(40,45]",HS,1.674062739097169,18.939782284272805,0.08838870024853851,6094.810425174919,2019
+2001,45,"(40,45]",HS,2.5278347360367253,18.939782284272805,0.13346693737529317,6104.1912220346885,2019
+2001,45,"(40,45]",HS,2.5110941086457537,18.939782284272805,0.13258305037280776,6012.715896006623,2019
+2001,45,"(40,45]",HS,1.674062739097169,17.21798389479346,0.09722757027339236,6063.81887200309,2019
+2001,45,"(40,45]",HS,3.297903596021423,18.939782284272805,0.17412573948962087,6106.475191003195,2019
+2001,51,"(50,55]",HS,324.2826931905126,130.8566776004303,2.4781516628498466,5160.9360331219,2019
+2001,51,"(50,55]",HS,279.0160367253252,130.8566776004303,2.1322262022981984,5447.478847423043,2019
+2001,51,"(50,55]",HS,305.9014843152257,130.8566776004303,2.337683410007498,5481.876849711126,2019
+2001,51,"(50,55]",HS,285.86295332823255,130.8566776004303,2.184549986826905,5290.725232902333,2019
+2001,51,"(50,55]",HS,279.56847742922724,130.8566776004303,2.13644792574428,5377.646112694687,2019
+2001,47,"(45,50]",College,276.77279265493496,111.91689531615746,2.4730206451230714,7348.163869026406,2019
+2001,47,"(45,50]",College,292.59268553940325,123.96948404251289,2.3601992683866,7659.2827165586805,2019
+2001,47,"(45,50]",College,283.16771231828614,127.41308082147161,2.222438312397881,7694.05121367653,2019
+2001,47,"(45,50]",College,269.0386228003061,89.53351625292598,3.004892849737864,7484.721221249973,2019
+2001,47,"(45,50]",College,295.7734047436878,110.19509692667813,2.684088611859838,7584.37922317664,2019
+2001,46,"(45,50]",HS,634.0512624330528,86.08991947396729,7.3649884482094725,6727.573921002737,2019
+2001,46,"(45,50]",HS,634.2186687069625,87.81171786344665,7.2224833329558225,6112.9486135032475,2019
+2001,46,"(45,50]",HS,612.7906656465187,86.08991947396729,7.118030419715056,5706.607576540905,2019
+2001,46,"(45,50]",HS,627.5224177505738,87.81171786344665,7.146226415094339,6397.947964462579,2019
+2001,46,"(45,50]",HS,620.4913542463657,87.81171786344665,7.066156651339781,6136.624825472534,2019
+2001,30,"(25,30]",College,-18.41469013006886,72.31553235813253,-0.25464363643031335,6812.719963001136,2019
+2001,30,"(25,30]",College,6.696250956388676,37.87956456854561,0.17677740049707702,6824.135983474078,2019
+2001,30,"(25,30]",College,-6.863657230298394,106.75150014771945,-0.06429565130982398,6848.0082171111135,2019
+2001,30,"(25,30]",College,4.8547819433817905,106.75150014771945,0.04547741190207062,6883.115583746503,2019
+2001,30,"(25,30]",College,-15.23397092578424,63.706540410735805,-0.2391272674291542,6829.625249158826,2019
+2001,49,"(45,50]",HS,47.878194338179036,68.87193557917384,0.6951771274547555,8377.198494764705,2019
+2001,49,"(45,50]",HS,46.20413159908187,68.87193557917384,0.6708702348864074,8376.812793740854,2019
+2001,49,"(45,50]",HS,46.37153787299158,68.87193557917384,0.6733009241432422,8360.212953845014,2019
+2001,49,"(45,50]",HS,46.53894414690131,68.87193557917384,0.675731613400077,8377.25727359534,2019
+2001,49,"(45,50]",HS,48.045600612088755,68.87193557917384,0.6976078167115903,8369.188865356015,2019
+2001,69,"(65,70]",College,1052.8180566182098,86.08991947396729,12.229283788987296,7347.571597862273,2019
+2001,69,"(65,70]",College,1022.8523335883704,86.08991947396729,11.88120908740855,6613.903533202169,2019
+2001,69,"(65,70]",College,969.2823259372609,86.08991947396729,11.258952637658838,6244.01996501438,2019
+2001,69,"(65,70]",College,940.8232593726091,86.08991947396729,10.928378898729305,6975.891387229587,2019
+2001,69,"(65,70]",College,1111.57765876052,86.08991947396729,12.911821332306506,6657.722028640319,2019
+2001,27,"(25,30]",HS,1482.4327773527161,148.07466149522375,10.011387244674086,5840.473792705216,2019
+2001,27,"(25,30]",HS,942.581025248661,275.48774231669535,3.4214989651520984,5299.3157253543095,2019
+2001,27,"(25,30]",HS,813.1927161438408,87.81171786344665,9.260640105098641,4952.848184876728,2019
+2001,27,"(25,30]",HS,1701.7684774292272,184.23242767429,9.237073510412806,2700.144857597918,2019
+2001,27,"(25,30]",HS,861.58986993114,115.36049209511619,7.468673670538335,5336.4527161287415,2019
+2001,48,"(45,50]",HS,-29.195654169854627,53.37575007385973,-0.5469834921186977,6784.608319900489,2019
+2001,48,"(45,50]",HS,-29.145432287681714,53.37575007385973,-0.54604258014831,7170.91931114793,2019
+2001,48,"(45,50]",HS,-23.972578423871465,53.37575007385973,-0.44912864719838025,7205.283376794054,2019
+2001,48,"(45,50]",HS,-27.354185156847745,53.37575007385973,-0.5124833865378166,6981.712741662178,2019
+2001,48,"(45,50]",HS,-28.91106350420811,53.37575007385973,-0.5416516576198341,7053.054852929634,2019
+2001,26,"(25,30]",NoHS,0.3348125478194338,16.52926453900172,0.020255743806956744,4803.970150632604,2019
+2001,26,"(25,30]",NoHS,0.3348125478194338,13.085667760043028,0.025586202703524307,4801.013671285551,2019
+2001,26,"(25,30]",NoHS,0.3348125478194338,16.357084700053786,0.020468962162819446,4729.430168829064,2019
+2001,26,"(25,30]",NoHS,0.3348125478194338,14.463106471626503,0.023149421493664855,4804.97948291092,2019
+2001,26,"(25,30]",NoHS,0.3348125478194338,16.87362421689759,0.019842361280284156,4794.511575349078,2019
+2001,37,"(35,40]",HS,14954.904667176741,180.7888308953313,82.72029081174249,14.496741375937527,2019
+2001,37,"(35,40]",HS,13028.895485845449,149.7964598847031,86.977325738363,15.067587754858996,2019
+2001,37,"(35,40]",HS,14936.9921958684,242.77357291658777,61.52643393768587,15.195418785704017,2019
+2001,37,"(35,40]",HS,13425.983167559296,316.81090366419966,42.37853878220689,14.841502861783805,2019
+2001,37,"(35,40]",HS,15643.34622800306,94.69891142136402,165.19034900409562,14.9705594938995,2019
+2001,40,"(35,40]",College,14487.087834736036,1551.3403489208906,9.338432952390638,172.02463374934786,2019
+2001,40,"(35,40]",College,14828.931446059678,1609.8814941631883,9.211194426312549,161.037107519999,2019
+2001,40,"(35,40]",College,14554.435378729915,1876.760244532487,7.755085084059589,172.1157236483978,2019
+2001,40,"(35,40]",College,14851.83262433053,1637.4302683948579,9.070207697387628,169.53909477072477,2019
+2001,40,"(35,40]",College,14546.06506503443,1687.3624216897588,8.620593227664575,163.31319795449969,2019
+2001,33,"(30,35]",NoHS,21.88,53.37575007385973,0.40992398176556066,6960.601603341255,2019
+2001,33,"(30,35]",NoHS,17.209364957918897,53.37575007385973,0.3224191685195075,6990.7781629575165,2019
+2001,33,"(30,35]",NoHS,22.04740627390972,53.37575007385973,0.4130603550001863,6896.503005910316,2019
+2001,33,"(30,35]",NoHS,23.55406273909717,53.37575007385973,0.44128771411181633,7006.833950088328,2019
+2001,33,"(30,35]",NoHS,24.223687834736037,53.37575007385973,0.45383320705031854,6991.58078996597,2019
+2001,40,"(35,40]",HS,79.836052027544,65.42833880021514,1.2202060069310743,6737.485278029266,2019
+2001,40,"(35,40]",HS,74.07727620504973,65.42833880021514,1.1321894696309505,6901.19562484349,2019
+2001,40,"(35,40]",HS,103.3733741392502,65.42833880021514,1.579948016942626,7086.05536075866,2019
+2001,40,"(35,40]",HS,78.09502677888294,65.42833880021514,1.193596356119409,6842.187205958764,2019
+2001,40,"(35,40]",HS,67.38102524866106,65.42833880021514,1.0298446588168535,6919.645512699582,2019
+2001,42,"(40,45]",NoHS,96.10794185156848,99.86430658980206,0.9623853119647339,5313.119736501327,2019
+2001,42,"(40,45]",NoHS,95.3880948737567,89.53351625292598,1.0653897988803651,5472.343750452363,2019
+2001,42,"(40,45]",NoHS,96.00749808722264,101.5861049792814,0.9450849415557716,5516.93817495533,2019
+2001,42,"(40,45]",NoHS,99.43932670237186,103.30790336876075,0.9625529457065847,5377.7057342887365,2019
+2001,42,"(40,45]",NoHS,98.9371078806427,110.19509692667813,0.8978358442433577,5474.321267769963,2019
+2001,51,"(50,55]",HS,1327.5317521040552,439.05858931723316,3.0235867932078495,822.4650974144117,2019
+2001,51,"(50,55]",HS,1327.5317521040552,439.05858931723316,3.0235867932078495,800.1282454783105,2019
+2001,51,"(50,55]",HS,1327.5317521040552,439.05858931723316,3.0235867932078495,864.3256644102578,2019
+2001,51,"(50,55]",HS,1327.5317521040552,439.05858931723316,3.0235867932078495,819.7550128936806,2019
+2001,51,"(50,55]",HS,1327.5317521040552,439.05858931723316,3.0235867932078495,819.4862068402766,2019
+2001,65,"(60,65]",College,24509.952563121653,964.2070981084336,25.419801006656034,13.049809091861508,2019
+2001,65,"(60,65]",College,71575.72425401684,1165.657509677517,61.40373451016371,13.27890672793472,2019
+2001,65,"(60,65]",College,19702.714001530225,1513.460784352345,13.018318152169106,13.523293431354869,2019
+2001,65,"(60,65]",College,52229.75302218822,3391.942827274311,15.398182010089737,13.6493210130687,2019
+2001,65,"(60,65]",College,68486.40887528693,1613.3250909421472,42.45047031115864,13.646603181231054,2019
+2001,45,"(40,45]",College,31.85741392501913,127.41308082147161,0.25003252193279146,6457.648329680992,2019
+2001,45,"(40,45]",College,73.9768324407039,127.41308082147161,0.5806062608623255,6731.063041425203,2019
+2001,45,"(40,45]",College,158.26589135424635,127.41308082147161,1.242147904546826,6761.6179843116915,2019
+2001,45,"(40,45]",College,57.43709257842387,127.41308082147161,0.4507943156864989,6577.656453235405,2019
+2001,45,"(40,45]",College,77.34169854628922,127.41308082147161,0.6070153711663145,6665.237016373605,2019
+2001,76,"(75,80]",HS,437.0977811782709,51.653951684380374,8.46203953279425,7550.893299453475,2019
+2001,76,"(75,80]",HS,437.0977811782709,49.93215329490103,8.753833999442328,7829.025298522441,2019
+2001,76,"(75,80]",HS,435.4237184391737,49.93215329490103,8.720307251072192,7991.301568962772,2019
+2001,76,"(75,80]",HS,438.7718439173681,51.653951684380374,8.494448722885382,7771.235733330379,2019
+2001,76,"(75,80]",HS,438.6044376434583,51.653951684380374,8.491207803876268,7886.328075934699,2019
+2001,42,"(40,45]",College,965.7500535577659,55.097548463339066,17.528004067192914,7411.385973371757,2019
+2001,42,"(40,45]",College,950.365416985463,55.097548463339066,17.248778638814017,6744.50254131573,2019
+2001,42,"(40,45]",College,968.8972915072686,55.097548463339066,17.585125264728532,6300.310918535468,2019
+2001,42,"(40,45]",College,975.5600612088753,55.097548463339066,17.706052055256063,7049.703136077407,2019
+2001,42,"(40,45]",College,940.6558530986994,55.097548463339066,17.072553667693494,6774.0990605881725,2019
+2001,42,"(40,45]",HS,16.4392960979342,103.30790336876075,0.1591291233474522,5117.569933846601,2019
+2001,42,"(40,45]",HS,16.4392960979342,103.30790336876075,0.1591291233474522,5119.658683687036,2019
+2001,42,"(40,45]",HS,16.606702371843916,103.30790336876075,0.16074958285200872,5158.059450972638,2019
+2001,42,"(40,45]",HS,14.93263963274675,103.30790336876075,0.14454498780644334,5139.044411689583,2019
+2001,42,"(40,45]",HS,16.271889824024484,103.30790336876075,0.15750866384289566,5165.9871600642855,2019
+2001,62,"(60,65]",NoHS,33.04599846977812,11.70822904845955,2.822459172348185,7590.429539720278,2019
+2001,62,"(60,65]",NoHS,33.112960979342006,8.60899194739673,3.8463226800154025,7596.796958375094,2019
+2001,62,"(60,65]",NoHS,32.8785921958684,11.880408887407485,2.767463014738299,7589.469866194767,2019
+2001,62,"(60,65]",NoHS,32.89533282325937,12.224768565303355,2.690875712496,7597.434578228167,2019
+2001,62,"(60,65]",NoHS,33.079479724560066,10.15861049792814,3.2562996416987007,7599.649097245655,2019
+2001,68,"(65,70]",College,38431.45830145371,1033.0790336876073,37.20088884610449,299.649034757735,2019
+2001,68,"(65,70]",College,38017.12777352716,1033.0790336876073,36.79982511872674,288.69845334194855,2019
+2001,68,"(65,70]",College,35465.01912777353,1033.0790336876073,34.3294346040303,295.7032435615399,2019
+2001,68,"(65,70]",College,38148.541698546294,1033.0790336876073,36.92703118983444,304.9777177652073,2019
+2001,68,"(65,70]",College,38366.16985462892,1033.0790336876073,37.13769092542678,300.9076569423523,2019
+2001,53,"(50,55]",HS,312.88232593726093,137.74387115834767,2.2714791105121295,5397.982684851193,2019
+2001,53,"(50,55]",HS,407.0818362662586,137.74387115834767,2.955353532922603,5697.6866804324845,2019
+2001,53,"(50,55]",HS,688.0397857689366,137.74387115834767,4.995066422795533,5095.64936306069,2019
+2001,53,"(50,55]",HS,368.0594338179036,137.74387115834767,2.672056700038506,5533.733224791847,2019
+2001,53,"(50,55]",HS,502.38622800306047,137.74387115834767,3.6472492298806314,5479.653714915023,2019
+2001,81,"(80,85]",NoHS,14.229533282325939,7.4037330747611865,1.9219403426135706,5614.062973675649,2019
+2001,81,"(80,85]",NoHS,0,7.2315532358132515,0,5597.642402269061,2019
+2001,81,"(80,85]",NoHS,0,11.363869370563684,0,5610.72870385549,2019
+2001,81,"(80,85]",NoHS,0,2.066158067375215,0,5622.189764989496,2019
+2001,81,"(80,85]",NoHS,0,16.184904861105853,0,5664.540560610681,2019
+2001,29,"(25,30]",HS,58.92700841622035,25.826975842190187,2.281606982415608,6716.061037057103,2019
+2001,29,"(25,30]",HS,74.83060443764346,25.826975842190187,2.8973815941470926,6818.878075940507,2019
+2001,29,"(25,30]",HS,69.97582249426166,25.826975842190187,2.709408291618534,6889.875711300639,2019
+2001,29,"(25,30]",HS,66.46029074215761,25.826975842190187,2.5732896932357847,6732.518536870438,2019
+2001,29,"(25,30]",HS,66.62769701606733,25.826975842190187,2.579771531254011,6793.380699256105,2019
+2001,77,"(75,80]",College,869.7592960979342,129.1348792109509,6.735277884738802,1726.797606025247,2019
+2001,77,"(75,80]",College,539.1821270084163,130.8566776004303,4.120402083375555,675.6048423932668,2019
+2001,77,"(75,80]",College,586.2400306044377,132.5784759899096,4.421834134290816,1659.8456040797632,2019
+2001,77,"(75,80]",College,680.3725784238715,130.8566776004303,5.199372251383174,1733.8482639222198,2019
+2001,77,"(75,80]",College,765.3982249426167,130.8566776004303,5.849133869039175,1839.2469582142155,2019
+2001,42,"(40,45]",HS,84.28905891354246,120.5258872635542,0.6993440233236152,7508.728809766881,2019
+2001,42,"(40,45]",HS,82.78240244835501,120.5258872635542,0.6868433357170363,7735.987812166475,2019
+2001,42,"(40,45]",HS,83.78684009181332,120.5258872635542,0.6951771274547556,7820.283169333861,2019
+2001,42,"(40,45]",HS,82.94980872226473,120.5258872635542,0.6882323010066561,7650.800496517411,2019
+2001,42,"(40,45]",HS,82.11277735271615,120.5258872635542,0.6812874745585566,7703.254808657688,2019
+2001,47,"(45,50]",College,25567.123182861516,2031.722099585628,12.583966669494789,306.8669865648723,2019
+2001,47,"(45,50]",College,25523.597551644987,2995.9291976940613,8.519426150421133,300.56617271181176,2019
+2001,47,"(45,50]",College,25508.530986993115,2358.863793586704,10.813905854312527,305.11441208285686,2019
+2001,47,"(45,50]",College,25547.03442999235,2100.594035164802,12.161814230795937,314.4846363370883,2019
+2001,47,"(45,50]",College,25578.841622035194,2840.9673426409204,9.003567636316962,316.29868409389945,2019
+2001,28,"(25,30]",College,159.11966335118592,173.90163733741394,0.9149980747015787,7028.515124812055,2019
+2001,28,"(25,30]",College,160.79372609028312,173.90163733741394,0.9246245668078552,7145.701220522443,2019
+2001,28,"(25,30]",College,180.88247895944914,173.90163733741394,1.040142472083173,7209.179241950866,2019
+2001,28,"(25,30]",College,179.20841622035195,173.90163733741394,1.0305159799768964,7072.565387128203,2019
+2001,28,"(25,30]",College,172.679571537873,173.90163733741394,0.9929726607624181,7092.896787717378,2019
+2001,25,"(20,25]",HS,11.199479724560062,65.42833880021514,0.17117169608657762,4733.1024433487955,2019
+2001,25,"(20,25]",HS,11.199479724560062,65.42833880021514,0.17117169608657762,4697.956720752158,2019
+2001,25,"(20,25]",HS,12.856801836266259,67.15013718969449,0.19146352299991112,4703.130635936315,2019
+2001,25,"(20,25]",HS,11.18273909716909,67.15013718969449,0.1665333767759644,4734.017600849924,2019
+2001,25,"(20,25]",HS,12.856801836266259,67.15013718969449,0.19146352299991112,4689.779007304614,2019
+2001,59,"(55,60]",HS,3.1807192042846215,0,Inf,5182.774377234066,2019
+2001,59,"(55,60]",HS,3.348125478194338,0,Inf,5212.122386287865,2019
+2001,59,"(55,60]",HS,3.348125478194338,0,Inf,5176.471951421723,2019
+2001,59,"(55,60]",HS,3.1807192042846215,0,Inf,5201.018349930979,2019
+2001,59,"(55,60]",HS,3.348125478194338,0,Inf,5199.035722483907,2019
+2001,73,"(70,75]",College,275390.3516449885,3839.610408538941,71.72351419626993,30.034074018195753,2019
+2001,73,"(70,75]",College,274156.7348125478,3856.8283924337343,71.08346727336487,32.705553504863516,2019
+2001,73,"(70,75]",College,255474.19464422343,3856.8283924337343,66.23945082581551,31.929708443462165,2019
+2001,73,"(70,75]",College,280246.8076511094,3839.610408538941,72.98834460596998,31.36954346539318,2019
+2001,73,"(70,75]",College,268673.342310635,3856.8283924337343,69.66173108394301,33.1421173808693,2019
+2001,53,"(50,55]",College,-0.870512624330528,12.913487921095093,-0.06741111538955205,5449.217152565525,2019
+2001,53,"(50,55]",College,-0.870512624330528,12.913487921095093,-0.06741111538955205,5441.574185533687,2019
+2001,53,"(50,55]",College,-0.870512624330528,12.913487921095093,-0.06741111538955205,5454.984168498925,2019
+2001,53,"(50,55]",College,-0.8872532517214996,12.913487921095093,-0.06870748299319727,5440.5368838615905,2019
+2001,53,"(50,55]",College,-0.870512624330528,12.913487921095093,-0.06741111538955205,5448.555021687573,2019
+2001,63,"(60,65]",NoHS,304.6794185156848,61.984742021256444,4.915393830488171,3156.322538217305,2019
+2001,63,"(60,65]",NoHS,278.7649273144606,61.984742021256444,4.497315278312583,3372.6583978367225,2019
+2001,63,"(60,65]",NoHS,312.0452945677123,63.706540410735805,4.898167324043333,3290.1533512006367,2019
+2001,63,"(60,65]",NoHS,285.5951032899771,61.984742021256444,4.607506524622429,3261.0722845007067,2019
+2001,63,"(60,65]",NoHS,285.09288446824786,61.984742021256444,4.599404227099645,3181.945889709853,2019
+2001,38,"(35,40]",HS,892.7106962509564,110.19509692667813,8.101183456873315,5377.988241714485,2019
+2001,38,"(35,40]",HS,1206.3296097934199,194.5632180111661,6.200193552124471,4890.510680102121,2019
+2001,38,"(35,40]",HS,821.2951798010712,68.87193557917384,11.924961494031574,4569.004703251,2019
+2001,38,"(35,40]",HS,617.5617444529456,215.22479868491826,2.869380053908355,5113.867694206101,2019
+2001,38,"(35,40]",HS,640.1113695485845,58.54114524229776,10.934384131010894,4917.010552363203,2019
+2001,77,"(75,80]",College,5648.455087987758,347.8032746748279,16.24037350789372,1868.844944523591,2019
+2001,77,"(75,80]",College,8624.938638102523,347.8032746748279,24.7983249903735,1868.2927902803408,2019
+2001,77,"(75,80]",College,7321.01117061974,349.52507306430715,20.945596567467963,1880.36694392992,2019
+2001,77,"(75,80]",College,10670.810711553175,349.52507306430715,30.529457065845207,1863.8276863356161,2019
+2001,77,"(75,80]",College,5648.622494261668,347.8032746748279,16.240854832499036,1856.330699140442,2019
+2001,45,"(40,45]",HS,506.9061973986228,58.54114524229776,8.658973023171532,8613.803433261264,2019
+2001,45,"(40,45]",HS,506.4876817138485,65.42833880021514,7.741105627951279,9071.163065911025,2019
+2001,45,"(40,45]",HS,509.9195103289977,55.097548463339066,9.254849345398537,9106.497715734922,2019
+2001,45,"(40,45]",HS,505.0647283856159,51.653951684380374,9.77785265049416,8804.761600198593,2019
+2001,45,"(40,45]",HS,508.58026013771996,61.984742021256444,8.204926624737945,8979.215900958532,2019
+2001,53,"(50,55]",College,1943.9216526396328,230.72098419023237,8.425421985183823,11372.833544071005,2019
+2001,53,"(50,55]",College,1943.9216526396328,230.72098419023237,8.425421985183823,11057.720725793351,2019
+2001,53,"(50,55]",College,1945.59571537873,230.72098419023237,8.432677774010195,13377.496463922676,2019
+2001,53,"(50,55]",College,1943.9216526396328,230.72098419023237,8.425421985183823,11305.465226834665,2019
+2001,53,"(50,55]",College,1945.59571537873,230.72098419023237,8.432677774010195,11291.18149259581,2019
+2001,38,"(35,40]",College,50.724100994644225,120.5258872635542,0.42085648275482707,4780.60331018365,2019
+2001,38,"(35,40]",College,202.09285386381026,254.82616164294322,0.7930616407705355,4651.809041814996,2019
+2001,38,"(35,40]",College,18.264024483550116,337.4724843379518,0.054120040391975044,4744.661812211146,2019
+2001,38,"(35,40]",College,24.508278500382556,80.92452430552926,0.3028535380430775,4726.531741442141,2019
+2001,38,"(35,40]",College,66.14221882172916,123.96948404251289,0.5335362918752408,4781.684525795719,2019
+2001,69,"(65,70]",HS,122.95990818668707,41.323161347504296,2.9755687652419462,7990.1896694640845,2019
+2001,69,"(65,70]",HS,122.95990818668707,41.323161347504296,2.9755687652419462,8277.364446303734,2019
+2001,69,"(65,70]",HS,122.79250191277735,41.323161347504296,2.9715176164805546,8620.83883815791,2019
+2001,69,"(65,70]",HS,122.95990818668707,41.323161347504296,2.9755687652419462,8009.919306264468,2019
+2001,69,"(65,70]",HS,122.95990818668707,41.323161347504296,2.9755687652419462,8332.895978377164,2019
+2001,50,"(45,50]",HS,59.68033664881408,89.53351625292598,0.6665697846627766,5287.879578196246,2019
+2001,50,"(45,50]",HS,56.466136189747516,89.53351625292598,0.6306703741002933,5511.766664763878,2019
+2001,50,"(45,50]",HS,59.27856159143076,89.53351625292598,0.6620823583424662,5536.78674177237,2019
+2001,50,"(45,50]",HS,107.97704667176741,89.53351625292598,1.2059958235834247,5386.148866544498,2019
+2001,50,"(45,50]",HS,109.985921958684,89.53351625292598,1.2284329551849766,5457.86467508997,2019
+2001,70,"(65,70]",HS,792.3338944146901,56.819346852818406,13.944790609211095,8153.081628676778,2019
+2001,70,"(65,70]",HS,719.679571537873,74.03733074761188,9.720495921053809,7457.365116992117,2019
+2001,70,"(65,70]",HS,783.9635807192043,56.819346852818406,13.797476108796864,6860.055698859744,2019
+2001,70,"(65,70]",HS,739.0986993114002,68.87193557917384,10.731493068925683,7659.781864242637,2019
+2001,70,"(65,70]",HS,632.6283091048202,67.15013718969449,9.421102258029482,7423.908482044671,2019
+2001,68,"(65,70]",HS,71618.078041316,4011.7902474868765,17.85189993075536,14.608140502550564,2019
+2001,68,"(65,70]",HS,71480.80489671002,3908.4823441181147,18.28863446301137,15.874372334474874,2019
+2001,68,"(65,70]",HS,70985.28232593725,3856.8283924337343,18.405092242422576,15.508857024996303,2019
+2001,68,"(65,70]",HS,72756.44070390207,3960.136295802495,18.372206224573507,15.245517375064313,2019
+2001,68,"(65,70]",HS,68447.40321346596,3856.8283924337343,17.747069936465156,16.088342421621903,2019
+2001,61,"(60,65]",HS,113.41775057383322,132.5784759899096,0.8554763488340695,5441.481371899416,2019
+2001,61,"(60,65]",HS,140.6380107115532,99.86430658980206,1.4082910652875336,5687.3306021286035,2019
+2001,61,"(60,65]",HS,115.29270084162204,75.75912913709122,1.521832446529212,5719.616574327856,2019
+2001,61,"(60,65]",HS,117.18439173680183,89.53351625292598,1.308832676757205,5581.039876409693,2019
+2001,61,"(60,65]",HS,129.23764345830145,132.5784759899096,0.9748010941695964,5627.875321035329,2019
+2001,76,"(75,80]",College,66679.59296097934,1721.798389479346,38.72671351559491,45.03516162197073,2019
+2001,76,"(75,80]",College,66652.8079571538,1721.798389479346,38.71115710435117,45.83137514413066,2019
+2001,76,"(75,80]",College,67150.00459066566,1721.798389479346,38.999922988063155,47.16003008993519,2019
+2001,76,"(75,80]",College,68015.49502677888,1721.798389479346,39.50258952637658,47.498343316425796,2019
+2001,76,"(75,80]",College,59733.90665646519,1721.798389479346,34.692741624951864,49.618067275099996,2019
+2001,70,"(65,70]",HS,488.49150726855396,51.653951684380374,9.457001668591966,6940.783400166632,2019
+2001,70,"(65,70]",HS,488.49150726855396,51.653951684380374,9.457001668591966,7465.963884664778,2019
+2001,70,"(65,70]",HS,488.65891354246367,51.653951684380374,9.460242587601078,7245.923096516448,2019
+2001,70,"(65,70]",HS,488.65891354246367,51.653951684380374,9.460242587601078,7278.332497437566,2019
+2001,70,"(65,70]",HS,488.65891354246367,51.653951684380374,9.460242587601078,7284.290016353081,2019
+2001,44,"(40,45]",HS,29.79831675592961,60.2629436317771,0.4944716431046812,6045.96387199176,2019
+2001,44,"(40,45]",HS,28.291660290742158,60.2629436317771,0.46947026789152324,5993.475610618081,2019
+2001,44,"(40,45]",HS,24.44131599081867,60.2629436317771,0.40557786456900824,6024.007548068398,2019
+2001,44,"(40,45]",HS,31.807192042846214,61.984742021256444,0.5131455097762376,6010.4027064379825,2019
+2001,44,"(40,45]",HS,23.939097169089518,60.2629436317771,0.3972440728312889,6032.331801154049,2019
+2001,45,"(40,45]",College,74643.10941086458,1136.3869370563682,65.68458944469727,232.6198827127451,2019
+2001,45,"(40,45]",College,69169.09166029075,1136.3869370563682,60.867552595652334,205.7612511507222,2019
+2001,45,"(40,45]",College,58940.56832440704,1136.3869370563682,51.866636620342824,211.399025465056,2019
+2001,45,"(40,45]",College,63142.96801836266,1136.3869370563682,55.56467252424126,238.02261183877985,2019
+2001,45,"(40,45]",College,57132.5805661821,1136.3869370563682,50.27564001586913,520.4816482457029,2019
+2001,85,"(80,85]",College,242643.675592961,30165.907783678136,8.043639108525293,2.1257090517232013,2019
+2001,85,"(80,85]",College,240433.91277735273,35107.46916148386,6.848511684833465,2.168847389551151,2019
+2001,85,"(80,85]",College,248626.77582249427,27531.55624777474,9.030611040833906,1.9139833519487623,2019
+2001,85,"(80,85]",College,246842.22494261668,37586.85884233412,6.567248036821795,2.4909727322479034,2019
+2001,85,"(80,85]",College,245802.63198163733,28977.86689493739,8.482426704243732,1.9791266809042838,2019
+2001,28,"(25,30]",College,3160.9652639632745,148.07466149522375,21.347104440723193,714.9118547692785,2019
+2001,28,"(25,30]",College,3334.230757459832,285.8185326535714,11.665551308043108,718.6927471728146,2019
+2001,28,"(25,30]",College,3122.210711553175,153.24005666366176,20.37463819532477,722.3417034508368,2019
+2001,28,"(25,30]",College,4758.858148431523,308.2019117168029,15.44071586682528,717.6441689280448,2019
+2001,28,"(25,30]",College,3247.514307574598,552.6972830228701,5.875755874559309,712.8656302665728,2019
+2001,51,"(50,55]",College,1937.2254016832442,1174.266501624914,1.6497323214130446,339.36998168962145,2019
+2001,51,"(50,55]",College,1384.449885233359,432.17139575931583,3.203474128131295,170.87269623346947,2019
+2001,51,"(50,55]",College,1442.2050497322114,478.65995227525815,3.013005460090919,164.08284110717616,2019
+2001,51,"(50,55]",College,1761.9510328997706,630.1782105494405,2.7959567681078004,342.3837263419205,2019
+2001,51,"(50,55]",College,2076.674827850038,886.726170581863,2.341957299497927,346.4680427396772,2019
+2001,39,"(35,40]",College,1183.0601377199696,75.75912913709122,15.616073616410544,5967.7254382282845,2019
+2001,39,"(35,40]",College,1368.0440703902066,75.75912913709122,18.057811460776417,5419.43027086367,2019
+2001,39,"(35,40]",College,917.8885998469779,75.75912913709122,12.115881086568418,5085.708176262708,2019
+2001,39,"(35,40]",College,1374.7403213465952,74.03733074761188,18.568204815932514,5665.56296029702,2019
+2001,39,"(35,40]",College,1231.775363427697,75.75912913709122,16.259101410718657,5460.756222966773,2019
+2001,65,"(60,65]",NoHS,1.1048814078041316,10.675150014771946,0.10350031674264347,5363.768715964865,2019
+2001,65,"(60,65]",NoHS,0.5859219586840092,12.224768565303355,0.04792908393758779,5334.037207178141,2019
+2001,65,"(60,65]",NoHS,0.9374751338944147,12.913487921095093,0.07259658580413297,5337.092581624476,2019
+2001,65,"(60,65]",NoHS,0.920734506503443,14.979645988470308,0.061465705345248055,5342.832061683597,2019
+2001,65,"(60,65]",NoHS,0.9542157612853864,9.986430658980208,0.09555123285488559,5345.764447732995,2019
+2001,62,"(60,65]",HS,483.9715378729916,172.17983894793457,2.810849056603774,215.65763512482425,2019
+2001,62,"(60,65]",HS,431.6570772762051,172.17983894793457,2.507012899499423,221.2902944880149,2019
+2001,62,"(60,65]",HS,509.41729150726854,172.17983894793457,2.95863496341933,213.48246388356247,2019
+2001,62,"(60,65]",HS,233.56523335883702,172.17983894793457,1.3565190604543704,219.90714667115648,2019
+2001,62,"(60,65]",HS,266.9125631216526,172.17983894793457,1.550196380438968,209.16929532402742,2019
+2001,21,"(20,25]",HS,12.555470543228768,125.69128243199225,0.09989133932197847,7020.421158994625,2019
+2001,21,"(20,25]",HS,7.784391736801837,74.03733074761188,0.10514144227238943,7019.556061121313,2019
+2001,21,"(20,25]",HS,1.5233970925784237,108.47329853719879,0.014043982372823342,7036.103753914135,2019
+2001,21,"(20,25]",HS,3.515531752104055,113.63869370563681,0.030936045086988488,7006.6675810654215,2019
+2001,21,"(20,25]",HS,21.46148431522571,127.41308082147161,0.1684401960682284,7007.6980350666345,2019
+2001,41,"(40,45]",HS,122.54139250191278,77.48092752657055,1.581568476447183,6170.773992552457,2019
+2001,41,"(40,45]",HS,122.54139250191278,77.48092752657055,1.581568476447183,6334.421520876337,2019
+2001,41,"(40,45]",HS,122.54139250191278,77.48092752657055,1.581568476447183,6397.729013564034,2019
+2001,41,"(40,45]",HS,122.54139250191278,77.48092752657055,1.581568476447183,6245.476053155906,2019
+2001,41,"(40,45]",HS,122.54139250191278,77.48092752657055,1.581568476447183,6348.0225544665755,2019
+2001,53,"(50,55]",College,314.08765110941084,129.1348792109509,2.4322448979591837,4709.417507249176,2019
+2001,53,"(50,55]",College,314.8912012241775,130.8566776004303,2.4063823642664612,4663.888069815517,2019
+2001,53,"(50,55]",College,316.2471920428462,129.1348792109509,2.4489680400462075,4487.814507649352,2019
+2001,53,"(50,55]",College,312.68143840856925,129.1348792109509,2.421355410088564,4650.963861608876,2019
+2001,53,"(50,55]",College,315.81193573068094,129.1348792109509,2.44559748427673,4908.029974735652,2019
+2001,38,"(35,40]",HS,3.147237949502678,36.157766179066265,0.08704182481617984,5946.80146946034,2019
+2001,38,"(35,40]",HS,3.1137566947207347,34.43596778958692,0.09042164035425491,5953.524047866736,2019
+2001,38,"(35,40]",HS,3.3146442234123947,34.43596778958692,0.09625529457065844,5968.419211830457,2019
+2001,38,"(35,40]",HS,3.147237949502678,34.43596778958692,0.09139391605698882,5941.414699700936,2019
+2001,38,"(35,40]",HS,3.297903596021423,34.43596778958692,0.09576915671929148,5956.8053136406725,2019
+2001,40,"(35,40]",HS,215.78668706962512,65.42833880021514,3.2980615284842836,7128.577571227443,2019
+2001,40,"(35,40]",HS,215.61928079571538,65.42833880021514,3.295502908213931,7317.62583347208,2019
+2001,40,"(35,40]",HS,215.45187452180568,65.42833880021514,3.2929442879435786,7390.759669358605,2019
+2001,40,"(35,40]",HS,215.45187452180568,65.42833880021514,3.2929442879435786,7214.874595617723,2019
+2001,40,"(35,40]",HS,215.61928079571538,65.42833880021514,3.295502908213931,7333.337966684849,2019
+2001,38,"(35,40]",HS,80.85723029839326,68.87193557917384,1.1740229110512128,4413.18971408858,2019
+2001,38,"(35,40]",HS,105.13114001530222,68.87193557917384,1.5264728532922602,4430.2027335807825,2019
+2001,38,"(35,40]",HS,86.13052792654935,68.87193557917384,1.2505896226415094,4460.6393949753565,2019
+2001,38,"(35,40]",HS,94.33343534812548,68.87193557917384,1.369693396226415,4415.506780571115,2019
+2001,38,"(35,40]",HS,146.64789594491202,68.87193557917384,2.129283788987293,4380.938595636692,2019
+2001,21,"(20,25]",NoHS,-8.872532517214998,22.383379063231494,-0.39638932496075363,9549.569639450496,2019
+2001,21,"(20,25]",NoHS,-8.872532517214998,20.661580673752148,-0.4294217687074831,9553.937053967375,2019
+2001,21,"(20,25]",NoHS,-9.039938791124712,22.383379063231494,-0.40386836882793753,9616.6786176635,2019
+2001,21,"(20,25]",NoHS,-9.039938791124712,22.383379063231494,-0.40386836882793753,9540.907628092427,2019
+2001,21,"(20,25]",NoHS,-8.872532517214998,22.383379063231494,-0.39638932496075363,9497.152393976314,2019
+2001,76,"(75,80]",College,1709.3854628921194,89.53351625292598,19.092129231954033,1040.2322025433327,2019
+2001,76,"(75,80]",College,1606.765416985463,92.97711303188467,17.281300360815187,522.7097885026417,2019
+2001,76,"(75,80]",College,1656.6524866105585,86.08991947396729,19.24328070850982,1092.1756166121652,2019
+2001,76,"(75,80]",College,1682.6004590665648,87.81171786344665,19.161457035644446,1036.5622020421215,2019
+2001,76,"(75,80]",College,1623.6734506503444,92.97711303188467,17.463151927437643,551.2155837150973,2019
+2001,46,"(45,50]",NoHS,37.01352716143841,43.04495973698364,0.8598806314978823,5722.9046200661605,2019
+2001,46,"(45,50]",NoHS,36.87960214231064,37.87956456854561,0.9736015332376519,6047.013976604301,2019
+2001,46,"(45,50]",NoHS,38.68758990053558,34.43596778958692,1.1234645745090488,6059.478478433388,2019
+2001,46,"(45,50]",NoHS,38.68758990053558,34.43596778958692,1.1234645745090488,5850.064792421992,2019
+2001,46,"(45,50]",NoHS,38.70433052792655,36.157766179066265,1.0704292498670627,5975.053826889038,2019
+2001,49,"(45,50]",HS,820.2907421576128,206.6158067375215,3.9701257861635217,6289.029255548585,2019
+2001,49,"(45,50]",HS,824.6433052792655,206.6158067375215,3.9911917597227573,5708.656001965369,2019
+2001,49,"(45,50]",HS,819.03519510329,206.6158067375215,3.964049063021435,5332.485288853831,2019
+2001,49,"(45,50]",HS,819.5541545524102,206.6158067375215,3.966560775253498,5978.004403008845,2019
+2001,49,"(45,50]",HS,822.5339862280031,206.6158067375215,3.980982864844051,5737.900153819811,2019
+2001,22,"(20,25]",HS,-0.1674062739097169,68.87193557917384,-0.0024306892568348093,6155.427192590878,2019
+2001,22,"(20,25]",HS,-0.1674062739097169,68.87193557917384,-0.0024306892568348093,6147.911515639561,2019
+2001,22,"(20,25]",HS,-0.1674062739097169,68.87193557917384,-0.0024306892568348093,6133.487021055755,2019
+2001,22,"(20,25]",HS,-0.1674062739097169,68.87193557917384,-0.0024306892568348093,6069.790203400792,2019
+2001,22,"(20,25]",HS,-0.1674062739097169,68.87193557917384,-0.0024306892568348093,6148.672163707063,2019
+2001,72,"(70,75]",College,12485.996939556237,53.37575007385973,233.9263977045474,1169.5538423252308,2019
+2001,72,"(70,75]",College,5214.872838561591,165.29264539001719,31.54933376652548,1181.9338942900229,2019
+2001,72,"(70,75]",College,12051.91247130834,167.01444377949653,72.16089937239242,1198.5643271340327,2019
+2001,72,"(70,75]",College,3425.9693955623566,55.097548463339066,62.18006955140547,1145.741560003054,2019
+2001,72,"(70,75]",College,11302.434583014538,111.91689531615746,100.98952933858595,1146.833160045956,2019
+2001,41,"(40,45]",College,3984.4367253251726,473.4945571068201,8.414957818461863,3687.287979209405,2019
+2001,41,"(40,45]",College,2635.3095638867635,473.4945571068201,5.565659677249974,8040.857384998252,2019
+2001,41,"(40,45]",College,2427.893190512624,473.4945571068201,5.1276052788182165,8673.616855503527,2019
+2001,41,"(40,45]",College,2270.5312930374903,473.4945571068201,4.795263765883711,8220.574856814781,2019
+2001,41,"(40,45]",College,2517.790359602142,473.4945571068201,5.317464206952077,8214.20800909197,2019
+2001,23,"(20,25]",NoHS,78.91699158377965,72.31553235813253,1.0912868786328547,6792.479029329834,2019
+2001,23,"(20,25]",NoHS,73.64369395562356,74.03733074761188,0.9946832660225124,6884.080538847584,2019
+2001,23,"(20,25]",NoHS,74.88250038255548,74.03733074761188,1.0114154525346777,6947.849343706943,2019
+2001,23,"(20,25]",NoHS,73.62695332823259,72.31553235813253,1.0181347067128736,6726.281703002001,2019
+2001,23,"(20,25]",NoHS,74.96620351951033,70.59373396865318,1.0619384937592156,6841.2506371981535,2019
+2001,29,"(25,30]",HS,266.1759755164499,120.5258872635542,2.208454810495627,8362.821189160899,2019
+2001,29,"(25,30]",HS,266.1759755164499,120.5258872635542,2.208454810495627,8384.811293375398,2019
+2001,29,"(25,30]",HS,267.8500382555471,120.5258872635542,2.222344463391826,8457.168926702627,2019
+2001,29,"(25,30]",HS,266.1759755164499,120.5258872635542,2.208454810495627,8329.63170177406,2019
+2001,29,"(25,30]",HS,266.1759755164499,120.5258872635542,2.208454810495627,8379.18142216125,2019
+2001,59,"(55,60]",College,11455.1091048202,309.9237101062822,36.96106083943012,2680.872975978146,2019
+2001,59,"(55,60]",College,11456.615761285388,309.9237101062822,36.96592221794379,2642.5325240755596,2019
+2001,59,"(55,60]",College,11455.1091048202,309.9237101062822,36.96106083943012,2716.3572415145327,2019
+2001,59,"(55,60]",College,11454.941698546289,309.9237101062822,36.96052068626193,2631.611899826336,2019
+2001,59,"(55,60]",College,11454.941698546289,309.9237101062822,36.96052068626193,2617.2981815891594,2019
+2001,61,"(60,65]",College,86908.23051262433,6663.359767285067,13.042704213468335,13.09645278129155,2019
+2001,61,"(60,65]",College,86696.19372609028,6663.359767285067,13.010882911011414,14.258243659434806,2019
+2001,61,"(60,65]",College,79555.09407804132,6921.6295257069705,11.493694336365918,13.928130064776862,2019
+2001,61,"(60,65]",College,86212.80811017599,6663.359767285067,12.938339084353943,13.670522615213553,2019
+2001,61,"(60,65]",College,84003.02855394033,6353.436057178786,13.221668998938739,14.453762593205095,2019
+2001,35,"(30,35]",HS,396.50343381790356,168.7362421689759,2.349841555798291,9104.862436251173,2019
+2001,35,"(30,35]",HS,396.1686212700842,168.7362421689759,2.347857319670263,8277.16994041688,2019
+2001,35,"(30,35]",HS,396.50343381790356,168.7362421689759,2.349841555798291,7736.819418067187,2019
+2001,35,"(30,35]",HS,396.50343381790356,168.7362421689759,2.349841555798291,8656.357354919404,2019
+2001,35,"(30,35]",HS,396.50343381790356,168.7362421689759,2.349841555798291,8323.841041132644,2019
+2001,52,"(50,55]",NoHS,0,13.946566954782698,0,7215.6142546752135,2019
+2001,52,"(50,55]",NoHS,0,13.946566954782698,0,7196.70933365587,2019
+2001,52,"(50,55]",NoHS,0,13.946566954782698,0,7197.948939766395,2019
+2001,52,"(50,55]",NoHS,0,13.946566954782698,0,7168.237872788918,2019
+2001,52,"(50,55]",NoHS,0,13.946566954782698,0,7231.04051267108,2019
+2001,61,"(60,65]",NoHS,341.1572456006121,34.43596778958692,9.907003273007316,6241.496139042445,2019
+2001,61,"(60,65]",NoHS,334.4526243305279,34.43596778958692,9.712305063534846,6605.988944250681,2019
+2001,61,"(60,65]",NoHS,289.2529303749044,34.43596778958692,8.39973286484405,6655.22946527032,2019
+2001,61,"(60,65]",NoHS,749.6201836266258,32.71416940010757,22.914235555195262,6780.169037897853,2019
+2001,61,"(60,65]",NoHS,598.7955011476664,32.71416940010757,18.30385769004722,6515.557598611352,2019
+2001,44,"(40,45]",College,414.49793420045904,208.33760512700084,1.9895492892307398,5415.561791355415,2019
+2001,44,"(40,45]",College,618.7335883703138,206.6158067375215,2.9946091644204857,5489.629140537245,2019
+2001,44,"(40,45]",College,434.5866870696251,206.6158067375215,2.1033564369143884,5695.794010280448,2019
+2001,44,"(40,45]",College,441.28293802601377,208.33760512700084,2.1181146714104324,5516.445825676929,2019
+2001,44,"(40,45]",College,453.00137719969393,206.6158067375215,2.192481709664998,5624.253302486334,2019
+2001,54,"(50,55]",HS,479.9537872991584,111.91689531615746,4.288483753443323,417.4572666667714,2019
+2001,54,"(50,55]",HS,446.13771996939556,111.91689531615746,3.986330381209088,143.8483276855523,2019
+2001,54,"(50,55]",HS,462.7109410864575,111.91689531615746,4.134415449779332,398.45272648000224,2019
+2001,54,"(50,55]",HS,458.5257842387146,111.91689531615746,4.097020230443412,137.8578698499827,2019
+2001,54,"(50,55]",HS,535.0304514154552,111.91689531615746,4.780604839904032,436.24270730870774,2019
+2001,21,"(20,25]",NoHS,2.7119816373374137,27.548774231669533,0.09844291490180977,5206.024194508304,2019
+2001,21,"(20,25]",NoHS,2.6952410099464426,27.548774231669533,0.09783524258760108,5205.382677374635,2019
+2001,21,"(20,25]",NoHS,2.6952410099464426,27.548774231669533,0.09783524258760108,5217.653691761333,2019
+2001,21,"(20,25]",NoHS,2.6952410099464426,27.548774231669533,0.09783524258760108,5195.825168290521,2019
+2001,21,"(20,25]",NoHS,2.6952410099464426,27.548774231669533,0.09783524258760108,5196.589305988261,2019
+2001,47,"(45,50]",NoHS,0.82196480489671,11.191689531615747,0.07344421077574716,5932.072662249432,2019
+2001,47,"(45,50]",NoHS,0.554114766641163,10.50297017582401,0.0527579110827752,6012.482698408545,2019
+2001,47,"(45,50]",NoHS,0.4871522570772762,11.536049209511617,0.04222869096948833,6014.806408604021,2019
+2001,47,"(45,50]",NoHS,0.82196480489671,11.363869370563684,0.07233141970338734,5962.354351877124,2019
+2001,47,"(45,50]",NoHS,0.4871522570772762,9.297711303188466,0.05239485731399479,6023.056304698076,2019
+2001,26,"(25,30]",HS,0,39.60136295802496,0,5291.49893581174,2019
+2001,26,"(25,30]",HS,0,24.105177452710844,0,5314.439371451564,2019
+2001,26,"(25,30]",HS,0,24.105177452710844,0,5242.77072531769,2019
+2001,26,"(25,30]",HS,0,24.105177452710844,0,5326.645095232039,2019
+2001,26,"(25,30]",HS,0,24.105177452710844,0,5315.049534222415,2019
+2001,35,"(30,35]",HS,309.1156847742923,77.48092752657055,3.9895713002182007,5445.378982971712,2019
+2001,35,"(30,35]",HS,313.3008416220352,77.48092752657055,4.043586617036752,5660.47972297172,2019
+2001,35,"(30,35]",HS,308.8645753634277,77.48092752657055,3.986330381209088,5727.1541143572995,2019
+2001,35,"(30,35]",HS,308.6134659525631,77.48092752657055,3.9830894621999744,5546.8184681768635,2019
+2001,35,"(30,35]",HS,336.9051262433053,77.48092752657055,4.348233003893382,5655.219515204382,2019
+2001,48,"(45,50]",NoHS,115.57729150726855,137.74387115834767,0.8390739314593761,7337.295836912522,2019
+2001,48,"(45,50]",NoHS,108.71363427697015,137.74387115834767,0.7892448016942625,7772.936939735855,2019
+2001,48,"(45,50]",NoHS,104.36107115531752,137.74387115834767,0.75764584135541,7829.007117017303,2019
+2001,48,"(45,50]",NoHS,126.96091813312931,137.74387115834767,0.9217173661917597,7572.465656358685,2019
+2001,48,"(45,50]",NoHS,134.1593879112471,137.74387115834767,0.9739771852137079,7624.45484351382,2019
+2001,22,"(20,25]",HS,22.181331293037488,60.2629436317771,0.3680758017492711,6115.5090083526,2019
+2001,22,"(20,25]",HS,21.545187452180567,60.2629436317771,0.35751966554816,6059.196863964526,2019
+2001,22,"(20,25]",HS,20.557490436113238,60.2629436317771,0.3411298751306453,6058.973891445055,2019
+2001,22,"(20,25]",HS,18.699280795715378,60.2629436317771,0.3102948457010837,6042.273735858525,2019
+2001,22,"(20,25]",HS,17.594399387911245,60.2629436317771,0.2919605038781011,6033.578407281419,2019
+2001,46,"(45,50]",College,965.8504973221118,172.17983894793457,5.609544666923374,291.0107675206736,2019
+2001,46,"(45,50]",College,999.3987146136191,172.17983894793457,5.8043887177512525,292.4046915671419,2019
+2001,46,"(45,50]",College,1011.1004131599082,172.17983894793457,5.872350789372353,275.82430033171966,2019
+2001,46,"(45,50]",College,969.232104055088,172.17983894793457,5.629184636118599,292.58451333200617,2019
+2001,46,"(45,50]",College,977.5856771231829,172.17983894793457,5.677701193685022,309.4071342538417,2019
+2001,54,"(50,55]",HS,365.61530221882174,142.9092663267857,2.558373656350469,6454.134343066458,2019
+2001,54,"(50,55]",HS,365.61530221882174,142.9092663267857,2.558373656350469,6727.400273770229,2019
+2001,54,"(50,55]",HS,365.28048967100233,142.9092663267857,2.556030823331833,6757.938589913538,2019
+2001,54,"(50,55]",HS,363.7738332058148,142.9092663267857,2.545488074747971,6574.07716313603,2019
+2001,54,"(50,55]",HS,367.1219586840092,142.9092663267857,2.568916404934331,6661.610068534004,2019
+2001,32,"(30,35]",College,192.68462127008416,111.91689531615746,1.7216758982257636,7120.525957366674,2019
+2001,32,"(30,35]",College,195.53052792654935,111.91689531615746,1.7471046473741894,7212.923157273694,2019
+2001,32,"(30,35]",College,195.02830910482018,111.91689531615746,1.7426172210538788,7270.502942263646,2019
+2001,32,"(30,35]",College,195.36312165263965,111.91689531615746,1.7456088386007527,7117.228521884108,2019
+2001,32,"(30,35]",College,197.20459066564652,111.91689531615746,1.7620627351085574,7205.483147650814,2019
+2001,49,"(45,50]",College,106.00165263963275,137.74387115834767,0.7695562187139007,154.93357821279625,2019
+2001,49,"(45,50]",College,86.59926549349656,137.74387115834767,0.6286977762803234,166.68863237918805,2019
+2001,49,"(45,50]",College,54.95947972456006,137.74387115834767,0.39899764150943395,163.54790944487803,2019
+2001,49,"(45,50]",College,107.64223412394797,137.74387115834767,0.7814665960723912,160.2492936147448,2019
+2001,49,"(45,50]",College,99.47280795715379,137.74387115834767,0.7221577782056219,157.70823658225794,2019
+2001,61,"(60,65]",HS,28726.916602907422,1721.798389479346,16.68425105891413,19.270734741404556,2019
+2001,61,"(60,65]",HS,28726.916602907422,1721.798389479346,16.68425105891413,19.64136827306466,2019
+2001,61,"(60,65]",HS,28726.916602907422,1721.798389479346,16.68425105891413,19.67141309273777,2019
+2001,61,"(60,65]",HS,28726.916602907422,1721.798389479346,16.68425105891413,20.142964361366275,2019
+2001,61,"(60,65]",HS,28726.916602907422,1721.798389479346,16.68425105891413,20.23014452227178,2019
+2001,77,"(75,80]",HS,78.1787299158378,25.826975842190187,3.0270183545116165,6788.90303907248,2019
+2001,77,"(75,80]",HS,78.01132364192807,24.105177452710844,3.2362891248143457,6784.209796308378,2019
+2001,77,"(75,80]",HS,78.01132364192807,25.826975842190187,3.0205365164933897,6811.441028335345,2019
+2001,77,"(75,80]",HS,78.1787299158378,24.105177452710844,3.2432339512624457,6836.061782647657,2019
+2001,77,"(75,80]",HS,78.01132364192807,25.826975842190187,3.0205365164933897,6832.953710699391,2019
+2001,23,"(20,25]",College,4.302341239479724,51.653951684380374,0.08329161853420614,5364.605697459117,2019
+2001,23,"(20,25]",College,2.6282785003825557,51.653951684380374,0.05088242844307535,5382.426004449204,2019
+2001,23,"(20,25]",College,2.6450191277735273,51.653951684380374,0.05120652034398666,5391.738690260871,2019
+2001,23,"(20,25]",College,2.6450191277735273,51.653951684380374,0.05120652034398666,5334.522211129823,2019
+2001,23,"(20,25]",College,2.6450191277735273,51.653951684380374,0.05120652034398666,5343.215532780191,2019
+2001,73,"(70,75]",College,9554.545677123184,2066.1580673752146,4.624305288152998,172.02463374934786,2019
+2001,73,"(70,75]",College,10362.783167559297,2066.1580673752146,5.015484212552947,161.037107519999,2019
+2001,73,"(70,75]",College,12956.073756694721,2066.1580673752146,6.270611121807215,172.1157236483978,2019
+2001,73,"(70,75]",College,11175.038408569242,2066.1580673752146,5.408607688358363,169.53909477072477,2019
+2001,73,"(70,75]",College,9463.811476664117,2066.1580673752146,4.580390835579516,163.31319795449969,2019
+2001,61,"(60,65]",NoHS,4.8547819433817905,25.826975842190187,0.1879733025285586,4029.793732680739,2019
+2001,61,"(60,65]",NoHS,4.687375669472074,25.826975842190187,0.18149146451033243,4075.0091608129055,2019
+2001,61,"(60,65]",NoHS,4.8547819433817905,27.548774231669533,0.17622497112052368,3999.812531198705,2019
+2001,61,"(60,65]",NoHS,4.687375669472074,25.826975842190187,0.18149146451033243,4063.51239829009,2019
+2001,61,"(60,65]",NoHS,4.687375669472074,27.548774231669533,0.17014824797843667,4028.1459575690255,2019
+2001,68,"(65,70]",HS,39205.04269319052,2221.119922428356,17.651024736353516,13.681388244315333,2019
+2001,68,"(65,70]",HS,36617.94613618974,2221.119922428356,16.486253518520176,13.718696140833796,2019
+2001,68,"(65,70]",HS,32656.812364192807,2221.119922428356,14.702858695035715,13.873613257978542,2019
+2001,68,"(65,70]",HS,33343.8142310635,2238.3379063231496,14.896684784218476,14.203841285990631,2019
+2001,68,"(65,70]",HS,36721.57061973986,2221.119922428356,16.532907678209504,14.001067434213638,2019
+2001,35,"(30,35]",College,619.5706197398623,266.8787503692986,2.32154346826984,6959.285616080498,2019
+2001,35,"(30,35]",College,337.3236419280796,399.4572263592082,0.8444549745727831,6994.775297976977,2019
+2001,35,"(30,35]",College,596.8033664881408,105.0297017582401,5.6822342299121935,5913.624337254285,2019
+2001,35,"(30,35]",College,398.25952563121655,418.39700864348106,0.9518699163802488,6850.140100795982,2019
+2001,35,"(30,35]",College,1831.9268553940321,289.2621294325301,6.333102985129361,3316.232523824513,2019
+2001,21,"(20,25]",HS,106.47039020657995,17.21798389479346,6.183673469387754,5328.610341142272,2019
+2001,21,"(20,25]",HS,106.47039020657995,17.21798389479346,6.183673469387754,5346.311077685628,2019
+2001,21,"(20,25]",HS,106.47039020657995,17.21798389479346,6.183673469387754,5355.561277368219,2019
+2001,21,"(20,25]",HS,106.47039020657995,17.21798389479346,6.183673469387754,5298.728708569011,2019
+2001,21,"(20,25]",HS,106.47039020657995,17.21798389479346,6.183673469387754,5307.363699891297,2019
+2001,81,"(80,85]",NoHS,0,11.363869370563684,0,4691.5925029385635,2019
+2001,81,"(80,85]",NoHS,0,8.26463226950086,0,4677.87006518424,2019
+2001,81,"(80,85]",NoHS,0,17.21798389479346,0,4688.806101117924,2019
+2001,81,"(80,85]",NoHS,0,14.979645988470308,0,4698.383946743128,2019
+2001,81,"(80,85]",NoHS,0,7.7480927526570555,0,4733.775903720008,2019
+2001,52,"(50,55]",College,41153.48431522571,1825.1062928481062,22.548541132366086,541.2480715375518,2019
+2001,52,"(50,55]",College,47781.0986993114,659.4487831705895,72.45611777397296,531.0360258582261,2019
+2001,52,"(50,55]",College,36502.93802601377,2324.427825797117,15.704053109713486,538.2045194209416,2019
+2001,52,"(50,55]",College,65869.34659525631,1534.122365026097,42.93617516887957,238.02261183877985,2019
+2001,52,"(50,55]",College,26354.769701606732,1756.2343572689326,15.006408223666826,558.8675321396571,2019
+2001,76,"(75,80]",College,393.27081866870697,34.43596778958692,11.420350404312668,10124.925091416717,2019
+2001,76,"(75,80]",College,398.9793726090283,34.43596778958692,11.586123411628801,10461.823786491737,2019
+2001,76,"(75,80]",College,441.0318286151492,34.43596778958692,12.80730169426261,10685.357190654537,2019
+2001,76,"(75,80]",College,436.76296863045144,34.43596778958692,12.683336542164035,10458.615441375934,2019
+2001,76,"(75,80]",College,399.59877582249425,34.43596778958692,11.60411051212938,10597.79836073188,2019
+2001,55,"(50,55]",HS,28.459066564651877,89.53351625292598,0.31785936435532125,167.8026350601526,2019
+2001,55,"(50,55]",HS,28.459066564651877,89.53351625292598,0.31785936435532125,173.4943459427028,2019
+2001,55,"(50,55]",HS,28.459066564651877,89.53351625292598,0.31785936435532125,171.08488750115148,2019
+2001,55,"(50,55]",HS,28.459066564651877,89.53351625292598,0.31785936435532125,172.95803100662715,2019
+2001,55,"(50,55]",HS,28.459066564651877,89.53351625292598,0.31785936435532125,171.12855440110678,2019
+2001,53,"(50,55]",College,259.4797245600612,191.1196212322074,1.3576822876014247,7434.699495620563,2019
+2001,53,"(50,55]",College,283.3016373374139,191.1196212322074,1.482326280843801,6735.948337492456,2019
+2001,53,"(50,55]",College,652.5496557000765,191.1196212322074,3.4143519723034546,6393.55884550573,2019
+2001,53,"(50,55]",College,268.68706962509566,191.1196212322074,1.4058581107098627,7092.104110989312,2019
+2001,53,"(50,55]",College,258.97750573833207,191.1196212322074,1.3550545154318738,6772.529263333973,2019
+2001,55,"(50,55]",HS,1320.6680948737567,75.75912913709122,17.43246140651801,6987.29605674897,2019
+2001,55,"(50,55]",HS,1318.9940321346596,75.75912913709122,17.410364231455876,6346.2574428995185,2019
+2001,55,"(50,55]",HS,1320.500688599847,75.75912913709122,17.430251689011797,5937.02755788381,2019
+2001,55,"(50,55]",HS,1318.9940321346596,75.75912913709122,17.410364231455876,6646.782658982973,2019
+2001,55,"(50,55]",HS,1318.8266258607498,75.75912913709122,17.40815451394966,6388.37260083086,2019
+2001,44,"(40,45]",College,549.2599846977812,182.51062928481065,3.0094684723301923,7709.866543936225,2019
+2001,44,"(40,45]",College,487.72143840856927,206.6158067375215,2.3605233602875115,7038.713361539254,2019
+2001,44,"(40,45]",College,507.6930068859985,211.78120190595953,2.3972524582773747,6585.726783610432,2019
+2001,44,"(40,45]",College,519.9638867635807,204.89400834804215,2.537721287976107,7381.065658326309,2019
+2001,44,"(40,45]",College,466.8960979342005,168.7362421689759,2.767017280535626,7029.662086312278,2019
+2001,35,"(30,35]",HS,13.794276970160674,43.04495973698364,0.3204620716211013,7716.228013489917,2019
+2001,35,"(30,35]",HS,14.815455241009946,43.04495973698364,0.344185598767809,8020.341248972213,2019
+2001,35,"(30,35]",HS,13.794276970160674,43.04495973698364,0.3204620716211013,8105.058688318977,2019
+2001,35,"(30,35]",HS,13.45946442234124,43.04495973698364,0.3126838659992299,7889.2014222120515,2019
+2001,35,"(30,35]",HS,16.489517980107117,43.04495973698364,0.383076626877166,8043.694963474378,2019
+2001,32,"(30,35]",NoHS,11.216220351951034,51.653951684380374,0.21714157361057632,5212.771328589575,2019
+2001,32,"(30,35]",NoHS,11.216220351951034,51.653951684380374,0.21714157361057632,5197.994524065516,2019
+2001,32,"(30,35]",NoHS,11.216220351951034,51.653951684380374,0.21714157361057632,5204.923309569558,2019
+2001,32,"(30,35]",NoHS,11.216220351951034,51.653951684380374,0.21714157361057632,5234.354457169195,2019
+2001,32,"(30,35]",NoHS,11.216220351951034,51.653951684380374,0.21714157361057632,5190.796767008649,2019
+2001,48,"(45,50]",College,2574.5410864575365,377.0738472959767,6.827684033034254,1672.0064787413135,2019
+2001,48,"(45,50]",College,2575.7129303749048,378.79564568545607,6.79974271012007,1679.5597982780732,2019
+2001,48,"(45,50]",College,2575.0433052792655,377.0738472959767,6.8290159175585465,1728.584762458057,2019
+2001,48,"(45,50]",College,2577.5543993879114,377.0738472959767,6.835675340180012,1658.394638514869,2019
+2001,48,"(45,50]",College,2576.549961744453,378.79564568545607,6.801952427626282,1642.503971498966,2019
+2001,55,"(50,55]",HS,297.48094873756696,72.31553235813253,4.113652199424244,7630.036262474814,2019
+2001,55,"(50,55]",HS,289.78026013772,70.59373396865318,4.104900588859566,8057.06150822592,2019
+2001,55,"(50,55]",HS,387.3781178270849,70.59373396865318,5.487429210064144,8097.604424962345,2019
+2001,55,"(50,55]",HS,302.0009181331293,72.31553235813253,4.176155637457138,7853.268190488469,2019
+2001,55,"(50,55]",HS,289.44544758990054,72.31553235813253,4.002534976254653,7969.960571809807,2019
+2001,59,"(55,60]",NoHS,156.00590665646519,111.91689531615746,1.3939441959657595,6520.46463550685,2019
+2001,59,"(55,60]",NoHS,158.19892884468246,111.91689531615746,1.4135392908977813,6885.3912122103775,2019
+2001,59,"(55,60]",NoHS,174.60474368783474,111.91689531615746,1.5601285506945886,6920.038315540708,2019
+2001,59,"(55,60]",NoHS,174.437337413925,111.91689531615746,1.5586327419211516,6711.23383267144,2019
+2001,59,"(55,60]",NoHS,174.437337413925,111.91689531615746,1.5586327419211516,6810.9566281424095,2019
+2001,40,"(35,40]",College,213.10818668706963,168.7362421689759,1.2629662954900867,5564.729499805517,2019
+2001,40,"(35,40]",College,206.9141545524101,146.35286310574438,1.4138032571519177,5771.253184554487,2019
+2001,40,"(35,40]",College,187.32762050497323,129.1348792109509,1.4506353484790144,5825.194686753932,2019
+2001,40,"(35,40]",College,192.34980872226473,161.84904861105852,1.1884518962141257,5651.917493732382,2019
+2001,40,"(35,40]",College,218.29778117827084,151.51825827418244,1.4407358140511777,5781.561224202489,2019
+2001,49,"(45,50]",HS,115.07507268553941,80.92452430552926,1.4220049320410622,7609.333297121711,2019
+2001,49,"(45,50]",HS,115.07507268553941,117.08229048459552,0.9828563500872047,7996.018933766153,2019
+2001,49,"(45,50]",HS,115.07507268553941,117.08229048459552,0.9828563500872047,8160.6273119153875,2019
+2001,49,"(45,50]",HS,115.07507268553941,84.36812108448795,1.363963914406733,7804.417028417103,2019
+2001,49,"(45,50]",HS,115.07507268553941,117.08229048459552,0.9828563500872047,7919.126142828643,2019
+2001,62,"(60,65]",HS,81.20878347360367,63.706540410735805,1.2747322794492604,5611.728964974199,2019
+2001,62,"(60,65]",HS,79.26687069625096,79.20272591604991,1.0008098809663324,5886.674914041614,2019
+2001,62,"(60,65]",HS,80.37175210405509,65.42833880021514,1.2283935917962021,5925.381480364861,2019
+2001,62,"(60,65]",HS,80.72330527926549,65.42833880021514,1.233766694363942,5794.409938955637,2019
+2001,62,"(60,65]",HS,79.58494261667941,61.984742021256444,1.2839440807769649,5788.060098832828,2019
+2001,56,"(55,60]",College,1226.418362662586,198.00681479012476,6.1938189549815,7110.588727436521,2019
+2001,56,"(55,60]",College,1198.9637337413926,198.00681479012476,6.055163985200315,6458.238819193156,2019
+2001,56,"(55,60]",College,1223.0702371843918,199.7286131796041,6.123660589805213,6041.787965574004,2019
+2001,56,"(55,60]",College,1198.126702371844,198.00681479012476,6.050936699536255,6764.066881499091,2019
+2001,56,"(55,60]",College,1226.5857689364957,198.00681479012476,6.194664412114312,6501.097110126962,2019
+2001,79,"(75,80]",NoHS,8.370313695485846,17.21798389479346,0.48613785136696186,5403.251719915478,2019
+2001,79,"(75,80]",NoHS,8.370313695485846,17.21798389479346,0.48613785136696186,5389.060869477839,2019
+2001,79,"(75,80]",NoHS,8.370313695485846,17.21798389479346,0.48613785136696186,5404.834788159383,2019
+2001,79,"(75,80]",NoHS,8.370313695485846,18.939782284272805,0.4419435012426926,5411.422440943658,2019
+2001,79,"(75,80]",NoHS,8.370313695485846,18.939782284272805,0.4419435012426926,5451.799610318525,2019
+2001,63,"(60,65]",NoHS,246.94099464422342,56.819346852818406,4.346072391220639,6676.14303646137,2019
+2001,63,"(60,65]",NoHS,236.74595256312165,56.819346852818406,4.1666433297161065,6977.774984498535,2019
+2001,63,"(60,65]",NoHS,240.07733741392502,56.819346852818406,4.22527450088097,7017.386581735006,2019
+2001,63,"(60,65]",NoHS,240.07733741392502,56.819346852818406,4.22527450088097,6847.367097408586,2019
+2001,63,"(60,65]",NoHS,248.6150573833206,56.819346852818406,4.3755352913034855,6904.829414400376,2019
+2001,36,"(35,40]",NoHS,14.16257077276205,86.08991947396729,0.16450904890257992,6147.465862133675,2019
+2001,36,"(35,40]",NoHS,14.16257077276205,86.08991947396729,0.16450904890257992,6310.495264119194,2019
+2001,36,"(35,40]",NoHS,14.16257077276205,86.08991947396729,0.16450904890257992,6373.563632946927,2019
+2001,36,"(35,40]",NoHS,14.329977046671768,86.08991947396729,0.16645360030804776,6221.885759531471,2019
+2001,36,"(35,40]",NoHS,14.329977046671768,86.08991947396729,0.16645360030804776,6324.044924143467,2019
+2001,25,"(20,25]",HS,-10.814445294567713,17.21798389479346,-0.6280901039661148,5317.629253025108,2019
+2001,25,"(20,25]",HS,-10.814445294567713,17.21798389479346,-0.6280901039661148,5348.989879561671,2019
+2001,25,"(20,25]",HS,-10.814445294567713,17.21798389479346,-0.6280901039661148,5575.548606441187,2019
+2001,25,"(20,25]",HS,-10.814445294567713,17.21798389479346,-0.6280901039661148,5466.507857023758,2019
+2001,25,"(20,25]",HS,-10.814445294567713,17.21798389479346,-0.6280901039661148,5271.323721895054,2019
+2001,38,"(35,40]",College,821.4625860749809,265.1569519798192,3.0980239437112758,999.8019004169877,2019
+2001,38,"(35,40]",College,938.0443152257077,125.69128243199225,7.463081743423655,992.3707894850106,2019
+2001,38,"(35,40]",College,1073.2416220351952,466.60736354890275,2.3000957676115075,953.7564493061698,2019
+2001,38,"(35,40]",College,984.6837031369548,425.28420220139844,2.3153545277250767,991.3545561883251,2019
+2001,38,"(35,40]",College,1216.7087987758225,404.6226215276463,3.007021194668152,1045.8977580992123,2019
+2001,44,"(40,45]",HS,12.555470543228768,77.48092752657055,0.16204595045565398,5144.571922767104,2019
+2001,44,"(40,45]",HS,12.47176740627391,77.48092752657055,0.16096564411928296,5164.404449368365,2019
+2001,44,"(40,45]",HS,11.852364192807958,77.48092752657055,0.15297137723013735,5199.885270220781,2019
+2001,44,"(40,45]",HS,245.6017444529457,77.48092752657055,3.169834852179866,5080.540226162566,2019
+2001,44,"(40,45]",HS,12.237398622800306,77.48092752657055,0.15794078637744408,5181.92893417993,2019
+2001,43,"(40,45]",College,502.2188217291507,146.35286310574438,3.43156130376679,7686.960910752603,2019
+2001,43,"(40,45]",College,502.2188217291507,146.35286310574438,3.43156130376679,6995.280988446374,2019
+2001,43,"(40,45]",College,502.2188217291507,146.35286310574438,3.43156130376679,6534.573146018054,2019
+2001,43,"(40,45]",College,502.2188217291507,146.35286310574438,3.43156130376679,7311.829748732322,2019
+2001,43,"(40,45]",College,502.2188217291507,146.35286310574438,3.43156130376679,7025.977984603235,2019
+2001,36,"(35,40]",HS,373.2825095638867,105.0297017582401,3.554066167141152,4709.417507249176,2019
+2001,36,"(35,40]",HS,390.0398775822494,105.0297017582401,3.713615016065195,4663.888069815517,2019
+2001,36,"(35,40]",HS,373.11510328997707,106.75150014771945,3.4951743326667244,4487.814507649352,2019
+2001,36,"(35,40]",HS,373.13184391736803,106.75150014771945,3.4953311513284557,4650.963861608876,2019
+2001,36,"(35,40]",HS,389.8557306809488,105.0297017582401,3.7118617320110854,4908.029974735652,2019
+2001,29,"(25,30]",NoHS,15.485080336648815,51.653951684380374,0.29978500834295985,6883.774197518638,2019
+2001,29,"(25,30]",NoHS,15.485080336648815,51.653951684380374,0.29978500834295985,6850.800681391969,2019
+2001,29,"(25,30]",NoHS,15.485080336648815,51.653951684380374,0.29978500834295985,6742.270480054625,2019
+2001,29,"(25,30]",NoHS,15.485080336648815,51.653951684380374,0.29978500834295985,6859.952419940472,2019
+2001,29,"(25,30]",NoHS,15.485080336648815,51.653951684380374,0.29978500834295985,6834.163376648561,2019
+2001,47,"(45,50]",HS,27.3207039020658,86.08991947396729,0.3173507893723528,4953.726630719617,2019
+2001,47,"(45,50]",HS,9.039938791124712,37.87956456854561,0.23864949067105395,5062.867913393387,2019
+2001,47,"(45,50]",HS,3.0970160673297626,101.5861049792814,0.030486611017928118,4984.309614210416,2019
+2001,47,"(45,50]",HS,4.134934965570008,74.03733074761188,0.055849325250064925,4969.828566738969,2019
+2001,47,"(45,50]",HS,1.1551032899770466,68.87193557917384,0.016771755872160184,5016.131339543836,2019
+2001,50,"(45,50]",NoHS,187.1602142310635,137.74387115834767,1.3587552945706582,10045.508797458895,2019
+2001,50,"(45,50]",NoHS,337.658454475899,137.74387115834767,2.451350115517905,10562.882471675206,2019
+2001,50,"(45,50]",NoHS,272.2026013771997,137.74387115834767,1.9761503658067,10639.604813291826,2019
+2001,50,"(45,50]",NoHS,144.30420811017598,137.74387115834767,1.0476270696958028,10430.459929862624,2019
+2001,50,"(45,50]",NoHS,140.4538638102525,137.74387115834767,1.0196741432422025,10431.846514415278,2019
+2001,59,"(55,60]",HS,53524.20529456771,1076.1239934245912,49.73795363881401,366.5238559756359,2019
+2001,59,"(55,60]",HS,47375.910228003064,1036.5226304665664,45.70658549604258,344.1620288315377,2019
+2001,59,"(55,60]",HS,53880.57977046671,1508.2953891839068,35.722829995270274,361.075213886859,2019
+2001,59,"(55,60]",HS,22969.68091813313,1334.393751846493,17.213570496975418,364.8164387193219,2019
+2001,59,"(55,60]",HS,44493.406885998476,1224.1986549198148,36.34492384645922,361.9683243107386,2019
+2001,30,"(25,30]",HS,5.892700841622036,36.157766179066265,0.16297192731540056,4555.085394339654,2019
+2001,30,"(25,30]",HS,6.964100994644224,24.105177452710844,0.28890478024093735,4528.722876146454,2019
+2001,30,"(25,30]",HS,6.026625860749808,24.105177452710844,0.25001375213158034,4527.7661122868885,2019
+2001,30,"(25,30]",HS,6.411660290742158,24.105177452710844,0.26598685296220914,4547.482814953138,2019
+2001,30,"(25,30]",HS,5.926182096403979,24.105177452710844,0.2458468562627207,4548.514599637679,2019
+2001,33,"(30,35]",College,343.73530221882174,137.74387115834767,2.495467125529457,7100.890008058812,2019
+2001,33,"(30,35]",College,341.91057383320583,137.74387115834767,2.4822198690797075,7193.032408426526,2019
+2001,33,"(30,35]",College,343.73530221882174,137.74387115834767,2.495467125529457,7250.45340827252,2019
+2001,33,"(30,35]",College,341.91057383320583,137.74387115834767,2.4822198690797075,7097.601665763517,2019
+2001,33,"(30,35]",College,342.0612394797246,137.74387115834767,2.483313679245283,7185.61291577847,2019
+2001,46,"(45,50]",HS,114.2547819433818,115.36049209511619,0.9904151747998551,5619.3418396242905,2019
+2001,46,"(45,50]",HS,102.51960214231063,115.36049209511619,0.8886890154541116,5931.336023414256,2019
+2001,46,"(45,50]",HS,107.54179035960213,113.63869370563681,0.9463483506610191,5968.789332700869,2019
+2001,46,"(45,50]",HS,122.60835501147668,115.36049209511619,1.0628279472870532,5760.659204531903,2019
+2001,46,"(45,50]",HS,104.19366488140781,113.63869370563681,0.9168854505781732,5855.30059001303,2019
+2001,83,"(80,85]",HS,3297.568783473604,120.5258872635542,27.35983827493262,1953.7805312004214,2019
+2001,83,"(80,85]",HS,3297.7361897475134,120.5258872635542,27.361227240222238,1930.1291802068222,2019
+2001,83,"(80,85]",HS,3296.062127008416,120.5258872635542,27.347337587326038,2067.030831408029,2019
+2001,83,"(80,85]",HS,3297.7361897475134,120.5258872635542,27.361227240222238,1971.7525550578775,2019
+2001,83,"(80,85]",HS,3297.568783473604,120.5258872635542,27.35983827493262,1980.9164315443861,2019
+2001,24,"(20,25]",HS,-32.97903596021423,103.30790336876075,-0.31923052239763833,5578.105777174668,2019
+2001,24,"(20,25]",HS,-34.78702371843917,103.30790336876075,-0.3367314850468489,5514.389079748692,2019
+2001,24,"(20,25]",HS,-33.6486610558531,103.30790336876075,-0.32571236041586443,5504.980833725201,2019
+2001,24,"(20,25]",HS,-39.84269319051263,103.30790336876075,-0.38566936208445646,5481.209211523529,2019
+2001,24,"(20,25]",HS,-39.34047436878347,103.30790336876075,-0.38080798357078677,5517.059077584347,2019
+2001,53,"(50,55]",College,6409.232899770467,597.4640411493331,10.727395221043123,281.0197025005382,2019
+2001,53,"(50,55]",College,4013.983932670237,707.6591380760111,5.672199674526194,281.2625503227631,2019
+2001,53,"(50,55]",College,17387.401530221883,509.65232328588644,34.11620184152192,287.22942258935757,2019
+2001,53,"(50,55]",College,21257.332364192807,855.7337995712348,24.84105731810966,282.16210953872474,2019
+2001,53,"(50,55]",College,8302.932670237185,578.5242588650602,14.351917906650531,285.3353666721919,2019
+2001,42,"(40,45]",College,549.0925784238715,151.51825827418244,3.6239367101900792,4196.9366148595545,2019
+2001,42,"(40,45]",College,627.9409334353481,153.24005666366176,4.097759731410054,4156.257989867276,2019
+2001,42,"(40,45]",College,559.3043611323642,153.24005666366176,3.6498574413865614,3998.5232729105437,2019
+2001,42,"(40,45]",College,644.5141545524101,153.24005666366176,4.205911747781581,4142.719466576536,2019
+2001,42,"(40,45]",College,629.7321805661821,153.24005666366176,4.1094488887350575,4372.725630245511,2019
+2001,60,"(55,60]",HS,160.71002295332823,146.35286310574438,1.0980996172053727,8544.628406039674,2019
+2001,60,"(55,60]",HS,147.65233358837034,165.29264539001719,0.8932783018867927,8930.679588180543,2019
+2001,60,"(55,60]",HS,151.00045906656464,134.30027437938898,1.1243495946999988,8981.377480227913,2019
+2001,60,"(55,60]",HS,151.00045906656464,136.02207276886833,1.110117321349366,8763.773796870382,2019
+2001,60,"(55,60]",HS,136.03433817903596,154.9618550531411,0.8778569289350961,8837.318378429427,2019
+2001,43,"(40,45]",HS,59.931446059678656,91.25531464240532,0.6567447199598957,5083.813973823745,2019
+2001,43,"(40,45]",HS,59.931446059678656,91.25531464240532,0.6567447199598957,5103.412276148089,2019
+2001,43,"(40,45]",HS,59.76403978576894,91.25531464240532,0.6549102375019071,5138.474064681743,2019
+2001,43,"(40,45]",HS,59.76403978576894,91.25531464240532,0.6549102375019071,5086.483139602997,2019
+2001,43,"(40,45]",HS,61.4381025248661,91.25531464240532,0.6732550620817925,5120.729794905056,2019
+2001,56,"(55,60]",College,2054.2423871461365,688.7193557917383,2.982698787061995,843.6080772863531,2019
+2001,56,"(55,60]",College,1955.3052792654935,688.7193557917383,2.8390450519830575,818.705612196764,2019
+2001,56,"(55,60]",College,1975.5614384085693,688.7193557917383,2.8684563919907586,884.9935676221991,2019
+2001,56,"(55,60]",College,1972.213312930375,688.7193557917383,2.8635950134770893,840.5550617842813,2019
+2001,56,"(55,60]",College,1918.6433052792654,688.7193557917383,2.785812957258375,838.4779529368316,2019
+2001,53,"(50,55]",NoHS,19.419127773527162,53.37575007385973,0.363819295216565,8994.746001070262,2019
+2001,53,"(50,55]",NoHS,17.577658760520276,30.992371010628222,0.567160826594789,9441.40564077279,2019
+2001,53,"(50,55]",NoHS,18.91690895179801,20.661580673752148,0.9155596200744449,9475.394851201507,2019
+2001,53,"(50,55]",NoHS,17.91247130833971,29.27057262114888,0.6119617658384109,9224.052690461765,2019
+2001,53,"(50,55]",NoHS,18.41469013006886,20.661580673752148,0.8912527275060967,9273.01562911818,2019
+2001,41,"(40,45]",College,405.1231828615149,136.02207276886833,2.978363545083665,5831.936012392074,2019
+2001,41,"(40,45]",College,437.7674062739097,136.02207276886833,3.218355648923051,5470.640744642182,2019
+2001,41,"(40,45]",College,432.7452180566182,136.02207276886833,3.181433786793915,6104.908185395636,2019
+2001,41,"(40,45]",College,429.39709257842384,136.02207276886833,3.156819212041157,5923.310588936742,2019
+2001,41,"(40,45]",College,408.13649579188984,136.02207276886833,3.000516662361147,6059.17953648143,2019
+2001,32,"(30,35]",College,109.61762815608263,194.5632180111661,0.5634036550001532,4317.347043570879,2019
+2001,32,"(30,35]",College,138.947207345065,74.03733074761188,1.8767182169050152,4280.428567363974,2019
+2001,32,"(30,35]",College,99.87458301453712,201.45041156908349,0.49577750790688796,4289.642247376063,2019
+2001,32,"(30,35]",College,90.19850038255548,160.12725022157917,0.5632926329387506,4330.1344625559395,2019
+2001,32,"(30,35]",College,100.22613618974752,139.46566954782702,0.7186437817614817,4327.113000235421,2019
+2001,73,"(70,75]",College,61495.02065799541,1081.2893885930291,56.871935771063626,10.33298516436616,2019
+2001,73,"(70,75]",College,59450.99005355777,816.13243661321,72.84478276622328,10.885853919327733,2019
+2001,73,"(70,75]",College,64859.88676358072,836.7940172869621,77.50997906733156,11.043925163074842,2019
+2001,73,"(70,75]",College,61769.56694720735,587.133250812457,105.20536328292174,10.89346443861697,2019
+2001,73,"(70,75]",College,61376.16220351951,1101.9509692667814,55.69772513958413,11.194517760457467,2019
+2001,48,"(45,50]",College,1343.1005355776588,576.8024604755808,2.3285277501594837,566.0299728106821,2019
+2001,48,"(45,50]",College,1711.3943381790361,578.5242588650602,2.958206699121697,558.6647753526896,2019
+2001,48,"(45,50]",College,1343.1005355776588,578.5242588650602,2.3215976080459138,590.8399552630124,2019
+2001,48,"(45,50]",College,1342.933129303749,576.8024604755808,2.3282375186064286,573.3021387743668,2019
+2001,48,"(45,50]",College,1343.1005355776588,576.8024604755808,2.3285277501594837,573.7459822428882,2019
+2001,49,"(45,50]",College,2523.465432287682,156.68365344262045,16.105479907077907,3301.2150556661886,2019
+2001,49,"(45,50]",College,2686.1843305279262,146.35286310574438,18.354163174703842,3358.3925975974926,2019
+2001,49,"(45,50]",College,2627.190359602142,144.63106471626506,18.164772310541466,4210.757393536556,2019
+2001,49,"(45,50]",College,2470.2971996939555,154.9618550531411,15.941324391391777,3471.2387408184986,2019
+2001,49,"(45,50]",College,2562.8226472838564,158.40545183209983,16.178879057775696,3549.433502557971,2019
+2001,45,"(40,45]",HS,627.2880489671003,203.1722099585628,3.0874697336561745,6714.63917407905,2019
+2001,45,"(40,45]",HS,484.64116296863045,201.45041156908349,2.4057591106108625,6098.58155878051,2019
+2001,45,"(40,45]",HS,497.94996174445293,175.6234357268933,2.8353275272373097,5697.26799518876,2019
+2001,45,"(40,45]",HS,526.3922876817138,179.06703250585196,2.9396381919966825,6383.974801622326,2019
+2001,45,"(40,45]",HS,548.3392501912778,198.00681479012476,2.7692948385260587,6126.609880384492,2019
+2001,38,"(35,40]",HS,4.8547819433817905,41.323161347504296,0.11748331408034914,4989.255201402721,2019
+2001,38,"(35,40]",HS,4.8547819433817905,41.323161347504296,0.11748331408034914,5021.787498562494,2019
+2001,38,"(35,40]",HS,4.8547819433817905,41.323161347504296,0.11748331408034914,4970.7126115139345,2019
+2001,38,"(35,40]",HS,4.8547819433817905,41.323161347504296,0.11748331408034914,4973.638326703388,2019
+2001,38,"(35,40]",HS,4.8547819433817905,41.323161347504296,0.11748331408034914,5035.356168049677,2019
+2001,76,"(75,80]",HS,259.81453710788065,30.992371010628222,8.383177170239165,7642.360241745655,2019
+2001,76,"(75,80]",HS,259.98194338179036,30.992371010628222,8.38857870192102,7923.8613631819435,2019
+2001,76,"(75,80]",HS,273.37444529456775,29.27057262114888,9.33956601508528,8088.103349952131,2019
+2001,76,"(75,80]",HS,259.98194338179036,29.27057262114888,8.882024507916373,7865.37177024285,2019
+2001,76,"(75,80]",HS,285.09288446824786,30.992371010628222,9.19880845419929,7981.858271689278,2019
+2001,54,"(50,55]",College,958.7859525631217,144.63106471626506,6.629184086033335,5922.1224647280615,2019
+2001,54,"(50,55]",College,974.0701453710789,144.63106471626506,6.7348611951519155,5377.16697390623,2019
+2001,54,"(50,55]",College,993.7571231828615,144.63106471626506,6.870979793534664,5020.374557538344,2019
+2001,54,"(50,55]",College,983.8466717674063,144.63106471626506,6.8024575059134165,5630.122582401571,2019
+2001,54,"(50,55]",College,990.4759602142311,144.63106471626506,6.848293360470873,5403.531135488827,2019
+2001,62,"(60,65]",College,120757.67865340474,1301.6795824463854,92.77066359637595,232.6198827127451,2019
+2001,62,"(60,65]",College,33027.75118592196,3770.738472959767,8.75896098940998,288.69845334194855,2019
+2001,62,"(60,65]",College,83277.75761285388,4442.239844856712,18.746794527376554,211.399025465056,2019
+2001,62,"(60,65]",College,40363.494108645755,2617.1335520086054,15.422787300123625,304.9777177652073,2019
+2001,62,"(60,65]",College,51518.44376434584,2117.812019059595,24.32625903559768,300.9076569423523,2019
+2001,40,"(35,40]",HS,-10.8814078041316,51.653951684380374,-0.21065973559235016,7753.6429245538875,2019
+2001,40,"(35,40]",HS,-9.876970160673299,51.653951684380374,-0.1912142215376717,7777.403443335386,2019
+2001,40,"(35,40]",HS,-11.216220351951034,51.653951684380374,-0.21714157361057632,7703.121916212735,2019
+2001,40,"(35,40]",HS,-11.132517214996176,51.653951684380374,-0.2155211141060198,7757.73436967335,2019
+2001,40,"(35,40]",HS,-11.216220351951034,51.653951684380374,-0.21714157361057632,7842.374902461876,2019
+2001,58,"(55,60]",College,87784.51865340474,5337.575007385972,16.44651710410275,13.187616166538518,2019
+2001,58,"(55,60]",College,65260.02123947973,4717.727587173408,13.832935461748395,14.310817729002475,2019
+2001,58,"(55,60]",College,60447.37545524101,5768.0246047558085,10.479736061701503,14.148690008946271,2019
+2001,58,"(55,60]",College,60762.149472073455,5871.332508124568,10.348953902370999,13.804018963352457,2019
+2001,58,"(55,60]",College,87941.88055087988,5544.1908141234935,15.861986626948918,14.582266722480796,2019
+2001,84,"(80,85]",NoHS,0,8.26463226950086,0,5454.983583003299,2019
+2001,84,"(80,85]",NoHS,0,7.059373396865318,0,5440.656866392846,2019
+2001,84,"(80,85]",NoHS,0,7.4037330747611865,0,5456.581807873972,2019
+2001,84,"(80,85]",NoHS,0,18.939782284272805,0,5463.23253222507,2019
+2001,84,"(80,85]",NoHS,0,10.330790336876074,0,5503.996281072122,2019
+2001,30,"(25,30]",College,198.61080336648814,141.18746793730637,1.4067169435652769,8012.421590297083,2019
+2001,30,"(25,30]",College,170.75439938791126,132.5784759899096,1.2879496321929902,8089.608267159971,2019
+2001,30,"(25,30]",College,165.16302983932673,125.69128243199225,1.3140372716675195,8314.939544868188,2019
+2001,30,"(25,30]",College,155.78827850038255,141.18746793730637,1.1034143523953528,8088.883083362812,2019
+2001,30,"(25,30]",College,170.83810252486612,139.46566954782702,1.2249473514073694,8109.043579564934,2019
+2001,42,"(40,45]",College,434.9884621270084,86.08991947396729,5.052722371967655,6942.557466892237,2019
+2001,42,"(40,45]",College,445.18350420811015,86.08991947396729,5.171145552560647,6299.600898555291,2019
+2001,42,"(40,45]",College,425.3458607498087,86.08991947396729,4.940716211012707,5983.313400932666,2019
+2001,42,"(40,45]",College,453.41989288446825,86.08991947396729,5.266817481709666,6624.000232519696,2019
+2001,42,"(40,45]",College,451.66212700841623,86.08991947396729,5.246399691952253,6337.062229543445,2019
+2001,64,"(60,65]",HS,495.02035195103286,96.42070981084338,5.133962951757521,11278.96182332654,2019
+2001,64,"(60,65]",HS,430.90374904361136,139.46566954782702,3.0896761220211353,8466.82288665423,2019
+2001,64,"(60,65]",HS,802.5958990053558,60.2629436317771,13.31823257604929,10408.773231555759,2019
+2001,64,"(60,65]",HS,658.2414690130068,82.64632269500859,7.964558464895392,11161.037161086704,2019
+2001,64,"(60,65]",HS,375.65967865340474,41.323161347504296,9.090777820562188,7992.404898296644,2019
+2001,34,"(30,35]",NoHS,0,30.992371010628222,0,6453.210296347335,2019
+2001,34,"(30,35]",NoHS,0,22.383379063231494,0,6464.023889340944,2019
+2001,34,"(30,35]",NoHS,0,32.71416940010757,0,6486.636376679325,2019
+2001,34,"(30,35]",NoHS,0,36.157766179066265,0,6519.891115033394,2019
+2001,34,"(30,35]",NoHS,0,41.323161347504296,0,6469.223484514168,2019
+2001,44,"(40,45]",College,1768.3459525631217,290.98392782200943,6.077125859833719,3326.1244146730824,2019
+2001,44,"(40,45]",College,1766.5044835501149,290.98392782200943,6.070797438099947,3386.399829797364,2019
+2001,44,"(40,45]",College,1767.1741086457537,290.98392782200943,6.073098682366773,4249.1994770835245,2019
+2001,44,"(40,45]",College,1766.6718898240244,290.98392782200943,6.071372749166653,3497.0075611728134,2019
+2001,44,"(40,45]",College,1765.5000459066564,290.98392782200943,6.067345571699708,3584.54399371177,2019
+2001,73,"(70,75]",NoHS,5558.390512624331,172.17983894793457,32.28247015787447,2024.66854166778,2019
+2001,73,"(70,75]",NoHS,5588.52364192808,172.17983894793457,32.45747978436658,2048.1837213018707,2019
+2001,73,"(70,75]",NoHS,5561.571231828615,172.17983894793457,32.300943396226415,2075.718910511092,2019
+2001,73,"(70,75]",NoHS,5565.588982402449,172.17983894793457,32.324278013092034,1984.403531934906,2019
+2001,73,"(70,75]",NoHS,5562.575669472073,172.17983894793457,32.30677705044282,1984.8865065018788,2019
+2001,46,"(45,50]",College,2643.0102524866106,373.63025051701806,7.073865804038335,1089.6937524231441,2019
+2001,46,"(45,50]",College,2643.3450650344303,373.63025051701806,7.0747619106768,1069.3567530405933,2019
+2001,46,"(45,50]",College,2642.4578117827086,373.63025051701806,7.072387228084869,1133.4274043935884,2019
+2001,46,"(45,50]",College,2642.173221117062,373.63025051701806,7.071625537442174,1096.4235278606227,2019
+2001,46,"(45,50]",College,2641.3361897475133,373.63025051701806,7.069385270846013,1101.0772010953933,2019
+2001,27,"(25,30]",HS,-57.08553940321347,37.87956456854561,-1.5070273392375817,4087.473089037747,2019
+2001,27,"(25,30]",HS,-45.04902830910482,41.323161347504296,-1.090164131690412,4108.429342282232,2019
+2001,27,"(25,30]",HS,-56.985095638867634,36.157766179066265,-1.5760126152887028,4120.221866588567,2019
+2001,27,"(25,30]",HS,-100.72835501147667,41.323161347504296,-2.437576209729175,4114.611212785471,2019
+2001,27,"(25,30]",HS,-35.004651874521805,39.60136295802496,-0.8839254323550584,4088.6874770483832,2019
+2001,35,"(30,35]",HS,-25.094200459066563,30.992371010628222,-0.8096895991100843,4734.745746754486,2019
+2001,35,"(30,35]",HS,-25.094200459066563,30.992371010628222,-0.8096895991100843,4731.477879150779,2019
+2001,35,"(30,35]",HS,-25.077459831675593,30.992371010628222,-0.8091494459418989,4744.59780109567,2019
+2001,35,"(30,35]",HS,-23.420137719969397,30.992371010628222,-0.755674282291533,4697.668662099323,2019
+2001,35,"(30,35]",HS,-23.403397092578423,30.992371010628222,-0.7551341291233474,4782.964139572046,2019
+2001,62,"(60,65]",HS,58.759602142310634,49.93215329490103,1.176788867791749,6205.541486726639,2019
+2001,62,"(60,65]",HS,53.235195103289975,51.653951684380374,1.030612244897959,6507.699016529019,2019
+2001,62,"(60,65]",HS,65.79066564651875,44.76675812646299,1.4696321199016618,6532.685731464511,2019
+2001,62,"(60,65]",HS,83.0335118592196,51.653951684380374,1.6074958285200875,6365.011402727938,2019
+2001,62,"(60,65]",HS,68.63657230298394,48.21035490542169,1.4236894218603882,6428.192314804315,2019
+2001,71,"(70,75]",College,311.5430757459832,34.43596778958692,9.04702541393916,7794.920570359663,2019
+2001,71,"(70,75]",College,311.37566947207347,34.43596778958692,9.042164035425492,8597.16515039385,2019
+2001,71,"(70,75]",College,311.5430757459832,34.43596778958692,9.04702541393916,8498.693818578126,2019
+2001,71,"(70,75]",College,311.37566947207347,34.43596778958692,9.042164035425492,8186.101230540585,2019
+2001,71,"(70,75]",College,311.5430757459832,34.43596778958692,9.04702541393916,8400.127986010757,2019
+2001,41,"(40,45]",HS,62.944758990053565,111.91689531615746,0.5624240988122391,6241.523719017331,2019
+2001,41,"(40,45]",HS,64.11660290742158,111.91689531615746,0.5728947602262967,6459.157639491468,2019
+2001,41,"(40,45]",HS,63.11216526396328,111.91689531615746,0.5639199075856759,6627.924049222851,2019
+2001,41,"(40,45]",HS,62.609946442234126,111.91689531615746,0.5594324812653655,6360.827187861198,2019
+2001,41,"(40,45]",HS,62.944758990053565,111.91689531615746,0.5624240988122391,6474.092387435809,2019
+2001,82,"(80,85]",College,1099.8592195868403,79.20272591604991,13.886633406438868,11278.96182332654,2019
+2001,82,"(80,85]",College,1076.42234123948,79.20272591604991,13.59072340995463,10966.428183792978,2019
+2001,82,"(80,85]",College,1031.2226472838563,79.20272591604991,13.020039845306458,10371.391992040726,2019
+2001,82,"(80,85]",College,1101.5332823259373,79.20272591604991,13.90776983475917,11161.037161086704,2019
+2001,82,"(80,85]",College,1016.1560826319816,79.20272591604991,12.829811990423732,11146.506249641776,2019
+2001,59,"(55,60]",HS,163984.85963886764,7369.297106971601,22.252442432227692,12.57883120315518,2019
+2001,59,"(55,60]",HS,162779.16617291508,7369.297106971601,22.08883205684848,13.27890672793472,2019
+2001,59,"(55,60]",HS,161537.17902677887,7369.297106971601,21.920296696133924,13.458992248041634,2019
+2001,59,"(55,60]",HS,163201.3647957154,7352.079123076806,22.19798808794872,13.265107818905388,2019
+2001,59,"(55,60]",HS,161990.17872991582,7369.297106971601,21.981767918770394,13.646603181231054,2019
+2001,47,"(45,50]",HS,214.4139556235654,86.08991947396729,2.4905814401232194,5209.405690216789,2019
+2001,47,"(45,50]",HS,222.61686304514154,86.08991947396729,2.5858644589911437,5467.901278147527,2019
+2001,47,"(45,50]",HS,473.89368018362666,86.08991947396729,5.504636118598383,5597.4152795358,2019
+2001,47,"(45,50]",HS,210.73101759755164,86.08991947396729,2.4478013092029265,5378.197588542094,2019
+2001,47,"(45,50]",HS,189.30301453710788,86.08991947396729,2.198898729303042,5431.083079663616,2019
+2001,50,"(45,50]",HS,54.407039020658,77.48092752657055,0.7021991186411672,4749.573614867543,2019
+2001,50,"(45,50]",HS,54.407039020658,77.48092752657055,0.7021991186411672,4841.3621980816515,2019
+2001,50,"(45,50]",HS,54.407039020658,77.48092752657055,0.7021991186411672,4848.296608544826,2019
+2001,50,"(45,50]",HS,54.407039020658,77.48092752657055,0.7021991186411672,4782.483400255505,2019
+2001,50,"(45,50]",HS,54.407039020658,77.48092752657055,0.7021991186411672,4799.977694439118,2019
+2001,46,"(45,50]",NoHS,426.0489671002295,27.548774231669533,15.465260396611473,85.30505435309139,2019
+2001,46,"(45,50]",NoHS,424.2912012241775,27.548774231669533,15.40145480361956,90.26230054634979,2019
+2001,46,"(45,50]",NoHS,420.95981637337417,27.548774231669533,15.28052801309203,88.78340865912047,2019
+2001,46,"(45,50]",NoHS,424.3749043611324,27.548774231669533,15.404493165190605,87.95289230361149,2019
+2001,46,"(45,50]",NoHS,422.7008416220352,27.548774231669533,15.343725933769734,87.69789796175937,2019
+2001,60,"(55,60]",HS,58.4247895944912,34.43596778958692,1.6966211012706969,7268.425728230519,2019
+2001,60,"(55,60]",HS,58.25738332058148,34.43596778958692,1.6917597227570271,7622.3367557035945,2019
+2001,60,"(55,60]",HS,58.25738332058148,34.43596778958692,1.6917597227570271,7651.603191531889,2019
+2001,60,"(55,60]",HS,58.25738332058148,34.43596778958692,1.6917597227570271,7455.20962820474,2019
+2001,60,"(55,60]",HS,58.25738332058148,34.43596778958692,1.6917597227570271,7529.212157694114,2019
+2001,75,"(70,75]",College,60058.17260902831,1373.995114804518,43.71061582527748,12.57883120315518,2019
+2001,75,"(70,75]",College,64466.48201989289,2927.057262114888,22.024332374459217,13.27890672793472,2019
+2001,75,"(70,75]",College,73756.35837796482,2048.940083480422,35.997323188035324,13.458992248041634,2019
+2001,75,"(70,75]",College,54060.34062739097,2531.0436325346386,21.358912952936272,13.6493210130687,2019
+2001,75,"(70,75]",College,78447.91920428463,6887.193557917384,11.390404312668462,13.646603181231054,2019
+2001,47,"(45,50]",College,5609.6168324407045,387.4046376328528,14.47999401018269,3687.287979209405,2019
+2001,47,"(45,50]",College,5609.6168324407045,387.4046376328528,14.47999401018269,3633.9889219487354,2019
+2001,47,"(45,50]",College,5607.775363427697,387.4046376328528,14.475240662302657,3732.726985571312,2019
+2001,47,"(45,50]",College,5607.942769701606,387.4046376328528,14.475672784837203,3619.162569798528,2019
+2001,47,"(45,50]",College,5609.784238714614,387.4046376328528,14.480426132717238,3597.716146931495,2019
+2001,45,"(40,45]",College,2353.3304361132364,742.0951058655979,3.1711978929819975,2668.322311064,2019
+2001,45,"(40,45]",College,2364.1130742157616,550.9754846333907,4.290777248989219,2713.375030292452,2019
+2001,45,"(40,45]",College,2627.2573221117063,702.4937429075732,3.7399013850823346,1262.626653579168,2019
+2001,45,"(40,45]",College,2530.362570772762,764.4784849288296,3.3099199266652093,1210.6928509964957,2019
+2001,45,"(40,45]",College,2569.736526396328,547.53188785443206,4.693309345810236,1199.755404634274,2019
+2001,44,"(40,45]",HS,-21.09319051262433,44.76675812646299,-0.4711797636325938,7475.643580668516,2019
+2001,44,"(40,45]",HS,-21.09319051262433,44.76675812646299,-0.4711797636325938,7478.694784567658,2019
+2001,44,"(40,45]",HS,-21.09319051262433,44.76675812646299,-0.4711797636325938,7534.7898556975515,2019
+2001,44,"(40,45]",HS,-21.09319051262433,44.76675812646299,-0.4711797636325938,7507.013067458205,2019
+2001,44,"(40,45]",HS,-21.09319051262433,44.76675812646299,-0.4711797636325938,7546.370494232348,2019
+2001,47,"(45,50]",College,3257.7260902830913,638.7872024968373,5.099861233208129,797.4321746364299,2019
+2001,47,"(45,50]",College,4124.890589135425,872.9517834660282,4.725221561215757,800.1543903451652,2019
+2001,47,"(45,50]",College,6761.706809487376,874.6735818555076,7.730548801009039,804.3214810538013,2019
+2001,47,"(45,50]",College,3389.4748278500383,409.7880166960843,8.271288299686452,800.3246806621946,2019
+2001,47,"(45,50]",College,6085.21805661821,874.6735818555076,6.957130274483885,793.4837926371905,2019
+2001,83,"(80,85]",HS,441.28293802601377,25.826975842190187,17.086125016044154,7699.130119284129,2019
+2001,83,"(80,85]",HS,259.71409334353484,13.085667760043028,19.84721743712381,7883.03062581133,2019
+2001,83,"(80,85]",HS,423.5378729915838,20.661580673752148,20.49881273264023,8032.232804467147,2019
+2001,83,"(80,85]",HS,350.58221882172916,14.807466149522373,23.67604391471376,7873.058422885124,2019
+2001,83,"(80,85]",HS,586.7087681713848,24.105177452710844,24.339533252654157,6375.947992074329,2019
+2001,59,"(55,60]",HS,23.43687834736037,18.939782284272805,1.2374418034795394,4382.174274860752,2019
+2001,59,"(55,60]",HS,23.939097169089518,18.939782284272805,1.2639584135541007,4408.2663485496105,2019
+2001,59,"(55,60]",HS,23.7716908951798,18.939782284272805,1.2551195435292468,4375.96552777929,2019
+2001,59,"(55,60]",HS,23.7716908951798,18.939782284272805,1.2551195435292468,4398.287144985603,2019
+2001,59,"(55,60]",HS,24.27390971690895,18.939782284272805,1.2816361536038083,4396.236482763493,2019
+2001,69,"(65,70]",HS,259.81453710788065,39.60136295802496,6.560747350621955,7447.00502491995,2019
+2001,69,"(65,70]",HS,259.81453710788065,39.60136295802496,6.560747350621955,7714.6572452831515,2019
+2001,69,"(65,70]",HS,259.64713083397095,39.60136295802496,6.556520064957894,8034.781751444078,2019
+2001,69,"(65,70]",HS,259.64713083397095,39.60136295802496,6.556520064957894,7465.393412488996,2019
+2001,69,"(65,70]",HS,259.64713083397095,39.60136295802496,6.556520064957894,7766.413663528483,2019
+2001,76,"(75,80]",College,171752.14078041314,5285.921055701591,32.492377197944506,22.186381816816397,2019
+2001,76,"(75,80]",College,179505.22754399388,5303.1390395963845,33.84886313628613,23.460982960666353,2019
+2001,76,"(75,80]",College,173020.5781178271,5303.1390395963845,32.62606860313349,23.740899046028453,2019
+2001,76,"(75,80]",College,175163.54583014536,4666.073635489027,37.539816023882224,23.440699074076043,2019
+2001,76,"(75,80]",College,200800.31002295334,5165.395168438037,38.874142921319475,24.112156722472083,2019
+2001,37,"(35,40]",HS,27.11981637337414,30.992371010628222,0.8750481324605315,5588.951286630838,2019
+2001,37,"(35,40]",HS,14.045386381025248,27.548774231669533,0.5098370716211013,5597.6052539782695,2019
+2001,37,"(35,40]",HS,27.72247895944912,17.21798389479346,1.6100885637273776,5622.513023372892,2019
+2001,37,"(35,40]",HS,14.346717674062738,16.701444377949656,0.859010595095848,5575.63320968147,2019
+2001,37,"(35,40]",HS,22.16459066564652,11.191689531615747,1.9804508160303311,5631.865158037602,2019
+2001,43,"(40,45]",College,173.78445294567712,53.37575007385973,3.2558690548647937,6430.714167653013,2019
+2001,43,"(40,45]",College,495.5225707727621,51.653951684380374,9.593120266974715,6601.255250532388,2019
+2001,43,"(40,45]",College,266.00856924254015,75.75912913709122,3.511241117373192,6667.229533602343,2019
+2001,43,"(40,45]",College,489.46246365723033,53.37575007385973,9.170128063398213,6270.539020753681,2019
+2001,43,"(40,45]",College,309.7685692425402,91.25531464240532,3.3945263402619865,6615.429219552973,2019
+2001,37,"(35,40]",College,572.8810099464422,49.93215329490103,11.473188559744,4605.13283876021,2019
+2001,37,"(35,40]",College,572.8810099464422,51.653951684380374,11.090748941085867,4669.2522037369345,2019
+2001,37,"(35,40]",College,574.5550726855394,51.653951684380374,11.123158131176998,4904.026191148941,2019
+2001,37,"(35,40]",College,574.5550726855394,51.653951684380374,11.123158131176998,4735.398749432645,2019
+2001,37,"(35,40]",College,574.7224789594491,51.653951684380374,11.12639905018611,4633.377378015835,2019
+2001,42,"(40,45]",HS,276.80627390971694,75.75912913709122,3.653767896523961,2829.694666344042,2019
+2001,42,"(40,45]",HS,229.93251721499618,75.75912913709122,3.0350469947841914,2991.778792159297,2019
+2001,42,"(40,45]",HS,231.9413925019128,75.75912913709122,3.061563604858753,2937.318514921707,2019
+2001,42,"(40,45]",HS,234.78729915837795,75.75912913709122,3.0991288024643815,2892.8552078435205,2019
+2001,42,"(40,45]",HS,206.83045141545523,75.75912913709122,2.7301059789267335,2861.564994289781,2019
+2001,46,"(45,50]",College,77.50910482019893,120.5258872635542,0.6430909290940097,3238.999716083822,2019
+2001,46,"(45,50]",College,77.67651109410865,120.5258872635542,0.6444798943836295,3453.648313694717,2019
+2001,46,"(45,50]",College,77.50910482019893,120.5258872635542,0.6430909290940097,3370.435445896333,2019
+2001,46,"(45,50]",College,79.35057383320581,120.5258872635542,0.6583695472798284,3325.9712739695833,2019
+2001,46,"(45,50]",College,77.67651109410865,120.5258872635542,0.6444798943836295,3265.486790558619,2019
+2001,32,"(30,35]",College,309.53420045906654,146.35286310574438,2.114985616888265,6429.592679635746,2019
+2001,32,"(30,35]",College,309.3667941851569,146.35286310574438,2.113841763120343,6528.024137732833,2019
+2001,32,"(30,35]",College,311.04085692425406,146.35286310574438,2.1252803007995658,6595.993424203603,2019
+2001,32,"(30,35]",College,311.04085692425406,148.07466149522375,2.100567739162361,6445.348197600973,2019
+2001,32,"(30,35]",College,311.2082631981637,146.35286310574438,2.1264241545674873,6503.614331810077,2019
+2001,37,"(35,40]",HS,14.229533282325939,120.5258872635542,0.11806204961769076,4018.3072086286024,2019
+2001,37,"(35,40]",HS,8.370313695485846,120.5258872635542,0.06944826448099456,4049.408958957562,2019
+2001,37,"(35,40]",HS,14.06212700841622,120.5258872635542,0.11667308432807086,4099.099336511975,2019
+2001,37,"(35,40]",HS,10.044376434583015,120.5258872635542,0.08333791737719347,4023.199828946792,2019
+2001,37,"(35,40]",HS,12.722876817138486,120.5258872635542,0.10556136201111174,4045.7802697384664,2019
+2001,64,"(60,65]",HS,3213.6982402448357,129.1348792109509,24.886368887177518,1448.7550605075517,2019
+2001,64,"(60,65]",HS,3213.6982402448357,129.1348792109509,24.886368887177518,1456.165586005434,2019
+2001,64,"(60,65]",HS,3213.6982402448357,129.1348792109509,24.886368887177518,1500.933874150708,2019
+2001,64,"(60,65]",HS,3213.6982402448357,129.1348792109509,24.886368887177518,1438.052073559079,2019
+2001,64,"(60,65]",HS,3213.865646518745,129.1348792109509,24.88766525478116,1426.182686729475,2019
+2001,39,"(35,40]",HS,263.0957000765111,68.87193557917384,3.8200712360415863,9835.946007741752,2019
+2001,39,"(35,40]",HS,284.0717061973986,68.87193557917384,4.1246365999229875,10085.062013432278,2019
+2001,39,"(35,40]",HS,274.54628921193574,68.87193557917384,3.986330381209087,10181.103007174494,2019
+2001,39,"(35,40]",HS,302.51150726855394,68.87193557917384,4.392377021563342,10047.286636402081,2019
+2001,39,"(35,40]",HS,303.3903902065799,68.87193557917384,4.405138140161724,10038.826299197875,2019
+2001,36,"(35,40]",NoHS,0,18.939782284272805,0,6086.5234970590955,2019
+2001,36,"(35,40]",NoHS,0,17.21798389479346,0,6073.59982968565,2019
+2001,36,"(35,40]",NoHS,0,17.21798389479346,0,6082.390486126194,2019
+2001,36,"(35,40]",NoHS,0,18.939782284272805,0,6044.883939079044,2019
+2001,36,"(35,40]",NoHS,0,17.21798389479346,0,6113.3052988408635,2019
+2001,75,"(70,75]",HS,37.030267788829384,8.26463226950086,4.4805705300988325,5800.06010478251,2019
+2001,75,"(70,75]",HS,18.61557765876052,8.26463226950086,2.2524387113335904,5794.370722493071,2019
+2001,75,"(70,75]",HS,32.00807957153788,8.26463226950086,3.8728982158901304,5820.485398404805,2019
+2001,75,"(70,75]",HS,42.03571537872992,8.26463226950086,5.086217269926839,5839.437521405816,2019
+2001,75,"(70,75]",HS,18.582096403978575,8.26463226950086,2.2483875625721983,5837.279171674349,2019
+2001,72,"(70,75]",HS,3035.0422647283854,225.5555890217943,13.455850408721748,100.30482689794793,2019
+2001,72,"(70,75]",HS,2209.7460749808724,368.46485534858,5.997169181550244,92.17298236792708,2019
+2001,72,"(70,75]",HS,3204.1226013771998,266.8787503692986,12.00591128721726,103.74606857447404,2019
+2001,72,"(70,75]",HS,2631.5931446059676,358.1340650117039,7.348067111459968,99.73381861510892,2019
+2001,72,"(70,75]",HS,2281.7140321346596,230.72098419023237,9.889495054569279,96.86875242053732,2019
+2001,28,"(25,30]",HS,16.104483550114768,30.992371010628222,0.5196273477944637,6591.453164830995,2019
+2001,28,"(25,30]",HS,16.104483550114768,29.27057262114888,0.5501936623706086,6699.414510073341,2019
+2001,28,"(25,30]",HS,16.121224177505738,29.27057262114888,0.5507655892545698,6740.558226037213,2019
+2001,28,"(25,30]",HS,16.15470543228768,30.992371010628222,0.5212478072990202,6588.727269123998,2019
+2001,28,"(25,30]",HS,15.93707727620505,30.992371010628222,0.5142258161126086,6680.578328898952,2019
+2001,37,"(35,40]",NoHS,-0.435256312165264,20.661580673752148,-0.021065973559235018,4875.741251500206,2019
+2001,37,"(35,40]",NoHS,-0.435256312165264,20.661580673752148,-0.021065973559235018,4868.256127493559,2019
+2001,37,"(35,40]",NoHS,-0.435256312165264,20.661580673752148,-0.021065973559235018,4875.77395730693,2019
+2001,37,"(35,40]",NoHS,-0.435256312165264,20.661580673752148,-0.021065973559235018,4843.454037484842,2019
+2001,37,"(35,40]",NoHS,-0.435256312165264,20.661580673752148,-0.021065973559235018,4897.513114450403,2019
+2001,53,"(50,55]",HS,4575.046059678653,860.899194739673,5.31426453600308,1839.7035554130748,2019
+2001,53,"(50,55]",HS,4635.144912012242,860.899194739673,5.384073931459375,1849.8833991833412,2019
+2001,53,"(50,55]",HS,4636.1493496557005,860.899194739673,5.385240662302657,1858.5750308312322,2019
+2001,53,"(50,55]",HS,4549.047865340474,860.899194739673,5.284065652676164,1848.798929288722,2019
+2001,53,"(50,55]",HS,4537.915348125478,860.899194739673,5.271134385829803,1834.687021559473,2019
+2001,57,"(55,60]",College,25462.49426166794,1291.3487921095093,19.71775125144397,18.687378031860785,2019
+2001,57,"(55,60]",College,25609.811782708493,1291.3487921095093,19.831831600564755,18.796529751732592,2019
+2001,57,"(55,60]",College,27143.2532517215,1291.3487921095093,21.01930432550379,18.767460349100556,2019
+2001,57,"(55,60]",College,25641.618974751338,1291.3487921095093,19.856462585034013,19.34512905952876,2019
+2001,57,"(55,60]",College,25579.678653404742,1291.3487921095093,19.80849698369914,19.076149558376407,2019
+2001,35,"(30,35]",HS,154.41554705432287,43.04495973698364,3.587308432807085,5416.7721062781875,2019
+2001,35,"(30,35]",HS,126.10714613618975,48.21035490542169,2.6157688816766598,5560.423675393509,2019
+2001,35,"(30,35]",HS,135.34797245600612,56.819346852818406,2.3820754716981134,5615.995676721545,2019
+2001,35,"(30,35]",HS,148.85765876052028,55.097548463339066,2.7017111089718906,5482.34638247865,2019
+2001,35,"(30,35]",HS,133.3390971690895,43.04495973698364,3.0976703889102812,5572.362809683158,2019
+2001,53,"(50,55]",College,154.5159908186687,55.097548463339066,2.8044077300731614,4640.951073040442,2019
+2001,53,"(50,55]",College,154.34858454475898,55.097548463339066,2.8013693685021175,4714.8023788854525,2019
+2001,53,"(50,55]",College,154.68339709257845,56.819346852818406,2.722371967654987,4730.197066147849,2019
+2001,53,"(50,55]",College,154.34858454475898,56.819346852818406,2.7164793876384175,4672.876617519432,2019
+2001,53,"(50,55]",College,154.34858454475898,56.819346852818406,2.7164793876384175,4682.8444147701985,2019
+2001,58,"(55,60]",College,23974.25248661056,774.8092752657057,30.94213408633894,1449.8473079898063,2019
+2001,58,"(55,60]",College,23974.25248661056,774.8092752657057,30.94213408633894,1499.9110352301152,2019
+2001,58,"(55,60]",College,23974.25248661056,774.8092752657057,30.94213408633894,1486.94076987342,2019
+2001,58,"(55,60]",College,23972.578423871462,774.8092752657057,30.939973473666196,1444.8433514020944,2019
+2001,58,"(55,60]",College,23974.25248661056,774.8092752657057,30.94213408633894,1435.8447710207934,2019
+2001,61,"(60,65]",NoHS,487.06855394032135,46.488556515942335,10.477170952238339,8322.32462703737,2019
+2001,61,"(60,65]",NoHS,487.03507268553943,46.488556515942335,10.476450748014091,7560.997124298783,2019
+2001,61,"(60,65]",NoHS,487.03507268553943,46.488556515942335,10.476450748014091,7069.964888396076,2019
+2001,61,"(60,65]",NoHS,487.03507268553943,46.488556515942335,10.476450748014091,7917.987949234432,2019
+2001,61,"(60,65]",NoHS,487.03507268553943,46.488556515942335,10.476450748014091,7609.509228331861,2019
+2001,51,"(50,55]",College,236129.56266258608,1563.392937647246,151.0366056904018,12.57883120315518,2019
+2001,51,"(50,55]",College,234909.84055087986,1563.392937647246,150.25642939413316,13.27890672793472,2019
+2001,51,"(50,55]",College,232740.42264728385,1563.392937647246,148.8687949412996,13.458992248041634,2019
+2001,51,"(50,55]",College,233343.08523335884,1563.392937647246,149.25427870009278,13.265107818905388,2019
+2001,51,"(50,55]",College,232124.20015302222,1563.392937647246,148.47463779793358,13.646603181231054,2019
+2001,43,"(40,45]",College,146.29634276970162,120.5258872635542,1.213816766598823,7369.332890757059,2019
+2001,43,"(40,45]",College,129.7398622800306,120.5258872635542,1.0764480994554155,7634.129489510888,2019
+2001,43,"(40,45]",College,140.0855700076511,118.80408887407486,1.1791308812286194,7728.88727287822,2019
+2001,43,"(40,45]",College,119.84615149196634,118.80408887407486,1.0087712689669797,7534.156603464682,2019
+2001,43,"(40,45]",College,121.36954858454476,120.5258872635542,1.0069998349744211,7670.026391721384,2019
+2001,50,"(45,50]",College,147.65233358837034,129.1348792109509,1.1433962264150948,4456.223161494276,2019
+2001,50,"(45,50]",College,61.60550879877582,53.37575007385973,1.1541853503422062,4601.778035640265,2019
+2001,50,"(45,50]",College,47.71078806426932,103.30790336876075,0.4618309587986138,4608.369283403592,2019
+2001,50,"(45,50]",College,45.36710022953328,43.04495973698364,1.0539468617635732,4545.812968885165,2019
+2001,50,"(45,50]",College,91.90604437643458,58.54114524229776,1.569939296473306,4562.44152412011,2019
+2001,44,"(40,45]",HS,38.80477429227238,60.2629436317771,0.6439243082677815,9177.958268559294,2019
+2001,44,"(40,45]",HS,38.93869931140015,60.2629436317771,0.6461466527311733,9421.355642620018,2019
+2001,44,"(40,45]",HS,38.93869931140015,60.2629436317771,0.6461466527311733,9515.514580652112,2019
+2001,44,"(40,45]",HS,38.93869931140015,60.2629436317771,0.6461466527311733,9289.064654179854,2019
+2001,44,"(40,45]",HS,39.13958684009181,60.2629436317771,0.6494801694262611,9441.584826001408,2019
+2001,75,"(70,75]",College,12816.624330527926,120.5258872635542,106.33918257329887,1461.0710593148456,2019
+2001,75,"(70,75]",College,15610.635042081101,375.3520489064974,41.589316183457974,1434.7745263077823,2019
+2001,75,"(70,75]",College,20465.416985462893,160.12725022157917,127.80720931099158,1458.2108906091098,2019
+2001,75,"(70,75]",College,18630.644223412393,409.7880166960843,45.464102082881666,1447.307452835343,2019
+2001,75,"(70,75]",College,20455.37260902831,120.5258872635542,169.7176687386545,1411.6393588282385,2019
+2001,28,"(25,30]",NoHS,131.5813312930375,132.5784759899096,0.9924788342193042,6261.387432155175,2019
+2001,28,"(25,30]",NoHS,125.05248661055853,132.5784759899096,0.9432337012236898,6277.851799746692,2019
+2001,28,"(25,30]",NoHS,188.33205814843154,132.5784759899096,1.420532682565798,6332.027198895824,2019
+2001,28,"(25,30]",NoHS,114.17107880642693,132.5784759899096,0.8611584795643327,6236.537894600439,2019
+2001,28,"(25,30]",NoHS,151.83749043611323,132.5784759899096,1.1452650160774922,6273.636618760804,2019
+2001,67,"(65,70]",College,4300.667176740628,163.57084700053784,26.292381898141585,3687.287979209405,2019
+2001,67,"(65,70]",College,4300.667176740628,163.57084700053784,26.292381898141585,3633.9889219487354,2019
+2001,67,"(65,70]",College,4300.667176740628,163.57084700053784,26.292381898141585,3732.726985571312,2019
+2001,67,"(65,70]",College,4302.341239479724,163.57084700053784,26.30261637922299,3619.162569798528,2019
+2001,67,"(65,70]",College,4300.667176740628,163.57084700053784,26.292381898141585,3597.716146931495,2019
+2001,61,"(60,65]",College,760.0244835501148,137.74387115834767,5.517664613015017,8085.117591734134,2019
+2001,61,"(60,65]",College,758.3504208110177,137.74387115834767,5.505511166730844,7265.889457646964,2019
+2001,61,"(60,65]",College,760.0244835501148,137.74387115834767,5.517664613015017,6572.684943973198,2019
+2001,61,"(60,65]",College,760.0244835501148,137.74387115834767,5.517664613015017,7516.730324275855,2019
+2001,61,"(60,65]",College,760.0244835501148,137.74387115834767,5.517664613015017,7391.671865064038,2019
+2001,71,"(70,75]",College,566.3354246365723,110.19509692667813,5.1393885974200995,1108.5257370590293,2019
+2001,71,"(70,75]",College,548.0881407804131,111.91689531615746,4.897277924232102,383.68276789889376,2019
+2001,71,"(70,75]",College,553.1103289977046,111.91689531615746,4.942152187435207,375.78024302554047,2019
+2001,71,"(70,75]",College,551.2688599846978,111.91689531615746,4.925698290927402,365.77717410054055,2019
+2001,71,"(70,75]",College,568.0094873756694,110.19509692667813,5.1545804052753175,1158.418512392103,2019
+2001,32,"(30,35]",HS,49.95403213465952,87.81171786344665,0.5688766072466721,7675.69538642702,2019
+2001,32,"(30,35]",HS,60.98610558530987,87.81171786344665,0.6945098794234674,7695.878687928799,2019
+2001,32,"(30,35]",HS,194.74371843917368,87.81171786344665,2.2177418137066143,7762.291103038481,2019
+2001,32,"(30,35]",HS,86.76667176740627,87.81171786344665,0.9880990131901816,7645.232891839284,2019
+2001,32,"(30,35]",HS,170.30240244835502,87.81171786344665,1.9394040635121972,7690.711391447485,2019
+2001,38,"(35,40]",HS,55.796511094108645,60.2629436317771,0.9258842620606195,7184.17299873011,2019
+2001,38,"(35,40]",HS,57.47057383320582,60.2629436317771,0.9536635678530173,7450.799054789738,2019
+2001,38,"(35,40]",HS,57.3031675592961,60.2629436317771,0.9508856372737775,7520.438573408884,2019
+2001,38,"(35,40]",HS,57.3031675592961,60.2629436317771,0.9508856372737775,7296.7343787225645,2019
+2001,38,"(35,40]",HS,57.47057383320582,60.2629436317771,0.9536635678530173,7464.1069325781555,2019
+2001,60,"(55,60]",NoHS,140.9728232593726,58.54114524229776,2.4080981449183447,5738.662761096545,2019
+2001,60,"(55,60]",NoHS,139.48290742157613,58.54114524229776,2.3826473985820744,5997.938815894104,2019
+2001,60,"(55,60]",NoHS,140.9895638867636,58.54114524229776,2.4083841083603255,6031.988056110646,2019
+2001,60,"(55,60]",NoHS,141.1569701606733,58.54114524229776,2.411243742780131,5885.843122121636,2019
+2001,60,"(55,60]",NoHS,139.16483550114768,58.54114524229776,2.3772140931844437,5935.236440522118,2019
+2001,56,"(55,60]",College,31690.007651109412,1344.724542183369,23.56617036203992,10.719873855226902,2019
+2001,56,"(55,60]",College,30646.899158377964,1346.4463405728482,22.761322330408788,10.435442962152202,2019
+2001,56,"(55,60]",College,32821.6740627391,1344.724542183369,24.407730381307694,10.829210793767967,2019
+2001,56,"(55,60]",College,32914.08232593726,1346.4463405728482,24.44514967594914,11.208984887044869,2019
+2001,56,"(55,60]",College,32922.11782708493,1346.4463405728482,24.45111760865134,10.748342561587899,2019
+2001,61,"(60,65]",HS,203690.91415455242,11294.997434984507,18.03372823473614,30.131628782247866,2019
+2001,61,"(60,65]",HS,209774.96036725325,11277.779451089717,18.60073264218549,31.99379175914594,2019
+2001,61,"(60,65]",HS,206764.7109716909,11294.997434984507,18.305866128952733,31.70035336262643,2019
+2001,61,"(60,65]",HS,197850.94628921192,11294.997434984507,17.516688023000274,31.19241932845557,2019
+2001,61,"(60,65]",HS,201401.13114001532,11294.997434984507,17.83100282220574,33.61730429824509,2019
+2001,80,"(75,80]",College,1074.0786534047436,43.04495973698364,24.952483634963418,1164.4734655765437,2019
+2001,80,"(75,80]",College,1074.0786534047436,44.76675812646299,23.992772725926365,1159.5395766828465,2019
+2001,80,"(75,80]",College,1074.0786534047436,44.76675812646299,23.992772725926365,1110.5688227402018,2019
+2001,80,"(75,80]",College,1074.0786534047436,43.04495973698364,24.952483634963418,1159.8926774665945,2019
+2001,80,"(75,80]",College,1074.0786534047436,44.76675812646299,23.992772725926365,1221.7612484781982,2019
+2001,64,"(60,65]",HS,2157.8668706962508,206.6158067375215,10.443861506866897,3086.6976848645563,2019
+2001,64,"(60,65]",HS,2030.4706962509563,206.6158067375215,9.827276665383135,3139.7415269015905,2019
+2001,64,"(60,65]",HS,1858.3770466717676,206.6158067375215,8.994360480041074,3943.0617055251205,2019
+2001,64,"(60,65]",HS,2095.759143075746,206.6158067375215,10.14326626877166,3247.0780077984036,2019
+2001,64,"(60,65]",HS,1857.8748278500382,206.6158067375215,8.991929790784237,3326.7504546415175,2019
+2001,31,"(30,35]",College,-35.992348890589135,55.097548463339066,-0.653247737774355,4131.605149129549,2019
+2001,31,"(30,35]",College,-35.992348890589135,55.097548463339066,-0.653247737774355,4184.785380391286,2019
+2001,31,"(30,35]",College,-35.992348890589135,55.097548463339066,-0.653247737774355,4234.554145997574,2019
+2001,31,"(30,35]",College,-35.992348890589135,55.097548463339066,-0.653247737774355,4151.348576496446,2019
+2001,31,"(30,35]",College,-35.992348890589135,55.097548463339066,-0.653247737774355,4144.867187151852,2019
+2001,53,"(50,55]",NoHS,63.69808722264729,175.6234357268933,0.3626969655786843,7136.000547401328,2019
+2001,53,"(50,55]",NoHS,78.93205814843152,175.6234357268933,0.44943920964612255,7224.6630615456525,2019
+2001,53,"(50,55]",NoHS,51.9796480489671,175.6234357268933,0.29597216244988556,7252.790920858623,2019
+2001,53,"(50,55]",NoHS,85.29349655700076,175.6234357268933,0.48566124563032753,7211.453787260618,2019
+2001,53,"(50,55]",NoHS,35.23902065799541,175.6234357268933,0.20065101512303032,7216.139832211133,2019
+2001,92,"(90,95]",NoHS,0.13392501912777355,7.7480927526570555,0.017284901381936425,6683.561104192149,2019
+2001,92,"(90,95]",NoHS,0.13392501912777355,9.469891142136403,0.014142192039766164,6678.940685457319,2019
+2001,92,"(90,95]",NoHS,0.10044376434583015,6.715013718969449,0.014958087734368056,6705.749376367648,2019
+2001,92,"(90,95]",NoHS,0.1506656465187452,6.37065404107358,0.023649949525960303,6729.988095779391,2019
+2001,92,"(90,95]",NoHS,0.13392501912777355,5.681934685281842,0.02357032006627694,6726.928251108919,2019
+2001,66,"(65,70]",College,900.645753634277,129.1348792109509,6.974457707611347,8161.923519427131,2019
+2001,66,"(65,70]",College,1064.7039020657996,103.30790336876075,10.306122448979593,7346.940970071085,2019
+2001,66,"(65,70]",College,872.1866870696251,87.81171786344665,9.932463551458317,6936.062170942414,2019
+2001,66,"(65,70]",College,812.5900535577659,103.30790336876075,7.865710435117443,7749.048950943694,2019
+2001,66,"(65,70]",College,807.0656465187452,70.59373396865318,11.432539421659136,7395.6159919799,2019
+2001,67,"(65,70]",College,2030.135883703137,110.19509692667813,18.423105386022335,8268.711931508778,2019
+2001,67,"(65,70]",College,2030.135883703137,110.19509692667813,18.423105386022335,8040.857384998252,2019
+2001,67,"(65,70]",College,2030.135883703137,110.19509692667813,18.423105386022335,8673.616855503527,2019
+2001,67,"(65,70]",College,2031.8099464422341,110.19509692667813,18.438297193877553,8220.574856814781,2019
+2001,67,"(65,70]",College,2030.135883703137,110.19509692667813,18.423105386022335,8214.20800909197,2019
+2001,22,"(20,25]",HS,24.94353481254782,137.74387115834767,0.1810863496341933,5712.02765751273,2019
+2001,22,"(20,25]",HS,28.79387911247131,137.74387115834767,0.2090392760877936,5746.218977923293,2019
+2001,22,"(20,25]",HS,28.459066564651877,137.74387115834767,0.2066085868309588,5658.740111574325,2019
+2001,22,"(20,25]",HS,24.608722264728385,137.74387115834767,0.17865566037735847,5659.245658930669,2019
+2001,22,"(20,25]",HS,20.08875286916603,137.74387115834767,0.14584135541008855,5700.4278723087655,2019
+2001,47,"(45,50]",College,3691.308339709258,635.3436057178786,5.8099401748734465,714.9118547692785,2019
+2001,47,"(45,50]",College,3662.6818668706965,635.3436057178786,5.764883495966265,718.6927471728146,2019
+2001,47,"(45,50]",College,3687.9602142310637,635.3436057178786,5.804670387866759,722.3417034508368,2019
+2001,47,"(45,50]",College,3711.397092578424,635.3436057178786,5.841558896913574,717.6441689280448,2019
+2001,47,"(45,50]",College,3744.8783473603676,637.065404107358,5.878326343285912,712.8656302665728,2019
+2001,41,"(40,45]",NoHS,21.09319051262433,20.661580673752148,1.0208894878706198,9683.804260012344,2019
+2001,41,"(40,45]",NoHS,21.09319051262433,20.661580673752148,1.0208894878706198,9674.35846948961,2019
+2001,41,"(40,45]",NoHS,21.09319051262433,20.661580673752148,1.0208894878706198,9780.412903819608,2019
+2001,41,"(40,45]",NoHS,21.09319051262433,20.661580673752148,1.0208894878706198,9679.221473887183,2019
+2001,41,"(40,45]",NoHS,21.09319051262433,20.661580673752148,1.0208894878706198,9663.425991836928,2019
+2001,59,"(55,60]",College,28390.42999234889,2582.6975842190186,10.992549095109743,30.519613905196206,2019
+2001,59,"(55,60]",College,28390.42999234889,2582.6975842190186,10.992549095109743,31.773826429644657,2019
+2001,59,"(55,60]",College,28390.42999234889,2582.6975842190186,10.992549095109743,31.498198299891037,2019
+2001,59,"(55,60]",College,28390.42999234889,2582.6975842190186,10.992549095109743,32.53204559638052,2019
+2001,59,"(55,60]",College,28390.42999234889,2582.6975842190186,10.992549095109743,32.742255602443855,2019
+2001,49,"(45,50]",HS,10162.833114001529,1033.0790336876073,9.837420741881658,164.8103080219313,2019
+2001,49,"(45,50]",HS,10133.955531752104,1033.0790336876073,9.80946781542806,162.36084482647135,2019
+2001,49,"(45,50]",HS,10173.396449885235,1033.0790336876073,9.847645841355414,167.13291760721836,2019
+2001,49,"(45,50]",HS,10142.593695485846,1033.0790336876073,9.817829386471573,163.3808115109518,2019
+2001,49,"(45,50]",HS,10157.743963274675,1033.0790336876073,9.832494544987808,164.37241073663125,2019
+2001,32,"(30,35]",HS,12.890283091048202,25.826975842190187,0.4991015274034142,8765.49660696298,2019
+2001,32,"(30,35]",HS,12.890283091048202,25.826975842190187,0.4991015274034142,8899.091849084865,2019
+2001,32,"(30,35]",HS,12.890283091048202,25.826975842190187,0.4991015274034142,8994.50578968567,2019
+2001,32,"(30,35]",HS,13.05768936495792,25.826975842190187,0.5055833654216404,8815.566395127178,2019
+2001,32,"(30,35]",HS,12.890283091048202,25.826975842190187,0.4991015274034142,8809.729343967381,2019
+2001,65,"(60,65]",College,216.45631216526397,30.992371010628222,6.984180464638686,7022.83244458774,2019
+2001,65,"(60,65]",College,274.21147666411633,30.992371010628222,8.847708894878709,7367.244857079191,2019
+2001,65,"(60,65]",College,282.079571537873,30.992371010628222,9.101580883925898,7686.511887322774,2019
+2001,65,"(60,65]",College,326.9444529456771,30.992371010628222,10.549191374663073,7085.545548476298,2019
+2001,65,"(60,65]",College,186.65799540933435,30.992371010628222,6.022707825268473,7393.902416677278,2019
+2001,70,"(65,70]",College,10249.114307574599,483.82534744369616,21.183500124013886,920.1281855308828,2019
+2001,70,"(65,70]",College,8178.13129303749,669.7795735074654,12.210183195361862,880.4823374001473,2019
+2001,70,"(65,70]",College,16920.086916602908,618.1256218230851,27.373217221928453,918.0230882717867,2019
+2001,70,"(65,70]",College,12204.252180566182,1341.2809454044104,9.098952924352824,918.3477622999296,2019
+2001,70,"(65,70]",College,9246.685539403214,583.6896540334982,15.841784200739907,874.668210637535,2019
+2001,57,"(55,60]",HS,69.25597551644988,34.43596778958692,2.011152291105121,8029.594074718514,2019
+2001,57,"(55,60]",HS,69.10530986993113,34.43596778958692,2.0067770504428184,8451.297770641142,2019
+2001,57,"(55,60]",HS,69.10530986993113,34.43596778958692,2.0067770504428184,8491.326348856646,2019
+2001,57,"(55,60]",HS,69.08856924254016,34.43596778958692,2.006290912591451,8291.395743889454,2019
+2001,57,"(55,60]",HS,69.08856924254016,34.43596778958692,2.006290912591451,8294.912176120912,2019
+2001,46,"(45,50]",College,760.0244835501148,253.10436325346384,3.0028106737496696,8883.307218875401,2019
+2001,46,"(45,50]",College,760.0244835501148,253.10436325346384,3.0028106737496696,8063.525070676713,2019
+2001,46,"(45,50]",College,760.1918898240245,253.10436325346384,3.0034720857923456,7532.180744624321,2019
+2001,46,"(45,50]",College,760.1918898240245,253.10436325346384,3.0034720857923456,8443.981973985128,2019
+2001,46,"(45,50]",College,760.0244835501148,253.10436325346384,3.0028106737496696,8104.832683461193,2019
+2001,45,"(40,45]",College,811.5370680948738,497.5997345595309,1.6309033380277753,9494.244618573442,2019
+2001,45,"(40,45]",College,707.9611323641928,234.16458096919104,3.023348490339532,9433.99423523201,2019
+2001,45,"(40,45]",College,778.9413925019128,402.90082313816697,1.9333328396670713,9030.586151761137,2019
+2001,45,"(40,45]",College,532.3184697781179,299.5929197694062,1.7768059077892706,9432.06344554849,2019
+2001,45,"(40,45]",College,1086.9187146136192,290.98392782200943,3.735322162805058,9916.6979766265,2019
+2001,74,"(70,75]",College,39323.7337413925,4528.32976433068,8.683937740387782,23.01708660149429,2019
+2001,74,"(70,75]",College,39161.34965570008,4528.32976433068,8.648078142226115,22.49026593011436,2019
+2001,74,"(70,75]",College,42368.35164498852,4528.32976433068,9.356286721590134,23.279331977239398,2019
+2001,74,"(70,75]",College,37771.3753634277,4528.32976433068,8.341127375693803,24.119640096465332,2019
+2001,74,"(70,75]",College,43547.39403213466,4528.32976433068,9.616656979170173,23.151128605760825,2019
+2001,23,"(20,25]",College,13.643611323641927,61.984742021256444,0.22011241603559664,6633.355655264027,2019
+2001,23,"(20,25]",College,13.45946442234124,61.984742021256444,0.21714157361057632,6589.7258156539565,2019
+2001,23,"(20,25]",College,13.476205049732211,61.984742021256444,0.21741165019466907,6477.958649187762,2019
+2001,23,"(20,25]",College,13.643611323641927,61.984742021256444,0.22011241603559664,6529.976116972489,2019
+2001,23,"(20,25]",College,13.643611323641927,61.984742021256444,0.22011241603559664,6557.342989799971,2019
+2001,89,"(85,90]",HS,37.49900535577659,22.383379063231494,1.6753058262492226,5800.06010478251,2019
+2001,89,"(85,90]",HS,37.49900535577659,22.383379063231494,1.6753058262492226,5794.370722493071,2019
+2001,89,"(85,90]",HS,37.33159908186688,20.661580673752148,1.806812347580542,5820.485398404805,2019
+2001,89,"(85,90]",HS,37.33159908186688,20.661580673752148,1.806812347580542,5839.437521405816,2019
+2001,89,"(85,90]",HS,37.33159908186688,22.383379063231494,1.6678267823820387,5837.279171674349,2019
+2001,53,"(50,55]",College,967.7254475899006,266.8787503692986,3.626086551479996,5913.216569260538,2019
+2001,53,"(50,55]",College,961.3137872991584,285.8185326535714,3.3633710815537854,5370.6882212794135,2019
+2001,53,"(50,55]",College,978.9751491966335,270.3223471482573,3.6215102433233843,5017.2732495769,2019
+2001,53,"(50,55]",College,854.0231063504209,358.1340650117039,2.384646393027458,5622.018487668398,2019
+2001,53,"(50,55]",College,1148.0554858454475,225.5555890217943,5.089900413571737,5395.371235722993,2019
+2001,65,"(60,65]",College,26326.310635042082,2772.0954070617468,9.496899193288003,243.00953715394547,2019
+2001,65,"(60,65]",College,26329.658760520277,2789.3133909565404,9.439476699135279,233.72853117648705,2019
+2001,65,"(60,65]",College,26327.98469778118,2789.3133909565404,9.438876528948407,239.60933067590364,2019
+2001,65,"(60,65]",College,26327.98469778118,2772.0954070617468,9.497503091240013,247.30842383981312,2019
+2001,65,"(60,65]",College,26327.98469778118,2789.3133909565404,9.438876528948407,243.66319312651004,2019
+2001,79,"(75,80]",College,110520.11537872991,910.8313480345737,121.33982390616484,12.57883120315518,2019
+2001,79,"(75,80]",College,118131.4090283091,888.4479689713424,132.96378983800628,13.27890672793472,2019
+2001,79,"(75,80]",College,36760.74368783474,950.4327109925989,38.67790245712724,13.197324499539812,2019
+2001,79,"(75,80]",College,46180.69472073451,921.1621383714502,50.13307950582807,13.6493210130687,2019
+2001,79,"(75,80]",College,49019.587054322874,977.9814852242683,50.12322604766063,13.102696242266045,2019
+2001,60,"(55,60]",HS,1005.1072685539403,154.9618550531411,6.4861592435716435,11278.96182332654,2019
+2001,60,"(55,60]",HS,1005.1072685539403,154.9618550531411,6.4861592435716435,11042.086600875853,2019
+2001,60,"(55,60]",HS,1005.1072685539403,154.9618550531411,6.4861592435716435,10408.773231555759,2019
+2001,60,"(55,60]",HS,1005.1072685539403,154.9618550531411,6.4861592435716435,11161.037161086704,2019
+2001,60,"(55,60]",HS,1005.27467482785,154.9618550531411,6.487239549908014,11386.752961154238,2019
+2001,57,"(55,60]",HS,175.74310635042082,11.191689531615747,15.703000503539588,6722.93498318457,2019
+2001,57,"(55,60]",HS,175.74310635042082,11.019509692667812,15.948359886407395,6720.97655601907,2019
+2001,57,"(55,60]",HS,175.74310635042082,11.191689531615747,15.703000503539588,6698.741053344702,2019
+2001,57,"(55,60]",HS,175.74310635042082,11.191689531615747,15.703000503539588,6733.93038169839,2019
+2001,57,"(55,60]",HS,175.74310635042082,11.191689531615747,15.703000503539588,6701.2338345716125,2019
+2001,73,"(70,75]",College,74025.38026013772,1172.5447032354343,63.132245666947696,18.01293583972238,2019
+2001,73,"(70,75]",College,108998.22494261668,4442.239844856712,24.536771707366583,19.60781902692309,2019
+2001,73,"(70,75]",College,202372.4223412395,2961.493229904475,68.33458888162549,19.13956903634376,2019
+2001,73,"(70,75]",College,295113.82402448356,1217.3114613618975,242.43082677815062,18.800585208567487,2019
+2001,73,"(70,75]",College,187806.40244835502,4425.021860961919,42.4419151700031,19.8680209352054,2019
+2001,33,"(30,35]",HS,20.08875286916603,94.69891142136402,0.21213288059649246,4538.671461498239,2019
+2001,33,"(30,35]",HS,20.08875286916603,94.69891142136402,0.21213288059649246,4574.05383430146,2019
+2001,33,"(30,35]",HS,20.08875286916603,94.69891142136402,0.21213288059649246,4509.546407022184,2019
+2001,33,"(30,35]",HS,20.08875286916603,94.69891142136402,0.21213288059649246,4552.114414549732,2019
+2001,33,"(30,35]",HS,20.08875286916603,94.69891142136402,0.21213288059649246,4548.938060027444,2019
+2001,42,"(40,45]",HS,123.88064269319052,108.47329853719879,1.1420381270207993,5738.991734624549,2019
+2001,42,"(40,45]",HS,97.0956388676358,108.47329853719879,0.8951109644217075,5670.121256938013,2019
+2001,42,"(40,45]",HS,100.44376434583015,108.47329853719879,0.925976859746594,5709.436478914291,2019
+2001,42,"(40,45]",HS,102.11782708492731,108.47329853719879,0.9414098074090372,5704.95337156976,2019
+2001,42,"(40,45]",HS,100.44376434583015,108.47329853719879,0.925976859746594,5717.068764559889,2019
+2001,88,"(85,90]",HS,14.06212700841622,14.463106471626503,0.9722757027339239,6426.259818470737,2019
+2001,88,"(85,90]",HS,14.899158377964804,14.463106471626503,1.0301492564680859,6419.956185725896,2019
+2001,88,"(85,90]",HS,12.722876817138486,14.463106471626503,0.8796780167592645,6448.8903156232045,2019
+2001,88,"(85,90]",HS,19.921346595256313,14.463106471626503,1.377390578873059,6469.888592247214,2019
+2001,88,"(85,90]",HS,11.132517214996176,14.463106471626503,0.7697182646643564,6467.497217691958,2019
+2001,62,"(60,65]",College,15116.451721499618,843.6812108448794,17.91725538887099,1377.2768080910696,2019
+2001,62,"(60,65]",College,15118.125784238715,843.6812108448794,17.91923962499902,1403.580446927317,2019
+2001,62,"(60,65]",College,15119.799846977812,843.6812108448794,17.921223861127046,1399.780285171635,2019
+2001,62,"(60,65]",College,15119.632440703903,843.6812108448794,17.921025437514245,1399.742957227751,2019
+2001,62,"(60,65]",College,15118.125784238715,843.6812108448794,17.91923962499902,1395.3683720027577,2019
+2001,52,"(50,55]",College,106095.75170619739,2944.2752460096813,36.03459012535832,22.186381816816397,2019
+2001,52,"(50,55]",College,106618.57824024484,2961.493229904475,36.001628220397414,23.460982960666353,2019
+2001,52,"(50,55]",College,105723.4234123948,2944.2752460096813,35.908131739951855,23.740899046028453,2019
+2001,52,"(50,55]",College,103248.62298393267,2944.2752460096813,35.06758518038132,23.440699074076043,2019
+2001,52,"(50,55]",College,103996.97925019127,2944.2752460096813,35.32175851803813,24.112156722472083,2019
+2001,55,"(50,55]",NoHS,72.9221729150727,2.410517745271084,30.25166400792123,8808.591481682113,2019
+2001,55,"(50,55]",NoHS,73.59179801071156,2.410517745271084,30.52945706584521,8806.02549154675,2019
+2001,55,"(50,55]",NoHS,72.41995409334353,2.410517745271084,30.043319214478245,8776.891867625316,2019
+2001,55,"(50,55]",NoHS,112.92390206579954,2.410517745271084,46.846326805654876,8822.99798329618,2019
+2001,55,"(50,55]",NoHS,92.33293037490436,2.410517745271084,38.30419027449255,8780.157984512658,2019
+2001,60,"(55,60]",NoHS,27.036113236419283,46.488556515942335,0.581564911079736,3962.0594728242127,2019
+2001,60,"(55,60]",NoHS,78.09502677888294,46.488556515942335,1.679876353056946,4066.2714208505085,2019
+2001,60,"(55,60]",NoHS,23.520581484315226,46.488556515942335,0.5059434675337641,4004.974669432892,2019
+2001,60,"(55,60]",NoHS,20.842081101759756,46.488556515942335,0.44832712959397597,4043.038250589862,2019
+2001,60,"(55,60]",NoHS,31.38867635807192,46.488556515942335,0.6751914602318915,3988.2958740141207,2019
+2001,43,"(40,45]",College,900.3444223412396,103.30790336876075,8.715155307405983,5253.012688240524,2019
+2001,43,"(40,45]",College,885.277857689365,105.0297017582401,8.428833395405796,5192.525637445985,2019
+2001,43,"(40,45]",College,868.3865646518746,105.0297017582401,8.268009430806037,4997.144141398641,2019
+2001,43,"(40,45]",College,885.2945983167559,105.0297017582401,8.42899278486526,5186.806119909753,2019
+2001,43,"(40,45]",College,860.1836572302984,103.30790336876075,8.326407072262867,5463.080380623696,2019
+2001,56,"(55,60]",College,656.2325937260903,172.17983894793457,3.811320754716981,4496.117148686313,2019
+2001,56,"(55,60]",College,585.9219586840092,172.17983894793457,3.4029649595687332,4106.9183887770105,2019
+2001,56,"(55,60]",College,549.0925784238715,172.17983894793457,3.1890643049672702,4291.565364785858,2019
+2001,56,"(55,60]",College,651.2104055087988,172.17983894793457,3.7821524836349636,4289.721904649707,2019
+2001,56,"(55,60]",College,550.7666411629687,172.17983894793457,3.1987870619946093,4273.500741461374,2019
+2001,73,"(70,75]",College,3222.085294567712,542.3664926859939,5.940789739076224,2732.7699734008597,2019
+2001,79,"(75,80]",HS,4169.738729915838,542.3664926859939,7.688046341627398,3633.9889219487354,2019
+2001,79,"(75,80]",HS,3470.666870696251,540.6446942965146,6.419496773592264,3732.726985571312,2019
+2001,52,"(50,55]",NoHS,3111.881744452946,540.6446942965146,5.755872160184829,2750.992943722965,2019
+2001,71,"(70,75]",HS,4266.365631216526,540.6446942965146,7.891255895459974,3597.716146931495,2019
+2001,67,"(65,70]",HS,802.0434583014537,139.46566954782702,5.750830730615097,7612.723870104895,2019
+2001,67,"(65,70]",HS,1003.0983932670238,139.46566954782702,7.192439519483544,6852.579880463936,2019
+2001,67,"(65,70]",HS,972.9652639632747,139.46566954782702,6.976378252209338,6469.348300995965,2019
+2001,67,"(65,70]",HS,910.8575363427698,139.46566954782702,6.531051973549728,7227.630812644624,2019
+2001,67,"(65,70]",HS,954.5505738332058,139.46566954782702,6.844340811097324,6897.979656666337,2019
+2001,82,"(80,85]",HS,719.9306809487375,55.097548463339066,13.06647393627262,9162.915255484844,2019
+2001,82,"(80,85]",HS,552.3737413925019,55.097548463339066,10.025377839815171,10693.512604929394,2019
+2001,82,"(80,85]",HS,513.6024483550115,55.097548463339066,9.321693299961494,10921.996406972023,2019
+2001,82,"(80,85]",HS,599.2140168324407,55.097548463339066,10.875511407393146,8748.992650437398,2019
+2001,82,"(80,85]",HS,719.076908951798,55.097548463339066,13.0509782922603,8402.992143789786,2019
+2001,39,"(35,40]",HS,-1.1718439173680184,51.653951684380374,-0.022686433063791554,4865.372463103749,2019
+2001,39,"(35,40]",HS,-1.0044376434583013,51.653951684380374,-0.019445514054678474,4884.1286648340665,2019
+2001,39,"(35,40]",HS,-1.0044376434583013,51.653951684380374,-0.019445514054678474,4917.683917114571,2019
+2001,39,"(35,40]",HS,-1.0044376434583013,51.653951684380374,-0.019445514054678474,4867.926940067049,2019
+2001,39,"(35,40]",HS,-1.1718439173680184,51.653951684380374,-0.022686433063791554,4900.702083791423,2019
+2001,71,"(70,75]",HS,1963.4579648048966,105.0297017582401,18.69431153222192,10324.656171136145,2019
+2001,71,"(70,75]",HS,700.7124407039021,108.47329853719879,6.4597689030688645,5187.647778958247,2019
+2001,71,"(70,75]",HS,728.8534353481256,122.24768565303354,5.962104161356279,4989.435600454865,2019
+2001,71,"(70,75]",HS,1301.048079571538,115.36049209511619,11.27810792016046,5172.641455030782,2019
+2001,71,"(70,75]",HS,638.102494261668,108.47329853719879,5.882576660493488,5454.078710289949,2019
+2001,60,"(55,60]",HS,425.96526396327465,74.03733074761188,5.7533849432708575,6340.776955421392,2019
+2001,60,"(55,60]",HS,437.9348125478195,48.21035490542169,9.083832994114088,6688.024136909802,2019
+2001,60,"(55,60]",HS,449.23473603672534,49.93215329490103,8.99690292512581,6742.094623142557,2019
+2001,60,"(55,60]",HS,505.98546289211936,58.54114524229776,8.643245033862602,6569.329060165386,2019
+2001,60,"(55,60]",HS,473.97738332058145,72.31553235813253,6.554295707501328,6634.980639825303,2019
+2001,58,"(55,60]",HS,344.85692425401686,103.30790336876075,3.3381465793864717,267.6030474101823,2019
+2001,58,"(55,60]",HS,344.85692425401686,103.30790336876075,3.3381465793864717,268.7336010767905,2019
+2001,58,"(55,60]",HS,344.85692425401686,103.30790336876075,3.3381465793864717,253.6344562106549,2019
+2001,58,"(55,60]",HS,344.85692425401686,103.30790336876075,3.3381465793864717,269.0149229183387,2019
+2001,58,"(55,60]",HS,344.85692425401686,103.30790336876075,3.3381465793864717,284.41332448299937,2019
+2001,77,"(75,80]",College,3215.0374904361133,332.30708916951374,9.674898896893785,3563.2408143366315,2019
+2001,77,"(75,80]",College,3216.8789594491204,332.30708916951374,9.680440364629575,3599.486732297355,2019
+2001,77,"(75,80]",College,3215.0374904361133,332.30708916951374,9.674898896893785,4574.326021301934,2019
+2001,77,"(75,80]",College,3216.7115531752106,332.30708916951374,9.679936594835413,3760.0047034533673,2019
+2001,77,"(75,80]",College,3215.2048967100227,332.30708916951374,9.675402666687948,3852.6350566332244,2019
+2001,62,"(60,65]",College,10680.838347360368,957.3199045505163,11.157021071629412,309.242546203524,2019
+2001,62,"(60,65]",College,10674.209058913542,1317.1757679516995,8.103860789598858,303.1006106689578,2019
+2001,62,"(60,65]",College,10752.75608263198,1695.9714136371556,6.340175309660307,312.65062284978126,2019
+2001,62,"(60,65]",College,10655.643703136955,903.9441544766565,11.787944698094872,304.66808352753003,2019
+2001,62,"(60,65]",College,10674.19231828615,1435.9798568257745,7.433385828880214,307.38223852495236,2019
+2001,59,"(55,60]",College,43400.07651109411,812.6888398342512,53.403066935120705,170.35675008960655,2019
+2001,59,"(55,60]",College,43400.07651109411,774.8092752657057,56.01388354083771,972.085507979123,2019
+2001,59,"(55,60]",College,43401.750573833204,812.6888398342512,53.405126841270565,166.8640708026392,2019
+2001,59,"(55,60]",College,43400.07651109411,683.5539606233003,63.49180753999237,176.8298272395556,2019
+2001,59,"(55,60]",College,43400.07651109411,835.0722188974828,51.97164452242674,1001.8261019571443,2019
+2001,65,"(60,65]",NoHS,8.956235654169856,11.191689531615747,0.8002576937886912,5190.096052896066,2019
+2001,65,"(60,65]",NoHS,8.956235654169856,11.191689531615747,0.8002576937886912,5161.327216174728,2019
+2001,65,"(60,65]",NoHS,9.123641928079572,11.191689531615747,0.8152157815230592,5164.283661109952,2019
+2001,65,"(60,65]",NoHS,9.123641928079572,11.191689531615747,0.8152157815230592,5169.8373034047545,2019
+2001,65,"(60,65]",NoHS,8.956235654169856,11.191689531615747,0.8002576937886912,5172.674742165911,2019
+2001,52,"(50,55]",College,3669.545524100995,1463.528631057444,2.507327459285601,271.07006334077505,2019
+2001,52,"(50,55]",College,4009.38026013772,1463.528631057444,2.7395297741738203,267.98541211157965,2019
+2001,52,"(50,55]",College,3455.265493496557,1463.528631057444,2.3609141769915514,274.68754365541923,2019
+2001,52,"(50,55]",College,4079.6908951798014,1463.528631057444,2.7875716324265554,270.4805164914605,2019
+2001,52,"(50,55]",College,5405.548584544759,1463.528631057444,3.693503816620988,271.1877646210336,2019
+2001,68,"(65,70]",HS,5211.3573068094875,711.1027348549698,7.328557536587663,582.0257968749296,2019
+2001,68,"(65,70]",HS,5372.0673297628155,657.7269847811101,8.1676249478355,577.5570050682062,2019
+2001,68,"(65,70]",HS,6165.573068094874,604.3512347072503,10.201969838088436,590.490169648087,2019
+2001,68,"(65,70]",HS,6768.235654169855,730.0425171392426,9.27101572205956,582.0235085177317,2019
+2001,68,"(65,70]",HS,5495.947972456006,778.2528720446644,7.061905159459007,584.1182283757453,2019
+2001,20,"(15,20]",HS,5.524407039020658,41.323161347504296,0.13368790912591452,6285.007544882811,2019
+2001,20,"(15,20]",HS,5.691813312930376,41.323161347504296,0.1377390578873059,6291.395765076276,2019
+2001,20,"(15,20]",HS,5.524407039020658,41.323161347504296,0.13368790912591452,6287.130287927177,2019
+2001,20,"(15,20]",HS,5.524407039020658,41.323161347504296,0.13368790912591452,6231.598121506861,2019
+2001,20,"(15,20]",HS,5.691813312930376,41.323161347504296,0.1377390578873059,6262.538431995637,2019
+2001,61,"(60,65]",College,114.50589135424637,82.64632269500859,1.3854928763958416,4469.974950812765,2019
+2001,61,"(60,65]",College,116.17995409334354,82.64632269500859,1.4057486202027982,4561.681472150557,2019
+2001,61,"(60,65]",College,109.48370313695487,82.64632269500859,1.3247256449749714,4556.016454684193,2019
+2001,61,"(60,65]",College,127.89839326702372,82.64632269500859,1.5475388268514954,4547.852162610099,2019
+2001,61,"(60,65]",College,110.99035960214232,82.64632269500859,1.3429558144012324,4560.337304423856,2019
+2001,53,"(50,55]",College,2932.3552563121657,688.7193557917383,4.257692529842126,3687.287979209405,2019
+2001,53,"(50,55]",College,2932.3552563121657,688.7193557917383,4.257692529842126,3633.9889219487354,2019
+2001,53,"(50,55]",College,2932.3552563121657,688.7193557917383,4.257692529842126,3732.726985571312,2019
+2001,53,"(50,55]",College,2932.3385156847744,688.7193557917383,4.257668222949557,3619.162569798528,2019
+2001,53,"(50,55]",College,2932.3385156847744,688.7193557917383,4.257668222949557,3597.716146931495,2019
+2001,48,"(45,50]",College,916.5493496557001,187.6760244532487,4.883678415108471,7221.179392042861,2019
+2001,48,"(45,50]",College,916.5493496557001,189.39782284272803,4.839281338607484,6561.458717627473,2019
+2001,48,"(45,50]",College,916.5493496557001,187.6760244532487,4.883678415108471,6125.304235089067,2019
+2001,48,"(45,50]",College,918.2234123947973,187.6760244532487,4.8925983756840115,6867.368613833617,2019
+2001,48,"(45,50]",College,916.5493496557001,189.39782284272803,4.839281338607484,6586.872065137558,2019
+2001,54,"(50,55]",College,3548.0085692425405,258.2697584219018,13.737607495828524,503.4909857584169,2019
+2001,54,"(50,55]",College,3546.1671002295334,258.2697584219018,13.730477474008474,485.6052584829645,2019
+2001,54,"(50,55]",College,3539.0355929609796,258.2697584219018,13.702864844050831,505.49336886549537,2019
+2001,54,"(50,55]",College,3536.6082019892883,258.2697584219018,13.693466178924401,492.98359531625584,2019
+2001,54,"(50,55]",College,3539.0188523335887,258.2697584219018,13.70280002567065,487.79828055033215,2019
+2001,85,"(80,85]",HS,10.8814078041316,24.105177452710844,0.45141371912646455,7009.355600543624,2019
+2001,85,"(80,85]",HS,10.8814078041316,24.105177452710844,0.45141371912646455,7022.955438128289,2019
+2001,85,"(80,85]",HS,10.8814078041316,24.105177452710844,0.45141371912646455,7012.61141510389,2019
+2001,85,"(80,85]",HS,10.8814078041316,24.105177452710844,0.45141371912646455,7157.468000018545,2019
+2001,85,"(80,85]",HS,10.8814078041316,24.105177452710844,0.45141371912646455,7073.240890208214,2019
+2001,45,"(40,45]",College,1172.1787299158377,203.1722099585628,5.76938514452791,6806.297521501592,2019
+2001,45,"(40,45]",College,1118.4413159908188,203.1722099585628,5.504893194885886,6184.480094267374,2019
+2001,45,"(40,45]",College,1215.5369548584545,203.1722099585628,5.982791421653407,5773.384203648164,2019
+2001,45,"(40,45]",College,1271.1158377964805,203.1722099585628,6.256346958354817,6472.81440301547,2019
+2001,45,"(40,45]",College,1080.2726855394033,203.1722099585628,5.317029754018653,6208.433356578177,2019
+2001,27,"(25,30]",HS,144.13680183626627,86.08991947396729,1.674258760107817,9893.556945139673,2019
+2001,27,"(25,30]",HS,141.4583014537108,86.08991947396729,1.6431459376203312,10035.414950690309,2019
+2001,27,"(25,30]",HS,146.31308339709258,86.08991947396729,1.699537928378899,10101.941248409214,2019
+2001,27,"(25,30]",HS,145.81086457536344,86.08991947396729,1.6937042741624955,10038.314147768306,2019
+2001,27,"(25,30]",HS,144.13680183626627,86.08991947396729,1.674258760107817,9939.832863691934,2019
+2001,58,"(55,60]",HS,144.72272379495027,32.71416940010757,4.423854447439353,5676.236970912884,2019
+2001,58,"(55,60]",HS,142.12792654934967,32.71416940010757,4.344537219058428,5993.915210447149,2019
+2001,58,"(55,60]",HS,159.3707727620505,32.71416940010757,4.871612994751029,6024.076430521516,2019
+2001,58,"(55,60]",HS,169.2477429227238,32.71416940010757,5.1735301866526155,5842.30660404308,2019
+2001,58,"(55,60]",HS,173.60030604437642,30.992371010628222,5.601388354083772,5929.117935771295,2019
+2001,42,"(40,45]",HS,-45.199693955623566,34.43596778958692,-1.312572198690797,5983.3013233413585,2019
+2001,42,"(40,45]",HS,-44.5300688599847,37.87956456854561,-1.1755697133055625,6226.204646367007,2019
+2001,42,"(40,45]",HS,-42.35378729915838,36.157766179066265,-1.1713607275794413,6272.917483296484,2019
+2001,42,"(40,45]",HS,-42.85600612088753,37.87956456854561,-1.131375363181293,6077.348675064736,2019
+2001,42,"(40,45]",HS,-42.521193573068096,32.71416940010757,-1.2997790973390349,6226.210543546296,2019
+2001,45,"(40,45]",HS,61.4381025248661,18.939782284272805,3.2438652991213632,7182.517045368545,2019
+2001,45,"(40,45]",HS,48.38041315990819,20.661580673752148,2.3415639840841997,7176.155691735441,2019
+2001,45,"(40,45]",HS,55.41147666411629,18.939782284272805,2.9256659782266246,7141.625546635342,2019
+2001,45,"(40,45]",HS,53.402601377199694,20.661580673752148,2.584632909767681,7188.804260759379,2019
+2001,45,"(40,45]",HS,49.88706962509564,18.939782284272805,2.633983267406448,7144.318458846897,2019
+2001,58,"(55,60]",HS,999.9176740627391,180.7888308953313,5.530859783266407,9370.623198149182,2019
+2001,58,"(55,60]",HS,1016.1560826319816,105.0297017582401,9.674940189499864,8510.929940977829,2019
+2001,58,"(55,60]",HS,1069.726090283091,99.86430658980206,10.711796104258228,7962.114058158583,2019
+2001,58,"(55,60]",HS,993.7236419280796,151.51825827418244,6.558441558441558,8913.962607489844,2019
+2001,58,"(55,60]",HS,999.4154552410099,156.68365344262045,6.378555983869807,8567.410340935112,2019
+2001,50,"(45,50]",NoHS,6.445141545524101,58.54114524229776,0.11009592516251783,6343.58687959812,2019
+2001,50,"(45,50]",NoHS,6.445141545524101,58.54114524229776,0.11009592516251783,6702.847779121298,2019
+2001,50,"(45,50]",NoHS,6.445141545524101,58.54114524229776,0.11009592516251783,6716.664128599933,2019
+2001,50,"(45,50]",NoHS,6.445141545524101,60.2629436317771,0.10695032730073162,6484.538311522305,2019
+2001,50,"(45,50]",NoHS,6.445141545524101,58.54114524229776,0.11009592516251783,6623.083133038068,2019
+2001,67,"(65,70]",College,75088.57750573833,7507.040978129948,10.002420091283874,10.33298516436616,2019
+2001,67,"(65,70]",College,71831.68844682479,8591.773963501935,8.360518881428625,10.885853919327733,2019
+2001,67,"(65,70]",College,74004.62188217291,5888.5504920193625,12.56754476037353,11.043925163074842,2019
+2001,67,"(65,70]",College,72167.50543228768,6491.179928337134,11.117779237214128,10.89346443861697,2019
+2001,67,"(65,70]",College,73645.53542463658,4769.381538857789,15.441317668679076,11.194517760457467,2019
+2001,52,"(50,55]",HS,59.94818668706963,60.2629436317771,0.9947769404257661,7840.061848171108,2019
+2001,52,"(50,55]",HS,96.07446059678654,60.2629436317771,1.5942543594257113,8201.830584594207,2019
+2001,52,"(50,55]",HS,196.3842999234889,60.2629436317771,3.2587903625061885,8246.422615680034,2019
+2001,52,"(50,55]",HS,89.294506503443,60.2629436317771,1.4817481709665,8039.533255850048,2019
+2001,52,"(50,55]",HS,61.00284621270084,60.2629436317771,1.0122779030749767,8069.9291059779525,2019
+2001,42,"(40,45]",College,2587.263963274675,180.7888308953313,14.310972367383613,2682.946888050751,2019
+2001,42,"(40,45]",College,2587.4313695485844,180.7888308953313,14.311898344243357,2732.384648863569,2019
+2001,42,"(40,45]",College,2587.4313695485844,180.7888308953313,14.311898344243357,3430.5672528894115,2019
+2001,42,"(40,45]",College,2587.263963274675,180.7888308953313,14.310972367383613,2820.9680944008387,2019
+2001,42,"(40,45]",College,2587.4313695485844,180.7888308953313,14.311898344243357,2891.3773400402392,2019
+2001,33,"(30,35]",HS,57.75516449885233,137.74387115834767,0.4192938968040046,4694.581422644171,2019
+2001,33,"(30,35]",HS,63.61438408569243,137.74387115834767,0.4618309587986138,4718.650287448112,2019
+2001,33,"(30,35]",HS,52.498607498087225,137.74387115834767,0.3811320754716981,4732.1943437216705,2019
+2001,33,"(30,35]",HS,53.93830145371079,137.74387115834767,0.3915840392760878,4725.750345060607,2019
+2001,33,"(30,35]",HS,52.096832440703906,137.74387115834767,0.37821524836349635,4695.9761825044625,2019
+2001,48,"(45,50]",HS,542.8985462892119,153.24005666366176,3.5427978696248483,6806.377039367503,2019
+2001,48,"(45,50]",HS,542.7311400153022,153.24005666366176,3.541705425015035,6171.169278284238,2019
+2001,48,"(45,50]",HS,542.7311400153022,154.9618550531411,3.502353142514868,5856.741350221084,2019
+2001,48,"(45,50]",HS,542.8985462892119,154.9618550531411,3.503433448851239,6494.854774519105,2019
+2001,48,"(45,50]",HS,542.7311400153022,154.9618550531411,3.502353142514868,6198.324286023897,2019
+2001,47,"(45,50]",College,4038.6763580719207,946.9891142136402,4.264754786991984,254.02985305266816,2019
+2001,47,"(45,50]",College,4040.3504208110176,946.9891142136402,4.266522560996955,248.477456631287,2019
+2001,47,"(45,50]",College,4038.6763580719207,946.9891142136402,4.264754786991984,256.54893154754114,2019
+2001,47,"(45,50]",College,4040.3504208110176,946.9891142136402,4.266522560996955,250.19705672943414,2019
+2001,47,"(45,50]",College,4038.6763580719207,946.9891142136402,4.264754786991984,252.15036172146847,2019
+2001,41,"(40,45]",College,163.30482019892887,440.78038770671253,0.37049021406911825,7977.274960176321,2019
+2001,41,"(40,45]",College,223.7050038255547,103.30790336876075,2.165420035938904,8218.714968897752,2019
+2001,41,"(40,45]",College,162.93652639632748,225.5555890217943,0.7223785812755176,8308.270372885152,2019
+2001,41,"(40,45]",College,262.2419280795715,199.7286131796041,1.3129912830454236,8128.211948044473,2019
+2001,41,"(40,45]",College,166.10050497322112,237.60817774814973,0.6990521393134776,8183.939419550127,2019
+2001,45,"(40,45]",College,1000.9221117061974,154.9618550531411,6.459151585162367,11278.96182332654,2019
+2001,45,"(40,45]",College,999.2480489671002,154.9618550531411,6.448348521798657,11042.086600875853,2019
+2001,45,"(40,45]",College,999.2480489671002,154.9618550531411,6.448348521798657,10408.773231555759,2019
+2001,45,"(40,45]",College,999.4154552410099,154.9618550531411,6.449428828135028,11161.037161086704,2019
+2001,45,"(40,45]",College,999.2480489671002,154.9618550531411,6.448348521798657,11386.752961154238,2019
+2001,27,"(25,30]",College,72.3195103289977,70.59373396865318,1.0244465941001342,3851.2947397792764,2019
+2001,27,"(25,30]",College,54.741851568477436,70.59373396865318,0.7754491580341295,3871.0401194130727,2019
+2001,27,"(25,30]",College,104.12670237184392,70.59373396865318,1.4750133831719525,3882.1512596800267,2019
+2001,27,"(25,30]",College,59.76403978576894,70.59373396865318,0.8465912826244165,3876.864795155884,2019
+2001,27,"(25,30]",College,84.03794950267789,70.59373396865318,1.1904448848108042,3852.438959216454,2019
+2001,45,"(40,45]",HS,783.5450650344301,65.42833880021514,11.975622175384554,7233.391760908588,2019
+2001,45,"(40,45]",HS,750.0638102524866,65.42833880021514,11.463898121314067,6567.772874968592,2019
+2001,45,"(40,45]",HS,781.8710022953329,65.42833880021514,11.950035972681029,6131.979907112658,2019
+2001,45,"(40,45]",HS,783.5450650344301,65.42833880021514,11.975622175384554,6876.7376127401585,2019
+2001,45,"(40,45]",HS,810.3300688599847,65.42833880021514,12.385001418640941,6599.974557779208,2019
+2001,28,"(25,30]",NoHS,0,0,NA,4708.0641325051365,2019
+2001,28,"(25,30]",NoHS,0,0,NA,4692.70661765279,2019
+2001,28,"(25,30]",NoHS,0,0,NA,4702.32313549622,2019
+2001,28,"(25,30]",NoHS,0,0,NA,4726.319578488907,2019
+2001,28,"(25,30]",NoHS,0,0,NA,4689.582435615115,2019
+2001,76,"(75,80]",College,64128.32134659526,5613.062749702668,11.42483599528479,12.741347796184815,2019
+2001,76,"(75,80]",College,148775.6296863045,8126.888398342512,18.306591944420877,13.446065715628222,2019
+2001,76,"(75,80]",College,107161.7781178271,7248.771219708047,14.783440512851937,13.629371123236291,2019
+2001,76,"(75,80]",College,132646.0351951033,8264.632269500858,16.04984116288025,13.433686857337898,2019
+2001,76,"(75,80]",College,119225.0742157613,6267.346137704819,19.02321518489212,13.82447659277727,2019
+2001,70,"(65,70]",HS,1617.3120122417752,144.63106471626506,11.182328052514807,478.6369744189751,2019
+2001,70,"(65,70]",HS,1627.1889824024483,163.57084700053784,9.947915611130252,482.6298597838039,2019
+2001,70,"(65,70]",HS,1621.9993879112471,139.46566954782702,11.630097881220971,453.3248184935795,2019
+2001,70,"(65,70]",HS,1700.3455241009947,137.74387115834767,12.34425539083558,961.1760403997514,2019
+2001,70,"(65,70]",HS,1636.7311400153023,149.7964598847031,10.926367293827095,510.47148800744645,2019
+2001,58,"(55,60]",College,14780.299923488907,1859.5422606376933,7.948353869849828,298.1170901947365,2019
+2001,58,"(55,60]",College,13944.942616679418,1859.5422606376933,7.499126484975542,287.5135111000577,2019
+2001,58,"(55,60]",College,13941.594491201224,1842.3242767429003,7.567394441465528,299.21915357724225,2019
+2001,58,"(55,60]",College,13943.268553940323,1842.3242767429003,7.568303110346589,291.7502259500151,2019
+2001,58,"(55,60]",College,13944.942616679418,1842.3242767429003,7.569211779227648,288.66257981899935,2019
+2001,51,"(50,55]",College,20929.132364192807,507.930524896407,41.204714696879705,1845.0077243061532,2019
+2001,51,"(50,55]",College,23320.363580719204,692.162952570697,33.69201355563346,1499.9110352301152,2019
+2001,51,"(50,55]",College,26146.348890589135,544.0882910754733,48.055341971992995,1486.94076987342,2019
+2001,51,"(50,55]",College,25227.455853098698,762.7566865393503,33.07405401787615,1444.8433514020944,2019
+2001,51,"(50,55]",College,18654.583320581485,478.65995227525815,38.97251740386666,1832.4461149973722,2019
+2001,54,"(50,55]",HS,0,56.819346852818406,0,5091.326652288191,2019
+2001,54,"(50,55]",HS,-1.1718439173680184,58.54114524229776,-0.020017440938639608,5203.499560235103,2019
+2001,54,"(50,55]",HS,-1.3392501912777353,36.157766179066265,-0.03703907438986376,5122.759141515109,2019
+2001,54,"(50,55]",HS,-0.3348125478194338,58.54114524229776,-0.005719268839611316,5107.8758529445995,2019
+2001,54,"(50,55]",HS,-0.6696250956388676,53.37575007385973,-0.01254549293850224,5155.464781206071,2019
+2001,39,"(35,40]",College,257.38714613618976,206.6158067375215,1.24572824412784,8098.921710786303,2019
+2001,39,"(35,40]",College,200.469013006886,206.6158067375215,0.9702501283532281,8399.496815876944,2019
+2001,39,"(35,40]",College,195.6142310635042,206.6158067375215,0.9467534655371582,8478.003417732576,2019
+2001,39,"(35,40]",College,217.3770466717674,206.6158067375215,1.0520833333333333,8225.815342715563,2019
+2001,39,"(35,40]",College,229.09548584544757,206.6158067375215,1.108799415992812,8414.499163449053,2019
+2001,54,"(50,55]",College,283.251415455241,92.97711303188467,3.046463868566294,8554.665191739838,2019
+2001,54,"(50,55]",College,345.19173680183627,141.18746793730637,2.444917681752867,7773.118413396214,2019
+2001,54,"(50,55]",College,351.88798775822494,94.69891142136402,3.7158609584485593,7256.422266212279,2019
+2001,54,"(50,55]",College,382.021117061974,167.01444377949653,2.2873537666379526,8135.518597466855,2019
+2001,54,"(50,55]",College,514.2720734506503,153.24005666366176,3.355989841346757,7803.224669943405,2019
+2001,42,"(40,45]",HS,208.92302983932672,180.7888308953313,1.1556191209637494,8422.818810608514,2019
+2001,42,"(40,45]",HS,230.6858454475899,180.7888308953313,1.2759961127308068,8677.743638603584,2019
+2001,42,"(40,45]",HS,296.97872991583785,180.7888308953313,1.6426829491904582,8772.300858338695,2019
+2001,42,"(40,45]",HS,218.63259372609028,180.7888308953313,1.209325778829052,8582.18587605117,2019
+2001,42,"(40,45]",HS,211.43412394797247,180.7888308953313,1.1695087738599483,8641.025817962243,2019
+2001,52,"(50,55]",HS,2419.0039173680184,213.5030002954389,11.330069900753971,1807.4248342566939,2019
+2001,52,"(50,55]",HS,2419.0541392501914,213.5030002954389,11.330305128746568,1746.3602409348919,2019
+2001,52,"(50,55]",HS,2419.0039173680184,211.78120190595953,11.422184290190996,1866.9859675416396,2019
+2001,52,"(50,55]",HS,2420.6963947972454,211.78120190595953,11.430175922186637,1807.9832620197164,2019
+2001,52,"(50,55]",HS,2415.6725325172147,213.5030002954389,11.314466443911707,1779.6644653854078,2019
+2001,44,"(40,45]",College,240.6147115531752,154.9618550531411,1.55273510032944,2757.902953511923,2019
+2001,44,"(40,45]",College,167.7762417750574,154.9618550531411,1.0826938133744066,2786.494991786966,2019
+2001,44,"(40,45]",College,254.0072134659526,154.9618550531411,1.6391596072391224,2717.3333175976245,2019
+2001,44,"(40,45]",College,203.78533129303747,154.9618550531411,1.3150677063278142,2774.3280732060757,2019
+2001,44,"(40,45]",College,166.11891966335116,154.9618550531411,1.0719987806443332,2682.890116958359,2019
+2001,69,"(65,70]",HS,10292.305126243305,258.2697584219018,39.85098831985625,2957.208265151808,2019
+2001,69,"(65,70]",HS,10292.288385615915,258.2697584219018,39.850923501476075,3024.9695791728795,2019
+2001,69,"(65,70]",HS,10295.30169854629,258.2697584219018,39.86259080990887,3009.0789231342715,2019
+2001,69,"(65,70]",HS,10293.979188982403,258.2697584219018,39.85747015787448,3011.985179399793,2019
+2001,69,"(65,70]",HS,10290.614322876816,258.2697584219018,39.844441663457836,3005.519450793768,2019
+2001,43,"(40,45]",HS,3887.3076052027545,602.629436317771,6.4505770394411135,20.99032809270408,2019
+2001,43,"(40,45]",HS,3887.3076052027545,602.629436317771,6.4505770394411135,21.63094626853061,2019
+2001,43,"(40,45]",HS,3887.3076052027545,602.629436317771,6.4505770394411135,21.855672011130242,2019
+2001,43,"(40,45]",HS,3888.981667941852,602.629436317771,6.453354970020354,21.364323155143786,2019
+2001,43,"(40,45]",HS,3888.981667941852,602.629436317771,6.453354970020354,21.41977967226831,2019
+2001,74,"(70,75]",College,4189.174598316757,311.6455084957616,13.442114466968901,525.8151160753052,2019
+2001,74,"(70,75]",College,5202.819586840093,303.0365165483649,17.168952593902056,507.9747695410557,2019
+2001,74,"(70,75]",College,1843.812700841622,213.5030002954389,8.63600370154148,318.1450053019159,2019
+2001,74,"(70,75]",College,3764.130068859985,218.6683954638769,17.213873366907308,515.5502197683851,2019
+2001,74,"(70,75]",College,5037.254781943382,241.0517745271084,20.896982782331264,510.03735303754456,2019
+2001,59,"(55,60]",HS,1662.344299923489,137.74387115834767,12.068372160184829,11372.833544071005,2019
+2001,59,"(55,60]",HS,1695.6581484315225,137.74387115834767,12.31022574123989,11057.720725793351,2019
+2001,59,"(55,60]",HS,1677.2434583014538,137.74387115834767,12.176537832113977,13377.496463922676,2019
+2001,59,"(55,60]",HS,1662.1768936495794,137.74387115834767,12.067156815556412,11305.465226834665,2019
+2001,59,"(55,60]",HS,1662.1768936495794,137.74387115834767,12.067156815556412,11291.18149259581,2019
+2001,41,"(40,45]",HS,61.8566182096404,68.87193557917384,0.8981396804004621,5276.593933226413,2019
+2001,41,"(40,45]",HS,66.5942157612854,68.87193557917384,0.9669281863688872,5219.093480307026,2019
+2001,41,"(40,45]",HS,67.53169089517979,68.87193557917384,0.980540046207162,5236.92348206206,2019
+2001,41,"(40,45]",HS,64.5183779648049,68.87193557917384,0.9367876395841355,5216.912404961201,2019
+2001,41,"(40,45]",HS,64.92015302218822,68.87193557917384,0.942621293800539,5277.78732564343,2019
+2001,28,"(25,30]",HS,204.73787299158377,111.91689531615746,1.8293741299132136,9737.56080056847,2019
+2001,28,"(25,30]",HS,204.5704667176741,111.91689531615746,1.827878321139777,8841.745822209235,2019
+2001,28,"(25,30]",HS,204.73787299158377,111.91689531615746,1.8293741299132136,8262.622538710935,2019
+2001,28,"(25,30]",HS,204.73787299158377,111.91689531615746,1.8293741299132136,9210.573916624802,2019
+2001,28,"(25,30]",HS,204.73787299158377,111.91689531615746,1.8293741299132136,8894.582928381154,2019
+2001,66,"(65,70]",HS,6666.168048967101,537.2010975175559,12.409073771017841,284.6504344729279,2019
+2001,66,"(65,70]",HS,9741.705891354246,537.2010975175559,18.134188363298872,284.80317035657504,2019
+2001,66,"(65,70]",HS,8143.4279724560065,537.2010975175559,15.158993550250289,290.8654916977788,2019
+2001,66,"(65,70]",HS,6419.695791889824,537.2010975175559,11.950265592448881,285.7479542794914,2019
+2001,66,"(65,70]",HS,4498.005692425402,537.2010975175559,8.37303891077476,289.0545028140398,2019
+2001,48,"(45,50]",College,12150.514766641163,757.5912913709121,16.038350631847937,1026.33606512087,2019
+2001,48,"(45,50]",College,12154.867329762817,757.5912913709121,16.044095897364095,980.2823399339155,2019
+2001,48,"(45,50]",College,12153.36067329763,757.5912913709121,16.0421071516085,1022.2110761054837,2019
+2001,48,"(45,50]",College,12152.18882938026,757.5912913709121,16.040560349354152,1024.151538355529,2019
+2001,48,"(45,50]",College,12150.514766641163,757.5912913709121,16.038350631847937,973.5846695489097,2019
+2001,54,"(50,55]",College,12429.631247130834,103.30790336876075,120.31636343216532,34.99846294973558,2019
+2001,54,"(50,55]",College,10566.98534047437,103.30790336876075,102.286320754717,36.08009996292129,2019
+2001,54,"(50,55]",College,8568.874276970162,103.30790336876075,82.9450022461815,36.460864600775515,2019
+2001,54,"(50,55]",College,11918.22182096404,103.30790336876075,115.36602169169555,35.64724482717601,2019
+2001,54,"(50,55]",College,10282.662524866106,103.30790336876075,99.53413233217816,35.73062734762693,2019
+2001,48,"(45,50]",NoHS,52.498607498087225,60.2629436317771,0.8711590296495958,5773.186612499938,2019
+2001,48,"(45,50]",NoHS,58.57545524100995,60.2629436317771,0.9719979096759999,6059.6575376641385,2019
+2001,48,"(45,50]",NoHS,55.46169854628921,60.2629436317771,0.92032840090214,6203.188017609338,2019
+2001,48,"(45,50]",NoHS,51.64483550114767,60.2629436317771,0.8569915836954729,5960.24578693516,2019
+2001,48,"(45,50]",NoHS,54.34007651109411,60.2629436317771,0.9017162660212334,6018.854739183141,2019
+2001,74,"(70,75]",HS,4.971966335118592,17.21798389479346,0.2887658837119753,10461.755373957976,2019
+2001,74,"(70,75]",HS,0.753328232593726,17.21798389479346,0.04375240662302656,10428.44207072308,2019
+2001,74,"(70,75]",HS,0.41851568477429224,17.21798389479346,0.02430689256834809,10417.781442082267,2019
+2001,74,"(70,75]",HS,-0.2008875286916603,17.21798389479346,-0.011667308432807085,10559.67263130553,2019
+2001,74,"(70,75]",HS,2.979831675592961,17.21798389479346,0.17306507508663843,10373.153135440856,2019
+2001,73,"(70,75]",HS,0.920734506503443,18.939782284272805,0.04861378513669618,6208.464594400669,2019
+2001,73,"(70,75]",HS,0.9374751338944147,18.939782284272805,0.04949767213918157,6269.947375974245,2019
+2001,73,"(70,75]",HS,0.9374751338944147,18.939782284272805,0.04949767213918157,6112.324173477866,2019
+2001,73,"(70,75]",HS,0.920734506503443,17.21798389479346,0.0534751636503658,6118.268733247224,2019
+2001,73,"(70,75]",HS,0.9374751338944147,18.939782284272805,0.04949767213918157,6217.62887620777,2019
+2001,24,"(20,25]",NoHS,0,12.913487921095093,0,5328.846049000131,2019
+2001,24,"(20,25]",NoHS,0,8.60899194739673,0,5310.22347486472,2019
+2001,24,"(20,25]",NoHS,0,13.774387115834767,0,5314.378508909269,2019
+2001,24,"(20,25]",NoHS,0,6.715013718969449,0,5263.395471612838,2019
+2001,24,"(20,25]",NoHS,0,12.74130808214716,0,5310.877983898172,2019
+2001,47,"(45,50]",HS,50.556694720734505,24.105177452710844,2.0973375873260354,7314.071144015262,2019
+2001,47,"(45,50]",HS,30.46794185156848,24.105177452710844,1.2639584135541009,7756.497967461924,2019
+2001,47,"(45,50]",HS,68.97138485080337,24.105177452710844,2.8612684966169755,7779.430031471165,2019
+2001,47,"(45,50]",HS,22.09762815608263,24.105177452710844,0.916717091149128,7526.930390892523,2019
+2001,47,"(45,50]",HS,47.208569242540165,24.105177452710844,1.958441058364046,7615.414003993971,2019
+2001,45,"(40,45]",HS,28.877582249426165,77.48092752657055,0.37270568604800414,4910.36619630656,2019
+2001,45,"(40,45]",HS,27.370925784238718,77.48092752657055,0.3532601719933257,4942.754317474446,2019
+2001,45,"(40,45]",HS,28.877582249426165,77.48092752657055,0.37270568604800414,4941.102698273234,2019
+2001,45,"(40,45]",HS,30.71905126243305,77.48092752657055,0.3964724254481667,4912.728846319199,2019
+2001,45,"(40,45]",HS,29.044988523335885,77.48092752657055,0.3748662987207462,4915.593274946268,2019
+2001,72,"(70,75]",NoHS,0,61.984742021256444,0,9521.32503655632,2019
+2001,72,"(70,75]",NoHS,0,61.984742021256444,0,10303.454102301013,2019
+2001,72,"(70,75]",NoHS,0,82.64632269500859,0,9812.58317169661,2019
+2001,72,"(70,75]",NoHS,0,80.92452430552926,0,9948.390832251967,2019
+2001,72,"(70,75]",NoHS,0,39.60136295802496,0,10027.905944286389,2019
+2001,76,"(75,80]",HS,322.4244835501148,51.653951684380374,6.242010011551791,7964.9909174877685,2019
+2001,76,"(75,80]",HS,322.4244835501148,51.653951684380374,6.242010011551791,7962.792135316068,2019
+2001,76,"(75,80]",HS,319.0763580719204,51.653951684380374,6.177191631369529,7941.494528553798,2019
+2001,76,"(75,80]",HS,322.4244835501148,51.653951684380374,6.242010011551791,8079.609478628069,2019
+2001,76,"(75,80]",HS,327.4466717674063,51.653951684380374,6.339237581825183,8010.80520007713,2019
+2001,36,"(35,40]",College,864.8208110175976,206.6158067375215,4.185646900269542,7052.736556586325,2019
+2001,36,"(35,40]",College,866.4948737566947,206.6158067375215,4.193749197792324,6411.59593926732,2019
+2001,36,"(35,40]",College,864.8208110175976,206.6158067375215,4.185646900269542,5993.0338896999565,2019
+2001,36,"(35,40]",College,866.4948737566947,206.6158067375215,4.193749197792324,6705.319096402743,2019
+2001,36,"(35,40]",College,866.4948737566947,206.6158067375215,4.193749197792324,6447.747938318251,2019
+2001,25,"(20,25]",College,-51.52765110941087,37.87956456854561,-1.360302096825008,4729.763808489957,2019
+2001,25,"(20,25]",College,-51.828982402448354,36.157766179066265,-1.4334121788877274,4754.013051481465,2019
+2001,25,"(20,25]",College,-50.57343534812548,37.87956456854561,-1.3351113172541742,4767.658610353624,2019
+2001,25,"(20,25]",College,-51.10913542463658,36.157766179066265,-1.4135036764031759,4761.166318729487,2019
+2001,25,"(20,25]",College,-50.355807192042846,36.157766179066265,-1.3926691970588774,4731.169021034983,2019
+2001,75,"(70,75]",College,12470.093343534812,743.8169042550774,16.765003957557866,244.8907549895053,2019
+2001,75,"(70,75]",College,12469.925937260903,743.8169042550774,16.76477889373779,235.69937991085098,2019
+2001,75,"(70,75]",College,12470.093343534812,743.8169042550774,16.765003957557866,245.5275906668638,2019
+2001,75,"(70,75]",College,12469.925937260903,743.8169042550774,16.76477889373779,239.58875832244925,2019
+2001,75,"(70,75]",College,12469.925937260903,743.8169042550774,16.76477889373779,236.7943387558627,2019
+2001,84,"(80,85]",HS,435.5911247130834,56.819346852818406,7.666246601556575,7447.213487822277,2019
+2001,84,"(80,85]",HS,435.7585309869931,56.819346852818406,7.66919289156486,7721.526511820552,2019
+2001,84,"(80,85]",HS,435.7585309869931,56.819346852818406,7.66919289156486,7881.5745991195945,2019
+2001,84,"(80,85]",HS,435.7585309869931,56.819346852818406,7.66919289156486,7664.530443635498,2019
+2001,84,"(80,85]",HS,435.5911247130834,56.819346852818406,7.666246601556575,7778.042476211827,2019
+2001,46,"(45,50]",HS,2013.7300688599846,96.42070981084338,20.884829336047083,3928.1717966224533,2019
+2001,46,"(45,50]",HS,2010.3819433817903,96.42070981084338,20.850105203806585,3992.1432073503906,2019
+2001,46,"(45,50]",HS,2013.7300688599846,96.42070981084338,20.884829336047083,5008.450624755409,2019
+2001,46,"(45,50]",HS,2010.3819433817903,96.42070981084338,20.850105203806585,4128.492790789594,2019
+2001,46,"(45,50]",HS,2013.7300688599846,96.42070981084338,20.884829336047083,4224.4869978667775,2019
+2001,28,"(25,30]",HS,75.66763580719204,122.24768565303354,0.6189698839939909,5932.675736964721,2019
+2001,28,"(25,30]",HS,79.35057383320581,122.24768565303354,0.6490967367547604,6023.499829921062,2019
+2001,28,"(25,30]",HS,73.15654169854629,123.96948404251289,0.5901173362426733,6086.21604800765,2019
+2001,28,"(25,30]",HS,74.66319816373375,122.24768565303354,0.6107534696046902,5947.213575333812,2019
+2001,28,"(25,30]",HS,73.82616679418517,123.96948404251289,0.5955188679245285,6000.976558143577,2019
+2001,28,"(25,30]",NoHS,0,25.826975842190187,0,5291.49893581174,2019
+2001,28,"(25,30]",NoHS,0,27.548774231669533,0,5314.439371451564,2019
+2001,28,"(25,30]",NoHS,0,27.548774231669533,0,5242.77072531769,2019
+2001,28,"(25,30]",NoHS,0,17.21798389479346,0,5326.645095232039,2019
+2001,28,"(25,30]",NoHS,0,24.105177452710844,0,5315.049534222415,2019
+2001,52,"(50,55]",NoHS,51.19283856159143,72.31553235813253,0.707909309276271,5979.58638238174,2019
+2001,52,"(50,55]",NoHS,53.25193573068095,72.31553235813253,0.7363830977134789,6253.697344344198,2019
+2001,52,"(50,55]",NoHS,49.63596021423106,72.31553235813253,0.6863803472871628,6270.6086549643305,2019
+2001,52,"(50,55]",NoHS,52.699495026778884,72.31553235813253,0.7287437886205694,6091.012128641649,2019
+2001,52,"(50,55]",NoHS,51.07565416985463,72.31553235813253,0.7062888497717146,6181.504763328807,2019
+2001,45,"(40,45]",HS,6139.457689364957,223.83379063231493,27.428645478510706,1103.362204131493,2019
+2001,45,"(40,45]",HS,6139.457689364957,223.83379063231493,27.428645478510706,1109.0525927562244,2019
+2001,45,"(40,45]",HS,6139.457689364957,223.83379063231493,27.428645478510706,1114.0823654812543,2019
+2001,45,"(40,45]",HS,6139.457689364957,223.83379063231493,27.428645478510706,1108.0333968502432,2019
+2001,45,"(40,45]",HS,6139.457689364957,223.83379063231493,27.428645478510706,1099.857312524464,2019
+2001,30,"(25,30]",HS,39.5581025248661,51.653951684380374,0.7658291618534205,5385.149929901814,2019
+2001,30,"(25,30]",HS,40.37839326702372,77.48092752657055,0.5211397766653831,5345.162418994759,2019
+2001,30,"(25,30]",HS,21.528446824789594,108.47329853719879,0.19846770693902,5351.049109453031,2019
+2001,30,"(25,30]",HS,16.80758990053558,89.53351625292598,0.18772400106631915,5386.191162457426,2019
+2001,30,"(25,30]",HS,31.472379495026782,74.03733074761188,0.42508798166041317,5335.858117318234,2019
+2001,71,"(70,75]",HS,296.8113236419281,43.04495973698364,6.895379283788988,9420.95052409641,2019
+2001,71,"(70,75]",HS,251.77903596021426,36.157766179066265,6.963345985294388,10390.544303597608,2019
+2001,71,"(70,75]",HS,227.33771996939555,30.992371010628222,7.335280023959269,10271.531731666426,2019
+2001,71,"(70,75]",HS,277.55960214231067,43.04495973698364,6.448132460531383,9893.73194788171,2019
+2001,71,"(70,75]",HS,257.6382555470543,30.992371010628222,8.312957258375048,10152.404946011355,2019
+2001,33,"(30,35]",HS,1.1718439173680184,49.93215329490103,0.023468723859094712,4005.9117608274623,2019
+2001,33,"(30,35]",HS,1.1718439173680184,49.93215329490103,0.023468723859094712,4017.450198542607,2019
+2001,33,"(30,35]",HS,1.1718439173680184,49.93215329490103,0.023468723859094712,4022.2556455360354,2019
+2001,33,"(30,35]",HS,1.1718439173680184,49.93215329490103,0.023468723859094712,4010.4871103009223,2019
+2001,33,"(30,35]",HS,1.1718439173680184,49.93215329490103,0.023468723859094712,4017.065626684008,2019
+2001,46,"(45,50]",HS,53.653710788064274,68.87193557917384,0.7790359068155565,6018.3578548708165,2019
+2001,46,"(45,50]",HS,55.32777352716144,68.87193557917384,0.8033427993839045,6361.039064894015,2019
+2001,46,"(45,50]",HS,53.486304514154554,68.87193557917384,0.7766052175587216,6391.522069167086,2019
+2001,46,"(45,50]",HS,53.486304514154554,68.87193557917384,0.7766052175587216,6193.201396164088,2019
+2001,46,"(45,50]",HS,53.486304514154554,68.87193557917384,0.7766052175587216,6256.486163019414,2019
+2001,33,"(30,35]",HS,492.5092578423871,94.69891142136402,5.200791122624007,6556.094470451397,2019
+2001,33,"(30,35]",HS,486.6500382555471,94.69891142136402,5.13891903245003,5950.410619576733,2019
+2001,33,"(30,35]",HS,655.8977811782709,94.69891142136402,6.926138551475479,5564.6438353709,2019
+2001,33,"(30,35]",HS,617.3943381790359,94.69891142136402,6.519550530332201,6199.6614151289405,2019
+2001,33,"(30,35]",HS,688.0397857689366,94.69891142136402,7.265551160429867,5990.279160811495,2019
+2001,55,"(50,55]",HS,0,27.548774231669533,0,4932.2304434507805,2019
+2001,55,"(50,55]",HS,0,25.826975842190187,0,5065.8408153414175,2019
+2001,55,"(50,55]",HS,0,27.548774231669533,0,5185.922209681896,2019
+2001,55,"(50,55]",HS,0,25.826975842190187,0,5139.823932648194,2019
+2001,55,"(50,55]",HS,0,27.548774231669533,0,4920.195525762725,2019
+2001,71,"(70,75]",College,1407.5519510328998,146.35286310574438,9.61752248069039,7361.387985587625,2019
+2001,71,"(70,75]",College,1511.3438408569243,146.35286310574438,10.326711816802193,6733.228057386143,2019
+2001,71,"(70,75]",College,1434.5043611323642,146.35286310574438,9.801682937325875,6193.9195388926755,2019
+2001,71,"(70,75]",College,1551.688752869166,146.35286310574438,10.602380574871459,6915.989408143471,2019
+2001,71,"(70,75]",College,1389.3046671767408,146.35286310574438,9.492842419986864,6703.020182406205,2019
+2001,84,"(80,85]",College,6242.579954093344,129.1348792109509,48.3415479399307,1435.484107057488,2019
+2001,84,"(80,85]",College,6242.579954093344,129.1348792109509,48.3415479399307,1432.2523365371123,2019
+2001,84,"(80,85]",College,6242.579954093344,129.1348792109509,48.3415479399307,1493.3421912618667,2019
+2001,84,"(80,85]",College,6242.579954093344,129.1348792109509,48.3415479399307,1429.0542495780323,2019
+2001,84,"(80,85]",College,6242.579954093344,129.1348792109509,48.3415479399307,1418.1600083476637,2019
+2001,63,"(60,65]",College,11991.143993879114,194.5632180111661,61.631094080644445,545.4380532870903,2019
+2001,63,"(60,65]",College,5209.68324407039,210.0594035164802,24.800999892688285,535.5138346828326,2019
+2001,63,"(60,65]",College,34493.89533282326,490.7125410016135,70.29348641144642,538.2045194209416,2019
+2001,63,"(60,65]",College,19180.406426931906,399.4572263592082,48.01617084699853,538.3772948506355,2019
+2001,63,"(60,65]",College,31406.58882938026,514.8177184543244,61.005260121338864,558.8675321396571,2019
+2001,59,"(55,60]",HS,27.62203519510329,68.87193557917384,0.40106372737774354,6527.891750465654,2019
+2001,59,"(55,60]",HS,27.789441469013006,68.87193557917384,0.4034944166345783,6916.389911498918,2019
+2001,59,"(55,60]",HS,27.789441469013006,68.87193557917384,0.4034944166345783,6938.4939314732155,2019
+2001,59,"(55,60]",HS,27.789441469013006,68.87193557917384,0.4034944166345783,6719.211241489468,2019
+2001,59,"(55,60]",HS,27.789441469013006,68.87193557917384,0.4034944166345783,6829.428648146202,2019
+2001,57,"(55,60]",College,7875.9629686304515,430.4495973698365,18.297061994609162,32.7920490613639,2019
+2001,57,"(55,60]",College,7875.9629686304515,430.4495973698365,18.297061994609162,33.073134816897166,2019
+2001,57,"(55,60]",College,7875.9629686304515,430.4495973698365,18.297061994609162,33.49835085937403,2019
+2001,57,"(55,60]",College,7875.9629686304515,430.4495973698365,18.297061994609162,32.70201380995977,2019
+2001,57,"(55,60]",College,7875.9629686304515,430.4495973698365,18.297061994609162,32.334002151253344,2019
+2001,54,"(50,55]",College,1106.7730986993115,163.57084700053784,6.7663224773524115,6697.665826326629,2019
+2001,54,"(50,55]",College,1103.408232593726,158.40545183209983,6.965721317238954,6083.1654890692325,2019
+2001,54,"(50,55]",College,1002.0437337413925,141.18746793730637,7.097256919334692,5682.866370855115,2019
+2001,54,"(50,55]",College,937.5420964039786,149.7964598847031,6.258773385736857,6367.837311350484,2019
+2001,54,"(50,55]",College,1030.6367253251722,139.46566954782702,7.389895510964693,6111.122960336038,2019
+2001,57,"(55,60]",HS,72567.27161438408,12827.398001621128,5.657209015048338,9.263701445867104,2019
+2001,57,"(55,60]",HS,68341.93726090284,12844.615985515919,5.320668001127307,9.777593365736227,2019
+2001,57,"(55,60]",HS,62397.34047436878,12827.398001621128,4.864380170201548,9.918282556157946,2019
+2001,57,"(55,60]",HS,64153.43228768172,12844.615985515919,4.994577678306895,9.768074661061458,2019
+2001,57,"(55,60]",HS,70019.3481254782,12844.615985515919,5.4512605284918365,10.057151806864544,2019
+2001,50,"(45,50]",College,58000.41469013007,9469.891142136403,6.12471820632198,1.2650537974568128,2019
+2001,50,"(45,50]",College,58000.41469013007,9469.891142136403,6.12471820632198,1.1542784639228354,2019
+2001,50,"(45,50]",College,58000.41469013007,9469.891142136403,6.12471820632198,1.082936043891989,2019
+2001,50,"(45,50]",College,58000.41469013007,9469.891142136403,6.12471820632198,1.4851280106474454,2019
+2001,50,"(45,50]",College,58000.41469013007,9469.891142136403,6.12471820632198,1.0706819571265862,2019
+2001,45,"(40,45]",NoHS,18.732762050497325,70.59373396865318,0.2653601247217709,4484.316445389204,2019
+2001,45,"(40,45]",NoHS,15.485080336648815,53.37575007385973,0.2901145242028643,4503.805240269495,2019
+2001,45,"(40,45]",NoHS,20.35660290742158,56.819346852818406,0.35826886500740956,4494.784204971262,2019
+2001,45,"(40,45]",NoHS,23.135547054322878,63.706540410735805,0.3631581138319682,4461.973761566679,2019
+2001,45,"(40,45]",NoHS,22.248293802601378,56.819346852818406,0.3915619421010257,4500.252173781439,2019
+2001,37,"(35,40]",College,0.6696250956388676,86.08991947396729,0.00777820562187139,4255.195940433085,2019
+2001,37,"(35,40]",College,44.19525631216526,86.08991947396729,0.5133615710435118,4262.052289534728,2019
+2001,37,"(35,40]",College,32.811629686304514,86.08991947396729,0.38113207547169814,4284.169807583098,2019
+2001,37,"(35,40]",College,17.577658760520276,86.08991947396729,0.204177897574124,4234.180511818109,2019
+2001,37,"(35,40]",College,17.242846212700844,86.08991947396729,0.20028879476318834,4296.752228649907,2019
+2001,59,"(55,60]",College,270.52853863810253,98.14250820032271,2.756486904593019,9117.364366382997,2019
+2001,59,"(55,60]",College,270.863351185922,99.86430658980206,2.7123139431439465,9564.068477425199,2019
+2001,59,"(55,60]",College,271.3655700076511,101.5861049792814,2.6712862951384584,9626.95495514771,2019
+2001,59,"(55,60]",College,269.69150726855395,101.5861049792814,2.6548070459395783,9414.165764488676,2019
+2001,59,"(55,60]",College,269.52410099464424,98.14250820032271,2.7462524235116095,9403.84919246083,2019
+2001,72,"(70,75]",NoHS,212.27115531752105,48.21035490542169,4.403019968095054,7008.528236382228,2019
+2001,72,"(70,75]",NoHS,210.7644988523336,46.488556515942335,4.533685591637075,7729.838189563037,2019
+2001,72,"(70,75]",NoHS,257.6382555470543,48.21035490542169,5.34404395181253,7641.301160445774,2019
+2001,72,"(70,75]",NoHS,229.17918898240245,48.21035490542169,4.753733703724077,7360.244546722797,2019
+2001,72,"(70,75]",NoHS,234.36878347360366,48.21035490542169,4.861378513669618,7552.679164306685,2019
+2001,43,"(40,45]",College,4427.895944912013,156.68365344262045,28.260101469573947,3325.0625150500805,2019
+2001,43,"(40,45]",College,1387.7980107115534,156.68365344262045,8.85732480842223,1923.707289230424,2019
+2001,43,"(40,45]",College,3160.6304514154554,156.68365344262045,20.172049744633497,3358.7227945631967,2019
+2001,43,"(40,45]",College,3137.863198163734,156.68365344262045,20.026742606642493,3361.989709269633,2019
+2001,43,"(40,45]",College,1625.5149196633513,156.68365344262045,10.374502278622419,1975.3948089152782,2019
+2001,67,"(65,70]",College,582693.0264728385,31198.986817365752,18.676665043125826,1.5455142054781237,2019
+2001,67,"(65,70]",College,582875.4993114002,31922.142140947075,18.259285255287924,1.5771236208314843,2019
+2001,67,"(65,70]",College,578842.6821729151,37483.55093896536,15.442578615762613,1.3928322532831945,2019
+2001,67,"(65,70]",College,579058.6362662587,31078.460930102196,18.632152910293893,1.8112680372607364,2019
+2001,67,"(65,70]",College,578972.4220351952,33592.28657874204,17.23527872025187,1.4397924826513564,2019
+2001,44,"(40,45]",College,2530.345830145371,101.5861049792814,24.908385164107216,635.1469436408456,2019
+2001,44,"(40,45]",College,2530.513236419281,91.25531464240532,27.730036834954703,626.8980383666656,2019
+2001,44,"(40,45]",College,2532.0198928844684,111.91689531615746,22.62410769823169,663.1398498771632,2019
+2001,44,"(40,45]",College,2533.693955623565,106.75150014771945,23.734504453028922,643.6369999791767,2019
+2001,44,"(40,45]",College,2529.0065799540935,165.29264539001719,15.300176084584779,643.9833451371017,2019
+2001,73,"(70,75]",HS,2231.190818668707,130.8566776004303,17.0506454816286,3872.9116771154813,2019
+2001,73,"(70,75]",HS,9709.731293037492,210.0594035164802,46.223740192024856,1790.8947449588911,2019
+2001,73,"(70,75]",HS,9918.989135424636,249.6607664745051,39.72986735357774,1816.093577931372,2019
+2001,73,"(70,75]",HS,3545.8322876817138,91.25531464240532,38.85617294265517,1736.0552470855666,2019
+2001,73,"(70,75]",HS,10315.239785768938,313.3673068852409,32.917408929153254,1737.7092658000433,2019
+2001,77,"(75,80]",HS,9768.156082631982,249.6607664745051,39.1257153479479,31.399822108917686,2019
+2001,77,"(75,80]",HS,7318.634001530222,130.8566776004303,55.92862462760675,31.616704499145886,2019
+2001,77,"(75,80]",HS,11237.983167559296,253.10436325346384,44.400590424849185,32.082254636960414,2019
+2001,77,"(75,80]",HS,12076.688599846979,373.63025051701806,32.32256644941256,31.27058378397851,2019
+2001,77,"(75,80]",HS,11143.063810252486,180.7888308953313,61.63579771531254,30.924148121228093,2019
+2001,27,"(25,30]",College,2570.021117061974,43.04495973698364,59.70550635348479,3180.645298013669,2019
+2001,27,"(25,30]",College,2570.021117061974,43.04495973698364,59.70550635348479,3231.1144043333857,2019
+2001,27,"(25,30]",College,2567.175210405509,43.04495973698364,59.63939160569889,4055.9169055014563,2019
+2001,27,"(25,30]",College,2567.3426166794184,43.04495973698364,59.64328070850982,3325.358196194381,2019
+2001,27,"(25,30]",College,2567.3426166794184,43.04495973698364,59.64328070850982,3425.5787730766706,2019
+2001,29,"(25,30]",College,7.985279265493497,29.27057262114888,0.2728091236494598,5526.895146709865,2019
+2001,29,"(25,30]",College,8.085723029839327,37.87956456854561,0.21345871110022052,5536.156520799701,2019
+2001,29,"(25,30]",College,7.868094873756696,36.157766179066265,0.21760456204044962,5555.52313691576,2019
+2001,29,"(25,30]",College,8.437276205049733,32.71416940010757,0.25790892325152504,5584.004380137949,2019
+2001,29,"(25,30]",College,7.734169854628921,36.157766179066265,0.2139006546014632,5540.609748884341,2019
+2001,48,"(45,50]",College,193.3207651109411,199.7286131796041,0.9679172254458063,7014.931187288981,2019
+2001,48,"(45,50]",College,193.20358071920427,199.7286131796041,0.9673305073493287,7311.941072398789,2019
+2001,48,"(45,50]",College,193.05291507268555,198.00681479012476,0.9749811655589226,7345.132849162948,2019
+2001,48,"(45,50]",College,193.3040244835501,199.7286131796041,0.9678334085748808,7145.29578530844,2019
+2001,48,"(45,50]",College,193.38940168324407,199.7286131796041,0.9682608746166,7240.434385677037,2019
+2001,27,"(25,30]",HS,-6.696250956388676,46.488556515942335,-0.1440408448494702,4643.043033144756,2019
+2001,27,"(25,30]",HS,4.519969395562356,46.488556515942335,0.09722757027339236,4598.265285317927,2019
+2001,27,"(25,30]",HS,-0.5022188217291507,46.488556515942335,-0.010803063363710263,4595.644661513698,2019
+2001,27,"(25,30]",HS,0.3348125478194338,46.488556515942335,0.00720204224247351,4618.580524709878,2019
+2001,27,"(25,30]",HS,-0.5022188217291507,46.488556515942335,-0.010803063363710263,4611.983247373574,2019
+2001,56,"(55,60]",HS,235.28951798010712,99.86430658980206,2.3560922417112584,6209.7717265041465,2019
+2001,56,"(55,60]",HS,230.26732976281562,99.86430658980206,2.3058021191560556,6490.332752908454,2019
+2001,56,"(55,60]",HS,216.87482785003826,99.86430658980206,2.171695125675514,6527.177226613899,2019
+2001,56,"(55,60]",HS,235.28951798010712,99.86430658980206,2.3560922417112584,6369.034691177056,2019
+2001,56,"(55,60]",HS,227.086610558531,99.86430658980206,2.273951708204427,6422.482897640916,2019
+2001,29,"(25,30]",HS,86.31467482785004,67.15013718969449,1.285398339306695,5755.890725214022,2019
+2001,29,"(25,30]",HS,69.32293802601377,87.81171786344665,0.7894497421610153,5746.232942779968,2019
+2001,29,"(25,30]",HS,78.51354246365723,53.37575007385973,1.4709590470393876,5776.888191261179,2019
+2001,29,"(25,30]",HS,67.96694720734506,80.92452430552926,0.8398807134254744,5815.077957789474,2019
+2001,29,"(25,30]",HS,70.00930374904361,84.36812108448795,0.8298075487414834,5761.121304242361,2019
+2001,56,"(55,60]",NoHS,3.515531752104055,0,Inf,5390.366388565244,2019
+2001,56,"(55,60]",NoHS,3.515531752104055,0,Inf,5435.283437524299,2019
+2001,56,"(55,60]",NoHS,3.682938026013772,0,Inf,5306.745559654278,2019
+2001,56,"(55,60]",NoHS,3.682938026013772,0,Inf,5389.579620687442,2019
+2001,56,"(55,60]",NoHS,3.682938026013772,0,Inf,5417.9008239949235,2019
+2001,42,"(40,45]",College,5351.308951798011,1377.4387115834766,3.884970639199076,313.2379130398481,2019
+2001,42,"(40,45]",College,5345.951951032899,1377.4387115834766,3.88108153638814,306.9161349652556,2019
+2001,42,"(40,45]",College,5347.626013771997,1377.4387115834766,3.882296881016558,316.60850175098983,2019
+2001,42,"(40,45]",College,5347.559051262433,1377.4387115834766,3.882248267231421,308.53994444742,2019
+2001,42,"(40,45]",College,5349.132670237184,1377.4387115834766,3.883390691182133,311.3887393874046,2019
+2001,75,"(70,75]",College,9672.315990818668,277.20954070617466,34.891713922179676,3378.222256891321,2019
+2001,75,"(70,75]",College,9673.990053557767,277.20954070617466,34.89775290169977,3354.2556167605485,2019
+2001,75,"(70,75]",College,9673.990053557767,275.48774231669535,35.11586385733539,3432.3138467958097,2019
+2001,75,"(70,75]",College,9673.990053557767,277.20954070617466,34.89775290169977,3344.052465457542,2019
+2001,75,"(70,75]",College,9673.990053557767,277.20954070617466,34.89775290169977,3312.380940135091,2019
+2001,68,"(65,70]",College,16606.853037490437,216.94659707439757,76.54811488836326,172.02463374934786,2019
+2001,68,"(65,70]",College,16605.028309104822,216.94659707439757,76.53970393188723,161.037107519999,2019
+2001,68,"(65,70]",College,16607.706809487376,216.94659707439757,76.55205029001718,172.1157236483978,2019
+2001,68,"(65,70]",College,16603.35424636572,216.94659707439757,76.531987458056,169.53909477072477,2019
+2001,68,"(65,70]",College,16607.27155317521,216.94659707439757,76.55004400682105,163.31319795449969,2019
+2001,45,"(40,45]",HS,618.0807039020658,697.3283477391351,0.8863553387812148,264.82213179606424,2019
+2001,45,"(40,45]",HS,621.4288293802601,697.3283477391351,0.8911567002761971,265.64229931000506,2019
+2001,45,"(40,45]",HS,581.251323641928,697.3283477391351,0.8335403623364089,250.85076680698202,2019
+2001,45,"(40,45]",HS,591.2957000765111,697.3283477391351,0.8479444468213561,266.36648166583115,2019
+2001,45,"(40,45]",HS,609.71039020658,697.3283477391351,0.8743519350437589,281.21727389240834,2019
+2001,88,"(85,90]",HS,117.18439173680183,36.157766179066265,3.2409190091130786,7406.480109427929,2019
+2001,88,"(85,90]",NoHS,825.3129303749045,37.87956456854561,21.787814611264746,6559.798523617837,2019
+2001,88,"(85,90]",College,805.2241775057383,34.43596778958692,23.383230650750864,6207.511975084877,2019
+2001,88,"(85,90]",HS,701.4322876817139,53.37575007385973,13.141403853081098,6936.098009719746,2019
+2001,88,"(85,90]",HS,177.4506503442999,18.939782284272805,9.369202226345081,7735.499591162412,2019
+2001,22,"(20,25]",HS,12.823320581484316,72.31553235813253,0.17732456864147275,6627.050868324928,2019
+2001,22,"(20,25]",HS,11.149257842387145,51.653951684380374,0.21584520600693105,6626.234243868555,2019
+2001,22,"(20,25]",HS,18.66579954093344,63.706540410735805,0.2929965969049527,6641.854731501395,2019
+2001,22,"(20,25]",HS,6.076847742922724,51.653951684380374,0.11764536003080478,6614.067934894863,2019
+2001,22,"(20,25]",HS,14.396939556235655,60.2629436317771,0.2389020298146213,6615.040650196241,2019
+2001,23,"(20,25]",College,95.78986993114002,96.42070981084338,0.993457423400627,7020.421158994625,2019
+2001,23,"(20,25]",College,95.78986993114002,96.42070981084338,0.993457423400627,7019.556061121313,2019
+2001,23,"(20,25]",College,95.78986993114002,94.69891142136402,1.0115202856442749,7036.103753914135,2019
+2001,23,"(20,25]",College,95.4550573833206,94.69891142136402,1.0079847376343334,7006.6675810654215,2019
+2001,23,"(20,25]",College,95.78986993114002,96.42070981084338,0.993457423400627,7007.6980350666345,2019
+2001,80,"(75,80]",NoHS,1066.3779648048967,37.87956456854561,28.151801029159518,1091.2714583766588,2019
+2001,80,"(75,80]",NoHS,1045.2847742922725,37.87956456854561,27.594952217593725,1075.1310774987637,2019
+2001,80,"(75,80]",NoHS,1128.4856924254016,37.87956456854561,29.791411418769904,1037.2339462229868,2019
+2001,80,"(75,80]",NoHS,1168.3283856159144,37.87956456854561,30.843236951727516,1072.911785989313,2019
+2001,80,"(75,80]",NoHS,1047.1262433052793,37.87956456854561,27.643566002730424,1135.9935105167963,2019
+2001,56,"(55,60]",College,212.60596786534046,113.63869370563681,1.870894155260732,7152.005236009705,2019
+2001,56,"(55,60]",College,152.15556235654168,113.63869370563681,1.3389414942649445,7552.276832167185,2019
+2001,56,"(55,60]",College,182.65698546289212,113.63869370563681,1.6073485140196733,7590.279685994766,2019
+2001,56,"(55,60]",College,152.17230298393267,113.63869370563681,1.3390888087653587,7361.251412970912,2019
+2001,56,"(55,60]",College,181.8366947207345,113.63869370563681,1.6001301034993758,7470.632875063978,2019
+2001,31,"(30,35]",HS,211.7689364957919,77.48092752657055,2.733175031018697,5711.245227555538,2019
+2001,31,"(30,35]",HS,213.44299923488904,77.48092752657055,2.7547811577461174,5786.1313534890505,2019
+2001,31,"(30,35]",HS,211.7689364957919,77.48092752657055,2.733175031018697,5943.579452992033,2019
+2001,31,"(30,35]",HS,213.44299923488904,77.48092752657055,2.7547811577461174,5744.668174022738,2019
+2001,31,"(30,35]",HS,213.44299923488904,77.48092752657055,2.7547811577461174,5767.522843987388,2019
+2001,28,"(25,30]",HS,30.66882938026014,43.04495973698364,0.7124836349634194,6549.465446621198,2019
+2001,28,"(25,30]",HS,29.815057383320582,34.43596778958692,0.8658115132845591,6672.069990585153,2019
+2001,28,"(25,30]",HS,28.274919663351188,34.43596778958692,0.8210868309587986,6729.223018202317,2019
+2001,28,"(25,30]",HS,33.09622035195103,27.548774231669533,1.2013681651906045,6565.840106940159,2019
+2001,28,"(25,30]",HS,31.037123182861517,30.992371010628222,1.0014439738159415,6635.276586954305,2019
+2001,82,"(80,85]",HS,2191.013312930375,36.157766179066265,60.59592570181711,3001.2984855972722,2019
+2001,82,"(80,85]",HS,1950.6179035960215,36.157766179066265,53.947411848836566,3032.707126966585,2019
+2001,82,"(80,85]",HS,2032.3121652639632,36.157766179066265,56.20679538661825,3852.155537643264,2019
+2001,82,"(80,85]",HS,2098.6050497322112,36.157766179066265,58.040229568916516,3167.5264795105068,2019
+2001,82,"(80,85]",HS,2351.723335883703,36.157766179066265,65.04061462860075,3245.284604309322,2019
+2001,68,"(65,70]",HS,385.0344299923489,87.81171786344665,4.384772777035343,6558.435122124206,2019
+2001,68,"(65,70]",HS,385.0344299923489,87.81171786344665,4.384772777035343,6633.821094760251,2019
+2001,68,"(65,70]",HS,385.0344299923489,87.81171786344665,4.384772777035343,6762.620123638679,2019
+2001,68,"(65,70]",HS,385.0344299923489,87.81171786344665,4.384772777035343,6521.90621626573,2019
+2001,68,"(65,70]",HS,385.0344299923489,87.81171786344665,4.384772777035343,6649.301320199886,2019
+2001,42,"(40,45]",College,551.1014537107881,96.42070981084338,5.715592166785851,7397.928719842242,2019
+2001,42,"(40,45]",College,551.1014537107881,96.42070981084338,5.715592166785851,6729.371795436346,2019
+2001,42,"(40,45]",College,551.1014537107881,96.42070981084338,5.715592166785851,6290.673316546581,2019
+2001,42,"(40,45]",College,551.1014537107881,96.42070981084338,5.715592166785851,7035.059899153746,2019
+2001,42,"(40,45]",College,551.1014537107881,96.42070981084338,5.715592166785851,6763.768072218789,2019
+2001,24,"(20,25]",HS,-2.17628156082632,48.21035490542169,-0.04514137191264646,5134.880151248625,2019
+2001,24,"(20,25]",HS,-2.17628156082632,48.21035490542169,-0.04514137191264646,5151.937349076956,2019
+2001,24,"(20,25]",HS,-2.17628156082632,48.21035490542169,-0.04514137191264646,5160.851242888722,2019
+2001,24,"(20,25]",HS,-2.17628156082632,48.21035490542169,-0.04514137191264646,5106.084913435369,2019
+2001,24,"(20,25]",HS,-2.17628156082632,48.21035490542169,-0.04514137191264646,5114.405965775165,2019
+2001,45,"(40,45]",College,3827.577046671767,774.8092752657057,4.940024814957429,313.2379130398481,2019
+2001,45,"(40,45]",College,3829.251109410865,774.8092752657057,4.9421854276301715,306.9161349652556,2019
+2001,45,"(40,45]",College,3827.6105279265494,774.8092752657057,4.940068027210884,316.60850175098983,2019
+2001,45,"(40,45]",College,3827.577046671767,774.8092752657057,4.940024814957429,308.53994444742,2019
+2001,45,"(40,45]",College,3827.577046671767,774.8092752657057,4.940024814957429,311.3887393874046,2019
+2001,42,"(40,45]",HS,10.546595256312164,51.653951684380374,0.20417789757412397,7651.6262630956135,2019
+2001,42,"(40,45]",HS,17.745065034429995,51.653951684380374,0.34353741496598644,7675.0741586593285,2019
+2001,42,"(40,45]",HS,1.841469013006886,51.653951684380374,0.035650109100243875,7601.769972572215,2019
+2001,42,"(40,45]",HS,1.841469013006886,51.653951684380374,0.035650109100243875,7655.663876026039,2019
+2001,42,"(40,45]",HS,1.841469013006886,51.653951684380374,0.035650109100243875,7739.190771694164,2019
+2001,65,"(60,65]",College,688.7094108645754,53.37575007385973,12.903039487249554,10051.580217947665,2019
+2001,65,"(60,65]",College,953.0439173680185,49.93215329490103,19.08677784711803,9972.791282373746,2019
+2001,65,"(60,65]",College,768.3947972456007,56.819346852818406,13.523471138026396,9571.066040705447,2019
+2001,65,"(60,65]",College,766.8881407804132,56.819346852818406,13.496954527951834,9941.39006240817,2019
+2001,65,"(60,65]",College,704.6130068859984,53.37575007385973,13.200994944538982,10483.668510291813,2019
+2001,48,"(45,50]",HS,872.1532058148432,189.39782284272803,4.60487450554836,9243.072070931576,2019
+2001,48,"(45,50]",HS,1106.6391736801838,189.39782284272803,5.84293502992964,9165.462085221483,2019
+2001,48,"(45,50]",HS,852.717337413925,189.39782284272803,4.502255224559806,8801.081440870514,2019
+2001,48,"(45,50]",HS,1116.5831063504208,189.39782284272803,5.895437917877271,9140.546267755304,2019
+2001,48,"(45,50]",HS,1032.3275286916603,189.39782284272803,5.450577589526377,9636.801106672629,2019
+2001,43,"(40,45]",College,2.0088752869166027,32.71416940010757,0.06140688648845833,4527.0887916918855,2019
+2001,43,"(40,45]",College,2.0088752869166027,34.43596778958692,0.058336542164035415,4528.936535076638,2019
+2001,43,"(40,45]",College,2.0088752869166027,32.71416940010757,0.06140688648845833,4562.906502349825,2019
+2001,43,"(40,45]",College,2.0088752869166027,34.43596778958692,0.058336542164035415,4546.085477464057,2019
+2001,43,"(40,45]",College,2.0088752869166027,34.43596778958692,0.058336542164035415,4569.919487699617,2019
+2001,42,"(40,45]",HS,112.99923488905893,86.08991947396729,1.3125721986907972,5786.716332982018,2019
+2001,42,"(40,45]",HS,112.99923488905893,86.08991947396729,1.3125721986907972,6001.478610236696,2019
+2001,42,"(40,45]",HS,114.67329762815609,86.08991947396729,1.3320177127454758,6057.571933697256,2019
+2001,42,"(40,45]",HS,114.67329762815609,86.08991947396729,1.3320177127454758,5877.382409116389,2019
+2001,42,"(40,45]",HS,114.50589135424637,86.08991947396729,1.3300731613400079,6012.197855690442,2019
+2001,79,"(75,80]",College,75707.64590665646,5854.114524229776,12.932382103784908,14.608140502550564,2019
+2001,79,"(75,80]",College,75956.74644223413,5854.114524229776,12.974933463951619,15.874372334474874,2019
+2001,79,"(75,80]",College,73955.57184391737,5854.114524229776,12.633092765408048,15.508857024996303,2019
+2001,79,"(75,80]",College,78592.72563121653,5785.242588650602,13.585035446119148,15.245517375064313,2019
+2001,79,"(75,80]",College,75328.80550879877,5854.114524229776,12.867668576864707,16.088342421621903,2019
+2001,75,"(70,75]",College,35525.452792654934,1377.4387115834766,25.79094989410859,170.70316365473857,2019
+2001,75,"(70,75]",College,35441.58224942617,1377.4387115834766,25.730061128224875,159.69056269811,2019
+2001,75,"(70,75]",College,35525.452792654934,1377.4387115834766,25.79094989410859,167.96700212053682,2019
+2001,75,"(70,75]",College,35525.452792654934,1377.4387115834766,25.79094989410859,175.001726293633,2019
+2001,75,"(70,75]",College,35525.28538638102,1377.4387115834766,25.790828359645744,168.05053491723305,2019
+2001,48,"(45,50]",College,10206.090895179801,259.9915568113812,39.25547052508371,2957.208265151808,2019
+2001,48,"(45,50]",College,10206.090895179801,261.7133552008606,38.99721085057657,3024.9695791728795,2019
+2001,48,"(45,50]",College,10204.416832440704,261.7133552008606,38.99081429990069,3009.0789231342715,2019
+2001,48,"(45,50]",College,10204.416832440704,259.9915568113812,39.24903161314507,3011.985179399793,2019
+2001,48,"(45,50]",College,10206.090895179801,259.9915568113812,39.25547052508371,3005.519450793768,2019
+2001,35,"(30,35]",NoHS,819.4537107880643,146.35286310574438,5.59916419397948,6334.589997814184,2019
+2001,35,"(30,35]",NoHS,817.7796480489671,146.35286310574438,5.587725656300257,5747.937850354273,2019
+2001,35,"(30,35]",NoHS,826.8195868400919,146.35286310574438,5.64949375976806,5459.3480002264905,2019
+2001,35,"(30,35]",NoHS,828.6610558530988,146.35286310574438,5.662076151215205,6043.929174304864,2019
+2001,35,"(30,35]",NoHS,850.0890589135424,146.35286310574438,5.808489433509253,5782.11865097624,2019
+2001,25,"(20,25]",College,2.5110941086457537,61.984742021256444,0.040511487613913495,7381.359227234594,2019
+2001,25,"(20,25]",College,5.8592195868400925,61.984742021256444,0.09452680443246482,7287.679258563175,2019
+2001,25,"(20,25]",College,27.62203519510329,61.984742021256444,0.4456263637530484,7027.100050650406,2019
+2001,25,"(20,25]",College,15.903596021423107,61.984742021256444,0.2565727548881188,7179.186125939714,2019
+2001,25,"(20,25]",College,47.71078806426932,61.984742021256444,0.7697182646643564,7350.861384985808,2019
+2001,43,"(40,45]",College,1101.3993573068094,67.15013718969449,16.402041803659053,4713.046914416495,2019
+2001,43,"(40,45]",College,1263.783442999235,67.15013718969449,18.82026598738189,4281.30905488657,2019
+2001,43,"(40,45]",College,1253.7223259372608,67.15013718969449,18.670435808575967,4020.0328137294296,2019
+2001,43,"(40,45]",College,1283.85545524101,67.15013718969449,19.119178440607012,4474.700954035694,2019
+2001,43,"(40,45]",College,1133.3572149961744,67.15013718969449,16.877958295074198,4312.63785854705,2019
+2001,31,"(30,35]",College,-45.36710022953328,49.93215329490103,-0.9085748808306666,4594.9799180708915,2019
+2001,31,"(30,35]",College,-42.85600612088753,48.21035490542169,-0.8889377853567302,4560.859826340238,2019
+2001,31,"(30,35]",College,-46.03672532517215,56.819346852818406,-0.8102297522782699,4565.882755096494,2019
+2001,31,"(30,35]",College,-43.19081866870696,56.819346852818406,-0.7601428221374313,4595.868369227378,2019
+2001,31,"(30,35]",College,-45.534506503443005,48.21035490542169,-0.944496396941526,4552.920756878511,2019
+2001,35,"(30,35]",HS,2.862647283856159,30.992371010628222,0.09236619175972276,4269.488501023828,2019
+2001,35,"(30,35]",HS,3.0300535577658763,30.992371010628222,0.0977677234415779,4276.367879566732,2019
+2001,35,"(30,35]",HS,2.862647283856159,30.992371010628222,0.09236619175972276,4298.55968701828,2019
+2001,35,"(30,35]",HS,3.0467941851568474,30.992371010628222,0.0983078766097634,4248.402484757653,2019
+2001,35,"(30,35]",HS,2.862647283856159,30.992371010628222,0.09236619175972276,4311.184370537395,2019
+2001,56,"(55,60]",College,488441.4527926549,8454.030092343588,57.77616680534566,2.4617172374681484,2019
+2001,56,"(55,60]",College,485202.30879877583,9676.506948873925,50.142299422958594,2.512065168510028,2019
+2001,56,"(55,60]",College,467569.74078041315,9332.147270978054,50.1031249511571,2.2185232297804185,2019
+2001,56,"(55,60]",College,467536.2595256312,8643.427915186316,54.09153221538183,2.8850137599482393,2019
+2001,56,"(55,60]",College,478868.1576128539,9418.23719045202,50.84477571857277,2.2933221579955734,2019
+2001,51,"(50,55]",College,94956.50475899005,748.9822994235153,126.78070607553367,18.01293583972238,2019
+2001,51,"(50,55]",College,98360.84526396329,767.9220817077883,128.0870124807686,19.60781902692309,2019
+2001,51,"(50,55]",College,91841.37533282327,738.6515090866394,124.3365432860042,19.13956903634376,2019
+2001,51,"(50,55]",College,95965.1275592961,654.2833880021514,146.6721138256693,18.800585208567487,2019
+2001,51,"(50,55]",College,94499.43540933434,750.7040978129947,125.88107043059563,19.8680209352054,2019
+2001,37,"(35,40]",College,21714.26778882938,4183.97008643481,5.189871662617994,15.37873080728871,2019
+2001,37,"(35,40]",College,50005.92807957154,4166.752102540017,12.001176659654972,15.273668741031447,2019
+2001,37,"(35,40]",College,47494.833970925785,4183.97008643481,11.351618914511999,15.448153013893428,2019
+2001,37,"(35,40]",College,47494.833970925785,4183.97008643481,11.351618914511999,15.840280230196834,2019
+2001,37,"(35,40]",College,18197.061973986227,4183.97008643481,4.349233287538169,15.1451268563127,2019
+2001,23,"(20,25]",HS,-19.586534047436878,27.548774231669533,-0.7109766076241817,5972.549574833142,2019
+2001,23,"(20,25]",HS,-19.586534047436878,27.548774231669533,-0.7109766076241817,5992.38936790264,2019
+2001,23,"(20,25]",HS,-19.586534047436878,27.548774231669533,-0.7109766076241817,6002.7574137240435,2019
+2001,23,"(20,25]",HS,-19.586534047436878,27.548774231669533,-0.7109766076241817,5939.056877770496,2019
+2001,23,"(20,25]",HS,-19.586534047436878,27.548774231669533,-0.7109766076241817,5948.735369994335,2019
+2001,64,"(60,65]",College,2614.7185921958685,396.01362958024953,6.602597478696155,491.96485716232354,2019
+2001,64,"(60,65]",College,2616.225248661056,396.01362958024953,6.606402035793809,478.5413609272397,2019
+2001,64,"(60,65]",College,2614.7185921958685,396.01362958024953,6.602597478696155,516.6578339170861,2019
+2001,64,"(60,65]",College,2614.5511859219587,396.01362958024953,6.602174750129748,490.54490622196556,2019
+2001,64,"(60,65]",College,2616.392654934966,396.01362958024953,6.606824764360216,490.028475539738,2019
+2001,45,"(40,45]",NoHS,10.161560826319816,137.74387115834767,0.07377141894493645,8462.71762767457,2019
+2001,45,"(40,45]",NoHS,9.927192042846213,137.74387115834767,0.0720699364651521,8619.471332272728,2019
+2001,45,"(40,45]",NoHS,19.1010558530987,137.74387115834767,0.13867082210242587,8491.039562870496,2019
+2001,45,"(40,45]",NoHS,12.706136189747513,137.74387115834767,0.092244657296881,8521.378334494433,2019
+2001,45,"(40,45]",NoHS,23.269472073450654,137.74387115834767,0.16893290335001926,8588.039625019763,2019
+2001,76,"(75,80]",NoHS,678.9998469778118,51.653951684380374,13.14516750096265,5936.1400664167695,2019
+2001,76,"(75,80]",NoHS,679.1672532517215,51.653951684380374,13.148408419971762,5355.920998764009,2019
+2001,76,"(75,80]",NoHS,679.1672532517215,51.653951684380374,13.148408419971762,5067.7969692534,2019
+2001,76,"(75,80]",NoHS,679.1672532517215,51.653951684380374,13.148408419971762,5665.247814755479,2019
+2001,76,"(75,80]",NoHS,679.1672532517215,51.653951684380374,13.148408419971762,5445.060440795165,2019
+2001,44,"(40,45]",College,219.80443764345833,65.42833880021514,3.359468414972742,3628.5629694362224,2019
+2001,44,"(40,45]",College,217.46074980872226,65.42833880021514,3.3236477311878074,3804.6308959788184,2019
+2001,44,"(40,45]",College,213.27559296097937,65.42833880021514,3.2596822244289974,3731.4462802927796,2019
+2001,44,"(40,45]",College,218.13037490436116,65.42833880021514,3.3338822122692178,3703.43598682879,2019
+2001,44,"(40,45]",College,222.81775057383322,65.42833880021514,3.4055235798390857,3639.7241981448738,2019
+2001,45,"(40,45]",College,835.6921193573069,344.35967789586914,2.426800154023874,10349.369713574994,2019
+2001,45,"(40,45]",College,835.6921193573069,344.35967789586914,2.426800154023874,10045.66083733017,2019
+2001,45,"(40,45]",College,835.8595256312165,344.35967789586914,2.4272862918752405,10839.830281309367,2019
+2001,45,"(40,45]",College,835.8595256312165,344.35967789586914,2.4272862918752405,10292.400516257696,2019
+2001,45,"(40,45]",College,835.8595256312165,344.35967789586914,2.4272862918752405,10262.450108106332,2019
+2001,39,"(35,40]",College,29.630910482019893,51.653951684380374,0.573642664613015,5630.859351148806,2019
+2001,39,"(35,40]",College,29.630910482019893,51.653951684380374,0.573642664613015,5639.578209207094,2019
+2001,39,"(35,40]",College,29.79831675592961,51.653951684380374,0.5768835836221281,5664.672746450149,2019
+2001,39,"(35,40]",College,29.79831675592961,51.653951684380374,0.5768835836221281,5617.441410235802,2019
+2001,39,"(35,40]",College,29.630910482019893,51.653951684380374,0.573642664613015,5674.09500694756,2019
+2001,31,"(30,35]",NoHS,-0.8035501147666412,11.363869370563684,-0.07071096019883082,5880.723737423743,2019
+2001,31,"(30,35]",NoHS,-0.6026625860749808,11.536049209511617,-0.052241679549882465,5859.786506655853,2019
+2001,31,"(30,35]",NoHS,-0.217628156082632,11.536049209511617,-0.018865050948568673,5868.345085623287,2019
+2001,31,"(30,35]",NoHS,-0.6696250956388676,11.363869370563684,-0.05892580016569234,5903.145311557573,2019
+2001,31,"(30,35]",NoHS,-0.6194032134659526,11.363869370563684,-0.05450636515326542,5857.675500574214,2019
+2001,27,"(25,30]",College,16826.171996939556,172.17983894793457,97.72440315748942,1968.7700271518738,2019
+2001,27,"(25,30]",College,16812.41120122418,172.17983894793457,97.6444820947247,1989.9226229084088,2019
+2001,27,"(25,30]",College,18389.244376434584,172.17983894793457,106.80254139391607,1988.1451540014255,2019
+2001,27,"(25,30]",College,18826.676970160675,172.17983894793457,109.34309780515981,1989.6427926608908,2019
+2001,27,"(25,30]",College,15240.499770466717,172.17983894793457,88.51500770119368,1970.796164328187,2019
+2001,38,"(35,40]",HS,677.3257842387146,74.03733074761188,9.148436030840594,7238.339023908678,2019
+2001,38,"(35,40]",HS,677.4931905126243,70.59373396865318,9.59707260722973,6582.233487989225,2019
+2001,38,"(35,40]",HS,675.6517214996175,68.87193557917384,9.81026184058529,6149.512337613587,2019
+2001,38,"(35,40]",HS,675.8191277735272,74.03733074761188,9.128086074271744,6882.8540395390255,2019
+2001,38,"(35,40]",HS,675.8191277735272,77.48092752657055,8.722393359859668,6617.900181722054,2019
+2001,49,"(45,50]",HS,299.6572302983933,51.653951684380374,5.8012450263124125,7194.854486006456,2019
+2001,49,"(45,50]",HS,299.6572302983933,51.653951684380374,5.8012450263124125,7499.482264557254,2019
+2001,49,"(45,50]",HS,299.6572302983933,51.653951684380374,5.8012450263124125,7533.525364564116,2019
+2001,49,"(45,50]",HS,299.6572302983933,51.653951684380374,5.8012450263124125,7328.562755957309,2019
+2001,49,"(45,50]",HS,299.6572302983933,51.653951684380374,5.8012450263124125,7426.141530057721,2019
+2001,85,"(80,85]",College,1481.5471981637338,41.323161347504296,35.852707049801054,9494.244618573442,2019
+2001,85,"(80,85]",College,1489.9175118592195,41.323161347504296,36.05526448787062,9433.99423523201,2019
+2001,85,"(80,85]",College,1611.2870604437644,41.323161347504296,38.99234733987935,13377.496463922676,2019
+2001,85,"(80,85]",College,1506.6581392501912,41.323161347504296,36.460379364009754,9432.06344554849,2019
+2001,85,"(80,85]",College,1508.667014537108,41.323161347504296,36.508993149146455,9916.6979766265,2019
+2001,38,"(35,40]",College,422.5836572302984,170.45804055845522,2.47910662263762,4948.8375622689,2019
+2001,38,"(35,40]",College,439.49169089517983,170.45804055845522,2.578298386249869,4951.283057236526,2019
+2001,38,"(35,40]",College,405.8430298393267,170.45804055845522,2.380896955694799,4994.423943218803,2019
+2001,38,"(35,40]",College,404.1689671002295,170.45804055845522,2.3710759890005173,4951.190471844691,2019
+2001,38,"(35,40]",College,412.5392807957154,170.45804055845522,2.4201808224719277,4976.953137888731,2019
+2001,54,"(50,55]",College,1748.5585309869932,275.48774231669535,6.347137321909896,719.9646438037876,2019
+2001,54,"(50,55]",College,2264.337260902831,420.1188070329604,5.389754571794694,721.579950530539,2019
+2001,54,"(50,55]",College,1348.7923488905892,266.8787503692986,5.053951830275628,349.31994993279733,2019
+2001,54,"(50,55]",College,3702.6919663351187,371.9084521275387,9.955923144939318,1255.137315547295,2019
+2001,54,"(50,55]",College,1330.3274368783473,411.5098150855637,3.2327963710944227,395.8288511434862,2019
+2001,30,"(25,30]",College,1314.9762815608265,258.2697584219018,5.091483763316649,3898.7027961047884,2019
+2001,30,"(25,30]",College,1274.7987758224942,258.2697584219018,4.93591965087922,8005.568571040346,2019
+2001,30,"(25,30]",College,1070.5631216526397,258.2697584219018,4.1451354126556295,7481.213850789723,2019
+2001,30,"(25,30]",College,1227.9250191277736,258.2697584219018,4.754428186368888,8339.516035731453,2019
+2001,30,"(25,30]",College,1199.4659525631216,258.2697584219018,4.644236940059043,8053.408792311149,2019
+2001,75,"(70,75]",NoHS,7.869768936495793,11.70822904845955,0.67215707037532,6282.099385173923,2019
+2001,75,"(70,75]",NoHS,7.869768936495793,24.105177452710844,0.3264762913251554,6275.937161966435,2019
+2001,75,"(70,75]",NoHS,8.03717521040551,16.357084700053786,0.49135743671848087,6304.2222118668415,2019
+2001,75,"(70,75]",NoHS,7.869768936495793,15.324005666366176,0.5135582110732783,6324.749433671701,2019
+2001,75,"(70,75]",NoHS,8.03717521040551,11.363869370563684,0.7072569164887224,6322.411704876469,2019
+2001,40,"(35,40]",College,122433.58286151492,3150.891052747203,38.856812505391886,18.01293583972238,2019
+2001,40,"(35,40]",College,138810.6038255547,6112.3842826516775,22.70973116325988,19.60781902692309,2019
+2001,40,"(35,40]",College,108804.48566182096,3546.904682327452,30.675897833945815,19.13956903634376,2019
+2001,40,"(35,40]",College,138550.1196633512,5957.422427598537,23.25672240758011,18.800585208567487,2019
+2001,40,"(35,40]",College,124071.90436113237,3512.4687145378653,35.32327671634692,19.8680209352054,2019
+2001,53,"(50,55]",NoHS,67156.70084162203,1675.3098329634036,40.08613781179248,18.138322479662882,2019
+2001,53,"(50,55]",NoHS,13345.628156082632,2203.9019385335628,6.0554546110897185,19.024918491663293,2019
+2001,53,"(50,55]",NoHS,28951.241009946443,3168.1090366419962,9.138334784282868,19.064653869519162,2019
+2001,53,"(50,55]",NoHS,32436.63963274675,1382.604106751915,23.460540493365507,19.534039473301,2019
+2001,53,"(50,55]",NoHS,38357.79954093344,1609.8814941631883,23.826473985820744,19.24574996333149,2019
+2001,49,"(45,50]",HS,-1.672388676358072,55.097548463339066,-0.030353232094724684,4889.706392535867,2019
+2001,49,"(45,50]",HS,-1.672388676358072,56.819346852818406,-0.029433437182763332,4910.957008113401,2019
+2001,49,"(45,50]",HS,-1.672388676358072,55.097548463339066,-0.030353232094724684,4901.120455652786,2019
+2001,49,"(45,50]",HS,-1.672388676358072,56.819346852818406,-0.029433437182763332,4865.343891529557,2019
+2001,49,"(45,50]",HS,-1.672388676358072,55.097548463339066,-0.030353232094724684,4907.082738281793,2019
+2001,43,"(40,45]",College,677.8280030604438,210.0594035164802,3.2268396068603753,5698.862118685038,2019
+2001,43,"(40,45]",College,679.502065799541,210.0594035164802,3.234809079833604,5644.595773238657,2019
+2001,43,"(40,45]",College,679.502065799541,210.0594035164802,3.234809079833604,5425.948840336717,2019
+2001,43,"(40,45]",College,677.8280030604438,210.0594035164802,3.2268396068603753,5625.839512332758,2019
+2001,43,"(40,45]",College,677.8280030604438,210.0594035164802,3.2268396068603753,5933.374840342871,2019
+2001,80,"(75,80]",College,55.91369548584545,70.59373396865318,0.7920489871051964,8983.500220625876,2019
+2001,80,"(75,80]",College,54.741851568477436,70.59373396865318,0.7754491580341295,9324.216183015838,2019
+2001,80,"(75,80]",College,52.73297628156083,70.59373396865318,0.7469923081980145,9477.258145708929,2019
+2001,80,"(75,80]",College,52.73297628156083,70.59373396865318,0.7469923081980145,9219.232540223751,2019
+2001,80,"(75,80]",College,56.583320581484315,70.59373396865318,0.8015346037172346,9401.207983854343,2019
+2001,28,"(25,30]",HS,-8.253129303749043,34.43596778958692,-0.23966596072391216,5789.029292070625,2019
+2001,28,"(25,30]",HS,-8.253129303749043,36.157766179066265,-0.2282532959275354,5805.33924743979,2019
+2001,28,"(25,30]",HS,-10.09459831675593,36.157766179066265,-0.2791820232135981,5808.006192604269,2019
+2001,28,"(25,30]",HS,-9.927192042846213,36.157766179066265,-0.27455213891486513,5810.527474894387,2019
+2001,28,"(25,30]",HS,-9.927192042846213,34.43596778958692,-0.2882797458606084,5793.1459626495225,2019
+2001,37,"(35,40]",HS,487.8218821729151,96.42070981084338,5.059306067440453,7191.028292226574,2019
+2001,37,"(35,40]",HS,368.9634276970161,218.6683954638769,1.6873194085240695,7224.774994031111,2019
+2001,37,"(35,40]",HS,494.51813312930375,187.6760244532487,2.634956354014689,6137.091712493026,2019
+2001,37,"(35,40]",HS,351.30206579954097,125.69128243199225,2.7949596742289575,7145.217062600289,2019
+2001,37,"(35,40]",HS,439.1066564651874,160.12725022157917,2.7422356648076147,6556.639611108023,2019
+2001,80,"(75,80]",College,2281.914919663351,163.57084700053784,13.950621162069595,3966.6820515435948,2019
+2001,80,"(75,80]",College,2281.747513389442,163.57084700053784,13.949597713961456,4008.193448887409,2019
+2001,80,"(75,80]",College,2280.240856924254,163.57084700053784,13.940386680988185,5091.221784254808,2019
+2001,80,"(75,80]",College,2282.082325937261,163.57084700053784,13.951644610177738,4186.378160772298,2019
+2001,80,"(75,80]",College,2281.914919663351,163.57084700053784,13.950621162069595,4289.147598561076,2019
+2001,24,"(20,25]",HS,0.2008875286916603,12.396948404251289,0.016204595045565397,4759.285003990383,2019
+2001,24,"(20,25]",HS,0.2008875286916603,12.396948404251289,0.016204595045565397,4764.421562457843,2019
+2001,24,"(20,25]",HS,0.2008875286916603,12.396948404251289,0.016204595045565397,4764.69754099573,2019
+2001,24,"(20,25]",HS,0.2008875286916603,12.396948404251289,0.016204595045565397,4706.751625066476,2019
+2001,24,"(20,25]",HS,0.2008875286916603,12.396948404251289,0.016204595045565397,4752.095257088591,2019
+2001,55,"(50,55]",HS,48.44737566947207,68.87193557917384,0.7034414709279938,7454.312006600882,2019
+2001,55,"(50,55]",HS,39.173068094873756,68.87193557917384,0.5687812860993453,7791.102072294207,2019
+2001,55,"(50,55]",HS,47.64382555470543,68.87193557917384,0.6917741624951866,7835.330783882289,2019
+2001,55,"(50,55]",HS,65.12104055087988,68.87193557917384,0.9455381209087409,7645.493886073362,2019
+2001,55,"(50,55]",HS,51.05891354246366,68.87193557917384,0.7413602233346168,7709.653991262788,2019
+2001,75,"(70,75]",NoHS,119.02586074980873,22.383379063231494,5.317600189567845,8216.089070406346,2019
+2001,75,"(70,75]",NoHS,119.02586074980873,22.383379063231494,5.317600189567845,8157.070390037763,2019
+2001,75,"(70,75]",NoHS,119.02586074980873,22.383379063231494,5.317600189567845,8227.007258118281,2019
+2001,75,"(70,75]",NoHS,119.02586074980873,22.383379063231494,5.317600189567845,8255.044858537616,2019
+2001,75,"(70,75]",NoHS,119.02586074980873,22.383379063231494,5.317600189567845,8215.756693320487,2019
+2001,42,"(40,45]",College,24598.17566947207,2358.863793586704,10.427976272453614,350.9626328861944,2019
+2001,42,"(40,45]",College,24766.418974751337,2203.9019385335628,11.237532188582978,329.0062833667033,2019
+2001,42,"(40,45]",College,24492.040091813316,2048.940083480422,11.953516986309348,345.8112610869472,2019
+2001,42,"(40,45]",College,25155.30374904361,3701.8665373805934,6.795302719595956,360.0877637951463,2019
+2001,42,"(40,45]",College,25021.37872991584,2221.119922428356,11.265208365048522,346.1854806533472,2019
+2001,65,"(60,65]",College,1971.7110941086457,187.6760244532487,10.505929565871702,4555.970464413769,2019
+2001,65,"(60,65]",College,1971.7110941086457,187.6760244532487,10.505929565871702,4593.5285507241715,2019
+2001,65,"(60,65]",College,1971.543687834736,187.6760244532487,10.505037569814146,5820.278821406127,2019
+2001,65,"(60,65]",College,1971.543687834736,187.6760244532487,10.505037569814146,4783.865558187126,2019
+2001,65,"(60,65]",College,1971.7110941086457,187.6760244532487,10.505929565871702,4864.636700146508,2019
+2001,25,"(20,25]",HS,5.306778882938026,55.097548463339066,0.09631606180207933,4590.21823400891,2019
+2001,25,"(20,25]",HS,4.051231828615149,72.31553235813253,0.05602160001466894,4603.150670649709,2019
+2001,25,"(20,25]",HS,5.591369548584545,25.826975842190187,0.2164933898087537,4605.265336115275,2019
+2001,25,"(20,25]",HS,9.341270084162202,25.826975842190187,0.3616865614170196,4607.264503049364,2019
+2001,25,"(20,25]",HS,9.743045141545524,51.653951684380374,0.1886214863303812,4593.482411023969,2019
+2001,66,"(65,70]",College,299.6572302983933,103.30790336876075,2.9006225131562062,5499.349533344605,2019
+2001,66,"(65,70]",College,313.04973221117064,103.30790336876075,3.030259273520729,5575.372792012115,2019
+2001,66,"(65,70]",College,278.73144605967866,103.30790336876075,2.6980650750866384,5697.318021654779,2019
+2001,66,"(65,70]",College,319.7459831675593,103.30790336876075,3.0950776537029907,5484.660291834503,2019
+2001,66,"(65,70]",College,278.73144605967866,103.30790336876075,2.6980650750866384,5573.2355263019,2019
+2001,74,"(70,75]",HS,121.62065799540933,13.774387115834767,8.829478725452445,9580.931596131453,2019
+2001,75,"(70,75]",HS,173.76771231828616,13.774387115834767,12.615277242972661,9340.562168340775,2019
+2001,75,"(70,75]",HS,162.7523794950268,13.774387115834767,11.81558047747401,9414.822943868456,2019
+2001,74,"(70,75]",HS,70.17671002295333,13.774387115834767,5.094724682325761,8983.130532696474,2019
+2001,77,"(75,80]",HS,193.45469013006885,13.774387115834767,14.044522525991528,9396.06665877755,2019
+2001,25,"(20,25]",HS,57.75516449885233,113.63869370563681,0.5082350264290966,6280.755712682699,2019
+2001,25,"(20,25]",HS,59.429227237949505,113.63869370563681,0.5229664764705196,6362.255905874395,2019
+2001,25,"(20,25]",HS,57.75516449885233,113.63869370563681,0.5082350264290966,6413.044929842004,2019
+2001,25,"(20,25]",HS,57.75516449885233,113.63869370563681,0.5082350264290966,6277.847165355109,2019
+2001,25,"(20,25]",HS,59.429227237949505,113.63869370563681,0.5229664764705196,6355.693345296554,2019
+2001,41,"(40,45]",NoHS,-102.15130833970926,36.157766179066265,-2.8251553990868583,6372.438405412605,2019
+2001,41,"(40,45]",NoHS,-102.1847895944912,36.157766179066265,-2.826081375946605,6460.609368329824,2019
+2001,41,"(40,45]",NoHS,-102.00064269319051,37.87956456854561,-2.692761753071726,6777.298550064971,2019
+2001,41,"(40,45]",NoHS,-102.16804896710023,32.71416940010757,-3.123051901992177,6577.065833525606,2019
+2001,41,"(40,45]",NoHS,-102.01738332058149,30.992371010628222,-3.291693406922518,6435.619245022264,2019
+2001,31,"(30,35]",HS,21.428003060443764,55.097548463339066,0.3889102810935695,5603.270285643522,2019
+2001,31,"(30,35]",HS,21.428003060443764,82.64632269500859,0.25927352072904636,5561.663118790429,2019
+2001,31,"(30,35]",HS,21.428003060443764,43.04495973698364,0.49780515979976897,5567.788244024629,2019
+2001,31,"(30,35]",HS,21.428003060443764,49.93215329490103,0.42914237913773184,5604.353692329548,2019
+2001,31,"(30,35]",HS,21.428003060443764,53.37575007385973,0.40145577403207167,5551.981955258985,2019
+2001,30,"(25,30]",HS,8.671644988523337,25.826975842190187,0.335759209344115,7113.168883797645,2019
+2001,30,"(25,30]",HS,8.654904361132365,25.826975842190187,0.33511102554229244,7144.006874120127,2019
+2001,30,"(25,30]",HS,8.671644988523337,25.826975842190187,0.335759209344115,7047.665328972449,2019
+2001,30,"(25,30]",HS,8.671644988523337,25.826975842190187,0.335759209344115,7160.414583098749,2019
+2001,30,"(25,30]",HS,8.671644988523337,25.826975842190187,0.335759209344115,7144.8270936625095,2019
+2001,68,"(65,70]",NoHS,56.918133129303754,18.939782284272805,3.00521580845031,7944.990004875146,2019
+2001,68,"(65,70]",NoHS,45.199693955623566,17.21798389479346,2.625144397381594,8258.18849105603,2019
+2001,68,"(65,70]",NoHS,45.199693955623566,17.21798389479346,2.625144397381594,8585.154322782586,2019
+2001,68,"(65,70]",NoHS,45.199693955623566,17.21798389479346,2.625144397381594,7965.002772432606,2019
+2001,68,"(65,70]",NoHS,45.199693955623566,17.21798389479346,2.625144397381594,8298.776797457258,2019
+2001,22,"(20,25]",HS,-21.84651874521806,49.93215329490103,-0.43752406623026574,5627.620076785774,2019
+2001,22,"(20,25]",HS,-21.84651874521806,49.93215329490103,-0.43752406623026574,5633.340113867499,2019
+2001,22,"(20,25]",HS,-21.84651874521806,49.93215329490103,-0.43752406623026574,5629.520789122079,2019
+2001,22,"(20,25]",HS,-21.84651874521806,49.93215329490103,-0.43752406623026574,5579.797072416471,2019
+2001,22,"(20,25]",HS,-21.84651874521806,49.93215329490103,-0.43752406623026574,5607.501146157858,2019
+2001,34,"(30,35]",HS,26.048416220351953,84.36812108448795,0.3087471415212215,7923.332294659925,2019
+2001,34,"(30,35]",HS,29.547207345065036,82.64632269500859,0.35751387819278657,7944.16675936324,2019
+2001,34,"(30,35]",HS,24.206947207345063,82.64632269500859,0.29289805544859454,8012.72180316232,2019
+2001,34,"(30,35]",HS,25.194644223412393,82.64632269500859,0.304848944294699,7891.887004690539,2019
+2001,34,"(30,35]",HS,27.370925784238718,82.64632269500859,0.33118141124374284,7938.832753123379,2019
+2001,42,"(40,45]",HS,19530.452945677123,542.3664926859939,36.0096967807788,230.84596413888525,2019
+2001,42,"(40,45]",HS,4984.354399387911,401.17902474868754,12.424264709527831,230.5749335033823,2019
+2001,42,"(40,45]",HS,10376.343075745983,259.9915568113812,39.910307869242914,235.68928410458275,2019
+2001,42,"(40,45]",HS,8487.498087222648,495.87793617005156,17.11610351687845,231.71488299586844,2019
+2001,42,"(40,45]",HS,4085.884927314461,480.3817506647374,8.505495726389563,234.06497481304714,2019
+2001,24,"(20,25]",HS,-4.519969395562356,24.105177452710844,-0.18751031409868524,6375.031340165568,2019
+2001,24,"(20,25]",HS,-3.682938026013772,25.826975842190187,-0.1426004364009755,6333.1005875667925,2019
+2001,24,"(20,25]",HS,-8.03550114766641,24.105177452710844,-0.33335166950877376,6225.685995910138,2019
+2001,24,"(20,25]",HS,-6.863657230298394,24.105177452710844,-0.28473788437207764,6275.677735324943,2019
+2001,24,"(20,25]",HS,-4.35256312165264,25.826975842190187,-0.16852778847388014,6301.978853646423,2019
+2001,57,"(55,60]",HS,9630.882938026012,144.63106471626506,66.58931092652693,184.93501837162862,2019
+2001,57,"(55,60]",HS,4453.006885998469,144.63106471626506,30.788730586574246,182.1910018669292,2019
+2001,57,"(55,60]",HS,6045.0405508798785,144.63106471626506,41.79628050681189,187.5846359142148,2019
+2001,57,"(55,60]",HS,4744.293802601377,144.63106471626506,32.80273025652309,183.42498355210063,2019
+2001,57,"(55,60]",HS,6867.005355776588,144.63106471626506,47.479463483506606,184.4947035631073,2019
+2001,82,"(80,85]",NoHS,0.4017750573833206,11.363869370563684,0.03535548009941541,8200.59047120997,2019
+2001,82,"(80,85]",NoHS,0.28459066564651875,11.363869370563684,0.025043465070419244,8200.888665446937,2019
+2001,82,"(80,85]",NoHS,0.3515531752104055,11.363869370563684,0.03093604508698848,8232.757315303685,2019
+2001,82,"(80,85]",NoHS,0.03348125478194339,11.536049209511617,0.0029023155305490265,8260.251221641187,2019
+2001,82,"(80,85]",NoHS,0.2678500382555471,11.536049209511617,0.023218524244392212,8251.346348069459,2019
+2001,34,"(30,35]",HS,-33.81606732976282,48.21035490542169,-0.7014274712580449,5886.150831354704,2019
+2001,34,"(30,35]",HS,-35.49013006885999,46.488556515942335,-0.7634164777021921,5976.2626685702535,2019
+2001,34,"(30,35]",HS,-33.81606732976282,46.488556515942335,-0.7274062664898244,6038.487056957043,2019
+2001,34,"(30,35]",HS,-37.33159908186688,46.488556515942335,-0.8030277100357964,5900.57466188182,2019
+2001,34,"(30,35]",HS,-35.6575363427697,46.488556515942335,-0.7670174988234287,5953.916027564437,2019
+2001,59,"(55,60]",HS,266.92930374904364,67.15013718969449,3.9751118154083116,517.3304623670867,2019
+2001,59,"(55,60]",HS,266.7618974751339,67.15013718969449,3.972618800785916,556.8286224022262,2019
+2001,59,"(55,60]",HS,266.92930374904364,67.15013718969449,3.9751118154083116,546.2338825660626,2019
+2001,59,"(55,60]",HS,266.7618974751339,67.15013718969449,3.972618800785916,540.5291555979459,2019
+2001,59,"(55,60]",HS,266.92930374904364,67.15013718969449,3.9751118154083116,528.6915745577573,2019
+2001,51,"(50,55]",HS,170.92180566182097,18.939782284272805,9.024486295375782,5159.075247906576,2019
+2001,51,"(50,55]",HS,601.3233358837031,18.939782284272805,31.749221129275032,4447.387338468869,2019
+2001,51,"(50,55]",HS,228.67697016067328,18.939782284272805,12.07389645395036,5163.237984409311,2019
+2001,51,"(50,55]",HS,296.8113236419281,20.661580673752148,14.365373507893725,5133.116236187705,2019
+2001,51,"(50,55]",HS,80.52241775057384,24.105177452710844,3.340461521535838,5245.154008888978,2019
+2001,25,"(20,25]",College,166.5190206579954,80.92452430552926,2.0577077478924126,5189.895952440313,2019
+2001,25,"(20,25]",College,157.86411629686305,75.75912913709122,2.0837636083592956,5134.111672612564,2019
+2001,25,"(20,25]",College,152.84192807957155,82.64632269500859,1.849349409575151,5149.172905102377,2019
+2001,25,"(20,25]",College,144.4716143840857,79.20272591604991,1.8240737640421223,5190.642175265151,2019
+2001,25,"(20,25]",College,144.4716143840857,84.36812108448795,1.7123957784885229,5134.323961544471,2019
+2001,37,"(35,40]",HS,48.715225707727626,53.37575007385973,0.9126846112760381,6250.466158385736,2019
+2001,37,"(35,40]",HS,48.5478194338179,53.37575007385973,0.9095482380414124,6416.227104893651,2019
+2001,37,"(35,40]",HS,48.5478194338179,53.37575007385973,0.9095482380414124,6480.352179170274,2019
+2001,37,"(35,40]",HS,47.04116296863045,53.37575007385973,0.8813208789297824,6326.132955180933,2019
+2001,37,"(35,40]",HS,47.04116296863045,53.37575007385973,0.8813208789297824,6430.003788382213,2019
+2001,39,"(35,40]",HS,61.94032134659526,84.36812108448795,0.7341673673705138,5413.865648127081,2019
+2001,39,"(35,40]",HS,46.87375669472074,86.08991947396729,0.5444743935309974,5403.96967766938,2019
+2001,39,"(35,40]",HS,50.22188217291507,86.08991947396729,0.5833654216403543,5435.4139686387925,2019
+2001,39,"(35,40]",HS,65.28844682478959,86.08991947396729,0.7583750481324605,5406.89462782134,2019
+2001,39,"(35,40]",HS,41.851568477429225,86.08991947396729,0.48613785136696186,5478.675128057963,2019
+2001,55,"(50,55]",NoHS,1482.7173680183628,206.6158067375215,7.176204915928636,2024.7545019335835,2019
+2001,55,"(50,55]",NoHS,1504.6475899005356,206.6158067375215,7.282345013477089,2012.3232807734396,2019
+2001,55,"(50,55]",NoHS,1453.2538638102524,206.6158067375215,7.03360447952766,2113.8969313923944,2019
+2001,55,"(50,55]",NoHS,1465.6419280795717,206.6158067375215,7.093561481196253,2068.271159021934,2019
+2001,55,"(50,55]",NoHS,1466.9811782708491,206.6158067375215,7.100043319214477,2065.4544710706405,2019
+2001,58,"(55,60]",NoHS,98.43488905891354,36.157766179066265,2.7223719676549862,7228.343826416754,2019
+2001,58,"(55,60]",NoHS,202.7289977046672,36.157766179066265,5.606789885765627,7509.440201143984,2019
+2001,58,"(55,60]",NoHS,96.8612700841622,36.157766179066265,2.6788510552468963,7808.614696382256,2019
+2001,58,"(55,60]",NoHS,117.68661055853099,36.157766179066265,3.2548086620092778,7417.247562400604,2019
+2001,58,"(55,60]",NoHS,124.04804896710023,36.157766179066265,3.4307442653611306,7453.794213167223,2019
+2001,40,"(35,40]",College,79547.35990818669,1945.6321801116608,40.88509674198615,2.1257090517232013,2019
+2001,40,"(35,40]",College,269191.8832440704,1945.6321801116608,138.35702657252583,2.168847389551151,2019
+2001,40,"(35,40]",College,123869.67758224944,1945.6321801116608,63.665516457041996,1.9139833519487623,2019
+2001,40,"(35,40]",College,78230.79326702372,1945.6321801116608,40.208418665512625,2.4909727322479034,2019
+2001,40,"(35,40]",College,224583.0497322112,1945.6321801116608,115.42934580744972,1.9791266809042838,2019
+2001,72,"(70,75]",HS,1877.628768171385,117.08229048459552,16.036829826270132,1829.2084804051806,2019
+2001,72,"(70,75]",HS,4267.520734506504,204.89400834804215,20.827943037053096,3092.1984589872027,2019
+2001,72,"(70,75]",HS,3033.0836113236423,118.80408887407486,25.53012813000508,1889.4923795086029,2019
+2001,72,"(70,75]",HS,2158.0175363427697,161.84904861105852,13.333520059970997,1832.0525459357546,2019
+2001,72,"(70,75]",HS,974.4719204284621,259.9915568113812,3.748090639479583,960.0710670272654,2019
+2001,56,"(55,60]",College,19639.76924254017,2582.6975842190186,7.604362726222565,209.41371697501842,2019
+2001,56,"(55,60]",College,19631.398928844683,2582.6975842190186,7.601121807213452,196.4381247756557,2019
+2001,56,"(55,60]",College,19632.21921958684,2582.6975842190186,7.601439417276345,209.75370225208076,2019
+2001,56,"(55,60]",College,19631.38218821729,2582.6975842190186,7.601115325375432,206.44987499851882,2019
+2001,56,"(55,60]",College,19631.398928844683,2582.6975842190186,7.601121807213452,199.0858788589583,2019
+2001,41,"(40,45]",HS,1045.8372149961745,146.35286310574438,7.145997644340756,6595.061001145788,2019
+2001,41,"(40,45]",HS,1039.8105891354246,146.35286310574438,7.104818908695554,6005.03059916003,2019
+2001,41,"(40,45]",HS,1043.6609334353482,146.35286310574438,7.131127545357767,5539.873355176067,2019
+2001,41,"(40,45]",HS,1050.373925019128,146.35286310574438,7.17699608145145,6238.2615104440465,2019
+2001,41,"(40,45]",HS,1071.8019280795716,146.35286310574438,7.323409363745499,6046.652898262486,2019
+2001,54,"(50,55]",HS,-0.31807192042846216,1.239694840425129,-0.2565727548881188,4603.785627499502,2019
+2001,54,"(50,55]",HS,-0.31807192042846216,1.239694840425129,-0.2565727548881188,4588.382547790634,2019
+2001,54,"(50,55]",HS,-0.31807192042846216,1.239694840425129,-0.2565727548881188,4589.757626718254,2019
+2001,54,"(50,55]",HS,-0.31807192042846216,1.239694840425129,-0.2565727548881188,4572.065410575858,2019
+2001,54,"(50,55]",HS,-0.31807192042846216,1.239694840425129,-0.2565727548881188,4615.000576381625,2019
+2001,47,"(45,50]",HS,79.51798010711553,103.30790336876075,0.7697182646643563,4681.332674142651,2019
+2001,47,"(45,50]",HS,79.51798010711553,103.30790336876075,0.7697182646643563,4771.802457023456,2019
+2001,47,"(45,50]",HS,79.51798010711553,103.30790336876075,0.7697182646643563,4778.637235239243,2019
+2001,47,"(45,50]",HS,79.51798010711553,103.30790336876075,0.7697182646643563,4713.7696181987285,2019
+2001,47,"(45,50]",HS,79.51798010711553,103.30790336876075,0.7697182646643563,4731.01255779997,2019
+2001,46,"(45,50]",HS,21.344299923488908,60.2629436317771,0.3541861488530723,8878.571986121311,2019
+2001,46,"(45,50]",HS,19.502830910482018,60.2629436317771,0.3236289124814346,9288.261326698377,2019
+2001,46,"(45,50]",HS,19.70371843917368,60.2629436317771,0.3269624291765224,9338.760106640435,2019
+2001,46,"(45,50]",HS,25.362050497322112,60.2629436317771,0.42085648275482707,9104.4657719801,2019
+2001,46,"(45,50]",HS,28.040550879877582,60.2629436317771,0.46530337202266353,9138.887916685871,2019
+2001,41,"(40,45]",HS,595.464116296863,89.53351625292598,6.650739758893398,7344.4097161717145,2019
+2001,41,"(40,45]",HS,595.464116296863,89.53351625292598,6.650739758893398,6678.68960318386,2019
+2001,41,"(40,45]",HS,595.2967100229533,89.53351625292598,6.648869997926602,6239.627352753966,2019
+2001,41,"(40,45]",HS,595.2967100229533,89.53351625292598,6.648869997926602,6983.715451294936,2019
+2001,41,"(40,45]",HS,595.2967100229533,89.53351625292598,6.648869997926602,6714.878957002444,2019
+2001,37,"(35,40]",College,7513.695791889824,2823.7493587461267,2.660893314988214,838.2426195454639,2019
+2001,37,"(35,40]",College,7571.618362662586,3185.32702053679,2.3770301491325747,830.5169778583602,2019
+2001,37,"(35,40]",College,10034.66687069625,2255.555890217943,4.448866425440981,850.3077674520167,2019
+2001,37,"(35,40]",College,9312.643611323641,3374.7248433795176,2.7595267891523187,836.9052989994561,2019
+2001,37,"(35,40]",College,8283.764651874522,1997.2861317960408,4.1475102239985135,839.9155336431419,2019
+2001,73,"(70,75]",HS,646.1882172915073,84.36812108448795,7.659151454189685,5602.620256358584,2019
+2001,73,"(70,75]",HS,646.1882172915073,70.59373396865318,9.15362003061694,5147.6963586334105,2019
+2001,73,"(70,75]",HS,646.1882172915073,79.20272591604991,8.158661331636837,4704.768729689224,2019
+2001,73,"(70,75]",HS,646.1882172915073,79.20272591604991,8.158661331636837,5276.953267554594,2019
+2001,73,"(70,75]",HS,646.1882172915073,77.48092752657055,8.339964916784325,5111.37853757086,2019
+2001,25,"(20,25]",HS,-17.661361897475135,22.383379063231494,-0.7890391279879152,6857.899695585392,2019
+2001,25,"(20,25]",HS,-17.661361897475135,22.383379063231494,-0.7890391279879152,6825.0501192165175,2019
+2001,25,"(20,25]",HS,-17.661361897475135,22.383379063231494,-0.7890391279879152,6716.927857597084,2019
+2001,25,"(20,25]",HS,-21.009487375669472,22.383379063231494,-0.9386200053315957,6834.16745851397,2019
+2001,25,"(20,25]",HS,-19.335424636572306,22.383379063231494,-0.8638295666597555,6808.475350221865,2019
+2001,36,"(35,40]",HS,665.2390512624331,120.5258872635542,5.519470267891524,383.87870550397076,2019
+2001,36,"(35,40]",HS,665.4064575363428,120.5258872635542,5.520859233181144,380.0995672904181,2019
+2001,36,"(35,40]",HS,665.0716449885233,120.5258872635542,5.518081302601903,366.39752365860045,2019
+2001,36,"(35,40]",HS,665.0549043611325,120.5258872635542,5.517942406072942,379.83279118179513,2019
+2001,36,"(35,40]",HS,665.3897169089518,120.5258872635542,5.5207203366521815,401.00316033870854,2019
+2001,36,"(35,40]",HS,4.017750573833205,17.21798389479346,0.23334616865614166,6933.364427463454,2019
+2001,36,"(35,40]",HS,4.185156847742923,17.21798389479346,0.24306892568348093,6954.611257798652,2019
+2001,36,"(35,40]",HS,4.185156847742923,17.21798389479346,0.24306892568348093,6888.18817089857,2019
+2001,36,"(35,40]",HS,4.185156847742923,17.21798389479346,0.24306892568348093,6937.023027727126,2019
+2001,36,"(35,40]",HS,4.185156847742923,17.21798389479346,0.24306892568348093,7012.709213545556,2019
+2001,19,"(15,20]",HS,0.6696250956388676,6.887193557917383,0.09722757027339238,7208.215758045566,2019
+2001,19,"(15,20]",HS,0.6696250956388676,6.887193557917383,0.09722757027339238,7207.327519009555,2019
+2001,19,"(15,20]",HS,0.6696250956388676,6.887193557917383,0.09722757027339238,7224.317858655444,2019
+2001,19,"(15,20]",HS,0.6696250956388676,6.887193557917383,0.09722757027339238,7194.094275172456,2019
+2001,19,"(15,20]",HS,0.6696250956388676,6.887193557917383,0.09722757027339238,7195.152293573524,2019
+2001,95,"(90,95]",College,3553.532976281561,404.6226215276463,8.78233886890766,172.02463374934786,2019
+2001,95,"(90,95]",College,1237.4671767406276,330.58529078003437,3.7432614555256074,284.82948840140335,2019
+2001,95,"(90,95]",HS,1210.0125478194338,232.44278257971166,5.205636132859853,285.92505565030217,2019
+2001,95,"(90,95]",College,3175.194797245601,142.9092663267857,22.218256932234137,99.73381861510892,2019
+2001,95,"(90,95]",HS,1587.848508033665,397.73542796972885,3.9922229612256572,51.56680668548283,2019
+2001,19,"(15,20]",HS,0,9.469891142136403,0,7621.977701882226,2019
+2001,19,"(15,20]",HS,0,9.469891142136403,0,7571.845358325349,2019
+2001,19,"(15,20]",HS,0,9.469891142136403,0,7443.42063713135,2019
+2001,19,"(15,20]",HS,0,9.469891142136403,0,7503.190684173671,2019
+2001,19,"(15,20]",HS,0,9.469891142136403,0,7534.636260937792,2019
+2001,65,"(60,65]",College,3808.6601377199695,273.76594392721603,13.912103467232388,1868.844944523591,2019
+2001,65,"(60,65]",College,3808.49273144606,273.76594392721603,13.911491973079727,1868.2927902803408,2019
+2001,65,"(60,65]",College,3808.49273144606,273.76594392721603,13.911491973079727,1880.36694392992,2019
+2001,65,"(60,65]",College,3791.7521040550882,272.04414553773665,13.93800295374897,1863.8276863356161,2019
+2001,65,"(60,65]",College,3808.49273144606,272.04414553773665,13.999539390630865,1856.330699140442,2019
+2001,25,"(20,25]",HS,2.845906656465188,44.76675812646299,0.06357187287106425,4335.240122378847,2019
+2001,25,"(20,25]",HS,2.845906656465188,44.76675812646299,0.06357187287106425,4357.466663789941,2019
+2001,25,"(20,25]",HS,2.845906656465188,44.76675812646299,0.06357187287106425,4369.974005955458,2019
+2001,25,"(20,25]",HS,2.845906656465188,44.76675812646299,0.06357187287106425,4364.023255711944,2019
+2001,25,"(20,25]",HS,2.845906656465188,44.76675812646299,0.06357187287106425,4336.528121960289,2019
+2001,46,"(45,50]",HS,70.81285386381025,125.69128243199225,0.5633871537759585,727.8484103552864,2019
+2001,46,"(45,50]",HS,70.81285386381025,125.69128243199225,0.5633871537759585,738.0682387396083,2019
+2001,46,"(45,50]",HS,69.13879112471308,125.69128243199225,0.550068308533028,745.4696728332949,2019
+2001,46,"(45,50]",HS,70.81285386381025,123.96948404251289,0.5712119753561802,732.4413818139747,2019
+2001,46,"(45,50]",HS,69.13879112471308,123.96948404251289,0.5577081461515424,730.5785410043555,2019
+2001,43,"(40,45]",College,1424.4599846977812,180.7888308953313,7.87913709958377,6076.449361291849,2019
+2001,43,"(40,45]",College,1427.8081101759756,180.7888308953313,7.897656636778701,5525.661113945433,2019
+2001,43,"(40,45]",College,1427.8081101759756,180.7888308953313,7.897656636778701,5162.3998534363,2019
+2001,43,"(40,45]",College,1427.8081101759756,180.7888308953313,7.897656636778701,5778.026408306789,2019
+2001,43,"(40,45]",College,1426.1340474368783,180.7888308953313,7.888396868181235,5555.602631969993,2019
+2001,79,"(75,80]",College,28525.192042846214,542.3664926859939,52.59394233884031,1449.8473079898063,2019
+2001,79,"(75,80]",College,28546.11782708493,542.3664926859939,52.63252470799642,1499.9110352301152,2019
+2001,79,"(75,80]",College,28536.79329762816,542.3664926859939,52.61533240430045,1486.94076987342,2019
+2001,79,"(75,80]",College,28569.55470543229,542.3664926859939,52.67573696145126,1444.8433514020944,2019
+2001,79,"(75,80]",College,28535.236419280798,542.3664926859939,52.61246187603524,1435.8447710207934,2019
+2001,52,"(50,55]",College,2683.6899770466716,172.17983894793457,15.586551790527531,3281.9805447934805,2019
+2001,52,"(50,55]",College,2399.099311400153,172.17983894793457,13.933683095879863,3336.395456189778,2019
+2001,52,"(50,55]",College,2504.565263963275,172.17983894793457,14.546216788602235,4183.710362292684,2019
+2001,52,"(50,55]",College,2382.358684009181,172.17983894793457,13.83645552560647,3449.887322736403,2019
+2001,52,"(50,55]",College,2549.7649579188983,172.17983894793457,14.808731228340394,3529.8025244198334,2019
+2001,49,"(45,50]",College,389.2195868400918,187.6760244532487,2.073890833813186,7181.719100510256,2019
+2001,49,"(45,50]",HS,384.69961744452945,204.89400834804215,1.8775542562038292,6520.855148325374,2019
+2001,49,"(45,50]",HS,389.0521805661821,253.10436325346384,1.537121587179346,6088.175323345743,2019
+2001,49,"(45,50]",College,384.0299923488906,151.51825827418244,2.534545979626842,6827.612756924677,2019
+2001,49,"(45,50]",HS,383.49429227237954,113.63869370563681,3.3746805754892018,6147.8569984805345,2019
+2001,29,"(25,30]",HS,46.95745983167559,68.87193557917384,0.681808336542164,5203.932763909252,2019
+2001,29,"(25,30]",HS,45.283397092578426,68.87193557917384,0.6575014439738159,5218.594273955462,2019
+2001,29,"(25,30]",HS,45.450803366488145,68.87193557917384,0.6599321332306508,5220.991671277321,2019
+2001,29,"(25,30]",HS,45.450803366488145,68.87193557917384,0.6599321332306508,5223.258127854866,2019
+2001,29,"(25,30]",HS,45.283397092578426,68.87193557917384,0.6575014439738159,5207.633363063775,2019
+2001,54,"(50,55]",College,330.96220351951035,123.96948404251289,2.6697070337568993,5790.641619920419,2019
+2001,54,"(50,55]",College,168.57811782708492,123.96948404251289,1.3598356009070296,6035.815486395549,2019
+2001,54,"(50,55]",College,166.73664881407805,125.69128243199225,1.3265569861958741,6063.21442714609,2019
+2001,54,"(50,55]",College,369.46564651874525,123.96948404251289,2.9802951054635693,5898.254174755382,2019
+2001,54,"(50,55]",College,367.7915837796481,125.69128243199225,2.9261502998718227,5976.788592876782,2019
+2001,78,"(75,80]",NoHS,7.114766641162969,13.774387115834767,0.516521467077397,7039.4243533495,2019
+2001,78,"(75,80]",NoHS,7.298913542463657,13.774387115834767,0.5298902579899885,7061.121553310224,2019
+2001,78,"(75,80]",NoHS,7.298913542463657,13.774387115834767,0.5298902579899885,7029.370198435623,2019
+2001,78,"(75,80]",NoHS,7.282172915072685,13.774387115834767,0.528674913361571,7141.077645664365,2019
+2001,78,"(75,80]",NoHS,7.298913542463657,13.774387115834767,0.5298902579899885,7091.039253446604,2019
+2001,47,"(45,50]",College,365.9501147666412,72.31553235813253,5.060463538515137,4889.745467540382,2019
+2001,47,"(45,50]",College,421.19418515684777,25.826975842190187,16.308304453857016,4980.745667686917,2019
+2001,47,"(45,50]",College,391.0610558530987,30.992371010628222,12.617978008813589,4912.436105861094,2019
+2001,47,"(45,50]",College,285.5951032899771,79.20272591604991,3.6058746714436394,4905.396315143851,2019
+2001,47,"(45,50]",College,317.40229533282326,55.097548463339066,5.760733538698498,4943.57649344605,2019
+2001,47,"(45,50]",HS,1052.9185003825555,122.24768565303354,8.612993323824348,6865.417365236523,2019
+2001,47,"(45,50]",HS,836.1106350420812,359.8558634011833,2.3234598073227666,6256.408837589797,2019
+2001,47,"(45,50]",HS,852.9684468247897,94.69891142136402,9.007162110127071,5846.494418078406,2019
+2001,47,"(45,50]",HS,1069.9269778117825,261.7133552008606,4.088163467969113,6570.856183207865,2019
+2001,47,"(45,50]",HS,903.1568477429228,92.97711303188467,9.713754474536147,6247.068126802778,2019
+2001,57,"(55,60]",HS,91.58797245600611,44.76675812646299,2.045892449868191,4662.398275163703,2019
+2001,57,"(55,60]",HS,85.52786534047436,44.76675812646299,1.91052175587216,4774.035939161796,2019
+2001,57,"(55,60]",HS,90.93508798775822,44.76675812646299,2.031308314327182,4690.766125129508,2019
+2001,57,"(55,60]",HS,88.59140015302219,44.76675812646299,1.9789550072568942,4743.863044536621,2019
+2001,57,"(55,60]",HS,85.87941851568476,44.76675812646299,1.9183747519327032,4695.214769200962,2019
+2001,72,"(70,75]",College,1846.4912012241778,122.24768565303354,15.104508452331242,1584.4779976390303,2019
+2001,72,"(70,75]",College,1650.625860749809,173.90163733741394,9.491721216788601,1562.6209737129482,2019
+2001,72,"(70,75]",College,2390.5615914307577,94.69891142136402,25.243812790982606,1674.9220199103431,2019
+2001,72,"(70,75]",College,2018.9196633511858,75.75912913709122,26.64919312493436,1598.9070289026806,2019
+2001,72,"(70,75]",College,2708.6335118592197,213.5030002954389,12.686629734060391,1604.0682644355156,2019
+2001,25,"(20,25]",HS,4.151675592960979,29.27057262114888,0.14183786722236064,5831.205194275129,2019
+2001,25,"(20,25]",HS,3.8168630451415457,29.27057262114888,0.13039932954313802,5840.976498283121,2019
+2001,25,"(20,25]",HS,4.001009946442235,29.27057262114888,0.13669052526671047,5861.409437482035,2019
+2001,25,"(20,25]",HS,5.825738332058148,29.27057262114888,0.1990305556184738,5891.4588538375265,2019
+2001,25,"(20,25]",HS,5.490925784238715,29.27057262114888,0.18759201793925118,5845.674920462143,2019
+2001,61,"(60,65]",HS,3232.1129303749044,149.7964598847031,21.576697692740073,1897.4728609086774,2019
+2001,61,"(60,65]",HS,3359.8439173680185,170.45804055845522,19.710680155424093,3259.8372077980703,2019
+2001,61,"(60,65]",HS,3460.2876817138485,172.17983894793457,20.096938775510207,3275.3970364209385,2019
+2001,61,"(60,65]",HS,3482.050497322112,163.57084700053784,21.28772064933223,3252.228847173108,2019
+2001,61,"(60,65]",HS,3245.672838561591,168.7362421689759,19.23518502510746,1920.4594009891116,2019
+2001,32,"(30,35]",NoHS,760.1918898240245,12.052588726355422,63.07291380163925,7254.863611777246,2019
+2001,32,"(30,35]",NoHS,758.5178270849274,12.052588726355422,62.93401727267726,6584.624073625931,2019
+2001,32,"(30,35]",NoHS,766.7207345065035,12.052588726355422,63.61461026459101,6157.741053867597,2019
+2001,32,"(30,35]",NoHS,761.8659525631217,12.052588726355422,63.21181033060124,6860.440801863794,2019
+2001,32,"(30,35]",NoHS,761.8659525631217,12.052588726355422,63.21181033060124,6628.741929212418,2019
+2001,68,"(65,70]",HS,696.0752869166029,172.17983894793457,4.042722371967655,9383.224860399336,2019
+2001,68,"(65,70]",HS,720.6840091813312,172.17983894793457,4.185646900269542,8443.76495744029,2019
+2001,68,"(65,70]",HS,676.4887528691661,172.17983894793457,3.9289661147477863,7966.862967758869,2019
+2001,68,"(65,70]",HS,744.2882938026014,172.17983894793457,4.3227377743550255,8907.99551559236,2019
+2001,68,"(65,70]",HS,646.1882172915073,172.17983894793457,3.752984212552946,8502.305054876697,2019
+2001,63,"(60,65]",HS,88.39051262433053,25.826975842190187,3.4224104736234113,7299.19655144756,2019
+2001,63,"(60,65]",HS,91.73863810252487,25.826975842190187,3.552047233987935,7289.511307255896,2019
+2001,63,"(60,65]",HS,96.09120122417751,25.826975842190187,3.7205750224618153,7403.56097537065,2019
+2001,63,"(60,65]",HS,91.73863810252487,25.826975842190187,3.552047233987935,7330.724368914627,2019
+2001,63,"(60,65]",HS,100.9459831675593,25.826975842190187,3.908548324990374,7296.077553958162,2019
+2001,67,"(65,70]",College,6401.281101759755,394.2918311907702,16.23488136294313,154.22308491104334,2019
+2001,67,"(65,70]",College,14266.027850038256,1232.8076468672116,11.571981960276469,144.64233727491833,2019
+2001,67,"(65,70]",College,5627.864116296863,769.6438800972677,7.312296325393523,154.5729760293955,2019
+2001,67,"(65,70]",College,21566.61545524101,1508.2953891839068,14.29866829130205,152.02422930013876,2019
+2001,67,"(65,70]",College,14279.420351951034,1465.2504294469234,9.745378718190157,146.72053401841268,2019
+2001,58,"(55,60]",College,8406.975669472075,1126.0561467194923,7.465858335717877,284.6504344729279,2019
+2001,58,"(55,60]",College,4840.552410099464,1062.3496063087564,4.556458986150957,284.80317035657504,2019
+2001,58,"(55,60]",College,7938.070696250957,879.8389770239457,9.022185767561096,290.8654916977788,2019
+2001,58,"(55,60]",College,5546.83947972456,883.2825738029044,6.279801780582033,285.7479542794914,2019
+2001,58,"(55,60]",College,6646.6986993114,960.7635013294748,6.91814238375407,289.0545028140398,2019
+2001,44,"(40,45]",College,6927.020504973222,773.0874768762262,8.960202709482333,1549.9076373719931,2019
+2001,44,"(40,45]",College,6312.63947972456,860.899194739673,7.332611667308432,1559.2708429249667,2019
+2001,44,"(40,45]",College,6543.6601377199695,583.6896540334982,11.210855105107663,1605.837381903217,2019
+2001,44,"(40,45]",College,9567.017444529458,611.2384282651677,15.651858590898494,1537.6054872467864,2019
+2001,44,"(40,45]",College,7141.300535577659,595.7422427598538,11.987232099732681,1525.6513879385514,2019
+2001,67,"(65,70]",NoHS,0,14.290926632678572,0,4752.4068064448065,2019
+2001,67,"(65,70]",NoHS,0,14.290926632678572,0,4724.6494296091605,2019
+2001,67,"(65,70]",NoHS,0,14.290926632678572,0,4724.578505284494,2019
+2001,67,"(65,70]",NoHS,0,14.290926632678572,0,4733.5511252618535,2019
+2001,67,"(65,70]",NoHS,0,14.290926632678572,0,4736.484405673766,2019
+2001,45,"(40,45]",College,2434.9242540168325,380.51744407493544,6.398981944011276,990.2434767857225,2019
+2001,45,"(40,45]",College,2481.798010711553,378.79564568545607,6.551812405922918,992.3107937699381,2019
+2001,45,"(40,45]",College,2505.2348890589137,378.79564568545607,6.613684496096895,1041.2699515629718,2019
+2001,45,"(40,45]",College,2471.7536342769704,378.79564568545607,6.525295795848357,1015.4302084651711,2019
+2001,45,"(40,45]",College,2505.2348890589137,378.79564568545607,6.613684496096895,1022.1028658539129,2019
+2001,74,"(70,75]",HS,45.199693955623566,17.21798389479346,2.625144397381594,6425.252487178213,2019
+2001,74,"(70,75]",HS,41.851568477429225,17.21798389479346,2.430689256834809,6942.545918991467,2019
+2001,74,"(70,75]",HS,46.87375669472074,17.21798389479346,2.7223719676549867,6705.25546947484,2019
+2001,74,"(70,75]",HS,45.199693955623566,17.21798389479346,2.625144397381594,6693.918330355166,2019
+2001,74,"(70,75]",HS,43.5256312165264,17.21798389479346,2.5279168271082018,6741.913556337943,2019
+2001,47,"(45,50]",HS,436.6792654934966,228.99918580075305,1.9069031357755184,7233.391760908588,2019
+2001,47,"(45,50]",HS,438.20266258607495,228.99918580075305,1.9135555484784346,6567.772874968592,2019
+2001,47,"(45,50]",HS,438.185921958684,228.99918580075305,1.9134824450421388,6131.979907112658,2019
+2001,47,"(45,50]",HS,436.5118592195868,228.99918580075305,1.9061721014125605,6876.7376127401585,2019
+2001,47,"(45,50]",HS,436.6792654934966,228.99918580075305,1.9069031357755184,6599.974557779208,2019
+2001,44,"(40,45]",NoHS,7.198469778117827,48.21035490542169,0.14931376863413828,4514.953473650464,2019
+2001,44,"(40,45]",NoHS,7.198469778117827,48.21035490542169,0.14931376863413828,4465.75282017397,2019
+2001,44,"(40,45]",NoHS,6.863657230298394,48.21035490542169,0.14236894218603882,4481.0091823988805,2019
+2001,44,"(40,45]",NoHS,7.198469778117827,48.21035490542169,0.14931376863413828,4463.886568225543,2019
+2001,44,"(40,45]",NoHS,7.198469778117827,48.21035490542169,0.14931376863413828,4515.97460798576,2019
+2001,48,"(45,50]",HS,71.41551644988525,43.04495973698364,1.6590912591451679,7656.497938313854,2019
+2001,48,"(45,50]",HS,71.41551644988525,56.819346852818406,1.2568873175342181,7990.152614722062,2019
+2001,48,"(45,50]",HS,71.46573833205814,46.488556515942335,1.5372759166559704,8144.96522931864,2019
+2001,48,"(45,50]",HS,71.46573833205814,60.2629436317771,1.1858985642774629,7825.637134527375,2019
+2001,48,"(45,50]",HS,71.48247895944911,46.488556515942335,1.5376360187680942,7902.061958805844,2019
+2001,28,"(25,30]",HS,-4.687375669472074,51.653951684380374,-0.09074573225516622,3953.0915322292158,2019
+2001,28,"(25,30]",HS,-4.687375669472074,51.653951684380374,-0.09074573225516622,3964.4778290700283,2019
+2001,28,"(25,30]",HS,-4.519969395562356,51.653951684380374,-0.08750481324605312,3969.2199135073506,2019
+2001,28,"(25,30]",HS,-3.682938026013772,51.653951684380374,-0.07130021820048775,3957.606553113446,2019
+2001,28,"(25,30]",HS,-3.850344299923489,51.653951684380374,-0.07454113720960082,3964.0983280104665,2019
+2001,33,"(30,35]",HS,22.599846977811783,86.08991947396729,0.2625144397381594,5854.435957060013,2019
+2001,33,"(30,35]",HS,22.599846977811783,86.08991947396729,0.2625144397381594,5869.830242541054,2019
+2001,33,"(30,35]",HS,22.599846977811783,86.08991947396729,0.2625144397381594,5920.484575658658,2019
+2001,33,"(30,35]",HS,22.767253251721502,86.08991947396729,0.2644589911436273,5831.201485826106,2019
+2001,33,"(30,35]",HS,22.767253251721502,86.08991947396729,0.2644589911436273,5865.889022260939,2019
+2001,55,"(50,55]",College,25702.688783473604,1124.334348330013,22.860360729573113,17.883582236061272,2019
+2001,55,"(50,55]",College,25693.01270084162,1282.739800162113,20.029793023958977,18.357655025412832,2019
+2001,55,"(50,55]",College,26733.626840091812,1148.4395257827236,23.278219044116756,18.317221571510483,2019
+2001,55,"(50,55]",College,26972.18078041316,1153.6049209511616,23.380778194127554,18.84832716151186,2019
+2001,55,"(50,55]",College,27192.621361897476,1101.9509692667814,24.676797897814787,18.868461988459437,2019
+2001,37,"(35,40]",HS,33.86628921193573,86.08991947396729,0.3933827493261456,7314.514847562661,2019
+2001,37,"(35,40]",HS,35.372945677123184,86.08991947396729,0.4108837119753562,7508.494124252533,2019
+2001,37,"(35,40]",HS,32.527039020657995,86.08991947396729,0.3778263380824028,7583.535536526744,2019
+2001,37,"(35,40]",HS,33.86628921193573,86.08991947396729,0.3933827493261456,7403.06278856438,2019
+2001,37,"(35,40]",HS,32.527039020657995,86.08991947396729,0.3778263380824028,7524.6160827391095,2019
+2001,41,"(40,45]",HS,87.41955623565417,92.97711303188467,0.9402266147549166,5498.178677796617,2019
+2001,41,"(40,45]",HS,89.09361897475134,91.25531464240532,0.9763115641414986,5488.25581259914,2019
+2001,41,"(40,45]",HS,88.92621270084163,92.97711303188467,0.9564312098004821,5522.766496995182,2019
+2001,41,"(40,45]",HS,88.92621270084163,92.97711303188467,0.9564312098004821,5484.8050694991625,2019
+2001,41,"(40,45]",HS,88.92621270084163,91.25531464240532,0.9744770816835101,5531.703782778511,2019
+2001,79,"(75,80]",College,284.7580719204285,39.60136295802496,7.190612914566976,8714.157830702698,2019
+2001,79,"(75,80]",College,288.10619739862284,39.60136295802496,7.275158627848186,8922.303168448107,2019
+2001,79,"(75,80]",College,288.10619739862284,39.60136295802496,7.275158627848186,9091.175666165076,2019
+2001,79,"(75,80]",College,284.42325937260904,39.60136295802496,7.182158343238854,8911.016263450732,2019
+2001,79,"(75,80]",College,287.7713848508034,39.60136295802496,7.266704056520064,9015.283584039853,2019
+2001,45,"(40,45]",HS,1.506656465187452,41.323161347504296,0.036460338852522145,7335.88108628959,2019
+2001,45,"(40,45]",HS,1.506656465187452,39.60136295802496,0.03804557097654484,7471.762559282021,2019
+2001,45,"(40,45]",HS,1.506656465187452,39.60136295802496,0.03804557097654484,7360.43186984066,2019
+2001,45,"(40,45]",HS,1.506656465187452,39.60136295802496,0.03804557097654484,7386.730941927094,2019
+2001,45,"(40,45]",HS,1.506656465187452,39.60136295802496,0.03804557097654484,7444.516079263262,2019
+2001,79,"(75,80]",NoHS,68.97138485080337,20.661580673752148,3.338146579386472,8483.418693126576,2019
+2001,79,"(75,80]",NoHS,68.97138485080337,20.661580673752148,3.338146579386472,8427.443910508428,2019
+2001,79,"(75,80]",NoHS,68.97138485080337,20.661580673752148,3.338146579386472,8500.521329945928,2019
+2001,79,"(75,80]",NoHS,68.97138485080337,22.383379063231494,3.0813660732798205,8525.523764741645,2019
+2001,79,"(75,80]",NoHS,68.97138485080337,20.661580673752148,3.338146579386472,8483.62586861517,2019
+2001,75,"(70,75]",HS,7005.952563121652,965.9288964979131,7.253072755688895,154.22308491104334,2019
+2001,75,"(70,75]",HS,7004.278500382556,965.9288964979131,7.251339643919317,144.64233727491833,2019
+2001,75,"(70,75]",HS,7005.952563121652,965.9288964979131,7.253072755688895,154.5729760293955,2019
+2001,75,"(70,75]",HS,7004.278500382556,965.9288964979131,7.251339643919317,152.02422930013876,2019
+2001,75,"(70,75]",HS,7005.952563121652,965.9288964979131,7.253072755688895,146.72053401841268,2019
+2001,83,"(80,85]",HS,1197.9592960979344,98.14250820032271,12.206324436428,7087.103778965417,2019
+2001,83,"(80,85]",HS,577.5516449885233,96.42070981084338,5.989912811485779,8037.976048823398,2019
+2001,83,"(80,85]",HS,873.8607498087223,87.81171786344665,9.951527780923689,6049.1805201750885,2019
+2001,83,"(80,85]",HS,1010.7990818668708,82.64632269500859,12.230418110640484,6764.744770177092,2019
+2001,83,"(80,85]",HS,1399.5164498852334,98.14250820032271,14.26004364009755,6501.27085400767,2019
+2001,48,"(45,50]",NoHS,6.696250956388676,20.661580673752148,0.3240919009113079,7387.068369046507,2019
+2001,48,"(45,50]",NoHS,6.696250956388676,20.661580673752148,0.3240919009113079,7455.535978252605,2019
+2001,48,"(45,50]",NoHS,6.696250956388676,20.661580673752148,0.3240919009113079,7326.904572461028,2019
+2001,48,"(45,50]",NoHS,6.696250956388676,20.661580673752148,0.3240919009113079,7363.623160723709,2019
+2001,48,"(45,50]",NoHS,6.696250956388676,20.661580673752148,0.3240919009113079,7409.458081943801,2019
+2001,85,"(80,85]",HS,922.4085692425402,86.08991947396729,10.714478244127841,1754.0831407537576,2019
+2001,85,"(80,85]",HS,922.4085692425402,86.08991947396729,10.714478244127841,1701.081322593087,2019
+2001,85,"(80,85]",HS,924.2500382555471,86.08991947396729,10.735868309587987,1656.0353840096154,2019
+2001,85,"(80,85]",HS,924.0826319816373,86.08991947396729,10.733923758182518,1714.2931384831904,2019
+2001,85,"(80,85]",HS,924.2500382555471,86.08991947396729,10.735868309587987,1779.5623638689715,2019
+2001,76,"(75,80]",HS,528.3342004590666,51.653951684380374,10.228340392760877,9764.382498687777,2019
+2001,76,"(75,80]",HS,580.0627390971691,51.653951684380374,11.229784366576821,9997.613377970669,2019
+2001,76,"(75,80]",HS,539.0482019892885,51.653951684380374,10.435759209344116,10186.8382799351,2019
+2001,76,"(75,80]",HS,557.1280795715379,51.653951684380374,10.785778462328329,9984.966182480082,2019
+2001,76,"(75,80]",HS,569.1813312930375,51.653951684380374,11.01912463098447,10101.79973313697,2019
+2001,55,"(50,55]",HS,407.0148737566947,67.15013718969449,6.061266451428176,5891.0774817621295,2019
+2001,55,"(50,55]",HS,456.2490589135425,101.5861049792814,4.491254576662773,6157.239720521418,2019
+2001,55,"(50,55]",HS,665.5069013006886,91.25531464240532,7.2928015634876235,5257.773489629924,2019
+2001,55,"(50,55]",HS,514.4394797245601,49.93215329490103,10.302769774142579,6042.166846425693,2019
+2001,55,"(50,55]",HS,477.02417750573835,127.41308082147161,3.7439183985679936,6092.87201553777,2019
+2001,37,"(35,40]",College,-39.40743687834736,92.97711303188467,-0.4238401859695661,6510.898725318845,2019
+2001,37,"(35,40]",College,-39.574843152257074,92.97711303188467,-0.4256406965301844,6683.5662845021,2019
+2001,37,"(35,40]",College,-39.40743687834736,92.97711303188467,-0.4238401859695661,6750.363200730263,2019
+2001,37,"(35,40]",College,-39.40743687834736,92.97711303188467,-0.4238401859695661,6589.7182626651675,2019
+2001,37,"(35,40]",College,-39.40743687834736,92.97711303188467,-0.4238401859695661,6697.91698870429,2019
+2001,45,"(40,45]",HS,0,43.04495973698364,0,4301.005956214715,2019
+2001,45,"(40,45]",HS,0,43.04495973698364,0,4374.326570771345,2019
+2001,45,"(40,45]",HS,0,43.04495973698364,0,4373.279121514623,2019
+2001,45,"(40,45]",HS,0,43.04495973698364,0,4307.157363968914,2019
+2001,45,"(40,45]",HS,0,43.04495973698364,0,4357.457683809085,2019
+2001,43,"(40,45]",NoHS,10.914889058913543,68.87193557917384,0.15848093954562956,6267.855110084767,2019
+2001,43,"(40,45]",NoHS,8.571201224177507,68.87193557917384,0.12445128994994226,6277.560296385257,2019
+2001,43,"(40,45]",NoHS,8.906013771996939,68.87193557917384,0.12931266846361184,6305.493674522647,2019
+2001,43,"(40,45]",NoHS,28.81061973986228,68.87193557917384,0.41832162110127064,6252.91925318022,2019
+2001,43,"(40,45]",NoHS,8.236388676358072,68.87193557917384,0.11958991143627261,6315.98183626215,2019
+2001,78,"(75,80]",NoHS,169.74996174445295,13.085667760043028,12.972204770686824,9522.328571673603,2019
+2001,78,"(75,80]",NoHS,169.74996174445295,12.913487921095093,13.14516750096265,9436.203617998439,2019
+2001,78,"(75,80]",NoHS,169.74996174445295,12.913487921095093,13.14516750096265,9670.59289071288,2019
+2001,78,"(75,80]",NoHS,169.74996174445295,12.913487921095093,13.14516750096265,9601.443465705697,2019
+2001,78,"(75,80]",NoHS,169.74996174445295,12.913487921095093,13.14516750096265,9507.004347862445,2019
+2001,43,"(40,45]",NoHS,65.23822494261668,92.97711303188467,0.7016589654729817,8669.046244450892,2019
+2001,43,"(40,45]",NoHS,58.592195868400914,89.53351625292598,0.6544163383786025,8695.611955319091,2019
+2001,43,"(40,45]",NoHS,55.24407039020658,89.53351625292598,0.6170211190426824,8612.560672199583,2019
+2001,43,"(40,45]",NoHS,60.53410864575364,89.53351625292598,0.6761055655934363,8673.620729927252,2019
+2001,43,"(40,45]",NoHS,54.05548584544759,91.25531464240532,0.5923543856844982,8768.254013925292,2019
+2001,43,"(40,45]",College,23361.545524100995,490.7125410016135,47.60739449702424,542.4855986778236,2019
+2001,43,"(40,45]",College,23366.567712318287,490.7125410016135,47.61762897810565,537.2621087720665,2019
+2001,43,"(40,45]",College,23339.78270849273,490.7125410016135,47.563045079004795,542.3513563950521,2019
+2001,43,"(40,45]",College,23378.286151491968,490.7125410016135,47.64150943396227,557.487283540132,2019
+2001,43,"(40,45]",College,23445.24866105585,490.7125410016135,47.7779691817144,550.996499909046,2019
+2001,70,"(65,70]",College,8840.72532517215,1127.7779451089716,7.839065627691376,13.691991547375789,2019
+2001,70,"(65,70]",College,7632.052027543994,1554.7839456998493,4.908754073935723,13.783551358949916,2019
+2001,70,"(65,70]",College,4292.296863045141,2272.7738741127364,1.8885718953104398,13.994672583562851,2019
+2001,70,"(65,70]",College,5320.171384850804,2031.722099585628,2.6185526977020426,13.627397009504119,2019
+2001,70,"(65,70]",College,9542.157612853864,1876.760244532487,5.084377528058133,13.486473727817579,2019
+2001,80,"(75,80]",College,29922.1973986228,4287.2779898035715,6.979299562516527,13.049809091861508,2019
+2001,80,"(75,80]",College,30104.67023718439,6439.525976652753,4.674982342851377,12.729481287000361,2019
+2001,80,"(75,80]",College,29923.871461361898,1639.1520667843372,18.255701876437907,13.197324499539812,2019
+2001,80,"(75,80]",College,30183.35118592196,2909.839278220095,10.37285853271754,13.6493210130687,2019
+2001,80,"(75,80]",College,28556.162203519514,1456.6414374995268,19.60411221895422,13.102696242266045,2019
+2001,37,"(35,40]",HS,365.21352716143844,80.92452430552926,4.513014198051762,8098.921710786303,2019
+2001,37,"(35,40]",HS,364.37649579188985,80.92452430552926,4.502670839512039,8399.496815876944,2019
+2001,37,"(35,40]",HS,365.21352716143844,80.92452430552926,4.513014198051762,8478.003417732576,2019
+2001,37,"(35,40]",HS,361.8654016832441,80.92452430552926,4.4716407638928715,8225.815342715563,2019
+2001,37,"(35,40]",HS,365.2302677888294,80.92452430552926,4.513221065222556,8414.499163449053,2019
+2001,71,"(70,75]",College,1771.660596786534,153.24005666366176,11.561341305655185,851.9272879471112,2019
+2001,71,"(70,75]",College,1883.7056159143076,199.7286131796041,9.431325767131836,821.2234381997605,2019
+2001,71,"(70,75]",College,2996.404896710023,354.6904682327453,8.447943108366262,878.9647095940143,2019
+2001,71,"(70,75]",College,2470.9166029074217,132.5784759899096,18.63738879526327,851.3994909349979,2019
+2001,71,"(70,75]",College,1999.1657230298395,290.98392782200943,6.8703647586085905,837.3098149453699,2019
+2001,42,"(40,45]",HS,7314.097291507269,51.653951684380374,141.5980201514568,1358.7590490127375,2019
+2001,42,"(40,45]",HS,7317.579342004591,51.653951684380374,141.66543126684638,1358.5689359130422,2019
+2001,42,"(40,45]",HS,7317.529120122418,51.653951684380374,141.66445899114365,1368.369126537344,2019
+2001,42,"(40,45]",HS,7315.721132364193,51.653951684380374,141.6294570658452,1355.2502889804252,2019
+2001,42,"(40,45]",HS,7316.0392042846215,51.653951684380374,141.6356148119625,1350.4597819459168,2019
+2001,28,"(25,30]",NoHS,-16.92477429227238,60.2629436317771,-0.280848781561142,5886.150831354704,2019
+2001,28,"(25,30]",NoHS,-16.774108645753632,60.2629436317771,-0.2783486440398262,5976.2626685702535,2019
+2001,28,"(25,30]",NoHS,-16.589961744452946,60.2629436317771,-0.27529292040266246,6038.487056957043,2019
+2001,28,"(25,30]",NoHS,-16.774108645753632,60.2629436317771,-0.2783486440398262,5900.57466188182,2019
+2001,28,"(25,30]",NoHS,-16.94151491966335,60.2629436317771,-0.281126574619066,5953.916027564437,2019
+2001,70,"(65,70]",College,927.5981637337414,115.36049209511619,8.040865177386076,6826.93445119423,2019
+2001,70,"(65,70]",College,1001.9265493496557,115.36049209511619,8.685179225167959,6240.702095694205,2019
+2001,70,"(65,70]",College,987.52960979342,115.36049209511619,8.560379657354352,5740.2877909229965,2019
+2001,70,"(65,70]",College,1149.2440703902066,115.36049209511619,9.96219805860953,6412.45714556171,2019
+2001,70,"(65,70]",College,1142.2130068859985,115.36049209511619,9.901249432468001,6215.962369186017,2019
+2001,58,"(55,60]",College,553.2777352716145,148.07466149522375,3.7364781366693234,8726.30217753386,2019
+2001,58,"(55,60]",College,553.2777352716145,146.35286310574438,3.780436702983081,7933.791747662518,2019
+2001,58,"(55,60]",College,553.2777352716145,148.07466149522375,3.7364781366693234,7417.604046598028,2019
+2001,58,"(55,60]",College,553.1103289977046,148.07466149522375,3.735347583526609,8305.04883598259,2019
+2001,58,"(55,60]",College,553.2777352716145,146.35286310574438,3.780436702983081,7976.512749370018,2019
+2001,55,"(50,55]",College,527.5306503442999,139.46566954782702,3.782512585747087,6044.146865278655,2019
+2001,55,"(50,55]",College,348.08786534047437,101.5861049792814,3.4265302859231315,6382.415677079064,2019
+2001,55,"(50,55]",College,447.52719204284625,284.09673426409205,1.5752634158294538,6414.5318210490295,2019
+2001,55,"(50,55]",College,404.0015608263198,191.1196212322074,2.1138675255925925,6220.980436118884,2019
+2001,55,"(50,55]",College,501.0971996939556,146.35286310574438,3.423897483521711,6313.4185145896245,2019
+2001,66,"(65,70]",HS,124.1317521040551,49.93215329490103,2.486008391645533,9552.257059132164,2019
+2001,66,"(65,70]",HS,125.80581484315226,51.653951684380374,2.4355506353484793,9455.906768273891,2019
+2001,66,"(65,70]",HS,124.1317521040551,51.653951684380374,2.4031414452573485,9514.592957681396,2019
+2001,66,"(65,70]",HS,125.80581484315226,49.93215329490103,2.5195351400156683,9545.650791974966,2019
+2001,66,"(65,70]",HS,125.80581484315226,51.653951684380374,2.4355506353484793,9435.035166763519,2019
+2001,66,"(65,70]",HS,27719.917643458302,1167.3793080669964,23.74542486054365,9.610553906013468,2019
+2001,66,"(65,70]",HS,21634.66610558531,612.960226654647,35.29538323173239,9.452073028249506,2019
+2001,66,"(65,70]",HS,13046.82469778118,1361.9425260781625,9.579570685226123,9.965667775871463,2019
+2001,66,"(65,70]",HS,67613.4521193573,2255.555890217943,29.97640289588397,9.768074661061458,2019
+2001,66,"(65,70]",HS,11537.339066564651,516.5395168438037,22.335830445385703,9.384097237332224,2019
+2001,41,"(40,45]",College,1256.1999387911246,645.6743960547547,1.9455625721986907,5972.67932697855,2019
+2001,41,"(40,45]",College,1263.69973986228,475.21635549629946,2.6592092743578153,5432.923366557156,2019
+2001,41,"(40,45]",College,1015.6873450650345,161.84904861105852,6.275522493220492,5078.742428233962,2019
+2001,41,"(40,45]",College,1370.2203519510329,645.6743960547547,2.1221537671672444,5679.719069343429,2019
+2001,41,"(40,45]",College,1045.3015149196633,409.7880166960843,2.55083475438693,5460.693021962532,2019
+2001,56,"(55,60]",HS,247.09166029074214,101.5861049792814,2.432337181754697,5755.473030762228,2019
+2001,56,"(55,60]",HS,256.29900535577656,75.75912913709122,3.3830775020128114,6113.81365564469,2019
+2001,56,"(55,60]",HS,318.07192042846214,24.105177452710844,13.195170251388964,6164.888274482266,2019
+2001,56,"(55,60]",HS,346.49750573833205,30.992371010628222,11.180090275103753,5981.133389831223,2019
+2001,56,"(55,60]",HS,248.86616679418515,48.21035490542169,5.162089498872325,5992.939640597024,2019
+2001,67,"(65,70]",College,65.95807192042847,39.60136295802496,1.6655505516398519,6542.569277905665,2019
+2001,67,"(65,70]",College,35.40642693190512,39.60136295802496,0.8940709179488037,6602.98127124973,2019
+2001,67,"(65,70]",College,59.797521040550876,39.60136295802496,1.509986439202424,6719.944568555843,2019
+2001,67,"(65,70]",College,32.71118592195869,39.60136295802496,0.8260116187574291,6470.599203248411,2019
+2001,67,"(65,70]",College,36.47782708492732,39.60136295802496,0.9211255461987913,6649.709231752017,2019
+2001,32,"(30,35]",HS,13.476205049732211,30.992371010628222,0.43482330038933814,6142.772415458636,2019
+2001,32,"(30,35]",HS,13.476205049732211,30.992371010628222,0.43482330038933814,6141.623340873217,2019
+2001,32,"(30,35]",HS,13.476205049732211,30.992371010628222,0.43482330038933814,6045.726602867713,2019
+2001,32,"(30,35]",HS,13.476205049732211,30.992371010628222,0.43482330038933814,6145.6723646064775,2019
+2001,32,"(30,35]",HS,13.476205049732211,30.992371010628222,0.43482330038933814,6128.893061799992,2019
+2001,83,"(80,85]",HS,4.319081866870696,25.826975842190187,0.16723142087023488,6209.910786308318,2019
+2001,83,"(80,85]",HS,-2.17628156082632,25.826975842190187,-0.08426389423694007,6207.475904325672,2019
+2001,83,"(80,85]",HS,0.7198469778117828,39.60136295802496,0.018177328355460314,6236.055747776905,2019
+2001,83,"(80,85]",HS,0.6696250956388676,39.60136295802496,0.01690914265624215,6253.45100717834,2019
+2001,83,"(80,85]",HS,0.48547819433817907,30.992371010628222,0.015664441877379885,6250.165344351556,2019
+2001,73,"(70,75]",NoHS,36.15975516449885,13.257847598990962,2.7274227505263315,9259.982681952846,2019
+2001,73,"(70,75]",NoHS,36.15975516449885,32.71416940010757,1.10532395679225,9327.677418277253,2019
+2001,73,"(70,75]",NoHS,36.327161438408574,14.807466149522373,2.4533003196890872,9162.274012277985,2019
+2001,73,"(70,75]",NoHS,36.15975516449885,18.939782284272805,1.9091959253684316,9151.814314992924,2019
+2001,73,"(70,75]",NoHS,36.327161438408574,24.105177452710844,1.507027339237582,9232.916573873048,2019
+2001,18,"(15,20]",NoHS,77.0571078806427,10.330790336876074,7.458975099473753,6249.179710933639,2019
+2001,18,"(15,20]",NoHS,76.35400153022188,10.330790336876074,7.390915800282377,6241.549563675196,2019
+2001,18,"(15,20]",NoHS,77.76021423106351,10.330790336876074,7.527034398665128,6226.905371473217,2019
+2001,18,"(15,20]",NoHS,76.87296097934201,10.50297017582401,7.319163978613406,6162.238395796928,2019
+2001,18,"(15,20]",NoHS,76.68881407804132,10.330790336876074,7.423324990373509,6242.321797075392,2019
+2001,45,"(40,45]",HS,209.7768018362663,146.35286310574438,1.4333631565833884,6955.145103405643,2019
+2001,45,"(40,45]",HS,195.64771231828615,146.35286310574438,1.3368218985707492,7324.436396638115,2019
+2001,45,"(40,45]",HS,206.86393267023718,146.35286310574438,1.4134601010215408,7352.967070527688,2019
+2001,45,"(40,45]",HS,216.08801836266258,146.35286310574438,1.4764864436340575,7109.332712865248,2019
+2001,45,"(40,45]",HS,213.91173680183627,146.35286310574438,1.4616163446510682,7250.1944106157825,2019
+2001,62,"(60,65]",College,20664.630451415458,1721.798389479346,12.001771274547554,838.2426195454639,2019
+2001,62,"(60,65]",College,22425.744452945677,1721.798389479346,13.02460531382364,823.5724397127824,2019
+2001,62,"(60,65]",College,22529.5363427697,1721.798389479346,13.084886407393144,829.8117310332752,2019
+2001,62,"(60,65]",College,20478.80948737567,1721.798389479346,11.893848671544088,836.9052989994561,2019
+2001,62,"(60,65]",College,21853.214996174444,1721.798389479346,12.692087023488638,864.2795345502221,2019
+2001,50,"(45,50]",HS,567.2394185156847,137.74387115834767,4.118073738929533,8133.8537485850175,2019
+2001,50,"(45,50]",HS,633.381637337414,137.74387115834767,4.598256401617251,7310.661082726086,2019
+2001,50,"(45,50]",HS,739.8352869166029,137.74387115834767,5.371094050827877,6602.368487808072,2019
+2001,50,"(45,50]",HS,620.5750573833205,137.74387115834767,4.5052825375433185,7558.768228138962,2019
+2001,50,"(45,50]",HS,595.6147819433818,137.74387115834767,4.324074653446284,7418.426465620871,2019
+2001,32,"(30,35]",College,319.913389441469,68.87193557917384,4.6450471698113205,10150.750746952683,2019
+2001,32,"(30,35]",College,329.957765876052,68.87193557917384,4.790888525221408,10274.112352587184,2019
+2001,32,"(30,35]",College,323.2615149196634,68.87193557917384,4.693660954948017,10380.050742056188,2019
+2001,32,"(30,35]",College,326.60964039785773,68.87193557917384,4.742274740084714,10362.190970668194,2019
+2001,32,"(30,35]",College,318.23932670237184,68.87193557917384,4.620740277242972,10218.583021369237,2019
+2001,50,"(45,50]",College,96146.37833205814,4717.727587173408,20.379807132879314,14.608140502550564,2019
+2001,50,"(45,50]",College,181838.87100229535,3994.5722635920815,45.521487409212234,15.874372334474874,2019
+2001,50,"(45,50]",College,157616.2880489671,4321.713957593158,36.47078210070769,15.508857024996303,2019
+2001,50,"(45,50]",College,158743.41775057383,4476.675812646299,35.46011022333462,15.245517375064313,2019
+2001,50,"(45,50]",College,162162.5067482785,4821.035490542168,33.63644741184884,16.088342421621903,2019
+2001,46,"(45,50]",College,1735.9026166794185,430.4495973698365,4.032766268771659,3397.0499586242986,2019
+2001,46,"(45,50]",College,1420.1743840856925,430.4495973698365,3.299281478629187,6980.36945231148,2019
+2001,46,"(45,50]",College,1509.1491446059679,430.4495973698365,3.5059834039276083,4332.996484109311,2019
+2001,46,"(45,50]",College,1729.0557000765111,430.4495973698365,4.016859838274932,3572.009463798144,2019
+2001,46,"(45,50]",College,1139.534506503443,430.4495973698365,2.6473122834039273,7007.405293314917,2019
+2001,41,"(40,45]",College,394.6770313695486,106.75150014771945,3.6971567689766105,7404.464342560956,2019
+2001,41,"(40,45]",College,390.39143075745983,106.75150014771945,3.657011191573403,7670.523292885118,2019
+2001,41,"(40,45]",College,409.0572302983933,106.75150014771945,3.831863999403778,7765.732810289807,2019
+2001,41,"(40,45]",College,357.0441009946442,106.75150014771945,3.344628417404697,7570.073811103599,2019
+2001,41,"(40,45]",College,372.22785003825555,106.75150014771945,3.4868629435949665,7706.591324600634,2019
+2001,60,"(55,60]",College,12141.140015302219,3443.596778958692,3.5257147670388904,9.68495240752639,2019
+2001,60,"(55,60]",College,12142.814078041316,3443.596778958692,3.5262009048902576,9.452073028249506,2019
+2001,60,"(55,60]",College,12141.140015302219,3443.596778958692,3.5257147670388904,9.965667775871463,2019
+2001,60,"(55,60]",College,12144.488140780413,3443.596778958692,3.5266870427416244,9.737259881829502,2019
+2001,60,"(55,60]",College,12141.140015302219,3443.596778958692,3.5257147670388904,9.384097237332224,2019
+2001,55,"(50,55]",HS,29.296097934200457,22.383379063231494,1.308832676757205,8653.437461315309,2019
+2001,55,"(50,55]",HS,29.296097934200457,24.105177452710844,1.2153446284174045,8658.186677673017,2019
+2001,55,"(50,55]",HS,29.12869166029074,24.105177452710844,1.208399801969305,8654.083120561265,2019
+2001,55,"(50,55]",HS,29.296097934200457,22.383379063231494,1.308832676757205,8660.070432453587,2019
+2001,55,"(50,55]",HS,29.12869166029074,24.105177452710844,1.208399801969305,8663.331712625766,2019
+2001,67,"(65,70]",NoHS,373.65080336648816,99.86430658980206,3.7415851181071,3436.0411068371664,2019
+2001,67,"(65,70]",NoHS,370.30267788829383,101.5861049792814,3.6452099227922705,3674.035936722663,2019
+2001,67,"(65,70]",NoHS,371.80933435348123,99.86430658980206,3.723145406503525,3678.5203649770933,2019
+2001,67,"(65,70]",NoHS,372.1441469013007,101.5861049792814,3.663337096911038,3477.385122471026,2019
+2001,67,"(65,70]",NoHS,374.1530221882173,101.5861049792814,3.683112195949694,3524.591196657134,2019
+2001,42,"(40,45]",College,16716.85570007651,2238.3379063231496,7.468423624892627,154.22308491104334,2019
+2001,42,"(40,45]",College,17164.332670237185,2427.7357291658777,7.070099296241981,144.64233727491833,2019
+2001,42,"(40,45]",College,18019.1091048202,2117.812019059595,8.508360960583039,154.5729760293955,2019
+2001,42,"(40,45]",College,17300.768783473603,2599.9155681138122,6.654357932101992,152.02422930013876,2019
+2001,42,"(40,45]",College,17220.07895944912,3684.6485534858007,4.673465789066464,146.72053401841268,2019
+2001,70,"(65,70]",College,1561.23091048202,37.87956456854561,41.21565092589351,9587.303961206999,2019
+2001,70,"(65,70]",College,1561.5657230298393,39.60136295802496,39.432120674356696,8772.96149988574,2019
+2001,70,"(65,70]",College,1560.561285386381,39.60136295802496,39.406756960372334,8064.508600406085,2019
+2001,70,"(65,70]",College,1560.8960979342005,39.60136295802496,39.41521153170046,9009.586288676785,2019
+2001,70,"(65,70]",College,1561.5657230298393,39.60136295802496,39.432120674356696,8727.319247561909,2019
+2001,48,"(45,50]",HS,119.57830145371078,37.87956456854561,3.156802429376553,6825.067873162874,2019
+2001,48,"(45,50]",HS,103.1892272379495,37.87956456854561,2.7241397416599566,7114.039007840262,2019
+2001,48,"(45,50]",HS,98.55207345065035,37.87956456854561,2.6017213918157314,7146.332429286331,2019
+2001,48,"(45,50]",HS,98.21726090283092,37.87956456854561,2.5928825217908775,6951.904075256003,2019
+2001,48,"(45,50]",HS,96.14142310635043,37.87956456854561,2.5380815276367836,7044.467692423049,2019
+2001,49,"(45,50]",HS,313.04973221117064,34.43596778958692,9.090777820562186,5899.262314668136,2019
+2001,49,"(45,50]",HS,313.04973221117064,34.43596778958692,9.090777820562186,6149.035145724132,2019
+2001,49,"(45,50]",HS,313.04973221117064,34.43596778958692,9.090777820562186,6176.948035044628,2019
+2001,49,"(45,50]",HS,314.72379495026775,34.43596778958692,9.139391605698881,6008.893462819176,2019
+2001,49,"(45,50]",HS,313.04973221117064,34.43596778958692,9.090777820562186,6088.901027375437,2019
+2001,54,"(50,55]",HS,108.8642999234889,111.91689531615746,0.9727244453659548,4997.942894375561,2019
+2001,54,"(50,55]",HS,115.39314460596788,111.91689531615746,1.0310609875299905,5275.436088145001,2019
+2001,54,"(50,55]",HS,107.02283091048203,111.91689531615746,0.9562705488581501,5308.747729679229,2019
+2001,54,"(50,55]",HS,111.20798775822495,111.91689531615746,0.9936657681940702,5123.63308015702,2019
+2001,54,"(50,55]",HS,117.06720734506504,111.91689531615746,1.0460190752643586,5207.8088170278115,2019
+2001,59,"(55,60]",HS,83.2009181331293,25.826975842190187,3.221473495058401,4600.593278964954,2019
+2001,59,"(55,60]",HS,83.28462127008416,25.826975842190187,3.2247144140675137,4904.50223814546,2019
+2001,59,"(55,60]",HS,82.94980872226473,25.826975842190187,3.2117507380310615,4986.779906401188,2019
+2001,59,"(55,60]",HS,83.2009181331293,25.826975842190187,3.221473495058401,4757.200617188577,2019
+2001,59,"(55,60]",HS,82.86610558530987,25.826975842190187,3.2085098190219483,4803.505299858623,2019
+2001,42,"(40,45]",College,4216.428339709258,354.6904682327453,11.887627994960576,227.74219449503715,2019
+2001,42,"(40,45]",College,4358.336964039786,370.18665373805936,11.773349795381074,223.18061123156417,2019
+2001,42,"(40,45]",College,3528.622922723795,347.8032746748279,10.145456295725836,230.40040157791972,2019
+2001,42,"(40,45]",College,3599.9212547819434,363.29946018014203,9.908963952208799,224.3495211171979,2019
+2001,42,"(40,45]",College,3201.996541698546,406.3444199171256,7.880006183797471,226.53181854302449,2019
+2001,47,"(45,50]",HS,216.7911247130834,125.69128243199225,1.724790458959495,7906.162407531243,2019
+2001,47,"(45,50]",HS,218.46518745218057,125.69128243199225,1.7381093042024254,8325.949039812078,2019
+2001,47,"(45,50]",HS,216.7911247130834,125.69128243199225,1.724790458959495,8358.380878115036,2019
+2001,47,"(45,50]",HS,218.46518745218057,125.69128243199225,1.7381093042024254,8081.432982550553,2019
+2001,47,"(45,50]",HS,218.46518745218057,125.69128243199225,1.7381093042024254,8241.5555167117709,2019
+2001,59,"(55,60]",College,25367.407498087225,1721.798389479346,14.733088178667693,243.00953715394547,2019
+2001,59,"(55,60]",College,25893.565416985464,1739.0163733741392,14.889776665383135,233.72853117648705,2019
+2001,59,"(55,60]",College,26334.01132364193,1721.798389479346,15.29448016942626,239.60933067590364,2019
+2001,59,"(55,60]",College,26350.24973221117,1739.0163733741392,15.152387370042357,247.30842383981312,2019
+2001,59,"(55,60]",College,25809.025248661055,1721.798389479346,14.9895745090489,243.66319312651004,2019
+2001,76,"(75,80]",HS,925.9241009946443,77.48092752657055,11.950348692936295,10619.21216524341,2019
+2001,76,"(75,80]",HS,926.091507268554,77.48092752657055,11.952509305609038,9581.253270610454,2019
+2001,76,"(75,80]",HS,925.9241009946443,77.48092752657055,11.950348692936295,9065.825709089837,2019
+2001,76,"(75,80]",HS,925.9241009946443,77.48092752657055,11.950348692936295,10134.610679745081,2019
+2001,76,"(75,80]",HS,925.9241009946443,77.48092752657055,11.950348692936295,9740.71558730603,2019
+2001,43,"(40,45]",HS,1175.108339709258,123.96948404251289,9.479012910195527,5428.856837760888,2019
+2001,43,"(40,45]",HS,702.8552410099464,65.42833880021514,10.74236720507468,4940.363228992629,2019
+2001,43,"(40,45]",HS,1016.2397857689365,87.81171786344665,11.572940496953496,4614.991869671877,2019
+2001,43,"(40,45]",HS,990.509441469013,130.8566776004303,7.569422207810631,5163.92334874805,2019
+2001,43,"(40,45]",HS,3498.540015302219,306.4801133273235,11.415226839092647,1081.267558077527,2019
+2001,73,"(70,75]",HS,303.75868400918137,27.548774231669533,11.026214141316904,7398.830930175922,2019
+2001,73,"(70,75]",HS,482.7996939556236,27.548774231669533,17.525269541778975,8160.310403731239,2019
+2001,73,"(70,75]",HS,905.1155011476664,27.548774231669533,32.855019012321904,6181.1852172814815,2019
+2001,73,"(70,75]",HS,342.3458301453711,27.548774231669533,12.426898825567964,7770.134209241891,2019
+2001,73,"(70,75]",HS,335.7667635807192,27.548774231669533,12.188083606083943,7973.2854490735535,2019
+2001,52,"(50,55]",College,20857.971305279265,3529.686698432659,5.909298214637903,206.95743366986207,2019
+2001,52,"(50,55]",College,20572.22218821729,3546.904682327452,5.800049347454681,207.10069755069512,2019
+2001,52,"(50,55]",College,27499.34313695486,3546.904682327452,7.753053887794357,206.56478366512246,2019
+2001,52,"(50,55]",College,20552.468247895944,3529.686698432659,5.822745757299698,207.7767169422297,2019
+2001,52,"(50,55]",College,25065.406579954095,3546.904682327452,7.066839631987619,216.3837600989802,2019
+2001,48,"(45,50]",HS,11792.09793420046,1876.760244532487,6.283220229410788,33.40618853344006,2019
+2001,48,"(45,50]",HS,11448.91507268554,1790.6703250585194,6.393647625958948,32.61331611756155,2019
+2001,48,"(45,50]",HS,11358.515684774293,1807.888308953313,6.282752993380641,34.350302359752526,2019
+2001,48,"(45,50]",HS,11561.07727620505,1590.9417118789154,7.266813856147703,33.59960264860877,2019
+2001,48,"(45,50]",HS,12510.270849273145,1739.0163733741392,7.1938775510204085,32.3510518265726,2019
+2001,66,"(65,70]",College,5500.970160673298,816.13243661321,6.740291053130113,369.3612393273137,2019
+2001,66,"(65,70]",College,33540.90163733741,738.6515090866394,45.4082895989904,344.1620288315377,2019
+2001,66,"(65,70]",College,6383.2012241775055,471.7727587173407,13.530245454468801,369.9936353274847,2019
+2001,66,"(65,70]",College,33768.85876052027,402.90082313816697,83.81432060003486,376.57100058552925,2019
+2001,66,"(65,70]",College,5295.060443764346,621.5692186020439,8.518858858026041,351.7644536539717,2019
+2001,53,"(50,55]",College,34560.35562356542,1377.4387115834766,25.090303715825954,350.9626328861944,2019
+2001,53,"(50,55]",College,34553.65937260903,1377.4387115834766,25.085442337312283,329.0062833667033,2019
+2001,53,"(50,55]",College,34560.35562356542,1377.4387115834766,25.090303715825954,345.8112610869472,2019
+2001,53,"(50,55]",College,34560.35562356542,1377.4387115834766,25.090303715825954,360.0877637951463,2019
+2001,53,"(50,55]",College,34550.311247130834,1377.4387115834766,25.08301164805545,346.1854806533472,2019
+2001,49,"(45,50]",HS,0,17.21798389479346,0,5226.580527574291,2019
+2001,49,"(45,50]",HS,0,22.383379063231494,0,5249.295194807901,2019
+2001,49,"(45,50]",HS,0,18.939782284272805,0,5238.780957464821,2019
+2001,49,"(45,50]",HS,0,17.21798389479346,0,5200.539582957052,2019
+2001,49,"(45,50]",HS,0,20.661580673752148,0,5245.154008888978,2019
+2001,53,"(50,55]",College,54489.50335118593,2307.209841902323,23.617055701469553,527.8733671403618,2019
+2001,53,"(50,55]",College,46408.76902830911,2376.0817774814973,19.531637954607604,494.8990412557032,2019
+2001,53,"(50,55]",College,50597.75947972456,2565.479600324226,19.722534325874197,519.949483977644,2019
+2001,53,"(50,55]",College,38137.86117827085,2617.1335520086054,14.572378680866587,541.4803031619388,2019
+2001,53,"(50,55]",College,60008.57013006886,2496.6076647450514,24.036043378965118,216.14594743840863,2019
+2001,57,"(55,60]",College,70812.0168324407,550.9754846333907,128.52117527435502,176.53222305435577,2019
+2001,57,"(55,60]",College,70373.41239479725,550.9754846333907,127.72512454274164,191.90039687025597,2019
+2001,57,"(55,60]",College,71814.78041315991,550.9754846333907,130.34115385541008,185.46680884453642,2019
+2001,57,"(55,60]",College,70373.41239479725,550.9754846333907,127.72512454274164,185.9276104888541,2019
+2001,57,"(55,60]",College,71813.10635042081,550.9754846333907,130.33811549383904,197.1685674775903,2019
+2001,45,"(40,45]",NoHS,73.49135424636572,48.21035490542169,1.5243894053578302,5423.281359846574,2019
+2001,45,"(40,45]",NoHS,73.55831675592961,48.21035490542169,1.5257783706474501,5724.3899753426895,2019
+2001,45,"(40,45]",NoHS,69.89211935730681,48.21035490542169,1.4497325210407612,5760.536527717625,2019
+2001,45,"(40,45]",NoHS,60.93588370313696,48.21035490542169,1.2639584135541009,5632.694215127048,2019
+2001,45,"(40,45]",NoHS,64.61882172915072,48.21035490542169,1.3403515044831946,5651.007440444211,2019
+2001,38,"(35,40]",College,509.60143840856927,378.79564568545607,1.3453202121328807,6831.53653838819,2019
+2001,38,"(35,40]",College,341.49205814843157,122.24768565303354,2.7934439521224386,6866.374749087768,2019
+2001,38,"(35,40]",College,669.0391736801836,156.68365344262045,4.269999830742996,5805.070083760587,2019
+2001,38,"(35,40]",College,1807.217689364958,373.63025051701806,4.836914802439539,3175.5899357056865,2019
+2001,38,"(35,40]",College,383.36036725325175,342.6378795063898,1.1188499292767264,6245.522610624551,2019
+2001,71,"(70,75]",College,259084.64575363428,5096.523232858864,50.835566506051684,45.173435275854125,2019
+2001,71,"(70,75]",College,252090.2442234124,5113.741216753658,49.29663695094961,49.19646794481896,2019
+2001,71,"(70,75]",College,250913.2107115532,5096.523232858864,49.23223131680005,48.0083713195233,2019
+2001,71,"(70,75]",College,256067.48247895946,5096.523232858864,50.24356228340393,47.17180535841821,2019
+2001,71,"(70,75]",College,265785.0818668707,5113.741216753658,51.974683622257736,49.828386355754084,2019
+2001,45,"(40,45]",NoHS,829.1632746748278,103.30790336876075,8.02613592606854,6654.208275496652,2019
+2001,45,"(40,45]",NoHS,829.3306809487376,103.30790336876075,8.027756385573097,6041.886028126429,2019
+2001,45,"(40,45]",NoHS,829.3306809487376,103.30790336876075,8.027756385573097,5640.987353070295,2019
+2001,45,"(40,45]",NoHS,829.1632746748278,103.30790336876075,8.02613592606854,6326.1117113013715,2019
+2001,45,"(40,45]",NoHS,829.1632746748278,103.30790336876075,8.02613592606854,6071.509296342227,2019
+2001,62,"(60,65]",NoHS,9.391491966335119,10.847329853719879,0.8657883638630655,7646.221228756961,2019
+2001,62,"(60,65]",NoHS,9.81000765110941,10.847329853719879,0.9043707330191735,7717.786817650825,2019
+2001,62,"(60,65]",NoHS,8.671644988523337,10.847329853719879,0.7994266889145596,7530.612800797375,2019
+2001,62,"(60,65]",NoHS,8.972976281560827,10.847329853719879,0.8272059947069574,7648.79595499948,2019
+2001,62,"(60,65]",NoHS,8.721866870696251,10.847329853719879,0.8040565732132925,7683.539834239751,2019
+2001,30,"(25,30]",HS,578.1375669472073,123.96948404251289,4.663547415821675,8480.846944068637,2019
+2001,30,"(25,30]",HS,754.5837796480489,123.96948404251289,6.086851013990501,7692.810969391127,2019
+2001,30,"(25,30]",HS,680.5902065799542,123.96948404251289,5.489981763145511,7193.387851662817,2019
+2001,30,"(25,30]",HS,677.7442999234889,123.96948404251289,5.467025253497626,8018.001361481004,2019
+2001,30,"(25,30]",HS,699.1723029839327,123.96948404251289,5.639874267316991,7748.415641441896,2019
+2001,69,"(65,70]",NoHS,185.15133894414691,79.20272591604991,2.3376889722254774,10451.403296460088,2019
+2001,69,"(65,70]",NoHS,185.82096403978576,74.03733074761188,2.5098279768247798,10928.36179212846,2019
+2001,69,"(65,70]",NoHS,189.0016832440704,72.31553235813253,2.6135696866347615,11264.86710316344,2019
+2001,69,"(65,70]",NoHS,185.65355776587606,75.75912913709122,2.4505767143907304,10591.419790170632,2019
+2001,69,"(65,70]",NoHS,185.15133894414691,84.36812108448795,2.1945651575994276,10911.34265078632,2019
+2001,43,"(40,45]",HS,119.02586074980873,110.19509692667813,1.0801375385059684,5119.79720755166,2019
+2001,43,"(40,45]",HS,136.603519510329,110.19509692667813,1.2396515209857528,5322.036972945057,2019
+2001,43,"(40,45]",HS,113.83626625860751,110.19509692667813,1.033042934154794,5384.724871050688,2019
+2001,43,"(40,45]",HS,107.30742157612855,110.19509692667813,0.9737948835194455,5215.171578135025,2019
+2001,43,"(40,45]",HS,118.35623565416985,110.19509692667813,1.0740608153638813,5317.0912754789,2019
+2001,61,"(60,65]",HS,791.9990818668707,170.45804055845522,4.646299343064842,6194.927737535058,2019
+2001,61,"(60,65]",HS,791.9990818668707,170.45804055845522,4.646299343064842,5629.900030809965,2019
+2001,61,"(60,65]",HS,791.9990818668707,170.45804055845522,4.646299343064842,5267.37311240292,2019
+2001,61,"(60,65]",HS,791.9990818668707,170.45804055845522,4.646299343064842,5894.3300001822645,2019
+2001,61,"(60,65]",HS,791.9990818668707,170.45804055845522,4.646299343064842,5664.290433873542,2019
+2001,85,"(80,85]",HS,199.0460596786534,34.43596778958692,5.780179052753176,8692.639035006865,2019
+2001,85,"(80,85]",HS,143.63458301453713,34.43596778958692,4.171062764728533,9012.82645868114,2019
+2001,85,"(80,85]",HS,151.83749043611323,34.43596778958692,4.409270311898344,9199.639990132717,2019
+2001,85,"(80,85]",HS,185.82096403978576,34.43596778958692,5.396130150173276,8946.29872344736,2019
+2001,85,"(80,85]",HS,190.67574598316756,34.43596778958692,5.537110127069695,9078.793800556328,2019
+2001,33,"(30,35]",HS,80.27130833970926,58.54114524229776,1.3711947042968131,6958.517113672472,2019
+2001,33,"(30,35]",HS,89.98087222647284,58.54114524229776,1.5370535006455412,6976.814589254798,2019
+2001,33,"(30,35]",HS,61.18699311400153,58.54114524229776,1.0451963804389681,7037.021763176558,2019
+2001,33,"(30,35]",HS,99.69043611323642,58.54114524229776,1.7029122969942694,6930.900880974038,2019
+2001,33,"(30,35]",HS,97.17934200459067,58.54114524229776,1.6600177806971845,6972.1300989009715,2019
+2001,58,"(55,60]",College,2084.3755164498853,241.0517745271084,8.647003410528633,2681.2415006860624,2019
+2001,58,"(55,60]",College,1108.2295332823257,118.80408887407486,9.328210365360253,5510.418456325848,2019
+2001,58,"(55,60]",College,1313.3022188217292,275.48774231669535,4.767189304967269,5155.585331195261,2019
+2001,58,"(55,60]",College,2280.5756694720735,249.6607664745051,9.134697860927066,2820.736877989754,2019
+2001,58,"(55,60]",College,2092.5784238714614,158.40545183209983,13.21026770018918,2889.7437587287122,2019
+2001,49,"(45,50]",NoHS,1.08814078041316,10.330790336876074,0.10532986779617509,4853.868891441352,2019
+2001,49,"(45,50]",NoHS,1.2555470543228768,10.330790336876074,0.12153446284174048,4874.963757593892,2019
+2001,49,"(45,50]",NoHS,1.506656465187452,10.330790336876074,0.14584135541008858,4865.199298922,2019
+2001,49,"(45,50]",NoHS,1.08814078041316,10.330790336876074,0.10532986779617509,4829.684947404804,2019
+2001,49,"(45,50]",NoHS,4.017750573833205,10.330790336876074,0.3889102810935695,4871.117882953774,2019
+2001,63,"(60,65]",College,66006.61973986228,4562.765732120266,14.466361767205992,12.57883120315518,2019
+2001,63,"(60,65]",College,61807.40076511094,4562.765732120266,13.546038607682306,13.27890672793472,2019
+2001,63,"(60,65]",College,62394.32716143841,4562.765732120266,13.674672517636461,13.458992248041634,2019
+2001,63,"(60,65]",College,65874.3687834736,4562.765732120266,14.437376944369776,13.265107818905388,2019
+2001,63,"(60,65]",College,60094.164957918896,4562.765732120266,13.170556738181212,13.646603181231054,2019
+2001,77,"(75,80]",NoHS,-2.7119816373374137,12.74130808214716,-0.21284954573364273,5221.152913074479,2019
+2001,77,"(75,80]",NoHS,-3.2142004590665647,18.939782284272805,-0.16970630447719395,5207.440318521762,2019
+2001,77,"(75,80]",NoHS,-2.243244070390207,12.052588726355422,-0.1861213488090654,5222.682629216114,2019
+2001,77,"(75,80]",NoHS,-1.8582096403978576,13.774387115834767,-0.1349032537543319,5229.04826685579,2019
+2001,77,"(75,80]",NoHS,1.3057689364957918,18.939782284272805,0.06894318619386004,5268.064656694942,2019
+2001,34,"(30,35]",College,88.89273144605968,154.9618550531411,0.5736426646130152,6213.209471617912,2019
+2001,34,"(30,35]",College,87.2186687069625,154.9618550531411,0.5628396012493048,6229.547154882563,2019
+2001,34,"(30,35]",College,87.2186687069625,154.9618550531411,0.5628396012493048,6283.305703889361,2019
+2001,34,"(30,35]",College,87.2186687069625,154.9618550531411,0.5628396012493048,6188.551137698579,2019
+2001,34,"(30,35]",College,87.2186687069625,154.9618550531411,0.5628396012493048,6225.364407414871,2019
+2001,40,"(35,40]",College,84673.25631216526,10210.264449612521,8.292954284389628,1.723908682705586,2019
+2001,40,"(35,40]",College,272400.1407804132,8144.106382237305,33.44751750474812,1.7558858000022828,2019
+2001,40,"(35,40]",College,302144.8875286917,16098.814941631883,18.768144650656147,1.5509071336575402,2019
+2001,40,"(35,40]",College,76311.3129303749,18991.436235957186,4.01819599014275,2.0199460627954804,2019
+2001,40,"(35,40]",College,47047.85921958684,13498.89937351807,3.4853107588819126,1.5387440816567075,2019
+2001,80,"(75,80]",HS,38589.42286151492,366.74305695910067,105.22195888719558,366.5238559756359,2019
+2001,80,"(75,80]",HS,24665.47299158378,778.2528720446644,31.693391540954334,344.1620288315377,2019
+2001,80,"(75,80]",HS,42640.92254016832,237.60817774814973,179.4589855630521,361.075213886859,2019
+2001,80,"(75,80]",HS,43718.49998469778,798.9144527184164,54.72237964395257,376.57100058552925,2019
+2001,80,"(75,80]",HS,36516.53308951798,506.2087265069277,72.13730458875887,361.9683243107386,2019
+2001,48,"(45,50]",College,1746.8844682478962,137.74387115834767,12.682121197535619,918.0527136887076,2019
+2001,48,"(45,50]",College,832.8462127008416,137.74387115834767,6.046339526376588,468.89213314591643,2019
+2001,48,"(45,50]",College,643.6771231828615,137.74387115834767,4.6730000962649205,441.8039515576471,2019
+2001,48,"(45,50]",College,1298.2356541698548,137.74387115834767,9.424997593376974,469.4093231092447,2019
+2001,48,"(45,50]",College,836.194338179036,137.74387115834767,6.0706464189449365,496.0635296294919,2019
+2001,38,"(35,40]",NoHS,5.390482019892885,53.37575007385973,0.10099121815494305,5710.302618246395,2019
+2001,38,"(35,40]",NoHS,5.189594491201225,44.76675812646299,0.11592517994135247,5675.75875910543,2019
+2001,38,"(35,40]",NoHS,5.323519510328998,39.60136295802496,0.1344276841171251,5608.122628789684,2019
+2001,38,"(35,40]",NoHS,5.390482019892885,49.93215329490103,0.10795612975183569,5655.977479973497,2019
+2001,38,"(35,40]",NoHS,4.905003825554705,43.04495973698364,0.11395071236041587,5708.619081541848,2019
+2001,54,"(50,55]",HS,74.49579188982403,82.64632269500859,0.9013805994095753,5839.978925250065,2019
+2001,54,"(50,55]",HS,74.49579188982403,82.64632269500859,0.9013805994095753,6074.069223331641,2019
+2001,54,"(50,55]",HS,74.3283856159143,82.64632269500859,0.8993550250288794,6203.0892694686545,2019
+2001,54,"(50,55]",HS,76.1698546289212,84.36812108448795,0.9028274382529292,5968.693700107703,2019
+2001,54,"(50,55]",HS,77.84391736801837,84.36812108448795,0.9226697995332133,6017.826792283345,2019
+2001,78,"(75,80]",College,2992.38714613619,172.17983894793457,17.37942818636889,3534.0521761449163,2019
+2001,78,"(75,80]",College,2994.061208875287,172.17983894793457,17.389150943396228,3573.636440032561,2019
+2001,78,"(75,80]",College,2994.061208875287,172.17983894793457,17.389150943396228,4538.667591334554,2019
+2001,78,"(75,80]",College,2992.38714613619,172.17983894793457,17.37942818636889,3731.004566841646,2019
+2001,78,"(75,80]",College,2994.061208875287,172.17983894793457,17.389150943396228,3820.2112349840886,2019
+2001,43,"(40,45]",HS,59.88122417750574,44.76675812646299,1.3376269956458637,5941.05996901022,2019
+2001,43,"(40,45]",HS,59.71381790359602,44.76675812646299,1.3338874737122717,6119.102148050692,2019
+2001,43,"(40,45]",HS,61.60550879877582,44.76675812646299,1.3761440715618614,6168.967041633925,2019
+2001,43,"(40,45]",HS,60.60107115531752,44.76675812646299,1.3537069399603092,6013.279174494571,2019
+2001,43,"(40,45]",HS,54.022004590665645,44.76675812646299,1.2067437279701432,6121.313381667904,2019
+2001,45,"(40,45]",HS,24.859831675592964,36.157766179066265,0.6875378183618461,4531.940493100023,2019
+2001,45,"(40,45]",HS,24.859831675592964,36.157766179066265,0.6875378183618461,4619.523175421264,2019
+2001,45,"(40,45]",HS,24.859831675592964,36.157766179066265,0.6875378183618461,4626.13984001521,2019
+2001,45,"(40,45]",HS,25.027237949502677,36.157766179066265,0.6921677026605789,4563.342299054155,2019
+2001,45,"(40,45]",HS,24.859831675592964,36.157766179066265,0.6875378183618461,4580.034976468551,2019
+2001,53,"(50,55]",NoHS,0.25110941086457533,18.939782284272805,0.013258305037280775,4077.053890623965,2019
+2001,53,"(50,55]",NoHS,0.25110941086457533,7.059373396865318,0.03557106229514354,4146.556723190173,2019
+2001,53,"(50,55]",NoHS,0.25110941086457533,53.37575007385973,0.00470455985193834,4145.563814296108,2019
+2001,53,"(50,55]",NoHS,0.25110941086457533,20.661580673752148,0.012153446284174047,4082.884996456505,2019
+2001,53,"(50,55]",NoHS,0.25110941086457533,18.939782284272805,0.013258305037280775,4658.841737415441,2019
+2001,64,"(60,65]",HS,32.30941086457536,68.87193557917384,0.46912302656911814,6308.985520964354,2019
+2001,64,"(60,65]",HS,32.30941086457536,68.87193557917384,0.46912302656911814,6594.029083157933,2019
+2001,64,"(60,65]",HS,33.98347360367253,68.87193557917384,0.4934299191374662,6631.462222631167,2019
+2001,64,"(60,65]",HS,33.98347360367253,68.87193557917384,0.4934299191374662,6470.793036989249,2019
+2001,64,"(60,65]",HS,32.30941086457536,68.87193557917384,0.46912302656911814,6525.0951877853495,2019
+2001,37,"(35,40]",HS,247.76128538638105,103.30790336876075,2.3982800667436788,6982.545283758062,2019
+2001,37,"(35,40]",HS,247.76128538638105,103.30790336876075,2.3982800667436788,7233.443739451757,2019
+2001,37,"(35,40]",HS,247.5938791124713,103.30790336876075,2.396659607239122,7323.2280555030475,2019
+2001,37,"(35,40]",HS,247.5938791124713,103.30790336876075,2.396659607239122,7138.718041167567,2019
+2001,37,"(35,40]",HS,247.5938791124713,103.30790336876075,2.396659607239122,7267.456552951579,2019
+2001,32,"(30,35]",HS,71.3150726855394,55.097548463339066,1.294342029264536,4390.832275500005,2019
+2001,32,"(30,35]",HS,69.64100994644224,56.819346852818406,1.2256566434464011,4413.343834870564,2019
+2001,32,"(30,35]",HS,69.4736036725325,56.819346852818406,1.222710353438116,4426.011562634385,2019
+2001,32,"(30,35]",HS,69.64100994644224,56.819346852818406,1.2256566434464011,4419.9845040413,2019
+2001,32,"(30,35]",HS,71.14766641162969,55.097548463339066,1.2913036676934924,4392.13679150682,2019
+2001,60,"(55,60]",College,19631.7337413925,4666.073635489027,4.207334747586983,18.449019495623023,2019
+2001,60,"(55,60]",College,23189.117061973986,5595.844765807874,4.143988625929326,18.56285479045389,2019
+2001,60,"(55,60]",College,17981.107880642692,4631.6376676994405,3.8822354360836706,18.532850934210636,2019
+2001,60,"(55,60]",College,23060.214231063503,5578.626781913081,4.1336721620863575,19.102367464008402,2019
+2001,60,"(55,60]",College,20455.37260902831,5595.844765807874,3.655457480524866,18.83070519899378,2019
+2001,79,"(75,80]",College,91264.04131599082,9314.929287083261,9.797609676172634,17.78317985079869,2019
+2001,79,"(75,80]",College,91264.04131599082,9142.749448135326,9.982122099452722,19.364058268294023,2019
+2001,79,"(75,80]",College,100596.10405508798,11140.03557993137,9.030142079286584,18.90030794244316,2019
+2001,79,"(75,80]",College,96029.26090283091,11243.343483300128,8.540987922806442,18.56465708175563,2019
+2001,79,"(75,80]",College,84461.48737566949,11140.03557993137,7.581796913452033,19.6123879178756,2019
+2001,55,"(50,55]",College,19612.482019892886,1377.4387115834766,14.238369994224106,172.02463374934786,2019
+2001,55,"(50,55]",College,19063.556847742922,1377.4387115834766,13.839858490566039,161.037107519999,2019
+2001,55,"(50,55]",College,18577.911247130833,1377.4387115834766,13.487287013862149,172.1157236483978,2019
+2001,55,"(50,55]",College,17397.864422341238,1377.4387115834766,12.630590585290719,169.53909477072477,2019
+2001,55,"(50,55]",College,18916.239326702373,1377.4387115834766,13.732908163265307,163.31319795449969,2019
+2001,54,"(50,55]",HS,71.53270084162203,51.653951684380374,1.3848446925940185,6643.991670967951,2019
+2001,54,"(50,55]",HS,72.98913542463657,51.653951684380374,1.4130406879733026,7020.2656102140845,2019
+2001,54,"(50,55]",HS,70.91329762815609,51.653951684380374,1.3728532922603005,7034.736242145433,2019
+2001,54,"(50,55]",HS,72.48691660290743,51.653951684380374,1.4033179309459634,6791.617952043591,2019
+2001,54,"(50,55]",HS,71.09744452945677,51.653951684380374,1.3764183031703245,6936.723656068376,2019
+2001,80,"(75,80]",HS,127.56358071920428,25.826975842190187,4.939160569888332,8142.580648640901,2019
+2001,80,"(75,80]",HS,127.56358071920428,25.826975842190187,4.939160569888332,8423.108066207786,2019
+2001,80,"(75,80]",HS,127.56358071920428,25.826975842190187,4.939160569888332,8577.0290855952735,2019
+2001,80,"(75,80]",HS,127.56358071920428,25.826975842190187,4.939160569888332,8355.832616019476,2019
+2001,80,"(75,80]",HS,127.56358071920428,25.826975842190187,4.939160569888332,8507.819935254753,2019
+2001,54,"(50,55]",College,739.6009181331293,79.20272591604991,9.338074031909727,7430.538631837527,2019
+2001,54,"(50,55]",College,739.6009181331293,79.20272591604991,9.338074031909727,6751.691079197143,2019
+2001,54,"(50,55]",College,739.6009181331293,79.20272591604991,9.338074031909727,6302.891436368457,2019
+2001,54,"(50,55]",College,739.768324407039,79.20272591604991,9.340187674741758,7066.470034020771,2019
+2001,54,"(50,55]",College,739.768324407039,79.20272591604991,9.340187674741758,6777.841220356369,2019
+2001,66,"(65,70]",NoHS,-0.28459066564651875,120.5258872635542,-0.002361240992353815,8198.568462521844,2019
+2001,66,"(65,70]",NoHS,-0.2678500382555471,120.5258872635542,-0.0022223444633918264,8311.191352942027,2019
+2001,66,"(65,70]",NoHS,-0.28459066564651875,120.5258872635542,-0.002361240992353815,8482.766611161656,2019
+2001,66,"(65,70]",NoHS,-0.2678500382555471,120.5258872635542,-0.0022223444633918264,8207.078491148477,2019
+2001,66,"(65,70]",NoHS,-0.2678500382555471,120.5258872635542,-0.0022223444633918264,8339.94687585063,2019
+2001,63,"(60,65]",NoHS,79.68538638102525,48.21035490542169,1.6528686946476703,5606.736699617468,2019
+2001,63,"(60,65]",NoHS,79.68538638102525,48.21035490542169,1.6528686946476703,5940.413632456273,2019
+2001,63,"(60,65]",NoHS,82.196480489671,48.21035490542169,1.7049548930084162,5959.398539794869,2019
+2001,63,"(60,65]",NoHS,78.01132364192807,48.21035490542169,1.6181445624071729,5771.0589728228815,2019
+2001,63,"(60,65]",NoHS,79.85279265493497,48.21035490542169,1.65634110787172,5865.723529537519,2019
+2001,45,"(40,45]",College,2383.865340474369,344.35967789586914,6.922603003465539,3193.1838590363527,2019
+2001,45,"(40,45]",College,2385.539403213466,346.0814762853485,6.892999385053937,3248.4902843723926,2019
+2001,45,"(40,45]",College,2385.7068094873757,344.35967789586914,6.927950519830574,4072.961717619922,2019
+2001,45,"(40,45]",College,2385.7068094873757,346.0814762853485,6.893483104309029,3357.643573998083,2019
+2001,45,"(40,45]",College,2385.539403213466,346.0814762853485,6.892999385053937,3433.2794374111945,2019
+2001,56,"(55,60]",HS,623.0359296097935,172.17983894793457,3.6185184828648445,8695.067142575223,2019
+2001,56,"(55,60]",HS,631.4062433052793,172.17983894793457,3.6671322680015406,7899.641098715445,2019
+2001,56,"(55,60]",HS,728.5018821729151,172.17983894793457,4.231052175587216,7386.616378858684,2019
+2001,56,"(55,60]",HS,597.9249885233359,172.17983894793457,3.4726771274547557,8272.620924810477,2019
+2001,56,"(55,60]",HS,657.5216220351952,172.17983894793457,3.8188072776280326,7950.325975922087,2019
+2001,64,"(60,65]",College,5317.1580719204285,344.35967789586914,15.440710435117444,1515.59688936874,2019
+2001,64,"(60,65]",College,5317.1580719204285,344.35967789586914,15.440710435117444,1512.558604401761,2019
+2001,64,"(60,65]",College,5317.1580719204285,344.35967789586914,15.440710435117444,1523.6676454188985,2019
+2001,64,"(60,65]",College,5317.1580719204285,344.35967789586914,15.440710435117444,1511.3900477527018,2019
+2001,64,"(60,65]",College,5317.1580719204285,344.35967789586914,15.440710435117444,1503.1836352970631,2019
+2001,27,"(25,30]",College,471.75087987758224,430.4495973698365,1.0959491721216787,5.230396579047649,2019
+2001,27,"(25,30]",College,471.75087987758224,430.4495973698365,1.0959491721216787,5.26855749818442,2019
+2001,27,"(25,30]",College,471.75087987758224,430.4495973698365,1.0959491721216787,4.621997277952129,2019
+2001,27,"(25,30]",College,471.75087987758224,430.4495973698365,1.0959491721216787,6.1711844133439655,2019
+2001,27,"(25,30]",College,471.75087987758224,430.4495973698365,1.0959491721216787,4.558412919664695,2019
+2001,21,"(20,25]",HS,-16.90635960214231,8.781171786344663,-1.9252965337078227,6112.540948449552,2019
+2001,21,"(20,25]",HS,-16.571547054322878,5.509754846333906,-3.007674119175973,6121.034227799557,2019
+2001,21,"(20,25]",HS,-9.473521040550882,8.60899194739673,-1.100421640354255,6032.216408252175,2019
+2001,21,"(20,25]",HS,-7.799458301453711,5.337575007385973,-1.4612362900120486,6048.438744845071,2019
+2001,21,"(20,25]",HS,-18.245609793420044,6.542833880021514,-2.788640232657114,6088.757255350656,2019
+2001,21,"(20,25]",HS,225.66365723029838,51.653951684380374,4.368758824284431,7216.745920665581,2019
+2001,21,"(20,25]",HS,225.83106350420812,51.653951684380374,4.371999743293544,7191.698106892183,2019
+2001,21,"(20,25]",HS,225.83106350420812,51.653951684380374,4.371999743293544,7221.845121976243,2019
+2001,21,"(20,25]",HS,225.66365723029838,51.653951684380374,4.368758824284431,7202.250770961417,2019
+2001,21,"(20,25]",HS,225.83106350420812,51.653951684380374,4.371999743293544,7192.365870062657,2019
+2001,76,"(75,80]",NoHS,210.09487375669474,11.363869370563684,18.487969801985972,9036.565418085607,2019
+2001,76,"(75,80]",NoHS,188.33205814843154,11.191689531615747,16.82784870116407,8974.253809007161,2019
+2001,76,"(75,80]",NoHS,161.54705432287682,11.363869370563684,14.215849289973278,9046.754883980588,2019
+2001,76,"(75,80]",NoHS,200.0504973221117,11.191689531615747,17.87491484256983,9080.830028815753,2019
+2001,76,"(75,80]",NoHS,206.7467482785004,11.191689531615747,18.473238351944556,9036.842848416338,2019
+2001,75,"(70,75]",College,709.4677888293803,82.64632269500859,8.58438422538827,5253.012688240524,2019
+2001,75,"(70,75]",College,709.4677888293803,82.64632269500859,8.58438422538827,5192.525637445985,2019
+2001,75,"(70,75]",College,709.4677888293803,82.64632269500859,8.58438422538827,4997.144141398641,2019
+2001,75,"(70,75]",College,709.4677888293803,82.64632269500859,8.58438422538827,5186.806119909753,2019
+2001,75,"(70,75]",College,709.63519510329,82.64632269500859,8.586409799768965,5463.080380623696,2019
+2001,39,"(35,40]",HS,115.32618209640398,160.12725022157917,0.7202158404445161,131.86978966017017,2019
+2001,39,"(35,40]",HS,116.51476664116296,141.18746793730637,0.8252486452473303,134.39927629078153,2019
+2001,39,"(35,40]",HS,83.53573068094873,142.9092663267857,0.5845368381496722,131.23309347088767,2019
+2001,39,"(35,40]",HS,113.14990053557766,154.9618550531411,0.7301790527531768,132.8795635183939,2019
+2001,39,"(35,40]",HS,53.57000765110941,144.63106471626506,0.3703907438986376,129.43247395984022,2019
+2001,49,"(45,50]",College,1093.1629686304516,215.22479868491826,5.079168271082017,7495.837991638415,2019
+2001,49,"(45,50]",College,1096.511094108646,215.22479868491826,5.094724682325761,6806.068724592058,2019
+2001,49,"(45,50]",College,1072.0697781178271,215.22479868491826,4.981162880246438,6354.464056558284,2019
+2001,49,"(45,50]",College,1070.0609028309104,215.22479868491826,4.971829033500192,7126.243505112147,2019
+2001,49,"(45,50]",College,1079.2682478959448,215.22479868491826,5.0146091644204835,6839.43876804954,2019
+2001,83,"(80,85]",HS,1036.9144605967865,61.984742021256444,16.728543618705345,8097.366042711544,2019
+2001,83,"(80,85]",HS,1047.1262433052793,61.984742021256444,16.89329033500193,7305.9011980180785,2019
+2001,83,"(80,85]",HS,1026.2004590665647,61.984742021256444,16.555694604885982,6912.877161094245,2019
+2001,83,"(80,85]",HS,1050.4743687834734,61.984742021256444,16.947305651820475,7727.847517997916,2019
+2001,83,"(80,85]",HS,1029.548584544759,61.984742021256444,16.609709921704532,7427.494469553707,2019
+2001,55,"(50,55]",College,15158.805508798776,2927.057262114888,5.178855126956442,298.1170901947365,2019
+2001,55,"(50,55]",College,15157.298852333588,2927.057262114888,5.1783403927608775,287.5135111000577,2019
+2001,55,"(50,55]",College,15155.306717674064,2927.057262114888,5.177659799768964,299.21915357724225,2019
+2001,55,"(50,55]",College,15157.131446059679,2927.057262114888,5.178283200072482,291.7502259500151,2019
+2001,55,"(50,55]",College,15156.948973221119,2927.057262114888,5.1782208600421304,288.66257981899935,2019
+2001,28,"(25,30]",HS,0,37.87956456854561,0,3923.786921359133,2019
+2001,28,"(25,30]",HS,0,37.87956456854561,0,3935.0888105925233,2019
+2001,28,"(25,30]",HS,0,37.87956456854561,0,3939.7957415460396,2019
+2001,28,"(25,30]",HS,0,37.87956456854561,0,3928.2684720014004,2019
+2001,28,"(25,30]",HS,0,37.87956456854561,0,3934.712122807273,2019
+2001,67,"(65,70]",College,13665.206732976283,430.4495973698365,31.746357335386985,1377.2768080910696,2019
+2001,67,"(65,70]",College,13663.532670237184,430.4495973698365,31.742468232576044,1403.580446927317,2019
+2001,67,"(65,70]",College,13666.37857689365,430.4495973698365,31.74907970735464,1399.780285171635,2019
+2001,67,"(65,70]",College,13665.206732976283,430.4495973698365,31.746357335386985,1399.742957227751,2019
+2001,67,"(65,70]",College,13663.532670237184,430.4495973698365,31.742468232576044,1395.3683720027577,2019
+2001,52,"(50,55]",HS,7384.290742157613,494.15613778057224,14.943233884178877,3687.287979209405,2019
+2001,52,"(50,55]",HS,7385.964804896711,494.15613778057224,14.946621604397464,3633.9889219487354,2019
+2001,52,"(50,55]",HS,7385.964804896711,495.87793617005156,14.894723612715529,3732.726985571312,2019
+2001,52,"(50,55]",HS,7384.290742157613,494.15613778057224,14.943233884178877,3619.162569798528,2019
+2001,52,"(50,55]",HS,7384.290742157613,494.15613778057224,14.943233884178877,3597.716146931495,2019
+2001,74,"(70,75]",HS,1044.6151491966334,34.43596778958692,30.335001925298418,7705.16140569924,2019
+2001,74,"(70,75]",HS,1022.8523335883704,34.43596778958692,29.70302271852137,7043.5152521199025,2019
+2001,74,"(70,75]",HS,1006.7813312930375,34.43596778958692,29.236330381209086,6478.726910361549,2019
+2001,74,"(70,75]",HS,1042.7736801836265,34.43596778958692,30.28152676164805,7237.365125871294,2019
+2001,74,"(70,75]",HS,1025.6982402448355,34.43596778958692,29.78566615325375,7015.592970568611,2019
+2001,41,"(40,45]",College,725.2039785768937,265.1569519798192,2.73499892483335,6191.4874268201675,2019
+2001,41,"(40,45]",College,734.5787299158378,265.1569519798192,2.770354404932765,5631.957597819472,2019
+2001,41,"(40,45]",College,732.7372609028308,265.1569519798192,2.7634095784846653,5264.801300554007,2019
+2001,41,"(40,45]",College,721.3536342769702,266.8787503692986,2.702926453600308,5887.794619554818,2019
+2001,41,"(40,45]",College,717.1684774292272,266.8787503692986,2.6872445874271804,5660.744589867223,2019
+2001,66,"(65,70]",HS,1097.8503442999233,156.68365344262045,7.0067956687132655,1706.2335487170426,2019
+2001,66,"(65,70]",HS,1096.3436878347359,158.40545183209983,6.921123453483114,1717.6168293443066,2019
+2001,66,"(65,70]",HS,1096.3436878347359,156.68365344262045,6.997179755169743,1640.074596071418,2019
+2001,66,"(65,70]",HS,1096.3436878347359,156.68365344262045,6.997179755169743,1711.0691759401343,2019
+2001,66,"(65,70]",HS,1096.3436878347359,158.40545183209983,6.921123453483114,1814.93604251649,2019
+2001,75,"(70,75]",HS,805.8100994644224,91.25531464240532,8.830281311527816,8091.983966763257,2019
+2001,75,"(70,75]",HS,1129.0213925019127,118.80408887407486,9.50321999185236,7303.161694173349,2019
+2001,75,"(70,75]",HS,683.8378882938026,72.31553235813253,9.456307185947155,6906.893606750484,2019
+2001,75,"(70,75]",HS,895.8746748278501,51.653951684380374,17.343778077268645,7723.917685809545,2019
+2001,75,"(70,75]",HS,1013.1427697016068,113.63869370563681,8.915473565069254,7423.0858126216335,2019
+2001,44,"(40,45]",College,401.7750573833206,509.65232328588644,0.7883316508653435,4874.472108763306,2019
+2001,44,"(40,45]",College,408.9735271614384,509.65232328588644,0.8024559262766809,4427.946921810792,2019
+2001,44,"(40,45]",College,430.5689364957919,513.0959200648451,0.8391587608831045,4157.721784372142,2019
+2001,44,"(40,45]",College,441.11553175210406,513.0959200648451,0.8597135827865399,4627.962630455582,2019
+2001,44,"(40,45]",College,429.39709257842384,507.930524896407,0.8453854839025472,4460.348759182028,2019
+2001,44,"(40,45]",NoHS,41.26564651874522,86.08991947396729,0.4793319214478245,7429.39223637492,2019
+2001,44,"(40,45]",NoHS,41.26564651874522,86.08991947396729,0.4793319214478245,7609.914839311369,2019
+2001,44,"(40,45]",NoHS,39.59158377964805,86.08991947396729,0.45988640739314596,7813.758770711873,2019
+2001,44,"(40,45]",NoHS,39.424177505738335,86.08991947396729,0.45794185598767817,7544.8465428992695,2019
+2001,44,"(40,45]",NoHS,41.26564651874522,86.08991947396729,0.4793319214478245,7630.259440886539,2019
+2001,68,"(65,70]",HS,1005.6094873756695,37.87956456854561,26.547546119648544,10051.580217947665,2019
+2001,68,"(65,70]",HS,2472.7580719204284,20.661580673752148,119.67903670902324,11057.720725793351,2019
+2001,68,"(65,70]",HS,1558.3850038255546,80.92452430552926,19.25726492925552,9571.066040705447,2019
+2001,68,"(65,70]",HS,2242.909257842387,22.383379063231494,100.20422973253162,11305.465226834665,2019
+2001,68,"(65,70]",HS,943.836572302984,46.488556515942335,20.302557081532825,10483.668510291813,2019
+2001,28,"(25,30]",HS,117.8540168324407,29.27057262114888,4.026365263086366,6280.755712682699,2019
+2001,28,"(25,30]",HS,89.0601377199694,29.27057262114888,3.0426510226732204,6362.255905874395,2019
+2001,28,"(25,30]",HS,99.1045141545524,29.27057262114888,3.3858071530498988,6413.044929842004,2019
+2001,28,"(25,30]",HS,115.67773527161438,29.27057262114888,3.952014768171419,6277.847165355109,2019
+2001,28,"(25,30]",HS,47.208569242540165,29.27057262114888,1.612833812770391,6355.693345296554,2019
+2001,48,"(45,50]",College,4647.532976281561,757.5912913709121,6.134617740749817,254.02985305266816,2019
+2001,48,"(45,50]",College,4645.858913542464,757.5912913709121,6.1324080232436025,248.477456631287,2019
+2001,48,"(45,50]",College,4647.532976281561,757.5912913709121,6.134617740749817,256.54893154754114,2019
+2001,48,"(45,50]",College,4647.532976281561,757.5912913709121,6.134617740749817,250.19705672943414,2019
+2001,48,"(45,50]",College,4647.532976281561,757.5912913709121,6.134617740749817,252.15036172146847,2019
+2001,43,"(40,45]",College,43272.01071155318,5716.370653071428,7.569839910276455,1.7884554485052195,2019
+2001,43,"(40,45]",College,43273.68477429228,5716.370653071428,7.570132764403785,1.6832346134503695,2019
+2001,43,"(40,45]",College,43275.358837031374,5716.370653071428,7.570425618531114,1.5207546251843576,2019
+2001,43,"(40,45]",College,43272.01071155318,5716.370653071428,7.569839910276455,2.0784521781938174,2019
+2001,43,"(40,45]",College,43272.01071155318,5716.370653071428,7.569839910276455,1.5387440816567075,2019
+2001,75,"(70,75]",College,948.7750573833206,61.984742021256444,15.306590403456982,8035.521883992318,2019
+2001,75,"(70,75]",College,946.2639632746749,56.819346852818406,16.653904271828804,7254.375112317753,2019
+2001,75,"(70,75]",College,948.7750573833206,60.2629436317771,15.743921557841468,6864.787114930243,2019
+2001,75,"(70,75]",College,947.6032134659525,56.819346852818406,16.677474591895077,7670.518629062544,2019
+2001,75,"(70,75]",College,947.7706197398622,82.64632269500859,11.467789356308561,7371.244701010843,2019
+2001,47,"(45,50]",College,375.49227237949503,44.76675812646299,8.387747697046889,6272.760147986113,2019
+2001,47,"(45,50]",College,375.32486610558533,44.76675812646299,8.384008175113298,6621.033084272194,2019
+2001,47,"(45,50]",College,375.32486610558533,44.76675812646299,8.384008175113298,6662.841472622339,2019
+2001,47,"(45,50]",College,375.65967865340474,44.76675812646299,8.391487218980481,6430.509927250329,2019
+2001,47,"(45,50]",College,375.32486610558533,44.76675812646299,8.384008175113298,6536.156233906746,2019
+2001,37,"(35,40]",HS,33.280367253251725,58.54114524229776,0.5684953226573649,5463.147554690982,2019
+2001,37,"(35,40]",HS,33.09622035195103,58.54114524229776,0.5653497247955785,5415.719034963636,2019
+2001,37,"(35,40]",HS,44.161775057383316,58.54114524229776,0.7543715599447325,5443.307767373101,2019
+2001,37,"(35,40]",HS,35.624055087987756,58.54114524229776,0.608530204534644,5431.014399622514,2019
+2001,37,"(35,40]",HS,39.9766182096404,56.819346852818406,0.7035740539783667,5450.829582562929,2019
+2001,43,"(40,45]",HS,137.74188217291507,149.7964598847031,0.9195269519649107,5968.015365111763,2019
+2001,43,"(40,45]",HS,141.7428921193573,149.7964598847031,0.9462365948331185,6113.028797408395,2019
+2001,43,"(40,45]",HS,141.7428921193573,149.7964598847031,0.9462365948331185,6276.776204460978,2019
+2001,43,"(40,45]",HS,143.91917368018363,148.07466149522375,0.9719365367911096,6060.759569938107,2019
+2001,43,"(40,45]",HS,140.90586074980874,149.7964598847031,0.9406488034380961,6129.371573632163,2019
+2001,63,"(60,65]",College,2783.9663351185923,125.69128243199225,22.149239638993357,11372.833544071005,2019
+2001,63,"(60,65]",College,2783.9663351185923,125.69128243199225,22.149239638993357,11057.720725793351,2019
+2001,63,"(60,65]",College,2783.9663351185923,125.69128243199225,22.149239638993357,13377.496463922676,2019
+2001,63,"(60,65]",College,2782.2922723794954,125.69128243199225,22.13592079375043,11305.465226834665,2019
+2001,63,"(60,65]",College,2784.133741392502,125.69128243199225,22.15057152351765,11291.18149259581,2019
+2001,41,"(40,45]",College,462.3761285386381,215.22479868491826,2.1483403927608777,11278.96182332654,2019
+2001,41,"(40,45]",College,288.10619739862284,215.22479868491826,1.3386291875240661,10085.062013432278,2019
+2001,41,"(40,45]",College,337.15623565416985,215.22479868491826,1.5665306122448976,10181.103007174494,2019
+2001,41,"(40,45]",College,287.9387911247131,215.22479868491826,1.3378513669618788,10047.286636402081,2019
+2001,41,"(40,45]",College,307.0231063504208,215.22479868491826,1.4265229110512125,10038.826299197875,2019
+2001,41,"(40,45]",HS,94.24973221117062,134.30027437938898,0.7017836162041013,9116.01115508329,2019
+2001,41,"(40,45]",HS,92.57566947207346,134.30027437938898,0.689318543092128,9357.765705728447,2019
+2001,41,"(40,45]",HS,92.57566947207346,132.5784759899096,0.6982707319634545,9451.289113041352,2019
+2001,41,"(40,45]",HS,92.57566947207346,132.5784759899096,0.6982707319634545,9226.367622293179,2019
+2001,41,"(40,45]",HS,92.57566947207346,134.30027437938898,0.689318543092128,9377.858351169501,2019
+2001,65,"(60,65]",NoHS,0,14.979645988470308,0,5577.418283824006,2019
+2001,65,"(60,65]",NoHS,0,18.939782284272805,0,5557.2634920688415,2019
+2001,65,"(60,65]",NoHS,0,11.70822904845955,0,5566.472677357882,2019
+2001,65,"(60,65]",NoHS,0,30.992371010628222,0,5585.792926423121,2019
+2001,65,"(60,65]",NoHS,0,22.383379063231494,0,5544.944201488501,2019
+2001,49,"(45,50]",HS,1023.6893649579189,96.42070981084338,10.616903432532041,4937.191895070545,2019
+2001,49,"(45,50]",HS,809.2419280795716,98.14250820032271,8.245580257922436,4468.119773256624,2019
+2001,49,"(45,50]",HS,551.5534506503443,87.81171786344665,6.2810916819558,4185.693433009046,2019
+2001,49,"(45,50]",HS,1063.6157612853863,86.08991947396729,12.354707354639968,4660.955274861103,2019
+2001,49,"(45,50]",HS,776.5977046671767,111.91689531615746,6.939056899973342,4519.7951964610265,2019
+2001,79,"(75,80]",HS,2244.750726855394,75.75912913709122,29.630102040816325,5391.838366469784,2019
+2001,79,"(75,80]",HS,2226.336036725325,75.75912913709122,29.38703311513284,5218.743013529539,2019
+2001,79,"(75,80]",HS,2474.0973221117065,75.75912913709122,32.65741502432877,5643.67694289805,2019
+2001,79,"(75,80]",HS,2231.5256312165266,75.75912913709122,29.455534357825464,5341.851483747738,2019
+2001,79,"(75,80]",HS,3331.3848508033666,75.75912913709122,43.97337837364791,5351.943659540049,2019
+2001,37,"(35,40]",College,3979.247130833971,172.17983894793457,23.11099345398537,1968.7700271518738,2019
+2001,37,"(35,40]",College,3989.291507268554,172.17983894793457,23.169329996149404,1989.9226229084088,2019
+2001,37,"(35,40]",College,3924.0030604437648,172.17983894793457,22.790142472083176,1988.1451540014255,2019
+2001,37,"(35,40]",College,4623.8282478959445,172.17983894793457,26.854643819792066,1989.6427926608908,2019
+2001,37,"(35,40]",College,3895.761622035195,172.17983894793457,22.626119561031963,1970.796164328187,2019
+2001,43,"(40,45]",College,961.6167926549349,351.2468714537866,2.737723438431976,999.8019004169877,2019
+2001,43,"(40,45]",College,961.600052027544,351.2468714537866,2.737675777858313,992.3707894850106,2019
+2001,43,"(40,45]",College,961.2652394797245,351.2468714537866,2.736722566385044,953.7564493061698,2019
+2001,43,"(40,45]",College,961.4326457536343,351.2468714537866,2.7371991721216786,991.3545561883251,2019
+2001,43,"(40,45]",College,961.2652394797245,351.2468714537866,2.736722566385044,1045.8977580992123,2019
+2001,40,"(35,40]",College,12717.017597551647,860.899194739673,14.771784751636504,172.02463374934786,2019
+2001,40,"(35,40]",College,12700.276970160672,860.899194739673,14.752339237581822,161.037107519999,2019
+2001,40,"(35,40]",College,12840.898240244836,860.899194739673,14.915681555641124,172.1157236483978,2019
+2001,40,"(35,40]",College,12606.529456771232,860.899194739673,14.643444358875623,169.53909477072477,2019
+2001,40,"(35,40]",College,13386.642693190513,860.899194739673,15.54960531382364,163.31319795449969,2019
+2001,44,"(40,45]",HS,14887.439938791125,430.4495973698365,34.585791297651134,281.0197025005382,2019
+2001,44,"(40,45]",HS,14885.765876052028,430.4495973698365,34.5819021948402,281.2625503227631,2019
+2001,44,"(40,45]",HS,14889.114001530223,430.4495973698365,34.589680400462065,287.22942258935757,2019
+2001,44,"(40,45]",HS,14889.114001530223,430.4495973698365,34.589680400462065,282.16210953872474,2019
+2001,44,"(40,45]",HS,14889.114001530223,430.4495973698365,34.589680400462065,285.3353666721919,2019
+2001,40,"(35,40]",HS,135.73300688599846,111.91689531615746,1.2128017535025621,6343.8844245060745,2019
+2001,40,"(35,40]",HS,170.88832440703902,111.91689531615746,1.5269215959242914,6325.225848533078,2019
+2001,40,"(35,40]",HS,162.5180107115532,111.91689531615746,1.4521311572524513,6384.332629218212,2019
+2001,40,"(35,40]",HS,120.66644223412396,111.91689531615746,1.0781789638932497,6370.189077396147,2019
+2001,40,"(35,40]",HS,107.60875286916603,111.91689531615746,0.9615058795651789,6393.85733064655,2019
+2001,58,"(55,60]",HS,105712.37459831676,111.91689531615746,944.5613577796868,30.131628782247866,2019
+2001,58,"(55,60]",HS,108559.78791124714,113.63869370563681,955.3065454312087,31.99379175914594,2019
+2001,58,"(55,60]",HS,110357.73129303749,113.63869370563681,971.128122775697,31.70035336262643,2019
+2001,58,"(55,60]",HS,113659.82004590667,113.63869370563681,1000.1859079824042,31.19241932845557,2019
+2001,58,"(55,60]",HS,108324.74950267789,113.63869370563681,953.2382498453928,33.61730429824509,2019
+2001,48,"(45,50]",HS,347.4684621270084,134.30027437938898,2.587250575121195,6470.445029091264,2019
+2001,48,"(45,50]",HS,190.6422647283856,87.81171786344665,2.1710344515164555,6769.014704637322,2019
+2001,48,"(45,50]",HS,629.3806273909717,134.30027437938898,4.686368887177512,5641.151279812142,2019
+2001,48,"(45,50]",HS,670.5290895179801,134.30027437938898,4.992760384269817,6340.071693688133,2019
+2001,48,"(45,50]",HS,152.8251874521806,87.81171786344665,1.7403735078937235,6660.155707964815,2019
+2001,41,"(40,45]",NoHS,-1.1718439173680184,41.323161347504296,-0.028358041329739445,5275.8388170545495,2019
+2001,41,"(40,45]",NoHS,-1.3392501912777353,41.323161347504296,-0.032409190091130795,5310.239774559232,2019
+2001,41,"(40,45]",NoHS,-1.1718439173680184,41.323161347504296,-0.028358041329739445,5256.231137840928,2019
+2001,41,"(40,45]",NoHS,-1.3392501912777353,41.323161347504296,-0.032409190091130795,5259.324906578163,2019
+2001,41,"(40,45]",NoHS,-1.1718439173680184,41.323161347504296,-0.028358041329739445,5324.587830588944,2019
+2001,24,"(20,25]",HS,439.77628156082636,48.21035490542169,9.122029539578634,7265.769406325648,2019
+2001,24,"(20,25]",HS,440.1110941086458,48.21035490542169,9.128974366026734,7240.551442299929,2019
+2001,24,"(20,25]",HS,440.1110941086458,48.21035490542169,9.128974366026734,7270.90324660311,2019
+2001,24,"(20,25]",HS,440.1110941086458,48.21035490542169,9.128974366026734,7251.17579080719,2019
+2001,24,"(20,25]",HS,486.9848508033665,48.21035490542169,10.101250068760656,7241.2237415977115,2019
+2001,43,"(40,45]",College,242.06947207345067,215.22479868491826,1.1247285329226029,166.19624574277174,2019
+2001,43,"(40,45]",College,243.91094108645754,215.22479868491826,1.1332845591066614,169.45736963347295,2019
+2001,43,"(40,45]",College,245.417597551645,215.22479868491826,1.1402849441663456,165.81285425908976,2019
+2001,43,"(40,45]",College,240.5628156082632,215.22479868491826,1.1177281478629186,167.9955260355593,2019
+2001,43,"(40,45]",College,228.844376434583,215.22479868491826,1.0632807085098188,162.81070701266395,2019
+2001,62,"(60,65]",HS,12.555470543228768,55.097548463339066,0.2278771178282634,6470.945773173475,2019
+2001,62,"(60,65]",HS,14.06212700841622,55.097548463339066,0.255222371967655,6833.100960118185,2019
+2001,62,"(60,65]",HS,4.185156847742923,55.097548463339066,0.0759590392760878,6867.484940306841,2019
+2001,62,"(60,65]",HS,14.06212700841622,55.097548463339066,0.255222371967655,6660.266197261316,2019
+2001,62,"(60,65]",HS,12.38806426931905,55.097548463339066,0.22483875625721986,6759.231660294111,2019
+2001,58,"(55,60]",College,1248.5159908186686,94.69891142136402,13.184058529072004,643.3529459066046,2019
+2001,58,"(55,60]",College,1248.6833970925784,94.69891142136402,13.185826303076977,634.7896248976535,2019
+2001,58,"(55,60]",College,1248.5159908186686,94.69891142136402,13.184058529072004,671.5346107653914,2019
+2001,58,"(55,60]",College,1248.5159908186686,94.69891142136402,13.184058529072004,651.8166324433345,2019
+2001,58,"(55,60]",College,1248.5159908186686,94.69891142136402,13.184058529072004,652.3771932659919,2019
+2001,31,"(30,35]",College,139.19831675592962,321.97629883263767,0.4323247309215282,5755.890725214022,2019
+2001,31,"(30,35]",College,156.44116296863047,210.0594035164802,0.7447472493482392,5746.232942779968,2019
+2001,31,"(30,35]",College,142.54644223412393,321.97629883263767,0.4427234015390032,5776.888191261179,2019
+2001,31,"(30,35]",College,126.30803366488142,182.51062928481065,0.6920585072761751,5815.077957789474,2019
+2001,31,"(30,35]",College,148.90788064269321,268.60054875877796,0.5543841266550162,5761.121304242361,2019
+2001,33,"(30,35]",HS,447.3095638867636,167.01444377949653,2.6782687399021077,5892.2227924456365,2019
+2001,33,"(30,35]",HS,431.57337413925023,167.01444377949653,2.5840482078845937,5888.1484052626265,2019
+2001,33,"(30,35]",HS,330.7947972456006,141.18746793730637,2.342947303173455,5506.418097819335,2019
+2001,33,"(30,35]",HS,633.4653404743688,165.29264539001719,3.8323867282762163,6134.79116122853,2019
+2001,33,"(30,35]",HS,447.97918898240243,199.7286131796041,2.242939465962052,5960.0578930201245,2019
+2001,32,"(30,35]",HS,3.6996786534047437,29.27057262114888,0.12639584135541007,5057.084015778653,2019
+2001,32,"(30,35]",HS,3.8838255547054326,24.105177452710844,0.16111997359590735,5008.313235240735,2019
+2001,32,"(30,35]",HS,3.8670849273144605,34.43596778958692,0.11229784366576818,5005.458918651997,2019
+2001,32,"(30,35]",HS,3.8838255547054326,32.71416940010757,0.1187199805443528,5030.440075692645,2019
+2001,32,"(30,35]",HS,4.001009946442235,18.939782284272805,0.2112489935940071,5023.254489531386,2019
+2001,27,"(25,30]",HS,242.37080336648813,122.24768565303354,1.9826207921382744,6141.433213542119,2019
+2001,27,"(25,30]",HS,207.583779648049,80.92452430552926,2.565152917851203,6221.1255334275875,2019
+2001,27,"(25,30]",HS,218.88370313695486,86.08991947396729,2.542500962649211,6270.787932818191,2019
+2001,27,"(25,30]",HS,167.43975516449885,103.30790336876075,1.6207835964574508,6138.589184896845,2019
+2001,27,"(25,30]",HS,219.30221882172916,86.08991947396729,2.5473623411628803,6214.708546468955,2019
+2001,54,"(50,55]",College,958.1330680948738,270.3223471482573,3.5444093993804713,6668.302704590006,2019
+2001,54,"(50,55]",College,731.7328232593726,270.3223471482573,2.7068898704776947,6054.683483614431,2019
+2001,54,"(50,55]",College,800.9553175210406,268.60054875877796,2.981957115211832,5652.9356560047145,2019
+2001,54,"(50,55]",College,948.0384697781178,270.3223471482573,3.5070665809888433,6339.511191639233,2019
+2001,54,"(50,55]",College,879.6027850038256,268.60054875877796,3.2747616826120867,6084.369497544833,2019
+2001,50,"(45,50]",College,3284.008875286917,204.89400834804215,16.027842403807885,1333.3591269231874,2019
+2001,50,"(45,50]",College,2957.231828615149,211.78120190595953,13.96361812097135,2961.4422953387016,2019
+2001,50,"(45,50]",College,3859.903198163734,210.0594035164802,18.37529352910357,1377.9275492970335,2019
+2001,50,"(45,50]",College,3258.378974751339,315.0891052747202,10.341135000241978,1321.866077298315,2019
+2001,50,"(45,50]",College,3827.4263810252487,227.27738741127362,16.840330772103012,1310.1284810465022,2019
+2001,52,"(50,55]",HS,136.26870696250958,167.01444377949653,0.8159097134282619,9106.924045073061,2019
+2001,52,"(50,55]",HS,136.4361132364193,168.7362421689759,0.8085762221715794,9590.466474163164,2019
+2001,52,"(50,55]",HS,136.26870696250958,167.01444377949653,0.8159097134282619,9627.823952145885,2019
+2001,52,"(50,55]",HS,137.94276970160675,168.7362421689759,0.8175052847477073,9308.814131787776,2019
+2001,52,"(50,55]",HS,136.4361132364193,168.7362421689759,0.8085762221715794,9493.255543606205,2019
+2001,63,"(60,65]",HS,12251.293343534813,232.44278257971166,52.70670574309389,1309.875691234458,2019
+2001,63,"(60,65]",HS,12252.967406273909,232.44278257971166,52.71390778533636,1288.703853066279,2019
+2001,63,"(60,65]",HS,12253.13481254782,232.44278257971166,52.71462798956061,1309.5839953610405,2019
+2001,63,"(60,65]",HS,12251.460749808723,232.44278257971166,52.707425947318136,1297.787984389032,2019
+2001,63,"(60,65]",HS,12251.460749808723,232.44278257971166,52.707425947318136,1268.21642808313,2019
+2001,42,"(40,45]",HS,44.697475133894415,137.74387115834767,0.32449701578744705,4847.218461276394,2019
+2001,42,"(40,45]",HS,69.64100994644224,137.74387115834767,0.5055833654216404,4778.345495498832,2019
+2001,42,"(40,45]",HS,12.053251721499617,137.74387115834767,0.08750481324605312,4873.724005918926,2019
+2001,42,"(40,45]",HS,15.401377199693956,137.74387115834767,0.11181170581440122,4855.100768977465,2019
+2001,42,"(40,45]",HS,6.194032134659525,137.74387115834767,0.04496775125144397,4911.753794996199,2019
+2001,43,"(40,45]",HS,0.0016740627390971691,12.052588726355422,1.388965289619891e-4,5447.577455565163,2019
+2001,43,"(40,45]",HS,0.0016740627390971691,12.052588726355422,1.388965289619891e-4,5388.213749550954,2019
+2001,43,"(40,45]",HS,0.0016740627390971691,12.052588726355422,1.388965289619891e-4,5406.621517293279,2019
+2001,43,"(40,45]",HS,0.0016740627390971691,12.052588726355422,1.388965289619891e-4,5385.961998320296,2019
+2001,43,"(40,45]",HS,0.0016740627390971691,12.052588726355422,1.388965289619891e-4,5448.809518844782,2019
+2001,40,"(35,40]",College,2077.1770466717676,294.4275246009682,7.0549689587851026,89.92502700636253,2019
+2001,40,"(35,40]",College,2077.1770466717676,294.4275246009682,7.0549689587851026,82.78909009615133,2019
+2001,40,"(35,40]",College,2076.842234123948,294.4275246009682,7.053831794220501,93.17183945184244,2019
+2001,40,"(35,40]",College,2077.1770466717676,294.4275246009682,7.0549689587851026,89.43044629692022,2019
+2001,40,"(35,40]",College,2075.3355776587605,294.4275246009682,7.048714553679796,87.02686165510268,2019
+2001,28,"(25,30]",HS,201.30604437643458,92.97711303188467,2.1651139491435987,7555.912819925254,2019
+2001,28,"(25,30]",HS,259.2620964039786,91.25531464240532,2.841062982686845,7653.959676503362,2019
+2001,28,"(25,30]",HS,180.4807039020658,101.5861049792814,1.7766278561312598,7715.06019606878,2019
+2001,28,"(25,30]",HS,234.56967100229534,41.323161347504296,5.676469644461559,7552.413761683662,2019
+2001,28,"(25,30]",HS,743.6688905891355,110.19509692667813,6.748656803523296,7037.855232105843,2019
+2001,54,"(50,55]",HS,27.454628921193574,115.36049209511619,0.23798987350502013,5078.448753093429,2019
+2001,54,"(50,55]",HS,23.269472073450654,115.36049209511619,0.20171092937315732,5164.698415400984,2019
+2001,54,"(50,55]",HS,30.46794185156848,115.36049209511619,0.26411071327996133,5159.662081934046,2019
+2001,54,"(50,55]",HS,30.46794185156848,115.36049209511619,0.26411071327996133,5098.774855628754,2019
+2001,54,"(50,55]",HS,22.767253251721502,115.36049209511619,0.19735745607733376,5134.467207336668,2019
+2001,31,"(30,35]",HS,12.831690895179802,43.04495973698364,0.2980997304582211,4244.859216564618,2019
+2001,31,"(30,35]",HS,12.840061208875287,43.04495973698364,0.29829418559876786,4203.921574117015,2019
+2001,31,"(30,35]",HS,12.840061208875287,43.04495973698364,0.29829418559876786,4201.525693004323,2019
+2001,31,"(30,35]",HS,13.007467482785003,43.04495973698364,0.3021832884097035,4222.494594128684,2019
+2001,31,"(30,35]",HS,13.007467482785003,43.04495973698364,0.3021832884097035,4216.463094246958,2019
+2001,23,"(20,25]",College,-68.35198163733742,139.46566954782702,-0.4900989746003223,7204.119877349949,2019
+2001,23,"(20,25]",College,-40.780168324407036,136.02207276886833,-0.2998055204885871,7211.442303575845,2019
+2001,23,"(20,25]",College,48.7319663351186,137.74387115834767,0.35378682133230654,7102.634894600128,2019
+2001,23,"(20,25]",College,-47.175087987758225,136.02207276886833,-0.34681935826635407,7142.899920837129,2019
+2001,23,"(20,25]",College,-31.25475133894415,123.96948404251289,-0.2521164912505883,7178.364907030349,2019
+2001,33,"(30,35]",HS,89.0601377199694,86.08991947396729,1.0345013477088951,4059.316376818732,2019
+2001,33,"(30,35]",HS,89.0601377199694,86.08991947396729,1.0345013477088951,4080.1282721239886,2019
+2001,33,"(30,35]",HS,89.22754399387911,86.08991947396729,1.0364458991143628,4091.839563182788,2019
+2001,33,"(30,35]",HS,89.0601377199694,86.08991947396729,1.0345013477088951,4086.2675585795914,2019
+2001,33,"(30,35]",HS,89.0601377199694,86.08991947396729,1.0345013477088951,4060.5223994718517,2019
+2001,32,"(30,35]",College,1672.0220566182097,206.6158067375215,8.092420822102426,11372.833544071005,2019
+2001,32,"(30,35]",College,1673.6961193573068,206.6158067375215,8.100523119625208,11057.720725793351,2019
+2001,32,"(30,35]",College,1672.0220566182097,206.6158067375215,8.092420822102426,13377.496463922676,2019
+2001,32,"(30,35]",College,1673.5287130833972,206.6158067375215,8.099712889872931,11305.465226834665,2019
+2001,32,"(30,35]",College,1672.0053159908186,206.6158067375215,8.092339799127197,11291.18149259581,2019
+2001,88,"(85,90]",HS,499.2389900535578,11.880408887407485,42.02203769120446,8142.580648640901,2019
+2001,88,"(85,90]",HS,416.6742157612854,27.548774231669533,15.1249639006546,8423.108066207786,2019
+2001,88,"(85,90]",HS,456.01469013006886,18.939782284272805,24.077081947701892,8577.0290855952735,2019
+2001,88,"(85,90]",HS,688.2071920428463,30.992371010628222,22.20569674410645,7059.133789260419,2019
+2001,88,"(85,90]",HS,424.7431981637338,9.642070981084336,44.051034160294854,8507.819935254753,2019
+2001,44,"(40,45]",College,204.40306044376436,163.57084700053784,1.2496301400401275,8894.333041979042,2019
+2001,44,"(40,45]",College,317.90451415455243,153.24005666366176,2.074552314035642,9224.428230483398,2019
+2001,44,"(40,45]",College,206.9141545524101,129.1348792109509,1.6023103581055067,9310.645123031958,2019
+2001,44,"(40,45]",College,382.57355776587605,167.01444377949653,2.2906615087194186,9033.689151790799,2019
+2001,44,"(40,45]",College,372.4789594491201,136.02207276886833,2.738371441244279,9240.903988674783,2019
+2001,29,"(25,30]",College,-11.048814078041316,39.60136295802496,-0.2790008538279955,5431.5796051632515,2019
+2001,29,"(25,30]",College,-9.056679418515685,39.60136295802496,-0.2286961544256751,5446.882485227382,2019
+2001,29,"(25,30]",College,-11.216220351951034,39.60136295802496,-0.28322813949205605,5449.384757064788,2019
+2001,29,"(25,30]",College,-9.039938791124712,39.60136295802496,-0.228273425859269,5451.750360134827,2019
+2001,29,"(25,30]",College,-9.190604437643458,39.60136295802496,-0.2320779829569235,5435.442087598458,2019
+2001,79,"(75,80]",College,4419.693037490436,77.48092752657055,57.04233517306294,1994.206237567935,2019
+2001,79,"(75,80]",College,3082.116908951798,68.87193557917384,44.75141990758567,1153.3119102354835,2019
+2001,79,"(75,80]",College,1992.302065799541,92.97711303188467,21.42787618191931,1213.5633843671574,2019
+2001,79,"(75,80]",College,15038.44039785769,91.25531464240532,164.79522816602613,2014.9280804542475,2019
+2001,79,"(75,80]",College,1997.4916602907422,80.92452430552926,24.683390819193995,1184.2087506901282,2019
+2001,53,"(50,55]",HS,862.142310635042,61.984742021256444,13.908944080776964,545.576694629325,2019
+2001,53,"(50,55]",HS,769.7340474368783,61.984742021256444,12.41812133658495,537.4995761192233,2019
+2001,53,"(50,55]",HS,1468.1530221882174,63.706540410735805,23.045561926963543,86.9582033794762,2019
+2001,53,"(50,55]",HS,1571.7775057383321,61.984742021256444,25.357490480468922,180.03954509071855,2019
+2001,53,"(50,55]",HS,1487.906962509564,82.64632269500859,18.00330509562316,97.17588405840115,2019
+2001,63,"(60,65]",NoHS,8.370313695485846,29.27057262114888,0.28596344198056584,6073.685481165971,2019
+2001,63,"(60,65]",NoHS,8.370313695485846,30.992371010628222,0.27007658409275664,6355.639615981136,2019
+2001,63,"(60,65]",NoHS,8.370313695485846,30.992371010628222,0.27007658409275664,6486.118706841959,2019
+2001,63,"(60,65]",NoHS,8.370313695485846,30.992371010628222,0.27007658409275664,6250.906712694272,2019
+2001,63,"(60,65]",NoHS,8.370313695485846,29.27057262114888,0.28596344198056584,6281.287518617671,2019
+2001,57,"(55,60]",College,325.52149961744453,60.2629436317771,5.401686011331757,7014.397014409357,2019
+2001,57,"(55,60]",College,327.028156082632,60.2629436317771,5.4266873865449154,7398.534417478203,2019
+2001,57,"(55,60]",College,327.028156082632,60.2629436317771,5.4266873865449154,7458.349146787425,2019
+2001,57,"(55,60]",College,325.52149961744453,60.2629436317771,5.401686011331757,7267.229626630881,2019
+2001,57,"(55,60]",College,360.6768171384851,60.2629436317771,5.985051432972111,7339.855780743443,2019
+2001,52,"(50,55]",HS,-0.701432287681714,41.323161347504296,-0.016974313310229756,4666.77373403906,2019
+2001,52,"(50,55]",HS,-0.7181729150726855,41.323161347504296,-0.017379428186368888,4687.055486489632,2019
+2001,52,"(50,55]",HS,-0.7181729150726855,41.323161347504296,-0.017379428186368888,4677.667404471709,2019
+2001,52,"(50,55]",HS,-0.7181729150726855,41.323161347504296,-0.017379428186368888,4643.521973981382,2019
+2001,52,"(50,55]",HS,-0.701432287681714,41.323161347504296,-0.016974313310229756,4683.357853290978,2019
+2001,24,"(20,25]",College,-34.20110175975516,34.43596778958692,-0.993179630342703,4636.727774082757,2019
+2001,24,"(20,25]",College,-34.016954858454476,34.43596778958692,-0.9878321139776665,4652.130194507198,2019
+2001,24,"(20,25]",College,-34.03369548584545,34.43596778958692,-0.9883182518290334,4660.179320834359,2019
+2001,24,"(20,25]",College,-33.86628921193573,34.43596778958692,-0.9834568733153638,4610.726061287658,2019
+2001,24,"(20,25]",College,-34.85398622800306,34.43596778958692,-1.0121390065460145,4618.239859732229,2019
+2001,49,"(45,50]",HS,3322.679724560061,258.2697584219018,12.86515209857528,1319.1587371130024,2019
+2001,49,"(45,50]",HS,4984.638990053558,258.2697584219018,19.300126427929666,1325.1180605892032,2019
+2001,49,"(45,50]",HS,4122.429716908952,258.2697584219018,15.961720575022467,1363.797163007133,2019
+2001,49,"(45,50]",HS,4596.089028309105,258.2697584219018,17.795691823899375,1308.4194378392235,2019
+2001,49,"(45,50]",HS,7559.832960979343,258.2697584219018,29.271073032986788,1295.8822183373215,2019
+2001,63,"(60,65]",HS,341.40835501147666,61.984742021256444,5.507941855987679,5580.8479211116955,2019
+2001,63,"(60,65]",HS,341.07354246365725,63.706540410735805,5.353823018243503,5906.759989130474,2019
+2001,63,"(60,65]",HS,329.3383626625861,63.706540410735805,5.169616189157968,5950.788512619885,2019
+2001,63,"(60,65]",HS,335.39846977811783,63.706540410735805,5.264741541695718,5760.8703565421965,2019
+2001,63,"(60,65]",HS,341.7431675592961,63.706540410735805,5.364334106921707,5827.067444185019,2019
+2001,64,"(60,65]",College,2042.3565416985464,676.6667670653829,3.0182604512350815,128.01543172082614,2019
+2001,64,"(60,65]",College,1910.1055853098699,743.8169042550774,2.5679781870819607,121.17292405182516,2019
+2001,64,"(60,65]",College,1916.8018362662585,699.0501461286143,2.7420090631289233,132.91207086543065,2019
+2001,64,"(60,65]",College,1841.4690130068861,716.2681300234078,2.57092132934451,126.38105454955766,2019
+2001,64,"(60,65]",College,1915.1277735271615,740.3733074761187,2.5867055905293226,126.18372806194986,2019
+2001,70,"(65,70]",College,17264.5102586075,273.76594392721603,63.06303118256915,172.02463374934786,2019
+2001,70,"(65,70]",College,16107.44664116297,649.1179928337134,24.81435858963975,161.037107519999,2019
+2001,70,"(65,70]",College,27636.16428462127,346.0814762853485,79.85450299522795,167.96700212053682,2019
+2001,70,"(65,70]",College,17715.23323641928,349.52507306430715,50.68372658106835,169.53909477072477,2019
+2001,70,"(65,70]",College,16921.69401683244,399.4572263592082,42.361717100633356,163.31319795449969,2019
+2001,52,"(50,55]",College,331.6318286151492,396.01362958024953,0.8374252900503926,5913.216569260538,2019
+2001,52,"(50,55]",College,329.957765876052,396.01362958024953,0.8331980043863321,5370.6882212794135,2019
+2001,52,"(50,55]",College,329.957765876052,396.01362958024953,0.8331980043863321,5017.2732495769,2019
+2001,52,"(50,55]",College,328.4511094108646,396.01362958024953,0.8293934472886777,5622.018487668398,2019
+2001,52,"(50,55]",College,328.2837031369549,396.01362958024953,0.8289707187222716,5395.371235722993,2019
+2001,30,"(25,30]",HS,55.771400153022185,91.25531464240532,0.6111578308788805,9893.556945139673,2019
+2001,30,"(25,30]",HS,72.51202754399388,91.25531464240532,0.7946060766777342,10035.414950690309,2019
+2001,30,"(25,30]",HS,27.312333588370315,91.25531464240532,0.2992958130208296,9642.323801711456,2019
+2001,30,"(25,30]",HS,55.7630298393267,91.25531464240532,0.6110661067559812,10038.314147768306,2019
+2001,30,"(25,30]",HS,42.37052792654935,91.25531464240532,0.4643075101168983,9527.190088863887,2019
+2001,49,"(45,50]",College,486.114338179036,198.00681479012476,2.4550384222597983,11278.96182332654,2019
+2001,49,"(45,50]",College,486.114338179036,198.00681479012476,2.4550384222597983,11042.086600875853,2019
+2001,49,"(45,50]",College,484.4402754399388,198.00681479012476,2.446583850931677,10408.773231555759,2019
+2001,49,"(45,50]",College,487.78840091813316,198.00681479012476,2.4634929935879195,11161.037161086704,2019
+2001,49,"(45,50]",College,487.78840091813316,198.00681479012476,2.4634929935879195,11386.752961154238,2019
+2001,55,"(50,55]",College,7092.836419280796,781.696468823623,9.073645209060267,1461.0710593148456,2019
+2001,55,"(50,55]",College,7092.836419280796,781.696468823623,9.073645209060267,1434.7745263077823,2019
+2001,55,"(50,55]",College,7091.1623565416985,781.696468823623,9.071503632622527,1458.2108906091098,2019
+2001,55,"(50,55]",College,7092.836419280796,781.696468823623,9.073645209060267,1447.307452835343,2019
+2001,55,"(50,55]",College,7092.836419280796,781.696468823623,9.073645209060267,1411.6393588282385,2019
+2001,66,"(65,70]",College,661.5058913542464,72.31553235813253,9.147493903221665,10603.312285450324,2019
+2001,66,"(65,70]",College,661.5058913542464,72.31553235813253,9.147493903221665,9548.643785159054,2019
+2001,66,"(65,70]",College,661.3384850803367,74.03733074761188,8.932500380582246,9008.190668416337,2019
+2001,66,"(65,70]",College,661.3384850803367,72.31553235813253,9.145178961072299,10069.575827233557,2019
+2001,66,"(65,70]",College,661.3384850803367,72.31553235813253,9.145178961072299,9604.990317714784,2019
+2001,49,"(45,50]",College,243.24131599081866,105.0297017582401,2.3159288460203133,5749.308087587757,2019
+2001,49,"(45,50]",College,244.91537872991583,105.0297017582401,2.331867791966771,5992.731905864046,2019
+2001,49,"(45,50]",College,242.73909716908952,105.0297017582401,2.311147162236376,6019.93527329513,2019
+2001,49,"(45,50]",College,244.74797245600612,103.30790336876075,2.3691117956616607,5856.152505261657,2019
+2001,49,"(45,50]",College,245.2501912777353,105.0297017582401,2.335055581156063,5934.126345622644,2019
+2001,69,"(65,70]",College,34483.01392501913,5234.267104017211,6.58793547210344,31.158612899581744,2019
+2001,69,"(65,70]",College,34483.01392501913,5234.267104017211,6.58793547210344,31.35233493622863,2019
+2001,69,"(65,70]",College,34483.01392501913,5217.049120122418,6.60967783339751,31.308935746313466,2019
+2001,69,"(65,70]",College,34483.01392501913,5234.267104017211,6.58793547210344,32.2781370975615,2019
+2001,69,"(65,70]",College,34483.01392501913,5234.267104017211,6.58793547210344,31.821185909787907,2019
+2001,58,"(55,60]",College,51250.66068859985,5354.792991280766,9.570988229059749,21.244431568912304,2019
+2001,58,"(55,60]",College,37726.25937260903,5251.485087912005,7.183922022257712,22.427839684187358,2019
+2001,58,"(55,60]",College,39979.916113236424,5440.882910754733,7.348056697601421,22.737285536906235,2019
+2001,58,"(55,60]",College,52491.69361897475,5458.100894649526,9.61720837195065,22.414654602331474,2019
+2001,58,"(55,60]",College,52541.94898240245,5285.921055701591,9.939979887843528,23.060798428848024,2019
+2001,38,"(35,40]",College,578.8071920428463,194.5632180111661,2.9749055240730455,11278.96182332654,2019
+2001,38,"(35,40]",College,585.6708492731447,194.5632180111661,3.0101827840837454,11042.086600875853,2019
+2001,38,"(35,40]",College,570.4368783473604,194.5632180111661,2.9318844752795092,10408.773231555759,2019
+2001,38,"(35,40]",College,580.4812547819434,194.5632180111661,2.983509733831753,11161.037161086704,2019
+2001,38,"(35,40]",College,582.3227237949503,194.5632180111661,2.9929743645663307,11386.752961154238,2019
+2001,39,"(35,40]",NoHS,1.674062739097169,34.43596778958692,0.04861378513669618,6338.557638508046,2019
+2001,39,"(35,40]",NoHS,1.506656465187452,34.43596778958692,0.04375240662302656,6341.14473774209,2019
+2001,39,"(35,40]",NoHS,1.674062739097169,34.43596778958692,0.04861378513669618,6388.707444251066,2019
+2001,39,"(35,40]",NoHS,1.506656465187452,34.43596778958692,0.04375240662302656,6365.155656185217,2019
+2001,39,"(35,40]",NoHS,1.674062739097169,34.43596778958692,0.04861378513669618,6398.52660484258,2019
+2001,46,"(45,50]",HS,867.499311400153,129.1348792109509,6.717776922089592,7205.068661807454,2019
+2001,46,"(45,50]",HS,867.499311400153,129.1348792109509,6.717776922089592,6542.0560759674945,2019
+2001,46,"(45,50]",HS,864.3185921958684,129.1348792109509,6.693145937620332,6107.969500883328,2019
+2001,46,"(45,50]",HS,870.8474368783474,129.1348792109509,6.743704274162496,6849.811030116677,2019
+2001,46,"(45,50]",HS,881.7288446824789,129.1348792109509,6.827968168399436,6574.131669733913,2019
+2001,23,"(20,25]",HS,8.03550114766641,36.157766179066265,0.22223444633918252,7934.669512771742,2019
+2001,23,"(20,25]",HS,8.03550114766641,25.826975842190187,0.3111282248748556,7949.100348111746,2019
+2001,23,"(20,25]",HS,8.03550114766641,34.43596778958692,0.23334616865614166,7828.157160102203,2019
+2001,23,"(20,25]",HS,8.03550114766641,34.43596778958692,0.23334616865614166,7853.515202648981,2019
+2001,23,"(20,25]",HS,8.03550114766641,32.71416940010757,0.24562754595383332,7901.494977451536,2019
+2001,40,"(35,40]",HS,446.30512624330527,111.91689531615746,3.9878261899825245,5943.105658514321,2019
+2001,40,"(35,40]",HS,446.13771996939556,111.91689531615746,3.986330381209088,5402.8378631528785,2019
+2001,40,"(35,40]",HS,446.30512624330527,111.91689531615746,3.9878261899825245,5050.129596614822,2019
+2001,40,"(35,40]",HS,446.13771996939556,111.91689531615746,3.986330381209088,5650.348562468316,2019
+2001,40,"(35,40]",HS,446.13771996939556,111.91689531615746,3.986330381209088,5433.301945910306,2019
+2001,49,"(45,50]",College,988.1992348890589,215.22479868491826,4.591474778590681,5798.503591100411,2019
+2001,49,"(45,50]",College,2866.999846977812,334.02888755899306,8.583089528361434,2606.5930952075655,2019
+2001,49,"(45,50]",College,418.2310941086458,132.5784759899096,3.1545927118703405,4915.578844229787,2019
+2001,49,"(45,50]",College,871.684468247896,77.48092752657055,11.250310186967871,5512.598938443281,2019
+2001,49,"(45,50]",College,973.8859984697781,134.30027437938898,7.251556282890514,5290.7373801148815,2019
+2001,44,"(40,45]",College,37088.357765876055,3650.2125856962125,10.160602127999654,541.2480715375518,2019
+2001,44,"(40,45]",College,37086.85110941087,3667.4305695910075,10.112488949871736,531.0360258582261,2019
+2001,44,"(40,45]",College,37086.85110941087,3667.4305695910075,10.112488949871736,538.2045194209416,2019
+2001,44,"(40,45]",College,37088.357765876055,3667.4305695910075,10.1128997705912,555.7240713333479,2019
+2001,44,"(40,45]",College,37086.85110941087,3667.4305695910075,10.112488949871736,558.8675321396571,2019
+2001,59,"(55,60]",College,11072.083550114767,854.0120011817556,12.964786835306246,1377.2768080910696,2019
+2001,59,"(55,60]",College,9750.076205049732,533.7575007385972,18.26686499310619,1403.580446927317,2019
+2001,59,"(55,60]",College,12033.83259372609,764.4784849288296,15.741231219667876,1399.780285171635,2019
+2001,59,"(55,60]",College,11174.201377199695,692.162952570697,16.143888279051414,1399.742957227751,2019
+2001,59,"(55,60]",College,12329.30466717674,754.1476945919534,16.348660554943095,1395.3683720027577,2019
+2001,60,"(55,60]",NoHS,489.663351185922,70.59373396865318,6.936357147552993,8498.0557339724,2019
+2001,60,"(55,60]",NoHS,489.49594491201225,82.64632269500859,5.922779489154153,8882.002736241118,2019
+2001,60,"(55,60]",NoHS,489.49594491201225,86.08991947396729,5.6858683095879865,8932.424298389915,2019
+2001,60,"(55,60]",NoHS,489.663351185922,29.27057262114888,16.728861355863103,8716.00666836367,2019
+2001,60,"(55,60]",NoHS,489.83075745983166,39.60136295802496,12.369037853041133,8789.150393675209,2019
+2001,71,"(70,75]",College,120245.0806426932,1928.4141962168671,62.35438469525277,10.33298516436616,2019
+2001,71,"(70,75]",College,114059.41882172915,1928.4141962168671,59.14674297953683,10.885853919327733,2019
+2001,71,"(70,75]",College,121512.34613618975,1928.4141962168671,63.01153889790418,11.043925163074842,2019
+2001,71,"(70,75]",College,113699.49533282327,1928.4141962168671,58.96010076874416,10.89346443861697,2019
+2001,71,"(70,75]",College,117831.249579189,1962.850164006454,60.03068993237813,11.194517760457467,2019
+2001,41,"(40,45]",HS,558.8021423106351,137.74387115834767,4.056820369657297,8935.553827380669,2019
+2001,41,"(40,45]",HS,552.1058913542464,137.74387115834767,4.0082065845206,8123.252609121786,2019
+2001,41,"(40,45]",HS,558.8021423106351,137.74387115834767,4.056820369657297,7592.9501238382245,2019
+2001,41,"(40,45]",HS,555.4540168324407,137.74387115834767,4.032513477088949,8495.388879897524,2019
+2001,41,"(40,45]",HS,567.3398622800306,137.74387115834767,4.118802945706585,8169.055841795394,2019
+2001,27,"(25,30]",HS,-1.2555470543228768,25.826975842190187,-0.04861378513669619,4729.17972209924,2019
+2001,27,"(25,30]",HS,-1.2555470543228768,25.826975842190187,-0.04861378513669619,4753.425970511442,2019
+2001,27,"(25,30]",HS,-1.2555470543228768,25.826975842190187,-0.04861378513669619,4767.069844270864,2019
+2001,27,"(25,30]",HS,-1.2555470543228768,25.826975842190187,-0.04861378513669619,4760.578354390609,2019
+2001,27,"(25,30]",HS,-1.2555470543228768,25.826975842190187,-0.04861378513669619,4730.584761112235,2019
+2001,24,"(20,25]",College,-13.727314460596787,17.21798389479346,-0.7972660762418174,9368.663757050606,2019
+2001,24,"(20,25]",College,-13.727314460596787,17.21798389479346,-0.7972660762418174,9401.264003326813,2019
+2001,24,"(20,25]",College,-13.727314460596787,17.21798389479346,-0.7972660762418174,9470.081674426103,2019
+2001,24,"(20,25]",College,-13.727314460596787,17.21798389479346,-0.7972660762418174,9375.644937219395,2019
+2001,24,"(20,25]",College,-13.727314460596787,17.21798389479346,-0.7972660762418174,9379.742437405055,2019
+2001,67,"(65,70]",NoHS,10.647039020657996,22.383379063231494,0.47566718995290425,7995.593235718494,2019
+2001,67,"(65,70]",NoHS,10.814445294567713,22.383379063231494,0.4831462338200883,7993.669749992754,2019
+2001,67,"(65,70]",NoHS,10.814445294567713,20.661580673752148,0.5234084199717624,7870.399349567177,2019
+2001,67,"(65,70]",NoHS,10.647039020657996,22.383379063231494,0.47566718995290425,7980.949993692852,2019
+2001,67,"(65,70]",NoHS,10.647039020657996,22.383379063231494,0.47566718995290425,7962.285447203826,2019
+2001,21,"(20,25]",NoHS,0.06696250956388677,15.496185505314111,0.004321225345484106,6370.647208272038,2019
+2001,21,"(20,25]",NoHS,0.08370313695485845,15.496185505314111,0.0054015316818551325,6386.775415429236,2019
+2001,21,"(20,25]",NoHS,0.06696250956388677,15.496185505314111,0.004321225345484106,6293.482681047053,2019
+2001,21,"(20,25]",NoHS,0.08370313695485845,15.496185505314111,0.0054015316818551325,6334.938837821634,2019
+2001,21,"(20,25]",NoHS,0.06696250956388677,15.496185505314111,0.004321225345484106,6371.593132364544,2019
+2001,58,"(55,60]",College,70.47804131599082,27.548774231669533,2.558300442818637,5681.256898582138,2019
+2001,58,"(55,60]",College,67.2973221117062,27.548774231669533,2.442842703118983,5810.667444192224,2019
+2001,58,"(55,60]",College,65.95807192042847,27.548774231669533,2.3942289179822875,5726.658035016779,2019
+2001,58,"(55,60]",College,72.3195103289977,27.548774231669533,2.6251443973815936,5818.645701938194,2019
+2001,58,"(55,60]",College,67.2973221117062,27.548774231669533,2.442842703118983,5731.365875239842,2019
+2001,51,"(50,55]",College,52590.848355011476,6887.193557917384,7.636034607239121,13.049809091861508,2019
+2001,51,"(50,55]",College,50931.76847742923,6697.795735074656,7.604258250324429,12.729481287000361,2019
+2001,51,"(50,55]",College,53848.069472073454,4872.689442226549,11.050995576575854,13.197324499539812,2019
+2001,51,"(50,55]",College,61687.37046671768,4183.97008643481,14.743740799371231,13.265107818905388,2019
+2001,51,"(50,55]",College,48748.53955623566,5561.408798018287,8.765501930663032,13.102696242266045,2019
+2001,28,"(25,30]",HS,-9.274307574598318,51.653951684380374,-0.1795469131048646,5641.0407634552685,2019
+2001,28,"(25,30]",HS,-9.50867635807192,51.653951684380374,-0.18408419971762288,5656.933777369298,2019
+2001,28,"(25,30]",HS,-10.8814078041316,51.653951684380374,-0.21065973559235016,5659.532545768575,2019
+2001,28,"(25,30]",HS,-9.50867635807192,51.653951684380374,-0.18408419971762288,5661.989374963447,2019
+2001,28,"(25,30]",HS,-9.542157612853863,51.653951684380374,-0.18473238351944551,5645.0521970434675,2019
+2001,23,"(20,25]",HS,10.211782708492732,60.2629436317771,0.16945376533362674,4975.340129514143,2019
+2001,23,"(20,25]",HS,9.291048201989287,60.2629436317771,0.15417514714780792,4929.526760361988,2019
+2001,23,"(20,25]",HS,7.198469778117827,60.2629436317771,0.11945101490731065,4929.345358597656,2019
+2001,23,"(20,25]",HS,7.533282325937261,60.2629436317771,0.1250068760657902,4915.758761939012,2019
+2001,23,"(20,25]",HS,7.700688599846978,60.2629436317771,0.12778480664503,4908.684581008218,2019
+2001,46,"(45,50]",HS,6055.7545524101,4166.752102540017,1.4533512921775602,3234.7956576996503,2019
+2001,46,"(45,50]",HS,6560.819280795716,4166.752102540017,1.5745643415638513,3206.545410250529,2019
+2001,46,"(45,50]",HS,6342.5214996174445,4149.534118645224,1.5284900228000067,3287.217549578379,2019
+2001,46,"(45,50]",HS,6544.9156847742925,4029.0082313816697,1.624448327952371,3197.6768588869536,2019
+2001,46,"(45,50]",HS,6227.5133894414685,4166.752102540017,1.4945725678389237,3167.951753930955,2019
+2001,56,"(55,60]",HS,940.32104055088,43.04495973698364,21.845090489025804,6244.409424069951,2019
+2001,56,"(55,60]",HS,1458.7782708492732,96.42070981084338,15.129304417184663,5674.86858578752,2019
+2001,56,"(55,60]",HS,1299.4074980872226,118.80408887407486,10.937397108145964,5309.446001103633,2019
+2001,56,"(55,60]",HS,1044.280336648814,98.14250820032271,10.640448830972309,5941.4106767872645,2019
+2001,56,"(55,60]",HS,755.8393267023719,117.08229048459552,6.455624702711273,5709.5336805369925,2019
+2001,48,"(45,50]",College,517.9550114766641,94.69891142136402,5.4694927713795645,5866.35930721663,2019
+2001,48,"(45,50]",College,426.0489671002295,94.69891142136402,4.498984842650611,5328.130039553271,2019
+2001,48,"(45,50]",College,245.2501912777353,94.69891142136402,2.589788917282179,5600.739560832381,2019
+2001,48,"(45,50]",College,236.54506503443,94.69891142136402,2.497864669023699,5405.443232270297,2019
+2001,48,"(45,50]",College,271.7003825554706,94.69891142136402,2.869097210067561,5494.248804424118,2019
+2001,63,"(60,65]",College,8234.714613618975,206.6158067375215,39.855201514568094,133.38671672511495,2019
+2001,63,"(60,65]",College,8235.551644988524,206.6158067375215,39.859252663329485,133.84206255533715,2019
+2001,63,"(60,65]",College,8243.084927314461,206.6158067375215,39.895713002182006,134.53909305598648,2019
+2001,63,"(60,65]",College,8212.114766641163,206.6158067375215,39.745820498010524,133.8705470672506,2019
+2001,63,"(60,65]",College,8290.79571537873,206.6158067375215,40.126628481581314,132.72626969525285,2019
+2001,45,"(40,45]",College,31764.08492731446,4407.8038770671255,7.206329004921543,170.70316365473857,2019
+2001,45,"(40,45]",College,8059.356541698547,897.0569609187393,8.984219389418026,161.037107519999,2019
+2001,45,"(40,45]",College,22719.123947972457,1739.0163733741392,13.064353099730459,167.96700212053682,2019
+2001,45,"(40,45]",College,61026.70160673298,898.7787593082185,67.8995814873336,170.07562248385423,2019
+2001,45,"(40,45]",College,6452.256312165264,2117.812019059595,3.0466614855790457,163.31319795449969,2019
+2001,39,"(35,40]",HS,354.43256312165266,241.0517745271084,1.4703586555916168,9177.625865914031,2019
+2001,39,"(35,40]",HS,414.5816373374139,103.30790336876075,4.01306796303427,8343.318690821836,2019
+2001,39,"(35,40]",HS,473.5086457536343,94.69891142136402,5.000148773059824,7798.649843236419,2019
+2001,39,"(35,40]",HS,285.009181331293,139.46566954782702,2.0435794863018577,9033.689151790799,2019
+2001,39,"(35,40]",HS,459.69762815608266,316.81090366419966,1.4510158041887797,8390.362773488509,2019
+2001,40,"(35,40]",College,2708.6335118592197,259.9915568113812,10.418159516711846,3687.287979209405,2019
+2001,40,"(35,40]",College,2710.3075745983165,259.9915568113812,10.42459842865048,3633.9889219487354,2019
+2001,40,"(35,40]",College,2708.6335118592197,259.9915568113812,10.418159516711846,3732.726985571312,2019
+2001,40,"(35,40]",College,2708.6335118592197,259.9915568113812,10.418159516711846,3619.162569798528,2019
+2001,40,"(35,40]",College,2710.3075745983165,259.9915568113812,10.42459842865048,3597.716146931495,2019
+2001,35,"(30,35]",HS,80.02019892884468,68.87193557917384,1.1618694647670387,7128.577571227443,2019
+2001,35,"(30,35]",HS,70.09300688599848,68.87193557917384,1.0177295918367348,7317.62583347208,2019
+2001,35,"(30,35]",HS,72.15210405508799,68.87193557917384,1.0476270696958028,7390.759669358605,2019
+2001,35,"(30,35]",HS,103.28967100229534,68.87193557917384,1.4997352714670773,7214.874595617723,2019
+2001,35,"(30,35]",HS,86.21423106350422,68.87193557917384,1.251804967269927,7333.337966684849,2019
+2001,85,"(80,85]",HS,378.1707727620505,65.42833880021514,5.779923190726141,3673.180502378416,2019
+2001,85,"(80,85]",HS,378.1707727620505,65.42833880021514,5.779923190726141,3870.5438707360836,2019
+2001,85,"(80,85]",HS,378.1707727620505,65.42833880021514,5.779923190726141,3782.3938201746787,2019
+2001,85,"(80,85]",HS,378.1707727620505,65.42833880021514,5.779923190726141,3771.4878783460676,2019
+2001,85,"(80,85]",HS,378.1707727620505,65.42833880021514,5.779923190726141,3692.0099451117967,2019
+2001,49,"(45,50]",College,1099.3570007651108,204.89400834804215,5.365491209961073,6781.581165434021,2019
+2001,49,"(45,50]",College,1086.1319051262433,204.89400834804215,5.300945175914031,6159.381727397385,2019
+2001,49,"(45,50]",College,1089.6474368783474,204.89400834804215,5.318102982432865,5754.0672445591745,2019
+2001,49,"(45,50]",College,1101.3658760520275,204.89400834804215,5.3752956708289785,6447.620215009583,2019
+2001,49,"(45,50]",College,1117.7716908951797,204.89400834804215,5.455365434583537,6187.689479007035,2019
+2001,60,"(55,60]",College,19333.733833205817,3374.7248433795176,5.728980800059724,17.64756842897291,2019
+2001,60,"(55,60]",College,19331.05533282326,3374.7248433795176,5.728187105608512,18.379917082710584,2019
+2001,60,"(55,60]",College,19417.905707727623,3374.7248433795176,5.753922648189042,18.518327553171844,2019
+2001,60,"(55,60]",College,19374.212670237182,3357.5068594847244,5.7704164074918785,18.07268355861546,2019
+2001,60,"(55,60]",College,19334.137282325937,3374.7248433795176,5.729100350286438,18.249761998314877,2019
+2001,56,"(55,60]",HS,42317.9623565417,1029.635436908649,41.09994745673873,23.01708660149429,2019
+2001,56,"(55,60]",HS,42315.28385615914,1029.635436908649,41.097346050176235,22.49026593011436,2019
+2001,56,"(55,60]",HS,42316.623106350424,1029.635436908649,41.09864675345749,23.279331977239398,2019
+2001,56,"(55,60]",HS,42318.29716908952,1029.635436908649,41.10027263255905,24.119640096465332,2019
+2001,56,"(55,60]",HS,42320.30604437643,1029.635436908649,41.102223687480915,23.151128605760825,2019
+2001,67,"(65,70]",College,735.0809487375669,86.08991947396729,8.53852522140932,7479.243313722172,2019
+2001,67,"(65,70]",College,735.0809487375669,86.08991947396729,8.53852522140932,6732.427594539926,2019
+2001,67,"(65,70]",College,735.2483550114766,86.08991947396729,8.540469772814786,6355.915550066742,2019
+2001,67,"(65,70]",College,735.2483550114766,86.08991947396729,8.540469772814786,7100.902430180984,2019
+2001,67,"(65,70]",College,736.7550114766641,86.08991947396729,8.557970735463996,6777.031336695838,2019
+2001,73,"(70,75]",HS,1133.3404743687834,189.39782284272803,5.983915006826058,95.27039927130379,2019
+2001,73,"(70,75]",HS,1135.0145371078806,189.39782284272803,5.992753876850912,95.8912938879312,2019
+2001,73,"(70,75]",HS,1135.0145371078806,189.39782284272803,5.992753876850912,91.36906667259979,2019
+2001,73,"(70,75]",HS,1135.0145371078806,189.39782284272803,5.992753876850912,94.99057822514507,2019
+2001,73,"(70,75]",HS,1135.0145371078806,189.39782284272803,5.992753876850912,100.04763064580638,2019
+2001,54,"(50,55]",College,21264.614537107882,2100.594035164802,10.123143349514256,252.07842989523698,2019
+2001,54,"(50,55]",College,20749.170619739863,2048.940083480422,10.126782518937492,246.39976138616174,2019
+2001,54,"(50,55]",College,21069.58622800306,2066.1580673752146,10.197470639199077,250.36501033046915,2019
+2001,54,"(50,55]",College,21188.61208875287,2324.427825797117,9.115624866298722,258.2585267454051,2019
+2001,54,"(50,55]",College,21153.958990053557,2031.722099585628,10.411836832590406,259.4646586901832,2019
+2001,49,"(45,50]",College,6886.424483550115,602.629436317771,11.427295230760768,281.0197025005382,2019
+2001,49,"(45,50]",College,6886.424483550115,602.629436317771,11.427295230760768,281.2625503227631,2019
+2001,49,"(45,50]",College,6883.07635807192,602.629436317771,11.421739369602289,287.22942258935757,2019
+2001,49,"(45,50]",College,6883.07635807192,602.629436317771,11.421739369602289,282.16210953872474,2019
+2001,49,"(45,50]",College,6884.750420811019,602.629436317771,11.42451730018153,285.3353666721919,2019
+2001,35,"(30,35]",HS,4.436266258607499,87.81171786344665,0.05052020808323329,9683.804260012344,2019
+2001,35,"(30,35]",HS,6.277735271614384,87.81171786344665,0.07149086049514145,9674.35846948961,2019
+2001,35,"(30,35]",HS,4.603672532517215,87.81171786344665,0.05242663102977039,9780.412903819608,2019
+2001,35,"(30,35]",HS,3.7666411629686305,87.81171786344665,0.042894516297084864,9679.221473887183,2019
+2001,35,"(30,35]",HS,4.603672532517215,87.81171786344665,0.05242663102977039,9663.425991836928,2019
+2001,56,"(55,60]",College,92661.04667176741,3925.700328012908,23.603698430712907,10.33298516436616,2019
+2001,56,"(55,60]",College,84916.8324407039,3925.700328012908,21.63100220227118,10.885853919327733,2019
+2001,56,"(55,60]",College,85521.16908951798,3942.9183119077015,21.689815087277395,11.043925163074842,2019
+2001,56,"(55,60]",College,85574.73909716909,3925.700328012908,21.798591829979262,10.89346443861697,2019
+2001,56,"(55,60]",College,85117.71996939556,3925.700328012908,21.682174607678228,11.194517760457467,2019
+2001,67,"(65,70]",College,20032.839173680182,821.2978317816479,24.39168642418401,212.1193104651286,2019
+2001,67,"(65,70]",College,19739.543381790358,821.2978317816479,24.034573839028905,198.9109486876447,2019
+2001,67,"(65,70]",College,19860.912930374907,821.2978317816479,24.182351592589097,212.40899762628118,2019
+2001,67,"(65,70]",College,19861.582555470544,821.2978317816479,24.18316691812598,209.07353414150452,2019
+2001,67,"(65,70]",College,19779.218668706962,821.2978317816479,24.08288187708927,201.6808165143614,2019
+2001,70,"(65,70]",HS,-6.327957153787299,24.105177452710844,-0.26251443973815936,5784.513485862864,2019
+2001,70,"(65,70]",HS,-6.495363427697016,24.105177452710844,-0.2694592661862588,5858.3351741695105,2019
+2001,70,"(65,70]",HS,-6.327957153787299,18.939782284272805,-0.33410928693947556,5721.163136163655,2019
+2001,70,"(65,70]",HS,-6.327957153787299,18.939782284272805,-0.33410928693947556,5733.0430008435305,2019
+2001,70,"(65,70]",HS,-6.327957153787299,24.105177452710844,-0.26251443973815936,5779.058117584278,2019
+2001,53,"(50,55]",College,1408.5396480489671,652.5615896126722,2.158477713781784,109.06359833152965,2019
+2001,53,"(50,55]",College,954.5505738332058,459.72016999098537,2.0763730550519974,53.90701695566154,2019
+2001,53,"(50,55]",College,1993.3065034429992,1611.6032925526679,1.2368468795355585,115.81221537489496,2019
+2001,53,"(50,55]",College,815.7707727620506,941.8237190452021,0.8661607860004408,55.73905735733763,2019
+2001,53,"(50,55]",College,660.4177505738332,673.2231702864241,0.9809789379246369,57.10599764016314,2019
+2001,53,"(50,55]",HS,624780.9726090283,92787.71520904194,6.73344495229197,1.5455142054781237,2019
+2001,53,"(50,55]",HS,620040.0269319052,83490.00390585347,7.426518121032622,1.5771236208314843,2019
+2001,53,"(50,55]",HS,614987.7055853099,96971.68529547675,6.341930675035881,1.3928322532831945,2019
+2001,53,"(50,55]",HS,625760.1319051263,83868.79955153893,7.461179070776911,1.8112680372607364,2019
+2001,53,"(50,55]",HS,627383.9727620506,80080.84309468437,7.834382712732644,1.4397924826513564,2019
+2001,77,"(75,80]",HS,34644.72838561592,762.7566865393503,45.42041911530147,170.70316365473857,2019
+2001,77,"(75,80]",HS,34644.72838561592,762.7566865393503,45.42041911530147,159.69056269811,2019
+2001,77,"(75,80]",HS,34644.72838561592,762.7566865393503,45.42041911530147,167.96700212053682,2019
+2001,77,"(75,80]",HS,34644.72838561592,762.7566865393503,45.42041911530147,175.001726293633,2019
+2001,77,"(75,80]",HS,34644.72838561592,762.7566865393503,45.42041911530147,168.05053491723305,2019
+2001,82,"(80,85]",HS,1741.025248661056,315.0891052747202,5.525501261438693,64.52741338314515,2019
+2001,82,"(80,85]",HS,3955.810252486611,292.70572621148875,13.514632268001543,210.9256962519064,2019
+2001,82,"(80,85]",HS,3972.5508798775822,457.9983716015061,8.673722716494739,217.06505157996153,2019
+2001,82,"(80,85]",HS,6987.537872991585,526.8703071806799,13.26234896474313,212.7594983474587,2019
+2001,82,"(80,85]",HS,19142.90742157613,390.8482344118115,48.97785313111197,210.86126638785964,2019
+2001,32,"(30,35]",HS,-8.872532517214998,60.2629436317771,-0.14723032069970848,5414.405498469494,2019
+2001,32,"(30,35]",HS,-10.010895179801071,60.2629436317771,-0.166120248638539,5374.2007499028705,2019
+2001,32,"(30,35]",HS,-9.358010711553176,60.2629436317771,-0.15528631937950385,5380.119420617693,2019
+2001,32,"(30,35]",HS,-9.475195103289979,60.2629436317771,-0.15723087078497172,5415.452387664351,2019
+2001,32,"(30,35]",HS,-9.542157612853863,60.2629436317771,-0.15834204301666757,5364.845901326222,2019
+2001,41,"(40,45]",HS,7.784391736801837,7.4037330747611865,1.0514144227238944,7265.868347493313,2019
+2001,41,"(40,45]",HS,7.784391736801837,7.4037330747611865,1.0514144227238944,7366.401074193981,2019
+2001,41,"(40,45]",HS,7.784391736801837,7.2315532358132515,1.0764480994554158,7727.490778820791,2019
+2001,41,"(40,45]",HS,7.784391736801837,7.4037330747611865,1.0514144227238944,7499.184993079456,2019
+2001,41,"(40,45]",HS,7.61698546289212,7.2315532358132515,1.053298677961751,7337.907280391895,2019
+2001,38,"(35,40]",College,509.41896557000763,127.41308082147161,3.9981684948329144,6223.360296458606,2019
+2001,38,"(35,40]",College,543.0743228768171,115.36049209511619,4.707628348438782,5659.255585551751,2019
+2001,38,"(35,40]",College,547.602662586075,123.96948404251289,4.417237571129081,5287.211720544795,2019
+2001,38,"(35,40]",College,580.4142922723795,120.5258872635542,4.815681555641125,5917.722341341292,2019
+2001,38,"(35,40]",College,603.6686977811783,117.08229048459552,5.1559351570817,5689.921002707489,2019
+2001,29,"(25,30]",HS,6.763213465952563,77.48092752657055,0.08728875197877894,5385.596851193464,2019
+2001,29,"(25,30]",HS,4.771078806426932,77.48092752657055,0.06157746117314851,5345.60602166571,2019
+2001,29,"(25,30]",HS,8.236388676358072,77.48092752657055,0.106302143498909,5351.493200668838,2019
+2001,29,"(25,30]",HS,4.938485080336649,77.48092752657055,0.06373807384589057,5386.638170162455,2019
+2001,29,"(25,30]",HS,5.072410099464422,77.48092752657055,0.06546656398408421,5336.300947811889,2019
+2001,66,"(65,70]",College,24213.275164498853,1842.3242767429003,13.14278678849427,18.449019495623023,2019
+2001,66,"(65,70]",College,35240.30968630452,3288.6349239055507,10.715786489445133,18.56285479045389,2019
+2001,66,"(65,70]",College,31716.759173680184,2927.057262114888,10.83571530498992,18.532850934210636,2019
+2001,66,"(65,70]",College,28396.757949502677,1997.2861317960408,14.217671417949095,19.102367464008402,2019
+2001,66,"(65,70]",College,30961.74013771997,2117.812019059595,14.619682889262473,18.83070519899378,2019
+2001,33,"(30,35]",NoHS,5.959663351185922,32.71416940010757,0.18217376324909307,6002.787252301057,2019
+2001,33,"(30,35]",NoHS,2.5947972456006125,32.71416940010757,0.07931722838092536,6115.158101430543,2019
+2001,33,"(30,35]",NoHS,2.778944146901301,32.71416940010757,0.0849461929757007,6167.540615455055,2019
+2001,33,"(30,35]",NoHS,2.6115378729915837,32.71416940010757,0.07982895243499584,6017.795133940337,2019
+2001,33,"(30,35]",NoHS,2.778944146901301,32.71416940010757,0.0849461929757007,6081.435811255248,2019
+2001,34,"(30,35]",HS,-10.042702371843918,14.290926632678572,-0.7027327639398564,5344.123837971441,2019
+2001,34,"(30,35]",HS,-10.042702371843918,15.496185505314111,-0.6480757711889787,5347.201834787813,2019
+2001,34,"(30,35]",HS,-10.042702371843918,14.290926632678572,-0.7027327639398564,5340.727652886911,2019
+2001,34,"(30,35]",HS,-10.042702371843918,12.74130808214716,-0.788200262256866,5334.677532979955,2019
+2001,34,"(30,35]",HS,-10.042702371843918,16.012725022157916,-0.6271701011506245,5361.221810362051,2019
+2001,57,"(55,60]",College,146.81530221882173,132.5784759899096,1.1073841445424042,5358.726219322214,2019
+2001,57,"(55,60]",College,143.4671767406274,132.5784759899096,1.082130230185679,5412.808804564127,2019
+2001,57,"(55,60]",College,161.88186687069626,132.5784759899096,1.2210267591476682,5331.549927128758,2019
+2001,57,"(55,60]",College,133.42280030604437,132.5784759899096,1.006368487115503,5432.9657882238735,2019
+2001,57,"(55,60]",College,135.09686304514153,132.5784759899096,1.0189954442938656,5334.866490374736,2019
+2001,25,"(20,25]",HS,108.64834583014537,68.87193557917384,1.5775416345783595,5606.724540712378,2019
+2001,25,"(20,25]",HS,27.339118592195867,68.87193557917384,0.3969558625336927,5692.558605044167,2019
+2001,25,"(20,25]",HS,104.0781545524101,68.87193557917384,1.5111838178667691,5751.829088488224,2019
+2001,25,"(20,25]",HS,73.52650956388676,68.87193557917384,1.0675830284944166,5620.463645758193,2019
+2001,25,"(20,25]",HS,100.99787911247131,68.87193557917384,1.4664591355410088,5671.272799749747,2019
+2001,38,"(35,40]",HS,-8.906013771996939,60.2629436317771,-0.14778590681555642,7128.577571227443,2019
+2001,38,"(35,40]",HS,-21.31081866870696,60.2629436317771,-0.35363056273722426,7317.62583347208,2019
+2001,38,"(35,40]",HS,-19.820902830910484,60.2629436317771,-0.32890698058199025,7390.759669358605,2019
+2001,38,"(35,40]",HS,-15.652486610558531,60.2629436317771,-0.25973650915891966,7214.874595617723,2019
+2001,38,"(35,40]",HS,-27.287222647283855,60.2629436317771,-0.4528026844160845,7333.337966684849,2019
+2001,28,"(25,30]",College,86.46534047436879,132.5784759899096,0.6521823382624308,6413.383126575869,2019
+2001,28,"(25,30]",College,132.4016220351951,132.5784759899096,0.9986660432367017,6279.1328221155645,2019
+2001,28,"(25,30]",College,39.0893649579189,132.5784759899096,0.29483945011476786,6281.548826395221,2019
+2001,28,"(25,30]",College,89.72976281560827,132.5784759899096,0.676804904760238,6391.189169891478,2019
+2001,28,"(25,30]",College,103.27293037490436,130.8566776004303,0.7892064223902073,6275.065808202514,2019
+2001,68,"(65,70]",NoHS,6.110328997704667,36.157766179066265,0.16899077690375341,8896.657377161315,2019
+2001,68,"(65,70]",NoHS,6.110328997704667,36.157766179066265,0.16899077690375341,8864.508044328632,2019
+2001,68,"(65,70]",NoHS,6.110328997704667,36.157766179066265,0.16899077690375341,8879.197809748777,2019
+2001,68,"(65,70]",NoHS,6.277735271614384,34.43596778958692,0.1823016942626107,8910.01594595946,2019
+2001,68,"(65,70]",NoHS,6.277735271614384,36.157766179066265,0.17362066120248637,8844.857284452712,2019
+2001,29,"(25,30]",College,253.78791124713084,120.5258872635542,2.105671379063755,9893.556945139673,2019
+2001,29,"(25,30]",College,254.62494261667942,94.69891142136402,2.688784261560542,10035.414950690309,2019
+2001,29,"(25,30]",College,252.11384850803367,127.41308082147161,1.978712443672012,10101.941248409214,2019
+2001,29,"(25,30]",College,249.4353481254782,91.25531464240532,2.733378862402918,10038.314147768306,2019
+2001,29,"(25,30]",College,255.461973986228,125.69128243199225,2.0324557840711885,9939.832863691934,2019
+2001,42,"(40,45]",NoHS,105.13114001530222,75.75912913709122,1.3877025939020546,6801.525475181517,2019
+2001,42,"(40,45]",NoHS,115.00811017597552,75.75912913709122,1.518075926768649,6966.791898551492,2019
+2001,42,"(40,45]",NoHS,103.45707727620506,75.75912913709122,1.36560541883992,7153.40873722013,2019
+2001,42,"(40,45]",NoHS,105.13114001530222,75.75912913709122,1.3877025939020546,6907.222601145608,2019
+2001,42,"(40,45]",NoHS,113.33404743687835,75.75912913709122,1.4959787517065144,6985.417153685879,2019
+2001,54,"(50,55]",HS,255.2945677123183,106.75150014771945,2.3914845914019898,5749.308087587757,2019
+2001,54,"(50,55]",HS,260.31675592960977,106.75150014771945,2.438530189921373,5992.731905864046,2019
+2001,54,"(50,55]",HS,268.68706962509566,106.75150014771945,2.516939520787012,6019.93527329513,2019
+2001,54,"(50,55]",HS,268.68706962509566,106.75150014771945,2.516939520787012,5856.152505261657,2019
+2001,54,"(50,55]",HS,249.77016067329762,106.75150014771945,2.3397344330306677,5934.126345622644,2019
+2001,43,"(40,45]",HS,15270.465493496558,1721.798389479346,8.868904505198305,364.96259662219666,2019
+2001,43,"(40,45]",HS,15273.813618974751,1721.798389479346,8.870849056603772,342.4510173559796,2019
+2001,43,"(40,45]",HS,15272.139556235654,1721.798389479346,8.869876780901038,365.58651028578424,2019
+2001,43,"(40,45]",HS,15272.139556235654,1721.798389479346,8.869876780901038,360.023524640382,2019
+2001,43,"(40,45]",HS,15270.465493496558,1721.798389479346,8.868904505198305,347.1148790332033,2019
+2001,55,"(50,55]",College,1122.7436572302986,273.76594392721603,4.101107833663903,7535.838832198657,2019
+2001,55,"(50,55]",College,1080.5405355776588,273.76594392721603,3.9469501577775996,6873.502234812075,2019
+2001,55,"(50,55]",College,1197.9592960979344,273.76594392721603,4.37585215645532,6436.641168796336,2019
+2001,55,"(50,55]",College,1239.978270849273,273.76594392721603,4.529337188773693,3529.3000931083275,2019
+2001,55,"(50,55]",College,1122.1912165263964,273.76594392721603,4.099089902960116,6871.47378713481,2019
+2001,53,"(50,55]",HS,1455.8654016832443,220.39019385335627,6.605853809684252,11278.96182332654,2019
+2001,53,"(50,55]",HS,1440.2966182096404,222.1119922428356,6.484551345768672,11042.086600875853,2019
+2001,53,"(50,55]",HS,1781.9728232593725,220.39019385335627,8.08553589478244,13377.496463922676,2019
+2001,53,"(50,55]",HS,1467.0314001530223,220.39019385335627,6.656518488881402,11161.037161086704,2019
+2001,53,"(50,55]",HS,1546.0471614384085,220.39019385335627,7.015045154264535,11386.752961154238,2019
+2001,31,"(30,35]",HS,21.227115531752105,160.12725022157917,0.1325640420501737,6816.352579077815,2019
+2001,31,"(30,35]",HS,21.227115531752105,160.12725022157917,0.1325640420501737,6827.774686696523,2019
+2001,31,"(30,35]",HS,21.21037490436113,160.12725022157917,0.13245949627568615,6851.659649267107,2019
+2001,31,"(30,35]",HS,21.227115531752105,160.12725022157917,0.1325640420501737,6886.785735530657,2019
+2001,31,"(30,35]",HS,21.227115531752105,160.12725022157917,0.1325640420501737,6833.266879317189,2019
+2001,52,"(50,55]",College,1069.5754246365723,829.9068237290446,1.2887897701944633,1437.8484925354016,2019
+2001,52,"(50,55]",College,2042.8085386381026,482.1035490542168,4.237281684911162,2479.7685846156187,2019
+2001,52,"(50,55]",College,1778.4489211935731,476.93815388577883,3.7288879212198465,1500.7831644361336,2019
+2001,52,"(50,55]",College,1389.9073297628156,692.162952570697,2.0080637436613618,1456.7302149850325,2019
+2001,52,"(50,55]",College,1442.2217903596022,650.8397912231927,2.215939790111912,1457.692790545057,2019
+2001,62,"(60,65]",College,4375.162968630451,416.6752102540017,10.500175822707066,3687.287979209405,2019
+2001,62,"(60,65]",College,4793.678653404743,416.6752102540017,11.504592870985912,3633.9889219487354,2019
+2001,62,"(60,65]",College,4375.162968630451,416.6752102540017,10.500175822707066,3732.726985571312,2019
+2001,62,"(60,65]",College,4375.162968630451,416.6752102540017,10.500175822707066,3619.162569798528,2019
+2001,62,"(60,65]",College,4793.678653404743,416.6752102540017,11.504592870985912,3597.716146931495,2019
+2001,61,"(60,65]",College,73252.1976434583,2238.3379063231496,32.726156956251295,13.09645278129155,2019
+2001,61,"(60,65]",College,74680.94322876817,2255.555890217943,33.10977287357402,14.258243659434806,2019
+2001,61,"(60,65]",College,72284.30478959449,1962.850164006454,36.82619596497984,13.928130064776862,2019
+2001,61,"(60,65]",College,73456.14870696251,1945.6321801116608,37.75438618760244,13.670522615213553,2019
+2001,61,"(60,65]",College,74685.3292731446,2289.9918580075296,32.61379686219785,14.453762593205095,2019
+2001,42,"(40,45]",HS,14.279755164498853,36.157766179066265,0.39492913068192237,6462.229753990833,2019
+2001,42,"(40,45]",HS,13.944942616679418,49.93215329490103,0.27927781392322704,6391.80911097266,2019
+2001,42,"(40,45]",HS,17.460474368783476,32.71416940010757,0.5337281883955172,6413.645463989997,2019
+2001,42,"(40,45]",HS,18.297505738332056,34.43596778958692,0.5313486715440893,6389.137954129086,2019
+2001,42,"(40,45]",HS,19.352165263963276,82.64632269500859,0.23415639840842,6463.691298328531,2019
+2001,42,"(40,45]",College,268.85447589900537,30.992371010628222,8.674859881059342,8798.061532449603,2019
+2001,42,"(40,45]",College,266.25967865340476,48.21035490542169,5.522873232851092,9031.38413113244,2019
+2001,42,"(40,45]",College,277.5930833970926,96.42070981084338,2.878977804059629,9121.645614830217,2019
+2001,42,"(40,45]",College,278.4468553940321,53.37575007385973,5.216729601152694,8904.56897002277,2019
+2001,42,"(40,45]",College,276.4882019892884,20.661580673752148,13.381754588627905,9050.775982231868,2019
+2001,52,"(50,55]",College,411.8194338179036,1928.4141962168671,0.21355341327905827,6617.6527293920635,2019
+2001,52,"(50,55]",College,413.4934965570008,1928.4141962168671,0.21442151658507072,6010.4934683134825,2019
+2001,52,"(50,55]",College,411.8194338179036,1928.4141962168671,0.21355341327905827,5614.976489575861,2019
+2001,52,"(50,55]",College,413.4934965570008,1928.4141962168671,0.21442151658507072,6291.764482805667,2019
+2001,52,"(50,55]",College,411.8194338179036,1928.4141962168671,0.21355341327905827,6038.1169480201625,2019
+2001,50,"(45,50]",College,11.249701606732977,20.661580673752148,0.5444743935309974,5685.027662534182,2019
+2001,50,"(45,50]",College,11.032073450650346,18.939782284272805,0.5824815346378689,5774.9968626778455,2019
+2001,50,"(45,50]",College,11.634736036725327,22.383379063231494,0.5197935487692901,5786.889358749662,2019
+2001,50,"(45,50]",College,11.249701606732977,24.105177452710844,0.4666923373122834,5745.423629176473,2019
+2001,50,"(45,50]",College,11.634736036725327,17.21798389479346,0.675731613400077,5757.905128303156,2019
+2001,80,"(75,80]",NoHS,25.177903596021423,36.157766179066265,0.6963345985294387,6911.5355629518435,2019
+2001,80,"(75,80]",NoHS,22.348737566947207,34.43596778958692,0.6489940315748941,6908.8255766100465,2019
+2001,80,"(75,80]",NoHS,59.09441469013007,34.43596778958692,1.7160666153253754,6940.634504498722,2019
+2001,80,"(75,80]",NoHS,22.83421576128539,34.43596778958692,0.663092029264536,6959.995161699287,2019
+2001,80,"(75,80]",NoHS,36.56153022188217,36.157766179066265,1.0111667308432806,6956.338269312805,2019
+2001,71,"(70,75]",College,292.4085386381025,18.939782284272805,15.438854272412224,188.17472731181118,2019
+2001,71,"(70,75]",College,288.17315990818673,18.939782284272805,15.215230860783423,210.5451692703097,2019
+2001,71,"(70,75]",College,318.07192042846214,18.939782284272805,16.793853047222317,205.967121999254,2019
+2001,71,"(70,75]",College,431.4059678653405,18.939782284272805,22.777768054048376,201.74374041425767,2019
+2001,71,"(70,75]",College,323.09410864575364,18.939782284272805,17.059019147967934,198.72343362911266,2019
+2001,42,"(40,45]",College,6714.163427697016,1205.258872635542,5.570723087078497,206.95743366986207,2019
+2001,42,"(40,45]",College,6714.163427697016,1205.258872635542,5.570723087078497,207.10069755069512,2019
+2001,42,"(40,45]",College,6712.48936495792,1205.258872635542,5.569334121788878,211.6668558225719,2019
+2001,42,"(40,45]",College,6712.48936495792,1205.258872635542,5.569334121788878,207.7767169422297,2019
+2001,42,"(40,45]",College,6714.163427697016,1205.258872635542,5.570723087078497,210.28391170898854,2019
+2001,46,"(45,50]",HS,156.85967865340476,32.71416940010757,4.794854386640456,6950.079491549759,2019
+2001,46,"(45,50]",HS,144.13680183626627,36.157766179066265,3.9863303812090876,7319.1018203932135,2019
+2001,46,"(45,50]",HS,178.2876817138485,27.548774231669533,6.47171014632268,7347.611714655944,2019
+2001,46,"(45,50]",HS,162.049273144606,27.548774231669533,5.88226800154024,7104.1548021901635,2019
+2001,46,"(45,50]",HS,134.42723794950268,27.548774231669533,4.87960868309588,7244.913906727246,2019
+2001,67,"(65,70]",College,8974.650344299924,413.231613475043,21.71820850981902,1868.844944523591,2019
+2001,67,"(65,70]",College,8974.650344299924,411.5098150855637,21.80907967513207,1868.2927902803408,2019
+2001,67,"(65,70]",College,8621.59051262433,411.5098150855637,20.95111755920494,1880.36694392992,2019
+2001,67,"(65,70]",College,8994.739097169091,413.231613475043,21.766822294955723,1863.8276863356161,2019
+2001,67,"(65,70]",College,8480.801836266259,413.231613475043,20.523119625208576,1856.330699140442,2019
+2001,55,"(50,55]",College,615.552869166029,136.02207276886833,4.525389568294478,5915.96979165079,2019
+2001,55,"(50,55]",College,617.3943381790359,136.02207276886833,4.538927584408494,5373.218340443559,2019
+2001,55,"(50,55]",College,617.3943381790359,136.02207276886833,4.538927584408494,5026.733574672795,2019
+2001,55,"(50,55]",College,617.3943381790359,136.02207276886833,4.538927584408494,5627.665566600779,2019
+2001,55,"(50,55]",College,614.0462127008416,136.02207276886833,4.514313009655736,5408.876197226623,2019
+2001,29,"(25,30]",HS,6.026625860749808,15.840545183209981,0.3804557097654484,5132.993443384562,2019
+2001,29,"(25,30]",HS,5.089150726855395,14.463106471626503,0.3518712067037058,5135.9498377265,2019
+2001,29,"(25,30]",HS,5.474185156847743,16.357084700053786,0.334667531362098,5129.731431443981,2019
+2001,29,"(25,30]",HS,5.591369548584545,13.085667760043028,0.427289585148856,5123.920333730742,2019
+2001,29,"(25,30]",HS,4.971966335118592,13.430027437938898,0.3702126714256094,5149.415925878808,2019
+2001,53,"(50,55]",HS,199.7156847742923,49.93215329490103,3.999741080557142,7293.351197295167,2019
+2001,53,"(50,55]",HS,162.049273144606,51.653951684380374,3.137209600821461,7602.149294288512,2019
+2001,53,"(50,55]",HS,316.5652639632747,51.653951684380374,6.128577846232833,7636.658440328591,2019
+2001,53,"(50,55]",HS,175.94399387911247,51.653951684380374,3.406205878577846,7428.889917728088,2019
+2001,53,"(50,55]",HS,179.1247130833971,51.653951684380374,3.4677833397509947,7527.80453376375,2019
+2001,20,"(15,20]",NoHS,15.066564651874522,34.43596778958692,0.4375240662302657,8262.010925664059,2019
+2001,20,"(15,20]",NoHS,15.066564651874522,34.43596778958692,0.4375240662302657,8326.913976643224,2019
+2001,20,"(15,20]",NoHS,15.066564651874522,34.43596778958692,0.4375240662302657,8381.37872508042,2019
+2001,20,"(15,20]",NoHS,15.066564651874522,34.43596778958692,0.4375240662302657,8184.245541709407,2019
+2001,20,"(15,20]",NoHS,15.066564651874522,34.43596778958692,0.4375240662302657,8233.060468596876,2019
+2001,49,"(45,50]",College,2401.3090742157615,1039.9662272455248,2.3090260157542963,521.7467219201698,2019
+2001,49,"(45,50]",College,3949.582739097169,1336.1155502359723,2.956018840136716,897.8823076525371,2019
+2001,49,"(45,50]",College,2725.541545524101,625.0128153810025,4.360777056807442,544.146748859426,2019
+2001,49,"(45,50]",College,4386.714001530222,1315.4539695622202,3.334752946916196,898.5115205953234,2019
+2001,49,"(45,50]",College,2843.0607498087224,669.7795735074654,4.244770760804687,528.2694087925968,2019
+2001,46,"(45,50]",College,2099.324896710023,241.0517745271084,8.709020710710162,96.09826835163932,2019
+2001,46,"(45,50]",College,2099.324896710023,241.0517745271084,8.709020710710162,92.93065131322956,2019
+2001,46,"(45,50]",College,2095.976771231829,241.0517745271084,8.695131057813963,100.74258622966785,2019
+2001,46,"(45,50]",College,2099.492302983933,242.77357291658777,8.647944163614865,96.11111963561247,2019
+2001,46,"(45,50]",College,2097.7847589900534,242.77357291658777,8.64091067980785,97.49702142780738,2019
+2001,50,"(45,50]",College,8361.94338179036,890.1697673608218,9.3936501647117,164.8103080219313,2019
+2001,50,"(45,50]",College,8333.166243305279,890.1697673608218,9.361322467748458,162.36084482647135,2019
+2001,50,"(45,50]",College,8351.78182096404,890.1697673608218,9.382234858105136,167.13291760721836,2019
+2001,50,"(45,50]",College,8340.197306809489,890.1697673608218,9.36922103245152,163.3808115109518,2019
+2001,50,"(45,50]",College,8361.94338179036,890.1697673608218,9.3936501647117,164.37241073663125,2019
+2001,41,"(40,45]",College,162.46778882938028,94.69891142136402,1.715624671824133,5580.275251807844,2019
+2001,41,"(40,45]",College,162.46778882938028,94.69891142136402,1.715624671824133,5800.704599300669,2019
+2001,41,"(40,45]",College,162.46778882938028,94.69891142136402,1.715624671824133,5869.030689613531,2019
+2001,41,"(40,45]",College,163.97444529456772,94.69891142136402,1.7315346378688699,5684.227658172314,2019
+2001,41,"(40,45]",College,164.14185156847745,94.69891142136402,1.7333024118738407,5795.314082439448,2019
+2001,95,"(90,95]",College,467.06350420811015,86.08991947396729,5.425298421255294,7305.561558613536,2019
+2001,95,"(90,95]",College,1049.637337413925,86.08991947396729,12.192337312283405,6470.416610636634,2019
+2001,95,"(90,95]",College,593.4552410099465,86.08991947396729,6.89343473238352,6122.930216485253,2019
+2001,95,"(90,95]",College,381.6863045141546,86.08991947396729,4.433577204466693,7518.744972922805,2019
+2001,95,"(90,95]",College,397.9247130833971,86.08991947396729,4.622198690797074,7630.097916273457,2019
+2001,38,"(35,40]",HS,212.27115531752105,123.96948404251289,1.712285543148077,8321.362035100003,2019
+2001,38,"(35,40]",HS,212.43856159143078,123.96948404251289,1.713635926068541,8620.367168476105,2019
+2001,38,"(35,40]",HS,212.27115531752105,122.24768565303354,1.736402240938895,8727.36651736318,2019
+2001,38,"(35,40]",HS,212.10374904361132,123.96948404251289,1.710935160227613,8507.478988390267,2019
+2001,38,"(35,40]",HS,212.10374904361132,122.24768565303354,1.7350328385406781,8660.901518553681,2019
+2001,46,"(45,50]",College,4704.1832593726085,296.1493229904475,15.88449776575834,206.95743366986207,2019
+2001,46,"(45,50]",College,848.6995868400919,273.76594392721603,3.1000919057548257,207.10069755069512,2019
+2001,46,"(45,50]",College,63.66460596786534,273.76594392721603,0.23255122625767996,127.58627552222643,2019
+2001,46,"(45,50]",College,344.07011476664115,261.7133552008606,1.3146830604138378,207.7767169422297,2019
+2001,46,"(45,50]",College,4013.7830451415457,296.1493229904475,13.553240657825219,210.28391170898854,2019
+2001,75,"(70,75]",NoHS,345.86136189747515,29.27057262114888,11.816009422636979,7429.759703655068,2019
+2001,75,"(70,75]",NoHS,345.86136189747515,29.27057262114888,11.816009422636979,7619.950599043756,2019
+2001,75,"(70,75]",NoHS,345.86136189747515,29.27057262114888,11.816009422636979,7524.5030789785615,2019
+2001,75,"(70,75]",NoHS,345.86136189747515,27.548774231669533,12.554510011551791,7472.036110220286,2019
+2001,75,"(70,75]",NoHS,345.86136189747515,29.27057262114888,11.816009422636979,7758.818937231708,2019
+2001,47,"(45,50]",College,1373.5349961744455,177.34523411637264,7.744978335719707,236.0040704926309,2019
+2001,47,"(45,50]",College,1373.5349961744455,177.34523411637264,7.744978335719707,236.729079348938,2019
+2001,47,"(45,50]",College,1373.5349961744455,175.6234357268933,7.8209094958738214,223.50135626049877,2019
+2001,47,"(45,50]",College,1375.1923182861515,177.34523411637264,7.754323509949867,237.258693396689,2019
+2001,47,"(45,50]",College,1375.1923182861515,177.34523411637264,7.754323509949867,250.54573577320838,2019
+2001,74,"(70,75]",HS,21384.14261667942,270.3223471482573,79.1060851693159,531.9598108446365,2019
+2001,74,"(70,75]",HS,20659.943075745985,270.3223471482573,76.42706307375734,499.0721353327811,2019
+2001,74,"(70,75]",HS,21777.882172915073,270.3223471482573,80.5626408717555,532.7920398984211,2019
+2001,74,"(70,75]",HS,20158.728691660293,272.04414553773665,74.10094656443901,524.578142047692,2019
+2001,74,"(70,75]",HS,24019.619586840094,272.04414553773665,88.2930950025102,520.4816482457029,2019
+2001,35,"(30,35]",HS,43.44192807957154,77.48092752657055,0.5606789885765627,5588.517601541015,2019
+2001,35,"(30,35]",HS,43.44192807957154,77.48092752657055,0.5606789885765627,5809.272534366372,2019
+2001,35,"(30,35]",HS,46.70635042081102,77.48092752657055,0.6028109356950329,5877.699545782017,2019
+2001,35,"(30,35]",HS,49.5522570772762,77.48092752657055,0.6395413511316477,5692.623550885034,2019
+2001,35,"(30,35]",HS,43.97762815608263,77.48092752657055,0.5675929491293373,5803.874055438191,2019
+2001,76,"(75,80]",College,1088.9778117827084,86.08991947396729,12.649306892568347,11278.96182332654,2019
+2001,76,"(75,80]",College,1067.2149961744453,86.08991947396729,12.39651520985753,11042.086600875853,2019
+2001,76,"(75,80]",College,1067.2149961744453,86.08991947396729,12.39651520985753,10408.773231555759,2019
+2001,76,"(75,80]",College,1072.2371843917367,86.08991947396729,12.454851752021563,11161.037161086704,2019
+2001,76,"(75,80]",College,1067.2149961744453,86.08991947396729,12.39651520985753,11386.752961154238,2019
+2001,65,"(60,65]",College,2553.615302218822,86.08991947396729,29.662187139006548,4024.4453996413185,2019
+2001,65,"(60,65]",College,2562.8393879112473,86.08991947396729,29.76933192144783,4054.6692327318938,2019
+2001,65,"(60,65]",College,2550.434583014537,86.08991947396729,29.62524066230266,5138.166052447517,2019
+2001,65,"(60,65]",College,2560.9811782708493,86.08991947396729,29.747747400847135,4224.37386631156,2019
+2001,65,"(60,65]",College,2554.45233358837,86.08991947396729,29.671909896033885,4298.3792549076625,2019
+2001,48,"(45,50]",HS,16.958255547054325,86.08991947396729,0.196983057373893,5423.281359846574,2019
+2001,48,"(45,50]",HS,20.25615914307575,86.08991947396729,0.2352907200616096,5724.3899753426895,2019
+2001,48,"(45,50]",HS,21.46148431522571,86.08991947396729,0.2492914901809781,5760.536527717625,2019
+2001,48,"(45,50]",HS,16.05426166794185,86.08991947396729,0.18648247978436658,5559.668120573936,2019
+2001,48,"(45,50]",HS,20.08875286916603,86.08991947396729,0.23334616865614172,5651.007440444211,2019
+2001,43,"(40,45]",College,19164.67023718439,3443.596778958692,5.565306122448978,15.37873080728871,2019
+2001,43,"(40,45]",College,18379.53481254782,3891.2643602233215,4.723280947042367,15.402459567533606,2019
+2001,43,"(40,45]",College,14576.064269319053,3598.5586340118325,4.050528489810659,15.829716560097808,2019
+2001,43,"(40,45]",College,16730.583014537107,3133.6730688524094,5.3389688863312275,15.345830169904364,2019
+2001,43,"(40,45]",College,19196.477429227238,3305.852907800344,5.8068153558593245,15.1451268563127,2019
+2001,23,"(20,25]",HS,6.24425401683244,51.653951684380374,0.12088627903991785,7435.483763405883,2019
+2001,23,"(20,25]",HS,6.227513389441469,51.653951684380374,0.12056218713900656,7367.017175472116,2019
+2001,23,"(20,25]",HS,6.227513389441469,51.653951684380374,0.12056218713900656,7366.746076444067,2019
+2001,23,"(20,25]",HS,6.227513389441469,51.653951684380374,0.12056218713900656,7346.44135028956,2019
+2001,23,"(20,25]",HS,6.227513389441469,51.653951684380374,0.12056218713900656,7335.869217313511,2019
+2001,37,"(35,40]",HS,0,11.70822904845955,0,4599.939502958676,2019
+2001,37,"(35,40]",HS,0,11.70822904845955,0,4592.877783349966,2019
+2001,37,"(35,40]",HS,0,11.70822904845955,0,4599.97035872492,2019
+2001,37,"(35,40]",HS,0,11.70822904845955,0,4569.47865125863,2019
+2001,37,"(35,40]",HS,0,11.536049209511617,0,4620.479816168858,2019
+2001,73,"(70,75]",NoHS,154.38206579954092,91.25531464240532,1.6917597227570274,7361.613911688993,2019
+2001,73,"(70,75]",NoHS,244.27923488905893,44.76675812646299,5.456710405497468,8203.05005469421,2019
+2001,73,"(70,75]",NoHS,243.44220351951034,43.04495973698364,5.655533307662688,8103.893255092402,2019
+2001,73,"(70,75]",NoHS,241.4333282325937,29.27057262114888,8.24832952048744,7758.259494444476,2019
+2001,73,"(70,75]",NoHS,170.45306809487374,30.992371010628222,5.499839558464895,8012.157828742759,2019
+2001,81,"(80,85]",HS,489.83075745983166,77.48092752657055,6.321952680443247,8267.55624773558,2019
+2001,81,"(80,85]",HS,533.0215761285386,79.20272591604991,6.729838777184376,8180.851374185004,2019
+2001,81,"(80,85]",HS,497.6988523335884,79.20272591604991,6.28386013962599,8164.205510812001,2019
+2001,81,"(80,85]",HS,489.663351185922,77.48092752657055,6.319792067770505,8357.115323329792,2019
+2001,81,"(80,85]",HS,536.5371078806427,77.48092752657055,6.9247636161382795,8233.145572137762,2019
+2001,20,"(15,20]",HS,-8.2196480489671,16.184904861105853,-0.5078589043003793,5741.060957052464,2019
+2001,20,"(15,20]",HS,-8.2196480489671,61.984742021256444,-0.1326076027895435,5688.196763227757,2019
+2001,20,"(15,20]",HS,-8.2196480489671,58.54114524229776,-0.1404080500124578,5687.987443149204,2019
+2001,20,"(15,20]",HS,-8.2196480489671,22.383379063231494,-0.3672210538787358,5672.309825622424,2019
+2001,20,"(15,20]",HS,-8.2196480489671,36.157766179066265,-0.2273273190677888,5664.1469055229545,2019
+2001,23,"(20,25]",HS,14209.77934200459,566.4716701387047,25.084713130535235,3003.9358078219484,2019
+2001,23,"(20,25]",HS,14401.626931905126,564.7498717492255,25.50089455938841,2956.028373837854,2019
+2001,23,"(20,25]",HS,14241.753940321347,566.4716701387047,25.141158315709152,3002.171501819057,2019
+2001,23,"(20,25]",HS,15393.006885998471,566.4716701387047,27.173480506499793,2978.0146473588757,2019
+2001,23,"(20,25]",HS,15693.501147666411,564.7498717492255,27.788410290485267,2907.9886605884467,2019
+2001,67,"(65,70]",College,1007.082662586075,84.36812108448795,11.936767698993343,7499.441507449966,2019
+2001,67,"(65,70]",College,1309.6527620504974,87.81171786344665,14.914327995349081,6746.632498665403,2019
+2001,67,"(65,70]",College,1038.3039326702371,117.08229048459552,8.868155280980316,6368.70980687102,2019
+2001,67,"(65,70]",College,1010.6316755929611,101.5861049792814,9.948522741363895,7118.50733499917,2019
+2001,67,"(65,70]",College,541.7434429992348,123.96948404251289,4.369974168912848,8134.1383047842655,2019
+2001,38,"(35,40]",HS,1.506656465187452,24.105177452710844,0.06250343803289508,5760.0287608122035,2019
+2001,38,"(35,40]",HS,1.1718439173680184,24.105177452710844,0.04861378513669618,5710.02285579547,2019
+2001,38,"(35,40]",HS,1.506656465187452,24.105177452710844,0.06250343803289508,5739.110829452051,2019
+2001,38,"(35,40]",HS,1.506656465187452,24.105177452710844,0.06250343803289508,5726.149409116659,2019
+2001,38,"(35,40]",HS,1.506656465187452,24.105177452710844,0.06250343803289508,5747.041399035463,2019
+2001,38,"(35,40]",NoHS,35.992348890589135,11.019509692667812,3.266238688871775,5074.502911882771,2019
+2001,38,"(35,40]",NoHS,10.8814078041316,10.50297017582401,1.0360314865197549,5107.591064323055,2019
+2001,38,"(35,40]",NoHS,10.37918898240245,29.27057262114888,0.3545946680559017,5055.643498486149,2019
+2001,38,"(35,40]",NoHS,12.555470543228768,12.396948404251289,1.0127871903478374,5058.619203205373,2019
+2001,38,"(35,40]",NoHS,13.05768936495792,15.66836534426205,0.8333791737719346,5121.391571621965,2019
+2001,37,"(35,40]",College,2828.328997704667,1525.5133730787006,1.8540178326963475,845.4159565969078,2019
+2001,37,"(35,40]",College,2828.328997704667,599.1858395388124,4.720286780945298,838.6553450379427,2019
+2001,37,"(35,40]",College,2828.328997704667,759.3130897603914,3.7248521536711205,883.1269203199097,2019
+2001,37,"(35,40]",College,2828.328997704667,986.5904771716652,2.866771029265208,861.878181909244,2019
+2001,37,"(35,40]",College,2826.65493496557,728.3207187497634,3.8810579765159106,861.4985961154146,2019
+2001,58,"(55,60]",College,46537.270084162206,860.899194739673,54.05658452060069,366.5238559756359,2019
+2001,58,"(55,60]",College,46477.003825554704,860.899194739673,53.98658067000384,344.1620288315377,2019
+2001,58,"(55,60]",College,46692.95791889824,860.899194739673,54.237427801309195,361.075213886859,2019
+2001,58,"(55,60]",College,46540.6182096404,860.899194739673,54.060473623411625,376.57100058552925,2019
+2001,58,"(55,60]",College,46692.95791889824,860.899194739673,54.237427801309195,361.9683243107386,2019
+2001,36,"(35,40]",HS,42.85600612088753,43.04495973698364,0.9956103195995379,4302.434846572754,2019
+2001,36,"(35,40]",HS,42.85600612088753,43.04495973698364,0.9956103195995379,4309.367311189686,2019
+2001,36,"(35,40]",HS,42.85600612088753,43.04495973698364,0.9956103195995379,4331.730366076724,2019
+2001,36,"(35,40]",HS,42.85600612088753,43.04495973698364,0.9956103195995379,4281.1861159256905,2019
+2001,36,"(35,40]",HS,42.85600612088753,43.04495973698364,0.9956103195995379,4344.452470442757,2019
+2001,41,"(40,45]",College,22.432440703902067,86.08991947396729,0.26056988833269157,5851.739071642408,2019
+2001,41,"(40,45]",College,22.432440703902067,86.08991947396729,0.26056988833269157,5854.127474577819,2019
+2001,41,"(40,45]",College,22.432440703902067,86.08991947396729,0.26056988833269157,5898.03723511084,2019
+2001,41,"(40,45]",College,22.432440703902067,86.08991947396729,0.26056988833269157,5876.294288798463,2019
+2001,41,"(40,45]",College,22.432440703902067,86.08991947396729,0.26056988833269157,5907.102257306904,2019
+2001,80,"(75,80]",NoHS,0,10.15861049792814,0,5011.3232737055005,2019
+2001,80,"(75,80]",NoHS,0,12.224768565303355,0,4998.161766013808,2019
+2001,80,"(75,80]",NoHS,0,14.807466149522373,0,5012.791513044656,2019
+2001,80,"(75,80]",NoHS,0,9.297711303188466,0,5018.901326066183,2019
+2001,80,"(75,80]",NoHS,0,6.542833880021514,0,5056.349710687768,2019
+2001,31,"(30,35]",NoHS,-2.0925784238714615,15.496185505314111,-0.13503829204637832,7831.429991811696,2019
+2001,31,"(30,35]",NoHS,-2.0925784238714615,15.496185505314111,-0.13503829204637832,7880.678129877137,2019
+2001,31,"(30,35]",NoHS,-2.0925784238714615,15.496185505314111,-0.13503829204637832,7955.786567893901,2019
+2001,31,"(30,35]",NoHS,-2.0925784238714615,15.496185505314111,-0.13503829204637832,7852.873640359186,2019
+2001,31,"(30,35]",NoHS,-2.0925784238714615,15.496185505314111,-0.13503829204637832,7825.26180484107,2019
+2001,68,"(65,70]",College,282.8328997704667,175.6234357268933,1.6104507840872198,8826.746836749055,2019
+2001,68,"(65,70]",College,282.8328997704667,175.6234357268933,1.6104507840872198,7943.002191377373,2019
+2001,68,"(65,70]",College,282.8328997704667,175.6234357268933,1.6104507840872198,7494.383172704443,2019
+2001,68,"(65,70]",College,282.665493496557,173.90163733741394,1.6254331921447824,8379.701265699316,2019
+2001,68,"(65,70]",College,282.665493496557,175.6234357268933,1.609497572613951,7998.070531692926,2019
+2001,42,"(40,45]",HS,2748.3087987758227,172.17983894793457,15.961850211782828,917.3999938851224,2019
+2001,42,"(40,45]",HS,2779.0445906656464,172.17983894793457,16.140360030804775,890.8203553982681,2019
+2001,42,"(40,45]",HS,2717.5060443764346,172.17983894793457,15.782951482479785,962.4194410901616,2019
+2001,42,"(40,45]",HS,2751.489517980107,172.17983894793457,15.98032345013477,914.1998184077065,2019
+2001,42,"(40,45]",HS,2740.323519510329,172.17983894793457,15.915472660762418,912.1621183705125,2019
+2001,44,"(40,45]",College,3635.4783473603675,712.8245332444492,5.10010272908726,329.98639954994576,2019
+2001,44,"(40,45]",College,4015.4905891354247,900.5005576976978,4.459176126888578,326.8970278536106,2019
+2001,44,"(40,45]",College,4035.5793420045907,1523.791574689221,2.648380138752015,334.7557563186679,2019
+2001,44,"(40,45]",College,2952.460749808722,1041.6880256350044,2.8343042035151806,329.3675060298786,2019
+2001,44,"(40,45]",College,3610.36740627391,1401.5438890361875,2.5759931133920353,330.5896592044981,2019
+2001,74,"(70,75]",College,36712.53068094874,1515.1825827418243,24.229773427381243,31.158612899581744,2019
+2001,74,"(70,75]",College,36730.94537107881,1515.1825827418243,24.24192687366542,31.35233493622863,2019
+2001,74,"(70,75]",College,36652.26442234124,1516.9043811313036,24.16254107922483,31.308935746313466,2019
+2001,74,"(70,75]",College,36558.516908951795,1525.5133730787006,23.9647305321038,32.2781370975615,2019
+2001,74,"(70,75]",College,36600.36847742923,1515.1825827418243,24.155747890923095,31.821185909787907,2019
+2001,89,"(85,90]",HS,134.25983167559295,29.27057262114888,4.5868536093682755,6165.792029714808,2019
+2001,89,"(85,90]",HS,120.86732976281561,22.383379063231494,5.3998696721068695,6087.458938256185,2019
+2001,89,"(85,90]",HS,535.5326702371844,34.43596778958692,15.551549865229111,6147.603201991471,2019
+2001,89,"(85,90]",HS,319.913389441469,18.939782284272805,16.89108061749571,6254.519589866148,2019
+2001,89,"(85,90]",HS,260.65156847742924,15.840545183209981,16.454709447355647,6201.257398271144,2019
+2001,84,"(80,85]",College,191522.98913542464,3581.340650117039,53.47801503584017,31.36574549056442,2019
+2001,84,"(80,85]",College,191544.7519510329,4029.0082313816697,47.541414896873114,34.21214188710958,2019
+2001,84,"(80,85]",College,191543.0778882938,4149.534118645224,46.16014049086321,33.339071345827016,2019
+2001,84,"(80,85]",College,191558.14445294568,4097.880166960844,46.74566767407771,32.80550343108766,2019
+2001,84,"(80,85]",College,191529.85279265494,3787.9564568545607,50.562844365876714,34.65309021574954,2019
+2001,41,"(40,45]",College,406.31176740627393,87.81171786344665,4.627079133540208,6568.377877662411,2019
+2001,41,"(40,45]",College,406.1443611323642,87.81171786344665,4.625172710593671,6812.149942803384,2019
+2001,41,"(40,45]",College,404.63770466717676,87.81171786344665,4.608014904074837,6875.820273903411,2019
+2001,41,"(40,45]",College,406.47917368018364,87.81171786344665,4.628985556486745,6671.29100048842,2019
+2001,41,"(40,45]",College,404.63770466717676,87.81171786344665,4.608014904074837,6824.3171289331585,2019
+2001,21,"(20,25]",College,-44.01110941086458,6.887193557917383,-6.390282056218714,4092.6446929661674,2019
+2001,21,"(20,25]",College,-44.01110941086458,6.887193557917383,-6.390282056218714,4129.594263482718,2019
+2001,21,"(20,25]",College,-47.35923488905891,6.887193557917383,-6.876419907585675,4172.26266144734,2019
+2001,21,"(20,25]",College,-45.685172149961744,6.887193557917383,-6.633350981902194,4106.085500425955,2019
+2001,21,"(20,25]",College,-47.35923488905891,6.887193557917383,-6.876419907585675,4096.084629985762,2019
+2001,44,"(40,45]",HS,201.32278500382557,117.08229048459552,1.7194981766291424,122.73223017622385,2019
+2001,44,"(40,45]",HS,199.6487222647284,117.08229048459552,1.7052000045301141,129.78701684252968,2019
+2001,44,"(40,45]",HS,199.79938791124712,117.08229048459552,1.7064868400190263,127.68094206214907,2019
+2001,44,"(40,45]",HS,199.63198163733742,117.08229048459552,1.7050570228091235,125.71453958755345,2019
+2001,44,"(40,45]",HS,201.28930374904363,117.08229048459552,1.7192122131871617,124.50311923215591,2019
+2001,46,"(45,50]",HS,1.506656465187452,46.488556515942335,0.032409190091130795,6927.491767467053,2019
+2001,46,"(45,50]",HS,2.17628156082632,46.488556515942335,0.04681327457607781,7055.808703692432,2019
+2001,46,"(45,50]",HS,1.0044376434583013,46.488556515942335,0.021606126727420526,6950.675806157754,2019
+2001,46,"(45,50]",HS,2.0088752869166027,46.488556515942335,0.04321225345484105,6975.510805965923,2019
+2001,46,"(45,50]",HS,0,46.488556515942335,0,7030.079038257269,2019
+2001,66,"(65,70]",NoHS,198.61080336648814,18.939782284272805,10.48643539748661,7131.50223673562,2019
+2001,66,"(65,70]",NoHS,198.59406273909715,17.21798389479346,11.534106661532537,7481.244012496654,2019
+2001,66,"(65,70]",NoHS,198.77820964039788,18.939782284272805,10.495274267511464,7805.45131179692,2019
+2001,66,"(65,70]",NoHS,198.77820964039788,17.21798389479346,11.544801694262611,7195.185749646216,2019
+2001,66,"(65,70]",NoHS,198.61080336648814,18.939782284272805,10.48643539748661,7508.31406541329,2019
+2001,41,"(40,45]",HS,6.026625860749808,30.992371010628222,0.19445514054678475,8819.862370410567,2019
+2001,41,"(40,45]",HS,6.194032134659525,30.992371010628222,0.1998566722286399,8766.507565291728,2019
+2001,41,"(40,45]",HS,5.8592195868400925,32.71416940010757,0.1791034189246702,8662.040008923368,2019
+2001,41,"(40,45]",HS,6.026625860749808,30.992371010628222,0.19445514054678475,8735.954340512208,2019
+2001,41,"(40,45]",HS,6.026625860749808,30.992371010628222,0.19445514054678475,8817.262059529992,2019
+2001,73,"(70,75]",NoHS,146.98270849273143,34.43596778958692,4.268290335001924,10461.755373957976,2019
+2001,73,"(70,75]",NoHS,161.71446059678652,18.939782284272805,8.53834844400882,10428.44207072308,2019
+2001,73,"(70,75]",NoHS,146.7818209640398,22.383379063231494,6.557625662746958,10417.781442082267,2019
+2001,73,"(70,75]",NoHS,168.07589900535578,22.383379063231494,7.508960042652766,10559.67263130553,2019
+2001,73,"(70,75]",NoHS,141.29089517980108,18.939782284272805,7.4600063009766515,10373.153135440856,2019
+2001,50,"(45,50]",HS,1144.3892884468248,223.83379063231493,5.112674387607003,6844.039667577109,2019
+2001,50,"(45,50]",HS,1147.06778882938,223.83379063231493,5.124640857794496,6218.774150673462,2019
+2001,50,"(45,50]",HS,1147.7374139250192,223.83379063231493,5.127632475341371,5805.398659271921,2019
+2001,50,"(45,50]",HS,1146.565570007651,223.83379063231493,5.122397144634342,6508.707325113953,2019
+2001,50,"(45,50]",HS,1147.4863045141547,223.83379063231493,5.126510618761293,6242.860238139537,2019
+2001,46,"(45,50]",HS,-50.22188217291507,18.939782284272805,-2.6516610074561555,4676.861740932427,2019
+2001,46,"(45,50]",HS,-50.22188217291507,18.939782284272805,-2.6516610074561555,4707.709697825072,2019
+2001,46,"(45,50]",HS,-50.22188217291507,20.661580673752148,-2.4306892568348095,4706.13661868109,2019
+2001,46,"(45,50]",HS,-50.22188217291507,18.939782284272805,-2.6516610074561555,4679.1120389773305,2019
+2001,46,"(45,50]",HS,-50.22188217291507,20.661580673752148,-2.4306892568348095,4681.840254373091,2019
+2001,35,"(30,35]",HS,58.08997704667177,41.323161347504296,1.4057486202027982,7564.684627538394,2019
+2001,35,"(30,35]",HS,58.08997704667177,41.323161347504296,1.4057486202027982,7567.772173778692,2019
+2001,35,"(30,35]",HS,58.08997704667177,41.323161347504296,1.4057486202027982,7624.535383217187,2019
+2001,35,"(30,35]",HS,58.08997704667177,41.323161347504296,1.4057486202027982,7596.427750646265,2019
+2001,35,"(30,35]",HS,58.08997704667177,41.323161347504296,1.4057486202027982,7636.2539566558335,2019
+2001,47,"(45,50]",College,6943.342616679419,344.35967789586914,20.163053523296114,1461.0710593148456,2019
+2001,47,"(45,50]",College,7149.08492731446,344.35967789586914,20.760516942626108,1434.7745263077823,2019
+2001,47,"(45,50]",College,6992.97857689365,344.35967789586914,20.307193396226417,1458.2108906091098,2019
+2001,47,"(45,50]",College,6966.61208875287,344.35967789586914,20.23062668463612,1447.307452835343,2019
+2001,47,"(45,50]",College,7011.811782708493,344.35967789586914,20.361883904505202,1411.6393588282385,2019
+2001,36,"(35,40]",College,3405.2110175975517,860.899194739673,3.9554120138621482,2860.7047505408727,2019
+2001,36,"(35,40]",College,3366.7075745983166,860.899194739673,3.9106873315363875,2849.997650022122,2019
+2001,36,"(35,40]",College,3582.6616679418516,860.899194739673,4.16153446284174,2908.410079361286,2019
+2001,36,"(35,40]",College,3393.4925784238717,860.899194739673,3.9418001540238734,2844.9565121777164,2019
+2001,36,"(35,40]",College,4001.177352716144,860.899194739673,4.647672314208702,2814.904719414601,2019
+2001,45,"(40,45]",HS,28.96128538638103,56.819346852818406,0.5097081714332389,5091.326652288191,2019
+2001,30,"(25,30]",HS,30.635348125478195,56.819346852818406,0.539171071516085,4781.43200393173,2019
+2001,32,"(30,35]",HS,30.635348125478195,56.819346852818406,0.539171071516085,4713.999942907133,2019
+2001,41,"(40,45]",HS,30.635348125478195,56.819346852818406,0.539171071516085,5199.132833318051,2019
+2001,26,"(25,30]",HS,30.635348125478195,56.819346852818406,0.539171071516085,4755.177532238215,2019
+2001,31,"(30,35]",HS,3.5573833205814847,39.60136295802496,0.08982982036128644,5350.376070726086,2019
+2001,31,"(30,35]",HS,3.5657536342769705,39.60136295802496,0.09004118464448946,5310.64677362759,2019
+2001,31,"(30,35]",HS,3.5573833205814847,39.60136295802496,0.08982982036128644,5316.4954515982445,2019
+2001,31,"(30,35]",HS,3.5573833205814847,39.60136295802496,0.08982982036128644,5351.410579666808,2019
+2001,31,"(30,35]",HS,3.5657536342769705,39.60136295802496,0.09004118464448946,5301.402553189367,2019
+2001,26,"(25,30]",College,3.348125478194338,105.0297017582401,0.03187789189291553,5983.786484826744,2019
+2001,26,"(25,30]",College,3.348125478194338,103.30790336876075,0.03240919009113079,6000.6451472349345,2019
+2001,26,"(25,30]",College,5.022188217291507,105.0297017582401,0.0478168378393733,6003.401814998362,2019
+2001,26,"(25,30]",College,1.674062739097169,103.30790336876075,0.016204595045565394,6006.007919429844,2019
+2001,26,"(25,30]",College,1.674062739097169,103.30790336876075,0.016204595045565394,5988.041650335448,2019
+2001,55,"(50,55]",HS,1036.2448355011477,172.17983894793457,6.018386599922988,527.9889606715922,2019
+2001,55,"(50,55]",HS,1036.2448355011477,172.17983894793457,6.018386599922988,522.7097885026417,2019
+2001,55,"(50,55]",HS,1037.9188982402447,172.17983894793457,6.028109356950327,503.4911841140628,2019
+2001,55,"(50,55]",HS,1037.9188982402447,172.17983894793457,6.028109356950327,522.3705747484918,2019
+2001,55,"(50,55]",HS,1036.2448355011477,172.17983894793457,6.018386599922988,551.2155837150973,2019
+2001,79,"(75,80]",HS,6508.086304514155,585.4114524229775,11.117114770436478,172.02463374934786,2019
+2001,79,"(75,80]",HS,8279.914307574598,740.3733074761187,11.18343168772555,161.037107519999,2019
+2001,79,"(75,80]",HS,4630.62494261668,673.2231702864241,6.878291103151681,172.1157236483978,2019
+2001,79,"(75,80]",HS,5144.72960979342,618.1256218230851,8.323113341620877,169.53909477072477,2019
+2001,79,"(75,80]",HS,3563.1755776587606,513.0959200648451,6.944462893426333,163.31319795449969,2019
+2001,37,"(35,40]",HS,9.709563886763581,63.706540410735805,0.15241078583396642,4542.988342680317,2019
+2001,37,"(35,40]",HS,9.542157612853863,63.706540410735805,0.14978301366441524,4550.308408425381,2019
+2001,37,"(35,40]",HS,9.709563886763581,63.706540410735805,0.15241078583396642,4573.921804393357,2019
+2001,37,"(35,40]",HS,9.542157612853863,63.706540410735805,0.14978301366441524,4520.551573950803,2019
+2001,37,"(35,40]",HS,9.542157612853863,63.706540410735805,0.14978301366441524,4587.355214518155,2019
+2001,28,"(25,30]",HS,49.88706962509564,43.04495973698364,1.1589526376588373,8183.221872454024,2019
+2001,28,"(25,30]",HS,39.34047436878347,43.04495973698364,0.9139391605698882,8307.78566353629,2019
+2001,28,"(25,30]",HS,40.495577658760524,43.04495973698364,0.9407739699653448,8384.19618304758,2019
+2001,28,"(25,30]",HS,40.34491201224177,43.04495973698364,0.9372737774355024,8233.782668601929,2019
+2001,28,"(25,30]",HS,44.51332823259373,43.04495973698364,1.0341124374278015,8308.542174017357,2019
+2001,73,"(70,75]",College,759.7901147666412,37.87956456854561,20.058047747400845,6890.866052101386,2019
+2001,73,"(70,75]",College,907.9279265493496,60.2629436317771,15.06610649650696,6333.174034371377,2019
+2001,73,"(70,75]",College,951.2359296097935,60.2629436317771,15.784757137356292,5785.402589835716,2019
+2001,73,"(70,75]",College,2015.7389441469013,79.20272591604991,25.450373340476467,3173.788287418845,2019
+2001,73,"(70,75]",College,1261.406273909717,48.21035490542169,26.164633643214696,6287.117375852127,2019
+2001,39,"(35,40]",NoHS,7.533282325937261,37.87956456854561,0.19887457555921167,7651.6262630956135,2019
+2001,39,"(35,40]",NoHS,7.533282325937261,37.87956456854561,0.19887457555921167,7675.0741586593285,2019
+2001,39,"(35,40]",NoHS,7.365876052027544,37.87956456854561,0.19445514054678473,7601.769972572215,2019
+2001,39,"(35,40]",NoHS,7.533282325937261,37.87956456854561,0.19887457555921167,7655.663876026039,2019
+2001,39,"(35,40]",NoHS,7.365876052027544,37.87956456854561,0.19445514054678473,7739.190771694164,2019
+2001,33,"(30,35]",HS,227.63905126243307,106.75150014771945,2.1324201622219183,4975.718731809394,2019
+2001,33,"(30,35]",HS,224.2909257842387,108.47329853719879,2.0677063278141445,4984.484971720867,2019
+2001,33,"(30,35]",HS,225.9649885233359,106.75150014771945,2.1167382960487906,5007.941019259649,2019
+2001,33,"(30,35]",HS,227.63905126243307,108.47329853719879,2.098572223139031,5008.505990519136,2019
+2001,33,"(30,35]",HS,225.9649885233359,108.47329853719879,2.083139275476588,4969.388781114241,2019
+2001,53,"(50,55]",College,334.8125478194338,356.4122666222246,0.939396814235675,569.7668501102934,2019
+2001,53,"(50,55]",College,334.8125478194338,356.4122666222246,0.939396814235675,562.2596101214913,2019
+2001,53,"(50,55]",College,334.8125478194338,356.4122666222246,0.939396814235675,542.8130444308987,2019
+2001,53,"(50,55]",College,485.47819433817904,356.4122666222246,1.3621253806417288,567.2453233099766,2019
+2001,53,"(50,55]",College,334.8125478194338,356.4122666222246,0.939396814235675,607.4372073713869,2019
+2001,42,"(40,45]",College,162.71889824024484,125.69128243199225,1.294591757612841,7471.1696157286015,2019
+2001,42,"(40,45]",College,161.2122417750574,125.69128243199225,1.2826047968942036,7669.303341380864,2019
+2001,42,"(40,45]",College,161.04483550114767,125.69128243199225,1.2812729123699105,7745.951913567614,2019
+2001,42,"(40,45]",College,161.88186687069626,123.96948404251289,1.3058202840884783,7561.613985606096,2019
+2001,42,"(40,45]",College,160.2078041315991,125.69128243199225,1.2746134897484453,7685.770583419629,2019
+2001,51,"(50,55]",College,18778.966182096403,792.02725916049906,23.709999832582746,1778.6308543552382,2019
+2001,51,"(50,55]",College,20175.11776587605,733.4861139182013,27.505793747209218,1750.1830588256094,2019
+2001,51,"(50,55]",College,17584.43871461362,733.4861139182013,23.97378543498186,1777.0900094775393,2019
+2001,51,"(50,55]",College,18470.185309869932,733.4861139182013,25.181370116476035,1762.4043771518125,2019
+2001,51,"(50,55]",College,20808.482662586073,779.9746704341436,26.678408224466846,1720.8496674133792,2019
+2001,78,"(75,80]",College,68315.4870696251,490.7125410016135,139.21691695546147,14.608140502550564,2019
+2001,78,"(75,80]",College,75447.16174445294,492.4343393910929,153.21263305427723,15.874372334474874,2019
+2001,78,"(75,80]",College,66691.37836266258,492.4343393910929,135.4320221557418,15.508857024996303,2019
+2001,78,"(75,80]",College,79649.77906656465,492.4343393910929,161.7470040067749,15.245517375064313,2019
+2001,78,"(75,80]",College,77388.6392654935,492.4343393910929,157.15524502451726,16.088342421621903,2019
+2001,48,"(45,50]",HS,240.47911247130833,77.48092752657055,3.103720104393959,6347.731432304894,2019
+2001,48,"(45,50]",HS,240.76370313695486,77.48092752657055,3.1073931459376207,6700.166885363634,2019
+2001,48,"(45,50]",HS,228.67697016067328,77.48092752657055,2.951396910965644,6742.474962606057,2019
+2001,48,"(45,50]",HS,233.2304208110176,77.48092752657055,3.0101655756642285,6507.366618196086,2019
+2001,48,"(45,50]",HS,224.86010711553175,77.48092752657055,2.9021349420271254,6614.275596962825,2019
+2001,40,"(35,40]",HS,330.0414690130069,137.74387115834767,2.3960519349249134,6718.073717982434,2019
+2001,40,"(35,40]",HS,328.6352563121653,137.74387115834767,2.3858430400462076,6967.40144158543,2019
+2001,40,"(35,40]",HS,305.83452180566184,137.74387115834767,2.2203131016557567,7032.5228438471695,2019
+2001,40,"(35,40]",HS,315.226013771997,137.74387115834767,2.2884939353099734,6823.332270180556,2019
+2001,40,"(35,40]",HS,314.3889824024484,137.74387115834767,2.282417212167886,6979.845922533799,2019
+2001,45,"(40,45]",HS,97.59785768936496,34.43596778958692,2.8341836734693877,6780.371176136943,2019
+2001,45,"(40,45]",HS,97.76526396327468,34.43596778958692,2.8390450519830575,7093.241962155398,2019
+2001,45,"(40,45]",HS,97.76526396327468,34.43596778958692,2.8390450519830575,7131.806775560578,2019
+2001,45,"(40,45]",HS,97.59785768936496,34.43596778958692,2.8341836734693877,6952.8813181845135,2019
+2001,45,"(40,45]",HS,97.76526396327468,34.43596778958692,2.8390450519830575,6979.168756992092,2019
+2001,64,"(60,65]",NoHS,12421.712930374904,1284.461598551592,9.670754613747972,522.2808069297469,2019
+2001,64,"(60,65]",NoHS,15957.166029074217,1284.461598551592,12.423233241903166,511.9315952390874,2019
+2001,64,"(60,65]",NoHS,13926.69533282326,1284.461598551592,10.842438067846896,528.1841577746234,2019
+2001,64,"(60,65]",NoHS,15155.457383320581,1284.461598551592,11.799073946944349,514.8114854287991,2019
+2001,64,"(60,65]",NoHS,14911.044223412395,1284.461598551592,11.608789426033956,519.4318138436971,2019
+2001,57,"(55,60]",HS,242.73909716908952,67.15013718969449,3.61487120247228,5813.1131442454325,2019
+2001,57,"(55,60]",HS,246.25462892119356,56.819346852818406,4.333992602186672,6138.451842989079,2019
+2001,57,"(55,60]",HS,244.41315990818669,60.2629436317771,4.055778645690082,6169.340367509676,2019
+2001,57,"(55,60]",HS,244.58056618209642,46.488556515942335,5.261091858126899,5983.187362808915,2019
+2001,57,"(55,60]",HS,244.58056618209642,60.2629436317771,4.058556576269322,6072.09205373791,2019
+2001,31,"(30,35]",HS,0.45199693955623566,27.548774231669533,0.016407152483634963,5310.272283491331,2019
+2001,31,"(30,35]",HS,0.45199693955623566,27.548774231669533,0.016407152483634963,5307.004213573926,2019
+2001,31,"(30,35]",HS,0.45199693955623566,27.548774231669533,0.016407152483634963,5227.876351174564,2019
+2001,31,"(30,35]",HS,0.45199693955623566,27.548774231669533,0.016407152483634963,5311.387991760597,2019
+2001,31,"(30,35]",HS,0.45199693955623566,27.548774231669533,0.016407152483634963,5299.816845885662,2019
+2001,54,"(50,55]",College,1741.025248661056,148.07466149522375,11.757752684224194,546.0393333453362,2019
+2001,54,"(50,55]",College,1741.025248661056,206.6158067375215,8.426389423694006,545.8707773490164,2019
+2001,54,"(50,55]",College,1741.025248661056,206.6158067375215,8.426389423694006,515.9763889150986,2019
+2001,54,"(50,55]",College,1741.025248661056,206.6158067375215,8.426389423694006,545.6036245769417,2019
+2001,54,"(50,55]",College,1742.699311400153,206.6158067375215,8.434491721216789,578.6023160232286,2019
+2001,60,"(55,60]",College,52046.10833970926,6473.961944442341,8.039297849810337,23.01708660149429,2019
+2001,60,"(55,60]",College,53874.35225707728,6473.961944442341,8.321697396341113,22.49026593011436,2019
+2001,60,"(55,60]",College,52569.75516449885,6473.961944442341,8.120182913590968,23.279331977239398,2019
+2001,60,"(55,60]",College,55627.93297628156,6473.961944442341,8.592564098100098,24.119640096465332,2019
+2001,60,"(55,60]",College,53297.13542463657,6473.961944442341,8.232537645728705,23.151128605760825,2019
+2001,76,"(75,80]",HS,812.7574598316756,49.93215329490103,16.27723633370069,8882.01739460039,2019
+2001,76,"(75,80]",HS,814.4315225707728,49.93215329490103,16.310763082070824,8016.18113303965,2019
+2001,76,"(75,80]",HS,812.7574598316756,51.653951684380374,15.734661789244,7581.224754001896,2019
+2001,76,"(75,80]",HS,814.7663351185922,51.653951684380374,15.773552817353357,8478.016209819945,2019
+2001,76,"(75,80]",HS,812.9248661055854,51.653951684380374,15.737902708253113,8147.813636324977,2019
+2001,79,"(75,80]",College,935.9684774292273,43.04495973698364,21.743973815941473,7866.81723335563,2019
+2001,79,"(75,80]",College,964.4275439938791,43.04495973698364,22.40512129380054,7099.944650123463,2019
+2001,79,"(75,80]",College,917.5537872991584,43.04495973698364,21.316172506738546,6714.703078715111,2019
+2001,79,"(75,80]",College,917.5537872991584,43.04495973698364,21.316172506738546,7508.992727781142,2019
+2001,79,"(75,80]",College,904.161285386381,43.04495973698364,21.00504428186369,7216.531772092427,2019
+2001,52,"(50,55]",NoHS,69.3061973986228,34.43596778958692,2.012610704659222,5765.076738186819,2019
+2001,52,"(50,55]",NoHS,70.98026013771998,36.157766179066265,1.9630709426627795,6029.354336909682,2019
+2001,52,"(50,55]",NoHS,70.98026013771998,36.157766179066265,1.9630709426627795,6045.658976935561,2019
+2001,52,"(50,55]",NoHS,70.98026013771998,36.157766179066265,1.9630709426627795,5872.5052351963805,2019
+2001,52,"(50,55]",NoHS,72.65432287681715,36.157766179066265,2.0093697856501094,5959.751567944293,2019
+2001,39,"(35,40]",College,211.85263963274676,292.70572621148875,0.7237734716528121,5489.303523050327,2019
+2001,39,"(35,40]",College,211.85263963274676,292.70572621148875,0.7237734716528121,5706.139349093861,2019
+2001,39,"(35,40]",College,213.3592960979342,292.70572621148875,0.7289208136084623,5773.351561994853,2019
+2001,39,"(35,40]",College,211.85263963274676,292.70572621148875,0.7237734716528121,5591.561258509018,2019
+2001,39,"(35,40]",College,211.68523335883702,292.70572621148875,0.723201544768851,5700.836710449328,2019
+2001,85,"(80,85]",NoHS,1081.7793420045907,41.323161347504296,26.1785232961109,7309.08989565023,2019
+2001,85,"(80,85]",HS,1139.534506503443,70.59373396865318,16.142148069536145,6596.585653707579,2019
+2001,85,"(80,85]",NoHS,765.197337413925,43.04495973698364,17.776700038505968,6238.6562403959015,2019
+2001,85,"(80,85]",HS,454.3406273909717,43.04495973698364,10.555025028879477,8279.259197099773,2019
+2001,85,"(80,85]",HS,614.0462127008416,20.661580673752148,29.719227313566936,6704.907193393689,2019
+2001,68,"(65,70]",College,146.4804896710023,51.653951684380374,2.8358041329739443,9728.114513563614,2019
+2001,68,"(65,70]",College,141.65918898240244,51.653951684380374,2.7424656655114874,10181.749604484452,2019
+2001,68,"(65,70]",College,129.1037184391737,51.653951684380374,2.499396739828007,10597.448090438756,2019
+2001,68,"(65,70]",College,137.7251415455241,51.653951684380374,2.6663040687973303,9786.458857996553,2019
+2001,68,"(65,70]",College,179.79433817903595,51.653951684380374,3.480747015787447,10246.364379888699,2019
+2001,44,"(40,45]",College,290.952104055088,130.8566776004303,2.2234410149362627,5435.631812384866,2019
+2001,44,"(40,45]",College,398.3432287681714,56.819346852818406,7.010697074713248,5579.783536633562,2019
+2001,44,"(40,45]",College,288.02249426166793,111.91689531615746,2.5735389946980245,5635.54902433914,2019
+2001,44,"(40,45]",College,369.4154246365723,137.74387115834767,2.681900991528687,5501.434400124568,2019
+2001,44,"(40,45]",College,385.23531752104054,51.653951684380374,7.458002823771018,5591.764239695066,2019
+2001,19,"(15,20]",HS,34.301545524100995,34.43596778958692,0.9960964574509048,5966.247760891941,2019
+2001,19,"(15,20]",HS,34.20110175975516,34.43596778958692,0.993179630342703,5898.097457090835,2019
+2001,19,"(15,20]",HS,35.84168324407039,34.43596778958692,1.0408211397766653,5888.034555988946,2019
+2001,19,"(15,20]",HS,34.40198928844683,34.43596778958692,0.9990132845591067,5862.608830232033,2019
+2001,19,"(15,20]",HS,35.875164498852335,34.43596778958692,1.0417934154793993,5900.953241696738,2019
+2001,81,"(80,85]",HS,5.2565570007651115,41.323161347504296,0.1272060711076884,6171.9032119302865,2019
+2001,81,"(80,85]",HS,39.173068094873756,24.105177452710844,1.6250893888552722,6252.294156476197,2019
+2001,81,"(80,85]",HS,20.423565416985465,65.42833880021514,0.31215167298299656,6539.91567391536,2019
+2001,81,"(80,85]",HS,97.0956388676358,37.87956456854561,2.5632723072076167,6387.9492248531515,2019
+2001,81,"(80,85]",HS,36.494567712318286,79.20272591604991,0.4607741373825986,6214.703470428928,2019
+2001,40,"(35,40]",College,434.9214996174445,129.1348792109509,3.3679630342703124,6160.697900178208,2019
+2001,40,"(35,40]",College,453.1687834736037,129.1348792109509,3.509267103067643,5600.649524183292,2019
+2001,40,"(35,40]",College,449.82065799540936,129.1348792109509,3.4833397509947384,5235.027709278573,2019
+2001,40,"(35,40]",College,441.11553175210406,129.1348792109509,3.415928635605186,5857.222220877606,2019
+2001,40,"(35,40]",College,441.6177505738332,129.1348792109509,3.4198177384161217,5632.2289746353745,2019
+2001,49,"(45,50]",College,1292.3764345830145,371.9084521275387,3.474985381993468,6034.238845801511,2019
+2001,49,"(45,50]",College,1292.5438408569241,370.18665373805936,3.4916003259574997,5480.606893717331,2019
+2001,49,"(45,50]",College,1294.0504973221116,370.18665373805936,3.4956703172712698,5119.958788585976,2019
+2001,49,"(45,50]",College,1290.869778117827,371.9084521275387,3.470934233232077,5737.080986760691,2019
+2001,49,"(45,50]",College,1290.7023718439173,371.9084521275387,3.470484105591922,5505.7950806951585,2019
+2001,52,"(50,55]",College,2658.9138485080334,172.17983894793457,15.44265498652291,1089.6937524231441,2019
+2001,52,"(50,55]",College,3169.3355776587605,172.17983894793457,18.407123604158645,1069.3567530405933,2019
+2001,52,"(50,55]",College,2953.548890589135,172.17983894793457,17.15386022333462,1133.4274043935884,2019
+2001,52,"(50,55]",College,3199.6361132364195,172.17983894793457,18.583105506353487,1096.4235278606227,2019
+2001,52,"(50,55]",College,2593.625401683244,172.17983894793457,15.063467462456682,1101.0772010953933,2019
+2001,55,"(50,55]",NoHS,8.169426166794185,44.76675812646299,0.1824886703592903,5685.157111492069,2019
+2001,55,"(50,55]",NoHS,7.332394797245601,43.04495973698364,0.17034270311898345,5983.734068621883,2019
+2001,55,"(50,55]",NoHS,7.499801071155318,44.76675812646299,0.16753058262492226,6012.075321490609,2019
+2001,55,"(50,55]",NoHS,7.332394797245601,44.76675812646299,0.16379106069133026,5870.519361119845,2019
+2001,55,"(50,55]",NoHS,8.186166794185157,43.04495973698364,0.19017712745475548,5873.0090847001065,2019
+2001,49,"(45,50]",College,2337.3263963274676,509.65232328588644,4.586119378909136,3825.2937716807764,2019
+2001,49,"(45,50]",HS,2028.4618209640398,225.5555890217943,8.993179152692331,3741.7748516207785,2019
+2001,49,"(45,50]",College,2534.1961744452947,284.09673426409205,8.920187629082509,4018.915559093559,2019
+2001,49,"(45,50]",HS,2017.747819433818,432.17139575931583,4.668860177311547,3840.354366130278,2019
+2001,49,"(45,50]",HS,1776.8836725325173,728.3207187497634,2.4396994713849676,3828.4718363435704,2019
+2001,29,"(25,30]",HS,90.73420045906656,43.04495973698364,2.1078937235271464,4174.374371138119,2019
+2001,29,"(25,30]",HS,90.90160673297629,43.04495973698364,2.1117828263380827,4176.778640091137,2019
+2001,29,"(25,30]",HS,92.57566947207346,43.04495973698364,2.1506738544474397,4171.721560610835,2019
+2001,29,"(25,30]",HS,90.90160673297629,43.04495973698364,2.1117828263380827,4166.9957222418825,2019
+2001,29,"(25,30]",HS,90.73420045906656,43.04495973698364,2.1078937235271464,4187.729850896778,2019
+2001,66,"(65,70]",College,7649.6296863045145,721.433525191846,10.603374280770081,1845.0077243061532,2019
+2001,66,"(65,70]",College,7649.6296863045145,721.433525191846,10.603374280770081,1845.0665218577974,2019
+2001,66,"(65,70]",College,7649.6296863045145,721.433525191846,10.603374280770081,1856.86073796024,2019
+2001,66,"(65,70]",College,7649.6296863045145,721.433525191846,10.603374280770081,1840.438554036859,2019
+2001,66,"(65,70]",College,7649.6296863045145,721.433525191846,10.603374280770081,1832.4461149973722,2019
+2001,77,"(75,80]",NoHS,30.80275439938791,15.496185505314111,1.9877636589226888,9526.620962168785,2019
+2001,77,"(75,80]",NoHS,30.635348125478195,15.496185505314111,1.9769605955589784,9471.62584636376,2019
+2001,77,"(75,80]",NoHS,30.635348125478195,15.496185505314111,1.9769605955589784,9570.599039840405,2019
+2001,77,"(75,80]",NoHS,30.80275439938791,15.496185505314111,1.9877636589226888,9566.475003704958,2019
+2001,77,"(75,80]",NoHS,30.80275439938791,15.496185505314111,1.9877636589226888,9569.374354422562,2019
+2001,39,"(35,40]",College,-119.0426013771997,58.54114524229776,-2.0334860359238034,5670.477911613859,2019
+2001,39,"(35,40]",College,-119.92985462892119,63.706540410735805,-1.88253598226644,5701.168449925097,2019
+2001,39,"(35,40]",College,-122.12287681713849,58.54114524229776,-2.0861033092482275,5787.918698625879,2019
+2001,39,"(35,40]",College,-119.37741392501913,58.54114524229776,-2.039205304763415,5711.4800403250065,2019
+2001,39,"(35,40]",College,-120.06377964804896,58.54114524229776,-2.0509298058846177,5717.255222449589,2019
+2001,44,"(40,45]",HS,895.7072685539404,165.29264539001719,5.418917861956104,6760.062571937992,2019
+2001,44,"(40,45]",HS,895.7072685539404,165.29264539001719,5.418917861956104,6147.309499449913,2019
+2001,44,"(40,45]",HS,895.7072685539404,165.29264539001719,5.418917861956104,5743.180590444942,2019
+2001,44,"(40,45]",HS,895.7072685539404,163.57084700053784,5.4759591026082735,6428.066415114491,2019
+2001,44,"(40,45]",HS,895.7072685539404,165.29264539001719,5.418917861956104,6180.619500621682,2019
+2001,38,"(35,40]",NoHS,0,25.826975842190187,0,5597.431751136939,2019
+2001,38,"(35,40]",NoHS,0,25.826975842190187,0,5616.2311993225785,2019
+2001,38,"(35,40]",NoHS,0,25.826975842190187,0,5538.95124872665,2019
+2001,38,"(35,40]",NoHS,0,25.826975842190187,0,5570.472260763835,2019
+2001,38,"(35,40]",NoHS,0,25.826975842190187,0,5619.497636002193,2019
+2001,54,"(50,55]",College,3104.9678653404744,688.7193557917383,4.508320899114363,413.3167324009655,2019
+2001,54,"(50,55]",College,3103.293802601377,688.7193557917383,4.505890209857528,407.3670859074967,2019
+2001,54,"(50,55]",College,3103.293802601377,688.7193557917383,4.505890209857528,419.22465197447417,2019
+2001,54,"(50,55]",College,3103.293802601377,688.7193557917383,4.505890209857528,409.93233744569517,2019
+2001,54,"(50,55]",College,3103.293802601377,688.7193557917383,4.505890209857528,412.24095822742237,2019
+2001,39,"(35,40]",College,1801.1408416220354,235.88637935867035,7.635628841813548,2149.998953152172,2019
+2001,39,"(35,40]",College,1621.3297628156083,394.2918311907702,4.112004445841944,2079.990146286162,2019
+2001,39,"(35,40]",College,1100.8636572302985,223.83379063231493,4.918219247060218,2249.9731088251224,2019
+2001,39,"(35,40]",College,1670.8317980107115,185.95422606376934,8.98517787618192,2129.024599093268,2019
+2001,39,"(35,40]",College,948.9424636572303,387.4046376328528,2.449486587087665,2133.974957820451,2019
+2001,52,"(50,55]",NoHS,421.02677888293806,43.04495973698364,9.781093569503275,5476.333538603327,2019
+2001,52,"(50,55]",NoHS,429.39709257842384,43.04495973698364,9.975548710050058,5780.387689658926,2019
+2001,52,"(50,55]",NoHS,401.7750573833206,43.04495973698364,9.33384674624567,5816.887838543204,2019
+2001,52,"(50,55]",NoHS,424.3749043611324,43.04495973698364,9.858875625721987,5614.054475879917,2019
+2001,52,"(50,55]",NoHS,400.1009946442234,43.04495973698364,9.294955718136311,5706.2873046065,2019
+2001,47,"(45,50]",HS,2019.1707727620503,158.40545183209983,12.746851509266543,96.09826835163932,2019
+2001,47,"(45,50]",HS,2019.1707727620503,160.12725022157917,12.609788589812064,92.93065131322956,2019
+2001,47,"(45,50]",HS,2019.1707727620503,158.40545183209983,12.746851509266543,100.74258622966785,2019
+2001,47,"(45,50]",HS,2019.1707727620503,158.40545183209983,12.746851509266543,96.11111963561247,2019
+2001,47,"(45,50]",HS,2019.1707727620503,160.12725022157917,12.609788589812064,97.49702142780738,2019
+2001,58,"(55,60]",College,1372.7314460596788,860.899194739673,1.594532152483635,252.78812379287302,2019
+2001,58,"(55,60]",College,1240.4804896710025,860.899194739673,1.440912591451675,257.77671978670827,2019
+2001,58,"(55,60]",College,1238.8064269319052,860.899194739673,1.438968040046207,246.3432162207398,2019
+2001,58,"(55,60]",College,1240.4804896710025,860.899194739673,1.440912591451675,254.5143577003439,2019
+2001,58,"(55,60]",College,1372.7314460596788,860.899194739673,1.594532152483635,273.07727314320744,2019
+2001,62,"(60,65]",College,8454.853863810253,1549.6185505314113,5.456087151841869,1377.2768080910696,2019
+2001,62,"(60,65]",College,8454.853863810253,1549.6185505314113,5.456087151841869,1403.580446927317,2019
+2001,62,"(60,65]",College,8454.853863810253,1549.6185505314113,5.456087151841869,1399.780285171635,2019
+2001,62,"(60,65]",College,8454.853863810253,1549.6185505314113,5.456087151841869,1399.742957227751,2019
+2001,62,"(60,65]",College,8454.853863810253,1549.6185505314113,5.456087151841869,1395.3683720027577,2019
+2001,52,"(50,55]",College,1689.2967100229534,86.08991947396729,19.62246823257605,1094.0309707883248,2019
+2001,52,"(50,55]",College,1677.5782708492732,86.08991947396729,19.486349634193303,1087.0882609651076,2019
+2001,52,"(50,55]",College,1699.3410864575364,86.08991947396729,19.73914131690412,2257.28162034865,2019
+2001,52,"(50,55]",College,1689.2967100229534,86.08991947396729,19.62246823257605,1086.8657742063701,2019
+2001,52,"(50,55]",College,1699.3410864575364,86.08991947396729,19.73914131690412,2146.5932246773855,2019
+2001,60,"(55,60]",College,75785.15501147667,1599.5507038263122,47.379026391717204,31.047242656816206,2019
+2001,60,"(55,60]",College,75331.31660290742,1613.3250909421472,46.693203388360836,31.77391347871363,2019
+2001,60,"(55,60]",College,75675.00168324406,1739.0163733741392,43.51597997689641,32.34571507976805,2019
+2001,60,"(55,60]",College,74716.43335883704,1911.1962123220737,39.0940673056576,32.62328753755079,2019
+2001,60,"(55,60]",College,75844.91905126243,1578.8891231525602,48.036887416022765,34.10295089782255,2019
+2001,77,"(75,80]",HS,247.25906656465187,34.43596778958692,7.180256064690027,5948.300353848541,2019
+2001,77,"(75,80]",HS,247.25906656465187,34.43596778958692,7.180256064690027,5960.353842478909,2019
+2001,77,"(75,80]",HS,247.25906656465187,34.43596778958692,7.180256064690027,5958.73701294648,2019
+2001,77,"(75,80]",HS,247.25906656465187,34.43596778958692,7.180256064690027,6051.486400874378,2019
+2001,77,"(75,80]",HS,247.25906656465187,34.43596778958692,7.180256064690027,5980.03962342026,2019
+2001,57,"(55,60]",College,668.3528079571538,177.34523411637264,3.7686538986358418,11278.96182332654,2019
+2001,57,"(55,60]",College,622.3328232593726,179.06703250585196,3.4754181970320785,11042.086600875853,2019
+2001,57,"(55,60]",College,654.9770466717674,179.06703250585196,3.6577198912946893,10408.773231555759,2019
+2001,57,"(55,60]",College,622.5002295332823,179.06703250585196,3.4763530775154767,11161.037161086704,2019
+2001,57,"(55,60]",College,663.3473603672534,179.06703250585196,3.70446391546459,11386.752961154238,2019
+2001,70,"(65,70]",HS,730.1257230298394,46.488556515942335,15.705493518161983,8669.66339776659,2019
+2001,70,"(65,70]",HS,927.5144605967866,139.46566954782702,6.650485840737414,7958.805487128886,2019
+2001,70,"(65,70]",HS,485.2270849273145,37.87956456854561,12.809732383519444,8919.284708237521,2019
+2001,70,"(65,70]",HS,722.4417750573833,101.5861049792814,7.111619991776691,8199.953670576342,2019
+2001,70,"(65,70]",HS,666.3606732976282,92.97711303188467,7.166932286541451,7872.670570356589,2019
+2001,70,"(65,70]",HS,31.941117061973987,18.939782284272805,1.686456400742115,7365.58529513839,2019
+2001,70,"(65,70]",HS,37.23115531752104,22.383379063231494,1.6633393560617282,7419.431114461695,2019
+2001,70,"(65,70]",HS,32.56052027543994,24.105177452710844,1.350768744155344,7287.865760957478,2019
+2001,70,"(65,70]",HS,32.493557765876055,18.939782284272805,1.7156246718241328,7279.545897393953,2019
+2001,70,"(65,70]",HS,33.548217291507264,22.383379063231494,1.4988003909836793,7344.056342599663,2019
+2001,31,"(30,35]",HS,-0.2008875286916603,48.21035490542169,-0.004166895868859673,5180.633219898101,2019
+2001,31,"(30,35]",HS,-0.2008875286916603,48.21035490542169,-0.004166895868859673,5130.670924427674,2019
+2001,31,"(30,35]",HS,-0.36829380260137723,48.21035490542169,-0.0076393090929094,5127.746874264855,2019
+2001,31,"(30,35]",HS,-0.2008875286916603,48.21035490542169,-0.004166895868859673,5153.33834390081,2019
+2001,31,"(30,35]",HS,-0.2008875286916603,48.21035490542169,-0.004166895868859673,5145.977207274388,2019
+2001,45,"(40,45]",HS,331.9499005355777,251.3825648639845,1.3204969116103407,8371.792249337597,2019
+2001,45,"(40,45]",HS,353.22723794950264,149.7964598847031,2.3580479686995157,8816.302024542378,2019
+2001,45,"(40,45]",HS,395.39687834736037,275.48774231669535,1.435261238929534,7312.576561060933,2019
+2001,45,"(40,45]",HS,347.8534965570008,113.63869370563681,3.0610480041073043,8557.385305215865,2019
+2001,45,"(40,45]",HS,393.9069625095639,115.36049209511619,3.414574221690929,7868.532570025966,2019
+2001,63,"(60,65]",HS,2.948024483550115,27.548774231669533,0.10701109453215249,6114.910855347736,2019
+2001,63,"(60,65]",HS,2.948024483550115,27.548774231669533,0.10701109453215249,6151.319883065737,2019
+2001,63,"(60,65]",HS,2.948024483550115,27.548774231669533,0.10701109453215249,6106.247134430847,2019
+2001,63,"(60,65]",HS,2.948024483550115,27.548774231669533,0.10701109453215249,6137.394845772875,2019
+2001,63,"(60,65]",HS,3.1154307574598317,27.548774231669533,0.1130878176742395,6134.533340069056,2019
+2001,47,"(45,50]",College,2649.8739097169087,390.8482344118115,6.779802686597038,5391.838366469784,2019
+2001,47,"(45,50]",College,1746.5496557000765,390.8482344118115,4.468613394988117,5218.743013529539,2019
+2001,47,"(45,50]",College,1551.019127773527,389.1264360223322,3.9859001707211514,5643.67694289805,2019
+2001,47,"(45,50]",College,2414.1658760520277,389.1264360223322,6.204065446515891,5341.851483747738,2019
+2001,47,"(45,50]",College,2515.9488905891353,389.1264360223322,6.465633423180592,5351.943659540049,2019
+2001,63,"(60,65]",HS,506.9061973986228,141.18746793730637,3.590305887656489,6988.300290480589,2019
+2001,63,"(60,65]",HS,507.2410099464422,141.18746793730637,3.5926772918094985,6350.910565478293,2019
+2001,63,"(60,65]",HS,506.7387911247131,141.18746793730637,3.589120185579984,5941.955517647663,2019
+2001,63,"(60,65]",HS,508.58026013771996,141.18746793730637,3.6021629084215365,6649.205575536233,2019
+2001,63,"(60,65]",HS,508.24544758990055,141.18746793730637,3.599791504268527,6389.705281720553,2019
+2001,67,"(65,70]",NoHS,10.044376434583015,24.105177452710844,0.4166895868859673,6369.245383556386,2019
+2001,67,"(65,70]",NoHS,10.044376434583015,24.105177452710844,0.4166895868859673,6346.229212308219,2019
+2001,67,"(65,70]",NoHS,10.044376434583015,24.105177452710844,0.4166895868859673,6356.745827326797,2019
+2001,67,"(65,70]",NoHS,10.044376434583015,24.105177452710844,0.4166895868859673,6378.808975705828,2019
+2001,67,"(65,70]",NoHS,10.044376434583015,24.105177452710844,0.4166895868859673,6332.160949778027,2019
+2001,48,"(45,50]",HS,-6.311216526396327,30.992371010628222,-0.2036377444059385,5231.70685508854,2019
+2001,48,"(45,50]",HS,-6.294475899005356,30.992371010628222,-0.20309759123775298,5227.448206038569,2019
+2001,48,"(45,50]",HS,-6.294475899005356,30.992371010628222,-0.20309759123775298,5240.837560072956,2019
+2001,48,"(45,50]",HS,-6.294475899005356,30.992371010628222,-0.20309759123775298,5224.526232003218,2019
+2001,48,"(45,50]",HS,-6.294475899005356,30.992371010628222,-0.20309759123775298,5231.410536578754,2019
+2001,30,"(25,30]",College,233.9335271614384,111.91689531615746,2.0902431800005927,4758.98187777012,2019
+2001,30,"(25,30]",College,233.7661208875287,111.91689531615746,2.088747371227156,4707.829334598251,2019
+2001,30,"(25,30]",College,233.7661208875287,111.91689531615746,2.088747371227156,4721.6400416206525,2019
+2001,30,"(25,30]",College,235.6075899005356,111.91689531615746,2.105201267734961,4759.666142143188,2019
+2001,30,"(25,30]",College,233.7661208875287,111.91689531615746,2.088747371227156,4708.02399730229,2019
+2001,78,"(75,80]",HS,281.7447589900536,24.105177452710844,11.688142912151383,11392.087152113212,2019
+2001,78,"(75,80]",HS,281.9121652639633,24.105177452710844,11.695087738599481,11837.945353593406,2019
+2001,78,"(75,80]",HS,281.7447589900536,24.105177452710844,11.688142912151383,11940.05229914543,2019
+2001,78,"(75,80]",HS,281.9121652639633,24.105177452710844,11.695087738599481,11827.628668632638,2019
+2001,78,"(75,80]",HS,281.7447589900536,24.105177452710844,11.688142912151383,11794.407249925654,2019
+2001,62,"(60,65]",College,25859.247130833974,3822.3924246441475,6.765199450509424,267.00610454380694,2019
+2001,62,"(60,65]",College,25860.92119357307,3822.3924246441475,6.765637412537683,276.23255360010415,2019
+2001,62,"(60,65]",College,25859.247130833974,3822.3924246441475,6.765199450509424,266.3293322316423,2019
+2001,62,"(60,65]",College,25859.247130833974,3822.3924246441475,6.765199450509424,264.90006609723724,2019
+2001,62,"(60,65]",College,25859.247130833974,3822.3924246441475,6.765199450509424,264.3190953001957,2019
+2001,48,"(45,50]",College,1966.1866870696251,363.29946018014203,5.412027549104233,1322.1938198189716,2019
+2001,48,"(45,50]",College,2162.0520275439935,363.29946018014203,5.951156730241053,1304.4470878684529,2019
+2001,48,"(45,50]",College,2304.3473603672533,363.29946018014203,6.3428317763660935,1380.0463604696035,2019
+2001,48,"(45,50]",College,2038.1713848508034,363.29946018014203,5.610169043026312,1339.381097222773,2019
+2001,48,"(45,50]",College,2058.2601377199694,363.29946018014203,5.66546434365573,1339.940831143497,2019
+2001,38,"(35,40]",HS,7.03106350420811,51.653951684380374,0.13611859838274934,6198.84691350844,2019
+2001,38,"(35,40]",HS,7.365876052027544,51.653951684380374,0.1426004364009755,6443.710781094525,2019
+2001,38,"(35,40]",HS,7.868094873756696,51.653951684380374,0.15232319342831474,6519.610795867227,2019
+2001,38,"(35,40]",HS,14.06212700841622,51.653951684380374,0.2722371967654987,6314.322409656307,2019
+2001,38,"(35,40]",HS,18.582096403978575,51.653951684380374,0.35974201001155176,6437.722727226289,2019
+2001,25,"(20,25]",HS,0,44.76675812646299,0,4675.631196861783,2019
+2001,25,"(20,25]",HS,0,44.76675812646299,0,4712.08127426904,2019
+2001,25,"(20,25]",HS,0,44.76675812646299,0,4645.627259702255,2019
+2001,25,"(20,25]",HS,0,44.76675812646299,0,4689.479806790636,2019
+2001,25,"(20,25]",HS,0,44.76675812646299,0,4686.207602044667,2019
+2001,24,"(20,25]",HS,120.11400153022188,68.87193557917384,1.7440195417789757,6063.670566307285,2019
+2001,24,"(20,25]",HS,120.11400153022188,68.87193557917384,1.7440195417789757,6029.118759322499,2019
+2001,24,"(20,25]",HS,118.43993879112472,68.87193557917384,1.7197126492106276,6044.285199916974,2019
+2001,24,"(20,25]",HS,120.11400153022188,68.87193557917384,1.7440195417789757,6018.444625407766,2019
+2001,24,"(20,25]",HS,120.11400153022188,68.87193557917384,1.7440195417789757,6058.212363452228,2019
+2001,54,"(50,55]",NoHS,101.33101759755165,46.488556515942335,2.179698084684608,7307.637099029419,2019
+2001,54,"(50,55]",NoHS,99.38910482019894,46.488556515942335,2.1379262396782615,7290.670600327289,2019
+2001,54,"(50,55]",NoHS,101.4147207345065,46.488556515942335,2.181498595245226,7375.28296811414,2019
+2001,54,"(50,55]",NoHS,100.36006120887528,46.488556515942335,2.1588121621814342,7341.248752925605,2019
+2001,54,"(50,55]",NoHS,97.0454169854629,46.488556515942335,2.087511943980947,7254.69449281684,2019
+2001,39,"(35,40]",College,33.84954858454476,39.60136295802496,0.8547571612730408,8469.497334977159,2019
+2001,39,"(35,40]",College,34.35176740627391,39.60136295802496,0.8674390182652223,8704.43511429773,2019
+2001,39,"(35,40]",College,34.184361132364195,39.60136295802496,0.8632117326011618,8921.269537887887,2019
+2001,39,"(35,40]",College,34.184361132364195,39.60136295802496,0.8632117326011618,8601.541377488193,2019
+2001,39,"(35,40]",College,33.933251721499616,39.60136295802496,0.856870804105071,8712.153325975669,2019
+2001,42,"(40,45]",HS,351.2183626625861,82.64632269500859,4.249655050699526,5961.273346240951,2019
+2001,42,"(40,45]",HS,326.9444529456771,36.157766179066265,9.04216403542549,6196.752697104968,2019
+2001,42,"(40,45]",HS,260.48416220351953,51.653951684380374,5.042869978179952,6269.743810025964,2019
+2001,42,"(40,45]",HS,267.69937260902833,175.6234357268933,1.5242804669037426,6072.3231925970695,2019
+2001,42,"(40,45]",HS,224.32440703902066,111.91689531615746,2.00438375640532,6190.994138066716,2019
+2001,46,"(45,50]",HS,387.8635960214231,167.01444377949653,2.322335645014668,5871.8139294387665,2019
+2001,46,"(45,50]",HS,211.701973986228,167.01444377949653,1.2675668594611547,6176.544575152364,2019
+2001,46,"(45,50]",HS,303.1560214231064,151.51825827418244,2.0007887160009803,6219.437707790243,2019
+2001,46,"(45,50]",HS,210.86494261667943,167.01444377949653,1.2625551290346912,6041.567640374032,2019
+2001,46,"(45,50]",HS,284.08844682478957,132.5784759899096,2.1427946331681413,6131.734676741229,2019
+2001,25,"(20,25]",HS,5.574628921193573,43.04495973698364,0.12950712360415864,5203.932763909252,2019
+2001,25,"(20,25]",HS,5.089150726855395,43.04495973698364,0.11822872545244514,5218.594273955462,2019
+2001,25,"(20,25]",HS,5.557888293802602,43.04495973698364,0.12911821332306508,5220.991671277321,2019
+2001,25,"(20,25]",HS,5.072410099464422,43.04495973698364,0.11783981517135156,5223.258127854866,2019
+2001,25,"(20,25]",HS,5.0556694720734505,43.04495973698364,0.11745090489025799,5207.633363063775,2019
+2001,72,"(70,75]",College,43505.54246365723,5165.395168438037,8.42250032088307,13.21841064784427,2019
+2001,72,"(70,75]",College,35937.10482019893,5165.395168438037,6.957280836863048,12.889723937197008,2019
+2001,72,"(70,75]",College,29277.683244070387,5165.395168438037,5.668043255037864,13.364390893692592,2019
+2001,72,"(70,75]",College,148479.32058148432,5165.395168438037,28.745007059427547,13.433686857337898,2019
+2001,72,"(70,75]",College,50134.83091048202,5165.395168438037,9.70590424849185,13.273480227856766,2019
+2001,73,"(70,75]",HS,1739.9371078806428,154.9618550531411,11.228163907072265,7296.612315260359,2019
+2001,73,"(70,75]",HS,1773.3179188982401,154.9618550531411,11.443576990544646,3305.614235279737,2019
+2001,73,"(70,75]",HS,1736.0198010711554,154.9618550531411,11.202884738801183,6137.65799106238,2019
+2001,73,"(70,75]",HS,1783.1111859219586,154.9618550531411,11.506774911222351,3352.539143447054,2019
+2001,73,"(70,75]",HS,1792.0841622035196,154.9618550531411,11.564679330851838,3462.067747492091,2019
+2001,53,"(50,55]",HS,12.220657995409335,60.2629436317771,0.20278893228450412,6387.600531525526,2019
+2001,53,"(50,55]",HS,12.053251721499617,60.2629436317771,0.2000110017052643,6505.917139837662,2019
+2001,53,"(50,55]",HS,12.220657995409335,60.2629436317771,0.20278893228450412,6408.977731648535,2019
+2001,53,"(50,55]",HS,12.220657995409335,60.2629436317771,0.20278893228450412,6431.877225909948,2019
+2001,53,"(50,55]",HS,12.220657995409335,60.2629436317771,0.20278893228450412,6482.192705348766,2019
+2001,48,"(45,50]",HS,163.22111706197398,194.5632180111661,0.8389104514739606,7065.403804204989,2019
+2001,48,"(45,50]",HS,163.27133894414692,194.5632180111661,0.8391685777667219,7364.550683356676,2019
+2001,48,"(45,50]",HS,164.392960979342,194.5632180111661,0.8449333983050558,7397.981275839569,2019
+2001,48,"(45,50]",HS,169.5825554705432,194.5632180111661,0.8716064485570483,7196.706378982815,2019
+2001,48,"(45,50]",HS,166.4185768936496,194.5632180111661,0.8553444921130917,7292.529504117539,2019
+2001,60,"(55,60]",HS,6986.031216526397,34.43596778958692,202.87018675394685,1752.6060585704029,2019
+2001,60,"(55,60]",HS,6986.031216526397,34.43596778958692,202.87018675394685,1761.570811991336,2019
+2001,60,"(55,60]",HS,6986.031216526397,34.43596778958692,202.87018675394685,1815.728464429661,2019
+2001,60,"(55,60]",HS,6986.031216526397,34.43596778958692,202.87018675394685,1739.6583075792034,2019
+2001,60,"(55,60]",HS,6986.031216526397,34.43596778958692,202.87018675394685,1725.2995247620486,2019
+2001,33,"(30,35]",HS,26.148859984697783,34.43596778958692,0.7593473238351944,7909.0006536161745,2019
+2001,33,"(30,35]",HS,26.517153787299158,34.43596778958692,0.7700423565652675,8011.62924016053,2019
+2001,33,"(30,35]",HS,32.552149961744455,34.43596778958692,0.9452950519830574,8075.58498722855,2019
+2001,33,"(30,35]",HS,27.80618209640398,34.43596778958692,0.8074749711205237,7905.338084370162,2019
+2001,33,"(30,35]",HS,31.882524866105584,34.43596778958692,0.9258495379283788,8003.365378569045,2019
+2001,41,"(40,45]",HS,14499.55960214231,998.6430658980204,14.519261282912646,1868.844944523591,2019
+2001,41,"(40,45]",HS,13829.934506503443,998.6430658980204,13.848726315509941,1868.2927902803408,2019
+2001,41,"(40,45]",HS,14583.262739097168,998.6430658980204,14.603078153837984,1880.36694392992,2019
+2001,41,"(40,45]",HS,14834.372149961746,998.6430658980204,14.854528766614001,1863.8276863356161,2019
+2001,41,"(40,45]",HS,14834.204743687835,998.6430658980204,14.85436113287215,1856.330699140442,2019
+2001,49,"(45,50]",HS,1035.407804131599,139.46566954782702,7.424105211616442,6289.029255548585,2019
+2001,49,"(45,50]",HS,1033.733741392502,139.46566954782702,7.412101807878987,5708.656001965369,2019
+2001,49,"(45,50]",HS,1033.733741392502,139.46566954782702,7.412101807878987,5332.485288853831,2019
+2001,49,"(45,50]",HS,1032.0596786534047,137.74387115834767,7.492599634193299,5978.004403008845,2019
+2001,49,"(45,50]",HS,1035.407804131599,137.74387115834767,7.516906526761647,5737.900153819811,2019
+2001,87,"(85,90]",NoHS,602.6625860749809,58.54114524229776,10.29468391130037,5257.733824222195,2019
+2001,87,"(85,90]",NoHS,602.6625860749809,58.54114524229776,10.29468391130037,4770.880429054475,2019
+2001,87,"(85,90]",NoHS,602.6625860749809,60.2629436317771,10.000550085263217,4485.911907461526,2019
+2001,87,"(85,90]",NoHS,602.6625860749809,58.54114524229776,10.29468391130037,5032.7175233147555,2019
+2001,87,"(85,90]",NoHS,602.6625860749809,60.2629436317771,10.000550085263217,4832.696821497604,2019
+2001,56,"(55,60]",HS,433.1804743687835,77.48092752657055,5.590801351987337,5470.218742344745,2019
+2001,56,"(55,60]",HS,418.29805661820967,77.48092752657055,5.398722885380568,5789.670253662318,2019
+2001,56,"(55,60]",HS,423.98986993114005,77.48092752657055,5.472183716253798,5832.825999490555,2019
+2001,56,"(55,60]",HS,423.9731293037491,77.48092752657055,5.471967654986524,5646.672592056228,2019
+2001,56,"(55,60]",HS,432.0253710788064,77.48092752657055,5.575893124545416,5711.557454469799,2019
+2001,38,"(35,40]",College,226.16587605202756,142.9092663267857,1.5825837040885915,6703.092274307002,2019
+2001,38,"(35,40]",College,222.81775057383322,142.9092663267857,1.559155373902232,6943.949358887316,2019
+2001,38,"(35,40]",College,222.81775057383322,142.9092663267857,1.559155373902232,7030.140358131852,2019
+2001,38,"(35,40]",College,224.4918133129304,142.9092663267857,1.5708695389954117,6853.014739698517,2019
+2001,38,"(35,40]",College,224.4918133129304,142.9092663267857,1.5708695389954117,6976.600923343108,2019
+2001,56,"(55,60]",HS,60598.89487375669,1721.798389479346,35.195116480554475,30.24313886239296,2019
+2001,56,"(55,60]",HS,60609.77628156082,1721.798389479346,35.201436272622246,32.82614788424742,2019
+2001,56,"(55,60]",HS,60427.30344299924,1721.798389479346,35.09545822102426,32.435333726890946,2019
+2001,56,"(55,60]",HS,60219.719663351185,1721.798389479346,34.974896033885244,31.675875535738033,2019
+2001,56,"(55,60]",HS,60286.682172915076,1721.798389479346,35.013787061994606,33.43677414646359,2019
+2001,54,"(50,55]",HS,117.55268553940321,49.93215329490103,2.354248270550901,4508.607492524535,2019
+2001,54,"(50,55]",HS,116.04602907421577,48.21035490542169,2.407076846911271,4634.792672445238,2019
+2001,54,"(50,55]",HS,115.04159143075746,49.93215329490103,2.303958147995698,4622.543347193487,2019
+2001,54,"(50,55]",HS,117.38527926549351,49.93215329490103,2.3508955957138875,4501.709985655502,2019
+2001,54,"(50,55]",HS,117.55268553940321,49.93215329490103,2.354248270550901,4562.505698891546,2019
+2001,33,"(30,35]",HS,78.79813312930375,55.097548463339066,1.430156791490181,4310.809618825931,2019
+2001,33,"(30,35]",HS,33.98347360367253,55.097548463339066,0.6167873989218328,4322.954852325498,2019
+2001,33,"(30,35]",HS,48.782188217291505,55.097548463339066,0.8853785618020793,4324.940797168386,2019
+2001,33,"(30,35]",HS,38.95543993879112,55.097548463339066,0.7070267375818251,4326.818273926519,2019
+2001,33,"(30,35]",HS,28.81061973986228,55.097548463339066,0.5229020263765883,4313.875103941607,2019
+2001,71,"(70,75]",NoHS,121.78806426931905,29.27057262114888,4.160768080817232,9754.996616322445,2019
+2001,71,"(70,75]",NoHS,122.8762050497322,29.27057262114888,4.197943328274706,10739.962153737672,2019
+2001,71,"(70,75]",NoHS,122.37398622800306,30.992371010628222,3.948519659436102,10295.657329836784,2019
+2001,71,"(70,75]",NoHS,120.88407039020659,29.27057262114888,4.129884029083332,10112.197549916073,2019
+2001,71,"(70,75]",NoHS,145.3086457536343,29.27057262114888,4.964325352782623,10634.46233045492,2019
+2001,47,"(45,50]",NoHS,1206.7481254781944,278.93133909565404,4.326326792072524,54.0343351864293,2019
+2001,47,"(45,50]",NoHS,1621.4134659525632,330.58529078003437,4.90467516605699,102.98445937048591,2019
+2001,47,"(45,50]",NoHS,3132.7573068094875,334.02888755899306,9.378701733562517,111.65677794897992,2019
+2001,47,"(45,50]",NoHS,2431.4924254016837,227.27738741127362,10.698347306332485,106.54832829976533,2019
+2001,47,"(45,50]",NoHS,1224.3257842387147,141.18746793730637,8.671632136517745,57.50541259973892,2019
+2001,30,"(25,30]",College,-9.20734506503443,60.2629436317771,-0.152786181858188,4768.560705296586,2019
+2001,30,"(25,30]",College,-9.20734506503443,60.2629436317771,-0.152786181858188,4733.151686848424,2019
+2001,30,"(25,30]",College,-9.20734506503443,60.2629436317771,-0.152786181858188,4738.3643626641315,2019
+2001,30,"(25,30]",College,-9.20734506503443,60.2629436317771,-0.152786181858188,4769.482718743639,2019
+2001,30,"(25,30]",College,-9.20734506503443,60.2629436317771,-0.152786181858188,4724.912709671849,2019
+2001,56,"(55,60]",College,103.45707727620506,96.42070981084338,1.0729756862313657,4981.069572603601,2019
+2001,56,"(55,60]",College,104.64566182096405,96.42070981084338,1.0853027531767423,5206.1171352887495,2019
+2001,56,"(55,60]",College,109.31629686304514,96.42070981084338,1.133742917652236,5235.671343555292,2019
+2001,56,"(55,60]",College,122.20657995409334,96.42070981084338,1.2674308267781504,5108.819825320452,2019
+2001,56,"(55,60]",College,163.22111706197398,96.42070981084338,1.692801446724242,5151.692453599369,2019
+2001,27,"(25,30]",HS,120.1642234123948,61.984742021256444,1.938609720617807,8932.576253344134,2019
+2001,27,"(25,30]",HS,120.2814078041316,63.706540410735805,1.8880543038224977,8988.748976469382,2019
+2001,27,"(25,30]",HS,120.19770466717675,61.984742021256444,1.9391498737859927,9074.418113594507,2019
+2001,27,"(25,30]",HS,120.44881407804132,63.706540410735805,1.8906820759920488,8957.035008131015,2019
+2001,27,"(25,30]",HS,120.2814078041316,61.984742021256444,1.9405002567064564,8925.54078210611,2019
+2001,50,"(45,50]",College,226.26631981637337,84.36812108448795,2.6818935506432067,6655.2164544945845,2019
+2001,50,"(45,50]",College,190.92685539403215,84.36812108448795,2.263021304016408,7008.58269699309,2019
+2001,50,"(45,50]",College,191.1110022953328,84.36812108448795,2.265203963757239,7035.883034729352,2019
+2001,50,"(45,50]",College,190.92685539403215,84.36812108448795,2.263021304016408,6802.75498896057,2019
+2001,50,"(45,50]",College,190.92685539403215,84.36812108448795,2.263021304016408,6937.54226869947,2019
+2001,55,"(50,55]",HS,370.6374904361133,142.9092663267857,2.5935161516300087,7171.610745334486,2019
+2001,55,"(50,55]",HS,701.934506503443,167.01444377949653,4.202837135632312,6885.900072898129,2019
+2001,55,"(50,55]",HS,412.6564651874522,146.35286310574438,2.8195995379283794,7611.08661974982,2019
+2001,55,"(50,55]",HS,388.04774292272384,148.07466149522375,2.6206221848107387,7381.430520571729,2019
+2001,55,"(50,55]",HS,314.3889824024484,154.9618550531411,2.028815299704788,7491.111825744361,2019
+2001,27,"(25,30]",College,-57.704942616679425,53.37575007385973,-1.0811078539754306,5303.400729038442,2019
+2001,27,"(25,30]",College,-112.32960979342005,53.37575007385973,-2.104506440433751,5264.020248038394,2019
+2001,27,"(25,30]",College,-68.80397857689366,56.819346852818406,-1.210925193404978,5269.8175756661085,2019
+2001,27,"(25,30]",College,-97.26304514154552,48.21035490542169,-2.0174720831728914,5304.426155176323,2019
+2001,27,"(25,30]",College,-68.38546289211935,56.819346852818406,-1.2035594683842663,5254.857190196589,2019
+2001,48,"(45,50]",College,34409.355164498855,4304.495973698365,7.993817481709665,10.719873855226902,2019
+2001,48,"(45,50]",College,34412.70328997704,4304.495973698365,7.9945953022718506,10.435442962152202,2019
+2001,48,"(45,50]",College,34411.029227237945,4304.495973698365,7.994206391990757,10.829210793767967,2019
+2001,48,"(45,50]",College,34411.029227237945,4304.495973698365,7.994206391990757,11.208984887044869,2019
+2001,48,"(45,50]",College,34411.029227237945,4304.495973698365,7.994206391990757,10.748342561587899,2019
+2001,65,"(60,65]",HS,809.6269625095639,44.76675812646299,18.08544992743106,5804.572789851865,2019
+2001,65,"(60,65]",HS,815.6535883703137,43.04495973698364,18.94887562572199,5221.898108809904,2019
+2001,65,"(60,65]",HS,812.6402754399388,43.04495973698364,18.878871775125145,4929.38569021473,2019
+2001,65,"(60,65]",HS,809.7943687834736,43.04495973698364,18.812757027339238,5509.729483195488,2019
+2001,65,"(60,65]",HS,810.7988064269318,43.04495973698364,18.836091644204853,5259.251242689203,2019
+2001,83,"(80,85]",College,728.1335883703138,56.819346852818406,12.814888391033946,8006.382582372976,2019
+2001,83,"(80,85]",College,728.1335883703138,56.819346852818406,12.814888391033946,7225.9048985574555,2019
+2001,83,"(80,85]",College,728.1335883703138,56.819346852818406,12.814888391033946,6833.828749355476,2019
+2001,83,"(80,85]",College,728.1335883703138,56.819346852818406,12.814888391033946,7642.20990567335,2019
+2001,83,"(80,85]",College,728.1335883703138,56.819346852818406,12.814888391033946,7344.560394798487,2019
+2001,52,"(50,55]",HS,89.98087222647284,206.6158067375215,0.43549849184957,4918.1574431851905,2019
+2001,52,"(50,55]",HS,74.41208875286917,280.65313748513336,0.2651389876473798,5004.164311093653,2019
+2001,52,"(50,55]",HS,82.96654934965571,311.6455084957616,0.2662209051242722,4922.12578877644,2019
+2001,52,"(50,55]",HS,79.26687069625096,203.1722099585628,0.39014622478348554,4893.410661917619,2019
+2001,52,"(50,55]",HS,74.91430757459833,254.82616164294322,0.29398201146853437,5000.216509719942,2019
+2001,28,"(25,30]",NoHS,3.147237949502678,43.04495973698364,0.07311513284559107,4951.957047247216,2019
+2001,28,"(25,30]",NoHS,3.482050497322112,43.04495973698364,0.08089333846746247,4965.908643336263,2019
+2001,28,"(25,30]",NoHS,4.067972456006121,43.04495973698364,0.09450519830573739,4968.18995808448,2019
+2001,28,"(25,30]",NoHS,3.0802754399387915,43.04495973698364,0.0715594917212168,4970.346672271736,2019
+2001,28,"(25,30]",NoHS,4.067972456006121,43.04495973698364,0.09450519830573739,4955.4784624717495,2019
+2001,47,"(45,50]",College,8727.776312165264,1721.798389479346,5.068988544474393,313.2379130398481,2019
+2001,47,"(45,50]",College,8647.06974751339,1721.798389479346,5.02211513284559,306.9161349652556,2019
+2001,47,"(45,50]",College,8211.679510328999,1721.798389479346,4.769245668078552,316.60850175098983,2019
+2001,47,"(45,50]",College,8230.947972456006,1721.798389479346,4.780436561417019,308.53994444742,2019
+2001,47,"(45,50]",College,8683.714980872228,1721.798389479346,5.043398247978437,311.3887393874046,2019
+2001,48,"(45,50]",College,3139.036716143841,258.2697584219018,12.154100949813891,304.53362864030754,2019
+2001,48,"(45,50]",College,3144.375302218822,258.2697584219018,12.174771531254015,293.01483756280936,2019
+2001,48,"(45,50]",College,3143.623648048967,258.2697584219018,12.171861185983829,318.3731775975192,2019
+2001,48,"(45,50]",College,3137.746013771997,258.2697584219018,12.149103452701837,302.8452840223405,2019
+2001,48,"(45,50]",College,3136.23935730681,258.2697584219018,12.143269798485434,308.0994824961688,2019
+2001,43,"(40,45]",HS,329.957765876052,122.24768565303354,2.699092126885301,5412.203360532358,2019
+2001,43,"(40,45]",HS,329.957765876052,122.24768565303354,2.699092126885301,5625.993613060515,2019
+2001,43,"(40,45]",HS,329.7903596021423,122.24768565303354,2.6977227244870843,5692.261794989983,2019
+2001,43,"(40,45]",HS,329.4555470543229,122.24768565303354,2.694983919690651,5513.024832175525,2019
+2001,43,"(40,45]",HS,331.79923488905894,122.24768565303354,2.714155553265686,5620.7654527718505,2019
+2001,78,"(75,80]",NoHS,105428.62096403979,103.30790336876075,1020.5281254011038,144.6675754464019,2019
+2001,78,"(75,80]",NoHS,114058.07957153786,118.80408887407486,960.051801688682,157.16936069235723,2019
+2001,78,"(75,80]",NoHS,106843.3713848508,99.86430658980206,1069.8854779387357,151.95208246402345,2019
+2001,78,"(75,80]",NoHS,107644.10907421575,106.75150014771945,1008.3615586222314,152.2689962947033,2019
+2001,78,"(75,80]",NoHS,105654.11721499618,101.5861049792814,1040.044967139398,161.47389386302845,2019
+2001,84,"(80,85]",HS,1333.558377964805,94.69891142136402,14.082087723597159,9601.002822734148,2019
+2001,84,"(80,85]",HS,1343.602754399388,94.69891142136402,14.188154163895405,8665.078468845368,2019
+2001,84,"(80,85]",HS,1326.8621270084163,94.69891142136402,14.011376763398328,8194.913050632338,2019
+2001,84,"(80,85]",HS,1332.4534965570008,94.69891142136402,14.070420415164351,9164.298373379763,2019
+2001,84,"(80,85]",HS,1330.54506503443,94.69891142136402,14.050267791507684,8807.366417569076,2019
+2001,38,"(35,40]",College,1816.8770313695486,607.7948314862091,2.989293322759645,520.5008286811264,2019
+2001,38,"(35,40]",College,1820.5599693955623,711.1027348549698,2.560192613753437,513.4390835887501,2019
+2001,38,"(35,40]",College,1818.8356847742923,494.15613778057224,3.68069026308834,543.3073539221745,2019
+2001,38,"(35,40]",College,1815.8725937260904,623.2910169915232,2.913362368819101,527.1189131473209,2019
+2001,38,"(35,40]",College,1818.500872226473,573.358863696622,3.1716626137111317,527.3989645131709,2019
+2001,50,"(45,50]",College,35035.58855394032,3581.340650117039,9.782813749592725,13.21841064784427,2019
+2001,50,"(45,50]",College,30850.49029839327,3581.340650117039,8.614229505753682,12.889723937197008,2019
+2001,50,"(45,50]",College,43406.0194338179,3581.340650117039,12.120047678904653,13.364390893692592,2019
+2001,50,"(45,50]",College,30015.082769701607,3581.340650117039,8.380962801938628,13.822782807955917,2019
+2001,50,"(45,50]",College,40057.77677123183,3581.340650117039,11.185134474689733,13.273480227856766,2019
+2001,33,"(30,35]",College,163.05371078806425,118.80408887407486,1.3724587455983213,4535.632242702562,2019
+2001,33,"(30,35]",College,163.05371078806425,118.80408887407486,1.3724587455983213,4486.880402484315,2019
+2001,33,"(30,35]",College,163.05371078806425,118.80408887407486,1.3724587455983213,4500.042942219533,2019
+2001,33,"(30,35]",College,163.05371078806425,118.80408887407486,1.3724587455983213,4536.284393022257,2019
+2001,33,"(30,35]",College,163.05371078806425,118.80408887407486,1.3724587455983213,4487.065929233436,2019
+2001,49,"(45,50]",HS,381.6863045141546,86.08991947396729,4.433577204466693,5598.718771947953,2019
+2001,49,"(45,50]",HS,231.02065799540932,86.08991947396729,2.6834809395456296,5852.762635939877,2019
+2001,49,"(45,50]",HS,346.530986993114,86.08991947396729,4.025221409318445,6029.279164669619,2019
+2001,49,"(45,50]",HS,361.5975516449885,86.08991947396729,4.200231035810551,5342.470030216696,2019
+2001,49,"(45,50]",HS,378.33817903596025,86.08991947396729,4.394686176357336,6064.74550173285,2019
+2001,47,"(45,50]",College,196.36755929609794,75.75912913709122,2.591998634788392,6779.36550846639,2019
+2001,47,"(45,50]",College,196.36755929609794,75.75912913709122,2.591998634788392,7115.76397253677,2019
+2001,47,"(45,50]",College,196.36755929609794,75.75912913709122,2.591998634788392,7284.30963898852,2019
+2001,47,"(45,50]",College,196.36755929609794,75.75912913709122,2.591998634788392,6999.026260894281,2019
+2001,47,"(45,50]",College,196.36755929609794,75.75912913709122,2.591998634788392,7067.849864915159,2019
+2001,36,"(35,40]",College,1064.0342769701606,265.1569519798192,4.0128469912836495,6372.123793918834,2019
+2001,36,"(35,40]",College,1062.5276205049734,265.1569519798192,4.007164860553387,5796.269707332442,2019
+2001,36,"(35,40]",College,1062.3602142310635,265.1569519798192,4.006533512694468,5418.401641614031,2019
+2001,36,"(35,40]",College,1062.3602142310635,265.1569519798192,4.006533512694468,6059.57076266582,2019
+2001,36,"(35,40]",College,1064.0342769701606,265.1569519798192,4.0128469912836495,5825.896558577947,2019
+2001,22,"(20,25]",HS,39.005661820964036,10.330790336876074,3.7756706456167373,8934.424947970128,2019
+2001,22,"(20,25]",HS,110.73925019127773,10.330790336876074,10.71933962264151,9034.106002657656,2019
+2001,22,"(20,25]",HS,41.18194338179036,10.330790336876074,3.986330381209088,9095.87155188407,2019
+2001,22,"(20,25]",HS,79.61842387146136,10.330790336876074,7.706905403670903,8821.638640149265,2019
+2001,22,"(20,25]",HS,103.22270849273144,10.330790336876074,9.991753305095623,9002.300682078183,2019
+2001,81,"(80,85]",College,3415.925019127774,223.83379063231493,15.260989010989015,1563.174377587616,2019
+2001,81,"(80,85]",College,3406.717674062739,223.83379063231493,15.219854269719502,1512.509181885558,2019
+2001,81,"(80,85]",College,3406.717674062739,223.83379063231493,15.219854269719502,1637.3366632477296,2019
+2001,81,"(80,85]",College,3406.717674062739,223.83379063231493,15.219854269719502,1548.0836690651158,2019
+2001,81,"(80,85]",College,3410.5680183626628,223.83379063231493,15.237056070614024,1552.4428689083625,2019
+2001,58,"(55,60]",HS,2764.2123947972455,576.8024604755808,4.792303404042552,998.3564365972254,2019
+2001,58,"(55,60]",HS,1587.3797704667177,576.8024604755808,2.7520336323771977,987.0409547874326,2019
+2001,58,"(55,60]",HS,5772.00091813313,576.8024604755808,10.006893717779988,1729.0333645228984,2019
+2001,58,"(55,60]",HS,2183.8148431522573,576.8024604755808,3.786070609601205,1013.079056498995,2019
+2001,58,"(55,60]",HS,1591.2635960214232,576.8024604755808,2.7587670044080714,1013.7506644698394,2019
+2001,39,"(35,40]",College,7.533282325937261,139.46566954782702,0.05401531681855132,7460.807930112004,2019
+2001,39,"(35,40]",College,45.70191277735272,139.46566954782702,0.32769292203254463,7396.036647156007,2019
+2001,39,"(35,40]",College,8.11920428462127,139.46566954782702,0.05821650812666086,7433.713504953033,2019
+2001,39,"(35,40]",College,8.11920428462127,139.46566954782702,0.05821650812666086,7416.924931208103,2019
+2001,39,"(35,40]",College,27.789441469013006,139.46566954782702,0.19925650204176706,7443.985755126641,2019
+2001,83,"(80,85]",HS,1011.803519510329,53.37575007385973,18.956239830076886,5670.209734345835,2019
+2001,83,"(80,85]",HS,1011.803519510329,61.984742021256444,16.32342874256621,5115.983626361886,2019
+2001,83,"(80,85]",HS,1011.803519510329,61.984742021256444,16.32342874256621,4840.767129016639,2019
+2001,83,"(80,85]",HS,1011.803519510329,46.488556515942335,21.764571656754946,5411.4530565816785,2019
+2001,83,"(80,85]",HS,1011.803519510329,46.488556515942335,21.764571656754946,5201.129752676981,2019
+2001,39,"(35,40]",HS,10.714001530221882,68.87193557917384,0.1555641124374278,7466.709725931361,2019
+2001,39,"(35,40]",HS,10.714001530221882,68.87193557917384,0.1555641124374278,7690.472703716786,2019
+2001,39,"(35,40]",HS,10.714001530221882,68.87193557917384,0.1555641124374278,7753.14278074725,2019
+2001,39,"(35,40]",HS,10.714001530221882,68.87193557917384,0.1555641124374278,7557.474647814297,2019
+2001,39,"(35,40]",HS,10.714001530221882,68.87193557917384,0.1555641124374278,7693.2517767512345,2019
+2001,46,"(45,50]",HS,37.83381790359602,46.488556515942335,0.8138307733995066,5663.354405628823,2019
+2001,46,"(45,50]",HS,39.507880642693195,46.488556515942335,0.8498409846118742,5752.980612615017,2019
+2001,46,"(45,50]",HS,39.507880642693195,46.488556515942335,0.8498409846118742,5764.8277704513985,2019
+2001,46,"(45,50]",HS,37.83381790359602,46.488556515942335,0.8138307733995066,5723.520122327091,2019
+2001,46,"(45,50]",HS,39.507880642693195,46.488556515942335,0.8498409846118742,5735.954037738583,2019
+2001,77,"(75,80]",College,3465.30986993114,816.13243661321,4.24601414485068,89.92502700636253,2019
+2001,77,"(75,80]",College,4561.820964039786,525.1485087912005,8.686725540819484,144.64233727491833,2019
+2001,77,"(75,80]",College,6252.456924254017,537.2010975175559,11.638950391477346,154.5729760293955,2019
+2001,77,"(75,80]",College,3989.291507268554,216.94659707439757,18.388357139801116,152.02422930013876,2019
+2001,77,"(75,80]",College,5726.968630451416,259.9915568113812,22.02751774207122,146.72053401841268,2019
+2001,44,"(40,45]",HS,358.2494261667942,103.30790336876075,3.4677833397509947,136.65638382511955,2019
+2001,44,"(40,45]",HS,358.2494261667942,103.30790336876075,3.4677833397509947,139.66383385209028,2019
+2001,44,"(40,45]",HS,358.2494261667942,103.30790336876075,3.4677833397509947,136.5019355767489,2019
+2001,44,"(40,45]",HS,358.2494261667942,103.30790336876075,3.4677833397509947,138.2641966304606,2019
+2001,44,"(40,45]",HS,358.4168324407039,103.30790336876075,3.4694037992555513,134.1176417316142,2019
+2001,51,"(50,55]",HS,1791.7493496557001,146.35286310574438,12.242666878071985,3198.5841319039127,2019
+2001,51,"(50,55]",HS,1791.7493496557001,146.35286310574438,12.242666878071985,3251.616339059214,2019
+2001,51,"(50,55]",HS,1791.5819433817903,146.35286310574438,12.241523024304062,4077.400641067302,2019
+2001,51,"(50,55]",HS,1791.7493496557001,146.35286310574438,12.242666878071985,3362.224332763525,2019
+2001,51,"(50,55]",HS,1790.0752869166029,146.35286310574438,12.231228340392763,3440.108857828133,2019
+2001,47,"(45,50]",HS,92.64263198163735,98.14250820032271,0.943960305075357,5998.492877598526,2019
+2001,47,"(45,50]",HS,108.64667176740627,89.53351625292598,1.2134748674506088,5926.840859897897,2019
+2001,47,"(45,50]",HS,120.03029839326702,99.86430658980206,1.2019339290693505,5925.795290329081,2019
+2001,47,"(45,50]",HS,129.7398622800306,87.81171786344665,1.4774777835662565,5891.224868766672,2019
+2001,47,"(45,50]",HS,106.30298393267023,92.97711303188467,1.1433242059926696,5932.737120430769,2019
+2001,39,"(35,40]",HS,30.451201224177506,67.15013718969449,0.4534793598135916,4659.13704649417,2019
+2001,39,"(35,40]",HS,27.094705432287682,67.15013718969449,0.40349441663457836,4677.098202602145,2019
+2001,39,"(35,40]",HS,33.79932670237184,65.42833880021514,0.5165854325841558,4709.23110099587,2019
+2001,39,"(35,40]",HS,37.1390818668707,67.15013718969449,0.5530752939782589,4661.583243233346,2019
+2001,39,"(35,40]",HS,37.95937260902831,67.15013718969449,0.5652910656279928,4692.969100634487,2019
+2001,71,"(70,75]",HS,373.9856159143076,58.54114524229776,6.38842329384584,5412.13543868769,2019
+2001,71,"(70,75]",HS,373.9856159143076,58.54114524229776,6.38842329384584,5841.707808137064,2019
+2001,71,"(70,75]",HS,373.9856159143076,58.54114524229776,6.38842329384584,5665.990553502508,2019
+2001,71,"(70,75]",HS,375.65967865340474,58.54114524229776,6.417019638043897,5654.5940299875165,2019
+2001,71,"(70,75]",HS,373.9856159143076,58.54114524229776,6.38842329384584,5667.611415738479,2019
+2001,68,"(65,70]",NoHS,127.04462127008416,20.661580673752148,6.14883359003979,8444.605032950014,2019
+2001,68,"(65,70]",NoHS,127.04462127008416,20.661580673752148,6.14883359003979,8780.037453520981,2019
+2001,68,"(65,70]",NoHS,127.04462127008416,20.661580673752148,6.14883359003979,9152.540064318444,2019
+2001,68,"(65,70]",NoHS,127.04462127008416,20.661580673752148,6.14883359003979,8522.45948042001,2019
+2001,68,"(65,70]",NoHS,127.04462127008416,20.661580673752148,6.14883359003979,8782.683598292808,2019
+2001,33,"(30,35]",College,21.545187452180567,105.0297017582401,0.20513423433091146,4733.1024433487955,2019
+2001,33,"(30,35]",College,31.422157612853866,110.19509692667813,0.28515023344243356,4697.956720752158,2019
+2001,33,"(30,35]",College,28.241438408569245,105.0297017582401,0.2688900181167425,4703.130635936315,2019
+2001,33,"(30,35]",College,28.241438408569245,108.47329853719879,0.2603538270654174,4734.017600849924,2019
+2001,33,"(30,35]",College,26.550635042081105,103.30790336876075,0.2570048774226672,4689.779007304614,2019
+2001,47,"(45,50]",HS,697.163427697016,96.42070981084338,7.230432435777544,644.2844202503923,2019
+2001,47,"(45,50]",HS,722.3245906656465,96.42070981084338,7.4913842895648814,638.217368956329,2019
+2001,47,"(45,50]",HS,771.1737413925018,96.42070981084338,7.998009378953736,614.5417797818023,2019
+2001,47,"(45,50]",HS,804.9730680948738,96.42070981084338,8.348549493921558,637.8390553301026,2019
+2001,47,"(45,50]",HS,742.0115684774293,96.42070981084338,7.695562187139005,673.0647562423943,2019
+2001,49,"(45,50]",College,5185.844590665647,693.8847509601763,7.47363965484129,271.07006334077505,2019
+2001,49,"(45,50]",College,5174.36052027544,700.7719445180937,7.383800908059668,267.98541211157965,2019
+2001,49,"(45,50]",College,5388.272257077276,726.5989203602841,7.415744926245557,274.68754365541923,2019
+2001,49,"(45,50]",College,5064.039785768937,948.7109126031196,5.3378112536662785,270.4805164914605,2019
+2001,49,"(45,50]",College,5395.839020657996,743.8169042550774,7.254257048731444,271.1877646210336,2019
+2001,43,"(40,45]",College,257.8056618209641,258.2697584219018,0.9982030548068287,527.9889606715922,2019
+2001,43,"(40,45]",College,257.8056618209641,258.2697584219018,0.9982030548068287,522.7097885026417,2019
+2001,43,"(40,45]",College,256.1315990818669,258.2697584219018,0.9917212167886026,503.4911841140628,2019
+2001,43,"(40,45]",College,257.8056618209641,258.2697584219018,0.9982030548068287,522.3705747484918,2019
+2001,43,"(40,45]",College,256.1315990818669,258.2697584219018,0.9917212167886026,551.2155837150973,2019
+2001,45,"(40,45]",HS,182.87461361897476,160.12725022157917,1.142058040501654,6347.696902871835,2019
+2001,45,"(40,45]",HS,74.29490436113235,158.40545183209983,0.4690173444275166,6368.173346262159,2019
+2001,45,"(40,45]",HS,75.71785768936496,151.51825827418244,0.4997276140301747,6377.696777129542,2019
+2001,45,"(40,45]",HS,166.10050497322112,160.12725022157917,1.0373031744651604,6350.436394343214,2019
+2001,45,"(40,45]",HS,213.15840856924254,142.9092663267857,1.4915646413145844,6344.485138326382,2019
+2001,51,"(50,55]",HS,3225.584085692425,284.09673426409205,11.353823175925601,1868.844944523591,2019
+2001,51,"(50,55]",HS,3091.6590665646518,284.09673426409205,10.882416774600063,1868.2927902803408,2019
+2001,51,"(50,55]",HS,3215.0374904361133,284.09673426409205,11.316699921821217,1880.36694392992,2019
+2001,51,"(50,55]",HS,3377.9237949502676,284.09673426409205,11.890047957433401,1863.8276863356161,2019
+2001,51,"(50,55]",HS,3116.770007651109,284.09673426409205,10.970805474848602,1856.330699140442,2019
+2001,29,"(25,30]",College,-8.152685539403214,117.08229048459552,-0.06963209812226777,9640.477992661905,2019
+2001,29,"(25,30]",College,-6.478622800306044,117.08229048459552,-0.05533392602323948,9681.623316403704,2019
+2001,29,"(25,30]",College,-6.646029074215761,117.08229048459552,-0.05676374323314231,9760.254714411194,2019
+2001,29,"(25,30]",College,-8.320091813312931,117.08229048459552,-0.07106191533217061,9646.080992774458,2019
+2001,29,"(25,30]",College,-8.320091813312931,117.08229048459552,-0.07106191533217061,9610.259280533934,2019
+2001,34,"(30,35]",College,11953.310175975517,3632.9946018014193,3.290208625701913,212.1193104651286,2019
+2001,34,"(30,35]",College,11995.998775822494,3340.288875589931,3.591305788995232,198.9109486876447,2019
+2001,34,"(30,35]",College,11895.889824024483,3271.416940010757,3.636311128224875,212.40899762628118,2019
+2001,34,"(30,35]",College,11806.662280030605,3787.9564568545607,3.1168949312143384,209.07353414150452,2019
+2001,34,"(30,35]",College,11799.966029074216,3770.738472959767,3.129351482128132,201.6808165143614,2019
+2001,58,"(55,60]",College,6310.379495026778,860.899194739673,7.3299865229110495,1968.7700271518738,2019
+2001,58,"(55,60]",College,7565.926549349656,860.899194739673,8.788400077011936,1989.9226229084088,2019
+2001,58,"(55,60]",College,8404.631981637338,860.899194739673,9.762620331151327,1988.1451540014255,2019
+2001,58,"(55,60]",College,6142.973221117061,860.899194739673,7.135531382364265,1989.6427926608908,2019
+2001,58,"(55,60]",College,4997.914307574598,860.899194739673,5.805458221024257,1970.796164328187,2019
+2001,43,"(40,45]",NoHS,0,8.26463226950086,0,7403.648757736875,2019
+2001,43,"(40,45]",NoHS,0,8.26463226950086,0,7395.451379197555,2019
+2001,43,"(40,45]",NoHS,0,8.26463226950086,0,7401.577337670225,2019
+2001,43,"(40,45]",NoHS,0,8.26463226950086,0,7356.548125517358,2019
+2001,43,"(40,45]",NoHS,0,8.26463226950086,0,7434.5435784081765,2019
+2001,65,"(60,65]",HS,281.92890589135425,46.488556515942335,6.064479670274819,8335.961731215926,2019
+2001,65,"(60,65]",HS,281.92890589135425,46.488556515942335,6.064479670274819,8635.563874460964,2019
+2001,65,"(60,65]",HS,281.5940933435348,46.488556515942335,6.057277628032344,8993.901974630382,2019
+2001,65,"(60,65]",HS,281.7782402448355,44.76675812646299,6.294363318622079,8356.545159662852,2019
+2001,65,"(60,65]",HS,281.9456465187452,46.488556515942335,6.064839772386942,8693.49850998144,2019
+2001,62,"(60,65]",HS,1064.7039020657996,118.80408887407486,8.96184560780834,7913.27691352996,2019
+2001,62,"(60,65]",HS,823.6388676358072,118.80408887407486,6.932748489059282,7194.604288992799,2019
+2001,62,"(60,65]",HS,631.1216526396327,118.80408887407486,5.312288984502742,6726.509541093968,2019
+2001,62,"(60,65]",HS,1009.4598316755929,118.80408887407486,8.496844184761681,7531.271537756108,2019
+2001,62,"(60,65]",HS,498.8706962509564,120.5258872635542,4.139116563067276,7233.344996070902,2019
+2001,46,"(45,50]",NoHS,176.02769701606735,82.64632269500859,2.129891461301502,6315.427740691374,2019
+2001,46,"(45,50]",NoHS,176.2788064269319,82.64632269500859,2.1329298228725455,6582.820879355498,2019
+2001,46,"(45,50]",NoHS,176.19510328997703,82.64632269500859,2.1319170356821973,6612.702892755575,2019
+2001,46,"(45,50]",NoHS,174.5210405508799,82.64632269500859,2.111661291875241,6432.792854725279,2019
+2001,46,"(45,50]",NoHS,174.8558530986993,82.64632269500859,2.115712440636632,6518.444579587114,2019
+2001,60,"(55,60]",College,145246.7054322877,3271.416940010757,44.3987141033176,18.01293583972238,2019
+2001,60,"(55,60]",College,115602.402448355,5130.959200648452,22.530368675265464,19.60781902692309,2019
+2001,60,"(55,60]",College,123428.64575363428,4149.534118645224,29.74518156123327,19.13956903634376,2019
+2001,60,"(55,60]",College,76283.69089517981,9159.967432030118,8.327943462815686,18.800585208567487,2019
+2001,60,"(55,60]",College,116630.27697016067,3305.852907800344,35.279935382171736,19.8680209352054,2019
+2001,25,"(20,25]",HS,0,17.21798389479346,0,6512.0837485296415,2019
+2001,25,"(20,25]",HS,0,17.21798389479346,0,6449.280875104332,2019
+2001,25,"(20,25]",HS,0,17.21798389479346,0,6445.605328363822,2019
+2001,25,"(20,25]",HS,0,17.21798389479346,0,6477.773942979736,2019
+2001,25,"(20,25]",HS,0,17.21798389479346,0,6468.520954752056,2019
+2001,58,"(55,60]",College,1678.5827084927314,144.63106471626506,11.605962465848872,2868.1692999775814,2019
+2001,58,"(55,60]",College,1686.7856159143075,144.63106471626506,11.662678548508351,2918.331357004525,2019
+2001,58,"(55,60]",College,1645.0847130833972,144.63106471626506,11.374352503804756,5515.016669168127,2019
+2001,58,"(55,60]",College,1686.7856159143075,144.63106471626506,11.662678548508351,3017.389860143034,2019
+2001,58,"(55,60]",College,2001.7270390206581,144.63106471626506,13.840228881309937,3091.207685494482,2019
+2001,40,"(35,40]",HS,65.53955623565416,72.31553235813253,0.9062998514769788,6611.491904795645,2019
+2001,40,"(35,40]",HS,65.79066564651875,72.31553235813253,0.9097722647010286,6786.827172309738,2019
+2001,40,"(35,40]",HS,65.79066564651875,72.31553235813253,0.9097722647010286,6854.6560987819685,2019
+2001,40,"(35,40]",HS,65.79066564651875,72.31553235813253,0.9097722647010286,6691.529201502242,2019
+2001,40,"(35,40]",HS,65.53955623565416,72.31553235813253,0.9062998514769788,6801.39959443818,2019
+2001,37,"(35,40]",College,302.67054322876817,173.90163733741394,1.740469772814786,6147.465862133675,2019
+2001,37,"(35,40]",College,302.67054322876817,173.90163733741394,1.740469772814786,6310.495264119194,2019
+2001,37,"(35,40]",College,303.8423871461362,173.90163733741394,1.7472083172891797,6373.563632946927,2019
+2001,37,"(35,40]",College,302.67054322876817,173.90163733741394,1.740469772814786,6221.885759531471,2019
+2001,37,"(35,40]",College,304.34460596786533,173.90163733741394,1.7500962649210625,6324.044924143467,2019
+2001,33,"(30,35]",HS,406.1276205049732,172.17983894793457,2.358740854832499,5907.90051172818,2019
+2001,33,"(30,35]",HS,407.63427697016067,172.17983894793457,2.3674913361571046,5984.562470111771,2019
+2001,33,"(30,35]",HS,407.46687069625096,172.17983894793457,2.3665190604543707,6032.336418727942,2019
+2001,33,"(30,35]",HS,409.30833970925784,170.45804055845522,2.4012263567519634,5905.164629450457,2019
+2001,33,"(30,35]",HS,407.96908951798014,172.17983894793457,2.3694358875625725,5978.3894939971615,2019
+2001,27,"(25,30]",HS,19.921346595256313,48.21035490542169,0.41321717366191757,6474.389400943559,2019
+2001,27,"(25,30]",HS,19.921346595256313,48.21035490542169,0.41321717366191757,6485.238483593714,2019
+2001,27,"(25,30]",HS,19.921346595256313,48.21035490542169,0.41321717366191757,6507.925183953606,2019
+2001,27,"(25,30]",HS,20.08875286916603,48.21035490542169,0.4166895868859673,6541.289062650168,2019
+2001,27,"(25,30]",HS,19.921346595256313,48.21035490542169,0.41321717366191757,6490.45514357112,2019
+2001,43,"(40,45]",NoHS,48.64826319816373,14.463106471626503,3.3636109430295034,8201.969619262523,2019
+2001,43,"(40,45]",NoHS,48.88263198163734,14.463106471626503,3.3798155380750687,8133.292996801788,2019
+2001,43,"(40,45]",NoHS,48.68174445294568,14.463106471626503,3.36592588517887,7853.026448386177,2019
+2001,43,"(40,45]",NoHS,48.59804131599082,14.463106471626503,3.360138529805454,8020.333554448752,2019
+2001,43,"(40,45]",NoHS,48.56456006120887,14.463106471626503,3.357823587656087,8207.857383830433,2019
+2001,69,"(65,70]",NoHS,132.58576893649578,20.661580673752148,6.417019638043897,10461.755373957976,2019
+2001,69,"(65,70]",NoHS,126.89395562356542,20.661580673752148,6.141541522269286,10428.44207072308,2019
+2001,69,"(65,70]",NoHS,144.30420811017598,20.661580673752148,6.984180464638686,10417.781442082267,2019
+2001,69,"(65,70]",NoHS,130.6271155317521,20.661580673752148,6.32222275702734,10526.00968173603,2019
+2001,69,"(65,70]",NoHS,129.1037184391737,20.661580673752148,6.2484918495700175,10373.153135440856,2019
+2001,70,"(65,70]",College,59088.38806426932,1756.2343572689326,33.64493344507615,200.30518180123508,2019
+2001,70,"(65,70]",College,58344.60198928845,1842.3242767429003,31.669018709582225,203.20326555282892,2019
+2001,70,"(65,70]",College,58674.89456771233,1756.2343572689326,33.40949021117882,208.75635561255072,2019
+2001,70,"(65,70]",College,57877.87329762816,2599.9155681138122,22.26144341280183,213.1017896887116,2019
+2001,70,"(65,70]",College,59123.37597551646,2427.7357291658777,24.353299770329652,213.36489335619868,2019
+2001,60,"(55,60]",HS,30849.56119357307,1773.452341163726,17.39520170772101,460.2234027441124,2019
+2001,60,"(55,60]",HS,30885.06806426932,1790.6703250585194,17.247768967891947,453.29909059430236,2019
+2001,60,"(55,60]",HS,21338.67507268554,1790.6703250585194,11.91658496490033,470.524327779094,2019
+2001,60,"(55,60]",HS,21326.019158377963,1790.6703250585194,11.90951726844584,460.2243773799011,2019
+2001,60,"(55,60]",HS,31695.46509563887,1790.6703250585194,17.70033526110009,476.12910867152584,2019
+2001,48,"(45,50]",College,1593.5403213465952,94.69891142136402,16.827440753316765,7449.076377539542,2019
+2001,48,"(45,50]",College,1593.5403213465952,94.69891142136402,16.827440753316765,6695.187110415663,2019
+2001,48,"(45,50]",College,1593.5403213465952,94.69891142136402,16.827440753316765,6046.5246436104535,2019
+2001,48,"(45,50]",College,1593.5403213465952,94.69891142136402,16.827440753316765,6922.4064744613115,2019
+2001,48,"(45,50]",College,1593.707727620505,94.69891142136402,16.829208527321736,6793.879881745328,2019
+2001,34,"(30,35]",HS,21.361040550879878,24.105177452710844,0.8861598547774904,5074.554431485752,2019
+2001,34,"(30,35]",HS,28.89432287681714,24.105177452710844,1.198677044941966,5083.057821849,2019
+2001,34,"(30,35]",HS,13.827758224942617,24.105177452710844,0.5736426646130149,5100.839405364861,2019
+2001,34,"(30,35]",HS,13.15813312930375,24.105177452710844,0.5458633588206171,5126.989642554257,2019
+2001,34,"(30,35]",HS,12.153695485845448,24.105177452710844,0.5041944001320204,5087.146581941503,2019
+2001,27,"(25,30]",HS,43.96088752869166,53.37575007385973,0.823611611412672,6904.944846784606,2019
+2001,27,"(25,30]",HS,42.11941851568478,53.37575007385973,0.789111505831791,6923.101453669013,2019
+2001,27,"(25,30]",HS,42.28682478959449,53.37575007385973,0.7922478790664165,6982.845104294468,2019
+2001,27,"(25,30]",HS,43.793481254781945,53.37575007385973,0.8204752381780466,6877.5412260786925,2019
+2001,27,"(25,30]",HS,43.96088752869166,53.37575007385973,0.823611611412672,6918.45302829331,2019
+2001,40,"(35,40]",HS,1157.3967559296098,25.826975842190187,44.81348350661019,9699.195439621626,2019
+2001,40,"(35,40]",HS,1157.5976434583015,25.826975842190187,44.821261712232065,8817.47412453162,2019
+2001,40,"(35,40]",HS,1157.430237184392,25.826975842190187,44.81477987421384,8241.8514439182,2019
+2001,40,"(35,40]",HS,1184.2487222647283,25.826975842190187,45.85317032473366,9221.413543414159,2019
+2001,40,"(35,40]",HS,1157.3130527926548,25.826975842190187,44.810242587601074,8867.1917485368,2019
+2001,38,"(35,40]",HS,647.1926549349655,204.89400834804215,3.1586704762767637,6515.308987440312,2019
+2001,38,"(35,40]",HS,671.21545524101,327.1416940010757,2.051757594795615,5924.741140208276,2019
+2001,38,"(35,40]",HS,640.6805508798775,158.40545183209983,4.044561241231521,5535.244048294571,2019
+2001,38,"(35,40]",HS,792.417597551645,213.5030002954389,3.7115056765250225,6195.333022524397,2019
+2001,38,"(35,40]",HS,595.2967100229533,79.20272591604991,7.516113910699636,5956.845125592519,2019
+2001,42,"(40,45]",College,49.88706962509564,48.21035490542169,1.0347791407668188,6680.186587979556,2019
+2001,42,"(40,45]",College,36.327161438408574,48.21035490542169,0.753513669618791,6682.913123982011,2019
+2001,42,"(40,45]",College,36.327161438408574,48.21035490542169,0.753513669618791,6733.0393154958365,2019
+2001,42,"(40,45]",College,53.235195103289975,48.21035490542169,1.1042274052478132,6708.218157791976,2019
+2001,42,"(40,45]",College,40.84713083397093,48.21035490542169,0.8472688266681335,6743.387698934076,2019
+2001,58,"(55,60]",College,2584.4180566182094,163.57084700053784,15.799991893480332,3145.08301903183,2019
+2001,58,"(55,60]",College,2155.8579954093348,94.69891142136402,22.765393636013588,3198.2030619104917,2019
+2001,58,"(55,60]",College,2710.140168324407,122.24768565303354,22.16925542473168,4018.4531192432614,2019
+2001,58,"(55,60]",College,2473.9299158377967,151.51825827418244,16.32760265341128,3307.9801032823843,2019
+2001,58,"(55,60]",College,2308.197704667177,151.51825827418244,15.233792487835613,3389.4352357906,2019
+2001,52,"(50,55]",HS,2312.801377199694,227.27738741127362,10.176117402364033,11372.833544071005,2019
+2001,52,"(50,55]",HS,2312.4665646518743,228.99918580075305,10.098143172718084,11057.720725793351,2019
+2001,52,"(50,55]",HS,2311.9643458301452,227.27738741127362,10.172434539853677,13377.496463922676,2019
+2001,52,"(50,55]",HS,2312.801377199694,228.99918580075305,10.099605241444,11305.465226834665,2019
+2001,52,"(50,55]",HS,2331.216067329763,228.99918580075305,10.180019021369363,11291.18149259581,2019
+2001,30,"(25,30]",HS,21.377781178270848,132.5784759899096,0.161246243167691,4907.89956498224,2019
+2001,30,"(25,30]",HS,22.080887528691658,132.5784759899096,0.1665495651826033,4921.727033945103,2019
+2001,30,"(25,30]",HS,21.31081866870696,137.74387115834767,0.1547133711975356,4923.9880518726695,2019
+2001,30,"(25,30]",HS,22.96814078041316,137.74387115834767,0.16674528301886793,4926.125577808463,2019
+2001,30,"(25,30]",HS,22.68355011476664,158.40545183209983,0.1431993018700507,4911.389650232114,2019
+2001,59,"(55,60]",College,24059.294873756695,974.5378884453097,24.68790096210496,282.46378812830255,2019
+2001,59,"(55,60]",College,23560.926396327468,1010.695654624376,23.311593641988956,282.421730201525,2019
+2001,59,"(55,60]",College,23316.848048967102,974.5378884453097,23.926055954750726,283.85439531716236,2019
+2001,59,"(55,60]",College,24180.32960979342,915.9967432030122,26.397833604998244,294.9548913860308,2019
+2001,59,"(55,60]",College,23520.0792654935,948.7109126031196,24.791618767152105,297.43930329297586,2019
+2001,32,"(30,35]",College,242.40428462127008,172.17983894793457,1.4078552175587216,4531.681337932243,2019
+2001,32,"(30,35]",College,240.7302218821729,172.17983894793457,1.3981324605313825,4539.665271098862,2019
+2001,32,"(30,35]",College,240.7302218821729,172.17983894793457,1.3981324605313825,4561.028080900309,2019
+2001,32,"(30,35]",College,240.7302218821729,172.17983894793457,1.3981324605313825,4561.542633641549,2019
+2001,32,"(30,35]",College,242.40428462127008,172.17983894793457,1.4078552175587216,4525.916277449249,2019
+2001,59,"(55,60]",College,1386.626166794185,118.80408887407486,11.671535718471144,10051.580217947665,2019
+2001,59,"(55,60]",College,1386.4587605202755,117.08229048459552,11.841746132415231,9972.791282373746,2019
+2001,59,"(55,60]",College,1386.626166794185,117.08229048459552,11.843175949625133,9571.066040705447,2019
+2001,59,"(55,60]",College,1386.4587605202755,118.80408887407486,11.670126623249793,9941.39006240817,2019
+2001,59,"(55,60]",College,1386.4587605202755,118.80408887407486,11.670126623249793,10483.668510291813,2019
+2001,56,"(55,60]",HS,48.81566947207345,89.53351625292598,0.5452222979177157,7551.849916508318,2019
+2001,56,"(55,60]",HS,48.7319663351186,89.53351625292598,0.5442874174343179,7919.561311410963,2019
+2001,56,"(55,60]",HS,55.02644223412395,89.53351625292598,0.6145904297858475,7949.968959398335,2019
+2001,56,"(55,60]",HS,49.234185156847744,89.53351625292598,0.5498967003347057,7745.917247202329,2019
+2001,56,"(55,60]",HS,55.61236419280796,89.53351625292598,0.6211345931696336,7822.805423135003,2019
+2001,83,"(80,85]",HS,1060.3513389441468,136.02207276886833,7.79543582419832,8964.38881357379,2019
+2001,83,"(80,85]",HS,1075.4179035960215,136.02207276886833,7.906201410585729,8096.414157893692,2019
+2001,83,"(80,85]",HS,1068.7216526396328,136.02207276886833,7.856972261080214,7656.128815632406,2019
+2001,83,"(80,85]",HS,1078.7660290742158,136.02207276886833,7.930815985338486,8559.434378559066,2019
+2001,83,"(80,85]",HS,1078.7660290742158,136.02207276886833,7.930815985338486,8220.930421597763,2019
+2001,40,"(35,40]",HS,50.054475899005354,106.75150014771945,0.4688877985765212,5215.457744915906,2019
+2001,40,"(35,40]",HS,49.71966335118593,106.75150014771945,0.46575142534189573,5249.464989350731,2019
+2001,40,"(35,40]",HS,57.4203519510329,106.75150014771945,0.5378880097382835,5196.074472234424,2019
+2001,40,"(35,40]",HS,55.74628921193573,106.75150014771945,0.5222061435651557,5199.132833318051,2019
+2001,40,"(35,40]",HS,48.51433817903597,106.75150014771945,0.45446048169724373,5263.648834335296,2019
+2001,42,"(40,45]",College,42.31193573068095,43.04495973698364,0.982970735463997,6447.274326723246,2019
+2001,42,"(40,45]",College,40.805279265493496,43.04495973698364,0.9479688101655757,6449.905798964031,2019
+2001,42,"(40,45]",College,40.805279265493496,43.04495973698364,0.9479688101655757,6498.284284113687,2019
+2001,42,"(40,45]",College,40.637872991583784,44.76675812646299,0.9077689493794616,6474.328544148037,2019
+2001,42,"(40,45]",College,42.47934200459067,44.76675812646299,0.9489036906489738,6508.271859458441,2019
+2001,82,"(80,85]",NoHS,14.396939556235655,22.383379063231494,0.6431977725778265,6487.320875383381,2019
+2001,82,"(80,85]",NoHS,14.56434583014537,22.383379063231494,0.6506768164450105,6507.3163595561155,2019
+2001,82,"(80,85]",NoHS,14.396939556235655,22.383379063231494,0.6431977725778265,6478.055269876006,2019
+2001,82,"(80,85]",NoHS,14.396939556235655,22.383379063231494,0.6431977725778265,6581.001479390706,2019
+2001,82,"(80,85]",NoHS,14.56434583014537,22.383379063231494,0.6506768164450105,6534.887608410553,2019
+2001,75,"(70,75]",NoHS,0.1674062739097169,14.807466149522373,0.01130553142713865,6060.819033057915,2019
+2001,75,"(70,75]",NoHS,0.1674062739097169,14.807466149522373,0.01130553142713865,6058.44260937463,2019
+2001,75,"(70,75]",NoHS,0.41851568477429224,14.807466149522373,0.02826382856784662,6086.336288545183,2019
+2001,75,"(70,75]",NoHS,0.5022188217291507,14.807466149522373,0.03391659428141594,6103.313910751551,2019
+2001,75,"(70,75]",NoHS,0.753328232593726,14.807466149522373,0.05087489142212392,6100.107132348119,2019
+2001,62,"(60,65]",NoHS,280.57291507268553,30.992371010628222,9.052967098789201,1699.5620833111432,2019
+2001,62,"(60,65]",NoHS,498.20107115531755,29.27057262114888,17.02054406668328,5252.951494769193,2019
+2001,62,"(60,65]",NoHS,230.35103289977047,29.27057262114888,7.869713923305171,1790.4289829804584,2019
+2001,62,"(60,65]",NoHS,263.83228768171386,30.992371010628222,8.51281393060369,1769.2683098389775,2019
+2001,62,"(60,65]",NoHS,347.3680183626626,30.992371010628222,11.208178239849401,5525.168605273861,2019
+2001,72,"(70,75]",HS,681.3435348125479,63.706540410735805,10.69503273007316,7296.612315260359,2019
+2001,72,"(70,75]",HS,678.8324407039021,60.2629436317771,11.264508498817317,6676.840452789019,2019
+2001,72,"(70,75]",HS,654.5585309869931,65.42833880021514,10.004205257078004,6137.65799106238,2019
+2001,72,"(70,75]",HS,662.4266258607498,67.15013718969449,9.864858860815733,6856.928552110245,2019
+2001,72,"(70,75]",HS,626.4342769701607,53.37575007385973,11.736308643968846,6642.103490056865,2019
+2001,60,"(55,60]",HS,1635.8773680183626,74.03733074761188,22.09530451057123,5924.244354233264,2019
+2001,60,"(55,60]",HS,1659.3226166794186,75.75912913709122,21.902609435712534,5380.733766146044,2019
+2001,60,"(55,60]",HS,2236.8658913542467,74.03733074761188,30.212676075256784,3347.152863145248,2019
+2001,60,"(55,60]",HS,2059.423611323642,74.03733074761188,27.816016468017658,2755.367487281832,2019
+2001,60,"(55,60]",HS,1629.0220811017598,74.03733074761188,22.002712208182963,5416.441496944339,2019
+2001,45,"(40,45]",HS,669.7925019127773,60.2629436317771,11.114500247538368,5610.032510162949,2019
+2001,45,"(40,45]",HS,670.2947207345065,60.2629436317771,11.12283403927609,5092.319411951754,2019
+2001,45,"(40,45]",HS,656.5674062739098,60.2629436317771,10.895043731778427,4756.76207167304,2019
+2001,45,"(40,45]",HS,664.9377199693955,60.2629436317771,11.033940260740415,5332.5875399909355,2019
+2001,45,"(40,45]",HS,682.3479724560061,60.2629436317771,11.322845040981353,5118.406211037769,2019
+2001,46,"(45,50]",College,3534.7834736036725,692.162952570697,5.106866035628557,271.07006334077505,2019
+2001,46,"(45,50]",College,3434.3397092578425,692.162952570697,4.961750259101106,267.98541211157965,2019
+2001,46,"(45,50]",College,3516.368783473604,690.4411541812177,5.092930457836925,274.68754365541923,2019
+2001,46,"(45,50]",College,3559.89441469013,690.4411541812177,5.155970777714934,270.4805164914605,2019
+2001,46,"(45,50]",College,3518.042846212701,692.162952570697,5.082680072873982,271.1877646210336,2019
+2001,33,"(30,35]",NoHS,0,10.330790336876074,0,5177.804637611917,2019
+2001,33,"(30,35]",NoHS,0,10.330790336876074,0,5151.586673587589,2019
+2001,33,"(30,35]",NoHS,0,10.330790336876074,0,5149.8421328192835,2019
+2001,33,"(30,35]",NoHS,0,10.330790336876074,0,5170.850267681018,2019
+2001,33,"(30,35]",NoHS,0,10.330790336876074,0,5168.797882308854,2019
+2001,52,"(50,55]",HS,62.275133894414694,56.819346852818406,1.096019883081878,5076.5305637080255,2019
+2001,52,"(50,55]",HS,62.442540168324406,56.819346852818406,1.0989661730901623,5162.747648511153,2019
+2001,52,"(50,55]",HS,62.275133894414694,56.819346852818406,1.096019883081878,5157.713217326166,2019
+2001,52,"(50,55]",HS,62.275133894414694,56.819346852818406,1.096019883081878,5096.848988837114,2019
+2001,52,"(50,55]",HS,62.275133894414694,56.819346852818406,1.096019883081878,5132.527859127074,2019
+2001,40,"(35,40]",College,4280.260351951033,525.1485087912005,8.150571277072537,313.2379130398481,2019
+2001,40,"(35,40]",College,2719.766029074216,547.53188785443206,4.967319875618457,175.66991814648435,2019
+2001,40,"(35,40]",College,8288.53573068095,724.8771219708045,11.434401058411087,316.60850175098983,2019
+2001,40,"(35,40]",College,7612.716602907422,256.54796003242257,29.67365868723075,308.53994444742,2019
+2001,40,"(35,40]",College,4060.3554705432284,747.2605010340361,5.433654615658975,311.3887393874046,2019
+2001,52,"(50,55]",College,339.1818515684774,139.46566954782702,2.432009631245929,6451.5150532899415,2019
+2001,52,"(50,55]",College,275.58420811017595,161.84904861105852,1.702723682809133,6794.065539572626,2019
+2001,52,"(50,55]",College,476.4382555470544,170.45804055845522,2.7950471211926744,6820.530274577068,2019
+2001,52,"(50,55]",College,275.55072685539403,151.51825827418244,1.81859750761368,6594.5377607489645,2019
+2001,52,"(50,55]",College,275.2159143075746,134.30027437938898,2.049258019608424,6725.199501080533,2019
+2001,31,"(30,35]",HS,87.88829380260137,101.5861049792814,0.8651605829412032,6481.700682954262,2019
+2001,31,"(30,35]",HS,87.88829380260137,98.14250820032271,0.8955170946233507,6589.7697676912885,2019
+2001,31,"(30,35]",HS,114.67329762815609,110.19509692667813,1.0406388380824028,6648.30923549334,2019
+2001,31,"(30,35]",HS,85.71201224177506,106.75150014771945,0.8029115480641433,6522.323860150103,2019
+2001,31,"(30,35]",HS,96.76082631981637,101.5861049792814,0.9525006036952677,6541.073489445071,2019
+2001,68,"(65,70]",College,1521.1705891354247,103.30790336876075,14.724629380053909,7343.439951411934,2019
+2001,68,"(65,70]",College,1397.273205814843,103.30790336876075,13.525327300731613,6608.2057982526285,2019
+2001,68,"(65,70]",College,1832.5295179801071,103.30790336876075,17.738522012578617,4145.886753453993,2019
+2001,68,"(65,70]",College,1102.6381637337415,103.30790336876075,10.673318572712105,6971.518974492026,2019
+2001,68,"(65,70]",College,1154.7015149196634,103.30790336876075,11.177281478629189,6654.020078169158,2019
+2001,27,"(25,30]",HS,-12.27087987758225,25.826975842190187,-0.4751187267359774,5504.469400185661,2019
+2001,27,"(25,30]",HS,-12.254139250191278,25.826975842190187,-0.4744705429341548,5513.693195631015,2019
+2001,27,"(25,30]",HS,-12.220657995409335,25.826975842190187,-0.4731741753305096,5532.9812304075485,2019
+2001,27,"(25,30]",HS,-12.27087987758225,25.826975842190187,-0.4751187267359774,5561.346909081424,2019
+2001,27,"(25,30]",HS,-12.27087987758225,25.826975842190187,-0.4751187267359774,5518.128354445007,2019
+2001,58,"(55,60]",College,2562.169762815608,354.6904682327453,7.2236780863655214,11.46974116971312,2019
+2001,58,"(55,60]",College,2560.8305126243304,356.4122666222246,7.185023503522272,11.479660288060844,2019
+2001,58,"(55,60]",College,2562.504575363428,356.4122666222246,7.189720487593452,12.304005318121963,2019
+2001,58,"(55,60]",College,2560.8137719969395,356.4122666222246,7.184976533681561,11.625400822661778,2019
+2001,58,"(55,60]",College,2562.454353481255,354.6904682327453,7.224480449809526,11.813182867772754,2019
+2001,88,"(85,90]",College,94514.23412394799,11811.536951828313,8.001857379730593,2.098595515668425,2019
+2001,88,"(85,90]",College,137559.4093343535,11157.253563826162,12.329146106381057,2.1418846822606694,2019
+2001,88,"(85,90]",College,118870.17291507268,11725.447032354346,10.137794540973232,1.8900569119319979,2019
+2001,88,"(85,90]",College,109450.22188217292,13602.207276886833,8.046504486676447,2.4597135706771867,2019
+2001,88,"(85,90]",College,96091.20122417751,12465.820339830463,7.7083736653214405,1.9536621353027155,2019
+2001,38,"(35,40]",College,286.2647283856159,290.98392782200943,0.983781924068053,182.36156138994323,2019
+2001,38,"(35,40]",College,177.28324407039023,309.9237101062822,0.5720222051084586,190.95905967327963,2019
+2001,38,"(35,40]",College,213.10818668706963,327.1416940010757,0.651424720831729,187.81681873987492,2019
+2001,38,"(35,40]",College,349.7117061973986,284.09673426409205,1.230959965461313,561.0082290226909,2019
+2001,38,"(35,40]",College,356.575363427697,313.3673068852409,1.1378831026501417,591.9400672946446,2019
+2001,41,"(40,45]",College,11719.39338944147,272.04414553773665,43.079013394228,1325.2588930076445,2019
+2001,41,"(40,45]",College,3729.0919357306807,158.40545183209983,23.54143681672833,1332.6937363971028,2019
+2001,41,"(40,45]",College,5394.784361132364,316.81090366419966,17.02840495303946,1373.4754816614143,2019
+2001,41,"(40,45]",College,3775.965692425402,518.2613152332832,7.285833577460319,1314.395574404247,2019
+2001,41,"(40,45]",College,11706.000887528691,399.4572263592082,29.304766856319624,1304.8983145341492,2019
+2001,80,"(75,80]",HS,433.5822494261668,39.60136295802496,10.948669869916793,8127.882416408512,2019
+2001,80,"(75,80]",HS,433.5822494261668,41.323161347504296,10.492475292003595,8407.90345187015,2019
+2001,80,"(75,80]",HS,406.7972456006121,41.323161347504296,9.844291490180979,8561.546627293174,2019
+2001,80,"(75,80]",HS,433.5822494261668,43.04495973698364,10.07277628032345,8340.749441091906,2019
+2001,80,"(75,80]",HS,433.5822494261668,41.323161347504296,10.492475292003595,8492.462406899096,2019
+2001,75,"(70,75]",NoHS,1.674062739097169,8.60899194739673,0.19445514054678473,5404.564781837221,2019
+2001,75,"(70,75]",NoHS,1.841469013006886,8.60899194739673,0.2139006546014632,5421.56332362093,2019
+2001,75,"(70,75]",NoHS,2.6785003825554705,8.60899194739673,0.3111282248748556,5401.159020093152,2019
+2001,75,"(70,75]",NoHS,2.5110941086457537,8.60899194739673,0.2916827108201771,5468.563631885519,2019
+2001,75,"(70,75]",NoHS,2.343687834736037,8.60899194739673,0.2722371967654986,5455.471536377828,2019
+2001,44,"(40,45]",College,22292.82387146136,6026.294363177711,3.699259035150448,13.787300431474142,2019
+2001,44,"(40,45]",College,21909.46350420811,6009.076379282916,3.646061744154872,13.83437510732621,2019
+2001,44,"(40,45]",College,22021.45830145371,6009.076379282916,3.6646993500324934,14.21628626675969,2019
+2001,44,"(40,45]",College,21741.889824024485,6009.076379282916,3.6181749825950824,13.760472224447492,2019
+2001,44,"(40,45]",College,21753.440856924255,6026.294363177711,3.6097541118873426,13.606377977815953,2019
+2001,49,"(45,50]",HS,23717.116449885234,2582.6975842190186,9.183079193941728,23.01708660149429,2019
+2001,49,"(45,50]",HS,23725.48676358072,2582.6975842190186,9.186320112950842,22.49026593011436,2019
+2001,49,"(45,50]",HS,23894.56710022953,2582.6975842190186,9.251786676934925,23.279331977239398,2019
+2001,49,"(45,50]",HS,23737.2052027544,2582.6975842190186,9.1908573995636,24.119640096465332,2019
+2001,49,"(45,50]",HS,23725.48676358072,2582.6975842190186,9.186320112950842,23.151128605760825,2019
+2001,42,"(40,45]",College,202.39418515684773,103.30790336876075,1.9591355410088562,9020.05005231952,2019
+2001,42,"(40,45]",College,202.39418515684773,103.30790336876075,1.9591355410088562,9344.16060748785,2019
+2001,42,"(40,45]",College,202.22677888293802,103.30790336876075,1.9575150815042999,9460.14396195026,2019
+2001,42,"(40,45]",College,202.39418515684773,103.30790336876075,1.9591355410088562,9221.793976833578,2019
+2001,42,"(40,45]",College,202.39418515684773,103.30790336876075,1.9591355410088562,9388.09835049143,2019
+2001,47,"(45,50]",College,138937.58148431522,158.40545183209983,877.1010080611406,29.772693535967676,2019
+2001,47,"(45,50]",College,23480.48768171385,153.24005666366176,153.22682719473207,32.20184248941196,2019
+2001,47,"(45,50]",College,15087.071920428463,153.24005666366176,98.45383934790793,32.665279601829816,2019
+2001,47,"(45,50]",College,14894.889517980107,161.84904861105852,92.02951543925478,31.936139724001464,2019
+2001,47,"(45,50]",College,43391.45508798776,153.24005666366176,283.1600041967179,33.18083536341477,2019
+2001,59,"(55,60]",HS,76370.87608263198,1661.5354458475686,45.96403662256769,22.186381816816397,2019
+2001,59,"(55,60]",HS,74881.919482785,1928.4141962168671,38.830827749394906,23.460982960666353,2019
+2001,59,"(55,60]",HS,75686.69835960215,1515.1825827418243,49.9521966670459,23.740899046028453,2019
+2001,59,"(55,60]",HS,76045.155369548593,1534.122365026097,49.56915895574926,23.440699074076043,2019
+2001,59,"(55,60]",HS,75446.13554399388,1756.2343572689326,42.959036322076,24.112156722472083,2019
+2001,64,"(60,65]",HS,71.23136954858454,30.992371010628222,2.2983517306293586,678.7564935076333,2019
+2001,64,"(60,65]",HS,71.23136954858454,32.71416940010757,2.1773858500699186,695.311361734204,2019
+2001,64,"(60,65]",HS,71.56618209640398,30.992371010628222,2.309154793993069,697.2820953138993,2019
+2001,64,"(60,65]",HS,69.55730680948737,32.71416940010757,2.12621344466287,691.1969671927675,2019
+2001,64,"(60,65]",HS,71.23136954858454,32.71416940010757,2.1773858500699186,680.1349601058957,2019
+2001,47,"(45,50]",HS,2.3604284621270084,56.819346852818406,0.04154268911681311,4971.957475601358,2019
+2001,47,"(45,50]",HS,4.436266258607499,55.097548463339066,0.08051658163265307,4993.5655535716705,2019
+2001,47,"(45,50]",HS,2.0925784238714615,56.819346852818406,0.03682862510355772,4983.563537782879,2019
+2001,47,"(45,50]",HS,6.227513389441469,55.097548463339066,0.11302705044281865,4947.185166329871,2019
+2001,47,"(45,50]",HS,4.637153787299159,55.097548463339066,0.08416261551790528,4989.626113591972,2019
+2001,33,"(30,35]",HS,6.461882172915073,68.87193557917384,0.09382460531382364,5725.247929360531,2019
+2001,33,"(30,35]",HS,6.6292884468247895,68.87193557917384,0.09625529457065844,5734.841681625293,2019
+2001,33,"(30,35]",HS,6.712991583779648,68.87193557917384,0.09747063919907585,5754.903339368736,2019
+2001,33,"(30,35]",HS,6.512104055087988,68.87193557917384,0.09455381209087409,5784.406735842708,2019
+2001,33,"(30,35]",HS,6.411660290742158,68.87193557917384,0.09309539853677319,5739.454730035615,2019
+2001,37,"(35,40]",College,318.40673297628155,98.14250820032271,3.2443305028068825,6468.769780181604,2019
+2001,37,"(35,40]",College,263.41377199693954,46.488556515942335,5.666206734266034,6708.845092169837,2019
+2001,37,"(35,40]",College,411.4009181331293,115.36049209511619,3.5662202081621155,6771.549875814317,2019
+2001,37,"(35,40]",College,295.3883703136955,196.28501640064542,1.5048951556789547,6570.122246699249,2019
+2001,37,"(35,40]",College,297.3135424636572,53.37575007385973,5.570198864694994,6720.827765428301,2019
+2001,45,"(40,45]",College,328.11629686304514,86.08991947396729,3.811320754716981,1388.1332352179338,2019
+2001,45,"(40,45]",College,439.1066564651874,86.08991947396729,5.100558336542164,1492.8051319322808,2019
+2001,45,"(40,45]",College,358.2494261667942,86.08991947396729,4.161340007701194,1462.2867751764932,2019
+2001,45,"(40,45]",College,367.97573068094874,86.08991947396729,4.274318444358876,1431.3860856034948,2019
+2001,45,"(40,45]",College,372.6463657230298,86.08991947396729,4.328571428571428,1408.3916628222591,2019
+2001,26,"(25,30]",HS,6.83017597551645,20.661580673752148,0.3305737389295341,5084.208500139166,2019
+2001,26,"(25,30]",HS,6.813435348125479,20.661580673752148,0.3297635091772559,5098.532700197783,2019
+2001,26,"(25,30]",HS,7.164988523335884,20.661580673752148,0.3467783339750995,5100.874941805234,2019
+2001,26,"(25,30]",HS,6.997582249426166,20.661580673752148,0.33867603645231675,5103.089255156218,2019
+2001,26,"(25,30]",HS,6.997582249426166,20.661580673752148,0.33867603645231675,5087.823961470165,2019
+2001,35,"(30,35]",College,217.628156082632,123.96948404251289,1.7554977966029182,6073.99334534913,2019
+2001,35,"(30,35]",College,217.628156082632,123.96948404251289,1.7554977966029182,6056.128570597581,2019
+2001,35,"(30,35]",College,217.628156082632,123.96948404251289,1.7554977966029182,6112.720741659157,2019
+2001,35,"(30,35]",College,217.628156082632,123.96948404251289,1.7554977966029182,6099.178906105694,2019
+2001,35,"(30,35]",College,217.628156082632,123.96948404251289,1.7554977966029182,6121.840228904016,2019
+2001,60,"(55,60]",College,10864.667176740628,550.9754846333907,19.71896659607239,1698.2858819950748,2019
+2001,60,"(55,60]",College,10864.667176740628,550.9754846333907,19.71896659607239,1733.6843821730283,2019
+2001,60,"(55,60]",College,10868.01530221882,550.9754846333907,19.725043319214475,1727.4768450424774,2019
+2001,60,"(55,60]",College,10872.033052792656,550.9754846333907,19.732335386984985,1726.1458624221693,2019
+2001,60,"(55,60]",College,10875.381178270849,550.9754846333907,19.73841211012707,1723.186099645399,2019
+2001,30,"(25,30]",College,211.9363427697016,86.08991947396729,2.461802079322295,7963.164608794299,2019
+2001,30,"(25,30]",College,252.36495791889823,86.08991947396729,2.93141124374278,8013.241163204126,2019
+2001,30,"(25,30]",College,170.08477429227239,86.08991947396729,1.9756642279553331,8089.6130207144715,2019
+2001,30,"(25,30]",College,197.17110941086457,86.08991947396729,2.2902926453600307,7984.96896679473,2019
+2001,30,"(25,30]",College,98.167039020658,86.08991947396729,1.1402849441663458,7956.892665070572,2019
+2001,61,"(60,65]",NoHS,0,3.271416940010757,0,4482.911381901862,2019
+2001,50,"(45,50]",NoHS,0,3.271416940010757,0,4591.956337546666,2019
+2001,21,"(20,25]",NoHS,0,3.271416940010757,0,5231.423414214151,2019
+2001,50,"(45,50]",NoHS,0,3.271416940010757,0,4575.626491274348,2019
+2001,19,"(15,20]",NoHS,0,3.271416940010757,0,5232.649828362621,2019
+2001,63,"(60,65]",HS,336.7377199693955,65.42833880021514,5.146664673813914,6720.40377888808,2019
+2001,63,"(60,65]",HS,335.0636572302984,65.42833880021514,5.1210784711103905,7138.821809294577,2019
+2001,63,"(60,65]",HS,336.7377199693955,65.42833880021514,5.146664673813914,7198.459315995887,2019
+2001,63,"(60,65]",HS,335.0636572302984,65.42833880021514,5.1210784711103905,6983.89710458466,2019
+2001,63,"(60,65]",HS,335.0636572302984,65.42833880021514,5.1210784711103905,6997.682725998735,2019
+2001,35,"(30,35]",HS,25.947972456006124,43.04495973698364,0.6028109356950329,7212.685987810002,2019
+2001,35,"(30,35]",HS,25.947972456006124,27.548774231669533,0.9418920870234887,7505.4984837384545,2019
+2001,35,"(30,35]",HS,25.947972456006124,32.71416940010757,0.7931722838092536,7561.809374025346,2019
+2001,35,"(30,35]",HS,25.947972456006124,32.71416940010757,0.7931722838092536,7326.0571819565575,2019
+2001,35,"(30,35]",HS,25.947972456006124,41.323161347504296,0.6279280580156592,7505.505592606976,2019
+2001,29,"(25,30]",HS,878.8829380260138,86.08991947396729,10.2088948787062,5240.46887585431,2019
+2001,29,"(25,30]",HS,878.8829380260138,86.08991947396729,10.2088948787062,5187.647778958247,2019
+2001,29,"(25,30]",HS,878.8829380260138,86.08991947396729,10.2088948787062,4989.435600454865,2019
+2001,29,"(25,30]",HS,878.8829380260138,86.08991947396729,10.2088948787062,5172.641455030782,2019
+2001,29,"(25,30]",HS,878.8829380260138,86.08991947396729,10.2088948787062,5454.078710289949,2019
+2001,29,"(25,30]",HS,25.52945677123183,37.87956456854561,0.6739638393951062,5620.620778151455,2019
+2001,29,"(25,30]",HS,35.57383320581484,37.87956456854561,0.9391299401407217,5630.039207533918,2019
+2001,29,"(25,30]",HS,65.7069625095639,37.87956456854561,1.7346282423775685,5649.734244630687,2019
+2001,29,"(25,30]",HS,42.270084162203524,37.87956456854561,1.1159073406377988,5678.698475576432,2019
+2001,29,"(25,30]",HS,35.741239479724555,37.87956456854561,0.9435493751531485,5634.5679538983695,2019
+2001,40,"(35,40]",College,125.3035960214231,65.42833880021514,1.9151272723587944,7987.283790125361,2019
+2001,40,"(35,40]",College,126.30803366488142,65.42833880021514,1.9304789939809093,8283.715679497538,2019
+2001,40,"(35,40]",College,125.47100229533284,65.42833880021514,1.9176858926291471,8361.140123245914,2019
+2001,40,"(35,40]",College,125.47100229533284,65.42833880021514,1.9176858926291471,8112.428282882824,2019
+2001,40,"(35,40]",College,125.63840856924254,65.42833880021514,1.9202445128994994,8298.51123029499,2019
+2001,67,"(65,70]",College,129.40504973221118,111.91689531615746,1.1562601818666511,7123.22385299053,2019
+2001,67,"(65,70]",College,112.83182861514919,111.91689531615746,1.0081751132964072,7472.559641831093,2019
+2001,67,"(65,70]",College,118.02142310635043,111.91689531615746,1.0545451852729482,7796.390595117924,2019
+2001,67,"(65,70]",College,149.15899005355777,111.91689531615746,1.3327656171321942,7186.8334408653345,2019
+2001,67,"(65,70]",College,146.14567712318285,111.91689531615746,1.3058410592103316,7499.598271314264,2019
+2001,37,"(35,40]",NoHS,61.55528691660291,20.661580673752148,2.9792147991271984,7552.694632611479,2019
+2001,37,"(35,40]",NoHS,99.47280795715379,20.661580673752148,4.8143851880374795,7781.284303529339,2019
+2001,37,"(35,40]",NoHS,69.08856924254016,20.661580673752148,3.343818187652419,7866.07323488668,2019
+2001,37,"(35,40]",NoHS,95.0365416985463,20.661580673752148,4.599674303683739,7695.598191010215,2019
+2001,37,"(35,40]",NoHS,88.3402907421576,20.661580673752148,4.27558240277243,7748.359638626207,2019
+2001,50,"(45,50]",HS,1898.7219586840092,736.92971069716,2.576530612244898,3239.7129476095615,2019
+2001,50,"(45,50]",HS,1900.3960214231063,571.6370653071428,3.324480053444428,3288.6932588965487,2019
+2001,50,"(45,50]",HS,1897.2153022188218,625.0128153810025,3.035482242171779,4191.924438866534,2019
+2001,50,"(45,50]",HS,1900.3960214231063,583.6896540334982,3.2558329726948387,3418.1287317074916,2019
+2001,50,"(45,50]",HS,1898.7219586840092,678.3885654548624,2.7988708173624777,3477.5946199849395,2019
+2001,78,"(75,80]",NoHS,196.20015302218823,46.488556515942335,4.220396754089477,390.13451014953284,2019
+2001,78,"(75,80]",NoHS,166.0670237184392,46.488556515942335,3.5722129522668613,414.95384534926626,2019
+2001,78,"(75,80]",NoHS,181.1335883703137,46.488556515942335,3.8963048531781688,406.4551048543234,2019
+2001,78,"(75,80]",NoHS,157.69671002295334,46.488556515942335,3.3921618962050233,402.72288221412026,2019
+2001,78,"(75,80]",NoHS,164.392960979342,46.488556515942335,3.536202741054493,396.8846420493948,2019
+2001,37,"(35,40]",College,387.54552410099467,168.7362421689759,2.2967533181928914,7478.757665657178,2019
+2001,37,"(35,40]",College,38.921958684009184,168.7362421689759,0.23066744988330332,7579.707857066553,2019
+2001,37,"(35,40]",College,87.55348125478194,168.7362421689759,0.5188777474794307,7636.560591886451,2019
+2001,37,"(35,40]",College,85.20979342004591,168.7362421689759,0.5049880945832318,7608.4086287262035,2019
+2001,37,"(35,40]",College,141.70941086457537,168.7362421689759,0.839827941188027,7537.670349095975,2019
+2001,69,"(65,70]",College,172646.24094873757,5940.204443703743,29.064023399351537,45.173435275854125,2019
+2001,69,"(65,70]",College,185439.11032899772,5940.204443703743,31.217630990049837,49.19646794481896,2019
+2001,69,"(65,70]",College,162464.60811017596,5940.204443703743,27.350002790287565,48.0083713195233,2019
+2001,69,"(65,70]",College,172682.76899770467,5940.204443703743,29.070172690897525,47.17180535841821,2019
+2001,69,"(65,70]",College,182727.2793573068,5940.204443703743,30.76110950204528,49.828386355754084,2019
+2001,71,"(70,75]",College,151250.06182096404,8781.171786344665,17.224359743897555,45.173435275854125,2019
+2001,71,"(70,75]",College,130365.3088599847,4356.149925382745,29.926726832876486,49.19646794481896,2019
+2001,71,"(70,75]",College,152006.7398530987,3288.6349239055507,46.22183470355444,48.0083713195233,2019
+2001,71,"(70,75]",College,147171.81061973987,2789.3133909565404,52.76273763174033,47.17180535841821,2019
+2001,71,"(70,75]",College,127639.80079571537,2255.555890217943,56.58906584814539,49.828386355754084,2019
+2001,73,"(70,75]",HS,1262.4107115531754,110.19509692667813,11.456142303619561,9156.33515773893,2019
+2001,73,"(70,75]",HS,1262.4107115531754,108.47329853719879,11.637985832248445,8372.502383210698,2019
+2001,73,"(70,75]",HS,1262.578117827085,108.47329853719879,11.639529127014688,7697.368877696164,2019
+2001,73,"(70,75]",HS,1262.578117827085,108.47329853719879,11.639529127014688,8601.778895033156,2019
+2001,73,"(70,75]",HS,1262.4107115531754,110.19509692667813,11.456142303619561,8337.488104565713,2019
+2001,61,"(60,65]",College,152.7414843152257,230.72098419023237,0.6620181725182327,5326.67582128186,2019
+2001,61,"(60,65]",College,67.07969395562355,251.3825648639845,0.26684306444211175,5417.633464804219,2019
+2001,61,"(60,65]",College,27.069594491201226,134.30027437938898,0.2015602322206096,5418.280290624349,2019
+2001,61,"(60,65]",College,68.36872226472839,105.0297017582401,0.6509465524533352,5425.42889314626,2019
+2001,61,"(60,65]",College,77.59280795715378,125.69128243199225,0.6173284770098268,5378.567875839621,2019
+2001,65,"(60,65]",NoHS,95.92546901300689,70.59373396865318,1.3588382937160137,8470.898834307425,2019
+2001,65,"(60,65]",NoHS,95.92546901300689,30.992371010628222,3.0951316690198096,8895.690833922568,2019
+2001,65,"(60,65]",NoHS,95.92546901300689,41.323161347504296,2.321348751764857,9241.96739976361,2019
+2001,65,"(60,65]",NoHS,141.12516296863046,43.04495973698364,3.278552560646901,8411.63872692729,2019
+2001,65,"(60,65]",NoHS,97.59953175210406,25.826975842190187,3.778976383006033,8936.191644949053,2019
+2001,59,"(55,60]",HS,62.074246365723035,29.27057262114888,2.1207048857278763,5470.218742344745,2019
+2001,59,"(55,60]",HS,62.074246365723035,29.27057262114888,2.1207048857278763,5789.670253662318,2019
+2001,59,"(55,60]",HS,61.906840091813315,29.27057262114888,2.114985616888265,5832.825999490555,2019
+2001,59,"(55,60]",HS,62.074246365723035,27.548774231669533,2.2532489410858685,5646.672592056228,2019
+2001,59,"(55,60]",HS,62.074246365723035,27.548774231669533,2.2532489410858685,5711.557454469799,2019
+2001,60,"(55,60]",College,15851.532670237184,301.3147181588855,52.60789372352715,3687.287979209405,2019
+2001,60,"(55,60]",College,15894.8908951798,301.3147181588855,52.75179052753177,3633.9889219487354,2019
+2001,60,"(55,60]",College,15899.745677123185,301.3147181588855,52.76790252489136,3732.726985571312,2019
+2001,60,"(55,60]",College,15912.635960214231,301.3147181588855,52.810682655811654,3619.162569798528,2019
+2001,60,"(55,60]",College,15878.15026778883,301.3147181588855,52.696231915946974,3597.716146931495,2019
+2001,43,"(40,45]",HS,189.0016832440704,168.7362421689759,1.1201012942720405,9835.946007741752,2019
+2001,43,"(40,45]",HS,115.51032899770466,151.51825827418244,0.7623525396436447,10085.062013432278,2019
+2001,43,"(40,45]",HS,114.52263198163735,149.7964598847031,0.7645216186669853,10181.103007174494,2019
+2001,43,"(40,45]",HS,142.12792654934967,132.5784759899096,1.0720286644429888,10047.286636402081,2019
+2001,43,"(40,45]",HS,118.37297628156082,136.02207276886833,0.8702482903837436,10038.826299197875,2019
+2001,31,"(30,35]",HS,13.191614384085693,36.157766179066265,0.364834882740158,6921.48061764859,2019
+2001,31,"(30,35]",HS,16.121224177505738,36.157766179066265,0.445857857967985,7034.847479228856,2019
+2001,31,"(30,35]",HS,14.246273909716908,36.157766179066265,0.3940031538221757,7078.051219809368,2019
+2001,31,"(30,35]",HS,14.765233358837031,36.157766179066265,0.40835579514824794,6918.618239075935,2019
+2001,31,"(30,35]",HS,17.996174445294567,36.157766179066265,0.4977125621137943,7015.068189344092,2019
+2001,82,"(80,85]",NoHS,136.68722264728387,37.87956456854561,3.6084686876465852,9613.061850971419,2019
+2001,82,"(80,85]",NoHS,135.1805661820964,37.87956456854561,3.568693772534743,9549.633524860521,2019
+2001,82,"(80,85]",NoHS,135.1805661820964,37.87956456854561,3.568693772534743,9632.441857016898,2019
+2001,82,"(80,85]",NoHS,135.01315990818668,37.87956456854561,3.5642743375223156,9660.773589872528,2019
+2001,82,"(80,85]",NoHS,136.68722264728387,37.87956456854561,3.6084686876465852,9613.29661373133,2019
+2001,42,"(40,45]",HS,64.61882172915072,79.20272591604991,0.8158661331636837,7371.368393581148,2019
+2001,42,"(40,45]",HS,64.61882172915072,53.37575007385973,1.2106400685654661,7628.398547590841,2019
+2001,42,"(40,45]",HS,64.95363427697016,84.36812108448795,0.7698836176750253,7827.715162346562,2019
+2001,42,"(40,45]",HS,66.12547819433819,79.20272591604991,0.8348889186519562,7512.268253786873,2019
+2001,42,"(40,45]",HS,65.62325937260903,49.93215329490103,1.314248536109304,7646.036793301192,2019
+2001,46,"(45,50]",College,86346.4820198929,10227.482433507315,8.442594018739571,17.78317985079869,2019
+2001,46,"(45,50]",College,89522.17903596022,10261.918401296904,8.723727429429411,19.364058268294023,2019
+2001,46,"(45,50]",College,86465.34047436879,10227.482433507315,8.454215495994472,18.90030794244316,2019
+2001,46,"(45,50]",College,91469.11400153022,10244.700417402108,8.928432289357792,18.56465708175563,2019
+2001,46,"(45,50]",College,85531.21346595256,10227.482433507315,8.362880505737648,19.6123879178756,2019
+2001,20,"(15,20]",HS,1.506656465187452,2.5826975842190185,0.5833654216403543,5070.438688317483,2019
+2001,20,"(15,20]",HS,1.506656465187452,2.5826975842190185,0.5833654216403543,5023.749643278474,2019
+2001,20,"(15,20]",HS,1.506656465187452,2.5826975842190185,0.5833654216403543,5023.564774204192,2019
+2001,20,"(15,20]",HS,1.506656465187452,2.5826975842190185,0.5833654216403543,5009.718483589427,2019
+2001,20,"(15,20]",HS,1.506656465187452,2.5826975842190185,0.5833654216403543,5002.509086895746,2019
+2001,41,"(40,45]",NoHS,14.430420811017598,55.097548463339066,0.2619067674239507,4796.971432991208,2019
+2001,41,"(40,45]",NoHS,14.430420811017598,55.097548463339066,0.2619067674239507,4828.249949287816,2019
+2001,41,"(40,45]",NoHS,14.430420811017598,55.097548463339066,0.2619067674239507,4779.14346661154,2019
+2001,41,"(40,45]",NoHS,14.430420811017598,55.097548463339066,0.2619067674239507,4781.956425984904,2019
+2001,41,"(40,45]",NoHS,14.430420811017598,55.097548463339066,0.2619067674239507,4841.295688037642,2019
+2001,35,"(30,35]",College,4089.099127773527,516.5395168438037,7.91633359003979,983.2938419334308,2019
+2001,35,"(30,35]",College,3817.900964039786,516.5395168438037,7.391304710563472,988.3403355364848,2019
+2001,35,"(30,35]",College,3863.1006579954096,516.5395168438037,7.478809523809526,992.6177338040918,2019
+2001,35,"(30,35]",College,3720.8053251721503,516.5395168438037,7.203331408034914,986.950589024905,2019
+2001,35,"(30,35]",College,3883.189410864575,516.5395168438037,7.517700551918882,979.8991214082192,2019
+2001,63,"(60,65]",College,8569.52716143841,688.7193557917383,12.442698305737391,206.95743366986207,2019
+2001,63,"(60,65]",College,8569.52716143841,688.7193557917383,12.442698305737391,207.10069755069512,2019
+2001,63,"(60,65]",College,8569.52716143841,688.7193557917383,12.442698305737391,211.6668558225719,2019
+2001,63,"(60,65]",College,8567.85309869931,688.7193557917383,12.440267616480552,207.7767169422297,2019
+2001,63,"(60,65]",College,8567.85309869931,688.7193557917383,12.440267616480552,210.28391170898854,2019
+2001,41,"(40,45]",HS,442.8063351185922,74.03733074761188,5.980852235584887,6073.99334534913,2019
+2001,41,"(40,45]",HS,461.823687834736,44.76675812646299,10.31621915820029,6056.128570597581,2019
+2001,41,"(40,45]",HS,452.2647895944912,51.653951684380374,8.755666795019895,6112.720741659157,2019
+2001,41,"(40,45]",HS,390.0733588370314,51.653951684380374,7.551665383134386,6099.178906105694,2019
+2001,41,"(40,45]",HS,417.62006120887526,82.64632269500859,5.053099128802464,6121.840228904016,2019
+2001,94,"(90,95]",College,2635.1421576128537,89.53351625292598,29.43190737833595,11372.833544071005,2019
+2001,94,"(90,95]",College,2777.604896710023,115.36049209511619,24.077609641434716,11057.720725793351,2019
+2001,94,"(90,95]",College,3782.0425401683246,91.25531464240532,41.444627690877,3732.726985571312,2019
+2001,94,"(90,95]",College,3293.216220351951,89.53351625292598,36.78193773881105,11305.465226834665,2019
+2001,94,"(90,95]",College,2528.0021423106355,106.75150014771945,23.681186108040293,11291.18149259581,2019
+2001,55,"(50,55]",NoHS,133.9417597551645,10.675150014771946,12.547061125119553,9300.013293317026,2019
+2001,55,"(50,55]",NoHS,133.9417597551645,10.50297017582401,12.752750651760858,9294.60972322436,2019
+2001,55,"(50,55]",NoHS,133.9417597551645,10.50297017582401,12.752750651760858,9268.408420907073,2019
+2001,55,"(50,55]",NoHS,133.9417597551645,10.675150014771946,12.547061125119553,9313.768287284152,2019
+2001,55,"(50,55]",NoHS,133.9417597551645,10.50297017582401,12.752750651760858,9269.333933329386,2019
+2001,66,"(65,70]",HS,218940.62127008417,6164.038234336059,35.519023884456274,31.36574549056442,2019
+2001,66,"(65,70]",College,215179.00229533282,296.1493229904475,726.5895465250601,34.21214188710958,2019
+2001,66,"(65,70]",HS,207314.25554705432,797.1926543289371,260.0554011897762,33.339071345827016,2019
+2001,66,"(65,70]",College,217423.92042846212,1807.888308953313,120.26402259016814,32.80550343108766,2019
+2001,66,"(65,70]",College,217244.79571537874,2135.0300029543887,101.75257275764841,34.65309021574954,2019
+2001,28,"(25,30]",College,19533.968477429225,476.93815388577883,40.95702622715184,2.2223720311465875,2019
+2001,28,"(25,30]",College,7140.882019892884,476.93815388577883,14.972343817984926,45.05540097459285,2019
+2001,28,"(25,30]",College,4465.729762815608,476.93815388577883,9.363330919180559,41.326711915185385,2019
+2001,28,"(25,30]",College,19530.620351951035,476.93815388577883,40.950006185976875,2.483114604880898,2019
+2001,28,"(25,30]",College,5471.841469013007,476.93815388577883,11.472853292260298,39.68385513766312,2019
+2001,29,"(25,30]",HS,87.36933435348126,16.87362421689759,5.177864176090152,9640.477992661905,2019
+2001,29,"(25,30]",HS,11.316664116296863,17.045804055845522,0.6638973485334672,9681.623316403704,2019
+2001,29,"(25,30]",HS,10.730742157612855,16.184904861105853,0.6630092823962183,9760.254714411194,2019
+2001,29,"(25,30]",HS,9.039938791124712,16.184904861105853,0.5585413611450198,9646.080992774458,2019
+2001,29,"(25,30]",HS,10.29548584544759,16.87362421689759,0.6101526093687378,9610.259280533934,2019
+2001,40,"(35,40]",HS,897.2976281560826,172.17983894793457,5.211397766653832,7310.025781660847,2019
+2001,40,"(35,40]",HS,728.2172915072686,172.17983894793457,4.229399306892568,6647.422335314989,2019
+2001,40,"(35,40]",HS,793.5057383320582,172.17983894793457,4.608586830958799,6210.415619400244,2019
+2001,40,"(35,40]",HS,830.335118592196,172.17983894793457,4.822487485560263,6951.020160046258,2019
+2001,40,"(35,40]",HS,793.5057383320582,172.17983894793457,4.608586830958799,6683.442263349911,2019
+2001,56,"(55,60]",HS,48.715225707727626,87.81171786344665,0.5547690774422976,5071.173055833386,2019
+2001,56,"(55,60]",HS,47.04116296863045,99.86430658980206,0.471050814600401,5367.320974800248,2019
+2001,56,"(55,60]",HS,55.24407039020658,122.24768565303354,0.45190279141154205,5407.328562386179,2019
+2001,56,"(55,60]",HS,68.13435348125479,86.08991947396729,0.7914324220254141,5234.754815613503,2019
+2001,56,"(55,60]",HS,44.864881407804134,111.91689531615746,0.40087675128106404,5294.906407625,2019
+2001,29,"(25,30]",HS,237.21469013006887,79.20272591604991,2.995031892986891,6829.021360387485,2019
+2001,29,"(25,30]",HS,237.04728385615914,101.5861049792814,2.333461686561417,6196.267900231365,2019
+2001,29,"(25,30]",HS,237.04728385615914,287.54033104305074,0.8243966437552311,5791.157917962892,2019
+2001,29,"(25,30]",HS,237.04728385615914,201.45041156908349,1.176702901770287,6457.33358281155,2019
+2001,29,"(25,30]",HS,242.90650344299925,225.5555890217943,1.0769252249365828,6239.690627951828,2019
+2001,60,"(55,60]",HS,334.4777352716144,68.87193557917384,4.856517135155949,5111.585449907498,2019
+2001,60,"(55,60]",HS,347.702830910482,68.87193557917384,5.048541586445899,5228.469171572166,2019
+2001,60,"(55,60]",HS,316.23045141545526,68.87193557917384,4.591572006160955,5159.078013906628,2019
+2001,60,"(55,60]",HS,304.34460596786533,68.87193557917384,4.418993068925683,5215.80037594701,2019
+2001,60,"(55,60]",HS,321.08523335883706,68.87193557917384,4.662061994609164,5137.361741847117,2019
+2001,75,"(70,75]",HS,58.759602142310634,68.87193557917384,0.8531719291490181,8259.7601315136435,2019
+2001,75,"(70,75]",HS,55.41147666411629,68.87193557917384,0.8045581440123218,8457.051779848554,2019
+2001,75,"(70,75]",HS,60.26625860749809,68.87193557917384,0.8750481324605314,8617.118461110318,2019
+2001,75,"(70,75]",HS,53.402601377199694,68.87193557917384,0.7753898729303041,8446.353427842922,2019
+2001,75,"(70,75]",HS,61.772915072685535,68.87193557917384,0.8969243357720446,8545.183753659077,2019
+2001,49,"(45,50]",College,1440.8155776587607,506.2087265069277,2.846287513850361,573.3429942868568,2019
+2001,49,"(45,50]",College,1442.5231216526397,506.2087265069277,2.8496607152680093,565.6974204507626,2019
+2001,49,"(45,50]",College,1439.1080336648815,504.4869281174484,2.8526170916560325,598.3194637687418,2019
+2001,49,"(45,50]",College,1439.0578117827083,504.4869281174484,2.852517541242783,580.5879237529209,2019
+2001,49,"(45,50]",College,1437.3837490436113,506.2087265069277,2.8395080404129303,581.2243381287574,2019
+2001,64,"(60,65]",NoHS,6615.894270849274,612.960226654647,10.793350013844845,545.4380532870903,2019
+2001,64,"(60,65]",NoHS,2329.456627390972,616.4038234336058,3.779108011392604,306.5126293073277,2019
+2001,64,"(60,65]",NoHS,2262.494117827085,611.2384282651677,3.7014919435751983,332.42602579087105,2019
+2001,64,"(60,65]",NoHS,2108.3129395562355,466.60736354890275,4.518387630064209,316.7082114230919,2019
+2001,64,"(60,65]",NoHS,2269.692587605203,201.45041156908349,11.266755773426931,322.145958258188,2019
+2001,85,"(80,85]",College,34045.916143840856,860.899194739673,39.54692529842125,1255.8277721170004,2019
+2001,85,"(80,85]",College,19990.485386381028,860.899194739673,23.220471698113208,1210.832044991766,2019
+2001,85,"(80,85]",College,34027.501453710785,860.899194739673,39.5255352329611,1231.1086097816622,2019
+2001,85,"(80,85]",College,27349.832593726092,860.899194739673,31.76891413169041,1303.6646669082431,2019
+2001,85,"(80,85]",College,34045.916143840856,860.899194739673,39.54692529842125,1237.1878622106774,2019
+2001,31,"(30,35]",College,4.2521193573068095,99.86430658980206,0.04257897043007183,8305.1008248492,2019
+2001,31,"(30,35]",College,5.089150726855395,96.42070981084338,0.05278068100555586,8312.227931682644,2019
+2001,31,"(30,35]",College,3.574123947972456,94.69891142136402,0.03774197500612595,8130.243839380052,2019
+2001,31,"(30,35]",College,6.08521805661821,98.14250820032271,0.06200389788487391,8165.276635738543,2019
+2001,31,"(30,35]",College,3.415087987758225,110.19509692667813,0.03099128802464382,8417.980144898498,2019
+2001,30,"(25,30]",HS,42.65511859219587,67.15013718969449,0.6352201257861635,6416.336987268097,2019
+2001,30,"(25,30]",HS,40.830390206579956,67.15013718969449,0.6080462664020615,6454.819384174005,2019
+2001,30,"(25,30]",HS,42.50445294567712,67.15013718969449,0.6329764126260082,6498.627933935648,2019
+2001,30,"(25,30]",HS,42.50445294567712,67.15013718969449,0.6329764126260082,6391.189244462614,2019
+2001,30,"(25,30]",HS,40.830390206579956,67.15013718969449,0.6080462664020615,6438.990803928445,2019
+2001,23,"(20,25]",College,9.20734506503443,13.774387115834767,0.6684395456295725,6587.411312532468,2019
+2001,23,"(20,25]",College,8.537719969395562,13.774387115834767,0.6198257604928764,6665.40887121135,2019
+2001,23,"(20,25]",College,9.709563886763581,13.774387115834767,0.7048998844820947,6953.039181634682,2019
+2001,23,"(20,25]",College,9.374751338944147,13.774387115834767,0.6805929919137467,6723.659368479408,2019
+2001,23,"(20,25]",College,9.374751338944147,13.774387115834767,0.6805929919137467,6551.900286901741,2019
+2001,53,"(50,55]",NoHS,1.4396939556235655,16.357084700053786,0.08801653730012363,5196.175967488579,2019
+2001,53,"(50,55]",NoHS,1.3894720734506505,16.357084700053786,0.0849461929757007,5190.39212441158,2019
+2001,53,"(50,55]",NoHS,1.5233970925784237,16.357084700053786,0.09313377784082848,5200.629491667588,2019
+2001,53,"(50,55]",NoHS,1.456434583014537,16.357084700053786,0.08903998540826459,5188.709361728127,2019
+2001,53,"(50,55]",NoHS,1.473175210405509,16.357084700053786,0.09006343351640557,5195.914288848599,2019
+2001,42,"(40,45]",College,3438.5265401683246,1575.4455263736015,2.1825740608646798,309.242546203524,2019
+2001,42,"(40,45]",College,3438.5265401683246,1575.4455263736015,2.1825740608646798,303.1006106689578,2019
+2001,42,"(40,45]",College,3438.5265401683246,1575.4455263736015,2.1825740608646798,312.65062284978126,2019
+2001,42,"(40,45]",College,3440.2006029074214,1575.4455263736015,2.1836366572611103,304.66808352753003,2019
+2001,42,"(40,45]",College,3440.2006029074214,1575.4455263736015,2.1836366572611103,307.38223852495236,2019
+2001,59,"(55,60]",HS,746.0460596786534,60.2629436317771,12.37984762638209,5400.675100950946,2019
+2001,59,"(55,60]",HS,846.4898240244836,60.2629436317771,14.04660597392596,4905.198560033395,2019
+2001,59,"(55,60]",HS,720.935118592196,60.2629436317771,11.963158039496125,4588.893421018334,2019
+2001,59,"(55,60]",HS,762.7866870696251,60.2629436317771,12.657640684306068,5137.48284261251,2019
+2001,59,"(55,60]",HS,745.8786534047437,60.2629436317771,12.37706969580285,4937.75053478373,2019
+2001,37,"(35,40]",College,193.4379495026779,154.9618550531411,1.2482939716767212,8360.654520943892,2019
+2001,37,"(35,40]",College,193.60535577658763,156.68365344262045,1.2356448903426187,8613.697886069287,2019
+2001,37,"(35,40]",College,195.11201224177506,156.68365344262045,1.245260803886141,8707.557229887827,2019
+2001,37,"(35,40]",College,193.60535577658763,154.9618550531411,1.2493742780130923,8518.84538390114,2019
+2001,37,"(35,40]",College,193.60535577658763,156.68365344262045,1.2356448903426187,8577.2510598882891,2019
+2001,64,"(60,65]",College,1253.5532456006122,303.0365165483649,4.136640890275492,566.849495594937,2019
+2001,64,"(60,65]",College,1276.4226166794185,287.54033104305074,4.439108114152903,561.6814596042875,2019
+2001,64,"(60,65]",College,1213.9717061973988,191.1196212322074,6.351894684441854,540.6956422688152,2019
+2001,64,"(60,65]",College,1293.1297628156083,323.69809722211704,3.994863652004358,561.0082290226909,2019
+2001,64,"(60,65]",College,1265.264988523336,330.58529078003437,3.827348112004236,591.9400672946446,2019
+2001,42,"(40,45]",HS,-4.670635042081101,34.43596778958692,-0.13563246053138234,7756.180528584376,2019
+2001,42,"(40,45]",HS,-4.670635042081101,34.43596778958692,-0.13563246053138234,7990.928898649958,2019
+2001,42,"(40,45]",HS,-8.01876052027544,34.43596778958692,-0.23286003080477474,8078.002226835856,2019
+2001,42,"(40,45]",HS,-6.3446977811782705,34.43596778958692,-0.18424624566807854,7902.934217305197,2019
+2001,42,"(40,45]",HS,-6.3446977811782705,34.43596778958692,-0.18424624566807854,7957.117172206102,2019
+2001,31,"(30,35]",College,74.99801071155318,36.157766179066265,2.0741881658323704,5810.776564749184,2019
+2001,31,"(30,35]",College,76.3372609028309,36.157766179066265,2.111227240222234,5820.513636665706,2019
+2001,31,"(30,35]",College,76.3372609028309,36.157766179066265,2.111227240222234,5840.874992558748,2019
+2001,31,"(30,35]",College,74.83060443764346,36.157766179066265,2.0695582815336375,5870.819135926284,2019
+2001,31,"(30,35]",College,74.66319816373375,36.157766179066265,2.064928397234905,5825.195598726648,2019
+2001,47,"(45,50]",HS,6.696250956388676,82.64632269500859,0.08102297522782698,6053.474823047393,2019
+2001,47,"(45,50]",HS,7.198469778117827,80.92452430552926,0.0889528834416143,6156.28380757384,2019
+2001,47,"(45,50]",HS,7.198469778117827,82.64632269500859,0.087099698369914,6150.280533872593,2019
+2001,47,"(45,50]",HS,6.696250956388676,80.92452430552926,0.08274686831778073,6077.703392819479,2019
+2001,47,"(45,50]",HS,6.52884468247896,80.92452430552926,0.08067819660983623,6120.24842240309,2019
+2001,42,"(40,45]",HS,64.41793420045907,37.87956456854561,1.7005985927818812,6093.678511646323,2019
+2001,42,"(40,45]",HS,86.46534047436879,25.826975842190187,3.347869336413811,6231.105456451998,2019
+2001,42,"(40,45]",HS,90.33242540168324,27.548774231669533,3.2789998074701576,6308.448360026365,2019
+2001,42,"(40,45]",HS,79.58494261667941,36.157766179066265,2.201046995617654,6149.505897969835,2019
+2001,42,"(40,45]",HS,73.44113236419281,22.383379063231494,3.2810565445336337,6352.286514534013,2019
+2001,84,"(80,85]",College,33712.27543993879,19507.97575280099,1.7281278112670568,2.1771713443169682,2019
+2001,84,"(80,85]",College,16516.30298393267,21143.684222806365,0.7811459351117991,2.0705760280195924,2019
+2001,84,"(80,85]",College,50367.52563121653,16064.378973842295,3.1353546696844123,1.8533107033325014,2019
+2001,84,"(80,85]",College,40806.953328232594,15633.929376472459,2.6101533623174147,2.5309571987440336,2019
+2001,84,"(80,85]",College,25812.37337413925,19886.771398486446,1.2979670182211576,1.8757958430340422,2019
+2001,57,"(55,60]",HS,188.09768936495792,46.488556515942335,4.046107331821617,4954.9442714387515,2019
+2001,57,"(55,60]",HS,186.272960979342,48.21035490542169,3.8637541944001317,5056.600479260147,2019
+2001,57,"(55,60]",HS,186.44036725325174,48.21035490542169,3.8672266076241817,4977.495449453586,2019
+2001,57,"(55,60]",HS,186.60777352716144,48.21035490542169,3.8706990208482313,5041.270760673471,2019
+2001,57,"(55,60]",HS,188.1144299923489,48.21035490542169,3.9019507398646787,4981.991824078693,2019
+2001,46,"(45,50]",NoHS,748.3395256312165,94.69891142136402,7.902303357020338,521.2544323926219,2019
+2001,46,"(45,50]",NoHS,752.3572762050497,94.69891142136402,7.944729933139637,516.2115576482415,2019
+2001,46,"(45,50]",NoHS,747.8373068094875,94.69891142136402,7.897000035005427,497.19711075997174,2019
+2001,46,"(45,50]",NoHS,750.0135883703138,94.69891142136402,7.919981097070047,515.8153579914156,2019
+2001,46,"(45,50]",NoHS,749.5113695485846,94.69891142136402,7.914677775055135,544.1233371685576,2019
+2001,36,"(35,40]",College,59.09441469013007,43.04495973698364,1.3728532922603005,5470.082103866714,2019
+2001,36,"(35,40]",College,60.60107115531752,41.323161347504296,1.4665158516236685,5491.169484986983,2019
+2001,36,"(35,40]",College,59.09441469013007,43.04495973698364,1.3728532922603005,5528.895267829356,2019
+2001,36,"(35,40]",College,57.4203519510329,43.04495973698364,1.3339622641509434,5472.954072832634,2019
+2001,36,"(35,40]",College,57.4203519510329,43.04495973698364,1.3339622641509434,5509.802788629408,2019
+2001,31,"(30,35]",HS,202.39418515684773,110.19509692667813,1.8366895696958028,9893.556945139673,2019
+2001,31,"(30,35]",HS,204.23565416985463,110.19509692667813,1.853400558336542,10035.414950690309,2019
+2001,31,"(30,35]",HS,204.23565416985463,110.19509692667813,1.853400558336542,10101.941248409214,2019
+2001,31,"(30,35]",HS,201.60737566947208,110.19509692667813,1.8295494200038507,10038.314147768306,2019
+2001,31,"(30,35]",HS,204.23565416985463,110.19509692667813,1.853400558336542,9939.832863691934,2019
+2001,54,"(50,55]",HS,766.8881407804132,153.24005666366176,5.004488757555174,6733.455195650835,2019
+2001,54,"(50,55]",HS,766.8881407804132,153.24005666366176,5.004488757555174,6112.068787516561,2019
+2001,54,"(50,55]",HS,766.8881407804132,153.24005666366176,5.004488757555174,5709.315271873769,2019
+2001,54,"(50,55]",HS,766.8881407804132,153.24005666366176,5.004488757555174,6400.45119388656,2019
+2001,54,"(50,55]",HS,766.8881407804132,153.24005666366176,5.004488757555174,6143.379531710187,2019
+2001,41,"(40,45]",HS,411.9868400918133,154.9618550531411,2.658633893809096,7268.453122182393,2019
+2001,41,"(40,45]",HS,613.0417750573833,154.9618550531411,3.956081803790699,6607.7024356480515,2019
+2001,41,"(40,45]",HS,373.14858454475905,154.9618550531411,2.4080028237710183,6176.338154337436,2019
+2001,41,"(40,45]",HS,531.8497322111706,154.9618550531411,3.432133230650751,6910.409474456201,2019
+2001,41,"(40,45]",HS,537.7089517980107,154.9618550531411,3.4699439524237374,6644.960187765484,2019
+2001,41,"(40,45]",HS,311.7272226472839,53.37575007385973,5.840240600196256,6917.566297370904,2019
+2001,41,"(40,45]",HS,311.91136954858456,51.653951684380374,6.03848029777949,7166.129912877455,2019
+2001,41,"(40,45]",HS,311.7272226472839,53.37575007385973,5.840240600196256,7255.078703541743,2019
+2001,41,"(40,45]",HS,311.74396327467485,51.653951684380374,6.035239378770377,7072.285724072858,2019
+2001,41,"(40,45]",HS,311.8946289211936,53.37575007385973,5.843376973430882,7199.826205960216,2019
+2001,47,"(45,50]",College,219001.22234123948,8505.684044027968,25.74763196088916,1.723908682705586,2019
+2001,47,"(45,50]",College,203864.17964804897,4235.62403811919,48.1308486809358,1.7558858000022828,2019
+2001,47,"(45,50]",College,218281.04055087987,12448.60235593567,17.534582141006403,1.5509071336575402,2019
+2001,47,"(45,50]",College,193456.36419280796,18578.204622482142,10.413081787176548,2.0199460627954804,2019
+2001,47,"(45,50]",College,220866.29563886765,6560.051863916307,33.66837644283683,1.6026189947150349,2019
+2001,64,"(60,65]",College,59127.89594491201,6542.833880021514,9.037046794884786,10.33298516436616,2019
+2001,64,"(60,65]",College,62476.02142310635,6542.833880021514,9.548770848955272,10.885853919327733,2019
+2001,64,"(60,65]",College,59964.9273144606,6542.833880021514,9.164977808402407,11.043925163074842,2019
+2001,64,"(60,65]",College,61304.177505738335,6542.833880021514,9.369667430030603,10.89346443861697,2019
+2001,64,"(60,65]",College,61138.44529456771,6542.833880021514,9.344337089354113,11.194517760457467,2019
+2001,23,"(20,25]",NoHS,9.709563886763581,49.93215329490103,0.19445514054678475,5552.697056225525,2019
+2001,23,"(20,25]",NoHS,7.03106350420811,51.653951684380374,0.13611859838274934,5558.340939897811,2019
+2001,23,"(20,25]",NoHS,5.524407039020658,49.93215329490103,0.11063826962144649,5554.572463529241,2019
+2001,23,"(20,25]",NoHS,5.524407039020658,49.93215329490103,0.11063826962144649,5505.510740881195,2019
+2001,23,"(20,25]",NoHS,7.365876052027544,49.93215329490103,0.14751769282859534,5532.845977910403,2019
+2001,43,"(40,45]",HS,1067.0141086457538,137.74387115834767,7.746363592606855,48.14764110979828,2019
+2001,43,"(40,45]",HS,1020.8267176740627,137.74387115834767,7.411050009626491,49.32934709492729,2019
+2001,43,"(40,45]",HS,1037.232532517215,137.74387115834767,7.530153783211397,47.07687902927192,2019
+2001,43,"(40,45]",HS,1019.5879112471308,137.74387115834767,7.402056459376203,48.76760295496565,2019
+2001,43,"(40,45]",HS,1066.193817903596,137.74387115834767,7.740408403927608,52.15366652804628,2019
+2001,64,"(60,65]",NoHS,133.42280030604437,61.984742021256444,2.1525103752192702,6637.480849619121,2019
+2001,64,"(60,65]",NoHS,129.90726855394033,61.984742021256444,2.095794292559791,7025.098491366916,2019
+2001,64,"(60,65]",NoHS,128.40061208875287,61.984742021256444,2.0714873999914434,7077.46302192373,2019
+2001,64,"(60,65]",NoHS,127.14506503442999,61.984742021256444,2.0512316561844863,6851.587287307848,2019
+2001,64,"(60,65]",NoHS,129.23764345830145,61.984742021256444,2.084991229196081,6930.317599930711,2019
+2001,63,"(60,65]",HS,206988.98515684775,12775.744049936746,16.201716655232506,21.922169018772912,2019
+2001,63,"(60,65]",HS,208168.86457536343,16477.61058731734,12.633437565006483,23.149147465899446,2019
+2001,63,"(60,65]",HS,202653.33006886,17923.92123447999,11.306305546523978,23.45811280132555,2019
+2001,63,"(60,65]",HS,225362.39289977046,19714.59155953851,11.431248383674141,23.132738015614066,2019
+2001,63,"(60,65]",HS,241379.89214996176,19129.180107115535,12.618412853992368,23.79344552017681,2019
+2001,53,"(50,55]",College,505.56694720734504,216.94659707439757,2.330375097028928,7708.164203802834,2019
+2001,53,"(50,55]",College,656.2325937260903,206.6158067375215,3.1761006289308176,7003.9530201503585,2019
+2001,53,"(50,55]",College,580.8997704667177,192.84141962168675,3.0123184718631384,6538.3849754989205,2019
+2001,53,"(50,55]",College,567.5072685539403,196.28501640064542,2.891240905498247,7330.492991463575,2019
+2001,53,"(50,55]",College,354.9013006885998,342.6378795063898,1.0357912009024715,7031.080203251768,2019
+2001,50,"(45,50]",HS,11.919326702371844,30.992371010628222,0.38458905574808544,4652.203030103729,2019
+2001,50,"(45,50]",HS,14.44716143840857,30.992371010628222,0.4661521841440979,4742.109863765788,2019
+2001,50,"(45,50]",HS,6.897138485080337,32.71416940010757,0.2108303102770403,4748.902112498975,2019
+2001,50,"(45,50]",HS,11.58451415455241,32.71416940010757,0.3541130454167764,4684.438134918755,2019
+2001,50,"(45,50]",HS,6.411660290742158,30.992371010628222,0.20687866341505157,4701.5737801387295,2019
+2001,50,"(45,50]",HS,172.00994644223414,120.5258872635542,1.4271618350844384,5829.893725232088,2019
+2001,50,"(45,50]",HS,197.4557000765111,120.5258872635542,1.6382845591066617,6076.72951296884,2019
+2001,50,"(45,50]",HS,173.851415455241,120.5258872635542,1.442440453270257,6104.314178580002,2019
+2001,50,"(45,50]",HS,185.5698546289212,120.5258872635542,1.5396680235436495,5938.235736250411,2019
+2001,50,"(45,50]",HS,189.08538638102524,120.5258872635542,1.568836294625667,6017.302503194793,2019
+2001,56,"(55,60]",HS,38.185371078806426,18.939782284272805,2.0161462526691634,7342.337202598066,2019
+2001,56,"(55,60]",HS,38.06818668706963,18.939782284272805,2.009959043651766,7350.696802778478,2019
+2001,56,"(55,60]",HS,38.23559296097934,18.939782284272805,2.0187979136766194,7347.923847703905,2019
+2001,56,"(55,60]",HS,38.23559296097934,18.939782284272805,2.0187979136766194,7349.587410181395,2019
+2001,56,"(55,60]",HS,38.11840856924255,18.939782284272805,2.0126107046592225,7351.20925814699,2019
+2001,76,"(75,80]",HS,46990.77368018363,1205.258872635542,38.98811678310138,13.21841064784427,2019
+2001,76,"(75,80]",HS,59485.55944912012,1205.258872635542,49.35500646350184,13.446065715628222,2019
+2001,76,"(75,80]",HS,51283.99127773527,1205.258872635542,42.55018771659607,13.364390893692592,2019
+2001,76,"(75,80]",HS,55674.55562356542,1205.258872635542,46.193026981682166,13.822782807955917,2019
+2001,76,"(75,80]",HS,41843.951491966334,1205.258872635542,34.717812448429505,13.273480227856766,2019
+2001,31,"(30,35]",College,723.5299158377966,234.16458096919104,3.0898349906000138,11372.833544071005,2019
+2001,31,"(30,35]",College,723.6973221117063,234.16458096919104,3.0905498992049654,11057.720725793351,2019
+2001,31,"(30,35]",College,723.5299158377966,234.16458096919104,3.0898349906000138,11918.993276816753,2019
+2001,31,"(30,35]",College,723.5299158377966,234.16458096919104,3.0898349906000138,11305.465226834665,2019
+2001,31,"(30,35]",College,725.2039785768937,234.16458096919104,3.096984076649528,11291.18149259581,2019
+2001,76,"(75,80]",College,126885.58530986993,3185.32702053679,39.83439831822581,17.78317985079869,2019
+2001,76,"(75,80]",College,126363.57906656465,2668.787503692986,47.348685083284686,19.364058268294023,2019
+2001,76,"(75,80]",College,124801.37719969396,3030.3651654836485,41.18361002205342,18.90030794244316,2019
+2001,76,"(75,80]",College,127210.01866870697,2978.7112137992685,42.70639532942635,18.56465708175563,2019
+2001,76,"(75,80]",College,135068.4039785769,2668.787503692986,50.61040033785883,19.6123879178756,2019
+2001,29,"(25,30]",HS,2.6785003825554705,27.548774231669533,0.09722757027339238,4146.913144105837,2019
+2001,29,"(25,30]",HS,2.6785003825554705,29.27057262114888,0.09150830143378105,4116.12017887013,2019
+2001,29,"(25,30]",HS,2.6785003825554705,27.548774231669533,0.09722757027339238,4120.6533106035895,2019
+2001,29,"(25,30]",HS,2.845906656465188,27.548774231669533,0.1033042934154794,4147.714960401975,2019
+2001,29,"(25,30]",HS,2.6785003825554705,27.548774231669533,0.09722757027339238,4108.9552658368175,2019
+2001,29,"(25,30]",HS,-11.350145371078806,60.2629436317771,-0.18834369327245723,5943.43606960658,2019
+2001,29,"(25,30]",HS,-8.487498087222647,60.2629436317771,-0.14084108036745696,5960.1810491435735,2019
+2001,29,"(25,30]",HS,-10.663779648048967,60.2629436317771,-0.17695417789757414,5962.91912789331,2019
+2001,29,"(25,30]",HS,-10.513114001530223,60.2629436317771,-0.17445404037625836,5965.507658603507,2019
+2001,29,"(25,30]",HS,-10.998592195868401,60.2629436317771,-0.1825100390560537,5947.662541294816,2019
+2001,32,"(30,35]",HS,358.2494261667942,154.9618550531411,2.311855559833997,9197.240328905467,2019
+2001,32,"(30,35]",HS,293.63060443764346,154.9618550531411,1.8948573139947804,9365.436926476232,2019
+2001,32,"(30,35]",HS,402.77949502677893,154.9618550531411,2.59921704530869,7804.143849979257,2019
+2001,32,"(30,35]",HS,389.0521805661821,154.9618550531411,2.5106319257262655,8699.495039188967,2019
+2001,32,"(30,35]",HS,344.0198928844683,154.9618550531411,2.2200295212424597,9383.009997119594,2019
+2001,38,"(35,40]",HS,105.91794950267789,103.30790336876075,1.0252647285329226,9835.946007741752,2019
+2001,38,"(35,40]",HS,97.54763580719204,103.30790336876075,0.9442417533050955,10085.062013432278,2019
+2001,38,"(35,40]",HS,105.90120887528691,103.30790336876075,1.025102682582467,10181.103007174494,2019
+2001,38,"(35,40]",HS,117.45224177505739,103.30790336876075,1.1369143883968682,10047.286636402081,2019
+2001,38,"(35,40]",HS,129.18742157612854,103.30790336876075,1.2505085996662817,10038.826299197875,2019
+2001,36,"(35,40]",HS,42.00223412394797,86.08991947396729,0.487887947631883,6958.066197086018,2019
+2001,36,"(35,40]",HS,44.24547819433818,86.08991947396729,0.5139449364651522,7166.586103314713,2019
+2001,36,"(35,40]",HS,47.7275286916603,86.08991947396729,0.5543916056988835,7224.987000170264,2019
+2001,36,"(35,40]",HS,54.59118592195868,86.08991947396729,0.6341182133230651,7042.648075586197,2019
+2001,36,"(35,40]",HS,50.104697781178274,86.08991947396729,0.5820042356565268,7169.175861702279,2019
+2001,47,"(45,50]",College,4065.1265493496558,645.6743960547547,6.295938903863433,243.01904026349789,2019
+2001,47,"(45,50]",College,4063.4524866105585,645.6743960547547,6.293346168656142,240.7025123609307,2019
+2001,47,"(45,50]",College,4148.829686304514,643.9525976652753,6.442756347822148,246.69025119261892,2019
+2001,47,"(45,50]",College,4066.800612088753,643.9525976652753,6.315372632758078,242.53752278154852,2019
+2001,47,"(45,50]",College,4065.1265493496558,643.9525976652753,6.312772965103709,243.63501629270098,2019
+2001,50,"(45,50]",HS,46.45524100994644,63.706540410735805,0.7292067770504427,7012.647594843865,2019
+2001,50,"(45,50]",HS,46.12042846212701,63.706540410735805,0.7239512327113404,7123.6272298517015,2019
+2001,50,"(45,50]",HS,46.28783473603673,63.706540410735805,0.7265790048808916,7138.296970955041,2019
+2001,50,"(45,50]",HS,46.62264728385616,63.706540410735805,0.7318345492199939,7087.1477829438345,2019
+2001,50,"(45,50]",HS,46.62264728385616,63.706540410735805,0.7318345492199939,7102.544076511169,2019
+2001,59,"(55,60]",HS,34.6530986993114,82.64632269500859,0.41929389680400464,6645.2671113102915,2019
+2001,59,"(55,60]",HS,34.82050497322112,82.64632269500859,0.42131947118470037,6945.504067448707,2019
+2001,59,"(55,60]",HS,22.93465952563122,82.64632269500859,0.27750369015530746,6984.932468383852,2019
+2001,59,"(55,60]",HS,17.91247130833971,82.64632269500859,0.2167364587344372,6815.699292685579,2019
+2001,59,"(55,60]",HS,8.70512624330528,82.64632269500859,0.10532986779617509,6872.895857103054,2019
+2001,43,"(40,45]",College,6189.846977811782,602.629436317771,10.271398316739093,274.7983468178842,2019
+2001,43,"(40,45]",College,6315.40168324407,602.629436317771,10.479743110182078,270.8154991779459,2019
+2001,43,"(40,45]",College,8115.0191277735275,602.629436317771,13.466018482864845,278.82055862231175,2019
+2001,43,"(40,45]",College,5310.964039785769,602.629436317771,8.812984762638209,272.6075497782084,2019
+2001,43,"(40,45]",College,5645.776587605203,602.629436317771,9.368570878486166,274.1918658418998,2019
+2001,74,"(70,75]",HS,10754.179035960215,700.7719445180937,15.34618947017869,369.3612393273137,2019
+2001,74,"(70,75]",HS,7688.970160673298,402.90082313816697,19.084026934431247,347.0640763287968,2019
+2001,74,"(70,75]",HS,21397.869931140016,585.4114524229775,36.551847153955926,369.9936353274847,2019
+2001,74,"(70,75]",HS,5332.392042846213,576.8024604755808,9.244745659457815,364.8164387193219,2019
+2001,74,"(70,75]",HS,11995.831369548585,761.0348881498709,15.762524893847234,351.7644536539717,2019
+2001,46,"(45,50]",College,11835.623565416987,5165.395168438037,2.2913297394429475,298.1170901947365,2019
+2001,46,"(45,50]",College,11835.623565416987,5165.395168438037,2.2913297394429475,287.5135111000577,2019
+2001,46,"(45,50]",College,11830.601377199695,5165.395168438037,2.2903574637402135,299.21915357724225,2019
+2001,46,"(45,50]",College,11822.231063504209,5165.395168438037,2.2887370042356565,291.7502259500151,2019
+2001,46,"(45,50]",College,11836.628003060443,5165.395168438037,2.2915241945834937,288.66257981899935,2019
+2001,81,"(80,85]",HS,461.2042846212701,70.59373396865318,6.533218441541366,9789.72908568071,2019
+2001,81,"(80,85]",HS,498.03366488140784,82.64632269500859,6.026083782569633,10115.474404715194,2019
+2001,81,"(80,85]",HS,438.6044376434583,80.92452430552926,5.419919874814639,10331.607506796998,2019
+2001,81,"(80,85]",HS,477.9449120122418,75.75912913709122,6.308743480239436,10112.372275147472,2019
+2001,81,"(80,85]",HS,544.9074215761286,74.03733074761188,7.359900959067261,10246.947401535714,2019
+2001,45,"(40,45]",College,3122.46182096404,523.4267104017212,5.965423160326693,1623.3063312163163,2019
+2001,45,"(40,45]",College,2063.78454475899,523.4267104017212,3.9428338366130955,3606.47145457168,2019
+2001,45,"(40,45]",College,1574.790818668707,523.4267104017212,3.0086176104006648,4522.375178221698,2019
+2001,45,"(40,45]",College,2116.350114766641,523.4267104017212,4.043259682224429,3729.150310361124,2019
+2001,45,"(40,45]",College,1573.1167559296098,523.4267104017212,3.005419335062724,3815.534522737068,2019
+2001,21,"(20,25]",NoHS,5.022188217291507,41.323161347504296,0.12153446284174048,8060.722431114392,2019
+2001,21,"(20,25]",NoHS,5.189594491201225,41.323161347504296,0.12558561160313184,8081.129306107699,2019
+2001,21,"(20,25]",NoHS,5.022188217291507,41.323161347504296,0.12153446284174048,7963.0868510619985,2019
+2001,21,"(20,25]",NoHS,5.022188217291507,41.323161347504296,0.12153446284174048,8015.540952175419,2019
+2001,21,"(20,25]",NoHS,5.022188217291507,41.323161347504296,0.12153446284174048,8061.919300333687,2019
+2001,45,"(40,45]",HS,124.16523335883704,60.2629436317771,2.0603911106221466,6752.883625796307,2019
+2001,45,"(40,45]",HS,120.8171078806427,60.2629436317771,2.004832499037351,7064.486037081677,2019
+2001,45,"(40,45]",HS,118.97563886763581,60.2629436317771,1.9742752626657134,7102.894509156516,2019
+2001,45,"(40,45]",HS,117.21787299158377,60.2629436317771,1.9451069915836956,6924.694413621133,2019
+2001,45,"(40,45]",HS,117.40201989288447,60.2629436317771,1.9481627152208594,6950.875283440259,2019
+2001,55,"(50,55]",College,79258.16557000765,2014.5041156908349,39.34375956478382,12.741347796184815,2019
+2001,55,"(50,55]",College,79259.67222647285,2014.5041156908349,39.34450746917054,13.446065715628222,2019
+2001,55,"(50,55]",College,79259.67222647285,2014.5041156908349,39.34450746917054,13.629371123236291,2019
+2001,55,"(50,55]",College,79259.83963274675,2014.5041156908349,39.34459056965795,13.433686857337898,2019
+2001,55,"(50,55]",College,79257.99816373373,2014.5041156908349,39.3436764642964,13.82447659277727,2019
+2001,64,"(60,65]",NoHS,33.98347360367253,29.27057262114888,1.161011574441097,4694.146240875395,2019
+2001,64,"(60,65]",NoHS,33.98347360367253,29.27057262114888,1.161011574441097,4817.613878713057,2019
+2001,64,"(60,65]",NoHS,33.98347360367253,29.27057262114888,1.161011574441097,4744.991062922819,2019
+2001,64,"(60,65]",NoHS,33.98347360367253,29.27057262114888,1.161011574441097,4790.087815666634,2019
+2001,64,"(60,65]",NoHS,33.98347360367253,29.27057262114888,1.161011574441097,4725.230454745591,2019
+2001,60,"(55,60]",College,22771.773221117062,1033.0790336876073,22.042624502631245,1449.8473079898063,2019
+2001,60,"(55,60]",College,24573.064728385616,1033.0790336876073,23.786238929534083,1499.9110352301152,2019
+2001,60,"(55,60]",College,24573.064728385616,1033.0790336876073,23.786238929534083,1486.94076987342,2019
+2001,60,"(55,60]",College,22815.298852333588,1033.0790336876073,22.084756449749715,1444.8433514020944,2019
+2001,60,"(55,60]",College,22897.32792654935,1033.0790336876073,22.164158965472986,1435.8447710207934,2019
+2001,23,"(20,25]",HS,228.59326702371845,43.04495973698364,5.310569888332692,7718.774372006946,2019
+2001,23,"(20,25]",HS,292.3750573833206,43.04495973698364,6.792318059299192,7804.8924573652575,2019
+2001,23,"(20,25]",HS,209.8605049732211,43.04495973698364,4.8753792837889875,7858.253959780706,2019
+2001,23,"(20,25]",HS,225.09447589900537,43.04495973698364,5.229287639584136,7621.334182247583,2019
+2001,23,"(20,25]",HS,228.27519510328997,43.04495973698364,5.303180592991914,7777.4146851737605,2019
+2001,43,"(40,45]",NoHS,40.59602142310635,48.21035490542169,0.8420602068320588,4706.361990616541,2019
+2001,43,"(40,45]",NoHS,3.5992348890589136,55.097548463339066,0.06532477377743551,4713.945298473116,2019
+2001,43,"(40,45]",NoHS,7.784391736801837,49.93215329490103,0.15589937992112918,4738.407872635808,2019
+2001,43,"(40,45]",NoHS,37.24789594491202,58.54114524229776,0.636268658406759,4683.118357224661,2019
+2001,43,"(40,45]",NoHS,18.330986993114003,48.21035490542169,0.38022924803344516,4752.324371214895,2019
+2001,40,"(35,40]",HS,0,30.992371010628222,0,5510.475471058589,2019
+2001,40,"(35,40]",HS,-0.1674062739097169,30.992371010628222,-0.0054015316818551325,5462.636072256016,2019
+2001,40,"(35,40]",HS,-0.3348125478194338,29.27057262114888,-0.011438537679222632,5490.463809233284,2019
+2001,40,"(35,40]",HS,-0.3348125478194338,30.992371010628222,-0.010803063363710265,5478.063942532239,2019
+2001,40,"(35,40]",HS,-0.1674062739097169,29.27057262114888,-0.005719268839611316,5498.050786829339,2019
+2001,54,"(50,55]",College,19904.438561591433,554.4190814123493,35.90143129793814,1089.2887584363048,2019
+2001,54,"(50,55]",College,14972.314919663351,783.4182672131024,19.1115213242668,1095.26505723284,2019
+2001,54,"(50,55]",College,19753.438102524866,401.17902474868754,49.23846184356,1100.1553765843644,2019
+2001,54,"(50,55]",College,20760.219433817903,363.29946018014203,57.143546052955735,1094.1287103277878,2019
+2001,54,"(50,55]",College,20332.66381025249,699.0501461286143,29.086130548510887,1085.705936081395,2019
+2001,54,"(50,55]",HS,0.3348125478194338,11.363869370563684,0.02946290008284617,5065.527279993913,2019
+2001,54,"(50,55]",HS,0.3348125478194338,11.363869370563684,0.02946290008284617,5048.579331767318,2019
+2001,54,"(50,55]",HS,17.075439938791124,11.363869370563684,1.5026079042251546,5050.092325721338,2019
+2001,54,"(50,55]",HS,38.838255547054324,11.363869370563684,3.417696409610156,5030.625649649904,2019
+2001,54,"(50,55]",HS,30.46794185156848,11.363869370563684,2.6811239075390016,5077.867044288494,2019
+2001,87,"(85,90]",College,11.383626625860751,51.653951684380374,0.22038249261968942,6514.880491523441,2019
+2001,87,"(85,90]",College,11.383626625860751,51.653951684380374,0.22038249261968942,6550.011372971228,2019
+2001,87,"(85,90]",College,11.383626625860751,51.653951684380374,0.22038249261968942,6536.271683452354,2019
+2001,87,"(85,90]",College,11.383626625860751,51.653951684380374,0.22038249261968942,6628.223577615159,2019
+2001,87,"(85,90]",College,11.383626625860751,51.653951684380374,0.22038249261968942,6559.934188295609,2019
+2001,48,"(45,50]",College,11226.365172149963,1721.798389479346,6.520139199075857,162.3779544573864,2019
+2001,48,"(45,50]",College,11323.293404743688,1721.798389479346,6.57643396226415,163.26475425057725,2019
+2001,48,"(45,50]",College,11226.365172149963,1721.798389479346,6.520139199075857,163.95987692431305,2019
+2001,48,"(45,50]",College,11515.810619739863,1721.798389479346,6.688245668078552,163.0158385910501,2019
+2001,48,"(45,50]",College,11599.513756694721,1721.798389479346,6.7368594532152475,161.79908532139854,2019
+2001,21,"(20,25]",HS,1.456434583014537,22.383379063231494,0.06506768164450105,7532.076491559763,2019
+2001,21,"(20,25]",HS,1.5568783473603673,9.986430658980208,0.15589937992112912,7525.79266966152,2019
+2001,21,"(20,25]",HS,1.3894720734506505,17.21798389479346,0.08069888332691567,7538.8829042239395,2019
+2001,21,"(20,25]",HS,1.473175210405509,16.701444377949656,0.08820645550575804,7482.374553940972,2019
+2001,21,"(20,25]",HS,1.9084315225707729,18.939782284272805,0.10076311828333391,7485.880339614443,2019
+2001,44,"(40,45]",College,27.253741392501915,61.984742021256444,0.43968467890300783,4200.466842654865,2019
+2001,44,"(40,45]",College,27.253741392501915,61.984742021256444,0.43968467890300783,4393.836261118652,2019
+2001,44,"(40,45]",College,27.253741392501915,61.984742021256444,0.43968467890300783,4489.6316810506205,2019
+2001,44,"(40,45]",College,27.237000765110942,61.984742021256444,0.43941460231891505,4286.284597386923,2019
+2001,44,"(40,45]",College,25.562938026013775,61.984742021256444,0.4124069439096394,4361.380761614871,2019
+2001,55,"(50,55]",NoHS,198.7614690130069,46.488556515942335,4.275492377244399,7270.680150296981,2019
+2001,55,"(50,55]",NoHS,171.29009946442235,46.488556515942335,3.6845648112494476,7599.173624045509,2019
+2001,55,"(50,55]",NoHS,247.29254781943382,46.488556515942335,5.319428400290934,7642.312791702019,2019
+2001,55,"(50,55]",NoHS,167.79130833970927,46.488556515942335,3.6093034698155995,7457.152395481532,2019
+2001,55,"(50,55]",NoHS,172.7967559296098,46.488556515942335,3.7169740013405783,7519.731960547852,2019
+2001,48,"(45,50]",HS,3.297903596021423,18.939782284272805,0.17412573948962087,7420.640611375915,2019
+2001,48,"(45,50]",HS,3.431828615149197,18.939782284272805,0.18119683550950397,7538.07699691172,2019
+2001,48,"(45,50]",HS,3.348125478194338,18.939782284272805,0.17677740049707702,7553.600217652175,2019
+2001,48,"(45,50]",HS,10.47963274674828,18.939782284272805,0.5533132635558512,7499.475190455043,2019
+2001,48,"(45,50]",HS,3.515531752104055,18.939782284272805,0.1856162705219309,7515.767234189627,2019
+2001,39,"(35,40]",HS,5.8592195868400925,25.826975842190187,0.22686433063791556,5261.024988739261,2019
+2001,39,"(35,40]",HS,5.8592195868400925,25.826975842190187,0.22686433063791556,5203.6941947647965,2019
+2001,39,"(35,40]",HS,6.026625860749808,25.826975842190187,0.2333461686561417,5221.471587903165,2019
+2001,39,"(35,40]",HS,5.8592195868400925,25.826975842190187,0.22686433063791556,5201.519554828142,2019
+2001,39,"(35,40]",HS,5.8592195868400925,25.826975842190187,0.22686433063791556,5262.214859971867,2019
+2001,36,"(35,40]",HS,110.15332823259374,53.37575007385973,2.0637335883836188,5427.050900743403,2019
+2001,36,"(35,40]",HS,110.15332823259374,53.37575007385973,2.0637335883836188,5558.919743267843,2019
+2001,36,"(35,40]",HS,110.15332823259374,55.097548463339066,1.9992419137466308,5707.824439146163,2019
+2001,36,"(35,40]",HS,109.985921958684,53.37575007385973,2.060597215148993,5511.388404846352,2019
+2001,36,"(35,40]",HS,109.985921958684,55.097548463339066,1.996203552175587,5573.781145760928,2019
+2001,39,"(35,40]",NoHS,-5.189594491201225,30.992371010628222,-0.16744748213750912,7311.984201543155,2019
+2001,39,"(35,40]",NoHS,-5.189594491201225,30.992371010628222,-0.16744748213750912,7558.59453875357,2019
+2001,39,"(35,40]",NoHS,-5.189594491201225,30.992371010628222,-0.16744748213750912,7626.997735216639,2019
+2001,39,"(35,40]",NoHS,-5.189594491201225,30.992371010628222,-0.16744748213750912,7450.702559935555,2019
+2001,39,"(35,40]",NoHS,-5.189594491201225,30.992371010628222,-0.16744748213750912,7513.199929770779,2019
+2001,53,"(50,55]",NoHS,22.93465952563122,68.87193557917384,0.3330044281863689,6704.174431212421,2019
+2001,53,"(50,55]",NoHS,22.616587605202756,68.87193557917384,0.32838611859838274,7011.501323908262,2019
+2001,53,"(50,55]",NoHS,22.54962509563887,68.87193557917384,0.32741384289564884,7030.461895594596,2019
+2001,53,"(50,55]",NoHS,22.78399387911247,68.87193557917384,0.3308168078552175,6829.102409718665,2019
+2001,53,"(50,55]",NoHS,23.18576893649579,68.87193557917384,0.3366504620716211,6930.560666007128,2019
+2001,42,"(40,45]",College,997.4902830910482,172.17983894793457,5.793304774740085,11278.96182332654,2019
+2001,42,"(40,45]",College,997.9925019127774,172.17983894793457,5.796221601848287,11042.086600875853,2019
+2001,42,"(40,45]",College,997.8250956388677,172.17983894793457,5.795249326145553,10408.773231555759,2019
+2001,42,"(40,45]",College,997.4902830910482,173.90163733741394,5.735945321524836,11161.037161086704,2019
+2001,42,"(40,45]",College,997.4902830910482,173.90163733741394,5.735945321524836,11386.752961154238,2019
+2001,57,"(55,60]",HS,858.3756694720735,89.53351625292598,9.587199357246527,6707.667686434461,2019
+2001,57,"(55,60]",HS,867.7504208110176,89.53351625292598,9.691905971387104,6094.04924233738,2019
+2001,57,"(55,60]",HS,861.2215761285386,87.81171786344665,9.807592848460137,5698.284692242587,2019
+2001,57,"(55,60]",HS,858.5430757459832,87.81171786344665,9.777090081315544,6381.778443983159,2019
+2001,57,"(55,60]",HS,866.0763580719205,89.53351625292598,9.673208361719144,6133.149263930679,2019
+2001,56,"(55,60]",College,84565.0951185922,4304.495973698365,19.645760069310743,9.263701445867104,2019
+2001,56,"(55,60]",College,84560.2570772762,4304.495973698365,19.64463611859838,9.777593365736227,2019
+2001,56,"(55,60]",College,84564.10742157613,4304.495973698365,19.645530612244897,9.918282556157946,2019
+2001,56,"(55,60]",College,84557.91338944147,4304.495973698365,19.644091644204853,9.768074661061458,2019
+2001,56,"(55,60]",College,84555.90451415455,4304.495973698365,19.643624951867537,10.057151806864544,2019
+2001,45,"(40,45]",HS,727.1291507268554,77.48092752657055,9.384621144055107,4731.459555029923,2019
+2001,45,"(40,45]",HS,737.1735271614384,77.48092752657055,9.51425790441963,4293.365223959894,2019
+2001,45,"(40,45]",HS,779.0250956388676,77.48092752657055,10.054411072605143,4025.830704189642,2019
+2001,45,"(40,45]",HS,737.1735271614384,77.48092752657055,9.51425790441963,4492.436570584861,2019
+2001,45,"(40,45]",HS,735.4994644223412,77.48092752657055,9.49265177769221,4319.454361608319,2019
+2001,61,"(60,65]",College,267.34781943381796,163.57084700053784,1.6344466287011334,6598.340333253193,2019
+2001,61,"(60,65]",College,211.9363427697016,163.57084700053784,1.2956853049064712,6967.625328163942,2019
+2001,61,"(60,65]",College,209.09043611323642,163.57084700053784,1.2782866870680747,7002.686231353272,2019
+2001,61,"(60,65]",College,212.9407804131599,163.57084700053784,1.301825993555317,6791.387939268716,2019
+2001,61,"(60,65]",College,213.27559296097937,163.57084700053784,1.303872889771599,6892.301751440582,2019
+2001,52,"(50,55]",NoHS,242.83954093343536,55.097548463339066,4.407447294955718,6583.9455293870415,2019
+2001,52,"(50,55]",NoHS,246.52247895944913,55.097548463339066,4.474291249518675,6933.527561533139,2019
+2001,52,"(50,55]",NoHS,243.67657230298394,55.097548463339066,4.422639102810936,6960.535539082547,2019
+2001,52,"(50,55]",NoHS,245.51804131599081,55.097548463339066,4.4560610800924145,6729.904068985503,2019
+2001,52,"(50,55]",NoHS,243.0069472073451,55.097548463339066,4.410485656526762,6863.247907450119,2019
+2001,62,"(60,65]",HS,829.4980872226473,96.42070981084338,8.6029037625832,7884.963936514003,2019
+2001,62,"(60,65]",HS,829.3306809487376,96.42070981084338,8.601167555971175,7163.646255217662,2019
+2001,62,"(60,65]",HS,829.4980872226473,96.42070981084338,8.6029037625832,6698.419092703458,2019
+2001,62,"(60,65]",HS,829.3306809487376,96.42070981084338,8.601167555971175,7501.876245806967,2019
+2001,62,"(60,65]",HS,829.4980872226473,96.42070981084338,8.6029037625832,7209.608916844979,2019
+2001,49,"(45,50]",College,2264.6720734506507,309.9237101062822,7.307192059213625,1860.5677287200517,2019
+2001,49,"(45,50]",College,2197.7095638867636,309.9237101062822,7.091130791939418,1816.1541640801097,2019
+2001,49,"(45,50]",College,2268.020198928845,309.9237101062822,7.317995122577334,1952.06250980589,2019
+2001,49,"(45,50]",College,2177.6208110175976,309.9237101062822,7.026312411757156,1866.4023363882711,2019
+2001,49,"(45,50]",College,2194.3614384085695,309.9237101062822,7.080327728575709,1858.4740723350667,2019
+2001,18,"(15,20]",NoHS,0,13.085667760043028,0,6690.216730032704,2019
+2001,18,"(15,20]",NoHS,0,13.085667760043028,0,6699.512680780431,2019
+2001,18,"(15,20]",NoHS,0,13.085667760043028,0,6602.300986450324,2019
+2001,18,"(15,20]",NoHS,0,13.085667760043028,0,6620.056441765768,2019
+2001,18,"(15,20]",NoHS,0,13.085667760043028,0,6664.185319721652,2019
+2001,72,"(70,75]",HS,561.3132364192808,80.92452430552926,6.93625623673797,6380.382522556916,2019
+2001,72,"(70,75]",HS,673.30803366488135,80.92452430552926,8.320197609352853,5832.347663141618,2019
+2001,72,"(70,75]",HS,654.056312165264,80.92452430552926,8.082300362939234,5364.67749458018,2019
+2001,72,"(70,75]",HS,583.5782708492732,82.64632269500859,7.061152291105122,5992.8640839492455,2019
+2001,72,"(70,75]",HS,689.7138485080337,82.64632269500859,8.34536644846618,5809.226757212401,2019
+2001,32,"(30,35]",HS,35.40642693190512,72.31553235813253,0.48961026459101153,5864.246678366228,2019
+2001,32,"(30,35]",HS,35.40642693190512,72.31553235813253,0.48961026459101153,5954.0231820973,2019
+2001,32,"(30,35]",HS,35.40642693190512,72.31553235813253,0.48961026459101153,6016.016014657221,2019
+2001,32,"(30,35]",HS,35.40642693190512,72.31553235813253,0.48961026459101153,5878.6168334440445,2019
+2001,32,"(30,35]",HS,35.40642693190512,72.31553235813253,0.48961026459101153,5931.75969972221,2019
+2001,36,"(35,40]",NoHS,0,43.04495973698364,0,4150.1734223431695,2019
+2001,36,"(35,40]",NoHS,0,43.04495973698364,0,4181.6452225723615,2019
+2001,36,"(35,40]",NoHS,0,43.04495973698364,0,4243.299916167811,2019
+2001,36,"(35,40]",NoHS,0,43.04495973698364,0,4165.611124073518,2019
+2001,36,"(35,40]",NoHS,0,43.04495973698364,0,4167.797781498556,2019
+2001,71,"(70,75]",College,804.8893649579189,49.93215329490103,16.119660616361053,8836.46610792538,2019
+2001,71,"(70,75]",College,704.4456006120888,49.93215329490103,14.108055714152936,8085.89956817379,2019
+2001,71,"(70,75]",College,803.3827084927315,49.93215329490103,16.08948654282793,7432.929759284442,2019
+2001,71,"(70,75]",College,937.307727620505,49.93215329490103,18.771626412438756,8303.992885639007,2019
+2001,71,"(70,75]",College,702.9389441469012,49.93215329490103,14.077881640619813,8043.831827609722,2019
+2001,65,"(60,65]",College,1759.9421576128539,235.88637935867035,7.460974060468424,3947.327860348996,2019
+2001,65,"(60,65]",College,1760.1095638867635,235.88637935867035,7.46168375076239,3862.1150785839477,2019
+2001,65,"(60,65]",College,1760.1095638867635,235.88637935867035,7.46168375076239,4146.324959115891,2019
+2001,65,"(60,65]",College,1760.1095638867635,235.88637935867035,7.46168375076239,3963.385250182297,2019
+2001,65,"(60,65]",College,1760.1095638867635,235.88637935867035,7.46168375076239,3950.103303865634,2019
+2001,70,"(65,70]",HS,2549.0451109410865,94.69891142136402,26.91736444148843,3059.5319478158463,2019
+2001,70,"(65,70]",HS,2727.399755164499,92.97711303188467,29.334098104650668,3132.23235491714,2019
+2001,70,"(65,70]",HS,2567.074766641163,94.69891142136402,27.107753701823786,3867.608298355915,2019
+2001,70,"(65,70]",HS,2684.5437490436116,92.97711303188467,28.873167401132363,3177.9717194419177,2019
+2001,70,"(65,70]",HS,2621.1972149961744,94.69891142136402,27.679275037630834,3283.845163071723,2019
+2001,41,"(40,45]",HS,25.64664116296863,13.774387115834767,1.861907970735464,6290.114357469308,2019
+2001,41,"(40,45]",HS,25.495975516449885,13.774387115834767,1.8509698690797074,6235.50649452877,2019
+2001,41,"(40,45]",HS,25.47923488905891,13.774387115834767,1.8497545244512898,6267.271384657745,2019
+2001,41,"(40,45]",HS,25.495975516449885,13.774387115834767,1.8509698690797074,6253.117146974157,2019
+2001,41,"(40,45]",HS,25.47923488905891,13.774387115834767,1.8497545244512898,6275.931790997889,2019
+2001,54,"(50,55]",HS,49.05003825554706,96.42070981084338,0.508708537323285,6924.546160504568,2019
+2001,54,"(50,55]",HS,49.05003825554706,96.42070981084338,0.508708537323285,7217.7291732325775,2019
+2001,54,"(50,55]",HS,49.05003825554706,96.42070981084338,0.508708537323285,7250.493285127076,2019
+2001,54,"(50,55]",HS,47.208569242540165,94.69891142136402,0.49851226940175725,7053.231054565552,2019
+2001,54,"(50,55]",HS,45.534506503443005,96.42070981084338,0.472248198470763,7147.143826096636,2019
+2001,74,"(70,75]",NoHS,0.1674062739097169,12.052588726355422,0.013889652896198909,5960.912987533945,2019
+2001,74,"(70,75]",NoHS,0.1674062739097169,12.052588726355422,0.013889652896198909,6036.985877961849,2019
+2001,74,"(70,75]",NoHS,0.1674062739097169,12.052588726355422,0.013889652896198909,5895.630760565379,2019
+2001,74,"(70,75]",NoHS,0.1674062739097169,12.052588726355422,0.013889652896198909,5907.8729032855035,2019
+2001,74,"(70,75]",NoHS,0.1674062739097169,12.052588726355422,0.013889652896198909,5955.291257080195,2019
+2001,32,"(30,35]",HS,39.89291507268554,86.08991947396729,0.4633865999229881,6113.959420394278,2019
+2001,32,"(30,35]",HS,39.89291507268554,86.08991947396729,0.4633865999229881,6124.204533402447,2019
+2001,32,"(30,35]",HS,39.89291507268554,86.08991947396729,0.4633865999229881,6145.628262621269,2019
+2001,32,"(30,35]",HS,41.56697781178271,86.08991947396729,0.48283211397766657,6177.134770467091,2019
+2001,32,"(30,35]",HS,39.89291507268554,86.08991947396729,0.4633865999229881,6129.130781336687,2019
+2001,32,"(30,35]",HS,95.92379495026779,65.42833880021514,1.4660894149119428,5597.745166161545,2019
+2001,32,"(30,35]",HS,27.287222647283855,63.706540410735805,0.4283268636368366,5607.125263063559,2019
+2001,32,"(30,35]",HS,39.005661820964036,65.42833880021514,0.5961585229921164,5626.740142461642,2019
+2001,32,"(30,35]",HS,25.613159908186688,63.706540410735805,0.4020491419413252,5655.586490608519,2019
+2001,32,"(30,35]",HS,2.17628156082632,63.706540410735805,0.034161038204164884,5611.635577683772,2019
+2001,28,"(25,30]",NoHS,102.2517521040551,43.04495973698364,2.375463996919523,5517.438661546451,2019
+2001,28,"(25,30]",NoHS,102.28523335883705,43.04495973698364,2.37624181748171,5589.783586335447,2019
+2001,28,"(25,30]",NoHS,98.36792654934965,43.04495973698364,2.2852368117058144,5741.888809762622,2019
+2001,28,"(25,30]",NoHS,93.71403213465953,43.04495973698364,2.1771197535618025,5549.727426898563,2019
+2001,28,"(25,30]",NoHS,77.59280795715378,43.04495973698364,1.8025991528686947,5571.806541808817,2019
+2001,45,"(40,45]",HS,473.5086457536343,256.54796003242257,1.8456925001227538,264.1897557988764,2019
+2001,45,"(40,45]",HS,473.34123947972455,256.54796003242257,1.845039966094073,265.3927549389485,2019
+2001,45,"(40,45]",HS,475.1827084927315,256.54796003242257,1.8522178404095586,250.4638071052015,2019
+2001,45,"(40,45]",HS,473.3244988523336,256.54796003242257,1.844974712691205,265.6390606170079,2019
+2001,45,"(40,45]",HS,473.3579801071155,256.54796003242257,1.845105219496941,280.753904325174,2019
+2001,35,"(30,35]",HS,24.106503442999234,51.653951684380374,0.4666923373122834,4270.237743297513,2019
+2001,35,"(30,35]",HS,32.811629686304514,51.653951684380374,0.6352201257861635,4277.118329086018,2019
+2001,35,"(30,35]",HS,20.674674827850037,51.653951684380374,0.40025349762546525,4299.31403092451,2019
+2001,35,"(30,35]",HS,26.483672532517215,51.653951684380374,0.5127133872416891,4249.14802669703,2019
+2001,35,"(30,35]",HS,26.684560061208874,51.653951684380374,0.5166024900526248,4311.940929918986,2019
+2001,27,"(25,30]",HS,4.017750573833205,20.661580673752148,0.19445514054678475,5337.372422671763,2019
+2001,27,"(25,30]",HS,4.017750573833205,20.661580673752148,0.19445514054678475,5285.898526200383,2019
+2001,27,"(25,30]",HS,4.017750573833205,20.661580673752148,0.19445514054678475,5282.8860093826315,2019
+2001,27,"(25,30]",HS,4.017750573833205,20.661580673752148,0.19445514054678475,5309.251744707413,2019
+2001,27,"(25,30]",HS,4.017750573833205,20.661580673752148,0.19445514054678475,5301.667898107639,2019
+2001,46,"(45,50]",College,6.110328997704667,75.75912913709122,0.0806546889767914,5539.737963129745,2019
+2001,46,"(45,50]",College,6.110328997704667,75.75912913709122,0.0806546889767914,5627.407860821344,2019
+2001,46,"(45,50]",College,5.94292272379495,75.75912913709122,0.07844497147057793,5638.996425710762,2019
+2001,46,"(45,50]",College,6.110328997704667,75.75912913709122,0.0806546889767914,5598.59041717024,2019
+2001,46,"(45,50]",College,6.110328997704667,75.75912913709122,0.0806546889767914,5610.752932227908,2019
+2001,70,"(65,70]",NoHS,419.0179035960214,258.2697584219018,1.6224040559620077,9642.122971518058,2019
+2001,70,"(65,70]",NoHS,420.3571537872992,258.2697584219018,1.6275895263765887,10634.479574013445,2019
+2001,70,"(65,70]",NoHS,417.00902830910485,258.2697584219018,1.6146258503401365,10512.67298445733,2019
+2001,70,"(65,70]",NoHS,416.92532517215,258.2697584219018,1.6143017584392252,10126.003723797507,2019
+2001,70,"(65,70]",NoHS,418.85049732211166,258.2697584219018,1.621755872160185,10390.749499820617,2019
+2001,29,"(25,30]",HS,94.58454475899006,98.14250820032271,0.9637469684994158,6751.249397711321,2019
+2001,29,"(25,30]",HS,101.61560826319817,110.19509692667813,0.9221427368117059,6769.001861201296,2019
+2001,29,"(25,30]",HS,61.27069625095639,122.24768565303354,0.5012012777473467,6827.41569277448,2019
+2001,29,"(25,30]",HS,79.01576128538639,92.97711303188467,0.8498409846118742,6724.4557473794075,2019
+2001,29,"(25,30]",HS,68.97138485080337,101.5861049792814,0.6789450669938587,6764.456903969284,2019
+2001,62,"(60,65]",College,7343.9458301453715,645.6743960547547,11.374070080862534,284.6504344729279,2019
+2001,62,"(60,65]",College,8164.236572302984,645.6743960547547,12.644510332434862,284.80317035657504,2019
+2001,62,"(60,65]",College,7494.611476664117,645.6743960547547,11.607416249518677,290.8654916977788,2019
+2001,62,"(60,65]",College,7578.314613618974,645.6743960547547,11.737053009883198,285.7479542794914,2019
+2001,62,"(60,65]",College,7777.528079571538,645.6743960547547,12.045588499550764,289.0545028140398,2019
+2001,35,"(30,35]",HS,105.08091813312932,70.59373396865318,1.4885303868441073,5336.415655286895,2019
+2001,35,"(30,35]",HS,123.19427697016067,80.92452430552926,1.5223355098763711,5516.20231588233,2019
+2001,35,"(30,35]",HS,99.38910482019894,65.42833880021514,1.5190528545082382,5677.5237408270605,2019
+2001,35,"(30,35]",HS,124.86833970925784,82.64632269500859,1.5108759305609036,5474.284119599657,2019
+2001,35,"(30,35]",HS,104.46151491966336,61.984742021256444,1.6852778847388015,5545.050802337521,2019
+2001,42,"(40,45]",College,38.53692425401684,53.37575007385973,0.7219931186108041,5396.8464471437865,2019
+2001,42,"(40,45]",College,39.92639632746749,86.08991947396729,0.4637755102040817,5405.202958148706,2019
+2001,42,"(40,45]",College,48.46411629686305,75.75912913709122,0.6397132180487975,5429.254591428315,2019
+2001,42,"(40,45]",College,41.88504973221117,137.74387115834767,0.3040792260300346,5383.986142485395,2019
+2001,42,"(40,45]",College,54.992960979342,139.46566954782702,0.3943118127754246,5438.285272167864,2019
+2001,34,"(30,35]",NoHS,20.08875286916603,12.569128243199225,1.5982614291516555,7204.750636135328,2019
+2001,34,"(30,35]",NoHS,20.08875286916603,20.661580673752148,0.9722757027339238,7203.402906593957,2019
+2001,34,"(30,35]",NoHS,18.41469013006886,25.826975842190187,0.7130021820048774,7090.9272950264885,2019
+2001,34,"(30,35]",NoHS,18.41469013006886,14.807466149522373,1.2436084569852512,7208.151935915717,2019
+2001,34,"(30,35]",NoHS,18.41469013006886,29.27057262114888,0.6291195723572447,7188.471784285049,2019
+2001,33,"(30,35]",HS,18.515133894414692,87.81171786344665,0.21085037788700386,4624.506573645321,2019
+2001,33,"(30,35]",HS,18.515133894414692,86.08991947396729,0.21506738544474396,4648.216168492078,2019
+2001,33,"(30,35]",HS,18.515133894414692,86.08991947396729,0.21506738544474396,4661.558056007072,2019
+2001,33,"(30,35]",HS,18.515133894414692,86.08991947396729,0.21506738544474396,4655.210245310913,2019
+2001,33,"(30,35]",HS,18.347727620504976,87.81171786344665,0.20894395494046678,4625.88051427216,2019
+2001,54,"(50,55]",College,5457.444529456771,928.0493319293674,5.8805543430660325,172.02463374934786,2019
+2001,54,"(50,55]",College,6194.0321346595265,488.99074261213417,12.666972183505347,161.037107519999,2019
+2001,54,"(50,55]",College,5679.760061208875,1604.7160989947502,3.539417386518945,172.1157236483978,2019
+2001,54,"(50,55]",College,6348.045906656465,313.3673068852409,20.25752453168703,169.53909477072477,2019
+2001,54,"(50,55]",College,4915.215608263198,537.2010975175559,9.14967529101626,163.31319795449969,2019
+2001,47,"(45,50]",HS,-0.7868094873756695,41.323161347504296,-0.019040399178539343,6308.424722983507,2019
+2001,47,"(45,50]",HS,-0.7868094873756695,41.323161347504296,-0.019040399178539343,6335.841074380918,2019
+2001,47,"(45,50]",HS,0.8537719969395563,41.323161347504296,0.020660858683095883,6323.150506532877,2019
+2001,47,"(45,50]",HS,-0.7868094873756695,41.323161347504296,-0.019040399178539343,6276.993591679486,2019
+2001,47,"(45,50]",HS,0.8537719969395563,41.323161347504296,0.020660858683095883,6330.842708911263,2019
+2001,58,"(55,60]",HS,10450.504055087988,182.51062928481065,57.25970096119616,1683.9141473156938,2019
+2001,58,"(55,60]",HS,10890.949961744454,182.51062928481065,59.67296263468008,1691.2959722515832,2019
+2001,58,"(55,60]",HS,10539.999449120123,182.51062928481065,57.750058122216494,1743.51522669641,2019
+2001,58,"(55,60]",HS,10042.534965570008,182.51062928481065,55.02438408613713,1670.9283739477385,2019
+2001,58,"(55,60]",HS,10468.416526396328,182.51062928481065,57.357845772698546,1658.1710160838097,2019
+2001,26,"(25,30]",HS,-19.653496557000768,75.75912913709122,-0.2594208352294606,5831.205194275129,2019
+2001,26,"(25,30]",HS,-17.98780413159908,75.75912913709122,-0.23743414604263657,5840.976498283121,2019
+2001,26,"(25,30]",HS,-19.653496557000768,75.75912913709122,-0.2594208352294606,5861.409437482035,2019
+2001,26,"(25,30]",HS,-19.9883091048202,75.75912913709122,-0.2638402702418875,5891.4588538375265,2019
+2001,26,"(25,30]",HS,-17.979433817903594,75.75912913709122,-0.2373236601673259,5845.674920462143,2019
+2001,86,"(85,90]",College,2519.12960979342,125.69128243199225,20.04219832156176,4678.5890941019325,2019
+2001,86,"(85,90]",College,2445.4708492731447,117.08229048459552,20.886769802260527,4730.993104029374,2019
+2001,86,"(85,90]",College,2428.730221882173,98.14250820032271,24.74697525484871,6008.558910903018,2019
+2001,86,"(85,90]",College,2467.233664881408,129.1348792109509,19.10586574252343,4939.3264180698525,2019
+2001,86,"(85,90]",College,2423.7080336648814,122.24768565303354,19.826207921382746,5057.423526966439,2019
+2001,37,"(35,40]",HS,3.348125478194338,51.653951684380374,0.06481838018226158,6025.022336887691,2019
+2001,37,"(35,40]",HS,3.348125478194338,51.653951684380374,0.06481838018226158,6034.351519393842,2019
+2001,37,"(35,40]",HS,3.348125478194338,51.653951684380374,0.06481838018226158,6061.202686861276,2019
+2001,37,"(35,40]",HS,3.348125478194338,51.653951684380374,0.06481838018226158,6010.665133364326,2019
+2001,37,"(35,40]",HS,3.348125478194338,51.653951684380374,0.06481838018226158,6071.284510330955,2019
+2001,35,"(30,35]",NoHS,35.82494261667942,58.54114524229776,0.6119617658384109,8836.857311758355,2019
+2001,35,"(30,35]",NoHS,31.807192042846214,58.54114524229776,0.5433305397630751,9154.38534238395,2019
+2001,35,"(30,35]",NoHS,29.965723029839328,58.54114524229776,0.5118745611452128,9268.013132471418,2019
+2001,35,"(30,35]",NoHS,33.146442234123946,58.54114524229776,0.5662076151215203,9034.503917276521,2019
+2001,35,"(30,35]",NoHS,30.97016067329763,58.54114524229776,0.5290323676640468,9197.430731630266,2019
+2001,30,"(25,30]",HS,15.066564651874522,61.984742021256444,0.24306892568348096,6133.54497985755,2019
+2001,30,"(25,30]",HS,15.066564651874522,61.984742021256444,0.24306892568348096,6143.822912231411,2019
+2001,30,"(25,30]",HS,15.066564651874522,61.984742021256444,0.24306892568348096,6165.315270581322,2019
+2001,30,"(25,30]",HS,13.392501912777352,61.984742021256444,0.21606126727420527,6196.92270689926,2019
+2001,30,"(25,30]",HS,13.225095638867636,61.984742021256444,0.21336050143327773,6148.7649409903515,2019
+2001,63,"(60,65]",HS,415.1005967865341,43.04495973698364,9.643419329996151,5224.329894781024,2019
+2001,63,"(60,65]",HS,407.5505738332058,46.488556515942335,8.766685919650879,5516.7165467522045,2019
+2001,63,"(60,65]",HS,408.3876052027544,25.826975842190187,15.812443845462713,5544.476515989755,2019
+2001,63,"(60,65]",HS,427.72302983932667,43.04495973698364,9.9366576819407,5377.178085126726,2019
+2001,63,"(60,65]",HS,425.2119357306809,27.548774231669533,15.434876780901039,5457.078032552729,2019
+2001,23,"(20,25]",HS,3.6661973986228005,30.992371010628222,0.1182935438326274,5677.783171267427,2019
+2001,23,"(20,25]",HS,3.8336036725325173,30.992371010628222,0.12369507551448253,5625.501644855165,2019
+2001,23,"(20,25]",HS,3.682938026013772,30.992371010628222,0.11883369700081291,5625.294631895662,2019
+2001,23,"(20,25]",HS,3.8336036725325173,30.992371010628222,0.12369507551448253,5609.789812555645,2019
+2001,23,"(20,25]",HS,3.8336036725325173,30.992371010628222,0.12369507551448253,5601.716863894086,2019
+2001,21,"(20,25]",HS,18.933649579188984,5.165395168438037,3.6654793993068933,4092.6446929661674,2019
+2001,21,"(20,25]",HS,18.933649579188984,5.165395168438037,3.6654793993068933,4129.594263482718,2019
+2001,21,"(20,25]",HS,18.933649579188984,5.165395168438037,3.6654793993068933,4172.26266144734,2019
+2001,21,"(20,25]",HS,18.933649579188984,5.337575007385973,3.5472381283615086,4106.085500425955,2019
+2001,21,"(20,25]",HS,18.933649579188984,5.165395168438037,3.6654793993068933,4096.084629985762,2019
+2001,84,"(80,85]",HS,459.0280030604438,22.383379063231494,20.507538283818608,7822.618966259741,2019
+2001,84,"(80,85]",HS,486.83418515684775,24.105177452710844,20.196249793718025,8110.759794736034,2019
+2001,84,"(80,85]",HS,505.7343534812548,87.81171786344665,5.759303721488595,8278.875722292883,2019
+2001,84,"(80,85]",HS,516.4483550114767,37.87956456854561,13.633957013337067,8050.890620216507,2019
+2001,84,"(80,85]",HS,456.2992807957154,24.105177452710844,18.929513449584682,8170.124663980963,2019
+2001,71,"(70,75]",NoHS,92.0734506503443,15.66836534426205,5.876391609930307,8178.066267233871,2019
+2001,71,"(70,75]",NoHS,99.60673297628156,15.496185505314111,6.4278227014076075,8235.464307359889,2019
+2001,71,"(70,75]",NoHS,93.32899770466717,15.66836534426205,5.956524222792993,8093.400684892751,2019
+2001,71,"(70,75]",NoHS,92.0734506503443,15.496185505314111,5.941684850040645,8081.273399575744,2019
+2001,71,"(70,75]",NoHS,92.0734506503443,15.66836534426205,5.876391609930307,8153.582311002729,2019
+2001,49,"(45,50]",College,68978.08110175976,909.1095496450945,75.87433343834962,12.752621228742626,2019
+2001,49,"(45,50]",College,115233.439020658,1194.9280822986661,96.43545978012759,13.775491741973905,2019
+2001,49,"(45,50]",College,22347.063504208112,852.2902027922762,26.22001688039424,13.284137936944528,2019
+2001,49,"(45,50]",College,29772.033970925786,1079.5675902035498,27.57773968122954,13.813906671278179,2019
+2001,49,"(45,50]",College,42979.88676358072,2169.4659707439755,19.811274914278382,13.910577582445601,2019
+2001,57,"(55,60]",College,21297.426166794186,907.3877512556152,23.471141347591992,1778.6308543552382,2019
+2001,57,"(55,60]",College,21280.518133129302,752.4258962024742,28.282543491037444,1750.1830588256094,2019
+2001,57,"(55,60]",College,21295.75210405509,871.229985076549,24.44331860568823,1777.0900094775393,2019
+2001,57,"(55,60]",College,21297.560091813317,700.7719445180937,30.391570693457492,1762.4043771518125,2019
+2001,57,"(55,60]",College,21295.75210405509,1346.4463405728482,15.81626498015121,1720.8496674133792,2019
+2001,32,"(30,35]",College,97.22956388676359,92.97711303188467,1.0457365336071536,9893.556945139673,2019
+2001,32,"(30,35]",College,93.83121652639633,110.19509692667813,0.8515008302849442,10021.937483926386,2019
+2001,32,"(30,35]",College,72.3195103289977,120.5258872635542,0.6000330051157929,10101.941248409214,2019
+2001,32,"(30,35]",College,95.78986993114002,87.81171786344665,1.0908552100085316,9888.9753501964,2019
+2001,32,"(30,35]",College,80.72330527926549,94.69891142136402,0.8524206251969055,9939.832863691934,2019
+2001,53,"(50,55]",College,21657.349655700076,996.9212675085412,21.724232756940886,209.41371697501842,2019
+2001,53,"(50,55]",College,24697.447589900534,654.2833880021514,37.747324848509415,194.79556708313498,2019
+2001,53,"(50,55]",College,16797.043305279265,445.9457828751505,37.6661108823219,209.75370225208076,2019
+2001,53,"(50,55]",College,31216.24789594491,513.0959200648451,60.839010164025076,213.1017896887116,2019
+2001,53,"(50,55]",College,16134.784085692427,420.1188070329604,38.405288731638656,199.0858788589583,2019
+2001,29,"(25,30]",HS,0,29.27057262114888,0,7203.125694089834,2019
+2001,29,"(25,30]",HS,0,29.27057262114888,0,7182.706770328492,2019
+2001,29,"(25,30]",HS,0,30.992371010628222,0,7192.281123344762,2019
+2001,29,"(25,30]",HS,0,29.27057262114888,0,7232.949750859416,2019
+2001,29,"(25,30]",HS,0,29.27057262114888,0,7172.760746317852,2019
+2001,24,"(20,25]",HS,-1.456434583014537,18.939782284272805,-0.07689816921622851,4424.125985261159,2019
+2001,24,"(20,25]",HS,-1.422953328232594,18.939782284272805,-0.07513039521125775,4373.590784238125,2019
+2001,24,"(20,25]",HS,-1.4899158377964805,18.939782284272805,-0.07866594322119928,4366.128884559099,2019
+2001,24,"(20,25]",HS,-1.4899158377964805,18.939782284272805,-0.07866594322119928,4347.275055733452,2019
+2001,24,"(20,25]",HS,-1.4899158377964805,18.939782284272805,-0.07866594322119928,4375.708421887384,2019
+2001,31,"(30,35]",College,102.78745218056618,1101.9509692667814,0.09327770023103579,5823.326964377731,2019
+2001,31,"(30,35]",College,102.78745218056618,1101.9509692667814,0.09327770023103579,5813.556030989789,2019
+2001,31,"(30,35]",College,102.78745218056618,1101.9509692667814,0.09327770023103579,5844.5704375521555,2019
+2001,31,"(30,35]",College,106.18579954093344,1101.9509692667814,0.09636163722564497,5883.20763686751,2019
+2001,31,"(30,35]",College,104.52847742922724,1101.9509692667814,0.09485764824797843,5828.618825072999,2019
+2001,50,"(45,50]",College,24.809609793420044,80.92452430552926,0.3065771471173776,4405.060143438147,2019
+2001,50,"(45,50]",College,75.33282325937262,80.92452430552926,0.9309022685750334,4490.190780907043,2019
+2001,50,"(45,50]",College,52.39816373374139,80.92452430552926,0.6474942445866343,4496.622199309308,2019
+2001,50,"(45,50]",College,29.39654169854629,80.92452430552926,0.36325875191505747,4435.5827957216725,2019
+2001,50,"(45,50]",College,48.53107880642693,80.92452430552926,0.5997079281331159,4451.808129676826,2019
+2001,44,"(40,45]",HS,666.6117827084927,120.5258872635542,5.530859783266406,11278.96182332654,2019
+2001,44,"(40,45]",HS,668.2858454475898,120.5258872635542,5.544749436162605,11042.086600875853,2019
+2001,44,"(40,45]",HS,666.6117827084927,120.5258872635542,5.530859783266406,10408.773231555759,2019
+2001,44,"(40,45]",HS,666.6117827084927,120.5258872635542,5.530859783266406,11161.037161086704,2019
+2001,44,"(40,45]",HS,666.7791889824025,120.5258872635542,5.532248748556027,11386.752961154238,2019
+2001,25,"(20,25]",HS,20.775118592195867,25.826975842190187,0.8043960980618662,7029.345587914897,2019
+2001,25,"(20,25]",HS,7.114766641162969,25.826975842190187,0.27547811577461173,7190.178077533918,2019
+2001,25,"(20,25]",HS,13.55990818668707,25.826975842190187,0.5250288794763188,7245.444701801374,2019
+2001,25,"(20,25]",HS,17.996174445294567,25.826975842190187,0.696797586959312,7048.593007155536,2019
+2001,25,"(20,25]",HS,12.337842387146136,25.826975842190187,0.47771146194326786,7126.894706315329,2019
+2001,54,"(50,55]",College,1714.1565416985463,514.8177184543244,3.3296378120882983,131.21098952829246,2019
+2001,54,"(50,55]",College,770.0856006120888,516.5395168438037,1.490855153382108,69.32675944274638,2019
+2001,54,"(50,55]",College,1786.9280489671003,592.298645980895,3.0169375889890837,142.42514846771084,2019
+2001,54,"(50,55]",College,1428.3103289977048,838.5158156764414,1.7033791161654699,68.3103702943803,2019
+2001,54,"(50,55]",College,1070.0106809487377,480.3817506647374,2.2274174226395775,73.53032526595565,2019
+2001,24,"(20,25]",NoHS,-6.076847742922724,27.548774231669533,-0.22058505005775897,8570.09342887995,2019
+2001,24,"(20,25]",NoHS,-6.076847742922724,27.548774231669533,-0.22058505005775897,8591.78984961379,2019
+2001,24,"(20,25]",NoHS,-6.076847742922724,27.548774231669533,-0.22058505005775897,8466.288087586718,2019
+2001,24,"(20,25]",NoHS,-6.093588370313695,25.826975842190187,-0.23593890386343214,8522.056854110015,2019
+2001,24,"(20,25]",NoHS,-6.076847742922724,27.548774231669533,-0.22058505005775897,8571.365930336138,2019
+2001,75,"(70,75]",College,4172.936189747514,86.08991947396729,48.47183288409704,2717.4090784790587,2019
+2001,75,"(70,75]",College,4973.3055853098695,86.08991947396729,57.76873315363881,2730.083754395034,2019
+2001,75,"(70,75]",College,4387.216220351951,86.08991947396729,50.960858683095886,2778.711709008645,2019
+2001,75,"(70,75]",College,3900.2313695485846,86.08991947396729,45.30415864458991,2718.007332586415,2019
+2001,75,"(70,75]",College,4474.267482785004,86.08991947396729,51.972025413939164,2704.334591458497,2019
+2001,53,"(50,55]",College,316.23045141545526,251.3825648639845,1.2579649331947822,6844.039667577109,2019
+2001,53,"(50,55]",College,341.34139250191276,249.6607664745051,1.3672207985341178,6218.774150673462,2019
+2001,53,"(50,55]",College,314.5563886763581,249.6607664745051,1.259935203749685,5805.398659271921,2019
+2001,53,"(50,55]",College,319.5785768936496,249.6607664745051,1.2800512527717662,6508.707325113953,2019
+2001,53,"(50,55]",College,319.5785768936496,249.6607664745051,1.2800512527717662,6242.860238139537,2019
+2001,74,"(70,75]",HS,1842.138638102525,204.89400834804215,8.99069061586899,11227.772425715146,2019
+2001,74,"(70,75]",HS,1857.7074215761286,204.89400834804215,9.066675187595253,10920.253198725364,2019
+2001,74,"(70,75]",HS,1904.9159908186687,204.89400834804215,9.297080017991023,11769.995597496494,2019
+2001,74,"(70,75]",HS,1902.9071155317522,204.89400834804215,9.287275557123118,11163.593194442383,2019
+2001,74,"(70,75]",HS,2055.9164498852333,204.89400834804215,10.034048659895225,11145.902866023807,2019
+2001,62,"(60,65]",HS,5916.137719969395,315.0891052747202,18.77607832492725,463.7861455225399,2019
+2001,62,"(60,65]",HS,5916.137719969395,315.0891052747202,18.77607832492725,457.121405031009,2019
+2001,62,"(60,65]",HS,5916.137719969395,313.3673068852409,18.879243590448826,470.524327779094,2019
+2001,62,"(60,65]",HS,5917.811782708493,315.0891052747202,18.781391306909406,460.2243773799011,2019
+2001,62,"(60,65]",HS,5917.811782708493,313.3673068852409,18.884585764639677,462.70705067775737,2019
+2001,61,"(60,65]",HS,328.9700688599847,111.91689531615746,2.939413820680667,7542.980790651081,2019
+2001,61,"(60,65]",HS,251.1428921193573,111.91689531615746,2.244012321909896,7912.548178033328,2019
+2001,61,"(60,65]",HS,355.26959449120125,111.91689531615746,3.17440537898759,7964.575438806367,2019
+2001,61,"(60,65]",HS,398.72826319816375,111.91689531615746,3.5627173365717844,7590.358171613494,2019
+2001,61,"(60,65]",HS,251.64511094108647,111.91689531615746,2.248499748230207,7779.995508181269,2019
+2001,50,"(45,50]",HS,-14.731752104055088,12.052588726355422,-1.222289454865504,5122.127575454351,2019
+2001,50,"(45,50]",HS,-14.731752104055088,12.052588726355422,-1.222289454865504,5186.654776473147,2019
+2001,50,"(45,50]",HS,-14.731752104055088,12.052588726355422,-1.222289454865504,5414.222538006973,2019
+2001,50,"(45,50]",HS,-14.731752104055088,12.052588726355422,-1.222289454865504,5257.289124449273,2019
+2001,50,"(45,50]",HS,-14.731752104055088,12.052588726355422,-1.222289454865504,5124.139583493337,2019
+2001,74,"(70,75]",HS,174.30341239479725,55.097548463339066,3.1635420677705044,6644.100935987299,2019
+2001,74,"(70,75]",HS,174.32015302218824,55.097548463339066,3.163845903927609,7420.575800904708,2019
+2001,74,"(70,75]",HS,174.47081866870695,55.097548463339066,3.166580429341548,7348.543500031509,2019
+2001,74,"(70,75]",HS,174.47081866870695,55.097548463339066,3.166580429341548,7022.497178128206,2019
+2001,74,"(70,75]",HS,174.30341239479725,56.819346852818406,3.067677156625944,7228.246696578308,2019
+2001,43,"(40,45]",HS,28.71017597551645,72.31553235813253,0.39701257861635214,4345.540904669271,2019
+2001,43,"(40,45]",HS,22.93465952563122,60.2629436317771,0.3805764893558502,4352.542825590177,2019
+2001,43,"(40,45]",HS,28.375363427697017,72.31553235813253,0.39238269431761924,4375.129935733728,2019
+2001,43,"(40,45]",HS,23.35317521040551,53.37575007385973,0.43752406623026563,4324.079283170768,2019
+2001,43,"(40,45]",HS,27.538332058148434,65.42833880021514,0.4208930344729749,4387.979502755085,2019
+2001,33,"(30,35]",HS,119.56156082631982,41.323161347504296,2.893330445385702,5714.259557001185,2019
+2001,33,"(30,35]",HS,5.909441469013007,41.323161347504296,0.14300555127711465,5805.33924743979,2019
+2001,33,"(30,35]",HS,6.076847742922724,41.323161347504296,0.147056700038506,5808.006192604269,2019
+2001,33,"(30,35]",HS,46.92397857689365,41.323161347504296,1.1355369978179952,5810.527474894387,2019
+2001,33,"(30,35]",HS,8.738607498087221,41.323161347504296,0.2114699653446284,5793.1459626495225,2019
+2001,56,"(55,60]",HS,-3.850344299923489,60.2629436317771,-0.063892403322515,5124.154520448341,2019
+2001,56,"(55,60]",HS,-3.850344299923489,60.2629436317771,-0.063892403322515,5240.875106072115,2019
+2001,56,"(55,60]",HS,-3.850344299923489,60.2629436317771,-0.063892403322515,5165.103634816523,2019
+2001,56,"(55,60]",HS,-2.17628156082632,60.2629436317771,-0.036113097530117176,5248.071018213409,2019
+2001,56,"(55,60]",HS,-2.17628156082632,60.2629436317771,-0.036113097530117176,5169.349825613945,2019
+2001,48,"(45,50]",HS,159.08618209640397,96.42070981084338,1.649917143407228,5453.290525464325,2019
+2001,48,"(45,50]",HS,95.01980107115533,96.42070981084338,0.9854708729853127,5798.987495779053,2019
+2001,48,"(45,50]",HS,146.98270849273143,94.69891142136402,1.5521055763643363,5735.941780810455,2019
+2001,48,"(45,50]",HS,132.95406273909717,96.42070981084338,1.3788952912701467,5592.0363107224275,2019
+2001,48,"(45,50]",HS,90.90160673297629,96.42070981084338,0.9427601903295011,5695.560992443346,2019
+2001,24,"(20,25]",HS,12.220657995409335,10.330790336876074,1.182935438326274,5565.105586452728,2019
+2001,24,"(20,25]",HS,10.546595256312164,10.330790336876074,1.0208894878706198,5501.537385532874,2019
+2001,24,"(20,25]",HS,10.546595256312164,10.330790336876074,1.0208894878706198,5492.151066127046,2019
+2001,24,"(20,25]",HS,10.546595256312164,10.330790336876074,1.0208894878706198,5468.434845460366,2019
+2001,24,"(20,25]",HS,10.546595256312164,10.330790336876074,1.0208894878706198,5504.201160739833,2019
+2001,25,"(20,25]",College,16.740627390971692,103.30790336876075,0.16204595045565398,5597.745166161545,2019
+2001,25,"(20,25]",College,16.740627390971692,103.30790336876075,0.16204595045565398,5607.125263063559,2019
+2001,25,"(20,25]",College,16.740627390971692,103.30790336876075,0.16204595045565398,5626.740142461642,2019
+2001,25,"(20,25]",College,16.740627390971692,103.30790336876075,0.16204595045565398,5655.586490608519,2019
+2001,25,"(20,25]",College,16.740627390971692,103.30790336876075,0.16204595045565398,5611.635577683772,2019
+2001,21,"(20,25]",HS,7.583504208110176,37.87956456854561,0.20020040606293973,8664.925894864124,2019
+2001,21,"(20,25]",HS,7.767651109410865,37.87956456854561,0.20506178457660937,8686.862397587534,2019
+2001,21,"(20,25]",HS,7.600244835501147,37.87956456854561,0.20064234956418242,8559.97189439012,2019
+2001,21,"(20,25]",HS,7.600244835501147,37.87956456854561,0.20064234956418242,8616.357770831552,2019
+2001,21,"(20,25]",HS,7.600244835501147,37.87956456854561,0.20064234956418242,8666.212477199599,2019
+2001,53,"(50,55]",College,403.6349410864575,199.7286131796041,2.0209169565679233,5873.499778885084,2019
+2001,53,"(50,55]",College,403.7169701606733,199.7286131796041,2.0213276592354577,6185.359890629273,2019
+2001,53,"(50,55]",College,403.4993420045907,199.7286131796041,2.020238039913428,6209.453551407076,2019
+2001,53,"(50,55]",College,402.143351185922,199.7286131796041,2.0134488733684757,6003.7085490262525,2019
+2001,53,"(50,55]",College,403.65000765110943,199.7286131796041,2.020992391751756,6122.66381714654,2019
+2001,65,"(60,65]",HS,509.752104055088,275.48774231669535,1.8503621967654986,5234.841538335124,2019
+2001,65,"(60,65]",HS,502.2188217291507,184.23242767429,2.7260066431792254,4734.799221312004,2019
+2001,65,"(60,65]",HS,507.2410099464422,201.45041156908349,2.5179447686186225,4438.926177835103,2019
+2001,65,"(60,65]",HS,504.56250956388675,282.37493587461273,1.786853029292711,4983.3882503712575,2019
+2001,65,"(60,65]",HS,509.5846977811783,194.5632180111661,2.619121450550499,4752.83035645394,2019
+2001,62,"(60,65]",College,18749.502677888293,495.87793617005156,37.81072177298592,920.1281855308828,2019
+2001,62,"(60,65]",College,18749.502677888293,497.5997345595309,37.67988882567456,880.4823374001473,2019
+2001,62,"(60,65]",College,18749.502677888293,495.87793617005156,37.81072177298592,918.0230882717867,2019
+2001,62,"(60,65]",College,18751.17674062739,495.87793617005156,37.81409773028709,918.3477622999296,2019
+2001,62,"(60,65]",College,18749.502677888293,495.87793617005156,37.81072177298592,874.668210637535,2019
+2001,75,"(70,75]",NoHS,312.21270084162205,20.661580673752148,15.110784879989733,8550.649495664138,2019
+2001,75,"(70,75]",NoHS,293.63060443764346,20.661580673752148,14.211429854960853,8845.23566251268,2019
+2001,75,"(70,75]",NoHS,253.6205049732211,20.661580673752148,12.274980747015787,9006.870498394514,2019
+2001,75,"(70,75]",NoHS,223.48737566947207,20.661580673752148,10.816567192914903,8774.588674899565,2019
+2001,75,"(70,75]",NoHS,332.1340474368784,20.661580673752148,16.074958285200875,8934.192902434415,2019
+2001,48,"(45,50]",HS,128.81912777352716,68.87193557917384,1.8704153831343857,8247.304644916145,2019
+2001,48,"(45,50]",HS,157.27819433817905,68.87193557917384,2.2836325567963036,8716.900571795515,2019
+2001,48,"(45,50]",HS,124.96878347360368,68.87193557917384,1.8145095302271852,8758.673199611056,2019
+2001,48,"(45,50]",HS,126.30803366488142,68.87193557917384,1.8339550442818637,8486.902885003274,2019
+2001,48,"(45,50]",HS,132.50206579954093,68.87193557917384,1.9238905467847514,8573.625669560843,2019
+2001,50,"(45,50]",College,42871.0726855394,2496.6076647450514,17.1717299802159,13.21841064784427,2019
+2001,50,"(45,50]",College,44093.13848508034,2479.3896808502577,17.783867871047793,12.889723937197008,2019
+2001,50,"(45,50]",College,41747.7765876052,2479.3896808502577,16.83792463526291,13.364390893692592,2019
+2001,50,"(45,50]",College,43674.622800306046,2479.3896808502577,17.615070005989818,13.822782807955917,2019
+2001,50,"(45,50]",College,42871.0726855394,2479.3896808502577,17.290978105078512,13.273480227856766,2019
+2001,70,"(65,70]",College,87148.86029074216,218.6683954638769,398.54346626483016,232.6198827127451,2019
+2001,70,"(65,70]",College,6789.831063504208,142.9092663267857,47.51148220142797,1434.7745263077823,2019
+2001,70,"(65,70]",College,8110.666564651875,241.0517745271084,33.646989658397054,1458.2108906091098,2019
+2001,70,"(65,70]",College,86657.69028309105,449.38937965410923,192.8343085228019,238.02261183877985,2019
+2001,70,"(65,70]",College,7551.52960979342,173.90163733741394,43.42414324220253,1411.6393588282385,2019
+2001,46,"(45,50]",HS,1419.4377964804896,129.1348792109509,10.991900911307921,7601.856253634626,2019
+2001,46,"(45,50]",HS,1419.1029839326702,129.1348792109509,10.98930817610063,6907.357271933256,2019
+2001,46,"(45,50]",HS,1419.1029839326702,129.1348792109509,10.98930817610063,6448.210157503606,2019
+2001,46,"(45,50]",HS,1419.4377964804896,130.8566776004303,10.84727063615913,7229.393733191355,2019
+2001,46,"(45,50]",HS,1419.9400153022189,129.1348792109509,10.995790014118857,6934.110327660999,2019
+2001,67,"(65,70]",College,9912.125478194337,860.899194739673,11.513688871775122,230.84596413888525,2019
+2001,67,"(65,70]",College,9578.986993114002,860.899194739673,11.126723142087023,230.5749335033823,2019
+2001,67,"(65,70]",College,13044.296863045141,860.899194739673,15.151944551405466,235.68928410458275,2019
+2001,67,"(65,70]",College,9361.35883703137,860.899194739673,10.873931459376202,231.71488299586844,2019
+2001,67,"(65,70]",College,12150.347360367254,860.899194739673,14.113554100885636,234.06497481304714,2019
+2001,73,"(70,75]",NoHS,735.2483550114766,56.819346852818406,12.940105716386041,7352.772670864925,2019
+2001,73,"(70,75]",NoHS,735.4157612853865,56.819346852818406,12.943052006394327,6723.334789464499,2019
+2001,73,"(70,75]",NoHS,735.0809487375669,56.819346852818406,12.937159426377756,6181.1852172814815,2019
+2001,73,"(70,75]",NoHS,735.2483550114766,56.819346852818406,12.940105716386041,6907.4497264078655,2019
+2001,73,"(70,75]",NoHS,735.2483550114766,56.819346852818406,12.940105716386041,6695.217422999024,2019
+2001,53,"(50,55]",HS,2819.1216526396324,139.46566954782702,20.213731893875647,3994.902283203081,2019
+2001,53,"(50,55]",HS,3023.3573068094875,141.18746793730637,21.413779501676416,3914.1405178858076,2019
+2001,53,"(50,55]",HS,3071.9051262433054,161.84904861105852,18.980062920390957,4196.308675812829,2019
+2001,53,"(50,55]",HS,2896.1285386381023,154.9618550531411,18.689299619218758,4016.1489271804494,2019
+2001,53,"(50,55]",HS,2539.5531752104057,154.9618550531411,16.388247122748474,4003.014605513725,2019
+2001,54,"(50,55]",HS,905.8353481254782,117.08229048459552,7.736740922784207,8511.75591578331,2019
+2001,54,"(50,55]",HS,909.1834736036726,92.97711303188467,9.778572854718409,8473.543750483723,2019
+2001,54,"(50,55]",HS,927.4307574598316,87.81171786344665,10.561583123815563,8110.151398015863,2019
+2001,54,"(50,55]",HS,932.620351951033,96.42070981084338,9.672407035590515,8457.649121924656,2019
+2001,54,"(50,55]",HS,944.1713848508034,117.08229048459552,8.064169063851956,8909.158849704978,2019
+2001,69,"(65,70]",College,5962.710145371078,1120.8907515510539,5.319617578359055,18.832043254736853,2019
+2001,69,"(65,70]",College,22023.96939556236,1324.0629615096168,16.6336269768108,18.95502609227419,2019
+2001,69,"(65,70]",College,139868.32688599845,1911.1962123220737,73.18365638453238,19.13956903634376,2019
+2001,69,"(65,70]",College,259840.2172302984,1484.1902117311959,175.0720461410498,18.800585208567487,2019
+2001,69,"(65,70]",College,43960.40205049732,728.3207187497634,60.35857681758639,19.076149558376407,2019
+2001,30,"(25,30]",HS,304.96400918133133,70.59373396865318,4.319986945537535,7072.989544713144,2019
+2001,30,"(25,30]",HS,307.4751032899771,70.59373396865318,4.355558007832678,7076.242176388117,2019
+2001,30,"(25,30]",HS,309.14916602907425,70.59373396865318,4.379272049362774,7255.974068360878,2019
+2001,30,"(25,30]",HS,306.6380719204285,72.31553235813253,4.240279534994591,7068.824847301263,2019
+2001,30,"(25,30]",HS,303.2899464422341,70.59373396865318,4.296272904007438,7075.204472607096,2019
+2001,36,"(35,40]",HS,0.6194032134659526,25.826975842190187,0.02398280066743679,5123.000302539133,2019
+2001,36,"(35,40]",HS,0.6361438408569243,25.826975842190187,0.024630984469259404,5067.173600422219,2019
+2001,36,"(35,40]",HS,0.6194032134659526,25.826975842190187,0.02398280066743679,5084.484597921975,2019
+2001,36,"(35,40]",HS,0.6361438408569243,25.826975842190187,0.024630984469259404,5065.056012865183,2019
+2001,36,"(35,40]",HS,0.6361438408569243,27.548774231669533,0.023091547939930693,5124.158957116461,2019
+2001,49,"(45,50]",HS,15.903596021423107,30.992371010628222,0.5131455097762376,5001.069753738085,2019
+2001,49,"(45,50]",HS,16.740627390971692,27.548774231669533,0.6076723142087024,5022.804353380988,2019
+2001,49,"(45,50]",HS,15.903596021423107,30.992371010628222,0.5131455097762376,5012.743772838375,2019
+2001,49,"(45,50]",HS,21.930221882172916,34.43596778958692,0.6368405852907201,4976.152395286038,2019
+2001,49,"(45,50]",HS,16.740627390971692,27.548774231669533,0.6076723142087024,5018.841846817764,2019
+2001,51,"(50,55]",HS,422.36602907421576,111.91689531615746,3.7739255353810615,19.553487271938728,2019
+2001,51,"(50,55]",HS,422.36602907421576,111.91689531615746,3.7739255353810615,21.71702424054255,2019
+2001,51,"(50,55]",HS,421.02677888293806,111.91689531615746,3.761959065193567,21.122375436184335,2019
+2001,51,"(50,55]",HS,422.7008416220352,111.91689531615746,3.7769171529279353,20.773190486428643,2019
+2001,51,"(50,55]",HS,422.19862280030605,111.91689531615746,3.7724297266076245,20.735896153293385,2019
+2001,47,"(45,50]",HS,48.5478194338179,89.53351625292598,0.5422306803708421,5559.4054500125385,2019
+2001,47,"(45,50]",HS,10.8814078041316,89.53351625292598,0.12153446284174048,5583.566571064348,2019
+2001,47,"(45,50]",HS,50.22188217291507,89.53351625292598,0.5609282900388022,5572.382794581913,2019
+2001,47,"(45,50]",HS,33.481254781943385,89.53351625292598,0.3739521933592015,5531.706236604315,2019
+2001,47,"(45,50]",HS,23.43687834736037,89.53351625292598,0.26176653535144107,5579.161677377987,2019
+2001,43,"(40,45]",HS,207.41637337413925,96.42070981084338,2.151159992298806,6250.466158385736,2019
+2001,43,"(40,45]",HS,197.20459066564652,98.14250820032271,2.009369785650109,6416.227104893651,2019
+2001,43,"(40,45]",HS,200.51923488905894,96.42070981084338,2.079628279883382,6480.352179170274,2019
+2001,43,"(40,45]",HS,224.32440703902066,98.14250820032271,2.2857007748481717,6326.132955180933,2019
+2001,43,"(40,45]",HS,197.8742157612854,96.42070981084338,2.052196215413389,6430.003788382213,2019
+2001,57,"(55,60]",NoHS,253.6205049732211,53.37575007385973,4.751605450457723,8023.718757831239,2019
+2001,57,"(55,60]",NoHS,253.78791124713084,67.15013718969449,3.779410167550329,8472.776974140328,2019
+2001,57,"(55,60]",NoHS,253.4530986993114,61.984742021256444,4.088959483164335,8515.411759916526,2019
+2001,57,"(55,60]",NoHS,253.6205049732211,82.64632269500859,3.068745186753947,8258.468652397145,2019
+2001,57,"(55,60]",NoHS,253.78791124713084,56.819346852818406,4.466575652559481,8381.181941914369,2019
+2001,48,"(45,50]",College,1579.478194338179,266.8787503692986,5.918336293738433,3137.0159029689607,2019
+2001,48,"(45,50]",College,1579.3107880642694,266.8787503692986,5.917709019091508,3188.1031117721623,2019
+2001,48,"(45,50]",College,1579.3107880642694,266.8787503692986,5.917709019091508,3999.7204991395215,2019
+2001,48,"(45,50]",College,1579.3107880642694,266.8787503692986,5.917709019091508,3296.991122215023,2019
+2001,48,"(45,50]",College,1579.3107880642694,266.8787503692986,5.917709019091508,3373.651556072051,2019
+2001,69,"(65,70]",HS,1063.866870696251,89.53351625292598,11.882330943988627,1819.5439125782243,2019
+2001,69,"(65,70]",HS,1062.0254016832441,89.53351625292598,11.86176357335387,1793.302811067162,2019
+2001,69,"(65,70]",HS,1062.3602142310635,89.53351625292598,11.865503095287462,1730.3721639538205,2019
+2001,69,"(65,70]",HS,1062.1928079571537,89.53351625292598,11.863633334320665,1790.1970886409902,2019
+2001,69,"(65,70]",HS,1062.3602142310635,89.53351625292598,11.865503095287462,1894.9663075269068,2019
+2001,50,"(45,50]",NoHS,1900.730833970926,258.2697584219018,7.359478885893982,2937.0299253053945,2019
+2001,50,"(45,50]",NoHS,1473.677429227238,258.2697584219018,5.705962007444488,6030.7138036446895,2019
+2001,50,"(45,50]",NoHS,1507.326090283091,258.2697584219018,5.836246951610834,5630.556441809514,2019
+2001,50,"(45,50]",NoHS,1529.0889058913542,258.2697584219018,5.920510845847774,6314.4139169692335,2019
+2001,50,"(45,50]",NoHS,1549.1776587605202,258.2697584219018,5.9982929020664875,6060.282294626878,2019
+2001,80,"(75,80]",HS,203271.84602907422,228.99918580075305,887.6531386707043,18.01293583972238,2019
+2001,80,"(75,80]",HS,211401.68061208873,292.70572621148875,722.2328150127976,19.60781902692309,2019
+2001,80,"(75,80]",HS,213498.7622647284,227.27738741127362,939.3752924411618,19.13956903634376,2019
+2001,80,"(75,80]",HS,209014.2997398623,227.27738741127362,919.64406191293,18.800585208567487,2019
+2001,80,"(75,80]",HS,191984.91326702372,228.99918580075305,838.3650474376158,19.8680209352054,2019
+2001,47,"(45,50]",College,60600.40153022188,3047.583149378442,19.88474097665929,10.33298516436616,2019
+2001,47,"(45,50]",College,60787.05952563122,3598.5586340118325,16.892057545235303,10.885853919327733,2019
+2001,47,"(45,50]",College,60249.032501912785,3546.904682327452,16.986369214291326,11.043925163074842,2019
+2001,47,"(45,50]",College,60113.09860749809,3856.8283924337343,15.586148122490238,10.89346443861697,2019
+2001,47,"(45,50]",College,60528.4335730681,3236.9809722211703,18.699039040545966,11.194517760457467,2019
+2001,54,"(50,55]",College,3570.2736036725323,414.9534118645223,8.604034818342901,1124.3524154787654,2019
+2001,54,"(50,55]",College,4393.5776587605205,287.54033104305074,15.279865759432234,1129.4316978703218,2019
+2001,54,"(50,55]",College,6119.871155317521,254.82616164294322,24.0158668005703,1162.3988768827019,2019
+2001,54,"(50,55]",College,6290.458148431523,313.3673068852409,20.073753739521937,1115.1990386035545,2019
+2001,54,"(50,55]",College,3635.0598316755927,225.5555890217943,16.11602641920948,1104.5132487635835,2019
+2001,48,"(45,50]",HS,1340.1207039020658,172.17983894793457,7.783261455525607,11278.96182332654,2019
+2001,48,"(45,50]",HS,1054.2577505738332,172.17983894793457,6.123003465537158,11042.086600875853,2019
+2001,48,"(45,50]",HS,2102.3047283856163,172.17983894793457,12.20993550250289,13377.496463922676,2019
+2001,48,"(45,50]",HS,2277.863687834736,172.17983894793457,13.229561031959955,11305.465226834665,2019
+2001,48,"(45,50]",HS,1585.437857689365,172.17983894793457,9.208034270311899,11291.18149259581,2019
+2001,38,"(35,40]",NoHS,247.74454475899006,41.323161347504296,5.995295051983058,6693.2723952291435,2019
+2001,80,"(75,80]",HS,287.43657230298396,39.60136295802496,7.258249485191944,9172.972740464988,2019
+2001,45,"(40,45]",HS,15.953817903596022,17.21798389479346,0.9265787447054293,6907.699814629636,2019
+2001,24,"(20,25]",HS,8.286610558530986,36.157766179066265,0.229179272787282,8548.946171382056,2019
+2001,52,"(50,55]",NoHS,287.0347972456006,32.71416940010757,8.774020631092556,6811.150669636454,2019
+2001,30,"(25,30]",NoHS,-10.8814078041316,41.323161347504296,-0.2633246694904377,6496.087821714218,2019
+2001,30,"(25,30]",NoHS,-11.551032899770467,41.323161347504296,-0.27952926453600313,6535.048529418144,2019
+2001,30,"(25,30]",NoHS,-11.718439173680185,41.323161347504296,-0.2835804132973945,6579.401590542936,2019
+2001,30,"(25,30]",NoHS,-11.132517214996176,41.323161347504296,-0.26940139263252477,6470.627509061301,2019
+2001,30,"(25,30]",NoHS,-12.053251721499617,41.323161347504296,-0.29168271082017716,6519.0232103658145,2019
+2001,78,"(75,80]",HS,87.26889058913542,18.939782284272805,4.607702943956313,7394.513802038836,2019
+2001,78,"(75,80]",HS,75.65089517980107,18.939782284272805,3.9942853642314553,7349.696265540265,2019
+2001,78,"(75,80]",HS,74.78038255547054,18.939782284272805,3.9483232401022152,7430.143040194339,2019
+2001,78,"(75,80]",HS,95.13698546289211,18.939782284272805,5.023129835124443,7424.288293665297,2019
+2001,78,"(75,80]",HS,71.85077276205051,18.939782284272805,3.793643014667274,7427.170259728628,2019
+2001,54,"(50,55]",HS,93.76425401683244,72.31553235813253,1.2965990978601682,5599.5636476599475,2019
+2001,54,"(50,55]",HS,95.52201989288446,72.31553235813253,1.320905990428516,5910.459716931372,2019
+2001,54,"(50,55]",HS,93.89817903596021,72.31553235813253,1.2984510515796615,5947.781203175014,2019
+2001,54,"(50,55]",HS,95.5555011476664,72.31553235813253,1.3213689788583896,5740.383623006506,2019
+2001,54,"(50,55]",HS,94.0823259372609,72.31553235813253,1.3009974879439645,5834.691902664345,2019
+2001,26,"(25,30]",College,34.56939556235654,65.42833880021514,0.5283550858277769,3808.4067902924808,2019
+2001,26,"(25,30]",College,26.366488140780415,65.42833880021514,0.4029826925805079,3780.127409022201,2019
+2001,26,"(25,30]",College,45.95302218821729,65.42833880021514,0.7023412642117423,3784.290507952673,2019
+2001,26,"(25,30]",College,24.022800306044378,65.42833880021514,0.3671620087955738,3809.1431555166027,2019
+2001,26,"(25,30]",College,34.56939556235654,65.42833880021514,0.5283550858277769,3773.54735718612,2019
+2001,36,"(35,40]",HS,364.4936801836267,280.65313748513336,1.2987336733512715,521.2544323926219,2019
+2001,36,"(35,40]",HS,357.26172915072686,332.30708916951374,1.0750951177225216,516.2115576482415,2019
+2001,36,"(35,40]",HS,419.8047130833971,337.4724843379518,1.2439672345642143,497.19711075997174,2019
+2001,36,"(35,40]",HS,354.3990818668707,311.6455084957616,1.1371865539711141,515.8153579914156,2019
+2001,36,"(35,40]",HS,409.37530221882173,316.81090366419966,1.2921755453617048,544.1233371685576,2019
+2001,83,"(80,85]",College,9833.444529456772,693.8847509601763,14.171581830915803,920.1281855308828,2019
+2001,83,"(80,85]",College,6869.767559296098,693.8847509601763,9.900444634054754,880.4823374001473,2019
+2001,83,"(80,85]",College,6387.218974751339,693.8847509601763,9.205014184146433,918.0230882717867,2019
+2001,83,"(80,85]",College,6772.253404743688,693.8847509601763,9.759910987195573,918.3477622999296,2019
+2001,83,"(80,85]",College,6541.567559296098,693.8847509601763,9.427455424325261,874.668210637535,2019
+2001,46,"(45,50]",NoHS,13.225095638867636,18.939782284272805,0.6982707319634542,6118.676314799646,2019
+2001,46,"(45,50]",NoHS,13.225095638867636,32.71416940010757,0.4042620027156841,6222.592646651819,2019
+2001,46,"(45,50]",NoHS,13.05768936495792,32.71416940010757,0.39914476217497924,6216.524712171076,2019
+2001,46,"(45,50]",NoHS,13.05768936495792,46.488556515942335,0.2808796474564669,6143.165848553301,2019
+2001,46,"(45,50]",NoHS,13.225095638867636,74.03733074761188,0.17862739654879062,6186.169127237896,2019
+2001,71,"(70,75]",HS,488.9937260902831,77.48092752657055,6.311149617079536,3175.3059204510296,2019
+2001,71,"(70,75]",HS,505.56694720734504,77.48092752657055,6.525050271681,3589.1933794819793,2019
+2001,71,"(70,75]",HS,534.3608263198164,77.48092752657055,6.896675651392633,3502.9887000806075,2019
+2001,71,"(70,75]",HS,488.9937260902831,77.48092752657055,6.311149617079536,3409.825926796224,2019
+2001,71,"(70,75]",HS,488.82631981637337,77.48092752657055,6.3089890044067944,3378.7427476814046,2019
+2001,76,"(75,80]",College,1185.9395256312166,46.488556515942335,25.51035382706542,8211.66585702667,2019
+2001,76,"(75,80]",College,1182.0557000765111,36.157766179066265,32.6916130333535,7416.573409226953,2019
+2001,76,"(75,80]",College,1182.189625095639,36.157766179066265,32.695316940792495,7013.258003393402,2019
+2001,76,"(75,80]",College,1189.220688599847,89.53351625292598,13.282407955925478,7840.714688261347,2019
+2001,76,"(75,80]",College,1189.0867635807192,98.14250820032271,12.115919853542211,7530.634275234351,2019
+2001,68,"(65,70]",College,5267.103596021423,258.2697584219018,20.393806956744964,3687.287979209405,2019
+2001,68,"(65,70]",College,5267.103596021423,258.2697584219018,20.393806956744964,3633.9889219487354,2019
+2001,68,"(65,70]",College,5266.936189747514,258.2697584219018,20.393158772943146,3732.726985571312,2019
+2001,68,"(65,70]",College,5266.936189747514,258.2697584219018,20.393158772943146,3619.162569798528,2019
+2001,68,"(65,70]",College,5267.103596021423,258.2697584219018,20.393806956744964,3597.716146931495,2019
+2001,75,"(70,75]",College,2762.7057383320584,44.76675812646299,61.713330470069025,1420.5121641219043,2019
+2001,75,"(70,75]",College,3051.397857689365,58.54114524229776,52.12398638700763,1403.5345852481871,2019
+2001,75,"(70,75]",College,3110.6931599081868,63.706540410735805,48.828474122948506,1504.2070285431378,2019
+2001,75,"(70,75]",College,2442.323611323642,127.41308082147161,19.168546868007784,1433.7260035522936,2019
+2001,75,"(70,75]",College,2548.9279265493496,125.69128243199225,20.27927376688592,1441.094506186435,2019
+2001,61,"(60,65]",HS,1247.9468094873757,87.81171786344665,14.211620497255504,7001.74467006177,2019
+2001,61,"(60,65]",HS,1552.6262280030605,87.81171786344665,17.681310259953037,6359.380490646631,2019
+2001,61,"(60,65]",HS,1097.2811629686305,87.81171786344665,12.49583984537211,5949.304383527749,2019
+2001,61,"(60,65]",HS,1368.6467329762816,87.81171786344665,15.586151441708758,6660.52714492344,2019
+2001,61,"(60,65]",HS,1247.9468094873757,87.81171786344665,14.211620497255504,6401.58273600444,2019
+2001,62,"(60,65]",HS,533.1889824024483,65.42833880021514,8.149205561072492,5817.374753958369,2019
+2001,62,"(60,65]",HS,531.3475133894415,65.42833880021514,8.121060738098615,6142.9519594236535,2019
+2001,62,"(60,65]",HS,533.0215761285386,65.42833880021514,8.146646940802139,6173.863128409079,2019
+2001,62,"(60,65]",HS,533.0215761285386,65.42833880021514,8.146646940802139,5987.573654413252,2019
+2001,62,"(60,65]",HS,533.0215761285386,65.42833880021514,8.146646940802139,6076.543521623008,2019
+2001,48,"(45,50]",HS,72.83846977811783,74.03733074761188,0.9838073447896051,6355.935342948416,2019
+2001,48,"(45,50]",HS,365.9835960214231,74.03733074761188,4.943230561202102,5908.273737394398,2019
+2001,48,"(45,50]",HS,123.93086457536343,74.03733074761188,1.6738969831021482,6655.117238960161,2019
+2001,48,"(45,50]",HS,410.49692425401685,74.03733074761188,5.544458722497335,6186.213958639555,2019
+2001,48,"(45,50]",HS,216.50653404743687,74.03733074761188,2.9242887589436823,6560.254346273732,2019
+2001,40,"(35,40]",College,104598.78806426932,3426.378795063898,30.527502742824637,17.906967177239512,2019
+2001,40,"(35,40]",College,91864.19280795717,4166.752102540017,22.04695420972069,19.435458881919818,2019
+2001,40,"(35,40]",College,104555.26243305279,5148.177184543244,20.309181033428075,19.199605180850785,2019
+2001,40,"(35,40]",College,99071.03289977046,3340.288875589931,29.659420663811133,18.74594597572281,2019
+2001,40,"(35,40]",College,82819.23182861514,3512.4687145378653,23.57863900277092,19.786755859520692,2019
+2001,50,"(45,50]",HS,136.98855394032134,43.04495973698364,3.182452830188679,6577.128996753636,2019
+2001,50,"(45,50]",HS,167.00449885233357,36.157766179066265,4.61877257641601,6840.767291870447,2019
+2001,50,"(45,50]",HS,180.79877582249426,118.80408887407486,1.5218228390617936,6986.072865310324,2019
+2001,50,"(45,50]",HS,147.98714613618975,130.8566776004303,1.1309101594957744,6722.090766113195,2019
+2001,50,"(45,50]",HS,150.11320581484316,87.81171786344665,1.7094894561598222,6777.425672177902,2019
+2001,86,"(85,90]",HS,185.65355776587606,51.653951684380374,3.594179181106405,5864.835987541029,2019
+2001,86,"(85,90]",HS,145.3086457536343,51.653951684380374,2.813117699910153,5856.541746947887,2019
+2001,86,"(85,90]",HS,163.38852333588372,51.653951684380374,3.1631369528943654,5858.618774606944,2019
+2001,86,"(85,90]",HS,157.69671002295334,51.653951684380374,3.052945706584521,5988.46711919612,2019
+2001,86,"(85,90]",HS,176.1114001530222,51.653951684380374,3.4094467975869596,5909.005170546875,2019
+2001,39,"(35,40]",HS,310.90693190512627,242.77357291658777,1.2806456986648533,6046.260156438748,2019
+2001,39,"(35,40]",HS,227.25401683244073,187.6760244532487,1.2108846481296345,6206.605606036896,2019
+2001,39,"(35,40]",HS,419.70426931905126,177.34523411637264,2.3665945770138057,6268.63568056298,2019
+2001,39,"(35,40]",HS,365.8664116296863,201.45041156908349,1.8161611524145214,6119.45487936583,2019
+2001,39,"(35,40]",HS,124.26567712318287,99.86430658980206,1.2443452657575718,6219.932198062838,2019
+2001,30,"(25,30]",HS,-5.189594491201225,146.35286310574438,-0.03545946680559017,4233.100866774848,2019
+2001,30,"(25,30]",HS,-5.189594491201225,146.35286310574438,-0.03545946680559017,4254.803745751962,2019
+2001,30,"(25,30]",HS,-5.189594491201225,146.35286310574438,-0.03545946680559017,4267.016412055865,2019
+2001,30,"(25,30]",HS,-5.189594491201225,146.35286310574438,-0.03545946680559017,4261.205862858428,2019
+2001,30,"(25,30]",HS,-5.189594491201225,146.35286310574438,-0.03545946680559017,4234.358520789554,2019
+2001,30,"(25,30]",NoHS,14.631308339709259,5.509754846333906,2.6555280130920296,5024.645153677689,2019
+2001,30,"(25,30]",NoHS,9.056679418515685,5.854114524229775,1.5470622211148612,5052.180548967348,2019
+2001,30,"(25,30]",NoHS,19.72045906656465,13.946566954782698,1.4140009602722992,4968.95584924447,2019
+2001,30,"(25,30]",NoHS,10.061117061973986,7.4037330747611865,1.3589248775420657,5024.880434871799,2019
+2001,30,"(25,30]",NoHS,14.83219586840092,11.70822904845955,1.2668180479739068,5038.095407448135,2019
+2001,30,"(25,30]",HS,24.27390971690895,30.992371010628222,0.7832220938689941,5373.363751499136,2019
+2001,30,"(25,30]",HS,27.454628921193574,30.992371010628222,0.8858511958242418,5347.625153568601,2019
+2001,30,"(25,30]",HS,23.16902830910482,30.992371010628222,0.7475719847687503,5262.908218777332,2019
+2001,30,"(25,30]",HS,27.454628921193574,30.992371010628222,0.8858511958242418,5354.768853923771,2019
+2001,30,"(25,30]",HS,25.947972456006124,30.992371010628222,0.8372374106875456,5334.63834027901,2019
+2001,48,"(45,50]",HS,55.41147666411629,65.42833880021514,0.8469033094866545,7770.446590104746,2019
+2001,48,"(45,50]",HS,55.74628921193573,65.42833880021514,0.8520205500273594,8173.710936581066,2019
+2001,48,"(45,50]",HS,55.41147666411629,65.42833880021514,0.8469033094866545,8230.473429441041,2019
+2001,48,"(45,50]",HS,55.41147666411629,65.42833880021514,0.8469033094866545,7995.089632296763,2019
+2001,48,"(45,50]",HS,55.41147666411629,67.15013718969449,0.8251878400126378,8114.41189773277,2019
+2001,68,"(65,70]",HS,644.8489671002296,43.04495973698364,14.9808240277243,5804.572789851865,2019
+2001,68,"(65,70]",HS,718.5077276205051,43.04495973698364,16.692029264536007,5221.898108809904,2019
+2001,68,"(65,70]",HS,547.7533282325937,43.04495973698364,12.725144397381595,6511.550210385681,2019
+2001,68,"(65,70]",HS,633.1305279265493,44.76675812646299,14.142871952844999,5509.729483195488,2019
+2001,68,"(65,70]",HS,528.5016067329763,43.04495973698364,12.277897574123989,6295.828539490418,2019
+2001,68,"(65,70]",HS,39.34047436878347,53.37575007385973,0.7370477101370065,5437.638786599771,2019
+2001,68,"(65,70]",HS,39.34047436878347,53.37575007385973,0.7370477101370065,5531.327712251388,2019
+2001,68,"(65,70]",HS,39.34047436878347,53.37575007385973,0.7370477101370065,5641.983432278519,2019
+2001,68,"(65,70]",HS,39.34047436878347,53.37575007385973,0.7370477101370065,5423.383158451266,2019
+2001,68,"(65,70]",HS,39.34047436878347,53.37575007385973,0.7370477101370065,5519.3544446957,2019
+2001,34,"(30,35]",College,44.864881407804134,168.7362421689759,0.2658876411558077,5361.514459750831,2019
+2001,34,"(30,35]",College,44.864881407804134,168.7362421689759,0.2658876411558077,5403.311515346067,2019
+2001,34,"(30,35]",College,44.864881407804134,168.7362421689759,0.2658876411558077,5327.109149289596,2019
+2001,34,"(30,35]",College,44.864881407804134,168.7362421689759,0.2658876411558077,5377.394566469004,2019
+2001,34,"(30,35]",College,44.864881407804134,168.7362421689759,0.2658876411558077,5373.642351565371,2019
+2001,67,"(65,70]",College,2412.1570007651108,201.45041156908349,11.973949231361628,3843.0786017543055,2019
+2001,67,"(65,70]",College,2412.1570007651108,201.45041156908349,11.973949231361628,3870.818242626927,2019
+2001,67,"(65,70]",College,2412.1570007651108,201.45041156908349,11.973949231361628,4907.594577860487,2019
+2001,67,"(65,70]",College,2412.1570007651108,201.45041156908349,11.973949231361628,4033.3668415600137,2019
+2001,67,"(65,70]",College,2412.1570007651108,201.45041156908349,11.973949231361628,4104.375216432497,2019
+2001,53,"(50,55]",HS,44.362662586074975,82.64632269500859,0.5367772108843537,4175.019835248725,2019
+2001,53,"(50,55]",HS,44.362662586074975,82.64632269500859,0.5367772108843537,4246.192724387426,2019
+2001,53,"(50,55]",HS,44.362662586074975,82.64632269500859,0.5367772108843537,4245.175957271137,2019
+2001,53,"(50,55]",HS,44.362662586074975,82.64632269500859,0.5367772108843537,4180.991054458818,2019
+2001,53,"(50,55]",HS,44.362662586074975,82.64632269500859,0.5367772108843537,4229.817964997879,2019
+2001,21,"(20,25]",HS,20.08875286916603,41.323161347504296,0.4861378513669619,6107.6030620807505,2019
+2001,21,"(20,25]",HS,20.25615914307575,41.323161347504296,0.4901890001283533,6113.8109644478045,2019
+2001,21,"(20,25]",HS,20.08875286916603,41.323161347504296,0.4861378513669619,6109.665887276296,2019
+2001,21,"(20,25]",HS,20.25615914307575,41.323161347504296,0.4901890001283533,6055.701205889583,2019
+2001,21,"(20,25]",HS,20.08875286916603,41.323161347504296,0.4861378513669619,6085.768176172989,2019
+2001,75,"(70,75]",HS,15.401377199693956,16.87362421689759,0.9127486188930712,9898.100965430818,2019
+2001,75,"(70,75]",HS,15.401377199693956,14.290926632678572,1.0777031885725419,9840.961376167705,2019
+2001,75,"(70,75]",HS,15.401377199693956,15.496185505314111,0.9938818294613444,9943.793919395064,2019
+2001,75,"(70,75]",HS,15.401377199693956,17.21798389479346,0.8944936465152098,9939.509071051067,2019
+2001,75,"(70,75]",HS,12.053251721499617,15.151825827418245,0.7954983022368466,9942.521478729606,2019
+2001,39,"(35,40]",HS,12.555470543228768,51.653951684380374,0.24306892568348093,4951.910159501927,2019
+2001,39,"(35,40]",HS,17.577658760520276,63.706540410735805,0.2759160778028702,4970.999967447029,2019
+2001,39,"(35,40]",HS,19.251721499617446,48.21035490542169,0.39932752076571865,5005.15204849171,2019
+2001,39,"(35,40]",HS,15.903596021423107,51.653951684380374,0.30788730586574253,4954.510071537994,2019
+2001,39,"(35,40]",HS,24.27390971690895,46.488556515942335,0.5221480625793294,4987.868168665946,2019
+2001,72,"(70,75]",NoHS,83.70313695485845,6.715013718969449,12.46507311197338,8478.854817939009,2019
+2001,72,"(70,75]",NoHS,83.70313695485845,6.715013718969449,12.46507311197338,8540.839149977985,2019
+2001,72,"(70,75]",NoHS,83.70313695485845,6.715013718969449,12.46507311197338,8389.388384460499,2019
+2001,72,"(70,75]",NoHS,83.70313695485845,6.715013718969449,12.46507311197338,8379.811017227137,2019
+2001,72,"(70,75]",NoHS,83.70313695485845,6.715013718969449,12.46507311197338,8454.071877324819,2019
+2001,38,"(35,40]",College,56096.837949502675,3632.9946018014193,15.44093622426168,10.719873855226902,2019
+2001,38,"(35,40]",College,48716.23014537108,6783.885654548622,7.181169115476859,10.435442962152202,2019
+2001,38,"(35,40]",College,49514.2558530987,6542.833880021514,7.567707932229496,10.829210793767967,2019
+2001,38,"(35,40]",College,56513.512165263965,4562.765732120266,12.385801832302876,11.208984887044869,2019
+2001,38,"(35,40]",College,52305.58806426932,3994.5722635920815,13.094164935004585,10.748342561587899,2019
+2001,21,"(20,25]",HS,0,1.7217983894793458,0,5838.750400604278,2019
+2001,21,"(20,25]",HS,0,1.7217983894793458,0,5846.86325230139,2019
+2001,21,"(20,25]",HS,0,1.7217983894793458,0,5762.023725852962,2019
+2001,21,"(20,25]",HS,0,1.7217983894793458,0,5777.519437878343,2019
+2001,21,"(20,25]",HS,0,1.7217983894793458,0,5816.032017401588,2019
+2001,51,"(50,55]",HS,748.640856924254,46.488556515942335,16.103766454170767,6203.058616345639,2019
+2001,51,"(50,55]",HS,673.475439938791,51.653951684380374,13.038217173661916,5632.251296334829,2019
+2001,51,"(50,55]",HS,701.5996939556236,61.984742021256444,11.31890963932743,5258.533210331143,2019
+2001,51,"(50,55]",HS,633.8001530221883,65.42833880021514,9.686936343554304,5897.20672003224,2019
+2001,51,"(50,55]",HS,689.3790359602142,48.21035490542169,14.299397656636776,5659.866132171419,2019
+2001,41,"(40,45]",NoHS,226.50068859984697,34.43596778958692,6.577445128994993,7527.31866936902,2019
+2001,41,"(40,45]",NoHS,224.709441469013,34.43596778958692,6.525428378898729,7726.941455203526,2019
+2001,41,"(40,45]",NoHS,224.4750726855394,34.43596778958692,6.518622448979591,7804.166074383259,2019
+2001,41,"(40,45]",NoHS,224.87684774292273,34.43596778958692,6.530289757412398,7618.442767593866,2019
+2001,41,"(40,45]",NoHS,225.0777352716144,34.43596778958692,6.536123411628802,7743.532455650163,2019
+2001,23,"(20,25]",HS,-4.35256312165264,15.496185505314111,-0.2808796474564669,8491.876456041313,2019
+2001,23,"(20,25]",HS,-4.35256312165264,15.496185505314111,-0.2808796474564669,8513.374859289657,2019
+2001,23,"(20,25]",HS,-4.35256312165264,15.496185505314111,-0.2808796474564669,8389.018518604036,2019
+2001,23,"(20,25]",HS,-4.35256312165264,15.496185505314111,-0.2808796474564669,8444.278298366267,2019
+2001,23,"(20,25]",HS,-4.35256312165264,15.496185505314111,-0.2808796474564669,8493.137343713746,2019
+2001,53,"(50,55]",College,780528.152869166,23192.62430628679,33.65415412078181,22.186381816816397,2019
+2001,53,"(50,55]",College,762646.5680183626,23175.406322391995,32.90758131310501,23.460982960666353,2019
+2001,53,"(50,55]",College,760929.448385616,23175.406322391995,32.833488992614065,23.740899046028453,2019
+2001,53,"(50,55]",College,813087.0827850038,23192.62430628679,35.05800258078606,23.440699074076043,2019
+2001,53,"(50,55]",College,880985.4436419281,23175.406322391995,38.01380788697211,24.112156722472083,2019
+2001,41,"(40,45]",HS,146.64789594491202,0,Inf,9156.207559664717,2019
+2001,41,"(40,45]",HS,148.15455241009946,0,Inf,9148.804739629868,2019
+2001,41,"(40,45]",HS,146.4804896710023,0,Inf,9261.05291105448,2019
+2001,41,"(40,45]",HS,146.4804896710023,0,Inf,9200.210623868525,2019
+2001,41,"(40,45]",HS,146.64789594491202,0,Inf,9108.330968033963,2019
+2001,67,"(65,70]",HS,993.8910482019893,141.18746793730637,7.039513228208908,7357.294049973117,2019
+2001,67,"(65,70]",HS,1007.4509563886763,168.7362421689759,5.970566509237503,6622.655181214146,2019
+2001,67,"(65,70]",HS,1007.4509563886763,130.8566776004303,7.698888393490464,6252.2821757707425,2019
+2001,67,"(65,70]",HS,998.9132364192808,132.5784759899096,7.5345053483289925,6985.122024731985,2019
+2001,67,"(65,70]",HS,1029.0463657230298,168.7362421689759,6.098549739495335,6666.531658152414,2019
+2001,29,"(25,30]",HS,43.944146901300684,103.30790336876075,0.4253706199460916,4742.831485497734,2019
+2001,29,"(25,30]",HS,55.66258607498087,103.30790336876075,0.5388027852650494,4691.852536943195,2019
+2001,29,"(25,30]",HS,43.944146901300684,103.30790336876075,0.4253706199460916,4705.616375046635,2019
+2001,29,"(25,30]",HS,47.29227237949503,103.30790336876075,0.45777981003722246,4743.513427706455,2019
+2001,29,"(25,30]",HS,45.61820964039786,103.30790336876075,0.44157521499165703,4692.046539027146,2019
+2001,70,"(65,70]",HS,90.33242540168324,105.0297017582401,0.860065523270861,10149.487884142301,2019
+2001,70,"(65,70]",HS,98.8701453710788,105.0297017582401,0.9413541475977957,11119.457188114679,2019
+2001,70,"(65,70]",HS,89.66280030604437,106.75150014771945,0.839920752232725,11164.987774976504,2019
+2001,70,"(65,70]",HS,92.42500382555471,105.0297017582401,0.8799892057039334,10888.782951492041,2019
+2001,70,"(65,70]",HS,89.66280030604437,105.0297017582401,0.8536899448922779,10895.673163574695,2019
+2001,64,"(60,65]",College,446662.53863810253,33488.97867537328,13.337598108555154,2.1257090517232013,2019
+2001,64,"(60,65]",College,252941.83993879112,41271.50739581992,6.128727926337135,2.168847389551151,2019
+2001,64,"(60,65]",College,156034.36572302986,41237.07142803033,3.7838372202388664,1.9139833519487623,2019
+2001,64,"(60,65]",College,171703.42555470543,46419.684580363166,3.6989356370452553,2.4909727322479034,2019
+2001,64,"(60,65]",College,508486.5126243305,49811.62740763747,10.208189113419046,1.9791266809042838,2019
+2001,48,"(45,50]",HS,497.5314460596787,239.32997613762907,2.0788513586512383,5881.74410647181,2019
+2001,48,"(45,50]",HS,504.22769701606734,239.32997613762907,2.106830515564445,5342.103307601,2019
+2001,48,"(45,50]",HS,479.2841622035195,239.32997613762907,2.0026081560627507,4990.569349288677,2019
+2001,48,"(45,50]",HS,507.5758224942617,239.32997613762907,2.120820094021048,5592.095895526164,2019
+2001,48,"(45,50]",HS,502.72104055087993,239.32997613762907,2.1005352052589736,5366.654949339977,2019
+2001,37,"(35,40]",College,362.9368018362662,115.36049209511619,3.1461100351151434,7457.655841835547,2019
+2001,37,"(35,40]",College,345.5265493496557,115.36049209511619,2.9951896275265946,7734.431660696,2019
+2001,37,"(35,40]",College,350.5487375669472,115.36049209511619,3.0387243604848297,7806.722175268024,2019
+2001,37,"(35,40]",College,420.8593726090283,115.36049209511619,3.6482106219001253,7574.5021417804655,2019
+2001,37,"(35,40]",College,341.34139250191276,115.36049209511619,2.9589106833947314,7748.246134894876,2019
+2001,24,"(20,25]",College,-33.44777352716144,17.21798389479346,-1.9426068540623795,5424.688950907598,2019
+2001,24,"(20,25]",College,-33.44777352716144,17.21798389479346,-1.9426068540623795,5430.202724320273,2019
+2001,24,"(20,25]",College,-33.61517980107116,17.21798389479346,-1.9523296110897188,5426.521123845522,2019
+2001,24,"(20,25]",College,-33.44777352716144,17.21798389479346,-1.9426068540623795,5378.590436817865,2019
+2001,24,"(20,25]",College,-33.61517980107116,17.21798389479346,-1.9523296110897188,5405.295505864723,2019
+2001,38,"(35,40]",HS,4913.374139250191,199.7286131796041,24.600251616586775,8.393496450853895,2019
+2001,38,"(35,40]",HS,4913.374139250191,199.7286131796041,24.600251616586775,8.589743837166608,2019
+2001,38,"(35,40]",HS,4913.374139250191,198.00681479012476,24.814166848035356,8.731371539106657,2019
+2001,38,"(35,40]",HS,4914.043764345831,198.00681479012476,24.81754867656661,8.485858762189514,2019
+2001,38,"(35,40]",HS,4913.374139250191,199.7286131796041,24.600251616586775,8.513089850295529,2019
+2001,37,"(35,40]",College,-30.133129303749044,103.30790336876075,-0.2916827108201771,4635.063825595308,2019
+2001,37,"(35,40]",College,-30.133129303749044,103.30790336876075,-0.2916827108201771,4715.386941402952,2019
+2001,37,"(35,40]",College,-30.133129303749044,103.30790336876075,-0.2916827108201771,4943.432983353615,2019
+2001,37,"(35,40]",College,-30.133129303749044,103.30790336876075,-0.2916827108201771,4766.412617101691,2019
+2001,37,"(35,40]",College,-30.133129303749044,103.30790336876075,-0.2916827108201771,4670.819530611052,2019
+2001,45,"(40,45]",HS,70.21019127773528,29.27057262114888,2.398661351332986,6166.230354046939,2019
+2001,45,"(40,45]",HS,67.68235654169855,29.27057262114888,2.3123003918548553,6413.398146960969,2019
+2001,45,"(40,45]",HS,70.47804131599082,29.27057262114888,2.407812181476364,6549.625920203582,2019
+2001,45,"(40,45]",HS,73.35742922723796,29.27057262114888,2.506183605517679,6302.135801977558,2019
+2001,45,"(40,45]",HS,70.24367253251722,29.27057262114888,2.3998052051009084,6354.013722812464,2019
+2001,52,"(50,55]",NoHS,4.35256312165264,20.661580673752148,0.21065973559235018,5962.159389506467,2019
+2001,52,"(50,55]",NoHS,4.519969395562356,20.661580673752148,0.21876203311513281,6001.484998434543,2019
+2001,52,"(50,55]",NoHS,4.35256312165264,20.661580673752148,0.21065973559235018,5999.479604837664,2019
+2001,52,"(50,55]",NoHS,4.35256312165264,20.661580673752148,0.21065973559235018,5965.0281156653355,2019
+2001,52,"(50,55]",NoHS,4.35256312165264,20.661580673752148,0.21065973559235018,5968.5061006773885,2019
+2001,49,"(45,50]",College,21.429677123182863,51.653951684380374,0.41487004235656527,5565.442818158075,2019
+2001,49,"(45,50]",College,19.755614384085693,51.653951684380374,0.38246085226543447,5677.347559156755,2019
+2001,49,"(45,50]",College,19.755614384085693,51.653951684380374,0.38246085226543447,5864.38345535735,2019
+2001,49,"(45,50]",College,19.755614384085693,51.653951684380374,0.38246085226543447,5722.905779565648,2019
+2001,49,"(45,50]",College,18.081551644988522,51.653951684380374,0.35005166217430367,5573.871395955645,2019
+2001,46,"(45,50]",HS,373.9856159143076,189.39782284272803,1.9746035635523507,8624.310323383193,2019
+2001,46,"(45,50]",HS,372.31155317521046,189.39782284272803,1.965764693527497,7828.429299634221,2019
+2001,46,"(45,50]",HS,370.6374904361133,189.39782284272803,1.9569258235026432,7312.576561060933,2019
+2001,46,"(45,50]",HS,374.1530221882173,189.39782284272803,1.9754874505548359,8197.793807464512,2019
+2001,46,"(45,50]",HS,374.1530221882173,189.39782284272803,1.9754874505548359,7868.532570025966,2019
+2001,39,"(35,40]",NoHS,19.16801836266259,39.60136295802496,0.48402420853493167,5991.818589440582,2019
+2001,39,"(35,40]",NoHS,18.766243305279268,39.60136295802496,0.4738787229411863,6010.180115695404,2019
+2001,39,"(35,40]",NoHS,18.91690895179801,39.60136295802496,0.47768328003884075,5952.7772356045425,2019
+2001,39,"(35,40]",NoHS,18.849946442234124,39.60136295802496,0.4759923657732165,5994.98035445388,2019
+2001,39,"(35,40]",NoHS,18.91690895179801,39.60136295802496,0.47768328003884075,6060.388411378508,2019
+2001,63,"(60,65]",HS,17.745065034429995,67.15013718969449,0.2642595499738357,6953.333882655827,2019
+2001,63,"(60,65]",HS,17.745065034429995,75.75912913709122,0.2342300556586271,7111.720441761815,2019
+2001,63,"(60,65]",HS,17.745065034429995,77.48092752657055,0.22902494331065765,7008.900681678921,2019
+2001,63,"(60,65]",HS,17.577658760520276,68.87193557917384,0.25522237196765496,7121.485092595234,2019
+2001,63,"(60,65]",HS,17.745065034429995,72.31553235813253,0.24538386783284744,7014.662643428144,2019
+2001,30,"(25,30]",HS,438.6044376434583,196.28501640064542,2.234528369441123,5146.462110715843,2019
+2001,30,"(25,30]",HS,448.6488140780413,196.28501640064542,2.2857007748481717,4655.111097347084,2019
+2001,30,"(25,30]",HS,490.5003825554706,196.28501640064542,2.4989191307108745,4363.361179265872,2019
+2001,30,"(25,30]",HS,420.3571537872992,196.28501640064542,2.141565166284985,5369.012853443465,2019
+2001,30,"(25,30]",HS,490.5003825554706,196.28501640064542,2.4989191307108745,4681.533338471446,2019
+2001,46,"(45,50]",HS,108.31185921958684,56.819346852818406,1.9062496353601477,5663.354405628823,2019
+2001,46,"(45,50]",HS,108.47926549349656,56.819346852818406,1.9091959253684323,5752.980612615017,2019
+2001,46,"(45,50]",HS,108.31185921958684,56.819346852818406,1.9062496353601477,5764.8277704513985,2019
+2001,46,"(45,50]",HS,108.31185921958684,56.819346852818406,1.9062496353601477,5723.520122327091,2019
+2001,46,"(45,50]",HS,108.31185921958684,56.819346852818406,1.9062496353601477,5735.954037738583,2019
+2001,39,"(35,40]",College,2096.7468400918133,485.54714583317553,4.318317712472384,3515.5642545903174,2019
+2001,39,"(35,40]",College,2100.0949655700074,487.26894422265485,4.30992984566318,3581.8790071325675,2019
+2001,39,"(35,40]",College,2098.4209028309106,487.26894422265485,4.306494242473308,4493.910963120081,2019
+2001,39,"(35,40]",College,2098.4209028309106,487.26894422265485,4.306494242473308,3697.386743443133,2019
+2001,39,"(35,40]",College,2098.4209028309106,487.26894422265485,4.306494242473308,3787.575379881158,2019
+2001,38,"(35,40]",HS,5.8592195868400925,63.706540410735805,0.09197202593429007,5817.282903554331,2019
+2001,38,"(35,40]",HS,6.361438408569243,63.706540410735805,0.09985534244294351,5753.890418563538,2019
+2001,38,"(35,40]",HS,6.361438408569243,63.706540410735805,0.09985534244294351,5773.547448399915,2019
+2001,38,"(35,40]",HS,6.696250956388676,63.706540410735805,0.10511088678204579,5751.485849919221,2019
+2001,38,"(35,40]",HS,7.198469778117827,63.706540410735805,0.11299420329069923,5818.598582075855,2019
+2001,64,"(60,65]",College,2197.5421576128538,203.1722099585628,10.81615521168493,4039.9575706396963,2019
+2001,64,"(60,65]",College,1203.1321499617445,167.01444377949653,7.203761080390142,8306.37552830455,2019
+2001,64,"(60,65]",College,819.9559296097935,173.90163733741394,4.715055833654216,7765.946812186921,2019
+2001,64,"(60,65]",College,1035.0729915837796,179.06703250585196,5.780366028849857,8695.06745408392,2019
+2001,64,"(60,65]",College,980.1637337413925,60.2629436317771,16.264783541448928,8351.102777823337,2019
+2001,51,"(50,55]",College,38.50344299923489,30.992371010628222,1.2423522868266805,5539.737963129745,2019
+2001,51,"(50,55]",College,38.50344299923489,30.992371010628222,1.2423522868266805,5627.407860821344,2019
+2001,51,"(50,55]",College,38.50344299923489,30.992371010628222,1.2423522868266805,5638.996425710762,2019
+2001,51,"(50,55]",College,38.50344299923489,30.992371010628222,1.2423522868266805,5598.59041717024,2019
+2001,51,"(50,55]",College,38.50344299923489,30.992371010628222,1.2423522868266805,5610.752932227908,2019
+2001,42,"(40,45]",HS,201.22234123947973,61.984742021256444,3.2463205407949345,5775.512953685368,2019
+2001,42,"(40,45]",HS,216.45631216526397,61.984742021256444,3.492090232319343,5983.040040446873,2019
+2001,42,"(40,45]",HS,204.5704667176741,61.984742021256444,3.3003358576134865,6057.303859630144,2019
+2001,42,"(40,45]",HS,219.6370313695486,61.984742021256444,3.543404783296967,5904.6890272769615,2019
+2001,42,"(40,45]",HS,202.8964039785769,61.984742021256444,3.2733281992042103,6011.173255052218,2019
+2001,43,"(40,45]",HS,190.3576740627391,108.47329853719879,1.7548804786964203,3628.5629694362224,2019
+2001,43,"(40,45]",HS,150.5652027543994,94.69891142136402,1.5899359400707112,3804.6308959788184,2019
+2001,43,"(40,45]",HS,176.07791889824026,87.81171786344665,2.0051756551677276,3731.4462802927796,2019
+2001,43,"(40,45]",HS,191.07752104055086,101.5861049792814,1.8809415035601702,3703.43598682879,2019
+2001,43,"(40,45]",HS,218.71629686304513,111.91689531615746,1.954274162495187,3639.7241981448738,2019
+2001,28,"(25,30]",HS,10.37918898240245,86.08991947396729,0.12056218713900657,7673.315381159713,2019
+2001,28,"(25,30]",HS,10.37918898240245,86.08991947396729,0.12056218713900657,7719.336587444227,2019
+2001,28,"(25,30]",HS,10.37918898240245,86.08991947396729,0.12056218713900657,7771.727354852379,2019
+2001,28,"(25,30]",HS,10.563335883703138,86.08991947396729,0.12270119368502119,7643.241125076583,2019
+2001,28,"(25,30]",HS,10.37918898240245,86.08991947396729,0.12056218713900657,7700.407143978087,2019
+2001,58,"(55,60]",HS,-8.872532517214998,56.819346852818406,-0.15615337043908475,4662.398275163703,2019
+2001,58,"(55,60]",HS,-8.872532517214998,56.819346852818406,-0.15615337043908475,4774.035939161796,2019
+2001,58,"(55,60]",HS,-8.872532517214998,56.819346852818406,-0.15615337043908475,4690.766125129508,2019
+2001,58,"(55,60]",HS,-8.872532517214998,56.819346852818406,-0.15615337043908475,4743.863044536621,2019
+2001,58,"(55,60]",HS,-8.872532517214998,56.819346852818406,-0.15615337043908475,4695.214769200962,2019
+2001,39,"(35,40]",HS,307.8601377199694,117.08229048459552,2.6294338490113023,6695.66183770876,2019
+2001,39,"(35,40]",HS,306.0186687069625,117.08229048459552,2.6137058597023715,6944.157789687202,2019
+2001,39,"(35,40]",HS,306.1860749808722,117.08229048459552,2.615135676912274,7009.061943205919,2019
+2001,39,"(35,40]",HS,306.0186687069625,117.08229048459552,2.6137058597023715,6800.569241323426,2019
+2001,39,"(35,40]",HS,307.8601377199694,117.08229048459552,2.6294338490113023,6956.560755131456,2019
+2001,33,"(30,35]",HS,83.0335118592196,70.59373396865318,1.176216459892747,6555.688767294474,2019
+2001,33,"(30,35]",HS,83.2009181331293,70.59373396865318,1.1785878640457563,6572.927002565787,2019
+2001,33,"(30,35]",HS,83.2009181331293,70.59373396865318,1.1785878640457563,6629.648785000418,2019
+2001,33,"(30,35]",HS,83.2009181331293,70.59373396865318,1.1785878640457563,6529.671237476172,2019
+2001,33,"(30,35]",HS,83.2009181331293,70.59373396865318,1.1785878640457563,6568.513697217616,2019
+2001,58,"(55,60]",College,1443.8791124713084,318.532702053679,4.532906992475726,3618.1796473370987,2019
+2001,58,"(55,60]",College,1397.0053557765875,320.25450044315835,4.362172440491716,3683.0367753968253,2019
+2001,58,"(55,60]",College,1398.6794185156848,318.532702053679,4.391007295319964,4624.772755069706,2019
+2001,58,"(55,60]",College,1398.6794185156848,318.532702053679,4.391007295319964,3807.4175805312016,2019
+2001,58,"(55,60]",College,1405.3756694720735,320.25450044315835,4.388308884113596,3898.406074348768,2019
+2001,50,"(45,50]",College,43873.83626625861,817.8542350026893,53.64505603631721,1449.8473079898063,2019
+2001,50,"(45,50]",College,43873.83626625861,817.8542350026893,53.64505603631721,1499.9110352301152,2019
+2001,50,"(45,50]",College,43873.83626625861,817.8542350026893,53.64505603631721,1486.94076987342,2019
+2001,50,"(45,50]",College,43873.83626625861,817.8542350026893,53.64505603631721,1444.8433514020944,2019
+2001,50,"(45,50]",College,43873.83626625861,817.8542350026893,53.64505603631721,1435.8447710207934,2019
+2001,49,"(45,50]",HS,435.0889058913543,132.5784759899096,3.2817461706564526,6340.248708245827,2019
+2001,49,"(45,50]",HS,415.8371843917368,201.45041156908349,2.0642161073427916,6676.89138213298,2019
+2001,49,"(45,50]",HS,359.0864575363428,303.0365165483649,1.1849610127069694,6702.899691892786,2019
+2001,49,"(45,50]",HS,389.38699311400154,308.2019117168029,1.2634152427704506,6480.804768136668,2019
+2001,49,"(45,50]",HS,404.11874521805663,225.5555890217943,1.7916591957249557,6609.213044876551,2019
+2001,53,"(50,55]",HS,410.3127773527161,117.08229048459552,3.5044819814718338,5671.650169594283,2019
+2001,53,"(50,55]",HS,410.3127773527161,117.08229048459552,3.5044819814718338,5965.992878544412,2019
+2001,53,"(50,55]",HS,410.3127773527161,117.08229048459552,3.5044819814718338,6007.423830874214,2019
+2001,53,"(50,55]",HS,410.1453710788064,117.08229048459552,3.503052164261931,5835.617160882661,2019
+2001,53,"(50,55]",HS,410.4801836266259,117.08229048459552,3.505911798681737,5922.710500904884,2019
+2001,59,"(55,60]",HS,220261.95899005356,2307.209841902323,95.46680799889656,12.741347796184815,2019
+2001,59,"(55,60]",HS,239069.88645753634,2307.209841902323,103.61861418743787,13.446065715628222,2019
+2001,59,"(55,60]",HS,229156.2543228768,2307.209841902323,99.32180860234828,13.629371123236291,2019
+2001,59,"(55,60]",HS,226549.57123182862,2307.209841902323,98.19200972419382,13.433686857337898,2019
+2001,59,"(55,60]",HS,225999.8090283091,2307.209841902323,97.95372961913574,13.82447659277727,2019
+2001,70,"(65,70]",College,139049.32517214995,6938.847509601764,20.03925363394105,12.741347796184815,2019
+2001,70,"(65,70]",College,121552.02142310636,6938.847509601764,17.5176095533021,13.446065715628222,2019
+2001,70,"(65,70]",College,128268.3611323642,6938.847509601764,18.48554258540347,13.629371123236291,2019
+2001,70,"(65,70]",College,127034.57689364959,6938.847509601764,18.307734348948156,13.433686857337898,2019
+2001,70,"(65,70]",College,126818.79020657996,6921.6295257069705,18.32210027069121,13.82447659277727,2019
+2001,46,"(45,50]",HS,2.343687834736037,27.548774231669533,0.08507412398921833,4077.053890623965,2019
+2001,46,"(45,50]",HS,2.343687834736037,34.43596778958692,0.06805929919137466,4146.556723190173,2019
+2001,46,"(45,50]",HS,2.343687834736037,39.60136295802496,0.05918199929684753,4145.563814296108,2019
+2001,46,"(45,50]",HS,2.5110941086457537,65.42833880021514,0.03837930405528646,4082.884996456505,2019
+2001,46,"(45,50]",HS,2.5110941086457537,27.548774231669533,0.09115084713130535,4130.56619401627,2019
+2001,39,"(35,40]",College,246.94099464422342,318.532702053679,0.7752453454609789,6473.4221747696465,2019
+2001,39,"(35,40]",College,478.1123182861515,206.6158067375215,2.3140161725067387,6713.670150976915,2019
+2001,39,"(35,40]",College,440.64679418515686,724.8771219708045,0.6078917113387731,5675.968348632633,2019
+2001,39,"(35,40]",College,451.6453863810253,320.25450044315835,1.4102702249493833,6350.569621185538,2019
+2001,39,"(35,40]",College,420.10604437643457,487.26894422265485,0.8621646204985094,6106.625440706119,2019
+2001,74,"(70,75]",College,1679.41973986228,82.64632269500859,20.320562187139007,8385.372782680959,2019
+2001,74,"(70,75]",College,1316.3155317521039,82.64632269500859,15.927091355410088,7665.316530012981,2019
+2001,74,"(70,75]",College,1418.6007651109412,82.64632269500859,17.16471730201515,7050.668693375454,2019
+2001,74,"(70,75]",College,1295.557153787299,82.64632269500859,15.675920132203824,7876.279463778226,2019
+2001,74,"(70,75]",College,1323.3465952563122,82.64632269500859,16.012165479399307,7634.929270431712,2019
+2001,47,"(45,50]",HS,89.39495026778883,63.706540410735805,1.4032303385403113,5445.7718850601395,2019
+2001,47,"(45,50]",HS,89.22754399387911,63.706540410735805,1.4006025663707602,5734.921300663009,2019
+2001,47,"(45,50]",HS,89.56235654169855,63.706540410735805,1.4058581107098624,5757.260380498106,2019
+2001,47,"(45,50]",HS,89.56235654169855,63.706540410735805,1.4058581107098624,5566.498417164925,2019
+2001,47,"(45,50]",HS,89.56235654169855,63.706540410735805,1.4058581107098624,5676.790964895682,2019
+2001,39,"(35,40]",HS,92.14041315990819,89.53351625292598,1.0291164361245224,4754.5594947930185,2019
+2001,39,"(35,40]",HS,49.05003825554706,87.81171786344665,0.5585819233353718,4756.500080952948,2019
+2001,39,"(35,40]",HS,119.09282325937262,86.08991947396729,1.383353869849827,4723.073958662777,2019
+2001,39,"(35,40]",HS,75.86852333588371,87.81171786344665,0.8639908793706161,4774.510698947319,2019
+2001,39,"(35,40]",HS,30.36749808722265,86.08991947396729,0.35274162495186756,4799.542286547817,2019
+2001,34,"(30,35]",HS,19.38564651874522,53.37575007385973,0.36319202056963984,4455.874640538147,2019
+2001,34,"(30,35]",HS,19.218240244835503,53.37575007385973,0.36005564733501433,4478.7196685930685,2019
+2001,34,"(30,35]",HS,19.218240244835503,53.37575007385973,0.36005564733501433,4491.575046196762,2019
+2001,34,"(30,35]",HS,19.218240244835503,53.37575007385973,0.36005564733501433,4485.458707458021,2019
+2001,34,"(30,35]",HS,19.38564651874522,53.37575007385973,0.36319202056963984,4457.1984806277305,2019
+2001,51,"(50,55]",College,250.07149196633515,65.42833880021514,3.8220669598524615,8303.38411229447,2019
+2001,51,"(50,55]",College,276.1199081866871,65.42833880021514,4.2201882739193,8654.94667155149,2019
+2001,51,"(50,55]",College,276.47146136189747,65.42833880021514,4.22556137648704,8694.23487901698,2019
+2001,51,"(50,55]",College,298.652792654935,158.40545183209983,1.885369406171,8457.693157258711,2019
+2001,51,"(50,55]",College,266.9125631216526,65.42833880021514,4.079464159049915,8570.306142571808,2019
+2001,75,"(70,75]",NoHS,74.49579188982403,43.04495973698364,1.7306507508663846,9191.965917568854,2019
+2001,75,"(70,75]",NoHS,74.3283856159143,43.04495973698364,1.7267616480554484,9125.937215372576,2019
+2001,75,"(70,75]",NoHS,74.3283856159143,43.04495973698364,1.7267616480554484,9204.180927468293,2019
+2001,75,"(70,75]",NoHS,74.3283856159143,43.04495973698364,1.7267616480554484,9235.548730964152,2019
+2001,75,"(70,75]",NoHS,74.3283856159143,43.04495973698364,1.7267616480554484,9191.594061954967,2019
+2001,65,"(60,65]",HS,33020.770344299926,609.5166298756884,54.175339483410895,366.5238559756359,2019
+2001,65,"(60,65]",HS,39455.54944146901,1322.3411631201375,29.837647455798358,344.1620288315377,2019
+2001,65,"(60,65]",HS,47760.25661820964,609.5166298756884,78.35759399698479,361.075213886859,2019
+2001,65,"(60,65]",HS,37262.15895944912,917.7185415924914,40.60303597526659,376.57100058552925,2019
+2001,65,"(60,65]",HS,46797.6035807192,2272.7738741127364,20.590523374873104,361.9683243107386,2019
+2001,38,"(35,40]",HS,43.37998775822494,53.37575007385973,0.8127283962885213,6409.685640104913,2019
+2001,38,"(35,40]",HS,43.714800306044374,53.37575007385973,0.8190011427577725,6669.898833021926,2019
+2001,38,"(35,40]",HS,43.37161744452946,53.37575007385973,0.8125715776267902,6719.940538076531,2019
+2001,38,"(35,40]",HS,43.37998775822494,53.37575007385973,0.8127283962885213,6510.435030325263,2019
+2001,38,"(35,40]",HS,43.37998775822494,53.37575007385973,0.8127283962885213,6669.905150448273,2019
+2001,46,"(45,50]",HS,45.032287681713846,39.60136295802496,1.1371398436322846,8037.800492299936,2019
+2001,46,"(45,50]",HS,36.661973986228006,39.60136295802496,0.9257755604292578,8406.262302885745,2019
+2001,46,"(45,50]",HS,53.402601377199694,39.60136295802496,1.3485041268353115,8428.994601097616,2019
+2001,46,"(45,50]",HS,50.22188217291507,39.60136295802496,1.2681856992181613,8187.579734687276,2019
+2001,46,"(45,50]",HS,41.68416220351951,39.60136295802496,1.052594130351074,8309.220546797795,2019
+2001,37,"(35,40]",HS,64.78622800306044,60.2629436317771,1.0750591341657958,8323.44384963737,2019
+2001,37,"(35,40]",HS,102.11782708492731,60.2629436317771,1.6945376533362673,8326.78973463026,2019
+2001,37,"(35,40]",HS,142.46273909716908,60.2629436317771,2.3640189229330546,8772.555883466075,2019
+2001,37,"(35,40]",HS,30.133129303749044,60.2629436317771,0.5000275042631608,8313.190294333894,2019
+2001,37,"(35,40]",HS,57.58775822494262,60.2629436317771,0.9556081192584852,8339.926059835047,2019
+2001,77,"(75,80]",College,107293.35944912012,4252.842022013984,25.228625679895362,10.33298516436616,2019
+2001,77,"(75,80]",College,34413.87513389441,950.4327109925989,36.208639218607864,10.435442962152202,2019
+2001,77,"(75,80]",College,17343.457383320583,1170.822904845955,14.813049276314302,11.096688211252678,2019
+2001,77,"(75,80]",College,30262.199540933434,1582.3327199315188,19.125054522188698,11.208984887044869,2019
+2001,77,"(75,80]",College,15776.702065799542,950.4327109925989,16.599493981349717,10.445347271925723,2019
+2001,81,"(80,85]",NoHS,187.41132364192808,49.93215329490103,3.753319480036647,7151.521231837697,2019
+2001,81,"(80,85]",NoHS,187.21043611323643,48.21035490542169,3.88319970845481,7389.482317875745,2019
+2001,81,"(80,85]",NoHS,187.26065799540933,48.21035490542169,3.8842414324220247,7547.37028953594,2019
+2001,81,"(80,85]",NoHS,187.31087987758227,49.93215329490103,3.7513078751344393,7387.216172891205,2019
+2001,81,"(80,85]",NoHS,187.39458301453712,49.93215329490103,3.752984212552946,7485.525009143933,2019
+2001,24,"(20,25]",HS,91.73863810252487,86.08991947396729,1.0656141701963806,6493.220024103065,2019
+2001,24,"(20,25]",HS,87.2186687069625,86.08991947396729,1.0131112822487485,6565.664644108276,2019
+2001,24,"(20,25]",HS,92.91048201989288,86.08991947396729,1.0792260300346554,6610.553632864937,2019
+2001,24,"(20,25]",HS,89.22754399387911,86.08991947396729,1.0364458991143628,6411.2509755462825,2019
+2001,24,"(20,25]",HS,88.72532517214995,86.08991947396729,1.030612244897959,6542.5496763669435,2019
+2001,55,"(50,55]",College,6122.717061973986,268.60054875877796,22.794879199865722,983.2938419334308,2019
+2001,55,"(50,55]",College,5995.320887528692,268.60054875877796,22.320583167955135,988.3403355364848,2019
+2001,55,"(50,55]",College,6124.223718439174,268.60054875877796,22.800488482766113,992.6177338040918,2019
+2001,55,"(50,55]",College,5995.488293802601,268.60054875877796,22.321206421610732,986.950589024905,2019
+2001,55,"(50,55]",College,5869.766182096404,268.60054875877796,21.853142926256133,979.8991214082192,2019
+2001,75,"(70,75]",NoHS,2269.3594491201225,91.25531464240532,24.868244200492587,3476.8115730430036,2019
+2001,75,"(70,75]",NoHS,2269.3594491201225,91.25531464240532,24.868244200492587,3515.754695536766,2019
+2001,75,"(70,75]",NoHS,2269.3594491201225,91.25531464240532,24.868244200492587,4465.15535742903,2019
+2001,75,"(70,75]",NoHS,2269.3594491201225,91.25531464240532,24.868244200492587,3670.573950388506,2019
+2001,75,"(70,75]",NoHS,2269.3594491201225,91.25531464240532,24.868244200492587,3758.335749233418,2019
+2001,43,"(40,45]",HS,21.7628156082632,129.1348792109509,0.16852778847388017,4150.1734223431695,2019
+2001,43,"(40,45]",HS,21.7628156082632,129.1348792109509,0.16852778847388017,4181.6452225723615,2019
+2001,43,"(40,45]",HS,21.7628156082632,129.1348792109509,0.16852778847388017,4243.299916167811,2019
+2001,43,"(40,45]",HS,21.7628156082632,129.1348792109509,0.16852778847388017,4165.611124073518,2019
+2001,43,"(40,45]",HS,21.7628156082632,129.1348792109509,0.16852778847388017,4167.797781498556,2019
+2001,49,"(45,50]",NoHS,1545.9969395562357,49.93215329490103,30.96195211981995,291.0107675206736,2019
+2001,49,"(45,50]",NoHS,1137.5256312165266,49.93215329490103,22.781425517506943,292.4046915671419,2019
+2001,49,"(45,50]",NoHS,1628.0260137719968,49.93215329490103,32.60476278995658,598.3194637687418,2019
+2001,49,"(45,50]",NoHS,1505.8194338179035,48.21035490542169,31.234356950327292,292.58451333200617,2019
+2001,49,"(45,50]",NoHS,1527.4148431522572,55.097548463339066,27.722010974201,309.4071342538417,2019
+2001,35,"(30,35]",HS,14.489013006885997,60.2629436317771,0.24042989163320314,4753.443231276478,2019
+2001,35,"(30,35]",HS,14.656419280795715,60.2629436317771,0.24320782221244294,4755.383361830469,2019
+2001,35,"(30,35]",HS,14.656419280795715,60.2629436317771,0.24320782221244294,4791.051827467316,2019
+2001,35,"(30,35]",HS,14.497383320581484,60.2629436317771,0.24056878816216515,4773.389751337259,2019
+2001,35,"(30,35]",HS,14.472272379495028,60.2629436317771,0.2401520985752792,4798.4154620845975,2019
+2001,76,"(75,80]",HS,292.123947972456,48.21035490542169,6.059361075966774,8898.301505361665,2019
+2001,76,"(75,80]",HS,290.9018821729151,49.93215329490103,5.8259430642784125,9226.06436570877,2019
+2001,76,"(75,80]",HS,290.4498852333588,48.21035490542169,6.024636943726277,9417.297789924702,2019
+2001,76,"(75,80]",HS,291.2869166029074,48.21035490542169,6.041999009846525,9157.962625351774,2019
+2001,76,"(75,80]",HS,290.8851415455241,48.21035490542169,6.033665218108807,9293.592454146437,2019
+2001,25,"(20,25]",College,172.42846212700843,111.91689531615746,1.5406830366399102,6411.261688170629,2019
+2001,25,"(20,25]",College,172.42846212700843,111.91689531615746,1.5406830366399102,6494.455349903613,2019
+2001,25,"(20,25]",College,172.42846212700843,111.91689531615746,1.5406830366399102,6546.299704060806,2019
+2001,25,"(20,25]",College,172.59586840091814,111.91689531615746,1.542178845413347,6408.292704993657,2019
+2001,25,"(20,25]",College,172.42846212700843,111.91689531615746,1.5406830366399102,6487.756427809881,2019
+2001,24,"(20,25]",NoHS,21.29407804131599,58.54114524229776,0.3637454981992797,6787.6962163332555,2019
+2001,24,"(20,25]",NoHS,21.277337413925018,58.54114524229776,0.36345953475729914,6786.859796205681,2019
+2001,24,"(20,25]",NoHS,21.46148431522571,58.54114524229776,0.3666051326190854,6802.858937740796,2019
+2001,24,"(20,25]",NoHS,21.46148431522571,58.54114524229776,0.3666051326190854,6774.398565557492,2019
+2001,24,"(20,25]",NoHS,21.46148431522571,58.54114524229776,0.3666051326190854,6775.394860304875,2019
+2001,56,"(55,60]",HS,0,43.04495973698364,0,6713.741802684456,2019
+2001,56,"(55,60]",HS,0,43.04495973698364,0,6966.771458326586,2019
+2001,56,"(55,60]",HS,0,43.04495973698364,0,7127.339720034087,2019
+2001,56,"(55,60]",HS,0,43.04495973698364,0,7020.941688431702,2019
+2001,56,"(55,60]",HS,0,41.323161347504296,0,6764.035643318933,2019
+2001,19,"(15,20]",HS,201.74130068859986,37.87956456854561,5.325861133475689,6650.885753437833,2019
+2001,19,"(15,20]",HS,203.415363427697,37.87956456854561,5.370055483599957,6716.764705219702,2019
+2001,19,"(15,20]",HS,203.415363427697,37.87956456854561,5.370055483599957,7022.870440463828,2019
+2001,19,"(15,20]",HS,205.08942616679417,37.87956456854561,5.414249833724226,6822.040118094279,2019
+2001,19,"(15,20]",HS,205.08942616679417,37.87956456854561,5.414249833724226,6631.396610953202,2019
+2001,46,"(45,50]",HS,82.79914307574599,49.93215329490103,1.6582329743868922,6365.871142213692,2019
+2001,46,"(45,50]",HS,92.03996939556235,86.08991947396729,1.0691143627262225,6635.400037949505,2019
+2001,46,"(45,50]",HS,80.48893649579189,46.488556515942335,1.7313709550906318,6665.520728833064,2019
+2001,46,"(45,50]",HS,125.05248661055853,55.097548463339066,2.269656093569503,6484.173690070767,2019
+2001,46,"(45,50]",HS,85.87941851568476,51.653951684380374,1.6625914516750093,6570.509543470796,2019
+2001,49,"(45,50]",HS,111.32517214996174,80.92452430552926,1.3756666857831048,6260.281681535433,2019
+2001,49,"(45,50]",HS,124.7176740627391,80.92452430552926,1.5411604224186664,6631.976659678277,2019
+2001,49,"(45,50]",HS,116.34736036725324,80.92452430552926,1.4377268370214402,6679.8165057901915,2019
+2001,49,"(45,50]",HS,123.04361132364194,80.92452430552926,1.5204737053392212,6460.931804612425,2019
+2001,49,"(45,50]",HS,111.32517214996174,80.92452430552926,1.3756666857831048,6505.289693842932,2019
+2001,65,"(60,65]",College,2831.1749043611326,1091.6201789299055,2.593553104832195,22.582975177978504,2019
+2001,65,"(60,65]",College,3319.833817903596,1711.4675991424697,1.9397584970740887,20.878140228130075,2019
+2001,65,"(60,65]",College,11490.934047436878,1239.6948404251289,9.269163404355453,1.558316690187869,2019
+2001,65,"(60,65]",College,3491.7600612088754,1739.0163733741392,2.007893723527147,43.27034242655381,2019
+2001,65,"(60,65]",College,5760.449885233358,1134.6651386668889,5.076784056308697,32.134426078314576,2019
+2001,71,"(70,75]",HS,0.8370313695485845,22.383379063231494,0.037395219335920146,5764.311668613198,2019
+2001,71,"(70,75]",HS,0.8370313695485845,20.661580673752148,0.04051148761391349,6164.775525145644,2019
+2001,71,"(70,75]",HS,0.8370313695485845,20.661580673752148,0.04051148761391349,5957.88888158726,2019
+2001,71,"(70,75]",HS,0.8370313695485845,22.383379063231494,0.037395219335920146,5984.278783137443,2019
+2001,71,"(70,75]",HS,0.8370313695485845,20.661580673752148,0.04051148761391349,5988.777605432383,2019
+2001,29,"(25,30]",HS,34.31828615149197,61.984742021256444,0.5536569973901511,7015.443542207831,2019
+2001,29,"(25,30]",HS,32.30941086457536,61.984742021256444,0.5212478072990202,7033.890706282566,2019
+2001,29,"(25,30]",HS,34.15087987758225,63.706540410735805,0.5360655225884335,7094.590424711659,2019
+2001,29,"(25,30]",HS,32.644223412394794,61.984742021256444,0.5266493389808754,6987.601385872009,2019
+2001,29,"(25,30]",HS,32.644223412394794,61.984742021256444,0.5266493389808754,7029.167892920976,2019
+2001,38,"(35,40]",HS,703.3574598316757,129.1348792109509,5.446688486715442,7268.453122182393,2019
+2001,38,"(35,40]",HS,702.6878347360367,129.1348792109509,5.441503016300861,6607.7024356480515,2019
+2001,38,"(35,40]",HS,740.0194338179036,130.8566776004303,5.65519045254646,6176.338154337436,2019
+2001,38,"(35,40]",HS,723.2788064269319,132.5784759899096,5.455476848911582,6910.409474456201,2019
+2001,38,"(35,40]",HS,710.8907421576129,130.8566776004303,5.432590489025799,6644.960187765484,2019
+2001,59,"(55,60]",HS,296.94524866105587,129.1348792109509,2.2994968553459123,7270.680150296981,2019
+2001,59,"(55,60]",HS,296.77784238714617,129.1348792109509,2.2982004877422675,7599.173624045509,2019
+2001,59,"(55,60]",HS,296.94524866105587,129.1348792109509,2.2994968553459123,7642.312791702019,2019
+2001,59,"(55,60]",HS,296.94524866105587,129.1348792109509,2.2994968553459123,7457.152395481532,2019
+2001,59,"(55,60]",HS,296.94524866105587,129.1348792109509,2.2994968553459123,7519.731960547852,2019
+2001,71,"(70,75]",HS,922.9107880642694,63.706540410735805,14.486907970735462,10971.175988818257,2019
+2001,71,"(70,75]",HS,924.5848508033665,63.706540410735805,14.513185692430973,10804.487547092112,2019
+2001,71,"(70,75]",HS,924.5848508033665,63.706540410735805,14.513185692430973,10408.773231555759,2019
+2001,71,"(70,75]",HS,926.2589135424637,63.706540410735805,14.539463414126486,10759.25308507739,2019
+2001,71,"(70,75]",HS,924.5848508033665,63.706540410735805,14.513185692430973,11386.752961154238,2019
+2001,44,"(40,45]",HS,254.70864575363427,160.12725022157917,1.5906639588275966,7811.663093913793,2019
+2001,44,"(40,45]",HS,251.0759296097934,160.12725022157917,1.567977525763805,8092.35360532678,2019
+2001,44,"(40,45]",HS,251.52792654934964,161.84904861105852,1.5540896205933195,8192.799044576795,2019
+2001,44,"(40,45]",HS,253.2019892884468,161.84904861105852,1.564432979133042,7986.380036769617,2019
+2001,44,"(40,45]",HS,253.03458301453713,161.84904861105852,1.5633986432790699,8130.405150879202,2019
+2001,34,"(30,35]",NoHS,129.94074980872227,68.87193557917384,1.886701001155179,6412.185885670695,2019
+2001,34,"(30,35]",NoHS,120.41533282325938,68.87193557917384,1.7483947824412784,6429.0467789839995,2019
+2001,34,"(30,35]",NoHS,112.02827850038256,68.87193557917384,1.6266172506738543,6484.526931512281,2019
+2001,34,"(30,35]",NoHS,117.21787299158377,68.87193557917384,1.7019686176357334,6386.737875034008,2019
+2001,34,"(30,35]",NoHS,124.43308339709257,68.87193557917384,1.8067313246053136,6424.730080118754,2019
+2001,71,"(70,75]",College,6013.233358837032,203.1722099585628,29.596731561188598,3687.287979209405,2019
+2001,71,"(70,75]",College,6013.233358837032,203.1722099585628,29.596731561188598,3633.9889219487354,2019
+2001,71,"(70,75]",College,6013.233358837032,203.1722099585628,29.596731561188598,3732.726985571312,2019
+2001,71,"(70,75]",College,6014.907421576128,203.1722099585628,29.604971185788035,3619.162569798528,2019
+2001,71,"(70,75]",College,6013.233358837032,203.1722099585628,29.596731561188598,3597.716146931495,2019
+2001,21,"(20,25]",HS,-0.703106350420811,17.21798389479346,-0.0408355795148248,5304.8158465539445,2019
+2001,21,"(20,25]",HS,-0.7198469778117828,17.21798389479346,-0.04180785521755872,5304.162155727821,2019
+2001,21,"(20,25]",HS,-0.703106350420811,17.21798389479346,-0.0408355795148248,5316.666029920436,2019
+2001,21,"(20,25]",HS,-0.703106350420811,17.21798389479346,-0.0408355795148248,5294.423279428227,2019
+2001,21,"(20,25]",HS,-0.703106350420811,17.21798389479346,-0.0408355795148248,5295.20191771658,2019
+2001,56,"(55,60]",College,9207.67987758225,668.0577751179861,13.78275984581734,309.242546203524,2019
+2001,56,"(55,60]",College,9704.876511094108,668.0577751179861,14.527001814147171,303.1006106689578,2019
+2001,56,"(55,60]",College,9318.670237184393,668.0577751179861,13.948898709454607,312.65062284978126,2019
+2001,56,"(55,60]",College,10832.69257842387,668.0577751179861,16.21520320830141,304.66808352753003,2019
+2001,56,"(55,60]",College,9375.253557765876,668.0577751179861,14.03359695366184,307.38223852495236,2019
+2001,32,"(30,35]",College,83.53573068094873,77.48092752657055,1.0781457236982843,9893.556945139673,2019
+2001,32,"(30,35]",College,81.86166794185158,77.48092752657055,1.056539596970864,10035.414950690309,2019
+2001,32,"(30,35]",College,83.53573068094873,77.48092752657055,1.0781457236982843,10086.05129487035,2019
+2001,32,"(30,35]",College,83.53573068094873,77.48092752657055,1.0781457236982843,10038.314147768306,2019
+2001,32,"(30,35]",College,83.53573068094873,77.48092752657055,1.0781457236982843,9810.642959249708,2019
+2001,35,"(30,35]",HS,51.05891354246366,137.74387115834767,0.3706801116673084,6323.6866566447925,2019
+2001,35,"(30,35]",HS,51.05891354246366,137.74387115834767,0.3706801116673084,6491.38939417879,2019
+2001,35,"(30,35]",HS,51.05891354246366,137.74387115834767,0.3706801116673084,6556.265655610175,2019
+2001,35,"(30,35]",HS,51.226319816373376,137.74387115834767,0.37189545629572585,6400.239845018252,2019
+2001,35,"(30,35]",HS,51.05891354246366,137.74387115834767,0.3706801116673084,6505.327463331051,2019
+2001,64,"(60,65]",College,15423.140015302219,1687.3624216897588,9.140383723762898,1377.2768080910696,2019
+2001,64,"(60,65]",College,16551.458301453713,1687.3624216897588,9.809071298908476,1403.580446927317,2019
+2001,64,"(60,65]",College,17974.411629686303,1687.3624216897588,10.65237165332055,1399.780285171635,2019
+2001,64,"(60,65]",College,15125.156847742923,1687.3624216897588,8.963786708368369,1399.742957227751,2019
+2001,64,"(60,65]",College,16569.87299158378,1687.3624216897588,9.819984597612631,1395.3683720027577,2019
+2001,22,"(20,25]",HS,16.740627390971692,48.21035490542169,0.34724132240497274,5868.551777503491,2019
+2001,22,"(20,25]",HS,16.573221117061973,48.21035490542169,0.34376890918092295,5801.5174198070235,2019
+2001,22,"(20,25]",HS,19.084315225707726,48.21035490542169,0.39585510754166886,5791.619296478081,2019
+2001,22,"(20,25]",HS,21.260596786534048,48.21035490542169,0.44099647945431536,5766.609911339383,2019
+2001,22,"(20,25]",HS,17.242846212700844,48.21035490542169,0.35765856207712193,5804.326441573603,2019
+2001,44,"(40,45]",College,1318.5587758224942,91.25531464240532,14.4491176321009,5701.638295943722,2019
+2001,44,"(40,45]",College,1317.8054475899005,91.25531464240532,14.440862461039952,5188.599556792589,2019
+2001,44,"(40,45]",College,1874.0630145371078,91.25531464240532,20.536480772444257,3222.885508014047,2019
+2001,44,"(40,45]",College,1459.6487834736038,91.25531464240532,15.99521944769364,5423.392806704295,2019
+2001,44,"(40,45]",College,1236.0358530986994,91.25531464240532,13.544809504435452,5211.368394944683,2019
+2001,48,"(45,50]",NoHS,5781.124560061209,344.35967789586914,16.78804149018098,133.65795322180617,2019
+2001,48,"(45,50]",NoHS,12193.53817903596,344.35967789586914,35.40930881786677,131.44636329906768,2019
+2001,48,"(45,50]",NoHS,4687.877888293803,344.35967789586914,13.613318251829035,135.42836405662325,2019
+2001,48,"(45,50]",NoHS,8313.311859219586,344.35967789586914,24.14136262995764,132.48656746638113,2019
+2001,48,"(45,50]",NoHS,4115.68324407039,344.35967789586914,11.951699075856759,133.10231739853282,2019
+2001,87,"(85,90]",HS,3.682938026013772,15.840545183209981,0.2325007115233296,6481.282696604831,2019
+2001,87,"(85,90]",HS,3.682938026013772,16.357084700053786,0.22515858379101392,6516.232405097607,2019
+2001,87,"(85,90]",HS,3.682938026013772,16.012725022157916,0.2300007038725411,6502.563572330637,2019
+2001,87,"(85,90]",HS,3.682938026013772,16.357084700053786,0.22515858379101392,6594.041262724623,2019
+2001,87,"(85,90]",HS,3.682938026013772,16.184904861105853,0.22755388787389702,6526.104047616173,2019
+2001,75,"(70,75]",College,36454.390206579956,1050.297017582401,34.70864869300643,243.00953715394547,2019
+2001,75,"(70,75]",College,44889.99234889059,1050.297017582401,42.7402835554265,233.72853117648705,2019
+2001,75,"(70,75]",College,36477.82708492731,1050.297017582401,34.73096321733147,239.60933067590364,2019
+2001,75,"(70,75]",College,17252.890589135422,1050.297017582401,16.42667769241937,239.58875832244925,2019
+2001,75,"(70,75]",College,26939.85462892119,1050.297017582401,25.649748764337158,243.66319312651004,2019
+2001,81,"(80,85]",HS,661.757000765111,51.653951684380374,12.811352843024004,7904.8566942044035,2019
+2001,81,"(80,85]",HS,661.757000765111,51.653951684380374,12.811352843024004,7132.208385754275,2019
+2001,81,"(80,85]",HS,661.757000765111,51.653951684380374,12.811352843024004,6748.528226938058,2019
+2001,81,"(80,85]",HS,661.757000765111,51.653951684380374,12.811352843024004,7544.123220095959,2019
+2001,81,"(80,85]",HS,661.757000765111,51.653951684380374,12.811352843024004,7250.910860287186,2019
+2001,80,"(75,80]",HS,4.804560061208876,15.66836534426205,0.3066407985545452,5620.534512112145,2019
+2001,80,"(75,80]",HS,3.1974598316755927,20.661580673752148,0.15475388268514953,5605.773000197571,2019
+2001,80,"(75,80]",HS,1.0546595256312166,18.939782284272805,0.05568488115657927,5622.181240815732,2019
+2001,80,"(75,80]",HS,5.022188217291507,9.814250820032271,0.5117240540704862,5629.033805113517,2019
+2001,80,"(75,80]",HS,11.718439173680185,25.826975842190187,0.4537286612758311,5671.034675281452,2019
+2001,31,"(30,35]",HS,336.18527926549353,134.30027437938898,2.5032359823464945,11278.96182332654,2019
+2001,31,"(30,35]",HS,336.35268553940324,134.30027437938898,2.504482489657692,11042.086600875853,2019
+2001,31,"(30,35]",HS,336.35268553940324,134.30027437938898,2.504482489657692,10408.773231555759,2019
+2001,31,"(30,35]",HS,336.35268553940324,134.30027437938898,2.504482489657692,11161.037161086704,2019
+2001,31,"(30,35]",HS,336.5200918133129,134.30027437938898,2.5057289969688887,11386.752961154238,2019
+2001,57,"(55,60]",College,28772.116296863045,2720.4414553773663,10.576267406891107,10.719873855226902,2019
+2001,57,"(55,60]",College,21885.022188217292,3116.455084957616,7.022408984442313,10.523436838855918,2019
+2001,57,"(55,60]",College,23185.76893649579,4459.457828751505,5.199234935469052,11.096688211252678,2019
+2001,57,"(55,60]",College,23724.817138485083,3856.8283924337343,6.151380026404094,11.208984887044869,2019
+2001,57,"(55,60]",College,29160.49885233359,4889.907426121342,5.963405093634584,10.748342561587899,2019
+2001,34,"(30,35]",HS,1.3392501912777353,46.488556515942335,0.02880816896989404,4005.9117608274623,2019
+2001,34,"(30,35]",HS,1.3392501912777353,46.488556515942335,0.02880816896989404,4017.450198542607,2019
+2001,34,"(30,35]",HS,1.3392501912777353,44.76675812646299,0.029916175468736116,4022.2556455360354,2019
+2001,34,"(30,35]",HS,1.3392501912777353,46.488556515942335,0.02880816896989404,4010.4871103009223,2019
+2001,34,"(30,35]",HS,1.3392501912777353,46.488556515942335,0.02880816896989404,4017.065626684008,2019
+2001,80,"(75,80]",College,2499.710482019893,120.5258872635542,20.740029704604215,3137.1760177602046,2019
+2001,80,"(75,80]",College,2500.3801071155317,120.5258872635542,20.745585565762696,3170.0066198902778,2019
+2001,80,"(75,80]",College,2500.5475133894415,120.5258872635542,20.746974531052317,4026.5538490656545,2019
+2001,80,"(75,80]",College,2500.8823259372607,120.5258872635542,20.74975246163155,3310.92963756427,2019
+2001,80,"(75,80]",College,2499.8778882938027,120.5258872635542,20.741418669893836,3392.2080993618815,2019
+2001,69,"(65,70]",College,30967.28128538638,284.09673426409205,109.00259506890234,1449.8473079898063,2019
+2001,69,"(65,70]",College,30892.115868400917,284.09673426409205,108.73801822615839,1499.9110352301152,2019
+2001,69,"(65,70]",College,30866.33530221882,284.09673426409205,108.64727249390322,1486.94076987342,2019
+2001,69,"(65,70]",College,30811.777597551645,284.09673426409205,108.45523331116323,1444.8433514020944,2019
+2001,69,"(65,70]",College,30852.139250191278,284.09673426409205,108.59730341536272,1435.8447710207934,2019
+2001,29,"(25,30]",NoHS,64.41793420045907,20.661580673752148,3.117764086766783,7167.8702693017185,2019
+2001,29,"(25,30]",NoHS,27.036113236419283,43.04495973698364,0.6280901039661149,7236.921064998945,2019
+2001,29,"(25,30]",NoHS,57.202723794950266,24.105177452710844,2.3730471973155836,7438.50124248042,2019
+2001,29,"(25,30]",NoHS,62.45928079571538,20.661580673752148,3.022967205750225,7236.272319383048,2019
+2001,29,"(25,30]",NoHS,23.98931905126243,20.661580673752148,1.1610592350147606,7254.307793392123,2019
+2001,82,"(80,85]",HS,510.1036572302984,27.548774231669533,18.51638308625337,7700.506875548167,2019
+2001,82,"(80,85]",HS,362.4345830145371,27.548774231669533,13.156105602618405,7956.735014953134,2019
+2001,82,"(80,85]",College,403.5495638867636,55.097548463339066,7.3242744031574905,8126.743237248977,2019
+2001,82,"(80,85]",HS,390.09009946442234,25.826975842190187,15.103978950070594,7954.294909628865,2019
+2001,82,"(80,85]",HS,339.08140780413163,60.2629436317771,5.62669838825018,8060.150411549362,2019
+2001,52,"(50,55]",HS,176.26206579954092,158.40545183209983,1.1127272689223349,5481.08585621478,2019
+2001,52,"(50,55]",HS,184.06319816373374,158.40545183209983,1.1619751469086403,5785.4038629845545,2019
+2001,52,"(50,55]",HS,171.85928079571536,158.40545183209983,1.084932865681137,5821.935686400551,2019
+2001,52,"(50,55]",HS,164.6942922723795,158.40545183209983,1.0397009090756892,5618.926306598282,2019
+2001,52,"(50,55]",HS,164.4599234889059,158.40545183209983,1.038221359093268,5711.239174221914,2019
+2001,33,"(30,35]",HS,164.5603672532517,39.60136295802496,4.155421807771508,4668.675296226561,2019
+2001,33,"(30,35]",HS,164.72777352716145,39.60136295802496,4.159649093435569,4676.900585862379,2019
+2001,33,"(30,35]",HS,164.5603672532517,39.60136295802496,4.155421807771508,4698.9091992093,2019
+2001,33,"(30,35]",HS,164.5603672532517,39.60136295802496,4.155421807771508,4699.439307019732,2019
+2001,33,"(30,35]",HS,164.5603672532517,39.60136295802496,4.155421807771508,4662.735956398557,2019
+2001,22,"(20,25]",HS,-57.21946442234124,80.92452430552926,-0.7070719897754364,5132.935626413386,2019
+2001,22,"(20,25]",HS,-37.88403978576894,65.42833880021514,-0.5790157671807552,5074.303947617783,2019
+2001,22,"(20,25]",HS,-28.12425401683244,94.69891142136402,-0.29698603283508945,5065.646542555002,2019
+2001,22,"(20,25]",HS,-27.42114766641163,98.14250820032271,-0.2794013335224855,5043.7720548040015,2019
+2001,22,"(20,25]",HS,-29.59742922723795,120.5258872635542,-0.24556906320479677,5076.760861767592,2019
+2001,69,"(65,70]",College,8278.40765110941,3719.0845212753866,2.225926193328484,244.8907549895053,2019
+2001,69,"(65,70]",College,8489.172149961745,3719.0845212753866,2.2825972632239484,235.69937991085098,2019
+2001,69,"(65,70]",College,7105.224483550115,2651.5695197981922,2.6796297176062294,245.5275906668638,2019
+2001,69,"(65,70]",College,7539.476358071921,2462.1716969554645,3.062124533148792,239.58875832244925,2019
+2001,69,"(65,70]",College,13076.2714613619,2582.6975842190186,5.063028494416636,236.7943387558627,2019
+2001,61,"(60,65]",College,4336.542341239479,649.1179928337134,6.680668829265352,318.19057097292887,2019
+2001,61,"(60,65]",College,3569.8048661055855,299.5929197694062,11.915518126573986,313.6654586088683,2019
+2001,61,"(60,65]",College,4696.783902065799,385.6828392433735,12.177839987072995,322.86020457460137,2019
+2001,61,"(60,65]",College,3990.496832440704,294.4275246009682,13.553409579654435,315.856855611558,2019
+2001,61,"(60,65]",College,3078.651599081867,425.28420220139844,7.239045285824971,317.53568741137275,2019
+2001,66,"(65,70]",College,18587.068370313697,516.5395168438037,35.983826530612255,525.8151160753052,2019
+2001,66,"(65,70]",College,18565.690589135425,516.5395168438037,35.94243999486588,507.9747695410557,2019
+2001,66,"(65,70]",College,25596.251874521808,516.5395168438037,49.55332755743808,515.0832558230846,2019
+2001,66,"(65,70]",College,20111.52012241775,516.5395168438037,38.935104607880895,515.5502197683851,2019
+2001,66,"(65,70]",College,15258.914460596787,516.5395168438037,29.54065267616481,510.03735303754456,2019
+2001,43,"(40,45]",College,974.3045141545524,516.5395168438037,1.8862148633038125,5698.862118685038,2019
+2001,43,"(40,45]",College,1026.2004590665647,516.5395168438037,1.986683352586318,5644.595773238657,2019
+2001,43,"(40,45]",College,974.3045141545524,516.5395168438037,1.8862148633038125,5425.948840336717,2019
+2001,43,"(40,45]",College,950.8676358071921,516.5395168438037,1.8408419971762293,5625.839512332758,2019
+2001,43,"(40,45]",College,1044.6151491966334,516.5395168438037,2.0223334616865616,5933.374840342871,2019
+2001,50,"(45,50]",HS,126.39173680183626,165.29264539001719,0.7646543287126172,8899.044499339612,2019
+2001,50,"(45,50]",HS,208.42081101759757,165.29264539001719,1.2609200519830577,9275.827123968229,2019
+2001,50,"(45,50]",HS,158.3663351185922,165.29264539001719,0.9580966820690541,9317.933752037738,2019
+2001,50,"(45,50]",HS,120.6999234889059,165.29264539001719,0.7302195642407907,9064.423221944295,2019
+2001,50,"(45,50]",HS,181.63580719204285,165.29264539001719,1.0988741015274035,9185.114732050504,2019
+2001,64,"(60,65]",College,18.749502677888294,87.81171786344665,0.2135193700121558,5426.5163102472925,2019
+2001,64,"(60,65]",College,18.749502677888294,87.81171786344665,0.2135193700121558,5556.4502130952405,2019
+2001,64,"(60,65]",College,18.749502677888294,87.81171786344665,0.2135193700121558,5459.533352430519,2019
+2001,64,"(60,65]",College,18.582096403978575,87.81171786344665,0.21161294706561865,5521.332298419637,2019
+2001,64,"(60,65]",College,18.749502677888294,87.81171786344665,0.2135193700121558,5464.711082471479,2019
+2001,43,"(40,45]",College,17428.164957918896,3357.5068594847244,5.190805465872851,10.802859972264065,2019
+2001,43,"(40,45]",College,71910.03458301454,7265.989203602839,9.89679898607033,10.885853919327733,2019
+2001,43,"(40,45]",College,4989.041775057383,2789.3133909565404,1.788627190918296,11.096688211252678,2019
+2001,43,"(40,45]",College,9200.64881407804,6473.961944442341,1.421177463357884,10.85909945745182,2019
+2001,43,"(40,45]",College,11445.566947207344,2014.5041156908349,5.681580324437466,10.445347271925723,2019
+2001,20,"(15,20]",NoHS,12.856801836266259,60.2629436317771,0.2133450684856153,8156.882130348737,2019
+2001,20,"(15,20]",NoHS,14.53086457536343,60.2629436317771,0.24112437427801314,8275.594670470917,2019
+2001,20,"(15,20]",NoHS,12.87354246365723,60.2629436317771,0.21362286154353927,8316.95236135244,2019
+2001,20,"(15,20]",NoHS,14.53086457536343,60.2629436317771,0.24112437427801314,8054.310525342704,2019
+2001,20,"(15,20]",NoHS,12.856801836266259,60.2629436317771,0.2133450684856153,8231.764801418802,2019
+2001,25,"(20,25]",College,10.714001530221882,117.08229048459552,0.09150830143378105,5831.205194275129,2019
+2001,25,"(20,25]",College,10.714001530221882,117.08229048459552,0.09150830143378105,5840.976498283121,2019
+2001,25,"(20,25]",College,10.714001530221882,117.08229048459552,0.09150830143378105,5861.409437482035,2019
+2001,25,"(20,25]",College,10.714001530221882,117.08229048459552,0.09150830143378105,5891.4588538375265,2019
+2001,25,"(20,25]",College,10.546595256312164,117.08229048459552,0.09007848422387822,5845.674920462143,2019
+2001,25,"(20,25]",HS,-27.772700841622036,56.819346852818406,-0.4887895123744181,5105.655360643309,2019
+2001,25,"(20,25]",HS,-7.03106350420811,56.819346852818406,-0.12374418034795395,5108.596009367409,2019
+2001,25,"(20,25]",HS,-20.7583779648049,56.819346852818406,-0.36533996102729266,5102.410722025591,2019
+2001,25,"(20,25]",HS,-16.90803366488141,56.819346852818406,-0.2975752908367464,5096.630573946681,2019
+2001,25,"(20,25]",HS,-27.638775822494264,56.819346852818406,-0.4864324803677904,5121.990377764729,2019
+2001,40,"(35,40]",HS,5.105891354246366,101.5861049792814,0.0502617100565842,5736.086012319078,2019
+2001,40,"(35,40]",HS,6.110328997704667,103.30790336876075,0.0591467719163137,5962.670121489783,2019
+2001,40,"(35,40]",HS,7.114766641162969,101.5861049792814,0.07003680909524028,6032.903992264006,2019
+2001,40,"(35,40]",HS,10.79770466717674,103.30790336876075,0.1045196380438968,5842.940946383664,2019
+2001,40,"(35,40]",HS,9.123641928079572,101.5861049792814,0.08981190813389635,5957.129092244534,2019
+2001,40,"(35,40]",HS,264.83672532517215,120.5258872635542,2.197343088178668,7143.883626320696,2019
+2001,40,"(35,40]",HS,291.9565416985463,120.5258872635542,2.42235546509709,7360.100233326753,2019
+2001,40,"(35,40]",HS,238.5539403213466,120.5258872635542,1.979275537708345,7440.299723426814,2019
+2001,40,"(35,40]",HS,227.00290742157614,120.5258872635542,1.8834369327245726,7279.052124538485,2019
+2001,40,"(35,40]",HS,374.82264728385616,120.5258872635542,3.1098932834589363,7328.957709241644,2019
+2001,83,"(80,85]",College,6496.46830910482,1515.1825827418243,4.287581168831169,369.3612393273137,2019
+2001,74,"(70,75]",College,61961.74934965571,1532.400566636618,40.43443385410132,205.7612511507222,2019
+2001,69,"(65,70]",College,13661.02157612854,1825.1062928481062,7.485055325084824,369.9936353274847,2019
+2001,75,"(70,75]",College,5978.412853863811,1637.4302683948579,3.6510946262916812,364.8164387193219,2019
+2001,68,"(65,70]",College,15433.033726090283,1687.3624216897588,9.146247141521222,351.7644536539717,2019
+2001,62,"(60,65]",NoHS,18.582096403978575,16.52926453900172,1.1241937812860991,5354.801194269357,2019
+2001,62,"(60,65]",NoHS,17.745065034429995,16.52926453900172,1.0735544217687076,5470.762652059308,2019
+2001,62,"(60,65]",NoHS,16.405814843152257,16.52926453900172,0.9925314465408805,5366.3668389328495,2019
+2001,62,"(60,65]",NoHS,20.08875286916603,17.045804055845522,1.178516003313847,5418.610969170317,2019
+2001,62,"(60,65]",NoHS,21.59540933435348,16.52926453900172,1.30649547554871,5405.899694232112,2019
+2001,57,"(55,60]",HS,136.017597551645,65.42833880021514,2.0788789696613503,5440.265535977731,2019
+2001,57,"(55,60]",HS,134.67834736036724,65.42833880021514,2.0584100074985305,5757.967830766049,2019
+2001,57,"(55,60]",HS,132.66947207345066,65.42833880021514,2.0277065642543017,5800.8872692322575,2019
+2001,57,"(55,60]",HS,133.00428462127007,65.42833880021514,2.0328238047950062,5615.753179615267,2019
+2001,57,"(55,60]",HS,134.34353481254783,65.42833880021514,2.053292766957826,5680.2827528227745,2019
+2001,33,"(30,35]",College,13177.384850803366,172.17983894793457,76.53268194070081,1921.2735995194657,2019
+2001,33,"(30,35]",College,13294.904055087987,172.17983894793457,77.21521948402003,1935.0986772952085,2019
+2001,33,"(30,35]",College,13432.177199693955,172.17983894793457,78.01248556026184,1940.6116928431431,2019
+2001,33,"(30,35]",College,13234.63779648049,172.17983894793457,76.86520023103581,1933.4288267561872,2019
+2001,33,"(30,35]",College,13343.451874521805,172.17983894793457,77.49717943781286,1918.3317150540377,2019
+2001,55,"(50,55]",College,1472.5223259372608,77.48092752657055,19.00496513070637,7140.542207658674,2019
+2001,55,"(50,55]",College,2105.9709257842387,77.48092752657055,27.180507423095026,3211.7873462368034,2019
+2001,55,"(50,55]",College,2058.7623565416984,77.48092752657055,26.571214649381766,4033.5408449159995,2019
+2001,55,"(50,55]",College,1639.3928997704666,77.48092752657055,21.15866384289565,3321.5868148173186,2019
+2001,55,"(50,55]",College,2065.7934200459067,77.48092752657055,26.661960381636934,3403.087458874145,2019
+2001,54,"(50,55]",College,2514.7770466717675,674.9449686759036,3.7258993894053574,120.67358672448127,2019
+2001,54,"(50,55]",College,1756.6777352716142,151.51825827418244,11.593835325725486,118.53844891839583,2019
+2001,54,"(50,55]",College,3130.8321346595258,234.16458096919104,13.370220729801355,211.6668558225719,2019
+2001,54,"(50,55]",College,2732.740015302219,402.90082313816697,6.7826617826617825,207.7767169422297,2019
+2001,54,"(50,55]",College,2482.467635807192,170.45804055845522,14.563511510950864,124.72929583459238,2019
+2001,35,"(30,35]",College,2855.9510328997703,769.6438800972677,3.710743509763028,1631.5751324969212,2019
+2001,35,"(30,35]",College,2880.0575363427697,611.2384282651677,4.711839771784345,1641.4317026384765,2019
+2001,35,"(30,35]",College,2878.3834736036724,494.15613778057224,5.824846143835221,1690.4519185348167,2019
+2001,35,"(30,35]",College,2877.0442234123952,452.83297643306787,6.353433546458258,1618.6247593672263,2019
+2001,35,"(30,35]",College,2846.408875286917,538.9228959070352,5.281662547471217,1606.0407764946826,2019
+2001,39,"(35,40]",HS,-0.3348125478194338,49.93215329490103,-0.00670534967402706,6441.663675782275,2019
+2001,39,"(35,40]",HS,-0.3348125478194338,51.653951684380374,-0.006481838018226159,6429.888999870985,2019
+2001,39,"(35,40]",HS,-0.3348125478194338,51.653951684380374,-0.006481838018226159,6467.302847962771,2019
+2001,39,"(35,40]",HS,-0.1674062739097169,51.653951684380374,-0.0032409190091130793,6433.3692386452585,2019
+2001,39,"(35,40]",HS,-0.1674062739097169,49.93215329490103,-0.00335267483701353,6518.776943796514,2019
+2001,66,"(65,70]",College,1333.3407498087222,172.17983894793457,7.743884289564883,7873.453792756748,2019
+2001,66,"(65,70]",College,1296.5281101759756,192.84141962168675,6.723286484405082,7085.154008179164,2019
+2001,66,"(65,70]",College,1281.44480489671,242.77357291658777,5.278353774267635,6684.986066422027,2019
+2001,66,"(65,70]",College,1270.730803366488,168.7362421689759,7.530870588512647,7474.689365497719,2019
+2001,66,"(65,70]",College,1272.9070849273144,127.41308082147161,9.99039562280802,7134.274940379594,2019
+2001,23,"(20,25]",HS,7.483060443764346,65.42833880021514,0.11437032608475366,8321.306501816374,2019
+2001,23,"(20,25]",HS,11.032073450650346,53.37575007385973,0.20668699616182443,8342.37308276055,2019
+2001,23,"(20,25]",HS,18.02965570007651,74.03733074761188,0.24352114694056645,8220.51459463415,2019
+2001,23,"(20,25]",HS,11.08229533282326,46.488556515942335,0.2383875982258732,8274.664412640195,2019
+2001,23,"(20,25]",HS,8.11920428462127,63.706540410735805,0.12744695022323052,8322.54206298369,2019
+2001,48,"(45,50]",College,49436.7467482785,3770.738472959767,13.11062729563265,15.26059346607228,2019
+2001,48,"(45,50]",College,34370.18209640398,3064.801133273236,11.21449014203943,15.273668741031447,2019
+2001,48,"(45,50]",College,37716.800918133136,5544.1908141234935,6.802940624275025,15.448153013893428,2019
+2001,48,"(45,50]",College,67098.27605202755,2823.7493587461267,23.762121749297975,15.39439397271496,2019
+2001,48,"(45,50]",College,32696.11935730681,4046.226215276463,8.080645425572879,15.584451847558572,2019
+2001,28,"(25,30]",HS,-24.60704820198929,82.64632269500859,-0.29773917821845725,5046.738099536555,2019
+2001,28,"(25,30]",HS,-24.60704820198929,86.08991947396729,-0.28582961108971894,5009.263470709657,2019
+2001,28,"(25,30]",HS,-24.60704820198929,194.5632180111661,-0.12647327924323845,5014.780231691737,2019
+2001,28,"(25,30]",HS,-26.28111094108646,108.47329853719879,-0.24228184535269637,5047.713899296501,2019
+2001,28,"(25,30]",HS,-26.28111094108646,99.86430658980206,-0.2631682113313771,5000.543866915568,2019
+2001,55,"(50,55]",HS,73.15654169854629,111.91689531615746,0.6536684339918842,9541.061581190786,2019
+2001,55,"(50,55]",HS,68.58635042081103,111.91689531615746,0.6128328544770595,10075.525723247756,2019
+2001,55,"(50,55]",HS,73.15654169854629,111.91689531615746,0.6536684339918842,10107.901150912137,2019
+2001,55,"(50,55]",HS,68.63657230298394,111.91689531615746,0.6132815971090905,9907.283288170785,2019
+2001,55,"(50,55]",HS,72.98913542463657,111.91689531615746,0.6521726252184474,9887.681110360087,2019
+2001,38,"(35,40]",HS,5542.319510328998,170.45804055845522,32.514274434759614,958.8136359064132,2019
+2001,38,"(35,40]",HS,4208.091507268554,154.9618550531411,27.155660377358494,962.5964349041449,2019
+2001,38,"(35,40]",HS,4983.182555470543,153.24005666366176,32.5187987003154,995.8868507766468,2019
+2001,38,"(35,40]",HS,7498.964039785769,163.57084700053784,45.84535800417486,949.371394497646,2019
+2001,38,"(35,40]",HS,6200.226166794186,158.40545183209983,39.141494784952535,944.8775606169414,2019
+2001,54,"(50,55]",College,10094.59831675593,2014.5041156908349,5.010959391013299,525.8151160753052,2019
+2001,54,"(50,55]",College,10094.59831675593,2031.722099585628,4.968493633462339,507.9747695410557,2019
+2001,54,"(50,55]",College,10094.59831675593,2014.5041156908349,5.010959391013299,527.8056177459368,2019
+2001,54,"(50,55]",College,10094.59831675593,2014.5041156908349,5.010959391013299,515.5502197683851,2019
+2001,54,"(50,55]",College,10094.59831675593,2031.722099585628,4.968493633462339,510.03735303754456,2019
+2001,51,"(50,55]",College,775.7606732976282,180.7888308953313,4.290976768065717,506.7341465203343,2019
+2001,51,"(50,55]",College,775.5932670237185,179.06703250585196,4.331301279582951,510.19395796215605,2019
+2001,51,"(50,55]",College,775.5932670237185,179.06703250585196,4.331301279582951,480.45627413085595,2019
+2001,51,"(50,55]",College,775.5932670237185,180.7888308953313,4.290050791205971,510.53635562483606,2019
+2001,51,"(50,55]",College,773.9192042846213,180.7888308953313,4.280791022608504,539.656837068058,2019
+2001,36,"(35,40]",HS,2784.0835195103286,68.87193557917384,40.424063823642655,1563.174377587616,2019
+2001,36,"(35,40]",HS,3495.45973986228,68.87193557917384,50.7530347516365,2642.5325240755596,2019
+2001,36,"(35,40]",HS,2787.414904361133,68.87193557917384,40.47243453985368,1637.3366632477296,2019
+2001,36,"(35,40]",HS,2797.4257995409334,68.87193557917384,40.617789757412396,1548.0836690651158,2019
+2001,36,"(35,40]",HS,3053.4067329762815,68.87193557917384,44.334556700038505,1552.4428689083625,2019
+2001,44,"(40,45]",HS,-30.133129303749044,39.60136295802496,-0.7609114195308968,6630.129408921845,2019
+2001,44,"(40,45]",HS,-30.133129303749044,39.60136295802496,-0.7609114195308968,6625.553369095706,2019
+2001,44,"(40,45]",HS,-30.133129303749044,39.60136295802496,-0.7609114195308968,6643.925375742353,2019
+2001,44,"(40,45]",HS,-30.133129303749044,39.60136295802496,-0.7609114195308968,6578.209858745836,2019
+2001,44,"(40,45]",HS,-30.133129303749044,39.60136295802496,-0.7609114195308968,6697.65028572707,2019
+2001,53,"(50,55]",College,8257.314460596786,387.4046376328528,21.314444016600348,1801.6104954712341,2019
+2001,53,"(50,55]",College,8255.64039785769,387.4046376328528,21.310122791254866,1772.2149048492101,2019
+2001,53,"(50,55]",College,8257.314460596786,387.4046376328528,21.314444016600348,1799.5863889504158,2019
+2001,53,"(50,55]",College,8255.64039785769,387.4046376328528,21.310122791254866,1784.8018155507725,2019
+2001,53,"(50,55]",College,8257.314460596786,387.4046376328528,21.314444016600348,1743.2796741363704,2019
+2001,43,"(40,45]",College,57321.58224942617,1721.798389479346,33.29169233731228,18.01293583972238,2019
+2001,43,"(40,45]",College,59202.89395562357,1721.798389479346,34.384335772044665,19.60781902692309,2019
+2001,43,"(40,45]",College,73305.56676358073,1721.798389479346,42.57500019252984,19.13956903634376,2019
+2001,43,"(40,45]",College,53024.26319816373,1721.798389479346,30.795860608394296,19.34512905952876,2019
+2001,43,"(40,45]",College,58145.22111706197,1721.798389479346,33.770051983057364,19.8680209352054,2019
+2001,54,"(50,55]",College,1249.6962050497323,220.39019385335627,5.670380261479592,7330.780228212566,2019
+2001,54,"(50,55]",College,1250.0310175975517,220.39019385335627,5.671899442265113,6656.199626212809,2019
+2001,54,"(50,55]",College,1040.4467329762815,220.39019385335627,4.7209302500481325,6214.539257474386,2019
+2001,54,"(50,55]",College,1005.4588217291507,220.39019385335627,4.562175857961109,6969.324183230606,2019
+2001,54,"(50,55]",College,1007.1328844682479,220.39019385335627,4.569771761888718,6688.83486393614,2019
+2001,22,"(20,25]",NoHS,0,7.7480927526570555,0,5239.69581716146,2019
+2001,24,"(20,25]",NoHS,0,7.7480927526570555,0,5221.384793929628,2019
+2001,56,"(55,60]",NoHS,0,7.7480927526570555,0,4454.023549835204,2019
+2001,22,"(20,25]",NoHS,0,7.7480927526570555,0,5175.340211198449,2019
+2001,24,"(20,25]",NoHS,0,7.7480927526570555,0,5222.028353194307,2019
+2001,54,"(50,55]",College,10604.517827084926,430.4495973698365,24.635910666153247,3190.9080748881775,2019
+2001,54,"(50,55]",College,10964.441315990818,430.4495973698365,25.472067770504424,3173.0362399083137,2019
+2001,54,"(50,55]",College,11004.618821729151,430.4495973698365,25.565406237966883,3238.4904420832568,2019
+2001,54,"(50,55]",College,10628.624330527926,430.4495973698365,24.69191374663072,3172.7268341181984,2019
+2001,54,"(50,55]",College,10573.380260137721,430.4495973698365,24.56357335386985,3133.2430374545993,2019
+2001,30,"(25,30]",College,-19.318684009181332,39.60136295802496,-0.4878287656325861,4396.161399542993,2019
+2001,30,"(25,30]",College,-19.435868400918135,39.60136295802496,-0.4907878655974285,4418.700281044023,2019
+2001,30,"(25,30]",College,-19.48609028309105,39.60136295802496,-0.4920560512966466,4431.383383545103,2019
+2001,30,"(25,30]",College,-19.30194338179036,39.60136295802496,-0.48740603706617996,4425.349009950935,2019
+2001,30,"(25,30]",College,-19.38564651874522,39.60136295802496,-0.48951967989821027,4397.467498832248,2019
+2001,56,"(55,60]",College,9922.504667176741,804.0798478868544,12.340198169688467,154.22308491104334,2019
+2001,56,"(55,60]",College,10252.295026778882,802.3580494973751,12.777705705328533,144.64233727491833,2019
+2001,56,"(55,60]",College,10411.330986993114,802.3580494973751,12.975916417259269,154.5729760293955,2019
+2001,56,"(55,60]",College,10898.985462892118,802.3580494973751,13.5836930528953,152.02422930013876,2019
+2001,56,"(55,60]",College,10071.328844682479,802.3580494973751,12.552162779436822,146.72053401841268,2019
+2001,53,"(50,55]",College,32263.87635807192,4855.4714583317555,6.644849348812186,299.649034757735,2019
+2001,53,"(50,55]",College,30223.67935730681,2892.621294325301,10.448543477363993,288.69845334194855,2019
+2001,53,"(50,55]",College,33792.19519510329,4872.689442226549,6.935019273393737,295.7032435615399,2019
+2001,53,"(50,55]",College,31105.542127008415,4855.4714583317555,6.406286679665844,304.9777177652073,2019
+2001,53,"(50,55]",College,30963.430941086455,4235.62403811919,7.310240630996992,300.9076569423523,2019
+2001,68,"(65,70]",College,14797.877582249426,373.63025051701806,39.605673153532344,369.3612393273137,2019
+2001,68,"(65,70]",College,17056.188217291507,373.63025051701806,45.64991242997503,347.0640763287968,2019
+2001,68,"(65,70]",College,14531.701606732977,373.63025051701806,38.89326837595311,369.9936353274847,2019
+2001,68,"(65,70]",College,16890.456006120887,373.63025051701806,45.20633964393513,364.8164387193219,2019
+2001,68,"(65,70]",College,18745.317521040553,373.63025051701806,50.170770421028166,351.7644536539717,2019
+2001,83,"(80,85]",HS,278.39663351185925,27.548774231669533,10.10559058529072,8320.728761382657,2019
+2001,83,"(80,85]",HS,218.8,27.548774231669533,7.94227714670774,8607.393720862647,2019
+2001,83,"(80,85]",HS,272.8722264728386,25.826975842190187,10.56539596970864,8764.682313787123,2019
+2001,83,"(80,85]",HS,296.4765110941086,27.548774231669533,10.761876684636118,8538.646379267657,2019
+2001,83,"(80,85]",HS,271.86778882938023,27.548774231669533,9.868598382749324,8693.95896542393,2019
+2001,86,"(85,90]",HS,170.08477429227239,12.052588726355422,14.111887342538092,7483.662760021871,2019
+2001,86,"(85,90]",HS,300.6951491966335,12.052588726355422,24.94859453215248,7749.634152848991,2019
+2001,86,"(85,90]",HS,306.0186687069625,12.052588726355422,25.390285494251604,7752.382567387559,2019
+2001,86,"(85,90]",HS,177.1158377964805,12.052588726355422,14.695252764178447,7924.203619708003,2019
+2001,86,"(85,90]",HS,279.9200306044376,12.052588726355422,23.224888607734194,7819.056067157032,2019
+2001,44,"(40,45]",HS,77.69325172149962,94.69891142136402,0.8204239157069346,5976.996388287755,2019
+2001,44,"(40,45]",HS,92.10693190512625,94.69891142136402,0.9726292575349179,6198.8205250914625,2019
+2001,44,"(40,45]",HS,124.75115531752104,94.69891142136402,1.3173451885042182,6256.758321319684,2019
+2001,44,"(40,45]",HS,60.46714613618975,94.69891142136402,0.6385199705954423,6070.643765904433,2019
+2001,44,"(40,45]",HS,55.11014537107881,94.69891142136402,0.5819512024363777,6209.892243087567,2019
+2001,48,"(45,50]",NoHS,113.26708492731446,39.60136295802496,2.8601814803033596,5829.893725232088,2019
+2001,48,"(45,50]",NoHS,135.19730680948737,39.60136295802496,3.41395590229529,6076.72951296884,2019
+2001,48,"(45,50]",NoHS,135.02990053557764,39.60136295802496,3.409728616631229,6104.314178580002,2019
+2001,48,"(45,50]",NoHS,136.70396327467483,39.60136295802496,3.452001473271835,5938.235736250411,2019
+2001,48,"(45,50]",NoHS,128.5010558530987,39.60136295802496,3.244864475732869,6017.302503194793,2019
+2001,42,"(40,45]",College,820.9436266258607,167.01444377949653,4.915404967666896,9181.084377546787,2019
+2001,42,"(40,45]",College,874.3294873756695,168.7362421689759,5.181634224733405,8348.882367395674,2019
+2001,42,"(40,45]",College,989.4715225707728,172.17983894793457,5.74673276857913,7800.020345262514,2019
+2001,42,"(40,45]",College,814.7161132364193,165.29264539001719,4.928931419265821,8730.188443318179,2019
+2001,42,"(40,45]",College,744.6733282325937,170.45804055845522,4.368660614617488,8394.121879326183,2019
+2001,77,"(75,80]",HS,371.4745218056619,20.661580673752148,17.97899820305481,9815.235604320216,2019
+2001,77,"(75,80]",HS,329.2881407804132,22.383379063231494,14.711279286750987,10119.883208239144,2019
+2001,77,"(75,80]",HS,329.2881407804132,22.383379063231494,14.711279286750987,10507.961327102403,2019
+2001,77,"(75,80]",HS,329.4555470543229,20.661580673752148,15.945321524836352,10173.123594137289,2019
+2001,77,"(75,80]",HS,329.2881407804132,22.383379063231494,14.711279286750987,10256.796968109633,2019
+2001,29,"(25,30]",HS,6.227513389441469,63.706540410735805,0.09775312470730259,5987.188548641222,2019
+2001,29,"(25,30]",HS,6.311216526396327,63.706540410735805,0.09906701079207816,5997.221232711296,2019
+2001,29,"(25,30]",HS,4.051231828615149,63.706540410735805,0.0635920865031377,6018.200748182114,2019
+2001,29,"(25,30]",HS,5.557888293802602,63.706540410735805,0.08724203602909802,6049.053979290083,2019
+2001,29,"(25,30]",HS,4.5534506503443,63.706540410735805,0.07147540301179114,6002.045336567998,2019
+2001,43,"(40,45]",College,4713.005570007651,220.39019385335627,21.38482428643627,1507.631005245917,2019
+2001,43,"(40,45]",College,5452.4223412394795,401.17902474868754,13.59099555280854,1515.0828030940627,2019
+2001,43,"(40,45]",College,4817.115531752104,323.69809722211704,14.88150709902588,1522.7217641252998,2019
+2001,43,"(40,45]",College,6654.064575363427,306.4801133273235,21.71124417543146,1514.1094782713403,2019
+2001,43,"(40,45]",College,3374.240856924254,389.1264360223322,8.671322594825206,1502.542018645247,2019
+2001,58,"(55,60]",College,5598.735424636573,242.77357291658777,23.061552200165497,1277.9884796602005,2019
+2001,58,"(55,60]",College,5597.228768171385,242.77357291658777,23.05534618504166,1284.5255171986257,2019
+2001,58,"(55,60]",College,5597.061361897475,242.77357291658777,23.054656627805677,1324.016910922369,2019
+2001,58,"(55,60]",College,5595.554705432288,242.77357291658777,23.048450612681844,1268.5470672427634,2019
+2001,58,"(55,60]",College,5595.387299158378,244.49537130606709,22.88545287899906,1258.0767399649753,2019
+2001,30,"(25,30]",HS,115.34292272379496,154.9618550531411,0.7443310657596373,7485.4437008561235,2019
+2001,30,"(25,30]",HS,121.53695485845448,154.9618550531411,0.7843024002053652,7505.126734051543,2019
+2001,30,"(25,30]",HS,121.53695485845448,154.9618550531411,0.7843024002053652,7569.893034603345,2019
+2001,30,"(25,30]",HS,119.86289211935731,154.9618550531411,0.773499336841655,7455.736257198667,2019
+2001,30,"(25,30]",HS,119.52807957153787,154.9618550531411,0.7713387241689129,7500.087515459713,2019
+2001,35,"(30,35]",HS,635.5579188982402,111.91689531615746,5.678838008352834,9025.461941917547,2019
+2001,35,"(30,35]",HS,639.0567100229533,111.91689531615746,5.710100411717663,8204.98747862198,2019
+2001,35,"(30,35]",HS,659.0952410099464,111.91689531615746,5.8891487218980485,7669.349174484082,2019
+2001,35,"(30,35]",HS,616.2727161438409,111.91689531615746,5.506520837652913,8580.868125079698,2019
+2001,35,"(30,35]",HS,635.8425095638868,111.91689531615746,5.681380883267677,8251.251576102508,2019
+2001,29,"(25,30]",HS,24.357612853863813,36.157766179066265,0.6736481654656472,9122.136567171625,2019
+2001,29,"(25,30]",HS,27.705738332058147,36.157766179066265,0.7662458514403064,9256.132461267252,2019
+2001,29,"(25,30]",HS,26.03167559296098,36.157766179066265,0.7199470084529769,9411.481029019475,2019
+2001,29,"(25,30]",HS,24.357612853863813,36.157766179066265,0.6736481654656472,9172.484106658289,2019
+2001,29,"(25,30]",HS,27.705738332058147,36.157766179066265,0.7662458514403064,9169.212283110752,2019
+2001,42,"(40,45]",HS,80.05368018362662,68.87193557917384,1.1623556026184056,5396.8464471437865,2019
+2001,42,"(40,45]",HS,78.37961744452946,68.87193557917384,1.1380487100500578,5405.202958148706,2019
+2001,42,"(40,45]",HS,78.37961744452946,68.87193557917384,1.1380487100500578,5429.254591428315,2019
+2001,42,"(40,45]",HS,78.37961744452946,68.87193557917384,1.1380487100500578,5383.986142485395,2019
+2001,42,"(40,45]",HS,76.70555470543228,68.87193557917384,1.1137418174817095,5438.285272167864,2019
+2001,73,"(70,75]",College,2988.871614384086,344.35967789586914,8.679505198305739,1953.7805312004214,2019
+2001,73,"(70,75]",College,2988.871614384086,344.35967789586914,8.679505198305739,1930.1291802068222,2019
+2001,73,"(70,75]",College,2990.545677123183,344.35967789586914,8.684366576819407,2067.030831408029,2019
+2001,73,"(70,75]",College,2990.545677123183,344.35967789586914,8.684366576819407,1971.7525550578775,2019
+2001,73,"(70,75]",College,2990.545677123183,344.35967789586914,8.684366576819407,1980.9164315443861,2019
+2001,33,"(30,35]",HS,20.390084162203518,74.03733074761188,0.2754027455650974,6698.853624195649,2019
+2001,33,"(30,35]",HS,19.938087222647287,74.03733074761188,0.2692977585944426,6701.9342032558,2019
+2001,33,"(30,35]",HS,21.645631216526397,75.75912913709122,0.28571647355340074,6872.158919171743,2019
+2001,33,"(30,35]",HS,18.883427697016067,74.03733074761188,0.2550527889962479,6694.909224423124,2019
+2001,33,"(30,35]",HS,18.59883703136955,74.03733074761188,0.2512089083110207,6700.951390303737,2019
+2001,42,"(40,45]",HS,731.5654169854629,48.21035490542169,15.174445789097309,987.8954769280465,2019
+2001,42,"(40,45]",HS,721.5210405508799,48.21035490542169,14.966100995654324,979.18053072006,2019
+2001,42,"(40,45]",HS,815.2685539403213,48.21035490542169,16.91065240112217,942.395918934613,2019
+2001,42,"(40,45]",HS,629.4475899005355,48.21035490542169,13.056273722426972,978.3302603910845,2019
+2001,42,"(40,45]",HS,666.2769701606733,48.21035490542169,13.820204631717914,1032.0732240354032,2019
+2001,47,"(45,50]",HS,586.4241775057384,206.6158067375215,2.8382348222307794,5772.069900147096,2019
+2001,47,"(45,50]",HS,577.5516449885233,206.6158067375215,2.7952926453600306,5237.623589788984,2019
+2001,47,"(45,50]",HS,586.7589900535578,206.6158067375215,2.839855281735336,4911.249047038312,2019
+2001,47,"(45,50]",HS,582.5738332058148,206.6158067375215,2.819599537928379,5480.477557887301,2019
+2001,47,"(45,50]",HS,582.5738332058148,206.6158067375215,2.819599537928379,5269.450624214582,2019
+2001,50,"(45,50]",College,73723.3626013772,1442.867050383692,51.09504897334265,12.741347796184815,2019
+2001,50,"(45,50]",College,72344.10231063505,1442.867050383692,50.13913256345903,13.446065715628222,2019
+2001,50,"(45,50]",College,72973.4996786534,1442.867050383692,50.575345565794194,13.629371123236291,2019
+2001,50,"(45,50]",College,73922.49236419282,1442.867050383692,51.23305875238824,13.433686857337898,2019
+2001,50,"(45,50]",College,80188.3752716144,1444.5888487731713,55.509479627864366,13.82447659277727,2019
+2001,28,"(25,30]",HS,49.46855394032135,51.653951684380374,0.9576915671929149,6416.336987268097,2019
+2001,28,"(25,30]",HS,55.49517980107116,51.653951684380374,1.074364651520986,6454.819384174005,2019
+2001,28,"(25,30]",HS,56.33221117061974,51.653951684380374,1.0905692465665513,6498.627933935648,2019
+2001,28,"(25,30]",HS,51.14261667941852,51.653951684380374,0.9901007572840459,6391.189244462614,2019
+2001,28,"(25,30]",HS,52.14705432287682,51.653951684380374,1.0095462713387242,6438.990803928445,2019
+2001,36,"(35,40]",HS,51.310022953328236,103.30790336876075,0.4966708381465794,9446.080882688027,2019
+2001,36,"(35,40]",HS,51.310022953328236,103.30790336876075,0.4966708381465794,9696.588807733575,2019
+2001,36,"(35,40]",HS,30.819495026778885,103.30790336876075,0.298326594788859,9793.49848180848,2019
+2001,36,"(35,40]",HS,36.99678653404744,103.30790336876075,0.35812155050699523,9560.433102914414,2019
+2001,36,"(35,40]",HS,47.74426931905127,103.30790336876075,0.46215505069952517,9717.408961499796,2019
+2001,53,"(50,55]",College,51100.32985462892,3615.776617906626,14.132601444890625,15.155099998285817,2019
+2001,53,"(50,55]",College,51101.88673297628,2686.0054875877795,19.025235417098624,15.217557417545217,2019
+2001,53,"(50,55]",College,51100.76511094109,1508.2953891839068,33.87981258670437,15.207336106878685,2019
+2001,53,"(50,55]",College,51102.305248661054,2789.3133909565404,18.32074711086391,15.6870915414648,2019
+2001,53,"(50,55]",College,51102.27176740628,4321.713957593158,11.824538196846808,15.447116105933294,2019
+2001,30,"(25,30]",HS,30.80275439938791,56.819346852818406,0.5421173615243696,7054.834379223854,2019
+2001,30,"(25,30]",HS,29.296097934200457,56.819346852818406,0.5156007514498081,7085.419469760467,2019
+2001,30,"(25,30]",HS,28.79387911247131,56.819346852818406,0.5067618814249543,6989.868013586902,2019
+2001,30,"(25,30]",HS,30.80275439938791,56.819346852818406,0.5421173615243696,7101.692620486635,2019
+2001,30,"(25,30]",HS,30.635348125478195,56.819346852818406,0.539171071516085,7086.232962750815,2019
+2001,45,"(40,45]",College,662.6107727620505,103.30790336876075,6.413940764985239,6092.758597330965,2019
+2001,45,"(40,45]",College,660.9367100229533,103.30790336876075,6.397736169939674,5533.757549806143,2019
+2001,45,"(40,45]",College,662.602402448355,103.30790336876075,6.413859742010011,5169.611897089887,2019
+2001,45,"(40,45]",College,662.602402448355,103.30790336876075,6.413859742010011,5792.7189159890295,2019
+2001,45,"(40,45]",College,662.6107727620505,103.30790336876075,6.413940764985239,5559.19001058239,2019
+2001,94,"(90,95]",College,31697.70833970926,919.4403399819707,34.47500284828793,13.586811510243061,2019
+2001,94,"(90,95]",College,23778.387146136192,716.2681300234078,33.19760596546311,13.668297365659388,2019
+2001,94,"(90,95]",College,17492.28156082632,604.3512347072503,28.943899766002193,13.994672583562851,2019
+2001,94,"(90,95]",College,66973.5583779648,783.4182672131024,85.48889039339558,13.670522615213553,2019
+2001,94,"(90,95]",College,21203.678653404742,1053.7406143613598,20.122294200699145,13.486473727817579,2019
+2001,54,"(50,55]",HS,289.1106350420811,110.19509692667813,2.6236252165960727,6952.306495347824,2019
+2001,54,"(50,55]",HS,288.9432287681714,110.19509692667813,2.622106035810551,7313.111669521434,2019
+2001,54,"(50,55]",HS,288.9432287681714,110.19509692667813,2.622106035810551,7363.897714213529,2019
+2001,54,"(50,55]",HS,289.1106350420811,110.19509692667813,2.6236252165960727,7153.297167281026,2019
+2001,54,"(50,55]",HS,288.77582249426166,110.19509692667813,2.620586855025029,7260.056148429785,2019
+2001,39,"(35,40]",College,253.78791124713084,111.91689531615746,2.267646100530198,6695.66183770876,2019
+2001,39,"(35,40]",College,255.461973986228,111.91689531615746,2.282604188264566,6944.157789687202,2019
+2001,39,"(35,40]",College,350.88355011476665,111.91689531615746,3.1352151891235454,7009.061943205919,2019
+2001,39,"(35,40]",College,255.461973986228,111.91689531615746,2.282604188264566,6800.569241323426,2019
+2001,39,"(35,40]",College,223.6547819433818,111.91689531615746,1.998400521311573,6956.560755131456,2019
+2001,52,"(50,55]",College,156.85967865340476,75.75912913709122,2.070505303322015,6034.448479747096,2019
+2001,52,"(50,55]",College,153.5115531752104,75.75912913709122,2.0263109531977452,6289.9450486825635,2019
+2001,52,"(50,55]",College,173.265493496557,75.75912913709122,2.2870576189309344,6318.497583481125,2019
+2001,52,"(50,55]",College,156.85967865340476,75.75912913709122,2.070505303322015,6146.59191057031,2019
+2001,52,"(50,55]",College,168.57811782708492,75.75912913709122,2.225185528756957,6228.432910436402,2019
+2001,46,"(45,50]",College,5755.630258607498,964.2070981084336,5.969288413141538,1509.3777254769097,2019
+2001,46,"(45,50]",College,5698.09104820199,964.2070981084336,5.9096132556796315,1515.0931109584258,2019
+2001,46,"(45,50]",College,5045.0726549349665,964.2070981084336,5.232353780460973,1559.516114777614,2019
+2001,46,"(45,50]",College,5551.694261667942,964.2070981084336,5.757781987458056,1496.601262447162,2019
+2001,46,"(45,50]",College,5471.72428462127,964.2070981084336,5.674843397601629,1483.185902890888,2019
+2001,81,"(80,85]",HS,96.76082631981637,36.157766179066265,2.676073124667657,6683.561104192149,2019
+2001,81,"(80,85]",HS,71.64988523335884,39.60136295802496,1.8092782642179104,6678.940685457319,2019
+2001,81,"(80,85]",HS,21.59540933435348,18.939782284272805,1.140214233206147,6705.749376367648,2019
+2001,81,"(80,85]",HS,69.64100994644224,30.992371010628222,2.247037179651735,6729.988095779391,2019
+2001,81,"(80,85]",HS,30.30053557765876,30.992371010628222,0.9776772344157789,6726.928251108919,2019
+2001,83,"(80,85]",NoHS,5.022188217291507,14.463106471626503,0.3472413224049728,5737.9302179760125,2019
+2001,83,"(80,85]",NoHS,5.022188217291507,14.463106471626503,0.3472413224049728,5733.963524193315,2019
+2001,83,"(80,85]",NoHS,5.022188217291507,14.463106471626503,0.3472413224049728,5756.979158415956,2019
+2001,83,"(80,85]",NoHS,5.022188217291507,14.463106471626503,0.3472413224049728,5777.7884363427265,2019
+2001,83,"(80,85]",NoHS,5.022188217291507,14.463106471626503,0.3472413224049728,5775.1615171116,2019
+2001,30,"(25,30]",College,615.3854628921193,344.35967789586914,1.787042741624952,11278.96182332654,2019
+2001,30,"(25,30]",College,645.1837796480489,344.35967789586914,1.8735752791682712,11042.086600875853,2019
+2001,30,"(25,30]",College,613.7114001530222,344.35967789586914,1.7821813631112824,10408.773231555759,2019
+2001,30,"(25,30]",College,649.2015302218822,344.35967789586914,1.8852425876010783,11161.037161086704,2019
+2001,30,"(25,30]",College,652.0474368783473,344.35967789586914,1.8935069310743164,11386.752961154238,2019
+2001,50,"(45,50]",NoHS,9.927192042846213,34.43596778958692,0.2882797458606084,6768.346102311434,2019
+2001,50,"(45,50]",NoHS,9.927192042846213,34.43596778958692,0.2882797458606084,6893.71520621138,2019
+2001,50,"(45,50]",NoHS,9.759785768936496,34.43596778958692,0.28341836734693876,6790.997532753393,2019
+2001,50,"(45,50]",NoHS,9.927192042846213,34.43596778958692,0.2882797458606084,6815.2619966885195,2019
+2001,50,"(45,50]",NoHS,9.759785768936496,34.43596778958692,0.28341836734693876,6868.5766298539575,2019
+2001,36,"(35,40]",College,10193.301055853099,10709.585982561532,0.9517922609194135,18.96313163743782,2019
+2001,36,"(35,40]",College,8679.847895944913,10726.803966456326,0.8091737224887835,19.024918491663293,2019
+2001,36,"(35,40]",College,10807.564896710024,10726.803966456326,1.007528890292602,19.53554362126298,2019
+2001,36,"(35,40]",College,8154.84340627391,10726.803966456326,0.7602304872704706,18.92428971793262,2019
+2001,36,"(35,40]",College,11335.279693955625,10726.803966456326,1.0567247923428131,18.703213144143625,2019
+2001,73,"(70,75]",NoHS,98.9371078806427,39.60136295802496,2.498325827459778,6981.18834483281,2019
+2001,73,"(70,75]",NoHS,98.9371078806427,39.60136295802496,2.498325827459778,7788.383303064635,2019
+2001,73,"(70,75]",NoHS,99.1045141545524,39.60136295802496,2.502553113123838,7807.875054951926,2019
+2001,73,"(70,75]",NoHS,98.9371078806427,37.87956456854561,2.6118860923443132,7382.668364785357,2019
+2001,73,"(70,75]",NoHS,99.1045141545524,39.60136295802496,2.502553113123838,7597.57275630482,2019
+2001,28,"(25,30]",College,-14.547605202754399,154.9618550531411,-0.0938786206306422,5831.205194275129,2019
+2001,28,"(25,30]",College,-20.624452945677124,134.30027437938898,-0.15356970073951207,5840.976498283121,2019
+2001,28,"(25,30]",College,-19.90460596786534,154.9618550531411,-0.12844842339451504,5861.409437482035,2019
+2001,28,"(25,30]",College,-16.556480489671003,153.24005666366176,-0.10804277191054502,5891.4588538375265,2019
+2001,28,"(25,30]",College,-14.296495791889823,142.9092663267857,-0.10003896989575552,5845.674920462143,2019
+2001,29,"(25,30]",HS,9.542157612853863,43.04495973698364,0.2216788602233346,3870.905696003886,2019
+2001,29,"(25,30]",HS,10.98185156847743,43.04495973698364,0.2551251443973816,3882.055268670788,2019
+2001,29,"(25,30]",HS,10.613557765876052,43.04495973698364,0.24656911821332309,3886.6987638971705,2019
+2001,29,"(25,30]",HS,-1.674062739097169,43.04495973698364,-0.03889102810935695,3875.3268483895204,2019
+2001,29,"(25,30]",HS,10.79770466717674,43.04495973698364,0.25084713130535236,3881.683657540326,2019
+2001,35,"(30,35]",HS,-1.08814078041316,25.826975842190187,-0.042131947118470035,4868.580518896366,2019
+2001,35,"(30,35]",HS,-1.2053251721499616,25.826975842190187,-0.04666923373122833,4865.220280056796,2019
+2001,35,"(30,35]",HS,-1.3894720734506505,25.826975842190187,-0.05379925555127712,4878.71105650115,2019
+2001,35,"(30,35]",HS,-1.4899158377964805,25.826975842190187,-0.05768835836221281,4830.455394189654,2019
+2001,35,"(30,35]",HS,-1.0379188982402447,25.826975842190187,-0.04018739571300218,4918.16187774441,2019
+2001,35,"(30,35]",HS,40.17750573833206,27.548774231669533,1.4584135541008856,4960.573454497213,2019
+2001,35,"(30,35]",HS,50.22188217291507,27.548774231669533,1.8230169426261071,4992.918733139043,2019
+2001,35,"(30,35]",HS,32.644223412394794,27.548774231669533,1.1849610127069694,4942.137460452631,2019
+2001,35,"(30,35]",HS,38.50344299923489,27.548774231669533,1.3976463226800155,4945.046356574072,2019
+2001,35,"(30,35]",HS,39.34047436878347,27.548774231669533,1.4280299383904502,5006.409400373714,2019
+2001,32,"(30,35]",HS,2.0925784238714615,18.939782284272805,0.11048587531067315,4571.472290525304,2019
+2001,32,"(30,35]",HS,0.8537719969395563,36.157766179066265,0.02361240992353815,4527.384774652373,2019
+2001,32,"(30,35]",HS,9.625860749808723,20.661580673752148,0.4658821075600052,4524.804546767471,2019
+2001,32,"(30,35]",HS,4.268859984697781,18.939782284272805,0.2253911856337732,4547.386862354926,2019
+2001,32,"(30,35]",HS,2.4273909716908952,22.383379063231494,0.10844613607416842,4540.89127953983,2019
+2001,31,"(30,35]",HS,37.49900535577659,154.9618550531411,0.24198861934710994,7756.476535841955,2019
+2001,31,"(30,35]",HS,39.173068094873756,154.9618550531411,0.2527916827108202,7876.821986814782,2019
+2001,31,"(30,35]",HS,39.173068094873756,156.68365344262045,0.2500137521315804,7970.932553347639,2019
+2001,31,"(30,35]",HS,37.66641162968631,156.68365344262045,0.2403978385880581,7856.5627473904005,2019
+2001,31,"(30,35]",HS,37.66641162968631,154.9618550531411,0.24306892568348099,7841.373705112921,2019
+2001,53,"(50,55]",HS,303.976312165264,134.30027437938898,2.2634079756721266,6705.975228929694,2019
+2001,53,"(50,55]",HS,302.97187452180566,130.8566776004303,2.3152954826419148,7015.413117563237,2019
+2001,53,"(50,55]",HS,311.19152257077275,134.30027437938898,2.317132440784732,5846.494418078406,2019
+2001,53,"(50,55]",HS,305.49970925784237,136.02207276886833,2.2459568733153636,6876.592546073278,2019
+2001,53,"(50,55]",HS,301.80003060443767,137.74387115834767,2.191023296110897,6902.591552454523,2019
+2001,73,"(70,75]",College,91.73863810252487,41.323161347504296,2.2200295212424597,6001.94997659934,2019
+2001,73,"(70,75]",College,208.92302983932672,34.43596778958692,6.067000385059684,6394.664471798171,2019
+2001,73,"(70,75]",College,13.727314460596787,36.157766179066265,0.37965051249610354,6293.06003265129,2019
+2001,73,"(70,75]",College,72.48691660290743,39.60136295802496,1.830414692538213,6271.142498842496,2019
+2001,73,"(70,75]",College,136.93833205814843,43.04495973698364,3.1812860993453986,6204.088692984183,2019
+2001,45,"(40,45]",HS,15.736189747513391,17.21798389479346,0.9139391605698883,8147.884653549396,2019
+2001,45,"(40,45]",HS,15.736189747513391,17.21798389479346,0.9139391605698883,8138.157184310852,2019
+2001,45,"(40,45]",HS,15.736189747513391,17.21798389479346,0.9139391605698883,8251.965372970419,2019
+2001,45,"(40,45]",HS,15.736189747513391,17.21798389479346,0.9139391605698883,8179.537453824036,2019
+2001,45,"(40,45]",HS,15.736189747513391,17.21798389479346,0.9139391605698883,8124.906164108189,2019
+2001,60,"(55,60]",College,14760.21117061974,1033.0790336876073,14.287591451675011,9.68495240752639,2019
+2001,60,"(55,60]",College,14760.21117061974,1033.0790336876073,14.287591451675011,9.452073028249506,2019
+2001,60,"(55,60]",College,14756.863045141547,1033.0790336876073,14.2843505326659,9.965667775871463,2019
+2001,60,"(55,60]",College,14758.537107880644,1033.0790336876073,14.285970992170457,9.737259881829502,2019
+2001,60,"(55,60]",College,14760.21117061974,1033.0790336876073,14.287591451675011,9.384097237332224,2019
+2001,74,"(70,75]",HS,39527.299770466714,1928.4141962168671,20.49730802024314,170.70316365473857,2019
+2001,74,"(70,75]",HS,39723.834736036726,1186.3190903512693,33.484949419699966,159.69056269811,2019
+2001,74,"(70,75]",HS,39683.65723029839,1117.4471547720955,35.51278202358653,167.96700212053682,2019
+2001,74,"(70,75]",HS,39604.97628156083,1208.7024694145007,32.76652218700736,175.001726293633,2019
+2001,74,"(70,75]",HS,39571.160214231066,1825.1062928481062,21.681564722720704,168.05053491723305,2019
+2001,56,"(55,60]",College,855.1949502677888,318.532702053679,2.684794825630405,9520.308916811136,2019
+2001,56,"(55,60]",College,856.869013006886,265.1569519798192,3.2315540158724607,8646.882976091703,2019
+2001,56,"(55,60]",College,855.1949502677888,216.94659707439757,3.941960656679563,8089.300344455885,2019
+2001,56,"(55,60]",College,856.869013006886,198.00681479012476,4.327472334298773,9056.353659911147,2019
+2001,56,"(55,60]",College,856.869013006886,359.8558634011833,2.3811450643270757,8704.26559024319,2019
+2001,61,"(60,65]",HS,16.52299923488906,15.66836534426205,1.054545185272948,7278.337372567449,2019
+2001,61,"(60,65]",HS,16.288630451415454,11.536049209511617,1.411976505612101,7463.892646032242,2019
+2001,61,"(60,65]",HS,16.456036725325173,11.70822904845955,1.4055103173344812,7231.4838771893865,2019
+2001,61,"(60,65]",HS,16.271889824024484,15.324005666366176,1.0618561607386225,7427.115742926496,2019
+2001,61,"(60,65]",HS,16.00403978576894,16.184904861105853,0.9888250763974799,7356.955938602261,2019
+2001,24,"(20,25]",NoHS,109.65110941086458,24.105177452710844,4.548861323505143,8634.45589174487,2019
+2001,24,"(20,25]",NoHS,63.279571537873,18.939782284272805,3.3410928693947564,8816.152059082218,2019
+2001,24,"(20,25]",NoHS,90.56679418515685,18.939782284272805,4.781828683445934,8873.81682005235,2019
+2001,24,"(20,25]",NoHS,71.64988523335884,17.21798389479346,4.1613400077011935,8665.101307274785,2019
+2001,24,"(20,25]",NoHS,66.46029074215761,22.383379063231494,2.9691804152720596,8716.784298044236,2019
+2001,85,"(80,85]",NoHS,426.55118592195873,27.548774231669533,15.483490566037737,8362.327911251561,2019
+2001,85,"(80,85]",NoHS,180.14589135424637,18.939782284272805,9.51150803374523,8640.577610449667,2019
+2001,85,"(80,85]",NoHS,164.978882938026,24.105177452710844,6.844126464602012,8825.197210876371,2019
+2001,85,"(80,85]",NoHS,228.67697016067328,43.04495973698364,5.312514439738159,8637.927789965213,2019
+2001,85,"(80,85]",NoHS,566.4191277735272,18.939782284272805,29.906316729093007,8752.881056363836,2019
+2001,20,"(15,20]",HS,16.90803366488141,43.04495973698364,0.39279938390450525,9861.401101585743,2019
+2001,20,"(15,20]",HS,15.066564651874522,43.04495973698364,0.3500192529842126,9860.202462617808,2019
+2001,20,"(15,20]",HS,15.23397092578424,43.04495973698364,0.3539083557951483,9921.488912839566,2019
+2001,20,"(15,20]",HS,17.075439938791124,43.04495973698364,0.3966884867154409,9716.846464952425,2019
+2001,20,"(15,20]",HS,15.23397092578424,43.04495973698364,0.3539083557951483,9785.998942255039,2019
+2001,55,"(50,55]",HS,102.45263963274675,53.37575007385973,1.919460419590843,5360.758365171057,2019
+2001,55,"(50,55]",HS,100.44376434583015,53.37575007385973,1.881823940775336,5642.099967576668,2019
+2001,55,"(50,55]",HS,102.28523335883705,55.097548463339066,1.856438919907586,5782.279894512188,2019
+2001,55,"(50,55]",HS,101.61560826319817,55.097548463339066,1.8442854736234118,5572.8324762414795,2019
+2001,55,"(50,55]",HS,102.28523335883705,53.37575007385973,1.9163240463562174,5600.291228369763,2019
+2001,47,"(45,50]",HS,33.98347360367253,86.08991947396729,0.39474393530997304,7314.071144015262,2019
+2001,47,"(45,50]",HS,18.91690895179801,86.08991947396729,0.2197343088178668,7756.497967461924,2019
+2001,47,"(45,50]",HS,30.635348125478195,86.08991947396729,0.35585290720061613,7779.430031471165,2019
+2001,47,"(45,50]",HS,10.546595256312164,86.08991947396729,0.12250673854447439,7526.930390892523,2019
+2001,47,"(45,50]",HS,42.35378729915838,86.08991947396729,0.49197150558336544,7615.414003993971,2019
+2001,36,"(35,40]",College,1936.8905891354248,439.05858931723316,4.411462698286862,2264.957031228156,2019
+2001,36,"(35,40]",College,1936.8905891354248,439.05858931723316,4.411462698286862,2215.4019268576926,2019
+2001,36,"(35,40]",College,1936.8905891354248,439.05858931723316,4.411462698286862,2378.936274850248,2019
+2001,36,"(35,40]",College,1936.8905891354248,439.05858931723316,4.411462698286862,2272.7414556824515,2019
+2001,36,"(35,40]",College,1936.8905891354248,439.05858931723316,4.411462698286862,2265.560583355288,2019
+2001,71,"(70,75]",College,225.32884468247897,46.488556515942335,4.846974429184672,10086.562786489005,2019
+2001,71,"(70,75]",College,225.16143840856924,46.488556515942335,4.843373408063435,11167.791143429376,2019
+2001,71,"(70,75]",College,225.16143840856924,44.76675812646299,5.02965700068126,11200.829584893534,2019
+2001,71,"(70,75]",College,225.16143840856924,46.488556515942335,4.843373408063435,10861.057353085482,2019
+2001,71,"(70,75]",College,225.16143840856924,44.76675812646299,5.02965700068126,10936.699680676818,2019
+2001,40,"(35,40]",HS,712.9833205814843,206.6158067375215,3.4507685149531513,8117.607463680719,2019
+2001,40,"(35,40]",HS,728.3846977811783,206.6158067375215,3.525309652162752,7381.80230482454,2019
+2001,40,"(35,40]",HS,724.0321346595256,206.6158067375215,3.5042436786035167,6896.516878378049,2019
+2001,40,"(35,40]",HS,728.5521040550881,206.6158067375215,3.526119881915031,7718.940372679051,2019
+2001,40,"(35,40]",HS,743.4512624330528,206.6158067375215,3.5982303298677962,7421.801566850551,2019
+2001,43,"(40,45]",HS,26.366488140780415,60.2629436317771,0.43752406623026574,6151.334538226673,2019
+2001,43,"(40,45]",HS,87.2856312165264,60.2629436317771,1.4484130040156225,6401.059484311002,2019
+2001,43,"(40,45]",HS,88.1728844682479,60.2629436317771,1.4631360360855934,6449.084190347762,2019
+2001,43,"(40,45]",HS,90.39938791124713,60.2629436317771,1.5000825127894826,6248.023087176723,2019
+2001,43,"(40,45]",HS,98.71947972456006,60.2629436317771,1.6381456625776996,6401.0655471048785,2019
+2001,52,"(50,55]",HS,13.275317521040552,74.03733074761188,0.17930572843441897,5003.377792521364,2019
+2001,52,"(50,55]",HS,17.61114001530222,74.03733074761188,0.23786838122699713,5076.979339999401,2019
+2001,52,"(50,55]",HS,11.634736036725327,74.03733074761188,0.15714688683722722,5063.561356579816,2019
+2001,52,"(50,55]",HS,12.17043611323642,74.03733074761188,0.16438242695059593,4995.970956177893,2019
+2001,52,"(50,55]",HS,10.948370313695486,74.03733074761188,0.1478763510669735,5071.146361162815,2019
+2001,80,"(75,80]",NoHS,49.71966335118593,13.085667760043028,3.7995511014733605,7550.661489362622,2019
+2001,80,"(75,80]",NoHS,57.08553940321347,15.151825827418245,3.7675683480939544,7855.083590764899,2019
+2001,80,"(75,80]",NoHS,52.90038255547054,13.946566954782698,3.793075581036049,8003.252160190515,2019
+2001,80,"(75,80]",NoHS,57.75516449885233,16.012725022157916,3.6068292198193945,7771.382302359753,2019
+2001,80,"(75,80]",NoHS,49.5522570772762,29.27057262114888,1.6929035765249494,7898.47711447294,2019
+2001,36,"(35,40]",HS,6.194032134659525,20.661580673752148,0.29978500834295985,7278.593033972915,2019
+2001,36,"(35,40]",HS,6.210772762050498,20.661580673752148,0.30059523809523814,7215.403656449571,2019
+2001,36,"(35,40]",HS,7.868094873756696,18.939782284272805,0.4154268911681311,7252.160334449096,2019
+2001,36,"(35,40]",HS,6.210772762050498,18.939782284272805,0.3279220779220779,7235.781787104776,2019
+2001,36,"(35,40]",HS,7.868094873756696,18.939782284272805,0.4154268911681311,7262.181706029386,2019
+2001,61,"(60,65]",HS,143.4671767406274,72.31553235813253,1.9839054220070778,6748.719029378908,2019
+2001,61,"(60,65]",HS,121.87176740627392,72.31553235813253,1.6852778847388012,7126.420170354997,2019
+2001,61,"(60,65]",HS,143.63458301453713,72.31553235813253,1.9862203641564444,7162.280124917896,2019
+2001,61,"(60,65]",HS,150.33083397092577,74.03733074761188,2.030473444314101,6946.166264061128,2019
+2001,61,"(60,65]",HS,138.6123947972456,74.03733074761188,1.87219600433416,7049.379940551754,2019
+2001,34,"(30,35]",HS,1783.7138485080336,215.22479868491826,8.287678090103965,521.7467219201698,2019
+2001,34,"(30,35]",HS,1734.3289977046672,215.22479868491826,8.05822102425876,265.64229931000506,2019
+2001,34,"(30,35]",HS,1880.8094873756695,215.22479868491826,8.738814016172505,250.85076680698202,2019
+2001,34,"(30,35]",HS,1879.1354246365725,215.22479868491826,8.731035810550635,528.5623657471214,2019
+2001,34,"(30,35]",HS,1787.061973986228,215.22479868491826,8.303234501347708,528.2694087925968,2019
+2001,63,"(60,65]",HS,2277.5623565416986,172.17983894793457,13.227810935695034,1860.5677287200517,2019
+2001,63,"(60,65]",HS,2279.236419280796,172.17983894793457,13.237533692722373,1816.1541640801097,2019
+2001,63,"(60,65]",HS,2279.236419280796,172.17983894793457,13.237533692722373,1952.06250980589,2019
+2001,63,"(60,65]",HS,2277.5623565416986,172.17983894793457,13.227810935695034,1866.4023363882711,2019
+2001,63,"(60,65]",HS,2279.236419280796,172.17983894793457,13.237533692722373,1858.4740723350667,2019
+2001,59,"(55,60]",HS,6074.788645753634,550.9754846333907,11.025515318155563,1845.0077243061532,2019
+2001,59,"(55,60]",HS,7031.833573068095,549.2536862439113,12.802524132619867,1845.0665218577974,2019
+2001,59,"(55,60]",HS,4576.803825554705,550.9754846333907,8.306728617154409,1856.86073796024,2019
+2001,59,"(55,60]",HS,6510.597398622801,549.2536862439113,11.853534280572111,1840.438554036859,2019
+2001,59,"(55,60]",HS,4850.261973986228,545.8100894649527,8.886354553725543,1832.4461149973722,2019
+2001,28,"(25,30]",HS,-21.39452180566182,41.323161347504296,-0.5177368117058144,4201.073739134238,2019
+2001,28,"(25,30]",HS,-21.39452180566182,41.323161347504296,-0.5177368117058144,4222.612416761786,2019
+2001,28,"(25,30]",HS,-23.06858454475899,41.323161347504296,-0.558248299319728,4234.732683513952,2019
+2001,28,"(25,30]",HS,-21.39452180566182,41.323161347504296,-0.5177368117058144,4228.9660962268645,2019
+2001,28,"(25,30]",HS,-21.39452180566182,41.323161347504296,-0.5177368117058144,4202.321877891234,2019
+2001,58,"(55,60]",College,4929.277735271614,137.74387115834767,35.78582258375047,1573.3579612305853,2019
+2001,58,"(55,60]",College,4929.277735271614,137.74387115834767,35.78582258375047,1556.368576429962,2019
+2001,58,"(55,60]",College,4929.277735271614,137.74387115834767,35.78582258375047,1596.663091263162,2019
+2001,58,"(55,60]",College,4929.277735271614,137.74387115834767,35.78582258375047,1554.0627222000635,2019
+2001,58,"(55,60]",College,4929.277735271614,137.74387115834767,35.78582258375047,1537.8345326191723,2019
+2001,36,"(35,40]",HS,141.6257077276205,99.86430658980206,1.4181814560567232,7429.39223637492,2019
+2001,36,"(35,40]",HS,140.11905126243306,99.86430658980206,1.4030944192901624,7609.914839311369,2019
+2001,36,"(35,40]",HS,144.30420811017598,99.86430658980206,1.4450028547528315,7813.758770711873,2019
+2001,36,"(35,40]",HS,138.27758224942616,99.86430658980206,1.3846547076865878,7544.8465428992695,2019
+2001,36,"(35,40]",HS,138.4449885233359,98.14250820032271,1.4106526423876404,7630.259440886539,2019
+2001,51,"(50,55]",HS,39.24003060443764,18.939782284272805,2.071831133825743,4905.706867823306,2019
+2001,51,"(50,55]",HS,66.02503442999235,24.105177452710844,2.739039551130425,4927.027021308047,2019
+2001,51,"(50,55]",HS,39.055883703136956,20.661580673752148,1.8902660120652037,4917.158280919996,2019
+2001,51,"(50,55]",HS,44.412884468247896,25.826975842190187,1.7196316262354,4881.264645957707,2019
+2001,51,"(50,55]",HS,39.07262433052793,29.27057262114888,1.3348773471652813,4923.140073791173,2019
+2001,54,"(50,55]",HS,1829.7505738332059,130.8566776004303,13.982859777476035,3738.542428057289,2019
+2001,54,"(50,55]",HS,1828.0765110941088,129.1348792109509,14.156334231805934,3800.527090122626,2019
+2001,54,"(50,55]",HS,1831.4246365723031,129.1348792109509,14.182261583878837,4765.71341074733,2019
+2001,54,"(50,55]",HS,1829.7505738332059,130.8566776004303,13.982859777476035,3929.807002825664,2019
+2001,54,"(50,55]",HS,1829.7505738332059,130.8566776004303,13.982859777476035,4020.8393438351864,2019
+2001,46,"(45,50]",College,2094.2022647283857,137.74387115834767,15.203596698113207,917.3999938851224,2019
+2001,46,"(45,50]",College,2349.061576128539,163.57084700053784,14.361126198244941,890.8203553982681,2019
+2001,46,"(45,50]",College,2043.695791889824,142.9092663267857,14.300652745753904,962.4194410901616,2019
+2001,46,"(45,50]",College,2201.559908186687,167.01444377949653,13.181853367684363,914.1998184077065,2019
+2001,46,"(45,50]",College,2119.6982402448357,170.45804055845522,12.435308028299945,912.1621183705125,2019
+2001,39,"(35,40]",HS,86.38163733741392,60.2629436317771,1.4334121788877277,6210.614435230287,2019
+2001,39,"(35,40]",HS,91.57123182861514,60.2629436317771,1.5195280268441609,6441.108833522916,2019
+2001,39,"(35,40]",HS,87.0512624330528,60.2629436317771,1.4445239012046869,6501.311197758162,2019
+2001,39,"(35,40]",HS,87.38607498087224,60.2629436317771,1.4500797623631665,6307.92213251906,2019
+2001,39,"(35,40]",HS,88.72532517214995,60.2629436317771,1.4723032069970845,6452.613302848705,2019
+2001,59,"(55,60]",NoHS,248.76572302983934,18.939782284272805,13.134560856932824,7403.891857468783,2019
+2001,59,"(55,60]",NoHS,228.81089517980107,27.548774231669533,8.305665190604543,7738.403912082964,2019
+2001,59,"(55,60]",NoHS,222.6503442999235,36.157766179066265,6.15774611731485,7782.333465515041,2019
+2001,59,"(55,60]",NoHS,245.417597551645,30.992371010628222,7.9186454455996245,7593.780603669438,2019
+2001,59,"(55,60]",NoHS,240.8808875286917,27.548774231669533,8.743796929149019,7657.506736941783,2019
+2001,60,"(55,60]",HS,182.5565416985463,68.87193557917384,2.65066663457836,7542.980790651081,2019
+2001,60,"(55,60]",HS,225.0777352716144,68.87193557917384,3.268061705814401,7912.548178033328,2019
+2001,60,"(55,60]",HS,167.90849273144605,68.87193557917384,2.4379813246053135,7964.575438806367,2019
+2001,60,"(55,60]",HS,185.65355776587606,68.87193557917384,2.6956343858298037,7788.5306178362425,2019
+2001,60,"(55,60]",HS,191.51277735271614,68.87193557917384,2.780708509819022,7779.995508181269,2019
+2001,25,"(20,25]",HS,14.514123947972456,68.87193557917384,0.21074075856757796,4756.429277014044,2019
+2001,25,"(20,25]",HS,13.208355011476664,68.87193557917384,0.19178138236426645,4721.110340667047,2019
+2001,25,"(20,25]",HS,12.890283091048202,68.87193557917384,0.1871630727762803,4726.309755206085,2019
+2001,25,"(20,25]",HS,26.868706962509567,68.87193557917384,0.39012562572198695,4757.348944818312,2019
+2001,25,"(20,25]",HS,16.606702371843916,68.87193557917384,0.24112437427801306,4712.892323810977,2019
+2001,39,"(35,40]",HS,261.40489671002297,51.653951684380374,5.060695032730074,6728.239748244729,2019
+2001,39,"(35,40]",HS,235.35648048967101,51.653951684380374,4.556408034912078,6977.9447635074785,2019
+2001,39,"(35,40]",HS,238.06846212700842,51.653951684380374,4.60891092285971,7043.164709812331,2019
+2001,39,"(35,40]",HS,285.6955470543229,51.653951684380374,5.530952380952382,6833.657581461777,2019
+2001,39,"(35,40]",HS,124.65071155317521,51.653951684380374,2.413188294185599,6990.408075891054,2019
+2001,64,"(60,65]",HS,1436.0110175975517,111.91689531615746,12.831047658540921,267.6030474101823,2019
+2001,64,"(60,65]",HS,1456.9368018362661,111.91689531615746,13.01802375522052,268.7336010767905,2019
+2001,64,"(60,65]",HS,1500.2950267788829,111.91689531615746,13.405438227540655,253.6344562106549,2019
+2001,64,"(60,65]",HS,1438.8569242540168,111.91689531615746,12.856476407689346,269.0149229183387,2019
+2001,64,"(60,65]",HS,1454.9279265493496,111.91689531615746,13.00007404993928,284.41332448299937,2019
+2001,64,"(60,65]",NoHS,63.96593726090283,25.826975842190187,2.476710306764215,7071.996184773275,2019
+2001,64,"(60,65]",NoHS,296.66065799540934,25.826975842190187,11.486465152098575,6156.05997883012,2019
+2001,64,"(60,65]",NoHS,207.9353328232594,25.826975842190187,8.051091002438712,6205.829708950613,2019
+2001,64,"(60,65]",NoHS,248.11283856159145,25.826975842190187,9.60673212681299,6046.805885741856,2019
+2001,64,"(60,65]",NoHS,157.71345065034433,25.826975842190187,6.1065395969708645,6107.235551337852,2019
+2001,45,"(40,45]",College,11087.61885233359,774.8092752657057,14.31012664185171,329.98639954994576,2019
+2001,45,"(40,45]",College,11085.96153022188,774.8092752657057,14.307987635305691,326.8970278536106,2019
+2001,45,"(40,45]",College,11037.413710788063,774.8092752657057,14.245329867796173,334.7557563186679,2019
+2001,45,"(40,45]",College,11186.405294567712,774.8092752657057,14.437624395670216,329.3675060298786,2019
+2001,45,"(40,45]",College,11035.722907421576,774.8092752657057,14.243147648996704,330.5896592044981,2019
+2001,39,"(35,40]",College,175.52547819433818,215.22479868491826,0.8155448594532151,7471.1696157286015,2019
+2001,39,"(35,40]",College,170.50328997704668,215.22479868491826,0.792210242587601,7669.303341380864,2019
+2001,39,"(35,40]",College,161.79816373374138,215.22479868491826,0.7517635733538697,7745.951913567614,2019
+2001,39,"(35,40]",College,173.851415455241,215.22479868491826,0.8077666538313437,7561.613985606096,2019
+2001,39,"(35,40]",College,155.26931905126244,215.22479868491826,0.7214285714285714,7685.770583419629,2019
+2001,85,"(80,85]",NoHS,557.630298393267,34.43596778958692,16.1932518290335,1574.2094415713225,2019
+2001,85,"(80,85]",NoHS,549.0925784238715,34.43596778958692,15.945321524836348,1673.0040898178715,2019
+2001,85,"(80,85]",NoHS,550.2644223412395,34.43596778958692,15.979351174432038,1641.0177707111754,2019
+2001,85,"(80,85]",NoHS,557.4628921193573,34.43596778958692,16.18839045051983,1623.1214362364874,2019
+2001,85,"(80,85]",NoHS,570.8553940321347,34.43596778958692,16.5773007316134,1592.349428816034,2019
+2001,50,"(45,50]",HS,112.16220351951033,86.08991947396729,1.302849441663458,5731.763395859712,2019
+2001,50,"(45,50]",HS,112.16220351951033,86.08991947396729,1.302849441663458,6049.99939100039,2019
+2001,50,"(45,50]",HS,112.16220351951033,86.08991947396729,1.302849441663458,6088.201997880262,2019
+2001,50,"(45,50]",HS,112.16220351951033,86.08991947396729,1.302849441663458,5875.9079812033515,2019
+2001,50,"(45,50]",HS,112.16220351951033,86.08991947396729,1.302849441663458,5972.44277914162,2019
+2001,43,"(40,45]",College,264.334506503443,94.69891142136402,2.7913151538488465,6579.5637111490705,2019
+2001,43,"(40,45]",College,264.334506503443,92.97711303188467,2.8430061752164177,6823.750915884647,2019
+2001,43,"(40,45]",College,264.334506503443,94.69891142136402,2.7913151538488465,6887.529676453109,2019
+2001,43,"(40,45]",College,262.8278500382556,92.97711303188467,2.826801580170853,6682.652093236492,2019
+2001,43,"(40,45]",College,264.334506503443,94.69891142136402,2.7913151538488465,6835.938822521164,2019
+2001,53,"(50,55]",NoHS,0,0.6887193557917383,0,5216.569595992649,2019
+2001,53,"(50,55]",NoHS,0,0.6887193557917383,0,5331.501876133607,2019
+2001,53,"(50,55]",NoHS,0,0.6887193557917383,0,5248.775301661482,2019
+2001,53,"(50,55]",NoHS,0,0.6887193557917383,0,5233.5258949846575,2019
+2001,53,"(50,55]",NoHS,0,0.6887193557917383,0,5282.2854763725645,2019
+2001,66,"(65,70]",HS,279.23366488140783,80.92452430552926,3.450544408851457,8700.34647004947,2019
+2001,66,"(65,70]",HS,212.89055853098702,61.984742021256444,3.4345639199075864,9106.055351917672,2019
+2001,66,"(65,70]",HS,236.04284621270085,113.63869370563681,2.0771344558406555,9477.835602842435,2019
+2001,66,"(65,70]",HS,234.4022647283856,115.36049209511619,2.031911102937373,8752.526778003983,2019
+2001,66,"(65,70]",HS,232.20924254016833,41.323161347504296,5.619348446925941,9163.843624487605,2019
+2001,79,"(75,80]",NoHS,681.3435348125479,48.21035490542169,14.132721821882392,9166.023903776382,2019
+2001,79,"(75,80]",NoHS,579.2257077276205,48.21035490542169,12.014549755212055,10395.823583135487,2019
+2001,79,"(75,80]",NoHS,664.6029074215761,48.21035490542169,13.785480499477417,7823.6378322482415,2019
+2001,79,"(75,80]",NoHS,597.6403978576894,48.21035490542169,12.396515209857528,8749.104599035685,2019
+2001,79,"(75,80]",NoHS,574.203519510329,48.21035490542169,11.910377358490564,10504.159735688178,2019
+2001,52,"(50,55]",HS,5.8592195868400925,24.105177452710844,0.24306892568348093,5962.159389506467,2019
+2001,52,"(50,55]",HS,5.691813312930376,24.105177452710844,0.2361240992353815,6001.484998434543,2019
+2001,52,"(50,55]",HS,5.691813312930376,24.105177452710844,0.2361240992353815,5999.479604837664,2019
+2001,52,"(50,55]",HS,5.8592195868400925,24.105177452710844,0.24306892568348093,5965.0281156653355,2019
+2001,52,"(50,55]",HS,5.691813312930376,24.105177452710844,0.2361240992353815,5968.5061006773885,2019
+2001,20,"(15,20]",HS,0.03348125478194339,24.105177452710844,0.001388965289619891,5239.69581716146,2019
+2001,20,"(15,20]",HS,0.03348125478194339,27.548774231669533,0.0012153446284174048,5221.384793929628,2019
+2001,20,"(15,20]",HS,0.03348125478194339,24.105177452710844,0.001388965289619891,5225.470315317035,2019
+2001,20,"(15,20]",HS,0.03348125478194339,39.60136295802496,8.454571328121076e-4,5175.340211198449,2019
+2001,20,"(15,20]",HS,0.03348125478194339,24.105177452710844,0.001388965289619891,5222.028353194307,2019
+2001,54,"(50,55]",College,10335.663351185922,2066.1580673752146,5.0023584905660385,1868.844944523591,2019
+2001,54,"(50,55]",College,10337.33741392502,2066.1580673752146,5.0031687203183175,1868.2927902803408,2019
+2001,54,"(50,55]",College,10335.663351185922,2066.1580673752146,5.0023584905660385,1880.36694392992,2019
+2001,54,"(50,55]",College,10335.663351185922,2066.1580673752146,5.0023584905660385,1863.8276863356161,2019
+2001,54,"(50,55]",College,10335.663351185922,2066.1580673752146,5.0023584905660385,1856.330699140442,2019
+2001,31,"(30,35]",College,3613.045906656465,1721.798389479346,2.0984140354254905,230.84596413888525,2019
+2001,31,"(30,35]",College,3916.051262433053,1721.798389479346,2.274395937620331,230.5749335033823,2019
+2001,31,"(30,35]",College,3613.045906656465,1721.798389479346,2.0984140354254905,235.68928410458275,2019
+2001,31,"(30,35]",College,3613.045906656465,1721.798389479346,2.0984140354254905,231.71488299586844,2019
+2001,31,"(30,35]",College,3912.7031369548586,1721.798389479346,2.272451386214863,234.06497481304714,2019
+2001,49,"(45,50]",College,5472.594797245601,258.2697584219018,21.189452573482228,162.70814346411981,2019
+2001,49,"(45,50]",College,5472.594797245601,258.2697584219018,21.189452573482228,160.34240500650904,2019
+2001,49,"(45,50]",College,5472.611537872992,258.2697584219018,21.18951739186241,165.0436122201656,2019
+2001,49,"(45,50]",College,5472.594797245601,258.2697584219018,21.189452573482228,161.3305493308568,2019
+2001,49,"(45,50]",College,5470.920734506504,258.2697584219018,21.182970735464004,162.25750379852155,2019
+2001,49,"(45,50]",HS,4341.346901300688,103.30790336876075,42.023376331664736,1784.0174714508692,2019
+2001,49,"(45,50]",HS,4341.346901300688,103.30790336876075,42.023376331664736,1766.7813911880444,2019
+2001,49,"(45,50]",HS,4341.346901300688,103.30790336876075,42.023376331664736,1811.9298320147532,2019
+2001,49,"(45,50]",HS,4341.346901300688,103.30790336876075,42.023376331664736,1762.0684723401077,2019
+2001,49,"(45,50]",HS,4341.346901300688,103.30790336876075,42.023376331664736,1745.7117383266548,2019
+2001,42,"(40,45]",College,517.7876052027544,137.74387115834767,3.759060935695033,7999.362312845749,2019
+2001,42,"(40,45]",College,519.1268553940322,137.74387115834767,3.768783692722372,7279.572220598902,2019
+2001,42,"(40,45]",College,481.962662586075,137.74387115834767,3.498977185213708,6800.141013033053,2019
+2001,42,"(40,45]",College,474.261973986228,139.46566954782702,3.400564278821242,7608.985658836554,2019
+2001,42,"(40,45]",College,495.6899770466718,137.74387115834767,3.5986354447439353,7311.5167559003985,2019
+2001,25,"(20,25]",College,0.8370313695485845,25.826975842190187,0.03240919009113079,6615.719696491435,2019
+2001,25,"(20,25]",College,0.8370313695485845,25.826975842190187,0.03240919009113079,6634.358761443565,2019
+2001,25,"(20,25]",College,0.8370313695485845,25.826975842190187,0.03240919009113079,6637.406554219166,2019
+2001,25,"(20,25]",College,0.8370313695485845,25.826975842190187,0.03240919009113079,6640.28788303365,2019
+2001,25,"(20,25]",College,0.8370313695485845,25.826975842190187,0.03240919009113079,6620.424239733266,2019
+2001,46,"(45,50]",College,4571.697934200459,766.200283318309,5.966713969878813,2957.208265151808,2019
+2001,46,"(45,50]",College,4570.358684009181,766.200283318309,5.964966058503112,3024.9695791728795,2019
+2001,46,"(45,50]",College,4571.865340474369,766.200283318309,5.966932458800777,3009.0789231342715,2019
+2001,46,"(45,50]",College,4570.191277735272,766.200283318309,5.96474756958115,3011.985179399793,2019
+2001,46,"(45,50]",College,4571.697934200459,766.200283318309,5.966713969878813,3005.519450793768,2019
+2001,48,"(45,50]",College,20691.750267788833,358.1340650117039,57.77654875448003,309.242546203524,2019
+2001,48,"(45,50]",College,20056.610864575363,325.41989561159636,61.6330197847333,303.1006106689578,2019
+2001,48,"(45,50]",College,20626.62922723795,370.18665373805936,55.71953774928137,312.65062284978126,2019
+2001,48,"(45,50]",College,22895.319051262435,421.8406054224397,54.27481080996127,304.66808352753003,2019
+2001,48,"(45,50]",College,21823.416679418515,296.1493229904475,73.69058439523242,307.38223852495236,2019
+2001,35,"(30,35]",College,16658.43091048202,1119.1689531615748,14.884643523592311,254.02985305266816,2019
+2001,35,"(30,35]",College,14147.336801836267,1119.1689531615748,12.640930363437102,248.477456631287,2019
+2001,35,"(30,35]",College,14147.336801836267,1119.1689531615748,12.640930363437102,256.54893154754114,2019
+2001,35,"(30,35]",College,14984.368171384851,1119.1689531615748,13.388834750155505,250.19705672943414,2019
+2001,35,"(30,35]",College,16658.43091048202,1119.1689531615748,14.884643523592311,252.15036172146847,2019
+2001,59,"(55,60]",College,2160.0431522570775,170.45804055845522,12.671993325632142,3969.570364382015,2019
+2001,59,"(55,60]",College,2158.36908951798,170.45804055845522,12.662172358937857,4037.7860708943967,2019
+2001,59,"(55,60]",College,2155.8579954093348,170.45804055845522,12.647440908896437,5070.875896895273,2019
+2001,59,"(55,60]",College,2136.2714613618978,170.45804055845522,12.532535598573336,4175.823467842694,2019
+2001,59,"(55,60]",College,2141.2936495791887,170.45804055845522,12.56199849865618,4278.2842256282765,2019
+2001,33,"(30,35]",College,85080.89058913542,2152.2479868491823,39.53117443203696,147.5150888264832,2019
+2001,33,"(30,35]",College,85080.89058913542,2152.2479868491823,39.53117443203696,149.62368076474104,2019
+2001,33,"(30,35]",College,85080.89058913542,2152.2479868491823,39.53117443203696,153.83800526821295,2019
+2001,33,"(30,35]",College,85079.21652639634,2152.2479868491823,39.530396611474785,152.50532902641126,2019
+2001,33,"(30,35]",College,85079.21652639634,2152.2479868491823,39.530396611474785,157.243754672229,2019
+2001,39,"(35,40]",NoHS,201.22234123947973,55.097548463339066,3.652110608394301,6578.834713873995,2019
+2001,39,"(35,40]",NoHS,201.38974751338947,55.097548463339066,3.655148969965345,6800.479128443716,2019
+2001,39,"(35,40]",NoHS,201.38974751338947,55.097548463339066,3.655148969965345,6999.359249310342,2019
+2001,39,"(35,40]",NoHS,201.05493496557003,55.097548463339066,3.6490722468232577,6748.801578818396,2019
+2001,39,"(35,40]",NoHS,201.38974751338947,55.097548463339066,3.655148969965345,6836.044091219077,2019
+2001,76,"(75,80]",College,4733.261729150727,344.35967789586914,13.745110223334617,1234.7526833263498,2019
+2001,76,"(75,80]",College,10304.709931140014,344.35967789586914,29.924264054678474,1260.6855620014728,2019
+2001,76,"(75,80]",College,3682.285141545524,344.35967789586914,10.69313679245283,1257.1088793041233,2019
+2001,76,"(75,80]",College,3560.0785615914306,344.35967789586914,10.338256160954948,1255.137315547295,2019
+2001,76,"(75,80]",College,7200.830206579954,344.35967789586914,20.910782152483637,1253.5985778056147,2019
+2001,44,"(40,45]",College,3357.835042081102,106.75150014771945,31.454687170059746,164.8103080219313,2019
+2001,44,"(40,45]",College,3191.9354246365724,106.75150014771945,29.90061423230278,162.36084482647135,2019
+2001,44,"(40,45]",College,3147.4053557765874,106.75150014771945,29.483476592097574,167.13291760721836,2019
+2001,44,"(40,45]",College,3289.5332823259373,106.75150014771945,30.81486703019613,163.3808115109518,2019
+2001,44,"(40,45]",College,3220.2270849273145,106.75150014771945,30.16563777062864,164.37241073663125,2019
+2001,37,"(35,40]",HS,433.5822494261668,180.7888308953313,2.3982800667436788,6546.452424247494,2019
+2001,37,"(35,40]",HS,405.6254016832441,180.7888308953313,2.2436419311659974,5951.336398736532,2019
+2001,37,"(35,40]",HS,430.73634276970165,180.7888308953313,2.3825384601279866,5562.821029971002,2019
+2001,37,"(35,40]",HS,406.7972456006121,180.7888308953313,2.2501237691842237,6223.974495829657,2019
+2001,37,"(35,40]",HS,404.78837031369545,180.7888308953313,2.2390120468672645,6591.589067013408,2019
+2001,54,"(50,55]",College,449.9043611323642,251.3825648639845,1.7897198295187808,5674.09423437754,2019
+2001,54,"(50,55]",College,473.5086457536343,218.6683954638769,2.1654187599865384,5968.563783423169,2019
+2001,54,"(50,55]",College,428.64376434583016,187.6760244532487,2.2839559053671667,6010.012589451365,2019
+2001,54,"(50,55]",College,583.1597551644988,251.3825648639845,2.319809870187413,5417.999941476921,2019
+2001,54,"(50,55]",College,425.12823259372607,215.22479868491826,1.975275317674239,5925.262754256876,2019
+2001,53,"(50,55]",College,34407.84850803366,1721.798389479346,19.983668656141695,282.46378812830255,2019
+2001,53,"(50,55]",College,37038.47069625095,1721.798389479346,21.511502695417786,282.421730201525,2019
+2001,53,"(50,55]",College,34707.33833205815,1721.798389479346,20.1576087793608,283.85439531716236,2019
+2001,53,"(50,55]",College,36239.60795715379,1721.798389479346,21.04753273007316,294.9548913860308,2019
+2001,53,"(50,55]",College,35050.85600612089,1721.798389479346,20.3571197535618,297.43930329297586,2019
+2001,26,"(25,30]",HS,10.546595256312164,49.93215329490103,0.21121851473185238,4616.985297899288,2019
+2001,26,"(25,30]",HS,10.546595256312164,51.653951684380374,0.20417789757412397,4582.701804893399,2019
+2001,26,"(25,30]",HS,10.714001530221882,70.59373396865318,0.15176986579261248,4587.748788478426,2019
+2001,26,"(25,30]",HS,10.714001530221882,82.64632269500859,0.12963676036452318,4617.8780038524255,2019
+2001,26,"(25,30]",HS,10.546595256312164,53.37575007385973,0.19759151378141027,4574.7247151917345,2019
+2001,48,"(45,50]",College,1023.0197398622801,241.0517745271084,4.243983442433578,8850.646027762605,2019
+2001,48,"(45,50]",College,960.2423871461361,241.0517745271084,3.9835524506298476,8761.845768503403,2019
+2001,48,"(45,50]",College,989.9570007651109,241.0517745271084,4.106823120083614,8429.027955793237,2019
+2001,48,"(45,50]",College,932.620351951033,241.0517745271084,3.868962814236207,8740.446981589908,2019
+2001,48,"(45,50]",College,1012.975363427697,241.0517745271084,4.20231448374498,9216.609297034003,2019
+2001,57,"(55,60]",HS,955.8898240244836,99.86430658980206,9.571886659673629,4681.377528253194,2019
+2001,57,"(55,60]",HS,956.224636572303,99.86430658980206,9.575239334510643,4627.357227524379,2019
+2001,57,"(55,60]",HS,956.0572302983933,99.86430658980206,9.573562997092136,4452.322419612857,2019
+2001,57,"(55,60]",HS,956.224636572303,99.86430658980206,9.575239334510643,4620.0063732328,2019
+2001,57,"(55,60]",HS,955.8898240244836,99.86430658980206,9.571886659673629,4867.238326459339,2019
+2001,42,"(40,45]",HS,-9.709563886763581,29.27057262114888,-0.3317175926974563,5572.136366707245,2019
+2001,42,"(40,45]",HS,-9.709563886763581,27.548774231669533,-0.35244994224104736,5574.376272182011,2019
+2001,42,"(40,45]",HS,-9.709563886763581,27.548774231669533,-0.35244994224104736,5589.034901510622,2019
+2001,42,"(40,45]",HS,-9.709563886763581,29.27057262114888,-0.3317175926974563,5565.272115632011,2019
+2001,42,"(40,45]",HS,-9.876970160673299,29.27057262114888,-0.3374368615370677,5583.170395951068,2019
+2001,51,"(50,55]",HS,9278.911247130834,2462.1716969554645,3.768588217712207,244.8907549895053,2019
+2001,51,"(50,55]",HS,9417.272532517216,1303.4013808358648,7.225151569563296,235.69937991085098,2019
+2001,51,"(50,55]",HS,9626.446671767406,3632.9946018014193,2.6497277664530894,245.5275906668638,2019
+2001,51,"(50,55]",HS,10301.930986993113,2221.119922428356,4.638169638193145,239.58875832244925,2019
+2001,51,"(50,55]",HS,10594.121897475135,2617.1335520086054,4.047986733173906,236.7943387558627,2019
+2001,40,"(35,40]",College,140.47060443764346,105.0297017582401,1.3374369543672713,5535.588375963249,2019
+2001,40,"(35,40]",College,197.212960979342,151.51825827418244,1.301578854097385,5754.252523991994,2019
+2001,40,"(35,40]",College,183.65305279265493,251.3825648639845,0.7305719586878432,5822.0314585863725,2019
+2001,40,"(35,40]",College,187.3443611323642,175.6234357268933,1.0667389597348373,5638.708330868369,2019
+2001,40,"(35,40]",College,127.07810252486611,91.25531464240532,1.3925556338590974,5748.905174420352,2019
+2001,34,"(30,35]",College,686.1983167559297,516.5395168438037,1.3284527018354515,81.32795550071049,2019
+2001,34,"(30,35]",College,686.1983167559297,516.5395168438037,1.3284527018354515,80.12191717921202,2019
+2001,34,"(30,35]",College,684.5242540168325,516.5395168438037,1.3252117828263383,77.47744462046538,2019
+2001,34,"(30,35]",College,684.5242540168325,516.5395168438037,1.3252117828263383,80.81533986548445,2019
+2001,34,"(30,35]",College,686.1983167559297,516.5395168438037,1.3284527018354515,86.57719717508918,2019
+2001,51,"(50,55]",HS,71.1978882938026,44.76675812646299,1.5904186783566838,7299.550037686524,2019
+2001,51,"(50,55]",HS,69.85863810252488,44.76675812646299,1.560502502887948,7704.169560269215,2019
+2001,51,"(50,55]",HS,69.52382555470543,44.76675812646299,1.5530234590207634,7743.49889851474,2019
+2001,51,"(50,55]",HS,71.1978882938026,44.76675812646299,1.5904186783566838,7510.9517318451935,2019
+2001,51,"(50,55]",HS,69.52382555470543,44.76675812646299,1.5530234590207634,7634.6479668522425,2019
+2001,48,"(45,50]",HS,150.53172149961745,8.60899194739673,17.485406237966885,6104.887742119767,2019
+2001,48,"(45,50]",HS,149.87883703136953,8.60899194739673,17.409568733153634,6429.033659395107,2019
+2001,48,"(45,50]",HS,150.01276205049732,8.60899194739673,17.42512514439738,6454.076495843995,2019
+2001,48,"(45,50]",HS,150.53172149961745,8.60899194739673,17.485406237966885,6240.226118671512,2019
+2001,48,"(45,50]",HS,150.58194338179035,8.60899194739673,17.491239892183287,6363.867658732311,2019
+2001,39,"(35,40]",College,32.8785921958684,108.47329853719879,0.3031030920903851,5587.118645447867,2019
+2001,39,"(35,40]",College,23.118806426931904,125.69128243199225,0.18393325280486966,5807.818317382878,2019
+2001,39,"(35,40]",College,24.84309104820199,103.30790336876075,0.24047619047619048,5876.228199679254,2019
+2001,39,"(35,40]",College,29.547207345065036,118.80408887407486,0.248705306568895,5691.19853427592,2019
+2001,39,"(35,40]",College,19.80416220351951,117.08229048459552,0.16914737593150467,5802.421189839008,2019
+2001,69,"(65,70]",College,76522.57964804897,2341.64580969191,32.67897276835263,13.09645278129155,2019
+2001,69,"(65,70]",College,76096.02846212701,2341.64580969191,32.49681405581101,14.258243659434806,2019
+2001,69,"(65,70]",College,77054.09456771232,2255.555890217943,34.16190877906686,13.928130064776862,2019
+2001,69,"(65,70]",College,76816.54506503444,2324.427825797117,33.04750709508122,13.670522615213553,2019
+2001,69,"(65,70]",College,76233.97123182862,2720.4414553773663,28.022647236587495,14.453762593205095,2019
+2001,84,"(80,85]",NoHS,-3.36486610558531,15.151825827418245,-0.22207660937445303,6969.2214812296315,2019
+2001,84,"(80,85]",NoHS,-3.36486610558531,15.151825827418245,-0.22207660937445303,6969.474899771767,2019
+2001,84,"(80,85]",NoHS,-3.36486610558531,15.151825827418245,-0.22207660937445303,6996.558276260225,2019
+2001,84,"(80,85]",NoHS,-3.36486610558531,15.151825827418245,-0.22207660937445303,7019.92380381863,2019
+2001,84,"(80,85]",NoHS,-3.3816067329762816,15.151825827418245,-0.22318146812755973,7012.356051666927,2019
+2001,36,"(35,40]",College,446.9914919663351,99.86430658980206,4.475988541154913,8173.171319608775,2019
+2001,36,"(35,40]",College,436.6123029839327,99.86430658980206,4.372055621207494,8420.540322750721,2019
+2001,36,"(35,40]",College,467.09865952563126,99.86430658980206,4.677333428491761,8512.294921036457,2019
+2001,36,"(35,40]",College,456.68431522570773,99.86430658980206,4.573048477686456,8327.814837159638,2019
+2001,36,"(35,40]",College,451.5616832440704,99.86430658980206,4.521752552680149,8384.910797133194,2019
+2001,38,"(35,40]",HS,959.2379495026779,120.5258872635542,7.958771109521977,7421.889534931291,2019
+2001,38,"(35,40]",HS,959.0705432287682,120.5258872635542,7.957382144232357,6749.14641047046,2019
+2001,38,"(35,40]",HS,960.7446059678654,120.5258872635542,7.971271797128556,6305.452274715247,2019
+2001,38,"(35,40]",HS,959.0705432287682,120.5258872635542,7.957382144232357,7057.390127456228,2019
+2001,38,"(35,40]",HS,960.9120122417751,120.5258872635542,7.972660762418175,6785.7175437217375,2019
+2001,50,"(45,50]",HS,104.39455241009946,86.08991947396729,1.2126222564497497,6848.986550009286,2019
+2001,50,"(45,50]",HS,103.22270849273144,86.08991947396729,1.199010396611475,7212.641234818993,2019
+2001,50,"(45,50]",HS,102.7204896710023,86.08991947396729,1.1931767423950714,7240.736436116332,2019
+2001,50,"(45,50]",HS,104.22714613618976,86.08991947396729,1.210677705044282,7000.820745797646,2019
+2001,50,"(45,50]",HS,104.05973986228003,86.08991947396729,1.208733153638814,7139.532427432074,2019
+2001,39,"(35,40]",NoHS,4.35256312165264,30.992371010628222,0.14043982372823344,9266.832708691438,2019
+2001,39,"(35,40]",NoHS,4.35256312165264,30.992371010628222,0.14043982372823344,9295.172973274857,2019
+2001,39,"(35,40]",NoHS,4.35256312165264,30.992371010628222,0.14043982372823344,9161.884777027777,2019
+2001,39,"(35,40]",NoHS,4.35256312165264,30.992371010628222,0.14043982372823344,9221.60497062274,2019
+2001,39,"(35,40]",NoHS,4.35256312165264,30.992371010628222,0.14043982372823344,9303.422322698705,2019
+2001,48,"(45,50]",HS,78.5972456006121,32.71416940010757,2.4025444338609327,1885.2085819454137,2019
+2001,48,"(45,50]",HS,124.46656465187452,32.71416940010757,3.8046683420140646,4196.776106274988,2019
+2001,48,"(45,50]",HS,82.6149961744453,32.71416940010757,2.5253582068378493,1951.9318419859324,2019
+2001,48,"(45,50]",HS,69.22249426166795,74.03733074761188,0.9349674490243662,1916.2493246499823,2019
+2001,48,"(45,50]",HS,89.31124713083398,32.71416940010757,2.7300478284660437,1915.38938144493,2019
+2001,66,"(65,70]",College,10945.022188217292,1132.9433402774093,9.660696876100904,31.126555796803906,2019
+2001,66,"(65,70]",College,6409.1491966335125,926.3275335398881,6.918880163414177,32.473375280873015,2019
+2001,66,"(65,70]",College,10971.807192042847,1052.0188159718803,10.429287979898751,32.665279601829816,2019
+2001,66,"(65,70]",College,5329.546136189748,1825.1062928481062,2.9201291766261512,31.936139724001464,2019
+2001,66,"(65,70]",College,4970.961897475134,903.9441544766565,5.499191374663073,32.24546911838084,2019
+2001,80,"(75,80]",NoHS,8.370313695485846,20.661580673752148,0.40511487613913494,5754.961607410013,2019
+2001,80,"(75,80]",NoHS,8.370313695485846,20.661580673752148,0.40511487613913494,5785.994697614746,2019
+2001,80,"(75,80]",NoHS,8.370313695485846,20.661580673752148,0.40511487613913494,5773.857654459196,2019
+2001,80,"(75,80]",NoHS,8.370313695485846,20.661580673752148,0.40511487613913494,5855.083951906107,2019
+2001,80,"(75,80]",NoHS,8.370313695485846,20.661580673752148,0.40511487613913494,5794.760080387849,2019
+2001,42,"(40,45]",College,171.50772762050497,192.84141962168675,0.8893718370097363,8953.193070470516,2019
+2001,42,"(40,45]",College,171.50772762050497,192.84141962168675,0.8893718370097363,9190.629722397378,2019
+2001,42,"(40,45]",College,174.8558530986993,192.84141962168675,0.9067339031299849,9282.482738813858,2019
+2001,42,"(40,45]",College,174.8558530986993,192.84141962168675,0.9067339031299849,9061.578497023464,2019
+2001,42,"(40,45]",College,173.18179035960213,192.84141962168675,0.8980528700698607,9210.36349968987,2019
+2001,50,"(45,50]",College,691.89013006886,120.5258872635542,5.740593541999011,4389.284853189847,2019
+2001,50,"(45,50]",College,552.7755164498852,120.5258872635542,4.586363386324881,4611.076814968115,2019
+2001,50,"(45,50]",College,612.3721499617444,120.5258872635542,5.0808350294295614,3717.8849184098153,2019
+2001,50,"(45,50]",College,542.228921193573,120.5258872635542,4.498858573078827,4583.367606162037,2019
+2001,50,"(45,50]",College,629.9498087222647,120.5258872635542,5.22667638483965,4018.234169039263,2019
+2001,69,"(65,70]",College,32224.03366488141,1330.9501550675345,24.211300131856785,33.149566687140165,2019
+2001,69,"(65,70]",College,37647.99693955624,1329.228356678055,28.32319725230986,32.34061318207645,2019
+2001,69,"(65,70]",College,33981.79954093344,1330.9501550675345,25.531985109697178,33.522313865339534,2019
+2001,69,"(65,70]",College,34433.79648048967,1329.228356678055,25.905102240329114,34.68219807495391,2019
+2001,69,"(65,70]",College,33613.50573833205,1329.228356678055,25.287984242479858,33.28948078100423,2019
+2001,48,"(45,50]",HS,396.9202754399388,86.08991947396729,4.610531382364266,7485.463319469553,2019
+2001,48,"(45,50]",HS,398.594338179036,86.08991947396729,4.629976896418945,7882.912457998328,2019
+2001,48,"(45,50]",HS,396.7528691660291,86.08991947396729,4.608586830958799,7913.618548195579,2019
+2001,48,"(45,50]",HS,396.7528691660291,86.08991947396729,4.608586830958799,7651.407477034498,2019
+2001,48,"(45,50]",HS,396.7528691660291,86.08991947396729,4.608586830958799,7803.0096443442135,2019
+2001,54,"(50,55]",College,7347.963580719204,464.8855651594233,15.805962007444489,3687.287979209405,2019
+2001,54,"(50,55]",College,7348.298393267023,464.8855651594233,15.806682211668734,3633.9889219487354,2019
+2001,54,"(50,55]",College,7349.637643458302,464.8855651594233,15.809563028565726,3732.726985571312,2019
+2001,54,"(50,55]",College,7348.298393267023,464.8855651594233,15.806682211668734,3619.162569798528,2019
+2001,54,"(50,55]",College,7347.963580719204,464.8855651594233,15.805962007444489,3597.716146931495,2019
+2001,55,"(50,55]",College,6751.495026778884,769.6438800972677,8.772232458894663,1617.262458972047,2019
+2001,55,"(50,55]",College,6749.820964039786,769.6438800972677,8.770057345465728,1631.309521752739,2019
+2001,55,"(50,55]",College,6746.472838561592,769.6438800972677,8.765707118607857,1631.3945271286193,2019
+2001,55,"(50,55]",College,6744.7987758224945,769.6438800972677,8.763532005178922,1633.9183445242784,2019
+2001,55,"(50,55]",College,6749.820964039786,769.6438800972677,8.770057345465728,1616.674301349702,2019
+2001,29,"(25,30]",HS,230.06644223412394,189.39782284272803,1.214725907515665,9026.40633674585,2019
+2001,29,"(25,30]",HS,229.66466717674064,189.39782284272803,1.2126045787097002,8196.014602838359,2019
+2001,29,"(25,30]",HS,231.84094873756695,189.39782284272803,1.22409510974201,7659.185905900114,2019
+2001,29,"(25,30]",HS,229.88229533282328,189.39782284272803,1.2137536318129312,8537.90640888574,2019
+2001,29,"(25,30]",HS,229.78185156847744,189.39782284272803,1.2132232996114398,8244.99290446167,2019
+2001,60,"(55,60]",HS,171.92624330527926,10.330790336876074,16.64211911179566,6070.657898862844,2019
+2001,60,"(55,60]",HS,171.92624330527926,10.330790336876074,16.64211911179566,6344.9336832342615,2019
+2001,60,"(55,60]",HS,171.92624330527926,10.330790336876074,16.64211911179566,6380.952752079377,2019
+2001,60,"(55,60]",HS,171.92624330527926,10.330790336876074,16.64211911179566,6226.352989933801,2019
+2001,60,"(55,60]",HS,171.92624330527926,10.330790336876074,16.64211911179566,6278.603827974277,2019
+2001,54,"(50,55]",NoHS,4.185156847742923,27.548774231669533,0.1519180785521756,5690.098700627381,2019
+2001,54,"(50,55]",NoHS,6.194032134659525,29.27057262114888,0.21161294706561867,5786.736299092232,2019
+2001,54,"(50,55]",NoHS,4.185156847742923,24.105177452710844,0.17362066120248637,5781.093388055927,2019
+2001,54,"(50,55]",NoHS,4.185156847742923,25.826975842190187,0.16204595045565398,5712.872885274735,2019
+2001,54,"(50,55]",NoHS,4.436266258607499,25.826975842190187,0.17176870748299322,5752.864034924876,2019
+2001,43,"(40,45]",HS,128.0825401683244,146.35286310574438,0.8751625178373238,5285.786075669912,2019
+2001,43,"(40,45]",HS,123.37842387146137,146.35286310574438,0.8430202269587082,5482.692644996714,2019
+2001,43,"(40,45]",HS,116.17995409334354,146.35286310574438,0.7938345149380508,5639.503272208169,2019
+2001,43,"(40,45]",HS,134.09242540168327,146.35286310574438,0.9162268681057332,5402.523204440998,2019
+2001,43,"(40,45]",HS,131.4139250191278,146.35286310574438,0.8979252078189769,5480.474175953439,2019
+2001,64,"(60,65]",NoHS,0,12.913487921095093,0,5048.650072564859,2019
+2001,64,"(60,65]",NoHS,0,12.913487921095093,0,5067.358837199766,2019
+2001,64,"(60,65]",NoHS,0,12.913487921095093,0,5021.831219978691,2019
+2001,64,"(60,65]",NoHS,0,12.913487921095093,0,5039.5417986111015,2019
+2001,64,"(60,65]",NoHS,0,12.913487921095093,0,5077.444788651844,2019
+2001,66,"(65,70]",College,17469.68171384851,1019.3046465717729,17.13882279709436,313.2379130398481,2019
+2001,66,"(65,70]",College,26760.89732211171,1017.5828481822934,26.29849487922743,304.3497927187001,2019
+2001,66,"(65,70]",College,22081.724560061208,1019.3046465717729,21.663518001540233,308.9768892563555,2019
+2001,66,"(65,70]",College,16925.77872991584,1017.5828481822934,16.63331763123792,308.53994444742,2019
+2001,66,"(65,70]",College,17638.92945677123,1019.3046465717729,17.30486515105787,311.3887393874046,2019
+2001,73,"(70,75]",College,145996.6855394032,8385.158156764415,17.411321624461642,17.78317985079869,2019
+2001,73,"(70,75]",College,143629.56082631982,8006.362511078958,17.93942762741128,19.364058268294023,2019
+2001,73,"(70,75]",College,145991.6633511859,8729.517834660282,16.723909168445765,18.90030794244316,2019
+2001,73,"(70,75]",College,147037.95256312165,8247.414285606066,17.82836989524608,18.56465708175563,2019
+2001,73,"(70,75]",College,149838.65952563123,8230.196301711272,18.20596423617209,19.6123879178756,2019
+2001,80,"(75,80]",HS,6981.176434583015,115.36049209511619,60.51618112747774,369.3612393273137,2019
+2001,80,"(75,80]",HS,6874.036419280796,432.17139575931583,15.905810719386603,347.0640763287968,2019
+2001,80,"(75,80]",HS,5933.213159908187,168.7362421689759,35.162648424791556,369.9936353274847,2019
+2001,80,"(75,80]",HS,5908.102218821729,113.63869370563681,51.99023348619037,364.8164387193219,2019
+2001,80,"(75,80]",HS,8444.307268553941,208.33760512700084,40.531843799425275,351.7644536539717,2019
+2001,52,"(50,55]",College,7303.533955623566,809.2452430552926,9.025118180552028,154.22308491104334,2019
+2001,52,"(50,55]",College,7952.78570772762,809.2452430552926,9.82741112904415,144.64233727491833,2019
+2001,52,"(50,55]",College,7306.497046671768,809.2452430552926,9.02877972947509,154.5729760293955,2019
+2001,52,"(50,55]",College,7258.200336648814,809.2452430552926,8.96909855070089,152.02422930013876,2019
+2001,52,"(50,55]",College,10583.474858454476,809.2452430552926,13.078204597776484,146.72053401841268,2019
+2001,30,"(25,30]",HS,0,13.774387115834767,0,5236.716543705867,2019
+2001,30,"(25,30]",HS,0,13.774387115834767,0,5233.493741768639,2019
+2001,30,"(25,30]",HS,0,13.774387115834767,0,5155.461926454188,2019
+2001,30,"(25,30]",HS,0,13.774387115834767,0,5237.816797636307,2019
+2001,30,"(25,30]",HS,0,13.774387115834767,0,5226.405930585049,2019
+2001,77,"(75,80]",NoHS,710.3048201989288,43.04495973698364,16.501463226800155,8788.75768265872,2019
+2001,77,"(75,80]",NoHS,710.1374139250191,43.04495973698364,16.49757412398922,7932.012558477519,2019
+2001,77,"(75,80]",NoHS,710.1374139250191,43.04495973698364,16.49757412398922,7501.623149398746,2019
+2001,77,"(75,80]",NoHS,710.3048201989288,43.04495973698364,16.501463226800155,8388.99844342317,2019
+2001,77,"(75,80]",NoHS,710.3048201989288,43.04495973698364,16.501463226800155,8062.262942274314,2019
+2001,47,"(45,50]",College,178.78990053557766,70.59373396865318,2.5326596354142206,7460.5191597368075,2019
+2001,47,"(45,50]",College,307.8601377199694,70.59373396865318,4.361012237384599,7847.699143337301,2019
+2001,47,"(45,50]",College,268.9381790359602,74.03733074761188,3.6324672475396476,7902.197641026689,2019
+2001,47,"(45,50]",College,240.42889058913545,49.93215329490103,4.815111600918833,7676.202222600825,2019
+2001,47,"(45,50]",College,342.5467176740628,79.20272591604991,4.324935962900336,7790.765270830537,2019
+2001,58,"(55,60]",HS,137444.56863045142,1773.452341163726,77.50113461761332,12.57883120315518,2019
+2001,58,"(55,60]",HS,123884.99525631216,1720.0765910898665,72.02295287200947,13.27890672793472,2019
+2001,58,"(55,60]",HS,124169.25110941086,1893.9782284272803,65.56002030314698,13.458992248041634,2019
+2001,58,"(55,60]",HS,115450.06273909716,1893.9782284272803,60.95638323940211,13.265107818905388,2019
+2001,58,"(55,60]",HS,137113.1042081102,1709.7458007529904,80.19502322960764,13.646603181231054,2019
+2001,64,"(60,65]",HS,1.8916908951798013,129.1348792109509,0.014648953921191123,4488.180890386369,2019
+2001,64,"(60,65]",HS,2.059097169089518,129.1348792109509,0.01594532152483635,4590.41494672109,2019
+2001,64,"(60,65]",HS,1.8916908951798013,129.1348792109509,0.014648953921191123,4524.047691797626,2019
+2001,64,"(60,65]",HS,2.0758377964804895,129.1348792109509,0.016074958285200874,4596.717753405112,2019
+2001,64,"(60,65]",HS,1.8916908951798013,129.1348792109509,0.014648953921191123,4527.766875580604,2019
+2001,83,"(80,85]",NoHS,1033.733741392502,68.87193557917384,15.009506160954949,7263.578625361764,2019
+2001,83,"(80,85]",NoHS,1032.0596786534047,68.87193557917384,14.985199268386598,6557.4737729428,2019
+2001,83,"(80,85]",NoHS,1032.0596786534047,68.87193557917384,14.985199268386598,6205.312072511283,2019
+2001,83,"(80,85]",NoHS,1032.0596786534047,68.87193557917384,14.985199268386598,6933.639900911652,2019
+2001,83,"(80,85]",NoHS,1032.0596786534047,68.87193557917384,14.985199268386598,6663.116126811199,2019
+2001,44,"(40,45]",College,731.2473450650344,256.54796003242257,2.8503338906792295,6695.180228801563,2019
+2001,44,"(40,45]",College,729.5565416985463,258.2697584219018,2.8247850083429604,6090.131265555244,2019
+2001,44,"(40,45]",College,727.8992195868401,253.10436325346384,2.8758857027601183,5693.105896225827,2019
+2001,44,"(40,45]",College,731.0464575363428,253.10436325346384,2.8883202491624296,6366.781261208654,2019
+2001,44,"(40,45]",College,731.0631981637338,254.82616164294322,2.8688702661074625,6121.260150541731,2019
+2001,37,"(35,40]",NoHS,70.7291507268554,99.86430658980206,0.7082525593191082,2973.5954040600436,2019
+2001,37,"(35,40]",NoHS,26.03167559296098,89.53351625292598,0.29074783033677915,3116.0509063234013,2019
+2001,37,"(35,40]",NoHS,72.90543228768172,92.97711303188467,0.7841223491493035,3057.1563528027186,2019
+2001,37,"(35,40]",NoHS,12.47176740627391,92.97711303188467,0.1341380367660691,3033.00020407625,2019
+2001,37,"(35,40]",NoHS,56.83442999234889,122.24768565303354,0.4649121141946016,2980.8018914005693,2019
+2001,41,"(40,45]",HS,447.97918898240243,82.64632269500859,5.420437042741625,7124.7177550998795,2019
+2001,41,"(40,45]",HS,582.2390206579954,82.64632269500859,7.044947696059556,6683.333143968756,2019
+2001,41,"(40,45]",HS,515.2765110941086,82.64632269500859,6.234717943781286,6247.03153588571,2019
+2001,41,"(40,45]",HS,513.7698546289212,84.36812108448795,6.089620676919207,6989.504919269156,2019
+2001,41,"(40,45]",HS,447.74482019892883,82.64632269500859,5.417601238608651,7402.334993589912,2019
+2001,58,"(55,60]",HS,5796.609640397858,2444.953713060671,2.370846372032736,13.150832014261088,2019
+2001,58,"(55,60]",HS,4710.979954093344,972.8160900558304,4.842621336395637,12.836818983246996,2019
+2001,58,"(55,60]",HS,5596.8939556235655,1038.2444288560457,5.390728618491421,13.523293431354869,2019
+2001,58,"(55,60]",HS,6401.281101759755,3426.378795063898,1.8682350915145618,13.223261151766664,2019
+2001,58,"(55,60]",HS,9500.306044376435,2135.0300029543887,4.449729526625014,12.73333182905233,2019
+2001,38,"(35,40]",College,194.1912777352716,103.30790336876075,1.8797330252855857,6280.584540775404,2019
+2001,38,"(35,40]",College,194.02387146136192,103.30790336876075,1.8781125657810296,6513.6757380714635,2019
+2001,38,"(35,40]",College,194.1912777352716,103.30790336876075,1.8797330252855857,6574.556354969713,2019
+2001,38,"(35,40]",College,194.35868400918133,103.30790336876075,1.8813534847901425,6378.98852731553,2019
+2001,38,"(35,40]",College,194.02387146136192,103.30790336876075,1.8781125657810296,6525.309819199972,2019
+2001,51,"(50,55]",HS,2551.773833205815,433.89319414879515,5.881110530465556,643.3529459066046,2019
+2001,51,"(50,55]",HS,2404.456312165264,433.89319414879515,5.541585681891805,634.7896248976535,2019
+2001,51,"(50,55]",HS,2426.3865340474367,433.89319414879515,5.592128585486305,671.5346107653914,2019
+2001,51,"(50,55]",HS,2253.790665646519,433.89319414879515,5.1943443594868315,651.8166324433345,2019
+2001,51,"(50,55]",HS,2354.234429992349,433.89319414879515,5.42583857442348,652.3771932659919,2019
+2001,46,"(45,50]",HS,440.2785003825555,113.63869370563681,3.8743713608942723,5981.141268698274,2019
+2001,46,"(45,50]",HS,445.4680948737567,113.63869370563681,3.9200388560226838,5434.709399700891,2019
+2001,46,"(45,50]",HS,440.94812547819436,111.91689531615746,3.939960309232547,5073.452403660499,2019
+2001,46,"(45,50]",HS,440.4459066564652,113.63869370563681,3.8758445058984146,5688.087719967792,2019
+2001,46,"(45,50]",HS,440.2785003825555,113.63869370563681,3.8743713608942723,5455.758706651477,2019
+2001,47,"(45,50]",HS,1398.8635654169855,129.1348792109509,10.832577332819922,7407.153719491612,2019
+2001,47,"(45,50]",HS,1504.9991430757461,129.1348792109509,11.654474393531,6725.545205848073,2019
+2001,47,"(45,50]",HS,1394.8458148431523,129.1348792109509,10.801464510332437,6279.283533664443,2019
+2001,47,"(45,50]",HS,1410.9168171384852,129.1348792109509,10.925915800282379,7041.93195527653,2019
+2001,47,"(45,50]",HS,1396.18506503443,129.1348792109509,10.811835451161599,6758.520443812316,2019
+2001,75,"(70,75]",NoHS,2.5110941086457537,22.383379063231494,0.11218565800776044,9281.534158508479,2019
+2001,75,"(70,75]",NoHS,2.343687834736037,22.383379063231494,0.10470661414057642,9306.516852132798,2019
+2001,75,"(70,75]",NoHS,2.343687834736037,22.383379063231494,0.10470661414057642,9184.560389724622,2019
+2001,75,"(70,75]",NoHS,2.5110941086457537,22.383379063231494,0.11218565800776044,9314.904838934299,2019
+2001,75,"(70,75]",NoHS,2.343687834736037,22.383379063231494,0.10470661414057642,9357.325282343441,2019
+2001,66,"(65,70]",HS,1434.3369548584544,103.30790336876075,13.88409703504043,11278.96182332654,2019
+2001,66,"(65,70]",HS,1434.3369548584544,103.30790336876075,13.88409703504043,11042.086600875853,2019
+2001,66,"(65,70]",HS,1434.5043611323642,103.30790336876075,13.885717494544988,10408.773231555759,2019
+2001,66,"(65,70]",HS,1434.5043611323642,103.30790336876075,13.885717494544988,11161.037161086704,2019
+2001,66,"(65,70]",HS,1434.3369548584544,103.30790336876075,13.88409703504043,11386.752961154238,2019
+2001,34,"(30,35]",College,28.291660290742158,74.03733074761188,0.38212696223728626,4624.690553426217,2019
+2001,34,"(30,35]",College,28.459066564651877,74.03733074761188,0.38438806852271407,4648.401091527352,2019
+2001,34,"(30,35]",College,28.459066564651877,74.03733074761188,0.38438806852271407,4661.743509831416,2019
+2001,34,"(30,35]",College,28.459066564651877,74.03733074761188,0.38438806852271407,4655.395446596134,2019
+2001,34,"(30,35]",College,28.459066564651877,74.03733074761188,0.38438806852271407,4626.064548713438,2019
+2001,52,"(50,55]",HS,875.2,258.2697584219018,3.388704915928636,264.72697498819224,2019
+2001,52,"(50,55]",HS,860.1334353481255,258.2697584219018,3.330368373764601,260.6423706913679,2019
+2001,52,"(50,55]",HS,1010.7990818668708,258.2697584219018,3.9137337954049554,252.11931254461365,2019
+2001,52,"(50,55]",HS,855.9482785003826,258.2697584219018,3.3141637787190352,262.8928326442232,2019
+2001,52,"(50,55]",HS,876.8740627390972,258.2697584219018,3.3951867539468625,281.54935243918175,2019
+2001,34,"(30,35]",HS,9.625860749808723,29.27057262114888,0.3288579582776507,4875.707847679761,2019
+2001,34,"(30,35]",HS,10.79770466717674,29.27057262114888,0.36889284015492985,4883.878032409424,2019
+2001,34,"(30,35]",HS,10.211782708492732,29.27057262114888,0.3488753992162903,4900.962843985103,2019
+2001,34,"(30,35]",HS,9.793267023718439,29.27057262114888,0.33457722711726195,4926.0883832623895,2019
+2001,34,"(30,35]",HS,12.806579954093344,29.27057262114888,0.4375240662302657,4887.8065743020115,2019
+2001,80,"(75,80]",HS,77836.11623565418,327.1416940010757,237.92783880185644,17.098067017104142,2019
+2001,80,"(75,80]",HS,68640.3222035195,346.0814762853485,198.3357298988308,19.252244131856756,2019
+2001,80,"(75,80]",HS,79108.2365110941,516.5395168438037,153.15040559620076,18.663586654020015,2019
+2001,80,"(75,80]",HS,74479.3358530987,910.8313480345737,81.77072079678969,18.360279571863618,2019
+2001,80,"(75,80]",HS,84031.82243305279,270.3223471482573,310.8578455297514,19.81362073623405,2019
+2001,72,"(70,75]",NoHS,56.415914307574596,8.436812108448795,6.686875751455761,8313.113247640693,2019
+2001,72,"(70,75]",NoHS,56.583320581484315,8.60899194739673,6.572583750481324,8376.393256315674,2019
+2001,72,"(70,75]",NoHS,56.33221117061974,8.60899194739673,6.5434154793993065,8232.695095483235,2019
+2001,72,"(70,75]",NoHS,56.33221117061974,8.60899194739673,6.5434154793993065,8216.535574640526,2019
+2001,72,"(70,75]",NoHS,56.415914307574596,8.60899194739673,6.553138236426645,8288.762705813791,2019
+2001,53,"(50,55]",HS,240.7302218821729,87.81171786344665,2.741436197120357,10045.508797458895,2019
+2001,53,"(50,55]",HS,240.7302218821729,87.81171786344665,2.741436197120357,10562.882471675206,2019
+2001,53,"(50,55]",HS,240.7302218821729,87.81171786344665,2.741436197120357,10639.604813291826,2019
+2001,53,"(50,55]",HS,240.7302218821729,87.81171786344665,2.741436197120357,10430.459929862624,2019
+2001,53,"(50,55]",HS,240.7302218821729,87.81171786344665,2.741436197120357,10431.846514415278,2019
+2001,59,"(55,60]",College,33349.67345065035,688.7193557917383,48.422732961108984,13.21841064784427,2019
+2001,59,"(55,60]",College,33349.67345065035,688.7193557917383,48.422732961108984,12.889723937197008,2019
+2001,59,"(55,60]",College,33349.67345065035,688.7193557917383,48.422732961108984,13.364390893692592,2019
+2001,59,"(55,60]",College,33403.243458301455,688.7193557917383,48.50051501732769,13.822782807955917,2019
+2001,59,"(55,60]",College,33567.30160673298,688.7193557917383,48.73872256449751,13.273480227856766,2019
+2001,58,"(55,60]",College,33986.82172915073,1170.822904845955,29.028148995447243,18.449019495623023,2019
+2001,58,"(55,60]",College,33985.147666411634,1117.4471547720955,30.413203453314928,18.56285479045389,2019
+2001,58,"(55,60]",College,33985.147666411634,891.891565750301,38.104573438612725,18.532850934210636,2019
+2001,58,"(55,60]",College,33986.82172915073,998.6430658980204,34.033002270524356,19.102367464008402,2019
+2001,58,"(55,60]",College,33985.147666411634,1174.266501624914,28.941596834606134,18.83070519899378,2019
+2001,64,"(60,65]",College,50849.65570007652,2358.863793586704,21.556842679228417,9.610553906013468,2019
+2001,64,"(60,65]",College,50847.98163733742,2358.863793586704,21.55613298893445,9.373037579908969,2019
+2001,64,"(60,65]",College,50847.98163733742,2341.64580969191,21.71463396679427,9.72545276491913,2019
+2001,64,"(60,65]",College,50847.98163733742,2358.863793586704,21.55613298893445,10.050999098434168,2019
+2001,64,"(60,65]",College,50847.98163733742,2341.64580969191,21.71463396679427,9.656308125742381,2019
+2001,48,"(45,50]",College,6140.964345830145,645.6743960547547,9.510930560903606,172.02463374934786,2019
+2001,48,"(45,50]",College,18021.318867635808,709.3809364654905,25.40428977049695,161.037107519999,2019
+2001,48,"(45,50]",College,5305.941851568477,1652.926453900172,3.21002899980747,172.1157236483978,2019
+2001,48,"(45,50]",College,6228.400642693191,940.1019206557229,6.625239780755761,169.53909477072477,2019
+2001,48,"(45,50]",College,8206.305768936496,1008.9738562348967,8.133318537666852,163.31319795449969,2019
+2001,56,"(55,60]",HS,18790.684621270084,172.17983894793457,109.13405852907201,184.93501837162862,2019
+2001,56,"(55,60]",HS,17285.769181331292,172.17983894793457,100.39368887177513,182.1910018669292,2019
+2001,56,"(55,60]",HS,19962.1602448355,172.17983894793457,115.93784944166346,187.5846359142148,2019
+2001,56,"(55,60]",HS,14679.471124713084,172.17983894793457,85.25662013862149,183.42498355210063,2019
+2001,56,"(55,60]",HS,15159.692762050498,172.17983894793457,88.04569021948403,184.4947035631073,2019
+2001,61,"(60,65]",HS,1504.8149961744455,86.08991947396729,17.479572583750485,11278.96182332654,2019
+2001,61,"(60,65]",HS,1504.8149961744455,86.08991947396729,17.479572583750485,11042.086600875853,2019
+2001,61,"(60,65]",HS,1506.4890589135425,86.08991947396729,17.499018097805163,10408.773231555759,2019
+2001,61,"(60,65]",HS,1506.4890589135425,86.08991947396729,17.499018097805163,11161.037161086704,2019
+2001,61,"(60,65]",HS,1506.4890589135425,86.08991947396729,17.499018097805163,11386.752961154238,2019
+2001,61,"(60,65]",NoHS,73.03935730680949,13.774387115834767,5.302548613785137,6185.921299506515,2019
+2001,61,"(60,65]",NoHS,12.781469013006888,13.774387115834767,0.9279156237966886,6546.60583172436,2019
+2001,61,"(60,65]",NoHS,70.86307574598317,13.774387115834767,5.144553812090874,6587.476373560552,2019
+2001,61,"(60,65]",NoHS,135.14708492731447,13.774387115834767,9.811477185213707,6326.115930422869,2019
+2001,61,"(60,65]",NoHS,39.549732211170614,13.774387115834767,2.871251684636118,6483.110602415769,2019
+2001,30,"(25,30]",College,-40.67972456006121,120.5258872635542,-0.3375185653776336,7291.498867888559,2019
+2001,30,"(25,30]",College,-42.65511859219587,120.5258872635542,-0.3539083557951483,7312.0418665692705,2019
+2001,30,"(25,30]",College,-44.362662586074975,120.5258872635542,-0.3680758017492711,7315.400983731478,2019
+2001,30,"(25,30]",College,-41.68416220351951,120.5258872635542,-0.34585235711535295,7318.576633056519,2019
+2001,30,"(25,30]",College,-43.69303749043612,120.5258872635542,-0.3625199405907916,7296.683968421154,2019
+2001,52,"(50,55]",HS,464616.6773680184,8608.99194739673,53.968766634578365,2.1257090517232013,2019
+2001,52,"(50,55]",HS,790700.511400153,8608.99194739673,91.84588814016172,2.168847389551151,2019
+2001,52,"(50,55]",HS,784029.7061973987,8608.99194739673,91.07102329611091,1.9139833519487623,2019
+2001,52,"(50,55]",HS,794631.8803366488,8608.99194739673,92.30254659222179,2.4909727322479034,2019
+2001,52,"(50,55]",HS,783312.8725325172,8608.99194739673,90.98775760492876,1.9791266809042838,2019
+2001,59,"(55,60]",College,1934.1116449885233,316.81090366419966,6.104940273894627,3064.730367165108,2019
+2001,59,"(55,60]",College,1964.7469931140017,409.7880166960843,4.7945447720867325,3127.8666579126193,2019
+2001,59,"(55,60]",College,2490.4026931905128,242.77357291658777,10.25812926535528,3933.5884775213285,2019
+2001,59,"(55,60]",College,2661.4919051262436,296.1493229904475,8.986993042061055,3245.1710840814885,2019
+2001,59,"(55,60]",College,2801.276143840857,509.65232328588644,5.496445352745891,3293.7946630529805,2019
+2001,35,"(30,35]",College,198.87865340474372,160.12725022157917,1.242003800911722,1617.7763632071226,2019
+2001,35,"(30,35]",College,198.87865340474372,160.12725022157917,1.242003800911722,1649.10259107316,2019
+2001,35,"(30,35]",College,198.87865340474372,160.12725022157917,1.242003800911722,1607.4065536292242,2019
+2001,35,"(30,35]",College,198.87865340474372,160.12725022157917,1.242003800911722,1627.079236491239,2019
+2001,35,"(30,35]",College,198.87865340474372,160.12725022157917,1.242003800911722,1584.173205424402,2019
+2001,29,"(25,30]",College,64.03289977046673,34.43596778958692,1.8594772814786293,5526.895146709865,2019
+2001,29,"(25,30]",College,69.35641928079572,39.60136295802496,1.7513644506202808,5536.156520799701,2019
+2001,29,"(25,30]",College,68.20131599081867,37.87956456854561,1.8004778240627297,5555.52313691576,2019
+2001,29,"(25,30]",College,64.5183779648049,41.323161347504296,1.561312732640226,5584.004380137949,2019
+2001,29,"(25,30]",College,69.8418974751339,37.87956456854561,1.8437882871845137,5540.609748884341,2019
+2001,44,"(40,45]",HS,16.640183626625863,58.54114524229776,0.28424766132868245,4738.287670511223,2019
+2001,44,"(40,45]",HS,16.80758990053558,61.984742021256444,0.27115689042912766,4752.807835327013,2019
+2001,44,"(40,45]",HS,16.62344299923489,65.42833880021514,0.2540709928459964,4707.414044622849,2019
+2001,44,"(40,45]",HS,16.790849273144605,51.653951684380374,0.32506417661404186,4740.787971873144,2019
+2001,44,"(40,45]",HS,16.790849273144605,75.75912913709122,0.22163466587321032,4792.512199676744,2019
+2001,38,"(35,40]",HS,33.24688599846978,111.91689531615746,0.29706762240454965,4666.872518380685,2019
+2001,38,"(35,40]",HS,33.431032899770464,111.91689531615746,0.29871301205533013,4674.098733160066,2019
+2001,38,"(35,40]",HS,33.24688599846978,111.91689531615746,0.29706762240454965,4694.897158217014,2019
+2001,38,"(35,40]",HS,33.4142922723795,111.91689531615746,0.2985634311779865,4655.751690138475,2019
+2001,38,"(35,40]",HS,33.431032899770464,111.91689531615746,0.29871301205533013,4702.7063549726445,2019
+2001,56,"(55,60]",HS,1141.1248661055854,89.53351625292598,12.745225630164985,6583.371586746804,2019
+2001,56,"(55,60]",HS,1084.8763580719205,89.53351625292598,12.116985945321527,5982.91464717017,2019
+2001,56,"(55,60]",HS,1099.2732976281561,89.53351625292598,12.277785388465983,5597.656010558304,2019
+2001,56,"(55,60]",HS,1107.8110175975517,89.53351625292598,12.373143197772578,6263.925309570989,2019
+2001,56,"(55,60]",HS,1093.0792654934967,89.53351625292598,12.208604232694531,6019.46144997043,2019
+2001,32,"(30,35]",HS,2.3520581484315226,43.04495973698364,0.054641894493646516,4087.473089037747,2019
+2001,32,"(30,35]",HS,2.6868706962509563,43.04495973698364,0.06242010011551791,4108.429342282232,2019
+2001,32,"(30,35]",HS,2.6952410099464426,43.04495973698364,0.0626145552560647,4120.221866588567,2019
+2001,32,"(30,35]",HS,2.6952410099464426,43.04495973698364,0.0626145552560647,4114.611212785471,2019
+2001,32,"(30,35]",HS,3.1974598316755927,43.04495973698364,0.07428186368887177,4088.6874770483832,2019
+2001,72,"(70,75]",NoHS,619.5706197398623,163.57084700053784,3.7877814482297394,7085.346631192211,2019
+2001,72,"(70,75]",NoHS,624.5928079571538,163.57084700053784,3.818484891473968,6478.80189328715,2019
+2001,72,"(70,75]",NoHS,624.0905891354246,163.57084700053784,3.815414547149545,5956.370721153907,2019
+2001,72,"(70,75]",NoHS,625.2624330527927,163.57084700053784,3.8225786839065328,6656.220427303973,2019
+2001,72,"(70,75]",NoHS,595.2967100229533,163.57084700053784,3.639381472549298,6451.707177228053,2019
+2001,58,"(55,60]",HS,2489.3312930374905,77.48092752657055,32.12831044367433,2810.8367077093426,2019
+2001,58,"(55,60]",HS,2261.6587605202753,77.48092752657055,29.189877208745134,2859.139973379551,2019
+2001,58,"(55,60]",HS,2698.589135424637,80.92452430552926,33.34698793206564,3590.666697616468,2019
+2001,58,"(55,60]",HS,2571.3603672532518,72.31553235813253,35.55751141426921,2956.883695435811,2019
+2001,58,"(55,60]",HS,2665.107880642693,84.36812108448795,31.589039158212376,3029.4357433016435,2019
+2001,48,"(45,50]",College,25065.573986228006,1497.9645988470306,16.733088355706634,18.687378031860785,2019
+2001,48,"(45,50]",College,24533.054628921192,1401.5438890361875,17.50430708651733,18.796529751732592,2019
+2001,48,"(45,50]",College,25235.156541698547,1472.1376230048406,17.141846079709605,18.767460349100556,2019
+2001,48,"(45,50]",College,24899.172149961745,1403.265687425667,17.743733330813512,19.34512905952876,2019
+2001,48,"(45,50]",College,24775.458913542465,1386.0477035308734,17.874896261094385,19.076149558376407,2019
+2001,41,"(40,45]",HS,0.41851568477429224,46.488556515942335,0.009002552803091887,5228.631266166323,2019
+2001,41,"(40,45]",HS,0.4017750573833206,46.488556515942335,0.008642450690968211,5183.23870836483,2019
+2001,41,"(40,45]",HS,0.4017750573833206,46.488556515942335,0.008642450690968211,5209.6431405032545,2019
+2001,41,"(40,45]",HS,0.41851568477429224,46.488556515942335,0.009002552803091887,5197.877489595288,2019
+2001,41,"(40,45]",HS,0.41851568477429224,46.488556515942335,0.009002552803091887,5216.842067071894,2019
+2001,29,"(25,30]",HS,1.5903596021423108,46.488556515942335,0.03420970065174917,4632.319122007565,2019
+2001,29,"(25,30]",HS,1.7577658760520276,46.488556515942335,0.037810721772985924,4645.3701732847085,2019
+2001,29,"(25,30]",HS,1.7577658760520276,46.488556515942335,0.037810721772985924,4647.504234188438,2019
+2001,29,"(25,30]",HS,1.5903596021423108,46.488556515942335,0.03420970065174917,4649.521737223098,2019
+2001,29,"(25,30]",HS,1.5903596021423108,46.488556515942335,0.03420970065174917,4635.613237632054,2019
+2001,56,"(55,60]",HS,3987.0315225707727,878.1171786344663,4.540432210620097,463.7861455225399,2019
+2001,56,"(55,60]",HS,3986.8641162968634,878.1171786344663,4.540241568325444,457.121405031009,2019
+2001,56,"(55,60]",HS,3987.0315225707727,878.1171786344663,4.540432210620097,470.524327779094,2019
+2001,56,"(55,60]",HS,3988.53817903596,878.1171786344663,4.542147991271981,460.2243773799011,2019
+2001,56,"(55,60]",HS,3988.53817903596,878.1171786344663,4.542147991271981,462.70705067775737,2019
+2001,66,"(65,70]",HS,267.26411629686305,32.71416940010757,8.169674523235312,6764.68011513472,2019
+2001,66,"(65,70]",HS,268.68706962509566,30.992371010628222,8.669458349377487,6842.4367721047365,2019
+2001,66,"(65,70]",HS,433.24743687834734,32.71416940010757,13.243418519344182,6975.286181038189,2019
+2001,66,"(65,70]",HS,347.8702371843918,32.71416940010757,10.633625843584705,6727.002474281815,2019
+2001,66,"(65,70]",HS,389.68832440703903,30.992371010628222,12.573685449022378,6858.40380864003,2019
+2001,39,"(35,40]",College,511.4261667941852,216.94659707439757,2.3573827554382043,6327.315819858863,2019
+2001,39,"(35,40]",College,511.4261667941852,216.94659707439757,2.3573827554382043,6308.705975317254,2019
+2001,39,"(35,40]",College,511.4261667941852,216.94659707439757,2.3573827554382043,6367.658384198681,2019
+2001,39,"(35,40]",College,511.4261667941852,216.94659707439757,2.3573827554382043,6353.551771718943,2019
+2001,39,"(35,40]",College,511.4261667941852,216.94659707439757,2.3573827554382043,6377.158209541357,2019
+2001,34,"(30,35]",HS,163.72333588370316,68.87193557917384,2.3772140931844437,1248.8672181512948,2019
+2001,34,"(30,35]",HS,163.89074215761283,68.87193557917384,2.379644782441278,1292.2515842874077,2019
+2001,34,"(30,35]",HS,163.72333588370316,68.87193557917384,2.3772140931844437,1267.2636350473144,2019
+2001,34,"(30,35]",HS,163.72333588370316,68.87193557917384,2.3772140931844437,1262.7658862100902,2019
+2001,34,"(30,35]",HS,162.21667941851567,68.87193557917384,2.35533788987293,1231.0287707779166,2019
+2001,24,"(20,25]",HS,-6.712991583779648,56.819346852818406,-0.11814622933221318,7419.6864885754785,2019
+2001,24,"(20,25]",HS,-8.387054322876816,56.819346852818406,-0.14760912941505933,7545.006856951659,2019
+2001,24,"(20,25]",HS,-8.387054322876816,56.819346852818406,-0.14760912941505933,7600.986388481802,2019
+2001,24,"(20,25]",HS,-6.712991583779648,56.819346852818406,-0.11814622933221318,7347.740747344954,2019
+2001,24,"(20,25]",HS,-8.387054322876816,56.819346852818406,-0.14760912941505933,7484.703612213945,2019
+2001,22,"(20,25]",HS,89.39495026778883,15.496185505314111,5.768835836221282,5196.1827400801685,2019
+2001,22,"(20,25]",HS,86.0468247895945,15.496185505314111,5.552774568947076,5136.828612237244,2019
+2001,22,"(20,25]",HS,106.13557765876052,15.496185505314111,6.849142172592308,5128.064532179505,2019
+2001,22,"(20,25]",HS,89.39495026778883,15.496185505314111,5.768835836221282,5105.920510907361,2019
+2001,22,"(20,25]",HS,86.0468247895945,15.496185505314111,5.552774568947076,5139.315800043264,2019
+2001,42,"(40,45]",College,111626.16863045142,12879.051953305507,8.667265962988969,14.608140502550564,2019
+2001,42,"(40,45]",College,114864.64299923489,5526.972830228699,20.782559735232482,15.874372334474874,2019
+2001,42,"(40,45]",College,107983.7429227238,5303.1390395963845,20.362231145827607,15.508857024996303,2019
+2001,42,"(40,45]",College,108256.61514919664,14600.85034278485,7.414404819421541,15.245517375064313,2019
+2001,42,"(40,45]",College,110293.78209640397,10571.842111403183,10.432787487190808,16.088342421621903,2019
+2001,42,"(40,45]",HS,371.05768018362664,94.69891142136402,3.918288759757763,7823.383129840945,2019
+2001,42,"(40,45]",HS,371.05768018362664,94.69891142136402,3.918288759757763,7104.021714848027,2019
+2001,42,"(40,45]",HS,372.22952410099464,94.69891142136402,3.930663177792558,6746.486592830355,2019
+2001,42,"(40,45]",HS,372.2127834736037,94.69891142136402,3.930486400392061,7466.846329040674,2019
+2001,42,"(40,45]",HS,371.05768018362664,94.69891142136402,3.918288759757763,7138.94289194007,2019
+2001,43,"(40,45]",HS,13316.499464422342,182.51062928481065,72.96287080157802,134.45852232318,2019
+2001,43,"(40,45]",HS,13316.164651874522,180.7888308953313,73.65590333168308,132.48407146191715,2019
+2001,43,"(40,45]",HS,13316.198133129305,180.7888308953313,73.65608852705503,136.5079434236886,2019
+2001,43,"(40,45]",HS,13317.67130833971,182.51062928481065,72.96929149018098,133.374326279029,2019
+2001,43,"(40,45]",HS,13316.164651874522,182.51062928481065,72.96103631912003,134.21782943059577,2019
+2001,43,"(40,45]",College,5502.008079571538,1033.0790336876073,5.325834616865615,254.02985305266816,2019
+2001,43,"(40,45]",College,7135.792869166029,1033.0790336876073,6.907305865742525,248.477456631287,2019
+2001,43,"(40,45]",College,5918.3642234123945,1033.0790336876073,5.728859100243872,256.54893154754114,2019
+2001,43,"(40,45]",College,6488.549992348891,1033.0790336876073,6.28078760749583,250.19705672943414,2019
+2001,43,"(40,45]",College,12106.6878041316,1033.0790336876073,11.719033500192532,252.15036172146847,2019
+2001,56,"(55,60]",College,173.09808722264728,55.097548463339066,3.141665864458991,7301.782084037865,2019
+2001,56,"(55,60]",College,165.89961744452947,46.488556515942335,3.5686119311456244,7615.166176521379,2019
+2001,56,"(55,60]",College,167.4062739097169,41.323161347504296,4.0511487613913495,7785.726582972592,2019
+2001,56,"(55,60]",College,173.09808722264728,44.76675812646299,3.866665679334143,7514.4649432746755,2019
+2001,56,"(55,60]",College,180.63136954858453,34.43596778958692,5.245427416249518,7539.514574353581,2019
+2001,64,"(60,65]",College,22996.599846977813,91.25531464240532,252.00285525388514,19.670818293990614,2019
+2001,64,"(60,65]",College,22996.599846977813,91.25531464240532,252.00285525388514,20.056324972997537,2019
+2001,64,"(60,65]",College,22996.599846977813,92.97711303188467,247.33613571214653,20.41246293185652,2019
+2001,64,"(60,65]",College,22996.599846977813,91.25531464240532,252.00285525388514,19.762202622835613,2019
+2001,64,"(60,65]",College,22996.599846977813,91.25531464240532,252.00285525388514,19.916109415570965,2019
+2001,36,"(35,40]",College,490.5003825554706,206.6158067375215,2.373973174175331,5509.861798397292,2019
+2001,36,"(35,40]",College,448.6488140780413,206.6158067375215,2.171415736105763,5512.584526539155,2019
+2001,36,"(35,40]",College,473.75975516449887,206.6158067375215,2.2929501989475036,5560.616072661227,2019
+2001,36,"(35,40]",College,480.45600612088754,206.6158067375215,2.3253593890386344,5512.481445218111,2019
+2001,36,"(35,40]",College,457.0191277735272,206.6158067375215,2.2119272237196768,5541.164692076558,2019
+2001,61,"(60,65]",NoHS,259.3123182861515,30.992371010628222,8.3669725751936,1645.5731004515164,2019
+2001,61,"(60,65]",NoHS,101.1803519510329,96.42070981084338,1.0493632763078276,806.0037055286033,2019
+2001,61,"(60,65]",NoHS,58.274123947972456,55.097548463339066,1.0576536628802464,818.7189524770096,2019
+2001,61,"(60,65]",NoHS,190.57530221882172,94.69891142136402,2.012433927258725,1696.7805891095024,2019
+2001,61,"(60,65]",NoHS,221.47850038255547,86.08991947396729,2.5726415094339625,1655.3922243272136,2019
+2001,39,"(35,40]",College,774.2540168324408,344.35967789586914,2.248387562572199,468.4322734844712,2019
+2001,39,"(35,40]",College,774.2540168324408,344.35967789586914,2.248387562572199,464.09336712909806,2019
+2001,39,"(35,40]",College,774.2540168324408,344.35967789586914,2.248387562572199,447.2105836232305,2019
+2001,39,"(35,40]",College,774.2540168324408,344.35967789586914,2.248387562572199,463.7937135479735,2019
+2001,39,"(35,40]",College,774.2540168324408,344.35967789586914,2.248387562572199,489.64706793432106,2019
+2001,31,"(30,35]",HS,-2.0256159143075747,46.488556515942335,-0.04357235556696473,5133.060297630749,2019
+2001,31,"(30,35]",HS,-2.0088752869166027,46.488556515942335,-0.04321225345484105,5147.522132273091,2019
+2001,31,"(30,35]",HS,-2.0256159143075747,46.488556515942335,-0.04357235556696473,5149.886879392006,2019
+2001,31,"(30,35]",HS,-1.9921346595256313,46.488556515942335,-0.04285215134271738,5152.122469051269,2019
+2001,31,"(30,35]",HS,-2.0088752869166027,46.488556515942335,-0.04321225345484105,5136.710498250032,2019
+2001,58,"(55,60]",College,1361.1636725325172,172.17983894793457,7.905476511359261,999.8019004169877,2019
+2001,58,"(55,60]",College,841.0323794950268,172.17983894793457,4.88461590296496,992.3707894850106,2019
+2001,58,"(55,60]",College,967.6584850803367,172.17983894793457,5.6200452445129,953.7564493061698,2019
+2001,58,"(55,60]",College,1137.4921499617444,172.17983894793457,6.606418944936466,991.3545561883251,2019
+2001,58,"(55,60]",College,1632.194429992349,172.17983894793457,9.479590874085483,1045.8977580992123,2019
+2001,51,"(50,55]",HS,192.6009181331293,68.87193557917384,2.796507989988448,7280.159059507879,2019
+2001,51,"(50,55]",HS,201.13863810252485,68.87193557917384,2.920473142087023,7666.707336222817,2019
+2001,51,"(50,55]",HS,202.98010711553175,68.87193557917384,2.9472107239122063,7696.57124860753,2019
+2001,51,"(50,55]",HS,202.98010711553175,68.87193557917384,2.9472107239122063,7441.551856521069,2019
+2001,51,"(50,55]",HS,202.98010711553175,68.87193557917384,2.9472107239122063,7588.996021922314,2019
+2001,36,"(35,40]",College,427.55562356541697,72.31553235813253,5.912362249482002,6275.413746541986,2019
+2001,36,"(35,40]",College,354.56648814078045,98.14250820032271,3.612771821737633,5853.725908117851,2019
+2001,36,"(35,40]",College,538.713389441469,49.93215329490103,10.78890762550954,5336.166283919413,2019
+2001,36,"(35,40]",College,359.4212700841622,74.03733074761188,4.854595194813335,5736.18431014309,2019
+2001,36,"(35,40]",College,386.5410864575363,101.5861049792814,3.8050586400214064,5848.286119266601,2019
+2001,32,"(30,35]",HS,118.0381637337414,65.42833880021514,1.804083152625499,4183.624807301467,2019
+2001,32,"(30,35]",HS,120.38185156847743,65.42833880021514,1.839903836410433,4190.99553316785,2019
+2001,32,"(30,35]",HS,126.74328997704667,65.42833880021514,1.9371314066838254,4210.717568848273,2019
+2001,32,"(30,35]",HS,107.60875286916603,65.42833880021514,1.6446811097825424,4211.192601281577,2019
+2001,32,"(30,35]",HS,121.4030298393267,65.42833880021514,1.8555114200595828,4178.3025332372345,2019
+2001,61,"(60,65]",College,173.36593726090285,58.54114524229776,2.9614374051507397,2909.2716510747623,2019
+2001,61,"(60,65]",College,183.94601377199695,134.30027437938898,1.369662233543635,3137.8411587158707,2019
+2001,61,"(60,65]",College,178.7061973986228,51.653951684380374,3.4596810422282123,3068.2643791150713,2019
+2001,61,"(60,65]",College,177.26650344299924,80.92452430552926,2.1905164715424505,3021.932894644622,2019
+2001,61,"(60,65]",College,172.93068094873757,87.81171786344665,1.9693349037728298,2968.4177648047616,2019
+2001,70,"(65,70]",College,228.54304514154555,63.706540410735805,3.5874345658712232,7266.690207204607,2019
+2001,70,"(65,70]",College,228.69371078806427,63.706540410735805,3.589799560823819,8014.569904104259,2019
+2001,70,"(65,70]",College,232.72820198928844,63.706540410735805,3.6531288701100015,7922.771577727892,2019
+2001,70,"(65,70]",College,234.0674521805662,63.706540410735805,3.674151047466411,7631.362130019782,2019
+2001,70,"(65,70]",College,230.71932670237186,63.706540410735805,3.621595604075388,7830.885154535106,2019
+2001,51,"(50,55]",HS,4.519969395562356,20.661580673752148,0.21876203311513281,3943.375608872516,2019
+2001,51,"(50,55]",HS,4.519969395562356,18.939782284272805,0.23864949067105395,3960.5134802322123,2019
+2001,51,"(50,55]",HS,4.519969395562356,20.661580673752148,0.21876203311513281,3952.5806478830586,2019
+2001,51,"(50,55]",HS,4.519969395562356,20.661580673752148,0.21876203311513281,3923.7281117577486,2019
+2001,51,"(50,55]",HS,4.519969395562356,20.661580673752148,0.21876203311513281,3957.389018366882,2019
+2001,46,"(45,50]",College,91580.43917368019,301.3147181588855,303.93616260520383,13.187616166538518,2019
+2001,46,"(45,50]",College,91418.55730680948,284.09673426409205,321.78672360882604,14.310817729002475,2019
+2001,46,"(45,50]",College,97683.56970160674,272.04414553773665,359.0724935782768,14.148690008946271,2019
+2001,46,"(45,50]",College,88349.33068094874,273.76594392721603,322.7184850444271,13.804018963352457,2019
+2001,46,"(45,50]",College,93250.98638102526,318.532702053679,292.75168853875056,14.582266722480796,2019
+2001,72,"(70,75]",NoHS,3590.866249426167,602.629436317771,5.958663870399913,1377.2768080910696,2019
+2001,72,"(70,75]",NoHS,3590.866249426167,602.629436317771,5.958663870399913,1403.580446927317,2019
+2001,72,"(70,75]",NoHS,3590.866249426167,602.629436317771,5.958663870399913,1399.780285171635,2019
+2001,72,"(70,75]",NoHS,3590.866249426167,602.629436317771,5.958663870399913,1399.742957227751,2019
+2001,72,"(70,75]",NoHS,3590.866249426167,602.629436317771,5.958663870399913,1395.3683720027577,2019
+2001,46,"(45,50]",College,794.0079571537873,161.84904861105852,4.905854955390425,7888.323405106799,2019
+2001,46,"(45,50]",College,793.8405508798776,161.84904861105852,4.904820619536453,7160.361785926965,2019
+2001,46,"(45,50]",College,794.0079571537873,161.84904861105852,4.905854955390425,6688.531218763448,2019
+2001,46,"(45,50]",College,791.9990818668707,161.84904861105852,4.893442925142758,7498.205228808835,2019
+2001,46,"(45,50]",College,792.1664881407804,161.84904861105852,4.89447726099673,7197.04269774374,2019
+2001,31,"(30,35]",College,12.036511094108647,68.87193557917384,0.17476655756642281,6603.154941759381,2019
+2001,31,"(30,35]",College,13.877980107115533,68.87193557917384,0.20150413939160572,6614.21979579866,2019
+2001,31,"(30,35]",College,12.019770466717675,68.87193557917384,0.17452348864073933,6637.357699362478,2019
+2001,31,"(30,35]",College,15.033083397092579,68.87193557917384,0.21827589526376587,6671.38513374252,2019
+2001,31,"(30,35]",College,15.870114766641164,68.87193557917384,0.23042934154793993,6619.540207033778,2019
+2001,64,"(60,65]",College,68124.30910482019,8608.99194739673,7.913157489410858,31.95317271540186,2019
+2001,64,"(60,65]",College,68127.6572302984,8608.99194739673,7.913546399691953,33.736487472397755,2019
+2001,64,"(60,65]",College,68125.9831675593,8608.99194739673,7.913351944551406,34.1869719476668,2019
+2001,64,"(60,65]",College,68125.9831675593,8608.99194739673,7.913351944551406,33.70593280210816,2019
+2001,64,"(60,65]",College,68124.30910482019,8608.99194739673,7.913157489410858,34.671362743048334,2019
+2001,29,"(25,30]",HS,55.12688599846978,99.86430658980206,0.5520179119142777,3883.0913654821625,2019
+2001,29,"(25,30]",HS,32.91207345065035,111.91689531615746,0.29407600485767604,3880.9044573959786,2019
+2001,29,"(25,30]",HS,44.161775057383316,105.0297017582401,0.42046939406755585,3887.9792574582034,2019
+2001,29,"(25,30]",HS,32.67770466717674,94.69891142136402,0.3450694857702944,3901.7908079632966,2019
+2001,29,"(25,30]",HS,34.31828615149197,98.14250820032271,0.34967810361483226,3902.4062990023876,2019
+2001,45,"(40,45]",College,1885.162050497322,483.82534744369616,3.8963689282870875,3298.6666859126526,2019
+2001,45,"(40,45]",College,1862.8970160673298,619.8474202125644,3.0054122277841957,3353.358251871082,2019
+2001,45,"(40,45]",College,1876.7917368018361,742.0951058655979,2.529044757157777,4204.981049475063,2019
+2001,45,"(40,45]",College,1876.7917368018361,709.3809364654905,2.6456754619781595,3467.4271301565736,2019
+2001,45,"(40,45]",College,1920.3173680183627,463.16376676994406,4.146087206714066,3547.7486341671056,2019
+2001,68,"(65,70]",HS,562.3176740627391,154.9618550531411,3.628748983870278,6530.52808615333,2019
+2001,68,"(65,70]",HS,437.7674062739097,48.21035490542169,9.080360580890037,6945.153005501757,2019
+2001,68,"(65,70]",HS,468.4864575363428,154.9618550531411,3.023237282334318,6968.410760069212,2019
+2001,68,"(65,70]",HS,502.57037490436113,32.71416940010757,15.362467827250065,6566.94138428597,2019
+2001,68,"(65,70]",HS,567.1724560061209,74.03733074761188,7.660628095029148,6677.020825237679,2019
+2001,45,"(40,45]",HS,287.43657230298396,82.64632269500859,3.4779112116544737,6876.438485119147,2019
+2001,45,"(40,45]",HS,287.43657230298396,82.64632269500859,3.4779112116544737,7241.550761462565,2019
+2001,45,"(40,45]",HS,287.43657230298396,84.36812108448795,3.40693343182479,7269.758573236982,2019
+2001,45,"(40,45]",HS,287.26916602907426,84.36812108448795,3.4049491956967617,7028.881258900731,2019
+2001,45,"(40,45]",HS,287.43657230298396,84.36812108448795,3.40693343182479,7168.148921198199,2019
+2001,55,"(50,55]",College,8684.033052792656,886.726170581863,9.793365010411568,309.242546203524,2019
+2001,55,"(50,55]",College,9303.771078806427,886.726170581863,10.492270767988456,303.1006106689578,2019
+2001,55,"(50,55]",College,12116.19648048967,886.726170581863,13.663966264285529,312.65062284978126,2019
+2001,55,"(50,55]",College,14644.533435348125,886.726170581863,16.515282757176877,304.66808352753003,2019
+2001,55,"(50,55]",College,15040.449273144606,886.726170581863,16.96177441484013,307.38223852495236,2019
+2001,66,"(65,70]",College,4813.265187452181,222.1119922428356,21.67044263953936,1183.818361501549,2019
+2001,66,"(65,70]",College,4803.220811017597,222.1119922428356,21.625220513830804,1184.5802179389539,2019
+2001,66,"(65,70]",College,4808.242999234889,222.1119922428356,21.647831576685082,1224.2030096533672,2019
+2001,66,"(65,70]",College,4803.053404743689,222.1119922428356,21.624466811735665,1175.751978563891,2019
+2001,66,"(65,70]",College,4803.220811017597,222.1119922428356,21.625220513830804,1157.1829958361204,2019
+2001,83,"(80,85]",NoHS,35.49013006885999,27.548774231669533,1.2882653061224492,6483.03850368496,2019
+2001,83,"(80,85]",NoHS,35.15531752104055,27.548774231669533,1.276111859838275,6480.496529381524,2019
+2001,83,"(80,85]",NoHS,35.32272379495027,29.27057262114888,1.2067657251579877,6510.333387252677,2019
+2001,83,"(80,85]",NoHS,35.32272379495027,27.548774231669533,1.282188582980362,6528.493734536527,2019
+2001,83,"(80,85]",NoHS,35.82494261667942,29.27057262114888,1.2239235316768218,6525.063559877156,2019
+2001,33,"(30,35]",College,621.7469013006886,110.19509692667813,5.642237437427801,6493.176752658805,2019
+2001,33,"(30,35]",College,620.7424636572302,110.19509692667813,5.63312235271467,5891.541490323498,2019
+2001,33,"(30,35]",College,617.3943381790359,110.19509692667813,5.602738737004235,5506.354421735032,2019
+2001,33,"(30,35]",College,425.3793420045907,110.19509692667813,3.860238376010782,6383.390891097644,2019
+2001,33,"(30,35]",College,424.5423106350421,110.19509692667813,3.852642472083173,6421.363186284314,2019
+2001,64,"(60,65]",NoHS,127.3794338179036,34.43596778958692,3.699022911051213,6004.261185195891,2019
+2001,64,"(60,65]",NoHS,127.47987758224943,34.43596778958692,3.7019397381594144,6340.297741243719,2019
+2001,64,"(60,65]",NoHS,127.51335883703138,34.43596778958692,3.7029120138621487,6372.201948893735,2019
+2001,64,"(60,65]",NoHS,127.14506503442999,34.43596778958692,3.6922169811320753,6179.927820918289,2019
+2001,64,"(60,65]",NoHS,127.4463963274675,34.43596778958692,3.700967462456681,6271.755895081136,2019
+2001,62,"(60,65]",College,96.9282325937261,29.27057262114888,3.311456658134952,5118.1937544506445,2019
+2001,62,"(60,65]",College,114.67329762815609,29.27057262114888,3.917699155133752,5252.814889036272,2019
+2001,62,"(60,65]",College,124.04804896710023,29.27057262114888,4.237978210151985,5099.028139814531,2019
+2001,62,"(60,65]",College,108.47926549349656,29.27057262114888,3.706086208068133,5222.8022484538305,2019
+2001,62,"(60,65]",College,96.67712318286152,29.27057262114888,3.302877754875535,5152.085972785702,2019
+2001,79,"(75,80]",College,-0.11718439173680184,13.774387115834767,-0.008507412398921834,6820.8935039750895,2019
+2001,79,"(75,80]",College,-0.10044376434583015,13.774387115834767,-0.007292067770504428,6912.699445670936,2019
+2001,79,"(75,80]",College,-0.10044376434583015,13.774387115834767,-0.007292067770504428,7225.5327177030895,2019
+2001,79,"(75,80]",College,-0.11718439173680184,13.774387115834767,-0.008507412398921834,7061.506421944743,2019
+2001,79,"(75,80]",College,-0.10044376434583015,13.774387115834767,-0.007292067770504428,6866.194801270018,2019
+2001,71,"(70,75]",College,30395.9571537873,903.9441544766565,33.62592368483782,280.6465143425807,2019
+2001,71,"(70,75]",College,29563.947972456004,903.9441544766565,32.7055026862497,292.00908940250633,2019
+2001,71,"(70,75]",College,30399.305279265493,903.9441544766565,33.629627592276805,276.8500978842595,2019
+2001,71,"(70,75]",College,29552.229533282327,903.9441544766565,32.69253901021325,274.83698753750565,2019
+2001,71,"(70,75]",College,30409.349655700076,903.9441544766565,33.64073931459376,276.75643731371287,2019
+2001,61,"(60,65]",College,15780.887222647283,464.8855651594233,33.94574580356252,1778.6308543552382,2019
+2001,61,"(60,65]",College,18122.733588370313,464.8855651594233,38.98321425006061,1750.1830588256094,2019
+2001,61,"(60,65]",College,16114.02570772762,464.8855651594233,34.66234900668863,1777.0900094775393,2019
+2001,61,"(60,65]",College,15769.336189747515,464.8855651594233,33.92089875782599,1762.4043771518125,2019
+2001,61,"(60,65]",College,15687.139709257843,464.8855651594233,33.74408862077326,1720.8496674133792,2019
+2001,57,"(55,60]",HS,596.9372915072686,65.42833880021514,9.123528160022698,6841.415981155526,2019
+2001,57,"(55,60]",HS,344.07011476664115,44.76675812646299,7.685839430111668,6833.773949209362,2019
+2001,57,"(55,60]",HS,372.9811782708493,55.097548463339066,6.7694695802849445,6868.161315861015,2019
+2001,57,"(55,60]",HS,277.5261208875287,75.75912913709122,3.6632696818006787,6660.9221639331445,2019
+2001,57,"(55,60]",HS,383.0255547054323,72.31553235813253,5.296587637750518,6759.897374030626,2019
+2001,79,"(75,80]",College,128156.19892884468,4511.111780435886,28.409005399653736,30.992217645997158,2019
+2001,79,"(75,80]",College,97123.26090283091,4734.945571068201,20.51201211187734,33.75740560388185,2019
+2001,79,"(75,80]",College,113665.00964039787,5320.357023491178,21.364169573306523,32.94195787638806,2019
+2001,79,"(75,80]",College,131220.23596021422,3581.340650117039,36.63997613740707,32.37450870997933,2019
+2001,79,"(75,80]",College,86920.01591430759,4046.226215276463,21.481748990242426,34.19505039073404,2019
+2001,22,"(20,25]",HS,-2.762203519510329,44.76675812646299,-0.06170211190426824,5604.812225358477,2019
+2001,22,"(20,25]",HS,-11.46732976281561,44.76675812646299,-0.25615725245105303,5604.121567201844,2019
+2001,22,"(20,25]",HS,-3.7666411629686305,44.76675812646299,-0.08413924350582033,5617.332556794376,2019
+2001,22,"(20,25]",HS,-14.145830145371079,44.76675812646299,-0.3159896033885252,5593.83194084645,2019
+2001,22,"(20,25]",HS,-25.027237949502677,44.76675812646299,-0.5590585290720061,5594.6546124572915,2019
+2001,60,"(55,60]",College,3084.962815608263,172.17983894793457,17.91709664998075,1860.5677287200517,2019
+2001,60,"(55,60]",College,3084.962815608263,172.17983894793457,17.91709664998075,1816.1541640801097,2019
+2001,60,"(55,60]",College,3084.962815608263,172.17983894793457,17.91709664998075,1952.06250980589,2019
+2001,60,"(55,60]",College,3084.962815608263,172.17983894793457,17.91709664998075,1866.4023363882711,2019
+2001,60,"(55,60]",College,3084.962815608263,172.17983894793457,17.91709664998075,1858.4740723350667,2019
+2001,64,"(60,65]",HS,150.66564651874523,110.19509692667813,1.3672627069695804,6078.291684949063,2019
+2001,64,"(60,65]",HS,147.98714613618975,106.75150014771945,1.3862769697044977,6352.912368127398,2019
+2001,64,"(60,65]",HS,147.98714613618975,111.91689531615746,1.3222949557181365,6388.976730558672,2019
+2001,64,"(60,65]",HS,150.33083397092577,108.47329853719879,1.3858787000874022,6234.1825608986455,2019
+2001,64,"(60,65]",HS,149.49380260137718,106.75150014771945,1.4003906492603124,6286.49910379798,2019
+2001,42,"(40,45]",College,790.4422035195104,129.1348792109509,6.121058914131692,6076.449361291849,2019
+2001,42,"(40,45]",College,790.6096097934201,122.24768565303354,6.4672767060584535,5525.661113945433,2019
+2001,42,"(40,45]",College,802.3447895944913,96.42070981084338,8.321291050112768,5162.3998534363,2019
+2001,42,"(40,45]",College,845.8536801836266,106.75150014771945,7.923576521296283,5778.026408306789,2019
+2001,42,"(40,45]",College,804.1695179801071,92.97711303188467,8.6491125800425,5555.602631969993,2019
+2001,39,"(35,40]",College,176.37925019127775,94.69891142136402,1.8625266916372039,1324.1081494703892,2019
+2001,39,"(35,40]",College,176.37925019127775,94.69891142136402,1.8625266916372039,1311.4908557246438,2019
+2001,39,"(35,40]",College,176.1114001530222,94.69891142136402,1.8596982532292508,1262.9224658692706,2019
+2001,39,"(35,40]",College,176.3959908186687,94.69891142136402,1.862703469037701,1310.6593653144294,2019
+2001,39,"(35,40]",College,176.26206579954092,94.69891142136402,1.8612892498337241,1382.4317560487018,2019
+2001,51,"(50,55]",HS,12.722876817138486,68.87193557917384,0.18473238351944551,5583.62759723441,2019
+2001,51,"(50,55]",HS,11.8858454475899,68.87193557917384,0.17257893723527143,5620.456460896678,2019
+2001,51,"(50,55]",HS,12.722876817138486,68.87193557917384,0.18473238351944551,5618.578387819572,2019
+2001,51,"(50,55]",HS,12.722876817138486,68.87193557917384,0.18473238351944551,5586.3141907155805,2019
+2001,51,"(50,55]",HS,12.053251721499617,68.87193557917384,0.17500962649210625,5589.571361788576,2019
+2001,28,"(25,30]",HS,57.571017597551645,179.06703250585196,0.32150539824057345,7550.409653421387,2019
+2001,28,"(25,30]",HS,56.44939556235654,177.34523411637264,0.3183022980212418,7648.385099940933,2019
+2001,28,"(25,30]",HS,54.6414078041316,179.06703250585196,0.30514498978110843,7709.4411184195,2019
+2001,28,"(25,30]",HS,55.27755164498853,177.34523411637264,0.3116945990706229,7546.913143634307,2019
+2001,28,"(25,30]",HS,55.19384850803366,179.06703250585196,0.3082300953763218,7640.495918605951,2019
+2001,42,"(40,45]",HS,650.457077276205,163.57084700053784,3.9766076241817485,8674.791025796456,2019
+2001,42,"(40,45]",HS,648.7830145371079,153.24005666366176,4.233769085331822,7888.481017910691,2019
+2001,42,"(40,45]",HS,650.457077276205,149.7964598847031,4.342272693072023,7369.88613867776,2019
+2001,42,"(40,45]",HS,649.7874521805662,146.35286310574438,4.4398684001902655,8248.759868368013,2019
+2001,42,"(40,45]",HS,654.1400153022189,151.51825827418244,4.317235577764554,7931.2257848650115,2019
+2001,39,"(35,40]",College,890.2665646518745,454.55477482254724,1.9585462830071998,3640.1013800174237,2019
+2001,39,"(35,40]",College,748.640856924254,556.1408798018288,1.3461352763548315,7485.693677849175,2019
+2001,39,"(35,40]",College,933.6247895944913,556.1408798018288,1.6787559115006478,4650.312180827224,2019
+2001,39,"(35,40]",College,753.997857689365,566.4716701387047,1.3310424817974449,7827.576621727441,2019
+2001,39,"(35,40]",College,701.2648814078041,600.9076379282917,1.1670094323072797,7526.255888878729,2019
+2001,57,"(55,60]",College,156921.78638102525,1628.8212764474613,96.34070272171255,14.608140502550564,2019
+2001,57,"(55,60]",College,159641.80351951034,1704.5804055845524,93.65460438034563,15.874372334474874,2019
+2001,57,"(55,60]",College,177968.73928079574,1773.452341163726,100.35157706240585,15.508857024996303,2019
+2001,57,"(55,60]",College,178107.8371537873,1718.3547927003872,103.65021118478774,15.245517375064313,2019
+2001,57,"(55,60]",College,159524.40149961747,1911.1962123220737,83.468353731089593,16.088342421621903,2019
+2001,38,"(35,40]",HS,87.58696250956389,154.9618550531411,0.565216275189321,7237.664661535327,2019
+2001,38,"(35,40]",HS,81.72774292272379,154.9618550531411,0.5274055534163351,7429.605888701783,2019
+2001,38,"(35,40]",HS,87.92177505738331,154.9618550531411,0.5673768878620631,7503.858875958998,2019
+2001,38,"(35,40]",HS,87.58696250956389,154.9618550531411,0.565216275189321,7325.282270740591,2019
+2001,38,"(35,40]",HS,86.41511859219587,154.9618550531411,0.5576541308347238,7445.558461311838,2019
+2001,46,"(45,50]",NoHS,3.532272379495027,43.04495973698364,0.08206006931074317,6004.092014566991,2019
+2001,46,"(45,50]",NoHS,3.532272379495027,43.04495973698364,0.08206006931074317,5997.408883308656,2019
+2001,46,"(45,50]",NoHS,3.532272379495027,43.04495973698364,0.08206006931074317,6009.23798520524,2019
+2001,46,"(45,50]",NoHS,3.532272379495027,43.04495973698364,0.08206006931074317,5995.464479952546,2019
+2001,46,"(45,50]",NoHS,3.532272379495027,43.04495973698364,0.08206006931074317,6003.789649396428,2019
+2001,72,"(70,75]",HS,270.77964804896715,51.653951684380374,5.242186497240406,5834.017302715183,2019
+2001,72,"(70,75]",HS,270.77964804896715,51.653951684380374,5.242186497240406,6218.434702745695,2019
+2001,72,"(70,75]",HS,270.77964804896715,51.653951684380374,5.242186497240406,6020.7465294651065,2019
+2001,72,"(70,75]",HS,270.77964804896715,51.653951684380374,5.242186497240406,6056.344233593196,2019
+2001,72,"(70,75]",HS,270.77964804896715,51.653951684380374,5.242186497240406,6051.688802245042,2019
+2001,52,"(50,55]",College,2517.2898148431523,848.8466060133176,2.9655414735835777,3994.902283203081,2019
+2001,52,"(50,55]",College,2179.648100994644,594.0204443703743,3.6693149564994165,3914.1405178858076,2019
+2001,52,"(50,55]",College,2076.1742830910484,544.0882910754733,3.8158775278680857,4196.308675812829,2019
+2001,52,"(50,55]",College,2036.666402448355,583.6896540334982,3.489296732217683,4016.1489271804494,2019
+2001,52,"(50,55]",College,2044.7019035960216,692.162952570697,2.9540759094400926,4003.014605513725,2019
+2001,60,"(55,60]",College,39931.418515684774,1893.9782284272803,21.083356670283894,32.54014495187054,2019
+2001,60,"(55,60]",College,38831.726702371845,1790.6703250585194,21.685581180948436,32.79658701299551,2019
+2001,60,"(55,60]",College,36531.731905126246,1997.2861317960408,18.29068520706917,32.69089802233964,2019
+2001,60,"(55,60]",College,40399.48645753634,2255.555890217943,17.911099712821898,33.75568849037757,2019
+2001,60,"(55,60]",College,40929.662127008414,1790.6703250585194,22.85717340274281,33.27193653416163,2019
+2001,54,"(50,55]",HS,173.60030604437642,103.30790336876075,1.6804165062251315,8959.517233526773,2019
+2001,54,"(50,55]",HS,173.60030604437642,103.30790336876075,1.6804165062251315,9338.86025388183,2019
+2001,54,"(50,55]",HS,172.093649579189,103.30790336876075,1.6658323706841227,9381.25301412283,2019
+2001,54,"(50,55]",HS,173.43289977046672,103.30790336876075,1.678796046720575,9126.019773810209,2019
+2001,54,"(50,55]",HS,173.60030604437642,103.30790336876075,1.6804165062251315,9247.531433271757,2019
+2001,63,"(60,65]",HS,15.485080336648815,89.53351625292598,0.17295288942863069,76.676883652852,2019
+2001,63,"(60,65]",HS,-26.617597551644987,89.53351625292598,-0.29729199372056514,82.18972381736846,2019
+2001,63,"(60,65]",HS,-26.349747513389442,89.53351625292598,-0.29430037617369154,80.95667114672293,2019
+2001,63,"(60,65]",HS,-26.41671002295333,89.53351625292598,-0.29504828056040994,80.0797175073327,2019
+2001,63,"(60,65]",HS,-26.366488140780415,89.53351625292598,-0.29448735227037115,79.5163458984342,2019
+2001,38,"(35,40]",College,4241.271430757461,602.629436317771,7.037942681115574,1968.7700271518738,2019
+2001,38,"(35,40]",College,4157.585034429992,602.629436317771,6.899073931459377,1989.9226229084088,2019
+2001,38,"(35,40]",College,4030.858485080337,602.629436317771,6.688784586610925,1988.1451540014255,2019
+2001,38,"(35,40]",College,4167.780076511094,602.629436317771,6.915991528686947,1989.6427926608908,2019
+2001,38,"(35,40]",College,4306.894690130069,602.629436317771,7.146837559821773,1970.796164328187,2019
+2001,71,"(70,75]",College,75356.52798775822,1429.092663267857,52.73033017708106,30.24313886239296,2019
+2001,71,"(70,75]",College,76038.9261820964,1429.092663267857,53.20783468877435,32.82614788424742,2019
+2001,71,"(70,75]",College,75613.16180566183,1429.092663267857,52.90990832795951,32.435333726890946,2019
+2001,71,"(70,75]",College,75289.73288446825,1429.092663267857,52.68359065835928,31.675875535738033,2019
+2001,71,"(70,75]",College,76343.9571537873,1429.092663267857,53.421278490937176,33.43677414646359,2019
+2001,47,"(45,50]",HS,86.21423106350422,94.69891142136402,0.9104036125599468,6568.200948783199,2019
+2001,47,"(45,50]",HS,87.72088752869166,94.69891142136402,0.9263135786046838,6916.947004620221,2019
+2001,47,"(45,50]",HS,102.78745218056618,94.69891142136402,1.085413239052053,6943.890396386293,2019
+2001,47,"(45,50]",HS,104.47825554705432,94.69891142136402,1.1032677565022577,6713.8104490432725,2019
+2001,47,"(45,50]",HS,91.23641928079572,94.69891142136402,0.9634368327090699,6846.835414454741,2019
+2001,22,"(20,25]",HS,-1.573618974751339,72.31553235813253,-0.02176045620404496,6177.06694786907,2019
+2001,22,"(20,25]",HS,-6.361438408569243,46.488556515942335,-0.13683880260699668,6578.9201588365395,2019
+2001,22,"(20,25]",HS,-1.7075439938791126,51.653951684380374,-0.033057373892953414,6482.820732916976,2019
+2001,22,"(20,25]",HS,-3.5657536342769705,53.37575007385973,-0.06680474989752444,6525.524089113481,2019
+2001,22,"(20,25]",HS,-4.419525631216526,56.819346852818406,-0.07778205621871391,6168.643620530627,2019
+2001,51,"(50,55]",College,1569.9360367253253,299.5929197694062,5.240230770252148,8947.907373208876,2019
+2001,51,"(50,55]",College,977.3178270849273,158.40545183209983,6.169723426696355,8124.518244828325,2019
+2001,51,"(50,55]",College,1792.418974751339,265.1569519798192,6.7598415254364435,5043.858326173379,2019
+2001,51,"(50,55]",College,2275.3860749808723,189.39782284272803,12.013792137781357,4159.165283996463,2019
+2001,51,"(50,55]",College,3396.171078806427,447.66758126462986,7.5863681466781205,1779.075690838866,2019
+2001,74,"(70,75]",College,24.458056618209643,22.383379063231494,1.0926883089955868,5400.959322573672,2019
+2001,74,"(70,75]",College,22.817475133894416,22.383379063231494,1.0193936790971831,5829.143502696465,2019
+2001,74,"(70,75]",College,19.01735271614384,20.661580673752148,0.9204209985881145,5647.008592480056,2019
+2001,74,"(70,75]",College,17.627880642693192,22.383379063231494,0.7875433192144784,5663.903302596413,2019
+2001,74,"(70,75]",College,17.276327467482783,20.661580673752148,0.8361571043511744,5677.164784925169,2019
+2001,40,"(35,40]",HS,30919.269166029073,1566.8365344262047,19.733564087048876,527.8733671403618,2019
+2001,40,"(35,40]",HS,30918.934353481258,1566.8365344262047,19.733350400081246,494.8990412557032,2019
+2001,40,"(35,40]",HS,30917.762509563887,1566.8365344262047,19.732602495694525,519.949483977644,2019
+2001,40,"(35,40]",HS,30918.432134659524,1566.8365344262047,19.733029869629792,541.4803031619388,2019
+2001,40,"(35,40]",HS,30919.603978576895,1566.8365344262047,19.733777774016513,520.4816482457029,2019
+2001,26,"(25,30]",HS,14.480642693190514,72.31553235813253,0.20024249592020096,4679.961402039226,2019
+2001,26,"(25,30]",HS,14.480642693190514,72.31553235813253,0.20024249592020096,4703.955310789008,2019
+2001,26,"(25,30]",HS,14.480642693190514,70.59373396865318,0.20512645923532782,4717.457187714939,2019
+2001,26,"(25,30]",HS,14.480642693190514,72.31553235813253,0.20024249592020096,4711.0332571674535,2019
+2001,26,"(25,30]",HS,14.480642693190514,70.59373396865318,0.20512645923532782,4681.351818292269,2019
+2001,25,"(20,25]",College,26.199081866870696,120.5258872635542,0.21737306782551297,6534.863379896983,2019
+2001,25,"(20,25]",College,27.82292272379495,120.5258872635542,0.2308460311348259,6545.813798311057,2019
+2001,25,"(20,25]",College,29.095210405508798,120.5258872635542,0.24140216733593708,6568.712403602076,2019
+2001,25,"(20,25]",College,28.040550879877582,120.5258872635542,0.23265168601133177,6602.387917322905,2019
+2001,25,"(20,25]",College,29.02824789594491,120.5258872635542,0.24084658122008912,6551.07918445647,2019
+2001,47,"(45,50]",College,18599.138362662587,261.7133552008606,71.06682938816043,184.93501837162862,2019
+2001,47,"(45,50]",College,18252.958928844684,270.3223471482573,67.52293741676458,182.1910018669292,2019
+2001,47,"(45,50]",College,18434.427329762817,344.35967789586914,53.53247930304198,187.5846359142148,2019
+2001,47,"(45,50]",College,18095.312440703903,327.1416940010757,55.31337879739782,183.42498355210063,2019
+2001,47,"(45,50]",College,18121.10974751339,309.9237101062822,58.469581889359524,184.4947035631073,2019
+2001,50,"(45,50]",HS,495.0370925784239,137.74387115834767,3.593895600693107,7823.188152734639,2019
+2001,50,"(45,50]",HS,491.68896710022955,137.74387115834767,3.5695887081247593,7134.410270048016,2019
+2001,50,"(45,50]",HS,495.0370925784239,137.74387115834767,3.593895600693107,6666.120577126235,2019
+2001,50,"(45,50]",HS,493.5304361132364,137.74387115834767,3.5829574990373505,7489.978165016396,2019
+2001,50,"(45,50]",HS,493.3630298393267,137.74387115834767,3.5817421544089334,7116.458046509657,2019
+2001,55,"(50,55]",College,333.1736403978577,32.71416940010757,10.184383296516224,9449.069972750507,2019
+2001,55,"(50,55]",College,332.7383840856924,32.71416940010757,10.17107847111039,8584.667637111594,2019
+2001,55,"(50,55]",College,333.1736403978577,32.71416940010757,10.184383296516224,8027.155383762673,2019
+2001,55,"(50,55]",College,331.49957765876053,34.43596778958692,9.626550346553715,8989.990841338455,2019
+2001,55,"(50,55]",College,333.22386228003063,32.71416940010757,10.185918468678436,8639.747712220014,2019
+2001,26,"(25,30]",NoHS,0,9.469891142136403,0,5083.38128760769,2019
+2001,26,"(25,30]",NoHS,0,9.469891142136403,0,5080.252851893318,2019
+2001,26,"(25,30]",NoHS,0,9.469891142136403,0,5004.505870650981,2019
+2001,26,"(25,30]",NoHS,0,9.469891142136403,0,5084.449325221516,2019
+2001,26,"(25,30]",NoHS,0,9.469891142136403,0,5073.372577499995,2019
+2001,87,"(85,90]",HS,1810.666258607498,154.9618550531411,11.684593334189023,3389.9983289670536,2019
+2001,87,"(85,90]",HS,1810.666258607498,154.9618550531411,11.684593334189023,3427.969072392492,2019
+2001,87,"(85,90]",HS,1810.666258607498,154.9618550531411,11.684593334189023,4353.663948205994,2019
+2001,87,"(85,90]",HS,1810.666258607498,154.9618550531411,11.684593334189023,3578.922612500496,2019
+2001,87,"(85,90]",HS,1812.507727620505,154.9618550531411,11.696476703889104,3664.4930684142173,2019
+2001,23,"(20,25]",HS,-22.348737566947207,43.04495973698364,-0.5191952252599153,7197.143444350886,2019
+2001,23,"(20,25]",HS,-22.348737566947207,43.04495973698364,-0.5191952252599153,7196.256569710946,2019
+2001,23,"(20,25]",HS,-22.348737566947207,43.04495973698364,-0.5191952252599153,7213.220811030054,2019
+2001,23,"(20,25]",HS,-22.348737566947207,43.04495973698364,-0.5191952252599153,7183.043653043822,2019
+2001,23,"(20,25]",HS,-22.516143840856923,43.04495973698364,-0.523084328070851,7184.100046256077,2019
+2001,48,"(45,50]",HS,39165.45110941087,2117.812019059595,18.493355763842587,282.46378812830255,2019
+2001,48,"(45,50]",HS,15775.195409334354,2135.0300029543887,7.388746475461762,284.80317035657504,2019
+2001,48,"(45,50]",HS,23269.974292272378,2135.0300029543887,10.899132218316419,283.85439531716236,2019
+2001,48,"(45,50]",HS,10915.625646518745,2135.0300029543887,5.1126333734954725,285.7479542794914,2019
+2001,48,"(45,50]",HS,27446.342310635042,2135.0300029543887,12.85524900008695,297.43930329297586,2019
+2001,55,"(50,55]",HS,54.32333588370314,75.75912913709122,0.7170533307662688,7125.7300664163195,2019
+2001,55,"(50,55]",HS,59.09441469013007,67.15013718969449,0.8800341617053208,7447.674612748179,2019
+2001,55,"(50,55]",HS,54.49074215761286,79.20272591604991,0.6879907418258525,7489.9537472522115,2019
+2001,55,"(50,55]",HS,60.76847742922724,60.2629436317771,1.008388800264041,7308.484754643039,2019
+2001,55,"(50,55]",HS,57.08553940321347,68.87193557917384,0.82886503658067,7369.816717969482,2019
+2001,53,"(50,55]",HS,2410.1481254781947,74.03733074761188,32.553147191303026,2518.1723636335246,2019
+2001,53,"(50,55]",HS,5088.7656924254015,103.30790336876075,49.25824188165832,1157.4506162481152,2019
+2001,53,"(50,55]",HS,2226.336036725325,123.96948404251289,17.958742459247848,3211.9727795890303,2019
+2001,53,"(50,55]",HS,3282.066962509564,87.81171786344665,37.376184436038564,1142.8648734624007,2019
+2001,53,"(50,55]",HS,3294.5554705432287,72.31553235813253,45.55806149953242,1131.9139907674185,2019
+2001,88,"(85,90]",HS,288.27360367253254,41.323161347504296,6.9760781671159044,3337.6547599409037,2019
+2001,88,"(85,90]",HS,289.9476664116297,41.323161347504296,7.016589654729818,3429.059869321186,2019
+2001,88,"(85,90]",HS,289.9476664116297,41.323161347504296,7.016589654729818,3290.3763219349703,2019
+2001,88,"(85,90]",HS,288.27360367253254,41.323161347504296,6.9760781671159044,3406.4921511440143,2019
+2001,88,"(85,90]",HS,288.27360367253254,41.323161347504296,6.9760781671159044,3266.662081913558,2019
+2001,69,"(65,70]",College,2769.0671767406275,237.60817774814973,11.653922028204226,4174.008457761178,2019
+2001,69,"(65,70]",College,2629.785156847743,237.60817774814973,11.067738416121166,4220.702628328137,2019
+2001,69,"(65,70]",College,3045.6223412394797,237.60817774814973,12.817834681042228,5353.345580633957,2019
+2001,69,"(65,70]",College,2692.0602907421576,235.88637935867035,11.41252961727316,4410.86924038099,2019
+2001,69,"(65,70]",College,2675.319663351186,237.60817774814973,11.259375366225244,4445.91382345625,2019
+2001,46,"(45,50]",College,9802.976587605202,1205.258872635542,8.133502942956158,1026.33606512087,2019
+2001,46,"(45,50]",College,10527.845753634278,1205.258872635542,8.73492491336157,980.2823399339155,2019
+2001,46,"(45,50]",College,9061.366794185156,1205.258872635542,7.518191319654546,1022.2110761054837,2019
+2001,46,"(45,50]",College,9325.199081866871,1205.258872635542,7.737092249298642,1024.151538355529,2019
+2001,46,"(45,50]",College,10887.769242540167,1205.258872635542,9.033552450629847,973.5846695489097,2019
+2001,66,"(65,70]",College,54022.67421576129,2289.9918580075296,23.5907713063946,13.21841064784427,2019
+2001,66,"(65,70]",College,52924.104024483546,2307.209841902323,22.938574144104276,12.889723937197008,2019
+2001,66,"(65,70]",College,51696.56403978577,2307.209841902323,22.40652891683286,13.364390893692592,2019
+2001,66,"(65,70]",College,52283.49043611324,2307.209841902323,22.660916873085483,13.822782807955917,2019
+2001,66,"(65,70]",College,52067.70374904361,2307.209841902323,22.56738975511354,13.273480227856766,2019
+2001,50,"(45,50]",HS,168.99663351185922,137.74387115834767,1.22689040238737,11.355203169714846,2019
+2001,50,"(45,50]",HS,168.99663351185922,137.74387115834767,1.22689040238737,12.633395609007003,2019
+2001,50,"(45,50]",HS,170.33588370313697,137.74387115834767,1.2366131594147094,12.256013634414682,2019
+2001,50,"(45,50]",HS,179.7106350420811,137.74387115834767,1.3046724586060838,11.983777622608397,2019
+2001,50,"(45,50]",HS,168.99663351185922,137.74387115834767,1.22689040238737,12.017168717255302,2019
+2001,39,"(35,40]",College,26078.5493496557,809.2452430552926,32.22576786635971,207.80502897288798,2019
+2001,39,"(35,40]",College,25541.175210405512,809.2452430552926,31.561724248109524,194.79556708313498,2019
+2001,39,"(35,40]",College,25499.825860749806,809.2452430552926,31.510628056923288,204.6977452387666,2019
+2001,39,"(35,40]",College,25515.69597551645,809.2452430552926,31.530239064714603,213.1017896887116,2019
+2001,39,"(35,40]",College,25490.116296863045,809.2452430552926,31.49862976101721,204.86089829700504,2019
+2001,59,"(55,60]",College,558.3836266258608,106.75150014771945,5.230686462046778,6478.625078429783,2019
+2001,59,"(55,60]",College,566.7539403213466,105.0297017582401,5.396130150173277,5885.959486400797,2019
+2001,59,"(55,60]",College,561.5643458301454,105.0297017582401,5.346719417739258,5503.708865282066,2019
+2001,59,"(55,60]",College,556.5421576128539,105.0297017582401,5.298902579899885,6163.863775748467,2019
+2001,59,"(55,60]",College,570.1020657995409,105.0297017582401,5.4280080420661925,5923.724383575683,2019
+2001,30,"(25,30]",NoHS,0,25.826975842190187,0,7245.343674347316,2019
+2001,30,"(25,30]",NoHS,0,25.826975842190187,0,7238.717285122826,2019
+2001,30,"(25,30]",NoHS,0,24.105177452710844,0,7126.5982141326895,2019
+2001,30,"(25,30]",NoHS,0,24.105177452710844,0,7246.398447100777,2019
+2001,30,"(25,30]",NoHS,0,25.826975842190187,0,7231.123666604503,2019
+2001,74,"(70,75]",College,2571.695179801071,91.25531464240532,28.18131951961988,2394.1496234610054,2019
+2001,74,"(70,75]",College,2570.021117061974,91.25531464240532,28.16297469504,2464.3041072392957,2019
+2001,74,"(70,75]",College,2570.188523335884,91.25531464240532,28.164809177497986,3025.263248650672,2019
+2001,74,"(70,75]",College,2570.188523335884,91.25531464240532,28.164809177497986,2493.834678519053,2019
+2001,74,"(70,75]",College,2571.8625860749808,91.25531464240532,28.18315400207787,2574.78194135985,2019
+2001,53,"(50,55]",HS,299.1047895944912,137.74387115834767,2.171456247593377,7330.780228212566,2019
+2001,53,"(50,55]",HS,299.1047895944912,137.74387115834767,2.171456247593377,6656.199626212809,2019
+2001,53,"(50,55]",HS,299.1047895944912,137.74387115834767,2.171456247593377,6214.539257474386,2019
+2001,53,"(50,55]",HS,299.1047895944912,137.74387115834767,2.171456247593377,6969.324183230606,2019
+2001,53,"(50,55]",HS,299.2889364957919,137.74387115834767,2.172793126684636,6688.83486393614,2019
+2001,30,"(25,30]",NoHS,17.577658760520276,39.60136295802496,0.4438649947263565,6428.802255292821,2019
+2001,30,"(25,30]",NoHS,17.577658760520276,39.60136295802496,0.4438649947263565,6549.148011014191,2019
+2001,30,"(25,30]",NoHS,17.41025248661056,39.60136295802496,0.43963770906229593,6605.248087552738,2019
+2001,30,"(25,30]",NoHS,17.41025248661056,39.60136295802496,0.43963770906229593,6444.875239270853,2019
+2001,30,"(25,30]",NoHS,17.577658760520276,39.60136295802496,0.4438649947263565,6513.032465681569,2019
+2001,46,"(45,50]",NoHS,0,17.21798389479346,0,4136.439065077046,2019
+2001,46,"(45,50]",NoHS,0,17.21798389479346,0,4122.599606469397,2019
+2001,46,"(45,50]",NoHS,0,17.21798389479346,0,4123.835096271484,2019
+2001,46,"(45,50]",NoHS,0,17.045804055845522,0,4107.93887956625,2019
+2001,46,"(45,50]",NoHS,0,17.21798389479346,0,4146.515544831393,2019
+2001,57,"(55,60]",HS,852.6001530221882,189.39782284272803,4.501636503658067,11144.643118863061,2019
+2001,57,"(55,60]",HS,852.6001530221882,189.39782284272803,4.501636503658067,11042.086600875853,2019
+2001,57,"(55,60]",HS,852.6001530221882,191.1196212322074,4.461081219841327,10408.773231555759,2019
+2001,57,"(55,60]",HS,852.6001530221882,189.39782284272803,4.501636503658067,11014.404809943942,2019
+2001,57,"(55,60]",HS,852.6001530221882,189.39782284272803,4.501636503658067,11386.752961154238,2019
+2001,56,"(55,60]",College,16404.743442999235,316.81090366419966,51.78086755621034,254.02985305266816,2019
+2001,56,"(55,60]",College,44984.744299923485,382.2392424644148,117.68740438551757,246.39976138616174,2019
+2001,56,"(55,60]",College,28998.767651109414,167.01444377949653,173.630298044135,250.36501033046915,2019
+2001,56,"(55,60]",College,40270.08140780413,227.27738741127362,177.1847250907224,258.2585267454051,2019
+2001,56,"(55,60]",College,37831.306809487374,165.29264539001719,228.874713210756,259.4646586901832,2019
+2001,40,"(35,40]",HS,20.457046671767408,44.76675812646299,0.4569695802849442,5871.087472458193,2019
+2001,40,"(35,40]",HS,20.457046671767408,43.04495973698364,0.475248363496342,5807.108664714449,2019
+2001,40,"(35,40]",HS,20.457046671767408,44.76675812646299,0.4569695802849442,5826.947504174639,2019
+2001,40,"(35,40]",HS,20.457046671767408,43.04495973698364,0.475248363496342,5804.681856000079,2019
+2001,40,"(35,40]",HS,20.457046671767408,43.04495973698364,0.475248363496342,5872.415319807813,2019
+2001,48,"(45,50]",College,1641.4185156847743,172.17983894793457,9.533163265306124,9223.146732002675,2019
+2001,48,"(45,50]",College,1641.4185156847743,172.17983894793457,9.533163265306124,8952.26418251111,2019
+2001,48,"(45,50]",College,1641.4185156847743,172.17983894793457,9.533163265306124,9658.0002538738,2019
+2001,48,"(45,50]",College,1639.911859219587,172.17983894793457,9.52441278398152,9167.675614179785,2019
+2001,48,"(45,50]",College,1639.744452945677,172.17983894793457,9.523440508278783,9143.154961935485,2019
+2001,29,"(25,30]",HS,10.07785768936496,58.54114524229776,0.17214999207230064,5698.273541239819,2019
+2001,29,"(25,30]",HS,10.211782708492732,58.54114524229776,0.17443769960814515,5714.3278022307295,2019
+2001,29,"(25,30]",HS,9.709563886763581,58.54114524229776,0.16585879634872816,5716.952937171316,2019
+2001,29,"(25,30]",HS,10.546595256312164,58.54114524229776,0.18015696844775644,5719.434692823072,2019
+2001,29,"(25,30]",HS,10.37918898240245,58.54114524229776,0.17729733402795084,5702.325673964363,2019
+2001,66,"(65,70]",College,10498.047436878349,1101.9509692667814,9.526782706006932,525.8151160753052,2019
+2001,66,"(65,70]",College,9969.043611323641,1101.9509692667814,9.046721577782055,507.9747695410557,2019
+2001,66,"(65,70]",College,9622.512624330528,1101.9509692667814,8.732251155179052,527.8056177459368,2019
+2001,66,"(65,70]",College,10812.771231828616,1101.9509692667814,9.81238869368502,515.5502197683851,2019
+2001,66,"(65,70]",College,11028.72532517215,1101.9509692667814,10.008363015017327,510.03735303754456,2019
+2001,43,"(40,45]",HS,4777.875501147666,2358.863793586704,2.025498680397651,3687.287979209405,2019
+2001,43,"(40,45]",HS,4779.549563886763,2341.64580969191,2.0411069616525856,3633.9889219487354,2019
+2001,43,"(40,45]",HS,4779.549563886763,2341.64580969191,2.0411069616525856,3732.726985571312,2019
+2001,43,"(40,45]",HS,4777.875501147666,2358.863793586704,2.025498680397651,3619.162569798528,2019
+2001,43,"(40,45]",HS,4781.2236266258615,2358.863793586704,2.0269180609855844,3597.716146931495,2019
+2001,75,"(70,75]",NoHS,113.83626625860751,17.21798389479346,6.611474778590682,9030.738918790892,2019
+2001,75,"(70,75]",NoHS,111.44235654169856,22.383379063231494,4.978799502384409,8976.004357204114,2019
+2001,75,"(70,75]",NoHS,122.54139250191278,18.939782284272805,6.47005285819302,9534.959257238672,2019
+2001,75,"(70,75]",NoHS,111.45909716908953,41.323161347504296,2.6972548453343608,9067.101777461077,2019
+2001,75,"(70,75]",NoHS,122.37398622800306,17.21798389479346,7.107335386984983,9521.92004703717,2019
+2001,76,"(75,80]",HS,1386.4587605202755,68.87193557917384,20.13096842510589,10353.443926634041,2019
+2001,76,"(75,80]",HS,1352.9775057383322,68.87193557917384,19.64483057373893,9350.974364658312,2019
+2001,76,"(75,80]",HS,1383.1106350420812,68.87193557917384,20.082354639969196,8842.465675709136,2019
+2001,76,"(75,80]",HS,1374.7403213465952,68.87193557917384,19.960820177127452,9885.74075991974,2019
+2001,76,"(75,80]",HS,1381.436572302984,68.87193557917384,20.058047747400845,9494.784743817909,2019
+2001,35,"(30,35]",College,54315.13297628156,1499.6863972365102,36.21766062316008,251.5668788160227,2019
+2001,35,"(30,35]",College,54333.54766641163,1718.3547927003872,31.61951646843938,250.8905644048406,2019
+2001,35,"(30,35]",College,54393.81392501913,1034.8008320770869,52.564524726790225,248.72102426586656,2019
+2001,35,"(30,35]",College,54351.9623565417,1503.1299940154688,36.15918953978531,260.95634388718406,2019
+2001,35,"(30,35]",College,54356.98454475899,1260.356421098881,43.1282640646732,258.73160542041467,2019
+2001,31,"(30,35]",HS,6.595807192042846,113.63869370563681,0.05804191316320697,4655.434391915069,2019
+2001,31,"(30,35]",HS,4.921744452945677,113.63869370563681,0.043310463121783875,4663.235466172804,2019
+2001,31,"(30,35]",HS,4.921744452945677,113.63869370563681,0.043310463121783875,4679.548424593119,2019
+2001,31,"(30,35]",HS,4.75433817903596,113.63869370563681,0.04183731811764157,4703.538848818916,2019
+2001,31,"(30,35]",HS,4.75433817903596,113.63869370563681,0.04183731811764157,4666.986525425774,2019
+2001,39,"(35,40]",HS,897.9170313695487,129.1348792109509,6.953326915671931,5959.31564367713,2019
+2001,39,"(35,40]",HS,896.5442999234889,129.1348792109509,6.942696701322039,5419.144760385647,2019
+2001,39,"(35,40]",HS,893.3468400918134,129.1348792109509,6.917936080092416,5062.885967827594,2019
+2001,39,"(35,40]",HS,911.1253863810252,129.1348792109509,7.0556103195995385,5666.645291894899,2019
+2001,39,"(35,40]",HS,885.4954858454477,129.1348792109509,6.8571364394814545,5448.509105606037,2019
+2001,38,"(35,40]",HS,-3.2309410864575363,46.488556515942335,-0.06949970763986936,7560.274929902998,2019
+2001,38,"(35,40]",HS,-3.0467941851568474,46.488556515942335,-0.06553858440650893,7514.539863006365,2019
+2001,38,"(35,40]",HS,-3.0635348125478195,46.488556515942335,-0.06589868651863261,7424.991589549218,2019
+2001,38,"(35,40]",HS,-3.0467941851568474,46.488556515942335,-0.06553858440650893,7488.350023570414,2019
+2001,38,"(35,40]",HS,-3.2142004590665647,46.488556515942335,-0.06913960552774569,7558.0459761694,2019
+2001,45,"(40,45]",College,7682.776128538639,516.5395168438037,14.873549608522659,1698.2858819950748,2019
+2001,45,"(40,45]",College,8075.042509563887,516.5395168438037,15.632961750738033,1733.6843821730283,2019
+2001,45,"(40,45]",College,7837.191675592961,516.5395168438037,15.172491977923247,1727.4768450424774,2019
+2001,45,"(40,45]",College,7661.013312930376,516.5395168438037,14.831417661404188,1726.1458624221693,2019
+2001,45,"(40,45]",College,7743.27675592961,516.5395168438037,14.990676421512003,1723.186099645399,2019
+2001,42,"(40,45]",College,1451.3286916602908,46.488556515942335,31.21905261056205,544.4695378327365,2019
+2001,42,"(40,45]",College,1449.6546289211935,46.488556515942335,31.183042399349677,547.295870991408,2019
+2001,42,"(40,45]",College,1449.487222647284,46.488556515942335,31.179441378228443,516.4527491649735,2019
+2001,42,"(40,45]",College,1449.487222647284,46.488556515942335,31.179441378228443,548.0820833281098,2019
+2001,42,"(40,45]",College,1449.6546289211935,46.488556515942335,31.183042399349677,579.309891387225,2019
+2001,64,"(60,65]",HS,1501.8016832440705,172.17983894793457,8.72228532922603,2753.061341214008,2019
+2001,64,"(60,65]",HS,1510.1719969395563,172.17983894793457,8.770899114362727,2802.410922873064,2019
+2001,64,"(60,65]",HS,1496.779495026779,172.17983894793457,8.693117058144013,3518.9748229480224,2019
+2001,64,"(60,65]",HS,1504.982402448355,172.17983894793457,8.740758567577975,2897.05188036575,2019
+2001,64,"(60,65]",HS,1510.1719969395563,172.17983894793457,8.770899114362727,2966.284734795404,2019
+2001,56,"(55,60]",College,152.00489671002296,60.2629436317771,2.5223609659497224,4743.032961805247,2019
+2001,56,"(55,60]",College,152.00489671002296,60.2629436317771,2.5223609659497224,4834.830888538932,2019
+2001,56,"(55,60]",College,152.00489671002296,60.2629436317771,2.5223609659497224,4773.65085634858,2019
+2001,56,"(55,60]",College,152.00489671002296,60.2629436317771,2.5223609659497224,4857.492120761698,2019
+2001,56,"(55,60]",College,152.00489671002296,60.2629436317771,2.5223609659497224,4777.360246973794,2019
+2001,58,"(55,60]",College,507.4921193573068,137.74387115834767,3.684317241047362,522.502129490021,2019
+2001,58,"(55,60]",College,505.81805661820965,137.74387115834767,3.672163794763188,516.6969427466975,2019
+2001,58,"(55,60]",College,505.81805661820965,137.74387115834767,3.672163794763188,497.96526663817775,2019
+2001,58,"(55,60]",College,507.4921193573068,137.74387115834767,3.684317241047362,517.2278571466138,2019
+2001,58,"(55,60]",College,507.4921193573068,137.74387115834767,3.684317241047362,545.0213841462902,2019
+2001,31,"(30,35]",College,-18.247283856159143,51.653951684380374,-0.35326017199332566,5046.738099536555,2019
+2001,31,"(30,35]",College,-19.921346595256313,53.37575007385973,-0.3732284149204417,5009.263470709657,2019
+2001,31,"(30,35]",College,-18.41469013006886,51.653951684380374,-0.3565010910024387,5014.780231691737,2019
+2001,31,"(30,35]",College,-19.921346595256313,53.37575007385973,-0.3732284149204417,5047.713899296501,2019
+2001,31,"(30,35]",College,-18.41469013006886,53.37575007385973,-0.3450010558088116,5000.543866915568,2019
+2001,39,"(35,40]",HS,3.5992348890589136,44.76675812646299,0.08039972157222831,9215.17743370958,2019
+2001,39,"(35,40]",HS,3.7666411629686305,46.488556515942335,0.08102297522782698,9288.53262250324,2019
+2001,39,"(35,40]",HS,3.5992348890589136,46.488556515942335,0.07742195410659022,9397.02932747659,2019
+2001,39,"(35,40]",HS,3.5992348890589136,46.488556515942335,0.07742195410659022,9231.976381331438,2019
+2001,39,"(35,40]",HS,3.6159755164498852,44.76675812646299,0.08077367376558751,9276.873321546927,2019
+2001,78,"(75,80]",NoHS,0.3348125478194338,10.847329853719879,0.030865895324886466,6178.691341210508,2019
+2001,78,"(75,80]",NoHS,0.31807192042846216,12.052588726355422,0.02639034050277793,6160.619288431022,2019
+2001,78,"(75,80]",NoHS,0.28459066564651875,10.330790336876074,0.027547811577461175,6175.021730776198,2019
+2001,78,"(75,80]",NoHS,0.31807192042846216,12.74130808214716,0.02496383561073588,6187.635475852059,2019
+2001,78,"(75,80]",NoHS,0.28459066564651875,11.70822904845955,0.024306892568348098,6234.245657359637,2019
+2001,60,"(55,60]",HS,422.4497322111706,74.03733074761188,5.7059017112768755,7237.226506299182,2019
+2001,60,"(55,60]",HS,423.62157612853866,74.03733074761188,5.72172945527487,7564.208525342066,2019
+2001,60,"(55,60]",HS,422.7845447589901,74.03733074761188,5.710423923847731,7607.1492023034425,2019
+2001,60,"(55,60]",HS,421.4452945677123,74.03733074761188,5.692335073564309,7422.840760762521,2019
+2001,60,"(55,60]",HS,422.4497322111706,74.03733074761188,5.7059017112768755,7485.1323865373315,2019
+2001,76,"(75,80]",HS,61.10328997704667,46.488556515942335,1.3143727092514155,5572.551858337019,2019
+2001,76,"(75,80]",HS,61.27069625095639,46.488556515942335,1.3179737303726522,5532.633608655129,2019
+2001,76,"(75,80]",HS,58.759602142310634,46.488556515942335,1.2639584135541009,5511.289216967578,2019
+2001,76,"(75,80]",HS,62.275133894414694,46.488556515942335,1.3395798571000728,5633.196223807983,2019
+2001,76,"(75,80]",HS,58.25738332058148,44.76675812646299,1.301353632890021,5558.07767484238,2019
+2001,71,"(70,75]",HS,46.87375669472074,14.290926632678572,3.279966226090345,6988.940953436131,2019
+2001,71,"(70,75]",HS,43.826962509563884,43.04495973698364,1.018167115902965,7814.989388219763,2019
+2001,71,"(70,75]",HS,126.89395562356542,44.76675812646299,2.834557625662747,7740.181537809684,2019
+2001,71,"(70,75]",HS,62.30861514919663,30.992371010628222,2.0104500919864803,7412.41051132881,2019
+2001,71,"(70,75]",HS,49.88706962509564,27.548774231669533,1.810863496341933,7602.863088209323,2019
+2001,41,"(40,45]",HS,1051.1439938791125,141.18746793730637,7.445023338373545,5597.063685570774,2019
+2001,41,"(40,45]",HS,1049.4699311400154,141.18746793730637,7.433166317608498,5084.345620348593,2019
+2001,41,"(40,45]",HS,1051.1439938791125,141.18746793730637,7.445023338373545,4774.062317882437,2019
+2001,41,"(40,45]",HS,1051.1439938791125,141.18746793730637,7.445023338373545,5314.011650724851,2019
+2001,41,"(40,45]",HS,1051.1439938791125,141.18746793730637,7.445023338373545,5121.550704971044,2019
+2001,30,"(25,30]",College,300.1929303749044,156.68365344262045,1.9159173518049148,9495.049295392866,2019
+2001,30,"(25,30]",College,300.34359602142314,144.63106471626506,2.0766188550892055,9520.016602334468,2019
+2001,30,"(25,30]",College,332.8706350420811,137.74387115834767,2.4165912591451675,8157.985599189264,2019
+2001,30,"(25,30]",College,322.7760367253252,139.46566954782702,2.314376274618862,9457.366339880768,2019
+2001,30,"(25,30]",College,322.32403978576895,153.24005666366176,2.1033928517347156,9513.624512452845,2019
+2001,27,"(25,30]",College,120.36511094108646,130.8566776004303,0.9198239871916989,6517.870152080723,2019
+2001,27,"(25,30]",College,96.9282325937261,130.8566776004303,0.7407205682670287,6506.9338478895215,2019
+2001,27,"(25,30]",College,107.80964039785769,130.8566776004303,0.8238757270534828,6541.647315990131,2019
+2001,27,"(25,30]",College,98.60229533282326,129.1348792109509,0.7635605185470415,6584.892740765017,2019
+2001,27,"(25,30]",College,98.60229533282326,130.8566776004303,0.7535136696187908,6523.793168439864,2019
+2001,63,"(60,65]",College,663640.4887528692,11157.253563826162,59.480631587016354,2.1257090517232013,2019
+2001,63,"(60,65]",College,667698.4168324408,11157.253563826162,59.84433472026127,2.168847389551151,2019
+2001,63,"(60,65]",College,667656.2304514154,11140.03557993137,59.93304291183679,1.9139833519487623,2019
+2001,63,"(60,65]",College,663758.0079571538,11157.253563826162,59.49116457379598,2.4909727322479034,2019
+2001,63,"(60,65]",College,581590.3213465953,11157.253563826162,52.126656261736,1.9791266809042838,2019
+2001,44,"(40,45]",HS,941.8779188982402,167.01444377949653,5.639499779682345,8117.607463680719,2019
+2001,44,"(40,45]",HS,911.276052027544,167.01444377949653,5.4562709152908395,7381.80230482454,2019
+2001,44,"(40,45]",HS,958.3841775057383,167.01444377949653,5.7383311036922064,6896.516878378049,2019
+2001,44,"(40,45]",HS,940.3712624330528,167.01444377949653,5.630478664914712,7718.940372679051,2019
+2001,44,"(40,45]",HS,935.7173680183627,167.01444377949653,5.602613443743574,7421.801566850551,2019
+2001,21,"(20,25]",HS,-2.259984697781178,46.488556515942335,-0.04861378513669618,9087.438808164237,2019
+2001,21,"(20,25]",HS,-2.4273909716908952,65.42833880021514,-0.03709999392011025,9172.91376776947,2019
+2001,21,"(20,25]",HS,-2.9296097934200462,56.819346852818406,-0.051560075144980816,9239.71328120604,2019
+2001,21,"(20,25]",HS,-1.7577658760520276,68.87193557917384,-0.0255222371967655,9100.05356491142,2019
+2001,21,"(20,25]",HS,-3.7666411629686305,48.21035490542169,-0.07812929754111886,9117.25093654871,2019
+2001,54,"(50,55]",HS,9183.573374139249,289.2621294325301,31.74827410748665,25.955601165977168,2019
+2001,54,"(50,55]",HS,9183.238561591432,289.2621294325301,31.747116636411977,26.620583695245205,2019
+2001,54,"(50,55]",HS,9180.894873756695,289.2621294325301,31.739014338889195,27.0283571705214,2019
+2001,54,"(50,55]",HS,9183.573374139249,289.2621294325301,31.74827410748665,26.25645742162572,2019
+2001,54,"(50,55]",HS,9182.568936495793,289.2621294325301,31.74480169426261,26.366515519440963,2019
+2001,52,"(50,55]",HS,0,11.536049209511617,0,7052.111639734164,2019
+2001,52,"(50,55]",HS,0,9.986430658980208,0,7062.965861951069,2019
+2001,52,"(50,55]",HS,0,13.257847598990962,0,6957.122666440606,2019
+2001,52,"(50,55]",HS,0,14.807466149522373,0,7016.252297505285,2019
+2001,52,"(50,55]",HS,0,9.297711303188466,0,7065.6085699311325,2019
+2001,57,"(55,60]",College,472.9227237949503,180.7888308953313,2.615884628784128,8486.919620865327,2019
+2001,57,"(55,60]",College,420.3571537872992,113.63869370563681,3.6990671054013378,8994.6072417311,2019
+2001,57,"(55,60]",College,766.7207345065035,437.3367909277538,1.7531585505989653,7657.9995065437715,2019
+2001,57,"(55,60]",College,481.1256312165264,354.6904682327453,1.3564661988627653,8794.040613348803,2019
+2001,57,"(55,60]",College,531.1801071155318,278.93133909565404,1.9043400029473703,8180.421323075777,2019
+2001,74,"(70,75]",HS,494.6855394032135,113.63869370563681,4.353143487240523,9339.530587540645,2019
+2001,74,"(70,75]",HS,493.01147666411634,113.63869370563681,4.3384120371991,10358.390928257695,2019
+2001,74,"(70,75]",HS,494.6855394032135,113.63869370563681,4.353143487240523,10413.063022613636,2019
+2001,74,"(70,75]",HS,493.01147666411634,113.63869370563681,4.3384120371991,10083.75250297118,2019
+2001,74,"(70,75]",HS,493.01147666411634,113.63869370563681,4.3384120371991,10121.858216862227,2019
+2001,57,"(55,60]",College,122684.35745983168,14222.054697099398,8.626345494568605,14.608140502550564,2019
+2001,57,"(55,60]",College,117140.02907421575,12293.64050088253,9.528506146393866,15.874372334474874,2019
+2001,57,"(55,60]",College,118421.69150726855,14118.746793730636,8.387549776007964,15.508857024996303,2019
+2001,57,"(55,60]",College,117456.25952563122,13085.667760043028,8.97594694282877,15.245517375064313,2019
+2001,57,"(55,60]",College,118037.15929609793,13085.667760043028,9.020339004519384,16.088342421621903,2019
+2001,46,"(45,50]",College,2711.3120122417754,234.16458096919104,11.57865976579311,851.9272879471112,2019
+2001,46,"(45,50]",College,2732.572609028309,216.94659707439757,12.595600234703046,821.2234381997605,2019
+2001,46,"(45,50]",College,2703.109104820199,375.3520489064974,7.201530170662691,878.9647095940143,2019
+2001,46,"(45,50]",College,2687.5403213465956,182.51062928481065,14.725390690273976,851.3994909349979,2019
+2001,46,"(45,50]",College,2715.8319816373373,256.54796003242257,10.586059547283519,837.3098149453699,2019
+2001,28,"(25,30]",HS,37.91752104055088,32.71416940010757,1.1590549824696512,5600.260289614822,2019
+2001,28,"(25,30]",HS,23.35317521040551,32.71416940010757,0.7138550554283283,5546.251088919749,2019
+2001,28,"(25,30]",HS,29.88201989288447,32.71416940010757,0.9134274365158178,5543.090193076212,2019
+2001,28,"(25,30]",HS,22.85095638867636,32.71416940010757,0.6985033338062137,5570.75455090117,2019
+2001,28,"(25,30]",HS,36.578270849273146,32.71416940010757,1.1181170581440123,5562.797168205738,2019
+2001,50,"(45,50]",College,51.828982402448354,61.984742021256444,0.8361571043511745,4927.635932149335,2019
+2001,50,"(45,50]",College,53.31889824024484,61.984742021256444,0.86019392033543,4956.657581138893,2019
+2001,50,"(45,50]",College,51.15935730680948,61.984742021256444,0.8253540409874641,4880.05499988674,2019
+2001,50,"(45,50]",College,53.01756694720734,61.984742021256444,0.8553325418217602,4911.753079355646,2019
+2001,50,"(45,50]",College,51.9796480489671,61.984742021256444,0.8385877936080093,4934.81735342146,2019
+2001,58,"(55,60]",HS,57.252945677123186,51.653951684380374,1.1083943011166733,5248.488823475351,2019
+2001,58,"(55,60]",HS,52.06335118592196,51.653951684380374,1.0079258118341676,5374.159990371171,2019
+2001,58,"(55,60]",HS,50.891507268553944,51.653951684380374,0.9852393787703762,5280.4226769783145,2019
+2001,58,"(55,60]",HS,51.05891354246366,51.653951684380374,0.9884802977794891,5340.194187609164,2019
+2001,58,"(55,60]",HS,55.57888293802601,51.653951684380374,1.0759851110255423,5285.430541452921,2019
+2001,27,"(25,30]",HS,41.63394032134659,103.30790336876075,0.4030082787832114,6728.592359035941,2019
+2001,27,"(25,30]",HS,45.01554705432288,103.30790336876075,0.43574156077525356,6746.2852456641895,2019
+2001,27,"(25,30]",HS,45.13273144605968,103.30790336876075,0.4368758824284431,6804.503041753688,2019
+2001,27,"(25,30]",HS,46.50546289211936,103.30790336876075,0.45016365036580674,6701.88862758216,2019
+2001,27,"(25,30]",HS,50.640397857689365,103.30790336876075,0.4901890001283532,6741.755541204766,2019
+2001,53,"(50,55]",College,1197.2896710022953,275.48774231669535,4.3460723912206385,7310.857708102664,2019
+2001,53,"(50,55]",College,1197.2896710022953,275.48774231669535,4.3460723912206385,6642.944100657996,2019
+2001,53,"(50,55]",College,1197.2896710022953,275.48774231669535,4.3460723912206385,6201.373106852877,2019
+2001,53,"(50,55]",College,1198.9637337413926,275.48774231669535,4.352149114362726,6952.653027862876,2019
+2001,53,"(50,55]",College,1197.2896710022953,275.48774231669535,4.3460723912206385,6668.67305121385,2019
+2001,58,"(55,60]",HS,646.958286151492,189.39782284272803,3.41586970980502,5772.490553689557,2019
+2001,58,"(55,60]",HS,801.4575363427698,189.39782284272803,4.231609024398782,5715.651691826341,2019
+2001,58,"(55,60]",HS,661.2547819433818,189.39782284272803,3.4913536598172716,5494.6365283331825,2019
+2001,58,"(55,60]",HS,643.0577199693955,189.39782284272803,3.39527514264711,5697.33524597565,2019
+2001,58,"(55,60]",HS,646.5732517214997,189.39782284272803,3.4138367696993037,6010.712007022253,2019
+2001,78,"(75,80]",HS,51347.01973986228,1222.4768565303355,42.00244729834533,23.01708660149429,2019
+2001,78,"(75,80]",HS,51347.01973986228,1222.4768565303355,42.00244729834533,22.49026593011436,2019
+2001,78,"(75,80]",HS,51219.79097169089,1222.4768565303355,41.89837271608085,23.279331977239398,2019
+2001,78,"(75,80]",HS,51345.34567712318,1222.4768565303355,42.00107789594711,24.119640096465332,2019
+2001,78,"(75,80]",HS,51343.67161438409,1222.4768565303355,41.9997084935489,23.151128605760825,2019
+2001,39,"(35,40]",HS,16.23840856924254,137.74387115834767,0.11788842895648825,7143.883626320696,2019
+2001,39,"(35,40]",HS,12.890283091048202,137.74387115834767,0.09358153638814015,7360.100233326753,2019
+2001,39,"(35,40]",HS,14.56434583014537,137.74387115834767,0.1057349826723142,7440.299723426814,2019
+2001,39,"(35,40]",HS,14.56434583014537,137.74387115834767,0.1057349826723142,7279.052124538485,2019
+2001,39,"(35,40]",HS,14.56434583014537,137.74387115834767,0.1057349826723142,7328.957709241644,2019
+2001,41,"(40,45]",College,11996.333588370315,1293.0705904989888,9.277400380547666,184.93501837162862,2019
+2001,41,"(40,45]",College,11910.956388676359,1281.0180017726334,9.298039818483693,182.1910018669292,2019
+2001,41,"(40,45]",College,11768.6610558531,1546.1749537524524,7.61146791783907,187.5846359142148,2019
+2001,41,"(40,45]",College,11765.312930374905,1263.80001787784,9.309473622362418,183.42498355210063,2019
+2001,41,"(40,45]",College,11398.693190512624,1310.288574393782,8.699376162832177,184.4947035631073,2019
+2001,74,"(70,75]",College,2472.6408875286916,118.80408887407486,20.812759147957788,1584.4779976390303,2019
+2001,74,"(70,75]",College,2766.7234889058914,161.84904861105852,17.094468658599528,1562.6209737129482,2019
+2001,74,"(70,75]",College,2831.8445294567714,125.69128243199225,22.53015861294117,1674.9220199103431,2019
+2001,74,"(70,75]",College,2894.9566947207345,98.14250820032271,29.497480223469726,1598.9070289026806,2019
+2001,74,"(70,75]",College,2534.363580719204,136.02207276886833,18.632002359099836,1604.0682644355156,2019
+2001,40,"(35,40]",College,2119.363427697016,688.7193557917383,3.0772525991528688,9223.146732002675,2019
+2001,40,"(35,40]",College,2002.8486610558532,688.7193557917383,2.908076626877166,8952.26418251111,2019
+2001,40,"(35,40]",College,2171.928997704667,688.7193557917383,3.1535762418174813,9658.0002538738,2019
+2001,40,"(35,40]",College,1986.2754399387911,688.7193557917383,2.8840128032345014,9167.675614179785,2019
+2001,40,"(35,40]",College,2180.1319051262435,688.7193557917383,3.1654866191759727,9143.154961935485,2019
+2001,49,"(45,50]",College,22137.805661820963,1556.5057440893288,14.222758731143148,172.02463374934786,2019
+2001,49,"(45,50]",College,20931.643458301456,1095.0637757088641,19.11454284454971,161.037107519999,2019
+2001,49,"(45,50]",College,20461.566641162968,1639.1520667843372,12.483019151056649,172.1157236483978,2019
+2001,49,"(45,50]",College,20212.46610558531,1599.5507038263122,12.636339727921554,169.53909477072477,2019
+2001,49,"(45,50]",College,21984.628921193573,1683.9188249108001,13.055634627968562,163.31319795449969,2019
+2001,42,"(40,45]",College,2959.240703902066,89.53351625292598,33.05176461005302,2363.748703765542,2019
+2001,42,"(40,45]",College,2750.920336648814,160.12725022157917,17.179588938435995,2403.3193477199065,2019
+2001,42,"(40,45]",College,2812.6262892119357,136.02207276886833,20.67771966680152,3029.080243792871,2019
+2001,42,"(40,45]",College,2797.8610558530986,151.51825827418244,18.4655043406728,2481.212621273884,2019
+2001,42,"(40,45]",College,2977.8228003060444,137.74387115834767,21.618550250288795,2549.525686829833,2019
+2001,24,"(20,25]",HS,3.682938026013772,51.653951684380374,0.07130021820048775,6967.299757848271,2019
+2001,24,"(20,25]",HS,3.850344299923489,51.653951684380374,0.07454113720960082,6992.899828464486,2019
+2001,24,"(20,25]",HS,3.682938026013772,51.653951684380374,0.07130021820048775,6869.886630221134,2019
+2001,24,"(20,25]",HS,3.682938026013772,51.653951684380374,0.07130021820048775,6882.855527451934,2019
+2001,24,"(20,25]",HS,3.850344299923489,51.653951684380374,0.07454113720960082,6956.0286702964995,2019
+2001,31,"(30,35]",HS,100.9459831675593,46.488556515942335,2.171415736105763,5734.900849432996,2019
+2001,31,"(30,35]",HS,88.70858454475899,46.488556515942335,1.9081810921433564,5751.058303849227,2019
+2001,31,"(30,35]",HS,106.28624330527927,46.488556515942335,2.286288309873216,5753.700312607087,2019
+2001,31,"(30,35]",HS,109.68459066564652,46.488556515942335,2.3593890386343217,5756.198020464095,2019
+2001,31,"(30,35]",HS,111.09080336648815,46.488556515942335,2.3896376160527106,5738.97902841753,2019
+2001,47,"(45,50]",College,14278.081101759757,1549.6185505314113,9.213932742908485,489.7562672020599,2019
+2001,47,"(45,50]",College,14276.407039020658,1549.6185505314113,9.212852436572113,490.32562600650664,2019
+2001,47,"(45,50]",College,14278.081101759757,1549.6185505314113,9.213932742908485,500.62144852941356,2019
+2001,47,"(45,50]",College,14278.081101759757,1549.6185505314113,9.213932742908485,492.05647228813297,2019
+2001,47,"(45,50]",College,14278.081101759757,1549.6185505314113,9.213932742908485,497.4946081257732,2019
+2001,40,"(35,40]",College,1517.571354246366,220.39019385335627,6.8858388284559116,6067.311383624605,2019
+2001,40,"(35,40]",College,1294.3183473603672,220.39019385335627,5.8728490806700036,5519.003446138091,2019
+2001,40,"(35,40]",College,1369.0652486610559,220.39019385335627,6.2120061910377355,5159.210810152348,2019
+2001,40,"(35,40]",College,1276.3221729150728,220.39019385335627,5.79119311344821,5769.709418277109,2019
+2001,40,"(35,40]",College,1362.0844070390208,220.39019385335627,6.1803312716596075,5547.213088266258,2019
+2001,32,"(30,35]",College,1.8498393267023718,120.5258872635542,0.015348066450299798,6030.910732369658,2019
+2001,32,"(30,35]",College,2.0256159143075747,120.5258872635542,0.016806480004400683,6041.016681354076,2019
+2001,32,"(30,35]",College,2.017245600612089,120.5258872635542,0.01673703173991969,6062.149402327362,2019
+2001,32,"(30,35]",College,2.017245600612089,122.24768565303354,0.01650129889851237,6093.22794296553,2019
+2001,32,"(30,35]",College,1.8582096403978576,120.5258872635542,0.015417514714780792,6045.8760138249145,2019
+2001,64,"(60,65]",HS,85.12609028309105,10.330790336876074,8.240036580670004,7435.548657394624,2019
+2001,64,"(60,65]",HS,86.80015302218821,10.330790336876074,8.402082531125657,7878.064723851319,2019
+2001,64,"(60,65]",HS,103.54078041315991,10.330790336876074,10.022542035682198,7903.242150549796,2019
+2001,64,"(60,65]",HS,93.4964039785769,10.330790336876074,9.050266332948274,7653.469762552978,2019
+2001,64,"(60,65]",HS,113.58515684774292,10.330790336876074,10.994817738416122,7779.012115492509,2019
+2001,54,"(50,55]",HS,758.183014537108,142.9092663267857,5.305345370701134,1121.8860339548692,2019
+2001,54,"(50,55]",HS,754.8348890589136,142.9092663267857,5.281917040514774,1113.5753115413188,2019
+2001,54,"(50,55]",HS,771.9103289977047,142.9092663267857,5.401401524465208,1070.4657039159174,2019
+2001,54,"(50,55]",HS,764.5444529456771,142.9092663267857,5.349859198055216,1112.977659258073,2019
+2001,54,"(50,55]",HS,791.781453710788,142.9092663267857,5.540448664121251,1173.935430970898,2019
+2001,55,"(50,55]",College,6824.6515684774295,397.73542796972885,17.158772109677003,3687.287979209405,2019
+2001,55,"(50,55]",College,3819.2067329762817,182.51062928481065,20.925941398275224,3633.9889219487354,2019
+2001,55,"(50,55]",College,4705.874062739098,721.433525191846,6.522948959833404,3732.726985571312,2019
+2001,55,"(50,55]",College,2443.7967865340474,113.63869370563681,21.504970770469424,2272.7414556824515,2019
+2001,55,"(50,55]",College,4928.390482019893,110.19509692667813,44.72422657152484,3597.716146931495,2019
+2001,44,"(40,45]",College,27596.92425401683,6887.193557917384,4.006991239892183,15.155099998285817,2019
+2001,44,"(40,45]",College,134226.35042081104,3374.7248433795176,39.774013186329604,15.874372334474874,2019
+2001,44,"(40,45]",College,6480.296863045141,6938.847509601764,0.9339154454796572,15.582951566412515,2019
+2001,44,"(40,45]",College,13648.63351185922,8161.3243661321,1.6723552329936031,15.197423224631342,2019
+2001,44,"(40,45]",College,26944.03978576894,3443.596778958692,7.824388717751251,15.447116105933294,2019
+2001,52,"(50,55]",HS,23.102065799540934,30.992371010628222,0.7454113720960083,4407.494812252268,2019
+2001,52,"(50,55]",HS,23.102065799540934,30.992371010628222,0.7454113720960083,4426.649741075422,2019
+2001,52,"(50,55]",HS,23.102065799540934,30.992371010628222,0.7454113720960083,4417.783246758549,2019
+2001,52,"(50,55]",HS,23.102065799540934,30.992371010628222,0.7454113720960083,4385.534884972643,2019
+2001,52,"(50,55]",HS,23.102065799540934,30.992371010628222,0.7454113720960083,4423.157542809664,2019
+2001,66,"(65,70]",College,175.77658760520274,86.08991947396729,2.0417789757412397,5727.368355880304,2019
+2001,66,"(65,70]",College,150.66564651874523,82.64632269500859,1.8230169426261074,5806.543757146062,2019
+2001,66,"(65,70]",College,221.8133129303749,79.20272591604991,2.800576752440106,5933.545186164376,2019
+2001,66,"(65,70]",College,134.76205049732212,82.64632269500859,1.6305873764600183,5712.070056238374,2019
+2001,66,"(65,70]",College,140.11905126243306,86.08991947396729,1.6275895263765885,5804.317874262537,2019
+2001,67,"(65,70]",College,3693.2335118592196,215.22479868491826,17.159888332691565,1617.262458972047,2019
+2001,67,"(65,70]",College,3692.999143075746,215.22479868491826,17.1587993839045,1631.309521752739,2019
+2001,67,"(65,70]",College,3693.0661055853097,215.22479868491826,17.159110512129377,1631.3945271286193,2019
+2001,67,"(65,70]",College,3692.831736801836,215.22479868491826,17.158021563342313,1633.9183445242784,2019
+2001,67,"(65,70]",College,3699.6786534047437,215.22479868491826,17.18983442433577,1616.674301349702,2019
+2001,30,"(25,30]",HS,6.52884468247896,48.21035490542169,0.13542411573793936,8145.1030269090015,2019
+2001,30,"(25,30]",HS,9.542157612853863,48.21035490542169,0.19792755377083443,8433.116376798649,2019
+2001,30,"(25,30]",HS,6.194032134659525,48.21035490542169,0.1284792892898399,8263.454294828443,2019
+2001,30,"(25,30]",HS,8.202907421576128,48.21035490542169,0.17014824797843664,8239.75700507673,2019
+2001,30,"(25,30]",HS,5.8592195868400925,48.21035490542169,0.12153446284174046,8034.560174557269,2019
+2001,74,"(70,75]",NoHS,131.7487375669472,34.43596778958692,3.8259048902579895,8117.0815909211715,2019
+2001,74,"(70,75]",NoHS,131.24651874521805,36.157766179066265,3.6298292902066485,9044.868066584952,2019
+2001,74,"(70,75]",NoHS,131.5813312930375,34.43596778958692,3.82104351174432,8935.535542179603,2019
+2001,74,"(70,75]",NoHS,134.25983167559295,36.157766179066265,3.7131672075838416,8554.43195953974,2019
+2001,74,"(70,75]",NoHS,127.22876817138486,34.43596778958692,3.6946476703889104,8834.385991362271,2019
+2001,79,"(75,80]",HS,4.35256312165264,15.66836534426205,0.2777930579239782,5800.06010478251,2019
+2001,79,"(75,80]",HS,4.185156847742923,15.66836534426205,0.2671087095422867,5794.370722493071,2019
+2001,79,"(75,80]",HS,4.35256312165264,15.66836534426205,0.2777930579239782,5820.485398404805,2019
+2001,79,"(75,80]",HS,4.35256312165264,15.840545183209981,0.274773568163935,5839.437521405816,2019
+2001,79,"(75,80]",HS,4.35256312165264,15.840545183209981,0.274773568163935,5837.279171674349,2019
+2001,30,"(25,30]",College,231.8576893649579,129.1348792109509,1.7954691310486461,7100.890008058812,2019
+2001,30,"(25,30]",College,231.8576893649579,129.1348792109509,1.7954691310486461,7193.032408426526,2019
+2001,30,"(25,30]",College,231.8576893649579,129.1348792109509,1.7954691310486461,7250.45340827252,2019
+2001,30,"(25,30]",College,230.18362662586077,129.1348792109509,1.782505455012194,7097.601665763517,2019
+2001,30,"(25,30]",College,230.35103289977047,129.1348792109509,1.7838018226158392,7185.61291577847,2019
+2001,48,"(45,50]",College,87900.93297628156,10261.918401296904,8.565740784410508,14.608140502550564,2019
+2001,48,"(45,50]",College,83258.80722264729,12500.256307620051,6.660568005465089,15.874372334474874,2019
+2001,48,"(45,50]",College,69584.09181331293,12603.564210988812,5.520985226753862,15.508857024996303,2019
+2001,48,"(45,50]",College,70191.92725325172,12655.218162673193,5.546481012890331,15.245517375064313,2019
+2001,48,"(45,50]",College,62700.98197398623,8763.953802449869,7.154417217085152,16.088342421621903,2019
+2001,43,"(40,45]",College,2179.2111706197397,223.83379063231493,9.73584535410681,998.3564365972254,2019
+2001,43,"(40,45]",College,1279.000673297628,278.93133909565404,4.585360244726821,510.19395796215605,2019
+2001,43,"(40,45]",College,1484.4918745218058,327.1416940010757,4.537764221875444,480.45627413085595,2019
+2001,43,"(40,45]",College,1855.6667390971693,313.3673068852409,5.921698589242872,1013.079056498995,2019
+2001,43,"(40,45]",College,1362.3020351951034,428.7277989803571,3.1775453759589767,539.656837068058,2019
+2001,48,"(45,50]",HS,0,11.536049209511617,0,5245.916785099795,2019
+2001,48,"(45,50]",HS,0,11.536049209511617,0,5228.3653000992035,2019
+2001,48,"(45,50]",HS,0,11.536049209511617,0,5229.932173583528,2019
+2001,48,"(45,50]",HS,0,11.536049209511617,0,5209.772265817055,2019
+2001,48,"(45,50]",HS,-0.008370313695485847,11.536049209511617,-7.255788826372566e-4,5258.695983208703,2019
+2001,39,"(35,40]",HS,0,41.323161347504296,0,6907.4065076579955,2019
+2001,39,"(35,40]",HS,0,41.323161347504296,0,6908.180548187653,2019
+2001,39,"(35,40]",HS,0,41.323161347504296,0,6929.747584013523,2019
+2001,39,"(35,40]",HS,0,41.323161347504296,0,6897.819601928213,2019
+2001,39,"(35,40]",HS,0,41.323161347504296,0,6920.592202586717,2019
+2001,74,"(70,75]",HS,137.6246977811783,25.826975842190187,5.328719034783726,9730.720365491854,2019
+2001,74,"(70,75]",HS,243.3585003825555,25.826975842190187,9.422647927095367,10830.60196353552,2019
+2001,74,"(70,75]",HS,112.33128385615915,25.826975842190187,4.349378128609935,10889.20505666656,2019
+2001,74,"(70,75]",HS,297.1461361897475,25.826975842190187,11.50526248235143,10322.644477495936,2019
+2001,74,"(70,75]",HS,155.01820964039786,25.826975842190187,6.002182004877422,10609.357008703497,2019
+2001,44,"(40,45]",College,4257.141545524101,473.4945571068201,8.99089858928134,1585.5663381177437,2019
+2001,44,"(40,45]",College,4257.141545524101,473.4945571068201,8.99089858928134,1593.9842603679276,2019
+2001,44,"(40,45]",College,4257.141545524101,473.4945571068201,8.99089858928134,1641.796660657617,2019
+2001,44,"(40,45]",College,4257.141545524101,473.4945571068201,8.99089858928134,1572.467797964301,2019
+2001,44,"(40,45]",College,4257.141545524101,473.4945571068201,8.99089858928134,1561.216336952117,2019
+2001,37,"(35,40]",HS,57.252945677123186,110.19509692667813,0.5195598286484405,6997.493257522961,2019
+2001,37,"(35,40]",HS,57.252945677123186,110.19509692667813,0.5195598286484405,7257.191072412296,2019
+2001,37,"(35,40]",HS,48.88263198163734,110.19509692667813,0.4436007893723527,7325.0210177770205,2019
+2001,37,"(35,40]",HS,70.64544758990054,110.19509692667813,0.641094291490181,7107.129745632857,2019
+2001,37,"(35,40]",HS,60.60107115531752,110.19509692667813,0.5499434443588757,7270.153146837962,2019
+2001,23,"(20,25]",HS,0.06696250956388677,27.548774231669533,0.0024306892568348097,6759.384349682111,2019
+2001,23,"(20,25]",HS,0.06696250956388677,77.48092752657055,8.642450690968213e-4,6849.269208782748,2019
+2001,23,"(20,25]",HS,0.06696250956388677,70.59373396865318,9.485616612038281e-4,7148.330505377815,2019
+2001,23,"(20,25]",HS,0.06696250956388677,77.48092752657055,8.642450690968213e-4,6933.674452318536,2019
+2001,23,"(20,25]",HS,0.06696250956388677,77.48092752657055,8.642450690968213e-4,6750.166948047283,2019
+2001,52,"(50,55]",NoHS,188.03072685539402,129.1348792109509,1.4560800924143245,6876.438485119147,2019
+2001,52,"(50,55]",NoHS,224.32440703902066,129.1348792109509,1.7371325888846108,7241.550761462565,2019
+2001,52,"(50,55]",NoHS,201.18885998469779,129.1348792109509,1.5579745860608398,7269.758573236982,2019
+2001,52,"(50,55]",NoHS,190.50833970925785,129.1348792109509,1.475266332948274,7028.881258900731,2019
+2001,52,"(50,55]",NoHS,202.02589135424637,129.1348792109509,1.564456424079066,7168.148921198199,2019
+2001,29,"(25,30]",HS,-8.504238714613619,61.984742021256444,-0.13719890471912036,5414.473271279698,2019
+2001,29,"(25,30]",HS,-8.504238714613619,61.984742021256444,-0.13719890471912036,5388.53775732976,2019
+2001,29,"(25,30]",HS,-6.813435348125479,61.984742021256444,-0.10992116972575196,5303.172686162912,2019
+2001,29,"(25,30]",HS,-6.813435348125479,63.706540410735805,-0.1069503273007316,5395.736111362706,2019
+2001,29,"(25,30]",HS,-8.504238714613619,63.706540410735805,-0.13349082621319816,5375.451586973995,2019
+2001,32,"(30,35]",HS,-15.23397092578424,20.661580673752148,-0.7373090745732256,4347.411315962394,2019
+2001,32,"(30,35]",HS,-15.23397092578424,20.661580673752148,-0.7373090745732256,4369.700258424081,2019
+2001,32,"(30,35]",HS,-15.23397092578424,20.661580673752148,-0.7373090745732256,4382.24271497275,2019
+2001,32,"(30,35]",HS,-15.23397092578424,22.383379063231494,-0.6805929919137467,4376.275257988401,2019
+2001,32,"(30,35]",HS,-15.23397092578424,22.383379063231494,-0.6805929919137467,4348.702931604725,2019
+2001,52,"(50,55]",College,10097.51118592196,4872.689442226549,2.072266518448169,13.320738771092886,2019
+2001,52,"(50,55]",College,14460.386534047437,4287.2779898035715,3.372859555279261,12.998412833584856,2019
+2001,52,"(50,55]",College,18089.135149196634,1379.160509972956,13.1160477829744,13.694486302358774,2019
+2001,52,"(50,55]",College,5228.097934200459,1859.5422606376933,2.8114972404055965,13.391308383673046,2019
+2001,52,"(50,55]",College,7064.444315225707,3495.2507306430716,2.0211552359581253,12.899301421829723,2019
+2001,28,"(25,30]",HS,14.44716143840857,25.826975842190187,0.5593826209729175,9667.721293797398,2019
+2001,28,"(25,30]",HS,14.949380260137719,25.826975842190187,0.5788281350275959,9693.142643119434,2019
+2001,28,"(25,30]",HS,14.246273909716908,25.826975842190187,0.5516044153510461,9776.790662928004,2019
+2001,28,"(25,30]",HS,13.074429992348891,25.826975842190187,0.506231549223463,9629.353055773156,2019
+2001,28,"(25,30]",HS,14.279755164498853,25.826975842190187,0.5529007829546914,9686.634310035744,2019
+2001,59,"(55,60]",College,113833.25294567712,10537.406143613596,10.802777400268283,45.173435275854125,2019
+2001,59,"(55,60]",College,114372.97077276204,10537.406143613596,10.85399663009858,49.19646794481896,2019
+2001,59,"(55,60]",College,116745.11767406274,10537.406143613596,11.079113406368837,48.0083713195233,2019
+2001,59,"(55,60]",College,115033.72333588371,10537.406143613596,10.916702058181764,47.17180535841821,2019
+2001,59,"(55,60]",College,108874.84651874521,10537.406143613596,10.332224556489262,49.828386355754084,2019
+2001,24,"(20,25]",College,39.9766182096404,56.819346852818406,0.7035740539783667,8398.23917141751,2019
+2001,24,"(20,25]",College,42.65511859219587,55.097548463339066,0.7741745283018868,8405.200278470697,2019
+2001,24,"(20,25]",College,42.9899311400153,55.097548463339066,0.7802512514439738,8468.095874496546,2019
+2001,24,"(20,25]",College,40.31143075745984,55.097548463339066,0.7316374663072778,8263.138828115678,2019
+2001,24,"(20,25]",College,40.31143075745984,55.097548463339066,0.7316374663072778,8378.627794691203,2019
+2001,47,"(45,50]",HS,-1.9921346595256313,9.297711303188466,-0.21426075671358694,3278.6756046121563,2019
+2001,47,"(45,50]",HS,-1.9921346595256313,22.383379063231494,-0.08900062201948995,3357.5219218468337,2019
+2001,47,"(45,50]",College,-1.9921346595256313,20.661580673752148,-0.09641734052111411,3393.553130650105,2019
+2001,47,"(45,50]",HS,-1.9921346595256313,29.27057262114888,-0.06805929919137467,3311.00429118527,2019
+2001,47,"(45,50]",HS,-1.9921346595256313,13.257847598990962,-0.1502607904225155,3307.871720456974,2019
+2001,82,"(80,85]",College,103927.48890589135,6026.294363177711,17.24567082897849,14.608140502550564,2019
+2001,82,"(80,85]",College,112585.7413925019,6869.975574022589,16.388084670667812,15.874372334474874,2019
+2001,82,"(80,85]",College,109818.51568477429,6198.474202125645,17.71702391648483,15.508857024996303,2019
+2001,82,"(80,85]",College,90715.7857689365,6422.307992757959,14.125106717278447,15.245517375064313,2019
+2001,82,"(80,85]",College,95075.04514154552,4407.8038770671255,21.569708588034267,16.088342421621903,2019
+2001,27,"(25,30]",NoHS,-160.82720734506503,56.819346852818406,-2.830500810959032,4818.683496723124,2019
+2001,27,"(25,30]",NoHS,-160.6765416985463,55.097548463339066,-2.9162194358875624,4805.023825196032,2019
+2001,27,"(25,30]",NoHS,-160.6765416985463,55.097548463339066,-2.9162194358875624,4811.4287914330025,2019
+2001,27,"(25,30]",NoHS,-160.843947972456,55.097548463339066,-2.919257797458606,4838.634931178701,2019
+2001,27,"(25,30]",NoHS,-160.6765416985463,55.097548463339066,-2.9162194358875624,4798.37022177531,2019
+2001,46,"(45,50]",HS,444.3297322111706,189.39782284272803,2.3460128819967094,1121.8860339548692,2019
+2001,46,"(45,50]",HS,442.65566947207344,189.39782284272803,2.3371740119718556,1113.5753115413188,2019
+2001,46,"(45,50]",HS,460.90295332823257,189.39782284272803,2.4335176952427626,1070.4657039159174,2019
+2001,46,"(45,50]",HS,432.61129303749044,189.39782284272803,2.2841407918227326,1112.977659258073,2019
+2001,46,"(45,50]",HS,452.53263963274674,189.39782284272803,2.3893233451184934,1173.935430970898,2019
+2001,50,"(45,50]",HS,518.7920428462127,115.36049209511619,4.497137914585715,6358.091410130938,2019
+2001,50,"(45,50]",HS,480.28859984697783,340.91608111691045,1.4088176722947614,6473.379015965584,2019
+2001,50,"(45,50]",HS,573.1990818668708,99.86430658980206,5.739779320967164,5389.959518743285,2019
+2001,50,"(45,50]",HS,593.6561285386381,201.45041156908349,2.9469094846453334,6044.595369710141,2019
+2001,50,"(45,50]",HS,476.48847742922726,275.48774231669535,1.7296177079322295,6410.072996299601,2019
+2001,84,"(80,85]",HS,547.4185156847743,111.91689531615746,4.8912946891383555,58.43456366694896,2019
+2001,84,"(80,85]",HS,547.4185156847743,111.91689531615746,4.8912946891383555,63.131086263055124,2019
+2001,84,"(80,85]",HS,547.4185156847743,111.91689531615746,4.8912946891383555,61.196083935937,2019
+2001,84,"(80,85]",HS,547.4185156847743,111.91689531615746,4.8912946891383555,60.73795508869479,2019
+2001,84,"(80,85]",HS,547.4185156847743,110.19509692667813,4.9677211686561416,59.76382505904934,2019
+2001,45,"(40,45]",HS,80.68982402448354,37.87956456854561,2.130167675989778,5829.893725232088,2019
+2001,45,"(40,45]",HS,78.84835501147667,37.87956456854561,2.0815538908530824,6076.72951296884,2019
+2001,45,"(40,45]",HS,78.86509563886764,37.87956456854561,2.081995834354325,6104.314178580002,2019
+2001,45,"(40,45]",HS,78.84835501147667,37.87956456854561,2.0815538908530824,5938.235736250411,2019
+2001,45,"(40,45]",HS,79.01576128538639,37.87956456854561,2.0859733258655093,6017.302503194793,2019
+2001,50,"(45,50]",College,1684.6093343534812,172.17983894793457,9.784010396611475,7094.159181258813,2019
+2001,50,"(45,50]",College,1793.4234123947972,172.17983894793457,10.415989603388525,3188.1031117721623,2019
+2001,50,"(45,50]",College,1491.9247130833971,172.17983894793457,8.66492106276473,6015.1571782679075,2019
+2001,50,"(45,50]",College,1669.5427697016069,172.17983894793457,9.696505583365424,6743.316511653196,2019
+2001,50,"(45,50]",College,1430.1517980107117,172.17983894793457,8.306151328455911,6472.473795769687,2019
+2001,50,"(45,50]",College,36315.27559296098,1652.926453900172,21.970291241496597,153.03836391983182,2019
+2001,50,"(45,50]",College,32270.74001530222,1652.926453900172,19.523397389616225,143.43288068889962,2019
+2001,50,"(45,50]",College,35966.90313695486,1652.926453900172,21.759530227185216,150.8471093875498,2019
+2001,50,"(45,50]",College,32362.813465952564,1652.926453900172,19.579100685085354,156.92252339769675,2019
+2001,50,"(45,50]",College,37095.38882938026,1652.926453900172,22.44225007219869,150.97655629770856,2019
+2001,32,"(30,35]",HS,-12.38806426931905,74.03733074761188,-0.16732186512165198,5327.073248514632,2019
+2001,32,"(30,35]",HS,-12.38806426931905,74.03733074761188,-0.16732186512165198,5335.999782644345,2019
+2001,32,"(30,35]",HS,-12.38806426931905,74.03733074761188,-0.16732186512165198,5354.666209252334,2019
+2001,32,"(30,35]",HS,-12.555470543228768,74.03733074761188,-0.1695829714070797,5382.1177285639815,2019
+2001,32,"(30,35]",HS,-12.555470543228768,74.03733074761188,-0.1695829714070797,5340.2920066814395,2019
+2001,47,"(45,50]",College,70623.85218056617,2031.722099585628,34.760586693903655,232.6198827127451,2019
+2001,47,"(45,50]",College,70622.84774292272,2031.722099585628,34.76009231642769,205.7612511507222,2019
+2001,47,"(45,50]",College,70624.52180566183,2031.722099585628,34.76091627888764,211.399025465056,2019
+2001,47,"(45,50]",College,70625.35883703137,2031.722099585628,34.76132826011761,238.02261183877985,2019
+2001,47,"(45,50]",College,70621.50849273146,2031.722099585628,34.75943314645974,216.14594743840863,2019
+2001,20,"(15,20]",HS,3.348125478194338,25.826975842190187,0.12963676036452315,6892.854969884016,2019
+2001,20,"(15,20]",HS,3.1807192042846215,25.826975842190187,0.12315492234629702,6892.005591472027,2019
+2001,20,"(15,20]",HS,3.1807192042846215,25.826975842190187,0.12315492234629702,6908.252600579309,2019
+2001,20,"(15,20]",HS,3.1807192042846215,25.826975842190187,0.12315492234629702,6879.351304528909,2019
+2001,20,"(15,20]",HS,3.1807192042846215,25.826975842190187,0.12315492234629702,6880.363034426962,2019
+2001,69,"(65,70]",College,5821.887987758225,251.3825648639845,23.159474050669633,3254.2010593292825,2019
+2001,69,"(65,70]",College,4770.241775057383,423.56240381191907,11.262193556667949,3259.8372077980703,2019
+2001,69,"(65,70]",College,4762.875899005356,251.3825648639845,18.946723300330728,3275.3970364209385,2019
+2001,69,"(65,70]",College,5677.014598316756,383.96104085389413,14.785392251494049,3252.228847173108,2019
+2001,69,"(65,70]",College,6189.512165263963,695.6065493496558,8.898007316133999,3237.745490472736,2019
+2001,76,"(75,80]",HS,1708.2471002295333,48.21035490542169,35.43319902084823,11278.96182332654,2019
+2001,76,"(75,80]",HS,1708.2638408569242,48.21035490542169,35.43354626217063,11042.086600875853,2019
+2001,76,"(75,80]",HS,1708.0964345830146,48.21035490542169,35.430073848946584,10408.773231555759,2019
+2001,76,"(75,80]",HS,1708.0964345830146,48.21035490542169,35.430073848946584,11161.037161086704,2019
+2001,76,"(75,80]",HS,1708.0964345830146,48.21035490542169,35.430073848946584,11386.752961154238,2019
+2001,49,"(45,50]",HS,14.380198928844683,84.36812108448795,0.1704458833976409,5970.248000691546,2019
+2001,49,"(45,50]",HS,14.329977046671768,82.64632269500859,0.17338916698754975,6146.135864597994,2019
+2001,49,"(45,50]",HS,14.145830145371079,82.64632269500859,0.1711610351687845,6412.588655995145,2019
+2001,49,"(45,50]",HS,14.413680183626626,84.36812108448795,0.1708427306232466,6201.400839506069,2019
+2001,49,"(45,50]",HS,14.095608263198164,84.36812108448795,0.1670726819799926,6049.499617184228,2019
+2001,47,"(45,50]",College,2285.597857689365,141.18746793730637,16.18839045051983,369.0042893592059,2019
+2001,47,"(45,50]",College,2034.6558530986995,141.18746793730637,14.411023037839158,374.03656180181457,2019
+2001,47,"(45,50]",College,1783.579923488906,141.18746793730637,12.63270706349728,397.32555082383453,2019
+2001,47,"(45,50]",College,2034.7060749808722,141.18746793730637,14.411378748462107,379.7055540405353,2019
+2001,47,"(45,50]",College,2034.7060749808722,141.18746793730637,14.411378748462107,383.6848644082115,2019
+2001,47,"(45,50]",College,19750.592195868405,1119.1689531615748,17.647551909007436,15.272420679401336,2019
+2001,47,"(45,50]",College,19750.592195868405,1119.1689531615748,17.647551909007436,15.345875101421958,2019
+2001,47,"(45,50]",College,19750.592195868405,1119.1689531615748,17.647551909007436,15.582951566412515,2019
+2001,47,"(45,50]",College,19750.592195868405,1119.1689531615748,17.647551909007436,15.197423224631342,2019
+2001,47,"(45,50]",College,19750.592195868405,1119.1689531615748,17.647551909007436,15.011662603019342,2019
+2001,55,"(50,55]",College,2540.390206579954,327.1416940010757,7.765412520519628,8268.711931508778,2019
+2001,55,"(50,55]",College,2540.390206579954,327.1416940010757,7.765412520519628,8040.857384998252,2019
+2001,55,"(50,55]",College,2540.390206579954,327.1416940010757,7.765412520519628,8673.616855503527,2019
+2001,55,"(50,55]",College,2540.390206579954,327.1416940010757,7.765412520519628,8220.574856814781,2019
+2001,55,"(50,55]",College,2540.390206579954,327.1416940010757,7.765412520519628,8214.20800909197,2019
+2001,74,"(70,75]",College,201120.55822494262,9091.095496450946,22.122807785206707,17.78317985079869,2019
+2001,74,"(70,75]",College,193150.84774292272,9091.095496450946,21.24615760755417,19.364058268294023,2019
+2001,74,"(70,75]",College,223647.08125478192,9091.095496450946,24.600674510799173,18.90030794244316,2019
+2001,74,"(70,75]",College,188432.98739097168,9091.095496450946,20.727203609788685,18.56465708175563,2019
+2001,74,"(70,75]",College,186263.5025248661,9091.095496450946,20.48856516770516,19.6123879178756,2019
+2001,22,"(20,25]",HS,19.586534047436878,41.323161347504296,0.47398440508278783,6176.113853210096,2019
+2001,22,"(20,25]",HS,19.586534047436878,41.323161347504296,0.47398440508278783,6119.243654084534,2019
+2001,22,"(20,25]",HS,19.586534047436878,41.323161347504296,0.47398440508278783,6119.018471901907,2019
+2001,22,"(20,25]",HS,19.586534047436878,41.323161347504296,0.47398440508278783,6102.152817362299,2019
+2001,22,"(20,25]",HS,19.586534047436878,41.323161347504296,0.47398440508278783,6093.371317864889,2019
+2001,49,"(45,50]",College,176486.8924254017,8230.196301711272,21.443825390738915,12.741347796184815,2019
+2001,49,"(45,50]",College,179505.7297628156,8333.504205080035,21.540245897204972,13.446065715628222,2019
+2001,49,"(45,50]",College,185931.4521805662,9728.160900558303,19.11270322121168,13.629371123236291,2019
+2001,49,"(45,50]",College,167985.70050497324,8126.888398342512,20.670358970259038,13.433686857337898,2019
+2001,49,"(45,50]",College,184388.46855394033,9710.942916663511,18.987699766779453,13.82447659277727,2019
+2001,79,"(75,80]",HS,929.3057077276205,61.984742021256444,14.992491336157105,7020.5003749233965,2019
+2001,79,"(75,80]",HS,931.984208110176,61.984742021256444,15.035703589611947,6336.128398506776,2019
+2001,79,"(75,80]",HS,928.468676358072,61.984742021256444,14.97898750695247,5992.331343575737,2019
+2001,79,"(75,80]",HS,927.4642387146137,63.706540410735805,14.558383373747253,6701.170841641366,2019
+2001,79,"(75,80]",HS,927.2968324407038,61.984742021256444,14.960082146065973,6440.173008825658,2019
+2001,52,"(50,55]",College,656.2325937260903,191.1196212322074,3.4336223015468295,5825.91720107474,2019
+2001,52,"(50,55]",College,656.2325937260903,191.1196212322074,3.4336223015468295,5289.814547556782,2019
+2001,52,"(50,55]",College,656.0651874521806,191.1196212322074,3.432746377490312,4938.818247140671,2019
+2001,52,"(50,55]",College,656.2325937260903,189.39782284272803,3.46483704974271,5538.660875780933,2019
+2001,52,"(50,55]",College,656.2325937260903,191.1196212322074,3.4336223015468295,5315.75042162402,2019
+2001,40,"(35,40]",HS,11.048814078041316,70.59373396865318,0.15651267409863162,5275.8388170545495,2019
+2001,40,"(35,40]",HS,19.419127773527162,108.47329853719879,0.1790221928843415,5310.239774559232,2019
+2001,40,"(35,40]",HS,22.398959449120124,91.25531464240532,0.24545375287886606,5256.231137840928,2019
+2001,40,"(35,40]",HS,22.38221882172915,111.91689531615746,0.19998963300850095,5259.324906578163,2019
+2001,40,"(35,40]",HS,19.419127773527162,79.20272591604991,0.24518256851551118,5324.587830588944,2019
+2001,36,"(35,40]",College,326.77704667176744,141.18746793730637,2.3144904533373407,7752.185963587513,2019
+2001,36,"(35,40]",College,321.08523335883706,63.706540410735805,5.040067021199096,7943.713165976769,2019
+2001,36,"(35,40]",College,358.9190512624331,134.30027437938898,2.672511675207093,7780.309077909165,2019
+2001,36,"(35,40]",College,325.2703902065799,61.984742021256444,5.2475880289222605,7744.673165499732,2019
+2001,36,"(35,40]",College,333.4732976281561,44.76675812646299,7.449127691715294,8067.467194483409,2019
+2001,69,"(65,70]",HS,200.72012241775056,80.92452430552926,2.4803373778254776,5819.960177934581,2019
+2001,69,"(65,70]",HS,200.72012241775056,80.92452430552926,2.4803373778254776,5900.415572769731,2019
+2001,69,"(65,70]",HS,200.72012241775056,80.92452430552926,2.4803373778254776,6029.470177520006,2019
+2001,69,"(65,70]",HS,200.72012241775056,80.92452430552926,2.4803373778254776,5804.414557472657,2019
+2001,69,"(65,70]",HS,200.72012241775056,80.92452430552926,2.4803373778254776,5898.153705025608,2019
+2001,42,"(40,45]",College,16.288630451415454,123.96948404251289,0.1313922581611261,4018.3072086286024,2019
+2001,42,"(40,45]",College,12.923764345830145,123.96948404251289,0.10424956145980405,4049.408958957562,2019
+2001,42,"(40,45]",College,14.06212700841622,123.96948404251289,0.11343216531895778,4099.099336511975,2019
+2001,42,"(40,45]",College,16.33885233358837,123.96948404251289,0.13179737303726524,4023.199828946792,2019
+2001,42,"(40,45]",College,13.894720734506503,123.96948404251289,0.11208178239849399,4045.7802697384664,2019
+2001,55,"(50,55]",NoHS,5.189594491201225,12.396948404251289,0.4186187053437728,6364.91296724304,2019
+2001,55,"(50,55]",NoHS,5.189594491201225,12.396948404251289,0.4186187053437728,6402.810542224748,2019
+2001,55,"(50,55]",NoHS,5.022188217291507,12.396948404251289,0.40511487613913494,6355.895038623482,2019
+2001,55,"(50,55]",NoHS,5.189594491201225,12.396948404251289,0.4186187053437728,6388.316193487487,2019
+2001,55,"(50,55]",NoHS,5.189594491201225,12.396948404251289,0.4186187053437728,6385.3376979393215,2019
+2001,68,"(65,70]",College,39742.249426166796,2066.1580673752146,19.23485431908613,32.54014495187054,2019
+2001,68,"(65,70]",College,39742.249426166796,2066.1580673752146,19.23485431908613,32.79658701299551,2019
+2001,68,"(65,70]",College,39738.9013006886,2066.1580673752146,19.233233859581574,32.69089802233964,2019
+2001,68,"(65,70]",College,39740.5753634277,2066.1580673752146,19.23404408933385,33.75568849037757,2019
+2001,68,"(65,70]",College,39738.9013006886,2066.1580673752146,19.233233859581574,33.27193653416163,2019
+2001,59,"(55,60]",College,55239.04820198929,2462.1716969554645,22.43509186231558,18.687378031860785,2019
+2001,59,"(55,60]",College,55237.37413925019,2462.1716969554645,22.434411949236747,18.796529751732592,2019
+2001,59,"(55,60]",College,55324.42540168324,2462.1716969554645,22.469767429336162,18.767460349100556,2019
+2001,59,"(55,60]",College,55324.42540168324,2462.1716969554645,22.469767429336162,19.34512905952876,2019
+2001,59,"(55,60]",College,55240.722264728385,2479.3896808502577,22.279967804731957,19.076149558376407,2019
+2001,27,"(25,30]",HS,40.127283856159146,44.76675812646299,0.8963634074820059,4315.9814914433755,2019
+2001,27,"(25,30]",HS,39.306993114001536,44.76675812646299,0.8780397500074052,4274.357942088026,2019
+2001,27,"(25,30]",HS,38.28581484315226,44.76675812646299,0.8552286662124938,4271.921918179925,2019
+2001,27,"(25,30]",HS,40.96431522570773,43.04495973698364,0.9516634578359646,4293.242151556687,2019
+2001,27,"(25,30]",HS,40.294690130068865,44.76675812646299,0.900102929415598,4287.109594379387,2019
+2001,55,"(50,55]",NoHS,0.5859219586840092,34.43596778958692,0.017014824797843664,4143.161390260908,2019
+2001,55,"(50,55]",NoHS,1.6071002295332824,34.43596778958692,0.04666923373122834,4167.830348070201,2019
+2001,55,"(50,55]",NoHS,0.5859219586840092,34.43596778958692,0.017014824797843664,4137.291281137818,2019
+2001,55,"(50,55]",NoHS,0.6361438408569243,34.43596778958692,0.018473238351944553,4158.395430990539,2019
+2001,55,"(50,55]",NoHS,0.9374751338944147,36.157766179066265,0.02592735207290463,4156.456616144251,2019
+2001,67,"(65,70]",NoHS,158.86855394032136,75.75912913709122,2.0970219133965764,7374.0577058478275,2019
+2001,67,"(65,70]",NoHS,170.33588370313697,27.548774231669533,6.183065797073547,7709.133174446068,2019
+2001,67,"(65,70]",NoHS,246.67314460596785,53.37575007385973,4.621445961220762,8048.252016660158,2019
+2001,67,"(65,70]",NoHS,241.73465952563123,37.87956456854561,6.381664157944481,7467.206217410242,2019
+2001,67,"(65,70]",NoHS,202.8964039785769,41.323161347504296,4.909992298806316,7780.639009039866,2019
+2001,73,"(70,75]",College,5123.469013006886,258.2697584219018,19.83766525478116,1515.59688936874,2019
+2001,73,"(70,75]",College,5123.469013006886,258.2697584219018,19.83766525478116,1512.558604401761,2019
+2001,73,"(70,75]",College,5123.469013006886,258.2697584219018,19.83766525478116,1523.6676454188985,2019
+2001,73,"(70,75]",College,5123.469013006886,258.2697584219018,19.83766525478116,1511.3900477527018,2019
+2001,73,"(70,75]",College,5123.469013006886,258.2697584219018,19.83766525478116,1503.1836352970631,2019
+2001,42,"(40,45]",HS,648.197092578424,129.1348792109509,5.019535361314339,8019.319162770249,2019
+2001,42,"(40,45]",HS,648.197092578424,129.1348792109509,5.019535361314339,7218.650487558921,2019
+2001,42,"(40,45]",HS,648.197092578424,129.1348792109509,5.019535361314339,6523.5488553839095,2019
+2001,42,"(40,45]",HS,648.197092578424,129.1348792109509,5.019535361314339,7453.861876612694,2019
+2001,42,"(40,45]",HS,648.0296863045141,129.1348792109509,5.018238993710693,7328.818273843215,2019
+2001,53,"(50,55]",College,1259.3973986228004,321.97629883263767,3.9114599527632667,8454.472629681995,2019
+2001,53,"(50,55]",College,776.2628921193574,234.16458096919104,3.3150312011597096,7676.489514846215,2019
+2001,53,"(50,55]",College,939.8188217291507,266.8787503692986,3.5215198678375796,7167.129612779596,2019
+2001,53,"(50,55]",College,352.5576128538638,397.73542796972885,0.8864123939210579,8411.59432754481,2019
+2001,53,"(50,55]",College,466.81239479724564,218.6683954638769,2.134795903207517,8523.593513475853,2019
+2001,78,"(75,80]",College,46640.72716143841,1721.798389479346,27.0883788987293,32.54014495187054,2019
+2001,78,"(75,80]",College,45384.6778882938,1721.798389479346,26.358880438968036,32.79658701299551,2019
+2001,78,"(75,80]",College,43292.60168324407,1721.798389479346,25.143827493261455,32.69089802233964,2019
+2001,78,"(75,80]",College,42456.40734506504,1721.798389479346,24.65817577974586,33.75568849037757,2019
+2001,78,"(75,80]",College,43293.606120887525,1721.798389479346,25.14441085868309,33.27193653416163,2019
+2001,60,"(55,60]",College,5654.983932670238,361.5776617906626,15.639749161119976,172.02463374934786,2019
+2001,60,"(55,60]",College,6019.092578423872,223.83379063231493,26.89090222446018,161.037107519999,2019
+2001,60,"(55,60]",College,6995.90818668707,408.066218306605,17.144051315295645,172.1157236483978,2019
+2001,60,"(55,60]",College,4871.522570772762,285.8185326535714,17.044110210576616,169.53909477072477,2019
+2001,60,"(55,60]",College,8737.770466717673,249.6607664745051,34.998572623584245,163.31319795449969,2019
+2001,34,"(30,35]",HS,65.5228156082632,63.706540410735805,1.0285100271623182,3692.314368565739,2019
+2001,34,"(30,35]",HS,65.55629686304513,63.706540410735805,1.0290355815962282,3690.5521445869927,2019
+2001,34,"(30,35]",HS,25.378791124713082,63.706540410735805,0.39837026090395355,3701.7292283002594,2019
+2001,34,"(30,35]",HS,37.063749043611324,63.706540410735805,0.5817887583386234,3696.3483458028786,2019
+2001,34,"(30,35]",HS,68.88768171384851,63.706540410735805,1.0813282477702961,3696.786430697785,2019
+2001,33,"(30,35]",College,5844.153022188218,2892.621294325301,2.0203657608596,1515.59688936874,2019
+2001,33,"(30,35]",College,5889.3527161438415,2875.4033104305076,2.0481831869568525,1512.558604401761,2019
+2001,33,"(30,35]",College,5812.345830145371,2892.621294325301,2.0093697856501094,1523.6676454188985,2019
+2001,33,"(30,35]",College,5803.975516449886,2875.4033104305076,2.018490934957194,1511.3900477527018,2019
+2001,33,"(30,35]",College,5812.345830145371,2892.621294325301,2.0093697856501094,1503.1836352970631,2019
+2001,58,"(55,60]",College,6458.366641162968,282.37493587461273,22.87160020473905,3687.287979209405,2019
+2001,58,"(55,60]",College,6473.433205814843,246.21716969554646,26.2915588454672,3633.9889219487354,2019
+2001,58,"(55,60]",College,6994.066717674063,587.133250812457,11.912230669947387,3732.726985571312,2019
+2001,58,"(55,60]",College,6307.700994644224,447.66758126462986,14.090144693581355,3619.162569798528,2019
+2001,58,"(55,60]",College,6466.569548584545,220.39019385335627,29.341457691567197,3597.716146931495,2019
+2001,67,"(65,70]",HS,725.622494261668,105.0297017582401,6.908736120492119,7935.936568193902,2019
+2001,67,"(65,70]",HS,739.0149961744453,106.75150014771945,6.922759822127268,7139.3113080669455,2019
+2001,67,"(65,70]",HS,725.7899005355777,105.0297017582401,6.910330015086765,6739.392126514305,2019
+2001,67,"(65,70]",HS,721.6047436878347,105.0297017582401,6.8704826502206195,7532.830626741621,2019
+2001,67,"(65,70]",HS,722.2743687834736,106.75150014771945,6.76594116039599,7190.380027819691,2019
+2001,55,"(50,55]",College,464.1004131599082,103.30790336876075,4.492399884482095,7255.106439320145,2019
+2001,55,"(50,55]",College,368.5783932670237,103.30790336876075,3.5677656911821334,6581.934055251515,2019
+2001,55,"(50,55]",College,399.8666258607498,103.30790336876075,3.8706295725837507,6256.0138100945715,2019
+2001,55,"(50,55]",College,734.7796174445294,103.30790336876075,7.112520857399564,6928.3041911879045,2019
+2001,55,"(50,55]",College,452.13086457536343,103.30790336876075,4.376537029906302,6620.850793990523,2019
+2001,48,"(45,50]",College,517414.2892119358,22658.866805548187,22.83495876701315,2.1257090517232013,2019
+2001,48,"(45,50]",College,135766.48814078042,22658.866805548187,5.991759839796447,2.168847389551151,2019
+2001,48,"(45,50]",College,309765.22111706197,20110.60518911876,15.403078037883542,1.9139833519487623,2019
+2001,48,"(45,50]",College,310162.30879877583,21625.787771860585,14.34224325471085,2.4909727322479034,2019
+2001,48,"(45,50]",College,299862.6377964805,18905.346316483214,15.86126129490873,1.9791266809042838,2019
+2001,80,"(75,80]",NoHS,317.90451415455243,32.71416940010757,9.717639786798532,10124.925091416717,2019
+2001,80,"(75,80]",NoHS,394.57658760520275,37.87956456854561,10.416608324290264,10461.823786491737,2019
+2001,80,"(75,80]",NoHS,228.67697016067328,34.43596778958692,6.640643049672698,10685.357190654537,2019
+2001,80,"(75,80]",NoHS,267.5152257077276,39.60136295802496,6.755202491168739,10458.615441375934,2019
+2001,80,"(75,80]",NoHS,290.952104055088,39.60136295802496,7.347022484137215,10597.79836073188,2019
+2001,23,"(20,25]",College,14.430420811017598,16.357084700053786,0.8822122692175182,5698.371337300472,2019
+2001,23,"(20,25]",College,14.263014537107882,16.357084700053786,0.8719777881361085,5645.900233246062,2019
+2001,23,"(20,25]",College,14.263014537107882,16.357084700053786,0.8719777881361085,5645.69246963845,2019
+2001,23,"(20,25]",College,14.430420811017598,16.357084700053786,0.8822122692175182,5630.131428391884,2019
+2001,23,"(20,25]",College,14.430420811017598,16.357084700053786,0.8822122692175182,5622.029206473067,2019
+2001,40,"(35,40]",College,3401.6954858454474,860.899194739673,3.9513284559106654,243.01904026349789,2019
+2001,40,"(35,40]",College,3405.043611323642,860.899194739673,3.955217558721601,240.7025123609307,2019
+2001,40,"(35,40]",College,3403.3695485845446,860.899194739673,3.9532730073161333,246.69025119261892,2019
+2001,40,"(35,40]",College,3401.6954858454474,860.899194739673,3.9513284559106654,242.53752278154852,2019
+2001,40,"(35,40]",College,3400.0214231063505,860.899194739673,3.949383904505198,243.63501629270098,2019
+2001,31,"(30,35]",College,131.91614384085693,106.75150014771945,1.2357310544424707,7638.865260818442,2019
+2001,31,"(30,35]",College,130.24208110175977,106.75150014771945,1.220049188269343,7755.809627793822,2019
+2001,31,"(30,35]",College,157.02708492731446,106.75150014771945,1.4709590470393876,7836.5625225874055,2019
+2001,31,"(30,35]",College,130.24208110175977,106.75150014771945,1.220049188269343,7657.584063835622,2019
+2001,31,"(30,35]",College,155.3530221882173,106.75150014771945,1.45527718086626,7726.808845352777,2019
+2001,80,"(75,80]",NoHS,0,12.913487921095093,0,5335.852161009937,2019
+2001,80,"(75,80]",NoHS,0,12.913487921095093,0,5321.8383256568395,2019
+2001,80,"(75,80]",NoHS,0,12.913487921095093,0,5337.415482237252,2019
+2001,80,"(75,80]",NoHS,0,12.913487921095093,0,5343.920961375933,2019
+2001,80,"(75,80]",NoHS,0,12.913487921095093,0,5383.794470446456,2019
+2001,66,"(65,70]",College,354316.06509563886,2548.261616429432,139.04226426802234,1.723908682705586,2019
+2001,66,"(65,70]",College,420127.30497322115,4183.97008643481,100.41355370473372,1.7558858000022828,2019
+2001,66,"(65,70]",College,725629.8099158378,3202.545004431583,226.57911408324745,2.0199460627954804,2019
+2001,66,"(65,70]",College,725629.8099158378,3202.545004431583,226.57911408324745,2.0199460627954804,2019
+2001,66,"(65,70]",College,435705.3794950268,2513.825648639845,173.32362716991682,1.6026189947150349,2019
+2001,33,"(30,35]",HS,8.872532517214998,18.939782284272805,0.4684601113172542,5783.576000477678,2019
+2001,33,"(30,35]",HS,8.872532517214998,17.21798389479346,0.5153061224489797,5793.267492625724,2019
+2001,33,"(30,35]",HS,8.70512624330528,17.21798389479346,0.5055833654216404,5813.5335358934335,2019
+2001,33,"(30,35]",HS,8.872532517214998,17.21798389479346,0.5153061224489797,5843.337509081104,2019
+2001,33,"(30,35]",HS,8.70512624330528,17.21798389479346,0.5055833654216404,5797.927538165093,2019
+2001,69,"(65,70]",College,34798.742157612854,2582.6975842190186,13.473796688486717,18.449019495623023,2019
+2001,69,"(65,70]",College,33878.007651109416,2582.6975842190186,13.11729559748428,18.56285479045389,2019
+2001,69,"(65,70]",College,35685.995409334355,2582.6975842190186,13.817334103452703,18.532850934210636,2019
+2001,69,"(65,70]",College,35384.664116296866,2582.6975842190186,13.700661019124633,19.102367464008402,2019
+2001,69,"(65,70]",College,33459.49196633512,2582.6975842190186,12.955249647028623,18.83070519899378,2019
+2001,57,"(55,60]",HS,493.178882938026,34.43596778958692,14.321621101270695,6340.776955421392,2019
+2001,57,"(55,60]",HS,501.04697781178277,61.984742021256444,8.083392161896207,6688.024136909802,2019
+2001,57,"(55,60]",HS,620.2402448355012,72.31553235813253,8.576860663402828,5553.485416507015,2019
+2001,57,"(55,60]",HS,683.1515225707728,55.097548463339066,12.398945899114365,6217.906389214858,2019
+2001,57,"(55,60]",HS,593.7900535577659,48.21035490542169,12.316649705704382,5971.934731205424,2019
+2001,45,"(40,45]",College,3163.9785768936495,413.231613475043,7.656671159029649,1377.2768080910696,2019
+2001,45,"(40,45]",College,4525.828615149197,413.231613475043,10.952280676421513,1403.580446927317,2019
+2001,45,"(40,45]",College,2561.3159908186685,413.231613475043,6.198257604928764,843.7445363869003,2019
+2001,45,"(40,45]",College,2896.1285386381023,413.231613475043,7.008487357207033,823.4189901315578,2019
+2001,45,"(40,45]",College,3224.579648048967,413.231613475043,7.803322744192016,1395.3683720027577,2019
+2001,54,"(50,55]",College,551.4697475133895,134.30027437938898,4.1062443845462715,6219.450798091097,2019
+2001,54,"(50,55]",College,558.1325172149961,134.30027437938898,4.1558553755319245,6549.679570356133,2019
+2001,54,"(50,55]",College,561.9828615149197,136.02207276886833,4.131556372250357,6575.192355474833,2019
+2001,54,"(50,55]",College,555.6381637337414,134.30027437938898,4.1372824165950846,6357.328906520461,2019
+2001,54,"(50,55]",College,557.4126702371844,136.02207276886833,4.097957477712843,6483.290678053601,2019
+2001,43,"(40,45]",HS,241.5672532517215,96.42070981084338,2.505346141151878,6316.568559296057,2019
+2001,43,"(40,45]",HS,241.5672532517215,96.42070981084338,2.505346141151878,6470.051288659538,2019
+2001,43,"(40,45]",HS,241.73465952563123,96.42070981084338,2.507082347763903,6643.36212312908,2019
+2001,43,"(40,45]",HS,241.3998469778118,96.42070981084338,2.5036099345398535,6414.729353533903,2019
+2001,43,"(40,45]",HS,241.5672532517215,96.42070981084338,2.505346141151878,6487.348540786286,2019
+2001,39,"(35,40]",College,905.6679418515686,187.6760244532487,4.825698671367457,6695.180228801563,2019
+2001,39,"(35,40]",College,765.0466717674063,189.39782284272803,4.039363601358211,6090.131265555244,2019
+2001,39,"(35,40]",College,868.8385615914308,189.39782284272803,4.58737354289915,5693.105896225827,2019
+2001,39,"(35,40]",College,805.2241775057383,189.39782284272803,4.251496481954703,6366.781261208654,2019
+2001,39,"(35,40]",College,790.1576128538638,187.6760244532487,4.210221391655156,6121.260150541731,2019
+2001,53,"(50,55]",College,12259.831063504209,2014.5041156908349,6.085781095215057,531.9598108446365,2019
+2001,53,"(50,55]",College,12183.828615149196,1997.2861317960408,6.100191865946119,499.0721353327811,2019
+2001,53,"(50,55]",College,12254.541025248662,2186.6839546387696,5.604166527701556,532.7920398984211,2019
+2001,53,"(50,55]",College,12297.664881407805,2117.812019059595,5.806778302669436,524.578142047692,2019
+2001,53,"(50,55]",College,12268.201377199695,2255.555890217943,5.43910325184373,505.8092941715361,2019
+2001,62,"(60,65]",College,3692.4801836266256,111.91689531615746,32.99305411569563,2860.7047505408727,2019
+2001,62,"(60,65]",College,3692.3127773527162,113.63869370563681,32.49168621136277,2849.997650022122,2019
+2001,62,"(60,65]",College,3692.3127773527162,113.63869370563681,32.49168621136277,2908.410079361286,2019
+2001,62,"(60,65]",College,3690.638714613619,113.63869370563681,32.47695476132134,2844.9565121777164,2019
+2001,62,"(60,65]",College,3690.638714613619,111.91689531615746,32.97660021918782,2814.904719414601,2019
+2001,74,"(70,75]",NoHS,1185.2364192807956,58.54114524229776,20.24621169222406,7942.217800595521,2019
+2001,74,"(70,75]",NoHS,1272.622494261668,58.54114524229776,21.73894085936261,7262.320166083244,2019
+2001,74,"(70,75]",NoHS,1250.692272379495,58.54114524229776,21.36432875036807,6676.708428100501,2019
+2001,74,"(70,75]",NoHS,1255.7144605967867,58.54114524229776,21.450117782962245,7461.194930067357,2019
+2001,74,"(70,75]",NoHS,1168.6631981637338,58.54114524229776,19.963107884663298,7231.948732279385,2019
+2001,76,"(75,80]",HS,76278.83611323641,1928.4141962168671,39.555213948787056,12.741347796184815,2019
+2001,76,"(75,80]",HS,76277.16205049733,1928.4141962168671,39.55434584548105,13.446065715628222,2019
+2001,76,"(75,80]",HS,76279.00351951033,1945.6321801116608,39.20525384974494,13.629371123236291,2019
+2001,76,"(75,80]",HS,76279.00351951033,1928.4141962168671,39.555300759117664,13.433686857337898,2019
+2001,76,"(75,80]",HS,76277.32945677123,1928.4141962168671,39.55443265581165,13.82447659277727,2019
+2001,51,"(50,55]",College,270.69594491201224,46.488556515942335,5.822851153039832,5481.08585621478,2019
+2001,51,"(50,55]",College,272.03519510329,46.488556515942335,5.851659322009727,5785.4038629845545,2019
+2001,51,"(50,55]",College,272.8722264728386,46.488556515942335,5.869664427615911,5821.935686400551,2019
+2001,51,"(50,55]",College,271.1981637337414,46.488556515942335,5.833654216403543,5618.926306598282,2019
+2001,51,"(50,55]",College,269.0218821729151,46.488556515942335,5.7868409418274664,5711.239174221914,2019
+2001,52,"(50,55]",College,16842.745218056618,3960.136295802495,4.253072106611308,18.721255848770337,2019
+2001,52,"(50,55]",College,17681.4506503443,3960.136295802495,4.4648591183807405,18.788404244055418,2019
+2001,52,"(50,55]",College,16844.419280795715,3960.136295802495,4.2534948351777135,19.29133250408,2019
+2001,52,"(50,55]",College,18516.807957153786,3960.136295802495,4.675800673017361,18.68680922597634,2019
+2001,52,"(50,55]",College,16424.062127008416,3960.136295802495,4.147347692153153,18.46256719226991,2019
+2001,48,"(45,50]",College,65883.74353481254,7507.040978129948,8.776260010668626,14.608140502550564,2019
+2001,48,"(45,50]",College,62332.72165263964,7627.566865393501,8.172032150310613,15.874372334474874,2019
+2001,48,"(45,50]",College,64549.515531752106,6749.449686759035,9.56367089577456,15.508857024996303,2019
+2001,48,"(45,50]",College,60556.70849273144,7507.040978129948,8.066654846982933,15.245517375064313,2019
+2001,48,"(45,50]",College,63569.85401683244,7420.95105865598,8.566267788908673,16.088342421621903,2019
+2001,52,"(50,55]",College,1878.9864330527928,361.5776617906626,5.196633065625172,3928.1717966224533,2019
+2001,52,"(50,55]",College,1803.8210160673298,361.5776617906626,4.988751260612061,3992.1432073503906,2019
+2001,52,"(50,55]",College,1904.26478041316,361.5776617906626,5.26654431853604,5008.450624755409,2019
+2001,52,"(50,55]",College,1865.761337413925,361.5776617906626,5.160056979665182,4128.492790789594,2019
+2001,52,"(50,55]",College,1862.4132119357307,361.5776617906626,5.150797211067716,4224.4869978667775,2019
+2001,72,"(70,75]",HS,443.526182096404,91.25531464240532,4.860277824194826,8316.750963610195,2019
+2001,72,"(70,75]",HS,443.7120030604438,89.53351625292598,4.955820140102486,9172.701748974334,2019
+2001,72,"(70,75]",HS,443.526182096404,91.25531464240532,4.860277824194826,9067.638260979282,2019
+2001,72,"(70,75]",HS,443.7186993114002,91.25531464240532,4.862387479021513,8734.119184766467,2019
+2001,72,"(70,75]",HS,443.5278561591431,89.53351625292598,4.95376340303901,8962.473945886604,2019
+2001,40,"(35,40]",College,2410.6503442999237,234.16458096919104,10.29468391130037,1860.5677287200517,2019
+2001,40,"(35,40]",College,2127.733741392502,234.16458096919104,9.086488368932478,1816.1541640801097,2019
+2001,40,"(35,40]",College,2149.4965570007653,234.16458096919104,9.179426487576164,1952.06250980589,2019
+2001,40,"(35,40]",College,2576.3825554705436,234.16458096919104,11.002443430202272,1866.4023363882711,2019
+2001,40,"(35,40]",College,2626.6044376434584,234.16458096919104,11.216916011687694,1858.4740723350667,2019
+2001,28,"(25,30]",HS,64.20030604437643,51.653951684380374,1.2428924399948658,6310.27620769464,2019
+2001,28,"(25,30]",HS,64.36771231828615,51.653951684380374,1.246133359003979,6405.692960771621,2019
+2001,28,"(25,30]",HS,104.32758990053557,51.653951684380374,2.0197407264792706,6692.995270955136,2019
+2001,28,"(25,30]",HS,72.18558530986994,51.653951684380374,1.3974842767295599,6552.708550458656,2019
+2001,28,"(25,30]",HS,62.2081713848508,51.653951684380374,1.2043255037864202,6328.778042475755,2019
+2001,54,"(50,55]",HS,945.2930068859985,315.0891052747202,3.000081535862103,6203.058616345639,2019
+2001,54,"(50,55]",HS,1023.6893649579189,218.6683954638769,4.68146923009287,5632.251296334829,2019
+2001,54,"(50,55]",HS,1141.5433817903595,321.97629883263767,3.545426747028142,5258.533210331143,2019
+2001,54,"(50,55]",HS,955.3708645753635,306.4801133273235,3.1172360718720395,5897.20672003224,2019
+2001,54,"(50,55]",HS,1156.609946442234,185.95422606376934,6.219863731656185,5659.866132171419,2019
+2001,39,"(35,40]",HS,1498.1187452180568,397.73542796972885,3.7666213263055783,383.87870550397076,2019
+2001,39,"(35,40]",HS,1536.6221882172918,387.4046376328528,3.9664527446198607,380.0995672904181,2019
+2001,39,"(35,40]",HS,1525.4059678653405,423.56240381191907,3.601372440370534,366.39752365860045,2019
+2001,39,"(35,40]",HS,1486.735118592196,383.96104085389413,3.8720988860896757,379.83279118179513,2019
+2001,39,"(35,40]",HS,1497.4491201224178,421.8406054224397,3.5497984330428363,401.00316033870854,2019
+2001,42,"(40,45]",HS,541.0888844682479,189.39782284272803,2.8568907305632374,11278.96182332654,2019
+2001,42,"(40,45]",HS,690.9191736801836,263.43515359033995,2.6227295949826464,11042.086600875853,2019
+2001,42,"(40,45]",HS,639.7079204284621,235.88637935867035,2.7119324234307416,10408.773231555759,2019
+2001,42,"(40,45]",HS,709.5180107115532,253.10436325346384,2.803262660474278,11161.037161086704,2019
+2001,42,"(40,45]",HS,665.0632746748279,347.8032746748279,1.9121823257604929,11386.752961154238,2019
+2001,42,"(40,45]",College,196.36755929609794,129.1348792109509,1.520639199075857,7237.664661535327,2019
+2001,42,"(40,45]",College,196.53496557000767,129.1348792109509,1.5219355666795025,7429.605888701783,2019
+2001,42,"(40,45]",College,196.53496557000767,129.1348792109509,1.5219355666795025,7503.858875958998,2019
+2001,42,"(40,45]",College,196.53496557000767,129.1348792109509,1.5219355666795025,7325.282270740591,2019
+2001,42,"(40,45]",College,196.36755929609794,129.1348792109509,1.520639199075857,7445.558461311838,2019
+2001,76,"(75,80]",HS,450.65768936495795,58.54114524229776,7.6981358581168315,9838.705938587002,2019
+2001,76,"(75,80]",HS,450.65768936495795,106.75150014771945,4.221558373806004,10073.712098717542,2019
+2001,76,"(75,80]",HS,450.65768936495795,89.53351625292598,5.033396522614852,10264.37732172946,2019
+2001,76,"(75,80]",HS,450.65768936495795,74.03733074761188,6.0868981203714485,10060.968636711988,2019
+2001,76,"(75,80]",HS,450.65768936495795,44.76675812646299,10.066793045229703,10178.691487985849,2019
+2001,34,"(30,35]",NoHS,30.334016832440703,41.323161347504296,0.7340681555641124,7932.947767664742,2019
+2001,34,"(30,35]",NoHS,30.16661055853099,41.323161347504296,0.7300170068027212,8009.368843242494,2019
+2001,34,"(30,35]",NoHS,30.16661055853099,41.323161347504296,0.7300170068027212,8232.465099016797,2019
+2001,34,"(30,35]",NoHS,30.16661055853099,41.323161347504296,0.7300170068027212,8008.6508524178735,2019
+2001,34,"(30,35]",NoHS,30.334016832440703,41.323161347504296,0.7340681555641124,8028.6113801483825,2019
+2001,77,"(75,80]",NoHS,97.26304514154552,37.87956456854561,2.5676917422200436,10614.451445802213,2019
+2001,77,"(75,80]",NoHS,97.26304514154552,37.87956456854561,2.5676917422200436,10977.010374809612,2019
+2001,77,"(75,80]",NoHS,97.26304514154552,39.60136295802496,2.4560529708191723,11055.961718395061,2019
+2001,77,"(75,80]",NoHS,97.26304514154552,39.60136295802496,2.4560529708191723,10819.531465825221,2019
+2001,77,"(75,80]",NoHS,97.26304514154552,37.87956456854561,2.5676917422200436,10955.143049406284,2019
+2001,48,"(45,50]",HS,0.8370313695485845,37.87956456854561,0.022097175062134627,5097.378297124465,2019
+2001,48,"(45,50]",HS,0.8370313695485845,58.54114524229776,0.014298172099028289,5081.8449431873805,2019
+2001,48,"(45,50]",HS,0.8370313695485845,22.383379063231494,0.037395219335920146,5086.35604980595,2019
+2001,48,"(45,50]",HS,0.8370313695485845,24.105177452710844,0.03472413224049727,5062.583803820866,2019
+2001,48,"(45,50]",HS,0.8370313695485845,58.54114524229776,0.014298172099028289,5109.763564716184,2019
+2001,52,"(50,55]",HS,139.11461361897474,103.30790336876075,1.3466018482864843,6451.5150532899415,2019
+2001,52,"(50,55]",HS,130.7442999234889,103.30790336876075,1.2655788730586575,6794.065539572626,2019
+2001,52,"(50,55]",HS,161.71446059678652,103.30790336876075,1.565363881401617,6820.530274577068,2019
+2001,52,"(50,55]",HS,148.3219586840092,103.30790336876075,1.435727121037094,6594.5377607489645,2019
+2001,52,"(50,55]",HS,157.86411629686305,103.30790336876075,1.5280933127968168,6725.199501080533,2019
+2001,29,"(25,30]",NoHS,15.903596021423107,44.76675812646299,0.3552545836912414,8008.021225777709,2019
+2001,29,"(25,30]",NoHS,16.07100229533282,44.76675812646299,0.35899410562483336,8112.325392863217,2019
+2001,29,"(25,30]",NoHS,15.903596021423107,44.76675812646299,0.3552545836912414,8323.056301542938,2019
+2001,29,"(25,30]",NoHS,15.903596021423107,44.76675812646299,0.3552545836912414,8084.84140508962,2019
+2001,29,"(25,30]",NoHS,15.736189747513391,44.76675812646299,0.3515150617576494,8117.324625718973,2019
+2001,59,"(55,60]",College,94074.62524866106,4734.945571068201,19.868153463786886,10.33298516436616,2019
+2001,59,"(55,60]",College,58496.99192042847,4201.188070329604,13.923916506751171,10.885853919327733,2019
+2001,59,"(55,60]",College,134071.83442999236,5130.959200648452,26.129974764377064,11.043925163074842,2019
+2001,59,"(55,60]",College,134297.9668247896,4493.893796541093,29.884543984585804,10.89346443861697,2019
+2001,59,"(55,60]",College,53961.236113236424,4115.098150855636,13.112988836491416,10.748342561587899,2019
+2001,50,"(45,50]",HS,1190.928232593726,136.02207276886833,8.755404239555865,407.612011708439,2019
+2001,50,"(45,50]",HS,1188.4171384850804,154.9618550531411,7.669094681897917,415.2552444909326,2019
+2001,50,"(45,50]",HS,1189.4215761285386,139.46566954782702,8.52841835546238,388.9648599123282,2019
+2001,50,"(45,50]",HS,1186.5756694720735,165.29264539001719,7.178635605185471,414.95807032752083,2019
+2001,50,"(45,50]",HS,1189.9237949502678,168.7362421689759,7.05197519901299,440.593240444353,2019
+2001,41,"(40,45]",HS,269.10558530987,86.08991947396729,3.1258663842895658,6135.021837348401,2019
+2001,41,"(40,45]",HS,245.83611323641927,86.08991947396729,2.855573738929534,6362.710769201942,2019
+2001,41,"(40,45]",HS,136.57003825554705,86.08991947396729,1.58636503658067,6422.180379350028,2019
+2001,41,"(40,45]",HS,152.08859984697781,86.08991947396729,1.7666249518675397,6231.145152365714,2019
+2001,41,"(40,45]",HS,180.26307574598317,86.08991947396729,2.0938929534077784,6374.075211686158,2019
+2001,46,"(45,50]",HS,0.5022188217291507,24.105177452710844,0.02083447934429836,6744.53699043895,2019
+2001,46,"(45,50]",HS,0.5022188217291507,24.105177452710844,0.02083447934429836,6851.27360359004,2019
+2001,46,"(45,50]",HS,0.5022188217291507,24.105177452710844,0.02083447934429836,6865.3824847470505,2019
+2001,46,"(45,50]",HS,0.5022188217291507,24.105177452710844,0.02083447934429836,6816.188854822436,2019
+2001,46,"(45,50]",HS,0.5022188217291507,24.105177452710844,0.02083447934429836,6830.996510572433,2019
+2001,57,"(55,60]",College,43694.71155317521,1893.9782284272803,23.070334651871043,20.916518612617793,2019
+2001,57,"(55,60]",College,43694.71155317521,1893.9782284272803,23.070334651871043,19.612902348911827,2019
+2001,57,"(55,60]",College,43694.71155317521,1893.9782284272803,23.070334651871043,20.60552582597504,2019
+2001,57,"(55,60]",College,43694.71155317521,1893.9782284272803,23.070334651871043,21.463150336077167,2019
+2001,57,"(55,60]",College,43694.71155317521,1893.9782284272803,23.070334651871043,20.62917981927574,2019
+2001,39,"(35,40]",College,440.7807192042846,91.25531464240532,4.830192311883813,6920.551767612809,2019
+2001,39,"(35,40]",College,286.5995409334354,91.25531464240532,3.140633968076373,7177.394054662589,2019
+2001,39,"(35,40]",College,394.7439938791125,92.97711303188467,4.245603901938134,7244.478170504536,2019
+2001,39,"(35,40]",College,269.52410099464424,91.25531464240532,2.9535167573615424,7028.98273905649,2019
+2001,39,"(35,40]",College,185.9883703136955,91.25531464240532,2.038110010825263,7190.213603574914,2019
+2001,45,"(40,45]",NoHS,380.68186687069624,120.5258872635542,3.1585070685956325,6065.2772028377585,2019
+2001,45,"(40,45]",NoHS,371.976740627391,130.8566776004303,2.8426271203615507,6402.030378630635,2019
+2001,45,"(40,45]",NoHS,390.5588370313696,120.5258872635542,3.2404560206832067,6442.455878532611,2019
+2001,45,"(40,45]",NoHS,375.32486610558533,144.63106471626506,2.59505014943983,6217.809121379409,2019
+2001,45,"(40,45]",NoHS,395.58102524866104,129.1348792109509,3.0633166474136826,6319.960984388697,2019
+2001,62,"(60,65]",College,57730.388370313696,430.4495973698365,134.1164882556796,299.04094707970734,2019
+2001,62,"(60,65]",College,57728.88171384851,430.4495973698365,134.11298806314977,293.9601787529731,2019
+2001,62,"(60,65]",College,57730.388370313696,430.4495973698365,134.1164882556796,293.76155046700046,2019
+2001,62,"(60,65]",College,57730.388370313696,430.4495973698365,134.1164882556796,308.16357236298666,2019
+2001,62,"(60,65]",College,57730.55577658761,430.4495973698365,134.11687716596072,300.05751672312755,2019
+2001,49,"(45,50]",College,28015.4901606733,6904.411541812177,4.057621709108054,10.719873855226902,2019
+2001,49,"(45,50]",College,28859.21778117827,6904.411541812177,4.179822944563888,10.435442962152202,2019
+2001,49,"(45,50]",College,28961.35234889059,6904.411541812177,4.194615598086032,10.829210793767967,2019
+2001,49,"(45,50]",College,28085.800795715382,6904.411541812177,4.06780514539604,11.208984887044869,2019
+2001,49,"(45,50]",College,29518.313022188217,6904.411541812177,4.2752829612530086,10.748342561587899,2019
+2001,44,"(40,45]",HS,229.11222647283856,79.20272591604991,2.8927315799166258,5474.171222127616,2019
+2001,44,"(40,45]",HS,228.861117061974,80.92452430552926,2.8280810919309514,5619.345002791777,2019
+2001,44,"(40,45]",HS,229.1457077276205,79.20272591604991,2.893154308483032,5675.505875809375,2019
+2001,44,"(40,45]",HS,229.1457077276205,80.92452430552926,2.831597833834457,5540.440359659242,2019
+2001,44,"(40,45]",HS,229.9659984697781,79.20272591604991,2.90351115835998,5631.4106507576125,2019
+2001,61,"(60,65]",HS,1011.9709257842387,51.653951684380374,19.591355410088564,7755.390451052912,2019
+2001,61,"(60,65]",HS,1010.2968630451415,51.653951684380374,19.558946219997434,7045.926171603783,2019
+2001,61,"(60,65]",HS,1012.1383320581485,51.653951684380374,19.59459632909768,6588.3440795633915,2019
+2001,61,"(60,65]",HS,1012.1383320581485,51.653951684380374,19.59459632909768,7378.5980342015055,2019
+2001,61,"(60,65]",HS,1010.2968630451415,51.653951684380374,19.558946219997434,7091.133529552344,2019
+2001,50,"(45,50]",HS,121.821545524101,94.69891142136402,1.2864091434172298,7194.854486006456,2019
+2001,50,"(45,50]",HS,119.64526396327467,96.42070981084338,1.24086686561417,7499.482264557254,2019
+2001,50,"(45,50]",HS,119.0426013771997,94.69891142136402,1.257064094934715,7533.525364564116,2019
+2001,50,"(45,50]",HS,122.20657995409334,96.42070981084338,1.2674308267781504,7328.562755957309,2019
+2001,50,"(45,50]",HS,121.97221117061974,94.69891142136402,1.2880001400217034,7426.141530057721,2019
+2001,60,"(55,60]",HS,181.15032899770466,37.87956456854561,4.782270626947176,6638.955640352868,2019
+2001,60,"(55,60]",HS,181.33447589900538,37.87956456854561,4.787132005460847,7010.513725573923,2019
+2001,60,"(55,60]",HS,181.16706962509565,37.87956456854561,4.782712570448419,7045.7904420251125,2019
+2001,60,"(55,60]",HS,181.15032899770466,37.87956456854561,4.782270626947176,6833.191528179748,2019
+2001,60,"(55,60]",HS,181.15032899770466,37.87956456854561,4.782270626947176,6934.726503441872,2019
+2001,38,"(35,40]",HS,84.05469013006886,53.37575007385973,1.5747730011054937,5699.503623491707,2019
+2001,38,"(35,40]",HS,95.94053557765876,53.37575007385973,1.7974555007639086,5924.642672744201,2019
+2001,38,"(35,40]",HS,89.07687834736038,53.37575007385973,1.6688641981442607,5994.428620881977,2019
+2001,38,"(35,40]",HS,78.86509563886764,53.37575007385973,1.4775454308321014,5805.677080894731,2019
+2001,38,"(35,40]",HS,82.38062739097168,53.37575007385973,1.543409268759238,5919.136981896232,2019
+2001,34,"(30,35]",College,676.4887528691661,303.0365165483649,2.232367110652151,11278.96182332654,2019
+2001,34,"(30,35]",College,776.2628921193574,301.3147181588855,2.5762528191869745,11042.086600875853,2019
+2001,34,"(30,35]",College,697.0797245600612,301.3147181588855,2.3134605863908906,10408.773231555759,2019
+2001,34,"(30,35]",College,724.7017597551645,303.0365165483649,2.39146677109952,11161.037161086704,2019
+2001,34,"(30,35]",College,736.0853863810252,301.3147181588855,2.442912151383464,11386.752961154238,2019
+2001,32,"(30,35]",HS,55.66258607498087,91.25531464240532,0.609965417281188,6225.187011139304,2019
+2001,32,"(30,35]",HS,55.66258607498087,91.25531464240532,0.609965417281188,6241.556189438506,2019
+2001,32,"(30,35]",HS,55.32777352716144,91.25531464240532,0.606296452365211,6295.418371704135,2019
+2001,32,"(30,35]",HS,55.49517980107116,91.25531464240532,0.6081309348231996,6200.481142017687,2019
+2001,32,"(30,35]",HS,55.49517980107116,92.97711303188467,0.5968692508449922,6237.365378662576,2019
+2001,95,"(90,95]",NoHS,417.6786534047437,89.53351625292598,4.665053612156039,2082.553067896714,2019
+2001,95,"(90,95]",NoHS,443.6266258607498,87.81171786344665,5.052020808323329,2190.726242461926,2019
+2001,95,"(90,95]",NoHS,438.4370313695486,89.53351625292598,4.896903972038744,2144.283121126692,2019
+2001,95,"(90,95]",NoHS,450.3228768171385,89.53351625292598,5.02965700068126,2134.287598925942,2019
+2001,95,"(90,95]",NoHS,418.18087222647284,89.53351625292598,4.670662895056426,2089.543264088979,2019
+2001,23,"(20,25]",HS,17.376771231828613,24.105177452710844,0.7208729853127233,9087.438808164237,2019
+2001,23,"(20,25]",HS,17.71158377964805,24.105177452710844,0.7347626382089223,9172.91376776947,2019
+2001,23,"(20,25]",HS,16.698775822494262,24.105177452710844,0.6927464381979206,9239.71328120604,2019
+2001,23,"(20,25]",HS,17.70321346595256,24.105177452710844,0.7344153968865172,9100.05356491142,2019
+2001,23,"(20,25]",HS,17.70321346595256,25.826975842190187,0.6854543704274162,9117.25093654871,2019
+2001,27,"(25,30]",HS,-5.8592195868400925,129.1348792109509,-0.04537286612758312,5177.554717308301,2019
+2001,27,"(25,30]",HS,-36.82938026013772,129.1348792109509,-0.285200872801951,5204.099760047322,2019
+2001,27,"(25,30]",HS,-44.19525631216526,129.1348792109509,-0.34224104736234123,5219.037213706644,2019
+2001,27,"(25,30]",HS,-14.229533282325939,129.1348792109509,-0.11019124630984473,5211.930263658875,2019
+2001,27,"(25,30]",HS,-22.26503442999235,129.1348792109509,-0.17241689128481585,5179.092968505594,2019
+2001,41,"(40,45]",HS,679.0835501147667,397.73542796972885,1.707375059800936,6294.884434879513,2019
+2001,41,"(40,45]",HS,747.3183473603673,192.84141962168675,3.875299968370097,5724.296553867632,2019
+2001,41,"(40,45]",HS,350.7663657230298,198.00681479012476,1.771486330381209,6364.4068289469715,2019
+2001,41,"(40,45]",HS,516.9338332058148,122.24768565303354,4.2285776654536384,5985.733828980764,2019
+2001,41,"(40,45]",HS,357.1110635042081,237.60817774814973,1.5029409630956567,6314.9592629353565,2019
+2001,27,"(25,30]",HS,-0.8537719969395563,134.30027437938898,-0.006357187287106425,5431.5796051632515,2019
+2001,27,"(25,30]",HS,0.920734506503443,134.30027437938898,0.006855790211585359,5446.882485227382,2019
+2001,27,"(25,30]",HS,-2.0925784238714615,132.5784759899096,-0.015783696472953312,5449.384757064788,2019
+2001,27,"(25,30]",HS,-0.5022188217291507,134.30027437938898,-0.0037395219335920136,5451.750360134827,2019
+2001,27,"(25,30]",HS,0.2008875286916603,132.5784759899096,0.0015152348614035178,5435.442087598458,2019
+2001,43,"(40,45]",College,18.079877582249424,61.984742021256444,0.2916827108201771,5547.760953139835,2019
+2001,43,"(40,45]",College,20.59097169089518,61.984742021256444,0.33219419843409065,5499.597859030711,2019
+2001,43,"(40,45]",College,15.066564651874522,61.984742021256444,0.24306892568348096,5527.613886581794,2019
+2001,43,"(40,45]",College,20.7583779648049,61.984742021256444,0.33489496427501825,5515.130118770924,2019
+2001,43,"(40,45]",College,18.247283856159143,61.984742021256444,0.2943834766611047,5535.252199878133,2019
+2001,75,"(70,75]",College,75792.85570007651,8557.337995712349,8.857059956969387,30.992217645997158,2019
+2001,75,"(70,75]",College,75104.81591430758,8574.555979607143,8.759032665123334,33.75740560388185,2019
+2001,75,"(70,75]",College,75613.73098699312,8557.337995712349,8.836127663168073,32.94195787638806,2019
+2001,75,"(70,75]",College,76062.37980107115,8574.555979607143,8.870707705678313,32.37450870997933,2019
+2001,75,"(70,75]",College,76224.76388676358,9297.711303188467,8.198228725452445,34.19505039073404,2019
+2001,41,"(40,45]",College,145.55975516449885,103.30790336876075,1.4089895392119112,9835.946007741752,2019
+2001,41,"(40,45]",College,143.8856924254017,103.30790336876075,1.3927849441663458,10085.062013432278,2019
+2001,41,"(40,45]",College,145.39234889058915,103.30790336876075,1.4073690797073548,10181.103007174494,2019
+2001,41,"(40,45]",College,143.8856924254017,103.30790336876075,1.3927849441663458,10047.286636402081,2019
+2001,41,"(40,45]",College,145.55975516449885,103.30790336876075,1.4089895392119112,10038.826299197875,2019
+2001,46,"(45,50]",HS,286.3651721499618,58.54114524229776,4.8916906385195595,218.55148918069617,2019
+2001,46,"(45,50]",HS,271.7673450650344,60.2629436317771,4.509692502337862,234.52492630768307,2019
+2001,46,"(45,50]",HS,338.2276358071921,58.54114524229776,5.777605381775352,229.83726501558877,2019
+2001,46,"(45,50]",HS,283.11749043611326,58.54114524229776,4.836213730775329,226.14965503143875,2019
+2001,46,"(45,50]",HS,527.5976128538639,60.2629436317771,8.7549260135321,222.62482225131848,2019
+2001,57,"(55,60]",HS,786.8262280030605,123.96948404251289,6.346934764471827,10800.099565690167,2019
+2001,57,"(55,60]",HS,964.2601377199694,108.47329853719879,8.889377853567304,10698.024556980574,2019
+2001,57,"(55,60]",HS,793.5224789594491,120.5258872635542,6.5838343693272465,10288.144073263953,2019
+2001,57,"(55,60]",HS,816.9426166794185,127.41308082147161,6.411764093704793,10672.497103391346,2019
+2001,57,"(55,60]",HS,882.2478041315991,111.91689531615746,7.883061816889311,11253.990404407481,2019
+2001,65,"(60,65]",NoHS,4.8547819433817905,12.569128243199225,0.3862465120449834,5922.50291328268,2019
+2001,65,"(60,65]",NoHS,5.357000765110941,12.569128243199225,0.42620304777377477,5899.390927414023,2019
+2001,65,"(60,65]",NoHS,6.026625860749808,12.569128243199225,0.47947842874549657,5912.068586620858,2019
+2001,65,"(60,65]",NoHS,5.524407039020658,12.569128243199225,0.4395218930167052,5930.469102831195,2019
+2001,65,"(60,65]",NoHS,4.185156847742923,12.569128243199225,0.33297113107326154,5887.600651845949,2019
+2001,43,"(40,45]",HS,11469.506044376434,611.2384282651677,18.764373301805442,1845.0077243061532,2019
+2001,43,"(40,45]",HS,11469.506044376434,612.960226654647,18.711664388036326,1845.0665218577974,2019
+2001,43,"(40,45]",HS,11471.012700841622,612.960226654647,18.714122388408406,1856.86073796024,2019
+2001,43,"(40,45]",HS,11471.180107115531,611.2384282651677,18.767112106601875,1840.438554036859,2019
+2001,43,"(40,45]",HS,11469.338638102525,611.2384282651677,18.7640994213258,1832.4461149973722,2019
+2001,46,"(45,50]",NoHS,111.99479724560061,68.87193557917384,1.6261311128224873,5438.1656187452445,2019
+2001,46,"(45,50]",NoHS,111.8273909716909,68.87193557917384,1.6237004235656527,5726.911171037956,2019
+2001,46,"(45,50]",NoHS,111.99479724560061,68.87193557917384,1.6261311128224873,5749.219049237353,2019
+2001,46,"(45,50]",NoHS,111.8273909716909,68.87193557917384,1.6237004235656527,5558.72352862827,2019
+2001,46,"(45,50]",NoHS,111.8273909716909,68.87193557917384,1.6237004235656527,5668.862027583518,2019
+2001,58,"(55,60]",HS,901.4827850038256,168.7362421689759,5.3425557747165096,6520.027268588544,2019
+2001,58,"(55,60]",HS,903.1568477429228,168.7362421689759,5.352476955356652,5915.059948357258,2019
+2001,58,"(55,60]",HS,903.1568477429228,168.7362421689759,5.352476955356652,5622.161573456584,2019
+2001,58,"(55,60]",HS,903.1568477429228,168.7362421689759,5.352476955356652,6226.336254255484,2019
+2001,58,"(55,60]",HS,901.3153787299159,168.7362421689759,5.341563656652495,5950.033687185914,2019
+2001,40,"(35,40]",NoHS,255.12716143840856,292.70572621148875,0.8716165711567647,342.6502683816799,2019
+2001,40,"(35,40]",NoHS,253.4530986993114,292.70572621148875,0.8658973023171533,359.0655533987132,2019
+2001,40,"(35,40]",NoHS,253.4530986993114,292.70572621148875,0.8658973023171533,352.27907715432315,2019
+2001,40,"(35,40]",NoHS,253.4530986993114,292.70572621148875,0.8658973023171533,349.49554082221476,2019
+2001,40,"(35,40]",NoHS,255.12716143840856,292.70572621148875,0.8716165711567647,343.480678873285,2019
+2001,85,"(80,85]",HS,2.0088752869166027,14.979645988470308,0.1341069934805412,5711.377179197456,2019
+2001,85,"(80,85]",HS,2.0088752869166027,14.979645988470308,0.1341069934805412,5709.1377703124845,2019
+2001,85,"(80,85]",HS,2.0088752869166027,14.979645988470308,0.1341069934805412,5735.423214868679,2019
+2001,85,"(80,85]",HS,2.0088752869166027,14.979645988470308,0.1341069934805412,5751.421977329264,2019
+2001,85,"(80,85]",HS,2.0088752869166027,15.151825827418245,0.13258305037280776,5748.40008855611,2019
+2001,35,"(30,35]",HS,64.56859984697782,144.63106471626506,0.44643659350532666,10029.075686463502,2019
+2001,35,"(30,35]",HS,66.24266258607499,144.63106471626506,0.4580113042521591,10369.82065225311,2019
+2001,35,"(30,35]",HS,64.56859984697782,144.63106471626506,0.44643659350532666,10494.97497635392,2019
+2001,35,"(30,35]",HS,62.87779648048967,144.63106471626506,0.4347461356510259,10345.04460302922,2019
+2001,35,"(30,35]",HS,64.55185921958685,144.63106471626506,0.44632084639785835,10359.212811470825,2019
+2001,36,"(35,40]",NoHS,0,60.2629436317771,0,4405.868324160264,2019
+2001,36,"(35,40]",NoHS,0,51.653951684380374,0,4412.967449970021,2019
+2001,36,"(35,40]",NoHS,0,43.04495973698364,0,4435.868127998126,2019
+2001,36,"(35,40]",NoHS,0,74.03733074761188,0,4384.108759489323,2019
+2001,36,"(35,40]",HS,0,53.37575007385973,0,4448.896080458022,2019
+2001,23,"(20,25]",HS,12.957245600612088,36.157766179066265,0.35835304472193186,5339.119429561813,2019
+2001,23,"(20,25]",HS,12.722876817138486,36.157766179066265,0.35187120670370575,5278.132587288837,2019
+2001,23,"(20,25]",HS,13.15813312930375,36.157766179066265,0.3639089058804114,5269.127424757199,2019
+2001,23,"(20,25]",HS,12.38806426931905,36.157766179066265,0.34261143810623973,5246.374265344465,2019
+2001,23,"(20,25]",HS,13.007467482785003,34.43596778958692,0.3777291105121293,5280.688192702337,2019
+2001,28,"(25,30]",College,3.013312930374904,68.87193557917384,0.04375240662302656,9640.477992661905,2019
+2001,28,"(25,30]",College,3.0300535577658763,68.87193557917384,0.04399547554871005,9681.623316403704,2019
+2001,28,"(25,30]",College,3.013312930374904,68.87193557917384,0.04375240662302656,9760.254714411194,2019
+2001,28,"(25,30]",College,3.0300535577658763,68.87193557917384,0.04399547554871005,9646.080992774458,2019
+2001,28,"(25,30]",College,3.013312930374904,68.87193557917384,0.04375240662302656,9610.259280533934,2019
+2001,34,"(30,35]",NoHS,223.6547819433818,172.17983894793457,1.2989603388525224,6723.458343096334,2019
+2001,34,"(30,35]",NoHS,226.8522417750574,172.17983894793457,1.3175308047747403,6788.227951220559,2019
+2001,34,"(30,35]",NoHS,215.3179495026779,172.17983894793457,1.2505410088563729,6977.310046064709,2019
+2001,34,"(30,35]",NoHS,227.17031369548585,172.17983894793457,1.3193781286099346,6787.619428192114,2019
+2001,34,"(30,35]",NoHS,227.086610558531,172.17983894793457,1.3188919907585677,6804.536692824731,2019
+2001,34,"(30,35]",NoHS,0,11.019509692667812,0,4919.447760697695,2019
+2001,34,"(30,35]",NoHS,0,11.019509692667812,0,4900.512359799171,2019
+2001,34,"(30,35]",NoHS,0,10.847329853719879,0,4910.079624128745,2019
+2001,34,"(30,35]",NoHS,0,10.847329853719879,0,4937.43280546607,2019
+2001,34,"(30,35]",NoHS,0,11.019509692667812,0,4899.818377068024,2019
+2001,58,"(55,60]",College,1568.261973986228,215.22479868491826,7.286623026569117,8600.80792861763,2019
+2001,58,"(55,60]",College,1568.4293802601376,215.22479868491826,7.287400847131304,7811.740176547641,2019
+2001,58,"(55,60]",College,1568.261973986228,215.22479868491826,7.286623026569117,7308.01060632702,2019
+2001,58,"(55,60]",College,1568.261973986228,215.22479868491826,7.286623026569117,8181.662910642114,2019
+2001,58,"(55,60]",College,1568.4293802601376,215.22479868491826,7.287400847131304,7863.580599696876,2019
+2001,56,"(55,60]",HS,1692.3937260902833,227.27738741127362,7.446379709688337,6580.844295732199,2019
+2001,56,"(55,60]",HS,1721.1876052027546,227.27738741127362,7.573070180044575,5978.827674402104,2019
+2001,56,"(55,60]",HS,1700.4292272379496,227.27738741127362,7.481735189787751,5590.5459342062395,2019
+2001,56,"(55,60]",HS,1702.9403213465953,227.27738741127362,7.492783777318818,6261.116714927407,2019
+2001,56,"(55,60]",HS,1703.2751338944147,227.27738741127362,7.494256922322961,6017.188423039912,2019
+2001,23,"(20,25]",HS,20.59097169089518,82.64632269500859,0.249145648825568,7038.804717829361,2019
+2001,23,"(20,25]",HS,20.59097169089518,82.64632269500859,0.249145648825568,7037.937354625053,2019
+2001,23,"(20,25]",HS,20.741637337413927,82.64632269500859,0.2509686657681941,7054.528378932764,2019
+2001,23,"(20,25]",HS,20.741637337413927,82.64632269500859,0.2509686657681941,7025.015125008271,2019
+2001,23,"(20,25]",HS,20.557490436113238,82.64632269500859,0.24874053394942885,7026.048277339296,2019
+2001,48,"(45,50]",HS,54.03874521805662,11.019509692667812,4.903915575664229,7225.2526772522615,2019
+2001,48,"(45,50]",HS,53.904820198928846,10.847329853719879,4.969409147306721,7227.014455026221,2019
+2001,48,"(45,50]",HS,53.988523335883706,11.019509692667812,4.899358033307664,7209.15326442148,2019
+2001,48,"(45,50]",HS,53.92156082631982,11.019509692667812,4.893281310165576,7226.4322918017615,2019
+2001,48,"(45,50]",HS,54.03874521805662,10.847329853719879,4.981755505436676,7218.858093428733,2019
+2001,42,"(40,45]",HS,9.341270084162202,58.54114524229776,0.1595676006251557,869.43945971829,2019
+2001,42,"(40,45]",HS,9.77652639632747,67.15013718969449,0.1455920539478491,873.6205730510571,2019
+2001,42,"(40,45]",HS,9.77652639632747,77.48092752657055,0.1261797800881359,887.6214023437318,2019
+2001,42,"(40,45]",HS,10.764223412394797,77.48092752657055,0.138927394857314,875.3003456592938,2019
+2001,42,"(40,45]",HS,9.491935730680948,58.54114524229776,0.1621412716029808,875.9789603671192,2019
+2001,46,"(45,50]",HS,-4.771078806426932,56.819346852818406,-0.0839692652361116,4766.871304871209,2019
+2001,46,"(45,50]",HS,-5.608110175975517,58.54114524229776,-0.09579775306348955,4836.993753987802,2019
+2001,46,"(45,50]",HS,-2.5947972456006125,56.819346852818406,-0.04566749512841158,4824.210030114769,2019
+2001,46,"(45,50]",HS,-4.436266258607499,56.819346852818406,-0.07807668521954238,4759.814584973233,2019
+2001,46,"(45,50]",HS,-6.52884468247896,56.819346852818406,-0.1149053103231001,4831.436496352849,2019
+2001,57,"(55,60]",NoHS,3.515531752104055,29.27057262114888,0.12010464563183765,7476.751085588786,2019
+2001,57,"(55,60]",NoHS,3.013312930374904,27.548774231669533,0.10938101655756642,7546.730501360935,2019
+2001,57,"(55,60]",NoHS,8.202907421576128,20.661580673752148,0.3970125786163522,7363.704992180033,2019
+2001,57,"(55,60]",NoHS,5.189594491201225,22.383379063231494,0.23185035988270494,7479.268745835972,2019
+2001,57,"(55,60]",NoHS,4.35256312165264,18.939782284272805,0.22981062064620014,7513.242564936352,2019
+2001,40,"(35,40]",HS,51.226319816373376,123.96948404251289,0.4132171736619176,8013.968745007574,2019
+2001,40,"(35,40]",HS,51.226319816373376,123.96948404251289,0.4132171736619176,8301.928550549685,2019
+2001,40,"(35,40]",HS,51.226319816373376,123.96948404251289,0.4132171736619176,8404.975315502377,2019
+2001,40,"(35,40]",HS,51.226319816373376,123.96948404251289,0.4132171736619176,8193.210489362984,2019
+2001,40,"(35,40]",HS,51.226319816373376,123.96948404251289,0.4132171736619176,8340.965551133328,2019
+2001,53,"(50,55]",HS,24.893312930374904,111.91689531615746,0.22242676461005303,5588.542944005022,2019
+2001,53,"(50,55]",HS,24.17346595256312,129.1348792109509,0.18719548196637148,5683.455773718641,2019
+2001,53,"(50,55]",HS,23.671247130833972,118.80408887407486,0.1992460642993867,5677.913576242857,2019
+2001,53,"(50,55]",HS,24.03954093343535,125.69128243199225,0.19125861768848146,5610.910659507461,2019
+2001,53,"(50,55]",HS,25.194644223412393,98.14250820032271,0.2567149004586939,5650.188055025278,2019
+2001,65,"(60,65]",HS,728.0498852333589,68.87193557917384,10.571067577974585,6352.006688413705,2019
+2001,65,"(60,65]",HS,846.9083397092578,68.87193557917384,12.2968569503273,5714.379492555544,2019
+2001,65,"(60,65]",HS,798.36052027544,68.87193557917384,11.591957065845206,5394.279994000017,2019
+2001,65,"(60,65]",HS,773.2495791889824,68.87193557917384,11.227353677319982,6029.35647388119,2019
+2001,65,"(60,65]",HS,821.7973986228004,68.87193557917384,11.93225356180208,5755.255430341926,2019
+2001,54,"(50,55]",HS,383.52777352716146,68.87193557917384,5.568709087408548,5515.977248183417,2019
+2001,54,"(50,55]",HS,289.9476664116297,68.87193557917384,4.20995379283789,5808.854296920346,2019
+2001,54,"(50,55]",HS,313.5519510328998,68.87193557917384,4.552680978051598,5831.481365904596,2019
+2001,54,"(50,55]",HS,289.1106350420811,68.87193557917384,4.1978003465537155,5638.260152865667,2019
+2001,54,"(50,55]",HS,285.92991583779644,68.87193557917384,4.151617250673854,5749.974561174989,2019
+2001,37,"(35,40]",HS,67.63213465952563,68.87193557917384,0.981998459761263,6326.899654232378,2019
+2001,37,"(35,40]",HS,67.63213465952563,68.87193557917384,0.981998459761263,6561.709743325616,2019
+2001,37,"(35,40]",HS,67.63213465952563,68.87193557917384,0.981998459761263,6623.039314084874,2019
+2001,37,"(35,40]",HS,65.95807192042847,68.87193557917384,0.9576915671929149,6426.0293044064665,2019
+2001,37,"(35,40]",HS,67.63213465952563,68.87193557917384,0.981998459761263,6573.429618026986,2019
+2001,41,"(40,45]",College,350.04651874521807,99.86430658980206,3.505221542097646,7732.893900418314,2019
+2001,41,"(40,45]",College,326.40875286916605,101.5861049792814,3.213124008797635,8010.754058686269,2019
+2001,41,"(40,45]",College,341.17398622800306,101.5861049792814,3.358470986731757,8110.186652637538,2019
+2001,41,"(40,45]",College,335.5491354246366,99.86430658980206,3.36005072165496,7905.849078524012,2019
+2001,41,"(40,45]",College,351.5699158377965,101.5861049792814,3.460807124256802,8048.421910072878,2019
+2001,25,"(20,25]",HS,18.749502677888294,60.2629436317771,0.31112822487485564,8435.873841838695,2019
+2001,25,"(20,25]",HS,18.079877582249424,60.2629436317771,0.30001650255789647,8517.439232259969,2019
+2001,25,"(20,25]",HS,25.278347360367253,60.2629436317771,0.4194675174652071,8582.907723957145,2019
+2001,25,"(20,25]",HS,14.229533282325939,60.2629436317771,0.23612409923538152,8459.39179051451,2019
+2001,25,"(20,25]",HS,15.903596021423107,60.2629436317771,0.2639034050277793,8442.474153098576,2019
+2001,46,"(45,50]",HS,13.894720734506503,68.87193557917384,0.20174720831728915,4832.519158295607,2019
+2001,46,"(45,50]",HS,13.894720734506503,68.87193557917384,0.20174720831728915,5106.887582299821,2019
+2001,46,"(45,50]",HS,13.894720734506503,68.87193557917384,0.20174720831728915,5215.034764275997,2019
+2001,46,"(45,50]",HS,13.894720734506503,68.87193557917384,0.20174720831728915,4971.106367230947,2019
+2001,46,"(45,50]",HS,13.894720734506503,68.87193557917384,0.20174720831728915,5035.080066553379,2019
+2001,32,"(30,35]",HS,-27.069594491201226,55.097548463339066,-0.4913030660377359,5963.891278010682,2019
+2001,32,"(30,35]",HS,-41.114980872226475,56.819346852818406,-0.7236088260347021,6034.401841139976,2019
+2001,32,"(30,35]",HS,-26.517153787299158,55.097548463339066,-0.4812764728532922,6101.048953700174,2019
+2001,32,"(30,35]",HS,-32.97903596021423,55.097548463339066,-0.5985572294955719,6000.442342098263,2019
+2001,32,"(30,35]",HS,-14.346717674062738,55.097548463339066,-0.2603875866384289,6045.7246412055065,2019
+2001,56,"(55,60]",HS,644.9494108645754,98.14250820032271,6.571560302373184,6409.539362173138,2019
+2001,56,"(55,60]",HS,807.1326090283092,74.03733074761188,10.901697844561255,5824.937332833899,2019
+2001,56,"(55,60]",HS,757.6807957153787,86.08991947396729,8.80103966114748,5449.851350910594,2019
+2001,56,"(55,60]",HS,1147.385860749809,194.5632180111661,5.897239326520389,6098.527981351197,2019
+2001,56,"(55,60]",HS,500.62846212700845,39.60136295802496,12.64169777837304,5861.692908121151,2019
+2001,33,"(30,35]",College,115.51032899770466,84.36812108448795,1.3691229283396067,5916.163787951178,2019
+2001,33,"(30,35]",College,92.40826319816374,84.36812108448795,1.0952983426716856,5992.932972063551,2019
+2001,33,"(30,35]",College,113.66885998469778,84.36812108448795,1.3472963309312942,6040.773741258858,2019
+2001,33,"(30,35]",College,121.53695485845448,84.36812108448795,1.4405554289486298,5913.424079043175,2019
+2001,33,"(30,35]",College,93.07788829380262,84.36812108448795,1.1032352871837992,5986.751361916148,2019
+2001,53,"(50,55]",College,147493.2976281561,3874.046376328528,38.07215590638772,14.608140502550564,2019
+2001,53,"(50,55]",College,147268.97322111705,3874.046376328528,38.014251486758226,15.874372334474874,2019
+2001,53,"(50,55]",College,140912.5570007651,3874.046376328528,36.373482223077914,15.508857024996303,2019
+2001,53,"(50,55]",College,147391.17980107118,3874.046376328528,38.04579643178027,15.245517375064313,2019
+2001,53,"(50,55]",College,143274.65952563123,3874.046376328528,36.98320711932572,16.088342421621903,2019
+2001,48,"(45,50]",College,260.81897475133894,68.87193557917384,3.787013862148633,5956.901750899432,2019
+2001,48,"(45,50]",College,260.81897475133894,68.87193557917384,3.787013862148633,6266.048215487346,2019
+2001,48,"(45,50]",College,260.81897475133894,68.87193557917384,3.787013862148633,6309.5629078775655,2019
+2001,48,"(45,50]",College,260.81897475133894,68.87193557917384,3.787013862148633,6129.115344525451,2019
+2001,48,"(45,50]",College,260.81897475133894,68.87193557917384,3.787013862148633,6220.588981678073,2019
+2001,37,"(35,40]",College,4801.211935730681,404.6226215276463,11.865900916769759,3378.222256891321,2019
+2001,37,"(35,40]",College,4700.768171384851,309.9237101062822,15.16750096264921,3354.2556167605485,2019
+2001,37,"(35,40]",College,5447.818668706963,370.18665373805936,14.716410258706379,3432.3138467958097,2019
+2001,37,"(35,40]",College,4568.517214996175,461.44196838046474,9.900523853585366,3344.052465457542,2019
+2001,37,"(35,40]",College,4881.98546289212,361.5776617906626,13.501900086180028,3312.380940135091,2019
+2001,26,"(25,30]",HS,0.45199693955623566,34.43596778958692,0.01312572198690797,4559.9271143401465,2019
+2001,26,"(25,30]",HS,0.5189594491201224,34.43596778958692,0.015070273392375816,4572.774209072142,2019
+2001,26,"(25,30]",HS,0.5357000765110942,34.43596778958692,0.015556411243742782,4574.874919736127,2019
+2001,26,"(25,30]",HS,0.5524407039020658,34.43596778958692,0.01604254909510974,4576.860894050224,2019
+2001,26,"(25,30]",HS,0.5357000765110942,34.43596778958692,0.015556411243742782,4563.169750859405,2019
+2001,38,"(35,40]",College,180.33003825554707,218.6683954638769,0.8246735330590417,5401.396378935934,2019
+2001,38,"(35,40]",College,168.52789594491202,211.78120190595953,0.7957641869449115,5614.759739277919,2019
+2001,38,"(35,40]",College,227.35446059678654,218.6683954638769,1.039722544789718,5680.895598200506,2019
+2001,38,"(35,40]",College,196.40104055087988,177.34523411637264,1.1074503441237273,5502.016532240527,2019
+2001,38,"(35,40]",College,193.38772762050496,53.37575007385973,3.6231383606394467,5609.542018477259,2019
+2001,75,"(70,75]",NoHS,2141.7623871461365,137.74387115834767,15.548876107046594,573.3429942868568,2019
+2001,75,"(70,75]",HS,2120.3678653404745,137.74387115834767,15.393555063534848,565.6974204507626,2019
+2001,75,"(70,75]",HS,2136.2714613618978,137.74387115834767,15.509012803234503,598.3194637687418,2019
+2001,75,"(70,75]",NoHS,2148.4418974751343,137.74387115834767,15.597368357720448,580.5879237529209,2019
+2001,75,"(70,75]",NoHS,2142.2980872226476,137.74387115834767,15.55276520985753,581.2243381287574,2019
+2001,42,"(40,45]",College,2052.4009181331294,275.48774231669535,7.45006257219869,3218.7646225639846,2019
+2001,42,"(40,45]",College,2038.8410099464422,275.48774231669535,7.400841114747785,3276.14475753772,2019
+2001,42,"(40,45]",College,1961.9178270849275,275.48774231669535,7.121615686368887,4112.871715426049,2019
+2001,42,"(40,45]",College,1931.8684009181331,275.48774231669535,7.012538505968425,3383.6033751125665,2019
+2001,42,"(40,45]",College,1922.1588370313696,275.48774231669535,6.97729351174432,3468.5961817018397,2019
+2001,62,"(60,65]",College,282906.55853098695,6319.000089389199,44.77077932093098,31.36574549056442,2019
+2001,62,"(60,65]",College,281237.5179801071,6422.307992757959,43.790724190935926,34.21214188710958,2019
+2001,62,"(60,65]",College,285390.70022953325,6353.436057178786,44.91911111737224,33.339071345827016,2019
+2001,62,"(60,65]",College,281245.72088752873,6904.411541812177,40.734205831205585,32.80550343108766,2019
+2001,62,"(60,65]",College,286207.64284621266,6422.307992757959,44.564608730841215,34.65309021574954,2019
+2001,56,"(55,60]",HS,255.56241775057384,137.74387115834767,1.85534510974201,8936.769623016358,2019
+2001,56,"(55,60]",HS,245.73566947207345,137.74387115834767,1.7840043800539083,9340.537968875313,2019
+2001,56,"(55,60]",HS,235.84195868400917,137.74387115834767,1.7121775125144396,9393.562554623204,2019
+2001,56,"(55,60]",HS,249.33490436113237,137.74387115834767,1.8101342895648824,9165.972319580158,2019
+2001,56,"(55,60]",HS,225.49625095638868,137.74387115834767,1.637069214478244,9242.892104874718,2019
+2001,39,"(35,40]",HS,70.3106350420811,96.42070981084338,0.7292067770504427,2656.2441766998895,2019
+2001,39,"(35,40]",HS,73.15654169854629,72.31553235813253,1.011629719273154,2811.123248668288,2019
+2001,39,"(35,40]",HS,69.4736036725325,91.25531464240532,0.7613102200652421,2762.379174711846,2019
+2001,39,"(35,40]",HS,71.14766641162969,96.42070981084338,0.737887810110567,2722.79129323477,2019
+2001,39,"(35,40]",HS,68.46916602907422,70.59373396865318,0.9699042985809141,2695.198469383669,2019
+2001,66,"(65,70]",HS,165.3471767406274,82.64632269500859,2.0006598158131177,9305.83157837446,2019
+2001,66,"(65,70]",HS,165.3471767406274,82.64632269500859,2.0006598158131177,9640.291737316635,2019
+2001,66,"(65,70]",HS,163.65637337413926,82.64632269500859,1.9802015145680918,10040.321645779859,2019
+2001,66,"(65,70]",HS,167.02123947972456,82.64632269500859,2.0209155596200747,9328.809841064336,2019
+2001,66,"(65,70]",HS,167.02123947972456,82.64632269500859,2.0209155596200747,9704.96693354374,2019
+2001,49,"(45,50]",HS,180.96618209640397,103.30790336876075,1.751716724425619,6176.721823217758,2019
+2001,49,"(45,50]",HS,225.16143840856924,103.30790336876075,2.1795180336285456,6253.465607411563,2019
+2001,49,"(45,50]",HS,184.48171384850804,103.30790336876075,1.7857463740213066,6277.812293108229,2019
+2001,49,"(45,50]",HS,193.52165263963275,103.30790336876075,1.8732511872673598,6242.0320302693945,2019
+2001,49,"(45,50]",HS,170.58699311400153,103.30790336876075,1.651248235143114,6246.088139278659,2019
+2001,74,"(70,75]",College,531.9166947207345,25.826975842190187,20.595392119111796,9483.159343604484,2019
+2001,74,"(70,75]",College,531.581882172915,25.826975842190187,20.58242844307534,10459.155585815874,2019
+2001,74,"(70,75]",College,530.7448508033665,25.826975842190187,20.550019252984214,10339.357145029153,2019
+2001,74,"(70,75]",College,534.4277888293803,25.826975842190187,20.692619689385193,9959.062657711122,2019
+2001,74,"(70,75]",College,530.5774445294568,25.826975842190187,20.543537414965986,10219.443736337644,2019
+2001,40,"(35,40]",HS,172.88045906656467,80.92452430552926,2.1363172727943045,6614.045676315587,2019
+2001,40,"(35,40]",HS,193.23706197398621,77.48092752657055,2.4939952081461514,6789.44866927184,2019
+2001,40,"(35,40]",HS,197.95791889824025,87.81171786344665,2.254345134280127,6857.303795516103,2019
+2001,40,"(35,40]",HS,172.93068094873757,72.31553235813253,2.391335240295579,6694.113888430054,2019
+2001,40,"(35,40]",HS,187.12673297628155,84.36812108448795,2.2179791439101626,6804.02672018077,2019
+2001,49,"(45,50]",HS,0.08370313695485845,18.939782284272805,0.004419435012426926,5771.363130318669,2019
+2001,49,"(45,50]",HS,0.08370313695485845,18.939782284272805,0.004419435012426926,5781.976826462424,2019
+2001,49,"(45,50]",HS,0.08370313695485845,18.939782284272805,0.004419435012426926,5698.677966968295,2019
+2001,49,"(45,50]",HS,0.08370313695485845,18.939782284272805,0.004419435012426926,5742.386723161658,2019
+2001,49,"(45,50]",HS,0.08370313695485845,18.939782284272805,0.004419435012426926,5782.372544948683,2019
+2001,52,"(50,55]",College,249.26794185156848,94.69891142136402,2.6322154934014774,6133.640059110709,2019
+2001,52,"(50,55]",College,249.10053557765877,96.42070981084338,2.583475438692997,6497.815877977065,2019
+2001,52,"(50,55]",College,247.4264728385616,96.42070981084338,2.5661133725727487,6544.687953621719,2019
+2001,52,"(50,55]",College,247.5938791124713,94.69891142136402,2.6145377533517697,6330.231154428432,2019
+2001,52,"(50,55]",College,249.26794185156848,96.42070981084338,2.585211645305022,6373.691711023565,2019
+2001,44,"(40,45]",HS,728.6023259372608,189.39782284272803,3.846941400917142,527.9889606715922,2019
+2001,44,"(40,45]",HS,728.8032134659526,189.39782284272803,3.848002065320125,522.7097885026417,2019
+2001,44,"(40,45]",HS,728.6190665646519,189.39782284272803,3.847029789617391,503.4911841140628,2019
+2001,44,"(40,45]",HS,728.6023259372608,189.39782284272803,3.846941400917142,522.3705747484918,2019
+2001,44,"(40,45]",HS,728.7864728385616,189.39782284272803,3.8479136766198763,551.2155837150973,2019
+2001,38,"(35,40]",HS,310.8734506503443,68.87193557917384,4.5137899499422405,7527.31866936902,2019
+2001,38,"(35,40]",HS,312.54751338944146,68.87193557917384,4.538096842510589,7726.941455203526,2019
+2001,38,"(35,40]",HS,312.54751338944146,68.87193557917384,4.538096842510589,7804.166074383259,2019
+2001,38,"(35,40]",HS,310.8734506503443,70.59373396865318,4.403697512138772,7618.442767593866,2019
+2001,38,"(35,40]",HS,311.04085692425406,68.87193557917384,4.5162206391990765,7743.532455650163,2019
+2001,63,"(60,65]",College,910.1912593726091,215.22479868491826,4.2290259530227186,6614.988746305391,2019
+2001,63,"(60,65]",College,910.6934781943381,215.22479868491826,4.231359414709279,6014.224818094723,2019
+2001,63,"(60,65]",College,907.3453527161438,215.22479868491826,4.2158030034655365,5622.9278214913,2019
+2001,63,"(60,65]",College,908.6846029074215,215.22479868491826,4.222025567963033,6295.656908258416,2019
+2001,63,"(60,65]",College,909.019415455241,215.22479868491826,4.223581209087408,6046.609548737392,2019
+2001,28,"(25,30]",HS,37.992853863810254,49.93215329490103,0.7608895542602208,4290.277179646159,2019
+2001,28,"(25,30]",HS,38.32766641162969,36.157766179066265,1.0600120101949135,4297.4663628774415,2019
+2001,28,"(25,30]",HS,38.50344299923489,58.54114524229776,0.6577159165553014,4312.49978561555,2019
+2001,28,"(25,30]",HS,37.66641162968631,48.21035490542169,0.7812929754111887,4334.608478579781,2019
+2001,28,"(25,30]",HS,38.16863045141545,46.488556515942335,0.82103281564198,4300.923201178174,2019
+2001,74,"(70,75]",NoHS,0.5022188217291507,13.257847598990962,0.037880871535087936,5039.137138828148,2019
+2001,74,"(70,75]",NoHS,0.5022188217291507,9.642070981084336,0.05208619836074591,5092.039482787911,2019
+2001,74,"(70,75]",NoHS,0.5022188217291507,6.026294363177711,0.08333791737719344,4964.508588555569,2019
+2001,74,"(70,75]",NoHS,0.5022188217291507,9.642070981084336,0.05208619836074591,4967.02546186861,2019
+2001,74,"(70,75]",NoHS,0.5022188217291507,15.66836534426205,0.0320530451450744,5046.9027956177615,2019
+2001,48,"(45,50]",HS,57.72168324407039,86.08991947396729,0.6704813246053138,6923.715431849678,2019
+2001,48,"(45,50]",HS,57.88908951798011,86.08991947396729,0.6724258760107817,7283.036810156098,2019
+2001,48,"(45,50]",HS,57.88908951798011,86.08991947396729,0.6724258760107817,7333.613999408687,2019
+2001,48,"(45,50]",HS,57.72168324407039,86.08991947396729,0.6704813246053138,7123.879538229763,2019
+2001,48,"(45,50]",HS,57.72168324407039,86.08991947396729,0.6704813246053138,7230.199477628694,2019
+2001,55,"(50,55]",College,3311.4316970160676,189.39782284272803,17.484000857632935,3699.187966229114,2019
+2001,55,"(50,55]",College,4551.0751553175205,347.8032746748279,13.085199268386598,3633.9889219487354,2019
+2001,55,"(50,55]",College,6348.583280795716,612.960226654647,10.357251587830385,3732.726985571312,2019
+2001,55,"(50,55]",College,5011.291742922725,327.1416940010757,15.31841350343514,3619.162569798528,2019
+2001,55,"(50,55]",College,6817.036257077276,375.3520489064974,18.161713188824084,3597.716146931495,2019
+2001,56,"(55,60]",College,915.0426931905126,154.9618550531411,5.904954434604031,6616.013793244706,2019
+2001,56,"(55,60]",College,916.7167559296098,156.68365344262045,5.85074917381425,6012.5796194110535,2019
+2001,56,"(55,60]",College,916.7167559296098,154.9618550531411,5.915757497967741,5625.410762206944,2019
+2001,56,"(55,60]",College,916.7167559296098,154.9618550531411,5.915757497967741,6294.983611650443,2019
+2001,56,"(55,60]",College,915.0426931905126,154.9618550531411,5.904954434604031,6049.307631530601,2019
+2001,51,"(50,55]",HS,367.6241775057383,105.0297017582401,3.5001925298421255,5485.400101214234,2019
+2001,51,"(50,55]",HS,373.9856159143076,105.0297017582401,3.560760524438665,5717.6501419266915,2019
+2001,51,"(50,55]",HS,380.849273144606,105.0297017582401,3.626110202819142,5743.604805024672,2019
+2001,51,"(50,55]",HS,361.09533282325935,105.0297017582401,3.43803064065094,5587.34008609483,2019
+2001,51,"(50,55]",HS,375.8270849273145,105.0297017582401,3.578293364979769,5661.734727205058,2019
+2001,58,"(55,60]",College,104786.2830910482,3013.1471815888553,34.77635733538698,200.30518180123508,2019
+2001,58,"(55,60]",College,104789.79862280031,3013.1471815888553,34.777524066230264,203.20326555282892,2019
+2001,58,"(55,60]",College,104077.48492731446,3013.1471815888553,34.54112217393696,208.75635561255072,2019
+2001,58,"(55,60]",College,104696.05110941087,3013.1471815888553,34.74641124374278,207.10321150157506,2019
+2001,58,"(55,60]",College,104366.76296863046,3030.3651654836485,34.44032559421711,213.36489335619868,2019
+2001,45,"(40,45]",HS,512.4975669472074,87.81171786344665,5.836323208528694,7727.7052406929315,2019
+2001,45,"(40,45]",HS,470.07681713848507,96.42070981084338,4.875268166565817,8054.893745386973,2019
+2001,45,"(40,45]",HS,494.1163580719204,96.42070981084338,5.124587436052587,8091.458076582843,2019
+2001,45,"(40,45]",HS,485.3107880642693,137.74387115834767,3.5232840777820558,7871.315941984093,2019
+2001,45,"(40,45]",HS,488.1566947207345,87.81171786344665,5.559129312102199,7976.121397808487,2019
+2001,56,"(55,60]",College,5733.497475133894,189.39782284272803,30.27224594812196,1698.2858819950748,2019
+2001,56,"(55,60]",College,5735.506350420811,292.70572621148875,19.59478697139233,1733.6843821730283,2019
+2001,56,"(55,60]",College,5733.664881407804,292.70572621148875,19.58849577566876,1727.4768450424774,2019
+2001,56,"(55,60]",College,5733.664881407804,294.4275246009682,19.4739431687935,1726.1458624221693,2019
+2001,56,"(55,60]",College,5733.832287681714,201.45041156908349,28.462747943880014,1723.186099645399,2019
+2001,43,"(40,45]",College,36296.19127773527,530.3139039596384,68.44284301566744,527.8733671403618,2019
+2001,43,"(40,45]",College,32611.579188982403,530.3139039596384,61.49485982827339,494.8990412557032,2019
+2001,43,"(40,45]",College,33718.13465952563,530.3139039596384,63.58146450199782,519.949483977644,2019
+2001,43,"(40,45]",College,32295.18133129304,530.3139039596384,60.89823610159576,541.4803031619388,2019
+2001,43,"(40,45]",College,35626.56618209641,530.3139039596384,67.18014729783118,520.4816482457029,2019
+2001,73,"(70,75]",College,348321.5644988523,430.4495973698365,809.2040662302655,18.01293583972238,2019
+2001,73,"(70,75]",College,343739.9895944912,430.4495973698365,798.5603696572967,19.60781902692309,2019
+2001,73,"(70,75]",College,328228.79387911246,430.4495973698365,762.5254986522909,19.13956903634376,2019
+2001,73,"(70,75]",College,337997.2847742923,430.4495973698365,785.2191913746631,18.800585208567487,2019
+2001,73,"(70,75]",College,344295.9458301454,430.4495973698365,799.8519407008085,19.8680209352054,2019
+2001,52,"(50,55]",HS,2.1260596786534047,68.87193557917384,0.030869753561802077,6816.356424066829,2019
+2001,52,"(50,55]",HS,0.45199693955623566,68.87193557917384,0.006562860993453985,7170.10617150109,2019
+2001,52,"(50,55]",HS,2.293465952563122,68.87193557917384,0.033300442818636894,7219.89911176078,2019
+2001,52,"(50,55]",HS,0.45199693955623566,68.87193557917384,0.006562860993453985,7013.41678938964,2019
+2001,52,"(50,55]",HS,0.45199693955623566,68.87193557917384,0.006562860993453985,7118.088133707837,2019
+2001,61,"(60,65]",HS,2720.3519510328997,132.5784759899096,20.518805414839303,803.0681932880832,2019
+2001,61,"(60,65]",HS,2722.026013771997,130.8566776004303,20.801582797965263,803.3688494469027,2019
+2001,61,"(60,65]",HS,2722.026013771997,132.5784759899096,20.531432372017665,843.7445363869003,2019
+2001,61,"(60,65]",HS,2720.3519510328997,130.8566776004303,20.7887896966135,823.4189901315578,2019
+2001,61,"(60,65]",HS,2720.3519510328997,130.8566776004303,20.7887896966135,827.6587260304711,2019
+2001,42,"(40,45]",NoHS,217.628156082632,51.653951684380374,4.213194711847003,6339.7691548811,2019
+2001,42,"(40,45]",NoHS,217.628156082632,51.653951684380374,4.213194711847003,6553.35932456228,2019
+2001,42,"(40,45]",NoHS,217.628156082632,51.653951684380374,4.213194711847003,6745.012422812382,2019
+2001,42,"(40,45]",NoHS,217.628156082632,51.653951684380374,4.213194711847003,6503.559664080838,2019
+2001,42,"(40,45]",NoHS,217.628156082632,51.653951684380374,4.213194711847003,6587.631906836194,2019
+2001,43,"(40,45]",College,8323.607345065035,327.1416940010757,25.443431692438647,334.2497738281155,2019
+2001,43,"(40,45]",College,6736.930680948738,327.1416940010757,20.593311107958577,331.012108814385,2019
+2001,43,"(40,45]",College,6717.67895944912,327.1416940010757,20.53446284174047,338.99346655546594,2019
+2001,43,"(40,45]",College,8322.602907421577,327.1416940010757,25.440361348114223,333.55325847271183,2019
+2001,43,"(40,45]",College,9227.266411629686,327.1416940010757,28.205718136311127,334.8986516859005,2019
+2001,70,"(65,70]",NoHS,96.22512624330528,12.74130808214716,7.552217215289991,9829.793936970762,2019
+2001,70,"(65,70]",NoHS,96.22512624330528,12.74130808214716,7.552217215289991,9898.784684708438,2019
+2001,70,"(65,70]",NoHS,96.22512624330528,12.74130808214716,7.552217215289991,9728.028409427738,2019
+2001,70,"(65,70]",NoHS,96.20838561591431,12.74130808214716,7.550903329205215,9713.45177091863,2019
+2001,70,"(65,70]",NoHS,96.20838561591431,12.74130808214716,7.550903329205215,9800.364945244659,2019
+2001,55,"(50,55]",HS,175.94399387911247,27.548774231669533,6.3866360223334615,6817.519237445243,2019
+2001,55,"(50,55]",HS,211.7689364957919,29.27057262114888,7.234875082108315,7215.6508161661695,2019
+2001,55,"(50,55]",HS,231.02065799540932,22.383379063231494,10.32108053671396,7269.435708735968,2019
+2001,55,"(50,55]",HS,226.41698546289214,22.383379063231494,10.1154068303664,7037.433206445623,2019
+2001,55,"(50,55]",HS,152.17230298393267,24.105177452710844,6.312847241322404,7118.299039890143,2019
+2001,32,"(30,35]",NoHS,0,25.826975842190187,0,6330.861775852456,2019
+2001,32,"(30,35]",NoHS,0,25.826975842190187,0,6300.53672931955,2019
+2001,32,"(30,35]",NoHS,0,25.826975842190187,0,6200.723794807569,2019
+2001,32,"(30,35]",NoHS,0,25.826975842190187,0,6308.953390020041,2019
+2001,32,"(30,35]",NoHS,0,25.826975842190187,0,6285.23575145028,2019
+2001,75,"(70,75]",College,4421.5345065034435,86.08991947396729,51.3594917212168,1860.1708926241058,2019
+2001,75,"(70,75]",HS,4264.674827850038,86.08991947396729,49.537447054293416,1857.3344893141598,2019
+2001,75,"(70,75]",College,3935.386687069625,86.08991947396729,45.712514439738165,1936.3086495687744,2019
+2001,75,"(70,75]",HS,4362.774904361133,86.08991947396729,50.676954177897585,1852.443326438865,2019
+2001,75,"(70,75]",HS,3515.699158377965,86.08991947396729,40.83752406623027,1837.1749285899689,2019
+2001,26,"(25,30]",HS,0.5859219586840092,37.87956456854561,0.01546802254349424,4007.9707328587233,2019
+2001,26,"(25,30]",HS,0.5859219586840092,37.87956456854561,0.01546802254349424,4019.5151011389853,2019
+2001,26,"(25,30]",HS,0.5859219586840092,37.87956456854561,0.01546802254349424,4024.3230180522587,2019
+2001,26,"(25,30]",HS,0.5859219586840092,37.87956456854561,0.01546802254349424,4012.5484339857308,2019
+2001,26,"(25,30]",HS,0.5859219586840092,37.87956456854561,0.01546802254349424,4019.1303316168464,2019
+2001,31,"(30,35]",HS,281.6777964804897,120.5258872635542,2.337072996314429,4674.039525144632,2019
+2001,31,"(30,35]",HS,283.85407804131603,120.5258872635542,2.355129545079488,4623.799996031523,2019
+2001,31,"(30,35]",HS,281.1755776587605,120.5258872635542,2.332906100445569,4637.364197818975,2019
+2001,31,"(30,35]",HS,283.68667176740627,120.5258872635542,2.3537405797898674,4674.711576185696,2019
+2001,31,"(30,35]",HS,283.1844529456771,120.5258872635542,2.3495736839210077,4623.991184230203,2019
+2001,77,"(75,80]",NoHS,573.3664881407803,39.60136295802496,14.47845339940734,8222.891428201998,2019
+2001,77,"(75,80]",NoHS,573.3664881407803,37.87956456854561,15.13656491756222,8419.302435073663,2019
+2001,77,"(75,80]",NoHS,575.0405508798775,39.60136295802496,14.520726256047945,8578.654634209115,2019
+2001,77,"(75,80]",NoHS,573.3664881407803,37.87956456854561,15.13656491756222,8408.651836799336,2019
+2001,77,"(75,80]",NoHS,573.3664881407803,39.60136295802496,14.47845339940734,8507.04101833253,2019
+2001,47,"(45,50]",HS,-17.293068094873757,43.04495973698364,-0.4017443203696573,6336.212850123002,2019
+2001,47,"(45,50]",HS,-25.194644223412393,43.04495973698364,-0.5853099730458221,6443.823706351299,2019
+2001,47,"(45,50]",HS,-16.656924254016833,43.04495973698364,-0.38696572968810167,6437.540039353323,2019
+2001,47,"(45,50]",HS,-16.322111706197397,43.04495973698364,-0.37918752406623024,6361.573057213565,2019
+2001,47,"(45,50]",HS,-19.837643458301454,43.04495973698364,-0.4608586830958799,6406.1052260978195,2019
+2001,77,"(75,80]",College,6246.095485845448,301.3147181588855,20.729473568403105,3137.1263838883106,2019
+2001,77,"(75,80]",College,6043.533894414691,301.3147181588855,20.057214368227076,3092.1984589872027,2019
+2001,77,"(75,80]",College,6060.274521805662,301.3147181588855,20.11277297981187,3134.6859952944,2019
+2001,77,"(75,80]",College,6102.126090283091,301.3147181588855,20.25166950877386,3114.335082355858,2019
+2001,77,"(75,80]",College,5993.312012241775,301.3147181588855,19.89053853347269,3040.5659434395798,2019
+2001,28,"(25,30]",HS,39.507880642693195,72.31553235813253,0.5463263472504906,3953.0915322292158,2019
+2001,28,"(25,30]",HS,33.313848508033665,72.31553235813253,0.4606734877239305,3964.4778290700283,2019
+2001,28,"(25,30]",HS,90.73420045906656,72.31553235813253,1.2546986449566346,3969.2199135073506,2019
+2001,28,"(25,30]",HS,149.3263963274675,72.31553235813253,2.064928397234905,3906.2974389819674,2019
+2001,28,"(25,30]",HS,60.26625860749809,72.31553235813253,0.8333791737719346,3964.0983280104665,2019
+2001,93,"(90,95]",HS,96.54319816373375,72.31553235813253,1.335027137539652,5941.575979597723,2019
+2001,93,"(90,95]",HS,145.476052027544,67.15013718969449,2.1664297068609737,5856.541746947887,2019
+2001,93,"(90,95]",HS,343.40048967100233,48.21035490542169,7.122961246493206,5858.618774606944,2019
+2001,93,"(90,95]",HS,25.445753634276972,24.105177452710844,1.0556136201111173,6067.125477319386,2019
+2001,93,"(90,95]",HS,0.6696250956388676,10.330790336876074,0.06481838018226159,5995.729217663052,2019
+2001,42,"(40,45]",College,26.868706962509567,29.27057262114888,0.9179426487576163,6601.180217930528,2019
+2001,42,"(40,45]",College,26.701300688599847,29.27057262114888,0.912223379918005,6838.3753745859485,2019
+2001,42,"(40,45]",College,26.701300688599847,29.27057262114888,0.912223379918005,6923.255948490261,2019
+2001,42,"(40,45]",College,26.701300688599847,29.27057262114888,0.912223379918005,6748.82330149052,2019
+2001,42,"(40,45]",College,26.701300688599847,29.27057262114888,0.912223379918005,6870.53051322192,2019
+2001,32,"(30,35]",HS,179.62693190512627,91.25531464240532,1.9683996774216987,7297.869490339554,2019
+2001,32,"(30,35]",HS,179.62693190512627,91.25531464240532,1.9683996774216987,7384.151560789968,2019
+2001,32,"(30,35]",HS,177.78546289211937,91.25531464240532,1.9482203703838248,7465.706020235872,2019
+2001,32,"(30,35]",HS,179.45952563121654,91.25531464240532,1.9665651949637102,7342.596143293087,2019
+2001,32,"(30,35]",HS,177.95286916602907,91.25531464240532,1.9500548528418131,7398.006997331559,2019
+2001,78,"(75,80]",College,3057.5081866870696,247.93896808502578,12.331696829675266,4899.755328877385,2019
+2001,78,"(75,80]",College,3074.5836266258607,249.6607664745051,12.3150452113181,4842.738410275162,2019
+2001,78,"(75,80]",College,3092.9983167559294,247.93896808502578,12.474837419244427,5184.797186117651,2019
+2001,78,"(75,80]",College,3112.4174445294566,247.93896808502578,12.553159628631327,4947.24641335997,2019
+2001,78,"(75,80]",College,3124.135883703137,247.93896808502578,12.60042303084756,4968.077576088728,2019
+2001,85,"(80,85]",NoHS,0.08370313695485845,20.661580673752148,0.004051148761391349,6168.502786648761,2019
+2001,85,"(80,85]",NoHS,0.08370313695485845,20.661580673752148,0.004051148761391349,6182.456305874424,2019
+2001,85,"(80,85]",NoHS,0.08370313695485845,20.661580673752148,0.004051148761391349,6105.803319483533,2019
+2001,85,"(80,85]",NoHS,0.08370313695485845,20.661580673752148,0.004051148761391349,6189.059807977284,2019
+2001,85,"(80,85]",NoHS,0.08370313695485845,20.661580673752148,0.004051148761391349,6220.6845313937,2019
+2001,47,"(45,50]",College,3767.7795256312165,757.5912913709121,4.9733669968845176,149.97870176481788,2019
+2001,47,"(45,50]",College,2726.177689364958,862.6209931291523,3.1603423880002794,147.50073915183856,2019
+2001,47,"(45,50]",College,2019.9241009946443,1336.1155502359723,1.5117884831427224,91.62120587431252,2019
+2001,47,"(45,50]",College,2051.0616679418517,602.629436317771,3.4035205456845814,87.49875546984856,2019
+2001,47,"(45,50]",College,2106.1215914307577,874.6735818555076,2.407894367819926,88.61413827666868,2019
+2001,45,"(40,45]",College,855.1112471308339,120.5258872635542,7.094834699378404,5120.002781886031,2019
+2001,45,"(40,45]",College,855.4460596786533,120.5258872635542,7.097612629957643,4645.9325361787605,2019
+2001,45,"(40,45]",College,861.1378729915838,120.5258872635542,7.1448374498047205,4356.428320927031,2019
+2001,45,"(40,45]",College,856.283091048202,120.5258872635542,7.104557456405743,4861.351443739766,2019
+2001,45,"(40,45]",College,852.7675592960979,120.5258872635542,7.075389185323726,4674.164090476828,2019
+2001,83,"(80,85]",HS,25.947972456006124,14.118746793730637,1.837838218582417,6196.81681384898,2019
+2001,83,"(80,85]",HS,27.11981637337414,12.74130808214716,2.1284954573364274,6197.04214580135,2019
+2001,83,"(80,85]",HS,27.11981637337414,22.383379063231494,1.2116051064838127,6221.123848937273,2019
+2001,83,"(80,85]",HS,26.282785003825555,10.50297017582401,2.502414513593869,6241.899755461171,2019
+2001,83,"(80,85]",HS,27.62203519510329,13.085667760043028,2.1108617230407556,6235.170743633519,2019
+2001,32,"(30,35]",HS,85.17631216526397,39.60136295802496,2.1508429458740017,6298.557150538397,2019
+2001,32,"(30,35]",HS,85.17631216526397,39.60136295802496,2.1508429458740017,6295.009882584244,2019
+2001,32,"(30,35]",HS,85.34371843917368,39.60136295802496,2.1550702315380623,6306.485541621441,2019
+2001,32,"(30,35]",HS,85.17631216526397,39.60136295802496,2.1508429458740017,6328.888527285691,2019
+2001,32,"(30,35]",HS,85.17631216526397,41.323161347504296,2.0612244897959187,6329.886882750574,2019
+2001,69,"(65,70]",College,187870.0168324407,538.9228959070352,348.60277464412735,232.6198827127451,2019
+2001,69,"(65,70]",College,187890.10558530988,538.9228959070352,348.64005038991905,205.7612511507222,2019
+2001,69,"(65,70]",College,187987.20122417752,538.9228959070352,348.82021649457903,211.399025465056,2019
+2001,69,"(65,70]",College,187904.16771231827,538.9228959070352,348.6661434119732,238.02261183877985,2019
+2001,69,"(65,70]",College,187893.45371078808,538.9228959070352,348.6462630142177,216.14594743840863,2019
+2001,51,"(50,55]",College,635.9764345830146,120.5258872635542,5.276679135265967,7294.716669096572,2019
+2001,51,"(50,55]",College,634.3023718439174,120.5258872635542,5.262789482369768,6625.437853223564,2019
+2001,51,"(50,55]",College,635.8090283091049,120.5258872635542,5.275290169976347,6189.4548218242935,2019
+2001,51,"(50,55]",College,635.9764345830146,120.5258872635542,5.276679135265967,6935.4862105265875,2019
+2001,51,"(50,55]",College,634.3023718439174,120.5258872635542,5.262789482369768,6655.887540766067,2019
+2001,52,"(50,55]",HS,27047.831675592963,3426.378795063898,7.8939992608402045,18.687378031860785,2019
+2001,52,"(50,55]",HS,15287.54093343535,1980.0681479012476,7.720714536840168,18.95502609227419,2019
+2001,52,"(50,55]",HS,36367.338944146904,938.3801222662435,38.755444708608735,18.767460349100556,2019
+2001,52,"(50,55]",HS,36313.76893649579,2066.1580673752146,17.57550378642023,19.34512905952876,2019
+2001,52,"(50,55]",HS,48956.29074215762,867.7863882975903,56.41514018006124,19.076149558376407,2019
+2001,34,"(30,35]",HS,7.868094873756696,34.43596778958692,0.22848479014247208,3944.5847082186315,2019
+2001,34,"(30,35]",HS,7.61698546289212,34.43596778958692,0.22119272237196766,3906.5429287034954,2019
+2001,34,"(30,35]",HS,7.449579188982402,34.43596778958692,0.21633134385829803,3904.3165283642447,2019
+2001,34,"(30,35]",HS,7.533282325937261,34.43596778958692,0.21876203311513284,3923.8021231751472,2019
+2001,34,"(30,35]",HS,7.700688599846978,34.43596778958692,0.22362341162880245,3918.1972818865993,2019
+2001,40,"(35,40]",College,524.3164498852333,146.35286310574438,3.582550001132528,6669.643093676331,2019
+2001,40,"(35,40]",College,601.4907421576128,146.35286310574438,4.109866588144691,6066.901942408741,2019
+2001,40,"(35,40]",College,584.7501147666412,146.35286310574438,3.9954812113524665,5671.390929699794,2019
+2001,40,"(35,40]",College,460.86947207345065,146.35286310574438,3.149029423089991,6342.4967240007,2019
+2001,40,"(35,40]",College,546.2466717674063,146.35286310574438,3.7323948447303454,6097.912093841386,2019
+2001,23,"(20,25]",HS,-57.68820198928845,49.93215329490103,-1.1553317488348627,6285.007544882811,2019
+2001,23,"(20,25]",HS,-59.56315225707728,49.93215329490103,-1.192881707009414,6291.395765076276,2019
+2001,23,"(20,25]",HS,-56.21502677888294,53.37575007385973,-1.053194132187263,6287.130287927177,2019
+2001,23,"(20,25]",HS,-59.21159908186687,55.097548463339066,-1.07466848767809,6231.598121506861,2019
+2001,23,"(20,25]",HS,-59.39574598316756,51.653951684380374,-1.1498780644333204,6262.538431995637,2019
+2001,58,"(55,60]",College,33663.225401683245,1174.266501624914,28.667449301415907,362.1590030520461,2019
+2001,58,"(55,60]",College,33313.84850803366,1174.266501624914,28.369921531385742,339.5875428979944,2019
+2001,58,"(55,60]",College,33313.346289211935,1174.266501624914,28.369493844126477,356.7743193170114,2019
+2001,58,"(55,60]",College,33475.56296863045,1174.266501624914,28.50763682886976,371.6236564999315,2019
+2001,58,"(55,60]",College,33865.786993114,1174.266501624914,28.83994982932031,357.18387631789835,2019
+2001,62,"(60,65]",College,747.8038255547054,192.84141962168675,3.877817467957533,6477.359695575437,2019
+2001,62,"(60,65]",College,745.9623565416986,184.23242767429,4.049028534002209,6413.740389003381,2019
+2001,62,"(60,65]",College,749.3104820198929,194.5632180111661,3.8512442879973827,6167.004127042232,2019
+2001,62,"(60,65]",College,750.9845447589901,180.7888308953313,4.153932192823222,6396.30574802131,2019
+2001,62,"(60,65]",College,744.2882938026014,177.34523411637264,4.196832790635947,6746.536873001195,2019
+2001,56,"(55,60]",College,139.95164498852333,0.8608991947396729,162.56449749711203,6005.424143825026,2019
+2001,56,"(55,60]",College,139.95164498852333,0.8608991947396729,162.56449749711203,6356.130744275454,2019
+2001,56,"(55,60]",College,139.95164498852333,0.8608991947396729,162.56449749711203,6403.508841962017,2019
+2001,56,"(55,60]",College,139.95164498852333,0.8608991947396729,162.56449749711203,6199.142212377801,2019
+2001,56,"(55,60]",College,139.95164498852333,0.8608991947396729,162.56449749711203,6270.375400237525,2019
+2001,29,"(25,30]",HS,11.132517214996176,25.826975842190187,0.4310422282120396,5203.932763909252,2019
+2001,29,"(25,30]",HS,11.299923488905891,25.826975842190187,0.4375240662302657,5218.594273955462,2019
+2001,29,"(25,30]",HS,11.132517214996176,24.105177452710844,0.46183095879861374,5220.991671277321,2019
+2001,29,"(25,30]",HS,11.316664116296863,25.826975842190187,0.4381722500320883,5223.258127854866,2019
+2001,29,"(25,30]",HS,11.28318286151492,24.105177452710844,0.4680813026019032,5207.633363063775,2019
+2001,60,"(55,60]",College,16784.153022188217,3443.596778958692,4.874018097805159,244.8907549895053,2019
+2001,60,"(55,60]",College,20020.116296863045,3443.596778958692,5.813722564497496,235.69937991085098,2019
+2001,60,"(55,60]",College,17584.355011476666,3443.596778958692,5.106391990758567,245.5275906668638,2019
+2001,60,"(55,60]",College,20843.755164498853,3443.596778958692,6.052902387370041,239.58875832244925,2019
+2001,60,"(55,60]",College,24958.601377199695,3443.596778958692,7.247829226030034,243.66319312651004,2019
+2001,34,"(30,35]",HS,189.16908951798013,65.42833880021514,2.891240905498247,8470.682216567808,2019
+2001,34,"(30,35]",HS,189.16908951798013,65.42833880021514,2.891240905498247,8580.599282076613,2019
+2001,34,"(30,35]",HS,189.16908951798013,65.42833880021514,2.891240905498247,8649.097039639533,2019
+2001,34,"(30,35]",HS,189.0016832440704,65.42833880021514,2.8886822852278944,8466.759538907518,2019
+2001,34,"(30,35]",HS,189.16908951798013,65.42833880021514,2.891240905498247,8571.74853740116,2019
+2001,33,"(30,35]",HS,-35.255761285386384,0.06887193557917384,-511.90315748941083,5549.085090912929,2019
+2001,33,"(30,35]",HS,-35.10509563886764,0.06887193557917384,-509.7155371582595,5529.328598296261,2019
+2001,33,"(30,35]",HS,-35.088355011476665,0.06887193557917384,-509.472468232576,5537.40452314295,2019
+2001,33,"(30,35]",HS,-35.10509563886764,0.06887193557917384,-509.7155371582595,5570.24221855507,2019
+2001,33,"(30,35]",HS,-35.07161438408569,0.06887193557917384,-509.22939930689245,5527.336640690786,2019
+2001,60,"(55,60]",College,3752.4283703136957,222.1119922428356,16.894307832830368,3687.287979209405,2019
+2001,60,"(55,60]",College,4166.959785768937,272.04414553773665,15.317219113582858,3633.9889219487354,2019
+2001,60,"(55,60]",College,3422.102310635042,208.33760512700084,16.425754287369088,3732.726985571312,2019
+2001,60,"(55,60]",College,3529.945432287682,423.56240381191907,8.333944185129184,3619.162569798528,2019
+2001,60,"(55,60]",College,4132.892609028309,387.4046376328528,10.66815470842425,3597.716146931495,2019
+2001,69,"(65,70]",College,4773.673603672532,99.86430658980206,47.80159965742966,3254.2010593292825,2019
+2001,69,"(65,70]",College,4771.999540933436,87.81171786344665,54.34353930251346,3259.8372077980703,2019
+2001,69,"(65,70]",College,4773.673603672532,129.1348792109509,36.96657040174561,3275.3970364209385,2019
+2001,69,"(65,70]",College,4771.999540933436,87.81171786344665,54.34353930251346,3252.228847173108,2019
+2001,69,"(65,70]",College,4773.673603672532,173.90163733741394,27.450423565652674,3237.745490472736,2019
+2001,72,"(70,75]",HS,570.687987758225,309.9237101062822,1.8413821503444148,8420.592434478653,2019
+2001,72,"(70,75]",HS,658.2414690130068,311.6455084957616,2.1121481011877283,7616.30401294758,2019
+2001,72,"(70,75]",HS,667.9510328997704,309.9237101062822,2.1552111410601977,6774.030312199949,2019
+2001,72,"(70,75]",HS,635.3068094873756,309.9237101062822,2.0498812732640226,7730.039014409027,2019
+2001,72,"(70,75]",HS,697.7493496557,309.9237101062822,2.251358404997219,7666.55995390124,2019
+2001,44,"(40,45]",College,121.67087987758225,223.83379063231493,0.5435769082669353,5961.273346240951,2019
+2001,44,"(40,45]",College,84.97542463657231,84.36812108448795,1.007198258587224,6298.924396189178,2019
+2001,44,"(40,45]",College,63.145646518745224,60.2629436317771,1.047835414489246,6361.475992260426,2019
+2001,44,"(40,45]",College,179.37582249426166,158.40545183209983,1.1323841472602165,6072.3231925970695,2019
+2001,44,"(40,45]",College,99.94154552410099,170.45804055845522,0.5863117116486388,6281.856821687618,2019
+2001,49,"(45,50]",HS,275.96924254016835,55.097548463339066,5.0087390498652296,2708.1384591239653,2019
+2001,49,"(45,50]",HS,275.96924254016835,55.097548463339066,5.0087390498652296,2917.516051563441,2019
+2001,49,"(45,50]",HS,275.96924254016835,55.097548463339066,5.0087390498652296,2856.1294964865,2019
+2001,49,"(45,50]",HS,274.46258607498083,55.097548463339066,4.981393795725837,2794.7492458755123,2019
+2001,49,"(45,50]",HS,275.96924254016835,55.097548463339066,5.0087390498652296,2751.661502969251,2019
+2001,43,"(40,45]",College,406.29502677888297,198.00681479012476,2.0519244613349854,5609.851443103738,2019
+2001,43,"(40,45]",College,406.29502677888297,275.48774231669535,1.4748207065845207,5831.449095071608,2019
+2001,43,"(40,45]",College,404.6209640397858,144.63106471626506,2.7976075875093973,5900.137322631544,2019
+2001,43,"(40,45]",College,406.29502677888297,156.68365344262045,2.59309135223652,5714.354810866627,2019
+2001,43,"(40,45]",College,404.6209640397858,184.23242767429,2.1962526855213964,5826.030007763472,2019
+2001,28,"(25,30]",College,107.30742157612855,142.9092663267857,0.7508779824728254,6917.214439313476,2019
+2001,28,"(25,30]",College,105.63335883703137,142.9092663267857,0.7391638173796455,7023.110961403962,2019
+2001,28,"(25,30]",College,108.98148431522571,142.9092663267857,0.7625921475660052,7096.235053898122,2019
+2001,28,"(25,30]",College,105.63335883703137,142.9092663267857,0.7391638173796455,6934.164859316467,2019
+2001,28,"(25,30]",College,107.30742157612855,142.9092663267857,0.7508779824728254,6996.849910291885,2019
+2001,58,"(55,60]",HS,369.70001530221884,123.96948404251289,2.9821856415522188,6210.644227972129,2019
+2001,58,"(55,60]",HS,962.3182249426167,120.5258872635542,7.9843280708509825,6443.987712536045,2019
+2001,58,"(55,60]",HS,255.8637490436113,115.36049209511619,2.2179495284455655,6622.332457398969,2019
+2001,58,"(55,60]",HS,607.4169242540169,110.19509692667813,5.512195562187139,6746.65444980247,2019
+2001,58,"(55,60]",HS,456.75127773527163,117.08229048459552,3.901113275498879,6484.6495191761205,2019
+2001,50,"(45,50]",HS,282.58179035960217,86.08991947396729,3.282402772429727,7167.7121937156535,2019
+2001,50,"(45,50]",HS,311.7104820198929,86.08991947396729,3.620754716981132,7593.284518206316,2019
+2001,50,"(45,50]",HS,209.59265493496557,86.08991947396729,2.4345783596457453,7648.058770510848,2019
+2001,50,"(45,50]",HS,251.2768171384851,86.08991947396729,2.9187716596072395,7397.446638108381,2019
+2001,50,"(45,50]",HS,291.7891354246366,86.08991947396729,3.3893530997304584,7448.2342223895785,2019
+2001,60,"(55,60]",College,7566.763580719205,518.2613152332832,14.600286300190481,313.2379130398481,2019
+2001,60,"(55,60]",College,10139.798010711553,821.2978317816479,12.346066942262842,306.9161349652556,2019
+2001,60,"(55,60]",College,9589.031369548586,683.5539606233003,14.028199559848654,316.60850175098983,2019
+2001,60,"(55,60]",College,11100.710022953328,836.7940172869621,13.265761697178288,308.53994444742,2019
+2001,60,"(55,60]",College,8562.83091048202,685.2757590127796,12.49545281277392,311.3887393874046,2019
+2001,71,"(70,75]",HS,94.1995103289977,39.60136295802496,2.3786936431668644,8879.554218886236,2019
+2001,71,"(70,75]",HS,110.06962509563887,34.43596778958692,3.196356372737774,9793.428091098449,2019
+2001,71,"(70,75]",HS,92.03996939556235,41.323161347504296,2.2273215890129636,9681.25484674385,2019
+2001,71,"(70,75]",HS,87.72088752869166,30.992371010628222,2.8304026012920893,9325.16618505102,2019
+2001,71,"(70,75]",HS,98.60229533282326,29.27057262114888,3.368649346531065,9568.97395221625,2019
+2001,47,"(45,50]",NoHS,4.737597551644989,14.118746793730637,0.3355536876508542,5636.99548431561,2019
+2001,47,"(45,50]",NoHS,5.022188217291507,20.661580673752148,0.24306892568348096,5689.242408891791,2019
+2001,47,"(45,50]",NoHS,4.519969395562356,17.21798389479346,0.26251443973815936,5591.08511328226,2019
+2001,47,"(45,50]",NoHS,5.172853863810253,10.847329853719879,0.47687808276949595,5619.104688286399,2019
+2001,47,"(45,50]",NoHS,4.888263198163735,32.71416940010757,0.14942342378858198,5654.080842700271,2019
+2001,56,"(55,60]",NoHS,-110.0528844682479,58.54114524229776,-1.8799236675802395,7890.419352116131,2019
+2001,56,"(55,60]",NoHS,-80.33827084927314,55.097548463339066,-1.4581097179437812,8274.616222871071,2019
+2001,56,"(55,60]",NoHS,-96.84452945677123,58.54114524229776,-1.654298511857573,8306.387126263553,2019
+2001,56,"(55,60]",NoHS,-118.18882938026015,63.706540410735805,-1.8552071517031083,8093.187235303829,2019
+2001,56,"(55,60]",NoHS,-97.44719204284623,63.706540410735805,-1.5296261798957216,8173.522511830162,2019
+2001,33,"(30,35]",College,-52.548829380260145,67.15013718969449,-0.782557289969689,8904.030443286016,2019
+2001,33,"(30,35]",College,-41.50001530221883,58.54114524229776,-0.7089033726698227,8960.023655390101,2019
+2001,33,"(30,35]",College,-28.040550879877582,67.15013718969449,-0.41757994925110825,9045.419019882693,2019
+2001,33,"(30,35]",College,-33.66540168324407,58.54114524229776,-0.5750724818229178,8928.4110352956,2019
+2001,33,"(30,35]",College,-59.060933435348126,55.097548463339066,-1.0719339622641508,8897.017455284626,2019
+2001,46,"(45,50]",HS,445.300688599847,139.46566954782702,3.1929053941632555,4840.436820184656,2019
+2001,46,"(45,50]",HS,445.4680948737567,141.18746793730637,3.155153225579233,5045.379327168806,2019
+2001,46,"(45,50]",HS,445.4680948737567,141.18746793730637,3.155153225579233,5068.282288593105,2019
+2001,46,"(45,50]",HS,445.4680948737567,139.46566954782702,3.194105734537001,4930.390888650124,2019
+2001,46,"(45,50]",HS,406.9646518745218,141.18746793730637,2.8824417479831324,4996.038344334285,2019
+2001,51,"(50,55]",College,32242.280948737567,1279.296203383154,25.20313971343889,15.155099998285817,2019
+2001,51,"(50,55]",College,14996.75623565417,2152.2479868491823,6.967949942241047,15.345875101421958,2019
+2001,51,"(50,55]",College,31861.76648814078,650.8397912231927,48.95485328003618,15.207336106878685,2019
+2001,51,"(50,55]",College,24997.774445294566,1027.9136385191694,24.318944226974946,15.6870915414648,2019
+2001,51,"(50,55]",College,137084.1429227238,769.6438800972677,178.11373086653933,16.088342421621903,2019
+2001,57,"(55,60]",HS,335.0803978576894,51.653951684380374,6.487023488640739,6540.598982756363,2019
+2001,57,"(55,60]",HS,335.0803978576894,51.653951684380374,6.487023488640739,6836.1069731819825,2019
+2001,57,"(55,60]",HS,335.0803978576894,51.653951684380374,6.487023488640739,6874.914346118012,2019
+2001,57,"(55,60]",HS,335.0803978576894,51.653951684380374,6.487023488640739,6708.346724639431,2019
+2001,57,"(55,60]",HS,335.0803978576894,51.653951684380374,6.487023488640739,6764.642398655206,2019
+2001,31,"(30,35]",College,47.878194338179036,108.47329853719879,0.4413823031458765,8384.259078464722,2019
+2001,31,"(30,35]",College,49.5522570772762,110.19509692667813,0.4496775125144397,8406.305553778073,2019
+2001,31,"(30,35]",College,47.71078806426932,108.47329853719879,0.4398390083796322,8478.848674143524,2019
+2001,31,"(30,35]",College,47.71078806426932,108.47329853719879,0.4398390083796322,8350.984510631883,2019
+2001,31,"(30,35]",College,47.878194338179036,110.19509692667813,0.43448570465922215,8400.661250525603,2019
+2001,32,"(30,35]",College,1456.0997704667177,191.1196212322074,7.618787443585286,10800.099565690167,2019
+2001,32,"(30,35]",College,1456.2671767406275,191.1196212322074,7.619663367641804,10698.024556980574,2019
+2001,32,"(30,35]",College,1456.0997704667177,191.1196212322074,7.618787443585286,10288.144073263953,2019
+2001,32,"(30,35]",College,1456.0997704667177,191.1196212322074,7.618787443585286,10672.497103391346,2019
+2001,32,"(30,35]",College,1456.0997704667177,191.1196212322074,7.618787443585286,11253.990404407481,2019
+2001,52,"(50,55]",College,505.7343534812548,136.02207276886833,3.7180315164040296,9243.072070931576,2019
+2001,52,"(50,55]",College,505.9017597551645,136.02207276886833,3.7192622451416675,9165.462085221483,2019
+2001,52,"(50,55]",College,505.9017597551645,136.02207276886833,3.7192622451416675,8801.081440870514,2019
+2001,52,"(50,55]",College,505.7343534812548,136.02207276886833,3.7180315164040296,9140.546267755304,2019
+2001,52,"(50,55]",College,504.06029074215763,136.02207276886833,3.705724229027651,9636.801106672629,2019
+2001,21,"(20,25]",HS,66.81184391736802,75.75912913709122,0.881898256729793,7564.305316041345,2019
+2001,21,"(20,25]",HS,66.67791889824024,68.87193557917384,0.9681435309973044,7665.656464556303,2019
+2001,21,"(20,25]",HS,66.62769701606733,44.76675812646299,1.4883297295696218,7727.366104318431,2019
+2001,21,"(20,25]",HS,66.47703136954858,60.2629436317771,1.1031162330161175,7518.443585568733,2019
+2001,21,"(20,25]",HS,66.5942157612854,56.819346852818406,1.1720341652956212,7647.252477720669,2019
+2001,39,"(35,40]",College,-152.0551185921959,61.984742021256444,-2.453105613314509,9835.946007741752,2019
+2001,39,"(35,40]",College,-154.44902830910482,70.59373396865318,-2.187857471566629,10085.062013432278,2019
+2001,39,"(35,40]",College,-172.093649579189,61.984742021256444,-2.776387284473538,10181.103007174494,2019
+2001,39,"(35,40]",College,-144.2205049732211,75.75912913709122,-1.903671631602898,10047.286636402081,2019
+2001,39,"(35,40]",College,-169.733221117062,61.984742021256444,-2.7383064861164597,10038.826299197875,2019
+2001,33,"(30,35]",NoHS,-19.251721499617446,74.03733074761188,-0.2600272228241889,5811.970828282379,2019
+2001,33,"(30,35]",NoHS,-19.084315225707726,74.03733074761188,-0.25776611653876114,5837.1676854194775,2019
+2001,33,"(30,35]",NoHS,-19.084315225707726,74.03733074761188,-0.25776611653876114,5758.449710477907,2019
+2001,33,"(30,35]",NoHS,-19.251721499617446,74.03733074761188,-0.2600272228241889,5850.573964322812,2019
+2001,33,"(30,35]",NoHS,-19.251721499617446,74.03733074761188,-0.2600272228241889,5837.837863807055,2019
+2001,55,"(50,55]",NoHS,0.008370313695485847,11.019509692667812,7.595903927608782e-4,4880.9823385857635,2019
+2001,55,"(50,55]",NoHS,0.016740627390971693,10.847329853719879,0.0015432947662443236,4897.649991560546,2019
+2001,55,"(50,55]",NoHS,0.016740627390971693,11.019509692667812,0.0015191807855217563,4856.030359243418,2019
+2001,55,"(50,55]",NoHS,0.016740627390971693,11.019509692667812,0.0015191807855217563,4871.415419259663,2019
+2001,55,"(50,55]",NoHS,0.016740627390971693,11.019509692667812,0.0015191807855217563,4908.471492598917,2019
+2001,38,"(35,40]",HS,32.409854628921195,144.63106471626506,0.22408640005867575,5690.599168339237,2019
+2001,38,"(35,40]",HS,45.86931905126244,142.9092663267857,0.32096812355312665,5622.309423176926,2019
+2001,38,"(35,40]",HS,51.72853863810253,144.63106471626506,0.35765856207712193,5661.293129693086,2019
+2001,38,"(35,40]",HS,61.10328997704667,144.63106471626506,0.4224769422593835,5656.847824993926,2019
+2001,38,"(35,40]",HS,38.00122417750574,144.63106471626506,0.26274593395309603,5668.861058060249,2019
+2001,27,"(25,30]",HS,8.688385615914306,43.04495973698364,0.20184443588756257,6300.618877380329,2019
+2001,27,"(25,30]",HS,8.604682478959448,43.04495973698364,0.19989988448209473,6338.4072474228215,2019
+2001,27,"(25,30]",HS,8.772088752869166,43.04495973698364,0.20378898729303044,6381.425713592309,2019
+2001,27,"(25,30]",HS,8.604682478959448,43.04495973698364,0.19989988448209473,6275.924672048198,2019
+2001,27,"(25,30]",HS,8.437276205049733,43.04495973698364,0.19601078167115904,6322.864134320245,2019
+2001,72,"(70,75]",College,0,27.548774231669533,0,8308.53920416493,2019
+2001,72,"(70,75]",College,0,25.826975842190187,0,8531.173521769611,2019
+2001,72,"(70,75]",College,0,27.548774231669533,0,8668.543687060817,2019
+2001,72,"(70,75]",College,0,25.826975842190187,0,8465.736244142352,2019
+2001,72,"(70,75]",College,0,25.826975842190187,0,8302.016722872311,2019
+2001,68,"(65,70]",HS,0,14.63528631057444,0,6324.944412423695,2019
+2001,68,"(65,70]",HS,0,14.63528631057444,0,6288.002317045398,2019
+2001,68,"(65,70]",HS,0,14.63528631057444,0,6287.907924366221,2019
+2001,68,"(65,70]",HS,0,14.63528631057444,0,6299.8495204673,2019
+2001,68,"(65,70]",HS,0,14.63528631057444,0,6303.7534025016075,2019
+2001,45,"(40,45]",NoHS,13.258576893649579,20.661580673752148,0.6417019638043897,5307.054352889779,2019
+2001,45,"(40,45]",HS,12.254139250191278,14.63528631057444,0.8373009581190967,5330.118758571581,2019
+2001,45,"(40,45]",HS,8.135944912012242,18.939782284272805,0.4295690832078972,5319.442633184333,2019
+2001,45,"(40,45]",HS,8.922754399387912,60.2629436317771,0.14806369987348042,5280.6124550265085,2019
+2001,45,"(40,45]",College,5.407222647283857,29.27057262114888,0.18473238351944551,5580.443141660158,2019
+2001,50,"(45,50]",College,485.9804131599082,172.17983894793457,2.8225163650365808,6166.030698041842,2019
+2001,50,"(45,50]",College,485.9804131599082,172.17983894793457,2.8225163650365808,5600.307050171477,2019
+2001,50,"(45,50]",College,485.9804131599082,172.17983894793457,2.8225163650365808,5231.782146823012,2019
+2001,50,"(45,50]",College,485.9804131599082,172.17983894793457,2.8225163650365808,5862.382710643238,2019
+2001,50,"(45,50]",College,485.9804131599082,172.17983894793457,2.8225163650365808,5626.045364166351,2019
+2001,65,"(60,65]",College,1697.834429992349,206.6158067375215,8.217350147606213,756.3093569758493,2019
+2001,65,"(60,65]",College,1697.834429992349,206.6158067375215,8.217350147606213,735.3553172428062,2019
+2001,65,"(60,65]",College,1697.834429992349,206.6158067375215,8.217350147606213,794.791356736737,2019
+2001,65,"(60,65]",College,1697.834429992349,206.6158067375215,8.217350147606213,753.7184012035389,2019
+2001,65,"(60,65]",College,1697.834429992349,206.6158067375215,8.217350147606213,753.2883720263213,2019
+2001,54,"(50,55]",College,18700.11782708493,688.7193557917383,27.152014343473244,19.51970971410038,2019
+2001,54,"(50,55]",College,18756.198928844682,688.7193557917383,27.233442433577206,19.888619895860824,2019
+2001,54,"(50,55]",College,18700.95485845448,688.7193557917383,27.15322968810166,19.92043569223572,2019
+2001,54,"(50,55]",College,18614.071002295335,688.7193557917383,27.027076915671934,20.398950336721853,2019
+2001,54,"(50,55]",College,18767.917368018363,688.7193557917383,27.25045725837505,20.493829541500492,2019
+2001,46,"(45,50]",HS,371.6419280795715,55.097548463339066,6.745162687716595,621.7774612266234,2019
+2001,46,"(45,50]",HS,371.6419280795715,55.097548463339066,6.745162687716595,672.7022299528296,2019
+2001,46,"(45,50]",HS,371.6419280795715,55.097548463339066,6.745162687716595,654.5245096934593,2019
+2001,46,"(45,50]",HS,371.6419280795715,55.097548463339066,6.745162687716595,645.8308446507359,2019
+2001,46,"(45,50]",HS,371.6419280795715,55.097548463339066,6.745162687716595,637.2045361116982,2019
+2001,48,"(45,50]",HS,680.0042846212701,118.80408887407486,5.723744789137969,8890.936531931504,2019
+2001,48,"(45,50]",HS,1141.5433817903595,120.5258872635542,9.471354309918038,8072.789877504462,2019
+2001,48,"(45,50]",HS,653.7214996174446,117.08229048459552,5.583436204670548,7537.134164895518,2019
+2001,48,"(45,50]",HS,1007.4509563886763,120.5258872635542,8.358793112932505,8452.554442307577,2019
+2001,48,"(45,50]",HS,611.7862280030605,118.80408887407486,5.149538486436413,8112.3706340228455,2019
+2001,87,"(85,90]",NoHS,645.5185921958683,127.41308082147161,5.066344742894607,8881.444187649282,2019
+2001,87,"(85,90]",NoHS,482.2974751338944,87.81171786344665,5.4924045089734,10073.061984949247,2019
+2001,87,"(85,90]",NoHS,454.08951798010713,92.97711303188467,4.883884895677348,10263.714903253087,2019
+2001,87,"(85,90]",NoHS,484.3900535577659,56.819346852818406,8.525090138971542,10060.319345351563,2019
+2001,87,"(85,90]",NoHS,443.8777352716144,132.5784759899096,3.3480376958428564,10178.034599302237,2019
+2001,48,"(45,50]",HS,1.2907023718439172,12.396948404251289,0.10411452316775767,4941.1873883128865,2019
+2001,48,"(45,50]",HS,1.4581086457536343,12.396948404251289,0.11761835237239551,4935.687372022663,2019
+2001,48,"(45,50]",HS,1.4581086457536343,12.396948404251289,0.11761835237239551,4945.422367583133,2019
+2001,48,"(45,50]",HS,1.4581086457536343,12.396948404251289,0.11761835237239551,4934.087186462933,2019
+2001,48,"(45,50]",HS,1.2907023718439172,12.396948404251289,0.10411452316775767,4940.938550859393,2019
+2001,52,"(50,55]",HS,552.4407039020658,223.83379063231493,2.4680844761707297,5416.887600633603,2019
+2001,52,"(50,55]",HS,556.9606732976282,223.83379063231493,2.4882778946121267,5484.190688731643,2019
+2001,52,"(50,55]",HS,557.630298393267,223.83379063231493,2.4912695121590005,5505.542348016516,2019
+2001,52,"(50,55]",HS,554.7843917368018,223.83379063231493,2.478555137584787,5474.163621943642,2019
+2001,52,"(50,55]",HS,555.1192042846213,223.83379063231493,2.4800509463582245,5477.720765559295,2019
+2001,57,"(55,60]",College,8663.27467482785,933.2147270978055,9.28325970783774,1449.9040055909104,2019
+2001,57,"(55,60]",College,8661.600612088752,931.4929287083262,9.298621970324067,1465.2301303650913,2019
+2001,57,"(55,60]",College,8661.600612088752,931.4929287083262,9.298621970324067,1465.1160381574273,2019
+2001,57,"(55,60]",College,8661.600612088752,931.4929287083262,9.298621970324067,1465.1203452606483,2019
+2001,57,"(55,60]",College,8661.600612088752,931.4929287083262,9.298621970324067,1452.419766429153,2019
+2001,40,"(35,40]",HS,-23.756624330527927,132.5784759899096,-0.17918914931814434,6125.374040844637,2019
+2001,40,"(35,40]",HS,-21.93189594491201,130.8566776004303,-0.16760242080943596,6308.939759312147,2019
+2001,40,"(35,40]",HS,-18.784657995409336,130.8566776004303,-0.14355139026812314,6360.351649832939,2019
+2001,40,"(35,40]",HS,-18.73443611323642,130.8566776004303,-0.14316759722757028,6199.833758274149,2019
+2001,40,"(35,40]",HS,-19.52124560061209,130.8566776004303,-0.1491803548628985,6311.219593730203,2019
+2001,43,"(40,45]",College,2693.5167253251725,86.08991947396729,31.28724874855603,983.2938419334308,2019
+2001,43,"(40,45]",College,2735.4185156847743,86.08991947396729,31.77396996534463,988.3403355364848,2019
+2001,43,"(40,45]",College,2691.892884468248,86.08991947396729,31.268386599922994,992.6177338040918,2019
+2001,43,"(40,45]",College,2733.911859219587,86.08991947396729,31.756469002695418,986.950589024905,2019
+2001,43,"(40,45]",College,2695.2410099464423,86.08991947396729,31.30727762803235,979.8991214082192,2019
+2001,77,"(75,80]",College,1455.932364192808,120.5258872635542,12.079831123824196,9140.835449557584,2019
+2001,77,"(75,80]",College,1457.4390206579956,120.5258872635542,12.092331811430775,8247.378259739107,2019
+2001,77,"(75,80]",College,1457.6064269319052,120.5258872635542,12.093720776720392,7803.707067120205,2019
+2001,77,"(75,80]",College,1455.7649579188983,120.5258872635542,12.078442158534575,8723.698813748602,2019
+2001,77,"(75,80]",College,1457.4390206579956,120.5258872635542,12.092331811430775,8384.640683225689,2019
+2001,37,"(35,40]",College,33675.847834736036,1095.0637757088641,30.752407833906073,9.610553906013468,2019
+2001,37,"(35,40]",College,17603.5732517215,1194.9280822986661,14.731910240035331,9.452073028249506,2019
+2001,37,"(35,40]",College,59355.31736801836,1623.655881279023,36.55658692977581,9.918282556157946,2019
+2001,37,"(35,40]",College,43385.83023718439,3047.583149378442,14.236143235676105,10.050999098434168,2019
+2001,37,"(35,40]",College,38424.29331293038,3529.686698432659,10.886035106173166,9.656308125742381,2019
+2001,63,"(60,65]",College,5316.823259372609,258.2697584219018,20.58631754588628,1300.1224069660386,2019
+2001,63,"(60,65]",College,5129.328232593726,258.2697584219018,19.860351687844954,1292.0578374179195,2019
+2001,63,"(60,65]",College,5335.237949502678,258.2697584219018,20.65761776408677,1289.3153251602328,2019
+2001,63,"(60,65]",College,5064.039785768937,258.2697584219018,19.607560005134133,1260.7314692254013,2019
+2001,63,"(60,65]",College,5053.995409334353,258.2697584219018,19.568668977024775,1280.0744600850965,2019
+2001,67,"(65,70]",HS,263218.626503443,10003.648642875,26.312262245527574,30.992217645997158,2019
+2001,67,"(65,70]",HS,267420.64116296865,8126.888398342512,32.90566180501622,33.75740560388185,2019
+2001,67,"(65,70]",HS,162945.71700076511,8867.261705818632,18.376103289456466,32.94195787638806,2019
+2001,67,"(65,70]",HS,267911.9785768937,10744.021950351118,24.935911320261052,32.37450870997933,2019
+2001,67,"(65,70]",HS,272515.6511094109,7214.335251918458,37.77418730810198,34.19505039073404,2019
+2001,71,"(70,75]",HS,0,12.052588726355422,0,6270.136367809392,2019
+2001,71,"(70,75]",HS,0,12.052588726355422,0,6334.065546608285,2019
+2001,71,"(70,75]",HS,0,12.052588726355422,0,6171.799969241199,2019
+2001,71,"(70,75]",HS,0,12.052588726355422,0,6180.009991752124,2019
+2001,71,"(70,75]",HS,0,12.052588726355422,0,6279.838512921364,2019
+2001,60,"(55,60]",HS,386.4908645753634,48.21035490542169,8.016760410363604,6282.257512303079,2019
+2001,60,"(55,60]",HS,387.2776740627391,48.21035490542169,8.03308075251664,6633.852506845449,2019
+2001,60,"(55,60]",HS,386.75871461361896,48.21035490542169,8.022316271522085,6667.233874177963,2019
+2001,60,"(55,60]",HS,387.09352716143843,48.21035490542169,8.029261097970185,6466.057485003973,2019
+2001,60,"(55,60]",HS,386.95960214231064,48.21035490542169,8.026483167390944,6562.137184230291,2019
+2001,88,"(85,90]",NoHS,336.15179801071156,27.548774231669533,12.202060069310743,7333.7328893540125,2019
+2001,88,"(85,90]",NoHS,336.15179801071156,27.548774231669533,12.202060069310743,7603.865932990248,2019
+2001,88,"(85,90]",NoHS,336.15179801071156,27.548774231669533,12.202060069310743,7761.475208408838,2019
+2001,88,"(85,90]",NoHS,337.8258607498087,29.27057262114888,11.541484518335636,7547.738370581031,2019
+2001,88,"(85,90]",NoHS,336.15179801071156,27.548774231669533,12.202060069310743,7659.520707424688,2019
+2001,41,"(40,45]",HS,-10.630298393267024,11.536049209511617,-0.9214851809493158,5197.531828909731,2019
+2001,41,"(40,45]",HS,-12.639173680183626,12.74130808214716,-0.9919839940055573,5187.9992995549055,2019
+2001,41,"(40,45]",HS,-4.084713083397093,11.019509692667812,-0.37068011166730847,5192.958330767831,2019
+2001,41,"(40,45]",HS,-8.11920428462127,11.70822904845955,-0.6934613468028722,5162.780637288337,2019
+2001,41,"(40,45]",HS,-10.128079571537874,12.052588726355422,-0.8403240002200341,5220.7733810884765,2019
+2001,50,"(45,50]",College,234516.77061973987,41495.341186452235,5.65164097738054,27.81434736108419,2019
+2001,50,"(45,50]",College,236500.03274674827,41495.341186452235,5.69943579169709,29.012048822701065,2019
+2001,50,"(45,50]",College,234257.79311400154,41495.341186452235,5.645399854923571,29.055988145749858,2019
+2001,50,"(45,50]",College,234966.7586840092,41495.341186452235,5.662485280654186,28.562406279448517,2019
+2001,50,"(45,50]",College,235492.58179035963,41495.341186452235,5.675157139501851,30.193460229196223,2019
+2001,76,"(75,80]",NoHS,514.2720734506503,58.54114524229776,8.78479693764298,7020.371068407655,2019
+2001,76,"(75,80]",NoHS,497.5314460596787,111.91689531615746,4.445543674654187,6337.9088369290985,2019
+2001,76,"(75,80]",NoHS,475.26641162968633,94.69891142136402,5.018710400112018,5997.538622655064,2019
+2001,76,"(75,80]",NoHS,469.23978576893654,49.93215329490103,9.397547568148926,6701.479734680057,2019
+2001,76,"(75,80]",NoHS,488.49150726855396,94.69891142136402,5.158364546504709,6440.013951081318,2019
+2001,22,"(20,25]",NoHS,0,12.913487921095093,0,5070.438688317483,2019
+2001,22,"(20,25]",NoHS,0,12.913487921095093,0,5023.749643278474,2019
+2001,22,"(20,25]",NoHS,0,12.913487921095093,0,5023.564774204192,2019
+2001,22,"(20,25]",NoHS,0,12.913487921095093,0,5009.718483589427,2019
+2001,22,"(20,25]",NoHS,0,12.913487921095093,0,5002.509086895746,2019
+2001,32,"(30,35]",College,3565.2514154552414,223.83379063231493,15.92811972394183,3687.287979209405,2019
+2001,32,"(30,35]",College,3636.5664881407806,223.83379063231493,16.246726992683868,3633.9889219487354,2019
+2001,32,"(30,35]",College,3591.3667941851572,223.83379063231493,16.0447928082699,3732.726985571312,2019
+2001,32,"(30,35]",College,3635.5620504973226,223.83379063231493,16.24223956636356,3619.162569798528,2019
+2001,32,"(30,35]",College,3987.9522570772765,223.83379063231493,17.816578300405798,3597.716146931495,2019
+2001,77,"(75,80]",HS,45333.46830910482,516.5395168438037,87.76379508407138,46.864823675000224,2019
+2001,77,"(75,80]",HS,47087.953022188216,516.5395168438037,91.16040784238224,47.160924533994866,2019
+2001,77,"(75,80]",HS,45834.06328997704,516.5395168438037,88.73292709536645,47.074999622675264,2019
+2001,77,"(75,80]",HS,45186.35167559296,516.5395168438037,87.47898312155051,48.5380988148029,2019
+2001,77,"(75,80]",HS,45583.97505738332,516.5395168438037,88.24876620459506,47.84239726114928,2019
+2001,38,"(35,40]",College,956.3920428462128,478.65995227525815,1.998061543064355,465.6432170694631,2019
+2001,38,"(35,40]",College,931.2811017597552,478.65995227525815,1.9456006238520926,460.4582623947711,2019
+2001,38,"(35,40]",College,941.3254781943382,478.65995227525815,1.9665849915369975,443.673798094828,2019
+2001,38,"(35,40]",College,954.7179801071156,478.65995227525815,1.9945641484502041,460.70663548775127,2019
+2001,38,"(35,40]",College,956.3920428462128,478.65995227525815,1.998061543064355,485.57751027523574,2019
+2001,66,"(65,70]",College,3127.1491966335116,383.96104085389413,8.144444003170266,1120.264066971908,2019
+2001,66,"(65,70]",College,3128.8232593726093,383.96104085389413,8.148803983900017,1107.5945104166717,2019
+2001,66,"(65,70]",College,3128.8232593726093,383.96104085389413,8.148803983900017,1169.741087533725,2019
+2001,66,"(65,70]",College,3128.8232593726093,383.96104085389413,8.148803983900017,1137.367402920811,2019
+2001,66,"(65,70]",College,3128.8232593726093,383.96104085389413,8.148803983900017,1137.8529248922491,2019
+2001,56,"(55,60]",HS,120.11400153022188,20.661580673752148,5.813398472596586,9600.583565480296,2019
+2001,56,"(55,60]",HS,114.20456006120888,20.661580673752148,5.527387370042357,10031.919068733443,2019
+2001,56,"(55,60]",HS,113.78604437643459,20.661580673752148,5.507131626235401,10075.556629556351,2019
+2001,56,"(55,60]",HS,122.15635807192044,20.661580673752148,5.912246502374535,9932.57413682557,2019
+2001,56,"(55,60]",HS,125.43752104055089,20.661580673752148,6.071051533821077,9850.589745504261,2019
+2001,59,"(55,60]",College,3653.6419280795717,380.51744407493544,9.601772494193613,227.74219449503715,2019
+2001,59,"(55,60]",College,3288.02662586075,399.4572263592082,8.231235809222843,127.74212640000027,2019
+2001,59,"(55,60]",College,3615.640703902066,404.6226215276463,8.935834309637142,230.40040157791972,2019
+2001,59,"(55,60]",College,4234.54169854629,259.9915568113812,16.287227748777884,224.3495211171979,2019
+2001,59,"(55,60]",College,4506.576893649579,377.0738472959767,11.9514437979896,226.53181854302449,2019
+2001,34,"(30,35]",HS,381.0166794185157,60.2629436317771,6.322569998349745,8051.294855027851,2019
+2001,34,"(30,35]",HS,381.0166794185157,60.2629436317771,6.322569998349745,7303.17264148699,2019
+2001,34,"(30,35]",HS,381.0166794185157,60.2629436317771,6.322569998349745,6829.045139273298,2019
+2001,34,"(30,35]",HS,381.0166794185157,60.2629436317771,6.322569998349745,7611.892247913658,2019
+2001,34,"(30,35]",HS,381.0166794185157,60.2629436317771,6.322569998349745,7355.960955313474,2019
+2001,44,"(40,45]",HS,680.673909716909,67.15013718969449,10.136597454656753,8356.879940082214,2019
+2001,44,"(40,45]",HS,684.189441469013,80.92452430552926,8.454661270369247,7597.1840233757375,2019
+2001,44,"(40,45]",HS,635.4742157612854,61.984742021256444,10.252107132161042,7101.224367482644,2019
+2001,44,"(40,45]",HS,598.8122417750574,82.64632269500859,7.245479559748428,7945.220440177718,2019
+2001,44,"(40,45]",HS,672.6384085692426,51.653951684380374,13.022012578616355,7640.02100065946,2019
+2001,67,"(65,70]",NoHS,119.77918898240246,16.87362421689759,7.098604748021658,8426.388176638691,2019
+2001,67,"(65,70]",NoHS,118.12186687069625,11.191689531615747,10.554426705370101,8328.249541218138,2019
+2001,67,"(65,70]",NoHS,122.35724560061209,18.939782284272805,6.46033010116568,8520.088452872971,2019
+2001,67,"(65,70]",NoHS,116.29713848508034,14.63528631057444,7.946352125755963,8450.999736670694,2019
+2001,67,"(65,70]",NoHS,129.07023718439174,12.396948404251289,10.411452316775769,8309.872413433452,2019
+2001,45,"(40,45]",College,26200.086304514156,1842.3242767429003,14.221213189913593,20.82908321604902,2019
+2001,45,"(40,45]",College,26524.854475899007,1842.3242767429003,14.397494952839184,21.450074672294114,2019
+2001,45,"(40,45]",College,23655.510941086457,1842.3242767429003,12.840036490702785,21.32885728986937,2019
+2001,45,"(40,45]",College,23329.068706962513,1842.3242767429003,12.662846058896138,22.05269196642423,2019
+2001,45,"(40,45]",College,25794.96312165264,1842.3242767429003,14.001315320697135,22.04111778361503,2019
+2001,49,"(45,50]",College,400.1009946442234,258.2697584219018,1.5491592863560522,6761.819994229525,2019
+2001,49,"(45,50]",College,396.0832440703902,258.2697584219018,1.5336028751123094,6139.595284127479,2019
+2001,49,"(45,50]",College,615.2180566182097,258.2697584219018,2.382075471698114,5732.213283982263,2019
+2001,49,"(45,50]",College,994.0082325937261,258.2697584219018,3.848720960082147,6428.417459177661,2019
+2001,49,"(45,50]",College,655.8977811782709,258.2697584219018,2.539584135541009,6169.697619224746,2019
+2001,51,"(50,55]",College,157860.93557765876,2961.493229904475,53.30450665347315,17.906967177239512,2019
+2001,51,"(50,55]",College,149837.15286916602,2892.621294325301,51.79978214331555,19.435458881919818,2019
+2001,51,"(50,55]",College,119707.5390971691,3787.9564568545607,31.602142332061472,19.199605180850785,2019
+2001,51,"(50,55]",College,150245.79158377968,3770.738472959767,39.8451901825605,18.74594597572281,2019
+2001,51,"(50,55]",College,143542.67697016065,2823.7493587461267,50.83407156005522,19.786755859520692,2019
+2001,50,"(45,50]",College,127.06136189747514,86.08991947396729,1.4759145167500964,4540.925805044555,2019
+2001,50,"(45,50]",College,128.7354246365723,86.08991947396729,1.4953600308047748,4555.573954067644,2019
+2001,50,"(45,50]",College,130.40948737566947,86.08991947396729,1.5148055448594533,4562.38669160694,2019
+2001,50,"(45,50]",College,130.40948737566947,86.08991947396729,1.5148055448594533,4542.885543782155,2019
+2001,50,"(45,50]",College,128.7354246365723,86.08991947396729,1.4953600308047748,4538.628218261929,2019
+2001,43,"(40,45]",College,14589.28936495792,1188.0408887407486,12.28012394457373,10.802859972264065,2019
+2001,43,"(40,45]",College,60766.30114766641,1205.258872635542,50.41763435832554,10.885853919327733,2019
+2001,43,"(40,45]",College,16343.874521805663,1244.8602355935673,13.129083936087547,11.096688211252678,2019
+2001,43,"(40,45]",College,37391.36312165264,1444.5888487731713,25.883740659778425,11.208984887044869,2019
+2001,43,"(40,45]",College,22690.07895944912,1144.9959290037648,19.816733304188467,10.445347271925723,2019
+2001,50,"(45,50]",College,-39.507880642693195,80.92452430552926,-0.4882065230749064,6902.148761526247,2019
+2001,50,"(45,50]",College,-41.18194338179036,80.92452430552926,-0.5088932401543516,7011.379681797664,2019
+2001,50,"(45,50]",College,-39.507880642693195,80.92452430552926,-0.4882065230749064,7025.81827065001,2019
+2001,50,"(45,50]",College,-39.507880642693195,80.92452430552926,-0.4882065230749064,6975.475044370653,2019
+2001,50,"(45,50]",College,-41.18194338179036,80.92452430552926,-0.5088932401543516,6990.62873734333,2019
+2001,42,"(40,45]",College,13.241836266258607,61.984742021256444,0.21363057801737048,5145.149429704942,2019
+2001,42,"(40,45]",College,13.141392501912778,60.2629436317771,0.21806755047032292,5153.116211463953,2019
+2001,42,"(40,45]",College,8.470757459831676,61.984742021256444,0.13665875155093485,5176.046129604862,2019
+2001,42,"(40,45]",College,10.864667176740628,61.984742021256444,0.17527970307619906,5132.8889012969175,2019
+2001,42,"(40,45]",College,8.085723029839327,60.2629436317771,0.1341740469772815,5184.655639308721,2019
+2001,64,"(60,65]",HS,1101.8680948737567,120.5258872635542,9.142169536278123,1900.2201045472052,2019
+2001,64,"(60,65]",HS,976.313389441469,120.5258872635542,8.100445569063206,1875.9116921735845,2019
+2001,64,"(60,65]",HS,1170.3372609028308,120.5258872635542,9.71025633973266,1806.7500093538038,2019
+2001,64,"(60,65]",HS,847.2431522570773,120.5258872635542,7.029553330766269,1872.1444511465118,2019
+2001,64,"(60,65]",HS,927.7655700076511,120.5258872635542,7.697645635073437,1981.3591767809162,2019
+2001,52,"(50,55]",HS,2331.718286151492,325.41989561159636,7.16526038387802,2221.273799665282,2019
+2001,52,"(50,55]",HS,1965.567283856159,296.1493229904475,6.63708180727315,2258.7784236047833,2019
+2001,52,"(50,55]",HS,1956.6445294567714,218.6683954638769,8.947998750830003,2834.0854178703066,2019
+2001,52,"(50,55]",HS,1197.8086304514154,303.0365165483649,3.952687432176987,4775.89518687786,2019
+2001,52,"(50,55]",HS,1336.1699158377965,196.28501640064542,6.807294516614988,4583.3587300769,2019
+2001,59,"(55,60]",College,327.614078041316,228.99918580075305,1.4306342483084875,8808.708800166085,2019
+2001,59,"(55,60]",College,310.8734506503443,228.99918580075305,1.3575308120127036,8000.567505851267,2019
+2001,59,"(55,60]",College,317.56970160673296,228.99918580075305,1.3867721865310172,7484.661658989804,2019
+2001,59,"(55,60]",College,304.17719969395563,227.27738741127362,1.3383522362632876,8379.432104414998,2019
+2001,59,"(55,60]",College,307.35791889824026,228.99918580075305,1.3421790903905892,8053.66102862133,2019
+2001,73,"(70,75]",HS,255.96419280795715,20.661580673752148,12.388412912334745,8106.239012398952,2019
+2001,73,"(70,75]",HS,255.96419280795715,20.661580673752148,12.388412912334745,9053.58928639135,2019
+2001,73,"(70,75]",HS,255.96419280795715,20.661580673752148,12.388412912334745,8965.705153817671,2019
+2001,73,"(70,75]",HS,255.96419280795715,20.661580673752148,12.388412912334745,8567.907251599467,2019
+2001,73,"(70,75]",HS,255.96419280795715,20.661580673752148,12.388412912334745,8818.935161818095,2019
+2001,56,"(55,60]",College,32718.049579188984,1537.5659618050558,21.27911933012551,170.70316365473857,2019
+2001,56,"(55,60]",College,27078.96924254017,828.1850253395654,32.6967626967627,159.69056269811,2019
+2001,56,"(55,60]",College,7864.512379495027,661.1705815600687,11.894831075118727,172.1157236483978,2019
+2001,56,"(55,60]",College,9821.558684009182,526.8703071806799,18.641321308397572,169.53909477072477,2019
+2001,56,"(55,60]",College,6132.4266258607495,556.1408798018288,11.026750322770615,163.31319795449969,2019
+2001,40,"(35,40]",HS,192.7181025248661,82.64632269500859,2.3318412270568607,6517.086802643669,2019
+2001,40,"(35,40]",HS,160.92765110941087,284.09673426409205,0.5664537169928006,6689.918468235705,2019
+2001,40,"(35,40]",HS,138.88024483550117,75.75912913709122,1.8331816431546892,6756.778869475709,2019
+2001,40,"(35,40]",HS,257.82240244835504,122.24768565303354,2.1090166334936846,6595.981251521005,2019
+2001,40,"(35,40]",HS,220.18947207345067,203.1722099585628,1.0837578235643475,6704.2828116098435,2019
+2001,59,"(55,60]",College,73.69224177505738,87.81171786344665,0.8392073810656338,6210.558962225227,2019
+2001,59,"(55,60]",College,86.68296863045143,60.2629436317771,1.4384124539303595,6294.311824924198,2019
+2001,59,"(55,60]",College,64.73600612088752,87.81171786344665,0.7372137534258986,6188.493141386685,2019
+2001,59,"(55,60]",College,83.30136189747513,58.54114524229776,1.4229540872952955,6296.911856292118,2019
+2001,59,"(55,60]",College,99.12125478194338,20.661580673752148,4.797370363239636,6192.62144457326,2019
+2001,60,"(55,60]",HS,5957.989288446825,430.4495973698365,13.841316904120138,1676.6241520158644,2019
+2001,60,"(55,60]",HS,5956.315225707727,430.4495973698365,13.8374278013092,1712.1315404397578,2019
+2001,60,"(55,60]",HS,5956.315225707727,430.4495973698365,13.8374278013092,1705.8818969614636,2019
+2001,60,"(55,60]",HS,5956.315225707727,430.4495973698365,13.8374278013092,1704.484496278114,2019
+2001,60,"(55,60]",HS,5957.989288446825,430.4495973698365,13.841316904120138,1701.014628037347,2019
+2001,26,"(25,30]",HS,76.55488905891355,70.59373396865318,1.0844431191712764,5177.554717308301,2019
+2001,26,"(25,30]",HS,49.60247895944912,70.59373396865318,0.7026470505367356,5204.099760047322,2019
+2001,26,"(25,30]",HS,12.7730986993114,70.59373396865318,0.1809381368746302,5219.037213706644,2019
+2001,26,"(25,30]",HS,10.429410864575365,70.59373396865318,0.14773847873249624,5211.930263658875,2019
+2001,26,"(25,30]",HS,9.927192042846213,70.59373396865318,0.1406242662734675,5179.092968505594,2019
+2001,65,"(60,65]",College,40346.92088752869,1962.850164006454,20.555272953272674,9.610553906013468,2019
+2001,65,"(60,65]",College,40353.28232593727,1962.850164006454,20.55851387228179,9.373037579908969,2019
+2001,65,"(60,65]",College,40567.562356541705,1980.0681479012476,20.48796269943581,9.72545276491913,2019
+2001,65,"(60,65]",College,40485.365876052034,1980.0681479012476,20.446450754214734,10.050999098434168,2019
+2001,65,"(60,65]",College,40643.3973986228,1980.0681479012476,20.526261907552193,9.656308125742381,2019
+2001,62,"(60,65]",College,479193.9302218822,755.8694929814328,633.9638451761846,29.04759906316326,2019
+2001,62,"(60,65]",College,477976.3843917368,771.365678486747,619.6495355217559,30.348495114458125,2019
+2001,62,"(60,65]",College,478798.3491966335,917.7185415924914,521.726790401105,30.33850633274439,2019
+2001,62,"(60,65]",College,479275.79188982403,816.13243661321,587.2524732367272,29.86986783005846,2019
+2001,62,"(60,65]",College,478894.60780413164,761.0348881498709,629.2676134314394,31.57000167563039,2019
+2001,37,"(35,40]",College,415.5023718439174,120.5258872635542,3.44741184883657,7880.461737672647,2019
+2001,37,"(35,40]",College,406.29502677888297,127.41308082147161,3.1888015277503143,7171.370430232013,2019
+2001,37,"(35,40]",College,422.19862280030605,87.81171786344665,4.80799867116658,6699.065371489803,2019
+2001,37,"(35,40]",College,394.57658760520275,113.63869370563681,3.472202774763422,7495.887547269997,2019
+2001,37,"(35,40]",College,457.688752869166,113.63869370563681,4.027578441325073,7202.840149732896,2019
+2001,61,"(60,65]",NoHS,10.630298393267024,16.52926453900172,0.6431198658708767,7132.514875310162,2019
+2001,61,"(60,65]",NoHS,10.630298393267024,16.52926453900172,0.6431198658708767,7138.49816097735,2019
+2001,61,"(60,65]",NoHS,10.630298393267024,16.52926453900172,0.6431198658708767,7131.613096871888,2019
+2001,61,"(60,65]",NoHS,10.630298393267024,16.52926453900172,0.6431198658708767,7139.097314564516,2019
+2001,61,"(60,65]",NoHS,10.79770466717674,16.52926453900172,0.653247737774355,7141.178236303033,2019
+2001,50,"(45,50]",NoHS,386.5410864575363,187.6760244532487,2.059618896892321,7094.159181258813,2019
+2001,50,"(45,50]",NoHS,420.0223412394797,187.6760244532487,2.238018108403133,6439.485768532686,2019
+2001,50,"(45,50]",NoHS,440.1110941086458,187.6760244532487,2.3450576353096197,6015.1571782679075,2019
+2001,50,"(45,50]",NoHS,401.6076511094109,187.6760244532487,2.1398985420721863,6743.316511653196,2019
+2001,50,"(45,50]",NoHS,420.0223412394797,187.6760244532487,2.238018108403133,6472.473795769687,2019
+2001,54,"(50,55]",College,813.5777505738332,168.7362421689759,4.821594579302649,6203.058616345639,2019
+2001,54,"(50,55]",College,816.4403978576894,160.12725022157917,5.0986974217562855,5632.251296334829,2019
+2001,54,"(50,55]",College,819.6545983167559,148.07466149522375,5.535414297355625,5258.533210331143,2019
+2001,54,"(50,55]",College,816.9593573068096,134.30027437938898,6.0830803293741305,5897.20672003224,2019
+2001,54,"(50,55]",College,822.4670237184391,153.24005666366176,5.367180368013222,5659.866132171419,2019
+2001,30,"(25,30]",College,293.09825248661053,137.74387115834767,2.12784968232576,8148.831291959646,2019
+2001,30,"(25,30]",College,289.91753328232596,137.74387115834767,2.10475813438583,7399.172801813559,2019
+2001,30,"(25,30]",College,288.09280489671005,137.74387115834767,2.0915108779360803,6914.536245377593,2019
+2001,30,"(25,30]",College,309.8556205049732,136.02207276886833,2.2779804350687014,7707.824832715582,2019
+2001,30,"(25,30]",College,298.2878469778118,137.74387115834767,2.1655253658067,7443.389281994634,2019
+2001,34,"(30,35]",NoHS,424.7097169089518,103.30790336876075,4.111105763059941,6548.0665363392545,2019
+2001,34,"(30,35]",NoHS,424.7097169089518,103.30790336876075,4.111105763059941,6565.284728894207,2019
+2001,34,"(30,35]",NoHS,423.03565416985464,103.30790336876075,4.094901168014376,6621.940561503999,2019
+2001,34,"(30,35]",NoHS,423.03565416985464,103.30790336876075,4.094901168014376,6522.079256831514,2019
+2001,34,"(30,35]",NoHS,423.03565416985464,103.30790336876075,4.094901168014376,6560.876554850135,2019
+2001,43,"(40,45]",HS,642.237429227238,743.8169042550774,0.8634348393445429,5843.084421756361,2019
+2001,43,"(40,45]",HS,642.3211323641929,960.7635013294748,0.6685528035519342,5317.318228095118,2019
+2001,43,"(40,45]",HS,642.3043917368018,576.8024604755808,1.1135604227610503,4967.12068600688,2019
+2001,43,"(40,45]",HS,642.1872073450651,964.2070981084336,0.6660262184388581,5557.936224131214,2019
+2001,43,"(40,45]",HS,642.3713542463657,719.7117268023666,0.8925397910360316,5340.651915116729,2019
+2001,24,"(20,25]",HS,16.087742922723795,92.97711303188467,0.17302906487542608,5272.273398443164,2019
+2001,24,"(20,25]",HS,32.811629686304514,132.5784759899096,0.2474883606959079,5289.786993252272,2019
+2001,24,"(20,25]",HS,16.82433052792655,134.30027437938898,0.12527398477533247,5298.939394834398,2019
+2001,24,"(20,25]",HS,24.022800306044378,34.43596778958692,0.6976078167115903,5242.707690607172,2019
+2001,24,"(20,25]",HS,38.50344299923489,87.81171786344665,0.43847727770353423,5251.251388143613,2019
+2001,30,"(25,30]",HS,235.30625860749808,211.78120190595953,1.1110818924900838,1248.8672181512948,2019
+2001,30,"(25,30]",HS,234.20137719969398,363.29946018014203,0.6446510465046252,1292.2515842874077,2019
+2001,30,"(25,30]",HS,227.8399387911247,215.22479868491826,1.058613785136696,1267.2636350473144,2019
+2001,30,"(25,30]",HS,255.2945677123183,373.63025051701806,0.68328131182914,1262.7658862100902,2019
+2001,30,"(25,30]",HS,231.8576893649579,222.1119922428356,1.0438774017724683,1231.0287707779166,2019
+2001,40,"(35,40]",HS,8819.951880642693,94.69891142136402,93.13678212622956,1542.652434588774,2019
+2001,40,"(35,40]",HS,859.6814384085692,94.69891142136402,9.078049847726398,6938.143641574507,2019
+2001,40,"(35,40]",HS,7346.708033664881,127.41308082147161,57.660547773418386,1598.3203689137613,2019
+2001,40,"(35,40]",HS,6991.840214231063,98.14250820032271,71.24171108363902,1530.4078715040307,2019
+2001,40,"(35,40]",HS,7224.637052792656,99.86430658980206,72.3445372976777,1518.5097299912682,2019
+2001,37,"(35,40]",HS,4.804560061208876,30.992371010628222,0.1550239592692423,5089.6837200271675,2019
+2001,37,"(35,40]",HS,4.838041315990819,32.71416940010757,0.1478882516263705,5045.497440541819,2019
+2001,37,"(35,40]",HS,4.821300688599846,34.43596778958692,0.140007701193685,5071.200191711347,2019
+2001,37,"(35,40]",HS,4.804560061208876,30.992371010628222,0.1550239592692423,5059.747205483521,2019
+2001,37,"(35,40]",HS,4.8547819433817905,30.992371010628222,0.15664441877379884,5078.207811390932,2019
+2001,41,"(40,45]",College,127.39617444529458,122.24768565303354,1.0421152250429804,5401.396378935934,2019
+2001,41,"(40,45]",College,127.89839326702372,122.24768565303354,1.0462234322376307,5614.759739277919,2019
+2001,41,"(40,45]",College,119.3439326702372,122.24768565303354,0.9762469696887526,5680.895598200506,2019
+2001,41,"(40,45]",College,120.88407039020659,122.24768565303354,0.988845471752347,5502.016532240527,2019
+2001,41,"(40,45]",College,131.4139250191278,122.24768565303354,1.0749808826001834,5609.542018477259,2019
+2001,73,"(70,75]",College,11553.711400153023,437.3367909277538,26.418338543261612,172.02463374934786,2019
+2001,73,"(70,75]",College,10512.779188982404,439.05858931723316,23.943909639327433,161.037107519999,2019
+2001,73,"(70,75]",College,9688.303289977048,439.05858931723316,22.066083036988385,172.1157236483978,2019
+2001,73,"(70,75]",College,10274.057842387145,439.05858931723316,23.400197814975044,169.53909477072477,2019
+2001,73,"(70,75]",College,9596.397245600612,439.05858931723316,21.856757797458606,163.31319795449969,2019
+2001,53,"(50,55]",NoHS,-3.348125478194338,41.323161347504296,-0.08102297522782698,10254.102506903337,2019
+2001,53,"(50,55]",NoHS,-3.348125478194338,41.323161347504296,-0.08102297522782698,10429.141106927036,2019
+2001,53,"(50,55]",NoHS,-3.348125478194338,41.323161347504296,-0.08102297522782698,10438.056862082845,2019
+2001,53,"(50,55]",NoHS,-3.1807192042846215,41.323161347504296,-0.07697182646643565,10384.138952577536,2019
+2001,53,"(50,55]",NoHS,-3.1807192042846215,41.323161347504296,-0.07697182646643565,10394.652073183492,2019
+2001,46,"(45,50]",College,3510.6769701606736,117.08229048459552,29.984696708872228,545.4380532870903,2019
+2001,46,"(45,50]",College,2420.3599081866873,258.2697584219018,9.371441406751382,306.5126293073277,2019
+2001,46,"(45,50]",College,3089.9850038255545,117.08229048459552,26.391566060386417,332.42602579087105,2019
+2001,46,"(45,50]",College,6292.0317674062735,117.08229048459552,53.74025176108179,538.3772948506355,2019
+2001,46,"(45,50]",HS,5821.3690283091055,149.7964598847031,38.86185983827493,543.1130817382898,2019
+2001,45,"(40,45]",College,35124.84957918898,2462.1716969554645,14.265800237498349,46.864823675000224,2019
+2001,45,"(40,45]",College,32578.7675592961,2427.7357291658777,13.419404413712494,47.160924533994866,2019
+2001,45,"(40,45]",College,34738.64330527926,2376.0817774814973,14.620137923914438,47.074999622675264,2019
+2001,45,"(40,45]",College,31326.06641162969,2289.9918580075296,13.679553620284832,48.5380988148029,2019
+2001,45,"(40,45]",College,30590.31751185922,2513.825648639845,12.168830216371893,47.84239726114928,2019
+2001,58,"(55,60]",HS,-2.343687834736037,60.2629436317771,-0.038891028109356955,4912.866313524433,2019
+2001,58,"(55,60]",HS,-2.343687834736037,60.2629436317771,-0.038891028109356955,4979.119064736957,2019
+2001,58,"(55,60]",HS,1.0044376434583013,60.2629436317771,0.01666758347543869,4895.411132994418,2019
+2001,58,"(55,60]",HS,-0.6696250956388676,60.2629436317771,-0.01111172231695913,4981.175821077126,2019
+2001,58,"(55,60]",HS,-0.5022188217291507,60.2629436317771,-0.008333791737719346,4898.676829654041,2019
+2001,31,"(30,35]",College,110.82295332823259,51.653951684380374,2.1454883840328582,8866.649718516528,2019
+2001,31,"(30,35]",College,109.14889058913542,51.653951684380374,2.1130791939417275,8922.407861023315,2019
+2001,31,"(30,35]",College,109.14889058913542,51.653951684380374,2.1130791939417275,9007.44472038309,2019
+2001,31,"(30,35]",College,107.47482785003827,51.653951684380374,2.080670003850597,8890.92795640621,2019
+2001,31,"(30,35]",College,110.82295332823259,51.653951684380374,2.1454883840328582,8859.666172302868,2019
+2001,61,"(60,65]",College,4005.6973221117064,68.87193557917384,58.161532537543316,1651.0993017767844,2019
+2001,61,"(60,65]",College,4005.1951032899774,68.87193557917384,58.154240469772816,1659.5448380919884,2019
+2001,61,"(60,65]",College,4005.864728385616,68.87193557917384,58.163963226800156,1710.5658086572319,2019
+2001,61,"(60,65]",College,4006.366947207345,68.87193557917384,58.171255294570656,1638.9014535971496,2019
+2001,61,"(60,65]",College,4005.5299158377966,70.59373396865318,56.740587169059985,1625.3742971846546,2019
+2001,65,"(60,65]",College,972.2119357306809,82.64632269500859,11.76352321589013,8141.599405687366,2019
+2001,65,"(60,65]",College,849.6705432287682,82.64632269500859,10.280802769220898,7315.9218787872,2019
+2001,65,"(60,65]",College,870.428921193573,82.64632269500859,10.53197399242716,7016.592562981769,2019
+2001,65,"(60,65]",College,1001.1732211170621,82.64632269500859,12.113947583750484,7758.014204483299,2019
+2001,65,"(60,65]",College,993.9747513389442,82.64632269500859,12.026847885380569,7362.957701022902,2019
+2001,85,"(80,85]",NoHS,561.81545524101,70.59373396865318,7.958432337500118,4681.377528253194,2019
+2001,85,"(80,85]",NoHS,548.0881407804131,51.653951684380374,10.610768835836222,4627.357227524379,2019
+2001,85,"(80,85]",HS,685.5286916602907,96.42070981084338,7.109766076241817,4452.322419612857,2019
+2001,85,"(80,85]",HS,572.8642693190513,55.097548463339066,10.397273296110898,4620.0063732328,2019
+2001,85,"(80,85]",NoHS,821.2951798010712,48.21035490542169,17.035659277187964,4867.238326459339,2019
+2001,57,"(55,60]",College,25569.299464422344,1255.1910259304432,20.370843111683683,33.989475807271106,2019
+2001,57,"(55,60]",College,25569.299464422344,1255.1910259304432,20.370843111683683,34.702089247238234,2019
+2001,57,"(55,60]",College,25565.1143075746,1255.1910259304432,20.367508832867724,34.699257100423964,2019
+2001,57,"(55,60]",College,25586.040091813316,1255.1910259304432,20.384180226947525,35.59452154483786,2019
+2001,57,"(55,60]",College,25569.299464422344,1255.1910259304432,20.370843111683683,35.744603163237386,2019
+2001,49,"(45,50]",College,6380.187911247131,222.1119922428356,28.725094250073877,1183.4582188652437,2019
+2001,49,"(45,50]",College,2516.451109410865,61.984742021256444,40.597912120823175,2641.1055412976516,2019
+2001,49,"(45,50]",College,5859.554399387911,153.24005666366176,38.237746232688544,1284.6524703927644,2019
+2001,49,"(45,50]",College,3003.603366488141,74.03733074761188,40.56876897314433,2457.986205653475,2019
+2001,49,"(45,50]",College,4495.193267023718,117.08229048459552,38.393451720310765,1164.333793355317,2019
+2001,68,"(65,70]",College,23085.325172149962,1928.4141962168671,11.971144589911438,499.62323573864614,2019
+2001,68,"(65,70]",College,23085.325172149962,1928.4141962168671,11.971144589911438,481.5447704602822,2019
+2001,68,"(65,70]",College,23086.99923488906,1928.4141962168671,11.972012693217449,493.3088271098137,2019
+2001,68,"(65,70]",College,23083.651109410865,1928.4141962168671,11.970276486605425,508.8677648742746,2019
+2001,68,"(65,70]",College,23086.99923488906,1928.4141962168671,11.972012693217449,501.9481769074699,2019
+2001,27,"(25,30]",College,618.5661820964041,172.17983894793457,3.592558721601849,407.612011708439,2019
+2001,27,"(25,30]",College,477.9449120122418,172.17983894793457,2.7758471313053525,415.2552444909326,2019
+2001,27,"(25,30]",College,365.78270849273144,172.17983894793457,2.1244224104736236,388.9648599123282,2019
+2001,27,"(25,30]",College,566.6702371843917,172.17983894793457,3.2911532537543318,414.95807032752083,2019
+2001,27,"(25,30]",College,544.9074215761286,172.17983894793457,3.1647574123989224,440.593240444353,2019
+2001,34,"(30,35]",HS,3338.4996174445296,55.097548463339066,60.592525630535235,1906.7074496969938,2019
+2001,34,"(30,35]",HS,3338.3322111706198,55.097548463339066,60.58948726896419,1926.6326737854076,2019
+2001,34,"(30,35]",HS,3338.4996174445296,55.097548463339066,60.592525630535235,2421.39652303471,2019
+2001,34,"(30,35]",HS,3338.4996174445296,55.097548463339066,60.592525630535235,2000.5831976691043,2019
+2001,34,"(30,35]",HS,3338.4996174445296,55.097548463339066,60.592525630535235,2049.538474134229,2019
+2001,29,"(25,30]",HS,-3.515531752104055,39.60136295802496,-0.0887729989452713,5350.376070726086,2019
+2001,29,"(25,30]",HS,-2.17628156082632,39.60136295802496,-0.05495471363278699,5310.64677362759,2019
+2001,29,"(25,30]",HS,-2.17628156082632,39.60136295802496,-0.05495471363278699,5316.4954515982445,2019
+2001,29,"(25,30]",HS,-2.845906656465188,39.60136295802496,-0.07186385628902915,5351.410579666808,2019
+2001,29,"(25,30]",HS,-3.1807192042846215,39.60136295802496,-0.08031842761715022,5301.402553189367,2019
+2001,32,"(30,35]",HS,344.85692425401686,34.43596778958692,10.014439738159416,3009.6717496745955,2019
+2001,32,"(30,35]",HS,344.85692425401686,34.43596778958692,10.014439738159416,3087.2913024770337,2019
+2001,32,"(30,35]",HS,344.85692425401686,34.43596778958692,10.014439738159416,3023.679250306914,2019
+2001,32,"(30,35]",HS,343.1828615149197,34.43596778958692,9.96582595302272,3038.0272424838895,2019
+2001,32,"(30,35]",HS,344.6895179801071,34.43596778958692,10.009578359645744,2940.3365054729925,2019
+2001,53,"(50,55]",HS,180.69665799540934,60.2629436317771,2.998470487925629,5485.400101214234,2019
+2001,53,"(50,55]",HS,159.00080489671004,167.01444377949653,0.9520182883501583,5717.6501419266915,2019
+2001,53,"(50,55]",HS,842.5541025248662,151.51825827418244,5.560743055798649,4760.7134900202955,2019
+2001,53,"(50,55]",HS,116.21176128538639,39.60136295802496,2.9345394351341847,5587.34008609483,2019
+2001,53,"(50,55]",HS,121.35113389441469,141.18746793730637,0.8595035782375535,5661.734727205058,2019
+2001,26,"(25,30]",HS,5.6583320581484315,49.93215329490103,0.11332040949105732,3905.958878005235,2019
+2001,26,"(25,30]",HS,5.675072685539403,49.93215329490103,0.11365567697475867,3925.9845177163684,2019
+2001,26,"(25,30]",HS,5.675072685539403,49.93215329490103,0.11365567697475867,3937.2533662213173,2019
+2001,26,"(25,30]",HS,5.6583320581484315,49.93215329490103,0.11332040949105732,3931.891867183589,2019
+2001,26,"(25,30]",HS,5.6583320581484315,49.93215329490103,0.11332040949105732,3907.1193381546123,2019
+2001,81,"(80,85]",NoHS,1875.7872991583781,170.45804055845522,11.004393180943048,3514.7932192452863,2019
+2001,81,"(80,85]",NoHS,1972.8829380260138,170.45804055845522,11.574009249211406,3551.575592021715,2019
+2001,81,"(80,85]",NoHS,2040.849885233359,170.45804055845522,11.972740496999258,4511.224134540655,2019
+2001,81,"(80,85]",NoHS,1882.4835501147668,170.45804055845522,11.043677047720175,3709.4613032958187,2019
+2001,81,"(80,85]",NoHS,1982.9273144605968,170.45804055845522,11.632935049377098,3800.5231323993344,2019
+2001,42,"(40,45]",HS,74.49579188982403,103.30790336876075,0.7211044795276602,1281.6696541076242,2019
+2001,42,"(40,45]",HS,46.48872226472839,103.30790336876075,0.4500016044153511,1280.1745764043308,2019
+2001,42,"(40,45]",HS,44.613771996939555,103.30790336876075,0.43185245796431776,1297.091187191739,2019
+2001,42,"(40,45]",HS,42.82252486610559,103.30790336876075,0.41451354126556283,1283.6941351250903,2019
+2001,42,"(40,45]",HS,47.208569242540165,103.30790336876075,0.4569695802849441,1281.869967242268,2019
+2001,44,"(40,45]",College,5573.87559296098,1651.2046555106926,3.375641883251028,3687.287979209405,2019
+2001,44,"(40,45]",College,5718.849426166795,1690.8060184687174,3.3823214275911346,3633.9889219487354,2019
+2001,44,"(40,45]",College,3120.787758224943,435.6149925382745,7.164096304492414,3732.726985571312,2019
+2001,44,"(40,45]",College,2585.0876817138483,592.298645980895,4.364500407446874,3619.162569798528,2019
+2001,44,"(40,45]",College,5816.899280795716,1692.527816858197,3.43681162747062,3597.716146931495,2019
+2001,68,"(65,70]",NoHS,0,17.21798389479346,0,6656.9503320807635,2019
+2001,68,"(65,70]",NoHS,0,17.21798389479346,0,6652.497443121594,2019
+2001,68,"(65,70]",NoHS,0,18.939782284272805,0,6554.594553507288,2019
+2001,68,"(65,70]",NoHS,0,17.21798389479346,0,6643.018677389086,2019
+2001,68,"(65,70]",NoHS,0,17.21798389479346,0,6631.149519888457,2019
+2001,61,"(60,65]",College,263.5644376434583,136.02207276886833,1.9376593245370752,1789.514340768112,2019
+2001,61,"(60,65]",College,264.7865034429992,136.02207276886833,1.9466436443218316,1908.9232691206719,2019
+2001,61,"(60,65]",College,249.77016067329762,136.02207276886833,1.836247276555714,1865.2262647182858,2019
+2001,61,"(60,65]",College,255.47871461361896,136.02207276886833,1.8782151265091656,1845.4430613371574,2019
+2001,61,"(60,65]",College,274.8643611323642,136.02207276886833,2.020733514327632,1800.8655717035194,2019
+2001,41,"(40,45]",College,2680.007039020658,261.7133552008606,10.240237977018015,1120.264066971908,2019
+2001,41,"(40,45]",College,2679.839632746748,261.7133552008606,10.239598321950428,1107.5945104166717,2019
+2001,41,"(40,45]",College,2679.839632746748,261.7133552008606,10.239598321950428,1169.741087533725,2019
+2001,41,"(40,45]",College,2678.332976281561,261.7133552008606,10.233841426342137,1137.367402920811,2019
+2001,41,"(40,45]",College,2679.839632746748,261.7133552008606,10.239598321950428,1137.8529248922491,2019
+2001,41,"(40,45]",NoHS,13.05768936495792,24.105177452710844,0.5416964629517574,5241.090809876625,2019
+2001,41,"(40,45]",NoHS,1.841469013006886,24.105177452710844,0.076393090929094,5317.444563219326,2019
+2001,41,"(40,45]",NoHS,9.20734506503443,22.383379063231494,0.4113474126951216,5550.421668246331,2019
+2001,41,"(40,45]",NoHS,8.03550114766641,24.105177452710844,0.33335166950877376,5381.9055128207565,2019
+2001,41,"(40,45]",NoHS,31.472379495026782,24.105177452710844,1.3056273722426976,5252.267175516262,2019
+2001,70,"(65,70]",NoHS,10077.857689364959,633.6218073283993,15.905162311027775,2680.872975978146,2019
+2001,70,"(65,70]",NoHS,10056.094873756696,633.6218073283993,15.870815615007283,2642.5325240755596,2019
+2001,70,"(65,70]",NoHS,10056.094873756696,633.6218073283993,15.870815615007283,2716.3572415145327,2019
+2001,70,"(65,70]",NoHS,10077.857689364959,633.6218073283993,15.905162311027775,2631.611899826336,2019
+2001,70,"(65,70]",NoHS,10056.094873756696,633.6218073283993,15.870815615007283,2617.2981815891594,2019
+2001,31,"(30,35]",HS,116.59846977811783,134.30027437938898,0.868192342248946,7015.443542207831,2019
+2001,31,"(30,35]",HS,113.08293802601378,134.30027437938898,0.842015688713802,7033.890706282566,2019
+2001,31,"(30,35]",HS,116.43106350420811,134.30027437938898,0.8669458349377487,7094.590424711659,2019
+2001,31,"(30,35]",HS,116.43106350420811,134.30027437938898,0.8669458349377487,6987.601385872009,2019
+2001,31,"(30,35]",HS,118.10512624330528,134.30027437938898,0.879410908049722,7029.167892920976,2019
+2001,81,"(80,85]",HS,1419.6052027543992,51.653951684380374,27.48299319727891,7291.306915155311,2019
+2001,81,"(80,85]",HS,1421.2792654934965,51.653951684380374,27.51540238737004,6582.506548447546,2019
+2001,81,"(80,85]",HS,1419.6052027543992,51.653951684380374,27.48299319727891,6229.000491165582,2019
+2001,81,"(80,85]",HS,1419.6052027543992,51.653951684380374,27.48299319727891,6960.108668775649,2019
+2001,81,"(80,85]",HS,1419.6052027543992,51.653951684380374,27.48299319727891,6688.552185869907,2019
+2001,42,"(40,45]",HS,36.52804896710023,179.06703250585196,0.2039909214774444,4686.822461726127,2019
+2001,42,"(40,45]",HS,36.862861514919665,189.39782284272803,0.19463191794728185,4704.890346196015,2019
+2001,42,"(40,45]",HS,70.51152257077277,198.00681479012476,0.35610654434045974,4737.214183947346,2019
+2001,42,"(40,45]",HS,39.87617444529457,142.9092663267857,0.27903141251954294,4689.283194198379,2019
+2001,42,"(40,45]",HS,37.69989288446825,185.95422606376934,0.2027374891256293,4720.855551907599,2019
+2001,23,"(20,25]",College,82.96654934965571,29.27057262114888,2.8344696369113684,7020.421158994625,2019
+2001,23,"(20,25]",College,83.13395562356541,29.27057262114888,2.8401889057509795,7019.556061121313,2019
+2001,23,"(20,25]",College,83.09210405508799,29.27057262114888,2.8387590885410767,7036.103753914135,2019
+2001,23,"(20,25]",College,82.75729150726856,29.27057262114888,2.827320550861854,7006.6675810654215,2019
+2001,23,"(20,25]",College,83.04188217291507,29.27057262114888,2.8370433078891932,7007.6980350666345,2019
+2001,48,"(45,50]",College,1227.5902065799542,204.89400834804215,5.9913426286956835,8454.472629681995,2019
+2001,48,"(45,50]",College,1156.107727620505,204.89400834804215,5.642467229479394,7676.489514846215,2019
+2001,48,"(45,50]",College,1232.1101759755165,204.89400834804215,6.01340266564847,7167.129612779596,2019
+2001,48,"(45,50]",College,1306.7733741392503,204.89400834804215,6.377801794572277,8037.611102804901,2019
+2001,48,"(45,50]",College,1121.119816373374,204.89400834804215,5.471706202696712,7714.1272171788005,2019
+2001,77,"(75,80]",HS,133.42280030604437,4.476675812646299,29.803989810728353,6918.8244190935675,2019
+2001,77,"(75,80]",HS,126.89395562356542,4.476675812646299,28.34557625662747,6909.039593997765,2019
+2001,77,"(75,80]",HS,126.7265493496557,4.648855651594233,27.259729887762237,6911.489890939937,2019
+2001,77,"(75,80]",HS,136.7709257842387,4.476675812646299,30.551894197446757,7064.673696801004,2019
+2001,77,"(75,80]",HS,133.42280030604437,4.476675812646299,29.803989810728353,6970.931387234101,2019
+2001,56,"(55,60]",College,31053.194185156848,1859.5422606376933,16.699375347623327,13.586811510243061,2019
+2001,56,"(55,60]",College,26914.0740627391,2358.863793586704,11.409761825126688,13.668297365659388,2019
+2001,56,"(55,60]",College,28965.637949502678,2255.555890217943,12.841906545132815,13.657341407816238,2019
+2001,56,"(55,60]",College,31485.10237184392,1928.4141962168671,16.326939738159417,14.066478323344876,2019
+2001,56,"(55,60]",College,43372.62188217291,2100.594035164802,20.64778874741978,13.877685040117786,2019
+2001,56,"(55,60]",College,554.683947972456,223.83379063231493,2.4781063949527566,7938.96394971081,2019
+2001,56,"(55,60]",College,574.2537413925019,223.83379063231493,2.5655364177601374,8413.872856572465,2019
+2001,56,"(55,60]",College,767.8088752869166,223.83379063231493,3.4302634696839553,7163.562838498449,2019
+2001,56,"(55,60]",College,490.7012700841622,223.83379063231493,2.1922573383489827,8226.255758334908,2019
+2001,56,"(55,60]",College,548.9419127773527,223.83379063231493,2.4524532744883154,8269.94125300137,2019
+2001,64,"(60,65]",College,364.37649579188985,111.91689531615746,3.255777376262552,5426.035506304424,2019
+2001,64,"(60,65]",College,338.6628921193573,111.91689531615746,3.0260211486626583,5742.9067914568695,2019
+2001,64,"(60,65]",College,387.21071155317526,110.19509692667813,3.5138651569118218,5785.713966122918,2019
+2001,64,"(60,65]",College,358.7516449885233,111.91689531615746,3.205518201475075,5601.0641292636965,2019
+2001,64,"(60,65]",College,442.0362662586075,110.19509692667813,4.011396864170196,5665.424913331136,2019
+2001,61,"(60,65]",HS,271.03075745983165,79.20272591604991,3.421987745057005,8615.024054738788,2019
+2001,61,"(60,65]",HS,269.52410099464424,79.20272591604991,3.4029649595687332,9097.175467598954,2019
+2001,61,"(60,65]",HS,269.52410099464424,79.20272591604991,3.4029649595687332,9142.952209794961,2019
+2001,61,"(60,65]",HS,269.52410099464424,79.20272591604991,3.4029649595687332,8867.073765050338,2019
+2001,61,"(60,65]",HS,269.52410099464424,79.20272591604991,3.4029649595687332,8998.830369803607,2019
+2001,54,"(50,55]",College,19723.80719204285,1721.798389479346,11.45535232961109,47.556367672295096,2019
+2001,54,"(50,55]",College,19723.80719204285,1721.798389479346,11.45535232961109,47.733957124082046,2019
+2001,54,"(50,55]",College,19723.80719204285,1721.798389479346,11.45535232961109,49.001606583587915,2019
+2001,54,"(50,55]",College,19723.80719204285,1721.798389479346,11.45535232961109,47.482187454134646,2019
+2001,54,"(50,55]",College,19711.25172149962,1721.798389479346,11.448060261840585,46.90708418718363,2019
+2001,67,"(65,70]",College,1883.40428462127,77.48092752657055,24.307972874684467,2149.998953152172,2019
+2001,67,"(65,70]",College,1883.40428462127,77.48092752657055,24.307972874684467,2079.990146286162,2019
+2001,67,"(65,70]",College,1883.40428462127,77.48092752657055,24.307972874684467,2249.9731088251224,2019
+2001,67,"(65,70]",College,1883.40428462127,77.48092752657055,24.307972874684467,2129.024599093268,2019
+2001,67,"(65,70]",College,1883.40428462127,77.48092752657055,24.307972874684467,2133.974957820451,2019
+2001,60,"(55,60]",College,208129.85891354244,9779.814852242684,21.281574555147596,10.33298516436616,2019
+2001,60,"(55,60]",College,208104.58056618212,10261.918401296904,20.27930572317568,10.885853919327733,2019
+2001,60,"(55,60]",College,207963.95929609795,10330.790336876074,20.130498491849572,11.043925163074842,2019
+2001,60,"(55,60]",College,208963.20734506502,9435.455174346816,22.146595313514467,10.89346443861697,2019
+2001,60,"(55,60]",College,208598.42907421576,10692.367998666738,19.50909556238866,11.194517760457467,2019
+2001,44,"(40,45]",College,117.06720734506504,48.21035490542169,2.4282585675779744,7613.502860194679,2019
+2001,44,"(40,45]",College,98.6357765876052,125.69128243199225,0.7847463617134628,7843.932951440445,2019
+2001,44,"(40,45]",College,65.84088752869167,46.488556515942335,1.4162816069824158,7929.40453513385,2019
+2001,44,"(40,45]",College,37.21441469013007,75.75912913709122,0.4912202016312528,7757.556963203555,2019
+2001,44,"(40,45]",College,135.5321193573068,75.75912913709122,1.7889872930304196,7810.743203594885,2019
+2001,57,"(55,60]",College,3921.491966335119,134.30027437938898,29.199433764797647,10.217799927137484,2019
+2001,57,"(55,60]",College,3918.1438408569243,134.30027437938898,29.1745036185737,10.478039488300563,2019
+2001,57,"(55,60]",College,3913.121652639633,134.30027437938898,29.13710839923778,10.640733265064004,2019
+2001,57,"(55,60]",College,3924.840091813313,134.30027437938898,29.22436391102159,10.333336290831854,2019
+2001,57,"(55,60]",College,3919.817903596021,134.30027437938898,29.186968691685667,10.377826139462153,2019
+2001,55,"(50,55]",College,60691.97276205049,1661.5354458475686,36.52764249702227,31.36574549056442,2019
+2001,55,"(50,55]",College,18123.40321346595,1599.5507038263122,11.33030867362482,33.073134816897166,2019
+2001,55,"(50,55]",College,35815.56786534047,1394.6566954782702,25.680562092062534,32.69089802233964,2019
+2001,55,"(50,55]",College,24408.169548584545,1677.0316313528829,14.554388296715764,33.75568849037757,2019
+2001,55,"(50,55]",College,18570.54537107881,1434.2580584362947,12.94784105401884,32.334002151253344,2019
+2001,62,"(60,65]",College,107304.07345065035,7369.297106971601,14.560964484541831,14.608140502550564,2019
+2001,62,"(60,65]",College,106264.48048967101,7214.335251918458,14.729628826358303,15.874372334474874,2019
+2001,62,"(60,65]",College,108290.09640397858,6215.692186020438,17.422049413503967,15.508857024996303,2019
+2001,62,"(60,65]",College,109484.54016832441,7231.553235813252,15.139837403964282,15.245517375064313,2019
+2001,62,"(60,65]",College,109018.31369548585,7662.00283318309,14.228435576053613,16.088342421621903,2019
+2001,58,"(55,60]",College,9344.46754399388,215.22479868491826,43.41724374278013,1898.3935698811324,2019
+2001,58,"(55,60]",College,9344.46754399388,215.22479868491826,43.41724374278013,1909.3779965177298,2019
+2001,58,"(55,60]",College,9342.793481254783,215.22479868491826,43.409465537158255,1917.4963806562832,2019
+2001,58,"(55,60]",College,9344.46754399388,215.22479868491826,43.41724374278013,1908.0276735709897,2019
+2001,58,"(55,60]",College,9344.46754399388,215.22479868491826,43.41724374278013,1892.9754678156398,2019
+2001,42,"(40,45]",College,389.2028462127008,154.9618550531411,2.5116042014289994,7064.733829611048,2019
+2001,42,"(40,45]",College,370.93882172915073,154.9618550531411,2.3937427801309203,6424.364407828666,2019
+2001,42,"(40,45]",College,382.65726090283096,154.9618550531411,2.4693642236768927,6002.021693602468,2019
+2001,42,"(40,45]",College,375.96100994644223,153.24005666366176,2.4534121047189283,6717.774839889826,2019
+2001,42,"(40,45]",College,372.44547819433814,154.9618550531411,2.4034655371582594,6459.1756672864485,2019
+2001,57,"(55,60]",NoHS,1.841469013006886,12.052588726355422,0.152786181858188,5599.713024296294,2019
+2001,57,"(55,60]",NoHS,1.841469013006886,12.052588726355422,0.152786181858188,5634.741151833377,2019
+2001,57,"(55,60]",NoHS,1.841469013006886,12.052588726355422,0.152786181858188,5596.741531609585,2019
+2001,57,"(55,60]",NoHS,1.841469013006886,12.052588726355422,0.152786181858188,5620.66527129563,2019
+2001,57,"(55,60]",NoHS,1.841469013006886,12.052588726355422,0.152786181858188,5617.646985534633,2019
+2001,27,"(25,30]",HS,117.75357306809488,154.9618550531411,0.7598874770033801,6578.546339335551,2019
+2001,27,"(25,30]",HS,129.63941851568478,132.5784759899096,0.9778315638924036,6663.910716188123,2019
+2001,27,"(25,30]",HS,121.26910482019893,101.5861049792814,1.1937568119668718,6717.107809497431,2019
+2001,27,"(25,30]",HS,130.64385615914307,137.74387115834767,0.9484549480169425,6575.49988851817,2019
+2001,27,"(25,30]",HS,130.8112624330528,218.6683954638769,0.5982175071781797,6657.037003717689,2019
+2001,56,"(55,60]",College,16517.977046671767,1232.8076468672116,13.398665305692214,172.02463374934786,2019
+2001,56,"(55,60]",College,16518.914521805662,1520.347977910262,10.865219516726114,161.037107519999,2019
+2001,56,"(55,60]",College,16519.902218821728,1144.9959290037648,14.427913497644766,172.1157236483978,2019
+2001,56,"(55,60]",College,16516.97260902831,1663.2572442370479,9.930497922830215,169.53909477072477,2019
+2001,56,"(55,60]",College,16519.818515684776,874.6735818555076,18.88683831131621,163.31319795449969,2019
+2001,57,"(55,60]",College,316.5317827084927,129.1348792109509,2.4511718649724044,1517.8763792325867,2019
+2001,57,"(55,60]",College,318.99265493496563,129.1348792109509,2.4702284687459897,1635.848143505563,2019
+2001,57,"(55,60]",College,318.5573986228003,129.1348792109509,2.466857912976512,1602.1307254766525,2019
+2001,57,"(55,60]",College,317.3688140780413,127.41308082147161,2.49086523951753,1575.636970849481,2019
+2001,57,"(55,60]",College,330.1084315225708,127.41308082147161,2.5908519705689517,5463.080380623696,2019
+2001,68,"(65,70]",NoHS,315.07534812547823,32.71416940010757,9.63115842166062,6896.020595499406,2019
+2001,68,"(65,70]",NoHS,263.2296250956389,25.826975842190187,10.192042099858812,7143.869927932965,2019
+2001,68,"(65,70]",NoHS,337.7756388676358,24.105177452710844,14.012576324330269,7440.309258942225,2019
+2001,68,"(65,70]",NoHS,322.4747054322877,20.661580673752148,15.607455718136313,6913.048474354036,2019
+2001,68,"(65,70]",NoHS,347.0834276970161,30.992371010628222,11.198995635990245,7191.79702412462,2019
+2001,76,"(75,80]",HS,433.9170619739862,51.653951684380374,8.400462071621101,6830.700383146276,2019
+2001,76,"(75,80]",HS,422.36602907421576,51.653951684380374,8.176838659992299,7066.031026015255,2019
+2001,76,"(75,80]",HS,438.9392501912777,51.653951684380374,8.497689641894492,7195.153279938505,2019
+2001,76,"(75,80]",HS,423.7052792654935,51.653951684380374,8.202766012065204,7009.594564012958,2019
+2001,76,"(75,80]",HS,438.9392501912777,51.653951684380374,8.497689641894492,7137.09466312553,2019
+2001,74,"(70,75]",HS,591.7811782708493,14.290926632678572,41.40957360439061,1831.8568879080563,2019
+2001,74,"(70,75]",HS,591.6137719969396,14.290926632678572,41.39785943929743,1779.4420009253895,2019
+2001,74,"(70,75]",HS,591.6137719969396,14.290926632678572,41.39785943929743,1729.1320375340106,2019
+2001,74,"(70,75]",HS,591.7811782708493,14.290926632678572,41.40957360439061,1792.7659514217116,2019
+2001,74,"(70,75]",HS,591.948584544759,14.290926632678572,41.42128776948378,1860.6938847938661,2019
+2001,41,"(40,45]",HS,138.394766641163,253.10436325346384,0.5467893356803638,6226.108707820466,2019
+2001,41,"(40,45]",HS,139.36572302983933,253.10436325346384,0.5506255255278854,6387.204084597295,2019
+2001,41,"(40,45]",HS,140.7886763580719,253.10436325346384,0.5562475278906325,6236.873785608906,2019
+2001,41,"(40,45]",HS,138.86350420811019,253.10436325346384,0.548641289399857,6179.323028375188,2019
+2001,41,"(40,45]",HS,138.86350420811019,254.82616164294322,0.5449342536606687,6467.882365146513,2019
+2001,61,"(60,65]",HS,57393.901759755165,6301.782105494406,9.107566843625788,21.244431568912304,2019
+2001,61,"(60,65]",HS,56352.63473603673,6301.782105494406,8.942333103980843,22.427839684187358,2019
+2001,61,"(60,65]",HS,56148.39908186687,6956.065493496557,8.071861763573354,22.737285536906235,2019
+2001,61,"(60,65]",HS,56130.15179801072,7369.297106971601,7.6167578784291,22.414654602331474,2019
+2001,61,"(60,65]",HS,57830.83213465953,6473.961944442341,8.932834735660624,23.060798428848024,2019
+2001,40,"(35,40]",HS,51.49416985462892,79.20272591604991,0.6501565351325107,8746.866078651889,2019
+2001,40,"(35,40]",HS,60.34996174445295,79.20272591604991,0.761968240946912,9071.488328957517,2019
+2001,40,"(35,40]",HS,63.38001530221882,80.92452430552926,0.7831991086277947,9156.275755882105,2019
+2001,40,"(35,40]",HS,55.16036725325172,79.20272591604991,0.6964453131539736,8883.911681061003,2019
+2001,40,"(35,40]",HS,68.55286916602908,80.92452430552926,0.8471210644032804,9087.690921075908,2019
+2001,72,"(70,75]",HS,768.3947972456007,29.27057262114888,26.25144397381594,9624.827962609337,2019
+2001,72,"(70,75]",HS,698.0841622035196,39.60136295802496,17.627781219132444,9533.622886131065,2019
+2001,72,"(70,75]",HS,724.8691660290742,37.87956456854561,19.136153603808587,9166.462526890335,2019
+2001,72,"(70,75]",HS,753.1608263198165,39.60136295802496,19.01855820260836,9506.236303437254,2019
+2001,72,"(70,75]",HS,739.9357306809487,37.87956456854561,19.533902754927013,10026.550884408589,2019
+2001,31,"(30,35]",NoHS,0.8370313695485845,30.992371010628222,0.02700765840927566,6812.719963001136,2019
+2001,31,"(30,35]",NoHS,0.8370313695485845,30.992371010628222,0.02700765840927566,6824.135983474078,2019
+2001,31,"(30,35]",NoHS,0.8370313695485845,30.992371010628222,0.02700765840927566,6848.0082171111135,2019
+2001,31,"(30,35]",NoHS,0.8370313695485845,30.992371010628222,0.02700765840927566,6883.115583746503,2019
+2001,31,"(30,35]",NoHS,0.8370313695485845,30.992371010628222,0.02700765840927566,6829.625249158826,2019
+2001,56,"(55,60]",College,1099.8592195868403,208.33760512700084,5.27921600575362,75.18141511459363,2019
+2001,56,"(55,60]",College,1101.5332823259373,272.04414553773665,4.0490975468286194,439.48694770726695,2019
+2001,56,"(55,60]",College,1101.5332823259373,149.7964598847031,7.353533475849676,426.1886478170066,2019
+2001,56,"(55,60]",College,1101.5332823259373,223.83379063231493,4.921210864607092,443.42409941375854,2019
+2001,56,"(55,60]",College,1101.5332823259373,497.5997345595309,2.2136934685083802,79.61750257433667,2019
+2001,54,"(50,55]",HS,368.2938026013772,179.06703250585196,2.056737063475608,5520.740405353544,2019
+2001,54,"(50,55]",HS,264.50191277735274,179.06703250585196,1.4771111637688459,5827.260091438302,2019
+2001,54,"(50,55]",HS,369.96786534047436,179.06703250585196,2.066085868309588,5864.05621521827,2019
+2001,54,"(50,55]",HS,359.92348890589136,179.06703250585196,2.0099930393057077,5659.57810355553,2019
+2001,54,"(50,55]",HS,333.13848508033664,179.06703250585196,1.8604121619620273,5752.5588361317205,2019
+2001,30,"(25,30]",College,2092.4110175975516,1446.3106471626504,1.446723096246585,803.0681932880832,2019
+2001,30,"(25,30]",College,2092.4110175975516,1522.0697762997418,1.3747142543519584,803.3688494469027,2019
+2001,30,"(25,30]",College,1993.1390971690896,1143.2741306142857,1.7433606199924843,843.7445363869003,2019
+2001,30,"(25,30]",College,2093.41545524101,1232.8076468672116,1.6980876623865526,823.4189901315578,2019
+2001,30,"(25,30]",College,2091.7413925019127,1021.0264449612522,2.048665245473925,827.6587260304711,2019
+2001,81,"(80,85]",HS,177.1158377964805,60.2629436317771,2.9390505528356896,9270.513441454945,2019
+2001,81,"(80,85]",HS,175.3915531752104,60.2629436317771,2.9104378678695197,9589.900292807104,2019
+2001,81,"(80,85]",HS,175.44177505738332,60.2629436317771,2.911271247043292,9765.142877526521,2019
+2001,81,"(80,85]",HS,176.44621270084164,60.2629436317771,2.927938830518731,9513.305661183185,2019
+2001,81,"(80,85]",HS,176.2788064269319,60.2629436317771,2.925160899939491,9686.346684256941,2019
+2001,49,"(45,50]",College,1373.2336648814078,194.5632180111661,7.058033265067589,1439.9302720462779,2019
+2001,49,"(45,50]",College,1372.0618209640397,194.5632180111661,7.052010318236493,1427.0120209184806,2019
+2001,49,"(45,50]",College,1372.7314460596788,194.5632180111661,7.055452002139978,1373.4123932762736,2019
+2001,49,"(45,50]",College,1370.3877582249427,194.5632180111661,7.043406108477787,1425.492044770193,2019
+2001,49,"(45,50]",College,1371.5596021423107,194.5632180111661,7.049429055308882,1503.9177532137824,2019
+2001,42,"(40,45]",College,2901.652945677123,1346.4463405728482,2.1550453651518033,134.6026087564832,2019
+2001,42,"(40,45]",College,2901.652945677123,1007.2520578454174,2.8807614966644612,131.97442258861892,2019
+2001,42,"(40,45]",College,2901.652945677123,1222.4768565303355,2.3735851768291694,142.06625700818336,2019
+2001,42,"(40,45]",College,2901.652945677123,1621.9340828895438,1.789007935826656,136.30962311308525,2019
+2001,42,"(40,45]",College,2899.978882938026,1179.431896793352,2.458792992475877,138.83496483732685,2019
+2001,82,"(80,85]",HS,236.87987758224943,29.27057262114888,8.092765408050013,6948.0849360398815,2019
+2001,82,"(80,85]",HS,429.932792654935,29.27057262114888,14.688226233889782,7114.0460666267445,2019
+2001,82,"(80,85]",HS,342.6973833205815,24.105177452710844,14.216754221904393,7248.693668872906,2019
+2001,82,"(80,85]",HS,248.11283856159145,29.27057262114888,8.476528347187932,7105.046645671746,2019
+2001,82,"(80,85]",HS,403.28171384850805,46.488556515942335,8.674859881059342,7188.18241318723,2019
+2001,49,"(45,50]",College,14381.370772762051,18629.858574166523,0.7719527615042808,12.996581521064414,2019
+2001,49,"(45,50]",College,14095.106044376435,15306.787682471386,0.920840240079732,13.533595725364634,2019
+2001,49,"(45,50]",College,13802.14506503443,9314.929287083261,1.48172301041227,13.646638749388416,2019
+2001,49,"(45,50]",College,13898.738485080337,25913.06576166415,0.5363602521181482,13.308246320824935,2019
+2001,49,"(45,50]",College,17492.616373374138,25017.730599134895,0.6992087593260369,13.44954670541269,2019
+2001,71,"(70,75]",College,1392.652792654935,208.33760512700084,6.684596339705381,7747.303227723316,2019
+2001,71,"(70,75]",College,1023.6056618209641,84.36812108448795,12.132611804829748,7086.212486573732,2019
+2001,71,"(70,75]",College,1830.4201989288447,94.69891142136402,19.328840970350406,4334.5006221424665,2019
+2001,71,"(70,75]",College,1043.778117827085,146.35286310574438,7.131928242995313,7278.554964024651,2019
+2001,71,"(70,75]",College,1758.770313695486,86.08991947396729,20.42945706584521,3676.9802534466485,2019
+2001,48,"(45,50]",College,7823.899617444529,859.1773963501936,9.106267984563658,3.5005675001268735,2019
+2001,48,"(45,50]",College,8581.413006885998,903.9441544766565,9.493299961494031,3.5250998056746554,2019
+2001,48,"(45,50]",College,6088.398775822494,854.0120011817556,7.129172385631062,3.5754383868676953,2019
+2001,48,"(45,50]",College,8983.522876817138,2686.0054875877795,3.3445660920391376,3.485400473313079,2019
+2001,48,"(45,50]",College,10824.657077276206,996.9212675085412,10.858086220117142,3.446170131448226,2019
+2001,43,"(40,45]",HS,740.2035807192043,82.64632269500859,8.956279681683995,6908.924927944492,2019
+2001,43,"(40,45]",HS,413.59394032134657,82.64632269500859,5.004384064946733,6944.157789687202,2019
+2001,43,"(40,45]",HS,371.74237184391734,82.64632269500859,4.497990469772815,7009.061943205919,2019
+2001,43,"(40,45]",HS,371.9097781178271,82.64632269500859,4.500016044153511,6800.569241323426,2019
+2001,43,"(40,45]",HS,656.5004437643458,82.64632269500859,7.9434924913361575,6316.272570616385,2019
+2001,42,"(40,45]",HS,83.56921193573068,137.74387115834767,0.6067000385059683,9328.958989871668,2019
+2001,42,"(40,45]",HS,83.56921193573068,137.74387115834767,0.6067000385059683,9675.18444171577,2019
+2001,42,"(40,45]",HS,83.7366182096404,137.74387115834767,0.6079153831343858,9765.614365019006,2019
+2001,42,"(40,45]",HS,83.56921193573068,137.74387115834767,0.6067000385059683,9475.124804361187,2019
+2001,42,"(40,45]",HS,83.7366182096404,137.74387115834767,0.6079153831343858,9692.465295914615,2019
+2001,68,"(65,70]",College,42424.65037490436,2909.839278220095,14.579722905127216,13.049809091861508,2019
+2001,68,"(65,70]",College,87734.31351185922,2117.812019059595,41.42686542633621,13.27890672793472,2019
+2001,68,"(65,70]",College,17936.644774292272,6783.885654548622,2.644007533096564,13.523293431354869,2019
+2001,68,"(65,70]",College,12555.87231828615,2307.209841902323,5.442015758711257,13.223261151766664,2019
+2001,68,"(65,70]",College,26843.244468247896,2651.5695197981922,10.12353033470188,13.102696242266045,2019
+2001,70,"(65,70]",College,9.023198163733742,34.43596778958692,0.26202830188679244,8630.79223289705,2019
+2001,70,"(65,70]",College,10.69726090283091,34.43596778958692,0.3106420870234886,9638.616757661945,2019
+2001,70,"(65,70]",College,10.69726090283091,34.43596778958692,0.3106420870234886,9533.58103015084,2019
+2001,70,"(65,70]",College,9.023198163733742,36.157766179066265,0.2495507637017071,9156.260997177467,2019
+2001,70,"(65,70]",College,10.69726090283091,36.157766179066265,0.29584960668903676,9424.896520455786,2019
+2001,46,"(45,50]",College,87.38607498087224,82.64632269500859,1.0573498267231423,6958.9130535424,2019
+2001,46,"(45,50]",College,87.38607498087224,82.64632269500859,1.0573498267231423,7253.551149247015,2019
+2001,46,"(45,50]",College,87.38607498087224,82.64632269500859,1.0573498267231423,7286.477871181644,2019
+2001,46,"(45,50]",College,87.2186687069625,82.64632269500859,1.0553242523424464,7088.236617616877,2019
+2001,46,"(45,50]",College,87.2186687069625,82.64632269500859,1.0553242523424464,7182.6154832571365,2019
+2001,55,"(50,55]",College,3169.0007651109413,301.3147181588855,10.517245173001816,2698.5096806034508,2019
+2001,55,"(50,55]",College,3322.847130833971,297.8711213799269,11.15531816391078,1240.5468471381187,2019
+2001,55,"(50,55]",College,3322.679724560061,277.20954070617466,11.986166551467651,3450.2351127498596,2019
+2001,55,"(50,55]",College,3544.9952563121656,284.09673426409205,12.478127443087013,1225.3196222350984,2019
+2001,55,"(50,55]",College,3488.0771231828617,289.2621294325301,12.05853365605002,1215.8783611576023,2019
+2001,75,"(70,75]",College,533.5740168324407,123.96948404251289,4.304075482394216,11172.709993096712,2019
+2001,75,"(70,75]",College,533.7581637337414,122.24768565303354,4.366202606474427,11512.871534250906,2019
+2001,75,"(70,75]",College,538.0772456006122,122.24768565303354,4.40153318834842,11582.962574235951,2019
+2001,75,"(70,75]",College,551.4864881407804,123.96948404251289,4.44856645488384,11487.197979589339,2019
+2001,75,"(70,75]",College,554.7843917368018,123.96948404251289,4.475168998416977,11429.63349038418,2019
+2001,58,"(55,60]",College,15020.52792654935,885.0043721923838,16.972264091011926,10.217799927137484,2019
+2001,58,"(55,60]",College,15020.02570772762,885.0043721923838,16.971696614920837,10.478039488300563,2019
+2001,58,"(55,60]",College,15020.862739097169,885.0043721923838,16.972642408405985,10.640733265064004,2019
+2001,58,"(55,60]",College,15020.02570772762,885.0043721923838,16.971696614920837,10.333336290831854,2019
+2001,58,"(55,60]",College,15022.034583014536,885.0043721923838,16.973966519285195,10.377826139462153,2019
+2001,45,"(40,45]",HS,301.8335118592196,89.53351625292598,3.3711790231332013,6536.300979960337,2019
+2001,45,"(40,45]",HS,301.8335118592196,89.53351625292598,3.3711790231332013,6883.353270884405,2019
+2001,45,"(40,45]",HS,299.32241775057383,89.53351625292598,3.343132608631261,6910.165805911466,2019
+2001,45,"(40,45]",HS,301.8335118592196,89.53351625292598,3.3711790231332013,6681.203294408825,2019
+2001,45,"(40,45]",HS,301.8335118592196,89.53351625292598,3.3711790231332013,6813.582193677927,2019
+2001,79,"(75,80]",NoHS,201.38974751338947,30.992371010628222,6.498042613271725,11103.441092498682,2019
+2001,79,"(75,80]",NoHS,199.26368783473606,41.323161347504296,4.822082370684123,11562.915579465192,2019
+2001,79,"(75,80]",NoHS,214.28003060443763,48.21035490542169,4.444688926783651,11620.14616558679,2019
+2001,79,"(75,80]",NoHS,314.72379495026775,51.653951684380374,6.092927737132588,11457.948665004085,2019
+2001,79,"(75,80]",NoHS,188.33205814843154,13.257847598990962,14.205326825657979,11472.670579219764,2019
+2001,67,"(65,70]",College,6945.853710788065,344.35967789586914,20.170345591066617,1515.59688936874,2019
+2001,67,"(65,70]",College,6944.849273144606,344.35967789586914,20.167428763958416,1512.558604401761,2019
+2001,67,"(65,70]",College,5275.306503442999,344.35967789586914,15.319175972275703,1523.6676454188985,2019
+2001,67,"(65,70]",College,6947.527773527161,344.35967789586914,20.175206969580284,1511.3900477527018,2019
+2001,67,"(65,70]",College,6955.730680948738,344.35967789586914,20.19902772429727,1503.1836352970631,2019
+2001,58,"(55,60]",College,1551.9063810252487,129.1348792109509,12.017716596072393,5909.573065609124,2019
+2001,58,"(55,60]",College,1614.918102524866,129.1348792109509,12.505669362084458,2657.3320086573735,2019
+2001,58,"(55,60]",College,1226.6527314460598,129.1348792109509,9.499003978950073,5021.298347872448,2019
+2001,58,"(55,60]",College,1061.2720734506504,129.1348792109509,8.218322423308948,5621.5805735816375,2019
+2001,58,"(55,60]",College,806.0612088752869,129.1348792109509,6.242010011551791,5403.027773308742,2019
+2001,63,"(60,65]",HS,182.23846977811783,46.488556515942335,3.9200715925783314,8732.686022688975,2019
+2001,63,"(60,65]",HS,80.02019892884468,18.939782284272805,4.224979871880141,9407.672538605928,2019
+2001,63,"(60,65]",HS,501.9007498087223,49.93215329490103,10.051654428850266,7879.761826439366,2019
+2001,63,"(60,65]",HS,75.70111706197399,29.27057262114888,2.5862533692722374,9167.555149665053,2019
+2001,63,"(60,65]",HS,369.93438408569244,68.87193557917384,5.371337119753561,8417.312068338757,2019
+2001,88,"(85,90]",HS,1968.1955623565416,29.27057262114888,67.24144374731024,3172.0805041526255,2019
+2001,88,"(85,90]",HS,1968.1955623565416,30.992371010628222,63.50580798357079,3205.27638234589,2019
+2001,88,"(85,90]",HS,1968.1955623565416,30.992371010628222,63.50580798357079,4071.3536286245353,2019
+2001,88,"(85,90]",HS,1968.1955623565416,29.27057262114888,67.24144374731024,3347.76732146418,2019
+2001,88,"(85,90]",HS,1968.028156082632,29.27057262114888,67.23572447847063,3429.9500943198086,2019
+2001,51,"(50,55]",HS,1084.1230298393266,84.36812108448795,12.849913165112019,562.9816205517737,2019
+2001,51,"(50,55]",HS,1082.4489671002295,84.36812108448795,12.830070803831735,554.7862444912597,2019
+2001,51,"(50,55]",HS,1082.4489671002295,84.36812108448795,12.830070803831735,536.3474062883513,2019
+2001,51,"(50,55]",HS,1082.4489671002295,84.36812108448795,12.830070803831735,559.7929231225035,2019
+2001,51,"(50,55]",HS,1084.1230298393266,84.36812108448795,12.849913165112019,599.4081851271933,2019
+2001,20,"(15,20]",NoHS,0,25.826975842190187,0,4744.999719078185,2019
+2001,20,"(15,20]",NoHS,0,25.826975842190187,0,4690.799292721271,2019
+2001,20,"(15,20]",NoHS,0,25.826975842190187,0,4682.796195160596,2019
+2001,20,"(15,20]",NoHS,0,25.826975842190187,0,4662.574932750957,2019
+2001,20,"(15,20]",NoHS,0,25.826975842190187,0,4693.070518740677,2019
+2001,28,"(25,30]",College,252.96762050497324,120.5258872635542,2.098865449144618,8589.076576163032,2019
+2001,28,"(25,30]",College,53.50304514154553,98.14250820032271,0.545156692269758,8700.529947750478,2019
+2001,28,"(25,30]",College,48.0790818668707,105.0297017582401,0.4577665275822671,8769.985095513275,2019
+2001,28,"(25,30]",College,75.36630451415456,129.1348792109509,0.5836246951610835,8585.099071406465,2019
+2001,28,"(25,30]",College,217.2096403978577,120.5258872635542,1.8021824632818089,8691.555496598847,2019
+2001,25,"(20,25]",NoHS,13.55990818668707,55.097548463339066,0.24610728725452444,4363.408742149565,2019
+2001,25,"(20,25]",NoHS,13.55990818668707,67.15013718969449,0.20193418441396876,4342.5078635910595,2019
+2001,25,"(20,25]",NoHS,13.727314460596787,68.87193557917384,0.19931651906045436,4273.713970050313,2019
+2001,25,"(20,25]",NoHS,13.727314460596787,67.15013718969449,0.20442719903636344,4348.308863862507,2019
+2001,25,"(20,25]",NoHS,13.55990818668707,58.54114524229776,0.2316303880042583,4331.961997489091,2019
+2001,54,"(50,55]",HS,21.997184391736802,51.653951684380374,0.42585675779745863,6166.693787608437,2019
+2001,54,"(50,55]",HS,17.61114001530222,51.653951684380374,0.3409446797586959,6250.284144415657,2019
+2001,54,"(50,55]",HS,17.92921193573068,51.653951684380374,0.34710242587601076,6252.699760346633,2019
+2001,54,"(50,55]",HS,18.163580719204287,51.653951684380374,0.35163971248876913,6198.173157120165,2019
+2001,54,"(50,55]",HS,17.058699311400154,51.653951684380374,0.3302496470286228,6261.275950472449,2019
+2001,49,"(45,50]",HS,166.0670237184392,3.4435967789586917,48.22487485560263,5914.262588182228,2019
+2001,49,"(45,50]",HS,163.89074215761283,3.4435967789586917,47.59289564882556,5899.298145823677,2019
+2001,49,"(45,50]",HS,162.41756694720735,3.4435967789586917,47.16509433962264,5899.961442191691,2019
+2001,49,"(45,50]",HS,163.23785768936497,3.4435967789586917,47.403301886792455,5909.045605935635,2019
+2001,49,"(45,50]",HS,163.25459831675593,3.4435967789586917,47.40816326530612,5887.304564959656,2019
+2001,43,"(40,45]",College,1265.0892119357306,495.87793617005156,2.5512109324862022,36.374961448385,2019
+2001,43,"(40,45]",College,1266.763274674828,495.87793617005156,2.5545868897873616,35.74078006098187,2019
+2001,43,"(40,45]",College,1268.437337413925,495.87793617005156,2.557962847088521,34.60476103057374,2019
+2001,43,"(40,45]",College,1266.763274674828,495.87793617005156,2.5545868897873616,36.11210543974296,2019
+2001,43,"(40,45]",College,1266.763274674828,495.87793617005156,2.5545868897873616,38.63262223697568,2019
+2001,45,"(40,45]",College,9489.592042846212,3426.378795063898,2.7695688686017688,495.6589620314802,2019
+2001,45,"(40,45]",College,9511.354858454475,3426.378795063898,2.7759204184186235,496.9306612203465,2019
+2001,45,"(40,45]",College,9509.68079571538,3426.378795063898,2.7754318376634814,506.6564122388286,2019
+2001,45,"(40,45]",College,9497.962356541699,3426.378795063898,2.7720117723774824,498.60711198874435,2019
+2001,45,"(40,45]",College,9472.851415455241,3426.378795063898,2.7646830610503423,504.1585065744751,2019
+2001,49,"(45,50]",HS,6.779954093343535,17.21798389479346,0.3937716596072391,4883.687441403002,2019
+2001,49,"(45,50]",HS,6.779954093343535,17.21798389479346,0.3937716596072391,4955.528299317743,2019
+2001,49,"(45,50]",HS,6.779954093343535,17.21798389479346,0.3937716596072391,4942.431299684191,2019
+2001,49,"(45,50]",HS,6.779954093343535,17.21798389479346,0.3937716596072391,4876.4577907287685,2019
+2001,49,"(45,50]",HS,6.947360367253252,17.21798389479346,0.4034944166345783,4949.834856473435,2019
+2001,35,"(30,35]",HS,-0.050221882172915074,41.323161347504296,-0.0012153446284174048,4212.949468616036,2019
+2001,35,"(30,35]",HS,-0.050221882172915074,41.323161347504296,-0.0012153446284174048,4219.737746455354,2019
+2001,35,"(30,35]",HS,-0.06696250956388677,41.323161347504296,-0.0016204595045565399,4241.635677176614,2019
+2001,35,"(30,35]",HS,0.11718439173680184,39.60136295802496,0.0029590999648423763,4192.142685554667,2019
+2001,35,"(30,35]",HS,-0.06696250956388677,39.60136295802496,-0.0016909142656242153,4254.093177345674,2019
+2001,37,"(35,40]",HS,87.85481254781944,32.71416940010757,2.6855278357619112,7470.4862136496795,2019
+2001,37,"(35,40]",HS,87.83807192042848,32.71416940010757,2.6850161117078413,7696.587766571081,2019
+2001,37,"(35,40]",HS,89.49539403213466,30.992371010628222,2.8876588371197536,7780.453800296326,2019
+2001,37,"(35,40]",HS,89.51213465952563,30.992371010628222,2.8881989902879392,7611.834317184761,2019
+2001,37,"(35,40]",HS,91.1861973986228,32.71416940010757,2.787360922521938,7664.021475040399,2019
+2001,28,"(25,30]",HS,10.714001530221882,61.984742021256444,0.17284901381936424,5811.410471671248,2019
+2001,28,"(25,30]",HS,12.38806426931905,63.706540410735805,0.1944551405467847,5768.25775677078,2019
+2001,28,"(25,30]",HS,10.714001530221882,63.706540410735805,0.16817741885127327,5774.610407118119,2019
+2001,28,"(25,30]",HS,10.714001530221882,61.984742021256444,0.17284901381936424,5812.534122796265,2019
+2001,28,"(25,30]",HS,10.714001530221882,63.706540410735805,0.16817741885127327,5758.21697482443,2019
+2001,26,"(25,30]",HS,14.396939556235655,101.5861049792814,0.14172154311036855,4390.832275500005,2019
+2001,26,"(25,30]",HS,21.478224942616677,101.5861049792814,0.2114287672216312,4413.343834870564,2019
+2001,26,"(25,30]",HS,14.229533282325939,101.5861049792814,0.14007361819048056,4426.011562634385,2019
+2001,26,"(25,30]",HS,14.229533282325939,101.5861049792814,0.14007361819048056,4419.9845040413,2019
+2001,26,"(25,30]",HS,20.574231063504207,101.5861049792814,0.20252997265423597,4392.13679150682,2019
+2001,43,"(40,45]",College,765.5488905891355,120.5258872635542,6.351738269431762,6549.760710817332,2019
+2001,43,"(40,45]",College,800.2019892884468,120.5258872635542,6.63925408438308,5957.85342943547,2019
+2001,43,"(40,45]",College,758.3504208110177,120.5258872635542,6.292012761978108,5569.451463190415,2019
+2001,43,"(40,45]",College,789.487987758225,120.5258872635542,6.550360305847407,6228.494578778041,2019
+2001,43,"(40,45]",College,816.7752104055088,120.5258872635542,6.776761648055449,5988.306194094288,2019
+2001,46,"(45,50]",HS,151.385493496557,106.75150014771945,1.418111158035947,6480.575334193077,2019
+2001,46,"(45,50]",HS,155.95568477429228,110.19509692667813,1.4152688197920678,6840.386477488137,2019
+2001,46,"(45,50]",HS,154.80058148431522,111.91689531615746,1.3831743727970143,6883.57996869652,2019
+2001,46,"(45,50]",HS,164.91192042846214,113.63869370563681,1.4511951435805885,6643.55132950549,2019
+2001,46,"(45,50]",HS,150.93349655700078,123.96948404251289,1.217505241090147,6752.6976754383895,2019
+2001,67,"(65,70]",HS,409.810558530987,36.157766179066265,11.33395676329831,7874.280357272664,2019
+2001,67,"(65,70]",HS,408.63871461361896,36.157766179066265,11.301547573207179,8157.28924666293,2019
+2001,67,"(65,70]",HS,420.6919663351186,36.157766179066265,11.634899242715953,8495.781043339503,2019
+2001,67,"(65,70]",HS,412.99127773527164,39.60136295802496,10.428713733237347,7893.723787020908,2019
+2001,67,"(65,70]",HS,425.2119357306809,36.157766179066265,11.759906118781743,8212.015213167348,2019
+2001,31,"(30,35]",College,-4.75433817903596,51.653951684380374,-0.09204209985881144,6816.352579077815,2019
+2001,31,"(30,35]",College,-5.005447589900536,51.653951684380374,-0.09690347837248107,6827.774686696523,2019
+2001,31,"(30,35]",College,-5.172853863810253,51.653951684380374,-0.10014439738159416,6851.659649267107,2019
+2001,31,"(30,35]",College,-5.290038255547055,51.653951684380374,-0.10241304068797331,6886.785735530657,2019
+2001,31,"(30,35]",College,-5.172853863810253,51.653951684380374,-0.10014439738159416,6833.266879317189,2019
+2001,34,"(30,35]",HS,0.5357000765110942,34.43596778958692,0.015556411243742782,6837.371892543219,2019
+2001,34,"(30,35]",HS,0.5357000765110942,34.43596778958692,0.015556411243742782,6786.600885851182,2019
+2001,34,"(30,35]",HS,0.6361438408569243,34.43596778958692,0.018473238351944553,6794.075049505564,2019
+2001,34,"(30,35]",HS,0.8035501147666412,34.43596778958692,0.02333461686561417,6838.693915941267,2019
+2001,34,"(30,35]",HS,0.5189594491201224,34.43596778958692,0.015070273392375816,6774.787478315471,2019
+2001,38,"(35,40]",NoHS,0,20.661580673752148,0,5824.820851383594,2019
+2001,38,"(35,40]",NoHS,0,27.548774231669533,0,5814.137843067307,2019
+2001,38,"(35,40]",NoHS,0,49.93215329490103,0,5819.6953787135635,2019
+2001,38,"(35,40]",NoHS,0,20.661580673752148,0,5785.875545759717,2019
+2001,38,"(35,40]",NoHS,0,7.4037330747611865,0,5850.8674216029995,2019
+2001,60,"(55,60]",College,30379.21652639633,2152.2479868491823,14.115109742010011,1449.8473079898063,2019
+2001,60,"(55,60]",College,25397.205814843153,2737.6594392721604,9.276977790048022,1499.9110352301152,2019
+2001,60,"(55,60]",College,27330.74827850038,1980.0681479012476,13.80293315029047,1486.94076987342,2019
+2001,60,"(55,60]",College,27249.05401683244,4579.983716015059,5.949596266368657,1444.8433514020944,2019
+2001,60,"(55,60]",College,30819.495026778884,2737.6594392721604,11.257607350522978,1435.8447710207934,2019
+2001,78,"(75,80]",HS,243.74353481254784,32.71416940010757,7.450702227266279,8010.287968557573,2019
+2001,78,"(75,80]",HS,251.61162968630452,29.27057262114888,8.596061065935809,8201.620754472804,2019
+2001,78,"(75,80]",HS,245.7524100994644,29.27057262114888,8.395886656549411,8356.85289083789,2019
+2001,78,"(75,80]",HS,251.4442234123948,32.71416940010757,7.686095292138702,8191.2455281962975,2019
+2001,78,"(75,80]",HS,243.5761285386381,32.71416940010757,7.4455849867255735,8287.090850240624,2019
+2001,40,"(35,40]",College,94154.72915072685,6284.564121599612,14.981902854188975,17.78317985079869,2019
+2001,40,"(35,40]",College,91391.27008416221,7352.079123076806,12.43067009402851,19.364058268294023,2019
+2001,40,"(35,40]",College,89103.66335118593,6542.833880021514,13.61851225097785,18.90030794244316,2019
+2001,40,"(35,40]",College,89455.6350420811,6628.923799495481,13.49474481044562,18.56465708175563,2019
+2001,40,"(35,40]",College,92409.26763580719,6009.076379282916,15.378281420153078,19.6123879178756,2019
+2001,50,"(45,50]",HS,2259.984697781178,585.4114524229775,3.8605064667376383,1668.0314240763632,2019
+2001,50,"(45,50]",HS,2261.6587605202753,585.4114524229775,3.8633661011574443,1631.256219076706,2019
+2001,50,"(45,50]",HS,2259.984697781178,585.4114524229775,3.8605064667376383,1753.100211532686,2019
+2001,50,"(45,50]",HS,2259.984697781178,585.4114524229775,3.8605064667376383,1673.5867154246475,2019
+2001,50,"(45,50]",HS,2261.6587605202753,585.4114524229775,3.8633661011574443,1669.6526169816648,2019
+2001,40,"(35,40]",College,128.40061208875287,79.20272591604991,1.6211640521672162,6306.004649127952,2019
+2001,40,"(35,40]",College,128.23320581484316,79.20272591604991,1.619050409335186,6540.039262351753,2019
+2001,40,"(35,40]",College,128.23320581484316,79.20272591604991,1.619050409335186,6601.166288142052,2019
+2001,40,"(35,40]",College,129.90726855394033,79.20272591604991,1.6401868376554887,6404.806917067515,2019
+2001,40,"(35,40]",College,128.23320581484316,79.20272591604991,1.619050409335186,6551.720431390783,2019
+2001,37,"(35,40]",HS,1831.4246365723031,251.3825648639845,7.285408347882964,1322.1938198189716,2019
+2001,37,"(35,40]",HS,1831.4246365723031,251.3825648639845,7.285408347882964,1304.4470878684529,2019
+2001,37,"(35,40]",HS,1829.7505738332059,253.10436325346384,7.229233626450195,1380.0463604696035,2019
+2001,37,"(35,40]",HS,1829.7505738332059,253.10436325346384,7.229233626450195,1339.381097222773,2019
+2001,37,"(35,40]",HS,1831.4246365723031,251.3825648639845,7.285408347882964,1339.940831143497,2019
+2001,50,"(45,50]",College,8646.115531752104,414.9534118645223,20.836352430269848,1103.362204131493,2019
+2001,50,"(45,50]",College,8646.115531752104,416.6752102540017,20.750251800392697,1109.0525927562244,2019
+2001,50,"(45,50]",College,8647.789594491202,416.6752102540017,20.754269468585814,1114.0823654812543,2019
+2001,50,"(45,50]",College,8647.789594491202,416.6752102540017,20.754269468585814,1108.0333968502432,2019
+2001,50,"(45,50]",College,8647.622188217292,416.6752102540017,20.753867701766502,1099.857312524464,2019
+2001,60,"(55,60]",College,61949.696097934204,430.4495973698365,143.91858298036195,232.6198827127451,2019
+2001,60,"(55,60]",College,64167.49441469013,430.4495973698365,149.07086638428956,205.7612511507222,2019
+2001,60,"(55,60]",College,63983.51491966336,430.4495973698365,148.64345398536773,211.399025465056,2019
+2001,60,"(55,60]",College,61865.49074215761,430.4495973698365,143.72296110897187,238.02261183877985,2019
+2001,60,"(55,60]",College,60187.912471308344,430.4495973698365,139.82569118213323,216.14594743840863,2019
+2001,45,"(40,45]",HS,51.91268553940321,37.87956456854561,1.3704667973535898,8975.880111133254,2019
+2001,45,"(40,45]",HS,51.7452792654935,37.87956456854561,1.3660473623411629,9421.602911529708,2019
+2001,45,"(40,45]",HS,51.92942616679419,37.87956456854561,1.3709087408548324,9455.520831818281,2019
+2001,45,"(40,45]",HS,52.01312930374905,37.87956456854561,1.3731184583610458,9204.705844779772,2019
+2001,45,"(40,45]",HS,51.795501147666414,37.87956456854561,1.367373192844891,9253.566086882935,2019
+2001,55,"(50,55]",HS,476.01973986228006,67.15013718969449,7.088887078779262,7402.949000180956,2019
+2001,55,"(50,55]",HS,474.17827084927313,67.15013718969449,7.06146391793292,7808.36511765176,2019
+2001,55,"(50,55]",HS,475.8523335883703,67.15013718969449,7.086394064156867,7871.49319403896,2019
+2001,55,"(50,55]",HS,475.1827084927315,67.15013718969449,7.076422005667289,7669.786895158031,2019
+2001,55,"(50,55]",HS,476.01973986228006,67.15013718969449,7.088887078779262,7746.436065980566,2019
+2001,23,"(20,25]",HS,0,20.661580673752148,0,5336.069753897022,2019
+2001,23,"(20,25]",HS,0,20.661580673752148,0,5368.010648029187,2019
+2001,23,"(20,25]",HS,0,20.661580673752148,0,5286.289521869025,2019
+2001,23,"(20,25]",HS,0,20.661580673752148,0,5286.7617947848985,2019
+2001,23,"(20,25]",HS,0,20.661580673752148,0,5325.233450802943,2019
+2001,63,"(60,65]",College,225964.6537107881,4235.62403811919,53.34860971540021,2.1257090517232013,2019
+2001,63,"(60,65]",College,217828.70879877583,5940.204443703743,36.67023767669496,2.168847389551151,2019
+2001,63,"(60,65]",College,218031.10298393268,5354.792991280766,40.71699939455246,1.9139833519487623,2019
+2001,63,"(60,65]",College,212666.90374904362,4855.4714583317555,43.799434426520506,2.4909727322479034,2019
+2001,63,"(60,65]",College,216226.79816373377,6250.128153810026,34.59557833736957,1.9791266809042838,2019
+2001,60,"(55,60]",HS,3536.45753634277,225.5555890217943,15.67887345057568,1257.6606124834102,2019
+2001,60,"(55,60]",HS,3538.131599081867,225.5555890217943,15.686295402504946,1263.1738570184202,2019
+2001,60,"(55,60]",HS,3538.131599081867,225.5555890217943,15.686295402504946,1302.1747167909916,2019
+2001,60,"(55,60]",HS,3538.131599081867,225.5555890217943,15.686295402504946,1247.9619614485287,2019
+2001,60,"(55,60]",HS,3538.131599081867,225.5555890217943,15.686295402504946,1238.4339065115269,2019
+2001,47,"(45,50]",NoHS,9.20734506503443,39.60136295802496,0.23250071152332957,5397.773179937745,2019
+2001,47,"(45,50]",NoHS,9.374751338944147,39.60136295802496,0.23672799718739013,5489.446077827836,2019
+2001,47,"(45,50]",NoHS,9.039938791124712,39.60136295802496,0.228273425859269,5484.093068073334,2019
+2001,47,"(45,50]",NoHS,9.039938791124712,39.60136295802496,0.228273425859269,5419.377354057059,2019
+2001,47,"(45,50]",NoHS,9.039938791124712,39.60136295802496,0.228273425859269,5457.313981587371,2019
+2001,54,"(50,55]",HS,20.457046671767408,94.69891142136402,0.21602198340742818,5117.20503044277,2019
+2001,54,"(50,55]",HS,20.641193573068097,94.69891142136402,0.21796653481289602,5150.957433001169,2019
+2001,54,"(50,55]",HS,22.131109410864575,94.69891142136402,0.23369972345713586,5149.236242819634,2019
+2001,54,"(50,55]",HS,20.641193573068097,94.69891142136402,0.21796653481289602,5119.667202111132,2019
+2001,54,"(50,55]",HS,20.457046671767408,94.69891142136402,0.21602198340742818,5122.652288761251,2019
+2001,24,"(20,25]",NoHS,0,10.330790336876074,0,6864.625022988075,2019
+2001,24,"(20,25]",NoHS,0,10.330790336876074,0,6871.602379161357,2019
+2001,24,"(20,25]",NoHS,0,10.330790336876074,0,6866.943530152258,2019
+2001,24,"(20,25]",NoHS,0,10.330790336876074,0,6806.290062918159,2019
+2001,24,"(20,25]",NoHS,0,10.330790336876074,0,6840.0837581657015,2019
+2001,46,"(45,50]",HS,173.51660290742157,91.25531464240532,1.901441067705117,7485.463319469553,2019
+2001,46,"(45,50]",HS,267.66589135424636,92.97711303188467,2.8788363353727235,7882.912457998328,2019
+2001,46,"(45,50]",HS,151.67008416220352,92.97711303188467,1.63126256792025,7913.618548195579,2019
+2001,46,"(45,50]",HS,183.3768324407039,92.97711303188467,1.9722792681013706,7651.407477034498,2019
+2001,46,"(45,50]",HS,178.7061973986228,91.25531464240532,1.9583100239027618,7803.0096443442135,2019
+2001,80,"(75,80]",College,951.3698546289212,86.08991947396729,11.050885637273778,7393.226157915671,2019
+2001,80,"(75,80]",College,951.3698546289212,86.08991947396729,11.050885637273778,6672.520150141543,2019
+2001,80,"(75,80]",College,953.0439173680185,86.08991947396729,11.070331151328459,6310.470546297136,2019
+2001,80,"(75,80]",College,951.2024483550116,86.08991947396729,11.04894108586831,7056.943082297791,2019
+2001,80,"(75,80]",College,953.0439173680185,86.08991947396729,11.070331151328459,6782.088598759152,2019
+2001,37,"(35,40]",College,25300.947207345067,3908.4823441181147,6.473343098356458,17.738254596905286,2019
+2001,37,"(35,40]",College,25300.947207345067,3908.4823441181147,6.473343098356458,18.455667053800376,2019
+2001,37,"(35,40]",College,25302.62127008416,3908.4823441181147,6.4737714136440045,18.300731946273483,2019
+2001,37,"(35,40]",College,25302.62127008416,3925.700328012908,6.445377679373637,18.892070323687236,2019
+2001,37,"(35,40]",College,25302.62127008416,3908.4823441181147,6.4737714136440045,19.023917565317454,2019
+2001,43,"(40,45]",HS,258.64269319051266,67.15013718969449,3.851707591599775,2703.708306228083,2019
+2001,43,"(40,45]",HS,160.71002295332823,68.87193557917384,2.333461686561417,2864.191501317008,2019
+2001,43,"(40,45]",HS,172.42846212700843,68.87193557917384,2.503609934539854,2817.304601145056,2019
+2001,43,"(40,45]",HS,167.74108645753637,67.15013718969449,2.4980006516394657,2771.862966472777,2019
+2001,43,"(40,45]",HS,162.3840856924254,68.87193557917384,2.357768579129765,2732.502539699021,2019
+2001,73,"(70,75]",College,2583.0788064269323,597.4640411493331,4.323404637805315,467.75503742095844,2019
+2001,73,"(70,75]",College,2581.4047436878345,597.4640411493331,4.320602690535187,461.6008099546533,2019
+2001,73,"(70,75]",College,2581.4047436878345,597.4640411493331,4.320602690535187,488.6850578494753,2019
+2001,73,"(70,75]",College,2581.4047436878345,597.4640411493331,4.320602690535187,473.9572686667394,2019
+2001,73,"(70,75]",College,2581.4047436878345,597.4640411493331,4.320602690535187,474.5970976897729,2019
+2001,23,"(20,25]",HS,218.29778117827084,24.105177452710844,9.056053688321688,10055.030593349582,2019
+2001,23,"(20,25]",HS,222.81775057383322,30.992371010628222,7.189438668549181,10138.61203788995,2019
+2001,23,"(20,25]",HS,224.4918133129304,39.60136295802496,5.668790075505181,10227.357271117678,2019
+2001,23,"(20,25]",HS,224.4918133129304,34.43596778958692,6.519108586830959,10249.20969975836,2019
+2001,23,"(20,25]",HS,219.13481254781942,30.992371010628222,7.070604971548367,10098.316535644055,2019
+2001,37,"(35,40]",HS,164.05814843152257,106.75150014771945,1.5368228849665244,6344.378051079917,2019
+2001,37,"(35,40]",HS,343.23308339709257,106.75150014771945,3.215253021476393,6579.836815534747,2019
+2001,37,"(35,40]",HS,396.8700535577659,105.0297017582401,3.778645915526743,5562.821029971002,2019
+2001,37,"(35,40]",HS,1263.800183626626,105.0297017582401,12.032788463359363,6223.974495829657,2019
+2001,37,"(35,40]",HS,721.1862280030605,105.0297017582401,6.8664979137340065,5984.89320890936,2019
+2001,64,"(60,65]",College,14593.491262433052,1096.7855740983432,13.305692203720149,18.96313163743782,2019
+2001,64,"(60,65]",College,14593.641928079573,1096.7855740983432,13.305829573913629,19.024918491663293,2019
+2001,64,"(60,65]",College,14601.844835501148,1096.7855740983432,13.313308617780812,19.53554362126298,2019
+2001,64,"(60,65]",College,14583.597551644989,1096.7855740983432,13.296671561015035,18.92428971793262,2019
+2001,64,"(60,65]",College,14591.967865340475,1096.7855740983432,13.30430323843053,18.703213144143625,2019
+2001,75,"(70,75]",HS,679.0165876052029,30.992371010628222,21.909152654772605,8788.75768265872,2019
+2001,75,"(70,75]",HS,679.2342157612854,30.992371010628222,21.916174645959014,7932.012558477519,2019
+2001,75,"(70,75]",HS,678.4976281560826,30.992371010628222,21.892407906558848,7501.623149398746,2019
+2001,75,"(70,75]",HS,678.7152563121653,30.992371010628222,21.899429897745264,8388.99844342317,2019
+2001,75,"(70,75]",HS,678.8324407039021,30.992371010628222,21.90321096992256,8062.262942274314,2019
+2001,39,"(35,40]",HS,29.463504208110177,68.87193557917384,0.4278013092029264,5202.9886244409,2019
+2001,39,"(35,40]",HS,29.463504208110177,68.87193557917384,0.4278013092029264,5157.818684192159,2019
+2001,39,"(35,40]",HS,29.463504208110177,68.87193557917384,0.4278013092029264,5184.093621753735,2019
+2001,39,"(35,40]",HS,29.463504208110177,68.87193557917384,0.4278013092029264,5172.385672824651,2019
+2001,39,"(35,40]",HS,29.463504208110177,68.87193557917384,0.4278013092029264,5191.257242812115,2019
+2001,57,"(55,60]",HS,1707.0417750573833,74.03733074761188,23.056500792506558,574.1731051812989,2019
+2001,57,"(55,60]",HS,1707.0417750573833,74.03733074761188,23.056500792506558,568.7520796573788,2019
+2001,57,"(55,60]",HS,1707.0417750573833,75.75912913709122,22.53248941085868,547.5403683563734,2019
+2001,57,"(55,60]",HS,1707.0417750573833,74.03733074761188,23.056500792506558,568.1377773906722,2019
+2001,57,"(55,60]",HS,1707.0417750573833,75.75912913709122,22.53248941085868,599.6555696656235,2019
+2001,58,"(55,60]",College,37068.26901300689,1435.9798568257745,25.813919907585674,210.48983845778085,2019
+2001,58,"(55,60]",College,37076.47192042846,1435.9798568257745,25.819632318788788,197.24771397052135,2019
+2001,58,"(55,60]",College,37162.18393267024,1435.9798568257745,25.879321186870296,207.28903669253336,2019
+2001,58,"(55,60]",College,37057.55501147667,1435.9798568257745,25.806458799075486,215.80998439654277,2019
+2001,58,"(55,60]",College,37281.04238714614,1435.9798568257745,25.9620928594052,207.53110907316568,2019
+2001,45,"(40,45]",HS,30.133129303749044,20.661580673752148,1.4584135541008858,7525.93895827664,2019
+2001,45,"(40,45]",HS,30.133129303749044,18.939782284272805,1.5909966044736934,7530.028033727309,2019
+2001,45,"(40,45]",HS,30.133129303749044,18.939782284272805,1.5909966044736934,7515.833378768756,2019
+2001,45,"(40,45]",HS,30.133129303749044,20.661580673752148,1.4584135541008858,7527.653278841392,2019
+2001,45,"(40,45]",HS,30.133129303749044,20.661580673752148,1.4584135541008858,7519.231040442593,2019
+2001,46,"(45,50]",HS,184.81652639632748,61.984742021256444,2.981645488384033,1557.6358568733208,2019
+2001,46,"(45,50]",HS,236.74595256312165,168.7362421689759,1.4030533661288926,1675.1308658779071,2019
+2001,46,"(45,50]",HS,242.00250956388678,139.46566954782702,1.7352120442866175,1641.2238609290373,2019
+2001,46,"(45,50]",HS,258.4752869166029,61.984742021256444,4.169982458392162,1606.9939106094314,2019
+2001,46,"(45,50]",HS,262.91155317521043,55.097548463339066,4.771746847323835,1580.8054476336613,2019
+2001,33,"(30,35]",HS,0.6194032134659526,46.488556515942335,0.013323778148575993,4896.264783467726,2019
+2001,33,"(30,35]",HS,-1.0379188982402447,46.488556515942335,-0.02232633095166788,4917.491745525776,2019
+2001,33,"(30,35]",HS,0.6361438408569243,46.488556515942335,0.01368388026069967,4851.176194412417,2019
+2001,33,"(30,35]",HS,0.6361438408569243,46.488556515942335,0.01368388026069967,4928.785795893737,2019
+2001,33,"(30,35]",HS,-1.0379188982402447,46.488556515942335,-0.02232633095166788,4918.056333844384,2019
+2001,52,"(50,55]",NoHS,108.814078041316,1.3774387115834765,78.99740084713132,7555.974404646174,2019
+2001,52,"(50,55]",NoHS,88.72532517214995,1.3774387115834765,64.41326530612244,7557.81682433187,2019
+2001,52,"(50,55]",NoHS,108.814078041316,1.3774387115834765,78.99740084713132,7539.138072864693,2019
+2001,52,"(50,55]",NoHS,68.63657230298394,1.3774387115834765,49.8291297651136,7557.208013731068,2019
+2001,52,"(50,55]",NoHS,108.814078041316,1.3774387115834765,78.99740084713132,7549.287121327887,2019
+2001,62,"(60,65]",College,47813.575516449884,8505.684044027968,5.62136746074184,22.186381816816397,2019
+2001,62,"(60,65]",College,48857.8558530987,10330.790336876074,4.729343473238352,23.460982960666353,2019
+2001,62,"(60,65]",College,52102.691660290744,9573.199045505162,5.442558063676129,23.740899046028453,2019
+2001,62,"(60,65]",College,51980.48508033665,11467.177273932442,4.532979986147103,23.440699074076043,2019
+2001,62,"(60,65]",College,61436.428462127005,9676.506948873925,6.349029539970154,24.112156722472083,2019
+2001,34,"(30,35]",NoHS,20590.97169089518,688.7193557917383,29.89747785906816,9.517315629287783,2019
+2001,34,"(30,35]",NoHS,20590.97169089518,688.7193557917383,29.89747785906816,9.751031854799912,2019
+2001,34,"(30,35]",NoHS,20590.97169089518,688.7193557917383,29.89747785906816,9.908560329778654,2019
+2001,34,"(30,35]",NoHS,20590.97169089518,688.7193557917383,29.89747785906816,9.62166067815907,2019
+2001,34,"(30,35]",NoHS,20590.97169089518,688.7193557917383,29.89747785906816,9.663849111112837,2019
+2001,35,"(30,35]",HS,11.28318286151492,75.75912913709122,0.1489349599187874,5012.621042574596,2019
+2001,35,"(30,35]",HS,14.798714613618975,75.75912913709122,0.19533902754927013,5020.382616544877,2019
+2001,35,"(30,35]",HS,17.159143075745984,75.75912913709122,0.22649604438687995,5042.721907511637,2019
+2001,35,"(30,35]",HS,15.100045906656465,75.75912913709122,0.19931651906045436,5000.67631997114,2019
+2001,35,"(30,35]",HS,13.593389441469013,75.75912913709122,0.1794290615045332,5051.10965408682,2019
+2001,59,"(55,60]",HS,331.96664116296864,61.984742021256444,5.355618662559364,7791.076673923014,2019
+2001,59,"(55,60]",HS,329.4555470543229,61.984742021256444,5.31510717494545,8217.74826871341,2019
+2001,59,"(55,60]",HS,332.971078806427,61.984742021256444,5.37182325760493,8284.186073890503,2019
+2001,59,"(55,60]",HS,331.29701606732976,61.984742021256444,5.344815599195654,8071.904557408876,2019
+2001,59,"(55,60]",HS,331.79923488905894,61.984742021256444,5.352917896718436,8152.572351669839,2019
+2001,53,"(50,55]",HS,311.2417444529457,120.5258872635542,2.5823642664613016,3634.508540084472,2019
+2001,53,"(50,55]",HS,310.4047130833971,120.5258872635542,2.5754194400132024,3875.464229325582,2019
+2001,53,"(50,55]",HS,302.5366182096404,120.5258872635542,2.5101380714010673,3782.8688390199068,2019
+2001,53,"(50,55]",HS,309.5676817138485,120.5258872635542,2.568474613565103,3734.01393089381,2019
+2001,53,"(50,55]",HS,306.06889058913544,120.5258872635542,2.539445239012047,3665.244153282302,2019
+2001,38,"(35,40]",HS,200.97290589135426,58.54114524229776,3.4330197173208905,5922.486518470077,2019
+2001,38,"(35,40]",HS,202.27867482785004,58.54114524229776,3.4553248657953746,5382.264143930033,2019
+2001,38,"(35,40]",HS,202.56326549349654,56.819346852818406,3.56504037292447,5050.187206161679,2019
+2001,38,"(35,40]",HS,202.56326549349654,56.819346852818406,3.56504037292447,5624.450195558263,2019
+2001,38,"(35,40]",HS,204.40473450650344,56.819346852818406,3.597449563015601,5417.74869485861,2019
+2001,59,"(55,60]",College,12373.499923488906,1205.258872635542,10.266259145167501,3190.9080748881775,2019
+2001,59,"(55,60]",College,11858.056006120887,1205.258872635542,9.838596732493537,3173.0362399083137,2019
+2001,59,"(55,60]",College,11993.48768171385,1205.258872635542,9.950964024423786,3238.4904420832568,2019
+2001,59,"(55,60]",College,12073.842693190514,1205.258872635542,10.017634358325541,3172.7268341181984,2019
+2001,59,"(55,60]",College,11814.362968630452,1205.258872635542,9.802344738434458,3133.2430374545993,2019
+2001,33,"(30,35]",College,-31.422157612853866,60.2629436317771,-0.5214175697233072,3879.814042263932,2019
+2001,33,"(30,35]",College,-43.81022188217292,53.37575007385973,-0.8207888755015091,3890.744992977324,2019
+2001,33,"(30,35]",College,-23.202509563886764,53.37575007385973,-0.43470133031910263,3892.532382672045,2019
+2001,33,"(30,35]",College,-44.44636572302984,56.819346852818406,-0.782239997199566,3894.2221489420335,2019
+2001,33,"(30,35]",College,-39.625065034429994,53.37575007385973,-0.7423795446358701,3882.5730395868973,2019
+2001,54,"(50,55]",HS,-0.6696250956388676,18.939782284272805,-0.03535548009941541,4751.075638436872,2019
+2001,54,"(50,55]",HS,-0.5022188217291507,18.939782284272805,-0.02651661007456155,4736.597580272085,2019
+2001,54,"(50,55]",HS,-0.6696250956388676,18.939782284272805,-0.03535548009941541,4740.802214008993,2019
+2001,54,"(50,55]",HS,-0.5022188217291507,18.939782284272805,-0.02651661007456155,4718.644992749905,2019
+2001,54,"(50,55]",HS,-0.5022188217291507,18.939782284272805,-0.02651661007456155,4762.619483076329,2019
+2001,20,"(15,20]",HS,-46.03672532517215,12.052588726355422,-3.8196545464547,6408.890083397323,2019
+2001,20,"(15,20]",HS,-46.37153787299158,12.052588726355422,-3.8474338522470974,6408.100342004915,2019
+2001,20,"(15,20]",HS,-45.199693955623566,12.052588726355422,-3.7502062819737056,6423.20660726182,2019
+2001,20,"(15,20]",HS,-47.375975516449884,12.052588726355422,-3.930771769624291,6396.334544747228,2019
+2001,20,"(15,20]",HS,-43.35822494261668,12.052588726355422,-3.5974201001155173,6397.275238514768,2019
+2001,41,"(40,45]",HS,34.87072685539403,98.14250820032271,0.35530706820960756,6857.85075558441,2019
+2001,41,"(40,45]",HS,36.71219586840092,98.14250820032271,0.3740702835255254,7112.366021340157,2019
+2001,41,"(40,45]",HS,43.07363427697016,96.42070981084338,0.4467259612739974,7178.842347211657,2019
+2001,41,"(40,45]",HS,35.85842387146136,96.42070981084338,0.3718954562957258,6965.299329688537,2019
+2001,41,"(40,45]",HS,37.04700841622035,98.14250820032271,0.37748177721932863,7125.069423633319,2019
+2001,50,"(45,50]",HS,5.323519510328998,29.27057262114888,0.18187274909963985,6143.8386371205,2019
+2001,50,"(45,50]",HS,5.323519510328998,29.27057262114888,0.18187274909963985,6241.068814492595,2019
+2001,50,"(45,50]",HS,5.306778882938026,29.27057262114888,0.18130082221567873,6253.921096169137,2019
+2001,50,"(45,50]",HS,5.323519510328998,29.27057262114888,0.18187274909963985,6209.108868931076,2019
+2001,50,"(45,50]",HS,5.323519510328998,29.27057262114888,0.18187274909963985,6222.597689238681,2019
+2001,66,"(65,70]",College,665.0381637337414,192.84141962168675,3.448627193464987,7343.439951411934,2019
+2001,66,"(65,70]",College,654.9770466717674,192.84141962168675,3.3964541847736394,6608.2057982526285,2019
+2001,66,"(65,70]",College,661.690038255547,192.84141962168675,3.431265127344738,6234.975786605511,2019
+2001,66,"(65,70]",College,698.5194185156848,192.84141962168675,3.6222478546674735,6971.518974492026,2019
+2001,66,"(65,70]",College,701.8508033664882,192.84141962168675,3.639523110457121,6654.020078169158,2019
+2001,41,"(40,45]",College,19565.106044376433,526.8703071806799,37.134577101280755,209.41371697501842,2019
+2001,41,"(40,45]",College,19566.780107115534,526.8703071806799,37.137754472858326,196.4381247756557,2019
+2001,41,"(40,45]",College,18523.839020657993,526.8703071806799,35.158251980037285,209.75370225208076,2019
+2001,41,"(40,45]",College,18657.76403978577,526.8703071806799,35.41244170624224,206.44987499851882,2019
+2001,41,"(40,45]",College,18773.274368783474,526.8703071806799,35.631680345094004,199.0858788589583,2019
+2001,42,"(40,45]",NoHS,0.217628156082632,32.71416940010757,0.0066524127029163205,5025.312384263801,2019
+2001,42,"(40,45]",NoHS,0.2008875286916603,20.661580673752148,0.009722757027339239,4970.550213474605,2019
+2001,42,"(40,45]",HS,0.217628156082632,18.939782284272805,0.011490531032310009,4987.531116262444,2019
+2001,42,"(40,45]",NoHS,0.217628156082632,34.43596778958692,0.006319792067770505,4968.473005130532,2019
+2001,42,"(40,45]",NoHS,0.2008875286916603,27.548774231669533,0.007292067770504428,5026.448945039257,2019
+2001,53,"(50,55]",College,954.2994644223412,84.36812108448795,11.311138047825983,5928.3206656890825,2019
+2001,53,"(50,55]",College,1524.2341239479724,110.19509692667813,13.832141052175587,2664.9495806260147,2019
+2001,53,"(50,55]",College,928.1840856924254,246.21716969554646,3.7697780656001676,5025.628972757306,2019
+2001,53,"(50,55]",College,751.2021729150727,67.15013718969449,11.18690451507163,5636.015170980877,2019
+2001,53,"(50,55]",College,2200.973986228003,254.82616164294322,8.637158649793419,2819.433691438949,2019
+2001,68,"(65,70]",College,37390.19127773527,1033.0790336876073,36.19296303427031,9.610553906013468,2019
+2001,68,"(65,70]",College,37425.34659525631,1033.0790336876073,36.22699268386601,9.373037579908969,2019
+2001,68,"(65,70]",College,37395.21346595256,1033.0790336876073,36.19782441278399,9.72545276491913,2019
+2001,68,"(65,70]",College,37390.19127773527,1033.0790336876073,36.19296303427031,10.050999098434168,2019
+2001,68,"(65,70]",College,37487.28691660291,1033.0790336876073,36.2869496855346,9.656308125742381,2019
+2001,38,"(35,40]",HS,69.64100994644224,86.08991947396729,0.8089333846746246,4714.269260638617,2019
+2001,38,"(35,40]",HS,69.80841622035196,86.08991947396729,0.8108779360800925,4732.442953595144,2019
+2001,38,"(35,40]",HS,69.80841622035196,86.08991947396729,0.8108779360800925,4764.95608502723,2019
+2001,38,"(35,40]",HS,69.97582249426166,86.08991947396729,0.8128224874855603,4716.744403562702,2019
+2001,38,"(35,40]",HS,69.64100994644224,86.08991947396729,0.8089333846746246,4748.501654162642,2019
+2001,39,"(35,40]",NoHS,-22.666809487375673,8.60899194739673,-2.6329226030034656,9683.804260012344,2019
+2001,39,"(35,40]",NoHS,-22.666809487375673,8.60899194739673,-2.6329226030034656,9674.35846948961,2019
+2001,39,"(35,40]",NoHS,-22.666809487375673,8.60899194739673,-2.6329226030034656,9780.412903819608,2019
+2001,39,"(35,40]",NoHS,-22.666809487375673,8.60899194739673,-2.6329226030034656,9679.221473887183,2019
+2001,39,"(35,40]",NoHS,-22.666809487375673,8.60899194739673,-2.6329226030034656,9663.425991836928,2019
+2001,79,"(75,80]",HS,198.37643458301454,198.00681479012476,1.0018667023823475,5641.42624809906,2019
+2001,79,"(75,80]",HS,174.1025248661056,198.00681479012476,0.879275418124592,5652.857894635959,2019
+2001,79,"(75,80]",HS,170.75439938791126,198.00681479012476,0.8623662754683499,5651.324477689881,2019
+2001,79,"(75,80]",HS,162.3840856924254,198.00681479012476,0.8200934188277444,5739.288904572435,2019
+2001,79,"(75,80]",HS,192.51721499617446,163.57084700053784,1.1769653243621183,5671.528081867678,2019
+2001,59,"(55,60]",HS,1840.966794185157,99.86430658980206,18.434682591318897,990.2434767857225,2019
+2001,59,"(55,60]",HS,1750.7348125478195,98.14250820032271,17.83870052489715,992.3107937699381,2019
+2001,59,"(55,60]",HS,1808.9921958684008,99.86430658980206,18.1145021443841,1041.2699515629718,2019
+2001,59,"(55,60]",HS,1842.8082631981638,98.14250820032271,18.77686129069304,1015.4302084651711,2019
+2001,59,"(55,60]",HS,1807.6529456771234,99.86430658980206,18.10109144503605,1022.1028658539129,2019
+2001,41,"(40,45]",College,66600.91201224178,4304.495973698365,15.47240662302657,18.01293583972238,2019
+2001,41,"(40,45]",College,66602.58607498088,4304.495973698365,15.472795533307663,19.60781902692309,2019
+2001,41,"(40,45]",College,66602.58607498088,4304.495973698365,15.472795533307663,19.13956903634376,2019
+2001,41,"(40,45]",College,66600.91201224178,4304.495973698365,15.47240662302657,18.800585208567487,2019
+2001,41,"(40,45]",College,66602.58607498088,4304.495973698365,15.472795533307663,19.8680209352054,2019
+2001,45,"(40,45]",HS,130.6271155317521,98.14250820032271,1.3309942646373347,5576.6405432708925,2019
+2001,45,"(40,45]",HS,136.603519510329,98.14250820032271,1.3918894270717224,5812.753674367149,2019
+2001,45,"(40,45]",HS,130.72755929609795,98.14250820032271,1.3320177127454758,5839.140049808949,2019
+2001,45,"(40,45]",HS,132.30117827084928,98.14250820032271,1.3480517331063508,5680.276129039692,2019
+2001,45,"(40,45]",HS,130.5099311400153,98.14250820032271,1.3298002418445036,5755.908200385872,2019
+2001,59,"(55,60]",College,9145.404743687835,666.3359767285069,13.724915152546318,3254.2010593292825,2019
+2001,59,"(55,60]",College,9200.163335883703,705.9373396865317,13.032549517736225,3259.8372077980703,2019
+2001,59,"(55,60]",College,9101.209487375669,640.5090008863167,14.209338939471099,3275.3970364209385,2019
+2001,59,"(55,60]",College,9281.338638102525,695.6065493496558,13.342799383904504,3252.228847173108,2019
+2001,59,"(55,60]",College,9116.276052027544,736.92971069716,12.370618146747326,3237.745490472736,2019
+2001,49,"(45,50]",HS,21.7628156082632,8.60899194739673,2.5279168271082018,5245.916785099795,2019
+2001,49,"(45,50]",HS,21.109931140015302,8.60899194739673,2.4520793222949555,5228.3653000992035,2019
+2001,49,"(45,50]",HS,21.628890589135427,8.60899194739673,2.512360415864459,5229.932173583528,2019
+2001,49,"(45,50]",HS,21.66237184391737,8.60899194739673,2.516249518675395,5209.772265817055,2019
+2001,49,"(45,50]",HS,22.09762815608263,8.60899194739673,2.5668078552175584,5258.695983208703,2019
+2001,45,"(40,45]",HS,118.57386381025249,13.085667760043028,9.061353687453135,10585.560367565351,2019
+2001,45,"(40,45]",HS,23.15228768171385,15.66836534426205,1.4776453811879302,5577.627339364228,2019
+2001,45,"(40,45]",HS,76.72229533282325,17.045804055845522,4.500949035989467,5621.039815535472,2019
+2001,45,"(40,45]",HS,18.130099464422344,13.946566954782698,1.2999686247664688,5522.703701163663,2019
+2001,45,"(40,45]",HS,44.91510328997705,13.774387115834767,3.2607696380438966,5507.494396961321,2019
+2001,34,"(30,35]",HS,34.31828615149197,51.653951684380374,0.6643883968681813,6975.629349015838,2019
+2001,34,"(30,35]",HS,34.301545524100995,51.653951684380374,0.6640643049672699,6993.97182135584,2019
+2001,34,"(30,35]",HS,34.468951798010714,51.653951684380374,0.667305223976383,7054.327055462361,2019
+2001,34,"(30,35]",HS,34.301545524100995,51.653951684380374,0.6640643049672699,6947.945203073023,2019
+2001,34,"(30,35]",HS,34.48569242540169,51.653951684380374,0.6676293158772943,6989.275811004276,2019
+2001,48,"(45,50]",College,33180.25830145371,5251.485087912005,6.318261928959644,18.449019495623023,2019
+2001,48,"(45,50]",College,31171.383014537107,5251.485087912005,5.935727226244658,18.56285479045389,2019
+2001,48,"(45,50]",College,28158.237490436113,5251.485087912005,5.361957050064071,18.532850934210636,2019
+2001,48,"(45,50]",College,37365.582555470544,5251.485087912005,7.115241104174426,19.102367464008402,2019
+2001,48,"(45,50]",College,35691.51981637337,5251.485087912005,6.79646218524527,18.83070519899378,2019
+2001,52,"(50,55]",College,2005.5271614384085,223.83379063231493,8.959894552886468,87.45019472512637,2019
+2001,52,"(50,55]",College,2007.033817903596,223.83379063231493,8.966625692366932,84.42515665161339,2019
+2001,52,"(50,55]",College,2003.8530986993114,223.83379063231493,8.952415509019284,91.62120587431252,2019
+2001,52,"(50,55]",College,2003.6856924254016,223.83379063231493,8.951667604632565,87.49875546984856,2019
+2001,52,"(50,55]",College,2005.5271614384085,223.83379063231493,8.959894552886468,88.61413827666868,2019
+2001,70,"(65,70]",NoHS,46.20413159908187,13.774387115834767,3.354351174432037,4576.401769541347,2019
+2001,70,"(65,70]",NoHS,46.20413159908187,13.774387115834767,3.354351174432037,4945.155742193105,2019
+2001,70,"(65,70]",NoHS,46.20413159908187,13.774387115834767,3.354351174432037,4779.651621928684,2019
+2001,70,"(65,70]",NoHS,46.20413159908187,13.774387115834767,3.354351174432037,4755.544938247322,2019
+2001,70,"(65,70]",NoHS,46.20413159908187,13.774387115834767,3.354351174432037,4811.892876111275,2019
+2001,73,"(70,75]",College,667.2814078041316,89.53351625292598,7.452867213648886,11278.96182332654,2019
+2001,73,"(70,75]",College,667.2814078041316,89.53351625292598,7.452867213648886,11042.086600875853,2019
+2001,73,"(70,75]",College,668.9554705432288,89.53351625292598,7.471564823316846,10408.773231555759,2019
+2001,73,"(70,75]",College,667.2814078041316,89.53351625292598,7.452867213648886,11161.037161086704,2019
+2001,73,"(70,75]",College,668.9554705432288,89.53351625292598,7.471564823316846,11386.752961154238,2019
+2001,42,"(40,45]",College,17.075439938791124,86.08991947396729,0.19834424335772044,5793.1532198625955,2019
+2001,42,"(40,45]",College,16.90803366488141,86.08991947396729,0.19639969195225263,5880.003349341412,2019
+2001,42,"(40,45]",College,16.90803366488141,86.08991947396729,0.19639969195225263,6149.553364544887,2019
+2001,42,"(40,45]",College,16.90803366488141,86.08991947396729,0.19639969195225263,5940.00546922122,2019
+2001,42,"(40,45]",College,17.075439938791124,86.08991947396729,0.19834424335772044,5840.25887396866,2019
+2001,67,"(65,70]",College,110847.56205049732,1296.5141872779475,85.49660554291624,14.608140502550564,2019
+2001,67,"(65,70]",College,91772.78898240245,1270.6872114357573,72.2229579053588,15.874372334474874,2019
+2001,67,"(65,70]",College,99982.56006120887,1281.0180017726334,78.04930135474761,15.508857024996303,2019
+2001,67,"(65,70]",College,100824.27880642693,1148.4395257827236,87.79241443968043,15.245517375064313,2019
+2001,67,"(65,70]",College,91488.36572302984,1296.5141872779475,70.56487821017303,16.088342421621903,2019
+2001,30,"(25,30]",HS,35.15531752104055,51.653951684380374,0.6805929919137467,7414.599849892397,2019
+2001,30,"(25,30]",HS,35.15531752104055,51.653951684380374,0.6805929919137467,7434.096598623475,2019
+2001,30,"(25,30]",HS,35.15531752104055,51.653951684380374,0.6805929919137467,7498.249936961258,2019
+2001,30,"(25,30]",HS,35.15531752104055,51.653951684380374,0.6805929919137467,7385.173563878372,2019
+2001,30,"(25,30]",HS,35.15531752104055,51.653951684380374,0.6805929919137467,7429.10507228145,2019
+2001,56,"(55,60]",HS,400.2684009181332,108.47329853719879,3.690017786090178,7480.611147973116,2019
+2001,56,"(55,60]",HS,400.1009946442234,108.47329853719879,3.688474491323933,6794.314108017061,2019
+2001,56,"(55,60]",HS,400.43580719204283,108.47329853719879,3.6915610808564217,6356.191890914868,2019
+2001,56,"(55,60]",HS,399.9335883703137,108.47329853719879,3.6869311965576888,7116.056920032231,2019
+2001,56,"(55,60]",HS,400.2684009181332,108.47329853719879,3.690017786090178,6839.402668364451,2019
+2001,59,"(55,60]",HS,1783.7138485080336,258.2697584219018,6.906398408419973,3040.1006166599554,2019
+2001,59,"(55,60]",HS,1785.387911247131,258.2697584219018,6.912880246438199,3092.3437040466847,2019
+2001,59,"(55,60]",HS,1785.387911247131,258.2697584219018,6.912880246438199,3883.5368883950714,2019
+2001,59,"(55,60]",HS,1785.387911247131,258.2697584219018,6.912880246438199,3198.0598236927935,2019
+2001,59,"(55,60]",HS,1785.387911247131,258.2697584219018,6.912880246438199,3276.5295280523214,2019
+2001,51,"(50,55]",HS,91.40382555470543,53.37575007385973,1.712459786105556,6274.317005613881,2019
+2001,51,"(50,55]",HS,91.57123182861514,53.37575007385973,1.7155961593401812,6315.701564585552,2019
+2001,51,"(50,55]",HS,91.57123182861514,53.37575007385973,1.7155961593401812,6313.591175660022,2019
+2001,51,"(50,55]",HS,91.57123182861514,53.37575007385973,1.7155961593401812,6277.335928146328,2019
+2001,51,"(50,55]",HS,91.40382555470543,53.37575007385973,1.712459786105556,6280.996008174516,2019
+2001,26,"(25,30]",HS,4.687375669472074,94.69891142136402,0.049497672139181575,9688.427801544707,2019
+2001,26,"(25,30]",HS,5.357000765110941,94.69891142136402,0.056568768159064656,9849.962493791016,2019
+2001,26,"(25,30]",HS,5.357000765110941,94.69891142136402,0.056568768159064656,9937.463511669326,2019
+2001,26,"(25,30]",HS,5.524407039020658,94.69891142136402,0.05833654216403542,9749.148704681485,2019
+2001,26,"(25,30]",HS,5.524407039020658,94.69891142136402,0.05833654216403542,9777.17444030481,2019
+2001,50,"(45,50]",College,2127.2315225707725,258.2697584219018,8.23647156975998,1816.9133065621688,2019
+2001,50,"(45,50]",College,2127.2315225707725,258.2697584219018,8.23647156975998,1783.671322870447,2019
+2001,50,"(45,50]",College,2125.7248661055855,258.2697584219018,8.230637915543578,1890.8475157093067,2019
+2001,50,"(45,50]",College,2123.8833970925784,258.2697584219018,8.223507893723529,1829.427389208604,2019
+2001,50,"(45,50]",College,2123.8833970925784,258.2697584219018,8.223507893723529,1836.7219343643853,2019
+2001,46,"(45,50]",College,170.75439938791126,141.18746793730637,1.2094161180348808,6013.316753238672,2019
+2001,46,"(45,50]",College,319.1600612088753,148.07466149522375,2.155399566583983,6325.390997946556,2019
+2001,46,"(45,50]",College,438.4370313695486,141.18746793730637,3.105353738366032,6369.317797431313,2019
+2001,46,"(45,50]",College,315.47712318286153,144.63106471626506,2.1812542402405706,6187.161300453243,2019
+2001,46,"(45,50]",College,322.92670237184393,148.07466149522375,2.1808370122950453,6279.501241209608,2019
+2001,53,"(50,55]",HS,19.00061208875287,123.96948404251289,0.1532684614726394,7733.428417336507,2019
+2001,53,"(50,55]",HS,-6.796694720734506,123.96948404251289,-0.054825546570829595,7784.437080766186,2019
+2001,53,"(50,55]",HS,19.00061208875287,123.96948404251289,0.1532684614726394,7781.835914507976,2019
+2001,53,"(50,55]",HS,-6.445141545524101,123.96948404251289,-0.051989742437855646,7737.149399442013,2019
+2001,53,"(50,55]",HS,13.308798775822494,123.96948404251289,0.10735544217687075,7741.660642159649,2019
+2001,62,"(60,65]",College,209.25784238714616,37.87956456854561,5.524293765533658,8336.316301614173,2019
+2001,62,"(60,65]",College,204.65416985462892,32.71416940010757,6.255826561011693,8697.562626423725,2019
+2001,62,"(60,65]",College,211.60153022188217,39.60136295802496,5.34328907937252,8482.237356632333,2019
+2001,62,"(60,65]",College,203.14751338944149,32.71416940010757,6.20977139614535,8439.664232007231,2019
+2001,62,"(60,65]",College,208.25340474368784,27.548774231669533,7.559443588756257,8721.99253237398,2019
+2001,32,"(30,35]",College,681.3435348125479,134.30027437938898,5.073284756573166,522.502129490021,2019
+2001,32,"(30,35]",College,681.3435348125479,134.30027437938898,5.073284756573166,516.6969427466975,2019
+2001,32,"(30,35]",College,681.3435348125479,134.30027437938898,5.073284756573166,497.96526663817775,2019
+2001,32,"(30,35]",College,681.3435348125479,134.30027437938898,5.073284756573166,517.2278571466138,2019
+2001,32,"(30,35]",College,681.3435348125479,134.30027437938898,5.073284756573166,545.0213841462902,2019
+2001,24,"(20,25]",College,142.16140780413158,146.35286310574438,0.971360619719586,8480.21513102506,2019
+2001,24,"(20,25]",College,170.28566182096404,146.35286310574438,1.1635280527305263,8574.828583279726,2019
+2001,24,"(20,25]",College,148.1880336648814,146.35286310574438,1.0125393553647875,8633.454084996538,2019
+2001,24,"(20,25]",College,167.43975516449885,146.35286310574438,1.1440825386758477,8373.162672727532,2019
+2001,24,"(20,25]",College,147.6858148431523,146.35286310574438,1.009107794061021,8544.640187003988,2019
+2001,40,"(35,40]",HS,462.3761285386381,65.42833880021514,7.066909186713414,6893.162056792522,2019
+2001,40,"(35,40]",HS,476.48847742922726,65.42833880021514,7.282600875504124,7148.987830101059,2019
+2001,40,"(35,40]",HS,468.369273144606,65.42833880021514,7.158507792392031,7215.806444781367,2019
+2001,40,"(35,40]",HS,465.0546289211936,65.42833880021514,7.107847111039053,7001.163887171797,2019
+2001,40,"(35,40]",HS,450.1554705432288,65.42833880021514,6.880129906977687,7161.7566426343565,2019
+2001,43,"(40,45]",College,373.3159908186687,115.36049209511619,3.2360818165621636,5753.544619938038,2019
+2001,43,"(40,45]",College,375.32486610558533,113.63869370563681,3.302791099287057,5743.160881791829,2019
+2001,43,"(40,45]",College,373.4833970925784,115.36049209511619,3.237532974327438,5779.274433964854,2019
+2001,43,"(40,45]",College,364.44345830145375,113.63869370563681,3.207036674017807,5739.549867024732,2019
+2001,43,"(40,45]",College,372.6463657230298,115.36049209511619,3.2302771855010652,5788.626816917264,2019
+2001,53,"(50,55]",College,1999.8353481254783,148.07466149522375,13.505587842859828,2614.8066235212837,2019
+2001,53,"(50,55]",College,2001.810742157613,148.07466149522375,13.518928369943852,2658.9557685318896,2019
+2001,53,"(50,55]",College,2002.0451109410865,148.07466149522375,13.52051114434365,3336.1872468801666,2019
+2001,53,"(50,55]",College,2003.518286151492,148.07466149522375,13.530460011999534,2748.7579755065062,2019
+2001,53,"(50,55]",College,2003.6019892884467,146.35286310574438,13.690213821377608,2812.2327164738595,2019
+2001,38,"(35,40]",HS,0.6696250956388676,60.2629436317771,0.01111172231695913,7310.612735432602,2019
+2001,38,"(35,40]",HS,2.343687834736037,60.2629436317771,0.038891028109356955,7313.5965815513655,2019
+2001,38,"(35,40]",HS,0.6696250956388676,60.2629436317771,0.01111172231695913,7368.453308864807,2019
+2001,38,"(35,40]",HS,2.343687834736037,60.2629436317771,0.038891028109356955,7341.289715568688,2019
+2001,38,"(35,40]",HS,2.343687834736037,60.2629436317771,0.038891028109356955,7379.77829548881,2019
+2001,35,"(30,35]",College,225.49625095638868,115.36049209511619,1.9547095098247689,8826.62488536935,2019
+2001,35,"(30,35]",College,225.49625095638868,115.36049209511619,1.9547095098247689,9143.785242048747,2019
+2001,35,"(30,35]",College,225.49625095638868,115.36049209511619,1.9547095098247689,9257.281459569542,2019
+2001,35,"(30,35]",College,225.32884468247897,115.36049209511619,1.9532583520594944,9024.042630754251,2019
+2001,35,"(30,35]",College,225.49625095638868,115.36049209511619,1.9547095098247689,9186.780787921867,2019
+2001,47,"(45,50]",HS,-5.323519510328998,30.992371010628222,-0.17176870748299322,5848.7273941562735,2019
+2001,47,"(45,50]",HS,9.910451415455242,25.826975842190187,0.3837248106789886,6159.568819710431,2019
+2001,47,"(45,50]",HS,3.7164192807957153,18.939782284272805,0.1962229145517555,6293.946426709888,2019
+2001,47,"(45,50]",HS,0.5357000765110942,37.87956456854561,0.014142192039766164,6038.533458601354,2019
+2001,47,"(45,50]",HS,-7.332394797245601,32.71416940010757,-0.22413513568287294,6107.191003396977,2019
+2001,60,"(55,60]",College,269.0218821729151,103.30790336876075,2.6040784238223598,6165.049181525425,2019
+2001,60,"(55,60]",College,325.77260902830915,103.30790336876075,3.1534141958670263,5599.446328928175,2019
+2001,60,"(55,60]",College,270.52853863810253,103.30790336876075,2.618662559363368,5238.373555257023,2019
+2001,60,"(55,60]",College,270.52853863810253,103.30790336876075,2.618662559363368,5864.606517131951,2019
+2001,60,"(55,60]",College,252.28125478194337,103.30790336876075,2.442032473366705,5636.605484318996,2019
+2001,44,"(40,45]",HS,332.2177505738332,89.53351625292598,3.7105406386066764,7389.969521483033,2019
+2001,44,"(40,45]",HS,335.5658760520276,87.81171786344665,3.821424796333628,7655.507640494802,2019
+2001,44,"(40,45]",HS,332.0503442999235,89.53351625292598,3.7086708776398805,7750.530777783945,2019
+2001,44,"(40,45]",HS,333.89181331293037,89.53351625292598,3.7292382482746365,7555.254796471048,2019
+2001,44,"(40,45]",HS,335.39846977811783,89.53351625292598,3.7460660969758006,7691.5050662026215,2019
+2001,53,"(50,55]",College,573.8687069625096,103.30790336876075,5.554935181619818,5698.862118685038,2019
+2001,53,"(50,55]",College,565.4983932670237,103.30790336876075,5.473912206391991,5644.595773238657,2019
+2001,53,"(50,55]",College,598.9796480489672,103.30790336876075,5.798004107303299,5425.948840336717,2019
+2001,53,"(50,55]",College,565.4983932670237,103.30790336876075,5.473912206391991,5625.839512332758,2019
+2001,53,"(50,55]",College,565.4983932670237,103.30790336876075,5.473912206391991,5933.374840342871,2019
+2001,51,"(50,55]",College,177944.130558531,1169.1011064564757,152.2059380286419,31.36574549056442,2019
+2001,51,"(50,55]",College,185438.40722264728,3391.942827274311,54.670263228363844,34.21214188710958,2019
+2001,51,"(50,55]",College,170427.0699005356,2152.2479868491823,79.18561008856373,33.339071345827016,2019
+2001,51,"(50,55]",College,171294.4185462892,3615.776617906626,47.37417065478483,32.80550343108766,2019
+2001,51,"(50,55]",College,173651.33147666414,4046.226215276463,42.91686184550095,34.65309021574954,2019
+2001,30,"(25,30]",HS,19.30194338179036,44.76675812646299,0.43116687894315925,4455.874640538147,2019
+2001,30,"(25,30]",HS,19.670237184391734,44.76675812646299,0.43939382719706166,4478.7196685930685,2019
+2001,30,"(25,30]",HS,19.62001530221882,44.76675812646299,0.4382719706169841,4491.575046196762,2019
+2001,30,"(25,30]",HS,19.586534047436878,44.76675812646299,0.4375240662302657,4485.458707458021,2019
+2001,30,"(25,30]",HS,19.871124713083397,44.76675812646299,0.4438812535173721,4457.1984806277305,2019
+2001,40,"(35,40]",HS,399.9335883703137,80.92452430552926,4.942056710279455,8356.879940082214,2019
+2001,40,"(35,40]",HS,398.25952563121655,80.92452430552926,4.92136999320001,7597.1840233757375,2019
+2001,40,"(35,40]",HS,399.9335883703137,80.92452430552926,4.942056710279455,7101.224367482644,2019
+2001,40,"(35,40]",HS,398.25952563121655,80.92452430552926,4.92136999320001,7945.220440177718,2019
+2001,40,"(35,40]",HS,398.25952563121655,80.92452430552926,4.92136999320001,7640.02100065946,2019
+2001,63,"(60,65]",HS,817.9470543228769,120.5258872635542,6.786484405082788,9564.521544117393,2019
+2001,63,"(60,65]",HS,811.920428462127,74.03733074761188,10.966365484324488,8695.885216125327,2019
+2001,63,"(60,65]",HS,813.9795256312165,36.157766179066265,22.51188642572932,8130.1142529846675,2019
+2001,63,"(60,65]",HS,813.9293037490436,84.36812108448795,9.647356054474157,9102.804017170918,2019
+2001,63,"(60,65]",HS,816.1892884468248,41.323161347504296,19.75137578616352,8742.709854202794,2019
+2001,51,"(50,55]",HS,470.7631828615149,32.71416940010757,14.39019212451614,6454.134343066458,2019
+2001,51,"(50,55]",HS,469.08912012241774,32.71416940010757,14.339019719109093,6727.400273770229,2019
+2001,51,"(50,55]",HS,470.93058913542467,32.71416940010757,14.395309365056846,6757.938589913538,2019
+2001,51,"(50,55]",HS,470.7631828615149,32.71416940010757,14.39019212451614,6574.07716313603,2019
+2001,51,"(50,55]",HS,469.2565263963275,32.71416940010757,14.344136959649799,6661.610068534004,2019
+2001,36,"(35,40]",College,65.95807192042847,65.42833880021514,1.0080963865188577,7298.465820996245,2019
+2001,36,"(35,40]",College,81.86166794185158,65.42833880021514,1.2511653122023387,7399.4495760858235,2019
+2001,36,"(35,40]",College,85.37719969395563,65.42833880021514,1.3048963378797398,7762.159267686773,2019
+2001,36,"(35,40]",College,77.67651109410865,65.42833880021514,1.187199805443528,7532.829214583941,2019
+2001,36,"(35,40]",College,86.0468247895945,65.42833880021514,1.3151308189611495,7370.827948190958,2019
+2001,70,"(65,70]",College,18178.98209640398,898.7787593082185,20.226314772276293,10.802859972264065,2019
+2001,70,"(65,70]",College,18697.439326702373,1349.8899373518072,13.851084306460358,10.523436838855918,2019
+2001,70,"(65,70]",College,18242.094261667942,2048.940083480422,8.903185802622934,11.096688211252678,2019
+2001,70,"(65,70]",College,19815.211017597554,898.7787593082185,22.046817208774645,10.85909945745182,2019
+2001,70,"(65,70]",College,23462.658913542466,3254.198956115964,7.20996448894023,10.748342561587899,2019
+2001,69,"(65,70]",HS,717.5032899770466,72.31553235813253,9.921842052184754,8053.231784157622,2019
+2001,69,"(65,70]",HS,742.1120122417751,72.31553235813253,10.262138548141628,7246.932408089015,2019
+2001,69,"(65,70]",HS,720.6840091813312,72.31553235813253,9.965825953022717,6837.627257848059,2019
+2001,69,"(65,70]",HS,599.3144605967866,72.31553235813253,8.287492894732017,7645.362195471132,2019
+2001,69,"(65,70]",HS,643.342310635042,72.31553235813253,8.896322680015402,7297.174939877016,2019
+2001,61,"(60,65]",College,102.78745218056618,75.75912913709122,1.3567665488150662,7460.247977434681,2019
+2001,61,"(60,65]",College,104.12670237184392,75.75912913709122,1.3744442888647739,7797.3062336739995,2019
+2001,61,"(60,65]",College,105.80076511094109,75.75912913709122,1.3965414639269085,7841.570165191406,2019
+2001,61,"(60,65]",College,102.45263963274675,75.75912913709122,1.3523471138026393,7651.582097658485,2019
+2001,61,"(60,65]",College,104.12670237184392,75.75912913709122,1.3744442888647739,7715.793294419173,2019
+2001,43,"(40,45]",HS,248.93312930374904,65.42833880021514,3.8046683420140646,7711.273851708529,2019
+2001,43,"(40,45]",HS,250.6071920428462,65.42833880021514,3.830254544717589,7997.46219024662,2019
+2001,43,"(40,45]",HS,248.93312930374904,65.42833880021514,3.8046683420140646,8072.2111417359965,2019
+2001,43,"(40,45]",HS,248.93312930374904,65.42833880021514,3.8046683420140646,7832.0938300695025,2019
+2001,43,"(40,45]",HS,248.93312930374904,65.42833880021514,3.8046683420140646,8011.746463471903,2019
+2001,29,"(25,30]",College,72.40321346595256,25.826975842190187,2.8033949428828135,4215.037517121461,2019
+2001,29,"(25,30]",College,101.11338944146901,25.826975842190187,3.9150301630085997,4222.463586017746,2019
+2001,29,"(25,30]",College,71.85077276205051,25.826975842190187,2.7820048774226676,4242.3337044284335,2019
+2001,29,"(25,30]",College,70.7291507268554,25.826975842190187,2.738576562700552,4242.812303638558,2019
+2001,29,"(25,30]",College,90.56679418515685,25.826975842190187,3.506674367860352,4209.675280809544,2019
+2001,46,"(45,50]",College,10.546595256312164,29.27057262114888,0.3603139368955129,6216.4994299350865,2019
+2001,46,"(45,50]",College,10.546595256312164,29.27057262114888,0.3603139368955129,6214.101541080902,2019
+2001,46,"(45,50]",College,10.546595256312164,29.27057262114888,0.3603139368955129,6225.564786278001,2019
+2001,46,"(45,50]",College,10.546595256312164,27.548774231669533,0.38283355795148244,6209.593227214848,2019
+2001,46,"(45,50]",College,10.546595256312164,29.27057262114888,0.3603139368955129,6214.337651517014,2019
+2001,79,"(75,80]",HS,82.36388676358072,13.774387115834767,5.979495571813631,9314.512443218551,2019
+2001,79,"(75,80]",HS,80.10390206579955,13.774387115834767,5.815424046977282,9263.51465164332,2019
+2001,79,"(75,80]",HS,64.45141545524102,13.774387115834767,4.679076819407008,9365.815448914878,2019
+2001,79,"(75,80]",HS,65.573037490436107,13.774387115834767,4.760504909510973,9354.082581234758,2019
+2001,79,"(75,80]",HS,62.17469013006886,13.774387115834767,4.513789949942241,9356.255186387976,2019
+2001,30,"(25,30]",College,766.7207345065035,30.992371010628222,24.73901510289651,10486.077650275696,2019
+2001,30,"(25,30]",College,882.3984697781178,30.992371010628222,28.4714734950584,9511.71666060375,2019
+2001,30,"(25,30]",College,717.8381025248661,32.71416940010757,21.942727438542448,8894.208807039136,2019
+2001,30,"(25,30]",College,815.9381790359603,29.27057262114888,27.875716324265557,9913.795807305352,2019
+2001,30,"(25,30]",College,734.5787299158378,32.71416940010757,22.454451492612932,9580.468627557973,2019
+2001,38,"(35,40]",HS,4595.469625095639,1377.4387115834766,3.3362425394686177,15.272420679401336,2019
+2001,38,"(35,40]",HS,4635.6471308339715,1377.4387115834766,3.3654108105506357,15.345875101421958,2019
+2001,38,"(35,40]",HS,4526.8330527926555,1377.4387115834766,3.2864134097035045,15.582951566412515,2019
+2001,38,"(35,40]",HS,4680.846824789595,1377.4387115834766,3.398225115517906,15.197423224631342,2019
+2001,38,"(35,40]",HS,4704.2837031369545,1377.4387115834766,3.415239940315749,15.011662603019342,2019
+2001,64,"(60,65]",College,185.31874521805665,96.42070981084338,1.9219807195115244,6664.340414397091,2019
+2001,64,"(60,65]",College,185.31874521805665,96.42070981084338,1.9219807195115244,6793.323838719819,2019
+2001,64,"(60,65]",College,185.15133894414691,96.42070981084338,1.9202445128994994,6707.361003469964,2019
+2001,64,"(60,65]",College,185.31874521805665,96.42070981084338,1.9219807195115244,6825.164681268953,2019
+2001,64,"(60,65]",College,185.31874521805665,96.42070981084338,1.9219807195115244,6712.572993784066,2019
+2001,67,"(65,70]",HS,4234.54169854629,542.3664926859939,7.807528222430034,1617.262458972047,2019
+2001,67,"(65,70]",HS,11929.371078806427,542.3664926859939,21.9950370085141,1631.309521752739,2019
+2001,67,"(65,70]",HS,5064.508523335883,542.3664926859939,9.337797580847253,1631.3945271286193,2019
+2001,67,"(65,70]",HS,5060.524254016833,542.3664926859939,9.330451497759933,1633.9183445242784,2019
+2001,67,"(65,70]",HS,7507.200428462127,542.3664926859939,13.84156383128274,1616.674301349702,2019
+2001,49,"(45,50]",HS,49.88706962509564,32.71416940010757,1.5249376811300488,8597.171247958067,2019
+2001,49,"(45,50]",HS,33.98347360367253,32.71416940010757,1.0387998297630867,9117.212561607766,2019
+2001,49,"(45,50]",HS,45.534506503443005,32.71416940010757,1.3918894270717226,9144.167574414536,2019
+2001,49,"(45,50]",HS,45.032287681713846,32.71416940010757,1.3765377054496077,8847.372177246612,2019
+2001,49,"(45,50]",HS,36.15975516449885,32.71416940010757,1.10532395679225,8951.378381109378,2019
+2001,47,"(45,50]",College,117.8540168324407,258.2697584219018,0.45632139648312164,4749.686557316885,2019
+2001,47,"(45,50]",College,117.8540168324407,258.2697584219018,0.45632139648312164,4825.268167442012,2019
+2001,47,"(45,50]",College,117.8540168324407,258.2697584219018,0.45632139648312164,4841.023545594794,2019
+2001,47,"(45,50]",College,117.8540168324407,258.2697584219018,0.45632139648312164,4782.360103549194,2019
+2001,47,"(45,50]",College,117.8540168324407,258.2697584219018,0.45632139648312164,4792.561441995327,2019
+2001,60,"(55,60]",NoHS,8780.459066564652,869.5081866870696,10.098190219484021,34.25259967005787,2019
+2001,60,"(55,60]",NoHS,9014.827850038255,869.5081866870696,10.36773199845976,34.9947046516497,2019
+2001,60,"(55,60]",NoHS,8823.98469778118,869.5081866870696,10.14824797843666,35.55631564832854,2019
+2001,60,"(55,60]",NoHS,8686.711553175212,869.5081866870696,9.990373507893725,34.48344818829611,2019
+2001,60,"(55,60]",NoHS,8782.13312930375,869.5081866870696,10.100115517905275,34.736964420124544,2019
+2001,37,"(35,40]",HS,36.720566182096405,43.04495973698364,0.8530747015787448,5972.031742970799,2019
+2001,37,"(35,40]",HS,41.315868400918134,43.04495973698364,0.9598305737389297,6130.408671859859,2019
+2001,37,"(35,40]",HS,39.87617444529457,43.04495973698364,0.9263842895648827,6191.677218780411,2019
+2001,37,"(35,40]",HS,39.59158377964805,43.04495973698364,0.9197728147862919,6044.327872715228,2019
+2001,37,"(35,40]",HS,40.520688599846984,43.04495973698364,0.9413573353869852,6143.571656671189,2019
+2001,49,"(45,50]",College,1758.6029074215762,241.0517745271084,7.295540183728479,1269.3549514537785,2019
+2001,49,"(45,50]",College,1758.6029074215762,241.0517745271084,7.295540183728479,1234.719994985328,2019
+2001,49,"(45,50]",College,1758.6029074215762,241.0517745271084,7.295540183728479,1333.0671289669967,2019
+2001,49,"(45,50]",College,1758.6029074215762,241.0517745271084,7.295540183728479,1265.6912309039794,2019
+2001,49,"(45,50]",College,1758.6029074215762,241.0517745271084,7.295540183728479,1264.3587498659037,2019
+2001,55,"(50,55]",NoHS,260.4004590665647,24.105177452710844,10.802677540018703,5813.1131442454325,2019
+2001,55,"(50,55]",NoHS,372.99791889824024,36.157766179066265,10.31584520600693,6138.451842989079,2019
+2001,55,"(50,55]",NoHS,258.0400306044376,16.87362421689759,15.292507838714998,6169.340367509676,2019
+2001,55,"(50,55]",NoHS,258.8938026013772,27.548774231669533,9.397652339237583,5983.187362808915,2019
+2001,55,"(50,55]",NoHS,250.64067329762815,48.21035490542169,5.198897079047252,6072.09205373791,2019
+2001,48,"(45,50]",HS,448.1465952563122,120.5258872635542,3.718260080312449,7656.711114907334,2019
+2001,48,"(45,50]",HS,448.1465952563122,120.5258872635542,3.718260080312449,6957.200640746201,2019
+2001,48,"(45,50]",HS,448.1465952563122,120.5258872635542,3.718260080312449,6494.740328799335,2019
+2001,48,"(45,50]",HS,448.1465952563122,120.5258872635542,3.718260080312449,7281.560911455266,2019
+2001,48,"(45,50]",HS,448.1465952563122,120.5258872635542,3.718260080312449,6984.146746054415,2019
+2001,84,"(80,85]",NoHS,61.4381025248661,27.548774231669533,2.2301573931459373,9006.418011302409,2019
+2001,84,"(80,85]",NoHS,61.4381025248661,27.548774231669533,2.2301573931459373,8957.107064392436,2019
+2001,84,"(80,85]",NoHS,61.4381025248661,25.826975842190187,2.3788345526890002,9056.024076821574,2019
+2001,84,"(80,85]",NoHS,61.27069625095639,27.548774231669533,2.2240806700038505,9044.679295069152,2019
+2001,84,"(80,85]",NoHS,61.4381025248661,25.826975842190187,2.3788345526890002,9046.780037357348,2019
+2001,78,"(75,80]",NoHS,249.4353481254782,30.992371010628222,8.048282205964147,8820.925609797696,2019
+2001,78,"(75,80]",NoHS,247.76128538638105,30.992371010628222,7.994266889145597,9031.621190018832,2019
+2001,78,"(75,80]",NoHS,249.4353481254782,30.992371010628222,8.048282205964147,9202.562750734402,2019
+2001,78,"(75,80]",NoHS,249.4353481254782,30.992371010628222,8.048282205964147,9020.195995378,2019
+2001,78,"(75,80]",NoHS,247.76128538638105,30.992371010628222,7.994266889145597,9125.740822120639,2019
+2001,43,"(40,45]",HS,31.053863810252487,106.75150014771945,0.2908986175115207,7655.4640633734325,2019
+2001,43,"(40,45]",HS,31.020382555470544,106.75150014771945,0.2905849801880582,7858.485236026226,2019
+2001,43,"(40,45]",HS,31.053863810252487,106.75150014771945,0.2908986175115207,7937.024530415855,2019
+2001,43,"(40,45]",HS,31.08734506503443,106.75150014771945,0.29121225483498325,7748.13946213214,2019
+2001,43,"(40,45]",HS,30.90319816373374,106.75150014771945,0.2894872495559392,7875.358682371929,2019
+2001,63,"(60,65]",NoHS,6.696250956388676,13.774387115834767,0.48613785136696186,4773.313369135592,2019
+2001,63,"(60,65]",NoHS,6.696250956388676,13.602207276886833,0.4922914950551512,4801.7343392649545,2019
+2001,63,"(60,65]",NoHS,6.696250956388676,13.602207276886833,0.4922914950551512,4766.550448815521,2019
+2001,63,"(60,65]",NoHS,6.696250956388676,13.774387115834767,0.48613785136696186,4790.8644233744235,2019
+2001,63,"(60,65]",NoHS,6.696250956388676,13.602207276886833,0.4922914950551512,4788.630725491494,2019
+2001,69,"(65,70]",NoHS,0.08370313695485845,0.7748092752657055,0.10803063363710265,5060.361148924614,2019
+2001,69,"(65,70]",NoHS,0.08370313695485845,0.7748092752657055,0.10803063363710265,5032.311436133041,2019
+2001,69,"(65,70]",NoHS,0.08370313695485845,0.7748092752657055,0.10803063363710265,5035.193979911938,2019
+2001,69,"(65,70]",NoHS,0.08370313695485845,0.792027259160499,0.10568214160151346,5040.608799872342,2019
+2001,69,"(65,70]",NoHS,0.08370313695485845,0.792027259160499,0.10568214160151346,5043.375312230315,2019
+2001,95,"(90,95]",College,1205.3251721499619,137.74387115834767,8.750481324605314,432.4113426129258,2019
+2001,95,"(90,95]",College,1203.6511094108646,182.51062928481065,6.594964436468785,424.4841455405034,2019
+2001,95,"(90,95]",College,1247.1767406273912,242.77357291658777,5.1372014080622215,405.20130251645685,2019
+2001,95,"(90,95]",College,1205.3251721499619,244.49537130606709,4.929848633580459,429.0587101710809,2019
+2001,95,"(90,95]",College,1205.3251721499619,194.5632180111661,6.195031026269248,445.7308707321719,2019
+2001,47,"(45,50]",College,1252.0315225707727,49.93215329490103,25.074655106024192,2518.1723636335246,2019
+2001,47,"(45,50]",College,1277.1424636572303,49.93215329490103,25.577556331576222,2561.7874882116016,2019
+2001,47,"(45,50]",College,1259.7322111706198,49.93215329490103,25.228878148526817,3211.9727795890303,2019
+2001,47,"(45,50]",College,1271.6180566182097,67.15013718969449,18.93693907170996,2647.866714923605,2019
+2001,47,"(45,50]",College,1265.5914307574596,65.42833880021514,19.343169243864374,2707.513809909215,2019
+2001,54,"(50,55]",College,21898.632318286152,860.899194739673,25.436929726607623,1921.2735995194657,2019
+2001,54,"(50,55]",College,17478.956021423106,860.899194739673,20.30313900654601,1935.0986772952085,2019
+2001,54,"(50,55]",College,15975.64768171385,860.899194739673,18.556931844435887,1940.6116928431431,2019
+2001,54,"(50,55]",College,19390.735669472073,860.899194739673,22.523816711590293,1933.4288267561872,2019
+2001,54,"(50,55]",College,17815.442631981638,860.899194739673,20.69399383904505,1918.3317150540377,2019
+2001,81,"(80,85]",College,2288.4437643458305,72.31553235813253,31.645259181839855,121.85801309453063,2019
+2001,81,"(80,85]",College,2288.4437643458305,60.2629436317771,37.97431101820783,114.48471404723253,2019
+2001,81,"(80,85]",College,2288.4437643458305,65.42833880021514,34.976339095717734,125.60288055861076,2019
+2001,81,"(80,85]",College,2288.4437643458305,65.42833880021514,34.976339095717734,122.71577706589183,2019
+2001,81,"(80,85]",College,2288.4437643458305,91.25531464240532,25.077375200703283,117.7535886992807,2019
+2001,51,"(50,55]",College,6465.230298393268,1377.4387115834766,4.693660954948018,271.07006334077505,2019
+2001,51,"(50,55]",College,6465.230298393268,1377.4387115834766,4.693660954948018,267.98541211157965,2019
+2001,51,"(50,55]",College,6465.230298393268,1377.4387115834766,4.693660954948018,274.68754365541923,2019
+2001,51,"(50,55]",College,6465.230298393268,1377.4387115834766,4.693660954948018,270.4805164914605,2019
+2001,51,"(50,55]",College,6465.230298393268,1377.4387115834766,4.693660954948018,271.1877646210336,2019
+2001,52,"(50,55]",College,58921.986228003065,4270.060005908777,13.798866092389483,10.33298516436616,2019
+2001,52,"(50,55]",College,56616.801836266255,3805.1744407493547,14.878897858127283,10.885853919327733,2019
+2001,52,"(50,55]",College,58670.87681713849,2152.2479868491823,27.26027724297266,11.043925163074842,2019
+2001,52,"(50,55]",College,60599.39709257843,3254.198956115964,18.621909081092756,10.89346443861697,2019
+2001,52,"(50,55]",College,57972.792654934965,3323.070891695137,17.445547971852736,11.194517760457467,2019
+2001,36,"(35,40]",HS,33.16318286151492,30.992371010628222,1.0700434261755016,7377.8352973971905,2019
+2001,36,"(35,40]",HS,33.04599846977812,30.992371010628222,1.0662623539982032,7598.934878920038,2019
+2001,36,"(35,40]",HS,33.06273909716909,30.992371010628222,1.0668025071663887,7660.859009276968,2019
+2001,36,"(35,40]",HS,33.01251721499617,30.992371010628222,1.065182047661832,7467.5198665063635,2019
+2001,36,"(35,40]",HS,33.17992348890589,30.992371010628222,1.0705835793436873,7601.680873324561,2019
+2001,73,"(70,75]",College,13904.262892119357,430.4495973698365,32.3017212167886,154.22308491104334,2019
+2001,73,"(70,75]",College,8157.372915072685,430.4495973698365,18.95082017712745,144.64233727491833,2019
+2001,73,"(70,75]",College,11425.64560061209,430.4495973698365,26.54351559491721,154.5729760293955,2019
+2001,73,"(70,75]",College,15386.478041315992,430.4495973698365,35.745132845591066,152.02422930013876,2019
+2001,73,"(70,75]",College,11827.92287681714,430.4495973698365,27.47806700038506,146.72053401841268,2019
+2001,40,"(35,40]",HS,70.7291507268554,105.0297017582401,0.6734204662378407,6200.783885284811,2019
+2001,40,"(35,40]",HS,70.7291507268554,103.30790336876075,0.684644140675138,6430.913442591383,2019
+2001,40,"(35,40]",HS,70.56174445294569,103.30790336876075,0.6830236811705815,6491.020514749709,2019
+2001,40,"(35,40]",HS,70.7291507268554,103.30790336876075,0.684644140675138,6297.937557848935,2019
+2001,40,"(35,40]",HS,70.7291507268554,105.0297017582401,0.6734204662378407,6442.39970192177,2019
+2001,29,"(25,30]",HS,58.726120887528694,98.14250820032271,0.5983759938930886,5837.8741193767755,2019
+2001,29,"(25,30]",HS,56.14806426931906,118.80408887407486,0.47261053724196816,5914.420609514932,2019
+2001,29,"(25,30]",HS,56.081101759755164,106.75150014771945,0.5253425167997813,6075.359625195562,2019
+2001,29,"(25,30]",HS,59.99840856924254,108.47329853719879,0.5531168442219655,5872.038114512687,2019
+2001,29,"(25,30]",HS,60.919143075745986,108.47329853719879,0.5616049654363093,5895.3995148689155,2019
+2001,63,"(60,65]",College,1901.5846059678654,332.30708916951374,5.722371468873012,103.15694454490844,2019
+2001,63,"(60,65]",College,1700.1781178270849,304.7583149378442,5.57877516212753,103.84069685482578,2019
+2001,63,"(60,65]",College,1695.5242234123948,538.9228959070352,3.1461350710638105,111.05357465038551,2019
+2001,63,"(60,65]",College,1780.7842387146138,507.930524896407,3.505960267061734,105.25022567103163,2019
+2001,63,"(60,65]",College,1900.8982402448357,717.9899284128873,2.647527722912159,106.58073198171687,2019
+2001,48,"(45,50]",HS,129.07023718439174,55.097548463339066,2.3425767712745476,6924.546160504568,2019
+2001,48,"(45,50]",HS,129.07023718439174,56.819346852818406,2.2715895963874404,7217.7291732325775,2019
+2001,48,"(45,50]",HS,129.07023718439174,55.097548463339066,2.3425767712745476,7250.493285127076,2019
+2001,48,"(45,50]",HS,129.23764345830145,55.097548463339066,2.345615132845591,7053.231054565552,2019
+2001,48,"(45,50]",HS,129.07023718439174,55.097548463339066,2.3425767712745476,7147.143826096636,2019
+2001,48,"(45,50]",College,6286.945964804897,430.4495973698365,14.605533384674622,3472.4914283720655,2019
+2001,48,"(45,50]",College,6429.241297628156,430.4495973698365,14.936107123604156,3515.7669005149883,2019
+2001,48,"(45,50]",College,6589.951320581485,430.4495973698365,15.309460993453984,3506.9753009826177,2019
+2001,48,"(45,50]",College,6529.685061973986,430.4495973698365,15.169453292260298,3515.886836682849,2019
+2001,48,"(45,50]",College,6469.418803366488,430.4495973698365,15.029445591066612,3482.1959246008723,2019
+2001,58,"(55,60]",College,117713.8642999235,1497.9645988470306,78.58254086279928,232.6198827127451,2019
+2001,58,"(55,60]",College,120089.35932670237,1518.626179520783,79.07763012790792,205.7612511507222,2019
+2001,58,"(55,60]",College,114461.1603978577,1353.3335341307659,84.57719956771417,211.399025465056,2019
+2001,58,"(55,60]",College,114636.76957918899,1312.0103727832613,87.37489577616816,238.02261183877985,2019
+2001,58,"(55,60]",College,117741.35241009947,1387.7695019203527,84.84215299959584,216.14594743840863,2019
+2001,46,"(45,50]",HS,55.24407039020658,18.939782284272805,2.916827108201771,8261.089261537618,2019
+2001,46,"(45,50]",HS,55.24407039020658,17.21798389479346,3.2085098190219483,8263.103613713216,2019
+2001,46,"(45,50]",HS,55.24407039020658,17.21798389479346,3.2085098190219483,8242.681782603051,2019
+2001,46,"(45,50]",HS,55.24407039020658,18.939782284272805,2.916827108201771,8262.437989606093,2019
+2001,46,"(45,50]",HS,55.24407039020658,18.939782284272805,2.916827108201771,8253.77792861733,2019
+2001,27,"(25,30]",NoHS,0,7.4037330747611865,0,5029.237807088326,2019
+2001,27,"(25,30]",NoHS,0,9.469891142136403,0,5026.1426925805645,2019
+2001,27,"(25,30]",NoHS,0,7.059373396865318,0,4951.202498193521,2019
+2001,27,"(25,30]",NoHS,0,11.536049209511617,0,5030.294468952337,2019
+2001,27,"(25,30]",NoHS,0,9.986430658980208,0,5019.335700512823,2019
+2001,27,"(25,30]",HS,134.61138485080335,65.42833880021514,2.0573865593903893,6344.421428071059,2019
+2001,27,"(25,30]",HS,48.949594491201225,25.826975842190187,1.8952894365293287,6347.3390156011865,2019
+2001,27,"(25,30]",HS,84.72431522570773,36.157766179066265,2.343184443588756,6508.5572472316935,2019
+2001,27,"(25,30]",HS,104.86328997704668,39.60136295802496,2.647971739967521,6340.685724047419,2019
+2001,27,"(25,30]",HS,113.20012241775058,25.826975842190187,4.3830188679245285,6346.408202673681,2019
+2001,48,"(45,50]",College,12059.110941086457,2496.6076647450514,4.830198637685393,298.1170901947365,2019
+2001,48,"(45,50]",College,12059.110941086457,2496.6076647450514,4.830198637685393,287.5135111000577,2019
+2001,48,"(45,50]",College,12057.43687834736,2496.6076647450514,4.82952810271799,299.21915357724225,2019
+2001,48,"(45,50]",College,12057.43687834736,2479.3896808502577,4.863066492320199,291.7502259500151,2019
+2001,48,"(45,50]",College,12059.110941086457,2479.3896808502577,4.863741683780431,288.66257981899935,2019
+2001,53,"(50,55]",College,50672.37245600612,4149.534118645224,12.211581109387303,12.896743530202809,2019
+2001,53,"(50,55]",College,49836.84774292273,4149.534118645224,12.010227249124027,13.420431787399178,2019
+2001,53,"(50,55]",College,49838.68921193573,4149.534118645224,12.01067102641573,13.317696670405635,2019
+2001,53,"(50,55]",College,50740.8416220352,4149.534118645224,12.228081555960674,13.737044445322876,2019
+2001,53,"(50,55]",College,48998.30971690895,4149.534118645224,11.80814720783796,13.83968685046889,2019
+2001,31,"(30,35]",NoHS,22.85095638867636,132.5784759899096,0.17235796548465016,5203.932763909252,2019
+2001,31,"(30,35]",NoHS,23.302953328232594,43.04495973698364,0.5413631112822488,5218.594273955462,2019
+2001,31,"(30,35]",NoHS,20.808599846977813,80.92452430552926,0.25713589329750364,5220.991671277321,2019
+2001,31,"(30,35]",NoHS,21.997184391736802,129.1348792109509,0.17034270311898347,5223.258127854866,2019
+2001,31,"(30,35]",NoHS,33.81606732976282,106.75150014771945,0.3167736966971816,5207.633363063775,2019
+2001,76,"(75,80]",College,37867.80137719969,435.6149925382745,86.92951809704417,18.449019495623023,2019
+2001,76,"(75,80]",College,135695.17306809488,530.3139039596384,255.87707969735314,19.364058268294023,2019
+2001,76,"(75,80]",College,46231.25141545525,1162.2139128985584,39.77860779531939,18.532850934210636,2019
+2001,76,"(75,80]",College,102797.16174445294,681.8321622338209,150.7660791589363,18.56465708175563,2019
+2001,76,"(75,80]",College,53306.34276970161,1077.8457918140705,49.45637230719643,18.83070519899378,2019
+2001,40,"(35,40]",College,160.62631981637338,41.323161347504296,3.8870772365549997,5748.417038594782,2019
+2001,40,"(35,40]",College,160.62631981637338,41.323161347504296,3.8870772365549997,5731.5098459566625,2019
+2001,40,"(35,40]",College,160.62631981637338,41.323161347504296,3.8870772365549997,5785.068581023525,2019
+2001,40,"(35,40]",College,160.45891354246365,41.323161347504296,3.883026087793608,5772.252610737856,2019
+2001,40,"(35,40]",College,160.45891354246365,41.323161347504296,3.883026087793608,5793.699248342538,2019
+2001,25,"(20,25]",College,-63.04520275439939,37.87956456854561,-1.6643592256799804,5107.492331561194,2019
+2001,25,"(20,25]",College,-61.05306809487376,41.323161347504296,-1.477453953279425,5121.882131262197,2019
+2001,25,"(20,25]",College,-60.718255547054326,39.60136295802496,-1.5332365103547572,5124.235099486925,2019
+2001,25,"(20,25]",College,-62.90290742157613,43.04495973698364,-1.4613303812090876,5126.459553590156,2019
+2001,25,"(20,25]",College,-54.35681713848508,44.76675812646299,-1.214222771837327,5111.124350394141,2019
+2001,59,"(55,60]",College,81017.96308859985,3874.046376328528,20.91300805887135,12.741347796184815,2019
+2001,59,"(55,60]",College,76757.473082785,2720.4414553773663,28.215079920599717,13.446065715628222,2019
+2001,59,"(55,60]",College,107305.77061545524,4941.561377805722,21.714952504162536,13.629371123236291,2019
+2001,59,"(55,60]",College,155794.99785340473,6164.038234336059,25.274826652691218,13.433686857337898,2019
+2001,59,"(55,60]",College,81754.5513634277,3942.9183119077015,20.734528310294213,13.82447659277727,2019
+2001,61,"(60,65]",HS,62875.28538638102,1633.9866716158992,38.47968069666182,21.922169018772912,2019
+2001,61,"(60,65]",HS,82522.25309869932,625.0128153810025,132.0328976748972,23.149147465899446,2019
+2001,61,"(60,65]",HS,41464.6423565417,2617.1335520086054,15.843533213931055,23.00204362112986,2019
+2001,61,"(60,65]",HS,45017.22111706197,929.7711303188466,48.41752948558879,23.802759193282533,2019
+2001,61,"(60,65]",HS,77002.03121652639,2427.7357291658777,31.717633139164935,23.79344552017681,2019
+2001,50,"(45,50]",College,1885.162050497322,165.29264539001719,11.404996550506995,3738.542428057289,2019
+2001,50,"(45,50]",College,2337.041805661821,804.0798478868544,2.906479762928565,3800.527090122626,2019
+2001,50,"(45,50]",College,3048.1334353481257,251.3825648639845,12.125476709163893,4765.71341074733,2019
+2001,50,"(45,50]",College,1672.2212700841624,173.90163733741394,9.615902964959568,3929.807002825664,2019
+2001,50,"(45,50]",College,1578.8085692425402,471.7727587173407,3.3465445811984074,4020.8393438351864,2019
+2001,47,"(45,50]",College,364.94567712318286,244.49537130606709,1.4926486140563056,6806.377039367503,2019
+2001,47,"(45,50]",College,365.1130833970926,244.49537130606709,1.4933333152554142,6171.169278284238,2019
+2001,47,"(45,50]",College,401.94246365723035,244.49537130606709,1.6439675790592616,5856.741350221084,2019
+2001,47,"(45,50]",College,401.7750573833206,244.49537130606709,1.643282877860153,6494.854774519105,2019
+2001,47,"(45,50]",College,408.47130833970925,242.77357291658777,1.6825196557948752,6198.324286023897,2019
+2001,55,"(50,55]",College,336906.2980872226,43337.66546319514,7.773983542637824,31.95317271540186,2019
+2001,55,"(50,55]",College,322694.50986993115,37690.16674570289,8.561769228753068,33.736487472397755,2019
+2001,55,"(50,55]",College,310838.2953328233,38499.41198875817,8.073845268691068,34.1869719476668,2019
+2001,55,"(50,55]",College,321882.4220351951,43320.44747930034,7.4302654003977935,33.70593280210816,2019
+2001,55,"(50,55]",College,309857.6293802601,43320.44747930034,7.152687643134765,34.671362743048334,2019
+2001,21,"(20,25]",NoHS,0,39.60136295802496,0,5279.234869314509,2019
+2001,21,"(20,25]",NoHS,0,41.323161347504296,0,5310.835558555211,2019
+2001,21,"(20,25]",NoHS,0,41.323161347504296,0,5229.984850322003,2019
+2001,21,"(20,25]",NoHS,0,41.323161347504296,0,5230.452093023147,2019
+2001,21,"(20,25]",NoHS,0,41.323161347504296,0,5268.513984508432,2019
+2001,54,"(50,55]",College,96365.0778882938,6112.3842826516775,15.765546377998449,21.244431568912304,2019
+2001,54,"(50,55]",College,98638.95730680949,6112.3842826516775,16.137558233498023,22.427839684187358,2019
+2001,54,"(50,55]",College,95967.82280030604,6112.3842826516775,15.700554540179079,22.737285536906235,2019
+2001,54,"(50,55]",College,94997.36863045141,6112.3842826516775,15.541786026129824,22.414654602331474,2019
+2001,54,"(50,55]",College,96853.06717674063,6112.3842826516775,15.845382537814489,23.060798428848024,2019
+2001,27,"(25,30]",College,33.481254781943385,79.20272591604991,0.4227285664060538,5262.555981810327,2019
+2001,27,"(25,30]",College,33.481254781943385,79.20272591604991,0.4227285664060538,5223.478794088373,2019
+2001,27,"(25,30]",College,33.481254781943385,79.20272591604991,0.4227285664060538,5229.231472934365,2019
+2001,27,"(25,30]",College,33.481254781943385,79.20272591604991,0.4227285664060538,5263.573510511536,2019
+2001,27,"(25,30]",College,33.481254781943385,79.20272591604991,0.4227285664060538,5214.386306584455,2019
+2001,28,"(25,30]",College,124.0647895944912,137.74387115834767,0.9006919041201386,4594.4613482457435,2019
+2001,28,"(25,30]",College,124.23219586840092,137.74387115834767,0.901907248748556,4606.084236679761,2019
+2001,28,"(25,30]",College,122.55813312930376,139.46566954782702,0.8787691876191427,4809.964158592731,2019
+2001,28,"(25,30]",College,124.0647895944912,139.46566954782702,0.8895722509828529,4722.859220107753,2019
+2001,28,"(25,30]",College,124.23219586840092,137.74387115834767,0.901907248748556,4547.308075989301,2019
+2001,47,"(45,50]",HS,841.5513389441469,179.06703250585196,4.699644190041765,4637.689280729972,2019
+2001,47,"(45,50]",HS,821.4625860749809,179.06703250585196,4.587458532034004,4205.215167329143,2019
+2001,47,"(45,50]",HS,824.8107115531752,179.06703250585196,4.606156141701964,3943.676018964254,2019
+2001,47,"(45,50]",HS,819.7885233358837,179.06703250585196,4.578109727200024,4401.966280384844,2019
+2001,47,"(45,50]",HS,823.1366488140781,179.06703250585196,4.596807336867984,4235.108935378307,2019
+2001,52,"(50,55]",HS,2248.6010711553176,154.9618550531411,14.510674710135628,3311.5171225740887,2019
+2001,52,"(50,55]",HS,2604.506809487376,141.18746793730637,18.447152906261447,3365.4461340707157,2019
+2001,52,"(50,55]",HS,2468.0706962509566,149.7964598847031,16.47616170736349,4222.210957195187,2019
+2001,52,"(50,55]",HS,2802.548431522571,141.18746793730637,19.849838462766606,3480.391203581934,2019
+2001,52,"(50,55]",HS,2737.5947972456006,149.7964598847031,18.27543053656075,3561.3159891723544,2019
+2001,56,"(55,60]",College,639.1404131599081,111.91689531615746,5.71084831610438,6340.521788703529,2019
+2001,56,"(55,60]",College,642.3211323641929,111.91689531615746,5.739268682799681,5758.820474561149,2019
+2001,56,"(55,60]",College,638.3033817903596,111.91689531615746,5.703369272237198,5387.470673227841,2019
+2001,56,"(55,60]",College,635.6248814078041,111.91689531615746,5.679436331862208,6031.5277800991025,2019
+2001,56,"(55,60]",College,661.7402601377199,111.91689531615746,5.912782500518349,5797.037271778498,2019
+2001,73,"(70,75]",College,18447.669166029074,1596.1071070473536,11.557914305735729,10.802859972264065,2019
+2001,73,"(70,75]",College,18683.544605967865,1596.1071070473536,11.70569601718687,10.523436838855918,2019
+2001,73,"(70,75]",College,18499.565110941086,1596.1071070473536,11.590428379937185,11.096688211252678,2019
+2001,73,"(70,75]",College,17870.28492731446,1596.1071070473536,11.196169009216925,10.85909945745182,2019
+2001,73,"(70,75]",College,18384.22218821729,1596.1071070473536,11.518163227921685,10.445347271925723,2019
+2001,25,"(20,25]",HS,3.682938026013772,10.15861049792814,0.3625434823753614,4201.073739134238,2019
+2001,25,"(20,25]",HS,3.682938026013772,9.986430658980208,0.36879423207148826,4222.612416761786,2019
+2001,25,"(20,25]",HS,3.515531752104055,9.986430658980208,0.35203085788642063,4234.732683513952,2019
+2001,25,"(20,25]",HS,3.515531752104055,9.986430658980208,0.35203085788642063,4228.9660962268645,2019
+2001,25,"(20,25]",HS,3.682938026013772,9.986430658980208,0.36879423207148826,4202.321877891234,2019
+2001,54,"(50,55]",College,25501.834736036726,702.4937429075732,36.30186744509124,32.766654360164445,2019
+2001,54,"(50,55]",College,24318.607192042848,841.9594124554001,28.88334857035765,32.91751705798478,2019
+2001,54,"(50,55]",College,23650.488752869165,747.2605010340361,31.64959036392576,33.208577180210895,2019
+2001,54,"(50,55]",College,23400.21637337414,793.7490575499784,29.4806225604882,34.085321911806886,2019
+2001,54,"(50,55]",College,27938.935271614384,719.7117268023666,38.81961934362984,33.567747483460664,2019
+2001,46,"(45,50]",HS,72.11862280030604,77.48092752657055,0.9307919394172764,4717.578451584495,2019
+2001,46,"(45,50]",HS,72.11862280030604,77.48092752657055,0.9307919394172764,4808.748707566395,2019
+2001,46,"(45,50]",HS,72.10188217291507,77.48092752657055,0.9305758781500022,4815.636404868969,2019
+2001,46,"(45,50]",HS,72.2692884468248,77.48092752657055,0.9327364908227445,4750.2665425547075,2019
+2001,46,"(45,50]",HS,72.10188217291507,77.48092752657055,0.9305758781500022,4767.64298767558,2019
+2001,47,"(45,50]",HS,641.8523947972457,43.04495973698364,14.911209087408551,8511.75591578331,2019
+2001,47,"(45,50]",HS,639.1738944146902,43.04495973698364,14.848983442433578,8473.543750483723,2019
+2001,47,"(45,50]",HS,636.1940627390971,43.04495973698364,14.779757412398922,8110.151398015863,2019
+2001,47,"(45,50]",HS,635.8592501912777,43.04495973698364,14.77197920677705,8457.649121924656,2019
+2001,47,"(45,50]",HS,641.2497322111706,43.04495973698364,14.897208317289179,8909.158849704978,2019
+2001,48,"(45,50]",HS,647.4437643458302,89.53351625292598,7.231300539083559,7210.0394917008525,2019
+2001,48,"(45,50]",HS,647.2763580719205,89.53351625292598,7.229430778116764,6548.529674075434,2019
+2001,48,"(45,50]",HS,647.4437643458302,89.53351625292598,7.231300539083559,6117.607540057926,2019
+2001,48,"(45,50]",HS,647.2763580719205,89.53351625292598,7.229430778116764,6854.978985528762,2019
+2001,48,"(45,50]",HS,647.2763580719205,89.53351625292598,7.229430778116764,6578.625901201221,2019
+2001,50,"(45,50]",College,44.42962509563887,43.04495973698364,1.0321678860223336,5543.4522166039305,2019
+2001,50,"(45,50]",College,44.19525631216526,43.04495973698364,1.0267231420870235,5831.141811973939,2019
+2001,50,"(45,50]",College,44.34592195868401,43.04495973698364,1.0302233346168657,5871.636288477428,2019
+2001,50,"(45,50]",College,44.19525631216526,43.04495973698364,1.0267231420870235,5703.713014454313,2019
+2001,50,"(45,50]",College,44.161775057383316,43.04495973698364,1.0259453215248362,5788.8377584637265,2019
+2001,63,"(60,65]",NoHS,8659.926549349657,1721.798389479346,5.029582210242587,522.2808069297469,2019
+2001,63,"(60,65]",NoHS,6676.1622035195105,1721.798389479346,3.8774355025028875,511.9315952390874,2019
+2001,63,"(60,65]",NoHS,7310.631981637337,1721.798389479346,4.245927993839044,528.1841577746234,2019
+2001,63,"(60,65]",NoHS,5940.411629686305,1721.798389479346,3.450120331151328,514.8114854287991,2019
+2001,63,"(60,65]",NoHS,6992.560061208875,1721.798389479346,4.061195610319599,519.4318138436971,2019
+2001,36,"(35,40]",College,12017.761591430757,2221.119922428356,5.410676600609529,172.02463374934786,2019
+2001,36,"(35,40]",College,27274.332364192807,957.3199045505163,28.490301136064577,159.69056269811,2019
+2001,36,"(35,40]",College,8428.571078806426,1253.4692275409636,6.724194654017526,172.1157236483978,2019
+2001,36,"(35,40]",College,23511.039326702372,771.365678486747,30.47975815157599,175.001726293633,2019
+2001,36,"(35,40]",College,6914.381331293037,1389.491300309832,4.976196201985037,163.31319795449969,2019
+2001,29,"(25,30]",HS,378.6897322111706,165.29264539001719,2.291025903285843,8555.681794628324,2019
+2001,29,"(25,30]",HS,404.58748278500383,165.29264539001719,2.4477040816326534,8609.484407778971,2019
+2001,29,"(25,30]",HS,529.0373068094874,165.29264539001719,3.2006100789372356,7384.314643372867,2019
+2001,29,"(25,30]",HS,547.3850344299923,165.29264539001719,3.311611554999358,8251.686123806849,2019
+2001,29,"(25,30]",HS,401.94246365723035,165.29264539001719,2.4317020440251578,8548.943172815238,2019
+2001,30,"(25,30]",HS,195.05342004590665,60.2629436317771,3.2367058144012324,5515.3526274849955,2019
+2001,30,"(25,30]",HS,194.88601377199694,60.2629436317771,3.233927883821993,5586.920815331037,2019
+2001,30,"(25,30]",HS,194.21638867635806,60.2629436317771,3.2228161615050333,5631.520444675245,2019
+2001,30,"(25,30]",HS,196.23363427697018,60.2629436317771,3.2562902249848733,5512.798529717272,2019
+2001,30,"(25,30]",HS,190.03960214231066,60.2629436317771,3.1535067935530012,5581.157999934008,2019
+2001,62,"(60,65]",HS,17.91247130833971,25.826975842190187,0.693556667950199,4979.934287788182,2019
+2001,62,"(60,65]",HS,14.899158377964804,25.826975842190187,0.5768835836221281,5035.810562314675,2019
+2001,62,"(60,65]",HS,18.91690895179801,25.826975842190187,0.7324476960595558,4942.884149951439,2019
+2001,62,"(60,65]",HS,16.23840856924254,25.826975842190187,0.6287382877679374,5021.603105138488,2019
+2001,62,"(60,65]",HS,12.220657995409335,25.826975842190187,0.4731741753305096,4977.898001982577,2019
+2001,63,"(60,65]",College,23379.625401683246,588.8550492019364,39.70353219076442,1449.8473079898063,2019
+2001,63,"(60,65]",College,14622.938026013771,1029.635436908649,14.202053952141844,1434.7745263077823,2019
+2001,63,"(60,65]",College,14624.61208875287,1241.4166388146082,11.780583271960554,1458.2108906091098,2019
+2001,63,"(60,65]",College,16295.326702371844,2152.2479868491823,7.5713053523296105,1447.307452835343,2019
+2001,63,"(60,65]",College,18064.811017597553,538.9228959070352,33.52021440320055,1411.6393588282385,2019
+2001,24,"(20,25]",HS,6.026625860749808,16.184904861105853,0.37236090743001327,5613.168963101674,2019
+2001,24,"(20,25]",NoHS,5.8592195868400925,8.781171786344663,0.667248031287987,5561.482409996587,2019
+2001,24,"(20,25]",HS,5.8592195868400925,18.939782284272805,0.30936045086988484,5561.277752882323,2019
+2001,24,"(20,25]",NoHS,6.026625860749808,9.814250820032271,0.6140688648845835,5545.949381214609,2019
+2001,24,"(20,25]",HS,5.8592195868400925,13.257847598990962,0.4419435012426927,5537.968304181392,2019
+2001,48,"(45,50]",College,3167.159296097934,215.22479868491826,14.71558721601848,983.2938419334308,2019
+2001,48,"(45,50]",College,2706.7920428462126,215.22479868491826,12.576580670003848,565.6974204507626,2019
+2001,48,"(45,50]",College,2877.5464422341242,215.22479868491826,13.369957643434732,598.3194637687418,2019
+2001,48,"(45,50]",College,2772.0804896710024,215.22479868491826,12.879930689256833,580.5879237529209,2019
+2001,48,"(45,50]",College,2975.8976281560826,215.22479868491826,13.826927223719675,581.2243381287574,2019
+2001,63,"(60,65]",HS,147.31752104055087,15.151825827418245,9.722757027339236,9600.583565480296,2019
+2001,63,"(60,65]",NoHS,144.80642693190512,25.826975842190187,5.606789885765627,10031.919068733443,2019
+2001,63,"(60,65]",NoHS,151.16786534047438,14.807466149522373,10.2088948787062,10075.556629556351,2019
+2001,63,"(60,65]",HS,182.47283856159143,11.536049209511617,15.817619641492191,9932.57413682557,2019
+2001,63,"(60,65]",NoHS,208.58821729150728,18.939782284272805,11.013232050967899,9850.589745504261,2019
+2001,31,"(30,35]",HS,181.04988523335882,185.95422606376934,0.9736260856543875,7215.26202721935,2019
+2001,31,"(30,35]",HS,189.25279265493498,185.95422606376934,1.0177385943895378,7234.23461557495,2019
+2001,31,"(30,35]",HS,190.92685539403215,187.6760244532487,1.0173215036404037,7296.663223375644,2019
+2001,31,"(30,35]",HS,190.92685539403215,187.6760244532487,1.0173215036404037,7186.62685224329,2019
+2001,31,"(30,35]",HS,190.92685539403215,185.95422606376934,1.0267411471926298,7229.377283931632,2019
+2001,39,"(35,40]",HS,237.23143075745983,91.25531464240532,2.5996450912155535,6280.584540775404,2019
+2001,39,"(35,40]",HS,244.34619739862282,91.25531464240532,2.6776105956800667,6513.6757380714635,2019
+2001,39,"(35,40]",HS,235.33973986228003,91.25531464240532,2.578915439440283,6574.556354969713,2019
+2001,39,"(35,40]",HS,240.5628156082632,91.25531464240532,2.6361512921295254,6378.98852731553,2019
+2001,39,"(35,40]",HS,238.2693496557001,91.25531464240532,2.611018882455083,6525.309819199972,2019
+2001,63,"(60,65]",NoHS,331.02916602907425,27.548774231669533,12.01611234116288,8461.138179936239,2019
+2001,63,"(60,65]",NoHS,310.1703442999235,27.548774231669533,11.258952637658837,8915.342957834182,2019
+2001,63,"(60,65]",NoHS,348.87467482785,29.27057262114888,11.918956261749981,9109.179378090437,2019
+2001,63,"(60,65]",NoHS,245.417597551645,29.27057262114888,8.38444811887019,8738.23722794958,2019
+2001,63,"(60,65]",NoHS,334.64514154552415,29.27057262114888,11.432818410383023,8823.594781456646,2019
+2001,53,"(50,55]",HS,430.60241775057386,39.60136295802496,10.873424185096516,6196.618828692121,2019
+2001,53,"(50,55]",HS,243.2915378729916,39.60136295802496,6.14351425557918,6280.760414583783,2019
+2001,53,"(50,55]",HS,618.9512165263964,39.60136295802496,15.629543285731026,5053.135264272554,2019
+2001,53,"(50,55]",HS,577.0829074215761,39.60136295802496,14.572299141149486,6221.111992719457,2019
+2001,53,"(50,55]",HS,360.3085233358837,39.60136295802496,9.098386934757496,6255.142896225619,2019
+2001,49,"(45,50]",NoHS,-1.0061117061973985,17.21798389479346,-0.05843376973430881,4787.738245602928,2019
+2001,49,"(45,50]",NoHS,-1.0044376434583013,17.21798389479346,-0.058336542164035415,4773.1484646622,2019
+2001,49,"(45,50]",NoHS,-1.0061117061973985,17.21798389479346,-0.05843376973430881,4777.385544280147,2019
+2001,49,"(45,50]",NoHS,-1.0044376434583013,17.21798389479346,-0.058336542164035415,4755.057342476709,2019
+2001,49,"(45,50]",NoHS,-1.0061117061973985,17.21798389479346,-0.05843376973430881,4799.37117058406,2019
+2001,65,"(60,65]",College,4799.537872991585,151.51825827418244,31.676300451569997,413.3167324009655,2019
+2001,65,"(60,65]",College,4789.493496557001,151.51825827418244,31.61000892638359,407.3670859074967,2019
+2001,65,"(60,65]",College,4787.819433817904,151.51825827418244,31.59896033885252,419.22465197447417,2019
+2001,65,"(60,65]",College,4799.537872991585,151.51825827418244,31.676300451569997,409.93233744569517,2019
+2001,65,"(60,65]",College,4787.819433817904,151.51825827418244,31.59896033885252,412.24095822742237,2019
+2001,55,"(50,55]",College,94131.87819433818,3529.686698432659,26.668621392413385,12.741347796184815,2019
+2001,55,"(50,55]",College,94792.79816373374,3529.686698432659,26.85586746433502,13.446065715628222,2019
+2001,55,"(50,55]",College,91801.75026778883,3546.904682327452,25.88221519602529,13.629371123236291,2019
+2001,55,"(50,55]",College,94409.77260902831,3546.904682327452,26.617510495680232,13.433686857337898,2019
+2001,55,"(50,55]",College,93005.4013771997,3546.904682327452,26.221567734989218,13.82447659277727,2019
+2001,48,"(45,50]",HS,182.723947972456,63.706540410735805,2.868213323065074,6962.606755249643,2019
+2001,48,"(45,50]",HS,182.723947972456,63.706540410735805,2.868213323065074,7323.946483972943,2019
+2001,48,"(45,50]",HS,182.723947972456,63.706540410735805,2.868213323065074,7374.807771242455,2019
+2001,48,"(45,50]",HS,182.723947972456,63.706540410735805,2.868213323065074,7163.895206942722,2019
+2001,48,"(45,50]",HS,182.723947972456,63.706540410735805,2.868213323065074,7270.812357938194,2019
+2001,33,"(30,35]",HS,19.251721499617446,89.53351625292598,0.21502251118154087,6233.578863712413,2019
+2001,33,"(30,35]",HS,15.485080336648815,89.53351625292598,0.17295288942863069,6270.965156928251,2019
+2001,33,"(30,35]",HS,13.995164498852333,89.53351625292598,0.1563120168241462,6313.525896862258,2019
+2001,33,"(30,35]",HS,16.573221117061973,89.53351625292598,0.18510633571280471,6209.147410325002,2019
+2001,33,"(30,35]",HS,13.911461361897475,89.53351625292598,0.1553771363407482,6255.587426073855,2019
+2001,78,"(75,80]",College,54703.348125478195,995.1994691190617,54.96721996234677,225.53409512837698,2019
+2001,78,"(75,80]",College,52414.904361132365,1448.0324455521297,36.19732729203229,225.34804676141388,2019
+2001,78,"(75,80]",College,52172.04807957154,1017.5828481822934,51.270565509989076,223.37034703692734,2019
+2001,78,"(75,80]",College,52111.06197398623,1308.5667760043027,39.82300554283283,233.99728017942357,2019
+2001,78,"(75,80]",College,52204.50815608263,1105.3945660457402,47.2270352683482,232.44440614836745,2019
+2001,49,"(45,50]",HS,-16.90803366488141,51.653951684380374,-0.327332819920421,6145.123688092975,2019
+2001,49,"(45,50]",HS,-17.075439938791124,51.653951684380374,-0.33057373892953407,6412.91573507818,2019
+2001,49,"(45,50]",HS,-17.075439938791124,51.653951684380374,-0.33057373892953407,6537.168712462583,2019
+2001,49,"(45,50]",HS,-17.075439938791124,51.653951684380374,-0.33057373892953407,6280.875214392684,2019
+2001,49,"(45,50]",HS,-17.075439938791124,51.653951684380374,-0.33057373892953407,6342.213962449006,2019
+2001,29,"(25,30]",College,2890.7715378729918,86.08991947396729,33.57851366961879,10458.049164335267,2019
+2001,29,"(25,30]",College,2679.839632746748,86.08991947396729,31.128378898729302,10162.563036925745,2019
+2001,29,"(25,30]",College,2582.576587605203,86.08991947396729,29.998594532152485,10960.11981072074,2019
+2001,29,"(25,30]",College,2664.605661820964,86.08991947396729,30.95142472083173,10394.73628292065,2019
+2001,29,"(25,30]",College,2874.0309104820203,86.08991947396729,33.384058529072014,10379.083447427705,2019
+2001,24,"(20,25]",HS,1.2555470543228768,25.826975842190187,0.04861378513669619,6275.765007940341,2019
+2001,24,"(20,25]",HS,10.8814078041316,15.324005666366176,0.7100889963787085,6282.143833815543,2019
+2001,24,"(20,25]",HS,2.7287222647283857,55.097548463339066,0.049525293608009245,6277.884629344699,2019
+2001,24,"(20,25]",HS,2.1930221882172916,22.383379063231494,0.09797547466011078,6222.434126804017,2019
+2001,24,"(20,25]",HS,6.863657230298394,44.76675812646299,0.15332039927727262,6253.328937432901,2019
+2001,48,"(45,50]",College,515.8122111706198,86.08991947396729,5.991551790527533,5556.830680307614,2019
+2001,48,"(45,50]",College,477.25854628921195,137.74387115834767,3.464826001155179,5049.163457961046,2019
+2001,48,"(45,50]",College,494.70228003060447,153.24005666366176,3.2282830664595714,4713.534542192282,2019
+2001,48,"(45,50]",College,473.02316755929616,87.81171786344665,5.386788677735245,5284.566763205223,2019
+2001,48,"(45,50]",College,438.9057689364958,130.8566776004303,3.3540953124050015,5779.336831419031,2019
+2001,49,"(45,50]",HS,196.18341239479727,87.81171786344665,2.234137051046834,5576.6405432708925,2019
+2001,49,"(45,50]",HS,161.69771996939556,94.69891142136402,1.7074929114012674,5812.753674367149,2019
+2001,49,"(45,50]",HS,336.2355011476664,113.63869370563681,2.9588117408198276,5839.140049808949,2019
+2001,49,"(45,50]",HS,343.76878347360366,123.96948404251289,2.7730113271723784,5680.276129039692,2019
+2001,49,"(45,50]",HS,188.1646518745218,89.53351625292598,2.101611326678712,5755.908200385872,2019
+2001,62,"(60,65]",College,4052.738485080337,241.0517745271084,16.812730348203974,1358.7590490127375,2019
+2001,62,"(60,65]",College,3975.731599081867,241.0517745271084,16.4932683315914,1358.5689359130422,2019
+2001,62,"(60,65]",College,4534.701147666412,241.0517745271084,18.81214588261181,1368.369126537344,2019
+2001,62,"(60,65]",College,4330.632899770467,241.0517745271084,17.965571538588485,1355.2502889804252,2019
+2001,62,"(60,65]",College,4866.332976281561,241.0517745271084,20.18791600198031,1350.4597819459168,2019
+2001,31,"(30,35]",College,-2.5110941086457537,86.08991947396729,-0.029168271082017715,229.23853307523444,2019
+2001,31,"(30,35]",College,-4.185156847742923,86.08991947396729,-0.048613785136696196,240.1523766803839,2019
+2001,31,"(30,35]",College,-2.5110941086457537,86.08991947396729,-0.029168271082017715,231.76268240092742,2019
+2001,31,"(30,35]",College,-4.185156847742923,86.08991947396729,-0.048613785136696196,237.53546495866075,2019
+2001,31,"(30,35]",College,-2.5110941086457537,86.08991947396729,-0.029168271082017715,231.05049059539033,2019
+2001,68,"(65,70]",College,6016.581484315226,301.3147181588855,19.967765003575554,1845.0077243061532,2019
+2001,68,"(65,70]",College,6016.581484315226,301.3147181588855,19.967765003575554,1845.0665218577974,2019
+2001,68,"(65,70]",College,6016.581484315226,301.3147181588855,19.967765003575554,1856.86073796024,2019
+2001,68,"(65,70]",College,6018.255547054323,301.3147181588855,19.973320864734035,1840.438554036859,2019
+2001,68,"(65,70]",College,6016.581484315226,301.3147181588855,19.967765003575554,1832.4461149973722,2019
+2001,39,"(35,40]",HS,-2.159540933435348,51.653951684380374,-0.04180785521755872,4753.443231276478,2019
+2001,39,"(35,40]",HS,-1.2555470543228768,61.984742021256444,-0.020255743806956748,4755.383361830469,2019
+2001,39,"(35,40]",HS,0.5357000765110942,68.87193557917384,0.007778205621871391,4791.051827467316,2019
+2001,39,"(35,40]",HS,0.8202907421576129,49.93215329490103,0.0164281067013663,4773.389751337259,2019
+2001,39,"(35,40]",HS,1.0379188982402447,68.87193557917384,0.015070273392375816,4798.4154620845975,2019
+2001,32,"(30,35]",HS,19.62001530221882,43.04495973698364,0.4558028494416635,4178.7919507591,2019
+2001,32,"(30,35]",HS,19.787421576128537,43.04495973698364,0.4596919522525991,4138.4914644495575,2019
+2001,32,"(30,35]",HS,19.62001530221882,43.04495973698364,0.4558028494416635,4136.1328729868255,2019
+2001,32,"(30,35]",HS,19.787421576128537,43.04495973698364,0.4596919522525991,4156.775412765954,2019
+2001,32,"(30,35]",HS,20.038530986993116,43.04495973698364,0.46552560646900276,4150.83778754192,2019
+2001,48,"(45,50]",College,1428.3103289977048,273.76594392721603,5.217268110519394,5517.08043175451,2019
+2001,48,"(45,50]",College,2415.6725325172147,273.76594392721603,8.823860622924853,2480.0853415332576,2019
+2001,48,"(45,50]",College,2645.521346595256,273.76594392721603,9.66344209453094,3109.930725835601,2019
+2001,48,"(45,50]",College,1856.2007651109411,273.76594392721603,6.780247164725626,2564.448696627554,2019
+2001,48,"(45,50]",College,2310.0391736801835,273.76594392721603,8.438007812594599,2623.853081648235,2019
+2001,29,"(25,30]",College,116.53150726855394,65.42833880021514,1.781055570192327,7051.967921529185,2019
+2001,29,"(25,30]",College,116.88306044376435,65.42833880021514,1.7864286727600673,7143.475500278937,2019
+2001,29,"(25,30]",College,115.52706962509563,65.42833880021514,1.7657038485702123,7200.500894064295,2019
+2001,29,"(25,30]",College,116.69891354246367,65.42833880021514,1.7836141904626797,7048.702234501902,2019
+2001,29,"(25,30]",College,115.19225707727621,65.42833880021514,1.7605866080295076,7136.107124752953,2019
+2001,48,"(45,50]",HS,730.7283856159144,165.29264539001719,4.42081608586831,1027.7013367565949,2019
+2001,48,"(45,50]",HS,730.895791889824,165.29264539001719,4.421828873058657,1040.1545896728219,2019
+2001,48,"(45,50]",HS,730.7283856159144,165.29264539001719,4.42081608586831,974.5030495949874,2019
+2001,48,"(45,50]",HS,730.895791889824,165.29264539001719,4.421828873058657,1042.29537980984,2019
+2001,48,"(45,50]",HS,729.0543228768171,165.29264539001719,4.410688213964831,1099.5175303278163,2019
+2001,26,"(25,30]",College,-25.814047436878347,123.96948404251289,-0.20822904633551534,4629.997535336167,2019
+2001,26,"(25,30]",College,-25.713603672532518,123.96948404251289,-0.20741881658323708,4666.091863877662,2019
+2001,26,"(25,30]",College,-25.83078806426932,123.96948404251289,-0.20836408462756173,4600.286433401469,2019
+2001,26,"(25,30]",College,-25.84752869166029,123.96948404251289,-0.2084991229196081,4643.710984309953,2019
+2001,26,"(25,30]",College,-25.696863045141544,123.96948404251289,-0.20728377829119068,4640.470715933117,2019
+2001,44,"(40,45]",HS,221.1102065799541,142.9092663267857,1.5472069255071885,7993.269759950123,2019
+2001,44,"(40,45]",HS,207.90185156847744,142.9092663267857,1.454782162922,8187.493704134213,2019
+2001,44,"(40,45]",HS,202.8796633511859,142.9092663267857,1.4196396676424603,8406.809023715188,2019
+2001,44,"(40,45]",HS,204.53698546289215,142.9092663267857,1.4312366910847085,8117.486840921929,2019
+2001,44,"(40,45]",HS,204.38631981637337,142.9092663267857,1.4301824162263221,8209.382424419138,2019
+2001,54,"(50,55]",College,3195.450956388677,2117.812019059595,1.5088454157548896,36.55024891985336,2019
+2001,54,"(50,55]",College,2212.792869166029,2100.594035164802,1.053412907074367,37.742137556210466,2019
+2001,54,"(50,55]",College,3296.865677123183,2117.812019059595,1.5567319702846627,38.07023068839485,2019
+2001,54,"(50,55]",College,2521.573741392502,2117.812019059595,1.1906504065040653,37.279019179123615,2019
+2001,54,"(50,55]",College,2277.5790971690894,2100.594035164802,1.0842547674807628,37.359612203213054,2019
+2001,45,"(40,45]",HS,1091.8237184391737,154.9618550531411,7.045757925811835,644.2844202503923,2019
+2001,45,"(40,45]",HS,640.6303289977046,111.91689531615746,5.724161014187969,638.217368956329,2019
+2001,45,"(40,45]",HS,939.9360061208876,142.9092663267857,6.5771522748676645,614.5417797818023,2019
+2001,45,"(40,45]",HS,496.5270084162204,149.7964598847031,3.3146778555273766,637.8390553301026,2019
+2001,45,"(40,45]",HS,397.3387911247131,82.64632269500859,4.807700792581184,673.0647562423943,2019
+2001,51,"(50,55]",College,8624.603825554706,602.629436317771,14.311620551185435,14.496741375937527,2019
+2001,51,"(50,55]",College,8626.445294567711,602.629436317771,14.314676274822595,15.067587754858996,2019
+2001,51,"(50,55]",College,8626.277888293804,602.629436317771,14.314398481764675,15.195418785704017,2019
+2001,51,"(50,55]",College,8626.277888293804,602.629436317771,14.314398481764675,14.841502861783805,2019
+2001,51,"(50,55]",College,8624.603825554706,602.629436317771,14.311620551185435,14.9705594938995,2019
+2001,31,"(30,35]",College,902.3198163733742,84.36812108448795,10.69503273007316,326.54560435998917,2019
+2001,31,"(30,35]",College,1286.852027543994,75.75912913709122,16.98609847026289,328.117926241058,2019
+2001,31,"(30,35]",College,1466.47895944912,84.36812108448795,17.38190848152892,309.57636409851085,2019
+2001,31,"(30,35]",College,1014.8168324407039,79.20272591604991,12.81290284776749,328.4798811390723,2019
+2001,31,"(30,35]",College,898.4694720734507,72.31553235813253,12.424294515649924,347.2844211425292,2019
+2001,39,"(35,40]",HS,10.044376434583015,41.323161347504296,0.24306892568348096,5757.034805066223,2019
+2001,39,"(35,40]",HS,10.044376434583015,41.323161347504296,0.24306892568348096,5753.061365194444,2019
+2001,39,"(35,40]",HS,10.044376434583015,43.04495973698364,0.23334616865614172,5769.01403748487,2019
+2001,39,"(35,40]",HS,10.044376434583015,41.323161347504296,0.24306892568348096,5711.95232793924,2019
+2001,39,"(35,40]",HS,10.044376434583015,41.323161347504296,0.24306892568348096,5815.664133976931,2019
+2001,43,"(40,45]",HS,11665.371384850803,136.02207276886833,85.76087062482026,184.93501837162862,2019
+2001,43,"(40,45]",HS,11629.881254781943,136.02207276886833,85.49995613244103,182.1910018669292,2019
+2001,43,"(40,45]",HS,11600.250344299924,136.02207276886833,85.28211714587913,187.5846359142148,2019
+2001,43,"(40,45]",HS,12524.667788829382,136.02207276886833,92.0782012351155,183.42498355210063,2019
+2001,43,"(40,45]",HS,12072.336036725326,136.02207276886833,88.75277218601795,184.4947035631073,2019
+2001,25,"(20,25]",HS,-54.25637337413925,43.04495973698364,-1.2604582210242588,8118.342472196545,2019
+2001,25,"(20,25]",HS,-52.93386381025249,43.04495973698364,-1.229734308817867,8281.425230015284,2019
+2001,25,"(20,25]",HS,-49.25092578423872,43.04495973698364,-1.1441740469772816,8339.728670555487,2019
+2001,25,"(20,25]",HS,-51.510910482019895,43.04495973698364,-1.1966769349249136,8169.6279594464195,2019
+2001,25,"(20,25]",HS,-54.942739097169095,43.04495973698364,-1.2764035425490954,8205.57995551878,2019
+2001,81,"(80,85]",HS,51.47742922723795,15.66836534426205,3.2854371273701264,6327.495954806636,2019
+2001,81,"(80,85]",HS,51.47742922723795,15.66836534426205,3.2854371273701264,6327.726038583508,2019
+2001,81,"(80,85]",HS,51.47742922723795,15.66836534426205,3.2854371273701264,6352.315579271053,2019
+2001,81,"(80,85]",HS,51.47742922723795,15.66836534426205,3.2854371273701264,6373.52961035127,2019
+2001,81,"(80,85]",HS,51.47742922723795,15.66836534426205,3.2854371273701264,6366.658696396841,2019
+2001,83,"(80,85]",College,3950.11843917368,86.08991947396729,45.88363496341933,1413.6297030717917,2019
+2001,83,"(80,85]",College,3908.266870696251,86.08991947396729,45.39749711205237,1410.038376559342,2019
+2001,83,"(80,85]",College,3869.763427697016,86.08991947396729,44.95025028879477,1470.9026275384401,2019
+2001,83,"(80,85]",College,3720.771843917368,86.08991947396729,43.21959953792838,1407.0778873527577,2019
+2001,83,"(80,85]",College,3908.266870696251,86.08991947396729,45.39749711205237,1396.4699833813454,2019
+2001,25,"(20,25]",College,11.015332823259373,63.706540410735805,0.17290740875646532,1397.1506862187678,2019
+2001,25,"(20,25]",College,11.718439173680185,63.706540410735805,0.18394405186858015,1422.515845703652,2019
+2001,25,"(20,25]",College,11.551032899770467,63.706540410735805,0.181316279699029,1432.4076783267478,2019
+2001,25,"(20,25]",College,11.969548584544759,63.706540410735805,0.18788571012290686,1412.6570445467935,2019
+2001,25,"(20,25]",College,11.015332823259373,63.706540410735805,0.17290740875646532,1407.6075039958675,2019
+2001,37,"(35,40]",College,567.1557153787298,179.06703250585196,3.1672815897040962,7268.538162633206,2019
+2001,37,"(35,40]",College,561.1290895179801,179.06703250585196,3.1336258923017684,6611.674369676769,2019
+2001,37,"(35,40]",College,337.80912012241777,179.06703250585196,1.8864953274488316,6859.978025591039,2019
+2001,37,"(35,40]",College,286.24798775822495,179.06703250585196,1.5985521385622465,6643.972214445275,2019
+2001,37,"(35,40]",College,384.1806579954093,179.06703250585196,2.1454572213500787,6773.814852815291,2019
+2001,28,"(25,30]",College,679.6694720734507,60.2629436317771,11.278398151713517,7101.61478006392,2019
+2001,28,"(25,30]",College,679.6694720734507,60.2629436317771,11.278398151713517,6441.736354960888,2019
+2001,28,"(25,30]",College,679.6694720734507,60.2629436317771,11.278398151713517,6023.533949263016,2019
+2001,28,"(25,30]",College,679.6694720734507,60.2629436317771,11.278398151713517,6714.041339360518,2019
+2001,28,"(25,30]",College,679.6694720734507,60.2629436317771,11.278398151713517,6488.29809148091,2019
+2001,57,"(55,60]",College,4495.528079571538,258.2697584219018,17.40632781414453,2176.9672245576126,2019
+2001,57,"(55,60]",College,4495.193267023718,258.2697584219018,17.40503144654088,2157.2019422768803,2019
+2001,57,"(55,60]",College,4496.699923488905,258.2697584219018,17.410865100757285,2211.571163386707,2019
+2001,57,"(55,60]",College,4495.360673297628,258.2697584219018,17.405679630342703,2151.568530378091,2019
+2001,57,"(55,60]",College,4495.695485845447,258.2697584219018,17.40697599794635,2131.610717003273,2019
+2001,32,"(30,35]",HS,1.7075439938791126,106.75150014771945,0.015995503496590357,5959.617847490794,2019
+2001,32,"(30,35]",HS,3.1974598316755927,106.75150014771945,0.029952364390674096,5969.604331556975,2019
+2001,32,"(30,35]",HS,2.1930221882172916,105.0297017582401,0.020880019189859673,5990.4872374176875,2019
+2001,32,"(30,35]",HS,2.5278347360367253,105.0297017582401,0.024067808379151227,6021.198390953271,2019
+2001,32,"(30,35]",HS,3.0467941851568474,105.0297017582401,0.02900888162255313,5974.406220658846,2019
+2001,35,"(30,35]",College,143.8019892884468,115.36049209511619,1.2465445203708063,9835.946007741752,2019
+2001,35,"(30,35]",College,173.265493496557,113.63869370563681,1.5247050792872898,10085.062013432278,2019
+2001,35,"(30,35]",College,231.5228768171385,113.63869370563681,2.037359540728813,10181.103007174494,2019
+2001,35,"(30,35]",College,274.21147666411633,113.63869370563681,2.4130115167851023,10047.286636402081,2019
+2001,35,"(30,35]",College,217.12593726090284,115.36049209511619,1.8821516215610432,10038.826299197875,2019
+2001,83,"(80,85]",HS,135.7664881407804,43.04495973698364,3.154062379668849,6155.39323223239,2019
+2001,83,"(80,85]",HS,140.4538638102525,43.04495973698364,3.2629572583750486,6167.866368746444,2019
+2001,83,"(80,85]",HS,142.46273909716908,41.323161347504296,3.447527595944038,6166.19324853234,2019
+2001,83,"(80,85]",HS,136.93833205814843,41.323161347504296,3.313839686818124,6262.171750084583,2019
+2001,83,"(80,85]",HS,142.79755164498854,43.04495973698364,3.3174046977281484,6188.237519422989,2019
+2001,47,"(45,50]",College,21164.338179035964,12741.30808214716,1.6610804826775178,10.802859972264065,2019
+2001,47,"(45,50]",College,64291.70986993114,11260.56146719492,5.709458631990099,10.885853919327733,2019
+2001,47,"(45,50]",College,21990.990359602143,23829.68971039415,0.9228399793225175,11.096688211252678,2019
+2001,47,"(45,50]",College,44319.63917368019,16598.136474580897,2.6701575349469624,11.208984887044869,2019
+2001,47,"(45,50]",College,61061.773221117066,21711.87769133455,2.812367225405267,11.194517760457467,2019
+2001,42,"(40,45]",College,3193.27467482785,2100.594035164802,1.5201769696434095,254.02985305266816,2019
+2001,42,"(40,45]",College,3193.27467482785,2083.3760512700087,1.53274041567352,248.477456631287,2019
+2001,42,"(40,45]",College,3193.27467482785,2100.594035164802,1.5201769696434095,256.54893154754114,2019
+2001,42,"(40,45]",College,3193.27467482785,2100.594035164802,1.5201769696434095,250.19705672943414,2019
+2001,42,"(40,45]",College,3193.27467482785,2100.594035164802,1.5201769696434095,252.15036172146847,2019
+2001,30,"(25,30]",College,68.21805661820964,103.30790336876075,0.66033724810679,3715.340295076843,2019
+2001,30,"(25,30]",College,71.56618209640398,103.30790336876075,0.6927464381979207,3726.041784561587,2019
+2001,30,"(25,30]",College,79.93649579188983,103.30790336876075,0.7737694134257477,3730.4986652710263,2019
+2001,30,"(25,30]",College,68.21805661820964,103.30790336876075,0.66033724810679,3719.5837685424945,2019
+2001,30,"(25,30]",College,69.89211935730681,103.30790336876075,0.6765418431523553,3725.685107877752,2019
+2001,77,"(75,80]",College,604.1692425401684,46.488556515942335,12.99608522654345,11278.96182332654,2019
+2001,77,"(75,80]",College,602.1603672532517,44.76675812646299,13.451060395130476,11042.086600875853,2019
+2001,77,"(75,80]",College,605.1736801836266,46.488556515942335,13.017691353270868,10408.773231555759,2019
+2001,77,"(75,80]",College,627.6061208875286,46.488556515942335,13.500228183516592,11161.037161086704,2019
+2001,77,"(75,80]",College,630.7868400918134,46.488556515942335,13.568647584820093,11386.752961154238,2019
+2001,78,"(75,80]",NoHS,133.92501912777354,11.536049209511617,11.609262122196105,10461.755373957976,2019
+2001,78,"(75,80]",NoHS,133.92501912777354,11.536049209511617,11.609262122196105,10428.44207072308,2019
+2001,78,"(75,80]",NoHS,133.92501912777354,11.536049209511617,11.609262122196105,10417.781442082267,2019
+2001,78,"(75,80]",NoHS,133.92501912777354,11.536049209511617,11.609262122196105,10559.67263130553,2019
+2001,78,"(75,80]",NoHS,133.92501912777354,11.536049209511617,11.609262122196105,10373.153135440856,2019
+2001,26,"(25,30]",HS,13.961683244070391,61.984742021256444,0.22524387113335903,4434.705588941428,2019
+2001,26,"(25,30]",HS,16.255149196633514,63.706540410735805,0.2551566776634162,4391.93705823209,2019
+2001,26,"(25,30]",HS,13.124651874521806,63.706540410735805,0.20601733809280975,4389.4340241339405,2019
+2001,26,"(25,30]",HS,13.693833205814842,63.706540410735805,0.21495176346928363,4411.340734878856,2019
+2001,26,"(25,30]",HS,12.78983932670237,63.706540410735805,0.20076179375370745,4405.039483206998,2019
+2001,53,"(50,55]",HS,920.3996939556235,258.2697584219018,3.5637145424207426,322.38049718778905,2019
+2001,53,"(50,55]",HS,752.8260137719969,259.9915568113812,2.895578698804275,324.0388252196494,2019
+2001,53,"(50,55]",HS,895.288752869166,258.2697584219018,3.4664869721473504,305.70639297328165,2019
+2001,53,"(50,55]",HS,751.4867635807193,258.2697584219018,2.9096970863817235,324.3577943958786,2019
+2001,53,"(50,55]",HS,737.7594491201224,258.2697584219018,2.8565460146322685,342.8160664564827,2019
+2001,21,"(20,25]",HS,29.245876052027544,60.2629436317771,0.48530447219319,5414.241292213555,2019
+2001,21,"(20,25]",HS,23.8888752869166,60.2629436317771,0.3964106936575169,5407.524451847984,2019
+2001,21,"(20,25]",HS,33.61517980107116,60.2629436317771,0.5578084603113483,5451.807141595715,2019
+2001,21,"(20,25]",HS,26.567375669472074,60.2629436317771,0.4408575829253535,5399.206225757648,2019
+2001,21,"(20,25]",HS,22.04740627390972,60.2629436317771,0.36585345728587937,5375.042621197166,2019
+2001,28,"(25,30]",College,3.5992348890589136,61.984742021256444,0.058066465579942675,5831.205194275129,2019
+2001,28,"(25,30]",College,3.5992348890589136,61.984742021256444,0.058066465579942675,5840.976498283121,2019
+2001,28,"(25,30]",College,3.5992348890589136,61.984742021256444,0.058066465579942675,5861.409437482035,2019
+2001,28,"(25,30]",College,3.5992348890589136,61.984742021256444,0.058066465579942675,5891.4588538375265,2019
+2001,28,"(25,30]",College,3.5992348890589136,61.984742021256444,0.058066465579942675,5845.674920462143,2019
+2001,37,"(35,40]",HS,262.15822494261664,137.74387115834767,1.9032296881016553,43.26852221563275,2019
+2001,37,"(35,40]",HS,242.90650344299925,137.74387115834767,1.7634650558336542,44.34891558000509,2019
+2001,37,"(35,40]",HS,247.92869166029072,137.74387115834767,1.7999253946861762,42.34392777074011,2019
+2001,37,"(35,40]",HS,242.06947207345067,137.74387115834767,1.7573883326915671,43.84923272426695,2019
+2001,37,"(35,40]",HS,252.11384850803367,137.74387115834767,1.8303090103966113,46.93217172115412,2019
+2001,40,"(35,40]",HS,623.5883703136956,315.0891052747202,1.97908578835184,287.29890914988493,2019
+2001,40,"(35,40]",HS,623.5883703136956,237.60817774814973,2.624439849770918,288.7695708357011,2019
+2001,40,"(35,40]",HS,623.5883703136956,321.97629883263767,1.9367524025047413,272.3762590672367,2019
+2001,40,"(35,40]",HS,623.4209640397858,321.97629883263767,1.9362324689738675,288.91287676331467,2019
+2001,40,"(35,40]",HS,623.5883703136956,213.5030002954389,2.9207475747450533,305.4261298261424,2019
+2001,63,"(60,65]",College,97.11237949502677,146.35286310574438,0.663549570771705,6841.007367223885,2019
+2001,63,"(60,65]",College,63.32979342004591,146.35286310574438,0.43271988040499226,7150.087979703698,2019
+2001,63,"(60,65]",College,70.4947819433818,146.35286310574438,0.48167682167206516,7190.677767406303,2019
+2001,63,"(60,65]",College,60.61781178270849,146.35286310574438,0.4141894493646516,7016.459728862729,2019
+2001,63,"(60,65]",College,70.17671002295333,146.35286310574438,0.4795034995130128,7075.341051766042,2019
+2001,42,"(40,45]",HS,-14.011905126243306,91.25531464240532,-0.15354618173364043,6615.09156554341,2019
+2001,42,"(40,45]",HS,-12.337842387146136,91.25531464240532,-0.13520135715375506,6790.522295245047,2019
+2001,42,"(40,45]",HS,-15.685967865340475,91.25531464240532,-0.17189100631352577,6858.388151524907,2019
+2001,42,"(40,45]",HS,-17.360030604437647,91.25531464240532,-0.19023583089341117,6695.172438967558,2019
+2001,42,"(40,45]",HS,-12.362953328232594,91.25531464240532,-0.13547652952245334,6805.102651403615,2019
+2001,49,"(45,50]",College,7536.128232593726,402.90082313816697,18.70467320939019,1524.6435490909948,2019
+2001,49,"(45,50]",College,5325.193573068094,287.54033104305074,18.519814433512643,1531.531153925285,2019
+2001,49,"(45,50]",College,2588.435807192043,139.46566954782702,18.55966285885423,4250.061564999061,2019
+2001,49,"(45,50]",College,4206.082631981638,230.72098419023237,18.23016942626107,1512.231393602142,2019
+2001,49,"(45,50]",College,4888.263198163734,241.0517745271084,20.278893228450414,1497.7412565933498,2019
+2001,27,"(25,30]",HS,19.234980872226473,58.54114524229776,0.3285719948356701,4442.095842629917,2019
+2001,27,"(25,30]",HS,22.90117827084927,61.984742021256444,0.36946476703889103,4444.654308203728,2019
+2001,27,"(25,30]",HS,24.709166029074215,46.488556515942335,0.5315107174945449,4439.272895388762,2019
+2001,27,"(25,30]",HS,14.715011476664117,58.54114524229776,0.2513618655009173,4434.243967672837,2019
+2001,27,"(25,30]",HS,37.66641162968631,65.42833880021514,0.575689560829297,4456.307869591956,2019
+2001,58,"(55,60]",HS,99.69043611323642,8.60899194739673,11.57980361956103,5147.2158558316305,2019
+2001,58,"(55,60]",HS,103.87559296097935,8.60899194739673,12.065941470927994,5204.969076976098,2019
+2001,58,"(55,60]",HS,114.53937260902832,8.60899194739673,13.304620716211012,5108.921162385235,2019
+2001,58,"(55,60]",HS,91.05227237949504,8.60899194739673,10.576415094339623,5190.2843754073165,2019
+2001,58,"(55,60]",HS,114.45566947207345,8.60899194739673,13.294897959183674,5145.111168906076,2019
+2001,36,"(35,40]",College,280.4055087987758,158.40545183209983,1.7701758718253502,5922.330340232545,2019
+2001,36,"(35,40]",College,285.4276970160673,158.40545183209983,1.801880514305804,6142.125657185183,2019
+2001,36,"(35,40]",College,290.4498852333588,158.40545183209983,1.8335851567862582,6199.533550072818,2019
+2001,36,"(35,40]",College,277.05738332058144,158.40545183209983,1.7490394435050471,6015.12121205392,2019
+2001,36,"(35,40]",College,366.1175210405509,158.40545183209983,2.3112684368250993,6153.096112435131,2019
+2001,64,"(60,65]",HS,359.0864575363428,34.43596778958692,10.427656911821332,457.7522856082152,2019
+2001,64,"(60,65]",HS,359.4212700841622,34.43596778958692,10.43737966884867,473.46141926145975,2019
+2001,64,"(60,65]",HS,359.4212700841622,34.43596778958692,10.43737966884867,457.97031857781013,2019
+2001,64,"(60,65]",HS,359.0864575363428,34.43596778958692,10.427656911821332,471.17916937027366,2019
+2001,64,"(60,65]",HS,359.4212700841622,34.43596778958692,10.43737966884867,449.1100091640868,2019
+2001,30,"(25,30]",HS,-0.6528844682478959,51.653951684380374,-0.012639584135541008,5416.495853166847,2019
+2001,30,"(25,30]",HS,-0.6528844682478959,51.653951684380374,-0.012639584135541008,5390.550650979826,2019
+2001,30,"(25,30]",HS,-0.6528844682478959,51.653951684380374,-0.012639584135541008,5305.153691605564,2019
+2001,30,"(25,30]",HS,-0.8202907421576129,51.653951684380374,-0.015880503144654088,5397.751693965098,2019
+2001,30,"(25,30]",HS,-0.6528844682478959,51.653951684380374,-0.012639584135541008,5377.459592272085,2019
+2001,82,"(80,85]",HS,178.62249426166795,18.939782284272805,9.43107431651906,9604.002771855334,2019
+2001,82,"(80,85]",HS,178.62249426166795,18.939782284272805,9.43107431651906,9544.723589610996,2019
+2001,82,"(80,85]",HS,176.9484315225708,18.939782284272805,9.342685616270522,9620.607520705025,2019
+2001,82,"(80,85]",HS,175.2743687834736,18.939782284272805,9.254296916021982,9654.197633962867,2019
+2001,82,"(80,85]",HS,176.9484315225708,18.939782284272805,9.342685616270522,9601.441269944724,2019
+2001,61,"(60,65]",College,5951.293037490436,516.5395168438037,11.521467077396998,2169.5055565483117,2019
+2001,61,"(60,65]",College,5917.476970160674,516.5395168438037,11.456000513412915,2179.0160831041985,2019
+2001,61,"(60,65]",College,5900.736342769702,516.5395168438037,11.423591323321784,2246.2938376485467,2019
+2001,61,"(60,65]",College,5896.885998469778,516.5395168438037,11.416137209600823,2152.7750673349715,2019
+2001,61,"(60,65]",College,5939.574598316756,516.5395168438037,11.498780644333207,2136.3388619519424,2019
+2001,38,"(35,40]",HS,437.9348125478195,60.2629436317771,7.2670663952912715,8311.55791696452,2019
+2001,38,"(35,40]",HS,404.6209640397858,60.2629436317771,6.714258210022555,8789.629572524409,2019
+2001,38,"(35,40]",HS,456.85172149961744,60.2629436317771,7.580972550745366,8648.859577238076,2019
+2001,38,"(35,40]",HS,585.9219586840092,60.2629436317771,9.722757027339238,11161.037161086704,2019
+2001,38,"(35,40]",HS,413.32609028309105,60.2629436317771,6.858710600143023,8390.783818440064,2019
+2001,28,"(25,30]",HS,375.74338179035965,125.69128243199225,2.9894148147757424,7836.617474196185,2019
+2001,28,"(25,30]",HS,377.4174445294568,125.69128243199225,3.002733660018673,7929.269114773839,2019
+2001,28,"(25,30]",HS,375.74338179035965,127.41308082147161,2.9490173172787726,8016.844139627103,2019
+2001,28,"(25,30]",HS,375.74338179035965,125.69128243199225,2.9894148147757424,7884.645966698267,2019
+2001,28,"(25,30]",HS,377.4174445294568,125.69128243199225,3.002733660018673,7944.147396203531,2019
+2001,73,"(70,75]",HS,123.04361132364194,56.819346852818406,2.1655231560891943,7937.010338397389,2019
+2001,73,"(70,75]",HS,123.04361132364194,56.819346852818406,2.1655231560891943,8753.878639771352,2019
+2001,73,"(70,75]",HS,123.04361132364194,56.819346852818406,2.1655231560891943,8653.612322545607,2019
+2001,73,"(70,75]",HS,123.04361132364194,56.819346852818406,2.1655231560891943,8335.321638174228,2019
+2001,73,"(70,75]",HS,123.04361132364194,56.819346852818406,2.1655231560891943,8553.249781960561,2019
+2001,51,"(50,55]",HS,568.0094873756694,53.37575007385973,10.641714385084525,7462.201773171204,2019
+2001,51,"(50,55]",HS,615.9211629686305,218.6683954638769,2.8166903665343725,6800.25446929812,2019
+2001,51,"(50,55]",HS,596.5020351951033,105.0297017582401,5.679365219641832,6354.707761006923,2019
+2001,51,"(50,55]",HS,473.24079571537874,125.69128243199225,3.765104361724012,7474.348369629825,2019
+2001,51,"(50,55]",HS,514.8077735271614,146.35286310574438,3.5175791071145444,6790.101806336868,2019
+2001,61,"(60,65]",HS,49612.52333588371,2066.1580673752146,24.01196893851881,170.70316365473857,2019
+2001,61,"(60,65]",HS,47729.20275439939,2066.1580673752146,23.100460467205757,159.69056269811,2019
+2001,61,"(60,65]",HS,40112.217291507266,2066.1580673752146,19.413915094339625,167.96700212053682,2019
+2001,61,"(60,65]",HS,49652.700841622034,2066.1580673752146,24.031414452573486,175.001726293633,2019
+2001,61,"(60,65]",HS,52148.72838561592,2066.1580673752146,25.239467013220388,168.05053491723305,2019
+2001,53,"(50,55]",College,2044.7923029839328,249.6607664745051,8.190282886088726,3888.1795890275316,2019
+2001,53,"(50,55]",College,1557.305233358837,230.72098419023237,6.74973383467721,3952.6452203565977,2019
+2001,53,"(50,55]",College,1815.3703749043611,266.8787503692986,6.802228998720609,4956.463639882117,2019
+2001,53,"(50,55]",College,1828.6708033664881,175.6234357268933,10.412453188822697,4087.0996307361047,2019
+2001,53,"(50,55]",College,1981.688508033665,408.066218306605,4.856291501554049,4181.7755899009035,2019
+2001,55,"(50,55]",HS,533.1889824024483,58.54114524229776,9.107935627081021,5619.632560611128,2019
+2001,55,"(50,55]",HS,568.3442999234888,65.42833880021514,8.686515817846502,5947.809585899,2019
+2001,55,"(50,55]",HS,547.7533282325937,68.87193557917384,7.953215248363496,5992.1440898478995,2019
+2001,55,"(50,55]",HS,540.3874521805661,67.15013718969449,8.047451201090015,5800.906079274622,2019
+2001,55,"(50,55]",HS,551.4362662586075,72.31553235813253,7.625419440013201,5867.563209946109,2019
+2001,42,"(40,45]",College,1721.8572302983932,223.83379063231493,7.692570569592133,1743.6073201750557,2019
+2001,42,"(40,45]",College,1721.8572302983932,223.83379063231493,7.692570569592133,1683.9475103706488,2019
+2001,42,"(40,45]",College,1721.8572302983932,223.83379063231493,7.692570569592133,1823.160761279146,2019
+2001,42,"(40,45]",College,1721.6898240244836,223.83379063231493,7.691822665205415,1726.4399569128577,2019
+2001,42,"(40,45]",College,1721.5224177505738,223.83379063231493,7.6910747608186965,1728.0090429010131,2019
+2001,27,"(25,30]",NoHS,0,14.63528631057444,0,4716.001785426204,2019
+2001,27,"(25,30]",NoHS,0,14.63528631057444,0,4680.983044019342,2019
+2001,27,"(25,30]",NoHS,0,14.63528631057444,0,4686.138265892978,2019
+2001,27,"(25,30]",NoHS,0,14.63528631057444,0,4716.91363647125,2019
+2001,27,"(25,30]",NoHS,0,14.63528631057444,0,4672.834876579288,2019
+2001,79,"(75,80]",College,132106.986993114,871.229985076549,151.63273676985148,45.173435275854125,2019
+2001,79,"(75,80]",College,131783.89288446825,898.7787593082185,146.6255088025234,49.19646794481896,2019
+2001,79,"(75,80]",College,132669.47207345066,890.1697673608218,149.03839350418465,48.0083713195233,2019
+2001,79,"(75,80]",College,130161.7260902831,776.531073655185,167.61946882254557,47.17180535841821,2019
+2001,79,"(75,80]",College,130642.18209640398,965.9288964979131,135.25030938619014,49.828386355754084,2019
+2001,53,"(50,55]",College,54149.23335883703,4855.4714583317555,11.1522091775289,32.54014495187054,2019
+2001,53,"(50,55]",College,54149.23335883703,4855.4714583317555,11.1522091775289,32.79658701299551,2019
+2001,53,"(50,55]",College,54149.23335883703,4855.4714583317555,11.1522091775289,32.69089802233964,2019
+2001,53,"(50,55]",College,54149.23335883703,4855.4714583317555,11.1522091775289,33.75568849037757,2019
+2001,53,"(50,55]",College,54149.23335883703,4855.4714583317555,11.1522091775289,33.27193653416163,2019
+2001,86,"(85,90]",College,264.50191277735274,61.984742021256444,4.267210028665555,7305.561558613536,2019
+2001,86,"(85,90]",College,264.50191277735274,61.984742021256444,4.267210028665555,7574.656930516836,2019
+2001,86,"(85,90]",College,264.50191277735274,61.984742021256444,4.267210028665555,7731.660775782378,2019
+2001,86,"(85,90]",College,266.1759755164499,61.984742021256444,4.2942176870748305,7518.744972922805,2019
+2001,86,"(85,90]",College,264.50191277735274,61.984742021256444,4.267210028665555,7630.097916273457,2019
+2001,61,"(60,65]",HS,19.050833970925787,61.984742021256444,0.3073471526975571,5063.237945879133,2019
+2001,61,"(60,65]",HS,19.067574598316753,61.984742021256444,0.30761722928164975,5184.47341809426,2019
+2001,61,"(60,65]",HS,19.050833970925787,61.984742021256444,0.3073471526975571,5094.044660774123,2019
+2001,61,"(60,65]",HS,19.067574598316753,61.984742021256444,0.30761722928164975,5151.706473704926,2019
+2001,61,"(60,65]",HS,19.050833970925787,61.984742021256444,0.3073471526975571,5098.8757674580575,2019
+2001,30,"(25,30]",HS,37.398561591430756,110.19509692667813,0.33938498748556023,6899.926690389269,2019
+2001,30,"(25,30]",HS,37.24789594491202,110.19509692667813,0.3380177247785907,6929.840203758633,2019
+2001,30,"(25,30]",HS,37.23115531752104,110.19509692667813,0.3378658067000385,6836.3868344351595,2019
+2001,30,"(25,30]",HS,37.398561591430756,110.19509692667813,0.33938498748556023,6945.756034095182,2019
+2001,30,"(25,30]",HS,37.41530221882173,110.19509692667813,0.3395369055641124,6930.635834342545,2019
+2001,61,"(60,65]",College,15489.600306044376,2307.209841902323,6.7135637273777435,369.3612393273137,2019
+2001,61,"(60,65]",College,13206.346136189748,2909.839278220095,4.5385139430339505,347.0640763287968,2019
+2001,61,"(60,65]",College,13069.575210405508,1718.3547927003872,7.605865369553122,369.9936353274847,2019
+2001,61,"(60,65]",College,13905.434736036726,1997.2861317960408,6.962164566542299,364.8164387193219,2019
+2001,61,"(60,65]",College,19051.43663351186,3839.610408538941,4.961815029760107,351.7644536539717,2019
+2001,47,"(45,50]",HS,77.34169854628922,46.488556515942335,1.663671758011381,9852.062666698475,2019
+2001,47,"(45,50]",HS,68.3017597551645,51.653951684380374,1.3222949557181363,10272.822292668625,2019
+2001,47,"(45,50]",HS,88.4742157612854,49.93215329490103,1.7718886513616507,10321.407416769878,2019
+2001,47,"(45,50]",HS,56.415914307574596,60.2629436317771,0.9361626052038067,10130.243482386666,2019
+2001,47,"(45,50]",HS,24.13998469778118,48.21035490542169,0.5007219869079708,10109.213609565659,2019
+2001,23,"(20,25]",NoHS,19.753940321346597,86.08991947396729,0.22945706584520603,5642.451343651637,2019
+2001,23,"(20,25]",NoHS,19.586534047436878,87.81171786344665,0.2230514847448413,5661.1946065848515,2019
+2001,23,"(20,25]",NoHS,19.753940321346597,86.08991947396729,0.22945706584520603,5670.989618470988,2019
+2001,23,"(20,25]",NoHS,19.586534047436878,86.08991947396729,0.22751251443973816,5610.809762250629,2019
+2001,23,"(20,25]",NoHS,19.586534047436878,86.08991947396729,0.22751251443973816,5619.953331637315,2019
+2001,55,"(50,55]",College,3023.3573068094875,352.96866984326584,8.565511800670569,254.02985305266816,2019
+2001,55,"(50,55]",College,2850.928844682479,1129.499743498451,2.524063295359561,248.477456631287,2019
+2001,55,"(50,55]",College,8447.320581484317,549.2536862439113,15.379633843245708,256.54893154754114,2019
+2001,55,"(50,55]",College,8448.994644223412,533.7575007385972,15.829275715155203,250.19705672943414,2019
+2001,55,"(50,55]",College,3358.1698546289213,1041.6880256350044,3.2237769581557867,252.15036172146847,2019
+2001,46,"(45,50]",HS,2.680174445294568,32.71416940010757,0.08192702105668484,6925.024600042247,2019
+2001,46,"(45,50]",HS,2.680174445294568,32.71416940010757,0.08192702105668484,7034.6175450945575,2019
+2001,46,"(45,50]",HS,2.680174445294568,32.71416940010757,0.08192702105668484,7049.103987859997,2019
+2001,46,"(45,50]",HS,2.512768171384851,32.71416940010757,0.07680978051597998,6998.593908683877,2019
+2001,46,"(45,50]",HS,2.680174445294568,32.71416940010757,0.08192702105668484,7013.797825644091,2019
+2001,62,"(60,65]",College,20312.2402448355,142.9092663267857,142.13382215809713,474.61514848782474,2019
+2001,62,"(60,65]",College,22011.246518745218,523.4267104017212,42.05220345337737,475.04749578022773,2019
+2001,62,"(60,65]",College,47524.632287681714,167.01444377949653,284.5540254615754,473.5419102521041,2019
+2001,62,"(60,65]",College,14891.122876817139,368.46485534858,40.413957154013076,476.7821199434188,2019
+2001,62,"(60,65]",College,19040.119969395564,137.74387115834767,138.22843665768195,482.1757684358251,2019
+2001,22,"(20,25]",HS,8.872532517214998,29.27057262114888,0.3031212484993998,7593.498271152178,2019
+2001,22,"(20,25]",HS,9.039938791124712,29.27057262114888,0.308840517339011,7612.7223011700335,2019
+2001,22,"(20,25]",HS,9.039938791124712,29.27057262114888,0.308840517339011,7501.521948351508,2019
+2001,22,"(20,25]",HS,9.039938791124712,29.27057262114888,0.308840517339011,7550.9356491113995,2019
+2001,22,"(20,25]",HS,9.039938791124712,29.27057262114888,0.308840517339011,7594.625766165831,2019
+2001,70,"(65,70]",College,4536.710022953329,1716.6329943109079,2.64279554103203,3687.287979209405,2019
+2001,70,"(65,70]",College,4727.553175210405,1721.798389479346,2.7457065845206,3633.9889219487354,2019
+2001,70,"(65,70]",College,4822.974751338944,1692.527816858197,2.849568972102171,3732.726985571312,2019
+2001,70,"(65,70]",College,4787.819433817904,1842.3242767429003,2.598792999830861,3619.162569798528,2019
+2001,70,"(65,70]",College,4804.560061208875,1713.189397531949,2.804453534518956,3597.716146931495,2019
+2001,66,"(65,70]",HS,139.78423871461362,72.31553235813253,1.932976694721015,5965.129710077482,2019
+2001,66,"(65,70]",HS,139.61683244070392,72.31553235813253,1.9306617525716487,6047.591935143339,2019
+2001,66,"(65,70]",HS,139.61683244070392,72.31553235813253,1.9306617525716487,6179.865599134518,2019
+2001,66,"(65,70]",HS,139.61683244070392,72.31553235813253,1.9306617525716487,5949.196329153228,2019
+2001,66,"(65,70]",HS,139.61683244070392,72.31553235813253,1.9306617525716487,6045.273648751643,2019
+2001,32,"(30,35]",NoHS,28.023810252486612,94.69891142136402,0.295925368432107,7000.6902658839535,2019
+2001,32,"(30,35]",NoHS,27.688997704667177,94.69891142136402,0.29238982042216544,7083.458812447041,2019
+2001,32,"(30,35]",NoHS,27.52159143075746,94.69891142136402,0.2906220464171947,7161.692262790073,2019
+2001,32,"(30,35]",NoHS,27.688997704667177,94.69891142136402,0.29238982042216544,7043.595588371815,2019
+2001,32,"(30,35]",NoHS,28.023810252486612,94.69891142136402,0.295925368432107,7096.750036667307,2019
+2001,79,"(75,80]",HS,-1.1718439173680184,7.7480927526570555,-0.15124288709194372,7458.021841912414,2019
+2001,79,"(75,80]",HS,-1.1718439173680184,7.7480927526570555,-0.15124288709194372,7572.792980447305,2019
+2001,79,"(75,80]",HS,-1.1718439173680184,7.7480927526570555,-0.15124288709194372,7873.244631423814,2019
+2001,79,"(75,80]",HS,-1.1718439173680184,7.7480927526570555,-0.15124288709194372,7827.317141390502,2019
+2001,79,"(75,80]",HS,-1.1718439173680184,7.7480927526570555,-0.15124288709194372,7529.379126248947,2019
+2001,90,"(85,90]",NoHS,155.13539403213466,17.21798389479346,9.01007893723527,9389.59503369535,2019
+2001,90,"(85,90]",NoHS,80.18760520275441,13.430027437938898,5.97077002063525,8856.124521431651,2019
+2001,90,"(85,90]",NoHS,132.56902830910482,25.826975842190187,5.132967526633295,9408.524528932006,2019
+2001,90,"(85,90]",NoHS,68.93790359602143,14.118746793730637,4.882721151046705,8942.70946162686,2019
+2001,90,"(85,90]",NoHS,116.34736036725324,14.290926632678572,8.141344739759962,9389.824339121526,2019
+2001,52,"(50,55]",NoHS,297.1461361897475,27.548774231669533,10.786183577204465,5829.893725232088,2019
+2001,52,"(50,55]",NoHS,287.1017597551645,27.548774231669533,10.421580188679245,6076.72951296884,2019
+2001,52,"(50,55]",NoHS,323.42892119357305,27.548774231669533,11.740229110512129,6104.314178580002,2019
+2001,52,"(50,55]",NoHS,284.92547819433815,27.548774231669533,10.342582787832113,5938.235736250411,2019
+2001,52,"(50,55]",NoHS,289.1106350420811,27.548774231669533,10.494500866384291,6017.302503194793,2019
+2001,48,"(45,50]",HS,325.80609028309107,86.08991947396729,3.784485945321525,7742.671196462905,2019
+2001,48,"(45,50]",HS,325.83957153787304,87.81171786344665,3.710661623139822,8144.494078045896,2019
+2001,48,"(45,50]",HS,325.7893496557001,86.08991947396729,3.7842914901809785,8201.053673869654,2019
+2001,48,"(45,50]",HS,325.90653404743693,87.81171786344665,3.7114241923184372,7966.511254057645,2019
+2001,48,"(45,50]",HS,325.77260902830915,87.81171786344665,3.709899053961207,8085.407003095362,2019
+2001,41,"(40,45]",HS,289.78026013772,67.15013718969449,4.315408311365185,2973.5954040600436,2019
+2001,41,"(40,45]",HS,297.98316755929613,67.15013718969449,4.437566027862524,3116.0509063234013,2019
+2001,41,"(40,45]",HS,291.4543228768172,67.15013718969449,4.340338457589132,3057.1563528027186,2019
+2001,41,"(40,45]",HS,291.6217291507269,67.15013718969449,4.342831472211526,3033.00020407625,2019
+2001,41,"(40,45]",HS,289.9476664116297,67.15013718969449,4.317901325987579,2980.8018914005693,2019
+2001,43,"(40,45]",College,284.5739250191278,89.53351625292598,3.178406667456533,6784.469097813041,2019
+2001,43,"(40,45]",College,290.1318133129304,99.86430658980206,2.9052603800140746,7078.203343242216,2019
+2001,43,"(40,45]",College,273.55859219586836,113.63869370563681,2.4072662512689464,7167.975082642859,2019
+2001,43,"(40,45]",College,293.29579188982405,110.19509692667813,2.6616047362341164,6957.388607836717,2019
+2001,43,"(40,45]",College,293.6473450650344,92.97711303188467,3.1582755743806956,7026.61646306579,2019
+2001,56,"(55,60]",HS,328.2502218821729,70.59373396865318,4.6498492632211645,9789.09188161818,2019
+2001,56,"(55,60]",HS,326.0571996939556,61.984742021256444,5.260281628374621,10315.177180083527,2019
+2001,56,"(55,60]",HS,362.3676205049732,60.2629436317771,6.013108531822433,10386.17472247508,2019
+2001,56,"(55,60]",HS,337.45756694720734,67.15013718969449,5.025418875823188,10226.932522863775,2019
+2001,56,"(55,60]",HS,328.23348125478196,65.42833880021514,5.016686764080012,10164.968737463309,2019
+2001,58,"(55,60]",College,4526.247130833972,172.17983894793457,26.28790431266847,1994.206237567935,2019
+2001,58,"(55,60]",College,3147.2714307574597,172.17983894793457,18.278977666538314,1153.3119102354835,2019
+2001,58,"(55,60]",College,7852.241499617445,172.17983894793457,45.604883519445515,2013.3133039505242,2019
+2001,58,"(55,60]",College,4355.810803366488,172.17983894793457,25.298030419715055,2014.9280804542475,2019
+2001,58,"(55,60]",College,4136.240734506503,172.17983894793457,24.02279360800924,1996.4840393660859,2019
+2001,56,"(55,60]",NoHS,68.3017597551645,77.48092752657055,0.8815299704787576,4407.68258513745,2019
+2001,56,"(55,60]",NoHS,68.3017597551645,77.48092752657055,0.8815299704787576,4513.221271111795,2019
+2001,56,"(55,60]",NoHS,68.3017597551645,77.48092752657055,0.8815299704787576,4434.5006454773675,2019
+2001,56,"(55,60]",NoHS,68.46916602907422,77.48092752657055,0.8836905831514997,4484.696779137134,2019
+2001,56,"(55,60]",NoHS,68.3017597551645,77.48092752657055,0.8815299704787576,4438.706251657706,2019
+2001,54,"(50,55]",College,2361.0980872226473,206.6158067375215,11.427480426132718,100.30482689794793,2019
+2001,54,"(50,55]",College,2747.806579954093,206.6158067375215,13.29911115389552,92.17298236792708,2019
+2001,54,"(50,55]",College,2490.0009181331293,206.6158067375215,12.051357335386985,103.74606857447404,2019
+2001,54,"(50,55]",College,2731.0659525631213,206.6158067375215,13.218088178667692,99.73381861510892,2019
+2001,54,"(50,55]",College,2412.99403213466,206.6158067375215,11.678651649338983,96.86875242053732,2019
+2001,54,"(50,55]",HS,988.1155317521041,182.51062928481065,5.414016354138665,5914.128021163848,2019
+2001,54,"(50,55]",HS,991.4636572302984,182.51062928481065,5.43236117871855,5371.516048899799,2019
+2001,54,"(50,55]",HS,987.7807192042847,180.7888308953313,5.463726460934779,5018.046602488834,2019
+2001,54,"(50,55]",HS,987.4459066564651,180.7888308953313,5.461874507215285,5622.885054855816,2019
+2001,54,"(50,55]",HS,986.7762815608264,180.7888308953313,5.4581705997763,5396.20286793606,2019
+2001,78,"(75,80]",HS,24.106503442999234,34.43596778958692,0.700038505968425,5219.738863590428,2019
+2001,78,"(75,80]",HS,25.780566182096404,32.71416940010757,0.7880550432685487,5236.156087317857,2019
+2001,78,"(75,80]",HS,34.15087987758225,43.04495973698364,0.7933769734308818,5216.449572472042,2019
+2001,78,"(75,80]",HS,30.80275439938791,36.157766179066265,0.8518987109668664,5281.549073719624,2019
+2001,78,"(75,80]",HS,50.891507268553944,41.323161347504296,1.2315492234629704,5268.904703176229,2019
+2001,52,"(50,55]",HS,966.7377505738333,127.41308082147161,7.587429362361976,644.2844202503923,2019
+2001,52,"(50,55]",HS,1086.316052027544,75.75912913709122,14.339077869569781,638.217368956329,2019
+2001,52,"(50,55]",HS,676.472012241775,72.31553235813253,9.354449731375029,614.5417797818023,2019
+2001,52,"(50,55]",HS,1047.6117214996175,154.9618550531411,6.760449022376247,637.8390553301026,2019
+2001,52,"(50,55]",HS,1082.5996327467485,123.96948404251289,8.73279130834724,673.0647562423943,2019
+2001,48,"(45,50]",HS,46.28783473603673,86.08991947396729,0.5376684636118599,5500.275026165768,2019
+2001,48,"(45,50]",HS,50.30558530986993,86.08991947396729,0.5843376973430883,5805.658444079297,2019
+2001,48,"(45,50]",HS,57.16924254016832,86.08991947396729,0.6640643049672699,5842.3181646650355,2019
+2001,48,"(45,50]",HS,50.807804131599084,86.08991947396729,0.5901713515594917,5638.598053158712,2019
+2001,48,"(45,50]",HS,40.42861514919663,86.08991947396729,0.46960916442048517,5731.234106251783,2019
+2001,76,"(75,80]",HS,0.3348125478194338,60.2629436317771,0.005555861158479565,7961.96823920178,2019
+2001,76,"(75,80]",HS,0.3348125478194338,60.2629436317771,0.005555861158479565,7986.508941437559,2019
+2001,76,"(75,80]",HS,0.3348125478194338,60.2629436317771,0.005555861158479565,7950.596448260063,2019
+2001,76,"(75,80]",HS,0.5022188217291507,60.2629436317771,0.008333791737719346,8076.943590053599,2019
+2001,76,"(75,80]",HS,0.3348125478194338,60.2629436317771,0.005555861158479565,8020.347472305852,2019
+2001,72,"(70,75]",HS,331.3807192042846,34.43596778958692,9.62309876780901,9674.449080316022,2019
+2001,72,"(70,75]",HS,319.9636113236419,34.43596778958692,9.29155275317674,10670.132650077174,2019
+2001,72,"(70,75]",HS,320.4658301453711,34.43596778958692,9.306136888717752,10547.917692667013,2019
+2001,72,"(70,75]",HS,281.15883703136956,34.43596778958692,8.164685213708124,10159.952087558373,2019
+2001,72,"(70,75]",HS,468.11816373374137,34.43596778958692,13.593872737774353,10425.585448274693,2019
+2001,43,"(40,45]",College,68.80397857689366,68.87193557917384,0.9990132845591067,5200.300914476591,2019
+2001,43,"(40,45]",College,68.80397857689366,68.87193557917384,0.9990132845591067,5208.353093141729,2019
+2001,43,"(40,45]",College,69.4736036725325,68.87193557917384,1.0087360415864457,5231.528799874094,2019
+2001,43,"(40,45]",College,68.80397857689366,68.87193557917384,0.9990132845591067,5187.908963967996,2019
+2001,43,"(40,45]",College,69.3061973986228,68.87193557917384,1.006305352329611,5240.230595963376,2019
+2001,32,"(30,35]",HS,60.43366488140781,103.30790336876075,0.5849858811449108,7909.0006536161745,2019
+2001,32,"(30,35]",HS,59.931446059678656,103.30790336876075,0.5801245026312412,8011.62924016053,2019
+2001,32,"(30,35]",HS,66.00829380260137,103.30790336876075,0.6389471826466435,8075.58498722855,2019
+2001,32,"(30,35]",HS,65.62325937260903,103.30790336876075,0.6352201257861635,7905.338084370162,2019
+2001,32,"(30,35]",HS,61.4381025248661,103.30790336876075,0.5947086381722501,8003.365378569045,2019
+2001,44,"(40,45]",HS,193.52165263963275,49.93215329490103,3.875692111587641,4856.818858880976,2019
+2001,44,"(40,45]",HS,25.914491201224177,75.75912913709122,0.342064269961844,4866.750608442674,2019
+2001,44,"(40,45]",HS,79.55313542463657,123.96948404251289,0.6417154676335943,4883.376900387293,2019
+2001,44,"(40,45]",HS,55.44495791889824,75.75912913709122,0.7318584380578989,4864.716778275347,2019
+2001,44,"(40,45]",HS,23.872134659525635,49.93215329490103,0.47809143175812946,4921.482011239081,2019
+2001,64,"(60,65]",HS,2075.0007651109413,111.91689531615746,18.54054974674921,3244.1912066358163,2019
+2001,64,"(60,65]",HS,2076.5074215761288,111.91689531615746,18.554012025710144,3299.941520878292,2019
+2001,64,"(60,65]",HS,2105.1338944146905,111.91689531615746,18.809795325967837,4144.249751121425,2019
+2001,64,"(60,65]",HS,2104.9664881407807,111.91689531615746,18.8082995171944,3412.7546639289226,2019
+2001,64,"(60,65]",HS,2106.6405508798775,111.91689531615746,18.823257604928767,3496.492262439782,2019
+2001,35,"(30,35]",College,55.41147666411629,86.08991947396729,0.6436465152098575,6676.139577866064,2019
+2001,35,"(30,35]",College,52.39816373374139,86.08991947396729,0.6086445899114363,6853.1892870243655,2019
+2001,35,"(30,35]",College,86.71644988523336,86.08991947396729,1.007277628032345,6921.68144992288,2019
+2001,35,"(30,35]",College,87.72088752869166,86.08991947396729,1.0189449364651522,6756.959485376008,2019
+2001,35,"(30,35]",College,106.30298393267023,86.08991947396729,1.234790142472083,6867.904199409955,2019
+2001,47,"(45,50]",College,12455.863810252486,1291.3487921095093,9.645623154922346,1845.0077243061532,2019
+2001,47,"(45,50]",College,12459.211935730682,1291.3487921095093,9.648215890129638,1845.0665218577974,2019
+2001,47,"(45,50]",College,12454.18974751339,1291.3487921095093,9.644326787318702,1856.86073796024,2019
+2001,47,"(45,50]",College,9322.018362662586,1291.3487921095093,7.218823000898473,1840.438554036859,2019
+2001,47,"(45,50]",College,9368.892119357306,1291.3487921095093,7.2551212938005385,1832.4461149973722,2019
+2001,46,"(45,50]",College,12624.107115531751,1721.798389479346,7.331931074316517,309.242546203524,2019
+2001,46,"(45,50]",College,12624.107115531751,1721.798389479346,7.331931074316517,303.1006106689578,2019
+2001,46,"(45,50]",College,12624.107115531751,1721.798389479346,7.331931074316517,312.65062284978126,2019
+2001,46,"(45,50]",College,12624.274521805663,1721.798389479346,7.332028301886792,304.66808352753003,2019
+2001,46,"(45,50]",College,12624.274521805663,1721.798389479346,7.332028301886792,307.38223852495236,2019
+2001,45,"(40,45]",HS,45.21643458301454,1119.1689531615748,0.04040179497052813,3674.1653170799327,2019
+2001,45,"(40,45]",HS,45.04902830910482,1119.1689531615748,0.04025221409318444,3690.1332031764796,2019
+2001,45,"(40,45]",HS,45.23317521040551,1119.1689531615748,0.04041675305826249,3682.741937323464,2019
+2001,45,"(40,45]",HS,45.38384085692425,1119.1689531615748,0.0405513758478718,3655.859134857755,2019
+2001,45,"(40,45]",HS,45.21643458301454,1119.1689531615748,0.04040179497052813,3687.222045184249,2019
+2001,64,"(60,65]",NoHS,0.5859219586840092,20.661580673752148,0.028358041329739445,5771.699799785094,2019
+2001,64,"(60,65]",NoHS,0.25110941086457533,20.661580673752148,0.012153446284174047,5791.409088338945,2019
+2001,64,"(60,65]",NoHS,0.217628156082632,20.661580673752148,0.010532986779617509,5742.194400219115,2019
+2001,64,"(60,65]",NoHS,0.1674062739097169,20.661580673752148,0.008102297522782699,5760.387038842998,2019
+2001,64,"(60,65]",NoHS,0.9542157612853864,20.661580673752148,0.046183095879861386,5804.205376267049,2019
+2001,49,"(45,50]",HS,341.207467482785,99.86430658980206,3.4167109264004885,8573.227834105612,2019
+2001,49,"(45,50]",HS,339.5334047436878,99.86430658980206,3.3999475522154206,8920.427856983693,2019
+2001,49,"(45,50]",HS,339.51666411629685,99.86430658980206,3.39977991847357,8689.74580552498,2019
+2001,49,"(45,50]",HS,341.224208110176,99.86430658980206,3.4168785601423397,8619.740015117315,2019
+2001,49,"(45,50]",HS,339.5334047436878,99.86430658980206,3.3999475522154206,8951.581652545758,2019
+2001,46,"(45,50]",NoHS,114.50589135424637,51.653951684380374,2.2167886022333465,6271.944678166515,2019
+2001,46,"(45,50]",NoHS,114.50589135424637,51.653951684380374,2.2167886022333465,6537.496758228644,2019
+2001,46,"(45,50]",NoHS,114.33848508033664,51.653951684380374,2.213547683224233,6567.173027614158,2019
+2001,46,"(45,50]",NoHS,114.50589135424637,51.653951684380374,2.2167886022333465,6388.501708440879,2019
+2001,46,"(45,50]",NoHS,114.50589135424637,51.653951684380374,2.2167886022333465,6473.563702969246,2019
+2001,61,"(60,65]",HS,61.42136189747514,170.45804055845522,0.36033126801320875,8132.162756854904,2019
+2001,61,"(60,65]",HS,61.18699311400153,170.45804055845522,0.35895633267600924,8499.578505844847,2019
+2001,61,"(60,65]",HS,62.090986993114,170.45804055845522,0.36425965469092153,8547.829113123133,2019
+2001,61,"(60,65]",HS,63.12890589135425,170.45804055845522,0.37034865404137646,8340.729578132967,2019
+2001,61,"(60,65]",HS,66.54399387911248,170.45804055845522,0.39038342609771187,8410.72402127343,2019
+2001,70,"(65,70]",College,11782.053557765877,480.3817506647374,24.52643869477189,3254.2010593292825,2019
+2001,70,"(65,70]",College,11160.976281560826,440.78038770671253,25.320945742683865,3259.8372077980703,2019
+2001,70,"(65,70]",College,11030.399387911248,244.49537130606709,45.11496200925229,3275.3970364209385,2019
+2001,70,"(65,70]",College,11080.62127008416,265.1569519798192,41.78891478179118,3252.228847173108,2019
+2001,70,"(65,70]",College,11716.765110941085,414.9534118645223,28.236338769438724,3237.745490472736,2019
+2001,47,"(45,50]",College,13251.88064269319,1403.265687425667,9.443600567903975,286.98254530157135,2019
+2001,47,"(45,50]",College,13280.339709257843,1403.265687425667,9.463881165384315,283.29067360766425,2019
+2001,47,"(45,50]",College,13243.510328997705,1403.265687425667,9.437635686292111,291.12757208705233,2019
+2001,47,"(45,50]",College,13298.754399387912,1404.9874858151463,9.465389929556727,285.0863264699836,2019
+2001,47,"(45,50]",College,13203.332823259372,1403.265687425667,9.40900425455516,286.6924691096738,2019
+2001,33,"(30,35]",HS,333.13848508033664,206.6158067375215,1.6123572070337568,9893.556945139673,2019
+2001,33,"(30,35]",HS,333.13848508033664,206.6158067375215,1.6123572070337568,10035.414950690309,2019
+2001,33,"(30,35]",HS,326.1074215761285,206.6158067375215,1.5783275574380693,10086.05129487035,2019
+2001,33,"(30,35]",HS,342.8480489671002,206.6158067375215,1.6593505326658966,10038.314147768306,2019
+2001,33,"(30,35]",HS,336.15179801071156,206.6158067375215,1.6269413425747659,9810.642959249708,2019
+2001,26,"(25,30]",HS,-47.375975516449884,82.64632269500859,-0.5732375497368759,5831.205194275129,2019
+2001,26,"(25,30]",HS,-49.853588370313695,77.48092752657055,-0.6434304539425834,5840.976498283121,2019
+2001,26,"(25,30]",HS,-47.844713083397096,84.36812108448795,-0.5670946853905212,5861.409437482035,2019
+2001,26,"(25,30]",HS,-48.88263198163734,79.20272591604991,-0.6171837069528385,5891.4588538375265,2019
+2001,26,"(25,30]",HS,-49.21744452945677,87.81171786344665,-0.5604883462819089,5845.674920462143,2019
+2001,56,"(55,60]",HS,123.24449885233359,98.14250820032271,1.255770828688973,6984.280170892652,2019
+2001,56,"(55,60]",HS,125.1864116296863,89.53351625292598,1.3982072509700543,6982.245612466555,2019
+2001,56,"(55,60]",HS,121.05147666411631,87.81171786344665,1.378534432640981,6959.14573409396,2019
+2001,56,"(55,60]",HS,121.9387299158378,94.69891142136402,1.2876465852207093,6995.7030009517275,2019
+2001,56,"(55,60]",HS,119.71222647283857,94.69891142136402,1.2641351909545981,6961.735418887436,2019
+2001,52,"(50,55]",HS,107.57527161438408,94.69891142136402,1.135971575594217,7742.671196462905,2019
+2001,52,"(50,55]",HS,107.57527161438408,94.69891142136402,1.135971575594217,8144.494078045896,2019
+2001,52,"(50,55]",HS,107.57527161438408,92.97711303188467,1.1570080862533692,8201.053673869654,2019
+2001,52,"(50,55]",HS,105.90120887528691,92.97711303188467,1.1390029806471855,7966.511254057645,2019
+2001,52,"(50,55]",HS,107.57527161438408,92.97711303188467,1.1570080862533692,8085.407003095362,2019
+2001,52,"(50,55]",HS,69.57404743687835,32.71416940010757,2.1267251687169404,5079.289517055352,2019
+2001,52,"(50,55]",HS,69.40664116296864,32.71416940010757,2.121607928176236,5177.450073414633,2019
+2001,52,"(50,55]",HS,69.57404743687835,32.71416940010757,2.1267251687169404,5184.865871384858,2019
+2001,52,"(50,55]",HS,69.57404743687835,34.43596778958692,2.0203889102810932,5114.483903222218,2019
+2001,52,"(50,55]",HS,68.90442234123948,32.71416940010757,2.106256206554121,5133.192653156516,2019
+2001,43,"(40,45]",HS,23.487100229533283,74.03733074761188,0.31723321184551045,5614.546656997786,2019
+2001,43,"(40,45]",HS,22.499403213465953,74.03733074761188,0.30389268476148684,5623.240256377786,2019
+2001,43,"(40,45]",HS,62.24165263963275,74.03733074761188,0.8406793169220298,5648.262094324802,2019
+2001,43,"(40,45]",HS,17.04195868400918,74.03733074761188,0.23018061985654287,5601.167588085058,2019
+2001,43,"(40,45]",HS,67.89998469778118,74.03733074761188,0.9171047093694871,5657.657058375238,2019
+2001,63,"(60,65]",College,1626.3519510329,206.6158067375215,7.871382043383392,3707.1143914466,2019
+2001,63,"(60,65]",College,1486.065493496557,206.6158067375215,7.192409510974201,7642.065838909344,2019
+2001,63,"(60,65]",College,1600.738791124713,206.6158067375215,7.747416891284816,4758.089850669802,2019
+2001,63,"(60,65]",College,1588.0159143075746,206.6158067375215,7.685839430111667,3925.3764564067906,2019
+2001,63,"(60,65]",College,1497.281713848508,206.6158067375215,7.246694904376844,7643.817564974018,2019
+2001,51,"(50,55]",HS,5108.837704667178,96.42070981084338,52.98485890312999,757.2871213993292,2019
+2001,51,"(50,55]",HS,9940.166029074217,123.96948404251289,80.18236185983828,730.458927387977,2019
+2001,51,"(50,55]",HS,9248.86182096404,105.0297017582401,88.05948856498988,760.0418085565228,2019
+2001,51,"(50,55]",HS,5446.990007651109,117.08229048459552,46.52274895807379,741.3217928659503,2019
+2001,51,"(50,55]",HS,6608.7811782708495,89.53351625292598,73.81348856668939,733.3931295821428,2019
+2001,23,"(20,25]",NoHS,0,9.642070981084336,0,9192.28352462692,2019
+2001,23,"(20,25]",NoHS,0,22.383379063231494,0,9202.30068853299,2019
+2001,23,"(20,25]",NoHS,0,7.575912913709122,0,9063.445138526553,2019
+2001,23,"(20,25]",NoHS,0,12.74130808214716,0,9095.297284321718,2019
+2001,23,"(20,25]",NoHS,0,8.953351625292598,0,9156.574153978594,2019
+2001,29,"(25,30]",HS,30.836235654169855,120.5258872635542,0.255847406347984,4768.560705296586,2019
+2001,29,"(25,30]",HS,30.50142310635042,117.08229048459552,0.2605126956442954,4733.151686848424,2019
+2001,29,"(25,30]",HS,29.463504208110177,106.75150014771945,0.27600084464704927,4738.3643626641315,2019
+2001,29,"(25,30]",HS,31.25475133894415,118.80408887407486,0.26307807782670084,4769.482718743639,2019
+2001,29,"(25,30]",HS,29.714613618974752,106.75150014771945,0.2783531245730185,4724.912709671849,2019
+2001,25,"(20,25]",NoHS,42.50445294567712,94.69891142136402,0.44883781986207866,6891.529754626538,2019
+2001,25,"(20,25]",NoHS,45.88605967865341,94.69891142136402,0.48454685476248827,7004.40605132192,2019
+2001,25,"(20,25]",NoHS,37.51574598316756,94.69891142136402,0.3961581545139497,7047.42283922747,2019
+2001,25,"(20,25]",NoHS,43.84370313695486,94.69891142136402,0.4629800119018448,6888.679762234422,2019
+2001,25,"(20,25]",NoHS,25.462494261667945,94.69891142136402,0.26887842615605423,6984.712351043585,2019
+2001,22,"(20,25]",HS,14.279755164498853,75.75912913709122,0.1884889032800084,4248.185206715169,2019
+2001,22,"(20,25]",HS,14.129089517980107,75.75912913709122,0.18650015752441626,4262.296954866624,2019
+2001,22,"(20,25]",HS,14.279755164498853,75.75912913709122,0.1884889032800084,4269.671590828899,2019
+2001,22,"(20,25]",HS,14.279755164498853,75.75912913709122,0.1884889032800084,4224.362352101442,2019
+2001,22,"(20,25]",HS,14.279755164498853,75.75912913709122,0.1884889032800084,4231.246518900471,2019
+2001,74,"(70,75]",College,34085.424024483546,6250.128153810026,5.453556020880205,15.155099998285817,2019
+2001,74,"(70,75]",College,30795.89074215761,3805.1744407493547,8.093161357431216,15.217557417545217,2019
+2001,74,"(70,75]",College,32463.257230298394,7300.425171392425,4.446762547133486,15.207336106878685,2019
+2001,74,"(70,75]",College,36398.978729915834,3546.904682327452,10.262181250957976,15.6870915414648,2019
+2001,74,"(70,75]",College,50479.52042846213,8918.91565750301,5.659827087387735,15.447116105933294,2019
+2001,35,"(30,35]",HS,211.60153022188217,25.826975842190187,8.193043255037864,6932.653646753049,2019
+2001,35,"(30,35]",HS,167.2388676358072,37.87956456854561,4.415015577414499,7116.50605090623,2019
+2001,35,"(30,35]",HS,192.78506503442998,34.43596778958692,5.598363496341932,7187.629854918147,2019
+2001,35,"(30,35]",HS,361.7649579188983,75.75912913709122,4.775199530927294,7016.578858320917,2019
+2001,35,"(30,35]",HS,297.3302830910482,39.60136295802496,7.508082067937921,7131.786347224447,2019
+2001,40,"(35,40]",College,28.559510328997707,80.92452430552926,0.3529153933753349,4732.387226462381,2019
+2001,40,"(35,40]",College,24.62546289211936,65.42833880021514,0.37637304176884256,4680.817139327568,2019
+2001,40,"(35,40]",College,15.384636572302984,48.21035490542169,0.31911477529016996,4696.808226309266,2019
+2001,40,"(35,40]",College,56.918133129303754,67.15013718969449,0.8476249716141899,4678.861011333422,2019
+2001,40,"(35,40]",College,39.373955623565415,48.21035490542169,0.8167115902964958,4733.45753717833,2019
+2001,77,"(75,80]",College,3802.6335118592197,719.7117268023666,5.28355085827777,172.02463374934786,2019
+2001,77,"(75,80]",College,2299.207987758225,452.83297643306787,5.077386381771305,92.17298236792708,2019
+2001,77,"(75,80]",College,7437.0739403213465,631.90000893892,11.769384135331165,172.1157236483978,2019
+2001,77,"(75,80]",College,5819.761928079572,599.1858395388124,9.712782819699122,169.53909477072477,2019
+2001,77,"(75,80]",College,849.4696557000765,557.8626781913081,1.5227217896243053,308.2843014946061,2019
+2001,60,"(55,60]",College,1793.590818668707,258.2697584219018,6.944641252727507,643.3529459066046,2019
+2001,60,"(55,60]",College,1962.671155317521,332.30708916951374,5.906197066762965,634.7896248976535,2019
+2001,60,"(55,60]",College,4038.8437643458306,273.76594392721603,14.7529079271438,1114.0823654812543,2019
+2001,60,"(55,60]",College,1671.3842387146137,313.3673068852409,5.333626712140383,651.8166324433345,2019
+2001,60,"(55,60]",College,4304.684927314461,335.75068594847244,12.82107560005134,1099.857312524464,2019
+2001,46,"(45,50]",College,3451.6327773527164,433.89319414879515,7.955028619713834,1358.7590490127375,2019
+2001,46,"(45,50]",College,3455.1483091048203,433.89319414879515,7.963130917236616,1358.5689359130422,2019
+2001,46,"(45,50]",College,3454.9809028309105,433.89319414879515,7.962745093545055,1368.369126537344,2019
+2001,46,"(45,50]",College,3453.474246365723,433.89319414879515,7.959272680321005,1355.2502889804252,2019
+2001,46,"(45,50]",College,3451.8001836266258,433.89319414879515,7.955414443405394,1350.4597819459168,2019
+2001,41,"(40,45]",HS,57.32827850038256,20.661580673752148,2.7746317866769354,6777.42263447438,2019
+2001,41,"(40,45]",HS,57.35506350420811,22.383379063231494,2.56239521933592,7094.60437640819,2019
+2001,41,"(40,45]",HS,60.76010711553175,37.87956456854561,1.6040339377603527,7171.458679536643,2019
+2001,41,"(40,45]",HS,32.33452180566182,27.548774231669533,1.1737190748941086,6950.507009030238,2019
+2001,41,"(40,45]",HS,56.85954093343535,25.826975842190187,2.2015562828905146,7030.347724699692,2019
+2001,62,"(60,65]",College,7868.094873756695,389.1264360223322,20.21989293296213,33.02031195449547,2019
+2001,62,"(60,65]",College,13611.804131599081,201.45041156908349,67.56900631563703,33.19508456977111,2019
+2001,62,"(60,65]",College,6672.814078041316,738.6515090866394,9.033778440786525,34.02881649696852,2019
+2001,62,"(60,65]",College,7963.516449885234,253.10436325346384,31.463370870103912,33.02135781335282,2019
+2001,62,"(60,65]",College,6386.5493496557,242.77357291658777,26.30660855269446,32.621474203298725,2019
+2001,38,"(35,40]",College,893.2798775822495,120.5258872635542,7.41151878541174,6908.924927944492,2019
+2001,38,"(35,40]",College,893.2798775822495,120.5258872635542,7.41151878541174,6280.857743274686,2019
+2001,38,"(35,40]",College,893.2798775822495,120.5258872635542,7.41151878541174,5870.830549582485,2019
+2001,38,"(35,40]",College,894.9539403213466,120.5258872635542,7.425408438307938,6568.591621602015,2019
+2001,38,"(35,40]",College,893.2798775822495,120.5258872635542,7.41151878541174,6316.272570616385,2019
+2001,79,"(75,80]",College,2887.590818668707,430.4495973698365,6.708313438582979,1860.5677287200517,2019
+2001,79,"(75,80]",College,2887.758224942617,430.4495973698365,6.708702348864073,1816.1541640801097,2019
+2001,79,"(75,80]",College,2887.590818668707,430.4495973698365,6.708313438582979,1952.06250980589,2019
+2001,79,"(75,80]",College,2887.758224942617,430.4495973698365,6.708702348864073,1866.4023363882711,2019
+2001,79,"(75,80]",College,2887.758224942617,430.4495973698365,6.708702348864073,1858.4740723350667,2019
+2001,46,"(45,50]",College,1935.049120122418,977.9814852242683,1.9786152901234906,77.93382592507984,2019
+2001,46,"(45,50]",College,1950.4504973221117,977.9814852242683,1.9943634177029834,75.23609628413409,2019
+2001,46,"(45,50]",College,1930.0269319051263,977.9814852242683,1.9734800311301774,81.63205572693222,2019
+2001,46,"(45,50]",College,1930.8639632746747,977.9814852242683,1.9743359076290627,77.93713483311623,2019
+2001,46,"(45,50]",College,1953.1289977046672,977.9814852242683,1.997102222499417,78.94925573786429,2019
+2001,43,"(40,45]",HS,58392.98240244836,1859.5422606376933,31.401804432464814,12.43128989817765,2019
+2001,43,"(40,45]",HS,69810.09028309105,4046.226215276463,17.253135778598875,13.999679793352987,2019
+2001,43,"(40,45]",HS,50967.67712318286,6129.602266546472,8.315005592018448,13.317696670405635,2019
+2001,43,"(40,45]",HS,52726.28003060444,2703.223471482573,19.504965307839274,13.737044445322876,2019
+2001,43,"(40,45]",HS,66438.52792654936,3323.070891695137,19.993111820933287,14.41418705805143,2019
+2001,28,"(25,30]",HS,-3.26442234123948,43.04495973698364,-0.07583750481324607,4654.719553554135,2019
+2001,28,"(25,30]",HS,-3.26442234123948,43.04495973698364,-0.07583750481324607,4629.166061744276,2019
+2001,28,"(25,30]",HS,-3.431828615149197,43.04495973698364,-0.07972660762418175,4630.908653858891,2019
+2001,28,"(25,30]",HS,-3.26442234123948,43.04495973698364,-0.07583750481324607,4647.250479631236,2019
+2001,28,"(25,30]",HS,-3.431828615149197,43.04495973698364,-0.07972660762418175,4647.9758478667045,2019
+2001,62,"(60,65]",College,39280.208110175976,1179.431896793352,33.3043461152537,2.2053000681710095,2019
+2001,62,"(60,65]",College,39268.4896710023,1179.431896793352,33.29441045113818,2.0791095852470756,2019
+2001,62,"(60,65]",College,37899.106350420814,1179.431896793352,32.13335713020919,1.876771969020202,2019
+2001,62,"(60,65]",College,37930.91354246366,1179.431896793352,32.16032536137992,2.5631217568239926,2019
+2001,62,"(60,65]",College,38808.12241775057,1179.431896793352,32.904080789456664,1.9002454589226008,2019
+2001,38,"(35,40]",HS,160.6095791889824,118.80408887407486,1.3518859553665599,7216.406059903764,2019
+2001,38,"(35,40]",HS,153.41110941086455,118.80408887407486,1.2912948608483588,7434.8176291098525,2019
+2001,38,"(35,40]",HS,94.81891354246366,118.80408887407486,0.7981115333746296,7515.831278916087,2019
+2001,38,"(35,40]",HS,109.38325937260903,118.80408887407486,0.9207028176323852,7352.946745708496,2019
+2001,38,"(35,40]",HS,269.25625095638867,118.80408887407486,2.2663887540249896,7403.358956028945,2019
+2001,74,"(70,75]",NoHS,-1.9419127773527163,25.826975842190187,-0.07518932101142345,8359.704527231677,2019
+2001,74,"(70,75]",NoHS,-1.9419127773527163,25.826975842190187,-0.07518932101142345,8470.019603468678,2019
+2001,74,"(70,75]",NoHS,-1.9419127773527163,25.826975842190187,-0.07518932101142345,8265.782676703431,2019
+2001,74,"(70,75]",NoHS,-1.9419127773527163,25.826975842190187,-0.07518932101142345,8287.490238098313,2019
+2001,74,"(70,75]",NoHS,-1.9419127773527163,25.826975842190187,-0.07518932101142345,8349.389066819353,2019
+2001,52,"(50,55]",College,1302.0859984697781,172.17983894793457,7.562360415864459,3779.236736606998,2019
+2001,52,"(50,55]",College,1300.411935730681,172.17983894793457,7.552637658837121,3855.9167998053917,2019
+2001,52,"(50,55]",College,1303.7600612088754,172.17983894793457,7.5720831728918,4839.489648747197,2019
+2001,52,"(50,55]",College,1302.0859984697781,172.17983894793457,7.562360415864459,3999.3329113786845,2019
+2001,52,"(50,55]",College,1300.411935730681,172.17983894793457,7.552637658837121,4053.475275768228,2019
+2001,34,"(30,35]",College,0.8370313695485845,25.826975842190187,0.03240919009113079,4791.395420970301,2019
+2001,34,"(30,35]",College,0.8370313695485845,25.826975842190187,0.03240919009113079,4768.444471440382,2019
+2001,34,"(30,35]",College,0.8370313695485845,25.826975842190187,0.03240919009113079,4692.902901539353,2019
+2001,34,"(30,35]",College,2.343687834736037,25.826975842190187,0.09074573225516622,4774.814465126552,2019
+2001,34,"(30,35]",College,0.8370313695485845,25.826975842190187,0.03240919009113079,4756.864209874915,2019
+2001,76,"(75,80]",College,34836.408569242536,1408.4310825941047,24.734194665087514,170.70316365473857,2019
+2001,76,"(75,80]",HS,27550.38530986993,325.41989561159636,84.6610354234536,159.69056269811,2019
+2001,76,"(75,80]",HS,12809.76067329763,903.9441544766565,14.170964666189928,172.1157236483978,2019
+2001,76,"(75,80]",HS,4498.876205049732,816.13243661321,5.512434015880055,169.53909477072477,2019
+2001,76,"(75,80]",HS,4476.4437643458305,831.6286221185239,5.382743745570419,163.31319795449969,2019
+2001,57,"(55,60]",College,11935.062892119358,552.6972830228701,21.594213068757742,946.077264949872,2019
+2001,57,"(55,60]",College,12122.72532517215,464.8855651594233,26.076794449435962,955.3671601574733,2019
+2001,57,"(55,60]",College,12046.0532517215,557.8626781913081,21.59322306840276,979.1670652333521,2019
+2001,57,"(55,60]",College,12107.491354246366,525.1485087912005,23.05536653263223,941.4252234730945,2019
+2001,57,"(55,60]",College,12143.818515684774,497.5997345595309,24.40479299377909,933.4637714798342,2019
+2001,35,"(30,35]",HS,11285.191736801837,1842.3242767429003,6.125518660999931,10.217799927137484,2019
+2001,35,"(30,35]",HS,10823.820045906657,1842.3242767429003,5.875089517379866,10.478039488300563,2019
+2001,35,"(30,35]",HS,11275.314766641162,1842.3242767429003,6.120157514601678,10.640733265064004,2019
+2001,35,"(30,35]",HS,11575.474215761285,1842.3242767429003,6.2830818449756896,10.333336290831854,2019
+2001,35,"(30,35]",HS,11177.7169089518,1842.3242767429003,6.067182118835896,10.377826139462153,2019
+2001,47,"(45,50]",HS,397.0876817138485,87.81171786344665,4.522035229186013,7065.403804204989,2019
+2001,47,"(45,50]",HS,413.9957153787299,79.20272591604991,5.227038723610855,7364.550683356676,2019
+2001,47,"(45,50]",HS,433.7496557000765,94.69891142136402,4.580302446879267,7397.981275839569,2019
+2001,47,"(45,50]",HS,434.4192807957154,86.08991947396729,5.046110897189065,7196.706378982815,2019
+2001,47,"(45,50]",HS,413.9957153787299,86.08991947396729,4.808875625721988,7292.529504117539,2019
+2001,51,"(50,55]",College,293891.088599847,15599.493408682876,18.839784145571258,12.57883120315518,2019
+2001,51,"(50,55]",College,306615.4720734506,16753.098329634035,18.302015904191766,13.27890672793472,2019
+2001,51,"(50,55]",College,284486.03672532516,17476.25365321536,16.27843371757105,13.458992248041634,2019
+2001,51,"(50,55]",College,306763.62662586075,19094.744139325943,16.065343656219827,13.265107818905388,2019
+2001,51,"(50,55]",College,305744.7920428462,16512.04655510693,18.51646862927987,13.646603181231054,2019
+2001,38,"(35,40]",College,330.7947972456006,167.01444377949653,1.9806358645383848,6361.847254369603,2019
+2001,38,"(35,40]",College,330.96220351951035,168.7362421689759,1.961417412556089,6530.5620023101665,2019
+2001,38,"(35,40]",College,332.6362662586075,168.7362421689759,1.971338593196231,6595.829762727633,2019
+2001,38,"(35,40]",College,330.96220351951035,168.7362421689759,1.961417412556089,6438.862406718303,2019
+2001,38,"(35,40]",College,331.12960979342006,168.7362421689759,1.962409530620103,6544.584181425311,2019
+2001,28,"(25,30]",HS,54.32333588370314,43.04495973698364,1.2620138621486332,7049.719136408395,2019
+2001,28,"(25,30]",HS,120.2814078041316,43.04495973698364,2.794320369657297,6946.990714500479,2019
+2001,28,"(25,30]",HS,187.24391736801837,43.04495973698364,4.349961494031575,6984.051816733941,2019
+2001,28,"(25,30]",HS,29.547207345065036,43.04495973698364,0.6864266461301503,7122.563662146012,2019
+2001,28,"(25,30]",HS,148.74047436878348,43.04495973698364,3.4554678475163656,6964.990212582663,2019
+2001,39,"(35,40]",College,10904.00765110941,731.764315528722,14.900983034723321,151.553638537263,2019
+2001,39,"(35,40]",College,10937.656312165263,731.764315528722,14.946965956193797,149.21721765216245,2019
+2001,39,"(35,40]",College,10937.656312165263,731.764315528722,14.946965956193797,153.68720820183702,2019
+2001,39,"(35,40]",College,10920.915684774292,731.764315528722,14.924088880835352,150.21942178149575,2019
+2001,39,"(35,40]",College,10937.656312165263,731.764315528722,14.946965956193797,151.0944597435698,2019
+2001,55,"(50,55]",College,378033.4996174445,23709.16382313059,15.944615442263558,1.723908682705586,2019
+2001,55,"(50,55]",College,120177.48198928846,9263.275335398881,12.973540960187119,1.7558858000022828,2019
+2001,55,"(50,55]",College,588824.7834736038,8144.106382237305,72.30072347260338,1.5509071336575402,2019
+2001,55,"(50,55]",College,358883.89594491204,11759.883000143931,30.5176417095748,2.0199460627954804,2019
+2001,55,"(50,55]",College,924221.8637796481,9039.441544766563,102.24324801510903,1.6026189947150349,2019
+2001,50,"(45,50]",HS,278.89885233358837,80.92452430552926,3.446407065435568,10045.508797458895,2019
+2001,50,"(45,50]",HS,279.06625860749807,80.92452430552926,3.448475737143512,10562.882471675206,2019
+2001,50,"(45,50]",HS,278.89885233358837,80.92452430552926,3.446407065435568,10639.604813291826,2019
+2001,50,"(45,50]",HS,279.06625860749807,80.92452430552926,3.448475737143512,10430.459929862624,2019
+2001,50,"(45,50]",HS,278.89885233358837,80.92452430552926,3.446407065435568,10431.846514415278,2019
+2001,54,"(50,55]",College,29985.142157612852,879.8389770239457,34.08026120761046,243.00953715394547,2019
+2001,54,"(50,55]",College,27886.034889058916,866.0645899081111,32.198562571433165,233.72853117648705,2019
+2001,54,"(50,55]",College,30171.800153022188,895.3351625292597,33.69888888066112,239.60933067590364,2019
+2001,54,"(50,55]",College,28766.591889824027,867.7863882975903,33.14939284339073,247.30842383981312,2019
+2001,54,"(50,55]",College,38316.617597551645,891.891565750301,42.961071803967464,243.66319312651004,2019
+2001,48,"(45,50]",College,30323.135424636574,785.1400656025817,38.621306889190635,13.681388244315333,2019
+2001,48,"(45,50]",College,32038.547513389443,785.1400656025817,40.80615538171575,13.718696140833796,2019
+2001,48,"(45,50]",College,30322.36535577659,785.1400656025817,38.620326084753664,13.873613257978542,2019
+2001,48,"(45,50]",College,34925.63611323642,785.1400656025817,44.48331914692391,14.203841285990631,2019
+2001,48,"(45,50]",College,36087.48587605203,785.1400656025817,45.96311850211783,14.001067434213638,2019
+2001,72,"(70,75]",NoHS,0.5859219586840092,24.105177452710844,0.02430689256834809,4744.260655855786,2019
+2001,72,"(70,75]",NoHS,0.5859219586840092,9.125531464240535,0.06420688602959873,5126.5402397389125,2019
+2001,72,"(70,75]",NoHS,0.5859219586840092,6.887193557917383,0.08507412398921833,4954.965556025944,2019
+2001,72,"(70,75]",NoHS,0.5859219586840092,8.953351625292598,0.06544163383786025,4929.97465778492,2019
+2001,72,"(70,75]",NoHS,0.5859219586840092,9.125531464240535,0.06420688602959873,4988.389394538541,2019
+2001,50,"(45,50]",HS,137446.4603213466,2496.6076647450514,55.0532878121971,232.6198827127451,2019
+2001,50,"(45,50]",HS,137286.6542922724,2496.6076647450514,54.989278544208844,205.7612511507222,2019
+2001,50,"(45,50]",HS,137652.95596021423,2341.64580969191,58.78470407030737,211.399025465056,2019
+2001,50,"(45,50]",HS,136688.0764192808,2565.479600324226,53.27973623411628,238.02261183877985,2019
+2001,50,"(45,50]",HS,137223.4082019893,2565.479600324226,53.48840356580773,216.14594743840863,2019
+2001,28,"(25,30]",HS,355.4872226472839,60.2629436317771,5.898935585015678,4093.3525933645483,2019
+2001,28,"(25,30]",HS,355.4872226472839,60.2629436317771,5.898935585015678,4049.354654177629,2019
+2001,28,"(25,30]",HS,355.4872226472839,60.2629436317771,5.898935585015678,4061.2336852095445,2019
+2001,28,"(25,30]",HS,355.4872226472839,60.2629436317771,5.898935585015678,4093.941151047258,2019
+2001,28,"(25,30]",HS,355.4872226472839,60.2629436317771,5.898935585015678,4049.522089798292,2019
+2001,36,"(35,40]",HS,2478.449885233359,86.08991947396729,28.789083557951486,955.9699807652694,2019
+2001,36,"(35,40]",HS,1162.636572302984,86.08991947396729,13.504909510974201,487.72672126314285,2019
+2001,36,"(35,40]",HS,2043.193573068095,87.81171786344665,23.26789206248537,998.1502717176136,2019
+2001,36,"(35,40]",HS,2245.7551644988525,86.08991947396729,26.086157104351177,968.7346381829653,2019
+2001,36,"(35,40]",HS,1624.6778882938027,86.08991947396729,18.87187139006546,516.1262712255741,2019
+2001,43,"(40,45]",College,169.91736801836268,82.64632269500859,2.05595799640611,7389.969521483033,2019
+2001,43,"(40,45]",College,169.91736801836268,82.64632269500859,2.05595799640611,7655.507640494802,2019
+2001,43,"(40,45]",College,169.74996174445295,82.64632269500859,2.0539324220254143,7750.530777783945,2019
+2001,43,"(40,45]",College,169.91736801836268,82.64632269500859,2.05595799640611,7555.254796471048,2019
+2001,43,"(40,45]",College,169.74996174445295,82.64632269500859,2.0539324220254143,7691.5050662026215,2019
+2001,35,"(30,35]",HS,6.880397857689365,86.08991947396729,0.07992106276472855,5863.410814000237,2019
+2001,35,"(30,35]",HS,6.880397857689365,86.08991947396729,0.07992106276472855,5812.507393823975,2019
+2001,35,"(30,35]",HS,8.554460596786534,86.08991947396729,0.09936657681940701,5842.117443769508,2019
+2001,35,"(30,35]",HS,6.897138485080337,86.08991947396729,0.08011551790527532,5828.923389483462,2019
+2001,35,"(30,35]",HS,6.897138485080337,86.08991947396729,0.08011551790527532,5850.190352671096,2019
+2001,35,"(30,35]",College,9032.405508798776,3753.520489064974,2.4063823642664612,3190.9080748881775,2019
+2001,35,"(30,35]",College,3285.3481254781946,1859.5422606376933,1.766750987606783,3173.0362399083137,2019
+2001,35,"(30,35]",College,10248.61208875287,4097.880166960844,2.5009545597214626,3238.4904420832568,2019
+2001,35,"(30,35]",College,27208.54169854629,3942.9183119077015,6.9006100421547885,1269.276249782447,2019
+2001,35,"(30,35]",College,4653.89441469013,3805.1744407493547,1.2230436441630352,3133.2430374545993,2019
+2001,23,"(20,25]",HS,-16.94151491966335,12.052588726355422,-1.4056328730953296,5627.620076785774,2019
+2001,23,"(20,25]",HS,-16.774108645753632,12.052588726355422,-1.3917432201991304,5633.340113867499,2019
+2001,23,"(20,25]",HS,-16.94151491966335,12.052588726355422,-1.4056328730953296,5629.520789122079,2019
+2001,23,"(20,25]",HS,-16.94151491966335,12.052588726355422,-1.4056328730953296,5579.797072416471,2019
+2001,23,"(20,25]",HS,-16.94151491966335,12.052588726355422,-1.4056328730953296,5607.501146157858,2019
+2001,68,"(65,70]",College,13781.888905891356,592.298645980895,23.26847950676541,1516.862888194601,2019
+2001,68,"(65,70]",College,13764.311247130834,249.6607664745051,55.1320555548179,1509.473884819216,2019
+2001,68,"(65,70]",College,14093.934200459067,349.52507306430715,40.32309921830988,1571.0860643883932,2019
+2001,68,"(65,70]",College,14179.478806426932,137.74387115834767,102.94090537158259,1501.999932978776,2019
+2001,68,"(65,70]",College,14834.372149961746,309.9237101062822,47.86459269242289,1480.2175056114088,2019
+2001,54,"(50,55]",College,13936.572302983932,1670.1444377949656,8.344531160061766,3687.287979209405,2019
+2001,54,"(50,55]",College,13837.802601377201,1773.452341163726,7.802748503687976,3633.9889219487354,2019
+2001,54,"(50,55]",College,13590.041315990818,1644.3174619527754,8.264852518108892,3732.726985571312,2019
+2001,54,"(50,55]",College,13636.91507268554,1659.8136474580892,8.215931405052432,3619.162569798528,2019
+2001,54,"(50,55]",College,13978.423871461362,1911.1962123220737,7.313965871917355,3597.716146931495,2019
+2001,46,"(45,50]",HS,4360.933435348125,440.78038770671253,9.893664865710434,2680.872975978146,2019
+2001,46,"(45,50]",HS,4364.28156082632,440.78038770671253,9.901260769638045,2642.5325240755596,2019
+2001,46,"(45,50]",HS,4409.481254781944,440.78038770671253,10.003805472660764,2716.3572415145327,2019
+2001,46,"(45,50]",HS,4469.747513389441,440.78038770671253,10.14053174335772,2631.611899826336,2019
+2001,46,"(45,50]",HS,4424.5478194338175,440.78038770671253,10.037987040335,2617.2981815891594,2019
+2001,25,"(20,25]",HS,7.868094873756696,48.21035490542169,0.1632034215303372,4874.455368536832,2019
+2001,25,"(20,25]",HS,7.700688599846978,48.21035490542169,0.15973100830628745,4827.445868145094,2019
+2001,25,"(20,25]",HS,7.533282325937261,48.21035490542169,0.15625859508223772,4824.694630717346,2019
+2001,25,"(20,25]",HS,7.700688599846978,48.21035490542169,0.15973100830628745,4848.7736325035785,2019
+2001,25,"(20,25]",HS,7.700688599846978,48.21035490542169,0.15973100830628745,4841.8475425018,2019
+2001,45,"(40,45]",College,3790.078041315991,48.21035490542169,78.61543539248582,733.2899804832053,2019
+2001,45,"(40,45]",College,3791.7521040550882,48.21035490542169,78.65015952472633,735.3793455994717,2019
+2001,45,"(40,45]",College,3790.078041315991,46.488556515942335,81.52711818480013,739.6144618885457,2019
+2001,45,"(40,45]",College,3791.7521040550882,46.488556515942335,81.5631283960125,735.8533089332599,2019
+2001,45,"(40,45]",College,3790.078041315991,48.21035490542169,78.61543539248582,729.3864245617993,2019
+2001,50,"(45,50]",College,2449.388156082632,871.229985076549,2.811413975687971,3994.902283203081,2019
+2001,50,"(45,50]",College,2281.2452945677123,592.298645980895,3.8515119189404587,3914.1405178858076,2019
+2001,50,"(45,50]",College,2254.694659525631,323.69809722211704,6.965424507819987,4196.308675812829,2019
+2001,50,"(45,50]",College,3262.9826472838563,965.9288964979131,3.3780774745575757,4016.1489271804494,2019
+2001,50,"(45,50]",College,4398.331996939557,321.97629883263767,13.660421630058543,3597.716146931495,2019
+2001,39,"(35,40]",HS,42.35378729915838,106.75150014771945,0.3967512141801333,5403.4502944514625,2019
+2001,39,"(35,40]",HS,35.6575363427697,89.53351625292598,0.39825908592754955,5420.008805522386,2019
+2001,39,"(35,40]",HS,39.005661820964036,111.91689531615746,0.34852344421077575,5368.242617227572,2019
+2001,39,"(35,40]",HS,44.02785003825555,105.0297017582401,0.4191942783918393,5406.301589068795,2019
+2001,39,"(35,40]",HS,50.724100994644225,117.08229048459552,0.4332346146005572,5465.286883628902,2019
+2001,48,"(45,50]",College,604.2529456771232,192.84141962168675,3.1334188830518728,7042.010201509875,2019
+2001,48,"(45,50]",College,610.9491966335119,180.7888308953313,3.379352549645195,6384.811884732191,2019
+2001,48,"(45,50]",College,668.0347360367253,346.0814762853485,1.930281687442648,6059.498628611706,2019
+2001,48,"(45,50]",College,721.6047436878347,218.6683954638769,3.2999956036492746,6719.703201123116,2019
+2001,48,"(45,50]",College,621.1609793420047,253.10436325346384,2.4541693843498127,6412.906984433359,2019
+2001,54,"(50,55]",College,6543.074215761286,912.5531464240531,7.170074687048192,1968.7700271518738,2019
+2001,54,"(50,55]",College,6543.074215761286,912.5531464240531,7.170074687048192,1989.9226229084088,2019
+2001,54,"(50,55]",College,6541.400153022188,912.5531464240531,7.1682402045902025,1988.1451540014255,2019
+2001,54,"(50,55]",College,6543.074215761286,912.5531464240531,7.170074687048192,1989.6427926608908,2019
+2001,54,"(50,55]",College,6541.400153022188,912.5531464240531,7.1682402045902025,1970.796164328187,2019
+2001,82,"(80,85]",HS,42799.08798775823,4786.599522752581,8.94143907053795,210.48983845778085,2019
+2001,82,"(80,85]",HS,39452.63657230298,4786.599522752581,8.242309887169203,197.24771397052135,2019
+2001,82,"(80,85]",HS,39450.962509563884,4803.817506647375,8.21241907190955,207.28903669253336,2019
+2001,82,"(80,85]",HS,39452.63657230298,4803.817506647375,8.212767557824508,215.80998439654277,2019
+2001,82,"(80,85]",HS,39452.63657230298,4786.599522752581,8.242309887169203,207.53110907316568,2019
+2001,33,"(30,35]",College,358.2494261667942,136.02207276886833,2.633759498545059,7380.353493652071,2019
+2001,33,"(30,35]",College,290.7846977811783,136.02207276886833,2.1377758172769945,6694.574809377826,2019
+2001,33,"(30,35]",College,734.2439173680184,136.02207276886833,5.397976243279734,6259.957939618775,2019
+2001,33,"(30,35]",College,391.27868400918135,136.02207276886833,2.8765822784810124,6977.567777201768,2019
+2001,33,"(30,35]",College,549.9296097934201,134.30027437938898,4.094776517283256,6742.964096242655,2019
+2001,26,"(25,30]",NoHS,132.25095638867637,27.548774231669533,4.800611282248749,8249.784744662142,2019
+2001,26,"(25,30]",NoHS,115.51032899770466,18.939782284272805,6.0988203171491575,8466.590353588026,2019
+2001,26,"(25,30]",NoHS,214.28003060443763,25.826975842190187,8.296752663329482,8561.264611077224,2019
+2001,26,"(25,30]",NoHS,100.44376434583015,25.826975842190187,3.889102810935695,8437.906141048079,2019
+2001,26,"(25,30]",NoHS,272.8722264728386,20.661580673752148,13.206744962135799,8349.269102053679,2019
+2001,33,"(30,35]",College,62.191430757459834,80.92452430552926,0.7685115395013886,6089.638184218607,2019
+2001,33,"(30,35]",College,49.80336648814078,67.15013718969449,0.7416718501624162,6182.3337545414615,2019
+2001,33,"(30,35]",College,51.879204284621274,60.2629436317771,0.8608806865064086,6239.19551688207,2019
+2001,33,"(30,35]",College,64.08312165263963,86.08991947396729,0.7443742780130921,6127.263579160319,2019
+2001,33,"(30,35]",College,61.18699311400153,75.75912913709122,0.8076517485210207,6182.896720471514,2019
+2001,32,"(30,35]",HS,694.9034429992349,258.2697584219018,2.690610961365679,6906.596280492078,2019
+2001,32,"(30,35]",HS,655.7303749043612,258.2697584219018,2.538935951739187,6268.531369978811,2019
+2001,32,"(30,35]",HS,357.5798010711553,258.2697584219018,1.3845206006931077,5862.140728577645,2019
+2001,32,"(30,35]",HS,640.496403978577,258.2697584219018,2.4799512257733287,6531.10760728432,2019
+2001,32,"(30,35]",HS,653.3866870696252,258.2697584219018,2.52986137851367,6310.531362480707,2019
+2001,71,"(70,75]",College,1605.7609793420045,63.706540410735805,25.205590650334578,9935.93806254631,2019
+2001,71,"(70,75]",College,1655.9828615149197,61.984742021256444,26.715975698455484,9082.733975682708,2019
+2001,71,"(70,75]",College,1694.4863045141547,61.984742021256444,27.337151841868828,8354.429701873669,2019
+2001,71,"(70,75]",College,1739.685998469778,61.984742021256444,28.066358618919267,9332.706719615313,2019
+2001,71,"(70,75]",College,1650.960673297628,61.984742021256444,26.634952723227656,9046.727713717397,2019
+2001,41,"(40,45]",College,-1.674062739097169,16.184904861105853,-0.10343358539722591,5507.617894605373,2019
+2001,41,"(40,45]",College,-1.674062739097169,15.840545183209981,-0.10568214160151344,5509.83186473517,2019
+2001,41,"(40,45]",College,-1.674062739097169,16.012725022157916,-0.10454577448751867,5524.320765201252,2019
+2001,41,"(40,45]",College,-1.674062739097169,14.290926632678572,-0.11714165093179803,5500.83312309818,2019
+2001,41,"(40,45]",College,-1.674062739097169,14.63528631057444,-0.11438537679222631,5518.524163388737,2019
+2001,54,"(50,55]",HS,3485.599510328998,127.41308082147161,27.35668494832915,1845.0077243061532,2019
+2001,54,"(50,55]",HS,3482.418791124713,127.41308082147161,27.331721112718412,1845.0665218577974,2019
+2001,54,"(50,55]",HS,3485.7836572302986,258.2697584219018,13.496677576691056,1856.86073796024,2019
+2001,54,"(50,55]",HS,3485.499066564652,172.17983894793457,20.243363496341935,1840.438554036859,2019
+2001,54,"(50,55]",HS,3484.2602601377203,127.41308082147161,27.346173859650946,1832.4461149973722,2019
+2001,58,"(55,60]",College,3840.1325172149964,103.30790336876075,37.17172057502246,134.45852232318,2019
+2001,58,"(55,60]",College,3840.1325172149964,103.30790336876075,37.17172057502246,132.48407146191715,2019
+2001,58,"(55,60]",College,3840.1325172149964,103.30790336876075,37.17172057502246,136.5079434236886,2019
+2001,58,"(55,60]",College,3840.1325172149964,103.30790336876075,37.17172057502246,133.374326279029,2019
+2001,58,"(55,60]",College,3840.1325172149964,103.30790336876075,37.17172057502246,134.21782943059577,2019
+2001,48,"(45,50]",College,3569.1017597551645,1721.798389479346,2.072891798228725,254.02985305266816,2019
+2001,48,"(45,50]",College,3567.427697016067,1721.798389479346,2.071919522525991,248.477456631287,2019
+2001,48,"(45,50]",College,3785.0558530986996,1721.798389479346,2.1983153638814015,256.54893154754114,2019
+2001,48,"(45,50]",College,3989.291507268554,1721.798389479346,2.31693299961494,250.19705672943414,2019
+2001,48,"(45,50]",College,3985.9433817903596,1721.798389479346,2.3149884482094722,252.15036172146847,2019
+2001,24,"(20,25]",College,42.018974751338945,241.0517745271084,0.17431514384729635,8006.664837590234,2019
+2001,24,"(20,25]",College,41.18194338179036,241.0517745271084,0.17084273062324662,8005.67820892986,2019
+2001,24,"(20,25]",College,31.97459831675593,241.0517745271084,0.1326461851586996,8024.550556760131,2019
+2001,24,"(20,25]",College,49.88706962509564,241.0517745271084,0.2069558281533638,7990.979127815439,2019
+2001,24,"(20,25]",College,63.279571537873,241.0517745271084,0.26251443973815947,7992.154342183838,2019
+2001,50,"(45,50]",HS,174.9730374904361,142.9092663267857,1.224364535539153,8682.642461267915,2019
+2001,50,"(45,50]",HS,220.82561591430758,172.17983894793457,1.282528879476319,9143.657179943842,2019
+2001,50,"(45,50]",HS,245.7524100994644,84.36812108448795,2.912858635945714,9179.27421407889,2019
+2001,50,"(45,50]",HS,187.49502677888296,111.91689531615746,1.6753058262492229,8875.126710696417,2019
+2001,50,"(45,50]",HS,241.58399387911248,125.69128243199225,1.922042557007295,9050.9751998179745,2019
+2001,58,"(55,60]",HS,19035.600000000002,344.35967789586914,55.27824894108588,1561.9672884510912,2019
+2001,58,"(55,60]",HS,19045.811782708493,344.35967789586914,55.30790335001926,1568.8145312854792,2019
+2001,58,"(55,60]",HS,19042.4636572303,344.35967789586914,55.29818059299192,1617.2521356610612,2019
+2001,58,"(55,60]",HS,19040.7895944912,344.35967789586914,55.293319214478245,1549.9219277963823,2019
+2001,58,"(55,60]",HS,19032.419280795715,344.35967789586914,55.2690123219099,1538.0884410938165,2019
+2001,48,"(45,50]",College,34793.889049732206,1262.0782194883607,27.568726337609608,240.49280243548066,2019
+2001,48,"(45,50]",College,33264.84032134659,1248.3038323725257,26.648031880286272,248.47422257458317,2019
+2001,48,"(45,50]",College,34963.135118592196,1379.160509972956,25.35102684986085,239.23528227673364,2019
+2001,48,"(45,50]",College,33049.380076511094,1246.5820339830464,26.511997747081736,238.3370079770913,2019
+2001,48,"(45,50]",College,33887.549808722266,1251.7474291514843,27.07219445355158,237.64401980491962,2019
+2001,62,"(60,65]",College,-30.40097934200459,86.08991947396729,-0.3531305352329611,6953.333882655827,2019
+2001,62,"(60,65]",College,-30.618607498087222,86.08991947396729,-0.3556584520600693,7111.720441761815,2019
+2001,62,"(60,65]",College,-30.434460596786536,86.08991947396729,-0.35351944551405473,7008.900681678921,2019
+2001,62,"(60,65]",College,-30.618607498087222,86.08991947396729,-0.3556584520600693,7121.485092595234,2019
+2001,62,"(60,65]",College,-30.233573068094874,86.08991947396729,-0.3511859838274933,7014.662643428144,2019
+2001,40,"(35,40]",College,561.2462739097169,253.10436325346384,2.2174500142760225,11278.96182332654,2019
+2001,40,"(35,40]",College,677.3592654934965,254.82616164294322,2.6581229381094604,11042.086600875853,2019
+2001,40,"(35,40]",College,812.3556847742923,366.74305695910067,2.2150540258622713,10408.773231555759,2019
+2001,40,"(35,40]",College,491.6052639632747,366.74305695910067,1.3404623608678123,11161.037161086704,2019
+2001,40,"(35,40]",College,800.6372456006121,323.69809722211704,2.4734073276038635,11386.752961154238,2019
+2001,47,"(45,50]",HS,209.08373986228003,177.34523411637264,1.1789645259092827,7221.179392042861,2019
+2001,47,"(45,50]",HS,247.58718286151492,177.34523411637264,1.396074634286761,6561.458717627473,2019
+2001,47,"(45,50]",HS,264.32781025248664,177.34523411637264,1.4904703335813168,6125.304235089067,2019
+2001,47,"(45,50]",HS,266.0018729915838,177.34523411637264,1.4999099035107724,6867.368613833617,2019
+2001,47,"(45,50]",HS,284.41656312165264,177.34523411637264,1.6037451727347833,6586.872065137558,2019
+2001,21,"(20,25]",HS,3.1807192042846215,49.93215329490103,0.06370082190325708,6179.816106333608,2019
+2001,21,"(20,25]",HS,3.013312930374904,44.76675812646299,0.06731139480465625,6172.270650913448,2019
+2001,21,"(20,25]",HS,3.1807192042846215,44.76675812646299,0.07105091673824829,6157.789003878124,2019
+2001,21,"(20,25]",HS,3.1807192042846215,48.21035490542169,0.06597585125694483,6093.839807932771,2019
+2001,21,"(20,25]",HS,3.013312930374904,49.93215329490103,0.06034814706624354,6173.034312805908,2019
+2001,72,"(70,75]",HS,7561.741392501913,206.6158067375215,36.598077910409444,1234.7526833263498,2019
+2001,72,"(70,75]",HS,7560.0673297628155,206.6158067375215,36.58997561288666,1260.6855620014728,2019
+2001,72,"(70,75]",HS,7550.022953328233,206.6158067375215,36.54136182774997,1257.1088793041233,2019
+2001,72,"(70,75]",HS,7546.674827850038,206.6158067375215,36.5251572327044,1255.137315547295,2019
+2001,72,"(70,75]",HS,7539.97857689365,206.6158067375215,36.49274804261327,1253.5985778056147,2019
+2001,67,"(65,70]",HS,9.575638867635808,36.157766179066265,0.2648293818875259,6463.887402761823,2019
+2001,67,"(65,70]",HS,9.240826319816373,36.157766179066265,0.2555696132900599,6493.143617805896,2019
+2001,67,"(65,70]",HS,8.571201224177507,36.157766179066265,0.2370500760951281,6611.358019218214,2019
+2001,67,"(65,70]",HS,8.738607498087221,36.157766179066265,0.241679960393861,6405.658489662532,2019
+2001,67,"(65,70]",HS,8.236388676358072,36.157766179066265,0.2277903074976621,6499.039503458913,2019
+2001,54,"(50,55]",College,82258.2534047437,16047.160989947506,5.126031542668083,12.741347796184815,2019
+2001,54,"(50,55]",College,81657.76710022954,15961.071070473537,5.11605811036633,13.446065715628222,2019
+2001,54,"(50,55]",College,79633.32302983932,16305.430748369405,4.8838527640738905,13.629371123236291,2019
+2001,54,"(50,55]",College,81556.65371078807,16098.814941631883,5.066003554080295,13.433686857337898,2019
+2001,54,"(50,55]",College,80947.62968630451,15823.327199315188,5.11571483460241,13.82447659277727,2019
+2001,42,"(40,45]",HS,68.80397857689366,101.5861049792814,0.6772971420739706,6392.72176925582,2019
+2001,42,"(40,45]",HS,67.96694720734506,101.5861049792814,0.6690575174745306,6586.203729878704,2019
+2001,42,"(40,45]",HS,67.96694720734506,101.5861049792814,0.6690575174745306,6657.970440125346,2019
+2001,42,"(40,45]",HS,68.80397857689366,101.5861049792814,0.6772971420739706,6513.677631119363,2019
+2001,42,"(40,45]",HS,70.81285386381025,101.5861049792814,0.6970722411126267,6558.33576588571,2019
+2001,45,"(40,45]",HS,321.08523335883706,299.5929197694062,1.0717383895653252,527.9889606715922,2019
+2001,45,"(40,45]",HS,152.17230298393267,268.60054875877796,0.5665375729391902,186.1292752868885,2019
+2001,45,"(40,45]",HS,153.5115531752104,191.1196212322074,0.8032223598261332,182.76967822888201,2019
+2001,45,"(40,45]",HS,180.29655700076512,282.37493587461273,0.6385005681978267,179.9424627068708,2019
+2001,45,"(40,45]",HS,158.70114766641163,266.8787503692986,0.5946563652850063,177.17398502950496,2019
+2001,39,"(35,40]",HS,72.15210405508799,46.488556515942335,1.5520401032530413,9683.804260012344,2019
+2001,39,"(35,40]",HS,72.15210405508799,46.488556515942335,1.5520401032530413,9674.35846948961,2019
+2001,39,"(35,40]",HS,71.98469778117827,46.488556515942335,1.5484390821318046,9780.412903819608,2019
+2001,39,"(35,40]",HS,72.15210405508799,46.488556515942335,1.5520401032530413,9679.221473887183,2019
+2001,39,"(35,40]",HS,71.98469778117827,46.488556515942335,1.5484390821318046,9663.425991836928,2019
+2001,31,"(30,35]",College,3068.9755164498856,430.4495973698365,7.129697728147863,3687.287979209405,2019
+2001,31,"(30,35]",College,3068.9755164498856,430.4495973698365,7.129697728147863,3633.9889219487354,2019
+2001,31,"(30,35]",College,3070.6663198163733,430.4495973698365,7.133625721986907,3732.726985571312,2019
+2001,31,"(30,35]",College,3068.9755164498856,430.4495973698365,7.129697728147863,3619.162569798528,2019
+2001,31,"(30,35]",College,3068.9922570772765,430.4495973698365,7.129736619175972,3597.716146931495,2019
+2001,30,"(25,30]",HS,359.7226013771997,365.0212585696213,0.9854839764314413,7897.434353518509,2019
+2001,30,"(25,30]",HS,296.4430298393267,389.1264360223322,0.7618167320359434,7999.9128537140905,2019
+2001,30,"(25,30]",HS,302.97187452180566,316.81090366419966,0.9563176993520951,8063.7750704619175,2019
+2001,30,"(25,30]",HS,303.959571537873,308.2019117168029,0.9862351918737349,7893.777140495981,2019
+2001,30,"(25,30]",HS,309.8187911247131,328.86349239055505,0.9420893419108234,7991.661077379303,2019
+2001,50,"(45,50]",HS,54.15592960979342,87.81171786344665,0.6167278232047535,4494.047466218891,2019
+2001,50,"(45,50]",HS,51.34350420811018,67.15013718969449,0.7646075846884473,4580.897841277805,2019
+2001,50,"(45,50]",HS,47.64382555470543,60.2629436317771,0.7905990428516421,4587.459181789341,2019
+2001,50,"(45,50]",HS,51.72853863810253,48.21035490542169,1.0729756862313657,4525.186711471056,2019
+2001,50,"(45,50]",HS,36.69545524100995,136.02207276886833,0.2697757392902229,4541.739815986174,2019
+2001,67,"(65,70]",College,5624.8508033664875,774.8092752657057,7.259658580413296,2957.208265151808,2019
+2001,67,"(65,70]",College,5624.8508033664875,774.8092752657057,7.259658580413296,3024.9695791728795,2019
+2001,67,"(65,70]",College,5624.8508033664875,774.8092752657057,7.259658580413296,3009.0789231342715,2019
+2001,67,"(65,70]",College,5624.8508033664875,774.8092752657057,7.259658580413296,3011.985179399793,2019
+2001,67,"(65,70]",College,5624.8508033664875,774.8092752657057,7.259658580413296,3005.519450793768,2019
+2001,55,"(50,55]",College,22930.976587605204,556.1408798018288,41.23231616380415,212.1193104651286,2019
+2001,55,"(50,55]",College,19418.993848508035,1876.760244532487,10.347082907942475,198.9109486876447,2019
+2001,55,"(50,55]",College,25875.652945677124,1139.830533835327,22.701315833863614,207.28903669253336,2019
+2001,55,"(50,55]",College,24137.97582249426,545.8100894649527,44.22412903022049,215.80998439654277,2019
+2001,55,"(50,55]",College,21579.103963274676,1114.0035579931368,19.370767542384833,201.6808165143614,2019
+2001,54,"(50,55]",College,854.4416220351951,98.14250820032271,8.706131906585872,10051.580217947665,2019
+2001,54,"(50,55]",College,854.4416220351951,98.14250820032271,8.706131906585872,9972.791282373746,2019
+2001,54,"(50,55]",College,854.4416220351951,98.14250820032271,8.706131906585872,9571.066040705447,2019
+2001,54,"(50,55]",College,854.4416220351951,98.14250820032271,8.706131906585872,9941.39006240817,2019
+2001,54,"(50,55]",College,854.4416220351951,98.14250820032271,8.706131906585872,10483.668510291813,2019
+2001,77,"(75,80]",College,295.8068859984698,41.323161347504296,7.158379861378514,11172.709993096712,2019
+2001,77,"(75,80]",College,295.63947972456003,41.323161347504296,7.154328712617122,11512.871534250906,2019
+2001,70,"(65,70]",College,295.8068859984698,41.323161347504296,7.158379861378514,11164.987774976504,2019
+2001,71,"(70,75]",College,293.96541698546287,41.323161347504296,7.113817225003209,10888.782951492041,2019
+2001,72,"(70,75]",College,295.8068859984698,41.323161347504296,7.158379861378514,10895.673163574695,2019
+2001,95,"(90,95]",College,49.21744452945677,17.21798389479346,2.8584905660377355,7731.906421749254,2019
+2001,95,"(90,95]",College,55.41147666411629,17.21798389479346,3.2182325760492874,7755.738018097111,2019
+2001,95,"(90,95]",College,23.604284621270082,17.21798389479346,1.3709087408548324,7720.863219771117,2019
+2001,95,"(90,95]",College,14.229533282325939,17.21798389479346,0.82643434732383525,7843.559549077379,2019
+2001,95,"(90,95]",College,20.25615914307575,17.21798389479346,1.176453600308048,7788.59878144893,2019
+2001,48,"(45,50]",College,1135.0145371078806,53.37575007385973,21.264610530761296,11278.96182332654,2019
+2001,48,"(45,50]",College,1135.0145371078806,53.37575007385973,21.264610530761296,11042.086600875853,2019
+2001,48,"(45,50]",College,1134.8471308339708,53.37575007385973,21.26147415752667,10408.773231555759,2019
+2001,48,"(45,50]",College,1135.0145371078806,53.37575007385973,21.264610530761296,11161.037161086704,2019
+2001,48,"(45,50]",College,1135.0145371078806,53.37575007385973,21.264610530761296,11386.752961154238,2019
+2001,77,"(75,80]",HS,2.0423565416985463,9.469891142136403,0.21566842860643398,9077.526373197683,2019
+2001,65,"(60,65]",HS,7.03106350420811,9.469891142136403,0.7424650820877235,8822.155613141891,2019
+2001,72,"(70,75]",HS,0.6361438408569243,16.012725022157916,0.039727394305257104,8772.513734516484,2019
+2001,82,"(80,85]",HS,0.41851568477429224,20.661580673752148,0.020255743806956744,9208.611018133382,2019
+2001,69,"(65,70]",HS,10.596817138485081,15.496185505314111,0.6838339109228598,8826.984875575505,2019
+2001,76,"(75,80]",NoHS,421.2946289211936,86.08991947396729,4.893658067000385,8078.274688094299,2019
+2001,76,"(75,80]",NoHS,701.5159908186688,86.08991947396729,8.148642664613016,6581.852689411045,2019
+2001,76,"(75,80]",NoHS,457.43764345830147,86.08991947396729,5.313486715440893,8427.781054210944,2019
+2001,76,"(75,80]",NoHS,437.51629686304517,86.08991947396729,5.08208509819022,8260.768111475189,2019
+2001,76,"(75,80]",NoHS,427.47192042846217,86.08991947396729,4.965412013862149,8357.426913516025,2019
+2001,53,"(50,55]",College,9620.838561591432,965.9288964979131,9.960193339771587,164.8103080219313,2019
+2001,53,"(50,55]",College,9693.325478194338,704.2155412970524,13.764713940196183,162.36084482647135,2019
+2001,53,"(50,55]",College,9926.689824024485,755.8694929814328,13.132809190208082,167.13291760721836,2019
+2001,53,"(50,55]",College,10341.907605202756,1208.7024694145007,8.556206235114592,163.3808115109518,2019
+2001,53,"(50,55]",College,10025.961744452947,1036.5226304665664,9.672689673876194,164.37241073663125,2019
+2001,36,"(35,40]",HS,-1.7393511859219586,43.04495973698364,-0.04040777820562187,7160.273724384892,2019
+2001,36,"(35,40]",HS,-0.9023198163733741,43.04495973698364,-0.020962264150943398,7098.111540370921,2019
+2001,36,"(35,40]",HS,-2.3922356541698546,43.04495973698364,-0.05557527916827108,7134.270709381644,2019
+2001,36,"(35,40]",HS,-1.0529854628921194,44.76675812646299,-0.023521592962293773,7118.158408330362,2019
+2001,36,"(35,40]",HS,-1.3208355011476665,43.04495973698364,-0.030685021178282635,7144.129175609077,2019
+2001,51,"(50,55]",College,386.5410864575363,86.08991947396729,4.48996919522526,5194.174356465499,2019
+2001,51,"(50,55]",College,386.5410864575363,86.08991947396729,4.48996919522526,5482.562611720066,2019
+2001,51,"(50,55]",College,386.7084927314461,86.08991947396729,4.491913746630728,5517.182149775129,2019
+2001,51,"(50,55]",College,386.8758990053558,86.08991947396729,4.493858298036196,5324.799446356004,2019
+2001,51,"(50,55]",College,386.5410864575363,86.08991947396729,4.48996919522526,5412.280128534849,2019
+2001,42,"(40,45]",HS,81.00789594491202,72.31553235813253,1.1202005060784421,4981.5711223377475,2019
+2001,42,"(40,45]",HS,81.00789594491202,72.31553235813253,1.1202005060784421,4984.032792771914,2019
+2001,42,"(40,45]",HS,81.00789594491202,72.31553235813253,1.1202005060784421,5027.459029559295,2019
+2001,42,"(40,45]",HS,81.024636572303,72.31553235813253,1.120432000293379,4983.939594983845,2019
+2001,42,"(40,45]",HS,79.33383320581484,72.31553235813253,1.0970510845847772,5009.872665444252,2019
+2001,59,"(55,60]",College,5118.145493496557,301.3147181588855,16.98604543704274,1515.59688936874,2019
+2001,59,"(55,60]",College,5118.949043611324,301.3147181588855,16.988712250398812,1512.558604401761,2019
+2001,59,"(55,60]",College,5118.614231063504,301.3147181588855,16.987601078167117,1523.6676454188985,2019
+2001,59,"(55,60]",College,5117.946280030605,301.3147181588855,16.985384289564884,1511.3900477527018,2019
+2001,59,"(55,60]",College,5117.84416220352,301.3147181588855,16.985045382034215,1503.1836352970631,2019
+2001,54,"(50,55]",College,413.8283091048202,282.37493587461273,1.4655277665599142,644.2844202503923,2019
+2001,54,"(50,55]",College,415.5023718439174,280.65313748513336,1.4804836160647847,638.217368956329,2019
+2001,54,"(50,55]",College,415.5023718439174,282.37493587461273,1.4714562769424382,614.5417797818023,2019
+2001,54,"(50,55]",College,412.15424636572305,282.37493587461273,1.4595992561773905,637.8390553301026,2019
+2001,54,"(50,55]",College,412.15424636572305,280.65313748513336,1.4685538528410556,673.0647562423943,2019
+2001,63,"(60,65]",HS,280.2381025248661,65.42833880021514,4.28313033256997,4921.6238222478405,2019
+2001,63,"(60,65]",HS,327.11185921958685,61.984742021256444,5.277296453172465,5011.37024779752,2019
+2001,63,"(60,65]",HS,296.97872991583785,72.31553235813253,4.106707372976145,4924.737745213975,2019
+2001,63,"(60,65]",HS,288.60841622035196,75.75912913709122,3.80955298071201,4980.0248783870875,2019
+2001,63,"(60,65]",HS,281.9121652639633,86.08991947396729,3.2746245668078555,4960.793970404606,2019
+2001,34,"(30,35]",NoHS,5.273297628156082,20.661580673752148,0.25522237196765496,6301.785444462405,2019
+2001,34,"(30,35]",NoHS,5.273297628156082,20.661580673752148,0.25522237196765496,6300.606624703636,2019
+2001,34,"(30,35]",NoHS,5.273297628156082,20.661580673752148,0.25522237196765496,6202.227484657082,2019
+2001,34,"(30,35]",NoHS,5.273297628156082,20.661580673752148,0.25522237196765496,6304.760462270908,2019
+2001,34,"(30,35]",NoHS,5.273297628156082,20.661580673752148,0.25522237196765496,6287.546807093316,2019
+2001,59,"(55,60]",HS,344.27100229533283,129.1348792109509,2.6659799768964194,6470.945773173475,2019
+2001,59,"(55,60]",HS,342.59693955623567,129.1348792109509,2.653016300859967,6833.100960118185,2019
+2001,59,"(55,60]",HS,342.7643458301454,129.1348792109509,2.6543126684636125,6867.484940306841,2019
+2001,59,"(55,60]",HS,344.43840856924254,129.1348792109509,2.6672763445000647,6660.266197261316,2019
+2001,59,"(55,60]",HS,342.7643458301454,129.1348792109509,2.6543126684636125,6759.231660294111,2019
+2001,38,"(35,40]",HS,159.5381790359602,129.1348792109509,1.235438326273906,6607.34066054928,2019
+2001,38,"(35,40]",HS,159.70558530986995,129.1348792109509,1.2367346938775514,6868.3406515436045,2019
+2001,38,"(35,40]",HS,159.70558530986995,129.1348792109509,1.2367346938775514,6949.242351608358,2019
+2001,38,"(35,40]",HS,159.3707727620505,129.1348792109509,1.2341419586702609,6730.425800679492,2019
+2001,38,"(35,40]",HS,159.3707727620505,129.1348792109509,1.2341419586702609,6861.957994840965,2019
+2001,56,"(55,60]",HS,116.09625095638867,37.87956456854561,3.0648781811180728,6591.237016764947,2019
+2001,56,"(55,60]",HS,115.35966335118593,37.87956456854561,3.0454326670633947,6976.154096983087,2019
+2001,56,"(55,60]",HS,128.65172149961745,37.87956456854561,3.3963358070500926,7028.153799881116,2019
+2001,56,"(55,60]",HS,127.64728385615915,37.87956456854561,3.369819196975531,6803.851758651933,2019
+2001,56,"(55,60]",HS,115.34292272379496,37.87956456854561,3.044990723562152,6882.033551211243,2019
+2001,40,"(35,40]",HS,85.42742157612855,27.548774231669533,3.1009518194070087,9476.073439786564,2019
+2001,40,"(35,40]",HS,153.42785003825554,37.87956456854561,4.050412188889277,9727.3767606517,2019
+2001,40,"(35,40]",HS,93.01092578423872,41.323161347504296,2.250818251829034,9824.594135768888,2019
+2001,40,"(35,40]",HS,224.4081101759755,32.71416940010757,6.859660944814867,9590.788743447982,2019
+2001,40,"(35,40]",HS,70.46130068859985,30.992371010628222,2.273504684892825,9748.263021161914,2019
+2001,90,"(85,90]",NoHS,125.55470543228768,10.50297017582401,11.954209459843323,10461.755373957976,2019
+2001,90,"(85,90]",NoHS,113.83626625860751,10.330790336876074,11.019124630984471,9943.055167676426,2019
+2001,90,"(85,90]",NoHS,125.55470543228768,10.50297017582401,11.954209459843323,10417.781442082267,2019
+2001,90,"(85,90]",NoHS,122.20657995409334,10.50297017582401,11.635430540914168,10559.67263130553,2019
+2001,90,"(85,90]",NoHS,87.0512624330528,10.330790336876074,8.426389423694006,9942.521478729606,2019
+2001,39,"(35,40]",HS,9818.377964804897,499.3215329490102,19.66343791908436,2921.9915147783495,2019
+2001,39,"(35,40]",HS,9818.377964804897,499.3215329490102,19.66343791908436,2984.762700929213,2019
+2001,39,"(35,40]",HS,9818.377964804897,499.3215329490102,19.66343791908436,2973.236719895124,2019
+2001,39,"(35,40]",HS,9818.377964804897,499.3215329490102,19.66343791908436,2972.414083802837,2019
+2001,39,"(35,40]",HS,9818.377964804897,499.3215329490102,19.66343791908436,2965.792904192835,2019
+2001,61,"(60,65]",College,516.4650956388676,51.653951684380374,9.99855923501476,11278.96182332654,2019
+2001,61,"(60,65]",College,493.94895179801074,49.93215329490103,9.892402374092123,11042.086600875853,2019
+2001,61,"(60,65]",College,515.7285080336649,51.653951684380374,9.984299191374662,10408.773231555759,2019
+2001,61,"(60,65]",College,492.22466717674064,49.93215329490103,9.857869823270883,11161.037161086704,2019
+2001,61,"(60,65]",College,497.36403978576897,49.93215329490103,9.9607969407672,11386.752961154238,2019
+2001,51,"(50,55]",HS,-45.31687834736037,55.097548463339066,-0.8224844772814787,6989.8548188175355,2019
+2001,51,"(50,55]",HS,-38.587146136189745,53.37575007385973,-0.7229340305811915,7035.958969865997,2019
+2001,51,"(50,55]",HS,-33.598439173680184,43.04495973698364,-0.780542934154794,7033.607907242376,2019
+2001,51,"(50,55]",HS,-40.42861514919663,63.706540410735805,-0.6346069789466015,6993.218026349476,2019
+2001,51,"(50,55]",HS,-48.63152257077276,65.42833880021514,-0.7432791885373811,6997.295510480317,2019
+2001,39,"(35,40]",HS,13.05768936495792,58.54114524229776,0.22305148474484135,7000.779568113192,2019
+2001,39,"(35,40]",HS,4.804560061208876,89.53351625292598,0.053662139747045416,7206.044581220718,2019
+2001,39,"(35,40]",HS,8.889273144605967,43.04495973698364,0.2065113592606854,7023.587107536635,2019
+2001,39,"(35,40]",HS,17.91247130833971,92.97711303188467,0.1926546299861664,6948.517039066801,2019
+2001,39,"(35,40]",HS,6.880397857689365,67.15013718969449,0.1024629009804212,7284.062670763889,2019
+2001,81,"(80,85]",HS,1218.3828615149198,89.53351625292598,13.608120316341342,8166.4587926968,2019
+2001,81,"(80,85]",HS,1259.062586074981,86.08991947396729,14.624971120523684,7399.489076469579,2019
+2001,81,"(80,85]",HS,1238.8064269319052,86.08991947396729,14.389680400462073,7008.363511414189,2019
+2001,81,"(80,85]",HS,1213.1932670237184,87.81171786344665,13.8158470935544,7847.999502424742,2019
+2001,81,"(80,85]",HS,1212.0214231063505,89.53351625292598,13.537069399603094,7470.841783836075,2019
+2001,47,"(45,50]",College,3547.3389441469017,430.4495973698365,8.241008856372737,797.4321746364299,2019
+2001,47,"(45,50]",College,3603.4200459066565,430.4495973698365,8.371293800539082,800.1543903451652,2019
+2001,47,"(45,50]",College,3088.645753634277,430.4495973698365,7.175394686176356,484.8202695286229,2019
+2001,47,"(45,50]",College,2831.6771231828616,430.4495973698365,6.578417404697728,470.80254051315814,2019
+2001,47,"(45,50]",College,3427.643458301454,430.4495973698365,7.962938005390835,793.4837926371905,2019
+2001,59,"(55,60]",HS,730.2261667941852,222.1119922428356,3.2876485390119194,7180.322465519579,2019
+2001,59,"(55,60]",HS,721.8558530986994,211.78120190595953,3.408498235925756,6523.465491475078,2019
+2001,59,"(55,60]",HS,730.393573068095,187.6760244532487,3.8917787991083577,6099.813452801641,2019
+2001,59,"(55,60]",HS,720.1817903596022,249.6607664745051,2.8846414297664422,6831.469487370914,2019
+2001,59,"(55,60]",HS,720.3491966335118,249.6607664745051,2.8853119647338445,6565.320690118332,2019
+2001,42,"(40,45]",College,299.25545524100994,99.86430658980206,2.996620769322693,2829.694666344042,2019
+2001,42,"(40,45]",College,299.15501147666413,99.86430658980206,2.9956149668715892,2991.778792159297,2019
+2001,42,"(40,45]",College,299.82463657230295,99.86430658980206,3.002320316545616,2937.318514921707,2019
+2001,42,"(40,45]",College,299.15501147666413,99.86430658980206,2.9956149668715892,2892.8552078435205,2019
+2001,42,"(40,45]",College,301.6661055853099,99.86430658980206,3.0207600281491906,2861.564994289781,2019
+2001,26,"(25,30]",NoHS,13.392501912777352,17.21798389479346,0.7778205621871389,4407.681799997387,2019
+2001,26,"(25,30]",NoHS,15.568783473603673,18.939782284272805,0.8220149123114082,4391.989062994509,2019
+2001,26,"(25,30]",NoHS,15.903596021423107,20.661580673752148,0.7697182646643564,4398.4038334263405,2019
+2001,26,"(25,30]",NoHS,16.23840856924254,72.31553235813253,0.22454938848854905,4424.487072383855,2019
+2001,26,"(25,30]",NoHS,12.722876817138486,17.21798389479346,0.7389295340777821,4390.406835448855,2019
+2001,19,"(15,20]",HS,1.3392501912777353,11.363869370563684,0.11785160033138468,5131.7754396233095,2019
+2001,19,"(15,20]",HS,1.3392501912777353,11.536049209511617,0.11609262122196104,5148.822324128091,2019
+2001,19,"(15,20]",HS,1.3392501912777353,11.536049209511617,0.11609262122196104,5157.730828316547,2019
+2001,19,"(15,20]",HS,1.3392501912777353,11.536049209511617,0.11609262122196104,5102.997612325386,2019
+2001,19,"(15,20]",HS,1.3392501912777353,11.536049209511617,0.11609262122196104,5111.313633492657,2019
+2001,46,"(45,50]",College,727.5476664116296,108.47329853719879,6.707159054097829,6079.03902273218,2019
+2001,46,"(45,50]",College,765.0466717674063,110.19509692667813,6.942656189834425,5521.296724663747,2019
+2001,46,"(45,50]",College,697.7493496557,110.19509692667813,6.331945514054678,5157.971049198755,2019
+2001,46,"(45,50]",College,724.0321346595256,122.24768565303354,5.922665372287634,5779.674965859027,2019
+2001,46,"(45,50]",College,720.1817903596022,111.91689531615746,6.4349693433251405,5546.671917038943,2019
+2001,58,"(55,60]",College,24014.262586074983,3942.9183119077015,6.09047935726981,32.54014495187054,2019
+2001,58,"(55,60]",College,24178.655547054324,4459.457828751505,5.421882317434879,32.79658701299551,2019
+2001,58,"(55,60]",College,23699.706197398624,4235.62403811919,5.595328099026082,32.69089802233964,2019
+2001,58,"(55,60]",College,24106.336036725323,4579.983716015059,5.263410861578282,33.75568849037757,2019
+2001,58,"(55,60]",College,23565.781178270852,4407.8038770671255,5.34637697944744,33.27193653416163,2019
+2001,54,"(50,55]",HS,91.65493496557,53.37575007385973,1.7171643459574941,8184.45857615469,2019
+2001,54,"(50,55]",HS,65.9915531752104,67.15013718969449,0.9827463641479812,7761.598005947732,2019
+2001,54,"(50,55]",HS,71.3150726855394,82.64632269500859,0.8628946861763575,7746.2173012087105,2019
+2001,54,"(50,55]",HS,85.46090283091048,86.08991947396729,0.9926934924913362,8190.343139809731,2019
+2001,54,"(50,55]",HS,82.56477429227239,46.488556515942335,1.7760236169939676,8140.352138597654,2019
+2001,19,"(15,20]",HS,14.899158377964804,32.71416940010757,0.45543440812273267,6892.854969884016,2019
+2001,19,"(15,20]",HS,14.899158377964804,32.71416940010757,0.45543440812273267,6892.005591472027,2019
+2001,19,"(15,20]",HS,14.915899005355778,32.71416940010757,0.4559461321768032,6908.252600579309,2019
+2001,19,"(15,20]",HS,14.731752104055088,32.71416940010757,0.45031716758202783,6879.351304528909,2019
+2001,19,"(15,20]",HS,14.915899005355778,32.71416940010757,0.4559461321768032,6880.363034426962,2019
+2001,63,"(60,65]",College,5424.632899770467,552.6972830228701,9.81483547395329,281.0197025005382,2019
+2001,63,"(60,65]",College,6257.479112471308,399.4572263592082,15.664954091591094,281.2625503227631,2019
+2001,63,"(60,65]",College,6795.1880642693195,1150.161324172203,5.9080303966575904,287.22942258935757,2019
+2001,63,"(60,65]",College,5407.390053557766,1825.1062928481062,2.9627808937743847,282.16210953872474,2019
+2001,63,"(60,65]",College,4955.5605202754405,676.6667670653829,7.32348736700499,285.3353666721919,2019
+2001,42,"(40,45]",College,1909.9381790359603,885.0043721923838,2.1581115744146566,192.40981924578506,2019
+2001,42,"(40,45]",College,1927.5158377964804,885.0043721923838,2.1779732376028007,187.10640329115867,2019
+2001,42,"(40,45]",College,1925.1721499617445,885.0043721923838,2.1753250158443818,201.78048184419748,2019
+2001,42,"(40,45]",College,1973.5525631216528,885.0043721923838,2.2299918792860365,193.7551875484411,2019
+2001,42,"(40,45]",College,2331.801989288447,885.0043721923838,2.6347914909301218,330.5896592044981,2019
+2001,58,"(55,60]",HS,580.5649579188982,163.57084700053784,3.5493180390328924,6533.294521860301,2019
+2001,58,"(55,60]",HS,579.0583014537108,163.57084700053784,3.540107006059624,5939.949947645836,2019
+2001,58,"(55,60]",HS,579.2257077276205,163.57084700053784,3.5411304541677646,5553.485416507015,2019
+2001,58,"(55,60]",HS,579.0583014537108,163.57084700053784,3.540107006059624,6217.906389214858,2019
+2001,58,"(55,60]",HS,579.2257077276205,163.57084700053784,3.5411304541677646,5971.934731205424,2019
+2001,44,"(40,45]",NoHS,8.135944912012242,46.488556515942335,0.17500962649210627,4302.434846572754,2019
+2001,44,"(40,45]",NoHS,5.725294567712318,53.37575007385973,0.10726396462419414,4309.367311189686,2019
+2001,44,"(40,45]",NoHS,24.190206579954094,106.75150014771945,0.2266029662016967,4331.730366076724,2019
+2001,44,"(40,45]",NoHS,12.38806426931905,25.826975842190187,0.4796560133487357,4281.1861159256905,2019
+2001,44,"(40,45]",NoHS,15.736189747513391,108.47329853719879,0.14506970802696642,4344.452470442757,2019
+2001,54,"(50,55]",College,4141.631216526396,774.8092752657057,5.345355752363838,212.1193104651286,2019
+2001,54,"(50,55]",College,4187.667941851569,774.8092752657057,5.404772600864245,198.9109486876447,2019
+2001,54,"(50,55]",College,3796.104667176741,774.8092752657057,4.899405296709879,212.40899762628118,2019
+2001,54,"(50,55]",College,3897.2180566182096,774.8092752657057,5.029906302143498,209.07353414150452,2019
+2001,54,"(50,55]",College,4414.670849273144,774.8092752657057,5.697751679288066,201.6808165143614,2019
+2001,44,"(40,45]",HS,1343.9375669472074,688.7193557917383,1.951357335386985,464.9700132848824,2019
+2001,44,"(40,45]",HS,1342.933129303749,688.7193557917383,1.9498989218328842,457.9852286762234,2019
+2001,44,"(40,45]",HS,1343.2679418515684,688.7193557917383,1.950385059684251,484.8202695286229,2019
+2001,44,"(40,45]",HS,1343.4353481254782,688.7193557917383,1.9506281286099347,470.80254051315814,2019
+2001,44,"(40,45]",HS,1343.1005355776588,688.7193557917383,1.9501419907585678,470.6526234339973,2019
+2001,57,"(55,60]",College,12634.988523335884,719.7117268023666,17.555624082259065,244.8907549895053,2019
+2001,57,"(55,60]",College,12634.988523335884,719.7117268023666,17.555624082259065,235.69937991085098,2019
+2001,57,"(55,60]",College,12634.988523335884,719.7117268023666,17.555624082259065,245.5275906668638,2019
+2001,57,"(55,60]",College,12634.988523335884,719.7117268023666,17.555624082259065,239.58875832244925,2019
+2001,57,"(55,60]",College,12635.155929609795,719.7117268023666,17.555856684101826,236.7943387558627,2019
+2001,46,"(45,50]",NoHS,0.3348125478194338,15.496185505314111,0.02160612672742053,5065.527279993913,2019
+2001,46,"(45,50]",NoHS,0.5022188217291507,15.496185505314111,0.03240919009113079,5048.579331767318,2019
+2001,46,"(45,50]",NoHS,0.5022188217291507,15.496185505314111,0.03240919009113079,5050.092325721338,2019
+2001,46,"(45,50]",NoHS,0.5022188217291507,15.496185505314111,0.03240919009113079,5030.625649649904,2019
+2001,46,"(45,50]",NoHS,0.5022188217291507,15.496185505314111,0.03240919009113079,5077.867044288494,2019
+2001,34,"(30,35]",HS,102.4191583779648,89.53351625292598,1.1439197594857973,5641.875052907115,2019
+2001,34,"(30,35]",HS,100.74509563886764,89.53351625292598,1.1252221498178372,5728.247240933604,2019
+2001,34,"(30,35]",HS,102.4191583779648,87.81171786344665,1.166349558691401,5787.889311716396,2019
+2001,34,"(30,35]",HS,102.56982402448355,87.81171786344665,1.1680653393432843,5655.700293195696,2019
+2001,34,"(30,35]",HS,102.40241775057383,87.81171786344665,1.1661589163967472,5706.827987499695,2019
+2001,25,"(20,25]",HS,-30.459571537872993,58.54114524229776,-0.5203104826836394,7232.9474364833895,2019
+2001,25,"(20,25]",HS,-30.451201224177506,58.54114524229776,-0.5201675009626492,7251.966528762011,2019
+2001,25,"(20,25]",HS,-28.77713848508034,58.54114524229776,-0.4915711567645927,7314.548156019877,2019
+2001,25,"(20,25]",HS,-30.459571537872993,58.54114524229776,-0.5203104826836394,7204.242073510434,2019
+2001,25,"(20,25]",HS,-30.62697781178271,60.2629436317771,-0.5082223994719182,7247.097291258897,2019
+2001,57,"(55,60]",HS,144.80642693190512,10.330790336876074,14.016974714414069,6070.657898862844,2019
+2001,57,"(55,60]",HS,144.80642693190512,10.330790336876074,14.016974714414069,6344.9336832342615,2019
+2001,57,"(55,60]",HS,144.80642693190512,10.330790336876074,14.016974714414069,6380.952752079377,2019
+2001,57,"(55,60]",HS,144.80642693190512,10.330790336876074,14.016974714414069,6226.352989933801,2019
+2001,57,"(55,60]",HS,144.80642693190512,10.330790336876074,14.016974714414069,6278.603827974277,2019
+2001,75,"(70,75]",NoHS,1.08814078041316,32.71416940010757,0.0332620635145816,5448.313354041757,2019
+2001,75,"(70,75]",NoHS,1.08814078041316,29.27057262114888,0.037175247457473554,5444.546875557935,2019
+2001,75,"(70,75]",NoHS,1.08814078041316,18.939782284272805,0.057452655161550036,5466.40081635598,2019
+2001,75,"(70,75]",NoHS,1.08814078041316,18.939782284272805,0.057452655161550036,5486.159764706588,2019
+2001,75,"(70,75]",NoHS,1.08814078041316,22.383379063231494,0.048613785136696196,5483.665436859574,2019
+2001,39,"(35,40]",HS,823.6890895179802,154.9618550531411,5.315431266846362,465.6432170694631,2019
+2001,39,"(35,40]",HS,822.0317674062738,154.9618550531411,5.304736234116288,460.4582623947711,2019
+2001,39,"(35,40]",HS,822.015026778883,154.9618550531411,5.304628203482652,443.673798094828,2019
+2001,39,"(35,40]",HS,823.6890895179802,154.9618550531411,5.315431266846362,460.70663548775127,2019
+2001,39,"(35,40]",HS,822.015026778883,154.9618550531411,5.304628203482652,485.57751027523574,2019
+2001,49,"(45,50]",HS,23.604284621270082,58.54114524229776,0.40320845319259774,4175.019835248725,2019
+2001,49,"(45,50]",HS,23.604284621270082,58.54114524229776,0.40320845319259774,4246.192724387426,2019
+2001,49,"(45,50]",HS,23.7716908951798,58.54114524229776,0.40606808761240337,4245.175957271137,2019
+2001,49,"(45,50]",HS,23.7716908951798,58.54114524229776,0.40606808761240337,4180.991054458818,2019
+2001,49,"(45,50]",HS,23.7716908951798,58.54114524229776,0.40606808761240337,4229.817964997879,2019
+2001,49,"(45,50]",College,3754.068951798011,594.0204443703743,6.319763885866077,244.8907549895053,2019
+2001,49,"(45,50]",College,3754.1191736801834,594.0204443703743,6.3198484315793575,235.69937991085098,2019
+2001,49,"(45,50]",College,3754.1024330527925,594.0204443703743,6.319820249674931,245.5275906668638,2019
+2001,49,"(45,50]",College,3754.9729456771233,594.0204443703743,6.3212857087051395,239.58875832244925,2019
+2001,49,"(45,50]",College,3753.2503351185924,594.0204443703743,6.318385790739594,236.7943387558627,2019
+2001,31,"(30,35]",HS,5.775516449885234,49.93215329490103,0.1156672818769668,4571.472290525304,2019
+2001,31,"(30,35]",HS,26.45019127773527,55.097548463339066,0.48006112822487484,4527.384774652373,2019
+2001,31,"(30,35]",HS,15.401377199693956,61.984742021256444,0.2484704573653361,4524.804546767471,2019
+2001,31,"(30,35]",HS,20.942524866105586,32.71416940010757,0.6401667916421782,4547.386862354926,2019
+2001,31,"(30,35]",HS,9.123641928079572,20.661580673752148,0.4415752149916571,4540.89127953983,2019
+2001,46,"(45,50]",HS,16.90803366488141,68.87193557917384,0.24549961494031575,6343.58687959812,2019
+2001,46,"(45,50]",HS,18.582096403978575,68.87193557917384,0.2698065075086638,6702.847779121298,2019
+2001,46,"(45,50]",HS,18.582096403978575,68.87193557917384,0.2698065075086638,6716.664128599933,2019
+2001,46,"(45,50]",HS,18.582096403978575,68.87193557917384,0.2698065075086638,6484.538311522305,2019
+2001,46,"(45,50]",HS,18.582096403978575,68.87193557917384,0.2698065075086638,6623.083133038068,2019
+2001,44,"(40,45]",HS,4.185156847742923,51.653951684380374,0.08102297522782699,6137.424803849852,2019
+2001,44,"(40,45]",HS,4.185156847742923,51.653951684380374,0.08102297522782699,6084.142520977123,2019
+2001,44,"(40,45]",HS,4.185156847742923,51.653951684380374,0.08102297522782699,6115.136333408794,2019
+2001,44,"(40,45]",HS,4.35256312165264,51.653951684380374,0.08426389423694007,6101.325683156356,2019
+2001,44,"(40,45]",HS,4.185156847742923,51.653951684380374,0.08102297522782699,6123.586512477521,2019
+2001,66,"(65,70]",NoHS,0.1674062739097169,13.602207276886833,0.01230728737637878,6169.817648110571,2019
+2001,66,"(65,70]",NoHS,0.1674062739097169,13.602207276886833,0.01230728737637878,6149.362839269302,2019
+2001,66,"(65,70]",NoHS,0.1674062739097169,13.774387115834767,0.012153446284174047,6163.173973079212,2019
+2001,66,"(65,70]",NoHS,0.1674062739097169,13.602207276886833,0.01230728737637878,6179.48043758819,2019
+2001,66,"(65,70]",NoHS,0.1674062739097169,13.774387115834767,0.012153446284174047,6133.855849318365,2019
+2001,29,"(25,30]",HS,120.11400153022188,68.87193557917384,1.7440195417789757,7061.096294629354,2019
+2001,29,"(25,30]",HS,451.5784238714614,68.87193557917384,6.556784270311899,7079.663502976317,2019
+2001,29,"(25,30]",HS,103.54078041315991,68.87193557917384,1.5033813053523295,7140.758222690912,2019
+2001,29,"(25,30]",HS,200.469013006886,68.87193557917384,2.9107503850596843,7033.072956439183,2019
+2001,29,"(25,30]",HS,995.8162203519511,68.87193557917384,14.458955044281863,6536.653952836264,2019
+2001,42,"(40,45]",College,205315.10656465188,1945.6321801116608,105.52616710568014,1.723908682705586,2019
+2001,42,"(40,45]",College,226939.9459219587,1928.4141962168671,117.68215892994665,1.7558858000022828,2019
+2001,42,"(40,45]",College,286521.0441315991,1945.6321801116608,147.26372592951023,1.5509071336575402,2019
+2001,42,"(40,45]",College,284895.17765876057,1945.6321801116608,146.42807647353484,2.0199460627954804,2019
+2001,42,"(40,45]",College,287226.7955011477,1945.6321801116608,147.62646220451782,1.6026189947150349,2019
+2001,55,"(50,55]",NoHS,48.715225707727626,12.052588726355422,4.041888992793883,7443.3324105631955,2019
+2001,55,"(50,55]",NoHS,42.688599846977816,12.052588726355422,3.541861488530722,7449.57643317048,2019
+2001,55,"(50,55]",NoHS,43.69303749043612,12.052588726355422,3.6251994059079156,7442.391334828467,2019
+2001,55,"(50,55]",NoHS,41.851568477429225,12.052588726355422,3.472413224049727,7450.201696404026,2019
+2001,55,"(50,55]",NoHS,48.715225707727626,12.052588726355422,4.041888992793883,7452.373299617048,2019
+2001,57,"(55,60]",College,37.91752104055088,77.48092752657055,0.489378770376075,6478.69065596389,2019
+2001,57,"(55,60]",College,37.75011476664116,77.48092752657055,0.48721815770333293,6794.148246433145,2019
+2001,57,"(55,60]",College,39.59158377964805,77.48092752657055,0.5109848971034955,6820.234800994433,2019
+2001,57,"(55,60]",College,37.75011476664116,77.48092752657055,0.48721815770333293,6645.179955393251,2019
+2001,57,"(55,60]",College,37.91752104055088,77.48092752657055,0.489378770376075,6711.1419001453805,2019
+2001,45,"(40,45]",HS,187.66243305279266,103.30790336876075,1.816535104607881,2446.589013709955,2019
+2001,45,"(40,45]",HS,170.92180566182097,103.30790336876075,1.6544891541522269,2631.653607700552,2019
+2001,45,"(40,45]",HS,140.28645753634277,103.30790336876075,1.3579450648183802,2575.153419115536,2019
+2001,45,"(40,45]",HS,204.23565416985463,103.30790336876075,1.9769605955589782,2524.122811975457,2019
+2001,45,"(40,45]",HS,177.4506503442999,103.30790336876075,1.7176870748299318,2494.8520744309503,2019
+2001,36,"(35,40]",HS,676.8235654169854,154.9618550531411,4.367678517948059,6294.884434879513,2019
+2001,36,"(35,40]",HS,674.9820964039785,154.9618550531411,4.355795148247979,5724.296553867632,2019
+2001,36,"(35,40]",HS,676.8235654169854,154.9618550531411,4.367678517948059,5347.9768450027295,2019
+2001,36,"(35,40]",HS,674.8146901300688,154.9618550531411,4.3547148419116075,5985.733828980764,2019
+2001,36,"(35,40]",HS,675.1495026778882,154.9618550531411,4.356875454584349,5755.3144040236975,2019
+2001,37,"(35,40]",HS,12.37132364192808,75.75912913709122,0.16329812370917493,5814.085084389847,2019
+2001,37,"(35,40]",HS,12.203917368018363,63.706540410735805,0.19156459116027846,5763.609887379163,2019
+2001,37,"(35,40]",HS,12.38806426931905,53.37575007385973,0.23209161936229142,5792.970843859532,2019
+2001,37,"(35,40]",HS,12.555470543228768,84.36812108448795,0.14881770960213117,5779.887784073922,2019
+2001,37,"(35,40]",HS,12.37132364192808,63.706540410735805,0.19419236332982961,5800.975839709434,2019
+2001,44,"(40,45]",HS,162.3338638102525,68.87193557917384,2.3570393723527148,7370.2714666167985,2019
+2001,44,"(40,45]",HS,160.65980107115533,68.87193557917384,2.3327324797843665,7565.729396212596,2019
+2001,44,"(40,45]",HS,172.21083397092576,68.87193557917384,2.500450038505968,7641.342829396557,2019
+2001,44,"(40,45]",HS,153.94680948737567,68.87193557917384,2.2352618405852906,7459.494385237313,2019
+2001,44,"(40,45]",HS,172.54564651874523,68.87193557917384,2.505311417019638,7581.974248140023,2019
+2001,37,"(35,40]",College,64.03289977046673,111.91689531615746,0.5721468558395784,6920.551767612809,2019
+2001,37,"(35,40]",College,67.14665646518745,111.91689531615746,0.5999688990255029,7177.394054662589,2019
+2001,37,"(35,40]",College,64.70252486610559,111.91689531615746,0.5781300909333256,7244.478170504536,2019
+2001,37,"(35,40]",College,67.8832440703902,111.91689531615746,0.6065504576286248,7028.98273905649,2019
+2001,37,"(35,40]",College,67.21361897475134,111.91689531615746,0.6005672225348776,7190.213603574914,2019
+2001,43,"(40,45]",HS,79.78583014537108,144.63106471626506,0.5516507141940333,5740.0830092641045,2019
+2001,43,"(40,45]",HS,78.48006120887528,111.91689531615746,0.7012351529871746,5966.825005884579,2019
+2001,43,"(40,45]",HS,68.15109410864576,86.08991947396729,0.7916268771659609,6037.107816749013,2019
+2001,43,"(40,45]",HS,228.71045141545522,105.0297017582401,2.17757879520506,5847.0124015645115,2019
+2001,43,"(40,45]",HS,165.2299923488906,160.12725022157917,1.0318667941918094,5961.280115561074,2019
+2001,35,"(30,35]",College,407.3162050497322,91.25531464240532,4.463479268531906,7019.573534865129,2019
+2001,35,"(30,35]",College,409.1576740627391,91.25531464240532,4.4836585755697795,6318.721937786728,2019
+2001,35,"(30,35]",College,407.1487987758225,91.25531464240532,4.461644786073918,5710.276641843209,2019
+2001,35,"(30,35]",College,406.9813925019128,91.25531464240532,4.459810303615929,6524.610194406551,2019
+2001,35,"(30,35]",College,405.47473603672535,91.25531464240532,4.443299961494032,6415.155420642244,2019
+2001,37,"(35,40]",HS,168.91293037490436,65.42833880021514,2.581647852785603,5970.530908076922,2019
+2001,37,"(35,40]",HS,96.76082631981637,65.42833880021514,1.478882516263705,6192.1150916543575,2019
+2001,37,"(35,40]",HS,98.60229533282326,65.42833880021514,1.5070273392375817,6249.990214986255,2019
+2001,37,"(35,40]",HS,110.48814078041316,65.42833880021514,1.6886893784326042,6064.076984767943,2019
+2001,37,"(35,40]",HS,184.31430757459833,65.42833880021514,2.8170409176580264,6203.174833070761,2019
+2001,36,"(35,40]",College,26.567375669472074,154.9618550531411,0.1714446155820819,6494.829636446984,2019
+2001,36,"(35,40]",College,26.667819433817904,154.9618550531411,0.1720927993839045,6735.872107313306,2019
+2001,36,"(35,40]",College,26.567375669472074,154.9618550531411,0.1714446155820819,6798.829501222875,2019
+2001,36,"(35,40]",College,26.466931905126245,154.9618550531411,0.1707964317802593,6596.590407912762,2019
+2001,36,"(35,40]",College,26.584116296863044,154.9618550531411,0.171552646215719,6747.903053543826,2019
+2001,32,"(30,35]",College,601.4907421576128,151.51825827418244,3.9697574999124856,9931.878134206836,2019
+2001,32,"(30,35]",College,603.1648048967099,153.24005666366176,3.936077929157671,9840.23629484573,2019
+2001,32,"(30,35]",College,603.1648048967099,153.24005666366176,3.936077929157671,9457.061688207796,2019
+2001,32,"(30,35]",College,604.8388676358071,153.24005666366176,3.947002375255805,9810.781286768519,2019
+2001,32,"(30,35]",College,603.1648048967099,153.24005666366176,3.936077929157671,10345.096808314354,2019
+2001,56,"(55,60]",HS,417.84605967865343,92.97711303188467,4.49407435930347,5941.875178554326,2019
+2001,56,"(55,60]",HS,417.6786534047437,92.97711303188467,4.492273848742852,6288.870627046379,2019
+2001,56,"(55,60]",HS,417.6786534047437,92.97711303188467,4.492273848742852,6335.747373119407,2019
+2001,56,"(55,60]",HS,417.6786534047437,92.97711303188467,4.492273848742852,6133.543336473655,2019
+2001,56,"(55,60]",HS,417.6786534047437,92.97711303188467,4.492273848742852,6204.022739875697,2019
+2001,45,"(40,45]",College,1901.3000153022188,368.46485534858,5.160057974873956,1969.7876479365764,2019
+2001,45,"(40,45]",College,1746.6517735271616,368.46485534858,4.740348362056867,1919.8788936444028,2019
+2001,45,"(40,45]",College,1734.3289977046672,368.46485534858,4.706904803889463,2068.8933013826345,2019
+2001,45,"(40,45]",College,1505.4511400153021,368.46485534858,4.085738756797023,1967.187110916085,2019
+2001,45,"(40,45]",College,1767.542402448355,368.46485534858,4.797044756890589,1964.7292027301344,2019
+2001,66,"(65,70]",HS,1189.5889824024484,77.48092752657055,15.35331365250503,1027.7013367565949,2019
+2001,66,"(65,70]",HS,1725.2890589135425,77.48092752657055,22.267274205279598,1040.1545896728219,2019
+2001,66,"(65,70]",HS,1624.8452945677125,77.48092752657055,20.97090660163437,974.5030495949874,2019
+2001,66,"(65,70]",HS,1500.9646518745217,77.48092752657055,19.372053223805246,1042.29537980984,2019
+2001,66,"(65,70]",HS,1428.9799540933436,77.48092752657055,18.442989774526165,1099.5175303278163,2019
+2001,27,"(25,30]",College,-6.562325937260903,94.69891142136402,-0.06929674099485421,8223.606260853003,2019
+2001,27,"(25,30]",College,-6.562325937260903,94.69891142136402,-0.06929674099485421,8303.11926305209,2019
+2001,27,"(25,30]",College,-6.579066564651875,94.69891142136402,-0.06947351839535128,8366.940404560784,2019
+2001,27,"(25,30]",College,-6.579066564651875,94.69891142136402,-0.06947351839535128,8246.532439408882,2019
+2001,27,"(25,30]",College,-6.562325937260903,94.69891142136402,-0.06929674099485421,8230.040491854797,2019
+2001,32,"(30,35]",College,1.841469013006886,55.097548463339066,0.03342197728147863,865.5495043386334,2019
+2001,32,"(30,35]",College,1.841469013006886,56.819346852818406,0.032409190091130795,874.2766082542424,2019
+2001,32,"(30,35]",College,1.841469013006886,55.097548463339066,0.03342197728147863,885.7919458036693,2019
+2001,32,"(30,35]",College,1.674062739097169,56.819346852818406,0.029462900082846175,872.3034233704977,2019
+2001,32,"(30,35]",College,1.6908033664881408,55.097548463339066,0.03068745186753947,871.1594563389742,2019
+2001,38,"(35,40]",HS,4146.904514154553,111.91689531615746,37.05342703118984,1228.503410108276,2019
+2001,38,"(35,40]",HS,3396.924407039021,111.91689531615746,30.35220372619295,1234.248310863079,2019
+2001,38,"(35,40]",HS,3171.7629686304513,111.91689531615746,28.340340925920444,3442.604508642041,2019
+2001,38,"(35,40]",HS,3463.886916602907,111.91689531615746,30.950527235567666,1216.8024204277858,2019
+2001,38,"(35,40]",HS,3704.4497322111706,111.91689531615746,33.10000444299636,1210.2874220000142,2019
+2001,58,"(55,60]",College,8229.692425401683,793.7490575499784,10.368128751930518,1698.2858819950748,2019
+2001,58,"(55,60]",College,8229.692425401683,793.7490575499784,10.368128751930518,1733.6843821730283,2019
+2001,58,"(55,60]",College,8229.692425401683,793.7490575499784,10.368128751930518,1727.4768450424774,2019
+2001,58,"(55,60]",College,8229.692425401683,793.7490575499784,10.368128751930518,1726.1458624221693,2019
+2001,58,"(55,60]",College,8229.692425401683,793.7490575499784,10.368128751930518,1723.186099645399,2019
+2001,25,"(20,25]",College,68.3017597551645,92.97711303188467,0.734608308732298,7015.443542207831,2019
+2001,25,"(20,25]",College,66.62769701606733,92.97711303188467,0.7166032031261143,7033.890706282566,2019
+2001,25,"(20,25]",College,68.3017597551645,92.97711303188467,0.734608308732298,7094.590424711659,2019
+2001,25,"(20,25]",College,66.62769701606733,91.25531464240532,0.7301240182794371,6987.601385872009,2019
+2001,25,"(20,25]",College,68.3017597551645,92.97711303188467,0.734608308732298,7029.167892920976,2019
+2001,19,"(15,20]",HS,19.352165263963276,12.913487921095093,1.498600949813888,7971.596502408853,2019
+2001,19,"(15,20]",HS,18.933649579188984,12.913487921095093,1.4661917597227572,7898.193341260041,2019
+2001,19,"(15,20]",HS,21.109931140015302,12.913487921095093,1.6347195481966372,7897.9026954685105,2019
+2001,19,"(15,20]",HS,21.444743687834737,12.913487921095093,1.6606469002695419,7876.13395934508,2019
+2001,19,"(15,20]",HS,19.352165263963276,12.913487921095093,1.498600949813888,7864.799555164187,2019
+2001,28,"(25,30]",College,440.2785003825555,101.5861049792814,4.3340425393054565,7595.5659955764695,2019
+2001,28,"(25,30]",College,440.2785003825555,99.86430658980206,4.408767410672793,7615.538596213606,2019
+2001,28,"(25,30]",College,440.2785003825555,99.86430658980206,4.408767410672793,7681.257707837445,2019
+2001,28,"(25,30]",College,440.4459066564652,99.86430658980206,4.410443748091299,7565.421510108727,2019
+2001,28,"(25,30]",College,440.4459066564652,99.86430658980206,4.410443748091299,7610.425243029742,2019
+2001,51,"(50,55]",College,15966.038561591431,981.425082003227,16.268219402954827,206.95743366986207,2019
+2001,51,"(50,55]",College,15966.038561591431,981.425082003227,16.268219402954827,207.10069755069512,2019
+2001,51,"(50,55]",College,15967.712624330528,981.425082003227,16.26992514980173,211.6668558225719,2019
+2001,51,"(50,55]",College,16258.999540933437,981.425082003227,16.566725101162614,207.7767169422297,2019
+2001,51,"(50,55]",College,15967.712624330528,981.425082003227,16.26992514980173,210.28391170898854,2019
+2001,40,"(35,40]",College,36542.04413159908,13343.93751846493,2.7384753623908478,10.719873855226902,2019
+2001,40,"(35,40]",College,47135.8312165264,11432.741306142856,4.122880939429648,10.435442962152202,2019
+2001,40,"(35,40]",College,37469.977107880644,15341.22365026097,2.442437315438214,10.829210793767967,2019
+2001,40,"(35,40]",College,36203.49842387147,14480.324455521299,2.5001855818270147,11.208984887044869,2019
+2001,40,"(35,40]",College,31136.763397092578,13688.297196360796,2.2746995444671287,10.748342561587899,2019
+2001,40,"(35,40]",College,14201.861025248661,1318.897566341179,10.767978793566787,254.02985305266816,2019
+2001,40,"(35,40]",College,9667.210099464422,1418.761872930981,6.813835558953385,248.477456631287,2019
+2001,40,"(35,40]",College,8141.636725325172,1281.0180017726334,6.355598995532479,256.54893154754114,2019
+2001,40,"(35,40]",College,5327.8720734506505,1525.5133730787006,3.4925108933645435,250.19705672943414,2019
+2001,40,"(35,40]",College,30969.23993879113,1596.1071070473536,19.402983547940764,259.4646586901832,2019
+2001,52,"(50,55]",College,3160.5467482785007,168.7362421689759,18.73069298955624,1217.4077663324624,2019
+2001,52,"(50,55]",College,3165.4852333588374,168.7362421689759,18.759960472444657,1222.3834817281215,2019
+2001,52,"(50,55]",College,3163.5600612088756,168.7362421689759,18.748551114708494,1258.9637664220015,2019
+2001,52,"(50,55]",College,3165.1504208110177,168.7362421689759,18.75797623631663,1207.1806240982137,2019
+2001,52,"(50,55]",College,3162.7732517214995,168.7362421689759,18.743888159807625,1196.2749073305629,2019
+2001,48,"(45,50]",HS,485.47819433817904,75.75912913709122,6.408180768019043,7286.136066491546,2019
+2001,48,"(45,50]",HS,485.47819433817904,75.75912913709122,6.408180768019043,6615.663633684157,2019
+2001,48,"(45,50]",HS,485.3107880642693,75.75912913709122,6.405971050512829,6176.692959127513,2019
+2001,48,"(45,50]",HS,485.47819433817904,75.75912913709122,6.408180768019043,6926.881274531077,2019
+2001,48,"(45,50]",HS,485.47819433817904,75.75912913709122,6.408180768019043,6648.100124100196,2019
+2001,25,"(20,25]",HS,-2.059097169089518,92.97711303188467,-0.022146279895606042,5831.205194275129,2019
+2001,25,"(20,25]",HS,-3.26442234123948,120.5258872635542,-0.02708482314758788,5840.976498283121,2019
+2001,25,"(20,25]",HS,-0.5524407039020658,86.08991947396729,-0.006417019638043897,5861.409437482035,2019
+2001,25,"(20,25]",HS,-6.277735271614384,98.14250820032271,-0.06396550675881077,5891.4588538375265,2019
+2001,25,"(20,25]",HS,-3.1304973221117063,87.81171786344665,-0.03565010910024387,5845.674920462143,2019
+2001,33,"(30,35]",College,369.57446059678654,241.0517745271084,1.5331746108146764,4196.9366148595545,2019
+2001,33,"(30,35]",College,369.8255700076511,241.0517745271084,1.5342163347818913,4156.257989867276,2019
+2001,33,"(30,35]",College,370.3612700841622,241.0517745271084,1.536438679245283,3998.5232729105437,2019
+2001,33,"(30,35]",College,369.56609028309106,241.0517745271084,1.533139886682436,4142.719466576536,2019
+2001,33,"(30,35]",College,370.0013465952563,241.0517745271084,1.5349455415589417,4372.725630245511,2019
+2001,50,"(45,50]",College,25727.74950267789,108.47329853719879,237.18048450287571,527.8733671403618,2019
+2001,50,"(45,50]",College,31098.29176128539,129.1348792109509,240.82023347452196,494.8990412557032,2019
+2001,50,"(45,50]",College,25382.82561591431,123.96948404251289,204.7505949706927,519.949483977644,2019
+2001,50,"(45,50]",College,25811.417484315225,123.96948404251289,208.20783181983487,541.4803031619388,2019
+2001,50,"(45,50]",College,26169.735547054326,129.1348792109509,202.6542767295598,520.4816482457029,2019
+2001,67,"(65,70]",HS,425.39608263198164,20.661580673752148,20.588748235143115,7910.77474551669,2019
+2001,67,"(65,70]",HS,425.4128232593726,20.661580673752148,20.589558464895394,8195.095276837055,2019
+2001,67,"(65,70]",HS,425.39608263198164,20.661580673752148,20.588748235143115,8535.15585827679,2019
+2001,67,"(65,70]",HS,425.39608263198164,20.661580673752148,20.588748235143115,7930.308288398056,2019
+2001,67,"(65,70]",HS,425.4128232593726,20.661580673752148,20.589558464895394,8250.074878032901,2019
+2001,92,"(90,95]",College,168.2433052792655,15.496185505314111,10.857078680528817,7632.042944546306,2019
+2001,92,"(90,95]",College,168.2433052792655,15.496185505314111,10.857078680528817,7629.936074603334,2019
+2001,92,"(90,95]",College,168.2433052792655,15.496185505314111,10.857078680528817,7609.528738159446,2019
+2001,92,"(90,95]",College,168.2433052792655,15.496185505314111,10.857078680528817,7741.870286463833,2019
+2001,92,"(90,95]",College,168.2433052792655,15.496185505314111,10.857078680528817,7675.942124823819,2019
+2001,86,"(85,90]",HS,1104.8814078041316,258.2697584219018,4.278013092029266,8814.920960360765,2019
+2001,86,"(85,90]",HS,1146.7329762815607,258.2697584219018,4.4400590424849185,7955.62538918658,2019
+2001,86,"(85,90]",HS,1240.4804896710025,258.2697584219018,4.803041971505585,7523.954752653782,2019
+2001,86,"(85,90]",HS,1389.4720734506504,258.2697584219018,5.379925555127713,8413.971676710778,2019
+2001,86,"(85,90]",HS,1389.4720734506504,258.2697584219018,5.379925555127713,8086.263515720758,2019
+2001,31,"(30,35]",HS,103.28967100229534,56.819346852818406,1.8178609351116093,5112.735860929252,2019
+2001,31,"(30,35]",HS,103.28967100229534,56.819346852818406,1.8178609351116093,5115.680587732002,2019
+2001,31,"(30,35]",HS,71.48247895944911,56.819346852818406,1.2580658335375317,5109.486722661039,2019
+2001,31,"(30,35]",HS,123.37842387146137,56.819346852818406,2.171415736105763,5037.530725103319,2019
+2001,31,"(30,35]",HS,56.918133129303754,56.819346852818406,1.00173860281677,5129.09353138021,2019
+2001,39,"(35,40]",College,35.82494261667942,63.706540410735805,0.5623432442839451,6068.162031415099,2019
+2001,39,"(35,40]",College,35.82494261667942,63.706540410735805,0.5623432442839451,6070.6387679597265,2019
+2001,39,"(35,40]",College,35.82494261667942,65.42833880021514,0.5475447378554202,6116.1725038992245,2019
+2001,39,"(35,40]",College,35.82494261667942,63.706540410735805,0.5623432442839451,6093.625408130166,2019
+2001,39,"(35,40]",College,35.82494261667942,65.42833880021514,0.5475447378554202,6125.572790349221,2019
+2001,54,"(50,55]",HS,1.7828768171384852,11.880408887407485,0.15006864107414913,4825.570610646935,2019
+2001,54,"(50,55]",HS,1.8079877582249426,11.880408887407485,0.15218228390617938,4820.199286938196,2019
+2001,54,"(50,55]",HS,1.7996174445294568,11.70822904845955,0.15370535006455413,4829.7064974079885,2019
+2001,54,"(50,55]",HS,1.791247130833971,11.880408887407485,0.15077318868482587,4818.636543451299,2019
+2001,54,"(50,55]",HS,1.63221117061974,11.70822904845955,0.13940717796552585,4825.327595636973,2019
+2001,33,"(30,35]",HS,64.20030604437643,80.92452430552926,0.7933355999967228,3879.814042263932,2019
+2001,33,"(30,35]",HS,64.03289977046673,80.92452430552926,0.7912669282887784,3890.744992977324,2019
+2001,33,"(30,35]",HS,64.20030604437643,80.92452430552926,0.7933355999967228,3892.532382672045,2019
+2001,33,"(30,35]",HS,64.03289977046673,80.92452430552926,0.7912669282887784,3894.2221489420335,2019
+2001,33,"(30,35]",HS,64.20030604437643,80.92452430552926,0.7933355999967228,3882.5730395868973,2019
+2001,49,"(45,50]",College,213.02448355011475,27.548774231669533,7.732630198305737,4187.324219060136,2019
+2001,49,"(45,50]",College,89.34472838561592,20.661580673752148,4.324196187909126,4820.970598490659,2019
+2001,49,"(45,50]",College,48.93285386381026,13.602207276886833,3.5974201001155177,4825.250129373224,2019
+2001,49,"(45,50]",College,140.93934200459066,37.87956456854561,3.7207223369622286,4193.1052190319615,2019
+2001,49,"(45,50]",College,187.6959143075746,24.105177452710844,7.786539413609109,4235.628543566543,2019
+2001,51,"(50,55]",HS,756.0569548584546,137.74387115834767,5.488860945321525,7430.538631837527,2019
+2001,51,"(50,55]",HS,761.0958837031369,139.46566954782702,5.457227475196927,6751.691079197143,2019
+2001,51,"(50,55]",HS,762.9206120887529,139.46566954782702,5.470311185270754,6302.891436368457,2019
+2001,51,"(50,55]",HS,761.4139556235655,137.74387115834767,5.527751973430882,7066.470034020771,2019
+2001,51,"(50,55]",HS,761.4306962509564,137.74387115834767,5.527873507893723,6777.841220356369,2019
+2001,49,"(45,50]",HS,1830.252792654935,151.51825827418244,12.079420747715895,3026.413804536326,2019
+2001,49,"(45,50]",HS,1833.4335118592196,151.51825827418244,12.100413064024924,3078.8317474126443,2019
+2001,49,"(45,50]",HS,1831.7594491201226,151.51825827418244,12.089364476493856,3860.2436037844805,2019
+2001,49,"(45,50]",HS,1828.4113236419282,151.51825827418244,12.067267301431722,3182.2843004496094,2019
+2001,49,"(45,50]",HS,1830.252792654935,151.51825827418244,12.079420747715895,3253.9699381255273,2019
+2001,20,"(15,20]",HS,1176.196480489671,3.4435967789586917,341.56045437042746,6523.824604928386,2019
+2001,20,"(15,20]",HS,1176.0290742157615,3.4435967789586917,341.51184058529077,5917.115668205026,2019
+2001,20,"(15,20]",HS,1176.0290742157615,3.4435967789586917,341.51184058529077,5547.816262874577,2019
+2001,20,"(15,20]",HS,1176.196480489671,3.4435967789586917,341.56045437042746,6160.2248921666815,2019
+2001,20,"(15,20]",HS,1176.196480489671,3.4435967789586917,341.56045437042746,5921.2751786263925,2019
+2001,31,"(30,35]",College,687.8723794950267,86.08991947396729,7.990161725067385,9252.079522618009,2019
+2001,31,"(30,35]",College,687.704973221117,86.08991947396729,7.988217173661917,8309.88904889223,2019
+2001,31,"(30,35]",College,687.704973221117,86.08991947396729,7.988217173661917,7512.61196487427,2019
+2001,31,"(30,35]",College,689.5464422341239,86.08991947396729,8.009607239122063,8551.618363512365,2019
+2001,31,"(30,35]",College,687.8723794950267,86.08991947396729,7.990161725067385,8450.04663414787,2019
+2001,41,"(40,45]",HS,163.23785768936497,48.21035490542169,3.3859501347708894,7380.941712429194,2019
+2001,41,"(40,45]",HS,163.13741392501913,49.93215329490103,3.267181628669685,7646.155442087531,2019
+2001,41,"(40,45]",HS,164.89517980107115,49.93215329490103,3.302384714458327,7741.062496253922,2019
+2001,41,"(40,45]",HS,164.91192042846214,48.21035490542169,3.4206742670113868,7546.0250699535945,2019
+2001,41,"(40,45]",HS,163.05371078806425,49.93215329490103,3.265505291251178,7682.1088922573235,2019
+2001,85,"(80,85]",HS,29831.798010711555,860.899194739673,34.65190604543704,366.5238559756359,2019
+2001,85,"(80,85]",HS,29831.798010711555,860.899194739673,34.65190604543704,344.1620288315377,2019
+2001,85,"(80,85]",HS,29831.798010711555,860.899194739673,34.65190604543704,361.075213886859,2019
+2001,85,"(80,85]",HS,29831.798010711555,860.899194739673,34.65190604543704,376.57100058552925,2019
+2001,85,"(80,85]",HS,29831.798010711555,860.899194739673,34.65190604543704,361.9683243107386,2019
+2001,60,"(55,60]",College,229.6814078041316,53.37575007385973,4.303104077906268,5441.512212433022,2019
+2001,60,"(55,60]",College,229.5140015302219,55.097548463339066,4.1655937139006545,5687.362836055099,2019
+2001,60,"(55,60]",College,229.84881407804133,55.097548463339066,4.171670437042742,5719.648991240664,2019
+2001,60,"(55,60]",College,229.84881407804133,55.097548463339066,4.171670437042742,5581.0715079151805,2019
+2001,60,"(55,60]",College,229.84881407804133,55.097548463339066,4.171670437042742,5627.907217988771,2019
+2001,78,"(75,80]",HS,127.22876817138486,20.661580673752148,6.1577461173148516,10650.285458490136,2019
+2001,78,"(75,80]",HS,76.67207345065036,12.396948404251289,6.184753775724128,11024.725143612548,2019
+2001,78,"(75,80]",HS,101.44820198928845,7.059373396865318,14.370709167237994,11091.453533195683,2019
+2001,78,"(75,80]",HS,110.62206579954093,43.04495973698364,2.5699191374663073,10791.982199235468,2019
+2001,78,"(75,80]",HS,146.8320428462127,67.15013718969449,2.1866231253023702,11097.534220375619,2019
+2001,46,"(45,50]",College,3482.738537107881,315.0891052747202,11.053186158472052,298.1170901947365,2019
+2001,46,"(45,50]",College,3282.267850038256,311.6455084957616,10.532055686863508,164.56441746431202,2019
+2001,46,"(45,50]",College,3216.36,292.70572621148875,10.988374028856827,180.3601098597805,2019
+2001,46,"(45,50]",College,3215.070971690895,290.98392782200943,11.048964098310977,171.6262797979753,2019
+2001,46,"(45,50]",College,3296.832195868401,304.7583149378442,10.81785806743548,171.21937680352556,2019
+2001,46,"(45,50]",College,27451.81816985463,1721.798389479346,15.943689073931457,14.385379358881877,2019
+2001,46,"(45,50]",College,51645.38961591431,1721.798389479346,29.99502725259915,14.941597027739505,2019
+2001,46,"(45,50]",College,11399.916930374904,1721.798389479346,6.620935993453984,15.195418785704017,2019
+2001,46,"(45,50]",College,11535.531078806427,1721.798389479346,6.699699075856757,14.841502861783805,2019
+2001,46,"(45,50]",College,18811.846448355012,1721.798389479346,10.92569639006546,14.9705594938995,2019
+2001,35,"(30,35]",NoHS,16.740627390971692,16.357084700053786,1.0234481081409723,5764.91426081818,2019
+2001,35,"(30,35]",NoHS,16.740627390971692,16.357084700053786,1.0234481081409723,5752.673474369356,2019
+2001,35,"(30,35]",NoHS,16.740627390971692,16.357084700053786,1.0234481081409723,5760.999636373094,2019
+2001,35,"(30,35]",NoHS,16.740627390971692,16.357084700053786,1.0234481081409723,5725.4749188474525,2019
+2001,35,"(30,35]",NoHS,16.740627390971692,16.357084700053786,1.0234481081409723,5790.280923921796,2019
+2001,33,"(30,35]",HS,7.700688599846978,34.43596778958692,0.22362341162880245,4283.541531713686,2019
+2001,33,"(30,35]",HS,7.700688599846978,34.43596778958692,0.22362341162880245,4305.503017249239,2019
+2001,33,"(30,35]",HS,7.700688599846978,34.43596778958692,0.22362341162880245,4317.861206900789,2019
+2001,33,"(30,35]",HS,7.700688599846978,34.43596778958692,0.22362341162880245,4311.9814205237035,2019
+2001,33,"(30,35]",HS,7.700688599846978,34.43596778958692,0.22362341162880245,4284.814171646931,2019
+2001,95,"(90,95]",HS,145.6434583014537,11.536049209511617,12.625072557888263,8142.580648640901,2019
+2001,95,"(90,95]",HS,162.3840856924254,12.913487921095093,12.574765755358747,8635.957220854627,2019
+2001,95,"(90,95]",HS,120.53251721499618,18.939782284272805,6.363986417894774,8709.999955810254,2019
+2001,95,"(90,95]",HS,130.24208110175977,7.7480927526570555,16.809566593933173,8739.683592976426,2019
+2001,95,"(90,95]",HS,180.79877582249426,9.125531464240535,19.81241054627618,8698.088890727024,2019
+2001,67,"(65,70]",College,6945.686304514155,136.02207276886833,51.06293532459557,3640.256417911027,2019
+2001,67,"(65,70]",College,6945.686304514155,136.02207276886833,51.06293532459557,3588.811847678132,2019
+2001,67,"(65,70]",College,6944.012241775057,136.02207276886833,51.050628037219184,3686.064684027104,2019
+2001,67,"(65,70]",College,6942.33817903596,136.02207276886833,51.038320749842804,3573.745778978048,2019
+2001,67,"(65,70]",College,6942.33817903596,136.02207276886833,51.038320749842804,3551.425928236058,2019
+2001,40,"(35,40]",HS,1072.7394032134662,120.5258872635542,8.900489575884265,5891.488784838756,2019
+2001,40,"(35,40]",HS,1063.6994644223412,120.5258872635542,8.825485450244788,5359.070080722394,2019
+2001,40,"(35,40]",HS,1163.9758224942616,120.5258872635542,9.657475658727103,5009.703755878975,2019
+2001,40,"(35,40]",HS,1086.1319051262433,120.5258872635542,9.011606799053855,5602.510927871854,2019
+2001,40,"(35,40]",HS,1058.8446824789594,120.5258872635542,8.78520545684581,5386.462245012984,2019
+2001,56,"(55,60]",HS,233.56523335883702,20.661580673752148,11.304325503786421,6797.440188793646,2019
+2001,56,"(55,60]",HS,235.90892119357306,20.661580673752148,11.417757669105379,7169.696138417692,2019
+2001,56,"(55,60]",HS,271.2316449885233,20.661580673752148,13.127342446412527,7227.660785136871,2019
+2001,56,"(55,60]",HS,271.3990512624331,20.661580673752148,13.135444743935313,7042.4526333162185,2019
+2001,56,"(55,60]",HS,229.29637337413925,20.661580673752148,11.097716916955463,7112.832444682486,2019
+2001,41,"(40,45]",HS,760.3258148431523,137.74387115834767,5.519852233346168,322.38049718778905,2019
+2001,41,"(40,45]",HS,758.3839020657996,137.74387115834767,5.505754235656527,324.0388252196494,2019
+2001,41,"(40,45]",HS,760.2588523335884,137.74387115834767,5.519366095494801,305.70639297328165,2019
+2001,41,"(40,45]",HS,760.3592960979342,137.74387115834767,5.520095302271852,324.3577943958786,2019
+2001,41,"(40,45]",HS,761.1628462127009,137.74387115834767,5.525928956488255,342.8160664564827,2019
+2001,59,"(55,60]",HS,1.674062739097169,103.30790336876075,0.016204595045565394,4468.987883017243,2019
+2001,59,"(55,60]",HS,1.674062739097169,103.30790336876075,0.016204595045565394,4586.533300038246,2019
+2001,59,"(55,60]",HS,1.674062739097169,103.30790336876075,0.016204595045565394,4517.393893819694,2019
+2001,59,"(55,60]",HS,1.674062739097169,103.30790336876075,0.016204595045565394,4560.3275459118695,2019
+2001,59,"(55,60]",HS,1.674062739097169,103.30790336876075,0.016204595045565394,4498.5811185090115,2019
+2001,29,"(25,30]",HS,7.533282325937261,34.43596778958692,0.21876203311513284,4390.832275500005,2019
+2001,29,"(25,30]",HS,9.20734506503443,34.43596778958692,0.267375818251829,4413.343834870564,2019
+2001,29,"(25,30]",HS,7.533282325937261,34.43596778958692,0.21876203311513284,4426.011562634385,2019
+2001,29,"(25,30]",HS,9.20734506503443,34.43596778958692,0.267375818251829,4419.9845040413,2019
+2001,29,"(25,30]",HS,7.533282325937261,34.43596778958692,0.21876203311513284,4392.13679150682,2019
+2001,67,"(65,70]",College,5875.457995409334,564.7498717492255,10.403646444772109,3116.039933289272,2019
+2001,67,"(65,70]",College,5590.867329762816,564.7498717492255,9.899723062257577,3116.284872446261,2019
+2001,67,"(65,70]",College,5791.754858454477,564.7498717492255,10.255433685209013,3136.934179259644,2019
+2001,67,"(65,70]",College,5535.623259372609,564.7498717492255,9.801902640945931,3109.8725369391427,2019
+2001,67,"(65,70]",College,5579.148890589136,564.7498717492255,9.878973275918742,3096.5706211637676,2019
+2001,74,"(70,75]",College,962.3182249426167,44.76675812646299,21.496267883060337,7224.613124381076,2019
+2001,74,"(70,75]",College,726.3758224942617,74.03733074761188,9.810940172470918,6606.14640678933,2019
+2001,74,"(70,75]",College,803.8849273144607,79.20272591604991,10.149712879409352,6073.44655465174,2019
+2001,74,"(70,75]",College,542.3963274674828,44.76675812646299,12.116051064838128,7634.700010341525,2019
+2001,74,"(70,75]",College,847.6449273144607,63.706540410735805,13.305461603305268,6578.519128770191,2019
+2001,75,"(70,75]",HS,3719.7674062739097,65.42833880021514,56.85254240723101,1431.8267997697556,2019
+2001,75,"(70,75]",HS,2446.307880642693,115.36049209511619,21.205768423956453,3162.8768699862308,2019
+2001,75,"(70,75]",HS,1613.294261667942,44.76675812646299,36.037772874026246,6045.4436731545275,2019
+2001,75,"(70,75]",HS,2450.158224942617,48.21035490542169,50.82223994719181,3302.7071555089533,2019
+2001,75,"(70,75]",HS,4180.134659525631,60.2629436317771,69.36492656361736,1414.537956604573,2019
+2001,65,"(60,65]",College,109734.64514154552,94.69891142136402,1158.7740924843351,39.396060346195085,2019
+2001,65,"(60,65]",College,109585.51963274674,92.97711303188467,1178.628977167387,40.15040713886923,2019
+2001,65,"(60,65]",College,109601.95892884467,92.97711303188467,1178.8057873044395,40.9600971051589,2019
+2001,65,"(60,65]",College,109731.76575363427,91.25531464240532,1202.4698636307496,41.426317832042805,2019
+2001,65,"(60,65]",College,109693.61386381026,91.25531464240532,1202.051785078574,42.97237903627871,2019
+2001,39,"(35,40]",HS,14.731752104055088,108.47329853719879,0.13580993942950045,5768.54395399958,2019
+2001,39,"(35,40]",HS,14.731752104055088,108.47329853719879,0.13580993942950045,5996.410201162185,2019
+2001,39,"(35,40]",HS,14.731752104055088,108.47329853719879,0.13580993942950045,6067.0414939549555,2019
+2001,39,"(35,40]",HS,14.731752104055088,108.47329853719879,0.13580993942950045,5876.003532278124,2019
+2001,39,"(35,40]",HS,14.731752104055088,108.47329853719879,0.13580993942950045,5990.8378177141385,2019
+2001,83,"(80,85]",College,108166.21576128538,8608.99194739673,12.564329996149402,13.09645278129155,2019
+2001,83,"(80,85]",College,108544.55394032135,6990.501461286143,15.527434554080022,14.258243659434806,2019
+2001,83,"(80,85]",College,105333.70160673298,8126.888398342512,12.961135485534157,13.928130064776862,2019
+2001,83,"(80,85]",College,114291.61132364193,6336.2180732839925,18.037827928546317,13.670522615213553,2019
+2001,83,"(80,85]",College,109846.97475133894,7179.899284128872,15.299236159782225,14.453762593205095,2019
+2001,72,"(70,75]",HS,425.3123794950268,30.992371010628222,13.72313139092115,7133.661735198091,2019
+2001,72,"(70,75]",HS,427.55562356541697,29.27057262114888,14.607012616367301,7967.350007783212,2019
+2001,72,"(70,75]",HS,429.89931140015307,29.27057262114888,14.687082380121861,7890.01011283156,2019
+2001,72,"(70,75]",HS,431.90818668706964,30.992371010628222,13.935951739186242,7539.939547547763,2019
+2001,72,"(70,75]",HS,425.32912012241775,30.992371010628222,13.723671544089335,7760.849416459144,2019
+2001,81,"(80,85]",HS,41236.18301453711,905.6659528661357,45.53133844110857,511.9981802637623,2019
+2001,81,"(80,85]",HS,30716.707574598317,1008.9738562348967,30.443511875740054,495.2059008013154,2019
+2001,81,"(80,85]",HS,14842.40765110941,1008.9738562348967,14.710398648479933,513.3889296213754,2019
+2001,81,"(80,85]",HS,40082.08416220352,903.9441544766565,44.34132790582541,520.0911926668888,2019
+2001,81,"(80,85]",HS,16628.297781178273,1008.9738562348967,16.48040499605084,498.86052736029853,2019
+2001,52,"(50,55]",College,612.1377811782709,153.24005666366176,3.9946329602436697,6873.614361971583,2019
+2001,52,"(50,55]",College,613.811843917368,153.24005666366176,4.005557406341803,6239.293583830154,2019
+2001,52,"(50,55]",College,613.811843917368,153.24005666366176,4.005557406341803,5828.156616401465,2019
+2001,52,"(50,55]",College,613.811843917368,153.24005666366176,4.005557406341803,6533.678768340641,2019
+2001,52,"(50,55]",College,613.811843917368,153.24005666366176,4.005557406341803,6271.2560718426,2019
+2001,74,"(70,75]",HS,274.78065799540934,43.04495973698364,6.38357335386985,6644.100935987299,2019
+2001,74,"(70,75]",HS,260.31675592960977,22.383379063231494,11.629913213471164,7420.575800904708,2019
+2001,74,"(70,75]",HS,294.70200459066564,39.60136295802496,7.44171368301217,7348.543500031509,2019
+2001,74,"(70,75]",HS,289.6630757459832,32.71416940010757,8.854361307581623,7022.497178128206,2019
+2001,74,"(70,75]",HS,268.5196633511859,43.04495973698364,6.2381209087408545,7228.246696578308,2019
+2001,33,"(30,35]",HS,0,48.21035490542169,0,6883.774197518638,2019
+2001,33,"(30,35]",HS,0,96.42070981084338,0,6850.800681391969,2019
+2001,33,"(30,35]",HS,0,72.31553235813253,0,6742.270480054625,2019
+2001,33,"(30,35]",HS,0,51.653951684380374,0,6859.952419940472,2019
+2001,33,"(30,35]",HS,0,55.097548463339066,0,6834.163376648561,2019
+2001,33,"(30,35]",HS,57.422026013772,49.93215329490103,1.150000995844011,7283.263940389801,2019
+2001,33,"(30,35]",HS,49.05171231828616,48.21035490542169,1.0174517987788108,7326.94578788016,2019
+2001,33,"(30,35]",HS,55.747963274674824,48.21035490542169,1.1563483277407995,7376.67341774013,2019
+2001,33,"(30,35]",HS,50.725775057383316,49.93215329490103,1.0158940023634697,7254.718424666295,2019
+2001,33,"(30,35]",HS,42.355461361897476,49.93215329490103,0.8482602605127932,7308.978569518835,2019
+2001,80,"(75,80]",NoHS,129.7398622800306,20.661580673752148,6.279280580156591,8144.368677243935,2019
+2001,80,"(75,80]",NoHS,50.891507268553944,20.661580673752148,2.4630984469259407,8476.395466186583,2019
+2001,80,"(75,80]",NoHS,53.904820198928846,20.661580673752148,2.608939802336029,8621.04972662686,2019
+2001,80,"(75,80]",NoHS,336.82142310635044,20.661580673752148,16.30182261583879,8328.355206369619,2019
+2001,80,"(75,80]",NoHS,51.05891354246366,20.661580673752148,2.471200744448723,8549.46692575059,2019
+2001,75,"(70,75]",NoHS,-8.286610558530986,10.847329853719879,-0.76393090929094,5984.041209924554,2019
+2001,75,"(70,75]",NoHS,-8.286610558530986,10.847329853719879,-0.76393090929094,5979.904376927099,2019
+2001,75,"(70,75]",NoHS,-8.286610558530986,10.847329853719879,-0.76393090929094,6003.90719648551,2019
+2001,75,"(70,75]",NoHS,-8.286610558530986,10.847329853719879,-0.76393090929094,6025.60902483338,2019
+2001,75,"(70,75]",NoHS,-8.286610558530986,10.847329853719879,-0.76393090929094,6022.869431924956,2019
+2001,64,"(60,65]",HS,102.28523335883705,63.706540410735805,1.6055687955957498,9120.878298114008,2019
+2001,64,"(60,65]",HS,103.9592960979342,80.92452430552926,1.284645130633546,9564.988141240687,2019
+2001,64,"(60,65]",HS,67.96694720734506,46.488556515942335,1.4620145752221223,9601.713507831788,2019
+2001,64,"(60,65]",HS,110.65554705432288,72.31553235813253,1.5301767607312466,9355.266497623987,2019
+2001,64,"(60,65]",HS,88.89273144605968,48.21035490542169,1.8438514219704052,9441.651814452587,2019
+2001,51,"(50,55]",HS,78.7646518745218,137.74387115834767,0.5718196476703888,8589.359436041315,2019
+2001,51,"(50,55]",HS,78.7646518745218,136.02207276886833,0.5790578710586216,8953.030096687007,2019
+2001,51,"(50,55]",HS,78.7646518745218,137.74387115834767,0.5718196476703888,8993.671422073745,2019
+2001,51,"(50,55]",HS,77.09058913542464,137.74387115834767,0.5596662013862148,8748.983010418366,2019
+2001,51,"(50,55]",HS,78.7646518745218,136.02207276886833,0.5790578710586216,8865.474478829135,2019
+2001,81,"(80,85]",NoHS,510.1706197398623,34.43596778958692,14.815051020408163,10216.15387998384,2019
+2001,81,"(80,85]",NoHS,511.84468247895944,34.43596778958692,14.863664805544857,10568.119846190897,2019
+2001,81,"(80,85]",NoHS,510.00321346595257,34.43596778958692,14.810189641894492,10761.238083182385,2019
+2001,81,"(80,85]",NoHS,511.67727620504974,34.43596778958692,14.858803427031189,10483.712164999099,2019
+2001,81,"(80,85]",NoHS,507.1573068094874,34.43596778958692,14.72754620716211,10674.404269641995,2019
+2001,52,"(50,55]",HS,1100.528844682479,170.45804055845522,6.456303504821026,446.19099323545,2019
+2001,52,"(50,55]",HS,899.6413159908187,149.7964598847031,6.005758191370237,448.24369076966224,2019
+2001,52,"(50,55]",HS,1107.2250956388677,142.9092663267857,7.747748792629123,423.12730357952375,2019
+2001,52,"(50,55]",HS,934.7966335118592,132.5784759899096,7.050892888397703,448.86237442654704,2019
+2001,52,"(50,55]",HS,1022.6849273144607,139.46566954782702,7.332879343211778,474.4337554021903,2019
+2001,30,"(25,30]",HS,269.3566947207345,79.20272591604991,3.400851316736702,6164.208040175057,2019
+2001,30,"(25,30]",HS,269.52410099464424,79.20272591604991,3.4029649595687332,6237.086930801621,2019
+2001,30,"(25,30]",HS,269.52410099464424,79.20272591604991,3.4029649595687332,6305.9726042565935,2019
+2001,30,"(25,30]",HS,269.3566947207345,79.20272591604991,3.400851316736702,6201.986791098354,2019
+2001,30,"(25,30]",HS,269.3566947207345,79.20272591604991,3.400851316736702,6248.790044079113,2019
+2001,32,"(30,35]",HS,229.01178270849275,141.18746793730637,1.622040440658546,7560.006235996365,2019
+2001,32,"(30,35]",HS,230.6858454475899,141.18746793730637,1.6338974614235937,7579.885331965479,2019
+2001,32,"(30,35]",HS,229.01178270849275,141.18746793730637,1.622040440658546,7645.2967699004175,2019
+2001,32,"(30,35]",HS,229.01178270849275,141.18746793730637,1.622040440658546,7530.002876371842,2019
+2001,32,"(30,35]",HS,227.33771996939555,141.18746793730637,1.610183419893498,7574.795917696763,2019
+2001,29,"(25,30]",HS,46.890497322111706,77.48092752657055,0.605187609635049,6156.64016164629,2019
+2001,29,"(25,30]",HS,46.890497322111706,77.48092752657055,0.605187609635049,6236.529809570778,2019
+2001,29,"(25,30]",HS,48.556189747513386,77.48092752657055,0.6266857057288324,6286.31517920367,2019
+2001,29,"(25,30]",HS,48.56456006120887,77.48092752657055,0.6267937363624695,6153.789090834392,2019
+2001,29,"(25,30]",HS,46.890497322111706,77.48092752657055,0.605187609635049,6230.096933358894,2019
+2001,47,"(45,50]",HS,139.11461361897474,55.097548463339066,2.524878465537158,6952.306495347824,2019
+2001,47,"(45,50]",HS,139.28201989288448,55.097548463339066,2.5279168271082018,7313.111669521434,2019
+2001,47,"(45,50]",HS,139.11461361897474,55.097548463339066,2.524878465537158,7363.897714213529,2019
+2001,47,"(45,50]",HS,139.28201989288448,55.097548463339066,2.5279168271082018,7153.297167281026,2019
+2001,47,"(45,50]",HS,139.28201989288448,55.097548463339066,2.5279168271082018,7260.056148429785,2019
+2001,47,"(45,50]",HS,4.65389441469013,43.04495973698364,0.10811705814401233,5508.282581061019,2019
+2001,47,"(45,50]",HS,2.979831675592961,43.04495973698364,0.06922603003465537,5589.311465691392,2019
+2001,47,"(45,50]",HS,4.486488140780414,43.04495973698364,0.10422795533307665,5574.53943619293,2019
+2001,47,"(45,50]",HS,5.139372609028309,43.04495973698364,0.11939545629572584,5500.128300232474,2019
+2001,47,"(45,50]",HS,4.469747513389441,43.04495973698364,0.10383904505198305,5582.889864714292,2019
+2001,35,"(30,35]",NoHS,0,17.21798389479346,0,7517.030569210772,2019
+2001,35,"(30,35]",NoHS,0,17.21798389479346,0,7545.509974013589,2019
+2001,35,"(30,35]",NoHS,0,17.21798389479346,0,7436.363549121519,2019
+2001,35,"(30,35]",NoHS,0,17.21798389479346,0,7482.7849871228555,2019
+2001,35,"(30,35]",NoHS,0,17.21798389479346,0,7544.46675978933,2019
+2001,62,"(60,65]",College,42439.16449885233,344.35967789586914,123.2408067000385,33.149566687140165,2019
+2001,62,"(60,65]",College,42437.490436113236,344.35967789586914,123.23594532152484,32.34061318207645,2019
+2001,62,"(60,65]",College,42437.490436113236,344.35967789586914,123.23594532152484,33.522313865339534,2019
+2001,62,"(60,65]",College,42437.490436113236,344.35967789586914,123.23594532152484,34.68219807495391,2019
+2001,62,"(60,65]",College,42437.490436113236,344.35967789586914,123.23594532152484,33.28948078100423,2019
+2001,53,"(50,55]",College,34966.14843152257,2582.6975842190186,13.538615068668976,13.049809091861508,2019
+2001,53,"(50,55]",College,35354.530986993115,2582.6975842190186,13.688993710691825,12.729481287000361,2019
+2001,53,"(50,55]",College,35223.954093343535,2582.6975842190186,13.63843537414966,13.197324499539812,2019
+2001,53,"(50,55]",College,35459.99693955624,2582.6975842190186,13.72982929020665,13.6493210130687,2019
+2001,53,"(50,55]",College,35223.954093343535,2582.6975842190186,13.63843537414966,13.102696242266045,2019
+2001,32,"(30,35]",HS,5435.2799387911255,3030.3651654836485,1.7936056026184062,380.0712189395527,2019
+2001,32,"(30,35]",HS,4131.18506503443,3030.3651654836485,1.3632631182833341,374.3894236763387,2019
+2001,32,"(30,35]",HS,5202.585218056618,3030.3651654836485,1.716817919277488,385.4983643782271,2019
+2001,32,"(30,35]",HS,4524.589808722265,3030.3651654836485,1.493084021773375,376.90961460612834,2019
+2001,32,"(30,35]",HS,5252.807100229534,3030.3651654836485,1.7333908005740892,378.9402649045825,2019
+2001,52,"(50,55]",HS,25.027237949502677,20.661580673752148,1.2112934796560133,5716.552165217896,2019
+2001,52,"(50,55]",HS,25.027237949502677,20.661580673752148,1.2112934796560133,5807.02026078648,2019
+2001,52,"(50,55]",HS,25.027237949502677,20.661580673752148,1.2112934796560133,5818.978702891735,2019
+2001,52,"(50,55]",HS,25.027237949502677,22.383379063231494,1.1181170581440123,5777.283038377011,2019
+2001,52,"(50,55]",HS,25.027237949502677,22.383379063231494,1.1181170581440123,5789.833749665194,2019
+2001,47,"(45,50]",College,1591.1966335118593,454.55477482254724,3.5005608160931616,1253.1642591223647,2019
+2001,47,"(45,50]",College,1417.0941086457537,454.55477482254724,3.1175431150161614,1219.3701856945113,2019
+2001,47,"(45,50]",College,1341.761285386381,454.55477482254724,2.9518143020501513,1316.4026419603185,2019
+2001,47,"(45,50]",College,1383.6128538638102,454.55477482254724,3.0438858648090457,1249.8080997186114,2019
+2001,47,"(45,50]",College,1599.5669472073453,454.55477482254724,3.5189751286449407,1248.0908063566023,2019
+2001,23,"(20,25]",HS,0,22.383379063231494,0,5273.463353190162,2019
+2001,23,"(20,25]",HS,0,22.383379063231494,0,5213.226476679656,2019
+2001,23,"(20,25]",HS,0,22.383379063231494,0,5204.332052191383,2019
+2001,23,"(20,25]",HS,0,22.383379063231494,0,5181.8586923208395,2019
+2001,23,"(20,25]",HS,0,22.383379063231494,0,5215.750655370752,2019
+2001,22,"(20,25]",HS,84.23883703136956,154.9618550531411,0.5436101484619006,6313.957442013247,2019
+2001,22,"(20,25]",HS,83.98772762050497,154.9618550531411,0.541989688957344,6255.8179670081045,2019
+2001,22,"(20,25]",HS,83.66965570007652,154.9618550531411,0.539937106918239,6255.5877590243135,2019
+2001,22,"(20,25]",HS,83.970986993114,154.9618550531411,0.5418816583237068,6238.345682934766,2019
+2001,22,"(20,25]",HS,84.28905891354246,154.9618550531411,0.5439342403628118,6229.368190708821,2019
+2001,34,"(30,35]",HS,-0.5022188217291507,53.37575007385973,-0.00940911970387668,5044.444524529811,2019
+2001,34,"(30,35]",HS,-0.5022188217291507,53.37575007385973,-0.00940911970387668,5006.986926678243,2019
+2001,34,"(30,35]",HS,-0.3348125478194338,53.37575007385973,-0.00627274646925112,5012.501180475509,2019
+2001,34,"(30,35]",HS,-0.3348125478194338,53.37575007385973,-0.00627274646925112,5045.419880821147,2019
+2001,34,"(30,35]",HS,-0.1674062739097169,53.37575007385973,-0.00313637323462556,4998.27128565475,2019
+2001,68,"(65,70]",HS,200.5359755164499,22.383379063231494,8.959146648499749,9349.248283145791,2019
+2001,68,"(65,70]",HS,200.6866411629686,22.383379063231494,8.965877787980213,9774.075952589174,2019
+2001,68,"(65,70]",HS,200.6866411629686,22.383379063231494,8.965877787980213,10204.030040260357,2019
+2001,68,"(65,70]",HS,200.6866411629686,22.383379063231494,8.965877787980213,9467.347245283267,2019
+2001,68,"(65,70]",HS,200.6866411629686,22.383379063231494,8.965877787980213,9864.735102270202,2019
+2001,56,"(55,60]",HS,3.1974598316755927,32.71416940010757,0.09773929432746285,5533.235571573103,2019
+2001,56,"(55,60]",HS,3.1974598316755927,32.71416940010757,0.09773929432746285,5607.854349355542,2019
+2001,56,"(55,60]",HS,3.5992348890589136,32.71416940010757,0.11002067162515453,5513.576248552034,2019
+2001,56,"(55,60]",HS,3.0300535577658763,32.71416940010757,0.092622053786758,5610.170821373549,2019
+2001,56,"(55,60]",HS,3.1974598316755927,32.71416940010757,0.09773929432746285,5517.2543191059285,2019
+2001,31,"(30,35]",NoHS,126.27455241009947,117.08229048459552,1.078511121429704,9290.58322056963,2019
+2001,31,"(30,35]",NoHS,128.95305279265494,117.08229048459552,1.1013881967881494,9400.424970552105,2019
+2001,31,"(30,35]",NoHS,130.6271155317521,117.08229048459552,1.1156863688871774,9504.248215609277,2019
+2001,31,"(30,35]",NoHS,126.27455241009947,117.08229048459552,1.078511121429704,9347.522672829278,2019
+2001,31,"(30,35]",NoHS,126.77677123182862,117.08229048459552,1.0828005730594124,9418.06369188268,2019
+2001,53,"(50,55]",College,2254.9625095638867,246.21716969554646,9.15842917190626,917.3999938851224,2019
+2001,53,"(50,55]",College,2653.3894414690135,590.5768475914157,4.492877518464342,890.8203553982681,2019
+2001,53,"(50,55]",College,2131.081866870696,132.5784759899096,16.07411648805565,962.4194410901616,2019
+2001,53,"(50,55]",College,2280.073450650344,244.49537130606709,9.325630331856367,914.1998184077065,2019
+2001,53,"(50,55]",College,2961.416985462892,223.83379063231493,13.23042860104855,912.1621183705125,2019
+2001,52,"(50,55]",NoHS,312.0452945677123,86.08991947396729,3.624643819792068,326.54560435998917,2019
+2001,52,"(50,55]",NoHS,307.19051262433055,46.488556515942335,6.607873757469446,328.117926241058,2019
+2001,52,"(50,55]",NoHS,310.0364192807957,65.42833880021514,4.738564740692702,309.57636409851085,2019
+2001,52,"(50,55]",NoHS,307.0231063504208,74.03733074761188,4.146868927474456,328.4798811390723,2019
+2001,52,"(50,55]",NoHS,309.869013006886,65.42833880021514,4.736006120422349,347.2844211425292,2019
+2001,42,"(40,45]",HS,299.3240918133129,146.35286310574438,2.045221975582686,7649.499191205106,2019
+2001,42,"(40,45]",HS,297.65002907421575,146.35286310574438,2.0337834379034634,7627.00055278995,2019
+2001,42,"(40,45]",HS,297.9848416220352,146.35286310574438,2.0360711454393083,7698.271912857471,2019
+2001,42,"(40,45]",HS,297.9848416220352,146.35286310574438,2.0360711454393083,7681.217521417786,2019
+2001,42,"(40,45]",HS,299.4914980872226,146.35286310574438,2.0463658293506084,7709.756862928606,2019
+2001,51,"(50,55]",NoHS,-2.0088752869166027,18.939782284272805,-0.1060664402982462,4666.77373403906,2019
+2001,51,"(50,55]",NoHS,-1.9921346595256313,18.939782284272805,-0.10518255329576083,4687.055486489632,2019
+2001,51,"(50,55]",NoHS,-1.9921346595256313,18.939782284272805,-0.10518255329576083,4677.667404471709,2019
+2001,51,"(50,55]",NoHS,-1.9921346595256313,18.939782284272805,-0.10518255329576083,4643.521973981382,2019
+2001,51,"(50,55]",NoHS,-1.9921346595256313,18.939782284272805,-0.10518255329576083,4683.357853290978,2019
+2001,29,"(25,30]",College,385.36924254016833,277.20954070617466,1.3901730855239085,6234.052400655743,2019
+2001,29,"(25,30]",College,387.7129303749044,277.20954070617466,1.3986276568520295,5656.426703042509,2019
+2001,29,"(25,30]",College,388.516480489671,278.93133909565404,1.3928749696943765,5286.611362862188,2019
+2001,29,"(25,30]",College,381.18408569242536,277.20954070617466,1.375075636723692,5894.747402207153,2019
+2001,29,"(25,30]",College,386.0388676358072,277.20954070617466,1.3925886773319431,5696.066286183805,2019
+2001,41,"(40,45]",HS,0.3013312930374904,77.48092752657055,0.003889102810935695,6427.290459998198,2019
+2001,41,"(40,45]",HS,0.3348125478194338,44.76675812646299,0.007479043867184029,6371.49169759544,2019
+2001,41,"(40,45]",HS,-1.3727314460596787,56.819346852818406,-0.024159578067933864,6403.949322955849,2019
+2001,41,"(40,45]",HS,0.38503442999234894,56.819346852818406,0.006776467019054622,6389.486406757154,2019
+2001,41,"(40,45]",HS,-1.3392501912777353,84.36812108448795,-0.015873889024227324,6412.798597211664,2019
+2001,52,"(50,55]",College,76571.62968630451,2944.2752460096813,26.006953592426708,22.186381816816397,2019
+2001,52,"(50,55]",College,36593.75592960979,2944.2752460096813,12.428782254378083,22.49026593011436,2019
+2001,52,"(50,55]",College,80520.0740627391,2944.2752460096813,27.348011763460768,23.740899046028453,2019
+2001,52,"(50,55]",College,55395.573068094876,2944.2752460096813,18.814672012466026,24.119640096465332,2019
+2001,52,"(50,55]",College,42751.377199693954,2944.2752460096813,14.520170034250045,23.151128605760825,2019
+2001,48,"(45,50]",HS,136.4361132364193,103.30790336876075,1.32067449621358,5418.145247076673,2019
+2001,48,"(45,50]",HS,136.26870696250958,103.30790336876075,1.3190540367090233,5718.968697982842,2019
+2001,48,"(45,50]",HS,138.11017597551646,103.30790336876075,1.3368790912591453,5755.081017804281,2019
+2001,48,"(45,50]",HS,138.11017597551646,103.30790336876075,1.3368790912591453,5554.402842869205,2019
+2001,48,"(45,50]",HS,138.11017597551646,103.30790336876075,1.3368790912591453,5645.655659934984,2019
+2001,55,"(50,55]",NoHS,3.013312930374904,51.653951684380374,0.05833654216403542,3941.4244074679677,2019
+2001,55,"(50,55]",NoHS,3.013312930374904,51.653951684380374,0.05833654216403542,4038.3358761869945,2019
+2001,55,"(50,55]",NoHS,3.013312930374904,51.653951684380374,0.05833654216403542,4038.904751346502,2019
+2001,55,"(50,55]",NoHS,3.013312930374904,51.653951684380374,0.05833654216403542,4005.0810033005714,2019
+2001,55,"(50,55]",NoHS,3.013312930374904,51.653951684380374,0.05833654216403542,3960.9947971907873,2019
+2001,44,"(40,45]",College,19986.30022953328,864.3427915186317,23.123117848206707,313.2379130398481,2019
+2001,44,"(40,45]",College,22671.162050497325,895.3351625292597,25.321424868931615,304.3497927187001,2019
+2001,44,"(40,45]",College,16073.17857689365,607.7948314862091,26.445072817731507,316.60850175098983,2019
+2001,44,"(40,45]",College,45545.555317521044,585.4114524229775,77.80092980588464,318.4812504859718,2019
+2001,44,"(40,45]",College,51151.32180566182,1157.0485177301205,44.20845022645176,320.42140425071767,2019
+2001,22,"(20,25]",HS,6.913879112471308,8.60899194739673,0.8030997304582209,5778.157683085732,2019
+2001,22,"(20,25]",HS,7.047804131599082,8.60899194739673,0.8186561417019638,5812.7448476743575,2019
+2001,22,"(20,25]",HS,6.980841622035196,8.60899194739673,0.8108779360800924,5724.253209676574,2019
+2001,22,"(20,25]",HS,6.880397857689365,8.60899194739673,0.7992106276472853,5724.764609921177,2019
+2001,22,"(20,25]",HS,6.913879112471308,8.60899194739673,0.8030997304582209,5766.423603347821,2019
+2001,49,"(45,50]",College,7499.801071155317,1205.258872635542,6.222564497497111,172.02463374934786,2019
+2001,49,"(45,50]",College,7717.429227237949,1205.258872635542,6.4031299851476975,161.037107519999,2019
+2001,49,"(45,50]",College,7826.243305279266,1205.258872635542,6.4934127289729915,172.1157236483978,2019
+2001,49,"(45,50]",College,7784.3917368018365,1205.258872635542,6.458688596732494,169.53909477072477,2019
+2001,49,"(45,50]",College,7583.5042081101765,1205.258872635542,6.292012761978107,163.31319795449969,2019
+2001,38,"(35,40]",HS,-8.837377199693956,22.383379063231494,-0.3948187257486449,5694.948721933693,2019
+2001,38,"(35,40]",HS,-8.854117827084927,58.54114524229776,-0.15124606446352126,5632.889345182746,2019
+2001,38,"(35,40]",HS,-8.80557000765111,25.826975842190187,-0.3409446797586959,5652.132998757735,2019
+2001,38,"(35,40]",HS,-8.420535577658761,37.87956456854561,-0.2222975811250744,5630.535343262125,2019
+2001,38,"(35,40]",HS,-8.972976281560827,18.939782284272805,-0.4737634333321665,5696.236732477248,2019
+2001,69,"(65,70]",NoHS,15.200489671002295,17.21798389479346,0.8828263380824026,8959.61729731956,2019
+2001,69,"(65,70]",NoHS,15.200489671002295,18.939782284272805,0.8025693982567297,8881.845544492498,2019
+2001,69,"(65,70]",NoHS,15.200489671002295,29.27057262114888,0.5193096106367074,8953.589226188436,2019
+2001,69,"(65,70]",NoHS,15.200489671002295,29.27057262114888,0.5193096106367074,8948.44878844491,2019
+2001,69,"(65,70]",NoHS,15.217230298393268,20.661580673752148,0.7364988448209473,8889.743073799942,2019
+2001,93,"(90,95]",College,3680.594338179036,82.64632269500859,44.5342783339751,3640.256417911027,2019
+2001,93,"(90,95]",College,1301.2489671002297,82.64632269500859,15.74478966114748,1061.7652479428639,2019
+2001,93,"(90,95]",College,1927.1810252486612,82.64632269500859,23.318412270568608,2221.8465075290223,2019
+2001,93,"(90,95]",College,3027.54246365723,82.64632269500859,36.632512674881276,2102.3075166180097,2019
+2001,93,"(90,95]",College,1683.2700841622036,82.64632269500859,20.36715039789501,2106.518048088329,2019
+2001,48,"(45,50]",HS,240.5628156082632,60.2629436317771,3.9918862423675674,6454.134343066458,2019
+2001,48,"(45,50]",HS,240.3954093343535,60.2629436317771,3.989108311788328,6727.400273770229,2019
+2001,48,"(45,50]",HS,240.5628156082632,60.2629436317771,3.9918862423675674,6757.938589913538,2019
+2001,48,"(45,50]",HS,240.3954093343535,60.2629436317771,3.989108311788328,6574.07716313603,2019
+2001,48,"(45,50]",HS,240.5628156082632,60.2629436317771,3.9918862423675674,6661.610068534004,2019
+2001,45,"(40,45]",NoHS,551.8129303749045,29.27057262114888,18.852139912568802,5533.054686740439,2019
+2001,45,"(40,45]",NoHS,354.27352716143844,29.27057262114888,12.103402681827449,5820.204679523034,2019
+2001,45,"(40,45]",NoHS,389.428844682479,29.27057262114888,13.304449138145825,5860.623202899792,2019
+2001,45,"(40,45]",NoHS,357.7890589135425,29.27057262114888,12.223507327459286,5693.0148927634755,2019
+2001,45,"(40,45]",NoHS,525.0279265493497,29.27057262114888,17.937056898230992,5777.979973257554,2019
+2001,64,"(60,65]",College,1104.8814078041316,123.96948404251289,8.912527275060969,432.4113426129258,2019
+2001,64,"(60,65]",College,1104.8814078041316,180.7888308953313,6.111447274327522,424.4841455405034,2019
+2001,64,"(60,65]",College,1104.8814078041316,122.24768565303354,9.038055828230842,405.20130251645685,2019
+2001,64,"(60,65]",College,1104.8814078041316,127.41308082147161,8.671648159518778,429.0587101710809,2019
+2001,64,"(60,65]",College,1106.555470543229,241.0517745271084,4.590530282193741,445.7308707321719,2019
+2001,54,"(50,55]",College,231.5730986993114,51.653951684380374,4.483163265306122,7155.9217955968325,2019
+2001,54,"(50,55]",College,231.4056924254017,51.653951684380374,4.47992234629701,7486.121841982876,2019
+2001,54,"(50,55]",College,231.55635807192044,51.653951684380374,4.482839173405211,7526.822679978363,2019
+2001,54,"(50,55]",College,231.55635807192044,51.653951684380374,4.482839173405211,7337.98691465467,2019
+2001,54,"(50,55]",College,231.55635807192044,51.653951684380374,4.482839173405211,7365.730359877196,2019
+2001,69,"(65,70]",NoHS,64.92015302218822,25.826975842190187,2.5136567834681043,9939.020570958097,2019
+2001,69,"(65,70]",NoHS,64.41793420045907,25.826975842190187,2.4942112694134257,9927.77520810023,2019
+2001,69,"(65,70]",NoHS,63.73156847742923,25.826975842190187,2.4676357335386987,9943.793919395064,2019
+2001,69,"(65,70]",NoHS,64.53511859219587,25.826975842190187,2.498748556026184,9945.91635890896,2019
+2001,69,"(65,70]",NoHS,63.89897475133895,24.105177452710844,2.650840255239562,9936.60275359975,2019
+2001,50,"(45,50]",College,5685.117061973986,378.79564568545607,15.008401302201841,2990.3188104891906,2019
+2001,50,"(45,50]",College,5685.284468247896,378.79564568545607,15.008843245703085,2942.055571155666,2019
+2001,50,"(45,50]",College,5685.117061973986,378.79564568545607,15.008401302201841,3024.64120391865,2019
+2001,50,"(45,50]",College,5683.442999234889,378.79564568545607,15.003981867189413,2934.80257284236,2019
+2001,50,"(45,50]",College,5685.284468247896,378.79564568545607,15.008843245703085,2913.289124085256,2019
+2001,42,"(40,45]",HS,0.8370313695485845,43.04495973698364,0.019445514054678474,9683.804260012344,2019
+2001,42,"(40,45]",HS,0.6696250956388676,43.04495973698364,0.01555641124374278,9674.35846948961,2019
+2001,42,"(40,45]",HS,0.6696250956388676,43.04495973698364,0.01555641124374278,9780.412903819608,2019
+2001,42,"(40,45]",HS,0.6696250956388676,43.04495973698364,0.01555641124374278,9679.221473887183,2019
+2001,42,"(40,45]",HS,0.8370313695485845,43.04495973698364,0.019445514054678474,9663.425991836928,2019
+2001,46,"(45,50]",College,99145.02647283857,7730.874768762264,12.824554715780499,1.723908682705586,2019
+2001,46,"(45,50]",College,98678.29778117826,9022.223560871773,10.937248131284775,1.7558858000022828,2019
+2001,46,"(45,50]",College,100142.43305279265,7816.964688236229,12.810910250560203,1.5509071336575402,2019
+2001,46,"(45,50]",College,99773.97184391737,9504.32710992599,10.497741785393403,2.0199460627954804,2019
+2001,46,"(45,50]",College,100197.50971690894,8936.133641397804,11.212624356100822,1.6026189947150349,2019
+2001,60,"(55,60]",HS,5795.688905891354,468.3291619383821,12.375246678860222,1845.0077243061532,2019
+2001,60,"(55,60]",HS,5736.259678653405,513.0959200648451,11.179702379875591,1845.0665218577974,2019
+2001,60,"(55,60]",HS,5721.19311400153,507.930524896407,11.263731619926512,1856.86073796024,2019
+2001,60,"(55,60]",HS,5791.336342769702,473.4945571068201,12.231051562992265,1840.438554036859,2019
+2001,60,"(55,60]",HS,5738.101147666412,432.17139575931583,13.277373754884197,1832.4461149973722,2019
+2001,42,"(40,45]",HS,2089.899923488906,130.8566776004303,15.970907727539874,2621.5315617520782,2019
+2001,42,"(40,45]",HS,2086.367651109411,165.29264539001719,12.622265474586062,2669.8376429832706,2019
+2001,42,"(40,45]",HS,2092.5616832440705,160.12725022157917,13.068117265165348,3352.0381518609474,2019
+2001,42,"(40,45]",HS,2090.8876205049733,149.7964598847031,13.958191148938429,2756.3933252291527,2019
+2001,42,"(40,45]",HS,2093.917674062739,161.84904861105852,12.937472861485018,2825.190833113083,2019
+2001,37,"(35,40]",HS,1.3057689364957918,41.323161347504296,0.031598960338852525,5570.121045657667,2019
+2001,37,"(35,40]",HS,1.138362662586075,41.323161347504296,0.027547811577461175,5578.745856141462,2019
+2001,37,"(35,40]",HS,1.3057689364957918,41.323161347504296,0.031598960338852525,5603.569706518769,2019
+2001,37,"(35,40]",HS,1.473175210405509,41.323161347504296,0.035650109100243875,5556.847839845187,2019
+2001,37,"(35,40]",HS,1.2890283091048202,41.323161347504296,0.03119384546271339,5612.890332061225,2019
+2001,29,"(25,30]",NoHS,64.78622800306044,43.04495973698364,1.505082787832114,5931.039867177127,2019
+2001,29,"(25,30]",NoHS,64.61882172915072,43.04495973698364,1.5011936850211782,5966.611663154546,2019
+2001,29,"(25,30]",NoHS,64.61882172915072,43.04495973698364,1.5011936850211782,6007.106770514877,2019
+2001,29,"(25,30]",NoHS,64.61882172915072,43.04495973698364,1.5011936850211782,5907.794163990899,2019
+2001,29,"(25,30]",NoHS,64.78622800306044,43.04495973698364,1.505082787832114,5951.98027133963,2019
+2001,72,"(70,75]",NoHS,270.16024483550115,43.04495973698364,6.276234116288025,8190.112984373305,2019
+2001,72,"(70,75]",NoHS,269.92587605202755,43.04495973698364,6.2707893723527155,9033.030329364028,2019
+2001,72,"(70,75]",NoHS,270.6624636572303,43.04495973698364,6.2879014247208325,8929.566628096925,2019
+2001,72,"(70,75]",NoHS,270.3611323641928,43.04495973698364,6.280901039661148,8601.125999228918,2019
+2001,72,"(70,75]",NoHS,270.98053557765877,43.04495973698364,6.29529072006161,8826.003635012017,2019
+2001,43,"(40,45]",HS,14.899158377964804,49.93215329490103,0.2983880604942042,5642.736627287892,2019
+2001,43,"(40,45]",HS,14.731752104055088,49.93215329490103,0.2950353856571907,5651.473876195307,2019
+2001,43,"(40,45]",HS,14.731752104055088,49.93215329490103,0.2950353856571907,5676.621345811527,2019
+2001,43,"(40,45]",HS,14.731752104055088,49.93215329490103,0.2950353856571907,5629.29038366308,2019
+2001,43,"(40,45]",HS,14.899158377964804,49.93215329490103,0.2983880604942042,5686.063480857882,2019
+2001,67,"(65,70]",HS,892.9450650344301,68.87193557917384,12.965296495956874,10123.372308365793,2019
+2001,67,"(65,70]",HS,892.9450650344301,68.87193557917384,12.965296495956874,9116.441492510749,2019
+2001,67,"(65,70]",HS,892.7776587605204,68.87193557917384,12.962865806700039,8600.451020032568,2019
+2001,67,"(65,70]",HS,892.9450650344301,68.87193557917384,12.965296495956874,9613.794476871477,2019
+2001,67,"(65,70]",HS,892.7776587605204,68.87193557917384,12.962865806700039,9170.237599990278,2019
+2001,55,"(50,55]",College,914587.3481254781,18595.422606376935,49.18346667807584,1.723908682705586,2019
+2001,55,"(50,55]",College,571105.164192808,28082.53173240813,20.33666941551906,1.7558858000022828,2019
+2001,55,"(50,55]",College,588399.7389441469,27169.978585984078,21.65624595845943,1.5509071336575402,2019
+2001,55,"(50,55]",College,919910.8676358071,17372.945749846596,52.95077074904985,2.0199460627954804,2019
+2001,55,"(50,55]",College,921527.0580260138,34986.94327422031,26.3391703242915,1.6026189947150349,2019
+2001,25,"(20,25]",HS,3.013312930374904,61.984742021256444,0.04861378513669619,5277.499947371312,2019
+2001,25,"(20,25]",HS,3.013312930374904,61.984742021256444,0.04861378513669619,5286.34341191592,2019
+2001,25,"(20,25]",HS,3.013312930374904,61.984742021256444,0.04861378513669619,5304.836130308471,2019
+2001,25,"(20,25]",HS,3.013312930374904,61.984742021256444,0.04861378513669619,5332.032188061736,2019
+2001,25,"(20,25]",HS,3.013312930374904,61.984742021256444,0.04861378513669619,5290.595692872668,2019
+2001,77,"(75,80]",College,16186.512624330528,2289.9918580075296,7.068371255439331,32.7920490613639,2019
+2001,77,"(75,80]",College,75577.57123182861,2737.6594392721604,27.60663731494733,34.21214188710958,2019
+2001,77,"(75,80]",College,23656.850191277736,3856.8283924337343,6.1337575292920405,32.69089802233964,2019
+2001,77,"(75,80]",College,109957.46289211937,5113.741216753658,21.502351846017614,32.80550343108766,2019
+2001,77,"(75,80]",College,85593.15378729916,4821.035490542168,17.754101573243855,34.65309021574954,2019
+2001,43,"(40,45]",College,5024.364498852334,1205.258872635542,4.168701523736179,714.9118547692785,2019
+2001,43,"(40,45]",College,4989.209181331293,1205.258872635542,4.139533252654161,718.6927471728146,2019
+2001,43,"(40,45]",College,4989.209181331293,1205.258872635542,4.139533252654161,722.3417034508368,2019
+2001,43,"(40,45]",College,4989.209181331293,1205.258872635542,4.139533252654161,717.6441689280448,2019
+2001,43,"(40,45]",College,4989.209181331293,1205.258872635542,4.139533252654161,712.8656302665728,2019
+2001,66,"(65,70]",HS,206.83045141545523,41.323161347504296,5.005194294699011,8264.36651194118,2019
+2001,66,"(65,70]",HS,172.21083397092576,41.323161347504296,4.16741673084328,9287.417271452601,2019
+2001,66,"(65,70]",HS,197.72355011476665,41.323161347504296,4.784811802079323,8916.655892561901,2019
+2001,66,"(65,70]",HS,207.5168171384851,41.323161347504296,5.021804004620717,8284.773155138773,2019
+2001,66,"(65,70]",HS,191.09426166794185,41.323161347504296,4.624386311128225,8618.832508366293,2019
+2001,45,"(40,45]",HS,170.75439938791126,51.653951684380374,3.305737389295341,167.29514895324888,2019
+2001,45,"(40,45]",HS,184.1469013006886,51.653951684380374,3.565010910024387,172.52151443532165,2019
+2001,45,"(40,45]",HS,178.45508798775822,51.653951684380374,3.454819663714542,168.18659821118845,2019
+2001,45,"(40,45]",HS,176.61361897475132,51.653951684380374,3.419169554614298,170.41656414718432,2019
+2001,45,"(40,45]",HS,177.1158377964805,51.653951684380374,3.4288923116416377,168.2343150970882,2019
+2001,44,"(40,45]",HS,68.25153787299159,86.08991947396729,0.7927936080092416,6616.178373060042,2019
+2001,44,"(40,45]",HS,68.23479724560062,86.08991947396729,0.7925991528686948,6861.724456945805,2019
+2001,44,"(40,45]",HS,68.25153787299159,86.08991947396729,0.7927936080092416,6925.858140402439,2019
+2001,44,"(40,45]",HS,68.23479724560062,86.08991947396729,0.7925991528686948,6719.840432434103,2019
+2001,44,"(40,45]",HS,68.23479724560062,86.08991947396729,0.7925991528686948,6873.98018815253,2019
+2001,40,"(35,40]",HS,244.91705279265494,58.54114524229776,4.1836737525198755,4717.28287351783,2019
+2001,40,"(35,40]",HS,259.81621117061974,58.54114524229776,4.4381812158825795,4719.613944478012,2019
+2001,40,"(35,40]",HS,242.57336495791893,60.2629436317771,4.025249188624238,4760.7362807907175,2019
+2001,40,"(35,40]",HS,236.04452027543996,58.54114524229776,4.0321131282701765,4719.52569113008,2019
+2001,40,"(35,40]",HS,236.04452027543996,58.54114524229776,4.0321131282701765,4744.082929426257,2019
+2001,62,"(60,65]",HS,134.51094108645756,24.105177452710844,5.580168051047913,7132.359220497044,2019
+2001,62,"(60,65]",HS,135.14708492731447,25.826975842190187,5.232787832113978,7481.808256116727,2019
+2001,62,"(60,65]",HS,134.82901300688602,25.826975842190187,5.220472339879349,7531.003279064642,2019
+2001,62,"(60,65]",HS,135.13034429992348,25.826975842190187,5.232139648312154,7364.541910950962,2019
+2001,62,"(60,65]",HS,135.14708492731447,24.105177452710844,5.60655839155069,7356.47143195398,2019
+2001,39,"(35,40]",HS,-5.825738332058148,32.71416940010757,-0.17807997081652918,5184.19027183674,2019
+2001,39,"(35,40]",HS,-4.302341239479724,32.71416940010757,-0.13151308189611494,5139.183530188877,2019
+2001,39,"(35,40]",HS,-3.9842693190512626,30.992371010628222,-0.12855645402815216,5165.363536629785,2019
+2001,39,"(35,40]",HS,-5.842478959449121,30.992371010628222,-0.18851345569674413,5153.697888418255,2019
+2001,39,"(35,40]",HS,-5.993144605967866,32.71416940010757,-0.18319721135723407,5172.501275587647,2019
+2001,54,"(50,55]",College,12540.403978576893,740.3733074761187,16.93794718413912,172.02463374934786,2019
+2001,54,"(50,55]",College,12521.989288446825,740.3733074761187,16.913075014999418,161.037107519999,2019
+2001,54,"(50,55]",College,12799.883703136955,740.3733074761187,17.28841865838042,172.1157236483978,2019
+2001,54,"(50,55]",College,13071.081866870696,740.3733074761187,17.654717876619713,169.53909477072477,2019
+2001,54,"(50,55]",College,12962.26778882938,740.3733074761187,17.50774596806691,163.31319795449969,2019
+2001,88,"(85,90]",HS,837.366182096404,77.48092752657055,10.807384589055749,9097.269518346533,2019
+2001,88,"(85,90]",HS,881.5614384085692,86.08991947396729,10.240007701193685,8216.428722389586,2019
+2001,88,"(85,90]",HS,862.9291201224178,79.20272591604991,10.895194706266427,7769.616953419524,2019
+2001,88,"(85,90]",HS,854.2909563886764,79.20272591604991,10.786130736133664,8686.312372846503,2019
+2001,88,"(85,90]",HS,837.7177352716144,84.36812108448795,9.929316008266994,8342.790712469514,2019
+2001,43,"(40,45]",HS,319.17680183626624,79.20272591604991,4.029871423548911,6703.092274307002,2019
+2001,43,"(40,45]",HS,488.6421729150727,115.36049209511619,4.235784401059775,6134.75107569649,2019
+2001,43,"(40,45]",HS,289.91418515684774,220.39019385335627,1.3154586421832883,7030.140358131852,2019
+2001,43,"(40,45]",HS,417.7958377964805,65.42833880021514,6.385548608718562,6412.359344882816,2019
+2001,43,"(40,45]",HS,558.3668859984698,115.36049209511619,4.8401916102966105,6161.671857078252,2019
+2001,39,"(35,40]",HS,266.3433817903596,41.323161347504296,6.445377679373637,5234.876470691337,2019
+2001,39,"(35,40]",HS,266.3433817903596,43.04495973698364,6.187562572198692,5172.055602525355,2019
+2001,39,"(35,40]",HS,157.69671002295334,43.04495973698364,3.6635348479014254,5207.9173601267685,2019
+2001,39,"(35,40]",HS,80.52241775057384,43.04495973698364,1.8706584520600695,5272.18019526636,2019
+2001,39,"(35,40]",HS,47.208569242540165,43.04495973698364,1.0967269926838659,5291.415867900794,2019
+2001,35,"(30,35]",College,1338.5069074215762,241.0517745271084,5.552777655536609,11372.833544071005,2019
+2001,35,"(30,35]",College,1375.5036939556235,241.0517745271084,5.706258320039606,11057.720725793351,2019
+2001,35,"(30,35]",College,1356.7625615914308,241.0517745271084,5.628510987953133,13377.496463922676,2019
+2001,35,"(30,35]",College,1312.55893496557,241.0517745271084,5.445132845591067,11305.465226834665,2019
+2001,35,"(30,35]",College,1393.7509778117826,241.0517745271084,5.78195692832389,11291.18149259581,2019
+2001,42,"(40,45]",College,18341.43314460597,1193.2062839091868,15.37155259065155,1845.0077243061532,2019
+2001,42,"(40,45]",College,13813.52869166029,1566.8365344262047,8.816190067152716,1845.0665218577974,2019
+2001,42,"(40,45]",College,18325.027329762815,1079.5675902035498,16.974414104361614,1856.86073796024,2019
+2001,42,"(40,45]",College,13854.359081866873,1466.9722278364027,9.444186344481988,1840.438554036859,2019
+2001,42,"(40,45]",College,13743.251537872993,1014.1392514033347,13.551641472170123,1832.4461149973722,2019
+2001,82,"(80,85]",HS,-0.6696250956388676,34.43596778958692,-0.019445514054678474,7128.410998048344,2019
+2001,82,"(80,85]",HS,-0.6696250956388676,34.43596778958692,-0.019445514054678474,7390.9811500084925,2019
+2001,82,"(80,85]",HS,-0.6696250956388676,34.43596778958692,-0.019445514054678474,7544.177852048085,2019
+2001,82,"(80,85]",HS,-0.6696250956388676,34.43596778958692,-0.019445514054678474,7336.424986154694,2019
+2001,82,"(80,85]",HS,-0.6696250956388676,34.43596778958692,-0.019445514054678474,7445.077762491919,2019
+2001,22,"(20,25]",HS,32.644223412394794,86.08991947396729,0.37918752406623024,5078.935606079703,2019
+2001,22,"(20,25]",HS,29.296097934200457,86.08991947396729,0.34029649595687333,5095.806965651589,2019
+2001,22,"(20,25]",HS,30.80275439938791,86.08991947396729,0.357797458606084,5104.623742545278,2019
+2001,22,"(20,25]",HS,29.12869166029074,86.08991947396729,0.3383519445514055,5050.454092527785,2019
+2001,22,"(20,25]",HS,32.644223412394794,86.08991947396729,0.37918752406623024,5058.684486960332,2019
+2001,64,"(60,65]",College,81319.33857689364,5165.395168438037,15.743101142343729,10.33298516436616,2019
+2001,64,"(60,65]",College,76037.68737566948,5165.395168438037,14.720594435887566,10.885853919327733,2019
+2001,64,"(60,65]",College,72674.36140780413,5165.395168438037,14.069467879604671,11.043925163074842,2019
+2001,64,"(60,65]",College,65037.354154552406,5165.395168438037,12.590973591323321,10.89346443861697,2019
+2001,64,"(60,65]",College,68417.32030604438,5165.395168438037,13.24532162110127,11.194517760457467,2019
+2001,51,"(50,55]",College,19157.973986228004,7007.719445180936,2.733838609849392,15.26059346607228,2019
+2001,51,"(50,55]",College,20885.60673297628,5974.64041149333,3.4957094142099225,15.273668741031447,2019
+2001,51,"(50,55]",College,19226.610558530985,6990.501461286143,2.750390750221457,15.448153013893428,2019
+2001,51,"(50,55]",College,19517.897475133897,5716.370653071428,3.414386270534584,15.840280230196834,2019
+2001,51,"(50,55]",College,19323.706197398624,6921.6295257069705,2.791785680760617,15.584451847558572,2019
+2001,47,"(45,50]",HS,287.7044223412395,77.48092752657055,3.7132289393744924,5194.174356465499,2019
+2001,47,"(45,50]",HS,310.22056618209643,87.81171786344665,3.53279236222791,5482.562611720066,2019
+2001,47,"(45,50]",HS,330.4599846977812,61.984742021256444,5.331311769991015,5517.182149775129,2019
+2001,47,"(45,50]",HS,286.54931905126244,51.653951684380374,5.5474810678988575,5324.799446356004,2019
+2001,47,"(45,50]",HS,298.636052027544,72.31553235813253,4.129625300254872,5412.280128534849,2019
+2001,59,"(55,60]",College,4029.469013006886,106.75150014771945,37.74625187871862,1712.1997581599458,2019
+2001,59,"(55,60]",College,4029.469013006886,106.75150014771945,37.74625187871862,1724.4773498622878,2019
+2001,59,"(55,60]",College,4029.469013006886,106.75150014771945,37.74625187871862,1729.0333645228984,2019
+2001,59,"(55,60]",College,4029.469013006886,106.75150014771945,37.74625187871862,1722.1491020298677,2019
+2001,59,"(55,60]",College,4029.469013006886,106.75150014771945,37.74625187871862,1709.104936381611,2019
+2001,27,"(25,30]",HS,15.066564651874522,55.097548463339066,0.27345254139391606,6175.958758196487,2019
+2001,27,"(25,30]",HS,15.066564651874522,55.097548463339066,0.27345254139391606,6130.099084571875,2019
+2001,27,"(25,30]",HS,15.066564651874522,55.097548463339066,0.27345254139391606,6136.850235044151,2019
+2001,27,"(25,30]",HS,15.066564651874522,55.097548463339066,0.27345254139391606,6177.152895668025,2019
+2001,27,"(25,30]",HS,15.066564651874522,55.097548463339066,0.27345254139391606,6119.42844695249,2019
+2001,47,"(45,50]",HS,203.23121652639634,65.42833880021514,3.106165008207851,6890.278956837287,2019
+2001,47,"(45,50]",HS,213.44299923488904,65.42833880021514,3.262240844699349,7182.0111074039205,2019
+2001,47,"(45,50]",HS,215.61928079571538,67.15013718969449,3.211002833644343,7214.613080947517,2019
+2001,47,"(45,50]",HS,209.25784238714616,67.15013718969449,3.1162682779933455,7018.327033499483,2019
+2001,47,"(45,50]",HS,205.0726855394032,65.42833880021514,3.1343098311817275,7111.775062938536,2019
+2001,37,"(35,40]",College,245.5850038255547,51.653951684380374,4.754428186368887,6244.078487550914,2019
+2001,37,"(35,40]",College,223.80544758990055,137.74387115834767,1.6247942337312284,6490.729071007157,2019
+2001,37,"(35,40]",College,232.19250191277735,51.653951684380374,4.4951546656398405,6567.182910900231,2019
+2001,37,"(35,40]",College,237.21469013006887,51.653951684380374,4.592382235913234,6360.396582092804,2019
+2001,37,"(35,40]",College,237.23143075745983,51.653951684380374,4.5927063278141445,6484.697323673725,2019
+2001,29,"(25,30]",College,345.19173680183627,163.57084700053784,2.110349998986685,8307.777045838675,2019
+2001,29,"(25,30]",College,345.359143075746,163.57084700053784,2.111373447094826,7543.496209297262,2019
+2001,29,"(25,30]",College,345.19173680183627,163.57084700053784,2.110349998986685,7049.406650331225,2019
+2001,29,"(25,30]",College,345.19173680183627,163.57084700053784,2.110349998986685,7858.168604099378,2019
+2001,29,"(25,30]",College,345.19173680183627,163.57084700053784,2.110349998986685,7588.575147114835,2019
+2001,70,"(65,70]",HS,120749.47574598317,7024.9374290757305,17.18869057056785,9.263701445867104,2019
+2001,70,"(65,70]",HS,125424.79816373374,7816.964688236229,16.04520464989254,9.777593365736227,2019
+2001,70,"(65,70]",HS,122055.07727620505,5595.844765807874,21.81173395337816,9.918282556157946,2019
+2001,70,"(65,70]",HS,123560.39449120122,7111.027348549699,17.375885147791124,9.768074661061458,2019
+2001,70,"(65,70]",HS,119580.1429227238,5458.100894649526,21.90874540995495,10.057151806864544,2019
+2001,36,"(35,40]",HS,174.26993114001533,67.15013718969449,2.5952282219128584,2973.5954040600436,2019
+2001,36,"(35,40]",HS,174.43733741392504,67.15013718969449,2.5977212365352527,3116.0509063234013,2019
+2001,36,"(35,40]",HS,174.26993114001533,68.87193557917384,2.530347516365037,3057.1563528027186,2019
+2001,36,"(35,40]",HS,174.26993114001533,67.15013718969449,2.5952282219128584,3033.00020407625,2019
+2001,36,"(35,40]",HS,172.59586840091814,68.87193557917384,2.506040623796688,2980.8018914005693,2019
+2001,50,"(45,50]",College,507.52560061208874,211.78120190595953,2.396461990226371,7638.260797432544,2019
+2001,50,"(45,50]",College,454.3406273909717,211.78120190595953,2.145330290422658,6933.375815889175,2019
+2001,50,"(45,50]",College,457.2534965570008,211.78120190595953,2.1590844345101132,6476.502442535552,2019
+2001,50,"(45,50]",College,458.6597092578424,213.5030002954389,2.1482588470567774,7260.50950360837,2019
+2001,50,"(45,50]",College,501.7835654169855,211.78120190595953,2.3693489360769617,6968.893929987132,2019
+2001,51,"(50,55]",College,57918.05080336649,5458.100894649526,10.611392482711793,23.01708660149429,2019
+2001,51,"(50,55]",College,56764.621576128535,5526.972830228699,10.270472339879348,22.49026593011436,2019
+2001,51,"(50,55]",College,56821.53970925784,6473.961944442341,8.776934464070655,23.279331977239398,2019
+2001,51,"(50,55]",College,51785.95899005356,6181.256218230852,8.377902025371034,24.119640096465332,2019
+2001,51,"(50,55]",College,54286.506503443,6491.179928337134,8.363118431898059,23.151128605760825,2019
+2001,53,"(50,55]",College,2109.6538638102525,516.5395168438037,4.084206135284303,96.09826835163932,2019
+2001,53,"(50,55]",College,2111.244223412395,516.5395168438037,4.087285008342961,92.93065131322956,2019
+2001,53,"(50,55]",College,2111.16052027544,516.5395168438037,4.087122962392505,100.74258622966785,2019
+2001,53,"(50,55]",College,2109.737566947207,516.5395168438037,4.084368181234758,96.11111963561247,2019
+2001,53,"(50,55]",College,2111.244223412395,516.5395168438037,4.087285008342961,97.49702142780738,2019
+2001,38,"(35,40]",NoHS,0.6696250956388676,55.097548463339066,0.012153446284174047,5084.474416773829,2019
+2001,38,"(35,40]",NoHS,0.6696250956388676,55.097548463339066,0.012153446284174047,5104.075265131661,2019
+2001,38,"(35,40]",NoHS,0.6696250956388676,56.819346852818406,0.01178516003313847,5139.141608574518,2019
+2001,38,"(35,40]",NoHS,0.6696250956388676,55.097548463339066,0.012153446284174047,5087.143929306864,2019
+2001,38,"(35,40]",NoHS,0.6696250956388676,55.097548463339066,0.012153446284174047,5121.395033623422,2019
+2001,26,"(25,30]",NoHS,15.351155317521041,46.488556515942335,0.3302136368174104,5515.3526274849955,2019
+2001,26,"(25,30]",NoHS,15.485080336648815,46.488556515942335,0.33309445371439983,5586.920815331037,2019
+2001,26,"(25,30]",NoHS,15.619005355776588,46.488556515942335,0.3359752706113892,5631.520444675245,2019
+2001,26,"(25,30]",NoHS,15.81989288446825,46.488556515942335,0.34029649595687333,5512.798529717272,2019
+2001,26,"(25,30]",NoHS,15.886855394032136,46.488556515942335,0.341736904405368,5581.157999934008,2019
+2001,61,"(60,65]",College,31704.571996939554,1773.452341163726,17.877318302298022,32.54014495187054,2019
+2001,61,"(60,65]",College,62727.29824024484,3426.378795063898,18.30716975327156,34.21214188710958,2019
+2001,61,"(60,65]",College,224656.54108645755,1575.4455263736015,142.5987362467412,33.339071345827016,2019
+2001,61,"(60,65]",College,35604.46855394032,2444.953713060671,14.562430512997121,33.75568849037757,2019
+2001,61,"(60,65]",College,69413.0026013772,2203.9019385335628,31.49550412735849,34.65309021574954,2019
+2001,37,"(35,40]",HS,32.22570772762051,36.157766179066265,0.8912527275060969,6714.928692968795,2019
+2001,37,"(35,40]",HS,40.84713083397093,36.157766179066265,1.1296917688908448,6941.402216936127,2019
+2001,37,"(35,40]",HS,42.65511859219587,36.157766179066265,1.1796945193171609,7004.219993063666,2019
+2001,37,"(35,40]",HS,40.26120887528692,36.157766179066265,1.1134871738452794,6842.320090342725,2019
+2001,37,"(35,40]",HS,41.01453710788064,36.157766179066265,1.1343216531895777,6899.714276431512,2019
+2001,47,"(45,50]",College,62.442540168324406,89.53351625292598,0.6974208406149107,4514.531787812623,2019
+2001,47,"(45,50]",College,58.592195868400914,89.53351625292598,0.6544163383786025,4601.778035640265,2019
+2001,47,"(45,50]",College,64.11660290742158,89.53351625292598,0.7161184502828708,4608.369283403592,2019
+2001,47,"(45,50]",College,53.01756694720734,89.53351625292598,0.5921532981842955,4545.812968885165,2019
+2001,47,"(45,50]",College,65.79066564651875,89.53351625292598,0.7348160599508309,4562.44152412011,2019
+2001,55,"(50,55]",College,60339.91736801836,2582.6975842190186,23.363136952894365,14.608140502550564,2019
+2001,55,"(50,55]",College,58498.44835501148,2582.6975842190186,22.65013477088949,15.874372334474874,2019
+2001,55,"(50,55]",College,58933.70466717674,2582.6975842190186,22.818662559363368,15.508857024996303,2019
+2001,55,"(50,55]",College,63219.30527926549,2582.6975842190186,24.478013092029265,15.245517375064313,2019
+2001,55,"(50,55]",College,60155.77046671767,2582.6975842190186,23.291836734693877,16.088342421621903,2019
+2001,23,"(20,25]",HS,5.022188217291507,51.653951684380374,0.09722757027339238,8682.839205304503,2019
+2001,23,"(20,25]",HS,5.022188217291507,51.653951684380374,0.09722757027339238,8781.726016914754,2019
+2001,23,"(20,25]",HS,6.696250956388676,51.653951684380374,0.12963676036452315,8862.19407536629,2019
+2001,23,"(20,25]",HS,6.696250956388676,51.653951684380374,0.12963676036452315,8719.448315665908,2019
+2001,23,"(20,25]",HS,5.022188217291507,51.653951684380374,0.09722757027339238,8706.044206196977,2019
+2001,42,"(40,45]",HS,42.688599846977816,51.653951684380374,0.82643434732383525,6138.9118529599455,2019
+2001,42,"(40,45]",HS,42.688599846977816,51.653951684380374,0.82643434732383525,6322.883273706342,2019
+2001,42,"(40,45]",HS,42.688599846977816,51.653951684380374,0.82643434732383525,6374.408790678311,2019
+2001,42,"(40,45]",HS,42.688599846977816,51.653951684380374,0.82643434732383525,6213.536135305492,2019
+2001,42,"(40,45]",HS,42.688599846977816,51.653951684380374,0.82643434732383525,6325.168146832214,2019
+2001,69,"(65,70]",HS,575.4255853098699,46.488556515942335,12.377789900027096,8393.744075925893,2019
+2001,69,"(65,70]",HS,583.79589900535575,46.488556515942335,12.557840956088935,7332.842330512964,2019
+2001,69,"(65,70]",HS,572.0774598316757,48.21035490542169,11.866277710545136,9143.834296464038,2019
+2001,69,"(65,70]",HS,575.4255853098699,48.21035490542169,11.935725975026127,8444.085536726438,2019
+2001,69,"(65,70]",HS,580.4477735271614,48.21035490542169,12.039898371747618,8840.907474264843,2019
+2001,61,"(60,65]",HS,8.202907421576128,5.337575007385973,1.5368228849665244,6193.692174088077,2019
+2001,61,"(60,65]",HS,8.202907421576128,6.887193557917383,1.1910377358490565,6235.107233702851,2019
+2001,61,"(60,65]",HS,8.370313695485846,4.648855651594233,1.8005105606183778,6188.631998935746,2019
+2001,61,"(60,65]",HS,8.370313695485846,8.436812108448795,0.992118064014208,6218.49529088772,2019
+2001,61,"(60,65]",HS,8.370313695485846,7.7480927526570555,1.0803063363710266,6211.719527086589,2019
+2001,47,"(45,50]",College,76.77251721499617,261.7133552008606,0.2933458139959062,142.88822232014505,2019
+2001,47,"(45,50]",College,77.39192042846213,285.8185326535714,0.2707729261288512,155.90471972053848,2019
+2001,47,"(45,50]",College,61.87335883703137,290.98392782200943,0.212634970254709,149.48192736316452,2019
+2001,47,"(45,50]",College,56.81768936495792,289.2621294325301,0.19642284137374624,149.78811252733936,2019
+2001,47,"(45,50]",College,52.163794950267786,282.37493587461273,0.1847323835194455,148.33459541863138,2019
+2001,35,"(30,35]",College,2717.6734506503444,456.27657321202656,5.956197644597178,107.83266675727104,2019
+2001,35,"(30,35]",College,3438.692272379495,456.27657321202656,7.536420833908503,182.1910018669292,2019
+2001,35,"(30,35]",College,3019.1721499617447,456.27657321202656,6.616978225964648,187.5846359142148,2019
+2001,35,"(30,35]",College,2747.1369548584544,456.27657321202656,6.020771427118374,107.90239303686201,2019
+2001,35,"(30,35]",College,3301.1680183626627,456.27657321202656,7.235015366060986,184.4947035631073,2019
+2001,63,"(60,65]",College,107385.9351185922,8660.64589908111,12.399298663161577,17.78317985079869,2019
+2001,63,"(60,65]",College,108477.42402448355,8660.64589908111,12.525327243317147,19.364058268294023,2019
+2001,63,"(60,65]",College,106423.34904361132,7989.144527184163,13.32099434194628,18.90030794244316,2019
+2001,63,"(60,65]",College,106250.7531752104,8144.106382237305,13.04633660077777,18.56465708175563,2019
+2001,63,"(60,65]",College,108221.12501912778,8316.286221185239,13.013155408653562,19.6123879178756,2019
+2001,51,"(50,55]",College,45103.150757459836,2186.6839546387696,20.62627782207817,299.649034757735,2019
+2001,51,"(50,55]",College,44151.78090283091,1739.0163733741392,25.38893916056989,288.69845334194855,2019
+2001,51,"(50,55]",College,49965.867758224944,2995.9291976940613,16.677920091263573,295.7032435615399,2019
+2001,51,"(50,55]",College,45021.12168324407,2066.1580673752146,21.789776103837763,304.9777177652073,2019
+2001,51,"(50,55]",College,49810.79932670237,2100.594035164802,23.712720541356042,300.9076569423523,2019
+2001,48,"(45,50]",College,52.498607498087225,160.12725022157917,0.32785554879285855,4749.686557316885,2019
+2001,48,"(45,50]",College,48.61478194338179,158.40545183209983,0.30690093921079503,4825.268167442012,2019
+2001,48,"(45,50]",College,53.58674827850038,160.12725022157917,0.3346510241345473,4841.023545594794,2019
+2001,48,"(45,50]",College,51.510910482019895,160.12725022157917,0.32168734809809496,4782.360103549194,2019
+2001,48,"(45,50]",College,53.50304514154553,160.12725022157917,0.3341282952621097,4792.561441995327,2019
+2001,56,"(55,60]",College,2032.479571537873,340.91608111691045,5.961817831763923,2210.3151145793795,2019
+2001,56,"(55,60]",College,2785.13817903596,482.1035490542168,5.777053880851533,3633.9889219487354,2019
+2001,56,"(55,60]",College,3503.4282785003825,501.04333133848974,6.992266056393379,3732.726985571312,2019
+2001,56,"(55,60]",College,3357.784820198929,576.8024604755808,5.821377421709321,3619.162569798528,2019
+2001,56,"(55,60]",College,6903.332517214996,370.18665373805936,18.648247978436657,3597.716146931495,2019
+2001,52,"(50,55]",College,79.51798010711553,65.42833880021514,1.2153446284174048,6752.883625796307,2019
+2001,52,"(50,55]",College,79.51798010711553,65.42833880021514,1.2153446284174048,7064.486037081677,2019
+2001,52,"(50,55]",College,79.51798010711553,65.42833880021514,1.2153446284174048,7102.894509156516,2019
+2001,52,"(50,55]",College,77.84391736801837,65.42833880021514,1.1897584257138805,6924.694413621133,2019
+2001,52,"(50,55]",College,77.84391736801837,65.42833880021514,1.1897584257138805,6950.875283440259,2019
+2001,50,"(45,50]",College,18212.128538638102,1033.0790336876073,17.628978950070596,14.496741375937527,2019
+2001,50,"(45,50]",College,13312.983932670239,1033.0790336876073,12.886704209985885,15.067587754858996,2019
+2001,50,"(45,50]",College,33282.87834736037,1033.0790336876073,32.21716563984085,14.829144515667561,2019
+2001,50,"(45,50]",College,21789.265799540935,1033.0790336876073,21.091576819407013,14.841502861783805,2019
+2001,50,"(45,50]",College,32441.66182096404,1033.0790336876073,31.402884738801188,15.404820690982964,2019
+2001,25,"(20,25]",HS,1.7075439938791126,30.992371010628222,0.055095623154922356,5258.881639597807,2019
+2001,25,"(20,25]",HS,1.7075439938791126,30.992371010628222,0.055095623154922356,5273.697962077133,2019
+2001,25,"(20,25]",HS,1.7075439938791126,30.992371010628222,0.055095623154922356,5276.120673770526,2019
+2001,25,"(20,25]",HS,1.7075439938791126,30.992371010628222,0.055095623154922356,5278.411062102452,2019
+2001,25,"(20,25]",HS,1.7075439938791126,30.992371010628222,0.055095623154922356,5262.6213137696595,2019
+2001,56,"(55,60]",College,2272.1383932670237,414.9534118645223,5.475646972168653,1253.1642591223647,2019
+2001,56,"(55,60]",College,2184.8192807957153,402.90082313816697,5.422722306145486,1219.3701856945113,2019
+2001,56,"(55,60]",College,2748.543167559296,149.7964598847031,18.348518848007643,1316.4026419603185,2019
+2001,56,"(55,60]",College,2351.6563733741395,251.3825648639845,9.3548905217295,1249.8080997186114,2019
+2001,56,"(55,60]",College,2484.4932517214997,352.96866984326584,7.038849235046068,1248.0908063566023,2019
+2001,62,"(60,65]",NoHS,0,12.224768565303355,0,5063.274108592475,2019
+2001,62,"(60,65]",NoHS,0,12.224768565303355,0,5093.42154519858,2019
+2001,62,"(60,65]",NoHS,0,12.396948404251289,0,5056.100366433307,2019
+2001,62,"(60,65]",NoHS,0,12.224768565303355,0,5081.891323016441,2019
+2001,62,"(60,65]",NoHS,0,12.224768565303355,0,5079.5219364326495,2019
+2001,30,"(25,30]",College,61.4381025248661,130.8566776004303,0.46950681960967106,8768.27456612652,2019
+2001,30,"(25,30]",College,61.4381025248661,130.8566776004303,0.46950681960967106,8772.30680276541,2019
+2001,30,"(25,30]",College,61.4381025248661,130.8566776004303,0.46950681960967106,8995.117619484981,2019
+2001,30,"(25,30]",College,61.4381025248661,130.8566776004303,0.46950681960967106,8763.111655851966,2019
+2001,30,"(25,30]",College,61.4381025248661,130.8566776004303,0.46950681960967106,8771.020377610559,2019
+2001,53,"(50,55]",HS,306.6045906656465,89.53351625292598,3.4244672106868874,5481.08585621478,2019
+2001,53,"(50,55]",HS,306.4371843917368,89.53351625292598,3.4225974497200915,5785.4038629845545,2019
+2001,53,"(50,55]",HS,306.4371843917368,89.53351625292598,3.4225974497200915,5821.935686400551,2019
+2001,53,"(50,55]",HS,306.6045906656465,89.53351625292598,3.4244672106868874,5618.926306598282,2019
+2001,53,"(50,55]",HS,306.4371843917368,89.53351625292598,3.4225974497200915,5711.239174221914,2019
+2001,44,"(40,45]",HS,8.70512624330528,30.992371010628222,0.2808796474564669,5924.407642919442,2019
+2001,44,"(40,45]",HS,9.709563886763581,30.992371010628222,0.3132888375475977,6157.901362059736,2019
+2001,44,"(40,45]",HS,7.365876052027544,30.992371010628222,0.23766739400162581,6222.94617984857,2019
+2001,44,"(40,45]",HS,8.370313695485846,30.992371010628222,0.27007658409275664,6057.214110388222,2019
+2001,44,"(40,45]",HS,7.365876052027544,30.992371010628222,0.23766739400162581,6175.832004394995,2019
+2001,39,"(35,40]",College,142.12792654934967,34.43596778958692,4.127310358105507,7513.537905898364,2019
+2001,39,"(35,40]",College,142.6301453710788,34.43596778958692,4.141894493646515,7820.82537214621,2019
+2001,39,"(35,40]",College,147.31752104055087,34.43596778958692,4.278013092029264,7900.975725232731,2019
+2001,39,"(35,40]",College,143.96939556235654,34.43596778958692,4.180785521755872,7682.645393146937,2019
+2001,39,"(35,40]",College,141.12348890589138,34.43596778958692,4.098142087023489,7784.927568965337,2019
+2001,32,"(30,35]",HS,286.9343534812548,13.774387115834767,20.831006931074317,5882.644830929563,2019
+2001,32,"(30,35]",HS,245.08278500382556,13.774387115834767,17.792645360030804,5872.774368367607,2019
+2001,32,"(30,35]",HS,286.9343534812548,13.774387115834767,20.831006931074317,5904.10469544086,2019
+2001,32,"(30,35]",HS,286.9343534812548,13.774387115834767,20.831006931074317,5943.135462942742,2019
+2001,32,"(30,35]",HS,286.9343534812548,13.774387115834767,20.831006931074317,5887.990595842895,2019
+2001,62,"(60,65]",NoHS,28.12425401683244,94.69891142136402,0.29698603283508945,6600.578255548399,2019
+2001,62,"(60,65]",NoHS,28.459066564651877,94.69891142136402,0.300521580845031,6768.854613257553,2019
+2001,62,"(60,65]",NoHS,28.12425401683244,94.69891142136402,0.29698603283508945,6558.087759854354,2019
+2001,62,"(60,65]",NoHS,28.291660290742158,94.69891142136402,0.2987538068400602,6735.502377091483,2019
+2001,62,"(60,65]",NoHS,28.291660290742158,94.69891142136402,0.2987538068400602,6671.875857031897,2019
+2001,51,"(50,55]",College,3493.7706105585307,136.02207276886833,25.68532106178989,3687.287979209405,2019
+2001,51,"(50,55]",College,3492.096547819434,136.02207276886833,25.673013774413516,3633.9889219487354,2019
+2001,51,"(50,55]",College,3493.7706105585307,136.02207276886833,25.68532106178989,3732.726985571312,2019
+2001,51,"(50,55]",College,3492.096547819434,137.74387115834767,25.352101102233345,3619.162569798528,2019
+2001,51,"(50,55]",College,3493.7706105585307,136.02207276886833,25.68532106178989,3597.716146931495,2019
+2001,49,"(45,50]",HS,61.60550879877582,41.323161347504296,1.4908227441920165,7329.800292482262,2019
+2001,49,"(45,50]",HS,61.60550879877582,37.87956456854561,1.6263520845731088,7665.806577981348,2019
+2001,49,"(45,50]",HS,61.60550879877582,43.04495973698364,1.431189834424336,7686.536528449988,2019
+2001,49,"(45,50]",HS,61.4381025248661,41.323161347504296,1.486771595430625,7466.386406520581,2019
+2001,49,"(45,50]",HS,61.60550879877582,41.323161347504296,1.4908227441920165,7577.312630807882,2019
+2001,54,"(50,55]",College,171.08921193573067,146.35286310574438,1.1690185508165531,8156.299678996531,2019
+2001,54,"(50,55]",College,171.08921193573067,146.35286310574438,1.1690185508165531,7411.147227737543,2019
+2001,54,"(50,55]",College,171.08921193573067,146.35286310574438,1.1690185508165531,6918.512095332325,2019
+2001,54,"(50,55]",College,171.08921193573067,146.35286310574438,1.1690185508165531,7756.671504696709,2019
+2001,54,"(50,55]",College,171.08921193573067,146.35286310574438,1.1690185508165531,7439.85152476237,2019
+2001,71,"(70,75]",College,127.58032134659526,96.42070981084338,1.3231630590241485,8018.372603890452,2019
+2001,71,"(70,75]",College,127.89839326702372,96.42070981084338,1.326461851586996,8924.704318503522,2019
+2001,71,"(70,75]",College,127.81469013006887,96.42070981084338,1.3255937482809834,8843.604667171396,2019
+2001,71,"(70,75]",College,125.97322111706197,96.42070981084338,1.3064954755487097,8506.133828651105,2019
+2001,71,"(70,75]",College,126.22433052792655,96.42070981084338,1.3090997854667472,8742.39258638702,2019
+2001,24,"(20,25]",HS,18.247283856159143,51.653951684380374,0.35326017199332566,6330.081145892103,2019
+2001,24,"(20,25]",HS,18.41469013006886,51.653951684380374,0.3565010910024387,6271.793202404677,2019
+2001,24,"(20,25]",HS,17.745065034429995,51.653951684380374,0.34353741496598644,6271.562406547846,2019
+2001,24,"(20,25]",HS,18.41469013006886,51.653951684380374,0.3565010910024387,6254.276300049208,2019
+2001,24,"(20,25]",HS,17.577658760520276,51.653951684380374,0.34029649595687333,6245.275882355751,2019
+2001,56,"(55,60]",HS,2.393909716908952,44.76675812646299,0.053475163650365816,4730.881049464022,2019
+2001,56,"(55,60]",HS,2.5613159908186685,49.93215329490103,0.05129592500630701,4903.590956535119,2019
+2001,56,"(55,60]",HS,2.2265034429992347,43.04495973698364,0.051725067385444745,5031.845114099947,2019
+2001,56,"(55,60]",HS,2.2265034429992347,49.93215329490103,0.04459057533227995,4979.978551760562,2019
+2001,56,"(55,60]",HS,2.5445753634276973,49.93215329490103,0.05096065752260567,4774.752813724563,2019
+2001,73,"(70,75]",College,8.703452180566183,12.569128243199225,0.6924467641799548,7535.605047893741,2019
+2001,73,"(70,75]",College,8.703452180566183,12.569128243199225,0.6924467641799548,7635.045266461563,2019
+2001,73,"(70,75]",College,8.711822494261668,12.569128243199225,0.6931127064421012,7450.942011222689,2019
+2001,73,"(70,75]",College,8.703452180566183,12.569128243199225,0.6924467641799548,7470.509641716312,2019
+2001,73,"(70,75]",College,8.536045906656465,12.569128243199225,0.6791279189370242,7526.306485330764,2019
+2001,27,"(25,30]",HS,-0.1674062739097169,22.383379063231494,-0.007479043867184029,4802.4555410779885,2019
+2001,27,"(25,30]",HS,4.185156847742923,12.396948404251289,0.3375957301159458,4851.041618929303,2019
+2001,27,"(25,30]",HS,1.3392501912777353,36.157766179066265,0.03703907438986376,5061.297510216207,2019
+2001,27,"(25,30]",HS,-0.25110941086457533,15.66836534426205,-0.0160265225725372,4955.095450544878,2019
+2001,27,"(25,30]",HS,0.11718439173680184,11.880408887407485,0.00986366654947459,4785.753400350462,2019
+2001,60,"(55,60]",College,4108.652180566182,258.2697584219018,15.908375048132465,1328.5417112989624,2019
+2001,60,"(55,60]",College,4033.1519510329,377.0738472959767,10.695920653089358,1334.7652175764358,2019
+2001,60,"(55,60]",College,3805.6468247895946,182.51062928481065,20.85164485872669,1376.785318202342,2019
+2001,60,"(55,60]",College,4209.095944912013,306.4801133273235,13.73366741226913,1318.3814992125115,2019
+2001,60,"(55,60]",College,3941.245906656465,358.1340650117039,11.0049456103196,1308.2231832042348,2019
+2001,80,"(75,80]",NoHS,76.27029839326701,36.157766179066265,2.1093752865027406,8151.720125596835,2019
+2001,80,"(75,80]",NoHS,103.62448355011476,27.548774231669533,3.761491624951867,8104.662014006417,2019
+2001,80,"(75,80]",NoHS,189.16908951798013,14.118746793730637,13.398433464504071,8605.131279343066,2019
+2001,80,"(75,80]",NoHS,208.92302983932672,18.939782284272805,11.030909791017608,8637.543022385693,2019
+2001,80,"(75,80]",NoHS,173.29897475133896,20.661580673752148,8.38749839558465,8595.703106659079,2019
+2001,28,"(25,30]",HS,131.12933435348125,123.96948404251289,1.0577549415992813,5624.675986013197,2019
+2001,28,"(25,30]",HS,131.11259372609027,123.96948404251289,1.0576199033072349,5621.638551819778,2019
+2001,28,"(25,30]",HS,131.12933435348125,123.96948404251289,1.0577549415992813,5634.514746836796,2019
+2001,28,"(25,30]",HS,131.11259372609027,123.96948404251289,1.0576199033072349,5645.284035479247,2019
+2001,28,"(25,30]",HS,131.296740627391,123.96948404251289,1.0591053245197453,5619.845504752613,2019
+2001,41,"(40,45]",College,1078.9334353481254,96.42070981084338,11.189851614500245,5964.452170310663,2019
+2001,41,"(40,45]",College,1141.7107880642693,113.63869370563681,10.046848928250546,5365.0398042356255,2019
+2001,41,"(40,45]",College,1115.260596786534,108.47329853719879,10.281429732719683,4849.044690633528,2019
+2001,41,"(40,45]",College,1326.8621270084163,48.21035490542169,27.52234721381814,5542.078132108589,2019
+2001,41,"(40,45]",College,1102.2196480489672,79.20272591604991,13.916435770370494,5452.506536009629,2019
+2001,48,"(45,50]",College,1061.1883703136955,132.5784759899096,8.004228155364082,6065.302222796564,2019
+2001,48,"(45,50]",College,1186.910482019893,132.5784759899096,8.952512639459117,5507.17128756292,2019
+2001,48,"(45,50]",College,1071.4001530221883,134.30027437938898,7.9776467916629645,5141.752664600947,2019
+2001,48,"(45,50]",College,1050.809181331293,134.30027437938898,7.824326392385691,5766.2426295713985,2019
+2001,48,"(45,50]",College,1158.451415455241,134.30027437938898,8.62583059348558,5534.172858165602,2019
+2001,69,"(65,70]",HS,117.43550114766641,48.21035490542169,2.4358978766708836,8975.2299135346,2019
+2001,69,"(65,70]",HS,129.1539403213466,48.21035490542169,2.6789668023543647,8889.936535263023,2019
+2001,69,"(65,70]",HS,92.65937260902832,48.21035490542169,1.9219807195115244,8513.72677833585,2019
+2001,69,"(65,70]",HS,125.88951798010713,48.21035490542169,2.6112547444853953,8971.002806724919,2019
+2001,69,"(65,70]",HS,96.5097169089518,48.21035490542169,2.0018462236646677,8445.46938887718,2019
+2001,47,"(45,50]",HS,10.998592195868401,34.43596778958692,0.31939256834809393,4873.118292058076,2019
+2001,47,"(45,50]",HS,18.91690895179801,36.157766179066265,0.5231769257568256,5079.44452183967,2019
+2001,47,"(45,50]",HS,10.714001530221882,34.43596778958692,0.3111282248748556,5102.502118582519,2019
+2001,47,"(45,50]",HS,17.91247130833971,34.43596778958692,0.5201675009626492,4963.679708882312,2019
+2001,47,"(45,50]",HS,12.722876817138486,36.157766179066265,0.35187120670370575,5029.770400488398,2019
+2001,22,"(20,25]",HS,0,5.337575007385973,0,7261.877440088152,2019
+2001,22,"(20,25]",HS,0,7.059373396865318,0,7234.333436460305,2019
+2001,22,"(20,25]",HS,0,8.436812108448795,0,7235.740641097395,2019
+2001,22,"(20,25]",HS,0,8.092452430552926,0,7172.222042197177,2019
+2001,22,"(20,25]",HS,0,7.7480927526570555,0,7237.436931761385,2019
+2001,88,"(85,90]",NoHS,83.2009181331293,37.87956456854561,2.1964592011761823,10461.755373957976,2019
+2001,88,"(85,90]",NoHS,222.98515684774293,20.661580673752148,10.792260300346555,11189.56588737268,2019
+2001,88,"(85,90]",NoHS,81.77796480489671,20.661580673752148,3.9579723398793485,10417.781442082267,2019
+2001,88,"(85,90]",NoHS,128.7354246365723,44.76675812646299,2.875692366932259,10559.67263130553,2019
+2001,88,"(85,90]",NoHS,96.59342004590667,20.661580673752148,4.675025670645618,10373.153135440856,2019
+2001,39,"(35,40]",HS,440.5296097934201,146.35286310574438,3.0100511902874363,6908.924927944492,2019
+2001,39,"(35,40]",HS,440.36220351951033,146.35286310574438,3.008907336519514,6280.857743274686,2019
+2001,39,"(35,40]",HS,442.0362662586075,146.35286310574438,3.0203458741987363,5870.830549582485,2019
+2001,39,"(35,40]",HS,442.20367253251726,146.35286310574438,3.021489727966659,6568.591621602015,2019
+2001,39,"(35,40]",HS,440.36220351951033,146.35286310574438,3.008907336519514,6316.272570616385,2019
+2001,52,"(50,55]",College,92.74307574598316,68.87193557917384,1.3466018482864843,6315.427740691374,2019
+2001,52,"(50,55]",College,94.41713848508033,68.87193557917384,1.3709087408548324,6582.820879355498,2019
+2001,52,"(50,55]",College,94.41713848508033,68.87193557917384,1.3709087408548324,6612.702892755575,2019
+2001,52,"(50,55]",College,94.41713848508033,68.87193557917384,1.3709087408548324,6432.792854725279,2019
+2001,52,"(50,55]",College,92.74307574598316,68.87193557917384,1.3466018482864843,6518.444579587114,2019
+2001,66,"(65,70]",HS,23348.822647283858,1217.3114613618975,19.18064800044007,18.687378031860785,2019
+2001,66,"(65,70]",HS,20318.76908951798,1002.0866626769795,20.276458959386122,18.95502609227419,2019
+2001,66,"(65,70]",HS,28329.326702371844,934.9365254872849,30.300802172218823,18.767460349100556,2019
+2001,66,"(65,70]",HS,25024.559449120123,1222.4768565303355,20.470374809503927,19.34512905952876,2019
+2001,66,"(65,70]",HS,21678.10803366488,1210.4242678039802,17.90951206967663,18.5383937669174,2019
+2001,28,"(25,30]",College,13.611804131599081,68.87193557917384,0.19763934347323833,7752.264050788013,2019
+2001,28,"(25,30]",College,13.628544758990055,68.87193557917384,0.19788241239892182,7843.918388244403,2019
+2001,28,"(25,30]",College,13.779210405508799,68.87193557917384,0.20007003273007315,7930.550754715312,2019
+2001,28,"(25,30]",College,13.795951032899772,68.87193557917384,0.20031310165575666,7799.775564149922,2019
+2001,28,"(25,30]",College,13.628544758990055,68.87193557917384,0.19788241239892182,7858.636519714359,2019
+2001,42,"(40,45]",College,27044.483550114765,215.22479868491826,125.65691182133227,13.681388244315333,2019
+2001,42,"(40,45]",College,27046.15761285386,215.22479868491826,125.66469002695415,13.718696140833796,2019
+2001,42,"(40,45]",College,27044.483550114765,215.22479868491826,125.65691182133227,13.873613257978542,2019
+2001,42,"(40,45]",College,27044.483550114765,215.22479868491826,125.65691182133227,14.203841285990631,2019
+2001,42,"(40,45]",College,27046.15761285386,215.22479868491826,125.66469002695415,14.001067434213638,2019
+2001,48,"(45,50]",HS,36.82938026013772,13.946566954782698,2.6407488222402873,5308.574889347602,2019
+2001,48,"(45,50]",HS,36.82938026013772,12.913487921095093,2.8520087280195097,5302.6659354717895,2019
+2001,48,"(45,50]",HS,36.82938026013772,12.224768565303355,3.0126852760769465,5313.124748084817,2019
+2001,48,"(45,50]",HS,36.82938026013772,9.642070981084336,3.8196545464547005,5300.946772806399,2019
+2001,48,"(45,50]",HS,36.82938026013772,9.297711303188466,3.9611232333604307,5308.3075503148275,2019
+2001,49,"(45,50]",College,2441.4530986993113,165.29264539001719,14.77048838403286,416.8537277306961,2019
+2001,49,"(45,50]",College,1104.3791889824024,165.29264539001719,6.6813570947246825,212.62830576932478,2019
+2001,49,"(45,50]",College,1091.4889058913543,165.29264539001719,6.6033724810678995,200.72117207818548,2019
+2001,49,"(45,50]",College,2019.7566947207347,165.29264539001719,12.219277451546658,422.1645365681118,2019
+2001,49,"(45,50]",College,956.5594491201225,165.29264539001719,5.787066005647543,225.09022301383692,2019
+2001,67,"(65,70]",College,5233.120122417751,223.83379063231493,23.37949112881728,1552.982839671054,2019
+2001,67,"(65,70]",College,5231.446059678653,223.83379063231493,23.37201208495009,1545.417887338479,2019
+2001,67,"(65,70]",College,5233.120122417751,223.83379063231493,23.37949112881728,1608.4971928777861,2019
+2001,67,"(65,70]",College,5231.446059678653,223.83379063231493,23.37201208495009,1537.7659637249044,2019
+2001,67,"(65,70]",College,5233.120122417751,223.83379063231493,23.37949112881728,1515.4648472751737,2019
+2001,28,"(25,30]",College,95.35461361897475,32.71416940010757,2.914780211985489,4265.06318236743,2019
+2001,28,"(25,30]",College,37.86729915837797,84.36812108448795,0.44883421216002767,4286.929930406246,2019
+2001,28,"(25,30]",College,26.71804131599082,103.30790336876075,0.2586253369272237,4299.234809276519,2019
+2001,28,"(25,30]",College,27.52159143075746,37.87956456854561,0.7265551160429866,4293.380387132734,2019
+2001,28,"(25,30]",College,34.68657995409335,103.30790336876075,0.335759209344115,4266.330332384187,2019
+2001,40,"(35,40]",NoHS,12.8919571537873,39.60136295802496,0.325543268989302,5617.12085437408,2019
+2001,40,"(35,40]",NoHS,12.8919571537873,39.60136295802496,0.325543268989302,5583.140688252715,2019
+2001,40,"(35,40]",NoHS,14.063801071155318,39.60136295802496,0.3551342686377258,5516.608256697906,2019
+2001,40,"(35,40]",NoHS,12.8919571537873,39.60136295802496,0.325543268989302,5563.682203656272,2019
+2001,40,"(35,40]",NoHS,14.231207345065036,39.60136295802496,0.35936155430178635,5615.464789929794,2019
+2001,46,"(45,50]",HS,230.05137566947207,125.69128243199225,1.8302890321287468,5871.8139294387665,2019
+2001,46,"(45,50]",HS,225.5966947207345,101.5861049792814,2.2207436220410774,6176.544575152364,2019
+2001,46,"(45,50]",HS,374.1530221882173,208.33760512700084,1.795897682322578,6219.437707790243,2019
+2001,46,"(45,50]",HS,156.30723794950268,65.42833880021514,2.3889837464280648,6041.567640374032,2019
+2001,46,"(45,50]",HS,325.4880183626626,280.65313748513336,1.159751931794827,6131.734676741229,2019
+2001,59,"(55,60]",College,301055.07268553943,5285.921055701591,56.95413713392678,14.608140502550564,2019
+2001,59,"(55,60]",College,309327.4537107881,5285.921055701591,58.519120972708436,15.874372334474874,2019
+2001,59,"(55,60]",College,309159.0429992349,5285.921055701591,58.48726073306836,15.508857024996303,2019
+2001,59,"(55,60]",College,315245.6003060444,4597.201699909853,68.57336720993253,15.245517375064313,2019
+2001,59,"(55,60]",College,297195.5210405509,5268.703071806798,56.407718747876515,16.088342421621903,2019
+2001,59,"(55,60]",College,53353.88615149197,3116.455084957616,17.120056184675477,10.33298516436616,2019
+2001,59,"(55,60]",College,50998.81469013007,3133.6730688524094,16.274452876734355,10.885853919327733,2019
+2001,59,"(55,60]",College,49913.35241009946,3116.455084957616,16.016066668510415,11.043925163074842,2019
+2001,59,"(55,60]",College,51102.77398622801,3116.455084957616,16.39772516950072,10.89346443861697,2019
+2001,59,"(55,60]",College,50851.49716908952,3116.455084957616,16.317096118130355,11.194517760457467,2019
+2001,81,"(80,85]",HS,16124.572302983932,7696.438800972677,2.0950692547501455,18.832043254736853,2019
+2001,81,"(80,85]",HS,18242.261667941853,5595.844765807874,3.2599656408281747,18.95502609227419,2019
+2001,81,"(80,85]",HS,15270.800306044375,6009.076379282916,2.5412891003836258,19.23100953311062,2019
+2001,81,"(80,85]",HS,18053.09257842387,3650.2125856962125,4.9457647067370925,18.741276091598614,2019
+2001,81,"(80,85]",HS,16116.201989288447,3753.520489064974,4.293623023036461,18.5383937669174,2019
+2001,40,"(35,40]",College,522.6423871461362,120.5258872635542,4.336349634193301,7191.5984530499245,2019
+2001,40,"(35,40]",College,522.6423871461362,120.5258872635542,4.336349634193301,6539.729627678454,2019
+2001,40,"(35,40]",College,522.4749808722265,120.5258872635542,4.334960668903681,6109.802714146985,2019
+2001,40,"(35,40]",College,522.4749808722265,120.5258872635542,4.334960668903681,6838.408963689039,2019
+2001,40,"(35,40]",College,522.4749808722265,120.5258872635542,4.334960668903681,6575.166008680664,2019
+2001,74,"(70,75]",College,7455.605814843153,592.298645980895,12.587578690976171,1234.7526833263498,2019
+2001,74,"(70,75]",College,20198.571384850806,879.8389770239457,22.957122737585973,1260.6855620014728,2019
+2001,74,"(70,75]",College,8321.096250956389,277.20954070617466,30.017351602541872,1257.1088793041233,2019
+2001,74,"(70,75]",College,7117.445141545524,487.26894422265485,14.606810522062016,1255.137315547295,2019
+2001,74,"(70,75]",College,20322.284621270082,879.8389770239457,23.09773168950776,1253.5985778056147,2019
+2001,58,"(55,60]",College,11808.838561591432,898.7787593082185,13.138760166829693,713.8557585682681,2019
+2001,58,"(55,60]",College,11808.838561591432,898.7787593082185,13.138760166829693,714.5776907564995,2019
+2001,58,"(55,60]",College,11808.838561591432,898.7787593082185,13.138760166829693,729.5868837457498,2019
+2001,58,"(55,60]",College,11808.838561591432,898.7787593082185,13.138760166829693,716.9588994865874,2019
+2001,58,"(55,60]",College,12455.026778882937,898.7787593082185,13.857722659655924,724.93981615283,2019
+2001,26,"(25,30]",HS,32.97903596021423,13.774387115834767,2.3942289179822875,7894.2496529202135,2019
+2001,26,"(25,30]",HS,22.93465952563122,17.21798389479346,1.3320177127454755,7893.0042211820155,2019
+2001,26,"(25,30]",HS,48.045600612088755,12.569128243199225,3.8225085847210427,7886.3402305328345,2019
+2001,26,"(25,30]",HS,27.956847742922726,17.045804055845522,1.640101437945104,7853.514632331493,2019
+2001,26,"(25,30]",HS,44.697475133894415,12.224768565303355,3.65630440323884,7898.1959938519885,2019
+2001,64,"(60,65]",NoHS,376.83152257077273,141.18746793730637,2.669015374212271,7680.0951996408085,2019
+2001,64,"(60,65]",NoHS,376.83152257077273,137.74387115834767,2.7357407585675775,8100.688989705877,2019
+2001,64,"(60,65]",NoHS,370.13527161438407,161.84904861105852,2.286916573132665,8166.180408924367,2019
+2001,64,"(60,65]",NoHS,371.80933435348123,139.46566954782702,2.6659559700889437,7956.922776900306,2019
+2001,64,"(60,65]",NoHS,375.15745983167557,144.63106471626506,2.593892678365146,8036.441483415265,2019
+2001,81,"(80,85]",College,144773.1130833971,1842.3242767429003,78.58177570093457,202.8930943971488,2019
+2001,81,"(80,85]",College,145426.66717674062,1893.9782284272803,76.78370584940666,205.7612511507222,2019
+2001,81,"(80,85]",College,144817.14093343535,1663.2572442370479,87.06839632606824,211.399025465056,2019
+2001,81,"(80,85]",College,145578.33726090283,1825.1062928481062,79.76430623869342,209.73517354273253,2019
+2001,81,"(80,85]",College,144767.9234889059,1573.723727984122,91.99068484170846,216.14594743840863,2019
+2001,33,"(30,35]",HS,30.334016832440703,60.2629436317771,0.5033610209582485,7909.0006536161745,2019
+2001,33,"(30,35]",HS,36.71219586840092,60.2629436317771,0.6092001760272843,8011.62924016053,2019
+2001,33,"(30,35]",HS,40.043580719204286,60.2629436317771,0.664480994554156,8075.58498722855,2019
+2001,33,"(30,35]",HS,30.350757459831676,60.2629436317771,0.5036388140161726,7905.338084370162,2019
+2001,33,"(30,35]",HS,38.21885233358837,60.2629436317771,0.6342015512404423,8003.365378569045,2019
+2001,83,"(80,85]",HS,60.668033664881406,17.21798389479346,3.5235271467077394,5891.1276622433015,2019
+2001,83,"(80,85]",HS,60.668033664881406,17.21798389479346,3.5235271467077394,5888.8177738896875,2019
+2001,83,"(80,85]",HS,60.668033664881406,17.21798389479346,3.5235271467077394,5915.930483255716,2019
+2001,83,"(80,85]",HS,60.668033664881406,17.21798389479346,3.5235271467077394,5932.4327644282,2019
+2001,83,"(80,85]",HS,60.668033664881406,17.21798389479346,3.5235271467077394,5929.315769702551,2019
+2001,44,"(40,45]",HS,207.7511859219587,284.09673426409205,0.7312691800562421,8614.555256552097,2019
+2001,44,"(40,45]",HS,188.13117061973986,111.91689531615746,1.6809898995882826,7839.409528645531,2019
+2001,44,"(40,45]",HS,290.952104055088,285.8185326535714,1.017960946597325,7323.107545091264,2019
+2001,44,"(40,45]",College,181.3177352716144,284.09673426409205,0.6382253415946139,8194.156589094595,2019
+2001,44,"(40,45]",HS,178.73967865340475,80.92452430552926,2.2087207825723625,7873.810766361406,2019
+2001,47,"(45,50]",College,11249.701606732975,1422.2054697099395,7.910039615462431,244.8907549895053,2019
+2001,47,"(45,50]",College,11241.33129303749,1422.2054697099395,7.904154169319974,235.69937991085098,2019
+2001,47,"(45,50]",College,11623.017597551647,1422.2054697099395,8.172530513416023,245.5275906668638,2019
+2001,47,"(45,50]",College,11254.723794950267,1422.2054697099395,7.913570883147905,239.58875832244925,2019
+2001,47,"(45,50]",College,11211.198163733741,1422.2054697099395,7.882966563207128,236.7943387558627,2019
+2001,29,"(25,30]",College,-0.5859219586840092,68.87193557917384,-0.008507412398921832,5089.0682730654535,2019
+2001,29,"(25,30]",College,7.164988523335884,68.87193557917384,0.10403350019252984,5051.27932090537,2019
+2001,29,"(25,30]",College,5.139372609028309,68.87193557917384,0.07462216018482865,5056.842354439159,2019
+2001,29,"(25,30]",College,0.3348125478194338,68.87193557917384,0.0048613785136696185,5090.052257473061,2019
+2001,29,"(25,30]",College,-5.156113236419281,68.87193557917384,-0.07486522911051213,5042.486580298073,2019
+2001,54,"(50,55]",HS,330.12517214996177,24.105177452710844,13.695197755652126,5915.400371206701,2019
+2001,54,"(50,55]",HS,295.3046671767407,24.105177452710844,12.25067385444744,6165.856482282199,2019
+2001,54,"(50,55]",HS,338.4954858454476,24.105177452710844,14.042439078057098,6193.845730266197,2019
+2001,54,"(50,55]",HS,358.9190512624331,24.105177452710844,14.889707904725231,6025.331426968707,2019
+2001,54,"(50,55]",HS,464.3850038255547,24.105177452710844,19.264948567027886,6105.557860687157,2019
+2001,22,"(20,25]",HS,2.2265034429992347,36.157766179066265,0.061577461173148496,5565.771386013077,2019
+2001,22,"(20,25]",HS,2.1428003060443768,36.157766179066265,0.059262519023782025,5514.521273963185,2019
+2001,22,"(20,25]",HS,2.0088752869166027,36.157766179066265,0.05555861158479563,5514.318344972805,2019
+2001,22,"(20,25]",HS,2.109319051262433,36.157766179066265,0.05833654216403542,5499.119406016369,2019
+2001,22,"(20,25]",HS,2.293465952563122,36.157766179066265,0.0634294148926417,5491.20572116686,2019
+2001,70,"(65,70]",College,513544.6931905126,33781.68440158476,15.20186758853331,18.01293583972238,2019
+2001,70,"(65,70]",College,527455.3175210406,32025.450044315832,16.469879948327474,19.60781902692309,2019
+2001,70,"(65,70]",College,522982.18840091815,33092.965045793026,15.80342491756878,19.13956903634376,2019
+2001,70,"(65,70]",College,518047.78803366487,35434.610855484934,14.619824389957314,18.800585208567487,2019
+2001,70,"(65,70]",College,519868.2977811783,33127.40101358261,15.69299980907124,19.8680209352054,2019
+2001,56,"(55,60]",College,780.61545524101,180.7888308953313,4.317830096998368,7720.330929164603,2019
+2001,56,"(55,60]",College,782.2895179801071,180.7888308953313,4.327089865595834,7019.181386214625,2019
+2001,56,"(55,60]",College,782.2895179801071,180.7888308953313,4.327089865595834,6562.499988675762,2019
+2001,56,"(55,60]",College,782.2895179801071,180.7888308953313,4.327089865595834,7347.639824086305,2019
+2001,56,"(55,60]",College,782.2895179801071,180.7888308953313,4.327089865595834,7056.977495505502,2019
+2001,58,"(55,60]",NoHS,0,11.019509692667812,0,4807.709904626376,2019
+2001,58,"(55,60]",NoHS,0,11.019509692667812,0,4836.335676500802,2019
+2001,58,"(55,60]",NoHS,0,11.019509692667812,0,4800.898250646723,2019
+2001,58,"(55,60]",NoHS,0,11.019509692667812,0,4825.387431906748,2019
+2001,58,"(55,60]",NoHS,0,11.019509692667812,0,4823.137637978459,2019
+2001,34,"(30,35]",College,130.24208110175977,111.91689531615746,1.163739225733835,8197.46584435938,2019
+2001,34,"(30,35]",College,65.28844682478959,111.91689531615746,0.5833654216403542,8219.021145391758,2019
+2001,34,"(30,35]",College,55.57888293802601,111.91689531615746,0.4966085127810196,8289.948074757107,2019
+2001,34,"(30,35]",College,163.38852333588372,111.91689531615746,1.4599093628743227,8164.93260191747,2019
+2001,34,"(30,35]",College,56.415914307574596,111.91689531615746,0.5040875566482036,8213.50259179098,2019
+2001,68,"(65,70]",HS,465.389441469013,163.57084700053784,2.845185740631903,7186.727967311008,2019
+2001,68,"(65,70]",HS,525.6557000765112,163.57084700053784,3.2136270595626537,6469.120424629865,2019
+2001,68,"(65,70]",HS,691.3879112471309,163.57084700053784,4.226840686622216,6107.333873966327,2019
+2001,68,"(65,70]",HS,462.04131599081865,163.57084700053784,2.824716778469084,6823.184103998794,2019
+2001,68,"(65,70]",HS,1484.893649579189,163.57084700053784,9.077984719210425,3394.2432440578787,2019
+2001,74,"(70,75]",HS,1645.4362662586075,77.48092752657055,21.23666196038164,8302.793129763182,2019
+2001,74,"(70,75]",HS,2257.4736036725326,77.48092752657055,29.135861891926584,3758.7114541650867,2019
+2001,74,"(70,75]",HS,2745.7977046671767,68.87193557917384,39.86816519060454,4641.170246655884,2019
+2001,74,"(70,75]",HS,1700.4794491201226,82.64632269500859,20.575379444230524,7799.931903220046,2019
+2001,74,"(70,75]",HS,1865.9103289977047,84.36812108448795,22.11629588300472,3940.6484032915346,2019
+2001,75,"(70,75]",College,3282.502218821729,254.82616164294322,12.881339175139711,2149.998953152172,2019
+2001,75,"(70,75]",College,3557.048508033665,246.21716969554646,14.446793099084204,3633.9889219487354,2019
+2001,75,"(70,75]",College,4221.651415455241,254.82616164294322,16.56678964293519,3732.726985571312,2019
+2001,75,"(70,75]",College,3007.955929609793,253.10436325346384,11.884251582804858,2129.024599093268,2019
+2001,75,"(70,75]",College,3009.7973986228003,258.2697584219018,11.653696572968812,2133.974957820451,2019
+2001,37,"(35,40]",HS,95.30439173680183,129.1348792109509,0.7380220767552305,1555.0877726057647,2019
+2001,37,"(35,40]",HS,104.22714613618976,129.1348792109509,0.8071184700295214,1644.513862081479,2019
+2001,37,"(35,40]",HS,113.70234123947972,129.1348792109509,0.8804928763958415,1618.9138274691268,2019
+2001,37,"(35,40]",HS,100.89576128538638,129.1348792109509,0.7813207547169813,1593.8341927238364,2019
+2001,37,"(35,40]",HS,117.06720734506504,129.1348792109509,0.9065498652291107,1569.7987909370029,2019
+2001,50,"(45,50]",College,401.1221729150727,75.75912913709122,5.294704116638079,8060.655428623036,2019
+2001,50,"(45,50]",College,336.15179801071156,75.75912913709122,4.437112752476634,8670.142402681855,2019
+2001,50,"(45,50]",College,355.40351951032903,75.75912913709122,4.691230265691182,8470.08268788652,2019
+2001,50,"(45,50]",College,368.9634276970161,75.75912913709122,4.870217383694472,8294.042786562894,2019
+2001,50,"(45,50]",College,504.3114001530222,75.75912913709122,6.656773987468057,11386.752961154238,2019
+2001,59,"(55,60]",HS,4128.5735271614385,189.39782284272803,21.79842125529457,3687.287979209405,2019
+2001,59,"(55,60]",HS,4128.5735271614385,189.39782284272803,21.79842125529457,3633.9889219487354,2019
+2001,59,"(55,60]",HS,4128.5735271614385,189.39782284272803,21.79842125529457,3732.726985571312,2019
+2001,59,"(55,60]",HS,4128.5735271614385,189.39782284272803,21.79842125529457,3619.162569798528,2019
+2001,59,"(55,60]",HS,4128.5735271614385,189.39782284272803,21.79842125529457,3597.716146931495,2019
+2001,82,"(80,85]",HS,423.5378729915838,22.383379063231494,18.921980983975594,11172.709993096712,2019
+2001,82,"(80,85]",HS,423.5378729915838,22.383379063231494,18.921980983975594,11512.871534250906,2019
+2001,82,"(80,85]",HS,423.5378729915838,22.383379063231494,18.921980983975594,11582.962574235951,2019
+2001,82,"(80,85]",HS,423.5378729915838,24.105177452710844,17.57041091369162,11487.197979589339,2019
+2001,82,"(80,85]",HS,423.5378729915838,22.383379063231494,18.921980983975594,11429.63349038418,2019
+2001,54,"(50,55]",College,14923.599693955624,1463.528631057444,10.196998799519807,298.1170901947365,2019
+2001,54,"(50,55]",College,15275.15286916603,1463.528631057444,10.437208090783482,287.5135111000577,2019
+2001,54,"(50,55]",College,13448.750420811019,1463.528631057444,9.189263629980294,299.21915357724225,2019
+2001,54,"(50,55]",College,13328.217903596022,1463.528631057444,9.10690615868989,291.7502259500151,2019
+2001,54,"(50,55]",College,16282.938638102525,1463.528631057444,11.125808059072686,288.66257981899935,2019
+2001,47,"(45,50]",College,2536.205049732211,814.4106382237306,3.1141600203845545,1147.9584782204806,2019
+2001,47,"(45,50]",College,2533.693955623565,814.4106382237306,3.1110766936316985,1138.9741511104671,2019
+2001,47,"(45,50]",College,2533.0243305279264,814.4106382237306,3.1102544731642703,1198.3927970717987,2019
+2001,47,"(45,50]",College,2533.911583779648,814.4106382237306,3.1113439152836126,1170.4360794213985,2019
+2001,47,"(45,50]",College,2535.200612088753,814.4106382237306,3.1129266896834125,1168.9720616875086,2019
+2001,42,"(40,45]",HS,1266.595868400918,516.5395168438037,2.452079322294956,432.4113426129258,2019
+2001,42,"(40,45]",HS,1672.0538638102523,523.4267104017212,3.1944374075350095,424.4841455405034,2019
+2001,42,"(40,45]",HS,13674.414078041314,308.2019117168029,44.36836229168593,1458.2108906091098,2019
+2001,42,"(40,45]",HS,854.2742157612854,501.04333133848974,1.7049906910828907,429.0587101710809,2019
+2001,42,"(40,45]",HS,1129.3227237949502,686.997557402259,1.6438526041711903,445.7308707321719,2019
+2001,41,"(40,45]",College,1059.5143075745984,158.40545183209983,6.688622741959787,6782.675859057257,2019
+2001,41,"(40,45]",College,1059.3469013006886,158.40545183209983,6.68756592054377,6169.719843488872,2019
+2001,41,"(40,45]",College,1059.3469013006886,158.40545183209983,6.68756592054377,5767.505967841503,2019
+2001,41,"(40,45]",College,1059.3469013006886,158.40545183209983,6.68756592054377,6449.985225868663,2019
+2001,41,"(40,45]",College,1059.5143075745984,156.68365344262045,6.762124090772533,6201.255534762568,2019
+2001,71,"(70,75]",HS,1453.4212700841622,94.69891142136402,15.34781391115623,7104.477353755165,2019
+2001,71,"(70,75]",HS,1372.2292272379495,94.69891142136402,14.490443518745407,6494.412247159642,2019
+2001,71,"(70,75]",HS,1676.7412394797245,94.69891142136402,17.70602443378724,5973.654047244553,2019
+2001,71,"(70,75]",HS,1454.2583014537108,94.69891142136402,15.356652781181085,6673.149844671409,2019
+2001,71,"(70,75]",HS,1446.7250191277735,92.97711303188467,15.560012264864017,6468.666749239301,2019
+2001,68,"(65,70]",HS,17384.304514154555,666.3359767285069,26.08939802336029,13.150832014261088,2019
+2001,68,"(65,70]",HS,18828.18362662586,3254.198956115964,5.785812078649968,12.836818983246996,2019
+2001,68,"(65,70]",HS,24114.03672532517,1303.4013808358648,18.50085252315826,13.197324499539812,2019
+2001,68,"(65,70]",HS,17082.136189747514,1739.0163733741392,9.822872545244513,13.223261151766664,2019
+2001,68,"(65,70]",HS,21234.648814078042,2944.2752460096813,7.212181959841202,12.73333182905233,2019
+2001,38,"(35,40]",HS,104.54521805661821,94.69891142136402,1.1039748661042461,8098.921710786303,2019
+2001,38,"(35,40]",HS,104.37781178270849,94.69891142136402,1.1022070920992755,8399.496815876944,2019
+2001,38,"(35,40]",HS,104.54521805661821,94.69891142136402,1.1039748661042461,8478.003417732576,2019
+2001,38,"(35,40]",HS,104.54521805661821,94.69891142136402,1.1039748661042461,8225.815342715563,2019
+2001,38,"(35,40]",HS,104.54521805661821,94.69891142136402,1.1039748661042461,8414.499163449053,2019
+2001,65,"(60,65]",HS,9966.867329762817,132.5784759899096,75.17711495281772,1581.5078692611544,2019
+2001,65,"(60,65]",HS,9104.222800306045,228.99918580075305,39.75657279509902,1572.8769112609634,2019
+2001,65,"(60,65]",HS,8936.950451415456,113.63869370563681,78.64355141713634,1636.9186233659482,2019
+2001,65,"(60,65]",HS,7370.3960214231065,137.74387115834767,53.507977955333075,1565.6658389555898,2019
+2001,65,"(60,65]",HS,6790.835501147666,218.6683954638769,31.055404631024896,1543.2006300445505,2019
+2001,31,"(30,35]",College,16.742301453710787,146.35286310574438,0.11439681532990556,4331.2971496716,2019
+2001,31,"(30,35]",College,16.742301453710787,146.35286310574438,0.11439681532990556,4353.503475675085,2019
+2001,31,"(30,35]",College,16.742301453710787,146.35286310574438,0.11439681532990556,4365.999442205712,2019
+2001,31,"(30,35]",College,16.742301453710787,146.35286310574438,0.11439681532990556,4360.054104268122,2019
+2001,31,"(30,35]",College,16.742301453710787,146.35286310574438,0.11439681532990556,4332.583977796088,2019
+2001,35,"(30,35]",HS,18.582096403978575,111.91689531615746,0.16603477385148543,6392.72176925582,2019
+2001,35,"(30,35]",HS,16.740627390971692,111.91689531615746,0.1495808773436806,6586.203729878704,2019
+2001,35,"(30,35]",HS,18.41469013006886,111.91689531615746,0.16453896507804863,6657.970440125346,2019
+2001,35,"(30,35]",HS,16.573221117061973,111.91689531615746,0.14808506857024378,6513.677631119363,2019
+2001,35,"(30,35]",HS,16.740627390971692,111.91689531615746,0.1495808773436806,6558.33576588571,2019
+2001,32,"(30,35]",HS,-20.875562356541696,60.2629436317771,-0.34640794323120083,5878.620471014777,2019
+2001,32,"(30,35]",HS,-22.013925019127775,60.2629436317771,-0.36529787117003143,5821.926750292909,2019
+2001,32,"(30,35]",HS,-18.297505738332056,60.2629436317771,-0.3036278123109082,5818.608742548333,2019
+2001,32,"(30,35]",HS,-20.50726855394032,60.2629436317771,-0.34029649595687333,5847.648153543008,2019
+2001,32,"(30,35]",HS,-20.473787299158378,60.2629436317771,-0.3397409098410254,5839.295250215314,2019
+2001,59,"(55,60]",College,44232.286579954096,594.0204443703743,74.46256606005815,241.75813909886023,2019
+2001,59,"(55,60]",College,44232.58791124714,594.0204443703743,74.46307333433785,249.93014634188572,2019
+2001,59,"(55,60]",College,44231.081254781944,594.0204443703743,74.4605369629394,241.00059746156415,2019
+2001,59,"(55,60]",College,44231.248661055855,594.0204443703743,74.46081878198368,239.77296928539764,2019
+2001,59,"(55,60]",College,44231.41606732977,594.0204443703743,74.46110060102795,239.396409486123,2019
+2001,20,"(15,20]",HS,-11.718439173680185,68.87193557917384,-0.17014824797843667,7567.310858257979,2019
+2001,20,"(15,20]",HS,-11.718439173680185,68.87193557917384,-0.17014824797843667,7497.63039484967,2019
+2001,20,"(15,20]",HS,-11.8858454475899,68.87193557917384,-0.17257893723527143,7497.354489382868,2019
+2001,20,"(15,20]",HS,-11.718439173680185,68.87193557917384,-0.17014824797843667,7476.689771444927,2019
+2001,20,"(15,20]",HS,-11.718439173680185,68.87193557917384,-0.17014824797843667,7465.930200284488,2019
+2001,21,"(20,25]",NoHS,-0.5691813312930375,20.661580673752148,-0.027547811577461175,5084.444822874413,2019
+2001,21,"(20,25]",NoHS,-0.5691813312930375,46.488556515942335,-0.012243471812204967,5101.334483126738,2019
+2001,21,"(20,25]",NoHS,-0.5691813312930375,36.157766179066265,-0.015741606615692096,5110.160823743833,2019
+2001,21,"(20,25]",NoHS,-0.5691813312930375,22.383379063231494,-0.0254287491484257,5055.932414890085,2019
+2001,21,"(20,25]",NoHS,-0.5691813312930375,25.826975842190187,-0.02203824926196894,5064.171736985974,2019
+2001,54,"(50,55]",College,14483.505340474368,819.5760333921686,17.671948361554865,369.3612393273137,2019
+2001,54,"(50,55]",College,15069.008783473604,707.6591380760111,21.294162645088335,347.0640763287968,2019
+2001,54,"(50,55]",College,14773.28560061209,485.54714583317553,30.42605795830978,369.9936353274847,2019
+2001,54,"(50,55]",College,13454.525937260903,680.1103638443416,19.78285680166502,364.8164387193219,2019
+2001,54,"(50,55]",College,12829.78246365723,490.7125410016135,26.14521006019091,351.7644536539717,2019
+2001,34,"(30,35]",HS,4.771078806426932,37.87956456854561,0.12595389785416738,4955.602256008767,2019
+2001,34,"(30,35]",HS,-4.118194338179036,14.979645988470308,-0.2749193366351095,4907.810170825501,2019
+2001,34,"(30,35]",HS,-1.9419127773527163,34.43596778958692,-0.05639199075856758,4905.013132515999,2019
+2001,34,"(30,35]",HS,0.5691813312930375,60.2629436317771,0.00944496396941526,4929.492986479683,2019
+2001,34,"(30,35]",HS,-6.72973221117062,34.43596778958692,-0.19542741624951868,4922.451595258897,2019
+2001,54,"(50,55]",HS,196.92000000000002,129.1348792109509,1.5249172121678864,7065.403804204989,2019
+2001,54,"(50,55]",HS,196.92000000000002,129.1348792109509,1.5249172121678864,7364.550683356676,2019
+2001,54,"(50,55]",HS,196.90325937260903,129.1348792109509,1.5247875754075217,7397.981275839569,2019
+2001,54,"(50,55]",HS,195.24593726090285,129.1348792109509,1.511953536131434,7196.706378982815,2019
+2001,54,"(50,55]",HS,196.92000000000002,129.1348792109509,1.5249172121678864,7292.529504117539,2019
+2001,40,"(35,40]",HS,-4.987032899770466,43.04495973698364,-0.11585637273777435,5943.30915666931,2019
+2001,40,"(35,40]",HS,-4.987032899770466,44.76675812646299,-0.1114003584017061,5932.445419802156,2019
+2001,40,"(35,40]",HS,-4.987032899770466,43.04495973698364,-0.11585637273777435,5966.9647733638985,2019
+2001,40,"(35,40]",HS,-4.987032899770466,44.76675812646299,-0.1114003584017061,5935.656412492181,2019
+2001,40,"(35,40]",HS,-4.987032899770466,43.04495973698364,-0.11585637273777435,6014.456614058734,2019
+2001,46,"(45,50]",HS,152.17230298393267,70.59373396865318,2.155606375085699,5952.451257070132,2019
+2001,46,"(45,50]",HS,257.13603672532514,65.42833880021514,3.930040735261333,6204.47609049795,2019
+2001,46,"(45,50]",HS,236.87987758224943,44.76675812646299,5.291423536032701,6232.64064807511,2019
+2001,46,"(45,50]",HS,160.5593573068095,61.984742021256444,2.5903045180336286,6063.070861830394,2019
+2001,46,"(45,50]",HS,251.94644223412394,51.653951684380374,4.877583108715184,6143.799790773578,2019
+2001,60,"(55,60]",HS,526.9949502677888,105.0297017582401,5.017580183944904,7161.09544594195,2019
+2001,60,"(55,60]",HS,528.669013006886,105.0297017582401,5.033519129891363,7484.637820280363,2019
+2001,60,"(55,60]",HS,526.9949502677888,105.0297017582401,5.017580183944904,7527.126788390745,2019
+2001,60,"(55,60]",HS,528.8364192807958,105.0297017582401,5.035113024486009,7344.757155463187,2019
+2001,60,"(55,60]",HS,528.669013006886,105.0297017582401,5.033519129891363,7406.393512604702,2019
+2001,54,"(50,55]",College,13392.501912777354,757.5912913709121,17.677740049707708,219.54883366126714,2019
+2001,54,"(50,55]",College,12490.18209640398,757.5912913709121,16.48670231385865,211.70343736036466,2019
+2001,54,"(50,55]",College,14336.673297628156,757.5912913709121,18.9240207232121,220.50240142053212,2019
+2001,54,"(50,55]",College,13400.872226472839,757.5912913709121,17.688788637238773,214.8371523524081,2019
+2001,54,"(50,55]",College,12337.842387146136,757.5912913709121,16.285618020793223,212.73597155617898,2019
+2001,28,"(25,30]",College,335.98439173680185,86.08991947396729,3.90271467077397,8197.46584435938,2019
+2001,28,"(25,30]",College,335.8169854628921,86.08991947396729,3.900770119368502,8219.021145391758,2019
+2001,28,"(25,30]",College,334.4777352716144,86.08991947396729,3.8852137081247595,8289.948074757107,2019
+2001,28,"(25,30]",College,335.98439173680185,86.08991947396729,3.90271467077397,8164.93260191747,2019
+2001,28,"(25,30]",College,335.98439173680185,86.08991947396729,3.90271467077397,8213.50259179098,2019
+2001,66,"(65,70]",College,58691.46778882938,1327.5065582885754,44.211810045213305,232.6198827127451,2019
+2001,66,"(65,70]",College,63201.89502677888,1236.2512436461702,51.12382725729174,205.7612511507222,2019
+2001,66,"(65,70]",College,66234.30901300689,1327.5065582885754,49.893771597178635,211.399025465056,2019
+2001,66,"(65,70]",College,61388.90182096404,1327.5065582885754,46.24376537928879,238.02261183877985,2019
+2001,66,"(65,70]",College,64465.97980107115,1327.5065582885754,48.561703442113945,216.14594743840863,2019
+2001,63,"(60,65]",College,2400.187452180566,189.39782284272803,12.672729898134211,11372.833544071005,2019
+2001,63,"(60,65]",College,2472.0884468247896,189.39782284272803,13.052359365701683,11057.720725793351,2019
+2001,63,"(60,65]",College,2434.7568477429227,189.39782284272803,12.855252564147444,13377.496463922676,2019
+2001,63,"(60,65]",College,2415.906901300689,189.39782284272803,12.75572688766759,11305.465226834665,2019
+2001,63,"(60,65]",College,2498.2038255547054,189.39782284272803,13.190245738089404,11291.18149259581,2019
+2001,51,"(50,55]",College,4740.276052027544,666.3359767285069,7.113942842019065,3431.1382828232577,2019
+2001,51,"(50,55]",College,4320.086304514155,668.0577751179861,6.466635769265887,3469.036509348287,2019
+2001,51,"(50,55]",College,4482.47039020658,666.3359767285069,6.72704243317921,3465.202477901739,2019
+2001,51,"(50,55]",College,4489.1666411629685,668.0577751179861,6.719728155802294,3469.695542292023,2019
+2001,51,"(50,55]",College,4780.453557765876,668.0577751179861,7.155748702904621,3436.168733315952,2019
+2001,89,"(85,90]",NoHS,153.34414690130072,20.661580673752148,7.421704530868953,8888.750324912173,2019
+2001,89,"(85,90]",NoHS,153.17674062739098,20.661580673752148,7.41360223334617,8824.899713044815,2019
+2001,89,"(85,90]",NoHS,153.00933435348125,20.661580673752148,7.405499935823387,8900.562397997102,2019
+2001,89,"(85,90]",NoHS,154.01377199693957,20.661580673752148,7.454113720960083,8930.8954710324,2019
+2001,89,"(85,90]",NoHS,153.17674062739098,20.661580673752148,7.41360223334617,8888.390735708037,2019
+2001,41,"(40,45]",HS,57.75516449885233,129.1348792109509,0.44724682325760495,6142.8360855582405,2019
+2001,41,"(40,45]",HS,57.92257077276206,129.1348792109509,0.4485431908612503,6408.790767696626,2019
+2001,41,"(40,45]",HS,57.75516449885233,129.1348792109509,0.44724682325760495,6490.072452719165,2019
+2001,41,"(40,45]",HS,57.58775822494262,129.1348792109509,0.4459504556539598,6299.401940713054,2019
+2001,41,"(40,45]",HS,57.75516449885233,129.1348792109509,0.44724682325760495,6362.082654722647,2019
+2004,45,"(40,45]",College,8687.577737881507,967.9238427826717,8.975476534296027,411.3802887864772,2019
+2004,45,"(40,45]",College,10023.161220825854,967.9238427826717,10.355320096269555,400.65977290232183,2019
+2004,45,"(40,45]",College,10244.710951526033,967.9238427826717,10.584211793020456,427.74796294974794,2019
+2004,45,"(40,45]",College,10181.859964093357,967.9238427826717,10.51927797833935,406.08022115708366,2019
+2004,45,"(40,45]",College,8673.436265709157,967.9238427826717,8.96086642599278,415.84491171919717,2019
+2004,52,"(50,55]",College,6471.451921005386,967.9238427826717,6.685910228640192,470.97551518181336,2019
+2004,52,"(50,55]",College,6471.451921005386,967.9238427826717,6.685910228640192,471.28530853515394,2019
+2004,52,"(50,55]",College,6471.451921005386,967.9238427826717,6.685910228640192,482.31635596667536,2019
+2004,52,"(50,55]",College,6471.451921005386,967.9238427826717,6.685910228640192,467.89929129492793,2019
+2004,52,"(50,55]",College,6471.451921005386,967.9238427826717,6.685910228640192,471.49876877069954,2019
+2004,56,"(55,60]",College,93386.60544344704,8066.032023188931,11.577762792779783,29.35650823389555,2019
+2004,56,"(55,60]",College,93387.2653788151,8066.032023188931,11.577844609386283,30.29644577155334,2019
+2004,56,"(55,60]",College,93387.45393177737,8066.032023188931,11.577867985559566,29.722027912855282,2019
+2004,56,"(55,60]",College,93386.16548653501,8066.032023188931,11.577708248375451,28.98419262984593,2019
+2004,56,"(55,60]",College,93387.1082513465,8066.032023188931,11.577825129241877,29.1175918322915,2019
+2004,60,"(55,60]",HS,1352.3961220825852,148.4149892266763,9.112261026526447,898.7062991497202,2019
+2004,60,"(55,60]",HS,1350.8248473967685,148.4149892266763,9.101673991524095,862.8024270166218,2019
+2004,60,"(55,60]",HS,1352.3175583482944,150.02819563131413,9.013756065370131,912.8100791045277,2019
+2004,60,"(55,60]",HS,1353.967396768402,150.02819563131413,9.024752921082253,843.8586561096192,2019
+2004,60,"(55,60]",HS,1353.9831095152604,151.6414020359519,8.928848529072893,909.4911583246861,2019
+2004,39,"(35,40]",HS,48.868214003590666,64.52825618551145,0.7573149638989168,4675.901098651688,2019
+2004,39,"(35,40]",HS,48.868214003590666,64.52825618551145,0.7573149638989168,4458.8871669572945,2019
+2004,39,"(35,40]",HS,50.753743626570916,64.52825618551145,0.786535180505415,4673.054325249725,2019
+2004,39,"(35,40]",HS,48.711086535008974,64.52825618551145,0.7548799458483753,4647.828977576074,2019
+2004,39,"(35,40]",HS,49.96810628366248,64.52825618551145,0.7743600902527075,4590.4229228581735,2019
+2004,76,"(75,80]",HS,1786.5393177737883,574.3014800510518,3.1108039589502297,237.41283090716033,2019
+2004,76,"(75,80]",HS,1797.5382405745063,574.3014800510518,3.129955786314039,242.83538571055314,2019
+2004,76,"(75,80]",HS,1810.1084380610414,574.3014800510518,3.151843589015536,236.0649872843409,2019
+2004,76,"(75,80]",HS,1770.8265709156194,574.3014800510518,3.0834442055733584,117.00299442641028,2019
+2004,76,"(75,80]",HS,1832.1062836624776,574.3014800510518,3.190147243743155,247.71998204478737,2019
+2004,63,"(60,65]",HS,520.2490484739677,161.69167793684528,3.217537569726813,665.4162647811534,2019
+2004,63,"(60,65]",HS,575.40078994614,161.69167793684528,3.5586295923707603,668.0069529882035,2019
+2004,63,"(60,65]",HS,783.4375583482945,161.69167793684528,4.845255911403772,673.3934223811809,2019
+2004,63,"(60,65]",HS,807.792315978456,161.69167793684528,4.995880593767908,619.8188668321961,2019
+2004,63,"(60,65]",HS,658.2069658886894,161.69167793684528,4.0707535124088245,669.3254080238974,2019
+2004,35,"(30,35]",NoHS,17.912531418312387,41.94336652058244,0.42706470424881976,5307.557524719257,2019
+2004,35,"(30,35]",NoHS,17.598276481149014,41.94336652058244,0.4195723410163844,5275.014325005164,2019
+2004,35,"(30,35]",NoHS,17.959669658886895,41.94336652058244,0.4281885587336851,5303.82279259934,2019
+2004,35,"(30,35]",NoHS,17.912531418312387,41.94336652058244,0.42706470424881976,5294.649856412013,2019
+2004,35,"(30,35]",NoHS,17.912531418312387,41.94336652058244,0.42706470424881976,5309.869769244748,2019
+2004,57,"(55,60]",College,22353.73931777379,4145.940459919111,5.391717400160136,22.73789405624878,2019
+2004,57,"(55,60]",College,22356.881867145425,4162.0725239654885,5.3715743150589095,23.291704880234516,2019
+2004,57,"(55,60]",College,22356.881867145425,4162.0725239654885,5.3715743150589095,24.0480260696677,2019
+2004,57,"(55,60]",College,22342.74039497307,4145.940459919111,5.389064462206238,22.2465250608988,2019
+2004,57,"(55,60]",College,22355.310592459606,4145.940459919111,5.392096391296407,23.47551273161569,2019
+2004,54,"(50,55]",HS,191.88406463195693,100.01879708754274,1.9184800279492258,7522.571689361781,2019
+2004,54,"(50,55]",HS,203.48007181328546,101.63200349218052,2.0021259526674693,6990.061941633826,2019
+2004,54,"(50,55]",HS,234.04136445242372,100.01879708754274,2.339973797601025,7559.46014965599,2019
+2004,54,"(50,55]",HS,174.17579892280074,101.63200349218052,1.71378889461922,7517.457771470962,2019
+2004,54,"(50,55]",HS,232.54865350089767,100.01879708754274,2.3250494934202863,7286.0899408944515,2019
+2004,74,"(70,75]",College,40750.223339317774,635.6033234272877,64.1126656160091,1348.4757155892573,2019
+2004,74,"(70,75]",College,40903.5797486535,796.9239638910664,51.326828658705914,1454.7770231336274,2019
+2004,74,"(70,75]",College,41103.76014362657,924.3672698574514,44.46691427095343,1350.438692812286,2019
+2004,74,"(70,75]",College,40999.42750448833,650.1221810690278,63.06418808395518,1460.0910371203622,2019
+2004,74,"(70,75]",College,40639.91985637343,834.0277111977355,48.72730163607036,1357.811171094922,2019
+2004,33,"(30,35]",College,36.453572710951526,48.39619213913358,0.7532322503008424,6828.818594689708,2019
+2004,33,"(30,35]",College,35.982190305206466,41.94336652058244,0.8578755901138574,6653.3971327489,2019
+2004,33,"(30,35]",College,35.825062836624774,75.82070101797595,0.47249711959443885,6855.758544471697,2019
+2004,33,"(30,35]",College,38.181974865350085,66.14146259014923,0.5772774500308179,6825.759083011842,2019
+2004,33,"(30,35]",College,38.02484739676841,41.94336652058244,0.9065759511246877,6806.5703982622945,2019
+2004,72,"(70,75]",College,158709.1136804309,3044.120485551502,52.136278584806945,27.768818387630876,2019
+2004,72,"(70,75]",College,150111.72710951525,3218.3467772523836,46.642496132026814,28.446810801806002,2019
+2004,72,"(70,75]",College,145048.2944344704,3092.516677690636,46.90299505281455,28.169819163329105,2019
+2004,72,"(70,75]",College,152613.35353680432,1677.7346608232976,90.96393911413496,27.36970347254667,2019
+2004,72,"(70,75]",College,152060.57910233393,2982.8186421752666,50.978821491956815,27.53974791481673,2019
+2004,74,"(70,75]",HS,139.45062836624774,38.716953711306864,3.6017975330926593,11989.64560264092,2019
+2004,74,"(70,75]",HS,139.43491561938959,38.716953711306864,3.6013916967509028,11178.246062592054,2019
+2004,74,"(70,75]",HS,139.43491561938959,38.716953711306864,3.6013916967509028,12556.700704461513,2019
+2004,74,"(70,75]",HS,139.45062836624774,38.716953711306864,3.6017975330926593,12109.016064315987,2019
+2004,74,"(70,75]",HS,139.43491561938959,38.716953711306864,3.6013916967509028,12031.240089562078,2019
+2004,27,"(25,30]",HS,5.342333931777379,37.10374730666908,0.14398367603202009,5334.56671973124,2019
+2004,27,"(25,30]",HS,5.342333931777379,37.10374730666908,0.14398367603202009,5317.338730317226,2019
+2004,27,"(25,30]",HS,5.342333931777379,37.10374730666908,0.14398367603202009,5303.617780957121,2019
+2004,27,"(25,30]",HS,5.342333931777379,37.10374730666908,0.14398367603202009,5353.978291120239,2019
+2004,27,"(25,30]",HS,5.342333931777379,37.10374730666908,0.14398367603202009,5298.811431123488,2019
+2004,51,"(50,55]",HS,891.7298096947935,108.08482911073166,8.250277277870575,5766.738061178858,2019
+2004,51,"(50,55]",HS,893.3010843806104,108.08482911073166,8.264814699067838,6418.867840084944,2019
+2004,51,"(50,55]",HS,891.8869371633753,108.08482911073166,8.251731019990302,5690.146570415371,2019
+2004,51,"(50,55]",HS,893.3010843806104,108.08482911073166,8.264814699067838,5704.39778155993,2019
+2004,51,"(50,55]",HS,893.4582118491921,106.47162270609388,8.391514932720709,5964.281386653506,2019
+2004,30,"(25,30]",College,23.631971274685817,87.11314585044046,0.2712790480010696,5014.957154040172,2019
+2004,30,"(25,30]",College,23.631971274685817,87.11314585044046,0.2712790480010696,4981.685040199086,2019
+2004,30,"(25,30]",College,22.060696588868943,87.11314585044046,0.2532418772563177,5018.92313376249,2019
+2004,30,"(25,30]",College,25.20324596050269,87.11314585044046,0.2893162187458216,5015.854787606576,2019
+2004,30,"(25,30]",College,23.631971274685817,87.11314585044046,0.2712790480010696,5008.979139112998,2019
+2004,74,"(70,75]",HS,78.5637342908438,40.33016011594465,1.948014440433213,6351.980854011342,2019
+2004,74,"(70,75]",HS,78.5637342908438,40.33016011594465,1.948014440433213,6040.97466641296,2019
+2004,74,"(70,75]",HS,78.72086175942549,40.33016011594465,1.9519104693140794,6644.339894773293,2019
+2004,74,"(70,75]",HS,78.72086175942549,40.33016011594465,1.9519104693140794,6443.557449503713,2019
+2004,74,"(70,75]",HS,78.72086175942549,40.33016011594465,1.9519104693140794,6474.554194630468,2019
+2004,75,"(70,75]",College,14823.876768402153,1213.1312162876152,12.21951637990629,309.30433785217014,2019
+2004,75,"(70,75]",College,10658.741831238778,1613.2064046377861,6.607177978339349,306.9329149080271,2019
+2004,75,"(70,75]",College,20783.87877917415,1758.394981055187,11.819801013479946,317.5809256661627,2019
+2004,75,"(70,75]",College,22640.96833034111,1245.395344380371,18.179743831952262,304.08709309169,2019
+2004,75,"(70,75]",College,6609.252710951526,1322.8292518029846,4.996300695606234,307.35725306476564,2019
+2004,40,"(35,40]",College,439.1728459605027,64.52825618551145,6.805899801444042,6071.9743210046945,2019
+2004,40,"(35,40]",College,561.5751439856374,66.14146259014923,8.490515963722814,5588.345643789868,2019
+2004,40,"(35,40]",College,453.3143181328546,67.75466899478702,6.690525167612171,6046.411150845551,2019
+2004,40,"(35,40]",College,497.1528818671454,77.43390742261373,6.420351218411553,4961.625983310526,2019
+2004,40,"(35,40]",College,445.3008172351885,77.43390742261373,5.750721254512635,5910.4887939152095,2019
+2004,77,"(75,80]",HS,246.87867863554757,77.43390742261373,3.1882503008423586,12749.079516683476,2019
+2004,77,"(75,80]",HS,246.87867863554757,77.43390742261373,3.1882503008423586,11757.833486781801,2019
+2004,77,"(75,80]",HS,247.03580610412928,77.43390742261373,3.1902794825511434,12751.991942875964,2019
+2004,77,"(75,80]",HS,246.87867863554757,77.43390742261373,3.1882503008423586,12491.321789857808,2019
+2004,77,"(75,80]",HS,246.87867863554757,77.43390742261373,3.1882503008423586,12355.567276196924,2019
+2004,51,"(50,55]",College,194.94805026929984,88.72635225507824,2.1971831965868067,7718.78719628742,2019
+2004,51,"(50,55]",College,164.983842010772,88.72635225507824,1.8594683295044308,7295.376496564471,2019
+2004,51,"(50,55]",HS,161.99842010771994,88.72635225507824,1.8258208073514932,7727.35123896398,2019
+2004,51,"(50,55]",HS,161.9198563734291,88.72635225507824,1.8249353462422055,7750.636448179239,2019
+2004,51,"(50,55]",HS,163.23972710951526,88.72635225507824,1.8398110928782407,7525.6384925553675,2019
+2004,62,"(60,65]",College,59883.16380610413,6307.637042133744,9.493755491334817,18.875803891614044,2019
+2004,62,"(60,65]",College,64254.44998204668,5726.882736464141,11.219794945848374,19.12902112287269,2019
+2004,62,"(60,65]",College,60216.745421903055,7114.240244452637,8.464255261671456,19.897276336486822,2019
+2004,62,"(60,65]",College,59885.9921005386,5807.54305669603,10.311760328920977,18.279329651680335,2019
+2004,62,"(60,65]",College,60877.30929982047,7227.164692777281,8.423401415033524,19.504203208628326,2019
+2004,45,"(40,45]",NoHS,3.7867719928186716,25.81130247420457,0.1467098375451264,4822.1942947873595,2019
+2004,45,"(40,45]",NoHS,3.7867719928186716,33.87733449739351,0.11177892384390578,4731.817329392728,2019
+2004,45,"(40,45]",NoHS,3.80248473967684,25.81130247420457,0.14731859205776177,4861.906461447155,2019
+2004,45,"(40,45]",NoHS,3.80248473967684,19.358476855653432,0.19642478941034897,4829.178102191218,2019
+2004,45,"(40,45]",NoHS,3.80248473967684,15.809422765450304,0.2405201502983865,4774.923679698839,2019
+2004,43,"(40,45]",College,6922.816287253141,704.9711988267126,9.819998744310153,21.76517774528393,2019
+2004,43,"(40,45]",College,6920.993608617595,704.9711988267126,9.817413278920107,22.80218247899165,2019
+2004,43,"(40,45]",College,6919.768014362658,704.9711988267126,9.815674776330246,22.81973325994671,2019
+2004,43,"(40,45]",College,6919.956567324955,704.9711988267126,9.815942238267148,21.166772245572535,2019
+2004,43,"(40,45]",College,6920.52222621185,704.9711988267126,9.816744624077852,21.969053240189435,2019
+2004,59,"(55,60]",HS,592.3705565529623,80.6603202318893,7.344014440433213,4764.124348780924,2019
+2004,59,"(55,60]",HS,521.7417594254937,59.68863697159809,8.741056688457409,4320.27980485557,2019
+2004,59,"(55,60]",HS,532.9763734290844,79.04711382725151,6.74251528770353,4925.424101529628,2019
+2004,59,"(55,60]",HS,584.7970125673249,67.75466899478702,8.631095410005155,4687.027146121335,2019
+2004,59,"(55,60]",HS,537.6116337522442,66.14146259014923,8.128209034075901,4695.084572079586,2019
+2004,50,"(45,50]",NoHS,78.72086175942549,17.74527045101565,4.436160157531998,4659.8236436274865,2019
+2004,50,"(45,50]",NoHS,172.99734290843807,32.264128092755726,5.361909747292418,4681.662103934059,2019
+2004,50,"(45,50]",NoHS,125.85910233393177,27.424508878842364,4.589292843491187,4655.730701824266,2019
+2004,50,"(45,50]",NoHS,227.9919569120287,16.132064046377863,14.132844765342957,3924.9865401528923,2019
+2004,50,"(45,50]",NoHS,231.1345062836625,27.424508878842364,8.428027181991931,3900.619614311797,2019
+2004,63,"(60,65]",HS,56.88014362657091,112.92444832464501,0.5037008767405879,6067.486355196053,2019
+2004,63,"(60,65]",HS,90.034039497307,112.92444832464501,0.7972944816915938,5410.059027749887,2019
+2004,63,"(60,65]",HS,94.59073608617594,112.92444832464501,0.8376462093862816,6082.21650199927,2019
+2004,63,"(60,65]",HS,82.17766606822262,112.92444832464501,0.7277225373904075,5973.708666001761,2019
+2004,63,"(60,65]",HS,79.03511669658887,112.92444832464501,0.6998937596699331,5849.178725020358,2019
+2004,53,"(50,55]",NoHS,147.35414003590662,48.39619213913358,3.0447465703971117,8578.09597563996,2019
+2004,53,"(50,55]",NoHS,178.33967684021542,53.23581135304694,3.3499945301389342,8109.92531535319,2019
+2004,53,"(50,55]",NoHS,202.85156193895872,79.04711382725151,2.566210859795182,8648.7775681568,2019
+2004,53,"(50,55]",NoHS,159.17012567324954,56.46222416232251,2.819055183084064,8605.32389121907,2019
+2004,53,"(50,55]",NoHS,183.68201077199282,59.68863697159809,3.0773363254951698,8409.91685285795,2019
+2004,60,"(55,60]",HS,721.8435906642729,104.8584163014561,6.883983337961677,5315.228522077427,2019
+2004,60,"(55,60]",HS,721.8435906642729,104.8584163014561,6.883983337961677,5878.888260076203,2019
+2004,60,"(55,60]",HS,721.8435906642729,104.8584163014561,6.883983337961677,5245.4686271560995,2019
+2004,60,"(55,60]",HS,721.8435906642729,104.8584163014561,6.883983337961677,5228.757051400307,2019
+2004,60,"(55,60]",HS,721.8435906642729,104.8584163014561,6.883983337961677,5496.30697481264,2019
+2004,66,"(65,70]",HS,111.40337522441652,91.95276506435381,1.2115282791817088,7548.029413325411,2019
+2004,66,"(65,70]",HS,111.5605026929982,93.56597146899159,1.1923191833686044,7058.071761142006,2019
+2004,66,"(65,70]",HS,111.40337522441652,93.56597146899159,1.1906398605751276,7669.291118579757,2019
+2004,66,"(65,70]",HS,111.40337522441652,93.56597146899159,1.1906398605751276,7656.812358624375,2019
+2004,66,"(65,70]",HS,111.40337522441652,93.56597146899159,1.1906398605751276,7545.882233649815,2019
+2004,43,"(40,45]",NoHS,0,29.03771528348015,0,7224.596706796714,2019
+2004,43,"(40,45]",NoHS,0,15.002819563131412,0,7213.159732155118,2019
+2004,43,"(40,45]",NoHS,0,33.87733449739351,0,7234.863808095952,2019
+2004,43,"(40,45]",NoHS,0,67.75466899478702,0,7208.59721612161,2019
+2004,43,"(40,45]",NoHS,0,43.55657292522023,0,7192.584305541478,2019
+2004,42,"(40,45]",HS,65.97782405745063,66.14146259014923,0.997525931143788,7729.198222464227,2019
+2004,42,"(40,45]",HS,65.93068581687612,64.52825618551145,1.02173357400722,7417.430134901651,2019
+2004,42,"(40,45]",HS,74.9969407540395,41.94336652058244,1.7880524854207165,7667.5979606733745,2019
+2004,42,"(40,45]",HS,84.56600359066428,66.14146259014923,1.2785626485867747,7700.720711658616,2019
+2004,42,"(40,45]",HS,75.01265350089767,53.23581135304694,1.4090637785800242,7573.454301862871,2019
+2004,35,"(30,35]",College,1323.406104129264,253.2734055281324,5.225207523741636,886.5882925506728,2019
+2004,35,"(30,35]",College,1323.406104129264,195.19797496117215,6.779814720887907,897.3826043744245,2019
+2004,35,"(30,35]",College,1323.406104129264,483.96192139133586,2.7345252707581227,883.9996544977455,2019
+2004,35,"(30,35]",College,1323.406104129264,203.26400698436103,6.510774454186007,906.737223226099,2019
+2004,35,"(30,35]",College,1323.406104129264,298.4431848579905,4.43436530393209,919.3611911005439,2019
+2004,66,"(65,70]",College,3106.410053859964,195.19797496117215,15.914151027836617,4344.502201723588,2019
+2004,66,"(65,70]",College,3104.838779174147,195.19797496117215,15.906101381388545,4585.8680349388105,2019
+2004,66,"(65,70]",College,3106.410053859964,195.19797496117215,15.914151027836617,4348.722164383706,2019
+2004,66,"(65,70]",College,3106.410053859964,195.19797496117215,15.914151027836617,4669.767623901258,2019
+2004,66,"(65,70]",College,3104.838779174147,195.19797496117215,15.906101381388545,4451.28213940566,2019
+2004,44,"(40,45]",College,134.5011131059246,96.79238427826716,1.389583634175692,7665.52094940188,2019
+2004,44,"(40,45]",College,135.91526032315977,96.79238427826716,1.4041937424789408,7360.385115082511,2019
+2004,44,"(40,45]",College,136.07238779174148,96.79238427826716,1.4058170878459688,7662.606521744108,2019
+2004,44,"(40,45]",College,134.5011131059246,96.79238427826716,1.389583634175692,7638.633765816579,2019
+2004,44,"(40,45]",College,135.91526032315977,96.79238427826716,1.4041937424789408,7554.815932892203,2019
+2004,31,"(30,35]",HS,43.11577737881508,83.88673304116487,0.5139761177450708,4546.793391252542,2019
+2004,31,"(30,35]",HS,43.02150089766607,83.88673304116487,0.5128522632602056,4523.90029268453,2019
+2004,31,"(30,35]",HS,43.02150089766607,83.88673304116487,0.5128522632602056,4552.102239599457,2019
+2004,31,"(30,35]",HS,43.02150089766607,83.88673304116487,0.5128522632602056,4583.223636916673,2019
+2004,31,"(30,35]",HS,42.86437342908438,83.88673304116487,0.5109791724520967,4563.247689911802,2019
+2004,53,"(50,55]",College,1866.045816876122,483.96192139133586,3.855769915764139,761.9943335244888,2019
+2004,53,"(50,55]",College,1866.045816876122,483.96192139133586,3.855769915764139,774.9131137050081,2019
+2004,53,"(50,55]",College,1866.045816876122,483.96192139133586,3.855769915764139,757.3747936301762,2019
+2004,53,"(50,55]",College,1864.4745421903053,483.96192139133586,3.852523225030084,773.2100331926462,2019
+2004,53,"(50,55]",College,1864.4745421903053,483.96192139133586,3.852523225030084,785.7971128623894,2019
+2004,60,"(55,60]",NoHS,0,11.292444832464504,0,10818.62669773696,2019
+2004,60,"(55,60]",NoHS,0,11.292444832464504,0,10728.600368879588,2019
+2004,60,"(55,60]",NoHS,0,11.292444832464504,0,10717.396443106647,2019
+2004,60,"(55,60]",NoHS,0,11.292444832464504,0,10778.98275053407,2019
+2004,60,"(55,60]",NoHS,0,11.292444832464504,0,10797.336521881465,2019
+2004,72,"(70,75]",HS,44.81275403949731,70.9810818040626,0.6313337709222185,7095.460112357139,2019
+2004,72,"(70,75]",HS,44.81275403949731,70.9810818040626,0.6313337709222185,7333.301641075877,2019
+2004,72,"(70,75]",HS,44.81275403949731,69.36787539942482,0.6460159516413397,7391.6957535596475,2019
+2004,72,"(70,75]",HS,44.96988150807899,69.36787539942482,0.6482810847116109,7319.532592379217,2019
+2004,72,"(70,75]",HS,44.96988150807899,69.36787539942482,0.6482810847116109,7430.416418782412,2019
+2004,39,"(35,40]",College,278.74412926391386,193.58476855653433,1.43990734055355,7953.169208077037,2019
+2004,39,"(35,40]",College,326.35375224416515,193.58476855653433,1.685844163658243,8829.72182316344,2019
+2004,39,"(35,40]",College,415.9164093357271,193.58476855653433,2.148497593261131,7851.258261626259,2019
+2004,39,"(35,40]",College,877.8711669658887,193.58476855653433,4.534815282791818,7839.489540503991,2019
+2004,39,"(35,40]",College,307.96983842010775,193.58476855653433,1.5908784596871242,8190.614631719883,2019
+2004,47,"(45,50]",HS,36.217881508078996,38.716953711306864,0.9354527677496992,4839.726904858234,2019
+2004,47,"(45,50]",HS,36.217881508078996,38.716953711306864,0.9354527677496992,4828.896956036054,2019
+2004,47,"(45,50]",HS,36.217881508078996,38.716953711306864,0.9354527677496992,4863.504856596357,2019
+2004,47,"(45,50]",HS,36.217881508078996,38.716953711306864,0.9354527677496992,4875.461542451881,2019
+2004,47,"(45,50]",HS,36.217881508078996,38.716953711306864,0.9354527677496992,4827.395787672105,2019
+2004,33,"(30,35]",HS,184.3105206463196,33.87733449739351,5.440526044352759,7281.8944175473825,2019
+2004,33,"(30,35]",HS,184.46764811490127,33.87733449739351,5.445164173972838,7231.708043355762,2019
+2004,33,"(30,35]",HS,184.3105206463196,33.87733449739351,5.440526044352759,7283.832909798449,2019
+2004,33,"(30,35]",HS,184.3105206463196,33.87733449739351,5.440526044352759,7275.000730459593,2019
+2004,33,"(30,35]",HS,184.3105206463196,33.87733449739351,5.440526044352759,7271.269498270417,2019
+2004,67,"(65,70]",College,540.5184919210054,87.11314585044046,6.204786736194678,8923.3263195027,2019
+2004,67,"(65,70]",College,538.9472172351885,83.88673304116487,6.4247014718133855,8147.447354031836,2019
+2004,67,"(65,70]",College,538.9472172351885,80.6603202318893,6.681689530685921,9031.645396333592,2019
+2004,67,"(65,70]",College,538.9472172351885,83.88673304116487,6.4247014718133855,9008.561640252377,2019
+2004,67,"(65,70]",College,540.5184919210054,85.49993944580267,6.321858184047408,8794.054949789057,2019
+2004,82,"(80,85]",College,1917.8978815080789,252.95076424720486,7.582099572681058,5324.133000621491,2019
+2004,82,"(80,85]",College,1916.3266068222622,252.95076424720486,7.575887791939881,5570.772307907326,2019
+2004,82,"(80,85]",College,1919.469156193896,251.33755784256707,7.637016817821609,5284.084242167348,2019
+2004,82,"(80,85]",College,1919.469156193896,252.95076424720486,7.5883113534222355,5669.676246083763,2019
+2004,82,"(80,85]",College,1916.3266068222622,252.95076424720486,7.575887791939881,5408.6920535943345,2019
+2004,43,"(40,45]",College,-17.048330341113108,77.43390742261373,-0.22016621540312878,8908.884937059545,2019
+2004,43,"(40,45]",College,-27.2616157989228,77.43390742261373,-0.35206302647412757,8347.5824696151,2019
+2004,43,"(40,45]",College,-20.348007181328548,77.43390742261373,-0.2627790312876053,8869.349365927888,2019
+2004,43,"(40,45]",College,-23.647684021543984,77.43390742261373,-0.30539184717208184,8811.451393497675,2019
+2004,43,"(40,45]",College,-21.762154398563734,77.43390742261373,-0.2810416666666667,8638.174880156399,2019
+2004,77,"(75,80]",NoHS,667.6346140035906,35.4905409020313,18.81162126681982,7941.021798901384,2019
+2004,77,"(75,80]",NoHS,401.7749371633752,35.4905409020313,11.32062028224483,9386.183128449205,2019
+2004,77,"(75,80]",NoHS,491.41615798922805,40.33016011594465,12.184830324909749,10249.617500138364,2019
+2004,77,"(75,80]",NoHS,491.7618384201077,33.87733449739351,14.51595427196149,10083.561582260092,2019
+2004,77,"(75,80]",NoHS,402.71770197486535,38.716953711306864,10.401585439229844,9925.009449784613,2019
+2004,42,"(40,45]",HS,1185.149644524237,148.4149892266763,7.985377020875844,6632.387173154697,2019
+2004,42,"(40,45]",HS,285.65773788150807,43.55657292522023,6.558315282791816,7520.848623912316,2019
+2004,42,"(40,45]",HS,198.65625852782765,101.63200349218052,1.9546624262219932,8007.9365420110335,2019
+2004,42,"(40,45]",HS,187.61019748653501,40.33016011594465,4.651858483754513,7952.813864410741,2019
+2004,42,"(40,45]",HS,552.1459245960503,59.68863697159809,9.25043614011123,6829.730063675224,2019
+2004,69,"(65,70]",College,22712.775583482944,6323.769106180122,3.591651624548736,20.626138171850155,2019
+2004,69,"(65,70]",College,22940.61041292639,5646.222416232252,4.063001547189272,21.160599969936417,2019
+2004,69,"(65,70]",College,22769.341472172353,5726.882736464141,3.975870036101083,21.982680535781373,2019
+2004,69,"(65,70]",College,23214.640718132854,5081.600174609026,4.568372150593089,19.826033511512716,2019
+2004,69,"(65,70]",College,26370.54592459605,6065.656081438076,4.347517493663107,19.504203208628326,2019
+2004,71,"(70,75]",HS,95.06211849192101,17.74527045101565,5.3570397111913355,9875.459357103788,2019
+2004,71,"(70,75]",HS,99.60310233393177,17.74527045101565,5.612937971775516,9829.566832042286,2019
+2004,71,"(70,75]",HS,102.88706642728904,17.74527045101565,5.797999343616671,9934.976288517062,2019
+2004,71,"(70,75]",HS,93.31800359066428,19.358476855653432,4.820524067388689,9957.173445383518,2019
+2004,71,"(70,75]",HS,101.17437701974866,17.74527045101565,5.701484082704299,9933.260318745468,2019
+2004,26,"(25,30]",HS,4.7483921005386005,35.4905409020313,0.13379317361339021,11000.576950841836,2019
+2004,26,"(25,30]",HS,4.764104847396768,35.4905409020313,0.1342359041680341,10849.613630472784,2019
+2004,26,"(25,30]",HS,4.921232315978457,35.4905409020313,0.13866320971447324,11000.98882031372,2019
+2004,26,"(25,30]",HS,4.764104847396768,35.4905409020313,0.1342359041680341,10962.634534768215,2019
+2004,26,"(25,30]",HS,4.905519569120287,35.4905409020313,0.13822047915982932,10941.7426838064,2019
+2004,62,"(60,65]",HS,2496.189816876122,129.0565123710229,19.34183537906137,2957.827919871905,2019
+2004,62,"(60,65]",HS,2495.1842010771993,129.0565123710229,19.334043321299635,3080.069334442753,2019
+2004,62,"(60,65]",HS,2494.5556912028724,129.0565123710229,19.329173285198554,2927.4638628821294,2019
+2004,62,"(60,65]",HS,2494.0528833034114,129.0565123710229,19.32527725631769,3141.49339307173,2019
+2004,62,"(60,65]",HS,2495.1842010771993,129.0565123710229,19.334043321299635,3004.546253239035,2019
+2004,58,"(55,60]",HS,349.4514901256733,96.79238427826716,3.610320096269555,5994.016046830755,2019
+2004,58,"(55,60]",HS,277.95849192100536,96.79238427826716,2.871697954271961,5344.5494111187945,2019
+2004,58,"(55,60]",HS,239.46226211849194,96.79238427826716,2.4739783393501806,6008.567828432217,2019
+2004,58,"(55,60]",HS,353.0654219030521,96.79238427826716,3.6476570397111914,5901.373898013408,2019
+2004,58,"(55,60]",HS,270.73062836624774,96.79238427826716,2.7970240673886884,5778.351871945862,2019
+2004,53,"(50,55]",NoHS,35.982190305206466,24.19809606956679,1.4869843561973528,4682.770058744899,2019
+2004,53,"(50,55]",NoHS,35.5108078994614,24.19809606956679,1.4675042117930204,4689.770590408655,2019
+2004,53,"(50,55]",NoHS,38.02484739676841,24.19809606956679,1.5713983152827922,4722.116752210504,2019
+2004,53,"(50,55]",NoHS,35.825062836624774,24.19809606956679,1.4804909747292418,4693.31735341477,2019
+2004,53,"(50,55]",NoHS,36.924955116696594,24.19809606956679,1.525944645006017,4706.041736490668,2019
+2004,67,"(65,70]",HS,26.821658886894074,75.82070101797595,0.35375113295952065,8671.857625102271,2019
+2004,67,"(65,70]",HS,26.821658886894074,77.43390742261373,0.3463813176895307,7945.202263960867,2019
+2004,67,"(65,70]",HS,26.821658886894074,77.43390742261373,0.3463813176895307,8804.793134504804,2019
+2004,67,"(65,70]",HS,26.837371633752245,77.43390742261373,0.34658423586040915,8703.70838331791,2019
+2004,67,"(65,70]",HS,26.853084380610415,75.82070101797595,0.3541656041170597,8576.777906245852,2019
+2004,24,"(20,25]",NoHS,39.753249551166974,64.52825618551145,0.6160595667870037,6696.65298713572,2019
+2004,24,"(20,25]",NoHS,41.167396768402156,64.52825618551145,0.6379747292418771,6648.155760865417,2019
+2004,24,"(20,25]",NoHS,41.481651705565525,64.52825618551145,0.6428447653429601,6730.363357523807,2019
+2004,24,"(20,25]",NoHS,39.59612208258528,64.52825618551145,0.6136245487364621,6616.617328096165,2019
+2004,24,"(20,25]",NoHS,39.753249551166974,64.52825618551145,0.6160595667870037,6723.526586026278,2019
+2004,61,"(60,65]",HS,16993.494425852783,1887.4514934262095,9.003407231941745,202.9836784435272,2019
+2004,61,"(60,65]",HS,16852.236831597846,1092.1407359397813,15.430462647377205,204.388158448689,2019
+2004,61,"(60,65]",HS,16807.455503052064,617.8580529762721,27.20277808485168,210.38719278081848,2019
+2004,61,"(60,65]",HS,17183.775790305204,2581.1302474204576,6.657461709837545,196.1027707660297,2019
+2004,61,"(60,65]",HS,16855.37938096948,1388.970714393134,12.135158219180953,198.8519809736866,2019
+2004,54,"(50,55]",College,14219.721651705566,1011.4804157078919,14.058326222513948,2297.053904389363,2019
+2004,54,"(50,55]",College,14536.49062836625,1011.4804157078919,14.371499835904169,2256.2888535992306,2019
+2004,54,"(50,55]",College,14172.58341113106,1013.0936221125296,13.989411345397688,2354.444881592243,2019
+2004,54,"(50,55]",College,14346.994901256732,1013.0936221125296,14.161568672537884,2233.1573050868365,2019
+2004,54,"(50,55]",College,14466.411777378815,1011.4804157078919,14.302216387703751,2263.443088105437,2019
+2004,51,"(50,55]",College,1228.5796768402154,483.96192139133586,2.5385874849578816,3129.785771812099,2019
+2004,51,"(50,55]",College,1351.1391023339318,483.96192139133586,2.7918293622141994,3261.7368603888763,2019
+2004,51,"(50,55]",College,1260.083734290844,483.96192139133586,2.603683634175692,3109.792180353491,2019
+2004,51,"(50,55]",College,1212.9140682226212,483.96192139133586,2.50621797833935,3371.2643517743372,2019
+2004,51,"(50,55]",College,1243.8210412926392,483.96192139133586,2.570080385078219,3196.034340724137,2019
+2004,56,"(55,60]",HS,1624.69802513465,193.58476855653433,8.392695547533092,6155.116532365465,2019
+2004,56,"(55,60]",HS,2034.8007181328546,193.58476855653433,10.511161251504213,12989.135684722258,2019
+2004,56,"(55,60]",HS,3726.2779174147217,193.58476855653433,19.248817689530686,4050.5172030113586,2019
+2004,56,"(55,60]",HS,2652.783052064632,193.58476855653433,13.70346991576414,12548.38050430934,2019
+2004,56,"(55,60]",HS,1688.8060323159787,193.58476855653433,8.72385800240674,6185.611863188356,2019
+2004,22,"(20,25]",HS,-2.356912028725314,24.19809606956679,-0.09740072202166064,8680.935542974297,2019
+2004,22,"(20,25]",HS,-2.1997845601436268,24.19809606956679,-0.09090734055354995,8833.140724638597,2019
+2004,22,"(20,25]",HS,-2.356912028725314,24.19809606956679,-0.09740072202166064,8719.348913550468,2019
+2004,22,"(20,25]",HS,-2.1997845601436268,24.19809606956679,-0.09090734055354995,8673.571239885458,2019
+2004,22,"(20,25]",HS,-2.1997845601436268,24.19809606956679,-0.09090734055354995,8737.472313317614,2019
+2004,34,"(30,35]",NoHS,54.99461400359066,45.16977932985802,1.2175090252707579,7196.3268697354315,2019
+2004,34,"(30,35]",NoHS,18.698168761220828,45.16977932985802,0.41395306859205777,7144.63549055796,2019
+2004,34,"(30,35]",NoHS,75.26405745062836,45.16977932985802,1.6662480660134085,7147.336623054372,2019
+2004,34,"(30,35]",NoHS,76.99245960502694,45.16977932985802,1.7045126353790614,7196.33750777401,2019
+2004,34,"(30,35]",NoHS,40.696014362657095,45.16977932985802,0.900956678700361,7146.118750823024,2019
+2004,41,"(40,45]",College,248.73278276481147,58.0754305669603,4.282926193341355,8156.36552515098,2019
+2004,41,"(40,45]",College,249.20416517055656,56.46222416232251,4.413644146467252,7602.36376863807,2019
+2004,41,"(40,45]",College,248.88991023339318,58.0754305669603,4.285631768953069,8151.394245561072,2019
+2004,41,"(40,45]",College,249.04703770197486,56.46222416232251,4.4108612686952045,8149.775423577908,2019
+2004,41,"(40,45]",College,248.88991023339318,58.0754305669603,4.285631768953069,7962.238943531595,2019
+2004,85,"(80,85]",HS,2046.7424057450628,51.29996366748159,39.897541039438735,4822.616452265344,2019
+2004,85,"(80,85]",HS,1696.6624057450629,48.525248651504604,34.96452780551502,9787.702899858017,2019
+2004,85,"(80,85]",HS,1747.414578096948,45.16977932985802,38.68547962867457,8709.575935213312,2019
+2004,85,"(80,85]",HS,1722.352746858169,50.97732238655404,33.78664602659599,8682.529609857524,2019
+2004,85,"(80,85]",HS,1806.4945062836625,54.52637647675717,33.13065387819623,4900.226525682426,2019
+2004,70,"(65,70]",HS,462.01760861759425,154.86781484522746,2.9833029482551146,7633.38741410685,2019
+2004,70,"(65,70]",HS,774.2456014362658,48.39619213913358,15.998068592057765,7102.158322041313,2019
+2004,70,"(65,70]",HS,388.02628366247757,140.3489572034874,2.7647250923274824,7958.305100894422,2019
+2004,70,"(65,70]",HS,568.0157989228007,59.68863697159809,9.516313786710898,6305.293034627359,2019
+2004,70,"(65,70]",HS,417.7862262118492,64.52825618551145,6.474469494584837,7686.796545263259,2019
+2004,54,"(50,55]",NoHS,19450.80933572711,6049.524017391697,3.2152627677496994,36.54488431946357,2019
+2004,54,"(50,55]",NoHS,21611.312028725315,5501.0338398148515,3.9285909990789456,37.42312245581981,2019
+2004,54,"(50,55]",NoHS,18866.29515260323,5291.317007211938,3.5655197235185345,38.52999093877983,2019
+2004,54,"(50,55]",NoHS,15616.899102333931,5581.694160046741,2.797877965818743,35.56804449827641,2019
+2004,54,"(50,55]",NoHS,14798.26499102334,5501.0338398148515,2.690087976539589,37.004243632446034,2019
+2004,58,"(55,60]",College,102264.37026929982,86596.91980095636,1.1809238770195893,4.665106191159518,2019
+2004,58,"(55,60]",College,91432.7882226212,42766.10178694771,2.1379734042191014,4.678584732372286,2019
+2004,58,"(55,60]",College,156009.82089766607,43653.36530949849,3.57383261958317,4.586005853513058,2019
+2004,58,"(55,60]",College,108168.59202872531,33796.67417716162,3.200569128835201,4.592792196747685,2019
+2004,58,"(55,60]",College,116769.59253141831,64963.821914763656,1.7974557082652383,4.480802317436616,2019
+2004,75,"(70,75]",NoHS,161.05565529622982,28.634413682320705,5.624548736462094,12476.830443635463,2019
+2004,75,"(70,75]",NoHS,168.7549012567325,28.634413682320705,5.893429602888086,11537.328952288271,2019
+2004,75,"(70,75]",NoHS,166.71224416517057,28.634413682320705,5.822093862815884,12423.73061797538,2019
+2004,75,"(70,75]",NoHS,168.7549012567325,28.634413682320705,5.893429602888086,12228.990300495214,2019
+2004,75,"(70,75]",NoHS,171.74032315978457,28.634413682320705,5.99768953068592,12136.920986581248,2019
+2004,19,"(15,20]",HS,0,6.614146259014922,0,5589.926688408659,2019
+2004,19,"(15,20]",HS,0,6.775466899478702,0,5660.248226940021,2019
+2004,19,"(15,20]",HS,0,6.775466899478702,0,5635.560420056113,2019
+2004,19,"(15,20]",HS,0,6.614146259014922,0,5522.68922542536,2019
+2004,19,"(15,20]",HS,0.01571274685816876,6.775466899478702,0.0023190648100395394,5650.877609034867,2019
+2004,42,"(40,45]",HS,21.526463195691203,96.79238427826716,0.22239831528279183,6724.87756296079,2019
+2004,42,"(40,45]",HS,23.097737881508078,96.79238427826716,0.2386317689530686,6334.9706776238,2019
+2004,42,"(40,45]",HS,21.526463195691203,96.79238427826716,0.22239831528279183,6747.044467914474,2019
+2004,42,"(40,45]",HS,23.097737881508078,96.79238427826716,0.2386317689530686,6704.634558029176,2019
+2004,42,"(40,45]",HS,19.955188509874326,96.79238427826716,0.20616486161251504,6615.8171776812505,2019
+2004,92,"(90,95]",HS,1579.1310592459606,37.10374730666908,42.559880709464764,9005.337233849892,2019
+2004,92,"(90,95]",HS,1582.2736086175942,38.716953711306864,40.86771961492178,10010.58193068002,2019
+2004,92,"(90,95]",HS,1583.844883303411,37.10374730666908,42.68692512949301,8915.091509078757,2019
+2004,92,"(90,95]",HS,1583.844883303411,38.716953711306864,40.90830324909747,8886.31448134103,2019
+2004,92,"(90,95]",HS,1576.1456373429085,37.10374730666908,42.47941924344687,9315.229861511094,2019
+2004,22,"(20,25]",HS,9.27052064631957,56.46222416232251,0.1641897885507994,7605.16373877155,2019
+2004,22,"(20,25]",HS,11.438879712746859,56.46222416232251,0.2025935018050542,7550.432849380818,2019
+2004,22,"(20,25]",HS,9.804754039497308,56.46222416232251,0.17365157297576073,7644.712039113404,2019
+2004,22,"(20,25]",HS,9.113393177737882,56.46222416232251,0.16140691077875197,7532.939526421297,2019
+2004,22,"(20,25]",HS,11.28175224416517,56.46222416232251,0.19981062403300673,7637.179040639773,2019
+2004,55,"(50,55]",College,33531.00179533214,2823.111208116126,11.877322331098503,18.066308243526656,2019
+2004,55,"(50,55]",College,33531.00179533214,2839.2432721625037,11.809837545126353,18.63705803531676,2019
+2004,55,"(50,55]",College,33531.00179533214,2823.111208116126,11.877322331098503,18.977774896945714,2019
+2004,55,"(50,55]",College,33531.00179533214,2823.111208116126,11.877322331098503,17.44483212710631,2019
+2004,55,"(50,55]",College,33531.00179533214,2823.111208116126,11.877322331098503,18.60978708433786,2019
+2004,66,"(65,70]",NoHS,140.3776804308797,15.809422765450304,8.879367862668532,7052.199104171411,2019
+2004,66,"(65,70]",NoHS,140.3776804308797,15.809422765450304,8.879367862668532,7147.187822814482,2019
+2004,66,"(65,70]",NoHS,140.3776804308797,15.809422765450304,8.879367862668532,7103.238552426917,2019
+2004,66,"(65,70]",NoHS,140.3776804308797,15.809422765450304,8.879367862668532,7087.231712792149,2019
+2004,66,"(65,70]",NoHS,140.3776804308797,15.809422765450304,8.879367862668532,7103.82638071084,2019
+2004,47,"(45,50]",College,17236.88330341113,3161.884553090061,5.45145877845723,318.4716268163892,2019
+2004,47,"(45,50]",College,16748.216876122086,3161.884553090061,5.29690967361674,323.6279240213107,2019
+2004,47,"(45,50]",College,17188.17378815081,3161.884553090061,5.436053562219111,324.96235636703443,2019
+2004,47,"(45,50]",College,16144.847396768402,3161.884553090061,5.10608376924777,315.60197176065486,2019
+2004,47,"(45,50]",College,16088.281508078995,3161.884553090061,5.08819384071318,317.78154117559626,2019
+2004,41,"(40,45]",College,505.00768402154404,404.9148075640843,1.2471949026996707,6879.357781404644,2019
+2004,41,"(40,45]",College,539.5914398563734,246.82057990958126,2.186168754866568,7594.829509502844,2019
+2004,41,"(40,45]",College,542.702563734291,412.9808395872731,1.3141107569945853,6819.563275917268,2019
+2004,41,"(40,45]",College,490.8819245960503,377.4902986852419,1.3003828874695302,6839.828499096706,2019
+2004,41,"(40,45]",College,545.8529694793536,440.4053484661156,1.2394331072056703,7120.502648708161,2019
+2004,29,"(25,30]",College,197.5877917414722,162.9338468684164,1.212687207348894,7400.104548575999,2019
+2004,29,"(25,30]",College,197.5877917414722,162.9338468684164,1.212687207348894,7135.75610362497,2019
+2004,29,"(25,30]",College,197.5877917414722,161.3206404637786,1.2248140794223827,7404.257962773688,2019
+2004,29,"(25,30]",College,197.5877917414722,162.9338468684164,1.212687207348894,7421.480166185129,2019
+2004,29,"(25,30]",College,197.5877917414722,162.9338468684164,1.212687207348894,7321.097066799628,2019
+2004,55,"(50,55]",College,22.783482944344705,56.46222416232251,0.4035172769468799,5059.97501166827,2019
+2004,55,"(50,55]",College,22.783482944344705,56.46222416232251,0.4035172769468799,4997.598421195836,2019
+2004,55,"(50,55]",College,22.783482944344705,56.46222416232251,0.4035172769468799,5033.011902970625,2019
+2004,55,"(50,55]",College,22.940610412926393,56.46222416232251,0.40630015471892733,5063.527203949421,2019
+2004,55,"(50,55]",College,22.783482944344705,56.46222416232251,0.4035172769468799,5020.5287087505585,2019
+2004,35,"(30,35]",NoHS,16.184129263913825,32.264128092755726,0.5016137184115523,5916.247194078499,2019
+2004,35,"(30,35]",NoHS,16.184129263913825,32.264128092755726,0.5016137184115523,5879.971823892094,2019
+2004,35,"(30,35]",NoHS,17.7554039497307,32.264128092755726,0.5503140794223825,5912.084149528875,2019
+2004,35,"(30,35]",NoHS,16.184129263913825,32.264128092755726,0.5016137184115523,5901.859228229958,2019
+2004,35,"(30,35]",NoHS,16.184129263913825,32.264128092755726,0.5016137184115523,5918.824615071537,2019
+2004,46,"(45,50]",College,2096.944631956912,725.9428820870038,2.888580746089049,3753.401701263211,2019
+2004,46,"(45,50]",College,2304.3528904847394,725.9428820870038,3.17428953068592,3934.2782916199867,2019
+2004,46,"(45,50]",College,2137.797773788151,725.9428820870038,2.9448567188126757,3717.884032115983,2019
+2004,46,"(45,50]",College,2093.802082585278,725.9428820870038,2.8842518251103084,4014.48309108056,2019
+2004,46,"(45,50]",College,2159.795619389587,725.9428820870038,2.9751591656638587,3815.2202186005825,2019
+2004,37,"(35,40]",HS,-24.66901256732496,80.6603202318893,-0.3058382671480145,6145.359932432737,2019
+2004,37,"(35,40]",HS,2.042657091561939,80.6603202318893,0.02532418772563177,6292.2719616833265,2019
+2004,37,"(35,40]",HS,31.896876122082585,80.6603202318893,0.39544693140794224,6117.226339305862,2019
+2004,37,"(35,40]",HS,19.326678635547577,80.6603202318893,0.2396057761732852,6137.641145707613,2019
+2004,37,"(35,40]",HS,-4.242441651705565,80.6603202318893,-0.05259638989169675,6162.206002182153,2019
+2004,75,"(70,75]",HS,2363.511382405745,88.72635225507824,26.638212011814897,5914.944235080898,2019
+2004,75,"(70,75]",HS,2362.662894075404,88.72635225507824,26.62864903183459,6188.95274474893,2019
+2004,75,"(70,75]",HS,2364.9255296229803,88.72635225507824,26.65415031178208,5870.451324608368,2019
+2004,75,"(70,75]",HS,2364.7212639138243,88.72635225507824,26.651848112897934,6298.831907962025,2019
+2004,75,"(70,75]",HS,2365.0826570915624,88.72635225507824,26.65592123400066,6008.8866822074515,2019
+2004,39,"(35,40]",HS,113.61887253141832,37.10374730666908,3.0621940040809923,8198.40778246614,2019
+2004,39,"(35,40]",HS,113.61887253141832,37.10374730666908,3.0621940040809923,7872.059708368395,2019
+2004,39,"(35,40]",HS,113.61101615798923,37.10374730666908,3.061982263380945,8195.290751471297,2019
+2004,39,"(35,40]",HS,113.61887253141832,37.10374730666908,3.0621940040809923,8169.65147267202,2019
+2004,39,"(35,40]",HS,113.61101615798923,37.10374730666908,3.061982263380945,8080.006844695333,2019
+2004,58,"(55,60]",College,517.2636265709157,120.99048034783397,4.275242358604092,7773.789274326911,2019
+2004,58,"(55,60]",College,517.1064991023339,120.99048034783397,4.273943682310469,8082.098026630704,2019
+2004,58,"(55,60]",College,517.1064991023339,120.99048034783397,4.273943682310469,7652.075028882367,2019
+2004,58,"(55,60]",College,517.1064991023339,120.99048034783397,4.273943682310469,7478.929135646018,2019
+2004,58,"(55,60]",College,517.1064991023339,120.99048034783397,4.273943682310469,7814.370297082413,2019
+2004,55,"(50,55]",College,17518.455727109515,508.16001746090257,34.474289840123774,202.9836784435272,2019
+2004,55,"(50,55]",College,17516.8844524237,508.16001746090257,34.47119775371039,204.388158448689,2019
+2004,55,"(50,55]",College,17516.8844524237,508.16001746090257,34.47119775371039,210.38719278081848,2019
+2004,55,"(50,55]",College,17516.8844524237,508.16001746090257,34.47119775371039,196.1027707660297,2019
+2004,55,"(50,55]",College,17515.31317773788,508.16001746090257,34.468105667297,198.8519809736866,2019
+2004,51,"(50,55]",HS,1383.193105924596,59.68863697159809,23.173474485315637,123.82242521436767,2019
+2004,51,"(50,55]",HS,1381.7789587073607,59.68863697159809,23.149782417796853,124.85597353077108,2019
+2004,51,"(50,55]",HS,1381.6218312387794,59.68863697159809,23.14714996585033,124.84913608121717,2019
+2004,51,"(50,55]",HS,1381.6218312387794,59.68863697159809,23.14714996585033,127.57491095132794,2019
+2004,51,"(50,55]",HS,1381.6218312387794,59.68863697159809,23.14714996585033,130.9928266704881,2019
+2004,77,"(75,80]",College,898.297737881508,52.10656686980049,17.239626247610957,9527.621141191357,2019
+2004,77,"(75,80]",College,872.5602585278277,52.91317007211938,16.490417363740427,10442.851053073717,2019
+2004,77,"(75,80]",College,884.784775583483,52.751849431655614,16.772583049051104,9406.18789852356,2019
+2004,77,"(75,80]",College,888.6815368043087,53.71977327443828,16.54291302132457,9428.685184767575,2019
+2004,77,"(75,80]",College,879.5995691202872,56.62354480278629,15.534166435249467,9855.541043307177,2019
+2004,45,"(40,45]",HS,712.6202082585278,64.52825618551145,11.043537364620937,6317.264878273477,2019
+2004,45,"(40,45]",HS,651.1362298025135,74.20749461333816,8.774534609951344,7030.113022775646,2019
+2004,45,"(40,45]",HS,575.9035978456014,72.59428820870036,7.933180585639793,6238.920815493288,2019
+2004,45,"(40,45]",HS,729.6999640933574,64.52825618551145,11.308223826714801,6256.932443712308,2019
+2004,45,"(40,45]",HS,569.3828078994613,64.52825618551145,8.823774909747291,6534.058896139251,2019
+2004,57,"(55,60]",HS,377725.91816157993,32990.070974842725,11.449684920339298,2.137424366587618,2019
+2004,57,"(55,60]",HS,389152.10197486536,20310.26863438973,19.160362129132338,2.1820483676834277,2019
+2004,57,"(55,60]",HS,625095.1173285458,20036.023545601303,31.19856172587593,2.093878738556749,2019
+2004,57,"(55,60]",HS,662061.9312028725,29053.847347526524,22.787409986830426,2.098208240718619,2019
+2004,57,"(55,60]",HS,829479.8348294435,20036.023545601303,41.39942403948447,2.046605978488266,2019
+2004,86,"(85,90]",HS,359.3505206463196,45.16977932985802,7.955551830840639,11448.043260238372,2019
+2004,86,"(85,90]",HS,365.6356193895871,45.16977932985802,8.094695719443012,10385.648690962194,2019
+2004,86,"(85,90]",HS,352.4369120287253,45.16977932985802,7.802493553378029,11441.246841590782,2019
+2004,86,"(85,90]",HS,351.4941472172352,45.16977932985802,7.781621970087673,11226.239554881427,2019
+2004,86,"(85,90]",HS,357.7792459605027,45.16977932985802,7.920765858690046,11116.099212647894,2019
+2004,47,"(45,50]",HS,522.7630879712747,100.01879708754274,5.226648422033306,8562.742015967193,2019
+2004,47,"(45,50]",HS,358.1720646319569,116.1508611339206,3.083679803449659,9526.50384757526,2019
+2004,47,"(45,50]",HS,416.0421113105925,88.72635225507824,4.689047850344601,8452.117493940601,2019
+2004,47,"(45,50]",HS,466.3543267504489,95.17917787362938,4.899751575598115,8471.419223413086,2019
+2004,47,"(45,50]",HS,598.577091561939,82.2735266365271,7.27545197140228,8854.227672643316,2019
+2004,56,"(55,60]",College,837.1751526032316,403.30160115944653,2.0758041877256317,679.25001943478,2019
+2004,56,"(55,60]",College,836.7037701974865,403.30160115944653,2.074635379061372,690.7659603055,2019
+2004,56,"(55,60]",College,837.3322800718133,403.30160115944653,2.0761937906137184,675.1321114334465,2019
+2004,56,"(55,60]",College,837.489407540395,403.30160115944653,2.0765833935018048,689.2478158518918,2019
+2004,56,"(55,60]",College,837.96078994614,403.30160115944653,2.077752202166065,700.4680752870964,2019
+2004,72,"(70,75]",College,169677.23949730702,3032.828040719038,55.94687111145249,27.768818387630876,2019
+2004,72,"(70,75]",College,138581.71346499104,2323.0172226784116,59.65591305655838,28.446810801806002,2019
+2004,72,"(70,75]",College,129583.02333931778,2064.9041979363665,62.75498082129963,28.169819163329105,2019
+2004,72,"(70,75]",College,128688.96804308798,2613.394375513213,49.24207737219772,27.36970347254667,2019
+2004,72,"(70,75]",College,96256.28725314184,2548.866119327702,37.7643558927021,27.53974791481673,2019
+2004,48,"(45,50]",HS,32.996768402154395,38.716953711306864,0.8522563176895306,4694.735050096309,2019
+2004,48,"(45,50]",HS,32.996768402154395,38.716953711306864,0.8522563176895306,4603.910844920412,2019
+2004,48,"(45,50]",HS,32.83964093357271,38.716953711306864,0.8481979542719615,4702.190343802441,2019
+2004,48,"(45,50]",HS,32.996768402154395,38.716953711306864,0.8522563176895306,4711.230018411285,2019
+2004,48,"(45,50]",HS,32.996768402154395,38.716953711306864,0.8522563176895306,4626.265257858078,2019
+2004,36,"(35,40]",NoHS,1.5712746858168762,19.358476855653432,0.08116726835138388,8357.500130948985,2019
+2004,36,"(35,40]",NoHS,1.5712746858168762,19.358476855653432,0.08116726835138388,8352.473564734857,2019
+2004,36,"(35,40]",NoHS,1.5712746858168762,19.358476855653432,0.08116726835138388,8291.328543427122,2019
+2004,36,"(35,40]",NoHS,1.5712746858168762,19.358476855653432,0.08116726835138388,8352.096637384022,2019
+2004,36,"(35,40]",NoHS,1.5712746858168762,19.358476855653432,0.08116726835138388,8282.690709575307,2019
+2004,70,"(65,70]",College,345047.05005385994,10501.973694191987,32.85544794734011,29.35650823389555,2019
+2004,70,"(65,70]",College,429598.4407899461,11679.614369577572,36.78190282625606,30.29644577155334,2019
+2004,70,"(65,70]",College,373123.84315978456,10211.596541357187,36.53922691213122,29.722027912855282,2019
+2004,70,"(65,70]",College,336958.756481149,9759.898748058606,34.524820920726796,28.98419262984593,2019
+2004,70,"(65,70]",College,337763.72050269303,9711.502555919473,34.779759214171776,29.1175918322915,2019
+2004,37,"(35,40]",HS,0,32.264128092755726,0,4128.058728302018,2019
+2004,37,"(35,40]",HS,0,32.264128092755726,0,4184.665752117335,2019
+2004,37,"(35,40]",HS,0,32.264128092755726,0,4137.999598631153,2019
+2004,37,"(35,40]",HS,0,32.264128092755726,0,4117.699712333223,2019
+2004,37,"(35,40]",HS,0,32.264128092755726,0,4158.201055389065,2019
+2004,72,"(70,75]",College,181334.5263913824,4274.996972290133,42.41746311559157,27.768818387630876,2019
+2004,72,"(70,75]",College,152939.86441651706,4129.808395872733,37.033162257445845,28.446810801806002,2019
+2004,72,"(70,75]",College,233865.06743267504,4145.940459919111,56.40820694208374,28.169819163329105,2019
+2004,72,"(70,75]",College,160714.68868940754,4065.2801396872205,39.53348432754571,27.36970347254667,2019
+2004,72,"(70,75]",College,365817.73012567323,3791.0350508987976,96.49547556647974,27.53974791481673,2019
+2004,51,"(50,55]",College,9982.77946140036,512.9996366748159,19.459622868560277,992.7355310887251,2019
+2004,51,"(50,55]",College,10468.303339317774,514.6128430794538,20.342094994511275,979.4550332686431,2019
+2004,51,"(50,55]",College,10472.702908438061,514.6128430794538,20.350644274187157,1018.9049668241305,2019
+2004,51,"(50,55]",College,10470.345996409336,514.6128430794538,20.346064302932223,954.4481334656751,2019
+2004,51,"(50,55]",College,10473.017163375225,512.9996366748159,20.415252594055815,974.9735975353864,2019
+2004,23,"(20,25]",HS,9.113393177737882,29.03771528348015,0.3138467709586843,6479.734867877728,2019
+2004,23,"(20,25]",HS,9.27052064631957,29.03771528348015,0.3192579221821099,6557.210913132924,2019
+2004,23,"(20,25]",HS,9.27052064631957,29.03771528348015,0.3192579221821099,6489.563071606704,2019
+2004,23,"(20,25]",HS,9.27052064631957,29.03771528348015,0.3192579221821099,6414.996624730759,2019
+2004,23,"(20,25]",HS,9.113393177737882,29.03771528348015,0.3138467709586843,6518.756193402509,2019
+2004,42,"(40,45]",College,262.4028725314183,193.58476855653433,1.3554933814681107,7675.087921814549,2019
+2004,42,"(40,45]",College,266.8024416517056,193.58476855653433,1.3782202166064983,7153.775803449482,2019
+2004,42,"(40,45]",College,270.102118491921,193.58476855653433,1.3952653429602886,7670.409979437051,2019
+2004,42,"(40,45]",College,267.9023339317774,193.58476855653433,1.3839019253910951,7668.886678278922,2019
+2004,42,"(40,45]",College,261.93149012567324,193.58476855653433,1.3530583634175692,7492.416047032124,2019
+2004,58,"(55,60]",HS,164.8267145421903,51.62260494840914,3.192917418772564,6534.683231796018,2019
+2004,58,"(55,60]",HS,166.55511669658887,51.62260494840914,3.22639891696751,5716.353780635442,2019
+2004,58,"(55,60]",HS,166.71224416517057,51.62260494840914,3.2294426895306874,6574.639545082069,2019
+2004,58,"(55,60]",HS,166.71224416517057,51.62260494840914,3.2294426895306874,6436.895910443188,2019
+2004,58,"(55,60]",HS,166.55511669658887,51.62260494840914,3.22639891696751,6288.217057565828,2019
+2004,36,"(35,40]",HS,155.2733644524237,91.95276506435381,1.6886209386281588,7883.405023394576,2019
+2004,36,"(35,40]",HS,155.25765170556554,91.95276506435381,1.6884500601684718,7424.402947224761,2019
+2004,36,"(35,40]",HS,155.14766247755836,91.95276506435381,1.687253910950662,7905.244559059839,2019
+2004,36,"(35,40]",HS,156.7817881508079,91.95276506435381,1.7050252707581226,7850.828762319387,2019
+2004,36,"(35,40]",HS,155.25765170556554,91.95276506435381,1.6884500601684718,7753.48267923921,2019
+2004,45,"(40,45]",HS,7516.0353321364455,319.4148681182817,23.530637056485432,1240.1946621704903,2019
+2004,45,"(40,45]",HS,7518.235116696589,277.4715015976993,27.095521786583824,1239.6978031315468,2019
+2004,45,"(40,45]",HS,7518.863626570916,245.2073735049435,30.663285198555958,1272.473272739166,2019
+2004,45,"(40,45]",HS,7522.477558348294,322.6412809275572,23.31529783393502,1198.2982046391487,2019
+2004,45,"(40,45]",HS,7513.364165170557,316.18845530900603,23.762297576070143,1220.9668332492822,2019
+2004,44,"(40,45]",College,39451.56481149013,7743.390742261374,5.094869434416365,213.89932839736997,2019
+2004,44,"(40,45]",College,40268.6276481149,7743.390742261374,5.200386883273165,209.00689675678632,2019
+2004,44,"(40,45]",College,41722.05673249551,7743.390742261374,5.38808619133574,220.04188165536567,2019
+2004,44,"(40,45]",College,39473.56265709156,7727.258678214995,5.1083526902466785,208.79801098943534,2019
+2004,44,"(40,45]",College,40306.33824057451,7743.390742261374,5.205256919374247,216.91507817072346,2019
+2004,61,"(60,65]",College,156634.40258527827,7501.409781565706,20.880662055044443,20.74019594646676,2019
+2004,61,"(60,65]",College,138360.6351166966,7662.730422029484,18.056309891696753,21.35350431432254,2019
+2004,61,"(60,65]",College,135947.47145421905,7646.598357983107,17.778816813660526,20.995578422063275,2019
+2004,61,"(60,65]",College,140433.30355475761,7501.409781565706,18.720921485967157,20.4852844289174,2019
+2004,61,"(60,65]",College,155508.27001795333,7501.409781565706,20.73053926478009,20.567919624948274,2019
+2004,50,"(45,50]",HS,295.242513464991,174.22629170088092,1.6945921914694475,665.4162647811534,2019
+2004,50,"(45,50]",HS,296.8137881508079,174.22629170088092,1.7036107768418236,668.0069529882035,2019
+2004,50,"(45,50]",HS,296.9709156193896,174.22629170088092,1.7045126353790612,673.3934223811809,2019
+2004,50,"(45,50]",HS,296.9709156193896,174.22629170088092,1.7045126353790612,619.8188668321961,2019
+2004,50,"(45,50]",HS,295.39964093357275,174.22629170088092,1.6954940500066855,669.3254080238974,2019
+2004,51,"(50,55]",HS,137.0151526032316,72.59428820870036,1.8874095467308467,6636.379614471351,2019
+2004,51,"(50,55]",HS,137.0151526032316,72.59428820870036,1.8874095467308467,6166.6018602325175,2019
+2004,51,"(50,55]",HS,137.0151526032316,72.59428820870036,1.8874095467308467,6668.9224516837885,2019
+2004,51,"(50,55]",HS,137.0151526032316,72.59428820870036,1.8874095467308467,6631.868138630098,2019
+2004,51,"(50,55]",HS,136.85802513464992,72.59428820870036,1.8852450862414767,6427.756457454123,2019
+2004,52,"(50,55]",College,27170.481867145423,3000.5639126262818,9.055125189239549,400.64994496298493,2019
+2004,52,"(50,55]",College,27170.481867145423,3000.5639126262818,9.055125189239549,393.66858440695324,2019
+2004,52,"(50,55]",College,27172.367396768404,3000.5639126262818,9.055753580994528,406.92838714251235,2019
+2004,52,"(50,55]",College,27170.638994614004,3000.5639126262818,9.055177555219132,396.6812062356402,2019
+2004,52,"(50,55]",College,27170.796122082585,3000.5639126262818,9.055229921198713,410.9195812538657,2019
+2004,50,"(45,50]",HS,1778.054434470377,177.45270451015648,10.019877912701016,1133.8647150747772,2019
+2004,50,"(45,50]",HS,1779.625709156194,177.45270451015648,10.028732523793895,1129.9786051405956,2019
+2004,50,"(45,50]",HS,1778.054434470377,177.45270451015648,10.019877912701016,1151.5065728130835,2019
+2004,50,"(45,50]",HS,1778.054434470377,177.45270451015648,10.019877912701016,1106.696588214917,2019
+2004,50,"(45,50]",HS,1778.054434470377,177.45270451015648,10.019877912701016,1152.9446910995498,2019
+2004,58,"(55,60]",HS,1310.9144703770198,258.1130247420458,5.078838898916967,6430.908353209988,2019
+2004,58,"(55,60]",HS,1309.3431956912027,258.1130247420458,5.072751353790612,6574.315759252121,2019
+2004,58,"(55,60]",HS,1309.3431956912027,258.1130247420458,5.072751353790612,6304.785553650401,2019
+2004,58,"(55,60]",HS,1310.9144703770198,258.1130247420458,5.078838898916967,6245.036652880635,2019
+2004,58,"(55,60]",HS,1309.3431956912027,258.1130247420458,5.072751353790612,6482.902260115799,2019
+2004,57,"(55,60]",College,778.2837773788151,112.92444832464501,6.892075090252709,6788.607868489152,2019
+2004,57,"(55,60]",College,778.2837773788151,112.92444832464501,6.892075090252709,7508.022135296858,2019
+2004,57,"(55,60]",College,777.8438204667864,112.92444832464501,6.888179061371842,6700.164420897812,2019
+2004,57,"(55,60]",College,778.0323734290845,112.92444832464501,6.889848788035072,6678.748713207591,2019
+2004,57,"(55,60]",College,777.8281077199282,112.92444832464501,6.88803991748324,7019.469197001361,2019
+2004,45,"(40,45]",HS,134.18685816876123,204.87721338899885,0.6549623354842378,357.28639275269785,2019
+2004,45,"(40,45]",HS,134.18685816876123,214.55645181682556,0.6254151624548737,329.44137304740275,2019
+2004,45,"(40,45]",HS,134.18685816876123,219.3960710307389,0.6116192397536633,353.94485166237655,2019
+2004,45,"(40,45]",HS,132.61558348294434,170.99987889160533,0.7755302772290715,335.45021711083024,2019
+2004,45,"(40,45]",HS,132.61558348294434,201.65080057972327,0.6576496750902527,332.9564526358173,2019
+2004,34,"(30,35]",HS,2.514039497307002,43.55657292522023,0.057718946383206314,5209.264929621358,2019
+2004,34,"(30,35]",HS,2.514039497307002,43.55657292522023,0.057718946383206314,5283.027674132956,2019
+2004,34,"(30,35]",HS,2.514039497307002,43.55657292522023,0.057718946383206314,5196.23629385462,2019
+2004,34,"(30,35]",HS,2.514039497307002,43.55657292522023,0.057718946383206314,5248.383457045496,2019
+2004,34,"(30,35]",HS,2.514039497307002,43.55657292522023,0.057718946383206314,5237.552227466632,2019
+2004,69,"(65,70]",College,1006.4014362657091,82.2735266365271,12.232384795073262,5842.7531300718565,2019
+2004,69,"(65,70]",College,1009.5439856373429,82.2735266365271,12.270581156650385,6550.655249265697,2019
+2004,69,"(65,70]",College,1007.9727109515261,80.6603202318893,12.496512635379062,5831.535058868967,2019
+2004,69,"(65,70]",College,1007.9727109515261,82.2735266365271,12.251482975861824,5816.82583230132,2019
+2004,69,"(65,70]",College,1006.4014362657091,82.2735266365271,12.232384795073262,6094.045419941562,2019
+2004,34,"(30,35]",HS,115.30013644524237,8.872635225507825,12.995027239908104,8106.0052706831,2019
+2004,34,"(30,35]",HS,121.58523518850988,8.872635225507825,13.703396127338365,8397.512088089221,2019
+2004,34,"(30,35]",HS,99.5873895870736,8.872635225507825,11.224105021332456,8112.419324466171,2019
+2004,34,"(30,35]",HS,104.30121364452424,8.872635225507825,11.755381686905151,8078.710217587393,2019
+2004,34,"(30,35]",HS,115.14300897666068,8.872635225507825,12.977318017722348,8111.3354801521145,2019
+2004,25,"(20,25]",HS,-6.5993536804308794,40.33016011594465,-0.1636332129963899,9205.647561754153,2019
+2004,25,"(20,25]",HS,-6.127971274685817,40.33016011594465,-0.15194512635379062,9274.174257897588,2019
+2004,25,"(20,25]",HS,-6.442226211849192,40.33016011594465,-0.15973718411552348,9163.206781145002,2019
+2004,25,"(20,25]",HS,-6.5993536804308794,40.33016011594465,-0.1636332129963899,9179.672571581132,2019
+2004,25,"(20,25]",HS,-6.756481149012568,40.33016011594465,-0.16752924187725632,9131.691188745552,2019
+2004,59,"(55,60]",NoHS,181.24653500897668,35.4905409020313,5.106896947817526,5392.059098469541,2019
+2004,59,"(55,60]",NoHS,259.2603231597846,24.19809606956679,10.714079422382673,4725.378206814747,2019
+2004,59,"(55,60]",NoHS,274.6273895870736,41.94336652058244,6.547576228825326,5387.264890234648,2019
+2004,59,"(55,60]",NoHS,219.61706283662477,20.97168326029122,10.472076089975006,5288.325951983459,2019
+2004,59,"(55,60]",NoHS,229.07613644524235,29.03771528348015,7.888917368632169,5135.327182077899,2019
+2004,59,"(55,60]",College,4036.604667863555,675.9334835432325,5.971896297700386,1295.7639665505344,2019
+2004,59,"(55,60]",College,4036.604667863555,674.3202771385945,5.986183130948475,1272.4221503814817,2019
+2004,59,"(55,60]",College,4525.271095152603,674.3202771385945,6.710863144076141,1334.1264967032444,2019
+2004,59,"(55,60]",College,3912.31684021544,674.3202771385945,5.801867410567772,1255.62044644617,2019
+2004,59,"(55,60]",College,4156.021543985637,672.7070707339568,6.178055389623319,1279.6484515790853,2019
+2004,54,"(50,55]",College,389.9903770197487,316.18845530900603,1.2334111839681723,7535.737604571512,2019
+2004,54,"(50,55]",College,298.07080789946144,146.80178282203855,2.0304304359900027,7002.295864637112,2019
+2004,54,"(50,55]",College,295.7924596050269,161.3206404637786,1.8335685920577618,7572.690626608766,2019
+2004,54,"(50,55]",College,304.5915978456014,162.9338468684164,1.8694188083068235,7530.614736362624,2019
+2004,54,"(50,55]",College,291.6285816876122,151.6414020359519,1.9231461709808741,7298.841968569771,2019
+2004,73,"(70,75]",HS,206.8740251346499,85.49993944580267,2.419580954975819,8842.266892744161,2019
+2004,73,"(70,75]",HS,206.8740251346499,85.49993944580267,2.419580954975819,8262.71697165693,2019
+2004,73,"(70,75]",HS,208.44529982046677,85.49993944580267,2.437958449696887,9153.44672438017,2019
+2004,73,"(70,75]",HS,208.44529982046677,85.49993944580267,2.437958449696887,8943.766744926648,2019
+2004,73,"(70,75]",HS,206.8740251346499,85.49993944580267,2.419580954975819,8854.931068314241,2019
+2004,38,"(35,40]",HS,-12.16166606822262,106.47162270609388,-0.1142244830981293,3721.020656585083,2019
+2004,38,"(35,40]",HS,-12.145953321364452,106.47162270609388,-0.11407690624658133,3705.0858492484776,2019
+2004,38,"(35,40]",HS,-12.30308078994614,106.47162270609388,-0.11555267476206105,3693.1291992692886,2019
+2004,38,"(35,40]",HS,-12.460208258527828,106.47162270609388,-0.11702844327754075,3705.048784148589,2019
+2004,38,"(35,40]",HS,-12.460208258527828,106.47162270609388,-0.11702844327754075,3685.079003643344,2019
+2004,31,"(30,35]",HS,129.0645026929982,93.56597146899159,1.3793957425619319,7280.372146953416,2019
+2004,31,"(30,35]",HS,138.71212926391382,93.56597146899159,1.4825061620814142,7106.222831267129,2019
+2004,31,"(30,35]",HS,129.1744919210054,93.56597146899159,1.3805712685173661,7258.2144593578805,2019
+2004,31,"(30,35]",HS,129.2216301615799,93.56597146899159,1.381075065355409,7245.537105797035,2019
+2004,31,"(30,35]",HS,129.2216301615799,93.56597146899159,1.381075065355409,7182.023716411839,2019
+2004,66,"(65,70]",HS,376.0060323159784,38.716953711306864,9.71166365824308,8910.889544930436,2019
+2004,66,"(65,70]",HS,426.1296947935368,38.716953711306864,11.006281588447655,8379.347721709677,2019
+2004,66,"(65,70]",HS,267.4309515260323,38.716953711306864,6.907334536702767,8677.52053533546,2019
+2004,66,"(65,70]",HS,266.283921005386,38.716953711306864,6.877708483754513,8656.99204324913,2019
+2004,66,"(65,70]",HS,449.85594254937166,38.716953711306864,11.619094464500604,8863.617667716688,2019
+2004,46,"(45,50]",HS,121.30240574506283,41.94336652058244,2.8920522077200777,8212.4090236972,2019
+2004,46,"(45,50]",HS,106.37529622980252,41.94336652058244,2.536164954179395,7764.196627136496,2019
+2004,46,"(45,50]",HS,105.90391382405745,41.94336652058244,2.5249264093307415,8280.077437508724,2019
+2004,46,"(45,50]",HS,106.37529622980252,41.94336652058244,2.536164954179395,8238.47620459997,2019
+2004,46,"(45,50]",HS,104.85115978456015,41.94336652058244,2.499826992502083,8051.3994302565725,2019
+2004,26,"(25,30]",HS,176.0299030520646,104.8584163014561,1.6787389058594833,6529.619388071426,2019
+2004,26,"(25,30]",HS,133.4483590664273,106.47162270609388,1.253370200196915,6361.883876710316,2019
+2004,26,"(25,30]",HS,116.3371777378815,104.8584163014561,1.109469147459039,6555.378985572951,2019
+2004,26,"(25,30]",HS,116.3371777378815,106.47162270609388,1.092659008861175,6526.693926442476,2019
+2004,26,"(25,30]",HS,106.26530700179534,106.47162270609388,0.9980622470189258,6508.345978516361,2019
+2004,63,"(60,65]",HS,244.44320287253143,77.43390742261373,3.1567979843561975,5851.9367222258925,2019
+2004,63,"(60,65]",HS,244.4589156193896,77.43390742261373,3.1570009025270758,5066.388064672992,2019
+2004,63,"(60,65]",HS,244.91458527827646,79.04711382725151,3.098336845207397,5867.873962082701,2019
+2004,63,"(60,65]",HS,244.4589156193896,77.43390742261373,3.1570009025270758,5783.6081845471,2019
+2004,63,"(60,65]",HS,249.7855368043088,77.43390742261373,3.225790162454874,5589.3093945241935,2019
+2004,55,"(50,55]",College,708.2520646319568,161.3206404637786,4.3903375451263535,6388.490561786268,2019
+2004,55,"(50,55]",College,727.2644883303411,161.3206404637786,4.5081924187725635,6528.929702243759,2019
+2004,55,"(50,55]",College,761.6754039497307,161.3206404637786,4.7215,6256.578945169985,2019
+2004,55,"(50,55]",College,691.9108078994614,161.3206404637786,4.289040794223826,6142.296319316562,2019
+2004,55,"(50,55]",College,701.4955834829443,161.3206404637786,4.34845523465704,6404.938622002885,2019
+2004,20,"(15,20]",HS,14.220035906642728,27.424508878842364,0.5185156084094287,7839.583630840032,2019
+2004,20,"(15,20]",HS,15.634183123877918,27.424508878842364,0.5700806965385432,7932.955622384546,2019
+2004,20,"(15,20]",HS,15.634183123877918,27.424508878842364,0.5700806965385432,7850.175631368213,2019
+2004,20,"(15,20]",HS,14.534290843806104,27.424508878842364,0.5299745168825654,7742.023841766325,2019
+2004,20,"(15,20]",HS,15.634183123877918,27.424508878842364,0.5700806965385432,7885.249291920185,2019
+2004,63,"(60,65]",HS,9210.340825852783,443.63176127539117,20.761229537249754,1959.8515745615969,2019
+2004,63,"(60,65]",HS,7653.207612208258,443.63176127539117,17.251261700032817,2008.5824906361845,2019
+2004,63,"(60,65]",HS,8515.837414721724,443.63176127539117,19.19573429602888,1971.325595965302,2019
+2004,63,"(60,65]",HS,7761.625565529624,443.63176127539117,17.49564896619626,1912.8103577812478,2019
+2004,63,"(60,65]",HS,6942.99145421903,443.63176127539117,15.650348014440432,1906.3014664527625,2019
+2004,50,"(45,50]",College,17059.48639138241,1774.5270451015647,9.613539809648836,19.741578807765016,2019
+2004,50,"(45,50]",College,22843.348509874326,2193.960710307389,10.411922329581651,20.616388427229808,2019
+2004,50,"(45,50]",College,20401.587648114903,2000.3759417508547,10.19887673226971,20.966807505935712,2019
+2004,50,"(45,50]",College,19039.29249551167,1390.5839207977715,13.691581076666639,18.920925052792064,2019
+2004,50,"(45,50]",College,22312.257666068224,1790.6591091479427,12.460360295313365,19.70575690641429,2019
+2004,50,"(45,50]",HS,105.51109515260323,30.650921688117936,3.442346570397112,6929.966137558277,2019
+2004,50,"(45,50]",HS,103.93982046678636,33.87733449739351,3.06812274368231,6439.405904693618,2019
+2004,50,"(45,50]",HS,103.93982046678636,30.650921688117936,3.391083032490975,6963.948635999211,2019
+2004,50,"(45,50]",HS,103.93982046678636,33.87733449739351,3.06812274368231,6925.255078724006,2019
+2004,50,"(45,50]",HS,103.93982046678636,32.264128092755726,3.2215288808664257,6712.113709332605,2019
+2004,37,"(35,40]",HS,542.718276481149,120.99048034783397,4.485627918170878,1030.9986569046596,2019
+2004,37,"(35,40]",HS,545.9393895870736,120.99048034783397,4.512250782190132,989.8096233105658,2019
+2004,37,"(35,40]",HS,493.930197486535,120.99048034783397,4.082388929001203,1047.1785570616332,2019
+2004,37,"(35,40]",HS,494.7943985637343,120.99048034783397,4.089531648616125,968.0772705048632,2019
+2004,37,"(35,40]",HS,521.4589299820467,120.99048034783397,4.309917015643802,1043.3710808376122,2019
+2004,51,"(50,55]",HS,4013.8211849192103,201.65080057972327,19.904811552346573,222.10695069028898,2019
+2004,51,"(50,55]",HS,4013.8211849192103,201.65080057972327,19.904811552346573,220.1389416420962,2019
+2004,51,"(50,55]",HS,4013.8211849192103,201.65080057972327,19.904811552346573,231.17884584075895,2019
+2004,51,"(50,55]",HS,4013.8211849192103,201.65080057972327,19.904811552346573,217.9000999363456,2019
+2004,51,"(50,55]",HS,4015.392459605027,201.65080057972327,19.912603610108302,224.3188033544073,2019
+2004,69,"(65,70]",HS,2125.777522441652,227.46210305392788,9.345633817241467,780.2046675257362,2019
+2004,69,"(65,70]",HS,1895.9000359066426,351.6789962110374,5.390995926208062,799.1606462612892,2019
+2004,69,"(65,70]",HS,4897.191813285458,253.2734055281324,19.335594288210814,1463.8336641787785,2019
+2004,69,"(65,70]",HS,1733.5873608617594,222.62248384001447,7.787117145398421,800.1320989802612,2019
+2004,69,"(65,70]",HS,5275.240502692998,240.36775429103014,21.94653986867928,1421.0678114947616,2019
+2004,35,"(30,35]",HS,462.2847253141831,74.20749461333816,6.229623136085387,4417.527060217511,2019
+2004,35,"(30,35]",HS,462.2061615798923,74.20749461333816,6.228564432585152,4431.80413990333,2019
+2004,35,"(30,35]",HS,460.0849407540395,74.20749461333816,6.199979438078795,4414.522678662558,2019
+2004,35,"(30,35]",HS,462.0490341113106,74.20749461333816,6.226447025584681,4400.535774762837,2019
+2004,35,"(30,35]",HS,462.363289048474,74.20749461333816,6.230681839585623,4413.2756814578715,2019
+2004,90,"(85,90]",College,1006935.669658887,5726.882736464141,175.8261371841155,0.9017419060315722,2019
+2004,90,"(85,90]",College,474619.2315978456,5404.241455536584,87.82346893690392,20.08277893185048,2019
+2004,90,"(85,90]",College,408880.24129263917,5646.222416232252,72.41660195977308,19.680052415018398,2019
+2004,90,"(85,90]",College,511049.2351885099,5501.0338398148515,92.9005801581672,18.634196351820794,2019
+2004,90,"(85,90]",College,469872.4107719928,5339.713199351072,87.99581423756912,19.074323977144275,2019
+2004,44,"(40,45]",College,72.43576301615799,54.84901775768473,1.3206392015289872,4224.807673738387,2019
+2004,44,"(40,45]",College,72.43576301615799,54.84901775768473,1.3206392015289872,4280.104794720272,2019
+2004,44,"(40,45]",College,72.2786355475763,54.84901775768473,1.317774474410703,4207.060366541079,2019
+2004,44,"(40,45]",College,72.43576301615799,54.84901775768473,1.3206392015289872,4222.896635228143,2019
+2004,44,"(40,45]",College,72.43576301615799,54.84901775768473,1.3206392015289872,4235.105892668501,2019
+2004,62,"(60,65]",HS,163.01817737881507,25.81130247420457,6.315767193140795,4646.78494697237,2019
+2004,62,"(60,65]",HS,169.4918290843806,24.19809606956679,7.0043456558363415,4143.29417170446,2019
+2004,62,"(60,65]",HS,167.62201220825852,24.19809606956679,6.927074416365825,4658.066031168507,2019
+2004,62,"(60,65]",HS,160.12703195691202,24.19809606956679,6.6173401203369435,4574.965295637396,2019
+2004,62,"(60,65]",HS,164.3066226211849,25.81130247420457,6.365685063176897,4479.594029626359,2019
+2004,57,"(55,60]",HS,54.5232315978456,75.82070101797595,0.7191074583301329,6752.0307533771265,2019
+2004,57,"(55,60]",HS,52.794829443447036,77.43390742261373,0.6818050541516245,6727.121897586248,2019
+2004,57,"(55,60]",HS,54.5232315978456,75.82070101797595,0.7191074583301329,6677.716560868932,2019
+2004,57,"(55,60]",HS,52.95195691202873,77.43390742261373,0.6838342358604093,6664.890985293199,2019
+2004,57,"(55,60]",HS,52.794829443447036,75.82070101797595,0.6963115446654888,6650.404037270481,2019
+2004,73,"(70,75]",HS,28.754326750448833,29.03771528348015,0.9902406738868832,8015.9216325791695,2019
+2004,73,"(70,75]",HS,28.91145421903052,30.650921688117936,0.9432490974729242,7427.710405147959,2019
+2004,73,"(70,75]",HS,28.91145421903052,29.03771528348015,0.9956518251103088,8413.779514452055,2019
+2004,73,"(70,75]",HS,28.91145421903052,29.03771528348015,0.9956518251103088,8115.167953915693,2019
+2004,73,"(70,75]",HS,28.91145421903052,29.03771528348015,0.9956518251103088,8124.118021770167,2019
+2004,63,"(60,65]",College,104620.18240574506,3226.4128092755723,32.426161371841154,27.768818387630876,2019
+2004,63,"(60,65]",College,104620.18240574506,3226.4128092755723,32.426161371841154,28.446810801806002,2019
+2004,63,"(60,65]",College,104621.75368043088,3226.4128092755723,32.426648375451265,28.169819163329105,2019
+2004,63,"(60,65]",College,104620.18240574506,3226.4128092755723,32.426161371841154,27.36970347254667,2019
+2004,63,"(60,65]",College,104621.75368043088,3226.4128092755723,32.426648375451265,27.53974791481673,2019
+2004,26,"(25,30]",HS,-21.96642010771993,56.46222416232251,-0.3890463125322332,5440.745028168691,2019
+2004,26,"(25,30]",HS,-21.80929263913824,56.46222416232251,-0.38626343476018565,5413.350884319331,2019
+2004,26,"(25,30]",HS,-21.96642010771993,56.46222416232251,-0.3890463125322332,5447.0976568815695,2019
+2004,26,"(25,30]",HS,-21.80929263913824,56.46222416232251,-0.38626343476018565,5484.33787721994,2019
+2004,26,"(25,30]",HS,-21.80929263913824,56.46222416232251,-0.38626343476018565,5460.434430329479,2019
+2004,45,"(40,45]",HS,527.0212423698384,161.3206404637786,3.26691761732852,6440.188541454859,2019
+2004,45,"(40,45]",HS,501.8808473967684,161.3206404637786,3.111076462093863,7168.47525832958,2019
+2004,45,"(40,45]",HS,509.7372208258528,161.3206404637786,3.159776823104693,6354.6525528327,2019
+2004,45,"(40,45]",HS,488.83926750448836,161.3206404637786,3.030233862815885,6370.568047127979,2019
+2004,45,"(40,45]",HS,493.55309156193897,161.3206404637786,3.059454079422383,6660.8013467645305,2019
+2004,35,"(30,35]",College,544.2424129263914,290.37715283480145,1.8742604492579225,6430.908353209988,2019
+2004,35,"(30,35]",College,543.1896588868941,290.37715283480145,1.8706349779382274,6574.315759252121,2019
+2004,35,"(30,35]",College,542.5611490125674,290.37715283480145,1.8684705174488574,6304.785553650401,2019
+2004,35,"(30,35]",College,543.7081795332136,290.37715283480145,1.8724206578419578,6245.036652880635,2019
+2004,35,"(30,35]",College,542.6554254937164,290.37715283480145,1.8687951865222627,6482.902260115799,2019
+2004,34,"(30,35]",NoHS,7.3692782764811495,90.33955865971603,0.08157310469314079,7224.982673790405,2019
+2004,34,"(30,35]",NoHS,7.3849910233393175,91.95276506435381,0.08031287605294825,7188.275685524541,2019
+2004,34,"(30,35]",NoHS,7.212150807899461,96.79238427826716,0.07451155234657039,7232.2220525645625,2019
+2004,34,"(30,35]",NoHS,7.400703770197487,111.31124192000723,0.06648657981478576,7264.8215312804095,2019
+2004,34,"(30,35]",NoHS,7.3849910233393175,90.33955865971603,0.08174703455389375,7249.708772543873,2019
+2004,56,"(55,60]",College,31119.409407540395,1540.6121164290857,20.199379893019827,23.749062065050857,2019
+2004,56,"(55,60]",College,30895.659892280073,1429.3008745090785,21.61592457073938,24.24336071592213,2019
+2004,56,"(55,60]",College,30670.02484739677,1608.3667854238727,19.06904887949046,24.887694016001188,2019
+2004,56,"(55,60]",College,36100.50728904847,1253.46137640356,28.80065390816293,23.412544154680415,2019
+2004,56,"(55,60]",College,32041.119138240578,990.5087324476008,32.3481440280342,25.162960960342375,2019
+2004,60,"(55,60]",HS,406.6773141831239,58.0754305669603,7.002570798235058,5833.218926862662,2019
+2004,60,"(55,60]",HS,404.32040215439855,58.0754305669603,6.961987164059366,5111.992485468086,2019
+2004,60,"(55,60]",HS,402.9219676840216,58.0754305669603,6.9379075411151225,5828.032472911694,2019
+2004,60,"(55,60]",HS,404.63465709156196,58.0754305669603,6.967398315282792,5720.998689217753,2019
+2004,60,"(55,60]",HS,412.1924883303411,58.0754305669603,7.097536502206177,5555.4820833902795,2019
+2004,29,"(25,30]",HS,56.40876122082585,96.79238427826716,0.5827809867629362,7359.089226058592,2019
+2004,29,"(25,30]",HS,54.83748653500898,96.79238427826716,0.5665475330926595,7170.0459570527455,2019
+2004,29,"(25,30]",HS,54.83748653500898,96.79238427826716,0.5665475330926595,7388.121113703894,2019
+2004,29,"(25,30]",HS,56.40876122082585,96.79238427826716,0.5827809867629362,7355.7921375339265,2019
+2004,29,"(25,30]",HS,56.40876122082585,96.79238427826716,0.5827809867629362,7335.11341525648,2019
+2004,36,"(35,40]",College,103.23274685816875,96.79238427826716,1.066537906137184,4970.498479200044,2019
+2004,36,"(35,40]",College,103.23274685816875,96.79238427826716,1.066537906137184,4889.371533444593,2019
+2004,36,"(35,40]",College,103.23274685816875,98.40559068290497,1.0490536781677218,4951.0787524134175,2019
+2004,36,"(35,40]",College,103.23274685816875,96.79238427826716,1.066537906137184,4987.322648354174,2019
+2004,36,"(35,40]",College,103.23274685816875,96.79238427826716,1.066537906137184,4936.62026223906,2019
+2004,56,"(55,60]",HS,769.2803734290844,111.31124192000723,6.911075289070267,5677.714801583345,2019
+2004,56,"(55,60]",HS,769.2803734290844,112.92444832464501,6.8123456420835495,6251.288851587986,2019
+2004,56,"(55,60]",HS,769.2803734290844,112.92444832464501,6.8123456420835495,5556.646356071299,2019
+2004,56,"(55,60]",HS,769.2646606822262,112.92444832464501,6.812206498194947,5596.752822557717,2019
+2004,56,"(55,60]",HS,769.2803734290844,112.92444832464501,6.8123456420835495,5855.246358206827,2019
+2004,45,"(40,45]",College,863.8868222621185,322.6412809275572,2.6775458483754515,9527.621141191357,2019
+2004,45,"(40,45]",College,864.0439497307002,322.6412809275572,2.67803285198556,10442.851053073717,2019
+2004,45,"(40,45]",College,865.4580969479355,322.6412809275572,2.682415884476535,9406.18789852356,2019
+2004,45,"(40,45]",College,864.0439497307002,322.6412809275572,2.67803285198556,9428.685184767575,2019
+2004,45,"(40,45]",College,865.6152244165171,322.6412809275572,2.682902888086643,9855.541043307177,2019
+2004,67,"(65,70]",HS,14311.169838420108,453.3109997032178,31.570312319334,1715.641890540539,2019
+2004,67,"(65,70]",HS,67780.39037701975,525.9052879119182,128.88326460100552,233.31197362120798,2019
+2004,67,"(65,70]",HS,14595.727684021544,437.1789356568401,33.38616409340988,1754.8189381437776,2019
+2004,67,"(65,70]",HS,40936.41938958708,666.2542451154056,61.442639487417075,1460.0910371203622,2019
+2004,67,"(65,70]",HS,14642.551669658887,616.2448465716343,23.760931634755327,1690.4408731624783,2019
+2004,37,"(35,40]",NoHS,3.0639856373429084,14.518857641740075,0.21103489771359807,3507.251954545508,2019
+2004,37,"(35,40]",NoHS,3.0639856373429084,14.518857641740075,0.21103489771359807,3555.346012305906,2019
+2004,37,"(35,40]",NoHS,3.0639856373429084,40.33016011594465,0.07597256317689531,3515.697846231279,2019
+2004,37,"(35,40]",NoHS,3.0639856373429084,37.10374730666908,0.08257887301836447,3498.45080092949,2019
+2004,37,"(35,40]",NoHS,3.0639856373429084,27.424508878842364,0.11172435761308133,3532.86126452596,2019
+2004,61,"(60,65]",College,11295.893716337523,4581.506189171312,2.4655415162454877,294.0782415789,2019
+2004,61,"(60,65]",College,12988.156552962299,4565.374125124934,2.844927096222781,293.0190960111748,2019
+2004,61,"(60,65]",College,11014.635547576301,4565.374125124934,2.4126468599711703,304.0768756051631,2019
+2004,61,"(60,65]",College,11971.54183123878,4565.374125124934,2.6222477070071823,290.0616229138954,2019
+2004,61,"(60,65]",College,11940.116337522442,4565.374125124934,2.6153642637547683,296.3295687508992,2019
+2004,37,"(35,40]",HS,260.67447037701976,129.0565123710229,2.0198474729241873,7795.524489908528,2019
+2004,37,"(35,40]",HS,259.10319569120287,129.0565123710229,2.0076723826714797,7354.961544694765,2019
+2004,37,"(35,40]",HS,259.10319569120287,129.0565123710229,2.0076723826714797,7762.705128613478,2019
+2004,37,"(35,40]",HS,259.10319569120287,129.0565123710229,2.0076723826714797,7729.6286717133,2019
+2004,37,"(35,40]",HS,260.67447037701976,129.0565123710229,2.0198474729241873,7588.200757191633,2019
+2004,44,"(40,45]",College,106865.53393177738,8082.164087235309,13.222391030213938,26.225443472757018,2019
+2004,44,"(40,45]",College,106865.53393177738,8114.428215328065,13.16981691080951,27.36445563574339,2019
+2004,44,"(40,45]",College,106867.10520646321,8082.164087235309,13.222585442832747,26.954832315357994,2019
+2004,44,"(40,45]",College,106848.2499102334,8082.164087235309,13.220252491407077,26.218038492803903,2019
+2004,44,"(40,45]",College,106851.39245960502,8033.7678950961745,13.300283734214837,26.75087373138672,2019
+2004,57,"(55,60]",HS,124.13070017953322,38.716953711306864,3.2061070998796635,4177.317018251227,2019
+2004,57,"(55,60]",HS,117.84560143626572,38.716953711306864,3.043772563176896,3765.5946942902287,2019
+2004,57,"(55,60]",HS,109.98922800718132,38.716953711306864,2.8408543922984357,4262.9181458500825,2019
+2004,57,"(55,60]",HS,117.84560143626572,38.716953711306864,3.043772563176896,4179.849519971807,2019
+2004,57,"(55,60]",HS,88.7770197486535,38.716953711306864,2.292975330926595,4083.5034709704114,2019
+2004,47,"(45,50]",College,349.1388064631957,125.83009956174732,2.7746843376839765,4779.256763681353,2019
+2004,47,"(45,50]",College,121.14684955116697,125.83009956174732,0.9627811626400073,4519.588030599074,2019
+2004,47,"(45,50]",College,350.7100811490126,125.83009956174732,2.787171609738036,4821.164065981667,2019
+2004,47,"(45,50]",College,124.4465263913824,125.83009956174732,0.9890044339535314,4799.828807685108,2019
+2004,47,"(45,50]",College,126.0178010771993,125.83009956174732,1.0014917060075905,4686.809448961624,2019
+2004,30,"(25,30]",NoHS,65.14504847396769,104.8584163014561,0.6212667592335462,5095.546770709795,2019
+2004,30,"(25,30]",NoHS,66.55919569120287,104.8584163014561,0.63475301305193,5167.46261521717,2019
+2004,30,"(25,30]",NoHS,79.12939317773788,104.8584163014561,0.7546308247708969,5081.961767685419,2019
+2004,30,"(25,30]",NoHS,75.98684380610412,104.8584163014561,0.7246613718411551,5121.087731651872,2019
+2004,30,"(25,30]",NoHS,64.83079353680431,104.8584163014561,0.618269813940572,5122.213096738249,2019
+2004,36,"(35,40]",College,406.64588868940757,116.1508611339206,3.501014841556358,5135.774748209943,2019
+2004,36,"(35,40]",College,406.64588868940757,116.1508611339206,3.501014841556358,5086.941691930544,2019
+2004,36,"(35,40]",College,406.64588868940757,116.1508611339206,3.501014841556358,5116.879546080618,2019
+2004,36,"(35,40]",College,406.64588868940757,116.1508611339206,3.501014841556358,5166.098451936459,2019
+2004,36,"(35,40]",College,406.64588868940757,116.1508611339206,3.501014841556358,5120.714625788578,2019
+2004,55,"(50,55]",College,772.595763016158,170.99987889160533,4.518107077174579,5581.5478244105425,2019
+2004,55,"(50,55]",College,772.595763016158,170.99987889160533,4.518107077174579,6173.0454058792075,2019
+2004,55,"(50,55]",College,772.595763016158,170.99987889160533,4.518107077174579,5508.830215432392,2019
+2004,55,"(50,55]",College,774.3241651705565,170.99987889160533,4.5282146992711665,5491.222364311483,2019
+2004,55,"(50,55]",College,774.1670377019749,170.99987889160533,4.527295824535114,5771.360459174589,2019
+2004,59,"(55,60]",College,2704.9493716337524,383.94312430379307,7.04518247732306,672.537477880426,2019
+2004,59,"(55,60]",College,2376.552962298025,383.94312430379307,6.189856809149652,691.2924512993575,2019
+2004,59,"(55,60]",College,2711.2344703770195,383.94312430379307,7.061552346570397,668.1519544195419,2019
+2004,59,"(55,60]",College,2366.3396768402154,383.94312430379307,6.163255771622729,686.1054157119626,2019
+2004,59,"(55,60]",College,2270.491921005386,383.94312430379307,5.913615265600825,695.1145084043239,2019
+2004,74,"(70,75]",College,859631.0247755835,5065.468110562648,169.70416277679416,19.81794948471067,2019
+2004,74,"(70,75]",College,951173.3308438062,5049.3360465162705,188.3759215233965,0.9799383932612191,2019
+2004,74,"(70,75]",College,883635.3881508078,5049.3360465162705,175.00031291449923,0.9809213064805752,2019
+2004,74,"(70,75]",College,887217.4230520647,5049.3360465162705,175.7097200262973,0.9282473423191426,2019
+2004,74,"(70,75]",College,963739.2858886895,5049.3360465162705,190.86455664871224,0.9503761743377362,2019
+2004,74,"(70,75]",College,1315.1569120287252,240.36775429103014,5.471436532357715,1030.9986569046596,2019
+2004,74,"(70,75]",College,1198.8825852782766,212.94324541218776,5.6300568865550815,989.8096233105658,2019
+2004,74,"(70,75]",College,1505.5954039497308,243.5941671003057,6.180753102063261,1047.1785570616332,2019
+2004,74,"(70,75]",College,3872.4064631956912,259.7262311466836,14.909570150458551,3559.838066757247,2019
+2004,74,"(70,75]",College,2448.9887253141833,253.2734055281324,9.66934811101658,2123.551007317077,2019
+2004,61,"(60,65]",College,5604.422549371634,524.2920815072805,10.689504470980284,1240.1946621704903,2019
+2004,61,"(60,65]",College,6833.159353680431,524.2920815072805,13.033115690086087,1239.6978031315468,2019
+2004,61,"(60,65]",College,5808.688258527827,524.2920815072805,11.079107359066924,1272.473272739166,2019
+2004,61,"(60,65]",College,4556.382333931778,524.2920815072805,8.69054196056651,1198.2982046391487,2019
+2004,61,"(60,65]",College,5029.336014362658,524.2920815072805,9.592622493751737,1220.9668332492822,2019
+2004,47,"(45,50]",College,4295.86499102334,992.1219388522385,4.3299768131255325,1105.5229826786415,2019
+2004,47,"(45,50]",College,4297.436265709156,992.1219388522385,4.3315605647031195,1105.0800771385207,2019
+2004,47,"(45,50]",College,4328.547504488331,992.1219388522385,4.362918845939362,1134.296486485013,2019
+2004,47,"(45,50]",College,4299.164667863554,992.1219388522385,4.333302691438466,1068.1760256996,2019
+2004,47,"(45,50]",College,4297.593393177737,992.1219388522385,4.3317189398608775,1088.3830872833441,2019
+2004,54,"(50,55]",College,892.0912028725314,422.6600780151,2.1106587758701463,589.9581728674117,2019
+2004,54,"(50,55]",College,863.6511310592459,440.4053484661156,1.9610368812895889,571.9269035068515,2019
+2004,54,"(50,55]",College,909.3752244165171,412.9808395872731,2.201979213673286,596.0753947574369,2019
+2004,54,"(50,55]",College,912.5177737881509,409.7544267779977,2.2269869808692686,550.7771106117335,2019
+2004,54,"(50,55]",College,884.2348294434471,540.4241455536584,1.6361867557519263,593.7059217060323,2019
+2004,70,"(65,70]",NoHS,93.01946140035908,19.358476855653432,4.805102286401926,8520.590559301405,2019
+2004,70,"(65,70]",NoHS,93.01946140035908,17.74527045101565,5.241929766983919,8560.993172807026,2019
+2004,70,"(65,70]",NoHS,93.01946140035908,30.650921688117936,3.0348014440433215,8516.106622081297,2019
+2004,70,"(65,70]",NoHS,93.01946140035908,22.58488966492901,4.118659102630222,8491.995477771998,2019
+2004,70,"(65,70]",NoHS,93.01946140035908,30.650921688117936,3.0348014440433215,8512.167085514306,2019
+2004,87,"(85,90]",NoHS,43.995691202872536,29.03771528348015,1.5151223425591658,11184.97548451249,2019
+2004,87,"(85,90]",NoHS,43.995691202872536,29.03771528348015,1.5151223425591658,11176.986827977264,2019
+2004,87,"(85,90]",NoHS,43.995691202872536,29.03771528348015,1.5151223425591658,11137.052195775492,2019
+2004,87,"(85,90]",NoHS,43.995691202872536,29.03771528348015,1.5151223425591658,11201.955159188312,2019
+2004,87,"(85,90]",NoHS,43.995691202872536,29.03771528348015,1.5151223425591658,11188.54138017428,2019
+2004,60,"(55,60]",College,1304.4722441651704,109.69803551536945,11.89148226799745,9527.621141191357,2019
+2004,60,"(55,60]",College,1304.6293716337523,111.31124192000723,11.720553549939833,10442.851053073717,2019
+2004,60,"(55,60]",College,1304.4722441651704,109.69803551536945,11.89148226799745,9406.18789852356,2019
+2004,60,"(55,60]",College,1304.6293716337523,111.31124192000723,11.720553549939833,9428.685184767575,2019
+2004,60,"(55,60]",College,1304.6293716337523,111.31124192000723,11.720553549939833,9855.541043307177,2019
+2004,86,"(85,90]",HS,498.4397558348295,32.264128092755726,15.448728519855596,12975.803787007542,2019
+2004,86,"(85,90]",HS,374.56045960502695,32.264128092755726,11.609192057761732,11650.401897295265,2019
+2004,86,"(85,90]",HS,511.528473967684,33.87733449739351,15.099430978167439,12924.391688072887,2019
+2004,86,"(85,90]",HS,459.1264631956912,30.650921688117936,14.979205776173284,12766.87508586561,2019
+2004,86,"(85,90]",HS,390.21035547576304,29.03771528348015,13.438052948255114,12505.785258254886,2019
+2004,37,"(35,40]",HS,235.2512459605027,204.87721338899885,1.1482548111089002,6172.681506208055,2019
+2004,37,"(35,40]",HS,235.07840574506284,204.87721338899885,1.147411182807925,6113.98911447251,2019
+2004,37,"(35,40]",HS,235.2512459605027,204.87721338899885,1.1482548111089002,6149.971385445769,2019
+2004,37,"(35,40]",HS,235.39266068222622,204.87721338899885,1.1489450524460616,6209.127529324164,2019
+2004,37,"(35,40]",HS,235.23553321364452,204.87721338899885,1.1481781176269932,6154.580763144119,2019
+2004,39,"(35,40]",HS,146.59992818671455,112.92444832464501,1.2982124806601343,6965.991370876528,2019
+2004,39,"(35,40]",HS,146.59992818671455,112.92444832464501,1.2982124806601343,6686.9682792451495,2019
+2004,39,"(35,40]",HS,146.59992818671455,112.92444832464501,1.2982124806601343,6959.692660267788,2019
+2004,39,"(35,40]",HS,146.59992818671455,112.92444832464501,1.2982124806601343,6933.745246777177,2019
+2004,39,"(35,40]",HS,146.59992818671455,112.92444832464501,1.2982124806601343,6863.5533293694125,2019
+2004,31,"(30,35]",HS,0,22.58488966492901,0,5364.213896596268,2019
+2004,31,"(30,35]",HS,0,22.58488966492901,0,5377.1141315382865,2019
+2004,31,"(30,35]",HS,0,22.58488966492901,0,5357.630684731011,2019
+2004,31,"(30,35]",HS,0,22.58488966492901,0,5401.726101268606,2019
+2004,31,"(30,35]",HS,0,22.58488966492901,0,5376.172894438751,2019
+2004,54,"(50,55]",College,1028.556409335727,133.89613158493626,7.681748510286632,6478.494539018759,2019
+2004,54,"(50,55]",College,844.8743985637343,133.89613158493626,6.309923883258666,7209.918966073616,2019
+2004,54,"(50,55]",College,874.728617594255,133.89613158493626,6.532889391501022,6396.547836841823,2019
+2004,54,"(50,55]",College,762.3824775583483,133.89613158493626,5.693834978904789,6411.779980930824,2019
+2004,54,"(50,55]",College,1244.920933572711,133.89613158493626,9.297661693706232,6701.076850380703,2019
+2004,40,"(35,40]",HS,59.45703411131059,41.94336652058244,1.4175551235767843,3921.8213921827796,2019
+2004,40,"(35,40]",HS,59.61416157989228,43.55657292522023,1.3686605161117795,3905.026680714998,2019
+2004,40,"(35,40]",HS,59.61416157989228,43.55657292522023,1.3686605161117795,3892.4248034359125,2019
+2004,40,"(35,40]",HS,59.64558707360862,43.55657292522023,1.3693820029415695,3904.987615438272,2019
+2004,40,"(35,40]",HS,59.77128904847397,41.94336652058244,1.4250474868092198,3883.9401879685915,2019
+2004,71,"(70,75]",College,24300.234398563734,322.6412809275572,75.31656931407943,343.86926630914246,2019
+2004,71,"(70,75]",College,23682.880574506282,322.6412809275572,73.4031321299639,371.0079051499786,2019
+2004,71,"(70,75]",College,28278.85903052065,322.6412809275572,87.64798772563178,349.94426511001905,2019
+2004,71,"(70,75]",College,28066.73694793537,322.6412809275572,86.99053285198556,339.88013515821444,2019
+2004,71,"(70,75]",College,24624.074111310594,322.6412809275572,76.32028375451264,352.6440949207068,2019
+2004,73,"(70,75]",College,114.46736086175943,16.132064046377863,7.095642599277978,7233.968748932023,2019
+2004,73,"(70,75]",College,114.46736086175943,19.358476855653432,5.913035499398315,7240.863639014091,2019
+2004,73,"(70,75]",College,114.46736086175943,30.650921688117936,3.734548736462094,7247.304880259263,2019
+2004,73,"(70,75]",College,114.46736086175943,27.424508878842364,4.173907411339988,7231.121212456227,2019
+2004,73,"(70,75]",College,114.46736086175943,16.132064046377863,7.095642599277978,7239.768082439943,2019
+2004,76,"(75,80]",College,80.13500897666069,174.22629170088092,0.45994785399117527,1605.969893132869,2019
+2004,76,"(75,80]",College,83.27755834829443,174.22629170088092,0.4779850247359272,1579.0580698064414,2019
+2004,76,"(75,80]",College,83.27755834829443,174.22629170088092,0.4779850247359272,1650.0198428203407,2019
+2004,76,"(75,80]",College,81.70628366247756,174.22629170088092,0.4689664393635512,1545.9394435792697,2019
+2004,76,"(75,80]",College,81.70628366247756,174.22629170088092,0.4689664393635512,1614.575223561313,2019
+2004,23,"(20,25]",College,35.66793536804309,53.23581135304694,0.6699989060277869,7130.449527358466,2019
+2004,23,"(20,25]",College,35.66793536804309,48.39619213913358,0.7369987966305657,7215.705952433846,2019
+2004,23,"(20,25]",College,35.66793536804309,54.84901775768473,0.650293055850499,7141.264709161887,2019
+2004,23,"(20,25]",College,35.66793536804309,56.46222416232251,0.6317132542547707,7059.210073173746,2019
+2004,23,"(20,25]",College,35.66793536804309,54.84901775768473,0.650293055850499,7173.389492930886,2019
+2004,62,"(60,65]",HS,41494.53615798923,775.9522806307751,53.47562884183822,286.3874390981662,2019
+2004,62,"(60,65]",HS,45169.433393177744,438.7921420614778,102.94038808664261,278.4357808814075,2019
+2004,62,"(60,65]",HS,48984.48833034112,1071.16905267949,45.72993236483842,295.230733347006,2019
+2004,62,"(60,65]",HS,41737.76947935368,621.0844657855476,67.2014384171785,278.96804002249337,2019
+2004,62,"(60,65]",HS,43566.733213644526,572.688273646414,76.07407942238268,290.4419445755936,2019
+2004,73,"(70,75]",College,626.8600359066427,55.010338398148505,11.395313211302497,7872.113387565182,2019
+2004,73,"(70,75]",College,626.9228868940754,55.17165903861228,11.363132771760931,8748.029766982021,2019
+2004,73,"(70,75]",College,626.7657594254938,55.010338398148505,11.393599415607103,7790.071116092174,2019
+2004,73,"(70,75]",College,626.7814721723519,55.17165903861228,11.360569594865623,7766.039175731676,2019
+2004,73,"(70,75]",College,626.9071741472172,55.65562096000362,11.26404060063831,8139.1938592007555,2019
+2004,77,"(75,80]",HS,3001.2917773788154,82.2735266365271,36.4794351242302,5342.223458165545,2019
+2004,77,"(75,80]",HS,2998.777737881508,82.2735266365271,36.4488780349685,5591.446335574677,2019
+2004,77,"(75,80]",HS,3000.349012567325,82.2735266365271,36.46797621575706,5303.490263767604,2019
+2004,77,"(75,80]",HS,3002.863052064632,82.2735266365271,36.49853330501876,5691.052786815464,2019
+2004,77,"(75,80]",HS,3000.349012567325,82.2735266365271,36.46797621575706,5428.728040135113,2019
+2004,42,"(40,45]",HS,48.552387791741474,74.20749461333816,0.6542787631455032,5792.862602445633,2019
+2004,42,"(40,45]",HS,50.7521723518851,74.20749461333816,0.6839224611520955,5748.151741415267,2019
+2004,42,"(40,45]",HS,55.151741472172354,74.20749461333816,0.7432098571652802,5737.293944381812,2019
+2004,42,"(40,45]",HS,46.35260323159785,74.20749461333816,0.6246350651389108,5733.431272316115,2019
+2004,42,"(40,45]",HS,52.009192100538606,74.20749461333816,0.7008617171558627,5711.307464389496,2019
+2004,32,"(30,35]",HS,127.27324955116697,116.1508611339206,1.0957581227436823,6655.940608409299,2019
+2004,32,"(30,35]",HS,124.28782764811491,116.1508611339206,1.0700551544324108,6610.06826986428,2019
+2004,32,"(30,35]",HS,131.20143626570916,116.1508611339206,1.1295778178900924,6657.712467290122,2019
+2004,32,"(30,35]",HS,125.07346499102334,116.1508611339206,1.0768190934616928,6649.639504713161,2019
+2004,32,"(30,35]",HS,122.66941472172351,116.1508611339206,1.0561214400320897,6646.229010352316,2019
+2004,38,"(35,40]",NoHS,0,17.74527045101565,0,5219.932437588901,2019
+2004,38,"(35,40]",NoHS,0,11.131124192000723,0,5215.118251752097,2019
+2004,38,"(35,40]",NoHS,0,17.74527045101565,0,5262.913784065357,2019
+2004,38,"(35,40]",NoHS,0,22.58488966492901,0,5210.56741064228,2019
+2004,38,"(35,40]",NoHS,0,27.424508878842364,0,5223.042893123796,2019
+2004,49,"(45,50]",HS,557.1740035906643,129.0565123710229,4.317287003610107,7332.335556961516,2019
+2004,49,"(45,50]",HS,337.19554757630164,129.0565123710229,2.612774368231047,8159.118274508202,2019
+2004,49,"(45,50]",HS,730.0142190305206,129.0565123710229,5.6565469314079415,7183.784873157523,2019
+2004,49,"(45,50]",HS,340.33809694793536,129.0565123710229,2.6371245487364616,7259.9543071104345,2019
+2004,49,"(45,50]",HS,458.1836983842011,129.0565123710229,3.5502563176895303,7541.603834227552,2019
+2004,56,"(55,60]",HS,96.94764811490126,32.264128092755726,3.0048122743682306,5220.0397895981905,2019
+2004,56,"(55,60]",HS,96.94764811490126,33.87733449739351,2.861725975588791,4622.419015126,2019
+2004,56,"(55,60]",HS,96.94764811490126,27.424508878842364,3.535073263962625,5231.515824648252,2019
+2004,56,"(55,60]",HS,96.94764811490126,27.424508878842364,3.535073263962625,5126.486909890393,2019
+2004,56,"(55,60]",HS,96.94764811490126,29.03771528348015,3.33868030485359,5012.623282563862,2019
+2004,72,"(70,75]",HS,633.0665709156194,80.6603202318893,7.848550180505416,7080.565159614009,2019
+2004,72,"(70,75]",HS,633.0665709156194,80.6603202318893,7.848550180505416,7871.379966501934,2019
+2004,72,"(70,75]",HS,633.0665709156194,80.6603202318893,7.848550180505416,7008.006721896952,2019
+2004,72,"(70,75]",HS,633.0665709156194,80.6603202318893,7.848550180505416,6987.140899420706,2019
+2004,72,"(70,75]",HS,633.0665709156194,80.6603202318893,7.848550180505416,7323.457093615236,2019
+2004,64,"(60,65]",NoHS,0.47138240574506285,8.066032023188932,0.058440433212996384,6354.658601449566,2019
+2004,64,"(60,65]",NoHS,0.5499461400359067,8.066032023188932,0.06818050541516245,6305.536601704582,2019
+2004,64,"(60,65]",NoHS,0.47138240574506285,8.066032023188932,0.058440433212996384,6338.644431578916,2019
+2004,64,"(60,65]",NoHS,0.47138240574506285,8.066032023188932,0.058440433212996384,6334.592892576902,2019
+2004,64,"(60,65]",NoHS,0.47138240574506285,8.066032023188932,0.058440433212996384,6373.802373910932,2019
+2004,36,"(35,40]",HS,49.36945062836625,96.79238427826716,0.5100551143200963,5360.527166404995,2019
+2004,36,"(35,40]",HS,49.495152603231595,96.79238427826716,0.5113537906137184,5273.034292507252,2019
+2004,36,"(35,40]",HS,51.22355475763016,96.79238427826716,0.5292105896510229,5339.583598382692,2019
+2004,36,"(35,40]",HS,50.437917414721724,96.79238427826716,0.5210938628158844,5378.671506692052,2019
+2004,36,"(35,40]",HS,49.070908438061046,98.40559068290497,0.49865976208794455,5323.990568892957,2019
+2004,46,"(45,50]",College,1693.0956122082587,322.6412809275572,5.247610000000001,634.4076775748521,2019
+2004,46,"(45,50]",College,1766.8983842010773,322.6412809275572,5.4763555956678704,654.7663185408455,2019
+2004,46,"(45,50]",College,1726.0452423698387,322.6412809275572,5.349734657039712,633.689146341873,2019
+2004,46,"(45,50]",College,1760.6132854578098,322.6412809275572,5.456875451263539,644.407595241403,2019
+2004,46,"(45,50]",College,1722.1170556552963,322.6412809275572,5.337559566787004,655.8402717884301,2019
+2004,40,"(35,40]",College,5095.643806104129,967.9238427826717,5.264509025270757,1240.1946621704903,2019
+2004,40,"(35,40]",College,5097.215080789946,967.9238427826717,5.266132370637785,1239.6978031315468,2019
+2004,40,"(35,40]",College,5092.501256732496,967.9238427826717,5.261262334536703,1272.473272739166,2019
+2004,40,"(35,40]",College,5095.643806104129,967.9238427826717,5.264509025270757,1198.2982046391487,2019
+2004,40,"(35,40]",College,5098.786355475763,967.9238427826717,5.267755716004813,1220.9668332492822,2019
+2004,62,"(60,65]",College,1078.8371992818672,146.80178282203855,7.348937993414528,5713.237235255391,2019
+2004,62,"(60,65]",College,1310.9144703770198,140.3489572034874,9.340393377318561,6319.736943844299,2019
+2004,62,"(60,65]",College,979.846894075404,198.4243877704477,4.9381374189193155,5635.191357772643,2019
+2004,62,"(60,65]",College,988.0175224416517,140.3489572034874,7.039721150255197,5617.870207800625,2019
+2004,62,"(60,65]",College,1119.3760861759426,140.3489572034874,7.975663720486327,5906.948783779999,2019
+2004,57,"(55,60]",College,2640.6842369838423,387.16953711306866,6.820485559566788,12506.105978955737,2019
+2004,57,"(55,60]",College,2643.826786355476,387.16953711306866,6.828602286401926,12911.282011790134,2019
+2004,57,"(55,60]",College,2643.826786355476,387.16953711306866,6.828602286401926,12366.807786661879,2019
+2004,57,"(55,60]",College,1730.916193895871,387.16953711306866,4.470693140794224,12733.707639237033,2019
+2004,57,"(55,60]",College,2643.826786355476,387.16953711306866,6.828602286401926,12778.124067125631,2019
+2004,29,"(25,30]",College,6.442226211849192,48.39619213913358,0.13311432009626956,8318.165440417151,2019
+2004,29,"(25,30]",College,6.5993536804308794,48.39619213913358,0.1363610108303249,8435.949949455606,2019
+2004,29,"(25,30]",College,5.735152603231598,48.39619213913358,0.11850421179302047,8297.361286811065,2019
+2004,29,"(25,30]",College,8.956265709156193,48.39619213913358,0.18506137184115523,8380.629989119441,2019
+2004,29,"(25,30]",College,6.442226211849192,48.39619213913358,0.13311432009626956,8363.334658438946,2019
+2004,51,"(50,55]",College,1910.9685601436265,187.13194293798318,10.211877940993402,515.2573057406888,2019
+2004,51,"(50,55]",College,2339.8951238779173,187.13194293798318,12.503985621810033,532.1267557962403,2019
+2004,51,"(50,55]",College,2044.982578096948,219.3960710307389,9.320962624761096,510.283954807586,2019
+2004,51,"(50,55]",College,2494.0843087971275,198.4243877704477,12.569444395526986,521.5366118323628,2019
+2004,51,"(50,55]",College,1870.2725457809695,201.65080057972327,9.274808433212996,529.6128730681471,2019
+2004,51,"(50,55]",College,74.32129263913824,341.99975778321067,0.21731387507662964,7917.570932554356,2019
+2004,51,"(50,55]",College,74.30557989228008,341.99975778321067,0.217267931339827,7268.1444806079135,2019
+2004,51,"(50,55]",College,74.32129263913824,341.99975778321067,0.21731387507662964,7985.1647045213995,2019
+2004,51,"(50,55]",College,74.30557989228008,341.99975778321067,0.217267931339827,7973.193335178437,2019
+2004,51,"(50,55]",College,74.32129263913824,343.61296418784843,0.21629362214199757,7690.688294781928,2019
+2004,29,"(25,30]",HS,2.356912028725314,59.68863697159809,0.03948677919797053,8841.717046959766,2019
+2004,29,"(25,30]",HS,2.356912028725314,59.68863697159809,0.03948677919797053,8525.870948202888,2019
+2004,29,"(25,30]",HS,0.7856373429084381,59.68863697159809,0.013162259732656844,8846.679586728464,2019
+2004,29,"(25,30]",HS,2.356912028725314,59.68863697159809,0.03948677919797053,8867.256843237417,2019
+2004,29,"(25,30]",HS,2.356912028725314,59.68863697159809,0.03948677919797053,8747.318137610051,2019
+2004,72,"(70,75]",HS,361.55030520646324,46.782985734495796,7.72824349558073,8292.90470815626,2019
+2004,72,"(70,75]",HS,361.55030520646324,50.00939854377137,7.229647141027135,7886.8668537172725,2019
+2004,72,"(70,75]",HS,361.55030520646324,24.19809606956679,14.941270758122746,8674.597556628212,2019
+2004,72,"(70,75]",HS,361.55030520646324,45.16977932985802,8.004252191851469,8412.463629596656,2019
+2004,72,"(70,75]",HS,361.55030520646324,27.424508878842364,13.183474198343598,8452.931801574365,2019
+2004,43,"(40,45]",HS,333.785881508079,141.9621636081252,2.3512312930751555,7424.182031605356,2019
+2004,43,"(40,45]",HS,305.04726750448833,137.12254439421181,2.2246324909747295,7126.806092847623,2019
+2004,43,"(40,45]",HS,358.5334578096948,130.66971877566067,2.7438144136916702,7417.469020975,2019
+2004,43,"(40,45]",HS,297.568,151.6414020359519,1.9623136953683076,7389.814906758176,2019
+2004,43,"(40,45]",HS,316.18760502693,150.02819563131413,2.1075212142385773,7315.006090002908,2019
+2004,58,"(55,60]",NoHS,135.7581328545781,30.650921688117936,4.429169675090252,8218.751621249281,2019
+2004,58,"(55,60]",NoHS,164.04107719928186,32.264128092755726,5.0843176895306845,8218.481782025632,2019
+2004,58,"(55,60]",NoHS,176.45414721723517,30.650921688117936,5.756895306859205,8194.045140598459,2019
+2004,58,"(55,60]",NoHS,159.17012567324954,30.650921688117936,5.192996389891697,8174.139858760308,2019
+2004,58,"(55,60]",NoHS,134.18685816876123,30.650921688117936,4.377906137184116,8211.429014480795,2019
+2004,28,"(25,30]",College,224.22089766606823,69.36787539942482,3.2323448912769703,10845.563131052682,2019
+2004,28,"(25,30]",College,223.90664272890484,69.36787539942482,3.2278146251364275,10294.881416780525,2019
+2004,28,"(25,30]",College,223.59238779174146,69.36787539942482,3.223284358995885,10501.072361251328,2019
+2004,28,"(25,30]",College,222.33536804308798,69.36787539942482,3.2051632944337163,10223.288212992979,2019
+2004,28,"(25,30]",College,221.86398563734292,69.36787539942482,3.1983678952229027,10120.198138996464,2019
+2004,33,"(30,35]",College,18.41533931777379,124.21689315710954,0.14825148858361853,6854.499040675779,2019
+2004,33,"(30,35]",College,-34.568043087971276,125.83009956174732,-0.2747199851892993,6609.640856520852,2019
+2004,33,"(30,35]",College,-109.43928186714541,127.4433059663851,-0.8587291504821093,6858.34622600225,2019
+2004,33,"(30,35]",College,-57.147260323159784,127.4433059663851,-0.44841319745921493,6874.298646131875,2019
+2004,33,"(30,35]",College,-50.76788509874327,125.83009956174732,-0.4034637600666482,6781.31673568436,2019
+2004,73,"(70,75]",College,1114.9765170556554,129.0565123710229,8.6394440433213,6016.342482528017,2019
+2004,73,"(70,75]",College,1074.1233752244166,129.0565123710229,8.322891696750903,6687.858268274821,2019
+2004,73,"(70,75]",College,1128.9608617594256,129.0565123710229,8.747802346570397,5955.270889096126,2019
+2004,73,"(70,75]",College,1070.9808258527828,129.0565123710229,8.298541516245486,5937.4776291114795,2019
+2004,73,"(70,75]",College,1075.6946499102335,129.0565123710229,8.33506678700361,6222.362070227971,2019
+2004,50,"(45,50]",NoHS,39.59612208258528,48.39619213913358,0.8181660649819495,4837.606489503076,2019
+2004,50,"(45,50]",NoHS,39.43899461400359,48.39619213913358,0.8149193742478941,4849.071499701989,2019
+2004,50,"(45,50]",NoHS,39.753249551166974,48.39619213913358,0.821412755716005,4836.829145194936,2019
+2004,50,"(45,50]",NoHS,39.59612208258528,48.39619213913358,0.8181660649819495,4854.93806940632,2019
+2004,50,"(45,50]",NoHS,39.43899461400359,48.39619213913358,0.8149193742478941,4843.312264514543,2019
+2004,50,"(45,50]",NoHS,3.378240574506284,40.33016011594465,0.08376462093862816,6691.88980885198,2019
+2004,50,"(45,50]",HS,3.6924955116696587,38.716953711306864,0.09537154031287605,6539.7839389733035,2019
+2004,50,"(45,50]",NoHS,1.9640933572710952,35.4905409020313,0.055341319330489,6688.355547638949,2019
+2004,50,"(45,50]",HS,2.7497307001795335,30.650921688117936,0.08971119133574008,6675.157775963414,2019
+2004,50,"(45,50]",NoHS,3.6924955116696587,35.4905409020313,0.10404168034131932,6564.865226920943,2019
+2004,30,"(25,30]",College,26.224574506283663,87.11314585044046,0.3010403797299104,8867.316844996474,2019
+2004,30,"(25,30]",College,27.088775583482946,87.11314585044046,0.310960823639524,8803.62270691484,2019
+2004,30,"(25,30]",College,24.73186355475763,87.11314585044046,0.283905067522396,8806.951043456456,2019
+2004,30,"(25,30]",College,24.653299820466785,87.11314585044046,0.2830032089851584,8867.32995319186,2019
+2004,30,"(25,30]",College,24.574736086175946,87.11314585044046,0.28210135044792084,8805.450380806253,2019
+2004,60,"(55,60]",College,18984.140754039498,2677.9226316987247,7.089129659431952,20.626138171850155,2019
+2004,60,"(55,60]",College,27088.775583482944,2290.753094585656,11.825270758122745,19.12902112287269,2019
+2004,60,"(55,60]",College,76128.25852782765,2677.9226316987247,28.428102300900356,20.633580245552746,2019
+2004,60,"(55,60]",College,12752.465350089766,3000.5639126262818,4.250022902837623,19.826033511512716,2019
+2004,60,"(55,60]",College,76910.75332136445,2742.4508878842366,28.04453259715438,19.991066487296695,2019
+2004,38,"(35,40]",College,1703.0732064631957,703.3579924220747,2.4213462060742557,538.344399186677,2019
+2004,38,"(35,40]",College,1704.6444811490126,703.3579924220747,2.423580167588514,546.1733248017433,2019
+2004,38,"(35,40]",College,1703.0732064631957,703.3579924220747,2.4213462060742557,535.0079719048601,2019
+2004,38,"(35,40]",College,1704.6444811490126,703.3579924220747,2.423580167588514,546.4850325668089,2019
+2004,38,"(35,40]",College,1703.0732064631957,703.3579924220747,2.4213462060742557,555.0669145978651,2019
+2004,79,"(75,80]",College,1508.423698384201,17.74527045101565,85.0042664916311,6155.116532365465,2019
+2004,79,"(75,80]",College,1508.2665709156195,17.74527045101565,84.99541188053823,6405.236502205249,2019
+2004,79,"(75,80]",College,1508.2665709156195,17.74527045101565,84.99541188053823,6013.426108541384,2019
+2004,79,"(75,80]",College,1508.2665709156195,17.74527045101565,84.99541188053823,5959.934970980397,2019
+2004,79,"(75,80]",College,1508.2665709156195,17.74527045101565,84.99541188053823,6185.611863188356,2019
+2004,43,"(40,45]",HS,-13.670089766606823,96.79238427826716,-0.14123104693140795,4169.36084067814,2019
+2004,43,"(40,45]",HS,-13.670089766606823,96.79238427826716,-0.14123104693140795,4226.534229899758,2019
+2004,43,"(40,45]",HS,-13.670089766606823,96.79238427826716,-0.14123104693140795,4179.401171545622,2019
+2004,43,"(40,45]",HS,-13.670089766606823,96.79238427826716,-0.14123104693140795,4158.898180534246,2019
+2004,43,"(40,45]",HS,-13.670089766606823,96.79238427826716,-0.14123104693140795,4199.804748208336,2019
+2004,36,"(35,40]",HS,8.170628366247756,27.424508878842364,0.29793162030155024,5586.488700851869,2019
+2004,36,"(35,40]",HS,8.170628366247756,27.424508878842364,0.29793162030155024,5659.349229703986,2019
+2004,36,"(35,40]",HS,8.170628366247756,27.424508878842364,0.29793162030155024,5562.101110859869,2019
+2004,36,"(35,40]",HS,8.170628366247756,27.424508878842364,0.29793162030155024,5570.122463125452,2019
+2004,36,"(35,40]",HS,8.170628366247756,27.424508878842364,0.29793162030155024,5599.009231178626,2019
+2004,46,"(45,50]",NoHS,0,11.292444832464504,0,4389.720198662267,2019
+2004,46,"(45,50]",NoHS,0,11.292444832464504,0,4396.282633900438,2019
+2004,46,"(45,50]",NoHS,0,11.292444832464504,0,4426.604558323273,2019
+2004,46,"(45,50]",NoHS,0,11.292444832464504,0,4399.607438879648,2019
+2004,46,"(45,50]",NoHS,0,11.292444832464504,0,4411.535524329729,2019
+2004,50,"(45,50]",NoHS,1952.4659245960504,179.06591091479427,10.90361596253293,780.2046675257362,2019
+2004,50,"(45,50]",NoHS,1952.623052064632,179.06591091479427,10.904493446515106,799.1606462612892,2019
+2004,50,"(45,50]",NoHS,1952.4659245960504,179.06591091479427,10.90361596253293,768.6317226614592,2019
+2004,50,"(45,50]",NoHS,1952.623052064632,179.06591091479427,10.904493446515106,800.1320989802612,2019
+2004,50,"(45,50]",NoHS,1952.4659245960504,179.06591091479427,10.90361596253293,809.0349600796334,2019
+2004,22,"(20,25]",HS,-1.0920359066427288,37.10374730666908,-0.02943195730654528,6854.222001902404,2019
+2004,22,"(20,25]",HS,-1.241307001795332,37.10374730666908,-0.03345503060743996,6804.895297161895,2019
+2004,22,"(20,25]",HS,-1.2491633752244167,37.10374730666908,-0.033666771307487055,6889.8652621466335,2019
+2004,22,"(20,25]",HS,-1.241307001795332,37.10374730666908,-0.03345503060743996,6789.129283012281,2019
+2004,22,"(20,25]",HS,-1.0920359066427288,37.10374730666908,-0.02943195730654528,6883.076079736919,2019
+2004,56,"(55,60]",College,481.3757127468582,137.12254439421181,3.510551199830113,7306.496521826814,2019
+2004,56,"(55,60]",College,418.697565529623,137.12254439421181,3.053455340836696,8033.0734402495755,2019
+2004,56,"(55,60]",College,490.1277127468582,137.12254439421181,3.5743773200254836,7239.434708480787,2019
+2004,56,"(55,60]",College,439.1712746858169,137.12254439421181,3.202764918241665,7247.898714250308,2019
+2004,56,"(55,60]",College,486.7337594254937,137.12254439421181,3.549626077723508,7590.782370167231,2019
+2004,80,"(75,80]",HS,212.27921005385997,24.19809606956679,8.77255836341757,7891.31305365538,2019
+2004,80,"(75,80]",HS,212.43633752244165,24.19809606956679,8.77905174488568,7929.339321315488,2019
+2004,80,"(75,80]",HS,212.43633752244165,24.19809606956679,8.77905174488568,7887.423051644398,2019
+2004,80,"(75,80]",HS,212.43633752244165,24.19809606956679,8.77905174488568,7863.279875782884,2019
+2004,80,"(75,80]",HS,212.27921005385997,24.19809606956679,8.77255836341757,7885.260995614243,2019
+2004,63,"(60,65]",College,222622.9113105925,1790.6591091479427,124.32456304680133,17.367567521173562,2019
+2004,63,"(60,65]",College,227266.97077199284,1919.7156215189657,118.38574850590055,17.458798964697817,2019
+2004,63,"(60,65]",College,238239.96754039498,2258.4889664929005,105.48644296028881,17.649063906727488,2019
+2004,63,"(60,65]",College,133032.00270017952,2290.753094585656,58.073479422382675,233.99581520855227,2019
+2004,63,"(60,65]",College,103754.92857450628,2226.224838400145,46.60577259980118,260.2593226387703,2019
+2004,57,"(55,60]",HS,228.5419030520646,116.1508611339206,1.9676298636181306,4458.890867008082,2019
+2004,57,"(55,60]",HS,223.19956912028726,116.1508611339206,1.9216350782190132,3908.6007050571884,2019
+2004,57,"(55,60]",HS,228.69903052064632,116.1508611339206,1.9689826514239872,4457.262896139819,2019
+2004,57,"(55,60]",HS,228.5419030520646,116.1508611339206,1.9676298636181306,4378.037521605992,2019
+2004,57,"(55,60]",HS,230.2703052064632,116.1508611339206,1.9825105294825511,4247.725565730108,2019
+2004,53,"(50,55]",College,1335.3477917414723,290.37715283480145,4.59866686722824,7528.465916307036,2019
+2004,53,"(50,55]",College,1255.369910233393,290.37715283480145,4.323239269955876,7827.045135721137,2019
+2004,53,"(50,55]",College,1147.1090843806105,290.37715283480145,3.9504109506618543,7410.592699524011,2019
+2004,53,"(50,55]",College,3247.5890843806105,290.37715283480145,11.184037906137187,14141.46206116561,2019
+2004,53,"(50,55]",College,1239.5000359066428,290.37715283480145,4.268586642599279,7567.766292980824,2019
+2004,20,"(15,20]",HS,-13.04157989228007,35.4905409020313,-0.3674663603544469,6509.750642468889,2019
+2004,20,"(15,20]",HS,-13.04157989228007,35.4905409020313,-0.3674663603544469,6462.902940747773,2019
+2004,20,"(15,20]",HS,-12.963016157989228,35.4905409020313,-0.3652527075812274,6543.602586016985,2019
+2004,20,"(15,20]",HS,-13.355834829443447,35.4905409020313,-0.3763209714473252,6447.929276236889,2019
+2004,20,"(15,20]",HS,-13.355834829443447,35.4905409020313,-0.3763209714473252,6537.154606284023,2019
+2004,51,"(50,55]",NoHS,7.9977881508079,17.74527045101565,0.4506997046275025,10731.248211187347,2019
+2004,51,"(50,55]",NoHS,7.9977881508079,17.74527045101565,0.4506997046275025,10753.894143948644,2019
+2004,51,"(50,55]",NoHS,7.9977881508079,17.74527045101565,0.4506997046275025,10723.899322627078,2019
+2004,51,"(50,55]",NoHS,7.9977881508079,17.74527045101565,0.4506997046275025,10757.57374369316,2019
+2004,51,"(50,55]",NoHS,7.9977881508079,17.74527045101565,0.4506997046275025,10741.03272923216,2019
+2004,22,"(20,25]",HS,15.084236983842011,50.00939854377137,0.3016280423896588,2396.1069062243046,2019
+2004,22,"(20,25]",HS,10.684667863554758,51.62260494840914,0.20697653429602894,2383.17998583445,2019
+2004,22,"(20,25]",NoHS,12.884452423698384,51.62260494840914,0.2495893501805055,2391.800940048186,2019
+2004,22,"(20,25]",HS,10.763231597845602,50.00939854377137,0.21522417608012112,2363.0544496304487,2019
+2004,22,"(20,25]",HS,11.941687612208257,51.62260494840914,0.2313267148014441,2381.4479008908875,2019
+2004,50,"(45,50]",HS,16.718362657091564,56.46222416232251,0.29609819494584844,5035.717868327631,2019
+2004,50,"(45,50]",HS,17.205457809694796,56.46222416232251,0.30472511603919555,4929.126303762085,2019
+2004,50,"(45,50]",HS,17.425436265709155,56.46222416232251,0.30862114492006193,5078.230191964124,2019
+2004,50,"(45,50]",HS,18.069658886894075,56.46222416232251,0.32003094378545643,5062.852749580327,2019
+2004,50,"(45,50]",HS,16.13699102333932,56.46222416232251,0.28580154718927286,5012.856479727499,2019
+2004,52,"(50,55]",College,377.8915619389587,100.01879708754274,3.7782054268079657,7419.348020914842,2019
+2004,52,"(50,55]",College,447.0747863554758,100.01879708754274,4.469907651100501,6894.145296890229,2019
+2004,52,"(50,55]",College,450.1859102333932,100.01879708754274,4.501013042971935,7455.730302956168,2019
+2004,52,"(50,55]",College,394.87704129263915,100.01879708754274,3.948028298590893,7414.3042754845355,2019
+2004,52,"(50,55]",College,374.60759784560145,100.01879708754274,3.7453719576103413,7186.111241668889,2019
+2004,44,"(40,45]",HS,431.8648473967684,67.75466899478702,6.373949630393673,1820.953606581398,2019
+2004,44,"(40,45]",HS,406.0173788150808,67.75466899478702,5.9924634691421685,1705.7005695599132,2019
+2004,44,"(40,45]",HS,434.1431956912029,64.52825618551145,6.727954873646209,1770.4807051941784,2019
+2004,44,"(40,45]",HS,429.11511669658887,62.91504978087366,6.820547995927057,1705.6143864749145,2019
+2004,44,"(40,45]",HS,428.56517055655297,59.68863697159809,7.180012684164308,1672.9743384461858,2019
+2004,53,"(50,55]",HS,262.7642657091562,19.358476855653432,13.573602286401925,8768.07255442363,2019
+2004,53,"(50,55]",HS,214.05475044883306,22.58488966492901,9.477785972150594,8132.638206617104,2019
+2004,53,"(50,55]",HS,215.61031238779177,25.81130247420457,8.353329422382675,8872.832897649017,2019
+2004,53,"(50,55]",HS,236.0525960502693,24.19809606956679,9.75500697954272,8800.293793687357,2019
+2004,53,"(50,55]",HS,212.467763016158,25.81130247420457,8.231578519855598,8580.682583417023,2019
+2004,40,"(35,40]",College,2186.1144703770196,563.0090352185874,3.8829118781872904,838.638883217496,2019
+2004,40,"(35,40]",College,2630.1566965888687,590.4335440974297,4.454619360438736,842.5963017563015,2019
+2004,40,"(35,40]",College,1503.5527468581688,475.895889368147,3.1594152848314256,837.8334910612314,2019
+2004,40,"(35,40]",College,3104.053141831239,625.924084999461,4.9591527410770775,856.2297816660148,2019
+2004,40,"(35,40]",College,2047.5280430879711,416.2072523965488,4.919491506450619,869.5422200916979,2019
+2004,52,"(50,55]",HS,269.08078994614004,58.0754305669603,4.633298235058163,7876.6791182598245,2019
+2004,52,"(50,55]",HS,271.3591382405745,58.0754305669603,4.6725290814279985,7444.6073261317,2019
+2004,52,"(50,55]",HS,269.3164811490126,58.0754305669603,4.637356598475733,7885.4183430114545,2019
+2004,52,"(50,55]",HS,273.8731777378815,58.0754305669603,4.715818291215403,7909.179863639765,2019
+2004,52,"(50,55]",HS,263.5027648114901,58.0754305669603,4.537250300842358,7679.57945445034,2019
+2004,40,"(35,40]",HS,11814.728617594255,101.63200349218052,116.25008079766204,1544.5726713523823,2019
+2004,40,"(35,40]",HS,11839.711885098744,101.63200349218052,116.49590166752624,1537.6131655291017,2019
+2004,40,"(35,40]",HS,11840.026140035907,101.63200349218052,116.49899375393962,1750.1174606879795,2019
+2004,40,"(35,40]",HS,11814.728617594255,101.63200349218052,116.25008079766204,1467.359208568523,2019
+2004,40,"(35,40]",HS,11814.587202872532,101.63200349218052,116.248689358776,1554.1727120459377,2019
+2004,33,"(30,35]",College,52.63770197486535,102.43860669449943,0.51384632877569,6696.0934984962005,2019
+2004,33,"(30,35]",College,52.794829443447036,100.82540028986163,0.5236262815884476,6535.920353910112,2019
+2004,33,"(30,35]",College,54.208976660682225,100.82540028986163,0.5376519855595667,6675.714052932795,2019
+2004,33,"(30,35]",College,52.794829443447036,100.82540028986163,0.5236262815884476,6664.054107116365,2019
+2004,33,"(30,35]",College,52.794829443447036,102.43860669449943,0.5153801984138263,6605.637918335733,2019
+2004,51,"(50,55]",NoHS,47.138240574506284,45.16977932985802,1.0435791645177925,5067.302914881805,2019
+2004,51,"(50,55]",NoHS,47.138240574506284,45.16977932985802,1.0435791645177925,4759.021372631357,2019
+2004,51,"(50,55]",NoHS,47.138240574506284,45.16977932985802,1.0435791645177925,5110.566891007567,2019
+2004,51,"(50,55]",NoHS,47.138240574506284,45.16977932985802,1.0435791645177925,5076.3675603706715,2019
+2004,51,"(50,55]",NoHS,47.138240574506284,45.16977932985802,1.0435791645177925,4949.929005186561,2019
+2004,56,"(55,60]",HS,2196.6420107719928,182.29232372406983,12.050107025334654,2869.500583017444,2019
+2004,56,"(55,60]",HS,2196.6420107719928,182.29232372406983,12.050107025334654,2988.2873016701983,2019
+2004,56,"(55,60]",HS,2198.21328545781,182.29232372406983,12.058726558256925,2839.7661068091284,2019
+2004,56,"(55,60]",HS,2195.0707360861757,182.29232372406983,12.041487492412381,3047.415734748351,2019
+2004,56,"(55,60]",HS,2198.21328545781,182.29232372406983,12.058726558256925,2914.99488647209,2019
+2004,41,"(40,45]",College,773.1771346499103,162.9338468684164,4.745343889623619,7515.181884545018,2019
+2004,41,"(40,45]",College,773.1771346499103,162.9338468684164,4.745343889623619,8340.85739745482,2019
+2004,41,"(40,45]",College,773.1928473967685,162.9338468684164,4.745440325982057,7416.8525980558115,2019
+2004,41,"(40,45]",College,773.0200071813285,162.9338468684164,4.744379526039246,7405.013574800537,2019
+2004,41,"(40,45]",College,773.1771346499103,162.9338468684164,4.745343889623619,7737.186944377869,2019
+2004,61,"(60,65]",College,8189.012280071814,1129.2444832464503,7.25176204228984,307.2549821473893,2019
+2004,61,"(60,65]",College,10422.26499102334,1129.2444832464503,9.229414130995359,300.7539315690902,2019
+2004,61,"(60,65]",College,8584.392129263913,1129.2444832464503,7.60188980917999,318.80985280446123,2019
+2004,61,"(60,65]",College,7878.198434470377,1129.2444832464503,6.976521516245487,303.9371193664785,2019
+2004,61,"(60,65]",College,8191.039224416517,1129.2444832464503,7.253556998452811,310.5716416555325,2019
+2004,50,"(45,50]",College,4002.350879712747,354.90540902031296,11.277232687889727,1715.641890540539,2019
+2004,50,"(45,50]",College,4002.350879712747,354.90540902031296,11.277232687889727,1693.675755267098,2019
+2004,50,"(45,50]",College,4002.1937522441654,354.90540902031296,11.276789957335083,1754.8189381437776,2019
+2004,50,"(45,50]",College,4002.1937522441654,354.90540902031296,11.276789957335083,1671.4416586611958,2019
+2004,50,"(45,50]",College,4002.350879712747,354.90540902031296,11.277232687889727,1690.4408731624783,2019
+2004,35,"(30,35]",College,9.584775583482944,32.264128092755726,0.29707220216606495,4099.235172121769,2019
+2004,35,"(30,35]",College,10.841795332136446,32.264128092755726,0.3360324909747292,4117.379811729883,2019
+2004,35,"(30,35]",College,10.684667863554758,32.264128092755726,0.33116245487364615,4045.286068064071,2019
+2004,35,"(30,35]",College,10.52754039497307,32.264128092755726,0.3262924187725631,4026.1369851157724,2019
+2004,35,"(30,35]",College,9.89903052064632,32.264128092755726,0.30681227436823105,4029.954040122803,2019
+2004,30,"(25,30]",College,137.1722800718133,88.72635225507824,1.546015096816541,5204.74458159379,2019
+2004,30,"(25,30]",College,94.59073608617594,88.72635225507824,1.06609517558254,5170.21330866097,2019
+2004,30,"(25,30]",College,103.70412926391383,88.72635225507824,1.1688086642599278,5208.860650951197,2019
+2004,30,"(25,30]",College,119.25974865350089,88.72635225507824,1.3441299638989168,5205.6761854535025,2019
+2004,30,"(25,30]",College,86.89149012567326,88.72635225507824,0.9793199868723335,5198.540333013957,2019
+2004,37,"(35,40]",NoHS,118.92978096947935,40.33016011594465,2.948904259927798,10898.656602670508,2019
+2004,37,"(35,40]",NoHS,118.92978096947935,40.33016011594465,2.948904259927798,10011.080892699665,2019
+2004,37,"(35,40]",NoHS,118.77265350089766,40.33016011594465,2.9450082310469314,10556.433024328138,2019
+2004,37,"(35,40]",NoHS,118.92978096947935,40.33016011594465,2.948904259927798,10216.400325404773,2019
+2004,37,"(35,40]",NoHS,118.78836624775585,40.33016011594465,2.9453978339350186,10076.727114117248,2019
+2004,22,"(20,25]",HS,4.808100538599642,16.132064046377863,0.2980462093862816,5938.901000527528,2019
+2004,22,"(20,25]",HS,4.808100538599642,17.74527045101565,0.2709510994420742,6009.9104742274485,2019
+2004,22,"(20,25]",HS,4.808100538599642,17.74527045101565,0.2709510994420742,5947.908888990488,2019
+2004,22,"(20,25]",HS,4.808100538599642,16.132064046377863,0.2980462093862816,5879.56616278534,2019
+2004,22,"(20,25]",HS,4.808100538599642,17.74527045101565,0.2709510994420742,5974.665394276085,2019
+2004,35,"(30,35]",HS,-3.9281867145421905,35.4905409020313,-0.110682638660978,4461.249558046937,2019
+2004,35,"(30,35]",HS,-3.9281867145421905,35.4905409020313,-0.110682638660978,4522.425543322299,2019
+2004,35,"(30,35]",HS,-3.9281867145421905,35.4905409020313,-0.110682638660978,4471.992792647356,2019
+2004,35,"(30,35]",HS,-3.9281867145421905,35.4905409020313,-0.110682638660978,4450.054427731628,2019
+2004,35,"(30,35]",HS,-3.9281867145421905,35.4905409020313,-0.110682638660978,4493.82478341223,2019
+2004,56,"(55,60]",College,7305.798779174147,3323.2051935538398,2.19841940345589,36.30274912122901,2019
+2004,56,"(55,60]",College,45618.81795332137,3952.355691362576,11.542184336550505,33.14916853903612,2019
+2004,56,"(55,60]",College,46878.9802513465,2435.941671003057,19.24470557295527,35.00976651603156,2019
+2004,56,"(55,60]",College,36492.85457809695,1935.8476855653435,18.851098074608906,32.77707341175866,2019
+2004,56,"(55,60]",College,22387.521723518854,2258.4889664929005,9.912610624033007,37.39123960327813,2019
+2004,46,"(45,50]",HS,73.55136804308798,82.2735266365271,0.8939858427125363,3873.362406397578,2019
+2004,46,"(45,50]",HS,74.96551526032316,82.2735266365271,0.911174205422241,3864.694909769013,2019
+2004,46,"(45,50]",HS,75.12264272890485,82.2735266365271,0.9130840235010972,3892.39253478584,2019
+2004,46,"(45,50]",HS,73.39424057450628,82.2735266365271,0.8920760246336802,3901.96178908641,2019
+2004,46,"(45,50]",HS,73.70849551166967,82.2735266365271,0.8958956607913924,3863.4934847256345,2019
+2004,34,"(30,35]",College,4233.3282585278275,358.13182182958855,11.820586723908022,2924.9280903649246,2019
+2004,34,"(30,35]",College,4234.899533213645,359.74502823422637,11.77194735393631,2770.7928232303284,2019
+2004,34,"(30,35]",College,4234.899533213645,358.13182182958855,11.824974143818908,3084.9235295572407,2019
+2004,34,"(30,35]",College,4234.899533213645,359.74502823422637,11.77194735393631,2705.977596871011,2019
+2004,34,"(30,35]",College,4236.470807899461,359.74502823422637,11.776315099318447,2841.923546277906,2019
+2004,64,"(60,65]",HS,544.4466786355475,45.16977932985802,12.053339350180503,5165.372661339057,2019
+2004,64,"(60,65]",HS,542.8754039497306,45.16977932985802,12.018553378029909,4605.6916097122175,2019
+2004,64,"(60,65]",HS,542.8754039497306,45.16977932985802,12.018553378029909,5177.912730346334,2019
+2004,64,"(60,65]",HS,542.8754039497306,45.16977932985802,12.018553378029909,5085.5378362318,2019
+2004,64,"(60,65]",HS,542.8754039497306,45.16977932985802,12.018553378029909,4979.523003233842,2019
+2004,51,"(50,55]",HS,655.1429802513464,14.518857641740075,45.12359005214601,9527.621141191357,2019
+2004,51,"(50,55]",HS,656.7142549371633,14.518857641740075,45.231813076614515,10442.851053073717,2019
+2004,51,"(50,55]",HS,656.7142549371633,14.518857641740075,45.231813076614515,9406.18789852356,2019
+2004,51,"(50,55]",HS,656.7142549371633,14.518857641740075,45.231813076614515,9428.685184767575,2019
+2004,51,"(50,55]",HS,656.7142549371633,14.518857641740075,45.231813076614515,9855.541043307177,2019
+2004,49,"(45,50]",HS,4.478132854578097,69.36787539942482,0.06455629250272855,3563.0120857293487,2019
+2004,49,"(45,50]",HS,4.3210053859964095,69.36787539942482,0.06229115943245738,3494.0821594895597,2019
+2004,49,"(45,50]",HS,4.3210053859964095,67.75466899478702,0.06377428227608732,3568.670190243055,2019
+2004,49,"(45,50]",HS,4.3210053859964095,67.75466899478702,0.06377428227608732,3575.530741379314,2019
+2004,49,"(45,50]",HS,4.3210053859964095,69.36787539942482,0.06229115943245738,3511.0477693943512,2019
+2004,88,"(85,90]",College,349.92287253141836,45.16977932985802,7.746835997937081,9022.603421236261,2019
+2004,88,"(85,90]",College,396.90398563734294,72.59428820870036,5.467427196149219,8343.204161273585,2019
+2004,88,"(85,90]",College,563.4591023339318,56.46222416232251,9.979399690562147,7030.097685419058,2019
+2004,88,"(85,90]",College,358.2506283662478,64.52825618551145,5.551841155234657,8843.378149760561,2019
+2004,88,"(85,90]",College,167.49788150807902,100.01879708754274,1.674664027017585,8776.798347264741,2019
+2004,74,"(70,75]",HS,573.2010053859964,130.66971877566067,4.38663992512368,8372.179462077898,2019
+2004,74,"(70,75]",HS,782.4947935368043,72.59428820870036,10.779013237063781,7793.023816276516,2019
+2004,74,"(70,75]",HS,780.9235188509874,53.5584526339745,14.580770736375104,6939.643708955715,2019
+2004,74,"(70,75]",HS,671.0914183123878,141.9621636081252,4.72725549721037,6918.235290309545,2019
+2004,74,"(70,75]",HS,686.6470377019749,77.7565487035413,8.830729361714877,7250.653379055133,2019
+2004,31,"(30,35]",HS,17.12689407540395,25.81130247420457,0.6635424187725634,5952.73137622752,2019
+2004,31,"(30,35]",HS,17.12689407540395,25.81130247420457,0.6635424187725634,5966.176323464271,2019
+2004,31,"(30,35]",HS,16.96976660682226,25.81130247420457,0.6574548736462096,5947.672792328203,2019
+2004,31,"(30,35]",HS,17.284021543985638,25.81130247420457,0.6696299638989172,5982.079038755094,2019
+2004,31,"(30,35]",HS,17.12689407540395,25.81130247420457,0.6635424187725634,5965.769168972162,2019
+2004,24,"(20,25]",HS,45.09558348294434,96.79238427826716,0.4659001203369434,10343.564919040258,2019
+2004,24,"(20,25]",HS,46.66685816876122,96.79238427826716,0.48213357400722023,10055.961258688514,2019
+2004,24,"(20,25]",HS,46.50973070017954,96.79238427826716,0.4805102286401926,10426.197726152963,2019
+2004,24,"(20,25]",HS,45.40983842010772,96.79238427826716,0.46914681107099876,10159.344969978138,2019
+2004,24,"(20,25]",HS,45.09558348294434,96.79238427826716,0.4659001203369434,10315.934830183058,2019
+2004,20,"(15,20]",HS,3.4725170556552962,14.518857641740075,0.23917288407541115,8175.38313658388,2019
+2004,20,"(15,20]",HS,3.4725170556552962,14.518857641740075,0.23917288407541115,8273.133486989189,2019
+2004,20,"(15,20]",HS,3.629644524236984,14.518857641740075,0.24999518652226232,8187.7832320611,2019
+2004,20,"(15,20]",HS,3.629644524236984,14.518857641740075,0.24999518652226232,8093.703877770449,2019
+2004,20,"(15,20]",HS,3.629644524236984,14.518857641740075,0.24999518652226232,8224.615750752078,2019
+2004,50,"(45,50]",College,1062.1816876122084,66.14146259014923,16.059240996742098,9102.566557699194,2019
+2004,50,"(45,50]",College,1049.957170556553,93.56597146899159,11.221570770571393,9327.66809388071,2019
+2004,50,"(45,50]",College,1056.1479928186716,104.8584163014561,10.072133740627605,8925.260759343666,2019
+2004,50,"(45,50]",College,1081.508366247756,133.89613158493626,8.077218911748075,8835.969349394405,2019
+2004,50,"(45,50]",College,1081.3041005385996,119.37727394319619,9.05787228022246,9177.714875437556,2019
+2004,31,"(30,35]",HS,0.7856373429084381,33.87733449739351,0.02319064810039539,5964.093353793768,2019
+2004,31,"(30,35]",HS,0.7856373429084381,33.87733449739351,0.02319064810039539,5934.064151833568,2019
+2004,31,"(30,35]",HS,0.7856373429084381,33.87733449739351,0.02319064810039539,5971.057045436996,2019
+2004,31,"(30,35]",HS,0.7856373429084381,33.87733449739351,0.02319064810039539,6011.879423523818,2019
+2004,31,"(30,35]",HS,0.7856373429084381,33.87733449739351,0.02319064810039539,5985.676690627116,2019
+2004,63,"(60,65]",College,79343.08653500899,3871.695371130687,20.493111913357403,214.9446503166411,2019
+2004,63,"(60,65]",College,79078.32675044885,3887.8274351770647,20.339978579025423,219.4278147238666,2019
+2004,63,"(60,65]",College,80131.3950448833,3887.8274351770647,20.610841499767815,217.6396252051789,2019
+2004,63,"(60,65]",College,79602.81824057452,3962.034929790403,20.091397388257153,212.85152184391578,2019
+2004,63,"(60,65]",College,79429.50664272891,3887.8274351770647,20.430306634510238,212.13419652670527,2019
+2004,66,"(65,70]",NoHS,529.9752387791742,51.62260494840914,10.266340478339355,5670.346089267591,2019
+2004,66,"(65,70]",NoHS,528.5768043087971,51.62260494840914,10.239250902527079,6357.3595440198105,2019
+2004,66,"(65,70]",NoHS,573.0438779174148,51.62260494840914,11.100638537906141,5659.459039146126,2019
+2004,66,"(65,70]",NoHS,536.7474326750449,51.62260494840914,10.397527075812278,5645.183850123552,2019
+2004,66,"(65,70]",NoHS,531.0122800718133,51.62260494840914,10.28642937725632,5914.22328575428,2019
+2004,45,"(40,45]",HS,2.451188509874327,2.2584889664929007,1.0853223310985043,4921.998818882583,2019
+2004,45,"(40,45]",HS,2.451188509874327,2.2584889664929007,1.0853223310985043,4926.322312366234,2019
+2004,45,"(40,45]",HS,2.451188509874327,2.2584889664929007,1.0853223310985043,4930.632298853768,2019
+2004,45,"(40,45]",HS,2.309773788150808,2.097168326029122,1.101377395168009,4943.258215056923,2019
+2004,45,"(40,45]",HS,2.309773788150808,2.2584889664929007,1.0227075812274369,4922.572940930112,2019
+2004,56,"(55,60]",HS,0.9427648114901257,125.83009956174732,0.007492363232435435,6191.493489667299,2019
+2004,56,"(55,60]",HS,99.30456014362657,125.83009956174732,0.7891955938165325,6054.042177797609,2019
+2004,56,"(55,60]",HS,27.811561938958707,125.83009956174732,0.2210247153568453,6199.373215660274,2019
+2004,56,"(55,60]",HS,2.1997845601436268,125.83009956174732,0.017482180875682683,6183.088931245473,2019
+2004,56,"(55,60]",HS,7.699245960502694,125.83009956174732,0.061187633064889384,6173.035720486308,2019
+2004,72,"(70,75]",HS,325.8823698384201,37.55544509996766,8.677366729936606,11712.170809478199,2019
+2004,72,"(70,75]",HS,555.288473967684,37.36186033141112,14.862441779989153,10442.851053073717,2019
+2004,72,"(70,75]",HS,511.1356552962298,37.36186033141112,13.680679997256568,9406.18789852356,2019
+2004,72,"(70,75]",HS,208.03676840215442,37.36186033141112,5.568158720063848,11875.4321639323,2019
+2004,72,"(70,75]",HS,560.0022980251346,37.36186033141112,14.988608518359177,9855.541043307177,2019
+2004,27,"(25,30]",College,-24.19763016157989,108.08482911073166,-0.22387628643784688,6673.909311930588,2019
+2004,27,"(25,30]",College,-20.42657091561939,108.08482911073166,-0.1889864755644162,6514.2668216615475,2019
+2004,27,"(25,30]",College,-24.19763016157989,108.08482911073166,-0.22387628643784688,6653.597383558003,2019
+2004,27,"(25,30]",College,-24.19763016157989,108.08482911073166,-0.22387628643784688,6641.976067192227,2019
+2004,27,"(25,30]",College,-22.626355475763017,108.08482911073166,-0.2093388652405841,6583.7534114963155,2019
+2004,37,"(35,40]",NoHS,1.5869874326750448,161.3206404637786,0.009837472924187726,5687.261702152576,2019
+2004,37,"(35,40]",NoHS,1.5869874326750448,161.3206404637786,0.009837472924187726,5594.435967764292,2019
+2004,37,"(35,40]",NoHS,-3.1268366247755837,161.3206404637786,-0.019382743682310473,5665.041583007176,2019
+2004,37,"(35,40]",NoHS,1.5869874326750448,161.3206404637786,0.009837472924187726,5706.511975198875,2019
+2004,37,"(35,40]",NoHS,0.01571274685816876,161.3206404637786,9.740072202166065e-5,5648.4981281034725,2019
+2004,30,"(25,30]",HS,429.96360502693,133.89613158493626,3.211172719759906,6124.412046705884,2019
+2004,30,"(25,30]",HS,429.96360502693,90.33955865971603,4.759416709644146,5933.700284929689,2019
+2004,30,"(25,30]",HS,429.96360502693,111.31124192000723,3.8627150107256845,6174.246514844338,2019
+2004,30,"(25,30]",HS,429.96360502693,146.80178282203855,2.9288718213194747,6174.752217543877,2019
+2004,30,"(25,30]",HS,429.96360502693,120.99048034783397,3.553697809867629,6135.269603811159,2019
+2004,43,"(40,45]",HS,1082.2940035906645,91.95276506435381,11.7701083032491,7044.282494696992,2019
+2004,43,"(40,45]",HS,733.7852782764812,83.88673304116487,8.747334073868371,7818.2213894896295,2019
+2004,43,"(40,45]",HS,883.3706283662477,100.01879708754274,8.832046116222196,6952.114496347352,2019
+2004,43,"(40,45]",HS,1089.3647396768401,93.56597146899159,11.642744927175402,6941.017303285004,2019
+2004,43,"(40,45]",HS,805.9067863554758,90.33955865971603,8.920862558019596,7252.376773816273,2019
+2004,62,"(60,65]",HS,132.01849910233395,79.04711382725151,1.670124217195904,10499.699338511085,2019
+2004,62,"(60,65]",HS,131.84565888689409,79.04711382725151,1.6679376703750095,10210.157619540481,2019
+2004,62,"(60,65]",HS,131.86137163375224,80.6603202318893,1.6347737184115523,10616.456307862722,2019
+2004,62,"(60,65]",HS,131.8299461400359,79.04711382725151,1.6677388933912918,10580.333728552841,2019
+2004,62,"(60,65]",HS,132.00278635547576,80.6603202318893,1.6365269314079423,10355.529631660967,2019
+2004,59,"(55,60]",HS,136.4652064631957,70.9810818040626,1.922557433541188,6243.687947145789,2019
+2004,59,"(55,60]",HS,136.62233393177738,70.9810818040626,1.9247710863144074,5471.710605688435,2019
+2004,59,"(55,60]",HS,136.30807899461402,70.9810818040626,1.9203437807679684,6238.13653540759,2019
+2004,59,"(55,60]",HS,134.8939317773788,70.9810818040626,1.900420905808992,6123.571052169897,2019
+2004,59,"(55,60]",HS,136.4652064631957,70.9810818040626,1.922557433541188,5946.407456938047,2019
+2004,51,"(50,55]",College,9310.446736086176,429.1129036336511,21.69696286745745,2312.3749920744153,2019
+2004,51,"(50,55]",College,9288.118922800719,427.49969722901335,21.72660935903549,2302.6442616947547,2019
+2004,51,"(50,55]",College,9306.408560143627,427.49969722901335,21.769392166746133,2345.3691231576636,2019
+2004,51,"(50,55]",College,9286.421946140035,427.49969722901335,21.722639820175733,2234.2592268288254,2019
+2004,51,"(50,55]",College,9319.2301615798915,427.49969722901335,21.799384238130912,2240.016655481155,2019
+2004,32,"(30,35]",NoHS,25.533213644524235,72.59428820870036,0.3517248295226635,7281.7657823157715,2019
+2004,32,"(30,35]",NoHS,25.533213644524235,72.59428820870036,0.3517248295226635,7244.7703038219815,2019
+2004,32,"(30,35]",NoHS,25.37608617594255,72.59428820870036,0.3495603690332933,7289.062057341335,2019
+2004,32,"(30,35]",NoHS,25.533213644524235,72.59428820870036,0.3517248295226635,7321.917744247757,2019
+2004,32,"(30,35]",NoHS,25.37608617594255,72.59428820870036,0.3495603690332933,7306.68621022023,2019
+2004,33,"(30,35]",HS,103.23274685816875,143.57537001276296,0.719014318744169,6673.909311930588,2019
+2004,33,"(30,35]",HS,103.23274685816875,143.57537001276296,0.719014318744169,6514.2668216615475,2019
+2004,33,"(30,35]",HS,103.23274685816875,143.57537001276296,0.719014318744169,6653.597383558003,2019
+2004,33,"(30,35]",HS,103.23274685816875,143.57537001276296,0.719014318744169,6641.976067192227,2019
+2004,33,"(30,35]",HS,103.23274685816875,143.57537001276296,0.719014318744169,6583.7534114963155,2019
+2004,36,"(35,40]",HS,84.84883303411132,88.72635225507824,0.9562979980308501,8004.139272171497,2019
+2004,36,"(35,40]",HS,85.005960502693,88.72635225507824,0.9580689202494256,7551.786492545963,2019
+2004,36,"(35,40]",HS,84.84883303411132,88.72635225507824,0.9562979980308501,7970.441637205522,2019
+2004,36,"(35,40]",HS,84.84883303411132,88.72635225507824,0.9562979980308501,7936.480026540099,2019
+2004,36,"(35,40]",HS,85.005960502693,88.72635225507824,0.9580689202494256,7791.26738225047,2019
+2004,56,"(55,60]",NoHS,136.70246894075404,17.74527045101565,7.703600196914998,8055.65916479157,2019
+2004,56,"(55,60]",NoHS,224.69385134649912,17.74527045101565,12.662182408926812,7182.808339014142,2019
+2004,56,"(55,60]",NoHS,146.1301170556553,17.74527045101565,8.234876862487692,8075.21603482762,2019
+2004,56,"(55,60]",NoHS,133.55991956912027,17.74527045101565,7.526507975057432,7931.15272881681,2019
+2004,56,"(55,60]",NoHS,164.9854132854578,17.74527045101565,9.29743019363308,7765.817250229586,2019
+2004,46,"(45,50]",HS,54.36610412926392,67.75466899478702,0.8023964242736805,8663.883198301131,2019
+2004,46,"(45,50]",HS,54.36610412926392,87.11314585044046,0.6240861077684182,8188.629670250118,2019
+2004,46,"(45,50]",HS,54.36610412926392,61.30184337623587,0.8868592057761733,8673.495830903654,2019
+2004,46,"(45,50]",HS,54.36610412926392,62.91504978087366,0.8641192261408868,8699.632104356817,2019
+2004,46,"(45,50]",HS,54.5232315978456,79.04711382725151,0.6897561335003316,8447.08517466308,2019
+2004,57,"(55,60]",HS,280.47253141831243,140.3489572034874,1.9983941242375203,7717.474864979634,2019
+2004,57,"(55,60]",HS,278.9012567324955,141.9621636081252,1.9646168362323593,6881.267154224493,2019
+2004,57,"(55,60]",HS,280.62965888689405,141.9621636081252,1.9767919264850669,7736.210718849985,2019
+2004,57,"(55,60]",HS,280.47253141831243,140.3489572034874,1.9983941242375203,7598.195328630444,2019
+2004,57,"(55,60]",HS,280.47253141831243,140.3489572034874,1.9983941242375203,7439.800792046389,2019
+2004,39,"(35,40]",HS,160.1128904847397,217.78286462610117,0.7351950795560903,8560.10776685007,2019
+2004,39,"(35,40]",HS,307.812710951526,217.78286462610117,1.4133926995587642,8065.475153379006,2019
+2004,39,"(35,40]",HS,246.3758707360862,217.78286462610117,1.1312913491108436,7170.5318926311065,2019
+2004,39,"(35,40]",HS,168.7549012567325,217.78286462610117,0.7748768551945445,8520.482352080302,2019
+2004,39,"(35,40]",HS,211.96495511669661,217.78286462610117,0.9732857333868163,8434.227525540551,2019
+2004,62,"(60,65]",College,21052.25249551167,3000.5639126262818,7.016098676293623,43.32834448716558,2019
+2004,62,"(60,65]",College,20744.28265709156,3210.2807452291945,6.461828202383759,44.63573197399861,2019
+2004,62,"(60,65]",College,20701.858240574507,3419.997577832107,6.053179211225393,45.55652825027964,2019
+2004,62,"(60,65]",College,20835.416588868942,3290.941065461084,6.331142422311885,42.630449091784456,2019
+2004,62,"(60,65]",College,20659.27669658887,3129.6204249973052,6.601208418623693,44.19246930331407,2019
+2004,62,"(60,65]",NoHS,0,8.066032023188932,0,9635.058538058327,2019
+2004,62,"(60,65]",NoHS,0,8.066032023188932,0,9554.692987390996,2019
+2004,62,"(60,65]",NoHS,0,8.066032023188932,0,9547.413846241161,2019
+2004,62,"(60,65]",NoHS,0,8.066032023188932,0,9624.441706135742,2019
+2004,62,"(60,65]",NoHS,0,8.066032023188932,0,9617.41686917553,2019
+2004,19,"(15,20]",HS,92.548078994614,48.39619213913358,1.912300842358604,7637.380364893148,2019
+2004,19,"(15,20]",HS,77.77809694793537,48.39619213913358,1.6071119133574008,7516.206543593375,2019
+2004,19,"(15,20]",HS,93.64797127468582,48.39619213913358,1.9350276774969917,7668.429954103609,2019
+2004,19,"(15,20]",HS,78.5637342908438,48.39619213913358,1.6233453670276774,7478.835422148458,2019
+2004,19,"(15,20]",HS,74.47842010771993,48.39619213913358,1.5389314079422383,7601.005292630898,2019
+2004,42,"(40,45]",HS,9.427648114901256,25.81130247420457,0.3652527075812275,5130.794074762992,2019
+2004,42,"(40,45]",HS,11.203188509874327,41.94336652058244,0.26710274923632327,5122.906325929011,2019
+2004,42,"(40,45]",HS,10.087583482944344,19.358476855653432,0.5210938628158844,5138.935674892387,2019
+2004,42,"(40,45]",HS,10.52754039497307,27.424508878842364,0.38387343385007433,5132.150984789205,2019
+2004,42,"(40,45]",HS,11.533156193895872,27.424508878842364,0.4205419409641113,5109.060062623965,2019
+2004,52,"(50,55]",HS,778.0952244165171,322.6412809275572,2.411641877256318,8362.967133294895,2019
+2004,52,"(50,55]",HS,869.3862836624776,322.6412809275572,2.694590974729242,9304.243713511,2019
+2004,52,"(50,55]",HS,891.3841292639139,322.6412809275572,2.7627714801444045,8254.923560322632,2019
+2004,52,"(50,55]",HS,869.3862836624776,322.6412809275572,2.694590974729242,8273.7749666704,2019
+2004,52,"(50,55]",HS,952.5067145421904,322.6412809275572,2.9522158844765345,8647.652221560276,2019
+2004,31,"(30,35]",HS,13.481536804308798,24.19809606956679,0.5571321299638989,6543.194884498898,2019
+2004,31,"(30,35]",HS,4.0538886894075405,24.19809606956679,0.16752924187725632,6514.260300251611,2019
+2004,31,"(30,35]",HS,4.0538886894075405,24.19809606956679,0.16752924187725632,6594.310915816843,2019
+2004,31,"(30,35]",HS,13.945062836624775,24.19809606956679,0.5762876052948255,6582.047036473542,2019
+2004,31,"(30,35]",HS,4.046032315978456,24.19809606956679,0.1672045728038508,6598.739210446731,2019
+2004,67,"(65,70]",College,34674.88976660682,1566.4234189032904,22.136345350916653,281.1813214579695,2019
+2004,67,"(65,70]",College,34673.78987432675,1566.4234189032904,22.135643182992705,271.87926230569065,2019
+2004,67,"(65,70]",College,34676.775296229804,1566.4234189032904,22.137549067357703,288.5657065215399,2019
+2004,67,"(65,70]",College,34674.88976660682,1566.4234189032904,22.136345350916653,280.225835140237,2019
+2004,67,"(65,70]",College,34678.18944344704,1566.4234189032904,22.13845185468849,293.29866155820844,2019
+2004,49,"(45,50]",HS,3.896761220825853,54.84901775768473,0.07104523253344659,6116.776307617727,2019
+2004,49,"(45,50]",HS,3.6532136445242367,54.84901775768473,0.06660490550010617,5977.742700116787,2019
+2004,49,"(45,50]",HS,3.613931777378815,54.84901775768473,0.06588872372053514,6113.545787410385,2019
+2004,49,"(45,50]",HS,3.221113105924596,54.84901775768473,0.0587269059248248,6101.482256867569,2019
+2004,49,"(45,50]",HS,4.0538886894075405,53.23581135304694,0.07614965539875287,6000.668455361543,2019
+2004,73,"(70,75]",HS,194.4452423698384,33.070731295074616,5.879677731795368,8102.035616801901,2019
+2004,73,"(70,75]",HS,194.4452423698384,37.910350508987975,5.129080574544895,7481.653959059911,2019
+2004,73,"(70,75]",HS,194.28811490125673,34.68393769971241,5.6016740827806215,8477.443368181352,2019
+2004,73,"(70,75]",HS,194.4452423698384,37.910350508987975,5.129080574544895,8250.393919497601,2019
+2004,73,"(70,75]",HS,194.4452423698384,36.29714410435018,5.357039711191336,8182.1471154665705,2019
+2004,65,"(60,65]",NoHS,5.970843806104129,11.615086113392062,0.514059366225431,7487.68942972279,2019
+2004,65,"(60,65]",NoHS,5.970843806104129,11.615086113392062,0.514059366225431,7829.184546582236,2019
+2004,65,"(60,65]",NoHS,5.970843806104129,11.937727394319618,0.50016586984096,7511.35641324459,2019
+2004,65,"(60,65]",NoHS,5.970843806104129,12.421689315710953,0.48067888789910446,7567.844563344683,2019
+2004,65,"(60,65]",NoHS,5.970843806104129,12.583009956174735,0.47451633805424404,7583.541603006733,2019
+2004,62,"(60,65]",College,57632.7842010772,4839.619213913359,11.908536943441634,26.4486883767238,2019
+2004,62,"(60,65]",College,57631.21292639139,4839.619213913359,11.90821227436823,26.39897922653094,2019
+2004,62,"(60,65]",College,59203.273249551174,4839.619213913359,12.233043682310468,27.164586541515455,2019
+2004,62,"(60,65]",College,63602.05673249551,4839.619213913359,13.141954753309264,27.36970347254667,2019
+2004,62,"(60,65]",College,63606.000631956915,4839.619213913359,13.142769672683512,27.53974791481673,2019
+2004,57,"(55,60]",HS,52.35487253141831,43.55657292522023,1.2019970584302713,7374.481394077385,2019
+2004,57,"(55,60]",HS,77.49526750448834,43.55657292522023,1.7791865222623344,7283.57284120821,2019
+2004,57,"(55,60]",HS,74.1955906642729,43.55657292522023,1.7034304051343763,7335.184966138759,2019
+2004,57,"(55,60]",HS,53.769019748653506,43.55657292522023,1.234463965770825,7379.658410925318,2019
+2004,57,"(55,60]",HS,52.19774506283663,43.55657292522023,1.198389624281321,7316.991776784613,2019
+2004,80,"(75,80]",NoHS,249.36129263913824,38.716953711306864,6.440622743682311,8458.786462786202,2019
+2004,80,"(75,80]",NoHS,249.36129263913824,38.716953711306864,6.440622743682311,8502.601083017307,2019
+2004,80,"(75,80]",NoHS,247.94714542190306,38.716953711306864,6.404097472924188,8454.456669889909,2019
+2004,80,"(75,80]",NoHS,247.63289048473968,38.716953711306864,6.39598074608905,8434.600327642118,2019
+2004,80,"(75,80]",NoHS,247.63289048473968,38.716953711306864,6.39598074608905,8453.234214482301,2019
+2004,44,"(40,45]",HS,-15.398491921005387,32.264128092755726,-0.4772635379061372,4721.862718869732,2019
+2004,44,"(40,45]",HS,-15.398491921005387,32.264128092755726,-0.4772635379061372,4715.075656072308,2019
+2004,44,"(40,45]",HS,-15.398491921005387,32.264128092755726,-0.4772635379061372,4726.786768154202,2019
+2004,44,"(40,45]",HS,-15.555619389587074,32.264128092755726,-0.4821335740072202,4721.077369759519,2019
+2004,44,"(40,45]",HS,-15.398491921005387,32.264128092755726,-0.4772635379061372,4701.1238019190805,2019
+2004,76,"(75,80]",HS,615.9396768402155,80.6603202318893,7.636216606498196,8738.536844112925,2019
+2004,76,"(75,80]",HS,616.0968043087971,95.17917787362938,6.473020865202227,9715.608077615812,2019
+2004,76,"(75,80]",HS,615.9396768402155,80.6603202318893,7.636216606498196,8645.422442276444,2019
+2004,76,"(75,80]",HS,615.9396768402155,80.6603202318893,7.636216606498196,8618.575336292019,2019
+2004,76,"(75,80]",HS,615.9396768402155,180.67911731943207,3.409025270758123,9038.361647276266,2019
+2004,48,"(45,50]",College,34596.32603231598,4033.0160115944655,8.578276389891696,18.875803891614044,2019
+2004,48,"(45,50]",College,34120.229802513466,4033.0160115944655,8.460226714801443,19.12902112287269,2019
+2004,48,"(45,50]",College,34255.35942549372,4033.0160115944655,8.493732563176895,19.897276336486822,2019
+2004,48,"(45,50]",College,34129.657450628365,4033.0160115944655,8.462564332129963,18.279329651680335,2019
+2004,48,"(45,50]",College,34563.32926391382,4033.0160115944655,8.570094729241877,19.504203208628326,2019
+2004,49,"(45,50]",HS,102.36854578096948,114.53765472928282,0.8937545126353791,3913.8860650943507,2019
+2004,49,"(45,50]",HS,105.76249910233395,85.49993944580267,1.2369891696750903,3857.752154203577,2019
+2004,49,"(45,50]",HS,105.66822262118492,103.24520989681828,1.0234685243682313,3948.4837450992063,2019
+2004,49,"(45,50]",HS,105.80963734290843,104.8584163014561,1.0090714801444043,3954.6583041648446,2019
+2004,49,"(45,50]",HS,105.46395691202872,103.24520989681828,1.0214900722021663,3912.1181351949585,2019
+2004,23,"(20,25]",HS,67.53338599640935,112.92444832464501,0.5980404332129966,10060.149350018688,2019
+2004,23,"(20,25]",HS,70.69164811490126,112.92444832464501,0.6260083548220733,9798.173977842178,2019
+2004,23,"(20,25]",HS,68.02048114901257,112.92444832464501,0.60235389375967,10069.92925578335,2019
+2004,23,"(20,25]",HS,67.53338599640935,112.92444832464501,0.5980404332129966,9838.106436683702,2019
+2004,23,"(20,25]",HS,70.2202657091562,112.92444832464501,0.6218340381640022,9930.091819554884,2019
+2004,40,"(35,40]",HS,6.127971274685817,74.20749461333816,0.08257887301836447,5274.893143013402,2019
+2004,40,"(35,40]",HS,5.342333931777379,74.20749461333816,0.07199183801601004,5288.64469805539,2019
+2004,40,"(35,40]",HS,5.970843806104129,74.20749461333816,0.08046146601789357,5241.961073107636,2019
+2004,40,"(35,40]",HS,5.656588868940754,74.20749461333816,0.07622665201695182,5203.406478856077,2019
+2004,40,"(35,40]",HS,5.656588868940754,74.20749461333816,0.07622665201695182,5239.627759178302,2019
+2004,29,"(25,30]",NoHS,2.6711669658886894,30.650921688117936,0.08714801444043321,7048.240501998052,2019
+2004,29,"(25,30]",NoHS,2.6711669658886894,30.650921688117936,0.08714801444043321,7064.159786049693,2019
+2004,29,"(25,30]",NoHS,2.6711669658886894,30.650921688117936,0.08714801444043321,7042.250963134547,2019
+2004,29,"(25,30]",NoHS,2.828294434470377,30.650921688117936,0.09227436823104693,7082.989152758923,2019
+2004,29,"(25,30]",NoHS,2.6711669658886894,30.650921688117936,0.08714801444043321,7063.67770100327,2019
+2004,57,"(55,60]",College,41211.39245960503,35893.84250319073,1.1481465785097151,33.44368509066569,2019
+2004,57,"(55,60]",College,38091.31231597845,35893.84250319073,1.0612213588609907,33.830217524941915,2019
+2004,57,"(55,60]",College,38441.0780610413,35909.974567237114,1.070484691908233,34.874813183195144,2019
+2004,57,"(55,60]",College,40751.48035906643,35893.84250319073,1.135333458808259,32.793246822269836,2019
+2004,57,"(55,60]",College,40766.40746858168,35909.974567237114,1.13523910723611,34.94618849137586,2019
+2004,42,"(40,45]",HS,104.08123518850988,125.83009956174732,0.827156900860872,8874.239656762224,2019
+2004,42,"(40,45]",HS,105.49538240574508,125.83009956174732,0.8383954457095252,8357.547388028765,2019
+2004,42,"(40,45]",HS,105.49538240574508,125.83009956174732,0.8383954457095252,8898.824119048608,2019
+2004,42,"(40,45]",HS,105.65250987432675,124.21689315710954,0.850548642693047,8837.569011648262,2019
+2004,42,"(40,45]",HS,105.49538240574508,125.83009956174732,0.8383954457095252,8727.987876550294,2019
+2004,40,"(35,40]",NoHS,3.1425493716337525,16.132064046377863,0.19480144404332128,4232.978332863791,2019
+2004,40,"(35,40]",NoHS,3.1425493716337525,16.132064046377863,0.19480144404332128,4291.024092643157,2019
+2004,40,"(35,40]",NoHS,2.9854219030520643,16.132064046377863,0.1850613718411552,4243.171862433645,2019
+2004,40,"(35,40]",NoHS,3.1425493716337525,16.132064046377863,0.19480144404332128,4222.356029977189,2019
+2004,40,"(35,40]",NoHS,2.9854219030520643,16.132064046377863,0.1850613718411552,4263.886763644293,2019
+2004,49,"(45,50]",NoHS,23.96193895870736,77.43390742261373,0.30945021058965105,6346.653618134049,2019
+2004,49,"(45,50]",NoHS,23.96193895870736,77.43390742261373,0.30945021058965105,5846.210066195699,2019
+2004,49,"(45,50]",NoHS,23.96193895870736,77.43390742261373,0.30945021058965105,6421.014152774334,2019
+2004,49,"(45,50]",NoHS,23.96193895870736,77.43390742261373,0.30945021058965105,6354.020941845576,2019
+2004,49,"(45,50]",NoHS,23.96193895870736,77.43390742261373,0.30945021058965105,6186.822675990413,2019
+2004,74,"(70,75]",NoHS,480.76291561938956,17.74527045101565,27.092453560879548,6997.329841649143,2019
+2004,74,"(70,75]",NoHS,474.8077845601436,16.132064046377863,29.43255018050541,6991.632247869665,2019
+2004,74,"(70,75]",NoHS,474.94919928186715,16.132064046377863,29.44131624548736,7022.1642074927895,2019
+2004,74,"(70,75]",NoHS,492.23322082585275,17.74527045101565,27.73884017065966,7033.707411423015,2019
+2004,74,"(70,75]",NoHS,498.37690484739676,16.132064046377863,30.89356101083032,7026.10708179977,2019
+2004,74,"(70,75]",College,54091.13105924596,2650.498122819883,20.407911476540885,26.717572668833196,2019
+2004,74,"(70,75]",College,66298.36409335728,3779.7426060663333,17.540444152718518,29.24567987686131,2019
+2004,74,"(70,75]",College,58316.28868940754,2489.177482356104,23.427935172468654,28.16723553762133,2019
+2004,74,"(70,75]",College,54812.34614003591,1576.102657331117,34.77714213923859,25.86303419936243,2019
+2004,74,"(70,75]",College,87447.72136445242,2424.6492261705926,36.06613295670992,28.30095239983563,2019
+2004,57,"(55,60]",HS,286.4433752244165,37.10374730666908,7.7200659237168425,5083.1814928802505,2019
+2004,57,"(55,60]",HS,286.4433752244165,37.10374730666908,7.7200659237168425,4454.690612452318,2019
+2004,57,"(55,60]",HS,286.4433752244165,37.10374730666908,7.7200659237168425,5078.661915084906,2019
+2004,57,"(55,60]",HS,286.4433752244165,37.10374730666908,7.7200659237168425,4985.390574645331,2019
+2004,57,"(55,60]",HS,286.4433752244165,37.10374730666908,7.7200659237168425,4841.15615484119,2019
+2004,49,"(45,50]",College,893.5839138240575,340.3865513785729,2.6252033466217255,5693.2777824400155,2019
+2004,49,"(45,50]",College,892.0126391382406,340.3865513785729,2.6205871986586136,6337.100328587459,2019
+2004,49,"(45,50]",College,893.5839138240575,340.3865513785729,2.6252033466217255,5617.661961492085,2019
+2004,49,"(45,50]",College,892.0126391382406,340.3865513785729,2.6205871986586136,5631.731631888318,2019
+2004,49,"(45,50]",College,895.1551885098743,340.3865513785729,2.629819494584837,5888.304678765566,2019
+2004,56,"(55,60]",HS,245.11885098743267,48.39619213913358,5.064837545126354,6425.735903135053,2019
+2004,56,"(55,60]",HS,243.5475763016158,46.782985734495796,5.205900659778414,5621.0497770609545,2019
+2004,56,"(55,60]",HS,243.5475763016158,48.39619213913358,5.0323706377858,6465.026058102296,2019
+2004,56,"(55,60]",HS,243.5475763016158,48.39619213913358,5.0323706377858,6329.578908312277,2019
+2004,56,"(55,60]",HS,243.5475763016158,48.39619213913358,5.0323706377858,6183.378854065974,2019
+2004,74,"(70,75]",HS,155.24193895870735,19.358476855653432,8.019326113116726,10435.869444400769,2019
+2004,74,"(70,75]",HS,156.81321364452424,19.358476855653432,8.10049338146811,10486.040593811545,2019
+2004,74,"(70,75]",HS,156.81321364452424,19.358476855653432,8.10049338146811,10429.359704340099,2019
+2004,74,"(70,75]",HS,155.24193895870735,19.358476855653432,8.019326113116726,10399.9400683877,2019
+2004,74,"(70,75]",HS,155.24193895870735,19.358476855653432,8.019326113116726,10426.164442909427,2019
+2004,48,"(45,50]",HS,19.750922800718133,100.01879708754274,0.19747210900197973,3967.2825338440225,2019
+2004,48,"(45,50]",HS,21.16507001795332,100.01879708754274,0.21161092348899496,3885.876773530485,2019
+2004,48,"(45,50]",HS,19.750922800718133,100.01879708754274,0.19747210900197973,4027.9933552233183,2019
+2004,48,"(45,50]",HS,21.16507001795332,100.01879708754274,0.21161092348899496,3990.341108679996,2019
+2004,48,"(45,50]",HS,21.32219748653501,98.40559068290497,0.2166766881694975,3969.212670348217,2019
+2004,37,"(35,40]",College,4606.9773788150815,758.2070101797595,6.076147169521469,2297.053904389363,2019
+2004,37,"(35,40]",College,4608.548653500898,758.2070101797595,6.078219525309163,2256.2888535992306,2019
+2004,37,"(35,40]",College,4606.9773788150815,758.2070101797595,6.076147169521469,2354.444881592243,2019
+2004,37,"(35,40]",College,4606.9773788150815,758.2070101797595,6.076147169521469,2233.1573050868365,2019
+2004,37,"(35,40]",College,4608.548653500898,758.2070101797595,6.078219525309163,2263.443088105437,2019
+2004,42,"(40,45]",College,419.37321364452424,298.4431848579905,1.4052028490584443,379.46845776401335,2019
+2004,42,"(40,45]",College,420.94448833034113,269.4054695745103,1.5624942173414904,382.12717785209406,2019
+2004,42,"(40,45]",College,420.94448833034113,243.5941671003057,1.7280565185167476,373.9360020277844,2019
+2004,42,"(40,45]",College,420.94448833034113,214.55645181682556,1.9619288292934502,367.2411364283381,2019
+2004,42,"(40,45]",College,419.37321364452424,188.74514934262095,2.2219019408189085,386.0881985604627,2019
+2004,47,"(45,50]",HS,103.86125673249552,116.1508611339206,0.894192739671079,8610.399487375242,2019
+2004,47,"(45,50]",HS,100.71870736086177,116.1508611339206,0.8671369835539512,7805.855834298929,2019
+2004,47,"(45,50]",HS,103.86125673249552,116.1508611339206,0.894192739671079,8718.173460472628,2019
+2004,47,"(45,50]",HS,103.86125673249552,116.1508611339206,0.894192739671079,8724.171529070962,2019
+2004,47,"(45,50]",HS,103.86125673249552,116.1508611339206,0.894192739671079,8373.137123087678,2019
+2004,37,"(35,40]",College,2148.87526032316,483.96192139133586,4.440174247894104,1496.5985243534749,2019
+2004,37,"(35,40]",College,2148.87526032316,483.96192139133586,4.440174247894104,1479.2749402937663,2019
+2004,37,"(35,40]",College,2150.4465350089768,483.96192139133586,4.443420938628159,1511.9328365424562,2019
+2004,37,"(35,40]",College,2149.0323877917417,483.96192139133586,4.440498916967509,1480.0117025635066,2019
+2004,37,"(35,40]",College,2149.189515260323,483.96192139133586,4.4408235860409135,1535.2422584488052,2019
+2004,57,"(55,60]",College,1026.1994973070018,161.3206404637786,6.361241155234658,6941.353819883647,2019
+2004,57,"(55,60]",College,1030.7561938958706,161.3206404637786,6.389487364620939,7674.558562512597,2019
+2004,57,"(55,60]",College,1029.184919210054,161.3206404637786,6.379747292418774,6849.0451682894445,2019
+2004,57,"(55,60]",College,1029.184919210054,161.3206404637786,6.379747292418774,6826.488499677474,2019
+2004,57,"(55,60]",College,1030.7561938958706,161.3206404637786,6.389487364620939,7175.217256102948,2019
+2004,75,"(70,75]",NoHS,21.369335727109515,24.19809606956679,0.8830998796630566,11323.47890381232,2019
+2004,75,"(70,75]",NoHS,21.369335727109515,24.19809606956679,0.8830998796630566,10220.494647690623,2019
+2004,75,"(70,75]",NoHS,21.369335727109515,24.19809606956679,0.8830998796630566,11235.409634885667,2019
+2004,75,"(70,75]",NoHS,21.369335727109515,24.19809606956679,0.8830998796630566,11028.218285619474,2019
+2004,75,"(70,75]",NoHS,21.369335727109515,24.19809606956679,0.8830998796630566,10839.685670168124,2019
+2004,30,"(25,30]",College,215.5788868940754,164.5470532730542,1.3101352020952783,8026.6027935655075,2019
+2004,30,"(25,30]",College,223.1210053859964,164.5470532730542,1.3559708359878246,7790.769354984458,2019
+2004,30,"(25,30]",College,212.75059245960503,164.5470532730542,1.2929468393855736,8035.587124069932,2019
+2004,30,"(25,30]",College,216.6787791741472,162.9338468684164,1.3298573828501983,8057.466903973111,2019
+2004,30,"(25,30]",College,220.29271095152603,164.5470532730542,1.33878247327812,7958.1388526420515,2019
+2004,22,"(20,25]",NoHS,1575.5171274685817,72.59428820870036,21.70304532691537,5710.446732447733,2019
+2004,22,"(20,25]",NoHS,1577.0884021543986,72.59428820870036,21.72468993180907,6342.178687990361,2019
+2004,22,"(20,25]",NoHS,1577.0884021543986,72.59428820870036,21.72468993180907,5639.689219626811,2019
+2004,22,"(20,25]",NoHS,1577.0884021543986,72.59428820870036,21.72468993180907,5581.913607086229,2019
+2004,22,"(20,25]",NoHS,1577.0884021543986,72.59428820870036,21.72468993180907,5903.877031337581,2019
+2004,34,"(30,35]",HS,15.714318132854578,24.19809606956679,0.6494030806257521,7413.973671643411,2019
+2004,34,"(30,35]",HS,8.015072172351886,24.19809606956679,0.33122738868832735,7236.628555848312,2019
+2004,34,"(30,35]",HS,23.72781903052065,24.19809606956679,0.9805655354993984,7391.409370101969,2019
+2004,34,"(30,35]",HS,19.013994973070016,24.19809606956679,0.785764091456077,7378.499375443857,2019
+2004,34,"(30,35]",HS,25.299093716337524,24.19809606956679,1.0454993501805054,7313.820456949868,2019
+2004,52,"(50,55]",HS,33274.884021543985,1935.8476855653435,17.18879241877256,269.12275921867814,2019
+2004,52,"(50,55]",HS,12329.792459605027,1935.8476855653435,6.369195547533092,293.0190960111748,2019
+2004,52,"(50,55]",HS,10837.081508078994,1935.8476855653435,5.598106498194945,304.0768756051631,2019
+2004,52,"(50,55]",HS,10067.156912028726,1935.8476855653435,5.200386883273165,290.0616229138954,2019
+2004,52,"(50,55]",HS,10437.977737881509,1935.8476855653435,5.39194163658243,296.3295687508992,2019
+2004,40,"(35,40]",HS,68.47615080789947,70.9810818040626,0.9647098785690844,5802.521977787022,2019
+2004,40,"(35,40]",HS,48.206707360861756,61.30184337623587,0.7863826714801443,5766.943911851973,2019
+2004,40,"(35,40]",HS,51.34925673249551,72.59428820870036,0.7073456879261935,5798.438957470045,2019
+2004,40,"(35,40]",HS,69.73317055655296,70.9810818040626,0.9824191007548407,5788.410584987993,2019
+2004,40,"(35,40]",HS,59.519885098743266,72.59428820870036,0.8198976333734458,5805.049854237667,2019
+2004,63,"(60,65]",HS,12849.412998204667,161.3206404637786,79.65138844765343,21.6209683511073,2019
+2004,63,"(60,65]",HS,12847.84172351885,161.3206404637786,79.64164837545125,22.343143064234493,2019
+2004,63,"(60,65]",HS,12849.57012567325,161.3206404637786,79.65236245487365,22.908037648609408,2019
+2004,63,"(60,65]",HS,12846.427576301616,161.3206404637786,79.63288231046931,21.15633293474187,2019
+2004,63,"(60,65]",HS,12847.84172351885,161.3206404637786,79.64164837545125,22.19880891825158,2019
+2004,66,"(65,70]",HS,368.93529622980253,27.424508878842364,13.452758547462306,8746.944046221766,2019
+2004,66,"(65,70]",HS,369.0924236983842,27.424508878842364,13.458488001698875,8084.147634752587,2019
+2004,66,"(65,70]",HS,368.93529622980253,27.424508878842364,13.452758547462306,8821.226677841212,2019
+2004,66,"(65,70]",HS,368.93529622980253,27.424508878842364,13.452758547462306,8762.930303783225,2019
+2004,66,"(65,70]",HS,368.93529622980253,27.424508878842364,13.452758547462306,8595.550460007418,2019
+2004,27,"(25,30]",College,97.41903052064633,129.0565123710229,0.75485559566787,7501.585004605428,2019
+2004,27,"(25,30]",College,97.41903052064633,129.0565123710229,0.75485559566787,7451.556739090655,2019
+2004,27,"(25,30]",College,98.99030520646319,129.0565123710229,0.7670306859205774,7442.306548203381,2019
+2004,27,"(25,30]",College,97.41903052064633,129.0565123710229,0.75485559566787,7483.7629532385345,2019
+2004,27,"(25,30]",College,97.41903052064633,129.0565123710229,0.75485559566787,7418.05312020369,2019
+2004,52,"(50,55]",College,1879.2445242369838,217.78286462610117,8.628982484289342,13246.48318220023,2019
+2004,52,"(50,55]",College,1879.2445242369838,217.78286462610117,8.628982484289342,14100.846143816167,2019
+2004,52,"(50,55]",College,1879.2445242369838,217.78286462610117,8.628982484289342,13227.753154647977,2019
+2004,52,"(50,55]",College,1877.6732495511671,217.78286462610117,8.621767615991441,14141.46206116561,2019
+2004,52,"(50,55]",College,1879.2445242369838,217.78286462610117,8.628982484289342,13782.702038243297,2019
+2004,64,"(60,65]",HS,29.587102333931778,58.0754305669603,0.5094598876855194,6397.380689256913,2019
+2004,64,"(60,65]",HS,22.657780969479354,58.0754305669603,0.3901440032089852,5606.400586056719,2019
+2004,64,"(60,65]",HS,26.42884021543986,58.0754305669603,0.4550778178900923,6391.692625639268,2019
+2004,64,"(60,65]",HS,26.271712746858167,58.0754305669603,0.4523722422783794,6274.307032969596,2019
+2004,64,"(60,65]",HS,29.414262118491923,58.0754305669603,0.5064837545126354,6092.782432033434,2019
+2004,26,"(25,30]",NoHS,24.983267504488328,51.62260494840914,0.48395983754512645,6555.925075933604,2019
+2004,26,"(25,30]",NoHS,24.983267504488328,51.62260494840914,0.48395983754512645,6534.453441903543,2019
+2004,26,"(25,30]",NoHS,24.826140035906644,51.62260494840914,0.4809160649819496,6516.812153531039,2019
+2004,26,"(25,30]",NoHS,24.983267504488328,51.62260494840914,0.48395983754512645,6563.473667580276,2019
+2004,26,"(25,30]",NoHS,24.983267504488328,51.62260494840914,0.48395983754512645,6510.708079671707,2019
+2004,47,"(45,50]",College,434.5360143626571,56.46222416232251,7.696048478597216,7205.79537384804,2019
+2004,47,"(45,50]",College,411.12402154398563,56.46222416232251,7.2813996905621465,6812.521390012242,2019
+2004,47,"(45,50]",College,533.5263195691203,56.46222416232251,9.4492614749871091,6316.014963668853,2019
+2004,47,"(45,50]",College,406.25307001795335,56.46222416232251,7.195130479628676,7228.667441108261,2019
+2004,47,"(45,50]",College,464.39023339317777,56.46222416232251,8.224795255286232,7064.521092426861,2019
+2004,40,"(35,40]",College,2290.132854578097,764.6598357983106,2.9949694587884053,1677.86361841814,2019
+2004,40,"(35,40]",College,2093.7235188509876,571.0750672417763,3.666284239939628,4237.005027756576,2019
+2004,40,"(35,40]",College,1909.884380610413,412.9808395872731,4.624631938176897,4012.721926322973,2019
+2004,40,"(35,40]",College,1975.8779174147219,540.4241455536584,3.65616143111159,4313.007772652077,2019
+2004,40,"(35,40]",College,2337.2710951526037,561.3958288139496,4.163321092161501,1688.2921073547907,2019
+2004,63,"(60,65]",HS,17.128465350089765,33.87733449739351,0.5056025098848203,6055.435129667786,2019
+2004,63,"(60,65]",HS,17.128465350089765,33.87733449739351,0.5056025098848203,6009.019685801285,2019
+2004,63,"(60,65]",HS,17.128465350089765,35.4905409020313,0.4826205776173284,6039.585567112208,2019
+2004,63,"(60,65]",HS,17.128465350089765,35.4905409020313,0.4826205776173284,6035.78808540357,2019
+2004,63,"(60,65]",HS,17.128465350089765,33.87733449739351,0.5056025098848203,6074.033964865059,2019
+2004,52,"(50,55]",College,21929.33802513465,1290.5651237102288,16.99204296028881,411.3802887864772,2019
+2004,52,"(50,55]",College,22023.614506283662,1290.5651237102288,17.065093501805055,400.65977290232183,2019
+2004,52,"(50,55]",College,22042.469802513464,1290.5651237102288,17.079703610108304,427.74796294974794,2019
+2004,52,"(50,55]",College,22029.89960502693,1290.5651237102288,17.069963537906137,406.08022115708366,2019
+2004,52,"(50,55]",College,21929.33802513465,1290.5651237102288,16.99204296028881,415.84491171919717,2019
+2004,53,"(50,55]",College,112424.70377019748,10066.407964939785,11.16830394334907,19.85074517363883,2019
+2004,53,"(50,55]",College,112709.10448833034,9953.483516615139,11.32358377850201,20.80433162821725,2019
+2004,53,"(50,55]",College,111818.19174147217,10098.672093032541,11.072563868928848,20.025321777052817,2019
+2004,53,"(50,55]",College,101575.05206463195,9888.955260429628,10.271565538483284,19.550079502266545,2019
+2004,53,"(50,55]",College,112222.00933572711,10114.804157078921,11.094827699376433,19.624724009168094,2019
+2004,36,"(35,40]",HS,247.55432675044887,125.83009956174732,1.9673697121170048,7657.918353918513,2019
+2004,36,"(35,40]",HS,200.4946499102334,125.83009956174732,1.5933759140979358,7351.180096460384,2019
+2004,36,"(35,40]",HS,213.37910233393177,125.83009956174732,1.6957715449412198,7650.993996851648,2019
+2004,36,"(35,40]",HS,246.06161579892282,125.83009956174732,1.9555068036656484,7622.469245179229,2019
+2004,36,"(35,40]",HS,247.16150807899461,125.83009956174732,1.9642478941034898,7545.305214390882,2019
+2004,62,"(60,65]",College,2801.58276481149,403.30160115944653,6.946619494584837,1302.2887930396164,2019
+2004,62,"(60,65]",College,2803.154039497307,403.30160115944653,6.950515523465704,1291.8725389481247,2019
+2004,62,"(60,65]",College,2803.154039497307,403.30160115944653,6.950515523465704,1475.6750675477083,2019
+2004,62,"(60,65]",College,2801.58276481149,403.30160115944653,6.946619494584837,1235.2743283239529,2019
+2004,62,"(60,65]",College,2801.58276481149,403.30160115944653,6.946619494584837,1316.067581185595,2019
+2004,63,"(60,65]",HS,653.8231095152603,100.01879708754274,6.537002329102131,4227.124997237079,2019
+2004,63,"(60,65]",HS,641.4571777378816,109.69803551536945,5.847480993841581,4677.075344732222,2019
+2004,63,"(60,65]",HS,655.4886606822262,100.01879708754274,6.5536547106090595,4171.56697908199,2019
+2004,63,"(60,65]",HS,651.3090700179533,108.08482911073166,6.025906460477397,4161.2479852445595,2019
+2004,63,"(60,65]",HS,650.1149012567325,106.47162270609388,6.105992232797288,4371.617641892756,2019
+2004,57,"(55,60]",NoHS,4.4152818671454215,15.648102124986526,0.2821608545163571,6358.262343331276,2019
+2004,57,"(55,60]",NoHS,4.57240933572711,15.648102124986526,0.29220216606498195,6306.2726651679295,2019
+2004,57,"(55,60]",NoHS,4.407425493716338,15.648102124986526,0.28165878893892593,6296.388349355887,2019
+2004,57,"(55,60]",NoHS,4.4152818671454215,15.648102124986526,0.2821608545163571,6347.967502912771,2019
+2004,57,"(55,60]",NoHS,4.407425493716338,15.648102124986526,0.28165878893892593,6345.997905578735,2019
+2004,42,"(40,45]",HS,526.2198922800719,161.3206404637786,3.261950180505416,12105.377758254197,2019
+2004,42,"(40,45]",HS,524.6486175942549,161.3206404637786,3.2522101083032493,11406.223405755074,2019
+2004,42,"(40,45]",HS,524.6486175942549,161.3206404637786,3.2522101083032493,12141.768313816085,2019
+2004,42,"(40,45]",HS,524.6486175942549,161.3206404637786,3.2522101083032493,12010.778371047567,2019
+2004,42,"(40,45]",HS,524.6486175942549,161.3206404637786,3.2522101083032493,11792.183846062642,2019
+2004,25,"(20,25]",HS,148.95684021543985,83.88673304116487,1.775690086087198,7657.904611485295,2019
+2004,25,"(20,25]",HS,148.32833034111312,83.88673304116487,1.7681977228547627,7461.185251654203,2019
+2004,25,"(20,25]",HS,148.56402154398563,83.88673304116487,1.7710073590669257,7688.11533722182,2019
+2004,25,"(20,25]",HS,148.95684021543985,83.88673304116487,1.775690086087198,7654.4736448749,2019
+2004,25,"(20,25]",HS,147.54269299820467,83.88673304116487,1.7588322688142184,7632.955264294959,2019
+2004,40,"(35,40]",College,267.7452064631957,193.58476855653433,1.3830902527075812,9243.557003794886,2019
+2004,40,"(35,40]",College,267.9023339317774,193.58476855653433,1.3839019253910951,8721.158709348512,2019
+2004,40,"(35,40]",College,266.17393177737887,193.58476855653433,1.3749735258724431,9204.641387873002,2019
+2004,40,"(35,40]",College,269.47360861759427,193.58476855653433,1.3920186522262334,9165.420920380899,2019
+2004,40,"(35,40]",College,269.47360861759427,195.19797496117215,1.3805143658441983,8997.72251965094,2019
+2004,78,"(75,80]",HS,1222.1374506283664,95.17917787362938,12.840386709906383,8028.419466058354,2019
+2004,78,"(75,80]",HS,1048.0402154398564,72.59428820870036,14.436951464099481,8926.091221721303,2019
+2004,78,"(75,80]",HS,1176.5704847396769,88.72635225507824,13.260665572694453,7942.871794908124,2019
+2004,78,"(75,80]",HS,1191.4975942549372,50.00939854377137,23.825473390008153,7918.2063581035745,2019
+2004,78,"(75,80]",HS,1230.308078994614,35.4905409020313,34.66580242861831,8303.879686580893,2019
+2004,43,"(40,45]",College,483.6383482944345,193.58476855653433,2.498328519855596,7157.683532164527,2019
+2004,43,"(40,45]",College,354.3224416517056,193.58476855653433,1.8303219013237066,7944.753429805021,2019
+2004,43,"(40,45]",College,666.5347217235188,193.58476855653433,3.443115523465704,7015.310657773082,2019
+2004,43,"(40,45]",College,656.7928186714543,193.58476855653433,3.392791817087846,7061.454667203565,2019
+2004,43,"(40,45]",College,584.9855655296229,193.58476855653433,3.0218574007220216,7331.076250413763,2019
+2004,78,"(75,80]",College,297.8351166965889,54.04241455536583,5.511136375882322,9956.280585619668,2019
+2004,78,"(75,80]",College,302.6275044883303,55.65562096000362,5.437501177209229,9048.714060801862,2019
+2004,78,"(75,80]",College,302.1561220825853,55.65562096000362,5.429031549207346,9881.104675044455,2019
+2004,78,"(75,80]",College,297.9608186714542,55.65562096000362,5.353651859990582,9721.019100490706,2019
+2004,78,"(75,80]",College,298.3850628366248,55.65562096000362,5.361274525192278,9568.167521646854,2019
+2004,47,"(45,50]",HS,1.8855296229802514,40.33016011594465,0.04675234657039711,3764.6526260137566,2019
+2004,47,"(45,50]",HS,1.8855296229802514,40.33016011594465,0.04675234657039711,3691.821767856163,2019
+2004,47,"(45,50]",HS,1.8855296229802514,40.33016011594465,0.04675234657039711,3770.630938043937,2019
+2004,47,"(45,50]",HS,1.8855296229802514,40.33016011594465,0.04675234657039711,3777.8797464199915,2019
+2004,47,"(45,50]",HS,1.8855296229802514,40.33016011594465,0.04675234657039711,3709.74750774793,2019
+2004,46,"(45,50]",NoHS,855.7161938958707,129.0565123710229,6.630554151624548,9527.621141191357,2019
+2004,46,"(45,50]",NoHS,855.559066427289,129.0565123710229,6.629336642599277,10442.851053073717,2019
+2004,46,"(45,50]",NoHS,857.2874685816877,129.0565123710229,6.642729241877256,9406.18789852356,2019
+2004,46,"(45,50]",NoHS,886.3560502692998,129.0565123710229,6.867968411552345,9428.685184767575,2019
+2004,46,"(45,50]",NoHS,931.1373788150808,129.0565123710229,7.214958483754511,9855.541043307177,2019
+2004,61,"(60,65]",College,3050.6769407540396,248.43378631421908,12.279637910825636,3263.359772437336,2019
+2004,61,"(60,65]",College,3050.8340682226212,248.43378631421908,12.280270383046556,3398.450805854586,2019
+2004,61,"(60,65]",College,3049.2470807899463,248.43378631421908,12.273882413615265,3229.544029695552,2019
+2004,61,"(60,65]",College,3049.089953321364,248.43378631421908,12.273249941394344,3465.695033319281,2019
+2004,61,"(60,65]",College,3049.262793536804,248.43378631421908,12.273945660837356,3315.0984898460724,2019
+2004,46,"(45,50]",College,1358.3669658886895,701.744786017437,1.9356994066143822,702.6718115905215,2019
+2004,46,"(45,50]",College,1356.7956912028724,701.744786017437,1.9334603095564127,709.5405228619868,2019
+2004,46,"(45,50]",College,1358.3669658886895,701.744786017437,1.9356994066143822,700.5249110626231,2019
+2004,46,"(45,50]",College,1358.3669658886895,703.3579924220747,1.931259729076276,718.9262113972829,2019
+2004,46,"(45,50]",College,1356.7956912028724,701.744786017437,1.9334603095564127,728.5228231651256,2019
+2004,49,"(45,50]",College,21969.562657091563,1709.9987889160534,12.847706559498672,321.20552583563233,2019
+2004,49,"(45,50]",College,21969.562657091563,1726.130852962431,12.727634535578126,322.4300307399586,2019
+2004,49,"(45,50]",College,22110.97737881508,1726.130852962431,12.809560376530923,324.16846605579263,2019
+2004,49,"(45,50]",College,22173.828366247755,1726.130852962431,12.845971861398834,320.69254538234384,2019
+2004,49,"(45,50]",College,22159.686894075407,1709.9987889160534,12.958890402561133,330.7513900743841,2019
+2004,56,"(55,60]",HS,18688.741113105923,709.6172332720694,26.336368730690907,30.97358746793055,2019
+2004,56,"(55,60]",HS,19091.61594254937,619.3422028685388,30.825633800062135,32.643960580506686,2019
+2004,56,"(55,60]",HS,18912.490628366246,600.1773107814419,31.51150549783669,32.38516129506572,2019
+2004,56,"(55,60]",HS,19335.949156193896,696.1953559854829,27.773740502510748,30.450774514151686,2019
+2004,56,"(55,60]",HS,18631.546714542194,553.9105510964301,33.63638168231721,31.491392588040803,2019
+2004,50,"(45,50]",HS,446.39913824057453,212.94324541218776,2.096329176238924,850.6246092609806,2019
+2004,50,"(45,50]",HS,722.9434829443447,212.94324541218776,3.395005469861066,839.9058220805,2019
+2004,50,"(45,50]",HS,722.9434829443447,224.23569024465226,3.2240339713788537,853.5150317623841,2019
+2004,50,"(45,50]",HS,485.68100538599646,204.87721338899885,2.370595525739788,802.3816505749248,2019
+2004,50,"(45,50]",HS,267.27382405745067,224.23569024465226,1.1919325766823365,856.1530103262172,2019
+2004,54,"(50,55]",HS,80.60639138240575,70.9810818040626,1.1356038726616342,11227.495133750961,2019
+2004,54,"(50,55]",HS,86.89149012567326,70.9810818040626,1.2241499835904168,10374.350048280172,2019
+2004,54,"(50,55]",HS,57.35152603231598,70.9810818040626,0.8079832622251394,11329.661847246773,2019
+2004,54,"(50,55]",HS,61.90822262118492,70.9810818040626,0.8721791926485066,11317.155688756808,2019
+2004,54,"(50,55]",HS,69.7645960502693,70.9810818040626,0.9828618313094847,10929.431017062112,2019
+2004,43,"(40,45]",HS,6.646491921005386,85.49993944580267,0.07773680267011783,5787.014508977687,2019
+2004,43,"(40,45]",HS,6.363662477558349,85.49993944580267,0.0744288536203256,5862.758842480967,2019
+2004,43,"(40,45]",HS,6.803619389587074,85.49993944580267,0.07957455214222464,5762.704781251019,2019
+2004,43,"(40,45]",HS,6.5050771992818675,85.49993944580267,0.07608282814522171,5784.396825892431,2019
+2004,43,"(40,45]",HS,5.012366247755835,85.49993944580267,0.05862420816020707,5801.120699594515,2019
+2004,41,"(40,45]",HS,1600.013299820467,248.43378631421908,6.440401378404989,1976.0460224551011,2019
+2004,41,"(40,45]",HS,1610.3365745062838,248.43378631421908,6.481954803319424,1972.71333665687,2019
+2004,41,"(40,45]",HS,1585.1961795332136,248.43378631421908,6.380759247972244,2024.3302788927692,2019
+2004,41,"(40,45]",HS,1581.236567324955,248.43378631421908,6.364820948005063,1934.7445386064621,2019
+2004,41,"(40,45]",HS,1602.2130843806103,248.43378631421908,6.449255989497866,2021.2177775203322,2019
+2004,49,"(45,50]",NoHS,18.933859964093358,10.647162270609387,1.778301061153047,8261.708661808841,2019
+2004,49,"(45,50]",NoHS,18.77673249551167,10.647162270609387,1.7635433759982497,8276.716530483882,2019
+2004,49,"(45,50]",NoHS,18.933859964093358,10.647162270609387,1.778301061153047,8197.664164494952,2019
+2004,49,"(45,50]",NoHS,18.77673249551167,10.647162270609387,1.7635433759982497,8289.836141055011,2019
+2004,49,"(45,50]",NoHS,18.77673249551167,10.647162270609387,1.7635433759982497,8223.54663268867,2019
+2004,33,"(30,35]",HS,-13.511391023339318,67.75466899478702,-0.19941638301529996,5933.612271399319,2019
+2004,33,"(30,35]",HS,-13.495678276481149,67.75466899478702,-0.199184476534296,5914.449663680789,2019
+2004,33,"(30,35]",HS,-13.495678276481149,67.75466899478702,-0.199184476534296,5899.187919330073,2019
+2004,33,"(30,35]",HS,-13.495678276481149,67.75466899478702,-0.199184476534296,5955.203666587028,2019
+2004,33,"(30,35]",HS,-13.495678276481149,67.75466899478702,-0.199184476534296,5893.84184009781,2019
+2004,59,"(55,60]",HS,524.8843087971275,112.92444832464501,4.648101598762249,5396.118920784272,2019
+2004,59,"(55,60]",HS,525.0414362657091,112.92444832464501,4.649493037648273,5274.495530410657,2019
+2004,59,"(55,60]",HS,524.8843087971275,112.92444832464501,4.648101598762249,5350.828779878525,2019
+2004,59,"(55,60]",HS,526.6127109515261,112.92444832464501,4.663407426508511,5392.669695442001,2019
+2004,59,"(55,60]",HS,524.8685960502693,112.92444832464501,4.647962454873647,5310.125879330179,2019
+2004,50,"(45,50]",College,9143.247396768402,816.2824407467199,11.201083032490972,232.05887930626244,2019
+2004,50,"(45,50]",College,9143.247396768402,813.0560279374441,11.2455317746834,225.94995715840315,2019
+2004,50,"(45,50]",College,9481.07145421903,821.1220599606331,11.546482449483308,242.37980499937171,2019
+2004,50,"(45,50]",College,16052.142190305207,822.735266365271,19.510701493593828,228.32365074362275,2019
+2004,50,"(45,50]",College,16036.42944344704,816.2824407467199,19.64568713345985,235.09992372899652,2019
+2004,78,"(75,80]",NoHS,1.8855296229802514,17.74527045101565,0.10625533311453889,7633.223899073071,2019
+2004,78,"(75,80]",NoHS,1.8855296229802514,17.74527045101565,0.10625533311453889,7608.750548509932,2019
+2004,78,"(75,80]",NoHS,1.8855296229802514,17.74527045101565,0.10625533311453889,7586.091811963262,2019
+2004,78,"(75,80]",NoHS,1.8855296229802514,17.74527045101565,0.10625533311453889,7647.133097719346,2019
+2004,78,"(75,80]",NoHS,1.8855296229802514,17.74527045101565,0.10625533311453889,7622.678802735361,2019
+2004,90,"(85,90]",College,8989.890987432676,185.5187365333454,48.45812964997646,294.0782415789,2019
+2004,90,"(85,90]",College,8982.03461400359,185.5187365333454,48.41578150996704,293.0190960111748,2019
+2004,90,"(85,90]",College,8974.178240574507,185.5187365333454,48.373433369957624,304.0768756051631,2019
+2004,90,"(85,90]",College,8974.178240574507,193.58476855653433,46.35787364620939,290.0616229138954,2019
+2004,90,"(85,90]",College,8989.890987432676,187.13194293798318,48.04038715299391,296.3295687508992,2019
+2004,30,"(25,30]",HS,3.4725170556552962,48.39619213913358,0.07175186522262335,6183.317168421638,2019
+2004,30,"(25,30]",HS,3.4646606822262123,48.39619213913358,0.07158953068592058,6274.735342757927,2019
+2004,30,"(25,30]",HS,5.035935368043088,48.39619213913358,0.10405643802647413,6208.786803878587,2019
+2004,30,"(25,30]",HS,5.043791741472172,48.39619213913358,0.1042187725631769,6216.929373114919,2019
+2004,30,"(25,30]",HS,3.4646606822262123,48.39619213913358,0.07158953068592058,6247.060791250351,2019
+2004,61,"(60,65]",College,361996.5472172352,27343.848558610476,13.23868315176299,2.99000105708316,2019
+2004,61,"(60,65]",College,370910.38850987435,32925.54271865721,11.265126035407716,2.9836246693784885,2019
+2004,61,"(60,65]",College,360953.2208258528,33974.12688167178,10.624356060216469,2.945480031320833,2019
+2004,61,"(60,65]",College,336653.45780969475,26166.207883224895,12.86596282167133,2.9374477666683934,2019
+2004,61,"(60,65]",College,315983.33931777376,32312.52428489486,9.77897413807087,2.872041038752573,2019
+2004,32,"(30,35]",College,88.77859102333933,72.59428820870036,1.222941821099078,7021.325353801558,2019
+2004,32,"(30,35]",College,88.62146355475764,72.59428820870036,1.2207773606097074,6926.764774377652,2019
+2004,32,"(30,35]",College,88.62146355475764,72.59428820870036,1.2207773606097074,7025.270944239555,2019
+2004,32,"(30,35]",College,88.77859102333933,72.59428820870036,1.222941821099078,7004.991860195683,2019
+2004,32,"(30,35]",College,88.62146355475764,72.59428820870036,1.2207773606097074,6985.6410181107985,2019
+2004,40,"(35,40]",HS,441.7795906642729,162.9338468684164,2.711404653822783,7197.727691707155,2019
+2004,40,"(35,40]",HS,445.5506499102334,161.3206404637786,2.7618948736462094,7992.343361349825,2019
+2004,40,"(35,40]",HS,439.3126894075404,162.9338468684164,2.696264145548129,7100.944630425268,2019
+2004,40,"(35,40]",HS,439.3441149012568,161.3206404637786,2.723421588447654,7091.172296893511,2019
+2004,40,"(35,40]",HS,442.72235547576304,161.3206404637786,2.7443627436823106,7411.891966315621,2019
+2004,60,"(55,60]",College,547.5892280071813,114.53765472928282,4.780866425992779,2530.604171496737,2019
+2004,60,"(55,60]",College,601.0125673249552,116.1508611339206,5.174413357400723,9327.66809388071,2019
+2004,60,"(55,60]",College,524.3343626570916,116.1508611339206,4.5142529081428,2455.232840753818,2019
+2004,60,"(55,60]",College,532.0336086175943,116.1508611339206,4.580539510629763,2346.172903561648,2019
+2004,60,"(55,60]",College,600.8554398563734,114.53765472928282,5.245920577617328,9177.714875437556,2019
+2004,34,"(30,35]",HS,16.576947935368043,38.716953711306864,0.42815734055355,5806.363801393133,2019
+2004,34,"(30,35]",HS,29.7756552962298,38.716953711306864,0.7690598676293622,5888.581414705166,2019
+2004,34,"(30,35]",HS,35.11798922800718,38.716953711306864,0.9070442238267149,5791.841791067383,2019
+2004,34,"(30,35]",HS,28.83289048473968,40.33016011594465,0.7149212996389892,5849.966191493844,2019
+2004,34,"(30,35]",HS,22.296387791741473,38.716953711306864,0.5758817689530686,5837.89345950556,2019
+2004,80,"(75,80]",HS,2.356912028725314,14.518857641740075,0.16233453670276773,11184.97548451249,2019
+2004,80,"(75,80]",HS,2.356912028725314,14.518857641740075,0.16233453670276773,11176.986827977264,2019
+2004,80,"(75,80]",HS,2.356912028725314,14.518857641740075,0.16233453670276773,11137.052195775492,2019
+2004,80,"(75,80]",HS,2.356912028725314,14.518857641740075,0.16233453670276773,11201.955159188312,2019
+2004,80,"(75,80]",HS,2.356912028725314,14.518857641740075,0.16233453670276773,11188.54138017428,2019
+2004,58,"(55,60]",HS,3.7867719928186716,11.292444832464504,0.33533677153171737,7744.21070366714,2019
+2004,58,"(55,60]",HS,3.9438994614003593,11.292444832464504,0.3492511603919546,7746.783911228367,2019
+2004,58,"(55,60]",HS,3.7867719928186716,11.131124192000723,0.34019672474232204,7629.964817617522,2019
+2004,58,"(55,60]",HS,3.9438994614003593,11.131124192000723,0.3543127714121279,7630.486223695462,2019
+2004,58,"(55,60]",HS,3.7867719928186716,11.131124192000723,0.34019672474232204,7673.505008259218,2019
+2004,47,"(45,50]",College,1018.3431238779175,137.12254439421181,7.4265185814397965,6666.090525622065,2019
+2004,47,"(45,50]",College,1018.3431238779175,137.12254439421181,7.4265185814397965,7378.409403371817,2019
+2004,47,"(45,50]",College,1019.9143985637343,137.12254439421181,7.4379774899129325,6605.018841911544,2019
+2004,47,"(45,50]",College,1020.071526032316,137.12254439421181,7.439123380760247,6651.208117908082,2019
+2004,47,"(45,50]",College,1018.5002513464991,137.12254439421181,7.42766447228711,6929.239807039598,2019
+2004,60,"(55,60]",HS,86487.35827648116,18164.704116221474,4.7612863784137325,28.051123467131287,2019
+2004,60,"(55,60]",HS,116773.67784560144,17842.062835293917,6.544852964793283,29.24567987686131,2019
+2004,60,"(55,60]",HS,113927.15662477558,17971.11934766494,6.339458017097783,29.209571447481505,2019
+2004,60,"(55,60]",HS,139490.22448833034,17954.987283618557,7.768884616008382,27.62633965252826,2019
+2004,60,"(55,60]",HS,122899.29220825853,17713.006322922894,6.938364384210214,28.30095239983563,2019
+2004,43,"(40,45]",HS,822.8294147217235,51.62260494840914,15.939323781588453,1722.4901273119426,2019
+2004,43,"(40,45]",HS,1045.3690484739677,51.62260494840914,20.250218862815892,1719.5850743325839,2019
+2004,43,"(40,45]",HS,829.2559281867145,51.62260494840914,16.063814079422386,1764.5788003860398,2019
+2004,43,"(40,45]",HS,811.6262262118491,51.62260494840914,15.722302797833938,1686.48823395309,2019
+2004,43,"(40,45]",HS,859.9586355475764,51.62260494840914,16.658567238267153,1761.8656789180454,2019
+2004,63,"(60,65]",College,9638.198922800719,542.0373519582962,17.781429430978164,328.4654792407308,2019
+2004,63,"(60,65]",College,9859.748653500897,542.0373519582962,18.190164603747633,320.578792284827,2019
+2004,63,"(60,65]",College,8491.168402154399,542.0373519582962,15.665282791817086,343.1207840472437,2019
+2004,63,"(60,65]",College,8579.159784560145,542.0373519582962,15.827617328519855,323.0502704546808,2019
+2004,63,"(60,65]",College,8222.480430879714,542.0373519582962,15.169582688671136,332.82625291088453,2019
+2004,44,"(40,45]",College,239.90221903052065,100.01879708754274,2.398571328752766,7698.730466554385,2019
+2004,44,"(40,45]",College,234.05707719928188,100.01879708754274,2.3401308955397697,7263.637821647308,2019
+2004,44,"(40,45]",College,234.04136445242372,100.01879708754274,2.339973797601025,7666.318610620615,2019
+2004,44,"(40,45]",College,234.1513536804309,100.01879708754274,2.3410734831722375,7633.652851338769,2019
+2004,44,"(40,45]",College,240.5150161579892,100.01879708754274,2.4046981483638055,7493.980992728268,2019
+2004,59,"(55,60]",HS,385.4336804308797,8.872635225507825,43.44072202166064,6589.959544430145,2019
+2004,59,"(55,60]",HS,382.29113105924597,8.872635225507825,43.08653757794551,5875.920939701699,2019
+2004,59,"(55,60]",HS,242.44768402154398,8.872635225507825,27.32532983262225,6605.958108882388,2019
+2004,59,"(55,60]",HS,383.86240574506286,8.872635225507825,43.263629799803084,6488.106628447683,2019
+2004,59,"(55,60]",HS,310.01249551166967,8.872635225507825,34.94029537249754,6352.853374448203,2019
+2004,53,"(50,55]",College,39213.045314183124,1774.5270451015647,22.097744535608797,30.77268250425376,2019
+2004,53,"(50,55]",College,43369.852495511666,1774.5270451015647,24.440231900229733,30.662245922588653,2019
+2004,53,"(50,55]",College,42302.48560143627,1774.5270451015647,23.838738168690515,32.30660720891466,2019
+2004,53,"(50,55]",College,40985.44315978456,1758.394981055187,23.308439572086243,30.408800672359085,2019
+2004,53,"(50,55]",College,39822.69989228007,1774.5270451015647,22.44130344601247,32.89389228858326,2019
+2004,37,"(35,40]",HS,176.57984919210054,145.18857641740072,1.216210348977136,5174.276691985951,2019
+2004,37,"(35,40]",HS,181.29367324955115,145.18857641740072,1.2486772563176896,4883.118318502845,2019
+2004,37,"(35,40]",HS,188.34869658886896,145.18857641740072,1.2972693943040516,5155.195249595628,2019
+2004,37,"(35,40]",HS,178.3082513464991,145.18857641740072,1.2281148816686724,5136.319182255537,2019
+2004,37,"(35,40]",HS,187.4059317773788,145.18857641740072,1.290776012835941,5038.012643642871,2019
+2004,44,"(40,45]",College,3328.5882944344708,645.2825618551144,5.158342238267148,2127.695595415795,2019
+2004,44,"(40,45]",College,3328.5882944344708,645.2825618551144,5.158342238267148,2087.017163642767,2019
+2004,44,"(40,45]",College,3328.5882944344708,645.2825618551144,5.158342238267148,2172.6544777100744,2019
+2004,44,"(40,45]",College,3327.017019748653,645.2825618551144,5.155907220216606,2071.802888175079,2019
+2004,44,"(40,45]",College,3330.1595691202874,645.2825618551144,5.16077725631769,2108.466467186065,2019
+2004,72,"(70,75]",HS,241.34779174147218,40.33016011594465,5.98430036101083,6788.941580852848,2019
+2004,72,"(70,75]",HS,239.77651705565532,40.33016011594465,5.945340072202167,6821.579877470942,2019
+2004,72,"(70,75]",HS,242.91906642728904,40.33016011594465,6.023260649819495,6784.706740122632,2019
+2004,72,"(70,75]",HS,241.34779174147218,40.33016011594465,5.98430036101083,6765.568115317586,2019
+2004,72,"(70,75]",HS,241.34779174147218,40.33016011594465,5.98430036101083,6782.628097484952,2019
+2004,32,"(30,35]",HS,51.69493716337522,87.11314585044046,0.5934229175023398,6939.755555575843,2019
+2004,32,"(30,35]",HS,53.2662118491921,87.11314585044046,0.6114600882470919,6889.907133969134,2019
+2004,32,"(30,35]",HS,53.2662118491921,87.11314585044046,0.6114600882470919,6892.511962736315,2019
+2004,32,"(30,35]",HS,53.2662118491921,87.11314585044046,0.6114600882470919,6939.765814335435,2019
+2004,32,"(30,35]",HS,54.83748653500898,87.11314585044046,0.6294972589918437,6891.337511417398,2019
+2004,60,"(55,60]",HS,1467.3348653500898,232.3017222678412,6.3165044624949855,5284.760287692259,2019
+2004,60,"(55,60]",HS,2518.3605026929986,211.33003900755,11.916718108413482,3014.713824910147,2019
+2004,60,"(55,60]",HS,1859.996409335727,211.33003900755,8.801382037644334,2865.3464649854473,2019
+2004,60,"(55,60]",HS,776.131131059246,208.1036261982744,3.729541600201494,5199.237701571723,2019
+2004,60,"(55,60]",HS,758.4700035906643,237.14134148175458,3.19838792701196,5464.480018824221,2019
+2004,81,"(80,85]",HS,38370.04073249551,1645.470532730542,23.318582721030648,27.96089942569834,2019
+2004,81,"(80,85]",HS,29318.194384201077,2016.5080057972327,14.539091488808664,28.115462507669967,2019
+2004,81,"(80,85]",HS,49542.903640933575,1848.734539714903,26.798278809987337,28.661405128192467,2019
+2004,81,"(80,85]",HS,34342.392330341114,1756.781774650549,19.548468014573036,27.13421954030061,2019
+2004,81,"(80,85]",HS,64034.89577019749,1968.111813658099,32.53620822039415,28.408460769403725,2019
+2004,30,"(25,30]",College,3164.5472172351883,437.1789356568401,7.238562883823782,1351.5083389737626,2019
+2004,30,"(25,30]",College,3162.9759425493717,437.1789356568401,7.234968761239958,1347.3549024740378,2019
+2004,30,"(25,30]",College,3166.1184919210054,437.1789356568401,7.242157006407608,1534.1492802259816,2019
+2004,30,"(25,30]",College,3161.404667863555,437.1789356568401,7.231374638656133,1282.0299608315481,2019
+2004,30,"(25,30]",College,3166.1184919210054,437.1789356568401,7.242157006407608,1366.0032798097352,2019
+2004,47,"(45,50]",NoHS,122.08961436265709,32.264128092755726,3.7840667509025265,6758.353022326706,2019
+2004,47,"(45,50]",NoHS,121.77535942549372,32.264128092755726,3.7743266787003606,6389.499303984192,2019
+2004,47,"(45,50]",NoHS,122.24674183123878,32.264128092755726,3.7889367870036095,6814.040339857964,2019
+2004,47,"(45,50]",NoHS,121.61823195691203,32.264128092755726,3.7694566425992773,6779.804853370371,2019
+2004,47,"(45,50]",NoHS,121.77535942549372,32.264128092755726,3.7743266787003606,6625.851137762373,2019
+2004,29,"(25,30]",College,226.57780969479356,153.2546084405897,1.4784404332129963,5862.662935998368,2019
+2004,29,"(25,30]",College,226.57780969479356,153.2546084405897,1.4784404332129963,6477.663672371352,2019
+2004,29,"(25,30]",College,225.16366247755838,153.2546084405897,1.4692129963898917,5819.100450049738,2019
+2004,29,"(25,30]",College,226.57780969479356,153.2546084405897,1.4784404332129963,5815.957066930408,2019
+2004,29,"(25,30]",College,228.14908438061042,153.2546084405897,1.4886931407942237,6091.642508907038,2019
+2004,56,"(55,60]",HS,145.65716337522443,37.10374730666908,3.925672578873019,4363.753264365727,2019
+2004,56,"(55,60]",HS,144.08588868940757,37.10374730666908,3.8833244388636015,3890.929680053974,2019
+2004,56,"(55,60]",HS,145.8142908438061,38.716953711306864,3.766161251504212,4374.347227406466,2019
+2004,56,"(55,60]",HS,144.24301615798922,37.10374730666908,3.887559252864542,4296.308086348011,2019
+2004,56,"(55,60]",HS,145.8142908438061,37.10374730666908,3.9299073928739605,4206.745802288898,2019
+2004,31,"(30,35]",HS,31.582621184919212,104.8584163014561,0.30119300194390447,5800.465028861925,2019
+2004,31,"(30,35]",HS,33.153895870736086,104.8584163014561,0.31617772840877534,5771.259695296181,2019
+2004,31,"(30,35]",HS,31.582621184919212,104.8584163014561,0.30119300194390447,5807.237667627316,2019
+2004,31,"(30,35]",HS,31.582621184919212,104.8584163014561,0.30119300194390447,5846.940060336674,2019
+2004,31,"(30,35]",HS,33.153895870736086,104.8584163014561,0.31617772840877534,5821.456214459036,2019
+2004,52,"(50,55]",College,6957.431468581688,806.6032023188931,8.62559366064982,2312.3749920744153,2019
+2004,52,"(50,55]",College,6957.431468581688,806.6032023188931,8.62559366064982,2302.6442616947547,2019
+2004,52,"(50,55]",College,6957.431468581688,806.6032023188931,8.62559366064982,2345.3691231576636,2019
+2004,52,"(50,55]",College,6959.002743267504,806.6032023188931,8.627541675090253,2234.2592268288254,2019
+2004,52,"(50,55]",College,6955.860193895871,806.6032023188931,8.623645646209386,2240.016655481155,2019
+2004,33,"(30,35]",HS,93.53798204667864,51.62260494840914,1.8119578068592064,7980.854056248327,2019
+2004,33,"(30,35]",HS,95.69062836624775,51.62260494840914,1.8536574909747296,7736.364324838712,2019
+2004,33,"(30,35]",HS,93.33371633752245,51.62260494840914,1.8080009025270765,7954.744753646997,2019
+2004,33,"(30,35]",HS,116.90283662477557,51.62260494840914,2.2645667870036106,7922.772466931817,2019
+2004,33,"(30,35]",HS,93.33371633752245,51.62260494840914,1.8080009025270765,7842.378422554126,2019
+2004,37,"(35,40]",HS,1382.0932136445244,148.4149892266763,9.312355988070948,2728.4070884697444,2019
+2004,37,"(35,40]",HS,1383.664488330341,148.4149892266763,9.322943023073302,2852.986467733911,2019
+2004,37,"(35,40]",HS,1383.664488330341,148.4149892266763,9.322943023073302,2702.1375194644665,2019
+2004,37,"(35,40]",HS,1383.664488330341,148.4149892266763,9.322943023073302,2906.409497922266,2019
+2004,37,"(35,40]",HS,1382.0932136445244,148.4149892266763,9.312355988070948,2761.2739927286398,2019
+2004,67,"(65,70]",NoHS,0.31425493716337527,35.4905409020313,0.008854611092878242,9204.458275711679,2019
+2004,67,"(65,70]",NoHS,0.31425493716337527,33.87733449739351,0.009276259240158157,9587.100605381725,2019
+2004,67,"(65,70]",NoHS,0.31425493716337527,35.4905409020313,0.008854611092878242,9239.849986862459,2019
+2004,67,"(65,70]",NoHS,0.31425493716337527,35.4905409020313,0.008854611092878242,9385.442578096854,2019
+2004,67,"(65,70]",NoHS,0.31425493716337527,33.87733449739351,0.009276259240158157,9421.45797545983,2019
+2004,50,"(45,50]",College,382.8410771992819,159.70743405914084,2.397139991977537,6279.590991680156,2019
+2004,50,"(45,50]",College,409.39561938958707,159.70743405914084,2.5634099113882503,5835.069682625269,2019
+2004,50,"(45,50]",College,390.5403231597846,159.70743405914084,2.445348430149874,6310.3842433135105,2019
+2004,50,"(45,50]",College,390.69745062836625,159.70743405914084,2.4463322758268604,6275.322064238126,2019
+2004,50,"(45,50]",College,390.69745062836625,159.70743405914084,2.4463322758268604,6082.183945433954,2019
+2004,39,"(35,40]",HS,-5.499461400359067,32.264128092755726,-0.17045126353790613,4133.027352542639,2019
+2004,39,"(35,40]",HS,-5.955131059245961,30.650921688117936,-0.19428880866425993,4143.802083250468,2019
+2004,39,"(35,40]",HS,-5.358046678635548,30.650921688117936,-0.1748086642599278,4107.224148192112,2019
+2004,39,"(35,40]",HS,-5.688014362657092,32.264128092755726,-0.17629530685920575,4077.015537650127,2019
+2004,39,"(35,40]",HS,-5.373759425493716,30.650921688117936,-0.17532129963898918,4105.395931007317,2019
+2004,65,"(60,65]",HS,32005.294075403952,5404.241455536584,5.922254647340912,25.272604537569986,2019
+2004,65,"(60,65]",HS,32005.294075403952,4952.543662238004,6.462395136349204,25.483388426372862,2019
+2004,65,"(60,65]",HS,32005.294075403952,4904.14747009887,6.526168772563177,26.696224556148234,2019
+2004,65,"(60,65]",HS,32005.294075403952,5129.99636674816,6.238853166223918,24.422401064502107,2019
+2004,65,"(60,65]",HS,32005.294075403952,5113.864302701782,6.258534091038504,26.11546765252076,2019
+2004,39,"(35,40]",HS,57.508653500897665,82.2735266365271,0.6989934168613293,4866.177610291446,2019
+2004,39,"(35,40]",HS,69.7645960502693,82.2735266365271,0.8479592270121045,4789.702055933926,2019
+2004,39,"(35,40]",HS,43.21005385996409,82.2735266365271,0.525199971685425,4879.334836084556,2019
+2004,39,"(35,40]",HS,77.14958707360863,82.2735266365271,0.9377206767183408,4872.6001369607075,2019
+2004,39,"(35,40]",HS,105.2754039497307,82.2735266365271,1.279578112833581,4856.462270256058,2019
+2004,71,"(70,75]",HS,385.8107863554758,54.84901775768473,7.03405096623487,8693.605863042223,2019
+2004,71,"(70,75]",HS,387.3663482944345,53.23581135304694,7.276424242424243,8027.927029702501,2019
+2004,71,"(70,75]",HS,387.3820610412926,53.23581135304694,7.276719396127338,9096.42401674866,2019
+2004,71,"(70,75]",HS,387.3663482944345,53.23581135304694,7.276424242424243,8852.796549327491,2019
+2004,71,"(70,75]",HS,385.8107863554758,53.23581135304694,7.247204025817744,8779.566703925719,2019
+2004,70,"(65,70]",College,519.9505062836624,138.73575079884964,3.747775921417176,8610.271888882931,2019
+2004,70,"(65,70]",College,519.9505062836624,137.12254439421181,3.7918674028456145,8758.202578924576,2019
+2004,70,"(65,70]",College,519.9505062836624,137.12254439421181,3.7918674028456145,8459.14627068646,2019
+2004,70,"(65,70]",College,519.9505062836624,137.12254439421181,3.7918674028456145,8343.784630261118,2019
+2004,70,"(65,70]",College,519.9505062836624,138.73575079884964,3.747775921417176,8680.38660475044,2019
+2004,60,"(55,60]",NoHS,1402.912603231598,129.0565123710229,10.870529332129964,665.4162647811534,2019
+2004,60,"(55,60]",NoHS,1401.3413285457812,129.0565123710229,10.858354241877256,668.0069529882035,2019
+2004,60,"(55,60]",NoHS,1402.912603231598,129.0565123710229,10.870529332129964,673.3934223811809,2019
+2004,60,"(55,60]",NoHS,1402.8811777378814,129.0565123710229,10.870285830324908,619.8188668321961,2019
+2004,60,"(55,60]",NoHS,1401.718434470377,129.0565123710229,10.861276263537905,669.3254080238974,2019
+2004,57,"(55,60]",College,1750.7142549371633,138.73575079884964,12.619056334480728,3201.436174939531,2019
+2004,57,"(55,60]",College,1729.5020466786355,138.73575079884964,12.466159852237423,3334.297593539931,2019
+2004,57,"(55,60]",College,1748.9858527827648,140.3489572034874,12.461694676127639,3166.5413221444114,2019
+2004,57,"(55,60]",College,1729.6591741472173,138.73575079884964,12.46729241877256,3398.4677855083246,2019
+2004,57,"(55,60]",College,1756.9993536804309,138.73575079884964,12.664358995886152,3251.6832653912415,2019
+2004,84,"(80,85]",HS,271.406276481149,38.716953711306864,7.010011131167269,12749.079516683476,2019
+2004,84,"(80,85]",HS,137.0151526032316,62.91504978087366,2.1777802462278997,11757.833486781801,2019
+2004,84,"(80,85]",HS,142.16893357271096,48.39619213913358,2.9376057761732852,12751.991942875964,2019
+2004,84,"(80,85]",HS,142.35748653500897,62.91504978087366,2.2626936961955013,12491.321789857808,2019
+2004,84,"(80,85]",HS,160.42714542190305,77.43390742261373,2.0717945246690737,12355.567276196924,2019
+2004,71,"(70,75]",HS,44642.270736086175,1613.2064046377861,27.673006137184114,33.44368509066569,2019
+2004,71,"(70,75]",HS,39636.18958707361,1613.2064046377861,24.569819133574008,33.830217524941915,2019
+2004,71,"(70,75]",HS,41731.79863554758,1613.2064046377861,25.868852563176898,34.874813183195144,2019
+2004,71,"(70,75]",HS,42677.705996409335,1613.2064046377861,26.45520490974729,32.793246822269836,2019
+2004,71,"(70,75]",HS,42868.30161579892,1613.2064046377861,26.57335198555956,34.94618849137586,2019
+2004,37,"(35,40]",HS,-11.15605026929982,41.94336652058244,-0.2659788947514579,7696.023330067495,2019
+2004,37,"(35,40]",HS,-11.15605026929982,41.94336652058244,-0.2659788947514579,7570.064511349857,2019
+2004,37,"(35,40]",HS,-10.998922800718134,43.55657292522023,-0.2525203904265276,7664.6869040319125,2019
+2004,37,"(35,40]",HS,-10.998922800718134,41.94336652058244,-0.26223271313524027,7702.934527092313,2019
+2004,37,"(35,40]",HS,-10.998922800718134,41.94336652058244,-0.26223271313524027,7642.071209725444,2019
+2004,30,"(25,30]",NoHS,0,80.6603202318893,0,5792.763148466243,2019
+2004,30,"(25,30]",NoHS,0,80.6603202318893,0,5805.846788557436,2019
+2004,30,"(25,30]",NoHS,0,80.6603202318893,0,5787.8405042978175,2019
+2004,30,"(25,30]",NoHS,0,80.6603202318893,0,5821.32214890464,2019
+2004,30,"(25,30]",NoHS,0,80.6603202318893,0,5805.450575560654,2019
+2004,39,"(35,40]",HS,0.15712746858168763,45.16977932985802,0.003478597215059309,3599.1817976295447,2019
+2004,39,"(35,40]",HS,0.15712746858168763,45.16977932985802,0.003478597215059309,3648.5364660448076,2019
+2004,39,"(35,40]",HS,0.15712746858168763,45.16977932985802,0.003478597215059309,3891.0289583058257,2019
+2004,39,"(35,40]",HS,0.15712746858168763,45.16977932985802,0.003478597215059309,3590.1499538089593,2019
+2004,39,"(35,40]",HS,0.15712746858168763,45.16977932985802,0.003478597215059309,3916.9677242861276,2019
+2004,40,"(35,40]",HS,10961.36933572711,604.9524017391699,18.119391383874845,950.1617103003521,2019
+2004,40,"(35,40]",HS,10961.212208258528,556.5562096000363,19.69470831371318,954.2652590928553,2019
+2004,40,"(35,40]",HS,10961.36933572711,1187.3199138134105,9.232026859990583,971.8188949464256,2019
+2004,40,"(35,40]",HS,10959.798061041292,685.6127219710592,15.985406498194944,910.8751677230182,2019
+2004,40,"(35,40]",HS,10959.798061041292,1000.1879708754274,10.957738325375567,930.2636395296498,2019
+2004,67,"(65,70]",College,2593.074614003591,337.16013856929726,7.690928782408928,2188.674392612379,2019
+2004,67,"(65,70]",College,2619.0477845601436,274.24508878842363,9.550026205139096,2137.739851169534,2019
+2004,67,"(65,70]",College,2317.315906642729,345.2261705924862,6.712457235399305,2237.8382157387887,2019
+2004,67,"(65,70]",College,2725.8316122082583,311.34883609509274,8.754911842277547,2158.4763609759525,2019
+2004,67,"(65,70]",College,2813.8402786355477,271.0186759791481,10.382458952209042,2245.216319966507,2019
+2004,57,"(55,60]",College,55336.837630161586,4452.44967680029,12.428402710197249,18.907040473036147,2019
+2004,57,"(55,60]",College,21792.008617594252,5033.203982469892,4.329649402943627,21.357113140153864,2019
+2004,57,"(55,60]",College,9374.224775583483,4291.1290363365115,2.1845590510572457,21.334651864213363,2019
+2004,57,"(55,60]",College,8932.696588868941,5033.203982469892,1.7747535406831438,19.850901109688444,2019
+2004,57,"(55,60]",College,18329.70484739677,4194.336652058244,4.370108164398778,20.274377280344204,2019
+2004,62,"(60,65]",College,6685.852351885099,156.48102124986525,42.72628270497599,1340.4205422651696,2019
+2004,62,"(60,65]",College,6685.852351885099,158.09422765450302,42.290300228394614,1329.2841898418094,2019
+2004,62,"(60,65]",College,6682.709802513466,156.48102124986525,42.70620008187875,1518.467923924133,2019
+2004,62,"(60,65]",College,6707.850197486535,156.48102124986525,42.86686106665674,1270.9720147624462,2019
+2004,62,"(60,65]",College,6684.281077199283,156.48102124986525,42.716241393427374,1354.189015824999,2019
+2004,75,"(70,75]",NoHS,149.58535008976662,17.74527045101565,8.429589760420084,11614.438465416519,2019
+2004,75,"(70,75]",NoHS,149.27109515260324,17.74527045101565,8.411880538234328,11670.397142169923,2019
+2004,75,"(70,75]",NoHS,149.7424775583483,17.74527045101565,8.438444371512963,11693.407007149764,2019
+2004,75,"(70,75]",NoHS,149.58535008976662,17.74527045101565,8.429589760420084,11633.140630380101,2019
+2004,75,"(70,75]",NoHS,149.58535008976662,17.74527045101565,8.429589760420084,11628.23489874788,2019
+2004,67,"(65,70]",HS,4013.0355475763017,112.92444832464501,35.5373491490459,1240.1946621704903,2019
+2004,67,"(65,70]",HS,4014.606822262119,164.5470532730542,24.397925957386565,1239.6978031315468,2019
+2004,67,"(65,70]",HS,4014.606822262119,87.11314585044046,46.084971252841285,1272.473272739166,2019
+2004,67,"(65,70]",HS,4014.606822262119,104.8584163014561,38.28597611774507,1198.2982046391487,2019
+2004,67,"(65,70]",HS,4014.606822262119,222.62248384001447,18.03324962067703,1220.9668332492822,2019
+2004,67,"(65,70]",College,969.4764811490126,161.3206404637786,6.009624548736462,7173.646733739384,2019
+2004,67,"(65,70]",College,968.219461400359,161.3206404637786,6.00183249097473,8042.798589398846,2019
+2004,67,"(65,70]",College,967.7480789946139,161.3206404637786,5.99891046931408,7159.873350190239,2019
+2004,67,"(65,70]",College,966.8053141831239,161.3206404637786,5.99306642599278,7141.813577207572,2019
+2004,67,"(65,70]",College,967.1195691202872,161.3206404637786,5.995014440433213,7482.179727399435,2019
+2004,90,"(85,90]",NoHS,570.5298384201077,3.2264128092755713,176.83101083032494,10095.031201111033,2019
+2004,90,"(85,90]",NoHS,570.5298384201077,3.2264128092755713,176.83101083032494,10139.845880920027,2019
+2004,90,"(85,90]",NoHS,570.5298384201077,3.2264128092755713,176.83101083032494,10088.277594230245,2019
+2004,90,"(85,90]",NoHS,570.5298384201077,3.2264128092755713,176.83101083032494,10056.313077342069,2019
+2004,90,"(85,90]",NoHS,570.5298384201077,3.2264128092755713,176.83101083032494,10083.616025498695,2019
+2004,26,"(25,30]",HS,3.1425493716337525,40.33016011594465,0.07792057761732853,6448.687435476601,2019
+2004,26,"(25,30]",HS,3.1425493716337525,40.33016011594465,0.07792057761732853,6415.92446500153,2019
+2004,26,"(25,30]",HS,3.1425493716337525,41.94336652058244,0.07492363232435435,6455.148972209545,2019
+2004,26,"(25,30]",HS,3.1425493716337525,40.33016011594465,0.07792057761732853,6484.245768463543,2019
+2004,26,"(25,30]",HS,3.1425493716337525,41.94336652058244,0.07492363232435435,6470.756814679163,2019
+2004,67,"(65,70]",College,73461.36542908438,2419.8096069566795,30.358324563176893,25.1007558842305,2019
+2004,67,"(65,70]",College,73021.8484739677,2419.8096069566795,30.1766916967509,26.660692385267886,2019
+2004,67,"(65,70]",College,73933.34491921005,2419.8096069566795,30.553372755715998,25.70918408203114,2019
+2004,67,"(65,70]",College,73093.0272172352,2419.8096069566795,30.206106714801443,25.021118877131876,2019
+2004,67,"(65,70]",College,73866.25149012567,2419.8096069566795,30.525646016847162,25.524142623825984,2019
+2004,65,"(60,65]",HS,508.4644883303411,72.59428820870036,7.004194143602087,6683.295590454289,2019
+2004,65,"(60,65]",HS,607.4547935368042,72.59428820870036,8.367804251905335,7492.546267667929,2019
+2004,65,"(60,65]",HS,507.9931059245961,72.59428820870036,6.997700762133976,6671.114708872582,2019
+2004,65,"(60,65]",HS,580.5859964093357,72.59428820870036,7.9976815082230255,6654.218410167239,2019
+2004,65,"(60,65]",HS,566.6016517055655,72.59428820870036,7.805044524669074,6970.329841984317,2019
+2004,50,"(45,50]",College,9535.877515260325,2258.4889664929005,4.222237813305829,414.12414841656954,2019
+2004,50,"(45,50]",College,10917.60933572711,2258.4889664929005,4.834032619907169,408.891319696838,2019
+2004,50,"(45,50]",College,9541.801220825853,2258.4889664929005,4.224860675605982,426.0991083883323,2019
+2004,50,"(45,50]",College,9738.446247755835,2258.4889664929005,4.311929963898917,406.28059603603447,2019
+2004,50,"(45,50]",College,10918.5521005386,2258.4889664929005,4.834450051572976,411.54095424055157,2019
+2004,65,"(60,65]",HS,1400.0057450628367,51.62260494840914,27.120013537906146,5151.295319844613,2019
+2004,65,"(60,65]",HS,1407.8621184919211,41.94336652058244,33.565787281310755,5775.042866199711,2019
+2004,65,"(60,65]",HS,1428.2886894075405,45.16977932985802,31.620448684889116,5141.906640646723,2019
+2004,65,"(60,65]",HS,1434.5737881508078,56.46222416232251,25.407674058793194,5128.883451223852,2019
+2004,65,"(60,65]",HS,1407.0764811490126,41.94336652058244,33.54705637322966,5372.533207130878,2019
+2004,38,"(35,40]",HS,203.08725314183124,101.63200349218052,1.9982608446507366,7277.322015637497,2019
+2004,38,"(35,40]",HS,202.93012567324953,101.63200349218052,1.9967148014440432,6866.04520871724,2019
+2004,38,"(35,40]",HS,204.34427289048475,101.63200349218052,2.0106291903042806,7246.684300266221,2019
+2004,38,"(35,40]",HS,202.93012567324953,101.63200349218052,1.9967148014440432,7215.806579554728,2019
+2004,38,"(35,40]",HS,202.61587073608618,101.63200349218052,1.9936227150306574,7083.7799946461,2019
+2004,55,"(50,55]",College,2476.4860323159783,809.8296151281686,3.0580334258633335,515.2573057406888,2019
+2004,55,"(50,55]",College,2476.4860323159783,808.2164087235309,3.064137284996793,532.1267557962403,2019
+2004,55,"(50,55]",College,2476.3289048473966,808.2164087235309,3.063942872377987,510.283954807586,2019
+2004,55,"(50,55]",College,2476.3289048473966,808.2164087235309,3.063942872377987,521.5366118323628,2019
+2004,55,"(50,55]",College,2474.9147576301616,808.2164087235309,3.062193158808736,529.6128730681471,2019
+2004,28,"(25,30]",HS,2.6711669658886894,17.74527045101565,0.15052838857893008,6696.365534620566,2019
+2004,28,"(25,30]",HS,2.6711669658886894,17.74527045101565,0.15052838857893008,6770.500012794282,2019
+2004,28,"(25,30]",HS,2.6711669658886894,17.74527045101565,0.15052838857893008,6653.585857910691,2019
+2004,28,"(25,30]",HS,2.6711669658886894,17.74527045101565,0.15052838857893008,6654.36419990869,2019
+2004,28,"(25,30]",HS,2.6711669658886894,17.74527045101565,0.15052838857893008,6663.262476913817,2019
+2004,46,"(45,50]",College,853.8306642728905,225.84889664929003,3.780539453326458,8399.995522366375,2019
+2004,46,"(45,50]",College,853.8306642728905,225.84889664929003,3.780539453326458,9348.358120375264,2019
+2004,46,"(45,50]",College,853.8306642728905,225.84889664929003,3.780539453326458,8293.743687590086,2019
+2004,46,"(45,50]",College,853.8306642728905,225.84889664929003,3.780539453326458,8313.493637423806,2019
+2004,46,"(45,50]",College,853.8306642728905,225.84889664929003,3.780539453326458,8688.595043063277,2019
+2004,56,"(55,60]",College,4748.627791741472,683.9995155664213,6.942443208909474,373.26627348270506,2019
+2004,56,"(55,60]",College,5168.676653500898,742.0749461333816,6.965167979908964,363.53900379339865,2019
+2004,56,"(55,60]",College,4686.169622980251,685.6127219710592,6.835009726056486,388.1174972944376,2019
+2004,56,"(55,60]",College,4497.773788150808,729.1692948962793,6.168353247500081,368.4572523721749,2019
+2004,56,"(55,60]",College,4377.492710951526,583.9807184788785,7.495954185531643,377.317253099443,2019
+2004,25,"(20,25]",College,142.51461400359065,125.83009956174732,1.1325955753031565,6602.186312356232,2019
+2004,25,"(20,25]",College,86.4672459605027,125.83009956174732,0.68717458113487,6685.342906181815,2019
+2004,25,"(20,25]",College,148.72114901256734,125.83009956174732,1.1819202999166898,6611.407108485966,2019
+2004,25,"(20,25]",College,145.02865350089766,125.83009956174732,1.152575210589651,6671.796568161031,2019
+2004,25,"(20,25]",College,59.064215439856376,125.83009956174732,0.46939655651208,6743.489820550254,2019
+2004,85,"(80,85]",College,2813.0530700179534,179.06591091479427,15.70959573291703,3271.654871216716,2019
+2004,85,"(80,85]",College,2807.082226211849,190.35835574725877,14.746304228109892,3252.1502083636447,2019
+2004,85,"(80,85]",College,2768.1146140035908,187.13194293798318,14.792314826341343,3285.8217434639605,2019
+2004,85,"(80,85]",College,2793.569263913824,188.74514934262095,14.800747323274402,3253.5927208696717,2019
+2004,85,"(80,85]",College,2773.7712028725314,183.90553012870762,15.082587244283994,3315.510535665213,2019
+2004,77,"(75,80]",HS,45.56696588868941,22.58488966492901,2.017586384734399,9890.726949328277,2019
+2004,77,"(75,80]",HS,46.39974147217236,24.19809606956679,1.917495547533093,9893.624710271266,2019
+2004,77,"(75,80]",HS,47.68818671454219,12.421689315710953,3.839106380983637,9838.439600190697,2019
+2004,77,"(75,80]",HS,47.10681508078994,24.19809606956679,1.9467157641395907,9892.319277537876,2019
+2004,77,"(75,80]",HS,46.61971992818672,25.81130247420457,1.8061746389891704,9841.978757558907,2019
+2004,37,"(35,40]",College,373.9319497307002,196.81118136580994,1.8999527726815406,9527.621141191357,2019
+2004,37,"(35,40]",College,373.79053500897663,196.81118136580994,1.8992342427649873,10442.851053073717,2019
+2004,37,"(35,40]",College,373.8062477558348,196.81118136580994,1.8993140794223822,9406.18789852356,2019
+2004,37,"(35,40]",College,367.75684021543987,196.81118136580994,1.8685769663253828,9428.685184767575,2019
+2004,37,"(35,40]",College,373.8848114901257,196.81118136580994,1.8997132627093563,9855.541043307177,2019
+2004,29,"(25,30]",HS,17.991095152603233,62.91504978087366,0.2859585300379524,5251.540864791894,2019
+2004,29,"(25,30]",HS,18.0068078994614,62.91504978087366,0.2862082754790336,5225.099363648931,2019
+2004,29,"(25,30]",HS,17.991095152603233,62.91504978087366,0.2859585300379524,5257.672578208311,2019
+2004,29,"(25,30]",HS,18.0068078994614,62.91504978087366,0.2862082754790336,5293.617754449486,2019
+2004,29,"(25,30]",HS,18.0068078994614,61.30184337623587,0.293740072202166,5270.545559831889,2019
+2004,36,"(35,40]",College,152.413644524237,153.2546084405897,0.9945126353790613,6464.12098557604,2019
+2004,36,"(35,40]",College,152.413644524237,153.2546084405897,0.9945126353790613,6205.2003343654515,2019
+2004,36,"(35,40]",College,188.55296229802514,153.2546084405897,1.2303249097472924,6458.276070579703,2019
+2004,36,"(35,40]",College,120.98815080789947,153.2546084405897,0.7894584837545127,6434.198059118575,2019
+2004,36,"(35,40]",College,136.70089766606822,153.2546084405897,0.8919855595667868,6369.063174193174,2019
+2004,47,"(45,50]",HS,107.82244021543985,33.87733449739351,3.182730926594464,11549.351296783247,2019
+2004,47,"(45,50]",HS,107.93242944344703,33.87733449739351,3.1859776173285193,10670.676661969845,2019
+2004,47,"(45,50]",HS,120.25122298025136,33.87733449739351,3.549606979542719,11777.616739822985,2019
+2004,47,"(45,50]",HS,107.50818527827649,33.87733449739351,3.173454667354306,11558.410887895665,2019
+2004,47,"(45,50]",HS,107.36677055655296,33.87733449739351,3.169280350696235,11262.792612513807,2019
+2004,59,"(55,60]",College,1216.0094793536805,172.6130852962431,7.044712034818989,564.6576041482207,2019
+2004,59,"(55,60]",College,1029.184919210054,172.6130852962431,5.962380647120349,557.218000029867,2019
+2004,59,"(55,60]",College,1384.2929982046678,172.6130852962431,8.019629542157293,568.5293038108367,2019
+2004,59,"(55,60]",College,1861.9605026929983,172.6130852962431,10.786902392118494,525.6327456839268,2019
+2004,59,"(55,60]",College,1978.234829443447,172.6130852962431,11.460514862174838,566.4799876968088,2019
+2004,55,"(50,55]",College,9020.845098743268,1855.187365333454,4.862498132161356,332.74135987264606,2019
+2004,55,"(50,55]",College,9020.845098743268,1871.3194293798317,4.820580044815138,332.1707419070056,2019
+2004,55,"(50,55]",College,9020.845098743268,1871.3194293798317,4.820580044815138,340.7072661943847,2019
+2004,55,"(50,55]",College,9020.845098743268,1855.187365333454,4.862498132161356,330.69922590824376,2019
+2004,55,"(50,55]",College,9020.845098743268,1855.187365333454,4.862498132161356,333.05463017662714,2019
+2004,42,"(40,45]",College,21326.439928186715,2258.4889664929005,9.442791284167097,1348.4757155892573,2019
+2004,42,"(40,45]",College,21326.549917414723,2258.4889664929005,9.442839984528108,1454.7770231336274,2019
+2004,42,"(40,45]",College,21325.81141831239,2258.4889664929005,9.442512996389892,1350.438692812286,2019
+2004,42,"(40,45]",College,21326.597055655297,2258.4889664929005,9.442860856111398,1460.0910371203622,2019
+2004,42,"(40,45]",College,21326.12567324955,2258.4889664929005,9.442652140278494,1357.811171094922,2019
+2004,52,"(50,55]",HS,604.3436696588868,48.39619213913358,12.487421901323705,6031.8948789901,2019
+2004,52,"(50,55]",HS,600.8868653500897,48.39619213913358,12.415994705174487,6714.009834115433,2019
+2004,52,"(50,55]",HS,601.0439928186715,48.39619213913358,12.419241395908546,5951.781682238445,2019
+2004,52,"(50,55]",HS,597.744315978456,48.39619213913358,12.351060890493383,5966.688169512587,2019
+2004,52,"(50,55]",HS,597.744315978456,48.39619213913358,12.351060890493383,6238.52132199272,2019
+2004,60,"(55,60]",HS,111.08912028725315,161.3206404637786,0.6886231046931409,207.8799398891605,2019
+2004,60,"(55,60]",HS,116.58858168761222,161.3206404637786,0.7227133574007221,174.56418007047756,2019
+2004,60,"(55,60]",HS,118.47411131059246,161.3206404637786,0.7344014440433213,203.45712449174286,2019
+2004,60,"(55,60]",HS,98.04754039497307,161.3206404637786,0.6077805054151625,193.77729269338244,2019
+2004,60,"(55,60]",HS,113.44603231597846,161.3206404637786,0.70323321299639,188.35486009854907,2019
+2004,46,"(45,50]",HS,581.3716337522442,161.3206404637786,3.6038267148014445,8362.967133294895,2019
+2004,46,"(45,50]",HS,581.3716337522442,161.3206404637786,3.6038267148014445,9304.243713511,2019
+2004,46,"(45,50]",HS,586.0854578096948,161.3206404637786,3.6330469314079425,8254.923560322632,2019
+2004,46,"(45,50]",HS,573.5152603231597,161.3206404637786,3.5551263537906137,8273.7749666704,2019
+2004,46,"(45,50]",HS,625.3673249551167,161.3206404637786,3.876548736462094,8647.652221560276,2019
+2004,26,"(25,30]",HS,84.22032315978456,83.88673304116487,1.0039766731463482,7299.5964688233635,2019
+2004,26,"(25,30]",HS,84.37745062836625,54.84901775768473,1.5383584625185813,7249.288093169166,2019
+2004,26,"(25,30]",HS,84.06319569120286,69.36787539942482,1.2118461925950799,7301.539673486783,2019
+2004,26,"(25,30]",HS,85.79159784560144,66.14146259014923,1.297092542044554,7292.6860234038395,2019
+2004,26,"(25,30]",HS,84.37745062836625,59.68863697159809,1.4136266952873449,7288.945720709142,2019
+2004,88,"(85,90]",College,9185.357558348294,390.3959499223443,23.528311603067095,202.9836784435272,2019
+2004,88,"(85,90]",College,9209.712315978457,371.0374730666908,24.821515303719984,204.388158448689,2019
+2004,88,"(85,90]",College,9436.447253141832,371.0374730666908,25.43259896405588,210.38719278081848,2019
+2004,88,"(85,90]",College,9199.656157989228,371.0374730666908,24.794412494113953,196.1027707660297,2019
+2004,88,"(85,90]",College,9358.354901256733,371.0374730666908,25.222128708209073,198.8519809736866,2019
+2004,65,"(60,65]",College,112694.96301615798,3532.922026156752,31.89851408601618,20.74019594646676,2019
+2004,65,"(60,65]",College,136345.7895870736,3484.5258340176188,39.128936355127685,21.35350431432254,2019
+2004,65,"(60,65]",College,122650.55942549372,3339.337257600217,36.729012365056946,20.995578422063275,2019
+2004,65,"(60,65]",College,110525.03267504489,3468.393769971241,31.866345059188976,20.4852844289174,2019
+2004,65,"(60,65]",College,106420.8631956912,3549.0540902031294,29.98569773547752,20.567919624948274,2019
+2004,44,"(40,45]",College,188960.70807899462,1806.7911731943202,104.58359044610626,20.74019594646676,2019
+2004,44,"(40,45]",College,124615.5955475763,1726.130852962431,72.19359721987922,21.35350431432254,2019
+2004,44,"(40,45]",College,146183.2261400359,1726.130852962431,84.68838030972705,20.995578422063275,2019
+2004,44,"(40,45]",College,127362.13656014363,1709.9987889160534,74.48083436414413,20.4852844289174,2019
+2004,44,"(40,45]",College,87079.10032315979,1742.2629170088094,49.980459018585364,20.567919624948274,2019
+2004,73,"(70,75]",College,318.24597486535015,183.90553012870762,1.7304861612515043,8372.179462077898,2019
+2004,73,"(70,75]",College,344.769091561939,117.76406753855836,2.9276255378072307,7731.112597001894,2019
+2004,73,"(70,75]",College,327.75218671454223,246.82057990958126,1.3278965102286404,8760.104326230063,2019
+2004,73,"(70,75]",College,335.828538599641,117.76406753855836,2.8517063448889775,8525.484433026415,2019
+2004,73,"(70,75]",College,318.07313464991023,145.18857641740072,2.1907586843160853,8454.962095420773,2019
+2004,36,"(35,40]",NoHS,5.876567324955117,38.716953711306864,0.15178279181708784,6790.978372218393,2019
+2004,36,"(35,40]",NoHS,7.762096947935368,38.716953711306864,0.20048315282791818,6749.339602522174,2019
+2004,36,"(35,40]",NoHS,7.2907145421903055,38.716953711306864,0.1883080625752106,6786.199811659362,2019
+2004,36,"(35,40]",NoHS,10.90464631956912,38.716953711306864,0.28165042117930206,6774.463111497801,2019
+2004,36,"(35,40]",NoHS,5.562312387791741,38.716953711306864,0.14366606498194945,6793.9368710176495,2019
+2004,39,"(35,40]",College,415.60215439856375,233.91492867247896,1.7767235154985686,8139.703871595181,2019
+2004,39,"(35,40]",College,425.18692998204665,233.91492867247896,1.817698991659405,9033.994159224078,2019
+2004,39,"(35,40]",College,414.3451346499102,233.91492867247896,1.7713496825594424,8033.203285684764,2019
+2004,39,"(35,40]",College,418.9018312387792,233.91492867247896,1.7908298269637748,8020.380423256769,2019
+2004,39,"(35,40]",College,423.6156552962298,233.91492867247896,1.8109817004854976,8380.157858311244,2019
+2004,33,"(30,35]",College,89.40552962298025,48.39619213913358,1.8473670276774972,7214.266620628661,2019
+2004,33,"(30,35]",College,107.00380610412927,108.08482911073166,0.9899983835335957,7104.021457113704,2019
+2004,33,"(30,35]",College,82.02053859964093,59.68863697159809,1.3741399160893744,7198.346105839833,2019
+2004,33,"(30,35]",College,81.86341113105924,90.33955865971603,0.9061745745229498,7296.344204127368,2019
+2004,33,"(30,35]",College,86.2629802513465,112.92444832464501,0.7638999484270244,7186.485539789656,2019
+2004,44,"(40,45]",College,107.63231597845602,50.00939854377137,2.1522417608012114,7585.143874095501,2019
+2004,44,"(40,45]",College,110.69630161579892,51.62260494840914,2.1443377707581233,7156.470559122577,2019
+2004,44,"(40,45]",College,109.12502692998206,50.00939854377137,2.182090369162688,7553.210220676652,2019
+2004,44,"(40,45]",College,109.15645242369838,51.62260494840914,2.1145087996389895,7521.026409983993,2019
+2004,44,"(40,45]",College,109.2035906642729,51.62260494840914,2.1154219314079428,7383.415261324418,2019
+2004,36,"(35,40]",College,90.66254937163376,75.82070101797595,1.1957492894999617,6037.642115368985,2019
+2004,36,"(35,40]",College,282.3580610412926,75.82070101797595,3.724023350487748,5697.9018651603665,2019
+2004,36,"(35,40]",College,-28.754326750448833,75.82070101797595,-0.37924110914816805,6015.376796551333,2019
+2004,36,"(35,40]",College,172.3688330341113,74.20749461333816,2.3227954795165595,5993.351121093819,2019
+2004,36,"(35,40]",College,74.949802513465,75.82070101797595,0.988513710730471,5878.641426758517,2019
+2004,37,"(35,40]",HS,328.7106642728905,209.7168326029122,1.5674023882254928,6515.1894242996505,2019
+2004,37,"(35,40]",HS,353.803921005386,209.7168326029122,1.6870554290474866,6219.231331220103,2019
+2004,37,"(35,40]",HS,310.3581759425494,209.7168326029122,1.4798915856706472,6536.477973737936,2019
+2004,37,"(35,40]",HS,325.3952746858169,209.7168326029122,1.5515935018050542,6541.265081488293,2019
+2004,37,"(35,40]",HS,380.24847396768405,209.7168326029122,1.8131519022493752,6451.780928461001,2019
+2004,43,"(40,45]",HS,1605.528473967684,161.3206404637786,9.952405776173286,2091.7192262805597,2019
+2004,43,"(40,45]",HS,1604.585709156194,161.3206404637786,9.946561732851986,2183.82963747166,2019
+2004,43,"(40,45]",HS,1609.990894075404,161.3206404637786,9.980067581227438,2075.749557258847,2019
+2004,43,"(40,45]",HS,1607.7282585278276,161.3206404637786,9.966041877256318,2230.013627600718,2019
+2004,43,"(40,45]",HS,1603.9571992818671,161.3206404637786,9.94266570397112,2114.5451100370033,2019
+2004,43,"(40,45]",College,174364.0376301616,18148.572052175095,9.607589904532691,20.74019594646676,2019
+2004,43,"(40,45]",College,180824.64775583483,18584.137781427293,9.730053117478942,21.35350431432254,2019
+2004,43,"(40,45]",College,203330.3293357271,18035.647603850448,11.273802516096948,20.995578422063275,2019
+2004,43,"(40,45]",College,181142.5166247756,18600.269845473675,9.738703692455093,20.4852844289174,2019
+2004,43,"(40,45]",College,181740.22951526032,18261.496500499736,9.952099462948555,20.567919624948274,2019
+2004,55,"(50,55]",College,2230.5815439856374,195.19797496117215,11.427278097681771,1907.8351365983667,2019
+2004,55,"(50,55]",College,2227.5961220825857,195.19797496117215,11.411983769430439,1863.4362492356836,2019
+2004,55,"(50,55]",College,2221.153895870736,195.19797496117215,11.378980218993345,1950.690514961941,2019
+2004,55,"(50,55]",College,2222.725170556553,193.58476855653433,11.481921780986765,1881.5119585109592,2019
+2004,55,"(50,55]",College,2240.0091921005383,195.19797496117215,11.475575976370196,1957.1218994267292,2019
+2004,51,"(50,55]",College,31315.19023339318,4855.751277959736,6.449092723412932,18.875803891614044,2019
+2004,51,"(50,55]",College,13122.34341113106,5194.524622933671,2.5261875462475056,21.160599969936417,2019
+2004,51,"(50,55]",College,15736.315978456016,4355.6572925220225,3.61284530017382,21.982680535781373,2019
+2004,51,"(50,55]",College,20655.977019748654,3516.789962110374,5.873531613287848,19.826033511512716,2019
+2004,51,"(50,55]",College,29761.749515260326,4500.845868939423,6.6124791610056555,19.504203208628326,2019
+2004,28,"(25,30]",HS,0,30.650921688117936,0,5508.45308164434,2019
+2004,28,"(25,30]",HS,0,30.650921688117936,0,5520.785836751281,2019
+2004,28,"(25,30]",HS,0,30.650921688117936,0,5505.219860427767,2019
+2004,28,"(25,30]",HS,0,30.650921688117936,0,5549.847683369086,2019
+2004,28,"(25,30]",HS,0,30.650921688117936,0,5521.275229403684,2019
+2004,67,"(65,70]",HS,323.68258527827646,74.20749461333816,4.36185842097002,331.00675488080685,2019
+2004,67,"(65,70]",HS,293.8283662477558,69.36787539942482,4.235798841407101,2556.862373446511,2019
+2004,67,"(65,70]",HS,449.3845601436266,75.4980597370484,5.952266345768151,333.7992906616415,2019
+2004,67,"(65,70]",HS,292.257091561939,69.36787539942482,4.21314751070439,2625.7398382131214,2019
+2004,67,"(65,70]",HS,293.8283662477558,69.36787539942482,4.235798841407101,2699.7760373878154,2019
+2004,66,"(65,70]",HS,19.16955116696589,56.46222416232251,0.3395110881897886,5450.76267116605,2019
+2004,66,"(65,70]",HS,19.16955116696589,56.46222416232251,0.3395110881897886,5502.439388826546,2019
+2004,66,"(65,70]",HS,19.326678635547577,56.46222416232251,0.34229396596183603,5506.75740748301,2019
+2004,66,"(65,70]",HS,19.16955116696589,56.46222416232251,0.3395110881897886,5496.968300673144,2019
+2004,66,"(65,70]",HS,19.16955116696589,56.46222416232251,0.3395110881897886,5501.0454282552355,2019
+2004,34,"(30,35]",HS,-12.72575368043088,25.81130247420457,-0.4930302797833937,5031.689754732827,2019
+2004,34,"(30,35]",HS,-12.72575368043088,25.81130247420457,-0.4930302797833937,5009.439179335872,2019
+2004,34,"(30,35]",HS,-12.72575368043088,25.81130247420457,-0.4930302797833937,5070.9977710192525,2019
+2004,34,"(30,35]",HS,-12.72575368043088,25.81130247420457,-0.4930302797833937,5061.566898619107,2019
+2004,34,"(30,35]",HS,-12.882881149012569,25.81130247420457,-0.4991178249097475,5074.403111241185,2019
+2004,43,"(40,45]",HS,-1.6341256732495513,46.782985734495796,-0.034929914104319684,5788.908905368663,2019
+2004,43,"(40,45]",HS,-1.7912531418312387,38.716953711306864,-0.04626534296028881,5864.678034004529,2019
+2004,43,"(40,45]",HS,-0.5342333931777379,45.16977932985802,-0.011827230531201648,5764.591219780409,2019
+2004,43,"(40,45]",HS,-2.1369335727109515,40.33016011594465,-0.05298599277978339,5786.290365377073,2019
+2004,43,"(40,45]",HS,-1.9326678635547576,46.782985734495796,-0.04131134071953193,5803.019713688894,2019
+2004,50,"(45,50]",College,488.35217235188514,241.98096069566793,2.0181429602888086,6523.717726411262,2019
+2004,50,"(45,50]",College,464.6259245960503,241.98096069566793,1.920092900120337,7257.981369199522,2019
+2004,50,"(45,50]",College,448.75605026929986,241.98096069566793,1.8545097472924188,6439.435944480328,2019
+2004,50,"(45,50]",College,452.4485457809695,241.98096069566793,1.8697691937424787,6454.141401502766,2019
+2004,50,"(45,50]",College,466.66858168761223,241.98096069566793,1.9285342960288807,6745.7926344146545,2019
+2004,71,"(70,75]",College,1905.1705565529624,241.98096069566793,7.873225030084235,3335.2924081563774,2019
+2004,71,"(70,75]",College,1905.0134290843807,241.98096069566793,7.872575691937425,3476.3057237369744,2019
+2004,71,"(70,75]",College,1905.0134290843807,241.98096069566793,7.872575691937425,3283.7502801301516,2019
+2004,71,"(70,75]",College,1905.1705565529624,241.98096069566793,7.873225030084235,3561.734880724849,2019
+2004,71,"(70,75]",College,1905.0134290843807,241.98096069566793,7.872575691937425,3380.8025639092907,2019
+2004,73,"(70,75]",College,12211.27121005386,256.49981833740793,47.607328883136944,1653.0183629999433,2019
+2004,73,"(70,75]",College,12341.372754039498,380.71671149451754,32.41615716208774,1684.0191744470626,2019
+2004,73,"(70,75]",College,8196.852940754039,380.71671149451754,21.530058159456647,1667.272732738619,2019
+2004,73,"(70,75]",College,16523.493170556554,312.9620424997305,52.797115709553765,1595.9232279220537,2019
+2004,73,"(70,75]",College,8986.49703411131,380.71671149451754,23.60415700911705,1596.2277060679467,2019
+2004,60,"(55,60]",NoHS,58.92280071813286,64.52825618551145,0.9131317689530686,7183.349917124608,2019
+2004,60,"(55,60]",NoHS,57.194398563734296,64.52825618551145,0.8863465703971118,6360.957883000444,2019
+2004,60,"(55,60]",NoHS,57.35152603231598,64.52825618551145,0.8887815884476533,7199.1422058328435,2019
+2004,60,"(55,60]",NoHS,58.92280071813286,64.52825618551145,0.9131317689530686,7054.610846584401,2019
+2004,60,"(55,60]",NoHS,58.92280071813286,64.52825618551145,0.9131317689530686,6897.921949394498,2019
+2004,34,"(30,35]",HS,-44.87560502692998,38.716953711306864,-1.1590685920577617,5870.773989264524,2019
+2004,34,"(30,35]",HS,-44.87560502692998,38.716953711306864,-1.1590685920577617,5781.059473231093,2019
+2004,34,"(30,35]",HS,-44.87560502692998,38.716953711306864,-1.1590685920577617,5857.818307275904,2019
+2004,34,"(30,35]",HS,-44.87560502692998,38.716953711306864,-1.1590685920577617,5937.5664946770685,2019
+2004,34,"(30,35]",HS,-44.71847755834829,38.716953711306864,-1.1550102286401924,5848.166501163521,2019
+2004,37,"(35,40]",HS,-0.9270520646319569,54.84901775768473,-0.016901889997876406,3952.67972904217,2019
+2004,37,"(35,40]",HS,-0.9270520646319569,59.68863697159809,-0.015531466484535074,3938.1773422358383,2019
+2004,37,"(35,40]",HS,-0.9270520646319569,64.52825618551145,-0.014366606498194944,3949.088107485444,2019
+2004,37,"(35,40]",HS,-0.9270520646319569,50.00939854377137,-0.018537556771864448,3927.613762724114,2019
+2004,37,"(35,40]",HS,-0.9113393177737882,51.62260494840914,-0.017653880866425997,3933.495297609199,2019
+2004,56,"(55,60]",College,2.356912028725314,56.46222416232251,0.041743166580711706,1095.786518951533,2019
+2004,56,"(55,60]",College,2.514039497307002,56.46222416232251,0.04452604435275916,1130.8139251939785,2019
+2004,56,"(55,60]",College,2.514039497307002,56.46222416232251,0.04452604435275916,1101.762373209933,2019
+2004,56,"(55,60]",College,2.356912028725314,56.46222416232251,0.041743166580711706,1088.9099902341309,2019
+2004,56,"(55,60]",College,2.356912028725314,56.46222416232251,0.041743166580711706,1084.8738537522827,2019
+2004,34,"(30,35]",College,181.63935368043087,137.12254439421181,1.3246498194945848,10346.568083339527,2019
+2004,34,"(30,35]",College,183.21062836624776,135.50933798957405,1.3520147842530512,9976.965307398063,2019
+2004,34,"(30,35]",College,186.3531777378815,135.50933798957405,1.3752054323534466,10352.375242210408,2019
+2004,34,"(30,35]",College,183.21062836624776,135.50933798957405,1.3520147842530512,10376.454726354435,2019
+2004,34,"(30,35]",College,180.068078994614,135.50933798957405,1.3288241361526558,10236.102577896132,2019
+2004,60,"(55,60]",College,2055.227289048474,188.74514934262095,10.888901231139501,13246.48318220023,2019
+2004,60,"(55,60]",College,2055.227289048474,188.74514934262095,10.888901231139501,14100.846143816167,2019
+2004,60,"(55,60]",College,2056.798563734291,188.74514934262095,10.897226079175539,13227.753154647977,2019
+2004,60,"(55,60]",College,2056.798563734291,188.74514934262095,10.897226079175539,14141.46206116561,2019
+2004,60,"(55,60]",College,2055.227289048474,190.35835574725877,10.79662240714679,13782.702038243297,2019
+2004,53,"(50,55]",College,3956.783913824058,369.424266662053,10.710676777071873,2012.623303238918,2019
+2004,53,"(50,55]",College,3956.783913824058,369.424266662053,10.710676777071873,1959.6022200733448,2019
+2004,53,"(50,55]",College,3955.2126391382403,369.424266662053,10.70642347043337,2059.189363556804,2019
+2004,53,"(50,55]",College,3956.783913824058,369.424266662053,10.710676777071873,1956.3984902766326,2019
+2004,53,"(50,55]",College,3956.626786355476,369.424266662053,10.710251446408021,1994.2114487899507,2019
+2004,28,"(25,30]",HS,3.771059245960503,41.94336652058244,0.08990835878922522,6167.45481502981,2019
+2004,28,"(25,30]",HS,3.771059245960503,45.16977932985802,0.0834863331614234,6254.499001148064,2019
+2004,28,"(25,30]",HS,3.771059245960503,32.264128092755726,0.11688086642599277,6151.01204723961,2019
+2004,28,"(25,30]",HS,3.771059245960503,35.4905409020313,0.10625533311453889,6198.36861675334,2019
+2004,28,"(25,30]",HS,3.771059245960503,29.03771528348015,0.1298676293622142,6199.730715588446,2019
+2004,62,"(60,65]",HS,1249.47763016158,116.1508611339206,10.757368632170078,5619.111260642077,2019
+2004,62,"(60,65]",HS,1261.890700179533,116.1508611339206,10.86423886883273,6214.996605515562,2019
+2004,62,"(60,65]",HS,1342.1828366247755,117.76406753855836,11.397218733000347,5545.363046531349,2019
+2004,62,"(60,65]",HS,1292.8448114901257,117.76406753855836,10.978262202660602,5527.696035014834,2019
+2004,62,"(60,65]",HS,1240.0499820466787,116.1508611339206,10.676201363818693,5810.542347489574,2019
+2004,56,"(55,60]",College,935.065565529623,280.6979144069748,3.3312166479936924,727.9012258787565,2019
+2004,56,"(55,60]",College,934.9084380610414,269.4054695745103,3.4702652456819214,707.3310739790409,2019
+2004,56,"(55,60]",College,933.1800359066427,271.0186759791481,3.4432314767062056,735.5487726600468,2019
+2004,56,"(55,60]",College,1160.8577378815082,250.04699271885684,4.642558285780832,679.2893076897673,2019
+2004,56,"(55,60]",College,1203.2821543985638,274.24508878842363,4.387616054363984,732.6493256361285,2019
+2004,45,"(40,45]",HS,748.8695152603232,88.72635225507824,8.440215293731539,6481.52952416233,2019
+2004,45,"(40,45]",HS,794.9078635547577,88.72635225507824,8.959095503774204,7213.296602161228,2019
+2004,45,"(40,45]",HS,806.0639138240574,88.72635225507824,9.084830981293074,6399.544432353024,2019
+2004,45,"(40,45]",HS,832.9327109515261,88.72635225507824,9.387658680669512,6414.7837122558685,2019
+2004,45,"(40,45]",HS,1025.8852423698384,88.72635225507824,11.562351165080406,6704.216108824825,2019
+2004,73,"(70,75]",NoHS,0,14.196216360812517,0,5173.746916362309,2019
+2004,73,"(70,75]",NoHS,0,14.518857641740075,0,5157.101652902829,2019
+2004,73,"(70,75]",NoHS,0,13.712254439421182,0,5141.128036820621,2019
+2004,73,"(70,75]",NoHS,0,13.873575079884963,0,5183.744247019042,2019
+2004,73,"(70,75]",NoHS,0,14.357537001276295,0,5165.756517651453,2019
+2004,50,"(45,50]",HS,993.5169838420107,150.02819563131413,6.622201777881292,4784.821415746278,2019
+2004,50,"(45,50]",HS,963.6627648114901,112.92444832464501,8.533694687983497,5325.378284638964,2019
+2004,50,"(45,50]",HS,1092.5072890484741,183.90553012870762,5.940589651022865,4723.837003006736,2019
+2004,50,"(45,50]",HS,1047.0031741472171,124.21689315710954,8.42883079375498,4735.135258407672,2019
+2004,50,"(45,50]",HS,1021.7999281867145,229.07530945856564,4.4605415162454864,4949.504514186212,2019
+2004,40,"(35,40]",College,1855.3611490125672,201.65080057972327,9.200861805054151,3758.755878404832,2019
+2004,40,"(35,40]",College,1855.3611490125672,201.65080057972327,9.200861805054151,3927.8788866376103,2019
+2004,40,"(35,40]",College,1856.9324236983844,201.65080057972327,9.208653862815884,3719.9591761393904,2019
+2004,40,"(35,40]",College,1855.3611490125672,201.65080057972327,9.200861805054151,3998.336574331131,2019
+2004,40,"(35,40]",College,1855.3611490125672,201.65080057972327,9.200861805054151,3801.6327060624417,2019
+2004,56,"(55,60]",College,44151.86019389587,642.0561490458389,68.76635362734248,14.943830461596022,2019
+2004,56,"(55,60]",College,45445.69490843807,538.8109391490206,84.34441769169244,15.174346120326001,2019
+2004,56,"(55,60]",College,48302.099447037705,538.8109391490206,89.6457290257031,15.763968854173026,2019
+2004,56,"(55,60]",College,51291.00957989228,630.7637042133744,81.31572764456591,14.653183182042204,2019
+2004,56,"(55,60]",College,44330.655540394975,538.8109391490206,82.27497312955317,15.869697438522953,2019
+2004,24,"(20,25]",College,-25.297522441651704,24.19809606956679,-1.0454344163658242,7135.964898559255,2019
+2004,24,"(20,25]",College,-23.72624775583483,24.19809606956679,-0.9805006016847172,7284.44592847116,2019
+2004,24,"(20,25]",College,-25.297522441651704,24.19809606956679,-1.0454344163658242,7105.995216313924,2019
+2004,24,"(20,25]",College,-26.868797127468582,24.19809606956679,-1.1103682310469314,6968.603652767408,2019
+2004,24,"(20,25]",College,-26.868797127468582,24.19809606956679,-1.1103682310469314,7126.441822214116,2019
+2004,26,"(25,30]",College,-49.180897666068226,24.19809606956679,-2.0324283995186523,5298.033808384631,2019
+2004,26,"(25,30]",College,-49.180897666068226,24.19809606956679,-2.0324283995186523,5372.807447545149,2019
+2004,26,"(25,30]",College,-49.33802513464992,24.19809606956679,-2.0389217809867635,5283.908963976594,2019
+2004,26,"(25,30]",College,-49.180897666068226,24.19809606956679,-2.0324283995186523,5324.58971703561,2019
+2004,26,"(25,30]",College,-49.180897666068226,24.19809606956679,-2.0324283995186523,5325.759801923979,2019
+2004,33,"(30,35]",College,171185.71033393178,2290.753094585656,74.72900974729242,39.80475722710038,2019
+2004,33,"(30,35]",College,174904.96465350088,2258.4889664929005,77.44335582258896,45.68569676524553,2019
+2004,33,"(30,35]",College,172457.9243087971,2210.092774353767,78.0319841366044,41.973839141352116,2019
+2004,33,"(30,35]",College,170953.1145421903,2210.092774353767,77.35110332288072,40.32416522508106,2019
+2004,33,"(30,35]",College,173068.05026929983,2242.356902446523,77.1813131444303,45.813609600943344,2019
+2004,77,"(75,80]",College,1364.4949371633754,87.11314585044046,15.663479074742613,1216.877549879576,2019
+2004,77,"(75,80]",College,1365.123447037702,87.11314585044046,15.67069394304051,1203.818700682523,2019
+2004,77,"(75,80]",College,1363.5521723518852,87.11314585044046,15.65265677229576,1209.1333981268558,2019
+2004,77,"(75,80]",College,1364.9663195691203,87.11314585044046,15.668890225966036,1156.6153072770053,2019
+2004,77,"(75,80]",College,1365.123447037702,87.11314585044046,15.67069394304051,1216.6255038863383,2019
+2004,62,"(60,65]",College,1269.9042010771993,201.65080057972327,6.297541083032491,6220.959414347463,2019
+2004,62,"(60,65]",College,1269.9042010771993,201.65080057972327,6.297541083032491,6879.3403996567085,2019
+2004,62,"(60,65]",College,1269.7470736086175,201.65080057972327,6.2967618772563165,6092.5841550211635,2019
+2004,62,"(60,65]",College,1269.9042010771993,201.65080057972327,6.297541083032491,6122.922884266716,2019
+2004,62,"(60,65]",College,1269.9042010771993,201.65080057972327,6.297541083032491,6396.343801796931,2019
+2004,38,"(35,40]",HS,2842.055658168761,96.79238427826716,29.362389193742477,13246.48318220023,2019
+2004,38,"(35,40]",HS,2915.374477558348,90.33955865971603,32.27129422382671,14100.846143816167,2019
+2004,38,"(35,40]",HS,2810.6333070017954,90.33955865971603,31.111877772047443,13227.753154647977,2019
+2004,38,"(35,40]",HS,2758.262721723519,101.63200349218052,27.139706263251394,14141.46206116561,2019
+2004,38,"(35,40]",HS,2779.2109558348293,104.8584163014561,26.504414751457926,13782.702038243297,2019
+2004,26,"(25,30]",HS,64.50082585278277,13.228292518029845,4.875975169498989,7296.931069404866,2019
+2004,26,"(25,30]",HS,64.34369838420108,13.228292518029845,4.864097032667078,7313.2680087556,2019
+2004,26,"(25,30]",HS,64.4851131059246,13.228292518029845,4.874787355815797,7292.648089773416,2019
+2004,26,"(25,30]",HS,64.34369838420108,13.228292518029845,4.864097032667078,7351.765621130007,2019
+2004,26,"(25,30]",HS,64.50082585278277,13.228292518029845,4.875975169498989,7313.916296831677,2019
+2004,49,"(45,50]",College,17856.75116696589,8146.692343420819,2.1919019909211137,19.741578807765016,2019
+2004,49,"(45,50]",College,17853.608617594255,8162.824407467197,2.1871851857136746,20.616388427229808,2019
+2004,49,"(45,50]",College,17855.179892280074,8162.824407467197,2.187377677259172,20.966807505935712,2019
+2004,49,"(45,50]",College,17855.179892280074,8146.692343420819,2.1917091182042396,18.920925052792064,2019
+2004,49,"(45,50]",College,17853.608617594255,8146.692343420819,2.1915162454873647,19.70575690641429,2019
+2004,39,"(35,40]",HS,27951.232545780967,432.33931644292664,64.65114664044398,1348.4757155892573,2019
+2004,39,"(35,40]",HS,27873.375885098743,430.7261100382889,64.71252899579497,1454.7770231336274,2019
+2004,39,"(35,40]",HS,29500.305120287256,432.33931644292664,68.23414849938037,1350.438692812286,2019
+2004,39,"(35,40]",HS,28303.889436265712,432.33931644292664,65.46684134382241,1460.0910371203622,2019
+2004,39,"(35,40]",HS,28078.39580610413,432.33931644292664,64.94527501481761,1357.811171094922,2019
+2004,50,"(45,50]",HS,14020.405457809695,88.72635225507824,158.01850410239578,2297.053904389363,2019
+2004,50,"(45,50]",HS,13727.284165170557,98.40559068290497,139.49699473279279,2256.2888535992306,2019
+2004,50,"(45,50]",HS,14094.176804308796,95.17917787362938,148.08046380713452,2354.444881592243,2019
+2004,50,"(45,50]",HS,14220.742980251345,106.47162270609388,133.5636916092331,2233.1573050868365,2019
+2004,50,"(45,50]",HS,13938.777737881508,116.1508611339206,120.00580625752106,2263.443088105437,2019
+2004,67,"(65,70]",HS,1383.8216157989227,62.91504978087366,21.995080996019624,5767.172553562905,2019
+2004,67,"(65,70]",HS,1381.3075763016157,61.30184337623587,22.532888086642597,6463.475554624875,2019
+2004,67,"(65,70]",HS,1383.5073608617595,62.91504978087366,21.990086087198,5755.08570292298,2019
+2004,67,"(65,70]",HS,1386.4927827648116,62.91504978087366,22.037537721003428,5739.950246904278,2019
+2004,67,"(65,70]",HS,1382.5645960502693,62.91504978087366,21.97510136073313,6013.023895445725,2019
+2004,32,"(30,35]",College,521.0346858168762,229.07530945856564,2.2745126353790615,6155.116532365465,2019
+2004,32,"(30,35]",College,520.091921005386,229.07530945856564,2.2703971119133572,6405.236502205249,2019
+2004,32,"(30,35]",College,510.1928904847397,229.07530945856564,2.2271841155234657,6013.426108541384,2019
+2004,32,"(30,35]",College,565.1875044883303,229.07530945856564,2.4672563176895306,5959.934970980397,2019
+2004,32,"(30,35]",College,518.049263913824,229.07530945856564,2.2614801444043318,6185.611863188356,2019
+2004,52,"(50,55]",College,425.18692998204665,179.06591091479427,2.3744716557712944,6492.324803424412,2019
+2004,52,"(50,55]",College,400.2036624775584,179.06591091479427,2.2349517026051324,7225.7838947134105,2019
+2004,52,"(50,55]",College,425.18692998204665,180.67911731943207,2.353271015987622,6409.577594897832,2019
+2004,52,"(50,55]",College,477.03899461400357,179.06591091479427,2.664041369889745,6424.907726871729,2019
+2004,52,"(50,55]",College,496.0514183123878,179.06591091479427,2.770216931733177,6715.776437624973,2019
+2004,24,"(20,25]",HS,171.2689407540395,209.7168326029122,0.8166675923354624,9527.621141191357,2019
+2004,24,"(20,25]",HS,202.85156193895872,209.7168326029122,0.9672640933074146,10442.851053073717,2019
+2004,24,"(20,25]",HS,147.54269299820467,209.7168326029122,0.7035329075256873,9406.18789852356,2019
+2004,24,"(20,25]",HS,147.54269299820467,209.7168326029122,0.7035329075256873,9428.685184767575,2019
+2004,24,"(20,25]",HS,201.12315978456016,209.7168326029122,0.9590224937517356,9855.541043307177,2019
+2004,38,"(35,40]",HS,564.8732495511671,177.45270451015648,3.183232687889728,6081.520702597545,2019
+2004,38,"(35,40]",HS,596.2987432675045,177.45270451015648,3.3603249097472925,6752.233182052745,2019
+2004,38,"(35,40]",HS,597.8700179533214,177.45270451015648,3.3691795208401705,6003.006947223323,2019
+2004,38,"(35,40]",HS,695.2890484739677,177.45270451015648,3.9181654085986213,5994.07115054103,2019
+2004,38,"(35,40]",HS,574.3008976660682,177.45270451015648,3.2363603544469965,6263.4548308821395,2019
+2004,73,"(70,75]",HS,142.7503052064632,19.358476855653432,7.3740463297232255,6994.669511577011,2019
+2004,73,"(70,75]",HS,142.7503052064632,17.74527045101565,8.044414177879881,6999.714821600317,2019
+2004,73,"(70,75]",HS,142.59317773788152,17.74527045101565,8.035559566787002,6929.686732298718,2019
+2004,73,"(70,75]",HS,142.7503052064632,17.74527045101565,8.044414177879881,6983.798375123632,2019
+2004,73,"(70,75]",HS,142.7503052064632,17.74527045101565,8.044414177879881,6970.689952927021,2019
+2004,42,"(40,45]",College,60.604064631956916,80.6603202318893,0.7513491696750904,5557.711514546208,2019
+2004,42,"(40,45]",College,57.508653500897665,82.2735266365271,0.6989934168613293,5533.911307455181,2019
+2004,42,"(40,45]",College,57.66578096947936,80.6603202318893,0.7149212996389892,5516.052870913816,2019
+2004,42,"(40,45]",College,59.53559784560144,80.6603202318893,0.7381026714801444,5533.855947071175,2019
+2004,42,"(40,45]",College,60.10125673249551,80.6603202318893,0.745115523465704,5504.029109410238,2019
+2004,49,"(45,50]",HS,281.28959425493713,45.16977932985802,6.227384734399173,7528.119044830969,2019
+2004,49,"(45,50]",HS,212.4206247755835,45.16977932985802,4.702715575038679,7115.167363263344,2019
+2004,49,"(45,50]",HS,217.0401723518851,45.16977932985802,4.804986333161423,7536.471540000828,2019
+2004,49,"(45,50]",HS,328.4592603231598,45.16977932985802,7.271659618359979,7559.181561989843,2019
+2004,49,"(45,50]",HS,218.5643087971275,45.16977932985802,4.838728726147498,7339.741467101005,2019
+2004,42,"(40,45]",NoHS,-7.856373429084381,0,-Inf,5919.926107480703,2019
+2004,42,"(40,45]",NoHS,-7.856373429084381,0,-Inf,5911.146264546078,2019
+2004,42,"(40,45]",NoHS,-8.642010771992819,0,-Inf,5925.119242489002,2019
+2004,42,"(40,45]",NoHS,-8.327755834829444,0,-Inf,5904.272022226571,2019
+2004,42,"(40,45]",NoHS,-8.013500897666068,0,-Inf,5892.770754574485,2019
+2004,33,"(30,35]",NoHS,124.06784919210054,41.94336652058244,2.9579850041655096,6000.937516919779,2019
+2004,33,"(30,35]",NoHS,124.06784919210054,37.10374730666908,3.3438091351436197,5961.123841531674,2019
+2004,33,"(30,35]",NoHS,122.49657450628366,37.10374730666908,3.301460995134202,6005.683239719787,2019
+2004,33,"(30,35]",NoHS,122.49657450628366,53.23581135304694,2.301018269335959,6002.011632366751,2019
+2004,33,"(30,35]",NoHS,124.06784919210054,53.23581135304694,2.330533639645553,5993.784176831063,2019
+2004,64,"(60,65]",HS,3.2996768402154397,16.132064046377863,0.20454151624548733,7876.895792013342,2019
+2004,64,"(60,65]",HS,2.828294434470377,27.424508878842364,0.10313017625822893,7808.756497474406,2019
+2004,64,"(60,65]",HS,1.7284021543985637,32.264128092755726,0.05357039711191335,7803.107705686722,2019
+2004,64,"(60,65]",HS,3.9281867145421905,24.19809606956679,0.16233453670276776,7865.296323548925,2019
+2004,64,"(60,65]",HS,2.828294434470377,20.97168326029122,0.13486253818383784,7860.071693454063,2019
+2004,49,"(45,50]",College,1172.1709156193897,124.21689315710954,9.436485536124525,6181.44996687164,2019
+2004,49,"(45,50]",College,1170.5996409335728,124.21689315710954,9.423836091706129,6879.337951982483,2019
+2004,49,"(45,50]",College,1169.028366247756,124.21689315710954,9.41118664728773,6103.260591792909,2019
+2004,49,"(45,50]",College,1172.1709156193897,124.21689315710954,9.436485536124525,6117.794328914591,2019
+2004,49,"(45,50]",College,1172.1709156193897,124.21689315710954,9.436485536124525,6393.826686942612,2019
+2004,45,"(40,45]",HS,975.1173572710952,143.57537001276296,6.791675739260943,6001.755240836769,2019
+2004,45,"(40,45]",HS,940.2507719928187,143.57537001276296,6.548830568287836,6679.355624986732,2019
+2004,45,"(40,45]",HS,949.5684308797129,143.57537001276296,6.613727903297774,5925.838830581652,2019
+2004,45,"(40,45]",HS,885.1775942549372,143.57537001276296,6.165246825944104,5939.9500720228125,2019
+2004,45,"(40,45]",HS,894.1495727109516,143.57537001276296,6.227736502656878,6207.9581704971015,2019
+2004,39,"(35,40]",NoHS,137.89506642728904,64.52825618551145,2.1369718411552343,7080.995428625722,2019
+2004,39,"(35,40]",NoHS,125.0891777378815,64.72184095406799,1.9327197109033905,6668.71271659418,2019
+2004,39,"(35,40]",NoHS,127.28896229802513,64.52825618551145,1.9726081227436818,7100.612034870118,2019
+2004,39,"(35,40]",NoHS,124.60208258527828,64.52825618551145,1.9309693140794222,7051.7349307735085,2019
+2004,39,"(35,40]",NoHS,122.88939317773787,64.72184095406799,1.8987314230593415,6964.297184363199,2019
+2004,45,"(40,45]",HS,505.63619389587075,129.0565123710229,3.9179440433212993,5684.7573657017465,2019
+2004,45,"(40,45]",HS,508.7787432675045,129.0565123710229,3.9422942238267145,6328.622565750277,2019
+2004,45,"(40,45]",HS,513.4925673249552,129.0565123710229,3.9788194945848376,5615.246478867726,2019
+2004,45,"(40,45]",HS,512.2355475763017,129.0565123710229,3.9690794223826713,5632.064933986425,2019
+2004,45,"(40,45]",HS,513.4925673249552,129.0565123710229,3.9788194945848376,5881.9869534197505,2019
+2004,26,"(25,30]",HS,9.427648114901256,72.59428820870036,0.12986762936221422,6364.531734746234,2019
+2004,26,"(25,30]",HS,9.427648114901256,72.59428820870036,0.12986762936221422,6332.196322710915,2019
+2004,26,"(25,30]",HS,9.427648114901256,72.59428820870036,0.12986762936221422,6370.908948094457,2019
+2004,26,"(25,30]",HS,9.427648114901256,72.59428820870036,0.12986762936221422,6399.626029669735,2019
+2004,26,"(25,30]",HS,9.427648114901256,72.59428820870036,0.12986762936221422,6386.313107421878,2019
+2004,53,"(50,55]",HS,3.1425493716337525,45.16977932985802,0.06957194430118617,5896.882575448706,2019
+2004,53,"(50,55]",HS,3.1425493716337525,45.16977932985802,0.06957194430118617,5905.698150988186,2019
+2004,53,"(50,55]",HS,3.1425493716337525,45.16977932985802,0.06957194430118617,5946.430776233314,2019
+2004,53,"(50,55]",HS,3.1425493716337525,45.16977932985802,0.06957194430118617,5910.164491361007,2019
+2004,53,"(50,55]",HS,3.1425493716337525,45.16977932985802,0.06957194430118617,5926.187954375911,2019
+2004,70,"(65,70]",College,6337.893572710952,2129.4324541218775,2.976329942019473,312.9438578319533,2019
+2004,70,"(65,70]",College,7524.205960502693,1871.3194293798317,4.020802564421761,308.0067787422426,2019
+2004,70,"(65,70]",College,8094.578671454219,1606.753579019235,5.037846983602279,326.17343126559774,2019
+2004,70,"(65,70]",College,7252.375439856374,1601.9139598053214,4.527318958340151,302.5728960262254,2019
+2004,70,"(65,70]",College,6438.455152603232,2129.4324541218775,3.023554534514824,307.546686552354,2019
+2004,63,"(60,65]",HS,192.0411921005386,70.9810818040626,2.705526419428946,5331.772994138113,2019
+2004,63,"(60,65]",HS,192.0411921005386,70.9810818040626,2.705526419428946,4616.049752973454,2019
+2004,63,"(60,65]",HS,190.4856301615799,70.9810818040626,2.6836112569740727,5346.293613396845,2019
+2004,63,"(60,65]",HS,190.46991741472172,70.9810818040626,2.6833898916967507,5269.518005880798,2019
+2004,63,"(60,65]",HS,190.46991741472172,70.9810818040626,2.6833898916967507,5092.489939684651,2019
+2004,84,"(80,85]",College,275.5544416517056,16.132064046377863,17.081164620938626,11489.064938889653,2019
+2004,84,"(80,85]",College,275.20876122082586,16.132064046377863,17.059736462093863,11475.502341045401,2019
+2004,84,"(80,85]",College,275.20876122082586,16.132064046377863,17.059736462093863,11529.31933201889,2019
+2004,84,"(80,85]",College,275.31875044883304,16.132064046377863,17.066554512635378,11544.2455862049,2019
+2004,84,"(80,85]",College,275.6958563734291,16.132064046377863,17.089930685920574,11533.996185915585,2019
+2004,38,"(35,40]",HS,34.72517055655296,75.82070101797595,0.4579906290805745,5776.596778663483,2019
+2004,38,"(35,40]",HS,8.013500897666068,75.82070101797595,0.10569014517244027,5440.261158873049,2019
+2004,38,"(35,40]",HS,30.4827289048474,75.82070101797595,0.40203702281281206,5792.599786373613,2019
+2004,38,"(35,40]",HS,44.15281867145422,75.82070101797595,0.582331976342269,5752.726392170665,2019
+2004,38,"(35,40]",HS,59.23705565529623,77.43390742261373,0.765001504211793,5681.395657764947,2019
+2004,53,"(50,55]",HS,69.67031956912028,27.424508878842364,2.540440008494372,6525.813647418485,2019
+2004,53,"(50,55]",HS,85.38306642728904,27.424508878842364,3.1133854321511993,6167.84299057177,2019
+2004,53,"(50,55]",HS,64.79936804308797,27.424508878842364,2.362826927160756,6533.054078480329,2019
+2004,53,"(50,55]",HS,64.95649551166966,27.424508878842364,2.3685563813973243,6552.740453064276,2019
+2004,53,"(50,55]",HS,85.22593895870737,27.424508878842364,3.107655977914632,6362.516951351765,2019
+2004,32,"(30,35]",HS,243.39044883303413,159.70743405914084,1.5239769536520438,6900.707467081872,2019
+2004,32,"(30,35]",HS,258.7889407540395,159.70743405914084,1.620393829996718,6735.639877282025,2019
+2004,32,"(30,35]",HS,251.24682226211849,159.70743405914084,1.5731692375013673,6879.705282419136,2019
+2004,32,"(30,35]",HS,251.24682226211849,159.70743405914084,1.5731692375013673,6867.689041131691,2019
+2004,32,"(30,35]",HS,246.53299820466788,159.70743405914084,1.5436538671917732,6807.487816311955,2019
+2004,36,"(35,40]",NoHS,-2.9854219030520643,8.066032023188932,-0.3701227436823104,3940.506112723754,2019
+2004,36,"(35,40]",NoHS,-2.9854219030520643,8.066032023188932,-0.3701227436823104,3916.5243274134345,2019
+2004,36,"(35,40]",NoHS,-2.9854219030520643,8.066032023188932,-0.3701227436823104,3938.3848001171805,2019
+2004,36,"(35,40]",NoHS,-3.1425493716337525,8.066032023188932,-0.38960288808664256,3940.6896166246793,2019
+2004,36,"(35,40]",NoHS,-3.1425493716337525,8.066032023188932,-0.38960288808664256,3942.9950956006405,2019
+2004,55,"(50,55]",HS,219.1142549371634,46.782985734495796,4.683631271007096,5579.337133463136,2019
+2004,55,"(50,55]",HS,218.01436265709157,46.782985734495796,4.660120751898419,4889.500952692105,2019
+2004,55,"(50,55]",HS,219.58563734290846,46.782985734495796,4.693707207767957,5574.376411864576,2019
+2004,55,"(50,55]",HS,217.07159784560145,46.782985734495796,4.639968878376696,5472.0011073567,2019
+2004,55,"(50,55]",HS,216.285960502693,46.782985734495796,4.623175650441927,5313.6883547107645,2019
+2004,44,"(40,45]",NoHS,0,41.94336652058244,0,3393.802996549489,2019
+2004,44,"(40,45]",NoHS,0,41.94336652058244,0,3440.341357482447,2019
+2004,44,"(40,45]",NoHS,0,41.94336652058244,0,3401.975689268231,2019
+2004,44,"(40,45]",NoHS,0,41.94336652058244,0,3385.2865335459064,2019
+2004,44,"(40,45]",NoHS,0,41.94336652058244,0,3418.583923063361,2019
+2004,58,"(55,60]",College,2646.199411131059,346.839376997124,7.629466509948786,702.6718115905215,2019
+2004,58,"(55,60]",College,1999.9969838420109,367.81106025741525,5.437566185318893,709.5405228619868,2019
+2004,58,"(55,60]",College,2475.0875978456015,309.7356296904549,7.990968298736463,700.5249110626231,2019
+2004,58,"(55,60]",College,1586.9245816876123,282.31112081161257,5.6211904693140795,718.9262113972829,2019
+2004,58,"(55,60]",College,2564.6502549371635,338.77334497393514,7.570401547189272,728.5228231651256,2019
+2004,22,"(20,25]",HS,-67.81621543985638,54.84901775768473,-1.2364162242514336,7275.766291075022,2019
+2004,22,"(20,25]",HS,-68.88468222621185,56.46222416232251,-1.220013615265601,7236.513763829433,2019
+2004,22,"(20,25]",HS,-59.91270377019749,59.68863697159809,-1.003753927212411,7262.691246938496,2019
+2004,22,"(20,25]",HS,-64.2337091561939,56.46222416232251,-1.1376404332129966,7175.4026767061905,2019
+2004,22,"(20,25]",HS,-69.2617881508079,56.46222416232251,-1.226692521918515,7231.254296811116,2019
+2004,42,"(40,45]",HS,227.4027289048474,85.49993944580267,2.659682923506573,6718.759109786343,2019
+2004,42,"(40,45]",HS,223.39597845601438,85.49993944580267,2.6128203119678495,6449.638917278384,2019
+2004,42,"(40,45]",HS,228.5026211849192,85.49993944580267,2.672547169811321,6712.683948760547,2019
+2004,42,"(40,45]",HS,212.64060323159785,85.49993944580267,2.4870263606021386,6687.657443345359,2019
+2004,42,"(40,45]",HS,246.4151526032316,85.49993944580267,2.8820506096314964,6619.956730064475,2019
+2004,28,"(25,30]",NoHS,12.57019748653501,24.19809606956679,0.5194705174488569,5628.041462920977,2019
+2004,28,"(25,30]",NoHS,10.134721723518851,24.19809606956679,0.41882310469314077,5609.6087863424345,2019
+2004,28,"(25,30]",NoHS,9.364797127468583,24.19809606956679,0.38700553549939837,5594.464332848861,2019
+2004,28,"(25,30]",NoHS,10.998922800718134,24.19809606956679,0.45453670276774977,5634.521675291015,2019
+2004,28,"(25,30]",NoHS,10.998922800718134,24.19809606956679,0.45453670276774977,5589.224190477627,2019
+2004,37,"(35,40]",HS,94.59073608617594,145.18857641740072,0.6515026073004413,5387.479131655928,2019
+2004,37,"(35,40]",HS,99.4459748653501,145.18857641740072,0.6849435218612115,5495.7979496678,2019
+2004,37,"(35,40]",HS,94.73215080789947,145.18857641740072,0.652476614520658,5366.074998154775,2019
+2004,37,"(35,40]",HS,94.74786355475763,145.18857641740072,0.6525848375451264,5398.564563920329,2019
+2004,37,"(35,40]",HS,96.14629802513464,145.18857641740072,0.662216686722824,5421.728439588642,2019
+2004,62,"(60,65]",College,10133.150448833034,500.0939854377137,20.262492139280308,1155.0580637409064,2019
+2004,62,"(60,65]",College,10095.43985637343,500.0939854377137,20.187085128682895,1134.2509154605018,2019
+2004,62,"(60,65]",College,9867.605026929983,500.0939854377137,19.731501106323513,1189.2548394981084,2019
+2004,62,"(60,65]",College,8623.155475763017,500.0939854377137,17.24306975660883,1119.2736942102977,2019
+2004,62,"(60,65]",College,10320.132136445243,500.0939854377137,20.63638523349249,1140.692518780845,2019
+2004,50,"(45,50]",College,25005.736732495512,708.1976116359881,35.308982015246336,1057.039825533424,2019
+2004,50,"(45,50]",College,27250.774003590665,708.1976116359881,38.47905380623833,1025.354184253161,2019
+2004,50,"(45,50]",College,25633.460969479354,708.1976116359881,36.19535077259607,1076.4352480800428,2019
+2004,50,"(45,50]",College,24902.346858168763,840.4805368162866,29.62870140038942,1031.9549200319611,2019
+2004,50,"(45,50]",College,25332.090484739678,706.5844052313504,35.85147124276742,1077.2509274332308,2019
+2004,72,"(70,75]",College,541.6183842010772,58.88203376927918,9.198364076949707,7259.90222589271,2019
+2004,72,"(70,75]",College,540.0471095152603,58.88203376927918,9.171678947628704,8071.554882808343,2019
+2004,72,"(70,75]",College,541.6183842010772,60.49524017391698,8.953074368231047,7181.603360014366,2019
+2004,72,"(70,75]",College,540.0471095152603,58.88203376927918,9.171678947628704,7161.026327464961,2019
+2004,72,"(70,75]",College,541.6183842010772,58.88203376927918,9.198364076949707,7507.768927297174,2019
+2004,26,"(25,30]",HS,12.648761220825852,33.87733449739351,0.3733694344163658,4386.853898849056,2019
+2004,26,"(25,30]",HS,12.648761220825852,32.264128092755726,0.39203790613718403,4451.711994202944,2019
+2004,26,"(25,30]",HS,12.648761220825852,33.87733449739351,0.3733694344163658,4404.923741712236,2019
+2004,26,"(25,30]",HS,12.648761220825852,33.87733449739351,0.3733694344163658,4410.700618529017,2019
+2004,26,"(25,30]",HS,12.648761220825852,33.87733449739351,0.3733694344163658,4432.07783815481,2019
+2004,40,"(35,40]",College,7.7463842010772,80.6603202318893,0.09603711191335741,5875.662462000331,2019
+2004,40,"(35,40]",College,11.313177737881508,80.6603202318893,0.14025703971119136,5839.9033813927335,2019
+2004,40,"(35,40]",College,11.941687612208257,80.6603202318893,0.1480490974729242,5872.49938687849,2019
+2004,40,"(35,40]",College,11.077486535008976,80.6603202318893,0.13733501805054152,5875.936083446778,2019
+2004,40,"(35,40]",College,12.648761220825852,80.6603202318893,0.15681516245487365,5879.373767817382,2019
+2004,44,"(40,45]",HS,26.711669658886894,51.62260494840914,0.5174413357400723,4642.053411154566,2019
+2004,44,"(40,45]",HS,26.711669658886894,51.62260494840914,0.5174413357400723,4705.708713874855,2019
+2004,44,"(40,45]",HS,26.711669658886894,51.62260494840914,0.5174413357400723,4653.232043547761,2019
+2004,44,"(40,45]",HS,26.711669658886894,51.62260494840914,0.5174413357400723,4630.404568786005,2019
+2004,44,"(40,45]",HS,26.711669658886894,51.62260494840914,0.5174413357400723,4675.948833066867,2019
+2004,45,"(40,45]",HS,116.74570915619391,40.33016011594465,2.894749458483755,7359.585284602176,2019
+2004,45,"(40,45]",HS,116.90283662477557,40.33016011594465,2.898645487364621,6957.917838596257,2019
+2004,45,"(40,45]",HS,116.74570915619391,40.33016011594465,2.894749458483755,7420.22662152081,2019
+2004,45,"(40,45]",HS,116.74570915619391,40.33016011594465,2.894749458483755,7382.945499665689,2019
+2004,45,"(40,45]",HS,116.74570915619391,40.33016011594465,2.894749458483755,7215.29585245795,2019
+2004,45,"(40,45]",College,61261.64308797128,5565.5620960003625,11.007269711714539,16.511059011265516,2019
+2004,45,"(40,45]",College,75296.69282585278,4791.223021774225,15.715547467454323,17.173365349495242,2019
+2004,45,"(40,45]",College,79377.65457809695,5339.713199351072,14.865527719305899,17.190590848505103,2019
+2004,45,"(40,45]",HS,83201.79148294435,3387.733449739351,24.559721925391095,16.26748258254561,2019
+2004,45,"(40,45]",College,78683.62254937163,2968.2997845335262,26.50797704442003,16.65528912184059,2019
+2004,22,"(20,25]",HS,-3.4568043087971274,38.716953711306864,-0.08928399518652226,8708.598857040482,2019
+2004,22,"(20,25]",HS,-3.2996768402154397,38.716953711306864,-0.08522563176895306,8812.724691340003,2019
+2004,22,"(20,25]",HS,-3.4568043087971274,38.716953711306864,-0.08928399518652226,8721.807712881979,2019
+2004,22,"(20,25]",HS,-3.2996768402154397,38.716953711306864,-0.08522563176895306,8621.592304801545,2019
+2004,22,"(20,25]",HS,-3.2996768402154397,38.716953711306864,-0.08522563176895306,8761.042526078534,2019
+2004,61,"(60,65]",College,675.0353177737882,188.74514934262095,3.5764379647628752,8219.375662388364,2019
+2004,61,"(60,65]",College,711.0175080789946,188.74514934262095,3.7670769847881767,9087.575926124977,2019
+2004,61,"(60,65]",College,944.8231813285458,188.74514934262095,5.0058143725508355,8110.071410792962,2019
+2004,61,"(60,65]",College,781.4106140035907,188.74514934262095,4.140030176802741,8083.361674072339,2019
+2004,61,"(60,65]",College,661.522355475763,188.74514934262095,3.5048442716529364,8496.29735315094,2019
+2004,20,"(15,20]",HS,-15.555619389587074,3.2264128092755713,-4.821335740072204,5938.901000527528,2019
+2004,20,"(15,20]",HS,-15.555619389587074,3.2264128092755713,-4.821335740072204,6009.9104742274485,2019
+2004,20,"(15,20]",HS,-15.555619389587074,3.2264128092755713,-4.821335740072204,5947.908888990488,2019
+2004,20,"(15,20]",HS,-15.555619389587074,3.2264128092755713,-4.821335740072204,5879.56616278534,2019
+2004,20,"(15,20]",HS,-15.555619389587074,3.2264128092755713,-4.821335740072204,5974.665394276085,2019
+2004,53,"(50,55]",College,113.1160646319569,27.424508878842364,4.1246341049055,5179.18649788141,2019
+2004,53,"(50,55]",College,114.67162657091562,29.03771528348015,3.9490581628559966,5017.579555889196,2019
+2004,53,"(50,55]",College,96.20914901256734,25.81130247420457,3.7274038808664276,5206.167495919455,2019
+2004,53,"(50,55]",College,105.7782118491921,29.03771528348015,3.6427870036101084,5237.456644974919,2019
+2004,53,"(50,55]",College,111.52907719928187,27.424508878842364,4.06676661711616,5118.3036421040515,2019
+2004,66,"(65,70]",HS,35.35368043087971,64.52825618551145,0.5478790613718411,10602.782177085732,2019
+2004,66,"(65,70]",HS,35.35368043087971,64.52825618551145,0.5478790613718411,10723.447145001282,2019
+2004,66,"(65,70]",HS,35.35368043087971,64.52825618551145,0.5478790613718411,10648.451585026982,2019
+2004,66,"(65,70]",HS,35.35368043087971,64.52825618551145,0.5478790613718411,10879.728656812795,2019
+2004,66,"(65,70]",HS,35.35368043087971,64.52825618551145,0.5478790613718411,10754.673708558967,2019
+2004,47,"(45,50]",HS,22297.95906642729,395.23556913625765,56.41688351875046,782.658909459354,2019
+2004,47,"(45,50]",HS,22299.687468581687,395.23556913625765,56.42125661239224,745.1462358294289,2019
+2004,47,"(45,50]",HS,22297.95906642729,395.23556913625765,56.41688351875046,823.7398434466534,2019
+2004,47,"(45,50]",HS,22299.530341113106,395.23556913625765,56.4208590584248,725.6011925719921,2019
+2004,47,"(45,50]",HS,22299.530341113106,395.23556913625765,56.4208590584248,760.4045051491023,2019
+2004,71,"(70,75]",HS,18568.852854578097,522.6788751026427,35.5263121183759,1653.0183629999433,2019
+2004,71,"(70,75]",HS,18568.53859964093,522.6788751026427,35.52571087935107,1684.0191744470626,2019
+2004,71,"(70,75]",HS,18569.324236983844,522.6788751026427,35.52721397691314,1667.272732738619,2019
+2004,71,"(70,75]",HS,18567.752962298026,522.6788751026427,35.52420778178901,1595.9232279220537,2019
+2004,71,"(70,75]",HS,18569.324236983844,522.6788751026427,35.52721397691314,1596.2277060679467,2019
+2004,49,"(45,50]",HS,66.46491921005386,182.29232372406983,0.36460624261205715,4395.9874125786,2019
+2004,49,"(45,50]",HS,70.23597845601437,182.29232372406983,0.38529312162550716,4303.134156087602,2019
+2004,49,"(45,50]",HS,70.55023339317773,182.29232372406983,0.3870170282099613,4433.832462347018,2019
+2004,49,"(45,50]",HS,71.49299820466787,182.29232372406983,0.39218874796332387,4430.656030493146,2019
+2004,49,"(45,50]",HS,66.15066427289048,182.29232372406983,0.36288233602760295,4376.887582991758,2019
+2004,56,"(55,60]",College,4330.904416517055,443.63176127539117,9.762385822120118,3166.0589244847138,2019
+2004,56,"(55,60]",College,4322.576660682226,443.63176127539117,9.743614046603216,3043.2892433606203,2019
+2004,56,"(55,60]",College,4349.288330341113,443.63176127539117,9.803825402034787,3303.286473983924,2019
+2004,56,"(55,60]",College,4334.518348294434,443.63176127539117,9.770532064325565,2965.3743347454783,2019
+2004,56,"(55,60]",College,4322.576660682226,443.63176127539117,9.743614046603216,3093.6041631006965,2019
+2004,67,"(65,70]",HS,1312.3286175942549,83.88673304116487,15.644054429325188,8554.628605689626,2019
+2004,67,"(65,70]",HS,1411.4760502693,83.88673304116487,16.82597472924188,9587.476767555761,2019
+2004,67,"(65,70]",HS,1317.0424416517058,83.88673304116487,15.700247153568457,8536.69979962796,2019
+2004,67,"(65,70]",HS,1281.0602513464992,83.88673304116487,15.271309358511527,8514.24890123447,2019
+2004,67,"(65,70]",HS,1461.5997127468581,83.88673304116487,17.423490697028605,8919.307640777391,2019
+2004,66,"(65,70]",College,3200.183727109515,529.1317007211939,6.047990930703531,1268.0132341201129,2019
+2004,66,"(65,70]",College,3200.183727109515,529.1317007211939,6.047990930703531,1275.141955914751,2019
+2004,66,"(65,70]",College,3200.183727109515,529.1317007211939,6.047990930703531,1453.0074454899898,2019
+2004,66,"(65,70]",College,3200.183727109515,527.518494316556,6.066486315812716,1217.1218028649657,2019
+2004,66,"(65,70]",College,3200.183727109515,527.518494316556,6.066486315812716,1292.5854854372078,2019
+2004,76,"(75,80]",HS,214.10188868940756,46.782985734495796,4.5764904767832695,9097.458490387009,2019
+2004,76,"(75,80]",HS,213.94476122082588,45.16977932985802,4.736457968024755,9140.698201085994,2019
+2004,76,"(75,80]",HS,213.94476122082588,46.782985734495796,4.573131831196316,9093.861385177926,2019
+2004,76,"(75,80]",HS,213.94476122082588,46.782985734495796,4.573131831196316,9065.930850549286,2019
+2004,76,"(75,80]",HS,213.94476122082588,46.782985734495796,4.573131831196316,9089.94787871281,2019
+2004,36,"(35,40]",HS,32.9496301615799,64.52825618551145,0.5106232851985559,4951.220412726788,2019
+2004,36,"(35,40]",HS,29.96420825852783,64.52825618551145,0.4643579422382671,4933.054378919093,2019
+2004,36,"(35,40]",HS,29.96420825852783,64.52825618551145,0.4643579422382671,4946.72146234743,2019
+2004,36,"(35,40]",HS,29.80708078994614,64.52825618551145,0.46192292418772557,4919.822188583603,2019
+2004,36,"(35,40]",HS,36.092179533213645,64.52825618551145,0.5593236462093862,4927.1895387301975,2019
+2004,64,"(60,65]",NoHS,2.6711669658886894,12.260368675247175,0.21787003610108302,5163.662971540697,2019
+2004,64,"(60,65]",NoHS,2.828294434470377,22.58488966492901,0.1252294997421351,5103.149839969157,2019
+2004,64,"(60,65]",NoHS,2.828294434470377,32.264128092755726,0.08766064981949458,5170.234608804587,2019
+2004,64,"(60,65]",NoHS,2.6711669658886894,17.74527045101565,0.15052838857893008,5156.653627642112,2019
+2004,64,"(60,65]",NoHS,2.828294434470377,20.97168326029122,0.13486253818383784,5148.269319037276,2019
+2004,47,"(45,50]",College,3.4568043087971274,161.3206404637786,0.021428158844765344,4093.6175273868926,2019
+2004,47,"(45,50]",College,3.2996768402154397,161.3206404637786,0.020454151624548736,4084.457161690499,2019
+2004,47,"(45,50]",College,3.2996768402154397,161.3206404637786,0.020454151624548736,4113.729786180426,2019
+2004,47,"(45,50]",College,3.2996768402154397,161.3206404637786,0.020454151624548736,4123.843187153216,2019
+2004,47,"(45,50]",College,3.2996768402154397,161.3206404637786,0.020454151624548736,4083.1874187386684,2019
+2004,56,"(55,60]",HS,554.6599640933573,77.43390742261373,7.163011432009628,5600.6940840581,2019
+2004,56,"(55,60]",HS,554.6599640933573,77.43390742261373,7.163011432009628,6194.220666555145,2019
+2004,56,"(55,60]",HS,553.0886894075404,77.43390742261373,7.1427196149217815,5527.727033479473,2019
+2004,56,"(55,60]",HS,553.0886894075404,75.82070101797595,7.294692372686074,5510.058782537583,2019
+2004,56,"(55,60]",HS,553.0886894075404,77.43390742261373,7.1427196149217815,5791.157828891233,2019
+2004,46,"(45,50]",HS,1509.994973070018,109.69803551536945,13.765013803355277,7363.2876566383075,2019
+2004,46,"(45,50]",HS,1509.6807181328547,108.08482911073166,13.967554286330085,8192.047367649788,2019
+2004,46,"(45,50]",HS,1499.388868940754,108.08482911073166,13.872334177488012,7268.159229781474,2019
+2004,46,"(45,50]",HS,1517.6942190305206,108.08482911073166,14.041695134436123,7284.757205769948,2019
+2004,46,"(45,50]",HS,1515.3373070017954,108.08482911073166,14.01988900264023,7613.942497562882,2019
+2004,45,"(40,45]",HS,16.498384201077197,72.59428820870036,0.22726835138387486,3493.8082524646206,2019
+2004,45,"(40,45]",HS,16.498384201077197,72.59428820870036,0.22726835138387486,3488.1375036768136,2019
+2004,45,"(40,45]",HS,16.498384201077197,72.59428820870036,0.22726835138387486,3534.275016780202,2019
+2004,45,"(40,45]",HS,16.498384201077197,72.59428820870036,0.22726835138387486,3512.361776397741,2019
+2004,45,"(40,45]",HS,16.498384201077197,72.59428820870036,0.22726835138387486,3501.816656320556,2019
+2004,34,"(30,35]",College,2942.5103913824055,645.2825618551144,4.560033953068592,3643.933326921246,2019
+2004,34,"(30,35]",College,2471.457953321364,645.2825618551144,3.8300398916967504,10262.39966875263,2019
+2004,34,"(30,35]",College,2470.200933572711,645.2825618551144,3.8280918772563184,9752.60322570353,2019
+2004,34,"(30,35]",College,2471.615080789946,645.2825618551144,3.8302833935018055,9994.822911348489,2019
+2004,34,"(30,35]",College,2470.200933572711,645.2825618551144,3.8280918772563184,10052.9970589827,2019
+2004,52,"(50,55]",College,142.76601795332138,64.52825618551145,2.2124574007220215,4455.756233226539,2019
+2004,52,"(50,55]",College,127.556078994614,64.52825618551145,1.9767476534296025,4391.850687897151,2019
+2004,52,"(50,55]",College,139.23064991023338,64.52825618551145,2.157669494584837,4495.143896989077,2019
+2004,52,"(50,55]",College,129.74015080789948,64.52825618551145,2.01059440433213,4529.345008163374,2019
+2004,52,"(50,55]",College,139.65489407540394,64.52825618551145,2.164244043321299,4509.174812383561,2019
+2004,64,"(60,65]",College,9105.536804308796,241.98096069566793,37.62914560770156,1642.0659701694865,2019
+2004,64,"(60,65]",College,9105.536804308796,241.98096069566793,37.62914560770156,1650.1175434523004,2019
+2004,64,"(60,65]",College,9105.536804308796,241.98096069566793,37.62914560770156,1673.7244952426486,2019
+2004,64,"(60,65]",College,9105.536804308796,241.98096069566793,37.62914560770156,1595.1361292352601,2019
+2004,64,"(60,65]",College,9103.96552962298,241.98096069566793,37.62265222623345,1612.921296590014,2019
+2004,63,"(60,65]",College,54963.34563734291,2419.8096069566795,22.71391330926594,21.05553176478322,2019
+2004,63,"(60,65]",College,64023.31547576302,2419.8096069566795,26.457997063778578,22.878093812438543,2019
+2004,63,"(60,65]",College,23730.17594254937,2419.8096069566795,9.806629362214197,24.57271118870162,2019
+2004,63,"(60,65]",College,10775.644667863555,2419.8096069566795,4.453096077015643,22.06887233496619,2019
+2004,63,"(60,65]",College,57720.93271095153,2419.8096069566795,23.85350175691937,21.757751872878046,2019
+2004,79,"(75,80]",College,28986.87540394973,14922.15924289952,1.9425389403844278,2.8478563654005793,2019
+2004,79,"(75,80]",College,41993.73012567325,11518.293729113793,3.645829070978572,2.7688392282514642,2019
+2004,79,"(75,80]",College,109784.96229802513,16228.85643065613,6.7647996497549,2.945480031320833,2019
+2004,79,"(75,80]",College,139492.2671454219,9066.219994064357,15.385934517003484,2.9374477666683934,2019
+2004,79,"(75,80]",College,67194.30491921004,9921.219388522384,6.77278692142878,2.872041038752573,2019
+2004,52,"(50,55]",NoHS,34.096660682226215,25.81130247420457,1.320997292418773,8243.57774038851,2019
+2004,52,"(50,55]",NoHS,29.225709156193894,27.424508878842364,1.0656784880016987,7795.683958204865,2019
+2004,52,"(50,55]",NoHS,31.582621184919212,27.424508878842364,1.151620301550223,8315.862223412696,2019
+2004,52,"(50,55]",NoHS,33.93953321364452,25.81130247420457,1.3149097472924192,8279.061760688975,2019
+2004,52,"(50,55]",NoHS,32.36825852782765,25.81130247420457,1.2540342960288813,8084.118505728091,2019
+2004,55,"(50,55]",HS,127590.4899102334,10792.35084702679,11.822307458192356,29.35650823389555,2019
+2004,55,"(50,55]",HS,205553.99727109517,11598.954049345683,17.721770117943596,30.29644577155334,2019
+2004,55,"(50,55]",HS,235167.81127468584,14696.310346250235,16.001826698950254,29.722027912855282,2019
+2004,55,"(50,55]",HS,143039.26262118493,13325.084902308112,10.734585458169073,28.98419262984593,2019
+2004,55,"(50,55]",HS,168044.37084380613,14809.234794574875,11.347268996326973,29.1175918322915,2019
+2004,64,"(60,65]",College,29170.353149012568,1395.4235400116852,20.904300603075892,321.20552583563233,2019
+2004,64,"(60,65]",College,29135.61226570916,1395.4235400116852,20.879404302915212,322.4300307399586,2019
+2004,64,"(60,65]",College,29175.066973070017,1395.4235400116852,20.907678662799185,324.16846605579263,2019
+2004,64,"(60,65]",College,29170.353149012568,1395.4235400116852,20.904300603075892,320.69254538234384,2019
+2004,64,"(60,65]",College,29061.935195691203,1395.4235400116852,20.826605229440116,330.7513900743841,2019
+2004,46,"(45,50]",HS,14555.031669658887,91.95276506435381,158.28813477737665,1473.5958754176131,2019
+2004,46,"(45,50]",HS,14877.142980251347,93.56597146899159,159.0016407319806,1471.208238779588,2019
+2004,46,"(45,50]",HS,14570.744416517056,91.95276506435381,158.45901323706377,1669.3612365586819,2019
+2004,46,"(45,50]",HS,14559.745493716337,93.56597146899159,155.60940868915722,1405.3992154960374,2019
+2004,46,"(45,50]",HS,14650.879425493718,91.95276506435381,159.33049338146813,1489.5450251819893,2019
+2004,25,"(20,25]",College,75.10692998204668,58.0754305669603,1.2932651423987165,7344.4763377104,2019
+2004,25,"(20,25]",College,136.85802513464992,58.0754305669603,2.3565563578018454,7293.858652724803,2019
+2004,25,"(20,25]",College,131.49997845601436,58.0754305669603,2.2642962294424387,7346.431489715136,2019
+2004,25,"(20,25]",College,166.06802154398565,58.0754305669603,2.859522864019254,7337.5234050265835,2019
+2004,25,"(20,25]",College,82.96330341113105,58.0754305669603,1.428543922984356,7333.760105951847,2019
+2004,56,"(55,60]",HS,225.00653500897667,40.33016011594465,5.579113357400723,5106.978518188226,2019
+2004,56,"(55,60]",HS,225.00653500897667,40.33016011594465,5.579113357400723,5035.531876252428,2019
+2004,56,"(55,60]",HS,225.00653500897667,40.33016011594465,5.579113357400723,5035.20964365054,2019
+2004,56,"(55,60]",HS,225.00653500897667,40.33016011594465,5.579113357400723,5034.3128684738085,2019
+2004,56,"(55,60]",HS,225.00653500897667,40.33016011594465,5.579113357400723,4988.84340408352,2019
+2004,41,"(40,45]",College,5153.623842010772,898.5559673832469,5.735451133911037,108.57084191875424,2019
+2004,41,"(40,45]",College,4861.523877917414,859.8390136719398,5.653993131989082,106.82630938232651,2019
+2004,41,"(40,45]",College,4596.921220825853,895.3295545739713,5.134334276514782,112.33316742163547,2019
+2004,41,"(40,45]",College,5016.137307001795,977.6030812104983,5.131057177919958,105.9755196427175,2019
+2004,41,"(40,45]",College,5103.044509874328,979.216287615136,5.211355830592547,108.30793942247126,2019
+2004,61,"(60,65]",HS,73.50422980251346,72.59428820870036,1.0125346169273968,6046.000053297564,2019
+2004,61,"(60,65]",HS,73.66135727109516,64.52825618551145,1.1415364620938626,5223.100006595569,2019
+2004,61,"(60,65]",HS,73.66135727109516,79.04711382725151,0.9318664996684596,6106.970791963254,2019
+2004,61,"(60,65]",HS,73.66135727109516,72.59428820870036,1.0146990774167672,5992.122111599694,2019
+2004,61,"(60,65]",HS,73.81848473967685,64.52825618551145,1.1439714801444043,5824.555478497037,2019
+2004,44,"(40,45]",HS,5021.636768402154,6.291504978087367,798.1614551513467,257.66427198170487,2019
+2004,44,"(40,45]",HS,5021.793895870736,6.130184337623588,819.1913357400722,254.48907844907254,2019
+2004,44,"(40,45]",HS,4972.927253141832,4.67829857344958,1062.9777418150131,265.9445854286846,2019
+2004,44,"(40,45]",HS,5013.937522441652,4.516977932985801,1110.0203713254255,254.1138144918406,2019
+2004,44,"(40,45]",HS,5023.208043087971,8.22735266365271,610.5497416295037,261.081810151749,2019
+2004,46,"(45,50]",HS,20934.32833034111,2419.8096069566795,8.651229530685919,19.60009540752646,2019
+2004,46,"(45,50]",HS,30707.751152603232,2419.8096069566795,12.69015176413959,18.21351523672416,2019
+2004,46,"(45,50]",HS,32137.43827648115,2419.8096069566795,13.280978050541513,18.92122959632063,2019
+2004,46,"(45,50]",HS,26847.663482944343,2419.8096069566795,11.094948712394702,17.587972030975536,2019
+2004,46,"(45,50]",HS,18952.36957989228,2419.8096069566795,7.832173872442839,20.169918850441626,2019
+2004,23,"(20,25]",HS,108.88933572710951,125.83009956174732,0.8653679533462927,8191.555513458569,2019
+2004,23,"(20,25]",HS,110.30348294434471,125.83009956174732,0.8766064981949458,9087.53415557532,2019
+2004,23,"(20,25]",HS,107.47518850987433,125.83009956174732,0.8541294084976395,8101.0579803189585,2019
+2004,23,"(20,25]",HS,107.31806104129264,125.83009956174732,0.8528806812922336,7926.201875940208,2019
+2004,23,"(20,25]",HS,108.88933572710951,125.83009956174732,0.8653679533462927,8455.852090006789,2019
+2004,67,"(65,70]",College,804.4926391382406,80.6603202318893,9.973833935018051,5778.196628172064,2019
+2004,67,"(65,70]",College,783.2804308797129,80.6603202318893,9.710851985559568,6477.8528787650375,2019
+2004,67,"(65,70]",College,783.4375583482945,80.6603202318893,9.712800000000001,5767.665367369517,2019
+2004,67,"(65,70]",College,797.736157989228,80.6603202318893,9.890069314079422,5753.057284442998,2019
+2004,67,"(65,70]",College,783.5946858168761,80.6603202318893,9.714748014440433,6026.358679650016,2019
+2004,36,"(35,40]",College,485.68100538599646,120.99048034783397,4.014208423586041,7052.664602986537,2019
+2004,36,"(35,40]",College,481.9099461400359,120.99048034783397,3.9830401925391095,7827.524420475069,2019
+2004,36,"(35,40]",College,579.6432315978456,120.99048034783397,4.790816847172081,6960.386932410722,2019
+2004,36,"(35,40]",College,485.5238779174147,120.99048034783397,4.012909747292419,6949.276534614745,2019
+2004,36,"(35,40]",College,502.1793895870736,120.99048034783397,4.150569434416366,7261.0064969315035,2019
+2004,64,"(60,65]",College,1.5712746858168762,8.066032023188932,0.19480144404332128,7134.111485460741,2019
+2004,64,"(60,65]",College,1.5712746858168762,8.066032023188932,0.19480144404332128,7134.254110622608,2019
+2004,64,"(60,65]",College,1.5712746858168762,8.066032023188932,0.19480144404332128,7026.942139121056,2019
+2004,64,"(60,65]",College,1.5712746858168762,8.066032023188932,0.19480144404332128,7026.737732687105,2019
+2004,64,"(60,65]",College,1.5712746858168762,8.066032023188932,0.19480144404332128,7066.816850407611,2019
+2004,54,"(50,55]",HS,162.469802513465,137.12254439421181,1.184851136122319,6671.384902616958,2019
+2004,54,"(50,55]",HS,161.68416517055655,146.80178282203855,1.1013773951680088,6307.277683048066,2019
+2004,54,"(50,55]",HS,158.38448833034113,130.66971877566067,1.2120978740473327,6726.35562229051,2019
+2004,54,"(50,55]",HS,162.62692998204668,130.66971877566067,1.2445647813878862,6692.560686315346,2019
+2004,54,"(50,55]",HS,161.05565529622982,137.12254439421181,1.1745381184964963,6540.588084319577,2019
+2004,62,"(60,65]",College,18566.33881508079,2516.601991234946,7.3775427658983626,26.124380803646886,2019
+2004,62,"(60,65]",College,15074.180825852784,1984.243877704477,7.596939567374013,27.36908033588182,2019
+2004,62,"(60,65]",College,13491.90721723519,1887.4514934262095,7.148214014625569,27.390146246320832,2019
+2004,62,"(60,65]",College,21383.63432675045,2887.639464301637,7.405229978016659,25.40612463627677,2019
+2004,62,"(60,65]",College,12249.02894075404,2952.167720487149,4.149164309246217,26.369089168897784,2019
+2004,68,"(65,70]",HS,146.75705565529623,32.264128092755726,4.548613718411552,6766.958744515285,2019
+2004,68,"(65,70]",HS,149.89960502693,32.264128092755726,4.646014440433213,6254.194978253163,2019
+2004,68,"(65,70]",HS,138.74355475763016,32.264128092755726,4.300241877256317,6824.426529943725,2019
+2004,68,"(65,70]",HS,149.7424775583483,32.264128092755726,4.641144404332129,6779.326303382237,2019
+2004,68,"(65,70]",HS,143.61450628366248,32.264128092755726,4.451212996389891,6649.835078617456,2019
+2004,57,"(55,60]",HS,31607.76157989228,1613.2064046377861,19.593129241877257,17.936831125969743,2019
+2004,57,"(55,60]",HS,31607.76157989228,1613.2064046377861,19.593129241877257,18.21351523672416,2019
+2004,57,"(55,60]",HS,31607.76157989228,1613.2064046377861,19.593129241877257,18.92122959632063,2019
+2004,57,"(55,60]",HS,31606.190305206463,1613.2064046377861,19.59215523465704,17.587972030975536,2019
+2004,57,"(55,60]",HS,31607.76157989228,1613.2064046377861,19.593129241877257,19.04813385741661,2019
+2004,38,"(35,40]",HS,57.69720646319569,112.92444832464501,0.5109363589479113,7530.295149024307,2019
+2004,38,"(35,40]",HS,57.54007899461401,112.92444832464501,0.5095449200618877,7104.721601859169,2019
+2004,38,"(35,40]",HS,57.54007899461401,112.92444832464501,0.5095449200618877,7498.592410167659,2019
+2004,38,"(35,40]",HS,58.01146140035907,112.92444832464501,0.5137192367199588,7466.641322942577,2019
+2004,38,"(35,40]",HS,57.85433393177738,112.92444832464501,0.5123277978339351,7330.0252504720465,2019
+2004,76,"(75,80]",College,3157.6493213644526,274.24508878842363,11.513968528349968,988.3731225030457,2019
+2004,76,"(75,80]",College,3166.715576301616,274.24508878842363,11.547027479294968,984.9856578796459,2019
+2004,76,"(75,80]",College,3179.458614003591,274.24508878842363,11.593493353153537,1003.7512692852346,2019
+2004,76,"(75,80]",College,3193.5058096947937,274.24508878842363,11.644714674028457,964.691067651143,2019
+2004,76,"(75,80]",College,3292.716093357271,274.24508878842363,12.006472414525376,1005.0048557514381,2019
+2004,69,"(65,70]",HS,329.6534290843806,35.4905409020313,9.288487036429274,7013.6261664956155,2019
+2004,69,"(65,70]",HS,331.38183123877917,33.87733449739351,9.781815368746775,6595.25764995971,2019
+2004,69,"(65,70]",HS,330.28193895870737,35.4905409020313,9.30619625861503,7096.670280140099,2019
+2004,69,"(65,70]",HS,331.53895870736085,35.4905409020313,9.341614702986542,7053.542397596054,2019
+2004,69,"(65,70]",HS,331.0675763016158,35.4905409020313,9.328332786347225,6976.419188079608,2019
+2004,39,"(35,40]",NoHS,10.841795332136446,51.62260494840914,0.21002030685920584,5307.557524719257,2019
+2004,39,"(35,40]",NoHS,10.841795332136446,51.62260494840914,0.21002030685920584,5275.014325005164,2019
+2004,39,"(35,40]",NoHS,10.998922800718134,51.62260494840914,0.21306407942238276,5303.82279259934,2019
+2004,39,"(35,40]",NoHS,10.841795332136446,51.62260494840914,0.21002030685920584,5294.649856412013,2019
+2004,39,"(35,40]",NoHS,10.841795332136446,51.62260494840914,0.21002030685920584,5309.869769244748,2019
+2004,76,"(75,80]",HS,219.6484883303411,24.19809606956679,9.077097954271961,11624.674891595754,2019
+2004,76,"(75,80]",HS,219.6484883303411,24.19809606956679,9.077097954271961,10746.189782136355,2019
+2004,76,"(75,80]",HS,219.6484883303411,24.19809606956679,9.077097954271961,11493.341924625693,2019
+2004,76,"(75,80]",HS,219.6484883303411,24.19809606956679,9.077097954271961,11404.575418014823,2019
+2004,76,"(75,80]",HS,219.63277558348295,24.19809606956679,9.07644861612515,11245.494326004202,2019
+2004,79,"(75,80]",College,297.12804308797126,183.90553012870762,1.6156558363417568,317.71772732145797,2019
+2004,79,"(75,80]",College,297.04947935368045,183.90553012870762,1.615228640192539,276.8172462543172,2019
+2004,79,"(75,80]",College,295.3210771992819,183.90553012870762,1.6058303249097472,317.91253599585406,2019
+2004,79,"(75,80]",College,295.47820466786357,183.90553012870762,1.6066847172081828,281.8724040055382,2019
+2004,79,"(75,80]",College,297.04947935368045,183.90553012870762,1.615228640192539,290.60669983070204,2019
+2004,80,"(75,80]",College,2164.588007181329,967.9238427826717,2.2363205776173287,4851.161777659108,2019
+2004,80,"(75,80]",College,3303.2907719928185,967.9238427826717,3.412758965102286,5077.808427903542,2019
+2004,80,"(75,80]",College,1949.9518850987433,967.9238427826717,2.014571600481348,4815.518982414682,2019
+2004,80,"(75,80]",College,4291.465421903053,967.9238427826717,4.433680866425993,1909.7783916862197,2019
+2004,80,"(75,80]",College,4417.01026929982,967.9238427826717,4.563386161251503,2029.6624962490914,2019
+2004,60,"(55,60]",HS,241.34779174147218,82.2735266365271,2.933480569122956,6075.809801918736,2019
+2004,60,"(55,60]",HS,246.3758707360862,85.49993944580267,2.88159117226347,5260.209008540954,2019
+2004,60,"(55,60]",HS,238.04811490125672,101.63200349218052,2.3422554581399346,6092.356740604822,2019
+2004,60,"(55,60]",HS,241.34779174147218,106.47162270609388,2.26678043977683,6004.867271490682,2019
+2004,60,"(55,60]",HS,239.46226211849194,75.82070101797595,3.158270220447039,5803.135340856766,2019
+2004,40,"(35,40]",HS,266.7867289048474,96.79238427826716,2.756278098676294,9275.664578234146,2019
+2004,40,"(35,40]",HS,260.6587576301616,96.79238427826716,2.6929676293622142,8751.451728836782,2019
+2004,40,"(35,40]",HS,269.3164811490126,96.79238427826716,2.7824139590854395,9236.61378858698,2019
+2004,40,"(35,40]",HS,253.61944703770197,96.79238427826716,2.6202417569193743,9197.257088465045,2019
+2004,40,"(35,40]",HS,263.28278635547576,98.40559068290497,2.675486062614665,9028.976185903539,2019
+2004,33,"(30,35]",HS,2622.4574506283666,145.18857641740072,18.06242278379463,1091.4130189165403,2019
+2004,33,"(30,35]",HS,2624.0287253141832,145.18857641740072,18.07324508624148,1092.732615048782,2019
+2004,33,"(30,35]",HS,2624.0287253141832,145.18857641740072,18.07324508624148,1081.241883233201,2019
+2004,33,"(30,35]",HS,2624.0287253141832,145.18857641740072,18.07324508624148,1120.16824716325,2019
+2004,33,"(30,35]",HS,2624.0287253141832,145.18857641740072,18.07324508624148,1135.334124671413,2019
+2004,53,"(50,55]",HS,347.2517055655297,62.91504978087366,5.519374247894104,11302.976543865527,2019
+2004,53,"(50,55]",HS,347.2517055655297,62.91504978087366,5.519374247894104,10645.579568214383,2019
+2004,53,"(50,55]",HS,347.2517055655297,62.91504978087366,5.519374247894104,11477.898222466627,2019
+2004,53,"(50,55]",HS,347.2517055655297,62.91504978087366,5.519374247894104,11301.33032625417,2019
+2004,53,"(50,55]",HS,347.2517055655297,62.91504978087366,5.519374247894104,11040.692879984552,2019
+2004,76,"(75,80]",College,73309.39174147217,1661.6025967769199,44.119690161578625,26.53403282575663,2019
+2004,76,"(75,80]",College,73307.82046678636,1661.6025967769199,44.11874452350075,27.460195446701853,2019
+2004,76,"(75,80]",College,73309.39174147217,1661.6025967769199,44.119690161578625,27.68412532033214,2019
+2004,76,"(75,80]",College,73307.82046678636,1661.6025967769199,44.11874452350075,26.087486167993212,2019
+2004,76,"(75,80]",College,73309.39174147217,1661.6025967769199,44.119690161578625,26.767361096680492,2019
+2004,57,"(55,60]",HS,1561.8470377019748,261.33943755132134,5.976315906761154,349.9262093265045,2019
+2004,57,"(55,60]",HS,1886.236696588869,469.4430637495957,4.018030816182218,709.5405228619868,2019
+2004,57,"(55,60]",HS,1912.0841651705566,577.5278928603274,3.3108083415686833,700.5249110626231,2019
+2004,57,"(55,60]",HS,2017.3595691202872,429.1129036336511,4.701232594120681,718.9262113972829,2019
+2004,57,"(55,60]",HS,2003.2966606822263,508.16001746090257,3.942255572746548,728.5228231651256,2019
+2004,73,"(70,75]",HS,6.253673249551167,17.74527045101565,0.35241352149655397,6862.685550495223,2019
+2004,73,"(70,75]",HS,6.22224775583483,17.74527045101565,0.3506425992779783,7105.595120000726,2019
+2004,73,"(70,75]",HS,6.332236983842011,17.74527045101565,0.3568408270429931,7099.436822687261,2019
+2004,73,"(70,75]",HS,6.316524236983843,17.74527045101565,0.35595536593370525,7048.6916358573335,2019
+2004,73,"(70,75]",HS,6.803619389587074,17.74527045101565,0.3834046603216278,7112.744050549592,2019
+2004,48,"(45,50]",College,451.42721723518855,158.09422765450302,2.855431371104399,7316.380909699064,2019
+2004,48,"(45,50]",College,451.42721723518855,158.09422765450302,2.855431371104399,8142.403017576349,2019
+2004,48,"(45,50]",College,452.9984919210054,158.09422765450302,2.8653702202902824,7223.835753751317,2019
+2004,48,"(45,50]",College,451.42721723518855,158.09422765450302,2.855431371104399,7241.0379243413145,2019
+2004,48,"(45,50]",College,449.85594254937166,158.09422765450302,2.845492521918515,7567.750570331962,2019
+2004,74,"(70,75]",HS,740.8795834829443,71.78768500638148,10.320427290796252,7871.047737615465,2019
+2004,74,"(70,75]",HS,763.3488114901257,52.42920815072805,14.559609775062484,8746.845544013882,2019
+2004,74,"(70,75]",HS,754.8717845601436,63.237691061801215,11.937054814705666,7789.016572225179,2019
+2004,74,"(70,75]",HS,754.8717845601436,58.0754305669603,12.998126353790614,7764.987885074428,2019
+2004,74,"(70,75]",HS,794.3029228007181,53.71977327443828,14.786043841675609,8138.0920545010795,2019
+2004,34,"(30,35]",HS,2.356912028725314,43.55657292522023,0.05411151223425591,7414.407060747338,2019
+2004,34,"(30,35]",HS,2.514039497307002,41.94336652058244,0.059938905859483485,7436.071599419867,2019
+2004,34,"(30,35]",HS,2.514039497307002,43.55657292522023,0.057718946383206314,7458.505787360738,2019
+2004,34,"(30,35]",HS,2.356912028725314,43.55657292522023,0.05411151223425591,7454.101011000677,2019
+2004,34,"(30,35]",HS,2.514039497307002,41.94336652058244,0.059938905859483485,7468.165684352733,2019
+2004,50,"(45,50]",HS,288.97312746858165,6.452825618551143,44.78241696750903,9711.931154407908,2019
+2004,50,"(45,50]",HS,349.46720287253146,6.452825618551143,54.157236462093884,8083.808407928805,2019
+2004,50,"(45,50]",HS,347.4245457809695,6.452825618551143,53.84068411552348,8562.467878933008,2019
+2004,50,"(45,50]",HS,246.54871095152603,6.452825618551143,38.207868231046945,9715.269477160013,2019
+2004,50,"(45,50]",HS,248.4342405745063,6.452825618551143,38.50007039711193,9650.34379800832,2019
+2004,23,"(20,25]",HS,27.89012567324955,13.389613158493624,2.082967248053586,5590.841964233804,2019
+2004,23,"(20,25]",HS,25.926032315978457,13.389613158493624,1.9362794136836154,5657.689811231825,2019
+2004,23,"(20,25]",HS,26.397414721723518,13.389613158493624,1.9714844939324083,5599.321930615358,2019
+2004,23,"(20,25]",HS,27.65443447037702,13.389613158493624,2.0653647079291897,5534.984542000202,2019
+2004,23,"(20,25]",HS,27.968689407540396,13.389613158493624,2.088834761428385,5624.510327012884,2019
+2004,53,"(50,55]",HS,321.63992818671454,95.98578107594827,3.3509122349300733,8055.7979193469455,2019
+2004,53,"(50,55]",HS,321.63992818671454,95.98578107594827,3.3509122349300733,7616.132958527238,2019
+2004,53,"(50,55]",HS,321.63992818671454,95.98578107594827,3.3509122349300733,8122.175892681616,2019
+2004,53,"(50,55]",HS,321.48280071813286,95.98578107594827,3.3492752480053394,8081.367997636259,2019
+2004,53,"(50,55]",HS,321.63992818671454,95.98578107594827,3.3509122349300733,7897.858787955515,2019
+2004,62,"(60,65]",HS,990.2173070017955,162.9338468684164,6.077419308717876,5105.01579643983,2019
+2004,62,"(60,65]",HS,984.874973070018,182.29232372406983,5.402723235679371,5646.3832756270185,2019
+2004,62,"(60,65]",HS,1037.8269299820467,98.40559068290497,10.546422441853583,5038.014845483134,2019
+2004,62,"(60,65]",HS,984.2464631956913,108.08482911073166,9.106240637965408,5021.964198203839,2019
+2004,62,"(60,65]",HS,981.2610412926391,116.1508611339206,8.448159847573205,5278.932751800926,2019
+2004,42,"(40,45]",College,2519.538958707361,322.6412809275572,7.8091028880866435,3740.2621299483935,2019
+2004,42,"(40,45]",College,2519.538958707361,322.6412809275572,7.8091028880866435,3910.0296440075776,2019
+2004,42,"(40,45]",College,2519.538958707361,322.6412809275572,7.8091028880866435,3702.3084483499197,2019
+2004,42,"(40,45]",College,2519.538958707361,322.6412809275572,7.8091028880866435,3979.7941620423503,2019
+2004,42,"(40,45]",College,2519.538958707361,322.6412809275572,7.8091028880866435,3784.3059538819666,2019
+2004,48,"(45,50]",College,2539.494147217235,153.2546084405897,16.570425992779782,2709.518923580254,2019
+2004,48,"(45,50]",College,2490.784631956912,153.2546084405897,16.25259205776173,2839.6392139925288,2019
+2004,48,"(45,50]",College,2490.784631956912,153.2546084405897,16.25259205776173,2681.0154594238957,2019
+2004,48,"(45,50]",College,2537.9228725314183,153.2546084405897,16.560173285198555,2893.4809800175653,2019
+2004,48,"(45,50]",College,2531.6377737881508,153.2546084405897,16.519162454873644,2752.97665509135,2019
+2004,43,"(40,45]",HS,25.14039497307002,48.39619213913358,0.5194705174488569,4978.814378374992,2019
+2004,43,"(40,45]",HS,27.49730700179533,48.39619213913358,0.5681708784596871,4991.794061206816,2019
+2004,43,"(40,45]",HS,27.811561938958707,48.39619213913358,0.5746642599277978,4947.730779388034,2019
+2004,43,"(40,45]",HS,44.467073608617596,48.39619213913358,0.9188134777376655,4911.34024729426,2019
+2004,43,"(40,45]",HS,24.66901256732496,48.39619213913358,0.5097304452466909,4945.528433932751,2019
+2004,35,"(30,35]",College,60.541213644524234,125.83009956174732,0.48113459224289545,7409.552895483682,2019
+2004,35,"(30,35]",College,60.824043087971276,125.83009956174732,0.4833823012126261,6990.8030794094375,2019
+2004,35,"(30,35]",College,59.70843806104129,125.83009956174732,0.4745163380542442,7378.358484661623,2019
+2004,35,"(30,35]",College,59.70843806104129,125.83009956174732,0.4745163380542442,7346.919707538374,2019
+2004,35,"(30,35]",College,60.022692998204676,125.83009956174732,0.47701379246505604,7212.494164407466,2019
+2004,52,"(50,55]",College,536.9045601436266,129.0565123710229,4.16022833935018,835.0505464914173,2019
+2004,52,"(50,55]",College,606.0406463195691,129.0565123710229,4.695932310469313,811.4524043608938,2019
+2004,52,"(50,55]",College,532.1907360861759,129.0565123710229,4.123703068592056,843.8238359048615,2019
+2004,52,"(50,55]",College,635.8948653500897,129.0565123710229,4.927259025270757,779.2828030029992,2019
+2004,52,"(50,55]",College,635.8948653500897,129.0565123710229,4.927259025270757,840.4975812761198,2019
+2004,56,"(55,60]",HS,336.56703770197487,85.49993944580267,3.9364593692527756,6050.995007009236,2019
+2004,56,"(55,60]",HS,336.56703770197487,85.49993944580267,3.9364593692527756,5365.1679685933905,2019
+2004,56,"(55,60]",HS,292.57134649910233,85.49993944580267,3.42188951706287,6091.012446969393,2019
+2004,56,"(55,60]",HS,336.4099102333932,85.49993944580267,3.934621619780669,6009.132465888756,2019
+2004,56,"(55,60]",HS,336.56703770197487,83.88673304116487,4.012160510969175,5862.722833953825,2019
+2004,56,"(55,60]",HS,3.1582621184919213,25.81130247420457,0.12235965703971123,8675.813570597129,2019
+2004,56,"(55,60]",HS,4.352430879712747,30.650921688117936,0.14200000000000002,8604.012518702473,2019
+2004,56,"(55,60]",HS,4.462420107719929,30.650921688117936,0.14558844765342963,8596.055624672339,2019
+2004,56,"(55,60]",HS,3.488229802513465,20.97168326029122,0.16633046376006666,8665.498305039098,2019
+2004,56,"(55,60]",HS,4.635260323159785,17.74527045101565,0.2612110272399081,8660.436555843256,2019
+2004,65,"(60,65]",College,517.2479138240575,145.18857641740072,3.562593742478942,6980.158985600741,2019
+2004,65,"(60,65]",College,517.2479138240575,145.18857641740072,3.562593742478942,7820.619700711244,2019
+2004,65,"(60,65]",College,517.2322010771993,145.18857641740072,3.5624855194544733,6916.2697389043215,2019
+2004,65,"(60,65]",College,517.2322010771993,145.18857641740072,3.5624855194544733,6953.804477444431,2019
+2004,65,"(60,65]",College,517.2479138240575,145.18857641740072,3.562593742478942,7237.503423685262,2019
+2004,62,"(60,65]",HS,97.73328545780969,61.30184337623587,1.5942960288808663,5000.236308923783,2019
+2004,62,"(60,65]",HS,97.73328545780969,61.30184337623587,1.5942960288808663,4458.448194252559,2019
+2004,62,"(60,65]",HS,97.73328545780969,61.30184337623587,1.5942960288808663,5012.375473409611,2019
+2004,62,"(60,65]",HS,97.73328545780969,61.30184337623587,1.5942960288808663,4922.953793722955,2019
+2004,62,"(60,65]",HS,97.73328545780969,61.30184337623587,1.5942960288808663,4820.328242384039,2019
+2004,37,"(35,40]",HS,83.56038779174148,70.9810818040626,1.177220544798162,6254.583033261655,2019
+2004,37,"(35,40]",HS,83.40326032315978,70.9810818040626,1.1750068920249424,6404.106168706224,2019
+2004,37,"(35,40]",HS,81.81627289048475,70.9810818040626,1.152648999015425,6225.949414373462,2019
+2004,37,"(35,40]",HS,80.10358348294434,70.9810818040626,1.1285201837873315,6246.727058506858,2019
+2004,37,"(35,40]",HS,84.97453500897666,70.9810818040626,1.197143419757138,6271.728512646148,2019
+2004,57,"(55,60]",HS,1493.810843806104,101.63200349218052,14.6982327660306,6259.094175332074,2019
+2004,57,"(55,60]",HS,1646.2244883303413,100.01879708754274,16.459151042273206,6920.2328599455695,2019
+2004,57,"(55,60]",HS,1484.383195691203,100.01879708754274,14.84104227320368,6175.858461014935,2019
+2004,57,"(55,60]",HS,1544.091633752244,100.01879708754274,15.43801444043321,6155.518867790389,2019
+2004,57,"(55,60]",HS,1498.524667863555,100.01879708754274,14.982430418073834,6469.971377308204,2019
+2004,70,"(65,70]",HS,288.0146499102334,116.1508611339206,2.4796600481347775,7109.230348262972,2019
+2004,70,"(65,70]",HS,286.4433752244165,116.1508611339206,2.4661321700762135,6761.1476511975825,2019
+2004,70,"(65,70]",HS,291.1571992818671,116.1508611339206,2.506715804251905,7436.442884469119,2019
+2004,70,"(65,70]",HS,291.1571992818671,116.1508611339206,2.506715804251905,7211.72422014765,2019
+2004,70,"(65,70]",HS,288.0146499102334,116.1508611339206,2.4796600481347775,7246.416232957065,2019
+2004,44,"(40,45]",HS,414.2665709156194,64.52825618551145,6.419925090252707,8128.148447221116,2019
+2004,44,"(40,45]",HS,414.2665709156194,64.52825618551145,6.419925090252707,7802.5751026338285,2019
+2004,44,"(40,45]",HS,414.2665709156194,64.52825618551145,6.419925090252707,8120.798903971901,2019
+2004,44,"(40,45]",HS,414.2665709156194,64.52825618551145,6.419925090252707,8090.522606249962,2019
+2004,44,"(40,45]",HS,414.4236983842011,64.52825618551145,6.422360108303248,8008.620362318009,2019
+2004,51,"(50,55]",HS,-9.317658886894076,32.264128092755726,-0.2887931407942238,3689.0474987014322,2019
+2004,51,"(50,55]",HS,-9.160531418312388,33.87733449739351,-0.2704029568506103,3680.623880992031,2019
+2004,51,"(50,55]",HS,-9.317658886894076,33.87733449739351,-0.27504108647068937,3706.558844303638,2019
+2004,51,"(50,55]",HS,-9.474786355475763,32.264128092755726,-0.2936631768953068,3707.075550018856,2019
+2004,51,"(50,55]",HS,-9.317658886894076,32.264128092755726,-0.2887931407942238,3678.92747651608,2019
+2004,54,"(50,55]",College,530.8237271095153,130.66971877566067,4.062331595133039,789.8884562585132,2019
+2004,54,"(50,55]",College,530.6508868940755,130.66971877566067,4.0610088692784245,761.9122452706578,2019
+2004,54,"(50,55]",College,530.8080143626571,130.66971877566067,4.062211347328074,799.7558219392415,2019
+2004,54,"(50,55]",College,530.6508868940755,130.66971877566067,4.0610088692784245,735.8748788290974,2019
+2004,54,"(50,55]",College,530.8237271095153,130.66971877566067,4.062331595133039,794.9521253226494,2019
+2004,43,"(40,45]",College,2099.8829156193897,172.6130852962431,12.165259151793247,2526.0479262336676,2019
+2004,43,"(40,45]",College,2137.2478276481147,172.6130852962431,12.381725429332974,2480.3535492290234,2019
+2004,43,"(40,45]",College,2102.994039497307,172.6130852962431,12.183282836802862,2565.805166580143,2019
+2004,43,"(40,45]",College,2125.149012567325,172.6130852962431,12.311633320962246,2504.608361249124,2019
+2004,43,"(40,45]",College,2323.91526032316,172.6130852962431,13.463146529909919,2585.396675524254,2019
+2004,49,"(45,50]",HS,149.11396768402153,112.92444832464501,1.3204755028365136,6938.907837316199,2019
+2004,49,"(45,50]",HS,149.11396768402153,112.92444832464501,1.3204755028365136,6899.206828008491,2019
+2004,49,"(45,50]",HS,147.385565529623,112.92444832464501,1.305169675090253,6960.289102935671,2019
+2004,49,"(45,50]",HS,149.11396768402153,112.92444832464501,1.3204755028365136,6915.8532339066205,2019
+2004,49,"(45,50]",HS,148.95684021543985,112.92444832464501,1.3190840639504902,6885.055378265034,2019
+2004,52,"(50,55]",College,2737.631885098743,401.68839475480877,6.815312368608005,940.7994973880102,2019
+2004,52,"(50,55]",College,2739.2031597845603,401.68839475480877,6.819224044191205,945.238997447891,2019
+2004,52,"(50,55]",College,2736.0606104129265,401.68839475480877,6.811400693024806,939.8959946397151,2019
+2004,52,"(50,55]",College,2739.2031597845603,401.68839475480877,6.819224044191205,960.5332692773802,2019
+2004,52,"(50,55]",College,2734.48933572711,401.68839475480877,6.807489017441608,975.4673912582754,2019
+2004,57,"(55,60]",HS,32.085429084380614,48.39619213913358,0.6629742478941035,5689.753948802004,2019
+2004,57,"(55,60]",HS,32.36825852782765,67.75466899478702,0.47772735086814505,5623.075540235999,2019
+2004,57,"(55,60]",HS,30.84412208258528,41.94336652058244,0.735375451263538,5696.995126097727,2019
+2004,57,"(55,60]",HS,32.415396768402154,56.46222416232251,0.5741076843733884,5682.030469879135,2019
+2004,57,"(55,60]",HS,34.206649910233395,70.9810818040626,0.4819122087298982,5672.791940320707,2019
+2004,58,"(55,60]",College,9630.4682513465,517.8392558887293,18.597408639517752,312.9438578319533,2019
+2004,58,"(55,60]",College,8016.06207540395,487.1883342006114,16.453723360508764,308.0067787422426,2019
+2004,58,"(55,60]",College,8202.289551166967,471.05627015423346,17.412547228129178,326.17343126559774,2019
+2004,58,"(55,60]",College,8592.782736086177,480.7355085820603,17.87424182879849,302.5728960262254,2019
+2004,58,"(55,60]",College,8025.599712746859,467.82985734495793,17.154954064484006,307.546686552354,2019
+2004,26,"(25,30]",HS,11.957400359066428,32.264128092755726,0.37060974729241875,7988.247469551296,2019
+2004,26,"(25,30]",HS,12.114527827648114,32.264128092755726,0.37547978339350174,7704.885430720795,2019
+2004,26,"(25,30]",HS,11.957400359066428,32.264128092755726,0.37060974729241875,7996.923042666398,2019
+2004,26,"(25,30]",HS,11.792416517055656,32.264128092755726,0.3654962093862816,8020.34870114663,2019
+2004,26,"(25,30]",HS,11.957400359066428,32.264128092755726,0.37060974729241875,7905.074229547994,2019
+2004,73,"(70,75]",HS,268.6879712746858,104.8584163014561,2.5623882254929184,7493.270286504779,2019
+2004,73,"(70,75]",HS,266.95956912028726,104.8584163014561,2.5459050263815604,7126.384195691337,2019
+2004,73,"(70,75]",HS,268.84509874326756,104.8584163014561,2.563886698139406,7838.158812380789,2019
+2004,73,"(70,75]",HS,268.6879712746858,104.8584163014561,2.5623882254929184,7601.300867470543,2019
+2004,73,"(70,75]",HS,268.6879712746858,104.8584163014561,2.5623882254929184,7637.866939468387,2019
+2004,69,"(65,70]",College,1997.875763016158,221.0092774353767,9.039782339455586,3457.9417933721693,2019
+2004,69,"(65,70]",College,1996.3044883303412,221.0092774353767,9.03267279770218,3650.0533319129727,2019
+2004,69,"(65,70]",College,1998.0328904847397,221.0092774353767,9.040493293630925,3461.3006097730695,2019
+2004,69,"(65,70]",College,1994.7332136445243,221.0092774353767,9.025563255948773,3716.8319596243105,2019
+2004,69,"(65,70]",College,1996.3044883303412,221.0092774353767,9.03267279770218,3542.9316937243966,2019
+2004,24,"(20,25]",HS,-10.056157989228009,3.065092168811794,-3.2808664259927798,7081.090611569287,2019
+2004,24,"(20,25]",HS,-10.213285457809695,3.2264128092755713,-3.165523465703972,7170.171061822433,2019
+2004,24,"(20,25]",HS,-10.056157989228009,3.065092168811794,-3.2808664259927798,7138.897557304325,2019
+2004,24,"(20,25]",HS,-10.213285457809695,3.065092168811794,-3.332129963898917,6995.916942142804,2019
+2004,24,"(20,25]",HS,-8.642010771992819,3.065092168811794,-2.819494584837545,7158.300746132898,2019
+2004,40,"(35,40]",College,296.65666068222623,204.87721338899885,1.4479729384007505,5524.004734320805,2019
+2004,40,"(35,40]",College,389.5189946140036,204.87721338899885,1.901231416470053,6133.230467992337,2019
+2004,40,"(35,40]",College,317.55461400359064,204.87721338899885,1.54997526933682,5452.688631390949,2019
+2004,40,"(35,40]",College,414.973644524237,204.87721338899885,2.0254748571591006,5444.572012934509,2019
+2004,40,"(35,40]",College,496.9941831238779,204.87721338899885,2.425814832712698,5689.260274032999,2019
+2004,43,"(40,45]",HS,71.99580610412927,82.2735266365271,0.8750786437318611,6686.414951137775,2019
+2004,43,"(40,45]",HS,63.998017953321366,82.2735266365271,0.7778689035180859,6418.59030533119,2019
+2004,43,"(40,45]",HS,72.01151885098743,82.2735266365271,0.8752696255397465,6680.369035984448,2019
+2004,43,"(40,45]",HS,64.15514542190306,82.2735266365271,0.7797787215969421,6655.463008361112,2019
+2004,43,"(40,45]",HS,62.42674326750449,82.2735266365271,0.7587707227295251,6588.088206840899,2019
+2004,79,"(75,80]",NoHS,82.49349228007182,13.873575079884963,5.946087566115355,8297.058816905492,2019
+2004,79,"(75,80]",NoHS,82.49349228007182,13.873575079884963,5.946087566115355,8302.625151977121,2019
+2004,79,"(75,80]",NoHS,82.49349228007182,13.712254439421182,6.016041537481419,8254.650392766693,2019
+2004,79,"(75,80]",NoHS,82.49349228007182,13.873575079884963,5.946087566115355,8300.75168688922,2019
+2004,79,"(75,80]",NoHS,82.49349228007182,13.873575079884963,5.946087566115355,8259.172665323817,2019
+2004,48,"(45,50]",NoHS,-2.6711669658886894,41.94336652058244,-0.0636850874757012,4088.100673014763,2019
+2004,48,"(45,50]",NoHS,-2.6711669658886894,69.36787539942482,-0.038507262194610016,4009.0123985235323,2019
+2004,48,"(45,50]",NoHS,-2.514039497307002,75.82070101797595,-0.03315769260311852,4094.5926242947257,2019
+2004,48,"(45,50]",NoHS,-2.828294434470377,48.39619213913358,-0.05844043321299639,4102.464229285831,2019
+2004,48,"(45,50]",NoHS,-2.6711669658886894,51.62260494840914,-0.051744133574007235,4028.478266053895,2019
+2004,63,"(60,65]",College,24346.901256732497,1468.0178282203851,16.584881183798156,22.03537025339402,2019
+2004,63,"(60,65]",College,24321.446606822265,1468.0178282203851,16.56754171460309,21.993955741117293,2019
+2004,63,"(60,65]",College,24381.62642728905,1468.0178282203851,16.60853564486056,22.631811214859326,2019
+2004,63,"(60,65]",College,24314.391583482942,1468.0178282203851,16.562735898758284,21.34727436540412,2019
+2004,63,"(60,65]",College,24314.375870736087,1468.0178282203851,16.56272519538224,22.385583681855802,2019
+2004,43,"(40,45]",HS,239.77651705565532,161.3206404637786,1.4863350180505417,7795.524489908528,2019
+2004,43,"(40,45]",HS,239.77651705565532,161.3206404637786,1.4863350180505417,7354.961544694765,2019
+2004,43,"(40,45]",HS,239.77651705565532,161.3206404637786,1.4863350180505417,7762.705128613478,2019
+2004,43,"(40,45]",HS,239.77651705565532,161.3206404637786,1.4863350180505417,7729.6286717133,2019
+2004,43,"(40,45]",HS,238.2052423698384,161.3206404637786,1.4765949458483754,7588.200757191633,2019
+2004,64,"(60,65]",College,61399.129622980254,5807.54305669603,10.572307260328921,19.81794948471067,2019
+2004,64,"(60,65]",College,65709.13608617595,3968.487755408954,16.557726805787915,20.612904765621785,2019
+2004,64,"(60,65]",College,69739.45565529623,7872.447254632396,8.858675504527431,20.633580245552746,2019
+2004,64,"(60,65]",College,60219.102333931776,4436.317612753912,13.574118805382343,19.525588748991442,2019
+2004,64,"(60,65]",College,102486.39138240574,3968.487755408954,25.825049162043964,19.991066487296695,2019
+2004,43,"(40,45]",College,4872.522800718132,1209.9048034783398,4.0271951865222615,328.4654792407308,2019
+2004,43,"(40,45]",College,4875.665350089767,1209.9048034783398,4.029792539109507,320.578792284827,2019
+2004,43,"(40,45]",College,4861.523877917414,1209.9048034783398,4.018104452466906,343.1207840472437,2019
+2004,43,"(40,45]",College,4842.6685816876125,1209.9048034783398,4.002520336943441,323.0502704546808,2019
+2004,43,"(40,45]",College,4880.379174147218,1209.9048034783398,4.033688567990373,332.82625291088453,2019
+2004,58,"(55,60]",College,18117.111382405747,772.7258678214995,23.445716180671226,223.7102309778029,2019
+2004,58,"(55,60]",College,19089.73041292639,758.2070101797595,25.177464935862965,225.25812166915156,2019
+2004,58,"(55,60]",College,19330.292567324956,784.0183126539641,24.65540951701802,231.86971412020574,2019
+2004,58,"(55,60]",College,13959.675691202874,777.5654870354128,17.953054660934438,216.1267175757725,2019
+2004,58,"(55,60]",College,17196.34441651706,742.0749461333816,23.17332569455345,219.15664813608882,2019
+2004,39,"(35,40]",College,18508.044524236986,1935.8476855653435,9.560692539109507,2297.053904389363,2019
+2004,39,"(35,40]",College,18506.473249551167,1935.8476855653435,9.559880866425992,2256.2888535992306,2019
+2004,39,"(35,40]",College,18512.758348294432,1935.8476855653435,9.563127557160046,2354.444881592243,2019
+2004,39,"(35,40]",College,18504.90197486535,1935.8476855653435,9.559069193742479,2233.1573050868365,2019
+2004,39,"(35,40]",College,18506.473249551167,1935.8476855653435,9.559880866425992,2263.443088105437,2019
+2004,31,"(30,35]",HS,9.741903052064632,27.424508878842364,0.35522616266723295,7446.3065648256725,2019
+2004,31,"(30,35]",HS,11.313177737881508,27.424508878842364,0.4125207050329157,7341.966686585358,2019
+2004,31,"(30,35]",HS,11.15605026929982,27.424508878842364,0.4067912507963474,7393.923119905087,2019
+2004,31,"(30,35]",HS,11.15605026929982,27.424508878842364,0.4067912507963474,7427.665945058038,2019
+2004,31,"(30,35]",HS,11.15605026929982,27.424508878842364,0.4067912507963474,7365.55420082946,2019
+2004,26,"(25,30]",College,16.027001795332136,27.424508878842364,0.5844043321299639,6274.943554257796,2019
+2004,26,"(25,30]",College,12.884452423698384,27.424508878842364,0.4698152473985984,6363.796216671924,2019
+2004,26,"(25,30]",College,16.027001795332136,27.424508878842364,0.5844043321299639,6259.249602207017,2019
+2004,26,"(25,30]",College,12.884452423698384,27.424508878842364,0.4698152473985984,6322.064703753641,2019
+2004,26,"(25,30]",College,14.45572710951526,27.424508878842364,0.5271097897642811,6309.017689414992,2019
+2004,76,"(75,80]",College,35479.38240574506,838.8673304116488,42.294390447098024,18.875803891614044,2019
+2004,76,"(75,80]",College,31749.1763016158,838.8673304116488,37.8476728686476,19.12902112287269,2019
+2004,76,"(75,80]",College,34583.75583482944,838.8673304116488,41.22672868647597,19.897276336486822,2019
+2004,76,"(75,80]",College,34415.62944344704,838.8673304116488,41.02630797000833,18.279329651680335,2019
+2004,76,"(75,80]",College,34885.44057450628,838.8673304116488,41.586362121632874,19.504203208628326,2019
+2004,91,"(90,95]",NoHS,2917.8570915619393,56.46222416232251,51.678040226921105,13246.48318220023,2019
+2004,91,"(90,95]",NoHS,2917.8570915619393,56.46222416232251,51.678040226921105,14100.846143816167,2019
+2004,91,"(90,95]",NoHS,2917.8570915619393,56.46222416232251,51.678040226921105,13227.753154647977,2019
+2004,91,"(90,95]",NoHS,2917.8570915619393,56.46222416232251,51.678040226921105,14141.46206116561,2019
+2004,91,"(90,95]",NoHS,2917.8570915619393,56.46222416232251,51.678040226921105,13782.702038243297,2019
+2004,41,"(40,45]",College,447.1062118491921,77.43390742261373,5.774036552346571,9527.621141191357,2019
+2004,41,"(40,45]",College,447.1062118491921,79.04711382725151,5.656199071686437,10442.851053073717,2019
+2004,41,"(40,45]",College,447.1062118491921,77.43390742261373,5.774036552346571,9406.18789852356,2019
+2004,41,"(40,45]",College,448.677486535009,77.43390742261373,5.7943283694344165,9428.685184767575,2019
+2004,41,"(40,45]",College,447.1062118491921,77.43390742261373,5.774036552346571,9855.541043307177,2019
+2004,24,"(20,25]",HS,20.740825852782763,37.10374730666908,0.5589954481243132,9589.34036207889,2019
+2004,24,"(20,25]",HS,22.46922800718133,37.10374730666908,0.6055784021346727,9322.707976621936,2019
+2004,24,"(20,25]",HS,40.224631956912035,37.10374730666908,1.0841123842410927,9665.94781015698,2019
+2004,24,"(20,25]",HS,35.35368043087971,37.10374730666908,0.9528331502118977,9418.553229512083,2019
+2004,24,"(20,25]",HS,20.91366606822262,37.10374730666908,0.5636537435253492,9563.724983980532,2019
+2004,48,"(45,50]",NoHS,18.509615798922802,38.716953711306864,0.4780752105896511,5680.618219511816,2019
+2004,60,"(55,60]",NoHS,18.88672172351885,38.716953711306864,0.4878152827918171,4029.097625156284,2019
+2004,44,"(40,45]",NoHS,19.40524236983842,38.716953711306864,0.5012078820697954,5869.892850806193,2019
+2004,40,"(35,40]",NoHS,20.269443447037702,38.716953711306864,0.523528880866426,5819.716895067118,2019
+2004,57,"(55,60]",NoHS,18.855296229802512,38.716953711306864,0.48700361010830323,4445.521176114432,2019
+2004,36,"(35,40]",NoHS,408.87709874326754,93.56597146899159,4.369933773185609,8753.77222464663,2019
+2004,36,"(35,40]",NoHS,399.6222908438061,93.56597146899159,4.2710216606498195,8259.054046541585,2019
+2004,36,"(35,40]",NoHS,405.89167684021544,93.56597146899159,4.338026640109548,8716.918615411338,2019
+2004,36,"(35,40]",NoHS,405.106039497307,93.56597146899159,4.329630026142164,8679.776307658041,2019
+2004,36,"(35,40]",NoHS,399.9208330341113,93.56597146899159,4.274212373957425,8520.963677214491,2019
+2004,18,"(15,20]",NoHS,0.01571274685816876,8.066032023188932,0.0019480144404332128,6816.753834911698,2019
+2004,18,"(15,20]",NoHS,0.09427648114901258,8.066032023188932,0.011688086642599278,6820.940103176114,2019
+2004,18,"(15,20]",NoHS,0.07856373429084382,8.066032023188932,0.009740072202166066,6859.757968961225,2019
+2004,18,"(15,20]",NoHS,0.1257019748653501,8.066032023188932,0.015584115523465702,6735.864926291908,2019
+2004,18,"(15,20]",NoHS,0.04713824057450629,8.066032023188932,0.005844043321299639,6852.466556901891,2019
+2004,43,"(40,45]",HS,70.29882944344705,64.52825618551145,1.0894270758122744,8202.655389980122,2019
+2004,43,"(40,45]",HS,70.14170197486536,64.52825618551145,1.0869920577617327,7874.097666514112,2019
+2004,43,"(40,45]",HS,70.29882944344705,64.52825618551145,1.0894270758122744,8195.238476898567,2019
+2004,43,"(40,45]",HS,70.14170197486536,64.52825618551145,1.0869920577617327,8164.6846504877785,2019
+2004,43,"(40,45]",HS,70.29882944344705,64.52825618551145,1.0894270758122744,8082.031646916022,2019
+2004,84,"(80,85]",NoHS,77.65239497307002,25.81130247420457,3.008464801444044,9600.619653900963,2019
+2004,84,"(80,85]",NoHS,77.63668222621185,27.424508878842364,2.830923338288384,9612.36760497942,2019
+2004,84,"(80,85]",NoHS,77.65239497307002,22.58488966492901,3.4382454873646204,9624.623341947921,2019
+2004,84,"(80,85]",NoHS,77.65239497307002,22.58488966492901,3.4382454873646204,9606.59770603821,2019
+2004,84,"(80,85]",NoHS,77.65239497307002,27.424508878842364,2.8314962837120405,9612.454346979688,2019
+2004,52,"(50,55]",HS,1.257019748653501,88.72635225507824,0.014167377748605187,5555.936758793975,2019
+2004,52,"(50,55]",HS,1.257019748653501,88.72635225507824,0.014167377748605187,5561.373848284497,2019
+2004,52,"(50,55]",HS,1.257019748653501,88.72635225507824,0.014167377748605187,5562.659315645737,2019
+2004,52,"(50,55]",HS,1.257019748653501,88.72635225507824,0.014167377748605187,5577.5311771381985,2019
+2004,52,"(50,55]",HS,1.4141472172351885,88.72635225507824,0.01593829996718083,5555.713690863928,2019
+2004,69,"(65,70]",HS,182.73924596050267,135.50933798957405,1.3485361870379917,6448.321134644161,2019
+2004,69,"(65,70]",HS,179.59669658886895,135.50933798957405,1.3253455389375965,6063.673523949483,2019
+2004,69,"(65,70]",HS,181.4822262118492,135.50933798957405,1.3392599277978339,6524.671812654286,2019
+2004,69,"(65,70]",HS,177.96257091561938,135.50933798957405,1.313286401925391,6485.020079029005,2019
+2004,69,"(65,70]",HS,203.63719928186717,135.50933798957405,1.5027539969056214,6414.113074565008,2019
+2004,63,"(60,65]",HS,125.5448473967684,51.62260494840914,2.43197427797834,9152.002941289862,2019
+2004,63,"(60,65]",HS,221.78542190305208,114.53765472928282,1.9363537906137185,8020.4379176316015,2019
+2004,63,"(60,65]",HS,157.67741472172352,33.87733449739351,4.654363073749355,9143.865677386477,2019
+2004,63,"(60,65]",HS,330.989012567325,91.95276506435381,3.5995547533092664,8975.9354975893,2019
+2004,63,"(60,65]",HS,187.4059317773788,82.2735266365271,2.27784002265166,8716.248953614502,2019
+2004,42,"(40,45]",College,1430.3313464991024,283.9243272162504,5.037720298654414,3999.7354794308912,2019
+2004,42,"(40,45]",College,1428.7600718132853,283.9243272162504,5.032186166721364,4157.886343310625,2019
+2004,42,"(40,45]",College,1430.3313464991024,282.31112081161257,5.0665072717895825,3975.680301580867,2019
+2004,42,"(40,45]",College,1430.3313464991024,283.9243272162504,5.037720298654414,4292.7895090845,2019
+2004,42,"(40,45]",College,1428.602944344704,283.9243272162504,5.0316327535280605,4067.260195100155,2019
+2004,48,"(45,50]",HS,53.89472172351885,88.72635225507824,0.6074263209714472,7496.640882117768,2019
+2004,48,"(45,50]",HS,54.05184919210054,88.72635225507824,0.609197243190023,6963.924982144561,2019
+2004,48,"(45,50]",HS,53.89472172351885,88.72635225507824,0.6074263209714472,7480.125977004509,2019
+2004,48,"(45,50]",HS,53.89472172351885,88.72635225507824,0.6074263209714472,7498.654558151965,2019
+2004,48,"(45,50]",HS,54.05184919210054,88.72635225507824,0.609197243190023,7220.850995461023,2019
+2004,84,"(80,85]",College,68243.60215439856,879.1974905275935,77.6203331898122,224.5756583048576,2019
+2004,84,"(80,85]",College,80065.87289048474,1022.7728605403563,78.28314181917571,233.31197362120798,2019
+2004,84,"(80,85]",College,59370.614003590665,664.6410387107679,89.32733693175842,311.4984887334801,2019
+2004,84,"(80,85]",College,53087.08653500897,974.3766684012228,54.48312573218256,295.42385863598713,2019
+2004,84,"(80,85]",College,64755.3723518851,1266.367027640662,51.134758674607376,260.2593226387703,2019
+2004,56,"(55,60]",College,192.9525314183124,95.17917787362938,2.0272557058067675,5144.772893970823,2019
+2004,56,"(55,60]",College,196.09508078994614,95.17917787362938,2.060272899712415,4500.500015037132,2019
+2004,56,"(55,60]",College,192.9525314183124,95.17917787362938,2.0272557058067675,5176.23060205633,2019
+2004,56,"(55,60]",College,194.52380610412928,95.17917787362938,2.043764302759591,5067.78468468439,2019
+2004,56,"(55,60]",College,194.52380610412928,95.17917787362938,2.043764302759591,4950.729441904108,2019
+2004,78,"(75,80]",HS,40.85314183123878,30.650921688117936,1.3328519855595669,10886.223188675014,2019
+2004,78,"(75,80]",HS,41.010269299820465,30.650921688117936,1.3379783393501805,9707.025573854457,2019
+2004,78,"(75,80]",HS,42.58154398563734,29.03771528348015,1.4664219815483353,10840.610449609521,2019
+2004,78,"(75,80]",HS,40.85314183123878,30.650921688117936,1.3328519855595669,10684.110783004518,2019
+2004,78,"(75,80]",HS,40.85314183123878,30.650921688117936,1.3328519855595669,10451.030168452204,2019
+2004,47,"(45,50]",HS,189.37002513464992,25.81130247420457,7.336709386281591,8558.220183829268,2019
+2004,47,"(45,50]",HS,190.5327684021544,25.81130247420457,7.381757220216609,8088.762754278531,2019
+2004,47,"(45,50]",HS,190.5327684021544,25.81130247420457,7.381757220216609,8567.7155826563,2019
+2004,47,"(45,50]",HS,93.36514183123879,25.81130247420457,3.6172193140794238,8593.533103261936,2019
+2004,47,"(45,50]",HS,110.5077486535009,25.81130247420457,4.281370487364622,8344.066186222599,2019
+2004,58,"(55,60]",College,3620.216876122083,122.60368675247175,29.52779783393502,1485.5121993403518,2019
+2004,58,"(55,60]",College,3621.7881508078995,120.99048034783397,29.93448856799037,1473.1704104320002,2019
+2004,58,"(55,60]",College,3620.0597486535007,122.60368675247175,29.52651624548736,1682.8320323145879,2019
+2004,58,"(55,60]",College,3621.7881508078995,122.60368675247175,29.540613718411553,1408.5463281241593,2019
+2004,58,"(55,60]",College,3620.216876122083,120.99048034783397,29.921501805054152,1500.771019087219,2019
+2004,52,"(50,55]",College,8485.983195691204,727.5560884916416,11.663682470562808,170.16483506560155,2019
+2004,52,"(50,55]",College,8484.411921005387,727.5560884916416,11.661522809320642,169.4533487531161,2019
+2004,52,"(50,55]",College,8484.411921005387,727.5560884916416,11.661522809320642,176.5569268235691,2019
+2004,52,"(50,55]",College,8484.411921005387,727.5560884916416,11.661522809320642,165.63472206498938,2019
+2004,52,"(50,55]",College,8484.411921005387,727.5560884916416,11.661522809320642,170.9101514805864,2019
+2004,52,"(50,55]",College,9.584775583482944,77.43390742261373,0.12378008423586041,4125.058554641439,2019
+2004,52,"(50,55]",College,9.427648114901256,77.43390742261373,0.12175090252707581,4115.639343773206,2019
+2004,52,"(50,55]",College,9.584775583482944,77.43390742261373,0.12378008423586041,4144.639578199711,2019
+2004,52,"(50,55]",College,9.427648114901256,77.43390742261373,0.12175090252707581,4145.217353718066,2019
+2004,52,"(50,55]",College,9.113393177737882,77.43390742261373,0.11769253910950662,4113.742440087873,2019
+2004,41,"(40,45]",HS,1724.6310951526032,135.50933798957405,12.72702767749699,761.9943335244888,2019
+2004,41,"(40,45]",HS,1722.8241292639138,135.50933798957405,12.713693054839263,774.9131137050081,2019
+2004,41,"(40,45]",HS,1725.6524236983844,135.50933798957405,12.73456463812962,757.3747936301762,2019
+2004,41,"(40,45]",HS,1722.9812567324955,135.50933798957405,12.714852587244282,773.2100331926462,2019
+2004,41,"(40,45]",HS,1722.745565529623,135.50933798957405,12.713113288636753,785.7971128623894,2019
+2004,83,"(80,85]",College,520.4061759425493,69.36787539942482,7.502120728738139,13041.205850083661,2019
+2004,83,"(80,85]",College,520.3904631956912,67.75466899478702,7.680510744369949,11682.50305103094,2019
+2004,83,"(80,85]",College,520.4061759425493,69.36787539942482,7.502120728738139,13050.331484057504,2019
+2004,83,"(80,85]",College,520.3904631956912,69.36787539942482,7.501894215431111,12830.236741715698,2019
+2004,83,"(80,85]",College,520.4061759425493,69.36787539942482,7.502120728738139,12526.571505662756,2019
+2004,50,"(45,50]",College,16.812639138240574,58.0754305669603,0.28949659045326914,4690.137536503049,2019
+2004,50,"(45,50]",College,17.0011921005386,58.0754305669603,0.2927432811873245,4599.402274688904,2019
+2004,50,"(45,50]",College,16.938341113105928,58.0754305669603,0.29166105094263944,4697.585529304275,2019
+2004,50,"(45,50]",College,17.0011921005386,58.0754305669603,0.2927432811873245,4706.616351437645,2019
+2004,50,"(45,50]",College,17.016904847396766,58.0754305669603,0.29301383874849574,4621.734796142546,2019
+2004,21,"(20,25]",HS,15.618470377019749,27.424508878842364,0.5695077511148864,9487.133177620952,2019
+2004,21,"(20,25]",HS,18.603892280071815,27.424508878842364,0.6783673816096837,9418.427266585182,2019
+2004,21,"(20,25]",HS,19.248114901256734,27.424508878842364,0.7018581439796135,9534.890583291084,2019
+2004,21,"(20,25]",HS,17.36258527827648,27.424508878842364,0.6331046931407942,9373.74684003925,2019
+2004,21,"(20,25]",HS,16.341256732495513,27.424508878842364,0.5958632406031005,9525.204944535926,2019
+2004,22,"(20,25]",HS,11.957400359066428,24.19809606956679,0.4941463297232251,6265.378377433874,2019
+2004,22,"(20,25]",HS,11.949543985637343,46.782985734495796,0.25542499688783765,6231.576860779082,2019
+2004,22,"(20,25]",HS,11.949543985637343,37.10374730666908,0.32205760477162143,6254.119068717833,2019
+2004,22,"(20,25]",HS,11.957400359066428,37.10374730666908,0.3222693454716685,6178.952289212905,2019
+2004,22,"(20,25]",HS,11.80027289048474,50.00939854377137,0.23596110399441017,6227.047777571197,2019
+2004,38,"(35,40]",HS,-37.710592459605024,72.59428820870036,-0.5194705174488569,5153.171964486783,2019
+2004,38,"(35,40]",HS,-39.2818671454219,72.59428820870036,-0.5411151223425592,5124.965033539034,2019
+2004,38,"(35,40]",HS,-37.710592459605024,72.59428820870036,-0.5194705174488569,5184.579676518823,2019
+2004,38,"(35,40]",HS,-39.2818671454219,72.59428820870036,-0.5411151223425592,5142.806170552039,2019
+2004,38,"(35,40]",HS,-39.2818671454219,72.59428820870036,-0.5411151223425592,5181.448112281814,2019
+2004,49,"(45,50]",College,6131.113824057451,483.96192139133586,12.668587244283994,1448.1915772697535,2019
+2004,49,"(45,50]",College,6131.270951526033,483.96192139133586,12.668911913357402,1445.700360553967,2019
+2004,49,"(45,50]",College,6131.113824057451,483.96192139133586,12.668587244283994,1641.4735425890922,2019
+2004,49,"(45,50]",College,6132.84222621185,483.96192139133586,12.672158604091457,1381.7656925667766,2019
+2004,49,"(45,50]",College,6131.270951526033,483.96192139133586,12.668911913357402,1464.0953029839143,2019
+2004,50,"(45,50]",HS,-7.777809694793537,25.81130247420457,-0.30133348375451274,4614.54657370687,2019
+2004,50,"(45,50]",HS,-7.777809694793537,25.81130247420457,-0.30133348375451274,4473.312095144808,2019
+2004,50,"(45,50]",HS,-7.777809694793537,25.81130247420457,-0.30133348375451274,4669.371161481124,2019
+2004,50,"(45,50]",HS,-7.934937163375224,25.81130247420457,-0.3074210288808665,4656.860426281394,2019
+2004,50,"(45,50]",HS,-7.934937163375224,25.81130247420457,-0.3074210288808665,4582.429764290193,2019
+2004,58,"(55,60]",College,56772.51131059246,4033.0160115944655,14.076936750902526,29.61522827315356,2019
+2004,58,"(55,60]",College,56256.34757630162,4033.0160115944655,13.948952202166065,30.288865272540924,2019
+2004,58,"(55,60]",College,55697.75942549372,4033.0160115944655,13.810448375451264,30.73317210105531,2019
+2004,58,"(55,60]",College,57287.10377019749,4033.0160115944655,14.204531696750903,29.418209941644864,2019
+2004,58,"(55,60]",College,55561.05852782765,4033.0160115944655,13.776552924187724,31.16929348498715,2019
+2004,28,"(25,30]",HS,0.15712746858168763,40.33016011594465,0.003896028880866427,4772.77781942997,2019
+2004,28,"(25,30]",HS,0.15712746858168763,43.55657292522023,0.0036074341489503946,4748.746889572094,2019
+2004,28,"(25,30]",HS,0.15712746858168763,43.55657292522023,0.0036074341489503946,4778.3505278106995,2019
+2004,28,"(25,30]",HS,0.15712746858168763,45.16977932985802,0.003478597215059309,4811.018718784811,2019
+2004,28,"(25,30]",HS,0.15712746858168763,45.16977932985802,0.003478597215059309,4790.049928566549,2019
+2004,39,"(35,40]",HS,376.9802226211849,64.52825618551145,5.842095306859205,5550.286358939275,2019
+2004,39,"(35,40]",HS,377.13735008976664,64.52825618551145,5.844530324909747,5329.3501342488335,2019
+2004,39,"(35,40]",HS,376.9802226211849,64.52825618551145,5.842095306859205,5548.17614253261,2019
+2004,39,"(35,40]",HS,376.9802226211849,64.52825618551145,5.842095306859205,5530.818462462464,2019
+2004,39,"(35,40]",HS,376.9802226211849,64.52825618551145,5.842095306859205,5470.129439787192,2019
+2004,29,"(25,30]",HS,126.17335727109516,112.92444832464501,1.1173254254770502,7893.565166246878,2019
+2004,29,"(25,30]",HS,126.01622980251346,112.92444832464501,1.1159339865910265,7704.74803653432,2019
+2004,29,"(25,30]",HS,124.44495511669659,112.92444832464501,1.1020195977307892,7869.541236228148,2019
+2004,29,"(25,30]",HS,124.44495511669659,112.92444832464501,1.1020195977307892,7855.796126163975,2019
+2004,29,"(25,30]",HS,123.03080789946141,112.92444832464501,1.0894966477565757,7786.933289495508,2019
+2004,55,"(50,55]",College,1231.879353680431,182.29232372406983,6.75771381106035,6189.0432026619355,2019
+2004,55,"(50,55]",College,1235.0219030520645,162.9338468684164,7.579897773170818,6845.367659001977,2019
+2004,55,"(50,55]",College,1231.879353680431,172.6130852962431,7.136651034110463,6107.814897672241,2019
+2004,55,"(50,55]",College,1313.5856373429085,195.19797496117215,6.729504430587462,6088.355966808297,2019
+2004,55,"(50,55]",College,1203.5964093357272,182.29232372406983,6.602562218459474,6399.8906502165355,2019
+2004,53,"(50,55]",College,27844.558707360862,3871.695371130687,7.1918258122743675,28.345168542617607,2019
+2004,53,"(50,55]",College,27846.129982046677,3871.695371130687,7.192231648616124,29.509891608267672,2019
+2004,53,"(50,55]",College,27844.558707360862,3871.695371130687,7.1918258122743675,29.312917614426674,2019
+2004,53,"(50,55]",College,27849.27253141831,3871.695371130687,7.193043321299638,28.075194424035608,2019
+2004,53,"(50,55]",College,27847.701256732496,3871.695371130687,7.192637484957881,29.73994421203755,2019
+2004,39,"(35,40]",College,151.23518850987435,77.43390742261373,1.9530873947051748,6376.959176325936,2019
+2004,39,"(35,40]",College,152.8064631956912,77.43390742261373,1.9733792117930207,6016.566245758272,2019
+2004,39,"(35,40]",College,151.23518850987435,77.43390742261373,1.9530873947051748,6350.1120119763755,2019
+2004,39,"(35,40]",College,151.23518850987435,77.43390742261373,1.9530873947051748,6323.0545361615,2019
+2004,39,"(35,40]",College,152.8064631956912,77.43390742261373,1.9733792117930207,6207.362508195314,2019
+2004,42,"(40,45]",College,2073.6112028725315,193.58476855653433,10.71164440433213,13246.48318220023,2019
+2004,42,"(40,45]",College,2072.039928186715,193.58476855653433,10.703527677496993,14100.846143816167,2019
+2004,42,"(40,45]",College,2073.6112028725315,193.58476855653433,10.71164440433213,13227.753154647977,2019
+2004,42,"(40,45]",College,2068.8973788150806,193.58476855653433,10.687294223826713,14141.46206116561,2019
+2004,42,"(40,45]",College,2072.039928186715,193.58476855653433,10.703527677496993,13782.702038243297,2019
+2004,29,"(25,30]",HS,29.69709156193896,112.92444832464501,0.2629819494584838,4125.9786870687,2019
+2004,29,"(25,30]",HS,29.854219030520646,112.92444832464501,0.2643733883445075,4186.979833969037,2019
+2004,29,"(25,30]",HS,29.854219030520646,112.92444832464501,0.2643733883445075,4142.973961643886,2019
+2004,29,"(25,30]",HS,29.854219030520646,112.92444832464501,0.2643733883445075,4148.407302068124,2019
+2004,29,"(25,30]",HS,29.854219030520646,112.92444832464501,0.2643733883445075,4168.513271995216,2019
+2004,51,"(50,55]",College,2011.4672890484742,279.08470800233704,7.207371924625947,672.537477880426,2019
+2004,51,"(50,55]",College,2019.3236624775584,277.4715015976993,7.277589413147509,691.2924512993575,2019
+2004,51,"(50,55]",College,2385.4306642728907,279.08470800233704,8.547335614866133,668.1519544195419,2019
+2004,51,"(50,55]",College,2091.6022980251346,279.08470800233704,7.494507001105985,686.1054157119626,2019
+2004,51,"(50,55]",College,2289.582908438061,279.08470800233704,8.20389954299785,695.1145084043239,2019
+2004,45,"(40,45]",College,1910.9528473967684,322.6412809275572,5.922840505415163,515.2573057406888,2019
+2004,45,"(40,45]",College,1859.1007827648116,322.6412809275572,5.762129314079423,532.1267557962403,2019
+2004,45,"(40,45]",College,1841.6596337522442,322.6412809275572,5.708071913357401,510.283954807586,2019
+2004,45,"(40,45]",College,1862.0862046678637,322.6412809275572,5.771382382671481,521.5366118323628,2019
+2004,45,"(40,45]",College,1868.371303411131,322.6412809275572,5.790862527075813,529.6128730681471,2019
+2004,67,"(65,70]",HS,127.16326032315979,90.33955865971603,1.4076143630737492,6747.938352954506,2019
+2004,67,"(65,70]",HS,126.64473967684022,91.95276506435381,1.377280385078219,6347.062742571399,2019
+2004,67,"(65,70]",HS,126.64473967684022,103.24520989681828,1.2266403429602892,6831.4177050523895,2019
+2004,67,"(65,70]",HS,127.17897307001795,103.24520989681828,1.2318147563176898,6793.988979504172,2019
+2004,67,"(65,70]",HS,126.64473967684022,88.72635225507824,1.4273633081719723,6713.935934180225,2019
+2004,31,"(30,35]",College,147.69982046678638,56.46222416232251,2.6159051057246008,8113.21467689002,2019
+2004,31,"(30,35]",College,91.13393177737882,56.46222416232251,1.6140691077875196,8057.298893946208,2019
+2004,31,"(30,35]",College,146.1285457809695,56.46222416232251,2.588076328004126,8115.374472525681,2019
+2004,31,"(30,35]",College,114.70305206463196,56.46222416232251,2.0315007735946367,8105.533988314836,2019
+2004,31,"(30,35]",College,131.98707360861758,56.46222416232251,2.3376173285198556,8101.376788824664,2019
+2004,28,"(25,30]",College,208.42958707360862,143.57537001276296,1.4517085141767736,8246.46596854086,2019
+2004,28,"(25,30]",College,66.99915260323161,143.57537001276296,0.4666479535959113,8189.631825785609,2019
+2004,28,"(25,30]",College,269.6935870736086,143.57537001276296,1.8784112278424534,8248.66123662113,2019
+2004,28,"(25,30]",College,46.58829443447038,143.57537001276296,0.3244866750496897,8238.65913247493,2019
+2004,28,"(25,30]",College,269.7092998204668,143.57537001276296,1.8785206668559609,8234.433655215256,2019
+2004,55,"(50,55]",HS,51.4592459605027,62.91504978087366,0.8179163195408683,6735.576062004094,2019
+2004,55,"(50,55]",HS,51.4592459605027,62.91504978087366,0.8179163195408683,5831.409974005075,2019
+2004,55,"(50,55]",HS,51.4592459605027,64.52825618551145,0.7974684115523466,6753.91981662232,2019
+2004,55,"(50,55]",HS,51.4592459605027,62.91504978087366,0.8179163195408683,6656.929951393731,2019
+2004,55,"(50,55]",HS,51.4592459605027,64.52825618551145,0.7974684115523466,6433.292147180274,2019
+2004,23,"(20,25]",NoHS,42.89579892280072,96.79238427826716,0.443173285198556,7403.388956170775,2019
+2004,23,"(20,25]",NoHS,46.195475763016155,96.79238427826716,0.4772635379061372,7350.110147719742,2019
+2004,23,"(20,25]",NoHS,50.59504488330341,96.79238427826716,0.5227172081829121,7441.8879892019195,2019
+2004,23,"(20,25]",NoHS,53.737594254937164,96.79238427826716,0.5551841155234657,7333.080945134003,2019
+2004,23,"(20,25]",NoHS,79.66362657091561,96.79238427826716,0.8230361010830324,7434.5548508735155,2019
+2004,51,"(50,55]",College,13546.11619389587,725.9428820870038,18.660030324909744,1288.71472147588,2019
+2004,51,"(50,55]",College,13545.95906642729,725.9428820870038,18.65981387886081,1286.8312361685284,2019
+2004,51,"(50,55]",College,13546.11619389587,725.9428820870038,18.660030324909744,1461.478329352964,2019
+2004,51,"(50,55]",College,13545.95906642729,725.9428820870038,18.65981387886081,1230.9891987932783,2019
+2004,51,"(50,55]",College,13545.95906642729,725.9428820870038,18.65981387886081,1303.215546228274,2019
+2004,37,"(35,40]",HS,69.54461759425493,119.37727394319619,0.5825616157673918,7576.425833329672,2019
+2004,37,"(35,40]",HS,69.71745780969479,82.2735266365271,0.8473862815884476,7148.245217176601,2019
+2004,37,"(35,40]",HS,69.70174506283662,112.92444832464501,0.6172422898401239,7544.528883089687,2019
+2004,37,"(35,40]",HS,71.27301974865351,90.33955865971603,0.7889458483754512,7512.382063095987,2019
+2004,37,"(35,40]",HS,71.27301974865351,82.2735266365271,0.866293480569123,7374.92907881982,2019
+2004,48,"(45,50]",College,4949.515260323159,613.0184337623588,8.074007220216604,992.7355310887251,2019
+2004,48,"(45,50]",College,5150.481292639139,613.0184337623588,8.401837545126353,979.4550332686431,2019
+2004,48,"(45,50]",College,5078.359784560144,613.0184337623588,8.284187725631769,1018.9049668241305,2019
+2004,48,"(45,50]",College,4966.7992818671455,613.0184337623588,8.10220216606498,954.4481334656751,2019
+2004,48,"(45,50]",College,4922.8035906642735,613.0184337623588,8.03043321299639,974.9735975353864,2019
+2004,35,"(30,35]",HS,141.57184919210056,120.99048034783397,1.17010734055355,9243.557003794886,2019
+2004,35,"(30,35]",HS,144.24301615798922,120.99048034783397,1.1921848375451263,8721.158709348512,2019
+2004,35,"(30,35]",HS,182.42499102333935,120.99048034783397,1.507763176895307,9204.641387873002,2019
+2004,35,"(30,35]",HS,125.07346499102334,120.99048034783397,1.033746329723225,9165.420920380899,2019
+2004,35,"(30,35]",HS,129.1587791741472,120.99048034783397,1.0675119133574007,8997.72251965094,2019
+2004,49,"(45,50]",College,831142.0863195691,70835.8932276452,11.733346590951133,4.4650414319951715,2019
+2004,49,"(45,50]",College,860334.0130700179,70787.49703550605,12.153756653360494,4.558260175483293,2019
+2004,49,"(45,50]",College,855950.7852064632,62640.80469208524,13.664428313364464,4.374075390632741,2019
+2004,49,"(45,50]",College,950539.7928904847,65270.33113164483,14.56312196384181,4.383119643535837,2019
+2004,49,"(45,50]",College,827053.472459605,71223.06276475826,11.612158202059764,4.275323436827927,2019
+2004,71,"(70,75]",College,114069.19985637344,2823.111208116126,40.40549289324394,19.85074517363883,2019
+2004,71,"(70,75]",College,114070.2997486535,2823.111208116126,40.40588249613202,20.80433162821725,2019
+2004,71,"(70,75]",College,114069.04272890484,2823.111208116126,40.405437235688495,20.025321777052817,2019
+2004,71,"(70,75]",College,114069.19985637344,2823.111208116126,40.40549289324394,19.550079502266545,2019
+2004,71,"(70,75]",College,114069.82836624776,2823.111208116126,40.4057155234657,19.624724009168094,2019
+2004,54,"(50,55]",College,4064.10197486535,633.9901170226499,6.4103554073543325,269.2094146874113,2019
+2004,54,"(50,55]",College,3954.112746858169,622.6976721901855,6.349971942163446,261.2068357552856,2019
+2004,54,"(50,55]",College,4086.0998204667862,638.8297362365633,6.396226707508295,278.8299964143107,2019
+2004,54,"(50,55]",College,4100.241292639138,621.0844657855476,6.601745041961648,266.2696981144753,2019
+2004,54,"(50,55]",College,4092.3849192100542,606.5656081438076,6.7468133113142335,273.62981941700235,2019
+2004,48,"(45,50]",College,1655.4950089766608,387.16953711306866,4.275891696750903,5909.033350324028,2019
+2004,48,"(45,50]",College,1657.6947935368044,388.7827435177064,4.26380754078224,6576.596105231029,2019
+2004,48,"(45,50]",College,1648.2671454219033,387.16953711306866,4.257223225030085,5833.72041857239,2019
+2004,48,"(45,50]",College,1670.2649910233395,387.16953711306866,4.314040312876053,5847.673241920177,2019
+2004,48,"(45,50]",College,1623.126750448833,387.16953711306866,4.192289410348978,6112.409367183058,2019
+2004,53,"(50,55]",HS,3.488229802513465,46.782985734495796,0.0745619320303747,8857.548885761384,2019
+2004,53,"(50,55]",HS,3.4725170556552962,48.39619213913358,0.07175186522262335,8791.712515061354,2019
+2004,53,"(50,55]",HS,3.4725170556552962,48.39619213913358,0.07175186522262335,8860.623225367231,2019
+2004,53,"(50,55]",HS,3.488229802513465,48.39619213913358,0.07207653429602888,8858.78028090727,2019
+2004,53,"(50,55]",HS,3.488229802513465,48.39619213913358,0.07207653429602888,8736.452839486663,2019
+2004,36,"(35,40]",College,1898.9640215439858,469.4430637495957,4.045142357363505,4112.283762459014,2019
+2004,36,"(35,40]",College,1898.9640215439858,469.4430637495957,4.045142357363505,4298.655500845725,2019
+2004,36,"(35,40]",College,1902.2636983842012,469.4430637495957,4.0521712754475425,4070.9523349891992,2019
+2004,36,"(35,40]",College,1899.1211490125672,469.4430637495957,4.045477067748459,4376.022071387992,2019
+2004,36,"(35,40]",College,1900.849551166966,469.4430637495957,4.049158881982955,4160.464167907599,2019
+2004,42,"(40,45]",College,1087.6363375224419,322.06052662188756,3.3771178012118575,564.6576041482207,2019
+2004,42,"(40,45]",College,1262.047827648115,334.25636704094927,3.7756882204535636,557.218000029867,2019
+2004,42,"(40,45]",College,1449.0295152603233,315.28505972240896,4.595934601329075,1151.5065728130835,2019
+2004,42,"(40,45]",College,1486.7401077199283,367.1657776955601,4.049233882991886,1106.696588214917,2019
+2004,42,"(40,45]",College,1549.5910951526032,323.4156200017834,4.791330409904315,1152.9446910995498,2019
+2004,76,"(75,80]",College,148.79971274685818,322.6412809275572,0.46119241877256323,12749.079516683476,2019
+2004,76,"(75,80]",College,155.87044883303412,322.6412809275572,0.48310758122743686,11757.833486781801,2019
+2004,76,"(75,80]",College,179.75382405745063,322.6412809275572,0.5571321299638989,12751.991942875964,2019
+2004,76,"(75,80]",College,161.52703770197485,322.6412809275572,0.5006397111913357,12491.321789857808,2019
+2004,76,"(75,80]",College,153.04215439856372,322.6412809275572,0.47434151624548737,12355.567276196924,2019
+2004,23,"(20,25]",College,10.77894434470377,1.6132064046377856,6.681689530685922,7347.505951965679,2019
+2004,23,"(20,25]",College,5.499461400359067,1.6132064046377856,3.409025270758124,7435.357648872186,2019
+2004,23,"(20,25]",College,23.569120287253142,1.6132064046377856,14.6101083032491,7358.650356307558,2019
+2004,23,"(20,25]",College,38.49622980251347,1.6132064046377856,23.863176895306868,7274.097913436175,2019
+2004,23,"(20,25]",College,13.905780969479354,1.6132064046377856,8.61996389891697,7391.7530434582995,2019
+2004,53,"(50,55]",College,8706.43303411131,967.9238427826717,8.994956678700358,269.2094146874113,2019
+2004,53,"(50,55]",College,8706.43303411131,967.9238427826717,8.994956678700358,261.2068357552856,2019
+2004,53,"(50,55]",College,8704.861759425494,967.9238427826717,8.993333333333332,278.8299964143107,2019
+2004,53,"(50,55]",College,8704.861759425494,967.9238427826717,8.993333333333332,266.2696981144753,2019
+2004,53,"(50,55]",College,8706.43303411131,967.9238427826717,8.994956678700358,273.62981941700235,2019
+2004,47,"(45,50]",College,144631.79665350087,9598.578107594827,15.0680439365349,36.87459901798185,2019
+2004,47,"(45,50]",College,132240.86589587072,9808.29494019774,13.482553971119131,38.043212898386145,2019
+2004,47,"(45,50]",College,143229.70111310593,5242.9208150728045,27.318684787559015,38.305801416184025,2019
+2004,47,"(45,50]",College,152495.66506283663,8275.748855791842,18.42681160582966,37.07704907873515,2019
+2004,47,"(45,50]",College,162973.27034829443,5549.430031953984,29.36756917555201,38.26673336724582,2019
+2004,81,"(80,85]",HS,168.59777378815082,30.650921688117936,5.50057761732852,9549.924690698977,2019
+2004,81,"(80,85]",HS,154.17347217235186,29.03771528348015,5.30942158042519,9595.943393791003,2019
+2004,81,"(80,85]",HS,174.72574506283664,30.650921688117936,5.700505415162455,9545.217080444641,2019
+2004,81,"(80,85]",HS,188.23870736086178,29.03771528348015,6.48255916566386,9515.99944458302,2019
+2004,81,"(80,85]",HS,185.23757271095153,29.03771528348015,6.37920617729643,9542.600599242509,2019
+2004,29,"(25,30]",HS,132.3798922800718,164.5470532730542,0.8045108657181282,6364.717704377331,2019
+2004,29,"(25,30]",HS,127.5089407540395,164.5470532730542,0.774908685495859,6322.490501726994,2019
+2004,29,"(25,30]",HS,132.22276481149015,164.5470532730542,0.8035559566787005,6369.751115546858,2019
+2004,29,"(25,30]",HS,130.65149012567326,164.5470532730542,0.79400686628442,6365.856933303251,2019
+2004,29,"(25,30]",HS,130.49436265709156,164.5470532730542,0.7930519572449918,6357.130724812937,2019
+2004,44,"(40,45]",HS,71.96438061041293,56.46222416232251,1.274558019597731,4355.917331564377,2019
+2004,44,"(40,45]",HS,4.870951526032316,45.16977932985802,0.10783651366683857,4415.648922695794,2019
+2004,44,"(40,45]",HS,2.356912028725314,56.46222416232251,0.041743166580711706,4366.406913280023,2019
+2004,44,"(40,45]",HS,4.870951526032316,43.55657292522023,0.11183045861746221,4344.986523606857,2019
+2004,44,"(40,45]",HS,1.8855296229802514,40.33016011594465,0.04675234657039711,4387.723440346688,2019
+2004,52,"(50,55]",College,13857.85709156194,995.348351661514,13.922620224797994,20.626138171850155,2019
+2004,52,"(50,55]",College,13695.387289048474,995.348351661514,13.75939113797401,21.160599969936417,2019
+2004,52,"(50,55]",College,13766.723159784562,995.348351661514,13.83106038886191,21.982680535781373,2019
+2004,52,"(50,55]",College,13692.401867145421,995.348351661514,13.756391764038172,19.826033511512716,2019
+2004,52,"(50,55]",College,13777.72208258528,995.348351661514,13.84211071388868,20.65284709280759,2019
+2004,72,"(70,75]",College,1174.1350089766606,66.14146259014923,17.751875495289248,6086.054499164932,2019
+2004,72,"(70,75]",College,1175.7062836624775,66.14146259014923,17.77563176895307,6765.351211573392,2019
+2004,72,"(70,75]",College,1176.0205385996408,66.30278323061302,17.737121751122114,6024.2752625179655,2019
+2004,72,"(70,75]",College,1174.2921364452425,66.14146259014923,17.75425112265563,6006.275830088902,2019
+2004,72,"(70,75]",College,1177.2775583482944,66.30278323061302,17.7560805291312,6294.4612583011885,2019
+2004,52,"(50,55]",HS,900.7332136445242,141.9621636081252,6.3448822612405635,6339.724522905874,2019
+2004,52,"(50,55]",HS,590.8778456014362,141.9621636081252,4.162220626846077,7055.481763870443,2019
+2004,52,"(50,55]",HS,319.9900897666068,141.9621636081252,2.2540519363308165,7345.675309456386,2019
+2004,52,"(50,55]",HS,1038.219748653501,141.9621636081252,7.313355349524122,6274.438997480557,2019
+2004,52,"(50,55]",HS,321.2471095152603,141.9621636081252,2.262906547423695,7080.036129794603,2019
+2004,68,"(65,70]",College,73733.63590664274,1613.2064046377861,45.70626281588448,28.051123467131287,2019
+2004,68,"(65,70]",College,68810.83231597845,1613.2064046377861,42.654698194945844,29.24567987686131,2019
+2004,68,"(65,70]",College,73691.21149012567,1613.2064046377861,45.67996462093863,29.209571447481505,2019
+2004,68,"(65,70]",College,66400.49694793536,1613.2064046377861,41.16057111913357,27.62633965252826,2019
+2004,68,"(65,70]",College,73710.06678635548,1613.2064046377861,45.691652707581234,28.30095239983563,2019
+2004,26,"(25,30]",HS,394.70420107719934,193.58476855653433,2.0389217809867635,6973.832796094782,2019
+2004,26,"(25,30]",HS,392.9757989228007,193.58476855653433,2.0299933814681106,7180.031768915478,2019
+2004,26,"(25,30]",HS,394.38994614003593,193.58476855653433,2.0372984356197352,6816.439475842737,2019
+2004,26,"(25,30]",HS,394.5470736086176,193.58476855653433,2.038110108303249,6716.579422355692,2019
+2004,26,"(25,30]",HS,394.5470736086176,193.58476855653433,2.038110108303249,6992.568684170657,2019
+2004,70,"(65,70]",NoHS,359.03626570915617,100.01879708754274,3.5896879003144284,9705.217275038962,2019
+2004,70,"(65,70]",NoHS,340.1809694793537,40.33016011594465,8.434902527075813,9071.765843696507,2019
+2004,70,"(65,70]",NoHS,220.9212208258528,79.04711382725151,2.794804391070508,10118.323092378836,2019
+2004,70,"(65,70]",NoHS,237.73385996409337,37.10374730666908,6.407273583424895,9807.315099370613,2019
+2004,70,"(65,70]",NoHS,280.47253141831243,30.650921688117936,9.150541516245488,9773.122543594585,2019
+2004,38,"(35,40]",HS,154.92768402154397,88.72635225507824,1.7461293075155888,10146.701579819632,2019
+2004,38,"(35,40]",HS,147.49555475763017,88.72635225507824,1.662364686576961,9459.961882537365,2019
+2004,38,"(35,40]",HS,133.13410412926393,88.72635225507824,1.5005023957991468,10145.835730242588,2019
+2004,38,"(35,40]",HS,144.5572710951526,88.72635225507824,1.6292484410895962,10149.926870308638,2019
+2004,38,"(35,40]",HS,146.1285457809695,88.72635225507824,1.6469576632753529,9907.85281137207,2019
+2004,57,"(55,60]",HS,700.0028725314183,64.52825618551145,10.848005415162454,564.6576041482207,2019
+2004,57,"(55,60]",HS,696.8603231597846,64.52825618551145,10.799305054151624,557.218000029867,2019
+2004,57,"(55,60]",HS,698.4315978456013,64.52825618551145,10.823655234657037,568.5293038108367,2019
+2004,57,"(55,60]",HS,698.4315978456013,64.52825618551145,10.823655234657037,525.6327456839268,2019
+2004,57,"(55,60]",HS,700.0028725314183,64.52825618551145,10.848005415162454,566.4799876968088,2019
+2004,34,"(30,35]",HS,57.47722800718133,61.30184337623587,0.9376101083032491,6191.532941114607,2019
+2004,34,"(30,35]",HS,61.31113824057451,61.30184337623587,1.0001516245487365,6096.916731679036,2019
+2004,34,"(30,35]",HS,58.34142908438061,61.30184337623587,0.9517075812274367,6177.869405104905,2019
+2004,34,"(30,35]",HS,58.87566247755835,61.30184337623587,0.9604223826714802,6261.974759899928,2019
+2004,34,"(30,35]",HS,59.23705565529623,61.30184337623587,0.966317689530686,6167.6902574158,2019
+2004,61,"(60,65]",College,364787.13105924596,22601.021728975382,16.14029380767219,2.04238032435944,2019
+2004,61,"(60,65]",College,389212.5960502693,22665.549985160895,17.17198992766936,2.1063687971285536,2019
+2004,61,"(60,65]",College,379812.9166247756,22601.021728975382,16.805121519698414,2.057776837958709,2019
+2004,61,"(60,65]",College,383349.85594254936,22601.021728975382,16.96161618441701,1.9999112709503986,2019
+2004,61,"(60,65]",College,385746.3640933573,22601.021728975382,17.067651574300978,1.989206343437407,2019
+2004,40,"(35,40]",College,207.45539676840215,148.4149892266763,1.397806231360854,6930.004714420223,2019
+2004,40,"(35,40]",College,209.03452782764813,150.02819563131413,1.393301618725981,7694.293922982768,2019
+2004,40,"(35,40]",College,205.89197845601436,150.02819563131413,1.3723552268933656,6840.536845856064,2019
+2004,40,"(35,40]",College,207.47110951526034,148.4149892266763,1.3979121017108775,6830.354341156385,2019
+2004,40,"(35,40]",College,205.88412208258526,148.4149892266763,1.3872191963584994,7137.322000405559,2019
+2004,62,"(60,65]",HS,15.2413644524237,22.58488966492901,0.6748478597215058,6103.08533831752,2019
+2004,62,"(60,65]",HS,15.2413644524237,22.58488966492901,0.6748478597215058,5852.590959056283,2019
+2004,62,"(60,65]",HS,15.398491921005387,22.58488966492901,0.6818050541516245,6071.350019043279,2019
+2004,62,"(60,65]",HS,15.2413644524237,22.58488966492901,0.6748478597215058,6115.620687985456,2019
+2004,62,"(60,65]",HS,15.2413644524237,22.58488966492901,0.6748478597215058,5998.434205348365,2019
+2004,62,"(60,65]",HS,383.39102333931777,98.40559068290497,3.896028880866425,8235.094814078677,2019
+2004,62,"(60,65]",HS,391.24739676840215,90.33955865971603,4.330853532748839,7340.649486198675,2019
+2004,62,"(60,65]",HS,403.81759425493715,80.6603202318893,5.0063971119133575,8196.707338858952,2019
+2004,62,"(60,65]",HS,395.96122082585276,83.88673304116487,4.720188836434324,8115.509908416655,2019
+2004,62,"(60,65]",HS,395.96122082585276,91.95276506435381,4.306137184115523,7894.927944855963,2019
+2004,88,"(85,90]",NoHS,1633.8114183123878,167.77346608232975,9.738199111357956,1216.877549879576,2019
+2004,88,"(85,90]",NoHS,1086.2850412926393,177.45270451015648,6.121546832950444,1203.818700682523,2019
+2004,88,"(85,90]",NoHS,4882.5789587073605,190.35835574725877,25.649407085602395,4050.5172030113586,2019
+2004,88,"(85,90]",NoHS,1335.5834829443447,203.26400698436103,6.570683628445362,1156.6153072770053,2019
+2004,88,"(85,90]",NoHS,4165.449192100538,208.1036261982744,20.01622589762964,3730.011843083447,2019
+2004,78,"(75,80]",HS,93314.86104129264,7178.768500638149,12.998728268364903,24.457981396536375,2019
+2004,78,"(75,80]",HS,150542.2563734291,7178.768500638149,20.970484890277042,25.241077758909505,2019
+2004,78,"(75,80]",HS,139207.08078994614,7178.768500638149,19.391498803391066,24.762509218334433,2019
+2004,78,"(75,80]",HS,130447.22441651706,7178.768500638149,18.17125380278262,24.14779164082926,2019
+2004,78,"(75,80]",HS,104436.34326750449,7178.768500638149,14.547946943576845,24.25893139851881,2019
+2004,47,"(45,50]",HS,-0.5499461400359067,80.6603202318893,-0.006818050541516247,6253.051231385509,2019
+2004,47,"(45,50]",HS,-0.5499461400359067,80.6603202318893,-0.006818050541516247,6118.9009605565025,2019
+2004,47,"(45,50]",HS,-0.5499461400359067,80.6603202318893,-0.006818050541516247,6278.703941366044,2019
+2004,47,"(45,50]",HS,-0.5499461400359067,80.6603202318893,-0.006818050541516247,6306.981580486323,2019
+2004,47,"(45,50]",HS,-0.5499461400359067,80.6603202318893,-0.006818050541516247,6186.11161060275,2019
+2004,80,"(75,80]",HS,471.5395332136445,49.202795341452486,9.583592353672246,11535.571136654666,2019
+2004,80,"(75,80]",HS,471.3824057450629,49.202795341452486,9.580398887376457,10357.280524805135,2019
+2004,80,"(75,80]",HS,471.5395332136445,49.202795341452486,9.583592353672246,11489.865457509044,2019
+2004,80,"(75,80]",HS,471.5395332136445,49.202795341452486,9.583592353672246,11349.832207947613,2019
+2004,80,"(75,80]",HS,471.5395332136445,49.202795341452486,9.583592353672246,11117.721709908472,2019
+2004,57,"(55,60]",College,1608.042513464991,208.1036261982744,7.727123947051745,6358.527658684037,2019
+2004,57,"(55,60]",College,1601.7574147217235,208.1036261982744,7.696922172781463,7032.364710722625,2019
+2004,57,"(55,60]",College,1727.4593895870737,208.1036261982744,8.30095765818711,6275.687388832938,2019
+2004,57,"(55,60]",College,1589.1872172351884,208.1036261982744,7.636518624240897,6255.628435316029,2019
+2004,57,"(55,60]",College,1568.760646319569,208.1036261982744,7.53836285786248,6574.763177232569,2019
+2004,40,"(35,40]",HS,257.2176660682226,59.68863697159809,4.30932383647185,7062.627793319625,2019
+2004,40,"(35,40]",HS,317.0832315978456,59.68863697159809,5.312288028100302,6651.414515462124,2019
+2004,40,"(35,40]",HS,373.49199281867146,58.0754305669603,6.431153229041316,7082.193515380706,2019
+2004,40,"(35,40]",HS,291.7857091561939,58.0754305669603,5.024253910950661,7033.4431952697605,2019
+2004,40,"(35,40]",HS,285.5006104129264,59.68863697159809,4.783165186847497,6946.232256609037,2019
+2004,42,"(40,45]",College,342.6950089766607,141.9621636081252,2.41398834919593,7794.113448573606,2019
+2004,42,"(40,45]",College,342.6950089766607,140.3489572034874,2.4417353417154235,8653.135851704279,2019
+2004,42,"(40,45]",College,342.6950089766607,141.9621636081252,2.41398834919593,7694.240623350392,2019
+2004,42,"(40,45]",College,342.6950089766607,140.3489572034874,2.4417353417154235,7682.7072653679625,2019
+2004,42,"(40,45]",College,342.6950089766607,141.9621636081252,2.41398834919593,8026.810191381164,2019
+2004,46,"(45,50]",College,236.94822262118493,100.01879708754274,2.3690369162687785,8337.15889642898,2019
+2004,46,"(45,50]",College,235.37694793536807,100.01879708754274,2.353327122394317,7703.642154311169,2019
+2004,46,"(45,50]",College,235.37694793536807,100.01879708754274,2.353327122394317,8413.024449180815,2019
+2004,46,"(45,50]",College,236.94822262118493,100.01879708754274,2.3690369162687785,8403.737798038,2019
+2004,46,"(45,50]",College,235.37694793536807,100.01879708754274,2.353327122394317,8115.826544683972,2019
+2004,28,"(25,30]",College,-39.737536804308796,104.8584163014561,-0.37896373229658425,6775.577208909975,2019
+2004,28,"(25,30]",College,-37.20778456014363,104.8584163014561,-0.3548383226881422,6871.518800925673,2019
+2004,28,"(25,30]",College,-38.4805170556553,104.8584163014561,-0.36697595112468756,6758.631146700252,2019
+2004,28,"(25,30]",College,-39.89466427289049,104.8584163014561,-0.38046220494307137,6826.457823822444,2019
+2004,28,"(25,30]",College,-38.794771992818674,104.8584163014561,-0.3699728964176618,6812.369879885921,2019
+2004,42,"(40,45]",College,1115.9192818671454,227.46210305392788,4.90595693473641,5357.6792351803,2019
+2004,42,"(40,45]",College,1041.4408617594256,227.46210305392788,4.578524720280615,5948.561433841337,2019
+2004,42,"(40,45]",College,1057.87639497307,227.46210305392788,4.650780858744911,5739.187096424263,2019
+2004,42,"(40,45]",College,1035.7842728904848,227.46210305392788,4.553656450828276,5280.638200200528,2019
+2004,42,"(40,45]",College,1078.5229443447038,227.46210305392788,4.741550042245947,5517.958998902008,2019
+2004,76,"(75,80]",HS,322.2684380610413,32.90941065461084,9.792592199334608,11106.213781223883,2019
+2004,76,"(75,80]",HS,322.2684380610413,32.90941065461084,9.792592199334608,10075.541469967535,2019
+2004,76,"(75,80]",HS,322.425565529623,34.52261705924863,9.339545868619046,11099.620298238975,2019
+2004,76,"(75,80]",HS,322.425565529623,34.52261705924863,9.339545868619046,10891.032958338828,2019
+2004,76,"(75,80]",HS,322.2684380610413,32.90941065461084,9.792592199334608,10784.18131924419,2019
+2004,80,"(75,80]",College,-349.15294793536805,50.00939854377137,-6.9817465936881336,11614.438465416519,2019
+2004,80,"(75,80]",College,-331.271842010772,46.782985734495796,-7.081032490974729,11670.397142169923,2019
+2004,80,"(75,80]",College,-379.13286894075407,46.782985734495796,-8.104075936760863,11693.407007149764,2019
+2004,80,"(75,80]",College,-388.23054937163374,53.23581135304694,-7.292657696094519,11633.140630380101,2019
+2004,80,"(75,80]",College,-344.18771992818677,54.84901775768473,-6.275184752601403,11628.23489874788,2019
+2004,44,"(40,45]",HS,374.4347576301616,108.08482911073166,3.4642674713077217,9197.501265738561,2019
+2004,44,"(40,45]",HS,330.43906642728905,108.08482911073166,3.0572196777843637,8572.78283679658,2019
+2004,44,"(40,45]",HS,324.15396768402155,108.08482911073166,2.9990699929953126,9191.895417131178,2019
+2004,44,"(40,45]",HS,310.01249551166967,108.08482911073166,2.8682332022199475,9190.069957348474,2019
+2004,44,"(40,45]",HS,372.8634829443447,108.08482911073166,3.4497300501104586,8978.595004775625,2019
+2004,24,"(20,25]",HS,20.52241867145422,29.03771528348015,0.7067504612916164,6242.3594776791415,2019
+2004,24,"(20,25]",HS,20.52241867145422,29.03771528348015,0.7067504612916164,6197.436068026787,2019
+2004,24,"(20,25]",HS,20.52241867145422,29.03771528348015,0.7067504612916164,6274.820936228219,2019
+2004,24,"(20,25]",HS,20.52241867145422,29.03771528348015,0.7067504612916164,6183.077454047738,2019
+2004,24,"(20,25]",HS,20.52241867145422,29.03771528348015,0.7067504612916164,6268.63781038998,2019
+2004,37,"(35,40]",College,17531.340179533214,864.6786328858533,20.274977908292474,296.0397099261976,2019
+2004,37,"(35,40]",College,17528.19763016158,864.6786328858533,20.27134355299316,299.03916731264485,2019
+2004,37,"(35,40]",College,17531.340179533214,864.6786328858533,20.274977908292474,302.9047401731085,2019
+2004,37,"(35,40]",College,17531.340179533214,864.6786328858533,20.274977908292474,290.2047499601082,2019
+2004,37,"(35,40]",College,17532.911454219033,864.6786328858533,20.276795085942133,293.2625843352513,2019
+2004,72,"(70,75]",NoHS,6.693630161579892,25.81130247420457,0.25932942238267154,5578.6437855518125,2019
+2004,72,"(70,75]",NoHS,5.82942908438061,24.19809606956679,0.24090445246690734,5876.872296114803,2019
+2004,72,"(70,75]",NoHS,5.090929982046679,24.19809606956679,0.210385559566787,5790.256599892366,2019
+2004,72,"(70,75]",NoHS,7.542118491921006,24.19809606956679,0.3116823104693141,5751.944687228982,2019
+2004,72,"(70,75]",NoHS,7.322140035906643,25.81130247420457,0.28367960288808675,5852.539056786789,2019
+2004,36,"(35,40]",College,782.8090484739678,295.21677204871486,2.6516415142727507,789.8884562585132,2019
+2004,36,"(35,40]",College,781.2377737881509,295.21677204871486,2.6463190704464306,761.9122452706578,2019
+2004,36,"(35,40]",College,782.651921005386,295.21677204871486,2.6511092698901186,799.7558219392415,2019
+2004,36,"(35,40]",College,781.0806463195692,293.6035656440771,2.660324116316896,735.8748788290974,2019
+2004,36,"(35,40]",College,782.651921005386,295.21677204871486,2.6511092698901186,794.9521253226494,2019
+2004,50,"(45,50]",HS,57.00584560143627,56.46222416232251,1.009628055698814,7752.011981902098,2019
+2004,50,"(45,50]",HS,56.84871813285458,56.46222416232251,1.0068451779267664,7190.212949408556,2019
+2004,50,"(45,50]",HS,57.00584560143627,56.46222416232251,1.009628055698814,7844.632501505539,2019
+2004,50,"(45,50]",HS,57.00584560143627,58.0754305669603,0.9815828319294024,7780.4993639685445,2019
+2004,50,"(45,50]",HS,57.00584560143627,58.0754305669603,0.9815828319294024,7586.337109629446,2019
+2004,74,"(70,75]",College,3500.1557773788154,280.6979144069748,12.469475538404083,3233.1316539052846,2019
+2004,74,"(70,75]",College,1063.1401651705567,304.8960104765416,3.4868943136018946,6561.04674588699,2019
+2004,74,"(70,75]",College,1056.6822262118492,193.42344791607056,5.4630513394134095,5841.397555896382,2019
+2004,74,"(70,75]",College,2244.5501759425497,288.7639464301637,7.7729585140068185,3444.322694031913,2019
+2004,74,"(70,75]",College,1402.5197845601438,109.05275295351434,12.860929656292056,6104.335521495681,2019
+2004,53,"(50,55]",College,253.79228725314184,64.52825618551145,3.9330411552346565,8487.682468520583,2019
+2004,53,"(50,55]",College,253.94941472172354,64.52825618551145,3.935476173285198,8024.446347489045,2019
+2004,53,"(50,55]",College,253.94941472172354,64.52825618551145,3.935476173285198,8557.619073957962,2019
+2004,53,"(50,55]",College,253.94941472172354,64.52825618551145,3.935476173285198,8514.623400677488,2019
+2004,53,"(50,55]",College,198.79767324955117,64.52825618551145,3.080784837545126,8321.27596105532,2019
+2004,47,"(45,50]",NoHS,66.30779174147217,32.264128092755726,2.0551552346570396,4527.957465626455,2019
+2004,47,"(45,50]",NoHS,66.13495152603231,32.264128092755726,2.049798194945848,4386.670921921176,2019
+2004,47,"(45,50]",NoHS,66.30779174147217,32.264128092755726,2.0551552346570396,4551.545882754592,2019
+2004,47,"(45,50]",NoHS,66.15066427289048,32.264128092755726,2.0502851985559563,4578.900745553357,2019
+2004,47,"(45,50]",NoHS,66.292078994614,32.264128092755726,2.054668231046931,4474.729998058235,2019
+2004,53,"(50,55]",HS,414.03087971274687,96.79238427826716,4.277515042117931,6791.998075993523,2019
+2004,53,"(50,55]",HS,415.60215439856375,96.79238427826716,4.293748495788207,7559.3122335087555,2019
+2004,53,"(50,55]",HS,413.8737522441652,96.79238427826716,4.275891696750903,6705.431414878552,2019
+2004,53,"(50,55]",HS,414.18800718132854,96.79238427826716,4.279138387484958,6721.469156369324,2019
+2004,53,"(50,55]",HS,415.60215439856375,96.79238427826716,4.293748495788207,7025.763809458881,2019
+2004,56,"(55,60]",College,10230.569479353682,2129.4324541218775,4.804364402144187,490.993858571081,2019
+2004,56,"(55,60]",College,10230.569479353682,2129.4324541218775,4.804364402144187,487.69750236713173,2019
+2004,56,"(55,60]",College,10230.569479353682,2145.5645181682557,4.76824136152656,503.8048438566996,2019
+2004,56,"(55,60]",College,10230.569479353682,2145.5645181682557,4.76824136152656,486.95182742288017,2019
+2004,56,"(55,60]",College,10228.998204667865,2129.4324541218775,4.803626517886447,491.48446778102596,2019
+2004,74,"(70,75]",College,188417.36129263914,25569.32151350891,7.368883886617545,27.768818387630876,2019
+2004,74,"(70,75]",College,172720.32718132852,25456.397065184265,6.784947875343737,28.446810801806002,2019
+2004,74,"(70,75]",College,177266.02484739677,25537.057385416156,6.941521185155453,28.169819163329105,2019
+2004,74,"(70,75]",College,192765.07834829445,25585.453577555283,7.534166934503624,27.36970347254667,2019
+2004,74,"(70,75]",College,185279.52574506283,25537.057385416156,7.255320100070468,27.53974791481673,2019
+2004,43,"(40,45]",HS,101.19008976660682,32.264128092755726,3.1363032490974723,8447.292811936333,2019
+2004,43,"(40,45]",HS,82.33479353680431,32.264128092755726,2.5518989169675086,8106.559368536711,2019
+2004,43,"(40,45]",HS,71.33587073608618,32.264128092755726,2.2109963898916964,8379.969470800263,2019
+2004,43,"(40,45]",HS,113.76028725314183,32.264128092755726,3.5259061371841147,8416.169548512853,2019
+2004,43,"(40,45]",HS,102.7613644524237,32.264128092755726,3.185003610108303,8277.079231803935,2019
+2004,48,"(45,50]",College,63402.50484739677,3742.6388587596634,16.940588509896678,224.5756583048576,2019
+2004,48,"(45,50]",College,63485.78240574506,3742.6388587596634,16.962839536910245,233.31197362120798,2019
+2004,48,"(45,50]",College,63416.64631956912,3742.6388587596634,16.944366986182,232.18788864895015,2019
+2004,48,"(45,50]",College,64197.56983842011,3742.6388587596634,17.153022843271508,233.99581520855227,2019
+2004,48,"(45,50]",College,63485.78240574506,3742.6388587596634,16.962839536910245,260.2593226387703,2019
+2004,33,"(30,35]",HS,196.40933572710952,250.04699271885684,0.7854896937230698,6982.443490250873,2019
+2004,33,"(30,35]",HS,194.83806104129266,250.04699271885684,0.7792057761732853,7758.317804795392,2019
+2004,33,"(30,35]",HS,197.98061041292638,250.04699271885684,0.7917736112728543,6901.74218657153,2019
+2004,33,"(30,35]",HS,194.83806104129266,250.04699271885684,0.7792057761732853,6867.267150388243,2019
+2004,33,"(30,35]",HS,194.83806104129266,250.04699271885684,0.7792057761732853,7218.723832649016,2019
+2004,40,"(35,40]",College,81.62771992818672,74.20749461333816,1.0999929367446242,8546.270846370313,2019
+2004,40,"(35,40]",College,45.80265709156194,74.20749461333816,0.6172241406372626,7965.785696958546,2019
+2004,40,"(35,40]",College,45.488402154398564,74.20749461333816,0.6129893266363209,8541.061920691664,2019
+2004,40,"(35,40]",College,138.19360861759426,74.20749461333816,1.8622594569141424,8539.365712855279,2019
+2004,40,"(35,40]",College,50.359353680430885,74.20749461333816,0.6786289436509183,8342.864275161188,2019
+2004,56,"(55,60]",College,1191.1047755834832,112.92444832464501,10.54780247550284,9527.621141191357,2019
+2004,56,"(55,60]",College,1174.2921364452425,112.92444832464501,10.3989185146983,10442.851053073717,2019
+2004,56,"(55,60]",College,1184.1911669658887,112.92444832464501,10.486579164517794,9406.18789852356,2019
+2004,56,"(55,60]",College,1214.8310233393179,112.92444832464501,10.757909747292421,9428.685184767575,2019
+2004,56,"(55,60]",College,1184.8196768402154,112.92444832464501,10.492144920061888,9855.541043307177,2019
+2004,34,"(30,35]",HS,39.2818671454219,120.99048034783397,0.3246690734055354,9494.394337605398,2019
+2004,34,"(30,35]",HS,39.2818671454219,120.99048034783397,0.3246690734055354,9250.49848477949,2019
+2004,34,"(30,35]",HS,37.710592459605024,120.99048034783397,0.31168231046931405,9531.850085348404,2019
+2004,34,"(30,35]",HS,37.710592459605024,120.99048034783397,0.31168231046931405,9490.140569556446,2019
+2004,34,"(30,35]",HS,37.710592459605024,120.99048034783397,0.31168231046931405,9463.461732316013,2019
+2004,49,"(45,50]",HS,3.613931777378815,37.10374730666908,0.09740072202166065,5231.164680635363,2019
+2004,49,"(45,50]",HS,7.919224416517056,37.10374730666908,0.2134346256474651,5133.122843161817,2019
+2004,49,"(45,50]",HS,6.190822262118492,37.10374730666908,0.16685167163710565,5274.244836871872,2019
+2004,49,"(45,50]",HS,3.1896876122082585,37.10374730666908,0.08596672421911788,5238.740784872168,2019
+2004,49,"(45,50]",HS,8.154915619389588,37.10374730666908,0.21978684664887777,5179.88504382142,2019
+2004,44,"(40,45]",College,-147.14987432675048,74.20749461333816,-1.982951655940983,3857.921339408413,2019
+2004,44,"(40,45]",College,-147.14987432675048,72.59428820870036,-2.0270172482952273,3910.824037628342,2019
+2004,44,"(40,45]",College,-149.38108438061042,69.36787539942482,-2.1534620099068085,3867.211685864032,2019
+2004,44,"(40,45]",College,-146.6627791741472,74.20749461333816,-1.9763876942395229,3848.240210482778,2019
+2004,44,"(40,45]",College,-154.39345062836622,72.59428820870036,-2.1267988768551946,3886.091172868216,2019
+2004,59,"(55,60]",College,129907.9629443447,4952.543662238004,26.230553792965576,19.81794948471067,2019
+2004,59,"(55,60]",College,112992.79813285459,5323.581135304694,21.224960277868945,20.612904765621785,2019
+2004,59,"(55,60]",College,117579.27037701975,4307.261100382889,27.297920334239244,20.633580245552746,2019
+2004,59,"(55,60]",College,109596.72359066427,5533.297967907606,19.80676338529223,19.525588748991442,2019
+2004,59,"(55,60]",College,117339.17960502693,4839.619213913359,24.245539663056555,19.991066487296695,2019
+2004,52,"(50,55]",College,186991.11526032316,4291.1290363365115,43.576204228984004,22.10647383731183,2019
+2004,52,"(50,55]",College,178356.96086175943,4162.0725239654885,42.852919989925276,22.878093812438543,2019
+2004,52,"(50,55]",College,179965.9461400359,7775.654870354129,23.14479605135042,23.064657985525542,2019
+2004,52,"(50,55]",College,174854.5895870736,3419.997577832107,51.127109188747355,21.734439474054252,2019
+2004,52,"(50,55]",College,187772.03877917415,5501.0338398148515,34.13395449781382,22.30086815914582,2019
+2004,60,"(55,60]",College,229.87748653500898,90.33955865971603,2.5445938628158844,4910.809395559927,2019
+2004,60,"(55,60]",College,223.59238779174146,75.82070101797595,2.948962285889853,4883.866222135726,2019
+2004,60,"(55,60]",College,196.40933572710952,85.49993944580267,2.297186840133506,4885.758546295976,2019
+2004,60,"(55,60]",College,227.2063195691203,82.2735266365271,2.761596942025908,4926.597071539127,2019
+2004,60,"(55,60]",College,205.99411131059244,75.82070101797595,2.7168584376680234,4891.5780844001565,2019
+2004,56,"(55,60]",HS,164.35533213644524,127.4433059663851,1.2896348763880638,6866.616153416908,2019
+2004,56,"(55,60]",HS,157.91310592459604,127.4433059663851,1.2390851345793539,6006.719196083962,2019
+2004,56,"(55,60]",HS,162.62692998204668,127.4433059663851,1.2760727505369465,6908.602070179635,2019
+2004,56,"(55,60]",HS,170.79755834829444,127.4433059663851,1.3401846181967738,6763.861669904446,2019
+2004,56,"(55,60]",HS,165.9266068222621,127.4433059663851,1.3019640817072613,6607.63059081072,2019
+2004,75,"(70,75]",HS,504.06491921005386,56.46222416232251,8.927471892728212,11399.93099166073,2019
+2004,75,"(70,75]",HS,503.5935368043088,56.46222416232251,8.91912325941207,10360.768257716907,2019
+2004,75,"(70,75]",HS,502.02226211849194,56.46222416232251,8.891294481691595,11313.854651663798,2019
+2004,75,"(70,75]",HS,501.5508797127469,56.46222416232251,8.882945848375453,11130.556834072255,2019
+2004,75,"(70,75]",HS,502.1793895870736,56.46222416232251,8.894077359463642,10955.541934100167,2019
+2004,32,"(30,35]",College,310.16962298025135,145.18857641740072,2.136322503008424,6723.616121690959,2019
+2004,32,"(30,35]",College,310.01249551166967,145.18857641740072,2.1352402727637387,6677.27736761745,2019
+2004,32,"(30,35]",College,310.01249551166967,145.18857641740072,2.1352402727637387,6725.4059962762885,2019
+2004,32,"(30,35]",College,310.01249551166967,145.18857641740072,2.1352402727637387,6717.2509503517995,2019
+2004,32,"(30,35]",College,311.74089766606824,145.18857641740072,2.1471448054552753,6713.805779155629,2019
+2004,42,"(40,45]",HS,59.710009335727115,37.10374730666908,1.6092716684978812,10939.415144751361,2019
+2004,42,"(40,45]",HS,59.8671368043088,38.716953711306864,1.5462770457280386,10932.835701890772,2019
+2004,42,"(40,45]",HS,59.8671368043088,38.716953711306864,1.5462770457280386,10852.800911386494,2019
+2004,42,"(40,45]",HS,59.8671368043088,32.264128092755726,1.855532454873646,10932.342328907753,2019
+2004,42,"(40,45]",HS,59.710009335727115,37.10374730666908,1.6092716684978812,10841.494557934404,2019
+2004,30,"(25,30]",HS,247.00438061041294,167.77346608232975,1.472249375173563,7581.353916102174,2019
+2004,30,"(25,30]",HS,248.57565529622983,167.77346608232975,1.4816148292141074,7529.103685228774,2019
+2004,30,"(25,30]",HS,247.00438061041294,167.77346608232975,1.472249375173563,7583.372126608429,2019
+2004,30,"(25,30]",HS,248.57565529622983,167.77346608232975,1.4816148292141074,7574.17673409395,2019
+2004,30,"(25,30]",HS,247.00438061041294,167.77346608232975,1.472249375173563,7570.292059289944,2019
+2004,44,"(40,45]",HS,6837.087540394973,133.89613158493626,51.06262189552433,1727.0850263724374,2019
+2004,44,"(40,45]",HS,3851.6656373429087,133.89613158493626,28.766071071288764,1728.4722888277988,2019
+2004,44,"(40,45]",HS,3694.5381687612207,133.89613158493626,27.592568396328996,1748.0545781438748,2019
+2004,44,"(40,45]",HS,5815.758994614003,133.89613158493626,43.434854508285845,1672.2664092956227,2019
+2004,44,"(40,45]",HS,5030.121651705566,133.89613158493626,37.56734113348702,1672.9449619868979,2019
+2004,41,"(40,45]",College,28644.337522441652,437.1789356568401,65.52085470313186,304.50492492854573,2019
+2004,41,"(40,45]",College,28642.766247755833,438.7921420614778,65.27638829900191,300.27981944589897,2019
+2004,41,"(40,45]",College,28644.337522441652,437.1789356568401,65.52085470313186,308.38580464671634,2019
+2004,41,"(40,45]",College,28644.337522441652,438.7921420614778,65.27996920789977,304.90012853161306,2019
+2004,41,"(40,45]",College,28642.766247755833,438.7921420614778,65.27638829900191,314.53121970780137,2019
+2004,46,"(45,50]",HS,-13.355834829443447,41.94336652058244,-0.318425437378506,4309.936419138806,2019
+2004,46,"(45,50]",HS,-13.355834829443447,41.94336652058244,-0.318425437378506,4300.291992549514,2019
+2004,46,"(45,50]",HS,-13.512962298025135,41.94336652058244,-0.3221716189947237,4331.111469339632,2019
+2004,46,"(45,50]",HS,-13.355834829443447,41.94336652058244,-0.318425437378506,4341.759292416011,2019
+2004,46,"(45,50]",HS,-13.355834829443447,41.94336652058244,-0.318425437378506,4298.955152614072,2019
+2004,46,"(45,50]",HS,-0.722786355475763,10.647162270609387,-0.06788535171206651,4175.414310370381,2019
+2004,46,"(45,50]",HS,-0.722786355475763,11.776406753855838,-0.06137579743830671,4168.63725681502,2019
+2004,46,"(45,50]",HS,-0.7070736086175943,11.292444832464504,-0.06261474987106755,4223.775724222576,2019
+2004,46,"(45,50]",HS,-0.7384991023339318,10.48584163014561,-0.07042821438489309,4197.587436008716,2019
+2004,46,"(45,50]",HS,-0.722786355475763,10.001879708754274,-0.07226505182252241,4184.985071456002,2019
+2004,68,"(65,70]",HS,369397.4081149013,9534.049851409316,38.745067822390006,27.768818387630876,2019
+2004,68,"(65,70]",HS,211856.69429084382,9534.049851409316,22.22106005241071,28.446810801806002,2019
+2004,68,"(65,70]",HS,199334.10642728905,9501.78572331656,20.97859415395365,28.169819163329105,2019
+2004,68,"(65,70]",HS,190347.5151166966,8856.503161461447,21.492400741749027,27.36970347254667,2019
+2004,68,"(65,70]",HS,312260.2039497307,9534.049851409316,32.75210522457806,27.53974791481673,2019
+2004,43,"(40,45]",HS,6.5993536804308794,38.716953711306864,0.17045126353790613,7327.931040783384,2019
+2004,43,"(40,45]",HS,4.3995691202872536,38.716953711306864,0.11363417569193744,7208.326806613897,2019
+2004,43,"(40,45]",HS,3.771059245960503,38.716953711306864,0.09740072202166065,7299.30083008746,2019
+2004,43,"(40,45]",HS,4.085314183123878,38.716953711306864,0.10551744885679905,7352.734659956763,2019
+2004,43,"(40,45]",HS,4.085314183123878,38.716953711306864,0.10551744885679905,7277.98489580141,2019
+2004,32,"(30,35]",HS,19.012423698384204,66.14146259014923,0.28745091133221806,8281.30918078465,2019
+2004,32,"(30,35]",HS,19.012423698384204,66.14146259014923,0.28745091133221806,8154.384498534152,2019
+2004,32,"(30,35]",HS,19.16955116696589,66.14146259014923,0.2898265386986,8261.667059351905,2019
+2004,32,"(30,35]",HS,19.16955116696589,66.14146259014923,0.2898265386986,8354.768777426869,2019
+2004,32,"(30,35]",HS,19.16955116696589,66.14146259014923,0.2898265386986,8247.803300438973,2019
+2004,73,"(70,75]",College,3716.8031310592464,253.2734055281324,14.675062797489023,411.3802887864772,2019
+2004,73,"(70,75]",College,3069.437960502693,253.2734055281324,12.119069327876016,223.41983332312142,2019
+2004,73,"(70,75]",College,3427.704301615799,253.2734055281324,13.533613189542184,224.60246793917204,2019
+2004,73,"(70,75]",College,3554.9775511669664,253.2734055281324,14.036126468762218,406.08022115708366,2019
+2004,73,"(70,75]",College,3388.422434470377,253.2734055281324,13.37851649842489,236.74666953308832,2019
+2004,50,"(45,50]",NoHS,9426.626786355475,282.31112081161257,33.3909155234657,1169.8812947167778,2019
+2004,50,"(45,50]",NoHS,9324.493931777379,282.31112081161257,33.02914141309954,1174.1953280900398,2019
+2004,50,"(45,50]",NoHS,9426.626786355475,282.31112081161257,33.3909155234657,1206.8399959189696,2019
+2004,50,"(45,50]",NoHS,9370.06089766607,282.31112081161257,33.19054832387829,1125.4720437271446,2019
+2004,50,"(45,50]",NoHS,9404.628940754039,282.31112081161257,33.312994945848374,1151.981738377261,2019
+2004,62,"(60,65]",HS,24177.046463195693,1048.584163014561,23.056848764232157,269.12275921867814,2019
+2004,62,"(60,65]",HS,26423.969263913827,1048.584163014561,25.199664648708694,264.88702990304034,2019
+2004,62,"(60,65]",HS,17640.543770197488,1048.584163014561,16.823202554845878,304.0768756051631,2019
+2004,62,"(60,65]",HS,14955.235332136444,1048.584163014561,14.262312801999443,290.0616229138954,2019
+2004,62,"(60,65]",HS,12634.462621184919,1048.584163014561,12.049068703138017,296.3295687508992,2019
+2004,85,"(80,85]",NoHS,42.26728904847397,35.4905409020313,1.1909451919921232,10509.49754001804,2019
+2004,85,"(80,85]",NoHS,33.62527827648115,35.4905409020313,0.9474433869379716,10516.548157114192,2019
+2004,85,"(80,85]",NoHS,54.83748653500898,29.03771528348015,1.8884917769755314,10455.780766520593,2019
+2004,85,"(80,85]",NoHS,38.96761220825853,30.650921688117936,1.2713357400722023,10514.17512624059,2019
+2004,85,"(80,85]",NoHS,48.86664272890484,30.650921688117936,1.5942960288808663,10461.508918310661,2019
+2004,44,"(40,45]",HS,559.7823195691203,95.17917787362938,5.881352750413021,695.2315188577528,2019
+2004,44,"(40,45]",HS,559.6094793536804,95.17917787362938,5.879536804748209,685.6403564190533,2019
+2004,44,"(40,45]",HS,559.7823195691203,95.17917787362938,5.881352750413021,706.0203359482013,2019
+2004,44,"(40,45]",HS,559.9394470377019,95.17917787362938,5.883003610108302,649.4687543339535,2019
+2004,44,"(40,45]",HS,559.7823195691203,95.17917787362938,5.881352750413021,701.494257383689,2019
+2004,25,"(20,25]",NoHS,19.40524236983842,56.46222416232251,0.34368540484785975,5184.526940224878,2019
+2004,25,"(20,25]",NoHS,17.676840215439857,56.46222416232251,0.3130737493553378,5158.186618295907,2019
+2004,25,"(20,25]",NoHS,19.40524236983842,56.46222416232251,0.34368540484785975,5189.721797566375,2019
+2004,25,"(20,25]",NoHS,19.248114901256734,56.46222416232251,0.34090252707581237,5213.114639220198,2019
+2004,25,"(20,25]",NoHS,19.090987432675043,56.46222416232251,0.3381196493037648,5202.269975869663,2019
+2004,47,"(45,50]",HS,236.94822262118493,48.39619213913358,4.896009626955475,9439.152202517254,2019
+2004,47,"(45,50]",HS,236.79109515260325,48.39619213913358,4.892762936221421,8755.08378423905,2019
+2004,47,"(45,50]",HS,238.04811490125672,48.39619213913358,4.918736462093863,9551.930560400882,2019
+2004,47,"(45,50]",HS,238.3623698384201,48.39619213913358,4.925229843561974,9473.839550241202,2019
+2004,47,"(45,50]",HS,236.94822262118493,48.39619213913358,4.896009626955475,9237.420014903886,2019
+2004,27,"(25,30]",College,24.307619389587074,53.23581135304694,0.4566027786894213,5901.899595917863,2019
+2004,27,"(25,30]",College,24.307619389587074,53.23581135304694,0.4566027786894213,5989.157110206528,2019
+2004,27,"(25,30]",College,26.19314901256733,53.23581135304694,0.4920212230609343,5926.210047268995,2019
+2004,27,"(25,30]",College,24.62187432675045,53.23581135304694,0.46250585275134015,5933.982028679083,2019
+2004,27,"(25,30]",College,24.62187432675045,53.23581135304694,0.46250585275134015,5962.742093814694,2019
+2004,39,"(35,40]",College,459.91210053859965,314.57524890436827,1.4620098120892346,455.99464050982687,2019
+2004,39,"(35,40]",College,451.8985996409336,298.4431848579905,1.514186359644843,443.92671766668775,2019
+2004,39,"(35,40]",College,648.4650628366248,317.80166171364385,2.04047096336748,1490.0725302137557,2019
+2004,39,"(35,40]",College,805.4354039497307,311.34883609509274,2.586922803539028,532.0311977595327,2019
+2004,39,"(35,40]",College,962.5628725314184,312.9620424997305,3.0756537273437794,557.8273319965334,2019
+2004,74,"(70,75]",College,309173.43482944346,28973.187027294636,10.67101919226842,2.8223448818477395,2019
+2004,74,"(70,75]",College,594721.1834829444,26359.792651781423,22.561679120141047,2.8812682866096098,2019
+2004,74,"(70,75]",College,532849.1001795332,23891.586852685614,22.30279233711245,2.764845406160569,2019
+2004,74,"(70,75]",College,619393.338599641,29279.69624417582,21.154363536911617,2.7705622626063535,2019
+2004,74,"(70,75]",College,587785.7341472172,24343.284645984193,24.14570353570514,2.7024244688325725,2019
+2004,58,"(55,60]",HS,116.30575224416516,54.84901775768473,2.1204710129539177,5128.288834157284,2019
+2004,58,"(55,60]",HS,140.40910592459605,54.84901775768473,2.5599201528987043,4439.880773640274,2019
+2004,58,"(55,60]",HS,108.59079353680431,54.84901775768473,1.979812911446167,5142.255282033342,2019
+2004,58,"(55,60]",HS,138.0364811490126,54.84901775768473,2.5166627734126146,5068.409773007908,2019
+2004,58,"(55,60]",HS,197.98061041292638,54.84901775768473,3.609556169038012,4898.137884800314,2019
+2004,31,"(30,35]",HS,13.387260323159785,48.39619213913358,0.2766180505415162,4816.597777771985,2019
+2004,31,"(30,35]",HS,11.815985637342909,48.39619213913358,0.2441511432009627,4801.042569657314,2019
+2004,31,"(30,35]",HS,12.083102333931778,48.39619213913358,0.24967051744885682,4788.653879503274,2019
+2004,31,"(30,35]",HS,13.82721723518851,48.39619213913358,0.2857087845968712,4834.124549209577,2019
+2004,31,"(30,35]",HS,13.701515260323161,48.39619213913358,0.28311143200962696,4784.314210483435,2019
+2004,43,"(40,45]",College,625.6815798922801,177.45270451015648,3.525906137184115,6388.490561786268,2019
+2004,43,"(40,45]",College,625.6815798922801,179.06591091479427,3.4941412170293034,6528.929702243759,2019
+2004,43,"(40,45]",College,625.6815798922801,179.06591091479427,3.4941412170293034,6256.578945169985,2019
+2004,43,"(40,45]",College,625.5244524236984,177.45270451015648,3.5250206760748277,6142.296319316562,2019
+2004,43,"(40,45]",College,627.0957271095152,179.06591091479427,3.5020385728688974,6404.938622002885,2019
+2004,37,"(35,40]",College,2242.2089766606823,182.29232372406983,12.300073480080508,3888.5390819085965,2019
+2004,37,"(35,40]",College,2240.6377019748656,182.29232372406983,12.291453947158239,4065.4437560979577,2019
+2004,37,"(35,40]",College,2240.0091921005383,182.29232372406983,12.288006133989327,3846.990234183207,2019
+2004,37,"(35,40]",College,2240.0091921005383,182.29232372406983,12.288006133989327,4135.785059841581,2019
+2004,37,"(35,40]",College,2240.6377019748656,182.29232372406983,12.291453947158239,3933.7121501622205,2019
+2004,28,"(25,30]",NoHS,22.186398563734294,40.33016011594465,0.5501192779783395,6413.349122564717,2019
+2004,28,"(25,30]",NoHS,22.343526032315978,40.33016011594465,0.5540153068592057,6326.97653925334,2019
+2004,28,"(25,30]",NoHS,22.343526032315978,40.33016011594465,0.5540153068592057,6416.953064512774,2019
+2004,28,"(25,30]",NoHS,22.343526032315978,40.33016011594465,0.5540153068592057,6398.429945399834,2019
+2004,28,"(25,30]",NoHS,22.186398563734294,40.33016011594465,0.5501192779783395,6380.754691818433,2019
+2004,52,"(50,55]",NoHS,-2.372624775583483,30.650921688117936,-0.07740794223826715,3856.622721141607,2019
+2004,52,"(50,55]",NoHS,-2.8125816876122083,30.650921688117936,-0.09176173285198556,3738.58553366698,2019
+2004,52,"(50,55]",NoHS,-4.305292639138241,29.03771528348015,-0.14826554352186122,3902.442553601889,2019
+2004,52,"(50,55]",NoHS,-3.001134649910233,33.87733449739351,-0.08858827574351039,3891.986664846886,2019
+2004,52,"(50,55]",NoHS,-2.875432675044883,29.03771528348015,-0.09902406738868832,3829.780990334798,2019
+2004,62,"(60,65]",College,5560.819676840215,312.9620424997305,17.768351818080315,3613.496873612951,2019
+2004,62,"(60,65]",College,5443.366894075404,301.66959766726603,18.0441348288577,3504.047672397513,2019
+2004,62,"(60,65]",College,5585.787231597846,280.6979144069748,19.89963923814266,3776.9260412605045,2019
+2004,62,"(60,65]",College,5785.590520646319,272.63188238378586,21.221254352423472,3384.8663198556847,2019
+2004,62,"(60,65]",College,6149.811992818672,412.9808395872731,14.891276793772567,3511.2610373154143,2019
+2004,77,"(75,80]",NoHS,13292.983842010772,161.3206404637786,82.4010108303249,1871.4189183164635,2019
+2004,77,"(75,80]",NoHS,13795.791741472172,161.3206404637786,85.51783393501806,1866.250011112034,2019
+2004,77,"(75,80]",NoHS,13088.71813285458,161.3206404637786,81.13480144404333,2125.6767000660757,2019
+2004,77,"(75,80]",NoHS,13756.509874326752,161.3206404637786,85.27433212996391,1779.5471870538051,2019
+2004,77,"(75,80]",NoHS,13685.80251346499,161.3206404637786,84.83602888086642,1891.7744120231614,2019
+2004,68,"(65,70]",NoHS,1.8069658886894076,19.358476855653432,0.09334235860409146,6833.32436178137,2019
+2004,68,"(65,70]",NoHS,1.9640933572710952,12.421689315710953,0.15811805522996858,6869.368294306769,2019
+2004,68,"(65,70]",NoHS,1.8226786355475764,17.74527045101565,0.10271348867738758,6847.37390885005,2019
+2004,68,"(65,70]",NoHS,1.8226786355475764,15.002819563131412,0.12148907262916811,6907.284880724449,2019
+2004,68,"(65,70]",NoHS,1.8226786355475764,20.97168326029122,0.08691141349625105,6880.194571460846,2019
+2004,54,"(50,55]",College,1960.3222980251348,654.9618002829412,2.9930330244882715,4082.4999643126093,2019
+2004,54,"(50,55]",College,2943.311741472173,654.9618002829412,4.493867795344205,4277.84696207266,2019
+2004,54,"(50,55]",College,1903.1278994614006,654.9618002829412,2.9057082392274722,4042.1427453781107,2019
+2004,54,"(50,55]",College,2550.1788150807897,654.9618002829412,3.8936298483043155,4361.9388213898765,2019
+2004,54,"(50,55]",College,2158.7742908438063,654.9618002829412,3.296030837082748,4148.385731512347,2019
+2004,75,"(70,75]",College,151573.01256732497,7323.957077055549,20.69550803924999,20.74019594646676,2019
+2004,75,"(70,75]",College,333965.6353321365,7307.825013009171,45.69973073214272,21.35350431432254,2019
+2004,75,"(70,75]",College,634619.3045601436,7307.825013009171,86.84106467114543,20.995578422063275,2019
+2004,75,"(70,75]",College,383922.4284380611,6920.655475896102,55.47486502907442,20.4852844289174,2019
+2004,75,"(70,75]",College,373911.8374147217,7323.957077055549,51.05325351866283,20.567919624948274,2019
+2004,38,"(35,40]",HS,13.544387791741473,51.62260494840914,0.2623731949458485,4461.249558046937,2019
+2004,38,"(35,40]",HS,13.780078994614003,51.62260494840914,0.2669388537906138,4522.425543322299,2019
+2004,38,"(35,40]",HS,13.387260323159785,51.62260494840914,0.25932942238267154,4471.992792647356,2019
+2004,38,"(35,40]",HS,13.59152603231598,51.62260494840914,0.2632863267148015,4450.054427731628,2019
+2004,38,"(35,40]",HS,13.701515260323161,51.62260494840914,0.2654169675090254,4493.82478341223,2019
+2004,67,"(65,70]",College,3002.7059245960504,495.2543662238004,6.062956996201742,3297.800918547315,2019
+2004,67,"(65,70]",College,2877.0039497307002,451.69779329858005,6.369311500773596,3479.9288713919423,2019
+2004,67,"(65,70]",College,2955.567684021544,235.52813507711673,12.548682063201625,3300.1006516939756,2019
+2004,67,"(65,70]",College,2883.289048473968,383.94312430379307,7.509677517216273,3543.386149352631,2019
+2004,67,"(65,70]",College,3002.7059245960504,483.96192139133586,6.204425992779783,3377.8227725590978,2019
+2004,32,"(30,35]",College,6.6779174147217235,66.14146259014923,0.1009641630712336,6654.756072202348,2019
+2004,32,"(30,35]",College,6.6779174147217235,67.75466899478702,0.0985602544266804,6553.061096134468,2019
+2004,32,"(30,35]",College,6.520789946140035,51.62260494840914,0.1263165613718412,6640.070290814585,2019
+2004,32,"(30,35]",College,6.6779174147217235,74.20749461333816,0.08998979752001256,6730.46803655058,2019
+2004,32,"(30,35]",College,6.6779174147217235,66.14146259014923,0.1009641630712336,6629.129584282273,2019
+2004,53,"(50,55]",HS,126.33048473967685,35.4905409020313,3.5595536593370527,7923.859401889557,2019
+2004,53,"(50,55]",HS,127.90175942549372,35.4905409020313,3.6038267148014436,7491.395309772031,2019
+2004,53,"(50,55]",HS,126.33048473967685,35.4905409020313,3.5595536593370527,7989.150231345831,2019
+2004,53,"(50,55]",HS,131.04430879712746,35.4905409020313,3.6923728257302257,7949.010691344474,2019
+2004,53,"(50,55]",HS,127.90175942549372,35.4905409020313,3.6038267148014436,7768.507010514806,2019
+2004,26,"(25,30]",HS,19.326678635547577,45.16977932985802,0.42786745745229493,4987.966711553274,2019
+2004,26,"(25,30]",HS,19.326678635547577,45.16977932985802,0.42786745745229493,5061.712048885983,2019
+2004,26,"(25,30]",HS,19.16955116696589,45.16977932985802,0.4243888602372356,5008.5125917587175,2019
+2004,26,"(25,30]",HS,19.16955116696589,45.16977932985802,0.4243888602372356,5015.081050595792,2019
+2004,26,"(25,30]",HS,19.326678635547577,45.16977932985802,0.42786745745229493,5039.38750399899,2019
+2004,46,"(45,50]",HS,3.4253788150807902,9.033955865971603,0.3791670964414647,4542.064664711144,2019
+2004,46,"(45,50]",HS,54.88462477558348,9.033955865971603,6.0753700361010825,4403.048593626106,2019
+2004,46,"(45,50]",HS,3.4253788150807902,9.033955865971603,0.3791670964414647,4596.02810811979,2019
+2004,46,"(45,50]",HS,37.600603231597844,9.033955865971603,4.162141567818463,4583.713882361613,2019
+2004,46,"(45,50]",HS,10.103296229802515,9.033955865971603,1.118369004641568,4510.452322552555,2019
+2004,62,"(60,65]",College,36225.86358348295,1371.2254439421183,26.418605156084094,25.272604537569986,2019
+2004,62,"(60,65]",College,36227.937666068225,1371.2254439421183,26.42011773200255,25.483388426372862,2019
+2004,62,"(60,65]",College,36227.969091561936,1371.2254439421183,26.42014064981949,26.696224556148234,2019
+2004,62,"(60,65]",College,36228.67616517056,1371.2254439421183,26.420656300700784,24.422401064502107,2019
+2004,62,"(60,65]",College,36226.633508078994,1371.2254439421183,26.419166642599276,26.11546765252076,2019
+2004,57,"(55,60]",HS,453.1556193895871,211.33003900755,2.144302918400529,6634.410131034539,2019
+2004,57,"(55,60]",HS,447.8132854578097,211.33003900755,2.1190233416926167,7337.964053636868,2019
+2004,57,"(55,60]",HS,444.9849910233393,211.33003900755,2.1056400363766636,6547.336592863305,2019
+2004,57,"(55,60]",HS,449.69881508079,211.33003900755,2.127945545236586,6526.477386708901,2019
+2004,57,"(55,60]",HS,446.7133931777379,211.33003900755,2.113818722958635,6860.4302760478,2019
+2004,28,"(25,30]",College,477.353249551167,211.33003900755,2.25880453054813,6090.646107444462,2019
+2004,28,"(25,30]",College,602.1124596050269,201.65080057972327,2.9859165342960283,6769.982469053107,2019
+2004,28,"(25,30]",College,539.8899820466787,296.8299784533526,1.8188526134044893,6021.312580044933,2019
+2004,28,"(25,30]",College,612.7971274685817,203.26400698436103,3.0147842530514013,5991.881559803064,2019
+2004,28,"(25,30]",College,555.1313464991023,174.22629170088092,3.1862662120604353,6299.0423692970135,2019
+2004,63,"(60,65]",HS,6897.424488330341,390.3959499223443,17.66776650654891,1642.0659701694865,2019
+2004,63,"(60,65]",HS,6913.451490125673,330.70731295074614,20.905045698688035,1650.1175434523004,2019
+2004,63,"(60,65]",HS,5595.152028725314,229.07530945856564,24.42494584837545,1673.7244952426486,2019
+2004,63,"(60,65]",HS,5601.122872531419,211.33003900755,26.504149144321655,1595.1361292352601,2019
+2004,63,"(60,65]",HS,6017.196409335727,371.0374730666908,16.2172202166065,1612.921296590014,2019
+2004,56,"(55,60]",HS,261.3029802513465,120.99048034783397,2.159698676293622,7391.031945109277,2019
+2004,56,"(55,60]",HS,254.86075403949732,120.99048034783397,2.1064529482551144,6477.195565086454,2019
+2004,56,"(55,60]",HS,247.00438061041294,120.99048034783397,2.041519133574007,7384.460402481773,2019
+2004,56,"(55,60]",HS,247.00438061041294,120.99048034783397,2.041519133574007,7248.842294468585,2019
+2004,56,"(55,60]",HS,253.4466068222621,120.99048034783397,2.0947648616125147,7039.1230062925,2019
+2004,34,"(30,35]",College,381.75689766606826,180.67911731943207,2.112899948427024,7255.248907497204,2019
+2004,34,"(30,35]",College,381.74904129263916,180.67911731943207,2.1128564659618356,8065.289738325584,2019
+2004,34,"(30,35]",College,381.74904129263916,180.67911731943207,2.1128564659618356,7168.762313754584,2019
+2004,34,"(30,35]",College,381.75689766606826,180.67911731943207,2.112899948427024,7134.525459020568,2019
+2004,34,"(30,35]",College,381.9140251346499,180.67911731943207,2.1137695977307884,7502.316610841024,2019
+2004,52,"(50,55]",College,1493.4965888689408,203.26400698436103,7.347570339808607,6596.666566661438,2019
+2004,52,"(50,55]",College,1108.534290843806,209.7168326029122,5.285862260483198,6741.682071270336,2019
+2004,52,"(50,55]",College,1196.5256732495511,196.81118136580994,6.0795614606143085,6460.456464655187,2019
+2004,52,"(50,55]",College,1548.4912028725316,229.07530945856564,6.759747292418773,6342.449813502404,2019
+2004,52,"(50,55]",College,1185.526750448833,214.55645181682556,5.525477050025786,6613.65060504547,2019
+2004,25,"(20,25]",College,-9.521924596050269,40.33016011594465,-0.23609935018050543,6651.212254209824,2019
+2004,25,"(20,25]",College,-9.521924596050269,38.716953711306864,-0.24593682310469314,6617.723409516473,2019
+2004,25,"(20,25]",College,-9.521924596050269,40.33016011594465,-0.23609935018050543,6658.978227752557,2019
+2004,25,"(20,25]",College,-9.679052064631957,40.33016011594465,-0.23999537906137186,6704.503722621674,2019
+2004,25,"(20,25]",College,-9.521924596050269,38.716953711306864,-0.24593682310469314,6675.282191737106,2019
+2004,45,"(40,45]",College,598.1842728904847,174.22629170088092,3.4333754512635375,5703.61049854333,2019
+2004,45,"(40,45]",College,553.5286463195691,174.22629170088092,3.177067254980612,6347.550231133271,2019
+2004,45,"(40,45]",College,565.894578096948,174.22629170088092,3.248043521861211,5631.465331476759,2019
+2004,45,"(40,45]",College,596.2201795332136,174.22629170088092,3.422102219548067,5644.875579246223,2019
+2004,45,"(40,45]",College,597.1629443447039,174.22629170088092,3.4275133707714938,5899.570038252428,2019
+2004,48,"(45,50]",HS,147.85694793536805,161.3206404637786,0.9165407942238268,4543.907464658802,2019
+2004,48,"(45,50]",HS,150.9994973070018,161.3206404637786,0.9360209386281589,4565.1416555282485,2019
+2004,48,"(45,50]",HS,149.27109515260324,161.3206404637786,0.9253068592057763,4567.276594104621,2019
+2004,48,"(45,50]",HS,149.27109515260324,161.3206404637786,0.9253068592057763,4588.952351983715,2019
+2004,48,"(45,50]",HS,149.27109515260324,161.3206404637786,0.9253068592057763,4550.051993415563,2019
+2004,61,"(60,65]",College,558.5881508078994,269.4054695745103,2.073410579562896,770.0404772812162,2019
+2004,61,"(60,65]",College,558.7452782764813,267.7922631698725,2.0864877560784656,742.9973155506868,2019
+2004,61,"(60,65]",College,558.7452782764813,269.4054695745103,2.0739938174193133,780.484936350307,2019
+2004,61,"(60,65]",College,560.316552962298,269.4054695745103,2.0798261959834843,724.5726376010633,2019
+2004,61,"(60,65]",College,558.7452782764813,269.4054695745103,2.0739938174193133,779.236345809748,2019
+2004,58,"(55,60]",HS,11291.651274685817,256.49981833740793,44.02206343800378,1119.7105140554672,2019
+2004,58,"(55,60]",HS,6240.00315978456,317.80166171364385,19.63489783576756,1143.9971932617907,2019
+2004,58,"(55,60]",HS,23327.458240574506,319.4148681182817,73.03184844838273,1041.8719292172523,2019
+2004,58,"(55,60]",HS,20701.858240574507,227.46210305392788,91.01233991345981,1074.091404920117,2019
+2004,58,"(55,60]",HS,4819.413716337523,245.2073735049435,19.654440433212997,1099.1546102617704,2019
+2004,77,"(75,80]",College,30218.754757630162,3228.3486569611373,9.360437167302507,378.98156926734384,2019
+2004,77,"(75,80]",College,30218.754757630162,3212.216592914759,9.407446192851436,369.6346371347053,2019
+2004,77,"(75,80]",College,30218.754757630162,3228.3486569611373,9.360437167302507,385.6768828775567,2019
+2004,77,"(75,80]",College,30218.754757630162,3228.3486569611373,9.360437167302507,374.58511011349555,2019
+2004,77,"(75,80]",College,30218.754757630162,3228.3486569611373,9.360437167302507,388.65239083554127,2019
+2004,48,"(45,50]",HS,564.3704416517055,104.8584163014561,5.382214051652318,6440.188541454859,2019
+2004,48,"(45,50]",HS,565.0460897666068,111.31124192000723,5.076271542928897,7168.47525832958,2019
+2004,48,"(45,50]",HS,563.1605601436265,112.92444832464501,4.987056111397628,6354.6525528327,2019
+2004,48,"(45,50]",HS,573.2638563734291,111.31124192000723,5.150098467011982,6370.568047127979,2019
+2004,48,"(45,50]",HS,566.3345350089767,111.31124192000723,5.087846701198138,6660.8013467645305,2019
+2004,34,"(30,35]",HS,1.257019748653501,59.68863697159809,0.021059615572250952,4659.484801287892,2019
+2004,34,"(30,35]",HS,1.257019748653501,61.30184337623587,0.020505415162454875,4636.024301622951,2019
+2004,34,"(30,35]",HS,-0.31425493716337527,56.46222416232251,-0.005565755544094895,4664.925228432084,2019
+2004,34,"(30,35]",HS,1.257019748653501,58.0754305669603,0.02164460489370237,4696.817963666849,2019
+2004,34,"(30,35]",HS,-0.31425493716337527,56.46222416232251,-0.005565755544094895,4676.3469166121085,2019
+2004,51,"(50,55]",College,83333.02434470376,5210.656686980048,15.99280654066681,31.09340938619734,2019
+2004,51,"(50,55]",College,107181.83152603231,5226.788751026426,20.50624898604983,32.638444555592336,2019
+2004,51,"(50,55]",College,65004.10513464991,5210.656686980048,12.475223189636868,31.870461163805412,2019
+2004,51,"(50,55]",College,27442.78377019749,5210.656686980048,5.266665109365047,29.418209941644864,2019
+2004,51,"(50,55]",College,26919.549299820468,5210.656686980048,5.166248885113613,31.16929348498715,2019
+2004,65,"(60,65]",NoHS,135.94668581687614,29.03771528348015,4.681728038507822,10938.103716974721,2019
+2004,65,"(60,65]",NoHS,128.2160143626571,22.58488966492901,5.6770706549767915,10285.636916327847,2019
+2004,65,"(60,65]",NoHS,124.61779533213645,17.74527045101565,7.022592057761733,11067.615200273729,2019
+2004,65,"(60,65]",NoHS,126.18907001795331,17.74527045101565,7.1111381686905135,11000.355092426274,2019
+2004,65,"(60,65]",NoHS,131.0757342908438,30.650921688117936,4.276404332129964,10880.077557717237,2019
+2004,42,"(40,45]",HS,627.1271526032316,148.4149892266763,4.225497410139695,7662.767669650995,2019
+2004,42,"(40,45]",HS,627.1271526032316,148.4149892266763,4.225497410139695,8507.313895677555,2019
+2004,42,"(40,45]",HS,628.8555547576302,148.4149892266763,4.237143148642286,7564.577893322143,2019
+2004,42,"(40,45]",HS,627.1271526032316,148.4149892266763,4.225497410139695,7553.238894569639,2019
+2004,42,"(40,45]",HS,627.1271526032316,148.4149892266763,4.225497410139695,7891.543025486392,2019
+2004,65,"(60,65]",HS,74.00703770197487,67.75466899478702,1.0922795255286228,7700.962939428397,2019
+2004,65,"(60,65]",HS,91.2910592459605,67.75466899478702,1.347376654632972,7117.425354857356,2019
+2004,65,"(60,65]",HS,100.71870736086177,67.75466899478702,1.4865205432353445,7766.362671051427,2019
+2004,65,"(60,65]",HS,105.58965888689407,67.75466899478702,1.55841155234657,7715.037520947425,2019
+2004,65,"(60,65]",HS,93.01946140035908,67.75466899478702,1.3728863675434073,7567.673371032512,2019
+2004,90,"(85,90]",College,2.042657091561939,14.196216360812517,0.14388743025927142,8973.598636402477,2019
+2004,90,"(85,90]",HS,2.5926032315978453,10.163200349218052,0.25509712910434934,8946.957858768423,2019
+2004,90,"(85,90]",HS,2.168359066427289,13.550933798957404,0.16001547189272822,8975.796675907275,2019
+2004,90,"(85,90]",HS,2.561177737881508,13.066971877566067,0.19600392209297146,8968.901290174426,2019
+2004,90,"(85,90]",HS,2.5926032315978453,14.841498922667633,0.17468607753884788,9001.406619656998,2019
+2004,53,"(50,55]",HS,0,12.421689315710953,0,4047.294116195529,2019
+2004,53,"(50,55]",HS,0,12.421689315710953,0,4040.725012642947,2019
+2004,53,"(50,55]",HS,0,12.260368675247175,0,4094.1715877912816,2019
+2004,53,"(50,55]",HS,0,12.260368675247175,0,4068.786872186429,2019
+2004,53,"(50,55]",HS,0,12.260368675247175,0,4056.5712039645514,2019
+2004,47,"(45,50]",College,7513.521292639139,1419.6216360812518,5.292622415490647,519.0665677857753,2019
+2004,47,"(45,50]",College,9332.585996409336,1919.7156215189657,4.86144191972818,519.4079939692135,2019
+2004,47,"(45,50]",College,7185.91052064632,769.499455012224,9.338421845317834,531.5654156287058,2019
+2004,47,"(45,50]",College,6764.023267504488,966.3106363780338,6.9998435418838865,515.6762323580624,2019
+2004,47,"(45,50]",College,6798.434183123878,880.8106969322312,7.718382856613904,519.6432505128166,2019
+2004,75,"(70,75]",College,133991.07734290845,10727.822590841279,12.490053429602888,29.35650823389555,2019
+2004,75,"(70,75]",College,117085.89012567325,10727.822590841279,10.914226921093347,30.29644577155334,2019
+2004,75,"(70,75]",College,137985.10046678636,10743.954654887653,12.843045684673847,29.722027912855282,2019
+2004,75,"(70,75]",College,113332.11490125673,10727.822590841279,10.564316658071169,28.98419262984593,2019
+2004,75,"(70,75]",College,84352.93874326751,10727.822590841279,7.863006498194946,29.1175918322915,2019
+2004,39,"(35,40]",College,114.38879712746859,153.2546084405897,0.7463971119133574,8855.936600509094,2019
+2004,39,"(35,40]",College,110.93199281867146,153.2546084405897,0.723841155234657,8308.696553560465,2019
+2004,39,"(35,40]",College,113.76028725314183,153.2546084405897,0.7422960288808663,8855.47525078812,2019
+2004,39,"(35,40]",College,117.37421903052065,153.2546084405897,0.7658772563176894,8857.222255633942,2019
+2004,39,"(35,40]",College,110.93199281867146,153.2546084405897,0.723841155234657,8663.920446571728,2019
+2004,54,"(50,55]",HS,1241.7940969479355,153.2546084405897,8.102817328519855,7782.112633849388,2019
+2004,54,"(50,55]",HS,1463.343827648115,153.2546084405897,9.548449097472924,8660.716025456444,2019
+2004,54,"(50,55]",HS,1141.2325170556553,153.2546084405897,7.4466440433212995,7683.676421165632,2019
+2004,54,"(50,55]",HS,1505.7682441651705,153.2546084405897,9.825272202166063,7701.973613552182,2019
+2004,54,"(50,55]",HS,1667.6095368043088,153.2546084405897,10.88130108303249,8049.483487816884,2019
+2004,59,"(55,60]",College,6179.666211849192,725.9428820870038,8.512606658644204,3166.0589244847138,2019
+2004,59,"(55,60]",College,6179.666211849192,725.9428820870038,8.512606658644204,3043.2892433606203,2019
+2004,59,"(55,60]",College,6187.522585278277,725.9428820870038,8.523428961091055,3303.286473983924,2019
+2004,59,"(55,60]",College,6187.522585278277,725.9428820870038,8.523428961091055,2965.3743347454783,2019
+2004,59,"(55,60]",College,6187.522585278277,725.9428820870038,8.523428961091055,3093.6041631006965,2019
+2004,36,"(35,40]",HS,309.68252782764813,120.99048034783397,2.5595611070998796,4870.203669933069,2019
+2004,36,"(35,40]",HS,309.6982405745063,120.99048034783397,2.559690974729242,5407.8650425547075,2019
+2004,36,"(35,40]",HS,309.7139533213645,120.99048034783397,2.5598208423586044,4804.717277500432,2019
+2004,36,"(35,40]",HS,308.2840933572711,120.99048034783397,2.5480028880866423,4798.105016427396,2019
+2004,36,"(35,40]",HS,308.11125314183124,120.99048034783397,2.546574344163658,5015.113797245665,2019
+2004,38,"(35,40]",HS,1851.118707360862,345.2261705924862,5.3620462903606745,1133.8647150747772,2019
+2004,38,"(35,40]",HS,2433.2131274685817,245.2073735049435,9.923083032490974,1129.9786051405956,2019
+2004,38,"(35,40]",HS,1745.2147935368043,261.33943755132134,6.677961848732005,1151.5065728130835,2019
+2004,38,"(35,40]",HS,2327.1363734290844,356.5186154249507,6.527390920822647,1106.696588214917,2019
+2004,38,"(35,40]",HS,2173.701400359066,327.4809001414706,6.637643292845582,1152.9446910995498,2019
+2004,46,"(45,50]",College,617.5109515260323,141.9621636081252,4.349827699376435,7340.238325786534,2019
+2004,46,"(45,50]",College,636.3662477558348,143.57537001276296,4.432280047053097,8168.520085624768,2019
+2004,46,"(45,50]",College,630.7096588868941,143.57537001276296,4.392882002190403,7249.207776443142,2019
+2004,46,"(45,50]",College,623.9531777378816,141.9621636081252,4.395207581227437,7270.1360810671495,2019
+2004,46,"(45,50]",College,551.5174147217235,141.9621636081252,3.8849606170003277,7592.138442277219,2019
+2004,44,"(40,45]",NoHS,651.2147935368043,85.49993944580267,7.616552687146652,5879.234166475851,2019
+2004,44,"(40,45]",NoHS,545.9393895870736,83.88673304116487,6.508054012774229,6529.982420743311,2019
+2004,44,"(40,45]",NoHS,668.49881508079,103.24520989681828,6.474865185018053,5803.222110034144,2019
+2004,44,"(40,45]",NoHS,531.7979174147217,90.33955865971603,5.886656137184115,5798.724132097291,2019
+2004,44,"(40,45]",NoHS,649.6435188509874,93.56597146899159,6.943160089630275,6055.78654845731,2019
+2004,40,"(35,40]",HS,4.085314183123878,15.486781484522748,0.2637936221419976,7309.565643447686,2019
+2004,40,"(35,40]",HS,4.085314183123878,15.809422765450304,0.25841007883297723,7295.238073213336,2019
+2004,40,"(35,40]",HS,4.085314183123878,16.132064046377863,0.2532418772563177,7318.664141634976,2019
+2004,40,"(35,40]",HS,4.085314183123878,15.970743405914082,0.2557998760164825,7291.306929372479,2019
+2004,40,"(35,40]",HS,4.085314183123878,15.970743405914082,0.2557998760164825,7274.526945152131,2019
+2004,79,"(75,80]",HS,842.6746140035907,48.39619213913358,17.41200240673887,7367.307036449567,2019
+2004,79,"(75,80]",HS,842.6746140035907,50.00939854377137,16.850324909747293,8145.230307001398,2019
+2004,79,"(75,80]",HS,842.6746140035907,50.00939854377137,16.850324909747293,7319.238393000358,2019
+2004,79,"(75,80]",HS,842.6746140035907,48.39619213913358,17.41200240673887,7329.178234789097,2019
+2004,79,"(75,80]",HS,842.6746140035907,48.39619213913358,17.41200240673887,7658.544631068469,2019
+2004,68,"(65,70]",HS,670.0700897666068,90.33955865971603,7.41723891181021,7475.528486794361,2019
+2004,68,"(65,70]",HS,761.0940323159784,46.782985734495796,16.26860749408689,8382.09515670087,2019
+2004,68,"(65,70]",HS,676.3551885098743,46.782985734495796,14.457289929042698,7457.123103922686,2019
+2004,68,"(65,70]",HS,947.7614649910233,196.81118136580994,4.815587500739775,7439.150512105431,2019
+2004,68,"(65,70]",HS,1444.7085098743266,112.92444832464501,12.793584837545128,7795.82279713241,2019
+2004,33,"(30,35]",College,18.195360861759426,111.31124192000723,0.16346382043635224,7241.796548633526,2019
+2004,33,"(30,35]",College,16.48267145421903,111.31124192000723,0.1480773295662638,7344.339766503738,2019
+2004,33,"(30,35]",College,18.053946140035908,111.31124192000723,0.16219337623606972,7223.684448211748,2019
+2004,33,"(30,35]",College,18.053946140035908,111.31124192000723,0.16219337623606972,7296.178197621445,2019
+2004,33,"(30,35]",College,16.325543985637342,111.31124192000723,0.1466657248992832,7281.120879162624,2019
+2004,40,"(35,40]",College,583.1000359066427,341.99975778321067,1.7049720727470878,1133.8647150747772,2019
+2004,40,"(35,40]",College,692.9321364452423,340.3865513785729,2.035721251732338,1129.9786051405956,2019
+2004,40,"(35,40]",College,692.9321364452423,340.3865513785729,2.035721251732338,1151.5065728130835,2019
+2004,40,"(35,40]",College,691.5179892280072,341.99975778321067,2.021983856685512,1106.696588214917,2019
+2004,40,"(35,40]",College,565.6588868940754,341.99975778321067,1.6539745248961242,1152.9446910995498,2019
+2004,67,"(65,70]",HS,1826.6068222621186,108.08482911073166,16.899752141817988,1133.8647150747772,2019
+2004,67,"(65,70]",HS,1895.4286535008976,108.08482911073166,17.536491190258097,1129.9786051405956,2019
+2004,67,"(65,70]",HS,2071.0971633752247,114.53765472928282,18.082238267148014,1151.5065728130835,2019
+2004,67,"(65,70]",HS,1835.877342908438,93.56597146899159,19.621207518984193,1106.696588214917,2019
+2004,67,"(65,70]",HS,2325.172280071813,95.17917787362938,24.429421770788714,1152.9446910995498,2019
+2004,54,"(50,55]",College,17244.42542190305,1613.2064046377861,10.689534440433212,2047.6664894362675,2019
+2004,54,"(50,55]",College,14659.678563734291,742.0749461333816,19.75498383299325,2061.603114483126,2019
+2004,54,"(50,55]",College,14406.703339317775,1613.2064046377861,8.930477400722022,2066.8392551343795,2019
+2004,54,"(50,55]",College,15380.893644524238,1613.2064046377861,9.534361877256318,2004.3122706066356,2019
+2004,54,"(50,55]",College,14953.506929982048,1613.2064046377861,9.269431913357401,1997.921363103212,2019
+2004,33,"(30,35]",HS,23.097737881508078,32.264128092755726,0.7158953068592057,3619.372908536462,2019
+2004,33,"(30,35]",HS,2.9854219030520643,32.264128092755726,0.0925306859205776,3672.8840667915197,2019
+2004,33,"(30,35]",HS,2.6711669658886894,32.264128092755726,0.08279061371841154,3634.2814286806292,2019
+2004,33,"(30,35]",HS,2.6711669658886894,32.264128092755726,0.08279061371841154,3639.0476397122047,2019
+2004,33,"(30,35]",HS,2.6711669658886894,32.264128092755726,0.08279061371841154,3656.6849103752925,2019
+2004,27,"(25,30]",NoHS,22.783482944344705,25.81130247420457,0.8826940433213,10179.48112115178,2019
+2004,27,"(25,30]",NoHS,22.783482944344705,29.03771528348015,0.7846169273967109,9933.071727017636,2019
+2004,27,"(25,30]",NoHS,22.626355475763017,24.19809606956679,0.9350469314079423,10076.72986880694,2019
+2004,27,"(25,30]",NoHS,22.783482944344705,17.74527045101565,1.2839186084673448,10140.389224328823,2019
+2004,27,"(25,30]",NoHS,22.783482944344705,22.58488966492901,1.0087931923671996,9986.478705260515,2019
+2004,52,"(50,55]",College,8847.84775583483,1951.979749611721,4.5327559149088525,223.7102309778029,2019
+2004,52,"(50,55]",College,8847.84775583483,1951.979749611721,4.5327559149088525,225.25812166915156,2019
+2004,52,"(50,55]",College,8847.84775583483,1951.979749611721,4.5327559149088525,231.86971412020574,2019
+2004,52,"(50,55]",College,8830.563734290845,1951.979749611721,4.5239013038159746,216.1267175757725,2019
+2004,52,"(50,55]",College,8846.276481149012,1951.979749611721,4.531950950264045,219.15664813608882,2019
+2004,66,"(65,70]",College,27674.311095152603,2452.073735049435,11.286084386281587,23.907465601703212,2019
+2004,66,"(65,70]",College,32141.14648473968,2452.073735049435,13.107740613718411,24.741440063254313,2019
+2004,66,"(65,70]",College,28353.51029084381,2403.6775429103013,11.795887669905266,24.7917585788844,2019
+2004,66,"(65,70]",College,34976.338815080795,2403.6775429103013,14.55117759794539,23.42409676290042,2019
+2004,66,"(65,70]",College,37592.055497307,2484.3378631421906,15.13161959773079,24.90252657493076,2019
+2004,24,"(20,25]",HS,0,20.97168326029122,0,5897.045576323356,2019
+2004,24,"(20,25]",HS,0,27.424508878842364,0,5797.883501919872,2019
+2004,24,"(20,25]",HS,0,20.97168326029122,0,5946.9401958537255,2019
+2004,24,"(20,25]",HS,0,27.424508878842364,0,5848.479734189619,2019
+2004,24,"(20,25]",HS,0,19.358476855653432,0,5906.316546055507,2019
+2004,29,"(25,30]",HS,25.674628366247756,35.4905409020313,0.7234217262881522,8336.129687171311,2019
+2004,29,"(25,30]",HS,25.360373429084383,35.4905409020313,0.714567115195274,8278.677587511356,2019
+2004,29,"(25,30]",HS,25.360373429084383,35.4905409020313,0.714567115195274,8338.348824373232,2019
+2004,29,"(25,30]",HS,25.360373429084383,35.4905409020313,0.714567115195274,8328.237967477035,2019
+2004,29,"(25,30]",HS,143.2059748653501,35.4905409020313,4.035046275024614,8323.966546657344,2019
+2004,47,"(45,50]",College,264.49266786355474,225.84889664929003,1.171104538421867,5957.768561350446,2019
+2004,47,"(45,50]",College,270.47922441651707,225.84889664929003,1.1976114492006191,6593.7380732262,2019
+2004,47,"(45,50]",College,266.3467719928187,225.84889664929003,1.179314027849407,5906.3941396600985,2019
+2004,47,"(45,50]",College,280.04828725314184,225.84889664929003,1.2399807632800415,5947.028739085656,2019
+2004,47,"(45,50]",College,305.2672459605027,225.84889664929003,1.3516437338834453,6193.927318539421,2019
+2004,48,"(45,50]",College,642.6827719928187,7.2594288208700375,88.53076293622144,9527.621141191357,2019
+2004,48,"(45,50]",College,642.8556122082584,7.2594288208700375,88.55457200160448,10442.851053073717,2019
+2004,48,"(45,50]",College,642.6827719928187,7.2594288208700375,88.53076293622144,9406.18789852356,2019
+2004,48,"(45,50]",College,642.6984847396768,7.2594288208700375,88.53292739671079,9428.685184767575,2019
+2004,48,"(45,50]",College,642.8398994614004,7.2594288208700375,88.55240754111512,9855.541043307177,2019
+2004,45,"(40,45]",HS,154.7721278276481,82.2735266365271,1.881189905854038,5925.936010695439,2019
+2004,45,"(40,45]",HS,155.55776517055656,82.2735266365271,1.8907389962483188,5602.513495626476,2019
+2004,45,"(40,45]",HS,127.74620323159785,101.63200349218052,1.2569485874734974,5974.764398204544,2019
+2004,45,"(40,45]",HS,127.11769335727111,112.92444832464501,1.1256879731820528,5944.745649324406,2019
+2004,45,"(40,45]",HS,126.0178010771993,98.40559068290497,1.280595951944132,5809.754200329676,2019
+2004,46,"(45,50]",HS,122.40229802513464,25.81130247420457,4.742197653429604,11549.351296783247,2019
+2004,46,"(45,50]",HS,122.40229802513464,35.4905409020313,3.448871020676074,10670.676661969845,2019
+2004,46,"(45,50]",HS,122.40229802513464,17.74527045101565,6.897742041352148,11777.616739822985,2019
+2004,46,"(45,50]",HS,122.40229802513464,19.358476855653432,6.3229302045728035,11558.410887895665,2019
+2004,46,"(45,50]",HS,122.40229802513464,27.424508878842364,4.463244850286685,11262.792612513807,2019
+2004,49,"(45,50]",College,152977.88926391382,17374.232977948956,8.804871527742861,20.74019594646676,2019
+2004,49,"(45,50]",College,258144.87526032317,17890.459027433048,14.429192390451606,21.35350431432254,2019
+2004,49,"(45,50]",College,334695.80667863553,20181.212122018704,16.584524490155168,20.995578422063275,2019
+2004,49,"(45,50]",College,228119.38728904846,18455.081269056274,12.360790178233318,20.4852844289174,2019
+2004,49,"(45,50]",College,341775.9704129264,19584.325752302724,17.45150559358626,20.567919624948274,2019
+2004,50,"(45,50]",College,7779.475245960503,1497.0555435038655,5.196517443669863,328.4654792407308,2019
+2004,50,"(45,50]",College,9134.699662477558,1645.470532730542,5.551420995257309,320.578792284827,2019
+2004,50,"(45,50]",College,7174.1259605026935,1230.876486738631,5.828469418171666,343.1207840472437,2019
+2004,50,"(45,50]",College,10233.963432675046,1276.0462660684889,8.020056721145377,323.0502704546808,2019
+2004,50,"(45,50]",College,7648.39951166966,1409.9423976534251,5.42461842724847,332.82625291088453,2019
+2004,73,"(70,75]",HS,5624.063482944345,319.89883003967304,17.58075664811548,1642.0659701694865,2019
+2004,73,"(70,75]",HS,5625.949012567325,321.18939516338315,17.51598619781798,1650.1175434523004,2019
+2004,73,"(70,75]",HS,5623.434973070018,320.5441126015281,17.5434043303131,1673.7244952426486,2019
+2004,73,"(70,75]",HS,5625.006247755835,321.02807452291944,17.521851495745878,1595.1361292352601,2019
+2004,73,"(70,75]",HS,5618.784000000001,321.35071580384704,17.484896481231786,1612.921296590014,2019
+2004,66,"(65,70]",NoHS,8.48488330341113,35.4905409020313,0.23907449950771245,7928.030304405072,2019
+2004,66,"(65,70]",NoHS,8.48488330341113,35.4905409020313,0.23907449950771245,8023.194600059597,2019
+2004,66,"(65,70]",NoHS,8.48488330341113,27.424508878842364,0.30939052877468676,8015.021643128191,2019
+2004,66,"(65,70]",NoHS,8.48488330341113,24.19809606956679,0.3506425992779783,8118.369672563104,2019
+2004,66,"(65,70]",NoHS,8.48488330341113,32.264128092755726,0.2629819494584837,8080.625646054835,2019
+2004,52,"(50,55]",College,105528.85055655296,7388.485333241061,14.282880157016063,28.051123467131287,2019
+2004,52,"(50,55]",College,43310.144057450634,7259.428820870037,5.96605395908544,27.140339242739294,2019
+2004,52,"(50,55]",College,52769.531921005386,6565.750066875789,8.037091175192257,28.16723553762133,2019
+2004,52,"(50,55]",College,97779.79518850989,7920.84344677153,12.344619085782352,27.62633965252826,2019
+2004,52,"(50,55]",College,66738.94951526032,7920.84344677153,8.425737734087216,28.30095239983563,2019
+2004,42,"(40,45]",NoHS,167.0422118491921,56.46222416232251,2.9584773594636418,5551.858594137493,2019
+2004,42,"(40,45]",NoHS,168.48778456014364,56.46222416232251,2.984079834966478,5329.478653256004,2019
+2004,42,"(40,45]",NoHS,162.2655368043088,56.46222416232251,2.873877875193399,5546.838554811678,2019
+2004,42,"(40,45]",NoHS,165.23524596050268,56.46222416232251,2.9264742650850954,5526.1586023233995,2019
+2004,42,"(40,45]",NoHS,155.36764093357272,56.46222416232251,2.7517095410005163,5470.216012223652,2019
+2004,44,"(40,45]",HS,31.315504488330344,38.716953711306864,0.8088318291215404,5022.755780189269,2019
+2004,44,"(40,45]",HS,31.849737881508076,38.716953711306864,0.8226302647412755,5015.536222797219,2019
+2004,44,"(40,45]",HS,31.06410053859964,38.716953711306864,0.8023384476534297,5027.993606546795,2019
+2004,44,"(40,45]",HS,32.36825852782765,38.716953711306864,0.836022864019254,5021.920385977779,2019
+2004,44,"(40,45]",HS,31.4883447037702,38.716953711306864,0.8132960288808665,5000.695309313554,2019
+2004,21,"(20,25]",NoHS,0.1257019748653501,24.19809606956679,0.005194705174488568,6750.127012394469,2019
+2004,21,"(20,25]",NoHS,0.1257019748653501,24.19809606956679,0.005194705174488568,6705.178715878763,2019
+2004,21,"(20,25]",NoHS,0.1257019748653501,24.19809606956679,0.005194705174488568,6768.966938232152,2019
+2004,21,"(20,25]",NoHS,0.1257019748653501,24.19809606956679,0.005194705174488568,6786.520534047074,2019
+2004,21,"(20,25]",NoHS,0.1257019748653501,24.19809606956679,0.005194705174488568,6733.436803844104,2019
+2004,29,"(25,30]",HS,-2.356912028725314,96.79238427826716,-0.02435018050541516,5065.720735534866,2019
+2004,29,"(25,30]",HS,-2.404050269299821,96.79238427826716,-0.02483718411552347,4988.3086796492025,2019
+2004,29,"(25,30]",HS,-1.9326678635547576,96.79238427826716,-0.019967148014440432,5054.54165301308,2019
+2004,29,"(25,30]",HS,-2.576890484739677,96.79238427826716,-0.026622864019253914,5123.354052754258,2019
+2004,29,"(25,30]",HS,-1.6027001795332136,96.79238427826716,-0.01655812274368231,5046.213389235889,2019
+2004,28,"(25,30]",NoHS,19.79806104129264,104.8584163014561,0.18880755345737296,6068.8660208717865,2019
+2004,28,"(25,30]",NoHS,19.955188509874326,104.8584163014561,0.19030602610386002,5976.124351897665,2019
+2004,28,"(25,30]",NoHS,19.955188509874326,104.8584163014561,0.19030602610386002,6055.473187432494,2019
+2004,28,"(25,30]",NoHS,19.955188509874326,104.8584163014561,0.19030602610386002,6137.912243275905,2019
+2004,28,"(25,30]",NoHS,20.112315978456017,104.8584163014561,0.19180449875034714,6045.495709460663,2019
+2004,84,"(80,85]",College,61.43684021543986,35.4905409020313,1.7310764686576958,8361.325514419654,2019
+2004,84,"(80,85]",College,61.279712746858166,37.10374730666908,1.6515774603672893,8417.52969337958,2019
+2004,84,"(80,85]",College,61.279712746858166,35.4905409020313,1.7266491631112566,8233.984071103678,2019
+2004,84,"(80,85]",College,61.279712746858166,35.4905409020313,1.7266491631112566,8297.730888818685,2019
+2004,84,"(80,85]",College,61.43684021543986,35.4905409020313,1.7310764686576958,8270.309715536227,2019
+2004,64,"(60,65]",HS,519.1491561938958,85.49993944580267,6.071924255840882,5360.668454144494,2019
+2004,64,"(60,65]",HS,519.1491561938958,85.49993944580267,6.071924255840882,5928.758619351796,2019
+2004,64,"(60,65]",HS,519.1491561938958,85.49993944580267,6.071924255840882,5290.828509245132,2019
+2004,64,"(60,65]",HS,519.1491561938958,85.49993944580267,6.071924255840882,5273.917456071617,2019
+2004,64,"(60,65]",HS,519.1491561938958,85.49993944580267,6.071924255840882,5542.969607048284,2019
+2004,28,"(25,30]",NoHS,5.059504488330341,17.74527045101565,0.2851184771906793,4581.75057448468,2019
+2004,28,"(25,30]",NoHS,5.059504488330341,33.87733449739351,0.14934777376654632,4646.627769560675,2019
+2004,28,"(25,30]",NoHS,5.059504488330341,24.19809606956679,0.20908688327316485,4570.291383943314,2019
+2004,28,"(25,30]",NoHS,5.059504488330341,22.58488966492901,0.22402166064981946,4616.156836773124,2019
+2004,28,"(25,30]",NoHS,5.059504488330341,38.716953711306864,0.13067930204572803,4606.630350212007,2019
+2004,33,"(30,35]",HS,66.82631238779175,103.24520989681828,0.647258235559567,7344.4763377104,2019
+2004,33,"(30,35]",HS,65.25503770197487,103.24520989681828,0.6320393727436825,7293.858652724803,2019
+2004,33,"(30,35]",HS,66.98343985637344,103.24520989681828,0.6487801218411555,7346.431489715136,2019
+2004,33,"(30,35]",HS,65.25503770197487,103.24520989681828,0.6320393727436825,7337.5234050265835,2019
+2004,33,"(30,35]",HS,66.98343985637344,103.24520989681828,0.6487801218411555,7333.760105951847,2019
+2004,48,"(45,50]",HS,29.524251346499103,27.424508878842364,1.0765644510511787,8394.437640719376,2019
+2004,48,"(45,50]",HS,25.14039497307002,27.424508878842364,0.9167126778509238,7744.284278389792,2019
+2004,48,"(45,50]",HS,37.08208258527828,27.424508878842364,1.3521511998301126,8374.029287694622,2019
+2004,48,"(45,50]",HS,34.85087253141831,27.424508878842364,1.270792949670843,8375.660336318584,2019
+2004,48,"(45,50]",HS,28.628624775583486,27.424508878842364,1.0439065619027394,8054.126635869363,2019
+2004,42,"(40,45]",HS,88.33706283662477,74.20749461333816,1.1904062156647308,7411.046091305351,2019
+2004,42,"(40,45]",HS,89.8297737881508,74.20749461333816,1.2105215821692041,6907.668387164835,2019
+2004,42,"(40,45]",HS,88.69845601436266,74.20749461333816,1.195276251765814,7406.529081607837,2019
+2004,42,"(40,45]",HS,90.25401795332137,74.20749461333816,1.2162385810704757,7405.058185742043,2019
+2004,42,"(40,45]",HS,88.82415798922801,74.20749461333816,1.1969701773661907,7234.658576609926,2019
+2004,68,"(65,70]",HS,5573.939820466787,1209.9048034783398,4.606924283995186,294.0782415789,2019
+2004,68,"(65,70]",HS,5523.501903052064,1209.9048034783398,4.5652367749699145,293.0190960111748,2019
+2004,68,"(65,70]",HS,5561.998132854578,1209.9048034783398,4.5970543441636575,304.0768756051631,2019
+2004,68,"(65,70]",HS,5519.5737163375225,1209.9048034783398,4.56199008423586,290.0616229138954,2019
+2004,68,"(65,70]",HS,5550.370700179533,1209.9048034783398,4.587444139590853,296.3295687508992,2019
+2004,44,"(40,45]",HS,1130.9956624775582,82.2735266365271,13.746775040702198,984.0586781576789,2019
+2004,44,"(40,45]",HS,1578.3375655296231,90.33955865971603,17.471167547705,1972.71333665687,2019
+2004,44,"(40,45]",HS,912.5884811490126,112.92444832464501,8.081407478081486,999.4654926984252,2019
+2004,44,"(40,45]",HS,1402.5119281867146,138.73575079884964,10.109232264293508,1934.7445386064621,2019
+2004,44,"(40,45]",HS,1316.4060754039497,109.69803551536945,12.000270280314291,993.0913690667467,2019
+2004,27,"(25,30]",HS,-0.7699245960502693,20.97168326029122,-0.03671257983893363,5782.481620225393,2019
+2004,27,"(25,30]",HS,-0.6127971274685817,24.19809606956679,-0.02532418772563177,5694.116348290315,2019
+2004,27,"(25,30]",HS,-0.6127971274685817,22.58488966492901,-0.027133058277462607,5769.720782708284,2019
+2004,27,"(25,30]",HS,-0.7699245960502693,20.97168326029122,-0.03671257983893363,5848.269612681428,2019
+2004,27,"(25,30]",HS,-0.6127971274685817,24.19809606956679,-0.02532418772563177,5760.214133065682,2019
+2004,38,"(35,40]",College,47622.193177737885,10840.747039165924,4.392888516417397,31.09340938619734,2019
+2004,38,"(35,40]",College,48201.993536804315,10066.407964939785,4.788400560029622,32.638444555592336,2019
+2004,38,"(35,40]",College,52123.89515260323,10614.898142516631,4.910447038943084,31.870461163805412,2019
+2004,38,"(35,40]",College,52549.7105924596,11582.821985299304,4.536865943304204,31.42390229825777,2019
+2004,38,"(35,40]",College,44451.36086175942,11615.08611339206,3.827036702767749,31.947340363270506,2019
+2004,60,"(55,60]",HS,480.9357558348295,80.6603202318893,5.962482599277979,5219.951504370003,2019
+2004,60,"(55,60]",HS,426.8681938958708,80.6603202318893,5.292170830324911,4654.356698544408,2019
+2004,60,"(55,60]",HS,430.84351885098744,80.6603202318893,5.34145559566787,5232.624075425596,2019
+2004,60,"(55,60]",HS,862.9440574506284,80.6603202318893,10.698495306859206,5080.016032437862,2019
+2004,60,"(55,60]",HS,475.46771992818674,80.6603202318893,5.894691696750903,5032.13810425001,2019
+2004,69,"(65,70]",HS,549.9461400359068,45.16977932985802,12.175090252707582,5425.246215189539,2019
+2004,69,"(65,70]",HS,549.9461400359068,46.782985734495796,11.755259554338357,6083.172595032198,2019
+2004,69,"(65,70]",HS,549.9461400359068,45.16977932985802,12.175090252707582,5411.888800534498,2019
+2004,69,"(65,70]",HS,549.9461400359068,48.39619213913358,11.363417569193745,5398.845477121851,2019
+2004,69,"(65,70]",HS,549.9461400359068,45.16977932985802,12.175090252707582,5657.694730097596,2019
+2004,38,"(35,40]",College,172.9187791741472,112.92444832464501,1.5312784940691078,8319.878679721125,2019
+2004,38,"(35,40]",College,172.9187791741472,112.92444832464501,1.5312784940691078,7986.625572213804,2019
+2004,38,"(35,40]",College,172.9187791741472,112.92444832464501,1.5312784940691078,8312.355772310922,2019
+2004,38,"(35,40]",College,173.0759066427289,112.92444832464501,1.5326699329551317,8281.365304364466,2019
+2004,38,"(35,40]",College,173.0759066427289,112.92444832464501,1.5326699329551317,8197.531115368602,2019
+2004,34,"(30,35]",NoHS,63.66805026929982,16.132064046377863,3.946677256317689,4915.110800041676,2019
+2004,34,"(30,35]",NoHS,96.66481867145423,15.970743405914082,6.052618604820772,4899.237444007224,2019
+2004,34,"(30,35]",NoHS,101.22151526032316,15.325460844058968,6.6047942238267145,4886.5953701650815,2019
+2004,34,"(30,35]",NoHS,66.81059964093357,17.74527045101565,3.7649806366918277,4932.99604343491,2019
+2004,34,"(30,35]",NoHS,65.2393249551167,17.74527045101565,3.6764345257630455,4882.16694266249,2019
+2004,69,"(65,70]",College,11581.771432675045,645.2825618551144,17.948371949458483,25.951288666609333,2019
+2004,69,"(65,70]",College,11578.723159784562,645.2825618551144,17.943648014440438,26.818102962053683,2019
+2004,69,"(65,70]",College,11580.26300897666,645.2825618551144,17.946034332129965,27.49613653516915,2019
+2004,69,"(65,70]",College,11580.341572710951,645.2825618551144,17.94615608303249,25.39359450513522,2019
+2004,69,"(65,70]",College,11580.765816876123,645.2825618551144,17.946813537906138,26.644861087498175,2019
+2004,26,"(25,30]",HS,41.73305565529623,43.55657292522023,0.9581345099612247,7030.171092741739,2019
+2004,26,"(25,30]",HS,41.73305565529623,43.55657292522023,0.9581345099612247,6849.577206159107,2019
+2004,26,"(25,30]",HS,41.73305565529623,43.55657292522023,0.9581345099612247,7057.905385807384,2019
+2004,26,"(25,30]",HS,40.16178096947935,43.55657292522023,0.9220601684717207,7027.021369219668,2019
+2004,26,"(25,30]",HS,41.73305565529623,43.55657292522023,0.9581345099612247,7007.266892663663,2019
+2004,51,"(50,55]",College,27582.155834829442,701.744786017437,39.30510975559151,24.978685526687734,2019
+2004,51,"(50,55]",College,27582.155834829442,701.744786017437,39.30510975559151,25.394540741539103,2019
+2004,51,"(50,55]",College,27582.155834829442,701.744786017437,39.30510975559151,25.992956181123255,2019
+2004,51,"(50,55]",College,27582.155834829442,701.744786017437,39.30510975559151,24.54462063046173,2019
+2004,51,"(50,55]",College,27582.155834829442,701.744786017437,39.30510975559151,26.099381821218618,2019
+2004,64,"(60,65]",College,712.4159425493716,59.68863697159809,11.935537125573225,642.4468438423588,2019
+2004,64,"(60,65]",College,1576.4598922800717,59.68863697159809,26.411390379549218,631.003171017853,2019
+2004,64,"(60,65]",College,891.2270017953322,69.36787539942482,12.847834774578118,648.8971565426606,2019
+2004,64,"(60,65]",College,1675.6073249551168,59.68863697159809,28.072467557810516,1269.095497780992,2019
+2004,64,"(60,65]",College,1008.7426355475764,59.68863697159809,16.900078251536733,648.1000852334544,2019
+2004,58,"(55,60]",HS,1580.93802513465,95.17917787362938,16.610124824083705,5797.387939659224,2019
+2004,58,"(55,60]",HS,1586.3589228007181,93.56597146899159,16.95444292294286,6411.758908612834,2019
+2004,58,"(55,60]",HS,1635.4612567324955,93.56597146899159,17.479231295904395,5721.8583191036,2019
+2004,58,"(55,60]",HS,1703.3403231597845,93.56597146899159,18.204698742686418,5703.56956714035,2019
+2004,58,"(55,60]",HS,1515.5729982046678,93.56597146899159,16.197908004481512,5994.540685491375,2019
+2004,56,"(55,60]",HS,3528.5801364452427,291.9903592394393,12.084577537547123,2443.5596124778513,2019
+2004,56,"(55,60]",HS,3546.8069228007184,359.74502823422637,9.859224296190767,2441.21578299066,2019
+2004,56,"(55,60]",HS,3523.866312387792,482.3487149866981,7.305640510486217,2448.99435441265,2019
+2004,56,"(55,60]",HS,3534.2367253141833,482.3487149866981,7.327140335414075,2435.202572425562,2019
+2004,56,"(55,60]",HS,3529.680028725314,425.8864908243755,8.28784219450826,2476.172055901155,2019
+2004,70,"(65,70]",HS,7610.940323159785,322.6412809275572,23.589480866425998,2898.3495774372536,2019
+2004,70,"(65,70]",HS,7610.940323159785,322.6412809275572,23.589480866425998,2925.01155974244,2019
+2004,70,"(65,70]",HS,7610.940323159785,322.6412809275572,23.589480866425998,2925.885288682233,2019
+2004,70,"(65,70]",HS,7610.940323159785,322.6412809275572,23.589480866425998,2835.8587425625865,2019
+2004,70,"(65,70]",HS,7612.511597845602,322.6412809275572,23.59435090252708,2828.417254863766,2019
+2004,43,"(40,45]",College,47199.520287253144,2419.8096069566795,19.50546859205776,33.44368509066569,2019
+2004,43,"(40,45]",College,45537.11166965889,2419.8096069566795,18.818468832731647,33.830217524941915,2019
+2004,43,"(40,45]",College,45637.67324955117,2419.8096069566795,18.860026474127555,34.874813183195144,2019
+2004,43,"(40,45]",College,45639.24452423699,2419.8096069566795,18.860675812274366,32.793246822269836,2019
+2004,43,"(40,45]",College,46453.164811490125,2419.8096069566795,19.1970329723225,34.94618849137586,2019
+2004,19,"(15,20]",HS,0.34568043087971273,7.904711382725152,0.04373093641788845,5709.238024385884,2019
+2004,19,"(15,20]",HS,0.34568043087971273,7.420749461333816,0.04658295401035944,5709.22719758441,2019
+2004,19,"(15,20]",HS,0.34568043087971273,7.098108180406259,0.04870036101083032,5707.376920634853,2019
+2004,19,"(15,20]",HS,0.34568043087971273,8.066032023188932,0.04285631768953068,5653.125295584134,2019
+2004,19,"(15,20]",HS,0.34568043087971273,7.743390742261374,0.044641997593261123,5711.434182288107,2019
+2004,50,"(45,50]",College,46220.89898743267,9372.729210945537,4.9314237024425704,19.754206743799788,2019
+2004,50,"(45,50]",College,34480.00456732496,9372.729210945537,3.6787582134624115,19.816306324632045,2019
+2004,50,"(45,50]",College,52224.40959425494,8404.805368162866,6.213636997720296,20.246356702841897,2019
+2004,50,"(45,50]",College,95902.54618312388,9372.729210945537,10.23208331583166,20.4852844289174,2019
+2004,50,"(45,50]",College,29566.942879712748,9372.729210945537,3.154571332881811,20.067007640569997,2019
+2004,41,"(40,45]",HS,4262.475403949731,475.895889368147,8.956739276754574,1372.0150466664413,2019
+2004,41,"(40,45]",HS,3828.222219030521,475.895889368147,8.044243088784189,1366.8399704326669,2019
+2004,41,"(40,45]",HS,4096.628932136446,475.895889368147,8.608246096799853,1554.8410860394288,2019
+2004,41,"(40,45]",HS,4043.0311813285457,475.895889368147,8.495621146668297,1304.7049093045055,2019
+2004,41,"(40,45]",HS,4071.0155834829443,475.895889368147,8.554424769014256,1381.1982313585522,2019
+2004,46,"(45,50]",College,29583.959784560146,5646.222416232252,5.239602269210933,378.98156926734384,2019
+2004,46,"(45,50]",College,42968.0775583483,5646.222416232252,7.610057555440949,369.6346371347053,2019
+2004,46,"(45,50]",College,35997.903052064634,5646.222416232252,6.375572975760701,385.6768828775567,2019
+2004,46,"(45,50]",College,30100.9091561939,5646.222416232252,5.331158947911295,374.58511011349555,2019
+2004,46,"(45,50]",College,34476.9091561939,5646.222416232252,6.106190407426508,388.65239083554127,2019
+2004,59,"(55,60]",College,1984.5199281867147,161.3206404637786,12.301711191335741,4057.053872332828,2019
+2004,59,"(55,60]",College,1939.110089766607,161.3206404637786,12.020223104693143,4224.724209410983,2019
+2004,59,"(55,60]",College,1945.3951885098743,161.3206404637786,12.059183393501804,4015.405534996341,2019
+2004,59,"(55,60]",College,1960.9508078994613,161.3206404637786,12.155610108303248,4308.975464611074,2019
+2004,59,"(55,60]",College,1675.1359425493717,161.3206404637786,10.383890974729242,7657.748751013653,2019
+2004,62,"(60,65]",HS,204.46997486535008,79.04711382725151,2.5866848891181022,5146.637712494891,2019
+2004,62,"(60,65]",HS,78.31233034111311,96.79238427826716,0.8090753309265946,5176.451363010865,2019
+2004,62,"(60,65]",HS,142.98599640933574,83.88673304116487,1.7045126353790616,5154.36651438727,2019
+2004,62,"(60,65]",HS,118.58410053859964,82.2735266365271,1.4413397041126919,5230.723677818612,2019
+2004,62,"(60,65]",HS,109.36071813285459,69.36787539942482,1.5765326169087395,5222.218937204199,2019
+2004,50,"(45,50]",HS,51.616373429084376,27.424508878842364,1.8821257167126777,8117.5159938950555,2019
+2004,50,"(45,50]",HS,51.4592459605027,19.358476855653432,2.6582280385078225,7672.233200162834,2019
+2004,50,"(45,50]",HS,50.87787432675045,19.358476855653432,2.62819614921781,8126.5224286666735,2019
+2004,50,"(45,50]",HS,51.38068222621185,38.716953711306864,1.3270848375451265,8151.0104801467,2019
+2004,50,"(45,50]",HS,51.035001795332136,25.81130247420457,1.9772346570397117,7914.389822402831,2019
+2004,83,"(80,85]",HS,14468.768689407541,488.80154060524916,29.600497313269237,1959.8515745615969,2019
+2004,83,"(80,85]",HS,14413.77407540395,488.80154060524916,29.48798822842573,2008.5824906361845,2019
+2004,83,"(80,85]",HS,14427.915547576302,488.80154060524916,29.51691913595692,1971.325595965302,2019
+2004,83,"(80,85]",HS,14412.202800718132,490.414747009887,29.38778429602888,1912.8103577812478,2019
+2004,83,"(80,85]",HS,14412.202800718132,488.80154060524916,29.48477368314449,1906.3014664527625,2019
+2004,40,"(35,40]",HS,55.46599640933573,98.40559068290497,0.5636468012073148,6773.121151687029,2019
+2004,40,"(35,40]",HS,55.46599640933573,98.40559068290497,0.5636468012073148,6503.508429054336,2019
+2004,40,"(35,40]",HS,56.88014362657091,98.40559068290497,0.5780173995383795,6770.546014035691,2019
+2004,40,"(35,40]",HS,56.72301615798923,98.40559068290497,0.5764206663904834,6749.364103333375,2019
+2004,40,"(35,40]",HS,55.46599640933573,98.40559068290497,0.5636468012073148,6675.304122176717,2019
+2004,46,"(45,50]",College,809.2064631956913,96.79238427826716,8.36022864019254,835.0505464914173,2019
+2004,46,"(45,50]",College,809.2064631956913,96.79238427826716,8.36022864019254,811.4524043608938,2019
+2004,46,"(45,50]",College,809.2064631956913,95.17917787362938,8.501927430704278,843.8238359048615,2019
+2004,46,"(45,50]",College,809.2064631956913,95.17917787362938,8.501927430704278,779.2828030029992,2019
+2004,46,"(45,50]",College,809.2064631956913,96.79238427826716,8.36022864019254,840.4975812761198,2019
+2004,59,"(55,60]",HS,1.0998922800718134,14.518857641740075,0.0757561171279583,5972.40789656707,2019
+2004,59,"(55,60]",HS,1.0998922800718134,14.518857641740075,0.0757561171279583,5923.573238977265,2019
+2004,59,"(55,60]",HS,1.0998922800718134,14.518857641740075,0.0757561171279583,5914.288757994825,2019
+2004,59,"(55,60]",HS,1.0998922800718134,14.518857641740075,0.0757561171279583,5962.737803876754,2019
+2004,59,"(55,60]",HS,1.0998922800718134,14.518857641740075,0.0757561171279583,5960.887732578075,2019
+2004,60,"(55,60]",HS,182.73924596050267,24.19809606956679,7.551802647412755,6945.8675947954325,2019
+2004,60,"(55,60]",HS,190.59561938958709,24.19809606956679,7.876471720818292,6943.840054877037,2019
+2004,60,"(55,60]",HS,173.31159784560145,24.19809606956679,7.162199759326114,6921.357407393321,2019
+2004,60,"(55,60]",HS,190.59561938958709,24.19809606956679,7.876471720818292,6900.390114064265,2019
+2004,60,"(55,60]",HS,340.023842010772,24.19809606956679,14.051677496991577,6937.823626924504,2019
+2004,63,"(60,65]",College,813.2132136445242,209.7168326029122,3.877672590946959,5533.19799114867,2019
+2004,63,"(60,65]",College,813.9988509874327,209.7168326029122,3.8814187725631766,6120.585286828927,2019
+2004,63,"(60,65]",College,802.6856732495512,209.7168326029122,3.8274737572896416,5457.61154606984,2019
+2004,63,"(60,65]",College,814.1559784560144,209.7168326029122,3.88216800888642,5440.8362314306805,2019
+2004,63,"(60,65]",College,827.6689407540395,209.7168326029122,3.9466023326853645,5720.805175486212,2019
+2004,49,"(45,50]",College,5887.880502692999,1297.0179493287799,4.539552059198592,360.44150035953055,2019
+2004,49,"(45,50]",College,5885.445026929982,1298.6311557334177,4.53203744646501,347.97573866529854,2019
+2004,49,"(45,50]",College,5888.509012567325,1298.6311557334177,4.534396842836963,374.1068913847504,2019
+2004,49,"(45,50]",College,4630.3893716337525,1297.0179493287799,3.5700272105178086,355.7540392668519,2019
+2004,49,"(45,50]",College,5889.608904847397,1297.0179493287799,4.5408846561416745,366.38106265159144,2019
+2004,52,"(50,55]",College,10050.108581687613,519.4524622933671,19.347503980088348,278.7880832440143,2019
+2004,52,"(50,55]",College,11157.825809694794,566.235448027863,19.705276044720087,272.8893491791359,2019
+2004,52,"(50,55]",College,5169.807971274686,469.4430637495957,11.012641085761784,289.2724054838156,2019
+2004,52,"(50,55]",College,31820.04078994614,683.9995155664213,46.52056041822764,254.26316249844928,2019
+2004,52,"(50,55]",College,31083.741472172354,471.05627015423346,65.98732134909254,266.1248032574581,2019
+2004,66,"(65,70]",College,353.5525170556553,56.46222416232251,6.2617532748839615,7737.575812785074,2019
+2004,66,"(65,70]",College,353.5525170556553,62.91504978087366,5.619522169767657,7151.263901438173,2019
+2004,66,"(65,70]",College,353.709644524237,62.91504978087366,5.622019624178469,7803.2864759254135,2019
+2004,66,"(65,70]",College,351.9812423698384,58.0754305669603,6.060759927797834,7751.7173094255995,2019
+2004,66,"(65,70]",College,352.13836983842015,58.0754305669603,6.063465503409548,7603.652542587763,2019
+2004,31,"(30,35]",College,-71.10017953321363,10.163200349218052,-6.995845510285943,6173.164336949873,2019
+2004,31,"(30,35]",College,-72.4829012567325,10.163200349218052,-7.131897312474931,6207.045319941732,2019
+2004,31,"(30,35]",College,-67.95763016157989,10.163200349218052,-6.686636868947338,6102.3187570698865,2019
+2004,31,"(30,35]",College,-55.12031597845601,10.001879708754274,-5.510995691161058,6111.378138380498,2019
+2004,31,"(30,35]",College,-38.63764452423698,10.163200349218052,-3.8017202452581516,6086.949358542222,2019
+2004,31,"(30,35]",HS,-3.739633752244165,50.00939854377137,-0.07477861884243624,5038.638775980524,2019
+2004,31,"(30,35]",HS,-3.881048473967684,48.39619213913358,-0.08019326113116727,5113.13328200273,2019
+2004,31,"(30,35]",HS,-3.771059245960503,50.00939854377137,-0.0754070105974147,5059.393378943298,2019
+2004,31,"(30,35]",HS,-3.833910233393178,50.00939854377137,-0.07666379410737162,5066.028565845857,2019
+2004,31,"(30,35]",HS,-3.959612208258528,50.00939854377137,-0.07917736112728543,5090.581945149745,2019
+2004,49,"(45,50]",College,1395.0562298025136,354.90540902031296,3.9307832294059732,3579.520031205878,2019
+2004,49,"(45,50]",College,1420.3537522441652,354.90540902031296,4.002062848703643,3751.0451751348382,2019
+2004,49,"(45,50]",College,1453.193393177738,354.90540902031296,4.094593534624221,3543.7891097536,2019
+2004,49,"(45,50]",College,1754.878132854578,354.90540902031296,4.944636199540532,3824.197552708373,2019
+2004,49,"(45,50]",College,1450.050843806104,354.90540902031296,4.085738923531342,3637.5019029606424,2019
+2004,43,"(40,45]",College,41332.380610412925,958.244604354845,43.13343422188187,269.12275921867814,2019
+2004,43,"(40,45]",College,41332.380610412925,958.244604354845,43.13343422188187,264.88702990304034,2019
+2004,43,"(40,45]",College,41332.380610412925,958.244604354845,43.13343422188187,275.2303847387191,2019
+2004,43,"(40,45]",College,41330.809335727114,958.244604354845,43.1317944790869,267.43281864552534,2019
+2004,43,"(40,45]",College,41332.380610412925,958.244604354845,43.13343422188187,279.84868622087083,2019
+2004,57,"(55,60]",College,904.6928258527828,151.6414020359519,5.966001459405484,5102.981697588273,2019
+2004,57,"(55,60]",College,675.05103052064635,151.6414020359519,4.45162746754743,5621.956126802028,2019
+2004,57,"(55,60]",College,1434.1024057450627,151.6414020359519,9.457195637145709,5027.313534639174,2019
+2004,57,"(55,60]",College,1404.405314183124,151.6414020359519,9.261358015208542,5019.862956553279,2019
+2004,57,"(55,60]",College,351.14846678635547,151.6414020359519,2.3156503571702896,5294.764372112558,2019
+2004,75,"(70,75]",HS,335.9385278276481,70.9810818040626,4.732789629143419,10903.855290104879,2019
+2004,75,"(70,75]",HS,247.94714542190306,75.82070101797595,3.270177432982564,9907.007795245145,2019
+2004,75,"(70,75]",HS,227.52057450628365,53.23581135304694,4.273825620829231,10744.994815102998,2019
+2004,75,"(70,75]",HS,304.5130341113106,45.16977932985802,6.74152140278494,10656.307074272576,2019
+2004,75,"(70,75]",HS,222.80675044883304,80.6603202318893,2.762284476534296,10420.899459666425,2019
+2004,52,"(50,55]",HS,2729.6183842010773,212.94324541218776,12.818525325456735,515.2573057406888,2019
+2004,52,"(50,55]",HS,2655.925601436266,212.94324541218776,12.472457608576743,532.1267557962403,2019
+2004,52,"(50,55]",HS,3003.1773070017953,212.94324541218776,14.103181818181818,510.283954807586,2019
+2004,52,"(50,55]",HS,3083.312315978456,214.55645181682556,14.370634347601856,521.5366118323628,2019
+2004,52,"(50,55]",HS,2825.466140035907,212.94324541218776,13.268634722678044,529.6128730681471,2019
+2004,85,"(80,85]",College,4501.372007181329,837.2541240070111,5.376350952609503,233.7339976471247,2019
+2004,85,"(80,85]",College,2257.921723518851,548.4901775768473,4.116612868974305,128.9263924032936,2019
+2004,85,"(80,85]",College,8620.170053859963,975.8285541653969,8.833693190329516,243.10414687521916,2019
+2004,85,"(80,85]",College,9474.786355475762,716.7476055805685,13.219139180522475,226.46543620012932,2019
+2004,85,"(80,85]",College,2872.7615080789947,540.1015042727308,5.318928914940327,130.7657306223583,2019
+2004,37,"(35,40]",HS,59.70843806104129,27.424508878842364,2.1771926098959438,4428.775934351567,2019
+2004,37,"(35,40]",HS,59.70843806104129,27.424508878842364,2.1771926098959438,4404.534131860947,2019
+2004,37,"(35,40]",HS,15.712746858168762,27.424508878842364,0.5729454236568273,4455.768575031748,2019
+2004,37,"(35,40]",HS,51.852064631956914,27.424508878842364,1.8907198980675304,4419.867289533383,2019
+2004,37,"(35,40]",HS,18.855296229802512,27.424508878842364,0.6875345083881927,4453.077223680515,2019
+2004,35,"(30,35]",HS,67.56481149012568,75.82070101797595,0.8911129887088102,9328.396616562566,2019
+2004,35,"(30,35]",HS,69.30892639138241,75.82070101797595,0.9141161379522238,8801.203623604222,2019
+2004,35,"(30,35]",HS,69.29321364452424,75.82070101797595,0.9139089023734542,9289.12382365956,2019
+2004,35,"(30,35]",HS,67.72193895870737,75.82070101797595,0.8931853444965052,9249.543381184527,2019
+2004,35,"(30,35]",HS,67.72193895870737,75.82070101797595,0.8931853444965052,9080.30580377466,2019
+2004,23,"(20,25]",College,-20.583698384201078,112.92444832464501,-0.18227849406910782,6376.618739541902,2019
+2004,23,"(20,25]",College,-20.583698384201078,112.92444832464501,-0.18227849406910782,6342.217084679012,2019
+2004,23,"(20,25]",College,-19.012423698384204,112.92444832464501,-0.1683641052088706,6365.159524371182,2019
+2004,23,"(20,25]",College,-20.583698384201078,112.92444832464501,-0.18227849406910782,6288.658175863887,2019
+2004,23,"(20,25]",College,-22.154973070017952,112.92444832464501,-0.19619288292934503,6337.607588633193,2019
+2004,60,"(55,60]",HS,760.025565529623,80.6603202318893,9.422545848375451,6531.622711553378,2019
+2004,60,"(55,60]",HS,859.0158707360862,80.6603202318893,10.649794945848376,7224.9997074751545,2019
+2004,60,"(55,60]",HS,805.5925314183123,80.6603202318893,9.987470036101083,6442.397250589888,2019
+2004,60,"(55,60]",HS,862.4726750448833,80.6603202318893,10.692651263537906,6422.594954292907,2019
+2004,60,"(55,60]",HS,860.2728904847397,80.6603202318893,10.665379061371842,6753.082227014391,2019
+2004,21,"(20,25]",HS,19.813773788150808,14.518857641740075,1.3646923385479341,6940.55844332938,2019
+2004,21,"(20,25]",HS,19.813773788150808,15.970743405914082,1.2406293986799402,6890.610414658384,2019
+2004,21,"(20,25]",HS,19.813773788150808,14.357537001276295,1.3800259603293719,6976.650669517442,2019
+2004,21,"(20,25]",HS,19.65664631956912,14.518857641740075,1.353870036101083,6874.6458102739125,2019
+2004,21,"(20,25]",HS,19.813773788150808,16.132064046377863,1.2282231046931407,6969.775969911274,2019
+2004,50,"(45,50]",NoHS,-0.47138240574506285,15.809422765450304,-0.02981654755765122,4224.685143257313,2019
+2004,50,"(45,50]",NoHS,-0.47138240574506285,19.358476855653432,-0.024350180505415164,4215.03844377678,2019
+2004,50,"(45,50]",NoHS,-0.47138240574506285,14.196216360812517,-0.033204791598293405,4244.739079030739,2019
+2004,50,"(45,50]",NoHS,-0.47138240574506285,15.164140203595188,-0.031085336815423616,4245.330808727713,2019
+2004,50,"(45,50]",NoHS,-0.47138240574506285,14.357537001276295,-0.03283170405224516,4213.095726913138,2019
+2004,40,"(35,40]",HS,2.875432675044883,40.33016011594465,0.0712973285198556,9266.807242636465,2019
+2004,40,"(35,40]",HS,2.875432675044883,40.33016011594465,0.0712973285198556,9361.811977851426,2019
+2004,40,"(35,40]",HS,2.8597199281867147,40.33016011594465,0.07090772563176896,9187.485313712734,2019
+2004,40,"(35,40]",HS,2.875432675044883,40.33016011594465,0.0712973285198556,9233.281625528914,2019
+2004,40,"(35,40]",HS,2.718305206463196,40.33016011594465,0.06740129963898918,9225.952595776276,2019
+2004,25,"(20,25]",HS,0,9.679238427826716,0,4881.588985822509,2019
+2004,25,"(20,25]",HS,0,9.679238427826716,0,4953.761565812929,2019
+2004,25,"(20,25]",HS,0,9.679238427826716,0,4901.696686678375,2019
+2004,25,"(20,25]",HS,0,9.679238427826716,0,4908.125060837052,2019
+2004,25,"(20,25]",HS,0,9.679238427826716,0,4931.913133628845,2019
+2004,60,"(55,60]",HS,238.6766247755835,16.132064046377863,14.795169675090252,4664.424171876181,2019
+2004,60,"(55,60]",HS,238.51949730700179,16.132064046377863,14.785429602888083,4559.2924855193205,2019
+2004,60,"(55,60]",HS,238.6766247755835,16.132064046377863,14.795169675090252,4625.275214803578,2019
+2004,60,"(55,60]",HS,238.6766247755835,16.132064046377863,14.795169675090252,4661.442649360293,2019
+2004,60,"(55,60]",HS,238.6766247755835,16.132064046377863,14.795169675090252,4590.091484428047,2019
+2004,44,"(40,45]",College,4215.101472172351,371.0374730666908,11.360312038926384,1405.1578330170792,2019
+2004,44,"(40,45]",College,4215.4157271095155,371.0374730666908,11.361159001726575,1389.6551059862818,2019
+2004,44,"(40,45]",College,4272.295870736086,371.0374730666908,11.514459268560666,1442.3952155883323,2019
+2004,44,"(40,45]",College,4212.430305206462,371.0374730666908,11.353112855124783,1350.4283355966081,2019
+2004,44,"(40,45]",College,4251.555044883304,371.0374730666908,11.458559723748236,1380.2505930576149,2019
+2004,45,"(40,45]",College,13700.761048473967,538.8109391490206,25.42777076893145,1155.0580637409064,2019
+2004,45,"(40,45]",College,11211.139159784561,724.329675682366,15.477950905743208,1134.2509154605018,2019
+2004,45,"(40,45]",College,17776.93041292639,598.4995761206187,29.70249457510679,1189.2548394981084,2019
+2004,45,"(40,45]",College,17975.555245960506,798.5371702957042,22.5106055354994,1119.2736942102977,2019
+2004,45,"(40,45]",College,18160.132883303413,453.3109997032178,40.06109027840231,1140.692518780845,2019
+2004,29,"(25,30]",HS,17.441149012567326,88.72635225507824,0.19657236626189695,5013.576786289572,2019
+2004,29,"(25,30]",HS,17.441149012567326,88.72635225507824,0.19657236626189695,5084.5686034792625,2019
+2004,29,"(25,30]",HS,15.869874326750448,88.72635225507824,0.17886314407614046,5001.037576493252,2019
+2004,29,"(25,30]",HS,17.441149012567326,88.72635225507824,0.19657236626189695,5051.225810414314,2019
+2004,29,"(25,30]",HS,15.869874326750448,88.72635225507824,0.17886314407614046,5040.801460353947,2019
+2004,24,"(20,25]",HS,334.1001364452424,74.20749461333816,4.502242505101241,11072.378892171882,2019
+2004,24,"(20,25]",HS,367.584,74.20749461333816,4.9534619369015855,10764.510500266873,2019
+2004,24,"(20,25]",HS,304.5601723518851,74.20749461333816,4.104169989012714,11160.834057913762,2019
+2004,24,"(20,25]",HS,333.6287540394973,74.20749461333816,4.495890284099827,10875.178691711239,2019
+2004,24,"(20,25]",HS,388.62336804308796,74.20749461333816,5.236982734264637,11042.801970187455,2019
+2004,31,"(30,35]",HS,15.712746858168762,40.33016011594465,0.3896028880866426,4556.273564564057,2019
+2004,31,"(30,35]",HS,17.284021543985638,40.33016011594465,0.4285631768953069,4623.636470218707,2019
+2004,31,"(30,35]",HS,15.712746858168762,40.33016011594465,0.3896028880866426,4575.0412621559335,2019
+2004,31,"(30,35]",HS,15.712746858168762,40.33016011594465,0.3896028880866426,4581.0412411233065,2019
+2004,31,"(30,35]",HS,17.284021543985638,40.33016011594465,0.4285631768953069,4603.244045891991,2019
+2004,46,"(45,50]",HS,212.1220825852783,75.82070101797595,2.797680313388125,7327.185326713248,2019
+2004,46,"(45,50]",HS,212.1220825852783,74.20749461333816,2.8584994506356933,6808.506639290191,2019
+2004,46,"(45,50]",HS,213.69335727109515,74.20749461333816,2.879673520640402,7363.115670238588,2019
+2004,46,"(45,50]",HS,212.1220825852783,75.82070101797595,2.797680313388125,7322.204234384862,2019
+2004,46,"(45,50]",HS,212.1220825852783,75.82070101797595,2.797680313388125,7096.845800689759,2019
+2004,61,"(60,65]",HS,-1.5712746858168762,48.39619213913358,-0.032466907340553554,7090.830415258266,2019
+2004,61,"(60,65]",HS,0.06285098743267505,75.82070101797595,8.289423150779629e-4,7003.097826263738,2019
+2004,61,"(60,65]",HS,-3.1425493716337525,29.03771528348015,-0.10822302446851184,7051.878785514718,2019
+2004,61,"(60,65]",HS,-1.1313177737881508,32.264128092755726,-0.03506425992779783,7078.222091885213,2019
+2004,61,"(60,65]",HS,-0.21997845601436267,62.91504978087366,-0.0034964361751365363,7034.174049348376,2019
+2004,41,"(40,45]",College,1651.158290843806,351.6789962110374,4.695072235286324,6596.666566661438,2019
+2004,41,"(40,45]",College,1489.1755834829444,262.9526439559591,5.663284312639809,6741.682071270336,2019
+2004,41,"(40,45]",College,1336.7462262118493,174.22629170088092,7.672471319695146,6460.456464655187,2019
+2004,41,"(40,45]",College,1400.0528833034111,359.74502823422637,3.891792167845752,6342.449813502404,2019
+2004,41,"(40,45]",College,1180.0901400359066,264.5658503605969,4.460477943118781,6613.65060504547,2019
+2004,24,"(20,25]",HS,24.983267504488328,61.30184337623587,0.4075451263537906,5693.723690748967,2019
+2004,24,"(20,25]",HS,27.02592459605027,61.30184337623587,0.4408664259927798,5663.00623290894,2019
+2004,24,"(20,25]",HS,27.340179533213647,61.30184337623587,0.4459927797833935,5683.4916841699405,2019
+2004,24,"(20,25]",HS,21.21220825852783,61.30184337623587,0.346028880866426,5615.183140384943,2019
+2004,24,"(20,25]",HS,24.983267504488328,61.30184337623587,0.4075451263537906,5658.890384383176,2019
+2004,57,"(55,60]",College,4583.329694793538,161.3206404637786,28.41130361010831,3643.933326921246,2019
+2004,57,"(55,60]",College,4317.470017953321,161.3206404637786,26.763283393501805,3596.5441441361945,2019
+2004,57,"(55,60]",College,4328.783195691203,161.3206404637786,26.833411913357406,4050.5172030113586,2019
+2004,57,"(55,60]",College,4530.5348653500905,161.3206404637786,28.08403718411553,3559.838066757247,2019
+2004,57,"(55,60]",College,4300.343123877918,161.3206404637786,26.657116606498196,3730.011843083447,2019
+2004,51,"(50,55]",College,17912.53141831239,1613.2064046377861,11.103682310469313,366.71739838278404,2019
+2004,51,"(50,55]",College,17915.673967684023,1613.2064046377861,11.105630324909747,366.0885149283489,2019
+2004,51,"(50,55]",College,17912.53141831239,1613.2064046377861,11.103682310469313,375.4966990479824,2019
+2004,51,"(50,55]",College,17915.673967684023,1613.2064046377861,11.105630324909747,364.4667432347092,2019
+2004,51,"(50,55]",College,17914.102692998204,1613.2064046377861,11.10465631768953,367.06265654639316,2019
+2004,68,"(65,70]",College,9513.59684021544,51.62260494840914,184.29129738267153,1642.0659701694865,2019
+2004,68,"(65,70]",College,11727.208617594255,51.62260494840914,227.17196525270765,1650.1175434523004,2019
+2004,68,"(65,70]",College,9904.058599640934,51.62260494840914,191.85507220216613,1673.7244952426486,2019
+2004,68,"(65,70]",College,13258.415798922802,54.84901775768473,241.7256742408155,1595.1361292352601,2019
+2004,68,"(65,70]",College,10104.396122082586,51.62260494840914,195.73588222021667,1612.921296590014,2019
+2004,41,"(40,45]",HS,-2.718305206463196,69.36787539942482,-0.03918680211569137,6605.889620042869,2019
+2004,41,"(40,45]",HS,-4.289579892280072,69.36787539942482,-0.06183813281840314,6565.38571891828,2019
+2004,41,"(40,45]",HS,-4.870951526032316,69.36787539942482,-0.0702191251784065,6601.241299599862,2019
+2004,41,"(40,45]",HS,-6.017982046678636,69.36787539942482,-0.0867545965913861,6589.824484301495,2019
+2004,41,"(40,45]",HS,-3.9753249551166965,69.36787539942482,-0.05730786667786079,6608.767484680007,2019
+2004,62,"(60,65]",College,6833.316481149012,588.820337692792,11.605095890410956,414.12414841656954,2019
+2004,62,"(60,65]",College,6490.1500897666065,588.820337692792,11.022292666040252,408.891319696838,2019
+2004,62,"(60,65]",College,7213.722082585278,588.820337692792,12.251142871272437,426.0991083883323,2019
+2004,62,"(60,65]",College,5812.61644524237,588.820337692792,9.871629889718609,406.28059603603447,2019
+2004,62,"(60,65]",College,6720.970341113107,588.820337692792,11.414297215765787,411.54095424055157,2019
+2004,47,"(45,50]",College,7037.267935368043,645.2825618551144,10.90571534296029,22.74040834730628,2019
+2004,47,"(45,50]",College,7049.429601436266,645.2825618551144,10.924562382671482,23.404092505462607,2019
+2004,47,"(45,50]",College,7049.963834829443,645.2825618551144,10.925390288808664,23.925383300397037,2019
+2004,47,"(45,50]",College,7049.272473967684,645.2825618551144,10.924318880866426,22.17931389191525,2019
+2004,47,"(45,50]",College,7041.66750448833,645.2825618551144,10.912533393501805,23.024921067390856,2019
+2004,74,"(70,75]",HS,1715.6748294434472,119.37727394319619,14.371871402088008,6977.485711423122,2019
+2004,74,"(70,75]",HS,1349.410700179533,95.17917787362938,14.17758306308511,7756.78777150658,2019
+2004,74,"(70,75]",HS,1409.5905206463194,32.264128092755726,43.689093862815874,6905.9835853920495,2019
+2004,74,"(70,75]",HS,1961.940710951526,22.58488966492901,86.86961681279008,4072.0453898515043,2019
+2004,74,"(70,75]",HS,1923.55447037702,69.36787539942482,27.729759046259755,3883.8533673526726,2019
+2004,48,"(45,50]",HS,9.89903052064632,64.52825618551145,0.15340613718411553,3277.1294841293507,2019
+2004,48,"(45,50]",HS,19.955188509874326,64.52825618551145,0.3092472924187725,3271.8104234635293,2019
+2004,48,"(45,50]",HS,10.056157989228009,64.52825618551145,0.15584115523465705,3315.086583341177,2019
+2004,48,"(45,50]",HS,10.056157989228009,64.52825618551145,0.15584115523465705,3294.532356846489,2019
+2004,48,"(45,50]",HS,10.056157989228009,64.52825618551145,0.15584115523465705,3284.6412233264273,2019
+2004,79,"(75,80]",HS,1008.2241149012567,53.23581135304694,18.938832512854173,9527.621141191357,2019
+2004,79,"(75,80]",HS,1007.4384775583484,54.84901775768473,18.367484391590573,10442.851053073717,2019
+2004,79,"(75,80]",HS,1008.2398276481149,54.84901775768473,18.38209449989382,9406.18789852356,2019
+2004,79,"(75,80]",HS,1010.581026929982,54.84901775768473,18.424778933956254,9428.685184767575,2019
+2004,79,"(75,80]",HS,1008.2241149012567,54.84901775768473,18.381808027181993,9855.541043307177,2019
+2004,30,"(25,30]",College,158.46305206463197,88.72635225507824,1.7859750574335411,6184.8913135061275,2019
+2004,30,"(25,30]",College,158.30592459605026,88.72635225507824,1.7842041352149653,6036.946322769374,2019
+2004,30,"(25,30]",College,158.30592459605026,88.72635225507824,1.7842041352149653,6166.067703013311,2019
+2004,30,"(25,30]",College,158.14879712746858,88.72635225507824,1.7824332129963898,6155.297916478494,2019
+2004,30,"(25,30]",College,158.30592459605026,88.72635225507824,1.7842041352149653,6101.341415029014,2019
+2004,47,"(45,50]",HS,30.9855368043088,100.01879708754274,0.30979713520437874,5656.497205168789,2019
+2004,47,"(45,50]",HS,27.90583842010772,96.79238427826716,0.2883061371841155,5536.765539729036,2019
+2004,47,"(45,50]",HS,28.565773788150807,111.31124192000723,0.2566297284570711,5704.250245772492,2019
+2004,47,"(45,50]",HS,28.78575224416517,100.01879708754274,0.28780342378013274,5686.977145463663,2019
+2004,47,"(45,50]",HS,29.728517055655296,87.11314585044046,0.34126327049070726,5630.817573365692,2019
+2004,44,"(40,45]",College,935.8512028725314,56.46222416232251,16.574820010314596,388.53709128896173,2019
+2004,44,"(40,45]",College,934.594183123878,56.46222416232251,16.552556988138218,394.0841844141688,2019
+2004,44,"(40,45]",College,935.8512028725314,56.46222416232251,16.574820010314596,379.4938461394065,2019
+2004,44,"(40,45]",College,936.0083303411132,56.46222416232251,16.577602888086645,380.02794675207184,2019
+2004,44,"(40,45]",College,936.0083303411132,56.46222416232251,16.577602888086645,397.5057240561311,2019
+2004,30,"(25,30]",HS,8.327755834829444,45.16977932985802,0.18436565239814337,4864.1227851351305,2019
+2004,30,"(25,30]",HS,8.327755834829444,45.16977932985802,0.18436565239814337,4932.998346489817,2019
+2004,30,"(25,30]",HS,8.170628366247756,45.16977932985802,0.18088705518308404,4851.957367374965,2019
+2004,30,"(25,30]",HS,8.327755834829444,45.16977932985802,0.18436565239814337,4900.649497278852,2019
+2004,30,"(25,30]",HS,8.327755834829444,45.16977932985802,0.18436565239814337,4890.535895590829,2019
+2004,76,"(75,80]",College,201.7516696588869,80.6603202318893,2.501250541516246,12292.39065322296,2019
+2004,76,"(75,80]",College,157.75597845601436,80.6603202318893,1.955806498194946,11151.639454390273,2019
+2004,76,"(75,80]",College,247.3186355475763,80.6603202318893,3.0661747292418773,12285.092966521403,2019
+2004,76,"(75,80]",College,241.0335368043088,80.6603202318893,2.988254151624549,12054.227874431788,2019
+2004,76,"(75,80]",College,197.0378456014363,80.6603202318893,2.4428101083032496,11935.964160481943,2019
+2004,64,"(60,65]",NoHS,0,13.066971877566067,0,6996.182452667589,2019
+2004,64,"(60,65]",NoHS,0,13.066971877566067,0,6938.282031541557,2019
+2004,64,"(60,65]",NoHS,0,13.066971877566067,0,6931.865586335775,2019
+2004,64,"(60,65]",NoHS,0,13.066971877566067,0,6987.864214924872,2019
+2004,64,"(60,65]",NoHS,0,13.066971877566067,0,6983.7824166456,2019
+2004,52,"(50,55]",College,0,12.905651237102285,0,4474.6626785837925,2019
+2004,52,"(50,55]",College,0,12.905651237102285,0,4518.216116104517,2019
+2004,52,"(50,55]",College,0,12.905651237102285,0,4454.505039899135,2019
+2004,52,"(50,55]",College,0,12.905651237102285,0,4430.970694056129,2019
+2004,52,"(50,55]",College,0,12.905651237102285,0,4441.763197161894,2019
+2004,42,"(40,45]",College,142676.4552962298,19971.49528941579,7.144004654065309,20.74019594646676,2019
+2004,42,"(40,45]",College,155234.0825852783,21197.53215694051,7.323214864634676,21.35350431432254,2019
+2004,42,"(40,45]",College,170839.9827648115,18213.100308360605,9.380060498892027,20.995578422063275,2019
+2004,42,"(40,45]",College,150363.13105924596,20439.325146760748,7.3565604529304,20.4852844289174,2019
+2004,42,"(40,45]",College,159201.55116696592,18697.06222975194,8.514789607622657,20.567919624948274,2019
+2004,31,"(30,35]",College,939.6222621184919,322.6412809275572,2.9122815884476534,1102.1909395577227,2019
+2004,31,"(30,35]",College,936.1654578096949,322.6412809275572,2.9015675090252713,1062.2866676868114,2019
+2004,31,"(30,35]",College,946.2216157989228,322.6412809275572,2.9327357400722023,1107.9441454207547,2019
+2004,31,"(30,35]",College,939.6222621184919,322.6412809275572,2.9122815884476534,1042.1534504875103,2019
+2004,31,"(30,35]",College,939.6222621184919,322.6412809275572,2.9122815884476534,1119.1928067846,2019
+2004,53,"(50,55]",NoHS,161.2127827648115,43.55657292522023,3.701227436823104,6460.2298096976665,2019
+2004,53,"(50,55]",NoHS,161.2127827648115,43.55657292522023,3.701227436823104,6500.476218424706,2019
+2004,53,"(50,55]",NoHS,161.2127827648115,43.55657292522023,3.701227436823104,6443.284111628329,2019
+2004,53,"(50,55]",NoHS,161.05565529622982,43.55657292522023,3.697620002674154,6463.597578887247,2019
+2004,53,"(50,55]",NoHS,161.2127827648115,43.55657292522023,3.701227436823104,6456.658350564602,2019
+2004,56,"(55,60]",HS,1198.646894075404,208.1036261982744,5.759855875521226,5806.149564790225,2019
+2004,56,"(55,60]",HS,1195.9757271095154,164.5470532730542,7.26829015360657,6066.8001162885985,2019
+2004,56,"(55,60]",HS,1197.8612567324956,235.52813507711673,5.085852084466644,5703.257817485579,2019
+2004,56,"(55,60]",HS,1197.547001795332,172.6130852962431,6.937753298019501,5597.721974631624,2019
+2004,56,"(55,60]",HS,1198.8040215439858,298.4431848579905,4.016858425212215,5836.1224179362225,2019
+2004,35,"(30,35]",College,8.406319569120287,80.6603202318893,0.1042187725631769,4425.77923162618,2019
+2004,35,"(30,35]",College,8.563447037701975,80.6603202318893,0.10616678700361011,4398.844090726123,2019
+2004,35,"(30,35]",College,8.406319569120287,80.6603202318893,0.1042187725631769,4423.396679484553,2019
+2004,35,"(30,35]",College,8.563447037701975,80.6603202318893,0.10616678700361011,4425.985334022774,2019
+2004,35,"(30,35]",College,8.406319569120287,80.6603202318893,0.1042187725631769,4428.574732612416,2019
+2004,47,"(45,50]",HS,1613.903368043088,201.65080057972327,8.003456288808664,1089.946289325676,2019
+2004,47,"(45,50]",HS,1614.0604955116696,203.26400698436103,7.940709816056387,1054.1678568370965,2019
+2004,47,"(45,50]",HS,1613.8876552962297,201.65080057972327,8.003378368231045,1104.880017946523,2019
+2004,47,"(45,50]",HS,1613.7305278276483,201.65080057972327,8.002599162454874,1025.182392532425,2019
+2004,47,"(45,50]",HS,1613.8876552962297,201.65080057972327,8.003378368231045,1103.1492864573875,2019
+2004,37,"(35,40]",HS,6.22224775583483,40.33016011594465,0.15428274368231049,11054.959154867276,2019
+2004,37,"(35,40]",HS,4.4938456014362655,40.33016011594465,0.11142642599277978,10612.152278283165,2019
+2004,37,"(35,40]",HS,6.206535008976661,40.33016011594465,0.15389314079422384,11044.96316365789,2019
+2004,37,"(35,40]",HS,4.650973070017954,40.33016011594465,0.11532245487364623,11003.784876025727,2019
+2004,37,"(35,40]",HS,4.635260323159785,41.94336652058244,0.11051235767842267,10892.39099988788,2019
+2004,62,"(60,65]",HS,15012.272603231599,519.4524622933671,28.900185662712737,1155.0580637409064,2019
+2004,62,"(60,65]",HS,15005.830377019749,472.6694765588712,31.746984142630087,1134.2509154605018,2019
+2004,62,"(60,65]",HS,15005.830377019749,519.4524622933671,28.887783707424266,1189.2548394981084,2019
+2004,62,"(60,65]",HS,15004.259102333932,508.16001746090257,29.526642370064756,1119.2736942102977,2019
+2004,62,"(60,65]",HS,15004.416229802513,519.4524622933671,28.885061326995086,1140.692518780845,2019
+2004,60,"(55,60]",HS,463.68315978456013,161.3206404637786,2.8742953068592056,8087.319581094736,2019
+2004,60,"(55,60]",HS,455.8267863554758,161.3206404637786,2.825594945848376,7001.698983728842,2019
+2004,60,"(55,60]",HS,465.2544344703771,161.3206404637786,2.8840353790613724,8109.344691426677,2019
+2004,60,"(55,60]",HS,458.9693357271095,161.3206404637786,2.8450750902527076,7992.890207205834,2019
+2004,60,"(55,60]",HS,452.68423698384197,161.3206404637786,2.806114801444043,7724.371170906752,2019
+2004,58,"(55,60]",College,6074.547935368044,483.96192139133586,12.551706377858004,2898.3495774372536,2019
+2004,58,"(55,60]",College,6074.547935368044,483.96192139133586,12.551706377858004,2925.01155974244,2019
+2004,58,"(55,60]",College,6074.547935368044,483.96192139133586,12.551706377858004,2925.885288682233,2019
+2004,58,"(55,60]",College,6074.547935368044,483.96192139133586,12.551706377858004,2835.8587425625865,2019
+2004,58,"(55,60]",College,6074.547935368044,483.96192139133586,12.551706377858004,2828.417254863766,2019
+2004,59,"(55,60]",College,206.65404667863555,74.20749461333816,2.7848136870193065,5733.706312321117,2019
+2004,59,"(55,60]",College,162.65835547576302,74.20749461333816,2.1919397268874588,5024.783734326755,2019
+2004,59,"(55,60]",College,208.743842010772,74.20749461333816,2.8129752001255692,5728.608337407079,2019
+2004,59,"(55,60]",College,181.56078994614003,74.20749461333816,2.446663789044106,5623.400511523605,2019
+2004,59,"(55,60]",College,192.48114901256733,74.20749461333816,2.593823575576833,5460.707559394449,2019
+2004,44,"(40,45]",HS,249.8326750448833,129.0565123710229,1.9358393501805051,12082.982958957049,2019
+2004,44,"(40,45]",HS,248.26140035906644,129.0565123710229,1.9236642599277978,11362.6177396807,2019
+2004,44,"(40,45]",HS,249.989802513465,129.0565123710229,1.937056859205776,12212.084644099767,2019
+2004,44,"(40,45]",HS,249.8326750448833,129.0565123710229,1.9358393501805051,12047.038021874327,2019
+2004,44,"(40,45]",HS,249.8326750448833,129.0565123710229,1.9358393501805051,11893.842117416743,2019
+2004,29,"(25,30]",HS,119.88825852782766,64.52825618551145,1.8579187725631767,6268.585016808434,2019
+2004,29,"(25,30]",HS,119.73113105924597,64.52825618551145,1.8554837545126353,6219.3749784764295,2019
+2004,29,"(25,30]",HS,119.73113105924597,64.52825618551145,1.8554837545126353,6297.702912694995,2019
+2004,29,"(25,30]",HS,119.88825852782766,64.52825618551145,1.8579187725631767,6342.7432666294735,2019
+2004,29,"(25,30]",HS,119.73113105924597,64.52825618551145,1.8554837545126353,6299.28132266354,2019
+2004,41,"(40,45]",College,885.5704129263913,258.1130247420458,3.430940433212996,5818.413565334784,2019
+2004,41,"(40,45]",College,887.9273249551168,258.1130247420458,3.440071750902527,6460.108756347561,2019
+2004,41,"(40,45]",College,885.0990305206464,258.1130247420458,3.4291141696750898,5743.296580344563,2019
+2004,41,"(40,45]",College,889.9699820466786,258.1130247420458,3.4479855595667863,5734.747376424047,2019
+2004,41,"(40,45]",College,884.7219245960503,258.1130247420458,3.4276531588447647,5992.476608408255,2019
+2004,67,"(65,70]",HS,383.0767684021544,56.46222416232251,6.784656008251678,6083.519520192911,2019
+2004,67,"(65,70]",HS,383.0767684021544,56.46222416232251,6.784656008251678,5720.632623092715,2019
+2004,67,"(65,70]",HS,383.0767684021544,54.84901775768473,6.984204714376726,6155.550802499729,2019
+2004,67,"(65,70]",HS,382.91964093357274,56.46222416232251,6.78187313047963,6118.142290969045,2019
+2004,67,"(65,70]",HS,383.2338958707361,56.46222416232251,6.7874388860237245,6051.2467166376755,2019
+2004,74,"(70,75]",College,14867.511066427289,1393.0037304047285,10.672987259056102,366.71739838278404,2019
+2004,74,"(70,75]",College,14867.605342908439,823.5418695675899,18.053247676059076,366.0885149283489,2019
+2004,74,"(70,75]",College,14867.715332136446,1512.3810043479243,9.830667860409147,375.4966990479824,2019
+2004,74,"(70,75]",College,14867.558204667865,823.5418695675899,18.053190437632814,364.4667432347092,2019
+2004,74,"(70,75]",College,14867.322513464991,1665.635612788514,8.92591536787266,367.06265654639316,2019
+2004,47,"(45,50]",HS,491.65184919210054,174.22629170088092,2.8219153630164455,9031.838643722163,2019
+2004,47,"(45,50]",HS,493.22312387791743,174.22629170088092,2.8309339483888216,10048.398682297493,2019
+2004,47,"(45,50]",HS,493.3802513464991,172.6130852962431,2.8583015621309764,8915.15372770812,2019
+2004,47,"(45,50]",HS,493.22312387791743,174.22629170088092,2.8309339483888216,8935.512872689387,2019
+2004,47,"(45,50]",HS,493.22312387791743,172.6130852962431,2.8573912750092787,9339.29289297421,2019
+2004,49,"(45,50]",College,2057.002829443447,571.0750672417763,3.601983254808378,994.5899679987145,2019
+2004,49,"(45,50]",College,1749.0329910233393,571.0750672417763,3.062702421016133,1006.6992123250375,2019
+2004,49,"(45,50]",College,1730.1776947935368,579.1410992649652,2.9874890540309527,991.6859893878376,2019
+2004,49,"(45,50]",College,1728.60642010772,571.0750672417763,3.0269337942850147,1017.1933843578756,2019
+2004,49,"(45,50]",College,2011.4201508078995,571.0750672417763,3.5221641885414754,1031.3551682543662,2019
+2004,52,"(50,55]",College,1322.2433608617594,322.6412809275572,4.098184079422382,4139.44936552591,2019
+2004,52,"(50,55]",College,1459.714183123878,322.6412809275572,4.524263537906138,4337.52138340807,2019
+2004,52,"(50,55]",College,1319.3365026929982,322.6412809275572,4.089174512635379,4098.529177951352,2019
+2004,52,"(50,55]",College,1445.776976660682,322.6412809275572,4.48106631768953,4422.786293815766,2019
+2004,52,"(50,55]",College,1229.475303411131,322.6412809275572,3.8106571480144407,4206.25421540129,2019
+2004,39,"(35,40]",College,3947.246276481149,201.65080057972327,19.574662064981947,1449.6106910623153,2019
+2004,39,"(35,40]",College,3946.004969479354,201.65080057972327,19.56850633935018,1443.6242472299891,2019
+2004,39,"(35,40]",College,3947.5605314183126,201.65080057972327,19.576220476534296,1642.8077351608524,2019
+2004,39,"(35,40]",College,3946.004969479354,201.65080057972327,19.56850633935018,1377.535564254466,2019
+2004,39,"(35,40]",College,3945.9892567324955,201.65080057972327,19.568428418772562,1459.1518236773445,2019
+2004,52,"(50,55]",College,214.87181328545782,90.33955865971603,2.378490845796802,8099.687150853441,2019
+2004,52,"(50,55]",College,214.87181328545782,90.33955865971603,2.378490845796802,7435.32289910712,2019
+2004,52,"(50,55]",College,214.87181328545782,90.33955865971603,2.378490845796802,8168.83568276342,2019
+2004,52,"(50,55]",College,215.0289407540395,90.33955865971603,2.3802301444043317,8156.588953650244,2019
+2004,52,"(50,55]",College,214.87181328545782,90.33955865971603,2.378490845796802,7867.5858660564645,2019
+2004,77,"(75,80]",College,76854.18743267505,2416.5831941474034,31.80283121177214,18.83210989112785,2019
+2004,77,"(75,80]",College,65259.75152603231,2666.307545585333,24.475702975106675,19.626380911508754,2019
+2004,77,"(75,80]",College,78394.82226211848,2516.601991234946,31.151061047857077,19.621414640771015,2019
+2004,77,"(75,80]",College,74600.97953321364,2402.3869777865907,31.05285710545531,18.787095333882963,2019
+2004,77,"(75,80]",College,66772.88904847397,2761.6480440994264,24.178638255929027,19.523612747947926,2019
+2004,54,"(50,55]",College,1784.3395332136445,145.18857641740072,12.289806658644205,3077.328441139514,2019
+2004,54,"(50,55]",College,1786.2250628366248,145.18857641740072,12.302793421580427,3224.789329521611,2019
+2004,54,"(50,55]",College,1787.7963375224417,145.18857641740072,12.31361572402728,3046.6104175344935,2019
+2004,54,"(50,55]",College,1791.8816517055657,145.18857641740072,12.341753710389092,3287.678736503971,2019
+2004,54,"(50,55]",College,1791.8816517055657,145.18857641740072,12.341753710389092,3127.175700399389,2019
+2004,74,"(70,75]",College,730.0142190305206,198.4243877704477,3.6790549147368723,1042.581078962647,2019
+2004,74,"(70,75]",College,730.0142190305206,198.4243877704477,3.6790549147368723,997.4327708546368,2019
+2004,74,"(70,75]",College,730.0142190305206,198.4243877704477,3.6790549147368723,1050.0826629690623,2019
+2004,74,"(70,75]",College,729.857091561939,198.4243877704477,3.678263038948079,984.1029997628096,2019
+2004,74,"(70,75]",College,729.857091561939,198.4243877704477,3.678263038948079,1058.5452239474726,2019
+2004,77,"(75,80]",HS,1845.1478635547576,79.04711382725151,23.342381197966553,4677.248210139318,2019
+2004,77,"(75,80]",HS,1845.3049910233394,80.6603202318893,22.877481588447655,4893.920719713746,2019
+2004,77,"(75,80]",HS,1845.3049910233394,79.04711382725151,23.34436896780373,4642.065395627347,2019
+2004,77,"(75,80]",HS,1845.3049910233394,80.6603202318893,22.877481588447655,4980.807780528616,2019
+2004,77,"(75,80]",HS,1845.3049910233394,80.6603202318893,22.877481588447655,4751.533296391324,2019
+2004,63,"(60,65]",College,174.20722441651705,208.1036261982744,0.8371176783365516,4939.8766925036425,2019
+2004,63,"(60,65]",College,217.27586355475765,83.88673304116487,2.59010996945293,4404.628693291399,2019
+2004,63,"(60,65]",College,260.9415870736086,95.17917787362938,2.741582695955455,4951.869320852625,2019
+2004,63,"(60,65]",College,256.00778456014365,269.4054695745103,0.9502694394604294,4863.527081806783,2019
+2004,63,"(60,65]",College,261.1144272890485,204.87721338899885,1.2744922823275249,4762.140359701331,2019
+2004,28,"(25,30]",NoHS,6.992172351885099,30.650921688117936,0.22812274368231047,4370.315134835283,2019
+2004,28,"(25,30]",NoHS,7.793522441651706,30.650921688117936,0.25426714801444045,4434.928710367408,2019
+2004,28,"(25,30]",NoHS,6.363662477558349,30.650921688117936,0.20761732851985562,4388.316853052927,2019
+2004,28,"(25,30]",NoHS,6.6779174147217235,30.650921688117936,0.21787003610108302,4394.0719506163705,2019
+2004,28,"(25,30]",NoHS,7.636394973070018,30.650921688117936,0.2491407942238267,4415.368576541345,2019
+2004,60,"(55,60]",NoHS,1.9326678635547576,77.43390742261373,0.024958935018050542,5901.320235167427,2019
+2004,60,"(55,60]",NoHS,1.665551166965889,77.43390742261373,0.02150932611311673,5856.086095547691,2019
+2004,60,"(55,60]",NoHS,1.610556552962298,77.43390742261373,0.020799112515042118,5885.874054632932,2019
+2004,60,"(55,60]",NoHS,1.5885587073608618,77.43390742261373,0.020515027075812275,5882.173221386439,2019
+2004,60,"(55,60]",NoHS,1.673407540394973,77.43390742261373,0.021610785198555957,5919.445717506832,2019
+2004,60,"(55,60]",College,110650.73464991023,1903.583557472588,58.12759530074037,26.53403282575663,2019
+2004,60,"(55,60]",College,110960.27576301617,2032.6400698436103,54.58923958512407,27.460195446701853,2019
+2004,60,"(55,60]",College,110647.5921005386,1839.0553012870762,60.1654512635379,27.68412532033214,2019
+2004,60,"(55,60]",College,110620.88043087971,1822.9232372406984,60.68323567937126,26.087486167993212,2019
+2004,60,"(55,60]",College,110620.88043087971,1839.0553012870762,60.1509265944645,26.767361096680492,2019
+2004,55,"(50,55]",HS,15.85416157989228,45.16977932985802,0.3509904589994842,5135.973709146436,2019
+2004,55,"(50,55]",HS,15.85416157989228,45.16977932985802,0.3509904589994842,4976.650467344558,2019
+2004,55,"(50,55]",HS,17.425436265709155,45.16977932985802,0.3857764311500773,5127.3943209561,2019
+2004,55,"(50,55]",HS,69.27750089766606,45.16977932985802,1.5337135121196488,5142.144581235404,2019
+2004,55,"(50,55]",HS,37.852007181328545,45.16977932985802,0.8379940691077874,5086.754472447823,2019
+2004,81,"(80,85]",NoHS,289.1145421903052,35.4905409020313,8.14624220544798,11308.165762409362,2019
+2004,81,"(80,85]",NoHS,289.27166965888694,35.4905409020313,8.15066951099442,10258.752022317643,2019
+2004,81,"(80,85]",NoHS,289.74305206463197,33.87733449739351,8.55271101942582,11301.452385554414,2019
+2004,81,"(80,85]",NoHS,289.74305206463197,33.87733449739351,8.55271101942582,11089.072157513194,2019
+2004,81,"(80,85]",NoHS,291.0000718132855,33.87733449739351,8.589816056386454,10980.277561022533,2019
+2004,61,"(60,65]",HS,58603.36057450628,1243.7821379757333,47.11706237386861,321.20552583563233,2019
+2004,61,"(60,65]",HS,59122.981113105925,1243.7821379757333,47.53483693641807,322.4300307399586,2019
+2004,61,"(60,65]",HS,58582.525472172354,1243.7821379757333,47.100310965645434,324.16846605579263,2019
+2004,61,"(60,65]",HS,58595.18994614004,1243.7821379757333,47.11049319417325,320.69254538234384,2019
+2004,61,"(60,65]",HS,58491.48581687612,1243.7821379757333,47.027115144193615,330.7513900743841,2019
+2004,28,"(25,30]",NoHS,12.413070017953322,48.39619213913358,0.25648856799037306,7281.7657823157715,2019
+2004,28,"(25,30]",NoHS,12.255942549371634,41.94336652058244,0.29220216606498195,7244.7703038219815,2019
+2004,28,"(25,30]",NoHS,12.413070017953322,53.23581135304694,0.2331714254457937,7289.062057341335,2019
+2004,28,"(25,30]",NoHS,12.255942549371634,53.23581135304694,0.23021988841483426,7321.917744247757,2019
+2004,28,"(25,30]",NoHS,12.413070017953322,40.33016011594465,0.3077862815884477,7306.68621022023,2019
+2004,76,"(75,80]",NoHS,133.55834829443447,13.066971877566067,10.221063422026118,11614.438465416519,2019
+2004,76,"(75,80]",NoHS,133.55834829443447,13.228292518029845,10.096416307123361,11670.397142169923,2019
+2004,76,"(75,80]",NoHS,133.55834829443447,13.066971877566067,10.221063422026118,11631.42323904465,2019
+2004,76,"(75,80]",NoHS,133.55834829443447,13.228292518029845,10.096416307123361,11595.819785934396,2019
+2004,76,"(75,80]",NoHS,133.55834829443447,13.066971877566067,10.221063422026118,11628.23489874788,2019
+2004,62,"(60,65]",HS,559.6880430879713,53.23581135304694,10.513374904277432,5679.963419294332,2019
+2004,62,"(60,65]",HS,559.4523518850988,54.84901775768473,10.19986090465067,5064.525171536128,2019
+2004,62,"(60,65]",HS,560.2379892280071,53.23581135304694,10.523705283885787,5693.7527696290845,2019
+2004,62,"(60,65]",HS,560.316552962298,53.23581135304694,10.525181052401269,5592.175196464071,2019
+2004,62,"(60,65]",HS,559.845170556553,54.84901775768473,10.207022722446379,5475.598830573193,2019
+2004,49,"(45,50]",HS,675.6952531418312,117.76406753855836,5.737703080955443,6244.072414876844,2019
+2004,49,"(45,50]",HS,575.7936086175943,96.79238427826716,5.948749097472924,6946.86115428223,2019
+2004,49,"(45,50]",HS,605.2078707360862,87.11314585044046,6.9473770557561165,6163.403450997388,2019
+2004,49,"(45,50]",HS,653.0846104129264,82.2735266365271,7.937967862957457,6177.478544738833,2019
+2004,49,"(45,50]",HS,637.0733213644525,96.79238427826716,6.581853790613719,6456.627872554975,2019
+2004,66,"(65,70]",HS,11.69028366247756,33.87733449739351,0.3450768437338834,7433.807758832525,2019
+2004,66,"(65,70]",HS,11.67457091561939,33.87733449739351,0.3446130307718755,7610.426605171606,2019
+2004,66,"(65,70]",HS,11.69028366247756,33.87733449739351,0.3450768437338834,7438.930106870132,2019
+2004,66,"(65,70]",HS,11.69028366247756,33.87733449739351,0.3450768437338834,7569.616551812488,2019
+2004,66,"(65,70]",HS,11.847411131059246,33.87733449739351,0.3497149733539625,7518.715831807996,2019
+2004,57,"(55,60]",College,453876.834470377,96631.06363780338,4.6970075396418824,2.8223448818477395,2019
+2004,57,"(55,60]",College,508101.52387791744,106987.84875557799,4.749151700757295,2.8812682866096098,2019
+2004,57,"(55,60]",College,409687.87648114905,96679.45982994253,4.237589630742485,2.764845406160569,2019
+2004,57,"(55,60]",College,736709.4204667864,96114.83758831931,7.664887534037903,2.7705622626063535,2019
+2004,57,"(55,60]",College,460733.8771992819,92517.38730597703,4.979970691082372,2.7024244688325725,2019
+2004,68,"(65,70]",HS,20519.590377019747,1935.8476855653435,10.599795908543921,21.58599443565568,2019
+2004,68,"(65,70]",HS,16204.712962298025,1935.8476855653435,8.37086155234657,21.920877619601253,2019
+2004,68,"(65,70]",HS,31946.37127468582,1758.394981055187,18.16791541085682,20.246356702841897,2019
+2004,68,"(65,70]",HS,24515.184775583482,1413.1688104627008,17.34766900746748,19.17777086767523,2019
+2004,68,"(65,70]",HS,13937.677845601436,1919.7156215189657,7.260282559233079,21.24879627113156,2019
+2004,85,"(80,85]",HS,10224.284380610414,1645.470532730542,6.2135931195582925,27.616107697857217,2019
+2004,85,"(80,85]",HS,10061.500323159784,1022.7728605403563,9.837472924187725,28.18982659411707,2019
+2004,85,"(80,85]",HS,9992.599928186715,2193.960710307389,4.554593836270971,29.494216495005315,2019
+2004,85,"(80,85]",HS,10137.864272890483,1035.6785117774587,9.788620848656612,26.4889003679581,2019
+2004,85,"(80,85]",HS,10052.229802513466,1629.338468684164,6.169516031025486,27.653462918499077,2019
+2004,84,"(80,85]",HS,38.59050628366248,24.19809606956679,1.5947744885679904,8804.234984640334,2019
+2004,84,"(80,85]",HS,38.323389587073606,25.81130247420457,1.4847522563176898,8812.724614364077,2019
+2004,84,"(80,85]",HS,39.046175942549375,15.325460844058968,2.547797833935018,8821.620739295036,2019
+2004,84,"(80,85]",HS,38.889048473967684,20.97168326029122,1.8543599000277702,8799.802001737471,2019
+2004,84,"(80,85]",HS,41.32452423698385,15.970743405914082,2.58751413047442,8812.731093448561,2019
+2004,39,"(35,40]",HS,252.12673608617595,91.95276506435381,2.741915764139591,12082.982958957049,2019
+2004,39,"(35,40]",HS,250.86971633752245,91.95276506435381,2.728245487364621,11362.6177396807,2019
+2004,39,"(35,40]",HS,251.02684380610413,91.95276506435381,2.7299542719614918,12212.084644099767,2019
+2004,39,"(35,40]",HS,250.55546140035906,91.95276506435381,2.7248279181708783,12047.038021874327,2019
+2004,39,"(35,40]",HS,250.55546140035906,91.95276506435381,2.7248279181708783,11893.842117416743,2019
+2004,58,"(55,60]",HS,436.42154398563736,62.91504978087366,6.9366796260298065,6887.757311336058,2019
+2004,58,"(55,60]",HS,354.1181759425494,41.94336652058244,8.44276950846987,6023.446864967902,2019
+2004,58,"(55,60]",HS,336.8184416517056,104.8584163014561,3.2121259650097196,6880.864448282744,2019
+2004,58,"(55,60]",HS,434.00178096947934,54.84901775768473,7.912662773412614,6791.125575328646,2019
+2004,58,"(55,60]",HS,342.6478707360862,104.8584163014561,3.2677193001943903,6591.348953689351,2019
+2004,95,"(90,95]",HS,2849.1923877917416,82.2735266365271,34.6307312238975,5664.914254024623,2019
+2004,95,"(90,95]",HS,2816.2741831238777,69.36787539942482,40.59911258500544,5927.340179012445,2019
+2004,95,"(90,95]",HS,2463.60157989228,95.17917787362938,25.883829162332493,5622.302098656532,2019
+2004,95,"(90,95]",HS,2597.474183123878,96.79238427826716,26.83552226233454,6032.574651759362,2019
+2004,95,"(90,95]",HS,2818.3954039497307,80.6603202318893,34.941535018050544,5754.885669922155,2019
+2004,58,"(55,60]",College,2245.9800359066426,66.14146259014923,33.95721757506384,3512.9592193568074,2019
+2004,58,"(55,60]",College,2070.1543985637345,64.52825618551145,32.081362815884475,3658.749021140974,2019
+2004,58,"(55,60]",College,2091.6808617594256,64.52825618551145,32.414960288808665,3474.6688433704585,2019
+2004,58,"(55,60]",College,2148.87526032316,64.52825618551145,33.30130685920577,3729.1634399096124,2019
+2004,58,"(55,60]",College,2226.810484739677,64.52825618551145,34.50907581227437,3568.0957174790965,2019
+2004,65,"(60,65]",HS,272.14477558348295,75.82070101797595,3.5893202242875795,8816.942926330656,2019
+2004,65,"(60,65]",HS,278.2727468581688,58.0754305669603,4.791574408343362,8134.081992829158,2019
+2004,65,"(60,65]",HS,312.5265350089766,69.36787539942482,4.505349676769371,8954.150389110408,2019
+2004,65,"(60,65]",HS,279.2155116696589,56.46222416232251,4.945173800928314,8871.548128820705,2019
+2004,65,"(60,65]",HS,330.7533213644524,32.264128092755726,10.251425992779781,8754.369730450724,2019
+2004,55,"(50,55]",HS,361.8645601436266,83.88673304116487,4.3137281310747015,6144.008847452018,2019
+2004,55,"(50,55]",HS,362.02168761220827,91.95276506435381,3.9370397111913356,5374.603015567604,2019
+2004,55,"(50,55]",HS,361.8645601436266,106.47162270609388,3.398694891149765,6181.576382653507,2019
+2004,55,"(50,55]",HS,362.02168761220827,85.49993944580267,4.234174783734078,6052.067716375141,2019
+2004,55,"(50,55]",HS,362.02168761220827,83.88673304116487,4.315601221882811,5912.277591115088,2019
+2004,28,"(25,30]",HS,5.1066427289048475,80.6603202318893,0.06331046931407942,5863.931216226938,2019
+2004,28,"(25,30]",HS,5.342333931777379,80.6603202318893,0.06623249097472925,5844.7259654661475,2019
+2004,28,"(25,30]",HS,5.248057450628367,80.6603202318893,0.06506368231046933,5828.946758049369,2019
+2004,28,"(25,30]",HS,5.028078994614004,80.6603202318893,0.06233646209386283,5870.683035639575,2019
+2004,28,"(25,30]",HS,5.090929982046679,80.6603202318893,0.0631156678700361,5823.486984053285,2019
+2004,64,"(60,65]",College,23261.62183123878,1742.2629170088094,13.351384342826577,312.9438578319533,2019
+2004,64,"(60,65]",College,25194.289694793537,2516.601991234946,10.011233314819957,278.4357808814075,2019
+2004,64,"(60,65]",College,23261.464703770198,2323.0172226784116,10.013470617729645,326.17343126559774,2019
+2004,64,"(60,65]",College,24660.0563016158,2177.8286462610113,11.323230752774435,278.96804002249337,2019
+2004,64,"(60,65]",College,22442.987719928187,2419.8096069566795,9.27469155234657,307.546686552354,2019
+2004,32,"(30,35]",College,388.34210987432675,371.0374730666908,1.0466385151467588,5854.824490270339,2019
+2004,32,"(30,35]",College,463.76329479353683,371.0374730666908,1.2499095871919637,5805.286453640207,2019
+2004,32,"(30,35]",College,336.8043001795332,371.0374730666908,0.9077366159158687,5843.240387221605,2019
+2004,32,"(30,35]",College,337.80991597845605,371.0374730666908,0.9104468968764716,5936.304865346131,2019
+2004,32,"(30,35]",College,347.64609551166967,371.0374730666908,0.9369568325223671,5855.083297117666,2019
+2004,35,"(30,35]",HS,124.88491202872532,88.72635225507824,1.4075289793239252,4197.256145217561,2019
+2004,35,"(30,35]",HS,137.15656732495512,88.72635225507824,1.5458380045946833,4208.229007385354,2019
+2004,35,"(30,35]",HS,21.29077199281867,88.72635225507824,0.23995996061700028,4239.610916020637,2019
+2004,35,"(30,35]",HS,39.9889407540395,88.72635225507824,0.4506997046275024,4253.294272177988,2019
+2004,35,"(30,35]",HS,51.38068222621185,88.72635225507824,0.579091565474237,4230.369512481707,2019
+2004,65,"(60,65]",College,189961.13867145422,16132.064046377862,11.775377169675089,15.802976299044108,2019
+2004,65,"(60,65]",College,201263.94599640934,16132.064046377862,12.476019523465704,16.731698115882246,2019
+2004,65,"(60,65]",College,203139.57658886895,16132.064046377862,12.59228676534296,16.396171915760185,2019
+2004,65,"(60,65]",College,203112.70779174147,16132.064046377862,12.590621212996389,15.52483095336305,2019
+2004,65,"(60,65]",College,194948.36452423697,16132.064046377862,12.084527061371839,15.89151738577174,2019
+2004,42,"(40,45]",College,747.1411131059245,283.9243272162504,2.631479734164752,7997.9849727735545,2019
+2004,42,"(40,45]",College,718.8581687612209,283.9243272162504,2.531865359369872,8880.058485972839,2019
+2004,42,"(40,45]",College,676.4337522441651,283.9243272162504,2.3824437971775514,7894.729246722857,2019
+2004,42,"(40,45]",College,651.1362298025135,283.9243272162504,2.2933442730554643,7882.977520291305,2019
+2004,42,"(40,45]",College,597.2415080789946,283.9243272162504,2.1035235477518865,8237.251842889335,2019
+2004,55,"(50,55]",NoHS,849.5567971274686,59.68863697159809,14.233141184505804,770.0404772812162,2019
+2004,55,"(50,55]",NoHS,848.4411921005386,62.91504978087366,13.485504582060539,742.9973155506868,2019
+2004,55,"(50,55]",NoHS,796.1334578096948,64.52825618551145,12.337749458483753,780.484936350307,2019
+2004,55,"(50,55]",NoHS,839.3435116696589,100.01879708754274,8.391857691859789,724.5726376010633,2019
+2004,55,"(50,55]",NoHS,819.3883231597846,58.0754305669603,14.109035699959888,779.236345809748,2019
+2004,78,"(75,80]",College,98509.33802513465,4194.336652058244,23.486273562899193,27.768818387630876,2019
+2004,78,"(75,80]",College,97709.55921005386,4194.336652058244,23.295592918633712,28.446810801806002,2019
+2004,78,"(75,80]",College,99975.49443447037,4194.336652058244,23.835829769508468,28.169819163329105,2019
+2004,78,"(75,80]",College,110001.64107719928,4194.336652058244,26.22623079700083,27.36970347254667,2019
+2004,78,"(75,80]",College,104142.35777378816,4194.336652058244,24.82927967231325,27.53974791481673,2019
+2004,30,"(25,30]",College,99.63452782764811,145.18857641740072,0.6862421981548337,218.51625367725651,2019
+2004,30,"(25,30]",College,99.46168761220827,145.18857641740072,0.6850517448856801,214.65967202222865,2019
+2004,30,"(25,30]",College,99.47740035906642,145.18857641740072,0.6851599679101484,212.83802209506408,2019
+2004,30,"(25,30]",College,101.01882082585279,145.18857641740072,0.6957766466105095,205.44545591658442,2019
+2004,30,"(25,30]",College,99.46168761220827,145.18857641740072,0.6850517448856801,207.79059722319167,2019
+2004,47,"(45,50]",HS,9.741903052064632,24.19809606956679,0.40258965102286404,7093.290514998871,2019
+2004,47,"(45,50]",HS,5.028078994614004,24.19809606956679,0.20778820697954276,7096.515136172125,2019
+2004,47,"(45,50]",HS,3.4568043087971274,24.19809606956679,0.1428543922984356,7103.305746407149,2019
+2004,47,"(45,50]",HS,3.4568043087971274,24.19809606956679,0.1428543922984356,7104.254460264771,2019
+2004,47,"(45,50]",HS,3.4568043087971274,25.81130247420457,0.13392599277978343,7090.145778425278,2019
+2004,55,"(50,55]",College,159693.0458886894,3145.752489043683,50.764656928630934,29.35650823389555,2019
+2004,55,"(50,55]",College,138271.70096947937,3290.941065461084,42.01585449847809,30.29644577155334,2019
+2004,55,"(50,55]",College,170500.9016876122,3161.884553090061,53.923822588963375,29.722027912855282,2019
+2004,55,"(50,55]",College,168178.55770197487,3242.5448733219505,51.86622368302889,28.98419262984593,2019
+2004,55,"(50,55]",College,349064.9565529623,3226.4128092755723,108.1898,29.1175918322915,2019
+2004,43,"(40,45]",HS,835.2424847396768,322.6412809275572,2.5887650902527075,6498.695896290748,2019
+2004,43,"(40,45]",HS,845.7700251346499,322.6412809275572,2.621394332129964,7215.4173630062705,2019
+2004,43,"(40,45]",HS,844.4030161579893,322.6412809275572,2.617157400722022,6414.796318404759,2019
+2004,43,"(40,45]",HS,842.2032315978456,322.6412809275572,2.6103393501805057,6405.247551234649,2019
+2004,43,"(40,45]",HS,837.8036624775584,322.6412809275572,2.596703249097473,6693.11019342096,2019
+2004,32,"(30,35]",NoHS,9.553350089766607,32.264128092755726,0.2960981949458483,5342.268452325874,2019
+2004,32,"(30,35]",NoHS,9.553350089766607,32.264128092755726,0.2960981949458483,5325.015590157504,2019
+2004,32,"(30,35]",NoHS,9.553350089766607,30.650921688117936,0.31168231046931405,5311.274831300495,2019
+2004,32,"(30,35]",NoHS,9.553350089766607,30.650921688117936,0.31168231046931405,5361.708048996011,2019
+2004,32,"(30,35]",NoHS,9.39622262118492,32.264128092755726,0.29122815884476533,5306.461542342633,2019
+2004,24,"(20,25]",HS,-22.626355475763017,88.72635225507824,-0.2550127994748933,7648.386912881746,2019
+2004,24,"(20,25]",HS,-22.940610412926393,88.72635225507824,-0.25855464391204463,7515.145646661333,2019
+2004,24,"(20,25]",HS,-22.783482944344705,88.72635225507824,-0.25678372169346897,7662.2472139120655,2019
+2004,24,"(20,25]",HS,-22.783482944344705,88.72635225507824,-0.25678372169346897,7601.04069725225,2019
+2004,24,"(20,25]",HS,-22.783482944344705,88.72635225507824,-0.25678372169346897,7623.4191319103875,2019
+2004,39,"(35,40]",HS,115.33156193895871,109.37539423444191,1.054456194157801,4609.755714319013,2019
+2004,39,"(35,40]",HS,115.33156193895871,109.37539423444191,1.054456194157801,4702.437890545845,2019
+2004,39,"(35,40]",HS,113.76028725314183,109.37539423444191,1.040090305954016,4591.441429603324,2019
+2004,39,"(35,40]",HS,112.18901256732497,109.37539423444191,1.0257244177502316,4619.240880475159,2019
+2004,39,"(35,40]",HS,115.33156193895871,109.37539423444191,1.054456194157801,4639.060875247918,2019
+2004,48,"(45,50]",HS,73.56708078994613,80.6603202318893,0.9120603610108302,4495.553416171499,2019
+2004,48,"(45,50]",HS,71.32015798922801,80.6603202318893,0.8842037545126354,4488.2567495421,2019
+2004,48,"(45,50]",HS,64.54796409335728,80.6603202318893,0.800244332129964,4547.6228164976255,2019
+2004,48,"(45,50]",HS,68.94753321364452,80.6603202318893,0.8547887364620939,4519.426608937791,2019
+2004,48,"(45,50]",HS,74.91837701974866,80.6603202318893,0.9288132851985561,4505.8579906389805,2019
+2004,62,"(60,65]",College,2217.2257091561937,243.5941671003057,9.102129724818896,13246.48318220023,2019
+2004,62,"(60,65]",College,2276.934147217235,245.2073735049435,9.285749097472923,14100.846143816167,2019
+2004,62,"(60,65]",College,2308.359640933573,243.5941671003057,9.476251703445143,13227.753154647977,2019
+2004,62,"(60,65]",College,2624.185852782765,245.2073735049435,10.701904332129963,14141.46206116561,2019
+2004,62,"(60,65]",College,3389.3966247755834,243.5941671003057,13.914112415425443,13782.702038243297,2019
+2004,49,"(45,50]",HS,86.13727827648114,67.75466899478702,1.271311328863675,10201.175670596085,2019
+2004,49,"(45,50]",HS,20.94509156193896,72.59428820870036,0.2885225832330526,9641.594635539013,2019
+2004,49,"(45,50]",HS,26.444552962298026,70.9810818040626,0.37255776173285193,10212.493938812639,2019
+2004,49,"(45,50]",HS,18.2582118491921,72.59428820870036,0.25151030886482156,10243.267751290023,2019
+2004,49,"(45,50]",HS,34.442341113105925,70.9810818040626,0.48523268788972757,9945.90968032934,2019
+2004,75,"(70,75]",College,112046.02657091562,2589.1962794436467,43.274442907430526,27.768818387630876,2019
+2004,75,"(70,75]",College,112046.02657091562,2589.1962794436467,43.274442907430526,28.446810801806002,2019
+2004,75,"(70,75]",College,112046.02657091562,2589.1962794436467,43.274442907430526,28.169819163329105,2019
+2004,75,"(70,75]",College,112044.45529622982,2589.1962794436467,43.2738360493494,27.36970347254667,2019
+2004,75,"(70,75]",College,112046.02657091562,2589.1962794436467,43.274442907430526,27.53974791481673,2019
+2004,49,"(45,50]",HS,2.7968689407540395,61.30184337623587,0.045624548736462094,8651.192179498696,2019
+2004,49,"(45,50]",HS,2.8125816876122083,62.91504978087366,0.04470443395353143,8120.390303107871,2019
+2004,49,"(45,50]",HS,2.828294434470377,61.30184337623587,0.046137184115523464,8658.809960545146,2019
+2004,49,"(45,50]",HS,2.767014721723519,61.30184337623587,0.04513754512635379,8665.129694759142,2019
+2004,49,"(45,50]",HS,2.7732998204667867,62.91504978087366,0.044080070350828476,8401.859493982172,2019
+2004,53,"(50,55]",College,2156.888761220826,120.99048034783397,17.826929482551144,3217.1637324828325,2019
+2004,53,"(50,55]",College,2962.0099102333934,266.1790567652347,11.127884914123182,3371.6628487397343,2019
+2004,53,"(50,55]",College,3304.704919210054,321.02807452291944,10.29413058070134,3183.319971387121,2019
+2004,53,"(50,55]",College,2995.320933572711,329.0941065461084,9.101715509308416,3435.592196285937,2019
+2004,53,"(50,55]",College,2715.476912028725,356.5186154249507,7.616648316644069,3268.7635336492826,2019
+2004,31,"(30,35]",HS,19.326678635547577,22.58488966492901,0.8557349149045899,4957.786395064305,2019
+2004,60,"(55,60]",HS,19.326678635547577,20.97168326029122,0.9215606775895585,5018.17102961138,2019
+2004,34,"(30,35]",HS,19.326678635547577,22.58488966492901,0.8557349149045899,4945.386719865738,2019
+2004,22,"(20,25]",HS,19.326678635547577,20.97168326029122,0.9215606775895585,6394.775446810497,2019
+2004,37,"(35,40]",HS,19.326678635547577,20.97168326029122,0.9215606775895585,4244.762681289334,2019
+2004,39,"(35,40]",HS,519.6519640933573,124.21689315710954,4.183424258052416,6687.837315882034,2019
+2004,39,"(35,40]",HS,521.5374937163375,124.21689315710954,4.198603591354494,7425.41861629796,2019
+2004,39,"(35,40]",HS,525.0100107719928,124.21689315710954,4.226558863519152,6601.495881119265,2019
+2004,39,"(35,40]",HS,520.9089838420108,124.21689315710954,4.193543813587135,6591.669201671565,2019
+2004,39,"(35,40]",HS,522.6373859964093,124.21689315710954,4.207458202447372,6887.909947658898,2019
+2004,52,"(50,55]",College,22759.913824057454,3968.487755408954,5.735160400340466,39.65150076441442,2019
+2004,52,"(50,55]",College,23094.97243806104,3323.2051935538398,6.9496077109109375,40.35036156718523,2019
+2004,52,"(50,55]",College,24297.0918491921,3371.601385692973,7.206395142763373,41.234772531554825,2019
+2004,52,"(50,55]",College,23233.30746140036,3468.393769971241,6.698578362857861,39.30468652216295,2019
+2004,52,"(50,55]",College,22010.227245960505,3871.695371130687,5.684906774969916,41.734628533761786,2019
+2004,29,"(25,30]",HS,14.345737881508079,114.53765472928282,0.12524909747292418,4833.231469030155,2019
+2004,29,"(25,30]",HS,14.345737881508079,98.40559068290497,0.14578173640291173,4904.689100105585,2019
+2004,29,"(25,30]",HS,14.345737881508079,85.49993944580267,0.16778652680335127,4853.139980957045,2019
+2004,29,"(25,30]",HS,14.345737881508079,114.53765472928282,0.12524909747292418,4859.504674987746,2019
+2004,29,"(25,30]",HS,15.917012567324955,114.53765472928282,0.13896750902527075,4883.057100711991,2019
+2004,79,"(75,80]",College,1821.1089321364454,192.0683545361748,9.481566791855093,2389.4315203687356,2019
+2004,79,"(75,80]",College,1712.062468940754,370.2308698643719,4.624310418977057,1148.4455467751409,2019
+2004,79,"(75,80]",College,2216.9130254937163,268.9215076531189,8.243717822500482,2431.808077255609,2019
+2004,79,"(75,80]",College,2031.9425694793538,174.90383839082875,11.617484145424568,2365.0956587854403,2019
+2004,79,"(75,80]",College,1577.8756107719928,171.41931255681115,9.204771546666068,1201.4557794484365,2019
+2004,43,"(40,45]",NoHS,127.43037701974866,48.39619213913358,2.633066185318893,6751.000657004128,2019
+2004,43,"(40,45]",NoHS,128.68739676840215,48.39619213913358,2.6590397111913355,6357.931506225624,2019
+2004,43,"(40,45]",NoHS,127.58750448833034,48.39619213913358,2.636312876052948,6769.703072925588,2019
+2004,43,"(40,45]",NoHS,128.68739676840215,48.39619213913358,2.6590397111913355,6723.103782586452,2019
+2004,43,"(40,45]",NoHS,128.53026929982047,48.39619213913358,2.6557930204572804,6639.740886873134,2019
+2004,43,"(40,45]",HS,138.2721723518851,61.30184337623587,2.255595667870036,5786.18047817624,2019
+2004,43,"(40,45]",HS,136.54377019748654,62.91504978087366,2.1702878829954644,5554.4147638936065,2019
+2004,43,"(40,45]",HS,138.2721723518851,62.91504978087366,2.1977598815143944,5780.948562943856,2019
+2004,43,"(40,45]",HS,138.2721723518851,61.30184337623587,2.255595667870036,5759.395791858576,2019
+2004,43,"(40,45]",HS,138.2721723518851,62.91504978087366,2.1977598815143944,5701.092087388226,2019
+2004,49,"(45,50]",HS,975.1330700179533,108.08482911073166,9.021923595021283,5618.636292727189,2019
+2004,49,"(45,50]",HS,975.1330700179533,108.08482911073166,9.021923595021283,6253.391945644216,2019
+2004,49,"(45,50]",HS,975.1330700179533,108.08482911073166,9.021923595021283,5547.024584590826,2019
+2004,49,"(45,50]",HS,975.2901974865351,108.08482911073166,9.023377337141012,5560.29170207013,2019
+2004,49,"(45,50]",HS,976.7043447037703,106.47162270609388,9.173377092221859,5812.017477372521,2019
+2004,48,"(45,50]",College,47.60962298025135,64.52825618551145,0.7378104693140795,6327.835802052903,2019
+2004,48,"(45,50]",College,35.27511669658887,64.52825618551145,0.5466615523465703,5869.248787524195,2019
+2004,48,"(45,50]",College,40.538886894075404,64.52825618551145,0.6282346570397112,6403.440360110825,2019
+2004,48,"(45,50]",College,40.696014362657095,64.52825618551145,0.6306696750902527,6351.089568503171,2019
+2004,48,"(45,50]",College,36.924955116696594,64.52825618551145,0.5722292418772563,6192.598215899149,2019
+2004,22,"(20,25]",HS,3.629644524236984,22.58488966492901,0.16071119133574005,6177.23029888272,2019
+2004,22,"(20,25]",HS,3.629644524236984,24.19809606956679,0.1499971119133574,6251.089397124615,2019
+2004,22,"(20,25]",HS,3.629644524236984,24.19809606956679,0.1499971119133574,6186.599675731637,2019
+2004,22,"(20,25]",HS,3.629644524236984,24.19809606956679,0.1499971119133574,6115.514342100852,2019
+2004,22,"(20,25]",HS,3.6453572710951527,24.19809606956679,0.15064645006016847,6214.429924986123,2019
+2004,32,"(30,35]",College,204.94135727109517,137.12254439421181,1.4945854321512,6049.08148281705,2019
+2004,32,"(30,35]",College,229.28040215439856,130.66971877566067,1.754655970049472,6723.341478056097,2019
+2004,32,"(30,35]",College,245.66879712746857,158.09422765450302,1.5539390702129228,5980.80477300145,2019
+2004,32,"(30,35]",College,207.84821543985638,146.80178282203855,1.4158425834093702,5951.509720196208,2019
+2004,32,"(30,35]",College,323.4468940754039,156.48102124986525,2.0670039822844166,6255.688404674336,2019
+2004,67,"(65,70]",HS,22.233536804308798,24.19809606956679,0.9188134777376655,7658.53281180294,2019
+2004,67,"(65,70]",HS,22.233536804308798,24.19809606956679,0.9188134777376655,7696.021997385256,2019
+2004,67,"(65,70]",HS,22.07640933572711,24.19809606956679,0.9123200962695548,7672.927248553242,2019
+2004,67,"(65,70]",HS,22.233536804308798,24.19809606956679,0.9188134777376655,7739.226697025345,2019
+2004,67,"(65,70]",HS,22.233536804308798,22.58488966492901,0.9844430118617843,7708.255393334616,2019
+2004,45,"(40,45]",College,9199.106211849192,351.6789962110374,26.157678766601528,1822.6122871608864,2019
+2004,45,"(40,45]",College,9059.10563734291,350.0657898063996,25.8782945981467,1766.3791263658684,2019
+2004,45,"(40,45]",College,8025.034053859964,351.6789962110374,22.819202000463683,1911.6110552323157,2019
+2004,45,"(40,45]",College,9781.420610412926,350.0657898063996,27.941663810743812,1684.8541753576385,2019
+2004,45,"(40,45]",College,9201.934506283664,353.2922026156752,26.046242849842574,1765.288425562881,2019
+2004,54,"(50,55]",HS,494.3387289048474,111.31124192000723,4.441049442787632,10895.987426717022,2019
+2004,54,"(50,55]",HS,893.7096157989229,112.92444832464501,7.914226095925736,10442.851053073717,2019
+2004,54,"(50,55]",HS,879.4424416517055,119.37727394319619,7.366916772368034,9406.18789852356,2019
+2004,54,"(50,55]",HS,653.5874183123877,111.31124192000723,5.871710772772459,9428.685184767575,2019
+2004,54,"(50,55]",HS,1170.2853859964093,117.76406753855836,9.937542159141488,9855.541043307177,2019
+2004,38,"(35,40]",HS,47.625335727109515,32.264128092755726,1.476107942238267,7795.161688940732,2019
+2004,38,"(35,40]",HS,47.625335727109515,32.264128092755726,1.476107942238267,7789.814490037327,2019
+2004,38,"(35,40]",HS,47.60962298025135,32.264128092755726,1.475620938628159,7787.151020365481,2019
+2004,38,"(35,40]",HS,47.65676122082585,32.264128092755726,1.4770819494584835,7780.525434986065,2019
+2004,38,"(35,40]",HS,47.625335727109515,32.264128092755726,1.476107942238267,7765.484023790591,2019
+2004,59,"(55,60]",HS,465.160157989228,12.905651237102285,36.04313718411554,9349.02582353416,2019
+2004,59,"(55,60]",HS,471.4452567324955,12.905651237102285,36.53014079422384,8007.246592801009,2019
+2004,59,"(55,60]",HS,441.59103770197487,12.905651237102285,34.21687364620939,9087.634011625018,2019
+2004,59,"(55,60]",HS,411.7368186714542,12.905651237102285,31.903606498194954,8685.098656112928,2019
+2004,59,"(55,60]",HS,420.36311669658886,12.905651237102285,32.5720189530686,8423.36484988227,2019
+2004,38,"(35,40]",College,31653.32854578097,5081.600174609026,6.229008079766203,270.91777734348284,2019
+2004,38,"(35,40]",College,31653.32854578097,5081.600174609026,6.229008079766203,270.32912848486836,2019
+2004,38,"(35,40]",College,31653.32854578097,5081.600174609026,6.229008079766203,274.1694448520926,2019
+2004,38,"(35,40]",College,31653.32854578097,5081.600174609026,6.229008079766203,267.56477980953105,2019
+2004,38,"(35,40]",College,31653.32854578097,5081.600174609026,6.229008079766203,276.9522774588399,2019
+2004,44,"(40,45]",College,48766.08114901256,5936.5995690670525,8.214480458326793,18.066308243526656,2019
+2004,44,"(40,45]",College,51210.98456014363,3903.959499223442,13.117703851776714,18.63705803531676,2019
+2004,44,"(40,45]",College,47513.77522441652,2629.5264395595914,18.069327811122676,18.977774896945714,2019
+2004,44,"(40,45]",College,50888.08761220826,2661.790567652347,19.117990810633412,17.44483212710631,2019
+2004,44,"(40,45]",College,48773.93752244166,6001.1278252525635,8.127461860952605,18.60978708433786,2019
+2004,58,"(55,60]",College,217528.52452423697,4904.14747009887,44.35603249097472,16.511059011265516,2019
+2004,58,"(55,60]",College,222974.15405386,4888.015406052492,45.61649985345105,17.173365349495242,2019
+2004,58,"(55,60]",College,231734.48180969481,4129.808395872733,56.11264726985559,17.190590848505103,2019
+2004,58,"(55,60]",College,224401.1228725314,4000.7518835017095,56.08973748107604,16.26748258254561,2019
+2004,58,"(55,60]",College,231365.79791741472,4323.393164429267,53.51486416293981,16.65528912184059,2019
+2004,65,"(60,65]",College,28081.035547576303,2694.0546957451024,10.423335350958734,18.875803891614044,2019
+2004,65,"(60,65]",College,31548.838779174148,2774.715015976992,11.370118587859961,19.12902112287269,2019
+2004,65,"(60,65]",College,20722.756193895868,2435.941671003057,8.50708226743491,21.982680535781373,2019
+2004,65,"(60,65]",College,52578.77917414722,3613.5823463886404,14.550319913615267,18.279329651680335,2019
+2004,65,"(60,65]",College,25623.56193895871,3516.789962110374,7.286065478753353,19.504203208628326,2019
+2004,59,"(55,60]",HS,-3.1425493716337525,104.8584163014561,-0.02996945292974174,5735.539882246349,2019
+2004,59,"(55,60]",HS,-4.713824057450628,104.8584163014561,-0.0449541793946126,5571.132289708034,2019
+2004,59,"(55,60]",HS,-4.713824057450628,104.8584163014561,-0.0449541793946126,5723.837370690138,2019
+2004,59,"(55,60]",HS,-4.713824057450628,104.8584163014561,-0.0449541793946126,5705.749727710847,2019
+2004,59,"(55,60]",HS,-4.713824057450628,104.8584163014561,-0.0449541793946126,5649.435636596207,2019
+2004,83,"(80,85]",College,596.1416157989229,44.52449676800289,13.389070266310892,6985.069610756031,2019
+2004,83,"(80,85]",College,792.5509515260323,92.9206889071365,8.529327115924588,7732.445233618116,2019
+2004,83,"(80,85]",College,1774.59763016158,46.13770317264068,38.46306833960264,6858.8277888485145,2019
+2004,83,"(80,85]",College,1381.7789587073607,86.46786328858535,15.98026025109111,6908.7870827392835,2019
+2004,83,"(80,85]",College,413.8737522441652,63.882973623656326,6.478623782955913,9127.887166549921,2019
+2004,49,"(45,50]",HS,2199.1560502692996,564.6222416232251,3.8949157297576065,988.3731225030457,2019
+2004,49,"(45,50]",HS,2180.300754039497,564.6222416232251,3.861521196493037,984.9856578796459,2019
+2004,49,"(45,50]",HS,2189.7284021543987,564.6222416232251,3.8782184631253225,1003.7512692852346,2019
+2004,49,"(45,50]",HS,2211.7262477558347,564.6222416232251,3.9171787519339865,964.691067651143,2019
+2004,49,"(45,50]",HS,2163.016732495512,564.6222416232251,3.830909541000516,1005.0048557514381,2019
+2004,68,"(65,70]",College,40600.072330341114,2355.281350771168,17.237886385440877,214.2532992176848,2019
+2004,68,"(65,70]",College,40600.16660682226,2145.5645181682557,18.922836513666837,210.94789124358445,2019
+2004,68,"(65,70]",College,40600.16660682226,2371.413414817546,17.120661607603328,213.55525469345554,2019
+2004,68,"(65,70]",College,40600.009479353685,2355.281350771168,17.237859700311557,209.05990427404822,2019
+2004,68,"(65,70]",College,40507.42997486535,2355.281350771168,17.198552504821716,212.94004225500498,2019
+2004,46,"(45,50]",College,367.489723518851,274.24508878842363,1.340004756848588,6405.377397547038,2019
+2004,46,"(45,50]",College,357.6692567324955,324.25448733219497,1.1030510623776426,5942.710487367654,2019
+2004,46,"(45,50]",College,360.0890197486535,221.0092774353767,1.6292936836280272,6485.308071237086,2019
+2004,46,"(45,50]",College,360.85894434470373,243.5941671003057,1.4813940277810982,6436.159876381882,2019
+2004,46,"(45,50]",College,359.9004667863555,198.4243877704477,1.8137914942326316,6270.159049044104,2019
+2004,32,"(30,35]",College,70.28311669658888,135.50933798957405,0.518658844765343,9834.168022438713,2019
+2004,32,"(30,35]",College,56.44018671454219,153.2546084405897,0.36827725631768954,9482.869333743964,2019
+2004,32,"(30,35]",College,66.92058886894075,151.6414020359519,0.44130816498963055,9839.687589468982,2019
+2004,32,"(30,35]",College,61.81394614003591,154.86781484522746,0.39914004211793025,9862.574569099197,2019
+2004,32,"(30,35]",College,63.24380610412926,138.73575079884964,0.45585803039207445,9729.173174633748,2019
+2004,37,"(35,40]",College,2690.3365170556553,138.73575079884964,19.39180421459155,849.4014052599098,2019
+2004,37,"(35,40]",College,2688.7652423698387,138.73575079884964,19.380478549240195,872.2696429004096,2019
+2004,37,"(35,40]",College,2688.7652423698387,138.73575079884964,19.380478549240195,850.2222848719554,2019
+2004,37,"(35,40]",College,2688.7652423698387,138.73575079884964,19.380478549240195,860.9714382250424,2019
+2004,37,"(35,40]",College,2688.7652423698387,138.73575079884964,19.380478549240195,878.14791611349915,2019
+2004,37,"(35,40]",HS,319.07875044883303,104.8584163014561,3.042948403221327,11825.224591017268,2019
+2004,37,"(35,40]",HS,319.1416014362657,104.8584163014561,3.043547792279922,11335.89322241212,2019
+2004,37,"(35,40]",HS,319.2673034111311,104.8584163014561,3.0447465703971117,11901.309723823753,2019
+2004,37,"(35,40]",HS,320.6971633752244,104.8584163014561,3.0583826714801443,11779.089483721627,2019
+2004,37,"(35,40]",HS,320.9642800718133,104.8584163014561,3.060930074979172,11659.298230842074,2019
+2004,49,"(45,50]",HS,96.96336086175943,80.6603202318893,1.2021197111913358,1718.2976221767244,2019
+2004,49,"(45,50]",HS,95.10925673249552,80.6603202318893,1.179133140794224,1625.7033360634232,2019
+2004,49,"(45,50]",HS,95.10925673249552,80.6603202318893,1.179133140794224,1686.1192228341472,2019
+2004,49,"(45,50]",HS,94.93641651705565,80.6603202318893,1.1769903249097473,1605.7346898875735,2019
+2004,49,"(45,50]",HS,95.10925673249552,80.6603202318893,1.179133140794224,1570.4817362106528,2019
+2004,39,"(35,40]",HS,106.68955116696588,61.30184337623587,1.7403971119133572,10268.625425335003,2019
+2004,39,"(35,40]",HS,106.68955116696588,61.30184337623587,1.7403971119133572,9786.640459581557,2019
+2004,39,"(35,40]",HS,106.5324236983842,61.30184337623587,1.7378339350180505,10184.4566300408,2019
+2004,39,"(35,40]",HS,106.5324236983842,61.30184337623587,1.7378339350180505,10205.165419546085,2019
+2004,39,"(35,40]",HS,106.68955116696588,61.30184337623587,1.7403971119133572,10022.522647205133,2019
+2004,26,"(25,30]",HS,30.639856373429083,80.6603202318893,0.3798628158844765,4880.798611082397,2019
+2004,26,"(25,30]",HS,29.06858168761221,80.6603202318893,0.3603826714801444,4949.910300701916,2019
+2004,26,"(25,30]",HS,31.582621184919212,82.2735266365271,0.38387343385007433,4868.591486235857,2019
+2004,26,"(25,30]",HS,36.13931777378815,82.2735266365271,0.43925815813690094,4917.450548908336,2019
+2004,26,"(25,30]",HS,38.30767684021544,82.2735266365271,0.46561364762511503,4907.302274439853,2019
+2004,31,"(30,35]",HS,72.15293357271096,96.79238427826716,0.7454401925391096,8336.129687171311,2019
+2004,31,"(30,35]",HS,69.0103842010772,96.79238427826716,0.712973285198556,8278.677587511356,2019
+2004,31,"(30,35]",HS,69.0103842010772,96.79238427826716,0.712973285198556,8338.348824373232,2019
+2004,31,"(30,35]",HS,70.58165888689408,96.79238427826716,0.7292067388688327,8328.237967477035,2019
+2004,31,"(30,35]",HS,69.0103842010772,96.79238427826716,0.712973285198556,8323.966546657344,2019
+2004,36,"(35,40]",HS,-72.49861400359066,41.94336652058244,-1.7284881977228548,5569.479776509799,2019
+2004,36,"(35,40]",HS,-64.92507001795333,41.94336652058244,-1.547922243821161,5642.118470272088,2019
+2004,36,"(35,40]",HS,-68.90039497307001,43.55657292522023,-1.5818598743147474,5545.166438287606,2019
+2004,36,"(35,40]",HS,-61.09115978456014,43.55657292522023,-1.402570397111913,5553.163368312115,2019
+2004,36,"(35,40]",HS,-69.63889407540395,37.10374730666908,-1.8768695652173915,5581.962186155666,2019
+2004,52,"(50,55]",NoHS,2.356912028725314,29.03771528348015,0.08116726835138387,4986.42820650075,2019
+2004,52,"(50,55]",NoHS,2.356912028725314,29.03771528348015,0.08116726835138387,4880.879961340379,2019
+2004,52,"(50,55]",NoHS,2.356912028725314,29.03771528348015,0.08116726835138387,5028.524419046365,2019
+2004,52,"(50,55]",NoHS,2.356912028725314,29.03771528348015,0.08116726835138387,5013.2974912375885,2019
+2004,52,"(50,55]",NoHS,2.356912028725314,29.03771528348015,0.08116726835138387,4963.790585423431,2019
+2004,79,"(75,80]",HS,320.94856732495515,119.37727394319619,2.688523172992487,8279.518109240686,2019
+2004,79,"(75,80]",HS,288.89456373429084,117.76406753855836,2.4531639384797987,7511.167145191486,2019
+2004,79,"(75,80]",HS,306.8070951526032,117.76406753855836,2.605269175609515,8274.602765195285,2019
+2004,79,"(75,80]",HS,339.64673608617596,117.76406753855836,2.884128777013996,8119.103988377096,2019
+2004,79,"(75,80]",HS,348.1316193895871,119.37727394319619,2.9162302663674504,8039.4476718039605,2019
+2004,37,"(35,40]",HS,510.6642728904847,70.9810818040626,7.19437151296357,5782.6658748742175,2019
+2004,37,"(35,40]",HS,510.9785278276481,70.9810818040626,7.198798818510009,6421.061367631895,2019
+2004,37,"(35,40]",HS,510.9785278276481,70.9810818040626,7.198798818510009,5704.910209515354,2019
+2004,37,"(35,40]",HS,509.25012567324956,70.9810818040626,7.174448638004594,5697.059101213897,2019
+2004,37,"(35,40]",HS,510.82140035906644,70.9810818040626,7.196585165736789,5954.725793704214,2019
+2004,52,"(50,55]",NoHS,205.19276122082587,85.49993944580267,2.3999170356242763,8983.752725873157,2019
+2004,52,"(50,55]",NoHS,278.4455870736086,72.59428820870036,3.8356404332129963,8490.952894621241,2019
+2004,52,"(50,55]",NoHS,201.4531274685817,77.43390742261373,2.601613868832732,8993.720255717362,2019
+2004,52,"(50,55]",NoHS,213.9761867145422,87.11314585044046,2.456301912020323,9020.821477248728,2019
+2004,52,"(50,55]",NoHS,213.75620825852783,75.82070101797595,2.819232813580152,8758.950545229247,2019
+2004,49,"(45,50]",College,733.3138958707361,193.58476855653433,3.788076413959086,8440.554725610946,2019
+2004,49,"(45,50]",College,732.9996409335727,193.58476855653433,3.7864530685920577,9390.564017841629,2019
+2004,49,"(45,50]",College,734.7280430879713,193.58476855653433,3.79538146811071,8331.508776262152,2019
+2004,49,"(45,50]",College,733.1567684021545,193.58476855653433,3.7872647412755724,8350.535076903652,2019
+2004,49,"(45,50]",College,732.9996409335727,193.58476855653433,3.7864530685920577,8727.880985390546,2019
+2004,69,"(65,70]",NoHS,66.77917414721723,9.679238427826716,6.899217809867629,6570.691376686434,2019
+2004,69,"(65,70]",NoHS,64.43797486535009,12.583009956174735,5.121030269369618,6632.98573503439,2019
+2004,69,"(65,70]",NoHS,64.28084739676841,19.358476855653432,3.3205529482551146,6638.19094569243,2019
+2004,69,"(65,70]",NoHS,64.65795332136446,30.7477140723962,2.10285399327982,6626.390542045927,2019
+2004,69,"(65,70]",NoHS,63.88802872531418,16.132064046377863,3.960313357400721,6631.305367486233,2019
+2004,52,"(50,55]",College,631.1496157989228,177.45270451015648,3.5567201837873315,6883.651321296544,2019
+2004,52,"(50,55]",College,801.1615368043088,177.45270451015648,4.514789104036757,7658.42655021189,2019
+2004,52,"(50,55]",College,933.4628653500897,177.45270451015648,5.260347358057105,6794.719453934881,2019
+2004,52,"(50,55]",College,685.3585924596051,177.45270451015648,3.8622042664916316,6810.236256302487,2019
+2004,52,"(50,55]",College,704.0567612208258,177.45270451015648,3.967574138496882,7117.978785790516,2019
+2004,44,"(40,45]",HS,83.43468581687613,143.57537001276296,0.5811211617247394,6588.961424830324,2019
+2004,44,"(40,45]",HS,76.99245960502694,143.57537001276296,0.536251166186671,6325.040284318674,2019
+2004,44,"(40,45]",HS,75.57831238779174,143.57537001276296,0.5264016549709974,6583.00362801182,2019
+2004,44,"(40,45]",HS,86.57723518850987,143.57537001276296,0.6030089644262362,6558.460602121992,2019
+2004,44,"(40,45]",HS,80.13500897666069,143.57537001276296,0.5581389688881678,6492.067778543677,2019
+2004,45,"(40,45]",College,9066.254937163376,1677.7346608232976,5.403866981394057,309.30433785217014,2019
+2004,45,"(40,45]",College,8128.2039497307,1677.7346608232976,4.844749375173563,306.9329149080271,2019
+2004,45,"(40,45]",College,7765.239497307001,1677.7346608232976,4.628407386836989,317.5809256661627,2019
+2004,45,"(40,45]",College,8073.20933572711,1677.7346608232976,4.8119702860316576,304.08709309169,2019
+2004,45,"(40,45]",College,10618.674326750448,1677.7346608232976,6.329173840599832,307.35725306476564,2019
+2004,41,"(40,45]",NoHS,80.35498743267505,69.36787539942482,1.1583890521366802,5654.782106844525,2019
+2004,41,"(40,45]",NoHS,80.35498743267505,70.9810818040626,1.1320620282244829,5428.279560121582,2019
+2004,41,"(40,45]",NoHS,80.35498743267505,70.9810818040626,1.1320620282244829,5649.669003174113,2019
+2004,41,"(40,45]",NoHS,80.35498743267505,70.9810818040626,1.1320620282244829,5628.605673963136,2019
+2004,41,"(40,45]",NoHS,80.35498743267505,69.36787539942482,1.1583890521366802,5571.625988306046,2019
+2004,23,"(20,25]",HS,4.289579892280072,21.165268028847752,0.20267070969446158,6788.761221813833,2019
+2004,23,"(20,25]",HS,4.289579892280072,21.165268028847752,0.20267070969446158,6788.3037473708655,2019
+2004,23,"(20,25]",HS,4.289579892280072,21.165268028847752,0.20267070969446158,6787.2105726142545,2019
+2004,23,"(20,25]",HS,4.132452423698385,19.55206162420997,0.21135635224172236,6722.624496149938,2019
+2004,23,"(20,25]",HS,4.289579892280072,21.165268028847752,0.20267070969446158,6790.974045313038,2019
+2004,38,"(35,40]",HS,4.3995691202872536,153.2546084405897,0.028707581227436822,6261.4415831214865,2019
+2004,38,"(35,40]",HS,79.03511669658887,153.2546084405897,0.5157111913357401,6223.049659343246,2019
+2004,38,"(35,40]",HS,6.913608617594255,153.2546084405897,0.04511191335740072,6257.035638034965,2019
+2004,38,"(35,40]",HS,21.997845601436268,153.2546084405897,0.14353790613718412,6246.214124784254,2019
+2004,38,"(35,40]",HS,13.984344703770198,153.2546084405897,0.09124909747292419,6264.169388511223,2019
+2004,63,"(60,65]",College,245474.43044883307,8711.314585044045,28.178804479208452,19.81794948471067,2019
+2004,63,"(60,65]",College,247459.4217594255,7420.749461333816,33.346958154135926,20.612904765621785,2019
+2004,63,"(60,65]",College,242646.92165170558,7453.013589426571,32.55688705518309,20.633580245552746,2019
+2004,63,"(60,65]",College,249789.30786355474,7420.749461333816,33.66092726416575,19.525588748991442,2019
+2004,63,"(60,65]",College,243985.80481149012,7420.749461333816,32.87886298854183,19.991066487296695,2019
+2004,67,"(65,70]",College,3248.1390305206464,259.7262311466836,12.506010718209744,2090.906475117243,2019
+2004,67,"(65,70]",College,3235.883087971275,259.7262311466836,12.45882279077068,2026.395618446916,2019
+2004,67,"(65,70]",College,3224.004251346499,259.7262311466836,12.413086799560508,2193.0061381936284,2019
+2004,67,"(65,70]",College,3273.3265637342906,259.7262311466836,12.60298795883131,1932.8699415119402,2019
+2004,67,"(65,70]",College,3245.9078204667862,259.7262311466836,12.49742009552212,2025.1443630990575,2019
+2004,49,"(45,50]",College,528.4196768402155,209.7168326029122,2.519681755068037,589.9581728674117,2019
+2004,49,"(45,50]",College,528.2625493716338,206.49041979363656,2.5582908393501813,571.9269035068515,2019
+2004,49,"(45,50]",College,528.4196768402155,253.2734055281324,2.08636068890984,596.0753947574369,2019
+2004,49,"(45,50]",College,529.6766965888689,245.2073735049435,2.1601173285198554,550.7771106117335,2019
+2004,49,"(45,50]",College,529.9909515260323,227.46210305392788,2.3300186906316402,593.7059217060323,2019
+2004,32,"(30,35]",HS,1.5398491921005386,48.39619213913358,0.03181756919374248,5386.121653353655,2019
+2004,32,"(30,35]",HS,1.5398491921005386,48.39619213913358,0.03181756919374248,5359.002538122522,2019
+2004,32,"(30,35]",HS,1.5398491921005386,48.39619213913358,0.03181756919374248,5392.410503665332,2019
+2004,32,"(30,35]",HS,1.5241364452423698,48.39619213913358,0.031492900120336946,5429.276843863538,2019
+2004,32,"(30,35]",HS,1.5398491921005386,48.39619213913358,0.03181756919374248,5405.613380087909,2019
+2004,67,"(65,70]",HS,1567.4564883303412,275.8582951930614,5.682107501002809,7198.030549572631,2019
+2004,67,"(65,70]",HS,1643.6790233393178,275.8582951930614,5.958417970316888,8067.089039994737,2019
+2004,67,"(65,70]",HS,2607.6403303411134,275.8582951930614,9.452825511432012,3945.932462015235,2019
+2004,67,"(65,70]",HS,2077.9636337522443,275.8582951930614,7.532721219414361,4236.829087321513,2019
+2004,67,"(65,70]",HS,2002.4010341113105,275.8582951930614,7.258803048535901,4038.8648516927833,2019
+2004,50,"(45,50]",HS,1898.995447037702,188.74514934262095,10.061161590916106,2650.2430128165843,2019
+2004,50,"(45,50]",HS,1564.9424488330342,138.73575079884964,11.280022919989923,5354.809550997589,2019
+2004,50,"(45,50]",HS,1528.4417378815083,233.91492867247896,6.534177816506911,4793.528800804148,2019
+2004,50,"(45,50]",HS,839.9563087971275,98.40559068290497,8.535656388708054,4827.050222934357,2019
+2004,50,"(45,50]",HS,934.8298743267504,62.91504978087366,14.858605017124873,5028.829043144724,2019
+2004,71,"(70,75]",College,200.4475116696589,348.45258340176184,0.5752504679770022,1599.1164090609286,2019
+2004,71,"(70,75]",College,204.50140035906645,304.8960104765416,0.6707250778369912,1631.8148675555992,2019
+2004,71,"(70,75]",College,202.83584919210054,325.8676937368328,0.6224484755334739,1616.2283986663003,2019
+2004,71,"(70,75]",College,184.53049910233395,301.66959766726603,0.611697368675071,1548.9841268437874,2019
+2004,71,"(70,75]",College,216.39594973070018,253.2734055281324,0.8543966520269494,1563.3032306123519,2019
+2004,59,"(55,60]",College,1407.8621184919211,419.4336652058244,3.356578728131075,9170.515119196763,2019
+2004,59,"(55,60]",College,1387.4355475763018,419.4336652058244,3.3078783671202445,9682.940422333868,2019
+2004,59,"(55,60]",College,1365.4377019748654,419.4336652058244,3.255431824493196,9008.364279509458,2019
+2004,59,"(55,60]",College,1376.279497307002,419.4336652058244,3.281280477645099,9237.519279376571,2019
+2004,59,"(55,60]",College,1382.5645960502693,419.4336652058244,3.2962652041099694,9289.288934298416,2019
+2004,33,"(30,35]",NoHS,7154.7992818671455,967.9238427826717,7.391903128760529,1655.8970778134887,2019
+2004,33,"(30,35]",NoHS,6793.406104129264,967.9238427826717,7.018533694344163,1665.9534921783536,2019
+2004,33,"(30,35]",NoHS,9448.860323159784,967.9238427826717,9.761987364620937,1708.4421931124289,2019
+2004,33,"(30,35]",NoHS,5882.066786355476,967.9238427826717,6.076993381468111,1592.406423649441,2019
+2004,33,"(30,35]",NoHS,9447.289048473967,967.9238427826717,9.76036401925391,1630.8374725286321,2019
+2004,28,"(25,30]",College,-46.11691202872532,32.264128092755726,-1.4293555956678698,4906.34557982268,2019
+2004,28,"(25,30]",College,-46.11691202872532,33.87733449739351,-1.3612910434932095,4978.884177367209,2019
+2004,28,"(25,30]",College,-46.11691202872532,32.264128092755726,-1.4293555956678698,4926.555255299477,2019
+2004,28,"(25,30]",College,-46.1247684021544,32.264128092755726,-1.429599097472924,4933.016230451309,2019
+2004,28,"(25,30]",College,-46.274039497307,32.264128092755726,-1.4342256317689528,4956.924942580388,2019
+2004,65,"(60,65]",HS,1015.3577019748654,266.1790567652347,3.814566458811947,9041.150201140186,2019
+2004,65,"(60,65]",HS,1017.086104129264,266.1790567652347,3.821059840280057,10132.738836582821,2019
+2004,65,"(60,65]",HS,1015.5148294434471,266.1790567652347,3.8151567662181383,9022.201742241243,2019
+2004,65,"(60,65]",HS,1015.5148294434471,266.1790567652347,3.8151567662181383,8998.474009117788,2019
+2004,65,"(60,65]",HS,1016.9289766606822,266.1790567652347,3.820469532873865,9426.569379857361,2019
+2004,82,"(80,85]",NoHS,36.453572710951526,8.066032023188932,4.5193935018050535,8051.2544299925485,2019
+2004,82,"(80,85]",NoHS,36.453572710951526,8.066032023188932,4.5193935018050535,8059.017985717898,2019
+2004,82,"(80,85]",NoHS,36.453572710951526,8.066032023188932,4.5193935018050535,8067.153271223692,2019
+2004,82,"(80,85]",NoHS,36.453572710951526,8.066032023188932,4.5193935018050535,8047.200577125494,2019
+2004,82,"(80,85]",NoHS,36.453572710951526,8.066032023188932,4.5193935018050535,8059.023910679893,2019
+2004,37,"(35,40]",HS,4.226728904847397,33.87733449739351,0.12476568678012719,5471.886820371115,2019
+2004,37,"(35,40]",HS,4.3210053859964095,38.716953711306864,0.11160499398315284,5463.474697752639,2019
+2004,37,"(35,40]",HS,4.242441651705565,30.650921688117936,0.13841155234657038,5480.5696701981815,2019
+2004,37,"(35,40]",HS,4.211016157989229,38.716953711306864,0.10876413959085442,5473.333937129393,2019
+2004,37,"(35,40]",HS,4.211016157989229,19.358476855653432,0.21752827918170883,5448.707941459896,2019
+2004,83,"(80,85]",College,793.0223339317774,40.33016011594465,19.663257761732854,7072.3722585732485,2019
+2004,83,"(80,85]",College,791.2939317773788,40.33016011594465,19.62040144404332,7863.146687948244,2019
+2004,83,"(80,85]",College,802.292854578097,40.33016011594465,19.893123465703972,6997.011849368634,2019
+2004,83,"(80,85]",College,792.8652064631957,40.33016011594465,19.659361732851988,6975.283643494544,2019
+2004,83,"(80,85]",College,796.1648833034112,40.33016011594465,19.741178339350185,7315.029886291913,2019
+2004,80,"(75,80]",College,1641.9820466786355,148.4149892266763,11.063451577460368,7664.110896004089,2019
+2004,80,"(75,80]",College,1236.5931777378814,138.73575079884964,8.913298631517083,8520.195633412863,2019
+2004,80,"(75,80]",College,1533.564093357271,111.31124192000723,13.77726154973055,7586.565643537094,2019
+2004,80,"(75,80]",College,1373.2940754039498,146.80178282203855,9.354750664497956,7562.15577738216,2019
+2004,80,"(75,80]",College,1621.5554757630161,129.0565123710229,12.564693140794223,7928.314419492868,2019
+2004,82,"(80,85]",HS,197.19497307001797,20.97168326029122,9.402915856706471,9892.373718198955,2019
+2004,82,"(80,85]",HS,197.19497307001797,20.97168326029122,9.402915856706471,8990.632635229456,2019
+2004,82,"(80,85]",HS,197.19497307001797,20.97168326029122,9.402915856706471,9817.680342934898,2019
+2004,82,"(80,85]",HS,197.19497307001797,20.97168326029122,9.402915856706471,9658.622317524725,2019
+2004,82,"(80,85]",HS,197.19497307001797,20.97168326029122,9.402915856706471,9506.751854620725,2019
+2004,20,"(15,20]",HS,118.15985637342908,16.132064046377863,7.3245342960288795,5968.54341606083,2019
+2004,20,"(15,20]",HS,322.11131059245963,24.19809606956679,13.311432009626957,5979.533622914942,2019
+2004,20,"(15,20]",HS,298.5421903052065,16.132064046377863,18.50613718411552,5913.853809008318,2019
+2004,20,"(15,20]",HS,112.18901256732497,22.58488966492901,4.967436823104693,5896.751827481722,2019
+2004,20,"(15,20]",HS,125.7019748653501,45.16977932985802,2.782877772047447,5951.752570613497,2019
+2004,27,"(25,30]",HS,1171.4324165170556,216.16965822146332,5.419041812597661,8172.793016197518,2019
+2004,27,"(25,30]",HS,1156.6624344703769,214.55645181682556,5.390946879834965,9081.70449421873,2019
+2004,27,"(25,30]",HS,1126.0540035906645,214.55645181682556,5.248287777204745,8022.617114877656,2019
+2004,27,"(25,30]",HS,1161.407684021544,214.55645181682556,5.413063434760185,8047.895579830203,2019
+2004,27,"(25,30]",HS,1063.6429730700181,214.55645181682556,4.957403816400207,8405.724415199045,2019
+2004,60,"(55,60]",HS,-2.4669012567324953,49.0414747009887,-0.0503023465703971,6149.044101756294,2019
+2004,60,"(55,60]",HS,-2.4669012567324953,49.0414747009887,-0.0503023465703971,6101.911136870027,2019
+2004,60,"(55,60]",HS,-2.4669012567324953,49.0414747009887,-0.0503023465703971,6132.949526046896,2019
+2004,60,"(55,60]",HS,-2.4669012567324953,49.0414747009887,-0.0503023465703971,6129.093340322501,2019
+2004,60,"(55,60]",HS,-2.4669012567324953,49.0414747009887,-0.0503023465703971,6167.930450205311,2019
+2004,34,"(30,35]",College,17.708265709156194,90.33955865971603,0.19601895306859204,6511.163117234247,2019
+2004,34,"(30,35]",College,17.692552962298024,90.33955865971603,0.19584502320783906,6411.662463837333,2019
+2004,34,"(30,35]",College,17.786829443447036,90.33955865971603,0.19688860237235684,6496.794218196882,2019
+2004,34,"(30,35]",College,17.786829443447036,90.33955865971603,0.19688860237235684,6585.241407174393,2019
+2004,34,"(30,35]",College,17.629701974865352,90.33955865971603,0.19514930376482723,6486.08958468713,2019
+2004,39,"(35,40]",College,927.4605960502694,275.8582951930614,3.3620906538307267,5999.068490060882,2019
+2004,39,"(35,40]",College,928.8747432675045,275.8582951930614,3.36721700762134,6661.354426628638,2019
+2004,39,"(35,40]",College,930.4460179533213,275.8582951930614,3.3729129562775775,5918.403002538099,2019
+2004,39,"(35,40]",College,924.4751741472172,277.4715015976993,3.3317842330618745,5910.2580850480545,2019
+2004,39,"(35,40]",College,928.8747432675045,275.8582951930614,3.36721700762134,6177.567345050997,2019
+2004,34,"(30,35]",College,12.193091561938958,45.16977932985802,0.26993914388860235,8274.067420007515,2019
+2004,34,"(30,35]",College,24.307619389587074,45.16977932985802,0.5381389891696751,8217.043049724622,2019
+2004,34,"(30,35]",College,29.791368043087974,46.782985734495796,0.6367992032864435,8276.270035791102,2019
+2004,34,"(30,35]",College,31.676897666068225,46.782985734495796,0.6771029503298893,8266.234453959649,2019
+2004,34,"(30,35]",College,21.353622980251348,46.782985734495796,0.4564399352670236,8261.994833756078,2019
+2004,54,"(50,55]",HS,262.4814362657092,64.52825618551145,4.067697653429603,11570.75705438319,2019
+2004,54,"(50,55]",HS,262.4814362657092,64.52825618551145,4.067697653429603,10711.62690547619,2019
+2004,54,"(50,55]",HS,262.6385637342908,64.52825618551145,4.070132671480144,11709.802045381597,2019
+2004,54,"(50,55]",HS,262.4814362657092,64.52825618551145,4.067697653429603,11523.621926314705,2019
+2004,54,"(50,55]",HS,261.067289048474,64.52825618551145,4.045782490974729,11166.528006316346,2019
+2004,54,"(50,55]",College,439326.359497307,18196.968244314226,24.142832674040505,21.70460948261321,2019
+2004,54,"(50,55]",College,432988.9373070018,18261.496500499736,23.710484915360183,22.33936762364409,2019
+2004,54,"(50,55]",College,431930.0552962298,18261.496500499736,23.65250051026266,22.54395825196141,2019
+2004,54,"(50,55]",College,366183.52287253144,18277.62856454612,20.034520429134492,21.832434469664342,2019
+2004,54,"(50,55]",College,461560.6819389587,18261.496500499736,25.275074358025797,22.52021412479267,2019
+2004,55,"(50,55]",College,-11.941687612208257,61.30184337623587,-0.19480144404332128,1095.786518951533,2019
+2004,55,"(50,55]",College,-11.941687612208257,61.30184337623587,-0.19480144404332128,1130.8139251939785,2019
+2004,55,"(50,55]",College,-11.784560143626571,61.30184337623587,-0.19223826714801442,1101.762373209933,2019
+2004,55,"(50,55]",College,-11.784560143626571,61.30184337623587,-0.19223826714801442,1088.9099902341309,2019
+2004,55,"(50,55]",College,-11.784560143626571,61.30184337623587,-0.19223826714801442,1084.8738537522827,2019
+2004,46,"(45,50]",College,2519.2247037701977,254.8866119327702,9.883707444134718,12913.631223622695,2019
+2004,46,"(45,50]",College,2516.082154398564,248.43378631421908,10.127777673589948,13332.01036397848,2019
+2004,46,"(45,50]",College,2520.7959784560144,250.04699271885684,10.081288925119367,12769.793846230637,2019
+2004,46,"(45,50]",College,2520.7959784560144,251.66019912349464,10.016665278163472,13148.649534814258,2019
+2004,46,"(45,50]",College,2516.082154398564,246.82057990958126,10.19397229890753,13194.513320951144,2019
+2004,44,"(40,45]",College,6819.332136445242,387.16953711306866,17.6132972322503,1747.032965393392,2019
+2004,44,"(40,45]",College,6816.189587073609,387.16953711306866,17.605180505415163,1790.4722328977018,2019
+2004,44,"(40,45]",College,6814.618312387792,387.16953711306866,17.601122141997593,1757.261032609343,2019
+2004,44,"(40,45]",College,6819.332136445242,387.16953711306866,17.6132972322503,1705.0999141796187,2019
+2004,44,"(40,45]",College,6819.332136445242,387.16953711306866,17.6132972322503,1699.2978178032288,2019
+2004,67,"(65,70]",College,2525.3526750448837,35.4905409020313,71.15565474236955,3104.587878826119,2019
+2004,67,"(65,70]",College,2522.6815080789947,38.716953711306864,65.15702466907341,3277.282902055511,2019
+2004,67,"(65,70]",College,2526.9239497307003,33.87733449739351,74.59040055011174,3107.300201897968,2019
+2004,67,"(65,70]",College,2525.8240574506285,33.87733449739351,74.55793364277118,3336.732161748763,2019
+2004,67,"(65,70]",College,2525.3526750448837,38.716953711306864,65.22601684717209,3181.0796850934557,2019
+2004,60,"(55,60]",HS,138.2721723518851,27.424508878842364,5.041919728180081,6588.953029231717,2019
+2004,60,"(55,60]",HS,137.32940754039498,70.9810818040626,1.9347325237938955,5875.023482943323,2019
+2004,60,"(55,60]",HS,139.37206463195693,100.01879708754274,1.3934587166647259,6604.949150148737,2019
+2004,60,"(55,60]",HS,135.12962298025136,27.424508878842364,4.927330643448715,6487.115669719254,2019
+2004,60,"(55,60]",HS,137.32940754039498,48.39619213913358,2.8376077015643806,6351.883073578876,2019
+2004,76,"(75,80]",College,11198.003303411131,1063.103020656301,10.533319053592853,233.7339976471247,2019
+2004,76,"(75,80]",College,10981.638779174147,1061.4898142516631,10.345496142999792,231.20426836373204,2019
+2004,76,"(75,80]",College,11966.828007181328,1063.103020656301,11.256508329544271,243.10414687521916,2019
+2004,76,"(75,80]",College,10287.449622980252,1063.103020656301,9.676813463129237,226.46543620012932,2019
+2004,76,"(75,80]",College,12612.621903052066,1061.4898142516631,11.881999934162161,229.68966707660843,2019
+2004,87,"(85,90]",HS,445.142118491921,69.36787539942482,6.417121988078246,13041.205850083661,2019
+2004,87,"(85,90]",HS,444.9849910233393,69.36787539942482,6.414856855007974,11682.50305103094,2019
+2004,87,"(85,90]",HS,445.142118491921,67.75466899478702,6.569910606842014,13050.331484057504,2019
+2004,87,"(85,90]",HS,444.9849910233393,67.75466899478702,6.567591542031974,12830.236741715698,2019
+2004,87,"(85,90]",HS,444.9849910233393,67.75466899478702,6.567591542031974,12526.571505662756,2019
+2004,56,"(55,60]",HS,134.81536804308797,161.3206404637786,0.8356981949458484,6678.000236525198,2019
+2004,56,"(55,60]",HS,134.81536804308797,161.3206404637786,0.8356981949458484,5952.6769408018845,2019
+2004,56,"(55,60]",HS,133.2440933572711,161.3206404637786,0.8259581227436824,6646.871078405656,2019
+2004,56,"(55,60]",HS,136.38664272890486,161.3206404637786,0.8454382671480145,6581.0264862132335,2019
+2004,56,"(55,60]",HS,134.81536804308797,161.3206404637786,0.8356981949458484,6402.152236664438,2019
+2004,77,"(75,80]",HS,2447.103195691203,76.1433422989035,32.13811111790981,3553.872087755381,2019
+2004,77,"(75,80]",HS,2269.8634111310594,60.17259889298942,37.72254236796005,3720.2816979532363,2019
+2004,77,"(75,80]",HS,2496.598348294435,60.17259889298942,41.49061855769883,3525.8447978820645,2019
+2004,77,"(75,80]",HS,2359.426068222621,84.53201560301999,27.911626753382752,3783.9676883899438,2019
+2004,77,"(75,80]",HS,3983.4955834829443,67.59334835432323,58.93324832203201,1486.6603874040447,2019
+2004,55,"(50,55]",College,41792.76409335728,5065.468110562648,8.250523580675575,18.875803891614044,2019
+2004,55,"(50,55]",College,41786.47899461401,5081.600174609026,8.223094607758869,19.12902112287269,2019
+2004,55,"(50,55]",College,41775.48007181328,5081.600174609026,8.220930147269497,19.897276336486822,2019
+2004,55,"(50,55]",College,41781.76517055655,5065.468110562648,8.248352226999932,18.279329651680335,2019
+2004,55,"(50,55]",College,41794.33536804309,5065.468110562648,8.250833774057808,19.504203208628326,2019
+2004,36,"(35,40]",College,15895.014721723519,2419.8096069566795,6.568704693140793,223.7102309778029,2019
+2004,36,"(35,40]",College,15895.014721723519,2419.8096069566795,6.568704693140793,225.25812166915156,2019
+2004,36,"(35,40]",College,15893.443447037704,2419.8096069566795,6.568055354993983,231.86971412020574,2019
+2004,36,"(35,40]",College,15893.443447037704,2419.8096069566795,6.568055354993983,216.1267175757725,2019
+2004,36,"(35,40]",College,15895.014721723519,2419.8096069566795,6.568704693140793,219.15664813608882,2019
+2004,51,"(50,55]",College,695.2890484739677,80.6603202318893,8.619963898916968,6735.684316413388,2019
+2004,51,"(50,55]",College,696.8603231597846,80.6603202318893,8.6394440433213,7497.387081034174,2019
+2004,51,"(50,55]",College,696.8603231597846,80.6603202318893,8.6394440433213,6646.2236720017245,2019
+2004,51,"(50,55]",College,695.2890484739677,80.6603202318893,8.619963898916968,6662.869418414679,2019
+2004,51,"(50,55]",College,695.2890484739677,80.6603202318893,8.619963898916968,6966.419519763293,2019
+2004,73,"(70,75]",College,1503.8670017953323,147.44706538389366,10.19936882351547,8007.7300571837095,2019
+2004,73,"(70,75]",College,1179.084524236984,309.89695033091874,3.8047632381600285,8898.736267805016,2019
+2004,73,"(70,75]",College,2085.081508078995,375.3931303592128,5.554394418682582,4353.179931989534,2019
+2004,73,"(70,75]",College,1650.309802513465,90.01691737878846,18.33332945149645,7899.828454072531,2019
+2004,73,"(70,75]",College,1311.7001077199284,205.19985466992637,6.392305247144837,8279.411652088233,2019
+2004,39,"(35,40]",HS,297.3951597845602,56.46222416232251,5.267152759154205,4786.499453683717,2019
+2004,39,"(35,40]",HS,288.0932136445242,56.46222416232251,5.102406395048995,4799.012771183133,2019
+2004,39,"(35,40]",HS,284.997802513465,56.46222416232251,5.04758370293966,4751.708285413552,2019
+2004,39,"(35,40]",HS,289.28738240574506,56.46222416232251,5.123556266116555,4777.921985248968,2019
+2004,39,"(35,40]",HS,297.14375583482945,56.46222416232251,5.262700154718928,4758.80123428142,2019
+2004,62,"(60,65]",HS,328.7106642728905,40.33016011594465,8.150492418772563,5125.475381285816,2019
+2004,62,"(60,65]",HS,328.7106642728905,40.33016011594465,8.150492418772563,4491.755231905367,2019
+2004,62,"(60,65]",HS,328.7106642728905,40.33016011594465,8.150492418772563,5120.9181989864455,2019
+2004,62,"(60,65]",HS,328.7106642728905,40.33016011594465,8.150492418772563,5026.870807628853,2019
+2004,62,"(60,65]",HS,328.7106642728905,40.33016011594465,8.150492418772563,4881.436305855581,2019
+2004,39,"(35,40]",College,4610.119928186715,483.96192139133586,9.525790613718412,232.05887930626244,2019
+2004,39,"(35,40]",College,4610.119928186715,483.96192139133586,9.525790613718412,225.94995715840315,2019
+2004,39,"(35,40]",College,4608.548653500898,483.96192139133586,9.522543922984356,242.37980499937171,2019
+2004,39,"(35,40]",College,4610.119928186715,483.96192139133586,9.525790613718412,228.32365074362275,2019
+2004,39,"(35,40]",College,4608.548653500898,483.96192139133586,9.522543922984356,235.09992372899652,2019
+2004,79,"(75,80]",NoHS,85.47734290843806,30.650921688117936,2.788736462093863,8363.988849599937,2019
+2004,79,"(75,80]",NoHS,85.47734290843806,30.650921688117936,2.788736462093863,8372.053964680405,2019
+2004,79,"(75,80]",NoHS,85.47734290843806,30.650921688117936,2.788736462093863,8380.505248620124,2019
+2004,79,"(75,80]",NoHS,85.47734290843806,30.650921688117936,2.788736462093863,8359.777533155668,2019
+2004,79,"(75,80]",NoHS,85.47734290843806,30.650921688117936,2.788736462093863,8372.060119785365,2019
+2004,38,"(35,40]",College,14986.18944344704,658.1882130922168,22.768851136122322,294.0782415789,2019
+2004,38,"(35,40]",College,14772.496086175943,658.1882130922168,22.444182062716784,293.0190960111748,2019
+2004,38,"(35,40]",College,14770.924811490126,658.1882130922168,22.441794790118212,304.0768756051631,2019
+2004,38,"(35,40]",College,14792.922657091562,658.1882130922168,22.475216606498194,290.0616229138954,2019
+2004,38,"(35,40]",College,14770.924811490126,658.1882130922168,22.441794790118212,296.3295687508992,2019
+2004,78,"(75,80]",College,1775.3832675044885,270.6960346982205,6.558586162829224,770.0404772812162,2019
+2004,78,"(75,80]",College,6351.170843806104,263.2752852368867,24.12368801762582,2702.0062249766365,2019
+2004,78,"(75,80]",College,2583.1755834829446,242.14228133613173,10.66800712882146,1580.8042402824135,2019
+2004,78,"(75,80]",College,9820.231095152603,284.4082891376417,34.52863882740078,2664.416711403422,2019
+2004,78,"(75,80]",College,3785.4364093357276,270.0507521363654,14.017499967651359,2785.7402335687298,2019
+2004,41,"(40,45]",HS,1249.4462046678636,82.2735266365271,15.186491399447865,3693.2600261123466,2019
+2004,41,"(40,45]",HS,1247.8749299820465,83.88673304116487,14.875712579838932,4095.2694837533027,2019
+2004,41,"(40,45]",HS,1247.8749299820465,82.2735266365271,15.167393218659303,3654.8331014743562,2019
+2004,41,"(40,45]",HS,1247.8749299820465,83.88673304116487,14.875712579838932,3647.246766622377,2019
+2004,41,"(40,45]",HS,1249.4462046678636,82.2735266365271,15.186491399447865,3800.5023993282257,2019
+2004,57,"(55,60]",College,21.79357989228007,193.58476855653433,0.11257900120336943,7828.7458151907995,2019
+2004,57,"(55,60]",College,23.302003590664274,193.58476855653433,0.12037105896510229,7839.714210640957,2019
+2004,57,"(55,60]",College,22.500653500897666,193.58476855653433,0.1162315282791817,7879.533037291241,2019
+2004,57,"(55,60]",College,24.716150807899464,193.58476855653433,0.12767611311672686,7838.199651738088,2019
+2004,57,"(55,60]",College,21.117931777378814,193.58476855653433,0.10908880866425992,7788.29705269724,2019
+2004,31,"(30,35]",HS,323.68258527827646,146.80178282203855,2.2048954655452846,10471.204560777362,2019
+2004,31,"(30,35]",HS,318.96876122082585,146.80178282203855,2.172785337406276,10399.037654723663,2019
+2004,31,"(30,35]",HS,322.11131059245963,146.80178282203855,2.194192089498949,10473.992070144628,2019
+2004,31,"(30,35]",HS,320.54003590664274,146.80178282203855,2.183488713452612,10461.291589847671,2019
+2004,31,"(30,35]",HS,320.54003590664274,146.80178282203855,2.183488713452612,10455.926159744422,2019
+2004,47,"(45,50]",HS,266.8024416517056,145.18857641740072,1.8376269554753313,7327.185326713248,2019
+2004,47,"(45,50]",HS,353.22254937163376,145.18857641740072,2.4328535900521464,6808.506639290191,2019
+2004,47,"(45,50]",HS,232.2343985637343,145.18857641740072,1.5995363016446051,7363.115670238588,2019
+2004,47,"(45,50]",HS,243.23332136445242,145.18857641740072,1.6752924187725635,7322.204234384862,2019
+2004,47,"(45,50]",HS,167.81213644524237,145.18857641740072,1.1558219013237065,7096.845800689759,2019
+2004,43,"(40,45]",HS,-120.79959784560144,111.31124192000723,-1.085241667974677,921.6869237739802,2019
+2004,43,"(40,45]",HS,-120.3125026929982,109.69803551536945,-1.0967607772350816,917.9017428646941,2019
+2004,43,"(40,45]",HS,-120.28107719928187,111.31124192000723,-1.0805833725736411,947.539489388308,2019
+2004,43,"(40,45]",HS,-120.24965170556553,114.53765472928282,-1.0498700361010829,885.289265458242,2019
+2004,43,"(40,45]",HS,-125.4977091561939,104.8584163014561,-1.1968301027492363,923.280751832566,2019
+2004,47,"(45,50]",HS,2.828294434470377,70.9810818040626,0.03984574991795208,3798.7000126072426,2019
+2004,47,"(45,50]",HS,2.9854219030520643,61.30184337623587,0.04870036101083032,3790.19958943542,2019
+2004,47,"(45,50]",HS,2.828294434470377,70.9810818040626,0.03984574991795208,3817.3633188935346,2019
+2004,47,"(45,50]",HS,2.9854219030520643,50.00939854377137,0.0596972167229533,3826.74811758218,2019
+2004,47,"(45,50]",HS,2.9854219030520643,70.9810818040626,0.042059402691171636,3789.0213228936977,2019
+2004,83,"(80,85]",HS,1464.7736876122083,66.14146259014923,22.146073434885974,8175.183300070702,2019
+2004,83,"(80,85]",HS,1501.1172710951528,66.14146259014923,22.695556044730125,9087.759858238855,2019
+2004,83,"(80,85]",HS,1483.628983842011,66.14146259014923,22.431148718851812,8093.256846580592,2019
+2004,83,"(80,85]",HS,1433.175353680431,67.75466899478702,21.15242203885164,8067.132619305366,2019
+2004,83,"(80,85]",HS,1433.7095870736086,67.75466899478702,21.160306859205775,8456.508581810069,2019
+2004,35,"(30,35]",HS,-22.139260323159785,1.7745270451015647,-12.476147029865443,4222.337958654204,2019
+2004,35,"(30,35]",HS,-22.139260323159785,1.7745270451015647,-12.476147029865443,4253.1451333148125,2019
+2004,35,"(30,35]",HS,-22.139260323159785,1.7745270451015647,-12.476147029865443,4202.61523360462,2019
+2004,35,"(30,35]",HS,-22.154973070017952,1.7745270451015647,-12.48500164095832,4164.229111928222,2019
+2004,35,"(30,35]",HS,-22.154973070017952,1.7745270451015647,-12.48500164095832,4173.052611801023,2019
+2004,62,"(60,65]",NoHS,212.43633752244165,212.94324541218776,0.9976195164642818,5937.375984124572,2019
+2004,62,"(60,65]",NoHS,207.72251346499104,212.94324541218776,0.9754829887320863,5294.046440920361,2019
+2004,62,"(60,65]",NoHS,215.5788868940754,212.94324541218776,1.0123772016190788,5951.7902596172835,2019
+2004,62,"(60,65]",NoHS,209.2937881508079,212.94324541218776,0.9828618313094847,5845.609251234922,2019
+2004,62,"(60,65]",NoHS,215.5788868940754,212.94324541218776,1.0123772016190788,5723.749713758709,2019
+2004,61,"(60,65]",College,67685.79964093358,2823.111208116126,23.975605157297576,20.74019594646676,2019
+2004,61,"(60,65]",College,49909.96912028726,4033.0160115944655,12.375346137184115,19.816306324632045,2019
+2004,61,"(60,65]",College,61491.83482944345,3000.5639126262818,20.493426109234893,20.995578422063275,2019
+2004,61,"(60,65]",College,46322.74901256733,4226.6007801509995,10.959811778322816,19.17777086767523,2019
+2004,61,"(60,65]",College,61518.54649910233,4049.148075640843,15.19296043263768,20.567919624948274,2019
+2004,38,"(35,40]",College,65.52215439856373,88.72635225507824,0.7384745651460451,4391.650760715445,2019
+2004,38,"(35,40]",College,65.67928186714542,88.72635225507824,0.7402454873646209,4319.9715891932365,2019
+2004,38,"(35,40]",College,65.67928186714542,88.72635225507824,0.7402454873646209,4374.492590710512,2019
+2004,38,"(35,40]",College,65.67928186714542,88.72635225507824,0.7402454873646209,4406.5156430956185,2019
+2004,38,"(35,40]",College,65.67928186714542,88.72635225507824,0.7402454873646209,4361.717888205576,2019
+2004,36,"(35,40]",HS,-41.71577163375225,50.00939854377137,-0.8341586351461512,4679.053709760003,2019
+2004,36,"(35,40]",HS,-41.558644165170556,50.00939854377137,-0.8310166763712589,4605.5189449035515,2019
+2004,36,"(35,40]",HS,-41.71577163375225,50.00939854377137,-0.8341586351461512,4691.704987844713,2019
+2004,36,"(35,40]",HS,-41.558644165170556,50.00939854377137,-0.8310166763712589,4685.2292647118575,2019
+2004,36,"(35,40]",HS,-41.558644165170556,50.00939854377137,-0.8310166763712589,4669.711963224071,2019
+2004,29,"(25,30]",HS,51.77350089766607,64.52825618551145,0.8023384476534295,7898.705139371965,2019
+2004,29,"(25,30]",HS,51.93062836624776,56.46222416232251,0.9197411036616815,7695.799997907891,2019
+2004,29,"(25,30]",HS,51.77350089766607,45.16977932985802,1.1461977823620422,7929.865832374249,2019
+2004,29,"(25,30]",HS,51.77350089766607,74.20749461333816,0.6976856066551562,7895.1662870391865,2019
+2004,29,"(25,30]",HS,51.77350089766607,45.16977932985802,1.1461977823620422,7872.971267395982,2019
+2004,41,"(40,45]",College,797.5004667863554,282.31112081161257,2.8248992264053636,695.2315188577528,2019
+2004,41,"(40,45]",College,830.4815224416517,282.31112081161257,2.9417244352759155,685.6403564190533,2019
+2004,41,"(40,45]",College,811.5790879712747,282.31112081161257,2.8747683960804538,706.0203359482013,2019
+2004,41,"(40,45]",College,764.3622836624776,282.31112081161257,2.7075174419804022,649.4687543339535,2019
+2004,41,"(40,45]",College,866.6365529622981,282.31112081161257,3.069792470345539,701.494257383689,2019
+2004,51,"(50,55]",HS,83.63895152603232,56.46222416232251,1.4813258380608563,3545.020791540621,2019
+2004,51,"(50,55]",HS,82.68047396768402,54.84901775768473,1.5074194096411129,3470.141886318789,2019
+2004,51,"(50,55]",HS,80.96778456014363,56.46222416232251,1.4340169159360496,3575.5398708041453,2019
+2004,51,"(50,55]",HS,80.0250197486535,56.46222416232251,1.417319649303765,3572.9783263982945,2019
+2004,51,"(50,55]",HS,82.36621903052065,56.46222416232251,1.458784528107272,3529.6182695027974,2019
+2004,61,"(60,65]",College,21368.70721723519,2419.8096069566795,8.83073906137184,27.294933873176596,2019
+2004,61,"(60,65]",College,21368.70721723519,2419.8096069566795,8.83073906137184,28.091542928426822,2019
+2004,61,"(60,65]",College,21368.864344703772,2419.8096069566795,8.830803995186521,28.717239598386413,2019
+2004,61,"(60,65]",College,21370.278491921003,2419.8096069566795,8.83138839951865,26.621461531668785,2019
+2004,61,"(60,65]",College,21370.278491921003,2419.8096069566795,8.83138839951865,27.636429758482727,2019
+2004,36,"(35,40]",HS,201.7516696588869,116.1508611339206,1.7369795427196149,8282.892589969479,2019
+2004,36,"(35,40]",HS,198.60912028725315,116.1508611339206,1.709923786602487,7951.120961918627,2019
+2004,36,"(35,40]",HS,197.0378456014363,116.1508611339206,1.696395908543923,8275.403125706634,2019
+2004,36,"(35,40]",HS,198.60912028725315,116.1508611339206,1.709923786602487,8244.550426142752,2019
+2004,36,"(35,40]",HS,198.60912028725315,116.1508611339206,1.709923786602487,8161.088922730152,2019
+2004,62,"(60,65]",HS,326.9822621184919,87.11314585044046,3.7535352319828847,5235.928494442133,2019
+2004,62,"(60,65]",HS,292.257091561939,50.00939854377137,5.844043321299639,4668.602541767769,2019
+2004,62,"(60,65]",HS,353.37967684021544,37.10374730666908,9.524096688118036,5248.6398531266495,2019
+2004,62,"(60,65]",HS,311.58377019748656,88.72635225507824,3.5117387594355103,5155.003174424755,2019
+2004,62,"(60,65]",HS,273.5589228007181,61.30184337623587,4.462490974729241,5047.540243612009,2019
+2004,50,"(45,50]",NoHS,2.828294434470377,12.905651237102285,0.21915162454873652,4338.93597446711,2019
+2004,50,"(45,50]",NoHS,2.6711669658886894,12.905651237102285,0.20697653429602894,4329.028393193802,2019
+2004,50,"(45,50]",NoHS,2.6711669658886894,12.905651237102285,0.20697653429602894,4359.532241503922,2019
+2004,50,"(45,50]",NoHS,2.6711669658886894,12.905651237102285,0.20697653429602894,4360.139973721185,2019
+2004,50,"(45,50]",NoHS,2.828294434470377,12.905651237102285,0.21915162454873652,4327.033138209815,2019
+2004,25,"(20,25]",HS,31.504057450628366,43.55657292522023,0.723290546864554,5088.927566511377,2019
+2004,25,"(20,25]",HS,29.932782764811492,43.55657292522023,0.6872162053750501,5160.986344284827,2019
+2004,25,"(20,25]",HS,29.932782764811492,43.55657292522023,0.6872162053750501,5076.199900592452,2019
+2004,25,"(20,25]",HS,31.504057450628366,43.55657292522023,0.723290546864554,5127.142430846274,2019
+2004,25,"(20,25]",HS,29.932782764811492,43.55657292522023,0.6872162053750501,5116.561409622018,2019
+2004,73,"(70,75]",College,2833.6367684021548,137.12254439421181,20.664995540454452,3312.020263278568,2019
+2004,73,"(70,75]",College,2832.0654937163376,137.12254439421181,20.653536631981314,3466.7195224493553,2019
+2004,73,"(70,75]",College,2832.0654937163376,137.12254439421181,20.653536631981314,3287.255590682356,2019
+2004,73,"(70,75]",College,2832.0654937163376,137.12254439421181,20.653536631981314,3528.3643776536796,2019
+2004,73,"(70,75]",College,2832.0654937163376,137.12254439421181,20.653536631981314,3365.2988995530795,2019
+2004,75,"(70,75]",HS,8444.187289048474,638.8297362365633,13.218212631732486,330.8365091718462,2019
+2004,75,"(70,75]",HS,10342.758491921006,687.2259283756969,15.050012033694346,328.0336321160737,2019
+2004,75,"(70,75]",HS,8727.598104129263,679.159896352508,12.850579298044023,344.14618611141196,2019
+2004,75,"(70,75]",HS,8690.720287253142,888.87672895542,9.777194074442924,320.4211222745283,2019
+2004,75,"(70,75]",HS,7524.363087971275,1025.9992733496317,7.333692414231548,325.1670609369383,2019
+2004,52,"(50,55]",HS,671.8299174147216,174.22629170088092,3.8560765476667993,737.0170140798839,2019
+2004,52,"(50,55]",HS,684.4943913824058,106.47162270609388,6.428890383984247,723.8887970825349,2019
+2004,52,"(50,55]",HS,672.3484380610413,48.39619213913358,13.892589651022865,744.4168328381566,2019
+2004,52,"(50,55]",HS,667.6346140035906,137.12254439421181,4.868890210235719,691.4940683113751,2019
+2004,52,"(50,55]",HS,665.6862333931778,103.24520989681828,6.447623420577619,743.5024301572955,2019
+2004,67,"(65,70]",HS,74.32129263913824,32.264128092755726,2.3035270758122737,7642.387596578548,2019
+2004,67,"(65,70]",HS,74.16416517055656,32.264128092755726,2.298657039711191,7138.928747747508,2019
+2004,67,"(65,70]",HS,75.73543985637343,32.264128092755726,2.3473574007220215,7735.162781448637,2019
+2004,67,"(65,70]",HS,75.73543985637343,32.264128092755726,2.3473574007220215,7675.2689183431285,2019
+2004,67,"(65,70]",HS,74.00703770197487,32.264128092755726,2.2937870036101082,7574.261876388648,2019
+2004,50,"(45,50]",HS,67.61194973070018,209.7168326029122,0.3223963898916967,5800.2959350165675,2019
+2004,50,"(45,50]",HS,58.891375224416514,209.7168326029122,0.28081377395168006,6420.098542731963,2019
+2004,50,"(45,50]",HS,62.89812567324955,209.7168326029122,0.29991930019439045,5747.156266809362,2019
+2004,50,"(45,50]",HS,54.68035906642729,209.7168326029122,0.2607342404887531,5787.346460563008,2019
+2004,50,"(45,50]",HS,58.26286535008976,209.7168326029122,0.2778168286587059,6029.267279081267,2019
+2004,31,"(30,35]",College,67.95763016157989,56.46222416232251,1.203594636410521,9352.850400427962,2019
+2004,31,"(30,35]",College,67.8005026929982,56.46222416232251,1.2008117586384734,9288.391123344376,2019
+2004,31,"(30,35]",College,67.8005026929982,56.46222416232251,1.2008117586384734,9355.340195938163,2019
+2004,31,"(30,35]",College,67.95763016157989,56.46222416232251,1.203594636410521,9343.996162733427,2019
+2004,31,"(30,35]",College,68.13047037701975,56.46222416232251,1.2066558019597733,9339.203775687756,2019
+2004,47,"(45,50]",HS,101.66147217235189,35.4905409020313,2.8644666885461105,7661.0983069328595,2019
+2004,47,"(45,50]",HS,102.28998204667863,35.4905409020313,2.882175910731867,7118.782501220679,2019
+2004,47,"(45,50]",HS,101.66147217235189,35.4905409020313,2.8644666885461105,7698.666060671244,2019
+2004,47,"(45,50]",HS,98.40893357271096,35.4905409020313,2.772821463734821,7655.89021729105,2019
+2004,47,"(45,50]",HS,101.74003590664273,35.4905409020313,2.8666803413193302,7420.261795482171,2019
+2004,46,"(45,50]",College,1982.9486535008975,130.66971877566067,15.175272986584659,599.5072073672007,2019
+2004,46,"(45,50]",College,1992.3763016157989,130.66971877566067,15.247421669563668,616.2255942354915,2019
+2004,46,"(45,50]",College,1976.6635547576302,196.81118136580994,10.043451500266318,595.5979041545912,2019
+2004,46,"(45,50]",College,1986.0912028725315,130.66971877566067,15.199322547577664,611.6018144138613,2019
+2004,46,"(45,50]",College,1979.806104129264,203.26400698436103,9.740072202166067,619.6326174226867,2019
+2004,21,"(20,25]",HS,1.696976660682226,25.81130247420457,0.06574548736462095,6014.333972986972,2019
+2004,21,"(20,25]",HS,2.0740825852782763,25.81130247420457,0.08035559566787005,5974.72979912411,2019
+2004,21,"(20,25]",HS,0.4242441651705565,25.81130247420457,0.016436371841155237,6085.732787714206,2019
+2004,21,"(20,25]",HS,0.10998922800718133,25.81130247420457,0.004261281588447655,5944.95743752226,2019
+2004,21,"(20,25]",HS,1.6812639138240575,25.81130247420457,0.06513673285198558,6068.959376597803,2019
+2004,53,"(50,55]",College,46286.60969479354,1285.7255044963156,36.000382300051186,475.0185739368885,2019
+2004,53,"(50,55]",College,60734.48043087971,1271.2066468545754,47.77703183125951,233.31197362120798,2019
+2004,53,"(50,55]",College,20362.148653500895,1300.2443621380555,15.660247601472708,531.5654156287058,2019
+2004,53,"(50,55]",College,20432.856014362656,1271.2066468545754,16.073591233117703,515.6762323580624,2019
+2004,53,"(50,55]",College,60662.201795332134,1272.8198532592132,47.65969169949623,260.2593226387703,2019
+2004,43,"(40,45]",HS,38535.04028725314,1129.2444832464503,34.12462124806601,475.0185739368885,2019
+2004,43,"(40,45]",HS,38537.08294434471,1129.2444832464503,34.12643011861785,469.5408685076083,2019
+2004,43,"(40,45]",HS,38539.28272890485,1129.2444832464503,34.12837813305828,481.1380463118704,2019
+2004,43,"(40,45]",HS,38538.65421903052,1129.2444832464503,34.127821557503864,475.4463790922097,2019
+2004,43,"(40,45]",HS,38533.43758707361,1129.2444832464503,34.12320198040227,490.74239055029614,2019
+2004,62,"(60,65]",HS,199.23763016157992,66.14146259014923,3.0122955005723346,7379.285461025228,2019
+2004,62,"(60,65]",HS,199.3947576301616,64.52825618551145,3.090037906137184,7377.131403862858,2019
+2004,62,"(60,65]",HS,199.23763016157992,64.52825618551145,3.0876028880866424,7353.245853002911,2019
+2004,62,"(60,65]",HS,199.3947576301616,66.14146259014923,3.0146711279387164,7330.970213464939,2019
+2004,62,"(60,65]",HS,199.23763016157992,66.14146259014923,3.0122955005723346,7370.739554506168,2019
+2004,84,"(80,85]",HS,265.5454219030521,35.4905409020313,7.482146373482114,9086.97359845832,2019
+2004,84,"(80,85]",HS,263.97414721723516,35.4905409020313,7.43787331801772,9092.123463098282,2019
+2004,84,"(80,85]",HS,263.97414721723516,35.4905409020313,7.43787331801772,9009.503318512903,2019
+2004,84,"(80,85]",HS,265.5454219030521,35.4905409020313,7.482146373482114,9076.55321752238,2019
+2004,84,"(80,85]",HS,263.97414721723516,35.4905409020313,7.43787331801772,9058.18742004581,2019
+2004,58,"(55,60]",HS,244.961723518851,64.52825618551145,3.796193140794223,7954.499995953871,2019
+2004,58,"(55,60]",HS,244.80459605026928,64.52825618551145,3.7937581227436814,7092.610019220413,2019
+2004,58,"(55,60]",HS,243.23332136445242,64.52825618551145,3.7694079422382667,7973.811280038794,2019
+2004,58,"(55,60]",HS,244.80459605026928,64.52825618551145,3.7937581227436814,7831.5570530863115,2019
+2004,58,"(55,60]",HS,244.80459605026928,64.52825618551145,3.7937581227436814,7668.2977794689305,2019
+2004,58,"(55,60]",College,259.4174506283662,140.3489572034874,1.8483746213535828,9527.621141191357,2019
+2004,58,"(55,60]",College,259.4174506283662,140.3489572034874,1.8483746213535828,10442.851053073717,2019
+2004,58,"(55,60]",College,257.8461759425494,140.3489572034874,1.837179136063737,9406.18789852356,2019
+2004,58,"(55,60]",College,259.4174506283662,140.3489572034874,1.8483746213535828,9428.685184767575,2019
+2004,58,"(55,60]",College,259.4174506283662,140.3489572034874,1.8483746213535828,9855.541043307177,2019
+2004,49,"(45,50]",College,62.7724236983842,127.4433059663851,0.49255175250194216,4766.511797843121,2019
+2004,49,"(45,50]",College,55.764538599640936,167.77346608232975,0.332379963898917,4699.606517802088,2019
+2004,49,"(45,50]",College,171.83459964093356,200.03759417508547,0.859011529055549,4792.4390222995335,2019
+2004,49,"(45,50]",College,166.6022549371634,158.09422765450302,1.0538161791792533,4832.2428730778975,2019
+2004,49,"(45,50]",College,172.21170556552963,164.5470532730542,1.0465803072131379,4728.898569992376,2019
+2004,56,"(55,60]",College,-59.2527684021544,38.716953711306864,-1.5304088447653432,6157.460898468771,2019
+2004,56,"(55,60]",College,-61.21686175942549,40.33016011594465,-1.5178928519855595,5966.450062516618,2019
+2004,56,"(55,60]",College,-57.72863195691203,33.87733449739351,-1.7040488224170534,6147.175166822465,2019
+2004,56,"(55,60]",College,-61.028308797127465,38.716953711306864,-1.5762683513838749,6164.859087351554,2019
+2004,56,"(55,60]",College,-59.83414003590664,41.94336652058244,-1.4265459594557068,6098.452511240372,2019
+2004,47,"(45,50]",College,17368.87037701975,2032.6400698436103,8.544980803392358,29.195066268336753,2019
+2004,47,"(45,50]",College,17368.87037701975,2032.6400698436103,8.544980803392358,30.022752239907987,2019
+2004,47,"(45,50]",College,17365.727827648116,2032.6400698436103,8.543434760185663,31.11940196881066,2019
+2004,47,"(45,50]",College,17367.299102333935,2032.6400698436103,8.544207781789012,28.051432547955784,2019
+2004,47,"(45,50]",College,17368.87037701975,2032.6400698436103,8.544980803392358,29.23782194742078,2019
+2004,70,"(65,70]",College,32372.9723518851,4888.015406052492,6.622927642944799,24.978685526687734,2019
+2004,70,"(65,70]",College,29197.42621184919,7824.051062493262,3.731753023930924,25.394540741539103,2019
+2004,70,"(65,70]",College,23839.379533213647,15761.02657331117,1.5125524611183578,25.992956181123255,2019
+2004,70,"(65,70]",College,42220.15080789946,8340.277111977353,5.062200001396561,24.54462063046173,2019
+2004,70,"(65,70]",College,32330.547935368042,6372.165298319255,5.073714572956176,26.099381821218618,2019
+2004,74,"(70,75]",NoHS,85.47734290843806,30.650921688117936,2.788736462093863,9821.77311049103,2019
+2004,74,"(70,75]",NoHS,85.47734290843806,30.650921688117936,2.788736462093863,9828.25296697269,2019
+2004,74,"(70,75]",NoHS,85.47734290843806,30.650921688117936,2.788736462093863,9770.292354343723,2019
+2004,74,"(70,75]",NoHS,85.32021543985637,30.650921688117936,2.783610108303249,9827.224762034235,2019
+2004,74,"(70,75]",NoHS,85.47734290843806,30.650921688117936,2.788736462093863,9775.329541083447,2019
+2004,75,"(70,75]",College,9404.709075763018,209.7168326029122,44.84479838378228,1986.0185676819106,2019
+2004,75,"(70,75]",College,9403.67046319569,209.7168326029122,44.83984593168564,2039.282926041425,2019
+2004,75,"(70,75]",College,9404.786068222622,209.7168326029122,44.845165509580674,2014.8168404905687,2019
+2004,75,"(70,75]",College,9403.466197486536,209.7168326029122,44.83887192446543,1894.7225564984142,2019
+2004,75,"(70,75]",College,9404.236122082586,209.7168326029122,44.84254318244932,1916.2236298321702,2019
+2004,56,"(55,60]",College,7258.40913464991,1919.7156215189657,3.7809814397961343,312.9438578319533,2019
+2004,56,"(55,60]",College,18492.017522441653,1511.5744011456056,12.233613845555174,308.0067787422426,2019
+2004,56,"(55,60]",College,16261.593105924596,1435.7537001276298,11.326171824930027,326.17343126559774,2019
+2004,56,"(55,60]",College,21769.41368761221,2032.6400698436103,10.709920566156669,302.5728960262254,2019
+2004,56,"(55,60]",College,6953.047612208258,903.3955865971601,7.6965702681794745,307.546686552354,2019
+2004,43,"(40,45]",College,837.489407540395,80.6603202318893,10.382916967509026,358.9456417475632,2019
+2004,43,"(40,45]",College,755.6259964093358,80.6603202318893,9.368001444043323,358.7978475281478,2019
+2004,43,"(40,45]",College,857.9159784560144,80.6603202318893,10.636158844765344,354.40749825905885,2019
+2004,43,"(40,45]",College,873.4715978456014,80.6603202318893,10.829012274368232,346.7849229174165,2019
+2004,43,"(40,45]",College,711.7874326750449,80.6603202318893,8.824505415162456,365.1665880366205,2019
+2004,48,"(45,50]",HS,0.31425493716337527,13.550933798957404,0.023190648100395395,4286.212442790895,2019
+2004,48,"(45,50]",HS,0.31425493716337527,13.550933798957404,0.023190648100395395,4289.696506266628,2019
+2004,48,"(45,50]",HS,0.31425493716337527,13.550933798957404,0.023190648100395395,4294.14977828989,2019
+2004,48,"(45,50]",HS,0.31425493716337527,13.550933798957404,0.023190648100395395,4305.100979764331,2019
+2004,48,"(45,50]",HS,0.31425493716337527,13.550933798957404,0.023190648100395395,4286.460813083117,2019
+2004,57,"(55,60]",College,58156.332926391384,8066.032023188931,7.210030007220216,24.67353052985521,2019
+2004,57,"(55,60]",College,73617.67583482945,8066.032023188931,9.1268762166065,27.192282658155648,2019
+2004,57,"(55,60]",College,58140.777307001794,8066.032023188931,7.208101472924187,25.60493044728898,2019
+2004,57,"(55,60]",College,79965.62556552963,8066.032023188931,9.913874050541516,26.18040305386068,2019
+2004,57,"(55,60]",College,58156.332926391384,8066.032023188931,7.210030007220216,25.96827913337421,2019
+2004,71,"(70,75]",NoHS,2.294061041292639,37.10374730666908,0.06182828441374981,7652.104550996405,2019
+2004,71,"(70,75]",NoHS,2.2626355475763016,22.58488966492901,0.10018359979370808,7628.249435441297,2019
+2004,71,"(70,75]",NoHS,2.325486535008977,30.650921688117936,0.07587003610108303,7599.730506952537,2019
+2004,71,"(70,75]",NoHS,2.2312100538599644,19.358476855653432,0.11525752105896513,7663.588945083927,2019
+2004,71,"(70,75]",NoHS,2.2312100538599644,33.87733449739351,0.06586144060512292,7639.088738120883,2019
+2004,52,"(50,55]",College,36713.61867145422,5613.958288139496,6.539702788497447,35.3558370050509,2019
+2004,52,"(50,55]",College,63796.894793536805,4371.789356568401,14.592856514846735,38.82480992500642,2019
+2004,52,"(50,55]",College,40059.49098743268,6323.769106180122,6.3347491527296835,36.796479412118444,2019
+2004,52,"(50,55]",College,22152.459030520648,4565.374125124934,4.852276817491805,34.7276609630843,2019
+2004,52,"(50,55]",College,10824.668438061042,3419.997577832107,3.165109972072747,39.12434004425073,2019
+2004,52,"(50,55]",HS,588.9137522441652,145.18857641740072,4.056198957079824,6510.706985336888,2019
+2004,52,"(50,55]",HS,607.7690484739677,146.80178282203855,4.140065854722894,7244.844147046065,2019
+2004,52,"(50,55]",HS,605.4121364452424,145.18857641740072,4.169833132771761,6378.802223585908,2019
+2004,52,"(50,55]",HS,592.6848114901258,146.80178282203855,4.037313444678066,6446.436453068974,2019
+2004,52,"(50,55]",HS,599.1270377019748,146.80178282203855,4.0811972864680435,6696.525599886219,2019
+2004,40,"(35,40]",College,250.1469299820467,156.48102124986525,1.5985767985410697,11247.771343142715,2019
+2004,40,"(35,40]",College,250.1469299820467,156.48102124986525,1.5985767985410697,10480.720352669003,2019
+2004,40,"(35,40]",College,250.1469299820467,156.48102124986525,1.5985767985410697,11161.420121946174,2019
+2004,40,"(35,40]",College,250.1469299820467,156.48102124986525,1.5985767985410697,11249.349723149093,2019
+2004,40,"(35,40]",College,250.1469299820467,156.48102124986525,1.5985767985410697,10919.392790860413,2019
+2004,46,"(45,50]",College,153.74922800718133,58.0754305669603,2.647405736060971,6784.379592343949,2019
+2004,46,"(45,50]",College,153.74922800718133,58.0754305669603,2.647405736060971,6414.1054100074925,2019
+2004,46,"(45,50]",College,153.74922800718133,58.0754305669603,2.647405736060971,6840.281362991816,2019
+2004,46,"(45,50]",College,153.906355475763,58.0754305669603,2.650111311672683,6805.914034873099,2019
+2004,46,"(45,50]",College,153.906355475763,58.0754305669603,2.650111311672683,6651.367440031738,2019
+2004,61,"(60,65]",HS,18168.64919210054,3484.5258340176188,5.214095133039176,312.9438578319533,2019
+2004,61,"(60,65]",HS,12842.656517055655,3226.4128092755723,3.9804753068592054,308.0067787422426,2019
+2004,61,"(60,65]",HS,11992.911166965889,3823.2991789915536,3.1367964173102405,326.17343126559774,2019
+2004,61,"(60,65]",HS,20428.61357271095,3742.6388587596634,5.4583448587078305,302.5728960262254,2019
+2004,61,"(60,65]",HS,26947.203734290844,3887.8274351770647,6.931172790868373,290.4419445755936,2019
+2004,35,"(30,35]",College,-59.235484380610416,80.6603202318893,-0.7343819638989171,5139.441698067441,2019
+2004,35,"(30,35]",College,-59.235484380610416,80.6603202318893,-0.7343819638989171,5055.5573131114415,2019
+2004,35,"(30,35]",College,-59.235484380610416,80.6603202318893,-0.7343819638989171,5119.361910490816,2019
+2004,35,"(30,35]",College,-59.235484380610416,80.6603202318893,-0.7343819638989171,5156.837707109173,2019
+2004,35,"(30,35]",College,-59.235484380610416,80.6603202318893,-0.7343819638989171,5104.4119879419695,2019
+2004,41,"(40,45]",College,554.9742190305207,172.6130852962431,3.2151341138364993,6868.43303081905,2019
+2004,41,"(40,45]",College,555.1313464991023,174.22629170088092,3.1862662120604353,7625.931685079166,2019
+2004,41,"(40,45]",College,553.4029443447038,172.6130852962431,3.2060312426195217,6779.7600660858025,2019
+2004,41,"(40,45]",College,554.9742190305207,174.22629170088092,3.185364353523198,6769.668030871134,2019
+2004,41,"(40,45]",College,554.9742190305207,172.6130852962431,3.2151341138364993,7073.90834484856,2019
+2004,36,"(35,40]",NoHS,4.085314183123878,24.19809606956679,0.16882791817087847,6093.354785038373,2019
+2004,36,"(35,40]",NoHS,4.085314183123878,24.19809606956679,0.16882791817087847,6172.826001377498,2019
+2004,36,"(35,40]",NoHS,4.242441651705565,24.19809606956679,0.17532129963898915,6066.754491700154,2019
+2004,36,"(35,40]",NoHS,4.242441651705565,25.81130247420457,0.1643637184115524,6075.50362694901,2019
+2004,36,"(35,40]",NoHS,4.242441651705565,25.81130247420457,0.1643637184115524,6107.011311966662,2019
+2004,39,"(35,40]",HS,140.75478635547574,38.716953711306864,3.6354819494584834,8108.165545728718,2019
+2004,39,"(35,40]",HS,140.75478635547574,38.716953711306864,3.6354819494584834,7636.07704991076,2019
+2004,39,"(35,40]",HS,140.7390736086176,38.716953711306864,3.635076113116727,8130.627739424252,2019
+2004,39,"(35,40]",HS,140.91191382405745,38.716953711306864,3.6395403128760533,8074.66051625546,2019
+2004,39,"(35,40]",HS,140.56623339317775,38.716953711306864,3.6306119133574013,7974.539038987699,2019
+2004,66,"(65,70]",NoHS,298.85644524236983,38.716953711306864,7.719007220216606,8330.014844407957,2019
+2004,66,"(65,70]",NoHS,298.85644524236983,38.716953711306864,7.719007220216606,7605.724028581739,2019
+2004,66,"(65,70]",NoHS,298.85644524236983,38.716953711306864,7.719007220216606,8431.13179179134,2019
+2004,66,"(65,70]",NoHS,298.6993177737882,38.716953711306864,7.714948856799039,8409.582873379495,2019
+2004,66,"(65,70]",NoHS,298.85644524236983,38.716953711306864,7.719007220216606,8209.338720940625,2019
+2004,65,"(60,65]",College,6920.679353680431,193.58476855653433,35.75012334536703,3643.933326921246,2019
+2004,65,"(60,65]",College,6959.961220825853,193.58476855653433,35.95304151624549,3596.5441441361945,2019
+2004,65,"(60,65]",College,6953.676122082586,193.58476855653433,35.920574608904936,4050.5172030113586,2019
+2004,65,"(60,65]",College,7035.382405745063,193.58476855653433,36.342644404332134,3559.838066757247,2019
+2004,65,"(60,65]",College,7030.6685816876125,193.58476855653433,36.31829422382672,3730.011843083447,2019
+2004,40,"(35,40]",College,3211.5283303411134,241.98096069566793,13.27182238267148,2464.0121136383846,2019
+2004,40,"(35,40]",College,3211.5283303411134,241.98096069566793,13.27182238267148,2429.2940331339164,2019
+2004,40,"(35,40]",College,3211.5283303411134,241.98096069566793,13.27182238267148,2597.5018328914425,2019
+2004,40,"(35,40]",College,3211.5283303411134,241.98096069566793,13.27182238267148,2279.213513083415,2019
+2004,40,"(35,40]",College,3211.5283303411134,241.98096069566793,13.27182238267148,2392.8128205370117,2019
+2004,46,"(45,50]",HS,17.676840215439857,15.486781484522748,1.1414147111913358,5555.936758793975,2019
+2004,46,"(45,50]",HS,19.248114901256734,15.486781484522748,1.2428737966305656,5561.373848284497,2019
+2004,46,"(45,50]",HS,19.248114901256734,15.486781484522748,1.2428737966305656,5562.659315645737,2019
+2004,46,"(45,50]",HS,19.248114901256734,15.486781484522748,1.2428737966305656,5577.5311771381985,2019
+2004,46,"(45,50]",HS,19.248114901256734,15.486781484522748,1.2428737966305656,5555.713690863928,2019
+2004,49,"(45,50]",College,1017.086104129264,435.56572925220235,2.33509212461559,484.0622360656022,2019
+2004,49,"(45,50]",College,1018.6573788150807,435.56572925220235,2.33869955876454,477.5133122906329,2019
+2004,49,"(45,50]",College,1018.8145062836626,435.56572925220235,2.3390603021794356,486.3775802284678,2019
+2004,49,"(45,50]",College,1018.5002513464991,435.56572925220235,2.338338815349645,478.59335895200127,2019
+2004,49,"(45,50]",College,1017.086104129264,435.56572925220235,2.33509212461559,507.9939737538067,2019
+2004,69,"(65,70]",HS,1088.9719210053859,25.81130247420457,42.18973149819495,7448.854667301357,2019
+2004,69,"(65,70]",HS,1088.8147935368045,25.81130247420457,42.18364395306861,8141.698022316913,2019
+2004,69,"(65,70]",HS,1088.8147935368045,27.424508878842364,39.70225313229986,7420.3847341234305,2019
+2004,69,"(65,70]",HS,1092.1144703770199,25.81130247420457,42.311482400722035,7380.848851899161,2019
+2004,69,"(65,70]",HS,1092.1144703770199,24.19809606956679,45.13224789410349,7715.763707770961,2019
+2004,50,"(45,50]",HS,6.915179892280072,4.516977932985801,1.530930634347602,4629.249007713161,2019
+2004,50,"(45,50]",HS,6.915179892280072,4.516977932985801,1.530930634347602,4672.074073576869,2019
+2004,50,"(45,50]",HS,6.915179892280072,4.355657292522022,1.587631768953069,4610.087123944319,2019
+2004,50,"(45,50]",HS,6.915179892280072,4.516977932985801,1.530930634347602,4584.720403318481,2019
+2004,50,"(45,50]",HS,6.915179892280072,4.516977932985801,1.530930634347602,4594.259984220555,2019
+2004,78,"(75,80]",College,18305.350089766605,1295.4047429241423,14.130988935894726,28.901248606681957,2019
+2004,78,"(75,80]",College,16773.357271095152,984.0559068290495,17.045126353790614,29.20265681338704,2019
+2004,78,"(75,80]",College,59876.5644524237,1603.5271662099594,37.34053635894791,28.169819163329105,2019
+2004,78,"(75,80]",College,26205.719210053863,1119.5652448186236,23.40704959477315,25.62277832822135,2019
+2004,78,"(75,80]",College,27465.881508078997,1034.065305372821,26.561070529463777,26.869043729423304,2019
+2004,59,"(55,60]",College,8396.593378815081,1176.0274689809462,7.139793585000965,294.0782415789,2019
+2004,59,"(55,60]",College,7307.212926391383,1187.3199138134105,6.154375784806153,293.0190960111748,2019
+2004,59,"(55,60]",College,7707.7779820466785,1208.2915970737017,6.3790710791283685,304.0768756051631,2019
+2004,59,"(55,60]",College,5919.7145278276485,1190.5463266226864,4.972267265416336,290.0616229138954,2019
+2004,59,"(55,60]",College,7011.027648114901,1067.9426398702144,6.564985221459967,296.3295687508992,2019
+2004,41,"(40,45]",College,271.6733931777379,56.46222416232251,4.811595667870037,9074.8480230557,2019
+2004,41,"(40,45]",College,273.5589228007181,56.46222416232251,4.844990201134606,8708.801257060468,2019
+2004,41,"(40,45]",College,285.3434829443447,56.46222416232251,5.053706034038165,9002.523184457592,2019
+2004,41,"(40,45]",College,292.8856014362657,56.46222416232251,5.187284167096442,9041.412590919317,2019
+2004,41,"(40,45]",College,272.4590305206463,56.46222416232251,4.825510056730273,8891.989158618195,2019
+2004,38,"(35,40]",College,254.18510592459606,246.82057990958126,1.029837568721833,4472.763935935451,2019
+2004,38,"(35,40]",College,167.6078707360862,248.43378631421908,0.67465811805523,4484.457056507572,2019
+2004,38,"(35,40]",College,93.27086535008976,246.82057990958126,0.3778893372029919,4517.898872858153,2019
+2004,38,"(35,40]",College,111.98474685816876,246.82057990958126,0.45370911493357874,4464.74868557393,2019
+2004,38,"(35,40]",College,120.46963016157989,246.82057990958126,0.48808584035298835,4446.881221849513,2019
+2004,26,"(25,30]",HS,92.34381328545781,66.14146259014923,1.396156203222682,10121.184000033352,2019
+2004,26,"(25,30]",HS,92.34381328545781,66.14146259014923,1.396156203222682,9879.081366821343,2019
+2004,26,"(25,30]",HS,92.51665350089766,66.14146259014923,1.3987693933257022,10090.380350351314,2019
+2004,26,"(25,30]",HS,92.18668581687612,66.14146259014923,1.3937805758563,10072.7562749012,2019
+2004,26,"(25,30]",HS,92.5009407540395,66.14146259014923,1.3985318305890642,9984.459868143702,2019
+2004,74,"(70,75]",NoHS,589.2280071813285,30.973562969045496,19.023578519855594,7346.965425196319,2019
+2004,74,"(70,75]",NoHS,587.6567324955116,32.586769373683275,18.033599027772816,6867.435123841428,2019
+2004,74,"(70,75]",NoHS,589.2280071813285,32.586769373683275,18.08181720699146,7659.691464287631,2019
+2004,74,"(70,75]",NoHS,589.2280071813285,30.973562969045496,19.023578519855594,7424.254697975574,2019
+2004,74,"(70,75]",NoHS,589.2280071813285,30.973562969045496,19.023578519855594,7398.370524755499,2019
+2004,43,"(40,45]",College,1306.2006463195692,145.18857641740072,8.99658002406739,7098.282136517535,2019
+2004,43,"(40,45]",College,1306.2006463195692,145.18857641740072,8.99658002406739,7881.919202937819,2019
+2004,43,"(40,45]",College,1306.2006463195692,145.18857641740072,8.99658002406739,7002.836253533348,2019
+2004,43,"(40,45]",College,1306.2006463195692,145.18857641740072,8.99658002406739,6993.198936936818,2019
+2004,43,"(40,45]",College,1306.2006463195692,145.18857641740072,8.99658002406739,7309.487465455578,2019
+2004,23,"(20,25]",HS,2.828294434470377,14.518857641740075,0.1948014440433213,2440.2519774452057,2019
+2004,23,"(20,25]",HS,2.828294434470377,14.518857641740075,0.1948014440433213,2461.4289745306496,2019
+2004,23,"(20,25]",HS,2.828294434470377,14.518857641740075,0.1948014440433213,2425.7690307234493,2019
+2004,23,"(20,25]",HS,2.828294434470377,14.518857641740075,0.1948014440433213,2383.619098033945,2019
+2004,23,"(20,25]",HS,2.828294434470377,14.518857641740075,0.1948014440433213,2423.1971360037205,2019
+2004,22,"(20,25]",NoHS,0.001571274685816876,19.358476855653432,8.116726835138387e-5,6042.8211539776,2019
+2004,22,"(20,25]",College,0.001571274685816876,27.424508878842364,5.729454236568273e-5,6046.136146711915,2019
+2004,22,"(20,25]",NoHS,0.001571274685816876,27.424508878842364,5.729454236568273e-5,6081.536353277265,2019
+2004,22,"(20,25]",NoHS,0.001571274685816876,27.424508878842364,5.729454236568273e-5,5971.6364158307615,2019
+2004,22,"(20,25]",College,0.001571274685816876,25.81130247420457,6.087545126353792e-5,6074.122754496488,2019
+2004,54,"(50,55]",HS,225.132236983842,77.43390742261373,2.9074115523465704,7376.116455556663,2019
+2004,54,"(50,55]",HS,226.7035116696589,75.82070101797595,2.9899949304862123,6771.101965673141,2019
+2004,54,"(50,55]",HS,225.1479497307002,75.82070101797595,2.969478608188033,7439.087730199656,2019
+2004,54,"(50,55]",HS,226.71922441651705,75.82070101797595,2.990202166064982,7427.9350401690435,2019
+2004,54,"(50,55]",HS,225.132236983842,75.82070101797595,2.969271372609263,7164.749513320329,2019
+2004,60,"(55,60]",NoHS,8.657723518850988,66.14146259014923,0.13089706788764638,2222.672492584763,2019
+2004,60,"(55,60]",NoHS,8.524165170556554,54.84901775768473,0.15541144616691444,1876.868678364976,2019
+2004,60,"(55,60]",NoHS,8.587016157989229,69.36787539942482,0.12378952229031985,2245.7845100809695,2019
+2004,60,"(55,60]",NoHS,8.579159784560144,61.30184337623587,0.1399494584837545,1986.7481029256755,2019
+2004,60,"(55,60]",NoHS,8.44560143626571,64.52825618551145,0.13088222021660648,2015.5404918483564,2019
+2004,53,"(50,55]",College,2573.276552962298,179.06591091479427,14.370555176114742,3504.6704804761744,2019
+2004,53,"(50,55]",College,436.5001077199282,222.62248384001447,1.9607188824360386,6812.521390012242,2019
+2004,53,"(50,55]",College,2785.7443159784557,282.31112081161257,9.86763931923672,3469.686710428146,2019
+2004,53,"(50,55]",College,2379.145565529623,175.8394981055187,13.53021130725665,3744.231672862347,2019
+2004,53,"(50,55]",College,1213.4954398563734,283.9243272162504,4.274010091893666,6617.744125051066,2019
+2004,78,"(75,80]",College,7590.199497307001,519.4524622933671,14.611923223535214,3643.933326921246,2019
+2004,78,"(75,80]",College,7591.613644524237,519.4524622933671,14.614645603964393,3596.5441441361945,2019
+2004,78,"(75,80]",College,7591.7707719928185,519.4524622933671,14.614948090678745,4050.5172030113586,2019
+2004,78,"(75,80]",College,7591.7707719928185,519.4524622933671,14.614948090678745,3559.838066757247,2019
+2004,78,"(75,80]",College,7590.199497307001,519.4524622933671,14.611923223535214,3730.011843083447,2019
+2004,48,"(45,50]",College,80001.60775583483,7743.390742261374,10.331598962093862,18.968049583545866,2019
+2004,48,"(45,50]",College,91229.46527827649,7743.390742261374,11.781591335740073,20.08277893185048,2019
+2004,48,"(45,50]",College,82154.17551166967,7743.390742261374,10.60958671028881,19.680052415018398,2019
+2004,48,"(45,50]",College,92462.27954039499,7743.390742261374,11.940799918020458,18.634196351820794,2019
+2004,48,"(45,50]",College,97899.99770197488,7743.390742261374,12.643039846570398,19.074323977144275,2019
+2004,60,"(55,60]",HS,963.5056373429085,146.80178282203855,6.56331019161344,9527.621141191357,2019
+2004,60,"(55,60]",HS,755.1546140035907,125.83009956174732,6.001382949180783,10442.851053073717,2019
+2004,60,"(55,60]",HS,898.9262477558349,125.83009956174732,7.143968342127187,9406.18789852356,2019
+2004,60,"(55,60]",HS,975.4473249551168,130.66971877566067,7.464983732228017,9428.685184767575,2019
+2004,60,"(55,60]",HS,975.4473249551168,148.4149892266763,6.572431329461624,9855.541043307177,2019
+2004,39,"(35,40]",College,2769.8430161579895,512.9996366748159,5.399307949049794,2047.3418180292454,2019
+2004,39,"(35,40]",College,3093.8398563734295,514.6128430794538,6.01197560064733,3596.5441441361945,2019
+2004,39,"(35,40]",College,3626.030592459605,496.86757262843815,7.29778072108397,3959.9237293898063,2019
+2004,39,"(35,40]",College,2810.3819030520644,509.7732238655404,5.513004158479185,2030.7708965924019,2019
+2004,39,"(35,40]",College,2515.925026929982,514.6128430794538,4.888966648936772,2095.088690466061,2019
+2004,45,"(40,45]",HS,63.47949730700179,88.72635225507824,0.7154525763045618,4475.011226021796,2019
+2004,45,"(40,45]",HS,63.32236983842011,88.72635225507824,0.7136816540859862,4464.997408401664,2019
+2004,45,"(40,45]",HS,63.636624775583485,88.72635225507824,0.7172234985231375,4496.997301486734,2019
+2004,45,"(40,45]",HS,63.47949730700179,88.72635225507824,0.7154525763045618,4508.052946666996,2019
+2004,45,"(40,45]",HS,63.32236983842011,88.72635225507824,0.7136816540859862,4463.6093661809155,2019
+2004,61,"(60,65]",HS,4.713824057450628,13.550933798957404,0.34785972150593086,6181.52255681692,2019
+2004,61,"(60,65]",HS,4.713824057450628,13.550933798957404,0.34785972150593086,6000.359730139371,2019
+2004,61,"(60,65]",HS,4.713824057450628,13.550933798957404,0.34785972150593086,6127.224850488021,2019
+2004,61,"(60,65]",HS,4.713824057450628,13.389613158493624,0.35205080248793,6146.825532677357,2019
+2004,61,"(60,65]",HS,4.713824057450628,13.550933798957404,0.34785972150593086,6058.13380396297,2019
+2004,63,"(60,65]",College,95514.37848473967,35151.767557057356,2.7171998770674457,2.133893098415018,2019
+2004,63,"(60,65]",College,255957.50377019748,37265.06794713286,6.8685639895603785,2.161970689605528,2019
+2004,63,"(60,65]",College,104365.63590664274,35151.767557057356,2.9690010818727504,2.1574791884730447,2019
+2004,63,"(60,65]",College,316999.4826570916,26634.03774056985,11.90204375862348,2.0955797756866854,2019
+2004,63,"(60,65]",College,72789.29982046678,35813.18218295885,2.0324722737177607,2.0848107810404914,2019
+2004,60,"(55,60]",College,5590.595332136446,564.6222416232251,9.901479112944818,2047.6664894362675,2019
+2004,60,"(55,60]",College,5590.595332136446,564.6222416232251,9.901479112944818,2061.603114483126,2019
+2004,60,"(55,60]",College,5590.595332136446,564.6222416232251,9.901479112944818,2066.8392551343795,2019
+2004,60,"(55,60]",College,5592.166606822263,564.6222416232251,9.904261990716865,2004.3122706066356,2019
+2004,60,"(55,60]",College,5590.595332136446,564.6222416232251,9.901479112944818,1997.921363103212,2019
+2004,55,"(50,55]",NoHS,-0.7856373429084381,19.358476855653432,-0.04058363417569194,6565.765611939778,2019
+2004,55,"(50,55]",NoHS,-0.7856373429084381,19.358476855653432,-0.04058363417569194,6361.797380417044,2019
+2004,55,"(50,55]",NoHS,-0.7856373429084381,19.358476855653432,-0.04058363417569194,6553.713552374514,2019
+2004,55,"(50,55]",NoHS,-0.7856373429084381,19.358476855653432,-0.04058363417569194,6557.362270122336,2019
+2004,55,"(50,55]",NoHS,-0.7856373429084381,19.358476855653432,-0.04058363417569194,6501.570663290915,2019
+2004,48,"(45,50]",College,256.6677199281867,129.0565123710229,1.9888009927797832,10511.722220046211,2019
+2004,48,"(45,50]",College,188.01872890484742,129.0565123710229,1.4568712996389892,9646.686233954424,2019
+2004,48,"(45,50]",College,254.59363734290847,129.0565123710229,1.9727298736462093,10526.489214975196,2019
+2004,48,"(45,50]",College,176.94124236983842,129.0565123710229,1.3710369133574005,10595.615413556812,2019
+2004,48,"(45,50]",College,265.0583267504488,129.0565123710229,2.0538159747292415,10154.080595885102,2019
+2004,53,"(50,55]",College,8514.737522441652,706.5844052313504,12.050559649209566,2012.623303238918,2019
+2004,53,"(50,55]",College,7821.648258527827,706.5844052313504,11.069658770585033,1959.6022200733448,2019
+2004,53,"(50,55]",College,7817.091561938958,708.1976116359881,11.038008930700721,2059.189363556804,2019
+2004,53,"(50,55]",College,8107.777378815081,706.5844052313504,11.474605608031252,1956.3984902766326,2019
+2004,53,"(50,55]",College,8744.143626570916,708.1976116359881,12.347039135547643,1994.2114487899507,2019
+2004,71,"(70,75]",College,398.14529263913823,103.24520989681828,3.8563076489169683,6798.549947298889,2019
+2004,71,"(70,75]",College,435.7144703770197,59.68863697159809,7.299789247731485,6354.814266466091,2019
+2004,71,"(70,75]",College,421.41587073608616,48.39619213913358,8.707624548736462,7087.932498262291,2019
+2004,71,"(70,75]",College,707.3878635547577,37.10374730666908,19.06513263223984,5615.70470654352,2019
+2004,71,"(70,75]",College,507.521723518851,53.23581135304694,9.533464609998907,6846.117904499338,2019
+2004,47,"(45,50]",NoHS,268.05946140035906,72.59428820870036,3.692569594865624,6057.109912785807,2019
+2004,47,"(45,50]",NoHS,267.9023339317774,72.59428820870036,3.6904051343762543,5619.598716483975,2019
+2004,47,"(45,50]",NoHS,269.63073608617594,72.59428820870036,3.7142141997593265,6132.694666953306,2019
+2004,47,"(45,50]",NoHS,267.9023339317774,72.59428820870036,3.6904051343762543,6086.218714050519,2019
+2004,47,"(45,50]",NoHS,267.9023339317774,72.59428820870036,3.6904051343762543,5929.243536103415,2019
+2004,37,"(35,40]",HS,791.7653141831239,130.66971877566067,6.059286892187013,1030.9986569046596,2019
+2004,37,"(35,40]",HS,780.137881508079,130.66971877566067,5.970303516512903,989.8096233105658,2019
+2004,37,"(35,40]",HS,768.6675763016158,132.28292518029846,5.810784538170291,1047.1785570616332,2019
+2004,37,"(35,40]",HS,783.9089407540395,130.66971877566067,5.999162989704506,968.0772705048632,2019
+2004,37,"(35,40]",HS,779.1951166965888,130.66971877566067,5.963088648215002,1043.3710808376122,2019
+2004,59,"(55,60]",College,79989.61892998205,1774.5270451015647,45.07658485723663,195.03022097973954,2019
+2004,59,"(55,60]",College,81806.84524236985,2000.3759417508547,40.89573541399791,199.09802421997682,2019
+2004,59,"(55,60]",College,88740.25192100539,1984.243877704477,44.7224521734026,197.47550885860568,2019
+2004,59,"(55,60]",College,81372.48206822263,1903.583557472588,42.74699776050908,193.13101898530408,2019
+2004,59,"(55,60]",College,81335.88708078995,1806.7911731943202,45.016761365394544,192.4801532162615,2019
+2004,44,"(40,45]",College,1815.6078994614004,516.2260494840916,3.517079196750902,1184.669701904433,2019
+2004,44,"(40,45]",College,1816.393536804309,516.2260494840916,3.518601083032491,1159.8066907968016,2019
+2004,44,"(40,45]",College,1814.8222621184918,516.2260494840916,3.5155573104693136,1207.2987801235986,2019
+2004,44,"(40,45]",College,1817.1791741472173,516.2260494840916,3.520122969314079,1159.6369407841376,2019
+2004,44,"(40,45]",College,1814.0366247755835,516.2260494840916,3.514035424187725,1208.3570565103496,2019
+2004,40,"(35,40]",College,2511.148351885099,459.76382532176905,5.461822382671481,10806.920639880722,2019
+2004,40,"(35,40]",College,2501.846405745063,459.76382532176905,5.441590373044525,11608.152513276405,2019
+2004,40,"(35,40]",College,2503.339116696589,459.76382532176905,5.44483706377858,10669.93945883502,2019
+2004,40,"(35,40]",College,2497.022592459605,459.76382532176905,5.431098435619735,10892.755025438728,2019
+2004,40,"(35,40]",College,2498.5310161579896,459.76382532176905,5.434379302045729,10975.775387018473,2019
+2004,42,"(40,45]",HS,4524.01407540395,238.75454788639237,18.948389111132794,1954.1422350259716,2019
+2004,42,"(40,45]",College,5284.511023339318,180.67911731943207,29.248045384218667,1907.1711290585104,2019
+2004,42,"(40,45]",HS,2836.6221903052065,169.38667248696757,16.746430806257518,4673.460528952439,2019
+2004,42,"(40,45]",NoHS,2767.1718491921006,327.4809001414706,8.4498724902633775,5023.191727871605,2019
+2004,42,"(40,45]",College,3405.423626570916,111.31124192000723,30.593707947470314,2137.1738274858135,2019
+2004,61,"(60,65]",College,16437.027495870734,2419.8096069566795,6.792694536221418,411.3802887864772,2019
+2004,61,"(60,65]",College,16348.250476122084,2419.8096069566795,6.756006930926594,400.65977290232183,2019
+2004,61,"(60,65]",College,17764.754605385995,2419.8096069566795,7.341385270276773,427.74796294974794,2019
+2004,61,"(60,65]",College,16487.30828581688,2419.8096069566795,6.813473356919374,406.08022115708366,2019
+2004,61,"(60,65]",College,16727.241930341115,2419.8096069566795,6.912627291937424,415.84491171919717,2019
+2004,29,"(25,30]",NoHS,111.90618312387791,48.39619213913358,2.3122931407942238,7718.53056728237,2019
+2004,29,"(25,30]",NoHS,110.33490843806105,48.39619213913358,2.2798262334536705,7667.321390447503,2019
+2004,29,"(25,30]",NoHS,110.33490843806105,48.39619213913358,2.2798262334536705,7724.63461459039,2019
+2004,29,"(25,30]",NoHS,110.33490843806105,48.39619213913358,2.2798262334536705,7719.912116896395,2019
+2004,29,"(25,30]",NoHS,110.33490843806105,48.39619213913358,2.2798262334536705,7709.329792573879,2019
+2004,46,"(45,50]",HS,644.018355475763,161.3206404637786,3.992163393501805,269.5468416951734,2019
+2004,46,"(45,50]",HS,641.9914111310593,161.3206404637786,3.979598700361011,280.4166367038633,2019
+2004,46,"(45,50]",HS,639.3202441651706,161.3206404637786,3.963040577617329,266.0065184960191,2019
+2004,46,"(45,50]",HS,642.1328258527828,161.3206404637786,3.9804753068592063,260.37479417215343,2019
+2004,46,"(45,50]",HS,642.1485385996409,161.3206404637786,3.9805727075812274,274.0723906567217,2019
+2004,34,"(30,35]",HS,59.39418312387792,88.72635225507824,0.6694085986215951,6893.836214670346,2019
+2004,34,"(30,35]",HS,60.651202872531414,88.72635225507824,0.6835759763702001,6991.452344062418,2019
+2004,34,"(30,35]",HS,60.022692998204676,88.72635225507824,0.6764922874958976,6876.5943806899395,2019
+2004,34,"(30,35]",HS,59.865565529622984,88.72635225507824,0.674721365277322,6945.604885426104,2019
+2004,34,"(30,35]",HS,59.23705565529623,88.72635225507824,0.6676376764030193,6931.271054505816,2019
+2004,52,"(50,55]",College,3717.635906642729,514.6128430794538,7.224141326120661,3307.9202769210615,2019
+2004,52,"(50,55]",College,3717.635906642729,514.6128430794538,7.224141326120661,3123.6230583679194,2019
+2004,52,"(50,55]",College,3717.635906642729,514.6128430794538,7.224141326120661,3463.3356201319148,2019
+2004,52,"(50,55]",College,3717.635906642729,514.6128430794538,7.224141326120661,3107.227092269889,2019
+2004,52,"(50,55]",College,3717.635906642729,392.00915632698207,9.483543551574035,3242.287725846992,2019
+2004,48,"(45,50]",College,93164.01867145422,3903.959499223442,23.863981859951668,22.10647383731183,2019
+2004,48,"(45,50]",College,94465.03411131058,3920.09156326982,24.09766011498863,22.878093812438543,2019
+2004,48,"(45,50]",College,96856.51418312387,3920.09156326982,24.7077173121778,23.064657985525542,2019
+2004,48,"(45,50]",College,91842.57666068223,3920.09156326982,23.42868149336661,21.734439474054252,2019
+2004,48,"(45,50]",College,91858.2894075404,3903.959499223442,23.529519050034317,22.30086815914582,2019
+2004,61,"(60,65]",College,5057.933213644525,483.96192139133586,10.451097472924188,519.0665677857753,2019
+2004,61,"(60,65]",College,5057.933213644525,483.96192139133586,10.451097472924188,519.4079939692135,2019
+2004,61,"(60,65]",College,5057.933213644525,483.96192139133586,10.451097472924188,531.5654156287058,2019
+2004,61,"(60,65]",College,5057.933213644525,483.96192139133586,10.451097472924188,515.6762323580624,2019
+2004,61,"(60,65]",College,5057.933213644525,483.96192139133586,10.451097472924188,519.6432505128166,2019
+2004,33,"(30,35]",College,322.425565529623,290.37715283480145,1.1103682310469316,5019.755392433518,2019
+2004,33,"(30,35]",College,323.8397127468582,290.37715283480145,1.1152382671480148,5029.074357419355,2019
+2004,33,"(30,35]",College,322.2684380610413,290.37715283480145,1.1098271159245892,5026.766121744224,2019
+2004,33,"(30,35]",College,322.2684380610413,290.37715283480145,1.1098271159245892,5072.681262806314,2019
+2004,33,"(30,35]",College,322.2684380610413,290.37715283480145,1.1098271159245892,5057.62013221252,2019
+2004,57,"(55,60]",HS,7.856373429084381,17.74527045101565,0.442730554643912,5925.318283386508,2019
+2004,57,"(55,60]",HS,8.013500897666068,16.132064046377863,0.4967436823104692,5900.865767466372,2019
+2004,57,"(55,60]",HS,7.699245960502694,16.132064046377863,0.4772635379061372,5918.986560418374,2019
+2004,57,"(55,60]",HS,7.699245960502694,17.74527045101565,0.43387594355103376,5904.534190094865,2019
+2004,57,"(55,60]",HS,7.699245960502694,17.74527045101565,0.43387594355103376,5928.7144215607095,2019
+2004,51,"(50,55]",College,46849.12603231598,4033.0160115944655,11.616399711191336,24.978685526687734,2019
+2004,51,"(50,55]",College,46855.41113105925,4033.0160115944655,11.617958122743682,25.394540741539103,2019
+2004,51,"(50,55]",College,46845.98348294435,4033.0160115944655,11.615620505415164,25.992956181123255,2019
+2004,51,"(50,55]",College,46856.98240574506,4033.0160115944655,11.618347725631768,24.54462063046173,2019
+2004,51,"(50,55]",College,46856.98240574506,4033.0160115944655,11.618347725631768,26.099381821218618,2019
+2004,37,"(35,40]",HS,-94.90499102333932,130.66971877566067,-0.7262967419886794,6150.920672959064,2019
+2004,37,"(35,40]",HS,-86.18441651705565,112.92444832464501,-0.7632042289840124,5904.545274085658,2019
+2004,37,"(35,40]",HS,-130.41579892280072,132.28292518029846,-0.9858853570485163,6145.358956437531,2019
+2004,37,"(35,40]",HS,-90.5839856373429,138.73575079884964,-0.6529246075056668,6122.4475754793975,2019
+2004,37,"(35,40]",HS,-112.9746499102334,143.57537001276296,-0.7868665071188091,6060.4686132798315,2019
+2004,67,"(65,70]",College,596.1101903052065,508.16001746090257,1.1730757435104007,238.9802754234841,2019
+2004,67,"(65,70]",College,699.2172351885099,550.1033839814851,1.2710651407518765,240.08405601831868,2019
+2004,67,"(65,70]",College,575.5422046678635,524.2920815072805,1.09775109136351,235.46404709431758,2019
+2004,67,"(65,70]",College,780.9235188509874,516.2260494840916,1.5127549638989168,231.37159012794078,2019
+2004,67,"(65,70]",College,593.5332998204668,379.1035050898798,1.5656233504877486,243.10805978430022,2019
+2004,51,"(50,55]",HS,150.30813644524235,259.7262311466836,0.5787175819001277,7947.51584043947,2019
+2004,51,"(50,55]",HS,114.40450987432675,183.90553012870762,0.6220830324909746,7513.7606400751465,2019
+2004,51,"(50,55]",HS,108.46509156193896,108.08482911073166,1.00351818524705,8013.001593659099,2019
+2004,51,"(50,55]",HS,119.87254578096947,127.4433059663851,0.9405950738015811,7972.742218295534,2019
+2004,51,"(50,55]",HS,105.40110592459605,104.8584163014561,1.0051754512635378,7791.699649278057,2019
+2004,31,"(30,35]",HS,10.103296229802515,45.16977932985802,0.22367380092831357,5395.562139220344,2019
+2004,31,"(30,35]",HS,8.249192100538599,45.16977932985802,0.18262635379061368,5378.137165028284,2019
+2004,31,"(30,35]",HS,11.831698384201077,45.16977932985802,0.26193837029396594,5364.259330375335,2019
+2004,31,"(30,35]",HS,12.774463195691204,45.16977932985802,0.2828099535843218,5415.195662456982,2019
+2004,31,"(30,35]",HS,8.280617594254938,45.16977932985802,0.18332207323362557,5359.398024752465,2019
+2004,53,"(50,55]",College,19.876624775583487,38.716953711306864,0.5133829723225032,5686.0330887278315,2019
+2004,53,"(50,55]",College,19.876624775583487,38.716953711306864,0.5133829723225032,5691.027711423111,2019
+2004,53,"(50,55]",College,20.03375224416517,38.716953711306864,0.5174413357400722,5696.006730452145,2019
+2004,53,"(50,55]",College,19.876624775583487,38.716953711306864,0.5133829723225032,5710.592548114522,2019
+2004,53,"(50,55]",College,19.892337522441654,38.716953711306864,0.51378880866426,5686.696330853509,2019
+2004,73,"(70,75]",NoHS,35.41653141831239,37.10374730666908,0.9545270758122745,7366.434910246067,2019
+2004,73,"(70,75]",NoHS,52.229170556552965,79.04711382725151,0.6607346938775511,6838.269734273298,2019
+2004,73,"(70,75]",NoHS,43.43003231597845,32.264128092755726,1.34607797833935,7678.233218316955,2019
+2004,73,"(70,75]",NoHS,42.17301256732496,38.716953711306864,1.0892647412755718,7425.283355463376,2019
+2004,73,"(70,75]",NoHS,46.572581687612214,77.43390742261373,0.6014494584837546,7389.084069570036,2019
+2004,57,"(55,60]",HS,83.98463195691203,22.58488966492901,3.718620422898401,6404.668479183796,2019
+2004,57,"(55,60]",HS,69.30892639138241,22.58488966492901,3.0688184631253224,6378.237787960079,2019
+2004,57,"(55,60]",HS,67.06200359066428,22.58488966492901,2.9693305827746257,6397.82452843323,2019
+2004,57,"(55,60]",HS,64.68937881508079,22.58488966492901,2.8642769468798344,6382.202980993325,2019
+2004,57,"(55,60]",HS,66.21351526032315,24.19809606956679,2.736310950661853,6408.33936032047,2019
+2004,83,"(80,85]",HS,214.41614362657091,14.841498922667633,14.447067964212838,10741.068536388346,2019
+2004,83,"(80,85]",HS,206.40264272890485,14.196216360812517,14.539271414506072,9932.269382293342,2019
+2004,83,"(80,85]",HS,260.9572998204668,15.002819563131412,17.393883777803655,10695.355895725183,2019
+2004,83,"(80,85]",HS,194.24097666068224,14.841498922667633,13.087692669910533,10527.70762108509,2019
+2004,83,"(80,85]",HS,236.0997342908438,14.518857641740075,16.261591656638586,10448.446881323036,2019
+2004,60,"(55,60]",College,213.69335727109515,108.08482911073166,1.9770892828277387,9722.113166621803,2019
+2004,60,"(55,60]",College,236.47684021543986,180.67911731943207,1.308822202166065,9071.923346829983,2019
+2004,60,"(55,60]",College,210.23655296229805,124.21689315710954,1.6924956631815837,9453.753413879082,2019
+2004,60,"(55,60]",College,135.39673967684024,104.8584163014561,1.291233879477923,9237.605691064553,2019
+2004,60,"(55,60]",College,548.6891202872532,150.02819563131413,3.6572400139746124,9034.526892296977,2019
+2004,62,"(60,65]",College,78272.84420825852,6339.901170226499,12.346066934898632,19.81794948471067,2019
+2004,62,"(60,65]",College,76462.94003590665,6339.901170226499,12.060588640559983,20.612904765621785,2019
+2004,62,"(60,65]",College,60424.31080789946,6339.901170226499,9.530796961262528,20.633580245552746,2019
+2004,62,"(60,65]",College,65653.02586714542,6339.901170226499,10.355528281018914,19.525588748991442,2019
+2004,62,"(60,65]",College,65089.28393536805,6339.901170226499,10.266608609143772,19.991066487296695,2019
+2004,23,"(20,25]",HS,-18.698168761220828,45.16977932985802,-0.41395306859205777,8708.598857040482,2019
+2004,23,"(20,25]",HS,-17.12689407540395,45.16977932985802,-0.3791670964414646,8812.724691340003,2019
+2004,23,"(20,25]",HS,-18.698168761220828,45.16977932985802,-0.41395306859205777,8721.807712881979,2019
+2004,23,"(20,25]",HS,-15.555619389587074,45.16977932985802,-0.34438112429087153,8621.592304801545,2019
+2004,23,"(20,25]",HS,-18.698168761220828,45.16977932985802,-0.41395306859205777,8761.042526078534,2019
+2004,60,"(55,60]",HS,120.67389587073609,80.6603202318893,1.4960750902527076,4398.822853559196,2019
+2004,60,"(55,60]",HS,120.98815080789947,80.6603202318893,1.4999711191335743,3922.199391514162,2019
+2004,60,"(55,60]",HS,120.83102333931778,80.6603202318893,1.498023104693141,4409.501955678441,2019
+2004,60,"(55,60]",HS,120.83102333931778,80.6603202318893,1.498023104693141,4330.835647946684,2019
+2004,60,"(55,60]",HS,120.98815080789947,80.6603202318893,1.4999711191335743,4240.553590720093,2019
+2004,57,"(55,60]",College,7415.630879712747,3629.7144104350186,2.043034255916566,36.30274912122901,2019
+2004,57,"(55,60]",College,7940.436624775584,3629.7144104350186,2.1876202166064984,36.66974333317084,2019
+2004,57,"(55,60]",College,10907.160359066427,3371.601385692973,3.235008861174926,38.67908853147606,2019
+2004,57,"(55,60]",College,8440.10197486535,3629.7144104350186,2.3252799037304452,35.550502576067,2019
+2004,57,"(55,60]",College,6666.132854578097,3258.676937368328,2.045656253350967,37.39123960327813,2019
+2004,36,"(35,40]",College,732.2140035906642,161.3206404637786,4.538873646209386,5526.904199883908,2019
+2004,36,"(35,40]",College,707.0736086175942,161.3206404637786,4.383032490974729,6102.727685273405,2019
+2004,36,"(35,40]",College,744.7842010771993,161.3206404637786,4.616794223826715,5475.3549264001085,2019
+2004,36,"(35,40]",College,708.0163734290844,161.3206404637786,4.388876534296029,5492.300811717755,2019
+2004,36,"(35,40]",College,609.8117055655297,161.3206404637786,3.78012202166065,5720.079834953226,2019
+2004,32,"(30,35]",HS,200.1882513464991,96.79238427826716,2.0682231648616125,5993.127968042801,2019
+2004,32,"(30,35]",HS,82.50763375224416,96.79238427826716,0.8524186522262334,6068.613282241002,2019
+2004,32,"(30,35]",HS,195.94580969479355,98.40559068290497,1.9912060720838016,6001.498136432219,2019
+2004,32,"(30,35]",HS,53.43119569120287,96.79238427826716,0.5520185920577617,6148.192939497443,2019
+2004,32,"(30,35]",HS,56.10236265709156,96.79238427826716,0.5796154632972322,6121.396085129292,2019
+2004,71,"(70,75]",HS,305.6129263913824,58.0754305669603,5.262344564781388,6041.26864475139,2019
+2004,71,"(70,75]",HS,296.10671454219033,58.0754305669603,5.098657240272764,5580.127862263613,2019
+2004,71,"(70,75]",HS,305.29867145421906,58.0754305669603,5.256933413557963,6324.506136111346,2019
+2004,71,"(70,75]",HS,304.0416517055655,58.0754305669603,5.23528880866426,6158.823376273016,2019
+2004,71,"(70,75]",HS,306.55569120287254,58.0754305669603,5.278578018451665,6102.635297908162,2019
+2004,63,"(60,65]",College,23148.018671454218,564.6222416232251,40.997355337802986,296.0397099261976,2019
+2004,63,"(60,65]",College,23146.447396768403,564.6222416232251,40.994572460030945,299.03916731264485,2019
+2004,63,"(60,65]",College,23146.447396768403,564.6222416232251,40.994572460030945,302.9047401731085,2019
+2004,63,"(60,65]",College,23148.018671454218,564.6222416232251,40.997355337802986,290.2047499601082,2019
+2004,63,"(60,65]",College,23148.018671454218,564.6222416232251,40.997355337802986,293.2625843352513,2019
+2004,26,"(25,30]",HS,20.583698384201078,58.0754305669603,0.35443040513437624,8229.81651100411,2019
+2004,26,"(25,30]",HS,23.097737881508078,58.0754305669603,0.397719614921781,8032.956119160704,2019
+2004,26,"(25,30]",HS,27.340179533213647,58.0754305669603,0.4707701564380265,8204.769205792427,2019
+2004,26,"(25,30]",HS,21.133644524236985,58.0754305669603,0.36389991977537106,8190.438579342987,2019
+2004,26,"(25,30]",HS,22.31210053859964,58.0754305669603,0.384191736863217,8118.642312602571,2019
+2004,84,"(80,85]",NoHS,4952.657809694793,408.94782357567874,12.11073277365974,1959.8515745615969,2019
+2004,84,"(80,85]",NoHS,4949.829515260323,408.94782357567874,12.103816746060568,2008.5824906361845,2019
+2004,84,"(80,85]",NoHS,4514.272172351884,408.94782357567874,11.038748495788207,1971.325595965302,2019
+2004,84,"(80,85]",NoHS,4936.945062836625,408.94782357567874,12.072310398108788,1912.8103577812478,2019
+2004,84,"(80,85]",NoHS,4933.8025134649915,408.94782357567874,12.0646259229986,1906.3014664527625,2019
+2004,36,"(35,40]",HS,9.63191382405745,58.0754305669603,0.16585178499799438,5092.295437323136,2019
+2004,36,"(35,40]",HS,13.905780969479354,58.0754305669603,0.23944344163658243,5162.124794914118,2019
+2004,36,"(35,40]",HS,16.10556552962298,58.0754305669603,0.27732150020056157,5104.5583075853765,2019
+2004,36,"(35,40]",HS,14.062908438061042,58.0754305669603,0.24214901724829524,5079.516750481451,2019
+2004,36,"(35,40]",HS,9.066254937163377,58.0754305669603,0.15611171279582833,5129.478443864035,2019
+2004,65,"(60,65]",NoHS,43.33575583482944,48.39619213913358,0.8954373044524668,7548.917674430321,2019
+2004,65,"(60,65]",NoHS,43.162915619389594,48.39619213913358,0.8918659446450061,7049.789410409811,2019
+2004,65,"(60,65]",NoHS,43.162915619389594,48.39619213913358,0.8918659446450061,7636.552930224134,2019
+2004,65,"(60,65]",NoHS,43.17862836624776,48.39619213913358,0.8921906137184116,7572.864143235571,2019
+2004,65,"(60,65]",NoHS,43.19434111310593,48.39619213913358,0.8925152827918171,7479.624809516465,2019
+2004,28,"(25,30]",HS,50.06866786355476,80.6603202318893,0.6207348014440434,7978.085645163805,2019
+2004,28,"(25,30]",HS,50.092236983842014,80.6603202318893,0.6210270036101083,7733.680722732994,2019
+2004,28,"(25,30]",HS,50.06866786355476,80.6603202318893,0.6207348014440434,7951.985399398023,2019
+2004,28,"(25,30]",HS,50.22579533213645,80.6603202318893,0.6226828158844766,7920.024203279459,2019
+2004,28,"(25,30]",HS,50.07652423698384,80.6603202318893,0.620832202166065,7839.6580461130825,2019
+2004,40,"(35,40]",NoHS,6.756481149012568,70.9810818040626,0.09518706924844109,4680.022536580807,2019
+2004,40,"(35,40]",NoHS,6.756481149012568,70.9810818040626,0.09518706924844109,4673.081594742061,2019
+2004,40,"(35,40]",NoHS,6.5993536804308794,70.9810818040626,0.09297341647522152,4684.127991350527,2019
+2004,40,"(35,40]",NoHS,6.756481149012568,70.9810818040626,0.09518706924844109,4667.647133501651,2019
+2004,40,"(35,40]",NoHS,6.756481149012568,70.9810818040626,0.09518706924844109,4658.554757881794,2019
+2004,56,"(55,60]",College,8104.634829443447,743.6881525380194,10.897894234007063,257.66427198170487,2019
+2004,56,"(55,60]",College,6008.554398563734,706.5844052313504,8.503661210292929,254.48907844907254,2019
+2004,56,"(55,60]",College,5736.723877917415,734.0089141101926,7.815605189034794,265.9445854286846,2019
+2004,56,"(55,60]",College,6728.198204667863,725.9428820870038,9.268219815483352,254.1138144918406,2019
+2004,56,"(55,60]",College,18377.62872531418,704.9711988267126,26.068623450007845,261.081810151749,2019
+2004,45,"(40,45]",College,209.21522441651703,112.92444832464501,1.852700876740588,8091.340327188669,2019
+2004,45,"(40,45]",College,209.21522441651703,112.92444832464501,1.852700876740588,7427.660710682596,2019
+2004,45,"(40,45]",College,209.21522441651703,112.92444832464501,1.852700876740588,8160.41760071646,2019
+2004,45,"(40,45]",College,209.05809694793538,112.92444832464501,1.8513094378545645,8148.183492002878,2019
+2004,45,"(40,45]",College,209.21522441651703,112.92444832464501,1.852700876740588,7859.47822551821,2019
+2004,40,"(35,40]",College,639.6659245960503,338.77334497393514,1.8881825683341926,6433.980379639689,2019
+2004,40,"(35,40]",College,641.2371992818671,338.77334497393514,1.8928206979542714,7143.564568237633,2019
+2004,40,"(35,40]",College,641.2371992818671,338.77334497393514,1.8928206979542714,6350.916293153259,2019
+2004,40,"(35,40]",College,639.6659245960503,338.77334497393514,1.8881825683341926,6341.462614814919,2019
+2004,40,"(35,40]",College,639.6659245960503,338.77334497393514,1.8881825683341926,6626.4586542380075,2019
+2004,48,"(45,50]",College,-100.37302692998205,79.04711382725151,-1.2697873719885067,6686.754881653561,2019
+2004,48,"(45,50]",College,-112.89608617594254,61.30184337623587,-1.8416425992779781,6477.8103824445225,2019
+2004,48,"(45,50]",College,-90.85110233393178,77.43390742261373,-1.173272864019254,6720.477699315203,2019
+2004,48,"(45,50]",College,-104.77259605026931,50.00939854377137,-2.095058111098172,6745.227554532552,2019
+2004,48,"(45,50]",College,-112.0633105924596,48.39619213913358,-2.315539831528279,6606.855809864806,2019
+2004,39,"(35,40]",College,2953.9964093357275,358.13182182958855,8.248349432464956,2070.3041803840083,2019
+2004,39,"(35,40]",College,2955.567684021544,358.13182182958855,8.252736852375842,2007.2282256554197,2019
+2004,39,"(35,40]",College,2952.42513464991,358.13182182958855,8.24396201255407,2120.9689338486587,2019
+2004,39,"(35,40]",College,2955.4105565529626,358.13182182958855,8.252298110384753,2038.2440424295332,2019
+2004,39,"(35,40]",College,2953.9964093357275,358.13182182958855,8.248349432464956,2123.551007317077,2019
+2004,46,"(45,50]",HS,139.71774506283663,129.0565123710229,1.082609025270758,9333.638305584474,2019
+2004,46,"(45,50]",HS,140.1891274685817,129.0565123710229,1.0862615523465702,8824.232066622764,2019
+2004,46,"(45,50]",HS,139.71774506283663,129.0565123710229,1.082609025270758,9410.545397937869,2019
+2004,46,"(45,50]",HS,140.01628725314185,129.0565123710229,1.0849222924187727,9363.264404027774,2019
+2004,46,"(45,50]",HS,140.17341472172353,129.0565123710229,1.0861398014440433,9150.64628648659,2019
+2004,25,"(20,25]",College,45.69266786355476,64.52825618551145,0.7081032490974729,6119.638986788068,2019
+2004,25,"(20,25]",College,45.69266786355476,64.52825618551145,0.7081032490974729,6026.12142828505,2019
+2004,25,"(20,25]",College,45.69266786355476,64.52825618551145,0.7081032490974729,6106.13410706642,2019
+2004,25,"(20,25]",College,45.67695511669659,64.52825618551145,0.7078597472924187,6189.262859363521,2019
+2004,25,"(20,25]",College,45.69266786355476,64.52825618551145,0.7081032490974729,6096.073156144742,2019
+2004,65,"(60,65]",College,18269.210771992817,583.9807184788785,31.283928037178132,22.73789405624878,2019
+2004,65,"(60,65]",College,18269.210771992817,1042.13133739601,17.530622212784028,23.291704880234516,2019
+2004,65,"(60,65]",College,18269.210771992817,913.074825024987,20.008448673954913,24.0480260696677,2019
+2004,65,"(60,65]",College,18251.926750448834,864.6786328858533,21.108335578425564,22.2465250608988,2019
+2004,65,"(60,65]",College,18262.925673249552,1226.0368675247175,14.895902527075812,23.47551273161569,2019
+2004,66,"(65,70]",NoHS,-0.26711669658886894,13.550933798957404,-0.019712050885336084,8445.756029295866,2019
+2004,66,"(65,70]",NoHS,-0.2514039497307002,13.550933798957404,-0.018552518480316315,8495.535232730279,2019
+2004,66,"(65,70]",NoHS,-0.2828294434470377,13.550933798957404,-0.020871583290355853,8519.288312884893,2019
+2004,66,"(65,70]",NoHS,-0.2514039497307002,13.550933798957404,-0.018552518480316315,8519.599137011766,2019
+2004,66,"(65,70]",NoHS,-0.26711669658886894,13.550933798957404,-0.019712050885336084,8544.949544810777,2019
+2004,53,"(50,55]",College,37958.131073608616,2419.8096069566795,15.686412255114316,300.5918955674734,2019
+2004,53,"(50,55]",College,37956.33982046679,2419.8096069566795,15.685672009626954,289.80078532148997,2019
+2004,53,"(50,55]",College,37958.69673249551,2419.8096069566795,15.686646016847169,310.57036223891777,2019
+2004,53,"(50,55]",College,37957.9110951526,2419.8096069566795,15.686321347773763,297.847897022698,2019
+2004,53,"(50,55]",College,37954.73712028725,2419.8096069566795,15.685009684717205,314.31554403948996,2019
+2004,59,"(55,60]",HS,1964.721867145422,162.9338468684164,12.058402258998465,3067.6759174707568,2019
+2004,59,"(55,60]",HS,1920.7261759425496,162.9338468684164,11.788380455374059,3177.110509702819,2019
+2004,59,"(55,60]",HS,1931.5679712746858,162.9338468684164,11.854921542695786,3046.9085136747694,2019
+2004,59,"(55,60]",HS,1995.9902333931777,164.5470532730542,12.130209527854463,3284.7138335622876,2019
+2004,59,"(55,60]",HS,1898.7283303411132,164.5470532730542,11.539120832448504,3131.549997817159,2019
+2004,52,"(50,55]",HS,843.2245601436265,50.00939854377137,16.861321765459415,6176.089291809809,2019
+2004,52,"(50,55]",HS,307.4198922800718,50.00939854377137,6.147242343076743,6617.061169062526,2019
+2004,52,"(50,55]",HS,180.14664272890485,50.00939854377137,3.602255735413998,7156.075387176388,2019
+2004,52,"(50,55]",HS,566.6802154398564,50.00939854377137,11.331474321649004,6112.488857274735,2019
+2004,52,"(50,55]",HS,243.15475763016158,50.00939854377137,4.862181204145802,6897.292645581442,2019
+2004,43,"(40,45]",HS,78.72086175942549,95.17917787362938,0.8270807073364742,6070.179109963955,2019
+2004,43,"(40,45]",HS,74.00703770197487,95.17917787362938,0.7775549164780028,5827.037817957838,2019
+2004,43,"(40,45]",HS,77.77809694793537,95.17917787362938,0.81717554916478,6064.690400673167,2019
+2004,43,"(40,45]",HS,74.00703770197487,95.17917787362938,0.7775549164780028,6042.079771554849,2019
+2004,43,"(40,45]",HS,76.04969479353682,95.17917787362938,0.7990160925166738,5980.914391345177,2019
+2004,20,"(15,20]",HS,3.315389587073609,40.33016011594465,0.0822062093862816,6493.317418560373,2019
+2004,20,"(15,20]",HS,3.331102333931778,40.33016011594465,0.08259581227436824,6458.286178043622,2019
+2004,20,"(15,20]",HS,3.488229802513465,40.33016011594465,0.08649184115523466,6481.6484879702975,2019
+2004,20,"(15,20]",HS,3.488229802513465,40.33016011594465,0.08649184115523466,6403.747086130887,2019
+2004,20,"(15,20]",HS,3.331102333931778,40.33016011594465,0.08259581227436824,6453.592323480937,2019
+2004,66,"(65,70]",College,32412.33278276481,806.6032023188931,40.18373927797833,27.96089942569834,2019
+2004,66,"(65,70]",College,32575.745350089768,806.6032023188931,40.386332779783395,28.115462507669967,2019
+2004,66,"(65,70]",College,32681.0207540395,806.6032023188931,40.51684974729242,28.661405128192467,2019
+2004,66,"(65,70]",College,32783.15360861759,806.6032023188931,40.64347068592057,27.13421954030061,2019
+2004,66,"(65,70]",College,32933.99597845601,806.6032023188931,40.830480072202164,28.408460769403725,2019
+2004,22,"(20,25]",College,13.560100538599642,51.62260494840914,0.26267757220216614,8512.694549941993,2019
+2004,22,"(20,25]",College,26.122441651705564,51.62260494840914,0.506027188628159,8614.478021278843,2019
+2004,22,"(20,25]",College,45.00130700179533,51.62260494840914,0.871736462093863,8525.606265934284,2019
+2004,22,"(20,25]",College,41.8509012567325,51.62260494840914,0.8107088222021663,8427.64525381385,2019
+2004,22,"(20,25]",College,30.836265709156194,51.62260494840914,0.5973403655234659,8563.958472293669,2019
+2004,66,"(65,70]",College,22690.196366247754,2484.3378631421906,9.133297327582165,312.9438578319533,2019
+2004,66,"(65,70]",College,28706.56,2468.2057990958133,11.63053745782308,278.4357808814075,2019
+2004,66,"(65,70]",College,25788.23152603232,2419.8096069566795,10.65713246690734,295.230733347006,2019
+2004,66,"(65,70]",College,25063.559640933574,2435.941671003057,10.289063953905373,278.96804002249337,2019
+2004,66,"(65,70]",College,28350.03777378815,2452.073735049435,11.561657942238266,290.4419445755936,2019
+2004,76,"(75,80]",NoHS,270.102118491921,33.87733449739351,7.972944816915934,11377.915118261344,2019
+2004,76,"(75,80]",NoHS,279.52976660682225,33.87733449739351,8.25123259412068,10340.759245166813,2019
+2004,76,"(75,80]",NoHS,268.53084380610414,33.87733449739351,7.926563520715145,11292.005011358746,2019
+2004,76,"(75,80]",NoHS,263.97414721723516,33.87733449739351,7.79205776173285,11109.061183764996,2019
+2004,76,"(75,80]",NoHS,270.102118491921,33.87733449739351,7.972944816915934,10934.384277582833,2019
+2004,38,"(35,40]",College,526.5341472172352,161.3206404637786,3.263898194945848,5585.153321014017,2019
+2004,38,"(35,40]",College,526.5341472172352,161.3206404637786,3.263898194945848,6203.350975768192,2019
+2004,38,"(35,40]",College,526.5341472172352,161.3206404637786,3.263898194945848,5512.943407707064,2019
+2004,38,"(35,40]",College,526.5341472172352,161.3206404637786,3.263898194945848,5508.670419814336,2019
+2004,38,"(35,40]",College,526.3770197486535,161.3206404637786,3.2629241877256323,5752.874506228823,2019
+2004,48,"(45,50]",HS,1426.7174147217233,167.77346608232975,8.503832268814218,3720.7523531469824,2019
+2004,48,"(45,50]",HS,1433.1596409335727,167.77346608232975,8.54223063038045,3899.0451346746086,2019
+2004,48,"(45,50]",HS,1434.7309156193896,167.77346608232975,8.551596084420995,3683.611644640069,2019
+2004,48,"(45,50]",HS,1455.157486535009,166.16025967769198,8.757554239248536,3975.083787516939,2019
+2004,48,"(45,50]",HS,1495.853500897666,166.16025967769198,9.002474501419508,3781.021937865223,2019
+2004,61,"(60,65]",College,35326.96876122083,3371.601385692973,10.477801115851658,400.64994496298493,2019
+2004,61,"(60,65]",College,35309.68473967684,3371.601385692973,10.472674762061043,393.66858440695324,2019
+2004,61,"(60,65]",College,35325.397486535,3387.733449739351,10.427443011861783,406.92838714251235,2019
+2004,61,"(60,65]",College,35309.68473967684,3371.601385692973,10.472674762061043,396.6812062356402,2019
+2004,61,"(60,65]",College,35308.113464991024,3371.601385692973,10.472208729898261,410.9195812538657,2019
+2004,47,"(45,50]",College,1917.7407540394975,351.6789962110374,5.453100056304442,479.88604051529165,2019
+2004,47,"(45,50]",College,1916.1694793536806,351.6789962110374,5.448632133275925,486.86482978212314,2019
+2004,47,"(45,50]",College,1917.7407540394975,353.2922026156752,5.428200056047343,476.9119130233791,2019
+2004,47,"(45,50]",College,1916.1694793536806,353.2922026156752,5.423752534493842,487.1426894671152,2019
+2004,47,"(45,50]",College,1919.3120287253141,351.6789962110374,5.457567979332958,494.79267225559545,2019
+2004,39,"(35,40]",College,-9.27052064631957,64.52825618551145,-0.14366606498194945,6110.514733217418,2019
+2004,39,"(35,40]",College,-9.27052064631957,64.52825618551145,-0.14366606498194945,6102.57368504318,2019
+2004,39,"(35,40]",College,-9.27052064631957,64.52825618551145,-0.14366606498194945,6159.744022398026,2019
+2004,39,"(35,40]",College,-9.27052064631957,64.52825618551145,-0.14366606498194945,6097.81987227952,2019
+2004,39,"(35,40]",College,-9.27052064631957,64.52825618551145,-0.14366606498194945,6111.929556338055,2019
+2004,62,"(60,65]",College,459.5978456014363,145.18857641740072,3.1655234657039717,4715.67587724899,2019
+2004,62,"(60,65]",College,586.8710951526033,145.18857641740072,4.042129963898918,4930.471486589638,2019
+2004,62,"(60,65]",College,712.7301974865351,145.18857641740072,4.908996389891698,4592.600285477727,2019
+2004,62,"(60,65]",College,497.30843806104133,145.18857641740072,3.4252587244284003,4530.388800795079,2019
+2004,62,"(60,65]",College,668.5773788150808,145.18857641740072,4.604889691135179,4712.863320991246,2019
+2004,46,"(45,50]",College,466.98283662477564,235.52813507711673,1.9827051085505174,6927.76367576949,2019
+2004,46,"(45,50]",College,484.26685816876125,233.91492867247896,2.070269139798332,7709.910754354304,2019
+2004,46,"(45,50]",College,482.69558348294436,235.52813507711673,2.0494179318530246,6840.134152695687,2019
+2004,46,"(45,50]",College,465.4115619389587,235.52813507711673,1.9760338262202664,6856.422611980221,2019
+2004,46,"(45,50]",College,466.98283662477564,235.52813507711673,1.9827051085505174,7165.781573636802,2019
+2004,40,"(35,40]",NoHS,0,33.87733449739351,0,4949.122532550626,2019
+2004,40,"(35,40]",NoHS,0,38.716953711306864,0,5013.899972986028,2019
+2004,40,"(35,40]",NoHS,0,33.87733449739351,0,4928.332568906063,2019
+2004,40,"(35,40]",NoHS,0,25.81130247420457,0,4946.883859341803,2019
+2004,40,"(35,40]",NoHS,0,38.716953711306864,0,4961.18631184855,2019
+2004,40,"(35,40]",HS,68517.0039497307,942.1125403084669,72.72698432322834,27.768818387630876,2019
+2004,40,"(35,40]",HS,68517.0039497307,988.895526042963,69.28639289521263,28.446810801806002,2019
+2004,40,"(35,40]",HS,68540.57307001796,1035.6785117774587,66.17939089263021,28.169819163329105,2019
+2004,40,"(35,40]",HS,68517.0039497307,1187.3199138134105,57.70728103908335,27.36970347254667,2019
+2004,40,"(35,40]",HS,68518.57522441652,1187.3199138134105,57.70860441845865,27.53974791481673,2019
+2004,23,"(20,25]",College,24.543310592459605,46.782985734495796,0.5246204406821859,5968.38054730936,2019
+2004,23,"(20,25]",College,22.81490843806104,48.39619213913358,0.4714194945848375,5864.406390344398,2019
+2004,23,"(20,25]",College,24.543310592459605,46.782985734495796,0.5246204406821859,5979.1963640288195,2019
+2004,23,"(20,25]",College,22.81490843806104,46.782985734495796,0.48767533922569395,5931.434164291546,2019
+2004,23,"(20,25]",College,24.543310592459605,46.782985734495796,0.5246204406821859,5948.8970640656025,2019
+2004,29,"(25,30]",HS,14.377163375224416,50.00939854377137,0.28748922790264353,5368.434230581792,2019
+2004,29,"(25,30]",HS,14.298599640933574,48.39619213913358,0.2954488567990373,5351.096866002166,2019
+2004,29,"(25,30]",HS,14.220035906642728,51.62260494840914,0.2754614169675091,5337.288806586878,2019
+2004,29,"(25,30]",HS,14.377163375224416,50.00939854377137,0.28748922790264353,5387.969040021632,2019
+2004,29,"(25,30]",HS,14.518578096947936,50.00939854377137,0.2903169908000466,5332.451942727702,2019
+2004,42,"(40,45]",College,2019.8736086175943,525.9052879119182,3.840755464995239,994.5899679987145,2019
+2004,42,"(40,45]",College,1466.1564093357272,525.9052879119182,2.7878715864543424,1006.6992123250375,2019
+2004,42,"(40,45]",College,1563.9682585278276,525.9052879119182,2.973859161480366,991.6859893878376,2019
+2004,42,"(40,45]",College,1518.7941113105924,525.9052879119182,2.887961285464331,1017.1933843578756,2019
+2004,42,"(40,45]",College,1804.9232315978456,525.9052879119182,3.432030962769374,1031.3551682543662,2019
+2004,47,"(45,50]",HS,94.74786355475763,122.60368675247175,0.772797833935018,9069.85547867062,2019
+2004,47,"(45,50]",HS,93.33371633752245,122.60368675247175,0.7612635379061372,8427.816206422005,2019
+2004,47,"(45,50]",HS,96.31913824057452,122.60368675247175,0.7856137184115525,9114.331359727665,2019
+2004,47,"(45,50]",HS,91.60531418312388,122.60368675247175,0.7471660649819495,9063.689702109781,2019
+2004,47,"(45,50]",HS,96.4762657091562,122.60368675247175,0.7868953068592057,8784.732867612594,2019
+2004,64,"(60,65]",NoHS,2.1212208258527827,11.937727394319618,0.1776905063908674,6171.730279312466,2019
+2004,64,"(60,65]",NoHS,2.1212208258527827,11.937727394319618,0.1776905063908674,6120.372723934333,2019
+2004,64,"(60,65]",NoHS,2.1055080789946143,11.937727394319618,0.17637428041760173,6113.9811910834505,2019
+2004,64,"(60,65]",NoHS,2.1212208258527827,11.937727394319618,0.1776905063908674,6149.1144930228165,2019
+2004,64,"(60,65]",NoHS,2.1055080789946143,11.937727394319618,0.17637428041760173,6159.584816986203,2019
+2004,30,"(25,30]",HS,63.872315978456015,50.00939854377137,1.2772062419937114,2650.4881406245104,2019
+2004,30,"(25,30]",HS,63.872315978456015,50.00939854377137,1.2772062419937114,2602.3727476212,2019
+2004,30,"(25,30]",HS,63.71518850987433,50.00939854377137,1.2740642832188191,2566.422726453316,2019
+2004,30,"(25,30]",HS,63.71518850987433,50.00939854377137,1.2740642832188191,2475.4388116754662,2019
+2004,30,"(25,30]",HS,63.71518850987433,50.00939854377137,1.2740642832188191,2450.205205129967,2019
+2004,58,"(55,60]",College,1401.9698384201079,206.49041979363656,6.789515173736465,6514.152436280334,2019
+2004,58,"(55,60]",College,1402.1269658886895,206.49041979363656,6.7902761168772585,7202.232540597611,2019
+2004,58,"(55,60]",College,1401.9698384201079,206.49041979363656,6.789515173736465,6427.524864300113,2019
+2004,58,"(55,60]",College,1401.9698384201079,206.49041979363656,6.789515173736465,6406.3564320885,2019
+2004,58,"(55,60]",College,1401.9698384201079,206.49041979363656,6.789515173736465,6733.6228900758115,2019
+2004,61,"(60,65]",NoHS,0,32.264128092755726,0,8882.90541755138,2019
+2004,61,"(60,65]",NoHS,0,32.264128092755726,0,8809.86898441127,2019
+2004,61,"(60,65]",NoHS,0,32.264128092755726,0,8795.008344770757,2019
+2004,61,"(60,65]",NoHS,0,32.264128092755726,0,8846.543158732511,2019
+2004,61,"(60,65]",NoHS,0,32.264128092755726,0,8864.034704119635,2019
+2004,74,"(70,75]",HS,7.447842010771994,17.74527045101565,0.4197085658024286,9611.818822566547,2019
+2004,74,"(70,75]",HS,7.416416517055655,19.358476855653432,0.3831095066185319,9580.895149798476,2019
+2004,74,"(70,75]",HS,7.542118491921006,19.358476855653432,0.3896028880866426,9551.219267656299,2019
+2004,74,"(70,75]",HS,7.699245960502694,19.358476855653432,0.39771961492178104,9630.391924910986,2019
+2004,74,"(70,75]",HS,7.3849910233393175,17.74527045101565,0.41616672136527727,9596.974210727127,2019
+2004,31,"(30,35]",HS,301.8104416517056,72.59428820870036,4.157495707982352,8027.73361277253,2019
+2004,31,"(30,35]",HS,205.99411131059244,77.43390742261373,2.6602572202166064,8919.928553944206,2019
+2004,31,"(30,35]",HS,160.9142405745063,74.20749461333816,2.168436509182232,7880.992292765067,2019
+2004,31,"(30,35]",HS,290.81151885098745,74.20749461333816,3.918896876471512,7905.742117990235,2019
+2004,31,"(30,35]",HS,230.8202513464991,74.20749461333816,3.1104708836917285,8256.046114849387,2019
+2004,31,"(30,35]",College,-53.156222621184924,127.4433059663851,-0.41709701594845316,4588.558715614074,2019
+2004,31,"(30,35]",College,-53.156222621184924,124.21689315710954,-0.427930704674387,4656.398945896713,2019
+2004,31,"(30,35]",College,-53.156222621184924,174.22629170088092,-0.3050987431474796,4607.459398625511,2019
+2004,31,"(30,35]",College,-53.156222621184924,130.66971877566067,-0.4067983241966395,4613.501892649216,2019
+2004,31,"(30,35]",College,-53.156222621184924,167.77346608232975,-0.3168333101916135,4635.862023551969,2019
+2004,57,"(55,60]",HS,413.5594973070018,129.0565123710229,3.204483754512635,6931.264155516396,2019
+2004,57,"(55,60]",HS,416.70204667863555,129.0565123710229,3.22883393501805,6000.829410412144,2019
+2004,57,"(55,60]",HS,416.85917414721723,129.0565123710229,3.230051444043321,6950.140849609449,2019
+2004,57,"(55,60]",HS,416.70204667863555,129.0565123710229,3.22883393501805,6850.333146434721,2019
+2004,57,"(55,60]",HS,416.85917414721723,129.0565123710229,3.230051444043321,6620.198012944458,2019
+2004,28,"(25,30]",HS,4.3210053859964095,29.03771528348015,0.14880665864420378,7313.572173228832,2019
+2004,28,"(25,30]",HS,4.635260323159785,19.358476855653432,0.23944344163658246,7416.7920518543615,2019
+2004,28,"(25,30]",HS,4.635260323159785,19.358476855653432,0.23944344163658246,7294.07379463217,2019
+2004,28,"(25,30]",HS,4.635260323159785,22.58488966492901,0.20523723568849922,7350.230783114869,2019
+2004,28,"(25,30]",HS,4.3210053859964095,30.650921688117936,0.14097472924187726,7351.846005023484,2019
+2004,79,"(75,80]",HS,256.2749012567325,27.424508878842364,9.344739859842855,11614.438465416519,2019
+2004,79,"(75,80]",HS,256.2749012567325,27.424508878842364,9.344739859842855,11670.397142169923,2019
+2004,79,"(75,80]",HS,256.2749012567325,27.424508878842364,9.344739859842855,11693.407007149764,2019
+2004,79,"(75,80]",HS,256.2749012567325,27.424508878842364,9.344739859842855,11633.140630380101,2019
+2004,79,"(75,80]",HS,256.2749012567325,27.424508878842364,9.344739859842855,11628.23489874788,2019
+2004,55,"(50,55]",HS,566.08313105924594,59.68863697159809,9.48393462776856,7157.408794183927,2019
+2004,55,"(50,55]",HS,561.3693070017954,59.68863697159809,9.404961069372622,6272.457871038667,2019
+2004,55,"(50,55]",HS,559.8137450628367,59.68863697159809,9.378899795101962,7151.044971467051,2019
+2004,55,"(50,55]",HS,565.156078994614,59.68863697159809,9.468403161284025,7019.713616636893,2019
+2004,55,"(50,55]",HS,561.526434470377,59.68863697159809,9.407593521319152,6816.623346069903,2019
+2004,25,"(20,25]",HS,47.483921005385994,87.11314585044046,0.5450832999064045,10493.876653514748,2019
+2004,25,"(20,25]",HS,45.755518850987436,85.49993944580267,0.5351526462775016,10242.859067982308,2019
+2004,25,"(20,25]",HS,47.311080789946146,87.11314585044046,0.5430992111244819,10461.938720142489,2019
+2004,25,"(20,25]",HS,46.226901256732496,87.11314585044046,0.530653563310603,10443.665672848312,2019
+2004,25,"(20,25]",HS,47.625335727109515,87.11314585044046,0.5467066452734322,10352.117924930806,2019
+2004,71,"(70,75]",HS,276.2300897666068,44.847138048930454,6.159369399787029,7533.916905197303,2019
+2004,71,"(70,75]",HS,276.2300897666068,44.847138048930454,6.159369399787029,6957.036713601505,2019
+2004,71,"(70,75]",HS,276.2300897666068,44.847138048930454,6.159369399787029,7883.00088090762,2019
+2004,71,"(70,75]",HS,276.2300897666068,44.847138048930454,6.159369399787029,7671.872250936297,2019
+2004,71,"(70,75]",HS,276.2300897666068,44.847138048930454,6.159369399787029,7608.4109462798715,2019
+2004,69,"(65,70]",HS,690.8894793536804,72.59428820870036,9.51713277176093,6273.216694564099,2019
+2004,69,"(65,70]",HS,694.1891561938959,72.59428820870036,9.562586442037707,7033.273348230975,2019
+2004,69,"(65,70]",HS,692.4607540394974,70.9810818040626,9.755567771578601,6261.172134408275,2019
+2004,69,"(65,70]",HS,694.1891561938959,72.59428820870036,9.562586442037707,6245.379208776456,2019
+2004,69,"(65,70]",HS,692.4607540394974,70.9810818040626,9.755567771578601,6543.022889166486,2019
+2004,52,"(50,55]",HS,178.18254937163377,403.30160115944653,0.44180967509025276,7563.848942623181,2019
+2004,52,"(50,55]",HS,192.9525314183124,403.30160115944653,0.4784323465703971,7151.033305699386,2019
+2004,52,"(50,55]",HS,213.2219748653501,403.30160115944653,0.528691119133574,7626.173366404361,2019
+2004,52,"(50,55]",HS,178.49680430879712,403.30160115944653,0.44258888086642595,7587.857515277033,2019
+2004,52,"(50,55]",HS,233.02003590664273,403.30160115944653,0.577781083032491,6946.577623406415,2019
+2004,42,"(40,45]",College,1432.6882585278277,193.58476855653433,7.4008315282791814,5369.711632918708,2019
+2004,42,"(40,45]",College,1086.850700179533,193.58476855653433,5.614339951865222,5959.669331188879,2019
+2004,42,"(40,45]",College,1086.850700179533,191.97156215189653,5.661519279191821,5299.453863828179,2019
+2004,42,"(40,45]",College,1099.2637701974866,191.97156215189653,5.726180262718806,5290.994701844756,2019
+2004,42,"(40,45]",College,1093.1357989228006,191.97156215189653,5.6942590176864964,5528.337621040543,2019
+2004,68,"(65,70]",HS,751.2264272890485,90.33955865971603,8.315586642599277,5514.043938111817,2019
+2004,68,"(65,70]",HS,751.3835547576302,88.72635225507824,8.46855004922875,6181.715108825281,2019
+2004,68,"(65,70]",HS,751.0692998204668,90.33955865971603,8.313847343991746,5503.9941183279325,2019
+2004,68,"(65,70]",HS,751.1478635547577,87.11314585044046,8.62266947452868,5490.053850058821,2019
+2004,68,"(65,70]",HS,751.3835547576302,87.11314585044046,8.625375050140393,5750.8611569911045,2019
+2004,64,"(60,65]",HS,4253.597701974865,611.405227357721,6.957084289837402,1321.3036849064188,2019
+2004,64,"(60,65]",HS,4253.597701974865,613.0184337623588,6.938776173285198,1303.6177495415152,2019
+2004,64,"(60,65]",HS,4253.440574506284,613.0184337623588,6.9385198555956675,1502.5100350413495,2019
+2004,64,"(60,65]",HS,4253.754829443447,613.0184337623588,6.939032490974729,1263.5242307202632,2019
+2004,64,"(60,65]",HS,4255.168976660682,611.405227357721,6.959654229732433,1341.8915470638108,2019
+2004,55,"(50,55]",NoHS,-0.7542118491921006,11.937727394319618,-0.06317884671675286,5960.3642089968935,2019
+2004,55,"(50,55]",NoHS,-0.7542118491921006,11.937727394319618,-0.06317884671675286,5914.677492114871,2019
+2004,55,"(50,55]",NoHS,-0.7542118491921006,12.099048034783396,-0.06233646209386282,5944.763486115448,2019
+2004,55,"(50,55]",NoHS,-0.7542118491921006,12.099048034783396,-0.06233646209386282,5941.025625239094,2019
+2004,55,"(50,55]",NoHS,-0.7542118491921006,12.099048034783396,-0.06233646209386282,5978.671040672081,2019
+2004,61,"(60,65]",College,105785.43971274685,10034.14383684703,10.542547668520086,24.457981396536375,2019
+2004,61,"(60,65]",College,103382.33220825852,13389.613158493623,7.721084319951286,25.241077758909505,2019
+2004,61,"(60,65]",College,102459.99396768401,7146.5043725453925,14.337078468922915,24.762509218334433,2019
+2004,61,"(60,65]",College,108825.69910233394,8049.899959142552,13.518888390499413,24.14779164082926,2019
+2004,61,"(60,65]",College,99265.7496588869,11147.256256047101,8.90494910844431,24.25893139851881,2019
+2004,68,"(65,70]",HS,30121.807109515263,4952.543662238004,6.082088147791013,35.3558370050509,2019
+2004,68,"(65,70]",HS,30237.92430879713,4904.14747009887,6.165786101083032,36.02988601517279,2019
+2004,68,"(65,70]",HS,30145.376229802514,4952.543662238004,6.086847140723667,36.796479412118444,2019
+2004,68,"(65,70]",HS,30239.652710951526,5033.203982469892,6.00803242154957,34.7276609630843,2019
+2004,68,"(65,70]",HS,30038.52955116697,4952.543662238004,6.065273039428968,36.948372066933494,2019
+2004,39,"(35,40]",College,929.676093357271,264.5658503605969,3.513968609668046,5538.252994432388,2019
+2004,39,"(35,40]",College,708.2992028725314,75.82070101797595,9.341765419771104,6148.64741938057,2019
+2004,39,"(35,40]",College,596.2987432675045,111.31124192000723,5.357039711191336,5467.286491698696,2019
+2004,39,"(35,40]",College,295.5567684021544,75.82070101797595,3.8981012366541203,6624.293211782138,2019
+2004,39,"(35,40]",College,457.8694434470377,287.1507400255259,1.5945264268040402,5703.600014481794,2019
+2004,69,"(65,70]",College,15564.261400359066,1129.2444832464503,13.782897885507994,490.993858571081,2019
+2004,69,"(65,70]",College,14778.624057450628,1129.2444832464503,13.087178442496132,487.69750236713173,2019
+2004,69,"(65,70]",College,14590.071095152603,1129.2444832464503,12.920205776173285,503.8048438566996,2019
+2004,69,"(65,70]",College,14687.49012567325,1129.2444832464503,13.006474987106756,486.95182742288017,2019
+2004,69,"(65,70]",College,15140.01723518851,1129.2444832464503,13.407209386281588,491.48446778102596,2019
+2004,26,"(25,30]",HS,-11.596007181328545,37.10374730666908,-0.3125292732695024,8241.449534157811,2019
+2004,26,"(25,30]",HS,-8.437745062836624,37.10374730666908,-0.2274095118505729,7974.505771534891,2019
+2004,26,"(25,30]",HS,-12.695899461400359,37.10374730666908,-0.3421729712760948,8272.070065865857,2019
+2004,26,"(25,30]",HS,-9.0034039497307,37.10374730666908,-0.24265484225396328,8217.123087443766,2019
+2004,26,"(25,30]",HS,-7.9977881508079,37.10374730666908,-0.215552032647936,8182.604087713485,2019
+2004,47,"(45,50]",HS,675.6481149012568,95.17917787362938,7.098696689714251,6797.542883924342,2019
+2004,47,"(45,50]",HS,653.9645242369838,95.17917787362938,6.870878051765281,7564.987986997354,2019
+2004,47,"(45,50]",HS,644.5368761220826,95.17917787362938,6.771826470048339,6711.560528164225,2019
+2004,47,"(45,50]",HS,678.7906642728906,96.79238427826716,7.012851985559568,6727.5428141776665,2019
+2004,47,"(45,50]",HS,641.3943267504488,95.17917787362938,6.738809276142691,7031.086772488767,2019
+2004,40,"(35,40]",HS,678.6963877917416,406.52801396872206,1.6694947567474647,238.9802754234841,2019
+2004,40,"(35,40]",HS,678.6806750448833,350.0657898063996,1.9387232194846027,240.08405601831868,2019
+2004,40,"(35,40]",HS,678.4921220825853,335.5469321646595,2.0220483546237156,235.46404709431758,2019
+2004,40,"(35,40]",HS,678.6649622980251,382.3299178991553,1.7750767871559352,231.37159012794078,2019
+2004,40,"(35,40]",HS,678.3821328545781,350.0657898063996,1.9378704021028463,243.10805978430022,2019
+2004,48,"(45,50]",HS,97.57615798922802,129.0565123710229,0.7560731046931408,7016.63594478208,2019
+2004,48,"(45,50]",HS,96.00488330341113,129.0565123710229,0.7438980144404331,6519.940507217989,2019
+2004,48,"(45,50]",HS,97.41903052064633,127.4433059663851,0.7644107297902483,7051.0434462505,2019
+2004,48,"(45,50]",HS,97.57615798922802,127.4433059663851,0.7656436503221681,7011.865966964241,2019
+2004,48,"(45,50]",HS,97.41903052064633,127.4433059663851,0.7644107297902483,6796.058939324316,2019
+2004,49,"(45,50]",College,4240.556122082586,1342.187728658638,3.159435920577618,233.7339976471247,2019
+2004,49,"(45,50]",College,4200.645745062837,1342.187728658638,3.1297006039988893,231.20426836373204,2019
+2004,49,"(45,50]",College,4191.532351885099,1342.187728658638,3.122910649819495,243.10414687521916,2019
+2004,49,"(45,50]",College,4231.285601436266,1342.187728658638,3.1525288982227164,226.46543620012932,2019
+2004,49,"(45,50]",College,4193.889263913824,1342.187728658638,3.1246666724520966,229.68966707660843,2019
+2004,77,"(75,80]",College,31808.88473967684,717.8768500638149,44.30966778891006,26.4486883767238,2019
+2004,77,"(75,80]",College,39713.96768402155,616.2448465716343,64.44511123291814,26.39897922653094,2019
+2004,77,"(75,80]",College,126548.89192100539,674.3202771385945,187.6688217919265,28.169819163329105,2019
+2004,77,"(75,80]",College,26644.104847396768,616.2448465716343,43.23623150055758,25.62277832822135,2019
+2004,77,"(75,80]",College,32720.224057450632,583.9807184788785,56.02963081157629,26.869043729423304,2019
+2004,61,"(60,65]",College,16245.566104129264,1255.0745828081974,12.943904949282157,233.7339976471247,2019
+2004,61,"(60,65]",College,20965.958089766606,637.2165298319255,32.902407750308456,231.20426836373204,2019
+2004,61,"(60,65]",College,20216.805745062837,1327.668871016898,15.227295138416727,243.10414687521916,2019
+2004,61,"(60,65]",College,41787.89314183124,1121.1784512232614,37.271402332285795,208.79801098943534,2019
+2004,61,"(60,65]",College,50928.65792459605,1693.8667248696754,30.066508289496305,216.91507817072346,2019
+2004,57,"(55,60]",College,1010.8010053859964,177.45270451015648,5.696171316048572,7027.085640329705,2019
+2004,57,"(55,60]",College,1010.8010053859964,177.45270451015648,5.696171316048572,7769.494358773854,2019
+2004,57,"(55,60]",College,1010.8010053859964,177.45270451015648,5.696171316048572,6886.487158475495,2019
+2004,57,"(55,60]",College,1010.8010053859964,177.45270451015648,5.696171316048572,6919.92846815381,2019
+2004,57,"(55,60]",College,1010.8010053859964,177.45270451015648,5.696171316048572,7225.905529949952,2019
+2004,58,"(55,60]",College,1138.3885098743267,120.99048034783397,9.408909747292418,5360.668454144494,2019
+2004,58,"(55,60]",College,1138.5456373429085,120.99048034783397,9.410208423586042,5928.758619351796,2019
+2004,58,"(55,60]",College,1138.3885098743267,120.99048034783397,9.408909747292418,5290.828509245132,2019
+2004,58,"(55,60]",College,1138.3885098743267,120.99048034783397,9.408909747292418,5273.917456071617,2019
+2004,58,"(55,60]",College,1138.3885098743267,120.99048034783397,9.408909747292418,5542.969607048284,2019
+2004,40,"(35,40]",HS,64.10800718132855,74.20749461333816,0.8639020561921206,6310.916772189417,2019
+2004,40,"(35,40]",HS,63.95087971274686,74.20749461333816,0.8617846491916498,6058.13272250389,2019
+2004,40,"(35,40]",HS,63.95087971274686,74.20749461333816,0.8617846491916498,6305.210385789051,2019
+2004,40,"(35,40]",HS,64.10800718132855,74.20749461333816,0.8639020561921206,6281.703040132922,2019
+2004,40,"(35,40]",HS,64.10800718132855,74.20749461333816,0.8639020561921206,6218.111897787725,2019
+2004,41,"(40,45]",HS,8.563447037701975,46.782985734495796,0.18304618448898294,7655.180488929907,2019
+2004,41,"(40,45]",HS,8.563447037701975,46.782985734495796,0.18304618448898294,7119.815915573667,2019
+2004,41,"(40,45]",HS,8.563447037701975,46.782985734495796,0.18304618448898294,7706.67764181149,2019
+2004,41,"(40,45]",HS,8.563447037701975,46.782985734495796,0.18304618448898294,7670.393812039818,2019
+2004,41,"(40,45]",HS,8.563447037701975,46.782985734495796,0.18304618448898294,7537.54766062907,2019
+2004,53,"(50,55]",HS,272.22333931777376,74.20749461333816,3.668407628315806,7011.537000571652,2019
+2004,53,"(50,55]",HS,270.65206463195693,72.59428820870036,3.7282831929402334,6515.202508387323,2019
+2004,53,"(50,55]",HS,270.65206463195693,72.59428820870036,3.7282831929402334,7045.919498330064,2019
+2004,53,"(50,55]",HS,272.0662118491921,72.59428820870036,3.747763337344565,7006.770489066014,2019
+2004,53,"(50,55]",HS,270.4949371633752,72.59428820870036,3.7261187324508627,6791.120287005021,2019
+2004,39,"(35,40]",HS,18.933859964093358,61.30184337623587,0.30886281588447656,4080.7188847649877,2019
+2004,39,"(35,40]",HS,16.262692998204667,59.68863697159809,0.27245877646599664,4136.676749295789,2019
+2004,39,"(35,40]",HS,14.534290843806104,61.30184337623587,0.2370938628158845,4090.545754960651,2019
+2004,39,"(35,40]",HS,15.319928186714542,61.30184337623587,0.24990974729241877,4070.4786641495157,2019
+2004,39,"(35,40]",HS,14.84854578096948,61.30184337623587,0.2422202166064982,4110.515545004237,2019
+2004,82,"(80,85]",HS,37.78915619389587,25.81130247420457,1.464054602888087,8835.403159489619,2019
+2004,82,"(80,85]",HS,45.64552962298025,24.19809606956679,1.8863273164861611,8843.922843643315,2019
+2004,82,"(80,85]",HS,36.217881508078996,24.19809606956679,1.4967244283995187,8852.850462051878,2019
+2004,82,"(80,85]",HS,51.93062836624776,24.19809606956679,2.14606257521059,8830.954483231631,2019
+2004,82,"(80,85]",HS,36.217881508078996,25.81130247420457,1.403179151624549,8843.92934566463,2019
+2004,55,"(50,55]",HS,1513.7660323159787,212.94324541218776,7.1087769390657485,6816.213902363925,2019
+2004,55,"(50,55]",HS,1536.7852064631957,196.81118136580994,7.808424276498785,7539.802224576943,2019
+2004,55,"(50,55]",HS,2008.3247396768402,135.50933798957405,14.820563434760183,3693.3182617110615,2019
+2004,55,"(50,55]",HS,2056.0914901256733,156.48102124986525,13.139558226952994,3963.8273615057624,2019
+2004,55,"(50,55]",HS,1864.4745421903053,167.77346608232975,11.11304776450986,3792.624180011265,2019
+2004,43,"(40,45]",College,19507.390937163374,2355.281350771168,8.28240368428861,2741.5979583973067,2019
+2004,43,"(40,45]",College,19509.103626570915,2339.1492867247903,8.340255894435453,2746.436036111392,2019
+2004,43,"(40,45]",College,19498.418958707363,2339.1492867247903,8.335688136437197,2773.0833076559597,2019
+2004,43,"(40,45]",College,19903.33644524237,2355.281350771168,8.450513327728597,2677.894598107342,2019
+2004,43,"(40,45]",College,19903.33644524237,2339.1492867247903,8.508792729988794,2675.1490523499106,2019
+2004,52,"(50,55]",HS,838.5892998204667,41.94336652058244,19.993371285753955,6081.018660391825,2019
+2004,52,"(50,55]",HS,814.7687755834829,96.79238427826716,8.417695066185319,6767.567913894889,2019
+2004,52,"(50,55]",HS,802.8899389587074,45.16977932985802,17.774936049510053,6004.099644392934,2019
+2004,52,"(50,55]",HS,800.72157989228,40.33016011594465,19.854163176895305,6018.3972488572335,2019
+2004,52,"(50,55]",HS,820.9910233393177,45.16977932985802,18.175670448684887,6289.944851610033,2019
+2004,55,"(50,55]",College,3455.2330341113106,846.9333624348377,4.079698813821557,180.44025005204327,2019
+2004,55,"(50,55]",College,3409.666068222621,846.9333624348377,4.02589651022864,185.22830793340847,2019
+2004,55,"(50,55]",College,3404.9522441651707,846.9333624348377,4.0203307546845455,178.89902339770418,2019
+2004,55,"(50,55]",College,3375.09802513465,846.9333624348377,3.9850809695719445,189.34730018703982,2019
+2004,55,"(50,55]",College,3582.5062836624775,846.9333624348377,4.229974213512119,333.05463017662714,2019
+2004,22,"(20,25]",College,13.481536804308798,13.873575079884963,0.9717420871463351,7964.222424913419,2019
+2004,22,"(20,25]",College,13.497249551166966,17.74527045101565,0.7606110928782408,7965.004690626489,2019
+2004,22,"(20,25]",College,13.465824057450629,17.74527045101565,0.7588401706596651,7957.302041982405,2019
+2004,22,"(20,25]",College,13.497249551166966,19.358476855653432,0.6972268351383876,7882.5505302552965,2019
+2004,22,"(20,25]",College,13.18299461400359,16.132064046377863,0.8171920577617326,7966.036928446409,2019
+2004,63,"(60,65]",College,1177.9846319569122,125.83009956174732,9.361707858928076,3940.2592507746135,2019
+2004,57,"(55,60]",College,1173.427935368043,120.99048034783397,9.698514560770155,4359.674579222625,2019
+2004,46,"(45,50]",College,1176.5704847396769,125.83009956174732,9.350469314079422,4277.134564087044,2019
+2004,57,"(55,60]",College,1182.6984560143626,120.99048034783397,9.775136462093862,3878.852856100556,2019
+2004,45,"(40,45]",College,1182.8555834829444,129.0565123710229,9.165407942238266,4482.042775584994,2019
+2004,42,"(40,45]",HS,27.403030520646322,19.358476855653432,1.415557160048135,5833.499325965339,2019
+2004,42,"(40,45]",HS,26.931648114901257,15.164140203595188,1.7760089100545358,5824.847662598035,2019
+2004,42,"(40,45]",HS,26.53882944344704,19.358476855653432,1.3709151624548737,5838.616644833942,2019
+2004,42,"(40,45]",HS,26.915935368043087,10.001879708754274,2.691087690695237,5818.073779409411,2019
+2004,42,"(40,45]",HS,26.444552962298026,10.163200349218052,2.6019907168643632,5806.740422222502,2019
+2004,51,"(50,55]",College,665.1205745062837,69.36787539942482,9.588308286457893,6621.095284948332,2019
+2004,51,"(50,55]",College,665.1205745062837,69.36787539942482,9.588308286457893,7366.3190587318,2019
+2004,51,"(50,55]",College,665.1205745062837,69.36787539942482,9.588308286457893,6535.555454386571,2019
+2004,51,"(50,55]",College,665.1205745062837,69.36787539942482,9.588308286457893,6550.480415311855,2019
+2004,51,"(50,55]",College,664.9634470377019,70.9810818040626,9.368178536265177,6846.485037839348,2019
+2004,62,"(60,65]",NoHS,398.00387791741474,27.424508878842364,14.512707581227437,5608.776273066897,2019
+2004,62,"(60,65]",NoHS,396.43260323159785,27.424508878842364,14.455413038861755,4907.668375016512,2019
+2004,62,"(60,65]",NoHS,396.43260323159785,27.424508878842364,14.455413038861755,5646.030826844095,2019
+2004,62,"(60,65]",NoHS,396.43260323159785,27.424508878842364,14.455413038861755,5531.069652421929,2019
+2004,62,"(60,65]",NoHS,396.43260323159785,27.424508878842364,14.455413038861755,5398.675618972543,2019
+2004,50,"(45,50]",College,198623.26175942548,33619.221472651465,5.908026809038436,4.665106191159518,2019
+2004,50,"(45,50]",College,183100.95339317774,32941.674782703594,5.558337716615338,4.678584732372286,2019
+2004,50,"(45,50]",College,198910.80502692997,36039.03107960813,5.51931611556225,4.586005853513058,2019
+2004,50,"(45,50]",College,191364.1298384201,34054.787201903666,5.619301882694566,4.592792196747685,2019
+2004,50,"(45,50]",College,205778.84667863554,35958.37075937625,5.722696616474986,4.480802317436616,2019
+2004,43,"(40,45]",HS,401.0678635547576,167.77346608232975,2.390532143848931,7794.113448573606,2019
+2004,43,"(40,45]",HS,402.79626570915616,167.77346608232975,2.4008341432935296,8653.135851704279,2019
+2004,43,"(40,45]",HS,399.49658886894076,167.77346608232975,2.3811666898083867,7694.240623350392,2019
+2004,43,"(40,45]",HS,399.65371633752244,167.77346608232975,2.382103235212441,7682.7072653679625,2019
+2004,43,"(40,45]",HS,401.2249910233393,167.77346608232975,2.3914686892529855,8026.810191381164,2019
+2004,42,"(40,45]",HS,184.62477558348297,72.59428820870036,2.543241075010029,8183.9377333172815,2019
+2004,42,"(40,45]",HS,184.6106341113106,72.59428820870036,2.543046273565985,7856.129746414542,2019
+2004,42,"(40,45]",HS,184.62477558348297,72.59428820870036,2.543241075010029,8176.537744905356,2019
+2004,42,"(40,45]",HS,184.62477558348297,72.59428820870036,2.543241075010029,8146.053639335603,2019
+2004,42,"(40,45]",HS,184.46764811490127,72.59428820870036,2.5410766145206583,8063.58924182731,2019
+2004,40,"(35,40]",College,986.2891202872532,322.6412809275572,3.0569216606498197,642.5140987203912,2019
+2004,40,"(35,40]",College,967.276696588869,322.6412809275572,2.9979942238267148,648.5938558373314,2019
+2004,40,"(35,40]",College,1079.465709156194,322.6412809275572,3.3457148014440437,639.8738856648131,2019
+2004,40,"(35,40]",College,1078.2086894075405,322.6412809275572,3.3418187725631774,650.8550567505323,2019
+2004,40,"(35,40]",College,882.9778096947936,322.6412809275572,2.73671678700361,662.5106336709495,2019
+2004,34,"(30,35]",HS,7244.047684021544,3710.374730666908,1.952376298854183,1165.0178356747779,2019
+2004,34,"(30,35]",HS,8116.890771992818,3710.374730666908,2.187620216606498,1163.35563266449,2019
+2004,34,"(30,35]",HS,7228.020682226212,3710.374730666908,1.9480567885732225,1319.7894195168747,2019
+2004,34,"(30,35]",HS,7056.798879712746,3710.374730666908,1.90191002040496,1116.6147050825034,2019
+2004,34,"(30,35]",HS,6914.551382405745,3710.374730666908,1.8635722492544342,1179.3623098663686,2019
+2004,63,"(60,65]",College,1027.9278994614003,101.63200349218052,10.114214658185778,6596.666566661438,2019
+2004,63,"(60,65]",College,850.2167324955117,132.28292518029846,6.427259839746411,6741.682071270336,2019
+2004,63,"(60,65]",College,1604.2714542190304,122.60368675247175,13.085018050541514,6460.456464655187,2019
+2004,63,"(60,65]",College,1178.7702692998205,104.8584163014561,11.241541793946125,6342.449813502404,2019
+2004,63,"(60,65]",College,623.0104129263914,138.73575079884964,4.490626311812609,6613.65060504547,2019
+2004,64,"(60,65]",HS,1082.6082585278277,98.40559068290497,11.001491389003963,5801.170058923907,2019
+2004,64,"(60,65]",HS,1082.922513464991,98.40559068290497,11.004684855299754,6415.941833257721,2019
+2004,64,"(60,65]",HS,1082.922513464991,98.40559068290497,11.004684855299754,5725.591164102711,2019
+2004,64,"(60,65]",HS,1082.7653859964093,98.40559068290497,11.003088122151858,5707.290480862507,2019
+2004,64,"(60,65]",HS,1082.7653859964093,98.40559068290497,11.003088122151858,5998.451423921424,2019
+2004,50,"(45,50]",College,21.463612208258528,77.43390742261373,0.27718622141997595,8181.701599979477,2019
+2004,50,"(45,50]",College,21.510750448833036,77.43390742261373,0.2777949759326114,7732.8979328647965,2019
+2004,50,"(45,50]",College,18.321062836624776,70.9810818040626,0.2581119133574007,8190.779249082542,2019
+2004,50,"(45,50]",College,19.93947576301616,75.82070101797595,0.26298194945848374,8215.46092881378,2019
+2004,50,"(45,50]",College,19.90805026929982,74.20749461333816,0.268275466959661,7976.969299661809,2019
+2004,65,"(60,65]",HS,132749.45608617595,7291.692948962794,18.20557407111594,19.85074517363883,2019
+2004,65,"(60,65]",HS,138534.88947935367,6226.976721901855,22.247536110435643,20.80433162821725,2019
+2004,65,"(60,65]",HS,134577.00567324954,7065.844052313504,19.04613301353378,20.025321777052817,2019
+2004,65,"(60,65]",HS,137987.77163375227,6243.108785948232,22.1024134553494,19.550079502266545,2019
+2004,65,"(60,65]",HS,134529.86743267503,6904.523411849724,19.484308967913897,19.624724009168094,2019
+2004,91,"(90,95]",NoHS,236.16258527827648,25.81130247420457,9.14958032490975,12986.093066604872,2019
+2004,91,"(90,95]",NoHS,236.16258527827648,25.81130247420457,9.14958032490975,11659.640187617015,2019
+2004,91,"(90,95]",NoHS,236.16258527827648,24.19809606956679,9.759552346570397,12934.640199986805,2019
+2004,91,"(90,95]",NoHS,236.16258527827648,25.81130247420457,9.14958032490975,12776.998693581847,2019
+2004,91,"(90,95]",NoHS,236.16258527827648,24.19809606956679,9.759552346570397,12515.701832458564,2019
+2004,50,"(45,50]",NoHS,14.141472172351886,25.81130247420457,0.5478790613718414,6820.016957532983,2019
+2004,50,"(45,50]",NoHS,10.684667863554758,25.81130247420457,0.4139530685920579,6283.876007829815,2019
+2004,50,"(45,50]",NoHS,9.113393177737882,25.81130247420457,0.35307761732851994,6903.542547245405,2019
+2004,50,"(45,50]",NoHS,20.583698384201078,25.81130247420457,0.7974684115523468,6835.627122416207,2019
+2004,50,"(45,50]",NoHS,20.740825852782763,25.81130247420457,0.8035559566787005,6650.043084935899,2019
+2004,58,"(55,60]",NoHS,17.928244165170558,41.94336652058244,0.4274393224104416,6571.387016641798,2019
+2004,58,"(55,60]",NoHS,15.539906642728905,22.58488966492901,0.6880665291387312,6379.090510293594,2019
+2004,58,"(55,60]",NoHS,13.811504488330343,24.19809606956679,0.5707682310469315,6514.7424399790525,2019
+2004,58,"(55,60]",NoHS,14.581429084380611,22.58488966492901,0.6456276431150076,6550.736985029007,2019
+2004,58,"(55,60]",NoHS,15.7441723518851,37.10374730666908,0.42432836289436515,6441.477880676139,2019
+2004,46,"(45,50]",College,683.9758707360862,195.19797496117215,3.504011098845362,7205.075464941717,2019
+2004,46,"(45,50]",College,683.8187432675045,195.19797496117215,3.5032061342005543,8016.027927834788,2019
+2004,46,"(45,50]",College,682.2631813285458,196.81118136580994,3.4665875007397755,7111.991026803985,2019
+2004,46,"(45,50]",College,683.960157989228,195.19797496117215,3.5039306023808807,7128.232368326806,2019
+2004,46,"(45,50]",College,682.2474685816877,195.19797496117215,3.495156487752484,7450.344579599538,2019
+2004,68,"(65,70]",HS,43.21005385996409,19.358476855653432,2.2320998796630565,7102.210512011372,2019
+2004,68,"(65,70]",HS,43.21005385996409,17.74527045101565,2.4350180505415158,6632.618160305673,2019
+2004,68,"(65,70]",HS,43.21005385996409,19.358476855653432,2.2320998796630565,7184.659952019152,2019
+2004,68,"(65,70]",HS,43.21005385996409,19.358476855653432,2.2320998796630565,7124.739948655022,2019
+2004,68,"(65,70]",HS,43.21005385996409,17.74527045101565,2.4350180505415158,7037.0180520027625,2019
+2004,74,"(70,75]",College,2328.6290843806105,267.7922631698725,8.695654821451871,3786.495493588991,2019
+2004,74,"(70,75]",College,1841.5339317773787,267.7922631698725,6.8767256752642325,3963.097181421662,2019
+2004,74,"(70,75]",College,2328.6290843806105,267.7922631698725,8.695654821451871,3758.5498638570307,2019
+2004,74,"(70,75]",College,1825.8211849192103,267.7922631698725,6.818050541516246,4034.1844053420705,2019
+2004,74,"(70,75]",College,1873.116552962298,267.7922631698725,6.99466269409769,3847.180942411726,2019
+2004,61,"(60,65]",NoHS,15.712746858168762,30.650921688117936,0.5126353790613718,6559.679055842271,2019
+2004,61,"(60,65]",NoHS,15.712746858168762,30.650921688117936,0.5126353790613718,6495.633798981215,2019
+2004,61,"(60,65]",NoHS,15.712746858168762,29.03771528348015,0.5411151223425592,6580.672403052913,2019
+2004,61,"(60,65]",NoHS,15.712746858168762,29.03771528348015,0.5411151223425592,6593.92738945448,2019
+2004,61,"(60,65]",NoHS,15.712746858168762,29.03771528348015,0.5411151223425592,6596.17902322304,2019
+2004,48,"(45,50]",College,14212.179533213646,1935.8476855653435,7.341579422382671,294.0782415789,2019
+2004,48,"(45,50]",College,14210.60825852783,1935.8476855653435,7.3407677496991575,293.0190960111748,2019
+2004,48,"(45,50]",College,14212.179533213646,1935.8476855653435,7.341579422382671,304.0768756051631,2019
+2004,48,"(45,50]",College,14210.60825852783,1935.8476855653435,7.3407677496991575,290.0616229138954,2019
+2004,48,"(45,50]",College,14212.179533213646,1935.8476855653435,7.341579422382671,296.3295687508992,2019
+2004,43,"(40,45]",College,30.027059245960505,77.43390742261373,0.3877766245487365,4154.442974099678,2019
+2004,43,"(40,45]",College,64.26513464991024,77.43390742261373,0.8299353188929002,4208.819114622982,2019
+2004,43,"(40,45]",College,30.529867145421903,77.43390742261373,0.3942700060168472,4136.991250521026,2019
+2004,43,"(40,45]",College,46.69828366247756,77.43390742261373,0.6030728038507822,4152.563764174577,2019
+2004,43,"(40,45]",College,33.860969479353685,77.43390742261373,0.4372886582430807,4164.569674906886,2019
+2004,39,"(35,40]",HS,23.4905565529623,41.94336652058244,0.5600541516245487,4637.7740621928115,2019
+2004,39,"(35,40]",HS,10.134721723518851,41.94336652058244,0.24162871424604276,4698.476364690001,2019
+2004,39,"(35,40]",HS,6.835044883303412,41.94336652058244,0.16295890030547072,4618.29199168222,2019
+2004,39,"(35,40]",HS,14.691418312387793,43.55657292522023,0.33729509292686183,4635.676223540943,2019
+2004,39,"(35,40]",HS,22.54779174147217,41.94336652058244,0.5375770619272424,4649.078911153804,2019
+2004,66,"(65,70]",NoHS,88.13279712746859,24.19809606956679,3.6421376654632978,9587.926905230579,2019
+2004,66,"(65,70]",NoHS,97.56044524236984,24.19809606956679,4.03174055354994,9015.99925172117,2019
+2004,66,"(65,70]",NoHS,99.13171992818673,24.19809606956679,4.096674368231048,9701.45175993934,2019
+2004,66,"(65,70]",NoHS,85.77588509874327,24.19809606956679,3.5447369434416367,9642.494100150601,2019
+2004,66,"(65,70]",NoHS,94.57502333931778,24.19809606956679,3.9083663056558366,9537.06337459056,2019
+2004,55,"(50,55]",HS,115.31584919210053,164.5470532730542,0.7008077440362426,5388.70100238291,2019
+2004,55,"(50,55]",HS,114.05882944344705,164.5470532730542,0.6931684717208183,4777.939161546517,2019
+2004,55,"(50,55]",HS,117.70418671454219,164.5470532730542,0.715322361435549,5424.33845020369,2019
+2004,55,"(50,55]",HS,117.82988868940754,164.5470532730542,0.7160862886670913,5351.420403566201,2019
+2004,55,"(50,55]",HS,111.84333213644524,164.5470532730542,0.6797042542648828,5221.035610742476,2019
+2004,35,"(30,35]",College,7012.426082585278,322.6412809275572,21.734435415162455,1295.7639665505344,2019
+2004,35,"(30,35]",College,7009.267820466786,322.6412809275572,21.72464664259928,1272.4221503814817,2019
+2004,35,"(30,35]",College,7009.267820466786,322.6412809275572,21.72464664259928,1334.1264967032444,2019
+2004,35,"(30,35]",College,7010.8390951526035,322.6412809275572,21.729516678700364,1255.62044644617,2019
+2004,35,"(30,35]",College,7010.8390951526035,322.6412809275572,21.729516678700364,1279.6484515790853,2019
+2004,53,"(50,55]",College,635.266355475763,424.27328441973776,1.4973046354888744,789.8884562585132,2019
+2004,53,"(50,55]",College,634.6378456014362,424.27328441973776,1.4958232556862634,761.9122452706578,2019
+2004,53,"(50,55]",College,632.2337953321364,424.27328441973776,1.4901569779412773,799.7558219392415,2019
+2004,53,"(50,55]",College,634.1664631956912,424.27328441973776,1.4947122208343055,735.8748788290974,2019
+2004,53,"(50,55]",College,635.4234829443448,424.27328441973776,1.4976749804395273,794.9521253226494,2019
+2004,55,"(50,55]",College,51172.6454578097,18116.30792408234,2.8246729781946884,23.61539728681264,2019
+2004,55,"(50,55]",College,47703.742333931776,18455.081269056274,2.584856801141097,24.585770699236885,2019
+2004,55,"(50,55]",College,50958.00933572711,17229.044401531555,2.957680539217675,24.421664456131246,2019
+2004,55,"(50,55]",College,47666.03174147217,17067.723761067777,2.792758566329769,23.390471968133166,2019
+2004,55,"(50,55]",College,50472.328330341115,18229.232372406987,2.768757745758921,24.777435942882317,2019
+2004,58,"(55,60]",HS,480.81005385996406,101.63200349218052,4.7308922124806605,6189.40311730732,2019
+2004,58,"(55,60]",HS,488.50929982046677,100.01879708754274,4.884174915570047,5422.547786226989,2019
+2004,58,"(55,60]",HS,491.8089766606823,101.63200349218052,4.839115236949173,6140.167440621556,2019
+2004,58,"(55,60]",HS,475.93910233393177,100.01879708754274,4.758496564574356,6076.091701889747,2019
+2004,58,"(55,60]",HS,490.0805745062837,100.01879708754274,4.8998847094445095,5862.133816120128,2019
+2004,55,"(50,55]",HS,409.0028007181329,172.6130852962431,2.369477377779278,6042.3355098851625,2019
+2004,55,"(50,55]",HS,522.134578096948,172.6130852962431,3.024884105401667,6611.502911402189,2019
+2004,55,"(50,55]",HS,382.29113105924597,172.6130852962431,2.2147285670906576,6057.004597524507,2019
+2004,55,"(50,55]",HS,405.86025134649907,172.6130852962431,2.351271635345322,5948.946546436009,2019
+2004,55,"(50,55]",HS,539.4185996409336,172.6130852962431,3.1250156887884213,6181.245153562914,2019
+2004,72,"(70,75]",HS,4.273867145421903,77.43390742261373,0.05519374247894104,8642.116645171347,2019
+2004,72,"(70,75]",HS,3.0796983842010772,48.39619213913358,0.06363513838748495,8162.444855954937,2019
+2004,72,"(70,75]",HS,3.0796983842010772,77.43390742261373,0.0397719614921781,9037.815003369009,2019
+2004,72,"(70,75]",HS,4.509558348294435,62.91504978087366,0.071676941590299,8744.75119707351,2019
+2004,72,"(70,75]",HS,5.185206463195691,79.04711382725151,0.06559640462683268,8774.572851933484,2019
+2004,37,"(35,40]",HS,-60.808330341113106,66.14146259014923,-0.9193677907898212,5169.598095356957,2019
+2004,37,"(35,40]",HS,-60.808330341113106,66.14146259014923,-0.9193677907898212,5147.459935626131,2019
+2004,37,"(35,40]",HS,-62.37960502692998,66.14146259014923,-0.9431240644536408,5130.8486129101775,2019
+2004,37,"(35,40]",HS,-60.808330341113106,66.14146259014923,-0.9193677907898212,5147.408441241261,2019
+2004,37,"(35,40]",HS,-60.808330341113106,66.14146259014923,-0.9193677907898212,5119.664510531847,2019
+2004,67,"(65,70]",HS,208.66527827648113,83.88673304116487,2.487464593168564,8954.50577029067,2019
+2004,67,"(65,70]",HS,207.40825852782766,83.88673304116487,2.4724798667036936,8260.990770768049,2019
+2004,67,"(65,70]",HS,211.8078276481149,83.88673304116487,2.5249264093307415,9093.85395791692,2019
+2004,67,"(65,70]",HS,208.66527827648113,83.88673304116487,2.487464593168564,9009.962928726487,2019
+2004,67,"(65,70]",HS,208.66527827648113,83.88673304116487,2.487464593168564,8890.956301018381,2019
+2004,65,"(60,65]",HS,140.47195691202873,27.424508878842364,5.122132087492036,8209.257367287268,2019
+2004,65,"(60,65]",HS,231.3387719928187,98.40559068290497,2.3508702136473927,7495.46635647395,2019
+2004,65,"(60,65]",HS,485.5238779174147,108.74624373663318,4.464741596898552,8308.908455642999,2019
+2004,65,"(60,65]",HS,162.78405745062838,46.782985734495796,3.4795568280841533,8287.67192479236,2019
+2004,65,"(60,65]",HS,186.98168761220825,25.81130247420457,7.2441787003610125,8090.3306457706885,2019
+2004,24,"(20,25]",HS,2.2783482944344704,24.19809606956679,0.0941540312876053,8875.376084332056,2019
+2004,24,"(20,25]",HS,2.2783482944344704,24.19809606956679,0.0941540312876053,8827.49371323494,2019
+2004,24,"(20,25]",HS,2.2626355475763016,22.58488966492901,0.10018359979370808,8859.426433204138,2019
+2004,24,"(20,25]",HS,2.294061041292639,22.58488966492901,0.1015750386797318,8752.947080008626,2019
+2004,24,"(20,25]",HS,2.2626355475763016,24.19809606956679,0.09350469314079422,8821.077928845609,2019
+2004,43,"(40,45]",HS,1380.9933213644524,177.45270451015648,7.782317689530686,607.200875837617,2019
+2004,43,"(40,45]",HS,1380.9933213644524,177.45270451015648,7.782317689530686,637.9269383327373,2019
+2004,43,"(40,45]",HS,1381.1504488330343,177.45270451015648,7.783203150639975,604.4048326283202,2019
+2004,43,"(40,45]",HS,1380.9933213644524,177.45270451015648,7.782317689530686,614.9887624235255,2019
+2004,43,"(40,45]",HS,1379.4220466786355,177.45270451015648,7.773463078437807,625.7650050486379,2019
+2004,28,"(25,30]",HS,15.085808258527829,14.518857641740075,1.0390492579221822,5822.53943538065,2019
+2004,28,"(25,30]",HS,15.085808258527829,14.518857641740075,1.0390492579221822,5792.957650014249,2019
+2004,28,"(25,30]",HS,15.085808258527829,14.518857641740075,1.0390492579221822,5828.373576485668,2019
+2004,28,"(25,30]",HS,15.085808258527829,14.518857641740075,1.0390492579221822,5854.645162033472,2019
+2004,28,"(25,30]",HS,15.085808258527829,14.518857641740075,1.0390492579221822,5842.46594476834,2019
+2004,40,"(35,40]",NoHS,-4.965228007181328,25.81130247420457,-0.1923664259927798,4948.979181441582,2019
+2004,40,"(35,40]",NoHS,-3.393953321364452,25.81130247420457,-0.1314909747292419,4918.6345988096555,2019
+2004,40,"(35,40]",NoHS,-4.965228007181328,24.19809606956679,-0.20519085439229842,4945.49676765263,2019
+2004,40,"(35,40]",NoHS,-4.965228007181328,25.81130247420457,-0.1923664259927798,4936.943554613989,2019
+2004,40,"(35,40]",NoHS,-4.965228007181328,24.19809606956679,-0.20519085439229842,4951.135210832836,2019
+2004,64,"(60,65]",HS,9.584775583482944,32.264128092755726,0.29707220216606495,6222.275758130369,2019
+2004,64,"(60,65]",HS,9.427648114901256,32.264128092755726,0.2922021660649819,5405.627504255151,2019
+2004,64,"(60,65]",HS,9.584775583482944,32.264128092755726,0.29707220216606495,6258.890086000107,2019
+2004,64,"(60,65]",HS,9.584775583482944,32.264128092755726,0.29707220216606495,6113.811009706213,2019
+2004,64,"(60,65]",HS,9.427648114901256,32.264128092755726,0.2922021660649819,5964.271554326174,2019
+2004,62,"(60,65]",College,5384.758348294435,137.89688346843798,39.04916639778089,3643.933326921246,2019
+2004,62,"(60,65]",College,5347.047755834829,138.47763777410754,38.61307747433728,3596.5441441361945,2019
+2004,62,"(60,65]",College,5197.776660682227,127.4433059663851,40.785011195905504,4050.5172030113586,2019
+2004,62,"(60,65]",College,5471.178456014363,127.4433059663851,42.930292921445876,3559.838066757247,2019
+2004,62,"(60,65]",College,5647.161220825853,214.87909309775313,26.280645266204832,3730.011843083447,2019
+2004,35,"(30,35]",NoHS,454.72689407540395,561.3958288139496,0.8099933607203618,215.25646040319688,2019
+2004,35,"(30,35]",NoHS,451.11296229802514,561.3958288139496,0.8035559566787003,195.64304727441163,2019
+2004,35,"(30,35]",NoHS,453.31274685816874,561.3958288139496,0.8074743765301464,216.42871147526975,2019
+2004,35,"(30,35]",NoHS,457.24093357271096,561.3958288139496,0.8144715548363002,194.1792769969789,2019
+2004,35,"(30,35]",NoHS,456.29816876122084,561.3958288139496,0.8127922320428232,199.3465386517205,2019
+2004,34,"(30,35]",HS,-40.38175942549371,29.03771528348015,-1.3906658644203769,5829.119631060679,2019
+2004,34,"(30,35]",HS,-38.76334649910233,24.19809606956679,-1.601917208182912,5915.3011191106325,2019
+2004,34,"(30,35]",HS,-37.490614003590665,27.424508878842364,-1.36704778084519,5853.130295238849,2019
+2004,34,"(30,35]",HS,-37.66345421903052,25.81130247420457,-1.459184566787004,5860.806435551557,2019
+2004,34,"(30,35]",HS,-38.85762298025135,25.81130247420457,-1.5054499097472929,5889.211842581612,2019
+2004,25,"(20,25]",College,162.31267504488332,54.84901775768473,2.9592631131875136,12046.405670788532,2019
+2004,25,"(20,25]",College,110.4606104129264,54.84901775768473,2.0139031641537484,11729.5743221079,2019
+2004,25,"(20,25]",College,162.31267504488332,54.84901775768473,2.9592631131875136,12078.09374275323,2019
+2004,25,"(20,25]",College,187.4530700179533,54.84901775768473,3.417619452112975,12018.87602664363,2019
+2004,25,"(20,25]",College,185.88179533213645,54.84901775768473,3.388972180930134,11843.055355387762,2019
+2004,62,"(60,65]",NoHS,1072.2378456014362,58.0754305669603,18.462847974328117,8555.640841337321,2019
+2004,62,"(60,65]",NoHS,1105.2346140035909,58.0754305669603,19.03101885278781,9459.360289138589,2019
+2004,62,"(60,65]",NoHS,1081.6654937163376,58.0754305669603,18.625182511030886,8441.864812902368,2019
+2004,62,"(60,65]",NoHS,1089.521867145422,58.0754305669603,18.760461291616526,8414.062346664688,2019
+2004,62,"(60,65]",NoHS,1106.8058886894075,58.0754305669603,19.058074608904935,8843.891752922009,2019
+2004,25,"(20,25]",College,67.56481149012568,83.88673304116487,0.8054290474868093,5844.863812080206,2019
+2004,25,"(20,25]",College,67.56481149012568,83.88673304116487,0.8054290474868093,5755.545243669809,2019
+2004,25,"(20,25]",College,67.56481149012568,83.88673304116487,0.8054290474868093,5831.96530892635,2019
+2004,25,"(20,25]",College,67.56481149012568,83.88673304116487,0.8054290474868093,5911.361534274559,2019
+2004,25,"(20,25]",College,67.56481149012568,83.88673304116487,0.8054290474868093,5822.356100264829,2019
+2004,59,"(55,60]",NoHS,-0.14141472172351885,27.424508878842364,-0.005156508812911446,4759.458144318198,2019
+2004,59,"(55,60]",NoHS,-0.14141472172351885,27.424508878842364,-0.005156508812911446,4720.068858410899,2019
+2004,59,"(55,60]",NoHS,-0.14141472172351885,27.424508878842364,-0.005156508812911446,4715.703791805098,2019
+2004,59,"(55,60]",NoHS,-0.14141472172351885,27.424508878842364,-0.005156508812911446,4753.799300421715,2019
+2004,59,"(55,60]",NoHS,-0.14141472172351885,27.424508878842364,-0.005156508812911446,4751.02247917739,2019
+2004,24,"(20,25]",College,-33.153895870736086,17.74527045101565,-1.8683229405973085,7885.818903043151,2019
+2004,24,"(20,25]",College,-33.153895870736086,17.74527045101565,-1.8683229405973085,7843.275161399717,2019
+2004,24,"(20,25]",College,-33.153895870736086,19.358476855653432,-1.7126293622142,7871.647553100751,2019
+2004,24,"(20,25]",College,-33.153895870736086,17.74527045101565,-1.8683229405973085,7777.040080895119,2019
+2004,24,"(20,25]",College,-33.153895870736086,19.358476855653432,-1.7126293622142,7837.574702812439,2019
+2004,35,"(30,35]",HS,83.43468581687613,72.59428820870036,1.1493285198555958,4793.314858985794,2019
+2004,35,"(30,35]",HS,79.93074326750448,72.59428820870036,1.1010610509426395,4859.044371629752,2019
+2004,35,"(30,35]",HS,78.2180538599641,72.59428820870036,1.0774684316085041,4804.857747446469,2019
+2004,35,"(30,35]",HS,79.77361579892279,72.59428820870036,1.0988965904532693,4781.28643874379,2019
+2004,35,"(30,35]",HS,81.59629443447038,72.59428820870036,1.1240043321299642,4828.314764224593,2019
+2004,41,"(40,45]",NoHS,42.58154398563734,59.68863697159809,0.7133944775100008,6618.233553601623,2019
+2004,41,"(40,45]",NoHS,42.58154398563734,59.68863697159809,0.7133944775100008,6509.914640747995,2019
+2004,41,"(40,45]",NoHS,42.58154398563734,61.30184337623587,0.6946209386281588,6591.285638120603,2019
+2004,41,"(40,45]",NoHS,42.58154398563734,59.68863697159809,0.7133944775100008,6624.176871869187,2019
+2004,41,"(40,45]",NoHS,42.58154398563734,59.68863697159809,0.7133944775100008,6571.83715927929,2019
+2004,66,"(65,70]",HS,3063.042872531418,185.5187365333454,16.510692826871765,3082.293059140812,2019
+2004,66,"(65,70]",HS,2811.9531777378816,230.6885158632034,12.189393855242232,3254.0736784637493,2019
+2004,66,"(65,70]",HS,2686.09407540395,190.35835574725877,14.110723245426176,3083.3103564143657,2019
+2004,66,"(65,70]",HS,2281.1765888689406,230.6885158632034,9.88855721895433,3311.343538922318,2019
+2004,66,"(65,70]",HS,2101.2656373429086,179.06591091479427,11.734593293654665,3157.740425440564,2019
+2004,44,"(40,45]",College,409.47418312387794,120.99048034783397,3.384350421179302,6439.745669307137,2019
+2004,44,"(40,45]",College,405.54599640933577,120.99048034783397,3.3518835138387484,7150.68154192158,2019
+2004,44,"(40,45]",College,405.54599640933577,120.99048034783397,3.3518835138387484,6353.154688591045,2019
+2004,44,"(40,45]",College,406.64588868940757,120.99048034783397,3.3609742478941036,6344.411465002207,2019
+2004,44,"(40,45]",College,406.64588868940757,120.99048034783397,3.3609742478941036,6631.356621958092,2019
+2004,71,"(70,75]",HS,703.4753895870736,100.01879708754274,7.033431815535111,6199.010385541301,2019
+2004,71,"(70,75]",HS,703.9310592459606,98.40559068290497,7.153364502574421,6891.3660224754185,2019
+2004,71,"(70,75]",HS,721.6864631956912,104.8584163014561,6.88248486531519,6135.485723480115,2019
+2004,71,"(70,75]",HS,695.6190161579893,104.8584163014561,6.633888253262983,6117.217767841363,2019
+2004,71,"(70,75]",HS,704.5909946140035,98.40559068290497,7.160070781795583,6411.66143633961,2019
+2004,55,"(50,55]",HS,25879.67971274686,967.9238427826717,26.73730986762936,204.72617866235854,2019
+2004,55,"(50,55]",HS,27623.794614003593,967.9238427826717,28.539223225030085,203.6316254562594,2019
+2004,55,"(50,55]",HS,45190.64560143626,967.9238427826717,46.688224428399515,209.87321215910782,2019
+2004,55,"(50,55]",HS,29415.04775583483,967.9238427826717,30.389836943441633,199.26585490784475,2019
+2004,55,"(50,55]",HS,72640.81436265708,967.9238427826717,75.04806799037303,212.13419652670527,2019
+2004,20,"(15,20]",HS,-8.48488330341113,7.420749461333816,-1.143399780254277,7111.396125428398,2019
+2004,20,"(15,20]",HS,-8.48488330341113,7.420749461333816,-1.143399780254277,7073.030369987631,2019
+2004,20,"(15,20]",HS,-8.48488330341113,7.420749461333816,-1.143399780254277,7098.616465597052,2019
+2004,20,"(15,20]",HS,-8.48488330341113,7.420749461333816,-1.143399780254277,7013.299871397804,2019
+2004,20,"(15,20]",HS,-8.48488330341113,7.420749461333816,-1.143399780254277,7067.889721995436,2019
+2004,39,"(35,40]",HS,-3.9281867145421905,56.46222416232251,-0.06957194430118618,6254.583033261655,2019
+2004,39,"(35,40]",HS,-3.771059245960503,56.46222416232251,-0.06678906652913874,6404.106168706224,2019
+2004,39,"(35,40]",HS,-3.9281867145421905,56.46222416232251,-0.06957194430118618,6225.949414373462,2019
+2004,39,"(35,40]",HS,-3.771059245960503,56.46222416232251,-0.06678906652913874,6246.727058506858,2019
+2004,39,"(35,40]",HS,-3.9281867145421905,56.46222416232251,-0.06957194430118618,6271.728512646148,2019
+2004,26,"(25,30]",HS,14.141472172351886,30.650921688117936,0.46137184115523466,6646.015783154709,2019
+2004,26,"(25,30]",HS,31.425493716337524,30.650921688117936,1.0252707581227436,6601.92228705203,2019
+2004,26,"(25,30]",HS,29.854219030520646,30.650921688117936,0.9740072202166065,6651.271653348724,2019
+2004,26,"(25,30]",HS,14.141472172351886,30.650921688117936,0.46137184115523466,6647.205361981918,2019
+2004,26,"(25,30]",HS,-1.5712746858168762,30.650921688117936,-0.051263537906137184,6638.093485847358,2019
+2004,61,"(60,65]",College,3066.185421903052,48.39619213913358,63.3559229843562,2506.497385530973,2019
+2004,61,"(60,65]",College,3066.3425493716336,48.39619213913358,63.35916967509025,2610.51844987911,2019
+2004,61,"(60,65]",College,3050.6298025134647,48.39619213913358,63.03450060168471,2479.177191555495,2019
+2004,61,"(60,65]",College,3060.8430879712746,48.39619213913358,63.245535499398315,2660.759157364348,2019
+2004,61,"(60,65]",College,3059.743195691203,48.39619213913358,63.22280866425993,2545.837292362046,2019
+2004,51,"(50,55]",College,1496.324883303411,322.6412809275572,4.637735379061372,6612.182589561993,2019
+2004,51,"(50,55]",College,3033.345780969479,322.6412809275572,9.4016046931407935,3795.8194432557466,2019
+2004,51,"(50,55]",College,1593.2725314183124,322.6412809275572,4.938216606498195,6527.90774686378,2019
+2004,51,"(50,55]",College,1768.3125314183123,322.6412809275572,5.480738628158845,6543.520895435771,2019
+2004,51,"(50,55]",College,2073.768330341113,322.6412809275572,6.427473646209386,3680.920864313894,2019
+2004,29,"(25,30]",HS,49.966535008976656,41.94336652058244,1.1912857539572341,6633.759965829736,2019
+2004,29,"(25,30]",HS,54.83748653500898,41.94336652058244,1.3074173840599834,6727.385335523946,2019
+2004,29,"(25,30]",HS,49.33802513464992,41.94336652058244,1.1763010274923635,6616.074003311087,2019
+2004,29,"(25,30]",HS,50.59504488330341,41.94336652058244,1.206270480422105,6667.01107936289,2019
+2004,29,"(25,30]",HS,54.05184919210054,41.94336652058244,1.2886864759788947,6668.476162933477,2019
+2004,47,"(45,50]",NoHS,626.97002513465,177.45270451015648,3.533166918280276,7998.271518786231,2019
+2004,47,"(45,50]",NoHS,592.4019820466787,177.45270451015648,3.338365474236954,8895.892352279103,2019
+2004,47,"(45,50]",NoHS,617.5423770197486,177.45270451015648,3.480039251723006,7839.1065530265405,2019
+2004,47,"(45,50]",NoHS,611.2572782764812,177.45270451015648,3.4446208073514932,7920.478804952026,2019
+2004,47,"(45,50]",NoHS,576.6892351885099,177.45270451015648,3.249819363308172,8224.839884954388,2019
+2004,80,"(75,80]",College,1278.074829443447,114.53765472928282,11.158555956678699,8913.924254431868,2019
+2004,80,"(75,80]",College,1274.3037701974865,114.53765472928282,11.125631768953067,9910.60586395058,2019
+2004,80,"(75,80]",College,1275.2465350089767,114.53765472928282,11.133862815884475,8818.940993529757,2019
+2004,80,"(75,80]",College,1276.6606822262117,114.53765472928282,11.146209386281587,8791.555050841065,2019
+2004,80,"(75,80]",College,1282.160143626571,114.53765472928282,11.1942238267148,9219.7667121195609,2019
+2004,30,"(25,30]",NoHS,13.764366247755836,12.905651237102285,1.0665379061371845,5255.545053097127,2019
+2004,30,"(25,30]",NoHS,18.38391382405745,12.905651237102285,1.4244855595667874,5333.2464423045185,2019
+2004,30,"(25,30]",NoHS,14.45572710951526,12.905651237102285,1.1201083032490977,5277.193112380513,2019
+2004,30,"(25,30]",NoHS,19.326678635547577,12.905651237102285,1.497536101083033,5284.113934700294,2019
+2004,30,"(25,30]",NoHS,15.2413644524237,12.905651237102285,1.1809837545126358,5309.724302276654,2019
+2004,51,"(50,55]",College,748.2881436265709,156.48102124986525,4.781973798801593,228.73152024225533,2019
+2004,51,"(50,55]",College,748.1153034111311,154.86781484522746,4.8306699759326115,233.90953758828277,2019
+2004,51,"(50,55]",College,748.2881436265709,154.86781484522746,4.831786025872443,224.58268189628916,2019
+2004,51,"(50,55]",College,748.2724308797128,154.86781484522746,4.831684566787004,220.80889319661355,2019
+2004,51,"(50,55]",College,748.1153034111311,154.86781484522746,4.8306699759326115,231.95970543779427,2019
+2004,40,"(35,40]",HS,291.7857091561939,48.39619213913358,6.029104693140794,6965.991370876528,2019
+2004,40,"(35,40]",HS,242.2905565529623,48.39619213913358,5.0063971119133575,6686.9682792451495,2019
+2004,40,"(35,40]",HS,176.61127468581688,48.39619213913358,3.649280385078219,6959.692660267788,2019
+2004,40,"(35,40]",HS,132.14420107719928,48.39619213913358,2.7304669073405536,6933.745246777177,2019
+2004,40,"(35,40]",HS,169.69766606822265,48.39619213913358,3.506425992779784,6863.5533293694125,2019
+2004,61,"(60,65]",College,1516.2800718132853,241.98096069566793,6.266113116726834,737.0170140798839,2019
+2004,61,"(60,65]",College,1516.2800718132853,241.98096069566793,6.266113116726834,723.8887970825349,2019
+2004,61,"(60,65]",College,1516.2800718132853,241.98096069566793,6.266113116726834,744.4168328381566,2019
+2004,61,"(60,65]",College,1516.2800718132853,241.98096069566793,6.266113116726834,691.4940683113751,2019
+2004,61,"(60,65]",College,1516.2800718132853,241.98096069566793,6.266113116726834,743.5024301572955,2019
+2004,23,"(20,25]",HS,3.4568043087971274,67.75466899478702,0.05101942582086986,6304.026693745511,2019
+2004,23,"(20,25]",HS,5.342333931777379,67.75466899478702,0.07884820354134432,6270.016670656024,2019
+2004,23,"(20,25]",HS,7.3849910233393175,67.75466899478702,0.10899604607185832,6292.697931391001,2019
+2004,23,"(20,25]",HS,5.499461400359067,67.75466899478702,0.08116726835138387,6217.067481650142,2019
+2004,23,"(20,25]",HS,4.085314183123878,67.75466899478702,0.06029568506102802,6265.459649559974,2019
+2004,31,"(30,35]",College,69.29321364452424,129.0565123710229,0.5369214801444043,5244.1952655345485,2019
+2004,31,"(30,35]",College,69.45034111310592,129.0565123710229,0.538138989169675,5209.2215909052,2019
+2004,31,"(30,35]",College,69.45034111310592,129.0565123710229,0.538138989169675,5202.754983218083,2019
+2004,31,"(30,35]",College,69.29321364452424,129.0565123710229,0.5369214801444043,5231.736256226116,2019
+2004,31,"(30,35]",College,69.45034111310592,129.0565123710229,0.538138989169675,5185.7999380895035,2019
+2004,52,"(50,55]",College,35713.65946140036,4500.845868939423,7.934877243378234,19.754206743799788,2019
+2004,52,"(50,55]",College,43073.855770197486,8759.71077718318,4.917269173132284,19.816306324632045,2019
+2004,52,"(50,55]",College,67761.22082585278,9050.08793001798,7.48735496824263,20.995578422063275,2019
+2004,52,"(50,55]",College,121150.18065350091,11744.142625763081,10.315796096322453,20.4852844289174,2019
+2004,52,"(50,55]",College,48965.94728904847,8033.7678950961745,6.0950164267177005,20.067007640569997,2019
+2004,54,"(50,55]",NoHS,7.936508438061042,74.20749461333816,0.10695022759378435,3769.717236215147,2019
+2004,54,"(50,55]",NoHS,8.07792315978456,41.94336652058244,0.19259119688975287,3690.092230822445,2019
+2004,54,"(50,55]",NoHS,8.07792315978456,45.16977932985802,0.17883468282619908,3802.1707268710124,2019
+2004,54,"(50,55]",NoHS,7.920795691202873,56.46222416232251,0.14028486848891183,3799.4468223677977,2019
+2004,54,"(50,55]",NoHS,8.07792315978456,41.94336652058244,0.19259119688975287,3753.338445730836,2019
+2004,59,"(55,60]",College,62.53673249551167,129.0565123710229,0.4845685920577617,2405.422788676246,2019
+2004,59,"(55,60]",College,62.53673249551167,129.0565123710229,0.4845685920577617,2011.3058268564841,2019
+2004,59,"(55,60]",College,62.37960502692998,129.0565123710229,0.4833510830324909,2417.406272523576,2019
+2004,59,"(55,60]",College,62.37960502692998,129.0565123710229,0.4833510830324909,2145.326287211742,2019
+2004,59,"(55,60]",College,62.37960502692998,129.0565123710229,0.4833510830324909,2155.3055684209007,2019
+2004,59,"(55,60]",College,2682.684409335727,222.62248384001447,12.050374980379846,3236.3815281013076,2019
+2004,59,"(55,60]",College,1761.587475763016,329.0941065461084,5.352838111417852,3369.3678989897417,2019
+2004,59,"(55,60]",College,1282.2072818671454,170.99987889160533,7.4982935086165785,5789.040846709739,2019
+2004,59,"(55,60]",College,1806.4945062836625,324.25448733219497,5.5712243834976745,3440.3060600180697,2019
+2004,59,"(55,60]",College,1556.1904488330342,138.02593998080897,11.274623082077223,6075.318148605881,2019
+2004,24,"(20,25]",HS,0.001571274685816876,32.264128092755726,4.870036101083032e-5,9561.664823292147,2019
+2004,24,"(20,25]",HS,0.001571274685816876,32.264128092755726,4.870036101083032e-5,9634.083638894677,2019
+2004,24,"(20,25]",HS,0.001571274685816876,32.264128092755726,4.870036101083032e-5,9552.491441664251,2019
+2004,24,"(20,25]",HS,0.001571274685816876,32.264128092755726,4.870036101083032e-5,9532.340235303604,2019
+2004,24,"(20,25]",HS,0.001571274685816876,32.264128092755726,4.870036101083032e-5,9509.423170384089,2019
+2004,79,"(75,80]",HS,1125.6611849192102,211.33003900755,5.326555515749442,1197.8587400451045,2019
+2004,79,"(75,80]",HS,1117.8048114901258,212.94324541218776,5.249308609561318,1172.0403369152975,2019
+2004,79,"(75,80]",HS,1120.7902333931777,211.33003900755,5.303506489927521,1196.019898935766,2019
+2004,79,"(75,80]",HS,1112.9338599640935,211.33003900755,5.266330641827651,1123.871858569612,2019
+2004,79,"(75,80]",HS,1156.929551166966,212.94324541218776,5.433041789738541,1189.0208200645625,2019
+2004,61,"(60,65]",HS,13109.144703770198,1839.0553012870762,7.128194945848375,332.74135987264606,2019
+2004,61,"(60,65]",HS,13029.009694793538,1839.0553012870762,7.084620938628159,332.1707419070056,2019
+2004,61,"(60,65]",HS,13029.009694793538,1855.187365333454,7.023015539161828,340.7072661943847,2019
+2004,61,"(60,65]",HS,13029.009694793538,1855.187365333454,7.023015539161828,330.69922590824376,2019
+2004,61,"(60,65]",HS,13029.009694793538,1839.0553012870762,7.084620938628159,333.05463017662714,2019
+2004,63,"(60,65]",College,76092.11921005386,3758.7709228060417,20.243883113059916,16.511059011265516,2019
+2004,63,"(60,65]",College,83750.51202872531,4000.7518835017095,20.93369308256667,17.173365349495242,2019
+2004,63,"(60,65]",College,91851.21867145422,4049.148075640843,22.68408488788528,17.190590848505103,2019
+2004,63,"(60,65]",College,79063.39964093358,4033.0160115944655,19.604038122743685,16.26748258254561,2019
+2004,63,"(60,65]",College,96410.58642728906,3936.223627316198,24.49316795880926,16.65528912184059,2019
+2004,77,"(75,80]",HS,9480.914326750448,438.7921420614778,21.606846198768313,350.99059067841506,2019
+2004,77,"(75,80]",HS,9473.215080789947,440.4053484661156,21.51021806112059,356.67339457451305,2019
+2004,77,"(75,80]",HS,9479.500179533214,438.7921420614778,21.603623380760247,358.1440850781791,2019
+2004,77,"(75,80]",HS,9477.928904847397,438.7921420614778,21.60004247186239,347.82791671237203,2019
+2004,77,"(75,80]",HS,9487.199425493718,440.4053484661156,21.541971410058057,350.2300407697719,2019
+2004,85,"(80,85]",College,1255.448473967684,97.59898748058608,12.863335024017662,9527.621141191357,2019
+2004,85,"(80,85]",College,1255.448473967684,97.59898748058608,12.863335024017662,10442.851053073717,2019
+2004,85,"(80,85]",College,1255.448473967684,97.59898748058608,12.863335024017662,9406.18789852356,2019
+2004,85,"(80,85]",College,1255.448473967684,97.59898748058608,12.863335024017662,9428.685184767575,2019
+2004,85,"(80,85]",College,1255.448473967684,97.59898748058608,12.863335024017662,9855.541043307177,2019
+2004,55,"(50,55]",HS,-25.14039497307002,145.18857641740072,-0.17315683914961896,7023.057383812511,2019
+2004,55,"(50,55]",HS,-10.998922800718134,145.18857641740072,-0.07575611712795831,6817.543784420178,2019
+2004,55,"(50,55]",HS,-42.7543842010772,145.18857641740072,-0.29447484957882075,6962.519462156584,2019
+2004,55,"(50,55]",HS,-33.153895870736086,145.18857641740072,-0.22835058162856,7000.9880160174125,2019
+2004,55,"(50,55]",HS,-14.927109515260323,145.18857641740072,-0.10281187324508625,6884.219218557931,2019
+2004,21,"(20,25]",NoHS,58.812811490125675,96.79238427826716,0.6076181708784597,6844.925851943519,2019
+2004,21,"(20,25]",NoHS,58.844236983842016,96.79238427826716,0.6079428399518653,6926.768364930067,2019
+2004,21,"(20,25]",NoHS,61.751095152603234,96.79238427826716,0.6379747292418773,6855.307962809837,2019
+2004,21,"(20,25]",NoHS,64.06086894075403,96.79238427826716,0.6618379061371841,6776.539030080974,2019
+2004,21,"(20,25]",NoHS,57.414377019748656,96.79238427826716,0.5931703971119134,6886.146377984764,2019
+2004,42,"(40,45]",HS,76.23824775583483,75.82070101797595,1.005507028189569,8319.878679721125,2019
+2004,42,"(40,45]",HS,84.0946211849192,75.82070101797595,1.1091248175743142,7986.625572213804,2019
+2004,42,"(40,45]",HS,71.5244236983842,75.82070101797595,0.9433363545587218,8312.355772310922,2019
+2004,42,"(40,45]",HS,74.66697307001795,75.82070101797595,0.9847834703126199,8281.365304364466,2019
+2004,42,"(40,45]",HS,77.80952244165171,75.82070101797595,1.0262305860665182,8197.531115368602,2019
+2004,44,"(40,45]",College,5265.9699820466785,6823.863091617837,0.7716992429867456,36.54488431946357,2019
+2004,44,"(40,45]",College,55758.08066068222,6533.485938783034,8.53420075945982,33.830217524941915,2019
+2004,44,"(40,45]",College,12129.392086175943,6839.995155664214,1.7733041924936994,38.52999093877983,2019
+2004,44,"(40,45]",College,15992.512315978456,6823.863091617837,2.3436156472164607,35.56804449827641,2019
+2004,44,"(40,45]",College,22285.734549371635,6646.4103871076795,3.353048224738004,37.004243632446034,2019
+2004,45,"(40,45]",College,28.125816876122084,43.55657292522023,0.6457307126621206,3582.1935231271636,2019
+2004,45,"(40,45]",College,33.62527827648115,45.16977932985802,0.7444198040226919,3574.1775806392397,2019
+2004,45,"(40,45]",College,41.010269299820465,54.84901775768473,0.7476937778721596,3599.7931163240514,2019
+2004,45,"(40,45]",College,48.39526032315978,59.68863697159809,0.8107951995316615,3608.6430294434736,2019
+2004,45,"(40,45]",College,39.2818671454219,62.91504978087366,0.6243636027029528,3573.066469269489,2019
+2004,80,"(75,80]",College,1809.794183123878,204.87721338899885,8.833555246027458,1959.5408268047972,2019
+2004,80,"(75,80]",College,1773.7020035906644,204.87721338899885,8.657390318087495,963.5425670329448,2019
+2004,80,"(75,80]",College,1843.8122800718133,204.87721338899885,8.999596634355722,1983.1933371252449,2019
+2004,80,"(75,80]",College,1844.8336086175943,204.87721338899885,9.004581710679666,1938.0610807251912,2019
+2004,80,"(75,80]",College,1759.8276481149012,204.87721338899885,8.589669973563772,982.1813918366208,2019
+2004,53,"(50,55]",College,827.5903770197486,96.79238427826716,8.550160048134778,6175.330869477564,2019
+2004,53,"(50,55]",College,827.5903770197486,96.79238427826716,8.550160048134778,6873.666238946571,2019
+2004,53,"(50,55]",College,827.5903770197486,96.79238427826716,8.550160048134778,6093.312613709176,2019
+2004,53,"(50,55]",College,829.1616517055655,96.79238427826716,8.566393501805054,6108.573571147297,2019
+2004,53,"(50,55]",College,827.5903770197486,96.79238427826716,8.550160048134778,6386.870804692425,2019
+2004,41,"(40,45]",College,3005.2199640933572,322.6412809275572,9.314431046931409,1822.6122871608864,2019
+2004,41,"(40,45]",College,3331.5737163375225,322.6412809275572,10.325937545126354,1766.3791263658684,2019
+2004,41,"(40,45]",College,3102.638994614004,322.6412809275572,9.616373285198557,1911.6110552323157,2019
+2004,41,"(40,45]",College,3019.3614362657095,322.6412809275572,9.358261371841156,1684.8541753576385,2019
+2004,41,"(40,45]",College,3148.205960502693,322.6412809275572,9.757604332129965,1765.288425562881,2019
+2004,67,"(65,70]",College,31668.25565529623,4033.0160115944655,7.852251407942238,33.44368509066569,2019
+2004,67,"(65,70]",College,31354.000718132855,4033.0160115944655,7.774330830324909,33.830217524941915,2019
+2004,67,"(65,70]",College,29048.940754039497,4033.0160115944655,7.202783393501805,34.874813183195144,2019
+2004,67,"(65,70]",College,28164.313105924597,4033.0160115944655,6.983436967509025,32.793246822269836,2019
+2004,67,"(65,70]",College,28164.313105924597,4033.0160115944655,6.983436967509025,34.94618849137586,2019
+2004,38,"(35,40]",HS,104.09694793536804,40.33016011594465,2.581119133574007,8567.188021825505,2019
+2004,38,"(35,40]",HS,105.66822262118492,40.33016011594465,2.6200794223826716,7985.282122950302,2019
+2004,38,"(35,40]",HS,105.66822262118492,40.33016011594465,2.6200794223826716,8561.966347193036,2019
+2004,38,"(35,40]",HS,104.09694793536804,40.33016011594465,2.581119133574007,8560.265987852734,2019
+2004,38,"(35,40]",HS,105.66822262118492,40.33016011594465,2.6200794223826716,8363.28360880734,2019
+2004,85,"(80,85]",College,1704.0473967684022,61.30184337623587,27.79765342960289,8500.9348448789,2019
+2004,85,"(80,85]",College,1765.3271095152604,61.30184337623587,28.797292418772564,4874.9922730140615,2019
+2004,85,"(80,85]",College,2018.3023339317774,61.30184337623587,32.92400722021661,4620.205549213749,2019
+2004,85,"(80,85]",College,2615.38671454219,61.30184337623587,42.66407942238266,4958.445284502146,2019
+2004,85,"(80,85]",College,1658.480430879713,61.30184337623587,27.0543321299639,8792.60737107386,2019
+2004,63,"(60,65]",HS,175.04,88.72635225507824,1.9728073514932718,4860.656325508962,2019
+2004,63,"(60,65]",HS,170.95468581687612,88.72635225507824,1.9267633738103052,4742.495857953523,2019
+2004,63,"(60,65]",HS,176.1398922800718,88.72635225507824,1.9852038070233013,4853.646897208744,2019
+2004,63,"(60,65]",HS,172.05457809694792,88.72635225507824,1.9391598293403345,4878.716672979277,2019
+2004,63,"(60,65]",HS,171.89745062836624,88.72635225507824,1.937388907121759,4832.899105614133,2019
+2004,41,"(40,45]",College,36709.69048473968,8211.220599606331,4.470674005092452,223.8533298917561,2019
+2004,41,"(40,45]",College,40259.200000000004,10469.709566099233,3.845302464775022,216.51629027378266,2019
+2004,41,"(40,45]",College,71519.70987432676,7904.711382725152,9.047731967877404,232.18788864895015,2019
+2004,41,"(40,45]",College,45197.71633752244,8211.220599606331,5.504384614839035,219.0605721700319,2019
+2004,41,"(40,45]",College,14583.550305206463,5968.863697159808,2.4432707873938924,236.317487819613,2019
+2004,58,"(55,60]",College,7684.004596050269,322.6412809275572,23.815937545126356,2741.5979583973067,2019
+2004,58,"(55,60]",College,7683.847468581688,322.6412809275572,23.81545054151625,2746.436036111392,2019
+2004,58,"(55,60]",College,7685.418743267504,322.6412809275572,23.82032057761733,2773.0833076559597,2019
+2004,58,"(55,60]",College,7684.004596050269,322.6412809275572,23.815937545126356,2677.894598107342,2019
+2004,58,"(55,60]",College,7685.575870736086,322.6412809275572,23.820807581227434,2675.1490523499106,2019
+2004,59,"(55,60]",College,613.4256373429084,246.82057990958126,2.48530992661806,6400.858347178216,2019
+2004,59,"(55,60]",College,588.1281149012567,246.82057990958126,2.3828163563861167,7079.644992747996,2019
+2004,59,"(55,60]",College,604.7836265709155,246.82057990958126,2.450296595172365,6316.8500672236005,2019
+2004,59,"(55,60]",College,605.1607324955116,246.82057990958126,2.45182444963545,6296.725169728289,2019
+2004,59,"(55,60]",College,614.1012854578097,246.82057990958126,2.488047332531087,6618.921883086415,2019
+2004,25,"(20,25]",NoHS,6.913608617594255,35.4905409020313,0.19480144404332128,5955.315559564787,2019
+2004,25,"(20,25]",NoHS,6.913608617594255,32.264128092755726,0.2142815884476534,5864.040554780147,2019
+2004,25,"(20,25]",NoHS,6.756481149012568,33.87733449739351,0.19943957366340037,5941.1903736989225,2019
+2004,25,"(20,25]",NoHS,6.756481149012568,37.10374730666908,0.182097002040496,6008.142361382288,2019
+2004,25,"(20,25]",NoHS,6.756481149012568,32.264128092755726,0.20941155234657038,5931.22056610379,2019
+2004,48,"(45,50]",College,5850.091346499103,1548.6781484522746,3.777473939530686,345.74591588330355,2019
+2004,48,"(45,50]",College,4875.90104129264,1645.470532730542,2.96322598570114,336.2655182026535,2019
+2004,48,"(45,50]",College,8238.271741472172,1645.470532730542,5.006635839173214,358.150333000841,2019
+2004,48,"(45,50]",College,6557.007827648115,1566.4234189032904,4.185974078604438,341.83476367511975,2019
+2004,48,"(45,50]",College,5441.559928186714,1645.470532730542,3.306993239895236,351.48256204525956,2019
+2004,68,"(65,70]",College,805.0190161579893,62.91504978087366,12.795333055632696,6417.9010609968,2019
+2004,68,"(65,70]",College,805.0190161579893,62.91504978087366,12.795333055632696,7195.4875276357125,2019
+2004,68,"(65,70]",College,805.0190161579893,64.52825618551145,12.475449729241877,6405.57870722409,2019
+2004,68,"(65,70]",College,803.4477414721723,64.52825618551145,12.45109954873646,6389.421536333351,2019
+2004,68,"(65,70]",College,805.0190161579893,62.91504978087366,12.795333055632696,6693.930018214652,2019
+2004,78,"(75,80]",NoHS,230.03461400359066,59.68863697159809,3.8539096497219236,9240.730870606578,2019
+2004,78,"(75,80]",NoHS,229.87748653500898,77.43390742261373,2.9686928399518653,8398.390407128065,2019
+2004,78,"(75,80]",NoHS,231.44876122082587,79.04711382725151,2.9279849701613503,9170.95779103089,2019
+2004,78,"(75,80]",NoHS,229.87748653500898,40.33016011594465,5.699890252707582,9022.377435345232,2019
+2004,78,"(75,80]",NoHS,229.87748653500898,70.9810818040626,3.2385740072202163,8880.511174034416,2019
+2004,75,"(70,75]",College,40855.812998204674,4355.6572925220225,9.379942051076348,19.754206743799788,2019
+2004,75,"(70,75]",College,40852.82757630162,4355.6572925220225,9.379256638588048,19.816306324632045,2019
+2004,75,"(70,75]",College,40857.54140035906,4355.6572925220225,9.38033886883273,20.246356702841897,2019
+2004,75,"(70,75]",College,40786.67691202872,4355.6572925220225,9.364069340820965,19.17777086767523,2019
+2004,75,"(70,75]",College,40818.10240574506,4355.6572925220225,9.371284209118866,20.067007640569997,2019
+2004,53,"(50,55]",HS,-24.824568761220828,24.19809606956679,-1.0258893381468113,4224.685143257313,2019
+2004,53,"(50,55]",HS,-24.824568761220828,20.97168326029122,-1.1837184670924745,4215.03844377678,2019
+2004,53,"(50,55]",HS,-24.824568761220828,19.358476855653432,-1.282361672683514,4244.739079030739,2019
+2004,53,"(50,55]",HS,-24.824568761220828,25.81130247420457,-0.9617712545126357,4245.330808727713,2019
+2004,53,"(50,55]",HS,-24.824568761220828,19.358476855653432,-1.282361672683514,4213.095726913138,2019
+2004,60,"(55,60]",HS,343.32351885098745,80.6603202318893,4.256411552346571,7864.480678233273,2019
+2004,60,"(55,60]",HS,291.31432675044886,80.6603202318893,3.6116187725631774,6808.773391503253,2019
+2004,60,"(55,60]",HS,318.1831238779174,80.6603202318893,3.9447292418772566,7885.898906226446,2019
+2004,60,"(55,60]",HS,369.720933572711,80.6603202318893,4.583677978339351,7772.653221810881,2019
+2004,60,"(55,60]",HS,338.4525673249551,80.6603202318893,4.196023104693141,7511.532988891132,2019
+2004,95,"(90,95]",College,3.1425493716337525,120.99048034783397,0.02597352587244284,11184.97548451249,2019
+2004,95,"(90,95]",College,3.1425493716337525,120.99048034783397,0.02597352587244284,11169.806947232815,2019
+2004,95,"(90,95]",College,3.1425493716337525,120.99048034783397,0.02597352587244284,11136.543442103963,2019
+2004,95,"(90,95]",College,3.1425493716337525,120.99048034783397,0.02597352587244284,11201.955159188312,2019
+2004,95,"(90,95]",College,3.1425493716337525,120.99048034783397,0.02597352587244284,11188.54138017428,2019
+2004,27,"(25,30]",HS,23.25643662477558,67.75466899478702,0.34324478253395213,4930.22507497398,2019
+2004,27,"(25,30]",HS,23.25643662477558,67.75466899478702,0.34324478253395213,5000.036639082011,2019
+2004,27,"(25,30]",HS,21.528034470377023,67.75466899478702,0.3177350696235173,4917.89433203468,2019
+2004,27,"(25,30]",HS,23.413564093357273,67.75466899478702,0.3455638473439917,4967.248176583931,2019
+2004,27,"(25,30]",HS,23.099309156193897,67.75466899478702,0.3409257177239126,4956.997133416812,2019
+2004,48,"(45,50]",HS,43.13149012567325,22.58488966492901,1.9097498710675604,7930.187536590948,2019
+2004,48,"(45,50]",HS,41.245960502693,22.58488966492901,1.8262635379061372,7443.62356515024,2019
+2004,48,"(45,50]",HS,42.97436265709156,20.97168326029122,2.0491613440710914,7937.170439184896,2019
+2004,48,"(45,50]",HS,42.97436265709156,20.97168326029122,2.0491613440710914,7942.963476313023,2019
+2004,48,"(45,50]",HS,43.13149012567325,22.58488966492901,1.9097498710675604,7701.634648835943,2019
+2004,55,"(50,55]",HS,1295.8302333931777,75.82070101797595,17.0907181811199,1019.5635426970812,2019
+2004,55,"(50,55]",HS,1296.1444883303411,77.43390742261373,16.73871991576414,988.9772346382515,2019
+2004,55,"(50,55]",HS,1293.7875763016157,75.82070101797595,17.063777555879867,1026.5966163087958,2019
+2004,55,"(50,55]",HS,1294.2589587073608,75.82070101797595,17.069994623242952,964.5278512628616,2019
+2004,55,"(50,55]",HS,1297.5586355475762,75.82070101797595,17.11351409478454,1029.3866000346259,2019
+2004,57,"(55,60]",HS,285.3434829443447,104.8584163014561,2.72122632602055,6539.628029547477,2019
+2004,57,"(55,60]",HS,285.3434829443447,104.8584163014561,2.72122632602055,5831.0429703861,2019
+2004,57,"(55,60]",HS,285.3434829443447,104.8584163014561,2.72122632602055,6555.504403267076,2019
+2004,57,"(55,60]",HS,285.3434829443447,104.8584163014561,2.72122632602055,6438.553026012283,2019
+2004,57,"(55,60]",HS,285.3434829443447,104.8584163014561,2.72122632602055,6304.332783083765,2019
+2004,61,"(60,65]",HS,11906.726750448832,1258.300995617473,9.462542580764602,1747.032965393392,2019
+2004,61,"(60,65]",HS,11500.552244165172,1266.367027640662,9.081531651682036,1790.4722328977018,2019
+2004,61,"(60,65]",HS,10714.993464991025,1277.6594724731267,8.386423531342304,1757.261032609343,2019
+2004,61,"(60,65]",HS,10729.292064631958,1251.848169998922,8.570761472328707,1705.0999141796187,2019
+2004,61,"(60,65]",HS,11849.925170556553,1279.2726788777645,9.26301746782542,1699.2978178032288,2019
+2004,51,"(50,55]",HS,223.43526032315978,90.33955865971603,2.4732826199071685,10895.987426717022,2019
+2004,51,"(50,55]",HS,199.3947576301616,96.79238427826716,2.060025270758123,9565.240000217565,2019
+2004,51,"(50,55]",HS,299.4063913824058,114.53765472928282,2.614043321299639,10645.881170122839,2019
+2004,51,"(50,55]",HS,211.99638061041293,108.08482911073166,1.961388867934695,10314.945421451484,2019
+2004,51,"(50,55]",HS,303.5702692998205,96.79238427826716,3.136303249097473,9939.16724421729,2019
+2004,52,"(50,55]",College,20375.975870736085,932.4333018806403,21.852475484991192,332.74135987264606,2019
+2004,52,"(50,55]",College,20375.975870736085,932.4333018806403,21.852475484991192,332.1707419070056,2019
+2004,52,"(50,55]",College,20377.547145421904,932.4333018806403,21.854160618590186,340.7072661943847,2019
+2004,52,"(50,55]",College,20375.975870736085,932.4333018806403,21.852475484991192,330.69922590824376,2019
+2004,52,"(50,55]",College,20375.975870736085,932.4333018806403,21.852475484991192,333.05463017662714,2019
+2004,50,"(45,50]",HS,62.85098743267505,48.39619213913358,1.298676293622142,7159.003345775114,2019
+2004,50,"(45,50]",HS,62.85098743267505,48.39619213913358,1.298676293622142,7172.0080868590285,2019
+2004,50,"(45,50]",HS,62.85098743267505,48.39619213913358,1.298676293622142,7103.506984269641,2019
+2004,50,"(45,50]",HS,62.85098743267505,48.39619213913358,1.298676293622142,7183.376599090423,2019
+2004,50,"(45,50]",HS,62.85098743267505,48.39619213913358,1.298676293622142,7125.934872250284,2019
+2004,73,"(70,75]",College,57225.824057450634,1038.9049245867343,55.082830683678274,18.875803891614044,2019
+2004,73,"(70,75]",College,64536.965170556556,1000.1879708754274,64.5248363805753,19.12902112287269,2019
+2004,73,"(70,75]",College,67354.26068222622,1071.16905267949,62.87920708103171,19.897276336486822,2019
+2004,73,"(70,75]",College,67968.62908438062,1124.404864032537,60.44853705152044,18.279329651680335,2019
+2004,73,"(70,75]",College,98408.93357271094,1087.3011167258678,90.50752552250157,19.504203208628326,2019
+2004,83,"(80,85]",HS,9413.349515260325,1158.2821985299304,8.1269914423338,19.741578807765016,2019
+2004,83,"(80,85]",HS,15913.870017953323,1192.159533027324,13.348775543103912,20.616388427229808,2019
+2004,83,"(80,85]",HS,12185.235188509874,1155.0557857206547,10.549477643547185,20.966807505935712,2019
+2004,83,"(80,85]",HS,11688.492409335728,1196.9991522412374,9.764829312911731,18.920925052792064,2019
+2004,83,"(80,85]",HS,5747.565673249551,1196.9991522412374,4.801645567156771,19.70575690641429,2019
+2004,58,"(55,60]",NoHS,0,2.097168326029122,0,5960.3642089968935,2019
+2004,58,"(55,60]",NoHS,0,2.097168326029122,0,5914.677492114871,2019
+2004,58,"(55,60]",NoHS,0,2.097168326029122,0,5944.763486115448,2019
+2004,58,"(55,60]",NoHS,0,2.097168326029122,0,5941.025625239094,2019
+2004,58,"(55,60]",NoHS,0,2.097168326029122,0,5978.671040672081,2019
+2004,51,"(50,55]",HS,134.02973070017953,96.79238427826716,1.3847135980746088,5721.572576497537,2019
+2004,51,"(50,55]",HS,126.95899461400359,96.79238427826716,1.3116630565583633,5317.930200683706,2019
+2004,51,"(50,55]",HS,133.08696588868943,96.79238427826716,1.3749735258724431,5752.645056977172,2019
+2004,51,"(50,55]",HS,114.2316696588869,96.79238427826716,1.1801720818291217,5724.125375551337,2019
+2004,51,"(50,55]",HS,117.37421903052065,96.79238427826716,1.2126389891696752,5543.18963557768,2019
+2004,45,"(40,45]",HS,3.1268366247755837,22.58488966492901,0.13844816915936048,5790.955978457198,2019
+2004,45,"(40,45]",HS,3.111123877917415,41.94336652058244,0.07417439600111081,5795.397759278278,2019
+2004,45,"(40,45]",HS,1.4141472172351885,27.424508878842364,0.051565088129114464,5800.72014603314,2019
+2004,45,"(40,45]",HS,3.441091561938959,30.650921688117936,0.11226714801444045,5802.060117725386,2019
+2004,45,"(40,45]",HS,3.111123877917415,29.03771528348015,0.10714079422382672,5790.1572297582115,2019
+2004,67,"(65,70]",HS,228077.43425493716,2742.4508878842366,83.16554920365257,158.2451564383721,2019
+2004,67,"(65,70]",HS,232741.92028725316,2629.5264395595914,88.51096409824811,161.12852788844637,2019
+2004,67,"(65,70]",HS,234250.34398563733,3016.6959766726595,77.65129326820981,158.11438675172911,2019
+2004,67,"(65,70]",HS,233881.0944344704,2726.318823837859,85.7864063401192,155.49601764185135,2019
+2004,67,"(65,70]",HS,226104.85601436268,2597.2623114668354,87.05507141735993,156.0824906937508,2019
+2004,42,"(40,45]",NoHS,34.2537881508079,48.39619213913358,0.7077785800240673,5010.639858254992,2019
+2004,42,"(40,45]",NoHS,35.825062836624774,48.39619213913358,0.7402454873646209,4778.090316893196,2019
+2004,42,"(40,45]",NoHS,34.2537881508079,48.39619213913358,0.7077785800240673,5007.589289824574,2019
+2004,42,"(40,45]",NoHS,34.2537881508079,48.39619213913358,0.7077785800240673,4980.55810806404,2019
+2004,42,"(40,45]",NoHS,35.825062836624774,48.39619213913358,0.7402454873646209,4919.042464382523,2019
+2004,35,"(30,35]",HS,16.498384201077197,83.88673304116487,0.19667453485143013,9478.725744151525,2019
+2004,35,"(30,35]",HS,18.211073608617593,83.88673304116487,0.2170912246598167,9099.054966361524,2019
+2004,35,"(30,35]",HS,16.65551166965889,83.88673304116487,0.19854762565953904,9470.154997042708,2019
+2004,35,"(30,35]",HS,18.226786355475763,83.88673304116487,0.2172785337406276,9434.847974229579,2019
+2004,35,"(30,35]",HS,16.65551166965889,83.88673304116487,0.19854762565953904,9339.336811619472,2019
+2004,40,"(35,40]",College,541.775511669659,233.91492867247896,2.3161219967633517,8723.885983216029,2019
+2004,40,"(35,40]",College,541.775511669659,233.91492867247896,2.3161219967633517,9686.01691796532,2019
+2004,40,"(35,40]",College,543.3467863554758,233.91492867247896,2.3228392879372595,8611.258717192537,2019
+2004,40,"(35,40]",College,541.6183842010772,233.91492867247896,2.3154502676459607,8598.440398348004,2019
+2004,40,"(35,40]",College,540.204236983842,233.91492867247896,2.3094047055894436,8984.868830965392,2019
+2004,62,"(60,65]",College,3097.9251705565534,229.07530945856564,13.52361010830325,940.7994973880102,2019
+2004,62,"(60,65]",College,2347.484380610413,232.3017222678412,10.105324909747294,945.238997447891,2019
+2004,62,"(60,65]",College,3844.437773788151,183.90553012870762,20.904416365824307,1790.0007991036302,2019
+2004,62,"(60,65]",College,4595.507073608617,216.16965822146332,21.25879788781723,1677.5924890155159,2019
+2004,62,"(60,65]",College,5675.522728904847,191.97156215189653,29.564393107423474,1713.4059457003655,2019
+2004,29,"(25,30]",College,549.8675763016158,124.21689315710954,4.4266730742182006,6045.412635849358,2019
+2004,29,"(25,30]",College,553.0101256732496,124.21689315710954,4.451971963054995,6682.77654769955,2019
+2004,29,"(25,30]",College,551.4388509874326,124.21689315710954,4.439322518636597,5998.289736717355,2019
+2004,29,"(25,30]",College,551.4388509874326,124.21689315710954,4.439322518636597,5996.370763427431,2019
+2004,29,"(25,30]",College,549.8675763016158,124.21689315710954,4.4266730742182006,6282.832855808875,2019
+2004,82,"(80,85]",HS,11.784560143626571,38.716953711306864,0.3043772563176895,9330.53035042904,2019
+2004,82,"(80,85]",HS,11.941687612208257,38.716953711306864,0.3084356197352587,9300.006056223143,2019
+2004,82,"(80,85]",HS,11.784560143626571,38.716953711306864,0.3043772563176895,9273.82310407367,2019
+2004,82,"(80,85]",HS,11.784560143626571,38.716953711306864,0.3043772563176895,9348.347245759007,2019
+2004,82,"(80,85]",HS,11.784560143626571,38.716953711306864,0.3043772563176895,9317.093609489255,2019
+2004,44,"(40,45]",HS,42.42441651705566,56.46222416232251,0.7513769984528109,6878.045090832801,2019
+2004,44,"(40,45]",HS,39.046175942549375,56.46222416232251,0.6915451263537907,6765.783756618022,2019
+2004,44,"(40,45]",HS,37.67916696588869,56.46222416232251,0.6673340897369779,6851.172583568387,2019
+2004,44,"(40,45]",HS,25.07754398563734,56.46222416232251,0.4441472924187726,6901.32593369839,2019
+2004,44,"(40,45]",HS,34.5051921005386,56.46222416232251,0.6111199587416195,6831.165305066895,2019
+2004,63,"(60,65]",College,13106.002154398564,811.4428215328064,16.151479570232038,414.12414841656954,2019
+2004,63,"(60,65]",College,13107.573429084381,811.4428215328064,16.153415966296087,408.891319696838,2019
+2004,63,"(60,65]",College,13107.573429084381,813.0560279374441,16.121365537791533,426.0991083883323,2019
+2004,63,"(60,65]",College,13107.573429084381,811.4428215328064,16.153415966296087,406.28059603603447,2019
+2004,63,"(60,65]",College,13107.573429084381,813.0560279374441,16.121365537791533,411.54095424055157,2019
+2004,74,"(70,75]",College,446.5562657091562,120.99048034783397,3.690838026474127,5854.649501258261,2019
+2004,74,"(70,75]",College,446.7133931777379,120.99048034783397,3.6921367027677494,6508.117878686403,2019
+2004,74,"(70,75]",College,446.5562657091562,120.99048034783397,3.690838026474127,5795.21924524052,2019
+2004,74,"(70,75]",College,446.7133931777379,120.99048034783397,3.6921367027677494,5777.9041902885465,2019
+2004,74,"(70,75]",College,446.7133931777379,120.99048034783397,3.6921367027677494,6055.1321831999585,2019
+2004,71,"(70,75]",HS,3.378240574506284,33.87733449739351,0.09971978683170019,8366.356585128498,2019
+2004,71,"(70,75]",HS,3.378240574506284,33.87733449739351,0.09971978683170019,8557.750657910174,2019
+2004,71,"(70,75]",HS,3.378240574506284,33.87733449739351,0.09971978683170019,8686.276279463704,2019
+2004,71,"(70,75]",HS,3.378240574506284,33.87733449739351,0.09971978683170019,8659.373112235153,2019
+2004,71,"(70,75]",HS,3.221113105924596,33.87733449739351,0.0950816572116211,8696.09961631378,2019
+2004,56,"(55,60]",College,15651.467145421904,806.6032023188931,19.404171841155236,2047.6664894362675,2019
+2004,56,"(55,60]",College,15651.467145421904,806.6032023188931,19.404171841155236,2061.603114483126,2019
+2004,56,"(55,60]",College,15653.038420107721,806.6032023188931,19.40611985559567,2066.8392551343795,2019
+2004,56,"(55,60]",College,15651.467145421904,806.6032023188931,19.404171841155236,2004.3122706066356,2019
+2004,56,"(55,60]",College,15653.038420107721,806.6032023188931,19.40611985559567,1997.921363103212,2019
+2004,26,"(25,30]",NoHS,181.6864919210054,48.39619213913358,3.754148495788207,7036.851697163447,2019
+2004,26,"(25,30]",NoHS,181.6707791741472,48.39619213913358,3.753823826714801,6856.086196504666,2019
+2004,26,"(25,30]",NoHS,181.8279066427289,50.00939854377137,3.635874694305345,7064.612345468307,2019
+2004,26,"(25,30]",NoHS,181.6707791741472,48.39619213913358,3.753823826714801,7033.698980534011,2019
+2004,26,"(25,30]",NoHS,181.6707791741472,50.00939854377137,3.632732735530453,7013.925731768667,2019
+2004,56,"(55,60]",College,14938.155576301617,241.98096069566793,61.73277241877256,312.9438578319533,2019
+2004,56,"(55,60]",College,14856.60642010772,241.98096069566793,61.39576592057762,308.0067787422426,2019
+2004,56,"(55,60]",College,13369.426355475764,241.98096069566793,55.24991022864019,326.17343126559774,2019
+2004,56,"(55,60]",College,13625.685543985637,241.98096069566793,56.308915812274364,302.5728960262254,2019
+2004,56,"(55,60]",College,14853.746700179534,241.98096069566793,61.383947966305655,307.546686552354,2019
+2004,46,"(45,50]",HS,252.97522441651705,120.99048034783397,2.0908688327316485,7065.936466810852,2019
+2004,46,"(45,50]",HS,685.075763016158,120.99048034783397,5.662228640192539,7861.228425692867,2019
+2004,46,"(45,50]",HS,768.3533213644525,120.99048034783397,6.350527075812275,6974.649605329617,2019
+2004,46,"(45,50]",HS,678.7906642728906,120.99048034783397,5.610281588447654,6990.577306280759,2019
+2004,46,"(45,50]",HS,300.11346499102336,120.99048034783397,2.4804717208182914,7306.469128803884,2019
+2004,69,"(65,70]",HS,80.29213644524238,58.0754305669603,1.3825491375852388,7228.37965030348,2019
+2004,69,"(65,70]",HS,80.29213644524238,59.68863697159809,1.3451829446775294,6750.445098340118,2019
+2004,69,"(65,70]",HS,81.86341113105924,59.68863697159809,1.3715074641428429,7312.293785673479,2019
+2004,69,"(65,70]",HS,80.29213644524238,58.0754305669603,1.3825491375852388,7251.309317213849,2019
+2004,69,"(65,70]",HS,80.29213644524238,59.68863697159809,1.3451829446775294,7162.029061218223,2019
+2004,40,"(35,40]",HS,531.2479712746858,116.1508611339206,4.573775571600481,6221.853613078756,2019
+2004,40,"(35,40]",HS,531.2479712746858,117.76406753855836,4.511121111715544,6908.734610378975,2019
+2004,40,"(35,40]",HS,531.2479712746858,116.1508611339206,4.573775571600481,6138.192482050512,2019
+2004,40,"(35,40]",HS,531.2479712746858,116.1508611339206,4.573775571600481,6129.74508985994,2019
+2004,40,"(35,40]",HS,531.2479712746858,116.1508611339206,4.573775571600481,6406.981312102474,2019
+2004,31,"(30,35]",HS,32.36825852782765,62.91504978087366,0.5144756086272332,5263.796047971309,2019
+2004,31,"(30,35]",HS,32.36825852782765,61.30184337623587,0.528014440433213,5250.02870306116,2019
+2004,31,"(30,35]",HS,33.93953321364452,61.30184337623587,0.5536462093862815,5267.989455653089,2019
+2004,31,"(30,35]",HS,32.36825852782765,61.30184337623587,0.528014440433213,5272.077736310066,2019
+2004,31,"(30,35]",HS,30.796983842010775,61.30184337623587,0.5023826714801445,5253.886103496466,2019
+2004,61,"(60,65]",HS,-9.113393177737882,40.33016011594465,-0.22596967509025273,5013.837808868414,2019
+2004,61,"(60,65]",HS,-10.998922800718134,30.650921688117936,-0.35884476534296034,4975.406300250133,2019
+2004,61,"(60,65]",HS,-5.813716337522442,33.87733449739351,-0.17161079594292591,5000.714534604299,2019
+2004,61,"(60,65]",HS,-5.656588868940754,37.10374730666908,-0.15245330403390364,4997.570258931036,2019
+2004,61,"(60,65]",HS,-12.098815080789945,33.87733449739351,-0.357135980746089,5029.237452513528,2019
+2004,70,"(65,70]",NoHS,14.518578096947936,13.066971877566067,1.1110897178767216,5984.530971911721,2019
+2004,70,"(65,70]",NoHS,13.418685816876122,13.066971877566067,1.0269162544012123,6196.35764404804,2019
+2004,70,"(65,70]",NoHS,13.418685816876122,12.905651237102285,1.0397527075812278,6190.987367246708,2019
+2004,70,"(65,70]",NoHS,13.261558348294436,12.905651237102285,1.0275776173285203,6146.735573976473,2019
+2004,70,"(65,70]",NoHS,13.575813285457809,12.905651237102285,1.0519277978339352,6202.5917918857895,2019
+2004,44,"(40,45]",College,12945.103626570915,1526.0932587873456,8.482511505789148,43.32834448716558,2019
+2004,44,"(40,45]",College,12835.271526032317,1526.0932587873456,8.410542050510987,44.63573197399861,2019
+2004,44,"(40,45]",College,14265.288617594255,1526.0932587873456,9.347586417444532,45.55652825027964,2019
+2004,44,"(40,45]",College,14311.955475763016,1526.0932587873456,9.378165713893193,42.630449091784456,2019
+2004,44,"(40,45]",College,13416.48603231598,1526.0932587873456,8.791393288098854,44.19246930331407,2019
+2004,67,"(65,70]",HS,3334.7162657091562,351.6789962110374,9.48227304342066,890.4657791046399,2019
+2004,67,"(65,70]",HS,5449.66770556553,311.34883609509274,17.5034144142459,1650.1175434523004,2019
+2004,67,"(65,70]",HS,9544.708078994614,337.16013856929726,28.309123728257305,1673.7244952426486,2019
+2004,67,"(65,70]",HS,4249.041005385997,395.23556913625765,10.750654387386723,1595.1361292352601,2019
+2004,67,"(65,70]",HS,4871.265780969479,362.9714410435019,13.420520818291214,1612.921296590014,2019
+2004,48,"(45,50]",HS,972.9332854578097,209.7168326029122,4.639271313524021,564.6576041482207,2019
+2004,48,"(45,50]",HS,1037.8269299820467,209.7168326029122,4.948705915023605,557.218000029867,2019
+2004,48,"(45,50]",HS,1077.1087971274685,209.7168326029122,5.13601499583449,568.5293038108367,2019
+2004,48,"(45,50]",HS,1077.1087971274685,209.7168326029122,5.13601499583449,525.6327456839268,2019
+2004,48,"(45,50]",HS,985.9748653500898,209.7168326029122,4.701457928353235,566.4799876968088,2019
+2004,59,"(55,60]",College,5959.844883303412,182.29232372406983,32.693888374173355,414.12414841656954,2019
+2004,59,"(55,60]",College,5964.872962298025,182.29232372406983,32.72147087952462,408.891319696838,2019
+2004,59,"(55,60]",College,5946.646175942549,182.29232372406983,32.621484297626274,426.0991083883323,2019
+2004,59,"(55,60]",College,5997.634039497307,182.29232372406983,32.90118814095396,406.28059603603447,2019
+2004,59,"(55,60]",College,5955.916696588869,182.29232372406983,32.67233954186767,411.54095424055157,2019
+2004,33,"(30,35]",College,152.413644524237,140.3489572034874,1.085962073115067,9013.976174469146,2019
+2004,33,"(30,35]",College,152.413644524237,140.3489572034874,1.085962073115067,8689.42894231065,2019
+2004,33,"(30,35]",College,152.413644524237,140.3489572034874,1.085962073115067,8955.252792970165,2019
+2004,33,"(30,35]",College,152.413644524237,140.3489572034874,1.085962073115067,9048.59311516101,2019
+2004,33,"(30,35]",College,152.413644524237,140.3489572034874,1.085962073115067,8868.459741924475,2019
+2004,36,"(35,40]",College,23.569120287253142,67.75466899478702,0.34785972150593086,7951.586454996791,2019
+2004,36,"(35,40]",College,23.569120287253142,69.36787539942482,0.3397699605406766,7630.848025109238,2019
+2004,36,"(35,40]",College,23.569120287253142,67.75466899478702,0.34785972150593086,7888.21380065642,2019
+2004,36,"(35,40]",College,23.569120287253142,69.36787539942482,0.3397699605406766,7922.289575465899,2019
+2004,36,"(35,40]",College,23.569120287253142,69.36787539942482,0.3397699605406766,7791.361394924905,2019
+2004,64,"(60,65]",College,207188.2800718133,801.7635831049797,258.41567818463125,29.759957326255734,2019
+2004,64,"(60,65]",College,221991.41601436268,861.4522200765778,257.6944035208697,31.79904405237512,2019
+2004,64,"(60,65]",College,109448.86664272891,934.0465082852782,117.17710592768562,30.397649788852544,2019
+2004,64,"(60,65]",College,104760.18298025134,817.8956471513575,128.08502324852782,29.98932186341444,2019
+2004,64,"(60,65]",College,98997.21881508079,817.8956471513575,121.0389359081167,30.482311720805182,2019
+2004,52,"(50,55]",College,4284.080430879713,241.98096069566793,17.704204572803853,1503.204100833965,2019
+2004,52,"(50,55]",College,4466.819676840215,241.98096069566793,18.459384837545123,1470.9689164184124,2019
+2004,52,"(50,55]",College,4239.14197486535,241.98096069566793,17.51849386281588,1534.7585839214898,2019
+2004,52,"(50,55]",College,4671.478204667864,241.98096069566793,19.305147773766546,1464.2971769796936,2019
+2004,52,"(50,55]",College,4189.489694793537,241.98096069566793,17.313303008423585,1489.3666028001585,2019
+2004,48,"(45,50]",HS,-10.991066427289049,24.19809606956679,-0.45421203369434415,3727.3962574270554,2019
+2004,48,"(45,50]",HS,-10.991066427289049,24.19809606956679,-0.45421203369434415,3721.346375383996,2019
+2004,48,"(45,50]",HS,-10.983210053859965,24.19809606956679,-0.45388736462093865,3770.5685367740016,2019
+2004,48,"(45,50]",HS,-10.991066427289049,24.19809606956679,-0.45421203369434415,3747.190227408553,2019
+2004,48,"(45,50]",HS,-10.983210053859965,24.19809606956679,-0.45388736462093865,3735.9400847935176,2019
+2004,74,"(70,75]",College,45951.77105924596,1255.0745828081974,36.61278117546612,18.875803891614044,2019
+2004,74,"(70,75]",College,36357.175008976665,3468.393769971241,10.482424263286036,19.12902112287269,2019
+2004,74,"(70,75]",College,42740.94980251347,4184.657413630418,10.21372733244449,19.897276336486822,2019
+2004,74,"(70,75]",College,33551.58549371634,3532.922026156752,9.496837248405122,18.279329651680335,2019
+2004,74,"(70,75]",College,39931.4321005386,2055.2249595085395,19.429226915425986,19.504203208628326,2019
+2004,29,"(25,30]",HS,0.39281867145421906,48.39619213913358,0.008116726835138388,6628.338263889241,2019
+2004,29,"(25,30]",HS,0.39281867145421906,50.00939854377137,0.007854896937230698,6527.04699283399,2019
+2004,29,"(25,30]",HS,0.39281867145421906,50.00939854377137,0.007854896937230698,6613.710781581629,2019
+2004,29,"(25,30]",HS,0.39281867145421906,50.00939854377137,0.007854896937230698,6703.749669638557,2019
+2004,29,"(25,30]",HS,0.39281867145421906,48.39619213913358,0.008116726835138388,6602.813507067683,2019
+2004,67,"(65,70]",College,178814.20179533213,5581.694160046741,32.03582938586423,3.160955191767052,2019
+2004,67,"(65,70]",College,174331.66937163373,4871.883342006114,35.783219164654405,3.177622392481174,2019
+2004,67,"(65,70]",College,178752.92208258528,16567.629775630063,10.789287574829777,3.1077813883037195,2019
+2004,67,"(65,70]",College,179045.17917414723,5678.486544325007,31.53043998194946,3.110722481689549,2019
+2004,67,"(65,70]",College,174669.17917414723,7533.6739096584615,23.18512604457363,3.03658983919005,2019
+2004,70,"(65,70]",NoHS,596.1887540394973,29.03771528348015,20.531531087043724,8686.609464425248,2019
+2004,70,"(65,70]",NoHS,645.0553967684023,29.03771528348015,22.214399117529084,9413.759289417132,2019
+2004,70,"(65,70]",NoHS,637.3561508078994,29.03771528348015,21.949252707581227,8582.045948497578,2019
+2004,70,"(65,70]",NoHS,568.8485745062836,29.03771528348015,19.589990774167667,7960.037034289848,2019
+2004,70,"(65,70]",NoHS,643.3269946140036,29.03771528348015,22.154876454071402,8922.248043620279,2019
+2004,54,"(50,55]",HS,-2.1997845601436268,51.62260494840914,-0.04261281588447655,4406.0326139078425,2019
+2004,54,"(50,55]",HS,-2.1997845601436268,51.62260494840914,-0.04261281588447655,4396.17315103824,2019
+2004,54,"(50,55]",HS,-2.404050269299821,51.62260494840914,-0.04656972021660652,4427.679792128774,2019
+2004,54,"(50,55]",HS,-2.1212208258527827,51.62260494840914,-0.0410909296028881,4438.565023644793,2019
+2004,54,"(50,55]",HS,-2.0740825852782763,51.62260494840914,-0.040177797833935026,4394.806504345033,2019
+2004,51,"(50,55]",College,26141.768330341114,654.9618002829412,39.91342444559051,400.64994496298493,2019
+2004,51,"(50,55]",College,26140.1970556553,654.9618002829412,39.9110254130284,393.66858440695324,2019
+2004,51,"(50,55]",College,26140.1970556553,654.9618002829412,39.9110254130284,406.92838714251235,2019
+2004,51,"(50,55]",College,26140.1970556553,654.9618002829412,39.9110254130284,396.6812062356402,2019
+2004,51,"(50,55]",College,26141.768330341114,653.3485938783033,40.01197611088827,410.9195812538657,2019
+2004,40,"(35,40]",HS,-2.1997845601436268,38.716953711306864,-0.05681708784596872,5427.751265835245,2019
+2004,40,"(35,40]",HS,-2.1212208258527827,35.4905409020313,-0.05976862487692811,5338.916667963549,2019
+2004,40,"(35,40]",HS,-2.1840718132854575,35.4905409020313,-0.06153954709550376,5405.650718736217,2019
+2004,40,"(35,40]",HS,-2.0897953321364455,37.10374730666908,-0.056323026212525516,5432.625505009306,2019
+2004,40,"(35,40]",HS,-2.168359066427289,40.33016011594465,-0.053765198555956684,5389.700615918819,2019
+2004,70,"(65,70]",NoHS,6.332236983842011,33.87733449739351,0.18691662368918685,7381.196492452698,2019
+2004,70,"(65,70]",NoHS,6.175109515260323,17.74527045101565,0.3479862159501148,7358.185921427564,2019
+2004,70,"(65,70]",NoHS,6.175109515260323,24.19809606956679,0.2551898916967509,7330.676650804448,2019
+2004,70,"(65,70]",NoHS,6.332236983842011,33.87733449739351,0.18691662368918685,7392.274303634161,2019
+2004,70,"(65,70]",NoHS,6.332236983842011,20.97168326029122,0.30194223826714806,7368.641479422889,2019
+2004,30,"(25,30]",HS,7.856373429084381,32.264128092755726,0.24350180505415162,5439.1059567720185,2019
+2004,30,"(25,30]",HS,7.856373429084381,32.264128092755726,0.24350180505415162,5444.607461812933,2019
+2004,30,"(25,30]",HS,7.856373429084381,32.264128092755726,0.24350180505415162,5446.26474666908,2019
+2004,30,"(25,30]",HS,7.856373429084381,32.264128092755726,0.24350180505415162,5426.898913661573,2019
+2004,30,"(25,30]",HS,7.856373429084381,32.264128092755726,0.24350180505415162,5444.138104881429,2019
+2004,77,"(75,80]",College,720.4294434470378,83.24145047930976,8.654695939327793,9527.621141191357,2019
+2004,77,"(75,80]",College,720.5865709156194,84.85465688394754,8.49200971846646,10442.851053073717,2019
+2004,77,"(75,80]",College,720.5865709156194,83.24145047930976,8.656583550219684,9406.18789852356,2019
+2004,77,"(75,80]",College,720.6022836624775,83.24145047930976,8.656772311308874,9428.685184767575,2019
+2004,77,"(75,80]",College,720.743698384201,83.24145047930976,8.658471161111576,9855.541043307177,2019
+2004,47,"(45,50]",College,1014.6506283662478,100.01879708754274,10.144599394433447,5923.086190551041,2019
+2004,47,"(45,50]",College,1011.5866427289048,100.01879708754274,10.113965296378247,6592.236540616174,2019
+2004,47,"(45,50]",College,1013.7864272890484,104.8584163014561,9.668145515134684,5847.594149876809,2019
+2004,47,"(45,50]",College,1014.7291921005386,106.47162270609388,9.530513072967947,5861.580155775039,2019
+2004,47,"(45,50]",College,1011.7437701974865,100.01879708754274,10.115536275765692,6126.945875465653,2019
+2004,29,"(25,30]",College,762.0682226211849,162.9338468684164,4.677163384208456,4829.440927233565,2019
+2004,29,"(25,30]",College,766.7820466786355,153.2546084405897,5.003321299638989,5423.643567565344,2019
+2004,29,"(25,30]",College,769.9245960502693,187.13194293798318,4.114340844018424,4738.099878332612,2019
+2004,29,"(25,30]",College,763.6394973070019,162.9338468684164,4.6868070200521865,4735.651748923844,2019
+2004,29,"(25,30]",College,771.4958707360862,143.57537001276296,5.373455563217458,4965.6571031178,2019
+2004,51,"(50,55]",HS,1054.9538240574504,120.99048034783397,8.71931263537906,5588.0494290803135,2019
+2004,51,"(50,55]",HS,1052.5969120287252,120.99048034783397,8.699832490974728,6220.96132524032,2019
+2004,51,"(50,55]",HS,1059.824775583483,120.99048034783397,8.759571600481348,5519.721047321883,2019
+2004,51,"(50,55]",HS,1060.7675403949731,120.99048034783397,8.767363658243081,5536.253390301216,2019
+2004,51,"(50,55]",HS,1062.4959425493716,120.99048034783397,8.781649097472924,5781.923787147885,2019
+2004,86,"(85,90]",NoHS,4.713824057450628,19.358476855653432,0.24350180505415162,10261.936345152064,2019
+2004,86,"(85,90]",NoHS,4.713824057450628,19.358476855653432,0.24350180505415162,10225.171926268576,2019
+2004,86,"(85,90]",NoHS,4.713824057450628,19.358476855653432,0.24350180505415162,10196.776613623308,2019
+2004,86,"(85,90]",NoHS,4.713824057450628,19.358476855653432,0.24350180505415162,10277.716238094248,2019
+2004,86,"(85,90]",NoHS,4.713824057450628,19.358476855653432,0.24350180505415162,10244.028293549174,2019
+2004,50,"(45,50]",College,131613.11023339318,12260.368675247175,10.734841155234657,18.968049583545866,2019
+2004,50,"(45,50]",College,110887.99712746858,11018.19974367608,10.064075775274722,20.08277893185048,2019
+2004,50,"(45,50]",College,113493.17055655297,10179.33241326443,11.149372665015134,19.680052415018398,2019
+2004,50,"(45,50]",College,114363.65673249552,10098.672093032541,11.32462324540663,18.634196351820794,2019
+2004,50,"(45,50]",College,117913.16624775584,12341.028995479064,9.55456520610651,19.074323977144275,2019
+2004,47,"(45,50]",NoHS,-3.1425493716337525,50.00939854377137,-0.06283917549784558,5715.870480068822,2019
+2004,47,"(45,50]",NoHS,0.03142549371633752,30.650921688117936,0.0010252707581227436,5537.263709499366,2019
+2004,47,"(45,50]",College,-9.694764811490126,32.264128092755726,-0.3004812274368231,5744.6969080429935,2019
+2004,47,"(45,50]",NoHS,-1.6498384201077199,35.4905409020313,-0.04648670823761076,5765.853204232489,2019
+2004,47,"(45,50]",NoHS,-13.355834829443447,88.72635225507824,-0.15052838857893008,5647.572366274454,2019
+2004,43,"(40,45]",HS,6424.31368043088,343.61296418784843,18.696365824308064,1694.0961133166734,2019
+2004,43,"(40,45]",HS,7866.586714542191,351.6789962110374,22.368656642268075,1686.462887645587,2019
+2004,43,"(40,45]",HS,4922.175080789946,251.66019912349464,19.5588142182727,1919.5388103061546,2019
+2004,43,"(40,45]",HS,7954.10671454219,250.04699271885684,31.810447420519388,1609.4079470529737,2019
+2004,43,"(40,45]",HS,4979.369479353681,251.66019912349464,19.78608256965658,1704.6254926901893,2019
+2004,46,"(45,50]",HS,10.103296229802515,32.264128092755726,0.313143321299639,4822.1942947873595,2019
+2004,46,"(45,50]",HS,10.071870736086176,37.10374730666908,0.2714515774603673,4731.817329392728,2019
+2004,46,"(45,50]",HS,10.071870736086176,29.03771528348015,0.34685479342158043,4861.906461447155,2019
+2004,46,"(45,50]",HS,10.071870736086176,32.264128092755726,0.31216931407942233,4829.178102191218,2019
+2004,46,"(45,50]",HS,10.166147217235189,32.264128092755726,0.31509133574007214,4774.923679698839,2019
+2004,30,"(25,30]",College,18.0068078994614,69.36787539942482,0.25958424985307693,8813.292725601617,2019
+2004,30,"(25,30]",College,18.0068078994614,69.36787539942482,0.25958424985307693,8602.47535718609,2019
+2004,30,"(25,30]",College,17.849680430879715,69.36787539942482,0.2573191167828058,8786.469620551477,2019
+2004,30,"(25,30]",College,17.849680430879715,69.36787539942482,0.2573191167828058,8771.12298364028,2019
+2004,30,"(25,30]",College,18.0068078994614,69.36787539942482,0.25958424985307693,8694.23651666467,2019
+2004,42,"(40,45]",HS,27.701572710951524,56.46222416232251,0.49062135121196493,7837.039891646111,2019
+2004,42,"(40,45]",HS,27.685859964093357,56.46222416232251,0.49034306343476025,7343.268801355943,2019
+2004,42,"(40,45]",HS,27.701572710951524,56.46222416232251,0.49062135121196493,7802.2609209570965,2019
+2004,42,"(40,45]",HS,27.685859964093357,56.46222416232251,0.49034306343476025,7751.328764712326,2019
+2004,42,"(40,45]",HS,27.701572710951524,56.46222416232251,0.49062135121196493,7598.899481257109,2019
+2004,34,"(30,35]",College,-9.663339317773788,104.8584163014561,-0.09215606775895584,8659.22080819367,2019
+2004,34,"(30,35]",College,-11.234614003590664,104.8584163014561,-0.1071407942238267,8349.893887187662,2019
+2004,34,"(30,35]",College,-9.820466786355475,104.8584163014561,-0.09365454040544291,8664.0809193461,2019
+2004,34,"(30,35]",College,-8.249192100538599,104.8584163014561,-0.07866981394057204,8684.233453835895,2019
+2004,34,"(30,35]",College,-9.820466786355475,104.8584163014561,-0.09365454040544291,8566.770326486276,2019
+2004,50,"(45,50]",HS,42.298714542190304,120.99048034783397,0.3496036582430806,4137.860468342288,2019
+2004,50,"(45,50]",HS,42.314427289048474,120.99048034783397,0.34973352587244283,4057.8095423250184,2019
+2004,50,"(45,50]",HS,42.314427289048474,120.99048034783397,0.34973352587244283,4144.431438754316,2019
+2004,50,"(45,50]",HS,42.15729982046679,120.99048034783397,0.3484348495788207,4152.39885583142,2019
+2004,50,"(45,50]",HS,42.298714542190304,120.99048034783397,0.3496036582430806,4077.512345699591,2019
+2004,77,"(75,80]",NoHS,10.087583482944344,17.74527045101565,0.568466032162783,10610.527212691772,2019
+2004,77,"(75,80]",NoHS,9.930456014362656,17.74527045101565,0.5596114210699047,10620.0630278417,2019
+2004,77,"(75,80]",NoHS,9.930456014362656,17.74527045101565,0.5596114210699047,10632.517478440586,2019
+2004,77,"(75,80]",NoHS,9.930456014362656,17.74527045101565,0.5596114210699047,10606.109266771458,2019
+2004,77,"(75,80]",NoHS,9.930456014362656,17.74527045101565,0.5596114210699047,10620.143055619712,2019
+2004,71,"(70,75]",HS,169.54053859964094,17.74527045101565,9.55412536921562,8383.593262313243,2019
+2004,71,"(70,75]",HS,169.38341113105926,17.74527045101565,9.545270758122744,8423.897954931675,2019
+2004,71,"(70,75]",HS,169.54053859964094,19.358476855653432,8.757948255114322,8378.363701594528,2019
+2004,71,"(70,75]",HS,169.54053859964094,17.74527045101565,9.55412536921562,8354.729613120706,2019
+2004,71,"(70,75]",HS,169.38341113105926,17.74527045101565,9.545270758122744,8375.796807446974,2019
+2004,49,"(45,50]",HS,126.03194254937165,38.716953711306864,3.2552132972322507,5567.82014357595,2019
+2004,49,"(45,50]",HS,126.33048473967685,38.716953711306864,3.2629241877256323,5135.41858770997,2019
+2004,49,"(45,50]",HS,126.27549012567326,38.716953711306864,3.2615037605294828,5657.870346148856,2019
+2004,49,"(45,50]",HS,126.06336804308798,38.716953711306864,3.2560249699157646,5636.739793456893,2019
+2004,49,"(45,50]",HS,127.58750448833034,38.716953711306864,3.2953910950661855,5476.327154826219,2019
+2004,60,"(55,60]",College,356.00370556552963,233.91492867247896,1.521936661272252,6596.666566661438,2019
+2004,60,"(55,60]",College,352.82973070017954,233.91492867247896,1.5083677331009586,6741.682071270336,2019
+2004,60,"(55,60]",College,354.4010053859964,233.91492867247896,1.5150850242748664,6460.456464655187,2019
+2004,60,"(55,60]",College,356.0822692998205,233.91492867247896,1.5222725258309475,6342.449813502404,2019
+2004,60,"(55,60]",College,355.97228007181326,233.91492867247896,1.5218023154487739,6613.65060504547,2019
+2004,57,"(55,60]",College,128.3747131059246,221.0092774353767,0.5808566707950144,9782.049317711284,2019
+2004,57,"(55,60]",College,147.23000933572712,221.0092774353767,0.666171171835885,7799.085116549011,2019
+2004,57,"(55,60]",College,134.50268438061042,221.0092774353767,0.6085838836332973,7980.919345600972,2019
+2004,57,"(55,60]",College,128.3747131059246,221.0092774353767,0.5808566707950144,9712.288998919834,2019
+2004,57,"(55,60]",College,128.21758563734292,221.0092774353767,0.5801457166196738,9744.378949501564,2019
+2004,60,"(55,60]",HS,4.3995691202872536,12.099048034783396,0.3636293622141998,6195.397211874398,2019
+2004,60,"(55,60]",HS,4.3995691202872536,12.099048034783396,0.3636293622141998,6135.310417685249,2019
+2004,60,"(55,60]",HS,4.3995691202872536,12.260368675247175,0.3588447653429603,6277.30758372441,2019
+2004,60,"(55,60]",HS,4.3995691202872536,12.260368675247175,0.3588447653429603,6261.9803021182615,2019
+2004,60,"(55,60]",HS,4.3995691202872536,12.099048034783396,0.3636293622141998,6230.235867021927,2019
+2004,21,"(20,25]",HS,-27.230190305206463,25.81130247420457,-1.054971570397112,2250.0423374648217,2019
+2004,21,"(20,25]",HS,-27.230190305206463,25.81130247420457,-1.054971570397112,2235.0595719595876,2019
+2004,21,"(20,25]",HS,-27.230190305206463,27.424508878842364,-0.9929144191972817,2256.3223127440497,2019
+2004,21,"(20,25]",HS,-27.230190305206463,27.424508878842364,-0.9929144191972817,2262.1735113490254,2019
+2004,21,"(20,25]",HS,-27.230190305206463,29.03771528348015,-0.9377525070196551,2244.4789346147018,2019
+2004,34,"(30,35]",College,233.6485457809695,158.09422765450302,1.4779068739409125,5675.284591783833,2019
+2004,34,"(30,35]",College,235.21982046678636,158.09422765450302,1.487845723126796,6308.2925055031365,2019
+2004,34,"(30,35]",College,236.63396768402154,158.09422765450302,1.4967906873940915,5610.679377032704,2019
+2004,34,"(30,35]",College,238.51949730700179,158.09422765450302,1.5087173064171517,5583.25545307577,2019
+2004,34,"(30,35]",College,236.63396768402154,158.09422765450302,1.4967906873940915,5869.468931673737,2019
+2004,82,"(80,85]",HS,110.14635547576302,46.782985734495796,2.3544105564546247,11400.207945857097,2019
+2004,82,"(80,85]",HS,110.14635547576302,46.782985734495796,2.3544105564546247,10361.019966104319,2019
+2004,82,"(80,85]",HS,110.30348294434471,46.782985734495796,2.357769202041579,11314.12951468929,2019
+2004,82,"(80,85]",HS,110.14635547576302,46.782985734495796,2.3544105564546247,11130.82724399187,2019
+2004,82,"(80,85]",HS,110.14635547576302,46.782985734495796,2.3544105564546247,10955.808092142199,2019
+2004,37,"(35,40]",HS,13.670089766606823,308.12242328581715,0.04436577390515433,10059.48632763502,2019
+2004,37,"(35,40]",HS,15.2413644524237,177.45270451015648,0.08588972760091894,9376.219610622087,2019
+2004,37,"(35,40]",HS,16.65551166965889,290.37715283480145,0.05735820296831129,10053.355101795361,2019
+2004,37,"(35,40]",HS,18.38391382405745,187.13194293798318,0.09824038341839911,10051.358560865909,2019
+2004,37,"(35,40]",HS,18.226786355475763,177.45270451015648,0.1027134886773876,9820.064285107746,2019
+2004,51,"(50,55]",College,304.1516409335727,403.30160115944653,0.754154310469314,9043.0129124466,2019
+2004,51,"(50,55]",College,395.2855727109515,403.30160115944653,0.9801239855595667,8301.273831020852,2019
+2004,51,"(50,55]",College,268.01232315978456,403.30160115944653,0.6645456462093863,9120.214791394816,2019
+2004,51,"(50,55]",College,372.3606750448833,403.30160115944653,0.9232809241877256,9106.541753480755,2019
+2004,51,"(50,55]",College,258.3018456014363,403.30160115944653,0.6404681877256319,8783.880074804427,2019
+2004,51,"(50,55]",HS,6.787906642728904,35.4905409020313,0.19125959960616995,5811.505737470556,2019
+2004,51,"(50,55]",HS,9.333371633752243,37.10374730666908,0.25154795165594096,5679.410894197198,2019
+2004,51,"(50,55]",HS,7.966362657091563,35.4905409020313,0.2244643912044634,5808.436443159989,2019
+2004,51,"(50,55]",HS,12.16166606822262,46.782985734495796,0.2599591684302253,5796.974968448804,2019
+2004,51,"(50,55]",HS,7.683533213644524,41.94336652058244,0.18318828103304638,5701.192491470071,2019
+2004,57,"(55,60]",College,15750.457450628366,1613.2064046377861,9.763448375451263,1625.6154125381358,2019
+2004,57,"(55,60]",College,15750.457450628366,1613.2064046377861,9.763448375451263,1612.8801380680986,2019
+2004,57,"(55,60]",College,15750.457450628366,1613.2064046377861,9.763448375451263,1840.8691415997484,2019
+2004,57,"(55,60]",College,15748.886175942549,1613.2064046377861,9.762474368231047,1541.1644544745845,2019
+2004,57,"(55,60]",College,15750.457450628366,1613.2064046377861,9.763448375451263,1642.6539945736774,2019
+2004,39,"(35,40]",HS,28.597199281867148,54.84901775768473,0.5213803355277129,8266.875761558826,2019
+2004,39,"(35,40]",HS,28.597199281867148,54.84901775768473,0.5213803355277129,7705.367859705346,2019
+2004,39,"(35,40]",HS,30.168473967684022,54.84901775768473,0.5500276067105543,8261.837126321232,2019
+2004,39,"(35,40]",HS,30.168473967684022,54.84901775768473,0.5500276067105543,8260.196370990485,2019
+2004,39,"(35,40]",HS,30.168473967684022,53.23581135304694,0.5666951099442075,8070.118967455506,2019
+2004,59,"(55,60]",College,91486.4629658887,10534.237822284744,8.684677952908267,22.10647383731183,2019
+2004,59,"(55,60]",College,141961.77671813287,11776.40675385584,12.054761667573315,22.878093812438543,2019
+2004,59,"(55,60]",College,52389.53485098744,17987.251411711317,2.9125925719188617,22.2416017037796,2019
+2004,59,"(55,60]",College,45442.14382764812,18180.83618026785,2.4994529061852337,20.347196135699253,2019
+2004,59,"(55,60]",College,141004.7133070018,14051.027784395119,10.035188562049512,22.30086815914582,2019
+2004,43,"(40,45]",HS,61.59396768402155,33.87733449739351,1.8181468110709986,8861.609527974175,2019
+2004,43,"(40,45]",HS,60.572639138240575,33.87733449739351,1.7879989685404845,8497.302727052049,2019
+2004,43,"(40,45]",HS,60.88689407540395,33.87733449739351,1.7972752277806427,8881.946177445841,2019
+2004,43,"(40,45]",HS,61.892509874326755,33.87733449739351,1.8269592573491489,8806.511602968854,2019
+2004,43,"(40,45]",HS,61.861084380610414,33.87733449739351,1.826031631425133,8734.963552038591,2019
+2004,46,"(45,50]",HS,-9.27052064631957,77.43390742261373,-0.11972172081829123,7906.933065938392,2019
+2004,46,"(45,50]",HS,-9.27052064631957,77.43390742261373,-0.11972172081829123,7659.861025915697,2019
+2004,46,"(45,50]",HS,-9.27052064631957,77.43390742261373,-0.11972172081829123,7946.809518233215,2019
+2004,46,"(45,50]",HS,-9.113393177737882,77.43390742261373,-0.11769253910950662,7976.07564987088,2019
+2004,46,"(45,50]",HS,-9.27052064631957,77.43390742261373,-0.11972172081829123,7812.454260621688,2019
+2004,29,"(25,30]",College,414.58082585278277,120.99048034783397,3.426557400722021,8218.257819065127,2019
+2004,29,"(25,30]",College,414.6593895870736,120.99048034783397,3.4272067388688323,8607.602669071432,2019
+2004,29,"(25,30]",College,414.3451346499102,120.99048034783397,3.4246093862815883,8073.71841050989,2019
+2004,29,"(25,30]",College,415.9164093357271,120.99048034783397,3.4375961492178098,7920.097598059995,2019
+2004,29,"(25,30]",College,412.7738599640934,120.99048034783397,3.411622623345367,8262.081608031393,2019
+2004,38,"(35,40]",HS,100.01163375224417,148.4149892266763,0.6738647778998588,2336.5835606805995,2019
+2004,38,"(35,40]",HS,101.58290843806104,148.4149892266763,0.6844518129022131,2385.4397957939464,2019
+2004,38,"(35,40]",HS,101.58290843806104,148.4149892266763,0.6844518129022131,2263.0080328628183,2019
+2004,38,"(35,40]",HS,100.01163375224417,148.4149892266763,0.6738647778998588,2185.543886116018,2019
+2004,38,"(35,40]",HS,100.01163375224417,148.4149892266763,0.6738647778998588,2214.100740281862,2019
+2004,40,"(35,40]",HS,-2.9854219030520643,72.59428820870036,-0.0411247492980345,4321.327092020696,2019
+2004,40,"(35,40]",HS,-2.9854219030520643,72.59428820870036,-0.0411247492980345,4380.584355958025,2019
+2004,40,"(35,40]",HS,-2.9854219030520643,72.59428820870036,-0.0411247492980345,4331.733376208716,2019
+2004,40,"(35,40]",HS,-2.9854219030520643,72.59428820870036,-0.0411247492980345,4310.483085358259,2019
+2004,40,"(35,40]",HS,-2.9854219030520643,72.59428820870036,-0.0411247492980345,4352.880629223249,2019
+2004,76,"(75,80]",HS,309.3368473967684,74.6914565347295,4.141529188856227,10463.769613285436,2019
+2004,76,"(75,80]",HS,514.969565529623,77.91786934400507,6.609133050803118,9394.957210862322,2019
+2004,76,"(75,80]",HS,273.3232315978456,47.26694765588713,5.7825445719002975,10422.310574029125,2019
+2004,76,"(75,80]",HS,268.46799281867146,74.6914565347295,3.594360121948367,10295.288197394946,2019
+2004,76,"(75,80]",HS,329.1191956912029,47.26694765588713,6.9629881346952365,10084.74372174354,2019
+2004,34,"(30,35]",HS,4.713824057450628,96.79238427826716,0.04870036101083032,4296.977905429487,2019
+2004,34,"(30,35]",HS,3.1425493716337525,96.79238427826716,0.032466907340553554,4275.34262749431,2019
+2004,34,"(30,35]",HS,45.56696588868941,96.79238427826716,0.4707701564380265,4301.995068534779,2019
+2004,34,"(30,35]",HS,238.83375224416517,96.79238427826716,2.46748495788207,4266.67961092217,2019
+2004,34,"(30,35]",HS,273.40179533213643,96.79238427826716,2.8246209386281587,4254.011553243651,2019
+2004,66,"(65,70]",HS,388.60765529622984,58.0754305669603,6.691429602888087,7620.840770789802,2019
+2004,66,"(65,70]",HS,388.60765529622984,58.0754305669603,6.691429602888087,7166.251408262551,2019
+2004,66,"(65,70]",HS,388.60765529622984,58.0754305669603,6.691429602888087,7711.074546017118,2019
+2004,66,"(65,70]",HS,388.76478276481146,58.0754305669603,6.694135178499799,7664.212806048776,2019
+2004,66,"(65,70]",HS,388.62336804308796,58.0754305669603,6.691700160449257,7580.412545597942,2019
+2004,72,"(70,75]",HS,558.9024057450629,46.782985734495796,11.946702352794723,8811.566548155173,2019
+2004,72,"(70,75]",HS,515.535224416517,48.39619213913358,10.65239229843562,8138.963998607968,2019
+2004,72,"(70,75]",HS,507.83597845601435,46.782985734495796,10.855142537034732,9224.686068376988,2019
+2004,72,"(70,75]",HS,512.3926750448833,45.16977932985802,11.343705518308404,8983.02744499069,2019
+2004,72,"(70,75]",HS,551.3602872531419,46.782985734495796,11.785487364620941,8901.073633492004,2019
+2004,21,"(20,25]",HS,-4.085314183123878,19.358476855653432,-0.2110348977135981,5058.132368230487,2019
+2004,21,"(20,25]",HS,-4.085314183123878,19.358476855653432,-0.2110348977135981,5121.763909403797,2019
+2004,21,"(20,25]",HS,-4.085314183123878,19.358476855653432,-0.2110348977135981,5099.424762209066,2019
+2004,21,"(20,25]",HS,-3.9281867145421905,19.358476855653432,-0.2029181708784597,4997.291500929177,2019
+2004,21,"(20,25]",HS,-4.085314183123878,19.358476855653432,-0.2110348977135981,5113.284759608387,2019
+2004,53,"(50,55]",College,28501.194398563737,2419.8096069566795,11.778279711191335,343.86926630914246,2019
+2004,53,"(50,55]",College,27405.387432675045,2419.8096069566795,11.325431287605292,335.3883190670237,2019
+2004,53,"(50,55]",College,27759.552746858168,2419.8096069566795,11.471792105896508,349.94426511001905,2019
+2004,53,"(50,55]",College,27410.101256732498,2419.8096069566795,11.327379302045728,339.88013515821444,2019
+2004,53,"(50,55]",College,27405.54456014363,2419.8096069566795,11.325496221419975,352.6440949207068,2019
+2004,51,"(50,55]",College,14731.32868940754,2419.8096069566795,6.087804861612514,23.756709081271985,2019
+2004,51,"(50,55]",College,14949.10736086176,2419.8096069566795,6.177803128760529,23.906536847039995,2019
+2004,51,"(50,55]",College,15004.761910233394,2419.8096069566795,6.200802685920577,25.213188724892397,2019
+2004,51,"(50,55]",College,12527.254549371633,2419.8096069566795,5.176958762936221,23.310718167397546,2019
+2004,51,"(50,55]",College,14762.597055655297,2419.8096069566795,6.100726690734055,24.603783410801167,2019
+2004,36,"(35,40]",HS,71.65012567324955,72.59428820870036,0.986993983152828,5743.018553854212,2019
+2004,36,"(35,40]",HS,62.37960502692998,72.59428820870036,0.8592908142799841,5649.282773300053,2019
+2004,36,"(35,40]",HS,73.37852782764811,72.59428820870036,1.0108030485359007,5720.580592810046,2019
+2004,36,"(35,40]",HS,71.65012567324955,72.59428820870036,0.986993983152828,5762.457552982706,2019
+2004,36,"(35,40]",HS,71.65012567324955,72.59428820870036,0.986993983152828,5703.874948963749,2019
+2004,71,"(70,75]",NoHS,25.76890484739677,6.452825618551143,3.993429602888088,9174.822597286158,2019
+2004,71,"(70,75]",NoHS,25.76890484739677,6.614146259014922,3.8960288808664263,9180.875632008747,2019
+2004,71,"(70,75]",NoHS,25.76890484739677,6.614146259014922,3.8960288808664263,9126.732827800328,2019
+2004,71,"(70,75]",NoHS,25.76890484739677,7.098108180406259,3.630390548080079,9179.91515391606,2019
+2004,71,"(70,75]",NoHS,25.76890484739677,6.452825618551143,3.993429602888088,9131.438220014796,2019
+2004,35,"(30,35]",HS,8.956265709156193,53.23581135304694,0.16823761076468657,4574.099889635156,2019
+2004,35,"(30,35]",HS,8.956265709156193,53.23581135304694,0.16823761076468657,4554.511876773491,2019
+2004,35,"(30,35]",HS,8.956265709156193,53.23581135304694,0.16823761076468657,4539.814051526691,2019
+2004,35,"(30,35]",HS,8.956265709156193,53.23581135304694,0.16823761076468657,4554.466314148349,2019
+2004,35,"(30,35]",HS,8.956265709156193,53.23581135304694,0.16823761076468657,4529.918272297675,2019
+2004,77,"(75,80]",HS,333.69160502693,42.26600780150999,7.895034860969495,13051.11986936037,2019
+2004,77,"(75,80]",HS,473.4722010771993,42.749969722901334,11.07538096859887,11830.781473201287,2019
+2004,77,"(75,80]",HS,357.8420969479354,40.81412203733599,8.767604914313436,13009.638040098309,2019
+2004,77,"(75,80]",HS,390.5088976660682,27.9084708002337,13.992486383840069,12737.019935773245,2019
+2004,77,"(75,80]",HS,412.17677558348294,42.749969722901334,9.64156883046114,12496.388544028745,2019
+2004,59,"(55,60]",HS,76.83533213644525,64.52825618551145,1.1907238267148013,6430.69601393435,2019
+2004,59,"(55,60]",HS,76.83533213644525,64.52825618551145,1.1907238267148013,6242.516505752097,2019
+2004,59,"(55,60]",HS,76.83533213644525,64.52825618551145,1.1907238267148013,6375.26417702783,2019
+2004,59,"(55,60]",HS,76.83533213644525,64.52825618551145,1.1907238267148013,6410.488091977587,2019
+2004,59,"(55,60]",HS,100.40445242369839,64.52825618551145,1.5559765342960288,6303.568185256421,2019
+2004,38,"(35,40]",College,570.0584560143626,198.4243877704477,2.8729253617445916,5748.836566667116,2019
+2004,38,"(35,40]",College,568.6443087971275,200.03759417508547,2.8426872015837894,6346.731045135077,2019
+2004,38,"(35,40]",College,568.6443087971275,198.4243877704477,2.865798479645446,5698.868408220581,2019
+2004,38,"(35,40]",College,568.6443087971275,198.4243877704477,2.865798479645446,5715.803340193525,2019
+2004,38,"(35,40]",College,570.0584560143626,200.03759417508547,2.8497566088272968,5950.35282371742,2019
+2004,79,"(75,80]",College,40480.74973070018,1613.2064046377861,25.093348014440434,26.4486883767238,2019
+2004,79,"(75,80]",College,40480.74973070018,1613.2064046377861,25.093348014440434,26.39897922653094,2019
+2004,79,"(75,80]",College,42678.96301615799,1613.2064046377861,26.455984115523467,27.164586541515455,2019
+2004,79,"(75,80]",College,40479.178456014364,1613.2064046377861,25.092374007220215,25.62277832822135,2019
+2004,79,"(75,80]",College,40482.321005385995,1613.2064046377861,25.09432202166065,26.869043729423304,2019
+2004,63,"(60,65]",College,18901.963087971275,806.6032023188931,23.43402931407942,2297.053904389363,2019
+2004,63,"(60,65]",College,20670.118491921003,806.6032023188931,25.62612996389891,2256.2888535992306,2019
+2004,63,"(60,65]",College,18438.90843806104,806.6032023188931,22.85994945848375,2354.444881592243,2019
+2004,63,"(60,65]",College,18721.737881508077,806.6032023188931,23.21059205776173,2233.1573050868365,2019
+2004,63,"(60,65]",College,18599.17845601436,806.6032023188931,23.05864693140794,2263.443088105437,2019
+2004,57,"(55,60]",College,361.2360502692998,164.5470532730542,2.1953358816450765,5725.143450142217,2019
+2004,57,"(55,60]",College,285.65773788150807,164.5470532730542,1.7360246336801868,5008.191559563312,2019
+2004,57,"(55,60]",College,306.2414362657092,164.5470532730542,1.861117717845261,5760.149833342004,2019
+2004,57,"(55,60]",College,364.2214721723519,164.5470532730542,2.2134791533942098,5639.4703696742845,2019
+2004,57,"(55,60]",College,359.66477558348294,164.5470532730542,2.1857867912507962,5509.210381464952,2019
+2004,27,"(25,30]",HS,4.085314183123878,40.33016011594465,0.10129675090252709,5283.54260022801,2019
+2004,27,"(25,30]",HS,4.038175942549372,40.33016011594465,0.10012794223826715,5358.357110183273,2019
+2004,27,"(25,30]",HS,3.9753249551166965,40.33016011594465,0.09856953068592057,5270.328192240239,2019
+2004,27,"(25,30]",HS,4.038175942549372,40.33016011594465,0.10012794223826715,5323.218909437846,2019
+2004,27,"(25,30]",HS,4.195303411131059,40.33016011594465,0.10402397111913357,5312.233239930549,2019
+2004,49,"(45,50]",HS,227.17489407540396,48.39619213913358,4.694065463297233,7229.730963406861,2019
+2004,49,"(45,50]",HS,228.74616876122082,48.39619213913358,4.726532370637786,6705.7823588493675,2019
+2004,49,"(45,50]",HS,227.17489407540396,48.39619213913358,4.694065463297233,7316.111304405707,2019
+2004,49,"(45,50]",HS,227.17489407540396,48.39619213913358,4.694065463297233,7256.2990477536105,2019
+2004,49,"(45,50]",HS,228.74616876122082,48.39619213913358,4.726532370637786,7075.218205077227,2019
+2004,51,"(50,55]",College,236.35113824057453,114.53765472928282,2.063523465703971,6857.962683138469,2019
+2004,51,"(50,55]",College,236.5082657091562,85.49993944580267,2.7661805054151625,6481.77213603566,2019
+2004,51,"(50,55]",College,236.35113824057453,98.40559068290497,2.4018060010652778,6865.571635633099,2019
+2004,51,"(50,55]",College,236.35113824057453,95.17917787362938,2.483223153643762,6886.260001798194,2019
+2004,51,"(50,55]",College,236.35113824057453,87.11314585044046,2.7131512234255917,6686.35455756039,2019
+2004,78,"(75,80]",NoHS,8437.745062836624,209.23287068152084,40.32705298815094,1847.3157704018752,2019
+2004,78,"(75,80]",NoHS,9499.926750448833,289.0865877110913,32.8618730660134,1847.299573869644,2019
+2004,78,"(75,80]",NoHS,8172.1996409335725,245.53001478587106,33.28391295891307,1894.2772300348668,2019
+2004,78,"(75,80]",NoHS,4954.229084380611,264.08188843920556,18.760200154813447,1762.0921498530447,2019
+2004,78,"(75,80]",NoHS,17032.617594254938,276.5035777549166,61.59998989001174,1769.8837134125156,2019
+2004,58,"(55,60]",College,-16.65551166965889,29.03771528348015,-0.5735820296831128,6423.984187011934,2019
+2004,58,"(55,60]",College,-22.31210053859964,29.03771528348015,-0.768383473726434,6224.705521676081,2019
+2004,58,"(55,60]",College,-19.64093357271095,29.03771528348015,-0.6763939029281989,6413.253241491169,2019
+2004,58,"(55,60]",College,-19.483806104129265,29.03771528348015,-0.6709827517047734,6431.702603609164,2019
+2004,58,"(55,60]",College,-16.65551166965889,29.03771528348015,-0.5735820296831128,6362.421644803902,2019
+2004,26,"(25,30]",College,19.326678635547577,61.30184337623587,0.3152707581227437,5737.499602375376,2019
+2004,26,"(25,30]",College,8.170628366247756,61.30184337623587,0.1332851985559567,5718.970340749114,2019
+2004,26,"(25,30]",College,-4.085314183123878,61.30184337623587,-0.06664259927797835,5704.213014496799,2019
+2004,26,"(25,30]",College,8.327755834829444,61.30184337623587,0.13584837545126355,5758.3773772683035,2019
+2004,26,"(25,30]",College,-1.7284021543985637,61.30184337623587,-0.02819494584837545,5699.043629294932,2019
+2004,52,"(50,55]",HS,361.2360502692998,217.78286462610117,1.658698221687391,5934.1540801496685,2019
+2004,52,"(50,55]",HS,354.9509515260323,216.16965822146332,1.6420017242308316,6604.122268281555,2019
+2004,52,"(50,55]",HS,362.8073249551167,217.78286462610117,1.6659130899852919,5859.092759321309,2019
+2004,52,"(50,55]",HS,381.6626211849192,217.78286462610117,1.7524915095601012,5873.045057876283,2019
+2004,52,"(50,55]",HS,348.66585278276483,217.78286462610117,1.6009792753041847,6138.03442969422,2019
+2004,61,"(60,65]",HS,2994.378168761221,104.8584163014561,28.556393224104415,2539.061439656808,2019
+2004,61,"(60,65]",HS,3866.592746858169,109.69803551536945,35.24760246336802,3596.5441441361945,2019
+2004,61,"(60,65]",HS,3248.767540394973,116.1508611339206,27.97024067388688,2574.374633529684,2019
+2004,61,"(60,65]",HS,3983.181328545781,108.08482911073166,36.852362735061156,3559.838066757247,2019
+2004,61,"(60,65]",HS,3319.632028725314,116.1508611339206,28.580347974328117,2613.1787983594695,2019
+2004,60,"(55,60]",HS,351.8319712746858,54.84901775768473,6.414553726905925,5862.617541543895,2019
+2004,60,"(55,60]",HS,359.6962010771993,54.84901775768473,6.557933319176046,5137.7562188746215,2019
+2004,60,"(55,60]",HS,353.25397486535013,54.84901775768473,6.440479507326397,5857.404948584061,2019
+2004,60,"(55,60]",HS,351.68270017953324,54.84901775768473,6.411832236143556,5749.831729459331,2019
+2004,60,"(55,60]",HS,356.5536517055655,54.84901775768473,6.500638776810363,5583.480942885505,2019
+2004,60,"(55,60]",HS,800.2973357271095,87.11314585044046,9.18687217542452,6562.527932591738,2019
+2004,60,"(55,60]",HS,712.6516337522442,93.56597146899159,7.616568529814515,7255.717867677324,2019
+2004,60,"(55,60]",HS,762.3039138240574,96.79238427826716,7.875660048134777,6475.257045640037,2019
+2004,60,"(55,60]",HS,722.9591956912029,109.69803551536945,6.590447971968572,6453.931412100329,2019
+2004,60,"(55,60]",HS,807.3837845601436,109.69803551536945,7.360056912295604,6783.628221155732,2019
+2004,51,"(50,55]",College,940.093644524237,96.79238427826716,9.712475330926594,9102.566557699194,2019
+2004,51,"(50,55]",College,939.9365170556553,96.79238427826716,9.710851985559566,9327.66809388071,2019
+2004,51,"(50,55]",College,943.2361938958708,96.79238427826716,9.744942238267148,8925.260759343666,2019
+2004,51,"(50,55]",College,938.5223698384201,96.79238427826716,9.696241877256318,8835.969349394405,2019
+2004,51,"(50,55]",College,943.2361938958708,96.79238427826716,9.744942238267148,9177.714875437556,2019
+2004,74,"(70,75]",HS,221.51830520646322,25.81130247420457,8.582221119133578,10389.148833212614,2019
+2004,74,"(70,75]",HS,221.51830520646322,24.19809606956679,9.15436919374248,10438.411705549841,2019
+2004,74,"(70,75]",HS,221.502592459605,24.19809606956679,9.153719855595668,10383.681572367928,2019
+2004,74,"(70,75]",HS,221.502592459605,24.19809606956679,9.153719855595668,10354.282874586945,2019
+2004,74,"(70,75]",HS,221.502592459605,24.19809606956679,9.153719855595668,10378.87809877728,2019
+2004,58,"(55,60]",HS,1306.5149012567324,14.518857641740075,89.98744484556758,5511.46554095402,2019
+2004,58,"(55,60]",HS,1304.9436265709155,14.518857641740075,89.87922182109907,6096.545786503634,2019
+2004,58,"(55,60]",HS,1304.9436265709155,14.518857641740075,89.87922182109907,5436.175972772723,2019
+2004,58,"(55,60]",HS,1305.1007540394974,14.518857641740075,89.89004412354593,5419.466545652947,2019
+2004,58,"(55,60]",HS,1305.1007540394974,14.518857641740075,89.89004412354593,5698.335870439032,2019
+2004,60,"(55,60]",HS,272.30190305206463,67.75466899478702,4.018939315798521,4897.924931840726,2019
+2004,60,"(55,60]",HS,274.9730700179534,67.75466899478702,4.058363417569194,4292.339402975759,2019
+2004,60,"(55,60]",HS,300.4277199281867,67.75466899478702,4.434051916795599,4893.570070068386,2019
+2004,60,"(55,60]",HS,285.9719928186715,67.75466899478702,4.220697954271961,4803.698003842719,2019
+2004,60,"(55,60]",HS,297.28517055655294,67.75466899478702,4.3876706205948075,4664.720207795549,2019
+2004,43,"(40,45]",College,595.1988509874327,193.58476855653433,3.0746161251504214,3529.5272941811336,2019
+2004,43,"(40,45]",College,595.1988509874327,193.58476855653433,3.0746161251504214,3913.714528015384,2019
+2004,43,"(40,45]",College,595.3559784560144,195.19797496117215,3.05001103917415,3492.8039445165296,2019
+2004,43,"(40,45]",College,595.1988509874327,193.58476855653433,3.0746161251504214,3485.553933487373,2019
+2004,43,"(40,45]",College,595.1988509874327,195.19797496117215,3.049206074529343,3632.015307665697,2019
+2004,35,"(30,35]",HS,11.470305206463197,96.79238427826716,0.11850421179302047,5110.770380281173,2019
+2004,35,"(30,35]",HS,11.313177737881508,96.79238427826716,0.11688086642599278,5177.663576339719,2019
+2004,35,"(30,35]",HS,11.313177737881508,96.79238427826716,0.11688086642599278,5089.301376492534,2019
+2004,35,"(30,35]",HS,11.313177737881508,96.79238427826716,0.11688086642599278,5108.458587705511,2019
+2004,35,"(30,35]",HS,11.313177737881508,96.79238427826716,0.11688086642599278,5123.22818578196,2019
+2004,60,"(55,60]",NoHS,103.68841651705566,98.40559068290497,1.0536842042966206,2222.672492584763,2019
+2004,60,"(55,60]",NoHS,95.6749156193896,104.8584163014561,0.9124199944459872,1876.868678364976,2019
+2004,60,"(55,60]",NoHS,440.09832675044885,103.24520989681828,4.262651286101084,255.42183051062298,2019
+2004,60,"(55,60]",NoHS,115.47297666068222,104.8584163014561,1.10122754790336,1986.7481029256755,2019
+2004,60,"(55,60]",NoHS,518.0335511669659,95.17917787362938,5.442719329376492,229.2352804043641,2019
+2004,39,"(35,40]",HS,-52.23702692998205,51.62260494840914,-1.0119021886281592,5169.598095356957,2019
+2004,39,"(35,40]",HS,-54.1225565529623,51.62260494840914,-1.048427459386282,5147.459935626131,2019
+2004,39,"(35,40]",HS,-50.97215080789946,51.62260494840914,-0.9873998194945851,5130.8486129101775,2019
+2004,39,"(35,40]",HS,-52.543425493716335,51.62260494840914,-1.017837545126354,5147.408441241261,2019
+2004,39,"(35,40]",HS,-54.11470017953321,51.62260494840914,-1.0482752707581229,5119.664510531847,2019
+2004,50,"(45,50]",HS,79.22366965888689,87.11314585044046,0.9094341489503943,7437.32555105135,2019
+2004,50,"(45,50]",HS,79.22366965888689,87.11314585044046,0.9094341489503943,6910.850228980077,2019
+2004,50,"(45,50]",HS,79.38079712746858,87.11314585044046,0.9112378660248696,7473.795989568149,2019
+2004,50,"(45,50]",HS,79.22366965888689,87.11314585044046,0.9094341489503943,7432.269584320039,2019
+2004,50,"(45,50]",HS,79.22366965888689,87.11314585044046,0.9094341489503943,7203.523624946663,2019
+2004,55,"(50,55]",College,3607.6466786355477,241.98096069566793,14.90880385078219,222.10695069028898,2019
+2004,55,"(50,55]",College,3593.143813285458,241.98096069566793,14.848869939831527,220.1389416420962,2019
+2004,55,"(50,55]",College,3484.600157989228,241.98096069566793,14.40030714801444,231.17884584075895,2019
+2004,55,"(50,55]",College,3588.6342549371634,241.98096069566793,14.83023393501805,217.9000999363456,2019
+2004,55,"(50,55]",College,3461.3610053859966,241.98096069566793,14.304270036101082,224.3188033544073,2019
+2004,56,"(55,60]",College,121313.40466786355,4839.619213913359,25.066725150421174,224.5756583048576,2019
+2004,56,"(55,60]",College,120857.73500897667,4839.619213913359,24.972571119133573,233.31197362120798,2019
+2004,56,"(55,60]",College,121171.98994614003,4839.619213913359,25.037504933814677,232.18788864895015,2019
+2004,56,"(55,60]",College,121464.24703770198,4839.619213913359,25.097893381468108,233.99581520855227,2019
+2004,56,"(55,60]",College,120906.44452423698,4839.619213913359,24.98263586040914,260.2593226387703,2019
+2004,35,"(30,35]",NoHS,7.149299820466787,80.6603202318893,0.0886346570397112,5632.007009385508,2019
+2004,35,"(30,35]",NoHS,7.306427289048473,80.6603202318893,0.0905826714801444,5623.654179290783,2019
+2004,35,"(30,35]",NoHS,8.406319569120287,80.6603202318893,0.1042187725631769,5636.947573209516,2019
+2004,35,"(30,35]",NoHS,9.191956912028726,80.6603202318893,0.11395884476534297,5617.114269801245,2019
+2004,35,"(30,35]",NoHS,6.206535008976661,80.6603202318893,0.07694657039711192,5606.172373085422,2019
+2004,49,"(45,50]",HS,513.9796624775583,96.79238427826716,5.310125030084236,5446.211008645048,2019
+2004,49,"(45,50]",HS,511.0099533213645,96.79238427826716,5.279443802647413,6061.090243724471,2019
+2004,49,"(45,50]",HS,512.4241005385996,96.79238427826716,5.294053910950662,5377.321696655945,2019
+2004,49,"(45,50]",HS,514.1525026929983,96.79238427826716,5.311910709987967,5390.126750410818,2019
+2004,49,"(45,50]",HS,514.1525026929983,96.79238427826716,5.311910709987967,5633.327047281503,2019
+2004,42,"(40,45]",College,454.0198204667863,66.14146259014923,6.864375275160693,6751.000657004128,2019
+2004,42,"(40,45]",College,454.17694793536805,67.75466899478702,6.703256833419287,6357.931506225624,2019
+2004,42,"(40,45]",College,454.17694793536805,67.75466899478702,6.703256833419287,6769.703072925588,2019
+2004,42,"(40,45]",College,454.17694793536805,67.75466899478702,6.703256833419287,6723.103782586452,2019
+2004,42,"(40,45]",College,454.17694793536805,67.75466899478702,6.703256833419287,6639.740886873134,2019
+2004,34,"(30,35]",College,292.86988868940756,177.45270451015648,1.6504109616015754,2206.732981744267,2019
+2004,34,"(30,35]",College,305.39294793536806,203.26400698436103,1.502444788264283,2138.2813108069963,2019
+2004,34,"(30,35]",College,303.99451346499103,182.29232372406983,1.6676210344717421,2120.2561131232987,2019
+2004,34,"(30,35]",College,315.0405745062837,190.35835574725877,1.65498684452059,2104.733229278767,2019
+2004,34,"(30,35]",College,289.39737163375224,188.74514934262095,1.5332705112777316,2077.6244795872744,2019
+2004,50,"(45,50]",College,479.4587576301616,125.83009956174732,3.8103661945755807,6660.0193377572195,2019
+2004,50,"(45,50]",College,574.8351310592459,125.83009956174732,4.568343608256965,7409.765517016314,2019
+2004,50,"(45,50]",College,613.8655942549372,125.83009956174732,4.878527446079793,6529.272640870022,2019
+2004,50,"(45,50]",College,493.364538599641,125.83009956174732,3.920878552254004,6597.691168175926,2019
+2004,50,"(45,50]",College,494.0794685816876,125.83009956174732,3.9265602610386003,6850.771389493608,2019
+2004,43,"(40,45]",HS,2.828294434470377,15.325460844058968,0.18454873646209385,3893.283840057852,2019
+2004,43,"(40,45]",HS,2.828294434470377,15.325460844058968,0.18454873646209385,3944.2417543929196,2019
+2004,43,"(40,45]",HS,2.828294434470377,15.325460844058968,0.18454873646209385,3876.929177395851,2019
+2004,43,"(40,45]",HS,2.828294434470377,15.325460844058968,0.18454873646209385,3891.5227621759122,2019
+2004,43,"(40,45]",HS,2.828294434470377,15.325460844058968,0.18454873646209385,3902.773950007995,2019
+2004,90,"(85,90]",College,366.57838420107726,32.264128092755726,11.361794223826715,9307.97113986547,2019
+2004,90,"(85,90]",College,366.57838420107726,32.264128092755726,11.361794223826715,8607.083778541983,2019
+2004,90,"(85,90]",College,366.57838420107726,32.264128092755726,11.361794223826715,9268.357581998454,2019
+2004,90,"(85,90]",College,366.57838420107726,32.264128092755726,11.361794223826715,9123.077315262255,2019
+2004,90,"(85,90]",College,366.57838420107726,32.264128092755726,11.361794223826715,9054.391720739684,2019
+2004,49,"(45,50]",HS,4.211016157989229,13.389613158493624,0.3144987168892176,3560.721566458104,2019
+2004,49,"(45,50]",HS,2.7497307001795335,13.389613158493624,0.20536296811795923,3552.75367217546,2019
+2004,49,"(45,50]",HS,1.6812639138240575,13.389613158493624,0.12556478622069506,3578.2156662750035,2019
+2004,49,"(45,50]",HS,3.5825062836624775,13.389613158493624,0.26755860989082686,3587.0125323019674,2019
+2004,49,"(45,50]",HS,2.5454649910233393,13.389613158493624,0.19010743334348223,3551.649220896806,2019
+2004,66,"(65,70]",College,1110.7340754039496,56.46222416232251,19.672162970603406,302.3822747359757,2019
+2004,66,"(65,70]",College,1102.8777019748652,56.46222416232251,19.53301908200103,314.5761973950969,2019
+2004,66,"(65,70]",College,1117.0191741472174,56.46222416232251,19.783478081485306,298.4106793890286,2019
+2004,66,"(65,70]",College,1109.162800718133,56.46222416232251,19.644334192882933,292.0929143541031,2019
+2004,66,"(65,70]",College,1120.161723518851,56.46222416232251,19.83913563692625,307.45911325805184,2019
+2004,70,"(65,70]",College,56252.41938958708,1935.8476855653435,29.058287906137185,18.066308243526656,2019
+2004,70,"(65,70]",College,55740.183842010774,1935.8476855653435,28.79368261131167,18.63705803531676,2019
+2004,70,"(65,70]",College,55650.62118491921,1935.8476855653435,28.74741726835138,18.977774896945714,2019
+2004,70,"(65,70]",College,55650.62118491921,1935.8476855653435,28.74741726835138,17.44483212710631,2019
+2004,70,"(65,70]",College,55740.183842010774,1935.8476855653435,28.79368261131167,18.60978708433786,2019
+2004,40,"(35,40]",HS,524.4129263913824,146.80178282203855,3.5722517554647513,7896.250311641654,2019
+2004,40,"(35,40]",HS,506.8932136445242,124.21689315710954,4.080710769375029,8763.792924221225,2019
+2004,40,"(35,40]",HS,508.30736086175943,127.4433059663851,3.9884979207604077,7792.935093059832,2019
+2004,40,"(35,40]",HS,515.2209694793537,151.6414020359519,3.397627313925801,7780.495754597345,2019
+2004,40,"(35,40]",HS,508.15023339317776,159.70743405914084,3.181756919374248,8129.512466812671,2019
+2004,66,"(65,70]",NoHS,7.699245960502694,13.873575079884963,0.5549576022164385,9294.492403550108,2019
+2004,66,"(65,70]",NoHS,7.699245960502694,13.873575079884963,0.5549576022164385,9343.51832992426,2019
+2004,66,"(65,70]",NoHS,7.699245960502694,14.03489572034874,0.5485787792024566,9313.60219573757,2019
+2004,66,"(65,70]",NoHS,7.699245960502694,13.873575079884963,0.5549576022164385,9395.091386575681,2019
+2004,66,"(65,70]",NoHS,7.699245960502694,13.873575079884963,0.5549576022164385,9358.243922540654,2019
+2004,64,"(60,65]",HS,1505.6739676840216,117.76406753855836,12.785512585925526,5282.32522481729,2019
+2004,64,"(60,65]",HS,1505.6739676840216,117.76406753855836,12.785512585925526,5842.113063836716,2019
+2004,64,"(60,65]",HS,1505.6739676840216,117.76406753855836,12.785512585925526,5213.505952407982,2019
+2004,64,"(60,65]",HS,1504.1026929982047,117.76406753855836,12.772170021265024,5196.842045001506,2019
+2004,64,"(60,65]",HS,1505.6739676840216,117.76406753855836,12.785512585925526,5461.962146356889,2019
+2004,64,"(60,65]",College,80405.26822262119,3000.5639126262818,26.796719071464622,29.35650823389555,2019
+2004,64,"(60,65]",College,80406.52524236984,3016.6959766726595,26.653837796096454,30.29644577155334,2019
+2004,64,"(60,65]",College,80406.68236983843,3065.0921688117937,26.233038989169675,29.722027912855282,2019
+2004,64,"(60,65]",College,83863.48667863556,3032.828040719038,27.65190955526538,28.98419262984593,2019
+2004,64,"(60,65]",College,78676.70894075405,3161.884553090061,24.8828531275326,29.1175918322915,2019
+2004,46,"(45,50]",College,48387.24682226212,2419.8096069566795,19.996303297232245,343.86926630914246,2019
+2004,46,"(45,50]",College,50366.8957989228,2419.8096069566795,20.814404428399516,335.3883190670237,2019
+2004,46,"(45,50]",College,62497.136373429086,2419.8096069566795,25.827294921780982,232.18788864895015,2019
+2004,46,"(45,50]",College,50366.8957989228,2419.8096069566795,20.814404428399516,339.88013515821444,2019
+2004,46,"(45,50]",College,58820.353608617595,2419.8096069566795,24.307843658243076,260.2593226387703,2019
+2004,77,"(75,80]",College,88836.72818671455,4549.242061078557,19.527808587449115,22.10647383731183,2019
+2004,77,"(75,80]",College,76642.06535008978,3871.695371130687,19.795479241877256,22.878093812438543,2019
+2004,77,"(75,80]",College,80980.35475763015,4742.826829635092,17.074280311402536,23.064657985525542,2019
+2004,77,"(75,80]",College,59051.64524236984,4484.713804893046,13.16731631301457,20.347196135699253,2019
+2004,77,"(75,80]",College,73233.97055655296,4226.6007801509995,17.32691928238763,22.30086815914582,2019
+2004,37,"(35,40]",College,6178.959138240575,133.89613158493626,46.147405941455354,2549.616608874013,2019
+2004,37,"(35,40]",College,6178.959138240575,132.28292518029846,46.710179184643835,2415.259173423158,2019
+2004,37,"(35,40]",College,6178.959138240575,132.28292518029846,46.710179184643835,2689.082269740201,2019
+2004,37,"(35,40]",College,6178.959138240575,132.28292518029846,46.710179184643835,2358.7606980664436,2019
+2004,37,"(35,40]",College,6178.802010771993,133.89613158493626,46.14623243878039,2477.2627739495183,2019
+2004,28,"(25,30]",NoHS,4.006750448833034,38.716953711306864,0.10348826714801444,5102.2874532974,2019
+2004,28,"(25,30]",NoHS,3.849622980251347,38.716953711306864,0.09942990373044526,5174.298432223641,2019
+2004,28,"(25,30]",NoHS,3.849622980251347,38.716953711306864,0.09942990373044526,5088.6844792490165,2019
+2004,28,"(25,30]",NoHS,4.006750448833034,38.716953711306864,0.10348826714801444,5127.862201292845,2019
+2004,28,"(25,30]",NoHS,4.006750448833034,38.716953711306864,0.10348826714801444,5128.989055076935,2019
+2004,33,"(30,35]",College,85.55590664272891,85.49993944580267,1.0006545875621553,5573.672114070926,2019
+2004,33,"(30,35]",College,83.98463195691203,85.49993944580267,0.982277092841087,5545.608682524047,2019
+2004,33,"(30,35]",College,85.74445960502693,85.49993944580267,1.0028598869286833,5580.17994881133,2019
+2004,33,"(30,35]",College,85.7130341113106,85.49993944580267,1.002492337034262,5618.330014022476,2019
+2004,33,"(30,35]",College,84.17318491921004,85.49993944580267,0.9844823922076151,5593.8425633748575,2019
+2004,75,"(70,75]",College,123.03080789946141,19.358476855653432,6.355397111913358,9157.990668077746,2019
+2004,75,"(70,75]",College,120.67389587073609,19.358476855653432,6.233646209386282,9203.042046446573,2019
+2004,75,"(70,75]",College,120.98815080789947,20.97168326029122,5.769119688975286,9148.504734484795,2019
+2004,75,"(70,75]",College,121.14527827648115,19.358476855653432,6.257996389891697,9121.52765373173,2019
+2004,75,"(70,75]",College,120.98815080789947,20.97168326029122,5.769119688975286,9149.532515905394,2019
+2004,79,"(75,80]",NoHS,17.51971274685817,16.132064046377863,1.086018050541516,12558.985796515264,2019
+2004,79,"(75,80]",NoHS,15.948438061041292,16.132064046377863,0.9886173285198554,11188.580913613936,2019
+2004,79,"(75,80]",NoHS,17.51971274685817,16.132064046377863,1.086018050541516,12429.416236110934,2019
+2004,79,"(75,80]",NoHS,15.948438061041292,16.132064046377863,0.9886173285198554,12354.680582742478,2019
+2004,79,"(75,80]",NoHS,15.948438061041292,16.132064046377863,0.9886173285198554,12052.90956565656,2019
+2004,28,"(25,30]",College,481.36,117.76406753855836,4.087494683744623,6573.241367793385,2019
+2004,28,"(25,30]",College,481.5171274685817,117.76406753855836,4.088828940210672,7307.136781540066,2019
+2004,28,"(25,30]",College,481.36,116.1508611339206,4.144265443241075,6494.884682447816,2019
+2004,28,"(25,30]",College,481.36,116.1508611339206,4.144265443241075,6463.866158795483,2019
+2004,28,"(25,30]",College,481.5171274685817,116.1508611339206,4.145618231046932,6797.084225422581,2019
+2004,52,"(50,55]",HS,98.44035906642729,129.0565123710229,0.7627694043321299,9964.13287379991,2019
+2004,52,"(50,55]",HS,98.44035906642729,129.0565123710229,0.7627694043321299,9146.840358951911,2019
+2004,52,"(50,55]",HS,98.12610412926392,129.0565123710229,0.7603343862815884,10049.198524749969,2019
+2004,52,"(50,55]",HS,93.56940754039498,129.0565123710229,0.7250266245487363,10034.132753210855,2019
+2004,52,"(50,55]",HS,96.86908438061042,129.0565123710229,0.7505943140794223,9678.604803539438,2019
+2004,51,"(50,55]",College,770.5531059245961,282.31112081161257,2.7294465188241364,770.0404772812162,2019
+2004,51,"(50,55]",College,919.148552962298,282.31112081161257,3.25580002062919,742.9973155506868,2019
+2004,51,"(50,55]",College,868.1135511669659,282.31112081161257,3.075024280556988,780.484936350307,2019
+2004,51,"(50,55]",College,2071.254290843806,282.31112081161257,7.336778958225889,1525.55576594379,2019
+2004,51,"(50,55]",College,1005.458671454219,282.31112081161257,3.561526972666323,779.236345809748,2019
+2004,43,"(40,45]",HS,885.6489766606823,153.2546084405897,5.778938628158844,9527.621141191357,2019
+2004,43,"(40,45]",HS,887.2202513464991,153.2546084405897,5.789191335740072,10442.851053073717,2019
+2004,43,"(40,45]",HS,885.4918491921006,153.2546084405897,5.777913357400722,9406.18789852356,2019
+2004,43,"(40,45]",HS,885.6489766606823,153.2546084405897,5.778938628158844,9428.685184767575,2019
+2004,43,"(40,45]",HS,885.4918491921006,153.2546084405897,5.777913357400722,9855.541043307177,2019
+2004,31,"(30,35]",HS,0.47138240574506285,38.716953711306864,0.012175090252707582,4895.029049575567,2019
+2004,31,"(30,35]",HS,0.47138240574506285,38.716953711306864,0.012175090252707582,4967.400336191864,2019
+2004,31,"(30,35]",HS,0.47138240574506285,37.10374730666908,0.012704442002825302,4915.192111253948,2019
+2004,31,"(30,35]",HS,0.47138240574506285,37.10374730666908,0.012704442002825302,4921.638184108431,2019
+2004,31,"(30,35]",HS,0.47138240574506285,38.716953711306864,0.012175090252707582,4945.491750577756,2019
+2004,33,"(30,35]",HS,284.55784560143627,51.62260494840914,5.512272111913359,8723.526043351108,2019
+2004,33,"(30,35]",HS,284.55784560143627,51.62260494840914,5.512272111913359,8411.90199413502,2019
+2004,33,"(30,35]",HS,284.55784560143627,51.62260494840914,5.512272111913359,8728.422246733711,2019
+2004,33,"(30,35]",HS,284.55784560143627,51.62260494840914,5.512272111913359,8748.724438276735,2019
+2004,33,"(30,35]",HS,284.55784560143627,51.62260494840914,5.512272111913359,8630.389004492876,2019
+2004,49,"(45,50]",College,18163.935368043087,508.16001746090257,35.744518938742765,330.8365091718462,2019
+2004,49,"(45,50]",College,18163.935368043087,508.16001746090257,35.744518938742765,328.0336321160737,2019
+2004,49,"(45,50]",College,18163.935368043087,508.16001746090257,35.744518938742765,344.14618611141196,2019
+2004,49,"(45,50]",College,18163.935368043087,508.16001746090257,35.744518938742765,320.4211222745283,2019
+2004,49,"(45,50]",College,18163.935368043087,508.16001746090257,35.744518938742765,325.1670609369383,2019
+2004,50,"(45,50]",College,17070.32818671454,995.348351661514,17.150104441544915,1977.3003055099693,2019
+2004,50,"(45,50]",College,17068.756912028726,995.348351661514,17.14852582368395,1973.1534600937764,2019
+2004,50,"(45,50]",College,17071.89946140036,995.348351661514,17.151683059405883,2240.804659280263,2019
+2004,50,"(45,50]",College,17070.32818671454,995.348351661514,17.150104441544915,1886.0694495584266,2019
+2004,50,"(45,50]",College,17071.89946140036,995.348351661514,17.151683059405883,1998.2866986202189,2019
+2004,47,"(45,50]",College,331112.5147576302,39104.123248419935,8.4674578344116,2.2331957715446102,2019
+2004,47,"(45,50]",College,412937.2725314183,47202.41939970162,8.748222607717192,2.2396479764911947,2019
+2004,47,"(45,50]",College,332478.5809694794,39797.80200241419,8.354194559521423,2.1953302798877283,2019
+2004,47,"(45,50]",College,412954.5565529623,38684.68958321411,10.674883552177958,2.1985789161233904,2019
+2004,47,"(45,50]",College,409688.66211849195,58801.37344904731,6.9673315109467,2.1449691343338118,2019
+2004,55,"(50,55]",College,14003.844222621186,2564.99818337408,5.45959225756647,437.8018107627233,2019
+2004,55,"(50,55]",College,9638.827432675045,2290.753094585656,4.207711191335741,435.4777686666956,2019
+2004,55,"(50,55]",College,13632.457737881508,2435.941671003057,5.596381021828006,449.5779514852967,2019
+2004,55,"(50,55]",College,9745.406994614003,2516.601991234946,3.8724466675923352,430.24635137493294,2019
+2004,55,"(50,55]",College,7482.787159784561,2806.979144069748,2.6657793933358227,435.11950671854476,2019
+2004,41,"(40,45]",HS,252.81809694793537,138.73575079884964,1.8222995550331622,10291.228467265257,2019
+2004,41,"(40,45]",HS,251.24682226211849,137.12254439421181,1.8322794648545337,9592.221215817304,2019
+2004,41,"(40,45]",HS,251.0896947935368,137.12254439421181,1.8311335740072203,10284.95599530742,2019
+2004,41,"(40,45]",HS,251.0896947935368,137.12254439421181,1.8311335740072203,10282.913459716636,2019
+2004,41,"(40,45]",HS,251.0896947935368,137.12254439421181,1.8311335740072203,10046.290817419398,2019
+2004,64,"(60,65]",College,109729.96768402155,9808.29494019774,11.187466155234658,19.81794948471067,2019
+2004,64,"(60,65]",College,81262.3985637343,15712.630381172039,5.171788337941719,20.612904765621785,2019
+2004,64,"(60,65]",College,102002.43877917415,11244.048640325369,9.071682455495186,20.633580245552746,2019
+2004,64,"(60,65]",College,89994.75763016159,9824.427004244117,9.160305999656181,19.525588748991442,2019
+2004,64,"(60,65]",College,82550.05816876123,9437.257467131049,8.74725082538801,19.991066487296695,2019
+2004,47,"(45,50]",College,287.0718850987433,225.84889664929003,1.2710794223826716,7103.460186316642,2019
+2004,47,"(45,50]",College,287.22901256732496,225.84889664929003,1.2717751418256835,7858.75901579708,2019
+2004,47,"(45,50]",College,288.8002872531418,225.84889664929003,1.2787323362558018,7040.965921506058,2019
+2004,47,"(45,50]",College,290.21443447037706,225.84889664929003,1.2849938112429091,7088.641586783883,2019
+2004,47,"(45,50]",College,288.64315978456017,225.84889664929003,1.2780366168127903,7382.34370695799,2019
+2004,55,"(50,55]",HS,443.4922800718133,83.88673304116487,5.286798805887254,7058.280517561339,2019
+2004,55,"(50,55]",HS,443.649407540395,83.88673304116487,5.288671896695362,6293.498163654299,2019
+2004,55,"(50,55]",HS,443.649407540395,83.88673304116487,5.288671896695362,7075.416033344237,2019
+2004,55,"(50,55]",HS,443.649407540395,83.88673304116487,5.288671896695362,6949.189339127102,2019
+2004,55,"(50,55]",HS,443.4922800718133,83.88673304116487,5.286798805887254,6804.324199788249,2019
+2004,40,"(35,40]",College,141613.64509874326,14389.801129369052,9.841251023943274,19.85074517363883,2019
+2004,40,"(35,40]",College,153434.34456014363,14389.801129369052,10.662714736688736,20.80433162821725,2019
+2004,40,"(35,40]",College,153358.76624775582,14389.801129369052,10.657462522866716,20.025321777052817,2019
+2004,40,"(35,40]",College,145458.39712746858,14389.801129369052,10.108436928332065,19.550079502266545,2019
+2004,40,"(35,40]",College,155227.16897666067,14389.801129369052,10.787304673714202,19.624724009168094,2019
+2004,72,"(70,75]",HS,3549.9808976660684,103.24520989681828,34.38397675992781,13246.48318220023,2019
+2004,72,"(70,75]",HS,3923.677156193896,111.31124192000723,35.24960362057239,3596.5441441361945,2019
+2004,72,"(70,75]",HS,3742.1792172351884,101.63200349218052,36.820874219242455,4050.5172030113586,2019
+2004,72,"(70,75]",HS,2726.3658456014364,114.53765472928282,23.803227436823104,14141.46206116561,2019
+2004,72,"(70,75]",HS,3742.477759425494,112.92444832464501,33.14143053120166,3730.011843083447,2019
+2004,44,"(40,45]",NoHS,6.567928186714542,56.46222416232251,0.1163242908715833,6268.072955674762,2019
+2004,44,"(40,45]",NoHS,6.410800718132855,56.46222416232251,0.11354141309953586,6229.640371747226,2019
+2004,44,"(40,45]",NoHS,7.086448833034111,56.46222416232251,0.1255077875193399,6263.662344336399,2019
+2004,44,"(40,45]",NoHS,7.934937163375224,56.46222416232251,0.1405353274883961,6252.829370228794,2019
+2004,44,"(40,45]",NoHS,7.007885098743268,56.46222416232251,0.12411634863331616,6270.80365003081,2019
+2004,45,"(40,45]",HS,44514.2118491921,4839.619213913359,9.197874849578819,22.25938759775378,2019
+2004,45,"(40,45]",HS,44514.2118491921,4839.619213913359,9.197874849578819,22.61160990284841,2019
+2004,45,"(40,45]",HS,44514.2118491921,4839.619213913359,9.197874849578819,23.467154788373946,2019
+2004,45,"(40,45]",HS,44514.2118491921,4839.619213913359,9.197874849578819,21.54744032451476,2019
+2004,45,"(40,45]",HS,44514.2118491921,4839.619213913359,9.197874849578819,23.004325972130253,2019
+2004,39,"(35,40]",College,782.8090484739678,362.9714410435019,2.156668431608504,4521.502894758976,2019
+2004,39,"(35,40]",College,781.2377737881509,362.9714410435019,2.1523395106297634,5013.994533861214,2019
+2004,39,"(35,40]",College,781.2377737881509,362.9714410435019,2.1523395106297634,4474.021768337087,2019
+2004,39,"(35,40]",College,781.2377737881509,362.9714410435019,2.1523395106297634,4464.781575771382,2019
+2004,39,"(35,40]",College,781.2377737881509,362.9714410435019,2.1523395106297634,4653.068313983891,2019
+2004,49,"(45,50]",College,31611.846894075406,11679.614369577572,2.706583102299699,33.44368509066569,2019
+2004,49,"(45,50]",College,14567.11477199282,10421.313373960096,1.3978194733489067,37.42312245581981,2019
+2004,49,"(45,50]",College,15585.803576301616,10259.99273349632,1.5190852451013783,38.52999093877983,2019
+2004,49,"(45,50]",College,35991.53938958707,10018.011772800652,3.592682880180447,32.793246822269836,2019
+2004,49,"(45,50]",College,19133.867518850988,15761.02657331117,1.2139988109182682,37.004243632446034,2019
+2004,66,"(65,70]",NoHS,1831.0063913824058,104.8584163014561,17.461701749514024,12913.631223622695,2019
+2004,66,"(65,70]",NoHS,1832.5776660682227,104.8584163014561,17.476686475978894,13332.01036397848,2019
+2004,66,"(65,70]",NoHS,1831.0063913824058,104.8584163014561,17.461701749514024,12769.793846230637,2019
+2004,66,"(65,70]",NoHS,1818.279066427289,104.8584163014561,17.34032546514857,13148.649534814258,2019
+2004,66,"(65,70]",NoHS,1818.436193895871,104.8584163014561,17.34182393779506,13194.513320951144,2019
+2004,81,"(80,85]",HS,107.1295080789946,17.74527045101565,6.037073843124383,10016.36423194539,2019
+2004,81,"(80,85]",HS,107.1295080789946,17.74527045101565,6.037073843124383,10083.693452276453,2019
+2004,81,"(80,85]",HS,110.42918491921004,19.358476855653432,5.704435619735259,9863.816854633655,2019
+2004,81,"(80,85]",HS,108.85791023339318,19.358476855653432,5.623268351383875,9940.181701781372,2019
+2004,81,"(80,85]",HS,108.38652782764811,17.74527045101565,6.10791073186741,9907.332788198144,2019
+2004,70,"(65,70]",HS,-1.1156050269299822,20.97168326029122,-0.053195778950291595,7041.199404066165,2019
+2004,70,"(65,70]",HS,0.23569120287253142,20.97168326029122,0.011238544848653153,7294.9185887363055,2019
+2004,70,"(65,70]",HS,-0.5813716337522442,19.358476855653432,-0.030031889290012038,7332.451837837243,2019
+2004,70,"(65,70]",HS,-0.8327755834829444,20.97168326029122,-0.03970952513190781,7217.160311096474,2019
+2004,70,"(65,70]",HS,-0.2514039497307002,20.97168326029122,-0.011987781171896696,7333.1743621974965,2019
+2004,57,"(55,60]",HS,2.1212208258527827,37.10374730666908,0.05716998901271386,5728.563637435593,2019
+2004,57,"(55,60]",HS,2.1212208258527827,37.10374730666908,0.05716998901271386,5560.930416156356,2019
+2004,57,"(55,60]",HS,2.1212208258527827,37.10374730666908,0.05716998901271386,5679.184098335803,2019
+2004,57,"(55,60]",HS,2.1212208258527827,37.10374730666908,0.05716998901271386,5710.562107483189,2019
+2004,57,"(55,60]",HS,2.1212208258527827,37.10374730666908,0.05716998901271386,5615.316198108263,2019
+2004,63,"(60,65]",HS,43.36718132854578,10.808482911073169,4.0123282504445275,6268.156116248983,2019
+2004,63,"(60,65]",HS,43.54002154398564,10.808482911073169,4.028319413761516,6215.873733535752,2019
+2004,63,"(60,65]",HS,43.36718132854578,10.647162270609387,4.0731211027239915,6211.138236295219,2019
+2004,63,"(60,65]",HS,43.47717055655296,10.647162270609387,4.083451482332349,6261.249260448591,2019
+2004,63,"(60,65]",HS,43.5085960502693,10.647162270609387,4.086403019363308,6256.679202614081,2019
+2004,57,"(55,60]",College,29.7756552962298,48.39619213913358,0.6152478941034897,4917.362558766666,2019
+2004,57,"(55,60]",College,3.849622980251347,48.39619213913358,0.07954392298435621,4859.735829612645,2019
+2004,57,"(55,60]",College,97.35617953321363,48.39619213913358,2.011649578820698,4839.002218375697,2019
+2004,57,"(55,60]",College,91.05536804308798,48.39619213913358,1.8814572803850784,4837.304045013585,2019
+2004,57,"(55,60]",College,42.345852782764815,48.39619213913358,0.8749831528279183,4902.703164673713,2019
+2004,38,"(35,40]",College,128.53026929982047,64.52825618551145,1.99184476534296,7184.750517258224,2019
+2004,38,"(35,40]",College,115.64581687612208,64.52825618551145,1.7921732851985557,6766.42678602823,2019
+2004,38,"(35,40]",College,127.27324955116697,64.52825618551145,1.9723646209386279,7204.654558050503,2019
+2004,38,"(35,40]",College,119.41687612208258,64.52825618551145,1.850613718411552,7155.061276642562,2019
+2004,38,"(35,40]",College,117.21709156193896,64.52825618551145,1.8165234657039708,7066.342338735929,2019
+2004,59,"(55,60]",College,40.06750448833034,1.9358476855653435,20.697653429602887,8565.45327565497,2019
+2004,59,"(55,60]",College,47.76675044883303,1.9358476855653435,24.674849578820695,8527.605286265485,2019
+2004,59,"(55,60]",College,27.02592459605027,1.9358476855653435,13.960770156438025,8495.790194043584,2019
+2004,59,"(55,60]",College,69.7645960502693,1.9358476855653435,36.03826714801444,8543.509106742426,2019
+2004,59,"(55,60]",College,23.411992818671454,1.9358476855653435,12.093922984356196,8523.003790472072,2019
+2004,68,"(65,70]",College,27151.62657091562,4081.4122037335983,6.6525078123885235,33.44368509066569,2019
+2004,68,"(65,70]",College,27112.3447037702,4065.2801396872205,6.669243882872043,33.830217524941915,2019
+2004,68,"(65,70]",College,27113.915978456014,4065.2801396872205,6.669630393673716,34.874813183195144,2019
+2004,68,"(65,70]",College,27096.63195691203,4065.2801396872205,6.66537877485531,32.793246822269836,2019
+2004,68,"(65,70]",College,27058.921364452424,4065.2801396872205,6.656102515615152,34.94618849137586,2019
+2004,24,"(20,25]",HS,23.569120287253142,96.79238427826716,0.24350180505415162,10290.919788984134,2019
+2004,24,"(20,25]",HS,23.72624775583483,96.79238427826716,0.2451251504211793,10004.779930737597,2019
+2004,24,"(20,25]",HS,23.569120287253142,96.79238427826716,0.24350180505415162,10373.132023991242,2019
+2004,24,"(20,25]",HS,23.569120287253142,96.79238427826716,0.24350180505415162,10107.637455072418,2019
+2004,24,"(20,25]",HS,23.569120287253142,96.79238427826716,0.24350180505415162,10263.430327621685,2019
+2004,26,"(25,30]",College,55.151741472172354,85.49993944580267,0.6450500647094884,7861.783251633902,2019
+2004,26,"(25,30]",College,66.62204667863556,87.11314585044046,0.7647760395774836,7659.826574598168,2019
+2004,26,"(25,30]",College,66.15066427289048,87.11314585044046,0.7593648883540579,7892.798286380993,2019
+2004,26,"(25,30]",College,59.07992818671454,87.11314585044046,0.678197620002674,7858.260941393311,2019
+2004,26,"(25,30]",College,58.13716337522442,85.49993944580267,0.6799673046795177,7836.169670656936,2019
+2004,62,"(60,65]",NoHS,105.11827648114902,48.39619213913358,2.172036101083033,7061.20392132881,2019
+2004,62,"(60,65]",NoHS,108.26082585278277,51.62260494840914,2.0971592960288814,6250.963161195343,2019
+2004,62,"(60,65]",NoHS,110.30348294434471,43.55657292522023,2.532418772563177,7026.681070254094,2019
+2004,62,"(60,65]",NoHS,114.38879712746859,53.23581135304694,2.148718958538453,6941.235375811903,2019
+2004,62,"(60,65]",NoHS,102.60423698384201,79.04711382725151,1.2980137036764166,6743.160407276331,2019
+2004,76,"(75,80]",HS,131.90850987432677,53.23581135304694,2.477815337490428,11988.610648255295,2019
+2004,76,"(75,80]",HS,132.53701974865348,51.62260494840914,2.5674221570397115,10764.044720082695,2019
+2004,76,"(75,80]",HS,132.69414721723518,51.62260494840914,2.570465929602889,11941.109957981722,2019
+2004,76,"(75,80]",HS,132.52130700179532,51.62260494840914,2.567117779783394,11795.577145872621,2019
+2004,76,"(75,80]",HS,132.06563734290845,51.62260494840914,2.5582908393501813,11554.350911349931,2019
+2004,40,"(35,40]",College,993.4069946140036,190.35835574725877,5.218615125741907,6505.023334625826,2019
+2004,40,"(35,40]",College,994.9782692998205,190.35835574725877,5.22686942421832,7222.442635330883,2019
+2004,40,"(35,40]",College,994.9782692998205,190.35835574725877,5.22686942421832,6421.042068134326,2019
+2004,40,"(35,40]",College,993.3912818671455,190.35835574725877,5.218532582757144,6411.48400383193,2019
+2004,40,"(35,40]",College,993.3912818671455,190.35835574725877,5.218532582757144,6699.626922730129,2019
+2004,62,"(60,65]",HS,14.298599640933574,33.87733449739351,0.42206979542719614,8443.367897782988,2019
+2004,62,"(60,65]",HS,14.298599640933574,33.87733449739351,0.42206979542719614,8267.978407631255,2019
+2004,62,"(60,65]",HS,14.298599640933574,33.87733449739351,0.42206979542719614,8322.808505282672,2019
+2004,62,"(60,65]",HS,14.298599640933574,33.87733449739351,0.42206979542719614,8302.381646895206,2019
+2004,62,"(60,65]",HS,14.298599640933574,33.87733449739351,0.42206979542719614,8215.929880739315,2019
+2004,63,"(60,65]",College,16294.747001795333,695.2919603988857,23.435834052283752,445.50371733256986,2019
+2004,63,"(60,65]",College,16296.475403949731,693.678753994248,23.49282763831752,442.51276557853873,2019
+2004,63,"(60,65]",College,16294.904129263914,1126.0180704371749,14.471263434464637,457.1277763056204,2019
+2004,63,"(60,65]",College,16295.061256732495,867.905045695129,18.775165944197653,441.83617675000903,2019
+2004,63,"(60,65]",College,16294.747001795333,1100.2067679629702,14.810622399610404,445.9488720386269,2019
+2004,35,"(30,35]",HS,10.213285457809695,48.39619213913358,0.21103489771359807,4838.455192096428,2019
+2004,35,"(30,35]",HS,10.213285457809695,48.39619213913358,0.21103489771359807,4817.735110589649,2019
+2004,35,"(30,35]",HS,10.213285457809695,48.39619213913358,0.21103489771359807,4802.187839958538,2019
+2004,35,"(30,35]",HS,10.213285457809695,48.39619213913358,0.21103489771359807,4817.686914720411,2019
+2004,35,"(30,35]",HS,10.213285457809695,48.39619213913358,0.21103489771359807,4791.72014455491,2019
+2004,46,"(45,50]",HS,107.01951885098742,61.30184337623587,1.7457797833935016,7236.521450662857,2019
+2004,46,"(45,50]",HS,86.59294793536804,64.52825618551145,1.3419384476534295,6712.080730099937,2019
+2004,46,"(45,50]",HS,191.86835188509875,62.91504978087366,3.049641581042303,7322.982923948322,2019
+2004,46,"(45,50]",HS,81.87912387791742,69.36787539942482,1.1803608429183106,7263.114488944835,2019
+2004,46,"(45,50]",HS,124.31925314183124,56.46222416232251,2.2018128932439405,7081.863567027502,2019
+2004,52,"(50,55]",HS,2967.1951166965887,414.59404599191106,7.156868617342566,672.537477880426,2019
+2004,52,"(50,55]",HS,2948.6540754039497,414.59404599191106,7.112147663262582,691.2924512993575,2019
+2004,52,"(50,55]",HS,2972.6631526032315,414.59404599191106,7.170057508884799,668.1519544195419,2019
+2004,52,"(50,55]",HS,2948.4340969479354,416.2072523965488,7.084052668401757,686.1054157119626,2019
+2004,52,"(50,55]",HS,2962.5598563734293,414.59404599191106,7.1456883788225705,695.1145084043239,2019
+2004,42,"(40,45]",HS,-21.526463195691203,64.52825618551145,-0.3335974729241877,4461.603112591967,2019
+2004,42,"(40,45]",HS,-21.68359066427289,64.52825618551145,-0.3360324909747292,4457.196386542909,2019
+2004,42,"(40,45]",HS,-21.68359066427289,64.52825618551145,-0.3360324909747292,4498.7793464437145,2019
+2004,42,"(40,45]",HS,-21.526463195691203,64.52825618551145,-0.3335974729241877,4453.986842500227,2019
+2004,42,"(40,45]",HS,-21.68359066427289,64.52825618551145,-0.3360324909747292,4463.999682965861,2019
+2004,80,"(75,80]",College,1598.3791741472173,322.6412809275572,4.954044223826715,9527.621141191357,2019
+2004,80,"(75,80]",College,1558.4687971274686,322.6412809275572,4.830345306859206,10442.851053073717,2019
+2004,80,"(75,80]",College,1561.6113464991024,322.6412809275572,4.840085379061373,9406.18789852356,2019
+2004,80,"(75,80]",College,1762.1059964093356,322.6412809275572,5.461501985559567,9428.685184767575,2019
+2004,80,"(75,80]",College,1572.767396768402,322.6412809275572,4.874662635379061,9855.541043307177,2019
+2004,40,"(35,40]",HS,15.398491921005387,56.46222416232251,0.27272202166064985,4931.501768838564,2019
+2004,40,"(35,40]",HS,12.098815080789945,56.46222416232251,0.21428158844765344,4904.5081946242835,2019
+2004,40,"(35,40]",HS,12.884452423698384,56.46222416232251,0.2281959773078907,4961.55843849923,2019
+2004,40,"(35,40]",HS,14.769982046678635,56.46222416232251,0.26159051057246,4921.581872612143,2019
+2004,40,"(35,40]",HS,11.941687612208257,56.46222416232251,0.211498710675606,4958.561582450086,2019
+2004,52,"(50,55]",College,412.3024775583483,80.6603202318893,5.1115898916967515,6591.489727562299,2019
+2004,52,"(50,55]",College,245.90448833034114,80.6603202318893,3.048642599277979,7338.787641892927,2019
+2004,52,"(50,55]",College,329.8105565529623,80.6603202318893,4.088882310469314,6507.355428824298,2019
+2004,52,"(50,55]",College,318.0259964093358,80.6603202318893,3.942781227436824,6527.580270440287,2019
+2004,52,"(50,55]",College,420.31597845601436,80.6603202318893,5.210938628158845,6819.108669813683,2019
+2004,47,"(45,50]",College,1205.167684021544,219.3960710307389,5.493114249309832,6155.116532365465,2019
+2004,47,"(45,50]",College,956.9062836624776,245.2073735049435,3.902436823104693,6405.236502205249,2019
+2004,47,"(45,50]",College,955.9478061041293,191.97156215189653,4.97963237569396,6013.426108541384,2019
+2004,47,"(45,50]",College,1140.1169120287252,172.6130852962431,6.605043355038969,5959.934970980397,2019
+2004,47,"(45,50]",College,1192.126104129264,374.26388587596637,3.185255508527325,6185.611863188356,2019
+2004,49,"(45,50]",NoHS,6.285098743267505,40.33016011594465,0.15584115523465705,3978.6566456703613,2019
+2004,49,"(45,50]",NoHS,6.285098743267505,40.33016011594465,0.15584115523465705,3972.1989465866704,2019
+2004,49,"(45,50]",NoHS,6.285098743267505,40.33016011594465,0.15584115523465705,4024.7391290634855,2019
+2004,49,"(45,50]",NoHS,6.442226211849192,40.33016011594465,0.15973718411552348,3999.7849091476273,2019
+2004,49,"(45,50]",NoHS,6.285098743267505,40.33016011594465,0.15584115523465705,3987.7764046611874,2019
+2004,56,"(55,60]",HS,746.245486535009,209.7168326029122,3.558348069980561,377.06379425658076,2019
+2004,56,"(55,60]",HS,734.9165960502694,209.7168326029122,3.504328131074702,383.4277953526894,2019
+2004,56,"(55,60]",HS,740.5888976660682,209.7168326029122,3.531375562343793,374.19401324608504,2019
+2004,56,"(55,60]",HS,741.9873321364453,209.7168326029122,3.5380437656206607,364.51928021014015,2019
+2004,56,"(55,60]",HS,748.2881436265709,209.7168326029122,3.568088142182727,384.6109909913199,2019
+2004,67,"(65,70]",College,3277.2076122082585,321.02807452291944,10.20847667942601,1507.9524814085694,2019
+2004,67,"(65,70]",College,3278.778886894075,319.4148681182817,10.264953870838346,1516.581955982331,2019
+2004,67,"(65,70]",College,3278.778886894075,319.4148681182817,10.264953870838346,1727.0136387851726,2019
+2004,67,"(65,70]",College,3280.1930341113107,319.4148681182817,10.269381176384785,1446.8077734632777,2019
+2004,67,"(65,70]",College,3278.621759425494,319.4148681182817,10.264461947999854,1536.9334152553695,2019
+2004,34,"(30,35]",College,246.06161579892282,104.8584163014561,2.346608164398778,7756.004075371726,2019
+2004,34,"(30,35]",College,243.07619389587074,104.8584163014561,2.3181371841155234,7570.477460121537,2019
+2004,34,"(30,35]",College,271.2020107719928,104.8584163014561,2.5863637878367114,6388.1575269871055,2019
+2004,34,"(30,35]",College,243.07619389587074,104.8584163014561,2.3181371841155234,7718.893236018867,2019
+2004,34,"(30,35]",College,261.4129694793537,104.8584163014561,2.4930089419605665,7651.230471400659,2019
+2004,60,"(55,60]",College,106395.72280071813,1709.9987889160534,62.21976500238402,214.9446503166411,2019
+2004,60,"(55,60]",College,106154.0607540395,1742.2629170088094,60.92884128894236,219.4278147238666,2019
+2004,60,"(55,60]",College,77234.43590664274,1709.9987889160534,45.16636877596894,217.6396252051789,2019
+2004,60,"(55,60]",College,200221.56236983842,1806.7911731943202,110.81610611139764,11.629513081653155,2019
+2004,60,"(55,60]",College,210834.42298025134,1855.187365333454,113.64589201067336,11.590320765394232,2019
+2004,24,"(20,25]",College,-9.89903052064632,46.782985734495796,-0.2115946719780904,7111.396125428398,2019
+2004,24,"(20,25]",College,-9.89903052064632,46.782985734495796,-0.2115946719780904,7073.030369987631,2019
+2004,24,"(20,25]",College,-9.89903052064632,46.782985734495796,-0.2115946719780904,7098.616465597052,2019
+2004,24,"(20,25]",College,-9.741903052064632,46.782985734495796,-0.20823602639113659,7013.299871397804,2019
+2004,24,"(20,25]",College,-9.89903052064632,46.782985734495796,-0.2115946719780904,7067.889721995436,2019
+2004,54,"(50,55]",College,27508.30592459605,1593.8479277821327,17.259053040821993,475.0185739368885,2019
+2004,54,"(50,55]",College,27476.88043087971,1590.621514972857,17.274304523253345,469.5408685076083,2019
+2004,54,"(50,55]",College,27609.967396768403,1579.3290701403926,17.482086487722313,481.1380463118704,2019
+2004,54,"(50,55]",College,27431.31346499102,1645.470532730542,16.670802010334818,475.4463790922097,2019
+2004,54,"(50,55]",College,27595.82592459605,1645.470532730542,16.770780986762936,490.74239055029614,2019
+2004,48,"(45,50]",College,28161.95619389587,2581.1302474204576,10.910707129963898,246.364301212279,2019
+2004,48,"(45,50]",College,28161.95619389587,2581.1302474204576,10.910707129963898,236.12898905042766,2019
+2004,48,"(45,50]",College,28165.098743267503,2581.1302474204576,10.91192463898917,252.37857050811968,2019
+2004,48,"(45,50]",College,28165.098743267503,2581.1302474204576,10.91192463898917,245.4969918850163,2019
+2004,48,"(45,50]",College,28158.813644524234,2581.1302474204576,10.909489620938627,258.4114227867443,2019
+2004,27,"(25,30]",HS,17.598276481149014,83.88673304116487,0.2097861705081922,4795.095417779068,2019
+2004,27,"(25,30]",HS,17.598276481149014,83.88673304116487,0.2097861705081922,4812.679712347257,2019
+2004,27,"(25,30]",HS,17.598276481149014,83.88673304116487,0.2097861705081922,4773.292251014685,2019
+2004,27,"(25,30]",HS,17.441149012567326,83.88673304116487,0.20791307970008333,4767.788103468973,2019
+2004,27,"(25,30]",HS,17.598276481149014,83.88673304116487,0.2097861705081922,4777.257081757706,2019
+2004,21,"(20,25]",HS,17.441149012567326,4.839619213913358,3.6038267148014445,6764.524642481811,2019
+2004,21,"(20,25]",HS,17.441149012567326,4.839619213913358,3.6038267148014445,6728.030247635979,2019
+2004,21,"(20,25]",HS,17.441149012567326,4.839619213913358,3.6038267148014445,6752.368334166694,2019
+2004,21,"(20,25]",HS,17.441149012567326,4.839619213913358,3.6038267148014445,6671.213214455415,2019
+2004,21,"(20,25]",HS,17.441149012567326,4.839619213913358,3.6038267148014445,6723.140344245956,2019
+2004,44,"(40,45]",HS,1101.149299820467,112.92444832464501,9.751203713254258,564.6576041482207,2019
+2004,44,"(40,45]",HS,1188.04078994614,112.92444832464501,10.520669417225374,557.218000029867,2019
+2004,44,"(40,45]",HS,847.1998850987433,112.92444832464501,7.502360185662714,568.5293038108367,2019
+2004,44,"(40,45]",HS,970.0578527827648,112.92444832464501,8.590326250644663,525.6327456839268,2019
+2004,44,"(40,45]",HS,901.1260323159785,112.92444832464501,7.979902011346056,566.4799876968088,2019
+2004,64,"(60,65]",College,5023.050915619389,822.735266365271,6.105306434487152,3290.966112577479,2019
+2004,64,"(60,65]",College,5304.466211849192,822.735266365271,6.447354852410278,3135.05440172861,2019
+2004,64,"(60,65]",College,4979.212351885099,822.735266365271,6.052022510087068,3451.8070182938836,2019
+2004,64,"(60,65]",College,4977.641077199282,822.735266365271,6.050112692008211,3091.6810088277134,2019
+2004,64,"(60,65]",College,5042.063339317773,822.735266365271,6.12841523324131,3207.8172043797513,2019
+2004,38,"(35,40]",College,2726.1615798922803,564.6222416232251,4.828292934502321,886.5882925506728,2019
+2004,38,"(35,40]",College,2707.3062836624777,564.6222416232251,4.794898401237751,897.3826043744245,2019
+2004,38,"(35,40]",College,2679.023339317774,564.6222416232251,4.744806601340898,883.9996544977455,2019
+2004,38,"(35,40]",College,2707.3062836624777,564.6222416232251,4.794898401237751,906.737223226099,2019
+2004,38,"(35,40]",College,2724.590305206463,564.6222416232251,4.825510056730273,919.3611911005439,2019
+2004,32,"(30,35]",College,501.77085816876127,140.3489572034874,3.575166272459438,11395.907436347585,2019
+2004,32,"(30,35]",College,597.6029012567326,141.9621636081252,4.209592796192977,10442.851053073717,2019
+2004,32,"(30,35]",College,523.910118491921,140.3489572034874,3.732910660193369,11499.96597301035,2019
+2004,32,"(30,35]",College,516.6822549371634,141.9621636081252,3.63957720708894,11426.204034412815,2019
+2004,32,"(30,35]",College,653.22602513465,140.3489572034874,4.654299099547699,9855.541043307177,2019
+2004,48,"(45,50]",College,18225.215080789945,2242.356902446523,8.127704854167208,350.99059067841506,2019
+2004,48,"(45,50]",College,18222.386786355477,2242.356902446523,8.126443549853258,356.67339457451305,2019
+2004,48,"(45,50]",College,18222.543913824058,2242.356902446523,8.126513622315144,358.1440850781791,2019
+2004,48,"(45,50]",College,18236.214003590667,2242.356902446523,8.132609926499235,347.82791671237203,2019
+2004,48,"(45,50]",College,24285.62154398564,2242.356902446523,10.830399709113575,330.7513900743841,2019
+2004,43,"(40,45]",HS,7.103732854578097,72.59428820870036,0.09785525872442842,6178.846616320612,2019
+2004,43,"(40,45]",HS,7.433700538599641,72.59428820870036,0.10240062575210591,5779.062768352971,2019
+2004,43,"(40,45]",HS,8.981406104129265,70.9810818040626,0.12653239251723006,6194.54693256714,2019
+2004,43,"(40,45]",HS,10.552680789946141,70.9810818040626,0.14866892024942566,6137.901133589358,2019
+2004,43,"(40,45]",HS,10.403409694793538,72.59428820870036,0.1433089290012034,6053.346943723229,2019
+2004,47,"(45,50]",HS,41.167396768402156,74.20749461333816,0.5547606341233716,5253.4603128539875,2019
+2004,47,"(45,50]",HS,41.167396768402156,74.20749461333816,0.5547606341233716,5089.535793745614,2019
+2004,47,"(45,50]",HS,41.167396768402156,74.20749461333816,0.5547606341233716,5280.8282407036695,2019
+2004,47,"(45,50]",HS,41.010269299820465,75.82070101797595,0.5408848605883708,5312.56610201704,2019
+2004,47,"(45,50]",HS,41.167396768402156,75.82070101797595,0.5429572163760658,5191.704346605156,2019
+2004,29,"(25,30]",HS,48.47382405745063,80.6603202318893,0.6009624548736462,7609.071653918346,2019
+2004,29,"(25,30]",HS,21.762154398563734,80.6603202318893,0.2698,7497.4089100264955,2019
+2004,29,"(25,30]",HS,15.47705565529623,80.6603202318893,0.1918794223826715,7642.66785803559,2019
+2004,29,"(25,30]",HS,18.61960502692998,80.6603202318893,0.23083971119133576,7679.803280850069,2019
+2004,29,"(25,30]",HS,18.61960502692998,80.6603202318893,0.23083971119133576,7616.550534788097,2019
+2004,62,"(60,65]",College,14763.85407540395,1726.130852962431,8.553148824184353,28.901248606681957,2019
+2004,62,"(60,65]",College,32720.695439856372,1593.8479277821327,20.529371008053317,26.39897922653094,2019
+2004,62,"(60,65]",College,15043.855224416517,1806.7911731943202,8.326283329035586,30.011666809576848,2019
+2004,62,"(60,65]",College,48926.979676840216,1440.5933193415428,33.963075505031114,25.62277832822135,2019
+2004,62,"(60,65]",College,34421.28603231598,1353.4801734911027,25.431688403333858,26.869043729423304,2019
+2004,38,"(35,40]",HS,8.092064631956912,120.99048034783397,0.06688182912154031,7274.230222608788,2019
+2004,38,"(35,40]",HS,6.520789946140035,120.99048034783397,0.053895066185318884,6863.128147926817,2019
+2004,38,"(35,40]",HS,6.520789946140035,120.99048034783397,0.053895066185318884,7243.605523766753,2019
+2004,38,"(35,40]",HS,6.520789946140035,120.99048034783397,0.053895066185318884,7212.740921551524,2019
+2004,38,"(35,40]",HS,6.520789946140035,120.99048034783397,0.053895066185318884,7080.770428550594,2019
+2004,30,"(25,30]",HS,39.43899461400359,95.17917787362938,0.4143657835158783,5085.297763947735,2019
+2004,30,"(25,30]",HS,38.49622980251347,93.56597146899159,0.4114340844018424,4955.948570815986,2019
+2004,30,"(25,30]",HS,38.33910233393178,95.17917787362938,0.40280976564890164,5108.037134226314,2019
+2004,30,"(25,30]",HS,38.33910233393178,93.56597146899159,0.4097547616083655,5088.746675947226,2019
+2004,30,"(25,30]",HS,38.49622980251347,95.17917787362938,0.4044606253441841,5070.085517288261,2019
+2004,54,"(50,55]",HS,1340.925816876122,564.6222416232251,2.374907890665291,672.537477880426,2019
+2004,54,"(50,55]",HS,806.5352962298025,564.6222416232251,1.4284511603919545,340.89193848129923,2019
+2004,54,"(50,55]",HS,1026.5137522441653,564.6222416232251,1.8180540484785974,329.8843223777698,2019
+2004,54,"(50,55]",HS,908.8252782764812,564.6222416232251,1.6096165033522434,325.870231579006,2019
+2004,54,"(50,55]",HS,699.8457450628367,564.6222416232251,1.2394937596699331,341.5328256494441,2019
+2004,31,"(30,35]",College,203.48007181328546,116.1508611339206,1.7518602085840353,5746.998303465896,2019
+2004,31,"(30,35]",College,203.48007181328546,116.1508611339206,1.7518602085840353,5868.744561221597,2019
+2004,31,"(30,35]",College,203.48007181328546,116.1508611339206,1.7518602085840353,5733.9361522054205,2019
+2004,31,"(30,35]",College,203.48007181328546,116.1508611339206,1.7518602085840353,5804.69456340773,2019
+2004,31,"(30,35]",College,203.48007181328546,116.1508611339206,1.7518602085840353,5800.799040487867,2019
+2004,68,"(65,70]",College,2991.707001795332,306.5092168811794,9.760577617328519,3369.4884493248887,2019
+2004,68,"(65,70]",College,3024.7037701974864,306.5092168811794,9.868231046931406,3557.274880245205,2019
+2004,68,"(65,70]",College,2924.2993177737885,306.5092168811794,9.540657039711192,3370.6005341743817,2019
+2004,68,"(65,70]",College,2948.496947935368,306.5092168811794,9.619602888086641,3619.8809107578854,2019
+2004,68,"(65,70]",College,2914.7145421903056,306.5092168811794,9.509386281588448,3451.96569091134,2019
+2004,45,"(40,45]",College,11.548868940754039,74.20749461333816,0.15562941453460996,4780.806461816322,2019
+2004,45,"(40,45]",College,10.716093357271095,74.20749461333816,0.14440715743211427,4631.630232524947,2019
+2004,45,"(40,45]",College,11.753134649910233,74.20749461333816,0.1583820436352221,4805.712097058325,2019
+2004,45,"(40,45]",College,11.077486535008976,74.20749461333816,0.1492771935331973,4834.594502828089,2019
+2004,45,"(40,45]",College,19.012423698384204,74.20749461333816,0.256206247056977,4724.606680164648,2019
+2004,37,"(35,40]",College,1919.3120287253141,362.9714410435019,5.287776975531488,3476.8370174519887,2019
+2004,37,"(35,40]",College,1917.7407540394975,362.9714410435019,5.283448054552748,3635.0117732731305,2019
+2004,37,"(35,40]",College,1919.3120287253141,362.9714410435019,5.287776975531488,3439.6871859185476,2019
+2004,37,"(35,40]",College,1919.3120287253141,362.9714410435019,5.287776975531488,3697.9056374108222,2019
+2004,37,"(35,40]",College,1919.3120287253141,362.9714410435019,5.287776975531488,3517.2273523792655,2019
+2004,80,"(75,80]",HS,4740.865694793537,165.35365647537307,28.67106658448534,1674.8934364073261,2019
+2004,80,"(75,80]",HS,4740.912833034111,165.35365647537307,28.671351659769304,1669.9907526479333,2019
+2004,80,"(75,80]",HS,4742.452682226211,165.35365647537307,28.68066411904552,1903.6701682158036,2019
+2004,80,"(75,80]",HS,4742.311267504489,165.35365647537307,28.679808893193627,1593.494653308254,2019
+2004,80,"(75,80]",HS,4741.00710951526,165.35365647537307,28.671921810337235,1693.2774088687288,2019
+2004,36,"(35,40]",HS,4.980940754039498,40.33016011594465,0.12350411552346573,5322.285205757949,2019
+2004,36,"(35,40]",HS,9.663339317773788,40.33016011594465,0.2396057761732852,5289.651703515221,2019
+2004,36,"(35,40]",HS,7.982075403949731,37.10374730666908,0.2151285512478418,5318.54011031306,2019
+2004,36,"(35,40]",HS,8.5005960502693,46.782985734495796,0.18170272625420142,5309.341720595044,2019
+2004,36,"(35,40]",HS,16.184129263913825,43.55657292522023,0.3715657173418906,5324.603866417359,2019
+2004,37,"(35,40]",HS,12.57019748653501,40.33016011594465,0.3116823104693141,3399.1073684544363,2019
+2004,37,"(35,40]",HS,12.57019748653501,79.04711382725151,0.15902158697413987,3445.7184668958726,2019
+2004,37,"(35,40]",HS,12.57019748653501,56.46222416232251,0.22263022176379582,3407.292834749512,2019
+2004,37,"(35,40]",HS,12.57019748653501,41.94336652058244,0.2996945292974174,3390.577594575961,2019
+2004,37,"(35,40]",HS,12.57019748653501,40.33016011594465,0.3116823104693141,3423.927026518285,2019
+2004,81,"(80,85]",NoHS,638.7231597845602,59.57571252327344,10.721200514975644,8454.60921814963,2019
+2004,81,"(80,85]",NoHS,637.1518850987433,59.57571252327344,10.694826097964635,9398.992984332748,2019
+2004,81,"(80,85]",NoHS,638.8802872531419,59.57571252327344,10.723837956676746,8369.065726513432,2019
+2004,81,"(80,85]",NoHS,638.7231597845602,59.57571252327344,10.721200514975644,8342.138156935214,2019
+2004,81,"(80,85]",NoHS,636.9947576301616,59.57571252327344,10.692188656263534,8746.063448844603,2019
+2004,48,"(45,50]",NoHS,9.113393177737882,29.03771528348015,0.3138467709586843,4790.505735343416,2019
+2004,48,"(45,50]",NoHS,8.48488330341113,29.03771528348015,0.29220216606498195,4689.10460153445,2019
+2004,48,"(45,50]",NoHS,10.998922800718134,29.03771528348015,0.37878058563979145,4830.947939519364,2019
+2004,48,"(45,50]",NoHS,6.5993536804308794,29.03771528348015,0.22726835138387483,4816.319295131279,2019
+2004,48,"(45,50]",NoHS,15.398491921005387,29.03771528348015,0.530292819895708,4768.757572306787,2019
+2004,52,"(50,55]",College,13938.620610412925,693.678753994248,20.09376895306859,1240.1946621704903,2019
+2004,52,"(50,55]",College,13938.620610412925,693.678753994248,20.09376895306859,1239.6978031315468,2019
+2004,52,"(50,55]",College,13938.620610412925,693.678753994248,20.09376895306859,1272.473272739166,2019
+2004,52,"(50,55]",College,13938.777737881508,693.678753994248,20.093995466375617,1198.2982046391487,2019
+2004,52,"(50,55]",College,13938.620610412925,693.678753994248,20.09376895306859,1220.9668332492822,2019
+2004,76,"(75,80]",College,143806.20179533213,3132.846837806581,45.90272338242237,29.35650823389555,2019
+2004,76,"(75,80]",College,215520.74973070016,3084.4506456674467,69.87330143649079,30.29644577155334,2019
+2004,76,"(75,80]",College,167609.442010772,3134.4600442112182,53.473146777007535,29.722027912855282,2019
+2004,76,"(75,80]",College,164044.2197486535,3116.7147737602027,52.633696586466954,28.98419262984593,2019
+2004,76,"(75,80]",College,247141.081508079,3132.846837806581,78.88706160978855,29.1175918322915,2019
+2004,41,"(40,45]",HS,31.30764811490126,69.36787539942482,0.4513277642515321,7213.262976632757,2019
+2004,41,"(40,45]",HS,31.449062836624776,69.36787539942482,0.45336638401477614,6805.606457087396,2019
+2004,41,"(40,45]",HS,31.45691921005386,69.36787539942482,0.4534796406682897,7182.894951485408,2019
+2004,41,"(40,45]",HS,31.291935368043088,69.36787539942482,0.451101250944505,7152.2890336584405,2019
+2004,41,"(40,45]",HS,31.47263195691203,69.36787539942482,0.45370615397531683,7021.4246202373615,2019
+2004,55,"(50,55]",HS,910.3965529622981,141.9621636081252,6.412952084017065,5408.801443484403,2019
+2004,55,"(50,55]",HS,905.6827289048474,141.9621636081252,6.379747292418772,5981.992442309735,2019
+2004,55,"(50,55]",HS,880.5423339317774,141.9621636081252,6.202655070561208,5338.334411617789,2019
+2004,55,"(50,55]",HS,871.4289407540394,141.9621636081252,6.138459140137839,5321.271515525971,2019
+2004,55,"(50,55]",HS,880.5423339317774,141.9621636081252,6.202655070561208,5592.7394630447325,2019
+2004,60,"(55,60]",College,25220.52998204668,3226.4128092755723,7.816894945848375,194.0817472000475,2019
+2004,60,"(55,60]",College,24749.147576301617,3226.4128092755723,7.670793862815884,189.64259496906303,2019
+2004,60,"(55,60]",College,25220.52998204668,3226.4128092755723,7.816894945848375,199.65519840026084,2019
+2004,60,"(55,60]",College,31159.94829443447,3226.4128092755723,9.657768592057762,189.45306228096882,2019
+2004,60,"(55,60]",College,31159.94829443447,3226.4128092755723,9.657768592057762,196.81809045795274,2019
+2004,67,"(65,70]",HS,997.7594254937164,38.716953711306864,25.770607701564384,6941.11937277232,2019
+2004,67,"(65,70]",HS,997.7594254937164,38.716953711306864,25.770607701564384,7779.1595397870715,2019
+2004,67,"(65,70]",HS,997.7594254937164,38.716953711306864,25.770607701564384,6926.572162271266,2019
+2004,67,"(65,70]",HS,997.7594254937164,38.716953711306864,25.770607701564384,6908.355782232093,2019
+2004,67,"(65,70]",HS,997.7594254937164,38.716953711306864,25.770607701564384,7237.015411275739,2019
+2004,71,"(70,75]",College,1448.7152603231598,128.73387109009533,11.253567130823448,6912.008020491501,2019
+2004,71,"(70,75]",College,1426.0889048473969,128.73387109009533,11.077806429430979,7683.493771252528,2019
+2004,71,"(70,75]",College,1455.9431238779175,127.12066468545756,11.453237185948066,6841.844570712618,2019
+2004,71,"(70,75]",College,1422.946355475763,127.12066468545756,11.193666733859883,6821.402390753331,2019
+2004,71,"(70,75]",College,1438.6591023339317,128.73387109009533,11.175451263537905,7148.698176794258,2019
+2004,45,"(40,45]",NoHS,22.46922800718133,109.69803551536945,0.20482798895731577,5017.012295444853,2019
+2004,45,"(40,45]",NoHS,42.89579892280072,108.08482911073166,0.39687159868527405,4663.074853361367,2019
+2004,45,"(40,45]",NoHS,25.61177737881508,108.08482911073166,0.2369599655153834,5044.258478995276,2019
+2004,45,"(40,45]",NoHS,22.46922800718133,108.08482911073166,0.20788512312085783,5019.250740220217,2019
+2004,45,"(40,45]",NoHS,22.46922800718133,109.69803551536945,0.20482798895731577,4860.59561175745,2019
+2004,65,"(60,65]",College,121759.64667863556,34700.06976375878,3.5089164807905653,26.53403282575663,2019
+2004,65,"(60,65]",College,116797.56122082585,34683.937699712405,3.367482730249349,27.460195446701853,2019
+2004,65,"(60,65]",College,116654.57522441652,32990.070974842725,3.536051053463144,27.68412532033214,2019
+2004,65,"(60,65]",College,117913.16624775584,34700.06976375878,3.3980671235106836,26.087486167993212,2019
+2004,65,"(60,65]",College,116706.42728904849,34700.06976375878,3.3632908545601325,26.767361096680492,2019
+2004,57,"(55,60]",NoHS,71.88581687612209,69.36787539942482,1.0362983796490637,4986.51085259663,2019
+2004,57,"(55,60]",NoHS,65.91497307001795,75.82070101797595,0.8693532529380136,4333.174338960183,2019
+2004,57,"(55,60]",NoHS,66.38635547576303,75.82070101797595,0.8755703203010985,5018.4841839768105,2019
+2004,57,"(55,60]",NoHS,62.53673249551167,70.9810818040626,0.8810338037413848,4905.108162066667,2019
+2004,57,"(55,60]",NoHS,64.07658168761222,77.43390742261373,0.8275003008423588,4781.025449314087,2019
+2004,23,"(20,25]",HS,3.346815080789946,45.16977932985802,0.07409412068076326,5995.1793780590315,2019
+2004,23,"(20,25]",HS,0.18855296229802515,45.16977932985802,0.0041743166580711704,5962.835576394025,2019
+2004,23,"(20,25]",HS,0.18855296229802515,41.94336652058244,0.004495417939461261,5984.405635220333,2019
+2004,23,"(20,25]",HS,11.187475763016158,41.94336652058244,0.2667281310747015,5912.4804777508125,2019
+2004,23,"(20,25]",HS,3.331102333931778,45.16977932985802,0.07374626095925735,5958.5018131935085,2019
+2004,65,"(60,65]",NoHS,57.980035906642726,91.95276506435381,0.6305415162454873,8607.216938787042,2019
+2004,65,"(60,65]",NoHS,64.26513464991024,91.95276506435381,0.6988929001203369,7955.00829658943,2019
+2004,65,"(60,65]",NoHS,60.9654578096948,90.33955865971603,0.6748478597215058,8680.31295057744,2019
+2004,65,"(60,65]",NoHS,61.279712746858166,91.95276506435381,0.6664259927797833,8622.947825613768,2019
+2004,65,"(60,65]",NoHS,63.636624775583485,91.95276506435381,0.6920577617328519,8458.241772968904,2019
+2004,38,"(35,40]",HS,25.14039497307002,58.0754305669603,0.43289209787404737,6300.286408223362,2019
+2004,38,"(35,40]",HS,20.128028725314184,58.0754305669603,0.34658423586040915,6197.171253873171,2019
+2004,38,"(35,40]",HS,20.080890484739676,58.0754305669603,0.3457725631768953,6274.6330999410275,2019
+2004,38,"(35,40]",HS,26.711669658886894,58.0754305669603,0.45994785399117527,6305.944203010689,2019
+2004,38,"(35,40]",HS,43.05292639138241,58.0754305669603,0.741327717609306,6256.118947197374,2019
+2004,31,"(30,35]",HS,0.20583698384201077,45.16977932985802,0.004556962351727694,4115.8666890150525,2019
+2004,31,"(30,35]",HS,0.19012423698384204,45.16977932985802,0.004209102630221764,4174.14700823999,2019
+2004,31,"(30,35]",HS,0.20583698384201077,45.16977932985802,0.004556962351727694,4105.57269769764,2019
+2004,31,"(30,35]",HS,0.20583698384201077,46.782985734495796,0.004399825718909498,4146.774436292945,2019
+2004,31,"(30,35]",HS,0.19012423698384204,45.16977932985802,0.004209102630221764,4138.2166267695275,2019
+2004,49,"(45,50]",HS,349.92287253141836,162.9338468684164,2.147637702398399,8815.309968186408,2019
+2004,49,"(45,50]",HS,371.99928186714544,206.49041979363656,1.8015328858303254,9033.307804640199,2019
+2004,49,"(45,50]",HS,362.17881508078995,193.58476855653433,1.8709055354993984,8643.599543247117,2019
+2004,49,"(45,50]",HS,623.0104129263914,195.19797496117215,3.1916848166602017,8557.125969974168,2019
+2004,49,"(45,50]",HS,520.7204308797128,162.9338468684164,3.1959009186117173,8888.086773525025,2019
+2004,39,"(35,40]",NoHS,1.6812639138240575,38.716953711306864,0.043424488567990374,4395.007875336716,2019
+2004,39,"(35,40]",NoHS,1.6812639138240575,38.716953711306864,0.043424488567990374,4388.6906238152205,2019
+2004,39,"(35,40]",NoHS,1.5241364452423698,37.10374730666908,0.041077695809135145,4399.591074102177,2019
+2004,39,"(35,40]",NoHS,1.5241364452423698,38.716953711306864,0.03936612515042118,4394.276889340347,2019
+2004,39,"(35,40]",NoHS,1.665551166965889,38.716953711306864,0.04301865222623346,4375.704539185114,2019
+2004,25,"(20,25]",NoHS,0.47138240574506285,20.97168326029122,0.022477089697306305,6200.600670664509,2019
+2004,25,"(20,25]",NoHS,0.47138240574506285,20.97168326029122,0.022477089697306305,6215.227660323712,2019
+2004,25,"(20,25]",NoHS,0.47138240574506285,20.97168326029122,0.022477089697306305,6191.966579967327,2019
+2004,25,"(20,25]",NoHS,0.47138240574506285,20.97168326029122,0.022477089697306305,6228.48676766466,2019
+2004,25,"(20,25]",NoHS,0.47138240574506285,20.97168326029122,0.022477089697306305,6213.207121793236,2019
+2004,35,"(30,35]",College,110.61773788150808,67.75466899478702,1.6326216262678355,9355.13230644274,2019
+2004,35,"(30,35]",College,101.97572710951526,67.75466899478702,1.505073061715661,8980.41206925189,2019
+2004,35,"(30,35]",College,100.56157989228008,67.75466899478702,1.484201478425305,9346.673313606332,2019
+2004,35,"(30,35]",College,110.93199281867146,67.75466899478702,1.6372597558879145,9311.826660303046,2019
+2004,35,"(30,35]",College,103.23274685816875,67.75466899478702,1.523625580195977,9217.560871094933,2019
+2004,45,"(40,45]",NoHS,-18.823870736086178,41.94336652058244,-0.4487925576228826,3546.76965195305,2019
+2004,45,"(40,45]",NoHS,-18.81601436265709,41.94336652058244,-0.4486052485420716,3471.8538068200687,2019
+2004,45,"(40,45]",NoHS,-18.808157989228008,41.94336652058244,-0.4484179394612608,3577.3037871535307,2019
+2004,45,"(40,45]",NoHS,-17.23688330341113,41.94336652058244,-0.41095612329908354,3574.74097906437,2019
+2004,45,"(40,45]",NoHS,-18.81601436265709,43.55657292522023,-0.43199023933680963,3531.3595314094273,2019
+2004,43,"(40,45]",HS,202.14448833034112,64.52825618551145,3.13265072202166,5481.618842863696,2019
+2004,43,"(40,45]",HS,202.14448833034112,64.52825618551145,3.13265072202166,6087.74719256607,2019
+2004,43,"(40,45]",HS,202.14448833034112,64.52825618551145,3.13265072202166,5413.687852394736,2019
+2004,43,"(40,45]",HS,202.14448833034112,64.52825618551145,3.13265072202166,5408.883193480765,2019
+2004,43,"(40,45]",HS,202.14448833034112,64.52825618551145,3.13265072202166,5647.116233837045,2019
+2004,55,"(50,55]",College,3170.4394973070016,1451.8857641740076,2.183670076213397,294.0782415789,2019
+2004,55,"(50,55]",College,3180.6527827648115,1451.8857641740076,2.190704572803851,293.0190960111748,2019
+2004,55,"(50,55]",College,3163.368761220826,1451.8857641740076,2.178800040112314,304.0768756051631,2019
+2004,55,"(50,55]",College,3190.080430879713,1451.8857641740076,2.1971979542719615,290.0616229138954,2019
+2004,55,"(50,55]",College,3177.353105924596,1451.8857641740076,2.188431889290012,296.3295687508992,2019
+2004,23,"(20,25]",NoHS,3.1425493716337525,22.58488966492901,0.13914388860237234,3088.931419788665,2019
+2004,23,"(20,25]",NoHS,3.2996768402154397,22.58488966492901,0.14610108303249095,3088.784101208285,2019
+2004,23,"(20,25]",NoHS,3.1425493716337525,22.58488966492901,0.13914388860237234,3087.413691173698,2019
+2004,23,"(20,25]",NoHS,3.2996768402154397,22.58488966492901,0.14610108303249095,3050.991788782848,2019
+2004,23,"(20,25]",NoHS,3.1425493716337525,22.58488966492901,0.13914388860237234,3089.514383719308,2019
+2004,68,"(65,70]",College,9743.474326750447,120.99048034783397,80.530916967509,1794.0742571099338,2019
+2004,68,"(65,70]",College,9916.314542190306,117.76406753855836,84.20492557242473,1746.810688096121,2019
+2004,68,"(65,70]",College,12675.47289048474,104.8584163014561,120.8817883921133,1835.5837486958176,2019
+2004,68,"(65,70]",College,9914.74326750449,193.58476855653433,51.21654632972323,1743.954848582703,2019
+2004,68,"(65,70]",College,10062.443087971275,130.66971877566067,77.00669429959441,1777.6617302156124,2019
+2004,73,"(70,75]",College,2700.706929982047,104.8584163014561,25.75574784782005,4017.927600349523,2019
+2004,73,"(70,75]",College,2534.3089407540397,104.8584163014561,24.168865315190224,4205.323253404595,2019
+2004,73,"(70,75]",College,2523.310017953321,104.8584163014561,24.063972229936127,3988.2739226416516,2019
+2004,73,"(70,75]",College,2611.144272890485,104.8584163014561,24.90161843932241,4280.755356653005,2019
+2004,73,"(70,75]",College,2717.9909515260324,104.8584163014561,25.92057983893363,4082.3221678796554,2019
+2004,53,"(50,55]",HS,0.001571274685816876,19.358476855653432,8.116726835138387e-5,4468.9016810411695,2019
+2004,53,"(50,55]",HS,0.001571274685816876,19.358476855653432,8.116726835138387e-5,4472.622334927776,2019
+2004,53,"(50,55]",HS,0.001571274685816876,19.358476855653432,8.116726835138387e-5,4475.9998724293555,2019
+2004,53,"(50,55]",HS,0.001571274685816876,19.358476855653432,8.116726835138387e-5,4477.080492403081,2019
+2004,53,"(50,55]",HS,0.001571274685816876,19.358476855653432,8.116726835138387e-5,4468.547546884829,2019
+2004,54,"(50,55]",HS,-2.514039497307002,12.260368675247175,-0.20505415162454874,3988.185209649285,2019
+2004,54,"(50,55]",HS,-2.356912028725314,12.099048034783396,-0.19480144404332128,3994.1473680492977,2019
+2004,54,"(50,55]",HS,-2.1997845601436268,12.260368675247175,-0.17942238267148014,4021.695695741824,2019
+2004,54,"(50,55]",HS,-2.1997845601436268,12.099048034783396,-0.1818146811070999,3997.168047601287,2019
+2004,54,"(50,55]",HS,-2.1997845601436268,12.099048034783396,-0.1818146811070999,4008.005051286838,2019
+2004,58,"(55,60]",College,9113.330326750449,508.16001746090257,17.93397751418257,2047.6664894362675,2019
+2004,58,"(55,60]",College,9114.807324955118,508.16001746090257,17.936884075411157,2061.603114483126,2019
+2004,58,"(55,60]",College,9113.2360502693,508.16001746090257,17.93379198899777,2066.8392551343795,2019
+2004,58,"(55,60]",College,9113.691719928187,508.16001746090257,17.934688694057648,2004.3122706066356,2019
+2004,58,"(55,60]",College,9114.807324955118,508.16001746090257,17.936884075411157,1997.921363103212,2019
+2004,26,"(25,30]",College,232.0772710951526,61.30184337623587,3.785812274368231,7639.729198504504,2019
+2004,26,"(25,30]",College,229.5632315978456,61.30184337623587,3.744801444043321,7366.820819951901,2019
+2004,26,"(25,30]",College,231.1345062836625,61.30184337623587,3.77043321299639,7644.017105453828,2019
+2004,26,"(25,30]",College,228.93472172351886,35.4905409020313,6.450584181161798,7661.7969853732675,2019
+2004,26,"(25,30]",College,231.44876122082587,61.30184337623587,3.775559566787004,7558.163355553896,2019
+2004,37,"(35,40]",College,22.862046678635547,100.01879708754274,0.2285775008734133,1238.7103799620804,2019
+2004,37,"(35,40]",College,26.161723518850987,93.56597146899159,0.27960724511390517,1169.9321585225375,2019
+2004,37,"(35,40]",College,14.927109515260323,101.63200349218052,0.1468741046358375,1260.0404892678487,2019
+2004,37,"(35,40]",College,28.67576301615799,96.79238427826716,0.29626052948255116,1212.0789128648169,2019
+2004,37,"(35,40]",College,31.818312387791742,129.0565123710229,0.24654557761732848,1243.358537906423,2019
+2004,47,"(45,50]",College,307.1842010771993,177.45270451015648,1.731076468657696,5969.661114862343,2019
+2004,47,"(45,50]",College,306.86994614003595,177.45270451015648,1.7293055464391205,6644.073185912882,2019
+2004,47,"(45,50]",College,306.7128186714542,177.45270451015648,1.7284200853298326,5893.575458635782,2019
+2004,47,"(45,50]",College,308.12696588868937,177.45270451015648,1.7363892353134227,5907.671440506872,2019
+2004,47,"(45,50]",College,308.4412208258528,177.45270451015648,1.7381601575319985,6175.12380690695,2019
+2004,57,"(55,60]",HS,233.09859964093357,112.92444832464501,2.0641995874161942,4988.659678437516,2019
+2004,57,"(55,60]",HS,233.61712028725316,112.92444832464501,2.0687913357400727,4448.125920644228,2019
+2004,57,"(55,60]",HS,233.06717414721726,112.92444832464501,2.0639212996389897,5000.770738127295,2019
+2004,57,"(55,60]",HS,233.6485457809695,112.92444832464501,2.069069623517277,4911.556089004645,2019
+2004,57,"(55,60]",HS,233.86852423698386,112.92444832464501,2.0710176379577105,4809.168138053569,2019
+2004,64,"(60,65]",College,285.0292280071813,72.59428820870036,3.9263313277176097,7024.6402222461575,2019
+2004,64,"(60,65]",College,300.74197486535013,72.59428820870036,4.142777376654634,6263.502878504589,2019
+2004,64,"(60,65]",College,291.31432675044886,72.59428820870036,4.01290974729242,7041.69406887325,2019
+2004,64,"(60,65]",College,300.74197486535013,72.59428820870036,4.142777376654634,6916.068980565595,2019
+2004,64,"(60,65]",College,289.74305206463197,72.59428820870036,3.991265142398717,6771.89427936618,2019
+2004,51,"(50,55]",HS,69.13608617594255,164.5470532730542,0.42015997734834004,6185.454568925886,2019
+2004,51,"(50,55]",HS,69.29321364452424,262.9526439559591,0.26351974485614943,5847.86819102437,2019
+2004,51,"(50,55]",HS,68.5075763016158,127.4433059663851,0.5375533519170133,6236.421331318588,2019
+2004,51,"(50,55]",HS,68.97895870736086,148.4149892266763,0.464770836603359,6205.087950890762,2019
+2004,51,"(50,55]",HS,69.7645960502693,156.48102124986525,0.4458342327589416,6064.184729282674,2019
+2004,62,"(60,65]",HS,195.62369838420108,77.43390742261373,2.526331227436823,5363.703295127456,2019
+2004,62,"(60,65]",HS,195.46657091561937,77.43390742261373,2.5243020457280383,4692.014061235786,2019
+2004,62,"(60,65]",HS,195.46657091561937,77.43390742261373,2.5243020457280383,5396.4996529050995,2019
+2004,62,"(60,65]",HS,195.62369838420108,77.43390742261373,2.526331227436823,5283.438933542219,2019
+2004,62,"(60,65]",HS,195.46657091561937,77.43390742261373,2.5243020457280383,5161.402527980308,2019
+2004,55,"(50,55]",College,8812.965457809694,403.30160115944653,21.85204678700361,3290.966112577479,2019
+2004,55,"(50,55]",College,8814.536732495511,403.30160115944653,21.855942815884475,3135.05440172861,2019
+2004,55,"(50,55]",College,8813.122585278277,403.30160115944653,21.852436389891697,3451.8070182938836,2019
+2004,55,"(50,55]",College,8814.693859964093,403.30160115944653,21.85633241877256,3091.6810088277134,2019
+2004,55,"(50,55]",College,8812.965457809694,403.30160115944653,21.85204678700361,3207.8172043797513,2019
+2004,27,"(25,30]",HS,-42.660107719928185,82.2735266365271,-0.5185156084094287,6393.542552687717,2019
+2004,27,"(25,30]",HS,-42.660107719928185,82.2735266365271,-0.5185156084094287,6372.894599591851,2019
+2004,27,"(25,30]",HS,-42.660107719928185,82.2735266365271,-0.5185156084094287,6356.449876298275,2019
+2004,27,"(25,30]",HS,-40.93170556552962,82.2735266365271,-0.4975076095420117,6416.807555116318,2019
+2004,27,"(25,30]",HS,-42.660107719928185,82.2735266365271,-0.5185156084094287,6350.68940805429,2019
+2004,84,"(80,85]",HS,58.92280071813286,30.650921688117936,1.9223826714801446,9350.683325129281,2019
+2004,84,"(80,85]",HS,58.76567324955117,30.650921688117936,1.9172563176895308,9359.086902626097,2019
+2004,84,"(80,85]",HS,58.45141831238779,22.58488966492901,2.5880763280041252,9370.062570583415,2019
+2004,84,"(80,85]",HS,59.39418312387792,24.19809606956679,2.4544981949458484,9346.789945241519,2019
+2004,84,"(80,85]",HS,58.45141831238779,22.58488966492901,2.5880763280041252,9359.157428283717,2019
+2004,26,"(25,30]",College,-0.7856373429084381,80.6603202318893,-0.009740072202166066,7553.556853989729,2019
+2004,26,"(25,30]",College,-0.7856373429084381,80.6603202318893,-0.009740072202166066,7372.87285452272,2019
+2004,26,"(25,30]",College,-0.7856373429084381,80.6603202318893,-0.009740072202166066,7530.567733430025,2019
+2004,26,"(25,30]",College,-0.7856373429084381,80.6603202318893,-0.009740072202166066,7517.414681780045,2019
+2004,26,"(25,30]",College,-0.7856373429084381,80.6603202318893,-0.009740072202166066,7451.518050670134,2019
+2004,22,"(20,25]",HS,-1.7126894075403951,43.55657292522023,-0.039321032223559295,7077.265115058746,2019
+2004,22,"(20,25]",HS,-1.8698168761220826,43.55657292522023,-0.04292846637250969,6953.9732659343645,2019
+2004,22,"(20,25]",HS,-1.8698168761220826,43.55657292522023,-0.04292846637250969,7090.0904370623875,2019
+2004,22,"(20,25]",HS,-1.7126894075403951,43.55657292522023,-0.039321032223559295,7033.454345020391,2019
+2004,22,"(20,25]",HS,-1.7126894075403951,43.55657292522023,-0.039321032223559295,7054.161732962406,2019
+2004,50,"(45,50]",College,18070.915906642727,1476.0838602435745,12.242472391548793,414.12414841656954,2019
+2004,50,"(45,50]",College,15329.355834829445,1726.130852962431,8.880761159283379,408.891319696838,2019
+2004,50,"(45,50]",College,15754.54276481149,1393.8103336070474,11.30321851183313,426.0991083883323,2019
+2004,50,"(45,50]",College,16073.82578096948,2435.941671003057,6.5986086499151275,406.28059603603447,2019
+2004,50,"(45,50]",College,18218.772854578096,1559.9705932847392,11.678920700816473,411.54095424055157,2019
+2004,58,"(55,60]",College,604.3122441651706,96.79238427826716,6.243386281588448,5927.301062095497,2019
+2004,58,"(55,60]",College,604.3122441651706,96.79238427826716,6.243386281588448,6556.525128741305,2019
+2004,58,"(55,60]",College,604.4693716337523,96.79238427826716,6.245009626955476,5846.330958203957,2019
+2004,58,"(55,60]",College,604.3122441651706,96.79238427826716,6.243386281588448,5828.360818614385,2019
+2004,58,"(55,60]",College,604.3122441651706,96.79238427826716,6.243386281588448,6128.270603535997,2019
+2004,70,"(65,70]",College,1117.3334290843807,29.03771528348015,38.47869634977938,8597.791113826683,2019
+2004,70,"(65,70]",College,1118.9047037701976,29.03771528348015,38.53280786201364,9559.018935360466,2019
+2004,70,"(65,70]",College,1117.1763016157988,29.03771528348015,38.47328519855595,8505.062965109953,2019
+2004,70,"(65,70]",College,1115.7621543985638,29.03771528348015,38.424584837545126,8480.693900335053,2019
+2004,70,"(65,70]",College,1118.7475763016157,29.03771528348015,38.52739671079021,8891.3358554002225,2019
+2004,67,"(65,70]",College,12934.576086175943,3597.450282342263,3.5954843211215617,16.447431805294848,2019
+2004,67,"(65,70]",College,15384.193321364453,3613.5823463886404,4.257324684115524,17.176267715475625,2019
+2004,67,"(65,70]",College,16941.32653500898,3597.450282342263,4.709259393566561,17.4682146745518,2019
+2004,67,"(65,70]",College,15762.870520646318,3613.5823463886404,4.362117425219186,15.763715127813716,2019
+2004,67,"(65,70]",College,15401.634470377021,3613.5823463886404,4.262151237751419,16.417587268272797,2019
+2004,73,"(70,75]",HS,57.508653500897665,32.264128092755726,1.7824332129963896,6647.142139324763,2019
+2004,73,"(70,75]",HS,57.82290843806104,32.264128092755726,1.7921732851985557,6653.477709189821,2019
+2004,73,"(70,75]",HS,56.88014362657091,30.650921688117936,1.855740072202166,6659.396430654672,2019
+2004,73,"(70,75]",HS,58.65568402154399,32.264128092755726,1.8179844765342958,6644.525597788791,2019
+2004,73,"(70,75]",HS,56.88014362657091,32.264128092755726,1.7629530685920574,6652.471025234893,2019
+2004,25,"(20,25]",College,-93.9622262118492,6.291504978087367,-14.93477737665463,5854.395462711174,2019
+2004,25,"(20,25]",College,-93.36514183123879,6.291504978087367,-14.839874109043782,5871.117193710268,2019
+2004,25,"(20,25]",College,-94.59073608617594,6.452825618551143,-14.658808664259931,5889.790476371539,2019
+2004,25,"(20,25]",College,-95.95774506283662,6.291504978087367,-15.251954086827729,5886.250790782591,2019
+2004,25,"(20,25]",College,-96.17772351885098,6.936787539942482,-13.864879523129876,5896.497033276918,2019
+2004,34,"(30,35]",HS,71.49299820466787,67.75466899478702,1.0551744885679903,6744.032948324093,2019
+2004,34,"(30,35]",HS,71.33587073608618,66.14146259014923,1.078534824337413,6697.553482721081,2019
+2004,34,"(30,35]",HS,71.49299820466787,66.14146259014923,1.080910451703795,6745.828258014351,2019
+2004,34,"(30,35]",HS,71.33587073608618,66.14146259014923,1.078534824337413,6737.64844860607,2019
+2004,34,"(30,35]",HS,71.33587073608618,66.14146259014923,1.078534824337413,6734.192815857404,2019
+2004,70,"(65,70]",HS,1494.282226211849,56.46222416232251,26.465167612171225,6568.930121150113,2019
+2004,70,"(65,70]",HS,1473.6199640933573,56.46222416232251,26.099219185146985,7302.123134119424,2019
+2004,70,"(65,70]",HS,1477.783842010772,56.46222416232251,26.172965446106247,6502.249238070999,2019
+2004,70,"(65,70]",HS,1485.4830879712747,56.46222416232251,26.309326456936567,6482.821706841514,2019
+2004,70,"(65,70]",HS,1475.348366247756,56.46222416232251,26.129830840639514,6793.872148489709,2019
+2004,71,"(70,75]",College,1551.0209551166968,358.13182182958855,4.330866068234299,2768.611550149346,2019
+2004,71,"(70,75]",College,1552.6865062836625,369.424266662053,4.202990020967005,2897.7392550514733,2019
+2004,71,"(70,75]",College,1552.4979533213645,356.5186154249507,4.3546055834163715,2748.17825150074,2019
+2004,71,"(70,75]",College,1549.308265709156,372.65067947132854,4.157535061809431,2949.716844764,2019
+2004,71,"(70,75]",College,1550.958104129264,364.58464744813966,4.254041180792946,2812.9835650694968,2019
+2004,31,"(30,35]",College,69.7645960502693,145.18857641740072,0.48051022864019266,9900.72273048016,2019
+2004,31,"(30,35]",College,69.7645960502693,145.18857641740072,0.48051022864019266,9646.388949084647,2019
+2004,31,"(30,35]",College,69.92172351885098,145.18857641740072,0.48159245888487767,9939.781459228927,2019
+2004,31,"(30,35]",College,69.60746858168761,145.18857641740072,0.4794279983955075,9896.28691535443,2019
+2004,31,"(30,35]",College,69.60746858168761,145.18857641740072,0.4794279983955075,9868.466312912946,2019
+2004,52,"(50,55]",College,123.43933931777379,59.68863697159809,2.0680542491950433,5607.474873802506,2019
+2004,52,"(50,55]",College,123.43933931777379,61.30184337623587,2.0136317689530685,5201.093412294354,2019
+2004,52,"(50,55]",College,123.43933931777379,61.30184337623587,2.0136317689530685,5674.472607769811,2019
+2004,52,"(50,55]",College,123.43933931777379,59.68863697159809,2.0680542491950433,5628.08143111059,2019
+2004,52,"(50,55]",College,123.43933931777379,59.68863697159809,2.0680542491950433,5487.63273660532,2019
+2004,67,"(65,70]",College,4963.656732495512,1048.584163014561,4.733675090252708,318.4716268163892,2019
+2004,67,"(65,70]",College,4962.085457809695,1048.584163014561,4.73217661760622,323.6279240213107,2019
+2004,67,"(65,70]",College,4960.514183123878,1048.584163014561,4.730678144959733,324.96235636703443,2019
+2004,67,"(65,70]",College,4962.085457809695,1048.584163014561,4.73217661760622,315.60197176065486,2019
+2004,67,"(65,70]",College,4963.656732495512,1048.584163014561,4.733675090252708,317.78154117559626,2019
+2004,40,"(35,40]",NoHS,0,58.0754305669603,0,4788.414165597036,2019
+2004,40,"(35,40]",NoHS,0,58.0754305669603,0,4713.160720874226,2019
+2004,40,"(35,40]",NoHS,0,58.0754305669603,0,4801.361133713126,2019
+2004,40,"(35,40]",NoHS,0,58.0754305669603,0,4794.734057747494,2019
+2004,40,"(35,40]",NoHS,0,58.0754305669603,0,4778.85408054164,2019
+2004,36,"(35,40]",College,444.4350448833034,56.46222416232251,7.871369778236205,6710.59661452562,2019
+2004,36,"(35,40]",College,446.80766965888694,56.46222416232251,7.9133912325941225,7409.743730500644,2019
+2004,36,"(35,40]",College,443.649407540395,56.46222416232251,7.857455389375968,6648.0070765834025,2019
+2004,36,"(35,40]",College,446.4619892280072,56.46222416232251,7.907268901495618,6668.582247878233,2019
+2004,36,"(35,40]",College,445.72349012567327,56.46222416232251,7.894189375966994,6945.1445125572545,2019
+2004,55,"(50,55]",HS,1001.5304847396768,214.55645181682556,4.667911294481692,688.5340989642234,2019
+2004,55,"(50,55]",HS,996.6595332136445,214.55645181682556,4.645208870551831,664.1476491150918,2019
+2004,55,"(50,55]",HS,1033.4273608617593,214.55645181682556,4.816575554409488,697.1353358658387,2019
+2004,55,"(50,55]",HS,993.5169838420107,214.55645181682556,4.630562145435792,641.4512614160499,2019
+2004,55,"(50,55]",HS,1002.944631956912,214.55645181682556,4.674502320783909,692.948024486116,2019
+2004,50,"(45,50]",College,35664.792818671456,4775.090957727848,7.468924285296125,24.81318441526618,2019
+2004,50,"(45,50]",College,198109.4549371634,7775.654870354129,25.47816977994817,26.813571363514065,2019
+2004,50,"(45,50]",College,96759.09515260324,6936.787539942482,13.948689446729912,27.05913809150354,2019
+2004,50,"(45,50]",College,110210.77773788151,5065.468110562648,21.757274023316242,26.205107931166015,2019
+2004,50,"(45,50]",College,45273.137522441655,5904.335440974298,7.667778698388274,26.37233309962724,2019
+2004,25,"(20,25]",NoHS,7.856373429084381,40.33016011594465,0.1948014440433213,7122.027109137855,2019
+2004,25,"(20,25]",NoHS,7.856373429084381,40.33016011594465,0.1948014440433213,7222.543622321915,2019
+2004,25,"(20,25]",NoHS,7.856373429084381,40.33016011594465,0.1948014440433213,7103.039400032039,2019
+2004,25,"(20,25]",NoHS,7.856373429084381,40.33016011594465,0.1948014440433213,7157.7256169542325,2019
+2004,25,"(20,25]",NoHS,8.013500897666068,40.33016011594465,0.19869747292418774,7159.298535624887,2019
+2004,36,"(35,40]",College,225.79217235188509,135.50933798957405,1.6662480660134087,5370.515835484415,2019
+2004,36,"(35,40]",College,272.7732854578097,135.50933798957405,2.01294825511432,5374.802643082262,2019
+2004,36,"(35,40]",College,245.27597845601437,135.50933798957405,1.8100300842358603,5368.852584814778,2019
+2004,36,"(35,40]",College,820.6767684021545,135.50933798957405,6.056237751418257,4637.100508730249,2019
+2004,36,"(35,40]",College,316.92610412926393,135.50933798957405,2.338776860924875,5394.920665547909,2019
+2004,31,"(30,35]",HS,21.997845601436268,211.33003900755,0.10409237467963733,7073.912142287772,2019
+2004,31,"(30,35]",HS,21.997845601436268,211.33003900755,0.10409237467963733,6965.811812506918,2019
+2004,31,"(30,35]",HS,21.997845601436268,211.33003900755,0.10409237467963733,7058.301363147153,2019
+2004,31,"(30,35]",HS,21.997845601436268,211.33003900755,0.10409237467963733,7154.3928959184905,2019
+2004,31,"(30,35]",HS,21.997845601436268,211.33003900755,0.10409237467963733,7046.671545924031,2019
+2004,82,"(80,85]",College,147896.8583123878,3779.7426060663333,39.12881741603763,4.1738579603995865,2019
+2004,82,"(80,85]",College,130380.75949730701,3779.7426060663333,34.49461328082266,4.195866032060775,2019
+2004,82,"(80,85]",College,100039.6024416517,3779.7426060663333,26.467305546439118,4.103645037594413,2019
+2004,82,"(80,85]",College,315805.31389587076,3779.7426060663333,83.55206870145497,4.107528580794487,2019
+2004,82,"(80,85]",College,86971.31087971275,3779.7426060663333,23.009850125806803,4.0096407268863095,2019
+2004,57,"(55,60]",College,493053.56762657093,36006.76695151538,13.69335848149011,2.99000105708316,2019
+2004,57,"(55,60]",College,349390.2104129264,36006.76695151538,9.703459654775306,2.9836246693784885,2019
+2004,57,"(55,60]",College,298328.5440861759,36022.899015561765,8.281636188061906,2.945480031320833,2019
+2004,57,"(55,60]",College,616102.6023123878,36022.899015561765,17.103082182426064,2.9374477666683934,2019
+2004,57,"(55,60]",College,369453.42405745067,36022.899015561765,10.256071392195507,2.872041038752573,2019
+2004,37,"(35,40]",College,2152.6463195691204,1363.1594119189294,1.5791596351440838,222.10695069028898,2019
+2004,37,"(35,40]",College,6000.69802513465,1363.1594119189294,4.40205156687245,220.1389416420962,2019
+2004,37,"(35,40]",College,5683.300538599641,1363.1594119189294,4.169211971033687,231.17884584075895,2019
+2004,37,"(35,40]",College,4201.588509874327,1363.1594119189294,3.082242966697285,217.9000999363456,2019
+2004,37,"(35,40]",College,11996.68222621185,1363.1594119189294,8.800645119945314,224.3188033544073,2019
+2004,50,"(45,50]",HS,64.64224057450629,104.8584163014561,0.6164716467647876,8248.11331387379,2019
+2004,50,"(45,50]",HS,30.07419748653501,104.8584163014561,0.2868076645376284,7650.361131543653,2019
+2004,50,"(45,50]",HS,83.65466427289049,104.8584163014561,0.7977868369897251,8346.661218941865,2019
+2004,50,"(45,50]",HS,82.0833895870736,104.8584163014561,0.782802110524854,8278.423787573805,2019
+2004,50,"(45,50]",HS,83.4975368043088,104.8584163014561,0.7962883643432379,8071.835836109739,2019
+2004,36,"(35,40]",College,553.0886894075404,191.97156215189653,2.881096987531475,4027.7800907481615,2019
+2004,36,"(35,40]",College,553.0886894075404,191.97156215189653,2.881096987531475,4108.761263571285,2019
+2004,36,"(35,40]",College,553.0886894075404,190.35835574725877,2.9055130636969957,4011.777960499695,2019
+2004,36,"(35,40]",College,553.0886894075404,190.35835574725877,2.9055130636969957,4036.0677670956293,2019
+2004,36,"(35,40]",College,553.0886894075404,191.97156215189653,2.881096987531475,4053.385513477823,2019
+2004,49,"(45,50]",HS,163.33400359066428,32.264128092755726,5.062402527075812,6128.532707635122,2019
+2004,49,"(45,50]",HS,163.31829084380612,32.264128092755726,5.061915523465704,5794.052980144253,2019
+2004,49,"(45,50]",HS,163.4754183123878,32.264128092755726,5.066785559566787,6179.030446620242,2019
+2004,49,"(45,50]",HS,163.33400359066428,32.264128092755726,5.062402527075812,6147.985412718064,2019
+2004,49,"(45,50]",HS,163.33400359066428,32.264128092755726,5.062402527075812,6008.378857918605,2019
+2004,64,"(60,65]",HS,294.9282585278276,56.46222416232251,5.223461578133058,5851.9367222258925,2019
+2004,64,"(60,65]",HS,294.9282585278276,56.46222416232251,5.223461578133058,5066.388064672992,2019
+2004,64,"(60,65]",HS,294.9282585278276,56.46222416232251,5.223461578133058,5867.873962082701,2019
+2004,64,"(60,65]",HS,294.9282585278276,56.46222416232251,5.223461578133058,5783.6081845471,2019
+2004,64,"(60,65]",HS,294.9282585278276,56.46222416232251,5.223461578133058,5589.3093945241935,2019
+2004,59,"(55,60]",HS,959.1060682226213,38.716953711306864,24.772250300842362,8702.719775990558,2019
+2004,59,"(55,60]",HS,959.1060682226213,37.10374730666908,25.84930466174855,9621.9749499955,2019
+2004,59,"(55,60]",HS,959.1060682226213,38.716953711306864,24.772250300842362,8586.98783830677,2019
+2004,59,"(55,60]",HS,959.1060682226213,37.10374730666908,25.84930466174855,8558.707423404487,2019
+2004,59,"(55,60]",HS,959.1060682226213,37.10374730666908,25.84930466174855,8995.925972372135,2019
+2004,57,"(55,60]",College,303075.7577307002,12453.95344380371,24.335706657189352,27.768818387630876,2019
+2004,57,"(55,60]",College,305702.4733357271,12453.95344380371,24.546620855389907,28.446810801806002,2019
+2004,57,"(55,60]",College,306573.5565960503,12453.95344380371,24.616565171807483,28.169819163329105,2019
+2004,57,"(55,60]",College,299837.69057091564,12453.95344380371,24.075703504423785,27.36970347254667,2019
+2004,57,"(55,60]",College,299274.4985852783,12453.95344380371,24.030481560389816,27.53974791481673,2019
+2004,41,"(40,45]",HS,112.9746499102334,48.39619213913358,2.3343706377858005,4186.091766682011,2019
+2004,41,"(40,45]",HS,110.14635547576302,48.39619213913358,2.275930204572804,4189.433153345863,2019
+2004,41,"(40,45]",HS,142.82886894075403,48.39619213913358,2.951241877256318,4184.795332568904,2019
+2004,41,"(40,45]",HS,112.18901256732497,48.39619213913358,2.318137184115524,4196.798900388281,2019
+2004,41,"(40,45]",HS,107.16093357271096,48.39619213913358,2.2142430806257525,4205.114307779659,2019
+2004,41,"(40,45]",College,19975.615080789947,3500.657898063996,5.706245986457935,29.195066268336753,2019
+2004,41,"(40,45]",College,19978.75763016158,3500.657898063996,5.707143688965047,30.022752239907987,2019
+2004,41,"(40,45]",College,20030.609694793537,3500.657898063996,5.7219557803323955,31.11940196881066,2019
+2004,41,"(40,45]",College,19978.75763016158,3500.657898063996,5.707143688965047,28.051432547955784,2019
+2004,41,"(40,45]",College,20348.007181328547,3500.657898063996,5.812623733550716,29.23782194742078,2019
+2004,61,"(60,65]",College,7170.354901256733,354.90540902031296,20.20356613062028,2937.0469433181506,2019
+2004,61,"(60,65]",College,7170.354901256733,354.90540902031296,20.20356613062028,2969.7192722053787,2019
+2004,61,"(60,65]",College,7170.512028725314,354.90540902031296,20.204008861174923,2990.4359609828416,2019
+2004,61,"(60,65]",College,7168.783626570916,354.90540902031296,20.19913882507384,2809.0424671315204,2019
+2004,61,"(60,65]",College,7168.940754039497,354.90540902031296,20.199581555628484,2843.1389652552048,2019
+2004,57,"(55,60]",College,965.0769120287252,150.02819563131413,6.432636931796124,5334.593491813332,2019
+2004,57,"(55,60]",College,1276.8178096947936,146.80178282203855,8.697563375252905,5900.897544139361,2019
+2004,57,"(55,60]",College,982.8323159784561,156.48102124986525,6.280840373664819,5261.720090458117,2019
+2004,57,"(55,60]",College,1086.850700179533,120.99048034783397,8.982943922984354,5245.546896504039,2019
+2004,57,"(55,60]",College,1172.7994254937164,132.28292518029846,8.865841331337501,5515.466843207126,2019
+2004,61,"(60,65]",College,10013.733572710951,1371.2254439421183,7.30276236992992,434.9010702018885,2019
+2004,61,"(60,65]",College,10015.304847396768,1371.2254439421183,7.303908260777234,426.7109999482765,2019
+2004,61,"(60,65]",College,10015.304847396768,1371.2254439421183,7.303908260777234,451.31766095998285,2019
+2004,61,"(60,65]",College,10016.876122082585,1371.2254439421183,7.305054151624548,430.03415674536683,2019
+2004,61,"(60,65]",College,10015.304847396768,1371.2254439421183,7.303908260777234,439.67005226145875,2019
+2004,56,"(55,60]",HS,1029.0277917414721,251.66019912349464,4.088957234101638,5973.109859409689,2019
+2004,56,"(55,60]",HS,1029.0277917414721,253.2734055281324,4.0629129205086345,6604.599008868405,2019
+2004,56,"(55,60]",HS,1029.0277917414721,253.2734055281324,4.0629129205086345,5853.0281595096585,2019
+2004,56,"(55,60]",HS,1029.0277917414721,253.2734055281324,4.0629129205086345,5881.512209839301,2019
+2004,56,"(55,60]",HS,1029.0277917414721,251.66019912349464,4.088957234101638,6142.469736067008,2019
+2004,65,"(60,65]",HS,1005.458671454219,125.83009956174732,7.990605387392391,5985.550069865041,2019
+2004,65,"(60,65]",HS,1043.7977737881508,122.60368675247175,8.513592057761732,6710.31383079353,2019
+2004,65,"(60,65]",HS,873.3144703770197,158.09422765450302,5.5240123775141825,5974.640889563851,2019
+2004,65,"(60,65]",HS,814.2345421903052,124.21689315710954,6.554942097613577,5959.50858836193,2019
+2004,65,"(60,65]",HS,961.1487253141831,156.48102124986525,6.142270274293796,6242.617539206527,2019
+2004,83,"(80,85]",HS,794.1222262118491,45.16977932985802,17.580830324909744,9406.690435629751,2019
+2004,83,"(80,85]",HS,795.6935008976661,45.16977932985802,17.61561629706034,10442.851053073717,2019
+2004,83,"(80,85]",HS,794.4364811490126,45.16977932985802,17.587787519339866,9311.513813760912,2019
+2004,83,"(80,85]",HS,795.8506283662477,45.16977932985802,17.619094894275396,9281.553906132964,2019
+2004,83,"(80,85]",HS,794.4364811490126,45.16977932985802,17.587787519339866,9730.965591767865,2019
+2004,62,"(60,65]",College,14308.49867145422,279.08470800233704,51.269375430395854,170.16483506560155,2019
+2004,62,"(60,65]",College,14237.11566247756,277.4715015976993,51.31019070607001,169.4533487531161,2019
+2004,62,"(60,65]",College,14765.268222621185,279.08470800233704,52.90604536633208,176.5569268235691,2019
+2004,62,"(60,65]",College,14540.575942549372,277.4715015976993,52.40385358072369,165.63472206498938,2019
+2004,62,"(60,65]",College,14314.815195691204,277.4715015976993,51.59021778188229,170.9101514805864,2019
+2004,50,"(45,50]",HS,166.3979892280072,161.3206404637786,1.0314736462093863,7500.614844702946,2019
+2004,50,"(45,50]",HS,165.76947935368042,161.3206404637786,1.0275776173285198,6957.034910526057,2019
+2004,50,"(45,50]",HS,164.04107719928186,161.3206404637786,1.0168635379061373,7590.231688160306,2019
+2004,50,"(45,50]",HS,167.49788150807902,161.3206404637786,1.0382916967509028,7528.178383215678,2019
+2004,50,"(45,50]",HS,164.51245960502695,161.3206404637786,1.019785559566787,7340.312795471897,2019
+2004,43,"(40,45]",HS,353.22254937163376,98.40559068290497,3.589456116470379,6487.774171162955,2019
+2004,43,"(40,45]",HS,338.13831238779176,100.01879708754274,3.3807476417840925,6121.1185471020635,2019
+2004,43,"(40,45]",HS,331.8532136445242,98.40559068290497,3.372300408356512,6460.4604727967035,2019
+2004,43,"(40,45]",HS,348.9801077199282,98.40559068290497,3.5463443214771844,6432.9328082978755,2019
+2004,43,"(40,45]",HS,322.425565529623,98.40559068290497,3.276496419482748,6315.230353241399,2019
+2004,76,"(75,80]",NoHS,156.0275763016158,38.716953711306864,4.02995487364621,11614.438465416519,2019
+2004,76,"(75,80]",NoHS,156.0275763016158,38.716953711306864,4.02995487364621,11670.397142169923,2019
+2004,76,"(75,80]",NoHS,155.87044883303412,38.716953711306864,4.02589651022864,11693.407007149764,2019
+2004,76,"(75,80]",NoHS,155.87044883303412,38.716953711306864,4.02589651022864,11633.140630380101,2019
+2004,76,"(75,80]",NoHS,156.0275763016158,38.716953711306864,4.02995487364621,11628.23489874788,2019
+2004,34,"(30,35]",HS,88.30563734290844,100.01879708754274,0.8828904157447305,7399.945065037276,2019
+2004,34,"(30,35]",HS,88.61989228007181,100.01879708754274,0.8860323745196227,7209.852274667952,2019
+2004,34,"(30,35]",HS,88.30563734290844,98.40559068290497,0.8973640291175947,7429.13813052544,2019
+2004,34,"(30,35]",HS,88.14850987432675,98.40559068290497,0.8957672959696985,7396.629671894509,2019
+2004,34,"(30,35]",HS,88.30563734290844,98.40559068290497,0.8973640291175947,7375.836146477479,2019
+2004,37,"(35,40]",NoHS,51.06642728904847,40.33016011594465,1.2662093862815884,6173.157867508883,2019
+2004,47,"(45,50]",NoHS,49.495152603231595,40.33016011594465,1.2272490974729242,5865.583509414252,2019
+2004,55,"(50,55]",NoHS,50.90929982046679,40.33016011594465,1.2623133574007221,7393.428121625674,2019
+2004,36,"(35,40]",NoHS,51.06642728904847,40.33016011594465,1.2662093862815884,6158.145109985111,2019
+2004,48,"(45,50]",NoHS,50.90929982046679,40.33016011594465,1.2623133574007221,5965.221114360234,2019
+2004,33,"(30,35]",HS,21.746441651705567,72.59428820870036,0.2995613317288408,6525.121259842119,2019
+2004,33,"(30,35]",HS,21.746441651705567,72.59428820870036,0.2995613317288408,6504.048373158758,2019
+2004,33,"(30,35]",HS,21.605026929982046,72.59428820870036,0.29761331728840756,6487.265218484979,2019
+2004,33,"(30,35]",HS,21.715016157989226,72.59428820870036,0.29912843963096675,6548.865054570344,2019
+2004,33,"(30,35]",HS,21.7307289048474,72.59428820870036,0.2993448856799038,6481.386200163644,2019
+2004,43,"(40,45]",HS,878494.8058886895,11905.463266226861,73.78921644996234,4.4650414319951715,2019
+2004,43,"(40,45]",HS,985379.3522441653,12502.349635942843,78.81553315476884,4.558260175483293,2019
+2004,43,"(40,45]",HS,1038048.0083303411,11469.897536974659,90.5019425835377,4.374075390632741,2019
+2004,43,"(40,45]",HS,960766.9055655296,10195.464477310808,94.2347362107572,4.383119643535837,2019
+2004,43,"(40,45]",HS,845471.4829443448,12566.877892128352,67.27776701593731,4.275323436827927,2019
+2004,49,"(45,50]",College,329.684854578097,221.0092774353767,1.4917240506996232,7215.581623665387,2019
+2004,49,"(45,50]",College,329.0563447037702,221.0092774353767,1.4888802339982607,6692.658441333215,2019
+2004,49,"(45,50]",College,332.98453141831243,221.0092774353767,1.5066540883817756,7301.792909301318,2019
+2004,49,"(45,50]",College,332.04176660682225,221.0092774353767,1.502388363329732,7242.097711491988,2019
+2004,49,"(45,50]",College,331.88463913824063,231.26927016887302,1.4350572339156784,7061.371262966184,2019
+2004,56,"(55,60]",HS,349.76574506283663,120.99048034783397,2.890853429602888,6068.032156036321,2019
+2004,56,"(55,60]",HS,349.60861759425495,120.99048034783397,2.889554753309266,5410.545689703513,2019
+2004,56,"(55,60]",HS,349.4514901256733,120.99048034783397,2.888256077015644,6082.763627890145,2019
+2004,56,"(55,60]",HS,349.60861759425495,120.99048034783397,2.889554753309266,5974.246031068369,2019
+2004,56,"(55,60]",HS,349.4514901256733,120.99048034783397,2.888256077015644,5849.704887993967,2019
+2004,24,"(20,25]",HS,4.352430879712747,41.94336652058244,0.10376923076923078,8713.361534268766,2019
+2004,24,"(20,25]",HS,4.352430879712747,41.94336652058244,0.10376923076923078,8561.567523703381,2019
+2004,24,"(20,25]",HS,4.352430879712747,41.94336652058244,0.10376923076923078,8729.1517675855,2019
+2004,24,"(20,25]",HS,4.195303411131059,41.94336652058244,0.10002304915301305,8659.422749691279,2019
+2004,24,"(20,25]",HS,4.352430879712747,41.94336652058244,0.10376923076923078,8684.917196293996,2019
+2004,56,"(55,60]",NoHS,111895.52988150809,3290.941065461084,34.00107375238905,24.934445972048664,2019
+2004,56,"(55,60]",NoHS,106029.61579892281,5904.335440974298,17.957925470004536,26.123975838909683,2019
+2004,56,"(55,60]",NoHS,102572.81149012568,5984.995761206186,17.138326505590317,25.80866963506191,2019
+2004,56,"(55,60]",NoHS,102511.53177737881,4194.336652058244,24.440463482366006,25.008778628261684,2019
+2004,56,"(55,60]",NoHS,116687.57199281867,3371.601385692973,34.60894650475878,25.79107796379612,2019
+2004,27,"(25,30]",NoHS,245.19741472172353,41.94336652058244,5.845916412107749,6666.529622419039,2019
+2004,27,"(25,30]",NoHS,243.62614003590664,41.94336652058244,5.808454595945571,6507.06365717543,2019
+2004,27,"(25,30]",NoHS,245.19741472172353,41.94336652058244,5.845916412107749,6646.240154004741,2019
+2004,27,"(25,30]",NoHS,243.62614003590664,41.94336652058244,5.808454595945571,6634.631687934418,2019
+2004,27,"(25,30]",NoHS,243.62614003590664,41.94336652058244,5.808454595945571,6576.473412064707,2019
+2004,59,"(55,60]",College,3552.6520646319573,538.8109391490206,6.593503966795652,266.2580168828198,2019
+2004,59,"(55,60]",College,3975.324955116697,564.6222416232251,7.040680763280042,487.69750236713173,2019
+2004,59,"(55,60]",College,4193.732136445243,492.02795341452475,8.523361543469257,503.8048438566996,2019
+2004,59,"(55,60]",College,3783.629443447038,592.0467505020675,6.390761270522039,486.95182742288017,2019
+2004,59,"(55,60]",College,3331.102333931777,632.3769106180121,5.267590068518382,279.8093894989669,2019
+2004,51,"(50,55]",HS,654.4359066427289,82.2735266365271,7.95439229843562,5863.7781033524,2019
+2004,51,"(50,55]",HS,616.7253141831239,82.2735266365271,7.496035959510158,6523.76359800961,2019
+2004,51,"(50,55]",HS,616.8824416517056,82.2735266365271,7.497945777589013,5788.022270846444,2019
+2004,51,"(50,55]",HS,620.0249910233393,82.2735266365271,7.536142139166135,5801.240123074916,2019
+2004,51,"(50,55]",HS,641.8657091561939,82.2735266365271,7.801606852127133,6063.387902161187,2019
+2004,76,"(75,80]",College,69747.31202872531,1290.5651237102288,54.04400812274368,19.81794948471067,2019
+2004,76,"(75,80]",College,69748.88330341113,1290.5651237102288,54.04522563176896,20.612904765621785,2019
+2004,76,"(75,80]",College,69747.31202872531,1290.5651237102288,54.04400812274368,20.633580245552746,2019
+2004,76,"(75,80]",College,69750.45457809695,1290.5651237102288,54.046443140794224,19.525588748991442,2019
+2004,76,"(75,80]",College,69748.88330341113,1290.5651237102288,54.04522563176896,19.991066487296695,2019
+2004,78,"(75,80]",College,2336.4854578096947,111.31124192000723,20.99056139800136,4396.063618447335,2019
+2004,78,"(75,80]",College,2364.611274685817,111.31124192000723,21.243238633390888,4601.908740355711,2019
+2004,78,"(75,80]",College,2509.1685457809695,111.31124192000723,22.54191492701303,4361.394461456492,2019
+2004,78,"(75,80]",College,2540.594039497307,111.31124192000723,22.82423586040915,4680.686945831427,2019
+2004,78,"(75,80]",College,2407.1928186714545,111.31124192000723,21.625783498142628,4466.809203038368,2019
+2004,46,"(45,50]",College,158.18022262118492,100.01879708754274,1.5815049493420288,7470.741731902499,2019
+2004,46,"(45,50]",College,154.31488689407541,98.40559068290497,1.5681516245487361,6941.900936590171,2019
+2004,46,"(45,50]",College,164.983842010772,100.01879708754274,1.6495283568184467,7507.376033458614,2019
+2004,46,"(45,50]",College,209.16808617594256,116.1508611339206,1.8008311271560369,7465.663048524254,2019
+2004,46,"(45,50]",College,161.1970700179533,98.40559068290497,1.638088536426584,7235.889325031249,2019
+2004,72,"(70,75]",NoHS,32.415396768402154,19.358476855653432,1.6744807460890494,7302.667674938137,2019
+2004,72,"(70,75]",NoHS,32.2425565529623,19.358476855653432,1.6655523465703972,6895.318987767698,2019
+2004,72,"(70,75]",NoHS,32.39968402154398,19.358476855653432,1.6736690734055355,7583.027300338002,2019
+2004,72,"(70,75]",NoHS,32.2425565529623,19.358476855653432,1.6655523465703972,7396.407829893382,2019
+2004,72,"(70,75]",NoHS,32.25826929982047,19.358476855653432,1.666364019253911,7373.622188730917,2019
+2004,41,"(40,45]",HS,4.242441651705565,29.03771528348015,0.14610108303249097,4611.986175325845,2019
+2004,41,"(40,45]",HS,4.242441651705565,24.19809606956679,0.17532129963898915,4583.917785340681,2019
+2004,41,"(40,45]",HS,4.242441651705565,25.81130247420457,0.1643637184115524,4609.503381457442,2019
+2004,41,"(40,45]",HS,4.242441651705565,37.10374730666908,0.11433997802542772,4612.200949121381,2019
+2004,41,"(40,45]",HS,4.242441651705565,25.81130247420457,0.1643637184115524,4614.899292141408,2019
+2004,70,"(65,70]",College,6486.221903052065,153.2546084405897,42.32317689530686,2047.6664894362675,2019
+2004,70,"(65,70]",College,6486.221903052065,154.86781484522746,41.88231046931408,2061.603114483126,2019
+2004,70,"(65,70]",College,6486.221903052065,153.2546084405897,42.32317689530686,2066.8392551343795,2019
+2004,70,"(65,70]",College,6487.793177737882,153.2546084405897,42.33342960288808,2004.3122706066356,2019
+2004,70,"(65,70]",College,6487.793177737882,153.2546084405897,42.33342960288808,1997.921363103212,2019
+2004,36,"(35,40]",HS,105.11827648114902,72.59428820870036,1.4480240673886886,8095.910996960418,2019
+2004,36,"(35,40]",HS,105.11827648114902,72.59428820870036,1.4480240673886886,7771.628924865324,2019
+2004,36,"(35,40]",HS,103.54700179533214,72.59428820870036,1.4263794624949862,8088.590603097007,2019
+2004,36,"(35,40]",HS,103.54700179533214,72.59428820870036,1.4263794624949862,8058.43438569204,2019
+2004,36,"(35,40]",HS,105.11827648114902,72.59428820870036,1.4480240673886886,7976.856978287385,2019
+2004,71,"(70,75]",College,10708.23698384201,806.6032023188931,13.275718411552345,330.8365091718462,2019
+2004,71,"(70,75]",College,13762.794973070018,806.6032023188931,17.06265848375451,328.0336321160737,2019
+2004,71,"(70,75]",College,11621.147576301615,806.6032023188931,14.407514801444043,344.14618611141196,2019
+2004,71,"(70,75]",College,11839.554757630161,806.6032023188931,14.67828880866426,320.4211222745283,2019
+2004,71,"(70,75]",College,9523.495870736087,806.6032023188931,11.806915523465705,325.1670609369383,2019
+2004,61,"(60,65]",College,563.9304847396768,161.3206404637786,3.4957119133574004,4890.441932705976,2019
+2004,61,"(60,65]",College,1757.942118491921,262.9526439559591,6.685394343425395,2778.1499125178657,2019
+2004,61,"(60,65]",College,563.9304847396768,161.3206404637786,3.4957119133574004,4787.4712584675935,2019
+2004,61,"(60,65]",College,563.9304847396768,161.3206404637786,3.4957119133574004,4822.495816239475,2019
+2004,61,"(60,65]",College,563.9304847396768,161.3206404637786,3.4957119133574004,5044.897905396969,2019
+2004,23,"(20,25]",HS,-5.57802513464991,69.36787539942482,-0.08041222399462679,6050.285557141253,2019
+2004,23,"(20,25]",HS,-2.2783482944344704,69.36787539942482,-0.03284442951893207,6017.644459396453,2019
+2004,23,"(20,25]",HS,-1.178456014362657,69.36787539942482,-0.016988498027033828,6039.412784771524,2019
+2004,23,"(20,25]",HS,-4.006750448833034,69.36787539942482,-0.05776089329191502,5966.826509367396,2019
+2004,23,"(20,25]",HS,-4.006750448833034,69.36787539942482,-0.05776089329191502,6013.270861335968,2019
+2004,34,"(30,35]",HS,42.39299102333932,90.33955865971603,0.4692627643115007,6882.108583273681,2019
+2004,34,"(30,35]",HS,16.168416517055654,70.9810818040626,0.2277848703642927,6847.457175876161,2019
+2004,34,"(30,35]",HS,18.980998204667863,82.2735266365271,0.2307060239258158,6890.1441519990885,2019
+2004,34,"(30,35]",HS,11.596007181328545,91.95276506435381,0.12610830324909747,6937.250060970524,2019
+2004,34,"(30,35]",HS,10.983210053859965,72.59428820870036,0.1512957882069796,6907.014106857079,2019
+2004,68,"(65,70]",College,1097.063985637343,22.58488966492901,48.57513151108819,5934.574657152292,2019
+2004,68,"(65,70]",College,1233.4506283662479,22.58488966492901,54.613976276431146,6653.166031015038,2019
+2004,68,"(65,70]",College,301.0562298025134,22.58488966492901,13.329984528107268,8109.247177423215,2019
+2004,68,"(65,70]",College,350.08,22.58488966492901,15.500629190304277,8055.656024622294,2019
+2004,68,"(65,70]",College,577.443447037702,22.58488966492901,25.567689530685918,6189.452833915528,2019
+2004,62,"(60,65]",College,37159.86068222621,403.30160115944653,92.13913501805052,1348.4757155892573,2019
+2004,62,"(60,65]",College,37150.43303411132,403.30160115944653,92.11575884476535,1454.7770231336274,2019
+2004,62,"(60,65]",College,37158.2894075404,403.30160115944653,92.13523898916968,1350.438692812286,2019
+2004,62,"(60,65]",College,37158.2894075404,403.30160115944653,92.13523898916968,1460.0910371203622,2019
+2004,62,"(60,65]",College,37159.86068222621,403.30160115944653,92.13913501805052,1357.811171094922,2019
+2004,27,"(25,30]",HS,3.4568043087971274,38.716953711306864,0.08928399518652226,7510.502992784079,2019
+2004,27,"(25,30]",HS,3.4568043087971274,38.716953711306864,0.08928399518652226,7616.851070851706,2019
+2004,27,"(25,30]",HS,3.613931777378815,38.716953711306864,0.09334235860409146,7491.718843918554,2019
+2004,27,"(25,30]",HS,3.4568043087971274,38.716953711306864,0.08928399518652226,7566.902469727873,2019
+2004,27,"(25,30]",HS,3.4568043087971274,38.716953711306864,0.08928399518652226,7551.28645033423,2019
+2004,43,"(40,45]",HS,-2.7968689407540395,16.132064046377863,-0.17337328519855594,5012.4095417771505,2019
+2004,43,"(40,45]",HS,-2.7968689407540395,16.132064046377863,-0.17337328519855594,5081.143444315452,2019
+2004,43,"(40,45]",HS,-2.7968689407540395,16.132064046377863,-0.17337328519855594,5024.480037031911,2019
+2004,43,"(40,45]",HS,-2.7968689407540395,16.132064046377863,-0.17337328519855594,4999.831321867287,2019
+2004,43,"(40,45]",HS,-2.7968689407540395,16.132064046377863,-0.17337328519855594,5049.009236172641,2019
+2004,83,"(80,85]",College,1017.7146140035907,103.24520989681828,9.857257445848377,9527.621141191357,2019
+2004,83,"(80,85]",College,1077.423052064632,103.24520989681828,10.43557423285199,10442.851053073717,2019
+2004,83,"(80,85]",College,1137.288617594255,103.24520989681828,11.015412906137186,9406.18789852356,2019
+2004,83,"(80,85]",College,1088.4219748653502,101.63200349218052,10.709441292762595,9428.685184767575,2019
+2004,83,"(80,85]",College,1049.2972351885098,103.24520989681828,10.163156588447656,9855.541043307177,2019
+2004,38,"(35,40]",HS,195.46657091561937,137.12254439421181,1.4254882140581864,7408.804646353203,2019
+2004,38,"(35,40]",HS,195.46657091561937,137.12254439421181,1.4254882140581864,6905.579187037522,2019
+2004,38,"(35,40]",HS,195.46657091561937,137.12254439421181,1.4254882140581864,7404.2890028094625,2019
+2004,38,"(35,40]",HS,195.46657091561937,137.12254439421181,1.4254882140581864,7402.818551810978,2019
+2004,38,"(35,40]",HS,195.46657091561937,137.12254439421181,1.4254882140581864,7232.4704794442605,2019
+2004,50,"(45,50]",HS,405.2160287253142,120.99048034783397,3.3491562936221415,7962.505565156697,2019
+2004,50,"(45,50]",HS,364.4728761220826,120.99048034783397,3.0124095306859204,7527.932263743108,2019
+2004,50,"(45,50]",HS,486.32522800718135,120.99048034783397,4.019532996389891,8028.114830355841,2019
+2004,50,"(45,50]",HS,403.4719138240574,120.99048034783397,3.334740986762936,7987.779522214527,2019
+2004,50,"(45,50]",HS,367.584,120.99048034783397,3.0381233212996386,7806.395490741842,2019
+2004,48,"(45,50]",College,727.3430520646319,109.69803551536945,6.630410915268635,6826.87803140069,2019
+2004,48,"(45,50]",College,725.7717773788152,109.69803551536945,6.616087279677214,7598.893408899225,2019
+2004,48,"(45,50]",College,725.7717773788152,109.69803551536945,6.616087279677214,6736.206188820315,2019
+2004,48,"(45,50]",College,725.7717773788152,109.69803551536945,6.616087279677214,6753.07730022706,2019
+2004,48,"(45,50]",College,727.3430520646319,109.69803551536945,6.630410915268635,7060.737134176903,2019
+2004,46,"(45,50]",HS,489.7977450628366,56.46222416232251,8.674786591026303,5204.421190023562,2019
+2004,46,"(45,50]",HS,491.2747432675045,56.46222416232251,8.70094564208355,5792.0022652469,2019
+2004,46,"(45,50]",HS,491.0233393177738,56.46222416232251,8.696493037648272,5138.590285838409,2019
+2004,46,"(45,50]",HS,489.59347935368044,56.46222416232251,8.671168849922642,5150.826846815475,2019
+2004,46,"(45,50]",HS,490.19056373429083,56.46222416232251,8.68174378545642,5383.230030688572,2019
+2004,68,"(65,70]",HS,39.611834829443445,46.782985734495796,0.8467145524710569,9130.476840147794,2019
+2004,68,"(65,70]",HS,39.59612208258528,45.16977932985802,0.8766064981949458,8526.777177302238,2019
+2004,68,"(65,70]",HS,39.140452423698385,45.16977932985802,0.8665185662712738,9236.472389167502,2019
+2004,68,"(65,70]",HS,39.2818671454219,45.16977932985802,0.869649303764827,9159.440287394045,2019
+2004,68,"(65,70]",HS,39.45470736086176,45.16977932985802,0.8734757607013924,9046.666560903865,2019
+2004,41,"(40,45]",HS,-9.113393177737882,41.94336652058244,-0.2172785337406276,4585.174934176161,2019
+2004,41,"(40,45]",HS,-9.113393177737882,41.94336652058244,-0.2172785337406276,4565.539493816156,2019
+2004,41,"(40,45]",HS,-9.27052064631957,41.94336652058244,-0.22102471535684534,4550.806081443322,2019
+2004,41,"(40,45]",HS,-9.27052064631957,41.94336652058244,-0.22102471535684534,4565.49382087246,2019
+2004,41,"(40,45]",HS,-9.27052064631957,41.94336652058244,-0.22102471535684534,4540.886342047636,2019
+2004,41,"(40,45]",NoHS,939.4651346499103,56.46222416232251,16.63882619907169,5269.272304785164,2019
+2004,41,"(40,45]",NoHS,975.6044524236984,56.46222416232251,17.278888086642603,5852.506388766929,2019
+2004,41,"(40,45]",NoHS,927.2091921005386,56.46222416232251,16.421761732851987,5201.14638693656,2019
+2004,41,"(40,45]",NoHS,1206.8960861759426,56.46222416232251,21.375284167096446,5197.11506756756,2019
+2004,41,"(40,45]",NoHS,952.8209694793536,56.46222416232251,16.87537080969572,5427.507637887471,2019
+2004,67,"(65,70]",HS,778.5666068222622,90.33955865971603,8.618224600309437,5596.559870837312,2019
+2004,67,"(65,70]",HS,786.2658527827648,90.33955865971603,8.70345023207839,6274.222530560242,2019
+2004,67,"(65,70]",HS,783.123303411131,90.33955865971603,8.668664259927796,5586.3596586622025,2019
+2004,67,"(65,70]",HS,765.9964093357271,88.72635225507824,8.633245815556284,5572.210778664278,2019
+2004,67,"(65,70]",HS,778.4094793536804,88.72635225507824,8.77314867082376,5836.920984890561,2019
+2004,57,"(55,60]",HS,299.0292854578097,38.716953711306864,7.723471419975933,5410.23595403996,2019
+2004,57,"(55,60]",HS,185.53611490125672,41.94336652058244,4.423491252429881,4824.023352000625,2019
+2004,57,"(55,60]",HS,266.09536804308794,46.782985734495796,5.687866301506286,5423.370482109368,2019
+2004,57,"(55,60]",HS,478.3902908438061,59.68863697159809,8.014763196409405,5326.616577569299,2019
+2004,57,"(55,60]",HS,115.0330197486535,62.91504978087366,1.8283863741553272,5215.576136007354,2019
+2004,73,"(70,75]",NoHS,93.64797127468582,19.358476855653432,4.837569193742479,7357.351793795201,2019
+2004,73,"(70,75]",NoHS,93.64797127468582,19.358476855653432,4.837569193742479,7364.364283574183,2019
+2004,73,"(70,75]",NoHS,93.33371633752245,19.358476855653432,4.821335740072203,7370.915387051983,2019
+2004,73,"(70,75]",NoHS,93.33371633752245,19.358476855653432,4.821335740072203,7354.455689550744,2019
+2004,73,"(70,75]",NoHS,93.49084380610412,19.358476855653432,4.82945246690734,7363.250041115338,2019
+2004,45,"(40,45]",HS,23.72624775583483,67.75466899478702,0.3501787863159704,9951.207303146255,2019
+2004,45,"(40,45]",HS,23.883375224416515,67.75466899478702,0.3524978511260099,9230.029543346343,2019
+2004,45,"(40,45]",HS,24.040502692998206,67.75466899478702,0.35481691593604947,10070.103661053177,2019
+2004,45,"(40,45]",HS,23.883375224416515,67.75466899478702,0.3524978511260099,9987.776370006435,2019
+2004,45,"(40,45]",HS,24.040502692998206,67.75466899478702,0.35481691593604947,9738.531548418785,2019
+2004,56,"(55,60]",HS,390.7760143626571,48.39619213913358,8.07451985559567,7146.035744280093,2019
+2004,56,"(55,60]",HS,390.7760143626571,54.84901775768473,7.124576343172649,6184.957259799923,2019
+2004,56,"(55,60]",HS,390.7760143626571,46.782985734495796,8.35295157475414,7114.822964082229,2019
+2004,56,"(55,60]",HS,390.7760143626571,56.46222416232251,6.921017019082003,7069.2998801120075,2019
+2004,56,"(55,60]",HS,390.7760143626571,38.716953711306864,10.093149819494586,6787.614939897791,2019
+2004,53,"(50,55]",College,36858.018815080795,4839.619213913359,7.615892322503008,300.5918955674734,2019
+2004,53,"(50,55]",College,33071.24682226212,4839.619213913359,6.833439855595667,289.80078532148997,2019
+2004,53,"(50,55]",College,33388.64430879713,4839.619213913359,6.899023008423585,310.57036223891777,2019
+2004,53,"(50,55]",College,33900.87985637343,4839.619213913359,7.004865126353789,297.847897022698,2019
+2004,53,"(50,55]",College,36938.15382405745,4839.619213913359,7.63245044524669,314.31554403948996,2019
+2004,53,"(50,55]",College,51329.772926391386,11760.274689809461,4.364674659416737,25.272604537569986,2019
+2004,53,"(50,55]",College,48957.462405745064,10469.709566099233,4.676105110333587,25.483388426372862,2019
+2004,53,"(50,55]",College,49077.82204667864,10195.464477310808,4.8136916327743,26.696224556148234,2019
+2004,53,"(50,55]",College,49061.166535008975,12050.651842644264,4.071245869156529,24.422401064502107,2019
+2004,53,"(50,55]",College,48552.07353680431,11373.105152696391,4.269025291241007,26.11546765252076,2019
+2004,50,"(45,50]",HS,-40.02036624775583,161.3206404637786,-0.24807963898916965,4080.687107828603,2019
+2004,50,"(45,50]",HS,-39.391856373429086,161.3206404637786,-0.24418361010830328,3994.4937111872628,2019
+2004,50,"(45,50]",HS,-39.54898384201077,161.3206404637786,-0.24515761732851984,4115.8177376941985,2019
+2004,50,"(45,50]",HS,-40.50746140035907,161.3206404637786,-0.2510990613718412,4112.869134047631,2019
+2004,50,"(45,50]",HS,-40.50746140035907,161.3206404637786,-0.2510990613718412,4062.9572052966396,2019
+2004,84,"(80,85]",NoHS,137.32940754039498,38.716953711306864,3.5470096269554756,9515.97006460503,2019
+2004,84,"(80,85]",NoHS,156.2632675044883,38.716953711306864,4.0360424187725625,9562.782469581736,2019
+2004,84,"(80,85]",NoHS,134.79965529622982,38.716953711306864,3.4816699759326117,9506.113332557898,2019
+2004,84,"(80,85]",NoHS,205.3656014362657,38.716953711306864,5.304280986762937,9478.081736743827,2019
+2004,84,"(80,85]",NoHS,139.4820538599641,38.716953711306864,3.602609205776174,9507.181289229386,2019
+2004,27,"(25,30]",HS,9.113393177737882,40.33016011594465,0.22596967509025273,5646.99764295554,2019
+2004,27,"(25,30]",HS,10.684667863554758,40.33016011594465,0.264929963898917,5618.30770893407,2019
+2004,27,"(25,30]",HS,10.370412926391381,40.33016011594465,0.2571379061371841,5652.655892493278,2019
+2004,27,"(25,30]",HS,5.499461400359067,40.33016011594465,0.13636101083032492,5678.135424802441,2019
+2004,27,"(25,30]",HS,9.427648114901256,40.33016011594465,0.23376173285198557,5666.323394681816,2019
+2004,61,"(60,65]",College,80311.6202513465,18374.420948824383,4.370838160017496,27.768818387630876,2019
+2004,61,"(60,65]",College,72867.86355475763,17793.66664315478,4.09515728354897,28.446810801806002,2019
+2004,61,"(60,65]",College,74368.43087971275,16809.610736325732,4.424161394707483,28.169819163329105,2019
+2004,61,"(60,65]",College,68207.46283662478,15744.894509264792,4.332036826063798,27.36970347254667,2019
+2004,61,"(60,65]",College,78365.75368043088,17535.553618412734,4.468963762749129,27.53974791481673,2019
+2004,70,"(65,70]",HS,57749.05852782765,5646.222416232252,10.227910675605981,33.44368509066569,2019
+2004,70,"(65,70]",HS,45948.78563734291,5646.222416232252,8.13796946879835,33.830217524941915,2019
+2004,70,"(65,70]",HS,45807.37091561939,5646.222416232252,8.112923568849922,34.874813183195144,2019
+2004,70,"(65,70]",HS,46278.75332136446,5646.222416232252,8.196409902011347,32.793246822269836,2019
+2004,70,"(65,70]",HS,45650.243447037705,5646.222416232252,8.085094791129448,34.94618849137586,2019
+2004,41,"(40,45]",HS,153.98491921005387,98.40559068290497,1.5647984849381544,6774.721884827016,2019
+2004,41,"(40,45]",HS,153.98491921005387,98.40559068290497,1.5647984849381544,6391.849452003889,2019
+2004,41,"(40,45]",HS,153.98491921005387,98.40559068290497,1.5647984849381544,6746.200129106865,2019
+2004,41,"(40,45]",HS,155.55619389587073,98.40559068290497,1.5807658164171152,6717.454943747716,2019
+2004,41,"(40,45]",HS,153.98491921005387,98.40559068290497,1.5647984849381544,6594.546627716423,2019
+2004,22,"(20,25]",College,-6.897895870736086,22.58488966492901,-0.3054208354822073,5595.42077671431,2019
+2004,22,"(20,25]",College,-6.2772423698384205,24.19809606956679,-0.25941058965102287,5662.3233710577415,2019
+2004,22,"(20,25]",College,-6.905752244165171,22.58488966492901,-0.30576869520371325,5603.907688056238,2019
+2004,22,"(20,25]",College,-7.212150807899461,27.424508878842364,-0.26298194945848374,5539.517608121986,2019
+2004,22,"(20,25]",College,-6.905752244165171,20.97168326029122,-0.3292893640655374,5629.1167133580575,2019
+2004,38,"(35,40]",HS,-0.47138240574506285,29.03771528348015,-0.016233453670276773,3995.8513111583366,2019
+2004,38,"(35,40]",HS,-0.47138240574506285,29.03771528348015,-0.016233453670276773,4048.151697458105,2019
+2004,38,"(35,40]",HS,-0.47138240574506285,29.03771528348015,-0.016233453670276773,3979.065789494308,2019
+2004,38,"(35,40]",HS,-0.47138240574506285,29.03771528348015,-0.016233453670276773,3994.0438381733975,2019
+2004,38,"(35,40]",HS,-0.47138240574506285,29.03771528348015,-0.016233453670276773,4005.5914353941166,2019
+2004,33,"(30,35]",HS,382.29113105924597,164.5470532730542,2.3232936929284347,8356.464553261216,2019
+2004,33,"(30,35]",HS,369.0924236983842,151.6414020359519,2.4339818726476685,8298.872306938834,2019
+2004,33,"(30,35]",HS,330.81617235188514,119.37727394319619,2.771182164113572,8358.689103749579,2019
+2004,33,"(30,35]",HS,371.60646319569116,145.18857641740072,2.559474528680305,8348.553582779195,2019
+2004,33,"(30,35]",HS,366.1070017953321,129.0565123710229,2.836796028880866,8344.27174240347,2019
+2004,65,"(60,65]",College,35.19655296229803,116.1508611339206,0.3030244685118332,10774.232518851739,2019
+2004,65,"(60,65]",College,37.23921005385996,98.40559068290497,0.37842575605136997,10992.154448885862,2019
+2004,65,"(60,65]",College,36.924955116696594,93.56597146899159,0.39464085646707336,10758.877167411863,2019
+2004,65,"(60,65]",College,36.29644524236984,104.8584163014561,0.3461471813385171,10905.320446831562,2019
+2004,65,"(60,65]",College,36.453572710951526,101.63200349218052,0.3586820239527821,10848.664529145617,2019
+2004,44,"(40,45]",College,3863.7644524236985,456.5374125124935,8.463193478843234,1825.3121336378451,2019
+2004,44,"(40,45]",College,3557.3658886894077,487.1883342006114,7.301828962153634,1837.7353924699007,2019
+2004,44,"(40,45]",College,4365.001077199282,477.50909577278475,9.141189384330177,1842.4029450784305,2019
+2004,44,"(40,45]",College,5142.782046678635,525.9052879119182,9.778912980886359,1786.6657124152655,2019
+2004,44,"(40,45]",College,4075.886535008977,553.3297967907606,7.366107082337835,1780.9687881011068,2019
+2004,55,"(50,55]",HS,372.7849192100539,206.49041979363656,1.8053376015342966,6580.711710680558,2019
+2004,55,"(50,55]",HS,314.6163303411131,206.49041979363656,1.5236364508122748,5890.993230675322,2019
+2004,55,"(50,55]",HS,328.5849622980252,206.49041979363656,1.5912842960288816,6822.928948163058,2019
+2004,55,"(50,55]",HS,307.02707360861757,206.49041979363656,1.4868828971119137,6724.948075260496,2019
+2004,55,"(50,55]",HS,344.48626211849194,206.49041979363656,1.668291741877257,6499.025220133278,2019
+2004,81,"(80,85]",NoHS,54.5232315978456,32.264128092755726,1.6899025270758121,10225.025414466345,2019
+2004,81,"(80,85]",NoHS,54.5232315978456,32.264128092755726,1.6899025270758121,10228.021117354403,2019
+2004,81,"(80,85]",NoHS,54.36610412926392,33.87733449739351,1.604792848547361,10170.970795778976,2019
+2004,81,"(80,85]",NoHS,54.5232315978456,32.264128092755726,1.6899025270758121,10226.671562064465,2019
+2004,81,"(80,85]",NoHS,54.5232315978456,32.264128092755726,1.6899025270758121,10174.629573765782,2019
+2004,85,"(80,85]",HS,40.38175942549371,38.716953711306864,1.0429993983152828,9702.861764294701,2019
+2004,85,"(80,85]",HS,2.6711669658886894,38.716953711306864,0.06899217809867629,9671.119409250665,2019
+2004,85,"(80,85]",HS,128.3731418312388,38.716953711306864,3.315682912154032,10141.075843132967,2019
+2004,85,"(80,85]",HS,81.2349012567325,38.716953711306864,2.0981738868832736,9721.38963634086,2019
+2004,85,"(80,85]",HS,81.2349012567325,38.716953711306864,2.0981738868832736,9688.88883510366,2019
+2004,59,"(55,60]",College,4958.942908438062,500.0939854377137,9.916021893560034,3290.966112577479,2019
+2004,59,"(55,60]",College,4960.514183123878,500.0939854377137,9.919163852334925,3135.05440172861,2019
+2004,59,"(55,60]",College,4960.514183123878,500.0939854377137,9.919163852334925,3451.8070182938836,2019
+2004,59,"(55,60]",College,4958.942908438062,500.0939854377137,9.916021893560034,3091.6810088277134,2019
+2004,59,"(55,60]",College,4958.942908438062,500.0939854377137,9.916021893560034,3207.8172043797513,2019
+2004,62,"(60,65]",HS,1639.6251346499103,69.36787539942482,23.636663588279735,8100.760170530225,2019
+2004,62,"(60,65]",HS,1641.8249192100538,69.36787539942482,23.668375451263532,8956.431258628143,2019
+2004,62,"(60,65]",HS,1655.337881508079,69.36787539942482,23.863176895306854,7993.033310953111,2019
+2004,62,"(60,65]",HS,1643.5533213644524,69.36787539942482,23.693291915036514,7966.709027907882,2019
+2004,62,"(60,65]",HS,1629.8832315978457,69.36787539942482,23.496225337922922,8373.685547715566,2019
+2004,55,"(50,55]",HS,44.341371633752246,132.28292518029846,0.33520102139649555,10384.168745882274,2019
+2004,55,"(50,55]",HS,43.08435188509875,132.28292518029846,0.3256985119309677,9123.135102130818,2019
+2004,55,"(50,55]",HS,44.341371633752246,132.28292518029846,0.33520102139649555,10452.389214767796,2019
+2004,55,"(50,55]",HS,44.341371633752246,132.28292518029846,0.33520102139649555,10210.523449228926,2019
+2004,55,"(50,55]",HS,42.770096947935365,132.28292518029846,0.3233228845645857,9857.354058255169,2019
+2004,41,"(40,45]",HS,697.645960502693,154.86781484522746,4.504783393501805,6423.671261507578,2019
+2004,41,"(40,45]",HS,696.0746858168761,154.86781484522746,4.494637484957883,7129.425046990349,2019
+2004,41,"(40,45]",HS,696.0746858168761,154.86781484522746,4.494637484957883,6339.6233939390995,2019
+2004,41,"(40,45]",HS,697.645960502693,154.86781484522746,4.504783393501805,6329.503879253013,2019
+2004,41,"(40,45]",HS,697.645960502693,154.86781484522746,4.504783393501805,6613.432140840423,2019
+2004,88,"(85,90]",NoHS,182.0321723518851,22.58488966492901,8.059909747292417,9549.924690698977,2019
+2004,88,"(85,90]",NoHS,132.45845601436267,22.58488966492901,5.864914904589995,9595.943393791003,2019
+2004,88,"(85,90]",NoHS,241.5834829443447,22.58488966492901,10.696686436307374,9545.217080444641,2019
+2004,88,"(85,90]",NoHS,170.48330341113106,22.58488966492901,7.548555956678699,9515.99944458302,2019
+2004,88,"(85,90]",NoHS,149.3496588868941,20.97168326029122,7.121491252429882,9542.600599242509,2019
+2004,74,"(70,75]",NoHS,22.31210053859964,22.58488966492901,0.9879216090768436,6286.483033083648,2019
+2004,74,"(70,75]",NoHS,22.31210053859964,22.58488966492901,0.9879216090768436,6270.1179047575615,2019
+2004,74,"(70,75]",NoHS,22.31210053859964,22.58488966492901,0.9879216090768436,6288.307398509247,2019
+2004,74,"(70,75]",NoHS,22.31210053859964,22.58488966492901,0.9879216090768436,6285.667884570527,2019
+2004,74,"(70,75]",NoHS,22.154973070017952,22.58488966492901,0.9809644146467249,6307.23171248626,2019
+2004,57,"(55,60]",HS,1230.308078994614,312.9620424997305,3.931173471286613,538.344399186677,2019
+2004,57,"(55,60]",HS,1175.1563375224418,250.04699271885684,4.699741935483872,546.1733248017433,2019
+2004,57,"(55,60]",HS,1230.1509515260323,308.12242328581715,3.992409700039692,535.0079719048601,2019
+2004,57,"(55,60]",HS,1152.0585996409336,269.4054695745103,4.276299963250395,546.4850325668089,2019
+2004,57,"(55,60]",HS,1153.0013644524238,272.63188238378586,4.229150876893171,555.0669145978651,2019
+2004,41,"(40,45]",HS,94.63787432675045,59.68863697159809,1.5855258073958434,10611.706005927594,2019
+2004,41,"(40,45]",HS,92.20239856373429,59.68863697159809,1.5447228022246071,10186.653653776228,2019
+2004,41,"(40,45]",HS,90.45828366247756,59.68863697159809,1.5155025856181088,10602.110808110416,2019
+2004,41,"(40,45]",HS,93.89937522441653,59.68863697159809,1.573153283247146,10562.583580912324,2019
+2004,41,"(40,45]",HS,89.87691202872531,59.68863697159809,1.505762513415943,10455.656088202859,2019
+2004,59,"(55,60]",College,4919.032531418313,137.12254439421181,35.87325886600128,3643.933326921246,2019
+2004,59,"(55,60]",College,4917.618384201077,138.73575079884964,35.445934850138514,3596.5441441361945,2019
+2004,59,"(55,60]",College,4916.832746858168,138.73575079884964,35.44027201746284,4050.5172030113586,2019
+2004,59,"(55,60]",College,4914.16157989228,138.73575079884964,35.42101838636554,3559.838066757247,2019
+2004,59,"(55,60]",College,4917.304129263915,137.12254439421181,35.86065406668083,3730.011843083447,2019
+2004,29,"(25,30]",HS,48.711086535008974,17.74527045101565,2.745017984903183,4405.209421673331,2019
+2004,29,"(25,30]",HS,48.396831597845605,17.74527045101565,2.727308762717427,4383.029198200427,2019
+2004,29,"(25,30]",HS,50.59661615798923,17.74527045101565,2.8512733180177223,4410.352956191761,2019
+2004,29,"(25,30]",HS,48.396831597845605,17.74527045101565,2.727308762717427,4440.505254939529,2019
+2004,29,"(25,30]",HS,49.81097881508079,17.74527045101565,2.8070002625533306,4421.151344968167,2019
+2004,54,"(50,55]",HS,196.15793177737882,64.52825618551145,3.0398765342960283,7560.863291239152,2019
+2004,54,"(50,55]",HS,198.20058886894074,64.52825618551145,3.071531768953068,7146.115438339034,2019
+2004,54,"(50,55]",HS,211.8706786355476,64.52825618551145,3.2833783393501803,7569.252116355221,2019
+2004,54,"(50,55]",HS,224.01663195691202,64.52825618551145,3.471605234657039,7592.060917674309,2019
+2004,54,"(50,55]",HS,225.41506642728905,64.52825618551145,3.4932768953068587,7371.666347903217,2019
+2004,37,"(35,40]",HS,203.79432675044885,77.43390742261373,2.6318486762936226,6523.591231273067,2019
+2004,37,"(35,40]",HS,186.3531777378815,51.62260494840914,3.6099142599277987,6145.354882078106,2019
+2004,37,"(35,40]",HS,188.86721723518852,50.00939854377137,3.77663444742052,6545.094645339185,2019
+2004,37,"(35,40]",HS,202.69443447037702,77.43390742261373,2.61764440433213,6503.954131826999,2019
+2004,37,"(35,40]",HS,200.96603231597845,69.36787539942482,2.897105196876836,6417.795197601392,2019
+2004,29,"(25,30]",HS,53.45476481149012,69.36787539942482,0.7705982705062545,4442.062961958873,2019
+2004,29,"(25,30]",HS,53.45476481149012,69.36787539942482,0.7705982705062545,4507.737303935543,2019
+2004,29,"(25,30]",HS,56.59731418312388,69.36787539942482,0.8159009319116781,4460.360215882012,2019
+2004,29,"(25,30]",HS,53.45476481149012,69.36787539942482,0.7705982705062545,4466.209795360906,2019
+2004,29,"(25,30]",HS,55.026039497307,69.36787539942482,0.7932496012089664,4487.856049765301,2019
+2004,46,"(45,50]",College,300.8991023339318,148.4149892266763,2.0274172029508715,10027.491654703155,2019
+2004,46,"(45,50]",College,299.17070017953324,145.18857641740072,2.060566385880466,9480.216664736374,2019
+2004,46,"(45,50]",College,305.29867145421906,146.80178282203855,2.0796659658031498,10110.115943486639,2019
+2004,46,"(45,50]",College,293.6712387791742,154.86781484522746,1.8962703068592062,10059.320127713923,2019
+2004,46,"(45,50]",College,307.341328545781,156.48102124986525,1.9640805389110128,9830.896191679543,2019
+2004,48,"(45,50]",HS,370.6165601436266,88.72635225507824,4.177074236954382,8695.652870668553,2019
+2004,48,"(45,50]",HS,367.6311382405745,88.72635225507824,4.143426714801444,8221.066254052654,2019
+2004,48,"(45,50]",HS,367.4740107719928,88.72635225507824,4.141655792582868,8767.303105711138,2019
+2004,48,"(45,50]",HS,370.6008473967684,88.72635225507824,4.176897144732524,8723.253926070607,2019
+2004,48,"(45,50]",HS,372.03070736086175,88.72635225507824,4.193012536921562,8525.168968884416,2019
+2004,51,"(50,55]",HS,164.983842010772,38.716953711306864,4.261281588447654,6336.4240936380875,2019
+2004,51,"(50,55]",HS,165.14096947935369,38.716953711306864,4.265339951865223,5957.081251396417,2019
+2004,51,"(50,55]",HS,164.983842010772,38.716953711306864,4.261281588447654,6415.310620364876,2019
+2004,51,"(50,55]",HS,164.983842010772,38.716953711306864,4.261281588447654,6411.657422998485,2019
+2004,51,"(50,55]",HS,164.983842010772,38.716953711306864,4.261281588447654,6243.548975394391,2019
+2004,27,"(25,30]",NoHS,14.989960502692998,32.264128092755726,0.46460144404332127,8129.795444599013,2019
+2004,27,"(25,30]",NoHS,24.401895870736087,32.264128092755726,0.7563166064981949,7787.473745714252,2019
+2004,27,"(25,30]",NoHS,14.97424775583483,30.650921688117936,0.48854151624548736,8136.763396236021,2019
+2004,27,"(25,30]",NoHS,24.401895870736087,30.650921688117936,0.7961227436823105,8142.020051450389,2019
+2004,27,"(25,30]",NoHS,21.259346499102335,29.03771528348015,0.7321287605294826,8013.813486619122,2019
+2004,60,"(55,60]",College,40844.97120287253,1371.2254439421183,29.78720339774899,299.71474133008655,2019
+2004,60,"(55,60]",College,31189.48825852783,1371.2254439421183,22.74570414100658,288.4396797014724,2019
+2004,60,"(55,60]",College,39125.83956912029,1371.2254439421183,28.53348422170312,300.4102991736644,2019
+2004,60,"(55,60]",College,33148.71066427289,1371.2254439421183,24.174515438521976,292.67950482330895,2019
+2004,60,"(55,60]",College,35098.662549371635,1371.2254439421183,25.59656598003822,298.82280545365245,2019
+2004,71,"(70,75]",NoHS,639.2416804308797,75.82070101797595,8.430965051079191,334.9194978122271,2019
+2004,71,"(70,75]",NoHS,637.8118204667865,56.46222416232251,11.296257452295,340.89193848129923,2019
+2004,71,"(70,75]",NoHS,639.3202441651706,35.4905409020313,18.013820807351493,329.8843223777698,2019
+2004,71,"(70,75]",NoHS,640.8915188509875,46.782985734495796,13.699243620067223,686.1054157119626,2019
+2004,71,"(70,75]",NoHS,639.5245098743268,48.39619213913358,13.214355956678702,341.5328256494441,2019
+2004,47,"(45,50]",NoHS,62.37960502692998,82.2735266365271,0.7581977773058681,5970.839656277774,2019
+2004,47,"(45,50]",NoHS,104.80402154398564,85.49993944580267,1.2257788978952386,5644.966414443656,2019
+2004,47,"(45,50]",NoHS,56.09450628366248,88.72635225507824,0.6322192320315064,6020.038039784658,2019
+2004,47,"(45,50]",NoHS,92.23382405745063,88.72635225507824,1.0395313423039054,5989.791824516413,2019
+2004,47,"(45,50]",NoHS,54.5232315978456,85.49993944580267,0.6376990668210613,5853.777480881686,2019
+2004,65,"(60,65]",College,936.9510951526032,140.3489572034874,6.6758678783352,5548.57001939493,2019
+2004,65,"(60,65]",College,950.62118491921,140.3489572034874,6.77326860035686,6221.452030895761,2019
+2004,65,"(60,65]",College,1004.8301615798923,140.3489572034874,7.159512842856549,5534.908971112166,2019
+2004,65,"(60,65]",College,949.0499102333932,140.3489572034874,6.7620731150670155,5521.5691538264455,2019
+2004,65,"(60,65]",College,943.2361938958708,140.3489572034874,6.720649819494584,5786.302430001601,2019
+2004,52,"(50,55]",HS,146.1285457809695,290.37715283480145,0.5032370637785801,4761.566386799793,2019
+2004,52,"(50,55]",HS,144.5572710951526,290.37715283480145,0.4978259125551545,4644.941606254206,2019
+2004,52,"(50,55]",HS,146.1285457809695,290.37715283480145,0.5032370637785801,4787.46671091743,2019
+2004,52,"(50,55]",HS,144.5572710951526,290.37715283480145,0.4978259125551545,4827.229263905802,2019
+2004,52,"(50,55]",HS,142.98599640933574,290.37715283480145,0.49241476133172896,4723.992183896489,2019
+2004,48,"(45,50]",HS,647.4751597845601,85.49993944580267,7.572814249710509,6124.144514244081,2019
+2004,48,"(45,50]",HS,608.6489622980251,85.49993944580267,7.118706355152918,6815.562692580708,2019
+2004,48,"(45,50]",HS,455.5439569120287,96.79238427826716,4.706402888086642,7095.888313015489,2019
+2004,48,"(45,50]",HS,438.07138240574506,117.76406753855836,3.719907027347807,7056.461663680544,2019
+2004,48,"(45,50]",HS,553.7643375224417,83.88673304116487,6.601333935018051,6334.552384912978,2019
+2004,55,"(50,55]",College,3994.2273895870735,241.98096069566793,16.506370493381468,3643.933326921246,2019
+2004,55,"(50,55]",College,3992.9075188509873,241.98096069566793,16.500916052948252,3596.5441441361945,2019
+2004,55,"(50,55]",College,3992.9860825852784,241.98096069566793,16.50124072202166,4050.5172030113586,2019
+2004,55,"(50,55]",College,3992.8132423698385,241.98096069566793,16.500526450060168,3559.838066757247,2019
+2004,55,"(50,55]",College,3991.964754039497,241.98096069566793,16.497020024067385,3730.011843083447,2019
+2004,79,"(75,80]",College,236563.26032315977,6598.014194968546,35.85370587767999,23.370417572989453,2019
+2004,79,"(75,80]",College,247191.36229802514,6114.052273577208,40.43003743463228,24.365646236204782,2019
+2004,79,"(75,80]",College,244463.62944344702,5484.901775768473,44.57028392440008,24.335562982195395,2019
+2004,79,"(75,80]",College,233103.31346499105,5388.109391490205,43.26254285652523,23.01651463084339,2019
+2004,79,"(75,80]",College,225697.8958707361,5678.486544325007,39.7461355431572,23.578559200042513,2019
+2004,60,"(55,60]",College,18840.369120287254,790.4711382725153,23.834354232667796,312.9438578319533,2019
+2004,60,"(55,60]",College,19244.186714542193,487.1883342006114,39.50050804504268,308.0067787422426,2019
+2004,60,"(55,60]",College,14058.03748653501,740.4617397287439,18.985501521908404,326.17343126559774,2019
+2004,60,"(55,60]",College,15617.68473967684,487.1883342006114,32.056770746168745,302.5728960262254,2019
+2004,60,"(55,60]",College,15675.821903052065,487.1883342006114,32.176102756592634,307.546686552354,2019
+2004,48,"(45,50]",HS,364.9285457809695,161.3206404637786,2.262131768953069,5557.150749596436,2019
+2004,48,"(45,50]",HS,364.77141831238777,161.3206404637786,2.2611577617328518,5910.773224080025,2019
+2004,48,"(45,50]",HS,364.9285457809695,161.3206404637786,2.262131768953069,5439.696429254989,2019
+2004,48,"(45,50]",HS,364.9285457809695,161.3206404637786,2.262131768953069,5342.17184122428,2019
+2004,48,"(45,50]",HS,366.49982046678633,161.3206404637786,2.2718718411552348,5568.49179811034,2019
+2004,39,"(35,40]",HS,391.64021543985643,120.99048034783397,3.2369506618531894,8680.566512580614,2019
+2004,39,"(35,40]",HS,391.64021543985643,120.99048034783397,3.2369506618531894,9634.2801176182,2019
+2004,39,"(35,40]",HS,410.49551166965887,120.99048034783397,3.3927918170878457,8566.98923333212,2019
+2004,39,"(35,40]",HS,452.9199281867145,120.99048034783397,3.7434344163658237,8553.314324275992,2019
+2004,39,"(35,40]",HS,451.50578096947936,120.99048034783397,3.731746329723225,8936.998055770753,2019
+2004,39,"(35,40]",HS,779.2108294434471,137.12254439421181,5.682587300913146,8332.300792697612,2019
+2004,39,"(35,40]",HS,776.2254075403949,137.12254439421181,5.660815374814185,9247.75125503141,2019
+2004,39,"(35,40]",HS,776.0682800718133,137.12254439421181,5.659669483966872,8223.280252097748,2019
+2004,39,"(35,40]",HS,776.2254075403949,137.12254439421181,5.660815374814185,8210.153982584883,2019
+2004,39,"(35,40]",HS,777.6395547576302,137.12254439421181,5.671128392440009,8578.444261271841,2019
+2004,52,"(50,55]",College,5380.044524236983,129.0565123710229,41.68750902527075,17.098231936290652,2019
+2004,52,"(50,55]",College,8052.78276481149,129.0565123710229,62.39733754512634,16.828486033787545,2019
+2004,52,"(50,55]",College,3635.9296229802517,129.0565123710229,28.173158844765343,17.821052689360386,2019
+2004,52,"(50,55]",College,6168.824416517055,129.0565123710229,47.79940433212995,16.53159640113351,2019
+2004,52,"(50,55]",College,5556.027289048475,129.0565123710229,43.051119133574005,16.803348096812872,2019
+2004,26,"(25,30]",HS,11.548868940754039,104.8584163014561,0.11013773951680088,7189.624019408509,2019
+2004,26,"(25,30]",HS,21.400761220825856,104.8584163014561,0.20409197445154126,7291.428478740663,2019
+2004,26,"(25,30]",HS,20.693687612208258,104.8584163014561,0.19734884754234933,7171.642405128152,2019
+2004,26,"(25,30]",HS,14.895684021543987,104.8584163014561,0.14205520688697584,7243.613883270725,2019
+2004,26,"(25,30]",HS,12.963016157989228,104.8584163014561,0.12362399333518467,7228.665043195967,2019
+2004,34,"(30,35]",College,135.28675044883306,51.62260494840914,2.620688176895308,7215.492885518118,2019
+2004,34,"(30,35]",College,135.28675044883306,51.62260494840914,2.620688176895308,7165.764146653557,2019
+2004,34,"(30,35]",College,135.28675044883306,51.62260494840914,2.620688176895308,7217.413701207576,2019
+2004,34,"(30,35]",College,135.28675044883306,51.62260494840914,2.620688176895308,7208.662060009707,2019
+2004,34,"(30,35]",College,135.28675044883306,51.62260494840914,2.620688176895308,7204.964851869704,2019
+2004,55,"(50,55]",College,30904.459030520648,5517.165903861229,5.601509827517048,400.64994496298493,2019
+2004,55,"(50,55]",College,27871.584631956914,3081.2242328581715,9.045620352694351,393.66858440695324,2019
+2004,55,"(50,55]",College,36477.59750089767,5839.807184788786,6.246370187685741,406.92838714251235,2019
+2004,55,"(50,55]",College,28907.824574506285,4274.996972290133,6.762069017096928,396.6812062356402,2019
+2004,55,"(50,55]",College,23659.012912028727,3081.2242328581715,7.678445683935964,410.9195812538657,2019
+2004,57,"(55,60]",HS,799.1503052064633,203.26400698436103,3.9315878746203663,7651.995674568728,2019
+2004,57,"(55,60]",HS,740.2275044883304,203.26400698436103,3.6417047733654235,8460.425882063704,2019
+2004,57,"(55,60]",HS,689.3967684021544,203.26400698436103,3.3916322846828266,7498.893943628548,2019
+2004,57,"(55,60]",HS,624.9745062836625,203.26400698436103,3.0746934273107565,7535.309147613222,2019
+2004,57,"(55,60]",HS,730.9412710951526,203.26400698436103,3.5960191966076445,7868.496371053903,2019
+2004,41,"(40,45]",NoHS,11.627432675044885,51.62260494840914,0.22523916967509033,7850.5800306338715,2019
+2004,41,"(40,45]",NoHS,10.370412926391381,51.62260494840914,0.20088898916967513,7267.014283469087,2019
+2004,41,"(40,45]",NoHS,10.370412926391381,53.23581135304694,0.19480144404332128,7844.000749574008,2019
+2004,41,"(40,45]",NoHS,12.413070017953322,51.62260494840914,0.2404580324909748,7824.588653898796,2019
+2004,41,"(40,45]",NoHS,10.998922800718134,51.62260494840914,0.21306407942238276,7633.881982537445,2019
+2004,38,"(35,40]",HS,189.57429084380612,56.46222416232251,3.3575420319752456,8816.336810703668,2019
+2004,38,"(35,40]",HS,189.76284380610412,56.46222416232251,3.360881485301702,8460.717458260111,2019
+2004,38,"(35,40]",HS,228.52619030520646,56.46222416232251,4.047417431665807,8746.072258036707,2019
+2004,38,"(35,40]",HS,182.39356552962298,56.46222416232251,3.230364517792677,8783.85383904653,2019
+2004,38,"(35,40]",HS,188.33298384201078,56.46222416232251,3.3355572975760706,8638.686966473993,2019
+2004,50,"(45,50]",College,29166.000718132855,2016.5080057972327,14.463617617328518,321.20552583563233,2019
+2004,50,"(45,50]",College,29167.571992818674,2016.5080057972327,14.464396823104693,322.4300307399586,2019
+2004,50,"(45,50]",College,29164.42944344704,2016.5080057972327,14.462838411552347,324.16846605579263,2019
+2004,50,"(45,50]",College,29162.85816876122,2016.5080057972327,14.462059205776173,320.69254538234384,2019
+2004,50,"(45,50]",College,29162.85816876122,2016.5080057972327,14.462059205776173,330.7513900743841,2019
+2004,57,"(55,60]",College,33326.971777378814,258.1130247420458,129.11774526173284,1348.4757155892573,2019
+2004,57,"(55,60]",College,33326.971777378814,258.1130247420458,129.11774526173284,1454.7770231336274,2019
+2004,57,"(55,60]",College,33331.685601436264,258.1130247420458,129.13600789711188,1350.438692812286,2019
+2004,57,"(55,60]",College,33328.54305206463,258.1130247420458,129.12383280685918,1460.0910371203622,2019
+2004,57,"(55,60]",College,33330.11432675045,258.1130247420458,129.12992035198556,1357.811171094922,2019
+2004,35,"(30,35]",HS,186.3531777378815,61.30184337623587,3.039927797833935,8574.794799327037,2019
+2004,35,"(30,35]",HS,184.78190305206462,62.91504978087366,2.9370063871146903,7992.372228156522,2019
+2004,35,"(30,35]",HS,186.3531777378815,61.30184337623587,3.039927797833935,8569.56848838718,2019
+2004,35,"(30,35]",HS,187.9244524236984,61.30184337623587,3.065559566787004,8567.866619303526,2019
+2004,35,"(30,35]",HS,183.21062836624776,61.30184337623587,2.988664259927798,8370.709340264653,2019
+2004,47,"(45,50]",College,792.236696588869,129.0565123710229,6.138680505415162,6519.993485074468,2019
+2004,47,"(45,50]",College,1165.7286894075405,129.0565123710229,9.032699458483755,7256.578397500685,2019
+2004,47,"(45,50]",College,2565.5773070017954,129.0565123710229,19.879487364620935,3536.0910965930316,2019
+2004,47,"(45,50]",College,782.0234111310593,129.0565123710229,6.059542418772563,6452.28909362529,2019
+2004,47,"(45,50]",College,937.7367324955117,129.0565123710229,7.266093862815883,6744.397414842196,2019
+2004,40,"(35,40]",HS,8.48488330341113,37.10374730666908,0.22867995605085545,4831.4276630315235,2019
+2004,40,"(35,40]",HS,8.48488330341113,37.10374730666908,0.22867995605085545,4894.664633949413,2019
+2004,40,"(35,40]",HS,8.469170556552964,37.10374730666908,0.22825647465076132,4811.132104615838,2019
+2004,40,"(35,40]",HS,8.5005960502693,37.10374730666908,0.22910343745094963,4829.242227613739,2019
+2004,40,"(35,40]",HS,8.343468581687612,37.10374730666908,0.22486862345000785,4843.204554114205,2019
+2004,28,"(25,30]",HS,11.941687612208257,56.46222416232251,0.211498710675606,7322.922783400778,2019
+2004,28,"(25,30]",HS,21.05508078994614,56.46222416232251,0.37290562145435796,7215.459259794501,2019
+2004,28,"(25,30]",HS,15.869874326750448,50.00939854377137,0.31733783626412015,7355.2555592972,2019
+2004,28,"(25,30]",HS,13.984344703770198,51.62260494840914,0.27089575812274375,7390.994457045563,2019
+2004,28,"(25,30]",HS,14.298599640933574,58.0754305669603,0.24620738066586445,7330.120411390945,2019
+2004,82,"(80,85]",NoHS,22401.663195691202,1029.2256861589076,21.765550060545703,38.63434815465414,2019
+2004,82,"(80,85]",NoHS,22349.811131059243,906.6219994064356,24.6517414597171,39.85640457147359,2019
+2004,82,"(80,85]",NoHS,22228.822980251345,779.1786934400507,28.528530319677706,40.65306417214275,2019
+2004,82,"(80,85]",NoHS,22964.179533213646,811.4428215328064,28.30042847607496,37.66613892032247,2019
+2004,82,"(80,85]",NoHS,23317.716337522445,693.678753994248,33.61457476282428,39.12434004425073,2019
+2004,33,"(30,35]",HS,10.637529622980251,96.79238427826716,0.10990048134777376,3898.036703984756,2019
+2004,33,"(30,35]",HS,9.066254937163377,96.79238427826716,0.09366702767749702,3953.232569308838,2019
+2004,33,"(30,35]",HS,10.637529622980251,96.79238427826716,0.10990048134777376,3888.287516506728,2019
+2004,33,"(30,35]",HS,10.621816876122082,96.79238427826716,0.109738146811071,3927.308675705378,2019
+2004,33,"(30,35]",HS,10.621816876122082,96.79238427826716,0.109738146811071,3919.203783553009,2019
+2004,51,"(50,55]",College,1028.163590664273,241.98096069566793,4.248944163658243,4926.97079422748,2019
+2004,51,"(50,55]",College,1028.163590664273,241.98096069566793,4.248944163658243,5060.621318770907,2019
+2004,51,"(50,55]",College,1028.163590664273,241.98096069566793,4.248944163658243,4815.118604757261,2019
+2004,51,"(50,55]",College,1028.179303411131,241.98096069566793,4.249009097472924,4747.106176581516,2019
+2004,51,"(50,55]",College,1092.7586929982047,241.98096069566793,4.515887075812274,4939.371068058339,2019
+2004,58,"(55,60]",College,2179.3579892280072,456.5374125124935,4.7736678955492335,2903.1191951486753,2019
+2004,58,"(55,60]",College,2144.789946140036,480.7355085820603,4.461476025488818,3023.600289743913,2019
+2004,58,"(55,60]",College,1953.0944344703769,459.76382532176905,4.248038507821901,2871.4759227466216,2019
+2004,58,"(55,60]",College,2070.9400359066426,409.7544267779977,5.054100457659398,3081.79095976823,2019
+2004,58,"(55,60]",College,2012.8028725314182,446.8581740846667,4.504343859557665,2948.6841493815946,2019
+2004,44,"(40,45]",College,121.50667145421903,22.58488966492901,5.379998452810726,7487.305376144363,2019
+2004,44,"(40,45]",College,118.63123877917415,22.58488966492901,5.252681794739556,7051.365740622774,2019
+2004,44,"(40,45]",College,119.05548294434472,22.58488966492901,5.271466219700876,7508.047589986449,2019
+2004,44,"(40,45]",College,119.8096947935368,20.97168326029122,5.712926964732019,7456.3659008847335,2019
+2004,44,"(40,45]",College,122.6851274685817,22.58488966492901,5.4321774110366166,7363.910946581374,2019
+2004,35,"(30,35]",HS,25.76890484739677,96.79238427826716,0.2662286401925391,6070.179109963955,2019
+2004,35,"(30,35]",HS,25.76890484739677,96.79238427826716,0.2662286401925391,5827.037817957838,2019
+2004,35,"(30,35]",HS,25.61177737881508,96.79238427826716,0.26460529482551143,6064.690400673167,2019
+2004,35,"(30,35]",HS,25.61177737881508,96.79238427826716,0.26460529482551143,6042.079771554849,2019
+2004,35,"(30,35]",HS,25.76890484739677,96.79238427826716,0.2662286401925391,5980.914391345177,2019
+2004,48,"(45,50]",NoHS,188.06586714542192,25.81130247420457,7.286182761732855,6332.599507626652,2019
+2004,48,"(45,50]",NoHS,183.82342549371634,40.33016011594465,4.5579641877256325,5875.189418297785,2019
+2004,48,"(45,50]",NoHS,186.49459245960503,30.650921688117936,6.084469314079422,6411.622009102943,2019
+2004,48,"(45,50]",NoHS,190.4227791741472,35.4905409020313,5.365451591729569,6363.032235975763,2019
+2004,48,"(45,50]",NoHS,191.67979892280073,27.424508878842364,6.989361223189637,6198.91750982904,2019
+2004,50,"(45,50]",College,952.4438635547577,224.23569024465226,4.247512349687038,5617.431973417684,2019
+2004,50,"(45,50]",College,742.4430017953322,225.84889664929003,3.2873439401753486,6217.694274651145,2019
+2004,50,"(45,50]",College,677.2665278276481,225.84889664929003,2.998759515214028,5565.967621496971,2019
+2004,50,"(45,50]",College,710.2790089766606,225.84889664929003,3.14493017019082,5604.890752650785,2019
+2004,50,"(45,50]",College,705.6280359066427,225.84889664929003,3.124336874677669,5839.184615620032,2019
+2004,21,"(20,25]",HS,18.698168761220828,19.358476855653432,0.9658904933814683,6406.731713651524,2019
+2004,21,"(20,25]",HS,15.555619389587074,17.74527045101565,0.8766064981949457,6406.719564147146,2019
+2004,21,"(20,25]",HS,25.454649910233396,17.74527045101565,1.434446997046275,6404.64324013313,2019
+2004,21,"(20,25]",HS,15.555619389587074,17.74527045101565,0.8766064981949457,6343.763731301135,2019
+2004,21,"(20,25]",HS,16.262692998204667,15.002819563131412,1.083975777337836,6409.1961746567,2019
+2004,66,"(65,70]",HS,93.88366247755835,35.4905409020313,2.645315063997374,7816.3314741915865,2019
+2004,66,"(65,70]",HS,93.56940754039498,35.4905409020313,2.636460452904496,7174.359892915427,2019
+2004,66,"(65,70]",HS,93.64797127468582,35.4905409020313,2.6386741056777154,7880.908143026839,2019
+2004,66,"(65,70]",HS,93.88366247755835,35.4905409020313,2.645315063997374,7811.002682746634,2019
+2004,66,"(65,70]",HS,93.72653500897665,35.4905409020313,2.6408877584509347,7651.128300838407,2019
+2004,61,"(60,65]",College,2133.319640933573,295.21677204871486,7.226281982995009,838.638883217496,2019
+2004,61,"(60,65]",College,2131.905493716338,295.21677204871486,7.221491783551322,842.5963017563015,2019
+2004,61,"(60,65]",College,2131.748366247756,295.21677204871486,7.22095953916869,837.8334910612314,2019
+2004,61,"(60,65]",College,2130.177091561939,293.6035656440771,7.255283453009085,856.2297816660148,2019
+2004,61,"(60,65]",College,2131.905493716338,295.21677204871486,7.221491783551322,869.5422200916979,2019
+2004,50,"(45,50]",NoHS,58.844236983842016,16.132064046377863,3.6476570397111914,6406.8278937702435,2019
+2004,50,"(45,50]",NoHS,58.891375224416514,16.132064046377863,3.6505790613718405,6420.3480911266215,2019
+2004,50,"(45,50]",NoHS,58.734247755834836,16.132064046377863,3.640838989169675,6402.440420543498,2019
+2004,50,"(45,50]",NoHS,59.78700179533214,16.132064046377863,3.706097472924187,6422.544905683242,2019
+2004,50,"(45,50]",NoHS,60.541213644524234,16.132064046377863,3.752849819494584,6412.6694996955675,2019
+2004,55,"(50,55]",HS,82.22480430879713,20.97168326029122,3.920753679533463,6877.5307856988165,2019
+2004,55,"(50,55]",HS,82.22480430879713,19.358476855653432,4.247483152827918,5954.309067414501,2019
+2004,55,"(50,55]",HS,82.22480430879713,20.97168326029122,3.920753679533463,6896.261141640285,2019
+2004,55,"(50,55]",HS,82.22480430879713,19.358476855653432,4.247483152827918,6797.227179604981,2019
+2004,55,"(50,55]",HS,82.22480430879713,20.97168326029122,3.920753679533463,6568.8761270498,2019
+2004,29,"(25,30]",NoHS,13.670089766606823,72.59428820870036,0.18830806257521063,4275.778817568012,2019
+2004,29,"(25,30]",NoHS,13.670089766606823,72.59428820870036,0.18830806257521063,4254.250277011512,2019
+2004,29,"(25,30]",NoHS,13.512962298025135,72.59428820870036,0.18614360208584038,4280.771228560582,2019
+2004,29,"(25,30]",NoHS,13.670089766606823,72.59428820870036,0.18830806257521063,4310.037614774229,2019
+2004,29,"(25,30]",NoHS,13.670089766606823,72.59428820870036,0.18830806257521063,4291.252347066969,2019
+2004,40,"(35,40]",HS,291.7857091561939,145.18857641740072,2.009701564380265,7091.067150054751,2019
+2004,40,"(35,40]",HS,292.02140035906643,145.18857641740072,2.0113249097472927,6690.316510071401,2019
+2004,40,"(35,40]",HS,289.99445601436264,145.18857641740072,1.9973641395908546,7061.213572522366,2019
+2004,40,"(35,40]",HS,290.29299820466787,145.18857641740072,1.9994203770557564,7031.126132316296,2019
+2004,40,"(35,40]",HS,292.33565529622985,145.18857641740072,2.0134893702366634,6902.478619238298,2019
+2004,47,"(45,50]",College,251.0896947935368,93.56597146899159,2.683557823976099,6883.461386684881,2019
+2004,47,"(45,50]",College,199.23763016157992,93.56597146899159,2.1293813021287193,6396.193144136618,2019
+2004,47,"(45,50]",College,248.10427289048476,93.56597146899159,2.6516506909000377,6917.215839621308,2019
+2004,47,"(45,50]",College,240.87640933572712,93.56597146899159,2.5744018424001,6878.7819422356015,2019
+2004,47,"(45,50]",College,246.06161579892282,93.56597146899159,2.629819494584838,6667.070895314411,2019
+2004,21,"(20,25]",HS,81.28203949730701,25.81130247420457,3.1490870938628173,6064.127731761524,2019
+2004,21,"(20,25]",HS,82.83760143626571,22.58488966492901,3.667832903558535,6063.719088215884,2019
+2004,21,"(20,25]",HS,81.28203949730701,19.358476855653432,4.198782791817089,6062.7425991127,2019
+2004,21,"(20,25]",HS,82.85331418312387,24.19809606956679,3.423960048134777,6005.050451079207,2019
+2004,21,"(20,25]",HS,82.83760143626571,20.97168326029122,3.9499738961399613,6066.104358116257,2019
+2004,33,"(30,35]",College,17247.88222621185,5097.732238655404,3.3834421697207877,19.741578807765016,2019
+2004,33,"(30,35]",College,17247.88222621185,5097.732238655404,3.3834421697207877,20.616388427229808,2019
+2004,33,"(30,35]",College,17247.88222621185,5097.732238655404,3.3834421697207877,20.966807505935712,2019
+2004,33,"(30,35]",College,17247.88222621185,5097.732238655404,3.3834421697207877,18.920925052792064,2019
+2004,33,"(30,35]",College,17247.88222621185,5097.732238655404,3.3834421697207877,19.70575690641429,2019
+2004,30,"(25,30]",HS,0,16.132064046377863,0,5868.650890766085,2019
+2004,30,"(25,30]",HS,0,16.132064046377863,0,5955.416834617519,2019
+2004,30,"(25,30]",HS,0,17.74527045101565,0,5892.824387732291,2019
+2004,30,"(25,30]",HS,0,16.132064046377863,0,5900.552585219228,2019
+2004,30,"(25,30]",HS,0,17.74527045101565,0,5929.150628803929,2019
+2004,34,"(30,35]",HS,84.33188366247757,59.68863697159809,1.412863284222851,6978.520754951179,2019
+2004,34,"(30,35]",HS,73.16797701974865,59.68863697159809,1.225827573421797,6811.591841229942,2019
+2004,34,"(30,35]",HS,92.82462333931777,59.68863697159809,1.5551473119328711,6957.281746883181,2019
+2004,34,"(30,35]",HS,81.74713680430881,59.68863697159809,1.36955944970241,6945.130008873578,2019
+2004,34,"(30,35]",HS,88.48004883303412,59.68863697159809,1.482360015611279,6884.2499470998955,2019
+2004,29,"(25,30]",College,12.020251346499103,119.37727394319619,0.10069128695482485,6498.794030283212,2019
+2004,29,"(25,30]",College,18.14822262118492,119.37727394319619,0.15202409991218654,6454.687147447281,2019
+2004,29,"(25,30]",College,22.233536804308798,119.37727394319619,0.18624597521709432,6493.116913900003,2019
+2004,29,"(25,30]",College,8.406319569120287,119.37727394319619,0.0704180895697141,6535.439867341234,2019
+2004,29,"(25,30]",College,10.763231597845602,117.76406753855836,0.09139656792443501,6465.972165707575,2019
+2004,49,"(45,50]",NoHS,4369.086391382406,424.27328441973776,10.297811697849035,22.73789405624878,2019
+2004,49,"(45,50]",NoHS,4369.086391382406,433.9525228475645,10.068120730610765,23.291704880234516,2019
+2004,49,"(45,50]",NoHS,4369.086391382406,421.04687161046223,10.37672213231531,24.0480260696677,2019
+2004,49,"(45,50]",NoHS,4369.086391382406,429.1129036336511,10.181670964414646,22.2465250608988,2019
+2004,49,"(45,50]",NoHS,4369.086391382406,430.7261100382889,10.14353736529699,23.47551273161569,2019
+2004,52,"(50,55]",College,2277.091274685817,161.3206404637786,14.115312635379063,3643.933326921246,2019
+2004,52,"(50,55]",College,2275.52,161.3206404637786,14.105572563176896,3596.5441441361945,2019
+2004,52,"(50,55]",College,2275.52,161.3206404637786,14.105572563176896,4050.5172030113586,2019
+2004,52,"(50,55]",College,2277.091274685817,161.3206404637786,14.115312635379063,3559.838066757247,2019
+2004,52,"(50,55]",College,2277.2484021543987,161.3206404637786,14.11628664259928,3730.011843083447,2019
+2004,57,"(55,60]",HS,1065.8427576301615,32.264128092755726,33.034915884476526,5247.6197758695,2019
+2004,57,"(55,60]",HS,1065.8506140035909,32.264128092755726,33.03515938628159,5804.69096577397,2019
+2004,57,"(55,60]",HS,1065.8427576301615,32.264128092755726,33.034915884476526,5175.934482009085,2019
+2004,57,"(55,60]",HS,1065.8584703770198,32.264128092755726,33.03540288808664,5160.024971272671,2019
+2004,57,"(55,60]",HS,1065.8427576301615,32.264128092755726,33.034915884476526,5425.544218876914,2019
+2004,24,"(20,25]",HS,-19.79806104129264,43.55657292522023,-0.45453670276774966,6516.037877044436,2019
+2004,24,"(20,25]",HS,-21.84071813285458,67.75466899478702,-0.32235000859549595,6480.884060378316,2019
+2004,24,"(20,25]",HS,-19.955188509874326,48.39619213913358,-0.4123297232250301,6504.3281162537205,2019
+2004,24,"(20,25]",HS,-21.84071813285458,58.0754305669603,-0.37607501002807864,6426.154133320202,2019
+2004,24,"(20,25]",HS,-19.64093357271095,45.16977932985802,-0.4348246518824135,6476.173781772133,2019
+2004,51,"(50,55]",HS,130.74576660682226,85.49993944580267,1.5291913357400722,9832.192283686303,2019
+2004,51,"(50,55]",HS,141.336157989228,116.1508611339206,1.21683263136783,9292.851671128865,2019
+2004,51,"(50,55]",HS,160.9613788150808,98.40559068290497,1.6356934367047402,9843.101162527037,2019
+2004,51,"(50,55]",HS,162.87833393177738,112.92444832464501,1.442365549252192,9872.761865503839,2019
+2004,51,"(50,55]",HS,124.39781687612209,91.95276506435381,1.3528447653429603,9586.159436019285,2019
+2004,48,"(45,50]",College,1386.901314183124,293.6035656440771,4.723720950529615,1716.9024741384096,2019
+2004,48,"(45,50]",College,1387.8912172351886,293.6035656440771,4.727092513984211,1697.028804714669,2019
+2004,48,"(45,50]",College,1387.262707360862,293.6035656440771,4.724951838774944,1734.4940446952799,2019
+2004,48,"(45,50]",College,1385.2200502693,293.6035656440771,4.717994644344825,1697.8740206781924,2019
+2004,48,"(45,50]",College,1386.8856014362657,293.6035656440771,4.723667433649383,1761.2346858829587,2019
+2004,35,"(30,35]",HS,2.2154973070017956,54.84901775768473,0.040392652367806335,5272.494207173192,2019
+2004,35,"(30,35]",HS,4.038175942549372,54.84901775768473,0.07362348693990231,5295.832099050106,2019
+2004,35,"(30,35]",HS,4.038175942549372,54.84901775768473,0.07362348693990231,5203.104107146514,2019
+2004,35,"(30,35]",HS,3.881048473967684,54.84901775768473,0.07075875982161818,5178.474286051056,2019
+2004,35,"(30,35]",HS,4.195303411131059,54.84901775768473,0.07648821405818644,5183.383836142228,2019
+2004,41,"(40,45]",College,758.061472172352,161.3206404637786,4.699097833935019,1089.946289325676,2019
+2004,41,"(40,45]",College,764.1894434470378,161.3206404637786,4.737084115523467,1054.1678568370965,2019
+2004,41,"(40,45]",College,756.3330700179533,161.3206404637786,4.6883837545126354,1104.880017946523,2019
+2004,41,"(40,45]",College,717.2083303411132,161.3206404637786,4.4458559566787015,1025.182392532425,2019
+2004,41,"(40,45]",College,772.045816876122,161.3206404637786,4.785784476534296,1103.1492864573875,2019
+2004,58,"(55,60]",HS,144.27444165170556,145.18857641740072,0.9937038106698758,6706.257467585002,2019
+2004,58,"(55,60]",HS,170.98611131059243,138.73575079884964,1.2324589035345475,5979.617691905135,2019
+2004,58,"(55,60]",HS,75.13835547576302,141.9621636081252,0.5292843780767968,6722.538370617129,2019
+2004,58,"(55,60]",HS,194.5552315978456,137.12254439421181,1.4188420471437673,6602.607077351572,2019
+2004,58,"(55,60]",HS,235.40837342908438,141.9621636081252,1.6582472924187723,6464.96690846528,2019
+2004,44,"(40,45]",College,1489.5684021543987,225.84889664929003,6.595420319752451,6402.033743305399,2019
+2004,44,"(40,45]",College,1389.0068222621187,225.84889664929003,6.15015987622486,7105.5458488701115,2019
+2004,44,"(40,45]",College,1473.8556552962298,225.84889664929003,6.525848375451264,6275.303836730392,2019
+2004,44,"(40,45]",College,1451.8578096947936,225.84889664929003,6.428447653429604,6316.514535481093,2019
+2004,44,"(40,45]",College,1494.282226211849,225.84889664929003,6.616291903042806,6556.736230638568,2019
+2004,32,"(30,35]",HS,66.93630161579893,87.11314585044046,0.7683834737264339,7192.928218884155,2019
+2004,32,"(30,35]",HS,71.65012567324955,87.11314585044046,0.8224949859606898,7143.354994331976,2019
+2004,32,"(30,35]",HS,68.5075763016158,87.11314585044046,0.7864206444711859,7194.843027698352,2019
+2004,32,"(30,35]",HS,66.93630161579893,87.11314585044046,0.7683834737264339,7186.118755090445,2019
+2004,32,"(30,35]",HS,68.5075763016158,87.11314585044046,0.7864206444711859,7182.433109053056,2019
+2004,35,"(30,35]",College,11075.129622980252,580.7543056696029,19.070249699157646,3166.0589244847138,2019
+2004,35,"(30,35]",College,11076.700897666069,580.7543056696029,19.07295527476936,3043.2892433606203,2019
+2004,35,"(30,35]",College,11076.700897666069,580.7543056696029,19.07295527476936,3303.286473983924,2019
+2004,35,"(30,35]",College,11076.700897666069,580.7543056696029,19.07295527476936,2965.3743347454783,2019
+2004,35,"(30,35]",College,11078.272172351886,580.7543056696029,19.075660850381073,3093.6041631006965,2019
+2004,51,"(50,55]",HS,1.257019748653501,109.69803551536945,0.01145890847313655,4125.058554641439,2019
+2004,51,"(50,55]",HS,-0.31425493716337527,109.69803551536945,-0.0028647271182841373,4115.639343773206,2019
+2004,51,"(50,55]",HS,-0.29854219030520646,109.69803551536945,-0.00272149076236993,4144.639578199711,2019
+2004,51,"(50,55]",HS,1.257019748653501,109.69803551536945,0.01145890847313655,4145.217353718066,2019
+2004,51,"(50,55]",HS,1.257019748653501,109.69803551536945,0.01145890847313655,4113.742440087873,2019
+2004,46,"(45,50]",College,180946.42154398563,4936.411598191627,36.65545669049809,20.74019594646676,2019
+2004,46,"(45,50]",College,50706.60538599641,5968.863697159808,8.495185676651381,19.816306324632045,2019
+2004,46,"(45,50]",College,85422.34829443447,2968.2997845335262,28.7782078951499,20.995578422063275,2019
+2004,46,"(45,50]",College,114707.76588868942,2274.6210305392783,50.42939652303045,20.4852844289174,2019
+2004,46,"(45,50]",College,82953.87576301617,4113.676331826355,20.165387131025696,20.567919624948274,2019
+2004,64,"(60,65]",College,439.9569120287253,70.9810818040626,6.198227765014767,5044.226462287404,2019
+2004,64,"(60,65]",College,439.9569120287253,70.9810818040626,6.198227765014767,5019.641552267672,2019
+2004,64,"(60,65]",College,439.9569120287253,70.9810818040626,6.198227765014767,5051.801471294288,2019
+2004,64,"(60,65]",College,439.9569120287253,70.9810818040626,6.198227765014767,5050.028619309089,2019
+2004,64,"(60,65]",College,439.9569120287253,70.9810818040626,6.198227765014767,5048.853571655083,2019
+2004,59,"(55,60]",NoHS,234.43418312387792,64.52825618551145,3.6330469314079417,7510.1400223020555,2019
+2004,59,"(55,60]",NoHS,234.11992818671453,62.91504978087366,3.721207072109599,6696.397560503145,2019
+2004,59,"(55,60]",NoHS,234.27705565529624,64.52825618551145,3.6306119133574004,7528.372525609872,2019
+2004,59,"(55,60]",NoHS,234.59131059245962,64.52825618551145,3.6354819494584834,7394.0650061277065,2019
+2004,59,"(55,60]",NoHS,234.43418312387792,64.52825618551145,3.6330469314079417,7239.925838935608,2019
+2004,30,"(25,30]",HS,160.27001795332137,109.69803551536945,1.4610108303249099,6124.412046705884,2019
+2004,30,"(25,30]",HS,157.59885098743268,109.69803551536945,1.4366606498194947,5933.700284929689,2019
+2004,30,"(25,30]",HS,190.2813644524237,109.69803551536945,1.7345922701210448,6174.246514844338,2019
+2004,30,"(25,30]",HS,183.83913824057453,109.69803551536945,1.6758653641962202,6174.752217543877,2019
+2004,30,"(25,30]",HS,159.0129982046679,109.69803551536945,1.4495519218517734,6135.269603811159,2019
+2004,53,"(50,55]",HS,71.96438061041293,4.839619213913358,14.869843561973527,7171.713373286363,2019
+2004,53,"(50,55]",HS,70.39310592459606,4.839619213913358,14.545174488567993,6664.040274658854,2019
+2004,53,"(50,55]",HS,70.39310592459606,4.839619213913358,14.545174488567993,7206.881328466647,2019
+2004,53,"(50,55]",HS,71.96438061041293,4.839619213913358,14.869843561973527,7166.837972314203,2019
+2004,53,"(50,55]",HS,71.96438061041293,4.839619213913358,14.869843561973527,6946.261308745762,2019
+2004,67,"(65,70]",College,244.17608617594257,143.57537001276296,1.7006822699062996,7598.106033566083,2019
+2004,67,"(65,70]",College,244.33321364452425,143.57537001276296,1.7017766600413744,7009.642455852581,2019
+2004,67,"(65,70]",College,244.17608617594257,143.57537001276296,1.7006822699062996,7716.346205869321,2019
+2004,67,"(65,70]",College,244.17608617594257,143.57537001276296,1.7006822699062996,7645.162719990209,2019
+2004,67,"(65,70]",College,244.17608617594257,143.57537001276296,1.7006822699062996,7544.18283352642,2019
+2004,38,"(35,40]",HS,9.89903052064632,80.6603202318893,0.12272490974729243,6745.493708394364,2019
+2004,38,"(35,40]",HS,9.89903052064632,80.6603202318893,0.12272490974729243,6704.133827149551,2019
+2004,38,"(35,40]",HS,9.89903052064632,80.6603202318893,0.12272490974729243,6740.747153712648,2019
+2004,38,"(35,40]",HS,9.89903052064632,80.6603202318893,0.12272490974729243,6729.089063705915,2019
+2004,38,"(35,40]",HS,9.89903052064632,80.6603202318893,0.12272490974729243,6748.432391739075,2019
+2004,57,"(55,60]",HS,-1.0983210053859964,53.23581135304694,-0.0206312438464063,7024.6402222461575,2019
+2004,57,"(55,60]",HS,-2.983850628366248,53.23581135304694,-0.056049688217919266,6263.502878504589,2019
+2004,57,"(55,60]",HS,-3.298105565529623,53.23581135304694,-0.0619527622798381,7041.69406887325,2019
+2004,57,"(55,60]",HS,-3.612360502692998,53.23581135304694,-0.06785583634175692,6916.068980565595,2019
+2004,57,"(55,60]",HS,-1.4125759425493716,53.23581135304694,-0.02653431790832513,6771.89427936618,2019
+2004,28,"(25,30]",HS,22.46922800718133,58.0754305669603,0.3868973124749298,7095.533881072808,2019
+2004,28,"(25,30]",HS,22.390664272890486,58.0754305669603,0.3855445246690734,7046.631892383344,2019
+2004,28,"(25,30]",HS,22.233536804308798,58.0754305669603,0.3828389490573606,7097.42276281936,2019
+2004,28,"(25,30]",HS,22.31210053859964,58.0754305669603,0.384191736863217,7088.816619397187,2019
+2004,28,"(25,30]",HS,22.343526032315978,58.0754305669603,0.38473285198555957,7085.180878077915,2019
+2004,62,"(60,65]",College,49.10233393177738,80.6603202318893,0.608754512635379,6366.555789995435,2019
+2004,62,"(60,65]",College,29.06858168761221,80.6603202318893,0.3603826714801444,6343.068986417378,2019
+2004,62,"(60,65]",College,20.81938958707361,80.6603202318893,0.25811191335740075,6296.484211551392,2019
+2004,62,"(60,65]",College,27.24590305206463,80.6603202318893,0.3377857039711191,6284.39085098711,2019
+2004,62,"(60,65]",College,51.852064631956914,80.6603202318893,0.6428447653429603,6270.7309661047275,2019
+2004,81,"(80,85]",HS,2662.776359066427,250.04699271885684,10.6491037149179,4656.932021201374,2019
+2004,81,"(80,85]",HS,2661.362211849192,248.43378631421908,10.712561489052463,4874.9922730140615,2019
+2004,81,"(80,85]",HS,2662.744933572711,248.43378631421908,10.718127244596559,4620.205549213749,2019
+2004,81,"(80,85]",HS,2662.886348294435,248.43378631421908,10.718696469595388,4958.445284502146,2019
+2004,81,"(80,85]",HS,2663.499145421903,248.43378631421908,10.721163111256972,4731.875745140691,2019
+2004,51,"(50,55]",HS,161.259921005386,41.94336652058244,3.844706192724243,5970.839656277774,2019
+2004,51,"(50,55]",HS,155.96472531418314,41.94336652058244,3.7184598722577067,5644.966414443656,2019
+2004,51,"(50,55]",HS,141.30473249551167,45.16977932985802,3.1283024755028364,6020.038039784658,2019
+2004,51,"(50,55]",HS,149.09825493716338,59.68863697159809,2.4979336520636157,5989.791824516413,2019
+2004,51,"(50,55]",HS,161.62131418312387,59.68863697159809,2.7077400722021654,5853.777480881686,2019
+2004,54,"(50,55]",HS,1488.9398922800717,354.90540902031296,4.19531473580571,1375.6398926339111,2019
+2004,54,"(50,55]",HS,1533.8783482944343,238.75454788639237,6.424498975509804,1373.2734812079493,2019
+2004,54,"(50,55]",HS,1505.1240215439857,443.63176127539117,3.392732786347227,1559.2387936309997,2019
+2004,54,"(50,55]",HS,1551.0052423698385,156.48102124986525,9.91177862964755,1312.5418202965561,2019
+2004,54,"(50,55]",HS,1504.416947935368,330.70731295074614,4.549088843884829,1390.7468714876024,2019
+2004,30,"(25,30]",College,165.76947935368042,135.50933798957405,1.2233066872958567,7769.982611421491,2019
+2004,30,"(25,30]",College,165.61235188509875,135.50933798957405,1.2221471548908371,7584.121624186157,2019
+2004,30,"(25,30]",College,167.18362657091564,137.12254439421181,1.2192278615417287,7746.334802785959,2019
+2004,30,"(25,30]",College,167.18362657091564,135.50933798957405,1.233742478941035,7732.8048877296515,2019
+2004,30,"(25,30]",College,167.18362657091564,135.50933798957405,1.233742478941035,7665.02017547123,2019
+2004,21,"(20,25]",HS,5.813716337522442,12.905651237102285,0.45047833935018067,6943.746338257259,2019
+2004,21,"(20,25]",HS,4.556696588868941,12.905651237102285,0.35307761732851994,6906.285048074911,2019
+2004,21,"(20,25]",HS,2.356912028725314,12.905651237102285,0.18262635379061376,6931.267956432801,2019
+2004,21,"(20,25]",HS,7.3849910233393175,12.905651237102285,0.5722292418772564,6847.962684427871,2019
+2004,21,"(20,25]",HS,2.6711669658886894,12.905651237102285,0.20697653429602894,6901.265589864105,2019
+2004,55,"(50,55]",HS,690.5752244165171,120.99048034783397,5.707682310469314,4391.902530194867,2019
+2004,55,"(50,55]",HS,703.3025493716339,120.99048034783397,5.812875090252708,4858.587706791972,2019
+2004,55,"(50,55]",HS,685.547145421903,120.99048034783397,5.666124669073405,4336.957346771577,2019
+2004,55,"(50,55]",HS,678.6335368043087,120.99048034783397,5.608982912154031,4325.697424156501,2019
+2004,55,"(50,55]",HS,734.7280430879713,120.99048034783397,6.072610348977135,4542.473213472166,2019
+2004,39,"(35,40]",NoHS,3.849622980251347,59.68863697159809,0.06449507269001853,4823.095698617803,2019
+2004,39,"(35,40]",NoHS,3.6924955116696587,33.87733449739351,0.10899604607185832,4793.522968444027,2019
+2004,39,"(35,40]",NoHS,3.6924955116696587,40.33016011594465,0.09155667870036101,4819.701864384415,2019
+2004,39,"(35,40]",NoHS,3.849622980251347,37.10374730666908,0.10375294302307332,4811.366213030144,2019
+2004,39,"(35,40]",NoHS,3.849622980251347,56.46222416232251,0.06818050541516246,4825.1968867016085,2019
+2004,58,"(55,60]",College,11699.868438061041,683.9995155664213,17.105082930318098,1282.507249798507,2019
+2004,58,"(55,60]",College,11232.099964093357,772.7258678214995,14.535685204585365,1277.515047295174,2019
+2004,58,"(55,60]",College,12533.90104129264,1311.5368069705203,9.556652146304856,1304.8772164009351,2019
+2004,58,"(55,60]",College,13256.37314183124,966.3106363780338,13.718542094827122,1245.7005963675742,2019
+2004,58,"(55,60]",College,8007.844308797128,814.669234342082,9.82956514279587,1266.7552711465617,2019
+2004,32,"(30,35]",HS,4.085314183123878,56.46222416232251,0.07235482207323364,5994.850783211479,2019
+2004,32,"(30,35]",HS,4.085314183123878,56.46222416232251,0.07235482207323364,6079.458927571678,2019
+2004,32,"(30,35]",HS,3.9281867145421905,56.46222416232251,0.06957194430118618,5978.868187096623,2019
+2004,32,"(30,35]",HS,4.085314183123878,56.46222416232251,0.07235482207323364,6024.899423052786,2019
+2004,32,"(30,35]",HS,4.085314183123878,56.46222416232251,0.07235482207323364,6026.223401827395,2019
+2004,56,"(55,60]",College,39.95751526032316,137.12254439421181,0.2914000424718624,7231.771239871385,2019
+2004,56,"(55,60]",College,39.95751526032316,137.12254439421181,0.2914000424718624,6448.19073212798,2019
+2004,56,"(55,60]",College,39.95751526032316,137.12254439421181,0.2914000424718624,7249.327942231224,2019
+2004,56,"(55,60]",College,39.95751526032316,137.12254439421181,0.2914000424718624,7119.998628289635,2019
+2004,56,"(55,60]",College,39.95751526032316,137.12254439421181,0.2914000424718624,6971.5727410322315,2019
+2004,51,"(50,55]",College,15033.86191741472,917.9144442389004,16.378282324427552,2741.5979583973067,2019
+2004,51,"(50,55]",College,14553.351977019749,919.5276506435381,15.82698678700361,2746.436036111392,2019
+2004,51,"(50,55]",College,11246.461414721723,916.3012378342626,12.273759927797833,2773.0833076559597,2019
+2004,51,"(50,55]",College,12416.039727109517,917.9144442389004,13.526358371454132,2677.894598107342,2019
+2004,51,"(50,55]",College,12410.917371633752,914.6880314296247,13.568470281868596,2675.1490523499106,2019
+2004,56,"(55,60]",HS,30.71842010771993,56.46222416232251,0.544052604435276,5433.805646507272,2019
+2004,56,"(55,60]",HS,31.34692998204668,56.46222416232251,0.5551841155234658,5214.22980714596,2019
+2004,56,"(55,60]",HS,28.990017953321363,56.46222416232251,0.513440948942754,5442.325982442881,2019
+2004,56,"(55,60]",HS,28.361508078994614,56.46222416232251,0.5023094378545643,5447.261008179957,2019
+2004,56,"(55,60]",HS,31.818312387791742,56.46222416232251,0.5635327488396081,5367.597178923925,2019
+2004,64,"(60,65]",HS,1.4157184919210053,25.81130247420457,0.054848781588447665,6152.120202999445,2019
+2004,64,"(60,65]",HS,0.9914743267504489,25.81130247420457,0.03841240974729243,6104.963659526087,2019
+2004,64,"(60,65]",HS,0.8657723518850987,25.81130247420457,0.03354237364620939,6136.017575868797,2019
+2004,64,"(60,65]",HS,0.9914743267504489,20.97168326029122,0.0472768119966676,6132.159461061199,2019
+2004,64,"(60,65]",HS,0.9443360861759426,37.10374730666908,0.025451232145660023,6171.015999473064,2019
+2004,61,"(60,65]",College,2870.561723518851,382.3299178991553,7.508075065880669,780.2046675257362,2019
+2004,61,"(60,65]",College,2867.576301615799,200.03759417508547,14.335186910446023,799.1606462612892,2019
+2004,61,"(60,65]",College,2866.0050269299823,545.2637647675717,5.256180975370089,768.6317226614592,2019
+2004,61,"(60,65]",College,2872.132998204668,219.3960710307389,13.091086748778935,800.1320989802612,2019
+2004,61,"(60,65]",College,2867.4191741472173,259.7262311466836,11.040160100455187,809.0349600796334,2019
+2004,78,"(75,80]",College,4569.581041292639,476.2185306490744,9.595554870711164,2012.623303238918,2019
+2004,78,"(75,80]",College,4866.0805745062835,471.86287335655237,10.312488753124134,1959.6022200733448,2019
+2004,78,"(75,80]",College,7177.58276481149,421.5308335318535,17.027420520281126,2059.189363556804,2019
+2004,78,"(75,80]",College,4639.50276481149,426.6930940266944,10.873161130939788,1956.3984902766326,2019
+2004,78,"(75,80]",College,4683.027073608618,417.44942132811997,11.218190358749366,1994.2114487899507,2019
+2004,81,"(80,85]",NoHS,1.4141472172351885,10.001879708754274,0.14138814487015255,7766.588877870954,2019
+2004,81,"(80,85]",NoHS,1.4141472172351885,9.840559068290496,0.14370598331064685,7746.456911555086,2019
+2004,81,"(80,85]",NoHS,1.4141472172351885,9.840559068290496,0.14370598331064685,7769.859868967711,2019
+2004,81,"(80,85]",NoHS,1.4141472172351885,9.840559068290496,0.14370598331064685,7764.72825511437,2019
+2004,81,"(80,85]",NoHS,1.4141472172351885,10.001879708754274,0.14138814487015255,7793.494300110244,2019
+2004,44,"(40,45]",College,503.27928186714547,271.0186759791481,1.856991146639161,6897.744598095509,2019
+2004,44,"(40,45]",College,564.8732495511671,271.0186759791481,2.084259498023036,7658.4759362394925,2019
+2004,44,"(40,45]",College,515.3780969479353,271.0186759791481,1.9016331442324217,6808.693214651658,2019
+2004,44,"(40,45]",College,626.4672172351885,271.0186759791481,2.3115278494069105,6798.5581108989645,2019
+2004,44,"(40,45]",College,528.4196768402155,271.0186759791481,1.9497537390407427,7104.09679386264,2019
+2004,51,"(50,55]",College,392.5044165170557,119.37727394319619,3.2879324812176796,6849.240154633691,2019
+2004,51,"(50,55]",College,387.94771992818676,119.37727394319619,3.249761927992975,7622.521898670304,2019
+2004,51,"(50,55]",College,395.80409335727114,119.37727394319619,3.315573226656259,6762.603878302885,2019
+2004,51,"(50,55]",College,387.790592459605,119.37727394319619,3.248445702019709,6778.707714202908,2019
+2004,51,"(50,55]",College,386.37644524236987,119.37727394319619,3.2365996682603178,7084.5602117101535,2019
+2004,68,"(65,70]",HS,22508.50987432675,1935.8476855653435,11.62721119133574,330.8365091718462,2019
+2004,68,"(65,70]",HS,22508.50987432675,1935.8476855653435,11.62721119133574,328.0336321160737,2019
+2004,68,"(65,70]",HS,22508.50987432675,1935.8476855653435,11.62721119133574,344.14618611141196,2019
+2004,68,"(65,70]",HS,22506.938599640933,1935.8476855653435,11.626399518652224,320.4211222745283,2019
+2004,68,"(65,70]",HS,22506.938599640933,1935.8476855653435,11.626399518652224,325.1670609369383,2019
+2004,58,"(55,60]",College,5253.242657091562,609.7920209530832,8.614810421561323,202.9836784435272,2019
+2004,58,"(55,60]",College,5253.399784560144,609.7920209530832,8.615068095429105,204.388158448689,2019
+2004,58,"(55,60]",College,5253.08552962298,653.3485938783033,8.04024923118064,210.38719278081848,2019
+2004,58,"(55,60]",College,5253.399784560144,737.2353269194682,7.125811247422763,196.1027707660297,2019
+2004,58,"(55,60]",College,5253.399784560144,774.3390742261373,6.784366125150422,198.8519809736866,2019
+2004,49,"(45,50]",College,2919.428366247756,709.8108180406259,4.112966852641943,2019.1928474468375,2019
+2004,49,"(45,50]",College,2919.428366247756,709.8108180406259,4.112966852641943,2014.958143906606,2019
+2004,49,"(45,50]",College,2920.9996409335727,709.8108180406259,4.115180505415162,2288.279998711325,2019
+2004,49,"(45,50]",College,2919.428366247756,709.8108180406259,4.112966852641943,1926.029107325786,2019
+2004,49,"(45,50]",College,2920.9996409335727,709.8108180406259,4.115180505415162,2040.6238737526753,2019
+2004,74,"(70,75]",College,1645.281723518851,109.69803551536945,14.998278827776598,5960.874856467415,2019
+2004,74,"(70,75]",College,1645.281723518851,109.69803551536945,14.998278827776598,6203.101600913043,2019
+2004,74,"(70,75]",College,1646.8529982046678,109.69803551536945,15.012602463368017,5823.65586470113,2019
+2004,74,"(70,75]",College,1645.281723518851,109.69803551536945,14.998278827776598,5771.8527874962565,2019
+2004,74,"(70,75]",College,1645.4388509874327,109.69803551536945,14.99971119133574,5990.407823030432,2019
+2004,46,"(45,50]",College,4070.387073608618,967.9238427826717,4.205276173285198,3643.933326921246,2019
+2004,46,"(45,50]",College,3811.1267504488333,967.9238427826717,3.9374241877256315,3596.5441441361945,2019
+2004,46,"(45,50]",College,3798.71368043088,967.9238427826717,3.924599759326113,4039.3151030698646,2019
+2004,46,"(45,50]",College,3815.667734290844,967.9238427826717,3.9421156558363415,3559.838066757247,2019
+2004,46,"(45,50]",College,3856.5365888689407,967.9238427826717,3.9843388688327313,3730.011843083447,2019
+2004,50,"(45,50]",HS,55.151741472172354,67.75466899478702,0.8139917483238782,3914.804190379781,2019
+2004,50,"(45,50]",HS,54.68035906642729,67.75466899478702,0.8070345538937597,3832.114618393917,2019
+2004,50,"(45,50]",HS,43.838563734290844,67.75466899478702,0.6470190820010314,3948.5067344304334,2019
+2004,50,"(45,50]",HS,52.480574506283666,67.75466899478702,0.7745676465532061,3945.677993680082,2019
+2004,50,"(45,50]",HS,54.99461400359066,67.75466899478702,0.8116726835138386,3897.795021361654,2019
+2004,37,"(35,40]",HS,532.9763734290844,75.82070101797595,7.029430831861126,8516.056454756887,2019
+2004,37,"(35,40]",HS,609.9688330341113,75.82070101797595,8.04488516783163,9451.695723276853,2019
+2004,37,"(35,40]",HS,499.97960502693,80.6603202318893,6.198581949458484,8404.63163926172,2019
+2004,37,"(35,40]",HS,498.5654578096948,79.04711382725151,6.307193693361822,8391.215890719632,2019
+2004,37,"(35,40]",HS,558.2738958707362,79.04711382725151,7.062546231488987,8767.628226647901,2019
+2004,83,"(80,85]",NoHS,14834.404308797128,3887.8274351770647,3.8156025585331874,30.97358746793055,2019
+2004,83,"(80,85]",NoHS,15343.025924596051,4274.996972290133,3.5890144540562634,32.643960580506686,2019
+2004,83,"(80,85]",NoHS,15560.490341113105,4194.336652058244,3.7098811163565673,32.38516129506572,2019
+2004,83,"(80,85]",NoHS,15672.67935368043,4097.5442677799765,3.824895676397851,30.450774514151686,2019
+2004,83,"(80,85]",NoHS,15927.854362657092,3791.0350508987976,4.201452676856901,31.491392588040803,2019
+2004,32,"(30,35]",NoHS,13.230132854578097,80.6603202318893,0.16402281588447654,5862.173770614801,2019
+2004,32,"(30,35]",NoHS,13.07300538599641,80.6603202318893,0.16207480144404335,5876.271534121186,2019
+2004,32,"(30,35]",NoHS,13.230132854578097,80.6603202318893,0.16402281588447654,5854.979439317274,2019
+2004,32,"(30,35]",NoHS,13.07300538599641,80.6603202318893,0.16207480144404335,5903.168232533566,2019
+2004,32,"(30,35]",NoHS,13.07300538599641,80.6603202318893,0.16207480144404335,5875.242921999598,2019
+2004,31,"(30,35]",College,6.756481149012568,48.39619213913358,0.13960770156438027,9473.728655163353,2019
+2004,31,"(30,35]",College,6.756481149012568,48.39619213913358,0.13960770156438027,9408.436292487491,2019
+2004,31,"(30,35]",College,6.756481149012568,48.39619213913358,0.13960770156438027,9476.250629327453,2019
+2004,31,"(30,35]",College,6.756481149012568,48.39619213913358,0.13960770156438027,9464.759983392178,2019
+2004,31,"(30,35]",College,6.756481149012568,48.39619213913358,0.13960770156438027,9459.905658503252,2019
+2004,52,"(50,55]",HS,63.652337522441655,46.782985734495796,1.3605873272749907,9938.429119152548,2019
+2004,52,"(50,55]",HS,63.510922800718134,46.782985734495796,1.3575645462467323,9120.570860218108,2019
+2004,52,"(50,55]",HS,63.510922800718134,46.782985734495796,1.3575645462467323,9952.390744976787,2019
+2004,52,"(50,55]",HS,63.495210053859964,46.782985734495796,1.3572286816880368,10017.746907411301,2019
+2004,52,"(50,55]",HS,63.495210053859964,46.782985734495796,1.3572286816880368,9600.292717012338,2019
+2004,55,"(50,55]",College,161325.83597845602,12921.783301148665,12.484796580988567,20.74019594646676,2019
+2004,55,"(50,55]",College,159392.69673249553,12921.783301148665,12.335193449523837,21.35350431432254,2019
+2004,55,"(50,55]",College,202662.77328545784,12921.783301148665,15.68380838482583,20.995578422063275,2019
+2004,55,"(50,55]",College,200554.43691202873,12921.783301148665,15.52064697557656,20.4852844289174,2019
+2004,55,"(50,55]",College,186285.37723518853,12921.783301148665,14.41638300950527,20.567919624948274,2019
+2004,62,"(60,65]",College,27451.58290843806,2419.8096069566795,11.344521829121538,39.65150076441442,2019
+2004,62,"(60,65]",College,27447.026211849192,2403.6775429103013,11.418763840767571,40.35036156718523,2019
+2004,62,"(60,65]",College,27445.454937163377,2419.8096069566795,11.341989410348976,41.234772531554825,2019
+2004,62,"(60,65]",College,27451.740035906645,2419.8096069566795,11.34458676293622,39.30468652216295,2019
+2004,62,"(60,65]",College,27453.15418312388,2403.6775429103013,11.42131325563928,41.734628533761786,2019
+2004,30,"(25,30]",HS,231.44876122082587,104.8584163014561,2.2072502082754792,9363.068831010505,2019
+2004,30,"(25,30]",HS,231.29163375224417,104.8584163014561,2.2057517356289917,9139.100605660047,2019
+2004,30,"(25,30]",HS,231.29163375224417,104.8584163014561,2.2057517356289917,9334.572491825455,2019
+2004,30,"(25,30]",HS,231.44876122082587,104.8584163014561,2.2072502082754792,9318.268526644917,2019
+2004,30,"(25,30]",HS,231.29163375224417,104.8584163014561,2.2057517356289917,9236.585856514761,2019
+2004,41,"(40,45]",HS,85.63447037701975,80.6603202318893,1.061667870036101,4360.810625935339,2019
+2004,41,"(40,45]",HS,68.97895870736086,80.6603202318893,0.8551783393501805,4372.1791836908,2019
+2004,41,"(40,45]",HS,63.32236983842011,80.6603202318893,0.7850498194945849,4333.585331225942,2019
+2004,41,"(40,45]",HS,94.59073608617594,80.6603202318893,1.1727046931407943,4301.71183545409,2019
+2004,41,"(40,45]",HS,84.69170556552963,80.6603202318893,1.0499797833935018,4331.656355623821,2019
+2004,39,"(35,40]",College,236.24114901256735,187.13194293798318,1.2624309099962656,7890.356666695511,2019
+2004,39,"(35,40]",College,219.8998922800718,187.13194293798318,1.1751061247354662,7444.43429465159,2019
+2004,39,"(35,40]",College,217.22872531418312,187.13194293798318,1.1608318809909124,7857.1380594643615,2019
+2004,39,"(35,40]",College,218.9571274685817,188.74514934262095,1.1600675738220867,7823.659229072529,2019
+2004,39,"(35,40]",College,225.87073608617595,187.13194293798318,1.2070132578115276,7680.510850839935,2019
+2004,20,"(15,20]",HS,-1.4141472172351885,43.55657292522023,-0.03246690734055355,7276.082001899509,2019
+2004,20,"(15,20]",HS,-3.4568043087971274,43.55657292522023,-0.07936355127690867,7236.827771404083,2019
+2004,20,"(15,20]",HS,-2.042657091561939,43.55657292522023,-0.04689664393635513,7263.006390409277,2019
+2004,20,"(15,20]",HS,-7.3849910233393175,41.94336652058244,-0.1760705359622327,7175.714032542046,2019
+2004,20,"(15,20]",HS,-1.257019748653501,43.55657292522023,-0.028859473191603157,7231.568076166407,2019
+2004,61,"(60,65]",College,57.77577019748654,51.62260494840914,1.1191951714801447,5738.604379250738,2019
+2004,61,"(60,65]",College,53.06194614003591,53.23581135304694,0.996734055354994,5564.01229697992,2019
+2004,61,"(60,65]",College,53.37620107719928,53.23581135304694,1.0026371294169127,5767.040324835614,2019
+2004,61,"(60,65]",College,55.10460323159784,51.62260494840914,1.0674510379061375,5733.675020699031,2019
+2004,61,"(60,65]",College,54.00471095152603,51.62260494840914,1.0461446299638992,5711.189306644594,2019
+2004,72,"(70,75]",HS,52908.11834829444,1503.5083691224165,35.18977308997382,23.29524862206022,2019
+2004,72,"(70,75]",HS,55736.41278276482,1742.2629170088094,31.990816218745817,23.424020782336708,2019
+2004,72,"(70,75]",HS,58877.390879712744,1558.3573868801013,37.78169974064025,23.878865559853477,2019
+2004,72,"(70,75]",HS,53065.40294434471,1726.130852962431,30.7423987314012,22.606511354778426,2019
+2004,72,"(70,75]",HS,54950.93256732496,1693.8667248696754,32.441119339865914,23.668128357311424,2019
+2004,49,"(45,50]",HS,771.8101256732496,217.78286462610117,3.543943307928867,7605.29622492858,2019
+2004,49,"(45,50]",HS,550.26039497307,217.78286462610117,2.5266468779248554,8463.93697864038,2019
+2004,49,"(45,50]",HS,641.5514542190306,217.78286462610117,2.9458307260328915,7509.096569135405,2019
+2004,49,"(45,50]",HS,536.1189228007181,217.78286462610117,2.4617130632437485,7526.978033299636,2019
+2004,49,"(45,50]",HS,919.6670736086177,217.78286462610117,4.222862414761331,7866.5921791261835,2019
+2004,72,"(70,75]",College,149978.95439856374,7791.786934400508,19.24833875223296,27.768818387630876,2019
+2004,72,"(70,75]",College,161877.74621184918,7065.844052313504,22.90989512552956,28.446810801806002,2019
+2004,72,"(70,75]",College,165384.5170556553,4323.393164429267,38.25340670294736,28.169819163329105,2019
+2004,72,"(70,75]",College,302479.8989443447,6468.957682597523,46.75867640285568,27.36970347254667,2019
+2004,72,"(70,75]",College,153887.5001795332,4565.374125124934,33.707533262747,27.53974791481673,2019
+2004,20,"(15,20]",HS,10.841795332136446,11.453765472928282,0.9465703971119134,6304.611039830683,2019
+2004,20,"(15,20]",HS,13.198707360861759,10.163200349218052,1.298676293622142,6313.984054226818,2019
+2004,20,"(15,20]",HS,8.642010771992819,11.776406753855838,0.7338410563275803,6301.222927295661,2019
+2004,20,"(15,20]",HS,11.627432675044885,9.840559068290496,1.1815825294430964,6159.820734779549,2019
+2004,20,"(15,20]",HS,15.084236983842011,10.324520989681831,1.4610108303249096,6284.854647741265,2019
+2004,28,"(25,30]",HS,507.83597845601435,169.38667248696757,2.9980869864191155,6969.6237443007285,2019
+2004,28,"(25,30]",HS,405.70312387791745,169.38667248696757,2.395130135808836,7704.426630616426,2019
+2004,28,"(25,30]",HS,386.37644524236987,169.38667248696757,2.2810321471548907,6915.296786576934,2019
+2004,28,"(25,30]",HS,403.66046678635547,169.38667248696757,2.3830709987966303,6913.084444324755,2019
+2004,28,"(25,30]",HS,393.2900538599641,169.38667248696757,2.3218476878115863,7243.340312892654,2019
+2004,53,"(50,55]",College,255.23785996409336,113.73105152696394,2.2442231610210714,5434.20277158787,2019
+2004,53,"(50,55]",College,255.23785996409336,113.73105152696394,2.2442231610210714,6049.689736034728,2019
+2004,53,"(50,55]",College,255.23785996409336,113.73105152696394,2.2442231610210714,5367.755563802365,2019
+2004,53,"(50,55]",College,255.23785996409336,113.73105152696394,2.2442231610210714,5383.832748726964,2019
+2004,53,"(50,55]",College,255.08073249551168,113.73105152696394,2.242841590495942,5622.739502932425,2019
+2004,54,"(50,55]",College,10540.959080789946,635.6033234272877,16.584178672872877,310.70106045890736,2019
+2004,54,"(50,55]",College,11138.027748653501,677.5466899478703,16.43876047790957,301.00706597605534,2019
+2004,54,"(50,55]",College,11791.033795332136,653.3485938783033,18.04707916388109,325.20157999077855,2019
+2004,54,"(50,55]",College,11684.68992459605,708.1976116359881,16.499194197511574,305.05559433682316,2019
+2004,54,"(50,55]",College,11359.436064631958,677.5466899478703,16.765539900292247,314.7908370098702,2019
+2004,40,"(35,40]",HS,322.2684380610413,209.7168326029122,1.5366836989725077,4091.869399526272,2019
+2004,40,"(35,40]",HS,991.6314542190306,209.7168326029122,4.728430435990003,4538.0187480702,2019
+2004,40,"(35,40]",HS,234.43418312387792,209.7168326029122,1.1178605942793667,4676.135201563679,2019
+2004,40,"(35,40]",HS,360.136157989228,209.7168326029122,1.7172496528742016,4038.7975977199303,2019
+2004,40,"(35,40]",HS,410.2598204667863,209.7168326029122,1.9562560399888917,4210.2732939407415,2019
+2004,47,"(45,50]",HS,3.6453572710951527,4.839619213913358,0.7532322503008424,4477.671304389838,2019
+2004,47,"(45,50]",HS,3.6453572710951527,5.000939854377137,0.7289344357750087,4337.9538474021965,2019
+2004,47,"(45,50]",HS,3.6610700179533215,5.000939854377137,0.732076394549901,4500.99775550879,2019
+2004,47,"(45,50]",HS,3.6453572710951527,4.839619213913358,0.7532322503008424,4528.048823262717,2019
+2004,47,"(45,50]",HS,3.6610700179533215,4.839619213913358,0.7564789410348978,4425.034965390444,2019
+2004,33,"(30,35]",HS,93.38085457809694,130.66971877566067,0.7146327049070731,4935.268644225601,2019
+2004,33,"(30,35]",HS,93.38085457809694,187.13194293798318,0.4990107680816631,4953.366973883744,2019
+2004,33,"(30,35]",HS,93.38085457809694,148.4149892266763,0.6291874901899231,4912.8281136622045,2019
+2004,33,"(30,35]",HS,94.95212926391383,182.29232372406983,0.5208783744928277,4907.163065435045,2019
+2004,33,"(30,35]",HS,94.95212926391383,132.28292518029846,0.7177958087523114,4916.90884681574,2019
+2004,44,"(40,45]",HS,14611.440430879713,1742.2629170088094,8.386472723626152,28.985831875988698,2019
+2004,44,"(40,45]",HS,14613.01170556553,1742.2629170088094,8.387374582163389,29.340459976770397,2019
+2004,44,"(40,45]",HS,14613.01170556553,1742.2629170088094,8.387374582163389,31.02668003754344,2019
+2004,44,"(40,45]",HS,14613.01170556553,1742.2629170088094,8.387374582163389,28.281602682529304,2019
+2004,44,"(40,45]",HS,14613.01170556553,1742.2629170088094,8.387374582163389,29.926508220101965,2019
+2004,52,"(50,55]",HS,503.12215439856374,156.48102124986525,3.215227957869664,6094.843004268847,2019
+2004,52,"(50,55]",HS,427.07245960502695,156.48102124986525,2.729228478916223,6490.17522720367,2019
+2004,52,"(50,55]",HS,822.2480430879713,158.09422765450302,5.200999778972962,6921.405529121263,2019
+2004,52,"(50,55]",HS,393.2900538599641,156.48102124986525,2.5133402806207896,6886.6306123833365,2019
+2004,52,"(50,55]",HS,1773.0263554757632,154.86781484522746,11.448643200962698,6730.251130417996,2019
+2004,25,"(20,25]",HS,3.9438994614003593,46.782985734495796,0.08430200423254078,5790.708071684107,2019
+2004,25,"(20,25]",HS,3.739633752244165,46.782985734495796,0.0799357649695008,5761.288007604309,2019
+2004,25,"(20,25]",HS,4.101026929982047,46.782985734495796,0.08766064981949459,5796.510318000017,2019
+2004,25,"(20,25]",HS,3.9438994614003593,46.782985734495796,0.08430200423254078,5822.6382788624505,2019
+2004,25,"(20,25]",HS,3.9438994614003593,46.782985734495796,0.08430200423254078,5810.525644417171,2019
+2004,61,"(60,65]",NoHS,0.001571274685816876,15.164140203595188,1.0361778938474538e-4,7002.299414721429,2019
+2004,61,"(60,65]",NoHS,0.001571274685816876,15.164140203595188,1.0361778938474538e-4,6943.893578765286,2019
+2004,61,"(60,65]",NoHS,0.001571274685816876,15.164140203595188,1.0361778938474538e-4,6938.603447354898,2019
+2004,61,"(60,65]",NoHS,0.001571274685816876,15.164140203595188,1.0361778938474538e-4,6994.583609398185,2019
+2004,61,"(60,65]",NoHS,0.001571274685816876,15.164140203595188,1.0361778938474538e-4,6989.478294101891,2019
+2004,27,"(25,30]",HS,-15.2413644524237,46.782985734495796,-0.32578862193452013,6593.282473695736,2019
+2004,27,"(25,30]",HS,-15.2413644524237,46.782985734495796,-0.32578862193452013,6492.5269093900715,2019
+2004,27,"(25,30]",HS,-15.2413644524237,46.782985734495796,-0.32578862193452013,6578.732352851951,2019
+2004,27,"(25,30]",HS,-15.2413644524237,46.782985734495796,-0.32578862193452013,6668.295045482014,2019
+2004,27,"(25,30]",HS,-15.2413644524237,46.782985734495796,-0.32578862193452013,6567.892711571827,2019
+2004,37,"(35,40]",College,-19.05956193895871,158.09422765450302,-0.12055824062476979,4902.491871494449,2019
+2004,37,"(35,40]",College,-20.630836624775583,158.09422765450302,-0.13049708981065353,4872.655473787017,2019
+2004,37,"(35,40]",College,-19.216689407540393,158.09422765450302,-0.12155212554335815,4899.8526882237875,2019
+2004,37,"(35,40]",College,-20.473709156193895,158.09422765450302,-0.12950320489206513,4902.720173737087,2019
+2004,37,"(35,40]",College,-19.05956193895871,158.09422765450302,-0.12055824062476979,4905.588483445592,2019
+2004,23,"(20,25]",HS,7.856373429084381,16.132064046377863,0.48700361010830323,5905.582899604153,2019
+2004,23,"(20,25]",HS,7.699245960502694,16.132064046377863,0.4772635379061372,5979.875407998908,2019
+2004,23,"(20,25]",HS,7.699245960502694,16.132064046377863,0.4772635379061372,5953.793511349948,2019
+2004,23,"(20,25]",HS,7.699245960502694,16.132064046377863,0.4772635379061372,5834.548620669808,2019
+2004,23,"(20,25]",HS,7.856373429084381,16.132064046377863,0.48700361010830323,5969.975642949368,2019
+2004,47,"(45,50]",HS,365.0071095152603,96.79238427826716,3.771031287605295,11570.75705438319,2019
+2004,47,"(45,50]",HS,364.8499820466787,96.79238427826716,3.7694079422382676,10711.62690547619,2019
+2004,47,"(45,50]",HS,365.0071095152603,96.79238427826716,3.771031287605295,11709.802045381597,2019
+2004,47,"(45,50]",HS,364.8499820466787,96.79238427826716,3.7694079422382676,11523.621926314705,2019
+2004,47,"(45,50]",HS,364.8499820466787,96.79238427826716,3.7694079422382676,11166.528006316346,2019
+2004,52,"(50,55]",College,933.022908438061,201.65080057972327,4.626923898916967,7521.050362654988,2019
+2004,52,"(50,55]",College,933.022908438061,201.65080057972327,4.626923898916967,8370.727932948772,2019
+2004,52,"(50,55]",College,934.594183123878,201.65080057972327,4.634715956678701,7425.191646164205,2019
+2004,52,"(50,55]",College,934.594183123878,201.65080057972327,4.634715956678701,7442.9508769687145,2019
+2004,52,"(50,55]",College,933.022908438061,201.65080057972327,4.626923898916967,7779.908482870039,2019
+2004,58,"(55,60]",HS,837.01802513465,70.9810818040626,11.792128322940597,5840.756775954824,2019
+2004,58,"(55,60]",HS,864.2010771992819,70.9810818040626,12.17509025270758,6459.723703339134,2019
+2004,58,"(55,60]",HS,858.8587432675046,70.9810818040626,12.099826058418115,5764.6621368454225,2019
+2004,58,"(55,60]",HS,862.3155475763016,70.9810818040626,12.148526419428944,5746.236571217434,2019
+2004,58,"(55,60]",HS,861.3727827648115,70.9810818040626,12.135244502789629,6039.384373090392,2019
+2004,66,"(65,70]",HS,6008.742951526033,993.7351452568763,6.046624173660275,414.12414841656954,2019
+2004,66,"(65,70]",HS,5390.257809694793,961.4710171641206,5.606261357303805,408.891319696838,2019
+2004,66,"(65,70]",HS,8831.757903052066,1153.4425793160171,7.656868284062509,426.0991083883323,2019
+2004,66,"(65,70]",HS,8248.406463195692,1000.1879708754274,8.24685629439851,406.28059603603447,2019
+2004,66,"(65,70]",HS,4528.727899461401,905.008793001798,5.00407060625366,411.54095424055157,2019
+2004,29,"(25,30]",NoHS,0.31425493716337527,43.55657292522023,0.007214868297900789,6978.932732041614,2019
+2004,29,"(25,30]",NoHS,0.31425493716337527,43.55657292522023,0.007214868297900789,7077.429687082814,2019
+2004,29,"(25,30]",NoHS,0.31425493716337527,43.55657292522023,0.007214868297900789,6960.326520277122,2019
+2004,29,"(25,30]",NoHS,0.31425493716337527,43.55657292522023,0.007214868297900789,7013.913992414113,2019
+2004,29,"(25,30]",NoHS,0.31425493716337527,43.55657292522023,0.007214868297900789,7015.455308310171,2019
+2004,77,"(75,80]",College,218465.9470017953,9121.069011822043,23.95179191371496,17.27941629084851,2019
+2004,77,"(75,80]",College,185175.9787432675,8945.229513716524,20.701087485717448,17.790385937914266,2019
+2004,77,"(75,80]",College,145370.0914901257,8482.23927558548,17.138173867429792,17.492184777733097,2019
+2004,77,"(75,80]",College,335071.02707360865,9316.266986783216,35.96623277853314,17.06704017634909,2019
+2004,77,"(75,80]",College,163525.85622980254,8482.23927558548,19.278618642659698,17.13588658243797,2019
+2004,52,"(50,55]",College,8467.599281867146,984.0559068290495,8.604794934011956,2741.5979583973067,2019
+2004,52,"(50,55]",College,8989.890987432676,821.1220599606331,10.948300412077197,2746.436036111392,2019
+2004,52,"(50,55]",College,8458.171633752243,838.8673304116488,10.082847820049984,2773.0833076559597,2019
+2004,52,"(50,55]",College,9705.763734290844,1342.187728658638,7.231301201055262,2677.894598107342,2019
+2004,52,"(50,55]",College,7732.242728904847,984.0559068290495,7.857523820796591,2675.1490523499106,2019
+2004,92,"(90,95]",HS,1263.4619748653502,14.518857641740075,87.02213397513037,9527.621141191357,2019
+2004,92,"(90,95]",HS,1263.4619748653502,14.518857641740075,87.02213397513037,10442.851053073717,2019
+2004,92,"(90,95]",HS,1263.4619748653502,14.518857641740075,87.02213397513037,9406.18789852356,2019
+2004,92,"(90,95]",HS,1263.4619748653502,14.518857641740075,87.02213397513037,9428.685184767575,2019
+2004,92,"(90,95]",HS,1263.4619748653502,14.518857641740075,87.02213397513037,9855.541043307177,2019
+2004,37,"(35,40]",College,94.90499102333932,169.38667248696757,0.5602860581055527,9033.535299925341,2019
+2004,37,"(35,40]",College,92.23382405745063,169.38667248696757,0.5445164173972837,8523.006351862943,2019
+2004,37,"(35,40]",College,90.66254937163376,169.38667248696757,0.5352401581571256,8995.503880851018,2019
+2004,37,"(35,40]",College,92.23382405745063,169.38667248696757,0.5445164173972837,8957.174536700913,2019
+2004,37,"(35,40]",College,95.37637342908438,169.38667248696757,0.5630689358776001,8793.286390383095,2019
+2004,70,"(65,70]",College,18371.65788150808,5065.468110562648,3.6268430637632507,20.626138171850155,2019
+2004,70,"(65,70]",College,34318.980337522444,6259.2408499946105,5.482930144404332,19.12902112287269,2019
+2004,70,"(65,70]",College,47881.547777378815,6904.523411849724,6.93480851918081,19.897276336486822,2019
+2004,70,"(65,70]",College,29168.483332136446,6759.3348354323225,4.315289010278901,18.279329651680335,2019
+2004,70,"(65,70]",College,18280.995332136445,7888.579318678774,2.3174002052372407,20.65284709280759,2019
+2004,38,"(35,40]",NoHS,6.992172351885099,48.39619213913358,0.1444777376654633,5473.881813739501,2019
+2004,38,"(35,40]",NoHS,7.070736086175943,46.782985734495796,0.15113905141292172,5450.440596897313,2019
+2004,38,"(35,40]",NoHS,7.070736086175943,46.782985734495796,0.15113905141292172,5432.851527952342,2019
+2004,38,"(35,40]",NoHS,7.322140035906643,48.39619213913358,0.15129578820697956,5450.386071541254,2019
+2004,38,"(35,40]",NoHS,7.086448833034111,46.782985734495796,0.15147491597161708,5421.00912676709,2019
+2004,28,"(25,30]",HS,103.13847037701976,77.43390742261373,1.3319548736462095,4578.358450338177,2019
+2004,28,"(25,30]",HS,105.5739461400359,54.84901775768473,1.9248101507751114,4586.857980445884,2019
+2004,28,"(25,30]",HS,99.7916552962298,51.62260494840914,1.9330999548736467,4584.752712463197,2019
+2004,28,"(25,30]",HS,98.94316696588868,66.14146259014923,1.4959325526107246,4626.6304450708385,2019
+2004,28,"(25,30]",HS,103.89268222621185,43.55657292522023,2.3852354592860006,4612.893669245131,2019
+2004,39,"(35,40]",HS,54.75892280071813,56.46222416232251,0.9698329035585355,8349.270607612898,2019
+2004,39,"(35,40]",HS,54.75892280071813,56.46222416232251,0.9698329035585355,7959.70863090391,2019
+2004,39,"(35,40]",HS,57.58721723518851,56.46222416232251,1.0199247034553895,8339.813325957695,2019
+2004,39,"(35,40]",HS,59.47274685816877,56.46222416232251,1.053319236719959,8289.804629124652,2019
+2004,39,"(35,40]",HS,54.75892280071813,56.46222416232251,0.9698329035585355,8194.449586487657,2019
+2004,46,"(45,50]",College,6500.834757630162,1577.7158637357547,4.120409071781356,257.66427198170487,2019
+2004,46,"(45,50]",College,6502.720287253142,1577.7158637357547,4.121604172665057,254.48907844907254,2019
+2004,46,"(45,50]",College,6502.248904847396,1577.7158637357547,4.121305397444131,265.9445854286846,2019
+2004,46,"(45,50]",College,6663.147432675045,1577.7158637357547,4.223287339519981,254.1138144918406,2019
+2004,46,"(45,50]",College,6554.572351885099,1577.7158637357547,4.154469446966845,261.081810151749,2019
+2004,50,"(45,50]",College,1758.3035116696587,382.3299178991553,4.598916876113878,4606.570118353814,2019
+2004,50,"(45,50]",College,2087.2970053859963,614.6316401669965,3.3960129433279325,4826.9937926852135,2019
+2004,50,"(45,50]",College,2022.8590305206465,374.26388587596637,5.404900410805428,4561.03224684649,2019
+2004,50,"(45,50]",College,2079.896301615799,296.8299784533526,7.0070291163082725,4921.880516436285,2019
+2004,50,"(45,50]",College,2230.518692998205,398.4619819455332,5.597820605387393,4680.9136355761675,2019
+2004,31,"(30,35]",HS,74.16416517055656,41.94336652058244,1.7681977228547627,6980.178552765343,2019
+2004,31,"(30,35]",HS,92.7052064631957,41.94336652058244,2.2102471535684534,7015.306751249025,2019
+2004,31,"(30,35]",HS,70.39310592459606,41.94336652058244,1.6782893640655376,6967.685511315032,2019
+2004,31,"(30,35]",HS,74.63554757630162,41.94336652058244,1.779436267703416,6939.672793468623,2019
+2004,31,"(30,35]",HS,91.76244165170557,41.94336652058244,2.187770063871147,6973.863641509588,2019
+2004,29,"(25,30]",HS,21.21220825852783,45.16977932985802,0.4696106240330067,10403.470360929072,2019
+2004,29,"(25,30]",HS,24.826140035906644,45.16977932985802,0.5496183599793708,10350.614861932765,2019
+2004,29,"(25,30]",HS,15.2413644524237,45.16977932985802,0.3374239298607529,10413.894560668914,2019
+2004,29,"(25,30]",HS,21.526463195691203,45.16977932985802,0.4765678184631253,10460.835532836554,2019
+2004,29,"(25,30]",HS,32.83964093357271,45.16977932985802,0.7270268179473954,10439.07421593294,2019
+2004,37,"(35,40]",HS,92.78377019748653,369.424266662053,0.25115775700345244,11471.618575351755,2019
+2004,37,"(35,40]",HS,92.76805745062836,214.55645181682556,0.432371325425477,11477.88732831844,2019
+2004,37,"(35,40]",HS,90.66254937163376,325.8676937368328,0.27821889409157524,11530.435906197721,2019
+2004,37,"(35,40]",HS,90.85110233393178,229.07530945856564,0.3965992779783393,11492.932774868717,2019
+2004,37,"(35,40]",HS,90.67826211849193,361.35823463886413,0.2509373066013409,11542.60754088176,2019
+2004,51,"(50,55]",College,15784.004165170556,1613.2064046377861,9.784243429602887,257.66427198170487,2019
+2004,51,"(50,55]",College,15783.139964093358,1613.2064046377861,9.78370772563177,254.48907844907254,2019
+2004,51,"(50,55]",College,15785.496876122084,1629.338468684164,9.688285877685242,265.9445854286846,2019
+2004,51,"(50,55]",College,15780.673062836626,1613.2064046377861,9.78217853429603,254.1138144918406,2019
+2004,51,"(50,55]",College,15783.768473967684,1629.338468684164,9.687225077742431,261.081810151749,2019
+2004,45,"(40,45]",HS,423.4585278276481,243.5941671003057,1.7383771248236783,5729.476670314717,2019
+2004,45,"(40,45]",HS,421.88725314183125,243.5941671003057,1.7319267458818468,6376.336703254385,2019
+2004,45,"(40,45]",HS,423.4585278276481,243.5941671003057,1.7383771248236783,5657.00432114406,2019
+2004,45,"(40,45]",HS,421.88725314183125,243.5941671003057,1.7319267458818468,5670.475385088186,2019
+2004,45,"(40,45]",HS,425.02980251346503,243.5941671003057,1.7448275037655105,5926.324896780328,2019
+2004,64,"(60,65]",College,8814.693859964093,816.2824407467199,10.798583210856007,1339.9724509540567,2019
+2004,64,"(60,65]",College,8814.693859964093,817.8956471513575,10.777284230163986,1311.2376576919175,2019
+2004,64,"(60,65]",College,8814.693859964093,816.2824407467199,10.798583210856007,1368.100459664199,2019
+2004,64,"(60,65]",College,8814.693859964093,816.2824407467199,10.798583210856007,1305.2903967425443,2019
+2004,64,"(60,65]",College,8814.693859964093,817.8956471513575,10.777284230163986,1327.637555017341,2019
+2004,64,"(60,65]",College,468.4755475763016,58.0754305669603,8.0666736863217,7937.443552643114,2019
+2004,64,"(60,65]",College,654.3573429084381,58.0754305669603,11.267369634977939,8487.368224744461,2019
+2004,64,"(60,65]",College,576.2649910233393,58.0754305669603,9.922698555956678,7574.425011899044,2019
+2004,64,"(60,65]",College,503.20071813285455,58.0754305669603,8.664605896510228,7549.479374847232,2019
+2004,64,"(60,65]",College,617.2752603231597,58.0754305669603,10.628853790613718,7935.141865038878,2019
+2004,35,"(30,35]",HS,138.19360861759426,104.8584163014561,1.317906692585393,8225.502877262006,2019
+2004,35,"(30,35]",HS,141.65041292639137,104.8584163014561,1.3508730908081086,7893.715643001262,2019
+2004,35,"(30,35]",HS,139.60775583482945,104.8584163014561,1.3313929464037766,8159.947160353605,2019
+2004,35,"(30,35]",HS,137.25084380610411,104.8584163014561,1.3089158567064703,8195.196778191083,2019
+2004,35,"(30,35]",HS,138.822118491921,104.8584163014561,1.323900583171341,8059.758380853675,2019
+2004,36,"(35,40]",College,28.754326750448833,124.21689315710954,0.23148483285667398,4343.7229567647955,2019
+2004,36,"(35,40]",College,28.754326750448833,124.21689315710954,0.23148483285667398,4317.2872075445875,2019
+2004,36,"(35,40]",College,28.597199281867148,124.21689315710954,0.23021988841483426,4341.384578393068,2019
+2004,36,"(35,40]",College,28.754326750448833,124.21689315710954,0.23148483285667398,4343.925237914551,2019
+2004,36,"(35,40]",College,28.754326750448833,124.21689315710954,0.23148483285667398,4346.466627692345,2019
+2004,34,"(30,35]",HS,7.966362657091563,40.33016011594465,0.19752866425992782,8318.165440417151,2019
+2004,34,"(30,35]",HS,10.166147217235189,40.33016011594465,0.25207306859205775,8435.949949455606,2019
+2004,34,"(30,35]",HS,9.820466786355475,40.33016011594465,0.24350180505415162,8297.361286811065,2019
+2004,34,"(30,35]",HS,8.406319569120287,40.33016011594465,0.2084375451263538,8380.629989119441,2019
+2004,34,"(30,35]",HS,9.034829443447038,40.33016011594465,0.2240216606498195,8363.334658438946,2019
+2004,54,"(50,55]",College,25778.33249551167,785.6315190586018,32.81224323382679,213.89932839736997,2019
+2004,54,"(50,55]",College,25778.33249551167,785.6315190586018,32.81224323382679,209.00689675678632,2019
+2004,54,"(50,55]",College,25778.33249551167,785.6315190586018,32.81224323382679,220.04188165536567,2019
+2004,54,"(50,55]",College,25778.33249551167,785.6315190586018,32.81224323382679,208.79801098943534,2019
+2004,54,"(50,55]",College,25776.76122082585,785.6315190586018,32.81024321900088,216.91507817072346,2019
+2004,75,"(70,75]",College,448.9131777378815,80.6603202318893,5.565477256317689,12749.079516683476,2019
+2004,75,"(70,75]",College,450.32732495511675,80.6603202318893,5.5830093862815895,11757.833486781801,2019
+2004,75,"(70,75]",College,448.75605026929986,80.6603202318893,5.563529241877257,12751.991942875964,2019
+2004,75,"(70,75]",College,450.32732495511675,80.6603202318893,5.5830093862815895,12491.321789857808,2019
+2004,75,"(70,75]",College,448.75605026929986,80.6603202318893,5.563529241877257,12355.567276196924,2019
+2004,45,"(40,45]",College,946.2216157989228,403.30160115944653,2.3461885920577616,4936.540561590244,2019
+2004,45,"(40,45]",College,947.7928904847397,403.30160115944653,2.3500846209386284,5485.411315887569,2019
+2004,45,"(40,45]",College,947.7928904847397,403.30160115944653,2.3500846209386284,4884.656167785185,2019
+2004,45,"(40,45]",College,947.7928904847397,403.30160115944653,2.3500846209386284,4892.98319600398,2019
+2004,45,"(40,45]",College,947.8086032315978,403.30160115944653,2.3501235812274364,5100.530987310197,2019
+2004,71,"(70,75]",College,1450.4436624775583,604.9524017391699,2.397616173285198,940.7994973880102,2019
+2004,71,"(70,75]",College,1450.4593752244166,604.9524017391699,2.3976421468110707,945.238997447891,2019
+2004,71,"(70,75]",College,1450.4593752244166,604.9524017391699,2.3976421468110707,939.8959946397151,2019
+2004,71,"(70,75]",College,1450.333673249551,603.3391953345321,2.403844610899824,960.5332692773802,2019
+2004,71,"(70,75]",College,1450.490800718133,604.9524017391699,2.3976940938628157,975.4673912582754,2019
+2004,57,"(55,60]",College,9729.489982046678,525.9052879119182,18.500460454917942,1240.1946621704903,2019
+2004,57,"(55,60]",College,9727.918707360863,625.924084999461,15.541690982172765,1239.6978031315468,2019
+2004,57,"(55,60]",College,9734.20380610413,485.57512779597363,20.046751262338535,1272.473272739166,2019
+2004,57,"(55,60]",College,9724.776157989229,588.820337692792,16.515693388061916,1198.2982046391487,2019
+2004,57,"(55,60]",College,9749.916552962297,532.3581135304694,18.314582430806258,1220.9668332492822,2019
+2004,47,"(45,50]",HS,388.1048473967684,53.23581135304694,7.290296466469751,5886.6311648816,2019
+2004,47,"(45,50]",HS,390.3046319569121,53.23581135304694,7.331617984903184,5534.2160859167,2019
+2004,47,"(45,50]",HS,391.0902692998205,51.62260494840914,7.575949909747295,5959.917908296617,2019
+2004,47,"(45,50]",HS,407.27439856373434,51.62260494840914,7.889458483754516,5956.52403422022,2019
+2004,47,"(45,50]",HS,386.5335727109515,51.62260494840914,7.487680505415164,5800.348814234597,2019
+2004,60,"(55,60]",College,837.8036624775584,365.3912506504586,2.2928947011898217,7161.939125329675,2019
+2004,60,"(55,60]",College,1011.1152603231598,379.1035050898798,2.6671218987633454,7916.123038032791,2019
+2004,60,"(55,60]",College,765.8235691202872,365.8752125718499,2.0931277736392055,7016.721379556473,2019
+2004,60,"(55,60]",College,1001.3890700179533,375.87709228060413,2.664139663159852,7050.1082356725065,2019
+2004,60,"(55,60]",College,994.8054290843806,366.6818157741688,2.712993626324408,7362.324954351983,2019
+2004,60,"(55,60]",College,227006.57913105926,34280.63609855296,6.622006035081758,2.8223448818477395,2019
+2004,60,"(55,60]",College,257854.3465709156,34877.52246826893,7.393138282844138,2.8812682866096098,2019
+2004,60,"(55,60]",College,123332.02125673249,31296.20424997305,3.94079806840597,2.764845406160569,2019
+2004,60,"(55,60]",College,115500.20685098744,34683.937699712405,3.330077681806733,2.7705622626063535,2019
+2004,60,"(55,60]",College,137436.72560143625,34651.67357161965,3.9662363007482395,2.7024244688325725,2019
+2004,34,"(30,35]",HS,537.7687612208258,153.2546084405897,3.5089891696750897,6892.471919610922,2019
+2004,34,"(30,35]",HS,537.6116337522442,153.2546084405897,3.5079638989169672,6715.415305240707,2019
+2004,34,"(30,35]",HS,537.6116337522442,153.2546084405897,3.5079638989169672,6919.662984187227,2019
+2004,34,"(30,35]",HS,539.1829084380611,153.2546084405897,3.518216606498195,6889.383889370401,2019
+2004,34,"(30,35]",HS,539.3400359066427,153.2546084405897,3.519241877256317,6870.0163415322795,2019
+2004,35,"(30,35]",HS,7.22786355475763,58.0754305669603,0.1244564781387886,12105.377758254197,2019
+2004,35,"(30,35]",HS,7.3849910233393175,58.0754305669603,0.1271620537505014,11406.223405755074,2019
+2004,35,"(30,35]",HS,7.3849910233393175,58.0754305669603,0.1271620537505014,12141.768313816085,2019
+2004,35,"(30,35]",HS,7.3849910233393175,58.0754305669603,0.1271620537505014,12010.778371047567,2019
+2004,35,"(30,35]",HS,7.3849910233393175,58.0754305669603,0.1271620537505014,11792.183846062642,2019
+2004,48,"(45,50]",College,688.2183123877917,258.1130247420458,2.6663447653429597,5969.661114862343,2019
+2004,48,"(45,50]",College,688.2183123877917,258.1130247420458,2.6663447653429597,6644.073185912882,2019
+2004,48,"(45,50]",College,686.6470377019749,258.1130247420458,2.6602572202166064,5893.575458635782,2019
+2004,48,"(45,50]",College,688.2183123877917,258.1130247420458,2.6663447653429597,5907.671440506872,2019
+2004,48,"(45,50]",College,688.2183123877917,258.1130247420458,2.6663447653429597,6175.12380690695,2019
+2004,25,"(20,25]",College,0,203.26400698436103,0,3977.508355600209,2019
+2004,25,"(20,25]",College,0,203.26400698436103,0,4036.314420754574,2019
+2004,25,"(20,25]",College,0,203.26400698436103,0,3993.892067624797,2019
+2004,25,"(20,25]",College,0,203.26400698436103,0,3999.1298932597106,2019
+2004,25,"(20,25]",College,0,203.26400698436103,0,4018.512364534489,2019
+2004,33,"(30,35]",HS,10.90464631956912,54.84901775768473,0.19881206200891907,4860.802672126105,2019
+2004,33,"(30,35]",HS,11.108912028725314,54.84901775768473,0.20253620726268845,4932.6679337633595,2019
+2004,33,"(30,35]",HS,10.951784560143627,54.84901775768473,0.19967148014440433,4880.824752300077,2019
+2004,33,"(30,35]",HS,10.763231597845602,54.84901775768473,0.19623380760246337,4887.225753772889,2019
+2004,33,"(30,35]",HS,10.951784560143627,54.84901775768473,0.19967148014440433,4910.912534476241,2019
+2004,60,"(55,60]",College,79942.05644524237,6017.259889298942,13.285458483754514,21.84937675360215,2019
+2004,60,"(55,60]",College,80381.85622980252,5968.863697159808,13.466860747389992,22.79832947205196,2019
+2004,60,"(55,60]",College,78723.69005385996,6146.316401669966,12.80827163933028,22.457057292481032,2019
+2004,60,"(55,60]",College,79192.24416517054,5952.731633113431,13.303513251739014,21.843207393796412,2019
+2004,60,"(55,60]",College,78358.6829443447,6097.920209530831,12.85006694936298,22.287131931716438,2019
+2004,63,"(60,65]",HS,291.7071454219031,127.4433059663851,2.2889169675090257,6499.089877291906,2019
+2004,63,"(60,65]",HS,436.2644165170557,127.4433059663851,3.4232038568752,5794.897228353949,2019
+2004,63,"(60,65]",HS,403.26764811490125,127.4433059663851,3.1642905451720513,6514.867835803155,2019
+2004,63,"(60,65]",HS,271.12344703770196,127.4433059663851,2.1274043778275376,6398.641422218498,2019
+2004,63,"(60,65]",HS,282.2794973070018,127.4433059663851,2.21494173559384,6265.253190012771,2019
+2004,40,"(35,40]",HS,870.9575583482945,322.6412809275572,2.699461010830325,5741.401929193553,2019
+2004,40,"(35,40]",HS,863.10118491921,325.9322219930183,2.648100208201257,6374.186262536499,2019
+2004,40,"(35,40]",HS,867.6578815080791,371.0374730666908,2.338464291320044,5667.83230062784,2019
+2004,40,"(35,40]",HS,874.1001077199281,338.7088167177496,2.580683066329292,5659.336447416656,2019
+2004,40,"(35,40]",HS,863.2583123877918,372.97332075225614,2.3145309982136837,5912.814051545569,2019
+2004,45,"(40,45]",College,1037.8897809694795,214.55645181682556,4.837373904074266,6649.307410782714,2019
+2004,45,"(40,45]",College,1000.0377737881508,219.3960710307389,4.558138936079847,7401.242269912746,2019
+2004,45,"(40,45]",College,1300.1512387791743,172.6130852962431,7.532170788488142,6560.993989619203,2019
+2004,45,"(40,45]",College,1091.124567324955,190.35835574725877,5.731949947989964,6577.42627471189,2019
+2004,45,"(40,45]",College,1254.5528473967684,243.5941671003057,5.150176058526789,6877.083717612353,2019
+2004,67,"(65,70]",NoHS,0,17.74527045101565,0,6424.294796731244,2019
+2004,67,"(65,70]",NoHS,0,17.74527045101565,0,6458.532006828018,2019
+2004,67,"(65,70]",NoHS,0,17.74527045101565,0,6432.942670510811,2019
+2004,67,"(65,70]",NoHS,0,17.74527045101565,0,6474.94413606903,2019
+2004,67,"(65,70]",NoHS,0,17.74527045101565,0,6466.078638730715,2019
+2004,25,"(20,25]",HS,-21.353622980251348,40.33016011594465,-0.5294703249097473,5299.529102455186,2019
+2004,25,"(20,25]",HS,-31.519770197486533,40.33016011594465,-0.781543393501805,5272.84598060057,2019
+2004,25,"(20,25]",HS,4.509558348294435,40.33016011594465,0.11181602888086645,5305.716847068597,2019
+2004,25,"(20,25]",HS,-32.35254578096948,40.33016011594465,-0.8021923465703972,5341.990487984182,2019
+2004,25,"(20,25]",HS,-25.564639138240576,40.33016011594465,-0.6338838989169676,5318.707461158052,2019
+2004,43,"(40,45]",HS,133.4012208258528,48.39619213913358,2.7564404332129966,7717.9261189614335,2019
+2004,43,"(40,45]",HS,133.55834829443447,48.39619213913358,2.7596871239470517,7408.784247827559,2019
+2004,43,"(40,45]",HS,133.55834829443447,48.39619213913358,2.7596871239470517,7710.94750234612,2019
+2004,43,"(40,45]",HS,133.4012208258528,48.39619213913358,2.7564404332129966,7682.199229539474,2019
+2004,43,"(40,45]",HS,133.55834829443447,48.39619213913358,2.7596871239470517,7604.430538213458,2019
+2004,80,"(75,80]",NoHS,84.22032315978456,13.873575079884963,6.070556628326755,9926.108627618856,2019
+2004,80,"(75,80]",NoHS,84.37745062836625,13.873575079884963,6.081882293678111,9932.76786046245,2019
+2004,80,"(75,80]",NoHS,84.22032315978456,13.873575079884963,6.070556628326755,9875.373706483897,2019
+2004,80,"(75,80]",NoHS,84.22032315978456,13.873575079884963,6.070556628326755,9930.526558046386,2019
+2004,80,"(75,80]",NoHS,84.22032315978456,13.873575079884963,6.070556628326755,9880.783884914146,2019
+2004,64,"(60,65]",College,2645.5551885098744,725.9428820870038,3.644302125952667,222.10695069028898,2019
+2004,64,"(60,65]",College,2609.415870736086,725.9428820870038,3.594519534697152,220.1389416420962,2019
+2004,64,"(60,65]",College,3479.744919210054,725.9428820870038,4.793414199759326,231.17884584075895,2019
+2004,64,"(60,65]",College,2679.9661041292643,725.9428820870038,3.691703810669876,217.9000999363456,2019
+2004,64,"(60,65]",College,2606.273321364453,725.9428820870038,3.590190613718412,224.3188033544073,2019
+2004,56,"(55,60]",College,679.4505996409335,266.1790567652347,2.5526072858549393,7444.731978188912,2019
+2004,56,"(55,60]",College,713.8300897666069,266.1790567652347,2.6817665463297238,8234.217446004131,2019
+2004,56,"(55,60]",College,682.8759784560144,266.1790567652347,2.565475987309923,7347.0233437701445,2019
+2004,56,"(55,60]",College,901.1260323159785,266.1790567652347,3.3854129745104475,7323.616409916159,2019
+2004,56,"(55,60]",College,809.33216517055655,266.1790567652347,3.0405553878131495,7698.358053161876,2019
+2004,57,"(55,60]",College,161875.86068222622,10647.162270609388,15.203662400175038,2.8570458090874595,2019
+2004,57,"(55,60]",College,152496.92208258528,18100.17586003596,8.425162454873647,2.8801441796608325,2019
+2004,57,"(55,60]",College,153678.52064631958,18067.911731943204,8.505605015471893,2.894695128954638,2019
+2004,57,"(55,60]",College,166935.36517055656,18213.100308360605,9.165675384433367,2.799834059547961,2019
+2004,57,"(55,60]",College,173633.7091561939,17099.987889160533,10.154025270758122,2.791491040751853,2019
+2004,64,"(60,65]",NoHS,400.2979389587074,52.10656686980049,7.682293480569124,8289.78718503489,2019
+2004,64,"(60,65]",NoHS,432.666197486535,52.10656686980049,8.303486939902315,7264.827589596438,2019
+2004,64,"(60,65]",NoHS,432.82332495511673,52.10656686980049,8.30650244213209,8282.416537706617,2019
+2004,64,"(60,65]",NoHS,464.09169120287254,52.10656686980049,8.90658738585687,8130.307162153136,2019
+2004,64,"(60,65]",NoHS,400.45506642728907,52.10656686980049,7.6853089827988965,7895.085845226325,2019
+2004,57,"(55,60]",College,216179.27095152604,50786.96403080678,4.256589758355987,20.74019594646676,2019
+2004,57,"(55,60]",College,47105.90374147217,48617.20141656896,0.9689143424330933,21.35350431432254,2019
+2004,57,"(55,60]",College,50089.880071813284,49122.13502122059,1.0197007937495923,20.995578422063275,2019
+2004,57,"(55,60]",College,105346.11131059246,48096.13574787096,2.190323810271093,20.4852844289174,2019
+2004,57,"(55,60]",College,84127.91649551167,47499.24937815498,1.7711420200716332,20.567919624948274,2019
+2004,38,"(35,40]",HS,1252.6201795332136,96.79238427826716,12.941309265944644,5963.51481897451,2019
+2004,38,"(35,40]",HS,1252.6201795332136,96.79238427826716,12.941309265944644,6620.779158876874,2019
+2004,38,"(35,40]",HS,1254.3485816876123,96.79238427826716,12.95916606498195,5887.099062755244,2019
+2004,38,"(35,40]",HS,1257.4911310592458,95.17917787362938,13.211830141344917,5878.274537465159,2019
+2004,38,"(35,40]",HS,1253.2486894075405,95.17917787362938,13.167256929572295,6141.558220987596,2019
+2004,46,"(45,50]",College,218.23591238779173,241.98096069566793,0.9018722454873644,11330.055079883177,2019
+2004,46,"(45,50]",College,218.2500538599641,241.98096069566793,0.9019306859205776,10400.724918705517,2019
+2004,46,"(45,50]",College,218.40875260323162,241.98096069566793,0.9025865174488568,11426.781862120744,2019
+2004,46,"(45,50]",College,218.26576660682227,241.98096069566793,0.9019956197352587,11409.650815844969,2019
+2004,46,"(45,50]",College,218.42289407540395,241.98096069566793,0.9026449578820697,11005.385707858817,2019
+2004,46,"(45,50]",NoHS,0,40.33016011594465,0,5582.832398622793,2019
+2004,46,"(45,50]",NoHS,0,40.33016011594465,0,5587.480472924881,2019
+2004,46,"(45,50]",NoHS,0,40.33016011594465,0,5591.699904708619,2019
+2004,46,"(45,50]",NoHS,0,40.33016011594465,0,5593.049882987512,2019
+2004,46,"(45,50]",NoHS,0,40.33016011594465,0,5582.389992013164,2019
+2004,58,"(55,60]",College,16065.026642728904,1290.5651237102288,12.448055776173286,233.7339976471247,2019
+2004,58,"(55,60]",College,15661.36617594255,1290.5651237102288,12.13527770758123,231.20426836373204,2019
+2004,58,"(55,60]",College,15270.118779174147,1290.5651237102288,11.832117960288809,243.10414687521916,2019
+2004,58,"(55,60]",College,16978.251490125676,1290.5651237102288,13.155672021660653,226.46543620012932,2019
+2004,58,"(55,60]",College,16765.972280071815,1290.5651237102288,12.991186552346573,229.68966707660843,2019
+2004,55,"(50,55]",NoHS,154.6134290843806,41.94336652058244,3.686242710358234,7447.950258026201,2019
+2004,55,"(50,55]",NoHS,154.6134290843806,37.10374730666908,4.167056976926699,6638.999728496747,2019
+2004,55,"(50,55]",NoHS,154.6134290843806,27.424508878842364,5.637782968783181,7413.23201708028,2019
+2004,55,"(50,55]",NoHS,154.45630161579894,20.97168326029122,7.364993057484033,7339.795774187248,2019
+2004,55,"(50,55]",NoHS,154.6134290843806,17.74527045101565,8.712937315392187,7140.2979506031015,2019
+2004,56,"(55,60]",College,7919.852926391382,1451.8857641740076,5.45487332531087,434.9010702018885,2019
+2004,56,"(55,60]",College,7994.174219030521,1451.8857641740076,5.506062815884476,426.7109999482765,2019
+2004,56,"(55,60]",College,8371.437271095154,1451.8857641740076,5.765906297633374,451.31766095998285,2019
+2004,56,"(55,60]",College,8371.594398563735,1451.8857641740076,5.766014520657842,430.03415674536683,2019
+2004,56,"(55,60]",College,8009.88696588869,1451.8857641740076,5.516885118331327,439.67005226145875,2019
+2004,76,"(75,80]",College,61.07544703770198,174.22629170088092,0.3505524134242545,1005.9726514134793,2019
+2004,76,"(75,80]",College,63.44807181328546,174.22629170088092,0.3641704773365423,1074.987236445119,2019
+2004,76,"(75,80]",College,57.304387791741476,174.22629170088092,0.3289078085305522,1000.2949342529798,2019
+2004,76,"(75,80]",College,60.446937163375225,174.22629170088092,0.34694497927530416,992.3361196719312,2019
+2004,76,"(75,80]",College,62.17533931777379,174.22629170088092,0.3568654231849177,999.7623137225371,2019
+2004,80,"(75,80]",HS,3625.087827648115,161.3206404637786,22.47132057761733,222.10695069028898,2019
+2004,80,"(75,80]",HS,3624.9307001795332,161.3206404637786,22.470346570397112,220.1389416420962,2019
+2004,80,"(75,80]",HS,3623.516552962298,161.3206404637786,22.461580505415164,231.17884584075895,2019
+2004,80,"(75,80]",HS,3625.087827648115,161.3206404637786,22.47132057761733,217.9000999363456,2019
+2004,80,"(75,80]",HS,3624.9307001795332,161.3206404637786,22.470346570397112,224.3188033544073,2019
+2004,55,"(50,55]",NoHS,1286.4025852782765,95.17917787362938,13.515588325276877,7958.908030422865,2019
+2004,55,"(50,55]",NoHS,1433.7881508078995,95.17917787362938,15.064094719451752,8335.966030006468,2019
+2004,55,"(50,55]",NoHS,906.4683662477559,95.17917787362938,9.523809582084072,7818.929961495148,2019
+2004,55,"(50,55]",NoHS,1925.7542549371633,95.17917787362938,20.232936425380895,14141.46206116561,2019
+2004,55,"(50,55]",NoHS,803.8641292639138,96.79238427826716,8.305034897713599,8001.348838877183,2019
+2004,60,"(55,60]",College,23594.26068222621,2161.6965822146335,10.914695834904895,233.7339976471247,2019
+2004,60,"(55,60]",College,23595.83195691203,2145.5645181682557,10.997493553378028,231.20426836373204,2019
+2004,60,"(55,60]",College,23592.689407540398,2161.6965822146335,10.913968963845035,243.10414687521916,2019
+2004,60,"(55,60]",College,23594.26068222621,2145.5645181682557,10.996761217122225,226.46543620012932,2019
+2004,60,"(55,60]",College,23594.26068222621,2161.6965822146335,10.914695834904895,229.68966707660843,2019
+2004,33,"(30,35]",HS,260.5644811490126,90.33955865971603,2.8842788808664257,7593.407681116686,2019
+2004,33,"(30,35]",HS,260.3916409335727,88.72635225507824,2.934772300623564,7398.345144593912,2019
+2004,33,"(30,35]",HS,260.5644811490126,88.72635225507824,2.9367203150639973,7623.363964003234,2019
+2004,33,"(30,35]",HS,260.5487684021544,88.72635225507824,2.9365432228421398,7590.005611029004,2019
+2004,33,"(30,35]",HS,260.72160861759426,90.33955865971603,2.8860181794739552,7568.668464032447,2019
+2004,54,"(50,55]",College,40023.50879712747,1048.584163014561,38.16909525131908,1348.4757155892573,2019
+2004,54,"(50,55]",College,40025.08007181329,1048.584163014561,38.17059372396557,1454.7770231336274,2019
+2004,54,"(50,55]",College,40026.6513464991,1048.584163014561,38.17209219661205,1350.438692812286,2019
+2004,54,"(50,55]",College,40023.50879712747,1048.584163014561,38.16909525131908,1460.0910371203622,2019
+2004,54,"(50,55]",College,39976.37055655296,1048.584163014561,38.12414107192446,1357.811171094922,2019
+2004,19,"(15,20]",HS,132.14420107719928,75.82070101797595,1.742851217451417,7663.196360741563,2019
+2004,19,"(15,20]",HS,93.94651346499101,75.82070101797595,1.239061525462785,7465.574006580571,2019
+2004,19,"(15,20]",HS,135.28675044883306,75.82070101797595,1.7842983332053155,7674.669212068989,2019
+2004,19,"(15,20]",HS,149.42822262118491,75.82070101797595,1.9708103540978568,7502.501777752012,2019
+2004,19,"(15,20]",HS,114.65591382405745,75.82070101797595,1.5121980182809738,7566.149572254883,2019
+2004,88,"(85,90]",NoHS,315.8262118491921,50.00939854377137,6.31533713753348,10860.08264091866,2019
+2004,88,"(85,90]",NoHS,315.8262118491921,50.00939854377137,6.31533713753348,9870.129879252965,2019
+2004,88,"(85,90]",NoHS,315.8262118491921,50.00939854377137,6.31533713753348,10778.082480875733,2019
+2004,88,"(85,90]",NoHS,315.8262118491921,50.00939854377137,6.31533713753348,10603.464805698546,2019
+2004,88,"(85,90]",NoHS,315.8262118491921,50.00939854377137,6.31533713753348,10436.737807221156,2019
+2004,44,"(40,45]",HS,745.884093357271,108.08482911073166,6.900913842340643,4926.97079422748,2019
+2004,44,"(40,45]",HS,747.455368043088,100.01879708754274,7.473148946081286,5060.621318770907,2019
+2004,44,"(40,45]",HS,720.5865709156194,104.8584163014561,6.871995556789781,4815.118604757261,2019
+2004,44,"(40,45]",HS,738.0277199281868,106.47162270609388,6.931684717208183,4747.106176581516,2019
+2004,44,"(40,45]",HS,740.5417594254938,103.24520989681828,7.172650045126356,4939.371068058339,2019
+2004,70,"(65,70]",College,6568.8709515260325,96.79238427826716,67.86557641395909,2741.5979583973067,2019
+2004,70,"(65,70]",College,6584.583698384201,96.79238427826716,68.02791095066185,2746.436036111392,2019
+2004,70,"(65,70]",College,6561.014578096948,96.79238427826716,67.7844091456077,2773.0833076559597,2019
+2004,70,"(65,70]",College,6575.1560502693,96.79238427826716,67.9305102286402,2677.894598107342,2019
+2004,70,"(65,70]",College,6578.298599640934,96.79238427826716,67.96297713598075,2675.1490523499106,2019
+2004,38,"(35,40]",HS,322.2212998204668,80.6603202318893,3.9947932129963903,8418.954736804057,2019
+2004,38,"(35,40]",HS,303.36600359066426,80.6603202318893,3.7610314801444042,7847.117231752345,2019
+2004,38,"(35,40]",HS,249.94266427289048,80.6603202318893,3.098706570397112,8413.823409900868,2019
+2004,38,"(35,40]",HS,249.94266427289048,80.6603202318893,3.098706570397112,8412.152470931649,2019
+2004,38,"(35,40]",HS,304.93727827648115,80.6603202318893,3.7805116245487365,8218.578368331553,2019
+2004,27,"(25,30]",HS,4.132452423698385,29.03771528348015,0.14231327717609307,8318.165440417151,2019
+2004,27,"(25,30]",HS,5.028078994614004,50.00939854377137,0.10054268079655294,8435.949949455606,2019
+2004,27,"(25,30]",HS,7.070736086175943,32.264128092755726,0.21915162454873643,8297.361286811065,2019
+2004,27,"(25,30]",HS,4.3995691202872536,62.91504978087366,0.06992872350273073,8380.629989119441,2019
+2004,27,"(25,30]",HS,4.352430879712747,24.19809606956679,0.17986666666666667,8363.334658438946,2019
+2004,27,"(25,30]",HS,-15.2413644524237,61.30184337623587,-0.24862815884476536,5902.047356340589,2019
+2004,27,"(25,30]",HS,-15.2413644524237,61.30184337623587,-0.24862815884476536,5923.691000570169,2019
+2004,27,"(25,30]",HS,-15.2413644524237,61.30184337623587,-0.24862815884476536,5875.210909607025,2019
+2004,27,"(25,30]",HS,-15.2413644524237,61.30184337623587,-0.24862815884476536,5868.436124823676,2019
+2004,27,"(25,30]",HS,-15.2413644524237,61.30184337623587,-0.24862815884476536,5880.091024967908,2019
+2004,49,"(45,50]",College,-8.48488330341113,61.30184337623587,-0.13841155234657038,4299.604124178883,2019
+2004,49,"(45,50]",College,-8.327755834829444,61.30184337623587,-0.13584837545126355,4208.78670204301,2019
+2004,49,"(45,50]",College,-8.48488330341113,61.30184337623587,-0.13841155234657038,4336.619410346094,2019
+2004,49,"(45,50]",College,-8.327755834829444,61.30184337623587,-0.13584837545126355,4333.512622674228,2019
+2004,49,"(45,50]",College,-8.327755834829444,61.30184337623587,-0.13584837545126355,4280.923063849246,2019
+2004,62,"(60,65]",HS,31054.201508078997,3290.941065461084,9.436267891272033,23.907465601703212,2019
+2004,62,"(60,65]",HS,32742.536157989227,2710.186759791481,12.08128408114148,24.741440063254313,2019
+2004,62,"(60,65]",HS,33813.35985637343,2871.5074002552597,11.775473694885001,24.7917585788844,2019
+2004,62,"(60,65]",HS,32336.99016157989,2694.0546957451024,12.003093408850171,23.42409676290042,2019
+2004,62,"(60,65]",HS,35967.73457809695,2613.394375513213,13.762842269465617,24.90252657493076,2019
+2004,81,"(80,85]",College,14498.591482944345,743.6881525380194,19.49552568971863,312.9438578319533,2019
+2004,81,"(80,85]",College,14481.621716337522,711.4240244452637,20.355823276603058,308.0067787422426,2019
+2004,81,"(80,85]",College,14491.992129263914,671.093864329319,21.594582963065815,326.17343126559774,2019
+2004,81,"(80,85]",College,14491.677874326751,721.1032628730904,20.096536266647284,302.5728960262254,2019
+2004,81,"(80,85]",College,14497.491590664273,711.4240244452637,20.378130471442486,307.546686552354,2019
+2004,33,"(30,35]",College,4248.962441651705,258.1130247420458,16.4616351534296,1446.8481846290945,2019
+2004,33,"(30,35]",College,4247.391166965889,258.1130247420458,16.45554760830325,1442.4962212634796,2019
+2004,33,"(30,35]",College,4248.962441651705,258.1130247420458,16.4616351534296,1642.212940941526,2019
+2004,33,"(30,35]",College,4250.5337163375225,258.1130247420458,16.467722698555956,1372.3489374386195,2019
+2004,33,"(30,35]",College,4247.391166965889,258.1130247420458,16.45554760830325,1462.4514788927852,2019
+2004,51,"(50,55]",College,2861.2912028725314,427.49969722901335,6.693083577412982,1676.8291846504333,2019
+2004,51,"(50,55]",College,2859.7199281867147,427.49969722901335,6.689408078468769,1645.5388303474724,2019
+2004,51,"(50,55]",College,2859.8770556552963,427.49969722901335,6.68977562836319,1709.091663046614,2019
+2004,51,"(50,55]",College,2861.4483303411134,427.49969722901335,6.693451127307404,1640.7456088296526,2019
+2004,51,"(50,55]",College,2863.01960502693,427.49969722901335,6.697126626251618,1710.6468811974478,2019
+2004,37,"(35,40]",HS,92.31238779174149,88.72635225507824,1.0404168034131933,9084.219814360255,2019
+2004,37,"(35,40]",HS,93.72653500897665,88.72635225507824,1.056355103380374,8570.82643825519,2019
+2004,37,"(35,40]",HS,92.46951526032316,88.72635225507824,1.0421877256317689,9045.975012159055,2019
+2004,37,"(35,40]",HS,92.31238779174149,88.72635225507824,1.0404168034131933,9007.430613311948,2019
+2004,37,"(35,40]",HS,92.31238779174149,88.72635225507824,1.0404168034131933,8842.622938720639,2019
+2004,59,"(55,60]",College,2467.844021543986,246.82057990958126,9.998534248837924,3567.4820754973566,2019
+2004,59,"(55,60]",College,2580.975798922801,246.82057990958126,10.456890587763386,3715.5346067620253,2019
+2004,59,"(55,60]",College,2341.042154398564,246.82057990958126,9.484793185625636,3528.5974140294247,2019
+2004,59,"(55,60]",College,2330.514614003591,246.82057990958126,9.442140581864516,3787.0418919674835,2019
+2004,59,"(55,60]",College,2128.920071813285,246.82057990958126,8.625375050140393,3623.4743192083392,2019
+2004,63,"(60,65]",HS,277.8013644524237,68.72259283756969,4.042358604091455,6264.841433014078,2019
+2004,63,"(60,65]",HS,294.29974865350096,42.749969722901334,6.884209522512092,5586.030189103604,2019
+2004,63,"(60,65]",HS,328.4592603231598,64.04429426412011,5.128626431085124,6280.050702323459,2019
+2004,63,"(60,65]",HS,328.663526032316,116.79614369577571,2.813992959291541,6168.013468620948,2019
+2004,63,"(60,65]",HS,266.1267935368043,71.62636436591771,3.7154865515334827,6039.432984341331,2019
+2004,38,"(35,40]",College,2290.132854578097,371.0374730666908,6.172241406372627,538.344399186677,2019
+2004,38,"(35,40]",College,2288.56157989228,371.0374730666908,6.168006592371684,546.1733248017433,2019
+2004,38,"(35,40]",College,2288.56157989228,371.0374730666908,6.168006592371684,535.0079719048601,2019
+2004,38,"(35,40]",College,2288.56157989228,371.0374730666908,6.168006592371684,546.4850325668089,2019
+2004,38,"(35,40]",College,2288.56157989228,371.0374730666908,6.168006592371684,555.0669145978651,2019
+2004,45,"(40,45]",College,3722.553996409336,809.8296151281686,4.596712600860098,222.10695069028898,2019
+2004,45,"(40,45]",College,3722.553996409336,811.4428215328064,4.5875740072202165,220.1389416420962,2019
+2004,45,"(40,45]",College,4745.453816876122,811.4428215328064,5.848167844916063,231.17884584075895,2019
+2004,45,"(40,45]",College,3721.202700179533,809.8296151281686,4.595043982913113,217.9000999363456,2019
+2004,45,"(40,45]",College,5529.504172351884,809.8296151281686,6.827984639061083,224.3188033544073,2019
+2004,24,"(20,25]",HS,0.8642010771992819,48.39619213913358,0.01785679903730445,7565.340538763417,2019
+2004,24,"(20,25]",HS,0.7070736086175943,48.39619213913358,0.014610108303249098,7510.552268768668,2019
+2004,24,"(20,25]",HS,0.8642010771992819,48.39619213913358,0.01785679903730445,7603.423806951811,2019
+2004,24,"(20,25]",HS,0.7070736086175943,48.39619213913358,0.014610108303249098,7474.922681209539,2019
+2004,24,"(20,25]",HS,0.7070736086175943,48.39619213913358,0.014610108303249098,7595.7001717770645,2019
+2004,51,"(50,55]",HS,549.6318850987433,211.33003900755,2.6008223330669384,7022.85339724395,2019
+2004,51,"(50,55]",HS,705.188078994614,211.33003900755,3.3369041254443736,7813.296229764375,2019
+2004,51,"(50,55]",HS,796.3220107719928,211.33003900755,3.768143963402871,6932.123138305377,2019
+2004,51,"(50,55]",HS,846.6028007181329,211.33003900755,4.006069391242042,6947.953723431699,2019
+2004,51,"(50,55]",HS,546.4893357271095,211.33003900755,2.58595199382699,7261.91946164465,2019
+2004,38,"(35,40]",HS,424.08703770197485,129.0565123710229,3.2860568592057757,6439.745669307137,2019
+2004,38,"(35,40]",HS,425.65831238779174,129.0565123710229,3.2982319494584833,7150.68154192158,2019
+2004,38,"(35,40]",HS,427.2295870736086,129.0565123710229,3.310407039711191,6353.154688591045,2019
+2004,38,"(35,40]",HS,422.515763016158,129.0565123710229,3.273881768953068,6344.411465002207,2019
+2004,38,"(35,40]",HS,427.2295870736086,129.0565123710229,3.310407039711191,6631.356621958092,2019
+2004,38,"(35,40]",College,194.8066355475763,129.0565123710229,1.5094676895306856,8189.004652997321,2019
+2004,38,"(35,40]",College,212.09065709156195,129.0565123710229,1.6433936823104691,7860.9937104032915,2019
+2004,38,"(35,40]",College,194.8066355475763,129.0565123710229,1.5094676895306856,8181.6000830320945,2019
+2004,38,"(35,40]",College,205.80555834829443,129.0565123710229,1.5946933212996388,8151.097103844349,2019
+2004,38,"(35,40]",College,211.93352962298025,129.0565123710229,1.6421761732851983,8068.581650170638,2019
+2004,44,"(40,45]",College,24978.55368043088,1451.8857641740076,17.204214199759324,335.59775648954763,2019
+2004,44,"(40,45]",College,24980.1249551167,1451.8857641740076,17.20529643000401,330.94122779386026,2019
+2004,44,"(40,45]",College,24980.1249551167,1451.8857641740076,17.20529643000401,339.8749107159677,2019
+2004,44,"(40,45]",College,24978.55368043088,1451.8857641740076,17.204214199759324,336.03331411666016,2019
+2004,44,"(40,45]",College,24981.696229802514,1451.8857641740076,17.206378660248696,346.6478307522565,2019
+2004,52,"(50,55]",HS,1858.110879712747,154.86781484522746,11.998044148616126,13246.48318220023,2019
+2004,52,"(50,55]",HS,1914.5667791741473,154.86781484522746,12.362586642599279,14100.846143816167,2019
+2004,52,"(50,55]",HS,1914.7553321364453,154.86781484522746,12.36380415162455,13227.753154647977,2019
+2004,52,"(50,55]",HS,1857.7651992818671,156.48102124986525,11.87214388328557,14141.46206116561,2019
+2004,52,"(50,55]",HS,1914.6453429084381,154.86781484522746,12.363093938026475,13782.702038243297,2019
+2004,54,"(50,55]",HS,109.2035906642729,103.24520989681828,1.0577109657039714,5177.068569027391,2019
+2004,54,"(50,55]",HS,117.05996409335727,103.24520989681828,1.1338052797833937,5015.527713090507,2019
+2004,54,"(50,55]",HS,118.63123877917415,103.24520989681828,1.1490241425992784,5204.038533704451,2019
+2004,54,"(50,55]",HS,117.05996409335727,103.24520989681828,1.1338052797833937,5235.314887663301,2019
+2004,54,"(50,55]",HS,117.05996409335727,103.24520989681828,1.1338052797833937,5116.210610124671,2019
+2004,21,"(20,25]",HS,6.47365170556553,16.132064046377863,0.40129097472924186,6220.808989944171,2019
+2004,21,"(20,25]",HS,6.47365170556553,16.132064046377863,0.40129097472924186,6220.797193017215,2019
+2004,21,"(20,25]",HS,6.489364452423699,16.132064046377863,0.4022649819494584,6218.781123721712,2019
+2004,21,"(20,25]",HS,6.47365170556553,16.132064046377863,0.40129097472924186,6159.668332243571,2019
+2004,21,"(20,25]",HS,6.489364452423699,16.132064046377863,0.4022649819494584,6223.201932533557,2019
+2004,49,"(45,50]",HS,734.5709156193897,133.89613158493626,5.48612500543691,6422.08854779106,2019
+2004,49,"(45,50]",HS,758.25002513465,140.3489572034874,5.402605336321009,7147.144717596073,2019
+2004,49,"(45,50]",HS,717.4440215439856,154.86781484522746,4.632621841155235,6340.855326954011,2019
+2004,49,"(45,50]",HS,731.161249551167,130.66971877566067,5.595491108436957,6355.954850079809,2019
+2004,49,"(45,50]",HS,728.1601149012567,146.80178282203855,4.960158527393184,6642.732912639893,2019
+2004,26,"(25,30]",HS,188.39583482944346,41.94336652058244,4.491671757845044,12024.119969124627,2019
+2004,26,"(25,30]",HS,205.20847396768403,41.94336652058244,4.892513190780339,11684.73249472213,2019
+2004,26,"(25,30]",HS,205.5227289048474,41.94336652058244,4.9000055540127745,12148.04131602773,2019
+2004,26,"(25,30]",HS,203.48007181328546,41.94336652058244,4.851305193001944,11844.642178260778,2019
+2004,26,"(25,30]",HS,209.2937881508079,41.94336652058244,4.989913912802,11748.724419338629,2019
+2004,44,"(40,45]",College,19.326678635547577,56.46222416232251,0.34229396596183603,3733.733281914649,2019
+2004,44,"(40,45]",College,19.326678635547577,56.46222416232251,0.34229396596183603,3782.6028913616137,2019
+2004,44,"(40,45]",College,19.326678635547577,56.46222416232251,0.34229396596183603,3718.0488492341174,2019
+2004,44,"(40,45]",College,17.7554039497307,56.46222416232251,0.31446518824136155,3732.0443747170343,2019
+2004,44,"(40,45]",College,19.326678635547577,56.46222416232251,0.34229396596183603,3742.834477929516,2019
+2004,37,"(35,40]",HS,12534.655253141831,135.50933798957405,92.50030617156608,251.6502699534225,2019
+2004,37,"(35,40]",HS,12342.174104129264,156.48102124986525,78.87329725706205,246.76756182562468,2019
+2004,37,"(35,40]",HS,12536.572208258529,153.2546084405897,81.80225270758123,262.04971713719823,2019
+2004,37,"(35,40]",HS,12407.476280071814,148.4149892266763,83.59988667399153,245.56364028934314,2019
+2004,37,"(35,40]",HS,12512.783109515261,122.60368675247175,102.05878339350181,253.58277795305315,2019
+2004,45,"(40,45]",HS,154.6134290843806,64.52825618551145,2.396057761732852,5294.209258957815,2019
+2004,45,"(40,45]",HS,154.6134290843806,64.52825618551145,2.396057761732852,5318.949694537073,2019
+2004,45,"(40,45]",HS,154.6134290843806,64.52825618551145,2.396057761732852,5321.437159712416,2019
+2004,45,"(40,45]",HS,154.6134290843806,64.52825618551145,2.396057761732852,5346.692074992045,2019
+2004,45,"(40,45]",HS,154.6134290843806,64.52825618551145,2.396057761732852,5301.368388251046,2019
+2004,59,"(55,60]",College,2923.8279353680427,198.4243877704477,14.735224677878545,2741.1632594503667,2019
+2004,59,"(55,60]",College,2925.5563375224415,198.4243877704477,14.74393531155528,2671.7499220373957,2019
+2004,59,"(55,60]",College,2927.1276122082586,198.4243877704477,14.75185406944322,2789.7777770919456,2019
+2004,59,"(55,60]",College,2923.985062836625,198.4243877704477,14.73601655366734,2713.2450834781575,2019
+2004,59,"(55,60]",College,2922.57091561939,198.4243877704477,14.728889671568195,2805.2528134460736,2019
+2004,49,"(45,50]",College,9046.14262118492,798.5371702957042,11.328392663093023,1653.0183629999433,2019
+2004,49,"(45,50]",College,13674.175080789946,688.8391347803347,19.851042704114846,1684.0191744470626,2019
+2004,49,"(45,50]",College,14656.85026929982,848.5465688394755,17.272888498442025,1667.272732738619,2019
+2004,49,"(45,50]",College,14116.960287253141,1726.130852962431,8.178383616181383,1595.9232279220537,2019
+2004,49,"(45,50]",College,11373.82894075404,1774.5270451015647,6.409498785690843,1596.2277060679467,2019
+2004,35,"(30,35]",HS,157.59885098743268,43.55657292522023,3.6182564513972455,6608.389466431321,2019
+2004,35,"(30,35]",HS,159.48438061041293,79.04711382725151,2.0175863847343996,6343.6901348563715,2019
+2004,35,"(30,35]",HS,156.65608617594256,53.23581135304694,2.942682419866536,6602.414102606887,2019
+2004,35,"(30,35]",HS,158.38448833034113,45.16977932985802,3.5064259927797834,6577.798709784353,2019
+2004,35,"(30,35]",HS,158.07023339317774,77.43390742261373,2.0413567990373047,6511.210122039986,2019
+2004,25,"(20,25]",College,-69.43462836624775,27.424508878842364,-2.5318458271395197,6498.794030283212,2019
+2004,25,"(20,25]",College,-66.08781328545781,27.424508878842364,-2.409808451900616,6454.687147447281,2019
+2004,25,"(20,25]",College,-72.43576301615799,29.03771528348015,-2.4945407139991977,6493.116913900003,2019
+2004,25,"(20,25]",College,-72.42005026929984,29.03771528348015,-2.4939995988768557,6535.439867341234,2019
+2004,25,"(20,25]",College,-67.67480071813286,25.81130247420457,-2.6219056859205785,6465.972165707575,2019
+2004,82,"(80,85]",College,10820.425996409336,1951.979749611721,5.5433085299997025,244.61102367287322,2019
+2004,82,"(80,85]",College,36848.59116696589,2048.7721338899883,17.98569521589585,216.51629027378266,2019
+2004,82,"(80,85]",College,40665.217378815076,2161.6965822146335,18.811713777681984,223.9023246307118,2019
+2004,82,"(80,85]",College,83657.02118491921,2161.6965822146335,38.69970553370332,233.99581520855227,2019
+2004,82,"(80,85]",College,63408.00430879713,2161.6965822146335,29.332518185247046,228.74515023926355,2019
+2004,48,"(45,50]",HS,128.3731418312388,119.37727394319619,1.0753566201580642,3872.258444959925,2019
+2004,48,"(45,50]",HS,128.3731418312388,119.37727394319619,1.0753566201580642,3777.4154343466143,2019
+2004,48,"(45,50]",HS,128.3731418312388,119.37727394319619,1.0753566201580642,3893.3214189152486,2019
+2004,48,"(45,50]",HS,128.3731418312388,119.37727394319619,1.0753566201580642,3925.6576018212036,2019
+2004,48,"(45,50]",HS,128.3731418312388,119.37727394319619,1.0753566201580642,3841.7018985032164,2019
+2004,58,"(55,60]",College,1090.1346642728904,241.98096069566793,4.505043128760529,5578.061594810424,2019
+2004,58,"(55,60]",College,1091.7216517055656,241.98096069566793,4.511601444043321,6169.593778988842,2019
+2004,58,"(55,60]",College,1088.5791023339318,241.98096069566793,4.4986146811070995,5504.852138415017,2019
+2004,58,"(55,60]",College,1091.7059389587073,241.98096069566793,4.511536510228639,5487.314190888405,2019
+2004,58,"(55,60]",College,1090.3075044883303,241.98096069566793,4.505757400722021,5768.094207454372,2019
+2004,78,"(75,80]",College,11130.909874326751,372.65067947132854,29.86955475330927,233.7339976471247,2019
+2004,78,"(75,80]",College,11140.337522441652,372.65067947132854,29.894853642146067,231.20426836373204,2019
+2004,78,"(75,80]",College,11127.767324955117,372.65067947132854,29.861121790363672,243.10414687521916,2019
+2004,78,"(75,80]",College,11156.05026929982,372.65067947132854,29.937018456874053,226.46543620012932,2019
+2004,78,"(75,80]",College,11137.194973070018,372.65067947132854,29.886420679200466,229.68966707660843,2019
+2004,37,"(35,40]",HS,6.442226211849192,56.46222416232251,0.11409798865394535,4217.081369773132,2019
+2004,37,"(35,40]",HS,8.170628366247756,56.46222416232251,0.14470964414646728,4272.277363698331,2019
+2004,37,"(35,40]",HS,6.5993536804308794,56.46222416232251,0.11688086642599278,4199.366518749114,2019
+2004,37,"(35,40]",HS,6.442226211849192,56.46222416232251,0.11409798865394535,4215.173826159118,2019
+2004,37,"(35,40]",HS,6.5993536804308794,56.46222416232251,0.11688086642599278,4227.360755379718,2019
+2004,76,"(75,80]",College,14061.337163375225,1553.517767666188,9.051288280081424,312.9438578319533,2019
+2004,76,"(75,80]",College,14113.18922800718,1727.7440593670685,8.168564754421626,308.0067787422426,2019
+2004,76,"(75,80]",College,14012.784775583483,974.3766684012228,14.381281110287613,326.17343126559774,2019
+2004,76,"(75,80]",College,14020.641149012568,729.1692948962793,19.228238554678764,302.5728960262254,2019
+2004,76,"(75,80]",College,14129.059102333931,1826.149650049974,7.737076258754192,307.546686552354,2019
+2004,32,"(30,35]",HS,24.511885098743267,90.33955865971603,0.2713305827746261,7645.129810367538,2019
+2004,32,"(30,35]",HS,25.926032315978457,90.33955865971603,0.286984270242393,7448.738614809228,2019
+2004,32,"(30,35]",HS,24.346901256732497,90.33955865971603,0.26950431923671997,7675.29013902647,2019
+2004,32,"(30,35]",HS,24.511885098743267,90.33955865971603,0.2713305827746261,7641.7045672439535,2019
+2004,32,"(30,35]",HS,24.519741472172353,90.33955865971603,0.27141754770500254,7620.2220833023575,2019
+2004,36,"(35,40]",College,-7.275001795332137,33.87733449739351,-0.2147454014096613,5253.273429977062,2019
+2004,36,"(35,40]",College,-7.2907145421903055,33.87733449739351,-0.21520921437166923,5230.776941051359,2019
+2004,36,"(35,40]",College,-7.2907145421903055,33.87733449739351,-0.21520921437166923,5213.89674675949,2019
+2004,36,"(35,40]",College,-7.275001795332137,33.87733449739351,-0.2147454014096613,5230.724613176188,2019
+2004,36,"(35,40]",College,-7.133587073608617,33.87733449739351,-0.21057108475159014,5202.531618024437,2019
+2004,25,"(20,25]",HS,96.55482944344705,116.1508611339206,0.8312881066987566,4679.929974938191,2019
+2004,25,"(20,25]",HS,88.54132854578097,116.1508611339206,0.7622959286000802,4648.880624343239,2019
+2004,25,"(20,25]",HS,96.71195691202873,116.1508611339206,0.8326408945046129,4683.63100503922,2019
+2004,25,"(20,25]",HS,94.11935368043089,116.1508611339206,0.8103198957079825,4680.767641563225,2019
+2004,25,"(20,25]",HS,91.05536804308798,116.1508611339206,0.7839405334937827,4674.351324834317,2019
+2004,59,"(55,60]",HS,32.83964093357271,40.33016011594465,0.8142700361010831,6189.607847679783,2019
+2004,59,"(55,60]",HS,32.83964093357271,40.33016011594465,0.8142700361010831,5387.004859837609,2019
+2004,59,"(55,60]",HS,32.83964093357271,40.33016011594465,0.8142700361010831,6182.690180904303,2019
+2004,59,"(55,60]",HS,32.83964093357271,40.33016011594465,0.8142700361010831,6055.325811624827,2019
+2004,59,"(55,60]",HS,32.83964093357271,40.33016011594465,0.8142700361010831,5871.9423052135635,2019
+2004,44,"(40,45]",HS,29.147145421903055,98.40559068290497,0.2961939989347221,6468.983974111941,2019
+2004,44,"(40,45]",HS,29.147145421903055,98.40559068290497,0.2961939989347221,6103.390275334547,2019
+2004,44,"(40,45]",HS,29.147145421903055,98.40559068290497,0.2961939989347221,6441.749382965048,2019
+2004,44,"(40,45]",HS,29.147145421903055,100.01879708754274,0.2914166763712589,6414.301445384364,2019
+2004,44,"(40,45]",HS,30.71842010771993,98.40559068290497,0.3121613304136828,6296.939885720598,2019
+2004,48,"(45,50]",College,-117.56277199281867,53.23581135304694,-2.2083400065638332,3652.3308751983177,2019
+2004,48,"(45,50]",College,-125.60769838420109,56.46222416232251,-2.2246324909747295,3575.185336843407,2019
+2004,48,"(45,50]",College,-133.22838061041293,51.62260494840914,-2.5808147563176904,3683.7737868288423,2019
+2004,48,"(45,50]",College,-119.43258886894075,48.39619213913358,-2.4678096269554755,3681.134702808796,2019
+2004,48,"(45,50]",College,-117.98701615798923,48.39619213913358,-2.4379400722021662,3636.4621088066206,2019
+2004,64,"(60,65]",College,5314.192402154398,322.6412809275572,16.47090039711191,1403.5307369978896,2019
+2004,64,"(60,65]",College,5204.203174147217,322.6412809275572,16.129997870036103,1392.5353016538722,2019
+2004,64,"(60,65]",College,8739.571217235189,322.6412809275572,27.087579097472926,1589.377415530351,2019
+2004,64,"(60,65]",College,8477.16834470377,322.6412809275572,26.27428306859206,1330.6171102588014,2019
+2004,64,"(60,65]",College,7284.7279856373425,322.6412809275572,22.578412671480145,1418.241580299015,2019
+2004,69,"(65,70]",NoHS,265.262592459605,29.03771528348015,9.135105495387084,7772.91853946426,2019
+2004,69,"(65,70]",NoHS,265.02690125673246,29.03771528348015,9.126988768551945,7874.517553603512,2019
+2004,69,"(65,70]",NoHS,230.3331561938959,29.03771528348015,7.932206578419575,7778.030682142882,2019
+2004,69,"(65,70]",NoHS,252.7081077199282,29.03771528348015,8.70275451263538,7822.313909972758,2019
+2004,69,"(65,70]",NoHS,261.7586499102334,29.03771528348015,9.014436823104692,7787.776248875181,2019
+2004,43,"(40,45]",College,1953.8800718132854,645.2825618551144,3.0279449458483754,538.344399186677,2019
+2004,43,"(40,45]",College,2715.445486535009,645.2825618551144,4.208149494584838,546.1733248017433,2019
+2004,43,"(40,45]",College,3071.0563734290845,645.2825618551144,4.759242779783394,1018.9049668241305,2019
+2004,43,"(40,45]",College,1943.038276481149,645.2825618551144,3.011143321299639,546.4850325668089,2019
+2004,43,"(40,45]",College,1924.2458312387794,645.2825618551144,2.982020505415163,555.0669145978651,2019
+2004,36,"(35,40]",HS,-3.455233034111311,67.75466899478702,-0.050996235172769466,4092.2179501091878,2019
+2004,36,"(35,40]",HS,-3.298105565529623,67.75466899478702,-0.04867717036272993,4067.3128517499476,2019
+2004,36,"(35,40]",HS,-3.298105565529623,67.75466899478702,-0.04867717036272993,4090.0149657010725,2019
+2004,36,"(35,40]",HS,-3.1409780969479355,67.75466899478702,-0.04635810555269038,4092.4085190198302,2019
+2004,36,"(35,40]",HS,-3.298105565529623,67.75466899478702,-0.04867717036272993,4094.8027603124806,2019
+2004,89,"(85,90]",HS,1695.4053859964092,62.91504978087366,26.947533092659445,9095.10742053207,2019
+2004,89,"(85,90]",HS,1663.9798922800717,43.55657292522023,38.20272763738467,10112.04743975363,2019
+2004,89,"(85,90]",HS,1656.1235188509875,58.0754305669603,28.51676694745287,8998.193543276757,2019
+2004,89,"(85,90]",HS,1662.408617594255,48.39619213913358,34.349987966305655,8970.250957782797,2019
+2004,89,"(85,90]",HS,1653.295224416517,43.55657292522023,37.957422115256044,9407.166388841797,2019
+2004,30,"(25,30]",HS,2.0740825852782763,35.4905409020313,0.05844043321299638,5036.119422897171,2019
+2004,30,"(25,30]",HS,0.34568043087971273,43.55657292522023,0.007936355127690866,5110.5766811681915,2019
+2004,30,"(25,30]",HS,1.445572710951526,22.58488966492901,0.06400618875709127,5056.863648419669,2019
+2004,30,"(25,30]",HS,0.26711669658886894,32.264128092755726,0.008279061371841154,5063.495517684403,2019
+2004,30,"(25,30]",HS,0.18855296229802515,35.4905409020313,0.005312766655726944,5088.036620134441,2019
+2004,83,"(80,85]",NoHS,13.905780969479354,29.03771528348015,0.47888688327316487,11184.97548451249,2019
+2004,83,"(80,85]",NoHS,14.062908438061042,29.03771528348015,0.4842980344965905,11176.986827977264,2019
+2004,83,"(80,85]",NoHS,14.062908438061042,29.03771528348015,0.4842980344965905,11137.052195775492,2019
+2004,83,"(80,85]",NoHS,13.905780969479354,29.03771528348015,0.47888688327316487,11201.955159188312,2019
+2004,83,"(80,85]",NoHS,13.905780969479354,29.03771528348015,0.47888688327316487,11188.54138017428,2019
+2004,28,"(25,30]",College,101.93644524236984,64.52825618551145,1.5797179602888085,11767.617286824956,2019
+2004,28,"(25,30]",College,100.36517055655295,64.52825618551145,1.5553677797833931,11657.250373745426,2019
+2004,28,"(25,30]",College,100.36517055655295,64.52825618551145,1.5553677797833931,11838.896179753046,2019
+2004,28,"(25,30]",College,98.7938958707361,64.52825618551145,1.5310175992779782,11787.030934885552,2019
+2004,28,"(25,30]",College,101.93644524236984,64.52825618551145,1.5797179602888085,11709.596471305198,2019
+2004,26,"(25,30]",HS,88.76130700179533,14.680178282203853,6.046337128575396,5427.3759718979,2019
+2004,26,"(25,30]",HS,74.00703770197487,14.680178282203853,5.041290117824414,5344.437264064711,2019
+2004,26,"(25,30]",HS,48.15956912028726,14.518857641740075,3.317035699959888,5415.39878503069,2019
+2004,26,"(25,30]",HS,55.18316696588869,14.518857641740075,3.8007926193341355,5489.123884463055,2019
+2004,26,"(25,30]",HS,98.91174147217235,14.680178282203853,6.737775221168723,5406.475944417925,2019
+2004,58,"(55,60]",College,4671.399640933572,243.5941671003057,19.176976594066033,307.2549821473893,2019
+2004,58,"(55,60]",College,4672.970915619389,330.70731295074614,14.13023157523994,300.7539315690902,2019
+2004,58,"(55,60]",College,4672.970915619389,388.7827435177064,12.019491588897045,318.80985280446123,2019
+2004,58,"(55,60]",College,4671.399640933572,304.8960104765416,15.321288178327885,303.9371193664785,2019
+2004,58,"(55,60]",College,4674.542190305207,396.8487755408954,11.779152358310588,310.5716416555325,2019
+2004,52,"(50,55]",HS,16.027001795332136,129.0565123710229,0.1241859205776173,7207.898028511411,2019
+2004,52,"(50,55]",HS,16.027001795332136,129.0565123710229,0.1241859205776173,6697.663481163804,2019
+2004,52,"(50,55]",HS,16.184129263913825,129.0565123710229,0.12540342960288808,7243.243422508183,2019
+2004,52,"(50,55]",HS,16.341256732495513,129.0565123710229,0.12662093862815885,7202.998028856331,2019
+2004,52,"(50,55]",HS,16.341256732495513,129.0565123710229,0.12662093862815885,6981.308452639758,2019
+2004,41,"(40,45]",NoHS,50.28078994614004,88.72635225507824,0.5666951099442075,5485.614206035528,2019
+2004,41,"(40,45]",NoHS,48.86664272890484,88.72635225507824,0.5507568099770265,5451.979254774038,2019
+2004,41,"(40,45]",NoHS,50.28078994614004,88.72635225507824,0.5666951099442075,5481.754182008026,2019
+2004,41,"(40,45]",NoHS,50.28078994614004,88.72635225507824,0.5666951099442075,5472.273514332564,2019
+2004,41,"(40,45]",NoHS,48.709515260323165,88.72635225507824,0.5489858877584509,5488.004021192081,2019
+2004,48,"(45,50]",HS,12.30308078994614,22.58488966492901,0.5447483238782878,7950.639937116689,2019
+2004,48,"(45,50]",HS,12.460208258527828,24.19809606956679,0.5149251504211794,7922.322051148318,2019
+2004,48,"(45,50]",HS,12.44449551166966,22.58488966492901,0.5510097988653945,7979.149164858228,2019
+2004,48,"(45,50]",HS,12.44449551166966,24.19809606956679,0.5142758122743682,8039.958165364917,2019
+2004,48,"(45,50]",HS,12.287368043087973,22.58488966492901,0.5440526044352759,7997.585300654187,2019
+2004,43,"(40,45]",College,2584.6682944344707,322.6412809275572,8.010965884476535,1133.8647150747772,2019
+2004,43,"(40,45]",College,2583.0970197486536,322.6412809275572,8.006095848375452,1129.9786051405956,2019
+2004,43,"(40,45]",College,2584.6682944344707,322.6412809275572,8.010965884476535,1151.5065728130835,2019
+2004,43,"(40,45]",College,2583.0970197486536,322.6412809275572,8.006095848375452,1106.696588214917,2019
+2004,43,"(40,45]",College,2583.0970197486536,322.6412809275572,8.006095848375452,1152.9446910995498,2019
+2004,48,"(45,50]",College,41307.397342908436,2258.4889664929005,18.289838009283134,18.066308243526656,2019
+2004,48,"(45,50]",College,41306.76883303411,2258.4889664929005,18.28955972150593,18.63705803531676,2019
+2004,48,"(45,50]",College,41307.24021543986,2258.4889664929005,18.289768437338836,18.977774896945714,2019
+2004,48,"(45,50]",College,41305.511813285455,2258.4889664929005,18.28900314595152,17.44483212710631,2019
+2004,48,"(45,50]",College,41307.55447037702,2258.4889664929005,18.289907581227435,18.60978708433786,2019
+2004,47,"(45,50]",College,3723.9210053859965,572.688273646414,6.502527075812275,2012.623303238918,2019
+2004,47,"(45,50]",College,3723.9210053859965,572.688273646414,6.502527075812275,1959.6022200733448,2019
+2004,47,"(45,50]",College,3723.9210053859965,572.688273646414,6.502527075812275,2059.189363556804,2019
+2004,47,"(45,50]",College,3723.9210053859965,572.688273646414,6.502527075812275,1956.3984902766326,2019
+2004,47,"(45,50]",College,3725.492280071813,572.688273646414,6.505270758122744,1994.2114487899507,2019
+2004,58,"(55,60]",College,1765.012854578097,322.6412809275572,5.47051155234657,9581.41766661507,2019
+2004,58,"(55,60]",College,1766.5841292639138,322.6412809275572,5.475381588447654,9938.541346995069,2019
+2004,58,"(55,60]",College,1766.5841292639138,322.6412809275572,5.475381588447654,9444.832936551691,2019
+2004,58,"(55,60]",College,1751.8141472172354,322.6412809275572,5.4296032490974735,9679.408712056555,2019
+2004,58,"(55,60]",College,1754.4853141831238,322.6412809275572,5.437882310469314,9735.747014037643,2019
+2004,62,"(60,65]",HS,293.0427289048474,256.49981833740793,1.142467588493064,5987.01549620562,2019
+2004,62,"(60,65]",HS,293.0427289048474,172.6130852962431,1.6976854819663285,5338.307387669289,2019
+2004,62,"(60,65]",HS,293.0427289048474,120.99048034783397,2.4220312876052947,6001.550282443211,2019
+2004,62,"(60,65]",HS,293.0427289048474,266.1790567652347,1.1009233125478615,5894.481546306621,2019
+2004,62,"(60,65]",HS,293.0427289048474,266.1790567652347,1.1009233125478615,5771.603200522005,2019
+2004,22,"(20,25]",HS,100.40445242369839,50.00939854377137,2.0077116571561664,6376.618739541902,2019
+2004,22,"(20,25]",HS,84.53457809694794,45.16977932985802,1.871485301701908,6342.217084679012,2019
+2004,22,"(20,25]",HS,45.25271095152603,53.23581135304694,0.8500426649163112,6365.159524371182,2019
+2004,22,"(20,25]",HS,61.12258527827648,54.84901775768473,1.1143788490125293,6288.658175863887,2019
+2004,22,"(20,25]",HS,76.99245960502694,66.14146259014923,1.1640574095271639,6337.607588633193,2019
+2004,63,"(60,65]",NoHS,637.1518850987433,61.30184337623587,10.393682310469314,5844.019240413657,2019
+2004,63,"(60,65]",NoHS,637.1518850987433,61.30184337623587,10.393682310469314,6464.402364787877,2019
+2004,63,"(60,65]",NoHS,638.7231597845602,61.30184337623587,10.419314079422383,5764.18681076596,2019
+2004,63,"(60,65]",NoHS,638.7231597845602,61.30184337623587,10.419314079422383,5746.4691614658495,2019
+2004,63,"(60,65]",NoHS,638.7231597845602,61.30184337623587,10.419314079422383,6042.165049882661,2019
+2004,40,"(35,40]",HS,12.57019748653501,64.52825618551145,0.19480144404332128,4765.472047626467,2019
+2004,40,"(35,40]",HS,12.727324955116698,64.52825618551145,0.1972364620938628,4736.469547876624,2019
+2004,40,"(35,40]",HS,12.727324955116698,64.52825618551145,0.1972364620938628,4762.906626931327,2019
+2004,40,"(35,40]",HS,12.413070017953322,64.52825618551145,0.19236642599277975,4765.6939690460695,2019
+2004,40,"(35,40]",HS,12.727324955116698,64.52825618551145,0.1972364620938628,4768.482112320573,2019
+2004,63,"(60,65]",College,35635.315705565525,1014.7068285171675,35.118829108148276,335.59775648954763,2019
+2004,63,"(60,65]",College,36089.9797486535,1000.1879708754274,36.0831971584954,330.94122779386026,2019
+2004,63,"(60,65]",College,35685.53364452424,1005.0275900893408,35.507018908159544,339.8749107159677,2019
+2004,63,"(60,65]",College,35798.194039497306,1016.3200349218051,35.22334777376655,336.03331411666016,2019
+2004,63,"(60,65]",College,37003.36172351885,1017.9332413264431,36.351462179681555,346.6478307522565,2019
+2004,83,"(80,85]",College,3333.6163734290844,559.7826224093118,5.955198035768162,2741.1632594503667,2019
+2004,83,"(80,85]",College,3333.9306283662477,559.7826224093118,5.955759423214973,2671.7499220373957,2019
+2004,83,"(80,85]",College,3333.6163734290844,559.7826224093118,5.955198035768162,2789.7777770919456,2019
+2004,83,"(80,85]",College,3333.773500897666,559.7826224093118,5.955478729491568,2713.2450834781575,2019
+2004,83,"(80,85]",College,3333.6163734290844,559.7826224093118,5.955198035768162,2805.2528134460736,2019
+2004,48,"(45,50]",College,15533.621543985637,2419.8096069566795,6.419356919374247,233.7339976471247,2019
+2004,48,"(45,50]",College,16754.50197486535,2419.8096069566795,6.923892659446449,231.20426836373204,2019
+2004,48,"(45,50]",College,19460.236983842013,2419.8096069566795,8.042052948255114,243.10414687521916,2019
+2004,48,"(45,50]",College,17076.61328545781,2419.8096069566795,7.057006979542718,226.46543620012932,2019
+2004,48,"(45,50]",College,20360.57737881508,2419.8096069566795,8.414123706377856,229.68966707660843,2019
+2004,59,"(55,60]",HS,366.8926391382406,29.03771528348015,12.635038106698758,564.6576041482207,2019
+2004,59,"(55,60]",HS,370.03518850987433,30.650921688117936,12.072563176895306,557.218000029867,2019
+2004,59,"(55,60]",HS,368.46391382405744,29.03771528348015,12.689149618933012,568.5293038108367,2019
+2004,59,"(55,60]",HS,371.60646319569116,29.03771528348015,12.797372643401523,525.6327456839268,2019
+2004,59,"(55,60]",HS,368.46391382405744,29.03771528348015,12.689149618933012,566.4799876968088,2019
+2004,84,"(80,85]",College,2977.8797845601434,442.0185548707534,6.737001765527418,936.5702362311022,2019
+2004,84,"(80,85]",College,2979.4510592459606,433.9525228475645,6.86584569135587,963.8476752386316,2019
+2004,84,"(80,85]",College,2979.4510592459606,442.0185548707534,6.740556536404121,917.8708172822028,2019
+2004,84,"(80,85]",College,3001.4489048473965,440.4053484661156,6.815196307903889,957.4837344235472,2019
+2004,84,"(80,85]",College,2965.309587073609,412.9808395872731,7.180259476534299,952.4323537473094,2019
+2004,58,"(55,60]",HS,3623.830807899462,322.6412809275572,11.2317642599278,950.1617103003521,2019
+2004,58,"(55,60]",HS,3623.830807899462,322.6412809275572,11.2317642599278,954.2652590928553,2019
+2004,58,"(55,60]",HS,3623.830807899462,322.6412809275572,11.2317642599278,971.8188949464256,2019
+2004,58,"(55,60]",HS,3623.67368043088,322.6412809275572,11.231277256317691,910.8751677230182,2019
+2004,58,"(55,60]",HS,3623.67368043088,322.6412809275572,11.231277256317691,930.2636395296498,2019
+2004,43,"(40,45]",NoHS,255.48926391382406,109.69803551536945,2.329023147165003,6654.242788731348,2019
+2004,43,"(40,45]",NoHS,255.48926391382406,109.69803551536945,2.329023147165003,6279.80620126987,2019
+2004,43,"(40,45]",NoHS,253.91798922800717,109.69803551536945,2.3146995115735822,6629.7036003611065,2019
+2004,43,"(40,45]",NoHS,255.48926391382406,109.69803551536945,2.329023147165003,6605.428529186048,2019
+2004,43,"(40,45]",NoHS,255.48926391382406,109.69803551536945,2.329023147165003,6479.003984348381,2019
+2004,52,"(50,55]",College,1339.3545421903052,266.1790567652347,5.0317803303796085,6734.146693253795,2019
+2004,52,"(50,55]",College,1340.925816876122,266.1790567652347,5.037683404441528,7495.675576238124,2019
+2004,52,"(50,55]",College,1340.925816876122,266.1790567652347,5.037683404441528,6644.706470933228,2019
+2004,52,"(50,55]",College,1303.215224416517,266.1790567652347,4.896009626955475,6661.348417452366,2019
+2004,52,"(50,55]",College,1340.925816876122,266.1790567652347,5.037683404441528,6964.829224332297,2019
+2004,43,"(40,45]",College,373.3348653500898,156.48102124986525,2.385815623953255,9527.621141191357,2019
+2004,43,"(40,45]",College,371.7635906642729,187.13194293798318,1.9866388646831818,10442.851053073717,2019
+2004,43,"(40,45]",College,373.49199281867146,225.84889664929003,1.6537251160391957,9406.18789852356,2019
+2004,43,"(40,45]",College,373.49199281867146,150.02819563131413,2.4894786693063153,9428.685184767575,2019
+2004,43,"(40,45]",College,375.06326750448835,95.17917787362938,3.9406020926390504,9855.541043307177,2019
+2004,65,"(60,65]",College,12040.677917414721,846.9333624348377,14.21679491146639,1539.5423379369454,2019
+2004,65,"(60,65]",College,12040.677917414721,851.772981648751,14.136017667651242,1540.7789587467182,2019
+2004,65,"(60,65]",College,12040.677917414721,848.5465688394755,14.18976678425828,1558.2348239852422,2019
+2004,65,"(60,65]",College,12040.677917414721,846.9333624348377,14.21679491146639,1490.6764276845856,2019
+2004,65,"(60,65]",College,12040.677917414721,848.5465688394755,14.18976678425828,1491.281296918461,2019
+2004,68,"(65,70]",College,45092.12667863555,553.3297967907606,81.49231604761555,15.051702586824717,2019
+2004,68,"(65,70]",College,49623.054362657094,453.3109997032178,109.46801289874998,15.52721512661518,2019
+2004,68,"(65,70]",College,46445.93694793536,637.2165298319255,72.8887823424576,15.811078813563672,2019
+2004,68,"(65,70]",College,45518.57062836625,453.3109997032178,100.41355859038762,14.533928089507274,2019
+2004,68,"(65,70]",College,48361.635044883304,632.3769106180121,76.47596588816033,15.504494699294824,2019
+2004,43,"(40,45]",HS,37.23921005385996,32.264128092755726,1.1541985559566785,7147.455061518136,2019
+2004,43,"(40,45]",HS,37.23921005385996,32.264128092755726,1.1541985559566785,6743.517666829453,2019
+2004,43,"(40,45]",HS,37.23921005385996,32.264128092755726,1.1541985559566785,7117.364089408722,2019
+2004,43,"(40,45]",HS,37.23921005385996,32.264128092755726,1.1541985559566785,7087.037394958036,2019
+2004,43,"(40,45]",HS,37.23921005385996,32.264128092755726,1.1541985559566785,6957.3668814734865,2019
+2004,64,"(60,65]",College,2650.91323518851,120.99048034783397,21.91009761732852,3239.1378367007123,2019
+2004,64,"(60,65]",College,2583.9612208258527,120.99048034783397,21.356731648616122,3371.952273968485,2019
+2004,64,"(60,65]",College,2448.6744703770196,120.99048034783397,20.23857135980746,3205.00844990275,2019
+2004,64,"(60,65]",College,2531.5277845601436,120.99048034783397,20.923363369434416,3438.994460014356,2019
+2004,64,"(60,65]",College,2670.852710951526,120.99048034783397,22.07489963898917,3289.2943806445596,2019
+2004,58,"(55,60]",HS,972.7761579892281,282.31112081161257,3.4457592573491493,6426.323148594262,2019
+2004,58,"(55,60]",HS,1195.8971633752244,282.31112081161257,4.236096544610624,7105.125977621424,2019
+2004,58,"(55,60]",HS,1011.9008976660682,282.31112081161257,3.584346570397112,6340.863562474892,2019
+2004,58,"(55,60]",HS,1259.2195332136446,282.31112081161257,4.460396493037648,6319.980540888957,2019
+2004,58,"(55,60]",HS,1291.7449192100537,282.31112081161257,4.575607632800412,6642.834516950225,2019
+2004,33,"(30,35]",HS,-0.9113393177737882,62.91504978087366,-0.014485235582708507,7007.997980983006,2019
+2004,33,"(30,35]",HS,-0.9113393177737882,62.91504978087366,-0.014485235582708507,6900.5888868977,2019
+2004,33,"(30,35]",HS,-1.241307001795332,62.91504978087366,-0.01972988984541331,6991.375977826511,2019
+2004,33,"(30,35]",HS,-0.9113393177737882,62.91504978087366,-0.014485235582708507,7070.1626331791795,2019
+2004,33,"(30,35]",HS,-1.0684667863554758,62.91504978087366,-0.016982689993520317,6979.643872147362,2019
+2004,34,"(30,35]",College,167.3407540394973,75.82070101797595,2.2070589138950765,10028.085587335972,2019
+2004,34,"(30,35]",College,295.6196193895871,182.29232372406983,1.6216789239960387,9667.0254560216,2019
+2004,34,"(30,35]",College,256.1177737881508,75.82070101797595,3.377939933942699,9962.755583766899,2019
+2004,34,"(30,35]",College,233.17716337522444,125.83009956174732,1.8531111728223644,10066.597076307171,2019
+2004,34,"(30,35]",College,150.8423698384201,75.82070101797595,1.989461556187111,9866.19795731816,2019
+2004,40,"(35,40]",College,424.55842010771994,254.8866119327702,1.6656756386235891,6433.980379639689,2019
+2004,40,"(35,40]",College,429.27224416517055,256.49981833740793,1.6735771859319304,7143.564568237633,2019
+2004,40,"(35,40]",College,427.7009694793537,256.49981833740793,1.6674513543582414,6350.916293153259,2019
+2004,40,"(35,40]",College,426.1296947935368,256.49981833740793,1.661325522784552,6341.462614814919,2019
+2004,40,"(35,40]",College,429.27224416517055,256.49981833740793,1.6735771859319304,6626.4586542380075,2019
+2004,67,"(65,70]",NoHS,162.78405745062838,87.11314585044046,1.8686508891563043,7267.46357860834,2019
+2004,67,"(65,70]",NoHS,164.35533213644524,87.11314585044046,1.886688059901056,6704.607835416869,2019
+2004,67,"(65,70]",NoHS,162.78405745062838,87.11314585044046,1.8686508891563043,7380.558360642966,2019
+2004,67,"(65,70]",NoHS,162.78405745062838,87.11314585044046,1.8686508891563043,7312.4725259968745,2019
+2004,67,"(65,70]",NoHS,164.35533213644524,87.11314585044046,1.886688059901056,7215.886923768431,2019
+2004,61,"(60,65]",HS,-3.2996768402154397,56.46222416232251,-0.05844043321299639,7166.510310482733,2019
+2004,61,"(60,65]",HS,-3.1425493716337525,56.46222416232251,-0.055657555440948955,6278.593247613075,2019
+2004,61,"(60,65]",HS,-4.556696588868941,56.46222416232251,-0.08070345538937598,7109.50190790746,2019
+2004,61,"(60,65]",HS,-4.556696588868941,56.46222416232251,-0.08070345538937598,7035.310675963097,2019
+2004,61,"(60,65]",HS,-4.3995691202872536,56.46222416232251,-0.07792057761732854,6787.5757384714,2019
+2004,50,"(45,50]",College,725.3003949730701,182.29232372406983,3.9787763969202263,6836.2348010871265,2019
+2004,50,"(45,50]",College,560.4736804308798,200.03759417508547,2.8018417375101903,7189.832267758409,2019
+2004,50,"(45,50]",College,589.3851346499102,200.03759417508547,2.946371841155235,7976.738919035811,2019
+2004,50,"(45,50]",College,1000.0063482944345,200.03759417508547,4.999092057761733,6821.973663110397,2019
+2004,50,"(45,50]",College,864.9867145421904,170.99987889160533,5.05840542197398,7104.626990140369,2019
+2004,47,"(45,50]",College,114.70305206463196,132.28292518029846,0.867103988729418,6956.519213262484,2019
+2004,47,"(45,50]",College,116.27432675044884,120.99048034783397,0.961020457280385,6576.850088246925,2019
+2004,47,"(45,50]",College,114.70305206463196,122.60368675247175,0.9355595667870036,7013.839375891073,2019
+2004,47,"(45,50]",College,114.70305206463196,125.83009956174732,0.9115708599463113,6978.600047797445,2019
+2004,47,"(45,50]",College,116.27432675044884,120.99048034783397,0.961020457280385,6820.132152284721,2019
+2004,55,"(50,55]",College,31838.738958707363,2355.281350771168,13.518019385787053,18.875803891614044,2019
+2004,55,"(50,55]",College,33085.23116696589,2355.281350771168,14.04725221304584,19.12902112287269,2019
+2004,55,"(50,55]",College,32136.1812567325,2355.281350771168,13.644306760298699,19.897276336486822,2019
+2004,55,"(50,55]",College,31551.352818671454,2355.281350771168,13.396001631966765,18.279329651680335,2019
+2004,55,"(50,55]",College,43267.53108797128,2355.281350771168,18.37042995895356,19.504203208628326,2019
+2004,40,"(35,40]",HS,680.047684021544,38.716953711306864,17.564596871239473,3746.0875701757222,2019
+2004,40,"(35,40]",HS,731.4755044883303,37.10374730666908,19.71432961858421,4153.847278865147,2019
+2004,40,"(35,40]",HS,778.5666068222622,38.716953711306864,20.109190734055357,3707.1109956240557,2019
+2004,40,"(35,40]",HS,678.2250053859964,38.716953711306864,17.51751985559567,3699.416147578898,2019
+2004,40,"(35,40]",HS,739.3790161579893,37.10374730666908,19.927340762831584,3854.863913693304,2019
+2004,43,"(40,45]",HS,9.427648114901256,40.33016011594465,0.23376173285198557,5635.0304749880725,2019
+2004,43,"(40,45]",HS,9.741903052064632,56.46222416232251,0.17253842186694174,5610.642201613301,2019
+2004,43,"(40,45]",HS,7.856373429084381,59.68863697159809,0.13162259732656845,5591.8671325922205,2019
+2004,43,"(40,45]",HS,9.584775583482944,48.39619213913358,0.19804813477737665,5596.9371460814555,2019
+2004,43,"(40,45]",HS,9.427648114901256,46.782985734495796,0.20151873521722893,5579.508193049762,2019
+2004,59,"(55,60]",HS,2.1997845601436268,10.969803551536945,0.2005308982798896,6867.686449400069,2019
+2004,59,"(55,60]",HS,2.1997845601436268,10.969803551536945,0.2005308982798896,6810.403413584924,2019
+2004,59,"(55,60]",HS,2.1997845601436268,10.969803551536945,0.2005308982798896,6805.214980235974,2019
+2004,59,"(55,60]",HS,2.1997845601436268,10.808482911073169,0.20352389676167895,6860.118973557313,2019
+2004,59,"(55,60]",HS,2.1997845601436268,10.808482911073169,0.20352389676167895,6855.111803397388,2019
+2004,35,"(30,35]",College,259.024631956912,117.76406753855836,2.199521784283666,6041.314117309866,2019
+2004,35,"(30,35]",College,269.15935368043085,119.37727394319619,2.254695092204117,5689.565638776761,2019
+2004,35,"(30,35]",College,583.3357271095152,119.37727394319619,4.886488925748853,4949.973220824896,2019
+2004,35,"(30,35]",College,275.75870736086176,119.37727394319619,2.309976583081276,6016.349850557282,2019
+2004,35,"(30,35]",College,489.0592459605027,119.37727394319619,4.096753341789443,5166.730436357768,2019
+2004,56,"(55,60]",HS,798.0032746858169,69.36787539942482,11.50393132398623,4870.845807145923,2019
+2004,56,"(55,60]",HS,799.9045170556552,58.0754305669603,13.7735443241075,5388.776587551256,2019
+2004,56,"(55,60]",HS,789.0155834829443,51.62260494840914,15.284303925992782,4809.439377236265,2019
+2004,56,"(55,60]",HS,747.926750448833,54.84901775768473,13.63610108303249,4797.002756666715,2019
+2004,56,"(55,60]",HS,803.3770341113106,80.6603202318893,9.960003032490976,5038.132132168872,2019
+2004,60,"(55,60]",College,2243.1517414721725,280.6979144069748,7.991337399892111,1479.972253159612,2019
+2004,60,"(55,60]",College,1871.1210341113106,274.24508878842363,6.822805988532597,1467.969184700391,2019
+2004,60,"(55,60]",College,1916.782276481149,267.7922631698725,7.15772089078335,1507.751438984835,2019
+2004,60,"(55,60]",College,2019.0879712746857,266.1790567652347,7.585450169565693,1455.9102956481822,2019
+2004,60,"(55,60]",College,1868.5755691202871,253.2734055281324,7.3777014417438895,1513.2347095874234,2019
+2004,33,"(30,35]",NoHS,0,22.58488966492901,0,5515.888228332864,2019
+2004,33,"(30,35]",NoHS,0,22.58488966492901,0,5528.900006443145,2019
+2004,33,"(30,35]",NoHS,0,22.58488966492901,0,5508.207572575711,2019
+2004,33,"(30,35]",NoHS,0,24.19809606956679,0,5540.694953091807,2019
+2004,33,"(30,35]",NoHS,0,24.19809606956679,0,5527.102589501288,2019
+2004,70,"(65,70]",HS,416.38779174147214,56.46222416232251,7.374626095925735,5977.720227845073,2019
+2004,70,"(65,70]",HS,416.38779174147214,56.46222416232251,7.374626095925735,6340.900015302924,2019
+2004,70,"(65,70]",HS,416.38779174147214,56.46222416232251,7.374626095925735,6205.890395848514,2019
+2004,70,"(65,70]",HS,416.38779174147214,56.46222416232251,7.374626095925735,6178.895435856404,2019
+2004,70,"(65,70]",HS,416.38779174147214,56.46222416232251,7.374626095925735,6295.730142429507,2019
+2004,30,"(25,30]",College,27.638721723518852,138.73575079884964,0.19921845353035006,6433.127963337947,2019
+2004,30,"(25,30]",College,126.45618671454218,138.73575079884964,0.9114895474771217,6348.255594306666,2019
+2004,30,"(25,30]",College,21.353622980251348,138.73575079884964,0.1539157921249265,6438.252920303122,2019
+2004,30,"(25,30]",College,-0.6442226211849192,138.73575079884964,-0.004643522794055914,6443.2493966818965,2019
+2004,30,"(25,30]",College,26.067447037701974,138.73575079884964,0.18789278817899416,6421.016563060419,2019
+2004,48,"(45,50]",HS,154.06348294434468,120.99048034783397,1.27335210589651,9133.290919927349,2019
+2004,48,"(45,50]",HS,195.78082585278275,120.99048034783397,1.6181506618531887,8632.288236365908,2019
+2004,48,"(45,50]",HS,149.97816876122081,120.99048034783397,1.2395865222623343,9143.42436333324,2019
+2004,48,"(45,50]",HS,186.74599640933573,120.99048034783397,1.5434767749699156,9170.976695647387,2019
+2004,48,"(45,50]",HS,517.3421903052065,120.99048034783397,4.275891696750902,8341.589635968834,2019
+2004,62,"(60,65]",College,168.09496588868942,14.680178282203853,11.450471694370613,9892.35919089335,2019
+2004,62,"(60,65]",College,166.20943626570917,14.518857641740075,11.447831528279183,9885.73679758486,2019
+2004,62,"(60,65]",College,165.95803231597847,14.680178282203853,11.30490578014044,9855.715272985186,2019
+2004,62,"(60,65]",College,166.52369120287253,14.518857641740075,11.469476133172883,9824.79912981354,2019
+2004,62,"(60,65]",College,166.11515978456015,14.518857641740075,11.441338146811072,9877.305031418904,2019
+2004,38,"(35,40]",NoHS,152.5707719928187,191.97156215189653,0.7947571519582564,8045.5056859761335,2019
+2004,38,"(35,40]",NoHS,184.27909515260325,191.97156215189653,0.959929132663896,7723.242600835902,2019
+2004,38,"(35,40]",NoHS,179.20387791741473,191.97156215189653,0.9334917938294452,8038.230869037834,2019
+2004,38,"(35,40]",NoHS,182.89637342908438,191.97156215189653,0.9527263901950672,8008.2624048723665,2019
+2004,38,"(35,40]",NoHS,185.72466786355477,191.97156215189653,0.9674592725176715,7927.1929001103,2019
+2004,25,"(20,25]",HS,3.6767827648114904,40.33016011594465,0.09116707581227437,6523.4008594446495,2019
+2004,25,"(20,25]",HS,3.503942549371634,40.33016011594465,0.08688144404332131,6490.258302623055,2019
+2004,25,"(20,25]",HS,3.503942549371634,40.33016011594465,0.08688144404332131,6529.937258471395,2019
+2004,25,"(20,25]",HS,3.503942549371634,40.33016011594465,0.08688144404332131,6559.371165384953,2019
+2004,25,"(20,25]",HS,3.5196552962298027,40.33016011594465,0.08727104693140796,6545.725930817379,2019
+2004,47,"(45,50]",NoHS,132.77271095152605,46.782985734495796,2.8380555209759746,7196.260373932052,2019
+2004,47,"(45,50]",NoHS,128.0588868940754,62.91504978087366,2.0354253448116264,6676.467183709024,2019
+2004,47,"(45,50]",NoHS,104.48976660682226,51.62260494840914,2.024108754512636,7286.060225531381,2019
+2004,47,"(45,50]",NoHS,120.20251346499101,20.97168326029122,5.731657872813107,7230.843618431502,2019
+2004,47,"(45,50]",NoHS,165.76947935368042,61.30184337623587,2.7041516245487363,7044.3463831135205,2019
+2004,79,"(75,80]",College,62066.92136445242,5646.222416232252,10.99264548736462,24.457981396536375,2019
+2004,79,"(75,80]",College,56047.368043087976,5646.222416232252,9.926525012893244,23.424020782336708,2019
+2004,79,"(75,80]",College,61593.96768402155,5646.222416232252,10.908880866425992,24.762509218334433,2019
+2004,79,"(75,80]",College,59207.20143626571,5646.222416232252,10.486161732851984,22.606511354778426,2019
+2004,79,"(75,80]",College,63323.941113105924,5646.222416232252,11.215275709128415,24.25893139851881,2019
+2004,58,"(55,60]",HS,5.185206463195691,32.264128092755726,0.16071119133574002,4570.656806204281,2019
+2004,58,"(55,60]",HS,18.226786355475763,24.19809606956679,0.7532322503008424,4517.093132857166,2019
+2004,58,"(55,60]",HS,4.085314183123878,20.97168326029122,0.1948014440433213,4576.473742505824,2019
+2004,58,"(55,60]",HS,23.72624775583483,48.39619213913358,0.4902503008423586,4564.452430439699,2019
+2004,58,"(55,60]",HS,3.613931777378815,22.58488966492901,0.1600154718927282,4557.030993873984,2019
+2004,57,"(55,60]",College,522.88878994614,237.14134148175458,2.2049668213855935,6596.666566661438,2019
+2004,57,"(55,60]",College,522.134578096948,237.14134148175458,2.201786389646111,6741.682071270336,2019
+2004,57,"(55,60]",College,507.9459676840216,237.14134148175458,2.141954517547091,6460.456464655187,2019
+2004,57,"(55,60]",College,515.5037989228007,237.14134148175458,2.1738250939364914,6342.449813502404,2019
+2004,57,"(55,60]",College,522.6845242369839,237.14134148175458,2.2041054544561507,6613.65060504547,2019
+2004,48,"(45,50]",NoHS,10.213285457809695,40.33016011594465,0.2532418772563177,3822.3783850368113,2019
+2004,48,"(45,50]",NoHS,10.056157989228009,40.33016011594465,0.24934584837545132,3816.1743388994196,2019
+2004,48,"(45,50]",NoHS,10.213285457809695,40.33016011594465,0.2532418772563177,3866.6507875429115,2019
+2004,48,"(45,50]",NoHS,10.213285457809695,40.33016011594465,0.2532418772563177,3842.67674823353,2019
+2004,48,"(45,50]",NoHS,10.213285457809695,40.33016011594465,0.2532418772563177,3831.1399276246107,2019
+2004,59,"(55,60]",College,73072.28639138241,3161.884553090061,23.110358763722093,28.051123467131287,2019
+2004,59,"(55,60]",College,134460.57421903053,1448.659351364732,92.81724795574603,29.24567987686131,2019
+2004,59,"(55,60]",College,177637.63131059246,2097.168326029122,84.70356389891697,29.209571447481505,2019
+2004,59,"(55,60]",College,90918.6671454219,2081.0362619827442,43.689131615033716,27.62633965252826,2019
+2004,59,"(55,60]",College,182117.0211849192,2952.167720487149,61.68925292458226,28.30095239983563,2019
+2004,42,"(40,45]",College,557.9596409335727,233.91492867247896,2.3853100958546,468.5123217225523,2019
+2004,42,"(40,45]",College,679.4191741472172,254.8866119327702,2.6655741900105103,466.1187223475052,2019
+2004,42,"(40,45]",College,584.1999281867146,306.5092168811794,1.9059783393501806,464.0515548093621,2019
+2004,42,"(40,45]",College,558.7452782764813,327.4809001414706,1.7061919581725384,456.2115262914141,2019
+2004,42,"(40,45]",College,665.7490843806104,377.4902986852419,1.763619056434941,479.27950062516385,2019
+2004,29,"(25,30]",HS,5.028078994614004,74.20749461333816,0.06775702401506829,5722.716994179924,2019
+2004,29,"(25,30]",HS,5.028078994614004,72.59428820870036,0.0692627356598476,5735.529460073611,2019
+2004,29,"(25,30]",HS,5.028078994614004,53.23581135304694,0.09444918499070125,5719.358009410917,2019
+2004,29,"(25,30]",HS,5.028078994614004,50.00939854377137,0.10054268079655294,5765.721733849376,2019
+2004,29,"(25,30]",HS,5.028078994614004,59.68863697159809,0.08423846228900381,5736.0378887753195,2019
+2004,40,"(35,40]",NoHS,31.504057450628366,56.46222416232251,0.5579669932955132,7981.370516055589,2019
+2004,40,"(35,40]",NoHS,31.504057450628366,56.46222416232251,0.5579669932955132,7389.997194167709,2019
+2004,40,"(35,40]",NoHS,31.504057450628366,56.46222416232251,0.5579669932955132,7978.864213046279,2019
+2004,40,"(35,40]",NoHS,31.504057450628366,56.46222416232251,0.5579669932955132,7963.909332402703,2019
+2004,40,"(35,40]",NoHS,31.34692998204668,56.46222416232251,0.5551841155234658,7763.1379048083745,2019
+2004,24,"(20,25]",College,6.253673249551167,38.716953711306864,0.16152286401925392,8950.459334492629,2019
+2004,24,"(20,25]",College,6.426513464991023,38.716953711306864,0.16598706377858002,8885.640020664978,2019
+2004,24,"(20,25]",College,6.426513464991023,38.716953711306864,0.16598706377858002,8995.515170578043,2019
+2004,24,"(20,25]",College,6.253673249551167,38.716953711306864,0.16152286401925392,8843.487103302066,2019
+2004,24,"(20,25]",College,6.253673249551167,38.716953711306864,0.16152286401925392,8986.377434848655,2019
+2004,30,"(25,30]",College,27.02592459605027,106.47162270609388,0.25383218466250956,4663.37971226157,2019
+2004,30,"(25,30]",College,29.854219030520646,104.8584163014561,0.2847098028325465,4729.412768925695,2019
+2004,30,"(25,30]",College,32.996768402154395,104.8584163014561,0.31467925576228817,4651.716363106958,2019
+2004,30,"(25,30]",College,30.325601436265707,104.8584163014561,0.2892052207720077,4698.39896154681,2019
+2004,30,"(25,30]",College,28.440071813285456,104.8584163014561,0.2712235490141627,4688.702749708993,2019
+2004,63,"(60,65]",College,29903.557055655296,1095.3671487490567,27.30003094378546,283.05676881827077,2019
+2004,63,"(60,65]",College,29892.71526032316,1196.9991522412374,24.97304630863993,277.46501615843255,2019
+2004,63,"(60,65]",College,29923.983626570913,782.4051062493263,38.246150731326054,287.4533625183446,2019
+2004,63,"(60,65]",College,29877.159640933573,974.3766684012228,30.662843856838883,280.36410884791735,2019
+2004,63,"(60,65]",College,29898.843231597846,909.8484122157115,32.861345725478145,290.2630467597216,2019
+2004,51,"(50,55]",College,2807.8678635547576,337.16013856929726,8.327994748933378,2378.957187223168,2019
+2004,51,"(50,55]",College,4841.097307001795,340.3865513785729,14.222351874347698,2294.724974620616,2019
+2004,51,"(50,55]",College,4841.097307001795,274.24508878842363,17.65244850286685,2503.011608752404,2019
+2004,51,"(50,55]",College,1274.3037701974865,274.24508878842363,4.64658738585687,1269.095497780992,2019
+2004,51,"(50,55]",College,2572.176660682226,274.24508878842363,9.379116585262263,2316.933100621769,2019
+2004,72,"(70,75]",HS,176732.26283662478,806.6032023188931,219.1068202166065,19.85074517363883,2019
+2004,72,"(70,75]",HS,128238.01220825853,806.6032023188931,158.98525054151625,20.80433162821725,2019
+2004,72,"(70,75]",HS,189203.47001795334,806.6032023188931,234.56821083032492,20.025321777052817,2019
+2004,72,"(70,75]",HS,138092.1042728905,806.6032023188931,171.2020283032491,19.550079502266545,2019
+2004,72,"(70,75]",HS,224124.84564452426,806.6032023188931,277.8625785270758,19.624724009168094,2019
+2004,31,"(30,35]",College,217.93579892280073,217.62154398563735,1.0014440433212997,10436.225463198934,2019
+2004,31,"(30,35]",College,151.15662477558348,218.91210910934757,0.6904900116789797,10007.115870140264,2019
+2004,31,"(30,35]",College,169.54053859964094,209.39419132198466,0.8096716414589509,10485.683966401904,2019
+2004,31,"(30,35]",College,268.6879712746858,183.74420948824383,1.4622935439599625,10557.130296073481,2019
+2004,31,"(30,35]",College,232.0772710951526,309.2516677690636,0.7504479208450328,10376.914718473883,2019
+2004,65,"(60,65]",College,11244.041651705566,1303.4707749473312,8.62623226221539,223.7102309778029,2019
+2004,65,"(60,65]",College,11259.754398563735,1303.4707749473312,8.638286807020053,225.25812166915156,2019
+2004,65,"(60,65]",College,11242.470377019748,1303.4707749473312,8.625026807734924,231.86971412020574,2019
+2004,65,"(60,65]",College,15481.769479353681,1303.4707749473312,11.877342996032455,216.1267175757725,2019
+2004,65,"(60,65]",College,12200.947935368044,1303.4707749473312,9.360354040819244,219.15664813608882,2019
+2004,63,"(60,65]",College,1202.7714901256734,124.21689315710954,9.682833466172816,5722.951879977026,2019
+2004,63,"(60,65]",College,1204.4998922800717,124.21689315710954,9.69674785503305,6329.434580181327,2019
+2004,63,"(60,65]",College,1201.2002154398563,122.60368675247175,9.797423285198555,5648.392028462556,2019
+2004,63,"(60,65]",College,1204.4998922800717,124.21689315710954,9.69674785503305,5630.338096498729,2019
+2004,63,"(60,65]",College,1201.3573429084381,124.21689315710954,9.671448966196259,5917.573266219649,2019
+2004,49,"(45,50]",HS,237.73385996409337,167.77346608232975,1.4169931963343516,8860.16655110641,2019
+2004,49,"(45,50]",HS,237.73385996409337,167.77346608232975,1.4169931963343516,8376.601196246556,2019
+2004,49,"(45,50]",HS,236.16258527827648,167.77346608232975,1.4076277422938073,8933.172342085558,2019
+2004,49,"(45,50]",HS,239.30513464991023,167.77346608232975,1.426358650374896,8888.28979285556,2019
+2004,49,"(45,50]",HS,237.73385996409337,167.77346608232975,1.4169931963343516,8686.45725215485,2019
+2004,27,"(25,30]",HS,-28.455784560143627,56.46222416232251,-0.5039791645177928,4296.977905429487,2019
+2004,27,"(25,30]",HS,-26.868797127468582,56.46222416232251,-0.4758720990201135,4275.34262749431,2019
+2004,27,"(25,30]",HS,-28.455784560143627,56.46222416232251,-0.5039791645177928,4301.995068534779,2019
+2004,27,"(25,30]",HS,-28.455784560143627,56.46222416232251,-0.5039791645177928,4331.406555961377,2019
+2004,27,"(25,30]",HS,-28.455784560143627,56.46222416232251,-0.5039791645177928,4312.528151878823,2019
+2004,41,"(40,45]",HS,8308.114901256733,1003.4143836847029,8.279844335844546,1432.8077398850705,2019
+2004,41,"(40,45]",HS,4893.970700179533,1351.866967086465,3.6201570267871754,1427.0335459697778,2019
+2004,41,"(40,45]",HS,7424.571432675045,1371.2254439421183,5.414551972818008,1622.8834531474445,2019
+2004,41,"(40,45]",HS,6825.255842010772,869.5182520997668,7.849468168757492,1360.9816722661863,2019
+2004,41,"(40,45]",HS,9647.767985637343,1119.5652448186236,8.61742362072015,1442.0121705552015,2019
+2004,76,"(75,80]",HS,227.9919569120287,52.267887510264266,4.361989125105852,10452.035616899071,2019
+2004,76,"(75,80]",HS,227.83482944344703,52.267887510264266,4.358982929981726,9499.278454168838,2019
+2004,76,"(75,80]",HS,227.83482944344703,50.65468110562649,4.497804042401526,10373.116457469205,2019
+2004,76,"(75,80]",HS,227.83482944344703,52.267887510264266,4.358982929981726,10205.059710514499,2019
+2004,76,"(75,80]",HS,227.83482944344703,52.267887510264266,4.358982929981726,10044.597163036411,2019
+2004,33,"(30,35]",HS,2.1997845601436268,19.358476855653432,0.11363417569193744,5532.401878753741,2019
+2004,33,"(30,35]",HS,2.1997845601436268,19.358476855653432,0.11363417569193744,5544.897462150866,2019
+2004,33,"(30,35]",HS,2.1997845601436268,19.358476855653432,0.11363417569193744,5527.700487526819,2019
+2004,33,"(30,35]",HS,2.356912028725314,19.358476855653432,0.12175090252707581,5559.677267653864,2019
+2004,33,"(30,35]",HS,2.1997845601436268,19.358476855653432,0.11363417569193744,5544.519057325464,2019
+2004,75,"(70,75]",NoHS,135.12962298025136,30.650921688117936,4.408664259927798,11614.438465416519,2019
+2004,75,"(70,75]",NoHS,135.12962298025136,30.650921688117936,4.408664259927798,11670.397142169923,2019
+2004,75,"(70,75]",NoHS,135.12962298025136,30.650921688117936,4.408664259927798,11693.407007149764,2019
+2004,75,"(70,75]",NoHS,135.12962298025136,30.650921688117936,4.408664259927798,11633.140630380101,2019
+2004,75,"(70,75]",NoHS,135.12962298025136,29.03771528348015,4.653590052146009,11628.23489874788,2019
+2004,54,"(50,55]",HS,987.4990017953322,145.18857641740072,6.801492418772565,9527.621141191357,2019
+2004,54,"(50,55]",HS,982.4866355475764,145.18857641740072,6.76696927396711,10442.851053073717,2019
+2004,54,"(50,55]",HS,1042.3050628366248,145.18857641740072,7.178974328118733,9406.18789852356,2019
+2004,54,"(50,55]",HS,976.4686535008977,145.18857641740072,6.725519855595669,9428.685184767575,2019
+2004,54,"(50,55]",HS,993.9412280071813,145.18857641740072,6.845863858804654,9855.541043307177,2019
+2004,50,"(45,50]",HS,1495.5392459605027,290.37715283480145,5.1503337344564795,13246.48318220023,2019
+2004,50,"(45,50]",HS,1495.5392459605027,290.37715283480145,5.1503337344564795,14100.846143816167,2019
+2004,50,"(45,50]",HS,1495.5392459605027,290.37715283480145,5.1503337344564795,13227.753154647977,2019
+2004,50,"(45,50]",HS,1495.5392459605027,290.37715283480145,5.1503337344564795,13695.189228479878,2019
+2004,50,"(45,50]",HS,1495.5392459605027,290.37715283480145,5.1503337344564795,13782.702038243297,2019
+2004,61,"(60,65]",College,143.41024057450628,38.716953711306864,3.7040682912154033,6891.911798088193,2019
+2004,61,"(60,65]",College,143.41024057450628,38.716953711306864,3.7040682912154033,6861.193854195478,2019
+2004,61,"(60,65]",College,143.56736804308798,40.33016011594465,3.559801588447654,6811.7362285620575,2019
+2004,61,"(60,65]",College,143.56736804308798,38.716953711306864,3.7081266546329728,6862.719167689489,2019
+2004,61,"(60,65]",College,143.41024057450628,38.716953711306864,3.7040682912154033,6867.792911616894,2019
+2004,48,"(45,50]",College,17649.342908438062,4888.015406052492,3.6107379871561167,32.36141855787822,2019
+2004,48,"(45,50]",College,17515.784560143627,4888.015406052492,3.5834143522655517,33.50566437553739,2019
+2004,48,"(45,50]",College,17759.332136445242,4888.015406052492,3.6332398041248166,33.954270560629666,2019
+2004,48,"(45,50]",College,17649.342908438062,4904.14747009887,3.598860559566787,31.907429170858695,2019
+2004,48,"(45,50]",College,17971.454219030522,4888.015406052492,3.6766361654215967,33.004919270504026,2019
+2004,56,"(55,60]",College,118.5526750448833,43.55657292522023,2.721809065383072,4810.241651189853,2019
+2004,56,"(55,60]",College,116.82427289048475,54.84901775768473,2.1299246124442557,4734.355235984474,2019
+2004,56,"(55,60]",College,181.2308222621185,77.43390742261373,2.3404581829121542,4775.888089497124,2019
+2004,56,"(55,60]",College,117.92416517055656,69.36787539942482,1.6999823692385188,4762.461084494375,2019
+2004,56,"(55,60]",College,147.25986355475766,53.23581135304694,2.766180505415163,4747.798125611512,2019
+2004,31,"(30,35]",College,536.2131992818671,456.5374125124935,1.1745219221594314,6235.640859482461,2019
+2004,31,"(30,35]",College,1176.0362513464993,456.5374125124935,2.5759909683509585,6891.918964639894,2019
+2004,31,"(30,35]",College,995.6539174147217,435.56572925220235,2.2858867228239066,6191.001530438985,2019
+2004,31,"(30,35]",College,416.6391956912029,454.92420610785575,0.915843101108636,6188.260106110744,2019
+2004,31,"(30,35]",College,718.5124883303411,456.5374125124935,1.573830465231978,6481.167611007488,2019
+2004,66,"(65,70]",HS,1391.206606822262,74.20749461333816,18.747521582169206,7243.948537255997,2019
+2004,66,"(65,70]",HS,1391.206606822262,74.20749461333816,18.747521582169206,8121.61808903998,2019
+2004,66,"(65,70]",HS,1391.206606822262,74.20749461333816,18.747521582169206,7230.040174422262,2019
+2004,66,"(65,70]",HS,1391.206606822262,74.20749461333816,18.747521582169206,7211.803415499404,2019
+2004,66,"(65,70]",HS,1391.206606822262,74.20749461333816,18.747521582169206,7555.505157072132,2019
+2004,50,"(45,50]",HS,463.58888330341114,133.89613158493626,3.462302292201296,4926.97079422748,2019
+2004,50,"(45,50]",HS,480.0087037701975,133.89613158493626,3.5849333217345913,5060.621318770907,2019
+2004,50,"(45,50]",HS,458.40367684021544,124.21689315710954,3.6903489146232826,4815.118604757261,2019
+2004,50,"(45,50]",HS,479.8201508078995,129.0565123710229,3.7179073104693137,4747.106176581516,2019
+2004,50,"(45,50]",HS,455.0882872531418,127.4433059663851,3.5709077365991866,4939.371068058339,2019
+2004,76,"(75,80]",College,290.37156193895873,50.00939854377137,5.806339816000932,9370.381000816746,2019
+2004,76,"(75,80]",College,290.21443447037706,50.00939854377137,5.80319785722604,9415.534527687561,2019
+2004,76,"(75,80]",College,290.21443447037706,50.00939854377137,5.80319785722604,9365.761896152031,2019
+2004,76,"(75,80]",College,290.21443447037706,50.00939854377137,5.80319785722604,9337.093567465294,2019
+2004,76,"(75,80]",College,290.37156193895873,50.00939854377137,5.806339816000932,9363.194606195353,2019
+2004,22,"(20,25]",HS,-0.2514039497307002,27.424508878842364,-0.009167126778509237,6564.649087964765,2019
+2004,22,"(20,25]",HS,-0.2514039497307002,27.424508878842364,-0.009167126778509237,6647.232679757023,2019
+2004,22,"(20,25]",HS,-0.2514039497307002,27.424508878842364,-0.009167126778509237,6618.2400295885745,2019
+2004,22,"(20,25]",HS,-0.2514039497307002,27.424508878842364,-0.009167126778509237,6485.687345771318,2019
+2004,22,"(20,25]",HS,-0.2514039497307002,27.424508878842364,-0.009167126778509237,6636.228095669668,2019
+2004,63,"(60,65]",HS,13.59152603231598,35.4905409020313,0.3829619297669839,4026.8631810037577,2019
+2004,63,"(60,65]",HS,45.991210053859966,37.10374730666908,1.2395300580756554,3977.2222252775414,2019
+2004,63,"(60,65]",HS,12.963016157989228,35.4905409020313,0.3652527075812274,4005.405219371622,2019
+2004,63,"(60,65]",HS,27.340179533213647,35.4905409020313,0.7703511650804069,4029.690110440334,2019
+2004,63,"(60,65]",HS,29.53996409335727,35.4905409020313,0.8323334427305545,3995.4707601954055,2019
+2004,48,"(45,50]",HS,-0.6269385996409336,35.4905409020313,-0.01766494913029209,4621.466329552104,2019
+2004,48,"(45,50]",HS,-0.6269385996409336,82.2735266365271,-0.007620174134635804,4526.637192198969,2019
+2004,48,"(45,50]",HS,-0.6269385996409336,37.10374730666908,-0.01689690786375765,4692.188042576164,2019
+2004,48,"(45,50]",HS,-2.19821328545781,56.46222416232251,-0.03893246003094379,4648.3271407756165,2019
+2004,48,"(45,50]",HS,-0.6269385996409336,96.79238427826716,-0.0064771480144404335,4623.7147353032715,2019
+2004,78,"(75,80]",HS,61.279712746858166,20.97168326029122,2.9220216606498193,10220.003925667661,2019
+2004,78,"(75,80]",HS,61.279712746858166,20.97168326029122,2.9220216606498193,10468.196185514003,2019
+2004,78,"(75,80]",HS,61.279712746858166,20.97168326029122,2.9220216606498193,10097.766736225054,2019
+2004,78,"(75,80]",HS,61.279712746858166,20.97168326029122,2.9220216606498193,10181.38675924462,2019
+2004,78,"(75,80]",HS,61.279712746858166,20.97168326029122,2.9220216606498193,10232.230466023375,2019
+2004,43,"(40,45]",HS,14.45572710951526,27.424508878842364,0.5271097897642811,3427.4663691851397,2019
+2004,43,"(40,45]",HS,15.948438061041292,35.4905409020313,0.44937151296357064,3414.8909908446176,2019
+2004,43,"(40,45]",HS,14.377163375224416,24.19809606956679,0.59414440433213,3424.3519852885465,2019
+2004,43,"(40,45]",HS,14.785694793536805,24.19809606956679,0.6110271961492179,3405.7310497422245,2019
+2004,43,"(40,45]",HS,24.43332136445242,35.4905409020313,0.6884460124712831,3410.831074130666,2019
+2004,52,"(50,55]",College,614.8397845601436,130.66971877566067,4.705296608280964,5881.793846175852,2019
+2004,52,"(50,55]",College,587.1853500897665,133.89613158493626,4.3853794963246475,6510.305081593318,2019
+2004,52,"(50,55]",College,639.5087971274686,158.09422765450302,4.0451116186546825,5827.907531244568,2019
+2004,52,"(50,55]",College,475.46771992818674,137.12254439421181,3.4674657039711194,5868.662423226838,2019
+2004,52,"(50,55]",College,577.1291921005386,133.89613158493626,4.310275325127224,6113.982385788104,2019
+2004,73,"(70,75]",College,690215.7167684021,21713.758206424598,31.787022320446734,4.4650414319951715,2019
+2004,73,"(70,75]",College,690256.397070018,25553.189449462534,27.012533931827296,4.558260175483293,2019
+2004,73,"(70,75]",College,722189.9153177738,21713.758206424598,33.2595540786714,4.374075390632741,2019
+2004,73,"(70,75]",College,606057.1447037702,22020.26742330578,27.522696843469404,4.383119643535837,2019
+2004,73,"(70,75]",College,693260.5328545781,23036.587458227586,30.093890169786324,4.275323436827927,2019
+2004,79,"(75,80]",NoHS,2174.95842010772,68.23863091617834,31.872832014747683,5225.939755829925,2019
+2004,79,"(75,80]",NoHS,3571.5073608617595,68.23863091617834,52.33849672700584,2156.6260783125813,2019
+2004,79,"(75,80]",NoHS,2787.4412926391383,68.23863091617834,40.84843519300852,5184.725855953848,2019
+2004,79,"(75,80]",NoHS,3289.3064272890488,68.23863091617834,48.202995621783565,5564.293449295915,2019
+2004,79,"(75,80]",NoHS,2210.626355475763,68.23863091617834,32.39552619675518,5310.040486654721,2019
+2004,48,"(45,50]",College,3904.7747217235187,417.82045880118665,9.345580474750149,2851.4317494731304,2019
+2004,48,"(45,50]",College,3903.203447037702,417.82045880118665,9.341819829112247,2702.0062249766365,2019
+2004,48,"(45,50]",College,3904.7747217235187,417.82045880118665,9.345580474750149,3010.589330595665,2019
+2004,48,"(45,50]",College,3904.7747217235187,417.82045880118665,9.345580474750149,2664.416711403422,2019
+2004,48,"(45,50]",College,3903.203447037702,417.82045880118665,9.341819829112247,2785.7402335687298,2019
+2004,48,"(45,50]",HS,125541.70484739676,8646.786328858534,14.518885985236272,18.968049583545866,2019
+2004,48,"(45,50]",HS,138550.28797127467,8695.182520997667,15.934143721157644,20.08277893185048,2019
+2004,48,"(45,50]",HS,136172.94937163373,8566.126008626643,15.896678292439168,19.680052415018398,2019
+2004,48,"(45,50]",HS,122210.60251346498,8582.258072673023,14.239912325941205,18.634196351820794,2019
+2004,48,"(45,50]",HS,148683.43842010773,8598.3901367194,17.292008859327694,19.074323977144275,2019
+2004,60,"(55,60]",HS,-19.7666355475763,12.905651237102285,-1.531626353790614,5146.267603856072,2019
+2004,60,"(55,60]",HS,-18.211073608617593,12.905651237102285,-1.411092960288809,5103.677082024142,2019
+2004,60,"(55,60]",HS,-16.62408617594255,12.905651237102285,-1.2881245487364625,5098.957258846596,2019
+2004,60,"(55,60]",HS,-24.4961723518851,12.905651237102285,-1.8980965703971127,5140.148855852267,2019
+2004,60,"(55,60]",HS,-13.481536804308798,12.905651237102285,-1.0446227436823108,5137.146357505175,2019
+2004,38,"(35,40]",HS,12.098815080789945,51.62260494840914,0.234370487364621,5566.554583079528,2019
+2004,38,"(35,40]",HS,12.098815080789945,51.62260494840914,0.234370487364621,5555.643510432699,2019
+2004,38,"(35,40]",HS,12.098815080789945,51.62260494840914,0.234370487364621,5573.48348819566,2019
+2004,38,"(35,40]",HS,12.098815080789945,51.62260494840914,0.234370487364621,5552.649772113421,2019
+2004,38,"(35,40]",HS,12.098815080789945,51.62260494840914,0.234370487364621,5539.871078737911,2019
+2004,35,"(30,35]",College,24.983267504488328,72.59428820870036,0.3441492178098677,4685.093300836335,2019
+2004,35,"(30,35]",College,24.983267504488328,72.59428820870036,0.3441492178098677,4705.8311521438645,2019
+2004,35,"(30,35]",College,24.983267504488328,72.59428820870036,0.3441492178098677,4623.433850867275,2019
+2004,35,"(30,35]",College,24.983267504488328,72.59428820870036,0.3441492178098677,4601.548002295238,2019
+2004,35,"(30,35]",College,24.983267504488328,72.59428820870036,0.3441492178098677,4605.9105865558295,2019
+2004,58,"(55,60]",College,1916.6408617594257,287.1507400255259,6.674685433821442,3320.8526980804563,2019
+2004,58,"(55,60]",College,1919.7834111310594,285.53753362088815,6.7234012523200555,3458.323726129285,2019
+2004,58,"(55,60]",College,1916.6408617594257,285.53753362088815,6.712395521018173,3286.4411993943118,2019
+2004,58,"(55,60]",College,1919.7834111310594,285.53753362088815,6.7234012523200555,3526.752642883285,2019
+2004,58,"(55,60]",College,1916.6408617594257,287.1507400255259,6.674685433821442,3373.502933201084,2019
+2004,59,"(55,60]",College,40405.485673249554,6033.391953345319,6.696976756308039,18.875803891614044,2019
+2004,59,"(55,60]",College,40635.36315978457,6226.976721901855,6.52569697536522,19.12902112287269,2019
+2004,59,"(55,60]",College,40937.00076122083,6178.58052976272,6.625631981977737,19.897276336486822,2019
+2004,59,"(55,60]",College,40395.90089766607,5904.335440974298,6.84173541654337,18.279329651680335,2019
+2004,59,"(55,60]",College,40096.21167684022,5807.54305669603,6.904160896510229,19.504203208628326,2019
+2004,72,"(70,75]",HS,1250.5146714542188,101.63200349218052,12.304339464787118,5940.854444340579,2019
+2004,72,"(70,75]",HS,1271.8368689407541,101.63200349218052,12.514137527935363,6604.377136984878,2019
+2004,72,"(70,75]",HS,1235.508998204668,101.63200349218052,12.156692338547936,5879.975247910831,2019
+2004,72,"(70,75]",HS,1349.1278707360864,101.63200349218052,13.274636181307665,5862.468055843752,2019
+2004,72,"(70,75]",HS,1271.3183482944344,101.63200349218052,12.509035585353274,6144.649705464107,2019
+2004,24,"(20,25]",NoHS,0.15712746858168763,19.358476855653432,0.008116726835138388,8496.86389296475,2019
+2004,24,"(20,25]",NoHS,0.15712746858168763,19.358476855653432,0.008116726835138388,8435.715844892733,2019
+2004,24,"(20,25]",NoHS,0.15712746858168763,19.358476855653432,0.008116726835138388,8541.049203990955,2019
+2004,24,"(20,25]",NoHS,0.15712746858168763,19.358476855653432,0.008116726835138388,8416.171441993814,2019
+2004,24,"(20,25]",NoHS,0.15712746858168763,19.358476855653432,0.008116726835138388,8532.63296669023,2019
+2004,59,"(55,60]",College,1678.4356193895871,312.9620424997305,5.363064498120511,4278.808348670778,2019
+2004,59,"(55,60]",College,1659.5803231597845,312.9620424997305,5.3028166288287615,4454.252417943297,2019
+2004,59,"(55,60]",College,1639.310879712747,312.9620424997305,5.2380501693401325,4233.724405804401,2019
+2004,59,"(55,60]",College,1859.2893357271096,312.9620424997305,5.940941977743869,4542.81322635224,2019
+2004,59,"(55,60]",College,1782.1397486535009,312.9620424997305,5.694427779225129,4345.063707283738,2019
+2004,42,"(40,45]",College,227.78769120287254,90.33955865971603,2.5214611913357396,9433.551777409839,2019
+2004,42,"(40,45]",College,230.44314542190307,90.33955865971603,2.5508553378029912,8897.80721298208,2019
+2004,42,"(40,45]",College,227.78769120287254,90.33955865971603,2.5214611913357396,9327.403083134992,2019
+2004,42,"(40,45]",College,227.31630879712748,90.33955865971603,2.516243295513151,9362.687039376546,2019
+2004,42,"(40,45]",College,229.04471095152604,90.33955865971603,2.535375580195977,9131.921995299885,2019
+2004,69,"(65,70]",HS,121.7737881508079,17.74527045101565,6.8623235969806355,8938.839256141817,2019
+2004,69,"(65,70]",HS,121.7737881508079,17.74527045101565,6.8623235969806355,8403.166490602163,2019
+2004,69,"(65,70]",HS,121.7737881508079,17.74527045101565,6.8623235969806355,8980.71470257664,2019
+2004,69,"(65,70]",HS,121.7737881508079,17.74527045101565,6.8623235969806355,8998.244162455263,2019
+2004,69,"(65,70]",HS,121.7737881508079,17.74527045101565,6.8623235969806355,8842.286150410886,2019
+2004,50,"(45,50]",College,13544.387791741472,1629.338468684164,8.312814097294206,414.12414841656954,2019
+2004,50,"(45,50]",College,12978.728904847398,1393.8103336070474,9.311689396978204,408.891319696838,2019
+2004,50,"(45,50]",College,12545.05709156194,1601.9139598053214,7.831292695074912,426.0991083883323,2019
+2004,50,"(45,50]",College,11511.158348294435,1613.2064046377861,7.135576895306859,406.28059603603447,2019
+2004,50,"(45,50]",College,19622.07827648115,1629.338468684164,12.042972441648496,411.54095424055157,2019
+2004,73,"(70,75]",College,9234.224201077199,5.162260494840916,1788.7946976534295,1747.032965393392,2019
+2004,73,"(70,75]",College,9234.067073608618,5.000939854377137,1846.4663328286945,1790.4722328977018,2019
+2004,73,"(70,75]",College,9235.481220825854,5.162260494840916,1789.0381994584839,1757.261032609343,2019
+2004,73,"(70,75]",College,9235.638348294435,5.162260494840916,1789.0686371841155,1705.0999141796187,2019
+2004,73,"(70,75]",College,9234.067073608618,5.162260494840916,1788.7642599277979,1699.2978178032288,2019
+2004,65,"(60,65]",College,2483.242513464991,480.7355085820603,5.165506747752768,2897.8900244581896,2019
+2004,65,"(60,65]",College,2664.410484739677,351.6789962110374,7.5762570794555035,2845.4692932755356,2019
+2004,65,"(60,65]",College,3490.272459605027,461.3770317264068,7.564902931004014,2943.4996540315365,2019
+2004,65,"(60,65]",College,3577.7453213644526,559.7826224093118,6.391311873823073,3559.838066757247,2019
+2004,65,"(60,65]",College,4582.779748653501,521.065668698005,8.795013803355276,3730.011843083447,2019
+2004,28,"(25,30]",HS,37.11350807899461,112.92444832464501,0.32865786487880355,8052.982325688785,2019
+2004,28,"(25,30]",HS,37.11350807899461,112.92444832464501,0.32865786487880355,7929.9202876515365,2019
+2004,28,"(25,30]",HS,37.11350807899461,112.92444832464501,0.32865786487880355,8035.210924803248,2019
+2004,28,"(25,30]",HS,37.11350807899461,112.92444832464501,0.32865786487880355,8144.602079158986,2019
+2004,28,"(25,30]",HS,37.11350807899461,112.92444832464501,0.32865786487880355,8021.971473893349,2019
+2004,53,"(50,55]",College,4880.064919210054,645.2825618551144,7.562679061371841,310.70106045890736,2019
+2004,53,"(50,55]",College,4897.348940754039,645.2825618551144,7.589464259927798,301.00706597605534,2019
+2004,53,"(50,55]",College,4895.777666068222,645.2825618551144,7.587029241877255,325.20157999077855,2019
+2004,53,"(50,55]",College,4881.636193895871,645.2825618551144,7.565114079422383,305.05559433682316,2019
+2004,53,"(50,55]",College,4881.636193895871,645.2825618551144,7.565114079422383,314.7908370098702,2019
+2004,44,"(40,45]",HS,8.453457809694793,72.59428820870036,0.11644797432811875,4781.472091675088,2019
+2004,44,"(40,45]",HS,9.993307001795333,79.04711382725151,0.1264221616444412,4755.299735299649,2019
+2004,44,"(40,45]",HS,3.9753249551166965,40.33016011594465,0.09856953068592057,4810.61435581444,2019
+2004,44,"(40,45]",HS,4.886664272890484,61.30184337623587,0.0797148014440433,4771.853985633098,2019
+2004,44,"(40,45]",HS,3.818197486535009,40.33016011594465,0.09467350180505416,4807.708672265407,2019
+2004,37,"(35,40]",HS,1.2255942549371635,80.6603202318893,0.015194512635379062,4583.003053220535,2019
+2004,37,"(35,40]",HS,2.1526463195691203,80.6603202318893,0.02668779783393502,4642.98847595814,2019
+2004,37,"(35,40]",HS,2.0897953321364455,80.6603202318893,0.025908592057761737,4563.751061330514,2019
+2004,37,"(35,40]",HS,4.729536804308798,80.6603202318893,0.05863523465703972,4580.929989544355,2019
+2004,37,"(35,40]",HS,4.368143626570915,80.6603202318893,0.05415480144404332,4594.174394603201,2019
+2004,52,"(50,55]",College,399.889407540395,40.33016011594465,9.915393501805054,2352.416461489735,2019
+2004,52,"(50,55]",College,399.889407540395,38.716953711306864,10.328534897713599,2217.677873062179,2019
+2004,52,"(50,55]",College,399.889407540395,40.33016011594465,9.915393501805054,2311.5207011274265,2019
+2004,52,"(50,55]",College,399.889407540395,38.716953711306864,10.328534897713599,2197.9954763587957,2019
+2004,52,"(50,55]",College,399.889407540395,38.716953711306864,10.328534897713599,2160.426694980823,2019
+2004,56,"(55,60]",College,1787.9534649910233,322.6412809275572,5.5416140794223825,1546.2852531413355,2019
+2004,56,"(55,60]",College,1789.8389946140037,322.6412809275572,5.5474581227436826,1506.7192197742547,2019
+2004,56,"(55,60]",College,1792.0387791741473,322.6412809275572,5.554276173285199,1580.8042402824135,2019
+2004,56,"(55,60]",College,1785.4394254937163,322.6412809275572,5.53382202166065,1525.55576594379,2019
+2004,56,"(55,60]",College,1790.7817594254936,322.6412809275572,5.550380144404332,1585.9631893898638,2019
+2004,74,"(70,75]",College,3861.09328545781,285.53753362088815,13.522191764058007,1588.4544133823122,2019
+2004,74,"(70,75]",College,3861.09328545781,285.53753362088815,13.522191764058007,1583.7871244730381,2019
+2004,74,"(70,75]",College,3861.250412926391,285.53753362088815,13.5227420506231,1805.187948133258,2019
+2004,74,"(70,75]",College,3861.09328545781,285.53753362088815,13.522191764058007,1511.4226411870372,2019
+2004,74,"(70,75]",College,3861.250412926391,285.53753362088815,13.5227420506231,1605.627589619859,2019
+2004,42,"(40,45]",HS,478.76739676840214,116.1508611339206,4.121944444444444,6851.114542648441,2019
+2004,42,"(40,45]",HS,459.91210053859965,117.76406753855836,3.9053686761287776,6463.9247897570995,2019
+2004,42,"(40,45]",HS,451.2700897666068,117.76406753855836,3.8319845704960196,6822.271171847666,2019
+2004,42,"(40,45]",HS,477.353249551167,117.76406753855836,4.053471143860344,6793.201851985805,2019
+2004,42,"(40,45]",HS,466.19719928186714,117.76406753855836,3.9587389347707833,6668.90760556657,2019
+2004,68,"(65,70]",HS,86.20012926391382,19.358476855653432,4.452836341756919,6194.17278330363,2019
+2004,68,"(65,70]",HS,93.63225852782766,19.358476855653432,4.836757521058966,6252.487997302378,2019
+2004,68,"(65,70]",HS,88.91843447037702,19.358476855653432,4.593255716004814,6258.415196309045,2019
+2004,68,"(65,70]",HS,92.2495368043088,20.97168326029122,4.398766453762844,6247.224793460719,2019
+2004,68,"(65,70]",HS,86.89149012567326,19.358476855653432,4.488549939831529,6250.946531340356,2019
+2004,41,"(40,45]",NoHS,0.5028078994614004,32.264128092755726,0.015584115523465702,6254.583033261655,2019
+2004,41,"(40,45]",NoHS,0.5028078994614004,32.264128092755726,0.015584115523465702,6404.106168706224,2019
+2004,41,"(40,45]",NoHS,0.5028078994614004,32.264128092755726,0.015584115523465702,6225.949414373462,2019
+2004,41,"(40,45]",NoHS,0.4870951526032316,32.264128092755726,0.015097111913357398,6246.727058506858,2019
+2004,41,"(40,45]",NoHS,0.5028078994614004,32.264128092755726,0.015584115523465702,6271.728512646148,2019
+2004,41,"(40,45]",NoHS,-0.7856373429084381,15.486781484522748,-0.05072954271961492,5653.206680422847,2019
+2004,41,"(40,45]",NoHS,-0.7856373429084381,15.486781484522748,-0.05072954271961492,5618.5441387227875,2019
+2004,41,"(40,45]",NoHS,-0.7856373429084381,15.486781484522748,-0.05072954271961492,5649.228727763534,2019
+2004,41,"(40,45]",NoHS,-0.7856373429084381,15.486781484522748,-0.05072954271961492,5639.458413661092,2019
+2004,41,"(40,45]",NoHS,-0.7856373429084381,15.486781484522748,-0.05072954271961492,5655.66950746474,2019
+2004,70,"(65,70]",HS,873.9445515260323,32.264128092755726,27.087189494584834,6877.483168784372,2019
+2004,70,"(65,70]",HS,873.9445515260323,32.264128092755726,27.087189494584834,7646.381607516446,2019
+2004,70,"(65,70]",HS,873.9445515260323,32.264128092755726,27.087189494584834,6803.308735650462,2019
+2004,70,"(65,70]",HS,873.9445515260323,32.264128092755726,27.087189494584834,6783.8156087985135,2019
+2004,70,"(65,70]",HS,873.9445515260323,32.264128092755726,27.087189494584834,7112.293365116139,2019
+2004,40,"(35,40]",College,5179.707001795332,419.4336652058244,12.349287697861703,1822.6122871608864,2019
+2004,40,"(35,40]",College,5178.135727109515,419.4336652058244,12.345541516245486,1766.3791263658684,2019
+2004,40,"(35,40]",College,5179.707001795332,419.4336652058244,12.349287697861703,1911.6110552323157,2019
+2004,40,"(35,40]",College,5179.707001795332,419.4336652058244,12.349287697861703,1684.8541753576385,2019
+2004,40,"(35,40]",College,5179.707001795332,419.4336652058244,12.349287697861703,1765.288425562881,2019
+2004,32,"(30,35]",College,569.901328545781,241.98096069566793,2.3551494584837545,6204.495736413404,2019
+2004,32,"(30,35]",College,569.901328545781,241.98096069566793,2.3551494584837545,6896.078959019724,2019
+2004,32,"(30,35]",College,569.901328545781,241.98096069566793,2.3551494584837545,6134.464847236174,2019
+2004,32,"(30,35]",College,555.7598563734291,241.98096069566793,2.296709025270758,6104.41713987028,2019
+2004,32,"(30,35]",College,571.4726032315979,241.98096069566793,2.361642839951865,6416.4108460740035,2019
+2004,51,"(50,55]",HS,10393.824919210054,802.0862243859071,12.9584882562567,29.195066268336753,2019
+2004,51,"(50,55]",HS,9421.834398563735,811.7654628137341,11.606596769842682,30.022752239907987,2019
+2004,51,"(50,55]",HS,11884.17895870736,846.1267592325189,14.045388387771744,31.11940196881066,2019
+2004,51,"(50,55]",HS,9375.953177737883,910.816336058494,10.29401077533566,28.051432547955784,2019
+2004,51,"(50,55]",HS,9638.041795332136,939.6927307015104,10.25658864907578,29.23782194742078,2019
+2004,54,"(50,55]",HS,962.5628725314184,274.24508878842363,3.5098636653217246,4325.563186655728,2019
+2004,54,"(50,55]",HS,962.5628725314184,274.24508878842363,3.5098636653217246,4811.761779477368,2019
+2004,54,"(50,55]",HS,962.5628725314184,274.24508878842363,3.5098636653217246,4306.924794741421,2019
+2004,54,"(50,55]",HS,965.7054219030521,274.24508878842363,3.521322573794861,4277.94537102749,2019
+2004,54,"(50,55]",HS,964.1341472172352,274.24508878842363,3.5155931195582926,4491.875409332991,2019
+2004,38,"(35,40]",HS,16.51409694793537,109.69803551536945,0.1505414100658314,8004.139272171497,2019
+2004,38,"(35,40]",HS,16.51409694793537,109.69803551536945,0.1505414100658314,7551.786492545963,2019
+2004,38,"(35,40]",HS,14.942822262118492,109.69803551536945,0.1362177744744107,7970.441637205522,2019
+2004,38,"(35,40]",HS,18.085371633752246,109.69803551536945,0.16486504565725207,7936.480026540099,2019
+2004,38,"(35,40]",HS,16.51409694793537,109.69803551536945,0.1505414100658314,7791.26738225047,2019
+2004,55,"(50,55]",College,3233.039080789946,403.30160115944653,8.016430064981948,3643.933326921246,2019
+2004,55,"(50,55]",College,3234.626068222621,403.30160115944653,8.020365054151624,3596.5441441361945,2019
+2004,55,"(50,55]",College,3233.0705062836623,403.30160115944653,8.016507985559565,4050.5172030113586,2019
+2004,55,"(50,55]",College,3234.641780969479,403.30160115944653,8.020404014440432,3559.838066757247,2019
+2004,55,"(50,55]",College,3234.610355475763,403.30160115944653,8.020326093862815,3730.011843083447,2019
+2004,71,"(70,75]",College,19431.95403949731,2419.8096069566795,8.030364861612513,470.97551518181336,2019
+2004,71,"(70,75]",College,19431.95403949731,2419.8096069566795,8.030364861612513,471.28530853515394,2019
+2004,71,"(70,75]",College,19430.38276481149,2419.8096069566795,8.029715523465702,482.31635596667536,2019
+2004,71,"(70,75]",College,19433.525314183124,2419.8096069566795,8.031014199759325,467.89929129492793,2019
+2004,71,"(70,75]",College,19431.95403949731,2419.8096069566795,8.030364861612513,471.49876877069954,2019
+2004,49,"(45,50]",HS,192.7954039497307,56.46222416232251,3.4145910263022183,7062.359298015445,2019
+2004,49,"(45,50]",HS,192.7954039497307,56.46222416232251,3.4145910263022183,6676.913690374344,2019
+2004,49,"(45,50]",HS,192.7954039497307,54.84901775768473,3.515020174134636,7120.551559273355,2019
+2004,49,"(45,50]",HS,192.7954039497307,56.46222416232251,3.4145910263022183,7084.776081798443,2019
+2004,49,"(45,50]",HS,194.36667863554757,54.84901775768473,3.5436674453174772,6923.8971736833655,2019
+2004,53,"(50,55]",College,7652.107719928186,416.2072523965488,18.385330087034394,381.04984250447893,2019
+2004,53,"(50,55]",College,7034.596768402154,404.9148075640843,17.37302918290736,370.60140659493993,2019
+2004,53,"(50,55]",College,6673.203590664273,448.4713804893045,14.879887281510532,394.7208678784789,2019
+2004,53,"(50,55]",College,7644.2513464991025,446.8581740846667,17.106661105970364,376.7393246806256,2019
+2004,53,"(50,55]",College,6648.063195691203,417.82045880118665,15.911291693963172,387.3722544726221,2019
+2004,26,"(25,30]",College,66.07210053859964,68.72259283756969,0.9614320096269554,4580.97809228127,2019
+2004,26,"(25,30]",College,67.64337522441653,68.72259283756969,0.9842960288808665,4510.973654491583,2019
+2004,26,"(25,30]",College,67.64337522441653,68.72259283756969,0.9842960288808665,4570.868744609403,2019
+2004,26,"(25,30]",College,66.22922800718133,68.72259283756969,0.9637184115523466,4633.096433846275,2019
+2004,26,"(25,30]",College,67.64337522441653,68.72259283756969,0.9842960288808665,4563.337418683278,2019
+2004,55,"(50,55]",HS,19.79806104129264,24.19809606956679,0.8181660649819495,6582.148298559015,2019
+2004,55,"(50,55]",HS,11.108912028725314,24.19809606956679,0.4590820697954272,5828.585352216336,2019
+2004,55,"(50,55]",HS,11.29746499102334,24.19809606956679,0.46687412755716007,6596.6188711262,2019
+2004,55,"(50,55]",HS,11.266039497307002,24.19809606956679,0.46557545126353794,6464.183885869859,2019
+2004,55,"(50,55]",HS,11.29746499102334,24.19809606956679,0.46687412755716007,6320.608872827141,2019
+2004,49,"(45,50]",HS,261.7759339317774,64.52825618551145,4.056764422382671,8928.225255377522,2019
+2004,49,"(45,50]",HS,260.0475317773788,64.52825618551145,4.0299792238267145,8195.901453144423,2019
+2004,49,"(45,50]",HS,262.7186987432675,64.52825618551145,4.07137453068592,9004.447170801232,2019
+2004,49,"(45,50]",HS,262.09018886894074,64.52825618551145,4.061634458483754,8990.947691855003,2019
+2004,49,"(45,50]",HS,263.19008114901254,64.52825618551145,4.078679584837544,8672.381725357773,2019
+2004,35,"(30,35]",HS,8.374894075403951,48.39619213913358,0.17304861612515043,3854.834378476575,2019
+2004,35,"(30,35]",HS,8.374894075403951,48.39619213913358,0.17304861612515043,3838.3265305486593,2019
+2004,35,"(30,35]",HS,8.532021543985637,48.39619213913358,0.17629530685920577,3825.9399007379334,2019
+2004,35,"(30,35]",HS,8.359181328545782,48.39619213913358,0.1727239470517449,3838.288132529816,2019
+2004,35,"(30,35]",HS,8.359181328545782,48.39619213913358,0.1727239470517449,3817.6002074880635,2019
+2004,53,"(50,55]",College,812.6632675044883,170.99987889160533,4.7524201348681965,6882.0631580527815,2019
+2004,53,"(50,55]",College,814.2345421903052,170.99987889160533,4.761608882228731,7656.659634517824,2019
+2004,53,"(50,55]",College,812.6632675044883,170.99987889160533,4.7524201348681965,6793.151808627951,2019
+2004,53,"(50,55]",College,812.6632675044883,170.99987889160533,4.7524201348681965,6808.665031032824,2019
+2004,53,"(50,55]",College,814.2345421903052,170.99987889160533,4.761608882228731,7116.336559630328,2019
+2004,44,"(40,45]",HS,69.93743626570915,48.39619213913358,1.4451020457280384,8079.565507040317,2019
+2004,44,"(40,45]",HS,34.11237342908438,48.39619213913358,0.7048565583634175,7622.950024600721,2019
+2004,44,"(40,45]",HS,62.06535008976661,48.39619213913358,1.2824428399518653,8045.550325659531,2019
+2004,44,"(40,45]",HS,67.2505565529623,48.39619213913358,1.389583634175692,8011.268681029755,2019
+2004,44,"(40,45]",HS,63.95087971274686,48.39619213913358,1.3214031287605295,7864.687639384494,2019
+2004,58,"(55,60]",HS,827.7475044883304,91.95276506435381,9.00187725631769,6400.858347178216,2019
+2004,58,"(55,60]",HS,760.6540754039497,90.33955865971603,8.419944559051055,7079.644992747996,2019
+2004,58,"(55,60]",HS,785.0088330341114,117.76406753855836,6.665945304386531,6316.8500672236005,2019
+2004,58,"(55,60]",HS,760.8112028725313,85.49993944580267,8.898382943941147,6296.725169728289,2019
+2004,58,"(55,60]",HS,779.5093716337523,114.53765472928282,6.805703971119133,6618.921883086415,2019
+2004,61,"(60,65]",College,4212.901687612209,1613.2064046377861,2.6115081588447655,2297.053904389363,2019
+2004,61,"(60,65]",College,5001.3673249551175,1613.2064046377861,3.1002649819494588,2256.2888535992306,2019
+2004,61,"(60,65]",College,5813.716337522442,1613.2064046377861,3.603826714801444,2354.444881592243,2019
+2004,61,"(60,65]",College,4053.7315619389587,1613.2064046377861,2.512841227436823,2233.1573050868365,2019
+2004,61,"(60,65]",College,4996.653500897666,1613.2064046377861,3.0973429602888087,2263.443088105437,2019
+2004,30,"(25,30]",HS,17.912531418312387,101.63200349218052,0.17624892556300498,6554.867617919379,2019
+2004,30,"(25,30]",HS,17.284021543985638,100.01879708754274,0.17280773261907537,6521.565192211412,2019
+2004,30,"(25,30]",HS,17.441149012567326,119.37727394319619,0.14610108303249097,6561.435546403516,2019
+2004,30,"(25,30]",HS,18.069658886894075,87.11314585044046,0.20742746356464764,6591.011432885671,2019
+2004,30,"(25,30]",HS,16.341256732495513,91.95276506435381,0.1777135980746089,6577.300378156238,2019
+2004,54,"(50,55]",College,196.88071813285458,85.49993944580267,2.3027000885498263,6185.454568925886,2019
+2004,54,"(50,55]",College,195.15231597845604,104.8584163014561,1.8611030269369622,5847.86819102437,2019
+2004,54,"(50,55]",College,198.45199281867147,93.56597146899159,2.1209846881613346,6236.421331318588,2019
+2004,54,"(50,55]",College,194.82234829443445,108.08482911073166,1.8024948542486123,6205.087950890762,2019
+2004,54,"(50,55]",College,195.2151669658887,119.37727394319619,1.6352791491852863,6064.184729282674,2019
+2004,73,"(70,75]",College,140.5819461400359,43.55657292522023,3.2275713330659177,10406.287951337648,2019
+2004,73,"(70,75]",College,106.13960502692998,53.23581135304694,1.993763264413084,10393.887874086935,2019
+2004,73,"(70,75]",College,351.68270017953324,88.72635225507824,3.9636781096160156,10441.38162443167,2019
+2004,73,"(70,75]",College,103.81411849192101,51.62260494840914,2.011020532490975,10457.417572846472,2019
+2004,73,"(70,75]",College,114.71876481149013,45.16977932985802,2.5397238267148015,10445.280116926817,2019
+2004,58,"(55,60]",College,1644.9674685816876,158.09422765450302,10.404981212701689,5757.555353950035,2019
+2004,58,"(55,60]",College,1711.118132854578,158.09422765450302,10.823406763427394,6368.759737833652,2019
+2004,58,"(55,60]",College,1667.2795691202873,158.09422765450302,10.546112871141238,5678.904067253651,2019
+2004,58,"(55,60]",College,1712.8465350089768,158.09422765450302,10.834339497531868,5661.448555491848,2019
+2004,58,"(55,60]",College,1701.6904847396768,158.09422765450302,10.76377366831209,5952.769541179552,2019
+2004,45,"(40,45]",College,349.13723518850986,112.92444832464501,3.091777204744714,7516.264022202459,2019
+2004,45,"(40,45]",College,350.5513824057451,112.92444832464501,3.1043001547189277,6899.754145952214,2019
+2004,45,"(40,45]",College,348.9801077199282,114.53765472928282,3.046859205776173,7580.431762622939,2019
+2004,45,"(40,45]",College,348.9801077199282,112.92444832464501,3.09038576585869,7569.067169434515,2019
+2004,45,"(40,45]",College,349.13723518850986,112.92444832464501,3.091777204744714,7300.881069264253,2019
+2004,77,"(75,80]",NoHS,194.83806104129266,61.785805297627206,3.153443741693452,11279.505757158255,2019
+2004,77,"(75,80]",NoHS,221.2669012567325,107.4718106769693,2.0588366369093745,10232.751705996958,2019
+2004,77,"(75,80]",NoHS,213.37910233393177,63.8991056877027,3.339312812557818,11272.809395035843,2019
+2004,77,"(75,80]",NoHS,314.2549371633752,125.02349635942842,2.513567019913823,11060.96743452437,2019
+2004,77,"(75,80]",NoHS,250.9325673249551,88.67795606293909,2.829706259206696,10952.44857273483,2019
+2004,33,"(30,35]",HS,119.18118491921005,40.33016011594465,2.955137906137184,6673.909311930588,2019
+2004,33,"(30,35]",HS,119.18118491921005,40.33016011594465,2.955137906137184,6514.2668216615475,2019
+2004,33,"(30,35]",HS,119.18118491921005,40.33016011594465,2.955137906137184,6653.597383558003,2019
+2004,33,"(30,35]",HS,119.18118491921005,40.33016011594465,2.955137906137184,6641.976067192227,2019
+2004,33,"(30,35]",HS,118.86692998204668,40.33016011594465,2.9473458483754515,6583.7534114963155,2019
+2004,75,"(70,75]",HS,596.4558707360861,53.23581135304694,11.204034569521934,8145.110549263662,2019
+2004,75,"(70,75]",HS,594.7274685816876,53.23581135304694,11.171567662181381,9054.330156716607,2019
+2004,75,"(70,75]",HS,596.4558707360861,53.23581135304694,11.204034569521934,8063.485465630333,2019
+2004,75,"(70,75]",HS,596.4558707360861,53.23581135304694,11.204034569521934,8037.457337408552,2019
+2004,75,"(70,75]",HS,594.8845960502694,53.23581135304694,11.174519199212341,8425.40096428715,2019
+2004,26,"(25,30]",HS,38.85762298025135,108.08482911073166,0.3595104262083087,8044.877029139723,2019
+2004,26,"(25,30]",HS,38.24482585278277,108.08482911073166,0.3538408319413762,7852.440461183335,2019
+2004,26,"(25,30]",HS,34.94514901256732,108.08482911073166,0.3233122474271243,8020.392584064926,2019
+2004,26,"(25,30]",HS,36.045041292639134,108.08482911073166,0.33348844226520824,8006.383993790514,2019
+2004,26,"(25,30]",HS,35.90362657091562,108.08482911073166,0.3321800743574546,7936.201124426947,2019
+2004,34,"(30,35]",HS,-6.866470377019748,85.49993944580267,-0.08030965193106736,6589.283925376529,2019
+2004,34,"(30,35]",HS,-8.280617594254938,85.49993944580267,-0.0968493971800286,6431.665707062353,2019
+2004,34,"(30,35]",HS,-8.296330341113105,85.49993944580267,-0.09703317212723928,6569.229552914559,2019
+2004,34,"(30,35]",HS,-8.610585278276481,85.49993944580267,-0.1007086710714529,6557.755595217252,2019
+2004,34,"(30,35]",HS,-8.453457809694793,85.49993944580267,-0.09887092159934609,6500.2712046841125,2019
+2004,63,"(60,65]",College,29138.032028725316,3226.4128092755723,9.031092346570398,286.3874390981662,2019
+2004,63,"(60,65]",College,29139.60330341113,3226.4128092755723,9.031579350180506,278.4357808814075,2019
+2004,63,"(60,65]",College,29139.60330341113,3226.4128092755723,9.031579350180506,295.230733347006,2019
+2004,63,"(60,65]",College,29138.032028725316,3226.4128092755723,9.031092346570398,278.96804002249337,2019
+2004,63,"(60,65]",College,29138.032028725316,3226.4128092755723,9.031092346570398,290.4419445755936,2019
+2004,40,"(35,40]",College,1007.9727109515261,96.79238427826716,10.413760529482552,5590.92768148301,2019
+2004,40,"(35,40]",College,1008.1298384201077,96.79238427826716,10.41538387484958,6207.5341440903885,2019
+2004,40,"(35,40]",College,1008.1298384201077,96.79238427826716,10.41538387484958,5518.747588745444,2019
+2004,40,"(35,40]",College,1009.7011131059246,96.79238427826716,10.431617328519856,5510.532638000345,2019
+2004,40,"(35,40]",College,1008.1298384201077,96.79238427826716,10.41538387484958,5758.185280984128,2019
+2004,51,"(50,55]",College,2546.250628366248,290.37715283480145,8.768770557561172,538.344399186677,2019
+2004,51,"(50,55]",College,2547.664775583483,290.37715283480145,8.773640593662256,546.1733248017433,2019
+2004,51,"(50,55]",College,2547.8219030520645,290.37715283480145,8.774181708784598,535.0079719048601,2019
+2004,51,"(50,55]",College,2547.664775583483,290.37715283480145,8.773640593662256,546.4850325668089,2019
+2004,51,"(50,55]",College,2546.093500897666,290.37715283480145,8.76822944243883,555.0669145978651,2019
+2004,77,"(75,80]",HS,205.99411131059244,24.19809606956679,8.51282310469314,8812.415611630273,2019
+2004,77,"(75,80]",HS,207.56538599640933,24.19809606956679,8.577756919374249,9094.54356572968,2019
+2004,77,"(75,80]",HS,207.56538599640933,24.19809606956679,8.577756919374249,8766.80519149373,2019
+2004,77,"(75,80]",HS,205.99411131059244,25.81130247420457,7.980771660649821,8783.049523725369,2019
+2004,77,"(75,80]",HS,207.56538599640933,25.81130247420457,8.04164711191336,8900.437164020397,2019
+2004,47,"(45,50]",HS,829.8687253141832,167.77346608232975,4.946364551513469,9527.621141191357,2019
+2004,47,"(45,50]",HS,845.5814721723519,169.38667248696757,4.992018910091112,10442.851053073717,2019
+2004,47,"(45,50]",HS,875.5613931777378,150.02819563131413,5.835978960444081,9406.18789852356,2019
+2004,47,"(45,50]",HS,1079.7799640933574,145.18857641740072,7.437086241476135,9428.685184767575,2019
+2004,47,"(45,50]",HS,986.9961938958708,146.80178282203855,6.723325663506168,9855.541043307177,2019
+2004,49,"(45,50]",College,2160.1884380610413,127.4433059663851,16.950191472832792,3901.029541105019,2019
+2004,49,"(45,50]",College,2160.1884380610413,127.4433059663851,16.950191472832792,4087.693206920004,2019
+2004,49,"(45,50]",College,2160.1884380610413,127.4433059663851,16.950191472832792,3862.4662331720006,2019
+2004,49,"(45,50]",College,2158.6171633752247,127.4433059663851,16.937862267513598,4168.04711512099,2019
+2004,49,"(45,50]",College,2160.1884380610413,127.4433059663851,16.950191472832792,3963.9866326987294,2019
+2004,52,"(50,55]",HS,619.7107360861759,133.89613158493626,4.6282945500413195,7761.8127471157495,2019
+2004,52,"(50,55]",HS,621.2820107719929,133.89613158493626,4.640029576790918,8638.12427401041,2019
+2004,52,"(50,55]",HS,622.8532854578096,133.89613158493626,4.651764603540515,7663.633308403534,2019
+2004,52,"(50,55]",HS,622.8532854578096,133.89613158493626,4.651764603540515,7681.88277198552,2019
+2004,52,"(50,55]",HS,619.7107360861759,133.89613158493626,4.6282945500413195,8028.486155761289,2019
+2004,71,"(70,75]",College,10684.667863554758,446.8581740846667,23.9106465612741,3643.933326921246,2019
+2004,71,"(70,75]",College,11866.266427289049,408.14122037335994,29.073923031920202,3596.5441441361945,2019
+2004,71,"(70,75]",College,12402.071095152603,427.49969722901335,29.010713166678016,4050.5172030113586,2019
+2004,71,"(70,75]",College,14023.62657091562,417.82045880118665,33.563762318274954,3559.838066757247,2019
+2004,71,"(70,75]",College,7943.264919210054,462.99023813104463,17.15644146467251,3730.011843083447,2019
+2004,75,"(70,75]",HS,74.16416517055656,51.62260494840914,1.4366606498194952,12086.14741207712,2019
+2004,75,"(70,75]",HS,71.0216157989228,51.62260494840914,1.375785198555957,11176.064232732433,2019
+2004,75,"(70,75]",HS,74.00703770197487,51.62260494840914,1.433616877256318,12034.710284404153,2019
+2004,75,"(70,75]",HS,72.12150807899461,51.62260494840914,1.3970916064981953,11846.067808675018,2019
+2004,75,"(70,75]",HS,74.32129263913824,51.62260494840914,1.4397044223826718,11756.881431965006,2019
+2004,32,"(30,35]",HS,6.127971274685817,8.066032023188932,0.7597256317689529,5428.947764402308,2019
+2004,32,"(30,35]",HS,6.127971274685817,8.066032023188932,0.7597256317689529,5444.454302131555,2019
+2004,32,"(30,35]",HS,6.127971274685817,8.066032023188932,0.7597256317689529,5461.7705693368825,2019
+2004,32,"(30,35]",HS,6.127971274685817,8.066032023188932,0.7597256317689529,5458.488118008266,2019
+2004,32,"(30,35]",HS,6.127971274685817,8.066032023188932,0.7597256317689529,5467.989750693898,2019
+2004,60,"(55,60]",HS,573.9552172351885,158.09422765450302,3.6304628306196127,6432.397371876722,2019
+2004,60,"(55,60]",HS,577.254894075404,143.57537001276296,4.020570478237943,7112.443317950839,2019
+2004,60,"(55,60]",HS,561.5421472172352,146.80178282203855,3.825172531439679,6303.082286598213,2019
+2004,60,"(55,60]",HS,561.5421472172352,151.6414020359519,3.70309255703203,6333.756547543233,2019
+2004,60,"(55,60]",HS,558.2424703770197,150.02819563131413,3.720917045145762,6614.779757460293,2019
+2004,47,"(45,50]",HS,62.33246678635548,74.20749461333816,0.8399753570867997,8575.468517227851,2019
+2004,47,"(45,50]",HS,62.33246678635548,72.59428820870036,0.8586414761331731,7817.929473360049,2019
+2004,47,"(45,50]",HS,62.678147217235185,74.20749461333816,0.8446336524878355,8646.700882187866,2019
+2004,47,"(45,50]",HS,62.002499102333935,72.59428820870036,0.8540961091054956,8614.081933280755,2019
+2004,47,"(45,50]",HS,61.49969120287253,74.20749461333816,0.8287530999843039,8297.290085044879,2019
+2004,50,"(45,50]",College,8907.241938958708,600.1127825252565,14.842613252591125,2297.053904389363,2019
+2004,50,"(45,50]",College,8918.240861759426,713.0372308499014,12.507398598428543,2256.2888535992306,2019
+2004,50,"(45,50]",College,8921.54053859964,627.5372914040987,14.216749603259306,2354.444881592243,2019
+2004,50,"(45,50]",College,8913.684165170556,864.6786328858533,10.308667088744006,2233.1573050868365,2019
+2004,50,"(45,50]",College,8913.527037701975,866.291839290491,10.289288936396213,2263.443088105437,2019
+2004,46,"(45,50]",College,35.636509874326755,120.99048034783397,0.29453978339350184,3830.815086298519,2019
+2004,46,"(45,50]",College,20.55227289048474,120.99048034783397,0.16986685920577616,3778.1985831489937,2019
+2004,46,"(45,50]",College,32.98105565529623,120.99048034783397,0.2725921540312876,3890.327303031726,2019
+2004,46,"(45,50]",College,27.78013644524237,120.99048034783397,0.2296059687123947,3862.7559656549142,2019
+2004,46,"(45,50]",College,6.740768402154399,120.99048034783397,0.05571321299638989,3847.665042183973,2019
+2004,60,"(55,60]",College,16977.622980251344,464.6034445356824,36.54218060569595,1545.1197705861973,2019
+2004,60,"(55,60]",College,17016.90484739677,566.235448027863,30.052701410102134,1528.0820776995733,2019
+2004,60,"(55,60]",College,17048.330341113106,424.27328441973776,40.182427145818174,1593.7300245618753,2019
+2004,60,"(55,60]",College,17134.750448833034,496.86757262843815,34.48554784565614,1454.1779988928506,2019
+2004,60,"(55,60]",College,16977.622980251344,524.2920815072805,32.381993890585946,1486.7686949957745,2019
+2004,53,"(50,55]",College,2840.078994614004,317.80166171364385,8.93663985046455,139.72716131126984,2019
+2004,53,"(50,55]",College,2580.8186714542194,298.4431848579905,8.647604644355546,141.91069664362868,2019
+2004,53,"(50,55]",College,3259.6093357271097,311.34883609509274,10.46931594994482,139.64253578306312,2019
+2004,53,"(50,55]",College,2808.653500897666,295.21677204871486,9.513868339547454,145.49705879145466,2019
+2004,53,"(50,55]",College,2984.6362657091563,321.02807452291944,9.297119169856503,148.63774279107813,2019
+2004,54,"(50,55]",College,14540.575942549372,2145.5645181682557,6.777039711191335,434.9010702018885,2019
+2004,54,"(50,55]",College,14540.575942549372,3855.5633070843087,3.7713233539265594,426.7109999482765,2019
+2004,54,"(50,55]",College,14540.575942549372,2064.9041979363665,7.041767824909747,451.31766095998285,2019
+2004,54,"(50,55]",College,14540.575942549372,2339.1492867247903,6.216181252334121,430.03415674536683,2019
+2004,54,"(50,55]",College,14540.575942549372,2064.9041979363665,7.041767824909747,439.67005226145875,2019
+2004,56,"(55,60]",HS,26.66453141831239,74.20749461333816,0.359323967979909,6081.5440889554275,2019
+2004,56,"(55,60]",HS,26.994499102333933,75.82070101797595,0.3560307243259851,5832.200938654305,2019
+2004,56,"(55,60]",HS,26.680244165170556,74.20749461333816,0.35953570867995605,6050.921707163794,2019
+2004,56,"(55,60]",HS,25.407511669658888,74.20749461333816,0.3423847119761419,6109.176142752177,2019
+2004,56,"(55,60]",HS,25.2503842010772,74.20749461333816,0.34026730497567104,5978.433297131043,2019
+2004,46,"(45,50]",HS,9.427648114901256,46.782985734495796,0.20151873521722893,4143.72522920528,2019
+2004,46,"(45,50]",HS,9.27052064631957,46.782985734495796,0.19816008963027512,4134.452736552769,2019
+2004,46,"(45,50]",HS,9.427648114901256,46.782985734495796,0.20151873521722893,4164.083671004378,2019
+2004,46,"(45,50]",HS,9.27052064631957,46.782985734495796,0.19816008963027512,4174.320864509548,2019
+2004,46,"(45,50]",HS,9.27052064631957,46.782985734495796,0.19816008963027512,4133.167451381669,2019
+2004,61,"(60,65]",College,12191.52028725314,725.9428820870038,16.794048937023664,2012.623303238918,2019
+2004,61,"(60,65]",College,12191.52028725314,725.9428820870038,16.794048937023664,1959.6022200733448,2019
+2004,61,"(60,65]",College,12189.949012567326,725.9428820870038,16.791884476534296,2059.189363556804,2019
+2004,61,"(60,65]",College,12191.52028725314,725.9428820870038,16.794048937023664,1956.3984902766326,2019
+2004,61,"(60,65]",College,12189.949012567326,725.9428820870038,16.791884476534296,1994.2114487899507,2019
+2004,31,"(30,35]",College,39.12473967684022,64.52825618551145,0.6063194945848376,6430.775843533042,2019
+2004,31,"(30,35]",College,37.55346499102334,64.52825618551145,0.5819693140794223,6386.455326876245,2019
+2004,31,"(30,35]",College,37.55346499102334,64.52825618551145,0.5819693140794223,6432.487761946877,2019
+2004,31,"(30,35]",College,37.55346499102334,64.52825618551145,0.5819693140794223,6424.687900773228,2019
+2004,31,"(30,35]",College,37.55346499102334,64.52825618551145,0.5819693140794223,6421.392780512912,2019
+2004,30,"(25,30]",HS,20.81938958707361,67.75466899478702,0.3072760873302389,5031.689754732827,2019
+2004,30,"(25,30]",HS,14.534290843806104,67.75466899478702,0.21451349492865737,5009.439179335872,2019
+2004,30,"(25,30]",HS,17.833967684021545,67.75466899478702,0.2632138559394877,5070.9977710192525,2019
+2004,30,"(25,30]",HS,14.534290843806104,67.75466899478702,0.21451349492865737,5061.566898619107,2019
+2004,30,"(25,30]",HS,23.019174147217235,67.75466899478702,0.33974299467079244,5074.403111241185,2019
+2004,58,"(55,60]",College,657.0913608617594,340.3865513785729,1.9304269166937564,5121.857145277382,2019
+2004,58,"(55,60]",College,681.6189587073609,482.3487149866981,1.4131248566219528,5665.01058535673,2019
+2004,58,"(55,60]",College,885.161881508079,180.67911731943207,4.899082387828777,5054.635159473294,2019
+2004,58,"(55,60]",College,877.5569120287253,438.7921420614778,1.9999376194521128,5038.531561417609,2019
+2004,58,"(55,60]",College,1225.9085098743267,206.49041979363656,5.936878384476536,5296.347849326199,2019
+2004,48,"(45,50]",College,808.7350807899462,322.6412809275572,2.506607581227437,6596.666566661438,2019
+2004,48,"(45,50]",College,805.5925314183123,322.6412809275572,2.4968675090252708,6741.682071270336,2019
+2004,48,"(45,50]",College,805.7496588868942,322.6412809275572,2.4973545126353796,6460.456464655187,2019
+2004,48,"(45,50]",College,808.8922082585278,322.6412809275572,2.5070945848375454,6342.449813502404,2019
+2004,48,"(45,50]",College,807.3209335727109,322.6412809275572,2.502224548736462,6613.65060504547,2019
+2004,55,"(50,55]",College,66.93630161579893,51.62260494840914,1.2966471119133578,6051.866505244027,2019
+2004,55,"(50,55]",College,165.14096947935369,51.62260494840914,3.199004963898918,5917.514915955553,2019
+2004,55,"(50,55]",College,50.437917414721724,51.62260494840914,0.9770509927797837,6059.5685322084355,2019
+2004,55,"(50,55]",College,328.7106642728905,51.62260494840914,6.367572202166067,5953.337378694652,2019
+2004,55,"(50,55]",College,146.1285457809695,51.62260494840914,2.830708483754514,5951.952147907325,2019
+2004,34,"(30,35]",College,276.5443447037702,64.52825618551145,4.285631768953068,6215.5030910953565,2019
+2004,34,"(30,35]",College,276.7014721723519,64.52825618551145,4.2880667870036095,6166.709759817987,2019
+2004,34,"(30,35]",College,276.85859964093356,64.52825618551145,4.290501805054151,6244.374418740087,2019
+2004,34,"(30,35]",College,276.5443447037702,66.14146259014923,4.181104164832262,6289.033374206608,2019
+2004,34,"(30,35]",College,276.7014721723519,64.52825618551145,4.2880667870036095,6245.939462846878,2019
+2004,59,"(55,60]",College,364.4414506283663,225.84889664929003,1.6136516761217126,6388.490561786268,2019
+2004,59,"(55,60]",College,362.7601867145422,225.84889664929003,1.6062074780814857,6528.929702243759,2019
+2004,59,"(55,60]",College,361.14177378815083,225.84889664929003,1.5990415678184633,6256.578945169985,2019
+2004,59,"(55,60]",College,361.2831885098743,225.84889664929003,1.5996677153171739,6142.296319316562,2019
+2004,59,"(55,60]",College,361.3303267504489,225.84889664929003,1.5998764311500777,6404.938622002885,2019
+2004,58,"(55,60]",College,826.9618671454219,129.0565123710229,6.407749999999999,5542.984962653454,2019
+2004,58,"(55,60]",College,826.9618671454219,129.0565123710229,6.407749999999999,6131.411213154106,2019
+2004,58,"(55,60]",College,825.2334649910233,129.0565123710229,6.39435740072202,5467.264822307379,2019
+2004,58,"(55,60]",College,826.6476122082585,129.0565123710229,6.4053149819494575,5450.459835943728,2019
+2004,58,"(55,60]",College,827.1189946140036,129.0565123710229,6.40896750902527,5730.923981523239,2019
+2004,48,"(45,50]",HS,46.35260323159785,145.18857641740072,0.31925792218210997,3795.353981406639,2019
+2004,48,"(45,50]",HS,46.195475763016155,145.18857641740072,0.31817569193742484,3715.1874696233485,2019
+2004,48,"(45,50]",HS,46.195475763016155,145.18857641740072,0.31817569193742484,3828.028178767648,2019
+2004,48,"(45,50]",HS,46.03834829443447,145.18857641740072,0.3170934616927397,3825.2857497859914,2019
+2004,48,"(45,50]",HS,46.195475763016155,145.18857641740072,0.31817569193742484,3778.8638035550857,2019
+2004,34,"(30,35]",HS,20.897953321364454,56.46222416232251,0.3701227436823106,869.6737016594514,2019
+2004,34,"(30,35]",HS,24.511885098743267,56.46222416232251,0.4341289324394018,915.092039037819,2019
+2004,34,"(30,35]",HS,20.269443447037702,56.46222416232251,0.35899123259412075,868.2481622714328,2019
+2004,34,"(30,35]",HS,22.31210053859964,56.46222416232251,0.3951686436307375,862.7784713762346,2019
+2004,34,"(30,35]",HS,20.269443447037702,56.46222416232251,0.35899123259412075,864.6970613061906,2019
+2004,48,"(45,50]",HS,35.46366965888689,24.19809606956679,1.4655561973525872,4155.1019417047055,2019
+2004,48,"(45,50]",HS,36.563561938958706,24.19809606956679,1.5110098676293622,4067.336734453341,2019
+2004,48,"(45,50]",HS,34.83515978456014,24.19809606956679,1.4395826714801443,4190.873208775834,2019
+2004,48,"(45,50]",HS,36.40643447037702,24.19809606956679,1.5045164861612517,4187.870834809533,2019
+2004,48,"(45,50]",HS,33.42101256732496,24.19809606956679,1.381142238267148,4137.04871917376,2019
+2004,46,"(45,50]",College,14094.333931777379,887.2635225507823,15.885172300623564,223.7102309778029,2019
+2004,46,"(45,50]",College,14092.762657091562,887.2635225507823,15.883401378404988,225.25812166915156,2019
+2004,46,"(45,50]",College,14092.762657091562,887.2635225507823,15.883401378404988,231.86971412020574,2019
+2004,46,"(45,50]",College,14092.762657091562,887.2635225507823,15.883401378404988,216.1267175757725,2019
+2004,46,"(45,50]",College,14094.333931777379,887.2635225507823,15.885172300623564,219.15664813608882,2019
+2004,66,"(65,70]",College,2.435475763016158,17.74527045101565,0.13724647193961273,7914.599238301465,2019
+2004,66,"(65,70]",College,2.435475763016158,43.55657292522023,0.05591522930873111,7239.178371414486,2019
+2004,66,"(65,70]",College,2.435475763016158,41.94336652058244,0.05806581505137462,7945.031361705752,2019
+2004,66,"(65,70]",College,2.435475763016158,43.55657292522023,0.05591522930873111,8070.221457327869,2019
+2004,66,"(65,70]",College,2.435475763016158,19.358476855653432,0.125809265944645,8101.189867200318,2019
+2004,54,"(50,55]",College,250.46118491921007,224.23569024465226,1.1169550424642236,302.3822747359757,2019
+2004,54,"(50,55]",College,250.46118491921007,224.23569024465226,1.1169550424642236,314.5761973950969,2019
+2004,54,"(50,55]",College,250.3040574506284,224.23569024465226,1.1162543178453628,298.4106793890286,2019
+2004,54,"(50,55]",College,250.46118491921007,224.23569024465226,1.1169550424642236,292.0929143541031,2019
+2004,54,"(50,55]",College,250.3040574506284,224.23569024465226,1.1162543178453628,307.45911325805184,2019
+2004,61,"(60,65]",College,368.46391382405744,45.16977932985802,8.157310469314078,4918.856111751717,2019
+2004,61,"(60,65]",College,368.46391382405744,45.33109997032179,8.128280894690185,4799.280832390313,2019
+2004,61,"(60,65]",College,368.46391382405744,45.33109997032179,8.128280894690185,4911.762755026723,2019
+2004,61,"(60,65]",College,368.46391382405744,45.33109997032179,8.128280894690185,4937.132707459273,2019
+2004,61,"(60,65]",College,370.03518850987433,45.33109997032179,8.162943073345582,4890.766536685819,2019
+2004,57,"(55,60]",College,14249.104488330342,1734.1968849856205,8.216543699101669,268.61189594916993,2019
+2004,57,"(55,60]",College,14248.947360861759,1734.1968849856205,8.216453093778858,271.3334562952235,2019
+2004,57,"(55,60]",College,14248.947360861759,1734.1968849856205,8.216453093778858,274.8408872923613,2019
+2004,57,"(55,60]",College,14248.947360861759,1734.1968849856205,8.216453093778858,263.31753979786333,2019
+2004,57,"(55,60]",College,14247.533213644525,1734.1968849856205,8.21563764587356,266.0920685568954,2019
+2004,30,"(25,30]",HS,21.05508078994614,43.55657292522023,0.48339617595935275,6450.035750124562,2019
+2004,30,"(25,30]",HS,20.897953321364454,43.55657292522023,0.47978874181040243,6252.441921567358,2019
+2004,30,"(25,30]",HS,19.326678635547577,43.55657292522023,0.4437144003208985,6428.93450782612,2019
+2004,30,"(25,30]",HS,19.326678635547577,43.55657292522023,0.4437144003208985,6403.094868249616,2019
+2004,30,"(25,30]",HS,20.897953321364454,43.55657292522023,0.47978874181040243,6338.121313204179,2019
+2004,32,"(30,35]",HS,89.20126391382406,80.6603202318893,1.1058877978339352,6184.170469003812,2019
+2004,32,"(30,35]",HS,102.44710951526032,80.6603202318893,1.270105415162455,6025.308989595438,2019
+2004,32,"(30,35]",HS,90.81967684021544,80.6603202318893,1.1259523465703971,6208.567257345468,2019
+2004,32,"(30,35]",HS,91.76244165170557,80.6603202318893,1.1376404332129966,6181.3997786559185,2019
+2004,32,"(30,35]",HS,110.4606104129264,80.91843325663135,1.365085876818729,6164.022527243871,2019
+2004,37,"(35,40]",NoHS,1.0998922800718134,24.19809606956679,0.04545367027677497,5039.019700832196,2019
+2004,37,"(35,40]",NoHS,1.0998922800718134,24.19809606956679,0.04545367027677497,5104.973775797331,2019
+2004,37,"(35,40]",NoHS,1.0998922800718134,24.19809606956679,0.04545367027677497,5017.852102799308,2019
+2004,37,"(35,40]",NoHS,1.0998922800718134,24.19809606956679,0.04545367027677497,5036.740363772183,2019
+2004,37,"(35,40]",NoHS,1.0998922800718134,24.19809606956679,0.04545367027677497,5051.302609802204,2019
+2004,60,"(55,60]",HS,455.70108438061044,167.77346608232975,2.716168980838656,5383.529562828579,2019
+2004,60,"(55,60]",HS,457.11523159784565,167.77346608232975,2.724597889475146,5955.028518077083,2019
+2004,60,"(55,60]",HS,455.55966965888695,167.77346608232975,2.715326089975007,5309.9876685602085,2019
+2004,60,"(55,60]",HS,455.5439569120287,167.77346608232975,2.7152324354346016,5293.666112304652,2019
+2004,60,"(55,60]",HS,455.5439569120287,167.77346608232975,2.7152324354346016,5566.062128027914,2019
+2004,51,"(50,55]",HS,-8.516308797127468,32.264128092755726,-0.2639559566787003,5422.77395104417,2019
+2004,51,"(50,55]",HS,-8.280617594254938,30.650921688117936,-0.27015884476534296,5425.487619063261,2019
+2004,51,"(50,55]",HS,-5.923705565529623,37.10374730666908,-0.15965248783550465,5431.328963939529,2019
+2004,51,"(50,55]",HS,-7.589256732495512,24.19809606956679,-0.3136303249097473,5444.649805171424,2019
+2004,51,"(50,55]",HS,-8.202053859964094,37.10374730666908,-0.2210572908491603,5421.431691244823,2019
+2004,25,"(20,25]",HS,-12.475921005385997,30.650921688117936,-0.40703249097472927,5038.638775980524,2019
+2004,25,"(20,25]",HS,-12.475921005385997,30.650921688117936,-0.40703249097472927,5113.13328200273,2019
+2004,25,"(20,25]",HS,-12.475921005385997,30.650921688117936,-0.40703249097472927,5059.393378943298,2019
+2004,25,"(20,25]",HS,-12.475921005385997,30.650921688117936,-0.40703249097472927,5066.028565845857,2019
+2004,25,"(20,25]",HS,-12.475921005385997,30.650921688117936,-0.40703249097472927,5090.581945149745,2019
+2004,30,"(25,30]",HS,72.12150807899461,41.94336652058244,1.7194973618439322,7561.166274898666,2019
+2004,30,"(25,30]",HS,73.5356552962298,41.94336652058244,1.753212996389892,7509.055176022713,2019
+2004,30,"(25,30]",HS,71.96438061041293,46.782985734495796,1.5382596788248477,7563.1791113108,2019
+2004,30,"(25,30]",HS,67.40768402154399,40.33016011594465,1.6713963898916968,7554.008204302054,2019
+2004,30,"(25,30]",HS,73.5356552962298,41.94336652058244,1.753212996389892,7550.133873616263,2019
+2004,31,"(30,35]",NoHS,-1.1627432675044884,12.421689315710953,-0.0936058886961414,5776.292247256317,2019
+2004,31,"(30,35]",NoHS,-1.1627432675044884,32.264128092755726,-0.03603826714801444,5789.603827322376,2019
+2004,31,"(30,35]",NoHS,-1.1627432675044884,13.712254439421182,-0.08479592270121046,5772.338443053863,2019
+2004,31,"(30,35]",NoHS,-1.1627432675044884,24.19809606956679,-0.04805102286401926,5819.192298348525,2019
+2004,31,"(30,35]",NoHS,-1.1627432675044884,9.840559068290496,-0.11815825294430964,5790.077675055574,2019
+2004,53,"(50,55]",College,124249.48854578097,10421.313373960096,11.922632406031006,28.051123467131287,2019
+2004,53,"(50,55]",College,132745.84215439856,15212.536395734322,8.726082140491787,29.24567987686131,2019
+2004,53,"(50,55]",College,127129.47791741473,8598.3901367194,14.785265136378108,29.209571447481505,2019
+2004,53,"(50,55]",College,126204.78276481149,7420.749461333816,17.00701302778214,27.62633965252826,2019
+2004,53,"(50,55]",College,130294.65364452424,6791.59896352508,19.18468012382414,28.30095239983563,2019
+2004,44,"(40,45]",NoHS,-0.8642010771992819,80.6603202318893,-0.010714079422382672,9520.900835688726,2019
+2004,44,"(40,45]",NoHS,-0.8642010771992819,80.6603202318893,-0.010714079422382672,9076.67269602114,2019
+2004,44,"(40,45]",NoHS,-0.8642010771992819,80.6603202318893,-0.010714079422382672,9510.116439656307,2019
+2004,44,"(40,45]",NoHS,-0.7070736086175943,80.6603202318893,-0.00876606498194946,9453.090159655836,2019
+2004,44,"(40,45]",NoHS,-1.0213285457809695,80.6603202318893,-0.012662093862815886,9344.354205607122,2019
+2004,65,"(60,65]",College,114978.81077199282,16486.969455398175,6.973920287960889,19.85074517363883,2019
+2004,65,"(60,65]",College,116739.10980251347,17083.855825114155,6.833299870799713,20.80433162821725,2019
+2004,65,"(60,65]",College,123834.67202872531,18680.930165705562,6.628935011815467,20.025321777052817,2019
+2004,65,"(60,65]",College,115528.28552962298,18374.420948824383,6.287451770664622,19.550079502266545,2019
+2004,65,"(60,65]",College,115159.35023339318,16486.969455398175,6.984870721385829,19.624724009168094,2019
+2004,27,"(25,30]",NoHS,64.89364452423698,93.56597146899159,0.6935603137059628,6634.0549887114485,2019
+2004,27,"(25,30]",NoHS,64.0294434470377,93.56597146899159,0.68432403834184,6588.333484528563,2019
+2004,27,"(25,30]",NoHS,64.81508078994615,93.56597146899159,0.6927206523092245,6635.821021484153,2019
+2004,27,"(25,30]",NoHS,63.95087971274686,93.56597146899159,0.6834843769451014,6627.774603883952,2019
+2004,27,"(25,30]",NoHS,64.42226211849191,93.56597146899159,0.6885223453255321,6624.375323683054,2019
+2004,67,"(65,70]",HS,318.96876122082585,45.16977932985802,7.061552346570396,6896.436659265186,2019
+2004,67,"(65,70]",HS,318.8116337522442,45.16977932985802,7.058073749355337,6362.31647562239,2019
+2004,67,"(65,70]",HS,318.8116337522442,45.16977932985802,7.058073749355337,7003.757596254947,2019
+2004,67,"(65,70]",HS,320.382908438061,45.16977932985802,7.0928597215059295,6939.147758042331,2019
+2004,67,"(65,70]",HS,320.54003590664274,45.16977932985802,7.096338318720989,6847.49315520041,2019
+2004,34,"(30,35]",HS,-7.542118491921006,88.72635225507824,-0.0850042664916311,5149.183157579873,2019
+2004,34,"(30,35]",HS,-7.542118491921006,88.72635225507824,-0.0850042664916311,5222.095149353651,2019
+2004,34,"(30,35]",HS,-7.542118491921006,88.72635225507824,-0.0850042664916311,5136.304789371945,2019
+2004,34,"(30,35]",HS,-7.542118491921006,88.72635225507824,-0.0850042664916311,5187.8505060989155,2019
+2004,34,"(30,35]",HS,-7.542118491921006,88.72635225507824,-0.0850042664916311,5177.144199992997,2019
+2004,71,"(70,75]",College,9437.075763016159,861.4522200765778,10.954845252099137,3643.933326921246,2019
+2004,71,"(70,75]",College,9327.086535008977,861.4522200765778,10.827166403007071,3596.5441441361945,2019
+2004,71,"(70,75]",College,9641.341472172351,861.4522200765778,11.191963114698684,4039.3151030698646,2019
+2004,71,"(70,75]",College,10584.106283662477,861.4522200765778,12.286353249773523,3559.838066757247,2019
+2004,71,"(70,75]",College,9493.641651705566,861.4522200765778,11.020508660203626,3730.011843083447,2019
+2004,49,"(45,50]",College,251097.55116696592,1438.9801129369055,174.49688769811075,25.775175214369778,2019
+2004,49,"(45,50]",College,268055.21895870735,1438.9801129369055,186.28139232002067,25.95652340428349,2019
+2004,49,"(45,50]",College,255330.40804308795,1438.9801129369055,177.4384550193456,25.83693861674007,2019
+2004,49,"(45,50]",College,275431.4108438061,1438.9801129369055,191.40737830049696,26.20227943435028,2019
+2004,49,"(45,50]",College,250622.93193536805,1438.9801129369055,174.16705740557865,25.992652658448435,2019
+2004,38,"(35,40]",HS,15.084236983842011,40.33016011594465,0.3740187725631769,4766.456052410883,2019
+2004,38,"(35,40]",HS,15.084236983842011,40.33016011594465,0.3740187725631769,4761.74822306843,2019
+2004,38,"(35,40]",HS,15.084236983842011,40.33016011594465,0.3740187725631769,4806.172468321658,2019
+2004,38,"(35,40]",HS,14.769982046678635,40.33016011594465,0.36622671480144403,4758.319376924643,2019
+2004,38,"(35,40]",HS,14.927109515260323,40.33016011594465,0.37012274368231046,4769.016375925863,2019
+2004,21,"(20,25]",HS,15.7441723518851,2.419809606956679,6.506368231046932,5515.37313842452,2019
+2004,21,"(20,25]",HS,18.28963734290844,2.419809606956679,7.558296028880867,5518.760209763016,2019
+2004,21,"(20,25]",HS,17.2525960502693,2.419809606956679,7.12973285198556,5550.167389694567,2019
+2004,21,"(20,25]",HS,22.374951526032316,2.419809606956679,9.24657521058965,5449.926662784869,2019
+2004,21,"(20,25]",HS,22.987748653500898,2.419809606956679,9.499817087845969,5544.267974931007,2019
+2004,58,"(55,60]",College,42828.862621184926,2387.545478863924,17.93844892184603,15.051702586824717,2019
+2004,58,"(55,60]",College,41708.82659964094,2387.545478863924,17.46933282271441,15.52721512661518,2019
+2004,58,"(55,60]",College,58394.051073608614,2387.545478863924,24.457775397599757,16.396171915760185,2019
+2004,58,"(55,60]",College,53838.62721723519,2387.545478863924,22.54978080788369,14.533928089507274,2019
+2004,58,"(55,60]",College,44980.4718994614,2387.545478863924,18.839629358961844,15.504494699294824,2019
+2004,69,"(65,70]",College,90.34829443447038,67.75466899478702,1.3334622657727349,8506.502567066038,2019
+2004,69,"(65,70]",College,88.93414721723519,80.6603202318893,1.1025761732851986,7999.082756627166,2019
+2004,69,"(65,70]",College,87.20574506283663,72.59428820870036,1.2012755716004815,8607.222928991097,2019
+2004,69,"(65,70]",College,88.93414721723519,74.20749461333816,1.1984523622665202,8554.915116332706,2019
+2004,69,"(65,70]",College,87.36287253141832,61.30184337623587,1.4251263537906138,8461.375944988498,2019
+2004,47,"(45,50]",College,1.7284021543985637,48.39619213913358,0.0357135980746089,4900.468211680347,2019
+2004,47,"(45,50]",College,1.7284021543985637,48.39619213913358,0.0357135980746089,4905.263853778001,2019
+2004,47,"(45,50]",College,1.7284021543985637,48.39619213913358,0.0357135980746089,4906.397666529007,2019
+2004,47,"(45,50]",College,1.7284021543985637,48.39619213913358,0.0357135980746089,4919.515001670911,2019
+2004,47,"(45,50]",College,1.7284021543985637,48.39619213913358,0.0357135980746089,4900.2714604667,2019
+2004,49,"(45,50]",HS,78.24947935368044,41.94336652058244,1.8655984448764236,7930.187536590948,2019
+2004,49,"(45,50]",HS,82.02053859964093,43.55657292522023,1.8830806257521056,7443.62356515024,2019
+2004,49,"(45,50]",HS,84.69170556552963,41.94336652058244,2.01919189114135,7937.170439184896,2019
+2004,49,"(45,50]",HS,85.47734290843806,41.94336652058244,2.0379227992224385,7942.963476313023,2019
+2004,49,"(45,50]",HS,79.8207540394973,41.94336652058244,1.9030602610386003,7701.634648835943,2019
+2004,44,"(40,45]",College,12.255942549371634,61.30184337623587,0.19992779783393502,4963.5155136908925,2019
+2004,44,"(40,45]",College,9.741903052064632,61.30184337623587,0.1589169675090253,4882.502541748419,2019
+2004,44,"(40,45]",College,13.04157989228007,61.30184337623587,0.21274368231046928,4944.123069335379,2019
+2004,44,"(40,45]",College,9.741903052064632,61.30184337623587,0.1589169675090253,4980.316046866982,2019
+2004,44,"(40,45]",College,12.255942549371634,61.30184337623587,0.19992779783393502,4929.684891638454,2019
+2004,73,"(70,75]",NoHS,2.294061041292639,20.97168326029122,0.10938850319355735,8978.938749696094,2019
+2004,73,"(70,75]",NoHS,2.2783482944344704,20.97168326029122,0.1086392668703138,9024.920403778642,2019
+2004,73,"(70,75]",NoHS,2.294061041292639,19.358476855653432,0.11850421179302047,8869.838819399447,2019
+2004,73,"(70,75]",NoHS,2.2783482944344704,19.358476855653432,0.11769253910950662,8871.435853683268,2019
+2004,73,"(70,75]",NoHS,2.2783482944344704,19.358476855653432,0.11769253910950662,8896.273611590228,2019
+2004,50,"(45,50]",College,34.01809694793537,38.716953711306864,0.8786356799037305,6307.008282148787,2019
+2004,50,"(45,50]",College,34.01809694793537,38.716953711306864,0.8786356799037305,5920.035971152102,2019
+2004,50,"(45,50]",College,34.01809694793537,38.716953711306864,0.8786356799037305,6312.561899171121,2019
+2004,50,"(45,50]",College,34.01809694793537,38.716953711306864,0.8786356799037305,6317.1691966628,2019
+2004,50,"(45,50]",College,34.01809694793537,38.716953711306864,0.8786356799037305,6125.236419966638,2019
+2004,48,"(45,50]",College,54332.00746858169,6436.693554504767,8.440980917998967,15.726123037096077,2019
+2004,48,"(45,50]",College,49723.61594254937,6420.561490458389,7.744434192623768,15.937087579679357,2019
+2004,48,"(45,50]",College,50934.28308797128,5404.241455536584,9.424871835767012,16.57714911467729,2019
+2004,48,"(45,50]",College,54775.73543985638,6291.504978087366,8.706300897898732,15.229178518096102,2019
+2004,48,"(45,50]",College,49083.47863554758,6436.693554504767,7.62557331958054,16.249665506202987,2019
+2004,53,"(50,55]",College,108.26082585278277,74.20749461333816,1.458893423324439,6360.239028870622,2019
+2004,53,"(50,55]",College,37.23921005385996,74.20749461333816,0.5018254591115995,5910.00878572877,2019
+2004,53,"(50,55]",College,66.30779174147217,74.20749461333816,0.893545754198713,6391.427754557341,2019
+2004,53,"(50,55]",College,72.67145421903052,74.20749461333816,0.9793007377177838,6355.915276103254,2019
+2004,53,"(50,55]",College,50.563619389587075,74.20749461333816,0.6813815727515304,6160.296707504046,2019
+2004,29,"(25,30]",NoHS,0,30.650921688117936,0,5287.126856313198,2019
+2004,29,"(25,30]",NoHS,0,27.424508878842364,0,5263.746715548556,2019
+2004,29,"(25,30]",NoHS,0,27.424508878842364,0,5328.430370382376,2019
+2004,29,"(25,30]",NoHS,0,32.264128092755726,0,5318.5207334262495,2019
+2004,29,"(25,30]",NoHS,0,20.97168326029122,0,5332.00858498222,2019
+2004,40,"(35,40]",College,220.13558348294436,216.16965822146332,1.018346354868258,6334.881795881921,2019
+2004,40,"(35,40]",College,222.80675044883304,269.4054695745103,0.8270312803994898,5904.599995563109,2019
+2004,40,"(35,40]",College,723.8862477558348,214.55645181682556,3.3738731304796286,5186.748983274529,2019
+2004,40,"(35,40]",College,736.6135727109515,337.16013856929726,2.1847587791270104,5178.469724516122,2019
+2004,40,"(35,40]",College,170.64043087971274,216.16965822146332,0.7893819710113692,6184.107661960958,2019
+2004,57,"(55,60]",HS,6.630779174147218,40.33016011594465,0.1644124187725632,4935.993538636049,2019
+2004,57,"(55,60]",HS,10.213285457809695,15.648102124986526,0.6526852506606126,4785.8201980409485,2019
+2004,57,"(55,60]",HS,5.122355475763016,15.486781484522748,0.33075661853188926,4960.452385142259,2019
+2004,57,"(55,60]",HS,8.186341113105925,35.4905409020313,0.23066261896947815,4931.753608445211,2019
+2004,57,"(55,60]",HS,14.769982046678635,27.424508878842364,0.5385686982374177,4912.412784100253,2019
+2004,75,"(70,75]",HS,109.51784560143626,37.10374730666908,2.951665358656412,9619.539368063688,2019
+2004,75,"(70,75]",HS,107.94657091561939,38.716953711306864,2.7880956678700364,9684.201162562935,2019
+2004,75,"(70,75]",HS,109.51784560143626,37.10374730666908,2.951665358656412,9473.035560138553,2019
+2004,75,"(70,75]",HS,109.51784560143626,37.10374730666908,2.951665358656412,9546.375011107275,2019
+2004,75,"(70,75]",HS,109.51784560143626,38.716953711306864,2.828679302045728,9514.827494454057,2019
+2004,54,"(50,55]",HS,4335.146858168761,366.1978538527774,11.83826396730228,3643.933326921246,2019
+2004,54,"(50,55]",HS,3725.492280071813,274.24508878842363,13.584535994903376,3596.5441441361945,2019
+2004,54,"(50,55]",HS,4599.121005385997,327.4809001414706,14.043936618591168,4050.5172030113586,2019
+2004,54,"(50,55]",HS,4079.0290843806106,369.424266662053,11.041584033547208,3559.838066757247,2019
+2004,54,"(50,55]",HS,4025.6057450628364,280.6979144069748,14.34141665629279,3730.011843083447,2019
+2004,28,"(25,30]",NoHS,0,17.74527045101565,0,6353.063896276237,2019
+2004,28,"(25,30]",NoHS,0,17.74527045101565,0,6368.050541095139,2019
+2004,28,"(25,30]",NoHS,0,19.358476855653432,0,6344.217506579679,2019
+2004,28,"(25,30]",NoHS,0,19.358476855653432,0,6381.635669475228,2019
+2004,28,"(25,30]",NoHS,0,19.358476855653432,0,6365.98032063251,2019
+2004,51,"(50,55]",HS,0,24.19809606956679,0,6037.350726647474,2019
+2004,51,"(50,55]",HS,0,24.19809606956679,0,6044.092884164136,2019
+2004,51,"(50,55]",HS,0,24.19809606956679,0,6087.006832934412,2019
+2004,51,"(50,55]",HS,0,24.19809606956679,0,6049.230779688276,2019
+2004,51,"(50,55]",HS,0,24.19809606956679,0,6065.144910274863,2019
+2004,61,"(60,65]",College,3957.4124236983844,483.96192139133586,8.177115282791817,950.1617103003521,2019
+2004,61,"(60,65]",College,3954.0970341113107,483.96192139133586,8.17026476534296,954.2652590928553,2019
+2004,61,"(60,65]",College,3964.011777378815,483.96192139133586,8.190751383874849,971.8188949464256,2019
+2004,61,"(60,65]",College,3957.4124236983844,483.96192139133586,8.177115282791817,910.8751677230182,2019
+2004,61,"(60,65]",College,3958.5123159784557,483.96192139133586,8.179387966305654,930.2636395296498,2019
+2004,70,"(65,70]",College,801.4286535008977,132.28292518029846,6.058443691115611,6877.483168784372,2019
+2004,70,"(65,70]",College,801.5857809694794,132.28292518029846,6.059631504798802,7646.381607516446,2019
+2004,70,"(65,70]",College,801.4286535008977,132.28292518029846,6.058443691115611,6803.308735650462,2019
+2004,70,"(65,70]",College,801.4286535008977,132.28292518029846,6.058443691115611,6783.8156087985135,2019
+2004,70,"(65,70]",College,801.4286535008977,132.28292518029846,6.058443691115611,7112.293365116139,2019
+2004,69,"(65,70]",NoHS,8.013500897666068,11.292444832464504,0.7096338318720989,6295.6322388581875,2019
+2004,69,"(65,70]",NoHS,8.013500897666068,11.292444832464504,0.7096338318720989,5769.58667373886,2019
+2004,69,"(65,70]",NoHS,8.013500897666068,11.292444832464504,0.7096338318720989,6395.493900274059,2019
+2004,69,"(65,70]",NoHS,8.013500897666068,11.292444832464504,0.7096338318720989,6325.875024765568,2019
+2004,69,"(65,70]",NoHS,8.170628366247756,11.292444832464504,0.7235482207323362,6228.2711042639385,2019
+2004,45,"(40,45]",HS,169.54053859964094,40.33016011594465,4.203815162454874,7643.73583640694,2019
+2004,45,"(40,45]",HS,169.38341113105926,40.33016011594465,4.199919133574007,7226.560176009727,2019
+2004,45,"(40,45]",HS,169.38341113105926,40.33016011594465,4.199919133574007,7706.718510327764,2019
+2004,45,"(40,45]",HS,169.38341113105926,40.33016011594465,4.199919133574007,7667.9979797373135,2019
+2004,45,"(40,45]",HS,169.38341113105926,40.33016011594465,4.199919133574007,7493.87544881103,2019
+2004,35,"(30,35]",HS,167.57644524236983,112.92444832464501,1.4839695719443013,7661.635903317282,2019
+2004,35,"(30,35]",HS,167.57644524236983,112.92444832464501,1.4839695719443013,7228.6396523157555,2019
+2004,35,"(30,35]",HS,167.57644524236983,112.92444832464501,1.4839695719443013,7629.38021646163,2019
+2004,35,"(30,35]",HS,167.57644524236983,112.92444832464501,1.4839695719443013,7596.871849632812,2019
+2004,35,"(30,35]",HS,167.57644524236983,112.92444832464501,1.4839695719443013,7457.872967770121,2019
+2004,26,"(25,30]",HS,50.90929982046679,25.81130247420457,1.972364620938629,5965.2480491738415,2019
+2004,26,"(25,30]",HS,51.06642728904847,25.81130247420457,1.9784521660649823,6102.627334227427,2019
+2004,26,"(25,30]",HS,51.06642728904847,25.81130247420457,1.9784521660649823,5916.364717232647,2019
+2004,26,"(25,30]",HS,49.33802513464992,25.81130247420457,1.911489169675091,5928.317887754182,2019
+2004,26,"(25,30]",HS,49.33802513464992,25.81130247420457,1.911489169675091,5953.782506436026,2019
+2004,66,"(65,70]",College,986.2891202872532,135.50933798957405,7.2783849063090935,6122.976244386697,2019
+2004,66,"(65,70]",College,984.7178456014362,145.18857641740072,6.782336943441638,6864.829915538045,2019
+2004,66,"(65,70]",College,986.2891202872532,137.12254439421181,7.192756848587812,6111.22014551447,2019
+2004,66,"(65,70]",College,986.2891202872532,137.12254439421181,7.192756848587812,6095.8054526732685,2019
+2004,66,"(65,70]",College,984.5607181328546,132.28292518029846,7.4428405388747025,6386.320713512124,2019
+2004,21,"(20,25]",HS,224.22089766606823,16.132064046377863,13.899083032490973,7752.039059493725,2019
+2004,21,"(20,25]",HS,350.70850987432675,37.10374730666908,9.452104850102025,7749.2030565187115,2019
+2004,21,"(20,25]",HS,250.0997917414722,16.132064046377863,15.503272924187725,7792.844418508702,2019
+2004,21,"(20,25]",HS,247.63289048473968,17.74527045101565,13.954867082376106,7678.623367276559,2019
+2004,21,"(20,25]",HS,250.1469299820467,54.84901775768473,4.560645572308346,7813.580910366894,2019
+2004,62,"(60,65]",College,35309.68473967684,2839.2432721625037,12.43630127994749,25.272604537569986,2019
+2004,62,"(60,65]",College,10106.438779174146,2984.431848579904,3.386386184017953,28.18982659411707,2019
+2004,62,"(60,65]",College,8901.271095152604,3161.884553090061,2.815179031901569,29.494216495005315,2019
+2004,62,"(60,65]",College,8288.473967684022,3097.3562969045493,2.675983378459687,26.4889003679581,2019
+2004,62,"(60,65]",College,16858.20610412926,3194.1486811828167,5.277840134193924,27.653462918499077,2019
+2004,45,"(40,45]",College,1619.9842010771993,301.66959766726603,5.3700611980926265,9581.41766661507,2019
+2004,45,"(40,45]",College,1619.9842010771993,301.66959766726603,5.3700611980926265,9938.541346995069,2019
+2004,45,"(40,45]",College,1619.9842010771993,301.66959766726603,5.3700611980926265,9444.832936551691,2019
+2004,45,"(40,45]",College,1619.9842010771993,301.66959766726603,5.3700611980926265,9679.408712056555,2019
+2004,45,"(40,45]",College,1619.8270736086176,301.66959766726603,5.369540338616575,9735.747014037643,2019
+2004,47,"(45,50]",College,1109.3199281867146,877.5842841229556,1.2640608409428753,152.11963233590342,2019
+2004,47,"(45,50]",College,1217.5807540394974,877.5842841229556,1.387423152473986,154.8930033832201,2019
+2004,47,"(45,50]",College,1205.167684021544,695.2919603988857,1.7333260740281604,154.46564634059825,2019
+2004,47,"(45,50]",College,1221.5089407540395,735.6221205148305,1.6605114320096268,156.56016315911185,2019
+2004,47,"(45,50]",College,1170.5996409335728,877.5842841229556,1.3338885644510512,161.33533225183723,2019
+2004,29,"(25,30]",NoHS,26.79023339317774,75.82070101797595,0.35333666180198176,6728.736157477802,2019
+2004,29,"(25,30]",NoHS,26.79023339317774,75.82070101797595,0.35333666180198176,6569.48422489402,2019
+2004,29,"(25,30]",NoHS,28.204380610412926,75.82070101797595,0.37198786389123584,6711.775734670747,2019
+2004,29,"(25,30]",NoHS,25.218958707360862,75.82070101797595,0.3326131039250326,6704.085882484757,2019
+2004,29,"(25,30]",NoHS,26.79023339317774,75.82070101797595,0.35333666180198176,6639.614843455458,2019
+2004,27,"(25,30]",College,-1.6027001795332136,127.4433059663851,-0.012575789425581503,5859.038983112171,2019
+2004,27,"(25,30]",College,10.166147217235189,158.09422765450302,0.06430435423266781,5945.662818282186,2019
+2004,27,"(25,30]",College,-5.57802513464991,124.21689315710954,-0.04490552768531107,5883.172887772608,2019
+2004,27,"(25,30]",College,10.716093357271095,158.09422765450302,0.06778295144772711,5890.88842771321,2019
+2004,27,"(25,30]",College,6.410800718132855,122.60368675247175,0.052288808664259924,5919.4396322953635,2019
+2004,47,"(45,50]",College,247824.58599640933,27424.508878842367,9.036609811000211,2.8570458090874595,2019
+2004,47,"(45,50]",College,119126.19030520646,28940.922899201887,4.116184916428206,2.8801441796608325,2019
+2004,47,"(45,50]",College,88137.51095152603,28940.922899201887,3.045428484036237,2.894695128954638,2019
+2004,47,"(45,50]",College,97727.00035906643,28924.790835155505,3.37865884375862,2.799834059547961,2019
+2004,47,"(45,50]",College,58448.27576301616,25859.698666343716,2.2602071476991465,2.7235069498911955,2019
+2004,48,"(45,50]",HS,9.27052064631957,20.97168326029122,0.4420494307136907,3096.0949293402764,2019
+2004,48,"(45,50]",HS,9.27052064631957,17.74527045101565,0.5224220544798162,3038.068303455468,2019
+2004,48,"(45,50]",HS,9.27052064631957,24.19809606956679,0.38310950661853194,3121.592167799005,2019
+2004,48,"(45,50]",HS,9.27052064631957,17.74527045101565,0.5224220544798162,3100.578890244537,2019
+2004,48,"(45,50]",HS,9.27052064631957,27.424508878842364,0.33803779995752814,3065.7447811016295,2019
+2004,21,"(20,25]",HS,-21.526463195691203,43.55657292522023,-0.494218478406204,6899.381120194026,2019
+2004,21,"(20,25]",HS,-13.95291921005386,43.55657292522023,-0.320340152426795,6986.175656568242,2019
+2004,21,"(20,25]",HS,-10.841795332136446,43.55657292522023,-0.2489129562775772,6955.704668627195,2019
+2004,21,"(20,25]",HS,-15.084236983842011,43.55657292522023,-0.3463136782992378,6816.3931118470355,2019
+2004,21,"(20,25]",HS,-15.712746858168762,43.55657292522023,-0.3607434148950394,6974.6099477739845,2019
+2004,49,"(45,50]",HS,-29.69709156193896,137.12254439421181,-0.21657337014228076,5296.290397312671,2019
+2004,49,"(45,50]",HS,-29.53996409335727,137.12254439421181,-0.21542747929496708,5184.18326688868,2019
+2004,49,"(45,50]",HS,-28.125816876122084,137.12254439421181,-0.2051144616691442,5341.002515292819,2019
+2004,49,"(45,50]",HS,-28.125816876122084,137.12254439421181,-0.2051144616691442,5324.8293692663565,2019
+2004,49,"(45,50]",HS,-28.125816876122084,137.12254439421181,-0.2051144616691442,5272.246049301509,2019
+2004,54,"(50,55]",NoHS,68.99467145421903,41.94336652058244,1.6449483476811997,5602.068742458687,2019
+2004,54,"(50,55]",NoHS,68.99467145421903,41.94336652058244,1.6449483476811997,5297.694618003071,2019
+2004,54,"(50,55]",NoHS,68.99467145421903,41.94336652058244,1.6449483476811997,5651.190938629732,2019
+2004,54,"(50,55]",NoHS,68.99467145421903,41.94336652058244,1.6449483476811997,5626.182534703056,2019
+2004,54,"(50,55]",NoHS,68.99467145421903,41.94336652058244,1.6449483476811997,5493.705405286421,2019
+2004,57,"(55,60]",HS,21.44789946140036,45.16977932985802,0.47482851985559565,6454.176254855982,2019
+2004,57,"(55,60]",HS,21.44789946140036,45.16977932985802,0.47482851985559565,5617.266829624913,2019
+2004,57,"(55,60]",HS,21.605026929982046,45.16977932985802,0.4783071170706549,6446.9628995449475,2019
+2004,57,"(55,60]",HS,21.44789946140036,45.16977932985802,0.47482851985559565,6314.154471588326,2019
+2004,57,"(55,60]",HS,21.605026929982046,45.16977932985802,0.4783071170706549,6122.932426227979,2019
+2004,54,"(50,55]",College,417638.5263913824,11147.256256047101,37.46558945075154,4.4650414319951715,2019
+2004,54,"(50,55]",College,417374.5522441652,13325.084902308112,31.322468509890655,4.558260175483293,2019
+2004,54,"(50,55]",College,417189.1418312388,18890.646998308475,22.084428440624357,4.374075390632741,2019
+2004,54,"(50,55]",College,417228.42369838426,3791.0350508987976,110.05659881711345,4.383119643535837,2019
+2004,54,"(50,55]",College,416211.80897666066,10743.954654887653,38.73916284515563,4.275323436827927,2019
+2004,31,"(30,35]",College,86.2629802513465,66.14146259014923,1.3042194241437,9153.965340870502,2019
+2004,31,"(30,35]",College,80.60639138240575,66.14146259014923,1.2186968389539492,8824.377813995403,2019
+2004,31,"(30,35]",College,80.76351885098742,66.14146259014923,1.221072466320331,9094.32997146904,2019
+2004,31,"(30,35]",College,85.32021543985637,66.14146259014923,1.2899656599454081,9189.119890779093,2019
+2004,31,"(30,35]",College,82.33479353680431,66.14146259014923,1.2448287399841507,9006.189003962278,2019
+2004,57,"(55,60]",College,246.73726391382405,166.16025967769198,1.4849354736952787,5870.1097377277565,2019
+2004,57,"(55,60]",College,248.32425134649912,167.77346608232975,1.4801163565676203,5082.121582174652,2019
+2004,57,"(55,60]",College,246.73726391382405,166.16025967769198,1.4849354736952787,5886.096470209096,2019
+2004,57,"(55,60]",College,248.30853859964094,167.77346608232975,1.4800227020272148,5801.569007806737,2019
+2004,57,"(55,60]",College,246.75297666068224,167.77346608232975,1.470750902527076,5606.666828668278,2019
+2004,37,"(35,40]",NoHS,12.255942549371634,56.46222416232251,0.2170644662197009,5093.926865140753,2019
+2004,37,"(35,40]",NoHS,12.255942549371634,56.46222416232251,0.2170644662197009,5062.92540061521,2019
+2004,37,"(35,40]",NoHS,12.413070017953322,56.46222416232251,0.21984734399174835,5091.184625700723,2019
+2004,37,"(35,40]",NoHS,12.57019748653501,56.46222416232251,0.22263022176379582,5094.164082245367,2019
+2004,37,"(35,40]",NoHS,12.57019748653501,56.46222416232251,0.22263022176379582,5097.144395168813,2019
+2004,37,"(35,40]",HS,33.31102333931778,91.95276506435381,0.3622623345367028,3884.392457062975,2019
+2004,37,"(35,40]",HS,31.268366247755836,91.95276506435381,0.34004813477737666,3937.658147014886,2019
+2004,37,"(35,40]",HS,31.268366247755836,91.95276506435381,0.34004813477737666,3893.7465492076444,2019
+2004,37,"(35,40]",HS,30.325601436265707,91.95276506435381,0.3297954271961492,3874.644901095346,2019
+2004,37,"(35,40]",HS,31.111238779174148,91.95276506435381,0.33833935018050537,3912.755577764851,2019
+2004,21,"(20,25]",NoHS,5.813716337522442,48.39619213913358,0.12012755716004815,7072.840387173256,2019
+2004,21,"(20,25]",NoHS,5.813716337522442,48.39619213913358,0.12012755716004815,7157.080217236277,2019
+2004,21,"(20,25]",NoHS,5.656588868940754,48.39619213913358,0.11688086642599278,7082.3964468627,2019
+2004,21,"(20,25]",NoHS,5.656588868940754,48.39619213913358,0.11688086642599278,6984.822343254424,2019
+2004,21,"(20,25]",NoHS,5.813716337522442,48.39619213913358,0.12012755716004815,7114.039760405793,2019
+2004,46,"(45,50]",College,653.6502692998205,258.1130247420458,2.5324187725631764,9107.952754339292,2019
+2004,46,"(45,50]",College,636.3662477558348,258.1130247420458,2.4654557761732847,10133.079660224508,2019
+2004,46,"(45,50]",College,653.8073967684022,258.1130247420458,2.533027527075812,8990.284498281748,2019
+2004,46,"(45,50]",College,641.2371992818671,258.1130247420458,2.4843271660649813,9010.815216103745,2019
+2004,46,"(45,50]",College,644.3797486535009,258.1130247420458,2.4965022563176893,9417.998016081754,2019
+2004,49,"(45,50]",NoHS,-3.2054003590664273,48.39619213913358,-0.06623249097472925,5705.91208252023,2019
+2004,49,"(45,50]",NoHS,-3.221113105924596,48.39619213913358,-0.06655716004813478,5585.390236484608,2019
+2004,49,"(45,50]",NoHS,-3.0796983842010772,48.39619213913358,-0.06363513838748495,5755.034272024077,2019
+2004,49,"(45,50]",NoHS,-3.0639856373429084,48.39619213913358,-0.06331046931407942,5750.911320979574,2019
+2004,49,"(45,50]",NoHS,-3.0639856373429084,48.39619213913358,-0.06331046931407942,5681.120849473973,2019
+2004,61,"(60,65]",HS,27.37160502692998,27.424508878842364,0.9980709280101931,5792.110555827966,2019
+2004,61,"(60,65]",HS,26.805946140035907,27.424508878842364,0.9774448927585475,5127.492438037089,2019
+2004,61,"(60,65]",HS,27.2616157989228,27.424508878842364,0.9940603100445955,5763.7924145655215,2019
+2004,61,"(60,65]",HS,26.805946140035907,27.424508878842364,0.9774448927585475,5693.703671308333,2019
+2004,61,"(60,65]",HS,26.931648114901257,27.424508878842364,0.9820284561478021,5531.228245179544,2019
+2004,30,"(25,30]",HS,4.3210053859964095,74.20749461333816,0.05822869251294931,6041.583145570859,2019
+2004,30,"(25,30]",HS,4.273867145421903,74.20749461333816,0.05759347041280804,6130.905832120025,2019
+2004,30,"(25,30]",HS,4.289579892280072,74.20749461333816,0.05780521111285513,6066.46896593382,2019
+2004,30,"(25,30]",HS,3.8653357271095152,74.20749461333816,0.05208821221158374,6074.424891162935,2019
+2004,30,"(25,30]",HS,3.9910377019748653,74.20749461333816,0.05378213781196045,6103.865636801684,2019
+2004,49,"(45,50]",HS,1028.4307073608618,140.3489572034874,7.3276690319100375,5099.543196792296,2019
+2004,49,"(45,50]",HS,1051.2141903052066,120.99048034783397,8.688404139590855,5677.694442187798,2019
+2004,49,"(45,50]",HS,1092.397299820467,140.3489572034874,7.783437238059671,5034.452222144755,2019
+2004,49,"(45,50]",HS,1038.1883231597847,127.4433059663851,8.146275830553398,5050.099284907783,2019
+2004,49,"(45,50]",HS,1026.0737953321366,124.21689315710954,8.260340194101927,5275.641874996314,2019
+2004,75,"(70,75]",College,19175.679138240575,1096.9803551536945,17.48042163941389,283.94988969163865,2019
+2004,75,"(70,75]",College,19142.053859964097,1096.9803551536945,17.44976905924825,279.47022655770024,2019
+2004,75,"(70,75]",College,19080.77414721724,1096.9803551536945,17.393906880441712,295.9537549957084,2019
+2004,75,"(70,75]",College,19109.528473967683,1096.9803551536945,17.420119133574005,274.5397882084709,2019
+2004,75,"(70,75]",College,19227.688330341112,1096.9803551536945,17.52783287322149,279.0527614971237,2019
+2004,42,"(40,45]",NoHS,259.73170556552964,96.79238427826716,2.683389891696751,7487.305376144363,2019
+2004,42,"(40,45]",NoHS,261.4601077199282,96.79238427826716,2.7012466907340555,7051.365740622774,2019
+2004,42,"(40,45]",NoHS,261.4601077199282,96.79238427826716,2.7012466907340555,7508.047589986449,2019
+2004,42,"(40,45]",NoHS,259.73170556552964,96.79238427826716,2.683389891696751,7456.3659008847335,2019
+2004,42,"(40,45]",NoHS,261.3029802513465,96.79238427826716,2.699623345367028,7363.910946581374,2019
+2004,37,"(35,40]",NoHS,20.42657091561939,62.91504978087366,0.3246690734055355,3800.3094756418554,2019
+2004,37,"(35,40]",NoHS,25.61177737881508,62.91504978087366,0.40708506896232527,3849.874161623363,2019
+2004,37,"(35,40]",NoHS,25.61177737881508,62.91504978087366,0.40708506896232527,3783.7193786600874,2019
+2004,37,"(35,40]",NoHS,25.454649910233396,62.91504978087366,0.4045876145515135,3789.176047894505,2019
+2004,37,"(35,40]",NoHS,22.46922800718133,62.91504978087366,0.35713598074608904,3808.826791721555,2019
+2004,40,"(35,40]",HS,-22.26339102333932,51.62260494840914,-0.43127213447653445,6227.674364023727,2019
+2004,40,"(35,40]",HS,-21.32062621184919,53.23581135304694,-0.4004940597308828,6201.005124504669,2019
+2004,40,"(35,40]",HS,-21.47775368043088,51.62260494840914,-0.4160532716606499,6180.993915369555,2019
+2004,40,"(35,40]",HS,-20.84924380610413,53.23581135304694,-0.3916394486380046,6200.943090618356,2019
+2004,40,"(35,40]",HS,-21.163498743267503,51.62260494840914,-0.40996572653429614,6167.5207311139575,2019
+2004,33,"(30,35]",College,39.64326032315979,100.01879708754274,0.39635809945266104,2650.4881406245104,2019
+2004,33,"(30,35]",College,42.927224416517056,100.01879708754274,0.42919156865028535,2602.3727476212,2019
+2004,33,"(30,35]",College,43.82285098743268,100.01879708754274,0.43814615115872835,2566.422726453316,2019
+2004,33,"(30,35]",College,44.81275403949731,100.01879708754274,0.448043321299639,2475.4388116754662,2019
+2004,33,"(30,35]",College,49.385163375224415,100.01879708754274,0.49375882147432165,2450.205205129967,2019
+2004,76,"(75,80]",HS,251.60821543985637,87.11314585044046,2.888292151357133,7984.073564023393,2019
+2004,76,"(75,80]",HS,205.3656014362657,117.76406753855836,1.7438732011275409,7382.875282591913,2019
+2004,76,"(75,80]",HS,230.19174147217234,214.55645181682556,1.072872614749871,7950.094348210361,2019
+2004,76,"(75,80]",HS,218.4071813285458,111.31124192000723,1.962130487103019,7825.4776815283185,2019
+2004,76,"(75,80]",HS,565.5017594254938,85.49993944580267,6.614060350112391,6501.142203368838,2019
+2004,70,"(65,70]",College,1471.8129982046678,122.9263280333993,11.973130750352956,5960.874856467415,2019
+2004,70,"(65,70]",College,1471.8129982046678,122.9263280333993,11.973130750352956,6203.101600913043,2019
+2004,70,"(65,70]",College,1471.8129982046678,122.9263280333993,11.973130750352956,5823.65586470113,2019
+2004,70,"(65,70]",College,1471.8129982046678,122.9263280333993,11.973130750352956,5771.8527874962565,2019
+2004,70,"(65,70]",College,1471.8129982046678,122.9263280333993,11.973130750352956,5990.407823030432,2019
+2004,51,"(50,55]",College,615.9396768402155,141.9621636081252,4.338759435510338,1180.687677251231,2019
+2004,51,"(50,55]",College,615.9396768402155,140.3489572034874,4.3886302336196525,1200.615068283306,2019
+2004,51,"(50,55]",College,615.9396768402155,187.13194293798318,3.2914726752147394,1171.7016246863536,2019
+2004,51,"(50,55]",College,615.9396768402155,193.58476855653433,3.1817569193742483,1141.4074456900466,2019
+2004,51,"(50,55]",College,617.5109515260323,204.87721338899885,3.0140538389380023,1204.319970561349,2019
+2004,58,"(55,60]",HS,6.285098743267505,48.39619213913358,0.12986762936221422,6858.390788169012,2019
+2004,58,"(55,60]",HS,6.285098743267505,48.39619213913358,0.12986762936221422,6010.410823099386,2019
+2004,58,"(55,60]",HS,4.713824057450628,48.39619213913358,0.09740072202166064,6852.292829486754,2019
+2004,58,"(55,60]",HS,4.713824057450628,48.39619213913358,0.09740072202166064,6726.448158591775,2019
+2004,58,"(55,60]",HS,4.713824057450628,48.39619213913358,0.09740072202166064,6531.842473646793,2019
+2004,69,"(65,70]",HS,327.76789946140036,48.39619213913358,6.772596871239471,9510.591431487295,2019
+2004,69,"(65,70]",HS,327.76789946140036,48.39619213913358,6.772596871239471,8683.650044759028,2019
+2004,69,"(65,70]",HS,327.76789946140036,48.39619213913358,6.772596871239471,9626.039241764387,2019
+2004,69,"(65,70]",HS,327.76789946140036,48.39619213913358,6.772596871239471,9601.436289352716,2019
+2004,69,"(65,70]",HS,327.6107719928187,48.39619213913358,6.769350180505415,9372.81240860789,2019
+2004,61,"(60,65]",HS,1051.6541472172353,108.08482911073166,9.729896007327982,8073.92162319621,2019
+2004,61,"(60,65]",HS,1064.0357917414722,108.08482911073166,9.844450886362413,8927.5128041112,2019
+2004,61,"(60,65]",HS,1064.5385996409336,108.08482911073166,9.849102861145537,7911.605801757616,2019
+2004,61,"(60,65]",HS,1064.2243447037702,108.08482911073166,9.846195376906083,7950.108021754527,2019
+2004,61,"(60,65]",HS,1054.7652710951527,108.08482911073166,9.758680101298562,8302.847325624269,2019
+2004,36,"(35,40]",HS,6.442226211849192,33.87733449739351,0.1901633144232422,4758.6072307113745,2019
+2004,36,"(35,40]",HS,6.5993536804308794,33.87733449739351,0.19480144404332125,4683.822223857391,2019
+2004,36,"(35,40]",HS,6.5993536804308794,33.87733449739351,0.19480144404332125,4771.473606501435,2019
+2004,36,"(35,40]",HS,6.442226211849192,33.87733449739351,0.1901633144232422,4764.887782778185,2019
+2004,36,"(35,40]",HS,6.5993536804308794,33.87733449739351,0.19480144404332125,4749.106655302158,2019
+2004,46,"(45,50]",HS,2053.106068222621,96.79238427826716,21.211442238267146,459.30595483493533,2019
+2004,46,"(45,50]",HS,2056.4843087971276,96.79238427826716,21.246344163658243,474.3435657120234,2019
+2004,46,"(45,50]",HS,2069.447324955117,96.79238427826716,21.38027015643803,454.8726558334309,2019
+2004,46,"(45,50]",HS,2125.62039497307,96.79238427826716,21.96061612515042,464.9033964393607,2019
+2004,46,"(45,50]",HS,2081.6247037701974,96.79238427826716,21.50607942238267,472.10266336303073,2019
+2004,63,"(60,65]",College,7559.402513464991,290.37715283480145,26.033048535900527,2443.89017686032,2019
+2004,63,"(60,65]",College,8099.921005385997,290.37715283480145,27.894484556758933,2448.202891846163,2019
+2004,63,"(60,65]",College,10379.840574506283,290.37715283480145,35.74606498194946,2471.956558925041,2019
+2004,63,"(60,65]",College,7452.5558348294435,290.37715283480145,25.665090252707586,2387.104310074569,2019
+2004,63,"(60,65]",College,6388.802872531419,290.37715283480145,22.001740874448462,2384.6569007867993,2019
+2004,33,"(30,35]",College,-62.91383842010772,122.60368675247175,-0.5131480144404332,4894.317732779375,2019
+2004,33,"(30,35]",College,-65.12933572710952,122.60368675247175,-0.5312184115523466,4878.511527979784,2019
+2004,33,"(30,35]",College,-63.46378456014363,124.21689315710954,-0.5109110600590745,4865.922935636314,2019
+2004,33,"(30,35]",College,-62.48959425493716,122.60368675247175,-0.5096877256317689,4912.127313774749,2019
+2004,33,"(30,35]",College,-65.4907289048474,122.60368675247175,-0.5341660649819495,4861.513242317888,2019
+2004,57,"(55,60]",HS,301.0562298025134,109.69803551536945,2.7444085793162025,7324.779413156466,2019
+2004,57,"(55,60]",HS,301.37048473967684,109.69803551536945,2.747273306434487,6407.507296908352,2019
+2004,57,"(55,60]",HS,301.21335727109516,109.69803551536945,2.745840942875345,7369.566768656616,2019
+2004,57,"(55,60]",HS,301.21335727109516,109.69803551536945,2.745840942875345,7215.168811860947,2019
+2004,57,"(55,60]",HS,301.37048473967684,109.69803551536945,2.747273306434487,7048.513480286674,2019
+2004,42,"(40,45]",College,888.8700897666068,119.37727394319619,7.445890330763976,6835.3203715635345,2019
+2004,42,"(40,45]",College,941.6177809694793,119.37727394319619,7.887747389989266,7589.926951155307,2019
+2004,42,"(40,45]",College,941.6649192100539,117.76406753855836,7.9961990010385255,6743.410360690999,2019
+2004,42,"(40,45]",College,914.953249551167,119.37727394319619,7.66438384232608,6734.130066502553,2019
+2004,42,"(40,45]",College,888.9172280071813,117.76406753855836,7.548289105385491,7038.701423444526,2019
+2004,29,"(25,30]",HS,171.12752603231598,159.70743405914084,1.0715063268059657,5655.103295465466,2019
+2004,29,"(25,30]",HS,173.3744488330341,159.70743405914084,1.0855753199868723,5616.128666913509,2019
+2004,29,"(25,30]",HS,174.71003231597845,159.70743405914084,1.0939380082412573,5656.6087243125,2019
+2004,29,"(25,30]",HS,175.08713824057452,159.70743405914084,1.0962992378660248,5649.749673134148,2019
+2004,29,"(25,30]",HS,173.04448114901257,159.70743405914084,1.0835092440652005,5646.85200636789,2019
+2004,77,"(75,80]",NoHS,35.90362657091562,43.84695007805503,0.8188397712269851,10827.434291527446,2019
+2004,77,"(75,80]",NoHS,161.9198563734291,49.38024804596263,3.2790409684195136,11172.442678519446,2019
+2004,77,"(75,80]",NoHS,53.501903052064634,31.699505851132496,1.6877835037341198,10760.579240116469,2019
+2004,77,"(75,80]",NoHS,108.49651705565529,31.731769979225255,3.419176337364345,10847.163954430249,2019
+2004,77,"(75,80]",NoHS,37.00351885098743,26.2307361394104,1.4106931141513583,10812.47647826217,2019
+2004,67,"(65,70]",College,86867.76387791742,1629.338468684164,53.31474432569611,203.76892470384934,2019
+2004,67,"(65,70]",College,84477.85508078996,1629.338468684164,51.84794731386497,204.35362188651482,2019
+2004,67,"(65,70]",College,84478.01220825853,1629.338468684164,51.8480437502234,207.0434911776934,2019
+2004,67,"(65,70]",College,86490.81508078995,1629.338468684164,53.083393501805055,202.36970675755663,2019
+2004,67,"(65,70]",College,86113.7091561939,1629.338468684164,52.85194624155557,201.73105715526526,2019
+2004,60,"(55,60]",HS,964.762657091562,209.7168326029122,4.6003110247153565,4926.97079422748,2019
+2004,60,"(55,60]",HS,1152.6871095152605,209.7168326029122,5.4963976673146355,5060.621318770907,2019
+2004,60,"(55,60]",HS,1124.4041651705566,209.7168326029122,5.361535129130797,4815.118604757261,2019
+2004,60,"(55,60]",HS,1138.8598922800718,209.7168326029122,5.430464870869202,4747.106176581516,2019
+2004,60,"(55,60]",HS,1137.9171274685818,209.7168326029122,5.425969452929742,4939.371068058339,2019
+2004,48,"(45,50]",College,300371.1540394973,5968.863697159808,50.32300439067227,2.948805466293711,2019
+2004,48,"(45,50]",College,298537.47648114903,6485.089746643901,46.03444025360562,2.9573252286264955,2019
+2004,48,"(45,50]",College,297817.8326750449,5597.826224093118,53.202407640528925,2.8988062811777175,2019
+2004,48,"(45,50]",College,301152.0775583483,6097.920209530831,49.386031172998685,2.9030959168701105,2019
+2004,48,"(45,50]",College,304748.7253141831,6710.938643293191,45.410745279089134,2.832307309976691,2019
+2004,49,"(45,50]",College,2836.6221903052065,403.30160115944653,7.033500938628158,890.4657791046399,2019
+2004,49,"(45,50]",College,2854.6918491921006,403.30160115944653,7.078305270758123,920.1547334065668,2019
+2004,49,"(45,50]",College,3867.535511669659,403.30160115944653,9.589685487364621,1673.7244952426486,2019
+2004,49,"(45,50]",College,3649.75684021544,403.30160115944653,9.049695884476535,1595.1361292352601,2019
+2004,49,"(45,50]",College,3359.071023339318,403.30160115944653,8.328930541516245,1612.921296590014,2019
+2004,38,"(35,40]",College,573.5152603231597,88.72635225507824,6.463866097801115,4544.7307484956355,2019
+2004,38,"(35,40]",College,480.81005385996406,88.72635225507824,5.419021988841482,5039.752414455283,2019
+2004,38,"(35,40]",College,480.81005385996406,88.72635225507824,5.419021988841482,4497.005702145914,2019
+2004,38,"(35,40]",College,543.6610412926391,88.72635225507824,6.1273908762717415,4487.718040885306,2019
+2004,38,"(35,40]",College,492.59461400359066,88.72635225507824,5.551841155234657,4676.9720452740285,2019
+2004,48,"(45,50]",College,19849.913105924596,3871.695371130687,5.126930505415162,274.71111769788513,2019
+2004,48,"(45,50]",College,18739.17903052065,3855.5633070843087,4.860296028880867,269.06574723677414,2019
+2004,48,"(45,50]",College,18961.04301615799,3855.5633070843087,4.917839886409982,282.63843274559576,2019
+2004,48,"(45,50]",College,19053.27684021544,3855.5633070843087,4.941762155793544,268.053102729411,2019
+2004,48,"(45,50]",College,19130.112172351885,3855.5633070843087,4.961690588039817,278.63142834408586,2019
+2004,60,"(55,60]",College,1518.008473967684,285.53753362088815,5.31631850537437,3591.6263936980154,2019
+2004,60,"(55,60]",College,1517.8513464991024,285.53753362088815,5.315768218809276,3740.680927873874,2019
+2004,60,"(55,60]",College,1519.4226211849193,287.1507400255259,5.291376303086846,3552.478565206469,2019
+2004,60,"(55,60]",College,1518.008473967684,285.53753362088815,5.31631850537437,3812.6721663581784,2019
+2004,60,"(55,60]",College,1517.8513464991024,285.53753362088815,5.315768218809276,3647.9975866287327,2019
+2004,51,"(50,55]",College,25875.751526032316,6081.788145484454,4.254628886611957,24.67353052985521,2019
+2004,51,"(50,55]",College,25647.91669658887,6081.788145484454,4.217167070449779,25.234762167751835,2019
+2004,51,"(50,55]",College,25567.78168761221,6081.788145484454,4.203990845454807,25.60493044728898,2019
+2004,51,"(50,55]",College,25226.815080789947,6065.656081438076,4.158959021430217,24.509387347415945,2019
+2004,51,"(50,55]",College,26017.166247755835,6065.656081438076,4.2892583915815345,25.96827913337421,2019
+2004,36,"(35,40]",NoHS,45.33127468581688,70.9810818040626,0.6386388250738431,7003.468316838929,2019
+2004,36,"(35,40]",NoHS,76.89818312387791,70.9810818040626,1.0833616672136526,6674.742095263183,2019
+2004,36,"(35,40]",NoHS,68.93182046678636,70.9810818040626,0.971129471611421,6946.063019957117,2019
+2004,36,"(35,40]",NoHS,61.24828725314183,70.9810818040626,0.8628818510009845,6960.186950393077,2019
+2004,36,"(35,40]",NoHS,48.599526032315985,70.9810818040626,0.6846828027568099,6835.619852421658,2019
+2004,23,"(20,25]",NoHS,0,38.716953711306864,0,8294.430762914806,2019
+2004,23,"(20,25]",NoHS,0,38.716953711306864,0,8295.245462511208,2019
+2004,23,"(20,25]",NoHS,0,38.716953711306864,0,8287.223450761569,2019
+2004,23,"(20,25]",NoHS,0,38.716953711306864,0,8209.372631765833,2019
+2004,23,"(20,25]",NoHS,0,38.716953711306864,0,8296.320498424491,2019
+2004,52,"(50,55]",NoHS,55.7802513464991,33.87733449739351,1.6465360151280726,8470.246282820986,2019
+2004,52,"(50,55]",NoHS,55.93737881508079,33.87733449739351,1.6511741447481518,7979.848656054055,2019
+2004,52,"(50,55]",NoHS,55.7802513464991,33.87733449739351,1.6465360151280726,8565.954219145871,2019
+2004,52,"(50,55]",NoHS,55.93737881508079,33.87733449739351,1.6511741447481518,8449.320024665942,2019
+2004,52,"(50,55]",NoHS,55.93737881508079,33.87733449739351,1.6511741447481518,8271.514115730086,2019
+2004,41,"(40,45]",HS,10.166147217235189,104.8584163014561,0.09695118022771451,3931.561323574502,2019
+2004,41,"(40,45]",HS,10.786800718132854,104.8584163014561,0.10287014718133851,3948.96378045197,2019
+2004,41,"(40,45]",HS,10.315418312387791,104.8584163014561,0.09837472924187725,3879.818936995357,2019
+2004,41,"(40,45]",HS,11.572438061041293,104.8584163014561,0.11036251041377394,3861.453122217653,2019
+2004,41,"(40,45]",HS,10.307561938958708,104.8584163014561,0.0982998056095529,3865.114045586397,2019
+2004,23,"(20,25]",NoHS,0,56.46222416232251,0,9689.349864420536,2019
+2004,23,"(20,25]",NoHS,0,56.46222416232251,0,9689.857798122472,2019
+2004,23,"(20,25]",NoHS,0,56.46222416232251,0,9679.329068921375,2019
+2004,23,"(20,25]",NoHS,0,56.46222416232251,0,9566.21927811258,2019
+2004,23,"(20,25]",NoHS,0,56.46222416232251,0,9689.659166620604,2019
+2004,38,"(35,40]",HS,347.7859389587074,161.3206404637786,2.155867581227437,4194.525154755041,2019
+2004,38,"(35,40]",HS,355.29663195691205,161.3206404637786,2.202425126353791,4197.873273046391,2019
+2004,38,"(35,40]",HS,335.0429012567325,161.3206404637786,2.07687559566787,4193.226108818641,2019
+2004,38,"(35,40]",HS,358.0306499102334,161.3206404637786,2.21937285198556,4205.25385927694,2019
+2004,38,"(35,40]",HS,341.84652064631956,161.3206404637786,2.119050108303249,4213.586019062057,2019
+2004,44,"(40,45]",NoHS,42.89579892280072,32.264128092755726,1.3295198555956678,5904.827237975371,2019
+2004,44,"(40,45]",NoHS,43.05292639138241,32.264128092755726,1.3343898916967507,5524.204220373706,2019
+2004,44,"(40,45]",NoHS,43.05292639138241,32.264128092755726,1.3343898916967507,5922.9361305547955,2019
+2004,44,"(40,45]",NoHS,42.89579892280072,32.264128092755726,1.3295198555956678,5872.306759851503,2019
+2004,44,"(40,45]",NoHS,42.89579892280072,32.264128092755726,1.3295198555956678,5786.4403366180895,2019
+2004,29,"(25,30]",HS,153.82779174147217,161.3206404637786,0.9535530685920578,7546.581898770574,2019
+2004,29,"(25,30]",HS,135.7581328545781,161.3206404637786,0.841542238267148,7277.00095210416,2019
+2004,29,"(25,30]",HS,156.81321364452424,161.3206404637786,0.9720592057761733,7550.817525469714,2019
+2004,29,"(25,30]",HS,130.0229802513465,161.3206404637786,0.8059909747292419,7568.380624432517,2019
+2004,29,"(25,30]",HS,137.80078994614001,161.3206404637786,0.8542043321299638,7466.010546308302,2019
+2004,66,"(65,70]",HS,-4.273867145421903,87.11314585044046,-0.04906110442572536,8578.018638897778,2019
+2004,66,"(65,70]",HS,-4.289579892280072,87.11314585044046,-0.049241476133172875,8765.91570867894,2019
+2004,66,"(65,70]",HS,-4.289579892280072,87.11314585044046,-0.049241476133172875,8644.101521627757,2019
+2004,66,"(65,70]",HS,-4.132452423698385,87.11314585044046,-0.04743775905869769,8772.79365238508,2019
+2004,66,"(65,70]",HS,-4.116739676840215,87.11314585044046,-0.04725738735125015,8766.148835004786,2019
+2004,47,"(45,50]",NoHS,4.556696588868941,19.358476855653432,0.23538507821901325,4118.635136535531,2019
+2004,47,"(45,50]",NoHS,4.713824057450628,19.358476855653432,0.24350180505415162,4124.792311738044,2019
+2004,47,"(45,50]",NoHS,4.556696588868941,19.358476855653432,0.23538507821901325,4153.241720284248,2019
+2004,47,"(45,50]",NoHS,4.713824057450628,19.358476855653432,0.24350180505415162,4127.91179498294,2019
+2004,47,"(45,50]",NoHS,4.556696588868941,19.358476855653432,0.23538507821901325,4139.103267246085,2019
+2004,33,"(30,35]",College,30.089910233393176,137.12254439421181,0.21943809726056487,10078.555389867939,2019
+2004,33,"(30,35]",College,44.70276481149013,137.12254439421181,0.3260059460607348,10006.160897837595,2019
+2004,33,"(30,35]",College,46.274039497307,137.12254439421181,0.3374648545338713,10009.94387128686,2019
+2004,33,"(30,35]",College,34.332351885098745,137.12254439421181,0.2503771501380336,10078.570288588215,2019
+2004,33,"(30,35]",College,28.67576301615799,137.12254439421181,0.209125079634742,10008.238224369532,2019
+2004,77,"(75,80]",HS,210.15798922800718,19.358476855653432,10.856122141997593,8728.16007650593,2019
+2004,77,"(75,80]",HS,206.54405745062837,19.358476855653432,10.669437424789411,7932.543094785945,2019
+2004,77,"(75,80]",HS,205.8369838420108,19.358476855653432,10.63291215403129,8662.257214914696,2019
+2004,77,"(75,80]",HS,208.9009694793537,19.358476855653432,10.791188327316489,8521.918409812859,2019
+2004,77,"(75,80]",HS,205.75842010771993,19.358476855653432,10.62885379061372,8387.92127738745,2019
+2004,59,"(55,60]",NoHS,815.4915619389587,145.18857641740072,5.616774969915765,5267.490690328295,2019
+2004,59,"(55,60]",NoHS,815.4129982046678,145.18857641740072,5.616233854793422,5825.39705048593,2019
+2004,59,"(55,60]",NoHS,815.2244452423698,145.18857641740072,5.6149351784998,5200.167652631355,2019
+2004,59,"(55,60]",NoHS,814.9259030520647,145.18857641740072,5.612878941034899,5186.161321414762,2019
+2004,59,"(55,60]",NoHS,815.3344344703771,145.18857641740072,5.615692739671081,5446.41565492223,2019
+2004,24,"(20,25]",College,-30.608430879712746,40.33016011594465,-0.7589464259927797,7033.614293740005,2019
+2004,24,"(20,25]",College,-25.517500897666068,40.33016011594465,-0.6327150902527076,6982.9965846215,2019
+2004,24,"(20,25]",College,-31.47263195691203,40.33016011594465,-0.7803745848375452,7070.190428078774,2019
+2004,24,"(20,25]",College,-22.07640933572711,40.33016011594465,-0.5473920577617329,6966.817934083592,2019
+2004,24,"(20,25]",College,-34.442341113105925,40.33016011594465,-0.8540095306859207,7063.223555627524,2019
+2004,24,"(20,25]",HS,244.83602154398565,96.79238427826716,2.5294967509025272,10407.581054512459,2019
+2004,24,"(20,25]",HS,827.7789299820467,96.79238427826716,8.552108062575211,9262.755730985235,2019
+2004,24,"(20,25]",HS,678.5078348294435,96.79238427826716,7.009929963898918,8264.238739234012,2019
+2004,24,"(20,25]",HS,428.67515978456015,96.79238427826716,4.42881083032491,10267.899875336563,2019
+2004,24,"(20,25]",HS,918.9128617594255,96.79238427826716,9.493648375451263,8621.22500662463,2019
+2004,48,"(45,50]",College,702.6426140035907,138.73575079884964,5.064611031819325,7256.455226641995,2019
+2004,48,"(45,50]",College,707.2150233393178,138.73575079884964,5.097568717991771,8075.711702761483,2019
+2004,48,"(45,50]",College,779.6036481149013,129.0565123710229,6.040792779783393,7164.668072738187,2019
+2004,48,"(45,50]",College,690.4495224416517,122.60368675247175,5.6315559566786995,7181.729346915681,2019
+2004,48,"(45,50]",College,715.5584919210054,124.21689315710954,5.760556988138215,7505.766014343154,2019
+2004,63,"(60,65]",College,1828.1780969479355,164.5470532730542,11.110366673745311,11291.145480356572,2019
+2004,63,"(60,65]",College,1828.1780969479355,164.5470532730542,11.110366673745311,11914.5733303619,2019
+2004,63,"(60,65]",College,1828.1780969479355,164.5470532730542,11.110366673745311,11186.913906339632,2019
+2004,63,"(60,65]",College,1828.1780969479355,164.5470532730542,11.110366673745311,11413.824935328863,2019
+2004,63,"(60,65]",College,1828.1780969479355,164.5470532730542,11.110366673745311,11503.288702364338,2019
+2004,45,"(40,45]",HS,4782.803016157989,35.4905409020313,134.76275352806036,1321.8271305099831,2019
+2004,45,"(40,45]",HS,2504.454721723519,35.4905409020313,70.56682310469314,3347.0489973322974,2019
+2004,45,"(40,45]",HS,2785.5871885098745,35.4905409020313,78.48815818838202,3162.630627729788,2019
+2004,45,"(40,45]",HS,4138.423267504489,35.4905409020313,116.60637348211355,1261.3072965118652,2019
+2004,45,"(40,45]",HS,3651.328114901257,35.4905409020313,102.88172628815227,1336.2647180944482,2019
+2004,29,"(25,30]",NoHS,-2.514039497307002,45.16977932985802,-0.05565755544094894,6706.4875213509895,2019
+2004,29,"(25,30]",NoHS,-2.514039497307002,46.782985734495796,-0.05373832939126106,6535.901886074149,2019
+2004,29,"(25,30]",NoHS,-2.514039497307002,45.16977932985802,-0.05565755544094894,6736.476188700579,2019
+2004,29,"(25,30]",NoHS,-2.514039497307002,46.782985734495796,-0.05373832939126106,6711.035944346152,2019
+2004,29,"(25,30]",NoHS,-2.514039497307002,45.16977932985802,-0.05565755544094894,6686.425619938493,2019
+2004,49,"(45,50]",HS,532.5521292639138,177.45270451015648,3.001093337709222,6901.233319606176,2019
+2004,49,"(45,50]",HS,402.67056373429085,170.99987889160533,2.3548002860840542,7679.977200296884,2019
+2004,49,"(45,50]",HS,362.8701759425494,179.06591091479427,2.026461508439848,6815.64712575962,2019
+2004,49,"(45,50]",HS,450.7201436265709,170.99987889160533,2.6357921803691844,6835.3237502483225,2019
+2004,49,"(45,50]",HS,489.1535224416517,167.77346608232975,2.915559497361844,7138.067792818176,2019
+2004,73,"(70,75]",HS,484.89536804308796,115.08614490685966,4.213325317617673,6605.937546629051,2019
+2004,73,"(70,75]",HS,440.8054003590664,66.0285381418246,6.675983033461195,6163.588857505747,2019
+2004,73,"(70,75]",HS,440.7739748653501,61.17278686386485,7.205393075294369,6935.399211680849,2019
+2004,73,"(70,75]",HS,449.91879353680434,62.382691667343195,7.212237585643214,6704.5202089243685,2019
+2004,73,"(70,75]",HS,490.4105421903052,60.1887309570358,8.147879750785448,6721.281030346947,2019
+2004,61,"(60,65]",College,365.0071095152603,87.11314585044046,4.190034764005882,7259.8175999246105,2019
+2004,61,"(60,65]",College,366.4212567324955,87.11314585044046,4.206268217676159,7217.814725394193,2019
+2004,61,"(60,65]",College,366.26412926391384,87.11314585044046,4.204464500601684,7260.460521001408,2019
+2004,61,"(60,65]",College,366.57838420107726,87.11314585044046,4.2080719347506355,7271.692870332981,2019
+2004,61,"(60,65]",College,366.4212567324955,87.11314585044046,4.206268217676159,7286.867239654111,2019
+2004,33,"(30,35]",HS,41.63877917414722,48.39619213913358,0.8603730445246691,5960.771389350509,2019
+2004,33,"(30,35]",HS,41.79590664272891,48.39619213913358,0.8636197352587245,5769.194376856465,2019
+2004,33,"(30,35]",HS,43.22576660682226,48.39619213913358,0.8931646209386281,5986.056162000045,2019
+2004,33,"(30,35]",HS,43.19434111310593,48.39619213913358,0.8925152827918171,5949.873319201298,2019
+2004,33,"(30,35]",HS,41.63877917414722,48.39619213913358,0.8603730445246691,5919.793167483567,2019
+2004,83,"(80,85]",HS,509.2815511669659,32.264128092755726,15.784761010830325,8719.41518835723,2019
+2004,83,"(80,85]",HS,509.1244236983842,32.264128092755726,15.77989097472924,8760.858080414097,2019
+2004,83,"(80,85]",HS,509.26583842010774,32.264128092755726,15.784274007220215,8715.967560228197,2019
+2004,83,"(80,85]",HS,509.108710951526,32.264128092755726,15.77940397111913,8689.197674098217,2019
+2004,83,"(80,85]",HS,509.108710951526,32.264128092755726,15.77940397111913,8712.21667884218,2019
+2004,89,"(85,90]",College,2162.0739676840217,124.21689315710954,17.40563551971494,4824.159955655514,2019
+2004,89,"(85,90]",College,2174.6441651705563,130.66971877566067,16.64229620715782,5047.638119998903,2019
+2004,89,"(85,90]",College,2407.1928186714545,148.4149892266763,16.21933762360697,4787.872053609185,2019
+2004,89,"(85,90]",College,2347.484380610413,141.9621636081252,16.535986215950114,5137.254291862321,2019
+2004,89,"(85,90]",College,2179.3579892280072,129.0565123710229,16.886850180505412,4900.77832660758,2019
+2004,39,"(35,40]",HS,737.2420825852784,75.82070101797595,9.723493355864507,7256.743563432619,2019
+2004,39,"(35,40]",HS,737.2420825852784,75.82070101797595,9.723493355864507,8056.540145288095,2019
+2004,39,"(35,40]",HS,737.1006678635548,77.43390742261373,9.519094314079423,7163.7565307980085,2019
+2004,39,"(35,40]",HS,737.0692423698384,77.43390742261373,9.518688477737665,7153.01834718598,2019
+2004,39,"(35,40]",HS,737.1320933572711,77.43390742261373,9.519500150421178,7473.3968879886725,2019
+2004,44,"(40,45]",HS,60.94974506283663,96.79238427826716,0.6296956678700362,8517.79799136324,2019
+2004,44,"(40,45]",HS,60.94974506283663,96.79238427826716,0.6296956678700362,7939.246793003348,2019
+2004,44,"(40,45]",HS,64.09229443447038,96.79238427826716,0.6621625752105896,8512.606419801754,2019
+2004,44,"(40,45]",HS,62.52101974865351,96.79238427826716,0.6459291215403129,8510.915863071057,2019
+2004,44,"(40,45]",HS,62.52101974865351,96.79238427826716,0.6459291215403129,8315.069091844332,2019
+2004,87,"(85,90]",HS,1938.9545335727112,77.43390742261373,25.040122578219016,4035.4634958165684,2019
+2004,87,"(85,90]",HS,1937.3816876122085,77.43390742261373,25.019810469314084,4224.818602339207,2019
+2004,87,"(85,90]",HS,1938.7644093357271,77.43390742261373,25.037667268351385,4008.306006767657,2019
+2004,87,"(85,90]",HS,1937.3816876122085,77.43390742261373,25.019810469314084,4303.809613672653,2019
+2004,87,"(85,90]",HS,1938.9529622980251,77.43390742261373,25.040102286401925,4101.90493502157,2019
+2004,43,"(40,45]",HS,79942.21357271094,8759.71077718318,9.126124778107982,18.968049583545866,2019
+2004,43,"(40,45]",HS,88471.87820466787,8598.3901367194,10.289353797386905,20.08277893185048,2019
+2004,43,"(40,45]",HS,90621.55481508079,8695.182520997667,10.422041699095129,19.680052415018398,2019
+2004,43,"(40,45]",HS,80705.06743267504,7888.579318678774,10.230621278229348,18.634196351820794,2019
+2004,43,"(40,45]",HS,83402.33327109517,8743.578713136802,9.538695310855637,19.074323977144275,2019
+2004,53,"(50,55]",College,5655.049019748653,658.1882130922168,8.59184182770581,251.6502699534225,2019
+2004,53,"(50,55]",College,5194.225579892281,732.3957077055549,7.092102705195694,246.76756182562468,2019
+2004,53,"(50,55]",College,5225.368244165171,716.2636436591771,7.295314079422383,262.04971713719823,2019
+2004,53,"(50,55]",College,5458.24686535009,692.0655475896102,7.886892916950679,245.56364028934314,2019
+2004,53,"(50,55]",College,5467.34454578097,642.0561490458389,8.51536824918818,253.58277795305315,2019
+2004,56,"(55,60]",College,76511.64955116696,2419.8096069566795,31.618871720818284,24.934445972048664,2019
+2004,56,"(55,60]",College,76359.23590664273,2419.8096069566795,31.555885920577612,26.123975838909683,2019
+2004,56,"(55,60]",College,76563.50161579892,2419.8096069566795,31.640299879663047,25.80866963506191,2019
+2004,56,"(55,60]",College,76415.80179533214,2419.8096069566795,31.579262093862813,25.008778628261684,2019
+2004,56,"(55,60]",College,76376.83418312388,2419.8096069566795,31.563158507821896,25.79107796379612,2019
+2004,37,"(35,40]",HS,5.406756193895871,27.424508878842364,0.1971505202803143,3732.682296179645,2019
+2004,37,"(35,40]",HS,5.406756193895871,27.424508878842364,0.1971505202803143,3783.867623119449,2019
+2004,37,"(35,40]",HS,5.406756193895871,27.424508878842364,0.1971505202803143,3741.671051700922,2019
+2004,37,"(35,40]",HS,5.406756193895871,27.424508878842364,0.1971505202803143,3723.315444093103,2019
+2004,37,"(35,40]",HS,5.406756193895871,27.424508878842364,0.1971505202803143,3759.937657134686,2019
+2004,45,"(40,45]",HS,126.33048473967685,88.72635225507824,1.4238214637348212,7283.082900387815,2019
+2004,45,"(40,45]",HS,173.15447037701975,88.72635225507824,1.9515562848703643,6767.526146910563,2019
+2004,45,"(40,45]",HS,140.47195691202873,88.72635225507824,1.5832044634066293,7318.79697869568,2019
+2004,45,"(40,45]",HS,129.6301615798923,88.72635225507824,1.4610108303249099,7278.13178932067,2019
+2004,45,"(40,45]",HS,154.6134290843806,88.72635225507824,1.7425874630784377,7054.129791047312,2019
+2004,33,"(30,35]",HS,7.070736086175943,19.358476855653432,0.36525270758122746,5236.195004049155,2019
+2004,33,"(30,35]",HS,7.070736086175943,27.424508878842364,0.25782544064557233,5310.095883123811,2019
+2004,33,"(30,35]",HS,7.070736086175943,24.19809606956679,0.29220216606498195,5222.235025234882,2019
+2004,33,"(30,35]",HS,6.913608617594255,40.33016011594465,0.17142527075812275,5262.440951363829,2019
+2004,33,"(30,35]",HS,7.070736086175943,22.58488966492901,0.31307374935533777,5263.597378987432,2019
+2004,41,"(40,45]",HS,566.4445242369839,80.6603202318893,7.022592057761734,7476.214048797774,2019
+2004,41,"(40,45]",HS,528.7339317773788,80.6603202318893,6.555068592057761,8301.574091193088,2019
+2004,41,"(40,45]",HS,568.0157989228007,80.6603202318893,7.042072202166065,7375.6863665300825,2019
+2004,41,"(40,45]",HS,472.1680430879713,80.6603202318893,5.853783393501805,7365.535932897556,2019
+2004,41,"(40,45]",HS,491.0233393177738,80.6603202318893,6.087545126353791,7698.664525831395,2019
+2004,75,"(70,75]",NoHS,254.9078922800718,11.615086113392062,21.946276574408337,11614.438465416519,2019
+2004,75,"(70,75]",NoHS,254.9078922800718,11.615086113392062,21.946276574408337,11670.397142169923,2019
+2004,75,"(70,75]",NoHS,254.9078922800718,11.615086113392062,21.946276574408337,11693.407007149764,2019
+2004,75,"(70,75]",NoHS,254.9078922800718,11.615086113392062,21.946276574408337,11633.140630380101,2019
+2004,75,"(70,75]",NoHS,254.9078922800718,11.615086113392062,21.946276574408337,11628.23489874788,2019
+2004,33,"(30,35]",HS,145.8142908438061,83.88673304116487,1.7382282699250209,7102.041733766479,2019
+2004,33,"(30,35]",HS,78.48517055655296,82.2735266365271,0.9539541303886174,7053.094893351384,2019
+2004,33,"(30,35]",HS,64.13943267504489,82.2735266365271,0.7795877397890564,7103.932347949854,2019
+2004,33,"(30,35]",HS,15.257077199281866,82.2735266365271,0.18544333545692643,7095.318311180314,2019
+2004,33,"(30,35]",HS,47.578197486535004,83.88673304116487,0.5671718966953624,7091.679235246716,2019
+2004,43,"(40,45]",HS,12.884452423698384,19.358476855653432,0.6655716004813478,5173.931996851503,2019
+2004,43,"(40,45]",HS,13.512962298025135,19.358476855653432,0.6980385078219014,5166.495143333528,2019
+2004,43,"(40,45]",HS,16.96976660682226,19.358476855653432,0.8766064981949458,5179.327472676157,2019
+2004,43,"(40,45]",HS,15.47705565529623,19.358476855653432,0.7994975932611312,5173.071458726625,2019
+2004,43,"(40,45]",HS,10.90464631956912,19.358476855653432,0.5633008423586041,5151.2075441557045,2019
+2004,60,"(55,60]",College,195072.49522441652,13179.896325890712,14.800760977247924,17.27941629084851,2019
+2004,60,"(55,60]",College,220054.19145421905,14276.876681044407,15.413328585123091,17.790385937914266,2019
+2004,60,"(55,60]",College,201645.1372351885,13196.028389937092,15.280744423750804,17.492184777733097,2019
+2004,60,"(55,60]",College,187491.0948653501,14115.556040580628,13.282586553893761,17.06704017634909,2019
+2004,60,"(55,60]",College,216352.26829443447,13212.160453983468,16.375237724970578,17.13588658243797,2019
+2004,60,"(55,60]",HS,1838.3913824057452,120.99048034783397,15.194512635379061,2188.674392612379,2019
+2004,60,"(55,60]",HS,1646.6958707360864,120.99048034783397,13.610127557160048,2137.739851169534,2019
+2004,60,"(55,60]",HS,1635.696947935368,120.99048034783397,13.519220216606495,2237.8382157387887,2019
+2004,60,"(55,60]",HS,1475.4269299820467,120.99048034783397,12.194570397111912,1025.182392532425,2019
+2004,60,"(55,60]",HS,1627.8405745062837,120.99048034783397,13.45428640192539,2245.216319966507,2019
+2004,62,"(60,65]",College,161.98270736086178,103.24520989681828,1.5689125676895312,4144.554508240808,2019
+2004,62,"(60,65]",College,61.986786355475765,90.33955865971603,0.6861533006704487,4165.99694595958,2019
+2004,62,"(60,65]",College,54.06756193895871,100.01879708754274,0.5405740072202166,4195.517616586865,2019
+2004,62,"(60,65]",College,73.4413788150808,98.40559068290497,0.7463130733266259,4220.955164778718,2019
+2004,62,"(60,65]",College,59.28419389587074,120.99048034783397,0.4899905655836342,4185.111628627519,2019
+2004,39,"(35,40]",College,3115.680574506284,283.9243272162504,10.973630210042664,3506.3470353709927,2019
+2004,39,"(35,40]",College,3184.816660682226,208.1036261982744,15.303994067108833,1445.1495992267282,2019
+2004,39,"(35,40]",College,5044.420251346499,287.1507400255259,17.567150448221312,1643.4858020901697,2019
+2004,39,"(35,40]",College,2681.694506283662,162.9338468684164,16.4587932944919,3729.291998369081,2019
+2004,39,"(35,40]",College,3449.57644524237,243.5941671003057,14.161161928897602,1460.318376006872,2019
+2004,44,"(40,45]",NoHS,81.70628366247756,53.23581135304694,1.534799256098895,9571.165159831635,2019
+2004,44,"(40,45]",NoHS,91.44818671454219,53.23581135304694,1.7177945520183786,9187.791717169053,2019
+2004,44,"(40,45]",NoHS,79.50649910233395,53.23581135304694,1.4934777376654635,9562.51082819088,2019
+2004,44,"(40,45]",NoHS,81.07777378815081,53.23581135304694,1.5229931079750574,9526.859480555368,2019
+2004,44,"(40,45]",NoHS,82.96330341113105,53.23581135304694,1.5584115523465703,9430.416864045143,2019
+2004,49,"(45,50]",College,957.8490484739677,322.6412809275572,2.968774007220217,302.3822747359757,2019
+2004,49,"(45,50]",College,959.4203231597845,322.6412809275572,2.9736440433212996,314.5761973950969,2019
+2004,49,"(45,50]",College,959.4203231597845,322.6412809275572,2.9736440433212996,298.4106793890286,2019
+2004,49,"(45,50]",College,957.8490484739677,322.6412809275572,2.968774007220217,292.0929143541031,2019
+2004,49,"(45,50]",College,957.8490484739677,322.6412809275572,2.968774007220217,307.45911325805184,2019
+2004,77,"(75,80]",College,1391.363734290844,145.18857641740072,9.583148816686725,9102.566557699194,2019
+2004,77,"(75,80]",College,1391.363734290844,145.18857641740072,9.583148816686725,9327.66809388071,2019
+2004,77,"(75,80]",College,1391.363734290844,145.18857641740072,9.583148816686725,8925.260759343666,2019
+2004,77,"(75,80]",College,1391.363734290844,145.18857641740072,9.583148816686725,8835.969349394405,2019
+2004,77,"(75,80]",College,1391.363734290844,145.18857641740072,9.583148816686725,9177.714875437556,2019
+2004,46,"(45,50]",College,1225.7670951526034,354.90540902031296,3.4537853298326224,4493.736736430927,2019
+2004,46,"(45,50]",College,1225.7592387791742,354.90540902031296,3.4537631933048902,5002.37730163849,2019
+2004,46,"(45,50]",College,1225.7592387791742,354.90540902031296,3.4537631933048902,4439.22238281841,2019
+2004,46,"(45,50]",College,1225.7670951526034,354.90540902031296,3.4537853298326224,4452.472076015622,2019
+2004,46,"(45,50]",College,1225.7670951526034,354.90540902031296,3.4537853298326224,4649.371614574918,2019
+2004,31,"(30,35]",HS,37.867719928186716,88.72635225507824,0.4267922546767312,8843.758612544625,2019
+2004,31,"(30,35]",HS,37.867719928186716,88.72635225507824,0.4267922546767312,8782.807965152657,2019
+2004,31,"(30,35]",HS,37.867719928186716,88.72635225507824,0.4267922546767312,8846.112884188475,2019
+2004,31,"(30,35]",HS,37.867719928186716,88.72635225507824,0.4267922546767312,8835.386326287913,2019
+2004,31,"(30,35]",HS,37.867719928186716,88.72635225507824,0.4267922546767312,8830.854797139553,2019
+2004,46,"(45,50]",College,15340.354757630163,3226.4128092755723,4.754616245487365,32.36141855787822,2019
+2004,46,"(45,50]",College,15340.354757630163,3226.4128092755723,4.754616245487365,33.50566437553739,2019
+2004,46,"(45,50]",College,15340.354757630163,3226.4128092755723,4.754616245487365,33.954270560629666,2019
+2004,46,"(45,50]",College,15340.354757630163,3226.4128092755723,4.754616245487365,31.907429170858695,2019
+2004,46,"(45,50]",College,15340.354757630163,3226.4128092755723,4.754616245487365,33.004919270504026,2019
+2004,65,"(60,65]",HS,485.5238779174147,45.16977932985802,10.748865394533263,8246.709678112842,2019
+2004,65,"(60,65]",HS,485.5238779174147,43.55657292522023,11.146971520256717,7756.79637378955,2019
+2004,65,"(60,65]",HS,485.68100538599646,45.16977932985802,10.752343991748324,8348.73046503464,2019
+2004,65,"(60,65]",HS,485.5238779174147,43.55657292522023,11.146971520256717,8302.988518817428,2019
+2004,65,"(60,65]",HS,485.5238779174147,43.55657292522023,11.146971520256717,8205.15504893305,2019
+2004,83,"(80,85]",College,111151.97127468581,3532.922026156752,31.461767469462433,16.53838229996527,2019
+2004,83,"(80,85]",College,30671.281867145422,3839.4312430379314,7.988496192700906,16.085091303995558,2019
+2004,83,"(80,85]",College,25957.457809694795,2952.167720487149,8.792677201081059,16.088470406833466,2019
+2004,83,"(80,85]",College,111151.97127468581,3629.7144104350186,30.622787003610107,16.287886725409514,2019
+2004,83,"(80,85]",College,54240.40215439856,3936.223627316198,13.779807066343137,15.951885358551243,2019
+2004,45,"(40,45]",College,57521.239411131064,4549.242061078557,12.644136899915509,29.35650823389555,2019
+2004,45,"(40,45]",College,62750.4337091562,4258.864908243755,14.734074703260038,30.29644577155334,2019
+2004,45,"(40,45]",College,60676.35898025135,4258.864908243755,14.24707293786238,29.722027912855282,2019
+2004,45,"(40,45]",College,60567.941026929984,4307.261100382889,14.06182249354372,28.98419262984593,2019
+2004,45,"(40,45]",College,65566.16580251347,5129.99636674816,12.780938058261246,29.1175918322915,2019
+2004,40,"(35,40]",HS,0.2435475763016158,37.10374730666908,0.00656396170145974,6068.856884227106,2019
+2004,40,"(35,40]",HS,0.7070736086175943,37.10374730666908,0.019056663004237955,6148.290160074173,2019
+2004,40,"(35,40]",HS,0.21997845601436267,37.10374730666908,0.005928739601318475,6043.363210720883,2019
+2004,40,"(35,40]",HS,0.7306427289048475,38.716953711306864,0.018871389891696753,6066.111713295181,2019
+2004,40,"(35,40]",HS,0.2042657091561939,38.716953711306864,0.005275872442839952,6083.65008232646,2019
+2004,42,"(40,45]",HS,2.844007181328546,25.81130247420457,0.11018456678700364,4102.780249142761,2019
+2004,42,"(40,45]",HS,2.8361508078994615,25.81130247420457,0.10988018953068596,4080.322850092451,2019
+2004,42,"(40,45]",HS,2.8361508078994615,25.81130247420457,0.10988018953068596,4127.786001227858,2019
+2004,42,"(40,45]",HS,2.844007181328546,25.81130247420457,0.11018456678700364,4094.5273565718867,2019
+2004,42,"(40,45]",HS,2.8361508078994615,25.81130247420457,0.10988018953068596,4125.292756292686,2019
+2004,45,"(40,45]",College,21260.132136445245,1790.6591091479427,11.872797020847564,32.36141855787822,2019
+2004,45,"(40,45]",College,21077.864272890485,1790.6591091479427,11.771008878915016,33.50566437553739,2019
+2004,45,"(40,45]",College,21387.405385996408,1790.6591091479427,11.943873223403907,33.954270560629666,2019
+2004,45,"(40,45]",College,21077.864272890485,1790.6591091479427,11.771008878915016,31.907429170858695,2019
+2004,45,"(40,45]",College,21074.72172351885,1790.6591091479427,11.769253910950662,33.004919270504026,2019
+2004,51,"(50,55]",College,2380.4811490125676,403.30160115944653,5.902483754512636,4082.4999643126093,2019
+2004,51,"(50,55]",College,2380.4811490125676,403.30160115944653,5.902483754512636,4277.84696207266,2019
+2004,51,"(50,55]",College,2380.4811490125676,403.30160115944653,5.902483754512636,4042.1427453781107,2019
+2004,51,"(50,55]",College,2380.4811490125676,403.30160115944653,5.902483754512636,4361.9388213898765,2019
+2004,51,"(50,55]",College,2380.4811490125676,403.30160115944653,5.902483754512636,4148.385731512347,2019
+2004,85,"(80,85]",College,500.45098743267505,58.23675120742409,8.593387801634046,12596.326018322125,2019
+2004,85,"(80,85]",College,500.45098743267505,58.23675120742409,8.593387801634046,11309.68554639754,2019
+2004,85,"(80,85]",College,500.6081149012568,58.23675120742409,8.596085882576476,12546.41746775389,2019
+2004,85,"(80,85]",College,500.45098743267505,58.23675120742409,8.593387801634046,12393.507443275263,2019
+2004,85,"(80,85]",College,500.45098743267505,58.23675120742409,8.593387801634046,12140.053195458635,2019
+2004,66,"(65,70]",NoHS,801.1929622980251,100.01879708754274,8.010423896587865,7408.825582773219,2019
+2004,66,"(65,70]",NoHS,801.1929622980251,130.66971877566067,6.13143557516602,8303.334536635306,2019
+2004,66,"(65,70]",NoHS,801.3500897666069,91.95276506435381,8.71480144404332,7393.298152753651,2019
+2004,66,"(65,70]",NoHS,801.3500897666069,43.55657292522023,18.39791415964701,7373.854317370393,2019
+2004,66,"(65,70]",NoHS,801.1929622980251,54.84901775768473,14.607243576130813,7724.659675542869,2019
+2004,74,"(70,75]",College,526578.4571633752,3694.2426666205306,142.54029978087112,20.912358362384357,2019
+2004,74,"(70,75]",College,555008.790216158,3565.186154249507,155.6745612160021,22.21199855181596,2019
+2004,74,"(70,75]",College,552569.3846951526,3258.676937368328,169.56863024949067,21.419262161173148,2019
+2004,74,"(70,75]",College,617723.0736086175,3452.261705924862,178.93286379432504,20.846009857222377,2019
+2004,74,"(70,75]",College,615424.1431870736,3484.5258340176188,176.61632385646473,21.265097350211597,2019
+2004,90,"(85,90]",HS,467.6113464991023,30.650921688117936,15.256028880866424,11526.12973209468,2019
+2004,90,"(85,90]",HS,466.04007181328546,32.264128092755726,14.444527075812273,11577.297460365187,2019
+2004,90,"(85,90]",HS,466.04007181328546,30.650921688117936,15.20476534296029,11518.418715900996,2019
+2004,90,"(85,90]",HS,466.04007181328546,32.264128092755726,14.444527075812273,11481.92282389857,2019
+2004,90,"(85,90]",HS,466.04007181328546,30.650921688117936,15.20476534296029,11513.09631076083,2019
+2004,53,"(50,55]",HS,889.4985996409335,120.99048034783397,7.351806498194945,665.4162647811534,2019
+2004,53,"(50,55]",HS,889.4985996409335,120.99048034783397,7.351806498194945,668.0069529882035,2019
+2004,53,"(50,55]",HS,889.4985996409335,120.99048034783397,7.351806498194945,673.3934223811809,2019
+2004,53,"(50,55]",HS,889.4985996409335,120.99048034783397,7.351806498194945,619.8188668321961,2019
+2004,53,"(50,55]",HS,889.4985996409335,120.99048034783397,7.351806498194945,669.3254080238974,2019
+2004,73,"(70,75]",HS,263.34563734290845,48.39619213913358,5.4414536702767755,2287.805580697602,2019
+2004,73,"(70,75]",HS,263.34563734290845,48.39619213913358,5.4414536702767755,2125.3118923925977,2019
+2004,73,"(70,75]",HS,263.34563734290845,48.39619213913358,5.4414536702767755,2299.3476816300285,2019
+2004,73,"(70,75]",HS,263.34563734290845,48.39619213913358,5.4414536702767755,2195.2710857758916,2019
+2004,73,"(70,75]",HS,263.34563734290845,48.39619213913358,5.4414536702767755,2187.6666220046936,2019
+2004,52,"(50,55]",College,1280.4317414721722,87.11314585044046,14.698490439898379,5071.364521270726,2019
+2004,52,"(50,55]",College,1280.588868940754,85.49993944580267,14.977658197670458,5613.275656525581,2019
+2004,52,"(50,55]",College,1280.588868940754,87.11314585044046,14.700294156972856,5024.902990507926,2019
+2004,52,"(50,55]",College,1280.588868940754,85.49993944580267,14.977658197670458,5060.042425631359,2019
+2004,52,"(50,55]",College,1280.588868940754,85.49993944580267,14.977658197670458,5271.560711893901,2019
+2004,37,"(35,40]",HS,21.05508078994614,56.46222416232251,0.37290562145435796,3990.8545758201385,2019
+2004,37,"(35,40]",HS,20.897953321364454,56.46222416232251,0.3701227436823106,4043.089561491087,2019
+2004,37,"(35,40]",HS,21.05508078994614,54.84901775768473,0.38387343385007433,3974.090044128644,2019
+2004,37,"(35,40]",HS,20.897953321364454,56.46222416232251,0.3701227436823106,3989.049363045461,2019
+2004,37,"(35,40]",HS,20.897953321364454,54.84901775768473,0.3810087067317902,4000.582520217586,2019
+2004,26,"(25,30]",College,-16.10556552962298,48.39619213913358,-0.33278580024067383,5355.467299314677,2019
+2004,26,"(25,30]",College,-16.262692998204667,48.39619213913358,-0.3360324909747292,5338.171811454637,2019
+2004,26,"(25,30]",College,-16.10556552962298,48.39619213913358,-0.33278580024067383,5324.397104065223,2019
+2004,26,"(25,30]",College,-17.676840215439857,48.39619213913358,-0.36525270758122746,5374.954924320395,2019
+2004,26,"(25,30]",College,-16.262692998204667,48.39619213913358,-0.3360324909747292,5319.5719231807325,2019
+2004,40,"(35,40]",HS,825.7048473967684,117.76406753855836,7.011517729093518,5837.053769358959,2019
+2004,40,"(35,40]",HS,825.7048473967684,106.47162270609388,7.755163548845859,6481.453583903671,2019
+2004,40,"(35,40]",HS,825.7048473967684,103.24520989681828,7.997512409747294,5758.566786124456,2019
+2004,40,"(35,40]",HS,825.7048473967684,117.76406753855836,7.011517729093518,5750.641835540022,2019
+2004,40,"(35,40]",HS,825.7048473967684,111.31124192000723,7.417982524982996,6010.7319689115275,2019
+2004,35,"(30,35]",HS,10492.815224416518,2823.111208116126,3.7167558947911292,32.36141855787822,2019
+2004,35,"(30,35]",HS,5835.3999281867145,2839.2432721625037,2.0552659172957006,33.50566437553739,2019
+2004,35,"(30,35]",HS,5321.593105924596,2839.2432721625037,1.8742998030850015,33.954270560629666,2019
+2004,35,"(30,35]",HS,10476.945350089767,2839.2432721625037,3.690048490318346,31.907429170858695,2019
+2004,35,"(30,35]",HS,5934.390233393177,2839.2432721625037,2.0901309484739086,33.004919270504026,2019
+2004,62,"(60,65]",College,11463.077342908438,533.9713199351072,21.467589952774112,1727.0850263724374,2019
+2004,62,"(60,65]",College,11463.234470377021,533.9713199351072,21.46788421477418,1728.4722888277988,2019
+2004,62,"(60,65]",College,11447.52172351885,533.9713199351072,21.438458014767633,1748.0545781438748,2019
+2004,62,"(60,65]",College,11480.361364452423,533.9713199351072,21.49995877278131,1672.2664092956227,2019
+2004,62,"(60,65]",College,11478.790089766608,533.9713199351072,21.497016152780656,1672.9449619868979,2019
+2004,89,"(85,90]",HS,817.471368043088,62.91504978087366,12.99325631768953,9460.968546111286,2019
+2004,89,"(85,90]",HS,1449.186642728905,75.82070101797595,19.113337429910136,10442.851053073717,2019
+2004,89,"(85,90]",HS,1129.4322441651705,91.95276506435381,12.282743682310468,9363.593122329052,2019
+2004,89,"(85,90]",HS,1054.9538240574504,103.24520989681828,10.217944494584838,9332.459129266308,2019
+2004,89,"(85,90]",HS,794.37363016158,53.23581135304694,14.921790613718413,9783.551095120283,2019
+2004,52,"(50,55]",HS,61.389701974865346,62.91504978087366,0.9757554383041747,4846.291401333513,2019
+2004,52,"(50,55]",HS,61.389701974865346,59.68863697159809,1.0284989755098057,4496.238854961689,2019
+2004,52,"(50,55]",HS,61.21686175942549,59.68863697159809,1.025603278368621,4906.766735192099,2019
+2004,52,"(50,55]",HS,61.21686175942549,58.0754305669603,1.0540922583233052,4869.5813424611315,2019
+2004,52,"(50,55]",HS,61.37398922800718,56.46222416232251,1.086992057761733,4743.985560634224,2019
+2004,50,"(45,50]",College,546.725026929982,129.0565123710229,4.236322653429602,5550.745525382895,2019
+2004,50,"(45,50]",College,546.2536445242371,129.0565123710229,4.232670126353791,6177.831337059541,2019
+2004,50,"(45,50]",College,553.324380610413,129.0565123710229,4.287458032490974,5479.99911152132,2019
+2004,50,"(45,50]",College,547.8249192100538,129.0565123710229,4.244845216606498,5493.105920566479,2019
+2004,50,"(45,50]",College,553.4815080789946,129.0565123710229,4.288675541516245,5741.7900581555095,2019
+2004,45,"(40,45]",HS,3488.7011849192104,645.2825618551144,5.40647057761733,1715.641890540539,2019
+2004,45,"(40,45]",HS,3490.272459605027,645.2825618551144,5.40890559566787,1693.675755267098,2019
+2004,45,"(40,45]",HS,3490.272459605027,645.2825618551144,5.40890559566787,1754.8189381437776,2019
+2004,45,"(40,45]",HS,3490.272459605027,645.2825618551144,5.40890559566787,1671.4416586611958,2019
+2004,45,"(40,45]",HS,3488.7011849192104,645.2825618551144,5.40647057761733,1690.4408731624783,2019
+2004,54,"(50,55]",College,7374.463482944345,1411.555604058063,5.224352099020113,269.2094146874113,2019
+2004,54,"(50,55]",College,7374.306355475763,1411.555604058063,5.224240783909231,261.2068357552856,2019
+2004,54,"(50,55]",College,7597.584488330341,1411.555604058063,5.382419556472407,278.8299964143107,2019
+2004,54,"(50,55]",College,7577.157917414722,1411.555604058063,5.367948592057761,266.2696981144753,2019
+2004,54,"(50,55]",College,7375.563375224417,1411.555604058063,5.225131304796286,273.62981941700235,2019
+2004,41,"(40,45]",HS,-2.0269443447037703,15.970743405914082,-0.1269160923312548,6541.97015302153,2019
+2004,41,"(40,45]",HS,-2.1212208258527827,20.97168326029122,-0.10114690363787837,6515.681695197548,2019
+2004,41,"(40,45]",HS,-2.906858168761221,16.132064046377863,-0.1801913357400722,6510.320863808083,2019
+2004,41,"(40,45]",HS,-1.9326678635547576,24.19809606956679,-0.07986859205776173,6573.606669663296,2019
+2004,41,"(40,45]",HS,-2.294061041292639,24.19809606956679,-0.09480336943441638,6532.716826862155,2019
+2004,71,"(70,75]",College,601161.6812926391,19164.8920870969,31.36786153350593,2.04238032435944,2019
+2004,71,"(70,75]",College,629247.0378456014,15325.460844058967,41.05893090252708,2.1063687971285536,2019
+2004,71,"(70,75]",College,617343.7678994614,17051.5916970214,36.20446576886427,2.057776837958709,2019
+2004,71,"(70,75]",College,683250.2560861759,17777.534579108404,38.43335267023527,1.9999112709503986,2019
+2004,71,"(70,75]",College,653682.9518132855,24375.54877407695,26.817158369310974,1.989206343437407,2019
+2004,50,"(45,50]",College,2189.8855296229804,711.4240244452637,3.078172024525815,886.5882925506728,2019
+2004,50,"(45,50]",College,2216.1258168761224,442.0185548707534,5.013648844501832,897.3826043744245,2019
+2004,50,"(45,50]",College,2231.681436265709,632.3769106180121,3.5290368746776695,883.9996544977455,2019
+2004,50,"(45,50]",College,2056.327181328546,498.4807790330759,4.125188508406062,906.737223226099,2019
+2004,50,"(45,50]",College,2246.451418312388,601.7259889298944,3.733346173575555,919.3611911005439,2019
+2004,57,"(55,60]",College,1178.6131418312389,59.68863697159809,19.746022050931796,5115.642306858974,2019
+2004,57,"(55,60]",College,1178.6131418312389,61.30184337623587,19.22638989169675,5627.043169345505,2019
+2004,57,"(55,60]",College,1180.0272890484741,59.68863697159809,19.76971411845058,5066.828517272394,2019
+2004,57,"(55,60]",College,1178.456014362657,61.30184337623587,19.223826714801444,5073.87036096926,2019
+2004,57,"(55,60]",College,1178.6131418312389,61.30184337623587,19.22638989169675,5315.787391999545,2019
+2004,40,"(35,40]",HS,42.58154398563734,40.33016011594465,1.0558238267148015,964.0368212707626,2019
+2004,40,"(35,40]",HS,42.39299102333932,43.55657292522023,0.9732857333868163,933.8938840830722,2019
+2004,40,"(35,40]",HS,43.02150089766607,37.10374730666908,1.159492073457856,990.8185397082203,2019
+2004,40,"(35,40]",HS,44.29423339317774,38.716953711306864,1.144052647412756,931.6148065205607,2019
+2004,40,"(35,40]",HS,44.29423339317774,43.55657292522023,1.0169356865891162,961.7016570874721,2019
+2004,20,"(15,20]",HS,5.656588868940754,16.132064046377863,0.3506425992779783,6511.569581542374,2019
+2004,20,"(15,20]",HS,5.656588868940754,16.132064046377863,0.3506425992779783,6589.426263932712,2019
+2004,20,"(15,20]",HS,7.070736086175943,16.132064046377863,0.43830324909747287,6521.446070896908,2019
+2004,20,"(15,20]",HS,7.22786355475763,16.132064046377863,0.4480433212996389,6446.513281642196,2019
+2004,20,"(15,20]",HS,5.656588868940754,16.132064046377863,0.3506425992779783,6550.7826174920765,2019
+2004,51,"(50,55]",HS,251.07398204667865,122.60368675247175,2.0478501805054155,6485.172599564725,2019
+2004,51,"(50,55]",HS,250.71258886894074,122.60368675247175,2.0449025270758123,6026.098526551884,2019
+2004,51,"(50,55]",HS,250.96399281867147,122.60368675247175,2.046953068592058,6516.973962425576,2019
+2004,51,"(50,55]",HS,246.9258168761221,122.60368675247175,2.014016245487365,6480.763915732726,2019
+2004,51,"(50,55]",HS,248.8270592459605,122.60368675247175,2.029523465703971,6281.302830184359,2019
+2004,25,"(20,25]",HS,11.234614003590664,88.72635225507824,0.12662093862815885,4767.581240141598,2019
+2004,25,"(20,25]",HS,11.234614003590664,87.11314585044046,0.1289657708249766,4743.5764750534,2019
+2004,25,"(20,25]",HS,11.234614003590664,87.11314585044046,0.1289657708249766,4773.1478809821965,2019
+2004,25,"(20,25]",HS,11.234614003590664,87.11314585044046,0.1289657708249766,4805.780502975094,2019
+2004,25,"(20,25]",HS,11.234614003590664,88.72635225507824,0.12662093862815885,4784.834543482475,2019
+2004,50,"(45,50]",College,83259.96007181329,6727.070707339568,12.376852227964921,26.225443472757018,2019
+2004,50,"(45,50]",College,83258.38879712747,6727.070707339568,12.376618653091967,27.36445563574339,2019
+2004,50,"(45,50]",College,83258.54592459605,6727.070707339568,12.376642010579262,26.954832315357994,2019
+2004,50,"(45,50]",College,83258.38879712747,6727.070707339568,12.376618653091967,26.218038492803903,2019
+2004,50,"(45,50]",College,83258.38879712747,6727.070707339568,12.376618653091967,26.75087373138672,2019
+2004,55,"(50,55]",HS,320.0686535008977,67.75466899478702,4.7239350180505415,6137.554729661109,2019
+2004,55,"(50,55]",HS,316.92610412926393,67.75466899478702,4.67755372184975,5472.535318530468,2019
+2004,55,"(50,55]",HS,331.0675763016158,67.75466899478702,4.886269554753309,6152.4549827293795,2019
+2004,55,"(50,55]",HS,354.6366965888689,67.75466899478702,5.234129276259239,6042.694079606544,2019
+2004,55,"(50,55]",HS,334.21012567324954,67.75466899478702,4.932650850954099,5916.726045479811,2019
+2004,57,"(55,60]",College,234.60702333931778,85.49993944580267,2.7439437368026702,193.13446505372556,2019
+2004,57,"(55,60]",College,104.34835188509875,90.33955865971603,1.1550682052604435,159.20913696926976,2019
+2004,57,"(55,60]",College,206.00982405745063,88.72635225507824,2.321856120774532,194.82528096186775,2019
+2004,57,"(55,60]",College,265.2468797127469,95.17917787362938,2.7868162516061923,173.71243884854047,2019
+2004,57,"(55,60]",College,568.8171490125674,85.49993944580267,6.652836863973844,701.494257383689,2019
+2004,37,"(35,40]",HS,8.752,33.87733449739351,0.25834381983840465,4317.214459302913,2019
+2004,37,"(35,40]",HS,8.594872531418313,33.87733449739351,0.25370569021832556,4373.520762871528,2019
+2004,37,"(35,40]",HS,9.066254937163377,33.87733449739351,0.26762007907856283,4298.367834566165,2019
+2004,37,"(35,40]",HS,9.066254937163377,33.87733449739351,0.26762007907856283,4304.566701124128,2019
+2004,37,"(35,40]",HS,8.516308797127468,33.87733449739351,0.25138662540828605,4326.8902713307,2019
+2004,41,"(40,45]",HS,229.6732208258528,66.14146259014923,3.4724545214405214,6167.521170524882,2019
+2004,41,"(40,45]",HS,250.1469299820467,66.14146259014923,3.7819987672800917,5809.929683195178,2019
+2004,41,"(40,45]",HS,215.83029084380613,70.9810818040626,3.040673449294388,6187.850887208478,2019
+2004,41,"(40,45]",HS,234.1984919210054,66.14146259014923,3.540872589592322,6148.95590144721,2019
+2004,41,"(40,45]",HS,220.54411490125673,58.0754305669603,3.7975459286000803,6067.499686300115,2019
+2004,29,"(25,30]",College,164.0253644524237,172.6130852962431,0.950248726340295,7409.504872348107,2019
+2004,29,"(25,30]",College,164.05678994614001,174.22629170088092,0.9416304987297764,7232.266651959387,2019
+2004,29,"(25,30]",College,164.04107719928186,174.22629170088092,0.9415403128760528,7386.9541715205705,2019
+2004,29,"(25,30]",College,164.11964093357273,172.6130852962431,0.9507948986133137,7374.051958408172,2019
+2004,29,"(25,30]",College,163.88394973070018,172.6130852962431,0.949429467930767,7309.412025364929,2019
+2004,50,"(45,50]",College,329.967684021544,233.91492867247896,1.4106311465206027,9435.393887036586,2019
+2004,50,"(45,50]",College,174.41149012567325,233.91492867247896,0.7456193203037471,8751.597839080534,2019
+2004,50,"(45,50]",College,661.1923877917416,233.91492867247896,2.8266361259803316,8089.4790092024505,2019
+2004,50,"(45,50]",College,612.7971274685817,233.91492867247896,2.6197435578239765,8109.739449242615,2019
+2004,50,"(45,50]",College,84.91168402154399,233.91492867247896,0.36300241503796843,9233.742021594886,2019
+2004,41,"(40,45]",HS,160.78853859964096,83.88673304116487,1.9167338239377953,7965.092461899372,2019
+2004,41,"(40,45]",HS,162.28124955116695,82.2735266365271,1.9724601118425706,7646.050331996577,2019
+2004,41,"(40,45]",HS,157.91310592459604,82.2735266365271,1.9193671692503713,7957.890355304886,2019
+2004,41,"(40,45]",HS,155.49334290843805,83.88673304116487,1.8536106637045264,7928.22141995939,2019
+2004,41,"(40,45]",HS,165.0309802513465,83.88673304116487,1.9673072757567345,7847.962188722282,2019
+2004,34,"(30,35]",College,24.66901256732496,96.79238427826716,0.25486522262334543,6839.069407507899,2019
+2004,34,"(30,35]",College,23.176301615798923,96.79238427826716,0.23944344163658243,6996.5727431429405,2019
+2004,34,"(30,35]",College,22.862046678635547,96.79238427826716,0.23619675090252706,6783.0253843155415,2019
+2004,34,"(30,35]",College,41.63877917414722,96.79238427826716,0.43018652226233456,6796.729519024219,2019
+2004,34,"(30,35]",College,29.854219030520646,96.79238427826716,0.30843561973525874,6825.924330902153,2019
+2004,75,"(70,75]",College,624.4559856373429,98.17974178625566,6.360334365075317,7664.110896004089,2019
+2004,75,"(70,75]",College,940.4864631956913,99.80908025493981,9.422854722169872,8520.195633412863,2019
+2004,75,"(70,75]",College,751.8077989228007,98.19587385030205,7.656205596468533,7586.565643537094,2019
+2004,75,"(70,75]",College,618.2337378815081,98.2281379783948,6.293855819780358,7562.15577738216,2019
+2004,75,"(70,75]",College,863.3997271095152,98.24427004244117,8.78829601702501,7928.314419492868,2019
+2004,78,"(75,80]",HS,95799.04631956913,4162.0725239654885,23.017149693560572,27.768818387630876,2019
+2004,78,"(75,80]",HS,14691.418312387792,4162.0725239654885,3.529832367839252,29.20265681338704,2019
+2004,78,"(75,80]",HS,155056.52854578095,4162.0725239654885,37.25464360675006,28.169819163329105,2019
+2004,78,"(75,80]",HS,51858.34973070018,4162.0725239654885,12.459741975204992,25.62277832822135,2019
+2004,78,"(75,80]",HS,191013.57845601437,4162.0725239654885,45.89386113676433,27.53974791481673,2019
+2004,65,"(60,65]",HS,206.15123877917415,33.87733449739351,6.08522606154375,8380.279639351369,2019
+2004,65,"(60,65]",HS,208.19389587073607,22.58488966492901,9.218282619907166,7880.38912941515,2019
+2004,65,"(60,65]",HS,208.19389587073607,25.81130247420457,8.065997292418775,8479.505471784147,2019
+2004,65,"(60,65]",HS,206.30836624775583,20.97168326029122,9.837472924187725,8427.973823619222,2019
+2004,65,"(60,65]",HS,208.19389587073607,30.650921688117936,6.792418772563177,8335.822624355196,2019
+2004,79,"(75,80]",HS,317.7117414721724,50.00939854377137,6.353040642832188,9558.18262105557,2019
+2004,79,"(75,80]",HS,220.29271095152603,50.00939854377137,4.405026202398975,8671.169785942646,2019
+2004,79,"(75,80]",HS,330.28193895870737,50.00939854377137,6.604397344823571,9552.508165681304,2019
+2004,79,"(75,80]",HS,330.28193895870737,50.00939854377137,6.604397344823571,9372.994613495199,2019
+2004,79,"(75,80]",HS,226.57780969479356,48.39619213913358,4.681728038507822,9281.03640884113,2019
+2004,47,"(45,50]",College,197.8234829443447,66.14146259014923,2.9909148542748967,2605.5433990477295,2019
+2004,47,"(45,50]",College,197.8234829443447,64.52825618551145,3.0656877256317685,2403.1967940846935,2019
+2004,47,"(45,50]",College,197.8234829443447,64.52825618551145,3.0656877256317685,2555.3188703394785,2019
+2004,47,"(45,50]",College,197.8234829443447,64.52825618551145,3.0656877256317685,2452.169360131508,2019
+2004,47,"(45,50]",College,197.8234829443447,64.52825618551145,3.0656877256317685,2399.852864748242,2019
+2004,24,"(20,25]",HS,22.154973070017952,30.650921688117936,0.7228158844765342,5582.190144734778,2019
+2004,24,"(20,25]",HS,22.46922800718133,30.650921688117936,0.7330685920577618,5652.414357185784,2019
+2004,24,"(20,25]",HS,22.31210053859964,30.650921688117936,0.727942238267148,5627.760718602612,2019
+2004,24,"(20,25]",HS,22.154973070017952,30.650921688117936,0.7228158844765342,5515.045739424302,2019
+2004,24,"(20,25]",HS,22.154973070017952,30.650921688117936,0.7228158844765342,5643.056708358532,2019
+2004,40,"(35,40]",HS,50.359353680430885,14.841498922667633,3.3931447182545913,6089.9755979073525,2019
+2004,40,"(35,40]",HS,50.359353680430885,14.841498922667633,3.3931447182545913,6088.097262500697,2019
+2004,40,"(35,40]",HS,50.34364093357271,14.841498922667633,3.3920860147543554,6084.789047545865,2019
+2004,40,"(35,40]",HS,50.34364093357271,14.841498922667633,3.3920860147543554,6080.267587560401,2019
+2004,40,"(35,40]",HS,50.34364093357271,14.841498922667633,3.3920860147543554,6068.99977149366,2019
+2004,39,"(35,40]",HS,589.825091561939,150.02819563131413,3.931428283063545,4744.673910136369,2019
+2004,39,"(35,40]",HS,589.5736876122083,146.80178282203855,4.01612076010632,5260.888289874198,2019
+2004,39,"(35,40]",HS,589.5265493716338,135.50933798957405,4.3504496303936735,4694.530751823783,2019
+2004,39,"(35,40]",HS,589.6679640933573,138.73575079884964,4.250295693056838,4673.948719347764,2019
+2004,39,"(35,40]",HS,589.542262118492,143.57537001276296,4.106151786800796,4881.490222642848,2019
+2004,53,"(50,55]",College,237.41960502693,103.24520989681828,2.299570171480145,8780.210661396366,2019
+2004,53,"(50,55]",College,263.97414721723516,111.31124192000723,2.3714958405273894,8156.2835054888055,2019
+2004,53,"(50,55]",College,237.41960502693,108.08482911073166,2.1966043429064066,8760.868085404334,2019
+2004,53,"(50,55]",College,184.3105206463196,98.40559068290497,1.8729679824820973,8782.569117678602,2019
+2004,53,"(50,55]",College,261.3029802513465,116.1508611339206,2.24968612113919,8457.20021695785,2019
+2004,27,"(25,30]",HS,8.971978456014364,46.782985734495796,0.1917786630150629,4758.575669202533,2019
+2004,27,"(25,30]",HS,9.12910592459605,46.782985734495796,0.1951373086020167,4743.207843554838,2019
+2004,27,"(25,30]",HS,9.286233393177739,46.782985734495796,0.1984959541889705,4730.968391090619,2019
+2004,27,"(25,30]",HS,9.12910592459605,46.782985734495796,0.1951373086020167,4775.891308159866,2019
+2004,27,"(25,30]",HS,9.12910592459605,48.39619213913358,0.18863273164861613,4726.680998959707,2019
+2004,55,"(50,55]",College,29457.802140035907,540.4241455536584,54.508671350827086,1348.4757155892573,2019
+2004,55,"(50,55]",College,27871.78889766607,848.5465688394755,32.846504742556725,1454.7770231336274,2019
+2004,55,"(50,55]",College,28860.466355475764,992.1219388522385,29.089636288926066,1350.438692812286,2019
+2004,55,"(50,55]",College,28233.0877989228,890.4899353600579,31.705117236959136,1460.0910371203622,2019
+2004,55,"(50,55]",College,29118.941041292637,632.3769106180121,46.046812513814196,1357.811171094922,2019
+2004,77,"(75,80]",NoHS,134.42254937163378,41.94336652058244,3.204858372674258,10593.235458443363,2019
+2004,77,"(75,80]",NoHS,132.5998707360862,59.68863697159809,2.221526197677822,9627.607199082904,2019
+2004,77,"(75,80]",NoHS,119.57400359066428,27.424508878842364,4.360114674028456,10513.250155229196,2019
+2004,77,"(75,80]",NoHS,139.37206463195693,62.91504978087366,2.215242062390077,10342.923076741932,2019
+2004,77,"(75,80]",NoHS,266.2367827648115,82.2735266365271,3.2359957528137606,10180.292790164189,2019
+2004,51,"(50,55]",College,3192.3587791741475,392.00915632698207,8.14358217824724,1379.7952772389094,2019
+2004,51,"(50,55]",College,3175.2318850987435,392.00915632698207,8.099892142443286,1377.3315091804493,2019
+2004,51,"(50,55]",College,3094.939748653501,392.00915632698207,7.895070047986212,1564.1014134606949,2019
+2004,51,"(50,55]",College,3170.5180610412926,390.3959499223443,8.121288301458959,1316.6213725713083,2019
+2004,51,"(50,55]",College,3085.5121005386,392.00915632698207,7.871020486993211,1394.866018869158,2019
+2004,63,"(60,65]",HS,108.57508078994614,54.84901775768473,1.9795264387343385,5223.293742459815,2019
+2004,63,"(60,65]",HS,107.63231597845602,54.84901775768473,1.9623380760246338,4657.3367967749,2019
+2004,63,"(60,65]",HS,108.26082585278277,54.84901775768473,1.9737969844977703,5235.974427527504,2019
+2004,63,"(60,65]",HS,108.57508078994614,54.84901775768473,1.9795264387343385,5142.563702295583,2019
+2004,63,"(60,65]",HS,107.7894434470377,54.84901775768473,1.9652028031429176,5035.3600889046775,2019
+2004,49,"(45,50]",College,12284.225493716338,1287.3387109009534,9.542341413099535,490.993858571081,2019
+2004,49,"(45,50]",College,11968.556409335728,1297.0179493287799,9.227749250139198,487.69750236713173,2019
+2004,49,"(45,50]",College,12716.48315978456,1284.1122980916778,9.902936977305298,503.8048438566996,2019
+2004,49,"(45,50]",College,12084.987863554757,1305.0839813519688,9.259931189283023,486.95182742288017,2019
+2004,49,"(45,50]",College,12439.93881508079,1303.4707749473312,9.543703667298137,491.48446778102596,2019
+2004,41,"(40,45]",HS,724.8447253141832,217.78286462610117,3.328290894504612,4926.97079422748,2019
+2004,41,"(40,45]",HS,858.0888186714542,216.16965822146332,3.9695155450185893,5060.621318770907,2019
+2004,41,"(40,45]",HS,743.2286391382406,217.78286462610117,3.4127048535900517,4815.118604757261,2019
+2004,41,"(40,45]",HS,936.652552962298,216.16965822146332,4.332951074950159,4747.106176581516,2019
+2004,41,"(40,45]",HS,722.974908438061,216.16965822146332,3.344479120642276,4939.371068058339,2019
+2004,52,"(50,55]",HS,129.53588509874328,54.84901775768473,2.3616810363134424,9048.162718300076,2019
+2004,52,"(50,55]",HS,131.10715978456014,54.84901775768473,2.3903283074962838,8392.429848839542,2019
+2004,52,"(50,55]",HS,132.52130700179532,54.84901775768473,2.4161108515608407,9156.269560031224,2019
+2004,52,"(50,55]",HS,129.37875763016157,54.84901775768473,2.358816309195158,9081.413243319563,2019
+2004,52,"(50,55]",HS,129.53588509874328,54.84901775768473,2.3616810363134424,8854.786701060131,2019
+2004,43,"(40,45]",College,42.298714542190304,82.2735266365271,0.5141230268280597,8156.36552515098,2019
+2004,43,"(40,45]",College,42.298714542190304,82.2735266365271,0.5141230268280597,7602.36376863807,2019
+2004,43,"(40,45]",College,42.298714542190304,82.2735266365271,0.5141230268280597,8151.394245561072,2019
+2004,43,"(40,45]",College,40.41318491921006,82.2735266365271,0.4912052098817867,8149.775423577908,2019
+2004,43,"(40,45]",College,40.57031238779174,82.2735266365271,0.49311502796064266,7962.238943531595,2019
+2004,34,"(30,35]",College,32.682513464991025,33.87733449739351,0.9647309609764483,5027.680839604222,2019
+2004,34,"(30,35]",College,74.76124955116697,114.53765472928282,0.6527220216606499,5014.531048923472,2019
+2004,34,"(30,35]",College,26.711669658886894,53.23581135304694,0.5017612952631003,5031.686145900703,2019
+2004,34,"(30,35]",College,34.96086175942549,67.75466899478702,0.5159919202337974,5035.591040797595,2019
+2004,34,"(30,35]",College,40.696014362657095,35.4905409020313,1.1466721365277321,5018.215420065993,2019
+2004,21,"(20,25]",HS,6.127971274685817,30.650921688117936,0.19992779783393502,6304.026693745511,2019
+2004,21,"(20,25]",HS,4.556696588868941,24.19809606956679,0.1883080625752106,6270.016670656024,2019
+2004,21,"(20,25]",HS,4.556696588868941,29.03771528348015,0.15692338547934215,6292.697931391001,2019
+2004,21,"(20,25]",HS,6.127971274685817,24.19809606956679,0.2532418772563177,6217.067481650142,2019
+2004,21,"(20,25]",HS,4.556696588868941,35.4905409020313,0.12839186084673448,6265.459649559974,2019
+2004,22,"(20,25]",NoHS,110.77486535008977,56.46222416232251,1.9619288292934505,7788.584433715105,2019
+2004,22,"(20,25]",NoHS,110.61773788150808,56.46222416232251,1.959145951521403,7573.984497952272,2019
+2004,22,"(20,25]",NoHS,110.77486535008977,56.46222416232251,1.9619288292934505,7854.923597205476,2019
+2004,22,"(20,25]",NoHS,110.77486535008977,56.46222416232251,1.9619288292934505,7658.4884125458875,2019
+2004,22,"(20,25]",NoHS,109.2035906642729,56.46222416232251,1.934100051572976,7769.856715042064,2019
+2004,74,"(70,75]",HS,331.38183123877917,85.49993944580267,3.875813636673251,6034.357003022846,2019
+2004,74,"(70,75]",HS,297.5522872531418,91.95276506435381,3.2359253910950656,5738.902339469734,2019
+2004,74,"(70,75]",HS,334.52438061041295,66.14146259014923,5.057710663027208,6312.096949909625,2019
+2004,74,"(70,75]",HS,293.7812280071813,37.10374730666908,7.917831737560823,6121.354411079169,2019
+2004,74,"(70,75]",HS,319.1258886894076,38.716953711306864,8.242536101083035,6150.801197888743,2019
+2004,63,"(60,65]",College,527498.9098743268,52090.43480575412,10.126598325419566,3.9481229427783164,2019
+2004,63,"(60,65]",College,528942.9113105924,52154.96306193963,10.14175603350377,3.939703292715241,2019
+2004,63,"(60,65]",College,496079.7012567325,52735.71736760923,9.4069015464162309,3.8893355109706045,2019
+2004,63,"(60,65]",College,467334.8021543986,52090.43480575412,8.97160493854766,3.878729371457162,2019
+2004,63,"(60,65]",College,534863.4743267505,52526.000535006315,10.182832671036643,3.7923635815572645,2019
+2004,46,"(45,50]",College,16864.49120287253,483.96192139133586,34.84673164861612,257.66427198170487,2019
+2004,46,"(45,50]",College,16866.06247755835,483.96192139133586,34.84997833935018,254.48907844907254,2019
+2004,46,"(45,50]",College,16864.49120287253,483.96192139133586,34.84673164861612,265.9445854286846,2019
+2004,46,"(45,50]",College,16865.27684021544,483.96192139133586,34.84835499398315,254.1138144918406,2019
+2004,46,"(45,50]",College,16864.49120287253,483.96192139133586,34.84673164861612,261.081810151749,2019
+2004,71,"(70,75]",HS,1543.7773788150807,53.23581135304694,28.998851329176237,7815.17456156188,2019
+2004,71,"(70,75]",HS,1522.0937881508078,109.69803551536945,13.875305797409215,8688.906328158946,2019
+2004,71,"(70,75]",HS,1542.0489766606822,88.72635225507824,17.37983065310141,7730.887020797332,2019
+2004,71,"(70,75]",HS,1512.8075547576302,53.23581135304694,28.41710338037414,7708.73615755857,2019
+2004,71,"(70,75]",HS,1513.7974578096948,108.08482911073166,14.005642329866912,8081.999303714137,2019
+2004,77,"(75,80]",NoHS,85.60304488330343,14.357537001276295,5.962237455887723,7629.711136210523,2019
+2004,77,"(75,80]",NoHS,85.61875763016158,14.357537001276295,5.963331846022797,7639.04735370504,2019
+2004,77,"(75,80]",NoHS,85.60304488330343,14.357537001276295,5.962237455887723,7648.78711386657,2019
+2004,77,"(75,80]",NoHS,85.60304488330343,14.357537001276295,5.962237455887723,7634.461955700166,2019
+2004,77,"(75,80]",NoHS,85.60304488330343,14.357537001276295,5.962237455887723,7639.116288464387,2019
+2004,66,"(65,70]",College,2598.8883303411135,88.72635225507824,29.291053495241222,1959.5408268047972,2019
+2004,66,"(65,70]",College,2600.45960502693,88.72635225507824,29.308762717426976,1953.9614402821098,2019
+2004,66,"(65,70]",College,2598.8883303411135,88.72635225507824,29.291053495241222,1983.1933371252449,2019
+2004,66,"(65,70]",College,2598.8883303411135,88.72635225507824,29.291053495241222,1938.0610807251912,2019
+2004,66,"(65,70]",College,2598.8883303411135,88.72635225507824,29.291053495241222,1999.012932511363,2019
+2004,71,"(70,75]",HS,1013.6292998204668,29.03771528348015,34.90733654231849,6155.116532365465,2019
+2004,71,"(70,75]",HS,1015.2005745062836,29.03771528348015,34.96144805455275,6405.236502205249,2019
+2004,71,"(70,75]",HS,1013.6292998204668,29.03771528348015,34.90733654231849,6013.426108541384,2019
+2004,71,"(70,75]",HS,1013.6292998204668,30.650921688117936,33.0701083032491,5959.934970980397,2019
+2004,71,"(70,75]",HS,1013.4721723518851,29.03771528348015,34.90192539109506,6185.611863188356,2019
+2004,58,"(55,60]",College,1054.6395691202872,87.11314585044046,12.106549003877522,3547.9057250380297,2019
+2004,58,"(55,60]",College,1595.1580610412927,87.11314585044046,18.311335740072202,3694.5339354484067,2019
+2004,58,"(55,60]",College,1273.046750448833,82.2735266365271,15.473346074892051,3511.484129682319,2019
+2004,58,"(55,60]",College,1064.0672172351885,83.88673304116487,12.684570952513191,3768.2119096810166,2019
+2004,58,"(55,60]",College,1097.063985637343,87.11314585044046,12.593552613985826,3603.944225893299,2019
+2004,51,"(50,55]",College,375.06326750448835,193.58476855653433,1.9374626955475331,7963.124268810158,2019
+2004,51,"(50,55]",College,361.3931777378815,193.58476855653433,1.8668471720818292,8812.58082177667,2019
+2004,51,"(50,55]",College,363.9072172351885,193.58476855653433,1.8798339350180506,7895.22795778631,2019
+2004,51,"(50,55]",College,385.11942549371634,193.58476855653433,1.9894097472924188,7949.462415354095,2019
+2004,51,"(50,55]",College,391.5616517055655,193.58476855653433,2.022688327316486,8278.287017917432,2019
+2004,60,"(55,60]",College,3667.355116696589,290.37715283480145,12.629626955475333,3643.933326921246,2019
+2004,60,"(55,60]",College,3668.9263913824057,290.37715283480145,12.635038106698758,3596.5441441361945,2019
+2004,60,"(55,60]",College,3668.9263913824057,290.37715283480145,12.635038106698758,3959.9237293898063,2019
+2004,60,"(55,60]",College,3667.355116696589,290.37715283480145,12.629626955475333,3546.786053124112,2019
+2004,60,"(55,60]",College,3668.9263913824057,290.37715283480145,12.635038106698758,3680.0178572690843,2019
+2004,82,"(80,85]",College,95211.23245960503,4103.997093398527,23.199634476534303,18.968049583545866,2019
+2004,82,"(80,85]",College,91441.115978456015,4120.129157444907,22.19374987631774,20.08277893185048,2019
+2004,82,"(80,85]",College,89918.2365529623,4120.129157444907,21.824130534957547,19.680052415018398,2019
+2004,82,"(80,85]",College,92536.76581687613,4120.129157444907,22.459675966629817,18.634196351820794,2019
+2004,82,"(80,85]",College,89101.95935368043,4103.997093398527,21.711019117680454,19.074323977144275,2019
+2004,52,"(50,55]",College,6727.255439856373,640.4429426412011,10.504066782456874,2741.5979583973067,2019
+2004,52,"(50,55]",College,6647.277558348294,775.9522806307751,8.566606122923812,2746.436036111392,2019
+2004,52,"(50,55]",College,5217.888976660682,708.1976116359881,7.367843227551951,2773.0833076559597,2019
+2004,52,"(50,55]",College,9545.493716337523,482.3487149866981,19.789611581324028,2677.894598107342,2019
+2004,52,"(50,55]",College,12565.483662477558,717.8768500638149,17.503675820386967,2675.1490523499106,2019
+2004,52,"(50,55]",HS,1204.5391741472174,205.19985466992637,5.870078105487821,5705.266313575094,2019
+2004,52,"(50,55]",HS,693.8749012567325,205.19985466992637,3.381459028676521,6350.444579034838,2019
+2004,52,"(50,55]",HS,692.4607540394974,205.19985466992637,3.374567468156121,5629.491265788356,2019
+2004,52,"(50,55]",HS,693.8749012567325,205.19985466992637,3.381459028676521,5643.590563174182,2019
+2004,52,"(50,55]",HS,694.0320287253141,205.19985466992637,3.382224757623232,5900.703884754062,2019
+2004,59,"(55,60]",College,2169.7732136445243,403.30160115944653,5.380026281588448,3046.6786778563387,2019
+2004,59,"(55,60]",College,2151.2321723518853,403.30160115944653,5.334053140794224,3171.601708161022,2019
+2004,59,"(55,60]",College,2504.6118491921006,403.30160115944653,6.210270036101083,3014.5771495213867,2019
+2004,59,"(55,60]",College,2150.289407540395,403.30160115944653,5.3317155234657045,3234.660463002675,2019
+2004,59,"(55,60]",College,2302.231669658887,403.30160115944653,5.708461516245487,3093.8550811749255,2019
+2004,37,"(35,40]",College,51.852064631956914,129.0565123710229,0.40177797833935014,7224.735010141872,2019
+2004,37,"(35,40]",College,51.852064631956914,129.0565123710229,0.40177797833935014,6804.083228381207,2019
+2004,37,"(35,40]",College,51.852064631956914,129.0565123710229,0.40177797833935014,7244.749820678413,2019
+2004,37,"(35,40]",College,51.852064631956914,129.0565123710229,0.40177797833935014,7194.880543297784,2019
+2004,37,"(35,40]",College,51.852064631956914,129.0565123710229,0.40177797833935014,7105.667867754358,2019
+2004,45,"(40,45]",HS,4.7609622980251345,17.74527045101565,0.26829471611421063,4985.42492122577,2019
+2004,45,"(40,45]",HS,11.67457091561939,10.647162270609387,1.0964960070014222,4992.877908363831,2019
+2004,45,"(40,45]",HS,5.625163375224417,19.358476855653432,0.29057882069795427,5027.314653950301,2019
+2004,45,"(40,45]",HS,5.735152603231598,20.97168326029122,0.2734712579838934,4996.65390429328,2019
+2004,45,"(40,45]",HS,5.185206463195691,15.164140203595188,0.3419387049696597,5010.20068444648,2019
+2004,25,"(20,25]",NoHS,4.3995691202872536,19.358476855653432,0.22726835138387488,6086.329458515084,2019
+2004,25,"(20,25]",NoHS,4.3995691202872536,19.358476855653432,0.22726835138387488,6172.2286843793645,2019
+2004,25,"(20,25]",NoHS,4.3995691202872536,19.358476855653432,0.22726835138387488,6070.102975308894,2019
+2004,25,"(20,25]",NoHS,4.3995691202872536,19.358476855653432,0.22726835138387488,6116.836626828034,2019
+2004,25,"(20,25]",NoHS,4.3995691202872536,19.358476855653432,0.22726835138387488,6118.180808911917,2019
+2004,40,"(35,40]",College,19203.33357271095,238.75454788639237,80.4312786613328,1677.445666262514,2019
+2004,40,"(35,40]",College,15576.831597845601,440.4053484661156,35.36930614511842,3596.5441441361945,2019
+2004,40,"(35,40]",College,14294.514326750448,550.1033839814851,25.985141598822743,4050.5172030113586,2019
+2004,40,"(35,40]",College,14279.74434470377,208.1036261982744,68.61843114208155,3559.838066757247,2019
+2004,40,"(35,40]",College,17687.839138240575,412.9808395872731,42.8296846796029,1644.4418645356247,2019
+2004,33,"(30,35]",HS,2.356912028725314,125.83009956174732,0.018730908081088585,4942.125096043421,2019
+2004,33,"(30,35]",HS,2.356912028725314,125.83009956174732,0.018730908081088585,915.092039037819,2019
+2004,33,"(30,35]",HS,2.356912028725314,125.83009956174732,0.018730908081088585,4934.024133611782,2019
+2004,33,"(30,35]",HS,2.356912028725314,125.83009956174732,0.018730908081088585,4902.941330269358,2019
+2004,33,"(30,35]",HS,2.356912028725314,125.83009956174732,0.018730908081088585,4913.844168223129,2019
+2004,47,"(45,50]",HS,135.2553249551167,161.3206404637786,0.8384254151624548,8784.531843268516,2019
+2004,47,"(45,50]",HS,147.9826499102334,161.3206404637786,0.91732,8061.6306852732,2019
+2004,47,"(45,50]",HS,129.11164093357272,161.3206404637786,0.8003417328519856,8796.872460197654,2019
+2004,47,"(45,50]",HS,179.4081436265709,161.3206404637786,1.1121214440433214,8854.640471940413,2019
+2004,47,"(45,50]",HS,191.96262836624774,161.3206404637786,1.1899446209386282,8485.654630747606,2019
+2004,78,"(75,80]",College,77278.4315978456,5000.939854377138,15.452781646675204,18.968049583545866,2019
+2004,78,"(75,80]",College,77278.4315978456,5081.600174609026,15.207499398315283,20.08277893185048,2019
+2004,78,"(75,80]",College,77278.4315978456,5113.864302701782,15.11155302987165,19.680052415018398,2019
+2004,78,"(75,80]",College,77278.4315978456,5000.939854377138,15.452781646675204,18.634196351820794,2019
+2004,78,"(75,80]",College,77278.4315978456,5081.600174609026,15.207499398315283,19.074323977144275,2019
+2004,53,"(50,55]",HS,239.933644524237,72.59428820870036,3.305131167268352,4214.810506828942,2019
+2004,53,"(50,55]",HS,239.933644524237,72.59428820870036,3.305131167268352,3985.809522239211,2019
+2004,53,"(50,55]",HS,239.933644524237,72.59428820870036,3.305131167268352,4251.7684161403795,2019
+2004,53,"(50,55]",HS,239.77651705565532,72.59428820870036,3.302966706778982,4232.952923422431,2019
+2004,53,"(50,55]",HS,239.77651705565532,72.59428820870036,3.302966706778982,4133.28153011234,2019
+2004,69,"(65,70]",HS,95.84775583482944,106.47162270609388,0.9002187944426211,8337.00541324847,2019
+2004,69,"(65,70]",HS,107.47518850987433,98.40559068290497,1.0921654731609158,7705.271948269112,2019
+2004,69,"(65,70]",HS,118.00272890484739,112.92444832464501,1.0449706034038164,8407.806678084407,2019
+2004,69,"(65,70]",HS,95.69062836624775,106.47162270609388,0.8987430259271414,8352.24245090679,2019
+2004,69,"(65,70]",HS,109.98922800718132,104.8584163014561,1.0489308525409606,8192.707114193352,2019
+2004,42,"(40,45]",HS,109.40785637342908,80.6603202318893,1.3564024548736462,5582.497520890463,2019
+2004,42,"(40,45]",HS,109.40785637342908,80.6603202318893,1.3564024548736462,5494.764473147474,2019
+2004,42,"(40,45]",HS,109.39214362657093,80.6603202318893,1.356207653429603,5597.591540520263,2019
+2004,42,"(40,45]",HS,109.40785637342908,80.6603202318893,1.3564024548736462,5589.865467989884,2019
+2004,42,"(40,45]",HS,109.39214362657093,80.6603202318893,1.356207653429603,5571.352045734059,2019
+2004,37,"(35,40]",College,1231.407971274686,298.4431848579905,4.1261051809932665,2809.7025572995053,2019
+2004,37,"(35,40]",College,1231.5650987432675,298.4431848579905,4.126631671382573,2938.2880460825686,2019
+2004,37,"(35,40]",College,1229.836696588869,298.4431848579905,4.120840277100204,2781.1389212307313,2019
+2004,37,"(35,40]",College,1229.836696588869,298.4431848579905,4.120840277100204,2991.719711996614,2019
+2004,37,"(35,40]",College,1229.836696588869,298.4431848579905,4.120840277100204,2843.102963919526,2019
+2004,51,"(50,55]",HS,65.60071813285458,66.14146259014923,0.9918244254644712,5935.8192934012095,2019
+2004,51,"(50,55]",HS,65.60071813285458,66.14146259014923,0.9918244254644712,5505.642257571726,2019
+2004,51,"(50,55]",HS,67.17199281867146,67.75466899478702,0.991400206291903,6006.740064487537,2019
+2004,51,"(50,55]",HS,65.60071813285458,66.14146259014923,0.9918244254644712,5957.632462999407,2019
+2004,51,"(50,55]",HS,65.60071813285458,67.75466899478702,0.9682095581915076,5808.959827037678,2019
+2004,29,"(25,30]",College,60.651202872531414,169.38667248696757,0.3580636066701048,7105.948247371414,2019
+2004,29,"(25,30]",College,60.808330341113106,169.38667248696757,0.35899123259412064,7056.974483501744,2019
+2004,29,"(25,30]",College,60.808330341113106,169.38667248696757,0.35899123259412064,7107.839901496582,2019
+2004,29,"(25,30]",College,60.808330341113106,169.38667248696757,0.35899123259412064,7099.221126533,2019
+2004,29,"(25,30]",College,60.808330341113106,169.38667248696757,0.35899123259412064,7095.580048907473,2019
+2004,74,"(70,75]",College,34714.171633752245,2798.913112046559,12.40273286238933,18.875803891614044,2019
+2004,74,"(70,75]",College,17650.128545780968,2621.4604075364023,6.732937295195779,21.160599969936417,2019
+2004,74,"(70,75]",College,41580.64201077199,3621.6483784118295,11.481137224317175,19.897276336486822,2019
+2004,74,"(70,75]",College,23779.671095152604,3153.818521066872,7.539961775323848,19.826033511512716,2019
+2004,74,"(70,75]",College,23977.65170556553,3089.29026488136,7.761540564232594,19.504203208628326,2019
+2004,26,"(25,30]",College,-30.247037701974868,24.19809606956679,-1.2499759326113118,6428.158289873861,2019
+2004,26,"(25,30]",College,-31.18980251346499,24.19809606956679,-1.288936221419976,6442.972108165966,2019
+2004,26,"(25,30]",College,-30.875547576301617,24.19809606956679,-1.2759494584837545,6423.758291021202,2019
+2004,26,"(25,30]",College,-29.932782764811492,24.19809606956679,-1.2369891696750903,6475.8996968629845,2019
+2004,26,"(25,30]",College,-30.089910233393176,24.19809606956679,-1.2434825511432008,6443.499430556163,2019
+2004,34,"(30,35]",College,566.9159066427289,161.3206404637786,3.514218050541517,5342.120841944004,2019
+2004,34,"(30,35]",College,566.9159066427289,161.3206404637786,3.514218050541517,5939.507274664644,2019
+2004,34,"(30,35]",College,566.9159066427289,161.3206404637786,3.514218050541517,5284.078191591665,2019
+2004,34,"(30,35]",College,566.9159066427289,161.3206404637786,3.514218050541517,5261.41582213648,2019
+2004,34,"(30,35]",College,566.9159066427289,161.3206404637786,3.514218050541517,5526.383304146765,2019
+2004,68,"(65,70]",College,19528.430305206464,1145.376547292828,17.049790613718415,233.7339976471247,2019
+2004,68,"(65,70]",College,19531.5728545781,1145.376547292828,17.052534296028885,231.20426836373204,2019
+2004,68,"(65,70]",College,19528.430305206464,1145.376547292828,17.049790613718415,243.10414687521916,2019
+2004,68,"(65,70]",College,19530.001579892283,1145.376547292828,17.05116245487365,226.46543620012932,2019
+2004,68,"(65,70]",College,19528.430305206464,1145.376547292828,17.049790613718415,229.68966707660843,2019
+2004,35,"(30,35]",College,52.323447037701975,96.79238427826716,0.5405740072202166,5819.410797483334,2019
+2004,35,"(30,35]",College,52.323447037701975,100.01879708754274,0.5231361360195644,5783.729178034306,2019
+2004,35,"(30,35]",College,61.29542549371634,101.63200349218052,0.6031114549309495,5815.31589312796,2019
+2004,35,"(30,35]",College,52.323447037701975,100.01879708754274,0.5231361360195644,5805.258332066297,2019
+2004,35,"(30,35]",College,52.16631956912028,116.1508611339206,0.44912555154432404,5821.9460315708375,2019
+2004,38,"(35,40]",HS,4.3995691202872536,48.39619213913358,0.09090734055354995,5435.938046241969,2019
+2004,38,"(35,40]",HS,4.3995691202872536,48.39619213913358,0.09090734055354995,5402.607683518929,2019
+2004,38,"(35,40]",HS,4.3995691202872536,48.39619213913358,0.09090734055354995,5432.112977492616,2019
+2004,38,"(35,40]",HS,4.242441651705565,48.39619213913358,0.08766064981949458,5422.718164043266,2019
+2004,38,"(35,40]",HS,4.242441651705565,48.39619213913358,0.08766064981949458,5438.306219913152,2019
+2004,51,"(50,55]",College,56.09450628366248,67.75466899478702,0.8279061371841155,4330.439888340612,2019
+2004,51,"(50,55]",College,56.25163375224417,67.75466899478702,0.830225201994155,4320.749580748838,2019
+2004,51,"(50,55]",College,56.25163375224417,69.36787539942482,0.8109176391570815,4351.7156736677625,2019
+2004,51,"(50,55]",College,56.25163375224417,67.75466899478702,0.830225201994155,4362.41415116019,2019
+2004,51,"(50,55]",College,56.25163375224417,69.36787539942482,0.8109176391570815,4319.406381124115,2019
+2004,44,"(40,45]",College,6153.42592459605,266.1790567652347,23.117618641286512,1986.0185676819106,2019
+2004,44,"(40,45]",College,5523.784732495512,161.3206404637786,34.24102902527076,3596.5441441361945,2019
+2004,44,"(40,45]",College,4734.722010771993,169.38667248696757,27.95215196836857,4050.5172030113586,2019
+2004,44,"(40,45]",College,4559.116351885099,235.52813507711673,19.356992532515704,3559.838066757247,2019
+2004,44,"(40,45]",College,6013.441062836625,329.0941065461084,18.272709669427336,3730.011843083447,2019
+2004,65,"(60,65]",College,183.9962657091562,85.49993944580267,2.1520046318370682,7661.0613206056705,2019
+2004,65,"(60,65]",College,182.26786355475764,85.49993944580267,2.1317893876438934,7080.54726626733,2019
+2004,65,"(60,65]",College,182.26786355475764,85.49993944580267,2.1317893876438934,7726.122191337812,2019
+2004,65,"(60,65]",College,184.15339317773788,85.49993944580267,2.153842381309175,7675.062976363168,2019
+2004,65,"(60,65]",College,183.83913824057453,85.49993944580267,2.1501668823649616,7528.462376173697,2019
+2004,68,"(65,70]",HS,18038.233393177736,403.30160115944653,44.72641155234656,2297.053904389363,2019
+2004,68,"(65,70]",HS,11337.925314183123,403.30160115944653,28.112770397111913,2256.2888535992306,2019
+2004,68,"(65,70]",HS,11301.2360502693,403.30160115944653,28.021798122743686,2354.444881592243,2019
+2004,68,"(65,70]",HS,12539.871885098744,403.30160115944653,31.09303768953069,2233.1573050868365,2019
+2004,68,"(65,70]",HS,6704.943339317773,403.30160115944653,16.62513444043321,2263.443088105437,2019
+2004,33,"(30,35]",HS,9.710477558348295,51.62260494840914,0.18810514440433218,5459.557589168236,2019
+2004,33,"(30,35]",HS,9.726190305206464,51.62260494840914,0.18840952166064986,5376.127096397683,2019
+2004,33,"(30,35]",HS,9.726190305206464,51.62260494840914,0.18840952166064986,5447.509383590375,2019
+2004,33,"(30,35]",HS,9.726190305206464,51.62260494840914,0.18840952166064986,5521.671635883616,2019
+2004,33,"(30,35]",HS,9.726190305206464,51.62260494840914,0.18840952166064986,5438.533635008261,2019
+2004,53,"(50,55]",College,10232.140754039498,5129.99636674816,1.994570760393252,375.755916975604,2019
+2004,53,"(50,55]",College,10108.010053859964,5146.128430794537,1.9641970055339906,371.0079051499786,2019
+2004,53,"(50,55]",College,10199.143985637344,5129.99636674816,1.9881386372408785,386.6214076313423,2019
+2004,53,"(50,55]",College,9917.8858168761235,5129.99636674816,1.9333124446563588,368.6390626980565,2019
+2004,53,"(50,55]",College,10301.27684021544,5146.128430794537,2.001752769824474,373.4120534263591,2019
+2004,58,"(55,60]",College,1995.361723518851,814.669234342082,2.4492906315902347,168.48815266637695,2019
+2004,58,"(55,60]",College,1995.5188509874329,814.669234342082,2.4494835043071097,167.8505132229669,2019
+2004,58,"(55,60]",College,1995.361723518851,814.669234342082,2.4492906315902347,170.75727711233503,2019
+2004,58,"(55,60]",College,1995.361723518851,816.2824407467199,2.4444501362708864,174.66461566697734,2019
+2004,58,"(55,60]",College,1995.361723518851,816.2824407467199,2.4444501362708864,179.21508755154403,2019
+2004,73,"(70,75]",College,166654.89263913824,5194.524622933671,32.08279962777765,28.051123467131287,2019
+2004,73,"(70,75]",College,102348.90484739677,4531.496790627542,22.58611438478433,29.24567987686131,2019
+2004,73,"(70,75]",College,242513.52043087973,5183.232178101207,46.78808745158713,29.209571447481505,2019
+2004,73,"(70,75]",College,126968.10800718133,5028.36436325598,25.25037941462273,27.62633965252826,2019
+2004,73,"(70,75]",College,133285.73213644524,5063.85490415801,26.321001422651793,28.30095239983563,2019
+2004,43,"(40,45]",HS,267.82377019748657,133.89613158493626,2.0002353094689225,5987.7613421724145,2019
+2004,43,"(40,45]",HS,271.9876481149013,187.13194293798318,1.4534538777542638,6647.697994552966,2019
+2004,43,"(40,45]",HS,311.74089766606824,177.45270451015648,1.756754840827043,5911.034893943134,2019
+2004,43,"(40,45]",HS,263.581328545781,127.4433059663851,2.0682241922953892,5902.174489802461,2019
+2004,43,"(40,45]",HS,320.0686535008977,120.99048034783397,2.6454036101083034,6166.528634979466,2019
+2004,67,"(65,70]",College,4549.940107719928,319.4148681182817,14.244609634248622,1282.507249798507,2019
+2004,67,"(65,70]",College,4549.940107719928,319.4148681182817,14.244609634248622,1277.515047295174,2019
+2004,67,"(65,70]",College,4549.940107719928,319.4148681182817,14.244609634248622,1304.8772164009351,2019
+2004,67,"(65,70]",College,4549.940107719928,319.4148681182817,14.244609634248622,1245.7005963675742,2019
+2004,67,"(65,70]",College,4549.940107719928,319.4148681182817,14.244609634248622,1266.7552711465617,2019
+2004,47,"(45,50]",College,4855.144502692999,766.2730422029484,6.336050252707581,269.2094146874113,2019
+2004,47,"(45,50]",College,4856.810053859964,766.2730422029484,6.338223826714801,261.2068357552856,2019
+2004,47,"(45,50]",College,4855.238779174148,766.2730422029484,6.336173285198556,278.8299964143107,2019
+2004,47,"(45,50]",College,4856.967181328546,766.2730422029484,6.3384288808664255,266.2696981144753,2019
+2004,47,"(45,50]",College,4856.810053859964,766.2730422029484,6.338223826714801,273.62981941700235,2019
+2004,51,"(50,55]",College,21176.66602513465,6243.108785948232,3.3920065709568186,19.786212772455585,2019
+2004,51,"(50,55]",College,22267.790592459605,5226.788751026426,4.260319606007934,20.198031068794517,2019
+2004,51,"(50,55]",College,22060.30377019749,6194.7125938090985,3.5611504869885686,20.73484872234321,2019
+2004,51,"(50,55]",College,21599.998850987435,5275.184943165561,4.094642952560748,19.505847385473405,2019
+2004,51,"(50,55]",College,19116.2849551167,5275.184943165561,3.6238132238156746,20.964183687868992,2019
+2004,52,"(50,55]",HS,260.045960502693,177.45270451015648,1.4654381358713489,6596.666566661438,2019
+2004,52,"(50,55]",HS,260.045960502693,177.45270451015648,1.4654381358713489,6741.682071270336,2019
+2004,52,"(50,55]",HS,260.045960502693,177.45270451015648,1.4654381358713489,6460.456464655187,2019
+2004,52,"(50,55]",HS,260.045960502693,177.45270451015648,1.4654381358713489,6342.449813502404,2019
+2004,52,"(50,55]",HS,260.045960502693,177.45270451015648,1.4654381358713489,6613.65060504547,2019
+2004,55,"(50,55]",HS,103333.30843806105,6872.259283756969,15.036293622141999,18.20150274504592,2019
+2004,55,"(50,55]",HS,103336.45098743268,6872.259283756969,15.036750902527075,18.902911925426398,2019
+2004,55,"(50,55]",HS,103334.87971274686,6872.259283756969,15.036522262334536,18.80570370865136,2019
+2004,55,"(50,55]",HS,103333.30843806105,6872.259283756969,15.036293622141999,18.253523012567694,2019
+2004,55,"(50,55]",HS,103334.87971274686,6872.259283756969,15.036522262334536,18.931600571655476,2019
+2004,28,"(25,30]",College,101.5043447037702,48.39619213913358,2.097362214199759,8418.377069911421,2019
+2004,28,"(25,30]",College,101.5043447037702,48.39619213913358,2.097362214199759,8289.731234456827,2019
+2004,28,"(25,30]",College,101.5043447037702,48.39619213913358,2.097362214199759,8399.799312297608,2019
+2004,28,"(25,30]",College,101.5043447037702,48.39619213913358,2.097362214199759,8514.153963560388,2019
+2004,28,"(25,30]",College,101.5043447037702,48.39619213913358,2.097362214199759,8385.959136639627,2019
+2004,50,"(45,50]",College,1267.3901615798923,72.59428820870036,17.45853830726033,857.789413080715,2019
+2004,50,"(45,50]",College,1432.531131059246,72.59428820870036,19.73338628158845,1719.5850743325839,2019
+2004,50,"(45,50]",College,1234.393393177738,72.59428820870036,17.004001604492583,871.2193057239996,2019
+2004,50,"(45,50]",College,1403.305421903052,72.59428820870036,19.330796630565587,1686.48823395309,2019
+2004,50,"(45,50]",College,1218.5235188509876,72.59428820870036,16.78539109506619,865.663076313821,2019
+2004,54,"(50,55]",NoHS,159.78292280071815,91.95276506435381,1.7376630565583635,5693.112681766961,2019
+2004,54,"(50,55]",NoHS,157.31602154398564,91.95276506435381,1.710835138387485,5382.397071813556,2019
+2004,54,"(50,55]",NoHS,158.10165888689409,91.95276506435381,1.7193790613718412,5740.022657112054,2019
+2004,54,"(50,55]",NoHS,153.07357989228007,91.95276506435381,1.6646979542719613,5711.183310951072,2019
+2004,54,"(50,55]",NoHS,160.74140035906643,91.95276506435381,1.7480866425992778,5581.495523432793,2019
+2004,91,"(90,95]",College,618407.3637342908,6323.769106180122,97.7909460878214,20.74019594646676,2019
+2004,91,"(90,95]",College,481286.15008976666,6323.769106180122,76.10748305459367,21.35350431432254,2019
+2004,91,"(90,95]",College,461583.9368043088,6323.769106180122,72.99190230604876,20.995578422063275,2019
+2004,91,"(90,95]",College,465775.4691561939,6323.769106180122,73.65472415825535,20.4852844289174,2019
+2004,91,"(90,95]",College,483436.28236983845,6323.769106180122,76.44749108524276,20.567919624948274,2019
+2004,76,"(75,80]",College,6909.209048473967,280.6979144069748,24.614393958255526,3643.933326921246,2019
+2004,76,"(75,80]",College,6909.051921005386,280.6979144069748,24.613834183991035,3596.5441441361945,2019
+2004,76,"(75,80]",College,6909.209048473967,280.6979144069748,24.614393958255526,4050.5172030113586,2019
+2004,76,"(75,80]",College,6909.051921005386,280.6979144069748,24.613834183991035,3559.838066757247,2019
+2004,76,"(75,80]",College,6909.209048473967,280.6979144069748,24.614393958255526,3730.011843083447,2019
+2004,85,"(80,85]",College,388.4191023339318,116.3767100305699,3.3376016750422113,360.21004688835376,2019
+2004,85,"(80,85]",College,388.4191023339318,116.53803067103368,3.332981517684733,337.51502186607826,2019
+2004,85,"(80,85]",College,388.4191023339318,116.3767100305699,3.3376016750422113,357.0139974059638,2019
+2004,85,"(80,85]",College,388.4191023339318,116.53803067103368,3.332981517684733,331.04860923717814,2019
+2004,85,"(80,85]",College,388.4191023339318,116.53803067103368,3.332981517684733,338.39521155997153,2019
+2004,65,"(60,65]",College,17698.995188509874,346.839376997124,51.029370833683146,2164.691950456581,2019
+2004,65,"(60,65]",College,17240.968617594255,346.839376997124,49.70879825371505,2142.055472881061,2019
+2004,65,"(60,65]",College,18201.33170556553,346.839376997124,52.477696918814544,2214.4242275012057,2019
+2004,65,"(60,65]",College,18327.505062836626,346.839376997124,52.8414772899001,2108.08612112401,2019
+2004,65,"(60,65]",College,17637.715475763016,346.839376997124,50.852690454202,2133.256069979628,2019
+2004,29,"(25,30]",HS,0.06285098743267505,6.614146259014922,0.009502509465527869,8843.413876647686,2019
+2004,29,"(25,30]",HS,0.06285098743267505,6.775466899478702,0.009276259240158157,8862.80730165901,2019
+2004,29,"(25,30]",HS,0.06285098743267505,6.614146259014922,0.009502509465527869,8836.761186500915,2019
+2004,29,"(25,30]",HS,0.06285098743267505,6.452825618551143,0.009740072202166068,8887.787674784146,2019
+2004,29,"(25,30]",HS,0.06285098743267505,5.968863697159809,0.010529807786125476,8862.262735953367,2019
+2004,46,"(45,50]",College,209.4509156193896,161.3206404637786,1.2983516245487365,7494.633130740066,2019
+2004,46,"(45,50]",College,204.32856014362656,161.3206404637786,1.2665989891696752,8342.161385826554,2019
+2004,46,"(45,50]",College,216.60021543985638,161.3206404637786,1.3426689530685922,7395.092434055216,2019
+2004,46,"(45,50]",College,213.7247827648115,161.3206404637786,1.3248446209386282,7413.613753744803,2019
+2004,46,"(45,50]",College,206.9368761220826,161.3206404637786,1.2827675090252708,7751.366614410076,2019
+2004,58,"(55,60]",HS,74.16416517055656,96.79238427826716,0.7662190132370639,4397.6796388670755,2019
+2004,58,"(55,60]",HS,98.99030520646319,96.79238427826716,1.0227075812274369,4343.467461686354,2019
+2004,58,"(55,60]",HS,64.42226211849191,96.79238427826716,0.6655716004813477,4374.245706121012,2019
+2004,58,"(55,60]",HS,83.90606822262119,96.79238427826716,0.8668664259927799,4400.766888039676,2019
+2004,58,"(55,60]",HS,81.39202872531419,96.79238427826716,0.840892900120337,4363.396425457962,2019
+2004,33,"(30,35]",HS,105.90391382405745,108.08482911073166,0.9798221886955117,7195.350667146209,2019
+2004,33,"(30,35]",HS,90.50542190305207,151.6414020359519,0.5968384668561333,7023.235098118498,2019
+2004,33,"(30,35]",HS,107.2394973070018,140.3489572034874,0.7640918710319929,7173.451740964303,2019
+2004,33,"(30,35]",HS,124.41352962298025,88.72635225507824,1.402216212668198,7160.9224357913745,2019
+2004,33,"(30,35]",HS,72.12150807899461,154.86781484522746,0.46569720216606497,7098.150767055078,2019
+2004,48,"(45,50]",College,9330.22908438061,161.3206404637786,57.83654873646209,1119.7105140554672,2019
+2004,48,"(45,50]",College,9394.651346499102,161.3206404637786,58.235891696750905,1143.9971932617907,2019
+2004,48,"(45,50]",College,9366.3684021544,162.9338468684164,57.48571326446724,1151.0689901402352,2019
+2004,48,"(45,50]",College,9300.37486535009,161.3206404637786,57.65148736462094,1074.091404920117,2019
+2004,48,"(45,50]",College,9273.663195691204,161.3206404637786,57.485906137184124,1099.1546102617704,2019
+2004,42,"(40,45]",College,1945.3794757630162,304.8960104765416,6.380468779248562,3090.5538291042103,2019
+2004,42,"(40,45]",College,1943.8082010771993,304.8960104765416,6.375315301892918,3230.620012028181,2019
+2004,42,"(40,45]",College,1943.8082010771993,304.8960104765416,6.375315301892918,3059.4915267905203,2019
+2004,42,"(40,45]",College,1942.2212136445244,304.8960104765416,6.370110289763719,3288.764236659966,2019
+2004,42,"(40,45]",College,1942.2212136445244,304.8960104765416,6.370110289763719,3126.7634258023436,2019
+2004,23,"(20,25]",College,5.263770197486535,7.2594288208700375,0.7250942639390292,6484.393754557421,2019
+2004,23,"(20,25]",College,5.263770197486535,7.2594288208700375,0.7250942639390292,6449.41065692355,2019
+2004,23,"(20,25]",College,5.1066427289048475,7.2594288208700375,0.703449659045327,6472.7408603951335,2019
+2004,23,"(20,25]",College,5.1066427289048475,7.2594288208700375,0.703449659045327,6394.946517227052,2019
+2004,23,"(20,25]",College,15.162800718132853,7.2594288208700375,2.0887043722422782,6444.723253051367,2019
+2004,45,"(40,45]",HS,4811.0859605026935,191.97156215189653,25.061451324211998,1158.8658665410985,2019
+2004,45,"(40,45]",HS,4813.7571274685815,191.97156215189653,25.075365713072234,1156.7965909368668,2019
+2004,45,"(40,45]",HS,4809.82894075404,191.97156215189653,25.054903376513064,1313.661359600696,2019
+2004,45,"(40,45]",HS,4809.5146858168755,191.97156215189653,25.053266389588323,1105.8072114035745,2019
+2004,45,"(40,45]",HS,4810.614578096947,191.97156215189653,25.058995843824892,1171.5235182571582,2019
+2004,29,"(25,30]",HS,124.25640215439856,80.6603202318893,1.5404898194945849,6296.746276241515,2019
+2004,29,"(25,30]",HS,124.09927468581688,80.6603202318893,1.5385418050541517,6146.125671563153,2019
+2004,29,"(25,30]",HS,124.86919928186714,80.6603202318893,1.5480870758122744,6277.582237090621,2019
+2004,29,"(25,30]",HS,123.47076481149013,80.6603202318893,1.5307497472924187,6266.617676870956,2019
+2004,29,"(25,30]",HS,125.1520287253142,80.6603202318893,1.5515935018050544,6211.685361595,2019
+2004,58,"(55,60]",College,31.896876122082585,96.79238427826716,0.3295391095066185,6075.809801918736,2019
+2004,58,"(55,60]",College,30.796983842010775,96.79238427826716,0.31817569193742484,5260.209008540954,2019
+2004,58,"(55,60]",College,32.682513464991025,96.79238427826716,0.33765583634175694,6092.356740604822,2019
+2004,58,"(55,60]",College,30.4827289048474,96.79238427826716,0.3149290012033695,6004.867271490682,2019
+2004,58,"(55,60]",College,32.682513464991025,96.79238427826716,0.33765583634175694,5803.135340856766,2019
+2004,80,"(75,80]",HS,719.9580610412926,61.30184337623587,11.744476534296028,9237.185019114382,2019
+2004,80,"(75,80]",HS,258.63181328545784,50.00939854377137,5.171664143472692,10778.024072009193,2019
+2004,80,"(75,80]",HS,1002.0018671454219,61.30184337623587,16.34537906137184,9142.112849557188,2019
+2004,80,"(75,80]",HS,839.8463195691203,58.0754305669603,14.461301644604893,9111.715279487831,2019
+2004,80,"(75,80]",HS,707.8592459605027,61.30184337623587,11.5471119133574,9552.137412689179,2019
+2004,31,"(30,35]",College,-23.411992818671454,85.49993944580267,-0.27382467134391386,7594.780063948407,2019
+2004,31,"(30,35]",College,-21.84071813285458,85.49993944580267,-0.2554471766228459,7542.437300879246,2019
+2004,31,"(30,35]",College,-24.983267504488328,83.88673304116487,-0.29782143848930853,7596.80184859102,2019
+2004,31,"(30,35]",College,-23.569120287253142,85.49993944580267,-0.2756624208160207,7587.5901715578675,2019
+2004,31,"(30,35]",College,-23.097737881508078,85.49993944580267,-0.27014917239970027,7583.698617215084,2019
+2004,46,"(45,50]",HS,21.84071813285458,27.424508878842364,0.79639413888299,5359.672790396425,2019
+2004,46,"(45,50]",HS,20.112315978456017,27.424508878842364,0.7333701422807392,5364.135069681539,2019
+2004,46,"(45,50]",HS,20.112315978456017,27.424508878842364,0.7333701422807392,5368.185840349097,2019
+2004,46,"(45,50]",HS,20.269443447037702,27.424508878842364,0.7390995965173073,5369.481856659884,2019
+2004,46,"(45,50]",HS,20.112315978456017,27.424508878842364,0.7333701422807392,5359.248067872333,2019
+2004,87,"(85,90]",NoHS,285.65773788150807,32.264128092755726,8.85372563176895,10844.551283523328,2019
+2004,87,"(85,90]",NoHS,285.18635547576304,66.14146259014923,4.311763669983271,9838.161621294508,2019
+2004,87,"(85,90]",NoHS,288.8002872531418,80.6603202318893,3.580450541516245,10838.11314305751,2019
+2004,87,"(85,90]",NoHS,286.4433752244165,41.94336652058244,6.8292890863648985,10634.44012278259,2019
+2004,87,"(85,90]",NoHS,281.7295511669659,33.87733449739351,8.316166408801788,10530.105909276876,2019
+2004,33,"(30,35]",College,50.90929982046679,72.59428820870036,0.7012851985559568,8710.976456044194,2019
+2004,33,"(30,35]",College,50.90929982046679,72.59428820870036,0.7012851985559568,8502.606532342668,2019
+2004,33,"(30,35]",College,50.7521723518851,72.59428820870036,0.6991207380665866,8684.464748803264,2019
+2004,33,"(30,35]",College,50.90929982046679,72.59428820870036,0.7012851985559568,8669.296275796058,2019
+2004,33,"(30,35]",College,50.90929982046679,72.59428820870036,0.7012851985559568,8593.302407843918,2019
+2004,74,"(70,75]",HS,2035.2721005385995,88.72635225507824,22.93875549721037,13246.48318220023,2019
+2004,74,"(70,75]",HS,2081.310448833034,88.72635225507824,23.457635707253033,14100.846143816167,2019
+2004,74,"(70,75]",HS,1847.1905206463196,88.72635225507824,20.818961601575317,13227.753154647977,2019
+2004,74,"(70,75]",HS,2470.9865709156193,88.72635225507824,27.84952280932064,14141.46206116561,2019
+2004,74,"(70,75]",HS,1997.7186355475762,88.72635225507824,22.51550508697079,13782.702038243297,2019
+2004,87,"(85,90]",College,791.2939317773788,96.79238427826716,8.175167268351384,6238.027760760577,2019
+2004,87,"(85,90]",College,791.2939317773788,96.79238427826716,8.175167268351384,6934.818351343453,2019
+2004,87,"(85,90]",College,791.1368043087971,96.79238427826716,8.173543922984356,6174.911576226173,2019
+2004,87,"(85,90]",College,791.2939317773788,96.79238427826716,8.175167268351384,6155.043724002071,2019
+2004,87,"(85,90]",College,791.2939317773788,96.79238427826716,8.175167268351384,6453.070175513869,2019
+2004,38,"(35,40]",College,1459.085673249551,1164.7350241484814,1.252718981569447,1347.8740131947084,2019
+2004,38,"(35,40]",College,1459.085673249551,1164.7350241484814,1.252718981569447,1313.3848863842832,2019
+2004,38,"(35,40]",College,1459.085673249551,1164.7350241484814,1.252718981569447,1377.9637043656876,2019
+2004,38,"(35,40]",College,1459.085673249551,1164.7350241484814,1.252718981569447,1329.8044254238496,2019
+2004,38,"(35,40]",College,1462.228222621185,1164.7350241484814,1.2554170625118757,1382.4606840938454,2019
+2004,72,"(70,75]",College,293.0427289048474,67.1093864329319,4.366642946403777,8608.798381030616,2019
+2004,72,"(70,75]",College,296.15385278276483,70.65844052313503,4.191344312018859,8032.333548916222,2019
+2004,72,"(70,75]",College,284.80924955116694,69.01296999040449,4.12689454736938,9038.149858953217,2019
+2004,72,"(70,75]",College,330.6433321364453,68.72259283756969,4.811275571600482,8737.27041964362,2019
+2004,72,"(70,75]",College,283.2222621184919,64.25401109672302,4.407853413106787,8759.11297133427,2019
+2004,49,"(45,50]",College,1995.2045960502692,187.13194293798318,10.662020415784887,237.41283090716033,2019
+2004,49,"(45,50]",College,2108.3363734290842,187.13194293798318,11.266576621436574,242.83538571055314,2019
+2004,49,"(45,50]",College,2026.630089766607,187.13194293798318,10.82995269513258,236.0649872843409,2019
+2004,49,"(45,50]",College,2055.5415439856374,187.13194293798318,10.984450392132453,246.3446499592706,2019
+2004,49,"(45,50]",College,2066.383339317774,185.5187365333454,11.138407785277037,247.71998204478737,2019
+2004,54,"(50,55]",College,16930.484739676842,587.2071312881542,28.832219224818502,1405.1578330170792,2019
+2004,54,"(50,55]",College,16930.343324955116,587.2071312881542,28.83197839885746,1389.6551059862818,2019
+2004,54,"(50,55]",College,16930.516165170557,587.2071312881542,28.83227274169873,1442.3952155883323,2019
+2004,54,"(50,55]",College,16930.359037701975,585.5939248835163,28.911432168750192,1350.4283355966081,2019
+2004,54,"(50,55]",College,16930.484739676842,585.5939248835163,28.91164682598881,1380.2505930576149,2019
+2004,55,"(50,55]",College,47021.18061041293,4904.14747009887,9.588043772563177,26.717572668833196,2019
+2004,55,"(50,55]",College,89384.31741472174,5178.3925588872935,17.261016116153268,29.24567987686131,2019
+2004,55,"(50,55]",College,44263.593536804314,5081.600174609026,8.71056203082918,28.16723553762133,2019
+2004,55,"(50,55]",College,36795.324955116695,4839.619213913359,7.602938026474126,25.86303419936243,2019
+2004,55,"(50,55]",College,161061.15475763017,4436.317612753912,36.30514512635379,28.30095239983563,2019
+2004,70,"(65,70]",NoHS,206.65404667863555,38.716953711306864,5.337559566787004,10554.109233832492,2019
+2004,70,"(65,70]",NoHS,206.6697594254937,38.716953711306864,5.33796540312876,9743.113061391465,2019
+2004,70,"(65,70]",NoHS,206.82688689407541,38.716953711306864,5.342023766546331,10965.036770545063,2019
+2004,70,"(65,70]",NoHS,206.81117414721726,38.716953711306864,5.341617930204573,10757.567995546951,2019
+2004,70,"(65,70]",NoHS,206.65404667863555,38.716953711306864,5.337559566787004,10599.568947686079,2019
+2004,55,"(50,55]",College,0.06285098743267505,20.97168326029122,0.002996945292974174,6501.374694291235,2019
+2004,55,"(50,55]",College,0.06285098743267505,19.358476855653432,0.003246690734055355,6448.214827691829,2019
+2004,55,"(50,55]",College,0.06285098743267505,20.97168326029122,0.002996945292974174,6438.108034794519,2019
+2004,55,"(50,55]",College,0.06285098743267505,19.358476855653432,0.003246690734055355,6490.848136662038,2019
+2004,55,"(50,55]",College,0.06285098743267505,19.358476855653432,0.003246690734055355,6488.834207450878,2019
+2004,69,"(65,70]",HS,583.8856732495512,80.6603202318893,7.238821660649821,8156.666793292976,2019
+2004,69,"(65,70]",HS,583.5714183123878,80.6603202318893,7.234925631768953,9141.466799549711,2019
+2004,69,"(65,70]",HS,583.8856732495512,80.6603202318893,7.238821660649821,8139.5720363155315,2019
+2004,69,"(65,70]",HS,583.7285457809694,80.6603202318893,7.236873646209386,8118.165555000375,2019
+2004,69,"(65,70]",HS,583.7285457809694,80.6603202318893,7.236873646209386,8504.38093879453,2019
+2004,81,"(80,85]",HS,263.5027648114901,48.39619213913358,5.44470036101083,12749.079516683476,2019
+2004,81,"(80,85]",HS,258.8832172351885,46.782985734495796,5.533704469065107,11757.833486781801,2019
+2004,81,"(80,85]",HS,263.47133931777375,48.39619213913358,5.444051022864018,12751.991942875964,2019
+2004,81,"(80,85]",HS,271.312,48.39619213913358,5.6060608904933815,12491.321789857808,2019
+2004,81,"(80,85]",HS,271.5162657091562,48.39619213913358,5.610281588447653,12355.567276196924,2019
+2004,55,"(50,55]",HS,116.76142190305207,38.716953711306864,3.0157698555956682,5698.544749836337,2019
+2004,55,"(50,55]",HS,116.91854937163376,38.716953711306864,3.0198282190132373,4993.969591149011,2019
+2004,55,"(50,55]",HS,116.76142190305207,38.716953711306864,3.0157698555956682,5693.478037905397,2019
+2004,55,"(50,55]",HS,116.76142190305207,38.716953711306864,3.0157698555956682,5588.915391830962,2019
+2004,55,"(50,55]",HS,116.91854937163376,38.716953711306864,3.0198282190132373,5427.220143122689,2019
+2004,38,"(35,40]",HS,141.72897666068224,50.00939854377137,2.8340468149528357,7091.067150054751,2019
+2004,38,"(35,40]",HS,142.27892280071814,59.68863697159809,2.3836852375841544,6690.316510071401,2019
+2004,38,"(35,40]",HS,139.85915978456015,67.75466899478702,2.064199587416194,7061.213572522366,2019
+2004,38,"(35,40]",HS,141.1790305206463,83.88673304116487,1.6829720910858095,7031.126132316296,2019
+2004,38,"(35,40]",HS,144.29015439856371,83.88673304116487,1.7200592890863646,6902.478619238298,2019
+2004,58,"(55,60]",College,70565.47475763016,13857.443015838582,5.092243545723135,2.04238032435944,2019
+2004,58,"(55,60]",College,92564.73450628365,13970.367464163228,6.625790963890578,2.1063687971285536,2019
+2004,58,"(55,60]",College,59240.82671454219,14067.159848441495,4.211285529758554,2.057776837958709,2019
+2004,58,"(55,60]",College,44330.05845601437,14244.612552951652,3.1120578598558413,1.8722630014268637,2019
+2004,58,"(55,60]",College,81355.41802513466,14034.895720348739,5.796652832067721,1.989206343437407,2019
+2004,40,"(35,40]",HS,842.2189443447038,91.95276506435381,9.15925631768953,8218.257819065127,2019
+2004,40,"(35,40]",HS,820.6767684021545,172.6130852962431,4.7544296366274175,8607.602669071432,2019
+2004,40,"(35,40]",HS,816.9057091561939,150.02819563131413,5.445014556888318,8073.71841050989,2019
+2004,40,"(35,40]",HS,809.5364308797128,185.5187365333454,4.363637042850416,7920.097598059995,2019
+2004,40,"(35,40]",HS,814.2502549371634,70.9810818040626,11.471370036101082,8262.081608031393,2019
+2004,60,"(55,60]",HS,412.3024775583483,46.782985734495796,8.813086020166812,4936.011236374857,2019
+2004,60,"(55,60]",HS,410.7312028725314,46.782985734495796,8.779499564297273,4401.182069005545,2019
+2004,60,"(55,60]",HS,410.57407540394973,46.782985734495796,8.77614091871032,4947.9944804858005,2019
+2004,60,"(55,60]",HS,410.57407540394973,46.782985734495796,8.77614091871032,4859.721369288813,2019
+2004,60,"(55,60]",HS,410.7312028725314,48.39619213913358,8.486849578820697,4758.413982347119,2019
+2004,82,"(80,85]",HS,329.0249192100539,125.83009956174732,2.614834768119967,2938.896656974647,2019
+2004,82,"(80,85]",HS,695.9175583482945,116.1508611339206,5.991497192137987,8758.202578924576,2019
+2004,82,"(80,85]",HS,487.88078994614006,120.99048034783397,4.03238989169675,2838.9697324781873,2019
+2004,82,"(80,85]",HS,604.1551166965888,135.50933798957405,4.458402097301013,8343.784630261118,2019
+2004,82,"(80,85]",HS,520.4061759425493,122.60368675247175,4.244620938628159,2685.6596633645613,2019
+2004,23,"(20,25]",HS,145.10721723518853,72.59428820870036,1.9988792619334141,9341.955932797126,2019
+2004,23,"(20,25]",HS,132.53701974865348,72.59428820870036,1.8257224227837945,9338.965963750017,2019
+2004,23,"(20,25]",HS,135.2081867145422,72.59428820870036,1.8625182511030889,9392.684042277171,2019
+2004,23,"(20,25]",HS,136.77946140035905,72.59428820870036,1.8841628559967911,9276.473692819576,2019
+2004,23,"(20,25]",HS,136.93658886894076,72.59428820870036,1.8863273164861616,9417.964461124991,2019
+2004,54,"(50,55]",HS,2.4197630161579893,15.648102124986526,0.15463619784882207,4255.58510633076,2019
+2004,54,"(50,55]",HS,2.4197630161579893,15.648102124986526,0.15463619784882207,4259.749660043692,2019
+2004,54,"(50,55]",HS,2.4197630161579893,15.648102124986526,0.15463619784882207,4260.734267319595,2019
+2004,54,"(50,55]",HS,2.4197630161579893,15.809422765450304,0.15305827746260958,4272.125410706993,2019
+2004,54,"(50,55]",HS,2.404050269299821,15.809422765450304,0.15206439254402124,4255.414246833607,2019
+2004,30,"(25,30]",HS,-9.584775583482944,56.46222416232251,-0.1697555440948943,6710.741927388115,2019
+2004,30,"(25,30]",HS,-1.257019748653501,56.46222416232251,-0.02226302217637958,6664.491901480064,2019
+2004,30,"(25,30]",HS,-13.512962298025135,56.46222416232251,-0.23932748839608048,6712.5283747710655,2019
+2004,30,"(25,30]",HS,-12.413070017953322,56.46222416232251,-0.21984734399174835,6704.388943903097,2019
+2004,30,"(25,30]",HS,24.983267504488328,56.46222416232251,0.4424775657555441,6700.950369425501,2019
+2004,44,"(40,45]",College,-8.954694434470378,66.14146259014923,-0.1353870036101083,4761.764378459692,2019
+2004,44,"(40,45]",College,-9.111821903052066,64.52825618551145,-0.14120669675090253,4744.293459075648,2019
+2004,44,"(40,45]",College,-9.268949371633752,66.14146259014923,-0.14013825834287225,4757.437578222358,2019
+2004,44,"(40,45]",College,-9.111821903052066,66.14146259014923,-0.13776263097649027,4731.567592049697,2019
+2004,44,"(40,45]",College,-9.111821903052066,64.52825618551145,-0.14120669675090253,4738.653034136161,2019
+2004,44,"(40,45]",College,6580.498384201077,1230.876486738631,5.346189040979223,294.0782415789,2019
+2004,44,"(40,45]",College,6615.852064631957,1022.7728605403563,6.468544796091517,293.0190960111748,2019
+2004,44,"(40,45]",College,6612.709515260323,1074.3954654887657,6.154818898320703,304.0768756051631,2019
+2004,44,"(40,45]",College,6609.566965888689,814.669234342082,8.11319083532902,290.0616229138954,2019
+2004,44,"(40,45]",College,6597.782405745063,1350.253760681827,4.886327739175067,296.3295687508992,2019
+2004,27,"(25,30]",HS,1.257019748653501,40.33016011594465,0.031168231046931415,6498.794030283212,2019
+2004,27,"(25,30]",HS,-0.15712746858168763,40.33016011594465,-0.003896028880866427,6454.687147447281,2019
+2004,27,"(25,30]",HS,1.257019748653501,40.33016011594465,0.031168231046931415,6493.116913900003,2019
+2004,27,"(25,30]",HS,1.257019748653501,40.33016011594465,0.031168231046931415,6535.439867341234,2019
+2004,27,"(25,30]",HS,2.828294434470377,40.33016011594465,0.07012851985559568,6465.972165707575,2019
+2004,53,"(50,55]",College,118083.17816876122,7711.126614168617,15.313349666933524,15.802976299044108,2019
+2004,53,"(50,55]",College,118870.07253141831,7372.353269194681,16.123762412215914,16.731698115882246,2019
+2004,53,"(50,55]",College,118134.71597845602,8614.522200765778,13.713437985911114,16.396171915760185,2019
+2004,53,"(50,55]",College,119550.43447037702,8517.72981648751,14.035480937534187,15.52483095336305,2019
+2004,53,"(50,55]",College,117696.01608617595,8017.635831049796,14.679641052088707,15.89151738577174,2019
+2004,30,"(25,30]",HS,8.940552962298025,43.55657292522023,0.2052630030752774,5052.654985727104,2019
+2004,30,"(25,30]",HS,8.940552962298025,43.55657292522023,0.2052630030752774,5036.337430585314,2019
+2004,30,"(25,30]",HS,8.924840215439858,43.55657292522023,0.2049022596603824,5023.341581655947,2019
+2004,30,"(25,30]",HS,9.081967684021544,43.55657292522023,0.20850969380933276,5071.040728770985,2019
+2004,30,"(25,30]",HS,9.081967684021544,43.55657292522023,0.20850969380933276,5018.789229285842,2019
+2004,44,"(40,45]",NoHS,60.808330341113106,87.11314585044046,0.6980385078219012,5106.834293692233,2019
+2004,44,"(40,45]",NoHS,59.70843806104129,87.11314585044046,0.6854124883005749,4903.550243824999,2019
+2004,44,"(40,45]",NoHS,56.25163375224417,87.11314585044046,0.6457307126621206,5104.892677563668,2019
+2004,44,"(40,45]",NoHS,53.10908438061041,87.11314585044046,0.6096563711726166,5088.921826672634,2019
+2004,44,"(40,45]",NoHS,59.23705565529623,87.11314585044046,0.6800013370771493,5033.081683983497,2019
+2004,43,"(40,45]",HS,5.656588868940754,74.20749461333816,0.07622665201695182,5165.605120172734,2019
+2004,43,"(40,45]",HS,15.807023339317773,74.20749461333816,0.2130111442473709,5133.932299240129,2019
+2004,43,"(40,45]",HS,10.684667863554758,74.20749461333816,0.14398367603202009,5161.97027471486,2019
+2004,43,"(40,45]",HS,5.185206463195691,74.20749461333816,0.06987443101553915,5153.042671779689,2019
+2004,43,"(40,45]",HS,5.263770197486535,74.20749461333816,0.0709331345157746,5167.855522943564,2019
+2004,54,"(50,55]",College,21737.014003590666,2403.6775429103013,9.043232137232573,414.12414841656954,2019
+2004,54,"(50,55]",College,22420.518491921004,3371.601385692973,6.649812930751558,408.891319696838,2019
+2004,54,"(50,55]",College,21639.59497307002,2645.658503605969,8.179285022453113,426.0991083883323,2019
+2004,54,"(50,55]",College,23345.999281867145,2984.431848579904,7.822594204312616,406.28059603603447,2019
+2004,54,"(50,55]",College,18251.926750448834,2387.545478863924,7.644640452727094,411.54095424055157,2019
+2004,38,"(35,40]",College,36.53213644524237,77.17579439787168,0.47336262270142354,3471.532533920237,2019
+2004,38,"(35,40]",College,36.62641292639139,76.78862486075862,0.4769770651943089,3519.1367803123658,2019
+2004,38,"(35,40]",College,38.98332495511669,76.78862486075862,0.5076705700330674,3479.892408872227,2019
+2004,38,"(35,40]",College,38.2762513464991,76.78862486075862,0.4984625185814398,3462.821015184198,2019
+2004,38,"(35,40]",College,40.444610412926394,76.78862486075862,0.5267005430330978,3496.881027247943,2019
+2004,60,"(55,60]",College,116518.18858168762,4113.676331826355,28.324588320237844,30.92648739810378,2019
+2004,60,"(55,60]",College,123031.90779174148,3807.167114945176,32.31586743559934,32.34637005546422,2019
+2004,60,"(55,60]",College,121943.80007181328,4500.845868939423,27.093529443732777,31.790945229987056,2019
+2004,60,"(55,60]",College,128512.9852782765,3678.1106025741524,34.93994584837545,30.90548891094545,2019
+2004,60,"(55,60]",College,124636.80775583483,3661.9785385277746,34.035373622354044,31.551446258716187,2019
+2004,23,"(20,25]",HS,-19.483806104129265,38.716953711306864,-0.50323706377858,2893.6451809914347,2019
+2004,23,"(20,25]",HS,-17.912531418312387,38.716953711306864,-0.4626534296028881,2944.380241546199,2019
+2004,23,"(20,25]",HS,-11.627432675044885,38.716953711306864,-0.30031889290012037,2906.4496378501567,2019
+2004,23,"(20,25]",HS,-11.627432675044885,38.716953711306864,-0.30031889290012037,2891.190413295154,2019
+2004,23,"(20,25]",HS,-17.912531418312387,38.716953711306864,-0.4626534296028881,2912.490771105873,2019
+2004,26,"(25,30]",College,36.13931777378815,59.68863697159809,0.6054639477022148,5736.8082346844285,2019
+2004,26,"(25,30]",College,36.13931777378815,59.68863697159809,0.6054639477022148,5707.923412991167,2019
+2004,26,"(25,30]",College,36.13931777378815,59.68863697159809,0.6054639477022148,5743.506547603567,2019
+2004,26,"(25,30]",College,36.13931777378815,59.68863697159809,0.6054639477022148,5782.7732292055425,2019
+2004,26,"(25,30]",College,37.710592459605024,59.68863697159809,0.6317884671675285,5757.5690539963425,2019
+2004,43,"(40,45]",College,273.8731777378815,177.45270451015648,1.5433587134886773,9527.621141191357,2019
+2004,43,"(40,45]",College,273.8731777378815,177.45270451015648,1.5433587134886773,10124.818837389146,2019
+2004,43,"(40,45]",College,272.30190305206463,177.45270451015648,1.534504102395799,9406.18789852356,2019
+2004,43,"(40,45]",College,273.8731777378815,177.45270451015648,1.5433587134886773,9428.685184767575,2019
+2004,43,"(40,45]",College,273.8731777378815,177.45270451015648,1.5433587134886773,9855.541043307177,2019
+2004,60,"(55,60]",College,91.2910592459605,193.58476855653433,0.4715818291215403,6032.2942288677305,2019
+2004,60,"(55,60]",College,90.81967684021544,193.58476855653433,0.46914681107099876,5999.198024869031,2019
+2004,60,"(55,60]",College,89.34267863554759,193.58476855653433,0.4615170878459688,6001.522500366154,2019
+2004,60,"(55,60]",College,89.40552962298025,193.58476855653433,0.4618417569193743,6051.687346992548,2019
+2004,60,"(55,60]",College,96.79052064631956,193.58476855653433,0.49999037304452465,6008.671050287936,2019
+2004,53,"(50,55]",College,161.05565529622982,101.63200349218052,1.5846942868603522,6340.814024185361,2019
+2004,53,"(50,55]",College,161.05565529622982,101.63200349218052,1.5846942868603522,5994.748522366702,2019
+2004,53,"(50,55]",College,161.2127827648115,101.63200349218052,1.5862403300670451,6393.0609137463125,2019
+2004,53,"(50,55]",College,161.05565529622982,101.63200349218052,1.5846942868603522,6360.940535877888,2019
+2004,53,"(50,55]",College,161.2127827648115,101.63200349218052,1.5862403300670451,6216.498261883366,2019
+2004,63,"(60,65]",HS,66.77917414721723,64.52825618551145,1.0348826714801442,5981.175804932918,2019
+2004,63,"(60,65]",HS,66.77917414721723,66.14146259014923,1.009641630712336,5847.152241050224,2019
+2004,63,"(60,65]",HS,66.77917414721723,64.52825618551145,1.0348826714801442,6010.184152112784,2019
+2004,63,"(60,65]",HS,66.77917414721723,64.52825618551145,1.0348826714801442,6025.7970596369,2019
+2004,63,"(60,65]",HS,66.77917414721723,64.52825618551145,1.0348826714801442,5897.153677767109,2019
+2004,33,"(30,35]",HS,190.4384919210054,41.94336652058244,4.540372118855874,7858.398201358759,2019
+2004,33,"(30,35]",HS,198.29486535008976,46.782985734495796,4.238610730735715,7791.550962873708,2019
+2004,33,"(30,35]",HS,198.29486535008976,46.782985734495796,4.238610730735715,7841.552572838843,2019
+2004,33,"(30,35]",HS,174.72574506283664,41.94336652058244,4.165753957234102,7948.014638008055,2019
+2004,33,"(30,35]",HS,174.72574506283664,46.782985734495796,3.7348138926926433,7857.206318268132,2019
+2004,47,"(45,50]",HS,90.33258168761222,138.73575079884964,0.65111250104945,6904.454363877843,2019
+2004,47,"(45,50]",HS,87.99138240574507,135.50933798957405,0.6493381468110709,6527.626805916718,2019
+2004,47,"(45,50]",HS,89.75121005385996,132.28292518029846,0.6784791758386898,6961.3455237907865,2019
+2004,47,"(45,50]",HS,87.3157342908438,143.57537001276296,0.6081525980610879,6926.369938274924,2019
+2004,47,"(45,50]",HS,90.85110233393178,158.09422765450302,0.5746642599277979,6769.088067965211,2019
+2004,24,"(20,25]",College,816.9057091561939,80.6603202318893,10.127727075812274,5975.234423509999,2019
+2004,24,"(20,25]",College,831.6756912028726,80.6603202318893,10.310840433212997,6636.25915660852,2019
+2004,24,"(20,25]",College,824.6049551166966,80.6603202318893,10.223179783393503,5901.195955744041,2019
+2004,24,"(20,25]",College,835.2896229802514,80.6603202318893,10.35564476534296,5840.741345961897,2019
+2004,24,"(20,25]",College,866.7151166965888,80.6603202318893,10.745247653429603,6177.633891472639,2019
+2004,45,"(40,45]",HS,-8.720574506283663,83.88673304116487,-0.10395653985004166,5015.497556423625,2019
+2004,45,"(40,45]",HS,19.452380610412927,146.80178282203855,0.13250779545364383,4858.998225303843,2019
+2004,45,"(40,45]",HS,22.70491921005386,101.63200349218052,0.2234032433671423,5041.625816100131,2019
+2004,45,"(40,45]",HS,-14.675705565529624,109.69803551536945,-0.1337827564238692,5071.926067055456,2019
+2004,45,"(40,45]",HS,14.97424775583483,129.0565123710229,0.11602861010830323,4956.53891214535,2019
+2004,66,"(65,70]",HS,1995.2045960502692,96.79238427826716,20.61323947051745,3541.2244879181103,2019
+2004,66,"(65,70]",HS,1994.2618312387792,98.40559068290497,20.265737113096996,3738.2077491658943,2019
+2004,66,"(65,70]",HS,1995.9902333931777,96.79238427826716,20.621356197352586,3544.3182785454214,2019
+2004,66,"(65,70]",HS,1995.361723518851,96.79238427826716,20.61486281588448,3806.0180938657986,2019
+2004,66,"(65,70]",HS,2008.5604308797128,98.40559068290497,20.411039829555538,3628.4742833986616,2019
+2004,58,"(55,60]",College,1772.554973070018,467.82985734495793,3.7888880866425994,159.47386722730087,2019
+2004,58,"(55,60]",College,1770.8108581687613,467.82985734495793,3.7851599900410813,163.39618304348366,2019
+2004,58,"(55,60]",College,1770.6694434470376,467.82985734495793,3.7848577119382547,159.66508930441302,2019
+2004,58,"(55,60]",College,1770.8265709156194,467.82985734495793,3.78519357649695,166.079569844098,2019
+2004,58,"(55,60]",College,1770.6694434470376,467.82985734495793,3.7848577119382547,168.7048140036507,2019
+2004,51,"(50,55]",HS,91.91956912028726,156.48102124986525,0.5874167255945514,9848.727859899713,2019
+2004,51,"(50,55]",HS,95.2192459605027,156.48102124986525,0.6085034798466635,9311.20934317433,2019
+2004,51,"(50,55]",HS,100.56157989228008,156.48102124986525,0.6426439391119878,9929.8791749910215,2019
+2004,51,"(50,55]",HS,92.86233393177739,156.48102124986525,0.5934415125237262,9879.988914974463,2019
+2004,51,"(50,55]",HS,92.07669658886894,156.48102124986525,0.5884208567494138,9655.637176757393,2019
+2004,56,"(55,60]",College,774.63842010772,225.84889664929003,3.4298968540484793,5374.143679803241,2019
+2004,56,"(55,60]",College,774.63842010772,225.84889664929003,3.4298968540484793,5944.051145859234,2019
+2004,56,"(55,60]",College,774.63842010772,225.84889664929003,3.4298968540484793,5303.610550919321,2019
+2004,56,"(55,60]",College,774.4812926391384,225.84889664929003,3.4292011346054676,5286.713740395653,2019
+2004,56,"(55,60]",College,774.63842010772,225.84889664929003,3.4298968540484793,5557.229245790378,2019
+2004,28,"(25,30]",HS,0,0,NA,5525.021131640304,2019
+2004,28,"(25,30]",HS,0,0,NA,5541.164976049207,2019
+2004,28,"(25,30]",HS,0,0,NA,5557.882342849946,2019
+2004,28,"(25,30]",HS,0,0,NA,5554.6000193586515,2019
+2004,28,"(25,30]",HS,0,0,NA,5565.080644018595,2019
+2004,43,"(40,45]",College,2929.013141831239,322.6412809275572,9.078234296028882,1959.5408268047972,2019
+2004,43,"(40,45]",College,2929.013141831239,322.6412809275572,9.078234296028882,1953.9614402821098,2019
+2004,43,"(40,45]",College,2929.013141831239,322.6412809275572,9.078234296028882,1983.1933371252449,2019
+2004,43,"(40,45]",College,2929.013141831239,322.6412809275572,9.078234296028882,1938.0610807251912,2019
+2004,43,"(40,45]",College,2929.028854578097,322.6412809275572,9.078282996389891,1999.012932511363,2019
+2004,53,"(50,55]",College,3307.517500897666,266.1790567652347,12.425911869598513,702.6718115905215,2019
+2004,53,"(50,55]",College,3301.5466570915623,266.1790567652347,12.403480188163222,709.5405228619868,2019
+2004,53,"(50,55]",College,3319.616315978456,266.1790567652347,12.471365539875288,700.5249110626231,2019
+2004,53,"(50,55]",College,3313.3312172351884,266.1790567652347,12.447753243627613,718.9262113972829,2019
+2004,53,"(50,55]",College,3328.2583267504488,266.1790567652347,12.50383244721584,728.5228231651256,2019
+2004,62,"(60,65]",HS,-0.23569120287253142,29.03771528348015,-0.008116726835138387,7048.873041596763,2019
+2004,62,"(60,65]",HS,7.62068222621185,29.03771528348015,0.2624408343361412,6987.89657967176,2019
+2004,62,"(60,65]",HS,7.62068222621185,29.03771528348015,0.2624408343361412,6982.841591361494,2019
+2004,62,"(60,65]",HS,9.191956912028726,29.03771528348015,0.3165523465703971,7038.49291435951,2019
+2004,62,"(60,65]",HS,7.62068222621185,29.03771528348015,0.2624408343361412,7033.817499678345,2019
+2004,67,"(65,70]",HS,479.867289048474,59.68863697159809,8.0395082447068,7239.5672175582295,2019
+2004,67,"(65,70]",HS,478.2960143626571,58.0754305669603,8.23577216205375,6610.090302549599,2019
+2004,67,"(65,70]",HS,479.867289048474,58.0754305669603,8.26282791817088,7327.447365563935,2019
+2004,67,"(65,70]",HS,486.1523877917415,58.0754305669603,8.37105094263939,7308.719326512127,2019
+2004,67,"(65,70]",HS,476.7247396768402,59.68863697159809,7.986859205776172,7134.688303929093,2019
+2004,47,"(45,50]",HS,1.2098815080789946,53.23581135304694,0.022726835138387486,4532.017271630428,2019
+2004,47,"(45,50]",HS,1.7441149012567325,53.23581135304694,0.03276206104364949,4444.340999775462,2019
+2004,47,"(45,50]",HS,1.1941687612208258,53.23581135304694,0.022431681435291544,4539.214167617257,2019
+2004,47,"(45,50]",HS,1.90124236983842,53.23581135304694,0.0357135980746089,4547.9405304513775,2019
+2004,47,"(45,50]",HS,1.7126894075403951,53.23581135304694,0.03217175363745761,4465.92061703812,2019
+2004,87,"(85,90]",HS,877.714039497307,56.46222416232251,15.545155234657042,8371.968924257899,2019
+2004,87,"(85,90]",HS,880.5423339317774,56.46222416232251,15.595247034553896,9307.121731330993,2019
+2004,87,"(85,90]",HS,836.0752603231598,56.46222416232251,14.807692625064469,8287.26158472606,2019
+2004,87,"(85,90]",HS,715.8727468581687,56.46222416232251,12.67879112944817,8260.597220957405,2019
+2004,87,"(85,90]",HS,729.6999640933574,56.46222416232251,12.923684373388348,8660.574310889338,2019
+2004,57,"(55,60]",HS,27.968689407540396,64.52825618551145,0.4334332129963898,5940.980084370242,2019
+2004,57,"(55,60]",HS,27.968689407540396,64.52825618551145,0.4334332129963898,5697.400054620338,2019
+2004,57,"(55,60]",HS,27.968689407540396,64.52825618551145,0.4334332129963898,5911.065484114283,2019
+2004,57,"(55,60]",HS,27.968689407540396,64.52825618551145,0.4334332129963898,5967.973472709702,2019
+2004,57,"(55,60]",HS,29.53996409335727,64.52825618551145,0.45778339350180497,5840.252513912468,2019
+2004,32,"(30,35]",College,4452.992459605027,161.3206404637786,27.603364620938628,3643.933326921246,2019
+2004,32,"(30,35]",College,4485.989228007182,161.3206404637786,27.80790613718412,3596.5441441361945,2019
+2004,32,"(30,35]",College,4586.550807899461,161.3206404637786,28.43127075812274,4050.5172030113586,2019
+2004,32,"(30,35]",College,4427.852064631957,161.3206404637786,27.44752346570397,3559.838066757247,2019
+2004,32,"(30,35]",College,4044.461041292639,161.3206404637786,25.07094584837545,3730.011843083447,2019
+2004,56,"(55,60]",College,9395.908366247757,229.07530945856564,41.01667870036101,1642.0659701694865,2019
+2004,56,"(55,60]",College,9395.908366247757,229.07530945856564,41.01667870036101,1650.1175434523004,2019
+2004,56,"(55,60]",College,9395.908366247757,229.07530945856564,41.01667870036101,1673.7244952426486,2019
+2004,56,"(55,60]",College,9395.908366247757,229.07530945856564,41.01667870036101,1595.1361292352601,2019
+2004,56,"(55,60]",College,9395.908366247757,229.07530945856564,41.01667870036101,1612.921296590014,2019
+2004,68,"(65,70]",College,6256.030161579893,193.58476855653433,32.31674789410349,1715.641890540539,2019
+2004,68,"(65,70]",College,6234.032315978457,193.58476855653433,32.20311371841156,1693.675755267098,2019
+2004,68,"(65,70]",College,6202.606822262119,193.58476855653433,32.040779181708785,1754.8189381437776,2019
+2004,68,"(65,70]",College,6285.884380610413,193.58476855653433,32.470965703971125,1671.4416586611958,2019
+2004,68,"(65,70]",College,6200.87842010772,193.58476855653433,32.03185078219013,1690.4408731624783,2019
+2004,67,"(65,70]",HS,1958.3582046678637,117.76406753855836,16.629505464615995,2986.816962260323,2019
+2004,67,"(65,70]",HS,1968.6343411131058,117.76406753855836,16.716765837495675,3154.093731399645,2019
+2004,67,"(65,70]",HS,1962.380667863555,93.56597146899159,20.97323030001245,2989.369801233356,2019
+2004,67,"(65,70]",HS,2017.2967181328547,114.53765472928282,17.612519855595668,3212.3879232335244,2019
+2004,67,"(65,70]",HS,1986.594010771993,117.76406753855836,16.86927135156521,3060.745643843978,2019
+2004,63,"(60,65]",HS,564.5589946140036,208.1036261982744,2.712874373828114,4715.67587724899,2019
+2004,63,"(60,65]",HS,738.9704847396769,208.1036261982744,3.55097360982845,4930.471486589638,2019
+2004,63,"(60,65]",HS,861.5299102333933,208.1036261982744,4.139908208098956,4592.600285477727,2019
+2004,63,"(60,65]",HS,562.9877199281867,208.1036261982744,2.7053239302605436,4530.388800795079,2019
+2004,63,"(60,65]",HS,754.6832315978455,208.1036261982744,3.626478045504155,4712.863320991246,2019
+2004,50,"(45,50]",HS,138.55500179533212,77.43390742261373,1.7893324308062573,6650.533891744582,2019
+2004,50,"(45,50]",HS,138.36644883303413,77.43390742261373,1.7868974127557162,6179.754180870263,2019
+2004,50,"(45,50]",HS,138.5235763016158,77.43390742261373,1.7889265944645008,6683.146137334463,2019
+2004,50,"(45,50]",HS,138.36644883303413,77.43390742261373,1.7868974127557162,6646.012793687047,2019
+2004,50,"(45,50]",HS,138.36644883303413,77.43390742261373,1.7868974127557162,6441.4657767560475,2019
+2004,58,"(55,60]",College,6463.43842010772,283.9243272162504,22.76465170659665,1282.507249798507,2019
+2004,58,"(55,60]",College,7766.653644524237,274.24508878842363,28.32011934593332,1277.515047295174,2019
+2004,58,"(55,60]",College,6287.455655296229,221.0092774353767,28.448831326253654,1304.8772164009351,2019
+2004,58,"(55,60]",College,4547.426068222621,246.82057990958126,18.424015006724712,1245.7005963675742,2019
+2004,58,"(55,60]",College,5954.188294434471,241.98096069566793,24.606019735258723,1266.7552711465617,2019
+2004,54,"(50,55]",College,3028.9462118491924,566.235448027863,5.349269853024365,1546.4944343813654,2019
+2004,54,"(50,55]",College,2552.8499820466786,567.8486544325008,4.4956520758122736,1511.0316657598137,2019
+2004,54,"(50,55]",College,6622.451418312387,566.235448027863,11.695579005831712,1595.6261406244932,2019
+2004,54,"(50,55]",College,2978.665421903052,566.235448027863,5.260471473973278,1495.4241529550816,2019
+2004,54,"(50,55]",College,2691.122154398564,566.235448027863,4.752655743774877,1527.3486569559088,2019
+2004,62,"(60,65]",College,2793.0664560143628,91.95276506435381,30.37501323706378,2798.49686555661,2019
+2004,62,"(60,65]",College,2794.2291992818673,95.17917787362938,29.35756813314569,2902.492502787559,2019
+2004,62,"(60,65]",College,2796.3975583482943,82.2735266365271,33.98903234940185,2745.481189506111,2019
+2004,62,"(60,65]",College,2792.4693716337524,95.17917787362938,29.339078504558525,2977.6421738022514,2019
+2004,62,"(60,65]",College,2795.7376229802517,96.79238427826716,28.883859446450064,2835.7565147321293,2019
+2004,28,"(25,30]",HS,101.74003590664273,37.10374730666908,2.7420420656097946,7357.327588892562,2019
+2004,28,"(25,30]",HS,105.2754039497307,33.87733449739351,3.1075468454529824,7181.337469291102,2019
+2004,28,"(25,30]",HS,108.29225134649911,35.4905409020313,3.0512989826058416,7334.935688731122,2019
+2004,28,"(25,30]",HS,101.74003590664273,35.4905409020313,2.8666803413193302,7322.124332220126,2019
+2004,28,"(25,30]",HS,96.63339317773787,48.39619213913358,1.9967148014440432,7257.939589660867,2019
+2004,84,"(80,85]",NoHS,0.6285098743267505,8.549993944580267,0.07350997888427219,7307.290664779661,2019
+2004,84,"(80,85]",NoHS,0.5813716337522442,8.549993944580267,0.06799673046795178,7288.3492566741315,2019
+2004,84,"(80,85]",NoHS,0.5656588868940754,8.549993944580267,0.06615898099584497,7310.368216982021,2019
+2004,84,"(80,85]",NoHS,0.5499461400359067,8.549993944580267,0.06432123152373817,7305.540074975868,2019
+2004,84,"(80,85]",NoHS,0.5656588868940754,8.549993944580267,0.06615898099584497,7332.604962195519,2019
+2004,31,"(30,35]",College,-38.62193177737881,32.264128092755726,-1.1970548736462092,6099.323367135259,2019
+2004,31,"(30,35]",College,-39.95751526032316,32.264128092755726,-1.238450180505415,6068.613282241002,2019
+2004,31,"(30,35]",College,-39.64326032315979,32.264128092755726,-1.228710108303249,6106.444953710364,2019
+2004,31,"(30,35]",College,-37.91485816876123,32.264128092755726,-1.1751397111913358,6148.192939497443,2019
+2004,31,"(30,35]",College,-38.38624057450629,32.264128092755726,-1.1897498194945848,6121.396085129292,2019
+2004,34,"(30,35]",College,108.57508078994614,104.8584163014561,1.035444598722577,8308.04473460621,2019
+2004,34,"(30,35]",College,111.40337522441652,103.24520989681828,1.0790173736462096,8011.262615953667,2019
+2004,34,"(30,35]",College,112.34614003590664,103.24520989681828,1.0881486913357403,8312.707743179837,2019
+2004,34,"(30,35]",College,110.14635547576302,104.8584163014561,1.050429325187448,8332.042988436371,2019
+2004,34,"(30,35]",College,109.67497307001796,104.8584163014561,1.0459339072479865,8219.343596850935,2019
+2004,39,"(35,40]",HS,67.87906642728905,117.76406753855836,0.5763987933336631,3982.98849288317,2019
+2004,39,"(35,40]",HS,67.72193895870737,117.76406753855836,0.575064536867613,4035.120521976349,2019
+2004,39,"(35,40]",HS,67.72193895870737,117.76406753855836,0.575064536867613,3966.257004539705,2019
+2004,39,"(35,40]",HS,67.72193895870737,117.76406753855836,0.575064536867613,3981.186838231983,2019
+2004,39,"(35,40]",HS,67.87906642728905,117.76406753855836,0.5763987933336631,3992.697263237568,2019
+2004,24,"(20,25]",NoHS,-1.5712746858168762,32.264128092755726,-0.04870036101083032,7549.281948016559,2019
+2004,24,"(20,25]",NoHS,-3.1425493716337525,32.264128092755726,-0.09740072202166064,7494.609974492679,2019
+2004,24,"(20,25]",NoHS,-3.1425493716337525,32.264128092755726,-0.09740072202166064,7587.284378651774,2019
+2004,24,"(20,25]",NoHS,-4.713824057450628,32.264128092755726,-0.14610108303249095,7459.0560161748435,2019
+2004,24,"(20,25]",NoHS,-1.5712746858168762,32.264128092755726,-0.04870036101083032,7579.5771380723145,2019
+2004,67,"(65,70]",HS,1523.3508078994614,164.5470532730542,9.257843137254902,770.0404772812162,2019
+2004,67,"(65,70]",HS,1523.5079353680433,166.16025967769198,9.168906803126424,742.9973155506868,2019
+2004,67,"(65,70]",HS,1523.3508078994614,166.16025967769198,9.167961165048544,780.484936350307,2019
+2004,67,"(65,70]",HS,1523.5079353680433,166.16025967769198,9.168906803126424,724.5726376010633,2019
+2004,67,"(65,70]",HS,1523.5079353680433,166.16025967769198,9.168906803126424,779.236345809748,2019
+2004,47,"(45,50]",HS,1824.4070377019748,161.3206404637786,11.309197833935018,9469.346459980326,2019
+2004,47,"(45,50]",HS,1824.4070377019748,161.3206404637786,11.309197833935018,9998.469706297019,2019
+2004,47,"(45,50]",HS,1824.5641651705566,161.3206404637786,11.310171841155235,9301.91175649659,2019
+2004,47,"(45,50]",HS,1824.5641651705566,161.3206404637786,11.310171841155235,9538.53402455611,2019
+2004,47,"(45,50]",HS,1824.4070377019748,161.3206404637786,11.309197833935018,9591.990650732145,2019
+2004,54,"(50,55]",College,60862.69644524237,1613.2064046377861,37.727780072202165,26.53403282575663,2019
+2004,54,"(50,55]",College,62166.69730700179,1613.2064046377861,38.53610866425993,27.460195446701853,2019
+2004,54,"(50,55]",College,58398.93773788151,1613.2064046377861,36.20053675090253,26.696224556148234,2019
+2004,54,"(50,55]",College,60531.157486535005,1613.2064046377861,37.52226454873646,26.087486167993212,2019
+2004,54,"(50,55]",College,62182.41005385997,1613.2064046377861,38.5458487364621,26.767361096680492,2019
+2004,30,"(25,30]",HS,190.2342262118492,140.3489572034874,1.3554374040416615,8980.289124220635,2019
+2004,30,"(25,30]",HS,190.2342262118492,219.3960710307389,0.8670812805266511,8915.78350369419,2019
+2004,30,"(25,30]",HS,190.24993895870736,217.78286462610117,0.8735762535098273,8919.154244242764,2019
+2004,30,"(25,30]",HS,190.2342262118492,237.14134148175458,0.8021976472899629,8980.302399418366,2019
+2004,30,"(25,30]",HS,190.2342262118492,196.81118136580994,0.9665824110788896,8917.63446269978,2019
+2004,85,"(80,85]",NoHS,286.75763016157987,30.650921688117936,9.355595667870036,9202.841820649486,2019
+2004,85,"(80,85]",NoHS,260.9887253141831,30.650921688117936,8.514873646209386,8509.870664698346,2019
+2004,85,"(80,85]",NoHS,271.2020107719928,30.650921688117936,8.848086642599277,9163.675679980883,2019
+2004,85,"(80,85]",NoHS,279.52976660682225,30.650921688117936,9.119783393501805,9020.036288072077,2019
+2004,85,"(80,85]",NoHS,281.7295511669659,30.650921688117936,9.191552346570397,8952.126466237622,2019
+2004,21,"(20,25]",HS,148.4226068222621,25.81130247420457,5.750295126353792,12003.560639840302,2019
+2004,21,"(20,25]",HS,139.15208617594257,24.19809606956679,5.7505386281588455,11687.550417219036,2019
+2004,21,"(20,25]",HS,173.7201292639138,25.81130247420457,6.730389891696752,11930.258133263535,2019
+2004,21,"(20,25]",HS,175.13427648114902,25.81130247420457,6.785177797833937,11749.764382845782,2019
+2004,21,"(20,25]",HS,107.56946499102334,25.81130247420457,4.167533393501806,11782.905929509561,2019
+2004,48,"(45,50]",College,6726.626929982047,322.6412809275572,20.848624548736463,2741.5979583973067,2019
+2004,48,"(45,50]",College,6725.102793536805,322.6412809275572,20.843900613718414,2746.436036111392,2019
+2004,48,"(45,50]",College,6728.198204667863,322.6412809275572,20.853494584837545,2773.0833076559597,2019
+2004,48,"(45,50]",College,6728.213917414722,322.6412809275572,20.85354328519856,2677.894598107342,2019
+2004,48,"(45,50]",College,6728.198204667863,322.6412809275572,20.853494584837545,2675.1490523499106,2019
+2004,56,"(55,60]",College,3944.8422262118493,322.6412809275572,12.226712635379062,269.2094146874113,2019
+2004,56,"(55,60]",College,3944.6850987432676,322.6412809275572,12.226225631768955,261.2068357552856,2019
+2004,56,"(55,60]",College,3944.8422262118493,322.6412809275572,12.226712635379062,278.8299964143107,2019
+2004,56,"(55,60]",College,3944.6850987432676,322.6412809275572,12.226225631768955,266.2696981144753,2019
+2004,56,"(55,60]",College,3944.6850987432676,322.6412809275572,12.226225631768955,273.62981941700235,2019
+2004,24,"(20,25]",College,-2.953996409335727,53.23581135304694,-0.05548889618203698,6838.037242434853,2019
+2004,24,"(20,25]",College,-2.7968689407540395,53.23581135304694,-0.05253735915107756,6801.146249455281,2019
+2004,24,"(20,25]",College,-2.7968689407540395,53.23581135304694,-0.05253735915107756,6825.748827005438,2019
+2004,24,"(20,25]",College,-2.7968689407540395,53.23581135304694,-0.05253735915107756,6743.711764487419,2019
+2004,24,"(20,25]",College,-2.7968689407540395,53.23581135304694,-0.05253735915107756,6796.2032056702255,2019
+2004,40,"(35,40]",HS,9.427648114901256,64.52825618551145,0.14610108303249095,4479.397553046897,2019
+2004,40,"(35,40]",HS,6.285098743267505,64.52825618551145,0.09740072202166064,4462.962637893941,2019
+2004,40,"(35,40]",HS,6.285098743267505,64.52825618551145,0.09740072202166064,4475.327326791414,2019
+2004,40,"(35,40]",HS,6.127971274685817,64.52825618551145,0.09496570397111911,4450.991399276108,2019
+2004,40,"(35,40]",HS,6.127971274685817,64.52825618551145,0.09496570397111911,4457.656683280484,2019
+2004,67,"(65,70]",College,-8.642010771992819,69.36787539942482,-0.12458231886491476,10547.406534596867,2019
+2004,67,"(65,70]",College,-13.355834829443447,69.36787539942482,-0.19253631097305007,10667.441299985137,2019
+2004,67,"(65,70]",College,-22.783482944344705,69.36787539942482,-0.3284442951893207,10592.837422802022,2019
+2004,67,"(65,70]",College,-19.64093357271095,67.75466899478702,-0.2898831012549423,10822.906593092815,2019
+2004,67,"(65,70]",College,-13.355834829443447,69.36787539942482,-0.19253631097305007,10698.504775120291,2019
+2004,40,"(35,40]",College,96.94764811490126,32.264128092755726,3.0048122743682306,4287.432976736542,2019
+2004,40,"(35,40]",College,89.09127468581688,32.264128092755726,2.761310469314079,4298.610240231732,2019
+2004,40,"(35,40]",College,96.94764811490126,32.264128092755726,3.0048122743682306,4260.66579137788,2019
+2004,40,"(35,40]",College,90.66254937163376,32.264128092755726,2.8100108303249094,4229.328618412062,2019
+2004,40,"(35,40]",College,96.94764811490126,32.264128092755726,3.0048122743682306,4258.769273891275,2019
+2004,57,"(55,60]",College,4400.19763016158,5565.5620960003625,0.7906115418824883,19.741578807765016,2019
+2004,57,"(55,60]",College,38537.4600502693,7065.844052313504,5.454049051316288,18.63705803531676,2019
+2004,57,"(55,60]",College,96315.02150089767,5646.222416232252,17.058311628674574,19.680052415018398,2019
+2004,57,"(55,60]",College,37803.28195332137,7856.3151905860195,4.811833669634319,17.44483212710631,2019
+2004,57,"(55,60]",College,8381.352014362657,4823.487149866981,1.7376125931202684,19.70575690641429,2019
+2004,57,"(55,60]",HS,133.46407181328547,27.424508878842364,4.866598428541092,5314.834970199752,2019
+2004,57,"(55,60]",HS,135.88383482944346,30.650921688117936,4.4332707581227435,5195.043642795503,2019
+2004,57,"(55,60]",HS,134.17114542190305,30.650921688117936,4.377393501805054,5270.227053245961,2019
+2004,57,"(55,60]",HS,134.81536804308797,30.650921688117936,4.3984115523465706,5311.437701952278,2019
+2004,57,"(55,60]",HS,133.77832675044885,32.264128092755726,4.146348736462094,5230.1372771682545,2019
+2004,73,"(70,75]",College,9027.727281867144,230.6885158632034,39.13383918608467,2047.6664894362675,2019
+2004,73,"(70,75]",College,9026.973070017953,230.6885158632034,39.130569791219614,2061.603114483126,2019
+2004,73,"(70,75]",College,9026.973070017953,230.6885158632034,39.130569791219614,2066.8392551343795,2019
+2004,73,"(70,75]",College,9026.98878276481,230.6885158632034,39.13063790361263,2004.3122706066356,2019
+2004,73,"(70,75]",College,9026.815942549372,230.6885158632034,39.12988866728939,1997.921363103212,2019
+2004,36,"(35,40]",College,174.30150089766607,88.72635225507824,1.9644840170659665,6290.121495223664,2019
+2004,36,"(35,40]",College,174.14437342908437,90.33955865971603,1.9276646467251157,6038.170401274283,2019
+2004,36,"(35,40]",College,175.87277558348296,90.33955865971603,1.946796931407942,6284.433912095459,2019
+2004,36,"(35,40]",College,174.31721364452426,90.33955865971603,1.9295778751933987,6261.004026146264,2019
+2004,36,"(35,40]",College,175.73136086175944,90.33955865971603,1.9452315626611654,6197.6224247386745,2019
+2004,36,"(35,40]",College,5889.608904847397,298.4431848579905,19.734439262367054,2729.1470719425383,2019
+2004,36,"(35,40]",College,5889.608904847397,298.4431848579905,19.734439262367054,2632.515616100399,2019
+2004,36,"(35,40]",College,5889.608904847397,298.4431848579905,19.734439262367054,2871.462689514968,2019
+2004,36,"(35,40]",College,5889.608904847397,298.4431848579905,19.734439262367054,2542.779365151207,2019
+2004,36,"(35,40]",College,5889.608904847397,298.4431848579905,19.734439262367054,2657.9928472060665,2019
+2004,54,"(50,55]",College,58216.51274685817,1276.0462660684889,45.62257207665661,223.8533298917561,2019
+2004,54,"(50,55]",College,84610.15640933573,1558.3573868801013,54.29444947716962,233.31197362120798,2019
+2004,54,"(50,55]",College,79362.57034111311,1327.668871016898,59.775876405332255,232.18788864895015,2019
+2004,54,"(50,55]",College,67284.96746858169,1367.9990311328427,49.18495257475649,233.99581520855227,2019
+2004,54,"(50,55]",College,68597.13895870736,1434.1404937229918,47.831533422943075,228.74515023926355,2019
+2004,53,"(50,55]",HS,158.93443447037703,50.00939854377137,3.1780913008035405,6207.399096582166,2019
+2004,53,"(50,55]",HS,97.0733500897666,145.18857641740072,0.6686018451664663,6120.268760500503,2019
+2004,53,"(50,55]",HS,95.84775583482944,93.56597146899159,1.0243869040209137,6350.301760499402,2019
+2004,53,"(50,55]",HS,140.00057450628364,77.43390742261373,1.8080009025270756,6293.000272942276,2019
+2004,53,"(50,55]",HS,90.97680430879713,37.10374730666908,2.4519573065452835,6243.128492254468,2019
+2004,45,"(40,45]",NoHS,4.870951526032316,20.97168326029122,0.23226326020549848,5543.584833265251,2019
+2004,45,"(40,45]",NoHS,3.771059245960503,22.58488966492901,0.1669726663228468,5530.926541554045,2019
+2004,45,"(40,45]",NoHS,4.556696588868941,20.97168326029122,0.2172785337406276,5569.899384629696,2019
+2004,45,"(40,45]",HS,8.799138240574507,20.97168326029122,0.4195723410163844,5570.675845753376,2019
+2004,45,"(40,45]",NoHS,2.9854219030520643,22.58488966492901,0.1321866941722537,5528.377330103861,2019
+2004,43,"(40,45]",NoHS,-0.23569120287253142,24.19809606956679,-0.009740072202166066,4454.602428304615,2019
+2004,43,"(40,45]",NoHS,-0.5656588868940754,24.19809606956679,-0.023376173285198556,4450.49408319185,2019
+2004,43,"(40,45]",NoHS,-0.5813716337522442,24.19809606956679,-0.02402551143200963,4491.281985497175,2019
+2004,43,"(40,45]",NoHS,-0.23569120287253142,24.19809606956679,-0.009740072202166066,4446.610472033853,2019
+2004,43,"(40,45]",NoHS,-0.23569120287253142,24.19809606956679,-0.009740072202166066,4457.256838671906,2019
+2004,45,"(40,45]",College,4000.4653500897666,443.63176127539117,9.017535936987201,3613.496873612951,2019
+2004,45,"(40,45]",College,4196.874685816876,443.63176127539117,9.460266491631112,3504.047672397513,2019
+2004,45,"(40,45]",College,3815.0549371633756,443.63176127539117,8.599598293403348,3776.9260412605045,2019
+2004,45,"(40,45]",College,4042.8897666068224,443.63176127539117,9.113165736790286,3384.8663198556847,2019
+2004,45,"(40,45]",College,3835.481508078995,443.63176127539117,8.645642271086315,3511.2610373154143,2019
+2004,58,"(55,60]",HS,697.3631310592459,48.39619213913358,14.409462815884476,6570.599326982163,2019
+2004,58,"(55,60]",HS,713.20157989228,48.39619213913358,14.736729241877256,7264.641831292749,2019
+2004,58,"(55,60]",HS,708.6448833034112,48.39619213913358,14.642575210589653,6483.221103687719,2019
+2004,58,"(55,60]",HS,703.8367827648116,48.39619213913358,14.54322647412756,6461.869241292201,2019
+2004,58,"(55,60]",HS,716.6269587073609,48.39619213913358,14.807507099879665,6791.971551551175,2019
+2004,43,"(40,45]",HS,-0.2042657091561939,88.72635225507824,-0.0023021988841483427,4679.053709760003,2019
+2004,43,"(40,45]",HS,-0.26711669658886894,90.33955865971603,-0.002956807632800412,4605.5189449035515,2019
+2004,43,"(40,45]",HS,0.6285098743267505,88.72635225507824,0.007083688874302593,4691.704987844713,2019
+2004,43,"(40,45]",HS,0.15712746858168763,87.11314585044046,0.0018037170744751973,4685.2292647118575,2019
+2004,43,"(40,45]",HS,0.10998922800718133,88.72635225507824,0.0012396455530029537,4669.711963224071,2019
+2004,46,"(45,50]",HS,6150.911885098743,585.5939248835163,10.503715328539748,411.3802887864772,2019
+2004,46,"(45,50]",HS,6449.611202872532,751.7541845612083,8.579415100478768,400.65977290232183,2019
+2004,46,"(45,50]",HS,5720.382621184919,540.4241455536584,10.584987122150977,427.74796294974794,2019
+2004,46,"(45,50]",HS,8533.121436265708,683.9995155664213,12.475332572713029,406.08022115708366,2019
+2004,46,"(45,50]",HS,6157.196983842011,671.093864329319,9.174867050819218,415.84491171919717,2019
+2004,58,"(55,60]",College,7837.518132854579,3226.4128092755723,2.4291740072202166,20.626138171850155,2019
+2004,58,"(55,60]",College,15308.929263913824,3226.4128092755723,4.744876173285198,21.160599969936417,2019
+2004,58,"(55,60]",College,31584.192459605027,3226.4128092755723,9.789259566787003,19.897276336486822,2019
+2004,58,"(55,60]",College,13560.257666068223,3226.4128092755723,4.202889855595668,19.826033511512716,2019
+2004,58,"(55,60]",College,12254.371274685816,3226.4128092755723,3.798141155234657,20.65284709280759,2019
+2004,72,"(70,75]",HS,17.2525960502693,15.164140203595188,1.1377233274445042,6423.013736916726,2019
+2004,72,"(70,75]",HS,17.39401077199282,15.164140203595188,1.1470489284891314,6428.714634821583,2019
+2004,72,"(70,75]",HS,17.23688330341113,15.164140203595188,1.1366871495506568,6435.482871817115,2019
+2004,72,"(70,75]",HS,17.23688330341113,15.164140203595188,1.1366871495506568,6421.045130926375,2019
+2004,72,"(70,75]",HS,17.39401077199282,15.002819563131412,1.159382787935251,6427.785668692677,2019
+2004,43,"(40,45]",College,350.3942549371634,204.87721338899885,1.7102646465220728,5255.512561892459,2019
+2004,43,"(40,45]",College,350.3942549371634,204.87721338899885,1.7102646465220728,5832.923474470414,2019
+2004,43,"(40,45]",College,350.5513824057451,204.87721338899885,1.711031581341141,5186.748983274529,2019
+2004,43,"(40,45]",College,350.3942549371634,204.87721338899885,1.7102646465220728,5178.469724516122,2019
+2004,43,"(40,45]",College,351.9655296229803,204.87721338899885,1.7179339947127548,5410.765009362113,2019
+2004,58,"(55,60]",College,913.0677199281868,159.70743405914084,5.717127228968384,4575.4524365509815,2019
+2004,58,"(55,60]",College,913.2248473967684,169.38667248696757,5.39136187037992,5061.168407228075,2019
+2004,58,"(55,60]",College,914.7961220825853,185.5187365333454,4.931017422696594,4512.949308186625,2019
+2004,58,"(55,60]",College,913.0677199281868,180.67911731943207,5.05353210417741,4499.077645838299,2019
+2004,58,"(55,60]",College,914.63899461400365,195.19797496117215,4.6856991974222035,4730.586547071662,2019
+2004,53,"(50,55]",College,10862.143339317774,713.0372308499014,15.233627178724864,1898.1692410790806,2019
+2004,53,"(50,55]",College,10862.143339317774,713.0372308499014,15.233627178724864,1894.1883513808432,2019
+2004,53,"(50,55]",College,10862.300466786355,713.0372308499014,15.233847542349347,2151.128216417018,2019
+2004,53,"(50,55]",College,10862.300466786355,713.0372308499014,15.233847542349347,1810.589421199434,2019
+2004,53,"(50,55]",College,10862.143339317774,713.0372308499014,15.233627178724864,1918.3157639780372,2019
+2004,29,"(25,30]",College,8.327755834829444,48.39619213913358,0.17207460890493384,4405.209421673331,2019
+2004,29,"(25,30]",College,8.327755834829444,48.39619213913358,0.17207460890493384,4383.029198200427,2019
+2004,29,"(25,30]",College,8.327755834829444,48.39619213913358,0.17207460890493384,4410.352956191761,2019
+2004,29,"(25,30]",College,8.327755834829444,48.39619213913358,0.17207460890493384,4440.505254939529,2019
+2004,29,"(25,30]",College,8.327755834829444,48.39619213913358,0.17207460890493384,4421.151344968167,2019
+2004,51,"(50,55]",HS,173.941678994614,61.30184337623587,2.837462454873646,8870.669583902989,2019
+2004,51,"(50,55]",HS,172.37040430879713,59.68863697159809,2.8878261098643767,8873.693212293763,2019
+2004,51,"(50,55]",HS,172.37040430879713,61.30184337623587,2.8118306859205777,8879.686274077449,2019
+2004,51,"(50,55]",HS,172.37040430879713,59.68863697159809,2.8878261098643767,8942.180535554438,2019
+2004,51,"(50,55]",HS,173.941678994614,61.30184337623587,2.837462454873646,8908.130995772552,2019
+2004,57,"(55,60]",NoHS,3.9753249551166965,12.583009956174735,0.3159279829676941,6589.652799399594,2019
+2004,57,"(55,60]",NoHS,3.959612208258528,12.583009956174735,0.3146792557622882,6535.116818564208,2019
+2004,57,"(55,60]",NoHS,3.80248473967684,12.583009956174735,0.3021919837082291,6529.073216014024,2019
+2004,57,"(55,60]",NoHS,3.80248473967684,12.583009956174735,0.3021919837082291,6581.817912445433,2019
+2004,57,"(55,60]",NoHS,3.9753249551166965,12.583009956174735,0.3159279829676941,6577.973296665387,2019
+2004,79,"(75,80]",NoHS,323.21120287253143,30.650921688117936,10.544909747292419,9203.829684534398,2019
+2004,79,"(75,80]",NoHS,215.54746140035905,30.650921688117936,7.032332129963899,8349.701301970206,2019
+2004,79,"(75,80]",NoHS,328.86779174147216,29.03771528348015,11.325539510629763,9198.365599688163,2019
+2004,79,"(75,80]",NoHS,366.7355116696589,30.650921688117936,11.964909747292419,9025.507199101941,2019
+2004,79,"(75,80]",NoHS,216.52165170556555,30.650921688117936,7.064115523465705,8936.958184369036,2019
+2004,60,"(55,60]",HS,68.97895870736086,64.52825618551145,1.0689729241877255,4590.50561531709,2019
+2004,60,"(55,60]",HS,144.10160143626572,64.52825618551145,2.2331550541516245,4485.832947036749,2019
+2004,60,"(55,60]",HS,22.752057450628367,64.52825618551145,0.3525906137184115,4566.0441700337615,2019
+2004,60,"(55,60]",HS,198.92337522441653,64.52825618551145,3.0827328519855595,4525.081248155204,2019
+2004,60,"(55,60]",HS,46.82398563734291,64.52825618551145,0.7256353790613718,4554.719178698398,2019
+2004,49,"(45,50]",HS,195.46657091561937,67.75466899478702,2.884916623689186,7836.850991431149,2019
+2004,49,"(45,50]",HS,195.46657091561937,67.75466899478702,2.884916623689186,7228.234607567804,2019
+2004,49,"(45,50]",HS,195.46657091561937,67.75466899478702,2.884916623689186,7963.598982766011,2019
+2004,49,"(45,50]",HS,197.0378456014363,67.75466899478702,2.908107271789582,7933.857182825768,2019
+2004,49,"(45,50]",HS,195.46657091561937,67.75466899478702,2.884916623689186,7708.072241201653,2019
+2004,68,"(65,70]",HS,-6.173538240574506,16.132064046377863,-0.38268743682310463,6669.767351060838,2019
+2004,68,"(65,70]",HS,-3.1881163375224415,12.421689315710953,-0.25665722724928497,6705.619857729644,2019
+2004,68,"(65,70]",HS,6.380946499102334,15.486781484522748,0.4120253459687124,6679.850621535111,2019
+2004,68,"(65,70]",HS,-0.5640876122082585,15.002819563131412,-0.03759877333954427,6739.054038018378,2019
+2004,68,"(65,70]",HS,1.117176301615799,11.453765472928282,0.0975379061371841,6714.462885931493,2019
+2004,66,"(65,70]",College,2517.9676840215443,256.49981833740793,9.816645096837185,972.8974110364652,2019
+2004,66,"(65,70]",College,2517.9676840215443,256.49981833740793,9.816645096837185,974.0737133513728,2019
+2004,66,"(65,70]",College,2517.9676840215443,256.49981833740793,9.816645096837185,963.8307502929053,2019
+2004,66,"(65,70]",College,2517.9676840215443,256.49981833740793,9.816645096837185,998.5301335989643,2019
+2004,66,"(65,70]",College,2517.9676840215443,256.49981833740793,9.816645096837185,1012.0491614170809,2019
+2004,38,"(35,40]",College,56.15735727109516,64.52825618551145,0.8702754512635379,6150.920672959064,2019
+2004,38,"(35,40]",College,55.18316696588869,40.33016011594465,1.3682853429602888,5904.545274085658,2019
+2004,38,"(35,40]",College,58.40428007181329,77.43390742261373,0.7542468411552348,6145.358956437531,2019
+2004,38,"(35,40]",College,57.288675044883306,45.16977932985802,1.2682965446106238,6122.4475754793975,2019
+2004,38,"(35,40]",College,56.345910233393184,79.04711382725151,0.712814263611582,6060.4686132798315,2019
+2004,62,"(60,65]",College,4771.175583482945,137.12254439421181,34.79497557867913,1546.4944343813654,2019
+2004,62,"(60,65]",College,4771.175583482945,137.12254439421181,34.79497557867913,1511.0316657598137,2019
+2004,62,"(60,65]",College,4771.018456014363,137.12254439421181,34.79382968783182,1595.6261406244932,2019
+2004,62,"(60,65]",College,4771.018456014363,137.12254439421181,34.79382968783182,1495.4241529550816,2019
+2004,62,"(60,65]",College,4771.175583482945,137.12254439421181,34.79497557867913,1527.3486569559088,2019
+2004,69,"(65,70]",College,125.07346499102334,109.69803551536945,1.1401613930770864,7295.260473849363,2019
+2004,69,"(65,70]",College,125.07346499102334,109.69803551536945,1.1401613930770864,6860.092241363937,2019
+2004,69,"(65,70]",College,123.34506283662478,109.69803551536945,1.1244053939265237,7381.639249317965,2019
+2004,69,"(65,70]",College,124.91633752244165,109.69803551536945,1.1387290295179444,7336.779553438052,2019
+2004,69,"(65,70]",College,123.34506283662478,109.69803551536945,1.1244053939265237,7256.559437816625,2019
+2004,71,"(70,75]",College,888.8700897666068,115.3442579316017,7.706236146524955,9527.621141191357,2019
+2004,71,"(70,75]",College,888.8700897666068,113.73105152696394,7.8155444606600595,10442.851053073717,2019
+2004,71,"(70,75]",College,889.0272172351885,115.3442579316017,7.707598394385398,9406.18789852356,2019
+2004,71,"(70,75]",College,889.0272172351885,113.73105152696394,7.816926031185189,9428.685184767575,2019
+2004,71,"(70,75]",College,889.0272172351885,115.3442579316017,7.707598394385398,9855.541043307177,2019
+2004,45,"(40,45]",NoHS,283.9293357271095,77.43390742261373,3.6667313477737666,6610.835863813857,2019
+2004,45,"(40,45]",NoHS,283.9293357271095,77.43390742261373,3.6667313477737666,6251.652949345547,2019
+2004,45,"(40,45]",NoHS,283.9293357271095,77.43390742261373,3.6667313477737666,6668.803516673167,2019
+2004,45,"(40,45]",NoHS,283.9293357271095,77.43390742261373,3.6667313477737666,6639.291837831712,2019
+2004,45,"(40,45]",NoHS,283.9293357271095,77.43390742261373,3.6667313477737666,6482.959490167905,2019
+2004,55,"(50,55]",College,1738.1440574506285,229.07530945856564,7.587653429602888,13246.48318220023,2019
+2004,55,"(50,55]",College,1736.5727827648116,229.07530945856564,7.5807942238267145,14100.846143816167,2019
+2004,55,"(50,55]",College,1736.5727827648116,229.07530945856564,7.5807942238267145,13227.753154647977,2019
+2004,55,"(50,55]",College,1735.0015080789947,229.07530945856564,7.573935018050541,13695.189228479878,2019
+2004,55,"(50,55]",College,1738.1440574506285,229.07530945856564,7.587653429602888,13782.702038243297,2019
+2004,39,"(35,40]",College,213.75620825852783,143.57537001276296,1.4888083397558107,8266.875761558826,2019
+2004,39,"(35,40]",College,214.03903770197485,143.57537001276296,1.4907782419989453,7705.367859705346,2019
+2004,39,"(35,40]",College,212.1220825852783,143.57537001276296,1.4774266823510325,8261.837126321232,2019
+2004,39,"(35,40]",College,212.0749443447038,143.57537001276296,1.47709836531051,8260.196370990485,2019
+2004,39,"(35,40]",College,213.6305062836625,143.57537001276296,1.487932827647751,8070.118967455506,2019
+2004,40,"(35,40]",HS,891.6983842010771,112.92444832464501,7.896415678184631,5937.91522569214,2019
+2004,40,"(35,40]",HS,894.8409335727109,112.92444832464501,7.924244455905106,6590.3001280018025,2019
+2004,40,"(35,40]",HS,893.2696588868941,112.92444832464501,7.91033006704487,5860.2230318975435,2019
+2004,40,"(35,40]",HS,893.2696588868941,112.92444832464501,7.91033006704487,5850.868751784987,2019
+2004,40,"(35,40]",HS,891.6983842010771,112.92444832464501,7.896415678184631,6113.326445967878,2019
+2004,46,"(45,50]",College,797.736157989228,251.66019912349464,3.1698940109228917,6596.666566661438,2019
+2004,46,"(45,50]",College,467.13996409335726,250.04699271885684,1.8682086875509492,6741.682071270336,2019
+2004,46,"(45,50]",College,747.455368043088,182.29232372406983,4.100311811124246,6460.456464655187,2019
+2004,46,"(45,50]",College,661.3495152603232,356.5186154249507,1.8550209909012203,6342.449813502404,2019
+2004,46,"(45,50]",College,782.9661759425494,259.7262311466836,3.014582595241832,6613.65060504547,2019
+2004,41,"(40,45]",College,81075.4168761221,17745.270451015647,4.568846504758779,0.943705292954947,2019
+2004,41,"(40,45]",College,82927.94973070019,17745.270451015647,4.673242369543814,0.9890388346736145,2019
+2004,41,"(40,45]",College,83822.00502693,17745.270451015647,4.723625106662292,0.9520046723095648,2019
+2004,41,"(40,45]",College,90801.60718132855,17745.270451015647,5.116946931407942,0.9294116337999917,2019
+2004,41,"(40,45]",College,83257.91741472173,17745.270451015647,4.691837052838858,0.9329602369197649,2019
+2004,28,"(25,30]",HS,221.07834829443445,145.18857641740072,1.5226979542719616,7677.458599777254,2019
+2004,28,"(25,30]",HS,219.5070736086176,145.18857641740072,1.5118756518251104,7493.810822661842,2019
+2004,28,"(25,30]",HS,221.07834829443445,145.18857641740072,1.5226979542719616,7654.092386382152,2019
+2004,28,"(25,30]",HS,221.07834829443445,145.18857641740072,1.5226979542719616,7640.723583915254,2019
+2004,28,"(25,30]",HS,222.64962298025137,145.18857641740072,1.533520256718813,7573.7460437986465,2019
+2004,64,"(60,65]",College,2846.4583698384204,214.55645181682556,13.266710675605983,1153.8148591398435,2019
+2004,64,"(60,65]",College,2846.4583698384204,212.94324541218776,13.36721605951209,1163.7829859131796,2019
+2004,64,"(60,65]",College,2844.8870951526037,214.55645181682556,13.259387313047965,1140.8202959229616,2019
+2004,64,"(60,65]",College,2846.4583698384204,214.55645181682556,13.266710675605983,1186.2449400002774,2019
+2004,64,"(60,65]",College,2848.029644524237,214.55645181682556,13.274034038164002,1200.3811994832536,2019
+2004,62,"(60,65]",College,4372.496057450628,572.688273646414,7.635036823104692,3643.933326921246,2019
+2004,62,"(60,65]",College,4593.982937163375,572.688273646414,8.021786281588447,3596.5441441361945,2019
+2004,62,"(60,65]",College,4438.803849192101,572.688273646414,7.750820216606499,4039.3151030698646,2019
+2004,62,"(60,65]",College,4421.032732495512,572.688273646414,7.719789169675092,3559.838066757247,2019
+2004,62,"(60,65]",College,5494.276193895871,572.688273646414,9.593833935018052,3730.011843083447,2019
+2004,53,"(50,55]",College,1427.1416588868942,640.4429426412011,2.2283665942220083,855.0067964141665,2019
+2004,53,"(50,55]",College,1750.3685745062837,485.57512779597363,3.6047327680295527,1697.028804714669,2019
+2004,53,"(50,55]",College,2131.02557989228,200.03759417508547,10.65312542214976,1734.4940446952799,2019
+2004,53,"(50,55]",College,2098.0130987432676,382.3299178991553,5.4874416061173825,1697.8740206781924,2019
+2004,53,"(50,55]",College,1815.8907289048473,327.4809001414706,5.545027902758264,1761.2346858829587,2019
+2004,66,"(65,70]",College,75322.19461400359,10453.577502052853,7.2053987832597945,18.968049583545866,2019
+2004,66,"(65,70]",College,82339.50736086177,9437.257467131049,8.724940232651425,20.08277893185048,2019
+2004,66,"(65,70]",College,79456.21831238779,9501.78572331656,8.362240596250146,19.680052415018398,2019
+2004,66,"(65,70]",College,78915.69982046679,9163.012378342624,8.612418772563178,18.634196351820794,2019
+2004,66,"(65,70]",College,80212.00143626571,9663.106363780338,8.30085051499792,19.074323977144275,2019
+2004,26,"(25,30]",HS,224.5351526032316,91.95276506435381,2.4418531889290014,7890.407759822083,2019
+2004,26,"(25,30]",HS,226.10642728904847,91.95276506435381,2.4589410348977134,7836.0275486225555,2019
+2004,26,"(25,30]",HS,224.5351526032316,91.95276506435381,2.4418531889290014,7892.508242666666,2019
+2004,26,"(25,30]",HS,226.10642728904847,93.56597146899159,2.41654549981327,7882.9380000353685,2019
+2004,26,"(25,30]",HS,226.10642728904847,91.95276506435381,2.4589410348977134,7878.8949664879165,2019
+2004,28,"(25,30]",HS,-9.113393177737882,116.1508611339206,-0.07846169273967107,6040.099681368657,2019
+2004,28,"(25,30]",HS,-9.113393177737882,116.1508611339206,-0.07846169273967107,6020.593172436011,2019
+2004,28,"(25,30]",HS,-9.113393177737882,116.1508611339206,-0.07846169273967107,6005.0575336086795,2019
+2004,28,"(25,30]",HS,-9.113393177737882,116.1508611339206,-0.07846169273967107,6062.078565938209,2019
+2004,28,"(25,30]",HS,-9.113393177737882,116.1508611339206,-0.07846169273967107,5999.615511112027,2019
+2004,57,"(55,60]",HS,129.2216301615799,48.39619213913358,2.670078459687124,1542.0851358703546,2019
+2004,57,"(55,60]",HS,128.27886535008977,48.39619213913358,2.650598315282792,1384.617976500746,2019
+2004,57,"(55,60]",HS,128.43599281867145,48.39619213913358,2.653845006016847,1505.0616834735715,2019
+2004,57,"(55,60]",HS,128.12173788150807,48.39619213913358,2.6473516245487363,1422.7637637866087,2019
+2004,57,"(55,60]",HS,127.9646104129264,48.39619213913358,2.6441049338146816,1386.3570222628732,2019
+2004,49,"(45,50]",HS,242.44768402154398,54.84901775768473,4.420273943512423,6797.10754683037,2019
+2004,49,"(45,50]",HS,220.29271095152603,67.75466899478702,3.251328863675434,6426.138705111113,2019
+2004,49,"(45,50]",HS,359.03626570915617,69.36787539942482,5.17582906556964,6853.114192976847,2019
+2004,49,"(45,50]",HS,245.11885098743267,54.84901775768473,4.468974304523253,6818.682389428626,2019
+2004,49,"(45,50]",HS,287.8575224416517,66.14146259014923,4.352149335211764,6663.84585473376,2019
+2004,67,"(65,70]",HS,32.60394973070018,19.358476855653432,1.6842208182912155,5621.657230665206,2019
+2004,67,"(65,70]",HS,100.34160143626572,9.517917787362938,10.542390014073304,5700.737306961655,2019
+2004,67,"(65,70]",HS,48.86664272890484,25.81130247420457,1.8932265342960293,5601.061658184521,2019
+2004,67,"(65,70]",HS,118.47411131059246,11.131124192000723,10.643499189033644,5605.231538830205,2019
+2004,67,"(65,70]",HS,19.64093357271095,12.905651237102285,1.521886281588448,5618.8259906704425,2019
+2004,59,"(55,60]",HS,541.775511669659,117.76406753855836,4.600516294940904,5790.437541664965,2019
+2004,59,"(55,60]",HS,451.8985996409336,140.3489572034874,3.2198215693597243,5013.144373025119,2019
+2004,59,"(55,60]",HS,917.1844596050269,93.56597146899159,9.802543010083406,5525.612201780194,2019
+2004,59,"(55,60]",HS,585.6140754039498,98.40559068290497,5.951024442208675,5507.414131793606,2019
+2004,59,"(55,60]",HS,310.64100538599644,61.30184337623587,5.067400722021661,5530.570217396867,2019
+2004,44,"(40,45]",College,987.2004596050269,145.18857641740072,6.799436181307662,6336.026645817497,2019
+2004,44,"(40,45]",College,1237.9916122082586,145.18857641740072,8.526783874849581,7034.347099003385,2019
+2004,44,"(40,45]",College,881.4693859964094,145.18857641740072,6.071203449659047,6254.837568190821,2019
+2004,44,"(40,45]",College,1207.1789156193897,145.18857641740072,8.314558523866829,6245.461817635665,2019
+2004,44,"(40,45]",College,1731.0576086175943,145.18857641740072,11.922822382671482,6525.19155502131,2019
+2004,45,"(40,45]",College,351.25845601436265,104.8584163014561,3.3498356012218826,6977.874378116605,2019
+2004,45,"(40,45]",College,351.25845601436265,104.8584163014561,3.3498356012218826,6597.039742519369,2019
+2004,45,"(40,45]",College,352.82973070017954,104.8584163014561,3.3648203276867537,7035.37050252794,2019
+2004,45,"(40,45]",College,352.82973070017954,104.8584163014561,3.3648203276867537,7000.022996531288,2019
+2004,45,"(40,45]",College,352.9868581687613,104.8584163014561,3.366318800333241,6841.068635312226,2019
+2004,35,"(30,35]",College,-2.482614003590664,87.11314585044046,-0.02849872977670811,8562.76811263949,2019
+2004,35,"(30,35]",College,-2.309773788150808,87.11314585044046,-0.026514640994785395,8736.061636848808,2019
+2004,35,"(30,35]",College,-2.4669012567324953,87.11314585044046,-0.02831835806926059,8535.227379299045,2019
+2004,35,"(30,35]",College,-0.7384991023339318,87.11314585044046,-0.008477470250033425,8550.776104617564,2019
+2004,35,"(30,35]",College,-2.482614003590664,87.11314585044046,-0.02849872977670811,8627.677348917392,2019
+2004,56,"(55,60]",HS,576.1864272890484,93.56597146899159,6.158076683679821,4544.519716512668,2019
+2004,56,"(55,60]",HS,579.3289766606822,109.69803551536945,5.281124442556806,3953.1735804382333,2019
+2004,56,"(55,60]",HS,585.456947935368,90.33955865971603,6.480626611655492,4591.398892040487,2019
+2004,56,"(55,60]",HS,574.1437701974866,106.47162270609388,5.392458155562849,4515.332030431567,2019
+2004,56,"(55,60]",HS,573.2795691202872,114.53765472928282,5.005162454873645,4395.188050236485,2019
+2004,59,"(55,60]",College,73.26853859964093,164.5470532730542,0.44527408508529764,5456.293500136464,2019
+2004,59,"(55,60]",College,73.26853859964093,164.5470532730542,0.44527408508529764,5389.031313194713,2019
+2004,59,"(55,60]",College,73.12712387791741,164.5470532730542,0.44441466694981235,5427.218527554349,2019
+2004,59,"(55,60]",College,73.11141113105924,164.5470532730542,0.44431917604586957,5460.123915031828,2019
+2004,59,"(55,60]",College,73.26853859964093,164.5470532730542,0.44527408508529764,5413.757597149196,2019
+2004,29,"(25,30]",College,891.2898527827648,241.98096069566793,3.683305703971119,8163.56919001677,2019
+2004,29,"(25,30]",College,778.4094793536804,241.98096069566793,3.216821179302045,9070.687687772552,2019
+2004,29,"(25,30]",College,733.3138958707361,241.98096069566793,3.0304611311672685,8069.216736290405,2019
+2004,29,"(25,30]",College,889.9699820466786,241.98096069566793,3.6778512635379057,8028.910023661282,2019
+2004,29,"(25,30]",College,767.096301615799,241.98096069566793,3.1700688327316486,8439.817888069436,2019
+2004,35,"(30,35]",HS,2.042657091561939,38.716953711306864,0.052758724428399524,6185.212035204423,2019
+2004,35,"(30,35]",HS,2.1997845601436268,30.650921688117936,0.07176895306859206,6266.168245432723,2019
+2004,35,"(30,35]",HS,2.042657091561939,35.4905409020313,0.05755497210370856,6159.2295842749745,2019
+2004,35,"(30,35]",HS,2.1997845601436268,38.716953711306864,0.05681708784596872,6182.414232486256,2019
+2004,35,"(30,35]",HS,2.042657091561939,38.716953711306864,0.052758724428399524,6200.288855875725,2019
+2004,50,"(45,50]",HS,853.2021543985638,148.4149892266763,5.7487600062784505,5703.0682944979835,2019
+2004,50,"(45,50]",HS,853.045026929982,148.4149892266763,5.747701302778213,6348.591619710562,2019
+2004,50,"(45,50]",HS,853.0293141831239,148.4149892266763,5.747595432428191,5633.883315511094,2019
+2004,50,"(45,50]",HS,853.1864416517055,148.4149892266763,5.748654135928426,5650.698698702607,2019
+2004,50,"(45,50]",HS,853.0293141831239,148.4149892266763,5.747595432428191,5900.586838890068,2019
+2004,28,"(25,30]",College,236.00545780969478,125.83009956174732,1.8755882625196703,6452.231550030141,2019
+2004,28,"(25,30]",College,237.5767324955117,127.4433059663851,1.86417584426267,7172.616346213033,2019
+2004,28,"(25,30]",College,237.5767324955117,127.4433059663851,1.86417584426267,6375.317368874463,2019
+2004,28,"(25,30]",College,237.5767324955117,125.83009956174732,1.8880755345737297,6344.86987946299,2019
+2004,28,"(25,30]",College,237.5767324955117,125.83009956174732,1.8880755345737297,6671.953581738961,2019
+2004,48,"(45,50]",College,1570.960430879713,98.40559068290497,15.964138012664968,515.2573057406888,2019
+2004,48,"(45,50]",College,1570.960430879713,96.79238427826716,16.23020697954272,532.1267557962403,2019
+2004,48,"(45,50]",College,1570.803303411131,96.79238427826716,16.228583634175692,510.283954807586,2019
+2004,48,"(45,50]",College,1570.960430879713,101.63200349218052,15.45733998051688,521.5366118323628,2019
+2004,48,"(45,50]",College,1570.960430879713,100.01879708754274,15.706651915686505,529.6128730681471,2019
+2004,52,"(50,55]",HS,109.56498384201078,114.53765472928282,0.9565848375451264,7522.571689361781,2019
+2004,52,"(50,55]",HS,109.56498384201078,114.53765472928282,0.9565848375451264,6990.061941633826,2019
+2004,52,"(50,55]",HS,109.5492710951526,114.53765472928282,0.9564476534296028,7559.46014965599,2019
+2004,52,"(50,55]",HS,109.5492710951526,114.53765472928282,0.9564476534296028,7517.457771470962,2019
+2004,52,"(50,55]",HS,111.10483303411132,114.53765472928282,0.970028880866426,7286.0899408944515,2019
+2004,57,"(55,60]",NoHS,42.094448833034114,67.75466899478702,0.6212774626095925,6669.989456281821,2019
+2004,57,"(55,60]",NoHS,46.14833752244165,67.75466899478702,0.6811093347086126,5805.095653923354,2019
+2004,57,"(55,60]",NoHS,47.29536804308797,67.75466899478702,0.6980385078219012,6662.534902521717,2019
+2004,57,"(55,60]",NoHS,42.22015080789946,67.75466899478702,0.6231327144576241,6525.285658125952,2019
+2004,57,"(55,60]",NoHS,42.0473105924596,67.75466899478702,0.6205817431665805,6327.669575763384,2019
+2004,46,"(45,50]",College,410.1026929982047,82.2735266365271,4.984625185814398,5157.603601873723,2019
+2004,46,"(45,50]",College,411.6739676840216,82.2735266365271,5.0037233666029595,5740.849600026028,2019
+2004,46,"(45,50]",College,410.1026929982047,82.2735266365271,4.984625185814398,5089.1023894996215,2019
+2004,46,"(45,50]",College,410.1026929982047,82.2735266365271,4.984625185814398,5101.848260241532,2019
+2004,46,"(45,50]",College,411.6739676840216,82.2735266365271,5.0037233666029595,5334.280634224641,2019
+2004,68,"(65,70]",College,293.98549371633754,66.14146259014923,4.44479880250066,11259.856263286918,2019
+2004,68,"(65,70]",College,294.1426211849192,66.14146259014923,4.447174429867043,10280.817134143363,2019
+2004,68,"(65,70]",College,293.98549371633754,66.14146259014923,4.44479880250066,11396.538167771589,2019
+2004,68,"(65,70]",College,293.98549371633754,66.14146259014923,4.44479880250066,11367.410041534265,2019
+2004,68,"(65,70]",College,294.1426211849192,66.14146259014923,4.447174429867043,11096.735809118096,2019
+2004,43,"(40,45]",College,216.96160861759427,225.84889664929003,0.9606494069107789,4643.021837640123,2019
+2004,43,"(40,45]",College,218.37575583482945,225.84889664929003,0.9669108818978857,4598.874078476235,2019
+2004,43,"(40,45]",College,222.30394254937164,225.84889664929003,0.9843038679731821,4625.939539366885,2019
+2004,43,"(40,45]",College,215.54746140035905,225.84889664929003,0.9543879319236721,4670.436127694298,2019
+2004,43,"(40,45]",College,216.4902262118492,225.84889664929003,0.9585622485817433,4629.406661603771,2019
+2004,68,"(65,70]",NoHS,361.8645601436266,77.43390742261373,4.673205475330927,6635.133719242134,2019
+2004,68,"(65,70]",NoHS,374.010513464991,77.43390742261373,4.830061221419975,6122.837432274144,2019
+2004,68,"(65,70]",NoHS,362.17881508078995,77.43390742261373,4.677263838748496,6741.92248662801,2019
+2004,68,"(65,70]",NoHS,364.25289766606824,77.43390742261373,4.704049037304453,6683.748929148064,2019
+2004,68,"(65,70]",NoHS,362.74447396768403,77.43390742261373,4.684568892900121,6589.806572082297,2019
+2004,52,"(50,55]",HS,289.74305206463197,96.79238427826716,2.9934488567990374,5504.49683959389,2019
+2004,52,"(50,55]",HS,207.54967324955115,90.33955865971603,2.29743953068592,5204.07540256901,2019
+2004,52,"(50,55]",HS,340.4952244165171,145.18857641740072,2.345192940232652,5549.852662579697,2019
+2004,52,"(50,55]",HS,197.19497307001797,98.40559068290497,2.0039001006095756,5521.968779250375,2019
+2004,52,"(50,55]",HS,449.69881508079,91.95276506435381,4.890541516245487,5396.577616905293,2019
+2004,35,"(30,35]",HS,-0.7856373429084381,48.39619213913358,-0.016233453670276777,4429.280539320115,2019
+2004,35,"(30,35]",HS,-1.4927109515260322,48.39619213913358,-0.03084356197352587,4402.32408958129,2019
+2004,35,"(30,35]",HS,-0.7856373429084381,48.39619213913358,-0.016233453670276777,4426.896102301788,2019
+2004,35,"(30,35]",HS,-0.31425493716337527,48.39619213913358,-0.006493381468110711,4429.486804767751,2019
+2004,35,"(30,35]",HS,3.771059245960503,48.39619213913358,0.07792057761732853,4432.07825187376,2019
+2004,59,"(55,60]",College,4181.161938958708,793.6975510817908,5.267953684952012,1481.2180491287004,2019
+2004,59,"(55,60]",College,4181.161938958708,792.0843446771529,5.278682714860265,1469.466880051615,2019
+2004,59,"(55,60]",College,4181.161938958708,914.6880314296247,4.571134414455714,1678.2631058168104,2019
+2004,59,"(55,60]",College,4181.161938958708,969.5370491873093,4.312534464220284,1404.8735948027675,2019
+2004,59,"(55,60]",College,4181.161938958708,969.5370491873093,4.312534464220284,1496.977846479209,2019
+2004,73,"(70,75]",HS,1767.6840215439856,96.79238427826716,18.262635379061372,498.87496616119944,2019
+2004,73,"(70,75]",HS,1766.112746858169,96.79238427826716,18.246401925391098,507.97019330143894,2019
+2004,73,"(70,75]",HS,1767.6840215439856,96.79238427826716,18.262635379061372,491.08486112288085,2019
+2004,73,"(70,75]",HS,1769.2552962298025,96.79238427826716,18.27886883273165,479.19071789736734,2019
+2004,73,"(70,75]",HS,1766.112746858169,96.79238427826716,18.246401925391098,495.0776460520718,2019
+2004,34,"(30,35]",HS,726.8716696588868,177.45270451015648,4.096143091565474,6690.216350984154,2019
+2004,34,"(30,35]",HS,843.3031238779174,177.45270451015648,4.752269773547751,7436.427369335244,2019
+2004,34,"(30,35]",HS,789.8797845601437,177.45270451015648,4.451212996389891,6614.0575509985865,2019
+2004,34,"(30,35]",HS,766.3106642728906,177.45270451015648,4.318393829996718,6581.729307102161,2019
+2004,34,"(30,35]",HS,799.3074326750449,177.45270451015648,4.504340662947161,6919.127381757358,2019
+2004,88,"(85,90]",HS,276.7014721723519,15.325460844058968,18.055018050541516,8506.11989302388,2019
+2004,88,"(85,90]",HS,388.2619748653501,15.325460844058968,25.334440433212997,7832.42796317387,2019
+2004,88,"(85,90]",HS,301.9989946140036,15.325460844058968,19.705703971119135,8497.309173362399,2019
+2004,88,"(85,90]",HS,297.4422980251347,15.325460844058968,19.408375451263538,8472.252335943987,2019
+2004,88,"(85,90]",HS,281.7295511669659,15.325460844058968,18.383104693140794,8498.26379674042,2019
+2004,24,"(20,25]",HS,23.72624775583483,67.75466899478702,0.3501787863159704,7082.474793561045,2019
+2004,24,"(20,25]",HS,23.72624775583483,66.14146259014923,0.35871973232367704,7031.505457744791,2019
+2004,24,"(20,25]",HS,23.569120287253142,67.75466899478702,0.34785972150593086,7119.305011807557,2019
+2004,24,"(20,25]",HS,23.569120287253142,67.75466899478702,0.34785972150593086,7015.214418764944,2019
+2004,24,"(20,25]",HS,23.569120287253142,67.75466899478702,0.34785972150593086,7112.289742492906,2019
+2004,51,"(50,55]",HS,102.99705565529622,11.292444832464504,9.120881897885505,7634.58706717815,2019
+2004,51,"(50,55]",HS,114.62448833034112,11.292444832464504,10.150546673543063,6958.005408740222,2019
+2004,51,"(50,55]",HS,91.36962298025134,11.292444832464504,8.09121712222795,7724.037667483653,2019
+2004,51,"(50,55]",HS,90.75682585278277,11.292444832464504,8.036951005673027,7643.449450051388,2019
+2004,51,"(50,55]",HS,99.06886894075404,11.292444832464504,8.773022176379577,7442.32145489735,2019
+2004,44,"(40,45]",HS,110.4606104129264,90.33955865971603,1.222726921093347,7702.456343043433,2019
+2004,44,"(40,45]",HS,110.93199281867146,90.33955865971603,1.227944816915936,7267.153130762522,2019
+2004,44,"(40,45]",HS,110.14635547576302,90.33955865971603,1.2192483238782876,7670.028801072533,2019
+2004,44,"(40,45]",HS,110.61773788150808,90.33955865971603,1.2244662197008767,7637.347232874521,2019
+2004,44,"(40,45]",HS,110.4606104129264,90.33955865971603,1.222726921093347,7497.6077786914175,2019
+2004,52,"(50,55]",College,15684.463913824058,1613.2064046377861,9.722540072202166,296.0397099261976,2019
+2004,52,"(50,55]",College,17883.61996409336,1613.2064046377861,11.085760577617329,299.03916731264485,2019
+2004,52,"(50,55]",College,17296.27748653501,1613.2064046377861,10.721676678700362,302.9047401731085,2019
+2004,52,"(50,55]",College,15805.923447037703,1613.2064046377861,9.79783083032491,290.2047499601082,2019
+2004,52,"(50,55]",College,15790.367827648115,1613.2064046377861,9.788188158844765,293.2625843352513,2019
+2004,42,"(40,45]",HS,14.45572710951526,51.62260494840914,0.28002707581227443,5385.089487912124,2019
+2004,42,"(40,45]",HS,7.699245960502694,51.62260494840914,0.14914485559566792,5455.57315673387,2019
+2004,42,"(40,45]",HS,9.741903052064632,51.62260494840914,0.18871389891696758,5362.46814161486,2019
+2004,42,"(40,45]",HS,8.170628366247756,51.62260494840914,0.1582761732851986,5382.653610545092,2019
+2004,42,"(40,45]",HS,13.82721723518851,51.62260494840914,0.26785198555956685,5398.215962485034,2019
+2004,42,"(40,45]",HS,3211.3712028725317,842.0937432209245,3.81355547256456,1343.206622912847,2019
+2004,42,"(40,45]",HS,3212.4710951526035,842.0937432209245,3.814861612515042,1337.5719905949263,2019
+2004,42,"(40,45]",HS,3212.6282226211847,845.3201560302,3.8004869512497583,1522.3712187220622,2019
+2004,42,"(40,45]",HS,3212.785350089767,845.3201560302,3.800672830490258,1276.533214952613,2019
+2004,42,"(40,45]",HS,3211.5283303411134,845.3201560302,3.799185796566263,1351.9680661071175,2019
+2004,61,"(60,65]",NoHS,249.6284093357271,10.48584163014561,23.80623493474035,7465.523651872337,2019
+2004,61,"(60,65]",NoHS,249.80124955116696,10.48584163014561,23.82271813385171,7462.855640972225,2019
+2004,61,"(60,65]",NoHS,249.7855368043088,10.48584163014561,23.821219661205223,7439.905786118377,2019
+2004,61,"(60,65]",NoHS,249.61269658886894,10.48584163014561,23.804736462093864,7417.290318926787,2019
+2004,61,"(60,65]",NoHS,249.7855368043088,10.48584163014561,23.821219661205223,7456.440222498997,2019
+2004,32,"(30,35]",HS,110.61773788150808,154.86781484522746,0.7142719614921781,9019.944756507877,2019
+2004,32,"(30,35]",HS,112.18901256732497,154.86781484522746,0.7244178700361011,8697.73196150272,2019
+2004,32,"(30,35]",HS,112.18901256732497,154.86781484522746,0.7244178700361011,9025.007329119942,2019
+2004,32,"(30,35]",HS,112.18901256732497,154.86781484522746,0.7244178700361011,9045.999373534565,2019
+2004,32,"(30,35]",HS,112.18901256732497,153.2546084405897,0.732043321299639,8923.642992621204,2019
+2004,35,"(30,35]",HS,1591.0727468581688,237.14134148175458,6.709385790417249,447.18158741259595,2019
+2004,35,"(30,35]",HS,1591.2298743267504,237.14134148175458,6.7100483803629745,458.1036716640102,2019
+2004,35,"(30,35]",HS,1591.2298743267504,237.14134148175458,6.7100483803629745,442.9077665287906,2019
+2004,35,"(30,35]",HS,1591.2298743267504,237.14134148175458,6.7100483803629745,433.0456709636857,2019
+2004,35,"(30,35]",HS,1591.2298743267504,237.14134148175458,6.7100483803629745,456.1831779536824,2019
+2004,75,"(70,75]",NoHS,83.37183482944344,20.97168326029122,3.9754479311302418,11286.614498643572,2019
+2004,75,"(70,75]",NoHS,75.60973788150808,20.97168326029122,3.6053251874479315,11337.677789533078,2019
+2004,75,"(70,75]",NoHS,61.43684021543986,20.97168326029122,2.929514023882255,11201.271218240838,2019
+2004,75,"(70,75]",NoHS,58.87566247755835,20.97168326029122,2.8073885031935575,11257.193501669613,2019
+2004,75,"(70,75]",NoHS,83.4975368043088,20.97168326029122,3.98144182171619,11215.637795607667,2019
+2004,34,"(30,35]",HS,-5.342333931777379,14.196216360812517,-0.37632097144732524,6104.648070811521,2019
+2004,34,"(30,35]",HS,-5.342333931777379,14.03489572034874,-0.38064649985476573,6118.315633837927,2019
+2004,34,"(30,35]",HS,-5.342333931777379,14.03489572034874,-0.38064649985476573,6101.064909192512,2019
+2004,34,"(30,35]",HS,-5.342333931777379,14.196216360812517,-0.37632097144732524,6150.522923844769,2019
+2004,34,"(30,35]",HS,-5.342333931777379,14.196216360812517,-0.37632097144732524,6118.857994799719,2019
+2004,49,"(45,50]",HS,22.46922800718133,108.08482911073166,0.20788512312085783,4598.328375060608,2019
+2004,49,"(45,50]",HS,19.955188509874326,108.08482911073166,0.18462524920523735,4501.201217048823,2019
+2004,49,"(45,50]",HS,20.269443447037702,108.08482911073166,0.18753273344468993,4637.915377905008,2019
+2004,49,"(45,50]",HS,20.473709156193895,108.08482911073166,0.18942259820033408,4634.5927394726705,2019
+2004,49,"(45,50]",HS,21.68359066427289,108.08482911073166,0.20061641252222642,4578.349407855949,2019
+2004,47,"(45,50]",HS,425.3440574506284,274.24508878842363,1.5509632618390317,665.4162647811534,2019
+2004,47,"(45,50]",HS,426.1296947935368,274.24508878842363,1.5538279889573159,668.0069529882035,2019
+2004,47,"(45,50]",HS,420.301836983842,274.24508878842363,1.5325774431938841,673.3934223811809,2019
+2004,47,"(45,50]",HS,423.8827719928187,274.24508878842363,1.5456348693990232,619.8188668321961,2019
+2004,47,"(45,50]",HS,426.75820466786354,274.24508878842363,1.556119770651943,669.3254080238974,2019
+2004,52,"(50,55]",HS,66.62204667863556,20.97168326029122,3.1767620105526246,9581.055196399107,2019
+2004,52,"(50,55]",HS,66.62204667863556,19.358476855653432,3.441492178098677,9635.421200411665,2019
+2004,52,"(50,55]",HS,66.62204667863556,20.97168326029122,3.1767620105526246,9483.369978847139,2019
+2004,52,"(50,55]",HS,66.62204667863556,20.97168326029122,3.1767620105526246,9584.34853261029,2019
+2004,52,"(50,55]",HS,66.62204667863556,19.358476855653432,3.441492178098677,9520.297778365213,2019
+2004,42,"(40,45]",HS,90.50542190305207,80.6603202318893,1.1220563176895308,6372.955603865386,2019
+2004,42,"(40,45]",HS,93.3022908438061,80.6603202318893,1.156730974729242,6083.458604627579,2019
+2004,42,"(40,45]",HS,95.83204308797129,80.6603202318893,1.1880940072202169,6393.779400627895,2019
+2004,42,"(40,45]",HS,81.80056014362657,80.6603202318893,1.0141363176895306,6398.462000499848,2019
+2004,42,"(40,45]",HS,89.67264631956913,80.6603202318893,1.1117318411552348,6310.931385907816,2019
+2004,32,"(30,35]",HS,-8.216195332136445,114.53765472928282,-0.07173357400722022,6762.034166588899,2019
+2004,32,"(30,35]",HS,-1.601128904847397,117.76406753855836,-0.01359607338905099,6727.679217931824,2019
+2004,32,"(30,35]",HS,-3.093839856373429,122.60368675247175,-0.02523447653429603,6768.809674410298,2019
+2004,32,"(30,35]",HS,-3.2509673249551168,116.1508611339206,-0.027989179703168873,6799.3203065934385,2019
+2004,32,"(30,35]",HS,-4.894520646319569,124.21689315710954,-0.03940301936330817,6785.175914067955,2019
+2004,25,"(20,25]",NoHS,-1.3041579892280073,32.264128092755726,-0.04042129963898917,6427.765079924742,2019
+2004,25,"(20,25]",NoHS,-1.3041579892280073,32.264128092755726,-0.04042129963898917,6518.483147056405,2019
+2004,25,"(20,25]",NoHS,-1.3198707360861759,32.264128092755726,-0.040908303249097465,6410.62831090268,2019
+2004,25,"(20,25]",NoHS,-1.3041579892280073,32.264128092755726,-0.04042129963898917,6459.9836629814,2019
+2004,25,"(20,25]",NoHS,-1.3041579892280073,32.264128092755726,-0.04042129963898917,6461.40325203236,2019
+2004,32,"(30,35]",College,648.9364452423698,290.37715283480145,2.2348054552747696,8700.433222097707,2019
+2004,32,"(30,35]",College,647.836552962298,290.37715283480145,2.2310176494183716,9613.119640670206,2019
+2004,32,"(30,35]",College,646.1081508078994,290.37715283480145,2.2250653830726033,8635.784699042186,2019
+2004,32,"(30,35]",College,646.2652782764812,290.37715283480145,2.2256064981949466,8631.119789048256,2019
+2004,32,"(30,35]",College,646.1081508078994,290.37715283480145,2.2250653830726033,9040.248337697067,2019
+2004,37,"(35,40]",College,347.84878994614,177.45270451015648,1.9602338037413847,5237.0236208525785,2019
+2004,37,"(35,40]",College,347.91164093357276,177.45270451015648,1.9605879881851003,5814.218274961725,2019
+2004,37,"(35,40]",College,346.7174721723519,177.45270451015648,1.9538584837545125,5169.917034808339,2019
+2004,37,"(35,40]",College,348.24160861759424,177.45270451015648,1.9624474565146044,5162.167536603027,2019
+2004,37,"(35,40]",College,348.2258958707361,177.45270451015648,1.9623589104036758,5393.377303233437,2019
+2004,25,"(20,25]",College,37.710592459605024,43.55657292522023,0.8657841957480945,6385.306299468674,2019
+2004,25,"(20,25]",College,25.454649910233396,43.55657292522023,0.5844043321299639,6341.969650313487,2019
+2004,25,"(20,25]",College,25.926032315978457,43.55657292522023,0.595226634576815,6379.728321949213,2019
+2004,25,"(20,25]",College,24.354757630161583,43.55657292522023,0.5591522930873112,6421.312194274002,2019
+2004,25,"(20,25]",College,58.13716337522442,43.55657292522023,1.3347506351116458,6353.057599531648,2019
+2004,79,"(75,80]",HS,239.14800718132855,54.84901775768473,4.360114674028456,12251.78556484392,2019
+2004,79,"(75,80]",HS,240.7192818671454,54.84901775768473,4.388761945211297,11000.337869846157,2019
+2004,79,"(75,80]",HS,237.89098743267508,54.84901775768473,4.3371968570821835,12203.24213571032,2019
+2004,79,"(75,80]",HS,242.60481149012566,54.84901775768473,4.423138670630707,12054.514575951853,2019
+2004,79,"(75,80]",HS,244.961723518851,54.84901775768473,4.4661095774049695,11807.99292430268,2019
+2004,61,"(60,65]",College,2997.9921005386,82.2735266365271,36.43932894457422,3331.428956047997,2019
+2004,61,"(60,65]",College,3011.97644524237,111.31124192000723,27.059049861350918,3469.110592425014,2019
+2004,61,"(60,65]",College,1694.3054937163374,96.79238427826716,17.504533092659447,6002.084184636639,2019
+2004,61,"(60,65]",College,1671.6791382405745,182.29232372406983,9.170321076003962,5982.899747904108,2019
+2004,61,"(60,65]",College,1951.3660323159786,85.49993944580267,22.823010694094407,3384.0482472217386,2019
+2004,39,"(35,40]",College,71.39872172351886,77.43390742261373,0.922060168471721,9271.451049711373,2019
+2004,39,"(35,40]",College,63.385220825852784,77.43390742261373,0.8185719013237064,8731.631610231156,2019
+2004,39,"(35,40]",College,71.71297666068223,77.43390742261373,0.92611853188929,9297.135913709606,2019
+2004,39,"(35,40]",College,61.65681867145422,77.43390742261373,0.7962509025270759,9233.13902476213,2019
+2004,39,"(35,40]",College,59.61416157989228,77.43390742261373,0.7698715403128761,9118.653032797914,2019
+2004,25,"(20,25]",HS,21.715016157989226,43.55657292522023,0.4985473993849444,7738.764900659985,2019
+2004,25,"(20,25]",HS,21.887856373429084,43.55657292522023,0.5025155769487899,7632.564139538119,2019
+2004,25,"(20,25]",HS,21.715016157989226,43.55657292522023,0.4985473993849444,7739.054645554903,2019
+2004,25,"(20,25]",HS,21.55788868940754,43.55657292522023,0.49493996523599404,7712.0728972251745,2019
+2004,25,"(20,25]",HS,21.7307289048474,43.55657292522023,0.4989081427998395,7697.3757478251355,2019
+2004,65,"(60,65]",College,28242.562585278276,2694.0546957451024,10.483292202598415,274.71111769788513,2019
+2004,65,"(60,65]",College,28234.706211849192,2710.186759791481,10.417992822760871,269.06574723677414,2019
+2004,65,"(60,65]",College,28234.706211849192,2710.186759791481,10.417992822760871,282.63843274559576,2019
+2004,65,"(60,65]",College,28242.562585278276,2710.186759791481,10.42089165377342,268.053102729411,2019
+2004,65,"(60,65]",College,28242.71971274686,2694.0546957451024,10.483350526384058,278.63142834408586,2019
+2004,59,"(55,60]",College,22477.084380610413,2419.8096069566795,9.28878219013237,437.8018107627233,2019
+2004,59,"(55,60]",College,22483.36947935368,2419.8096069566795,9.291379542719614,435.4777686666956,2019
+2004,59,"(55,60]",College,22483.36947935368,2419.8096069566795,9.291379542719614,449.5779514852967,2019
+2004,59,"(55,60]",College,22480.226929982047,2419.8096069566795,9.290080866425992,430.24635137493294,2019
+2004,59,"(55,60]",College,22478.65565529623,2419.8096069566795,9.289431528279179,435.11950671854476,2019
+2004,23,"(20,25]",HS,-6.393516696588869,19.358476855653432,-0.33026961492178103,7820.95471029676,2019
+2004,23,"(20,25]",HS,-6.393516696588869,19.358476855653432,-0.33026961492178103,7983.688611988696,2019
+2004,23,"(20,25]",HS,-6.393516696588869,19.358476855653432,-0.33026961492178103,7788.108202381615,2019
+2004,23,"(20,25]",HS,-6.393516696588869,19.358476855653432,-0.33026961492178103,7637.528258204604,2019
+2004,23,"(20,25]",HS,-6.236389228007181,19.358476855653432,-0.3221528880866426,7810.517502454966,2019
+2004,55,"(50,55]",College,1233.2385062836624,253.2734055281324,4.869198578950999,6973.832796094782,2019
+2004,55,"(50,55]",College,1277.0063626570916,253.2734055281324,5.042007312193888,7180.031768915478,2019
+2004,55,"(50,55]",College,1403.4154111310593,253.2734055281324,5.541108464209341,6816.439475842737,2019
+2004,55,"(50,55]",College,1387.3884093357271,253.2734055281324,5.4778290142334845,6716.579422355692,2019
+2004,55,"(50,55]",College,1140.4940179533214,253.2734055281324,4.503015291223068,6992.568684170657,2019
+2004,28,"(25,30]",College,32.05400359066427,185.5187365333454,0.1727804112384241,6650.060931224238,2019
+2004,28,"(25,30]",College,32.05400359066427,185.5187365333454,0.1727804112384241,6548.437704179802,2019
+2004,28,"(25,30]",College,32.05400359066427,185.5187365333454,0.1727804112384241,6635.3855111199355,2019
+2004,28,"(25,30]",College,32.05400359066427,185.5187365333454,0.1727804112384241,6725.719478385957,2019
+2004,28,"(25,30]",College,32.05400359066427,185.5187365333454,0.1727804112384241,6624.452523602265,2019
+2004,63,"(60,65]",College,137729.61120287253,5452.637647675718,25.259263516544546,224.5756583048576,2019
+2004,63,"(60,65]",College,131828.37486535008,5146.128430794537,25.617000554530744,225.22005859747796,2019
+2004,63,"(60,65]",College,139554.961005386,5436.5055836293395,25.669974739954363,228.18458897274687,2019
+2004,63,"(60,65]",College,125142.60107719929,5743.014800510519,21.790401979475114,223.03356697833487,2019
+2004,63,"(60,65]",College,136405.49802513464,4710.562701542336,28.957368082686312,222.32970521398997,2019
+2004,47,"(45,50]",College,1189.4549371633752,583.9807184788785,2.0368051538783734,361.54025303278195,2019
+2004,47,"(45,50]",College,1193.6188150807898,524.2920815072805,2.2766294918078307,358.4437863768238,2019
+2004,47,"(45,50]",College,1407.8621184919211,285.53753362088815,4.930567623243387,362.5077807284489,2019
+2004,47,"(45,50]",College,1305.3050197486536,387.16953711306866,3.3714042418772565,358.2107162306959,2019
+2004,47,"(45,50]",College,1698.1865421903053,571.0750672417763,2.9736660547839033,65.76291761132502,2019
+2004,79,"(75,80]",College,63.165242369838424,27.424508878842364,2.303240603100446,11156.167707467781,2019
+2004,79,"(75,80]",College,60.17982046678635,27.424508878842364,2.1943809726056487,11231.158597997772,2019
+2004,79,"(75,80]",College,61.751095152603234,29.03771528348015,2.1265824308062578,10986.261333736249,2019
+2004,79,"(75,80]",College,74.32129263913824,29.03771528348015,2.5594745286803047,11071.316052395334,2019
+2004,79,"(75,80]",College,61.751095152603234,29.03771528348015,2.1265824308062578,11034.72912519736,2019
+2004,70,"(65,70]",HS,4114.539892280072,170.99987889160533,24.061653838294397,1490.632016326968,2019
+2004,70,"(65,70]",HS,4105.45792459605,170.99987889160533,24.008542878550507,1486.3494970578467,2019
+2004,70,"(65,70]",HS,4114.068509874327,170.99987889160533,24.058897214086233,1693.8530487598914,2019
+2004,70,"(65,70]",HS,4112.182980251347,170.99987889160533,24.04787071725359,1418.2204867780922,2019
+2004,70,"(65,70]",HS,4116.174017953322,169.38667248696757,24.300459755887914,1506.8360478421846,2019
+2004,28,"(25,30]",NoHS,0.1257019748653501,19.358476855653432,0.00649338146811071,6067.659246733855,2019
+2004,28,"(25,30]",NoHS,0.31425493716337527,17.74527045101565,0.017709222185756483,6082.251176015543,2019
+2004,28,"(25,30]",NoHS,0.09427648114901258,17.74527045101565,0.005312766655726944,6060.212734138082,2019
+2004,28,"(25,30]",NoHS,0.26711669658886894,19.358476855653432,0.01379843561973526,6110.090678427867,2019
+2004,28,"(25,30]",NoHS,0.03142549371633752,17.74527045101565,0.001770922218575648,6081.186508181551,2019
+2004,45,"(40,45]",HS,82.6490484739677,103.24520989681828,0.8005121841155238,6698.16385708605,2019
+2004,45,"(40,45]",HS,83.74894075403951,91.95276506435381,0.9107821901323707,6330.7390047786985,2019
+2004,45,"(40,45]",HS,82.80617594254937,93.56597146899159,0.8850031121623304,6705.5955117836,2019
+2004,45,"(40,45]",HS,89.09127468581688,106.47162270609388,0.8367607482769939,6725.80181399197,2019
+2004,45,"(40,45]",HS,87.36287253141832,96.79238427826716,0.9025800240673888,6530.554408414716,2019
+2004,20,"(15,20]",HS,12.41464129263914,19.358476855653432,0.6413025872442841,8560.519951361144,2019
+2004,20,"(15,20]",HS,12.41464129263914,19.358476855653432,0.6413025872442841,8560.503717487265,2019
+2004,20,"(15,20]",HS,12.41464129263914,19.358476855653432,0.6413025872442841,8557.729383561342,2019
+2004,20,"(15,20]",HS,12.461779533213646,19.358476855653432,0.6437376052948256,8476.38365639832,2019
+2004,20,"(15,20]",HS,12.41464129263914,19.358476855653432,0.6413025872442841,8563.812904546492,2019
+2004,47,"(45,50]",College,1491.1396768402155,274.24508878842363,5.437252070503292,940.7994973880102,2019
+2004,47,"(45,50]",College,1492.7109515260324,274.24508878842363,5.44298152473986,945.238997447891,2019
+2004,47,"(45,50]",College,1509.994973070018,274.24508878842363,5.506005521342111,939.8959946397151,2019
+2004,47,"(45,50]",College,1502.1385996409335,274.24508878842363,5.477358250159269,960.5332692773802,2019
+2004,47,"(45,50]",College,1483.283303411131,274.24508878842363,5.40860479932045,975.4673912582754,2019
+2004,54,"(50,55]",College,11741.192962298024,1040.5181309913721,11.283986902862898,1727.0850263724374,2019
+2004,54,"(50,55]",College,11725.637342908438,1040.5181309913721,11.26903702459911,1728.4722888277988,2019
+2004,54,"(50,55]",College,11725.637342908438,1040.5181309913721,11.26903702459911,1748.0545781438748,2019
+2004,54,"(50,55]",College,11725.480215439857,1040.5181309913721,11.268886015727759,1672.2664092956227,2019
+2004,54,"(50,55]",College,11725.637342908438,1042.13133739601,11.251592694839667,1672.9449619868979,2019
+2004,73,"(70,75]",College,7458.840933572711,419.4336652058244,17.783124132185502,1550.497502929642,2019
+2004,73,"(70,75]",College,21840.089622980253,427.49969722901335,51.087965124991484,1545.4591302625968,2019
+2004,73,"(70,75]",College,7795.093716337523,204.87721338899885,38.047636373973106,1761.5697824231036,2019
+2004,73,"(70,75]",College,4750.906140035907,527.518494316556,9.006141379348415,1474.7589470266653,2019
+2004,73,"(70,75]",College,21721.3012567325,311.34883609509274,69.76515964909,1566.781595759614,2019
+2004,31,"(30,35]",HS,72.51432675044883,106.47162270609388,0.6810671698938847,7950.113584948182,2019
+2004,31,"(30,35]",HS,72.51589802513465,106.47162270609388,0.6810819275790394,7828.623540536882,2019
+2004,31,"(30,35]",HS,72.35719928186714,106.47162270609388,0.6795914013784049,7932.569195815105,2019
+2004,31,"(30,35]",HS,68.42901256732496,106.47162270609388,0.6426971884914123,8040.562988318843,2019
+2004,31,"(30,35]",HS,68.2561723518851,106.47162270609388,0.6410738431243846,7919.498865559905,2019
+2004,50,"(45,50]",HS,185.096157989228,116.1508611339206,1.5935840352988366,8248.11331387379,2019
+2004,50,"(45,50]",HS,185.096157989228,116.1508611339206,1.5935840352988366,7650.361131543653,2019
+2004,50,"(45,50]",HS,183.36775583482944,116.1508611339206,1.5787033694344164,8346.661218941865,2019
+2004,50,"(45,50]",HS,184.93903052064633,116.1508611339206,1.5922312474929803,8278.423787573805,2019
+2004,50,"(45,50]",HS,184.93903052064633,116.1508611339206,1.5922312474929803,8071.835836109739,2019
+2004,36,"(35,40]",College,-42.58154398563734,67.75466899478702,-0.628466563520715,5941.969094451479,2019
+2004,36,"(35,40]",College,-19.16955116696589,67.75466899478702,-0.28292590682482377,5844.986104430783,2019
+2004,36,"(35,40]",College,-18.226786355475763,67.75466899478702,-0.2690115179645865,5918.753834076345,2019
+2004,36,"(35,40]",College,-45.724093357271094,67.75466899478702,-0.6748478597215058,5962.081502406536,2019
+2004,36,"(35,40]",College,-26.554542190305206,67.75466899478702,-0.3919219528966821,5901.469470721646,2019
+2004,63,"(60,65]",HS,43387.60789946141,3597.450282342263,12.060655323695586,283.05676881827077,2019
+2004,63,"(60,65]",HS,43387.60789946141,3694.2426666205306,11.744655620891335,277.46501615843255,2019
+2004,63,"(60,65]",HS,43389.17917414722,3678.1106025741524,11.796594464500602,287.4533625183446,2019
+2004,63,"(60,65]",HS,43389.17917414722,3597.450282342263,12.061092098233798,280.36410884791735,2019
+2004,63,"(60,65]",HS,43389.17917414722,3629.7144104350186,11.953882390693943,290.2630467597216,2019
+2004,41,"(40,45]",College,4274.338527827648,483.96192139133586,8.831972803850782,228.3350978325203,2019
+2004,41,"(40,45]",College,4271.9816157989235,483.96192139133586,8.8271027677497,223.90476823957084,2019
+2004,41,"(40,45]",College,4277.3239497307,483.96192139133586,8.838141516245487,237.7710455489725,2019
+2004,41,"(40,45]",College,4273.867145421903,483.96192139133586,8.830998796630565,222.81238895533494,2019
+2004,41,"(40,45]",College,4270.724596050269,483.96192139133586,8.824505415162452,230.0885606968337,2019
+2004,61,"(60,65]",HS,72.12307935368042,24.19809606956679,2.9805270276774967,5932.688472840624,2019
+2004,61,"(60,65]",HS,72.12307935368042,24.19809606956679,2.9805270276774967,5189.746002689394,2019
+2004,61,"(60,65]",HS,72.12307935368042,22.58488966492901,3.193421815368746,5968.963889848743,2019
+2004,61,"(60,65]",HS,72.12307935368042,22.58488966492901,3.193421815368746,5843.909614921837,2019
+2004,61,"(60,65]",HS,72.28020682226212,22.58488966492901,3.2003790097988647,5708.927507093138,2019
+2004,76,"(75,80]",HS,235.69120287253145,64.52825618551145,3.6525270758122743,11941.510787948208,2019
+2004,76,"(75,80]",HS,249.8326750448833,59.68863697159809,4.185598594984876,11958.684238908736,2019
+2004,76,"(75,80]",HS,229.40610412926392,61.30184337623587,3.7422382671480143,11804.863572196891,2019
+2004,76,"(75,80]",HS,251.4039497307002,56.46222416232251,4.452604435275916,11972.045282725028,2019
+2004,76,"(75,80]",HS,243.5475763016158,61.30184337623587,3.972924187725632,11891.750854811497,2019
+2004,82,"(80,85]",HS,161.68416517055655,15.002819563131412,10.776918597880515,8625.048028082007,2019
+2004,82,"(80,85]",HS,136.33950448833033,13.873575079884963,9.827279825371503,8666.609981418176,2019
+2004,82,"(80,85]",HS,126.15764452423699,25.81130247420457,4.8876899819494595,8620.796333345537,2019
+2004,82,"(80,85]",HS,181.63935368043087,33.87733449739351,5.361677840811414,8594.408322891491,2019
+2004,82,"(80,85]",HS,136.07238779174148,24.19809606956679,5.623268351383875,8618.43324915756,2019
+2004,61,"(60,65]",College,1102.0920646319569,191.97156215189653,5.74091314504141,6207.119049417046,2019
+2004,61,"(60,65]",College,1102.0920646319569,191.97156215189653,5.74091314504141,6864.910762597606,2019
+2004,61,"(60,65]",College,1102.0920646319569,191.97156215189653,5.74091314504141,6126.251363585827,2019
+2004,61,"(60,65]",College,1101.9349371633753,191.97156215189653,5.740094651579043,6106.670051815303,2019
+2004,61,"(60,65]",College,1102.0920646319569,191.97156215189653,5.74091314504141,6418.205589948189,2019
+2004,65,"(60,65]",HS,15.634183123877918,35.4905409020313,0.4405169018706924,7516.587881742201,2019
+2004,65,"(60,65]",HS,20.269443447037702,30.650921688117936,0.6612996389891697,7834.244631578101,2019
+2004,65,"(60,65]",HS,21.526463195691203,35.4905409020313,0.6065408598621594,7596.823714811279,2019
+2004,65,"(60,65]",HS,16.844064631956915,35.4905409020313,0.47460715457827374,7667.614129825248,2019
+2004,65,"(60,65]",HS,19.79806104129264,35.4905409020313,0.5578404988513291,7732.643347006281,2019
+2004,73,"(70,75]",HS,1240.0499820466787,104.8584163014561,11.82594612607609,6555.020124757963,2019
+2004,73,"(70,75]",HS,1134.9317055655297,70.9810818040626,15.989213980964882,7287.137809893355,2019
+2004,73,"(70,75]",HS,1056.5250987432676,82.2735266365271,12.841616762228357,6487.847235485059,2019
+2004,73,"(70,75]",HS,1151.2729622980253,106.47162270609388,10.812955912919813,6468.530149466057,2019
+2004,73,"(70,75]",HS,1212.3955475763019,108.08482911073166,11.217074195807967,6779.883745052111,2019
+2004,79,"(75,80]",College,208449.07087971276,9287.229271499735,22.444699574650606,12.270081667503307,2019
+2004,79,"(75,80]",College,200003.87797486535,4988.034203140035,40.09673346845942,225.22005859747796,2019
+2004,79,"(75,80]",College,281017.26092639135,3684.5634281927037,76.26880806995136,12.467261871099758,2019
+2004,79,"(75,80]",College,214678.05940394974,3166.7241723039742,67.79184031293735,12.185826825914488,2019
+2004,79,"(75,80]",College,108565.65314183124,9334.012257234232,11.631188191089906,222.32970521398997,2019
+2004,76,"(75,80]",College,19429.597127468583,2332.696461106239,8.329243624888276,294.0782415789,2019
+2004,76,"(75,80]",College,18769.661759425497,2332.696461106239,8.046336963414573,293.0190960111748,2019
+2004,76,"(75,80]",College,19038.34973070018,2332.696461106239,8.161520389871724,304.0768756051631,2019
+2004,76,"(75,80]",College,19555.299102333935,2332.696461106239,8.383130608026125,290.0616229138954,2019
+2004,76,"(75,80]",College,19288.182405745065,2333.9386300378096,8.264220043109102,296.3295687508992,2019
+2004,55,"(50,55]",College,12780.449752244165,3710.374730666908,3.444517246900016,19.741578807765016,2019
+2004,55,"(50,55]",College,37646.56301615799,5501.0338398148515,6.843543252485257,18.63705803531676,2019
+2004,55,"(50,55]",College,37442.894391382404,3242.5448733219505,11.547378942830969,18.977774896945714,2019
+2004,55,"(50,55]",College,37549.92962298025,5501.0338398148515,6.82597684660745,17.44483212710631,2019
+2004,55,"(50,55]",College,12349.119138240574,5484.901775768473,2.2514749840730515,19.70575690641429,2019
+2004,83,"(80,85]",HS,5.813716337522442,33.87733449739351,0.17161079594292591,11184.97548451249,2019
+2004,83,"(80,85]",HS,7.542118491921006,32.264128092755726,0.23376173285198554,11176.986827977264,2019
+2004,83,"(80,85]",HS,6.442226211849192,27.424508878842364,0.2349076236992992,11137.052195775492,2019
+2004,83,"(80,85]",HS,10.998922800718134,38.716953711306864,0.2840854392298436,11201.955159188312,2019
+2004,83,"(80,85]",HS,8.642010771992819,32.264128092755726,0.26785198555956674,11188.54138017428,2019
+2004,55,"(50,55]",HS,40808.04624775583,1167.961436957757,34.93954933482259,213.89932839736997,2019
+2004,55,"(50,55]",HS,38278.294003590665,1167.961436957757,32.77359405229671,209.00689675678632,2019
+2004,55,"(50,55]",HS,35775.25342908438,1167.961436957757,30.63050910505216,220.04188165536567,2019
+2004,55,"(50,55]",HS,38953.94211849192,1167.961436957757,33.35207900353033,208.79801098943534,2019
+2004,55,"(50,55]",HS,42916.69687612208,1167.961436957757,36.744960508207505,216.91507817072346,2019
+2004,64,"(60,65]",College,148720.99188509875,6468.957682597523,22.989946631615904,27.768818387630876,2019
+2004,64,"(60,65]",College,100134.66456014362,6501.221810690277,15.40243779953597,28.446810801806002,2019
+2004,64,"(60,65]",College,97363.25026929982,5855.939248835163,16.626410577716783,28.169819163329105,2019
+2004,64,"(60,65]",College,100083.12675044884,7033.579924220748,14.229329563143775,27.36970347254667,2019
+2004,64,"(60,65]",College,111303.75640933574,6259.2408499946105,17.782309241132904,27.53974791481673,2019
+2004,35,"(30,35]",College,639.823052064632,274.24508878842363,2.333033765130601,6596.666566661438,2019
+2004,35,"(30,35]",College,642.9656014362657,274.24508878842363,2.3444926736037375,6741.682071270336,2019
+2004,35,"(30,35]",College,641.3943267504488,274.24508878842363,2.3387632193671695,6460.456464655187,2019
+2004,35,"(30,35]",College,641.3943267504488,274.24508878842363,2.3387632193671695,6342.449813502404,2019
+2004,35,"(30,35]",College,641.3943267504488,274.24508878842363,2.3387632193671695,6613.65060504547,2019
+2004,49,"(45,50]",College,681.7760861759426,9.19527650643538,74.14416365824309,484.0622360656022,2019
+2004,49,"(45,50]",College,681.7760861759426,9.19527650643538,74.14416365824309,477.5133122906329,2019
+2004,49,"(45,50]",College,681.7760861759426,9.19527650643538,74.14416365824309,486.3775802284678,2019
+2004,49,"(45,50]",College,681.7760861759426,9.19527650643538,74.14416365824309,478.59335895200127,2019
+2004,49,"(45,50]",College,681.7760861759426,9.033955865971603,75.46816658071171,507.9939737538067,2019
+2004,48,"(45,50]",College,29279.13249551167,3403.865513785728,8.601730114462677,274.71111769788513,2019
+2004,48,"(45,50]",College,29280.703770197488,3403.865513785728,8.602191729258989,269.06574723677414,2019
+2004,48,"(45,50]",College,29280.703770197488,3419.997577832107,8.561615353177576,282.63843274559576,2019
+2004,48,"(45,50]",College,29280.703770197488,3403.865513785728,8.602191729258989,268.053102729411,2019
+2004,48,"(45,50]",College,29280.703770197488,3419.997577832107,8.561615353177576,278.63142834408586,2019
+2004,46,"(45,50]",College,165.9266068222621,238.75454788639237,0.6949673138842812,7989.259457066694,2019
+2004,46,"(45,50]",College,235.47122441651706,329.0941065461084,0.7155133432434345,8890.115888661374,2019
+2004,46,"(45,50]",College,325.25385996409335,191.97156215189653,1.6942814670994752,7827.3997131672195,2019
+2004,46,"(45,50]",College,480.9357558348295,214.55645181682556,2.2415348117586387,7910.393374030154,2019
+2004,46,"(45,50]",College,722.9120574506284,243.5941671003057,2.967690343557989,8217.27664889098,2019
+2004,44,"(40,45]",HS,166.27228725314185,56.46222416232251,2.944841258380609,6620.907758364427,2019
+2004,44,"(40,45]",HS,166.6022549371634,56.46222416232251,2.950685301701909,6355.70700605391,2019
+2004,44,"(40,45]",HS,165.76947935368042,56.46222416232251,2.935936049510057,6614.921075390422,2019
+2004,44,"(40,45]",HS,165.65949012567324,56.46222416232251,2.933988035069624,6590.259053555643,2019
+2004,44,"(40,45]",HS,164.41818312387792,56.46222416232251,2.9120033006704493,6523.544326850331,2019
+2004,40,"(35,40]",HS,115.64581687612208,80.6603202318893,1.433738628158845,7988.797550292892,2019
+2004,40,"(35,40]",HS,115.64581687612208,79.04711382725151,1.4629986001620867,7523.659116988619,2019
+2004,40,"(35,40]",HS,115.4886894075404,80.6603202318893,1.4317906137184118,8010.929056730073,2019
+2004,40,"(35,40]",HS,115.64581687612208,79.04711382725151,1.4629986001620867,7955.785780137368,2019
+2004,40,"(35,40]",HS,115.64581687612208,80.6603202318893,1.433738628158845,7857.13828609974,2019
+2004,60,"(55,60]",HS,-12.931590664272889,145.18857641740072,-0.08906754913758524,6468.173337576187,2019
+2004,60,"(55,60]",HS,-12.915877917414722,145.18857641740072,-0.08895932611311674,6444.31165761931,2019
+2004,60,"(55,60]",HS,-12.915877917414722,145.18857641740072,-0.08895932611311674,6396.983336205921,2019
+2004,60,"(55,60]",HS,-12.931590664272889,145.18857641740072,-0.08906754913758524,6384.6969517079615,2019
+2004,60,"(55,60]",HS,-12.915877917414722,145.18857641740072,-0.08895932611311674,6370.819039363361,2019
+2004,60,"(55,60]",College,12318.479281867145,724.329675682366,17.006730078071605,360.44150035953055,2019
+2004,60,"(55,60]",College,8117.519281867146,603.3391953345321,13.454321125890461,347.97573866529854,2019
+2004,60,"(55,60]",College,7588.313967684021,533.9713199351072,14.211089031160359,374.1068913847504,2019
+2004,60,"(55,60]",College,9929.198994614004,640.4429426412011,15.503643390410025,355.7540392668519,2019
+2004,60,"(55,60]",College,9897.616373429084,601.7259889298944,16.448710136371112,366.38106265159144,2019
+2004,47,"(45,50]",NoHS,14.927109515260323,8.066032023188932,1.850613718411552,5041.065167205023,2019
+2004,47,"(45,50]",NoHS,14.927109515260323,8.066032023188932,1.850613718411552,5048.601334020683,2019
+2004,47,"(45,50]",NoHS,14.927109515260323,8.066032023188932,1.850613718411552,5083.422413746255,2019
+2004,47,"(45,50]",NoHS,14.927109515260323,8.066032023188932,1.850613718411552,5052.419472264107,2019
+2004,47,"(45,50]",NoHS,14.927109515260323,8.066032023188932,1.850613718411552,5066.117442374405,2019
+2004,44,"(40,45]",NoHS,18.069658886894075,16.132064046377863,1.1201083032490973,11184.97548451249,2019
+2004,44,"(40,45]",NoHS,22.626355475763017,16.132064046377863,1.4025703971119132,11176.986827977264,2019
+2004,44,"(40,45]",NoHS,12.884452423698384,16.132064046377863,0.7986859205776172,11137.052195775492,2019
+2004,44,"(40,45]",NoHS,10.213285457809695,16.132064046377863,0.6331046931407941,11201.955159188312,2019
+2004,44,"(40,45]",NoHS,10.213285457809695,16.132064046377863,0.6331046931407941,11188.54138017428,2019
+2004,60,"(55,60]",NoHS,0,35.4905409020313,0,7165.555483267744,2019
+2004,60,"(55,60]",NoHS,0,35.4905409020313,0,7110.63086906844,2019
+2004,60,"(55,60]",NoHS,0,35.4905409020313,0,7146.800279480476,2019
+2004,60,"(55,60]",NoHS,0,35.4905409020313,0,7142.306619603481,2019
+2004,60,"(55,60]",NoHS,0,35.4905409020313,0,7187.563973603518,2019
+2004,70,"(65,70]",HS,320091.436983842,3242.5448733219505,98.71611634965963,20.912358362384357,2019
+2004,70,"(65,70]",HS,320289.5747217235,3387.733449739351,94.54391246346914,22.21199855181596,2019
+2004,70,"(65,70]",HS,325154.08402154397,3387.733449739351,95.97983101254941,21.419262161173148,2019
+2004,70,"(65,70]",HS,326745.9424057451,3403.865513785728,95.99261224699303,20.846009857222377,2019
+2004,70,"(65,70]",HS,332085.44804308796,3387.733449739351,98.0258491318549,21.265097350211597,2019
+2004,64,"(60,65]",HS,194.28811490125673,77.43390742261373,2.5090831829121543,7402.921787316673,2019
+2004,64,"(60,65]",HS,222.7281867145422,77.43390742261373,2.8763650722021663,6487.615332418987,2019
+2004,64,"(60,65]",HS,203.71576301615798,75.82070101797595,2.686809278746447,7396.339673147132,2019
+2004,64,"(60,65]",HS,211.57213644524236,75.82070101797595,2.7904270681311925,7260.503398318177,2019
+2004,64,"(60,65]",HS,195.54513464991024,77.43390742261373,2.525316636582431,7050.446737869477,2019
+2004,55,"(50,55]",HS,3893.4615439856375,575.9146864556897,6.760483167996441,3643.933326921246,2019
+2004,55,"(50,55]",HS,3892.2045242369836,577.5278928603274,6.739422584353508,3596.5441441361945,2019
+2004,55,"(50,55]",HS,3893.775798922801,575.9146864556897,6.761028830304686,4050.5172030113586,2019
+2004,55,"(50,55]",HS,3891.261759425494,577.5278928603274,6.73779017001795,3559.838066757247,2019
+2004,55,"(50,55]",HS,3889.6904847396772,575.9146864556897,6.753935220297506,3730.011843083447,2019
+2004,24,"(20,25]",HS,638.8802872531419,74.20749461333816,8.609376863914614,8077.815713132123,2019
+2004,24,"(20,25]",HS,638.4089048473968,74.20749461333816,8.603024642913201,9050.815482424201,2019
+2004,24,"(20,25]",HS,638.5660323159784,74.20749461333816,8.605142049913672,7927.880047680553,2019
+2004,24,"(20,25]",HS,638.2517773788152,74.20749461333816,8.60090723591273,7785.271294136264,2019
+2004,24,"(20,25]",HS,638.2517773788152,74.20749461333816,8.60090723591273,8289.066125328309,2019
+2004,48,"(45,50]",College,316.29759425493717,116.1508611339206,2.723161853188929,6062.567541147723,2019
+2004,48,"(45,50]",College,335.7814003590664,116.1508611339206,2.8909075411151224,6749.899884251252,2019
+2004,48,"(45,50]",College,331.0675763016158,116.1508611339206,2.8503239069394306,5985.184447232945,2019
+2004,48,"(45,50]",College,315.35482944344704,116.1508611339206,2.7150451263537905,6003.786382967324,2019
+2004,48,"(45,50]",College,338.4525673249551,116.1508611339206,2.913904933814681,6271.921612545773,2019
+2004,67,"(65,70]",College,5766.892351885099,201.65080057972327,28.598410397111913,1692.332789490512,2019
+2004,67,"(65,70]",College,5766.892351885099,201.65080057972327,28.598410397111913,1701.7355642593066,2019
+2004,67,"(65,70]",College,5766.892351885099,201.65080057972327,28.598410397111913,1939.421505901399,2019
+2004,67,"(65,70]",College,5768.463626570916,201.65080057972327,28.606202454873646,1624.5529959104533,2019
+2004,67,"(65,70]",College,5766.892351885099,201.65080057972327,28.598410397111913,1725.026487028456,2019
+2004,62,"(60,65]",HS,502.36794254937166,80.6603202318893,6.228191768953069,6669.112173606083,2019
+2004,62,"(60,65]",HS,395.99264631956913,80.6603202318893,4.909385992779784,5844.534851798252,2019
+2004,62,"(60,65]",HS,475.9705278276481,80.6603202318893,5.900925342960289,6663.182507050462,2019
+2004,62,"(60,65]",HS,377.6087324955117,80.6603202318893,4.681468303249098,6540.810911063698,2019
+2004,62,"(60,65]",HS,568.2043518850987,80.6603202318893,7.044409819494585,6351.575974967849,2019
+2004,65,"(60,65]",College,557.8182262118492,322.6412809275572,1.7289115162454873,256.5949463911286,2019
+2004,65,"(60,65]",College,487.1108653500898,322.6412809275572,1.509759891696751,262.4037351488348,2019
+2004,65,"(60,65]",College,1351.2962298025136,322.6412809275572,4.188231046931408,510.283954807586,2019
+2004,65,"(60,65]",College,469.81113105924595,322.6412809275572,1.4561407942238267,247.70720735148834,2019
+2004,65,"(60,65]",College,912.9105924596051,322.6412809275572,2.8294909747292425,529.6128730681471,2019
+2004,63,"(60,65]",College,42138.13026929982,967.9238427826717,43.53455138387485,270.91777734348284,2019
+2004,63,"(60,65]",College,42722.6444524237,967.9238427826717,44.138435860409146,270.32912848486836,2019
+2004,63,"(60,65]",College,42842.06132854578,967.9238427826717,44.261810108303244,274.1694448520926,2019
+2004,63,"(60,65]",College,42768.211418312385,967.9238427826717,44.18551287605294,267.56477980953105,2019
+2004,63,"(60,65]",College,42772.92524236984,967.9238427826717,44.19038291215403,276.9522774588399,2019
+2004,34,"(30,35]",HS,32.21113105924596,72.59428820870036,0.44371440032089854,4063.8503163257856,2019
+2004,34,"(30,35]",HS,32.21113105924596,72.59428820870036,0.44371440032089854,4123.932917068277,2019
+2004,34,"(30,35]",HS,32.05400359066427,72.59428820870036,0.44154993983152835,4080.589678595124,2019
+2004,34,"(30,35]",HS,32.05400359066427,72.59428820870036,0.44154993983152835,4085.9412045908743,2019
+2004,34,"(30,35]",HS,32.21113105924596,72.59428820870036,0.44371440032089854,4105.744421826179,2019
+2004,38,"(35,40]",NoHS,119.41687612208258,88.72635225507824,1.3459008861174926,5868.918720590194,2019
+2004,38,"(35,40]",NoHS,119.41687612208258,88.72635225507824,1.3459008861174926,5528.640136003772,2019
+2004,38,"(35,40]",NoHS,119.41687612208258,88.72635225507824,1.3459008861174926,5888.2641677365855,2019
+2004,38,"(35,40]",NoHS,119.25974865350089,88.72635225507824,1.3441299638989168,5851.25229477175,2019
+2004,38,"(35,40]",NoHS,113.91741472172352,88.72635225507824,1.2839186084673448,5773.739807539456,2019
+2004,62,"(60,65]",College,364.5357271095153,129.0565123710229,2.8246209386281587,6238.906308143736,2019
+2004,62,"(60,65]",College,364.5357271095153,129.0565123710229,2.8246209386281587,5562.9051999026915,2019
+2004,62,"(60,65]",College,364.5357271095153,129.0565123710229,2.8246209386281587,6254.052614279519,2019
+2004,62,"(60,65]",College,364.5357271095153,129.0565123710229,2.8246209386281587,6142.479191142254,2019
+2004,62,"(60,65]",College,366.1070017953321,129.0565123710229,2.836796028880866,6014.431003003145,2019
+2004,79,"(75,80]",NoHS,0.29854219030520646,16.132064046377863,0.01850613718411552,8151.006763188576,2019
+2004,79,"(75,80]",NoHS,0.32996768402154397,16.132064046377863,0.020454151624548732,8124.5012292494885,2019
+2004,79,"(75,80]",NoHS,0.29854219030520646,16.132064046377863,0.01850613718411552,8099.33758508483,2019
+2004,79,"(75,80]",NoHS,0.31425493716337527,17.74527045101565,0.017709222185756483,8145.621240477453,2019
+2004,79,"(75,80]",NoHS,0.29854219030520646,17.74527045101565,0.016823761076468654,8138.152069266316,2019
+2004,47,"(45,50]",HS,4.163877917414722,40.33016011594465,0.1032447653429603,6043.667619969391,2019
+2004,47,"(45,50]",NoHS,4.163877917414722,40.33016011594465,0.1032447653429603,5858.692946667279,2019
+2004,47,"(45,50]",HS,4.3210053859964095,40.33016011594465,0.10714079422382672,6115.471334725974,2019
+2004,47,"(45,50]",HS,4.3210053859964095,40.33016011594465,0.10714079422382672,6099.086035754364,2019
+2004,47,"(45,50]",HS,4.163877917414722,40.33016011594465,0.1032447653429603,6001.604262708185,2019
+2004,60,"(55,60]",HS,2611.301400359066,161.3206404637786,16.18702599277978,108.7438440935864,2019
+2004,60,"(55,60]",HS,2614.4439497307003,161.3206404637786,16.206506137184117,113.27967242888633,2019
+2004,60,"(55,60]",HS,2615.8580969479353,161.3206404637786,16.215272202166066,109.8063233397542,2019
+2004,60,"(55,60]",HS,2612.8726750448836,161.3206404637786,16.19676606498195,111.83035430831663,2019
+2004,60,"(55,60]",HS,2614.4439497307003,161.3206404637786,16.206506137184117,114.96696985618762,2019
+2004,58,"(55,60]",HS,3992.4361364452425,159.70743405914084,24.99843642198155,950.1617103003521,2019
+2004,58,"(55,60]",HS,4524.548308797128,175.8394981055187,25.73112615506906,954.2652590928553,2019
+2004,58,"(55,60]",HS,718.4496373429084,161.3206404637786,4.453550613718412,251.94070830517893,2019
+2004,58,"(55,60]",HS,647.836552962298,127.4433059663851,5.08333135310515,691.4117536496274,2019
+2004,58,"(55,60]",HS,3861.124710951526,161.3206404637786,23.934474223826715,930.2636395296498,2019
+2004,47,"(45,50]",HS,-1.1156050269299822,285.53753362088815,-0.0039070346121683084,4415.577555077134,2019
+2004,47,"(45,50]",HS,-0.6913608617594255,200.03759417508547,-0.003456154652381507,4360.114204616707,2019
+2004,47,"(45,50]",HS,0.31425493716337527,177.45270451015648,0.0017709222185756483,4428.170555604733,2019
+2004,47,"(45,50]",HS,0.15712746858168763,156.48102124986525,0.001004131154862481,4389.88330134157,2019
+2004,47,"(45,50]",HS,-0.6442226211849192,114.53765472928282,-0.005624548736462094,4364.243822622623,2019
+2004,19,"(15,20]",HS,16.812639138240574,32.264128092755726,0.5210938628158843,7330.868936749665,2019
+2004,19,"(15,20]",HS,15.2413644524237,32.264128092755726,0.47239350180505413,7278.112021751271,2019
+2004,19,"(15,20]",HS,15.2413644524237,32.264128092755726,0.47239350180505413,7368.990851863637,2019
+2004,19,"(15,20]",HS,15.2413644524237,32.264128092755726,0.47239350180505413,7261.2496290021545,2019
+2004,19,"(15,20]",HS,13.670089766606823,32.264128092755726,0.4236931407942238,7361.729545413468,2019
+2004,56,"(55,60]",College,2357.0691561938957,80.6603202318893,29.222164620938628,1716.9024741384096,2019
+2004,56,"(55,60]",College,2357.0691561938957,79.04711382725151,29.818535327488398,1697.028804714669,2019
+2004,56,"(55,60]",College,2357.2262836624777,80.6603202318893,29.224112635379065,1734.4940446952799,2019
+2004,56,"(55,60]",College,2357.0691561938957,80.6603202318893,29.222164620938628,1697.8740206781924,2019
+2004,56,"(55,60]",College,2357.2262836624777,80.6603202318893,29.224112635379065,1761.2346858829587,2019
+2004,46,"(45,50]",HS,171.34750448833034,72.59428820870036,2.3603441636582434,4810.831246757007,2019
+2004,46,"(45,50]",HS,318.96876122082585,72.59428820870036,4.393854793421581,4836.290181975366,2019
+2004,46,"(45,50]",HS,81.09348653500898,72.59428820870036,1.1170780585639792,4952.785338662638,2019
+2004,46,"(45,50]",HS,219.97845601436265,72.59428820870036,3.0302446851183316,4848.523331879341,2019
+2004,46,"(45,50]",HS,98.36179533213645,72.59428820870036,1.3549522663457685,4907.299548496824,2019
+2004,56,"(55,60]",College,145529.10448833034,8356.409176023732,17.415267900701114,20.74019594646676,2019
+2004,56,"(55,60]",College,250266.34685816875,9275.93682666727,26.980169392560036,21.35350431432254,2019
+2004,56,"(55,60]",College,270499.4938599641,9017.823801925224,29.996094379468236,20.995578422063275,2019
+2004,56,"(55,60]",College,199803.44617594255,10130.936221125296,19.72211075214422,20.4852844289174,2019
+2004,56,"(55,60]",College,291991.5461400359,8227.35266365271,35.490340341190624,20.567919624948274,2019
+2004,61,"(60,65]",HS,576.5792459605027,19.358476855653432,29.784329121540313,5598.8595269545,2019
+2004,61,"(60,65]",HS,574.9922585278277,17.74527045101565,32.402563833278634,4906.609573177207,2019
+2004,61,"(60,65]",HS,576.5635332136445,19.358476855653432,29.7835174488568,5593.8814475306735,2019
+2004,61,"(60,65]",HS,574.9922585278277,19.358476855653432,29.702350180505423,5491.1479264586105,2019
+2004,61,"(60,65]",HS,575.0079712746858,17.74527045101565,32.40344929438792,5332.281229181276,2019
+2004,42,"(40,45]",HS,142.67174147217236,35.4905409020313,4.019993436166721,2461.108618669111,2019
+2004,42,"(40,45]",HS,152.72789946140034,35.4905409020313,4.303340991138824,2361.4834128712064,2019
+2004,42,"(40,45]",HS,126.64473967684022,35.4905409020313,3.5684082704299307,2396.7910556394313,2019
+2004,42,"(40,45]",HS,126.64473967684022,35.4905409020313,3.5684082704299307,2290.914843954214,2019
+2004,42,"(40,45]",HS,129.78728904847395,35.4905409020313,3.6569543813587124,2281.474488645422,2019
+2004,47,"(45,50]",College,212.57775224416517,140.3489572034874,1.5146372048632721,7843.01939496845,2019
+2004,47,"(45,50]",College,212.57775224416517,135.50933798957405,1.5687313907512461,7287.82571228859,2019
+2004,47,"(45,50]",College,212.57775224416517,130.66971877566067,1.626832553371663,7881.479235762944,2019
+2004,47,"(45,50]",College,213.99189946140035,143.57537001276296,1.4904499249584229,7837.687633589738,2019
+2004,47,"(45,50]",College,214.14902692998203,122.60368675247175,1.746676895306859,7596.463959357488,2019
+2004,60,"(55,60]",HS,74.00703770197487,69.36787539942482,1.0668776760977245,3697.6559525140774,2019
+2004,60,"(55,60]",HS,66.63775942549371,69.36787539942482,0.9606429351020063,3297.8600956660607,2019
+2004,60,"(55,60]",HS,67.89477917414722,69.36787539942482,0.9787639996641757,3708.5768866737394,2019
+2004,60,"(55,60]",HS,66.9520143626571,69.36787539942482,0.9651732012425487,3644.6077507698947,2019
+2004,60,"(55,60]",HS,65.06648473967684,69.36787539942482,0.9379916043992945,3565.5679355308857,2019
+2004,22,"(20,25]",HS,19.468093357271098,40.33016011594465,0.48271797833935026,6967.779697975059,2019
+2004,22,"(20,25]",HS,10.228998204667864,40.33016011594465,0.25363148014440434,7051.091133738385,2019
+2004,22,"(20,25]",HS,15.775597845601437,40.33016011594465,0.3911612996389892,6978.348148661188,2019
+2004,22,"(20,25]",HS,7.47926750448833,40.33016011594465,0.18545097472924188,6898.165458275503,2019
+2004,22,"(20,25]",HS,18.90243447037702,40.33016011594465,0.4686922743682311,7009.740056743367,2019
+2004,45,"(40,45]",HS,235.69120287253145,109.69803551536945,2.148545338713103,9004.100174065123,2019
+2004,45,"(40,45]",HS,234.11992818671453,109.69803551536945,2.134221703121682,8366.715605302652,2019
+2004,45,"(40,45]",HS,235.69120287253145,109.69803551536945,2.148545338713103,9048.25361061207,2019
+2004,45,"(40,45]",HS,235.69120287253145,109.69803551536945,2.148545338713103,8997.979098604192,2019
+2004,45,"(40,45]",HS,234.11992818671453,109.69803551536945,2.134221703121682,8721.044665860514,2019
+2004,63,"(60,65]",HS,105.74678635547576,75.82070101797595,1.3946954451186726,8407.817688911706,2019
+2004,63,"(60,65]",HS,105.58965888689407,75.82070101797595,1.3926230893309777,7496.809605944664,2019
+2004,63,"(60,65]",HS,105.58965888689407,75.82070101797595,1.3926230893309777,8428.229500591562,2019
+2004,63,"(60,65]",HS,105.58965888689407,75.82070101797595,1.3926230893309777,8277.86837087858,2019
+2004,63,"(60,65]",HS,105.58965888689407,75.82070101797595,1.3926230893309777,8105.305141348455,2019
+2004,39,"(35,40]",HS,1.1941687612208258,50.00939854377137,0.02387888668918132,4207.416575337339,2019
+2004,39,"(35,40]",HS,1.1941687612208258,59.68863697159809,0.0200066347936384,4265.111813209849,2019
+2004,39,"(35,40]",HS,1.1941687612208258,59.68863697159809,0.0200066347936384,4217.548549068557,2019
+2004,39,"(35,40]",HS,1.1941687612208258,62.91504978087366,0.018980653522169766,4196.85841753002,2019
+2004,39,"(35,40]",HS,1.1941687612208258,51.62260494840914,0.02313267148014441,4238.138358856502,2019
+2004,49,"(45,50]",College,34880.726750448834,6791.59896352508,5.135863724842862,1348.4757155892573,2019
+2004,49,"(45,50]",College,34882.29802513465,6791.59896352508,5.1360950804771175,1454.7770231336274,2019
+2004,49,"(45,50]",College,34880.726750448834,6388.2973623656335,5.460097545855668,1350.438692812286,2019
+2004,49,"(45,50]",College,34882.29802513465,5452.637647675718,6.397325529233332,1460.0910371203622,2019
+2004,49,"(45,50]",College,34882.29802513465,5759.146864556897,6.056851621515032,1357.811171094922,2019
+2004,48,"(45,50]",College,60.99688330341113,88.72635225507824,0.6874720052510666,3818.6762304416093,2019
+2004,48,"(45,50]",College,66.66918491921005,88.72635225507824,0.7514022973416474,3838.8846779601604,2019
+2004,48,"(45,50]",College,176.46985996409336,88.72635225507824,1.9889227436823105,3863.789423061161,2019
+2004,48,"(45,50]",College,64.45368761220826,88.72635225507824,0.7264322940597309,3848.5949413981534,2019
+2004,48,"(45,50]",College,61.79823339317774,88.72635225507824,0.6965037085658023,3842.3949733851864,2019
+2004,38,"(35,40]",HS,35.66793536804309,27.424508878842364,1.300586111700998,11387.967446141967,2019
+2004,38,"(35,40]",HS,35.66793536804309,27.424508878842364,1.300586111700998,10856.625330464029,2019
+2004,38,"(35,40]",HS,35.66793536804309,27.424508878842364,1.300586111700998,11335.063212224844,2019
+2004,38,"(35,40]",HS,35.5108078994614,27.424508878842364,1.2948566574644298,11306.858968646982,2019
+2004,38,"(35,40]",HS,35.66793536804309,27.424508878842364,1.300586111700998,11176.799688931525,2019
+2004,38,"(35,40]",NoHS,0,14.518857641740075,0,7423.767273298709,2019
+2004,38,"(35,40]",NoHS,0,14.518857641740075,0,7412.354456724813,2019
+2004,38,"(35,40]",NoHS,0,14.518857641740075,0,7435.547388367095,2019
+2004,38,"(35,40]",NoHS,0,14.518857641740075,0,7425.7305920557355,2019
+2004,38,"(35,40]",NoHS,0,14.518857641740075,0,7392.320240795727,2019
+2004,69,"(65,70]",College,48128.14362657092,8066.032023188931,5.966768231046932,18.875803891614044,2019
+2004,69,"(65,70]",College,74764.3921005386,8066.032023188931,9.269042310469313,20.612904765621785,2019
+2004,69,"(65,70]",College,62913.83842010772,8066.032023188931,7.799849819494584,20.633580245552746,2019
+2004,69,"(65,70]",College,94276.48114901257,8066.032023188931,11.688086642599277,19.525588748991442,2019
+2004,69,"(65,70]",College,48128.14362657092,8066.032023188931,5.966768231046932,19.504203208628326,2019
+2004,75,"(70,75]",HS,356.67935368043084,25.81130247420457,13.818727436823107,12749.079516683476,2019
+2004,75,"(70,75]",HS,357.46499102333934,25.81130247420457,13.849165162454879,11757.833486781801,2019
+2004,75,"(70,75]",HS,357.46499102333934,25.81130247420457,13.849165162454879,12751.991942875964,2019
+2004,75,"(70,75]",HS,358.2506283662478,25.81130247420457,13.879602888086648,12491.321789857808,2019
+2004,75,"(70,75]",HS,356.67935368043084,25.81130247420457,13.818727436823107,12355.567276196924,2019
+2004,45,"(40,45]",NoHS,96.20914901256734,112.92444832464501,0.8519780299123262,8099.081773569569,2019
+2004,45,"(40,45]",NoHS,89.2798276481149,125.83009956174732,0.7095267981116357,7512.130113136112,2019
+2004,45,"(40,45]",NoHS,89.2798276481149,156.48102124986525,0.5705473221928616,8195.849059782497,2019
+2004,45,"(40,45]",NoHS,90.69397486535009,91.95276506435381,0.9863104693140793,8128.844580620136,2019
+2004,45,"(40,45]",NoHS,92.73663195691202,140.3489572034874,0.6607575418067139,7925.989376202982,2019
+2004,46,"(45,50]",College,275.1459102333932,138.73575079884964,1.9832372596759293,5557.150749596436,2019
+2004,46,"(45,50]",College,275.1459102333932,138.73575079884964,1.9832372596759293,5910.773224080025,2019
+2004,46,"(45,50]",College,273.5746355475763,138.73575079884964,1.9719115943245733,5439.696429254989,2019
+2004,46,"(45,50]",College,275.1459102333932,138.73575079884964,1.9832372596759293,5342.17184122428,2019
+2004,46,"(45,50]",College,275.1459102333932,140.3489572034874,1.960441429104942,5568.49179811034,2019
+2004,37,"(35,40]",HS,29.53996409335727,64.52825618551145,0.45778339350180497,8564.26142981261,2019
+2004,37,"(35,40]",HS,29.382836624775585,64.52825618551145,0.4553483754512635,7982.554312749079,2019
+2004,37,"(35,40]",HS,29.53996409335727,64.52825618551145,0.45778339350180497,8559.04153892894,2019
+2004,37,"(35,40]",HS,29.53996409335727,64.52825618551145,0.45778339350180497,8557.341760439442,2019
+2004,37,"(35,40]",HS,29.53996409335727,64.52825618551145,0.45778339350180497,8360.426671507874,2019
+2004,72,"(70,75]",HS,460.3834829443447,43.55657292522023,10.569782056424653,7565.178637146219,2019
+2004,72,"(70,75]",HS,463.3689048473968,43.55657292522023,10.638323305254712,7194.771763996762,2019
+2004,72,"(70,75]",HS,388.2619748653501,43.55657292522023,8.913969782056425,7913.376848126683,2019
+2004,72,"(70,75]",HS,452.52710951526035,43.55657292522023,10.389410348977135,7674.2459217939595,2019
+2004,72,"(70,75]",HS,446.2420107719928,43.55657292522023,10.245112983019117,7711.16289611166,2019
+2004,38,"(35,40]",HS,32.525385996409334,138.73575079884964,0.23444127277306684,7383.259417203277,2019
+2004,38,"(35,40]",HS,32.525385996409334,138.73575079884964,0.23444127277306684,7089.35936303404,2019
+2004,38,"(35,40]",HS,32.525385996409334,138.73575079884964,0.23444127277306684,7380.4523052545865,2019
+2004,38,"(35,40]",HS,32.525385996409334,138.73575079884964,0.23444127277306684,7357.362279524239,2019
+2004,38,"(35,40]",HS,32.525385996409334,138.73575079884964,0.23444127277306684,7276.630805648771,2019
+2004,40,"(35,40]",HS,41.94517773788151,69.36787539942482,0.6046772731088907,4936.654238921996,2019
+2004,40,"(35,40]",HS,44.81275403949731,69.36787539942482,0.6460159516413397,4918.541648423978,2019
+2004,40,"(35,40]",HS,44.55349371633752,69.36787539942482,0.6422784820753923,4932.168524166931,2019
+2004,40,"(35,40]",HS,43.77571274685817,69.36787539942482,0.63106607337755,4905.348386346203,2019
+2004,40,"(35,40]",HS,42.204438061041294,69.36787539942482,0.6084147426748383,4912.694062219837,2019
+2004,35,"(30,35]",College,846.9170556552962,233.91492867247896,3.620619942736213,4926.97079422748,2019
+2004,35,"(30,35]",College,767.2691418312388,175.8394981055187,4.363462988109827,5060.621318770907,2019
+2004,35,"(30,35]",College,859.4872531418313,167.77346608232975,5.1229033601777285,4815.118604757261,2019
+2004,35,"(30,35]",College,1044.8976660682226,235.52813507711673,4.436402749616736,4747.106176581516,2019
+2004,35,"(30,35]",College,955.3350089766607,198.4243877704477,4.814604795867453,4939.371068058339,2019
+2004,60,"(55,60]",College,23701.10736086176,2419.8096069566795,9.794616606498193,316.851014287152,2019
+2004,60,"(55,60]",College,20560.129263913826,2419.8096069566795,8.496589651022864,339.8195285079793,2019
+2004,60,"(55,60]",College,36271.30484739677,2419.8096069566795,14.989321780986762,316.96345814573726,2019
+2004,60,"(55,60]",College,36271.30484739677,2419.8096069566795,14.989321780986762,309.9441378718518,2019
+2004,60,"(55,60]",College,20560.129263913826,2419.8096069566795,8.496589651022864,334.54993400584686,2019
+2004,51,"(50,55]",College,28717.55892280072,8178.956471513576,3.5111519449725503,35.12158006974005,2019
+2004,51,"(50,55]",College,28342.024272890485,8921.031417646958,3.1769896266508244,35.30455466562282,2019
+2004,51,"(50,55]",College,29016.101113105924,8243.484727699088,3.5198829222802317,36.93886892133896,2019
+2004,51,"(50,55]",College,27421.257307001797,7824.051062493262,3.5047390524396147,34.710533512426764,2019
+2004,51,"(50,55]",College,29328.784775583485,9033.955865971602,3.246505208870552,37.33478372449191,2019
+2004,59,"(55,60]",College,12730.153249551167,929.2068890713648,13.700020306859207,2378.957187223168,2019
+2004,59,"(55,60]",College,12527.45881508079,961.4710171641206,13.029471082790202,2294.724974620616,2019
+2004,59,"(55,60]",College,12066.446822262118,1003.4143836847029,12.0253875352595,2503.011608752404,2019
+2004,59,"(55,60]",College,11518.700466786355,1234.1028995479066,9.333662914985487,2216.5032102661985,2019
+2004,59,"(55,60]",College,12335.920430879713,829.1880919838221,14.877107558752053,2316.933100621769,2019
+2004,20,"(15,20]",HS,3.723921005385997,48.39619213913358,0.07694657039711192,6102.240208924164,2019
+2004,20,"(15,20]",HS,4.085314183123878,48.39619213913358,0.08441395908543924,6058.325173642587,2019
+2004,20,"(15,20]",HS,2.686879712746858,48.39619213913358,0.055518411552346575,6133.97302058085,2019
+2004,20,"(15,20]",HS,4.226728904847397,48.39619213913358,0.08733598074608905,6044.288860629746,2019
+2004,20,"(15,20]",HS,6.379375224416517,48.39619213913358,0.1318156438026474,6127.928684422083,2019
+2004,48,"(45,50]",HS,493.930197486535,98.40559068290497,5.019330650411314,9527.621141191357,2019
+2004,48,"(45,50]",HS,493.930197486535,98.40559068290497,5.019330650411314,10442.851053073717,2019
+2004,48,"(45,50]",HS,494.6372710951526,98.40559068290497,5.026515949576846,9406.18789852356,2019
+2004,48,"(45,50]",HS,494.6372710951526,98.40559068290497,5.026515949576846,9428.685184767575,2019
+2004,48,"(45,50]",HS,493.930197486535,98.40559068290497,5.019330650411314,9855.541043307177,2019
+2004,38,"(35,40]",HS,4.4152818671454215,46.782985734495796,0.09437794099340222,4266.037978902563,2019
+2004,38,"(35,40]",HS,4.4152818671454215,46.782985734495796,0.09437794099340222,4250.385880290582,2019
+2004,38,"(35,40]",HS,4.430994614003591,46.782985734495796,0.09471380555209762,4262.161622856246,2019
+2004,38,"(35,40]",HS,4.258154398563734,46.782985734495796,0.0910192954064484,4238.984847452261,2019
+2004,38,"(35,40]",HS,4.4152818671454215,46.782985734495796,0.09437794099340222,4245.332655246972,2019
+2004,80,"(75,80]",College,126050.79784560144,3920.09156326982,32.15506469967762,27.768818387630876,2019
+2004,80,"(75,80]",College,140611.80035906643,3678.1106025741524,38.22935619735259,28.446810801806002,2019
+2004,80,"(75,80]",College,149703.19569120288,3887.8274351770647,38.505617388438665,28.169819163329105,2019
+2004,80,"(75,80]",College,88568.04021543986,4016.8839475480872,22.048941759819062,27.36970347254667,2019
+2004,80,"(75,80]",College,90111.97472172351,3758.7709228060417,23.973787328984674,27.53974791481673,2019
+2004,40,"(35,40]",College,32599.2390491921,4113.676331826355,7.924599900332695,28.345168542617607,2019
+2004,40,"(35,40]",College,50711.444912028725,4386.630855491067,11.56045415778478,29.509891608267672,2019
+2004,40,"(35,40]",College,28622.042705924596,4066.3771200423744,7.038708378731566,29.312917614426674,2019
+2004,40,"(35,40]",HS,33982.90039497307,4326.877690263284,7.853908251542293,28.075194424035608,2019
+2004,40,"(35,40]",HS,30941.383985637345,2923.194533459854,10.58478443068773,29.73994421203755,2019
+2004,42,"(40,45]",NoHS,-7.070736086175943,40.33016011594465,-0.17532129963898918,4948.979181441582,2019
+2004,42,"(40,45]",NoHS,-7.070736086175943,40.33016011594465,-0.17532129963898918,4918.6345988096555,2019
+2004,42,"(40,45]",NoHS,-7.070736086175943,40.33016011594465,-0.17532129963898918,4945.49676765263,2019
+2004,42,"(40,45]",NoHS,-7.070736086175943,40.33016011594465,-0.17532129963898918,4936.943554613989,2019
+2004,42,"(40,45]",NoHS,-7.070736086175943,40.33016011594465,-0.17532129963898918,4951.135210832836,2019
+2004,63,"(60,65]",College,222553.77522441652,4113.676331826355,54.100944574219575,20.74019594646676,2019
+2004,63,"(60,65]",College,134486.97163375226,3549.0540902031294,37.89375090252708,21.35350431432254,2019
+2004,63,"(60,65]",College,135385.42649910232,3549.0540902031294,38.14690423367246,20.995578422063275,2019
+2004,63,"(60,65]",College,146871.91583482944,3871.695371130687,37.9347809566787,20.4852844289174,2019
+2004,63,"(60,65]",College,146836.71928186715,3549.0540902031294,41.37348024286183,20.567919624948274,2019
+2004,64,"(60,65]",College,33164.109156193896,611.405227357721,54.242436394463866,204.72617866235854,2019
+2004,64,"(60,65]",College,20902.35289048474,703.3579924220747,29.71794323187494,203.6316254562594,2019
+2004,64,"(60,65]",College,22188.755475763017,658.1882130922168,33.71187000070786,209.87321215910782,2019
+2004,64,"(60,65]",College,20817.189802513465,713.0372308499014,29.195095153307086,199.26585490784475,2019
+2004,64,"(60,65]",College,18727.080215439855,633.9901170226499,29.538441866233086,206.9678713331844,2019
+2004,61,"(60,65]",College,47232.51705565529,4694.430637495958,10.061394171722057,213.89932839736997,2019
+2004,61,"(60,65]",College,47232.51705565529,4694.430637495958,10.061394171722057,209.00689675678632,2019
+2004,61,"(60,65]",College,47232.51705565529,4694.430637495958,10.061394171722057,220.04188165536567,2019
+2004,61,"(60,65]",College,47232.51705565529,4694.430637495958,10.061394171722057,208.79801098943534,2019
+2004,61,"(60,65]",College,47232.51705565529,4694.430637495958,10.061394171722057,216.91507817072346,2019
+2004,42,"(40,45]",HS,345.3661759425494,133.89613158493626,2.579358879561567,10765.901630009175,2019
+2004,42,"(40,45]",HS,361.8959856373429,150.02819563131413,2.412186483443965,9912.841685908286,2019
+2004,42,"(40,45]",HS,353.88248473967684,129.0565123710229,2.742073826714801,8814.691596895042,2019
+2004,42,"(40,45]",HS,271.3434254937163,151.6414020359519,1.7893756048851677,10757.203100615337,2019
+2004,42,"(40,45]",HS,291.0943482944345,148.4149892266763,1.9613541045361798,10509.666463127596,2019
+2004,25,"(20,25]",College,-10.52754039497307,53.23581135304694,-0.19775298107428071,7895.704178313137,2019
+2004,25,"(20,25]",College,-10.52754039497307,53.23581135304694,-0.19775298107428071,7775.04559387506,2019
+2004,25,"(20,25]",College,-10.52754039497307,53.23581135304694,-0.19775298107428071,7878.279860395686,2019
+2004,25,"(20,25]",College,-10.52754039497307,53.23581135304694,-0.19775298107428071,7985.534559286783,2019
+2004,25,"(20,25]",College,-10.52754039497307,53.23581135304694,-0.19775298107428071,7865.298981556001,2019
+2004,46,"(45,50]",HS,1022.8998204667864,104.8584163014561,9.755056928630935,6354.776519935602,2019
+2004,46,"(45,50]",HS,1022.8998204667864,104.8584163014561,9.755056928630935,7072.233136926062,2019
+2004,46,"(45,50]",HS,991.6314542190306,104.8584163014561,9.456860871980005,6274.394731274092,2019
+2004,46,"(45,50]",HS,1021.3285457809694,104.8584163014561,9.740072202166063,6289.335991318701,2019
+2004,46,"(45,50]",HS,991.3171992818671,104.8584163014561,9.453863926687031,6573.108238435455,2019
+2004,74,"(70,75]",College,351109.1849192101,43072.61100382889,8.151564921104937,2.8223448818477395,2019
+2004,74,"(70,75]",College,414869.9403949731,42120.8192250926,9.849522113468842,2.8812682866096098,2019
+2004,74,"(70,75]",College,414117.2998204668,48541.380715550986,8.531222097846053,2.764845406160569,2019
+2004,74,"(70,75]",College,420198.1328545781,75046.36194374981,5.599180586122657,2.7705622626063535,2019
+2004,74,"(70,75]",College,363328.9881508079,44508.364703956526,8.163161926245971,2.7024244688325725,2019
+2004,36,"(35,40]",HS,93.01946140035908,72.59428820870036,1.2813606097071804,8574.794799327037,2019
+2004,36,"(35,40]",HS,91.44818671454219,72.59428820870036,1.259716004813478,7992.372228156522,2019
+2004,36,"(35,40]",HS,91.44818671454219,72.59428820870036,1.259716004813478,8569.56848838718,2019
+2004,36,"(35,40]",HS,93.01946140035908,72.59428820870036,1.2813606097071804,8567.866619303526,2019
+2004,36,"(35,40]",HS,93.01946140035908,72.59428820870036,1.2813606097071804,8370.709340264653,2019
+2004,67,"(65,70]",NoHS,15.712746858168762,10.324520989681831,1.5218862815884477,5643.166936706685,2019
+2004,67,"(65,70]",NoHS,15.712746858168762,10.324520989681831,1.5218862815884477,5698.1440581251245,2019
+2004,67,"(65,70]",NoHS,15.712746858168762,10.324520989681831,1.5218862815884477,5704.128361333652,2019
+2004,67,"(65,70]",NoHS,15.712746858168762,10.163200349218052,1.5460432066930263,5697.415879178947,2019
+2004,67,"(65,70]",NoHS,15.712746858168762,10.324520989681831,1.5218862815884477,5696.747737501657,2019
+2004,53,"(50,55]",College,16639.641795332136,898.5559673832469,18.518202982714257,222.10695069028898,2019
+2004,53,"(50,55]",College,16639.798922800717,898.5559673832469,18.518377849360615,220.1389416420962,2019
+2004,53,"(50,55]",College,16655.51166965889,898.5559673832469,18.53586451399646,231.17884584075895,2019
+2004,53,"(50,55]",College,16657.082944344704,898.5559673832469,18.537613180460045,217.9000999363456,2019
+2004,53,"(50,55]",College,16641.370197486536,898.5559673832469,18.520126515824202,224.3188033544073,2019
+2004,42,"(40,45]",College,509.0929982046679,322.6412809275572,1.5778916967509027,8770.434077315633,2019
+2004,42,"(40,45]",College,508.4644883303411,322.6412809275572,1.5759436823104693,9734.021222175212,2019
+2004,42,"(40,45]",College,512.7069299820466,322.6412809275572,1.5890927797833934,8655.680963116683,2019
+2004,42,"(40,45]",College,507.6002872531418,322.6412809275572,1.5732651624548737,8641.86448141399,2019
+2004,42,"(40,45]",College,512.2355475763017,322.6412809275572,1.5876317689530688,9029.52038713585,2019
+2004,49,"(45,50]",College,1357.8955834829444,227.46210305392788,5.9697662390864625,7093.27163621995,2019
+2004,49,"(45,50]",College,916.5245242369839,227.46210305392788,4.029350436541464,7891.640248922423,2019
+2004,49,"(45,50]",College,2425.576732495512,227.46210305392788,10.663652098215428,3846.3284739329692,2019
+2004,49,"(45,50]",College,1386.8070377019749,227.46210305392788,6.096870727398417,7017.62094244026,2019
+2004,49,"(45,50]",College,1566.5608617594257,227.46210305392788,6.887129067772742,7334.734819042724,2019
+2004,34,"(30,35]",HS,364.8499820466787,153.2546084405897,2.380678700361011,9743.229823528498,2019
+2004,34,"(30,35]",HS,364.8499820466787,153.2546084405897,2.380678700361011,9510.16800030127,2019
+2004,34,"(30,35]",HS,364.8499820466787,153.2546084405897,2.380678700361011,9713.576470891634,2019
+2004,34,"(30,35]",HS,364.8499820466787,153.2546084405897,2.380678700361011,9696.610529205656,2019
+2004,34,"(30,35]",HS,364.8499820466787,153.2546084405897,2.380678700361011,9611.61136471786,2019
+2004,75,"(70,75]",NoHS,68.5075763016158,10.808482911073169,6.338315642006573,10321.609419417337,2019
+2004,75,"(70,75]",NoHS,68.66470377019749,10.808482911073169,6.352853063203836,9475.96425033866,2019
+2004,75,"(70,75]",NoHS,68.5075763016158,10.808482911073169,6.338315642006573,10202.66425400201,2019
+2004,75,"(70,75]",NoHS,68.5075763016158,10.808482911073169,6.338315642006573,10100.817765339725,2019
+2004,75,"(70,75]",NoHS,68.5075763016158,10.808482911073169,6.338315642006573,9946.042853822852,2019
+2004,44,"(40,45]",HS,1004.6730341113106,117.76406753855836,8.531235843924634,7958.908030422865,2019
+2004,44,"(40,45]",HS,878.8139317773788,117.76406753855836,7.462496414618467,8335.966030006468,2019
+2004,44,"(40,45]",HS,873.9429802513465,117.76406753855836,7.421134464170913,7818.929961495148,2019
+2004,44,"(40,45]",HS,917.7815439856374,117.76406753855836,7.7933920181989045,7670.157077416096,2019
+2004,44,"(40,45]",HS,883.8420107719928,117.76406753855836,7.505192621532072,8001.348838877183,2019
+2004,48,"(45,50]",College,1126.3368330341114,154.86781484522746,7.272891621540314,6012.391211398537,2019
+2004,48,"(45,50]",College,1128.552330341113,154.86781484522746,7.287197352587244,6691.630640710568,2019
+2004,48,"(45,50]",College,1129.3379676840216,156.48102124986525,7.217092262458595,5935.760943447285,2019
+2004,48,"(45,50]",College,1129.1022764811491,154.86781484522746,7.290748420577619,5949.957822614641,2019
+2004,48,"(45,50]",College,1121.8901256732497,156.48102124986525,7.1694964457181145,6219.324580001951,2019
+2004,67,"(65,70]",HS,1827.4081723518852,100.01879708754274,18.270647373937347,3778.492239345145,2019
+2004,67,"(65,70]",HS,1827.4081723518852,100.01879708754274,18.270647373937347,3988.41247538162,2019
+2004,67,"(65,70]",HS,1827.4081723518852,100.01879708754274,18.270647373937347,3782.1624172898723,2019
+2004,67,"(65,70]",HS,1827.4081723518852,100.01879708754274,18.270647373937347,4061.3814672382896,2019
+2004,67,"(65,70]",HS,1828.979447037702,100.01879708754274,18.286357167811808,3871.3606848230656,2019
+2004,61,"(60,65]",College,896.7264631956913,287.1507400255259,3.1228422504360527,3738.661725815845,2019
+2004,61,"(60,65]",College,898.297737881508,287.1507400255259,3.1283142011114267,3870.182948030738,2019
+2004,61,"(60,65]",College,898.297737881508,287.1507400255259,3.1283142011114267,3714.715408419614,2019
+2004,61,"(60,65]",College,898.297737881508,287.1507400255259,3.1283142011114267,4003.7594064451887,2019
+2004,61,"(60,65]",College,896.7264631956913,287.1507400255259,3.1228422504360527,3815.715365924813,2019
+2004,59,"(55,60]",College,735.8279353680432,254.8866119327702,2.886883425490107,7955.930872701507,2019
+2004,59,"(55,60]",College,737.7134649910233,254.8866119327702,2.894280948681625,8796.303860343076,2019
+2004,59,"(55,60]",College,738.1848473967684,254.8866119327702,2.896130329479505,7850.130005883271,2019
+2004,59,"(55,60]",College,739.3161651705566,254.8866119327702,2.900568843394416,7824.27636106816,2019
+2004,59,"(55,60]",College,738.0277199281868,254.8866119327702,2.8955138692135454,8223.976758344661,2019
+2004,66,"(65,70]",College,2807.710736086176,88.72635225507824,31.644609123728255,3040.115267953558,2019
+2004,66,"(65,70]",College,2808.024991023339,88.72635225507824,31.648150968165407,3209.545258393127,2019
+2004,66,"(65,70]",College,2808.024991023339,88.72635225507824,31.648150968165407,3041.118644632554,2019
+2004,66,"(65,70]",College,2808.024991023339,88.72635225507824,31.648150968165407,3266.0314437859593,2019
+2004,66,"(65,70]",College,2808.024991023339,88.72635225507824,31.648150968165407,3114.5302200083433,2019
+2004,56,"(55,60]",College,53819.14341113106,3629.7144104350186,14.827376847172083,19.754206743799788,2019
+2004,56,"(55,60]",College,54297.753680430884,3629.7144104350186,14.959235780184517,19.816306324632045,2019
+2004,56,"(55,60]",College,52222.72833034112,3629.7144104350186,14.387558475732051,20.246356702841897,2019
+2004,56,"(55,60]",College,56969.5491561939,3629.7144104350186,15.695325503409547,19.17777086767523,2019
+2004,56,"(55,60]",College,58765.67324955117,3629.7144104350186,16.19016446048937,20.067007640569997,2019
+2004,49,"(45,50]",College,118.94549371633754,72.59428820870036,1.6384965904532696,6948.663568924778,2019
+2004,49,"(45,50]",College,118.78836624775585,72.59428820870036,1.6363321299638993,6456.779777459248,2019
+2004,49,"(45,50]",College,118.94549371633754,72.59428820870036,1.6384965904532696,6982.737754023287,2019
+2004,49,"(45,50]",College,118.94549371633754,72.59428820870036,1.6384965904532696,6943.9397993935945,2019
+2004,49,"(45,50]",College,118.78836624775585,72.59428820870036,1.6363321299638993,6730.223362816226,2019
+2004,51,"(50,55]",HS,11858.881436265709,596.886369715981,19.867904576056194,1747.4072776021353,2019
+2004,51,"(50,55]",HS,11895.806391382406,596.886369715981,19.929767196799684,1734.5196815617205,2019
+2004,51,"(50,55]",HS,14108.475403949731,596.886369715981,23.636786027905156,1795.3501413749248,2019
+2004,51,"(50,55]",HS,9817.32423698384,596.886369715981,16.447559761927987,1663.9393840875277,2019
+2004,51,"(50,55]",HS,9378.938599640935,596.886369715981,15.713105668845738,1673.9760481107246,2019
+2004,55,"(50,55]",College,1871.0738958707361,201.65080057972327,9.27878238267148,515.2573057406888,2019
+2004,55,"(50,55]",College,1872.4880430879712,201.65080057972327,9.285795234657039,532.1267557962403,2019
+2004,55,"(50,55]",College,1861.6462477558348,201.65080057972327,9.232030036101083,510.283954807586,2019
+2004,55,"(50,55]",College,1858.3465709156194,201.65080057972327,9.215666714801444,521.5366118323628,2019
+2004,55,"(50,55]",College,1866.2029443447038,201.65080057972327,9.254627003610109,529.6128730681471,2019
+2004,26,"(25,30]",HS,-4.4152818671454215,72.59428820870036,-0.06082133975130365,5769.54219381905,2019
+2004,26,"(25,30]",HS,-4.57240933572711,72.59428820870036,-0.06298580024067389,5801.207924758615,2019
+2004,26,"(25,30]",HS,-4.4152818671454215,72.59428820870036,-0.06082133975130365,5703.328735039641,2019
+2004,26,"(25,30]",HS,-4.57240933572711,72.59428820870036,-0.06298580024067389,5711.795783682524,2019
+2004,26,"(25,30]",HS,-4.4152818671454215,72.59428820870036,-0.06082133975130365,5688.9642392221185,2019
+2004,57,"(55,60]",College,38031.91813285458,3549.0540902031294,10.71607170987857,286.3874390981662,2019
+2004,57,"(55,60]",College,37634.69989228007,3549.0540902031294,10.604149425664588,278.4357808814075,2019
+2004,57,"(55,60]",College,37631.55734290843,3549.0540902031294,10.603263964555298,295.230733347006,2019
+2004,57,"(55,60]",College,37620.84124955117,3549.0540902031294,10.60024454217263,278.96804002249337,2019
+2004,57,"(55,60]",College,37621.89400359066,3549.0540902031294,10.60054117164424,290.4419445755936,2019
+2004,63,"(60,65]",HS,551.187447037702,67.75466899478702,8.1350474471377,6985.634404275751,2019
+2004,63,"(60,65]",HS,553.0729766606822,40.33016011594465,13.713632057761734,7726.434323171874,2019
+2004,63,"(60,65]",HS,559.3580754039497,59.68863697159809,9.371265684457018,6893.951211356214,2019
+2004,63,"(60,65]",HS,552.9158491921006,79.04711382725151,6.99476328004126,6871.987723226885,2019
+2004,63,"(60,65]",HS,547.2592603231598,30.650921688117936,17.85457761732852,7223.620008101823,2019
+2004,69,"(65,70]",College,2600.3024775583485,127.4433059663851,20.40360188274003,3574.2198313053996,2019
+2004,69,"(65,70]",College,2601.873752244165,127.4433059663851,20.415931088059224,3771.6135967177383,2019
+2004,69,"(65,70]",College,2603.602154398564,127.4433059663851,20.429493213910344,3576.712326159554,2019
+2004,69,"(65,70]",College,2602.030879712747,129.0565123710229,20.16194945848375,3840.38981060383,2019
+2004,69,"(65,70]",College,2601.873752244165,127.4433059663851,20.415931088059224,3660.94905014276,2019
+2004,56,"(55,60]",HS,754.5261041292639,106.47162270609388,7.086640411333552,5837.193700684959,2019
+2004,56,"(55,60]",HS,751.3835547576302,106.47162270609388,7.0571250410239585,6455.783035603699,2019
+2004,56,"(55,60]",HS,734.0995332136446,106.47162270609388,6.894790504321191,5761.1454820887175,2019
+2004,56,"(55,60]",HS,735.5136804308797,106.47162270609388,6.908072420960508,5742.731156729709,2019
+2004,56,"(55,60]",HS,730.9569838420107,106.47162270609388,6.865275134011595,6035.700127721102,2019
+2004,55,"(50,55]",College,7574.17249551167,258.1130247420458,29.344402527075808,2428.388594595199,2019
+2004,55,"(50,55]",College,7571.029946140036,258.1130247420458,29.332227436823104,2402.9946054159977,2019
+2004,55,"(50,55]",College,7558.459748653501,258.1130247420458,29.283527075812273,2484.1791168138184,2019
+2004,55,"(50,55]",College,7574.17249551167,258.1130247420458,29.344402527075808,2364.887203411192,2019
+2004,55,"(50,55]",College,7572.601220825853,258.1130247420458,29.338314981949452,2393.1232841683786,2019
+2004,70,"(65,70]",College,47278.08402154399,2274.6210305392783,20.78503776531736,19.754206743799788,2019
+2004,70,"(65,70]",College,47276.51274685817,2177.8286462610113,21.708095734723894,19.816306324632045,2019
+2004,70,"(65,70]",College,47278.08402154399,2193.960710307389,21.54919356551285,20.246356702841897,2019
+2004,70,"(65,70]",College,47281.22657091562,2210.092774353767,21.393322090173655,19.17777086767523,2019
+2004,70,"(65,70]",College,47278.08402154399,2177.8286462610113,21.708817221553684,20.067007640569997,2019
+2004,49,"(45,50]",HS,0,41.94336652058244,0,5666.630794910528,2019
+2004,49,"(45,50]",HS,0,41.94336652058244,0,5653.69153849449,2019
+2004,49,"(45,50]",HS,0,41.94336652058244,0,5693.529426680572,2019
+2004,49,"(45,50]",HS,0,41.94336652058244,0,5694.323122212766,2019
+2004,49,"(45,50]",HS,11.627432675044885,41.94336652058244,0.27721743960011114,5651.085744492803,2019
+2004,50,"(45,50]",NoHS,15.712746858168762,17.74527045101565,0.885461109287824,8261.708661808841,2019
+2004,50,"(45,50]",NoHS,15.712746858168762,19.358476855653432,0.8116726835138388,8276.716530483882,2019
+2004,50,"(45,50]",NoHS,15.712746858168762,19.358476855653432,0.8116726835138388,8197.664164494952,2019
+2004,50,"(45,50]",NoHS,15.712746858168762,16.132064046377863,0.9740072202166065,8289.836141055011,2019
+2004,50,"(45,50]",NoHS,15.712746858168762,17.74527045101565,0.885461109287824,8223.54663268867,2019
+2004,38,"(35,40]",College,75.89256732495512,150.02819563131413,0.5058553627576569,4268.850160859997,2019
+2004,38,"(35,40]",College,75.89256732495512,124.21689315710954,0.6109681654085987,4242.870084912616,2019
+2004,38,"(35,40]",College,75.89256732495512,100.01879708754274,0.7587830441364855,4266.552089139573,2019
+2004,38,"(35,40]",College,75.89256732495512,98.40559068290497,0.7712221104338047,4269.048955287561,2019
+2004,38,"(35,40]",College,75.89256732495512,146.80178282203855,0.516973063038045,4271.546539104422,2019
+2004,58,"(55,60]",College,94493.63131059246,3048.9601047654155,30.992085190915518,26.53403282575663,2019
+2004,58,"(55,60]",College,97552.43174147217,3048.9601047654155,31.995312627738624,27.460195446701853,2019
+2004,58,"(55,60]",College,99945.70306642729,3048.9601047654155,32.78025937768609,27.68412532033214,2019
+2004,58,"(55,60]",College,94836.64057450628,3048.9601047654155,31.104585601589214,26.087486167993212,2019
+2004,58,"(55,60]",College,111706.63123877917,3048.9601047654155,36.63761656447577,26.767361096680492,2019
+2004,57,"(55,60]",College,128.84452423698383,193.58476855653433,0.6655716004813477,7467.292740850465,2019
+2004,57,"(55,60]",College,128.68739676840215,193.58476855653433,0.6647599277978339,6658.192889200802,2019
+2004,57,"(55,60]",College,128.68739676840215,193.58476855653433,0.6647599277978339,7485.42122303504,2019
+2004,57,"(55,60]",College,128.79738599640933,193.58476855653433,0.6653280986762936,7351.879962513589,2019
+2004,57,"(55,60]",College,128.86023698384201,193.58476855653433,0.6656527677496992,7198.620198935774,2019
+2004,42,"(40,45]",HS,20.5208473967684,61.30184337623587,0.33475090252707573,4830.739956863491,2019
+2004,42,"(40,45]",HS,19.090987432675043,61.30184337623587,0.31142599277978333,4810.05291489031,2019
+2004,42,"(40,45]",HS,20.505134649910232,61.30184337623587,0.33449458483754513,4794.530435405418,2019
+2004,42,"(40,45]",HS,20.505134649910232,61.30184337623587,0.33449458483754513,4810.004795872553,2019
+2004,42,"(40,45]",HS,20.505134649910232,61.30184337623587,0.33449458483754513,4784.0794314310115,2019
+2004,59,"(55,60]",College,7165.012567324955,1629.338468684164,4.397497944740323,470.97551518181336,2019
+2004,59,"(55,60]",College,9927.313464991024,1645.470532730542,6.033115311106393,471.28530853515394,2019
+2004,59,"(55,60]",College,12265.370197486534,1645.470532730542,7.454019961775323,482.31635596667536,2019
+2004,59,"(55,60]",College,8629.440574506283,1645.470532730542,5.244360444538826,467.89929129492793,2019
+2004,59,"(55,60]",College,11679.284739676841,1645.470532730542,7.097838890068663,471.49876877069954,2019
+2004,56,"(55,60]",College,3621.7881508078995,817.8956471513575,4.428178782247097,1119.7105140554672,2019
+2004,56,"(55,60]",College,3636.0867504488333,817.8956471513575,4.44566096312278,1143.9971932617907,2019
+2004,56,"(55,60]",College,3723.9210053859965,817.8956471513575,4.553051502787688,1151.0689901402352,2019
+2004,56,"(55,60]",College,3991.0377019748657,817.8956471513575,4.879641694970771,1074.091404920117,2019
+2004,56,"(55,60]",College,4536.898527827649,817.8956471513575,5.54703835829079,1099.1546102617704,2019
+2004,54,"(50,55]",NoHS,200.6533486535009,56.46222416232251,3.5537627436823107,6170.333519334721,2019
+2004,54,"(50,55]",NoHS,200.6533486535009,54.84901775768473,3.6582851773200256,6208.773911103528,2019
+2004,54,"(50,55]",NoHS,200.6533486535009,54.84901775768473,3.6582851773200256,6154.14824235761,2019
+2004,54,"(50,55]",NoHS,200.6533486535009,56.46222416232251,3.5537627436823107,6173.550163282072,2019
+2004,54,"(50,55]",NoHS,200.6533486535009,54.84901775768473,3.6582851773200256,6166.922325824455,2019
+2004,50,"(45,50]",College,68250.0443806104,4049.148075640843,16.85540837372531,21.84937675360215,2019
+2004,50,"(45,50]",College,586825.5281867145,4855.751277959736,120.85164469817813,22.79832947205196,2019
+2004,50,"(45,50]",College,388161.727540395,4726.694765588713,82.12117489927428,22.457057292481032,2019
+2004,50,"(45,50]",College,120285.79102333932,5581.694160046741,21.550050499780887,21.843207393796412,2019
+2004,50,"(45,50]",College,368551.90520646324,4049.148075640843,91.01961655184317,22.287131931716438,2019
+2004,37,"(35,40]",HS,93.88366247755835,88.72635225507824,1.0581260255989497,7148.949540157724,2019
+2004,37,"(35,40]",HS,93.5065565529623,88.72635225507824,1.053875812274368,6862.598050985473,2019
+2004,37,"(35,40]",HS,90.80396409335727,88.72635225507824,1.023415950114867,7142.485397164643,2019
+2004,37,"(35,40]",HS,95.7691921005386,88.72635225507824,1.0793770922218575,7115.856488246163,2019
+2004,37,"(35,40]",HS,96.55482944344705,88.72635225507824,1.088231703314736,7043.821016342912,2019
+2004,31,"(30,35]",College,123.37648833034112,75.82070101797595,1.6272137644980413,11395.907436347585,2019
+2004,31,"(30,35]",College,124.94776301615799,75.82070101797595,1.6479373223749905,11370.440620595542,2019
+2004,31,"(30,35]",College,123.39220107719929,75.82070101797595,1.6274210000768108,11499.96597301035,2019
+2004,31,"(30,35]",College,127.32038779174148,75.82070101797595,1.6792298947691835,11426.204034412815,2019
+2004,31,"(30,35]",College,123.39220107719929,75.82070101797595,1.6274210000768108,11424.676908102974,2019
+2004,47,"(45,50]",College,572.5724955116697,161.3206404637786,3.549282310469314,9527.621141191357,2019
+2004,47,"(45,50]",College,578.3076481149013,161.3206404637786,3.5848335740072206,10442.851053073717,2019
+2004,47,"(45,50]",College,291.0314973070018,161.3206404637786,1.8040561732851987,11709.802045381597,2019
+2004,47,"(45,50]",College,415.03649551166967,161.3206404637786,2.5727426714801447,11523.621926314705,2019
+2004,47,"(45,50]",College,293.67281005385996,161.3206404637786,1.8204292346570399,11166.528006316346,2019
+2004,42,"(40,45]",HS,2636.5674973070018,133.89613158493626,19.691140185289893,672.537477880426,2019
+2004,42,"(40,45]",HS,2636.5674973070018,133.89613158493626,19.691140185289893,691.2924512993575,2019
+2004,42,"(40,45]",HS,2636.5674973070018,133.89613158493626,19.691140185289893,668.1519544195419,2019
+2004,42,"(40,45]",HS,2639.8828868940755,135.50933798957405,19.481187983496646,686.1054157119626,2019
+2004,42,"(40,45]",HS,2638.1387719928184,133.89613158493626,19.70287521203949,695.1145084043239,2019
+2004,56,"(55,60]",HS,26.711669658886894,32.264128092755726,0.8279061371841154,6220.1351613878105,2019
+2004,56,"(55,60]",HS,26.554542190305206,32.264128092755726,0.8230361010830324,5348.117678139809,2019
+2004,56,"(55,60]",HS,26.711669658886894,32.264128092755726,0.8279061371841154,6235.64870399659,2019
+2004,56,"(55,60]",HS,26.711669658886894,32.264128092755726,0.8279061371841154,6132.109103523872,2019
+2004,56,"(55,60]",HS,26.711669658886894,32.264128092755726,0.8279061371841154,5917.8441180101345,2019
+2004,56,"(55,60]",HS,79.41222262118492,116.1508611339206,0.6836989570798235,5416.690415013657,2019
+2004,56,"(55,60]",HS,80.66924236983843,116.1508611339206,0.6945212595266748,4746.964076753701,2019
+2004,56,"(55,60]",HS,81.07777378815081,116.1508611339206,0.6980385078219014,5411.874306488271,2019
+2004,56,"(55,60]",HS,86.10585278276481,116.1508611339206,0.741327717609306,5312.48340800035,2019
+2004,56,"(55,60]",HS,84.28317414721722,116.1508611339206,0.7256353790613718,5158.7857286311555,2019
+2004,32,"(30,35]",College,136.07238779174148,219.3960710307389,0.6202134211085156,7662.51595018363,2019
+2004,32,"(30,35]",College,91.52675044883303,187.13194293798318,0.48910276360014937,7609.706355499251,2019
+2004,32,"(30,35]",College,101.81859964093358,261.33943755132134,0.3896028880866427,7664.555766602459,2019
+2004,32,"(30,35]",College,178.0254219030521,162.9338468684164,1.0926239410944707,7655.261932995677,2019
+2004,32,"(30,35]",College,143.5045170556553,182.29232372406983,0.7872219417909971,7651.335670882554,2019
+2004,28,"(25,30]",NoHS,0,11.292444832464504,0,5197.110199802455,2019
+2004,28,"(25,30]",NoHS,0,11.292444832464504,0,5211.954546974978,2019
+2004,28,"(25,30]",NoHS,0,11.292444832464504,0,5228.531341009619,2019
+2004,28,"(25,30]",NoHS,0,11.292444832464504,0,5225.389063349082,2019
+2004,28,"(25,30]",NoHS,0,11.292444832464504,0,5234.484938698825,2019
+2004,55,"(50,55]",HS,63.47949730700179,70.9810818040626,0.8943157203807022,5294.196757644204,2019
+2004,55,"(50,55]",HS,62.85098743267505,70.9810818040626,0.885461109287824,4719.173681205937,2019
+2004,55,"(50,55]",HS,62.85098743267505,72.59428820870036,0.8657841957480948,5269.518128990778,2019
+2004,55,"(50,55]",HS,65.99353680430879,72.59428820870036,0.9090734055354994,5217.317737534229,2019
+2004,55,"(50,55]",HS,64.42226211849191,70.9810818040626,0.9075976370200195,5075.509495778307,2019
+2004,56,"(55,60]",HS,825.390592459605,170.99987889160533,4.826848988488522,4926.97079422748,2019
+2004,56,"(55,60]",HS,778.4094793536804,170.99987889160533,4.552105442408554,5060.621318770907,2019
+2004,56,"(55,60]",HS,825.5477199281868,169.38667248696757,4.873746604779095,4815.118604757261,2019
+2004,56,"(55,60]",HS,825.5477199281868,169.38667248696757,4.873746604779095,4747.106176581516,2019
+2004,56,"(55,60]",HS,825.390592459605,170.99987889160533,4.826848988488522,4939.371068058339,2019
+2004,75,"(70,75]",HS,109855.35540394974,2992.497880603093,36.710253369272245,19.81794948471067,2019
+2004,75,"(70,75]",HS,154138.2756193896,2905.3847347526525,53.05262114709639,20.612904765621785,2019
+2004,75,"(70,75]",HS,99408.89278276481,3411.9315458089186,29.135664490360234,20.633580245552746,2019
+2004,75,"(70,75]",HS,126023.92904847398,3019.922389481935,41.7308502653584,19.525588748991442,2019
+2004,75,"(70,75]",HS,124162.43992818672,2784.394254404819,44.59226265524929,19.991066487296695,2019
+2004,56,"(55,60]",College,5223.2313105924595,300.05639126262827,17.407498932494853,2312.3749920744153,2019
+2004,56,"(55,60]",College,5223.2313105924595,300.05639126262827,17.407498932494853,2302.6442616947547,2019
+2004,56,"(55,60]",College,5223.2313105924595,300.05639126262827,17.407498932494853,2345.3691231576636,2019
+2004,56,"(55,60]",College,5221.660035906642,300.05639126262827,17.402262334536697,2234.2592268288254,2019
+2004,56,"(55,60]",College,5221.660035906642,301.66959766726603,17.309202108148803,2240.016655481155,2019
+2004,73,"(70,75]",HS,970.7335008976661,91.79144442389003,10.575424615989798,5444.914343594834,2019
+2004,73,"(70,75]",HS,972.1476481149012,91.79144442389003,10.590830705589006,6053.04643306578,2019
+2004,73,"(70,75]",HS,973.7189228007181,91.79144442389003,10.607948582921459,5389.117317599247,2019
+2004,73,"(70,75]",HS,973.8760502692998,91.79144442389003,10.609660370654705,5373.071618770029,2019
+2004,73,"(70,75]",HS,973.8760502692998,91.79144442389003,10.609660370654705,5631.696859619143,2019
+2004,65,"(60,65]",NoHS,4.273867145421903,12.260368675247175,0.3485920577617328,6164.2534161432395,2019
+2004,65,"(60,65]",NoHS,4.273867145421903,12.260368675247175,0.3485920577617328,6196.362349686272,2019
+2004,65,"(60,65]",NoHS,4.101026929982047,12.260368675247175,0.33449458483754513,6177.5301910911585,2019
+2004,65,"(60,65]",NoHS,4.273867145421903,12.260368675247175,0.3485920577617328,6231.515432512712,2019
+2004,65,"(60,65]",NoHS,4.273867145421903,12.260368675247175,0.3485920577617328,6206.170158202864,2019
+2004,52,"(50,55]",HS,12.177378815080791,19.358476855653432,0.6290463297232252,4083.912982566869,2019
+2004,52,"(50,55]",HS,12.177378815080791,20.97168326029122,0.5806581505137463,3956.482026229439,2019
+2004,52,"(50,55]",HS,12.177378815080791,19.358476855653432,0.6290463297232252,4105.1881477333,2019
+2004,52,"(50,55]",HS,12.177378815080791,20.97168326029122,0.5806581505137463,4129.860393479493,2019
+2004,52,"(50,55]",HS,12.177378815080791,19.358476855653432,0.6290463297232252,4035.9053880871943,2019
+2004,84,"(80,85]",HS,477.98175942549375,65.09287842713468,7.343073020815159,10697.271806893072,2019
+2004,84,"(80,85]",HS,829.7901615798922,65.09287842713468,12.747787187023292,9143.436997546056,2019
+2004,84,"(80,85]",HS,817.377091561939,65.09287842713468,12.5570893669561,8142.841056102536,2019
+2004,84,"(80,85]",HS,506.26470377019746,65.09287842713468,7.77757438299357,10444.501102966471,2019
+2004,84,"(80,85]",HS,770.2388509874327,65.09287842713468,11.83292042999208,8508.318292201471,2019
+2004,27,"(25,30]",HS,-5.672301615798923,20.97168326029122,-0.2704743126909192,8506.25499528136,2019
+2004,27,"(25,30]",HS,-5.813716337522442,20.97168326029122,-0.27721743960011114,8654.281686018674,2019
+2004,27,"(25,30]",HS,-5.813716337522442,20.97168326029122,-0.27721743960011114,8512.672481105952,2019
+2004,27,"(25,30]",HS,-5.813716337522442,20.97168326029122,-0.27721743960011114,8501.129723614691,2019
+2004,27,"(25,30]",HS,-5.672301615798923,20.97168326029122,-0.2704743126909192,8539.528510315253,2019
+2004,56,"(55,60]",College,223.82807899461403,53.23581135304694,4.204464500601685,5544.020827963906,2019
+2004,56,"(55,60]",College,226.60923518850987,53.23581135304694,4.256706706049666,4849.75067584766,2019
+2004,56,"(55,60]",College,223.89092998204669,53.23581135304694,4.205645115414068,5577.91973709368,2019
+2004,56,"(55,60]",College,195.07375224416518,53.23581135304694,3.664333223936112,5461.058130758781,2019
+2004,56,"(55,60]",College,198.37342908438063,53.23581135304694,3.72631550158626,5334.919092676699,2019
+2004,73,"(70,75]",HS,144.71439856373428,33.87733449739351,4.271717380092831,6551.62069565092,2019
+2004,73,"(70,75]",HS,334.99576301615804,22.58488966492901,14.832738525012893,6230.83972637922,2019
+2004,73,"(70,75]",HS,600.2269299820467,37.10374730666908,16.176989483597552,5556.007400034379,2019
+2004,73,"(70,75]",HS,183.21062836624776,38.716953711306864,4.7320517448856805,6646.075501490928,2019
+2004,73,"(70,75]",HS,161.9198563734291,32.264128092755726,5.018572202166065,6678.046460084425,2019
+2004,54,"(50,55]",College,7656.97867145422,390.3959499223443,19.613366053047706,1438.7386515847907,2019
+2004,54,"(50,55]",College,7579.986211849192,390.3959499223443,19.41614971506996,1433.138313107786,2019
+2004,54,"(50,55]",College,7400.860897666068,390.3959499223443,18.957319867529907,1463.8336641787785,2019
+2004,54,"(50,55]",College,7188.581687612209,390.3959499223443,18.413566249962702,1397.4483158499336,2019
+2004,54,"(50,55]",College,6830.331059245961,390.3959499223443,17.495906554882595,1421.0678114947616,2019
+2004,52,"(50,55]",College,12.978728904847397,114.53765472928282,0.11331407942238267,7107.325887658731,2019
+2004,52,"(50,55]",College,9.710477558348295,101.63200349218052,0.09554547017362904,6717.456630905547,2019
+2004,52,"(50,55]",College,8.87770197486535,206.49041979363656,0.04299328745487366,7115.211510188582,2019
+2004,52,"(50,55]",College,23.270578096947936,235.52813507711673,0.09880169131101332,7136.652128519752,2019
+2004,52,"(50,55]",College,29.30427289048474,237.14134148175458,0.12357302487782115,6929.477898422442,2019
+2004,52,"(50,55]",HS,-4.242441651705565,12.905651237102285,-0.3287274368231048,4840.691961869703,2019
+2004,52,"(50,55]",HS,-5.970843806104129,12.905651237102285,-0.4626534296028882,4847.611085053655,2019
+2004,52,"(50,55]",HS,-6.127971274685817,12.905651237102285,-0.4748285198555958,4881.8419998687295,2019
+2004,52,"(50,55]",HS,-2.356912028725314,12.905651237102285,-0.18262635379061376,4852.017895564755,2019
+2004,52,"(50,55]",HS,-6.127971274685817,12.905651237102285,-0.4748285198555958,4864.462938004131,2019
+2004,30,"(25,30]",HS,285.8148653500898,112.92444832464501,2.531027333677154,8611.84943852067,2019
+2004,30,"(25,30]",HS,288.9574147217235,112.92444832464501,2.558856111397628,8552.497095075265,2019
+2004,30,"(25,30]",HS,290.52868940754036,112.92444832464501,2.5727705002578647,8614.141974287693,2019
+2004,30,"(25,30]",HS,279.52976660682225,112.92444832464501,2.4753697782362045,8603.696698056148,2019
+2004,30,"(25,30]",HS,282.672315978456,112.92444832464501,2.503198555956679,8599.28399883383,2019
+2004,54,"(50,55]",College,261.3658312387792,96.79238427826716,2.7002726835138393,5818.39108971941,2019
+2004,54,"(50,55]",College,211.74497666068225,96.79238427826716,2.1876202166064984,5500.838102900868,2019
+2004,54,"(50,55]",College,306.9642226211849,96.79238427826716,3.1713675090252704,5866.333331129978,2019
+2004,54,"(50,55]",College,275.75870736086176,96.79238427826716,2.8489711191335743,5836.859367743695,2019
+2004,54,"(50,55]",College,345.2718994614004,96.79238427826716,3.567139109506619,5704.317767125387,2019
+2004,67,"(65,70]",HS,60882.02312387792,1209.9048034783398,50.31968048134777,27.768818387630876,2019
+2004,67,"(65,70]",HS,60951.15921005386,1209.9048034783398,50.37682223826714,28.446810801806002,2019
+2004,67,"(65,70]",HS,60940.160287253144,1209.9048034783398,50.36773150421178,28.169819163329105,2019
+2004,67,"(65,70]",HS,60883.594398563735,1209.9048034783398,50.32097915764139,27.36970347254667,2019
+2004,67,"(65,70]",HS,60915.177019748655,1209.9048034783398,50.347082551143195,27.53974791481673,2019
+2004,37,"(35,40]",HS,761.0783195691204,91.95276506435381,8.276839951865224,5371.748066101982,2019
+2004,37,"(35,40]",HS,766.263526032316,91.95276506435381,8.333229843561973,5964.779001631151,2019
+2004,37,"(35,40]",HS,755.6102836624775,91.95276506435381,8.217374247894103,5299.517739457167,2019
+2004,37,"(35,40]",HS,759.8841508078995,91.95276506435381,8.263853188929001,5292.2245330455125,2019
+2004,37,"(35,40]",HS,768.8089910233393,91.95276506435381,8.360912154031288,5531.581360334772,2019
+2004,61,"(60,65]",College,715992.0066068223,105745.67982400689,6.770886600742949,2.8223448818477395,2019
+2004,61,"(60,65]",College,643715.5708438061,105761.81188805327,6.086465042081219,2.8812682866096098,2019
+2004,61,"(60,65]",College,712127.4565170556,115763.69159680755,6.151561398001359,2.764845406160569,2019
+2004,61,"(60,65]",College,606742.6918491921,109681.90345132309,5.531839553809941,2.7705622626063535,2019
+2004,61,"(60,65]",College,605163.4036624776,105745.67982400689,5.722819170198294,2.7024244688325725,2019
+2004,36,"(35,40]",HS,395.44270017953323,75.82070101797595,5.215497810891773,6825.1858000570555,2019
+2004,36,"(35,40]",HS,389.45614362657096,64.52825618551145,6.035435740072202,6439.461406323591,2019
+2004,36,"(35,40]",HS,387.7434542190305,59.68863697159809,6.4961016684554584,6796.45158993843,2019
+2004,36,"(35,40]",HS,401.3506929982047,69.36787539942482,5.785829401393669,6767.492285886015,2019
+2004,36,"(35,40]",HS,376.5088402154399,72.59428820870036,5.186480224628962,6643.668443734719,2019
+2004,59,"(55,60]",College,6608.231382405745,2468.2057990958133,2.677342134447039,309.30433785217014,2019
+2004,59,"(55,60]",College,8129.775224416517,2839.2432721625037,2.8633598621595007,306.9329149080271,2019
+2004,59,"(55,60]",College,7248.290125673249,2936.0356564407703,2.468733685087476,317.5809256661627,2019
+2004,59,"(55,60]",College,6319.666786355476,2548.866119327702,2.4794031896906272,304.08709309169,2019
+2004,59,"(55,60]",College,6227.118707360862,2839.2432721625037,2.1932318263866097,307.35725306476564,2019
+2004,69,"(65,70]",HS,1978.391956912029,395.23556913625765,5.0056020039784865,3343.3606122696997,2019
+2004,69,"(65,70]",HS,1978.5490843806103,395.23556913625765,5.005999557945921,3529.337547417196,2019
+2004,69,"(65,70]",HS,1972.3425493716338,395.23556913625765,4.990296176232225,3346.2815391302393,2019
+2004,69,"(65,70]",HS,1976.0350448833035,395.23556913625765,4.999638694466956,3593.3590282206837,2019
+2004,69,"(65,70]",HS,1978.7062118491922,395.23556913625765,5.006397111913357,3425.7353757543387,2019
+2004,35,"(30,35]",College,3119.6087612208257,277.4715015976993,11.242987994290988,1845.2425553054422,2019
+2004,35,"(30,35]",College,1616.998779174147,351.6789962110374,4.5979395886463745,4659.676685540452,2019
+2004,35,"(30,35]",College,1782.4540035906643,356.5186154249507,4.999609912279269,4413.019735203006,2019
+2004,35,"(30,35]",College,1591.5441292639136,383.94312430379307,4.145260140157146,4743.261249662191,2019
+2004,35,"(30,35]",College,2637.227432675045,238.75454788639237,11.045768367645623,4509.909749939183,2019
+2004,39,"(35,40]",College,1711.118132854578,322.6412809275572,5.303469314079423,4467.330418955828,2019
+2004,39,"(35,40]",College,1711.118132854578,322.6412809275572,5.303469314079423,4668.335321552548,2019
+2004,39,"(35,40]",College,1711.118132854578,322.6412809275572,5.303469314079423,4421.220031957476,2019
+2004,39,"(35,40]",College,1711.118132854578,322.6412809275572,5.303469314079423,4752.075202956108,2019
+2004,39,"(35,40]",College,1711.118132854578,322.6412809275572,5.303469314079423,4518.290088234605,2019
+2004,47,"(45,50]",College,5945.389156193896,604.9524017391699,9.82786271961492,232.05887930626244,2019
+2004,47,"(45,50]",College,5799.260610412926,604.9524017391699,9.586308929001202,225.94995715840315,2019
+2004,47,"(45,50]",College,10406.237989228006,604.9524017391699,17.201746714801438,242.37980499937171,2019
+2004,47,"(45,50]",College,8393.435116696588,604.9524017391699,13.874538050541512,228.32365074362275,2019
+2004,47,"(45,50]",College,8959.094003590664,604.9524017391699,14.809584981949456,235.09992372899652,2019
+2004,40,"(35,40]",HS,651.7647396768402,180.67911731943207,3.607305312016503,7322.354376442165,2019
+2004,40,"(35,40]",HS,651.7647396768402,180.67911731943207,3.607305312016503,8126.84438059091,2019
+2004,40,"(35,40]",HS,651.7647396768402,180.67911731943207,3.607305312016503,7226.548061662563,2019
+2004,40,"(35,40]",HS,651.7647396768402,180.67911731943207,3.607305312016503,7215.0128087468165,2019
+2004,40,"(35,40]",HS,651.7647396768402,180.67911731943207,3.607305312016503,7538.663142674746,2019
+2004,40,"(35,40]",College,1285.301121723519,588.820337692792,2.1828409099451065,3563.54354179416,2019
+2004,40,"(35,40]",College,1283.7298470377018,527.518494316556,2.4335257642499917,3725.289940124911,2019
+2004,40,"(35,40]",College,1283.7298470377018,259.7262311466836,4.94262686279346,3527.383082380203,2019
+2004,40,"(35,40]",College,1283.7298470377018,538.8109391490206,2.382523727274692,3791.7582487759487,2019
+2004,40,"(35,40]",College,1282.1585723518851,335.5469321646595,3.8211005658150516,3605.506398642529,2019
+2004,71,"(70,75]",College,2923.51368043088,214.55645181682556,13.625848375451264,2038.6683649666727,2019
+2004,71,"(70,75]",College,2923.51368043088,216.16965822146332,13.52416293981357,2073.244233815609,2019
+2004,71,"(70,75]",College,2923.356552962298,214.55645181682556,13.62511603919546,2036.1001205206314,2019
+2004,71,"(70,75]",College,2923.51368043088,214.55645181682556,13.625848375451264,2025.8221232168585,2019
+2004,71,"(70,75]",College,2923.356552962298,216.16965822146332,13.523436068753705,2059.461585835798,2019
+2004,46,"(45,50]",HS,318.96876122082585,138.73575079884964,2.299110066325245,7239.102006840023,2019
+2004,46,"(45,50]",HS,318.96876122082585,138.73575079884964,2.299110066325245,6726.658584214917,2019
+2004,46,"(45,50]",HS,319.1258886894076,138.73575079884964,2.300242632860381,7274.600415891104,2019
+2004,46,"(45,50]",HS,319.1258886894076,138.73575079884964,2.300242632860381,7234.1807944149505,2019
+2004,46,"(45,50]",HS,319.1258886894076,140.3489572034874,2.273803062367733,7011.531493642814,2019
+2004,67,"(65,70]",College,5735.938240574506,127.4433059663851,45.00776401773066,1734.884007521046,2019
+2004,67,"(65,70]",College,5734.366965888689,127.4433059663851,44.99543481241146,1695.1012648378753,2019
+2004,67,"(65,70]",College,5735.938240574506,127.4433059663851,45.00776401773066,1790.0007991036302,2019
+2004,67,"(65,70]",College,5735.938240574506,127.4433059663851,45.00776401773066,1677.5924890155159,2019
+2004,67,"(65,70]",College,5734.366965888689,127.4433059663851,44.99543481241146,1713.4059457003655,2019
+2004,64,"(60,65]",NoHS,198.76624775583483,66.14146259014923,3.005168618473188,8162.6633562866755,2019
+2004,64,"(60,65]",NoHS,185.25328545780968,66.14146259014923,2.800864664964339,7153.421509105932,2019
+2004,64,"(60,65]",NoHS,146.59992818671455,66.14146259014923,2.2164603328343753,8155.405737783849,2019
+2004,64,"(60,65]",NoHS,200.18039497307,66.14146259014923,3.026549264770626,8005.628958445115,2019
+2004,64,"(60,65]",NoHS,151.47087971274686,66.14146259014923,2.290104781192216,7774.014758775176,2019
+2004,23,"(20,25]",HS,3.0168473967684024,101.63200349218052,0.029684029568506107,6527.166845962845,2019
+2004,23,"(20,25]",HS,3.0796983842010772,103.24520989681828,0.02982897111913358,6605.210019681717,2019
+2004,23,"(20,25]",HS,3.0168473967684024,103.24520989681828,0.029220216606498206,6537.066992626735,2019
+2004,23,"(20,25]",HS,3.236825852782765,80.6603202318893,0.04012909747292419,6461.9547156904255,2019
+2004,23,"(20,25]",HS,2.875432675044883,100.01879708754274,0.02874892279026435,6566.47380951061,2019
+2004,49,"(45,50]",HS,84.37902190305206,11.292444832464504,7.472165961835997,8040.636548252815,2019
+2004,49,"(45,50]",HS,84.37902190305206,11.292444832464504,7.472165961835997,8057.076839605285,2019
+2004,49,"(45,50]",HS,84.37902190305206,11.292444832464504,7.472165961835997,8035.914441883773,2019
+2004,49,"(45,50]",HS,84.37902190305206,11.292444832464504,7.472165961835997,8061.064232387222,2019
+2004,49,"(45,50]",HS,84.37902190305206,11.292444832464504,7.472165961835997,8047.495482747794,2019
+2004,49,"(45,50]",HS,426.9153321364453,148.4149892266763,2.876497410139696,6111.968168192701,2019
+2004,49,"(45,50]",HS,428.3294793536805,148.4149892266763,2.886025741641815,5778.392491133315,2019
+2004,49,"(45,50]",HS,430.057881508079,148.4149892266763,2.8976714801444046,6162.3294190771485,2019
+2004,49,"(45,50]",HS,423.6156552962298,148.4149892266763,2.8542646366347513,6131.368295421206,2019
+2004,49,"(45,50]",HS,431.4720287253142,148.4149892266763,2.9071998116465236,5613.182076242699,2019
+2004,71,"(70,75]",HS,234610.1658886894,42088.55509699984,5.574203375430508,29.35650823389555,2019
+2004,71,"(70,75]",HS,212722.3095152603,42088.55509699984,5.0541604249660645,30.29644577155334,2019
+2004,71,"(70,75]",HS,202461.8858168761,42088.55509699984,4.810378625502115,29.722027912855282,2019
+2004,71,"(70,75]",HS,188019.82879712747,42088.55509699984,4.467243609665515,28.98419262984593,2019
+2004,71,"(70,75]",HS,188744.6578096948,42088.55509699984,4.484465132497478,29.1175918322915,2019
+2004,58,"(55,60]",College,1480.1407540394973,77.43390742261373,19.114891696750902,7894.752097034338,2019
+2004,58,"(55,60]",College,1480.297881508079,77.43390742261373,19.116920878459688,8731.960484236557,2019
+2004,58,"(55,60]",College,1480.1407540394973,77.43390742261373,19.114891696750902,7791.137158479682,2019
+2004,58,"(55,60]",College,1480.297881508079,77.43390742261373,19.116920878459688,7766.315319269044,2019
+2004,58,"(55,60]",College,1480.297881508079,77.43390742261373,19.116920878459688,8163.70939370017,2019
+2004,62,"(60,65]",College,2491.0988868940753,29.03771528348015,85.78839149618933,1479.972253159612,2019
+2004,62,"(60,65]",College,2490.9417594254937,29.03771528348015,85.7829803449659,1467.969184700391,2019
+2004,62,"(60,65]",College,2491.0988868940753,29.03771528348015,85.78839149618933,1507.751438984835,2019
+2004,62,"(60,65]",College,2490.9417594254937,29.03771528348015,85.7829803449659,1455.9102956481822,2019
+2004,62,"(60,65]",College,2490.9417594254937,29.03771528348015,85.7829803449659,1513.2347095874234,2019
+2004,73,"(70,75]",HS,1.178456014362657,22.58488966492901,0.052178958225889624,7163.251533473845,2019
+2004,73,"(70,75]",HS,-3.0639856373429084,22.58488966492901,-0.13566529138731304,7140.2055262128215,2019
+2004,73,"(70,75]",HS,1.3355834829443447,20.97168326029122,0.0636850874757012,7118.089440570102,2019
+2004,73,"(70,75]",HS,3.1425493716337525,22.58488966492901,0.13914388860237234,7177.093222160051,2019
+2004,73,"(70,75]",HS,2.6240287253141834,22.58488966492901,0.11618514698298091,7152.18851923216,2019
+2004,53,"(50,55]",College,6792.463339317774,209.7168326029122,32.38873701749514,1522.9212305926872,2019
+2004,53,"(50,55]",College,6794.034614003591,209.7168326029122,32.396229380727576,1520.4536731112573,2019
+2004,53,"(50,55]",College,6792.463339317774,209.7168326029122,32.38873701749514,1725.2394032137163,2019
+2004,53,"(50,55]",College,6794.034614003591,209.7168326029122,32.396229380727576,1452.4418386626267,2019
+2004,53,"(50,55]",College,6794.034614003591,209.7168326029122,32.396229380727576,1539.4042427884065,2019
+2004,40,"(35,40]",College,1289.3880071813285,290.37715283480145,4.440390693943041,3473.921005747471,2019
+2004,40,"(35,40]",College,1287.8167324955116,290.37715283480145,4.434979542719615,3631.963100924175,2019
+2004,40,"(35,40]",College,1287.8167324955116,290.37715283480145,4.434979542719615,3436.802331654839,2019
+2004,40,"(35,40]",College,1289.3880071813285,290.37715283480145,4.440390693943041,3694.8042161860803,2019
+2004,40,"(35,40]",College,1289.3880071813285,290.37715283480145,4.440390693943041,3514.2774654344603,2019
+2004,53,"(50,55]",NoHS,52.009192100538606,74.20749461333816,0.7008617171558627,6253.051231385509,2019
+2004,53,"(50,55]",NoHS,35.825062836624774,101.63200349218052,0.35249785112600995,6118.9009605565025,2019
+2004,53,"(50,55]",NoHS,66.9520143626571,100.01879708754274,0.6693943169908001,6278.703941366044,2019
+2004,53,"(50,55]",NoHS,18.603892280071815,101.63200349218052,0.18305151567245434,6306.981580486323,2019
+2004,53,"(50,55]",NoHS,73.37852782764811,79.04711382725151,0.9282885139615414,6186.11161060275,2019
+2004,75,"(70,75]",HS,342.8521364452424,59.043354409742975,5.806786214515398,11977.143355191687,2019
+2004,75,"(70,75]",HS,488.98068222621185,59.043354409742975,8.281722593754315,11075.268147772991,2019
+2004,75,"(70,75]",HS,463.8402872531418,59.043354409742975,7.855927087648694,11926.17013511472,2019
+2004,75,"(70,75]",HS,430.84351885098744,57.43014800510518,7.50204437593802,11739.22901172346,2019
+2004,75,"(70,75]",HS,382.13400359066424,57.43014800510518,6.653892021255019,11650.84700025481,2019
+2004,58,"(55,60]",College,202409.3109658887,26327.52852368867,7.688124268245204,27.768818387630876,2019
+2004,58,"(55,60]",College,204622.5456373429,26214.604075364023,7.805669887253541,28.446810801806002,2019
+2004,58,"(55,60]",College,211115.99540394975,26359.792651781423,8.009015783729327,28.169819163329105,2019
+2004,58,"(55,60]",College,190524.73918850988,26359.792651781423,7.227854243976157,27.36970347254667,2019
+2004,58,"(55,60]",College,188278.9319928187,26182.33994727127,7.19106590060302,27.53974791481673,2019
+2004,36,"(35,40]",HS,631.4952962298025,161.3206404637786,3.914535018050542,4788.898301875964,2019
+2004,36,"(35,40]",HS,643.2798563734291,161.3206404637786,3.9875855595667873,5318.961762790669,2019
+2004,36,"(35,40]",HS,563.8204955116697,161.3206404637786,3.49503010830325,4726.983093583793,2019
+2004,36,"(35,40]",HS,578.2290843806104,161.3206404637786,3.584346570397112,4723.319290051948,2019
+2004,36,"(35,40]",HS,597.7128904847397,161.3206404637786,3.7051234657039713,4932.708087015032,2019
+2004,44,"(40,45]",HS,98.59748653500898,59.68863697159809,1.6518635964484338,6774.721884827016,2019
+2004,44,"(40,45]",HS,99.38312387791741,51.62260494840914,1.9251861462093869,6391.849452003889,2019
+2004,44,"(40,45]",HS,100.32588868940755,72.59428820870036,1.3820080224628963,6746.200129106865,2019
+2004,44,"(40,45]",HS,97.96897666068223,58.0754305669603,1.6869263939029282,6717.454943747716,2019
+2004,44,"(40,45]",HS,100.95439856373429,70.9810818040626,1.4222719067935672,6594.546627716423,2019
+2004,52,"(50,55]",College,19511.931921005387,1587.3951021635817,12.291792947081095,23.007990014938787,2019
+2004,52,"(50,55]",College,23705.035547576303,2855.3753362088814,8.301898264292563,23.485976224326016,2019
+2004,52,"(50,55]",College,25661.901041292636,2774.715015976992,9.248481697590462,22.2416017037796,2019
+2004,52,"(50,55]",College,24528.792014362654,1839.0553012870762,13.337713116726833,20.347196135699253,2019
+2004,52,"(50,55]",College,24540.953680430877,1216.3576290968908,20.17577157686083,21.757751872878046,2019
+2004,75,"(70,75]",College,85315.34448833033,3178.0166171364385,26.845468342832007,20.74019594646676,2019
+2004,75,"(70,75]",College,94356.45903052065,5630.090352185874,16.75931523796717,21.35350431432254,2019
+2004,75,"(70,75]",College,86756.04624775585,4952.543662238004,17.517472265666342,20.995578422063275,2019
+2004,75,"(70,75]",College,85997.43482944345,2629.5264395595914,32.7045332329295,20.4852844289174,2019
+2004,75,"(70,75]",College,93164.01867145422,4081.4122037335983,22.82641743125812,20.567919624948274,2019
+2004,90,"(85,90]",College,4938.70489048474,251.66019912349464,19.624497269277054,3613.496873612951,2019
+2004,90,"(85,90]",College,4938.70489048474,251.66019912349464,19.624497269277054,3504.047672397513,2019
+2004,90,"(85,90]",College,4938.70489048474,251.66019912349464,19.624497269277054,3776.9260412605045,2019
+2004,90,"(85,90]",College,4938.70489048474,251.66019912349464,19.624497269277054,3384.8663198556847,2019
+2004,90,"(85,90]",College,4938.70489048474,251.66019912349464,19.624497269277054,3511.2610373154143,2019
+2004,79,"(75,80]",HS,52.95195691202873,20.97168326029122,2.5249264093307415,11011.805098331355,2019
+2004,79,"(75,80]",HS,52.95195691202873,20.97168326029122,2.5249264093307415,9918.268764189233,2019
+2004,79,"(75,80]",HS,53.10908438061041,22.58488966492901,2.3515317173800923,10924.93926213906,2019
+2004,79,"(75,80]",HS,52.95195691202873,20.97168326029122,2.5249264093307415,10781.628096168966,2019
+2004,79,"(75,80]",HS,52.95195691202873,20.97168326029122,2.5249264093307415,10592.008539832468,2019
+2004,59,"(55,60]",College,1742.4964883303412,70.9810818040626,24.548745159172956,8689.120127792981,2019
+2004,59,"(55,60]",College,1286.245457809695,58.0754305669603,22.14784195748095,9773.433359589537,2019
+2004,59,"(55,60]",College,1470.5606922800719,61.30184337623587,23.988849458483756,8592.546561704003,2019
+2004,59,"(55,60]",College,1718.6445385996408,79.04711382725151,21.74202770205555,8980.409289017136,2019
+2004,59,"(55,60]",College,1097.4882298025136,56.46222416232251,19.43756637441981,9308.330458980075,2019
+2004,64,"(60,65]",HS,85.0530987432675,48.39619213913358,1.7574336943441635,6559.251147118838,2019
+2004,64,"(60,65]",HS,84.72313105924596,48.39619213913358,1.7506156438026474,5716.096126663948,2019
+2004,64,"(60,65]",HS,85.87016157989228,48.39619213913358,1.7743164861612515,6580.7830285479895,2019
+2004,64,"(60,65]",HS,85.46163016157989,48.39619213913358,1.7658750902527076,6488.84775948949,2019
+2004,64,"(60,65]",HS,85.46163016157989,48.39619213913358,1.7658750902527076,6278.475733456733,2019
+2004,39,"(35,40]",HS,133.62119928186715,104.8584163014561,1.2743011385726186,7006.350511091878,2019
+2004,39,"(35,40]",HS,133.62119928186715,106.47162270609388,1.2549935455639427,6610.387619773603,2019
+2004,39,"(35,40]",HS,133.46407181328547,106.47162270609388,1.2535177770484631,6976.853592817688,2019
+2004,39,"(35,40]",HS,130.4786499102334,106.47162270609388,1.2254781752543487,6947.125605815953,2019
+2004,39,"(35,40]",HS,128.9073752244165,106.47162270609388,1.2107204900995514,6820.015038403291,2019
+2004,56,"(55,60]",College,26256.471382405747,798.5371702957042,32.88071283229406,1348.4757155892573,2019
+2004,56,"(55,60]",College,26248.45788150808,798.5371702957042,32.870677606388796,1454.7770231336274,2019
+2004,56,"(55,60]",College,26247.04373429084,798.5371702957042,32.86890668417021,1350.438692812286,2019
+2004,56,"(55,60]",College,26246.886606822263,798.5371702957042,32.86870991503482,1460.0910371203622,2019
+2004,56,"(55,60]",College,26247.04373429084,798.5371702957042,32.86890668417021,1357.811171094922,2019
+2004,45,"(40,45]",College,8.893414721723518,51.62260494840914,0.17227752707581231,4146.568689383596,2019
+2004,45,"(40,45]",College,8.728430879712747,51.62260494840914,0.16908156588447656,4066.3492943800766,2019
+2004,45,"(40,45]",College,8.964122082585279,51.62260494840914,0.17364722472924193,4153.153488551628,2019
+2004,45,"(40,45]",College,8.728430879712747,51.62260494840914,0.16908156588447656,4161.137673238361,2019
+2004,45,"(40,45]",College,8.728430879712747,51.62260494840914,0.16908156588447656,4086.0935627504477,2019
+2004,59,"(55,60]",College,116561.87001795332,1209.9048034783398,96.33970348977134,2.8223448818477395,2019
+2004,59,"(55,60]",College,107706.16588868941,1209.9048034783398,89.02036389891695,2.8812682866096098,2019
+2004,59,"(55,60]",College,106871.81903052065,1209.9048034783398,88.3307667870036,2.764845406160569,2019
+2004,59,"(55,60]",College,107076.08473967684,1209.9048034783398,88.49959470517447,2.7705622626063535,2019
+2004,59,"(55,60]",College,109546.12854578097,1209.9048034783398,90.54111383874849,2.7024244688325725,2019
+2004,24,"(20,25]",HS,17.284021543985638,53.23581135304694,0.3246690734055355,5759.635482872993,2019
+2004,24,"(20,25]",HS,17.284021543985638,53.23581135304694,0.3246690734055355,5832.09196595627,2019
+2004,24,"(20,25]",HS,30.4827289048474,53.23581135304694,0.5725981840061263,5806.654643349211,2019
+2004,24,"(20,25]",HS,17.284021543985638,53.23581135304694,0.3246690734055355,5690.356707110152,2019
+2004,24,"(20,25]",HS,17.36258527827648,53.23581135304694,0.32614484192101517,5822.436858404526,2019
+2004,38,"(35,40]",HS,278.7755547576302,51.62260494840914,5.400261281588449,6096.536887050028,2019
+2004,38,"(35,40]",HS,174.1915116696589,58.0754305669603,2.9994011231448057,6851.270929865376,2019
+2004,38,"(35,40]",HS,270.8720430879713,46.782985734495796,5.789969127349683,6019.924969840339,2019
+2004,38,"(35,40]",HS,254.46793536804307,43.55657292522023,5.8422396042251625,6013.933662545642,2019
+2004,38,"(35,40]",HS,139.5291921005386,56.46222416232251,2.4711954615781333,7175.65089445489,2019
+2004,65,"(60,65]",College,197.98061041292638,27.424508878842364,7.219112338076024,8092.9764447815005,2019
+2004,65,"(60,65]",College,197.98061041292638,27.424508878842364,7.219112338076024,7610.2238045370495,2019
+2004,65,"(60,65]",College,197.98061041292638,27.424508878842364,7.219112338076024,8188.800493518664,2019
+2004,65,"(60,65]",College,197.98061041292638,27.424508878842364,7.219112338076024,8139.035517562346,2019
+2004,65,"(60,65]",College,197.98061041292638,27.424508878842364,7.219112338076024,8050.043560599459,2019
+2004,65,"(60,65]",College,1133.5175583482944,67.75466899478702,16.729733539625233,1030.9986569046596,2019
+2004,65,"(60,65]",College,975.1644955116697,67.75466899478702,14.392580024067387,989.8096233105658,2019
+2004,65,"(60,65]",College,988.6460323159785,67.75466899478702,14.59155578476878,1047.1785570616332,2019
+2004,65,"(60,65]",College,871.5860682226213,67.75466899478702,12.863852501289324,968.0772705048632,2019
+2004,65,"(60,65]",College,1101.149299820467,67.75466899478702,16.25200618875709,1043.3710808376122,2019
+2004,69,"(65,70]",HS,97.10477558348295,19.358476855653432,5.016137184115524,8889.393609238356,2019
+2004,69,"(65,70]",HS,109.67497307001796,17.74527045101565,6.180518542829011,9007.636339952967,2019
+2004,69,"(65,70]",HS,62.06535008976661,17.74527045101565,3.497571381686905,8709.738495308151,2019
+2004,69,"(65,70]",HS,69.45034111310592,17.74527045101565,3.913738103052182,8694.16498677462,2019
+2004,69,"(65,70]",HS,61.90822262118492,17.74527045101565,3.4887167705940265,8699.344471142938,2019
+2004,50,"(45,50]",HS,65.67928186714542,59.68863697159809,1.1003649136501121,5756.3863165497005,2019
+2004,50,"(45,50]",HS,65.67928186714542,59.68863697159809,1.1003649136501121,5761.06541624095,2019
+2004,50,"(45,50]",HS,67.2505565529623,59.68863697159809,1.1266894331154256,5767.04616369123,2019
+2004,50,"(45,50]",HS,67.2505565529623,59.68863697159809,1.1266894331154256,5781.753634951381,2019
+2004,50,"(45,50]",HS,65.67928186714542,59.68863697159809,1.1003649136501121,5756.719878026333,2019
+2004,32,"(30,35]",HS,33520.945637342906,3742.6388587596634,8.95650018672974,23.749062065050857,2019
+2004,32,"(30,35]",HS,33252.88617594255,3742.6388587596634,8.88487706958795,24.24336071592213,2019
+2004,32,"(30,35]",HS,33522.98829443447,3742.6388587596634,8.95704596663762,24.887694016001188,2019
+2004,32,"(30,35]",HS,32982.62692998205,3710.374730666908,8.889298069376865,23.412544154680415,2019
+2004,32,"(30,35]",HS,31817.998132854576,3742.6388587596634,8.501487675837172,25.162960960342375,2019
+2004,28,"(25,30]",College,42.11016157989228,166.16025967769198,0.2534310048718937,5113.352545333668,2019
+2004,28,"(25,30]",College,40.538886894075404,164.5470532730542,0.24636653217243576,5087.606822192051,2019
+2004,28,"(25,30]",College,42.26728904847397,164.5470532730542,0.25687053160614426,5119.322909691926,2019
+2004,28,"(25,30]",College,42.11016157989228,164.5470532730542,0.2559156225667162,5154.3222295406085,2019
+2004,28,"(25,30]",College,42.11016157989228,166.16025967769198,0.2534310048718937,5131.857153458789,2019
+2004,35,"(30,35]",HS,0.21997845601436267,22.58488966492901,0.009740072202166064,6254.583033261655,2019
+2004,35,"(30,35]",HS,0.21997845601436267,22.58488966492901,0.009740072202166064,6404.106168706224,2019
+2004,35,"(30,35]",HS,0.23569120287253142,22.58488966492901,0.010435791645177925,6225.949414373462,2019
+2004,35,"(30,35]",HS,0.23569120287253142,22.58488966492901,0.010435791645177925,6246.727058506858,2019
+2004,35,"(30,35]",HS,0.21997845601436267,22.58488966492901,0.009740072202166064,6271.728512646148,2019
+2004,46,"(45,50]",HS,12.727324955116698,96.79238427826716,0.1314909747292419,4215.985044170191,2019
+2004,46,"(45,50]",HS,28.738614003590666,96.79238427826716,0.2969098676293622,4126.933847265396,2019
+2004,46,"(45,50]",HS,30.011346499102338,96.79238427826716,0.3100589651022864,4252.280453789199,2019
+2004,46,"(45,50]",HS,19.955188509874326,96.79238427826716,0.20616486161251504,4249.234087197832,2019
+2004,46,"(45,50]",HS,17.284021543985638,96.79238427826716,0.17856799037304452,4197.667294748544,2019
+2004,44,"(40,45]",HS,2256.350448833034,106.47162270609388,21.19203588228859,3990.480346511585,2019
+2004,44,"(40,45]",HS,2256.350448833034,90.33955865971603,24.976328004125833,4172.022722887083,2019
+2004,44,"(40,45]",HS,2256.350448833034,108.08482911073166,20.875736839269358,3947.8422614169167,2019
+2004,44,"(40,45]",HS,2256.350448833034,95.17917787362938,23.70634522425503,4244.208082021795,2019
+2004,44,"(40,45]",HS,2256.350448833034,80.6603202318893,27.97348736462094,4036.8376640698393,2019
+2004,40,"(35,40]",HS,74.03846319569121,88.72635225507824,0.8344585493928455,6699.026373385766,2019
+2004,40,"(35,40]",HS,74.46270736086177,88.72635225507824,0.8392400393829997,6430.696576504751,2019
+2004,40,"(35,40]",HS,74.71411131059246,88.72635225507824,0.8420735149327206,6692.969054873625,2019
+2004,40,"(35,40]",HS,74.55698384201077,88.72635225507824,0.840302592714145,6668.016051339706,2019
+2004,40,"(35,40]",HS,75.02836624775584,88.72635225507824,0.845615359369872,6600.514172442893,2019
+2004,22,"(20,25]",HS,2.9854219030520643,19.358476855653432,0.15421780986762934,8688.219211713726,2019
+2004,22,"(20,25]",HS,2.9854219030520643,14.518857641740075,0.20562374649017245,8640.950805746419,2019
+2004,22,"(20,25]",HS,3.1425493716337525,20.97168326029122,0.1498472646487087,8671.171297370085,2019
+2004,22,"(20,25]",HS,2.9854219030520643,20.97168326029122,0.14235490141627324,8547.136087188053,2019
+2004,22,"(20,25]",HS,3.1425493716337525,20.97168326029122,0.1498472646487087,8633.374742290856,2019
+2004,55,"(50,55]",HS,294.8496947935368,48.39619213913358,6.0924151624548735,5164.299004835621,2019
+2004,55,"(50,55]",HS,253.99655296229804,48.39619213913358,5.248275571600482,4604.734286577221,2019
+2004,55,"(50,55]",HS,373.2563016157989,48.39619213913358,7.712513838748496,5176.836467307507,2019
+2004,55,"(50,55]",HS,254.15368043087972,48.39619213913358,5.251522262334537,5084.480773919104,2019
+2004,55,"(50,55]",HS,254.15368043087972,48.39619213913358,5.251522262334537,4978.4879767978155,2019
+2004,34,"(30,35]",HS,80.60639138240575,167.77346608232975,0.4804477922799223,11318.904912855507,2019
+2004,34,"(30,35]",HS,71.49299820466787,167.77346608232975,0.4261281588447654,11237.600962060167,2019
+2004,34,"(30,35]",HS,72.2786355475763,167.77346608232975,0.4308108858650375,11241.849499187138,2019
+2004,34,"(30,35]",HS,71.80725314183124,169.38667248696757,0.42392504727522773,11318.921645134255,2019
+2004,34,"(30,35]",HS,72.90714542190305,167.77346608232975,0.4345570674812552,11239.933941398813,2019
+2004,43,"(40,45]",College,16833.06570915619,1871.3194293798317,8.995292543259056,20.660271290001212,2019
+2004,43,"(40,45]",College,4639.974147217235,1677.7346608232976,2.7656185781727296,21.357113140153864,2019
+2004,43,"(40,45]",College,5631.448473967685,4097.5442677799765,1.374347195770204,21.334651864213363,2019
+2004,43,"(40,45]",College,12904.878994614004,1790.6591091479427,7.206775945620711,19.850901109688444,2019
+2004,43,"(40,45]",College,7403.374937163376,1855.187365333454,3.9906346256474654,20.274377280344204,2019
+2004,61,"(60,65]",HS,58.687109515260325,129.8631155733418,0.4519151512433572,5856.216235136997,2019
+2004,61,"(60,65]",HS,57.272962298025135,129.8631155733418,0.44102562952664975,5221.68055379741,2019
+2004,61,"(60,65]",HS,55.70168761220826,129.8631155733418,0.42892616095253044,5870.43347763332,2019
+2004,61,"(60,65]",HS,55.544560143626576,129.8631155733418,0.4277162140951185,5765.703888869761,2019
+2004,61,"(60,65]",HS,50.830736086175946,129.8631155733418,0.3914178083727605,5645.510085465258,2019
+2004,79,"(75,80]",College,2390.380179533214,129.70179493287802,18.429815722829893,2759.4465059065483,2019
+2004,79,"(75,80]",College,3413.437127468582,145.99517961971964,23.380478289486806,2726.6409692398247,2019
+2004,79,"(75,80]",College,5487.519712746859,143.25272873183542,38.30656324194231,4050.5172030113586,2019
+2004,79,"(75,80]",College,2354.3979892280076,142.12348424858894,16.565861734081313,2714.583898142945,2019
+2004,79,"(75,80]",College,2266.406606822262,132.60556646122603,17.09133837518775,2776.2186988382787,2019
+2004,58,"(55,60]",HS,271.2020107719928,85.49993944580267,3.171955588856344,8048.079365304322,2019
+2004,58,"(55,60]",HS,271.2020107719928,87.11314585044046,3.1132156705441894,6967.726271723829,2019
+2004,58,"(55,60]",HS,271.04488330341115,85.49993944580267,3.1701178393842384,8069.997608327065,2019
+2004,58,"(55,60]",HS,271.2020107719928,85.49993944580267,3.171955588856344,7954.108169056504,2019
+2004,58,"(55,60]",HS,271.04488330341115,87.11314585044046,3.111411953469715,7686.892005090163,2019
+2004,51,"(50,55]",HS,414.973644524237,93.56597146899159,4.435091497572514,6650.533891744582,2019
+2004,51,"(50,55]",HS,399.57515260323163,93.56597146899159,4.270517863811777,6179.754180870263,2019
+2004,51,"(50,55]",HS,420.5516696588869,93.56597146899159,4.494707456740944,6683.146137334463,2019
+2004,51,"(50,55]",HS,398.63238779174145,91.95276506435381,4.335186522262334,6646.012793687047,2019
+2004,51,"(50,55]",HS,418.11619389587077,91.95276506435381,4.547075812274368,6441.4657767560475,2019
+2004,57,"(55,60]",NoHS,22.390664272890486,20.97168326029122,1.0676617606220495,7686.705981754615,2019
+2004,57,"(55,60]",NoHS,22.233536804308798,20.97168326029122,1.060169397389614,7654.984597112833,2019
+2004,57,"(55,60]",NoHS,22.233536804308798,20.97168326029122,1.060169397389614,7678.492061339496,2019
+2004,57,"(55,60]",NoHS,22.390664272890486,20.97168326029122,1.0676617606220495,7659.743512130297,2019
+2004,57,"(55,60]",NoHS,22.233536804308798,20.97168326029122,1.060169397389614,7691.111671773273,2019
+2004,37,"(35,40]",College,108.96789946140036,103.24520989681828,1.0554281362815887,6387.469301296483,2019
+2004,37,"(35,40]",College,138.0364811490126,106.47162270609388,1.2964626408489226,6131.61893668083,2019
+2004,37,"(35,40]",College,158.91872172351887,111.31124192000723,1.427696960184168,6381.693695426618,2019
+2004,37,"(35,40]",College,81.40774147217235,114.53765472928282,0.7107509025270757,6357.901201538062,2019
+2004,37,"(35,40]",College,123.12508438061042,96.79238427826716,1.2720534296028883,6293.538687464947,2019
+2004,56,"(55,60]",College,6750.667432675045,3194.1486811828167,2.1134480910184883,20.626138171850155,2019
+2004,56,"(55,60]",College,16660.068366247757,7759.522806307752,2.147048057221342,21.160599969936417,2019
+2004,56,"(55,60]",College,22329.384560143626,7388.485333241061,3.022187031986505,21.982680535781373,2019
+2004,56,"(55,60]",College,23023.57371633752,5323.581135304694,4.324828180724209,19.826033511512716,2019
+2004,56,"(55,60]",College,16778.54247755835,5533.297967907606,3.0322860931892097,20.65284709280759,2019
+2004,76,"(75,80]",HS,2515.4693572710953,110.9886006390797,22.664213647048943,4295.729395376527,2019
+2004,76,"(75,80]",HS,2174.8798563734294,110.9886006390797,19.595524620099066,4496.131727639571,2019
+2004,76,"(75,80]",HS,2122.4149946140037,109.69803551536945,19.347794011467403,4264.583689275869,2019
+2004,76,"(75,80]",HS,2409.4711669658886,122.60368675247175,19.652518050541516,4576.22616096212,2019
+2004,76,"(75,80]",HS,2499.080962298025,135.50933798957405,18.44213099535843,4365.288499092686,2019
+2004,39,"(35,40]",College,1502.468567324955,219.3960710307389,6.848201794436186,4377.7231785672475,2019
+2004,39,"(35,40]",College,1606.172696588869,166.16025967769198,9.666406995899196,4551.275424808995,2019
+2004,39,"(35,40]",College,1544.8929838420108,195.19797496117215,7.914492884208013,4349.0313376981485,2019
+2004,39,"(35,40]",College,1617.171619389587,238.75454788639237,6.7733646697238745,4696.448244367353,2019
+2004,39,"(35,40]",College,1719.304473967684,209.7168326029122,8.198218772563177,4450.931288839971,2019
+2004,61,"(60,65]",HS,-20.583698384201078,43.55657292522023,-0.47257387351250163,6229.025295055892,2019
+2004,61,"(60,65]",HS,-20.583698384201078,43.55657292522023,-0.47257387351250163,5973.635419120388,2019
+2004,61,"(60,65]",HS,-20.42657091561939,43.55657292522023,-0.4689664393635512,6197.660301563308,2019
+2004,61,"(60,65]",HS,-20.583698384201078,43.55657292522023,-0.47257387351250163,6257.3274432499475,2019
+2004,61,"(60,65]",HS,-20.583698384201078,43.55657292522023,-0.47257387351250163,6123.414002747126,2019
+2004,51,"(50,55]",HS,164563.68315978456,8340.277111977353,19.731200888212335,31.09340938619734,2019
+2004,51,"(50,55]",HS,78319.55820466786,8033.7678950961745,9.7487952387166,32.638444555592336,2019
+2004,51,"(50,55]",HS,153355.6236983842,7630.466293936729,20.097805008357437,31.870461163805412,2019
+2004,51,"(50,55]",HS,133832.69285457808,4726.694765588713,28.314223678860532,31.42390229825777,2019
+2004,51,"(50,55]",HS,137022.38046678636,7162.636436591771,19.130159918040782,31.947340363270506,2019
+2004,31,"(30,35]",NoHS,5.342333931777379,25.81130247420457,0.20697653429602894,6852.435188187388,2019
+2004,31,"(30,35]",NoHS,5.342333931777379,25.81130247420457,0.20697653429602894,6817.620951336988,2019
+2004,31,"(30,35]",NoHS,5.185206463195691,25.81130247420457,0.20088898916967513,6859.301277158456,2019
+2004,31,"(30,35]",NoHS,5.028078994614004,25.81130247420457,0.1948014440433214,6890.219803216572,2019
+2004,31,"(30,35]",NoHS,5.342333931777379,25.81130247420457,0.20697653429602894,6875.886315590018,2019
+2004,68,"(65,70]",HS,279.67432387791746,58.88203376927918,4.749739538103952,10147.26969436973,2019
+2004,68,"(65,70]",HS,279.5171964093357,58.88203376927918,4.747071025171852,9361.37665707948,2019
+2004,68,"(65,70]",HS,279.5171964093357,58.88203376927918,4.747071025171852,10305.179430265653,2019
+2004,68,"(65,70]",HS,279.6900366247756,58.88203376927918,4.7500063893971625,10210.113893431908,2019
+2004,68,"(65,70]",HS,279.6900366247756,58.88203376927918,4.7500063893971625,10075.255267199496,2019
+2004,36,"(35,40]",HS,271.04488330341115,66.14146259014923,4.097957207008894,5012.998138171055,2019
+2004,36,"(35,40]",HS,265.2783052064632,66.14146259014923,4.010771682662675,5567.86628845878,2019
+2004,36,"(35,40]",HS,258.3961220825853,66.14146259014923,3.906719204015145,4948.185564520967,2019
+2004,36,"(35,40]",HS,280.2368402154399,66.14146259014923,4.236931407942238,4944.350310747344,2019
+2004,36,"(35,40]",HS,256.8248473967684,66.14146259014923,3.882962930351325,5163.537602513102,2019
+2004,22,"(20,25]",HS,0.18855296229802515,46.782985734495796,0.004030374704344579,5800.114984974096,2019
+2004,22,"(20,25]",HS,0.18855296229802515,24.19809606956679,0.007792057761732853,5768.823549492652,2019
+2004,22,"(20,25]",HS,0.17284021543985637,46.782985734495796,0.003694510145649197,5789.691786043354,2019
+2004,22,"(20,25]",HS,0.18855296229802515,32.264128092755726,0.005844043321299639,5720.106848324502,2019
+2004,22,"(20,25]",HS,0.18855296229802515,24.19809606956679,0.007792057761732853,5764.630793397207,2019
+2004,22,"(20,25]",HS,101.03296229802513,72.59428820870036,1.3917480946650622,10744.004026916871,2019
+2004,22,"(20,25]",HS,101.03296229802513,72.59428820870036,1.3917480946650622,10646.776703269828,2019
+2004,22,"(20,25]",HS,102.60423698384201,72.59428820870036,1.413392699558765,10790.151288477902,2019
+2004,22,"(20,25]",HS,101.03296229802513,72.59428820870036,1.3917480946650622,10547.387679937881,2019
+2004,22,"(20,25]",HS,101.03296229802513,72.59428820870036,1.3917480946650622,10734.643025780802,2019
+2004,40,"(35,40]",College,229.72035906642728,112.92444832464501,2.034283651366684,7665.52094940188,2019
+2004,40,"(35,40]",College,229.72035906642728,112.92444832464501,2.034283651366684,7360.385115082511,2019
+2004,40,"(35,40]",College,229.72035906642728,112.92444832464501,2.034283651366684,7662.606521744108,2019
+2004,40,"(35,40]",College,229.72035906642728,112.92444832464501,2.034283651366684,7638.633765816579,2019
+2004,40,"(35,40]",College,229.72035906642728,112.92444832464501,2.034283651366684,7554.815932892203,2019
+2004,45,"(40,45]",NoHS,0,29.03771528348015,0,5342.913020130993,2019
+2004,45,"(40,45]",NoHS,0,29.03771528348015,0,5347.896718490441,2019
+2004,45,"(40,45]",NoHS,0,29.03771528348015,0,5348.492944881978,2019
+2004,45,"(40,45]",NoHS,0,29.03771528348015,0,5350.386159367232,2019
+2004,45,"(40,45]",NoHS,0,29.03771528348015,0,5341.652055464564,2019
+2004,42,"(40,45]",HS,75.1085012567325,41.94336652058244,1.790712274368231,4749.594479451991,2019
+2004,42,"(40,45]",HS,74.95137378815082,41.94336652058244,1.7869660927520137,4529.160353452817,2019
+2004,42,"(40,45]",HS,73.38009910233393,41.94336652058244,1.749504276589836,4746.702840183121,2019
+2004,42,"(40,45]",HS,75.42275619389586,41.94336652058244,1.7982046376006664,4721.079934667096,2019
+2004,42,"(40,45]",HS,74.95137378815082,41.94336652058244,1.7869660927520137,4662.769146046294,2019
+2004,43,"(40,45]",NoHS,239.77651705565532,82.2735266365271,2.914382388334395,7157.435288325532,2019
+2004,43,"(40,45]",NoHS,239.77651705565532,87.11314585044046,2.7524722556491508,6671.2834956388715,2019
+2004,43,"(40,45]",NoHS,239.77651705565532,87.11314585044046,2.7524722556491508,7153.072853628951,2019
+2004,43,"(40,45]",NoHS,239.77651705565532,90.33955865971603,2.6541696750902526,7151.6522927734895,2019
+2004,43,"(40,45]",NoHS,239.77651705565532,93.56597146899159,2.5626465828457614,6987.083868762483,2019
+2004,42,"(40,45]",College,3676.311382405745,890.4899353600579,4.128414299168106,2012.623303238918,2019
+2004,42,"(40,45]",College,4538.548366247755,1101.819974367608,4.119137855394812,1959.6022200733448,2019
+2004,42,"(40,45]",College,5190.70592459605,880.8106969322312,5.893100461512014,2059.189363556804,2019
+2004,42,"(40,45]",College,4470.920703770198,877.5842841229556,5.094576993523042,1956.3984902766326,2019
+2004,42,"(40,45]",College,6471.907590664273,1029.2256861589076,6.288132600749182,1994.2114487899507,2019
+2004,95,"(90,95]",NoHS,189.41716337522442,9.033955865971603,20.967244713769983,12534.193039221118,2019
+2004,95,"(90,95]",NoHS,136.85802513464992,9.033955865971603,15.149290871583291,11253.899084958615,2019
+2004,95,"(90,95]",NoHS,173.9401077199282,9.19527650643538,18.916245487364623,12484.530668922034,2019
+2004,95,"(90,95]",NoHS,91.60531418312388,9.033955865971603,10.140110881897884,12354.680582742478,2019
+2004,95,"(90,95]",NoHS,177.9154326750449,9.033955865971603,19.69407813305828,12080.170840049494,2019
+2004,43,"(40,45]",College,162.70549371633751,83.08012983884599,1.958416459289895,8474.047501245097,2019
+2004,43,"(40,45]",College,162.70549371633751,84.69333624348378,1.921113288636754,7992.794523086201,2019
+2004,43,"(40,45]",College,164.2767684021544,84.69333624348378,1.9396658071170703,8378.695390109795,2019
+2004,43,"(40,45]",College,162.70549371633751,83.08012983884599,1.958416459289895,8410.390548866306,2019
+2004,43,"(40,45]",College,162.7212064631957,84.69333624348378,1.9212988138215572,8203.097051011628,2019
+2004,67,"(65,70]",College,243.70470377019748,64.52825618551145,3.7767129963898913,7083.67225920714,2019
+2004,67,"(65,70]",College,243.39044883303413,64.52825618551145,3.7718429602888084,7179.0849015971635,2019
+2004,67,"(65,70]",College,244.49034111310593,64.52825618551145,3.788888086642599,7134.939490661064,2019
+2004,67,"(65,70]",College,243.8618312387792,64.52825618551145,3.779148014440433,7118.861214338535,2019
+2004,67,"(65,70]",College,244.17608617594257,64.52825618551145,3.784018050541516,7135.529942355139,2019
+2004,69,"(65,70]",NoHS,-6.127971274685817,45.16977932985802,-0.13566529138731304,6469.858352221839,2019
+2004,69,"(65,70]",NoHS,-13.04157989228007,43.55657292522023,-0.2994170343628827,6508.6432079452115,2019
+2004,69,"(65,70]",NoHS,-12.255942549371634,45.16977932985802,-0.2713305827746261,6522.6430770982,2019
+2004,69,"(65,70]",NoHS,-12.413070017953322,43.55657292522023,-0.28498729776708115,6523.615002378218,2019
+2004,69,"(65,70]",NoHS,-13.04157989228007,45.16977932985802,-0.28872356884992256,6544.8191647844815,2019
+2004,28,"(25,30]",College,-80.93164524236984,175.8394981055187,-0.46025862285960323,4701.516050047181,2019
+2004,28,"(25,30]",College,-50.19751238779175,182.29232372406983,-0.275368218267787,4677.843923101649,2019
+2004,28,"(25,30]",College,-66.99443877917415,175.8394981055187,-0.38099766833371973,4707.005552991898,2019
+2004,28,"(25,30]",College,-59.232341831238784,187.13194293798318,-0.316527156728495,4739.185979150753,2019
+2004,28,"(25,30]",College,-55.052751166965884,175.8394981055187,-0.31308523830026824,4718.530271407584,2019
+2004,45,"(40,45]",College,3145.691921005386,475.895889368147,6.610042219910664,3271.654871216716,2019
+2004,45,"(40,45]",College,3519.6552962298024,475.895889368147,7.395851434865079,3252.1502083636447,2019
+2004,45,"(40,45]",College,3390.8107719928184,475.895889368147,7.125110444838767,3285.8217434639605,2019
+2004,45,"(40,45]",College,3419.0937163375224,475.895889368147,7.184541393868933,3253.5927208696717,2019
+2004,45,"(40,45]",College,3417.522441651706,475.895889368147,7.181239674478369,3315.510535665213,2019
+2004,58,"(55,60]",College,1480.1407540394973,129.0565123710229,11.46893501805054,3217.335658721441,2019
+2004,58,"(55,60]",College,1480.1407540394973,129.0565123710229,11.46893501805054,3331.775556508893,2019
+2004,58,"(55,60]",College,1480.1407540394973,129.0565123710229,11.46893501805054,3197.291640187619,2019
+2004,58,"(55,60]",College,1478.5694793536804,129.0565123710229,11.456759927797833,3446.4462816135697,2019
+2004,58,"(55,60]",College,1480.1407540394973,129.0565123710229,11.46893501805054,3284.8408839335257,2019
+2004,36,"(35,40]",HS,77.14958707360863,83.88673304116487,0.9196875867814498,8323.434951988129,2019
+2004,36,"(35,40]",HS,76.99245960502694,82.2735266365271,0.9358108586394848,7838.812645701762,2019
+2004,36,"(35,40]",HS,77.3067145421903,83.88673304116487,0.9215606775895585,8346.493510308042,2019
+2004,36,"(35,40]",HS,76.99245960502694,83.88673304116487,0.9178144959733409,8289.040373854232,2019
+2004,36,"(35,40]",HS,77.3067145421903,83.88673304116487,0.9215606775895585,8186.2607008646755,2019
+2004,37,"(35,40]",College,75.89256732495512,250.04699271885684,0.30351321765459416,7284.369467071051,2019
+2004,37,"(35,40]",College,75.89256732495512,250.04699271885684,0.30351321765459416,8088.550226600231,2019
+2004,37,"(35,40]",College,74.47842010771993,250.04699271885684,0.29785769185978805,7186.421391410493,2019
+2004,37,"(35,40]",College,74.47842010771993,250.04699271885684,0.29785769185978805,7176.531424597384,2019
+2004,37,"(35,40]",College,74.32129263913824,250.04699271885684,0.2972293001048096,7501.111718197435,2019
+2004,51,"(50,55]",HS,21.18078276481149,53.23581135304694,0.39786719177332897,3413.861264310978,2019
+2004,51,"(50,55]",HS,15.524193895870736,61.30184337623587,0.2532418772563177,3341.7527467359005,2019
+2004,51,"(50,55]",HS,15.367066427289048,48.39619213913358,0.3175263537906137,3443.2511913796125,2019
+2004,51,"(50,55]",HS,23.223439856373428,72.59428820870036,0.31990726032892103,3440.7844196064216,2019
+2004,51,"(50,55]",HS,15.20993895870736,62.91504978087366,0.24175358696658333,3399.02860846786,2019
+2004,55,"(50,55]",College,4387.784560143627,1411.555604058063,3.108474471376998,269.2094146874113,2019
+2004,55,"(50,55]",College,4337.975152603231,1411.555604058063,3.0731875812274363,261.2068357552856,2019
+2004,55,"(50,55]",College,4389.355834829444,1411.555604058063,3.1095876224858174,278.8299964143107,2019
+2004,55,"(50,55]",College,4388.413070017954,1411.555604058063,3.108919731820526,266.2696981144753,2019
+2004,55,"(50,55]",College,4329.647396768402,1411.555604058063,3.067287880350696,273.62981941700235,2019
+2004,70,"(65,70]",NoHS,2.6711669658886894,41.94336652058244,0.0636850874757012,8136.382113240528,2019
+2004,70,"(65,70]",NoHS,2.6711669658886894,40.33016011594465,0.06623249097472925,8327.64191489651,2019
+2004,70,"(65,70]",NoHS,2.6711669658886894,41.94336652058244,0.0636850874757012,8503.5717558776,2019
+2004,70,"(65,70]",NoHS,2.6711669658886894,37.10374730666908,0.07199183801601004,8404.012994702218,2019
+2004,70,"(65,70]",NoHS,2.6711669658886894,38.716953711306864,0.06899217809867629,8498.098455481939,2019
+2004,29,"(25,30]",HS,-699.782894075404,70.9810818040626,-9.858723990810633,4986.770674967623,2019
+2004,29,"(25,30]",HS,-703.3496876122083,59.68863697159809,-11.783644648258365,5005.057869872548,2019
+2004,29,"(25,30]",HS,-712.9030377019749,67.75466899478702,-10.521828949630393,4964.0959660892695,2019
+2004,29,"(25,30]",HS,-715.5427791741472,56.46222416232251,-12.67294708612687,4958.371800211387,2019
+2004,29,"(25,30]",HS,-698.6987145421904,67.75466899478702,-10.312185490802818,4968.21928376241,2019
+2004,34,"(30,35]",College,32.36825852782765,45.16977932985802,0.7165910263022176,8162.068423005398,2019
+2004,34,"(30,35]",College,63.79375224416517,45.16977932985802,1.412310469314079,8107.916560605098,2019
+2004,34,"(30,35]",College,178.6539317773788,45.16977932985802,3.9551650335224333,8168.523233458106,2019
+2004,34,"(30,35]",College,32.36825852782765,45.16977932985802,0.7165910263022176,8163.529362024955,2019
+2004,34,"(30,35]",College,88.93414721723519,45.16977932985802,1.9688860237235686,8152.338934722521,2019
+2004,30,"(25,30]",HS,27.748710951526032,30.650921688117936,0.9053140794223826,8178.010395170111,2019
+2004,30,"(25,30]",HS,251.199684021544,61.30184337623587,4.097750902527076,8050.172061768392,2019
+2004,30,"(25,30]",HS,40.93170556552962,33.87733449739351,1.2082327660305996,8186.204700615909,2019
+2004,30,"(25,30]",HS,84.73884380610413,45.16977932985802,1.876007478081485,8223.104287487233,2019
+2004,30,"(25,30]",HS,108.65364452423698,37.10374730666908,2.928373881651232,8205.998046043154,2019
+2004,30,"(25,30]",HS,70.94305206463197,79.04711382725151,0.897478081485302,7861.451924511484,2019
+2004,30,"(25,30]",HS,70.78592459605028,79.04711382725151,0.8954903116481252,7807.271275170811,2019
+2004,30,"(25,30]",HS,69.52890484739677,79.04711382725151,0.8795881529507111,7863.544699106106,2019
+2004,30,"(25,30]",HS,69.52890484739677,79.04711382725151,0.8795881529507111,7854.009576886572,2019
+2004,30,"(25,30]",HS,69.37177737881508,79.04711382725151,0.8776003831135344,7849.981380267338,2019
+2004,68,"(65,70]",College,2290.6042369838424,96.79238427826716,23.665128760529488,3656.9090721360817,2019
+2004,68,"(65,70]",College,2290.7613644524235,96.79238427826716,23.66675210589651,3860.7138671915905,2019
+2004,68,"(65,70]",College,2292.33263913824,96.79238427826716,23.682985559566784,3658.1160188985546,2019
+2004,68,"(65,70]",College,2292.175511669659,96.79238427826716,23.681362214199762,3928.660252643104,2019
+2004,68,"(65,70]",College,2290.7613644524235,96.79238427826716,23.66675210589651,3746.421702180175,2019
+2004,44,"(40,45]",HS,39.2818671454219,53.23581135304694,0.7378842577398533,5026.854061760869,2019
+2004,44,"(40,45]",HS,39.2818671454219,53.23581135304694,0.7378842577398533,4996.260800020655,2019
+2004,44,"(40,45]",HS,39.43899461400359,53.23581135304694,0.74083579477081285,5024.147929962675,2019
+2004,44,"(40,45]",HS,17.441149012567326,53.23581135304694,0.32762061043649493,5027.088155378116,2019
+2004,44,"(40,45]",HS,39.2818671454219,53.23581135304694,0.7378842577398533,5030.029225896238,2019
+2004,48,"(45,50]",HS,212.3577737881508,8.066032023188932,26.32741516245487,4034.4657968023603,2019
+2004,48,"(45,50]",HS,203.08725314183124,8.066032023188932,25.178086642599276,3976.602501917686,2019
+2004,48,"(45,50]",HS,206.229802513465,8.066032023188932,25.567689530685918,4070.129368584168,2019
+2004,48,"(45,50]",HS,212.3577737881508,8.066032023188932,26.32741516245487,4076.4941546168593,2019
+2004,48,"(45,50]",HS,212.3577737881508,8.066032023188932,26.32741516245487,4032.643400188967,2019
+2004,73,"(70,75]",HS,270.8877558348295,43.07261100382889,6.2890953095634075,8514.248622339162,2019
+2004,73,"(70,75]",HS,270.8877558348295,43.07261100382889,6.2890953095634075,7958.530720948374,2019
+2004,73,"(70,75]",HS,270.8877558348295,43.07261100382889,6.2890953095634075,8876.660460888359,2019
+2004,73,"(70,75]",HS,270.8877558348295,43.07261100382889,6.2890953095634075,8603.817586693553,2019
+2004,73,"(70,75]",HS,270.8877558348295,43.07261100382889,6.2890953095634075,8573.820945437608,2019
+2004,81,"(80,85]",College,204263.1951166966,3887.8274351770647,52.53916191560435,19.81794948471067,2019
+2004,81,"(80,85]",College,202839.6202513465,3952.355691362576,51.32119578575112,20.612904765621785,2019
+2004,81,"(80,85]",College,187518.5921723519,4323.393164429267,43.3730139824344,20.633580245552746,2019
+2004,81,"(80,85]",College,193978.25953321366,4081.4122037335983,47.527240535951265,19.525588748991442,2019
+2004,81,"(80,85]",College,182853.16337522442,4242.732844197377,43.097967769831584,19.991066487296695,2019
+2004,48,"(45,50]",NoHS,23.96193895870736,62.91504978087366,0.38086179764880124,10114.533392628486,2019
+2004,48,"(45,50]",NoHS,24.983267504488328,62.91504978087366,0.39709525131907797,9218.333842665646,2019
+2004,48,"(45,50]",NoHS,22.46922800718133,62.91504978087366,0.35713598074608904,10126.425912404948,2019
+2004,48,"(45,50]",NoHS,38.02484739676841,62.91504978087366,0.6043839674164585,10017.746907411301,2019
+2004,48,"(45,50]",NoHS,22.783482944344705,62.91504978087366,0.36213088956771267,9732.350768258864,2019
+2004,54,"(50,55]",College,3446.8581400359067,227.46210305392788,15.153549069308957,3288.8455606073403,2019
+2004,54,"(50,55]",College,3297.6027576301617,229.07530945856564,14.39527797833935,3446.4420269562797,2019
+2004,54,"(50,55]",College,3671.566132854578,229.07530945856564,16.02776895306859,1542.6343431703028,2019
+2004,54,"(50,55]",College,3291.317658886894,229.07530945856564,14.367841155234656,3513.654074977573,2019
+2004,54,"(50,55]",College,3162.47313464991,229.07530945856564,13.805386281588447,3342.1190218127276,2019
+2004,40,"(35,40]",College,7282.3082226211845,887.2635225507823,8.207604660321627,212.0787521087118,2019
+2004,40,"(35,40]",College,7280.736947935368,887.2635225507823,8.205833738103053,209.78339997767625,2019
+2004,40,"(35,40]",College,7280.736947935368,887.2635225507823,8.205833738103053,220.58076540318694,2019
+2004,40,"(35,40]",College,7282.3082226211845,887.2635225507823,8.207604660321627,205.48361636970156,2019
+2004,40,"(35,40]",College,7280.736947935368,887.2635225507823,8.205833738103053,208.40912514325373,2019
+2004,55,"(50,55]",HS,99044.3570556553,6727.070707339568,14.723251971707834,27.768818387630876,2019
+2004,55,"(50,55]",HS,343215.7294075404,6727.070707339568,51.02008650408194,28.446810801806002,2019
+2004,55,"(50,55]",HS,97568.30161579892,6727.070707339568,14.503831736055199,28.169819163329105,2019
+2004,55,"(50,55]",HS,342755.34592459607,6727.070707339568,50.95164906630652,27.36970347254667,2019
+2004,55,"(50,55]",HS,110244.08876122083,6727.070707339568,16.388126951146663,27.53974791481673,2019
+2004,61,"(60,65]",College,835.9181328545781,148.4149892266763,5.632302621252551,5405.392610904782,2019
+2004,61,"(60,65]",College,834.3468581687613,148.4149892266763,5.621715586250197,5978.61390707067,2019
+2004,61,"(60,65]",College,834.3468581687613,146.80178282203855,5.683492680604594,5334.449354377057,2019
+2004,61,"(60,65]",College,835.9181328545781,148.4149892266763,5.632302621252551,5317.454294290416,2019
+2004,61,"(60,65]",College,835.9181328545781,146.80178282203855,5.69419605665093,5589.5427610523175,2019
+2004,57,"(55,60]",College,25477.904775583484,3742.6388587596634,6.807470807917341,283.05676881827077,2019
+2004,57,"(55,60]",College,31804.485170556552,1871.3194293798317,16.995754263662395,277.46501615843255,2019
+2004,57,"(55,60]",College,17645.100466786356,3097.3562969045493,5.696826188327317,317.5809256661627,2019
+2004,57,"(55,60]",College,24940.167439856374,2097.168326029122,11.89230598722577,280.36410884791735,2019
+2004,57,"(55,60]",College,23663.082513464993,3742.6388587596634,6.3225663513008845,307.35725306476564,2019
+2004,42,"(40,45]",HS,304.19877917414726,64.52825618551145,4.714194945848376,6960.489634266398,2019
+2004,42,"(40,45]",HS,304.0416517055655,64.52825618551145,4.711759927797833,6556.92201414123,2019
+2004,42,"(40,45]",HS,304.19877917414726,64.52825618551145,4.714194945848376,6983.433176466138,2019
+2004,42,"(40,45]",HS,304.19877917414726,64.52825618551145,4.714194945848376,6939.537397638484,2019
+2004,42,"(40,45]",HS,304.0416517055655,64.52825618551145,4.711759927797833,6847.6082213127465,2019
+2004,43,"(40,45]",HS,49.039482944344705,48.39619213913358,1.0132921780986763,6588.961424830324,2019
+2004,43,"(40,45]",HS,49.97439138240575,48.39619213913358,1.0326099879663058,6325.040284318674,2019
+2004,43,"(40,45]",HS,47.460351885098746,48.39619213913358,0.98066293622142,6583.00362801182,2019
+2004,43,"(40,45]",HS,49.03162657091562,48.39619213913358,1.0131298435619736,6558.460602121992,2019
+2004,43,"(40,45]",HS,48.40311669658887,48.39619213913358,1.000143080625752,6492.067778543677,2019
+2004,58,"(55,60]",HS,398.94664272890486,46.782985734495796,8.527601145275739,4538.948974735812,2019
+2004,58,"(55,60]",HS,398.94664272890486,45.16977932985802,8.832158329035584,4048.191311543779,2019
+2004,58,"(55,60]",HS,400.51791741472175,46.782985734495796,8.561187601145276,4552.354646746337,2019
+2004,58,"(55,60]",HS,400.51791741472175,45.16977932985802,8.866944301186178,4473.8312125614775,2019
+2004,58,"(55,60]",HS,398.94664272890486,46.782985734495796,8.527601145275739,4376.808208542273,2019
+2004,32,"(30,35]",HS,97.57615798922802,79.04711382725151,1.234405068886761,10128.587748587586,2019
+2004,32,"(30,35]",HS,102.28998204667863,79.04711382725151,1.294038164002063,9886.308014848542,2019
+2004,32,"(30,35]",HS,97.57615798922802,77.43390742261373,1.2601218411552348,10097.76156572397,2019
+2004,32,"(30,35]",HS,88.14850987432675,79.04711382725151,1.1151388786561558,10080.12459808426,2019
+2004,32,"(30,35]",HS,201.28028725314184,79.04711382725151,2.5463331614234144,9991.76360161138,2019
+2004,42,"(40,45]",College,3703.101615798923,241.98096069566793,15.303276774969914,3092.161660238219,2019
+2004,42,"(40,45]",College,3682.989299820467,241.98096069566793,15.220161492178098,2950.9520451367216,2019
+2004,42,"(40,45]",College,3759.9031956912027,241.98096069566793,15.538012515042116,3254.9084792807153,2019
+2004,42,"(40,45]",College,3761.553034111311,243.5941671003057,15.441884667798313,2865.59830647881,2019
+2004,42,"(40,45]",College,3756.7606463195693,243.5941671003057,15.422211012025725,3004.7468152233105,2019
+2004,81,"(80,85]",HS,176.92552962298026,67.75466899478702,2.611266976104521,9970.392034076242,2019
+2004,81,"(80,85]",HS,293.0427289048474,69.36787539942482,4.224473176055747,9219.624583348474,2019
+2004,81,"(80,85]",HS,164.8267145421903,67.75466899478702,2.4326989857314762,9927.95929595707,2019
+2004,81,"(80,85]",HS,166.55511669658887,67.75466899478702,2.4582086986419114,9772.33986048512,2019
+2004,81,"(80,85]",HS,267.7452064631957,69.36787539942482,3.8597867517420865,9698.76611447826,2019
+2004,64,"(60,65]",College,43963.322944344705,1145.376547292828,38.38329241877257,25.272604537569986,2019
+2004,64,"(60,65]",College,38759.57543985637,2500.469927188569,15.500916455106553,25.483388426372862,2019
+2004,64,"(60,65]",College,47836.82929982047,2097.168326029122,22.810200166620383,26.696224556148234,2019
+2004,64,"(60,65]",College,27806.06247755835,1450.2725577693695,19.172990848234903,24.422401064502107,2019
+2004,64,"(60,65]",College,37312.745709156196,984.0559068290495,37.91730271645854,26.11546765252076,2019
+2004,54,"(50,55]",College,1842.0681651705568,185.5187365333454,9.929283691728145,3213.2292339258443,2019
+2004,54,"(50,55]",College,1746.1261328545781,185.5187365333454,9.412128205933135,3367.5394022147498,2019
+2004,54,"(50,55]",College,1974.1495152603231,185.5187365333454,10.641240621566473,3179.4268627748997,2019
+2004,54,"(50,55]",College,1866.2029443447038,185.5187365333454,10.059377177837074,3431.390566010735,2019
+2004,54,"(50,55]",College,1721.064301615799,185.5187365333454,9.277037639303092,3264.76593002208,2019
+2004,58,"(55,60]",College,4696.5400359066425,1129.2444832464503,4.15901083032491,257.66427198170487,2019
+2004,58,"(55,60]",College,4698.11131059246,1129.2444832464503,4.160402269210933,254.48907844907254,2019
+2004,58,"(55,60]",College,4696.5400359066425,1129.2444832464503,4.15901083032491,265.9445854286846,2019
+2004,58,"(55,60]",College,4694.968761220826,1129.2444832464503,4.157619391438886,254.1138144918406,2019
+2004,58,"(55,60]",College,4699.682585278277,1129.2444832464503,4.161793708096957,261.081810151749,2019
+2004,21,"(20,25]",HS,-0.5656588868940754,33.87733449739351,-0.016697266632284682,8704.492875805317,2019
+2004,21,"(20,25]",HS,-0.5656588868940754,33.87733449739351,-0.016697266632284682,8552.853364652266,2019
+2004,21,"(20,25]",HS,-0.5656588868940754,33.87733449739351,-0.016697266632284682,8720.267037461781,2019
+2004,21,"(20,25]",HS,-0.5656588868940754,33.87733449739351,-0.016697266632284682,8650.608991355239,2019
+2004,21,"(20,25]",HS,-0.5656588868940754,32.264128092755726,-0.017532129963898916,8676.07748912767,2019
+2004,23,"(20,25]",HS,-1.5712746858168762,19.358476855653432,-0.08116726835138388,2250.0423374648217,2019
+2004,23,"(20,25]",HS,-1.5712746858168762,29.03771528348015,-0.05411151223425592,2235.0595719595876,2019
+2004,23,"(20,25]",HS,-1.5712746858168762,19.358476855653432,-0.08116726835138388,2256.3223127440497,2019
+2004,23,"(20,25]",HS,-1.5712746858168762,20.97168326029122,-0.07492363232435435,2262.1735113490254,2019
+2004,23,"(20,25]",HS,-1.7284021543985637,27.424508878842364,-0.06302399660225101,2244.4789346147018,2019
+2004,55,"(50,55]",College,12428.154254937162,3161.884553090061,3.9306160760333007,2127.695595415795,2019
+2004,55,"(50,55]",College,11716.366822262118,3194.1486811828167,3.66807183750866,2087.017163642767,2019
+2004,55,"(50,55]",College,12450.1521005386,3629.7144104350186,3.4300638267148016,2172.6544777100744,2019
+2004,55,"(50,55]",College,12937.09012567325,3694.2426666205306,3.5019600208093578,2071.802888175079,2019
+2004,55,"(50,55]",College,10977.867719928186,3242.5448733219505,3.3855715645598714,2108.466467186065,2019
+2004,41,"(40,45]",HS,832.7755834829443,137.12254439421181,6.07322149076237,8770.434077315633,2019
+2004,41,"(40,45]",HS,966.3339317773788,137.12254439421181,7.047228710978977,9734.021222175212,2019
+2004,41,"(40,45]",HS,731.899748653501,137.12254439421181,5.337559566787005,8655.680963116683,2019
+2004,41,"(40,45]",HS,736.4564452423698,137.12254439421181,5.370790401359099,8641.86448141399,2019
+2004,41,"(40,45]",HS,797.8932854578097,137.12254439421181,5.818833722658739,9029.52038713585,2019
+2004,65,"(60,65]",College,1593.2725314183124,56.46222416232251,28.218380608561116,5607.518873635336,2019
+2004,65,"(60,65]",College,1399.2201077199284,56.46222416232251,24.781526560082522,6260.726353266296,2019
+2004,65,"(60,65]",College,1393.0921364452424,56.46222416232251,24.67299432697267,5551.23271719921,2019
+2004,65,"(60,65]",College,1430.6456014362657,56.46222416232251,25.33810211449201,5595.625493697156,2019
+2004,65,"(60,65]",College,1436.9307001795332,56.46222416232251,25.449417225373907,5834.983331170352,2019
+2004,23,"(20,25]",HS,0.15712746858168763,43.55657292522023,0.0036074341489503946,6582.910269728425,2019
+2004,23,"(20,25]",HS,0.15712746858168763,43.55657292522023,0.0036074341489503946,6547.395678635146,2019
+2004,23,"(20,25]",HS,0.15712746858168763,41.94336652058244,0.003746181616217718,6571.080334725006,2019
+2004,23,"(20,25]",HS,0.15712746858168763,43.55657292522023,0.0036074341489503946,6492.104072648386,2019
+2004,23,"(20,25]",HS,0.15712746858168763,43.55657292522023,0.0036074341489503946,6542.6370596714405,2019
+2004,53,"(50,55]",NoHS,5.656588868940754,104.8584163014561,0.053945015273535124,5218.35918389411,2019
+2004,53,"(50,55]",NoHS,5.82942908438061,104.8584163014561,0.05559333518467092,5058.644198572206,2019
+2004,53,"(50,55]",NoHS,5.813716337522442,104.8584163014561,0.05544348792002222,5280.357559367255,2019
+2004,53,"(50,55]",NoHS,5.813716337522442,104.8584163014561,0.05544348792002222,5266.209796659914,2019
+2004,53,"(50,55]",NoHS,5.656588868940754,104.8584163014561,0.053945015273535124,5182.039895595701,2019
+2004,80,"(75,80]",NoHS,53.501903052064634,12.421689315710953,4.3071358244643445,11184.97548451249,2019
+2004,80,"(75,80]",NoHS,49.65228007181329,11.937727394319618,4.159274075519563,11176.986827977264,2019
+2004,80,"(75,80]",NoHS,62.48959425493716,12.099048034783396,5.164835619735259,11137.052195775492,2019
+2004,80,"(75,80]",NoHS,35.77792459605027,11.615086113392062,3.0802978339350173,11201.955159188312,2019
+2004,80,"(75,80]",NoHS,48.709515260323165,11.453765472928282,4.252707581227437,11188.54138017428,2019
+2004,40,"(35,40]",HS,335.31001795332133,106.47162270609388,3.149290012033694,3606.1458311454285,2019
+2004,40,"(35,40]",HS,333.7387432675045,106.47162270609388,3.1345323268788974,3609.02429828368,2019
+2004,40,"(35,40]",HS,333.7387432675045,106.47162270609388,3.1345323268788974,3605.0290064953942,2019
+2004,40,"(35,40]",HS,335.31001795332133,106.47162270609388,3.149290012033694,3615.3695863162293,2019
+2004,40,"(35,40]",HS,335.31001795332133,106.47162270609388,3.149290012033694,3622.5329676681054,2019
+2004,18,"(15,20]",HS,8.5005960502693,1.9358476855653435,4.3911492178098674,5671.817280489871,2019
+2004,18,"(15,20]",HS,9.757615798922801,1.9358476855653435,5.0404873646209385,5739.6333225444405,2019
+2004,18,"(15,20]",HS,8.720574506283663,1.9358476855653435,4.504783393501805,5680.420067005491,2019
+2004,18,"(15,20]",HS,12.035964093357272,1.9358476855653435,6.217412755716005,5615.150843717931,2019
+2004,18,"(15,20]",HS,11.878836624775584,1.9358476855653435,6.13624548736462,5705.973281149134,2019
+2004,61,"(60,65]",College,797.6575942549372,75.82070101797595,10.520314156233198,6081.312840036053,2019
+2004,61,"(60,65]",College,749.49802513465,79.04711382725151,9.48166212333309,6725.7723968106175,2019
+2004,61,"(60,65]",College,841.4175942549372,62.91504978087366,13.37386836989725,6002.084184636639,2019
+2004,61,"(60,65]",College,746.6697307001796,80.6603202318893,9.256964620938628,5982.899747904108,2019
+2004,61,"(60,65]",College,763.7180610412927,74.20749461333816,10.291656725788732,6288.121067664839,2019
+2004,95,"(90,95]",NoHS,88.30563734290844,11.453765472928282,7.709747292418772,7715.923815941608,2019
+2004,95,"(90,95]",NoHS,88.30563734290844,11.453765472928282,7.709747292418772,7725.365528954159,2019
+2004,95,"(90,95]",NoHS,88.30563734290844,11.453765472928282,7.709747292418772,7735.215344504216,2019
+2004,95,"(90,95]",NoHS,88.30563734290844,11.453765472928282,7.709747292418772,7720.728317788526,2019
+2004,95,"(90,95]",NoHS,88.30563734290844,11.615086113392062,7.602667468912955,7725.435242648675,2019
+2004,25,"(20,25]",College,1747.2574506283663,193.58476855653433,9.025800240673888,3555.8460254772026,2019
+2004,25,"(20,25]",College,494.951526032316,193.58476855653433,2.556768953068592,3721.8029157119477,2019
+2004,25,"(20,25]",College,1038.612567324955,193.58476855653433,5.365156438026474,3523.292612954173,2019
+2004,25,"(20,25]",College,782.4947935368043,193.58476855653433,4.042129963898917,3774.892503077578,2019
+2004,25,"(20,25]",College,1367.008976660682,193.58476855653433,7.061552346570396,3612.1723116592925,2019
+2004,57,"(55,60]",College,146.44280071813284,241.98096069566793,0.6051831528279181,4572.473822225854,2019
+2004,57,"(55,60]",College,148.01407540394973,241.98096069566793,0.6116765342960289,4078.0914045136315,2019
+2004,57,"(55,60]",College,148.01407540394973,241.98096069566793,0.6116765342960289,4585.978509033008,2019
+2004,57,"(55,60]",College,146.44280071813284,241.98096069566793,0.6051831528279181,4506.875097816001,2019
+2004,57,"(55,60]",College,148.01407540394973,241.98096069566793,0.6116765342960289,4409.135478247497,2019
+2004,25,"(20,25]",HS,8.013500897666068,51.62260494840914,0.1552324007220217,6108.854654767887,2019
+2004,25,"(20,25]",HS,8.013500897666068,50.00939854377137,0.16023989751950624,6089.126101568834,2019
+2004,25,"(20,25]",HS,6.442226211849192,51.62260494840914,0.12479467509025274,6073.413619230526,2019
+2004,25,"(20,25]",HS,6.442226211849192,51.62260494840914,0.12479467509025274,6131.083726868052,2019
+2004,25,"(20,25]",HS,6.442226211849192,51.62260494840914,0.12479467509025274,6067.90964972443,2019
+2004,53,"(50,55]",College,1087.3220825852782,225.84889664929003,4.814378545642084,930.8377719452834,2019
+2004,53,"(50,55]",College,1094.549946140036,225.84889664929003,4.846381640020629,913.3995624340423,2019
+2004,53,"(50,55]",College,1171.5424057450628,225.84889664929003,5.187284167096442,947.2692197131294,2019
+2004,53,"(50,55]",College,1548.648330341113,225.84889664929003,6.85701083032491,1826.9746200299621,2019
+2004,53,"(50,55]",College,1087.47921005386,225.84889664929003,4.815074265085096,939.2770569078373,2019
+2004,39,"(35,40]",HS,467.46993177737886,114.53765472928282,4.081364620938628,8147.301600830744,2019
+2004,39,"(35,40]",HS,423.3171131059246,117.76406753855836,3.5946203451856986,7593.915489850001,2019
+2004,39,"(35,40]",HS,461.04341831238776,116.1508611339206,3.9693499799438423,8142.33584567471,2019
+2004,39,"(35,40]",HS,452.9042154398564,112.92444832464501,4.010683445074782,8140.718822639848,2019
+2004,39,"(35,40]",HS,460.50918491921004,111.31124192000723,4.13713095798671,7953.390746257792,2019
+2004,40,"(35,40]",College,172.6830879712747,100.01879708754274,1.7265063468033073,7624.338645507885,2019
+2004,40,"(35,40]",College,174.25436265709155,111.31124192000723,1.5654695756814734,8462.006957258778,2019
+2004,40,"(35,40]",College,172.6830879712747,98.40559068290497,1.7548097295377874,7524.58114256486,2019
+2004,40,"(35,40]",College,174.25436265709155,106.47162270609388,1.6366272836669946,7512.570159475297,2019
+2004,40,"(35,40]",College,172.6830879712747,117.76406753855836,1.4663478561891106,7849.568291734124,2019
+2004,57,"(55,60]",College,69120.37342908437,6291.504978087366,10.986301953161156,26.53403282575663,2019
+2004,57,"(55,60]",College,47965.98807899462,6291.504978087366,7.623929130797001,25.483388426372862,2019
+2004,57,"(55,60]",College,67464.72129263914,6291.504978087366,10.723145181893917,27.68412532033214,2019
+2004,57,"(55,60]",College,67471.79202872531,6291.504978087366,10.724269036378782,26.087486167993212,2019
+2004,57,"(55,60]",College,50156.97350089767,6291.504978087366,7.9721741738406005,26.11546765252076,2019
+2004,51,"(50,55]",College,4875.665350089767,1209.9048034783398,4.029792539109507,3643.933326921246,2019
+2004,51,"(50,55]",College,4874.408330341113,1209.9048034783398,4.028753598074608,3596.5441441361945,2019
+2004,51,"(50,55]",College,4874.09407540395,1209.9048034783398,4.028493862815885,4050.5172030113586,2019
+2004,51,"(50,55]",College,4874.408330341113,1209.9048034783398,4.028753598074608,3559.838066757247,2019
+2004,51,"(50,55]",College,4872.051418312388,1209.9048034783398,4.026805583634175,3730.011843083447,2019
+2004,27,"(25,30]",HS,116.88712387791742,72.59428820870036,1.6101421580425193,4442.062961958873,2019
+2004,27,"(25,30]",HS,131.18572351885098,56.46222416232251,2.3234246518824135,4459.9315018845145,2019
+2004,27,"(25,30]",HS,133.3855080789946,56.46222416232251,2.362384940691078,4383.703402937772,2019
+2004,27,"(25,30]",HS,138.88496947935369,59.68863697159809,2.3268242755390767,4399.468400337615,2019
+2004,27,"(25,30]",HS,130.08583123877918,62.91504978087366,2.0676425067110986,4426.960430780846,2019
+2004,68,"(65,70]",College,251.4039497307002,122.60368675247175,2.050541516245487,6834.514093463686,2019
+2004,68,"(65,70]",College,251.24682226211849,122.60368675247175,2.049259927797834,7032.595617796238,2019
+2004,68,"(65,70]",College,251.4039497307002,122.60368675247175,2.050541516245487,6888.740952011627,2019
+2004,68,"(65,70]",College,251.24682226211849,122.60368675247175,2.049259927797834,7007.252431689769,2019
+2004,68,"(65,70]",College,241.81917414721724,122.60368675247175,1.972364620938628,7011.716166796349,2019
+2004,64,"(60,65]",HS,11489.946140035907,1209.9048034783398,9.496570397111912,25.805229288132956,2019
+2004,64,"(60,65]",HS,13455.61077199282,1209.9048034783398,11.121214440433212,27.19687826038678,2019
+2004,64,"(60,65]",HS,11478.947217235189,1209.9048034783398,9.487479663056558,26.98126310417269,2019
+2004,64,"(60,65]",HS,11304.535727109516,1209.9048034783398,9.3433265944645,25.36965468247778,2019
+2004,64,"(60,65]",HS,10355.485816876122,1209.9048034783398,8.558926113116724,26.23663168428256,2019
+2004,45,"(40,45]",HS,20.897953321364454,61.30184337623587,0.3409025270758123,6086.226923377667,2019
+2004,45,"(40,45]",HS,20.897953321364454,61.30184337623587,0.3409025270758123,6072.607657787662,2019
+2004,45,"(40,45]",HS,21.05508078994614,61.30184337623587,0.3434657039711191,6116.129025892183,2019
+2004,45,"(40,45]",HS,21.05508078994614,61.30184337623587,0.3434657039711191,6131.1652262396055,2019
+2004,45,"(40,45]",HS,21.05508078994614,61.30184337623587,0.3434657039711191,6070.719854716786,2019
+2004,66,"(65,70]",College,218.8,130.66971877566067,1.6744506841378082,1978.7397628386673,2019
+2004,66,"(65,70]",College,219.1142549371634,130.66971877566067,1.6768556402371086,2070.346447731982,2019
+2004,66,"(65,70]",College,218.17149012567324,130.66971877566067,1.6696407719392075,1928.692957167022,2019
+2004,66,"(65,70]",College,218.6428725314183,130.66971877566067,1.673248206088158,1873.2680449111326,2019
+2004,66,"(65,70]",College,218.5643087971275,130.66971877566067,1.672646967063333,1884.7305927930997,2019
+2004,53,"(50,55]",College,11921.26104129264,1245.395344380371,9.57227044013393,28.901248606681957,2019
+2004,53,"(50,55]",College,11922.832315978456,1137.3105152696392,10.483357144685971,29.20265681338704,2019
+2004,53,"(50,55]",College,11921.26104129264,1092.1407359397813,10.915498936164541,30.011666809576848,2019
+2004,53,"(50,55]",College,11922.832315978456,1276.0462660684889,9.343573687741605,27.790847447552885,2019
+2004,53,"(50,55]",College,11921.26104129264,1301.8575685426933,9.15711620791003,28.45141868847286,2019
+2004,90,"(85,90]",HS,1779.1229012567323,137.12254439421181,12.974692885963048,9102.566557699194,2019
+2004,90,"(85,90]",HS,3007.5768761220825,104.8584163014561,28.682264926409328,14100.846143816167,2019
+2004,90,"(85,90]",HS,1588.6372710951528,125.83009956174732,12.62525641025641,8925.260759343666,2019
+2004,90,"(85,90]",HS,937.4224775583483,156.48102124986525,5.990646469909561,8835.969349394405,2019
+2004,90,"(85,90]",HS,1084.3366606822262,212.94324541218776,5.092139262662728,9177.714875437556,2019
+2004,82,"(80,85]",HS,6.127971274685817,13.712254439421182,0.44689743045232533,11184.97548451249,2019
+2004,82,"(80,85]",HS,6.127971274685817,13.712254439421182,0.44689743045232533,11176.986827977264,2019
+2004,82,"(80,85]",HS,6.127971274685817,13.712254439421182,0.44689743045232533,11137.052195775492,2019
+2004,82,"(80,85]",HS,6.127971274685817,13.712254439421182,0.44689743045232533,11201.955159188312,2019
+2004,82,"(80,85]",HS,6.127971274685817,13.712254439421182,0.44689743045232533,11188.54138017428,2019
+2004,53,"(50,55]",College,1139.6455296229801,132.28292518029846,8.615212644184203,7744.648264068324,2019
+2004,53,"(50,55]",College,1139.6455296229801,135.50933798957405,8.410088533608388,8616.331234572444,2019
+2004,53,"(50,55]",College,1139.6455296229801,124.21689315710954,9.174642036663695,7644.592930055109,2019
+2004,53,"(50,55]",College,1139.6455296229801,132.28292518029846,8.615212644184203,7662.050551150525,2019
+2004,53,"(50,55]",College,1139.6455296229801,129.0565123710229,8.830592960288806,8008.285061809986,2019
+2004,27,"(25,30]",NoHS,0,32.264128092755726,0,8231.962930858623,2019
+2004,27,"(25,30]",NoHS,0,32.264128092755726,0,8247.439972754908,2019
+2004,27,"(25,30]",NoHS,0,32.264128092755726,0,8223.518707476482,2019
+2004,27,"(25,30]",NoHS,0,32.264128092755726,0,8270.198371086342,2019
+2004,27,"(25,30]",NoHS,0,32.264128092755726,0,8246.988719528817,2019
+2004,69,"(65,70]",College,105231.40825852784,7565.938037751217,13.908573891758332,15.802976299044108,2019
+2004,69,"(65,70]",College,102667.0879712747,4646.034445356823,22.097788808664266,16.731698115882246,2019
+2004,69,"(65,70]",HS,102729.93895870737,7469.14565347295,13.753907571870785,16.396171915760185,2019
+2004,69,"(65,70]",College,104772.5960502693,7533.6739096584615,13.907237996583152,15.52483095336305,2019
+2004,69,"(65,70]",College,102997.05565529624,4710.562701542336,21.865127837396763,15.89151738577174,2019
+2004,51,"(50,55]",NoHS,151.62800718132854,83.88673304116487,1.8075326298250487,7094.284279910824,2019
+2004,51,"(50,55]",NoHS,153.98491921005387,83.88673304116487,1.8356289919466817,6512.3866362713325,2019
+2004,51,"(50,55]",NoHS,151.62800718132854,83.88673304116487,1.8075326298250487,7154.849500983112,2019
+2004,51,"(50,55]",NoHS,151.62800718132854,83.88673304116487,1.8075326298250487,7144.122941276577,2019
+2004,51,"(50,55]",NoHS,151.62800718132854,83.88673304116487,1.8075326298250487,6890.993403928189,2019
+2004,80,"(75,80]",NoHS,0.18855296229802515,10.001879708754274,0.018851752649353674,7766.588877870954,2019
+2004,80,"(75,80]",NoHS,0.2042657091561939,10.163200349218052,0.020098561687009343,7746.456911555086,2019
+2004,80,"(75,80]",NoHS,0.18855296229802515,10.163200349218052,0.01855251848031632,7769.859868967711,2019
+2004,80,"(75,80]",NoHS,0.2042657091561939,10.001879708754274,0.020422732036799816,7764.72825511437,2019
+2004,80,"(75,80]",NoHS,0.18855296229802515,10.001879708754274,0.018851752649353674,7793.494300110244,2019
+2004,51,"(50,55]",College,597.005816876122,290.37715283480145,2.0559669073405535,7313.461645491785,2019
+2004,51,"(50,55]",College,598.577091561939,290.37715283480145,2.06137805856398,8139.154167361494,2019
+2004,51,"(50,55]",College,595.4345421903053,290.37715283480145,2.0505557561171286,7220.953415418272,2019
+2004,51,"(50,55]",College,595.4345421903053,290.37715283480145,2.0505557561171286,7238.148722275844,2019
+2004,51,"(50,55]",College,597.005816876122,290.37715283480145,2.0559669073405535,7564.731008660386,2019
+2004,80,"(75,80]",College,931.4516337522442,56.13958288139496,16.59170919955185,9165.381764659835,2019
+2004,80,"(75,80]",College,931.4516337522442,56.13958288139496,16.59170919955185,10190.179282376326,2019
+2004,80,"(75,80]",College,933.1800359066427,56.13958288139496,16.622496784098924,9067.719071712076,2019
+2004,80,"(75,80]",College,933.1800359066427,56.13958288139496,16.622496784098924,9039.560584769348,2019
+2004,80,"(75,80]",College,931.6087612208258,56.13958288139496,16.59450807087431,9479.85189078367,2019
+2004,78,"(75,80]",NoHS,1850.3330700179533,80.6603202318893,22.93981805054152,3271.654871216716,2019
+2004,78,"(75,80]",NoHS,1966.6073967684022,80.6603202318893,24.381348736462094,3252.1502083636447,2019
+2004,78,"(75,80]",NoHS,1966.4502692998205,79.04711382725151,24.876939512267004,3285.8217434639605,2019
+2004,78,"(75,80]",NoHS,1966.6073967684022,79.04711382725151,24.87892728210418,3253.5927208696717,2019
+2004,78,"(75,80]",NoHS,1848.7617953321364,80.6603202318893,22.920337906137185,3315.510535665213,2019
+2004,36,"(35,40]",NoHS,0.47138240574506285,25.81130247420457,0.01826263537906138,4700.12419105659,2019
+2004,36,"(35,40]",NoHS,0.47138240574506285,38.716953711306864,0.012175090252707582,4679.7821690966975,2019
+2004,36,"(35,40]",NoHS,0.47138240574506285,33.87733449739351,0.013914388860237234,4664.122066372069,2019
+2004,36,"(35,40]",NoHS,0.47138240574506285,27.424508878842364,0.01718836270970482,4668.350915382826,2019
+2004,36,"(35,40]",NoHS,0.47138240574506285,27.424508878842364,0.01718836270970482,4653.813594931292,2019
+2004,56,"(55,60]",HS,467.9256014362657,161.3206404637786,2.900593501805054,5557.150749596436,2019
+2004,56,"(55,60]",HS,467.9256014362657,161.3206404637786,2.900593501805054,5910.773224080025,2019
+2004,56,"(55,60]",HS,467.9256014362657,161.3206404637786,2.900593501805054,5439.696429254989,2019
+2004,56,"(55,60]",HS,467.9256014362657,161.3206404637786,2.900593501805054,5342.17184122428,2019
+2004,56,"(55,60]",HS,467.9256014362657,161.3206404637786,2.900593501805054,5568.49179811034,2019
+2004,49,"(45,50]",NoHS,165.83233034111313,145.18857641740072,1.1421858002406742,1664.0720022281494,2019
+2004,49,"(45,50]",NoHS,217.8415224416517,145.18857641740072,1.5004040112314483,1574.399784156721,2019
+2004,49,"(45,50]",NoHS,77.84094793536804,145.18857641740072,0.5361368632170076,1632.9090810139146,2019
+2004,49,"(45,50]",NoHS,164.26105565529622,145.18857641740072,1.1313634977938227,1555.06130367769,2019
+2004,49,"(45,50]",NoHS,77.99807540394973,145.18857641740072,0.5372190934616928,1520.9208541697076,2019
+2004,29,"(25,30]",HS,59.11135368043088,64.52825618551145,0.9160537906137183,5775.964165576557,2019
+2004,29,"(25,30]",HS,59.268481149012565,64.52825618551145,0.9184888086642597,5736.156571246096,2019
+2004,29,"(25,30]",HS,60.698341113105926,64.52825618551145,0.9406474729241876,5777.5017684495715,2019
+2004,29,"(25,30]",HS,59.268481149012565,64.52825618551145,0.9184888086642597,5770.496125626428,2019
+2004,29,"(25,30]",HS,59.12706642728905,64.52825618551145,0.9162972924187724,5767.5365299247715,2019
+2004,46,"(45,50]",College,35348.96660682226,14099.423976534248,2.5071213310312355,27.96089942569834,2019
+2004,46,"(45,50]",College,35391.86240574506,13357.349030400868,2.64961725003924,28.115462507669967,2019
+2004,46,"(45,50]",College,47227.96035906643,14680.178282203853,3.2171244416233584,28.661405128192467,2019
+2004,46,"(45,50]",College,51653.61263913824,20342.532762482482,2.5391927958155955,27.13421954030061,2019
+2004,46,"(45,50]",College,61778.27820466787,16083.667854238729,3.841056577675264,28.408460769403725,2019
+2004,45,"(40,45]",HS,105.88820107719928,35.4905409020313,2.983561207745323,6283.037956496664,2019
+2004,45,"(40,45]",HS,144.4158563734291,35.4905409020313,4.069136527732196,5767.68153186959,2019
+2004,45,"(40,45]",HS,106.6816947935368,35.4905409020313,3.0059191007548405,6336.6774171986235,2019
+2004,45,"(40,45]",HS,317.2560718132855,35.4905409020313,8.939172628815227,6327.177462147537,2019
+2004,45,"(40,45]",HS,124.28782764811491,35.4905409020313,3.501998687233344,6102.993819609552,2019
+2004,34,"(30,35]",HS,50.28078994614004,29.03771528348015,1.7315683914961895,8270.231506258606,2019
+2004,34,"(30,35]",HS,50.28078994614004,29.03771528348015,1.7315683914961895,8156.737312819057,2019
+2004,34,"(30,35]",HS,50.28078994614004,29.03771528348015,1.7315683914961895,8270.541149643499,2019
+2004,34,"(30,35]",HS,50.28078994614004,29.03771528348015,1.7315683914961895,8241.70640559908,2019
+2004,34,"(30,35]",HS,50.28078994614004,29.03771528348015,1.7315683914961895,8225.999916310333,2019
+2004,23,"(20,25]",HS,8.48488330341113,15.325460844058968,0.5536462093862815,8368.244994095905,2019
+2004,23,"(20,25]",HS,8.642010771992819,15.325460844058968,0.563898916967509,8468.301329901125,2019
+2004,23,"(20,25]",HS,8.48488330341113,15.325460844058968,0.5536462093862815,8380.937614755998,2019
+2004,23,"(20,25]",HS,8.642010771992819,15.325460844058968,0.563898916967509,8284.638875915543,2019
+2004,23,"(20,25]",HS,8.48488330341113,15.325460844058968,0.5536462093862815,8418.63903314903,2019
+2004,67,"(65,70]",College,929.7232315978456,27.424508878842364,33.90118071777447,5403.526565183691,2019
+2004,67,"(65,70]",College,929.8803590664273,27.424508878842364,33.906910172011045,6057.81567645126,2019
+2004,67,"(65,70]",College,929.2518491921006,27.424508878842364,33.88399235506477,5393.678172826465,2019
+2004,67,"(65,70]",College,929.2518491921006,27.424508878842364,33.88399235506477,5380.017307812806,2019
+2004,67,"(65,70]",College,929.8803590664273,27.424508878842364,33.906910172011045,5635.597282731392,2019
+2004,42,"(40,45]",HS,5.750865350089766,82.2735266365271,0.06989934168613293,3664.511538608979,2019
+2004,42,"(40,45]",HS,10.621816876122082,96.79238427826716,0.109738146811071,3714.762057216029,2019
+2004,42,"(40,45]",HS,6.434369838420108,91.95276506435381,0.06997472924187725,3673.336130607919,2019
+2004,42,"(40,45]",HS,0.4006750448833034,93.56597146899159,0.004282273123366115,3655.315755301433,2019
+2004,42,"(40,45]",HS,6.528646319569121,80.6603202318893,0.08094000000000001,3691.2691292056707,2019
+2004,56,"(55,60]",College,9404.236122082586,1543.8385292383612,6.0914635462052376,381.04984250447893,2019
+2004,56,"(55,60]",College,6047.993393177738,1550.2913548569122,3.9011979098186687,370.60140659493993,2019
+2004,56,"(55,60]",College,7132.172926391383,1409.9423976534251,5.058485324124941,394.7208678784789,2019
+2004,56,"(55,60]",College,6236.5463554757625,1550.2913548569122,4.02282212045966,376.7393246806256,2019
+2004,56,"(55,60]",College,6260.115475763017,1550.2913548569122,4.038025146789784,387.3722544726221,2019
+2004,58,"(55,60]",College,696.5460682226212,95.17917787362938,7.318261029186807,6430.908353209988,2019
+2004,58,"(55,60]",College,696.703195691203,95.17917787362938,7.319911888882091,6574.315759252121,2019
+2004,58,"(55,60]",College,696.703195691203,96.79238427826716,7.197913357400723,6304.785553650401,2019
+2004,58,"(55,60]",College,696.5460682226212,95.17917787362938,7.318261029186807,6245.036652880635,2019
+2004,58,"(55,60]",College,696.5460682226212,95.17917787362938,7.318261029186807,6482.902260115799,2019
+2004,40,"(35,40]",HS,147.00845960502693,166.16025967769198,0.8847389856647154,7587.719525126758,2019
+2004,40,"(35,40]",HS,146.47422621184919,166.16025967769198,0.8815238161999228,7283.793084852361,2019
+2004,40,"(35,40]",HS,147.41699102333934,166.16025967769198,0.8871976446672041,7580.8586424577325,2019
+2004,40,"(35,40]",HS,146.69420466786354,166.16025967769198,0.8828477095089551,7552.595372308938,2019
+2004,40,"(35,40]",HS,146.1285457809695,166.16025967769198,0.8794434124285865,7476.138691003291,2019
+2004,39,"(35,40]",HS,1066.7383842010772,154.86781484522746,6.888057310469314,302.3822747359757,2019
+2004,39,"(35,40]",HS,1066.7383842010772,154.86781484522746,6.888057310469314,314.5761973950969,2019
+2004,39,"(35,40]",HS,1068.3253716337522,154.86781484522746,6.898304678098676,298.4106793890286,2019
+2004,39,"(35,40]",HS,1068.309658886894,154.86781484522746,6.898203219013237,292.0929143541031,2019
+2004,39,"(35,40]",HS,1068.3253716337522,154.86781484522746,6.898304678098676,307.45911325805184,2019
+2004,68,"(65,70]",NoHS,36.5164236983842,33.87733449739351,1.0779013237063777,10072.607243241166,2019
+2004,68,"(65,70]",NoHS,49.180897666068226,33.87733449739351,1.4517345710847516,9133.536952491264,2019
+2004,68,"(65,70]",NoHS,34.74088330341113,33.87733449739351,1.0254904589994842,10192.54566417105,2019
+2004,68,"(65,70]",NoHS,33.71955475763016,33.87733449739351,0.9953426164689702,10143.349471862697,2019
+2004,68,"(65,70]",NoHS,38.04056014362657,32.264128092755726,1.179035740072202,9888.023050179883,2019
+2004,60,"(55,60]",College,273326.3741472172,32102.80745229195,8.514095676940657,2.137424366587618,2019
+2004,60,"(55,60]",College,286066.2692998205,32102.80745229195,8.910942437820871,2.1820483676834277,2019
+2004,60,"(55,60]",College,280877.92028725316,32102.80745229195,8.749325762385936,2.093878738556749,2019
+2004,60,"(55,60]",College,247216.5026929982,32102.80745229195,7.700775175516571,2.098208240718619,2019
+2004,60,"(55,60]",College,271366.9946140036,32102.80745229195,8.45306115414618,2.046605978488266,2019
+2004,73,"(70,75]",College,3075.7701974865354,161.3206404637786,19.066191335740076,2741.5979583973067,2019
+2004,73,"(70,75]",College,3075.7701974865354,161.3206404637786,19.066191335740076,2746.436036111392,2019
+2004,73,"(70,75]",College,3075.7701974865354,161.3206404637786,19.066191335740076,2773.0833076559597,2019
+2004,73,"(70,75]",College,3074.1989228007183,161.3206404637786,19.05645126353791,2677.894598107342,2019
+2004,73,"(70,75]",College,3075.7701974865354,174.22629170088092,17.653880866425993,2675.1490523499106,2019
+2004,58,"(55,60]",HS,1210.195763016158,56.46222416232251,21.43372460030944,5877.439543975974,2019
+2004,58,"(55,60]",HS,1210.195763016158,58.0754305669603,20.838343361411955,6500.29388202999,2019
+2004,58,"(55,60]",HS,1211.9241651705568,58.0754305669603,20.868104693140797,5800.866993852439,2019
+2004,58,"(55,60]",HS,1211.767037701975,56.46222416232251,21.461553378029915,5782.32570679048,2019
+2004,58,"(55,60]",HS,1210.3528904847396,56.46222416232251,21.436507478081488,6077.314618167651,2019
+2004,71,"(70,75]",College,161.84129263913823,33.070731295074616,4.893792374746852,8735.805145614728,2019
+2004,71,"(70,75]",College,161.84129263913823,29.844318485799047,5.422851009854619,8742.1063504379,2019
+2004,71,"(70,75]",College,161.68416517055655,28.231112081161253,5.727162454873647,8654.64664389337,2019
+2004,71,"(70,75]",College,161.68416517055655,31.45752489043683,5.139761177450708,8722.227930907025,2019
+2004,71,"(70,75]",College,161.68416517055655,29.844318485799047,5.417586105961557,8705.856518092385,2019
+2004,40,"(35,40]",NoHS,0,8.066032023188932,0,4384.434586731379,2019
+2004,40,"(35,40]",NoHS,0,8.066032023188932,0,4444.55722776025,2019
+2004,40,"(35,40]",NoHS,0,8.066032023188932,0,4394.992841485473,2019
+2004,40,"(35,40]",NoHS,0,8.066032023188932,0,4373.432217121977,2019
+2004,40,"(35,40]",NoHS,0,8.066032023188932,0,4416.448923276292,2019
+2004,37,"(35,40]",College,550.6532136445243,274.24508878842363,2.0078872372053516,564.6576041482207,2019
+2004,37,"(35,40]",College,528.6553680430881,274.24508878842363,1.927674877893396,557.218000029867,2019
+2004,37,"(35,40]",College,516.085170556553,274.24508878842363,1.8818392440008493,568.5293038108367,2019
+2004,37,"(35,40]",College,528.6553680430881,274.24508878842363,1.927674877893396,525.6327456839268,2019
+2004,37,"(35,40]",College,569.5085098743268,274.24508878842363,2.0766406880441712,566.4799876968088,2019
+2004,74,"(70,75]",HS,2216.754326750449,147.1244241029661,15.067208182912154,3703.8969126760157,2019
+2004,74,"(70,75]",HS,2216.5971992818672,147.1244241029661,15.06614019253911,3877.2882655281164,2019
+2004,74,"(70,75]",HS,2216.754326750449,147.1244241029661,15.067208182912154,3674.205440802029,2019
+2004,74,"(70,75]",HS,2216.754326750449,147.1244241029661,15.067208182912154,3944.139396929922,2019
+2004,74,"(70,75]",HS,2216.754326750449,147.1244241029661,15.067208182912154,3762.88943113824,2019
+2004,44,"(40,45]",HS,172.9187791741472,117.76406753855836,1.4683492408881857,7626.174875870497,2019
+2004,44,"(40,45]",HS,174.4900538599641,117.76406753855836,1.4816918055486872,7320.708104825785,2019
+2004,44,"(40,45]",HS,174.56861759425493,117.76406753855836,1.4823589337817122,7619.279221535408,2019
+2004,44,"(40,45]",HS,174.33292639138241,117.76406753855836,1.4803575490826373,7590.8727101975965,2019
+2004,44,"(40,45]",HS,174.4900538599641,117.76406753855836,1.4816918055486872,7514.028538488992,2019
+2004,45,"(40,45]",HS,8.956265709156193,58.0754305669603,0.15421780986762934,4165.095740225151,2019
+2004,45,"(40,45]",HS,12.098815080789945,59.68863697159809,0.20269879988291536,4155.775426374212,2019
+2004,45,"(40,45]",HS,11.941687612208257,59.68863697159809,0.200066347936384,4185.559176993933,2019
+2004,45,"(40,45]",HS,9.89903052064632,58.0754305669603,0.17045126353790616,4195.849166967139,2019
+2004,45,"(40,45]",HS,12.868739676840216,59.68863697159809,0.21559781442091908,4154.483512578046,2019
+2004,54,"(50,55]",HS,-36.29644524236984,32.264128092755726,-1.1249783393501804,4241.5152290160995,2019
+2004,54,"(50,55]",HS,-37.867719928186716,32.264128092755726,-1.1736787003610107,4159.459001070084,2019
+2004,54,"(50,55]",HS,-37.867719928186716,32.264128092755726,-1.1736787003610107,4248.250804390202,2019
+2004,54,"(50,55]",HS,-36.29644524236984,32.264128092755726,-1.1249783393501804,4256.417807875938,2019
+2004,54,"(50,55]",HS,-36.29644524236984,32.264128092755726,-1.1249783393501804,4179.655366125635,2019
+2004,36,"(35,40]",HS,44.231382405745066,51.62260494840914,0.8568219765342964,4080.9402572859353,2019
+2004,36,"(35,40]",HS,44.074254937163374,51.62260494840914,0.8537782039711194,4056.10379457916,2019
+2004,36,"(35,40]",HS,44.074254937163374,51.62260494840914,0.8537782039711194,4078.7433440552945,2019
+2004,36,"(35,40]",HS,44.074254937163374,51.62260494840914,0.8537782039711194,4081.130301010072,2019
+2004,36,"(35,40]",HS,44.074254937163374,51.62260494840914,0.8537782039711194,4083.5179440427637,2019
+2004,35,"(30,35]",HS,197.8234829443447,109.69803551536945,1.803345720959864,5980.19763734082,2019
+2004,35,"(30,35]",HS,199.0805026929982,109.69803551536945,1.8148046294330007,5632.007594675306,2019
+2004,35,"(30,35]",HS,197.666355475763,111.31124192000723,1.775798671061581,5996.764684092632,2019
+2004,35,"(30,35]",HS,197.19497307001797,111.31124192000723,1.7715638570606396,5955.485919632912,2019
+2004,35,"(30,35]",HS,203.48007181328546,111.31124192000723,1.828028043739863,5881.641075392015,2019
+2004,42,"(40,45]",HS,584.4041938958707,112.92444832464501,5.175178648788035,5357.439647343441,2019
+2004,42,"(40,45]",HS,584.4041938958707,112.92444832464501,5.175178648788035,5950.432611925734,2019
+2004,42,"(40,45]",HS,585.8183411131059,114.53765472928282,5.1146353790613714,5288.173822352324,2019
+2004,42,"(40,45]",HS,587.3896157989228,114.53765472928282,5.128353790613718,5284.075049510584,2019
+2004,42,"(40,45]",HS,584.247066427289,112.92444832464501,5.173787209902012,5518.322630445877,2019
+2004,51,"(50,55]",HS,62521.41256732496,7194.900564684526,8.689684034579333,25.905057313472923,2019
+2004,51,"(50,55]",HS,57151.73845601437,7291.692948962794,7.837924451295486,27.192282658155648,2019
+2004,51,"(50,55]",HS,58640.56835906643,6501.221810690277,9.019930417178024,26.552447587870073,2019
+2004,51,"(50,55]",HS,70109.28657809694,6727.070707339568,10.421963679020681,26.18040305386068,2019
+2004,51,"(50,55]",HS,59495.76603231598,7211.032628730904,8.250658275385845,26.61649846256255,2019
+2004,71,"(70,75]",HS,847.3884380610413,88.72635225507824,9.55058352477847,7228.025065805277,2019
+2004,71,"(70,75]",HS,847.3884380610413,88.72635225507824,9.55058352477847,8032.274856715936,2019
+2004,71,"(70,75]",HS,828.8473967684022,87.11314585044046,9.514607567856665,7152.695409654845,2019
+2004,71,"(70,75]",HS,842.6746140035907,87.11314585044046,9.673334670410481,7130.629738245688,2019
+2004,71,"(70,75]",HS,878.8139317773788,88.72635225507824,9.9047679684936,7473.253284522043,2019
+2004,39,"(35,40]",College,2648.603461400359,393.6223627316199,6.728793158548853,2935.012259818379,2019
+2004,39,"(35,40]",College,2494.3985637342907,393.6223627316199,6.337034680712551,3068.2301247089,2019
+2004,39,"(35,40]",College,3829.3378240574507,392.00915632698207,9.768490766739463,1376.4388469875075,2019
+2004,39,"(35,40]",College,3044.6903842010774,393.6223627316199,7.735054388352961,3122.9748748409434,2019
+2004,39,"(35,40]",College,3483.076021543986,392.00915632698207,8.885190474068132,1222.561356862318,2019
+2004,36,"(35,40]",College,68.03619389587074,64.52825618551145,1.0543628158844764,5200.640408424583,2019
+2004,36,"(35,40]",College,67.87906642728905,64.52825618551145,1.0519277978339348,5168.752769211196,2019
+2004,36,"(35,40]",College,67.87906642728905,64.52825618551145,1.0519277978339348,5196.980909928895,2019
+2004,36,"(35,40]",College,67.87906642728905,64.52825618551145,1.0519277978339348,5187.99275626734,2019
+2004,36,"(35,40]",College,68.03619389587074,64.52825618551145,1.0543628158844764,5202.906074365539,2019
+2004,61,"(60,65]",College,1045.9975583482944,148.4149892266763,7.047789201067337,5773.879477597437,2019
+2004,61,"(60,65]",College,1003.4160143626572,148.4149892266763,6.760880552503533,6386.816780284779,2019
+2004,61,"(60,65]",College,967.276696588869,148.4149892266763,6.5173787474493805,5695.005194637861,2019
+2004,61,"(60,65]",College,1008.1298384201077,146.80178282203855,6.867286071329392,5677.500192091374,2019
+2004,61,"(60,65]",College,1014.4149371633753,146.80178282203855,6.910099575514738,5969.647146354122,2019
+2004,51,"(50,55]",College,478.76739676840214,125.83009956174732,3.8048717948717945,6642.858834132785,2019
+2004,51,"(50,55]",College,477.1961220825853,125.83009956174732,3.792384522817736,7392.84005083345,2019
+2004,51,"(50,55]",College,478.76739676840214,125.83009956174732,3.8048717948717945,6558.8330822848075,2019
+2004,51,"(50,55]",College,478.76739676840214,124.21689315710954,3.8542857142857136,6574.451677363492,2019
+2004,51,"(50,55]",College,477.1804093357271,125.83009956174732,3.7922596500971952,6871.088226694157,2019
+2004,45,"(40,45]",HS,85.72874685816876,143.57537001276296,0.597099257696832,8750.402468545812,2019
+2004,45,"(40,45]",HS,92.01384560143626,153.2546084405897,0.6003985559566786,8270.402963721215,2019
+2004,45,"(40,45]",HS,86.35725673249551,146.80178282203855,0.5882575475066449,8760.111094819864,2019
+2004,45,"(40,45]",HS,79.44364811490125,132.28292518029846,0.6005585982213613,8786.508370326537,2019
+2004,45,"(40,45]",HS,96.5705421903052,138.73575079884964,0.6960753924943328,8531.439456487866,2019
+2004,41,"(40,45]",HS,168.28351885098743,91.95276506435381,1.8301083032490975,8079.565507040317,2019
+2004,41,"(40,45]",HS,243.5475763016158,95.17917787362938,2.558832527687695,7622.950024600721,2019
+2004,41,"(40,45]",HS,77.0081723518851,91.95276506435381,0.8374753309265943,8045.550325659531,2019
+2004,41,"(40,45]",HS,82.17923734290844,93.56597146899159,0.8783026142163575,8011.268681029755,2019
+2004,41,"(40,45]",HS,96.00488330341113,95.17917787362938,1.0086752738175366,7864.687639384494,2019
+2004,35,"(30,35]",HS,31.504057450628366,53.23581135304694,0.5917831747073624,5215.865824209394,2019
+2004,35,"(30,35]",HS,34.316639138240575,53.23581135304694,0.644615687561536,5133.894662795709,2019
+2004,35,"(30,35]",HS,31.818312387791742,51.62260494840914,0.6163639440433215,5229.968540931148,2019
+2004,35,"(30,35]",HS,31.032675044883305,51.62260494840914,0.601145081227437,5222.749879836222,2019
+2004,35,"(30,35]",HS,31.818312387791742,51.62260494840914,0.6163639440433215,5205.452330473781,2019
+2004,26,"(25,30]",HS,48.86664272890484,38.716953711306864,1.2621510228640191,8487.237856257028,2019
+2004,26,"(25,30]",HS,49.966535008976656,38.716953711306864,1.2905595667870036,8370.765637275417,2019
+2004,26,"(25,30]",HS,48.34812208258528,48.39619213913358,0.9990067388688327,8487.555624514931,2019
+2004,26,"(25,30]",HS,52.009192100538606,51.62260494840914,1.0074887184115526,8457.964272562558,2019
+2004,26,"(25,30]",HS,51.69493716337522,38.716953711306864,1.3352015643802648,8441.84565358805,2019
+2004,36,"(35,40]",College,11656.02987432675,1116.3388320093482,10.441301099726632,222.10695069028898,2019
+2004,36,"(35,40]",College,11661.057953321364,879.1974905275935,13.263297585533069,220.1389416420962,2019
+2004,36,"(35,40]",College,11665.30039497307,1130.857689651088,10.315445083609283,231.17884584075895,2019
+2004,36,"(35,40]",College,11655.24423698384,888.87672895542,13.112329142288061,217.9000999363456,2019
+2004,36,"(35,40]",College,11689.183770197487,919.5276506435381,12.712161251504213,224.3188033544073,2019
+2004,40,"(35,40]",HS,1.3198707360861759,30.650921688117936,0.04306137184115523,5375.745327441907,2019
+2004,40,"(35,40]",HS,0.7542118491921006,29.03771528348015,0.02597352587244284,5291.261542236143,2019
+2004,40,"(35,40]",HS,4.556696588868941,27.424508878842364,0.16615417286047993,5390.2803281639935,2019
+2004,40,"(35,40]",HS,0.39281867145421906,30.650921688117936,0.012815884476534296,5382.840396816201,2019
+2004,40,"(35,40]",HS,7.856373429084381,30.650921688117936,0.2563176895306859,5365.012633738066,2019
+2004,58,"(55,60]",HS,240.7192818671454,80.6603202318893,2.984358122743682,6243.687947145789,2019
+2004,58,"(55,60]",HS,240.7192818671454,80.6603202318893,2.984358122743682,5471.710605688435,2019
+2004,58,"(55,60]",HS,240.7192818671454,80.6603202318893,2.984358122743682,6238.13653540759,2019
+2004,58,"(55,60]",HS,238.99087971274687,80.6603202318893,2.9629299638989175,6123.571052169897,2019
+2004,58,"(55,60]",HS,238.99087971274687,80.6603202318893,2.9629299638989175,5946.407456938047,2019
+2004,60,"(55,60]",NoHS,53.10908438061041,66.14146259014923,0.8029620498371048,5169.060104947521,2019
+2004,60,"(55,60]",College,81.39202872531419,20.97168326029122,3.8810441544015557,4578.461982225683,2019
+2004,60,"(55,60]",HS,53.10908438061041,32.264128092755726,1.6460722021660648,5183.141110143677,2019
+2004,60,"(55,60]",NoHS,60.9654578096948,29.03771528348015,2.0995266746891295,5082.140716746029,2019
+2004,60,"(55,60]",HS,109.67497307001796,64.52825618551145,1.6996425992779782,4897.626813475727,2019
+2004,38,"(35,40]",College,986.4462477558349,266.1790567652347,3.70594989607264,5934.068249854112,2019
+2004,38,"(35,40]",College,1014.7291921005386,266.1790567652347,3.812205229187179,6588.087158093641,2019
+2004,38,"(35,40]",College,1234.7076481149013,264.5658503605969,4.666919961257374,5858.029818403161,2019
+2004,38,"(35,40]",College,903.1686894075403,266.1790567652347,3.3930869707909417,5849.248866744025,2019
+2004,38,"(35,40]",College,887.4559425493717,264.5658503605969,3.3543858413313377,6111.232511376573,2019
+2004,49,"(45,50]",HS,42042.59676840215,2936.0356564407703,14.319511643591067,203.25895275519844,2019
+2004,49,"(45,50]",HS,42041.02549371634,3516.789962110374,11.954374855098864,199.00392572144776,2019
+2004,49,"(45,50]",HS,42039.45421903052,3145.752489043683,13.363878552254004,209.2478836398724,2019
+2004,49,"(45,50]",HS,42041.02549371634,3000.5639126262818,14.011041496836306,200.90088900322078,2019
+2004,49,"(45,50]",HS,42041.02549371634,2919.903592394393,14.398086842052775,211.8429243425889,2019
+2004,41,"(40,45]",College,1971.7297522441652,211.33003900755,9.330096949320692,3936.3880213225575,2019
+2004,41,"(40,45]",College,1285.0827145421904,209.7168326029122,6.127704193279644,7978.907163316505,2019
+2004,41,"(40,45]",College,1912.0213141831239,211.33003900755,9.047560503761677,3894.327910046605,2019
+2004,41,"(40,45]",College,1393.5006678635548,211.33003900755,6.593954529170226,4186.676390644514,2019
+2004,41,"(40,45]",College,1376.216646319569,209.7168326029122,6.5622612607608986,3982.116949594683,2019
+2004,42,"(40,45]",HS,352.67260323159786,104.8584163014561,3.3633218550402666,7124.726201660294,2019
+2004,42,"(40,45]",HS,352.67260323159786,104.8584163014561,3.3633218550402666,7907.503258992139,2019
+2004,42,"(40,45]",HS,352.67260323159786,104.8584163014561,3.3633218550402666,7031.505670926243,2019
+2004,42,"(40,45]",HS,352.67260323159786,104.8584163014561,3.3633218550402666,7020.28175106844,2019
+2004,42,"(40,45]",HS,351.101328545781,104.8584163014561,3.3483371285753956,7335.196858391183,2019
+2004,63,"(60,65]",HS,757.982908438061,104.8584163014561,7.228632046653707,7021.454423577752,2019
+2004,63,"(60,65]",HS,864.3582046678636,93.56597146899159,9.23795468691647,7766.05291907524,2019
+2004,63,"(60,65]",HS,794.5936086175942,82.2735266365271,9.657950024775252,6929.3011096140835,2019
+2004,63,"(60,65]",HS,754.997486535009,104.8584163014561,7.200161066370452,6907.224999992815,2019
+2004,63,"(60,65]",HS,770.2388509874327,90.33955865971603,8.526041774110364,7260.660338749835,2019
+2004,49,"(45,50]",College,239104.32574506284,6646.4103871076795,35.97495667870036,41.63062106675331,2019
+2004,49,"(45,50]",College,209322.46391382406,6646.4103871076795,31.494062467141,43.48043503638981,2019
+2004,49,"(45,50]",College,188558.93314183125,6646.4103871076795,28.370040692579998,42.76067606181603,2019
+2004,49,"(45,50]",College,82115.60071813286,6646.4103871076795,12.354879692264554,41.984425007031504,2019
+2004,49,"(45,50]",College,362674.15942549374,6646.4103871076795,54.566922338859484,42.77640695785887,2019
+2004,52,"(50,55]",HS,12092.058599640934,5452.637647675718,2.217653066455899,27.616107697857217,2019
+2004,52,"(50,55]",HS,52332.874685816874,5194.524622933671,10.074622508240465,25.483388426372862,2019
+2004,52,"(50,55]",HS,42519.47863554758,5775.278928603274,7.362324687897063,26.696224556148234,2019
+2004,52,"(50,55]",HS,91932.13931777379,3984.619819455332,23.07174673701749,26.087486167993212,2019
+2004,52,"(50,55]",HS,33190.03518850987,5775.278928603274,5.746914668333905,26.11546765252076,2019
+2004,75,"(70,75]",NoHS,961.792947935368,25.81130247420457,37.262472472924195,7750.354849001383,2019
+2004,75,"(70,75]",NoHS,961.6358204667864,29.03771528348015,33.11678660248697,8615.508802506301,2019
+2004,75,"(70,75]",NoHS,961.6358204667864,29.03771528348015,33.11678660248697,7672.6857542835805,2019
+2004,75,"(70,75]",NoHS,961.6358204667864,25.81130247420457,37.256384927797846,7647.9190886190745,2019
+2004,75,"(70,75]",NoHS,960.2216732495513,29.03771528348015,33.06808624147614,8017.060888663704,2019
+2004,54,"(50,55]",HS,225.1950879712747,104.8584163014561,2.147610996945293,7476.950887364837,2019
+2004,54,"(50,55]",HS,230.05032675044885,104.8584163014561,2.193913801721744,6947.670556751902,2019
+2004,54,"(50,55]",HS,208.85383123877918,104.8584163014561,1.9917698417106358,7513.615636777644,2019
+2004,54,"(50,55]",HS,229.75178456014362,104.8584163014561,2.1910667036934184,7471.867982941903,2019
+2004,54,"(50,55]",HS,248.29282585278276,104.8584163014561,2.3678864759788945,7241.9032876791025,2019
+2004,37,"(35,40]",College,47.76675044883303,45.16977932985802,1.0574935533780296,6468.983974111941,2019
+2004,37,"(35,40]",College,47.76675044883303,45.16977932985802,1.0574935533780296,6103.390275334547,2019
+2004,37,"(35,40]",College,47.76675044883303,45.16977932985802,1.0574935533780296,6441.749382965048,2019
+2004,37,"(35,40]",College,47.76675044883303,45.16977932985802,1.0574935533780296,6414.301445384364,2019
+2004,37,"(35,40]",College,47.76675044883303,45.16977932985802,1.0574935533780296,6296.939885720598,2019
+2004,35,"(30,35]",College,3950.1845601436266,1114.7256256047103,3.5436384249269874,2851.4317494731304,2019
+2004,35,"(30,35]",College,3793.057091561939,1114.7256256047103,3.4026822425512124,2702.0062249766365,2019
+2004,35,"(30,35]",College,3793.057091561939,1114.7256256047103,3.4026822425512124,3010.589330595665,2019
+2004,35,"(30,35]",College,3863.7644524236985,1117.5648688768729,3.457306649507239,2664.416711403422,2019
+2004,35,"(30,35]",College,3997.322800718133,1114.7256256047103,3.5859252796397203,2785.7402335687298,2019
+2004,43,"(40,45]",HS,-46.96540035906643,72.59428820870036,-0.6469572402727639,4278.9252086356155,2019
+2004,43,"(40,45]",HS,-45.34698743267504,72.59428820870036,-0.6246632972322503,4334.9306562693955,2019
+2004,43,"(40,45]",HS,-46.336890484739676,72.59428820870036,-0.6382993983152829,4260.950567890663,2019
+2004,43,"(40,45]",HS,-46.195475763016155,72.59428820870036,-0.6363513838748497,4276.989690740445,2019
+2004,43,"(40,45]",HS,-45.56696588868941,72.59428820870036,-0.6276935419173688,4289.355342262293,2019
+2004,48,"(45,50]",College,1863.6889048473968,193.58476855653433,9.627249699157641,2709.518923580254,2019
+2004,48,"(45,50]",College,1887.2580251346499,193.58476855653433,9.749000601684717,2839.6392139925288,2019
+2004,48,"(45,50]",College,1887.4151526032317,193.58476855653433,9.749812274368232,2681.0154594238957,2019
+2004,48,"(45,50]",College,1887.2580251346499,193.58476855653433,9.749000601684717,2893.4809800175653,2019
+2004,48,"(45,50]",College,1864.1602872531419,193.58476855653433,9.629684717208184,2752.97665509135,2019
+2004,70,"(65,70]",HS,319.5972710951526,46.782985734495796,6.831485123864061,8787.715189761251,2019
+2004,70,"(65,70]",HS,319.7543985637343,42.91129036336512,7.451521402784939,8357.45038549282,2019
+2004,70,"(65,70]",HS,319.5972710951526,35.4905409020313,9.00513948145717,9192.182401236769,2019
+2004,70,"(65,70]",HS,319.7543985637343,37.10374730666908,8.617846491916497,8914.407800732635,2019
+2004,70,"(65,70]",HS,318.0259964093358,36.78110602574152,8.646450060168474,8957.29057608161,2019
+2004,51,"(50,55]",HS,263.97414721723516,114.53765472928282,2.3046931407942233,7407.303222294226,2019
+2004,51,"(50,55]",HS,263.84844524236985,112.92444832464501,2.336504177411037,6799.730686332869,2019
+2004,51,"(50,55]",HS,265.5454219030521,112.92444832464501,2.3515317173800936,7470.540744150816,2019
+2004,51,"(50,55]",HS,263.81701974865354,112.92444832464501,2.3362258896338326,7459.3408997206525,2019
+2004,51,"(50,55]",HS,263.95843447037703,114.53765472928282,2.3045559566787004,7195.042604969752,2019
+2004,45,"(40,45]",College,482.85271095152603,106.47162270609388,4.535036648069139,6049.063389297164,2019
+2004,45,"(40,45]",College,322.8969479353681,101.63200349218052,3.1771187897541693,6732.004880887174,2019
+2004,45,"(40,45]",College,473.0479569120287,98.40559068290497,4.807124815055926,5972.548576630948,2019
+2004,45,"(40,45]",College,533.9191382405745,104.8584163014561,5.091810052763121,5986.771048316975,2019
+2004,45,"(40,45]",College,370.9465278276481,100.01879708754274,3.7087681378828457,6256.891689939463,2019
+2004,42,"(40,45]",College,724.2005026929982,145.18857641740072,4.987999197753711,6191.349053598677,2019
+2004,42,"(40,45]",College,723.8862477558348,145.18857641740072,4.985834737264341,6874.862404608755,2019
+2004,42,"(40,45]",College,724.0433752244165,145.18857641740072,4.986916967509027,6108.0980971110675,2019
+2004,42,"(40,45]",College,725.6146499102334,145.18857641740072,4.997739269955877,6099.692120870393,2019
+2004,42,"(40,45]",College,724.0433752244165,145.18857641740072,4.986916967509027,6375.569106885696,2019
+2004,54,"(50,55]",HS,1329.2983842010774,112.92444832464501,11.771572975760705,6813.542537937651,2019
+2004,54,"(50,55]",HS,1329.2983842010774,112.92444832464501,11.771572975760705,7582.794007860136,2019
+2004,54,"(50,55]",HS,1329.1412567324955,112.92444832464501,11.770181536874679,6727.357801998858,2019
+2004,54,"(50,55]",HS,1329.1412567324955,111.31124192000723,11.940763877988804,6743.377706170936,2019
+2004,54,"(50,55]",HS,1329.2983842010774,112.92444832464501,11.771572975760705,7047.636128280754,2019
+2004,42,"(40,45]",HS,62.222477558348295,59.68863697159809,1.042450970826422,5138.883295483239,2019
+2004,42,"(40,45]",HS,62.37960502692998,59.68863697159809,1.0450834227729533,5055.008024602287,2019
+2004,42,"(40,45]",HS,62.37960502692998,59.68863697159809,1.0450834227729533,5118.805689584302,2019
+2004,42,"(40,45]",HS,62.222477558348295,59.68863697159809,1.042450970826422,5156.277414440996,2019
+2004,42,"(40,45]",HS,62.37960502692998,59.68863697159809,1.0450834227729533,5103.857391351068,2019
+2004,37,"(35,40]",College,553.245816876122,120.99048034783397,4.572639229843562,5974.235249452895,2019
+2004,37,"(35,40]",College,554.9742190305207,120.99048034783397,4.586924669073405,6632.328867053057,2019
+2004,37,"(35,40]",College,554.9742190305207,120.99048034783397,4.586924669073405,5899.160231487446,2019
+2004,37,"(35,40]",College,554.9742190305207,120.99048034783397,4.586924669073405,5893.289114836567,2019
+2004,37,"(35,40]",College,553.4029443447038,120.99048034783397,4.573937906137184,6152.364345776256,2019
+2004,46,"(45,50]",HS,517.7350089766607,241.98096069566793,2.139569193742479,4803.2838713431065,2019
+2004,46,"(45,50]",HS,517.7350089766607,241.98096069566793,2.139569193742479,5339.889416591786,2019
+2004,46,"(45,50]",HS,517.7350089766607,241.98096069566793,2.139569193742479,4751.055517234699,2019
+2004,46,"(45,50]",HS,517.7350089766607,241.98096069566793,2.139569193742479,4760.203627373638,2019
+2004,46,"(45,50]",HS,517.7350089766607,241.98096069566793,2.139569193742479,4963.876965655842,2019
+2004,57,"(55,60]",College,2969.8662836624776,175.8394981055187,16.88964263239824,1336.193859658274,2019
+2004,57,"(55,60]",College,2836.465062836625,175.8394981055187,16.130989302156127,1354.6467718583574,2019
+2004,57,"(55,60]",College,2944.725888689408,175.8394981055187,16.74666909548571,1363.8997088864678,2019
+2004,57,"(55,60]",College,2804.568186714542,175.8394981055187,15.949591627198357,1305.001316730947,2019
+2004,57,"(55,60]",College,2910.4721005386,175.8394981055187,16.55186765144239,1362.263791412555,2019
+2004,58,"(55,60]",HS,57.037271095152605,80.6603202318893,0.7071292418772563,5634.999811905054,2019
+2004,58,"(55,60]",HS,57.037271095152605,80.6603202318893,0.7071292418772563,5459.94620594399,2019
+2004,58,"(55,60]",HS,55.46599640933573,80.6603202318893,0.6876490974729242,5624.656257566192,2019
+2004,58,"(55,60]",HS,53.89472172351885,80.6603202318893,0.668168953068592,5627.787731492901,2019
+2004,58,"(55,60]",HS,57.037271095152605,80.6603202318893,0.7071292418772563,5579.905167206837,2019
+2004,54,"(50,55]",HS,6.049407540394973,19.358476855653432,0.3124939831528279,5665.604980426282,2019
+2004,54,"(50,55]",HS,6.22224775583483,32.264128092755726,0.19285342960288807,5671.149392221062,2019
+2004,54,"(50,55]",HS,6.206535008976661,25.81130247420457,0.2404580324909748,5672.4602333267485,2019
+2004,54,"(50,55]",HS,6.2379605026929985,29.03771528348015,0.214822703569996,5687.625649384901,2019
+2004,54,"(50,55]",HS,6.22224775583483,27.424508878842364,0.22688638776810363,5665.377509374983,2019
+2004,63,"(60,65]",College,309.85536804308794,54.84901775768473,5.649241877256317,5516.650338407874,2019
+2004,63,"(60,65]",College,314.4120646319569,54.84901775768473,5.7323189636865575,4825.807755295648,2019
+2004,63,"(60,65]",College,291.0000718132855,54.84901775768473,5.305474623062222,5550.381890709982,2019
+2004,63,"(60,65]",College,312.84078994614003,54.84901775768473,5.7036716925037165,5434.097222931941,2019
+2004,63,"(60,65]",College,294.1426211849192,54.84901775768473,5.362769165427904,5308.580925516168,2019
+2004,76,"(75,80]",HS,291.6285816876122,58.0754305669603,5.021548335338949,10767.513242881361,2019
+2004,76,"(75,80]",HS,218.72143626570917,66.14146259014923,3.3068732940036982,9956.722810528572,2019
+2004,76,"(75,80]",HS,318.65450628366244,61.30184337623587,5.19812274368231,10721.68805686377,2019
+2004,76,"(75,80]",HS,387.0049551166966,58.0754305669603,6.663832731648616,10553.627029116109,2019
+2004,76,"(75,80]",HS,334.05299820466786,54.84901775768473,6.0904098534720745,10474.17114796824,2019
+2004,38,"(35,40]",College,288.17177737881514,69.36787539942482,4.1542540508773405,1797.6906541028425,2019
+2004,38,"(35,40]",College,291.31432675044886,67.75466899478702,4.299546157813306,1731.12222879428,2019
+2004,38,"(35,40]",College,288.32890484739676,69.36787539942482,4.15651918394761,1748.3189616513027,2019
+2004,38,"(35,40]",College,289.5859245960503,67.75466899478702,4.274036444902871,1673.6164728644658,2019
+2004,38,"(35,40]",College,289.5859245960503,67.75466899478702,4.274036444902871,1658.4751634352383,2019
+2004,61,"(60,65]",College,1087.2435188509876,264.5658503605969,4.109538390420005,6430.908353209988,2019
+2004,61,"(60,65]",College,1115.872143626571,340.3865513785729,3.278249798963163,6574.315759252121,2019
+2004,61,"(60,65]",College,1110.6083734290844,264.5658503605969,4.197852337765255,6304.785553650401,2019
+2004,61,"(60,65]",College,1083.566736086176,267.7922631698725,4.046295898395024,6245.036652880635,2019
+2004,61,"(60,65]",College,946.3158922800719,224.23569024465226,4.220184089551464,6482.902260115799,2019
+2004,43,"(40,45]",College,2362.09723518851,338.77334497393514,6.972500257864877,3187.409024940715,2019
+2004,43,"(40,45]",College,2378.4542046678635,338.77334497393514,7.020783187209901,3332.082977635431,2019
+2004,43,"(40,45]",College,2379.3812567324953,338.77334497393514,7.0235196836857465,3155.0653273458165,2019
+2004,43,"(40,45]",College,2362.9614362657094,338.77334497393514,6.9750512291559215,3391.535509751874,2019
+2004,43,"(40,45]",College,2366.81105924596,338.77334497393514,6.986414646725114,3224.942672856644,2019
+2004,22,"(20,25]",HS,38.81048473967684,61.30184337623587,0.6331046931407942,9877.45505951518,2019
+2004,22,"(20,25]",HS,38.81048473967684,61.30184337623587,0.6331046931407942,9788.06952713129,2019
+2004,22,"(20,25]",HS,39.2818671454219,61.30184337623587,0.6407942238267147,9919.880350965812,2019
+2004,22,"(20,25]",HS,40.696014362657095,61.30184337623587,0.6638628158844766,9696.696645204695,2019
+2004,22,"(20,25]",HS,40.38175942549371,61.30184337623587,0.6587364620938627,9868.84906236533,2019
+2004,71,"(70,75]",College,75356.1812854578,4078.185790924323,18.4778686280446,26.53403282575663,2019
+2004,71,"(70,75]",College,61556.88560143627,4116.90274463563,14.952232155992892,27.460195446701853,2019
+2004,71,"(70,75]",College,68925.11112387791,4066.8933460918593,16.94785312973907,27.68412532033214,2019
+2004,71,"(70,75]",College,74119.2267145422,4065.2801396872205,18.232255630049856,26.087486167993212,2019
+2004,71,"(70,75]",College,69498.73637342908,4058.020710866351,17.126264581974432,26.767361096680492,2019
+2004,53,"(50,55]",College,798.2075403949732,96.79238427826716,8.246594464500603,7328.040242906577,2019
+2004,53,"(50,55]",College,689.6324596050268,96.79238427826716,7.124862815884476,8155.91283095955,2019
+2004,53,"(50,55]",College,683.3473608617594,96.79238427826716,7.059929001203369,7234.641515573782,2019
+2004,53,"(50,55]",College,771.3387432675045,96.79238427826716,7.969002406738869,7251.944997367323,2019
+2004,53,"(50,55]",College,700.6313824057451,96.79238427826716,7.238496991576414,7580.255376521161,2019
+2004,25,"(20,25]",HS,12.80588868940754,48.39619213913358,0.26460529482551143,8935.037619382712,2019
+2004,25,"(20,25]",HS,11.391741472172352,48.39619213913358,0.23538507821901325,8661.316920783116,2019
+2004,25,"(20,25]",HS,12.963016157989228,48.39619213913358,0.2678519855595668,8905.806712600734,2019
+2004,25,"(20,25]",HS,12.80588868940754,48.39619213913358,0.26460529482551143,8870.01184872221,2019
+2004,25,"(20,25]",HS,12.648761220825852,48.39619213913358,0.26135860409145606,8780.005966416084,2019
+2004,68,"(65,70]",College,286.490513464991,74.20749461333816,3.860668183958562,9323.601971518052,2019
+2004,68,"(65,70]",College,291.31432675044886,80.6603202318893,3.6116187725631774,8601.500944091204,2019
+2004,68,"(65,70]",College,261.4915332136445,82.2735266365271,3.1783192468323067,9468.693958748669,2019
+2004,68,"(65,70]",College,276.49720646319565,67.75466899478702,4.080858346226576,9381.34502121739,2019
+2004,68,"(65,70]",College,285.8148653500898,62.91504978087366,4.542869573266685,9257.433053635179,2019
+2004,50,"(45,50]",College,13221.663684021543,1021.1596541357186,12.947694937293615,366.71739838278404,2019
+2004,50,"(45,50]",College,13221.96222621185,1021.1596541357186,12.94798729333128,366.0885149283489,2019
+2004,50,"(45,50]",College,13222.46503411131,1021.1596541357186,12.948479682447346,375.4966990479824,2019
+2004,50,"(45,50]",College,13222.307906642729,1021.1596541357186,12.948325810848575,364.4667432347092,2019
+2004,50,"(45,50]",College,13222.276481149012,1021.1596541357186,12.94829503652882,367.06265654639316,2019
+2004,40,"(35,40]",HS,351.9655296229803,280.6979144069748,1.2538943524627577,4194.7557891244005,2019
+2004,40,"(35,40]",HS,351.9655296229803,280.6979144069748,1.2538943524627577,4658.589644916203,2019
+2004,40,"(35,40]",HS,351.9655296229803,280.6979144069748,1.2538943524627577,4142.772255847257,2019
+2004,40,"(35,40]",HS,351.9655296229803,280.6979144069748,1.2538943524627577,4139.095537094659,2019
+2004,40,"(35,40]",HS,351.9655296229803,280.6979144069748,1.2538943524627577,4321.401066508875,2019
+2004,39,"(35,40]",NoHS,90.66254937163376,106.47162270609388,0.8515184334317909,4489.414130067207,2019
+2004,39,"(35,40]",NoHS,78.24947935368044,96.79238427826716,0.8084259927797836,4547.966309310491,2019
+2004,39,"(35,40]",NoHS,73.22140035906642,90.33955865971603,0.8105131511088188,4469.815774647339,2019
+2004,39,"(35,40]",NoHS,70.07885098743267,90.33955865971603,0.7757271789582257,4476.261893870288,2019
+2004,39,"(35,40]",NoHS,81.2349012567325,117.76406753855836,0.6898105929479256,4499.47587882834,2019
+2004,75,"(70,75]",HS,109790.30463195691,334.7403289623406,327.9864872341351,29.35650823389555,2019
+2004,75,"(70,75]",HS,9987.807540394973,336.1922147265146,29.708622338324666,31.10143751073473,2019
+2004,75,"(70,75]",HS,21697.889263913825,333.772405119558,65.00803820538007,31.66536474564071,2019
+2004,75,"(70,75]",HS,88652.26053859964,337.9667417716162,262.31060510240127,28.98419262984593,2019
+2004,75,"(70,75]",HS,61804.04710951526,336.3535353669784,183.74727960591815,29.1175918322915,2019
+2004,62,"(60,65]",College,5472.74973070018,1290.5651237102288,4.240583935018051,470.97551518181336,2019
+2004,62,"(60,65]",College,5040.649192100539,1290.5651237102288,3.9057689530685926,471.28530853515394,2019
+2004,62,"(60,65]",College,6069.834111310593,1290.5651237102288,4.703237364620939,482.31635596667536,2019
+2004,62,"(60,65]",College,5541.885816876122,1290.5651237102288,4.294154332129963,467.89929129492793,2019
+2004,62,"(60,65]",College,5414.612567324955,1290.5651237102288,4.195536101083033,471.49876877069954,2019
+2004,23,"(20,25]",College,-13.512962298025135,27.424508878842364,-0.4927330643448715,9212.688264800898,2019
+2004,23,"(20,25]",College,-11.941687612208257,19.358476855653432,-0.6168712394705174,9052.195566970913,2019
+2004,23,"(20,25]",College,-11.941687612208257,30.650921688117936,-0.38960288808664256,9229.38337111588,2019
+2004,23,"(20,25]",College,-13.512962298025135,20.97168326029122,-0.6443432379894474,9155.658471449588,2019
+2004,23,"(20,25]",College,-11.941687612208257,25.81130247420457,-0.4626534296028882,9182.613899399028,2019
+2004,28,"(25,30]",College,-10.998922800718134,67.75466899478702,-0.16233453670276773,6651.212254209824,2019
+2004,28,"(25,30]",College,-1.0213285457809695,74.20749461333816,-0.013763145503060745,6617.723409516473,2019
+2004,28,"(25,30]",College,-9.191956912028726,79.04711382725151,-0.11628453547483977,6658.978227752557,2019
+2004,28,"(25,30]",College,-8.406319569120287,80.6603202318893,-0.1042187725631769,6704.503722621674,2019
+2004,28,"(25,30]",College,-6.363662477558349,74.20749461333816,-0.08575498351907081,6675.282191737106,2019
+2004,32,"(30,35]",College,95.06211849192101,150.02819563131413,0.6336283529366096,9536.84023403846,2019
+2004,32,"(30,35]",College,93.9622262118492,127.4433059663851,0.7372864780880136,9390.672473609013,2019
+2004,32,"(30,35]",College,100.56157989228008,125.83009956174732,0.7991854114597797,9514.220166381006,2019
+2004,32,"(30,35]",College,94.74786355475763,148.4149892266763,0.6383982106419714,9621.43705581385,2019
+2004,32,"(30,35]",College,81.2349012567325,138.73575079884964,0.5855368986650994,9498.25452001888,2019
+2004,71,"(70,75]",College,2430.6048114901255,46.782985734495796,51.954888584588566,4830.313024353769,2019
+2004,71,"(70,75]",College,2430.4476840215443,46.782985734495796,51.951529939001624,5055.929351257166,2019
+2004,71,"(70,75]",College,2430.2905565529622,46.782985734495796,51.94817129341467,4794.195757224815,2019
+2004,71,"(70,75]",College,2430.6048114901255,46.782985734495796,51.954888584588566,5145.83337457467,2019
+2004,71,"(70,75]",College,2430.6048114901255,46.782985734495796,51.954888584588566,4908.015595672528,2019
+2004,27,"(25,30]",HS,18.90243447037702,58.0754305669603,0.32548074608904937,4106.375812996105,2019
+2004,27,"(25,30]",HS,17.048330341113108,58.0754305669603,0.29355495387083835,4167.087138282792,2019
+2004,27,"(25,30]",HS,21.573601436265708,58.0754305669603,0.37147553148816687,4123.290341582862,2019
+2004,27,"(25,30]",HS,13.984344703770198,58.0754305669603,0.24079622944243884,4128.697867746729,2019
+2004,27,"(25,30]",HS,16.498384201077197,58.0754305669603,0.28408543922984353,4148.708312508405,2019
+2004,39,"(35,40]",HS,7.078592459605027,66.14146259014923,0.10702201285550762,4107.308134374436,2019
+2004,39,"(35,40]",HS,7.078592459605027,66.14146259014923,0.10702201285550762,4089.719099044172,2019
+2004,39,"(35,40]",HS,7.086448833034111,66.14146259014923,0.1071407942238267,4076.5212024852053,2019
+2004,39,"(35,40]",HS,6.921464991023339,66.14146259014923,0.10464638548912565,4089.6781861333534,2019
+2004,39,"(35,40]",HS,7.078592459605027,66.14146259014923,0.10702201285550762,4067.635298044113,2019
+2004,85,"(80,85]",HS,406.33163375224416,33.87733449739351,11.994203197524495,9280.444684040867,2019
+2004,85,"(80,85]",HS,406.33163375224416,30.650921688117936,13.256750902527076,9326.098456800115,2019
+2004,85,"(80,85]",HS,406.33163375224416,30.650921688117936,13.256750902527076,9270.831911416768,2019
+2004,85,"(80,85]",HS,406.33163375224416,32.264128092755726,12.59391335740072,9243.494112685612,2019
+2004,85,"(80,85]",HS,406.33163375224416,30.650921688117936,13.256750902527076,9271.873435585865,2019
+2004,40,"(35,40]",College,255.33213644524236,225.84889664929003,1.1305440948942755,7511.384169115523,2019
+2004,40,"(35,40]",College,248.73278276481147,225.84889664929003,1.1013238782877772,7208.401917923324,2019
+2004,40,"(35,40]",College,247.83715619389588,225.84889664929003,1.0973582774626098,7451.5198445230435,2019
+2004,40,"(35,40]",College,248.10427289048476,225.84889664929003,1.09854100051573,7483.709173898116,2019
+2004,40,"(35,40]",College,254.23224416517056,225.84889664929003,1.1256740587931926,7360.029217933016,2019
+2004,67,"(65,70]",College,121789.65802513466,2823.111208116126,43.14022687983497,18.968049583545866,2019
+2004,67,"(65,70]",College,131656.94879712746,3178.0166171364385,41.427394711282965,20.08277893185048,2019
+2004,67,"(65,70]",College,109431.28407899462,2597.2623114668354,42.133319994618475,19.680052415018398,2019
+2004,67,"(65,70]",College,127047.53594254938,2613.394375513213,48.613993024914215,18.634196351820794,2019
+2004,67,"(65,70]",College,112820.03648114901,3097.3562969045493,36.42462334536703,19.074323977144275,2019
+2004,40,"(35,40]",HS,266.6453141831239,101.63200349218052,2.6236353217580657,6310.916772189417,2019
+2004,40,"(35,40]",HS,266.8024416517056,101.63200349218052,2.625181364964759,6058.13272250389,2019
+2004,40,"(35,40]",HS,266.8024416517056,101.63200349218052,2.625181364964759,6305.210385789051,2019
+2004,40,"(35,40]",HS,266.6453141831239,101.63200349218052,2.6236353217580657,6281.703040132922,2019
+2004,40,"(35,40]",HS,266.6453141831239,101.63200349218052,2.6236353217580657,6218.111897787725,2019
+2004,78,"(75,80]",HS,514.7495870736086,54.84901775768473,9.384846039498832,10897.5174950216,2019
+2004,78,"(75,80]",HS,514.7495870736086,50.00939854377137,10.293056946547106,9886.212493623305,2019
+2004,78,"(75,80]",HS,514.7495870736086,53.23581135304694,9.669235313423039,10891.047909832932,2019
+2004,78,"(75,80]",HS,514.7495870736086,41.94336652058244,12.272490974729243,10686.380123800873,2019
+2004,78,"(75,80]",HS,514.7495870736086,53.23581135304694,9.669235313423039,10581.53632830559,2019
+2004,49,"(45,50]",College,1.0527540394973072,66.14146259014923,0.01591670335475918,6869.258582697237,2019
+2004,49,"(45,50]",College,62.19105206463196,66.14146259014923,0.9402733116139826,6492.44840395871,2019
+2004,49,"(45,50]",College,37.19207181328546,66.14146259014923,0.5623109976226116,6876.880068063076,2019
+2004,49,"(45,50]",College,65.31788868940754,66.14146259014923,0.9875482962049836,6897.602510486254,2019
+2004,49,"(45,50]",College,65.47501615798923,66.14146259014923,0.9899239235713657,6697.367797641467,2019
+2004,47,"(45,50]",College,708.3306283662478,141.9621636081252,4.9895733508368885,893.3170184834929,2019
+2004,47,"(45,50]",College,705.5023339317775,141.9621636081252,4.969650475877913,858.9334568167615,2019
+2004,47,"(45,50]",College,708.3306283662478,143.57537001276296,4.933510728917374,897.8578557918378,2019
+2004,47,"(45,50]",College,881.0137163375225,141.9621636081252,6.205975549721037,844.9923468186007,2019
+2004,47,"(45,50]",College,818.319856373429,174.54893298180846,4.688197414868841,906.9432997046436,2019
+2004,81,"(80,85]",NoHS,14.45572710951526,17.74527045101565,0.8146242205447981,7296.706910224646,2019
+2004,81,"(80,85]",NoHS,14.45572710951526,17.74527045101565,0.8146242205447981,7273.312487562408,2019
+2004,81,"(80,85]",NoHS,14.298599640933574,17.74527045101565,0.8057696094519199,7251.6526801569025,2019
+2004,81,"(80,85]",NoHS,14.45572710951526,17.74527045101565,0.8146242205447981,7310.002910344633,2019
+2004,81,"(80,85]",NoHS,14.45572710951526,17.74527045101565,0.8146242205447981,7286.626703180584,2019
+2004,36,"(35,40]",HS,2.5297522441651705,29.03771528348015,0.08711953469715203,6381.317308696581,2019
+2004,36,"(35,40]",HS,2.5297522441651705,29.03771528348015,0.08711953469715203,6281.030221418525,2019
+2004,36,"(35,40]",HS,2.521895870736086,29.03771528348015,0.08684897713598075,6398.571186259623,2019
+2004,36,"(35,40]",HS,2.5297522441651705,29.03771528348015,0.08711953469715203,6389.73956203017,2019
+2004,36,"(35,40]",HS,2.521895870736086,29.03771528348015,0.08684897713598075,6368.576987135656,2019
+2004,51,"(50,55]",College,98544.0631956912,2903.771528348015,33.936576012835936,214.9446503166411,2019
+2004,51,"(50,55]",College,98544.0631956912,2903.771528348015,33.936576012835936,219.4278147238666,2019
+2004,51,"(50,55]",College,98544.0631956912,2903.771528348015,33.936576012835936,217.6396252051789,2019
+2004,51,"(50,55]",College,98544.0631956912,2903.771528348015,33.936576012835936,212.85152184391578,2019
+2004,51,"(50,55]",College,98544.0631956912,2903.771528348015,33.936576012835936,212.13419652670527,2019
+2004,43,"(40,45]",College,148.2183411131059,62.91504978087366,2.3558487457187813,7675.087921814549,2019
+2004,43,"(40,45]",College,146.64706642728905,61.30184337623587,2.3922129963898917,7153.775803449482,2019
+2004,43,"(40,45]",College,146.64706642728905,61.30184337623587,2.3922129963898917,7670.409979437051,2019
+2004,43,"(40,45]",College,148.3754685816876,62.91504978087366,2.3583462001295934,7668.886678278922,2019
+2004,43,"(40,45]",College,148.3754685816876,62.91504978087366,2.3583462001295934,7492.416047032124,2019
+2004,45,"(40,45]",College,5220.245888689407,564.6222416232251,9.245554822073233,269.2094146874113,2019
+2004,45,"(40,45]",College,5218.67461400359,564.6222416232251,9.242771944301186,261.2068357552856,2019
+2004,45,"(40,45]",College,5218.67461400359,564.6222416232251,9.242771944301186,278.8299964143107,2019
+2004,45,"(40,45]",College,5218.67461400359,564.6222416232251,9.242771944301186,266.2696981144753,2019
+2004,45,"(40,45]",College,5218.67461400359,564.6222416232251,9.242771944301186,273.62981941700235,2019
+2004,70,"(65,70]",College,19582.953536804307,1822.9232372406984,10.742610076355387,434.9010702018885,2019
+2004,70,"(65,70]",College,20458.467791741474,1629.338468684164,12.55630317761018,426.7109999482765,2019
+2004,70,"(65,70]",College,19479.87791741472,1629.338468684164,11.95569753726275,451.31766095998285,2019
+2004,70,"(65,70]",College,19193.513105924594,1613.2064046377861,11.8977416967509,430.03415674536683,2019
+2004,70,"(65,70]",College,26036.96430879713,1839.0553012870762,14.157793020457282,415.2170403199343,2019
+2004,60,"(55,60]",College,824.1335727109516,150.02819563131413,5.493191258103334,4698.1599268778955,2019
+2004,60,"(55,60]",College,824.1335727109516,151.6414020359519,5.434753053229895,5196.381890893345,2019
+2004,60,"(55,60]",College,824.1335727109516,150.02819563131413,5.493191258103334,4636.4987694203655,2019
+2004,60,"(55,60]",College,824.2907001795332,151.6414020359519,5.435789231123742,4621.72731505961,2019
+2004,60,"(55,60]",College,824.2907001795332,150.02819563131413,5.494238577694964,4858.216174079313,2019
+2004,46,"(45,50]",HS,392.5515547576302,179.06591091479427,2.192218232673106,5969.940276590516,2019
+2004,46,"(45,50]",HS,399.5437271095153,180.67911731943207,2.2113442496132025,6643.948739522448,2019
+2004,46,"(45,50]",HS,407.1015583482944,180.67911731943207,2.2531743811242904,5894.426294921875,2019
+2004,46,"(45,50]",HS,395.56840215439854,179.06591091479427,2.209065925130907,5908.462733472232,2019
+2004,46,"(45,50]",HS,405.6245601436266,179.06591091479427,2.2652248999902427,6175.050136211934,2019
+2004,71,"(70,75]",College,439.9569120287253,108.89143231305059,4.04032624682444,7622.7860442512565,2019
+2004,71,"(70,75]",College,439.9569120287253,108.89143231305059,4.04032624682444,7249.558592691234,2019
+2004,71,"(70,75]",College,439.9569120287253,108.89143231305059,4.04032624682444,7973.635718872608,2019
+2004,71,"(70,75]",College,439.9569120287253,108.89143231305059,4.04032624682444,7732.683855680974,2019
+2004,71,"(70,75]",College,439.9569120287253,108.89143231305059,4.04032624682444,7769.881945788604,2019
+2004,49,"(45,50]",NoHS,6.5993536804308794,35.4905409020313,0.18594683295044304,4986.42820650075,2019
+2004,49,"(45,50]",NoHS,6.756481149012568,35.4905409020313,0.19037413849688217,4880.879961340379,2019
+2004,49,"(45,50]",NoHS,6.5993536804308794,35.4905409020313,0.18594683295044304,5028.524419046365,2019
+2004,49,"(45,50]",NoHS,6.756481149012568,35.4905409020313,0.19037413849688217,5013.2974912375885,2019
+2004,49,"(45,50]",NoHS,6.5993536804308794,35.4905409020313,0.18594683295044304,4963.790585423431,2019
+2004,37,"(35,40]",NoHS,0.47138240574506285,22.58488966492901,0.02087158329035585,3800.3094756418554,2019
+2004,37,"(35,40]",NoHS,0.6285098743267505,24.19809606956679,0.025973525872442844,3849.874161623363,2019
+2004,37,"(35,40]",NoHS,0.7856373429084381,22.58488966492901,0.034785972150593085,3783.7193786600874,2019
+2004,37,"(35,40]",NoHS,0.31425493716337527,22.58488966492901,0.013914388860237235,3789.176047894505,2019
+2004,37,"(35,40]",NoHS,0.6285098743267505,22.58488966492901,0.02782877772047447,3808.826791721555,2019
+2004,53,"(50,55]",HS,3445.176876122083,967.9238427826717,3.5593470517448855,1686.4021159818672,2019
+2004,53,"(50,55]",HS,3445.176876122083,967.9238427826717,3.5593470517448855,1682.8653497835162,2019
+2004,53,"(50,55]",HS,3445.176876122083,967.9238427826717,3.5593470517448855,1911.1400065948205,2019
+2004,53,"(50,55]",HS,3445.176876122083,967.9238427826717,3.5593470517448855,1608.5930406022744,2019
+2004,53,"(50,55]",HS,3445.176876122083,967.9238427826717,3.5593470517448855,1704.3010146212546,2019
+2004,35,"(30,35]",NoHS,-3.9281867145421905,40.33016011594465,-0.09740072202166065,4495.8035548398575,2019
+2004,35,"(30,35]",NoHS,-2.356912028725314,40.33016011594465,-0.05844043321299639,4479.308446046065,2019
+2004,35,"(30,35]",NoHS,-2.356912028725314,40.33016011594465,-0.05844043321299639,4491.718421191482,2019
+2004,35,"(30,35]",NoHS,-3.9281867145421905,40.33016011594465,-0.09740072202166065,4467.293362210229,2019
+2004,35,"(30,35]",NoHS,-2.356912028725314,40.33016011594465,-0.05844043321299639,4473.983058127153,2019
+2004,26,"(25,30]",HS,-2.5124682226211847,48.39619213913358,-0.05191458483754512,5038.638775980524,2019
+2004,26,"(25,30]",HS,-2.5124682226211847,48.39619213913358,-0.05191458483754512,5113.13328200273,2019
+2004,26,"(25,30]",HS,-2.5124682226211847,48.39619213913358,-0.05191458483754512,5059.393378943298,2019
+2004,26,"(25,30]",HS,-2.5124682226211847,48.39619213913358,-0.05191458483754512,5066.028565845857,2019
+2004,26,"(25,30]",HS,-2.5124682226211847,48.39619213913358,-0.05191458483754512,5090.581945149745,2019
+2004,83,"(80,85]",College,853.7521005385996,69.36787539942482,12.307600537318441,9527.621141191357,2019
+2004,83,"(80,85]",College,469.35546140035905,41.94336652058244,11.190219105803942,11830.781473201287,2019
+2004,83,"(80,85]",College,1106.1773788150808,70.9810818040626,15.584115523465702,9406.18789852356,2019
+2004,83,"(80,85]",College,975.4944631956913,51.62260494840914,18.896653203971127,9428.685184767575,2019
+2004,83,"(80,85]",College,896.4907719928187,37.10374730666908,24.161731282373257,9855.541043307177,2019
+2004,49,"(45,50]",HS,239.46226211849194,187.13194293798318,1.2796439686294039,7354.610183377539,2019
+2004,49,"(45,50]",HS,154.7705565529623,187.13194293798318,0.827066475787377,6833.990138117454,2019
+2004,49,"(45,50]",HS,225.9492998204668,187.13194293798318,1.2074330885098967,7390.675010265477,2019
+2004,49,"(45,50]",HS,313.1550448833034,187.13194293798318,1.6734451636997385,7349.610447363069,2019
+2004,49,"(45,50]",HS,188.63152603231597,187.13194293798318,1.008013506784514,7123.408521594734,2019
+2004,49,"(45,50]",HS,677.6907719928187,169.38667248696757,4.000850610280213,6181.44996687164,2019
+2004,49,"(45,50]",HS,679.2620466786356,169.38667248696757,4.010126869520371,6879.337951982483,2019
+2004,49,"(45,50]",HS,674.5482226211849,169.38667248696757,3.982298091799896,6103.260591792909,2019
+2004,49,"(45,50]",HS,674.3910951526033,169.38667248696757,3.9813704658758806,6117.794328914591,2019
+2004,49,"(45,50]",HS,674.7053500897665,169.38667248696757,3.9832257177239114,6393.826686942612,2019
+2004,53,"(50,55]",HS,-25.926032315978457,17.74527045101565,-1.4610108303249096,6047.222439175255,2019
+2004,53,"(50,55]",HS,-25.926032315978457,17.74527045101565,-1.4610108303249096,5858.530040023079,2019
+2004,53,"(50,55]",HS,-26.08315978456014,19.358476855653432,-1.3473766546329722,6078.725474803294,2019
+2004,53,"(50,55]",HS,-26.08315978456014,17.74527045101565,-1.4698654414177876,6115.258711122992,2019
+2004,53,"(50,55]",HS,-25.926032315978457,16.132064046377863,-1.6071119133574006,5976.135566407011,2019
+2004,61,"(60,65]",HS,6.442226211849192,25.81130247420457,0.2495893501805055,5431.0267930697055,2019
+2004,61,"(60,65]",HS,6.5993536804308794,24.19809606956679,0.2727220216606498,5262.550697983049,2019
+2004,61,"(60,65]",HS,6.5993536804308794,25.81130247420457,0.2556768953068593,5421.954533403174,2019
+2004,61,"(60,65]",HS,6.5993536804308794,25.81130247420457,0.2556768953068593,5437.552171420475,2019
+2004,61,"(60,65]",HS,6.5993536804308794,25.81130247420457,0.2556768953068593,5378.979993692879,2019
+2004,77,"(75,80]",HS,26154.338527827647,877.5842841229556,29.802651438734337,1348.4757155892573,2019
+2004,77,"(75,80]",HS,25288.409048473968,435.56572925220235,58.05876668003742,1357.0308457489268,2019
+2004,77,"(75,80]",HS,25860.510161579892,774.3390742261373,33.396881317689534,1345.2331110411874,2019
+2004,77,"(75,80]",HS,23661.98262118492,290.37715283480145,81.48706738868835,1311.6390639454737,2019
+2004,77,"(75,80]",HS,25344.817809694792,511.38643027017815,49.56099010352014,1343.757947453775,2019
+2004,34,"(30,35]",College,1742.5436265709156,69.36787539942482,25.12032574930736,3527.1629652144,2019
+2004,34,"(30,35]",College,1742.5436265709156,69.36787539942482,25.12032574930736,3691.411591624003,2019
+2004,34,"(30,35]",College,1744.1149012567325,70.9810818040626,24.571545782737115,3496.771344115514,2019
+2004,34,"(30,35]",College,1740.9723518850988,69.36787539942482,25.097674418604644,3746.0558360778023,2019
+2004,34,"(30,35]",College,1740.9723518850988,69.36787539942482,25.097674418604644,3583.5967174730963,2019
+2004,58,"(55,60]",College,7218.907289048474,454.92420610785575,15.868373659011187,25.951288666609333,2019
+2004,58,"(55,60]",College,7055.808976660682,588.820337692792,11.982957321596357,26.818102962053683,2019
+2004,58,"(55,60]",College,7108.446678635548,821.1220599606331,8.656991481846617,27.49613653516915,2019
+2004,58,"(55,60]",College,7224.878132854578,259.7262311466836,27.817283225329057,25.39359450513522,2019
+2004,58,"(55,60]",College,7116.931561938958,259.7262311466836,27.401666479808053,26.644861087498175,2019
+2004,56,"(55,60]",College,683.504488330341,162.9338468684164,4.1949815920220175,6253.275779809585,2019
+2004,56,"(55,60]",College,683.504488330341,162.9338468684164,4.1949815920220175,6916.411856281411,2019
+2004,56,"(55,60]",College,683.504488330341,162.9338468684164,4.1949815920220175,6171.204452207838,2019
+2004,56,"(55,60]",College,683.504488330341,161.3206404637786,4.2369314079422375,6151.543568111868,2019
+2004,56,"(55,60]",College,683.504488330341,162.9338468684164,4.1949815920220175,6466.311493708099,2019
+2004,47,"(45,50]",HS,7846.00301615799,451.69779329858005,17.370027333677157,1329.1625952283903,2019
+2004,47,"(45,50]",HS,7611.883087971275,451.69779329858005,16.851716348633317,1304.8149666741785,2019
+2004,47,"(45,50]",HS,7552.331777378816,451.69779329858005,16.71987751418257,1367.067297840751,2019
+2004,47,"(45,50]",HS,7609.00765529623,451.69779329858005,16.84535051572976,1275.2062332122437,2019
+2004,47,"(45,50]",HS,7602.612567324955,451.69779329858005,16.831192625064467,1305.4566329186566,2019
+2004,39,"(35,40]",College,97.79613644524238,85.49993944580267,1.1438152714392753,6095.136287051619,2019
+2004,39,"(35,40]",College,99.36741113105924,85.49993944580267,1.1621927661603433,5850.995334216393,2019
+2004,39,"(35,40]",College,97.81184919210054,85.49993944580267,1.143999046386486,6089.625011262008,2019
+2004,39,"(35,40]",College,99.5402513464991,87.11314585044046,1.1426547666800373,6066.921419899124,2019
+2004,39,"(35,40]",College,99.5402513464991,85.49993944580267,1.1642142905796609,6005.504561899774,2019
+2004,72,"(70,75]",College,195432.00287253142,6338.287963821862,30.833563256834072,20.74019594646676,2019
+2004,72,"(70,75]",College,390902.9733572711,6339.901170226499,61.65758153976172,21.35350431432254,2019
+2004,72,"(70,75]",College,391398.082010772,6351.193615058964,61.625909353912576,20.995578422063275,2019
+2004,72,"(70,75]",College,388368.8215439857,6341.514376631138,61.242283542736764,20.4852844289174,2019
+2004,72,"(70,75]",College,261073.57414721724,6347.967202249688,41.127114528048295,20.567919624948274,2019
+2004,59,"(55,60]",College,78825.35152603232,8340.277111977353,9.451166965763326,28.051123467131287,2019
+2004,59,"(55,60]",College,99429.47648114902,8485.465688394754,11.717621652413833,29.24567987686131,2019
+2004,59,"(55,60]",College,154841.7352962298,9050.08793001798,17.109417775117922,29.209571447481505,2019
+2004,59,"(55,60]",College,84387.50678635549,10227.728605403565,8.250855105968636,27.62633965252826,2019
+2004,59,"(55,60]",College,93449.36215439856,8356.409176023732,11.182956720516287,28.30095239983563,2019
+2004,78,"(75,80]",NoHS,-25.941745062836624,22.58488966492901,-1.1486328004125836,11064.850561035944,2019
+2004,78,"(75,80]",NoHS,-18.242499102333934,22.58488966492901,-0.8077302733367715,11072.273753651474,2019
+2004,78,"(75,80]",NoHS,-15.09994973070018,22.58488966492901,-0.6685863847343991,11008.295233903791,2019
+2004,78,"(75,80]",NoHS,-26.098872531418316,22.58488966492901,-1.1555899948427024,11069.77532478814,2019
+2004,78,"(75,80]",NoHS,-5.515174147217236,20.97168326029122,-0.2629819494584838,11014.32607822406,2019
+2004,25,"(20,25]",HS,-19.012423698384204,6.452825618551143,-2.9463718411552358,8506.25499528136,2019
+2004,25,"(20,25]",HS,-19.012423698384204,6.452825618551143,-2.9463718411552358,8654.281686018674,2019
+2004,25,"(20,25]",HS,-19.012423698384204,6.452825618551143,-2.9463718411552358,8512.672481105952,2019
+2004,25,"(20,25]",HS,-19.012423698384204,6.452825618551143,-2.9463718411552358,8501.129723614691,2019
+2004,25,"(20,25]",HS,-19.012423698384204,6.452825618551143,-2.9463718411552358,8539.528510315253,2019
+2004,90,"(85,90]",HS,480.81005385996406,20.97168326029122,22.92663149125243,8689.876778762813,2019
+2004,90,"(85,90]",HS,480.9671813285458,19.358476855653432,24.845300842358604,8731.751125665009,2019
+2004,90,"(85,90]",HS,480.81005385996406,19.358476855653432,24.837184115523463,8685.593126864229,2019
+2004,90,"(85,90]",HS,480.81005385996406,19.358476855653432,24.837184115523463,8659.006775282676,2019
+2004,90,"(85,90]",HS,480.9671813285458,19.358476855653432,24.845300842358604,8683.212280943775,2019
+2004,51,"(50,55]",NoHS,0,27.424508878842364,0,3879.9287758482155,2019
+2004,51,"(50,55]",NoHS,0,24.19809606956679,0,3885.7290957246346,2019
+2004,51,"(50,55]",NoHS,0,32.264128092755726,0,3912.5296437739407,2019
+2004,51,"(50,55]",NoHS,0,25.81130247420457,0,3888.667781091611,2019
+2004,51,"(50,55]",NoHS,0,30.650921688117936,0,3899.2106220664527,2019
+2004,61,"(60,65]",College,4577.12315978456,500.0939854377137,9.152525911261208,1642.0659701694865,2019
+2004,61,"(60,65]",College,4575.551885098744,500.0939854377137,9.149383952486318,1650.1175434523004,2019
+2004,61,"(60,65]",College,4575.551885098744,500.0939854377137,9.149383952486318,1673.7244952426486,2019
+2004,61,"(60,65]",College,4577.12315978456,500.0939854377137,9.152525911261208,1595.1361292352601,2019
+2004,61,"(60,65]",College,4575.551885098744,500.0939854377137,9.149383952486318,1612.921296590014,2019
+2004,30,"(25,30]",College,1007.3442010771993,116.1508611339206,8.672722623345367,8682.566827119492,2019
+2004,30,"(25,30]",College,1023.056947935368,116.1508611339206,8.808001403931007,9648.17119666791,2019
+2004,30,"(25,30]",College,1522.7222980251347,116.1508611339206,13.109866626554352,8523.02378027511,2019
+2004,30,"(25,30]",College,1752.1284021543986,116.1508611339206,15.084936823104693,5056.407239931691,2019
+2004,30,"(25,30]",College,1048.197342908438,116.1508611339206,9.02444745286803,8930.027203756577,2019
+2004,22,"(20,25]",HS,410.17968545780974,111.31124192000723,3.6849798671061587,5499.908993586213,2019
+2004,22,"(20,25]",HS,482.9611289048474,103.24520989681828,4.677806644855597,5604.219253249586,2019
+2004,22,"(20,25]",HS,512.7839224416517,116.1508611339206,4.4148094765342965,5509.511092150753,2019
+2004,22,"(20,25]",HS,413.47936229802514,82.2735266365271,5.025667176329015,5458.63292212021,2019
+2004,22,"(20,25]",HS,583.7269745062837,75.82070101797595,7.698781027728704,5554.664532180835,2019
+2004,43,"(40,45]",HS,522.9202154398564,56.46222416232251,9.261417225373906,6851.114542648441,2019
+2004,43,"(40,45]",HS,516.7922441651706,56.46222416232251,9.152884992264056,6463.9247897570995,2019
+2004,43,"(40,45]",HS,574.9294075403949,56.46222416232251,10.182549767921609,5606.693353290236,2019
+2004,43,"(40,45]",HS,574.9294075403949,56.46222416232251,10.182549767921609,5598.289144908068,2019
+2004,43,"(40,45]",HS,512.0784201077199,56.46222416232251,9.069398659102632,6668.90760556657,2019
+2004,28,"(25,30]",NoHS,28.94287971274686,58.0754305669603,0.49836702767749697,4479.358881896912,2019
+2004,28,"(25,30]",NoHS,16.294118491921004,58.0754305669603,0.28056819093461693,4542.78621938983,2019
+2004,28,"(25,30]",NoHS,24.543310592459605,58.0754305669603,0.4226109105495387,4468.155778171302,2019
+2004,28,"(25,30]",NoHS,21.08650628366248,58.0754305669603,0.3630882470918572,4512.996242567061,2019
+2004,28,"(25,30]",NoHS,15.822736086175944,58.0754305669603,0.27245146409947857,4503.6826512885555,2019
+2004,60,"(55,60]",College,8308.272028725314,767.8862486075861,10.819665079028002,2047.6664894362675,2019
+2004,60,"(55,60]",College,6930.89263913824,521.065668698005,13.30138033552771,2061.603114483126,2019
+2004,60,"(55,60]",College,10961.36933572711,764.6598357983106,14.334961537875673,2066.8392551343795,2019
+2004,60,"(55,60]",College,9853.165012567324,583.9807184788785,16.872414963001376,2004.3122706066356,2019
+2004,60,"(55,60]",College,7279.244236983843,1051.8105758238364,6.920679829904101,1997.921363103212,2019
+2004,66,"(65,70]",HS,34403.0592459605,2226.224838400145,15.453542091769998,213.89932839736997,2019
+2004,66,"(65,70]",HS,10365.69910233393,2274.6210305392783,4.557110377141101,231.20426836373204,2019
+2004,66,"(65,70]",HS,21611.312028725315,2242.356902446523,9.637766407812379,220.04188165536567,2019
+2004,66,"(65,70]",HS,14683.247684021544,2000.3759417508547,7.340244089903343,226.46543620012932,2019
+2004,66,"(65,70]",HS,34156.36912028726,2032.6400698436103,16.803943613546505,216.91507817072346,2019
+2004,83,"(80,85]",NoHS,1768.4696588868942,104.8584163014561,16.865309636212164,9527.621141191357,2019
+2004,83,"(80,85]",NoHS,1729.0306642728904,43.55657292522023,39.696205375050134,10442.851053073717,2019
+2004,83,"(80,85]",NoHS,1756.8422262118493,50.00939854377137,35.130241062070574,9406.18789852356,2019
+2004,83,"(80,85]",NoHS,1701.7376229802514,54.84901775768473,31.02585410915269,9428.685184767575,2019
+2004,83,"(80,85]",NoHS,1700.0877845601437,29.03771528348015,58.54757400722022,9855.541043307177,2019
+2004,52,"(50,55]",HS,124.82206104129264,135.50933798957405,0.9211325425477049,6812.5073001730725,2019
+2004,52,"(50,55]",HS,124.68064631956912,135.50933798957405,0.9200889633831871,6318.795471679056,2019
+2004,52,"(50,55]",HS,124.83777378815081,135.50933798957405,0.9212484957882069,6893.902680806821,2019
+2004,52,"(50,55]",HS,124.83777378815081,135.50933798957405,0.9212484957882069,6837.542155478193,2019
+2004,52,"(50,55]",HS,124.9949012567325,135.50933798957405,0.9224080281932266,6666.911385274119,2019
+2004,58,"(55,60]",College,9987.021903052066,2435.941671003057,4.099860855428313,3166.0589244847138,2019
+2004,58,"(55,60]",College,9987.021903052066,2435.941671003057,4.099860855428313,3043.2892433606203,2019
+2004,58,"(55,60]",College,9987.021903052066,2435.941671003057,4.099860855428313,3303.286473983924,2019
+2004,58,"(55,60]",College,9987.021903052066,2435.941671003057,4.099860855428313,2965.3743347454783,2019
+2004,58,"(55,60]",College,9987.021903052066,2435.941671003057,4.099860855428313,3093.6041631006965,2019
+2004,22,"(20,25]",HS,-14.989960502692998,10.969803551536945,-1.3664748354215333,6764.524642481811,2019
+2004,22,"(20,25]",HS,-15.147087971274686,7.582070101797594,-1.997750979337891,6728.030247635979,2019
+2004,22,"(20,25]",HS,-16.561235188509876,15.486781484522748,-1.0693787605294827,6752.368334166694,2019
+2004,22,"(20,25]",HS,-14.989960502692998,15.164140203595188,-0.9885137107304709,6671.213214455415,2019
+2004,22,"(20,25]",HS,-15.147087971274686,8.872635225507825,-1.7071690187069246,6723.140344245956,2019
+2004,22,"(20,25]",HS,3.221113105924596,0,Inf,5933.447079861767,2019
+2004,22,"(20,25]",HS,3.221113105924596,0,Inf,5933.435827877995,2019
+2004,22,"(20,25]",HS,3.221113105924596,0,Inf,5931.512888193857,2019
+2004,22,"(20,25]",HS,3.221113105924596,0,Inf,5875.130732666269,2019
+2004,22,"(20,25]",HS,3.221113105924596,0,Inf,5935.729483684519,2019
+2004,57,"(55,60]",HS,2899.1589228007183,64.52825618551145,44.92851805054151,4237.180036862027,2019
+2004,57,"(55,60]",HS,2913.9289048473966,64.52825618551145,45.15740974729241,4410.9172195844785,2019
+2004,57,"(55,60]",HS,2909.6864631956914,64.52825618551145,45.091664259927796,4192.534713414486,2019
+2004,57,"(55,60]",HS,2906.5439138240577,64.52825618551145,45.042963898916966,4498.616424330417,2019
+2004,57,"(55,60]",HS,2900.101687612208,64.52825618551145,44.94312815884476,4302.790800414259,2019
+2004,68,"(65,70]",NoHS,120.43820466786356,51.62260494840914,2.333051669675091,7546.928158320139,2019
+2004,68,"(65,70]",NoHS,120.59533213644525,51.62260494840914,2.336095442238268,7096.74774336126,2019
+2004,68,"(65,70]",NoHS,120.43820466786356,51.62260494840914,2.333051669675091,7636.286778920738,2019
+2004,68,"(65,70]",NoHS,120.43820466786356,53.23581135304694,2.2623531342303904,7589.8795391486465,2019
+2004,68,"(65,70]",NoHS,120.43820466786356,53.23581135304694,2.2623531342303904,7506.892036287403,2019
+2004,28,"(25,30]",College,-11.470305206463197,104.8584163014561,-0.10938850319355735,5407.327570781149,2019
+2004,28,"(25,30]",College,-11.313177737881508,104.8584163014561,-0.10789003054707025,5327.975310592542,2019
+2004,28,"(25,30]",College,-11.313177737881508,104.8584163014561,-0.10789003054707025,5431.202451851985,2019
+2004,28,"(25,30]",College,-11.470305206463197,104.8584163014561,-0.10938850319355735,5457.592451154192,2019
+2004,28,"(25,30]",College,-11.313177737881508,104.8584163014561,-0.10789003054707025,5412.642379284072,2019
+2004,72,"(70,75]",College,139636.82441651705,6320.542693370845,22.092537174532797,24.457981396536375,2019
+2004,72,"(70,75]",College,157233.05824057452,6467.344476192885,24.31184218180574,25.241077758909505,2019
+2004,72,"(70,75]",College,139943.38010771992,5949.505220304155,23.521851805445703,24.762509218334433,2019
+2004,72,"(70,75]",College,143371.90147217235,7273.947678511778,19.71032894499809,24.14779164082926,2019
+2004,72,"(70,75]",College,160820.5926032316,6546.391590020136,24.56629585807239,24.25893139851881,2019
+2004,64,"(60,65]",College,36835.23533213644,2839.2432721625037,12.973610149327206,213.89932839736997,2019
+2004,64,"(60,65]",College,85995.70642728906,5420.373519582962,15.865273143372871,225.22005859747796,2019
+2004,64,"(60,65]",College,58108.723303411134,6291.504978087366,9.236060927520134,220.04188165536567,2019
+2004,64,"(60,65]",College,30470.001579892283,2887.639464301637,10.551871851239337,208.79801098943534,2019
+2004,64,"(60,65]",College,40934.533859964096,3274.809001414706,12.499823300314773,216.91507817072346,2019
+2004,66,"(65,70]",College,11152.593464991023,337.16013856929726,33.07803085001641,2047.6664894362675,2019
+2004,66,"(65,70]",College,11152.593464991023,337.16013856929726,33.07803085001641,2061.603114483126,2019
+2004,66,"(65,70]",College,11152.436337522442,338.77334497393514,32.92005260443527,2066.8392551343795,2019
+2004,66,"(65,70]",College,11152.436337522442,337.16013856929726,33.077564817853634,2004.3122706066356,2019
+2004,66,"(65,70]",College,11152.593464991023,337.16013856929726,33.07803085001641,1997.921363103212,2019
+2004,42,"(40,45]",College,318086.96186714544,10001.879708754275,31.80271820193315,4.457664675678262,2019
+2004,42,"(40,45]",College,317286.7116696589,9727.63461996585,32.61704659614084,4.51631826358341,2019
+2004,42,"(40,45]",College,312479.3967684022,11437.633408881902,27.320284327852832,4.506935597716071,2019
+2004,42,"(40,45]",College,328843.5941113106,9808.29494019774,33.52709070397112,4.377628826899891,2019
+2004,42,"(40,45]",College,333167.89917414717,10356.785117774587,32.16904622288201,4.355132588891267,2019
+2004,78,"(75,80]",HS,2.9854219030520643,12.905651237102285,0.2313267148014441,10238.060036297953,2019
+2004,78,"(75,80]",HS,2.9854219030520643,11.615086113392062,0.2570296831127155,10201.381156691905,2019
+2004,78,"(75,80]",HS,2.9854219030520643,10.001879708754274,0.2984860836147665,10173.051911037503,2019
+2004,78,"(75,80]",HS,2.9854219030520643,10.001879708754274,0.2984860836147665,10253.803214376108,2019
+2004,78,"(75,80]",HS,2.9854219030520643,10.324520989681831,0.289158393501805,10220.193651117137,2019
+2004,30,"(25,30]",HS,68.35044883303411,70.9810818040626,0.9629389563505085,9852.092690626992,2019
+2004,30,"(25,30]",HS,68.35044883303411,70.9810818040626,0.9629389563505085,9616.426825542261,2019
+2004,30,"(25,30]",HS,68.35044883303411,70.9810818040626,0.9629389563505085,9822.108015723734,2019
+2004,30,"(25,30]",HS,68.35044883303411,70.9810818040626,0.9629389563505085,9804.952510506113,2019
+2004,30,"(25,30]",HS,68.5075763016158,70.9810818040626,0.9651526091237281,9719.003634996949,2019
+2004,41,"(40,45]",HS,806.8495511669659,195.19797496117215,4.133493451084523,737.0170140798839,2019
+2004,41,"(40,45]",HS,805.2782764811491,195.19797496117215,4.125443804636452,723.8887970825349,2019
+2004,41,"(40,45]",HS,805.2782764811491,195.19797496117215,4.125443804636452,744.4168328381566,2019
+2004,41,"(40,45]",HS,805.2782764811491,195.19797496117215,4.125443804636452,691.4940683113751,2019
+2004,41,"(40,45]",HS,805.2782764811491,195.19797496117215,4.125443804636452,743.5024301572955,2019
+2004,26,"(25,30]",HS,-6.803619389587074,20.97168326029122,-0.32441932796445433,7356.21629857848,2019
+2004,26,"(25,30]",HS,-6.803619389587074,20.97168326029122,-0.32441932796445433,7373.168844961202,2019
+2004,26,"(25,30]",HS,-6.803619389587074,20.97168326029122,-0.32441932796445433,7351.181054918624,2019
+2004,26,"(25,30]",HS,-6.960746858168761,20.97168326029122,-0.3319116911968898,7410.850316655429,2019
+2004,26,"(25,30]",HS,-6.819332136445242,20.97168326029122,-0.32516856428769786,7373.772298918996,2019
+2004,78,"(75,80]",HS,132.77271095152605,79.04711382725151,1.6796655124143525,12583.293845568627,2019
+2004,78,"(75,80]",HS,126.48761220825853,79.04711382725151,1.6001547189272822,11635.7756928312,2019
+2004,78,"(75,80]",HS,133.55834829443447,79.04711382725151,1.6896043616002359,12529.740925021404,2019
+2004,78,"(75,80]",HS,132.77271095152605,79.04711382725151,1.6796655124143525,12333.338910142516,2019
+2004,78,"(75,80]",HS,129.6301615798923,79.04711382725151,1.6399101156708176,12240.483979046587,2019
+2004,55,"(50,55]",College,194.36667863554757,50.00939854377137,3.8866030045417492,6698.728235777986,2019
+2004,55,"(50,55]",College,194.2095511669659,50.00939854377137,3.883461045766857,5972.904271202562,2019
+2004,55,"(50,55]",College,194.36667863554757,50.00939854377137,3.8866030045417492,6714.990859957335,2019
+2004,55,"(50,55]",College,194.36667863554757,50.00939854377137,3.8866030045417492,6595.194215639012,2019
+2004,55,"(50,55]",College,194.36667863554757,51.62260494840914,3.7651466606498203,6457.708577762383,2019
+2004,60,"(55,60]",HS,506.10757630161584,64.52825618551145,7.843193140794224,5392.059098469541,2019
+2004,60,"(55,60]",HS,372.7849192100539,222.62248384001447,1.674516036205724,4725.378206814747,2019
+2004,60,"(55,60]",HS,314.2235116696589,182.29232372406983,1.7237341937957253,5387.264890234648,2019
+2004,60,"(55,60]",HS,348.5558635547576,117.76406753855836,2.9597811186390386,5288.325951983459,2019
+2004,60,"(55,60]",HS,579.124710951526,185.5187365333454,3.1216507926542145,5388.046522744779,2019
+2004,53,"(50,55]",College,243.07619389587074,69.36787539942482,3.5041608597095113,7567.294270345106,2019
+2004,53,"(50,55]",College,243.07619389587074,69.36787539942482,3.5041608597095113,7031.618689003257,2019
+2004,53,"(50,55]",College,227.52057450628365,69.36787539942482,3.279912685752665,7604.402036911296,2019
+2004,53,"(50,55]",College,243.07619389587074,69.36787539942482,3.5041608597095113,7562.149949605841,2019
+2004,53,"(50,55]",College,243.07619389587074,69.36787539942482,3.5041608597095113,7329.406609832857,2019
+2004,36,"(35,40]",HS,68971.2437486535,3258.676937368328,21.165413164385033,19.85074517363883,2019
+2004,36,"(35,40]",HS,75980.70012208259,3242.5448733219505,23.432428259424896,20.80433162821725,2019
+2004,36,"(35,40]",HS,73356.6713967684,3258.676937368328,22.511182546377384,20.025321777052817,2019
+2004,36,"(35,40]",HS,73689.78163016158,3258.676937368328,22.613405086320906,19.550079502266545,2019
+2004,36,"(35,40]",HS,68911.56673608617,3258.676937368328,21.147099899917787,19.624724009168094,2019
+2004,34,"(30,35]",College,63.32236983842011,48.39619213913358,1.3084163658243082,5457.701753286141,2019
+2004,34,"(30,35]",College,63.165242369838424,48.39619213913358,1.3051696750902528,5470.826814332929,2019
+2004,34,"(30,35]",College,63.165242369838424,48.39619213913358,1.3051696750902528,5451.003808791036,2019
+2004,34,"(30,35]",College,63.165242369838424,48.39619213913358,1.3051696750902528,5495.867723017466,2019
+2004,34,"(30,35]",College,63.165242369838424,48.39619213913358,1.3051696750902528,5469.869173294109,2019
+2004,38,"(35,40]",HS,32.21113105924596,96.79238427826716,0.33278580024067383,7265.473746687785,2019
+2004,38,"(35,40]",HS,30.57700538599641,96.79238427826716,0.31590300842358604,6807.714064081,2019
+2004,38,"(35,40]",HS,32.21113105924596,96.79238427826716,0.33278580024067383,7233.231254372894,2019
+2004,38,"(35,40]",HS,32.21113105924596,96.79238427826716,0.33278580024067383,7186.013650637967,2019
+2004,38,"(35,40]",HS,32.21113105924596,96.79238427826716,0.33278580024067383,7044.701245382661,2019
+2004,51,"(50,55]",College,17092.326032315977,4839.619213913359,3.5317501805054143,26.124380803646886,2019
+2004,51,"(50,55]",College,18790.873967684023,4839.619213913359,3.882717448856799,27.36908033588182,2019
+2004,51,"(50,55]",College,14215.322082585279,4839.619213913359,2.937281107099879,27.390146246320832,2019
+2004,51,"(50,55]",College,21000.714685816878,4839.619213913359,4.339332033694344,25.40612463627677,2019
+2004,51,"(50,55]",College,39140.45242369838,4839.619213913359,8.087506618531886,24.90252657493076,2019
+2004,45,"(40,45]",College,941.3506642728905,209.7168326029122,4.488674812552069,5724.828121886641,2019
+2004,45,"(40,45]",College,429.83790305206463,227.46210305392788,1.8897121642727293,6371.163331991287,2019
+2004,45,"(40,45]",College,416.30922800718133,125.83009956174732,3.3085027307229473,5652.414572366318,2019
+2004,45,"(40,45]",College,372.80063195691207,101.63200349218052,3.6681421121998747,5665.874706709592,2019
+2004,45,"(40,45]",College,1040.4980969479354,232.3017222678412,4.479080425190534,5921.516637689944,2019
+2004,49,"(45,50]",College,4757.819748653501,1319.6028389937092,3.6054937198238193,312.9438578319533,2019
+2004,49,"(45,50]",College,4757.819748653501,966.3106363780338,4.923695931245216,308.0067787422426,2019
+2004,49,"(45,50]",College,4757.819748653501,1230.876486738631,3.865391694385169,326.17343126559774,2019
+2004,49,"(45,50]",College,4757.819748653501,785.6315190586018,6.056044892845758,302.5728960262254,2019
+2004,49,"(45,50]",College,4757.819748653501,1319.6028389937092,3.6054937198238193,307.546686552354,2019
+2004,31,"(30,35]",College,33.93953321364452,96.79238427826716,0.3506425992779783,9348.160748468355,2019
+2004,31,"(30,35]",College,18.698168761220828,96.79238427826716,0.19317809867629365,9121.874693326277,2019
+2004,31,"(30,35]",College,49.023770197486535,96.79238427826716,0.5064837545126354,9253.80080884136,2019
+2004,31,"(30,35]",College,23.883375224416515,96.79238427826716,0.24674849578820696,9312.261341503085,2019
+2004,31,"(30,35]",College,22.940610412926393,96.79238427826716,0.23700842358604093,9170.92012223984,2019
+2004,35,"(30,35]",HS,-11.030348294434472,48.39619213913358,-0.22791768953068595,5190.993727018832,2019
+2004,35,"(30,35]",HS,-11.077486535008976,48.39619213913358,-0.2288916967509025,5159.401516894698,2019
+2004,35,"(30,35]",HS,-10.983210053859965,48.39619213913358,-0.22694368231046932,5188.199233083593,2019
+2004,35,"(30,35]",HS,-10.983210053859965,48.39619213913358,-0.22694368231046932,5191.235464392492,2019
+2004,35,"(30,35]",HS,-11.108912028725314,48.39619213913358,-0.2295410348977136,5194.272568398839,2019
+2004,52,"(50,55]",HS,1500.0959425493716,225.84889664929003,6.642033522434245,4229.289945549134,2019
+2004,52,"(50,55]",HS,1666.6510592459606,225.84889664929003,7.379496132026819,4431.951073382865,2019
+2004,52,"(50,55]",HS,2175.5869299820465,225.84889664929003,9.63293140794224,4187.072993129281,2019
+2004,52,"(50,55]",HS,1769.569551166966,225.84889664929003,7.835192367199589,4518.382386035848,2019
+2004,52,"(50,55]",HS,1954.037199281867,225.84889664929003,8.651966993295513,4297.796936737537,2019
+2004,27,"(25,30]",HS,2.042657091561939,45.16977932985802,0.04522176379577101,6364.531734746234,2019
+2004,27,"(25,30]",HS,2.042657091561939,45.16977932985802,0.04522176379577101,6332.196322710915,2019
+2004,27,"(25,30]",HS,1.8855296229802514,45.16977932985802,0.0417431665807117,6370.908948094457,2019
+2004,27,"(25,30]",HS,2.042657091561939,45.16977932985802,0.04522176379577101,6399.626029669735,2019
+2004,27,"(25,30]",HS,1.8855296229802514,45.16977932985802,0.0417431665807117,6386.313107421878,2019
+2004,71,"(70,75]",College,727168.7977019749,23066.27045607292,31.52520036070785,2.2331957715446102,2019
+2004,71,"(70,75]",College,668019.890556553,25289.26888166379,26.415152358987605,2.2396479764911947,2019
+2004,71,"(70,75]",College,660735.4611131059,26042.636272629636,25.371297060564007,2.1953302798877283,2019
+2004,71,"(70,75]",College,689393.9401077199,31019.05538965628,22.224852802500475,2.1985789161233904,2019
+2004,71,"(70,75]",College,646975.8086894077,18724.648059271247,34.552094471493504,2.1449691343338118,2019
+2004,28,"(25,30]",College,181.63935368043087,137.12254439421181,1.3246498194945848,8281.699412674821,2019
+2004,28,"(25,30]",College,185.33184919210055,137.12254439421181,1.3515782544064558,8083.597961770228,2019
+2004,28,"(25,30]",College,188.4743985637343,137.12254439421181,1.374496071352729,8256.494202742937,2019
+2004,28,"(25,30]",College,186.43174147217235,137.12254439421181,1.3595994903376514,8242.073232300781,2019
+2004,28,"(25,30]",College,181.63935368043087,137.12254439421181,1.3246498194945848,8169.82434323973,2019
+2004,47,"(45,50]",College,1103.4276481149013,766.2730422029484,1.4399927797833936,468.5123217225523,2019
+2004,47,"(45,50]",College,1098.7138240574504,766.2730422029484,1.4338411552346566,466.1187223475052,2019
+2004,47,"(45,50]",College,1101.8563734290844,766.2730422029484,1.437942238267148,464.0515548093621,2019
+2004,47,"(45,50]",College,1097.2996768402154,766.2730422029484,1.431995667870036,456.2115262914141,2019
+2004,47,"(45,50]",College,1097.1425493716338,766.2730422029484,1.4317906137184115,479.27950062516385,2019
+2004,33,"(30,35]",College,10.684667863554758,79.04711382725151,0.13516834892801888,8984.92949049391,2019
+2004,33,"(30,35]",College,10.841795332136446,79.04711382725151,0.13715611876519562,8923.005901982575,2019
+2004,33,"(30,35]",College,10.684667863554758,79.04711382725151,0.13516834892801888,8987.32134283274,2019
+2004,33,"(30,35]",College,10.684667863554758,79.04711382725151,0.13516834892801888,8976.423559363679,2019
+2004,33,"(30,35]",College,10.684667863554758,79.04711382725151,0.13516834892801888,8971.819694461214,2019
+2004,33,"(30,35]",HS,157.59885098743268,111.31124192000723,1.4158394809815311,12024.119969124627,2019
+2004,33,"(30,35]",HS,148.79971274685818,111.31124192000723,1.3367896196306182,11684.73249472213,2019
+2004,33,"(30,35]",HS,159.17012567324954,112.92444832464501,1.409527591542032,12148.04131602773,2019
+2004,33,"(30,35]",HS,167.65500897666067,112.92444832464501,1.484665291387313,12055.160123693222,2019
+2004,33,"(30,35]",HS,148.79971274685818,112.92444832464501,1.3176926250644665,11945.152180767705,2019
+2004,58,"(55,60]",College,8679.721364452424,451.69779329858005,19.215771015987624,27.294933873176596,2019
+2004,58,"(55,60]",College,8365.466427289048,451.69779329858005,18.52005157297576,28.091542928426822,2019
+2004,58,"(55,60]",College,8946.838061041291,451.69779329858005,19.807132542547706,28.717239598386413,2019
+2004,58,"(55,60]",College,8664.008617594256,451.69779329858005,19.180985043837033,26.621461531668785,2019
+2004,58,"(55,60]",College,8836.848833034112,451.69779329858005,19.563630737493558,27.636429758482727,2019
+2004,77,"(75,80]",College,20377.86140035907,766.2730422029484,26.59347292418773,490.993858571081,2019
+2004,77,"(75,80]",College,20286.72746858169,729.1692948962793,27.82169738985975,487.69750236713173,2019
+2004,77,"(75,80]",College,20758.10987432675,787.2447254632398,26.368052021068824,503.8048438566996,2019
+2004,77,"(75,80]",College,20558.557989228008,719.4900564684527,28.573790289941876,486.95182742288017,2019
+2004,77,"(75,80]",College,20365.29120287253,758.2070101797595,26.859803364313688,491.48446778102596,2019
+2004,82,"(80,85]",College,401.12772912028726,33.87733449739351,11.840592982637096,12167.64413758851,2019
+2004,82,"(80,85]",College,400.064447540395,32.264128092755726,12.399667097472923,11038.469591440786,2019
+2004,82,"(80,85]",College,401.12772912028726,33.87733449739351,11.840592982637096,12160.420509791678,2019
+2004,82,"(80,85]",College,400.08016028725314,32.264128092755726,12.40015410108303,11931.898299297047,2019
+2004,82,"(80,85]",College,399.55645443447037,32.264128092755726,12.38392227075812,11814.834757604778,2019
+2004,54,"(50,55]",HS,5813.716337522442,464.6034445356824,12.51328720417168,29.195066268336753,2019
+2004,54,"(50,55]",HS,5813.716337522442,495.2543662238004,11.738849233880924,30.022752239907987,2019
+2004,54,"(50,55]",HS,5810.573788150808,462.99023813104463,12.550100001257876,31.11940196881066,2019
+2004,54,"(50,55]",HS,5813.716337522442,469.4430637495957,12.384284243303933,28.051432547955784,2019
+2004,54,"(50,55]",HS,5812.145062836625,512.9996366748159,11.329725495538453,29.23782194742078,2019
+2004,80,"(75,80]",College,1730.5862262118492,61.30184337623587,28.230574007220216,7460.438828506076,2019
+2004,80,"(75,80]",College,1728.700696588869,61.30184337623587,28.199815884476536,7600.161727521221,2019
+2004,80,"(75,80]",College,1726.9722944344703,61.30184337623587,28.171620938628156,7252.928243431404,2019
+2004,80,"(75,80]",College,1727.6008043087973,61.30184337623587,28.181873646209386,7282.92500080746,2019
+2004,80,"(75,80]",College,1726.8151669658887,61.30184337623587,28.16905776173285,7545.36771682829,2019
+2004,48,"(45,50]",College,3067.83526032316,659.8014194968546,4.6496342227675145,3521.976617060255,2019
+2004,48,"(45,50]",College,3069.406535008977,659.8014194968546,4.652015658513765,3689.3505601376455,2019
+2004,48,"(45,50]",College,3067.8666858168763,659.8014194968546,4.649681851482439,3486.2059191021835,2019
+2004,48,"(45,50]",College,3067.9923877917417,659.8014194968546,4.649872366342139,3761.6522926867183,2019
+2004,48,"(45,50]",College,3067.83526032316,659.8014194968546,4.6496342227675145,3577.7231770119042,2019
+2004,22,"(20,25]",HS,12.33450628366248,48.39619213913358,0.25486522262334543,5362.404750074439,2019
+2004,22,"(20,25]",HS,12.491633752244164,48.39619213913358,0.2581119133574007,5426.521248907288,2019
+2004,22,"(20,25]",HS,12.33450628366248,48.39619213913358,0.25486522262334543,5370.538231989296,2019
+2004,22,"(20,25]",HS,12.33450628366248,48.39619213913358,0.25486522262334543,5308.829616270162,2019
+2004,22,"(20,25]",HS,12.33450628366248,48.39619213913358,0.25486522262334543,5394.697451182566,2019
+2004,72,"(70,75]",HS,45057.872890484745,1693.8667248696754,26.600600997077535,213.89932839736997,2019
+2004,72,"(70,75]",HS,45057.872890484745,1709.9987889160534,26.349651931067367,209.00689675678632,2019
+2004,72,"(70,75]",HS,45059.44416517056,1693.8667248696754,26.601528623001546,220.04188165536567,2019
+2004,72,"(70,75]",HS,45059.44416517056,1693.8667248696754,26.601528623001546,208.79801098943534,2019
+2004,72,"(70,75]",HS,45059.44416517056,1693.8667248696754,26.601528623001546,216.91507817072346,2019
+2004,45,"(40,45]",College,1216.9522441651704,229.07530945856564,5.3124548736462085,7285.014248885673,2019
+2004,45,"(40,45]",College,1215.3809694793536,229.07530945856564,5.305595667870035,8104.964057335424,2019
+2004,45,"(40,45]",College,1215.3809694793536,229.07530945856564,5.305595667870035,7190.89705865186,2019
+2004,45,"(40,45]",College,1216.9522441651704,229.07530945856564,5.3124548736462085,7207.318594413763,2019
+2004,45,"(40,45]",College,1213.809694793537,229.07530945856564,5.298736462093863,7533.004572344168,2019
+2004,70,"(65,70]",College,12408.670448833034,1174.4142625763084,10.565837664140913,2127.695595415795,2019
+2004,70,"(65,70]",College,12383.530053859964,1176.0274689809462,10.529966672114016,2087.017163642767,2019
+2004,70,"(65,70]",College,12546.942621184919,1176.0274689809462,10.668919691184698,2172.6544777100744,2019
+2004,70,"(65,70]",College,12550.085170556553,1174.4142625763084,10.686250644662197,2071.802888175079,2019
+2004,70,"(65,70]",College,12411.812998204667,1174.4142625763084,10.568513508152495,2108.466467186065,2019
+2004,57,"(55,60]",College,258847.39217235192,4274.996972290133,60.549140467270625,15.802976299044108,2019
+2004,57,"(55,60]",College,272988.0787073609,4274.996972290133,63.856905742115664,16.731698115882246,2019
+2004,57,"(55,60]",College,252516.41220825855,4194.336652058244,60.204135517911695,16.396171915760185,2019
+2004,57,"(55,60]",College,250060.8241292639,4291.1290363365115,58.273899948427015,15.52483095336305,2019
+2004,57,"(55,60]",College,259177.516983842,4291.1290363365115,60.39844404332129,15.89151738577174,2019
+2004,61,"(60,65]",College,3151.6627648114904,322.6412809275572,9.768318411552348,2127.695595415795,2019
+2004,61,"(60,65]",College,3151.6627648114904,322.6412809275572,9.768318411552348,2087.017163642767,2019
+2004,61,"(60,65]",College,3151.6627648114904,322.6412809275572,9.768318411552348,2172.6544777100744,2019
+2004,61,"(60,65]",College,3151.6627648114904,322.6412809275572,9.768318411552348,2071.802888175079,2019
+2004,61,"(60,65]",College,3151.6627648114904,322.6412809275572,9.768318411552348,2108.466467186065,2019
+2004,42,"(40,45]",HS,990.3744344703771,148.4149892266763,6.673008161983991,6874.665164226188,2019
+2004,42,"(40,45]",HS,990.5315619389587,146.80178282203855,6.747408259610425,7632.851141584292,2019
+2004,42,"(40,45]",HS,990.5315619389587,148.4149892266763,6.6740668654842255,6785.911741294782,2019
+2004,42,"(40,45]",HS,990.5315619389587,146.80178282203855,6.747408259610425,6775.810548982778,2019
+2004,42,"(40,45]",HS,990.6886894075404,146.80178282203855,6.748478597215059,7080.326918097673,2019
+2004,34,"(30,35]",HS,0,24.19809606956679,0,4975.383510091743,2019
+2004,34,"(30,35]",HS,0,24.19809606956679,0,5045.603434071846,2019
+2004,34,"(30,35]",HS,0,24.19809606956679,0,4962.118868813095,2019
+2004,34,"(30,35]",HS,0,24.19809606956679,0,5000.322163708575,2019
+2004,34,"(30,35]",HS,0,24.19809606956679,0,5001.42099041855,2019
+2004,40,"(35,40]",HS,-0.15712746858168763,32.264128092755726,-0.004870036101083033,5103.342615422222,2019
+2004,40,"(35,40]",HS,-0.15712746858168763,32.264128092755726,-0.004870036101083033,5169.901819563544,2019
+2004,40,"(35,40]",HS,0,32.264128092755726,0,5081.0641800832855,2019
+2004,40,"(35,40]",HS,0,32.264128092755726,0,5088.391807693813,2019
+2004,40,"(35,40]",HS,0,32.264128092755726,0,5114.780310798653,2019
+2004,52,"(50,55]",HS,139.81202154398565,32.264128092755726,4.333358122743682,7475.1382994894475,2019
+2004,52,"(50,55]",HS,139.6391813285458,32.264128092755726,4.328001083032491,6945.9862788152,2019
+2004,52,"(50,55]",HS,139.6234685816876,32.264128092755726,4.327514079422381,7511.794160508944,2019
+2004,52,"(50,55]",HS,139.81202154398565,32.264128092755726,4.333358122743682,7470.056627281508,2019
+2004,52,"(50,55]",HS,139.7963087971275,32.264128092755726,4.332871119133574,7240.147680842603,2019
+2004,68,"(65,70]",HS,396.74685816876126,56.46222416232251,7.026766374419806,11473.791496223552,2019
+2004,44,"(40,45]",HS,395.80409335727114,56.46222416232251,7.010069107787521,9937.853197727349,2019
+2004,47,"(45,50]",HS,387.0049551166966,56.46222416232251,6.854227952552863,10367.47219516694,2019
+2004,56,"(55,60]",HS,394.8927540394973,56.46222416232251,6.993928416709644,8359.440674245521,2019
+2004,42,"(40,45]",HS,391.24739676840215,56.46222416232251,6.929365652398144,10353.803833365211,2019
+2004,37,"(35,40]",NoHS,9.89903052064632,56.46222416232251,0.1753212996389892,5472.03647776108,2019
+2004,37,"(35,40]",NoHS,11.470305206463197,56.46222416232251,0.20315007735946367,5438.484778112191,2019
+2004,37,"(35,40]",NoHS,9.89903052064632,56.46222416232251,0.1753212996389892,5468.18600787928,2019
+2004,37,"(35,40]",NoHS,9.89903052064632,56.46222416232251,0.1753212996389892,5458.728806296169,2019
+2004,37,"(35,40]",NoHS,9.89903052064632,56.46222416232251,0.1753212996389892,5474.420377762175,2019
+2004,39,"(35,40]",HS,55.07317773788151,29.03771528348015,1.89660850381067,6467.9241494929365,2019
+2004,39,"(35,40]",HS,55.07317773788151,29.03771528348015,1.89660850381067,6091.336798682454,2019
+2004,39,"(35,40]",HS,56.64445242369839,27.424508878842364,2.0654682522828627,6485.842353584169,2019
+2004,39,"(35,40]",HS,56.64445242369839,27.424508878842364,2.0654682522828627,6441.197020151854,2019
+2004,39,"(35,40]",HS,55.07317773788151,29.03771528348015,1.89660850381067,6361.3296177103475,2019
+2004,64,"(60,65]",College,32916.63339317774,688.8391347803347,47.78566102182129,283.05676881827077,2019
+2004,64,"(60,65]",College,32916.63339317774,679.159896352508,48.46669182023204,277.46501615843255,2019
+2004,64,"(60,65]",College,32916.63339317774,695.2919603988857,47.34217460862574,287.4533625183446,2019
+2004,64,"(60,65]",College,32916.63339317774,701.744786017437,46.906844267396984,280.36410884791735,2019
+2004,64,"(60,65]",College,32916.63339317774,672.7070707339568,48.93160013505442,290.2630467597216,2019
+2004,71,"(70,75]",NoHS,263.581328545781,80.6603202318893,3.2677942238267152,7659.175581171386,2019
+2004,71,"(70,75]",NoHS,260.4387791741472,80.6603202318893,3.228833935018051,7284.166422234385,2019
+2004,71,"(70,75]",NoHS,251.01113105924597,80.6603202318893,3.111953068592058,8011.70013648779,2019
+2004,71,"(70,75]",NoHS,269.7092998204668,80.6603202318893,3.3437667870036107,7769.598021056268,2019
+2004,71,"(70,75]",NoHS,241.5834829443447,80.6603202318893,2.995072202166065,7806.973686825276,2019
+2004,79,"(75,80]",HS,1011.5080789946139,61.10825860767934,16.55272302044457,9527.621141191357,2019
+2004,79,"(75,80]",HS,978.5113105924596,60.140334764896664,16.270466641359757,10442.851053073717,2019
+2004,79,"(75,80]",HS,1002.3946858168762,59.54344839518068,16.834676405775785,9406.18789852356,2019
+2004,79,"(75,80]",HS,989.0388509874326,60.52750430200973,16.340321022530464,9428.685184767575,2019
+2004,79,"(75,80]",HS,977.2542908438062,59.57571252327344,16.40356865999779,9855.541043307177,2019
+2004,49,"(45,50]",College,536.8259964093357,135.50933798957405,3.9615424617500428,8320.992549373388,2019
+2004,49,"(45,50]",College,508.70017953321366,137.12254439421181,3.709821618177957,9261.04219548272,2019
+2004,49,"(45,50]",College,672.2698743267504,135.50933798957405,4.961059394877083,8214.938258117358,2019
+2004,49,"(45,50]",College,799.2288689407541,135.50933798957405,5.897961578133057,8234.586368431932,2019
+2004,49,"(45,50]",College,537.7687612208258,135.50933798957405,3.968499656180161,8607.382931805809,2019
+2004,65,"(60,65]",College,44041.258168761226,1260.5594845839662,34.937865850334354,378.98156926734384,2019
+2004,65,"(60,65]",College,43997.89098743267,1254.1066589654151,35.08305348105644,369.6346371347053,2019
+2004,65,"(60,65]",College,42345.53852782765,1260.5594845839662,33.59265393318851,385.6768828775567,2019
+2004,65,"(60,65]",College,43607.2721005386,1257.3330717746908,34.68235512089739,374.58511011349555,2019
+2004,65,"(60,65]",College,43613.08581687612,1260.5594845839662,34.59819734827519,388.65239083554127,2019
+2004,26,"(25,30]",College,-15.382779174147219,96.79238427826716,-0.15892551143200964,7264.4037258745175,2019
+2004,26,"(25,30]",College,-15.367066427289048,96.79238427826716,-0.15876317689530686,7227.827462951677,2019
+2004,26,"(25,30]",College,-16.94619748653501,96.79238427826716,-0.175077797833935,7272.885663449609,2019
+2004,26,"(25,30]",College,-16.781213644524236,96.79238427826716,-0.17337328519855594,7322.608264670183,2019
+2004,26,"(25,30]",College,-15.367066427289048,96.79238427826716,-0.15876317689530686,7290.692729618774,2019
+2004,31,"(30,35]",College,548.3748653500897,138.73575079884964,3.9526572076232043,6155.116532365465,2019
+2004,31,"(30,35]",College,548.3748653500897,138.73575079884964,3.9526572076232043,6405.236502205249,2019
+2004,31,"(30,35]",College,546.8035906642729,138.73575079884964,3.9413315422718482,6013.426108541384,2019
+2004,31,"(30,35]",College,549.9461400359068,138.73575079884964,3.963982872974561,5959.934970980397,2019
+2004,31,"(30,35]",College,548.3748653500897,138.73575079884964,3.9526572076232043,6185.611863188356,2019
+2004,50,"(45,50]",HS,-9.081967684021544,20.97168326029122,-0.4330585948347681,4523.667787652642,2019
+2004,50,"(45,50]",HS,-8.924840215439858,20.97168326029122,-0.42556623160233276,4530.8840508895155,2019
+2004,50,"(45,50]",HS,-8.924840215439858,20.97168326029122,-0.42556623160233276,4559.200050578216,2019
+2004,50,"(45,50]",HS,-9.097680430879713,22.58488966492901,-0.40282155750386794,4531.9041215401685,2019
+2004,50,"(45,50]",HS,-8.924840215439858,22.58488966492901,-0.3951686436307375,4545.436060807075,2019
+2004,44,"(40,45]",HS,25.26609694793537,43.55657292522023,0.5800754111512234,5200.121712910156,2019
+2004,44,"(40,45]",HS,25.580351885098743,46.782985734495796,0.5467875015560811,5177.852839590288,2019
+2004,44,"(40,45]",HS,25.61177737881508,61.30184337623587,0.417797833935018,5161.14343620108,2019
+2004,44,"(40,45]",HS,25.26609694793537,51.62260494840914,0.4894386281588449,5177.801041159558,2019
+2004,44,"(40,45]",HS,25.328947935368046,46.782985734495796,0.5414136686169552,5149.8932978839075,2019
+2004,70,"(65,70]",College,1094.7070736086175,141.84923915980053,7.717398275047307,7080.565159614009,2019
+2004,70,"(65,70]",College,1096.2783482944344,140.39735339562654,7.8083975358511575,7871.379966501934,2019
+2004,70,"(65,70]",College,1097.8496229802515,149.06027178853142,7.365139012611938,7008.006721896952,2019
+2004,70,"(65,70]",College,1097.8496229802515,148.5763098671401,7.389129693434778,6987.140899420706,2019
+2004,70,"(65,70]",College,1096.2783482944344,143.57537001276296,7.63555997241715,7323.457093615236,2019
+2004,59,"(55,60]",College,5598.923087971275,403.30160115944653,13.882719711191337,170.16483506560155,2019
+2004,59,"(55,60]",College,5582.267576301616,403.30160115944653,13.841421805054152,169.4533487531161,2019
+2004,59,"(55,60]",College,5526.455899461401,403.30160115944653,13.703034859205777,176.5569268235691,2019
+2004,59,"(55,60]",College,11984.379145421904,403.30160115944653,29.715674599277982,165.63472206498938,2019
+2004,59,"(55,60]",College,5596.094793536805,403.30160115944653,13.875706859205778,170.9101514805864,2019
+2004,32,"(30,35]",College,-26.240287253141833,58.0754305669603,-0.4518311271560369,5255.295796178697,2019
+2004,32,"(30,35]",College,-4.870951526032316,58.0754305669603,-0.08387284396309667,5238.323812304316,2019
+2004,32,"(30,35]",College,-26.711669658886894,58.0754305669603,-0.45994785399117527,5224.806754353755,2019
+2004,32,"(30,35]",College,-27.65443447037702,58.0754305669603,-0.47618130766145206,5274.418914301954,2019
+2004,32,"(30,35]",College,-24.826140035906644,58.0754305669603,-0.42748094665062175,5220.071826213812,2019
+2004,25,"(20,25]",HS,-3.6453572710951527,29.03771528348015,-0.12553870838347372,4220.950493884349,2019
+2004,25,"(20,25]",HS,-0.9270520646319569,27.424508878842364,-0.03380377999575281,4283.355765618659,2019
+2004,25,"(20,25]",HS,-2.953996409335727,29.03771528348015,-0.10172964300040112,4238.336965810794,2019
+2004,25,"(20,25]",HS,-0.3771059245960503,27.424508878842364,-0.013750690167763858,4243.8953709036305,2019
+2004,25,"(20,25]",HS,7.400703770197487,29.03771528348015,0.2548652226233454,4264.464140189758,2019
+2004,52,"(50,55]",College,23742.58901256733,5791.410992649652,4.099620807900004,29.195066268336753,2019
+2004,52,"(50,55]",College,35959.40682226211,7969.239638910664,4.5122757567342395,27.140339242739294,2019
+2004,52,"(50,55]",College,24210.671741472175,5888.20337692792,4.111724781168093,31.11940196881066,2019
+2004,52,"(50,55]",College,20794.877701974867,3081.2242328581715,6.748901128395109,28.051432547955784,2019
+2004,52,"(50,55]",College,36116.69141831239,6194.7125938090985,5.830244885679904,27.611709808222166,2019
+2004,60,"(55,60]",College,282.92371992818676,32.264128092755726,8.768987003610109,5025.158681298953,2019
+2004,60,"(55,60]",College,209.07380969479354,32.264128092755726,6.480070036101083,4902.999232130244,2019
+2004,60,"(55,60]",College,212.2163590664273,32.264128092755726,6.577470758122742,5017.912028354381,2019
+2004,60,"(55,60]",College,248.35567684021544,32.264128092755726,7.69757906137184,5043.83025686405,2019
+2004,60,"(55,60]",College,245.99876481149013,32.264128092755726,7.624528519855595,4996.462055744248,2019
+2004,50,"(45,50]",College,-4.556696588868941,129.0565123710229,-0.03530776173285198,4073.9324873950354,2019
+2004,50,"(45,50]",College,-4.886664272890484,129.0565123710229,-0.03786453068592057,3997.5793516801664,2019
+2004,50,"(45,50]",College,-4.8395260323159786,129.0565123710229,-0.037499277978339345,4107.482501353428,2019
+2004,50,"(45,50]",College,-2.3411992818671457,129.0565123710229,-0.018140884476534294,4079.8326146253,2019
+2004,50,"(45,50]",College,-4.022463195691203,129.0565123710229,-0.031168231046931404,4033.9968724579885,2019
+2004,43,"(40,45]",College,31103.382405745062,4420.185548707534,7.0366689504334765,376.4705535913981,2019
+2004,43,"(40,45]",College,31103.382405745062,4420.185548707534,7.0366689504334765,362.1933815592526,2019
+2004,43,"(40,45]",College,31086.098384201076,4420.185548707534,7.032758702469104,387.1693175601134,2019
+2004,43,"(40,45]",College,31103.382405745062,4420.185548707534,7.0366689504334765,374.4003672367054,2019
+2004,43,"(40,45]",College,31086.098384201076,4420.185548707534,7.032758702469104,392.7169762598935,2019
+2004,65,"(60,65]",HS,633.8522082585279,195.84325752302723,3.2365281106703385,5930.065341800966,2019
+2004,65,"(60,65]",HS,340.1338312387792,178.09798707201156,1.909812889133051,7398.848221374744,2019
+2004,65,"(60,65]",HS,590.9878348294435,197.456463927665,2.993003232580638,5915.465019795275,2019
+2004,65,"(60,65]",HS,364.0643447037702,118.40935010041349,3.074624971719179,8069.655328238847,2019
+2004,65,"(60,65]",HS,584.0428007181329,86.14522200765778,6.779746886788626,6184.143189576805,2019
+2004,25,"(20,25]",HS,4.713824057450628,38.716953711306864,0.12175090252707581,6440.563393716845,2019
+2004,25,"(20,25]",HS,4.870951526032316,38.716953711306864,0.125809265944645,6531.462089461309,2019
+2004,25,"(20,25]",HS,4.870951526032316,38.716953711306864,0.125809265944645,6423.392503698672,2019
+2004,25,"(20,25]",HS,4.870951526032316,38.716953711306864,0.125809265944645,6472.846127147823,2019
+2004,25,"(20,25]",HS,4.870951526032316,38.716953711306864,0.125809265944645,6474.268542740499,2019
+2004,43,"(40,45]",HS,201.0445960502693,96.79238427826716,2.077070397111913,7006.350511091878,2019
+2004,43,"(40,45]",HS,199.47332136445243,96.79238427826716,2.0608369434416365,6610.387619773603,2019
+2004,43,"(40,45]",HS,201.0445960502693,96.79238427826716,2.077070397111913,6976.853592817688,2019
+2004,43,"(40,45]",HS,199.47332136445243,96.79238427826716,2.0608369434416365,6947.125605815953,2019
+2004,43,"(40,45]",HS,199.47332136445243,96.79238427826716,2.0608369434416365,6820.015038403291,2019
+2004,23,"(20,25]",HS,-16.152703770197487,45.16977932985802,-0.3575997937080969,8628.20616771768,2019
+2004,23,"(20,25]",HS,-14.424301615798923,45.16977932985802,-0.3193352243424445,8403.519888880353,2019
+2004,23,"(20,25]",HS,-16.152703770197487,43.55657292522023,-0.3708442305121005,8636.594019657297,2019
+2004,23,"(20,25]",HS,-16.152703770197487,45.16977932985802,-0.3575997937080969,8437.768434869173,2019
+2004,23,"(20,25]",HS,-16.152703770197487,45.16977932985802,-0.3575997937080969,8516.660787280185,2019
+2004,51,"(50,55]",College,1508.2665709156195,193.58476855653433,7.791246089049339,3651.7784210165555,2019
+2004,51,"(50,55]",College,1509.8378456014364,193.58476855653433,7.799362815884477,3805.7366063447894,2019
+2004,51,"(50,55]",College,1508.1094434470376,193.58476855653433,7.790434416365824,3628.4502537966973,2019
+2004,51,"(50,55]",College,1508.2665709156195,193.58476855653433,7.791246089049339,3933.5313369464084,2019
+2004,51,"(50,55]",College,1508.2665709156195,193.58476855653433,7.791246089049339,3729.076073959791,2019
+2004,62,"(60,65]",College,2032.600933572711,294.8941307677873,6.892646280482506,3386.709914588902,2019
+2004,62,"(60,65]",College,2037.2990448833034,294.8941307677873,6.908577799018872,3526.6762080703675,2019
+2004,62,"(60,65]",College,2037.2990448833034,294.8941307677873,6.908577799018872,3351.943100683492,2019
+2004,62,"(60,65]",College,2039.3417019748654,294.8941307677873,6.915504546208596,3597.0066917862873,2019
+2004,62,"(60,65]",College,2030.2440215439858,294.8941307677873,6.884653879878979,3440.202358062213,2019
+2004,58,"(55,60]",College,164446.46606822262,7001.315796127992,23.48793724733401,17.27941629084851,2019
+2004,58,"(55,60]",College,129330.04811490126,6501.221810690277,19.893191138662203,17.790385937914266,2019
+2004,58,"(55,60]",College,114703.05206463195,7001.315796127992,16.38307075479545,17.492184777733097,2019
+2004,58,"(55,60]",College,170415.73859964093,6969.0516680352375,24.453217843294553,17.06704017634909,2019
+2004,58,"(55,60]",College,146477.3687612208,6775.466899478702,21.61878597215059,17.13588658243797,2019
+2004,75,"(70,75]",HS,550.3389587073609,108.08482911073166,5.091731774341291,11726.759340996907,2019
+2004,75,"(70,75]",HS,561.6521364452424,106.47162270609388,5.275134558582212,10043.62673565974,2019
+2004,75,"(70,75]",HS,538.0830161579893,108.08482911073166,4.978339889002641,11719.797455541962,2019
+2004,75,"(70,75]",HS,549.239066427289,108.08482911073166,5.081555579503206,11499.55556350104,2019
+2004,75,"(70,75]",HS,541.3826929982047,108.08482911073166,5.008868473516892,11386.733725065675,2019
+2004,91,"(90,95]",HS,336361.20071813284,4915.439914931334,68.42952137333401,19.85074517363883,2019
+2004,91,"(90,95]",HS,174380.06463195692,4852.524865150461,35.935944580997,20.80433162821725,2019
+2004,91,"(90,95]",HS,185072.58886894074,4818.647530653067,38.40757965624807,20.025321777052817,2019
+2004,91,"(90,95]",HS,58008.31885098744,4825.100356271618,12.022199450336572,19.550079502266545,2019
+2004,91,"(90,95]",HS,78491.45565529623,4841.232420317996,16.21311452139299,19.624724009168094,2019
+2004,58,"(55,60]",HS,64.20228366247756,43.55657292522023,1.473997593261131,5398.499965754859,2019
+2004,58,"(55,60]",HS,67.34483303411132,37.10374730666908,1.8150412808036418,5331.950225735823,2019
+2004,58,"(55,60]",HS,68.7589802513465,41.94336652058244,1.6393290752568732,5369.732957806157,2019
+2004,58,"(55,60]",HS,66.38635547576303,46.782985734495796,1.4190277604879873,5402.289808563158,2019
+2004,58,"(55,60]",HS,64.51653859964094,43.55657292522023,1.4812124615590319,5356.41460674432,2019
+2004,42,"(40,45]",College,-18.65103052064632,124.21689315710954,-0.15014890524637817,8941.451665185274,2019
+2004,42,"(40,45]",College,-18.698168761220828,124.21689315710954,-0.15052838857893008,8583.301424327508,2019
+2004,42,"(40,45]",College,-19.216689407540393,124.21689315710954,-0.15470270523700125,8933.366726019764,2019
+2004,42,"(40,45]",College,-16.89120287253142,124.21689315710954,-0.13598152749777298,8900.06097939871,2019
+2004,42,"(40,45]",College,-19.16955116696589,124.21689315710954,-0.15432322190444933,8809.963590043304,2019
+2004,41,"(40,45]",College,683.504488330341,290.37715283480145,2.353850782190132,7471.574486694069,2019
+2004,41,"(40,45]",College,683.504488330341,290.37715283480145,2.353850782190132,8292.458956467402,2019
+2004,41,"(40,45]",College,683.77160502693,290.37715283480145,2.3547706778981152,7373.815763150936,2019
+2004,41,"(40,45]",College,683.6616157989229,290.37715283480145,2.3543918973124756,7362.045436702363,2019
+2004,41,"(40,45]",College,683.6616157989229,290.37715283480145,2.3543918973124756,7692.291345773061,2019
+2004,53,"(50,55]",HS,333.7387432675045,145.18857641740072,2.2986570397111916,8091.876616360734,2019
+2004,53,"(50,55]",HS,333.8958707360862,145.18857641740072,2.299739269955877,7650.242572022823,2019
+2004,53,"(50,55]",HS,333.8958707360862,145.18857641740072,2.299739269955877,8158.551870090506,2019
+2004,53,"(50,55]",HS,333.8958707360862,145.18857641740072,2.299739269955877,8117.561212804103,2019
+2004,53,"(50,55]",HS,333.8958707360862,145.18857641740072,2.299739269955877,7933.230138766585,2019
+2004,60,"(55,60]",College,352.4369120287253,191.97156215189653,1.8358808360889483,8032.406801021022,2019
+2004,60,"(55,60]",College,353.8510592459605,191.97156215189653,1.8432472772502504,6952.119263803948,2019
+2004,60,"(55,60]",College,352.42119928186713,193.58476855653433,1.820500661853189,7997.3224889755975,2019
+2004,60,"(55,60]",College,353.5368043087971,193.58476855653433,1.8262635379061372,7946.152869571083,2019
+2004,60,"(55,60]",College,352.90829443447035,191.97156215189653,1.838336316476049,7629.5286445477295,2019
+2004,59,"(55,60]",College,4639.03295368043,175.8394981055187,26.382200834630538,1223.5737737175261,2019
+2004,59,"(55,60]",College,4642.175503052064,175.8394981055187,26.40007252674461,1214.3027480700455,2019
+2004,59,"(55,60]",College,4639.190081149013,175.8394981055187,26.38309441923625,1386.318407332906,2019
+2004,59,"(55,60]",College,4640.604228366247,175.8394981055187,26.391136680687573,1161.315973673927,2019
+2004,59,"(55,60]",College,4637.618806463196,175.8394981055187,26.374158573179216,1236.729094834961,2019
+2004,61,"(60,65]",HS,488.79212926391386,80.6603202318893,6.0598833212996395,7101.179492160896,2019
+2004,61,"(60,65]",HS,488.79212926391386,80.6603202318893,6.0598833212996395,7851.266379678049,2019
+2004,61,"(60,65]",HS,487.37798204667865,80.6603202318893,6.04235119133574,7006.745420557735,2019
+2004,61,"(60,65]",HS,487.220854578097,80.6603202318893,6.040403176895308,6983.669381399501,2019
+2004,61,"(60,65]",HS,487.220854578097,80.6603202318893,6.040403176895308,7340.42766770983,2019
+2004,35,"(30,35]",HS,-16.812639138240574,50.00939854377137,-0.33618958891347384,4260.217962256864,2019
+2004,35,"(30,35]",HS,-16.812639138240574,59.68863697159809,-0.2816723582788564,4318.6372521750345,2019
+2004,35,"(30,35]",HS,-16.812639138240574,56.46222416232251,-0.29776792160907684,4270.477088186031,2019
+2004,35,"(30,35]",HS,-16.65551166965889,43.55657292522023,-0.3823880197887418,4249.527303812737,2019
+2004,35,"(30,35]",HS,-16.65551166965889,46.782985734495796,-0.3560164322171045,4291.325291811085,2019
+2004,36,"(35,40]",College,7.542118491921006,112.92444832464501,0.06678906652913874,4597.716378602688,2019
+2004,36,"(35,40]",College,6.285098743267505,112.92444832464501,0.055657555440948955,4660.763698824967,2019
+2004,36,"(35,40]",College,8.799138240574507,112.92444832464501,0.07792057761732854,4608.7882419985435,2019
+2004,36,"(35,40]",College,14.612854578096947,112.92444832464501,0.1294038164002063,4586.178796285991,2019
+2004,36,"(35,40]",College,6.206535008976661,112.92444832464501,0.05496183599793709,4631.28805964181,2019
+2004,36,"(35,40]",NoHS,5.342333931777379,24.19809606956679,0.22077496991576415,6678.241138484164,2019
+2004,36,"(35,40]",NoHS,5.342333931777379,24.19809606956679,0.22077496991576415,6637.29361524087,2019
+2004,36,"(35,40]",NoHS,5.342333931777379,24.19809606956679,0.22077496991576415,6673.541906950961,2019
+2004,36,"(35,40]",NoHS,5.342333931777379,24.19809606956679,0.22077496991576415,6662.000048097505,2019
+2004,36,"(35,40]",NoHS,5.342333931777379,24.19809606956679,0.22077496991576415,6681.150523156954,2019
+2004,70,"(65,70]",College,1234.0791382405744,61.30184337623587,20.13119133574007,1019.5635426970812,2019
+2004,70,"(65,70]",College,1232.6649910233393,61.30184337623587,20.10812274368231,988.9772346382515,2019
+2004,70,"(65,70]",College,1217.5807540394974,61.30184337623587,19.862057761732853,1026.5966163087958,2019
+2004,70,"(65,70]",College,1228.1082944344703,61.30184337623587,20.03379061371841,964.5278512628616,2019
+2004,70,"(65,70]",College,1243.5067863554757,61.30184337623587,20.284981949458484,1029.3866000346259,2019
+2004,58,"(55,60]",College,32423.25314183124,1677.7346608232976,19.32561441266315,18.875803891614044,2019
+2004,58,"(55,60]",College,15674.973414721724,1613.2064046377861,9.716657068592058,19.12902112287269,2019
+2004,58,"(55,60]",College,20021.182046678638,1661.6025967769199,12.049320388349514,19.897276336486822,2019
+2004,58,"(55,60]",College,23097.895008976662,1493.8291306945898,15.462206844391078,18.279329651680335,2019
+2004,58,"(55,60]",College,25320.41591382406,1677.7346608232976,15.092026471813387,19.504203208628326,2019
+2004,50,"(45,50]",HS,4.713824057450628,48.39619213913358,0.09740072202166064,4640.162557492387,2019
+2004,50,"(45,50]",HS,4.713824057450628,48.39619213913358,0.09740072202166064,4553.197208265943,2019
+2004,50,"(45,50]",HS,4.713824057450628,48.39619213913358,0.09740072202166064,4678.375640074082,2019
+2004,50,"(45,50]",HS,4.713824057450628,48.39619213913358,0.09740072202166064,4646.882734997294,2019
+2004,50,"(45,50]",HS,4.713824057450628,48.39619213913358,0.09740072202166064,4594.6763483530185,2019
+2004,34,"(30,35]",HS,368.2282226211849,153.2546084405897,2.4027220216606495,5911.7989069713185,2019
+2004,34,"(30,35]",HS,396.74685816876126,148.4149892266763,2.673226338094491,6571.844972840247,2019
+2004,34,"(30,35]",HS,369.076710951526,377.4902986852419,0.9777117775926442,5841.326982868626,2019
+2004,34,"(30,35]",HS,382.91964093357274,88.72635225507824,4.315737446668854,5813.429745575288,2019
+2004,34,"(30,35]",HS,398.7895152603232,185.5187365333454,2.1495915868780413,6113.117234874113,2019
+2004,38,"(35,40]",HS,362.2573788150808,177.45270451015648,2.0414305874630783,7997.9849727735545,2019
+2004,38,"(35,40]",HS,366.9712028725314,177.45270451015648,2.067994420741713,8880.058485972839,2019
+2004,38,"(35,40]",HS,362.2573788150808,177.45270451015648,2.0414305874630783,7894.729246722857,2019
+2004,38,"(35,40]",HS,362.2573788150808,177.45270451015648,2.0414305874630783,7882.977520291305,2019
+2004,38,"(35,40]",HS,365.39992818671453,177.45270451015648,2.0591398096488347,8237.251842889335,2019
+2004,24,"(20,25]",HS,85.63447037701975,64.52825618551145,1.3270848375451263,1958.5613934455973,2019
+2004,24,"(20,25]",HS,85.63447037701975,64.52825618551145,1.3270848375451263,1981.9792638133972,2019
+2004,24,"(20,25]",HS,84.06319569120286,64.52825618551145,1.302734657039711,1961.532061348371,2019
+2004,24,"(20,25]",HS,84.06319569120286,64.52825618551145,1.302734657039711,1938.9936447193782,2019
+2004,24,"(20,25]",HS,84.06319569120286,64.52825618551145,1.302734657039711,1970.3559596203281,2019
+2004,42,"(40,45]",College,487.2051418312388,330.70731295074614,1.4732215549881131,6032.788875556528,2019
+2004,42,"(40,45]",College,488.6664272890485,330.70731295074614,1.4776402218895837,6697.688203960452,2019
+2004,42,"(40,45]",College,488.83926750448836,330.70731295074614,1.4781628599101877,5955.485449970994,2019
+2004,42,"(40,45]",College,490.44196768402156,330.70731295074614,1.4830091397376068,5946.558416230303,2019
+2004,42,"(40,45]",College,490.39482944344707,330.70731295074614,1.482866602095624,6212.900485510653,2019
+2004,75,"(70,75]",College,847.7026929982046,82.2735266365271,10.30346853542861,7069.714600635166,2019
+2004,75,"(70,75]",College,849.2739676840216,82.2735266365271,10.322566716217173,7861.441756841627,2019
+2004,75,"(70,75]",College,849.2739676840216,82.2735266365271,10.322566716217173,7001.8538642598305,2019
+2004,75,"(70,75]",College,849.2739676840216,82.2735266365271,10.322566716217173,6983.526502401658,2019
+2004,75,"(70,75]",College,847.7026929982046,82.2735266365271,10.30346853542861,7315.3835128298,2019
+2004,43,"(40,45]",College,442.26668581687613,208.1036261982744,2.1252233509640948,5896.202148780246,2019
+2004,43,"(40,45]",College,979.9725960502693,261.33943755132134,3.74980755002897,6545.700007530952,2019
+2004,43,"(40,45]",College,1122.6286247755834,332.32051935538396,3.3781501875153337,5822.107731040649,2019
+2004,43,"(40,45]",College,566.2559712746859,214.55645181682556,2.6391933986591027,5816.313300596041,2019
+2004,43,"(40,45]",College,787.0200646319569,222.62248384001447,3.5352227279861874,6072.004593218346,2019
+2004,49,"(45,50]",College,115047.16122082586,1984.243877704477,57.98035337970708,17.27941629084851,2019
+2004,49,"(45,50]",College,119501.72495511669,1984.243877704477,60.22532124093804,17.790385937914266,2019
+2004,49,"(45,50]",College,116367.03195691203,2145.5645181682557,54.236090768437336,17.492184777733097,2019
+2004,49,"(45,50]",College,114706.19461400359,2048.7721338899883,55.987775661616304,17.06704017634909,2019
+2004,49,"(45,50]",College,114863.32208258528,2048.7721338899883,56.06446914352313,17.13588658243797,2019
+2004,56,"(55,60]",HS,1239.4843231597845,117.76406753855836,10.525148706789972,3217.335658721441,2019
+2004,56,"(55,60]",HS,1117.1763016157988,117.76406753855836,9.486563473616538,6459.512740604625,2019
+2004,56,"(55,60]",HS,1193.5402513464992,117.76406753855836,10.135012116116911,5820.162893077588,2019
+2004,56,"(55,60]",HS,1600.971777378815,117.76406753855836,13.594739132584937,3446.4462816135697,2019
+2004,56,"(55,60]",HS,1246.0208258527828,117.76406753855836,10.580653775777659,3284.8408839335257,2019
+2004,70,"(65,70]",HS,5650.303770197486,88.72635225507824,63.682362979980304,1290.8198393664272,2019
+2004,70,"(65,70]",HS,5650.460897666068,88.72635225507824,63.68413390219888,1287.111371565856,2019
+2004,70,"(65,70]",HS,5650.303770197486,88.72635225507824,63.682362979980304,1466.8000528381112,2019
+2004,70,"(65,70]",HS,5650.460897666068,88.72635225507824,63.68413390219888,1228.1147331317748,2019
+2004,70,"(65,70]",HS,5650.303770197486,88.72635225507824,63.682362979980304,1304.8517970383825,2019
+2004,74,"(70,75]",NoHS,13.355834829443447,35.4905409020313,0.3763209714473252,8869.9251516259,2019
+2004,74,"(70,75]",NoHS,14.769982046678635,33.87733449739351,0.4359841842874333,9344.10215027665,2019
+2004,74,"(70,75]",NoHS,14.769982046678635,35.4905409020313,0.41616672136527727,9206.385032643371,2019
+2004,74,"(70,75]",NoHS,14.769982046678635,33.87733449739351,0.4359841842874333,9145.469905095712,2019
+2004,74,"(70,75]",NoHS,14.769982046678635,33.87733449739351,0.4359841842874333,9305.412816482818,2019
+2004,20,"(15,20]",HS,-2.828294434470377,11.453765472928282,-0.24693140794223825,6288.82497612102,2019
+2004,20,"(15,20]",HS,-2.6711669658886894,11.615086113392062,-0.2299739269955876,6243.56717550181,2019
+2004,20,"(15,20]",HS,-2.828294434470377,11.453765472928282,-0.24693140794223825,6321.528064114385,2019
+2004,20,"(15,20]",HS,-2.828294434470377,11.453765472928282,-0.24693140794223825,6229.101682039471,2019
+2004,20,"(15,20]",HS,-2.828294434470377,11.453765472928282,-0.24693140794223825,6315.298913688004,2019
+2004,46,"(45,50]",HS,405.86025134649907,109.69803551536945,3.6997950732639624,9091.093662003534,2019
+2004,46,"(45,50]",HS,418.43044883303406,109.69803551536945,3.8143841579953275,8345.410831812205,2019
+2004,46,"(45,50]",HS,414.973644524237,109.69803551536945,3.7828721596942025,9168.70601523095,2019
+2004,46,"(45,50]",HS,416.70204667863555,109.69803551536945,3.7986281588447652,9154.96027921085,2019
+2004,46,"(45,50]",HS,426.1296947935368,109.69803551536945,3.88456997239329,8830.58304228925,2019
+2004,26,"(25,30]",HS,3.1425493716337525,80.6603202318893,0.03896028880866426,5397.827665970294,2019
+2004,26,"(25,30]",HS,3.1425493716337525,80.6603202318893,0.03896028880866426,5318.614816407073,2019
+2004,26,"(25,30]",HS,3.1425493716337525,80.6603202318893,0.03896028880866426,5421.660602273665,2019
+2004,26,"(25,30]",HS,3.1425493716337525,80.6603202318893,0.03896028880866426,5448.004238103705,2019
+2004,26,"(25,30]",HS,3.1425493716337525,80.6603202318893,0.03896028880866426,5403.1331371112365,2019
+2004,66,"(65,70]",HS,-22.107834829443448,32.264128092755726,-0.6852140794223825,6081.32722041277,2019
+2004,66,"(65,70]",HS,-17.53542549371634,24.19809606956679,-0.7246613718411553,6338.328757535376,2019
+2004,66,"(65,70]",HS,-33.53100179533214,20.97168326029122,-1.598870313801722,6146.242360549782,2019
+2004,66,"(65,70]",HS,-23.899087971274685,22.58488966492901,-1.0581892728210416,6203.515645255794,2019
+2004,66,"(65,70]",HS,-14.722843806104128,29.03771528348015,-0.507024869634978,6256.127808485565,2019
+2004,50,"(45,50]",College,163224.80000000002,10889.143231305057,14.989682524401658,20.74019594646676,2019
+2004,50,"(45,50]",College,138150.55569120287,10695.558462748522,12.916628540002504,21.35350431432254,2019
+2004,50,"(45,50]",College,173777.9521723519,10760.086718934033,16.15023714135712,20.995578422063275,2019
+2004,50,"(45,50]",College,145000.0563016158,11179.520384139856,12.970149999218593,20.4852844289174,2019
+2004,50,"(45,50]",College,164199.30456014362,8695.182520997667,18.88393994762329,20.567919624948274,2019
+2004,44,"(40,45]",College,47246.81565529623,6404.429426412011,7.377209195318681,20.810657079995377,2019
+2004,44,"(40,45]",College,45250.98254937164,6823.863091617837,6.631285232694096,21.157121278920233,2019
+2004,44,"(40,45]",College,46351.031956912026,6985.183732081614,6.635621013665052,21.65568308239284,2019
+2004,44,"(40,45]",College,49854.97450628367,6598.014194968546,7.55605747927939,20.44902172908102,2019
+2004,44,"(40,45]",College,36074.89551166966,7985.371702957041,4.517622579586479,21.74435017811239,2019
+2004,51,"(50,55]",College,3346.1865709156195,621.0844657855476,5.3876513666838575,2012.623303238918,2019
+2004,51,"(50,55]",College,3164.4686535008977,621.0844657855476,5.095069717286324,1959.6022200733448,2019
+2004,51,"(50,55]",College,3470.6315260323163,621.0844657855476,5.588018566271274,2059.189363556804,2019
+2004,51,"(50,55]",College,3184.5024057450632,621.0844657855476,5.127325800553238,1956.3984902766326,2019
+2004,51,"(50,55]",College,3246.8820107719926,621.0844657855476,5.227762389235313,1994.2114487899507,2019
+2004,56,"(55,60]",College,2343.399066427289,67.75466899478702,34.586532576929685,2867.6118709093976,2019
+2004,56,"(55,60]",College,2343.399066427289,67.75466899478702,34.586532576929685,2986.124827388388,2019
+2004,56,"(55,60]",College,2343.241938958707,67.75466899478702,34.58421351211964,2838.1739412422057,2019
+2004,56,"(55,60]",College,2343.399066427289,67.75466899478702,34.586532576929685,3045.6754045198372,2019
+2004,56,"(55,60]",College,2343.399066427289,67.75466899478702,34.586532576929685,2912.9052588217296,2019
+2004,24,"(20,25]",College,71.49299820466787,16.132064046377863,4.43173285198556,6756.522182105907,2019
+2004,24,"(20,25]",College,71.49299820466787,16.132064046377863,4.43173285198556,6707.89857833921,2019
+2004,24,"(20,25]",College,71.33587073608618,16.132064046377863,4.421992779783393,6791.657384673874,2019
+2004,24,"(20,25]",College,71.57156193895871,16.132064046377863,4.436602888086642,6692.357292355817,2019
+2004,24,"(20,25]",College,71.33587073608618,16.132064046377863,4.421992779783393,6784.964975012085,2019
+2004,53,"(50,55]",College,5744.580251346499,645.2825618551144,8.902425992779783,3613.496873612951,2019
+2004,53,"(50,55]",College,7865.801077199282,645.2825618551144,12.189700361010832,3504.047672397513,2019
+2004,53,"(50,55]",College,5743.008976660682,645.2825618551144,8.899990974729242,3776.9260412605045,2019
+2004,53,"(50,55]",College,7535.833393177738,645.2825618551144,11.678346570397112,3384.8663198556847,2019
+2004,53,"(50,55]",College,5964.558707360862,645.2825618551144,9.243328519855597,3511.2610373154143,2019
+2004,28,"(25,30]",HS,20.03375224416517,32.264128092755726,0.6209296028880866,7214.787790493113,2019
+2004,28,"(25,30]",HS,20.348007181328548,22.58488966492901,0.900956678700361,7291.906819138759,2019
+2004,28,"(25,30]",HS,16.10556552962298,17.74527045101565,0.9075976370200195,7167.433465131978,2019
+2004,28,"(25,30]",HS,22.390664272890486,20.97168326029122,1.0676617606220495,7167.498892006188,2019
+2004,28,"(25,30]",HS,15.634183123877918,24.19809606956679,0.6460914560770157,7176.50785225578,2019
+2004,72,"(70,75]",HS,7.275001795332137,30.650921688117936,0.23735018050541518,6978.98158893286,2019
+2004,72,"(70,75]",HS,7.275001795332137,32.264128092755726,0.2254826714801444,6511.653017403221,2019
+2004,72,"(70,75]",HS,7.1178743267504485,30.650921688117936,0.23222382671480143,7327.048290809104,2019
+2004,72,"(70,75]",HS,7.1178743267504485,32.264128092755726,0.22061263537906134,7083.131314886303,2019
+2004,72,"(70,75]",HS,8.689149012567325,30.650921688117936,0.28348736462093865,7100.838637018534,2019
+2004,46,"(45,50]",HS,2.514039497307002,38.716953711306864,0.06493381468110711,5783.7114492891415,2019
+2004,46,"(45,50]",HS,2.514039497307002,38.716953711306864,0.06493381468110711,5790.170357407552,2019
+2004,46,"(45,50]",HS,2.514039497307002,38.716953711306864,0.06493381468110711,5831.281418877171,2019
+2004,46,"(45,50]",HS,2.514039497307002,38.716953711306864,0.06493381468110711,5795.092401283031,2019
+2004,46,"(45,50]",HS,2.514039497307002,38.716953711306864,0.06493381468110711,5810.3379524273205,2019
+2004,82,"(80,85]",College,620.1035547576303,177.45270451015648,3.4944722678043982,1164.6913178897216,2019
+2004,82,"(80,85]",College,624.73881508079,177.45270451015648,3.5205933705283887,1172.8587074324137,2019
+2004,82,"(80,85]",College,617.6209407540395,177.45270451015648,3.4804819822776496,1153.2564086649304,2019
+2004,82,"(80,85]",College,647.2080430879713,177.45270451015648,3.6472143091565474,1103.812899902161,2019
+2004,82,"(80,85]",College,641.5200287253142,177.45270451015648,3.615160617000328,1160.8339672488632,2019
+2004,39,"(35,40]",College,1391.9922441651704,251.66019912349464,5.531237156345459,4275.63793954523,2019
+2004,39,"(35,40]",College,1514.8659245960503,251.66019912349464,6.019489493659169,4470.153237119578,2019
+2004,39,"(35,40]",College,1202.3393895870736,251.66019912349464,4.777630287882995,7699.959223589406,2019
+2004,39,"(35,40]",College,1183.012710951526,253.2734055281324,4.670891949688428,7689.362525033069,2019
+2004,39,"(35,40]",College,1162.5861400359065,253.2734055281324,4.590241670307434,8037.1371529568205,2019
+2004,45,"(40,45]",HS,170.34188868940757,74.20749461333816,2.2954809292104854,8768.07255442363,2019
+2004,45,"(40,45]",HS,163.58540754039498,77.43390742261373,2.112581077015644,8132.638206617104,2019
+2004,45,"(40,45]",HS,228.74616876122082,74.20749461333816,3.0825211112855126,8872.832897649017,2019
+2004,45,"(40,45]",HS,200.57321364452426,74.20749461333816,2.7028700361010833,8800.293793687357,2019
+2004,45,"(40,45]",HS,155.30478994614003,74.20749461333816,2.0928450792654214,8580.682583417023,2019
+2004,45,"(40,45]",HS,602.1124596050269,169.38667248696757,3.5546625408286046,9070.658657498325,2019
+2004,45,"(40,45]",HS,649.2507001795333,169.38667248696757,3.83295031803335,10091.588002951079,2019
+2004,45,"(40,45]",HS,606.8262836624775,169.38667248696757,3.582491318549079,8953.472214583084,2019
+2004,45,"(40,45]",HS,658.6783482944345,169.38667248696757,3.888607873474299,8973.918865809734,2019
+2004,45,"(40,45]",HS,567.5444165170558,169.38667248696757,3.3505848375451266,9379.434384985569,2019
+2004,42,"(40,45]",College,779.1008402154399,185.5187365333454,4.1995803484539325,5601.653572909531,2019
+2004,42,"(40,45]",College,1057.232172351885,185.5187365333454,5.698789201067337,6219.44296156203,2019
+2004,42,"(40,45]",College,1057.232172351885,185.5187365333454,5.698789201067337,5529.335006580108,2019
+2004,42,"(40,45]",College,889.0900682226212,185.5187365333454,4.792454308585779,5521.1042958977,2019
+2004,42,"(40,45]",College,827.8260682226212,185.5187365333454,4.462223512792341,5769.23204704089,2019
+2004,93,"(90,95]",NoHS,109.65926032315978,9.679238427826716,11.329327316486161,8566.897628681649,2019
+2004,93,"(90,95]",NoHS,109.65926032315978,9.679238427826716,11.329327316486161,7869.360018048976,2019
+2004,93,"(90,95]",NoHS,109.67497307001796,9.679238427826716,11.33095066185319,8532.960078850188,2019
+2004,93,"(90,95]",NoHS,109.67497307001796,9.679238427826716,11.33095066185319,8385.129575961697,2019
+2004,93,"(90,95]",NoHS,109.65926032315978,9.679238427826716,11.329327316486161,8303.269446270078,2019
+2004,38,"(35,40]",College,1261.4193177737882,466.21665094032016,2.705650506539418,1196.0522510431706,2019
+2004,38,"(35,40]",College,1058.7248833034112,409.7544267779977,2.5838034054407455,1144.2579717943036,2019
+2004,38,"(35,40]",College,1027.2993895870736,422.6600780151,2.4305569487695315,1204.6580915080572,2019
+2004,38,"(35,40]",College,1028.8706642728905,406.52801396872206,2.530872729356484,1128.9660170082707,2019
+2004,38,"(35,40]",College,1027.2993895870736,404.9148075640843,2.53707538078732,1214.3663677390898,2019
+2004,75,"(70,75]",HS,131.59425493716338,67.75466899478702,1.942216778408114,8652.199607126533,2019
+2004,75,"(70,75]",HS,131.12287253141832,64.52825618551145,2.0320225631768953,8000.691640335537,2019
+2004,75,"(70,75]",HS,131.75138240574506,58.0754305669603,2.268625150421179,8615.376930663137,2019
+2004,75,"(70,75]",HS,131.28,62.91504978087366,2.0866231602332683,8480.332048390728,2019
+2004,75,"(70,75]",HS,131.75138240574506,61.30184337623587,2.149223826714801,8416.485538231473,2019
+2004,69,"(65,70]",HS,4371.364739676841,322.6412809275572,13.548683935018053,294.0782415789,2019
+2004,69,"(65,70]",HS,4319.402685816875,322.6412809275572,13.387631841155233,293.0190960111748,2019
+2004,69,"(65,70]",HS,4331.187245960503,322.6412809275572,13.424157111913358,304.0768756051631,2019
+2004,69,"(65,70]",HS,4342.893242369838,322.6412809275572,13.460438880866425,290.0616229138954,2019
+2004,69,"(65,70]",HS,4318.522771992819,322.6412809275572,13.384904620938629,296.3295687508992,2019
+2004,27,"(25,30]",HS,-6.693630161579892,35.4905409020313,-0.1886032162783065,4881.6154736572225,2019
+2004,27,"(25,30]",HS,-6.7171992818671455,32.264128092755726,-0.20819404332129962,4892.865253351136,2019
+2004,27,"(25,30]",HS,-6.709342908438061,22.58488966492901,-0.29707220216606495,4878.274065198591,2019
+2004,27,"(25,30]",HS,-6.701486535008977,29.03771528348015,-0.23078559967910148,4917.870833370345,2019
+2004,27,"(25,30]",HS,-6.701486535008977,29.03771528348015,-0.23078559967910148,4893.265707886247,2019
+2004,62,"(60,65]",College,47036.10771992819,2468.2057990958133,19.05680139685236,19.754206743799788,2019
+2004,62,"(60,65]",College,49389.877199281866,3936.223627316198,12.54752825945434,19.816306324632045,2019
+2004,62,"(60,65]",College,38727.207181328544,2581.1302474204576,15.003972472924188,20.246356702841897,2019
+2004,62,"(60,65]",College,39148.30879712747,2581.1302474204576,15.167118682310472,19.17777086767523,2019
+2004,62,"(60,65]",College,40406.89982046679,3774.902986852419,10.704089604739426,20.067007640569997,2019
+2004,43,"(40,45]",HS,507.09747935368046,109.69803551536945,4.622666914419198,5612.968401736958,2019
+2004,43,"(40,45]",HS,505.934736086176,114.53765472928282,4.417191335740072,5388.140704816511,2019
+2004,43,"(40,45]",HS,522.7473752244165,91.95276506435381,5.684955475330926,5607.893106386129,2019
+2004,43,"(40,45]",HS,529.8181113105925,112.92444832464501,4.691792779783395,5586.985527798177,2019
+2004,43,"(40,45]",HS,501.2209120287253,109.69803551536945,4.569096517307284,5530.427172570477,2019
+2004,55,"(50,55]",NoHS,8.642010771992819,11.292444832464504,0.7652913873130479,8191.159061627422,2019
+2004,55,"(50,55]",NoHS,8.642010771992819,11.292444832464504,0.7652913873130479,8123.369011498343,2019
+2004,55,"(50,55]",NoHS,8.642010771992819,11.292444832464504,0.7652913873130479,8115.856611179115,2019
+2004,55,"(50,55]",NoHS,8.642010771992819,11.292444832464504,0.7652913873130479,8181.420034819015,2019
+2004,55,"(50,55]",NoHS,8.642010771992819,11.292444832464504,0.7652913873130479,8176.64104868062,2019
+2004,30,"(25,30]",HS,69.13608617594255,74.20749461333816,0.9316590802071889,4490.771359969353,2019
+2004,30,"(25,30]",HS,69.13608617594255,74.20749461333816,0.9316590802071889,4557.165838516683,2019
+2004,30,"(25,30]",HS,69.7645960502693,74.20749461333816,0.9401287082090725,4509.269248132533,2019
+2004,30,"(25,30]",HS,68.03619389587074,74.20749461333816,0.9168372312038927,4515.182969801193,2019
+2004,30,"(25,30]",HS,70.39310592459606,74.20749461333816,0.948598336210956,4537.066581123756,2019
+2004,35,"(30,35]",NoHS,8.799138240574507,27.424508878842364,0.32084943724782333,4681.844280620664,2019
+2004,35,"(30,35]",NoHS,9.113393177737882,29.03771528348015,0.3138467709586843,4674.340571685082,2019
+2004,35,"(30,35]",NoHS,8.956265709156193,27.424508878842364,0.32657889148439156,4689.731149607762,2019
+2004,35,"(30,35]",NoHS,9.113393177737882,29.03771528348015,0.3138467709586843,4683.490711089165,2019
+2004,35,"(30,35]",NoHS,9.113393177737882,29.03771528348015,0.3138467709586843,4661.738399338237,2019
+2004,36,"(35,40]",College,96.58625493716337,70.9810818040626,1.3607323596980634,7047.657103196393,2019
+2004,36,"(35,40]",College,98.15752962298025,70.9810818040626,1.382868887430259,6637.315476335874,2019
+2004,36,"(35,40]",College,96.58625493716337,70.9810818040626,1.3607323596980634,7067.181351691182,2019
+2004,36,"(35,40]",College,96.4291274685817,70.9810818040626,1.3585187069248441,7018.534367896,2019
+2004,36,"(35,40]",College,98.15752962298025,70.9810818040626,1.382868887430259,6931.5082907310625,2019
+2004,70,"(65,70]",NoHS,127.87033393177738,41.94336652058244,3.0486425992779784,8138.468200841443,2019
+2004,70,"(65,70]",NoHS,127.85462118491921,41.94336652058244,3.0482679811163567,7739.991878855064,2019
+2004,70,"(65,70]",NoHS,127.85462118491921,41.94336652058244,3.0482679811163567,8513.052887280966,2019
+2004,70,"(65,70]",NoHS,127.85462118491921,41.94336652058244,3.0482679811163567,8255.80060902799,2019
+2004,70,"(65,70]",NoHS,127.85462118491921,41.94336652058244,3.0482679811163567,8295.515153253105,2019
+2004,78,"(75,80]",College,18202.117342908437,80.6603202318893,225.6638368231047,950.1617103003521,2019
+2004,78,"(75,80]",College,19569.12631956912,80.6603202318893,242.61156245487365,954.2652590928553,2019
+2004,78,"(75,80]",College,19631.977307001795,80.6603202318893,243.39076823104693,971.8188949464256,2019
+2004,78,"(75,80]",College,18423.352818671454,80.6603202318893,228.40664115523467,910.8751677230182,2019
+2004,78,"(75,80]",College,20826.303195691202,80.6603202318893,258.19762599277976,930.2636395296498,2019
+2004,51,"(50,55]",NoHS,41.63877917414722,70.9810818040626,0.5866179849031834,4725.071328625791,2019
+2004,51,"(50,55]",NoHS,43.21005385996409,70.9810818040626,0.6087545126353789,4468.346623028977,2019
+2004,51,"(50,55]",NoHS,41.63877917414722,70.9810818040626,0.5866179849031834,4766.5035015243075,2019
+2004,51,"(50,55]",NoHS,41.63877917414722,70.9810818040626,0.5866179849031834,4745.4101344484925,2019
+2004,51,"(50,55]",NoHS,43.21005385996409,70.9810818040626,0.6087545126353789,4633.672147165164,2019
+2004,61,"(60,65]",College,5869.694569479354,806.6032023188931,7.277053392057762,281.91488548644634,2019
+2004,61,"(60,65]",College,8118.210799856373,806.6032023188931,10.064689523321299,273.11903091001534,2019
+2004,61,"(60,65]",College,11096.883921005387,806.6032023188931,13.7575500433213,295.07194487106364,2019
+2004,61,"(60,65]",College,6543.695988509875,806.6032023188931,8.11265808231047,276.79246674421785,2019
+2004,61,"(60,65]",College,6166.65700021544,806.6032023188931,7.645217602021661,285.6257479029663,2019
+2004,42,"(40,45]",HS,128.20187289048474,67.75466899478702,1.8921481691593602,7788.89955194212,2019
+2004,42,"(40,45]",HS,128.20187289048474,67.75466899478702,1.8921481691593602,7474.723327237689,2019
+2004,42,"(40,45]",HS,128.18616014362658,67.75466899478702,1.8919162626783563,7726.823481740194,2019
+2004,42,"(40,45]",HS,128.18616014362658,67.75466899478702,1.8919162626783563,7760.20207714977,2019
+2004,42,"(40,45]",HS,128.0290326750449,67.75466899478702,1.889597197868317,7631.952645099455,2019
+2004,44,"(40,45]",HS,-43.68143626570916,564.6222416232251,-0.07736400206291903,1785.154019463614,2019
+2004,44,"(40,45]",HS,-43.68143626570916,564.6222416232251,-0.07736400206291903,1779.1502691431142,2019
+2004,44,"(40,45]",HS,-45.25271095152603,564.6222416232251,-0.08014687983496648,1726.1295752992635,2019
+2004,44,"(40,45]",HS,-43.68143626570916,564.6222416232251,-0.07736400206291903,1680.1873526843615,2019
+2004,44,"(40,45]",HS,-45.25271095152603,564.6222416232251,-0.08014687983496648,1676.4759016193668,2019
+2004,34,"(30,35]",College,318.27740035906646,161.3206404637786,1.9729490252707584,4771.48664390487,2019
+2004,34,"(30,35]",College,318.27740035906646,161.3206404637786,1.9729490252707584,4900.919457583611,2019
+2004,34,"(30,35]",College,318.1202728904847,161.3206404637786,1.9719750180505415,4663.164258723703,2019
+2004,34,"(30,35]",College,318.2616876122083,161.3206404637786,1.9728516245487366,4597.298150274202,2019
+2004,34,"(30,35]",College,318.27740035906646,161.3206404637786,1.9729490252707584,4783.495592899253,2019
+2004,50,"(45,50]",College,7303.5989946140035,1116.3388320093482,6.5424571690907944,327.0469181802461,2019
+2004,50,"(45,50]",College,17860.99360861759,2355.281350771168,7.5833800504426065,315.7360981420394,2019
+2004,50,"(45,50]",College,9236.581113105925,2790.8470800233704,3.309597712902485,339.4462229663715,2019
+2004,50,"(45,50]",College,18719.06671454219,2742.4508878842366,6.8256707156508805,322.79374615948484,2019
+2004,50,"(45,50]",College,6752.08157989228,2000.3759417508547,3.3754063118667754,332.43618534570976,2019
+2004,40,"(35,40]",NoHS,26.868797127468582,27.424508878842364,0.9797366744531748,6790.978372218393,2019
+2004,40,"(35,40]",NoHS,26.868797127468582,27.424508878842364,0.9797366744531748,6749.339602522174,2019
+2004,40,"(35,40]",NoHS,26.868797127468582,27.424508878842364,0.9797366744531748,6786.199811659362,2019
+2004,40,"(35,40]",NoHS,26.868797127468582,27.424508878842364,0.9797366744531748,6774.463111497801,2019
+2004,40,"(35,40]",NoHS,26.868797127468582,27.424508878842364,0.9797366744531748,6793.9368710176495,2019
+2004,48,"(45,50]",HS,60.808330341113106,285.53753362088815,0.2129609006914275,4673.6628700016,2019
+2004,48,"(45,50]",HS,64.42226211849191,275.8582951930614,0.23353389490573606,4574.944476045564,2019
+2004,48,"(45,50]",HS,63.95087971274686,240.36775429103014,0.2660543212269522,4713.898427412414,2019
+2004,48,"(45,50]",HS,63.00811490125673,221.0092774353767,0.28509262431157606,4710.52135413599,2019
+2004,48,"(45,50]",HS,62.222477558348295,174.22629170088092,0.357135980746089,4653.356587024551,2019
+2004,77,"(75,80]",HS,561.5735727109516,37.42638858759664,15.00474915971617,3180.535601099883,2019
+2004,77,"(75,80]",HS,1468.1990664272892,37.42638858759664,39.228980455620565,9327.66809388071,2019
+2004,77,"(75,80]",HS,1013.9435547576303,37.42638858759664,27.091674965766217,8925.260759343666,2019
+2004,77,"(75,80]",HS,911.9678276481148,35.813182182958855,25.464585162780104,8835.969349394405,2019
+2004,77,"(75,80]",HS,716.9726391382407,37.42638858759664,19.156874766587826,9177.714875437556,2019
+2004,74,"(70,75]",HS,43335.75583482944,370.0695492239081,117.10165271828251,397.9953612735625,2019
+2004,74,"(70,75]",HS,43335.75583482944,369.1016253811254,117.40873747191438,385.7434922908395,2019
+2004,74,"(70,75]",HS,43337.32710951526,370.7148317857633,116.90205892425683,408.50305771586176,2019
+2004,74,"(70,75]",HS,43334.18456014363,368.6176634597341,117.55862199717197,396.4855657116845,2019
+2004,74,"(70,75]",HS,43337.32710951526,371.8440762690097,116.54704182557147,415.2170403199343,2019
+2004,67,"(65,70]",College,4501.073464991024,291.9903592394393,15.415144105151885,3643.933326921246,2019
+2004,67,"(65,70]",College,4501.073464991024,291.9903592394393,15.415144105151885,3596.5441441361945,2019
+2004,67,"(65,70]",College,4501.073464991024,291.9903592394393,15.415144105151885,3959.9237293898063,2019
+2004,67,"(65,70]",College,4501.073464991024,291.9903592394393,15.415144105151885,3546.786053124112,2019
+2004,67,"(65,70]",College,4501.073464991024,291.9903592394393,15.415144105151885,3680.0178572690843,2019
+2004,81,"(80,85]",NoHS,0.10998922800718133,17.74527045101565,0.006198227765014768,7999.960606293083,2019
+2004,81,"(80,85]",NoHS,0.10998922800718133,17.74527045101565,0.006198227765014768,7975.109818927037,2019
+2004,81,"(80,85]",NoHS,0.09427648114901258,17.74527045101565,0.005312766655726944,7946.245878870553,2019
+2004,81,"(80,85]",NoHS,0.09427648114901258,17.74527045101565,0.005312766655726944,8011.086433011364,2019
+2004,81,"(80,85]",NoHS,0.10998922800718133,17.74527045101565,0.006198227765014768,7987.656409573943,2019
+2004,52,"(50,55]",College,470.5182046678636,172.6130852962431,2.7258547859239517,6973.832796094782,2019
+2004,52,"(50,55]",College,467.5327827648115,172.6130852962431,2.708559330611694,7180.031768915478,2019
+2004,52,"(50,55]",College,468.6326750448833,170.99987889160533,2.740543900279272,6816.439475842737,2019
+2004,52,"(50,55]",College,465.64725314183124,172.6130852962431,2.697635885151321,6716.579422355692,2019
+2004,52,"(50,55]",College,466.4328904847397,172.6130852962431,2.70218732075981,6992.568684170657,2019
+2004,70,"(65,70]",NoHS,114.2316696588869,29.844318485799047,3.82758513025661,7868.403683549697,2019
+2004,70,"(65,70]",NoHS,100.090197486535,29.86045054984542,3.3519319247864847,7634.634571764449,2019
+2004,70,"(65,70]",NoHS,100.090197486535,29.86045054984542,3.3519319247864847,7642.966482208338,2019
+2004,70,"(65,70]",NoHS,100.090197486535,29.231300052036683,3.4240761549557304,7625.076902330475,2019
+2004,70,"(65,70]",NoHS,114.2316696588869,29.844318485799047,3.82758513025661,7858.223924493493,2019
+2004,53,"(50,55]",College,4121.453500897666,911.4616186203492,4.52180697102329,2297.053904389363,2019
+2004,53,"(50,55]",College,4078.3691490125675,911.4616186203492,4.4745374524775565,2256.2888535992306,2019
+2004,53,"(50,55]",College,5265.498599640934,911.4616186203492,5.776983355164372,2354.444881592243,2019
+2004,53,"(50,55]",College,4353.027964093358,911.4616186203492,4.775876323440146,2233.1573050868365,2019
+2004,53,"(50,55]",College,5709.697953321365,911.4616186203492,6.2643317465895665,2263.443088105437,2019
+2004,75,"(70,75]",College,1812.8110305206465,104.8584163014561,17.288178617050818,2401.7412231424105,2019
+2004,75,"(70,75]",College,1814.3980179533214,103.24520989681828,17.573677459386285,2320.4329846125393,2019
+2004,75,"(70,75]",College,1814.3980179533214,103.24520989681828,17.573677459386285,2439.9300107590193,2019
+2004,75,"(70,75]",College,1814.3980179533214,104.8584163014561,17.303313190780337,2376.9882099106117,2019
+2004,75,"(70,75]",College,1812.8110305206465,103.24520989681828,17.558306407942244,2471.5740840680614,2019
+2004,36,"(35,40]",NoHS,-3.4568043087971274,83.88673304116487,-0.04120799777839489,7635.686316118512,2019
+2004,36,"(35,40]",NoHS,-3.9281867145421905,74.20749461333816,-0.0529351750117721,7154.601466538703,2019
+2004,36,"(35,40]",NoHS,-2.356912028725314,72.59428820870036,-0.032466907340553554,7601.800906033779,2019
+2004,36,"(35,40]",NoHS,-2.828294434470377,77.43390742261373,-0.036525270758122744,7552.177326995587,2019
+2004,36,"(35,40]",NoHS,-2.9854219030520643,75.82070101797595,-0.03937475996620324,7403.664341232252,2019
+2004,42,"(40,45]",NoHS,12.727324955116698,19.358476855653432,0.6574548736462095,5369.608203329611,2019
+2004,42,"(40,45]",NoHS,12.727324955116698,19.358476855653432,0.6574548736462095,5369.34315306293,2019
+2004,42,"(40,45]",NoHS,12.884452423698384,19.358476855653432,0.6655716004813478,5367.849028816238,2019
+2004,42,"(40,45]",NoHS,12.727324955116698,19.358476855653432,0.6574548736462095,5367.089071735009,2019
+2004,42,"(40,45]",NoHS,12.727324955116698,19.358476855653432,0.6574548736462095,5352.544656761131,2019
+2004,59,"(55,60]",College,41996.81139533214,3791.0350508987976,11.077927487211,19.754206743799788,2019
+2004,59,"(55,60]",College,12417.933113105924,4339.525228475644,2.8615879524378296,21.920877619601253,2019
+2004,59,"(55,60]",College,188618.3273249551,5710.750672417763,33.02863986620164,20.995578422063275,2019
+2004,59,"(55,60]",College,37771.80932136445,6936.787539942482,5.445144327092602,19.17777086767523,2019
+2004,59,"(55,60]",College,106336.8,6936.787539942482,15.329401309713706,20.567919624948274,2019
+2004,72,"(70,75]",College,1.4141472172351885,19.358476855653432,0.07305054151624549,6871.909649156453,2019
+2004,72,"(70,75]",College,1.4141472172351885,19.358476855653432,0.07305054151624549,7115.1457121051335,2019
+2004,72,"(70,75]",College,1.4141472172351885,19.358476855653432,0.07305054151624549,7108.979137457437,2019
+2004,72,"(70,75]",College,1.4141472172351885,19.358476855653432,0.07305054151624549,7058.165744295387,2019
+2004,72,"(70,75]",College,1.4141472172351885,19.358476855653432,0.07305054151624549,7122.304251493025,2019
+2004,64,"(60,65]",College,16556.36423698384,7985.371702957041,2.0733367027677496,24.078687939553383,2019
+2004,64,"(60,65]",College,15767.741472172353,7662.730422029484,2.057718411552347,24.329802147470133,2019
+2004,64,"(60,65]",College,23207.72710951526,8904.89935360058,2.6061751164129126,22.631811214859326,2019
+2004,64,"(60,65]",College,20381.475332136444,8953.295545739713,2.276421595602823,23.15357209552007,2019
+2004,64,"(60,65]",College,15955.823052064632,7388.485333241061,2.1595526460990335,23.703918171858028,2019
+2004,84,"(80,85]",HS,88173.65026929982,2758.5829519306144,31.963385479342154,18.968049583545866,2019
+2004,84,"(80,85]",HS,110305.05421903051,3952.355691362576,27.908686067928972,20.08277893185048,2019
+2004,84,"(80,85]",HS,100036.77414721723,4646.034445356823,21.53164711191336,19.680052415018398,2019
+2004,84,"(80,85]",HS,103251.60215439857,4387.921420614778,23.5308685495859,18.634196351820794,2019
+2004,84,"(80,85]",HS,119489.15475763015,3452.261705924862,34.61184722831405,19.074323977144275,2019
+2004,58,"(55,60]",College,1774.9118850987434,198.4243877704477,8.9450289102169,2805.8255924911846,2019
+2004,58,"(55,60]",College,1255.448473967684,198.4243877704477,6.327087552463972,5665.01058535673,2019
+2004,58,"(55,60]",College,1812.4653500897666,198.4243877704477,9.134287223738662,2776.750932315691,2019
+2004,58,"(55,60]",College,3109.7097307001795,198.4243877704477,15.672013736021835,2979.7927591030125,2019
+2004,58,"(55,60]",College,3241.6968043087973,198.4243877704477,16.337189398608785,2850.310365103209,2019
+2004,56,"(55,60]",HS,2.9854219030520643,40.33016011594465,0.0740245487364621,6008.420779921688,2019
+2004,56,"(55,60]",HS,2.9854219030520643,40.33016011594465,0.0740245487364621,5938.0079045662515,2019
+2004,56,"(55,60]",HS,2.9854219030520643,40.33016011594465,0.0740245487364621,6016.067514829071,2019
+2004,56,"(55,60]",HS,2.9854219030520643,40.33016011594465,0.0740245487364621,6000.264731053666,2019
+2004,56,"(55,60]",HS,2.828294434470377,38.716953711306864,0.07305054151624549,5990.508777900986,2019
+2004,73,"(70,75]",HS,1355.2244165170557,67.75466899478702,20.001933986591023,5744.774176615565,2019
+2004,73,"(70,75]",HS,1355.2244165170557,67.75466899478702,20.001933986591023,6385.978788279723,2019
+2004,73,"(70,75]",HS,1355.2244165170557,67.75466899478702,20.001933986591023,5686.459259555713,2019
+2004,73,"(70,75]",HS,1355.067289048474,67.75466899478702,19.999614921780985,5669.469159544878,2019
+2004,73,"(70,75]",HS,1355.2244165170557,67.75466899478702,20.001933986591023,5941.494361799966,2019
+2004,58,"(55,60]",College,34425.84272890485,2903.771528348015,11.8555617729643,21.05553176478322,2019
+2004,58,"(55,60]",College,34424.27145421903,2903.771528348015,11.855020657841957,21.23114353679491,2019
+2004,58,"(55,60]",College,34441.555475763016,2903.771528348015,11.860972924187724,22.2416017037796,2019
+2004,58,"(55,60]",College,34424.27145421903,2903.771528348015,11.855020657841957,20.347196135699253,2019
+2004,58,"(55,60]",College,34441.555475763016,2903.771528348015,11.860972924187724,21.757751872878046,2019
+2004,37,"(35,40]",College,775.2669299820467,156.48102124986525,4.954383118091481,7324.946007394159,2019
+2004,37,"(35,40]",College,775.2669299820467,156.48102124986525,4.954383118091481,8129.720747993522,2019
+2004,37,"(35,40]",College,773.6956552962298,156.48102124986525,4.944341806542856,7229.105783492161,2019
+2004,37,"(35,40]",College,775.2669299820467,156.48102124986525,4.954383118091481,7217.566447856979,2019
+2004,37,"(35,40]",College,775.2669299820467,156.48102124986525,4.954383118091481,7541.331332676593,2019
+2004,56,"(55,60]",HS,835.2896229802514,224.23569024465226,3.7250520738643744,6982.661790087188,2019
+2004,56,"(55,60]",HS,821.1481508078995,224.23569024465226,3.6619868581668964,7723.146474571896,2019
+2004,56,"(55,60]",HS,835.2896229802514,224.23569024465226,3.7250520738643744,6891.017611342218,2019
+2004,56,"(55,60]",HS,838.4321723518851,224.23569024465226,3.7390665662415916,6869.063469390009,2019
+2004,56,"(55,60]",HS,835.2896229802514,224.23569024465226,3.7250520738643744,7220.5461233139595,2019
+2004,87,"(85,90]",NoHS,223.43526032315978,25.81130247420457,8.656489169675092,9449.275137056853,2019
+2004,87,"(85,90]",NoHS,207.72251346499104,24.19809606956679,8.58425030084236,9494.187012573871,2019
+2004,87,"(85,90]",NoHS,184.15339317773788,24.19809606956679,7.610243080625752,9445.538924701123,2019
+2004,87,"(85,90]",NoHS,165.2980969479354,24.19809606956679,6.831037304452468,9416.528261260337,2019
+2004,87,"(85,90]",NoHS,204.57996409335726,24.19809606956679,8.454382671480143,9441.474075229307,2019
+2004,67,"(65,70]",College,18896.77788150808,619.4712593809098,30.504688628158846,330.8365091718462,2019
+2004,67,"(65,70]",College,19710.8552962298,619.4712593809098,31.81883743231047,328.0336321160737,2019
+2004,67,"(65,70]",College,15566.932567324955,619.4712593809098,25.12938628158845,344.14618611141196,2019
+2004,67,"(65,70]",College,15816.450987432676,619.4712593809098,25.53217885078219,320.4211222745283,2019
+2004,67,"(65,70]",College,17383.011849192102,619.4712593809098,28.061046555355,325.1670609369383,2019
+2004,40,"(35,40]",NoHS,0,12.421689315710953,0,5258.04907927721,2019
+2004,40,"(35,40]",NoHS,0,12.421689315710953,0,5251.215870805578,2019
+2004,40,"(35,40]",NoHS,0,12.421689315710953,0,5300.410489068504,2019
+2004,40,"(35,40]",NoHS,0,12.421689315710953,0,5247.125252925363,2019
+2004,40,"(35,40]",NoHS,0,12.421689315710953,0,5259.266523262144,2019
+2004,20,"(15,20]",HS,2.891145421903052,8.066032023188932,0.3584346570397111,5694.8973635808125,2019
+2004,20,"(15,20]",HS,2.891145421903052,8.066032023188932,0.3584346570397111,5698.0214910209415,2019
+2004,20,"(15,20]",HS,2.7340179533213647,8.066032023188932,0.338954512635379,5731.383481704138,2019
+2004,20,"(15,20]",HS,2.891145421903052,8.066032023188932,0.3584346570397111,5627.811185242937,2019
+2004,20,"(15,20]",HS,2.7340179533213647,8.066032023188932,0.338954512635379,5724.396731132594,2019
+2004,32,"(30,35]",College,-5.813716337522442,48.39619213913358,-0.12012755716004815,7627.03278823444,2019
+2004,32,"(30,35]",College,-5.656588868940754,46.782985734495796,-0.12091124113033737,7431.106476321137,2019
+2004,32,"(30,35]",College,-5.813716337522442,48.39619213913358,-0.12012755716004815,7657.121723450905,2019
+2004,32,"(30,35]",College,-5.970843806104129,48.39619213913358,-0.12337424789410348,7623.615653109315,2019
+2004,32,"(30,35]",College,-5.656588868940754,48.39619213913358,-0.11688086642599278,7602.184021016798,2019
+2004,35,"(30,35]",College,3.2996768402154397,104.8584163014561,0.03146792557622882,11825.224591017268,2019
+2004,35,"(30,35]",College,3.4568043087971274,104.8584163014561,0.03296639822271591,11335.89322241212,2019
+2004,35,"(30,35]",College,3.4568043087971274,104.8584163014561,0.03296639822271591,11901.309723823753,2019
+2004,35,"(30,35]",College,3.613931777378815,104.8584163014561,0.034464870869202996,11779.089483721627,2019
+2004,35,"(30,35]",College,3.4568043087971274,104.8584163014561,0.03296639822271591,11659.298230842074,2019
+2004,31,"(30,35]",HS,-25.5017881508079,58.0754305669603,-0.43911492178098677,8612.362261715443,2019
+2004,31,"(30,35]",HS,-22.359238779174145,58.0754305669603,-0.3850034095467308,8286.779740235754,2019
+2004,31,"(30,35]",HS,-25.187533213644524,58.0754305669603,-0.43370377055756115,8680.45551009218,2019
+2004,31,"(30,35]",HS,-25.187533213644524,58.0754305669603,-0.43370377055756115,8661.40270301319,2019
+2004,31,"(30,35]",HS,-26.13029802513465,58.0754305669603,-0.44993722422783794,8594.026909705095,2019
+2004,67,"(65,70]",College,456.45529622980257,125.83009956174732,3.627552531704157,8466.060023904389,2019
+2004,67,"(65,70]",College,845.031526032316,129.0565123710229,6.547763537906136,7061.8462308150465,2019
+2004,67,"(65,70]",College,770.3959784560144,141.9621636081252,5.426769773547751,6299.242060238412,2019
+2004,67,"(65,70]",College,1698.5479353680432,125.83009956174732,13.498741090437843,6294.7722793979165,2019
+2004,67,"(65,70]",College,1074.6576086175942,133.89613158493626,8.026054195119828,6609.490656686158,2019
+2004,32,"(30,35]",HS,139.05780969479355,111.31124192000723,1.2492701302778215,11152.806000885548,2019
+2004,32,"(30,35]",HS,139.05780969479355,111.31124192000723,1.2492701302778215,11343.697704158663,2019
+2004,32,"(30,35]",HS,139.05780969479355,111.31124192000723,1.2492701302778215,11207.313153070565,2019
+2004,32,"(30,35]",HS,138.90068222621184,111.31124192000723,1.2478585256108408,11172.063999153006,2019
+2004,32,"(30,35]",HS,138.74355475763016,112.92444832464501,1.228640536358948,11199.38485374129,2019
+2004,58,"(55,60]",College,11386.242010771994,1108.272799986159,10.273862185297874,294.0782415789,2019
+2004,58,"(55,60]",College,11500.630807899463,1108.272799986159,10.377075759725486,293.0190960111748,2019
+2004,58,"(55,60]",College,11945.301543985637,1108.272799986159,10.778304352624028,304.0768756051631,2019
+2004,58,"(55,60]",College,12042.563447037703,1108.272799986159,10.866064246265088,290.0616229138954,2019
+2004,58,"(55,60]",College,12169.836696588869,1108.272799986159,10.980903525504601,296.3295687508992,2019
+2004,34,"(30,35]",NoHS,0,41.94336652058244,0,6438.503506722869,2019
+2004,34,"(30,35]",NoHS,0,41.94336652058244,0,6453.045627719159,2019
+2004,34,"(30,35]",NoHS,0,41.94336652058244,0,6433.032117520782,2019
+2004,34,"(30,35]",NoHS,0,41.94336652058244,0,6470.246082719577,2019
+2004,34,"(30,35]",NoHS,0,41.94336652058244,0,6452.605247419842,2019
+2004,39,"(35,40]",HS,12.680186714542192,62.91504978087366,0.2015445709525132,5166.765376549,2019
+2004,39,"(35,40]",HS,13.560100538599642,58.0754305669603,0.23349117529081428,5082.435022925818,2019
+2004,39,"(35,40]",HS,12.57019748653501,62.91504978087366,0.19979635286494493,5146.578835419763,2019
+2004,39,"(35,40]",HS,13.748653500897666,61.30184337623587,0.22427797833935018,5184.2538709200435,2019
+2004,39,"(35,40]",HS,12.711612208258527,67.75466899478702,0.18761234313219868,5131.549432082725,2019
+2004,33,"(30,35]",HS,130.57292639138242,193.58476855653433,0.6745000000000001,9124.499630193273,2019
+2004,33,"(30,35]",HS,132.30132854578096,193.58476855653433,0.6834283995186522,9061.614132753395,2019
+2004,33,"(30,35]",HS,130.57292639138242,193.58476855653433,0.6745000000000001,9126.928637099136,2019
+2004,33,"(30,35]",HS,132.14420107719928,193.58476855653433,0.6826167268351384,9115.861569590304,2019
+2004,33,"(30,35]",HS,130.7300538599641,193.58476855653433,0.6753116726835139,9111.186189149708,2019
+2004,56,"(55,60]",College,54317.86599640934,4194.336652058244,12.950287614551513,23.907465601703212,2019
+2004,56,"(55,60]",College,44313.71719928186,8469.333624348377,5.232255471892727,24.741440063254313,2019
+2004,56,"(55,60]",College,75154.38247755835,8679.050456951289,8.659286272194114,25.70918408203114,2019
+2004,56,"(55,60]",College,44438.79066427289,8904.89935360058,4.990375398943128,23.42409676290042,2019
+2004,56,"(55,60]",College,45664.8563016158,5743.014800510519,7.951373605646371,24.90252657493076,2019
+2004,47,"(45,50]",HS,5.216631956912029,45.16977932985802,0.11548942753996905,4839.726904858234,2019
+2004,47,"(45,50]",HS,5.216631956912029,45.16977932985802,0.11548942753996905,4828.896956036054,2019
+2004,47,"(45,50]",HS,5.216631956912029,45.16977932985802,0.11548942753996905,4863.504856596357,2019
+2004,47,"(45,50]",HS,5.216631956912029,45.16977932985802,0.11548942753996905,4875.461542451881,2019
+2004,47,"(45,50]",HS,5.216631956912029,45.16977932985802,0.11548942753996905,4827.395787672105,2019
+2004,26,"(25,30]",College,563.1291346499103,175.8394981055187,3.202517868380088,9527.621141191357,2019
+2004,26,"(25,30]",College,561.7149874326751,175.8394981055187,3.1944756069287585,10124.818837389146,2019
+2004,26,"(25,30]",College,561.5578599640933,174.22629170088092,3.2231522262334527,9406.18789852356,2019
+2004,26,"(25,30]",College,563.1291346499103,175.8394981055187,3.202517868380088,9428.685184767575,2019
+2004,26,"(25,30]",College,563.2862621184919,175.8394981055187,3.203411452985791,9855.541043307177,2019
+2004,50,"(45,50]",HS,596.7701256732496,125.83009956174732,4.742665926131631,642.4468438423588,2019
+2004,50,"(45,50]",HS,600.6354614003591,122.60368675247175,4.899,631.003171017853,2019
+2004,50,"(45,50]",HS,598.3728258527829,124.21689315710954,4.817161423414131,648.8971565426606,2019
+2004,50,"(45,50]",HS,595.7330843806104,119.37727394319619,4.990339155039515,602.7651644880541,2019
+2004,50,"(45,50]",HS,606.0406463195691,120.99048034783397,5.008994464500601,648.1000852334544,2019
+2004,56,"(55,60]",HS,1056.8236409335727,96.79238427826716,10.918458604091457,7170.888200641553,2019
+2004,56,"(55,60]",HS,1062.9516122082587,96.79238427826716,10.981769073405538,7932.127656474919,2019
+2004,56,"(55,60]",HS,1067.9325529622981,96.79238427826716,11.033229121540314,7072.930031060181,2019
+2004,56,"(55,60]",HS,1058.8348725314183,96.79238427826716,10.939237424789411,7051.18963680709,2019
+2004,56,"(55,60]",HS,1065.764193895871,96.79238427826716,11.010826955475332,7414.022486939226,2019
+2004,42,"(40,45]",College,1258.6695870736085,188.74514934262095,6.668619519269339,7997.9849727735545,2019
+2004,42,"(40,45]",College,1261.8121364452425,190.35835574725877,6.628614391482592,8880.058485972839,2019
+2004,42,"(40,45]",College,1263.8547935368044,188.74514934262095,6.69609151778827,7894.729246722857,2019
+2004,42,"(40,45]",College,1256.6269299820467,190.35835574725877,6.601375206510433,7882.977520291305,2019
+2004,42,"(40,45]",College,1268.0972351885098,188.74514934262095,6.718568607485575,8237.251842889335,2019
+2004,50,"(45,50]",HS,0.09427648114901258,9.679238427826716,0.009740072202166066,6126.762996590419,2019
+2004,50,"(45,50]",HS,0.34568043087971273,9.840559068290496,0.035128129253713676,5997.077166167643,2019
+2004,50,"(45,50]",HS,1.5398491921005386,9.840559068290496,0.15647984849381547,6178.4860950970515,2019
+2004,50,"(45,50]",HS,0.5970843806104129,9.840559068290496,0.06067585962005089,6159.77695621304,2019
+2004,50,"(45,50]",HS,0.06285098743267505,9.679238427826716,0.00649338146811071,6098.948430050279,2019
+2004,39,"(35,40]",NoHS,162.78405745062838,29.03771528348015,5.605952667468913,6773.121151687029,2019
+2004,39,"(35,40]",NoHS,162.78405745062838,29.03771528348015,5.605952667468913,6503.508429054336,2019
+2004,39,"(35,40]",NoHS,161.2127827648115,29.03771528348015,5.551841155234657,6770.546014035691,2019
+2004,39,"(35,40]",NoHS,161.2127827648115,29.03771528348015,5.551841155234657,6749.364103333375,2019
+2004,39,"(35,40]",NoHS,162.78405745062838,29.03771528348015,5.605952667468913,6675.304122176717,2019
+2004,62,"(60,65]",NoHS,98.20466786355476,14.841498922667633,6.616896876471511,8088.076613026142,2019
+2004,62,"(60,65]",NoHS,98.04754039497307,14.680178282203853,6.678906652913874,8054.698857995189,2019
+2004,62,"(60,65]",NoHS,98.20466786355476,14.680178282203853,6.68961002896021,8079.433792841732,2019
+2004,62,"(60,65]",NoHS,98.20466786355476,14.680178282203853,6.68961002896021,8059.706265504658,2019
+2004,62,"(60,65]",NoHS,98.04754039497307,14.680178282203853,6.678906652913874,8092.7123514671275,2019
+2004,80,"(75,80]",HS,690.2609694793537,85.49993944580267,8.073233430965193,9527.621141191357,2019
+2004,80,"(75,80]",HS,690.103842010772,83.88673304116487,8.226614829214109,10124.818837389146,2019
+2004,80,"(75,80]",HS,690.2609694793537,83.88673304116487,8.228487920022216,9406.18789852356,2019
+2004,80,"(75,80]",HS,690.2609694793537,85.49993944580267,8.073233430965193,9428.685184767575,2019
+2004,80,"(75,80]",HS,690.4180969479354,85.49993944580267,8.0750711804373,9855.541043307177,2019
+2004,48,"(45,50]",NoHS,24261.42391382406,4307.261100382889,5.632680106545519,14.943830461596022,2019
+2004,48,"(45,50]",NoHS,24263.6236983842,4291.1290363365115,5.65436823104693,15.174346120326001,2019
+2004,48,"(45,50]",NoHS,24272.422836624777,4258.864908243755,5.69927042993108,15.763968854173026,2019
+2004,48,"(45,50]",NoHS,24261.42391382406,4387.921420614778,5.529138192822256,14.653183182042204,2019
+2004,48,"(45,50]",NoHS,24271.480071813286,4436.317612753912,5.4710871020676075,15.869697438522953,2019
+2004,31,"(30,35]",HS,119.57400359066428,225.84889664929003,0.5294424961320269,6591.613339913233,2019
+2004,31,"(30,35]",HS,118.47411131059246,225.84889664929003,0.5245724600309438,7327.559964824364,2019
+2004,31,"(30,35]",HS,117.56277199281867,225.84889664929003,0.5205372872614751,6513.037650463292,2019
+2004,31,"(30,35]",HS,116.82427289048475,225.84889664929003,0.5172674058793193,6481.932431158106,2019
+2004,31,"(30,35]",HS,116.85569838420109,225.84889664929003,0.5174065497679218,6816.081830241655,2019
+2004,77,"(75,80]",HS,3485.0872531418313,763.3692706746003,4.565401552071922,179.4072803698382,2019
+2004,77,"(75,80]",HS,3422.236265709156,763.3692706746003,4.4830678901770264,182.9213321837996,2019
+2004,77,"(75,80]",HS,3425.37881508079,763.3692706746003,4.4871845732717714,180.7047360306366,2019
+2004,77,"(75,80]",HS,3409.666068222621,763.3692706746003,4.466601157798047,183.4624023051603,2019
+2004,77,"(75,80]",HS,3610.7892280071815,763.3692706746003,4.730068875861711,325.1670609369383,2019
+2004,41,"(40,45]",HS,258.64752603231597,90.33955865971603,2.8630594378545635,9671.559682450541,2019
+2004,41,"(40,45]",HS,258.64752603231597,90.33955865971603,2.8630594378545635,9014.641961466252,2019
+2004,41,"(40,45]",HS,258.64752603231597,90.33955865971603,2.8630594378545635,9665.66489670269,2019
+2004,41,"(40,45]",HS,258.64752603231597,90.33955865971603,2.8630594378545635,9663.745348911809,2019
+2004,41,"(40,45]",HS,258.64752603231597,90.33955865971603,2.8630594378545635,9441.37053579049,2019
+2004,30,"(25,30]",HS,5.185206463195691,22.58488966492901,0.22958741619391435,5136.839628787782,2019
+2004,30,"(25,30]",HS,5.185206463195691,30.650921688117936,0.16916967509025269,5058.340766102764,2019
+2004,30,"(25,30]",HS,5.342333931777379,20.97168326029122,0.2547403499028048,5125.503600390367,2019
+2004,30,"(25,30]",HS,5.185206463195691,24.19809606956679,0.2142815884476534,5195.282074253506,2019
+2004,30,"(25,30]",HS,5.342333931777379,17.74527045101565,0.30105677715786017,5117.058414079645,2019
+2004,48,"(45,50]",HS,144.47870736086176,64.52825618551145,2.238999097472924,3397.7474139554515,2019
+2004,48,"(45,50]",HS,144.47870736086176,64.52825618551145,2.238999097472924,3413.625469940359,2019
+2004,48,"(45,50]",HS,144.47870736086176,64.52825618551145,2.238999097472924,3415.2218893400145,2019
+2004,48,"(45,50]",HS,144.47870736086176,64.52825618551145,2.238999097472924,3431.430131002512,2019
+2004,48,"(45,50]",HS,145.89285457809694,64.52825618551145,2.2609142599277976,3402.342040244749,2019
+2004,59,"(55,60]",HS,1076.9516696588869,190.35835574725877,5.657496175732729,319.9680409765491,2019
+2004,59,"(55,60]",HS,1300.7797486535007,190.35835574725877,6.8333209936976065,319.8362956052341,2019
+2004,59,"(55,60]",HS,1188.3550448833034,190.35835574725877,6.242725937710334,315.92269061481284,2019
+2004,59,"(55,60]",HS,1147.3447755834832,188.74514934262095,6.078804035915951,309.1278442213951,2019
+2004,59,"(55,60]",HS,1395.4490484739677,188.74514934262095,7.393297540806567,325.51346001949696,2019
+2004,36,"(35,40]",HS,12.994441651705566,58.0754305669603,0.22375110308864823,7148.949540157724,2019
+2004,36,"(35,40]",HS,14.612854578096947,58.0754305669603,0.25161853188929,6862.598050985473,2019
+2004,36,"(35,40]",HS,14.502865350089767,58.0754305669603,0.24972462896109104,7142.485397164643,2019
+2004,36,"(35,40]",HS,11.313177737881508,58.0754305669603,0.1948014440433213,7115.856488246163,2019
+2004,36,"(35,40]",HS,12.915877917414722,58.0754305669603,0.22239831528279183,7043.821016342912,2019
+2004,50,"(45,50]",HS,-7.3849910233393175,83.88673304116487,-0.08803526798111636,4756.350909798728,2019
+2004,50,"(45,50]",HS,-7.542118491921006,83.88673304116487,-0.08990835878922522,4655.885956299311,2019
+2004,50,"(45,50]",HS,-7.3849910233393175,83.88673304116487,-0.08803526798111636,4797.29832843381,2019
+2004,50,"(45,50]",HS,-7.542118491921006,83.88673304116487,-0.08990835878922522,4793.8615068235285,2019
+2004,50,"(45,50]",HS,-7.542118491921006,83.88673304116487,-0.08990835878922522,4735.6853611275865,2019
+2004,50,"(45,50]",College,1026.3566247755834,175.8394981055187,5.836894644454012,6621.095284948332,2019
+2004,50,"(45,50]",College,2691.9077917414725,175.8394981055187,15.308891464909086,3799.5004835350674,2019
+2004,50,"(45,50]",College,3398.9814003590664,175.8394981055187,19.330022190573974,1701.00683964928,2019
+2004,50,"(45,50]",College,3021.8754757630163,175.8394981055187,17.185419136886033,1431.7254386568898,2019
+2004,50,"(45,50]",College,1026.3566247755834,175.8394981055187,5.836894644454012,6846.485037839348,2019
+2004,71,"(70,75]",HS,1428.2101256732496,87.11314585044046,16.394886348442306,4566.859720711198,2019
+2004,71,"(70,75]",HS,1462.7781687612207,82.2735266365271,17.77945140511078,4774.876862265819,2019
+2004,71,"(70,75]",HS,1456.4930700179534,72.59428820870036,20.063466506217413,4447.668118638924,2019
+2004,71,"(70,75]",HS,1423.496301615799,83.88673304116487,16.969266176062206,4387.419888913568,2019
+2004,71,"(70,75]",HS,1439.2090484739676,80.6603202318893,17.842838267148014,4564.1359224222415,2019
+2004,70,"(65,70]",NoHS,1.257019748653501,12.099048034783396,0.10389410348977138,5686.769044976731,2019
+2004,70,"(65,70]",NoHS,1.257019748653501,12.099048034783396,0.10389410348977138,5671.96510695732,2019
+2004,70,"(65,70]",NoHS,1.257019748653501,12.099048034783396,0.10389410348977138,5688.419370727144,2019
+2004,70,"(65,70]",NoHS,1.257019748653501,12.099048034783396,0.10389410348977138,5686.031659493137,2019
+2004,70,"(65,70]",NoHS,1.257019748653501,12.099048034783396,0.10389410348977138,5705.538354800679,2019
+2004,52,"(50,55]",College,3946.570628366248,271.0186759791481,14.561987708440777,1734.884007521046,2019
+2004,52,"(50,55]",College,4461.005960502694,314.57524890436827,14.181045635471632,1695.1012648378753,2019
+2004,52,"(50,55]",College,4309.063698384201,309.7356296904549,13.912069795427199,1790.0007991036302,2019
+2004,52,"(50,55]",College,3975.010700179533,300.05639126262827,13.247545514537476,1677.5924890155159,2019
+2004,52,"(50,55]",College,4458.491921005386,351.6789962110374,12.677731593415691,1713.4059457003655,2019
+2004,40,"(35,40]",HS,606.3549012567325,133.89613158493626,4.528546822669741,6777.70975834376,2019
+2004,40,"(35,40]",HS,594.2560861759425,141.9621636081252,4.1860173941581875,7483.099892513112,2019
+2004,40,"(35,40]",HS,595.3402657091561,125.83009956174732,4.731302508562436,6718.143082117426,2019
+2004,40,"(35,40]",HS,630.8982118491922,204.87721338899885,3.079396685522613,6738.177146848895,2019
+2004,40,"(35,40]",HS,662.2922800718133,112.92444832464501,5.8649149045899955,7015.703275006531,2019
+2004,63,"(60,65]",College,2330.200359066427,241.98096069566793,9.629684717208182,1133.8647150747772,2019
+2004,63,"(60,65]",College,2210.9406104129266,241.98096069566793,9.13683706377858,1129.9786051405956,2019
+2004,63,"(60,65]",College,2287.775942549372,241.98096069566793,9.454363417569194,1151.5065728130835,2019
+2004,63,"(60,65]",College,2144.9313608617595,241.98096069566793,8.864050108303248,1106.696588214917,2019
+2004,63,"(60,65]",College,2174.487037701975,241.98096069566793,8.986190613718412,1152.9446910995498,2019
+2004,36,"(35,40]",HS,113.8404222621185,66.14146259014923,1.721165783217399,7190.224579254333,2019
+2004,36,"(35,40]",HS,113.8404222621185,67.75466899478702,1.6801856455217463,6902.219816570415,2019
+2004,36,"(35,40]",HS,113.6832947935368,67.75466899478702,1.6778665807117068,7183.72311500821,2019
+2004,36,"(35,40]",HS,113.8404222621185,66.14146259014923,1.721165783217399,7156.940461927663,2019
+2004,36,"(35,40]",HS,113.8404222621185,67.75466899478702,1.6801856455217463,7084.489087393902,2019
+2004,74,"(70,75]",NoHS,3.80248473967684,12.583009956174735,0.3021919837082291,6479.186287940657,2019
+2004,74,"(70,75]",NoHS,3.80248473967684,12.583009956174735,0.3021919837082291,6462.319509728939,2019
+2004,74,"(70,75]",NoHS,3.80248473967684,12.583009956174735,0.3021919837082291,6481.066576710634,2019
+2004,74,"(70,75]",NoHS,3.80248473967684,12.583009956174735,0.3021919837082291,6478.346152201639,2019
+2004,74,"(70,75]",NoHS,3.80248473967684,12.583009956174735,0.3021919837082291,6500.570988793394,2019
+2004,35,"(30,35]",HS,-1.8855296229802514,37.10374730666908,-0.05081776801130121,4083.531592506243,2019
+2004,35,"(30,35]",HS,-1.8855296229802514,37.10374730666908,-0.05081776801130121,4058.6793590220236,2019
+2004,35,"(30,35]",HS,-1.8855296229802514,37.10374730666908,-0.05081776801130121,4081.333284268997,2019
+2004,35,"(30,35]",HS,-1.8855296229802514,35.4905409020313,-0.05312766655726944,4083.7217569052673,2019
+2004,35,"(30,35]",HS,-1.8855296229802514,37.10374730666908,-0.05081776801130121,4086.110916055103,2019
+2004,80,"(75,80]",HS,2148.372452423698,141.15556040580628,15.219892480660132,1959.5408268047972,2019
+2004,80,"(75,80]",HS,2124.426226211849,95.66313979502071,22.207364620938627,1953.9614402821098,2019
+2004,80,"(75,80]",HS,2121.2679640933575,148.89895114806762,14.246359344626496,1983.1933371252449,2019
+2004,80,"(75,80]",HS,2432.2546499102336,98.7282319638325,24.635857459710724,1938.0610807251912,2019
+2004,80,"(75,80]",HS,2372.5462118491923,97.43766684012228,24.349374208047436,1999.012932511363,2019
+2004,46,"(45,50]",HS,16.718362657091564,56.46222416232251,0.29609819494584844,6676.675992027461,2019
+2004,46,"(45,50]",HS,35.11798922800718,56.46222416232251,0.6219731820526045,6468.3426581755575,2019
+2004,46,"(45,50]",HS,13.59152603231598,56.46222416232251,0.24071892728210423,6711.458169096241,2019
+2004,46,"(45,50]",HS,30.07419748653501,56.46222416232251,0.5326428055698814,6751.794138923751,2019
+2004,46,"(45,50]",HS,30.247037701974868,56.46222416232251,0.5357039711191337,6598.189708194844,2019
+2004,45,"(40,45]",College,426.6010771992819,177.45270451015648,2.4040269117164423,6596.666566661438,2019
+2004,45,"(40,45]",College,428.56517055655297,177.45270451015648,2.41509517558254,6741.682071270336,2019
+2004,45,"(40,45]",College,420.9130628366248,177.45270451015648,2.3719732195602234,6460.456464655187,2019
+2004,45,"(40,45]",College,427.7795332136445,177.45270451015648,2.410667870036101,6342.449813502404,2019
+2004,45,"(40,45]",College,452.1342908438061,177.45270451015648,2.547914341975714,6613.65060504547,2019
+2004,59,"(55,60]",HS,285.18635547576304,74.20749461333816,3.8430937058546544,4284.080110378516,2019
+2004,59,"(55,60]",HS,285.5006104129264,74.20749461333816,3.847328519855596,3819.889311643639,2019
+2004,59,"(55,60]",HS,285.5006104129264,74.20749461333816,3.847328519855596,4294.480649456547,2019
+2004,59,"(55,60]",HS,285.3434829443447,74.20749461333816,3.845211112855125,4217.866342508984,2019
+2004,59,"(55,60]",HS,285.3434829443447,74.20749461333816,3.845211112855125,4129.939281437283,2019
+2004,20,"(15,20]",HS,1.5712746858168762,11.292444832464504,0.13914388860237234,1909.3364300657736,2019
+2004,20,"(15,20]",HS,1.5712746858168762,11.292444832464504,0.13914388860237234,1864.374942601721,2019
+2004,20,"(15,20]",HS,1.5712746858168762,11.292444832464504,0.13914388860237234,1904.956762276034,2019
+2004,20,"(15,20]",HS,1.5712746858168762,11.292444832464504,0.13914388860237234,1918.4192957226594,2019
+2004,20,"(15,20]",HS,1.5712746858168762,11.292444832464504,0.13914388860237234,1899.602770228151,2019
+2004,27,"(25,30]",HS,-56.50303770197486,80.6603202318893,-0.7005059927797833,7553.854271490566,2019
+2004,27,"(25,30]",HS,-59.99126750448833,82.2735266365271,-0.7291685425072555,7438.419682900863,2019
+2004,27,"(25,30]",HS,-55.167454219030525,77.43390742261373,-0.712445697954272,7537.18435132181,2019
+2004,27,"(25,30]",HS,-60.68262836624776,80.6603202318893,-0.7523231768953069,7639.795384746962,2019
+2004,27,"(25,30]",HS,-54.0204236983842,87.11314585044046,-0.6201179302045727,7524.765488500157,2019
+2004,41,"(40,45]",College,32556.104416517057,4839.619213913359,6.726997099879662,29.456241758686797,2019
+2004,41,"(40,45]",College,32562.389515260325,4839.619213913359,6.728295776173285,30.017816657805092,2019
+2004,41,"(40,45]",College,32631.83985637343,4839.619213913359,6.7426461492178085,30.656493672517506,2019
+2004,41,"(40,45]",College,32467.79877917415,4839.619213913359,6.7087506979542715,28.932885308193512,2019
+2004,41,"(40,45]",College,32701.6044524237,4839.619213913359,6.757061456077015,30.7830410021978,2019
+2004,63,"(60,65]",College,124.13070017953322,58.0754305669603,2.137404733253109,3132.8829632044285,2019
+2004,63,"(60,65]",College,124.13070017953322,58.0754305669603,2.137404733253109,3087.7556461769104,2019
+2004,63,"(60,65]",College,125.7019748653501,58.0754305669603,2.164460489370237,3037.76447565355,2019
+2004,63,"(60,65]",College,125.7019748653501,58.0754305669603,2.164460489370237,2975.2730513404304,2019
+2004,63,"(60,65]",College,124.13070017953322,58.0754305669603,2.137404733253109,2932.9210987549077,2019
+2004,58,"(55,60]",College,97234.59429802513,6323.769106180122,15.376050685183817,19.85074517363883,2019
+2004,58,"(55,60]",College,34224.24818671455,6323.769106180122,5.412001547189273,19.306667531261528,2019
+2004,58,"(55,60]",College,28096.74829443447,6323.769106180122,4.443038292934502,19.310723412189553,2019
+2004,58,"(55,60]",College,119567.56136445243,9372.729210945537,12.756963171924417,19.550079502266545,2019
+2004,58,"(55,60]",College,143735.02305206464,6307.637042133744,22.78745940705587,19.624724009168094,2019
+2004,58,"(55,60]",College,1839.962657091562,193.58476855653433,9.504687123947052,940.7994973880102,2019
+2004,58,"(55,60]",College,1838.3913824057452,193.58476855653433,9.496570397111913,945.238997447891,2019
+2004,58,"(55,60]",College,1839.962657091562,193.58476855653433,9.504687123947052,939.8959946397151,2019
+2004,58,"(55,60]",College,1839.962657091562,193.58476855653433,9.504687123947052,960.5332692773802,2019
+2004,58,"(55,60]",College,1839.962657091562,193.58476855653433,9.504687123947052,975.4673912582754,2019
+2004,55,"(50,55]",College,1354.4387791741472,975.9898748058605,1.3877590476474626,72.05908425180553,2019
+2004,55,"(50,55]",College,1379.5791741472174,975.9898748058605,1.4135179162812903,148.25767303011318,2019
+2004,55,"(50,55]",College,1346.5824057450627,975.9898748058605,1.3797094011993913,71.52727398895374,2019
+2004,55,"(50,55]",College,1373.2940754039498,975.9898748058605,1.4070781991228334,150.69244644702297,2019
+2004,55,"(50,55]",College,1387.4355475763018,975.9898748058605,1.4215675627293616,153.0744640864902,2019
+2004,70,"(65,70]",College,171250.08545780968,1430.9140809137164,119.67880373953494,28.051123467131287,2019
+2004,70,"(65,70]",College,189609.17314183124,1576.102657331117,120.30255279367697,29.24567987686131,2019
+2004,70,"(65,70]",College,169427.4068222621,1677.7346608232976,100.98581782838099,29.209571447481505,2019
+2004,70,"(65,70]",College,185765.521005386,1487.3763050760388,124.89476965003092,27.62633965252826,2019
+2004,70,"(65,70]",College,208327.45421903054,1645.470532730542,126.60661499256743,28.30095239983563,2019
+2004,59,"(55,60]",College,55239.8428438061,1158.2821985299304,47.69117829309253,213.89932839736997,2019
+2004,59,"(55,60]",College,55267.49727827648,1158.2821985299304,47.715053678991985,209.00689675678632,2019
+2004,59,"(55,60]",College,55250.417522441654,1158.2821985299304,47.70030791508704,220.04188165536567,2019
+2004,59,"(55,60]",College,55244.44667863555,1158.2821985299304,47.69515300222238,208.79801098943534,2019
+2004,59,"(55,60]",College,55250.731777378816,1158.2821985299304,47.700579226290436,216.91507817072346,2019
+2004,39,"(35,40]",HS,1380.3648114901257,241.98096069566793,5.704435619735259,4056.951853494883,2019
+2004,39,"(35,40]",HS,1912.8540897666069,241.98096069566793,7.904977665463297,4241.093661447559,2019
+2004,39,"(35,40]",HS,1282.0030161579891,241.98096069566793,5.297949939831527,4015.784616130689,2019
+2004,39,"(35,40]",HS,1403.9339317773788,241.98096069566793,5.8018363417569185,4316.765173474243,2019
+2004,39,"(35,40]",HS,1216.9208186714543,241.98096069566793,5.028994079422382,4104.724888360963,2019
+2004,33,"(30,35]",HS,72.86000718132856,24.19809606956679,3.0109809867629367,4762.856125366382,2019
+2004,33,"(30,35]",HS,72.86000718132856,24.19809606956679,3.0109809867629367,4698.711763407214,2019
+2004,33,"(30,35]",HS,72.86000718132856,25.81130247420457,2.822794675090254,4765.532582963615,2019
+2004,33,"(30,35]",HS,72.86000718132856,24.19809606956679,3.0109809867629367,4751.776439388399,2019
+2004,33,"(30,35]",HS,72.86000718132856,24.19809606956679,3.0109809867629367,4738.649960823342,2019
+2004,75,"(70,75]",HS,1135.245960502693,103.24520989681828,10.995628384476536,9527.621141191357,2019
+2004,75,"(70,75]",HS,1042.697881508079,103.24520989681828,10.099237364620942,10442.851053073717,2019
+2004,75,"(70,75]",HS,1140.1169120287252,103.24520989681828,11.042806859205779,9406.18789852356,2019
+2004,75,"(70,75]",HS,1130.689263913824,103.24520989681828,10.951493682310472,9428.685184767575,2019
+2004,75,"(70,75]",HS,1228.1082944344703,103.24520989681828,11.89506317689531,9855.541043307177,2019
+2004,33,"(30,35]",College,241.50491921005386,145.18857641740072,1.6633878860810272,8078.994024838015,2019
+2004,33,"(30,35]",College,241.50491921005386,146.80178282203855,1.6451088983218944,8980.106043082375,2019
+2004,33,"(30,35]",College,244.6474685816876,146.80178282203855,1.6665156504145673,7987.025924294942,2019
+2004,33,"(30,35]",College,243.07619389587074,145.18857641740072,1.6742101885278784,7947.986874498844,2019
+2004,33,"(30,35]",College,243.07619389587074,146.80178282203855,1.6558122743682309,8355.423179414485,2019
+2004,65,"(60,65]",HS,839101.5353680431,63431.27583035775,13.22851423660716,4.1738579603995865,2019
+2004,65,"(60,65]",HS,816258.3439856373,63415.14376631136,12.871662752884369,4.195866032060775,2019
+2004,65,"(60,65]",HS,858327.6524236985,63415.14376631136,13.535058054692547,4.103645037594413,2019
+2004,65,"(60,65]",HS,823446.9256732496,63431.27583035775,12.981717849653498,4.107528580794487,2019
+2004,65,"(60,65]",HS,830718.7849192101,63431.27583035775,13.09635939123952,4.0096407268863095,2019
+2004,58,"(55,60]",HS,1981.9744631956912,224.23569024465226,8.838800197387217,3919.2230741303856,2019
+2004,58,"(55,60]",HS,1876.9818886894077,412.9808395872731,4.544961191335742,4081.464424210388,2019
+2004,58,"(55,60]",HS,1964.5018886894077,224.23569024465226,8.76087961976989,3878.6111133095683,2019
+2004,58,"(55,60]",HS,2062.9108222621185,553.3297967907606,3.7281759164728294,4162.22325751698,2019
+2004,58,"(55,60]",HS,2030.4011490125672,206.49041979363656,9.832907265342962,3981.360132019895,2019
+2004,33,"(30,35]",HS,46.17976301615799,114.53765472928282,0.40318411552346567,7318.665415535547,2019
+2004,33,"(30,35]",HS,51.19212926391383,114.53765472928282,0.44694584837545126,7143.600110064076,2019
+2004,33,"(30,35]",HS,41.92160861759425,114.53765472928282,0.3660072202166064,7296.391183034735,2019
+2004,33,"(30,35]",HS,59.064215439856376,114.53765472928282,0.5156750902527075,7283.64714918681,2019
+2004,33,"(30,35]",HS,45.84979533213645,114.53765472928282,0.40030324909747295,7219.7996923625815,2019
+2004,52,"(50,55]",NoHS,0.15712746858168763,40.33016011594465,0.003896028880866427,4651.737840622744,2019
+2004,52,"(50,55]",NoHS,0.31425493716337527,40.33016011594465,0.007792057761732854,4644.187673351176,2019
+2004,52,"(50,55]",NoHS,0.15712746858168763,40.33016011594465,0.003896028880866427,4705.616234985557,2019
+2004,52,"(50,55]",NoHS,0.15712746858168763,40.33016011594465,0.003896028880866427,4676.440435361801,2019
+2004,52,"(50,55]",NoHS,0.15712746858168763,40.33016011594465,0.003896028880866427,4662.400416404736,2019
+2004,76,"(75,80]",HS,344.10915619389584,41.94336652058244,8.204137739516801,8889.850466583102,2019
+2004,76,"(75,80]",HS,342.8521364452424,41.94336652058244,8.174168286587062,8220.44746323711,2019
+2004,76,"(75,80]",HS,343.9520287253142,41.94336652058244,8.200391557900584,8852.016377865442,2019
+2004,76,"(75,80]",HS,342.8521364452424,41.94336652058244,8.174168286587062,8713.26220387595,2019
+2004,76,"(75,80]",HS,341.5951166965889,41.94336652058244,8.144198833657319,8647.662015033633,2019
+2004,64,"(60,65]",HS,196.7235906642729,100.01879708754274,1.9668661930825668,4398.822853559196,2019
+2004,64,"(60,65]",HS,196.73930341113106,100.01879708754274,1.9670232910213112,3922.199391514162,2019
+2004,64,"(60,65]",HS,196.70787791741475,100.01879708754274,1.9667090951438224,4409.501955678441,2019
+2004,64,"(60,65]",HS,196.7235906642729,100.01879708754274,1.9668661930825668,4330.835647946684,2019
+2004,64,"(60,65]",HS,196.89643087971274,100.01879708754274,1.9685942704087573,4240.553590720093,2019
+2004,27,"(25,30]",College,-75.89256732495512,61.30184337623587,-1.2380144404332132,5446.9357727737215,2019
+2004,27,"(25,30]",College,-75.73543985637343,70.9810818040626,-1.066980636691828,5429.344887372459,2019
+2004,27,"(25,30]",College,-70.55023339317773,62.91504978087366,-1.1213570304545033,5415.33491546049,2019
+2004,27,"(25,30]",College,-75.57831238779174,61.30184337623587,-1.2328880866425993,5466.756235832772,2019
+2004,27,"(25,30]",College,-67.72193895870737,56.46222416232251,-1.19942031975245,5410.427323106558,2019
+2004,26,"(25,30]",College,-241.1906642728905,0,-Inf,5609.563527933731,2019
+2004,26,"(25,30]",College,-219.3499461400359,0,-Inf,5622.122657007075,2019
+2004,26,"(25,30]",College,-242.76193895870736,0,-Inf,5606.2709593041345,2019
+2004,26,"(25,30]",College,-242.91906642728904,0,-Inf,5651.717948539082,2019
+2004,26,"(25,30]",College,-204.73709156193897,0,-Inf,5622.621032709484,2019
+2004,61,"(60,65]",HS,42348.995332136445,8533.861880533888,4.962465519712283,24.978685526687734,2019
+2004,61,"(60,65]",HS,43859.77594254937,8566.126008626643,5.120141344918315,25.394540741539103,2019
+2004,61,"(60,65]",HS,43972.12208258528,8291.880919838222,5.30303347427271,25.992956181123255,2019
+2004,61,"(60,65]",HS,45180.27518850988,8485.465688394754,5.324430838286366,24.54462063046173,2019
+2004,61,"(60,65]",HS,48500.378599640935,7582.070101797595,6.3967198863199934,26.099381821218618,2019
+2004,73,"(70,75]",HS,4641.545421903053,240.36775429103014,19.31018341288494,1275.009610699548,2019
+2004,73,"(70,75]",HS,4818.439526032315,170.99987889160533,28.17802888086642,1271.3465649804652,2019
+2004,73,"(70,75]",HS,4608.077271095153,291.9903592394393,15.781607595189184,1448.834382078555,2019
+2004,73,"(70,75]",HS,4597.581156193896,290.37715283480145,15.833136702767753,1213.072529589639,2019
+2004,73,"(70,75]",HS,4596.292710951526,240.36775429103014,19.12191893005112,1288.8697020485108,2019
+2004,40,"(35,40]",HS,236.08402154398564,127.4433059663851,1.852463099209432,8188.6986671880495,2019
+2004,40,"(35,40]",HS,239.2265709156194,127.4433059663851,1.877121509847827,7711.921224165097,2019
+2004,40,"(35,40]",HS,239.2265709156194,127.4433059663851,1.877121509847827,8211.383963207149,2019
+2004,40,"(35,40]",HS,239.2265709156194,125.83009956174732,1.9011871702304914,8154.8608541038875,2019
+2004,40,"(35,40]",HS,239.2265709156194,125.83009956174732,1.9011871702304914,8053.744935486352,2019
+2004,81,"(80,85]",College,7301.084955116697,1022.7728605403563,7.138520425013382,1473.51851030225,2019
+2004,81,"(80,85]",College,7217.178886894076,1024.3860669449941,7.045370021888059,1501.1529701026952,2019
+2004,81,"(80,85]",College,7021.555188509874,1022.7728605403563,6.865214613536198,1486.2250102013263,2019
+2004,81,"(80,85]",College,7143.95748653501,1022.7728605403563,6.9848915259255895,1422.6232871948698,2019
+2004,81,"(80,85]",College,6895.5389587073605,1022.7728605403563,6.742004236467788,1422.894702318862,2019
+2004,52,"(50,55]",HS,169.4619748653501,258.1130247420458,0.6565417418772562,9389.049433884258,2019
+2004,52,"(50,55]",HS,169.3048473967684,258.1130247420458,0.6559329873646208,8724.414977490378,2019
+2004,52,"(50,55]",HS,168.04782764811492,258.1130247420458,0.6510629512635379,9435.090547421536,2019
+2004,52,"(50,55]",HS,169.3048473967684,258.1130247420458,0.6559329873646208,9382.666666147317,2019
+2004,52,"(50,55]",HS,169.3048473967684,258.1130247420458,0.6559329873646208,9093.892548944086,2019
+2004,26,"(25,30]",College,334.8386355475763,48.39619213913358,6.918697954271962,10471.204560777362,2019
+2004,26,"(25,30]",College,334.8386355475763,48.39619213913358,6.918697954271962,10399.037654723663,2019
+2004,26,"(25,30]",College,336.4099102333932,48.39619213913358,6.951164861612515,10473.992070144628,2019
+2004,26,"(25,30]",College,336.4099102333932,48.39619213913358,6.951164861612515,10461.291589847671,2019
+2004,26,"(25,30]",College,334.8386355475763,48.39619213913358,6.918697954271962,10455.926159744422,2019
+2004,50,"(45,50]",College,9134.44825852783,390.3959499223443,23.397907330608348,2164.691950456581,2019
+2004,50,"(45,50]",College,9328.186427289049,390.3959499223443,23.89416803413193,2142.055472881061,2019
+2004,50,"(45,50]",College,9292.989874326751,390.3959499223443,23.804011993913534,2214.4242275012057,2019
+2004,50,"(45,50]",College,9359.611921005388,390.3959499223443,23.974664498612643,2108.08612112401,2019
+2004,50,"(45,50]",College,9447.603303411131,390.3959499223443,24.200054599158634,2133.256069979628,2019
+2004,46,"(45,50]",HS,874.728617594255,87.11314585044046,10.041292953603422,5720.362974656742,2019
+2004,46,"(45,50]",HS,807.6509012567326,116.1508611339206,6.953464600882472,6366.1940679894,2019
+2004,46,"(45,50]",HS,900.3718204667864,266.1790567652347,3.3825794989607267,5648.005904938634,2019
+2004,46,"(45,50]",HS,482.5384560143626,264.5658503605969,1.823887910539755,5661.455540891335,2019
+2004,46,"(45,50]",HS,444.51360861759423,206.49041979363656,2.1527081453068595,5916.898080931793,2019
+2004,60,"(55,60]",HS,658.8354757630161,156.48102124986525,4.210321932338382,6169.694591606403,2019
+2004,60,"(55,60]",HS,658.9926032315979,156.48102124986525,4.211326063493245,6823.9672014467305,2019
+2004,60,"(55,60]",HS,505.10196050269303,156.48102124986525,3.2278800104209315,6088.720228111136,2019
+2004,60,"(55,60]",HS,534.5005098743268,156.48102124986525,3.4157529494957015,6069.32213109057,2019
+2004,60,"(55,60]",HS,558.0853429084381,156.48102124986525,3.5664730358405596,6379.882873419033,2019
+2004,35,"(30,35]",HS,0,53.23581135304694,0,8863.314398514653,2019
+2004,35,"(30,35]",HS,-3.1425493716337525,53.23581135304694,-0.059030740619188275,8508.293949320028,2019
+2004,35,"(30,35]",HS,0,53.23581135304694,0,8855.300111752269,2019
+2004,35,"(30,35]",HS,0,53.23581135304694,0,8822.285416305323,2019
+2004,35,"(30,35]",HS,-1.5712746858168762,53.23581135304694,-0.029515370309594138,8732.975367082374,2019
+2004,34,"(30,35]",HS,12.177378815080791,77.43390742261373,0.1572615824308063,7338.8121278025765,2019
+2004,34,"(30,35]",HS,12.177378815080791,77.43390742261373,0.1572615824308063,7301.526821688574,2019
+2004,34,"(30,35]",HS,12.177378815080791,64.52825618551145,0.1887138989169675,7346.1655628410135,2019
+2004,34,"(30,35]",HS,12.177378815080791,54.84901775768473,0.22201635166702063,7379.278645676188,2019
+2004,34,"(30,35]",HS,12.33450628366248,46.782985734495796,0.2636536785758746,7363.9277857353545,2019
+2004,42,"(40,45]",College,18793.859389587076,2419.8096069566795,7.766668640192539,29.195066268336753,2019
+2004,42,"(40,45]",College,18792.288114901257,2419.8096069566795,7.766019302045727,30.022752239907987,2019
+2004,42,"(40,45]",College,18790.62256373429,2419.8096069566795,7.765331003610107,31.11940196881066,2019
+2004,42,"(40,45]",College,18793.765113105925,2419.8096069566795,7.766629679903729,28.051432547955784,2019
+2004,42,"(40,45]",College,18791.911008976662,2419.8096069566795,7.765863460890492,29.23782194742078,2019
+2004,54,"(50,55]",College,7863.051346499103,4968.675726284381,1.5825245557691408,20.626138171850155,2019
+2004,54,"(50,55]",College,45056.69443447038,4952.543662238004,9.097687472806594,19.12902112287269,2019
+2004,54,"(50,55]",College,27725.534649910234,4952.543662238004,5.598241336328037,19.897276336486822,2019
+2004,54,"(50,55]",College,12143.203590664274,4968.675726284381,2.44395172066201,19.826033511512716,2019
+2004,54,"(50,55]",College,13788.328186714543,4952.543662238004,2.7840901821517186,20.65284709280759,2019
+2004,63,"(60,65]",HS,744.1556912028726,22.58488966492901,32.949272821041774,5523.101014610761,2019
+2004,63,"(60,65]",HS,750.4407899461401,22.58488966492901,33.22756059824651,6108.404768179224,2019
+2004,63,"(60,65]",HS,733.1567684021545,22.58488966492901,32.46226921093347,5451.1448632774645,2019
+2004,63,"(60,65]",HS,723.8862477558348,22.58488966492901,32.05179473955646,5433.721391607892,2019
+2004,63,"(60,65]",HS,737.8705924596051,22.58488966492901,32.67098504383703,5710.926038892794,2019
+2004,81,"(80,85]",HS,1113.2481149012567,169.70931376789508,6.559734938435986,546.832025326321,2019
+2004,81,"(80,85]",HS,1111.6768402154398,169.70931376789508,6.550476314669669,565.821581287291,2019
+2004,81,"(80,85]",HS,1111.6768402154398,169.70931376789508,6.550476314669669,535.6470084751827,2019
+2004,81,"(80,85]",HS,1111.6768402154398,169.70931376789508,6.550476314669669,545.6976829372533,2019
+2004,81,"(80,85]",HS,1124.247037701975,169.70931376789508,6.624545304800209,565.1840181517598,2019
+2004,50,"(45,50]",HS,16.262692998204667,133.89613158493626,0.12145752685833586,4248.461942227065,2019
+2004,50,"(45,50]",HS,16.10556552962298,133.89613158493626,0.12028402418337608,4195.097703759874,2019
+2004,50,"(45,50]",HS,16.262692998204667,133.89613158493626,0.12145752685833586,4260.578337605163,2019
+2004,50,"(45,50]",HS,16.262692998204667,133.89613158493626,0.12145752685833586,4223.740134543276,2019
+2004,50,"(45,50]",HS,16.10556552962298,133.89613158493626,0.12028402418337608,4199.071028815368,2019
+2004,49,"(45,50]",College,23867.992445242373,483.96192139133586,49.317914055355,29.456241758686797,2019
+2004,49,"(45,50]",College,23867.04968043088,483.96192139133586,49.31596604091455,30.017816657805092,2019
+2004,49,"(45,50]",College,23868.77808258528,483.96192139133586,49.31953740072202,30.656493672517506,2019
+2004,49,"(45,50]",College,23882.919554757627,483.96192139133586,49.34875761732851,28.932885308193512,2019
+2004,49,"(45,50]",College,23868.290987432672,483.96192139133586,49.318530926594455,30.7830410021978,2019
+2004,61,"(60,65]",College,3065.2426570915623,390.3959499223443,7.851625145448578,2897.8900244581896,2019
+2004,61,"(60,65]",College,2556.149658886894,390.3959499223443,6.547582420861055,2845.4692932755356,2019
+2004,61,"(60,65]",College,2595.431526032316,390.3959499223443,6.648203001461944,2943.4996540315365,2019
+2004,61,"(60,65]",College,2265.620969479354,388.7827435177064,5.827473073984751,2873.2944889371856,2019
+2004,61,"(60,65]",College,3376.3550448833034,390.3959499223443,8.648540143807619,3730.011843083447,2019
+2004,60,"(55,60]",HS,-5.655017594254937,29.03771528348015,-0.19474733253108703,5669.669415721745,2019
+2004,60,"(55,60]",HS,-7.0691648114901255,29.03771528348015,-0.24344769354191736,5626.210900045848,2019
+2004,60,"(55,60]",HS,-1.5697034111310593,29.03771528348015,-0.05405740072202166,5654.829560591655,2019
+2004,60,"(55,60]",HS,-1.3497249551166965,29.03771528348015,-0.04648178900922583,5651.274000101092,2019
+2004,60,"(55,60]",HS,-9.897459245960503,29.03771528348015,-0.34084841556357803,5687.083399164386,2019
+2004,61,"(60,65]",College,5509.831813285458,290.37715283480145,18.974742880064184,3643.933326921246,2019
+2004,61,"(60,65]",College,5533.872315978457,290.37715283480145,19.057533493782596,3596.5441441361945,2019
+2004,61,"(60,65]",College,5491.290771992819,290.37715283480145,18.91089129562776,4050.5172030113586,2019
+2004,61,"(60,65]",College,5524.287540394973,290.37715283480145,19.0245254713197,3559.838066757247,2019
+2004,61,"(60,65]",College,5507.946283662478,290.37715283480145,18.968249498596073,3730.011843083447,2019
+2004,34,"(30,35]",HS,17.36258527827648,13.228292518029845,1.312534119926037,8106.0052706831,2019
+2004,34,"(30,35]",HS,17.36258527827648,13.228292518029845,1.312534119926037,8112.102023891306,2019
+2004,34,"(30,35]",HS,17.36258527827648,13.228292518029845,1.312534119926037,8112.419324466171,2019
+2004,34,"(30,35]",HS,17.36258527827648,13.228292518029845,1.312534119926037,8078.710217587393,2019
+2004,34,"(30,35]",HS,17.36258527827648,13.228292518029845,1.312534119926037,8111.3354801521145,2019
+2004,33,"(30,35]",HS,4.525271095152603,45.16977932985802,0.10018359979370808,5544.521819489908,2019
+2004,33,"(30,35]",HS,4.368143626570915,45.16977932985802,0.09670500257864877,5622.774259705001,2019
+2004,33,"(30,35]",HS,4.368143626570915,45.16977932985802,0.09670500257864877,5529.739824725485,2019
+2004,33,"(30,35]",HS,4.368143626570915,45.16977932985802,0.09670500257864877,5572.31322669435,2019
+2004,33,"(30,35]",HS,4.368143626570915,45.16977932985802,0.09670500257864877,5573.537749116982,2019
+2004,34,"(30,35]",NoHS,12.656617594254937,24.19809606956679,0.5230418772563177,7037.142055465358,2019
+2004,34,"(30,35]",NoHS,11.093199281867147,25.81130247420457,0.4297806859205778,7042.896131573337,2019
+2004,34,"(30,35]",NoHS,15.78345421903052,25.81130247420457,0.6114939079422385,7042.023055124177,2019
+2004,34,"(30,35]",NoHS,12.648761220825852,24.19809606956679,0.5227172081829121,7012.8347966144775,2019
+2004,34,"(30,35]",NoHS,12.640904847396769,25.81130247420457,0.4897430054151626,7042.182732074837,2019
+2004,72,"(70,75]",College,40693.657450628365,7420.749461333816,5.483766520169518,27.96089942569834,2019
+2004,72,"(70,75]",College,40676.373429084386,7420.749461333816,5.481437372469001,28.115462507669967,2019
+2004,72,"(70,75]",College,40677.9447037702,7420.749461333816,5.4816491131690475,28.661405128192467,2019
+2004,72,"(70,75]",College,40677.9447037702,7420.749461333816,5.4816491131690475,27.13421954030061,2019
+2004,72,"(70,75]",College,40677.9447037702,7420.749461333816,5.4816491131690475,28.408460769403725,2019
+2004,71,"(70,75]",NoHS,25.926032315978457,25.81130247420457,1.0044449458483757,7462.416968139192,2019
+2004,71,"(70,75]",NoHS,25.76890484739677,25.81130247420457,0.998357400722022,7469.529598360257,2019
+2004,71,"(70,75]",NoHS,25.76890484739677,25.81130247420457,0.998357400722022,7476.17425354638,2019
+2004,71,"(70,75]",NoHS,25.926032315978457,25.81130247420457,1.0044449458483757,7459.479506663779,2019
+2004,71,"(70,75]",NoHS,25.926032315978457,25.81130247420457,1.0044449458483757,7468.399444187325,2019
+2004,48,"(45,50]",College,331.0204380610413,82.2735266365271,4.023413746726128,6396.05585258427,2019
+2004,48,"(45,50]",College,308.04840215439856,82.2735266365271,3.7441983435973665,6046.975392277107,2019
+2004,48,"(45,50]",College,306.0214578096948,82.2735266365271,3.7195616903801234,6448.757922457483,2019
+2004,48,"(45,50]",College,349.4829156193896,82.2735266365271,4.247817370991718,6416.357708530858,2019
+2004,48,"(45,50]",College,325.6466786355476,82.2735266365271,3.9580979684292488,6270.657038487634,2019
+2004,57,"(55,60]",College,10173.217953321364,553.3297967907606,18.385451158286934,2443.89017686032,2019
+2004,57,"(55,60]",College,10213.505436265708,551.7165903861228,18.5122318491777,2448.202891846163,2019
+2004,57,"(55,60]",College,10302.329594254938,551.7165903861228,18.673227837946254,2471.956558925041,2019
+2004,57,"(55,60]",College,10161.433393177738,551.7165903861228,18.417849979943846,2387.104310074569,2019
+2004,57,"(55,60]",College,10524.397845601436,551.7165903861228,19.07573204973927,2384.6569007867993,2019
+2004,54,"(50,55]",NoHS,34.2537881508079,40.33016011594465,0.8493342960288809,875.2371584692366,2019
+2004,54,"(50,55]",NoHS,34.2537881508079,40.33016011594465,0.8493342960288809,882.6008483432199,2019
+2004,54,"(50,55]",NoHS,34.2537881508079,40.33016011594465,0.8493342960288809,877.9250905330431,2019
+2004,54,"(50,55]",NoHS,34.2537881508079,40.33016011594465,0.8493342960288809,876.1878436831237,2019
+2004,54,"(50,55]",NoHS,34.2537881508079,40.33016011594465,0.8493342960288809,861.6968121949258,2019
+2004,58,"(55,60]",HS,130.96574506283662,161.3206404637786,0.8118350180505415,6375.587224405307,2019
+2004,58,"(55,60]",HS,145.26434470377018,161.3206404637786,0.9004696750902527,6220.3145579982975,2019
+2004,58,"(55,60]",HS,149.82104129263914,161.3206404637786,0.9287158844765343,6365.340043066319,2019
+2004,58,"(55,60]",HS,152.96359066427289,161.3206404637786,0.9481960288808664,6383.416546495954,2019
+2004,58,"(55,60]",HS,138.19360861759426,161.3206404637786,0.8566393501805055,6337.937228367354,2019
+2004,42,"(40,45]",HS,-1.3198707360861759,56.46222416232251,-0.02337617328519856,4405.794466503745,2019
+2004,42,"(40,45]",HS,-1.1627432675044884,58.0754305669603,-0.02002125952667469,4386.927200646413,2019
+2004,42,"(40,45]",HS,-1.3355834829443447,58.0754305669603,-0.022997392699558764,4372.770186435001,2019
+2004,42,"(40,45]",HS,-1.4769982046678636,58.0754305669603,-0.02543241075010028,4386.883314512189,2019
+2004,42,"(40,45]",HS,-1.178456014362657,58.0754305669603,-0.020291817087845967,4363.238525469807,2019
+2004,49,"(45,50]",College,1607.7282585278276,248.43378631421908,6.471455764452154,13246.48318220023,2019
+2004,49,"(45,50]",College,1607.7282585278276,248.43378631421908,6.471455764452154,14100.846143816167,2019
+2004,49,"(45,50]",College,1607.571131059246,248.43378631421908,6.470823292231234,13227.753154647977,2019
+2004,49,"(45,50]",College,1607.7282585278276,248.43378631421908,6.471455764452154,14141.46206116561,2019
+2004,49,"(45,50]",College,1607.7282585278276,248.43378631421908,6.471455764452154,13782.702038243297,2019
+2004,43,"(40,45]",HS,91.44818671454219,64.52825618551145,1.4171805054151623,7793.613052938503,2019
+2004,43,"(40,45]",HS,91.91956912028726,64.52825618551145,1.424485559566787,7429.977060132213,2019
+2004,43,"(40,45]",HS,91.76244165170557,64.52825618551145,1.4220505415162454,7784.785168777444,2019
+2004,43,"(40,45]",HS,91.60531418312388,64.52825618551145,1.4196155234657037,7738.104632151519,2019
+2004,43,"(40,45]",HS,91.76244165170557,64.52825618551145,1.4220505415162454,7649.09562287572,2019
+2004,29,"(25,30]",HS,41.84304488330341,8.066032023188932,5.187562454873646,4449.481585597185,2019
+2004,29,"(25,30]",HS,46.195475763016155,8.066032023188932,5.727162454873645,4437.844062581093,2019
+2004,29,"(25,30]",HS,48.39526032315978,8.066032023188932,5.9998844765342945,4453.026268957052,2019
+2004,29,"(25,30]",HS,48.2381328545781,8.066032023188932,5.980404332129963,4456.482088546981,2019
+2004,29,"(25,30]",HS,44.93845601436266,8.066032023188932,5.5713212996389885,4441.104719348329,2019
+2004,66,"(65,70]",College,683.504488330341,108.08482911073166,6.32377822080931,7688.090076057239,2019
+2004,66,"(65,70]",College,678.9477917414722,108.08482911073166,6.2816196993372495,8619.006869475,2019
+2004,66,"(65,70]",College,694.660538599641,108.08482911073166,6.426993911309878,7674.077870022283,2019
+2004,66,"(65,70]",College,699.3743626570916,108.08482911073166,6.470606174901666,7654.64131142024,2019
+2004,66,"(65,70]",College,694.8176660682226,108.08482911073166,6.428447653429603,8018.278252056574,2019
+2004,38,"(35,40]",College,0.23569120287253142,11.453765472928282,0.020577617328519853,6110.514733217418,2019
+2004,38,"(35,40]",College,0.23569120287253142,11.453765472928282,0.020577617328519853,6102.57368504318,2019
+2004,38,"(35,40]",College,0.23569120287253142,11.615086113392062,0.020291817087845967,6159.744022398026,2019
+2004,38,"(35,40]",College,0.23569120287253142,11.615086113392062,0.020291817087845967,6097.81987227952,2019
+2004,38,"(35,40]",College,0.23569120287253142,11.615086113392062,0.020291817087845967,6111.929556338055,2019
+2004,74,"(70,75]",NoHS,11077.486535008977,806.6032023188931,13.733501805054152,381.04984250447893,2019
+2004,74,"(70,75]",NoHS,11163.906642728905,806.6032023188931,13.84064259927798,370.60140659493993,2019
+2004,74,"(70,75]",NoHS,11207.902333931777,806.6032023188931,13.895187003610108,394.7208678784789,2019
+2004,74,"(70,75]",NoHS,11080.629084380611,806.6032023188931,13.737397833935018,376.7393246806256,2019
+2004,74,"(70,75]",NoHS,11547.297666068223,806.6032023188931,14.315958122743682,387.3722544726221,2019
+2004,39,"(35,40]",HS,83.89035547576302,64.52825618551145,1.3000561371841153,3966.302685507154,2019
+2004,39,"(35,40]",HS,61.31113824057451,64.52825618551145,0.9501440433212995,3949.3174884429113,2019
+2004,39,"(35,40]",HS,66.30779174147217,64.52825618551145,1.0275776173285198,3936.572680687491,2019
+2004,39,"(35,40]",HS,69.43462836624775,46.782985734495796,1.484185484874891,3949.2779800878693,2019
+2004,39,"(35,40]",HS,65.77355834829443,40.33016011594465,1.6308776895306858,3927.9918327221567,2019
+2004,58,"(55,60]",HS,5226.688114901257,309.7356296904549,16.87467509025271,3643.933326921246,2019
+2004,58,"(55,60]",HS,5285.453788150808,325.8676937368328,16.219631125567428,3537.6755309060877,2019
+2004,58,"(55,60]",HS,5478.563447037703,311.34883609509274,17.59622266699089,3855.269984693069,2019
+2004,58,"(55,60]",HS,5247.586068222621,351.6789962110374,14.921522538336701,3379.0739060727974,2019
+2004,58,"(55,60]",HS,5651.246535008976,353.2922026156752,15.995956019319845,3550.2637900498203,2019
+2004,43,"(40,45]",HS,24.040502692998206,32.264128092755726,0.745115523465704,5092.295437323136,2019
+2004,43,"(40,45]",HS,24.040502692998206,19.358476855653432,1.2418592057761735,5162.124794914118,2019
+2004,43,"(40,45]",HS,24.040502692998206,19.358476855653432,1.2418592057761735,5104.5583075853765,2019
+2004,43,"(40,45]",HS,24.040502692998206,37.10374730666908,0.6479265421440905,5079.516750481451,2019
+2004,43,"(40,45]",HS,24.040502692998206,20.97168326029122,1.1463315745626217,5129.478443864035,2019
+2004,42,"(40,45]",HS,621.5962657091562,108.08482911073166,5.751003825637158,6868.43303081905,2019
+2004,42,"(40,45]",HS,296.3424057450629,108.08482911073166,2.7417576378037616,7769.418510388647,2019
+2004,42,"(40,45]",HS,492.7517414721724,108.08482911073166,4.55893528746161,6779.7600660858025,2019
+2004,42,"(40,45]",HS,302.6275044883303,108.08482911073166,2.799907322592812,8056.142397719156,2019
+2004,42,"(40,45]",HS,475.46771992818674,108.08482911073166,4.399023654291719,7073.90834484856,2019
+2004,23,"(20,25]",HS,29.30427289048474,98.40559068290497,0.29779073208261814,9244.498780713493,2019
+2004,23,"(20,25]",HS,32.60394973070018,96.79238427826716,0.3368441636582431,9160.841154315056,2019
+2004,23,"(20,25]",HS,34.175224416517054,98.40559068290497,0.3472894596673965,9284.205421009365,2019
+2004,23,"(20,25]",HS,28.990017953321363,98.40559068290497,0.294597265786826,9075.323529535079,2019
+2004,23,"(20,25]",HS,32.2896947935368,98.40559068290497,0.32812866189264356,9236.444263666419,2019
+2004,71,"(70,75]",HS,99.14743267504488,20.97168326029122,4.727681199666759,7286.472554660421,2019
+2004,71,"(70,75]",HS,98.99030520646319,13.066971877566067,7.575611712795828,7321.502765144085,2019
+2004,71,"(70,75]",HS,98.99030520646319,30.650921688117936,3.2296028880866423,7281.92736151262,2019
+2004,71,"(70,75]",HS,99.14743267504488,19.358476855653432,5.121654632972323,7261.386153031875,2019
+2004,71,"(70,75]",HS,99.14743267504488,15.809422765450304,6.2714138362926395,7279.696384511271,2019
+2004,27,"(25,30]",HS,3.8040560143626574,109.69803551536945,0.03467752176682948,4962.566143535086,2019
+2004,27,"(25,30]",HS,3.8040560143626574,109.69803551536945,0.03467752176682948,4937.57962972234,2019
+2004,27,"(25,30]",HS,3.8040560143626574,109.69803551536945,0.03467752176682948,4968.360449279932,2019
+2004,27,"(25,30]",HS,3.8040560143626574,109.69803551536945,0.03467752176682948,5002.327682751116,2019
+2004,27,"(25,30]",HS,3.8040560143626574,109.69803551536945,0.03467752176682948,4980.525073799909,2019
+2004,34,"(30,35]",College,159.06013644524236,109.69803551536945,1.4499816309195157,6806.989539004988,2019
+2004,34,"(30,35]",College,93.53798204667864,109.69803551536945,0.8526860267572733,6760.076180401529,2019
+2004,34,"(30,35]",College,99.50882585278278,109.69803551536945,0.907115842004672,6808.801608188887,2019
+2004,34,"(30,35]",College,183.57202154398564,109.69803551536945,1.6734303461456785,6800.545438994601,2019
+2004,34,"(30,35]",College,100.13733572710952,109.69803551536945,0.9128452962412402,6797.057547379736,2019
+2004,62,"(60,65]",College,10794.028581687613,219.3960710307389,49.19882352941177,1847.3157704018752,2019
+2004,62,"(60,65]",College,10794.028581687613,200.03759417508547,53.96000000000001,1847.299573869644,2019
+2004,62,"(60,65]",College,10794.028581687613,235.52813507711673,45.829041095890425,1894.2772300348668,2019
+2004,62,"(60,65]",College,10794.028581687613,200.03759417508547,53.96000000000001,1762.0921498530447,2019
+2004,62,"(60,65]",College,10794.028581687613,201.65080057972327,53.52832,1769.8837134125156,2019
+2004,33,"(30,35]",College,-46.50973070017954,41.94336652058244,-1.1088697584004445,5639.513689192443,2019
+2004,33,"(30,35]",College,-40.38175942549371,41.94336652058244,-0.9627686753679533,5719.368719229433,2019
+2004,33,"(30,35]",College,-55.93737881508079,41.94336652058244,-1.3336406553735074,5625.408979458786,2019
+2004,33,"(30,35]",College,-56.565888689407544,41.94336652058244,-1.3486253818383784,5681.863132710857,2019
+2004,33,"(30,35]",College,-41.63877917414722,41.94336652058244,-0.9927381282976951,5670.137319509565,2019
+2004,64,"(60,65]",College,26162.03777378815,1290.5651237102288,20.271768772563178,18.066308243526656,2019
+2004,64,"(60,65]",College,26162.82341113106,1290.5651237102288,20.272377527075815,18.63705803531676,2019
+2004,64,"(60,65]",College,26161.88064631957,1290.5651237102288,20.27164702166065,18.977774896945714,2019
+2004,64,"(60,65]",College,26162.03777378815,1290.5651237102288,20.271768772563178,17.44483212710631,2019
+2004,64,"(60,65]",College,26160.466499102335,1290.5651237102288,20.270551263537907,18.60978708433786,2019
+2004,61,"(60,65]",HS,237.73385996409337,48.39619213913358,4.912243080625752,6067.486355196053,2019
+2004,61,"(60,65]",HS,227.52057450628365,48.39619213913358,4.701208182912154,5410.059027749887,2019
+2004,61,"(60,65]",HS,236.79109515260325,48.39619213913358,4.892762936221421,6082.21650199927,2019
+2004,61,"(60,65]",HS,518.3635188509875,48.39619213913358,10.710832731648617,5973.708666001761,2019
+2004,61,"(60,65]",HS,226.73493716337524,48.39619213913358,4.684974729241878,5849.178725020358,2019
+2004,71,"(70,75]",College,10453.690484739676,322.6412809275572,32.40035018050541,223.7102309778029,2019
+2004,71,"(70,75]",College,10160.804883303412,322.6412809275572,31.49257545126354,225.25812166915156,2019
+2004,71,"(70,75]",College,14276.601795332135,322.6412809275572,44.24914801444043,231.86971412020574,2019
+2004,71,"(70,75]",College,8588.430305206462,322.6412809275572,26.619130324909747,216.1267175757725,2019
+2004,71,"(70,75]",College,11110.483303411133,322.6412809275572,34.43602527075813,219.15664813608882,2019
+2004,77,"(75,80]",HS,153.3564093357271,30.650921688117936,5.003321299638989,13041.205850083661,2019
+2004,77,"(75,80]",HS,153.3564093357271,29.03771528348015,5.281283594063377,11682.50305103094,2019
+2004,77,"(75,80]",HS,153.3564093357271,29.03771528348015,5.281283594063377,13050.331484057504,2019
+2004,77,"(75,80]",HS,153.04215439856372,29.03771528348015,5.270461291616526,12830.236741715698,2019
+2004,77,"(75,80]",HS,159.48438061041293,29.03771528348015,5.492318491776976,12526.571505662756,2019
+2004,69,"(65,70]",NoHS,44.46864488330341,12.260368675247175,3.627023465703971,8152.313674941009,2019
+2004,69,"(65,70]",NoHS,44.31151741472173,12.421689315710953,3.5672698204322755,8195.760074101545,2019
+2004,69,"(65,70]",NoHS,45.16000574506284,12.421689315710953,3.635576820291622,8163.287670049105,2019
+2004,69,"(65,70]",NoHS,45.01859102333932,12.260368675247175,3.671879061371841,8216.586768685127,2019
+2004,69,"(65,70]",NoHS,44.31151741472173,12.421689315710953,3.5672698204322755,8205.336613224781,2019
+2004,77,"(75,80]",College,5119.370053859964,247.6271831119002,20.67369983184186,3643.933326921246,2019
+2004,77,"(75,80]",College,5106.532739676841,247.6271831119002,20.621858535495477,3596.5441441361945,2019
+2004,77,"(75,80]",College,5108.41826929982,247.6271831119002,20.629472924187723,4050.5172030113586,2019
+2004,77,"(75,80]",College,5099.697694793537,247.6271831119002,20.594256376486083,3559.838066757247,2019
+2004,77,"(75,80]",College,5104.018700179533,247.6271831119002,20.611706017239147,3730.011843083447,2019
+2004,60,"(55,60]",HS,757.8257809694794,116.1508611339206,6.524495587645408,5229.679895154374,2019
+2004,60,"(55,60]",HS,760.1826929982046,116.1508611339206,6.544787404733253,5782.0831007905235,2019
+2004,60,"(55,60]",HS,761.1254578096948,116.1508611339206,6.552904131568392,5160.13370691539,2019
+2004,60,"(55,60]",HS,757.5586642728906,116.1508611339206,6.5221958483754525,5143.1393050447105,2019
+2004,60,"(55,60]",HS,760.025565529623,116.1508611339206,6.543434616927397,5405.874761796151,2019
+2004,24,"(20,25]",HS,2.9854219030520643,22.58488966492901,0.1321866941722537,5599.375592891663,2019
+2004,24,"(20,25]",HS,2.9854219030520643,22.58488966492901,0.1321866941722537,5669.815999082248,2019
+2004,24,"(20,25]",HS,2.9854219030520643,20.97168326029122,0.14235490141627324,5645.086461288053,2019
+2004,24,"(20,25]",HS,2.9854219030520643,20.97168326029122,0.14235490141627324,5532.02447540074,2019
+2004,24,"(20,25]",HS,2.9854219030520643,20.97168326029122,0.14235490141627324,5660.429541600214,2019
+2004,25,"(20,25]",College,-21.526463195691203,64.52825618551145,-0.3335974729241877,5397.827665970294,2019
+2004,25,"(20,25]",College,27.18305206463196,64.52825618551145,0.4212581227436823,5318.614816407073,2019
+2004,25,"(20,25]",College,-21.526463195691203,64.52825618551145,-0.3335974729241877,5421.660602273665,2019
+2004,25,"(20,25]",College,-21.526463195691203,64.52825618551145,-0.3335974729241877,5448.004238103705,2019
+2004,25,"(20,25]",College,-21.526463195691203,64.52825618551145,-0.3335974729241877,5403.1331371112365,2019
+2004,24,"(20,25]",College,-75.10692998204668,40.33016011594465,-1.8623018050541518,8941.832753352375,2019
+2004,24,"(20,25]",College,-72.67145421903052,58.0754305669603,-1.2513287204171681,8938.438923162872,2019
+2004,24,"(20,25]",College,-68.03619389587074,24.19809606956679,-2.8116341756919376,8937.343361160216,2019
+2004,24,"(20,25]",College,-64.61081508078995,43.55657292522023,-1.483376922048402,8851.434562691353,2019
+2004,24,"(20,25]",College,-59.629874326750446,32.264128092755726,-1.8481787003610104,8942.015193754236,2019
+2004,80,"(75,80]",College,364237.1849192101,9646.974299733962,37.75662436762735,19.85074517363883,2019
+2004,80,"(75,80]",College,340096.1206463196,10840.747039165924,31.372018867113628,20.80433162821725,2019
+2004,80,"(75,80]",College,508756.7454219031,10130.936221125296,50.218137230104176,20.025321777052817,2019
+2004,80,"(75,80]",College,314834.73752244166,10050.275900893406,31.325979567830057,19.550079502266545,2019
+2004,80,"(75,80]",College,329161.62010771997,10679.426398702144,30.822031803854422,19.624724009168094,2019
+2004,44,"(40,45]",HS,2480.3042298025134,80.6603202318893,30.749992346570398,3494.5146135429336,2019
+2004,44,"(40,45]",HS,2420.861337163375,80.6603202318893,30.013039003610107,3653.4935915439355,2019
+2004,44,"(40,45]",HS,2458.4477989228008,80.6603202318893,30.479023537906137,3457.175897769768,2019
+2004,44,"(40,45]",HS,2457.7721508078994,80.6603202318893,30.470647075812273,3716.707232628677,2019
+2004,44,"(40,45]",HS,2558.6008473967686,80.6603202318893,31.72068794223827,3535.1103086936664,2019
+2004,50,"(45,50]",HS,793.0380466786355,120.99048034783397,6.554549121540312,8140.59540289525,2019
+2004,50,"(45,50]",HS,698.6044380610413,120.99048034783397,5.774044669073405,9054.188797857158,2019
+2004,50,"(45,50]",HS,827.7632172351884,120.99048034783397,6.8415565824308056,7978.598203185036,2019
+2004,50,"(45,50]",HS,821.3209910233394,120.99048034783397,6.788310854392298,8061.4184198270905,2019
+2004,50,"(45,50]",HS,829.1773644524237,120.99048034783397,6.853244669073405,8371.195401374654,2019
+2004,81,"(80,85]",College,591.6634829443448,114.53765472928282,5.165667870036101,10862.12624694224,2019
+2004,81,"(80,85]",College,564.0876122082585,114.53765472928282,4.924909747292419,10044.211484510783,2019
+2004,81,"(80,85]",College,569.2728186714543,114.53765472928282,4.970180505415162,10815.89839984469,2019
+2004,81,"(80,85]",College,670.7771633752245,114.53765472928282,5.856389891696751,8436.15861150932,2019
+2004,81,"(80,85]",College,566.0517055655297,114.53765472928282,4.942057761732852,10566.206585956874,2019
+2004,26,"(25,30]",NoHS,0.31425493716337527,48.39619213913358,0.006493381468110711,9205.647561754153,2019
+2004,26,"(25,30]",NoHS,0.31425493716337527,48.39619213913358,0.006493381468110711,9274.174257897588,2019
+2004,26,"(25,30]",NoHS,0.31425493716337527,48.39619213913358,0.006493381468110711,9163.206781145002,2019
+2004,26,"(25,30]",NoHS,0.31425493716337527,48.39619213913358,0.006493381468110711,9179.672571581132,2019
+2004,26,"(25,30]",NoHS,0.31425493716337527,48.39619213913358,0.006493381468110711,9131.691188745552,2019
+2004,59,"(55,60]",College,3399.2642298025135,1448.659351364732,2.346489688276394,251.6502699534225,2019
+2004,59,"(55,60]",College,4114.209924596051,2532.734055281324,1.6244145002184465,246.76756182562468,2019
+2004,59,"(55,60]",College,4269.750405745063,1021.1596541357186,4.181276050666987,262.04971713719823,2019
+2004,59,"(55,60]",College,3634.955432675045,1345.4141414679136,2.7017371979672578,245.56364028934314,2019
+2004,59,"(55,60]",College,5130.808933572711,2290.753094585656,2.2397913357400725,253.58277795305315,2019
+2004,51,"(50,55]",College,201.98736086175944,111.31124192000723,1.8146177994035475,4299.04822731518,2019
+2004,51,"(50,55]",College,202.0030736086176,111.31124192000723,1.8147589598702456,4319.138163416601,2019
+2004,51,"(50,55]",College,201.98736086175944,111.31124192000723,1.8146177994035475,4321.158055761144,2019
+2004,51,"(50,55]",College,201.8459461400359,111.31124192000723,1.8133473552032648,4341.66576398597,2019
+2004,51,"(50,55]",College,201.98736086175944,109.69803551536945,1.841303355277129,4304.861643557675,2019
+2004,56,"(55,60]",College,723.5405673249552,124.21689315710954,5.824816165783675,564.6576041482207,2019
+2004,56,"(55,60]",College,723.3991526032316,124.21689315710954,5.823677715786019,557.218000029867,2019
+2004,56,"(55,60]",College,723.4934290843806,124.21689315710954,5.824436682451123,568.5293038108367,2019
+2004,56,"(55,60]",College,723.5562800718133,124.21689315710954,5.824942660227858,525.6327456839268,2019
+2004,56,"(55,60]",College,723.4462908438061,124.21689315710954,5.82405719911857,566.4799876968088,2019
+2004,73,"(70,75]",College,383620.42944344704,15733.456875855913,24.382462955877124,28.051123467131287,2019
+2004,73,"(70,75]",College,385575.09515260323,14168.775719869629,27.213014220550527,29.24567987686131,2019
+2004,73,"(70,75]",College,388651.6509874327,14121.444243957556,27.5220894034074,29.209571447481505,2019
+2004,73,"(70,75]",College,387963.4326750449,14045.446090235071,27.622008598557212,27.62633965252826,2019
+2004,73,"(70,75]",College,385348.8315978456,13768.684399455411,27.987338544348304,28.30095239983563,2019
+2004,48,"(45,50]",College,1457.1372926391382,337.16013856929726,4.3217958647850345,988.3731225030457,2019
+2004,48,"(45,50]",College,1462.9510089766607,337.16013856929726,4.3390390548080084,984.9856578796459,2019
+2004,48,"(45,50]",College,1449.9722800718134,337.16013856929726,4.300544798162128,1003.7512692852346,2019
+2004,48,"(45,50]",College,1453.3505206463194,337.16013856929726,4.310564489661963,964.691067651143,2019
+2004,48,"(45,50]",College,1451.9206606822263,337.16013856929726,4.306323596980637,1005.0048557514381,2019
+2004,49,"(45,50]",NoHS,308.91260323159787,41.94336652058244,7.364993057484033,7482.764397765284,2019
+2004,49,"(45,50]",HS,308.91260323159787,41.94336652058244,7.364993057484033,8328.116677832939,2019
+2004,49,"(45,50]",HS,308.91260323159787,41.94336652058244,7.364993057484033,7387.393650810268,2019
+2004,49,"(45,50]",NoHS,294.9282585278276,41.94336652058244,7.031582893640655,7405.062478113368,2019
+2004,49,"(45,50]",HS,308.91260323159787,41.94336652058244,7.364993057484033,7740.304798722509,2019
+2004,41,"(40,45]",HS,20.42657091561939,33.87733449739351,0.6029568506102801,4506.3680384915215,2019
+2004,41,"(40,45]",HS,20.42657091561939,33.87733449739351,0.6029568506102801,4478.942436871604,2019
+2004,41,"(40,45]",HS,20.42657091561939,33.87733449739351,0.6029568506102801,4503.94210256947,2019
+2004,41,"(40,45]",HS,20.583698384201078,32.264128092755726,0.6379747292418771,4506.577893797009,2019
+2004,41,"(40,45]",HS,20.42657091561939,33.87733449739351,0.6029568506102801,4509.214442624363,2019
+2004,73,"(70,75]",HS,170.32617594254936,72.59428820870036,2.3462751704773366,10605.918297833745,2019
+2004,73,"(70,75]",HS,170.32617594254936,72.59428820870036,2.3462751704773366,9790.941026498256,2019
+2004,73,"(70,75]",HS,170.32617594254936,70.9810818040626,2.399599606170003,11018.863036621613,2019
+2004,73,"(70,75]",HS,170.32617594254936,70.9810818040626,2.399599606170003,10810.375818209282,2019
+2004,73,"(70,75]",HS,170.32617594254936,72.59428820870036,2.3462751704773366,10651.601168864534,2019
+2004,48,"(45,50]",HS,98.86460323159785,61.30184337623587,1.6127509025270759,6801.213490952706,2019
+2004,48,"(45,50]",HS,98.8960287253142,79.04711382725151,1.2511023355190456,6383.918763494517,2019
+2004,48,"(45,50]",HS,99.13171992818673,77.43390742261373,1.2802107400722025,6807.202278873405,2019
+2004,48,"(45,50]",HS,128.7188222621185,59.68863697159809,2.1565046345984973,6710.372025864852,2019
+2004,48,"(45,50]",HS,98.8960287253142,75.82070101797595,1.3043407327751748,6605.198330349864,2019
+2004,62,"(60,65]",College,17017.3448043088,337.16013856929726,50.472588119461776,2061.2761659815783,2019
+2004,62,"(60,65]",College,11518.087669658886,345.2261705924862,33.3638890988225,2052.6020873057855,2019
+2004,62,"(60,65]",College,14659.458585278277,346.839376997124,42.2658428007724,2090.6874925407546,2019
+2004,62,"(60,65]",College,14660.668466786356,346.839376997124,42.26933110570061,1991.6429249890784,2019
+2004,62,"(60,65]",College,13089.31521723519,350.0657898063996,37.39101505598163,1996.775159379721,2019
+2004,53,"(50,55]",HS,67.2505565529623,88.72635225507824,0.7579547095503774,6686.845540929198,2019
+2004,53,"(50,55]",HS,59.39418312387792,88.72635225507824,0.6694085986215951,6321.8945190447785,2019
+2004,53,"(50,55]",HS,86.10585278276481,88.72635225507824,0.9704653757794551,6741.943652804982,2019
+2004,53,"(50,55]",HS,72.12150807899461,88.72635225507824,0.8128532983262224,6708.070398566137,2019
+2004,53,"(50,55]",HS,85.94872531418312,88.72635225507824,0.9686944535608795,6555.7456068126,2019
+2004,46,"(45,50]",College,968.6908438061042,706.5844052313504,1.370948518866525,5810.478087408706,2019
+2004,46,"(45,50]",College,1353.6531418312388,316.18845530900603,4.281159286819421,3335.923286763227,2019
+2004,46,"(45,50]",College,1716.6175942549373,421.04687161046223,4.077022559718937,3149.576840323181,2019
+2004,46,"(45,50]",College,1298.6585278276482,458.1506189171313,2.83456678700361,3399.174984443104,2019
+2004,46,"(45,50]",College,814.2502549371634,262.9526439559591,3.0965661447144033,6009.519755645955,2019
+2004,48,"(45,50]",College,3066.7039425493717,332.32051935538396,9.228151028705618,1119.7105140554672,2019
+2004,48,"(45,50]",College,3066.7039425493717,333.93372576002173,9.183570588953417,1143.9971932617907,2019
+2004,48,"(45,50]",College,3066.7039425493717,333.93372576002173,9.183570588953417,1151.0689901402352,2019
+2004,48,"(45,50]",College,3066.7039425493717,333.93372576002173,9.183570588953417,1074.091404920117,2019
+2004,48,"(45,50]",College,3066.7039425493717,332.32051935538396,9.228151028705618,1099.1546102617704,2019
+2004,49,"(45,50]",College,-37.00351885098743,80.6603202318893,-0.4587574007220217,5027.194261491737,2019
+2004,49,"(45,50]",College,-36.68926391382406,80.6603202318893,-0.45486137184115527,4870.329956309287,2019
+2004,49,"(45,50]",College,-35.27511669658887,80.6603202318893,-0.4373292418772563,5053.383455211963,2019
+2004,49,"(45,50]",College,-35.27511669658887,80.6603202318893,-0.4373292418772563,5083.754369764453,2019
+2004,49,"(45,50]",College,-33.860969479353685,80.6603202318893,-0.41979711191335745,4968.098119016011,2019
+2004,85,"(80,85]",NoHS,170.3104631956912,22.58488966492901,7.540903042805569,11294.045364531283,2019
+2004,85,"(80,85]",NoHS,170.3104631956912,22.58488966492901,7.540903042805569,11347.122643615172,2019
+2004,85,"(80,85]",NoHS,170.3104631956912,22.58488966492901,7.540903042805569,11292.409190776305,2019
+2004,85,"(80,85]",NoHS,170.3104631956912,22.58488966492901,7.540903042805569,11263.405305116661,2019
+2004,85,"(80,85]",NoHS,170.3104631956912,22.58488966492901,7.540903042805569,11284.291445901374,2019
+2004,28,"(25,30]",College,305.1415439856374,91.95276506435381,3.3184596871239473,6948.002670687597,2019
+2004,28,"(25,30]",College,306.7128186714542,91.95276506435381,3.3355475330926594,6889.215185020218,2019
+2004,28,"(25,30]",College,305.1415439856374,90.33955865971603,3.377717895822589,6934.25565247144,2019
+2004,28,"(25,30]",College,305.1415439856374,91.95276506435381,3.3184596871239473,7044.696579202874,2019
+2004,28,"(25,30]",College,305.1415439856374,90.33955865971603,3.377717895822589,6948.309800417852,2019
+2004,74,"(70,75]",HS,529.2053141831238,39.523556913625754,13.389617623222575,9354.79427055332,2019
+2004,74,"(70,75]",HS,530.9337163375225,39.68487755408954,13.378741451674445,8638.4875234729,2019
+2004,74,"(70,75]",HS,530.9337163375225,39.523556913625754,13.433348559640466,9788.24858349697,2019
+2004,74,"(70,75]",HS,530.9337163375225,39.523556913625754,13.433348559640466,9526.092135150291,2019
+2004,74,"(70,75]",HS,530.9337163375225,39.523556913625754,13.433348559640466,9447.29282575093,2019
+2004,53,"(50,55]",HS,17.7554039497307,12.099048034783396,1.4675042117930204,8285.441703455199,2019
+2004,53,"(50,55]",HS,17.7554039497307,12.099048034783396,1.4675042117930204,8303.757581969476,2019
+2004,53,"(50,55]",HS,17.7554039497307,12.099048034783396,1.4675042117930204,8275.270743768586,2019
+2004,53,"(50,55]",HS,17.7554039497307,12.099048034783396,1.4675042117930204,8302.190205942754,2019
+2004,53,"(50,55]",HS,17.7554039497307,12.099048034783396,1.4675042117930204,8291.696051755564,2019
+2004,60,"(55,60]",College,13337.765170556553,645.2825618551144,20.66965072202166,2312.3749920744153,2019
+2004,60,"(55,60]",College,13339.33644524237,645.2825618551144,20.672085740072205,2302.6442616947547,2019
+2004,60,"(55,60]",College,13339.33644524237,645.2825618551144,20.672085740072205,2345.3691231576636,2019
+2004,60,"(55,60]",College,13337.765170556553,645.2825618551144,20.66965072202166,2234.2592268288254,2019
+2004,60,"(55,60]",College,13339.33644524237,645.2825618551144,20.672085740072205,2240.016655481155,2019
+2004,72,"(70,75]",College,848.0169479353681,43.87921420614778,19.32616532172436,6605.262363239513,2019
+2004,72,"(70,75]",College,722.314973070018,43.87921420614778,16.461438203440224,7342.991508085642,2019
+2004,72,"(70,75]",College,762.3824775583483,45.49242061078557,16.75845046982615,6537.574614170896,2019
+2004,72,"(70,75]",College,836.2323877917415,43.87921420614778,19.05759715438522,6518.109468554201,2019
+2004,72,"(70,75]",College,723.8862477558348,45.49242061078557,15.912238523184062,6831.849494891612,2019
+2004,52,"(50,55]",HS,488.50929982046677,54.84901775768473,8.90643661074538,5948.577963419049,2019
+2004,52,"(50,55]",HS,486.78089766606826,54.84901775768473,8.874924612444255,5623.919708159383,2019
+2004,52,"(50,55]",HS,486.78089766606826,54.84901775768473,8.874924612444255,5997.592915555166,2019
+2004,52,"(50,55]",HS,488.50929982046677,54.84901775768473,8.90643661074538,5967.4594703482835,2019
+2004,52,"(50,55]",HS,488.50929982046677,54.84901775768473,8.90643661074538,5831.95224291776,2019
+2004,66,"(65,70]",College,46696.71238779174,2968.2997845335262,15.731804661748548,21.05553176478322,2019
+2004,66,"(65,70]",College,46696.71238779174,2968.2997845335262,15.731804661748548,21.23114353679491,2019
+2004,66,"(65,70]",College,46696.71238779174,2984.431848579904,15.64676787979315,22.2416017037796,2019
+2004,66,"(65,70]",College,46696.71238779174,2968.2997845335262,15.731804661748548,20.347196135699253,2019
+2004,66,"(65,70]",College,46696.71238779174,2984.431848579904,15.64676787979315,21.757751872878046,2019
+2004,36,"(35,40]",HS,144.5572710951526,90.33955865971603,1.6001547189272818,6631.858858785092,2019
+2004,36,"(35,40]",HS,144.5572710951526,90.33955865971603,1.6001547189272818,6568.80042013356,2019
+2004,36,"(35,40]",HS,144.5572710951526,90.33955865971603,1.6001547189272818,6607.459363134784,2019
+2004,36,"(35,40]",HS,144.5572710951526,90.33955865971603,1.6001547189272818,6671.016051818134,2019
+2004,36,"(35,40]",HS,144.5572710951526,90.33955865971603,1.6001547189272818,6612.411626149093,2019
+2004,51,"(50,55]",College,64604.058599640935,5646.222416232252,11.441996761217121,29.759957326255734,2019
+2004,51,"(50,55]",College,55735.6271454219,5646.222416232252,9.87131271789582,29.509891608267672,2019
+2004,51,"(50,55]",College,54112.50039497307,5646.222416232252,9.583841444043319,29.312917614426674,2019
+2004,51,"(50,55]",College,65081.726104129266,5646.222416232252,11.526596245487363,29.98932186341444,2019
+2004,51,"(50,55]",College,63793.28086175943,5646.222416232252,11.298400268179472,30.482311720805182,2019
+2004,57,"(55,60]",College,1889.6935008976661,225.84889664929003,8.367069881382157,12913.631223622695,2019
+2004,57,"(55,60]",College,1881.837127468582,225.84889664929003,8.332283909231565,13332.01036397848,2019
+2004,57,"(55,60]",College,2093.95921005386,225.84889664929003,9.271505157297577,12769.793846230637,2019
+2004,57,"(55,60]",College,1756.2922800718134,225.84889664929003,7.776404074265086,13148.649534814258,2019
+2004,57,"(55,60]",College,2180.3793177737884,225.84889664929003,9.654150850954103,13194.513320951144,2019
+2004,36,"(35,40]",College,4656.001149012568,516.2260494840916,9.019306859205777,1734.884007521046,2019
+2004,36,"(35,40]",College,4646.8877558348295,516.2260494840916,9.001652978339349,1695.1012648378753,2019
+2004,36,"(35,40]",College,4701.253859964093,516.2260494840916,9.106967509025269,1790.0007991036302,2019
+2004,36,"(35,40]",College,4701.253859964093,516.2260494840916,9.106967509025269,1677.5924890155159,2019
+2004,36,"(35,40]",College,4657.258168761221,516.2260494840916,9.021741877256316,1713.4059457003655,2019
+2004,64,"(60,65]",College,42609.3555475763,1613.2064046377861,26.412835595667868,194.0817472000475,2019
+2004,64,"(60,65]",College,42609.3555475763,1613.2064046377861,26.412835595667868,189.64259496906303,2019
+2004,64,"(60,65]",College,42610.92682226212,1613.2064046377861,26.413809602888087,199.65519840026084,2019
+2004,64,"(60,65]",College,42610.92682226212,1613.2064046377861,26.413809602888087,189.45306228096882,2019
+2004,64,"(60,65]",College,42609.3555475763,1613.2064046377861,26.412835595667868,196.81809045795274,2019
+2004,32,"(30,35]",HS,29.55567684021544,48.39619213913358,0.6107025270758123,7230.024441066892,2019
+2004,32,"(30,35]",HS,29.71280430879713,48.39619213913358,0.6139492178098677,7180.195551603797,2019
+2004,32,"(30,35]",HS,27.984402154398566,48.39619213913358,0.5782356197352588,7231.9491251601185,2019
+2004,32,"(30,35]",HS,29.55567684021544,48.39619213913358,0.6107025270758123,7223.179858699195,2019
+2004,32,"(30,35]",HS,29.71280430879713,48.39619213913358,0.6139492178098677,7219.475204611104,2019
+2004,38,"(35,40]",NoHS,0,13.389613158493624,0,7821.735716530382,2019
+2004,38,"(35,40]",NoHS,0,13.389613158493624,0,7806.404235386419,2019
+2004,38,"(35,40]",NoHS,0,13.228292518029845,0,7831.471732555097,2019
+2004,38,"(35,40]",NoHS,0,13.228292518029845,0,7802.197642315541,2019
+2004,38,"(35,40]",NoHS,0,13.389613158493624,0,7784.241910292427,2019
+2004,41,"(40,45]",HS,20.976517055655297,46.782985734495796,0.44837918585833436,9049.22471083746,2019
+2004,41,"(40,45]",HS,21.29077199281867,46.782985734495796,0.455096477032242,8476.594917039101,2019
+2004,41,"(40,45]",HS,21.7307289048474,45.16977932985802,0.48108999484270243,8945.35424121104,2019
+2004,41,"(40,45]",HS,22.154973070017952,46.782985734495796,0.473569027760488,8958.750696104242,2019
+2004,41,"(40,45]",HS,21.133644524236985,45.16977932985802,0.467871325425477,8725.76472110848,2019
+2004,51,"(50,55]",HS,256.9034111310593,38.716953711306864,6.635424187725633,7407.303222294226,2019
+2004,51,"(50,55]",HS,278.1156193895871,38.716953711306864,7.183303249097474,6799.730686332869,2019
+2004,51,"(50,55]",HS,391.71877917414724,38.716953711306864,10.117500000000001,7470.540744150816,2019
+2004,51,"(50,55]",HS,358.1720646319569,38.716953711306864,9.251039410348978,7459.3408997206525,2019
+2004,51,"(50,55]",HS,267.27382405745067,38.716953711306864,6.9032761732851995,7195.042604969752,2019
+2004,40,"(35,40]",College,72.76573070017953,193.58476855653433,0.37588561973525875,5948.416933305512,2019
+2004,40,"(35,40]",College,72.92285816876122,193.58476855653433,0.3766972924187726,5710.152830656398,2019
+2004,40,"(35,40]",College,72.92285816876122,193.58476855653433,0.3766972924187726,5943.038322444803,2019
+2004,40,"(35,40]",College,72.76573070017953,193.58476855653433,0.37588561973525875,5920.8812416266555,2019
+2004,40,"(35,40]",College,74.02275044883304,193.58476855653433,0.38237900120336943,5860.94278235219,2019
+2004,45,"(40,45]",HS,769.9245960502693,129.0565123710229,5.965794223826714,3272.418706441159,2019
+2004,45,"(40,45]",HS,766.7820466786355,129.0565123710229,5.941444043321299,3639.8781504696526,2019
+2004,45,"(40,45]",HS,740.6988868940755,129.0565123710229,5.739337545126354,3260.08885369929,2019
+2004,45,"(40,45]",HS,748.3981328545781,129.0565123710229,5.79899548736462,3237.788820864366,2019
+2004,45,"(40,45]",HS,763.3252423698384,129.0565123710229,5.914658844765342,3398.771750573697,2019
+2004,57,"(55,60]",HS,17603.77594254937,1314.7632197797957,13.38931275054816,310.70106045890736,2019
+2004,57,"(55,60]",HS,17605.34721723519,1314.7632197797957,13.390507851431863,301.00706597605534,2019
+2004,57,"(55,60]",HS,17603.77594254937,1314.7632197797957,13.38931275054816,325.20157999077855,2019
+2004,57,"(55,60]",HS,17603.77594254937,1314.7632197797957,13.38931275054816,305.05559433682316,2019
+2004,57,"(55,60]",HS,17608.489766606825,1314.7632197797957,13.392898053199266,314.7908370098702,2019
+2004,38,"(35,40]",HS,18.79244524236984,45.16977932985802,0.4160402269210933,11484.149927776585,2019
+2004,38,"(35,40]",HS,18.79244524236984,45.16977932985802,0.4160402269210933,11377.527788599658,2019
+2004,38,"(35,40]",HS,18.79244524236984,45.16977932985802,0.4160402269210933,11499.903372592802,2019
+2004,38,"(35,40]",HS,18.79244524236984,45.16977932985802,0.4160402269210933,11542.199592342298,2019
+2004,38,"(35,40]",HS,18.79244524236984,45.16977932985802,0.4160402269210933,11471.592292204952,2019
+2004,55,"(50,55]",HS,562.0449551166965,103.24520989681828,5.443787229241878,5572.150182021989,2019
+2004,55,"(50,55]",HS,561.6364236983842,103.24520989681828,5.439830324909749,6162.651860038919,2019
+2004,55,"(50,55]",HS,556.8597486535009,103.24520989681828,5.39356498194946,5499.555007555913,2019
+2004,55,"(50,55]",HS,560.8507863554757,101.63200349218052,5.518446621970088,5481.976802743393,2019
+2004,55,"(50,55]",HS,558.2738958707362,103.24520989681828,5.4072619584837565,5761.643229582187,2019
+2004,60,"(55,60]",College,7192.509874326751,1290.5651237102288,5.573147563176896,222.10695069028898,2019
+2004,60,"(55,60]",College,7194.081149012568,1290.5651237102288,5.574365072202167,220.1389416420962,2019
+2004,60,"(55,60]",College,7192.509874326751,1290.5651237102288,5.573147563176896,231.17884584075895,2019
+2004,60,"(55,60]",College,7192.509874326751,1290.5651237102288,5.573147563176896,217.9000999363456,2019
+2004,60,"(55,60]",College,7192.509874326751,1290.5651237102288,5.573147563176896,224.3188033544073,2019
+2004,66,"(65,70]",NoHS,273.8888904847397,109.69803551536945,2.4967529199405396,7072.262858269884,2019
+2004,66,"(65,70]",NoHS,325.86665709156193,109.69803551536945,2.9705787853047356,6536.36478705119,2019
+2004,66,"(65,70]",NoHS,265.07403949730696,109.69803551536945,2.416397324272669,7132.323411285963,2019
+2004,66,"(65,70]",NoHS,250.9325673249551,109.69803551536945,2.287484603949883,7085.188402894064,2019
+2004,66,"(65,70]",NoHS,241.67775942549372,109.69803551536945,2.2031183903164155,6949.854937159823,2019
+2004,48,"(45,50]",HS,7024.85486535009,1364.772618323567,5.147271253125774,2047.6187821271626,2019
+2004,48,"(45,50]",HS,6692.687396768402,1350.253760681827,4.956614520657841,2011.2803733972928,2019
+2004,48,"(45,50]",HS,6831.195260323159,1356.7065863003781,5.035130903986572,2098.777722115769,2019
+2004,48,"(45,50]",HS,7498.908438061042,1613.2064046377861,4.648449458483755,1990.6606599882357,2019
+2004,48,"(45,50]",HS,7300.770700179533,1613.2064046377861,4.525627148014441,2017.657735686727,2019
+2004,48,"(45,50]",College,48388.03245960503,3661.9785385277746,13.21363081473942,23.907465601703212,2019
+2004,48,"(45,50]",College,54013.19583482944,3661.9785385277746,14.74973030741583,24.741440063254313,2019
+2004,48,"(45,50]",College,46469.50606822262,3710.374730666908,12.52420831894522,24.7917585788844,2019
+2004,48,"(45,50]",College,54014.76710951526,3678.1106025741524,14.685465703971119,23.42409676290042,2019
+2004,48,"(45,50]",College,53951.916122082584,3710.374730666908,14.54082674619369,24.90252657493076,2019
+2004,41,"(40,45]",HS,10.983210053859965,83.88673304116487,0.13092904748680922,6054.2054751878995,2019
+2004,41,"(40,45]",HS,10.967497307001794,83.88673304116487,0.13074173840599831,6133.166095413317,2019
+2004,41,"(40,45]",HS,10.967497307001794,83.88673304116487,0.13074173840599831,6027.776086575031,2019
+2004,41,"(40,45]",HS,10.967497307001794,83.88673304116487,0.13074173840599831,6036.46900934015,2019
+2004,41,"(40,45]",HS,10.967497307001794,85.49993944580267,0.12827491315305495,6067.774260039276,2019
+2004,48,"(45,50]",College,873.0473536804309,114.53765472928282,7.622361010830325,7301.712925181855,2019
+2004,48,"(45,50]",College,879.1281867145423,112.92444832464501,7.785100567302735,8127.424858864021,2019
+2004,48,"(45,50]",College,886.7017307001796,114.53765472928282,7.741574007220216,7204.734516914707,2019
+2004,48,"(45,50]",College,892.7982764811491,114.53765472928282,7.794801444043321,7222.779077203345,2019
+2004,48,"(45,50]",College,920.7512531418313,114.53765472928282,8.038851985559566,7551.8378029896,2019
+2004,64,"(60,65]",College,343667.62800718134,18164.704116221474,18.919527992766955,17.27941629084851,2019
+2004,64,"(60,65]",College,385382.14262118493,24294.88845384506,15.862684175452223,17.790385937914266,2019
+2004,64,"(60,65]",College,348713.3052782765,17938.855219572182,19.438994351089526,17.492184777733097,2019
+2004,64,"(60,65]",College,373836.88761220826,18487.345397149027,20.221231311546678,17.06704017634909,2019
+2004,64,"(60,65]",College,335172.5314183124,26021.01930680749,12.880837889798814,17.13588658243797,2019
+2004,59,"(55,60]",HS,831.4242872531419,222.62248384001447,3.734682467430545,6037.0092363421345,2019
+2004,59,"(55,60]",HS,573.6881005385997,103.24520989681828,5.556559002707583,5441.178118754175,2019
+2004,59,"(55,60]",HS,545.1537522441652,224.23569024465226,2.4311640651377813,6117.201896403043,2019
+2004,59,"(55,60]",HS,544.0538599640934,156.48102124986525,3.4768041237113403,6008.069914678885,2019
+2004,59,"(55,60]",HS,664.0992459605027,222.62248384001447,2.98307356249673,6242.677212257833,2019
+2004,22,"(20,25]",HS,24.983267504488328,19.358476855653432,1.2905595667870036,7096.603575433577,2019
+2004,22,"(20,25]",HS,22.783482944344705,27.424508878842364,0.8307708643023997,7058.317625328561,2019
+2004,22,"(20,25]",HS,19.483806104129265,20.97168326029122,0.9290530408219939,7083.850498815099,2019
+2004,22,"(20,25]",HS,24.19763016157989,27.424508878842364,0.8823359524315141,6998.711373282031,2019
+2004,22,"(20,25]",HS,25.926032315978457,20.97168326029122,1.2362399333518468,7053.187670495779,2019
+2004,23,"(20,25]",HS,7.3849910233393175,32.264128092755726,0.22889169675090248,7218.176617391298,2019
+2004,23,"(20,25]",HS,6.740768402154399,32.264128092755726,0.20892454873646207,7304.481966247682,2019
+2004,23,"(20,25]",HS,8.280617594254938,32.264128092755726,0.2566509025270758,7229.124860150294,2019
+2004,23,"(20,25]",HS,6.72505565529623,32.264128092755726,0.20843754512635376,7146.060692517433,2019
+2004,23,"(20,25]",HS,7.007885098743268,32.264128092755726,0.21720361010830322,7261.644880402938,2019
+2004,47,"(45,50]",College,683.4259245960503,196.81118136580994,3.472495413386991,6596.666566661438,2019
+2004,47,"(45,50]",College,681.6975224416517,198.4243877704477,3.435553109682721,6741.682071270336,2019
+2004,47,"(45,50]",College,683.2687971274686,196.81118136580994,3.471697046813043,6460.456464655187,2019
+2004,47,"(45,50]",College,683.4259245960503,196.81118136580994,3.472495413386991,6342.449813502404,2019
+2004,47,"(45,50]",College,683.4259245960503,198.4243877704477,3.444263743359455,6613.65060504547,2019
+2004,53,"(50,55]",HS,67.89477917414722,82.2735266365271,0.825232391873717,8041.67604356205,2019
+2004,53,"(50,55]",HS,66.30779174147217,83.88673304116487,0.7904443210219384,8060.801293293842,2019
+2004,53,"(50,55]",HS,67.89477917414722,82.2735266365271,0.825232391873717,8087.823576215177,2019
+2004,53,"(50,55]",HS,67.86335368043089,83.88673304116487,0.8089879200222162,8060.692334540283,2019
+2004,53,"(50,55]",HS,67.89477917414722,83.88673304116487,0.8093625381838379,8027.24975362902,2019
+2004,33,"(30,35]",HS,4.273867145421903,54.84901775768473,0.07792057761732851,4863.913750825928,2019
+2004,33,"(30,35]",HS,4.116739676840215,54.84901775768473,0.07505585049904437,4932.560449745926,2019
+2004,33,"(30,35]",HS,4.273867145421903,54.84901775768473,0.07792057761732851,4850.946293948664,2019
+2004,33,"(30,35]",HS,4.116739676840215,54.84901775768473,0.07505585049904437,4888.29367249588,2019
+2004,33,"(30,35]",HS,4.116739676840215,54.84901775768473,0.07505585049904437,4889.367880812401,2019
+2004,19,"(15,20]",HS,15.649895870736085,8.066032023188932,1.9402223826714797,4938.5207591229355,2019
+2004,19,"(15,20]",HS,15.60275763016158,8.066032023188932,1.9343783393501803,4941.553576975502,2019
+2004,19,"(15,20]",HS,15.618470377019749,8.066032023188932,1.9363263537906135,4969.675882789572,2019
+2004,19,"(15,20]",HS,15.649895870736085,8.066032023188932,1.9402223826714797,4879.919324470016,2019
+2004,19,"(15,20]",HS,17.174032315978458,8.066032023188932,2.129179783393502,4964.393487284262,2019
+2004,48,"(45,50]",HS,499.44537163375225,85.49993944580267,5.841470472038689,9527.621141191357,2019
+2004,48,"(45,50]",HS,478.8616732495512,101.63200349218052,4.711721276717667,10442.851053073717,2019
+2004,48,"(45,50]",HS,525.0414362657091,87.11314585044046,6.02712060435887,9406.18789852356,2019
+2004,48,"(45,50]",HS,550.354671454219,106.47162270609388,5.1690268023192205,9428.685184767575,2019
+2004,48,"(45,50]",HS,517.3579030520647,85.49993944580267,6.050973911858866,9855.541043307177,2019
+2004,46,"(45,50]",College,595.5131059245961,193.58476855653433,3.0762394705174487,6845.035518638919,2019
+2004,46,"(45,50]",College,595.6702333931778,193.58476855653433,3.077051143200963,7617.842557718238,2019
+2004,46,"(45,50]",College,595.8273608617594,193.58476855653433,3.0778628158844765,6758.452426894674,2019
+2004,46,"(45,50]",College,594.0989587073609,193.58476855653433,3.0689344163658245,6774.546376914432,2019
+2004,46,"(45,50]",College,594.2560861759425,193.58476855653433,3.069746089049338,7080.2111165987535,2019
+2004,50,"(45,50]",HS,1301.801077199282,158.09422765450302,8.23433655050468,564.6576041482207,2019
+2004,50,"(45,50]",HS,1372.5084380610413,158.09422765450302,8.681584763869447,557.218000029867,2019
+2004,50,"(45,50]",HS,1301.801077199282,158.09422765450302,8.23433655050468,568.5293038108367,2019
+2004,50,"(45,50]",HS,1506.0667863554756,158.09422765450302,9.526386944669564,1106.696588214917,2019
+2004,50,"(45,50]",HS,1364.6520646319568,158.09422765450302,8.631890517940029,566.4799876968088,2019
+2004,66,"(65,70]",College,2098.437342908438,41.94336652058244,50.03025548458761,3159.3384758924567,2019
+2004,66,"(65,70]",College,2098.437342908438,35.4905409020313,59.12666557269444,3333.819550757044,2019
+2004,66,"(65,70]",College,2096.7089407540393,35.4905409020313,59.07796521168361,3161.5416517644944,2019
+2004,66,"(65,70]",College,2098.437342908438,37.10374730666908,56.555940982577305,3394.612492716962,2019
+2004,66,"(65,70]",College,2100.008617594255,40.33016011594465,52.07042599277979,3236.000508724638,2019
+2004,30,"(25,30]",College,148.17120287253144,169.38667248696757,0.8747512463469141,6543.5193827319445,2019
+2004,30,"(25,30]",College,141.91752962298025,169.38667248696757,0.8378317345710846,7273.368165794125,2019
+2004,30,"(25,30]",College,142.51461400359065,169.38667248696757,0.8413567130823446,6469.030523519213,2019
+2004,30,"(25,30]",College,142.35748653500897,169.38667248696757,0.8404290871583289,6437.411143898577,2019
+2004,30,"(25,30]",College,147.65268222621185,169.38667248696757,0.8716900807976619,6767.411060998113,2019
+2004,29,"(25,30]",HS,-22.249249551166965,22.58488966492901,-0.9851387313047961,6498.794030283212,2019
+2004,29,"(25,30]",HS,-22.044983842010772,22.58488966492901,-0.976094378545642,6454.687147447281,2019
+2004,29,"(25,30]",HS,-22.044983842010772,22.58488966492901,-0.976094378545642,6493.116913900003,2019
+2004,29,"(25,30]",HS,-22.029271095152602,22.58488966492901,-0.97539865910263,6535.439867341234,2019
+2004,29,"(25,30]",HS,-22.20211131059246,22.58488966492901,-0.9830515729757606,6465.972165707575,2019
+2004,42,"(40,45]",HS,678.1621543985638,109.69803551536945,6.182081121257167,5909.713490987299,2019
+2004,42,"(40,45]",HS,678.1621543985638,111.31124192000723,6.092485742688223,6561.048157635084,2019
+2004,42,"(40,45]",HS,678.1621543985638,109.69803551536945,6.182081121257167,5833.98713846511,2019
+2004,42,"(40,45]",HS,678.1621543985638,111.31124192000723,6.092485742688223,5825.24222581855,2019
+2004,42,"(40,45]",HS,678.1621543985638,109.69803551536945,6.182081121257167,6086.150630291491,2019
+2004,49,"(45,50]",College,237.1053500897666,109.69803551536945,2.161436610745381,5126.591797983236,2019
+2004,49,"(45,50]",College,237.1053500897666,109.69803551536945,2.161436610745381,5705.759580774251,2019
+2004,49,"(45,50]",College,237.1053500897666,109.69803551536945,2.161436610745381,5061.251388594812,2019
+2004,49,"(45,50]",College,237.1053500897666,109.69803551536945,2.161436610745381,5073.356656155968,2019
+2004,49,"(45,50]",College,237.1053500897666,109.69803551536945,2.161436610745381,5303.03788622182,2019
+2004,21,"(20,25]",HS,-0.5970843806104129,56.46222416232251,-0.0105749355337803,6269.712590085231,2019
+2004,21,"(20,25]",HS,-0.5970843806104129,56.46222416232251,-0.0105749355337803,6269.700700419178,2019
+2004,21,"(20,25]",HS,-0.5970843806104129,56.46222416232251,-0.0105749355337803,6267.668782212891,2019
+2004,21,"(20,25]",HS,-0.5970843806104129,56.46222416232251,-0.0105749355337803,6208.091287780144,2019
+2004,21,"(20,25]",HS,-0.5970843806104129,56.46222416232251,-0.0105749355337803,6272.1243442966625,2019
+2004,31,"(30,35]",College,270.5735008976661,322.6412809275572,0.8386202166064984,9056.648109200805,2019
+2004,31,"(30,35]",College,270.5735008976661,322.6412809275572,0.8386202166064984,10060.05414155597,2019
+2004,31,"(30,35]",College,270.5735008976661,322.6412809275572,0.8386202166064984,8888.665332983874,2019
+2004,31,"(30,35]",College,270.5735008976661,322.6412809275572,0.8386202166064984,8915.711056608467,2019
+2004,31,"(30,35]",College,270.5735008976661,322.6412809275572,0.8386202166064984,9311.378379019676,2019
+2004,79,"(75,80]",HS,9.741903052064632,17.74527045101565,0.5489858877584509,9420.440316313649,2019
+2004,79,"(75,80]",HS,9.741903052064632,17.74527045101565,0.5489858877584509,9483.763782492102,2019
+2004,79,"(75,80]",HS,9.89903052064632,17.74527045101565,0.5578404988513291,9276.968750174692,2019
+2004,79,"(75,80]",HS,9.741903052064632,17.74527045101565,0.5489858877584509,9348.790268258585,2019
+2004,79,"(75,80]",HS,9.584775583482944,17.74527045101565,0.5401312766655726,9317.895701856974,2019
+2004,33,"(30,35]",HS,1.0998922800718134,41.94336652058244,0.026223271313524026,6213.303626843638,2019
+2004,33,"(30,35]",HS,1.0998922800718134,41.94336652058244,0.026223271313524026,6344.156100888631,2019
+2004,33,"(30,35]",HS,1.0998922800718134,43.55657292522023,0.02525203904265276,6209.496934673023,2019
+2004,33,"(30,35]",HS,1.0998922800718134,43.55657292522023,0.02525203904265276,6210.4581411859945,2019
+2004,33,"(30,35]",HS,1.0998922800718134,41.94336652058244,0.026223271313524026,6207.650364836525,2019
+2004,37,"(35,40]",HS,341.7522441651705,140.3489572034874,2.4350180505415158,4203.956223099114,2019
+2004,37,"(35,40]",HS,366.8926391382406,140.3489572034874,2.6141458151790533,4291.121288713157,2019
+2004,37,"(35,40]",HS,335.46714542190307,140.3489572034874,2.390236109382132,4215.04386774834,2019
+2004,37,"(35,40]",HS,373.1777378815081,140.3489572034874,2.6589277563384375,4203.9368211279725,2019
+2004,37,"(35,40]",HS,368.46391382405744,140.3489572034874,2.625341300468899,4251.210716367967,2019
+2004,61,"(60,65]",College,2010.2888330341113,422.6600780151,4.756278005897428,274.84072207405336,2019
+2004,61,"(60,65]",College,1989.2337522441653,422.6600780151,4.706462369443602,158.28636162635877,2019
+2004,61,"(60,65]",College,2063.869299820467,422.6600780151,4.883047647917987,292.2054221037185,2019
+2004,61,"(60,65]",College,2066.0690843806105,422.6600780151,4.8882522666519685,265.3997559457174,2019
+2004,61,"(60,65]",College,1889.4578096947935,422.6600780151,4.470395734009424,160.13049457131072,2019
+2004,56,"(55,60]",College,17330.531274685818,601.7259889298944,28.80136738901094,294.0782415789,2019
+2004,56,"(55,60]",College,12979.82879712747,601.7259889298944,21.570995828534368,293.0190960111748,2019
+2004,56,"(55,60]",College,14367.421472172351,601.7259889298944,23.877016676183924,304.0768756051631,2019
+2004,56,"(55,60]",College,14345.423626570917,601.7259889298944,23.84045876443317,290.0616229138954,2019
+2004,56,"(55,60]",College,12772.26341113106,601.7259889298944,21.226045818371865,296.3295687508992,2019
+2004,74,"(70,75]",NoHS,193.10965888689412,12.905651237102285,14.963185920577626,8540.03985730075,2019
+2004,74,"(70,75]",NoHS,98.99030520646319,12.905651237102285,7.670306859205778,8323.963974493503,2019
+2004,74,"(70,75]",NoHS,48.4895368043088,12.905651237102285,3.757232851985561,8180.927419740148,2019
+2004,74,"(70,75]",NoHS,63.385220825852784,13.066971877566067,4.85079645228863,8182.400413988273,2019
+2004,74,"(70,75]",NoHS,92.07669658886893,12.905651237102285,7.1346028880866434,8205.309048388877,2019
+2004,58,"(55,60]",HS,598.3414003590665,109.69803551536945,5.454440433212997,7042.175824103391,2019
+2004,58,"(55,60]",HS,554.345709156194,114.53765472928282,4.83985559566787,6304.091705109537,2019
+2004,58,"(55,60]",HS,560.0022980251346,98.40559068290497,5.690756939101614,7301.378240038427,2019
+2004,58,"(55,60]",HS,592.2134290843807,117.76406753855836,5.028812620543001,7196.526581932948,2019
+2004,58,"(55,60]",HS,570.0584560143626,85.49993944580267,6.667355084803487,6954.761171376049,2019
+2004,56,"(55,60]",College,834.3468581687613,124.21689315710954,6.716854986169065,6430.908353209988,2019
+2004,56,"(55,60]",College,832.7755834829443,124.21689315710954,6.704205541750667,6574.315759252121,2019
+2004,56,"(55,60]",College,834.3468581687613,124.21689315710954,6.716854986169065,6304.785553650401,2019
+2004,56,"(55,60]",College,834.3468581687613,124.21689315710954,6.716854986169065,6245.036652880635,2019
+2004,56,"(55,60]",College,834.3468581687613,124.21689315710954,6.716854986169065,6482.902260115799,2019
+2004,37,"(35,40]",College,6772.822405745063,5791.410992649652,1.169459811148095,233.7339976471247,2019
+2004,37,"(35,40]",College,4701.725242369838,5791.410992649652,0.8118445139426606,231.20426836373204,2019
+2004,37,"(35,40]",College,5034.521220825853,5807.54305669603,0.8668934817488968,243.10414687521916,2019
+2004,37,"(35,40]",College,14355.636912028727,5791.410992649652,2.478780547650413,226.46543620012932,2019
+2004,37,"(35,40]",College,5644.490053859964,5807.54305669603,0.9719239269955876,229.68966707660843,2019
+2004,58,"(55,60]",College,66726.9764021544,3871.695371130687,17.234562641395907,19.81794948471067,2019
+2004,58,"(55,60]",College,66725.40512746858,3871.695371130687,17.23415680505415,20.612904765621785,2019
+2004,58,"(55,60]",College,66725.56225493716,3871.695371130687,17.234197388688326,20.633580245552746,2019
+2004,58,"(55,60]",College,66727.13352962298,3871.695371130687,17.23460322503008,19.525588748991442,2019
+2004,58,"(55,60]",College,66727.13352962298,3871.695371130687,17.23460322503008,19.991066487296695,2019
+2004,46,"(45,50]",HS,87.14289407540396,43.55657292522023,2.000682979007889,8248.28197692619,2019
+2004,46,"(45,50]",HS,95.40779892280072,61.30184337623587,1.556361010830325,7662.153999654084,2019
+2004,46,"(45,50]",HS,87.88139317773788,43.55657292522023,2.0176379195079552,8230.111226007431,2019
+2004,46,"(45,50]",HS,105.44824416517056,43.55657292522023,2.4209490573606094,8250.497551608427,2019
+2004,46,"(45,50]",HS,89.15412567324955,66.14146259014923,1.347930967685128,7944.84037057213,2019
+2004,29,"(25,30]",College,8.971978456014364,22.58488966492901,0.3972558019597731,5610.3006182431845,2019
+2004,29,"(25,30]",College,-14.927109515260323,61.30184337623587,-0.24350180505415162,5693.246943981879,2019
+2004,29,"(25,30]",College,6.913608617594255,43.55657292522023,0.15872710255381733,5633.4099473716215,2019
+2004,29,"(25,30]",College,-5.499461400359067,80.6603202318893,-0.06818050541516246,5640.797933460055,2019
+2004,29,"(25,30]",College,-24.354757630161583,20.97168326029122,-1.1613163010274925,5668.137031421438,2019
+2004,86,"(85,90]",NoHS,1903.4421543985638,80.6603202318893,23.598246931407946,5909.464693484207,2019
+2004,86,"(85,90]",NoHS,1905.0134290843807,80.6603202318893,23.617727075812276,6185.15024022162,2019
+2004,86,"(85,90]",NoHS,1903.4421543985638,80.6603202318893,23.598246931407946,5866.618779876711,2019
+2004,86,"(85,90]",NoHS,1903.5992818671455,80.6603202318893,23.600194945848376,6295.332978076022,2019
+2004,86,"(85,90]",NoHS,1905.0134290843807,80.6603202318893,23.617727075812276,6005.15439590435,2019
+2004,26,"(25,30]",HS,2.042657091561939,25.81130247420457,0.0791380866425993,4772.77781942997,2019
+2004,26,"(25,30]",HS,2.042657091561939,25.81130247420457,0.0791380866425993,4748.746889572094,2019
+2004,26,"(25,30]",HS,2.042657091561939,25.81130247420457,0.0791380866425993,4778.3505278106995,2019
+2004,26,"(25,30]",HS,1.8855296229802514,25.81130247420457,0.07305054151624552,4811.018718784811,2019
+2004,26,"(25,30]",HS,1.8855296229802514,25.81130247420457,0.07305054151624552,4790.049928566549,2019
+2004,52,"(50,55]",College,1104.448976660682,361.35823463886413,3.0563824780814843,484.49688388233164,2019
+2004,52,"(50,55]",College,1200.4538599640935,200.03759417508547,6.001141260044253,480.3377727384357,2019
+2004,52,"(50,55]",College,1205.9533213644524,343.61296418784843,3.509626955475331,475.8687778193428,2019
+2004,52,"(50,55]",College,1318.927971274686,314.57524890436827,4.192726464870869,474.2583842409348,2019
+2004,52,"(50,55]",College,1190.554829443447,312.9620424997305,3.804150880196509,497.25333828577584,2019
+2004,41,"(40,45]",College,15493.554039497307,1613.2064046377861,9.604198194945848,20.626138171850155,2019
+2004,41,"(40,45]",College,15295.573429084381,1613.2064046377861,9.481473285198556,21.160599969936417,2019
+2004,41,"(40,45]",College,15903.656732495512,1613.2064046377861,9.858414079422383,21.982680535781373,2019
+2004,41,"(40,45]",College,15094.136014362657,1613.2064046377861,9.356605559566786,19.826033511512716,2019
+2004,41,"(40,45]",College,15919.369479353682,1613.2064046377861,9.86815415162455,20.65284709280759,2019
+2004,38,"(35,40]",College,235.37694793536807,129.0565123710229,1.8238285198555957,7942.297025223777,2019
+2004,38,"(35,40]",College,235.37694793536807,129.0565123710229,1.8238285198555957,7493.4392512889,2019
+2004,38,"(35,40]",College,235.37694793536807,129.0565123710229,1.8238285198555957,7908.859747729382,2019
+2004,38,"(35,40]",College,235.37694793536807,129.0565123710229,1.8238285198555957,7875.160534086562,2019
+2004,38,"(35,40]",College,235.37694793536807,129.0565123710229,1.8238285198555957,7731.069843813816,2019
+2004,53,"(50,55]",College,1751.1856373429084,335.5469321646595,5.218899264093308,13246.48318220023,2019
+2004,53,"(50,55]",College,1728.7164093357271,335.5469321646595,5.151936267703416,14100.846143816167,2019
+2004,53,"(50,55]",College,1876.730484739677,335.5469321646595,5.593049153013053,13227.753154647977,2019
+2004,53,"(50,55]",College,1774.59763016158,335.5469321646595,5.288671896695362,14141.46206116561,2019
+2004,53,"(50,55]",College,1780.568473967684,335.5469321646595,5.306466259372397,13782.702038243297,2019
+2004,48,"(45,50]",College,21086.82053859964,1463.1782090064721,14.41165567447729,256.83181270673583,2019
+2004,48,"(45,50]",College,29719.56078994614,1500.2819563131409,19.80931695198168,251.75813092258477,2019
+2004,48,"(45,50]",College,24173.746786355478,1476.0838602435745,16.376946755834368,260.8210659383021,2019
+2004,48,"(45,50]",College,20847.829658886894,1488.9895114806768,14.001327409053038,254.38862527095793,2019
+2004,48,"(45,50]",College,22118.048114901256,1514.8008139548813,14.601291411479297,263.3704354512061,2019
+2004,50,"(45,50]",HS,388.4191023339318,72.59428820870036,5.350546329723226,10731.07825425295,2019
+2004,50,"(45,50]",HS,388.2619748653501,72.59428820870036,5.348381869233856,10753.575067645208,2019
+2004,50,"(45,50]",HS,388.4191023339318,72.59428820870036,5.350546329723226,10837.229977435049,2019
+2004,50,"(45,50]",HS,388.4191023339318,72.59428820870036,5.350546329723226,10781.52401199247,2019
+2004,50,"(45,50]",HS,388.2619748653501,72.59428820870036,5.348381869233856,10714.652476045134,2019
+2004,27,"(25,30]",College,9589.332280071814,322.6412809275572,29.721343321299642,2574.4169100106355,2019
+2004,27,"(25,30]",College,9935.48409335727,322.6412809275572,30.79421227436823,2493.4201946158955,2019
+2004,27,"(25,30]",College,9804.282657091562,322.6412809275572,30.3875642599278,2723.3546627160167,2019
+2004,27,"(25,30]",College,9589.01802513465,322.6412809275572,29.720369314079424,2388.24282450272,2019
+2004,27,"(25,30]",College,9608.533256732495,322.6412809275572,29.780855162454873,2507.8152307955584,2019
+2004,26,"(25,30]",College,-59.92841651705566,129.0565123710229,-0.4643579422382671,6346.832070471664,2019
+2004,26,"(25,30]",College,-95.80061759425493,106.47162270609388,-0.8997760638879772,6326.04524727143,2019
+2004,26,"(25,30]",College,-97.57615798922802,101.63200349218052,-0.9600928313563695,6308.966605659417,2019
+2004,26,"(25,30]",College,-109.98922800718132,100.01879708754274,-1.0996855712122977,6354.139909257962,2019
+2004,26,"(25,30]",College,-36.924955116696594,115.3442579316017,-0.3201282472040595,6303.057213577874,2019
+2004,29,"(25,30]",HS,118.72551526032316,87.11314585044046,1.3628886214734588,7861.451924511484,2019
+2004,29,"(25,30]",HS,72.12150807899461,87.11314585044046,0.8279061371841153,7807.271275170811,2019
+2004,29,"(25,30]",HS,193.06252064631957,87.11314585044046,2.2162271694076745,7863.544699106106,2019
+2004,29,"(25,30]",HS,118.83550448833034,87.11314585044046,1.3641512234255915,7854.009576886572,2019
+2004,29,"(25,30]",HS,50.202226211849194,87.11314585044046,0.5762876052948255,7849.981380267338,2019
+2004,20,"(15,20]",HS,-18.0068078994614,25.81130247420457,-0.6976326714801446,5995.939977938947,2019
+2004,20,"(15,20]",HS,-18.0068078994614,25.81130247420457,-0.6976326714801446,5952.789936861848,2019
+2004,20,"(15,20]",HS,-18.0068078994614,25.81130247420457,-0.6976326714801446,6027.120008142684,2019
+2004,20,"(15,20]",HS,-18.0068078994614,24.19809606956679,-0.7441415162454873,5938.9981345965925,2019
+2004,20,"(15,20]",HS,-18.0068078994614,24.19809606956679,-0.7441415162454873,6021.180963533882,2019
+2004,50,"(45,50]",College,964.762657091562,177.45270451015648,5.43673121102724,745.2967941395588,2019
+2004,50,"(45,50]",College,1905.1705565529624,170.99987889160533,11.141356174647504,1479.2749402937663,2019
+2004,50,"(45,50]",College,1654.866499102334,175.8394981055187,9.411233067267247,746.4812995971984,2019
+2004,50,"(45,50]",College,1346.1110233393179,162.9338468684164,8.261702827322443,702.9411883501037,2019
+2004,50,"(45,50]",College,1452.4863195691203,175.8394981055187,8.260296095121385,754.315469242755,2019
+2004,47,"(45,50]",College,639.1945421903052,348.45258340176184,1.8343802647412755,4011.4581325261147,2019
+2004,47,"(45,50]",College,826.9932926391383,148.4149892266763,5.572168262439178,4202.869723601234,2019
+2004,47,"(45,50]",College,936.2911597845601,232.3017222678412,4.030495988768552,3941.1880016662385,2019
+2004,47,"(45,50]",College,655.5357989228007,258.1130247420458,2.539723826714801,7250.377320607544,2019
+2004,47,"(45,50]",College,948.8927827648115,187.13194293798318,5.0707151749035235,4053.2751632869017,2019
+2004,43,"(40,45]",HS,180.69658886894075,185.5187365333454,0.9740072202166066,5078.036749016498,2019
+2004,43,"(40,45]",HS,180.69658886894075,174.22629170088092,1.0371373178232381,5640.103755697625,2019
+2004,43,"(40,45]",HS,180.53946140035904,179.06591091479427,1.008229095521514,5012.383297384944,2019
+2004,43,"(40,45]",HS,180.69658886894075,185.5187365333454,0.9740072202166066,5008.49828504952,2019
+2004,43,"(40,45]",HS,180.69658886894075,169.38667248696757,1.066769812618188,5230.529311558137,2019
+2004,64,"(60,65]",NoHS,434.77170556552966,64.52825618551145,6.737694945848375,4480.370733820835,2019
+2004,64,"(60,65]",NoHS,366.8926391382406,66.14146259014923,5.547089900501893,3994.911354916524,2019
+2004,64,"(60,65]",NoHS,403.3462118491921,74.20749461333816,5.435383770208759,4491.247811209811,2019
+2004,64,"(60,65]",NoHS,365.164236983842,80.6603202318893,4.527185559566787,4411.123142717209,2019
+2004,64,"(60,65]",NoHS,446.7133931777379,62.91504978087366,7.10026288993798,4319.1673853582,2019
+2004,54,"(50,55]",College,32987.16791382406,4968.675726284381,6.6390261170237705,15.051702586824717,2019
+2004,54,"(50,55]",College,35213.66414362657,5000.939854377138,7.041409248864562,15.52721512661518,2019
+2004,54,"(50,55]",College,32880.32123518851,5194.524622933671,6.329803711011952,15.811078813563672,2019
+2004,54,"(50,55]",College,31921.52942190305,5613.958288139496,5.686100213701812,14.533928089507274,2019
+2004,54,"(50,55]",College,32957.313694793535,5178.3925588872935,6.3643907486757305,15.504494699294824,2019
+2004,68,"(65,70]",College,28155.671095152604,1822.9232372406984,15.445341043417143,19.754206743799788,2019
+2004,68,"(65,70]",College,24491.458527827646,2032.6400698436103,12.0490877313621,19.816306324632045,2019
+2004,68,"(65,70]",College,25514.515475763015,1822.9232372406984,13.996483754512633,20.246356702841897,2019
+2004,68,"(65,70]",College,24806.18484739677,1822.9232372406984,13.607915210376664,19.17777086767523,2019
+2004,68,"(65,70]",College,25984.95511669659,2064.9041979363665,12.584097190884476,20.067007640569997,2019
+2004,50,"(45,50]",College,728.9928904847397,371.0374730666908,1.9647419557369332,256.5949463911286,2019
+2004,50,"(45,50]",College,733.4553105924597,371.0374730666908,1.9767688274996078,262.4037351488348,2019
+2004,50,"(45,50]",College,733.2510448833035,371.0374730666908,1.9762183016794854,251.94070830517893,2019
+2004,50,"(45,50]",College,730.5641651705565,371.0374730666908,1.9689767697378748,247.70720735148834,2019
+2004,50,"(45,50]",College,733.3924596050269,371.0374730666908,1.9765994349395701,260.2163799666701,2019
+2004,77,"(75,80]",HS,132.53701974865348,16.132064046377863,8.215750902527073,11699.002691513273,2019
+2004,77,"(75,80]",HS,132.53701974865348,16.132064046377863,8.215750902527073,10818.071390442477,2019
+2004,77,"(75,80]",HS,132.45845601436267,16.132064046377863,8.210880866425992,11649.213203219553,2019
+2004,77,"(75,80]",HS,132.53701974865348,16.132064046377863,8.215750902527073,11466.613342731045,2019
+2004,77,"(75,80]",HS,132.45845601436267,16.132064046377863,8.210880866425992,11380.283793239189,2019
+2004,34,"(30,35]",HS,5.028078994614004,96.79238427826716,0.05194705174488569,6481.504496662407,2019
+2004,34,"(30,35]",HS,5.028078994614004,96.79238427826716,0.05194705174488569,6572.981013419194,2019
+2004,34,"(30,35]",HS,5.342333931777379,96.79238427826716,0.05519374247894104,6464.224455451558,2019
+2004,34,"(30,35]",HS,5.028078994614004,96.79238427826716,0.05194705174488569,6513.992443617721,2019
+2004,34,"(30,35]",HS,5.028078994614004,96.79238427826716,0.05194705174488569,6515.423901162112,2019
+2004,67,"(65,70]",College,4017.9064991023342,351.6789962110374,11.424925976219654,3307.9202769210615,2019
+2004,67,"(65,70]",College,3899.118132854578,351.6789962110374,11.087150995263803,3123.6230583679194,2019
+2004,67,"(65,70]",College,3917.9734290843808,351.6789962110374,11.140766071606002,3463.3356201319148,2019
+2004,67,"(65,70]",College,3206.1859964093355,351.6789962110374,9.116796939688006,1779.0941583654403,2019
+2004,67,"(65,70]",College,3895.1899461400362,351.6789962110374,11.075981187692513,3242.287725846992,2019
+2004,58,"(55,60]",College,302.4703770197487,279.08470800233704,1.0837941612236806,1791.496403656482,2019
+2004,58,"(55,60]",College,330.7533213644524,261.33943755132134,1.2656081472567633,6741.682071270336,2019
+2004,58,"(55,60]",College,305.6129263913824,266.1790567652347,1.148147905043212,1741.9985594339748,2019
+2004,58,"(55,60]",College,219.1928186714542,235.52813507711673,0.9306438850699769,1651.5944746225905,2019
+2004,58,"(55,60]",College,181.4822262118492,250.04699271885684,0.7257924770001165,1614.0946271328435,2019
+2004,63,"(60,65]",College,1219.309156193896,95.17917787362938,12.810671235391299,6163.170539705353,2019
+2004,63,"(60,65]",College,1262.3620825852781,88.72635225507824,14.227589104036754,6817.433785286814,2019
+2004,63,"(60,65]",College,1183.1698384201077,88.72635225507824,13.33504430587463,6078.978332548455,2019
+2004,63,"(60,65]",College,1228.3282728904846,88.72635225507824,13.84400735149327,6060.293093895558,2019
+2004,63,"(60,65]",College,1162.6647037701975,88.72635225507824,13.10393895635051,6372.137410834096,2019
+2004,59,"(55,60]",HS,79.8207540394973,17.74527045101565,4.498142435182145,9521.86847350462,2019
+2004,59,"(55,60]",HS,80.29213644524238,19.358476855653432,4.147647412755717,9482.573767414207,2019
+2004,59,"(55,60]",HS,79.58506283662477,17.74527045101565,4.4848605185428285,9511.693520796633,2019
+2004,59,"(55,60]",HS,79.47507360861759,38.716953711306864,2.0527202166064984,9488.468849518355,2019
+2004,59,"(55,60]",HS,80.44926391382407,38.716953711306864,2.0778820697954274,9527.325999913499,2019
+2004,60,"(55,60]",College,125.46628366247755,137.12254439421181,0.9149938415799532,5712.901900067961,2019
+2004,60,"(55,60]",College,125.46628366247755,137.12254439421181,0.9149938415799532,5093.894685505804,2019
+2004,60,"(55,60]",College,125.46628366247755,137.12254439421181,0.9149938415799532,5726.771215750613,2019
+2004,60,"(55,60]",College,125.46628366247755,137.12254439421181,0.9149938415799532,5624.604587569969,2019
+2004,60,"(55,60]",College,125.46628366247755,137.12254439421181,0.9149938415799532,5507.3521876797295,2019
+2004,51,"(50,55]",College,2380.6382764811488,395.23556913625765,6.02334016061298,672.537477880426,2019
+2004,51,"(50,55]",College,2537.9228725314183,395.23556913625765,6.421291682015766,691.2924512993575,2019
+2004,51,"(50,55]",College,2536.822980251347,395.23556913625765,6.41850880424372,668.1519544195419,2019
+2004,51,"(50,55]",College,2536.822980251347,395.23556913625765,6.41850880424372,686.1054157119626,2019
+2004,51,"(50,55]",College,2536.822980251347,395.23556913625765,6.41850880424372,695.1145084043239,2019
+2004,44,"(40,45]",College,146481.13982046678,7130.372308499014,20.54326667428982,224.5756583048576,2019
+2004,44,"(40,45]",College,136807.27296229804,6404.429426412011,21.361352253816985,225.22005859747796,2019
+2004,44,"(40,45]",College,155428.92064631957,9033.955865971602,17.204967895822588,228.18458897274687,2019
+2004,44,"(40,45]",College,149551.56768402155,10421.313373960096,14.350548948821409,223.03356697833487,2019
+2004,44,"(40,45]",College,145361.29235188512,10743.954654887653,13.529589152329228,222.32970521398997,2019
+2004,67,"(65,70]",College,1589.1872172351884,93.56597146899159,16.984670733225446,8250.124537370642,2019
+2004,67,"(65,70]",College,1589.1872172351884,91.95276506435381,17.282647412755715,9246.20821982561,2019
+2004,67,"(65,70]",College,1589.1872172351884,91.95276506435381,17.282647412755715,8232.833911484591,2019
+2004,67,"(65,70]",College,1589.1872172351884,91.95276506435381,17.282647412755715,8211.182158233843,2019
+2004,67,"(65,70]",College,1589.1872172351884,91.95276506435381,17.282647412755715,8601.82273425568,2019
+2004,85,"(80,85]",HS,932.6300897666068,32.264128092755726,28.906099277978335,8662.833217572237,2019
+2004,85,"(80,85]",HS,932.6300897666068,32.264128092755726,28.906099277978335,9631.439894927536,2019
+2004,85,"(80,85]",HS,931.0588150807899,32.264128092755726,28.857398916967504,8570.525483720103,2019
+2004,85,"(80,85]",HS,931.0588150807899,32.264128092755726,28.857398916967504,8543.910959381943,2019
+2004,85,"(80,85]",HS,931.0588150807899,32.264128092755726,28.857398916967504,8960.060580760071,2019
+2004,44,"(40,45]",HS,54938.519497307,3226.4128092755723,17.027740324909747,17.936831125969743,2019
+2004,44,"(40,45]",HS,54935.376947935365,3226.4128092755723,17.02676631768953,18.21351523672416,2019
+2004,44,"(40,45]",HS,54935.376947935365,3226.4128092755723,17.02676631768953,18.92122959632063,2019
+2004,44,"(40,45]",HS,54935.376947935365,3226.4128092755723,17.02676631768953,17.587972030975536,2019
+2004,44,"(40,45]",HS,54938.67662477558,3226.4128092755723,17.027789025270756,19.04813385741661,2019
+2004,52,"(50,55]",HS,1893.5431238779174,141.9621636081252,13.338364785034459,3030.707307119602,2019
+2004,52,"(50,55]",HS,1891.814721723519,141.9621636081252,13.326189694781752,3177.0752772412206,2019
+2004,52,"(50,55]",HS,1891.814721723519,141.9621636081252,13.326189694781752,3000.397855339502,2019
+2004,52,"(50,55]",HS,1891.6575942549373,141.9621636081252,13.325082868395143,3240.123051090427,2019
+2004,52,"(50,55]",HS,1893.3859964093356,141.9621636081252,13.337257958647847,3080.1400839457087,2019
+2004,51,"(50,55]",College,458.65508078994617,209.7168326029122,2.1870208275479035,5794.953884639979,2019
+2004,51,"(50,55]",College,455.5125314183124,209.7168326029122,2.1720361010830325,6450.274441160749,2019
+2004,51,"(50,55]",College,457.0838061041292,209.7168326029122,2.1795284643154678,5717.987642681091,2019
+2004,51,"(50,55]",College,455.66965888689407,209.7168326029122,2.172785337406276,5732.308582960822,2019
+2004,51,"(50,55]",College,457.0838061041292,209.7168326029122,2.1795284643154678,5993.463761315393,2019
+2004,63,"(60,65]",HS,719.800933572711,83.88673304116487,8.580628991946682,6189.0432026619355,2019
+2004,63,"(60,65]",HS,719.800933572711,83.88673304116487,8.580628991946682,6845.367659001977,2019
+2004,63,"(60,65]",HS,719.800933572711,83.88673304116487,8.580628991946682,6107.814897672241,2019
+2004,63,"(60,65]",HS,719.800933572711,83.88673304116487,8.580628991946682,6088.355966808297,2019
+2004,63,"(60,65]",HS,721.3722082585278,83.88673304116487,8.599359900027771,6399.8906502165355,2019
+2004,27,"(25,30]",College,-27.465881508078994,112.92444832464501,-0.2432235172769469,10493.876653514748,2019
+2004,27,"(25,30]",College,-27.623008976660685,112.92444832464501,-0.24461495616297066,10242.859067982308,2019
+2004,27,"(25,30]",College,-27.78013644524237,112.92444832464501,-0.24600639504899435,10461.938720142489,2019
+2004,27,"(25,30]",College,-30.45130341113106,112.92444832464501,-0.2696608561113977,10443.665672848312,2019
+2004,27,"(25,30]",College,-29.19428366247756,112.92444832464501,-0.2585293450232079,10352.117924930806,2019
+2004,50,"(45,50]",College,1328.8270017953323,290.37715283480145,4.576210589651025,4528.49268062124,2019
+2004,50,"(45,50]",College,1409.1191382405743,164.5470532730542,8.563624265590711,4743.699014610283,2019
+2004,50,"(45,50]",College,1426.2460323159785,209.7168326029122,6.8008181060816435,4482.4993758675455,2019
+2004,50,"(45,50]",College,1504.8097666068224,209.7168326029122,7.175436267703416,4836.663250959475,2019
+2004,50,"(45,50]",College,1500.0959425493716,167.77346608232975,8.941198972507637,4600.170580891221,2019
+2004,59,"(55,60]",College,28996.617307001798,725.9428820870038,39.94338676293622,212.4255282712962,2019
+2004,59,"(55,60]",College,28995.674542190307,725.9428820870038,39.9420880866426,234.45484489616496,2019
+2004,59,"(55,60]",College,28995.04603231598,725.9428820870038,39.941222302446846,248.16229860655017,2019
+2004,59,"(55,60]",College,28993.946140035907,725.9428820870038,39.93970718010429,208.51369320943218,2019
+2004,59,"(55,60]",College,28993.946140035907,725.9428820870038,39.93970718010429,215.13226107690943,2019
+2004,43,"(40,45]",College,722.4721005385996,290.37715283480145,2.4880473325310875,5925.1311527801845,2019
+2004,43,"(40,45]",College,721.1522298025135,290.37715283480145,2.48350196550341,6578.165065528422,2019
+2004,43,"(40,45]",College,723.5719928186716,290.37715283480145,2.4918351383874855,5849.207240208123,2019
+2004,43,"(40,45]",College,722.314973070018,290.37715283480145,2.487506217408745,5840.43951323972,2019
+2004,43,"(40,45]",College,721.8435906642729,290.37715283480145,2.485882872041717,6102.028593272521,2019
+2004,44,"(40,45]",HS,185.0647324955117,72.59428820870036,2.5493015643802655,7773.789274326911,2019
+2004,44,"(40,45]",HS,185.0647324955117,72.59428820870036,2.5493015643802655,8082.098026630704,2019
+2004,44,"(40,45]",HS,185.0647324955117,72.59428820870036,2.5493015643802655,7652.075028882367,2019
+2004,44,"(40,45]",HS,186.63600718132855,72.59428820870036,2.5709461692739675,7478.929135646018,2019
+2004,44,"(40,45]",HS,185.0647324955117,72.59428820870036,2.5493015643802655,7814.370297082413,2019
+2004,44,"(40,45]",College,394.38994614003593,83.88673304116487,4.701457928353236,8547.254861032025,2019
+2004,44,"(40,45]",College,394.38994614003593,80.6603202318893,4.889516245487365,7966.702874761448,2019
+2004,44,"(40,45]",College,394.38994614003593,83.88673304116487,4.701457928353236,8542.045335599485,2019
+2004,44,"(40,45]",College,394.38994614003593,74.20749461333816,5.3146915711819185,8540.348932462317,2019
+2004,44,"(40,45]",College,394.38994614003593,83.88673304116487,4.701457928353236,8343.824869660832,2019
+2004,59,"(55,60]",HS,1.2884452423698385,19.358476855653432,0.06655716004813478,4951.298543819913,2019
+2004,59,"(55,60]",HS,5.750865350089766,19.358476855653432,0.29707220216606495,4751.220439372706,2019
+2004,59,"(55,60]",HS,0.5656588868940754,19.358476855653432,0.029220216606498196,4959.062297191902,2019
+2004,59,"(55,60]",HS,2.92257091561939,19.358476855653432,0.15097111913357403,4963.559106120175,2019
+2004,59,"(55,60]",HS,0.17284021543985637,19.358476855653432,0.008928399518652225,4890.969207354834,2019
+2004,45,"(40,45]",College,151233.0201508079,17341.968849856203,8.720637285198555,19.85074517363883,2019
+2004,45,"(40,45]",College,174344.89950448833,17341.968849856203,10.053350978423305,20.80433162821725,2019
+2004,45,"(40,45]",College,137396.37526750448,17341.968849856203,7.922766812526235,20.025321777052817,2019
+2004,45,"(40,45]",College,124456.92822980252,17341.968849856203,7.17663197917891,19.550079502266545,2019
+2004,45,"(40,45]",College,178169.38208976662,17341.968849856203,10.273884334144908,19.624724009168094,2019
+2004,57,"(55,60]",College,4844.868366247755,646.8957682597522,7.489411129216668,257.66427198170487,2019
+2004,57,"(55,60]",College,5875.624560143627,645.2825618551144,9.105506498194947,254.48907844907254,2019
+2004,57,"(55,60]",College,4804.0152244165165,645.2825618551144,7.444824187725631,265.9445854286846,2019
+2004,57,"(55,60]",College,5587.29565529623,646.8957682597522,8.637087966005563,254.1138144918406,2019
+2004,57,"(55,60]",College,5104.285816876122,645.2825618551144,7.910156137184116,261.081810151749,2019
+2004,41,"(40,45]",NoHS,18.855296229802512,40.33016011594465,0.46752346570397113,7793.613052938503,2019
+2004,41,"(40,45]",NoHS,20.42657091561939,40.33016011594465,0.5064837545126354,7429.977060132213,2019
+2004,41,"(40,45]",NoHS,21.997845601436268,40.33016011594465,0.5454440433212997,7784.785168777444,2019
+2004,41,"(40,45]",NoHS,20.42657091561939,40.33016011594465,0.5064837545126354,7738.104632151519,2019
+2004,41,"(40,45]",NoHS,21.997845601436268,40.33016011594465,0.5454440433212997,7649.09562287572,2019
+2004,83,"(80,85]",College,4133.080933572711,295.21677204871486,14.000156240752796,3613.496873612951,2019
+2004,83,"(80,85]",College,4133.238061041293,293.6035656440771,14.077615344943865,3504.047672397513,2019
+2004,83,"(80,85]",College,4133.080933572711,295.21677204871486,14.000156240752796,3776.9260412605045,2019
+2004,83,"(80,85]",College,4133.238061041293,293.6035656440771,14.077615344943865,3384.8663198556847,2019
+2004,83,"(80,85]",College,4133.080933572711,293.6035656440771,14.077080176141546,3511.2610373154143,2019
+2004,49,"(45,50]",HS,230.9789500897666,131.47632197797955,1.756810250049833,7288.677253459711,2019
+2004,49,"(45,50]",HS,231.13607755834832,131.47632197797955,1.7580053509335345,6890.879787441641,2019
+2004,49,"(45,50]",HS,230.9789500897666,131.47632197797955,1.756810250049833,7348.734324058918,2019
+2004,49,"(45,50]",HS,231.13607755834832,131.47632197797955,1.7580053509335345,7311.812397844216,2019
+2004,49,"(45,50]",HS,232.70735224416518,131.47632197797955,1.7699563597705479,7145.7780191530455,2019
+2004,45,"(40,45]",College,197963.31067863555,10792.35084702679,18.3429276424212,18.968049583545866,2019
+2004,45,"(40,45]",College,192583.04617594255,15196.404331687945,12.672935121524983,20.08277893185048,2019
+2004,45,"(40,45]",College,186754.8741113106,15196.404331687945,12.28941202373014,19.680052415018398,2019
+2004,45,"(40,45]",College,180958.347518851,10308.388925635452,17.55447420778179,18.634196351820794,2019
+2004,45,"(40,45]",College,177200.18843806104,13954.23540011685,12.698666989420087,19.074323977144275,2019
+2004,27,"(25,30]",HS,2.6711669658886894,16.132064046377863,0.16558122743682308,5629.229250399153,2019
+2004,27,"(25,30]",HS,2.6711669658886894,16.132064046377863,0.16558122743682308,5641.8324086283355,2019
+2004,27,"(25,30]",HS,2.6711669658886894,16.132064046377863,0.16558122743682308,5625.9251388499415,2019
+2004,27,"(25,30]",HS,2.828294434470377,16.132064046377863,0.17532129963898915,5671.531453827923,2019
+2004,27,"(25,30]",HS,2.6711669658886894,16.132064046377863,0.16558122743682308,5642.33253151093,2019
+2004,34,"(30,35]",HS,3.7082082585278275,38.716953711306864,0.09577737665463297,7069.971393163714,2019
+2004,34,"(30,35]",HS,3.5353680430879715,38.716953711306864,0.09131317689530687,6840.972264126349,2019
+2004,34,"(30,35]",HS,3.5353680430879715,38.716953711306864,0.09131317689530687,7096.23937943507,2019
+2004,34,"(30,35]",HS,3.6924955116696587,38.716953711306864,0.09537154031287605,7049.102821239224,2019
+2004,34,"(30,35]",HS,3.5196552962298027,38.716953711306864,0.09090734055354995,7019.490513404026,2019
+2004,61,"(60,65]",HS,2057.5842010771994,117.76406753855836,17.472088422926664,13246.48318220023,2019
+2004,61,"(60,65]",HS,2083.1959784560145,117.76406753855836,17.68957222689284,13671.411373622333,2019
+2004,61,"(60,65]",HS,2066.226211849192,117.76406753855836,17.545472528559422,13085.091713932907,2019
+2004,61,"(60,65]",HS,2073.296947935368,117.76406753855836,17.605514069531676,13353.748652767938,2019
+2004,61,"(60,65]",HS,2071.725673249551,117.76406753855836,17.592171504871175,13460.622651255317,2019
+2004,54,"(50,55]",HS,1.8383913824057452,19.358476855653432,0.09496570397111914,5568.488023467732,2019
+2004,54,"(50,55]",HS,1.9955188509874326,19.358476855653432,0.10308243080625752,5571.274609816417,2019
+2004,54,"(50,55]",HS,1.9955188509874326,19.358476855653432,0.10308243080625752,5577.272916085145,2019
+2004,54,"(50,55]",HS,2.0112315978456015,19.358476855653432,0.10389410348977136,5590.951698481753,2019
+2004,54,"(50,55]",HS,2.0112315978456015,19.358476855653432,0.10389410348977136,5567.109696123734,2019
+2004,95,"(90,95]",NoHS,311.11238779174147,27.424508878842364,11.34431938840518,13051.11986936037,2019
+2004,95,"(90,95]",NoHS,199.5518850987433,27.424508878842364,7.276406880441709,11830.781473201287,2019
+2004,95,"(90,95]",NoHS,394.38994614003593,27.424508878842364,14.380930133786368,13009.638040098309,2019
+2004,95,"(90,95]",NoHS,225.21080071813284,27.424508878842364,8.212026757273305,12737.019935773245,2019
+2004,95,"(90,95]",NoHS,218.4071813285458,27.424508878842364,7.9639413888299,12496.388544028745,2019
+2004,32,"(30,35]",College,260.9887253141831,85.49993944580267,3.0525018731694025,11363.42370990936,2019
+2004,32,"(30,35]",College,233.80567324955115,54.84901775768473,4.262713952006795,10957.496554783937,2019
+2004,32,"(30,35]",College,233.9942262118492,111.31124192000723,2.1021616700674937,11369.801593500237,2019
+2004,32,"(30,35]",College,263.03138240574503,66.14146259014923,3.9768002113234124,11396.247597512443,2019
+2004,32,"(30,35]",College,275.75870736086176,137.12254439421181,2.011038437035464,11242.101708877552,2019
+2004,65,"(60,65]",College,19967.75870736086,8001.503767003419,2.4955007569581924,36.30274912122901,2019
+2004,65,"(60,65]",College,23724.676481149014,8001.503767003419,2.965027221381158,36.66974333317084,2019
+2004,65,"(60,65]",College,32657.21594254937,8001.503767003419,4.081384811342727,35.00976651603156,2019
+2004,65,"(60,65]",College,15388.907145421905,7985.371702957041,1.9271372351675604,35.550502576067,2019
+2004,65,"(60,65]",College,28077.10736086176,7146.5043725453925,3.928788943126533,35.311661010593724,2019
+2004,53,"(50,55]",College,7921.974147217235,112.92444832464501,70.15287003610109,490.993858571081,2019
+2004,53,"(50,55]",College,7915.7676122082585,112.92444832464501,70.09790820010315,487.69750236713173,2019
+2004,53,"(50,55]",College,7923.466858168761,112.92444832464501,70.16608870551832,503.8048438566996,2019
+2004,53,"(50,55]",College,7923.356868940754,112.92444832464501,70.1651146982981,486.95182742288017,2019
+2004,53,"(50,55]",College,7923.623985637343,112.92444832464501,70.16748014440434,491.48446778102596,2019
+2004,41,"(40,45]",HS,-77.60525673249552,75.82070101797595,-1.023536523542515,4042.794047092271,2019
+2004,41,"(40,45]",HS,-82.31908078994614,74.20749461333816,-1.109309527546696,4095.7088514552115,2019
+2004,41,"(40,45]",HS,-88.44705206463196,67.75466899478702,-1.3054015815712565,4025.8113313262547,2019
+2004,41,"(40,45]",HS,-88.46276481149013,74.20749461333816,-1.1921001412651078,4040.9653401523074,2019
+2004,41,"(40,45]",HS,-82.17766606822262,77.43390742261373,-1.0612620336943441,4052.6485970271992,2019
+2004,76,"(75,80]",HS,158192.4785637343,450.0845868939423,351.47277460761103,224.5756583048576,2019
+2004,76,"(75,80]",HS,158216.51906642728,448.4713804893045,352.7906705970963,225.22005859747796,2019
+2004,76,"(75,80]",HS,236765.64050269302,545.2637647675717,434.2222164783287,12.467261871099758,2019
+2004,76,"(75,80]",HS,158217.14757630162,235.52813507711673,671.754767321102,223.03356697833487,2019
+2004,76,"(75,80]",HS,158204.5773788151,542.0373519582962,291.870249914045,222.32970521398997,2019
+2004,48,"(45,50]",College,14574.044093357272,5178.3925588872935,2.8143953799610872,20.626138171850155,2019
+2004,48,"(45,50]",College,14591.64236983842,5178.3925588872935,2.8177937852154256,21.160599969936417,2019
+2004,48,"(45,50]",College,14611.597558348294,5178.3925588872935,2.8216473340306125,21.982680535781373,2019
+2004,48,"(45,50]",College,14616.62563734291,5178.3925588872935,2.822618306960424,19.826033511512716,2019
+2004,48,"(45,50]",College,14594.627791741472,5178.3925588872935,2.818370300392501,20.65284709280759,2019
+2004,60,"(55,60]",College,199892.85170556555,3436.1296418784846,58.17383874849579,27.768818387630876,2019
+2004,60,"(55,60]",College,137541.52962298025,2968.2997845335262,46.3368054465547,28.446810801806002,2019
+2004,60,"(55,60]",College,104206.93716337523,3371.601385692973,30.907253035772893,28.169819163329105,2019
+2004,60,"(55,60]",College,200246.38850987432,3097.3562969045493,64.65074383273165,27.36970347254667,2019
+2004,60,"(55,60]",College,144517.98922800718,2984.431848579904,48.42395355644454,27.53974791481673,2019
+2004,89,"(85,90]",HS,3862.4602944344706,187.13194293798318,20.640304556205653,3643.933326921246,2019
+2004,89,"(85,90]",HS,3402.0768114901257,187.13194293798318,18.180096663761983,14100.846143816167,2019
+2004,89,"(85,90]",HS,3581.846348294435,187.13194293798318,19.14075326777045,4050.5172030113586,2019
+2004,89,"(85,90]",HS,3257.676667863555,188.74514934262095,17.25965768767935,14141.46206116561,2019
+2004,89,"(85,90]",HS,2963.706886894075,188.74514934262095,15.702161868616743,13782.702038243297,2019
+2004,32,"(30,35]",College,1049.6114901256733,241.98096069566793,4.337578820697954,6469.430780861007,2019
+2004,32,"(30,35]",College,1022.8998204667864,241.98096069566793,4.2271913357400726,7191.735852889632,2019
+2004,32,"(30,35]",College,1090.4646319569122,241.98096069566793,4.506406738868833,6392.3115753280135,2019
+2004,32,"(30,35]",College,980.4754039497307,241.98096069566793,4.051870036101082,6361.782924322362,2019
+2004,32,"(30,35]",College,1054.325314183124,241.98096069566793,4.357058965102286,6689.738509148241,2019
+2004,66,"(65,70]",College,5431.110951526033,356.5186154249507,15.233737360537107,2741.5979583973067,2019
+2004,66,"(65,70]",College,4486.77486535009,356.5186154249507,12.584966594246698,2746.436036111392,2019
+2004,66,"(65,70]",College,9830.680071813285,356.5186154249507,27.574100331607234,2773.0833076559597,2019
+2004,66,"(65,70]",College,7316.640574506284,356.5186154249507,20.52246434813859,2677.894598107342,2019
+2004,66,"(65,70]",College,7316.954829443447,356.5186154249507,20.523345802636523,2675.1490523499106,2019
+2004,35,"(30,35]",HS,49.997960502693005,62.91504978087366,0.7946899935203185,4467.978909071813,2019
+2004,35,"(30,35]",HS,49.997960502693005,64.52825618551145,0.7748227436823104,4526.4588185397,2019
+2004,35,"(30,35]",HS,49.84083303411131,64.52825618551145,0.7723877256317688,4449.210103394979,2019
+2004,35,"(30,35]",HS,48.42668581687612,62.91504978087366,0.7697154494122003,4465.957875117705,2019
+2004,35,"(30,35]",HS,49.997960502693005,62.91504978087366,0.7946899935203185,4478.86987229051,2019
+2004,59,"(55,60]",HS,144.91866427289048,45.16977932985802,3.2083102114492,3955.5995447764108,2019
+2004,59,"(55,60]",HS,144.77724955116696,50.00939854377137,2.8950008151857456,3461.1419398823564,2019
+2004,59,"(55,60]",HS,144.93437701974864,41.94336652058244,3.455477922799222,3981.873385769064,2019
+2004,59,"(55,60]",HS,145.2172064631957,46.782985734495796,3.104060251462717,3900.7968109384865,2019
+2004,59,"(55,60]",HS,144.95008976660685,53.23581135304694,2.7227929110600595,3807.425680954525,2019
+2004,78,"(75,80]",HS,969.24078994614,32.264128092755726,30.04081768953068,7252.905411938562,2019
+2004,78,"(75,80]",HS,969.24078994614,32.264128092755726,30.04081768953068,8062.530250257335,2019
+2004,78,"(75,80]",HS,967.6695152603232,32.264128092755726,29.992117328519853,7180.221437024603,2019
+2004,78,"(75,80]",HS,969.24078994614,33.87733449739351,28.610302561457793,7157.04439714275,2019
+2004,78,"(75,80]",HS,969.24078994614,33.87733449739351,28.610302561457793,7502.493168389839,2019
+2004,47,"(45,50]",HS,1142.4738240574504,169.38667248696757,6.744768093518994,3256.9803742422323,2019
+2004,47,"(45,50]",HS,1142.4738240574504,169.38667248696757,6.744768093518994,3413.049909430024,2019
+2004,47,"(45,50]",HS,1140.9025493716338,169.38667248696757,6.735491834278837,3224.469057387145,2019
+2004,47,"(45,50]",HS,1140.9025493716338,169.38667248696757,6.735491834278837,3479.6107488747193,2019
+2004,47,"(45,50]",HS,1142.4738240574504,169.38667248696757,6.744768093518994,3309.7376759812237,2019
+2004,66,"(65,70]",College,2671.7954757630164,217.78286462610117,12.2681620537505,3903.9559629838573,2019
+2004,66,"(65,70]",College,2603.602154398564,229.07530945856564,11.365703971119133,4120.84653872515,2019
+2004,66,"(65,70]",College,3191.8873967684026,322.6412809275572,9.892991335740074,3907.7480081079216,2019
+2004,66,"(65,70]",College,3044.658958707361,304.8960104765416,9.985893072030255,4196.238444497896,2019
+2004,66,"(65,70]",College,2868.2048114901254,309.7356296904549,9.260170728038508,3999.9080778833713,2019
+2004,73,"(70,75]",College,14172.897666068222,1013.0936221125296,13.989721538779921,2428.388594595199,2019
+2004,73,"(70,75]",College,14172.897666068222,1013.0936221125296,13.989721538779921,2402.9946054159977,2019
+2004,73,"(70,75]",College,12287.36804308797,1013.0936221125296,12.128561245372392,2484.1791168138184,2019
+2004,73,"(70,75]",College,12978.728904847398,1013.0936221125296,12.810986686288489,2364.887203411192,2019
+2004,73,"(70,75]",College,13387.260323159784,1013.0936221125296,13.214238083193452,2393.1232841683786,2019
+2004,60,"(55,60]",HS,0.6285098743267505,19.358476855653432,0.032466907340553554,7189.726918841114,2019
+2004,60,"(55,60]",HS,0.6285098743267505,19.358476855653432,0.032466907340553554,7130.22472329398,2019
+2004,60,"(55,60]",HS,0.6285098743267505,19.358476855653432,0.032466907340553554,7123.63077164515,2019
+2004,60,"(55,60]",HS,0.6285098743267505,19.358476855653432,0.032466907340553554,7181.17856290261,2019
+2004,60,"(55,60]",HS,0.6285098743267505,19.358476855653432,0.032466907340553554,7176.983844545229,2019
+2004,70,"(65,70]",HS,1327.5699820466787,125.83009956174732,10.550496158474498,740.3794254544416,2019
+2004,70,"(65,70]",HS,1314.9997845601438,120.99048034783397,10.868621901323706,755.2146191595386,2019
+2004,70,"(65,70]",HS,1322.856157989228,119.37727394319619,11.081306468923795,718.912316228042,2019
+2004,70,"(65,70]",HS,1322.856157989228,122.60368675247175,10.789693140794224,728.2378705492548,2019
+2004,70,"(65,70]",HS,1322.856157989228,119.37727394319619,11.081306468923795,748.3014198273142,2019
+2004,52,"(50,55]",HS,907.5682585278277,303.2828040719038,2.992481757431446,1164.7404489985815,2019
+2004,52,"(50,55]",HS,982.0466786355476,232.3017222678412,4.2274618933012436,1180.8255799740778,2019
+2004,52,"(50,55]",HS,896.8835906642729,353.2922026156752,2.538645302738077,1188.891228495643,2019
+2004,52,"(50,55]",HS,915.2675044883304,306.5092168811794,2.9861010830324908,1137.5503701099738,2019
+2004,52,"(50,55]",HS,1265.5046319569121,285.53753362088815,4.432007995268107,1187.4652233996626,2019
+2004,62,"(60,65]",NoHS,0,32.264128092755726,0,5569.888793617275,2019
+2004,62,"(60,65]",NoHS,0,32.264128092755726,0,5504.615088639886,2019
+2004,62,"(60,65]",NoHS,0,32.264128092755726,0,5576.977422165181,2019
+2004,62,"(60,65]",NoHS,0,32.264128092755726,0,5562.328024015053,2019
+2004,62,"(60,65]",NoHS,0,32.264128092755726,0,5553.2841211116875,2019
+2004,36,"(35,40]",NoHS,28.282944344703772,22.58488966492901,1.252294997421351,3907.5231803799775,2019
+2004,36,"(35,40]",NoHS,21.05508078994614,22.58488966492901,0.9322640536358946,3958.6674687669083,2019
+2004,36,"(35,40]",NoHS,30.325601436265707,22.58488966492901,1.342738525012893,3891.1087019899,2019
+2004,36,"(35,40]",NoHS,23.569120287253142,22.58488966492901,1.0435791645177925,3905.7556615118892,2019
+2004,36,"(35,40]",NoHS,25.297522441651704,22.58488966492901,1.1201083032490973,3917.0479995655196,2019
+2004,45,"(40,45]",NoHS,16.938341113105928,43.55657292522023,0.38888140125685255,4952.383911798299,2019
+2004,45,"(40,45]",NoHS,25.89460682226212,43.55657292522023,0.5945051477470249,4683.3087564548605,2019
+2004,45,"(40,45]",NoHS,16.62408617594255,43.55657292522023,0.3816665329589517,4995.809293601612,2019
+2004,45,"(40,45]",NoHS,19.452380610412927,43.55657292522023,0.4466003476400588,4973.701171948706,2019
+2004,45,"(40,45]",NoHS,12.381644524236984,43.55657292522023,0.28426581093729103,4856.587720728146,2019
+2004,41,"(40,45]",College,7253.0039497307,814.669234342082,8.903004610930408,1834.0764789016444,2019
+2004,41,"(40,45]",College,7535.833393177738,814.669234342082,9.250175501304643,1805.318139360344,2019
+2004,41,"(40,45]",College,9407.221543985637,814.669234342082,11.547289559280838,1888.6331291842023,2019
+2004,41,"(40,45]",College,9512.49694793537,814.669234342082,11.676514279586806,1776.5506266730522,2019
+2004,41,"(40,45]",College,9433.933213644525,814.669234342082,11.580077921149517,1811.5726812111825,2019
+2004,71,"(70,75]",College,55021.16854578097,351.6789962110374,156.45281389726097,190.83497543640942,2019
+2004,71,"(70,75]",College,55040.02384201078,351.6789962110374,156.50642897360316,210.81763538578366,2019
+2004,71,"(70,75]",College,55027.45364452424,351.6789962110374,156.47068558937502,221.77094075007508,2019
+2004,71,"(70,75]",College,55033.73874326751,351.6789962110374,156.4885572814891,188.34334310006378,2019
+2004,71,"(70,75]",College,55029.02491921005,351.6789962110374,156.47515351240352,192.8575797176006,2019
+2004,27,"(25,30]",HS,3.111123877917415,37.10374730666908,0.083849317218647,5786.298226762172,2019
+2004,27,"(25,30]",HS,3.378240574506284,37.10374730666908,0.091048501020248,5801.0139319295895,2019
+2004,27,"(25,30]",HS,4.94951526032316,25.81130247420457,0.19175767148014447,5819.688162587232,2019
+2004,27,"(25,30]",HS,4.1481651705565525,20.97168326029122,0.19779838933629545,5815.624000480824,2019
+2004,27,"(25,30]",HS,4.273867145421903,20.97168326029122,0.20379227992224383,5826.129936650083,2019
+2004,57,"(55,60]",HS,1521.6224057450627,156.48102124986525,9.724006103688264,1030.9986569046596,2019
+2004,57,"(55,60]",HS,1493.3394614003591,156.48102124986525,9.54326249581302,989.8096233105658,2019
+2004,57,"(55,60]",HS,1540.3205745062837,156.48102124986525,9.843497711116902,1047.1785570616332,2019
+2004,57,"(55,60]",HS,1548.0198204667863,156.48102124986525,9.892700137705162,968.0772705048632,2019
+2004,57,"(55,60]",HS,1509.6807181328547,156.48102124986525,9.647692135918717,1043.3710808376122,2019
+2004,66,"(65,70]",College,39174.31339317774,3323.2051935538398,11.788111510287056,18.875803891614044,2019
+2004,66,"(65,70]",College,42579.09279712747,5226.788751026426,8.14631981994028,19.12902112287269,2019
+2004,66,"(65,70]",HS,39209.91847755835,3468.393769971241,11.304921262698343,19.897276336486822,2019
+2004,66,"(65,70]",HS,39061.59014721724,5307.449071258316,7.359767304927964,18.279329651680335,2019
+2004,66,"(65,70]",HS,38070.885745062835,5517.165903861229,6.90044243882872,19.504203208628326,2019
+2004,44,"(40,45]",HS,217.6372567324955,100.01879708754274,2.1759635495516476,6624.728850304409,2019
+2004,44,"(40,45]",HS,122.24517055655296,100.01879708754274,1.2222219634330966,7539.74467198429,2019
+2004,44,"(40,45]",HS,206.84259964093357,100.01879708754274,2.068037265634098,6539.840377614968,2019
+2004,44,"(40,45]",HS,164.5438850987433,100.01879708754274,1.6451296145335976,7923.824786820963,2019
+2004,44,"(40,45]",HS,262.0744761220826,100.01879708754274,2.620252230115291,6822.513092940911,2019
+2004,46,"(45,50]",College,1788.8176660682227,225.84889664929003,7.920417998968542,815.1632365076338,2019
+2004,46,"(45,50]",College,1786.3507648114903,225.84889664929003,7.909495203713256,820.2561184244851,2019
+2004,46,"(45,50]",College,1791.3317055655298,225.84889664929003,7.9315495100567315,805.873073626051,2019
+2004,46,"(45,50]",College,1791.645960502693,225.84889664929003,7.932940948942755,838.4075178015028,2019
+2004,46,"(45,50]",College,1803.116265709156,225.84889664929003,7.98372846828262,847.9184739065546,2019
+2004,53,"(50,55]",College,5381.6157989228,500.0939854377137,10.761208804006055,296.0397099261976,2019
+2004,53,"(50,55]",College,5378.473249551167,500.0939854377137,10.754924886456271,299.03916731264485,2019
+2004,53,"(50,55]",College,5378.473249551167,500.0939854377137,10.754924886456271,302.9047401731085,2019
+2004,53,"(50,55]",College,5378.473249551167,500.0939854377137,10.754924886456271,290.2047499601082,2019
+2004,53,"(50,55]",College,5380.044524236983,500.0939854377137,10.758066845231163,293.2625843352513,2019
+2004,60,"(55,60]",HS,26215.351123877917,161.3206404637786,162.5046308303249,13.742108928442642,2019
+2004,60,"(55,60]",HS,26581.332423698386,161.3206404637786,164.77328844765344,14.01996905411952,2019
+2004,60,"(55,60]",HS,26458.694434470377,161.3206404637786,164.01307581227437,14.450604842757366,2019
+2004,60,"(55,60]",HS,26728.953680430877,161.3206404637786,165.68836823104692,13.369332367853236,2019
+2004,60,"(55,60]",HS,26409.82779174147,161.3206404637786,163.710159566787,14.512913738444286,2019
+2004,45,"(40,45]",NoHS,-0.32996768402154397,11.615086113392062,-0.02840854392298435,4818.772423249726,2019
+2004,45,"(40,45]",NoHS,-0.21997845601436267,11.615086113392062,-0.01893902928198957,4825.97627236173,2019
+2004,45,"(40,45]",NoHS,0.04713824057450629,11.615086113392062,0.004058363417569193,4859.261868394282,2019
+2004,45,"(40,45]",NoHS,-0.34568043087971273,11.615086113392062,-0.029761331728840747,4829.626044516087,2019
+2004,45,"(40,45]",NoHS,0.04713824057450629,11.615086113392062,0.004058363417569193,4842.7199836802565,2019
+2004,52,"(50,55]",HS,6.913608617594255,6.452825618551143,1.0714079422382674,3957.0794760863528,2019
+2004,52,"(50,55]",HS,6.913608617594255,6.452825618551143,1.0714079422382674,3873.4969538759933,2019
+2004,52,"(50,55]",HS,6.756481149012568,6.452825618551143,1.0470577617328523,3991.1459680152366,2019
+2004,52,"(50,55]",HS,6.913608617594255,6.452825618551143,1.0714079422382674,3988.2866801883015,2019
+2004,52,"(50,55]",HS,6.913608617594255,6.452825618551143,1.0714079422382674,3939.886628027101,2019
+2004,40,"(35,40]",HS,181.70220466786355,64.52825618551145,2.815854873646209,2383.4415493059732,2019
+2004,40,"(35,40]",HS,181.6864919210054,64.52825618551145,2.815611371841155,2286.960291609475,2019
+2004,40,"(35,40]",HS,181.6864919210054,64.52825618551145,2.815611371841155,2321.153704343672,2019
+2004,40,"(35,40]",HS,181.70220466786355,64.52825618551145,2.815854873646209,2218.6187084887856,2019
+2004,40,"(35,40]",HS,180.1309299820467,64.52825618551145,2.7915046931407943,2209.476269625055,2019
+2004,22,"(20,25]",HS,28.754326750448833,40.33016011594465,0.712973285198556,6482.236229653652,2019
+2004,22,"(20,25]",HS,28.754326750448833,40.33016011594465,0.712973285198556,6559.441772055633,2019
+2004,22,"(20,25]",HS,28.754326750448833,38.716953711306864,0.7426805054151625,6490.994328655002,2019
+2004,22,"(20,25]",HS,28.754326750448833,40.33016011594465,0.712973285198556,6401.567965997002,2019
+2004,22,"(20,25]",HS,28.754326750448833,40.33016011594465,0.712973285198556,6519.995327157293,2019
+2004,83,"(80,85]",NoHS,211.65070017953323,56.46222416232251,3.748536358947912,10862.12624694224,2019
+2004,83,"(80,85]",NoHS,222.96387791741475,50.00939854377137,4.458439501572144,10044.211484510783,2019
+2004,83,"(80,85]",NoHS,293.8283662477558,51.62260494840914,5.691854693140796,10815.89839984469,2019
+2004,83,"(80,85]",NoHS,218.87856373429082,58.0754305669603,3.7688668271159242,10646.360637558419,2019
+2004,83,"(80,85]",NoHS,218.72143626570917,50.00939854377137,4.373606614650053,10566.206585956874,2019
+2004,74,"(70,75]",College,104558.9026929982,1968.111813658099,53.12650529679825,224.5756583048576,2019
+2004,74,"(70,75]",College,104582.47181328546,1968.111813658099,53.138480795407474,233.31197362120798,2019
+2004,74,"(70,75]",College,104829.1619389587,1968.111813658099,53.26382434751731,232.18788864895015,2019
+2004,74,"(70,75]",College,104554.18886894076,1968.111813658099,53.12411019707641,233.99581520855227,2019
+2004,74,"(70,75]",College,104550.73206463196,1968.111813658099,53.12235379061372,260.2593226387703,2019
+2004,28,"(25,30]",HS,20.03375224416517,75.82070101797595,0.2642253629311007,4386.853898849056,2019
+2004,28,"(25,30]",HS,20.348007181328548,75.82070101797595,0.26837007450649053,4451.711994202944,2019
+2004,28,"(25,30]",HS,23.33342908438061,75.82070101797595,0.30774483447269374,4404.923741712236,2019
+2004,28,"(25,30]",HS,22.07640933572711,75.82070101797595,0.2911659881711345,4410.700618529017,2019
+2004,28,"(25,30]",HS,20.662262118491924,75.82070101797595,0.27251478608188034,4432.07783815481,2019
+2004,37,"(35,40]",College,11.784560143626571,91.95276506435381,0.12815884476534295,6900.181031674501,2019
+2004,37,"(35,40]",College,10.213285457809695,85.49993944580267,0.1194537156869423,6621.852519173903,2019
+2004,37,"(35,40]",College,11.784560143626571,116.1508611339206,0.10145908543922984,6845.187881580345,2019
+2004,37,"(35,40]",College,10.213285457809695,83.88673304116487,0.12175090252707582,6874.757957477869,2019
+2004,37,"(35,40]",College,11.784560143626571,90.33955865971603,0.13044739556472407,6761.141869292993,2019
+2004,54,"(50,55]",HS,1733.9016157989226,137.12254439421181,12.644905500106178,849.4014052599098,2019
+2004,54,"(50,55]",HS,1737.0441651705567,137.12254439421181,12.667823317052454,872.2696429004096,2019
+2004,54,"(50,55]",HS,1733.9016157989226,137.12254439421181,12.644905500106178,850.2222848719554,2019
+2004,54,"(50,55]",HS,1735.4728904847395,137.12254439421181,12.656364408579316,860.9714382250424,2019
+2004,54,"(50,55]",HS,1733.9016157989226,135.50933798957405,12.795440089393155,878.14791611349915,2019
+2004,34,"(30,35]",HS,5.8922800718132855,19.358476855653432,0.3043772563176895,4309.353964236038,2019
+2004,34,"(30,35]",HS,5.57802513464991,19.358476855653432,0.28814380264741274,4373.066250254819,2019
+2004,34,"(30,35]",HS,5.57802513464991,19.358476855653432,0.28814380264741274,4327.104577949432,2019
+2004,34,"(30,35]",HS,5.263770197486535,19.358476855653432,0.271910348977136,4332.779398124736,2019
+2004,34,"(30,35]",HS,4.3995691202872536,19.358476855653432,0.22726835138387488,4353.7789591456585,2019
+2004,45,"(40,45]",College,1470.8702333931776,679.159896352508,2.165720092267851,97.33865978734909,2019
+2004,45,"(40,45]",College,1382.8788509874328,619.4712593809098,2.232353527376655,194.04164528402674,2019
+2004,45,"(40,45]",College,1652.1953321364454,608.1788145484454,2.7166275651399516,196.43654290865217,2019
+2004,45,"(40,45]",College,1178.1417594254938,590.4335440974297,1.9953841904874634,96.74524313917875,2019
+2004,45,"(40,45]",College,1729.9734290843808,445.24496768002894,3.8854418458640723,208.5861673866762,2019
+2004,60,"(55,60]",HS,58.60854578096948,108.08482911073166,0.5422458106579019,4480.01720861712,2019
+2004,60,"(55,60]",HS,72.43576301615799,64.52825618551145,1.122543321299639,4424.7900191375375,2019
+2004,60,"(55,60]",HS,54.99461400359066,70.9810818040626,0.7747784706268459,4456.144523340077,2019
+2004,60,"(55,60]",HS,53.65903052064632,43.55657292522023,1.2319387618665596,4483.162260225314,2019
+2004,60,"(55,60]",HS,54.68035906642729,66.14146259014923,0.8267183235009246,4445.092112054363,2019
+2004,52,"(50,55]",College,243038.48330341114,34474.220867109485,7.049861525232749,2.137424366587618,2019
+2004,52,"(50,55]",College,72979.10980251347,34845.25834017618,2.094377062441503,2.1820483676834277,2019
+2004,52,"(50,55]",College,115723.59497307001,36184.21965602554,3.1981785450442692,2.093878738556749,2019
+2004,52,"(50,55]",College,233013.7508078995,39023.46292818805,5.971119252965766,2.098208240718619,2019
+2004,52,"(50,55]",College,169280.17838420108,34474.220867109485,4.910340948291154,2.046605978488266,2019
+2004,50,"(45,50]",HS,948.2642728904848,393.6223627316199,2.4090711368882047,8136.982512732236,2019
+2004,50,"(45,50]",HS,875.9856373429085,393.6223627316199,2.225446824880156,9005.574963660012,2019
+2004,50,"(45,50]",HS,774.7169838420108,393.6223627316199,1.9681731964254006,8066.816515750077,2019
+2004,50,"(45,50]",HS,794.279353680431,393.6223627316199,2.017871515653666,8122.314311868342,2019
+2004,50,"(45,50]",HS,767.2534290843806,393.6223627316199,1.9492119902941347,8459.522681536591,2019
+2004,46,"(45,50]",HS,0.9427648114901257,8.872635225507825,0.10625533311453889,4911.1091016732225,2019
+2004,46,"(45,50]",HS,0.9427648114901257,8.711314585044043,0.10822302446851186,4915.915157041158,2019
+2004,46,"(45,50]",HS,0.9427648114901257,8.872635225507825,0.10625533311453889,4917.051431756254,2019
+2004,46,"(45,50]",HS,0.9427648114901257,8.711314585044043,0.10822302446851186,4930.197249915333,2019
+2004,46,"(45,50]",HS,0.9427648114901257,8.711314585044043,0.10822302446851186,4910.911923233453,2019
+2004,47,"(45,50]",College,637.7961077199282,371.0374730666908,1.7189533511222728,4142.316523740274,2019
+2004,47,"(45,50]",College,638.047511669659,371.0374730666908,1.719630921362424,4602.881238353129,2019
+2004,47,"(45,50]",College,637.9218096947935,371.0374730666908,1.7192921362423481,4098.77964217281,2019
+2004,47,"(45,50]",College,637.9532351885099,371.0374730666908,1.719376832522367,4105.766961765147,2019
+2004,47,"(45,50]",College,637.9375224416517,371.0374730666908,1.7193344843823577,4279.92306048797,2019
+2004,63,"(60,65]",College,15255.034542190306,2581.1302474204576,5.910214936823105,414.12414841656954,2019
+2004,63,"(60,65]",College,14827.647827648114,2581.1302474204576,5.744633709386282,408.891319696838,2019
+2004,63,"(60,65]",College,14896.941041292639,2581.1302474204576,5.771479783393502,426.0991083883323,2019
+2004,63,"(60,65]",College,15440.444955116696,2581.1302474204576,5.982047969314079,406.28059603603447,2019
+2004,63,"(60,65]",College,18187.033105924595,2581.1302474204576,7.046150857400722,411.54095424055157,2019
+2004,44,"(40,45]",HS,837.7093859964093,195.19797496117215,4.29158850732464,789.8884562585132,2019
+2004,44,"(40,45]",HS,914.4504416517055,193.58476855653433,4.723772683513839,761.9122452706578,2019
+2004,44,"(40,45]",HS,945.9073608617595,193.58476855653433,4.8862695547533095,799.7558219392415,2019
+2004,44,"(40,45]",HS,762.3824775583483,193.58476855653433,3.938235860409146,735.8748788290974,2019
+2004,44,"(40,45]",HS,749.7180035906642,193.58476855653433,3.87281504211793,794.9521253226494,2019
+2004,29,"(25,30]",HS,160.97709156193895,64.52825618551145,2.494675992779783,7096.371758753614,2019
+2004,29,"(25,30]",HS,193.12537163375225,64.52825618551145,2.992880685920577,6926.623803470924,2019
+2004,29,"(25,30]",HS,115.00159425493717,64.52825618551145,1.7821897111913356,7074.774073179529,2019
+2004,29,"(25,30]",HS,123.67503052064633,64.52825618551145,1.9166027075812273,7062.417120544555,2019
+2004,29,"(25,30]",HS,119.24403590664274,64.52825618551145,1.8479351985559564,7000.508935957526,2019
+2004,39,"(35,40]",HS,499.35109515260325,193.58476855653433,2.57949578820698,5806.149564790225,2019
+2004,39,"(35,40]",HS,499.1311166965889,193.58476855653433,2.5783594464500603,6066.8001162885985,2019
+2004,39,"(35,40]",HS,499.2725314183124,193.58476855653433,2.579089951865223,5703.257817485579,2019
+2004,39,"(35,40]",HS,499.1939676840216,193.58476855653433,2.578684115523466,5597.721974631624,2019
+2004,39,"(35,40]",HS,499.6653500897666,193.58476855653433,2.581119133574007,5836.1224179362225,2019
+2004,46,"(45,50]",College,200.96603231597845,145.18857641740072,1.3841724829522666,5114.710873510102,2019
+2004,46,"(45,50]",College,200.96603231597845,145.18857641740072,1.3841724829522666,5694.581726102905,2019
+2004,46,"(45,50]",College,200.80890484739678,145.18857641740072,1.3830902527075815,5049.426297431492,2019
+2004,46,"(45,50]",College,200.96603231597845,145.18857641740072,1.3841724829522666,5065.119899576658,2019
+2004,46,"(45,50]",College,200.6517773788151,145.18857641740072,1.3820080224628963,5291.333325651972,2019
+2004,58,"(55,60]",College,2829.865709156194,58.0754305669603,48.72741676694746,1347.8740131947084,2019
+2004,58,"(55,60]",College,2828.294434470377,58.0754305669603,48.70036101083032,1313.3848863842832,2019
+2004,58,"(55,60]",College,2828.294434470377,58.0754305669603,48.70036101083032,1377.9637043656876,2019
+2004,58,"(55,60]",College,2828.294434470377,56.46222416232251,50.091799896854056,1329.8044254238496,2019
+2004,58,"(55,60]",College,2828.294434470377,56.46222416232251,50.091799896854056,1382.4606840938454,2019
+2004,42,"(40,45]",HS,363.7029515260323,87.11314585044046,4.175063912287738,665.4162647811534,2019
+2004,42,"(40,45]",HS,348.0687684021544,104.8584163014561,3.3194166064981947,668.0069529882035,2019
+2004,42,"(40,45]",HS,350.5042441651705,67.75466899478702,5.173137871755199,673.3934223811809,2019
+2004,42,"(40,45]",HS,355.2180682226212,88.72635225507824,4.003523859533968,619.8188668321961,2019
+2004,42,"(40,45]",HS,357.339289048474,93.56597146899159,3.819115896925184,669.3254080238974,2019
+2004,38,"(35,40]",HS,364.4571633752244,149.06027178853142,2.445032194039414,6438.134955063969,2019
+2004,38,"(35,40]",HS,251.16825852782765,102.0191730292936,2.4619711282673076,6075.858831584828,2019
+2004,38,"(35,40]",HS,285.73630161579894,103.56785117774588,2.7589285513456367,6414.392718504327,2019
+2004,38,"(35,40]",HS,223.04244165170556,96.79238427826716,2.304338748495788,6390.906021485479,2019
+2004,38,"(35,40]",HS,223.04244165170556,96.79238427826716,2.304338748495788,6268.587328414068,2019
+2004,36,"(35,40]",HS,44.78132854578097,66.14146259014923,0.6770537994188607,8510.177276093766,2019
+2004,36,"(35,40]",HS,44.78132854578097,66.14146259014923,0.6770537994188607,8171.418819820911,2019
+2004,36,"(35,40]",HS,44.78132854578097,66.14146259014923,0.6770537994188607,8506.941710476023,2019
+2004,36,"(35,40]",HS,44.78132854578097,66.14146259014923,0.6770537994188607,8480.327419798788,2019
+2004,36,"(35,40]",HS,44.78132854578097,66.14146259014923,0.6770537994188607,8387.273781071195,2019
+2004,27,"(25,30]",HS,879.5995691202872,151.6414020359519,5.800523849758045,9469.346459980326,2019
+2004,27,"(25,30]",HS,879.5995691202872,151.6414020359519,5.800523849758045,9998.469706297019,2019
+2004,27,"(25,30]",HS,878.0282944344704,151.6414020359519,5.790162070819571,9301.91175649659,2019
+2004,27,"(25,30]",HS,879.5995691202872,151.6414020359519,5.800523849758045,9538.53402455611,2019
+2004,27,"(25,30]",HS,879.5995691202872,151.6414020359519,5.800523849758045,9591.990650732145,2019
+2004,43,"(40,45]",HS,406.1745062836625,46.782985734495796,8.682098842275613,6257.737302904493,2019
+2004,43,"(40,45]",HS,406.1745062836625,54.84901775768473,7.405319600764494,6950.3805129248985,2019
+2004,43,"(40,45]",HS,406.0173788150808,48.39619213913358,8.389448856799037,6176.831615599496,2019
+2004,43,"(40,45]",HS,406.1745062836625,48.39619213913358,8.392695547533092,6172.044059341983,2019
+2004,43,"(40,45]",HS,406.1745062836625,54.84901775768473,7.405319600764494,6445.656068403212,2019
+2004,90,"(85,90]",HS,197.98061041292638,33.87733449739351,5.844043321299638,10085.05692879476,2019
+2004,90,"(85,90]",HS,223.1210053859964,33.87733449739351,6.58614406051229,10223.169878134326,2019
+2004,90,"(85,90]",HS,256.1177737881508,33.87733449739351,7.560151280728897,9933.735274653123,2019
+2004,90,"(85,90]",HS,254.54649910233394,33.87733449739351,7.513769984528106,10033.483928533902,2019
+2004,90,"(85,90]",HS,216.8359066427289,32.264128092755726,6.720649819494584,10014.282219305744,2019
+2004,47,"(45,50]",College,5198.719425493717,106.47162270609388,48.827277103161585,2583.6202714226247,2019
+2004,47,"(45,50]",College,5197.1481508079,112.92444832464501,46.023232594120685,2607.387051833185,2019
+2004,47,"(45,50]",College,5198.719425493717,117.76406753855836,44.14520943573514,2608.1659032933917,2019
+2004,47,"(45,50]",College,5198.719425493717,80.6603202318893,64.4520057761733,2527.9152629525715,2019
+2004,47,"(45,50]",College,5198.719425493717,111.31124192000723,46.70435201171978,2521.281840049455,2019
+2004,52,"(50,55]",College,212851.1540394973,6452.8256185511445,32.9857285198556,27.768818387630876,2019
+2004,52,"(50,55]",College,384800.4567324955,6581.882130922168,58.46358975720252,28.446810801806002,2019
+2004,52,"(50,55]",College,299274.40430879715,6630.278323061301,45.13753265347352,28.169819163329105,2019
+2004,52,"(50,55]",College,159819.06211849191,6565.750066875789,24.341325894322285,27.36970347254667,2019
+2004,52,"(50,55]",College,190770.03087971275,5920.467505020675,32.22212278302954,27.53974791481673,2019
+2004,66,"(65,70]",NoHS,2057.741328545781,96.79238427826716,21.259330926594465,3114.704006206459,2019
+2004,66,"(65,70]",NoHS,2240.323447037702,137.12254439421181,16.338111700998088,3288.290934161624,2019
+2004,66,"(65,70]",NoHS,2254.936301615799,114.53765472928282,19.687292418772564,3115.732000570603,2019
+2004,66,"(65,70]",NoHS,2057.5842010771994,62.91504978087366,32.704165509580676,3346.162999011586,2019
+2004,66,"(65,70]",NoHS,1982.0058886894076,54.84901775768473,36.1356678700361,3190.944717119608,2019
+2004,43,"(40,45]",HS,10.54325314183124,40.33016011594465,0.2614235379061372,4002.210613389044,2019
+2004,43,"(40,45]",HS,10.386125673249552,40.33016011594465,0.2575275090252708,3995.79617033162,2019
+2004,43,"(40,45]",HS,10.54325314183124,40.33016011594465,0.2614235379061372,4008.9525955812387,2019
+2004,43,"(40,45]",HS,10.386125673249552,40.33016011594465,0.2575275090252708,4003.6180419792086,2019
+2004,43,"(40,45]",HS,10.54325314183124,40.33016011594465,0.2614235379061372,3985.0233754894107,2019
+2004,63,"(60,65]",College,1073.0706211849192,130.66971877566067,8.212083344475642,7040.335192133227,2019
+2004,63,"(60,65]",College,1128.175224416517,124.21689315710954,9.082301092409395,7787.715541761958,2019
+2004,63,"(60,65]",College,1075.8203518850987,143.57537001276296,7.493070376830406,6944.160446500049,2019
+2004,63,"(60,65]",College,1195.300078994614,148.4149892266763,8.053769266991054,6922.815857312731,2019
+2004,63,"(60,65]",College,1170.3796624775582,129.0565123710229,9.068737725631767,7279.04298178787,2019
+2004,50,"(45,50]",NoHS,46.66685816876122,67.75466899478702,0.6887622485817431,6677.801553421513,2019
+2004,50,"(45,50]",NoHS,55.93737881508079,67.75466899478702,0.8255870723740759,6152.84056152454,2019
+2004,50,"(45,50]",NoHS,59.39418312387792,67.75466899478702,0.8766064981949458,6759.585413521158,2019
+2004,50,"(45,50]",NoHS,62.85098743267505,67.75466899478702,0.9276259240158157,6693.0862050514825,2019
+2004,50,"(45,50]",NoHS,56.565888689407544,67.75466899478702,0.8348633316142341,6511.372085938133,2019
+2004,35,"(30,35]",HS,0,38.716953711306864,0,4636.644924750251,2019
+2004,35,"(30,35]",HS,3.1425493716337525,38.716953711306864,0.08116726835138388,4697.117328688933,2019
+2004,35,"(30,35]",HS,0,38.716953711306864,0,4616.403839263754,2019
+2004,35,"(30,35]",HS,1.5712746858168762,38.716953711306864,0.04058363417569194,4623.061359624651,2019
+2004,35,"(30,35]",HS,1.5712746858168762,38.716953711306864,0.04058363417569194,4647.036649589128,2019
+2004,32,"(30,35]",HS,386.6907001795332,80.6603202318893,4.794063537906138,7272.596406530868,2019
+2004,32,"(30,35]",HS,390.3046319569121,80.6603202318893,4.838867870036102,8080.711897870611,2019
+2004,32,"(30,35]",HS,385.7479353680431,80.6603202318893,4.782375451263539,7188.541589336829,2019
+2004,32,"(30,35]",HS,404.1318491921005,80.6603202318893,5.010293140794223,7152.633955481763,2019
+2004,32,"(30,35]",HS,416.85917414721723,80.6603202318893,5.168082310469314,7518.695293182493,2019
+2004,47,"(45,50]",HS,19.593795332136445,56.46222416232251,0.34702485817431666,4927.070689835181,2019
+2004,47,"(45,50]",HS,22.107834829443448,56.46222416232251,0.39155090252707586,4825.97077264931,2019
+2004,47,"(45,50]",HS,19.578082585278278,56.46222416232251,0.346746570397112,5002.46902761979,2019
+2004,47,"(45,50]",HS,51.8049263913824,56.46222416232251,0.9175148014440434,4955.707729737054,2019
+2004,47,"(45,50]",HS,14.864258527827648,56.46222416232251,0.26326023723568853,4929.467776232754,2019
+2004,56,"(55,60]",College,164050.50484739678,3984.619819455332,41.17093029713968,24.457981396536375,2019
+2004,56,"(55,60]",College,180866.28653500899,3984.619819455332,45.39110247153568,25.241077758909505,2019
+2004,56,"(55,60]",College,158175.50879712746,3936.223627316198,40.18458394981358,24.762509218334433,2019
+2004,56,"(55,60]",College,171952.44524236984,3629.7144104350186,47.37354673084637,24.14779164082926,2019
+2004,56,"(55,60]",College,174312.4998204668,4323.393164429267,40.31844738401853,24.25893139851881,2019
+2004,70,"(65,70]",College,55918.52351885099,5936.5995690670525,9.419285041594728,18.066308243526656,2019
+2004,70,"(65,70]",College,55921.66606822262,5936.5995690670525,9.419814393344843,18.63705803531676,2019
+2004,70,"(65,70]",College,55920.0947935368,5936.5995690670525,9.419549717469785,18.977774896945714,2019
+2004,70,"(65,70]",College,55905.95332136445,5936.5995690670525,9.417167634594255,17.44483212710631,2019
+2004,70,"(65,70]",College,55921.66606822262,5936.5995690670525,9.419814393344843,18.60978708433786,2019
+2004,54,"(50,55]",College,663.8635547576303,137.12254439421181,4.8413888299001915,9393.25032417395,2019
+2004,54,"(50,55]",College,663.7064272890484,138.73575079884964,4.7839610444127265,10395.944665532783,2019
+2004,54,"(50,55]",College,663.7064272890484,137.12254439421181,4.840242939052877,9312.251406839747,2019
+2004,54,"(50,55]",College,663.7064272890484,137.12254439421181,4.840242939052877,9376.317501434782,2019
+2004,54,"(50,55]",College,662.2922800718133,138.73575079884964,4.773767945596506,9765.587433223891,2019
+2004,19,"(15,20]",HS,0,10.001879708754274,0,8406.828552487146,2019
+2004,19,"(15,20]",HS,0,11.776406753855838,0,8481.189127863001,2019
+2004,19,"(15,20]",HS,0,11.292444832464504,0,8351.579844418524,2019
+2004,19,"(15,20]",HS,0,14.196216360812517,0,8207.472506018185,2019
+2004,19,"(15,20]",HS,0,10.163200349218052,0,8347.254638518742,2019
+2004,58,"(55,60]",College,34665.462118491916,825.9616791745462,41.96981893050542,1339.5411289627286,2019
+2004,58,"(55,60]",College,34665.462118491916,825.9616791745462,41.96981893050542,1329.7119412618708,2019
+2004,58,"(55,60]",College,34665.462118491916,825.9616791745462,41.96981893050542,1350.438692812286,2019
+2004,58,"(55,60]",College,34665.462118491916,825.9616791745462,41.96981893050542,1310.9921723113926,2019
+2004,58,"(55,60]",College,34665.462118491916,825.9616791745462,41.96981893050542,1357.811171094922,2019
+2004,59,"(55,60]",NoHS,0,19.358476855653432,0,7314.911050495463,2019
+2004,59,"(55,60]",NoHS,0,19.358476855653432,0,7224.405983085628,2019
+2004,59,"(55,60]",NoHS,0,19.358476855653432,0,7274.728492154654,2019
+2004,59,"(55,60]",NoHS,0,19.358476855653432,0,7301.904285621873,2019
+2004,59,"(55,60]",NoHS,0,19.358476855653432,0,7256.4642603729135,2019
+2004,30,"(25,30]",HS,40.47603590664273,50.00939854377137,0.8093685804122511,4245.920480203544,2019
+2004,30,"(25,30]",HS,41.89018312387792,59.68863697159809,0.7018116889452629,4308.694924422513,2019
+2004,30,"(25,30]",HS,74.57269658886895,67.75466899478702,1.1006281588447653,4263.409805732933,2019
+2004,30,"(25,30]",HS,56.97442010771993,56.46222416232251,1.0090714801444045,4269.001092826951,2019
+2004,30,"(25,30]",HS,65.30217594254937,53.23581135304694,1.2266587900667323,4289.691541315053,2019
+2004,62,"(60,65]",College,3348.5434829443448,443.63176127539117,7.548024680013127,360.31419794037436,2019
+2004,62,"(60,65]",College,3348.386355475763,443.63176127539117,7.547670495569413,374.25626680974915,2019
+2004,62,"(60,65]",College,3348.5434829443448,443.63176127539117,7.548024680013127,371.72180174661656,2019
+2004,62,"(60,65]",College,3346.815080789946,443.63176127539117,7.544128651132261,372.5520106193717,2019
+2004,62,"(60,65]",College,3348.386355475763,443.63176127539117,7.547670495569413,389.6167126510447,2019
+2004,69,"(65,70]",College,89723.24136445242,3226.4128092755723,27.808977545126353,20.74019594646676,2019
+2004,69,"(65,70]",College,89721.6700897666,3226.4128092755723,27.808490541516242,21.35350431432254,2019
+2004,69,"(65,70]",College,89721.6700897666,3226.4128092755723,27.808490541516242,20.995578422063275,2019
+2004,69,"(65,70]",College,89721.6700897666,3226.4128092755723,27.808490541516242,20.4852844289174,2019
+2004,69,"(65,70]",College,95065.57529622981,3226.4128092755723,29.464789819494587,20.567919624948274,2019
+2004,68,"(65,70]",HS,33.46815080789946,15.002819563131412,2.230790730173518,6361.949524161153,2019
+2004,68,"(65,70]",HS,33.62527827648115,14.841498922667633,2.2656254905038455,6422.264876188776,2019
+2004,68,"(65,70]",HS,33.46815080789946,15.002819563131412,2.230790730173518,6427.304724443799,2019
+2004,68,"(65,70]",HS,33.46815080789946,15.002819563131412,2.230790730173518,6415.879203435439,2019
+2004,68,"(65,70]",HS,33.46815080789946,15.002819563131412,2.230790730173518,6420.63789161279,2019
+2004,33,"(30,35]",NoHS,254.23224416517056,128.24990916870397,1.9823190972458737,7859.901713284727,2019
+2004,33,"(30,35]",NoHS,254.23224416517056,128.24990916870397,1.9823190972458737,7579.128275323696,2019
+2004,33,"(30,35]",NoHS,254.07511669658888,128.24990916870397,1.981093930931136,7864.31319519746,2019
+2004,33,"(30,35]",NoHS,253.7608617594255,128.24990916870397,1.9786435983016601,7882.605480828228,2019
+2004,33,"(30,35]",NoHS,253.4466068222621,129.8631155733418,1.9516442810054486,7775.985190578855,2019
+2004,50,"(45,50]",College,976.5157917414722,156.48102124986525,6.240474301239346,6956.47190343353,2019
+2004,50,"(45,50]",College,974.9445170556553,156.48102124986525,6.230432989690722,7743.142363618283,2019
+2004,50,"(45,50]",College,976.5157917414722,156.48102124986525,6.240474301239346,6864.0788472749555,2019
+2004,50,"(45,50]",College,978.0870664272891,156.48102124986525,6.2505156127879715,6881.270221127085,2019
+2004,50,"(45,50]",College,974.9445170556553,156.48102124986525,6.230432989690722,7194.770327741413,2019
+2004,28,"(25,30]",College,13.198707360861759,64.52825618551145,0.20454151624548733,6129.193690556459,2019
+2004,28,"(25,30]",College,13.198707360861759,61.30184337623587,0.21530685920577616,6088.317938411497,2019
+2004,28,"(25,30]",College,13.355834829443447,50.00939854377137,0.26706649586584374,6080.760040768806,2019
+2004,28,"(25,30]",College,14.769982046678635,58.0754305669603,0.2543241075010028,6114.63212727034,2019
+2004,28,"(25,30]",College,13.984344703770198,66.14146259014923,0.21143083560799505,6060.943700918123,2019
+2004,24,"(20,25]",HS,176.1398922800718,56.46222416232251,3.1196059824651883,6740.415735354805,2019
+2004,24,"(20,25]",HS,176.1398922800718,56.46222416232251,3.1196059824651883,6681.149649989425,2019
+2004,24,"(20,25]",HS,176.1398922800718,56.46222416232251,3.1196059824651883,6772.917348861512,2019
+2004,24,"(20,25]",HS,176.2970197486535,56.46222416232251,3.122388860237236,6624.521210333388,2019
+2004,24,"(20,25]",HS,176.1398922800718,56.46222416232251,3.1196059824651883,6736.344056405624,2019
+2004,83,"(80,85]",College,12437.896157989228,6259.2408499946105,1.9871253489151064,19.741578807765016,2019
+2004,83,"(80,85]",College,12562.81249551167,6130.1843376235875,2.049336823104693,20.616388427229808,2019
+2004,83,"(80,85]",College,12649.232603231598,6259.2408499946105,2.0208892589973573,20.966807505935712,2019
+2004,83,"(80,85]",College,14812.406463195692,6259.2408499946105,2.366486099222152,18.920925052792064,2019
+2004,83,"(80,85]",College,14623.382118491922,6259.2408499946105,2.336286854739663,19.70575690641429,2019
+2004,36,"(35,40]",HS,-8.013500897666068,48.39619213913358,-0.1655812274368231,4467.978909071813,2019
+2004,36,"(35,40]",HS,-2.828294434470377,48.39619213913358,-0.05844043321299639,4526.4588185397,2019
+2004,36,"(35,40]",HS,-2.042657091561939,48.39619213913358,-0.04220697954271962,4449.210103394979,2019
+2004,36,"(35,40]",HS,-5.499461400359067,48.39619213913358,-0.11363417569193744,4465.957875117705,2019
+2004,36,"(35,40]",HS,-4.556696588868941,48.39619213913358,-0.0941540312876053,4478.86987229051,2019
+2004,62,"(60,65]",College,9082.596193895872,222.62248384001447,40.798198085073,212.0787521087118,2019
+2004,62,"(60,65]",College,9082.439066427289,253.2734055281324,35.86021614661179,209.78339997767625,2019
+2004,62,"(60,65]",College,9082.439066427289,798.5371702957042,11.373846333369798,220.58076540318694,2019
+2004,62,"(60,65]",College,9082.439066427289,288.7639464301637,31.452815279430453,205.48361636970156,2019
+2004,62,"(60,65]",College,9082.439066427289,501.70719184235145,18.10306731517058,208.40912514325373,2019
+2004,52,"(50,55]",College,126631.27385278278,1613.2064046377861,78.49663470758124,224.5756583048576,2019
+2004,52,"(50,55]",College,124657.8942621185,1613.2064046377861,77.27336929963899,233.31197362120798,2019
+2004,52,"(50,55]",College,124605.66509156194,1613.2064046377861,77.24099329963899,232.18788864895015,2019
+2004,52,"(50,55]",College,125836.79023339319,1613.2064046377861,78.0041474368231,233.99581520855227,2019
+2004,52,"(50,55]",College,124811.53350089767,1613.2064046377861,77.36860772563176,260.2593226387703,2019
+2004,35,"(30,35]",HS,184.62477558348297,124.21689315710954,1.4863097191617047,7659.167992020293,2019
+2004,35,"(30,35]",HS,183.21062836624776,124.21689315710954,1.474925219185147,8500.662922872065,2019
+2004,35,"(30,35]",HS,183.21062836624776,124.21689315710954,1.474925219185147,7558.954778910293,2019
+2004,35,"(30,35]",HS,183.21062836624776,124.21689315710954,1.474925219185147,7546.88892749556,2019
+2004,35,"(30,35]",HS,183.05350089766605,124.21689315710954,1.473660274743307,7885.426527669997,2019
+2004,51,"(50,55]",HS,130.90289407540396,45.16977932985802,2.89801933986591,7427.179050077693,2019
+2004,51,"(50,55]",HS,126.03194254937165,45.16977932985802,2.7901828261990715,7021.82250827431,2019
+2004,51,"(50,55]",HS,127.60321723518851,46.782985734495796,2.7275560811651935,7488.377344507828,2019
+2004,51,"(50,55]",HS,136.2452280071813,45.16977932985802,3.016291645177926,7450.753815939568,2019
+2004,51,"(50,55]",HS,125.10489048473968,45.16977932985802,2.7696591026302215,7281.564398419074,2019
+2004,52,"(50,55]",HS,139.76488330341112,100.01879708754274,1.397386165133341,3592.0082416249084,2019
+2004,52,"(50,55]",HS,139.92201077199283,100.01879708754274,1.3989571445207873,3608.794100316028,2019
+2004,52,"(50,55]",HS,139.76488330341112,101.63200349218052,1.3752054323534468,3610.4817924667454,2019
+2004,52,"(50,55]",HS,139.92201077199283,101.63200349218052,1.37675147556014,3627.616714678685,2019
+2004,52,"(50,55]",HS,139.92201077199283,101.63200349218052,1.37675147556014,3596.8655583961786,2019
+2004,89,"(85,90]",College,356.5222262118492,7.2594288208700375,49.11160850381067,11837.06424844389,2019
+2004,89,"(85,90]",College,356.5222262118492,7.2594288208700375,49.11160850381067,10758.054554851906,2019
+2004,89,"(85,90]",College,358.2506283662478,7.2594288208700375,49.349699157641396,11747.68728927107,2019
+2004,89,"(85,90]",College,359.66477558348294,7.2594288208700375,49.54450060168472,11557.360870188557,2019
+2004,89,"(85,90]",College,358.0935008976661,7.2594288208700375,49.328054552747695,11375.634979310782,2019
+2004,69,"(65,70]",College,1409.433393177738,245.2073735049435,5.747924187725633,2093.5623453147127,2019
+2004,69,"(65,70]",College,1411.004667863555,243.5941671003057,5.792440289764985,2022.6871548862923,2019
+2004,69,"(65,70]",College,1409.433393177738,245.2073735049435,5.747924187725633,2126.8509473493436,2019
+2004,69,"(65,70]",College,1409.433393177738,245.2073735049435,5.747924187725633,2071.985509335954,2019
+2004,69,"(65,70]",College,1411.004667863555,243.5941671003057,5.792440289764985,2154.4346186016155,2019
+2004,68,"(65,70]",HS,11.486017953321365,22.58488966492901,0.5085709128416709,6898.545200222735,2019
+2004,68,"(65,70]",HS,11.486017953321365,22.58488966492901,0.5085709128416709,6935.627473828082,2019
+2004,68,"(65,70]",HS,11.486017953321365,22.58488966492901,0.5085709128416709,6908.974334174733,2019
+2004,68,"(65,70]",HS,11.501730700179532,22.58488966492901,0.5092666322846827,6970.208470707614,2019
+2004,68,"(65,70]",HS,11.643145421903053,22.58488966492901,0.5155281072717895,6944.773824299751,2019
+2004,54,"(50,55]",College,2264.5525026929986,483.96192139133586,4.6791956197352595,720.7833469654271,2019
+2004,54,"(50,55]",College,1891.2176373429083,483.96192139133586,3.907781901323706,727.6037228796865,2019
+2004,54,"(50,55]",College,2365.1140825852785,483.96192139133586,4.886983826714801,717.8215106311093,2019
+2004,54,"(50,55]",College,1944.0124667863556,483.96192139133586,4.016870709987966,730.1403768856053,2019
+2004,54,"(50,55]",College,2076.6280502693,483.96192139133586,4.2908914079422376,743.2158031840208,2019
+2004,74,"(70,75]",College,917.6244165170557,109.69803551536945,8.36500318538968,6596.666566661438,2019
+2004,74,"(70,75]",College,919.1956912028726,109.69803551536945,8.3793268209811,6741.682071270336,2019
+2004,74,"(70,75]",College,919.1956912028726,109.69803551536945,8.3793268209811,6460.456464655187,2019
+2004,74,"(70,75]",College,917.6244165170557,109.69803551536945,8.36500318538968,6342.449813502404,2019
+2004,74,"(70,75]",College,917.6244165170557,109.69803551536945,8.36500318538968,6613.65060504547,2019
+2004,61,"(60,65]",College,11666.871669658887,1613.2064046377861,7.232101010830325,2443.89017686032,2019
+2004,61,"(60,65]",College,11859.98132854578,1613.2064046377861,7.351806498194946,2448.202891846163,2019
+2004,61,"(60,65]",College,11829.498599640934,1613.2064046377861,7.332910758122744,2471.956558925041,2019
+2004,61,"(60,65]",College,12014.123375224417,1613.2064046377861,7.447356606498195,2387.104310074569,2019
+2004,61,"(60,65]",College,12026.850700179535,1613.2064046377861,7.45524606498195,2384.6569007867993,2019
+2004,63,"(60,65]",College,948.0128689407541,48.39619213913358,19.58858387484958,7637.1156729018285,2019
+2004,63,"(60,65]",College,948.0128689407541,48.39619213913358,19.58858387484958,8447.002698713419,2019
+2004,63,"(60,65]",College,949.584143626571,48.39619213913358,19.62105078219013,7536.88209223249,2019
+2004,63,"(60,65]",College,948.0128689407541,48.39619213913358,19.58858387484958,7512.870286043287,2019
+2004,63,"(60,65]",College,948.0128689407541,48.39619213913358,19.58858387484958,7897.295848347692,2019
+2004,44,"(40,45]",College,2212.8889910233393,853.3861880533888,2.5930686739505777,109.28588034707778,2019
+2004,44,"(40,45]",College,2211.2391526032316,853.3861880533888,2.591135389297974,111.38279953578311,2019
+2004,44,"(40,45]",College,2212.79471454219,853.3861880533888,2.592958200541857,110.14123388028865,2019
+2004,44,"(40,45]",College,2214.413127468582,853.3861880533888,2.5948546607248884,113.20318355319287,2019
+2004,44,"(40,45]",College,2214.3502764811487,853.3861880533888,2.594781011785741,115.87598481224623,2019
+2004,26,"(25,30]",HS,48.85092998204668,37.10374730666908,1.3166036728927957,6879.368386413492,2019
+2004,26,"(25,30]",HS,66.90487612208258,37.10374730666908,1.8031838016010047,6844.730775903454,2019
+2004,26,"(25,30]",HS,70.04742549371633,37.10374730666908,1.8878800816198398,6887.400755677583,2019
+2004,26,"(25,30]",HS,49.46372710951526,37.10374730666908,1.3331194474964685,6934.48790884732,2019
+2004,26,"(25,30]",HS,65.33360143626571,37.10374730666908,1.760835661591587,6904.263993553885,2019
+2004,64,"(60,65]",NoHS,25.64320287253142,50.00939854377137,0.5127676720624199,7294.116607292977,2019
+2004,64,"(60,65]",NoHS,27.842987432675045,50.00939854377137,0.5567550949109118,7261.272102147113,2019
+2004,64,"(60,65]",NoHS,26.585967684021544,50.00939854377137,0.5316194247117736,7285.038771867619,2019
+2004,64,"(60,65]",NoHS,24.449034111310596,50.00939854377137,0.48888878537323865,7266.467216956689,2019
+2004,64,"(60,65]",NoHS,25.01469299820467,50.00939854377137,0.5001998369628509,7295.639794252372,2019
+2004,65,"(60,65]",College,191767.7903052065,4145.940459919111,46.254352217336944,19.81794948471067,2019
+2004,65,"(60,65]",College,190570.478994614,4145.940459919111,45.9655609714984,20.612904765621785,2019
+2004,65,"(60,65]",College,187110.53213644525,4145.940459919111,45.13102248942954,20.633580245552746,2019
+2004,65,"(60,65]",College,182297.71777378817,4145.940459919111,43.970172639031304,19.525588748991442,2019
+2004,65,"(60,65]",College,178221.83123877918,4113.676331826355,43.324223118850426,19.991066487296695,2019
+2004,37,"(35,40]",College,337.98118491921,129.0565123710229,2.6188619133574003,9219.444893238071,2019
+2004,37,"(35,40]",College,333.11023339317774,127.4433059663851,2.6137915276698807,8698.40929125145,2019
+2004,37,"(35,40]",College,334.99576301615804,127.4433059663851,2.6285865740529184,9180.630789930123,2019
+2004,37,"(35,40]",College,338.4525673249551,127.4433059663851,2.6557108257551523,9141.512630266903,2019
+2004,37,"(35,40]",College,334.6815080789946,127.4433059663851,2.6261207329890786,8974.251676114813,2019
+2004,50,"(45,50]",College,253.94941472172354,271.0186759791481,0.9370181364964758,10235.412725860737,2019
+2004,50,"(45,50]",College,222.38250628366248,262.9526439559591,0.8457131403512659,9237.266993030416,2019
+2004,50,"(45,50]",College,220.63839138240573,238.75454788639237,0.9241222558298369,10003.080656289365,2019
+2004,50,"(45,50]",College,234.48132136445244,214.55645181682556,1.0928653945332647,9630.852074949555,2019
+2004,50,"(45,50]",College,218.92570197486535,208.1036261982744,1.0520033022696107,9375.455522144035,2019
+2004,42,"(40,45]",HS,112.86466068222622,96.79238427826716,1.1660489771359808,8613.029075820521,2019
+2004,42,"(40,45]",HS,133.43264631956913,112.92444832464501,1.1816099020113462,8080.799154984034,2019
+2004,42,"(40,45]",HS,127.0061328545781,83.88673304116487,1.5140193001943905,8612.580380358932,2019
+2004,42,"(40,45]",HS,135.01963375224418,109.69803551536945,1.2308300063707796,8614.279466995542,2019
+2004,42,"(40,45]",HS,133.4483590664273,91.95276506435381,1.4512707581227435,8426.279690465311,2019
+2004,50,"(45,50]",NoHS,4.085314183123878,51.62260494840914,0.0791380866425993,4906.151921489635,2019
+2004,50,"(45,50]",NoHS,4.085314183123878,53.23581135304694,0.07673996280494476,4811.01731571729,2019
+2004,50,"(45,50]",NoHS,4.242441651705565,53.23581135304694,0.07969149983590416,4913.130097754495,2019
+2004,50,"(45,50]",NoHS,4.085314183123878,53.23581135304694,0.07673996280494476,4911.187601824206,2019
+2004,50,"(45,50]",NoHS,4.242441651705565,53.23581135304694,0.07969149983590416,4833.651815220246,2019
+2004,32,"(30,35]",College,1698.3908078994614,1145.376547292828,1.4828231046931408,83.90605629321642,2019
+2004,32,"(30,35]",College,1698.5479353680432,1145.376547292828,1.4829602888086646,82.77088332168127,2019
+2004,32,"(30,35]",College,1698.5479353680432,1145.376547292828,1.4829602888086646,84.30739187197712,2019
+2004,32,"(30,35]",College,1698.3908078994614,1145.376547292828,1.4828231046931408,82.95809572788886,2019
+2004,32,"(30,35]",College,1696.9766606822263,1143.7633408881904,1.4836781351677504,88.05431984292417,2019
+2004,66,"(65,70]",HS,37.31777378815081,48.39619213913358,0.7710890493381468,7386.611379430306,2019
+2004,66,"(65,70]",HS,37.31777378815081,48.39619213913358,0.7710890493381468,7470.67471396054,2019
+2004,66,"(65,70]",HS,37.16064631956912,48.39619213913358,0.7678423586040914,7418.427761466311,2019
+2004,66,"(65,70]",HS,37.31777378815081,48.39619213913358,0.7710890493381468,7579.55092911437,2019
+2004,66,"(65,70]",HS,37.16064631956912,48.39619213913358,0.7678423586040914,7492.4292389392995,2019
+2004,64,"(60,65]",HS,296.9709156193896,74.20749461333816,4.00189923088997,7637.1156729018285,2019
+2004,64,"(60,65]",HS,300.11346499102336,75.82070101797595,3.9581995544972735,8447.002698713419,2019
+2004,64,"(60,65]",HS,298.5421903052065,77.43390742261373,3.8554452466907345,7536.88209223249,2019
+2004,64,"(60,65]",HS,298.5421903052065,75.82070101797595,3.937475996620324,7512.870286043287,2019
+2004,64,"(60,65]",HS,298.5421903052065,75.82070101797595,3.937475996620324,7897.295848347692,2019
+2004,67,"(65,70]",College,370.7108366247756,87.11314585044046,4.255509693809333,6416.787713153901,2019
+2004,67,"(65,70]",College,350.3942549371634,93.56597146899159,3.7448898294535047,5919.815725867969,2019
+2004,67,"(65,70]",College,371.29220825852786,88.72635225507824,4.184689202494257,6516.644451331128,2019
+2004,67,"(65,70]",College,347.22028007181325,90.33955865971603,3.8435020629190295,6456.528244009109,2019
+2004,67,"(65,70]",College,398.94664272890486,91.95276506435381,4.338604091456077,6371.248242404235,2019
+2004,38,"(35,40]",College,-329.0249192100539,0,-Inf,5268.515291081786,2019
+2004,38,"(35,40]",College,-319.2830161579892,0,-Inf,5263.311577755618,2019
+2004,38,"(35,40]",College,-320.54003590664274,0,-Inf,5312.415107262203,2019
+2004,38,"(35,40]",College,-337.8240574506284,0,-Inf,5259.521565188487,2019
+2004,38,"(35,40]",College,-316.6118491921005,0,-Inf,5271.345297996873,2019
+2004,35,"(30,35]",HS,28.000114901256733,64.52825618551145,0.43392021660649815,4558.682308649474,2019
+2004,35,"(30,35]",HS,16.35696947935368,59.68863697159809,0.27403824763391543,4621.194364556762,2019
+2004,35,"(30,35]",HS,16.35696947935368,64.52825618551145,0.2534853790613718,4569.660173230545,2019
+2004,35,"(30,35]",HS,16.215554757630162,67.75466899478702,0.23932748839608042,4547.2426790462905,2019
+2004,35,"(30,35]",HS,21.385048473967682,61.30184337623587,0.3488483754512635,4591.968970074895,2019
+2004,50,"(45,50]",NoHS,5.656588868940754,46.782985734495796,0.12091124113033737,4810.391525940751,2019
+2004,50,"(45,50]",NoHS,5.656588868940754,46.782985734495796,0.12091124113033737,4708.5694675312,2019
+2004,50,"(45,50]",NoHS,5.656588868940754,46.782985734495796,0.12091124113033737,4851.001609093986,2019
+2004,50,"(45,50]",NoHS,5.656588868940754,46.782985734495796,0.12091124113033737,4836.312239977641,2019
+2004,50,"(45,50]",NoHS,5.656588868940754,46.782985734495796,0.12091124113033737,4788.553084457563,2019
+2004,44,"(40,45]",HS,2.0112315978456015,46.782985734495796,0.04299066351300884,3542.8184112118724,2019
+2004,44,"(40,45]",HS,2.0112315978456015,46.782985734495796,0.04299066351300884,3539.550976925787,2019
+2004,44,"(40,45]",HS,2.0112315978456015,46.782985734495796,0.04299066351300884,3571.990264958279,2019
+2004,44,"(40,45]",HS,2.0112315978456015,46.782985734495796,0.04299066351300884,3536.4622772418115,2019
+2004,44,"(40,45]",HS,2.0112315978456015,46.782985734495796,0.04299066351300884,3544.929507335824,2019
+2004,70,"(65,70]",College,95662.45541113106,7598.202165843973,12.59014347382863,15.802976299044108,2019
+2004,70,"(65,70]",College,100098.68236983843,7904.711382725152,12.66316725852796,16.731698115882246,2019
+2004,70,"(65,70]",College,91704.46161579892,7856.3151905860195,11.672706528588053,16.396171915760185,2019
+2004,70,"(65,70]",College,87240.62736086176,7388.485333241061,11.807647092207525,15.52483095336305,2019
+2004,70,"(65,70]",College,87229.47131059246,7372.353269194681,11.831971166531059,15.89151738577174,2019
+2004,81,"(80,85]",College,891.2270017953322,120.82915970737018,7.375926506099589,8855.488979890293,2019
+2004,81,"(80,85]",College,1331.1839138240575,122.9263280333993,10.829119645242901,9844.651201163506,2019
+2004,81,"(80,85]",College,940.093644524237,118.08670881948595,7.96104535321852,8765.889398414725,2019
+2004,81,"(80,85]",College,730.0142190305206,122.11972483108042,5.977856730682104,8737.685043902013,2019
+2004,81,"(80,85]",College,1335.2692280071813,118.73199138134106,11.24607793125098,9160.762666877637,2019
+2004,63,"(60,65]",HS,1806.9658886894076,383.94312430379307,4.706337408609654,3685.7838468810087,2019
+2004,63,"(60,65]",HS,1842.6338240574505,191.97156215189653,9.598472833176592,3838.745968813769,2019
+2004,63,"(60,65]",HS,1682.8351885098743,209.7168326029122,8.02432102193835,6636.254942026766,2019
+2004,63,"(60,65]",HS,1734.5301256732496,306.5092168811794,5.658981949458483,6615.856776320315,2019
+2004,63,"(60,65]",HS,1786.0679353680432,106.47162270609388,16.77506071545783,3743.632857206252,2019
+2004,32,"(30,35]",NoHS,0,32.264128092755726,0,5778.003614957002,2019
+2004,32,"(30,35]",NoHS,0,32.264128092755726,0,5748.6480966851395,2019
+2004,32,"(30,35]",NoHS,0,32.264128092755726,0,5783.793131501987,2019
+2004,32,"(30,35]",NoHS,0,32.264128092755726,0,5809.863769228106,2019
+2004,32,"(30,35]",NoHS,0,32.264128092755726,0,5797.777709156505,2019
+2004,59,"(55,60]",HS,206.00982405745063,51.62260494840914,3.9906902075812285,7373.516618883803,2019
+2004,59,"(55,60]",HS,206.49691921005387,75.82070101797595,2.7234899761886475,6385.369397624218,2019
+2004,59,"(55,60]",HS,204.59567684021542,69.36787539942482,2.9494297708000996,7397.475568867119,2019
+2004,59,"(55,60]",HS,205.85269658886895,80.6603202318893,2.5520937184115526,7295.63284794767,2019
+2004,59,"(55,60]",HS,207.89535368043087,79.04711382725151,2.6300182715685554,7044.48623587562,2019
+2004,30,"(25,30]",College,1006.0871813285459,259.7262311466836,3.873644864004305,4480.962445430848,2019
+2004,30,"(25,30]",College,1002.944631956912,261.33943755132134,3.8377086954583945,4663.855241798033,2019
+2004,30,"(25,30]",College,998.2308078994614,259.7262311466836,3.8433961925690068,4458.478698203173,2019
+2004,30,"(25,30]",College,1001.3733572710952,259.7262311466836,3.8554956611431264,4798.248088786234,2019
+2004,30,"(25,30]",College,1006.0871813285459,259.7262311466836,3.873644864004305,4574.917865985331,2019
+2004,52,"(50,55]",HS,405.70312387791745,46.782985734495796,8.672022905514753,6796.150845795953,2019
+2004,52,"(50,55]",HS,407.27439856373434,46.782985734495796,8.70560936138429,6315.063164367295,2019
+2004,52,"(50,55]",HS,405.86025134649907,46.782985734495796,8.675381551101705,6829.47715373704,2019
+2004,52,"(50,55]",HS,405.70312387791745,46.782985734495796,8.672022905514753,6791.530755907259,2019
+2004,52,"(50,55]",HS,405.70312387791745,46.782985734495796,8.672022905514753,6582.505073947164,2019
+2004,42,"(40,45]",HS,60.52550089766607,66.14146259014923,0.9150916615303337,8052.394582159954,2019
+2004,42,"(40,45]",HS,60.336947935368045,66.14146259014923,0.9122409086906753,7597.314660631617,2019
+2004,42,"(40,45]",HS,60.336947935368045,66.14146259014923,0.9122409086906753,8018.493791081128,2019
+2004,42,"(40,45]",HS,60.494075403949736,66.14146259014923,0.9146165360570574,7984.32743284765,2019
+2004,42,"(40,45]",HS,60.494075403949736,66.14146259014923,0.9146165360570574,7838.239331381905,2019
+2004,24,"(20,25]",HS,6.127971274685817,27.424508878842364,0.22344871522616266,5360.257823388905,2019
+2004,24,"(20,25]",HS,6.285098743267505,27.424508878842364,0.22917816946273095,5427.690116883399,2019
+2004,24,"(20,25]",HS,6.285098743267505,27.424508878842364,0.22917816946273095,5404.016638255104,2019
+2004,24,"(20,25]",HS,5.970843806104129,27.424508878842364,0.21771926098959438,5295.782892487145,2019
+2004,24,"(20,25]",HS,6.127971274685817,27.424508878842364,0.22344871522616266,5418.704502091665,2019
+2004,44,"(40,45]",HS,3534.4409910233394,274.24508878842363,12.887891654279041,1316.6852272919723,2019
+2004,44,"(40,45]",HS,3532.8697163375227,274.24508878842363,12.882162200042472,1311.247724515098,2019
+2004,44,"(40,45]",HS,3532.8697163375227,274.24508878842363,12.882162200042472,1492.1666137700226,2019
+2004,44,"(40,45]",HS,3534.4409910233394,274.24508878842363,12.887891654279041,1251.2191988553682,2019
+2004,44,"(40,45]",HS,3534.4409910233394,274.24508878842363,12.887891654279041,1325.3514632981623,2019
+2004,43,"(40,45]",College,227.9919569120287,193.58476855653433,1.17773706377858,6845.429414580836,2019
+2004,43,"(40,45]",College,228.14908438061042,193.58476855653433,1.178548736462094,6571.235437426889,2019
+2004,43,"(40,45]",College,227.9919569120287,193.58476855653433,1.17773706377858,6839.239717152379,2019
+2004,43,"(40,45]",College,229.5632315978456,193.58476855653433,1.1858537906137183,6813.741381296913,2019
+2004,43,"(40,45]",College,229.72035906642728,193.58476855653433,1.1866654632972322,6744.76429095801,2019
+2004,55,"(50,55]",HS,162.86262118491922,130.66971877566067,1.2463684984623613,7004.329544686278,2019
+2004,55,"(50,55]",HS,156.65608617594256,132.28292518029846,1.1842502421414107,6064.086693120795,2019
+2004,55,"(50,55]",HS,159.7986355475763,130.66971877566067,1.2229201764941837,7023.405226001456,2019
+2004,55,"(50,55]",HS,159.4058168761221,132.28292518029846,1.2050369815972528,6922.545407583246,2019
+2004,55,"(50,55]",HS,156.81321364452424,130.66971877566067,1.2000730935508312,6689.984322244549,2019
+2004,38,"(35,40]",HS,11.548868940754039,72.59428820870036,0.15908784596871242,5307.171586859618,2019
+2004,38,"(35,40]",HS,11.705996409335727,72.59428820870036,0.16125230645808267,5220.549566302973,2019
+2004,38,"(35,40]",HS,11.705996409335727,72.59428820870036,0.16125230645808267,5286.436478970973,2019
+2004,38,"(35,40]",HS,11.548868940754039,72.59428820870036,0.15908784596871242,5325.13532890299,2019
+2004,38,"(35,40]",HS,11.705996409335727,72.59428820870036,0.16125230645808267,5270.9986534564205,2019
+2004,50,"(45,50]",College,174.11294793536806,56.46222416232251,3.0837068592057766,8489.559935117537,2019
+2004,50,"(45,50]",College,174.90644165170556,56.46222416232251,3.097760391954616,8540.235614797133,2019
+2004,50,"(45,50]",College,175.68422262118492,56.46222416232251,3.111535636926251,8462.852515977353,2019
+2004,50,"(45,50]",College,174.58433034111312,56.46222416232251,3.092055492521919,8484.42581195403,2019
+2004,50,"(45,50]",College,175.06356912028727,56.46222416232251,3.1005432697266637,8482.597996411514,2019
+2004,43,"(40,45]",College,403.73903052064634,101.63200349218052,3.9725580195977312,5634.726454513737,2019
+2004,43,"(40,45]",College,403.896157989228,148.4149892266763,2.7213973473552033,6258.411155568508,2019
+2004,43,"(40,45]",College,403.73903052064634,112.92444832464501,3.575302217637958,5561.875614903305,2019
+2004,43,"(40,45]",College,402.3248833034111,133.89613158493626,3.004753599234483,5557.564700495929,2019
+2004,43,"(40,45]",College,403.896157989228,111.31124192000723,3.6285297964736047,5803.936312326676,2019
+2004,19,"(15,20]",HS,6.520789946140035,27.424508878842364,0.23777235081758333,8138.2760830499055,2019
+2004,19,"(15,20]",HS,6.6779174147217235,27.424508878842364,0.24350180505415162,8235.582756697218,2019
+2004,19,"(15,20]",HS,6.6779174147217235,27.424508878842364,0.24350180505415162,8150.619896026481,2019
+2004,19,"(15,20]",HS,6.6779174147217235,27.424508878842364,0.24350180505415162,8056.967556296217,2019
+2004,19,"(15,20]",HS,6.6779174147217235,27.424508878842364,0.24350180505415162,8187.285236467821,2019
+2004,45,"(40,45]",HS,76.5053644524237,29.03771528348015,2.634689530685921,7511.511854670156,2019
+2004,45,"(40,45]",HS,75.32690843806104,29.03771528348015,2.5941058965102286,6968.947730047791,2019
+2004,45,"(40,45]",HS,73.2842513464991,29.03771528348015,2.523760930605696,7605.245629545704,2019
+2004,45,"(40,45]",HS,74.7455368043088,29.03771528348015,2.574084636983554,7547.610110921638,2019
+2004,45,"(40,45]",HS,73.1899748653501,29.03771528348015,2.5205142398716407,7352.942864162639,2019
+2004,25,"(20,25]",HS,0.31425493716337527,38.716953711306864,0.008116726835138388,4777.8048298805115,2019
+2004,25,"(20,25]",HS,0.31425493716337527,38.716953711306864,0.008116726835138388,4848.442997547767,2019
+2004,25,"(20,25]",HS,0.31425493716337527,38.716953711306864,0.008116726835138388,4797.485034532311,2019
+2004,25,"(20,25]",HS,0.31425493716337527,38.716953711306864,0.008116726835138388,4803.7767393834965,2019
+2004,25,"(20,25]",HS,0.31425493716337527,38.716953711306864,0.008116726835138388,4827.0590700771,2019
+2004,63,"(60,65]",College,3832.4960861759423,1156.6689921252928,3.3133905311441065,3307.9202769210615,2019
+2004,63,"(60,65]",College,3719.050053859964,1156.6689921252928,3.215310585119506,3123.6230583679194,2019
+2004,63,"(60,65]",College,3588.791382405745,1156.6689921252928,3.102695245431979,3463.3356201319148,2019
+2004,63,"(60,65]",College,3628.073249551167,1156.6689921252928,3.1366564455790016,3107.227092269889,2019
+2004,63,"(60,65]",College,3673.7973429084377,1156.6689921252928,3.1761872825501354,3242.287725846992,2019
+2004,59,"(55,60]",HS,330.9104488330341,53.23581135304694,6.215936987200524,7461.411031198627,2019
+2004,59,"(55,60]",HS,1349.2378599640936,53.23581135304694,25.34455333114539,8750.397412618882,2019
+2004,59,"(55,60]",HS,3820.821515260323,51.62260494840914,74.01450428700363,4050.5172030113586,2019
+2004,59,"(55,60]",HS,357.3078635547576,51.62260494840914,6.921538808664262,7412.558073412205,2019
+2004,59,"(55,60]",HS,268.62512028725314,53.23581135304694,5.045947708128214,7452.77001554614,2019
+2004,49,"(45,50]",HS,458.65508078994617,96.79238427826716,4.738545126353791,6258.428235753799,2019
+2004,49,"(45,50]",HS,521.3489407540395,96.79238427826716,5.386259927797834,6966.160645026331,2019
+2004,49,"(45,50]",HS,537.3759425493716,96.79238427826716,5.551841155234658,6175.306314257214,2019
+2004,49,"(45,50]",HS,532.3478635547577,96.79238427826716,5.499894103489773,6190.77262836314,2019
+2004,49,"(45,50]",HS,537.21881508079,96.79238427826716,5.55021780986763,6472.8147247566485,2019
+2004,67,"(65,70]",College,18179.01960502693,500.0939854377137,36.35120624199371,17.18439058453913,2019
+2004,67,"(65,70]",College,18179.01960502693,500.0939854377137,36.35120624199371,17.62967026871015,2019
+2004,67,"(65,70]",College,18179.176732495514,500.0939854377137,36.35152043787121,18.314575674547036,2019
+2004,67,"(65,70]",College,18180.590879712745,500.0939854377137,36.3543482007686,16.51779410985279,2019
+2004,67,"(65,70]",College,18180.590879712745,500.0939854377137,36.3543482007686,17.20664276407947,2019
+2004,41,"(40,45]",HS,105.51109515260323,80.6603202318893,1.3080916967509026,7526.833517328693,2019
+2004,41,"(40,45]",HS,105.66822262118492,82.2735266365271,1.2843526580307214,7088.5924018226415,2019
+2004,41,"(40,45]",HS,105.66822262118492,82.2735266365271,1.2843526580307214,7547.685236675905,2019
+2004,41,"(40,45]",HS,105.51109515260323,80.6603202318893,1.3080916967509026,7495.730701603471,2019
+2004,41,"(40,45]",HS,105.66822262118492,82.2735266365271,1.2843526580307214,7402.787644798164,2019
+2004,62,"(60,65]",College,417707.66247755836,19519.79749611721,21.399180117552287,2.137424366587618,2019
+2004,62,"(60,65]",College,156836.78276481148,19519.79749611721,8.034754602142195,2.1820483676834277,2019
+2004,62,"(60,65]",College,427399.28473967686,19519.79749611721,21.895682310469315,2.093878738556749,2019
+2004,62,"(60,65]",College,267529.9418312388,19519.79749611721,13.705569531879346,2.098208240718619,2019
+2004,62,"(60,65]",College,433541.397486535,19519.79749611721,22.210342990124417,2.046605978488266,2019
+2004,61,"(60,65]",College,1675.92157989228,143.57537001276296,11.67276518070823,5905.401270504734,2019
+2004,61,"(60,65]",College,2083.8244883303414,458.1506189171313,4.548339350180505,3348.867364511932,2019
+2004,61,"(60,65]",College,2250.2224775583486,164.5470532730542,13.675252353649041,3214.3413804342076,2019
+2004,61,"(60,65]",College,1565.303842010772,438.7921420614778,3.5673014440433213,5858.040190364978,2019
+2004,61,"(60,65]",College,2153.5890843806105,203.26400698436103,10.59503409546731,3301.736593024445,2019
+2004,50,"(45,50]",College,7770.73895870736,488.4788993243217,15.908034040889124,1715.641890540539,2019
+2004,50,"(45,50]",College,7769.324811490126,488.4788993243217,15.905139039243831,1693.675755267098,2019
+2004,50,"(45,50]",College,7770.73895870736,488.6402199647854,15.902782131334524,1754.8189381437776,2019
+2004,50,"(45,50]",College,7772.310233393177,488.6402199647854,15.90599773787205,1671.4416586611958,2019
+2004,50,"(45,50]",College,7769.167684021544,488.4788993243217,15.904817372394355,1690.4408731624783,2019
+2004,30,"(25,30]",HS,88.7770197486535,67.75466899478702,1.3102716176723395,8901.957084833368,2019
+2004,30,"(25,30]",HS,83.46611131059247,67.75466899478702,1.2318872270930032,8583.959075893164,2019
+2004,30,"(25,30]",HS,86.4672459605027,67.75466899478702,1.2761813649647582,8906.953435182291,2019
+2004,30,"(25,30]",HS,87.21360143626572,67.75466899478702,1.2871969228124462,8927.670887843744,2019
+2004,30,"(25,30]",HS,83.43468581687613,67.75466899478702,1.2314234141309952,8806.915020557488,2019
+2004,56,"(55,60]",HS,45.975497307001795,43.55657292522023,1.0555352319828852,8331.143871210643,2019
+2004,56,"(55,60]",HS,46.13262477558349,43.55657292522023,1.0591426661318357,7375.1833270601655,2019
+2004,56,"(55,60]",HS,46.1247684021544,43.55657292522023,1.0589622944243882,8290.412171297672,2019
+2004,56,"(55,60]",HS,46.13262477558349,43.55657292522023,1.0591426661318357,8189.5992813847815,2019
+2004,56,"(55,60]",HS,45.975497307001795,43.55657292522023,1.0555352319828852,7955.901022767595,2019
+2004,31,"(30,35]",HS,158.65160502692999,35.4905409020313,4.470250410239579,4966.591743652143,2019
+2004,31,"(30,35]",HS,158.65160502692999,37.10374730666908,4.275891696750903,4987.912013909859,2019
+2004,31,"(30,35]",HS,158.4944775583483,35.4905409020313,4.465823104693141,4971.685435252538,2019
+2004,31,"(30,35]",HS,158.95014721723518,35.4905409020313,4.478662290777813,4986.897072325061,2019
+2004,31,"(30,35]",HS,158.51019030520646,37.10374730666908,4.272080364150055,4976.6247148496495,2019
+2004,47,"(45,50]",HS,71.10017953321363,120.99048034783397,0.5876510228640192,10156.418489523869,2019
+2004,47,"(45,50]",HS,69.84315978456016,120.99048034783397,0.5772616125150422,9437.463314218026,2019
+2004,47,"(45,50]",HS,72.67145421903052,120.99048034783397,0.6006377858002406,10206.222553300622,2019
+2004,47,"(45,50]",HS,68.90039497307001,120.99048034783397,0.5694695547533092,10149.514056789296,2019
+2004,47,"(45,50]",HS,69.52890484739677,120.99048034783397,0.5746642599277978,9837.138368077489,2019
+2004,56,"(55,60]",HS,643.8455152603232,132.28292518029846,4.867185348243374,5445.533529614755,2019
+2004,56,"(55,60]",HS,1278.6719138240574,150.02819563131413,8.522877372772793,6023.6146354442135,2019
+2004,56,"(55,60]",HS,354.73097307001797,120.99048034783397,2.9318916004813476,5371.144627985062,2019
+2004,56,"(55,60]",HS,1288.0681364452425,125.83009956174732,10.236566139035455,5354.635090736709,2019
+2004,56,"(55,60]",HS,425.4383339317774,146.80178282203855,2.898046098306026,5630.168385324047,2019
+2004,49,"(45,50]",HS,0.7856373429084381,40.33016011594465,0.01948014440433213,6424.470978804272,2019
+2004,49,"(45,50]",HS,0.17284021543985637,40.33016011594465,0.004285631768953069,7160.730719022552,2019
+2004,49,"(45,50]",HS,1.5712746858168762,40.33016011594465,0.03896028880866426,6456.871039405439,2019
+2004,49,"(45,50]",HS,0.2828294434470377,40.33016011594465,0.007012851985559567,7168.540075405409,2019
+2004,49,"(45,50]",HS,4.085314183123878,40.33016011594465,0.10129675090252709,6347.705899625338,2019
+2004,63,"(60,65]",HS,1294.7303411131059,137.12254439421181,9.442140581864514,495.29964287050996,2019
+2004,63,"(60,65]",HS,1360.7238779174147,137.12254439421181,9.92341473773625,496.42614397429634,2019
+2004,63,"(60,65]",HS,1605.8427289048473,137.12254439421181,11.711004459545551,489.6216473765163,2019
+2004,63,"(60,65]",HS,1406.290843806104,137.12254439421181,10.255723083457209,483.12261662789615,2019
+2004,63,"(60,65]",HS,1286.8739676840214,137.12254439421181,9.38484603949883,506.7390201229763,2019
+2004,78,"(75,80]",NoHS,108.10369838420108,30.650921688117936,3.5269314079422385,9111.634157543824,2019
+2004,78,"(75,80]",NoHS,150.68524236983842,30.650921688117936,4.916173285198556,9157.913501177198,2019
+2004,78,"(75,80]",NoHS,123.97357271095153,30.650921688117936,4.044693140794224,9111.919147246448,2019
+2004,78,"(75,80]",NoHS,142.67174147217236,30.650921688117936,4.654729241877257,9089.49593137646,2019
+2004,78,"(75,80]",NoHS,161.36991023339317,30.650921688117936,5.264765342960288,9107.081152773895,2019
+2004,26,"(25,30]",NoHS,6.520789946140035,69.36787539942482,0.09400302241625386,5570.586149584787,2019
+2004,26,"(25,30]",NoHS,6.363662477558349,69.36787539942482,0.09173788934598269,5698.876396067556,2019
+2004,26,"(25,30]",NoHS,6.47365170556553,69.36787539942482,0.09332348249517251,5524.936947806017,2019
+2004,26,"(25,30]",NoHS,6.096545780969479,69.36787539942482,0.08788716312652167,5536.099294384398,2019
+2004,26,"(25,30]",NoHS,6.520789946140035,69.36787539942482,0.09400302241625386,5559.879169246967,2019
+2004,53,"(50,55]",HS,3.0639856373429084,29.03771528348015,0.10551744885679903,4609.44217217427,2019
+2004,53,"(50,55]",HS,3.1268366247755837,29.03771528348015,0.10768190934616928,4639.35232109511,2019
+2004,53,"(50,55]",HS,7.306427289048473,29.03771528348015,0.25161853188929,4605.6491689499235,2019
+2004,53,"(50,55]",HS,7.934937163375224,29.03771528348015,0.27326313678299236,4580.333629777266,2019
+2004,53,"(50,55]",HS,6.206535008976661,29.03771528348015,0.21374047332531088,4564.076957607211,2019
+2004,45,"(40,45]",NoHS,3.1425493716337525,43.55657292522023,0.07214868297900788,4173.702122056451,2019
+2004,45,"(40,45]",NoHS,3.1425493716337525,43.55657292522023,0.07214868297900788,4164.362549541414,2019
+2004,45,"(40,45]",NoHS,3.1425493716337525,43.55657292522023,0.07214868297900788,4194.207842643276,2019
+2004,45,"(40,45]",NoHS,3.1425493716337525,43.55657292522023,0.07214868297900788,4204.519094932709,2019
+2004,45,"(40,45]",NoHS,3.1425493716337525,43.55657292522023,0.07214868297900788,4163.06796624997,2019
+2004,89,"(85,90]",NoHS,5.813716337522442,14.518857641740075,0.40042519053349385,11184.97548451249,2019
+2004,89,"(85,90]",NoHS,5.813716337522442,14.518857641740075,0.40042519053349385,11176.986827977264,2019
+2004,89,"(85,90]",NoHS,5.970843806104129,14.518857641740075,0.4112474929803449,11137.052195775492,2019
+2004,89,"(85,90]",NoHS,5.813716337522442,14.518857641740075,0.40042519053349385,11201.955159188312,2019
+2004,89,"(85,90]",NoHS,5.813716337522442,14.518857641740075,0.40042519053349385,11188.54138017428,2019
+2004,45,"(40,45]",College,25349.374506283664,1613.2064046377861,15.713658483754513,18.875803891614044,2019
+2004,45,"(40,45]",College,20351.14973070018,1613.2064046377861,12.615341516245488,21.160599969936417,2019
+2004,45,"(40,45]",College,25145.108797127472,1613.2064046377861,15.587037545126355,19.897276336486822,2019
+2004,45,"(40,45]",College,30435.59066427289,1613.2064046377861,18.86651985559567,18.279329651680335,2019
+2004,45,"(40,45]",College,34223.933931777385,1613.2064046377861,21.21485126353791,19.504203208628326,2019
+2004,29,"(25,30]",HS,133.4012208258528,48.39619213913358,2.7564404332129966,9212.18683770873,2019
+2004,29,"(25,30]",HS,133.2440933572711,48.39619213913358,2.7531937424789414,9254.616280212394,2019
+2004,29,"(25,30]",HS,133.4012208258528,48.39619213913358,2.7564404332129966,9196.770569202428,2019
+2004,29,"(25,30]",HS,139.68631956912031,48.39619213913358,2.8863080625752113,9153.160381386466,2019
+2004,29,"(25,30]",HS,150.5281149012567,48.39619213913358,3.1103297232250298,9202.294477040163,2019
+2004,60,"(55,60]",College,241.66204667863556,51.62260494840914,4.681322202166067,7601.368111072753,2019
+2004,60,"(55,60]",College,241.66204667863556,53.23581135304694,4.539463953615578,6661.5255059491,2019
+2004,60,"(55,60]",College,241.66204667863556,53.23581135304694,4.539463953615578,7594.609553547874,2019
+2004,60,"(55,60]",College,241.66204667863556,51.62260494840914,4.681322202166067,7455.131985436749,2019
+2004,60,"(55,60]",College,241.66204667863556,51.62260494840914,4.681322202166067,7239.444443932695,2019
+2004,58,"(55,60]",College,82839.64409335727,1758.394981055187,47.11094207266585,27.768818387630876,2019
+2004,58,"(55,60]",College,70143.74463195691,3000.5639126262818,23.376854042933118,28.446810801806002,2019
+2004,58,"(55,60]",College,46829.1708438061,1101.819974367608,42.50165356703014,27.164586541515455,2019
+2004,58,"(55,60]",College,38198.15899461401,1372.838650346756,27.82421589380937,25.62277832822135,2019
+2004,58,"(55,60]",College,52320.775870736084,3000.5639126262818,17.436980978999262,26.869043729423304,2019
+2004,65,"(60,65]",HS,2.92257091561939,51.62260494840914,0.056614169675090274,6970.495291756566,2019
+2004,65,"(60,65]",HS,3.0639856373429084,51.62260494840914,0.05935356498194948,7265.073751286611,2019
+2004,65,"(60,65]",HS,3.095411131059246,50.00939854377137,0.0618965878653779,7044.901858331361,2019
+2004,65,"(60,65]",HS,3.095411131059246,50.00939854377137,0.0618965878653779,7110.549232155718,2019
+2004,65,"(60,65]",HS,3.095411131059246,50.00939854377137,0.0618965878653779,7170.853968735469,2019
+2004,72,"(70,75]",College,4189.018312387792,227.46210305392788,18.416335099982078,3092.161660238219,2019
+2004,72,"(70,75]",College,1966.136014362657,227.46210305392788,8.643795990475457,1645.5388303474724,2019
+2004,72,"(70,75]",College,2106.607971274686,227.46210305392788,9.26135801520854,1709.091663046614,2019
+2004,72,"(70,75]",College,2611.7727827648114,227.46210305392788,11.482232634354915,1640.7456088296526,2019
+2004,72,"(70,75]",College,3269.3512387791743,227.46210305392788,14.37316895818931,3004.7468152233105,2019
+2004,70,"(65,70]",College,376347.62743267504,3565.186154249507,105.56184478167829,20.74019594646676,2019
+2004,70,"(65,70]",College,448966.12969479355,3581.3182182958853,125.3633724591017,21.35350431432254,2019
+2004,70,"(65,70]",College,381429.60114901257,3565.186154249507,106.98728892301159,20.995578422063275,2019
+2004,70,"(65,70]",College,542478.3428366247,3565.186154249507,152.15989274221212,20.4852844289174,2019
+2004,70,"(65,70]",College,504769.00739676843,3565.186154249507,141.58279134880834,20.567919624948274,2019
+2004,51,"(50,55]",College,43986.5778096948,1661.6025967769199,26.472381479793906,270.91777734348284,2019
+2004,51,"(50,55]",College,24950.270736086175,1742.2629170088094,14.320611712795824,270.32912848486836,2019
+2004,51,"(50,55]",College,31800.242728904846,1790.6591091479427,17.7589595732917,274.1694448520926,2019
+2004,51,"(50,55]",College,34127.45766606823,1629.338468684164,20.945591307145158,267.56477980953105,2019
+2004,51,"(50,55]",College,44401.86570915619,1518.0272267641567,29.24971629382675,276.9522774588399,2019
+2004,44,"(40,45]",HS,258.3175583482944,96.79238427826716,2.668779783393502,8156.36552515098,2019
+2004,44,"(40,45]",HS,262.56,96.79238427826716,2.7126101083032492,7602.36376863807,2019
+2004,44,"(40,45]",HS,277.644236983842,96.79238427826716,2.868451263537906,8151.394245561072,2019
+2004,44,"(40,45]",HS,251.0896947935368,96.79238427826716,2.5941058965102286,8149.775423577908,2019
+2004,44,"(40,45]",HS,262.0886175942549,96.79238427826716,2.707740072202166,7962.238943531595,2019
+2004,75,"(70,75]",College,204069.29982046678,37652.237484245925,5.419845232460658,4.1738579603995865,2019
+2004,75,"(70,75]",College,244014.2448833034,36555.25712909224,6.675216208207339,4.195866032060775,2019
+2004,75,"(70,75]",College,163388.99820466788,34796.86214803705,4.69550954076142,4.103645037594413,2019
+2004,75,"(70,75]",College,283787.921005386,37652.237484245925,7.537079864752412,4.107528580794487,2019
+2004,75,"(70,75]",College,213239.2588868941,36813.37015383428,5.792440572428392,4.0096407268863095,2019
+2004,38,"(35,40]",HS,41.481651705565525,56.46222416232251,0.734679731820526,7500.2513643933835,2019
+2004,38,"(35,40]",HS,41.481651705565525,56.46222416232251,0.734679731820526,6990.81460394543,2019
+2004,38,"(35,40]",HS,41.481651705565525,56.46222416232251,0.734679731820526,7495.679984357506,2019
+2004,38,"(35,40]",HS,41.481651705565525,56.46222416232251,0.734679731820526,7494.191383613647,2019
+2004,38,"(35,40]",HS,41.481651705565525,56.46222416232251,0.734679731820526,7321.740708615869,2019
+2004,71,"(70,75]",College,28748.041651705567,1209.9048034783398,23.760581468110708,27.678545276324463,2019
+2004,71,"(70,75]",College,28749.612926391383,1209.9048034783398,23.76188014440433,27.617785500193595,2019
+2004,71,"(70,75]",College,28748.041651705567,1209.9048034783398,23.760581468110708,29.167917768827827,2019
+2004,71,"(70,75]",College,28752.755475763017,1209.9048034783398,23.764477496991574,27.30777943175437,2019
+2004,71,"(70,75]",College,28749.612926391383,1209.9048034783398,23.76188014440433,29.419437120955433,2019
+2004,70,"(65,70]",HS,466.66858168761223,29.03771528348015,16.07111913357401,7675.045722782028,2019
+2004,70,"(65,70]",HS,444.3564811490126,29.03771528348015,15.302735659847574,7299.259528719698,2019
+2004,70,"(65,70]",HS,468.5541113105925,29.03771528348015,16.136052948255113,8028.300724156865,2019
+2004,70,"(65,70]",HS,485.2096229802513,29.03771528348015,16.709634977938226,7785.696962717178,2019
+2004,70,"(65,70]",HS,433.6718132854578,29.03771528348015,14.934777376654633,7823.150072475064,2019
+2004,61,"(60,65]",HS,755.4688689407541,108.08482911073166,6.9895921116439474,7074.345746424917,2019
+2004,61,"(60,65]",HS,755.4688689407541,108.08482911073166,6.9895921116439474,7821.598225821309,2019
+2004,61,"(60,65]",HS,755.4688689407541,108.08482911073166,6.9895921116439474,6980.268519747161,2019
+2004,61,"(60,65]",HS,755.3117414721723,108.08482911073166,6.98813836952422,6957.2796797039555,2019
+2004,61,"(60,65]",HS,755.3117414721723,108.08482911073166,6.98813836952422,7312.689857414212,2019
+2004,56,"(55,60]",HS,94.27648114901257,104.8584163014561,0.8990835878922521,5610.381458612422,2019
+2004,56,"(55,60]",HS,95.84775583482944,104.8584163014561,0.914068314357123,4907.801055405039,2019
+2004,56,"(55,60]",HS,94.43360861759426,104.8584163014561,0.9005820605387392,5644.686129743813,2019
+2004,56,"(55,60]",HS,94.43360861759426,104.8584163014561,0.9005820605387392,5526.425717355397,2019
+2004,56,"(55,60]",HS,96.4762657091562,104.8584163014561,0.9200622049430713,5398.776824534977,2019
+2004,36,"(35,40]",HS,46.195475763016155,61.30184337623587,0.7535740072202165,4341.929539474663,2019
+2004,36,"(35,40]",HS,46.195475763016155,61.30184337623587,0.7535740072202165,4169.0934985416725,2019
+2004,36,"(35,40]",HS,46.195475763016155,61.30184337623587,0.7535740072202165,4340.278739793667,2019
+2004,36,"(35,40]",HS,46.195475763016155,61.30184337623587,0.7535740072202165,4326.7000126867415,2019
+2004,36,"(35,40]",HS,44.93845601436266,61.30184337623587,0.7330685920577618,4279.2236406161,2019
+2004,26,"(25,30]",HS,85.63447037701975,79.04711382725151,1.0833345612613279,4606.457837175183,2019
+2004,26,"(25,30]",HS,87.83425493716338,51.62260494840914,1.701468862815885,4594.409746162446,2019
+2004,26,"(25,30]",HS,78.13949012567326,45.16977932985802,1.7299063950489943,4610.127575801863,2019
+2004,26,"(25,30]",HS,82.6490484739677,70.9810818040626,1.1643813587134886,4613.705315573934,2019
+2004,26,"(25,30]",HS,91.32248473967685,72.59428820870036,1.2579844364219819,4597.785437831423,2019
+2004,76,"(75,80]",NoHS,131.35856373429084,32.264128092755726,4.071350180505415,10439.30736156751,2019
+2004,76,"(75,80]",NoHS,131.35856373429084,32.264128092755726,4.071350180505415,10489.611777729686,2019
+2004,76,"(75,80]",NoHS,131.35856373429084,32.264128092755726,4.071350180505415,10434.161332465166,2019
+2004,76,"(75,80]",NoHS,131.35856373429084,32.264128092755726,4.071350180505415,10402.222663730443,2019
+2004,76,"(75,80]",NoHS,131.35856373429084,32.264128092755726,4.071350180505415,10431.301178866113,2019
+2004,85,"(80,85]",NoHS,74.16416517055656,9.35659714689916,7.926403585211005,11064.272588913715,2019
+2004,85,"(80,85]",NoHS,74.16416517055656,9.35659714689916,7.926403585211005,11071.695393779008,2019
+2004,85,"(80,85]",NoHS,74.16416517055656,9.35659714689916,7.926403585211005,11007.720215947296,2019
+2004,85,"(80,85]",NoHS,74.16416517055656,9.19527650643538,8.06546329723225,11069.197095421025,2019
+2004,85,"(80,85]",NoHS,74.16416517055656,9.35659714689916,7.926403585211005,11013.750745246598,2019
+2004,51,"(50,55]",College,2784.2987432675045,1048.584163014561,2.655293529575118,2184.5935565812497,2019
+2004,51,"(50,55]",College,2785.8700179533216,1048.584163014561,2.6567920022216054,2079.8864560658053,2019
+2004,51,"(50,55]",College,2784.2987432675045,1048.584163014561,2.655293529575118,2299.260549574389,2019
+2004,51,"(50,55]",College,2784.2987432675045,1048.584163014561,2.655293529575118,2025.331432099114,2019
+2004,51,"(50,55]",College,2784.2987432675045,1048.584163014561,2.655293529575118,2122.4760393919123,2019
+2004,40,"(35,40]",College,107.47518850987433,153.2546084405897,0.7012851985559566,7032.136196226165,2019
+2004,40,"(35,40]",College,107.47518850987433,153.2546084405897,0.7012851985559566,6634.716030621616,2019
+2004,40,"(35,40]",College,107.47518850987433,153.2546084405897,0.7012851985559566,7002.530719545447,2019
+2004,40,"(35,40]",College,109.0464631956912,153.2546084405897,0.711537906137184,6972.693323727915,2019
+2004,40,"(35,40]",College,107.47518850987433,153.2546084405897,0.7012851985559566,6845.114947423403,2019
+2004,80,"(75,80]",HS,1661.3087253141832,112.92444832464501,14.711683341928833,2338.766678439068,2019
+2004,80,"(75,80]",HS,1655.1807540394973,112.92444832464501,14.657417225373905,2378.432222542064,2019
+2004,80,"(75,80]",HS,1671.2077558348296,112.92444832464501,14.799343991748326,2335.8203804360633,2019
+2004,80,"(75,80]",HS,1658.6375583482943,112.92444832464501,14.688028880866426,2324.02943001557,2019
+2004,80,"(75,80]",HS,1654.237989228007,112.92444832464501,14.649068592057763,2362.6207259839352,2019
+2004,65,"(60,65]",HS,737.320646319569,122.60368675247175,6.013853790613718,7475.872374097465,2019
+2004,65,"(60,65]",HS,704.4024416517055,120.99048034783397,5.821965824308062,8378.476262102242,2019
+2004,65,"(60,65]",HS,737.5563375224417,122.60368675247175,6.015776173285199,7460.204427291707,2019
+2004,65,"(60,65]",HS,737.0063913824058,122.60368675247175,6.011290613718412,7440.584633281952,2019
+2004,65,"(60,65]",HS,737.4777737881509,120.99048034783397,6.0953371841155235,7794.564634099481,2019
+2004,47,"(45,50]",NoHS,82.31908078994614,29.03771528348015,2.8349021259526674,7534.078661384459,2019
+2004,47,"(45,50]",NoHS,83.59181328545782,27.424508878842364,3.0480696538543217,7073.891697475982,2019
+2004,47,"(45,50]",NoHS,83.12043087971274,32.264128092755726,2.5762490974729237,7594.42050136374,2019
+2004,47,"(45,50]",NoHS,83.27755834829443,27.424508878842364,3.036610745381185,7539.061386894153,2019
+2004,47,"(45,50]",NoHS,82.35050628366247,25.81130247420457,3.190482400722022,7357.599119488436,2019
+2004,37,"(35,40]",HS,60.494075403949736,83.88673304116487,0.7211399611219107,7062.627793319625,2019
+2004,37,"(35,40]",HS,60.17982046678635,83.88673304116487,0.7173937795056928,6651.414515462124,2019
+2004,37,"(35,40]",HS,59.07992818671454,83.88673304116487,0.7042821438489308,7082.193515380706,2019
+2004,37,"(35,40]",HS,58.76567324955117,83.88673304116487,0.7005359622327132,7033.4431952697605,2019
+2004,37,"(35,40]",HS,60.022692998204676,83.88673304116487,0.7155206886975841,6946.232256609037,2019
+2004,45,"(40,45]",HS,143.22168761220826,50.00939854377137,2.8638954233143123,9701.050777639724,2019
+2004,45,"(40,45]",HS,141.65041292639137,50.00939854377137,2.8324758355653894,9011.688158173256,2019
+2004,45,"(40,45]",HS,141.80754039497307,50.00939854377137,2.835617794340282,9679.679614793473,2019
+2004,45,"(40,45]",HS,141.80754039497307,50.00939854377137,2.835617794340282,9703.656581194231,2019
+2004,45,"(40,45]",HS,143.37881508078993,50.00939854377137,2.8670373820892046,9344.164041768665,2019
+2004,40,"(35,40]",College,2097.6517055655295,251.66019912349464,8.33525409608442,940.7994973880102,2019
+2004,40,"(35,40]",College,2097.6517055655295,253.2734055281324,8.2821633056635,945.238997447891,2019
+2004,40,"(35,40]",College,3269.822621184919,253.2734055281324,12.910248568603556,1790.0007991036302,2019
+2004,40,"(35,40]",College,2686.8797127468583,253.2734055281324,10.608613672422912,960.5332692773802,2019
+2004,40,"(35,40]",College,2096.080430879713,253.2734055281324,8.27595943801881,975.4673912582754,2019
+2004,52,"(50,55]",College,1346.1110233393179,361.35823463886413,3.725142792676637,7433.356549026251,2019
+2004,52,"(50,55]",College,1150.2830592459607,395.23556913625765,2.9103733294039635,8270.002720232444,2019
+2004,52,"(50,55]",College,1696.5367037701974,374.26388587596637,4.532996016432217,4030.7396103967867,2019
+2004,52,"(50,55]",College,1018.4059748653501,348.45258340176184,2.9226529616258854,7354.078804018684,2019
+2004,52,"(50,55]",College,1270.92552962298,327.4809001414706,3.880914975725133,7686.39661621038,2019
+2004,61,"(60,65]",College,3973.659403949731,725.9428820870038,5.473790709987966,307.2549821473893,2019
+2004,61,"(60,65]",College,3973.769393177738,725.9428820870038,5.473942222222222,300.7539315690902,2019
+2004,61,"(60,65]",College,3973.9265206463197,725.9428820870038,5.474158668271159,318.80985280446123,2019
+2004,61,"(60,65]",College,3973.2980107719927,725.9428820870038,5.473292884075411,303.9371193664785,2019
+2004,61,"(60,65]",College,3973.769393177738,725.9428820870038,5.473942222222222,310.5716416555325,2019
+2004,50,"(45,50]",HS,91.44818671454219,79.04711382725151,1.1568820452368676,3808.218441953035,2019
+2004,50,"(45,50]",HS,91.44818671454219,79.04711382725151,1.1568820452368676,3727.7802034920655,2019
+2004,50,"(45,50]",HS,91.44818671454219,79.04711382725151,1.1568820452368676,3841.0033894377207,2019
+2004,50,"(45,50]",HS,91.44818671454219,79.04711382725151,1.1568820452368676,3838.2516649148265,2019
+2004,50,"(45,50]",HS,91.44818671454219,79.04711382725151,1.1568820452368676,3791.672370173429,2019
+2004,45,"(40,45]",HS,699.3743626570916,185.5187365333454,3.769831423638362,5618.636292727189,2019
+2004,45,"(40,45]",HS,699.6886175942549,185.5187365333454,3.771525349238738,6253.391945644216,2019
+2004,45,"(40,45]",HS,699.3743626570916,185.5187365333454,3.769831423638362,5547.024584590826,2019
+2004,45,"(40,45]",HS,699.5314901256733,185.5187365333454,3.77067838643855,5560.29170207013,2019
+2004,45,"(40,45]",HS,699.6886175942549,185.5187365333454,3.771525349238738,5812.017477372521,2019
+2004,34,"(30,35]",College,-10.213285457809695,48.39619213913358,-0.21103489771359807,5939.362840993755,2019
+2004,34,"(30,35]",College,-11.784560143626571,48.39619213913358,-0.24350180505415162,5909.458157132014,2019
+2004,34,"(30,35]",College,-10.197572710951526,48.39619213913358,-0.21071022864019254,5946.297657222884,2019
+2004,34,"(30,35]",College,-10.213285457809695,48.39619213913358,-0.21103489771359807,5986.950762583086,2019
+2004,34,"(30,35]",College,-10.213285457809695,48.39619213913358,-0.21103489771359807,5960.856681074425,2019
+2004,51,"(50,55]",College,27017.753967684024,3549.0540902031294,7.61266334099114,213.89932839736997,2019
+2004,51,"(50,55]",College,39132.43892280072,3468.393769971241,11.282582520359329,209.00689675678632,2019
+2004,51,"(50,55]",College,26972.5012567325,3565.186154249507,7.565523955763923,220.04188165536567,2019
+2004,51,"(50,55]",College,25111.860624775585,3403.865513785728,7.377453816277997,208.79801098943534,2019
+2004,51,"(50,55]",College,24983.691748653502,3210.2807452291945,7.782400896177639,216.91507817072346,2019
+2004,22,"(20,25]",HS,5.185206463195691,35.4905409020313,0.14610108303249095,6538.734498009073,2019
+2004,22,"(20,25]",HS,5.326621184919211,35.4905409020313,0.1500856580242862,6503.458233796241,2019
+2004,22,"(20,25]",HS,5.169493716337523,35.4905409020313,0.14565835247784706,6526.98394985535,2019
+2004,22,"(20,25]",HS,3.5982190305206463,35.4905409020313,0.10138529701345585,6448.537671810381,2019
+2004,22,"(20,25]",HS,5.326621184919211,35.4905409020313,0.1500856580242862,6498.731548378096,2019
+2004,44,"(40,45]",HS,0.26711669658886894,48.39619213913358,0.005519374247894103,3793.962051948029,2019
+2004,44,"(40,45]",HS,-1.5791310592459606,48.39619213913358,-0.03262924187725632,3845.9876926581774,2019
+2004,44,"(40,45]",HS,-2.0740825852782763,48.39619213913358,-0.04285631768953068,3803.098376616451,2019
+2004,44,"(40,45]",HS,-2.647597845601436,48.39619213913358,-0.05470673886883273,3784.441423471578,2019
+2004,44,"(40,45]",HS,20.473709156193895,48.39619213913358,0.42304380264741276,3821.6648664311715,2019
+2004,32,"(30,35]",NoHS,26.397414721723518,11.292444832464504,2.337617328519855,6815.410454219857,2019
+2004,32,"(30,35]",NoHS,23.097737881508078,11.292444832464504,2.0454151624548733,6723.623059520391,2019
+2004,32,"(30,35]",NoHS,31.425493716337524,11.292444832464504,2.782877772047447,6819.240332051205,2019
+2004,32,"(30,35]",NoHS,32.36825852782765,11.292444832464504,2.8663641052088704,6799.555974122997,2019
+2004,32,"(30,35]",NoHS,18.54104129263914,11.292444832464504,1.6418978855079938,6780.77263553695,2019
+2004,38,"(35,40]",HS,-0.47138240574506285,41.94336652058244,-0.011238544848653153,5008.349004710688,2019
+2004,38,"(35,40]",HS,-0.31425493716337527,41.94336652058244,-0.007492363232435436,4989.973366028467,2019
+2004,38,"(35,40]",HS,-0.47138240574506285,41.94336652058244,-0.011238544848653153,5003.798144159869,2019
+2004,38,"(35,40]",HS,-0.47138240574506285,41.94336652058244,-0.011238544848653153,4976.5884989103415,2019
+2004,38,"(35,40]",HS,-0.31425493716337527,41.94336652058244,-0.007492363232435436,4984.040855642273,2019
+2004,55,"(50,55]",HS,0.03142549371633752,13.389613158493624,0.002347005349919534,7147.058871760962,2019
+2004,55,"(50,55]",HS,0.1257019748653501,14.518857641740075,0.008657841957480946,7147.201755766982,2019
+2004,55,"(50,55]",HS,0.03142549371633752,13.712254439421182,0.0022917816946273093,7039.695028471033,2019
+2004,55,"(50,55]",HS,0.01571274685816876,14.841498922667633,0.0010587035002354419,7039.490251068806,2019
+2004,55,"(50,55]",HS,0.03142549371633752,13.873575079884963,0.0022651330702711772,7079.642106623694,2019
+2004,45,"(40,45]",College,3522.797845601436,1451.8857641740076,2.4263602085840352,2485.5509342181244,2019
+2004,45,"(40,45]",College,3521.2265709156195,1451.8857641740076,2.42527797833935,2355.2989118518462,2019
+2004,45,"(40,45]",College,3521.2265709156195,1451.8857641740076,2.42527797833935,2624.286246581857,2019
+2004,45,"(40,45]",College,3522.797845601436,1451.8857641740076,2.4263602085840352,2322.5326881482742,2019
+2004,45,"(40,45]",College,3522.797845601436,1451.8857641740076,2.4263602085840352,2428.288610209649,2019
+2004,48,"(45,50]",College,1095.4455727109516,241.98096069566793,4.526990758122744,855.0067964141665,2019
+2004,48,"(45,50]",College,1095.4612854578097,241.98096069566793,4.5270556919374245,836.8432749561016,2019
+2004,48,"(45,50]",College,1095.602700179533,241.98096069566793,4.527640096269554,856.3656647531085,2019
+2004,48,"(45,50]",College,1095.4612854578097,241.98096069566793,4.5270556919374245,806.4163139366016,2019
+2004,48,"(45,50]",College,1095.7598276481149,241.98096069566793,4.528289434416365,865.3530484959107,2019
+2004,24,"(20,25]",College,-24.21334290843806,40.33016011594465,-0.6003780505415163,8820.29084876739,2019
+2004,24,"(20,25]",College,-18.54104129263914,40.33016011594465,-0.4597314079422383,8772.705660760465,2019
+2004,24,"(20,25]",College,-22.940610412926393,40.33016011594465,-0.5688202166064983,8804.440189533587,2019
+2004,24,"(20,25]",College,-19.16955116696589,40.33016011594465,-0.475315523465704,8698.621703009843,2019
+2004,24,"(20,25]",College,-24.02478994614004,40.33016011594465,-0.5957028158844766,8766.329696091561,2019
+2004,27,"(25,30]",HS,-4.713824057450628,64.52825618551145,-0.07305054151624547,5899.806711602394,2019
+2004,27,"(25,30]",HS,-4.713824057450628,64.52825618551145,-0.07305054151624547,5983.3474685067185,2019
+2004,27,"(25,30]",HS,-4.713824057450628,64.52825618551145,-0.07305054151624547,5885.0509958194325,2019
+2004,27,"(25,30]",HS,-4.713824057450628,64.52825618551145,-0.07305054151624547,5944.110803208978,2019
+2004,27,"(25,30]",HS,-4.713824057450628,64.52825618551145,-0.07305054151624547,5931.843782462747,2019
+2004,58,"(55,60]",College,59261.56754039498,7824.051062493262,7.574281796866278,19.754206743799788,2019
+2004,58,"(55,60]",College,120065.81256732496,8146.692343420819,14.737982914536943,21.35350431432254,2019
+2004,58,"(55,60]",College,56539.33414721724,9308.200954760026,6.074141976737638,20.246356702841897,2019
+2004,58,"(55,60]",College,55567.65788150809,7517.541845612083,7.39173243364683,19.17777086767523,2019
+2004,58,"(55,60]",College,41841.4736086176,7485.277717519327,5.589835833437073,20.067007640569997,2019
+2004,61,"(60,65]",College,1218.5235188509876,95.17917787362938,12.802416936914888,6651.4421817314405,2019
+2004,61,"(60,65]",College,1218.3663913824057,96.79238427826716,12.587419975932612,7356.320485661102,2019
+2004,61,"(60,65]",College,1218.5235188509876,95.17917787362938,12.802416936914888,6564.785758293374,2019
+2004,61,"(60,65]",College,1218.5235188509876,95.17917787362938,12.802416936914888,6543.802760859755,2019
+2004,61,"(60,65]",College,1218.5235188509876,95.17917787362938,12.802416936914888,6877.638893685349,2019
+2004,40,"(35,40]",HS,62.06535008976661,56.46222416232251,1.0992367199587418,6836.366641750237,2019
+2004,40,"(35,40]",HS,61.90822262118492,54.84901775768473,1.12870248460395,6450.010364356777,2019
+2004,40,"(35,40]",HS,61.90822262118492,56.46222416232251,1.0964538421866943,6807.585359996658,2019
+2004,40,"(35,40]",HS,62.06535008976661,54.84901775768473,1.1315672117222342,6778.578615566255,2019
+2004,40,"(35,40]",HS,62.06535008976661,56.46222416232251,1.0992367199587418,6654.55192842034,2019
+2004,48,"(45,50]",College,1007.8155834829444,295.21677204871486,3.413815470201811,589.9581728674117,2019
+2004,48,"(45,50]",College,778.4094793536804,295.21677204871486,2.6367386715590535,571.9269035068515,2019
+2004,48,"(45,50]",College,623.0104129263914,295.21677204871486,2.1103489771359807,596.0753947574369,2019
+2004,48,"(45,50]",College,552.1459245960503,295.21677204871486,1.8703067605689376,550.7771106117335,2019
+2004,48,"(45,50]",College,560.0022980251346,295.21677204871486,1.8969189797005381,593.7059217060323,2019
+2004,35,"(30,35]",College,2686.8797127468583,645.2825618551144,4.163880866425993,139.72716131126984,2019
+2004,35,"(30,35]",College,2685.308438061041,645.2825618551144,4.161445848375451,141.91069664362868,2019
+2004,35,"(30,35]",College,2685.308438061041,645.2825618551144,4.161445848375451,139.64253578306312,2019
+2004,35,"(30,35]",College,2686.8797127468583,645.2825618551144,4.163880866425993,145.49705879145466,2019
+2004,35,"(30,35]",College,2686.8797127468583,645.2825618551144,4.163880866425993,148.63774279107813,2019
+2004,49,"(45,50]",HS,135.91526032315977,112.92444832464501,1.203594636410521,6437.697374793408,2019
+2004,49,"(45,50]",HS,260.045960502693,98.40559068290497,2.6425933597680054,6280.019211230354,2019
+2004,49,"(45,50]",HS,285.65773788150807,96.79238427826716,2.951241877256318,6472.714937299863,2019
+2004,49,"(45,50]",HS,185.88179533213645,101.63200349218052,1.82896911351785,6526.474406809305,2019
+2004,49,"(45,50]",HS,404.76035906642727,88.72635225507824,4.5618956350508695,6386.8965819994355,2019
+2004,41,"(40,45]",NoHS,184.8604667863555,69.36787539942482,2.6649290571740405,6167.521170524882,2019
+2004,41,"(40,45]",NoHS,178.41824057450629,69.36787539942482,2.572058601292922,5809.929683195178,2019
+2004,41,"(40,45]",NoHS,188.1601436265709,69.36787539942482,2.712496851649735,6187.850887208478,2019
+2004,41,"(40,45]",NoHS,231.84157989228007,69.36787539942482,3.342203845185122,6148.95590144721,2019
+2004,41,"(40,45]",NoHS,246.14017953321365,69.36787539942482,3.5483309545797996,6067.499686300115,2019
+2004,68,"(65,70]",College,152291.08509874326,10743.954654887653,14.174583753428522,2.2331957715446102,2019
+2004,68,"(65,70]",College,154173.4721723519,12389.425187618197,12.443956829121541,2.2396479764911947,2019
+2004,68,"(65,70]",College,147533.26535008976,10582.634014423877,13.941072246191775,2.1953302798877283,2019
+2004,68,"(65,70]",College,158932.8631956912,11179.520384139856,14.216429483072083,2.1985789161233904,2019
+2004,68,"(65,70]",College,144844.8143626571,12695.934404499376,11.408755728237287,2.1449691343338118,2019
+2004,48,"(45,50]",HS,173.3273105924596,162.9338468684164,1.0637894699217214,7316.622019653472,2019
+2004,48,"(45,50]",HS,191.20841651705567,161.3206404637786,1.1852693862815886,6798.691090338927,2019
+2004,48,"(45,50]",HS,264.28840215439857,161.3206404637786,1.6382801444043322,7352.500563854179,2019
+2004,48,"(45,50]",HS,273.7333342908438,161.3206404637786,1.6968277184115523,7311.648108364652,2019
+2004,48,"(45,50]",HS,269.44532567324956,161.3206404637786,1.6702470613718412,7086.614564818703,2019
+2004,75,"(70,75]",NoHS,-10.02473249551167,40.33016011594465,-0.24856664259927796,7956.261527321566,2019
+2004,75,"(70,75]",NoHS,-4.101026929982047,27.424508878842364,-0.14953875557443194,8009.742897705049,2019
+2004,75,"(70,75]",NoHS,-6.5993536804308794,35.4905409020313,-0.18594683295044304,7835.089133717079,2019
+2004,75,"(70,75]",NoHS,-5.499461400359067,27.424508878842364,-0.2005308982798896,7895.747740106754,2019
+2004,75,"(70,75]",NoHS,-4.9338025134649905,27.424508878842364,-0.17990486302824377,7869.654984162136,2019
+2004,56,"(55,60]",HS,1484.0689407540394,112.92444832464501,13.14214027849407,5100.1407457756695,2019
+2004,56,"(55,60]",HS,1484.2260682226213,112.92444832464501,13.143531717380094,5609.991947196715,2019
+2004,56,"(55,60]",HS,1484.0689407540394,112.92444832464501,13.14214027849407,5051.474873087026,2019
+2004,56,"(55,60]",HS,1484.2260682226213,112.92444832464501,13.143531717380094,5058.495378393979,2019
+2004,56,"(55,60]",HS,1484.2260682226213,112.92444832464501,13.143531717380094,5299.679345732813,2019
+2004,38,"(35,40]",HS,3.221113105924596,41.94336652058244,0.0767967231324632,3723.0299748263096,2019
+2004,38,"(35,40]",HS,3.221113105924596,41.94336652058244,0.0767967231324632,3774.082941928066,2019
+2004,38,"(35,40]",HS,3.221113105924596,41.94336652058244,0.0767967231324632,3731.995486377168,2019
+2004,38,"(35,40]",HS,3.221113105924596,40.33016011594465,0.07986859205776174,3713.68734442788,2019
+2004,38,"(35,40]",HS,3.221113105924596,41.94336652058244,0.0767967231324632,3750.214856302608,2019
+2004,37,"(35,40]",College,16168.102262118493,827.5748855791844,19.536724160984086,2297.053904389363,2019
+2004,37,"(35,40]",College,9260.935870736086,827.5748855791844,11.19045059499933,2256.2888535992306,2019
+2004,37,"(35,40]",College,17290.149515260324,827.5748855791844,20.89254980612381,2354.444881592243,2019
+2004,37,"(35,40]",College,12904.407612208259,827.5748855791844,15.593039176360474,2233.1573050868365,2019
+2004,37,"(35,40]",College,16413.221113105927,827.5748855791844,19.832913491108435,2263.443088105437,2019
+2004,58,"(55,60]",HS,12.493205026929981,30.650921688117936,0.4075963898916967,6495.813819177258,2019
+2004,58,"(55,60]",HS,12.477492280071814,30.650921688117936,0.4070837545126354,6442.69942225052,2019
+2004,58,"(55,60]",HS,12.477492280071814,30.650921688117936,0.4070837545126354,6432.601274080786,2019
+2004,58,"(55,60]",HS,12.477492280071814,30.650921688117936,0.4070837545126354,6485.296265316513,2019
+2004,58,"(55,60]",HS,12.477492280071814,30.650921688117936,0.4070837545126354,6483.284058696244,2019
+2004,52,"(50,55]",HS,84.22032315978456,90.33955865971603,0.9322640536358946,7064.263253059975,2019
+2004,52,"(50,55]",HS,83.43468581687613,90.33955865971603,0.9235675605982464,6564.196361296003,2019
+2004,52,"(50,55]",HS,85.79159784560144,90.33955865971603,0.9496570397111913,7098.904304721455,2019
+2004,52,"(50,55]",HS,90.97680430879713,90.33955865971603,1.0070538937596698,7059.460897731631,2019
+2004,52,"(50,55]",HS,92.39095152603231,90.33955865971603,1.0227075812274367,6842.189021706408,2019
+2004,25,"(20,25]",NoHS,67.64494649910233,50.00939854377137,1.352644672178875,7939.112446771481,2019
+2004,25,"(20,25]",NoHS,67.64494649910233,50.00939854377137,1.352644672178875,7735.169306005065,2019
+2004,25,"(20,25]",NoHS,67.80207396768402,50.00939854377137,1.3557866309537674,7970.43254814244,2019
+2004,25,"(20,25]",NoHS,67.33069156193896,50.00939854377137,1.3463607546290906,7935.555490775948,2019
+2004,25,"(20,25]",NoHS,67.64494649910233,51.62260494840914,1.3103745261732855,7913.246928347481,2019
+2004,62,"(60,65]",HS,85.91729982046678,40.33016011594465,2.1303485920577616,5893.041362063258,2019
+2004,62,"(60,65]",HS,94.74786355475763,48.39619213913358,1.957754512635379,5066.880038572628,2019
+2004,62,"(60,65]",HS,93.66368402154399,46.782985734495796,2.0020886343831696,5907.739105101576,2019
+2004,62,"(60,65]",HS,92.53236624775585,43.55657292522023,2.124417970316887,5809.644267551278,2019
+2004,62,"(60,65]",HS,88.7770197486535,48.39619213913358,1.8343802647412757,5606.646681596471,2019
+2004,54,"(50,55]",College,115.33156193895871,66.14146259014923,1.7437104869243638,6274.8703772645185,2019
+2004,54,"(50,55]",College,113.76028725314183,64.52825618551145,1.7629530685920574,5932.403911969622,2019
+2004,54,"(50,55]",College,118.00272890484739,62.91504978087366,1.8755882625196703,6326.573905921846,2019
+2004,54,"(50,55]",College,135.6010053859964,53.23581135304694,2.5471764577179736,6294.78757583483,2019
+2004,54,"(50,55]",College,115.01730700179533,53.23581135304694,2.160525106662291,6151.847482834803,2019
+2004,61,"(60,65]",College,4512.543770197487,1179.2538817902216,3.826609214418704,307.2549821473893,2019
+2004,61,"(60,65]",College,11312.706355475762,887.2635225507823,12.750108697079094,300.7539315690902,2019
+2004,61,"(60,65]",College,8212.581400359066,1187.3199138134105,6.9169069808507295,318.80985280446123,2019
+2004,61,"(60,65]",College,8649.867145421904,1211.5180098829774,7.139693405182982,303.9371193664785,2019
+2004,61,"(60,65]",College,7340.9953321364455,1392.1971272024095,5.272956816746217,310.5716416555325,2019
+2004,43,"(40,45]",College,-42.84866068222621,87.11314585044046,-0.4918736462093862,7874.271539909898,2019
+2004,43,"(40,45]",College,-41.0416947935368,98.40559068290497,-0.41706669823045495,7558.867246043515,2019
+2004,43,"(40,45]",College,-57.398664272890485,100.01879708754274,-0.5738787702340747,7867.151554391133,2019
+2004,43,"(40,45]",College,-38.70049551166966,93.56597146899159,-0.4136172040333624,7837.820915189142,2019
+2004,43,"(40,45]",College,-59.001364452423694,103.24520989681828,-0.5714682987364622,7758.476829308345,2019
+2004,48,"(45,50]",HS,242.1962800718133,88.72635225507824,2.729699507712504,10731.07825425295,2019
+2004,48,"(45,50]",HS,242.1962800718133,88.72635225507824,2.729699507712504,10753.575067645208,2019
+2004,48,"(45,50]",HS,242.1962800718133,88.72635225507824,2.729699507712504,10837.229977435049,2019
+2004,48,"(45,50]",HS,242.1962800718133,88.72635225507824,2.729699507712504,10781.52401199247,2019
+2004,48,"(45,50]",HS,242.1962800718133,88.72635225507824,2.729699507712504,10714.652476045134,2019
+2004,51,"(50,55]",HS,44.577062836624776,32.264128092755726,1.3816292418772562,4920.086644442944,2019
+2004,51,"(50,55]",HS,10.040445242369838,32.264128092755726,0.3111953068592057,4766.564434483831,2019
+2004,51,"(50,55]",HS,-1.8383913824057452,32.264128092755726,-0.05697942238267147,4945.717860494931,2019
+2004,51,"(50,55]",HS,6.803619389587074,32.264128092755726,0.2108725631768953,4975.441703119008,2019
+2004,51,"(50,55]",HS,2.9854219030520643,32.264128092755726,0.0925306859205776,4862.249583408695,2019
+2004,62,"(60,65]",College,13333.852696588869,322.6412809275572,41.327175054151624,310.70106045890736,2019
+2004,62,"(60,65]",College,13336.838118491922,322.6412809275572,41.33642812274368,301.00706597605534,2019
+2004,62,"(60,65]",College,13336.995245960503,322.6412809275572,41.336915126353794,325.20157999077855,2019
+2004,62,"(60,65]",College,13336.838118491922,322.6412809275572,41.33642812274368,305.05559433682316,2019
+2004,62,"(60,65]",College,13336.995245960503,322.6412809275572,41.336915126353794,314.7908370098702,2019
+2004,62,"(60,65]",College,17046.75906642729,787.2447254632398,21.65369740190566,373.26627348270506,2019
+2004,62,"(60,65]",College,16812.639138240575,788.8579318678774,21.312632426007546,363.53900379339865,2019
+2004,62,"(60,65]",College,16930.484739676842,777.5654870354128,21.773709124136797,388.1174972944376,2019
+2004,62,"(60,65]",College,17302.876840215442,784.0183126539641,22.069480471245413,368.4572523721749,2019
+2004,62,"(60,65]",College,17219.599281867148,790.4711382725153,21.78396964561998,377.317253099443,2019
+2004,26,"(25,30]",HS,17.26830879712747,35.4905409020313,0.48656087955365934,4257.087903196885,2019
+2004,26,"(25,30]",HS,18.635317773788152,35.4905409020313,0.5250784378076797,4269.52690806343,2019
+2004,26,"(25,30]",HS,26.051734290843807,27.424508878842364,0.9499435124230198,4282.40781806994,2019
+2004,26,"(25,30]",HS,20.238017953321364,45.16977932985802,0.4480433212996389,4279.878752696933,2019
+2004,26,"(25,30]",HS,17.36258527827648,17.74527045101565,0.9784345257630455,4287.954186146822,2019
+2004,18,"(15,20]",HS,0,0,NA,2537.9500222755573,2019
+2004,18,"(15,20]",HS,0,0,NA,2538.5495700901874,2019
+2004,18,"(15,20]",HS,0,0,NA,2553.511058053269,2019
+2004,18,"(15,20]",HS,0,0,NA,2507.122087349436,2019
+2004,18,"(15,20]",HS,0,0,NA,2550.317278006626,2019
+2004,37,"(35,40]",HS,314.4277773788151,88.72635225507824,3.5437924515917296,7453.84117584114,2019
+2004,37,"(35,40]",HS,329.6534290843806,88.72635225507824,3.7153948145717095,7032.588413973062,2019
+2004,37,"(35,40]",HS,326.66800718132856,88.72635225507824,3.6817472924187724,7422.460310204388,2019
+2004,37,"(35,40]",HS,318.0259964093358,88.72635225507824,3.5843465703971122,7390.8336176434605,2019
+2004,37,"(35,40]",HS,310.326750448833,88.72635225507824,3.497571381686905,7255.604587956029,2019
+2004,88,"(85,90]",College,23.411992818671454,80.6603202318893,0.29025415162454876,8764.776133750594,2019
+2004,88,"(85,90]",College,23.411992818671454,98.40559068290497,0.23791323903651532,8977.628262918519,2019
+2004,88,"(85,90]",College,23.411992818671454,93.56597146899159,0.25021909622805927,8659.944314851531,2019
+2004,88,"(85,90]",College,23.411992818671454,98.40559068290497,0.23791323903651532,8731.657671069028,2019
+2004,88,"(85,90]",College,23.411992818671454,90.33955865971603,0.2591554925219185,8775.261735310785,2019
+2004,42,"(40,45]",HS,148.90970197486536,56.46222416232251,2.637333264569366,7880.061843771636,2019
+2004,42,"(40,45]",HS,153.65495152603233,56.46222416232251,2.7213761732851993,7393.124593893883,2019
+2004,42,"(40,45]",HS,144.2115906642729,56.46222416232251,2.5541252191851473,7879.651332213475,2019
+2004,42,"(40,45]",HS,150.48097666068224,56.46222416232251,2.6651620422898405,7881.205826881563,2019
+2004,42,"(40,45]",HS,147.385565529623,56.46222416232251,2.610339350180506,7709.204797669631,2019
+2004,43,"(40,45]",NoHS,126.44047396768403,46.782985734495796,2.7027021038217356,5750.057822875512,2019
+2004,43,"(40,45]",NoHS,126.59760143626572,46.782985734495796,2.7060607494086892,5416.670766347765,2019
+2004,43,"(40,45]",NoHS,126.59760143626572,46.782985734495796,2.7060607494086892,5769.011474305526,2019
+2004,43,"(40,45]",NoHS,125.02632675044883,46.782985734495796,2.672474293539151,5732.749188216254,2019
+2004,43,"(40,45]",NoHS,126.44047396768403,46.782985734495796,2.7027021038217356,5656.806530837663,2019
+2004,35,"(30,35]",HS,62.64672172351885,75.82070101797595,0.8262482525539596,6774.077857396852,2019
+2004,35,"(30,35]",HS,62.63100897666069,74.20749461333816,0.8439984303876944,6392.898108377559,2019
+2004,35,"(30,35]",HS,62.61529622980252,75.82070101797595,0.8258337813964206,6749.09674717063,2019
+2004,35,"(30,35]",HS,62.61529622980252,75.82070101797595,0.8258337813964206,6724.384510578934,2019
+2004,35,"(30,35]",HS,62.61529622980252,74.20749461333816,0.8437866896876473,6595.68320871682,2019
+2004,19,"(15,20]",NoHS,27.07306283662478,24.19809606956679,1.1188096269554755,7095.741963039904,2019
+2004,19,"(15,20]",NoHS,27.575870736086177,24.19809606956679,1.1395884476534297,7057.4606613062815,2019
+2004,19,"(15,20]",NoHS,31.394068222621186,24.19809606956679,1.2973776173285199,7082.990434797166,2019
+2004,19,"(15,20]",NoHS,27.293041292639142,24.19809606956679,1.1279003610108305,6997.861646170335,2019
+2004,19,"(15,20]",NoHS,27.764423698384203,24.19809606956679,1.1473805054151625,7052.331329311261,2019
+2004,61,"(60,65]",College,346.1518132854578,64.52825618551145,5.36434476534296,5658.543096253689,2019
+2004,61,"(60,65]",College,347.7230879712747,66.14146259014923,5.257263361803293,5043.946962351375,2019
+2004,61,"(60,65]",College,347.56596050269303,64.52825618551145,5.386259927797834,5632.166085692036,2019
+2004,61,"(60,65]",College,346.1518132854578,66.14146259014923,5.233507088139474,5576.373266078431,2019
+2004,61,"(60,65]",College,346.1518132854578,66.14146259014923,5.233507088139474,5424.805788685141,2019
+2004,81,"(80,85]",HS,688.0611849192101,37.10374730666908,18.544250510124,9527.621141191357,2019
+2004,81,"(80,85]",HS,911.1821903052065,37.10374730666908,24.557686391461313,10442.851053073717,2019
+2004,81,"(80,85]",HS,678.6335368043087,37.10374730666908,18.290161670067494,9406.18789852356,2019
+2004,81,"(80,85]",HS,735.1994254937164,37.10374730666908,19.81469471040653,9428.685184767575,2019
+2004,81,"(80,85]",HS,678.6335368043087,37.10374730666908,18.290161670067494,9855.541043307177,2019
+2004,41,"(40,45]",College,1668.6937163375226,362.9714410435019,4.597314079422382,1028.5230887083621,2019
+2004,41,"(40,45]",College,1670.2649910233395,362.9714410435019,4.601643000401123,1037.4087851061283,2019
+2004,41,"(40,45]",College,1668.6937163375226,362.9714410435019,4.597314079422382,1016.9395940164953,2019
+2004,41,"(40,45]",College,1667.1224416517057,362.9714410435019,4.592985158443642,1057.4316147768345,2019
+2004,41,"(40,45]",College,1670.2649910233395,362.9714410435019,4.601643000401123,1070.032829912036,2019
+2004,50,"(45,50]",College,36210.96789946141,7840.18312653964,4.618638023502846,39.65150076441442,2019
+2004,50,"(45,50]",College,35244.0054578097,6662.542451154056,5.289873305303276,40.35036156718523,2019
+2004,50,"(45,50]",College,42619.41170556553,6904.523411849724,6.172679729410574,41.234772531554825,2019
+2004,50,"(45,50]",College,38914.6602513465,7017.4478601743695,5.545414946678285,39.30468652216295,2019
+2004,50,"(45,50]",College,40660.817809694796,1806.7911731943202,22.504436823104697,41.734628533761786,2019
+2004,52,"(50,55]",College,5119.527181328545,643.6693554504767,7.953659962179817,170.16483506560155,2019
+2004,52,"(50,55]",College,5119.527181328545,643.6693554504767,7.953659962179817,169.4533487531161,2019
+2004,52,"(50,55]",College,5119.527181328545,643.6693554504767,7.953659962179817,176.5569268235691,2019
+2004,52,"(50,55]",College,5113.242082585278,643.6693554504767,7.943895478769123,165.63472206498938,2019
+2004,52,"(50,55]",College,5119.527181328545,643.6693554504767,7.953659962179817,170.9101514805864,2019
+2004,40,"(35,40]",College,45.56696588868941,96.79238427826716,0.4707701564380265,6162.079043462393,2019
+2004,40,"(35,40]",College,45.56696588868941,96.79238427826716,0.4707701564380265,6114.518471310371,2019
+2004,40,"(35,40]",College,45.56696588868941,96.79238427826716,0.4707701564380265,6102.968636945273,2019
+2004,40,"(35,40]",College,45.56696588868941,96.79238427826716,0.4707701564380265,6098.859771912337,2019
+2004,40,"(35,40]",College,45.56696588868941,96.79238427826716,0.4707701564380265,6075.325871224159,2019
+2004,74,"(70,75]",NoHS,998.2308078994614,35.4905409020313,28.126672136527727,5139.4088901703235,2019
+2004,74,"(70,75]",NoHS,950.3069299820468,29.03771528348015,32.72664259927798,5713.045482365567,2019
+2004,74,"(70,75]",NoHS,1039.3982046678636,38.716953711306864,26.84607400722022,5087.239006036862,2019
+2004,74,"(70,75]",NoHS,959.4203231597845,37.10374730666908,25.85777428975043,5072.039266524729,2019
+2004,74,"(70,75]",NoHS,997.2880430879713,38.716953711306864,25.758432611311676,5315.399353420926,2019
+2004,48,"(45,50]",HS,225.6350448833034,80.6603202318893,2.797348736462094,5789.9381366489515,2019
+2004,48,"(45,50]",HS,175.35425493716338,80.6603202318893,2.173984115523466,5370.333310061891,2019
+2004,48,"(45,50]",HS,200.33752244165171,80.6603202318893,2.483718411552347,5859.115929451669,2019
+2004,48,"(45,50]",HS,205.20847396768403,80.6603202318893,2.5441068592057765,5811.2152167443965,2019
+2004,48,"(45,50]",HS,186.211763016158,80.6603202318893,2.3085919133574007,5666.196421143948,2019
+2004,72,"(70,75]",College,181.4822262118492,98.40559068290497,1.8442267858199677,8806.0690427065,2019
+2004,72,"(70,75]",College,179.91095152603233,98.40559068290497,1.8282594543410071,8131.778781679345,2019
+2004,72,"(70,75]",College,179.91095152603233,100.01879708754274,1.79877139862583,9214.098176885938,2019
+2004,72,"(70,75]",College,181.4822262118492,98.40559068290497,1.8442267858199677,8967.31906904405,2019
+2004,72,"(70,75]",College,179.91095152603233,100.01879708754274,1.79877139862583,8893.141899667631,2019
+2004,74,"(70,75]",HS,1717.246104129264,235.52813507711673,7.291044458731024,2897.8900244581896,2019
+2004,74,"(70,75]",HS,1622.8124955116698,258.1130247420458,6.287216606498195,1403.1652471403333,2019
+2004,74,"(70,75]",HS,1784.8109156193896,258.1130247420458,6.91484250902527,2943.4996540315365,2019
+2004,74,"(70,75]",HS,1669.950736086176,216.16965822146332,7.7251856242254435,1364.6899136236,2019
+2004,74,"(70,75]",HS,1677.8071095152604,256.49981833740793,6.541162954385489,1457.2819907892808,2019
+2004,31,"(30,35]",HS,146.1285457809695,38.716953711306864,3.7742779783393505,5548.085166281216,2019
+2004,31,"(30,35]",HS,146.28567324955117,38.716953711306864,3.7783363417569196,5665.617584256229,2019
+2004,31,"(30,35]",HS,146.1128330341113,38.716953711306864,3.773872141997593,5535.475117726952,2019
+2004,31,"(30,35]",HS,146.59992818671455,38.716953711306864,3.786453068592058,5603.78446303238,2019
+2004,31,"(30,35]",HS,146.28567324955117,38.716953711306864,3.7783363417569196,5600.023770617775,2019
+2004,55,"(50,55]",HS,32064.986800718132,4533.109997032178,7.073507331988644,25.272604537569986,2019
+2004,55,"(50,55]",HS,32038.856502692997,4291.1290363365115,7.466299948427023,25.483388426372862,2019
+2004,55,"(50,55]",HS,32197.350980251347,2774.715015976992,11.603840680883216,26.696224556148234,2019
+2004,55,"(50,55]",HS,32751.083892280072,2629.5264395595914,12.455126291776484,24.422401064502107,2019
+2004,55,"(50,55]",HS,39341.07277558348,3871.695371130687,10.161200457280383,26.11546765252076,2019
+2004,25,"(20,25]",HS,15.95000933572711,24.19809606956679,0.6591431528279181,5813.3057156748855,2019
+2004,25,"(20,25]",HS,15.792881867145423,24.19809606956679,0.6526497713598075,5895.6216258976165,2019
+2004,25,"(20,25]",HS,16.107136804308798,24.19809606956679,0.6656365342960289,5798.766343269473,2019
+2004,25,"(20,25]",HS,16.107136804308798,24.19809606956679,0.6656365342960289,5856.960235484468,2019
+2004,25,"(20,25]",HS,16.107136804308798,24.19809606956679,0.6656365342960289,5844.873069700185,2019
+2004,31,"(30,35]",HS,146.9141831238779,40.33016011594465,3.642787003610108,2367.9304231357364,2019
+2004,31,"(30,35]",HS,145.34290843806104,40.33016011594465,3.6038267148014445,2157.050989092653,2019
+2004,31,"(30,35]",HS,146.9141831238779,40.33016011594465,3.642787003610108,2358.3944931341066,2019
+2004,31,"(30,35]",HS,145.34290843806104,40.33016011594465,3.6038267148014445,2141.543123066946,2019
+2004,31,"(30,35]",HS,145.34290843806104,40.33016011594465,3.6038267148014445,2191.591032832161,2019
+2004,43,"(40,45]",College,587.5153177737882,169.38667248696757,3.4684860924875363,6331.228504871713,2019
+2004,43,"(40,45]",College,578.3076481149013,169.38667248696757,3.4141272133402096,6990.8509503899695,2019
+2004,43,"(40,45]",College,498.4083303411131,169.38667248696757,2.942429430978167,6272.177322169302,2019
+2004,43,"(40,45]",College,597.555763016158,169.38667248696757,3.527761389032147,6291.5893235869535,2019
+2004,43,"(40,45]",College,451.2700897666068,169.38667248696757,2.6641416537734224,6552.516778191746,2019
+2004,54,"(50,55]",College,32192.275763016158,2903.771528348015,11.086366626554351,18.875803891614044,2019
+2004,54,"(50,55]",College,32190.704488330342,2903.771528348015,11.08582551143201,19.12902112287269,2019
+2004,54,"(50,55]",College,32192.275763016158,2903.771528348015,11.086366626554351,19.897276336486822,2019
+2004,54,"(50,55]",College,32190.704488330342,2903.771528348015,11.08582551143201,18.279329651680335,2019
+2004,54,"(50,55]",College,32192.275763016158,2903.771528348015,11.086366626554351,19.504203208628326,2019
+2004,48,"(45,50]",HS,2.1385048473967685,70.9810818040626,0.030127814243518212,5607.474873802506,2019
+2004,48,"(45,50]",HS,2.6570254937163376,90.33955865971603,0.029411539453326453,5201.093412294354,2019
+2004,48,"(45,50]",HS,2.4213342908438062,74.20749461333816,0.03262924187725632,5674.472607769811,2019
+2004,48,"(45,50]",HS,2.5627490125673247,85.49993944580267,0.02997369389006198,5628.08143111059,2019
+2004,48,"(45,50]",HS,2.4056215439856374,74.20749461333816,0.032417501177209235,5487.63273660532,2019
+2004,69,"(65,70]",HS,7.856373429084381,19.358476855653432,0.4058363417569194,7626.365071765351,2019
+2004,69,"(65,70]",HS,7.856373429084381,19.358476855653432,0.4058363417569194,7698.667892189774,2019
+2004,69,"(65,70]",HS,7.856373429084381,19.358476855653432,0.4058363417569194,7704.709392920506,2019
+2004,69,"(65,70]",HS,7.856373429084381,19.358476855653432,0.4058363417569194,7691.013088978774,2019
+2004,69,"(65,70]",HS,7.856373429084381,19.358476855653432,0.4058363417569194,7696.717550035142,2019
+2004,33,"(30,35]",HS,1324.3017307001794,175.8394981055187,7.531309773788625,5856.573727750831,2019
+2004,33,"(30,35]",HS,1233.6077558348295,177.45270451015648,6.951755169018707,6509.37587382995,2019
+2004,33,"(30,35]",HS,1235.241881508079,179.06591091479427,6.898252577487233,5790.469876106717,2019
+2004,33,"(30,35]",HS,1121.0573500897665,177.45270451015648,6.317499376435838,5762.107117711148,2019
+2004,33,"(30,35]",HS,1217.6514614003593,172.6130852962431,7.054224535240731,6056.605529927412,2019
+2004,56,"(55,60]",College,18.90243447037702,66.14146259014923,0.28578797217575064,6349.268892321127,2019
+2004,56,"(55,60]",College,22.84633393177738,67.75466899478702,0.33719202337974896,6163.472161316438,2019
+2004,56,"(55,60]",College,20.94509156193896,67.75466899478702,0.30913133917827057,6294.538947544985,2019
+2004,56,"(55,60]",College,23.003461400359065,67.75466899478702,0.3395110881897885,6329.316848253032,2019
+2004,56,"(55,60]",College,19.860912028725313,66.14146259014923,0.30027929911068063,6223.750788802611,2019
+2004,54,"(50,55]",College,1954.665709156194,258.1130247420458,7.572906137184115,1869.1754034902333,2019
+2004,54,"(50,55]",College,1949.731906642729,259.7262311466836,7.506873287440859,1852.2767811519504,2019
+2004,54,"(50,55]",College,1953.565816876122,258.1130247420458,7.568644855595666,1918.6112754640344,2019
+2004,54,"(50,55]",College,1949.559066427289,258.1130247420458,7.553121615523465,1826.9746200299621,2019
+2004,54,"(50,55]",College,1956.519813285458,258.1130247420458,7.580089440433213,1911.6906506026621,2019
+2004,48,"(45,50]",College,369.56380610412924,130.66971877566067,2.828228372777109,7202.744129978955,2019
+2004,48,"(45,50]",College,369.56380610412924,130.66971877566067,2.828228372777109,6680.7512985736785,2019
+2004,48,"(45,50]",College,369.56380610412924,130.66971877566067,2.828228372777109,7288.8020341007195,2019
+2004,48,"(45,50]",College,369.56380610412924,130.66971877566067,2.828228372777109,7229.213042106099,2019
+2004,48,"(45,50]",College,369.56380610412924,130.66971877566067,2.828228372777109,7048.8081303271465,2019
+2004,48,"(45,50]",College,183.36775583482944,43.55657292522023,4.20987565182511,6197.196878278784,2019
+2004,48,"(45,50]",College,181.79648114901258,43.55657292522023,4.173801310335606,5857.252350747965,2019
+2004,48,"(45,50]",College,183.36775583482944,43.55657292522023,4.20987565182511,6204.072706979719,2019
+2004,48,"(45,50]",College,183.36775583482944,43.55657292522023,4.20987565182511,6222.767745745427,2019
+2004,48,"(45,50]",College,181.95360861759426,43.55657292522023,4.1774087444845565,6042.123223134155,2019
+2004,44,"(40,45]",College,6771.4082585278275,713.0372308499014,9.496570397111913,2898.3495774372536,2019
+2004,44,"(40,45]",College,7198.00933572711,943.7257467131047,7.627225770619273,2925.01155974244,2019
+2004,44,"(40,45]",College,3522.797845601436,919.5276506435381,3.8310950661853185,1536.327729565716,2019
+2004,44,"(40,45]",College,3844.752028725314,834.0277111977355,4.609861251736971,2835.8587425625865,2019
+2004,44,"(40,45]",College,5444.466786355476,874.3578713136802,6.226817376477013,2828.417254863766,2019
+2004,52,"(50,55]",College,19840.35975583483,3032.828040719038,6.5418676856901445,16.447431805294848,2019
+2004,52,"(50,55]",College,42971.97431956912,3016.6959766726595,14.244714963609338,15.52721512661518,2019
+2004,52,"(50,55]",College,33243.9299102334,3032.828040719038,10.961363276749367,15.811078813563672,2019
+2004,52,"(50,55]",College,25966.09982046679,3016.6959766726595,8.60746327149173,14.533928089507274,2019
+2004,52,"(50,55]",College,19840.20262836625,3032.828040719038,6.541815876795453,16.417587268272797,2019
+2004,51,"(50,55]",College,107879.63461400359,2629.5264395595914,41.0262597063188,224.5756583048576,2019
+2004,51,"(50,55]",College,107860.93644524238,2645.658503605969,40.76903209474333,233.31197362120798,2019
+2004,51,"(50,55]",College,107860.93644524238,2629.5264395595914,41.019148856060774,232.18788864895015,2019
+2004,51,"(50,55]",College,107876.64919210054,2629.5264395595914,41.02512436047928,233.99581520855227,2019
+2004,51,"(50,55]",College,107860.93644524238,2645.658503605969,40.76903209474333,228.74515023926355,2019
+2004,80,"(75,80]",HS,400.36078994614,71.49730785354667,5.599662448357205,246.89378892216263,2019
+2004,80,"(75,80]",HS,386.2193177737882,81.17654628137339,4.7577697680691955,223.00369382481236,2019
+2004,80,"(75,80]",HS,379.93421903052064,52.13883099789324,7.286972334417558,236.18044329415525,2019
+2004,80,"(75,80]",HS,375.22039497307003,56.9784502118066,6.585303629324056,228.9268579984113,2019
+2004,80,"(75,80]",HS,379.93421903052064,32.780354142239815,11.590302453168082,225.2707912235945,2019
+2004,43,"(40,45]",College,201820.80574506283,2081.0362619827442,96.98091735930372,17.27941629084851,2019
+2004,43,"(40,45]",College,227196.89192100542,2710.186759791481,83.83071428571428,17.790385937914266,2019
+2004,43,"(40,45]",College,193395.63087971276,2419.8096069566795,79.92183778580024,17.492184777733097,2019
+2004,43,"(40,45]",College,235512.0775583483,2742.4508878842366,85.87649777022722,17.06704017634909,2019
+2004,43,"(40,45]",College,197278.25062836625,2387.545478863924,82.62805981071322,17.13588658243797,2019
+2004,78,"(75,80]",HS,54318.1802513465,2097.168326029122,25.900725076367674,25.272604537569986,2019
+2004,78,"(75,80]",HS,48561.81543985637,2097.168326029122,23.15589780616495,25.483388426372862,2019
+2004,78,"(75,80]",HS,48050.36552962298,2097.168326029122,22.912021382949177,26.696224556148234,2019
+2004,78,"(75,80]",HS,52684.05457809695,2097.168326029122,25.12151930019439,24.422401064502107,2019
+2004,78,"(75,80]",HS,57721.56122082585,2097.168326029122,27.52357095251319,26.11546765252076,2019
+2004,58,"(55,60]",HS,550.1032675044884,203.26400698436103,2.706348633316143,5603.539025956559,2019
+2004,58,"(55,60]",HS,550.26039497307,203.26400698436103,2.7071216549194888,6197.772994659399,2019
+2004,58,"(55,60]",HS,551.9887971274686,203.26400698436103,2.715624892556301,5529.995190161992,2019
+2004,58,"(55,60]",HS,551.6745421903051,203.26400698436103,2.7140788493496073,5512.377139208236,2019
+2004,58,"(55,60]",HS,551.9887971274686,203.26400698436103,2.715624892556301,5794.439600117579,2019
+2004,34,"(30,35]",HS,67.43910951526033,53.23581135304694,1.2667996936877803,5494.324419929288,2019
+2004,34,"(30,35]",HS,67.2505565529623,53.23581135304694,1.263257849250629,5476.580492837028,2019
+2004,34,"(30,35]",HS,68.82183123877918,53.23581135304694,1.2927732195602233,5462.448633382537,2019
+2004,34,"(30,35]",HS,68.82183123877918,53.23581135304694,1.2927732195602233,5514.317322130189,2019
+2004,34,"(30,35]",HS,67.36054578096947,54.84901775768473,1.2281085156084093,5457.498344699489,2019
+2004,80,"(75,80]",NoHS,0,20.97168326029122,0,9201.708401805927,2019
+2004,80,"(75,80]",NoHS,0,43.55657292522023,0,9430.9774284487,2019
+2004,80,"(75,80]",NoHS,0,27.424508878842364,0,9151.989529454795,2019
+2004,80,"(75,80]",NoHS,0,30.650921688117936,0,9148.073306706228,2019
+2004,80,"(75,80]",NoHS,0,10.48584163014561,0,9257.420775356924,2019
+2004,50,"(45,50]",HS,58.844236983842016,79.04711382725151,0.7444198040226923,11302.976543865527,2019
+2004,50,"(45,50]",HS,60.572639138240575,80.6603202318893,0.7509595667870036,10645.579568214383,2019
+2004,50,"(45,50]",HS,62.143913824057456,79.04711382725151,0.786162970603404,11477.898222466627,2019
+2004,50,"(45,50]",HS,60.72976660682226,79.04711382725151,0.7682730420688132,11301.33032625417,2019
+2004,50,"(45,50]",HS,60.41551166965889,80.6603202318893,0.7490115523465705,11040.692879984552,2019
+2004,75,"(70,75]",College,14409.845888689408,146.80178282203855,98.15852104574125,2178.5383226546523,2019
+2004,75,"(70,75]",College,14731.32868940754,131.9602838993709,111.63456347700212,2172.161388921719,2019
+2004,75,"(70,75]",College,14922.552818671455,146.80178282203855,101.6510326496608,2476.108822808696,2019
+2004,75,"(70,75]",College,13388.831597845601,141.9621636081252,94.31267640301935,2072.6627101863396,2019
+2004,75,"(70,75]",College,14850.43131059246,136.15462055142913,109.0703440724075,2202.4504042589006,2019
+2004,70,"(65,70]",College,54100.55870736086,3226.4128092755723,16.76802129963899,23.907465601703212,2019
+2004,70,"(65,70]",College,54100.55870736086,3226.4128092755723,16.76802129963899,24.741440063254313,2019
+2004,70,"(65,70]",College,54098.98743267504,3226.4128092755723,16.76753429602888,24.7917585788844,2019
+2004,70,"(65,70]",College,54098.98743267504,3226.4128092755723,16.76753429602888,23.42409676290042,2019
+2004,70,"(65,70]",College,54114.70017953322,3226.4128092755723,16.772404332129966,24.90252657493076,2019
+2004,69,"(65,70]",College,1467.0991741472174,196.81118136580994,7.454348700952831,7617.534186815596,2019
+2004,69,"(65,70]",College,1463.9566247755834,196.81118136580994,7.438381369473869,8539.90767994424,2019
+2004,69,"(65,70]",College,1476.5268222621187,196.81118136580994,7.502250695389714,7603.650574962972,2019
+2004,69,"(65,70]",College,1453.7433393177737,196.81118136580994,7.386487542167247,7584.3923914400975,2019
+2004,69,"(65,70]",College,1531.521436265709,196.81118136580994,7.781678996271525,7944.692127718275,2019
+2004,69,"(65,70]",HS,10569.650556552962,241.98096069566793,43.67967845968712,2047.6664894362675,2019
+2004,69,"(65,70]",HS,10502.085745062837,241.98096069566793,43.400463056558365,2061.603114483126,2019
+2004,69,"(65,70]",HS,10387.382692998204,241.98096069566793,42.92644620938628,2066.8392551343795,2019
+2004,69,"(65,70]",HS,10275.822190305207,241.98096069566793,42.46541612515042,2004.3122706066356,2019
+2004,69,"(65,70]",HS,10981.324524236985,241.98096069566793,45.38094440433213,1997.921363103212,2019
+2004,29,"(25,30]",HS,-23.411992818671454,38.716953711306864,-0.6046961492178099,6388.048935159229,2019
+2004,29,"(25,30]",HS,-23.411992818671454,38.716953711306864,-0.6046961492178099,6355.5940424775745,2019
+2004,29,"(25,30]",HS,-23.411992818671454,38.716953711306864,-0.6046961492178099,6394.449712566939,2019
+2004,29,"(25,30]",HS,-23.569120287253142,38.716953711306864,-0.608754512635379,6423.2729049121535,2019
+2004,29,"(25,30]",HS,-23.411992818671454,38.716953711306864,-0.6046961492178099,6409.910790881834,2019
+2004,52,"(50,55]",College,284.0864631956912,35.4905409020313,8.004568427961928,8804.74747321942,2019
+2004,52,"(50,55]",College,298.88787073608614,35.4905409020313,8.421620610436493,8324.206750674308,2019
+2004,52,"(50,55]",College,333.58161579892277,35.4905409020313,9.399169675090251,8877.29662339017,2019
+2004,52,"(50,55]",College,302.0775583482944,35.4905409020313,8.511494913029207,8832.694808103177,2019
+2004,52,"(50,55]",College,282.6251777378815,35.4905409020313,7.963394486380044,8632.124701153425,2019
+2004,46,"(45,50]",College,57203.82621184919,34135.44752213555,1.6757895491118042,20.74019594646676,2019
+2004,46,"(45,50]",College,142717.30843806104,35732.52186272696,3.9940452282191496,21.35350431432254,2019
+2004,46,"(45,50]",College,247450.6226211849,33328.84431981666,7.424518541558183,20.995578422063275,2019
+2004,46,"(45,50]",College,86753.21795332136,35313.088197521145,2.456687375175846,20.4852844289174,2019
+2004,46,"(45,50]",College,62931.1224416517,32893.27859056446,1.913190935600554,20.567919624948274,2019
+2004,66,"(65,70]",HS,363.9072172351885,70.9810818040626,5.1268198227765005,8789.607413267433,2019
+2004,66,"(65,70]",HS,360.136157989228,70.9810818040626,5.073692156219232,8025.3552428860885,2019
+2004,66,"(65,70]",HS,363.59296229802516,70.9810818040626,5.122392517230062,8896.303293998628,2019
+2004,66,"(65,70]",HS,364.0643447037702,70.9810818040626,5.12903347554972,8873.565455404278,2019
+2004,66,"(65,70]",HS,359.9790305206463,70.9810818040626,5.071478503446011,8662.273216480875,2019
+2004,56,"(55,60]",HS,1129.6050843806104,358.13182182958855,3.154160048134777,5995.5930987701695,2019
+2004,56,"(55,60]",HS,1130.8935296229802,358.13182182958855,3.157757732461703,6632.066838173579,2019
+2004,56,"(55,60]",HS,1129.18084021544,358.13182182958855,3.1529754447588383,5913.690089118218,2019
+2004,56,"(55,60]",HS,1131.1920718132853,358.13182182958855,3.158591342244771,5895.5129046326565,2019
+2004,56,"(55,60]",HS,1129.6679353680431,358.13182182958855,3.1543355449312127,6198.878132396872,2019
+2004,52,"(50,55]",HS,587.1539245960503,90.33955865971603,6.499411036616812,6278.38295433441,2019
+2004,52,"(50,55]",HS,588.8823267504488,90.33955865971603,6.518543321299638,6987.214709543482,2019
+2004,52,"(50,55]",HS,587.1539245960503,90.33955865971603,6.499411036616812,6198.9674705344505,2019
+2004,52,"(50,55]",HS,588.7251992818672,90.33955865971603,6.516804022692108,6213.729115115669,2019
+2004,52,"(50,55]",HS,587.1539245960503,90.33955865971603,6.499411036616812,6494.090011147466,2019
+2004,63,"(60,65]",College,24698.866786355477,1008.2540028986164,24.49667119133574,194.0817472000475,2019
+2004,63,"(60,65]",College,24991.281005385994,1008.2540028986164,24.786691581227434,189.64259496906303,2019
+2004,63,"(60,65]",College,25069.687612208258,1008.2540028986164,24.864456317689527,199.65519840026084,2019
+2004,63,"(60,65]",College,24672.15511669659,1043.7445438006475,23.63811649434491,189.45306228096882,2019
+2004,63,"(60,65]",College,24694.152962298023,1006.6407964939785,24.531245950199015,196.81809045795274,2019
+2004,80,"(75,80]",HS,666.6918491921006,51.62260494840914,12.914726985559572,9527.621141191357,2019
+2004,80,"(75,80]",HS,630.3954039497307,51.62260494840914,12.211615523465708,10442.851053073717,2019
+2004,80,"(75,80]",HS,801.821472172352,51.62260494840914,15.532371389891702,9406.18789852356,2019
+2004,80,"(75,80]",HS,664.9634470377019,51.62260494840914,12.881245487364623,9428.685184767575,2019
+2004,80,"(75,80]",HS,646.2652782764812,51.62260494840914,12.519036552346575,9855.541043307177,2019
+2004,59,"(55,60]",College,913.8533572710952,183.90553012870762,4.969145607701565,6155.116532365465,2019
+2004,59,"(55,60]",College,916.995906642729,185.5187365333454,4.9428749018992315,6405.236502205249,2019
+2004,59,"(55,60]",College,914.0104847396768,183.90553012870762,4.97,6013.426108541384,2019
+2004,59,"(55,60]",College,915.7388868940754,185.5187365333454,4.936099199497725,5959.934970980397,2019
+2004,59,"(55,60]",College,914.3247396768403,185.5187365333454,4.9284765342960295,6185.611863188356,2019
+2004,69,"(65,70]",College,1590.7584919210053,121.31312162876151,13.112831246639526,6755.76617026866,2019
+2004,69,"(65,70]",College,1628.6262118491923,121.31312162876151,13.424979837161075,7571.427608372307,2019
+2004,69,"(65,70]",College,1631.7687612208258,121.31312162876151,13.450884284507259,6741.607423343732,2019
+2004,69,"(65,70]",College,1592.015511669659,121.31312162876151,13.123193025578002,6723.877487089339,2019
+2004,69,"(65,70]",College,1588.40157989228,121.31312162876151,13.093402911129887,7043.760705369056,2019
+2004,51,"(50,55]",HS,2712.020107719928,282.31112081161257,9.606494069107788,672.537477880426,2019
+2004,51,"(50,55]",HS,2710.4488330341114,282.31112081161257,9.600928313563694,691.2924512993575,2019
+2004,51,"(50,55]",HS,2710.4488330341114,282.31112081161257,9.600928313563694,668.1519544195419,2019
+2004,51,"(50,55]",HS,2708.8775583482943,282.31112081161257,9.595362558019596,686.1054157119626,2019
+2004,51,"(50,55]",HS,2710.4488330341114,282.31112081161257,9.600928313563694,695.1145084043239,2019
+2004,38,"(35,40]",College,256.9034111310593,96.79238427826716,2.654169675090253,5110.155730737223,2019
+2004,38,"(35,40]",College,256.9034111310593,96.79238427826716,2.654169675090253,5061.566270601232,2019
+2004,38,"(35,40]",College,258.4746858168761,96.79238427826716,2.670403128760529,5091.35478439933,2019
+2004,38,"(35,40]",College,256.9034111310593,96.79238427826716,2.654169675090253,5140.328169360868,2019
+2004,38,"(35,40]",College,256.9034111310593,96.79238427826716,2.654169675090253,5095.170733405717,2019
+2004,42,"(40,45]",College,1450.522226211849,340.3865513785729,4.2613969921467305,1676.8291846504333,2019
+2004,42,"(40,45]",College,1455.7859964093357,340.3865513785729,4.276861087823155,1645.5388303474724,2019
+2004,42,"(40,45]",College,1456.7287612208258,340.3865513785729,4.279630776601023,1709.091663046614,2019
+2004,42,"(40,45]",College,1451.9363734290844,341.99975778321067,4.245430999250732,1640.7456088296526,2019
+2004,42,"(40,45]",College,1454.5289766606822,341.99975778321067,4.253011715823173,1710.6468811974478,2019
+2004,58,"(55,60]",College,33893.96624775583,7098.108180406259,4.775070397111913,29.61522827315356,2019
+2004,58,"(55,60]",College,33710.441364452425,7098.108180406259,4.749214932720709,30.288865272540924,2019
+2004,58,"(55,60]",College,33879.82477558348,7098.108180406259,4.773078109616016,30.73317210105531,2019
+2004,58,"(55,60]",College,33749.408976660685,7098.108180406259,4.754704791598294,29.418209941644864,2019
+2004,58,"(55,60]",College,33750.9802513465,7098.108180406259,4.754926156875615,31.16929348498715,2019
+2004,27,"(25,30]",HS,6.756481149012568,38.716953711306864,0.17450962695547534,5141.740611005387,2019
+2004,27,"(25,30]",HS,6.756481149012568,38.716953711306864,0.17450962695547534,5115.851953991556,2019
+2004,27,"(25,30]",HS,6.756481149012568,38.716953711306864,0.17450962695547534,5147.744121346443,2019
+2004,27,"(25,30]",HS,6.756481149012568,38.716953711306864,0.17450962695547534,5182.9377487421825,2019
+2004,27,"(25,30]",HS,6.756481149012568,38.716953711306864,0.17450962695547534,5160.347952127313,2019
+2004,77,"(75,80]",HS,100.5930053859964,19.358476855653432,5.196328519855596,9976.675657781892,2019
+2004,77,"(75,80]",HS,100.5930053859964,20.97168326029122,4.796610941405166,9985.64182251399,2019
+2004,77,"(75,80]",HS,100.5930053859964,20.97168326029122,4.796610941405166,9997.352269283523,2019
+2004,77,"(75,80]",HS,100.5930053859964,19.358476855653432,5.196328519855596,9972.521631065116,2019
+2004,77,"(75,80]",HS,100.5930053859964,20.97168326029122,4.796610941405166,9985.7170695935,2019
+2004,36,"(35,40]",HS,-6.442226211849192,32.264128092755726,-0.1996714801444043,4549.926665891742,2019
+2004,36,"(35,40]",HS,-6.756481149012568,32.264128092755726,-0.20941155234657038,4522.2359679565725,2019
+2004,36,"(35,40]",HS,-6.756481149012568,32.264128092755726,-0.20941155234657038,4547.4772808332655,2019
+2004,36,"(35,40]",HS,-7.3692782764811495,32.264128092755726,-0.2284046931407942,4550.138549662059,2019
+2004,36,"(35,40]",HS,-7.667820466786356,32.264128092755726,-0.23765776173285197,4552.800583413638,2019
+2004,29,"(25,30]",HS,26.90022262118492,93.56597146899159,0.28750006224324665,8053.8731174988225,2019
+2004,29,"(25,30]",HS,25.328947935368046,93.56597146899159,0.2707068343084776,7763.4661029574,2019
+2004,29,"(25,30]",HS,36.327870736086176,93.56597146899159,0.38825942985186107,8061.043945080045,2019
+2004,29,"(25,30]",HS,11.203188509874327,93.56597146899159,0.11973571517490353,8064.591077134823,2019
+2004,29,"(25,30]",HS,11.344603231597846,93.56597146899159,0.12124710568903274,7954.075226850904,2019
+2004,36,"(35,40]",College,377.26305206463195,96.79238427826716,3.8976522262334536,6844.183158962629,2019
+2004,36,"(35,40]",College,375.6917773788151,96.79238427826716,3.8814187725631775,6570.039100632441,2019
+2004,36,"(35,40]",College,374.12050269299823,96.79238427826716,3.8651853188929004,6837.994588409451,2019
+2004,36,"(35,40]",College,377.26305206463195,96.79238427826716,3.8976522262334536,6812.500894694361,2019
+2004,36,"(35,40]",College,377.26305206463195,96.79238427826716,3.8976522262334536,6743.536362090141,2019
+2004,36,"(35,40]",College,45.06415798922801,24.19809606956679,1.8623018050541518,5013.948063419049,2019
+2004,36,"(35,40]",College,52.590563734290846,24.19809606956679,2.1733347773766547,4932.1119469281475,2019
+2004,36,"(35,40]",College,42.86437342908438,24.19809606956679,1.7713944645006017,4994.358579201036,2019
+2004,36,"(35,40]",College,34.662319569120285,24.19809606956679,1.4324399518652227,5030.919300952261,2019
+2004,36,"(35,40]",College,39.78467504488331,24.19809606956679,1.644124187725632,4979.773700216956,2019
+2004,48,"(45,50]",HS,19.452380610412927,169.38667248696757,0.11484008939315797,6053.98395745528,2019
+2004,48,"(45,50]",HS,21.0236552962298,169.38667248696757,0.12411634863331611,5684.202246625622,2019
+2004,48,"(45,50]",HS,21.0236552962298,169.38667248696757,0.12411634863331611,6102.4714431342245,2019
+2004,48,"(45,50]",HS,21.0236552962298,169.38667248696757,0.12411634863331611,6057.987810037105,2019
+2004,48,"(45,50]",HS,21.0236552962298,169.38667248696757,0.12411634863331611,5912.174406018869,2019
+2004,56,"(55,60]",HS,3.1425493716337525,61.30184337623587,0.051263537906137184,4253.857869694666,2019
+2004,56,"(55,60]",HS,3.1425493716337525,61.30184337623587,0.051263537906137184,4201.418648225391,2019
+2004,56,"(55,60]",HS,4.870951526032316,61.30184337623587,0.07945848375451264,4231.190320574285,2019
+2004,56,"(55,60]",HS,6.285098743267505,61.30184337623587,0.10252707581227437,4256.8441534322355,2019
+2004,56,"(55,60]",HS,4.713824057450628,61.30184337623587,0.07689530685920577,4220.695854919908,2019
+2004,53,"(50,55]",HS,292.8856014362657,191.97156215189653,1.5256718138518945,1996.208859638399,2019
+2004,53,"(50,55]",HS,294.4568761220826,191.97156215189653,1.5338567484755636,1849.8759984613796,2019
+2004,53,"(50,55]",HS,292.8856014362657,191.97156215189653,1.5256718138518945,1951.5593875409381,2019
+2004,53,"(50,55]",HS,294.4568761220826,191.97156215189653,1.5338567484755636,1863.993594038353,2019
+2004,53,"(50,55]",HS,292.8856014362657,191.97156215189653,1.5256718138518945,1828.46560569967,2019
+2004,57,"(55,60]",College,1527.2789946140038,66.14146259014923,23.091098001232723,8610.271888882931,2019
+2004,57,"(55,60]",College,1527.4361220825854,67.75466899478702,22.54362901839436,8758.202578924576,2019
+2004,57,"(55,60]",College,1527.4361220825854,67.75466899478702,22.54362901839436,8459.14627068646,2019
+2004,57,"(55,60]",College,1527.4361220825854,67.75466899478702,22.54362901839436,8343.784630261118,2019
+2004,57,"(55,60]",College,1527.2789946140038,67.75466899478702,22.54130995358432,8680.38660475044,2019
+2004,44,"(40,45]",HS,5.609450628366248,82.2735266365271,0.06818050541516245,3470.9309654039475,2019
+2004,44,"(40,45]",HS,3.221113105924596,27.424508878842364,0.1174538118496496,3518.5269626393747,2019
+2004,44,"(40,45]",HS,2.7340179533213647,20.97168326029122,0.13036712024437658,3811.99465413463,2019
+2004,44,"(40,45]",HS,6.175109515260323,41.94336652058244,0.1472249375173563,3462.2209562534727,2019
+2004,44,"(40,45]",HS,5.216631956912029,29.03771528348015,0.17965022061772964,3496.275066188772,2019
+2004,34,"(30,35]",NoHS,6.756481149012568,40.33016011594465,0.16752924187725632,3952.6653451807565,2019
+2004,34,"(30,35]",NoHS,6.756481149012568,40.33016011594465,0.16752924187725632,4011.10411514458,2019
+2004,34,"(30,35]",NoHS,6.5993536804308794,40.33016011594465,0.1636332129963899,3968.9467266274687,2019
+2004,34,"(30,35]",NoHS,6.5993536804308794,40.33016011594465,0.1636332129963899,3974.1518374708094,2019
+2004,34,"(30,35]",NoHS,6.756481149012568,40.33016011594465,0.16752924187725632,3993.413248299506,2019
+2004,37,"(35,40]",College,653.4931418312387,188.74514934262095,3.462304298188775,6379.164268746815,2019
+2004,37,"(35,40]",College,655.0644165170557,188.74514934262095,3.470629146224815,7081.335895531772,2019
+2004,37,"(35,40]",College,655.0644165170557,188.74514934262095,3.470629146224815,6248.881056625172,2019
+2004,37,"(35,40]",College,655.0644165170557,188.74514934262095,3.470629146224815,6290.691530448075,2019
+2004,37,"(35,40]",College,655.0644165170557,188.74514934262095,3.470629146224815,6532.673271148016,2019
+2004,47,"(45,50]",HS,297.12804308797126,201.65080057972327,1.4734781227436822,4932.105854594653,2019
+2004,47,"(45,50]",HS,296.9709156193896,201.65080057972327,1.4726989169675089,4664.132455797016,2019
+2004,47,"(45,50]",HS,295.5567684021544,201.65080057972327,1.4656860649819492,4975.353426601314,2019
+2004,47,"(45,50]",HS,295.5567684021544,201.65080057972327,1.4656860649819492,4953.335828979569,2019
+2004,47,"(45,50]",HS,297.12804308797126,201.65080057972327,1.4734781227436822,4836.701911112128,2019
+2004,54,"(50,55]",College,4180.847684021544,543.6505583629339,7.690321696001029,1438.7386515847907,2019
+2004,54,"(50,55]",College,4183.990233393178,543.6505583629339,7.696102154281245,1433.138313107786,2019
+2004,54,"(50,55]",College,4182.261831238779,543.6505583629339,7.692922902227127,1463.8336641787785,2019
+2004,54,"(50,55]",College,4182.4189587073615,543.6505583629339,7.693211925141139,1397.4483158499336,2019
+2004,54,"(50,55]",College,4182.261831238779,543.6505583629339,7.692922902227127,1421.0678114947616,2019
+2004,68,"(65,70]",College,50038.49938958707,2742.4508878842366,18.24590537269059,22.10647383731183,2019
+2004,68,"(65,70]",College,65720.76351885099,2726.318823837859,24.106044731164417,22.878093812438543,2019
+2004,68,"(65,70]",College,49697.532782764814,2742.4508878842366,18.12157621575706,23.064657985525542,2019
+2004,68,"(65,70]",College,65668.12581687613,2710.186759791481,24.230110924875362,21.734439474054252,2019
+2004,68,"(65,70]",College,55454.2118491921,2726.318823837859,20.340325336979042,22.30086815914582,2019
+2004,68,"(65,70]",HS,1124.3727396768402,129.0565123710229,8.71225108303249,8514.772790267922,2019
+2004,68,"(65,70]",HS,1569.8134003590665,81.78956471513575,19.19332137084428,8750.837295293417,2019
+2004,68,"(65,70]",HS,1851.2758348294435,115.3442579316017,16.050004291737146,13227.753154647977,2019
+2004,68,"(65,70]",HS,894.7623698384201,95.17917787362938,9.400820534785534,8313.19245480149,2019
+2004,68,"(65,70]",HS,1555.6562154398564,90.17823801925225,17.25090498117448,8564.041900487431,2019
+2004,61,"(60,65]",NoHS,15.2413644524237,33.87733449739351,0.44989857314767057,7298.746606142173,2019
+2004,61,"(60,65]",NoHS,15.398491921005387,35.4905409020313,0.43387594355103376,7208.441536260097,2019
+2004,61,"(60,65]",NoHS,15.398491921005387,33.87733449739351,0.45453670276774966,7258.65284296562,2019
+2004,61,"(60,65]",NoHS,15.398491921005387,35.4905409020313,0.43387594355103376,7285.768583535653,2019
+2004,61,"(60,65]",NoHS,15.398491921005387,33.87733449739351,0.45453670276774966,7240.428971368204,2019
+2004,56,"(55,60]",College,-9.38050987432675,48.39619213913358,-0.1938274368231047,4401.281269988925,2019
+2004,56,"(55,60]",College,-9.39622262118492,48.39619213913358,-0.19415210589651025,4347.024693879552,2019
+2004,56,"(55,60]",College,-9.38050987432675,48.39619213913358,-0.1938274368231047,4377.82814521697,2019
+2004,56,"(55,60]",College,-9.39622262118492,48.39619213913358,-0.19415210589651025,4404.3710475705075,2019
+2004,56,"(55,60]",College,-9.38050987432675,48.39619213913358,-0.1938274368231047,4366.969979162057,2019
+2004,40,"(35,40]",NoHS,0,27.424508878842364,0,4604.989108930027,2019
+2004,40,"(35,40]",NoHS,0,37.10374730666908,0,4616.994235760523,2019
+2004,40,"(35,40]",NoHS,0,37.10374730666908,0,4576.239365733532,2019
+2004,40,"(35,40]",NoHS,0,30.650921688117936,0,4542.581150900729,2019
+2004,40,"(35,40]",NoHS,0,20.97168326029122,0,4574.2023794020615,2019
+2004,21,"(20,25]",HS,26.556113464991025,0.9679238427826717,27.436160048134777,6764.524642481811,2019
+2004,21,"(20,25]",HS,26.71324093357271,0.9679238427826717,27.598494584837542,6728.030247635979,2019
+2004,21,"(20,25]",HS,26.71324093357271,0.9679238427826717,27.598494584837542,6752.368334166694,2019
+2004,21,"(20,25]",HS,26.556113464991025,0.9679238427826717,27.436160048134777,6671.213214455415,2019
+2004,21,"(20,25]",HS,26.556113464991025,0.9679238427826717,27.436160048134777,6723.140344245956,2019
+2004,52,"(50,55]",College,162907.71676840217,14922.15924289952,10.917167825153674,2.8223448818477395,2019
+2004,52,"(50,55]",College,38623.267360861755,10147.068285171676,3.8063474370526813,2.8812682866096098,2019
+2004,52,"(50,55]",College,129701.96883303412,12857.255044963153,10.087842885550057,2.764845406160569,2019
+2004,52,"(50,55]",College,34729.177307001795,10147.068285171676,3.422582398282759,2.7705622626063535,2019
+2004,52,"(50,55]",College,118781.37407540395,10147.068285171676,11.705979573329964,2.7024244688325725,2019
+2004,78,"(75,80]",College,2907.800933572711,227.46210305392788,12.783672069027318,13246.48318220023,2019
+2004,78,"(75,80]",College,2815.4099820466786,229.07530945856564,12.29032490974729,14100.846143816167,2019
+2004,78,"(75,80]",College,2881.089263913824,229.07530945856564,12.577039711191336,13227.753154647977,2019
+2004,78,"(75,80]",College,2816.667001795332,227.46210305392788,12.383016616739635,14141.46206116561,2019
+2004,78,"(75,80]",College,2827.5087971274684,229.07530945856564,12.343140794223824,13782.702038243297,2019
+2004,29,"(25,30]",College,3.9281867145421905,40.33016011594465,0.09740072202166065,5354.689391204094,2019
+2004,29,"(25,30]",College,3.771059245960503,30.650921688117936,0.12303249097472924,5433.856594656272,2019
+2004,29,"(25,30]",College,3.9281867145421905,17.74527045101565,0.221365277321956,5376.745834867646,2019
+2004,29,"(25,30]",College,3.9281867145421905,27.424508878842364,0.14323635591420683,5383.797216499757,2019
+2004,29,"(25,30]",College,3.9281867145421905,17.74527045101565,0.221365277321956,5409.890716256772,2019
+2004,58,"(55,60]",College,7814.577522441652,709.8108180406259,11.00938070233016,360.44150035953055,2019
+2004,58,"(55,60]",College,10445.834111310593,608.1788145484454,17.175596816976125,347.97573866529854,2019
+2004,58,"(55,60]",College,7410.917055655296,596.886369715981,12.415959605815198,374.1068913847504,2019
+2004,58,"(55,60]",College,10389.268222621185,738.848533324106,14.061431746882539,355.7540392668519,2019
+2004,58,"(55,60]",College,11897.22053859964,748.5277717519327,15.894160494211377,366.38106265159144,2019
+2004,51,"(50,55]",College,3015.66894075404,440.4053484661156,6.847484825643671,994.5899679987145,2019
+2004,51,"(50,55]",College,3015.66894075404,440.4053484661156,6.847484825643671,1006.6992123250375,2019
+2004,51,"(50,55]",College,2995.2423698384205,440.4053484661156,6.801103529442881,991.6859893878376,2019
+2004,51,"(50,55]",College,2996.813644524237,440.4053484661156,6.804671321458326,1017.1933843578756,2019
+2004,51,"(50,55]",College,3015.66894075404,440.4053484661156,6.847484825643671,1031.3551682543662,2019
+2004,28,"(25,30]",HS,0.31425493716337527,48.39619213913358,0.006493381468110711,5149.183157579873,2019
+2004,28,"(25,30]",HS,0.31425493716337527,48.39619213913358,0.006493381468110711,5222.095149353651,2019
+2004,28,"(25,30]",HS,-0.31425493716337527,48.39619213913358,-0.006493381468110711,5136.304789371945,2019
+2004,28,"(25,30]",HS,-1.0998922800718134,48.39619213913358,-0.022726835138387486,5187.8505060989155,2019
+2004,28,"(25,30]",HS,-0.31425493716337527,48.39619213913358,-0.006493381468110711,5177.144199992997,2019
+2004,45,"(40,45]",HS,140.25197845601437,90.33955865971603,1.5524979370809695,5349.152366740452,2019
+2004,45,"(40,45]",HS,138.22503411131058,90.33955865971603,1.5300609850438367,4962.77766248863,2019
+2004,45,"(40,45]",HS,137.7615080789946,90.33955865971603,1.5249300541516242,5415.902743152,2019
+2004,45,"(40,45]",HS,137.3608330341113,90.33955865971603,1.5204948427024236,5374.858919109501,2019
+2004,45,"(40,45]",HS,138.06005026929984,90.33955865971603,1.5282347215059309,5236.231065772581,2019
+2004,47,"(45,50]",College,14012.627648114902,935.6597146899159,14.976200672227066,309.30433785217014,2019
+2004,47,"(45,50]",College,14011.999138240575,935.6597146899159,14.975528943109675,306.9329149080271,2019
+2004,47,"(45,50]",College,14011.056373429084,935.6597146899159,14.974521349433587,317.5809256661627,2019
+2004,47,"(45,50]",College,14010.899245960502,935.6597146899159,14.974353417154239,304.08709309169,2019
+2004,47,"(45,50]",College,14011.842010771994,935.6597146899159,14.975361010830328,307.35725306476564,2019
+2004,39,"(35,40]",College,-136.48091921005386,43.55657292522023,-3.1334173017783122,6171.088282593909,2019
+2004,39,"(35,40]",College,-135.7581328545781,46.782985734495796,-2.9018697871280965,6161.197725045887,2019
+2004,39,"(35,40]",College,-137.29798204667864,40.33016011594465,-3.4043500361010834,6181.483879259542,2019
+2004,39,"(35,40]",College,-137.4865350089767,41.94336652058244,-3.2779089141905033,6173.258424777909,2019
+2004,39,"(35,40]",College,-135.39673967684024,43.55657292522023,-3.108526006150555,6144.586938047535,2019
+2004,34,"(30,35]",College,135.44387791741474,129.0565123710229,1.0494927797833935,5943.364398085242,2019
+2004,34,"(30,35]",College,135.12962298025136,129.0565123710229,1.0470577617328518,5893.07721975088,2019
+2004,34,"(30,35]",College,135.28675044883306,129.0565123710229,1.0482752707581229,5931.605113796186,2019
+2004,34,"(30,35]",College,135.28675044883306,129.0565123710229,1.0482752707581229,6026.076964648566,2019
+2004,34,"(30,35]",College,135.28675044883306,129.0565123710229,1.0482752707581229,5943.627118753456,2019
+2004,49,"(45,50]",College,-1.3355834829443447,13.066971877566067,-0.10221063422026118,4919.168140666177,2019
+2004,49,"(45,50]",College,-1.3355834829443447,13.228292518029845,-0.10096416307123361,4923.166704498146,2019
+2004,49,"(45,50]",College,-1.3355834829443447,13.066971877566067,-0.10221063422026118,4928.277602324827,2019
+2004,49,"(45,50]",College,-1.3355834829443447,13.228292518029845,-0.10096416307123361,4940.845995075797,2019
+2004,49,"(45,50]",College,-1.3355834829443447,13.228292518029845,-0.10096416307123361,4919.4531884198495,2019
+2004,60,"(55,60]",College,1243.6010628366248,225.84889664929003,5.506341103661682,4715.67587724899,2019
+2004,60,"(55,60]",College,1247.1207181328548,225.84889664929003,5.521925219185149,4930.471486589638,2019
+2004,60,"(55,60]",College,1242.8311382405743,225.84889664929003,5.502932078390923,4592.600285477727,2019
+2004,60,"(55,60]",College,1231.9736301615799,225.84889664929003,5.454857864878804,4530.388800795079,2019
+2004,60,"(55,60]",College,1247.5921005385997,225.84889664929003,5.524012377514183,4712.863320991246,2019
+2004,55,"(50,55]",College,8902.842369838421,2113.3003900754998,4.212767106677323,25.951288666609333,2019
+2004,55,"(50,55]",College,8925.154470377021,1887.4514934262095,4.728680181431085,26.818102962053683,2019
+2004,55,"(50,55]",College,9415.077917414721,1806.7911731943202,5.210938628158845,27.49613653516915,2019
+2004,55,"(50,55]",College,9911.600718132855,2064.9041979363665,4.800029332129964,25.39359450513522,2019
+2004,55,"(50,55]",College,8801.33802513465,2113.3003900754998,4.16473591093229,26.644861087498175,2019
+2004,78,"(75,80]",HS,1241.307001795332,90.33955865971603,13.740458999484268,8016.629093823804,2019
+2004,78,"(75,80]",HS,1241.307001795332,90.33955865971603,13.740458999484268,8911.506617424915,2019
+2004,78,"(75,80]",HS,1241.307001795332,90.33955865971603,13.740458999484268,7936.291569086355,2019
+2004,78,"(75,80]",HS,1241.307001795332,90.33955865971603,13.740458999484268,7910.674010098238,2019
+2004,78,"(75,80]",HS,1241.307001795332,90.33955865971603,13.740458999484268,8292.49819126661,2019
+2004,31,"(30,35]",College,139.37206463195693,120.99048034783397,1.15192587244284,2078.268657254096,2019
+2004,31,"(30,35]",College,149.27109515260324,120.99048034783397,1.233742478941035,2025.6734296396492,2019
+2004,31,"(30,35]",College,160.27001795332137,120.99048034783397,1.3246498194945848,2012.939000669622,2019
+2004,31,"(30,35]",College,144.5572710951526,120.99048034783397,1.1947821901323705,1944.102996823104,2019
+2004,31,"(30,35]",College,142.98599640933574,120.99048034783397,1.1817954271961493,1939.243726561638,2019
+2004,65,"(60,65]",College,123185.89271095152,11566.689921252928,10.650055767865503,17.27941629084851,2019
+2004,65,"(60,65]",College,119228.95166965888,9727.63461996585,12.256725949075323,17.790385937914266,2019
+2004,65,"(60,65]",College,147547.7210771993,10421.313373960096,14.158265449139948,17.492184777733097,2019
+2004,65,"(60,65]",College,124097.07490125672,9808.29494019774,12.652257671480143,17.06704017634909,2019
+2004,65,"(60,65]",College,138247.50333931777,11260.180704371747,12.277556370444694,17.13588658243797,2019
+2004,39,"(35,40]",HS,6.190822262118492,91.95276506435381,0.06732611311672683,9192.128143552849,2019
+2004,39,"(35,40]",HS,6.033694793536805,91.95276506435381,0.06561732851985559,8672.636343745351,2019
+2004,39,"(35,40]",HS,6.033694793536805,91.95276506435381,0.06561732851985559,9153.429044473092,2019
+2004,39,"(35,40]",HS,7.60496947935368,91.95276506435381,0.08270517448856798,9114.42678994169,2019
+2004,39,"(35,40]",HS,6.033694793536805,91.95276506435381,0.06561732851985559,8947.661421550954,2019
+2004,54,"(50,55]",College,1180.781500897666,95.17917787362938,12.405880438108058,8610.271888882931,2019
+2004,54,"(50,55]",College,1204.6963016157988,96.79238427826716,12.446188929001202,8758.202578924576,2019
+2004,54,"(50,55]",College,1185.6995906642728,98.40559068290497,12.049108007338578,8459.14627068646,2019
+2004,54,"(50,55]",College,1155.813946140036,100.01879708754274,11.555967276115059,8343.784630261118,2019
+2004,54,"(50,55]",College,1181.4414362657092,95.17917787362938,12.412814048828244,8680.38660475044,2019
+2004,55,"(50,55]",HS,438.71560502693,293.6035656440771,1.494244812948784,5621.900961121083,2019
+2004,55,"(50,55]",HS,438.71560502693,293.6035656440771,1.494244812948784,6217.6749160115705,2019
+2004,55,"(50,55]",HS,438.8727324955117,293.6035656440771,1.4947799817511007,5548.657622773823,2019
+2004,55,"(50,55]",HS,438.71560502693,293.6035656440771,1.494244812948784,5530.922471476371,2019
+2004,55,"(50,55]",HS,438.8727324955117,293.6035656440771,1.4947799817511007,5813.085891786011,2019
+2004,36,"(35,40]",HS,10.998922800718134,41.94336652058244,0.26223271313524027,4556.248723075301,2019
+2004,36,"(35,40]",HS,9.63191382405745,40.33016011594465,0.23882657039711191,4536.737155610242,2019
+2004,36,"(35,40]",HS,10.606104129263915,41.94336652058244,0.252867259094696,4522.096691009881,2019
+2004,36,"(35,40]",HS,9.63191382405745,41.94336652058244,0.22964093307414607,4536.691770800635,2019
+2004,36,"(35,40]",HS,15.084236983842011,40.33016011594465,0.3740187725631769,4512.239531664017,2019
+2004,28,"(25,30]",HS,52.63770197486535,46.782985734495796,1.1251462716295282,6952.644758149366,2019
+2004,28,"(25,30]",HS,24.19763016157989,46.782985734495796,0.5172314203908875,6917.321400146041,2019
+2004,28,"(25,30]",HS,23.883375224416515,46.782985734495796,0.5105141292169799,6959.611256362436,2019
+2004,28,"(25,30]",HS,24.66901256732496,46.782985734495796,0.5273073571517491,6990.9819329502625,2019
+2004,28,"(25,30]",HS,24.826140035906644,46.782985734495796,0.5306660027387029,6976.438833325685,2019
+2004,66,"(65,70]",NoHS,1895.7429084380612,137.12254439421181,13.825173072839245,3968.337190986066,2019
+2004,66,"(65,70]",NoHS,1707.189946140036,137.12254439421181,12.450104056062859,8121.61808903998,2019
+2004,66,"(65,70]",NoHS,1887.1008976660682,137.12254439421181,13.762149076236993,3971.804128608737,2019
+2004,66,"(65,70]",NoHS,1745.6861759425494,137.12254439421181,12.730847313654705,7211.803415499404,2019
+2004,66,"(65,70]",NoHS,1992.847684021544,137.12254439421181,14.533333616479082,4066.1103227072213,2019
+2004,28,"(25,30]",HS,1.5712746858168762,40.33016011594465,0.03896028880866426,6797.815243407231,2019
+2004,28,"(25,30]",HS,1.5712746858168762,40.33016011594465,0.03896028880866426,6693.93410171072,2019
+2004,28,"(25,30]",HS,1.5712746858168762,40.33016011594465,0.03896028880866426,6782.81375762835,2019
+2004,28,"(25,30]",HS,1.5712746858168762,40.33016011594465,0.03896028880866426,6875.154809241145,2019
+2004,28,"(25,30]",HS,1.5712746858168762,40.33016011594465,0.03896028880866426,6771.637855637037,2019
+2004,52,"(50,55]",HS,623.4817953321365,70.9810818040626,8.783774204135215,6330.606070448977,2019
+2004,52,"(50,55]",HS,748.2881436265709,248.43378631421908,3.0120224576867174,7046.5006876946045,2019
+2004,52,"(50,55]",HS,688.5325673249552,153.2546084405897,4.492736462093863,6246.525512041762,2019
+2004,52,"(50,55]",HS,799.9359425493716,72.59428820870036,11.019268351383875,6262.17019762066,2019
+2004,52,"(50,55]",HS,770.2388509874327,129.0565123710229,5.968229241877255,6547.465057654449,2019
+2004,62,"(60,65]",College,62068.33551166966,827.5748855791844,75.00026474127556,224.5756583048576,2019
+2004,62,"(60,65]",College,60263.883662477565,784.0183126539641,76.86540312876053,233.31197362120798,2019
+2004,62,"(60,65]",College,61863.45700538599,793.6975510817908,77.94336384315106,232.18788864895015,2019
+2004,62,"(60,65]",College,60776.134922800724,793.6975510817908,76.57341872853746,233.99581520855227,2019
+2004,62,"(60,65]",College,67429.74471813286,782.4051062493263,86.1826490900294,260.2593226387703,2019
+2004,40,"(35,40]",College,1679.2212567324955,322.6412809275572,5.204607581227437,4722.201616718686,2019
+2004,40,"(35,40]",College,1529.9501615798922,322.6412809275572,4.741954151624549,4934.674298833941,2019
+2004,40,"(35,40]",College,1553.6764093357272,322.6412809275572,4.815491696750903,4673.460528952439,2019
+2004,40,"(35,40]",College,1867.9313464991026,322.6412809275572,5.78949891696751,5023.191727871605,2019
+2004,40,"(35,40]",College,1636.9539676840216,322.6412809275572,5.073603610108304,4776.068649171578,2019
+2004,47,"(45,50]",College,360.7489551166966,75.82070101797595,4.757921652968738,7076.987632928556,2019
+2004,47,"(45,50]",College,362.49307001795336,75.82070101797595,4.7809248022121515,6565.809633836943,2019
+2004,47,"(45,50]",College,360.7803806104129,75.82070101797595,4.758336124126276,7165.299117808866,2019
+2004,47,"(45,50]",College,359.02055296229804,75.82070101797595,4.735125739304094,7110.997685499155,2019
+2004,47,"(45,50]",College,360.7803806104129,75.82070101797595,4.758336124126276,6927.591505158358,2019
+2004,87,"(85,90]",HS,209.60804308797128,32.264128092755726,6.496628158844764,11614.438465416519,2019
+2004,87,"(85,90]",HS,209.60804308797128,32.264128092755726,6.496628158844764,11670.397142169923,2019
+2004,87,"(85,90]",HS,209.4509156193896,30.650921688117936,6.833429602888087,11693.407007149764,2019
+2004,87,"(85,90]",HS,209.60804308797128,24.19809606956679,8.662170878459687,11633.140630380101,2019
+2004,87,"(85,90]",HS,209.60804308797128,24.19809606956679,8.662170878459687,11628.23489874788,2019
+2004,56,"(55,60]",College,90965.80538599641,4178.204588011866,21.771505791505792,16.53838229996527,2019
+2004,56,"(55,60]",College,76778.76624775585,4113.676331826355,18.66427012104481,17.332850074546815,2019
+2004,56,"(55,60]",College,98987.16265709155,5775.278928603274,17.13980638525301,16.683828457408467,2019
+2004,56,"(55,60]",College,89501.37737881509,6694.806579246811,13.368777173676659,16.287886725409514,2019
+2004,56,"(55,60]",College,85543.33644524237,5501.0338398148515,15.550410874789584,16.350075795942224,2019
+2004,56,"(55,60]",College,8428.317414721723,1839.0553012870762,4.582960288808664,327.0469181802461,2019
+2004,56,"(55,60]",College,8306.119382405745,1790.6591091479427,4.638582151104172,315.7360981420394,2019
+2004,56,"(55,60]",College,8538.793737881508,1822.9232372406984,4.684121395482572,339.4462229663715,2019
+2004,56,"(55,60]",College,8686.00646319569,1806.7911731943202,4.807421351211965,322.79374615948484,2019
+2004,56,"(55,60]",College,6980.07353680431,1806.7911731943202,3.863243102114493,332.43618534570976,2019
+2004,52,"(50,55]",HS,7394.5757989228005,2016.5080057972327,3.6670203032490973,294.0782415789,2019
+2004,52,"(50,55]",HS,7394.5757989228005,2032.6400698436103,3.6379169675090255,293.0190960111748,2019
+2004,52,"(50,55]",HS,7394.5757989228005,2016.5080057972327,3.6670203032490973,304.0768756051631,2019
+2004,52,"(50,55]",HS,7394.5757989228005,2016.5080057972327,3.6670203032490973,290.0616229138954,2019
+2004,52,"(50,55]",HS,7394.5757989228005,2016.5080057972327,3.6670203032490973,296.3295687508992,2019
+2004,57,"(55,60]",College,1258.7481508078995,93.56597146899159,13.453054898543508,8594.253049078605,2019
+2004,57,"(55,60]",College,1258.5910233393179,93.56597146899159,13.451375575750033,9505.018315807558,2019
+2004,57,"(55,60]",College,1258.7481508078995,93.56597146899159,13.453054898543508,8482.285266602748,2019
+2004,57,"(55,60]",College,1258.7481508078995,95.17917787362938,13.225037018907177,8455.173373460537,2019
+2004,57,"(55,60]",College,1258.7481508078995,93.56597146899159,13.453054898543508,8886.51925665998,2019
+2004,67,"(65,70]",HS,1004.8458743267504,138.73575079884964,7.242876248845603,642.4468438423588,2019
+2004,67,"(65,70]",HS,1054.0267719928188,109.69803551536945,9.60843799108091,631.003171017853,2019
+2004,67,"(65,70]",HS,1218.2406894075405,117.76406753855836,10.344757232579994,648.8971565426606,2019
+2004,67,"(65,70]",HS,1171.369565529623,120.99048034783397,9.681501901323706,602.7651644880541,2019
+2004,67,"(65,70]",HS,1025.8695296229803,108.08482911073166,9.4913369254809,648.1000852334544,2019
+2004,47,"(45,50]",HS,52.95195691202873,88.72635225507824,0.5968007876599934,5978.3562479073535,2019
+2004,47,"(45,50]",HS,51.53780969479354,88.72635225507824,0.5808624876928126,6014.119967843864,2019
+2004,47,"(45,50]",HS,53.10908438061041,90.33955865971603,0.5878829293450231,6004.4495416631125,2019
+2004,47,"(45,50]",HS,53.09337163375224,88.72635225507824,0.5983946176567114,5993.36018660001,2019
+2004,47,"(45,50]",HS,52.936244165170564,90.33955865971603,0.5859697008767406,5938.970507813089,2019
+2004,64,"(60,65]",College,2954.624919210054,77.43390742261373,38.156732851985566,12359.825497702208,2019
+2004,64,"(60,65]",College,2858.7771633752245,77.43390742261373,36.91893200962696,12989.135684722258,2019
+2004,64,"(60,65]",College,2954.624919210054,77.43390742261373,38.156732851985566,12179.670674310835,2019
+2004,64,"(60,65]",College,2954.7820466786357,77.43390742261373,38.158762033694344,12548.38050430934,2019
+2004,64,"(60,65]",College,2954.624919210054,77.43390742261373,38.156732851985566,12589.444488341604,2019
+2004,41,"(40,45]",College,450.32732495511675,238.75454788639237,1.8861518196897258,7833.5909552447365,2019
+2004,41,"(40,45]",College,450.170197486535,238.75454788639237,1.8854937067030928,8698.404739431142,2019
+2004,41,"(40,45]",College,450.32732495511675,238.75454788639237,1.8861518196897258,7728.257863197898,2019
+2004,41,"(40,45]",College,450.01307001795334,238.75454788639237,1.88483559371646,7717.622219999806,2019
+2004,41,"(40,45]",College,450.01307001795334,238.75454788639237,1.88483559371646,8066.674977920715,2019
+2004,61,"(60,65]",HS,1375.9652423698385,48.39619213913358,28.431270758122746,5332.984968204979,2019
+2004,61,"(60,65]",HS,1405.8194614003592,48.39619213913358,29.048141997593262,5896.300133015628,2019
+2004,61,"(60,65]",HS,1405.8194614003592,48.39619213913358,29.048141997593262,5262.06499147407,2019
+2004,61,"(60,65]",HS,1405.6623339317773,48.39619213913358,29.044895306859203,5244.734888764733,2019
+2004,61,"(60,65]",HS,1405.8194614003592,48.39619213913358,29.048141997593262,5512.6603200646805,2019
+2004,42,"(40,45]",College,185.01759425493717,6.936787539942482,26.671941902443116,7729.198222464227,2019
+2004,42,"(40,45]",College,184.48336086175942,7.098108180406259,25.990497210370858,7417.430134901651,2019
+2004,42,"(40,45]",College,220.84265709156193,7.582070101797594,29.126960596051926,7667.5979606733745,2019
+2004,42,"(40,45]",College,249.91123877917414,7.420749461333816,33.677358342489406,7700.720711658616,2019
+2004,42,"(40,45]",College,194.52380610412928,7.098108180406259,27.40502133245816,7573.454301862871,2019
+2004,45,"(40,45]",HS,8.87770197486535,54.84901775768473,0.16185708218305372,4114.897787608886,2019
+2004,45,"(40,45]",HS,8.092064631956912,54.84901775768473,0.14753344659163303,4105.501777964588,2019
+2004,45,"(40,45]",HS,8.87770197486535,54.84901775768473,0.16185708218305372,4134.430579556384,2019
+2004,45,"(40,45]",HS,8.87770197486535,54.84901775768473,0.16185708218305372,4135.006931908896,2019
+2004,45,"(40,45]",HS,8.720574506283663,54.84901775768473,0.1589923550647696,4103.609546696914,2019
+2004,65,"(60,65]",College,2802.054147217235,161.3206404637786,17.36947075812274,120.44500189634296,2019
+2004,65,"(60,65]",College,2796.2404308797127,161.3206404637786,17.33343249097473,122.75603635805001,2019
+2004,65,"(60,65]",College,2808.024991023339,161.3206404637786,17.406483032490975,121.38769511162779,2019
+2004,65,"(60,65]",College,2845.892710951526,161.3206404637786,17.641218772563178,124.76229879316664,2019
+2004,65,"(60,65]",College,2804.882441651706,161.3206404637786,17.387002888086645,127.70801832887271,2019
+2004,34,"(30,35]",College,102.44710951526032,96.79238427826716,1.0584211793020457,12024.119969124627,2019
+2004,34,"(30,35]",College,102.44710951526032,96.79238427826716,1.0584211793020457,11684.73249472213,2019
+2004,34,"(30,35]",College,102.44710951526032,96.79238427826716,1.0584211793020457,12148.04131602773,2019
+2004,34,"(30,35]",College,102.44710951526032,96.79238427826716,1.0584211793020457,12055.160123693222,2019
+2004,34,"(30,35]",College,102.44710951526032,96.79238427826716,1.0584211793020457,11945.152180767705,2019
+2004,38,"(35,40]",HS,14.92868078994614,53.23581135304694,0.2804255333114539,7625.479027418524,2019
+2004,38,"(35,40]",HS,14.92868078994614,53.23581135304694,0.2804255333114539,7320.040128614253,2019
+2004,38,"(35,40]",HS,14.92868078994614,53.23581135304694,0.2804255333114539,7618.5840022757275,2019
+2004,38,"(35,40]",HS,14.92868078994614,53.23581135304694,0.2804255333114539,7590.180082883058,2019
+2004,38,"(35,40]",HS,14.92868078994614,53.23581135304694,0.2804255333114539,7513.342922802013,2019
+2004,30,"(25,30]",HS,334.52438061041295,120.99048034783397,2.7648818291215402,7345.364821060903,2019
+2004,30,"(25,30]",HS,334.99576301615804,120.99048034783397,2.768777858002407,7156.674110137482,2019
+2004,30,"(25,30]",HS,332.7959784560144,120.99048034783397,2.7505963898916965,7374.3425654050925,2019
+2004,30,"(25,30]",HS,329.33917414721725,120.99048034783397,2.7220255114320095,7342.073881473538,2019
+2004,30,"(25,30]",HS,333.7387432675045,120.99048034783397,2.7583884476534295,7321.433724180242,2019
+2004,73,"(70,75]",College,134305.64653500897,11757.048277000185,11.423415416073897,19.85074517363883,2019
+2004,73,"(70,75]",College,116631.32035906643,11597.340842941045,10.056729550210335,20.80433162821725,2019
+2004,73,"(70,75]",College,116580.8824416517,11990.963205672662,9.722395143911362,20.025321777052817,2019
+2004,73,"(70,75]",College,113928.41364452423,11507.001284281328,9.900790903721504,19.550079502266545,2019
+2004,73,"(70,75]",College,142033.1283016158,11345.680643817548,12.51869612415118,19.624724009168094,2019
+2004,35,"(30,35]",HS,-54.208976660682225,56.46222416232251,-0.9600928313563694,5680.794511025079,2019
+2004,35,"(30,35]",HS,-54.208976660682225,43.55657292522023,-1.244564781387886,5646.221390096385,2019
+2004,35,"(30,35]",HS,-54.208976660682225,40.33016011594465,-1.344129963898917,5677.7363401539105,2019
+2004,35,"(30,35]",HS,-54.208976660682225,40.33016011594465,-1.344129963898917,5681.059057741494,2019
+2004,35,"(30,35]",HS,-54.208976660682225,58.0754305669603,-0.9334235860409146,5684.382730370659,2019
+2004,52,"(50,55]",College,7102.004452423698,645.2825618551144,11.006038086642599,269.2094146874113,2019
+2004,52,"(50,55]",College,7102.004452423698,645.2825618551144,11.006038086642599,261.2068357552856,2019
+2004,52,"(50,55]",College,7100.433177737881,645.2825618551144,11.003603068592058,278.8299964143107,2019
+2004,52,"(50,55]",College,7102.004452423698,645.2825618551144,11.006038086642599,266.2696981144753,2019
+2004,52,"(50,55]",College,7100.433177737881,645.2825618551144,11.003603068592058,273.62981941700235,2019
+2004,55,"(50,55]",HS,2905.286894075404,129.0565123710229,22.511741877256313,3022.2802858239565,2019
+2004,55,"(50,55]",HS,2905.286894075404,129.0565123710229,22.511741877256313,3147.391519509233,2019
+2004,55,"(50,55]",HS,2905.286894075404,127.4433059663851,22.79670063519627,2990.962668470767,2019
+2004,55,"(50,55]",HS,2905.286894075404,127.4433059663851,22.79670063519627,3209.6681047385173,2019
+2004,55,"(50,55]",HS,2905.286894075404,129.0565123710229,22.511741877256313,3070.1968247722366,2019
+2004,71,"(70,75]",College,1503.3956193895872,3274.0023982123867,0.45919197255641747,101.94917702778586,2019
+2004,71,"(70,75]",College,10114.138025134649,3305.137281821896,3.0601264524659673,21.160599969936417,2019
+2004,71,"(70,75]",College,7303.127612208258,3282.8750334378947,2.2246133458696633,21.982680535781373,2019
+2004,71,"(70,75]",College,835.7610053859964,3284.3269192020684,0.2544694928204789,98.68038713764385,2019
+2004,71,"(70,75]",College,5283.725385996409,3249.8043021428202,1.6258595579162982,20.65284709280759,2019
+2004,35,"(30,35]",NoHS,8.642010771992819,38.716953711306864,0.22320998796630567,5553.107970990282,2019
+2004,35,"(30,35]",NoHS,8.642010771992819,38.716953711306864,0.22320998796630567,5519.059182843909,2019
+2004,35,"(30,35]",NoHS,8.642010771992819,40.33016011594465,0.21428158844765344,5549.20045409423,2019
+2004,35,"(30,35]",NoHS,8.642010771992819,40.33016011594465,0.21428158844765344,5539.603138413336,2019
+2004,35,"(30,35]",NoHS,8.642010771992819,40.33016011594465,0.21428158844765344,5555.5271898957,2019
+2004,46,"(45,50]",College,1083.7081508078995,308.12242328581715,3.5171349726879244,4926.97079422748,2019
+2004,46,"(45,50]",College,1085.2794254937162,306.5092168811794,3.5407725631768945,5060.621318770907,2019
+2004,46,"(45,50]",College,1085.436552962298,306.5092168811794,3.5412851985559564,4815.118604757261,2019
+2004,46,"(45,50]",College,1083.7081508078995,306.5092168811794,3.5356462093862815,4747.106176581516,2019
+2004,46,"(45,50]",College,1085.436552962298,306.5092168811794,3.5412851985559564,4939.371068058339,2019
+2004,30,"(25,30]",HS,0,19.358476855653432,0,7094.500371433275,2019
+2004,30,"(25,30]",HS,0,19.358476855653432,0,7112.543094377159,2019
+2004,30,"(25,30]",HS,0,19.358476855653432,0,7135.439310774052,2019
+2004,30,"(25,30]",HS,0,19.358476855653432,0,7130.456297724336,2019
+2004,30,"(25,30]",HS,0,19.358476855653432,0,7143.33748101875,2019
+2004,46,"(45,50]",HS,29.53996409335727,27.424508878842364,1.0771373964748354,6807.318932783315,2019
+2004,46,"(45,50]",HS,28.440071813285456,30.650921688117936,0.927870036101083,6391.522977786132,2019
+2004,46,"(45,50]",HS,29.53996409335727,37.10374730666908,0.7961450321770522,6861.8400186641065,2019
+2004,46,"(45,50]",HS,28.754326750448833,32.264128092755726,0.8912166064981948,6811.821009709172,2019
+2004,46,"(45,50]",HS,28.597199281867148,30.650921688117936,0.9329963898916969,6647.863134564062,2019
+2004,29,"(25,30]",College,41.874470377019755,74.20749461333816,0.5642889656254906,5370.257164120264,2019
+2004,29,"(25,30]",College,39.06188868940754,72.59428820870036,0.5380848776574408,5446.299544861179,2019
+2004,29,"(25,30]",College,41.32452423698385,74.20749461333816,0.5568780411238425,5356.825878610636,2019
+2004,29,"(25,30]",College,38.96761220825853,74.20749461333816,0.5251169361167792,5410.584648897385,2019
+2004,29,"(25,30]",College,41.23024775583483,72.59428820870036,0.5679544324107502,5399.418680372464,2019
+2004,39,"(35,40]",HS,13106.002154398564,1503.5083691224165,8.716946592088751,30.97358746793055,2019
+2004,39,"(35,40]",HS,12810.602513464992,911.4616186203492,14.055010383054855,32.643960580506686,2019
+2004,39,"(35,40]",HS,12936.14736086176,1693.8667248696754,7.637051469829809,32.38516129506572,2019
+2004,39,"(35,40]",HS,12802.589012567325,1308.3103941612444,9.785589925527606,30.450774514151686,2019
+2004,39,"(35,40]",HS,12788.447540394973,1216.3576290968908,10.513723295253232,31.491392588040803,2019
+2004,77,"(75,80]",HS,575229.521005386,32249.36725415329,17.836924255662847,2.2331957715446102,2019
+2004,77,"(75,80]",HS,528650.6542190305,31249.372868046416,16.91716043234885,2.2396479764911947,2019
+2004,77,"(75,80]",HS,487949.926032316,31926.88729386619,15.283354169200866,2.1953302798877283,2019
+2004,77,"(75,80]",HS,514333.1992818672,29426.320574293346,17.478678585836708,2.1985789161233904,2019
+2004,77,"(75,80]",HS,509910.0610412927,30071.76445678893,16.95643971187652,2.1449691343338118,2019
+2004,40,"(35,40]",HS,64.7836552962298,48.39619213913358,1.3386105896510228,3762.485475744431,2019
+2004,40,"(35,40]",HS,52.0563303411131,48.39619213913358,1.075628640192539,3739.587117936747,2019
+2004,40,"(35,40]",HS,51.88349012567325,48.39619213913358,1.0720572803850783,3760.459997888685,2019
+2004,40,"(35,40]",HS,52.213457809694795,48.39619213913358,1.0788753309265946,3762.6606894713536,2019
+2004,40,"(35,40]",HS,75.62545062836625,48.39619213913358,1.5626322503008425,3764.862013594079,2019
+2004,47,"(45,50]",College,19505.803949730704,3065.0921688117937,6.363855595667871,411.3802887864772,2019
+2004,47,"(45,50]",College,20013.32567324955,2919.903592394393,6.85410495243034,400.65977290232183,2019
+2004,47,"(45,50]",College,24826.140035906643,2790.8470800233704,8.895557271342417,387.1693175601134,2019
+2004,47,"(45,50]",College,19765.064272890486,3161.884553090061,6.251039195461577,406.08022115708366,2019
+2004,47,"(45,50]",College,23950.940035906642,3129.6204249973052,7.652985596784398,392.7169762598935,2019
+2004,22,"(20,25]",HS,416.38779174147214,33.87733449739351,12.291043493209555,6163.484411445589,2019
+2004,22,"(20,25]",HS,416.38779174147214,33.87733449739351,12.291043493209555,6280.092303008098,2019
+2004,22,"(20,25]",HS,416.38779174147214,33.87733449739351,12.291043493209555,6173.223697780311,2019
+2004,22,"(20,25]",HS,416.38779174147214,33.87733449739351,12.291043493209555,6102.067391518242,2019
+2004,22,"(20,25]",HS,416.23066427289046,33.87733449739351,12.286405363589477,6223.6270875248665,2019
+2004,27,"(25,30]",College,65.99353680430879,64.52825618551145,1.0227075812274367,5618.83459492493,2019
+2004,27,"(25,30]",College,142.98599640933574,32.264128092755726,4.43173285198556,5637.963735012526,2019
+2004,27,"(25,30]",College,95.84775583482944,33.87733449739351,2.8292590682482377,5604.781604654738,2019
+2004,27,"(25,30]",College,54.99461400359066,20.97168326029122,2.622327131352402,5661.028750561634,2019
+2004,27,"(25,30]",College,58.13716337522442,40.33016011594465,1.4415306859205776,5649.34593383307,2019
+2004,54,"(50,55]",College,-1.257019748653501,80.6603202318893,-0.015584115523465707,4769.567462080295,2019
+2004,54,"(50,55]",College,0,80.6603202318893,0,4758.894510375848,2019
+2004,54,"(50,55]",College,0.47138240574506285,80.6603202318893,0.005844043321299639,4793.000715062239,2019
+2004,54,"(50,55]",College,0.7856373429084381,80.6603202318893,0.009740072202166066,4804.784069977073,2019
+2004,54,"(50,55]",College,1.257019748653501,80.6603202318893,0.015584115523465707,4757.415103805071,2019
+2004,60,"(55,60]",NoHS,33.46815080789946,33.87733449739351,0.9879216090768437,4009.4892769502235,2019
+2004,60,"(55,60]",NoHS,33.62527827648115,35.4905409020313,0.9474433869379716,3551.379525474587,2019
+2004,60,"(55,60]",NoHS,33.46815080789946,33.87733449739351,0.9879216090768437,4020.4115023057843,2019
+2004,60,"(55,60]",NoHS,33.46815080789946,35.4905409020313,0.9430160813915326,3942.0684406903806,2019
+2004,60,"(55,60]",NoHS,33.46815080789946,35.4905409020313,0.9430160813915326,3851.2032750094468,2019
+2004,49,"(45,50]",College,14399.78973070018,590.4335440974297,24.38850210096467,294.0782415789,2019
+2004,49,"(45,50]",College,14399.78973070018,590.4335440974297,24.38850210096467,293.0190960111748,2019
+2004,49,"(45,50]",College,14398.218456014363,590.4335440974297,24.385840879051507,304.0768756051631,2019
+2004,49,"(45,50]",College,14399.78973070018,590.4335440974297,24.38850210096467,290.0616229138954,2019
+2004,49,"(45,50]",College,14399.78973070018,590.4335440974297,24.38850210096467,296.3295687508992,2019
+2004,33,"(30,35]",HS,234.51274685816878,145.18857641740072,1.6152286401925395,9448.158744423734,2019
+2004,33,"(30,35]",HS,168.51921005385998,145.18857641740072,1.1606919374247897,9222.155135456393,2019
+2004,33,"(30,35]",HS,185.80323159784558,145.18857641740072,1.2797372643401526,9419.403435548546,2019
+2004,33,"(30,35]",HS,188.94578096947936,145.18857641740072,1.301381869233855,9402.95130281627,2019
+2004,33,"(30,35]",HS,209.37235188509874,145.18857641740072,1.4420718010429203,9320.526315027853,2019
+2004,56,"(55,60]",College,2669.5956912028723,158.09422765450302,16.886104766816477,2621.708440697384,2019
+2004,56,"(55,60]",College,2422.4970341113108,67.75466899478702,35.75394980230359,2713.936709446779,2019
+2004,56,"(55,60]",College,3372.741113105925,190.35835574725877,17.717851679618185,2604.9162655701666,2019
+2004,56,"(55,60]",College,1004.4059174147217,271.0186759791481,3.7060394963039363,4747.38130465288,2019
+2004,56,"(55,60]",College,3705.8670592459603,222.62248384001447,16.646418615601945,1101.5919027906734,2019
+2004,37,"(35,40]",HS,72.09008258527827,40.33016011594465,1.7874980505415161,6723.46526684743,2019
+2004,37,"(35,40]",HS,73.22140035906642,41.94336652058244,1.7457206331574562,6343.489594416498,2019
+2004,37,"(35,40]",HS,71.87010412926391,41.94336652058244,1.7135034712579837,6695.159302824994,2019
+2004,37,"(35,40]",HS,73.0328473967684,40.33016011594465,1.8108742238267148,6666.631599601606,2019
+2004,37,"(35,40]",HS,75.26405745062836,41.94336652058244,1.7944209941682865,6544.653191057056,2019
+2004,33,"(30,35]",HS,-57.870046678635546,45.16977932985802,-1.2811673543063433,4459.990658253339,2019
+2004,33,"(30,35]",HS,-57.85433393177738,45.16977932985802,-1.2808194945848375,4525.930054928102,2019
+2004,33,"(30,35]",HS,-58.035030520646316,45.16977932985802,-1.2848198813821554,4478.36175795808,2019
+2004,33,"(30,35]",HS,-58.02717414721724,45.16977932985802,-1.2846459515214026,4484.234945721066,2019
+2004,33,"(30,35]",HS,-58.035030520646316,45.16977932985802,-1.2848198813821554,4505.968562118793,2019
+2004,56,"(55,60]",College,115526.5571274686,85048.24165250408,1.3583650276921058,6.246058953140695,2019
+2004,56,"(55,60]",College,235797.42104129263,84999.84546036496,2.7740923499824937,6.232738792795897,2019
+2004,56,"(55,60]",College,419851.03827648115,90194.37008329862,4.654958373662675,6.153055323290121,2019
+2004,56,"(55,60]",College,428290.98312387796,92243.14221718861,4.643065845647983,6.136276065494373,2019
+2004,56,"(55,60]",College,135455.66247755833,91694.65203961176,1.4772471399863318,5.999642575841765,2019
+2004,60,"(55,60]",College,6093.403231597846,414.59404599191106,14.697276264591439,1444.2974768529448,2019
+2004,60,"(55,60]",College,4841.097307001795,780.7918998446886,6.200240176626785,1432.839215283631,2019
+2004,60,"(55,60]",College,7089.591382405745,446.8581740846667,15.865417247715989,1636.431024218498,2019
+2004,60,"(55,60]",College,10972.211131059246,416.2072523965488,26.362373716172726,1369.8559705402715,2019
+2004,60,"(55,60]",College,4935.373788150808,577.5278928603274,8.545689046649054,1459.6644483548403,2019
+2004,75,"(70,75]",HS,50197.68522800718,11776.40675385584,4.262563808911527,18.066308243526656,2019
+2004,75,"(70,75]",HS,48137.74411490126,11776.40675385584,4.087642786212354,18.63705803531676,2019
+2004,75,"(70,75]",HS,58983.46763375224,11582.821985299304,5.092322726587089,19.680052415018398,2019
+2004,75,"(70,75]",HS,39011.78073967684,10195.464477310808,3.8263858234702735,17.44483212710631,2019
+2004,75,"(70,75]",HS,38599.30542190305,11776.40675385584,3.2776810642401464,18.60978708433786,2019
+2004,62,"(60,65]",College,1190.2405745062838,187.13194293798318,6.360435080293789,9102.566557699194,2019
+2004,62,"(60,65]",College,1190.2405745062838,187.13194293798318,6.360435080293789,9327.66809388071,2019
+2004,62,"(60,65]",College,1190.2405745062838,187.13194293798318,6.360435080293789,8925.260759343666,2019
+2004,62,"(60,65]",College,1188.669299820467,185.5187365333454,6.407273583424895,8835.969349394405,2019
+2004,62,"(60,65]",College,1190.2405745062838,187.13194293798318,6.360435080293789,9177.714875437556,2019
+2004,58,"(55,60]",HS,47.60962298025135,27.424508878842364,1.736024633680187,9144.169396171996,2019
+2004,58,"(55,60]",HS,99.46168761220827,29.03771528348015,3.4252587244284,9103.764245954715,2019
+2004,58,"(55,60]",HS,72.51432675044883,19.358476855653432,3.745869434416366,9069.799599453308,2019
+2004,58,"(55,60]",HS,94.48074685816876,32.264128092755726,2.928352707581227,9120.742591852742,2019
+2004,58,"(55,60]",HS,94.43360861759426,22.58488966492901,4.181273852501289,9098.851854787943,2019
+2004,59,"(55,60]",HS,876.2998922800718,138.73575079884964,6.316323566451178,6306.35458828288,2019
+2004,59,"(55,60]",HS,877.714039497307,137.12254439421181,6.400946273094076,6972.48531908985,2019
+2004,59,"(55,60]",HS,877.714039497307,137.12254439421181,6.400946273094076,6222.490387778969,2019
+2004,59,"(55,60]",HS,877.714039497307,138.73575079884964,6.326516665267398,6201.997216808488,2019
+2004,59,"(55,60]",HS,877.714039497307,137.12254439421181,6.400946273094076,6518.824056387,2019
+2004,30,"(25,30]",HS,149.7424775583483,43.55657292522023,3.4378847439497253,7520.561619777572,2019
+2004,30,"(25,30]",College,187.9244524236984,69.36787539942482,2.7090991520443284,7470.665882949479,2019
+2004,30,"(25,30]",HS,111.85904488330343,54.84901775768473,2.0393992355064774,7526.509107257191,2019
+2004,30,"(25,30]",HS,213.69335727109515,30.650921688117936,6.971841155234657,7521.907734677613,2019
+2004,30,"(25,30]",HS,198.3262908438061,43.55657292522023,4.553303382805187,7511.596831396973,2019
+2004,56,"(55,60]",NoHS,12781.141113105925,400.07518835017095,31.9468477058344,2851.4317494731304,2019
+2004,56,"(55,60]",NoHS,16478.350448833033,400.07518835017095,41.18813395248631,2702.0062249766365,2019
+2004,56,"(55,60]",NoHS,13354.499245960502,400.07518835017095,33.37997365203214,3010.589330595665,2019
+2004,56,"(55,60]",NoHS,12628.570341113105,400.07518835017095,31.56549245953185,2664.416711403422,2019
+2004,56,"(55,60]",NoHS,12546.864057450628,400.07518835017095,31.36126513916385,2785.7402335687298,2019
+2004,21,"(20,25]",HS,11.894549371633751,9.679238427826716,1.2288724428399518,7885.818903043151,2019
+2004,21,"(20,25]",HS,11.894549371633751,9.679238427826716,1.2288724428399518,7843.275161399717,2019
+2004,21,"(20,25]",HS,11.894549371633751,9.679238427826716,1.2288724428399518,7871.647553100751,2019
+2004,21,"(20,25]",HS,11.894549371633751,9.679238427826716,1.2288724428399518,7777.040080895119,2019
+2004,21,"(20,25]",HS,11.894549371633751,9.679238427826716,1.2288724428399518,7837.574702812439,2019
+2004,25,"(20,25]",HS,16.498384201077197,54.84901775768473,0.3007963474198343,5060.872784292136,2019
+2004,25,"(20,25]",HS,16.498384201077197,56.46222416232251,0.29220216606498195,5047.636180796718,2019
+2004,25,"(20,25]",HS,16.498384201077197,54.84901775768473,0.3007963474198343,5064.904532980105,2019
+2004,25,"(20,25]",HS,16.65551166965889,54.84901775768473,0.3036610745381185,5068.83520736849,2019
+2004,25,"(20,25]",HS,16.498384201077197,56.46222416232251,0.29220216606498195,5051.344875568179,2019
+2004,34,"(30,35]",HS,724.3733429084381,132.28292518029846,5.4759398608787535,6382.313119852404,2019
+2004,34,"(30,35]",HS,766.9548868940755,141.9621636081252,5.402530275680998,7094.181334981203,2019
+2004,34,"(30,35]",HS,658.3955188509874,146.80178282203855,4.48492863093585,6309.659369534062,2019
+2004,34,"(30,35]",HS,781.1434973070019,154.86781484522746,5.043936973525874,6278.818965526558,2019
+2004,34,"(30,35]",HS,711.6145924596051,132.28292518029846,5.379489389803646,6600.688998648589,2019
+2004,39,"(35,40]",NoHS,5.499461400359067,24.19809606956679,0.22726835138387488,5718.072028445472,2019
+2004,39,"(35,40]",NoHS,5.499461400359067,24.19809606956679,0.22726835138387488,5709.59155531335,2019
+2004,39,"(35,40]",NoHS,5.656588868940754,24.19809606956679,0.23376173285198557,5723.088091060401,2019
+2004,39,"(35,40]",NoHS,5.656588868940754,24.19809606956679,0.23376173285198557,5702.951706772968,2019
+2004,39,"(35,40]",NoHS,5.499461400359067,24.19809606956679,0.22726835138387488,5691.842602426215,2019
+2004,41,"(40,45]",HS,9.042685816876123,56.46222416232251,0.1601546157813306,7597.478980833075,2019
+2004,41,"(40,45]",HS,9.19981328545781,56.46222416232251,0.16293749355337803,7242.994251702407,2019
+2004,41,"(40,45]",HS,8.87770197486535,56.46222416232251,0.15723259412068077,7588.873259211631,2019
+2004,41,"(40,45]",HS,8.869845601436266,56.46222416232251,0.1570934502320784,7543.3674850064635,2019
+2004,41,"(40,45]",HS,9.026973070017954,54.84901775768473,0.16457857294542366,7456.598476526796,2019
+2004,31,"(30,35]",College,205.8369838420108,156.48102124986525,1.3154118128698502,2249.145929428891,2019
+2004,31,"(30,35]",College,205.8369838420108,156.48102124986525,1.3154118128698502,2170.7692281869445,2019
+2004,31,"(30,35]",College,205.8369838420108,156.48102124986525,1.3154118128698502,2166.7668222765674,2019
+2004,31,"(30,35]",College,205.8369838420108,156.48102124986525,1.3154118128698502,2099.277335657162,2019
+2004,31,"(30,35]",College,205.8369838420108,156.48102124986525,1.3154118128698502,2073.7181015652163,2019
+2004,52,"(50,55]",College,34426.62836624776,4597.63825321769,7.487894103489772,18.875803891614044,2019
+2004,52,"(50,55]",College,22514.79497307002,4597.63825321769,4.897034897713598,21.160599969936417,2019
+2004,52,"(50,55]",College,34426.62836624776,4597.63825321769,7.487894103489772,19.897276336486822,2019
+2004,52,"(50,55]",College,24717.72208258528,4597.63825321769,5.376178098676293,18.279329651680335,2019
+2004,52,"(50,55]",College,23771.81472172352,4597.63825321769,5.170440433212996,20.65284709280759,2019
+2004,48,"(45,50]",College,5792.849809694793,435.56572925220235,13.299599625618395,1984.577326514053,2019
+2004,48,"(45,50]",College,5791.294247755835,435.56572925220235,13.296028265810936,1980.4152195409235,2019
+2004,48,"(45,50]",College,5792.865522441652,435.56572925220235,13.299635699959884,2249.0514503853833,2019
+2004,48,"(45,50]",College,5792.849809694793,435.56572925220235,13.299599625618395,1893.0107153648155,2019
+2004,48,"(45,50]",College,5791.294247755835,435.56572925220235,13.296028265810936,2005.6409554508682,2019
+2004,51,"(50,55]",HS,32.83964093357271,72.59428820870036,0.4523722422783795,3816.4100751831998,2019
+2004,51,"(50,55]",HS,32.83964093357271,72.59428820870036,0.4523722422783795,3852.9183897993003,2019
+2004,51,"(50,55]",HS,32.83964093357271,72.59428820870036,0.4523722422783795,3801.6533494197583,2019
+2004,51,"(50,55]",HS,32.83964093357271,72.59428820870036,0.4523722422783795,3781.103336921772,2019
+2004,51,"(50,55]",HS,32.682513464991025,72.59428820870036,0.45020778178900933,3788.7219622130156,2019
+2004,50,"(45,50]",HS,277.3284107719928,80.6603202318893,3.4382260072202167,7343.703046374214,2019
+2004,50,"(45,50]",HS,382.6038147217235,80.6603202318893,4.743395682310469,6942.902412534904,2019
+2004,50,"(45,50]",HS,269.47203734290844,80.6603202318893,3.340825285198556,7404.213517201603,2019
+2004,50,"(45,50]",HS,222.33379676840215,80.6603202318893,2.756420953068592,7367.012849289979,2019
+2004,50,"(45,50]",HS,382.6038147217235,80.6603202318893,4.743395682310469,7199.724995788386,2019
+2004,21,"(20,25]",HS,0.6285098743267505,22.58488966492901,0.02782877772047447,11236.874713507383,2019
+2004,21,"(20,25]",HS,0.6285098743267505,22.58488966492901,0.02782877772047447,11058.591718102125,2019
+2004,21,"(20,25]",HS,0.6285098743267505,22.58488966492901,0.02782877772047447,11282.557961845736,2019
+2004,21,"(20,25]",HS,0.6285098743267505,22.58488966492901,0.02782877772047447,11003.60760188472,2019
+2004,21,"(20,25]",HS,0.6285098743267505,22.58488966492901,0.02782877772047447,11183.356084058925,2019
+2004,42,"(40,45]",College,13.520818671454219,93.56597146899159,0.14450572637868792,8106.602054220677,2019
+2004,42,"(40,45]",College,13.520818671454219,93.56597146899159,0.14450572637868792,7648.458605206206,2019
+2004,42,"(40,45]",College,13.520818671454219,93.56597146899159,0.14450572637868792,8072.473048271549,2019
+2004,42,"(40,45]",College,11.949543985637343,93.56597146899159,0.12771249844391883,8038.076687410845,2019
+2004,42,"(40,45]",College,11.957400359066428,93.56597146899159,0.1277964645835927,7891.005143492321,2019
+2004,75,"(70,75]",HS,1062.1816876122084,95.17917787362938,11.159811540108915,8053.402141467914,2019
+2004,75,"(70,75]",HS,1062.1816876122084,95.17917787362938,11.159811540108915,8953.867254178393,2019
+2004,75,"(70,75]",HS,1062.1816876122084,95.17917787362938,11.159811540108915,7967.588264782526,2019
+2004,75,"(70,75]",HS,1062.1816876122084,95.17917787362938,11.159811540108915,7942.846074564169,2019
+2004,75,"(70,75]",HS,1062.1816876122084,95.17917787362938,11.159811540108915,8329.719533605192,2019
+2004,46,"(45,50]",HS,6.772193895870736,45.16977932985802,0.1499275399690562,3327.1201509161815,2019
+2004,46,"(45,50]",HS,6.772193895870736,45.16977932985802,0.1499275399690562,3264.7636790775914,2019
+2004,46,"(45,50]",HS,6.772193895870736,45.16977932985802,0.1499275399690562,3354.519948985949,2019
+2004,46,"(45,50]",HS,6.772193895870736,45.16977932985802,0.1499275399690562,3331.9386971884915,2019
+2004,46,"(45,50]",HS,6.772193895870736,45.16977932985802,0.1499275399690562,3294.505327374706,2019
+2004,43,"(40,45]",NoHS,931.0588150807899,91.95276506435381,10.125403128760528,6532.653859210839,2019
+2004,43,"(40,45]",NoHS,931.2159425493717,95.17917787362938,9.783819984091048,7252.645434132961,2019
+2004,43,"(40,45]",NoHS,931.530197486535,91.95276506435381,10.130529482551143,6448.945224299434,2019
+2004,43,"(40,45]",NoHS,931.0588150807899,91.95276506435381,10.125403128760528,6439.278514155851,2019
+2004,43,"(40,45]",NoHS,931.3730700179533,91.95276506435381,10.128820697954271,6727.689161809086,2019
+2004,73,"(70,75]",College,1510.1521005385996,116.1508611339206,13.00164360208584,6367.062055665354,2019
+2004,73,"(70,75]",College,1509.994973070018,114.53765472928282,13.183393501805053,7078.895724140422,2019
+2004,73,"(70,75]",College,1510.1521005385996,100.01879708754274,15.098682892744847,6298.392571914237,2019
+2004,73,"(70,75]",College,1510.3092280071814,101.63200349218052,14.86056730273337,6280.34615212965,2019
+2004,73,"(70,75]",College,1510.1521005385996,93.56597146899159,16.13997136810656,6584.445516250627,2019
+2004,32,"(30,35]",HS,1.382721723518851,11.292444832464504,0.12244662197008765,5794.762991504076,2019
+2004,32,"(30,35]",HS,1.382721723518851,11.292444832464504,0.12244662197008765,5808.698640876884,2019
+2004,32,"(30,35]",HS,1.382721723518851,11.292444832464504,0.12244662197008765,5787.65138983841,2019
+2004,32,"(30,35]",HS,1.382721723518851,11.292444832464504,0.12244662197008765,5835.2860466162,2019
+2004,32,"(30,35]",HS,1.382721723518851,11.292444832464504,0.12244662197008765,5807.681857054362,2019
+2004,66,"(65,70]",HS,0.3943899461400359,9.840559068290496,0.04007800201219151,5706.043146362957,2019
+2004,66,"(65,70]",HS,0.3943899461400359,9.840559068290496,0.04007800201219151,5845.210768096122,2019
+2004,66,"(65,70]",HS,0.3943899461400359,9.840559068290496,0.04007800201219151,5747.870571377389,2019
+2004,66,"(65,70]",HS,0.3943899461400359,9.840559068290496,0.04007800201219151,5798.329652114555,2019
+2004,66,"(65,70]",HS,0.3943899461400359,9.840559068290496,0.04007800201219151,5799.221317265366,2019
+2004,50,"(45,50]",College,6956.033034111311,806.6032023188931,8.623859927797835,30.97358746793055,2019
+2004,50,"(45,50]",College,6956.033034111311,806.6032023188931,8.623859927797835,32.643960580506686,2019
+2004,50,"(45,50]",College,6956.033034111311,806.6032023188931,8.623859927797835,32.38516129506572,2019
+2004,50,"(45,50]",College,6956.190161579892,806.6032023188931,8.624054729241877,30.450774514151686,2019
+2004,50,"(45,50]",College,6956.033034111311,806.6032023188931,8.623859927797835,31.491392588040803,2019
+2004,43,"(40,45]",HS,110.06779174147218,143.57537001276296,0.7666202896199246,7098.026549072517,2019
+2004,43,"(40,45]",HS,109.14073967684021,143.57537001276296,0.760163387822983,6813.714782554403,2019
+2004,43,"(40,45]",HS,113.52459605026931,141.9621636081252,0.7996820643255661,7091.6084510954415,2019
+2004,43,"(40,45]",HS,111.32481149012568,141.9621636081252,0.7841864949130292,7065.169223707633,2019
+2004,43,"(40,45]",HS,107.53803949730701,143.57537001276296,0.7490006084452198,6993.646870784025,2019
+2004,44,"(40,45]",College,6195.708926391383,537.1977327443828,11.533386216541452,223.7102309778029,2019
+2004,44,"(40,45]",College,22917.355547576302,406.52801396872206,56.37337344564782,225.25812166915156,2019
+2004,44,"(40,45]",College,23636.685098743266,461.3770317264068,51.230736411602834,231.86971412020574,2019
+2004,44,"(40,45]",College,5485.948438061042,717.8768500638149,7.641907435200584,216.1267175757725,2019
+2004,44,"(40,45]",College,9784.720287253142,716.2636436591771,13.66078032003122,219.15664813608882,2019
+2004,50,"(45,50]",College,836.2323877917415,103.24520989681828,8.099478790613722,9527.621141191357,2019
+2004,50,"(45,50]",College,837.6465350089767,103.24520989681828,8.113175767148016,10442.851053073717,2019
+2004,50,"(45,50]",College,837.6465350089767,103.24520989681828,8.113175767148016,9406.18789852356,2019
+2004,50,"(45,50]",College,837.2694290843806,103.24520989681828,8.109523240072205,9428.685184767575,2019
+2004,50,"(45,50]",College,833.8754757630162,103.24520989681828,8.076650496389894,9855.541043307177,2019
+2004,46,"(45,50]",HS,197.35210053859967,167.77346608232975,1.1763010274923635,6118.493047603135,2019
+2004,46,"(45,50]",HS,195.62369838420108,167.77346608232975,1.1659990280477646,6147.085454076349,2019
+2004,46,"(45,50]",HS,197.19497307001797,167.77346608232975,1.175364482088309,6149.960206024578,2019
+2004,46,"(45,50]",HS,195.46657091561937,167.77346608232975,1.16506248264371,6179.147194297614,2019
+2004,46,"(45,50]",HS,197.0378456014363,167.77346608232975,1.1744279366842545,6126.766820071315,2019
+2004,50,"(45,50]",HS,10.841795332136446,70.9810818040626,0.15274204135214964,6143.854880245562,2019
+2004,50,"(45,50]",HS,10.684667863554758,70.9810818040626,0.15052838857893008,6012.047260953686,2019
+2004,50,"(45,50]",HS,10.841795332136446,70.9810818040626,0.15274204135214964,6169.05961975167,2019
+2004,50,"(45,50]",HS,10.841795332136446,70.9810818040626,0.15274204135214964,6196.843449546466,2019
+2004,50,"(45,50]",HS,10.841795332136446,70.9810818040626,0.15274204135214964,6078.084218754144,2019
+2004,42,"(40,45]",HS,4903.162657091561,564.6222416232251,8.683970087674059,3446.858255951521,2019
+2004,42,"(40,45]",HS,4334.832603231598,564.6222416232251,7.677403197524497,3321.696124512245,2019
+2004,42,"(40,45]",HS,7372.5779533213645,564.6222416232251,13.057540794223826,3653.931643326465,2019
+2004,42,"(40,45]",HS,5422.783195691203,564.6222416232251,9.60426776689015,3190.851372061286,2019
+2004,42,"(40,45]",HS,11540.855439856374,564.6222416232251,20.439958947911293,3357.8796753597926,2019
+2004,44,"(40,45]",College,44979.62341113106,4839.619213913359,9.29404182912154,21.740714524069958,2019
+2004,44,"(40,45]",College,44979.46628366248,4839.619213913359,9.294009362214197,21.611327134933614,2019
+2004,44,"(40,45]",College,44979.62341113106,4839.619213913359,9.29404182912154,22.82131983706899,2019
+2004,44,"(40,45]",College,44979.670549371636,4839.619213913359,9.29405156919374,21.49216087785993,2019
+2004,44,"(40,45]",College,44979.670549371636,4839.619213913359,9.29405156919374,23.23540135599333,2019
+2004,34,"(30,35]",NoHS,91.2910592459605,48.39619213913358,1.8863273164861611,6014.635892904333,2019
+2004,34,"(30,35]",NoHS,91.13393177737882,48.39619213913358,1.883080625752106,5821.32769496527,2019
+2004,34,"(30,35]",NoHS,90.81967684021544,48.39619213913358,1.876587244283995,6040.149151371773,2019
+2004,34,"(30,35]",NoHS,90.66254937163376,48.39619213913358,1.87334055354994,6003.63934235721,2019
+2004,34,"(30,35]",NoHS,90.66254937163376,48.39619213913358,1.87334055354994,5973.287371384342,2019
+2004,34,"(30,35]",HS,155.80916912028727,96.79238427826716,1.6097254993983154,7055.446235124482,2019
+2004,34,"(30,35]",HS,142.67174147217236,96.79238427826716,1.4739975932611313,7006.820528056893,2019
+2004,34,"(30,35]",HS,180.08379174147217,95.17917787362938,1.89205029676314,7057.324445253655,2019
+2004,34,"(30,35]",HS,116.76142190305207,96.79238427826716,1.2063079422382672,7048.7669239698935,2019
+2004,34,"(30,35]",HS,177.23978456014362,96.79238427826716,1.83113357400722,7045.15172350255,2019
+2004,55,"(50,55]",HS,1029.656301615799,80.6603202318893,12.765338628158847,8702.719775990558,2019
+2004,55,"(50,55]",HS,1265.0018240574504,80.6603202318893,15.68307465703971,9621.9749499955,2019
+2004,55,"(50,55]",HS,1265.8188868940754,80.6603202318893,15.693204332129964,8586.98783830677,2019
+2004,55,"(50,55]",HS,1150.0159425493716,80.6603202318893,14.257517689530687,8558.707423404487,2019
+2004,55,"(50,55]",HS,1267.7044165170557,80.6603202318893,15.716580505415164,8995.925972372135,2019
+2004,36,"(35,40]",HS,38.33910233393178,80.6603202318893,0.475315523465704,9266.807242636465,2019
+2004,36,"(35,40]",HS,38.33910233393178,80.6603202318893,0.475315523465704,9361.811977851426,2019
+2004,36,"(35,40]",HS,38.10341113105925,80.6603202318893,0.4723935018050542,9187.485313712734,2019
+2004,36,"(35,40]",HS,58.13716337522442,80.6603202318893,0.7207653429602888,9233.281625528914,2019
+2004,36,"(35,40]",HS,43.68143626570916,80.6603202318893,0.5415480144404333,9225.952595776276,2019
+2004,62,"(60,65]",College,7679.762154398563,153.2546084405897,50.11113357400721,1665.2895822471787,2019
+2004,62,"(60,65]",College,13766.094649910234,488.80154060524916,28.1629526634974,1651.9698950032205,2019
+2004,62,"(60,65]",College,14470.811346499102,150.02819563131413,96.45394511082642,1887.0056548926666,2019
+2004,62,"(60,65]",College,22473.15619389587,459.76382532176905,48.8797833935018,1579.595463901595,2019
+2004,62,"(60,65]",College,14369.778384201078,179.06591091479427,80.24854262204443,1682.9090783820823,2019
+2004,54,"(50,55]",HS,25.37608617594255,48.39619213913358,0.5243405535499398,7907.478634409519,2019
+2004,54,"(50,55]",HS,25.37608617594255,48.39619213913358,0.5243405535499398,7297.179317328274,2019
+2004,54,"(50,55]",HS,25.533213644524235,48.39619213913358,0.5275872442839952,7944.437211781148,2019
+2004,54,"(50,55]",HS,25.218958707360862,48.39619213913358,0.5210938628158844,7882.309768620478,2019
+2004,54,"(50,55]",HS,25.37608617594255,48.39619213913358,0.5243405535499398,7629.066317450085,2019
+2004,60,"(55,60]",NoHS,0.9427648114901257,9.840559068290496,0.09580398887376457,5859.283261833398,2019
+2004,60,"(55,60]",NoHS,0.9427648114901257,9.840559068290496,0.09580398887376457,5814.371339318514,2019
+2004,60,"(55,60]",NoHS,0.9427648114901257,9.840559068290496,0.09580398887376457,5843.947109335572,2019
+2004,60,"(55,60]",NoHS,0.9427648114901257,10.001879708754274,0.09425876324676838,5840.272638296569,2019
+2004,60,"(55,60]",NoHS,0.9427648114901257,9.840559068290496,0.09580398887376457,5877.279630620682,2019
+2004,47,"(45,50]",College,312.68366247755836,79.04711382725151,3.955661975981729,7365.573228819546,2019
+2004,47,"(45,50]",College,332.01034111310594,72.59428820870036,4.573505014039311,6963.578976048351,2019
+2004,47,"(45,50]",College,319.2830161579892,77.43390742261373,4.123297232250301,7426.263905059449,2019
+2004,47,"(45,50]",College,302.4703770197487,61.30184337623587,4.934115523465705,7388.952450343245,2019
+2004,47,"(45,50]",College,344.2662836624776,51.62260494840914,6.6689056859205795,7221.166399153934,2019
+2004,22,"(20,25]",HS,3.613931777378815,27.424508878842364,0.13177744744107028,9217.121219924475,2019
+2004,22,"(20,25]",HS,3.613931777378815,27.424508878842364,0.13177744744107028,9326.900132317971,2019
+2004,22,"(20,25]",HS,3.613931777378815,27.424508878842364,0.13177744744107028,9229.574400785466,2019
+2004,22,"(20,25]",HS,3.613931777378815,27.424508878842364,0.13177744744107028,9102.418648407125,2019
+2004,22,"(20,25]",HS,3.613931777378815,27.424508878842364,0.13177744744107028,9270.811052648232,2019
+2004,68,"(65,70]",HS,362.1473895870736,146.80178282203855,2.466914111159598,8496.817588540383,2019
+2004,68,"(65,70]",HS,361.67600718132854,146.80178282203855,2.4637030983456976,7852.974415789625,2019
+2004,68,"(65,70]",HS,362.00597486535014,146.80178282203855,2.4659508073154286,8568.976043828527,2019
+2004,68,"(65,70]",HS,361.8331346499102,146.80178282203855,2.464773435950331,8512.346705190192,2019
+2004,68,"(65,70]",HS,362.1473895870736,146.80178282203855,2.466914111159598,8349.753233339217,2019
+2004,46,"(45,50]",HS,21397.618671454216,3307.073129507462,6.4702586950779235,1959.8515745615969,2019
+2004,46,"(45,50]",HS,21394.476122082586,3323.2051935538398,6.437904034208405,2008.5824906361845,2019
+2004,46,"(45,50]",HS,21397.618671454216,3323.2051935538398,6.438849672286284,1971.325595965302,2019
+2004,46,"(45,50]",HS,21396.0473967684,3323.2051935538398,6.438376853247344,1912.8103577812478,2019
+2004,46,"(45,50]",HS,21400.76122082585,3307.073129507462,6.471208946024476,1906.3014664527625,2019
+2004,55,"(50,55]",HS,402.8748294434471,127.4433059663851,3.1612082438422524,6143.502995772967,2019
+2004,55,"(50,55]",HS,401.3035547576302,127.4433059663851,3.148879038523055,5374.160511003053,2019
+2004,55,"(50,55]",HS,398.1610053859964,127.4433059663851,3.1242206278846596,6181.067437944932,2019
+2004,55,"(50,55]",HS,399.73228007181325,129.0565123710229,3.097342960288808,6051.569434440322,2019
+2004,55,"(50,55]",HS,401.3035547576302,129.0565123710229,3.109518050541516,5911.790818452367,2019
+2004,49,"(45,50]",College,77232.86463195691,1613.2064046377861,47.87537689530686,23.135218879481464,2019
+2004,49,"(45,50]",College,77231.29335727109,1613.2064046377861,47.874402888086635,23.700079172836848,2019
+2004,49,"(45,50]",College,77231.29335727109,1613.2064046377861,47.874402888086635,23.469307301506387,2019
+2004,49,"(45,50]",College,77231.29335727109,1613.2064046377861,47.874402888086635,22.80270163695264,2019
+2004,49,"(45,50]",College,77232.86463195691,1613.2064046377861,47.87537689530686,22.9443718850792,2019
+2004,22,"(20,25]",NoHS,0,0,NA,6195.156133639937,2019
+2004,22,"(20,25]",NoHS,0,0,NA,6199.581303650865,2019
+2004,22,"(20,25]",NoHS,0,0,NA,6230.8528587912315,2019
+2004,22,"(20,25]",NoHS,0,0,NA,6119.006802678096,2019
+2004,22,"(20,25]",NoHS,0,0,NA,6226.635992586572,2019
+2004,66,"(65,70]",HS,235.37694793536807,40.33016011594465,5.836251263537907,8071.588290948152,2019
+2004,66,"(65,70]",HS,191.3812567324955,43.55657292522023,4.393854793421579,7459.9667090760295,2019
+2004,66,"(65,70]",HS,224.5351526032316,46.44421238952186,4.834513086799343,8140.135524865733,2019
+2004,66,"(65,70]",HS,253.4466068222621,42.24987573746362,5.998753899234006,8086.340241877215,2019
+2004,66,"(65,70]",HS,185.4104129263914,43.55657292522023,4.256772295761465,7931.883876314314,2019
+2004,26,"(25,30]",College,39014.75044883304,13825.178887745828,2.8220069169169593,376.4705535913981,2019
+2004,26,"(25,30]",College,37954.14003590665,13631.594119189293,2.7842774442996605,362.1933815592526,2019
+2004,26,"(25,30]",College,37701.164811490125,14357.537001276298,2.625879690098568,387.1693175601134,2019
+2004,26,"(25,30]",College,38133.265350089765,13099.236005658824,2.911106062492219,374.4003672367054,2019
+2004,26,"(25,30]",College,39489.27540394973,13147.632197797957,3.003527540918252,392.7169762598935,2019
+2004,52,"(50,55]",HS,6269.7473895870735,106.47162270609388,58.8865580352259,922.0653159144629,2019
+2004,52,"(50,55]",HS,6269.904517055655,106.47162270609388,58.88803380374138,919.0004342628423,2019
+2004,52,"(50,55]",HS,6268.333242369838,106.47162270609388,58.87327611858659,1047.4943148850205,2019
+2004,52,"(50,55]",HS,6270.061644524238,106.47162270609388,58.88950957225687,881.1593074276045,2019
+2004,52,"(50,55]",HS,6268.333242369838,106.47162270609388,58.87327611858659,931.1115314680653,2019
+2004,30,"(25,30]",HS,22.46922800718133,120.99048034783397,0.1857107099879663,5444.901222092967,2019
+2004,30,"(25,30]",HS,15.084236983842011,120.99048034783397,0.12467292418772563,5522.000556291221,2019
+2004,30,"(25,30]",HS,18.069658886894075,120.99048034783397,0.14934777376654632,5431.28324800892,2019
+2004,30,"(25,30]",HS,33.31102333931778,120.99048034783397,0.2753193742478941,5485.789240010235,2019
+2004,30,"(25,30]",HS,22.783482944344705,120.99048034783397,0.18830806257521057,5474.4680697554095,2019
+2004,47,"(45,50]",College,1960.9508078994613,903.3955865971601,2.170644662197009,144.69875626128197,2019
+2004,47,"(45,50]",College,1960.9508078994613,903.3955865971601,2.170644662197009,148.25767303011318,2019
+2004,47,"(45,50]",College,1962.5220825852782,903.3955865971601,2.1723839608045385,144.8722617842176,2019
+2004,47,"(45,50]",College,1962.5220825852782,903.3955865971601,2.1723839608045385,150.69244644702297,2019
+2004,47,"(45,50]",College,1960.9508078994613,903.3955865971601,2.170644662197009,153.0744640864902,2019
+2004,54,"(50,55]",College,7778.595332136446,266.1790567652347,29.223168143529158,3643.933326921246,2019
+2004,54,"(50,55]",College,7657.607181328545,266.1790567652347,28.768631440761403,3596.5441441361945,2019
+2004,54,"(50,55]",College,7624.610412926392,267.7922631698725,28.472108651211343,4050.5172030113586,2019
+2004,54,"(50,55]",College,8108.563016157989,266.1790567652347,30.46281369653211,3559.838066757247,2019
+2004,54,"(50,55]",College,7502.050987432675,267.7922631698725,28.014442607977035,3730.011843083447,2019
+2004,55,"(50,55]",NoHS,37.396337522441655,20.97168326029122,1.7831824493196338,5177.671848969904,2019
+2004,55,"(50,55]",NoHS,33.93953321364452,20.97168326029122,1.618350458206054,4559.249436396471,2019
+2004,55,"(50,55]",NoHS,33.78240574506284,20.97168326029122,1.6108580949736186,5210.721690410259,2019
+2004,55,"(50,55]",NoHS,33.78240574506284,20.97168326029122,1.6108580949736186,5128.97183932476,2019
+2004,55,"(50,55]",NoHS,33.78240574506284,20.97168326029122,1.6108580949736186,4997.033498642797,2019
+2004,62,"(60,65]",College,12048.84854578097,645.2825618551144,18.672205415162455,2047.6664894362675,2019
+2004,62,"(60,65]",College,12033.292926391381,645.2825618551144,18.648098736462092,2061.603114483126,2019
+2004,62,"(60,65]",College,12033.135798922802,645.2825618551144,18.64785523465704,2066.8392551343795,2019
+2004,62,"(60,65]",College,12032.821543985638,645.2825618551144,18.647368231046933,2004.3122706066356,2019
+2004,62,"(60,65]",College,12033.135798922802,645.2825618551144,18.64785523465704,1997.921363103212,2019
+2004,43,"(40,45]",HS,850.0596050269301,221.0092774353767,3.846262088592585,7405.708998619583,2019
+2004,43,"(40,45]",HS,850.0596050269301,221.0092774353767,3.846262088592585,8222.462190377411,2019
+2004,43,"(40,45]",HS,854.3020466786355,221.0092774353767,3.8654578513267803,7310.099684251557,2019
+2004,43,"(40,45]",HS,849.2739676840216,219.3960710307389,3.87096251858144,7299.218210170307,2019
+2004,43,"(40,45]",HS,850.8452423698384,221.0092774353767,3.8498168594692874,7627.257403514059,2019
+2004,22,"(20,25]",HS,16.042714542190307,24.19809606956679,0.6629742478941035,9960.615090650985,2019
+2004,22,"(20,25]",HS,11.957400359066428,24.19809606956679,0.4941463297232251,9960.596201685117,2019
+2004,22,"(20,25]",HS,18.305350089766605,24.19809606956679,0.7564789410348977,9957.368118282935,2019
+2004,22,"(20,25]",HS,17.064043087971275,24.19809606956679,0.7051812274368231,9862.718087426907,2019
+2004,22,"(20,25]",HS,16.671224416517056,24.19809606956679,0.6889477737665464,9964.446614831428,2019
+2004,53,"(50,55]",College,222439.70068222622,8969.427609786091,24.799765420876295,19.85074517363883,2019
+2004,53,"(50,55]",College,207522.64732495512,8566.126008626643,24.225962484787917,20.80433162821725,2019
+2004,53,"(50,55]",College,220191.36373429085,8533.861880533888,25.802077279520656,20.025321777052817,2019
+2004,53,"(50,55]",College,194518.62089766606,8114.428215328065,23.971944262224483,19.550079502266545,2019
+2004,53,"(50,55]",College,198003.55102333933,8921.031417646958,22.195141094522164,19.624724009168094,2019
+2004,62,"(60,65]",College,40447.75296229803,2677.9226316987247,15.104152929407162,475.0185739368885,2019
+2004,62,"(60,65]",College,40449.32423698384,2564.99818337408,15.76972822014849,469.5408685076083,2019
+2004,62,"(60,65]",College,40447.75296229803,2371.413414817546,17.05639038286795,481.1380463118704,2019
+2004,62,"(60,65]",College,40447.75296229803,2774.715015976992,14.577263873730166,475.4463790922097,2019
+2004,62,"(60,65]",College,40447.75296229803,2952.167720487149,13.701034897713598,490.74239055029614,2019
+2004,64,"(60,65]",NoHS,193.76959425493718,80.6603202318893,2.4022914079422386,5897.157156052584,2019
+2004,64,"(60,65]",NoHS,193.6438922800718,80.6603202318893,2.4007329963898916,5258.185423497545,2019
+2004,64,"(60,65]",NoHS,190.18708797127468,80.6603202318893,2.357876678700361,5911.473791566058,2019
+2004,64,"(60,65]",NoHS,194.16241292639137,80.6603202318893,2.407161444043321,5806.012036222759,2019
+2004,64,"(60,65]",NoHS,195.1994542190305,80.6603202318893,2.4200183393501806,5684.977955614998,2019
+2004,45,"(40,45]",NoHS,31.441206463195694,20.97168326029122,1.4992218828103308,4622.218038727576,2019
+2004,45,"(40,45]",NoHS,31.441206463195694,20.97168326029122,1.4992218828103308,4626.741382712997,2019
+2004,45,"(40,45]",NoHS,31.441206463195694,20.97168326029122,1.4992218828103308,4627.810817208613,2019
+2004,45,"(40,45]",NoHS,31.441206463195694,20.97168326029122,1.4992218828103308,4640.183345810763,2019
+2004,45,"(40,45]",NoHS,31.441206463195694,20.97168326029122,1.4992218828103308,4622.03245911159,2019
+2004,61,"(60,65]",College,2638.0130700179534,177.45270451015648,14.866006563833277,780.2046675257362,2019
+2004,61,"(60,65]",College,2659.0681508078997,177.45270451015648,14.984658352477847,799.1606462612892,2019
+2004,61,"(60,65]",College,2637.384560143627,177.45270451015648,14.862464719396128,768.6317226614592,2019
+2004,61,"(60,65]",College,2635.9704129263914,177.45270451015648,14.854495569412537,800.1320989802612,2019
+2004,61,"(60,65]",College,2646.9693357271094,177.45270451015648,14.916477847062684,809.0349600796334,2019
+2004,50,"(45,50]",HS,-0.3613931777378815,40.33016011594465,-0.008960866425992779,5657.517298899627,2019
+2004,50,"(45,50]",HS,-1.7598276481149013,40.33016011594465,-0.04363552346570398,5694.228288779016,2019
+2004,50,"(45,50]",HS,-0.8642010771992819,40.33016011594465,-0.021428158844765344,5652.8618589233865,2019
+2004,50,"(45,50]",HS,0.4085314183123878,40.33016011594465,0.01012967509025271,5621.790181386161,2019
+2004,50,"(45,50]",HS,1.0370412926391381,40.33016011594465,0.02571379061371841,5601.837137050379,2019
+2004,64,"(60,65]",College,7538.975942549372,403.30160115944653,18.69314657039711,1642.0659701694865,2019
+2004,64,"(60,65]",College,9481.07145421903,403.30160115944653,23.508638267148015,1650.1175434523004,2019
+2004,64,"(60,65]",College,10296.563016157988,403.30160115944653,25.530677256317688,1673.7244952426486,2019
+2004,64,"(60,65]",College,8169.057091561939,403.30160115944653,20.255454151624548,1595.1361292352601,2019
+2004,64,"(60,65]",College,11042.918491921006,403.30160115944653,27.381290974729243,1612.921296590014,2019
+2004,42,"(40,45]",College,44.93845601436266,74.20749461333816,0.6055784021346727,6609.052027136856,2019
+2004,42,"(40,45]",College,44.78132854578097,74.20749461333816,0.6034609951342019,6558.041598095607,2019
+2004,42,"(40,45]",College,44.78132854578097,74.20749461333816,0.6034609951342019,6545.653984161197,2019
+2004,42,"(40,45]",College,44.93845601436266,74.20749461333816,0.6055784021346727,6541.247078215385,2019
+2004,42,"(40,45]",College,44.78132854578097,74.20749461333816,0.6034609951342019,6516.006120909811,2019
+2004,50,"(45,50]",HS,238.99245098743268,32.264128092755726,7.407373610108302,9022.133485838585,2019
+2004,50,"(45,50]",HS,238.835323518851,32.264128092755726,7.40250357400722,8527.228294765282,2019
+2004,50,"(45,50]",HS,238.99245098743268,32.264128092755726,7.407373610108302,9032.143599376044,2019
+2004,50,"(45,50]",HS,238.99245098743268,32.264128092755726,7.407373610108302,9059.360603866953,2019
+2004,50,"(45,50]",HS,238.99245098743268,32.264128092755726,7.407373610108302,8796.370896020657,2019
+2004,38,"(35,40]",HS,136.22951526032315,125.83009956174732,1.0826464870869201,8748.112790880998,2019
+2004,38,"(35,40]",HS,137.95791741472172,125.83009956174732,1.0963824863463851,8153.918006773232,2019
+2004,38,"(35,40]",HS,137.95791741472172,125.83009956174732,1.0963824863463851,8742.78084316073,2019
+2004,38,"(35,40]",HS,138.1150448833034,125.83009956174732,1.097631213551791,8741.044575057807,2019
+2004,38,"(35,40]",HS,136.54377019748654,125.83009956174732,1.0851439414977322,8539.902255627545,2019
+2004,33,"(30,35]",HS,57.72077558348295,29.03771528348015,1.9877864019253912,5151.488177462791,2019
+2004,33,"(30,35]",HS,57.26510592459605,30.650921688117936,1.8682996389891695,5134.851440413558,2019
+2004,33,"(30,35]",HS,57.94075403949731,29.03771528348015,1.9953620136381869,5121.601384293591,2019
+2004,33,"(30,35]",HS,57.657924596050265,30.650921688117936,1.8811155234657038,5170.233557503971,2019
+2004,33,"(30,35]",HS,57.48508438061041,30.650921688117936,1.8754765342960287,5116.95998497373,2019
+2004,53,"(50,55]",HS,129.78728904847395,48.39619213913358,2.681766546329723,9408.273985186894,2019
+2004,53,"(50,55]",HS,129.78728904847395,48.39619213913358,2.681766546329723,8634.04352191633,2019
+2004,53,"(50,55]",HS,129.78728904847395,48.39619213913358,2.681766546329723,9421.490842645784,2019
+2004,53,"(50,55]",HS,129.78728904847395,48.39619213913358,2.681766546329723,9483.36064877232,2019
+2004,53,"(50,55]",HS,129.78728904847395,48.39619213913358,2.681766546329723,9088.175116687675,2019
+2004,55,"(50,55]",College,435.7144703770197,80.6603202318893,5.401844043321299,6988.928604026405,2019
+2004,55,"(50,55]",College,435.7144703770197,80.6603202318893,5.401844043321299,6231.660703469478,2019
+2004,55,"(50,55]",College,435.7144703770197,80.6603202318893,5.401844043321299,7005.895752909467,2019
+2004,55,"(50,55]",College,435.7144703770197,80.6603202318893,5.401844043321299,6880.909312995255,2019
+2004,55,"(50,55]",College,435.7144703770197,80.6603202318893,5.401844043321299,6737.467562057107,2019
+2004,67,"(65,70]",College,88616.90685816876,2952.167720487149,30.017571916119227,18.968049583545866,2019
+2004,67,"(65,70]",College,89345.0355475763,3791.0350508987976,23.567451724402794,20.08277893185048,2019
+2004,67,"(65,70]",College,104535.33357271095,3242.5448733219505,32.23866982775652,19.680052415018398,2019
+2004,67,"(65,70]",College,89575.22728904847,2113.3003900754998,42.386414969548326,18.634196351820794,2019
+2004,67,"(65,70]",College,95705.55547576303,2597.2623114668354,36.84862905576609,19.074323977144275,2019
+2004,63,"(60,65]",College,1343.047037701975,138.73575079884964,9.680612459071444,6125.965644823757,2019
+2004,63,"(60,65]",College,1342.5756552962298,138.73575079884964,9.677214759466038,6776.279333092159,2019
+2004,63,"(60,65]",College,1342.1042728904847,138.73575079884964,9.67381705986063,6042.281676437305,2019
+2004,63,"(60,65]",College,1341.7900179533215,138.73575079884964,9.671551926790361,6023.7092340043755,2019
+2004,63,"(60,65]",College,1340.847253141831,138.73575079884964,9.664756527579545,6333.671056380035,2019
+2004,55,"(50,55]",HS,32.2896947935368,33.87733449739351,0.9531356369262505,6423.984187011934,2019
+2004,55,"(50,55]",HS,32.14828007181329,33.87733449739351,0.9489613202681795,6224.705521676081,2019
+2004,55,"(50,55]",HS,31.425493716337524,33.87733449739351,0.9276259240158157,6413.253241491169,2019
+2004,55,"(50,55]",HS,31.582621184919212,33.87733449739351,0.9322640536358947,6431.702603609164,2019
+2004,55,"(50,55]",HS,31.425493716337524,33.87733449739351,0.9276259240158157,6362.421644803902,2019
+2004,47,"(45,50]",College,7443.128186714543,233.91492867247896,31.819808290800452,3643.933326921246,2019
+2004,47,"(45,50]",College,6683.888258527828,237.14134148175458,28.185251111274834,3596.5441441361945,2019
+2004,47,"(45,50]",College,8651.5955475763,204.87721338899885,42.22819807271382,4050.5172030113586,2019
+2004,47,"(45,50]",College,7092.136847396769,204.87721338899885,34.61652338042582,3559.838066757247,2019
+2004,47,"(45,50]",College,10968.754326750448,204.87721338899885,53.53818584951248,3730.011843083447,2019
+2004,43,"(40,45]",HS,199.5518850987433,62.91504978087366,3.171767101731001,7223.00553502374,2019
+2004,43,"(40,45]",HS,146.28567324955117,62.91504978087366,2.3251300564657966,6814.798416192307,2019
+2004,43,"(40,45]",HS,62.85098743267505,62.91504978087366,0.9989817643247246,7318.371773688974,2019
+2004,43,"(40,45]",HS,48.552387791741474,62.91504978087366,0.7717134129408497,7270.598383589488,2019
+2004,43,"(40,45]",HS,98.99030520646319,62.91504978087366,1.573396278811441,7030.908073089714,2019
+2004,58,"(55,60]",College,11051.403375224418,1209.9048034783398,9.134109843561973,307.2549821473893,2019
+2004,58,"(55,60]",College,10965.611777378814,1209.9048034783398,9.063202117930201,300.7539315690902,2019
+2004,58,"(55,60]",College,11041.975727109517,1209.9048034783398,9.126317785800241,318.80985280446123,2019
+2004,58,"(55,60]",College,10957.441149012568,1209.9048034783398,9.056449001203369,303.9371193664785,2019
+2004,58,"(55,60]",College,10935.443303411132,1209.9048034783398,9.03826753309266,310.5716416555325,2019
+2004,28,"(25,30]",HS,248.26140035906644,132.28292518029846,1.876745619441754,6755.415266183503,2019
+2004,28,"(25,30]",HS,208.03676840215442,132.28292518029846,1.5726653165448623,6706.890965057862,2019
+2004,28,"(25,30]",HS,281.2581687612208,132.28292518029846,2.1261864929118603,6709.42660192269,2019
+2004,28,"(25,30]",HS,209.05809694793538,132.28292518029846,1.5803861054856037,6755.425252440311,2019
+2004,28,"(25,30]",HS,248.26140035906644,132.28292518029846,1.876745619441754,6708.283347480128,2019
+2004,70,"(65,70]",HS,21248.03332136445,807.3130131369338,26.31944856035713,300.1848029104236,2019
+2004,70,"(65,70]",HS,21146.29328545781,807.2162207526554,26.19656634964647,297.6416099034748,2019
+2004,70,"(65,70]",HS,21133.675949730703,807.1355604324235,26.18355203976928,312.26135020233573,2019
+2004,70,"(65,70]",HS,21558.375784560143,807.2484848807483,26.70599720945265,290.7343922806125,2019
+2004,70,"(65,70]",HS,21253.155676840215,807.3936734571656,26.323163501934168,295.04062397664495,2019
+2004,49,"(45,50]",College,14555.50305206463,1137.3105152696392,12.798178559541183,360.44150035953055,2019
+2004,49,"(45,50]",College,25750.835188509875,1292.1783301148666,19.928236365193328,314.5674160767061,2019
+2004,49,"(45,50]",College,99088.50987432676,1155.0557857206547,85.78677419680133,232.18788864895015,2019
+2004,49,"(45,50]",College,11251.89802513465,1322.8292518029846,8.505933785330633,355.7540392668519,2019
+2004,49,"(45,50]",College,13826.431597845602,1237.329312357182,11.174415298951796,366.38106265159144,2019
+2004,75,"(70,75]",HS,146.1128330341113,11.292444832464504,12.938990201134603,9365.432570040637,2019
+2004,75,"(70,75]",HS,146.1285457809695,11.292444832464504,12.940381640020629,9410.562251658845,2019
+2004,75,"(70,75]",HS,146.1285457809695,11.292444832464504,12.940381640020629,9360.815904691855,2019
+2004,75,"(70,75]",HS,145.95570556552963,11.292444832464504,12.925075812274367,9332.1627155432,2019
+2004,75,"(70,75]",HS,145.95570556552963,11.292444832464504,12.925075812274367,9358.249970502531,2019
+2004,43,"(40,45]",College,64906.21472172352,6839.995155664214,9.489219399223485,19.81794948471067,2019
+2004,43,"(40,45]",College,58668.254219030525,6839.995155664214,8.577236223690484,20.612904765621785,2019
+2004,43,"(40,45]",College,59123.92387791742,6839.995155664214,8.643854642054356,20.633580245552746,2019
+2004,43,"(40,45]",College,64747.51597845602,6839.995155664214,9.466017812138137,19.525588748991442,2019
+2004,43,"(40,45]",College,61559.399640933574,6839.995155664214,8.999918602275049,19.991066487296695,2019
+2004,70,"(65,70]",NoHS,401.3035547576302,33.87733449739351,11.845783049681966,9140.998464849927,2019
+2004,70,"(65,70]",NoHS,402.8748294434471,29.03771528348015,13.874191736863219,8441.062294576826,2019
+2004,70,"(65,70]",NoHS,401.4606822262118,37.10374730666908,10.819949772406215,9564.546550955089,2019
+2004,70,"(65,70]",NoHS,401.4606822262118,37.10374730666908,10.819949772406215,9308.381463559132,2019
+2004,70,"(65,70]",NoHS,402.8748294434471,38.716953711306864,10.405643802647415,9231.383044842629,2019
+2004,56,"(55,60]",HS,229.75178456014362,161.3206404637786,1.424193357400722,10364.958161993376,2019
+2004,56,"(55,60]",HS,228.18050987432676,161.3206404637786,1.414453285198556,9088.257617387344,2019
+2004,56,"(55,60]",HS,229.7674973070018,161.3206404637786,1.4242907581227437,10512.92188458022,2019
+2004,56,"(55,60]",HS,229.7674973070018,161.3206404637786,1.4242907581227437,10241.348263707225,2019
+2004,56,"(55,60]",HS,228.18050987432676,161.3206404637786,1.414453285198556,9942.332514050035,2019
+2004,54,"(50,55]",HS,782.9661759425494,90.33955865971603,8.666924961320268,5337.3653578512085,2019
+2004,54,"(50,55]",HS,782.9661759425494,90.33955865971603,8.666924961320268,5938.101547689937,2019
+2004,54,"(50,55]",HS,784.5374506283662,90.33955865971603,8.684317947395563,5268.410402710376,2019
+2004,54,"(50,55]",HS,784.5374506283662,90.33955865971603,8.684317947395563,5280.441640138868,2019
+2004,54,"(50,55]",HS,782.9661759425494,90.33955865971603,8.666924961320268,5519.055457045203,2019
+2004,77,"(75,80]",College,216879.11669658887,11066.595935815212,19.597635800065255,29.35650823389555,2019
+2004,77,"(75,80]",College,247312.6647037702,9517.91778736294,25.98390427706051,30.29644577155334,2019
+2004,77,"(75,80]",College,162873.9343626571,10195.464477310808,15.975136270164056,29.722027912855282,2019
+2004,77,"(75,80]",College,160765.28373429083,6743.202771385946,23.84108697079094,28.98419262984593,2019
+2004,77,"(75,80]",College,163675.1273249551,9872.823196383253,16.57835090016752,29.1175918322915,2019
+2004,61,"(60,65]",HS,14832.83303411131,604.9524017391699,24.519008423586037,350.99059067841506,2019
+2004,61,"(60,65]",HS,14832.83303411131,604.9524017391699,24.519008423586037,356.67339457451305,2019
+2004,61,"(60,65]",HS,14832.83303411131,604.9524017391699,24.519008423586037,358.1440850781791,2019
+2004,61,"(60,65]",HS,14834.404308797128,604.9524017391699,24.52160577617328,347.82791671237203,2019
+2004,61,"(60,65]",HS,14829.690484739676,604.9524017391699,24.513813718411548,350.2300407697719,2019
+2004,68,"(65,70]",College,306.7128186714542,237.14134148175458,1.293375574056337,7109.4280126923895,2019
+2004,68,"(65,70]",College,306.55569120287254,175.8394981055187,1.7433835657271552,6685.34483795782,2019
+2004,68,"(65,70]",College,323.9968402154399,329.0941065461084,0.984511219650315,7193.606458166663,2019
+2004,68,"(65,70]",College,309.85536804308794,177.45270451015648,1.7461293075155888,7149.889475109968,2019
+2004,68,"(65,70]",College,315.98333931777375,209.7168326029122,1.5067142460427656,7071.7128096948245,2019
+2004,45,"(40,45]",College,759.7270233393177,212.94324541218776,3.567744174597965,4926.97079422748,2019
+2004,45,"(40,45]",College,759.7741615798923,212.94324541218776,3.567965539875287,5060.621318770907,2019
+2004,45,"(40,45]",College,759.7898743267505,212.94324541218776,3.568039328301061,4815.118604757261,2019
+2004,45,"(40,45]",College,761.5182764811491,212.94324541218776,3.5761560551361997,4747.106176581516,2019
+2004,45,"(40,45]",College,762.9324236983842,212.94324541218776,3.5827970134558584,4939.371068058339,2019
+2004,74,"(70,75]",College,6065.120287253141,414.59404599191106,14.629057860062648,1463.7554284581424,2019
+2004,74,"(70,75]",College,6184.537163375224,301.66959766726603,20.501028977393382,1470.932688272577,2019
+2004,74,"(70,75]",College,7529.54829443447,206.49041979363656,36.46439530685922,1491.9761813235318,2019
+2004,74,"(70,75]",College,6336.950807899461,324.25448733219497,19.543139896186936,1421.9216588824534,2019
+2004,74,"(70,75]",College,6212.820107719928,316.18845530900603,19.649104840492157,1437.7755500990593,2019
+2004,66,"(65,70]",HS,1047.4117055655297,266.1790567652347,3.9349891696750907,6853.12908044231,2019
+2004,66,"(65,70]",HS,1047.4117055655297,256.49981833740793,4.083479327021322,7684.216597514993,2019
+2004,66,"(65,70]",HS,1048.385895870736,262.9526439559591,3.9869760581160993,6836.256097506402,2019
+2004,66,"(65,70]",HS,1048.9986929982047,254.8866119327702,4.115550381574739,6819.779872199877,2019
+2004,66,"(65,70]",HS,1047.4117055655297,261.33943755132134,4.007859339483889,7146.756247585798,2019
+2004,48,"(45,50]",College,103792.98484739676,9130.748250249868,11.367412834381499,15.802976299044108,2019
+2004,48,"(45,50]",College,102784.22649910234,8775.842841229556,11.7121772072096,16.731698115882246,2019
+2004,48,"(45,50]",College,101033.82649910235,8146.692343420819,12.401821775029491,16.396171915760185,2019
+2004,48,"(45,50]",College,102509.25342908438,8437.06949625562,12.149864769346522,15.52483095336305,2019
+2004,48,"(45,50]",College,100025.0681508079,8582.258072673023,11.65486603919546,15.89151738577174,2019
+2004,23,"(20,25]",NoHS,3.222684380610413,29.03771528348015,0.11098271159245889,6749.571790516525,2019
+2004,23,"(20,25]",NoHS,3.222684380610413,29.03771528348015,0.11098271159245889,6689.993180821223,2019
+2004,23,"(20,25]",NoHS,3.222684380610413,29.03771528348015,0.11098271159245889,6723.207502623659,2019
+2004,23,"(20,25]",NoHS,3.222684380610413,29.03771528348015,0.11098271159245889,6616.575800266872,2019
+2004,23,"(20,25]",NoHS,3.3798118491921003,29.03771528348015,0.11639386281588447,6678.342770328085,2019
+2004,56,"(55,60]",College,3452.561867145422,653.3485938783033,5.284410036992469,4118.570479427289,2019
+2004,56,"(55,60]",College,3452.40473967684,653.3485938783033,5.284169541382538,4287.444311956123,2019
+2004,56,"(55,60]",College,3452.40473967684,653.3485938783033,5.284169541382538,4075.1748933073077,2019
+2004,56,"(55,60]",College,3450.990592459605,653.3485938783033,5.2820050808931684,4372.688590602206,2019
+2004,56,"(55,60]",College,3452.40473967684,653.3485938783033,5.284169541382538,4182.344629108937,2019
+2004,54,"(50,55]",College,485.5238779174147,103.24520989681828,4.702628610108304,5865.332019632665,2019
+2004,54,"(50,55]",College,271.83052064631954,103.24520989681828,2.6328632671480148,6284.115872845049,2019
+2004,54,"(50,55]",College,259.2603231597846,103.24520989681828,2.51111236462094,6796.00895002789,2019
+2004,54,"(50,55]",College,276.5443447037702,101.63200349218052,2.7210360437797263,6758.2485104704565,2019
+2004,54,"(50,55]",College,320.54003590664274,103.24520989681828,3.1046480144404343,6550.24716960512,2019
+2004,53,"(50,55]",HS,95.84775583482944,20.97168326029122,4.570341571785615,4612.420298288066,2019
+2004,53,"(50,55]",HS,97.41903052064633,20.97168326029122,4.64526520410997,4616.934054116913,2019
+2004,53,"(50,55]",HS,97.57615798922802,20.97168326029122,4.652757567342406,4618.001221726476,2019
+2004,53,"(50,55]",HS,96.94764811490126,20.97168326029122,4.622788114412663,4630.347524213195,2019
+2004,53,"(50,55]",HS,96.4762657091562,20.97168326029122,4.600311024715357,4612.235112046192,2019
+2004,39,"(35,40]",HS,158.6358922800718,96.79238427826716,1.6389294825511431,4594.488923333394,2019
+2004,39,"(35,40]",HS,160.2071669658887,96.79238427826716,1.65516293622142,4411.599434132818,2019
+2004,39,"(35,40]",HS,161.77844165170558,96.79238427826716,1.6713963898916968,4592.742100686913,2019
+2004,39,"(35,40]",HS,163.34971633752244,96.79238427826716,1.6876298435619734,4578.373532353748,2019
+2004,39,"(35,40]",HS,161.77844165170558,96.79238427826716,1.6713963898916968,4528.135576252551,2019
+2004,29,"(25,30]",HS,6.332236983842011,72.59428820870036,0.08722775772162056,8357.711192747238,2019
+2004,29,"(25,30]",HS,6.1593967684021544,72.59428820870036,0.0848468511833133,8503.152909541155,2019
+2004,29,"(25,30]",HS,6.175109515260323,72.59428820870036,0.08506329723225031,8364.016610717337,2019
+2004,29,"(25,30]",HS,4.7609622980251345,72.59428820870036,0.06558315282791818,8352.675423140263,2019
+2004,29,"(25,30]",HS,6.017982046678636,72.59428820870036,0.08289883674288008,8390.40365601986,2019
+2004,38,"(35,40]",HS,130.57292639138242,90.33955865971603,1.4453571428571428,4609.9658773046,2019
+2004,38,"(35,40]",HS,132.30132854578096,90.33955865971603,1.4644894275399687,4426.460308219314,2019
+2004,38,"(35,40]",HS,129.1587791741472,90.33955865971603,1.4297034553893757,4608.213170327095,2019
+2004,38,"(35,40]",HS,127.43037701974866,90.33955865971603,1.4105711707065496,4593.796200164165,2019
+2004,38,"(35,40]",HS,130.88718132854578,90.33955865971603,1.4488357400722018,4543.389012936904,2019
+2004,24,"(20,25]",NoHS,-4.710681508078995,12.099048034783396,-0.3893431528279182,5805.639927043854,2019
+2004,24,"(20,25]",NoHS,-0.7824947935368043,12.099048034783396,-0.06467407942238267,5809.205255464067,2019
+2004,24,"(20,25]",NoHS,-1.3481536804308796,12.099048034783396,-0.11142642599277977,5842.265353707675,2019
+2004,24,"(20,25]",NoHS,-0.4525271095152604,12.099048034783396,-0.037401877256317696,5736.749090010404,2019
+2004,24,"(20,25]",NoHS,-0.32682513464991025,12.260368675247175,-0.026657039711191335,5836.055460553046,2019
+2004,35,"(30,35]",College,-33.31102333931778,111.31124192000723,-0.29926018939988497,4021.9466934199045,2019
+2004,35,"(30,35]",College,-33.31102333931778,111.31124192000723,-0.29926018939988497,3999.9317532163486,2019
+2004,35,"(30,35]",College,-31.739748653500897,111.31124192000723,-0.285144142730079,4046.4597786469653,2019
+2004,35,"(30,35]",College,-31.739748653500897,112.92444832464501,-0.2810706549767922,4013.8564005036505,2019
+2004,35,"(30,35]",College,-33.31102333931778,111.31124192000723,-0.29926018939988497,4044.015655975515,2019
+2004,51,"(50,55]",HS,2217.382836624776,129.0565123710229,17.18148736462094,607.200875837617,2019
+2004,51,"(50,55]",HS,10005.720071813286,122.60368675247175,81.61027075812275,1143.9971932617907,2019
+2004,51,"(50,55]",HS,3855.1224416517057,119.37727394319619,32.293604254073564,1151.0689901402352,2019
+2004,51,"(50,55]",HS,4718.223626570916,238.75454788639237,19.761816762610987,1074.091404920117,2019
+2004,51,"(50,55]",HS,6720.734649910233,132.28292518029846,50.80576076428634,1099.1546102617704,2019
+2004,51,"(50,55]",HS,551.6745421903051,96.79238427826716,5.699565583634175,6840.492443695305,2019
+2004,51,"(50,55]",HS,551.6745421903051,98.40559068290497,5.606130082263122,7614.047402771053,2019
+2004,51,"(50,55]",HS,554.817091561939,98.40559068290497,5.638064745221045,6749.639779977841,2019
+2004,51,"(50,55]",HS,553.245816876122,96.79238427826716,5.715799037304452,6766.544536378021,2019
+2004,51,"(50,55]",HS,551.6745421903051,96.79238427826716,5.699565583634175,7074.817916930957,2019
+2004,65,"(60,65]",HS,104.04980969479354,16.132064046377863,6.449875812274367,6941.11512702077,2019
+2004,65,"(60,65]",HS,104.67831956912029,17.74527045101565,5.898941910075483,7006.462450736573,2019
+2004,65,"(60,65]",HS,104.20693716337523,17.74527045101565,5.872378076796849,7013.104398277486,2019
+2004,65,"(60,65]",HS,105.30682944344704,17.74527045101565,5.934360354446997,7000.564568149183,2019
+2004,65,"(60,65]",HS,104.19122441651706,17.74527045101565,5.871492615687561,7004.735102617446,2019
+2004,66,"(65,70]",HS,47.29536804308797,58.0754305669603,0.8143782591255515,6981.898217985048,2019
+2004,66,"(65,70]",HS,47.29536804308797,58.0754305669603,0.8143782591255515,6441.15914611154,2019
+2004,66,"(65,70]",HS,47.29536804308797,58.0754305669603,0.8143782591255515,7090.549090274957,2019
+2004,66,"(65,70]",HS,47.29536804308797,58.0754305669603,0.8143782591255515,7025.138598368982,2019
+2004,66,"(65,70]",HS,47.29536804308797,58.0754305669603,0.8143782591255515,6932.348199519683,2019
+2004,47,"(45,50]",HS,164.1667791741472,80.6603202318893,2.0352854873646207,5713.4510856940415,2019
+2004,47,"(45,50]",HS,164.1667791741472,80.6603202318893,2.0352854873646207,5631.249472038391,2019
+2004,47,"(45,50]",HS,162.59550448833033,80.6603202318893,2.015805342960289,5763.002970617039,2019
+2004,47,"(45,50]",HS,164.1667791741472,80.6603202318893,2.0352854873646207,5758.6622887613285,2019
+2004,47,"(45,50]",HS,162.59550448833033,80.6603202318893,2.015805342960289,5709.751717979689,2019
+2004,39,"(35,40]",HS,66.30779174147217,80.6603202318893,0.8220620938628159,5478.216907498858,2019
+2004,39,"(35,40]",HS,58.45141831238779,80.6603202318893,0.7246613718411552,5492.498524072493,2019
+2004,39,"(35,40]",HS,62.37960502692998,80.6603202318893,0.7733617328519855,5444.01545217731,2019
+2004,39,"(35,40]",HS,117.37421903052065,80.6603202318893,1.4551667870036102,5323.219739832608,2019
+2004,39,"(35,40]",HS,65.52215439856373,80.6603202318893,0.8123220216606498,5441.592199331875,2019
+2004,71,"(70,75]",HS,598.4985278276481,107.3427541645983,5.575583862045467,7218.804078177546,2019
+2004,71,"(70,75]",HS,617.3538240574507,38.087803213498134,16.20870126315564,8025.861987154525,2019
+2004,71,"(70,75]",HS,620.653500897666,57.43014800510518,10.807102583864033,7140.948460466422,2019
+2004,71,"(70,75]",HS,589.0708797127469,108.02030085454615,5.453334929199609,8737.27041964362,2019
+2004,71,"(70,75]",HS,544.4466786355475,35.393748517753025,15.382566171606843,8759.11297133427,2019
+2004,80,"(75,80]",HS,395.96122082585276,38.716953711306864,10.227075812274368,13051.11986936037,2019
+2004,80,"(75,80]",HS,397.53249551166965,38.716953711306864,10.267659446450061,11830.781473201287,2019
+2004,80,"(75,80]",HS,397.53249551166965,38.716953711306864,10.267659446450061,12952.576059574367,2019
+2004,80,"(75,80]",HS,397.53249551166965,35.4905409020313,11.201083032490972,12737.019935773245,2019
+2004,80,"(75,80]",HS,397.53249551166965,45.16977932985802,8.800850954100051,12496.388544028745,2019
+2004,55,"(50,55]",HS,736.2993177737882,50.00939854377137,14.72321881914522,5578.061594810424,2019
+2004,55,"(50,55]",HS,690.3552459605027,100.01879708754274,6.902255036683358,6169.593778988842,2019
+2004,55,"(50,55]",HS,813.841723518851,50.00939854377137,16.27377547455456,5504.852138415017,2019
+2004,55,"(50,55]",HS,964.6055296229803,70.9810818040626,13.589614374794879,5487.314190888405,2019
+2004,55,"(50,55]",HS,828.5331418312388,66.14146259014923,12.526683102932113,5768.094207454372,2019
+2004,42,"(40,45]",NoHS,0,22.58488966492901,0,5235.948809627636,2019
+2004,42,"(40,45]",NoHS,0,22.58488966492901,0,5228.183373484068,2019
+2004,42,"(40,45]",NoHS,0,22.58488966492901,0,5240.541939435553,2019
+2004,42,"(40,45]",NoHS,0,22.58488966492901,0,5222.103368390012,2019
+2004,42,"(40,45]",NoHS,0,22.58488966492901,0,5211.930935900348,2019
+2004,63,"(60,65]",College,2790.583842010772,366.1978538527774,7.620426533500852,672.537477880426,2019
+2004,63,"(60,65]",College,2790.583842010772,364.58464744813966,7.654145234976518,691.2924512993575,2019
+2004,63,"(60,65]",College,2790.583842010772,364.58464744813966,7.654145234976518,668.1519544195419,2019
+2004,63,"(60,65]",College,2790.583842010772,366.1978538527774,7.620426533500852,686.1054157119626,2019
+2004,63,"(60,65]",College,2790.583842010772,364.58464744813966,7.654145234976518,695.1145084043239,2019
+2004,62,"(60,65]",HS,72929.14326750448,7630.466293936729,9.557626029415129,18.968049583545866,2019
+2004,62,"(60,65]",HS,72929.14326750448,7630.466293936729,9.557626029415129,20.08277893185048,2019
+2004,62,"(60,65]",HS,72929.14326750448,7630.466293936729,9.557626029415129,19.680052415018398,2019
+2004,62,"(60,65]",HS,72929.14326750448,7630.466293936729,9.557626029415129,18.634196351820794,2019
+2004,62,"(60,65]",HS,72929.14326750448,7630.466293936729,9.557626029415129,19.074323977144275,2019
+2004,70,"(65,70]",College,42666.392818671455,1472.857447434299,28.96844694168864,18.066308243526656,2019
+2004,70,"(65,70]",College,42667.964093357274,1472.857447434299,28.96951376230224,18.63705803531676,2019
+2004,70,"(65,70]",College,42664.821543985636,1472.857447434299,28.96738012107504,18.977774896945714,2019
+2004,70,"(65,70]",College,42667.964093357274,1472.857447434299,28.96951376230224,17.44483212710631,2019
+2004,70,"(65,70]",College,42667.964093357274,1472.857447434299,28.96951376230224,18.60978708433786,2019
+2004,74,"(70,75]",HS,975.6358779174147,72.11032628730905,13.529766514024502,5655.409900832206,2019
+2004,74,"(70,75]",HS,974.0646032315979,72.11032628730905,13.507976643326144,6286.640093313176,2019
+2004,74,"(70,75]",HS,975.3216229802514,71.949005646845265,13.555734568001165,5598.002116092999,2019
+2004,74,"(70,75]",HS,974.0646032315979,70.49711988267127,13.817083660335893,5581.276309844854,2019
+2004,74,"(70,75]",HS,972.3362010771993,71.949005646845265,13.514240986870862,5849.0699558286315,2019
+2004,30,"(25,30]",College,4.7216804308797125,27.424508878842364,0.1721700998088766,5432.493873618504,2019
+2004,30,"(25,30]",College,4.57240933572711,27.424508878842364,0.16672711828413675,5492.27649741037,2019
+2004,30,"(25,30]",College,4.729536804308798,27.424508878842364,0.17245657252070506,5398.315248209933,2019
+2004,30,"(25,30]",College,4.57240933572711,25.81130247420457,0.17714756317689537,5398.890480087105,2019
+2004,30,"(25,30]",College,4.7216804308797125,25.81130247420457,0.18293073104693144,5405.321423361555,2019
+2004,39,"(35,40]",HS,1.257019748653501,38.716953711306864,0.032466907340553554,5363.7614360984035,2019
+2004,39,"(35,40]",HS,1.257019748653501,38.716953711306864,0.032466907340553554,5330.87362304678,2019
+2004,39,"(35,40]",HS,1.257019748653501,38.716953711306864,0.032466907340553554,5359.987155362738,2019
+2004,39,"(35,40]",HS,1.257019748653501,38.716953711306864,0.032466907340553554,5350.71708317827,2019
+2004,39,"(35,40]",HS,1.257019748653501,38.716953711306864,0.032466907340553554,5366.098165932961,2019
+2004,45,"(40,45]",College,3181.8312387791743,290.37715283480145,10.957581227436826,1669.1215895058735,2019
+2004,45,"(40,45]",College,3181.8312387791743,290.37715283480145,10.957581227436826,1665.7619395233767,2019
+2004,45,"(40,45]",College,3181.8312387791743,290.37715283480145,10.957581227436826,1878.5103960545555,2019
+2004,45,"(40,45]",College,3181.8312387791743,290.37715283480145,10.957581227436826,1594.0734969603088,2019
+2004,45,"(40,45]",College,3181.8312387791743,290.37715283480145,10.957581227436826,1678.1268581955726,2019
+2004,52,"(50,55]",NoHS,-51.852064631956914,72.59428820870036,-0.7142719614921782,4200.426326923988,2019
+2004,52,"(50,55]",NoHS,-52.009192100538606,72.59428820870036,-0.7164364219815486,4119.165003660398,2019
+2004,52,"(50,55]",NoHS,-52.009192100538606,72.59428820870036,-0.7164364219815486,4207.096652645041,2019
+2004,52,"(50,55]",NoHS,-52.009192100538606,72.59428820870036,-0.7164364219815486,4215.1845397800225,2019
+2004,52,"(50,55]",NoHS,-52.009192100538606,72.59428820870036,-0.7164364219815486,4139.165720127747,2019
+2004,45,"(40,45]",HS,420.94448833034113,138.73575079884964,3.034145747628242,5806.149564790225,2019
+2004,45,"(40,45]",HS,314.4277773788151,133.89613158493626,2.3482962028619894,6066.8001162885985,2019
+2004,45,"(40,45]",HS,250.47689766606823,129.0565123710229,1.9408311371841154,5703.257817485579,2019
+2004,45,"(40,45]",HS,275.77442010771995,112.92444832464501,2.442114388860238,5597.721974631624,2019
+2004,45,"(40,45]",HS,355.28091921005387,143.57537001276296,2.474525534417718,5836.1224179362225,2019
+2004,51,"(50,55]",HS,180.99513105924598,50.00939854377137,3.6192223127984167,6149.414934087812,2019
+2004,51,"(50,55]",HS,179.1096014362657,46.782985734495796,3.8285201045686543,5645.0187302254835,2019
+2004,51,"(50,55]",HS,180.55517414721726,48.39619213913358,3.7307723225030087,6201.913630256914,2019
+2004,51,"(50,55]",HS,182.88066068222622,62.91504978087366,2.9067871887438677,6192.615713251027,2019
+2004,51,"(50,55]",HS,181.93789587073607,48.39619213913358,3.7593432009626953,5973.199843261605,2019
+2004,47,"(45,50]",HS,111.79619389587073,114.53765472928282,0.9760649819494583,6857.172910303629,2019
+2004,47,"(45,50]",HS,307.56130700179534,120.99048034783397,2.5420289771359807,6371.765583211409,2019
+2004,47,"(45,50]",HS,102.47853500897666,87.11314585044046,1.1763842759727234,6890.79845234931,2019
+2004,47,"(45,50]",HS,113.06892639138242,96.79238427826716,1.168159326113117,6852.511337017995,2019
+2004,47,"(45,50]",HS,99.85450628366247,82.2735266365271,1.2136893891130458,6641.608831111854,2019
+2004,54,"(50,55]",HS,236.79109515260325,112.92444832464501,2.096898401237752,6381.3805701508,2019
+2004,54,"(50,55]",HS,307.1842010771993,112.92444832464501,2.72026302217638,5929.653754124223,2019
+2004,54,"(50,55]",HS,239.933644524237,112.92444832464501,2.124727178958226,6412.672967685159,2019
+2004,54,"(50,55]",HS,577.6005745062836,112.92444832464501,5.114929345023207,5477.498480600663,2019
+2004,54,"(50,55]",HS,224.06377019748655,112.92444832464501,1.9841918514698302,6180.773637152238,2019
+2004,41,"(40,45]",College,50.437917414721724,62.91504978087366,0.8016828658705915,4681.861725351578,2019
+2004,41,"(40,45]",College,54.68035906642729,62.91504978087366,0.8691141349625104,4653.368075160944,2019
+2004,41,"(40,45]",College,58.60854578096948,75.82070101797595,0.7729887088102004,4679.341315024549,2019
+2004,41,"(40,45]",College,63.95087971274686,51.62260494840914,1.2388154332129968,4682.079753154507,2019
+2004,41,"(40,45]",College,61.751095152603234,67.75466899478702,0.9113924703455388,4684.81897838786,2019
+2004,34,"(30,35]",NoHS,153.6706642728905,48.39619213913358,3.175263537906137,7466.718072248604,2019
+2004,34,"(30,35]",NoHS,151.5023052064632,48.39619213913358,3.1304592057761735,8298.553959822462,2019
+2004,34,"(30,35]",NoHS,145.26434470377018,48.39619213913358,3.0015655836341755,7384.290554415206,2019
+2004,34,"(30,35]",NoHS,142.67174147217236,48.39619213913358,2.9479951865222627,7351.827882653345,2019
+2004,34,"(30,35]",NoHS,156.2632675044883,48.39619213913358,3.2288339350180504,7721.450357368471,2019
+2004,64,"(60,65]",NoHS,26.964644883303414,40.33016011594465,0.6685975162454875,5818.342191423253,2019
+2004,64,"(60,65]",NoHS,29.8872157989228,40.33016011594465,0.7410636534296029,5150.714113772691,2019
+2004,64,"(60,65]",NoHS,27.21604883303411,38.716953711306864,0.7029491275571601,5789.895801372191,2019
+2004,64,"(60,65]",NoHS,26.666102692998205,40.33016011594465,0.6611950613718411,5719.489636278048,2019
+2004,64,"(60,65]",NoHS,26.587538958707363,38.716953711306864,0.6867156738868834,5556.2783823140835,2019
+2004,60,"(55,60]",College,4498.763691202873,311.34883609509274,14.449270945174987,1513.2786770723228,2019
+2004,60,"(55,60]",College,4893.13792459605,387.16953711306866,12.638230685920576,1501.2731566119933,2019
+2004,60,"(55,60]",College,4146.798161579893,383.94312430379307,10.800553256681736,1714.5887292175998,2019
+2004,60,"(55,60]",College,4497.176703770198,385.55633070843083,11.664123619775543,1435.2817643881203,2019
+2004,60,"(55,60]",College,4506.604351885099,325.8676937368328,13.829552418057691,1529.3795916537613,2019
+2004,30,"(25,30]",HS,5.656588868940754,32.264128092755726,0.17532129963898915,6422.277508123264,2019
+2004,30,"(25,30]",HS,5.656588868940754,32.264128092755726,0.17532129963898915,6389.648714979443,2019
+2004,30,"(25,30]",HS,5.656588868940754,32.264128092755726,0.17532129963898915,6428.7125823058905,2019
+2004,30,"(25,30]",HS,5.656588868940754,32.264128092755726,0.17532129963898915,6457.690215663109,2019
+2004,30,"(25,30]",HS,5.656588868940754,32.264128092755726,0.17532129963898915,6444.256504483223,2019
+2004,36,"(35,40]",HS,54.31896588868941,156.48102124986525,0.34712814023595967,7245.3563689914245,2019
+2004,36,"(35,40]",HS,54.4760933572711,156.48102124986525,0.34813227139082215,6837.6576119906,2019
+2004,36,"(35,40]",HS,54.4760933572711,156.48102124986525,0.34813227139082215,7218.63730111351,2019
+2004,36,"(35,40]",HS,54.4760933572711,156.48102124986525,0.34813227139082215,7192.205812643662,2019
+2004,36,"(35,40]",HS,54.4760933572711,156.48102124986525,0.34813227139082215,7054.550648830341,2019
+2004,47,"(45,50]",College,396.2754757630162,179.06591091479427,2.213014603050704,6155.116532365465,2019
+2004,47,"(45,50]",College,398.47526032315983,180.67911731943207,2.205430634347602,6405.236502205249,2019
+2004,47,"(45,50]",College,396.2754757630162,179.06591091479427,2.213014603050704,6013.426108541384,2019
+2004,47,"(45,50]",College,397.06111310592456,180.67911731943207,2.197603790613718,5959.934970980397,2019
+2004,47,"(45,50]",College,402.0891921005386,180.67911731943207,2.2254325683341927,6185.611863188356,2019
+2004,53,"(50,55]",HS,644.2226211849193,69.36787539942482,9.287045588111829,6934.027410018338,2019
+2004,53,"(50,55]",HS,650.5077199281867,69.36787539942482,9.377650910922673,7714.472616079469,2019
+2004,53,"(50,55]",HS,631.6524236983842,69.36787539942482,9.105834942490132,6844.444719506096,2019
+2004,53,"(50,55]",HS,615.9396768402155,67.75466899478702,9.090734055354993,6860.0750772785705,2019
+2004,53,"(50,55]",HS,647.3651705565529,69.36787539942482,9.332348249517251,7170.069734924366,2019
+2004,60,"(55,60]",HS,576.3435547576303,37.10374730666908,15.533297755454406,5169.358919443177,2019
+2004,60,"(55,60]",HS,576.3435547576303,64.52825618551145,8.931646209386281,4496.706887175091,2019
+2004,60,"(55,60]",HS,576.3435547576303,27.424508878842364,21.01563813973243,5222.683648846456,2019
+2004,60,"(55,60]",HS,577.443447037702,54.84901775768473,10.527872159694201,5136.158133707117,2019
+2004,60,"(55,60]",HS,576.3435547576303,38.716953711306864,14.886077015643806,4999.495209045974,2019
+2004,52,"(50,55]",College,16743.503052064632,1613.2064046377861,10.379020938628159,283.94988969163865,2019
+2004,52,"(50,55]",College,16741.931777378813,1613.2064046377861,10.37804693140794,279.47022655770024,2019
+2004,52,"(50,55]",College,16741.931777378813,1613.2064046377861,10.37804693140794,295.9537549957084,2019
+2004,52,"(50,55]",College,16741.931777378813,1613.2064046377861,10.37804693140794,274.5397882084709,2019
+2004,52,"(50,55]",College,16743.503052064632,1613.2064046377861,10.379020938628159,279.0527614971237,2019
+2004,25,"(20,25]",HS,62.85098743267505,67.75466899478702,0.9276259240158157,6681.743565159025,2019
+2004,25,"(20,25]",HS,63.00811490125673,67.75466899478702,0.9299449888258551,6478.730000266196,2019
+2004,25,"(20,25]",HS,62.85098743267505,67.75466899478702,0.9276259240158157,6663.377291779072,2019
+2004,25,"(20,25]",HS,62.85098743267505,67.75466899478702,0.9276259240158157,6640.590244466874,2019
+2004,25,"(20,25]",HS,62.85098743267505,67.75466899478702,0.9276259240158157,6567.56473310211,2019
+2004,89,"(85,90]",NoHS,17732.149084380613,117.76406753855836,150.5735107066911,3007.237236686583,2019
+2004,89,"(85,90]",NoHS,17732.149084380613,117.76406753855836,150.5735107066911,3062.6437091032526,2019
+2004,89,"(85,90]",NoHS,17732.149084380613,117.76406753855836,150.5735107066911,3034.8830770850677,2019
+2004,89,"(85,90]",NoHS,17730.577809694794,117.76406753855836,150.5601681420306,2906.849302084316,2019
+2004,89,"(85,90]",NoHS,17732.30621184919,117.76406753855836,150.57484496315712,2927.2171933506584,2019
+2004,42,"(40,45]",NoHS,21.997845601436268,37.10374730666908,0.5928739601318476,6281.965249176038,2019
+2004,42,"(40,45]",NoHS,53.42333931777379,37.10374730666908,1.439836760320201,6179.14995248638,2019
+2004,42,"(40,45]",NoHS,19.16955116696589,37.10374730666908,0.5166473081148957,6256.38654041358,2019
+2004,42,"(40,45]",NoHS,58.13716337522442,38.716953711306864,1.5015944645006019,6287.6065911624255,2019
+2004,42,"(40,45]",NoHS,14.612854578096947,37.10374730666908,0.39383770208758434,6237.926226609156,2019
+2004,68,"(65,70]",HS,281.2581687612208,80.6603202318893,3.486945848375451,7974.305218535669,2019
+2004,68,"(65,70]",HS,281.2581687612208,85.49993944580267,3.28957155507118,7498.631413647059,2019
+2004,68,"(65,70]",HS,279.6868940754039,75.82070101797595,3.688793302096935,8068.724152919046,2019
+2004,68,"(65,70]",HS,279.6868940754039,66.14146259014923,4.2286167121599005,8019.688904864588,2019
+2004,68,"(65,70]",HS,279.6868940754039,46.782985734495796,5.9783891447777915,7932.0018799907575,2019
+2004,24,"(20,25]",NoHS,11.815985637342909,12.099048034783396,0.9766045728038508,7366.788919452537,2019
+2004,24,"(20,25]",NoHS,13.387260323159785,8.22735266365271,1.6271650031853897,7357.753125647609,2019
+2004,24,"(20,25]",NoHS,10.716093357271095,9.19527650643538,1.1653910950661854,7378.4110785832045,2019
+2004,24,"(20,25]",NoHS,11.030348294434472,8.549993944580267,1.290100129418977,7223.729773169762,2019
+2004,24,"(20,25]",NoHS,12.695899461400359,11.453765472928282,1.1084476534296028,7359.310476021361,2019
+2004,42,"(40,45]",HS,18.61960502692998,43.55657292522023,0.4274809466506217,4392.240955189717,2019
+2004,42,"(40,45]",HS,18.61960502692998,43.55657292522023,0.4274809466506217,4373.431730555873,2019
+2004,42,"(40,45]",HS,18.61960502692998,43.55657292522023,0.4274809466506217,4359.3182674573745,2019
+2004,42,"(40,45]",HS,18.462477558348297,43.55657292522023,0.4238735125016714,4373.38797942822,2019
+2004,42,"(40,45]",HS,18.61960502692998,43.55657292522023,0.4274809466506217,4349.81592866681,2019
+2004,51,"(50,55]",HS,126.33048473967685,100.01879708754274,1.2630674275066962,8768.07255442363,2019
+2004,51,"(50,55]",HS,126.17335727109516,87.11314585044046,1.4483848108035833,8132.638206617104,2019
+2004,51,"(50,55]",HS,126.40904847396769,88.72635225507824,1.4247069248441089,8872.832897649017,2019
+2004,51,"(50,55]",HS,126.346197486535,104.8584163014561,1.2049218550402665,8800.293793687357,2019
+2004,51,"(50,55]",HS,126.37762298025135,95.17917787362938,1.3277864529156214,8580.682583417023,2019
+2004,36,"(35,40]",HS,115.56725314183124,22.58488966492901,5.117016503352243,7151.359631659502,2019
+2004,36,"(35,40]",HS,92.23382405745063,22.58488966492901,4.0838731304796285,7176.683684595856,2019
+2004,36,"(35,40]",HS,130.99717055655296,20.97168326029122,6.246383226881422,7735.0783273278985,2019
+2004,36,"(35,40]",HS,185.9132208258528,22.58488966492901,8.231752449716348,7118.179654069597,2019
+2004,36,"(35,40]",HS,187.48449551166968,20.97168326029122,8.939887808941961,7114.396970352429,2019
+2004,51,"(50,55]",HS,146.59992818671455,120.99048034783397,1.2116649819494585,6904.454363877843,2019
+2004,51,"(50,55]",HS,127.74463195691203,120.99048034783397,1.0558238267148015,6527.626805916718,2019
+2004,51,"(50,55]",HS,123.03080789946141,120.99048034783397,1.0168635379061373,6961.3455237907865,2019
+2004,51,"(50,55]",HS,137.32940754039498,120.99048034783397,1.135043080625752,6926.369938274924,2019
+2004,51,"(50,55]",HS,135.6010053859964,120.99048034783397,1.1207576413959082,6769.088067965211,2019
+2004,39,"(35,40]",College,1629.0975942549373,819.5088535559954,1.987895051024759,994.5899679987145,2019
+2004,39,"(35,40]",College,1654.237989228007,819.5088535559954,2.0185724437874866,1006.6992123250375,2019
+2004,39,"(35,40]",College,1627.5263195691202,819.5088535559954,1.9859777139770884,991.6859893878376,2019
+2004,39,"(35,40]",College,1695.091131059246,819.5088535559954,2.0684232070269193,1017.1933843578756,2019
+2004,39,"(35,40]",College,1616.527396768402,817.8956471513575,1.9764469983409167,1031.3551682543662,2019
+2004,80,"(75,80]",NoHS,84.53457809694794,13.873575079884963,6.093207959029468,9231.662825599013,2019
+2004,80,"(75,80]",NoHS,87.04861759425494,13.873575079884963,6.274418604651161,9237.856168287017,2019
+2004,80,"(75,80]",NoHS,88.14850987432675,13.873575079884963,6.353698262110653,9184.477397454682,2019
+2004,80,"(75,80]",NoHS,86.2629802513465,14.03489572034874,6.146321424125483,9235.771670829703,2019
+2004,80,"(75,80]",NoHS,91.60531418312388,13.873575079884963,6.602862899840482,9189.509071494136,2019
+2004,51,"(50,55]",College,71269.24868940754,1064.7162270609388,66.93731801772235,224.5756583048576,2019
+2004,51,"(50,55]",College,71267.67741472172,1064.7162270609388,66.93584224920687,233.31197362120798,2019
+2004,51,"(50,55]",College,71267.67741472172,1064.7162270609388,66.93584224920687,232.18788864895015,2019
+2004,51,"(50,55]",College,71267.67741472172,1064.7162270609388,66.93584224920687,233.99581520855227,2019
+2004,51,"(50,55]",College,71267.67741472172,1064.7162270609388,66.93584224920687,260.2593226387703,2019
+2004,52,"(50,55]",College,2815.7242369838423,269.4054695745103,10.451622386994964,515.2573057406888,2019
+2004,52,"(50,55]",College,2815.8813644524234,267.7922631698725,10.51517071897699,532.1267557962403,2019
+2004,52,"(50,55]",College,2815.7242369838423,269.4054695745103,10.451622386994964,510.283954807586,2019
+2004,52,"(50,55]",College,2815.7242369838423,269.4054695745103,10.451622386994964,521.5366118323628,2019
+2004,52,"(50,55]",College,2815.8813644524234,269.4054695745103,10.452205624851379,529.6128730681471,2019
+2004,58,"(55,60]",HS,1420.903698384201,346.839376997124,4.096719670892452,888.7384790162766,2019
+2004,58,"(55,60]",HS,3622.652351885099,214.55645181682556,16.884378545642086,3135.05440172861,2019
+2004,58,"(55,60]",HS,1880.8157989228007,272.63188238378586,6.898737530173242,1812.479409164695,2019
+2004,58,"(55,60]",HS,1632.0830161579893,243.5941671003057,6.700008606880723,840.764679788945,2019
+2004,58,"(55,60]",HS,1762.4988150807899,545.2637647675717,3.2323783991626254,897.3010929896697,2019
+2004,45,"(40,45]",College,56968.135008976664,5000.939854377138,11.391485734249446,18.875803891614044,2019
+2004,45,"(40,45]",College,56512.46535008977,5000.939854377138,11.30036892977757,19.12902112287269,2019
+2004,45,"(40,45]",College,56512.46535008977,5000.939854377138,11.30036892977757,19.897276336486822,2019
+2004,45,"(40,45]",College,56952.42226211849,5017.071918423515,11.351725306743123,18.279329651680335,2019
+2004,45,"(40,45]",College,56512.46535008977,5017.071918423515,11.264033338363495,19.504203208628326,2019
+2004,58,"(55,60]",HS,170.16904847396768,93.56597146899159,1.8187065853354911,7001.541947509204,2019
+2004,58,"(55,60]",HS,191.85263913824056,95.17917787362938,2.0156996879397906,6242.907359627309,2019
+2004,58,"(55,60]",HS,168.7549012567325,93.56597146899159,1.803592680194199,7018.539718035283,2019
+2004,58,"(55,60]",HS,152.413644524237,93.56597146899159,1.6289431096726006,6893.327707509801,2019
+2004,58,"(55,60]",HS,207.25113105924598,93.56597146899159,2.2150267645960415,6749.627078540863,2019
+2004,56,"(55,60]",College,1436.1450628366247,209.7168326029122,6.848019994445986,1676.8291846504333,2019
+2004,56,"(55,60]",College,1436.1450628366247,209.7168326029122,6.848019994445986,1645.5388303474724,2019
+2004,56,"(55,60]",College,1436.1450628366247,209.7168326029122,6.848019994445986,1709.091663046614,2019
+2004,56,"(55,60]",College,1437.7163375224418,209.7168326029122,6.855512357678423,1640.7456088296526,2019
+2004,56,"(55,60]",College,1439.2876122082587,209.7168326029122,6.863004720910858,1710.6468811974478,2019
+2004,49,"(45,50]",HS,216.06598204667864,48.39619213913358,4.4645244283995185,8099.081773569569,2019
+2004,49,"(45,50]",HS,214.80896229802514,48.39619213913358,4.4385509025270755,7512.130113136112,2019
+2004,49,"(45,50]",HS,210.09513824057453,48.39619213913358,4.341150180505416,8195.849059782497,2019
+2004,49,"(45,50]",HS,184.00412208258527,48.39619213913358,3.802037184115523,8128.844580620136,2019
+2004,49,"(45,50]",HS,216.22310951526032,48.39619213913358,4.467771119133574,7925.989376202982,2019
+2004,62,"(60,65]",HS,210.94362657091563,96.79238427826716,2.179341155234657,7013.465530817106,2019
+2004,62,"(60,65]",HS,210.47224416517057,96.79238427826716,2.174471119133574,6146.311931739813,2019
+2004,62,"(60,65]",HS,209.8437342908438,96.79238427826716,2.1679777376654634,7007.2296914857925,2019
+2004,62,"(60,65]",HS,210.78649910233395,96.79238427826716,2.1777178098676298,6878.539552819228,2019
+2004,62,"(60,65]",HS,210.3151166965889,96.79238427826716,2.1728477737665464,6679.533648137166,2019
+2004,46,"(45,50]",NoHS,1030.599066427289,166.16025967769198,6.2024401528162345,265.1113273959474,2019
+2004,46,"(45,50]",NoHS,1042.3836265709156,175.8394981055187,5.92804027423575,268.8183733476775,2019
+2004,46,"(45,50]",NoHS,995.2453859964094,170.99987889160533,5.820152578162251,264.06185001763276,2019
+2004,46,"(45,50]",NoHS,1116.076409335727,162.9338468684164,6.84987453980055,40.870169246749505,2019
+2004,46,"(45,50]",NoHS,1062.810197486535,164.5470532730542,6.459004742691299,43.378218880991476,2019
+2004,40,"(35,40]",College,66.22922800718133,77.43390742261373,0.8553000902527077,8472.693457933143,2019
+2004,40,"(35,40]",College,66.22922800718133,77.43390742261373,0.8553000902527077,8130.935443731042,2019
+2004,40,"(35,40]",College,66.07210053859964,77.43390742261373,0.8532709085439231,8405.167678407208,2019
+2004,40,"(35,40]",College,66.22922800718133,77.43390742261373,0.8553000902527077,8441.476608195786,2019
+2004,40,"(35,40]",College,66.22922800718133,77.43390742261373,0.8553000902527077,8301.968052889608,2019
+2004,57,"(55,60]",HS,402.8748294434471,145.18857641740072,2.7748383473726443,2111.1746951291316,2019
+2004,57,"(55,60]",HS,387.8534434470377,145.18857641740072,2.6713771359807463,1888.8050365728213,2019
+2004,57,"(55,60]",HS,419.05895870736083,145.18857641740072,2.886308062575211,2063.3067879833197,2019
+2004,57,"(55,60]",HS,416.38779174147214,145.18857641740072,2.867910148415564,7478.929135646018,2019
+2004,57,"(55,60]",HS,415.28789946140034,145.18857641740072,2.860334536702768,7814.370297082413,2019
+2004,70,"(65,70]",College,283108.9732136445,1572.8762445218415,179.9944364343238,2.948805466293711,2019
+2004,70,"(65,70]",College,366329.96567324956,3823.2991789915536,95.81514512026077,2.9573252286264955,2019
+2004,70,"(65,70]",College,256617.4391382406,4968.675726284381,51.64704908809602,2.8988062811777175,2019
+2004,70,"(65,70]",College,446584.5486535009,3661.9785385277746,121.95171106410724,2.9030959168701105,2019
+2004,70,"(65,70]",College,295120.58254937164,2774.715015976992,106.36068239442533,2.832307309976691,2019
+2004,85,"(80,85]",HS,303.5702692998205,27.424508878842364,11.069305585049905,10813.304969818333,2019
+2004,85,"(80,85]",HS,294.1426211849192,27.424508878842364,10.725538330855809,9999.066434524411,2019
+2004,85,"(80,85]",HS,236.00545780969478,27.424508878842364,8.605640263325546,10767.284899953589,2019
+2004,85,"(80,85]",HS,246.84725314183123,27.424508878842364,9.000972605648757,10598.509147782781,2019
+2004,85,"(80,85]",HS,273.5589228007181,27.424508878842364,9.974979825865363,10518.71535927124,2019
+2004,48,"(45,50]",College,19.16955116696589,101.63200349218052,0.1886172712165492,3412.438671480868,2019
+2004,48,"(45,50]",College,39.43899461400359,114.53765472928282,0.3443321299638989,3404.8025926488453,2019
+2004,48,"(45,50]",College,9.584775583482944,111.31124192000723,0.08610788468581594,3429.2042459925883,2019
+2004,48,"(45,50]",College,12.727324955116698,122.60368675247175,0.10380866425992781,3437.634774821638,2019
+2004,48,"(45,50]",College,13.512962298025135,96.79238427826716,0.13960770156438027,3403.7441352031537,2019
+2004,32,"(30,35]",HS,122.71655296229802,93.56597146899159,1.311551101705465,4619.657892474391,2019
+2004,32,"(30,35]",HS,130.57292639138242,93.56597146899159,1.3955172413793107,4628.234093261266,2019
+2004,32,"(30,35]",HS,127.43037701974866,93.56597146899159,1.3619307855097722,4626.109834543326,2019
+2004,32,"(30,35]",HS,116.43145421903053,93.56597146899159,1.2443781899663888,4668.365328528409,2019
+2004,32,"(30,35]",HS,118.15985637342908,93.56597146899159,1.2628507406946345,4654.504639037027,2019
+2004,61,"(60,65]",College,25446.793536804307,241.98096069566793,105.16031287605293,25.272604537569986,2019
+2004,61,"(60,65]",College,25442.708222621186,241.98096069566793,105.14343008423586,25.483388426372862,2019
+2004,61,"(60,65]",College,25443.650987432673,241.98096069566793,105.1473261131167,26.696224556148234,2019
+2004,61,"(60,65]",College,25446.793536804307,241.98096069566793,105.16031287605293,24.422401064502107,2019
+2004,61,"(60,65]",College,25443.493859964095,241.98096069566793,105.14667677496992,26.11546765252076,2019
+2004,50,"(45,50]",College,1577.5597845601437,354.90540902031296,4.445014768624877,2188.674392612379,2019
+2004,50,"(45,50]",College,1577.5597845601437,353.2922026156752,4.465311639714488,2137.739851169534,2019
+2004,50,"(45,50]",College,1577.5597845601437,354.90540902031296,4.445014768624877,2237.8382157387887,2019
+2004,50,"(45,50]",College,1577.5597845601437,353.2922026156752,4.465311639714488,2158.4763609759525,2019
+2004,50,"(45,50]",College,1577.5597845601437,354.90540902031296,4.445014768624877,2245.216319966507,2019
+2004,20,"(15,20]",HS,19.012423698384204,48.39619213913358,0.39284957882069804,7686.6317413182915,2019
+2004,20,"(15,20]",HS,19.090987432675043,48.39619213913358,0.3944729241877256,7778.538253049608,2019
+2004,20,"(15,20]",HS,22.154973070017952,48.39619213913358,0.457783393501805,7698.290518148463,2019
+2004,20,"(15,20]",HS,21.605026929982046,48.39619213913358,0.4464199759326113,7609.835538264127,2019
+2004,20,"(15,20]",HS,20.42657091561939,48.39619213913358,0.42206979542719614,7732.921067268032,2019
+2004,64,"(60,65]",College,78422.79095152603,2694.0546957451024,29.109576385135867,36.667060922925245,2019
+2004,64,"(60,65]",College,72991.52287253142,2677.9226316987247,27.256770605889265,38.580530147690645,2019
+2004,64,"(60,65]",College,76493.10850987434,2677.9226316987247,28.564345961463186,37.588513757352615,2019
+2004,64,"(60,65]",College,71125.63418312387,2677.9226316987247,26.5600033926319,37.042094674016006,2019
+2004,64,"(60,65]",College,72657.62700179534,2677.9226316987247,27.13208594667479,37.68044373810408,2019
+2004,89,"(85,90]",HS,2340.2565170556554,125.83009956174732,18.598542997315562,4277.449140977658,2019
+2004,89,"(85,90]",HS,2340.885026929982,69.36787539942482,33.7459524809,4476.998671474411,2019
+2004,89,"(85,90]",HS,2340.885026929982,24.19809606956679,96.73839711191336,4246.4359738194125,2019
+2004,89,"(85,90]",HS,2340.885026929982,45.16977932985802,51.824141309953575,4556.752267075977,2019
+2004,89,"(85,90]",HS,2341.513536804309,70.9810818040626,32.98785362651788,4346.712239523415,2019
+2004,34,"(30,35]",HS,0,22.58488966492901,0,5050.012802719876,2019
+2004,34,"(30,35]",HS,0,22.58488966492901,0,4972.840788367573,2019
+2004,34,"(30,35]",HS,0,22.58488966492901,0,5038.868384619274,2019
+2004,34,"(30,35]",HS,0,22.58488966492901,0,5107.467408888651,2019
+2004,34,"(30,35]",HS,0,22.58488966492901,0,5030.565945362367,2019
+2004,54,"(50,55]",College,87879.35052064632,10082.540028986165,8.715993218772562,27.768818387630876,2019
+2004,54,"(50,55]",College,90643.2226929982,10518.105758238366,8.61782765608735,28.446810801806002,2019
+2004,54,"(50,55]",College,87381.41357271095,10469.709566099233,8.346116291100442,28.169819163329105,2019
+2004,54,"(50,55]",College,79463.60330341113,9759.898748058606,8.141847098487334,27.36970347254667,2019
+2004,54,"(50,55]",College,83547.3462118492,10534.237822284744,7.931029052249822,27.53974791481673,2019
+2004,31,"(30,35]",College,80.1365802513465,161.3206404637786,0.4967534223826715,5485.421082238014,2019
+2004,31,"(30,35]",College,80.1365802513465,161.3206404637786,0.4967534223826715,5515.527434223179,2019
+2004,31,"(30,35]",College,80.1365802513465,161.3206404637786,0.4967534223826715,5422.468305307883,2019
+2004,31,"(30,35]",College,80.1365802513465,161.3206404637786,0.4967534223826715,5430.51839413118,2019
+2004,31,"(30,35]",College,80.1365802513465,161.3206404637786,0.4967534223826715,5408.811189102446,2019
+2004,24,"(20,25]",HS,0,53.23581135304694,0,8157.907362226933,2019
+2004,24,"(20,25]",HS,0,51.62260494840914,0,8020.727649714984,2019
+2004,24,"(20,25]",HS,0,51.62260494840914,0,8226.931024793917,2019
+2004,24,"(20,25]",HS,0,51.62260494840914,0,8090.721915554056,2019
+2004,24,"(20,25]",HS,0,51.62260494840914,0,8170.732718798119,2019
+2004,52,"(50,55]",HS,100.78312962298025,54.84901775768473,1.8374646209386283,3525.6942709868126,2019
+2004,52,"(50,55]",HS,101.38021400359067,54.84901775768473,1.8483505839881078,3475.1279017200277,2019
+2004,52,"(50,55]",HS,100.9088315978456,53.23581135304694,1.8955065966524451,3556.860441936557,2019
+2004,52,"(50,55]",HS,100.61028940754039,53.23581135304694,1.889898676293622,3562.4225883970125,2019
+2004,52,"(50,55]",HS,100.13890700179533,53.23581135304694,1.8810440652007439,3524.101690054683,2019
+2004,61,"(60,65]",College,44070.169622980255,967.9238427826717,45.530616847172084,286.3874390981662,2019
+2004,61,"(60,65]",College,45199.31903770197,967.9238427826717,46.6971852948255,278.4357808814075,2019
+2004,61,"(60,65]",College,44068.07982764812,967.9238427826717,45.52845779783394,295.230733347006,2019
+2004,61,"(60,65]",College,45203.24722441652,967.9238427826717,46.70124365824308,278.96804002249337,2019
+2004,61,"(60,65]",College,44067.089924596046,967.9238427826717,45.5274350902527,290.4419445755936,2019
+2004,44,"(40,45]",College,22.31210053859964,56.46222416232251,0.3951686436307375,6234.735469527988,2019
+2004,44,"(40,45]",College,22.31210053859964,56.46222416232251,0.3951686436307375,5985.002865280935,2019
+2004,44,"(40,45]",College,22.31210053859964,56.46222416232251,0.3951686436307375,6229.097966930907,2019
+2004,44,"(40,45]",College,20.740825852782763,56.46222416232251,0.367339865910263,6205.874386736886,2019
+2004,44,"(40,45]",College,22.31210053859964,56.46222416232251,0.3951686436307375,6143.0508755040055,2019
+2004,69,"(65,70]",College,3748.5900179533214,250.04699271885684,14.99154209852102,1295.7639665505344,2019
+2004,69,"(65,70]",College,3748.5900179533214,251.66019912349464,14.895442469684347,1272.4221503814817,2019
+2004,69,"(65,70]",College,3748.43289048474,251.66019912349464,14.894818106081644,1334.1264967032444,2019
+2004,69,"(65,70]",College,3748.43289048474,250.04699271885684,14.990913706766042,1255.62044644617,2019
+2004,69,"(65,70]",College,3748.43289048474,251.66019912349464,14.894818106081644,1279.6484515790853,2019
+2004,47,"(45,50]",College,69.90601077199283,51.62260494840914,1.3541744133574012,7045.429537960826,2019
+2004,47,"(45,50]",College,66.292078994614,51.62260494840914,1.2841676444043324,6467.539128610182,2019
+2004,47,"(45,50]",College,66.292078994614,50.00939854377137,1.3255924071270524,7105.577677037259,2019
+2004,47,"(45,50]",College,66.4492064631957,50.00939854377137,1.3287343659019448,7094.9249857134655,2019
+2004,47,"(45,50]",College,66.4492064631957,50.00939854377137,1.3287343659019448,6843.538623256175,2019
+2004,66,"(65,70]",HS,82.17766606822262,35.4905409020313,2.3154808007876597,6684.382200287495,2019
+2004,66,"(65,70]",HS,83.59181328545782,35.4905409020313,2.355326550705612,6287.282278145941,2019
+2004,66,"(65,70]",HS,80.60639138240575,35.4905409020313,2.2712077453232684,6767.075293506156,2019
+2004,66,"(65,70]",HS,81.54915619389588,35.4905409020313,2.2977715786019037,6729.999094266071,2019
+2004,66,"(65,70]",HS,80.29213644524238,35.4905409020313,2.2623531342303904,6650.700036797961,2019
+2004,49,"(45,50]",HS,34.89801077199282,96.79238427826716,0.3605450060168472,5064.812210274578,2019
+2004,49,"(45,50]",HS,38.92047396768402,96.79238427826716,0.4021026474127557,4966.8285033231205,2019
+2004,49,"(45,50]",HS,35.675791741472175,96.79238427826716,0.3685805655836342,5072.855190802993,2019
+2004,49,"(45,50]",HS,33.38958707360862,96.79238427826716,0.34496089049338147,5082.607446009567,2019
+2004,49,"(45,50]",HS,32.085429084380614,96.79238427826716,0.33148712394705176,4990.945072712462,2019
+2004,25,"(20,25]",HS,25.926032315978457,70.9810818040626,0.3652527075812274,7281.8944175473825,2019
+2004,25,"(20,25]",HS,27.49730700179533,70.9810818040626,0.38738923531342295,7231.708043355762,2019
+2004,25,"(20,25]",HS,27.49730700179533,70.9810818040626,0.38738923531342295,7283.832909798449,2019
+2004,25,"(20,25]",HS,25.926032315978457,69.36787539942482,0.3737469565947443,7275.000730459593,2019
+2004,25,"(20,25]",HS,29.06858168761221,69.36787539942482,0.4190496180001678,7271.269498270417,2019
+2004,78,"(75,80]",College,1469.9274685816877,153.2546084405897,9.591407942238266,8906.454028811004,2019
+2004,78,"(75,80]",College,1469.4560861759426,154.86781484522746,9.488453670276776,9902.300379213446,2019
+2004,78,"(75,80]",College,1466.3921005385996,154.86781484522746,9.468669148616126,8811.550367686597,2019
+2004,78,"(75,80]",College,1473.0700179533214,154.86781484522746,9.511789259927799,8784.187375514979,2019
+2004,78,"(75,80]",College,1464.8208258527827,154.86781484522746,9.458523240072202,9212.040178266974,2019
+2004,51,"(50,55]",College,3370.384201077199,685.6127219710592,4.915871734975578,233.79190795931646,2019
+2004,51,"(50,55]",College,3368.8129263913825,685.6127219710592,4.9135799532809505,230.910893263624,2019
+2004,51,"(50,55]",College,3367.2416517055653,685.6127219710592,4.911288171586324,241.30505778168708,2019
+2004,51,"(50,55]",College,3367.2416517055653,685.6127219710592,4.911288171586324,230.5703971759248,2019
+2004,51,"(50,55]",College,3368.8129263913825,685.6127219710592,4.9135799532809505,236.89281427882014,2019
+2004,47,"(45,50]",HS,34.42662836624776,33.87733449739351,1.0162141997593261,4011.6525100956305,2019
+2004,47,"(45,50]",HS,33.64099102333932,33.87733449739351,0.9930235516589306,3934.0431994991027,2019
+2004,47,"(45,50]",HS,32.06971633752244,33.87733449739351,0.9466422554581398,4018.023060806282,2019
+2004,47,"(45,50]",HS,32.541098743267504,33.87733449739351,0.9605566443183771,4025.747465474074,2019
+2004,47,"(45,50]",HS,34.42662836624776,33.87733449739351,1.0162141997593261,3953.1450520671788,2019
+2004,67,"(65,70]",College,38383.474188294436,2037.479689057524,18.838702733792385,214.2532992176848,2019
+2004,67,"(65,70]",College,31554.14968761221,1772.913838696927,17.797903653797512,210.94789124358445,2019
+2004,67,"(65,70]",College,28419.58239138241,2014.8947993925947,14.104747503417899,213.55525469345554,2019
+2004,67,"(65,70]",College,29639.818599640934,2037.479689057524,14.547295248548666,209.05990427404822,2019
+2004,67,"(65,70]",College,42892.907777378816,1880.9986678076584,22.803263240675953,212.94004225500498,2019
+2004,42,"(40,45]",College,-9.427648114901256,96.79238427826716,-0.09740072202166064,4814.4335477512295,2019
+2004,42,"(40,45]",College,-9.427648114901256,96.79238427826716,-0.09740072202166064,4738.771189331958,2019
+2004,42,"(40,45]",College,-7.856373429084381,96.79238427826716,-0.08116726835138388,4827.4508673656455,2019
+2004,42,"(40,45]",College,-9.427648114901256,96.79238427826716,-0.09740072202166064,4820.787781060025,2019
+2004,42,"(40,45]",College,-7.856373429084381,96.79238427826716,-0.08116726835138388,4804.821514911482,2019
+2004,39,"(35,40]",College,1158.7679425493716,109.69803551536945,10.56325153960501,6973.832796094782,2019
+2004,39,"(35,40]",College,1158.7679425493716,129.0565123710229,8.978763808664258,7180.031768915478,2019
+2004,39,"(35,40]",College,1158.7679425493716,83.88673304116487,13.8134827825604,6816.439475842737,2019
+2004,39,"(35,40]",College,1158.7836552962299,82.2735266365271,14.084526367947902,6716.579422355692,2019
+2004,39,"(35,40]",College,1158.4536876122083,120.99048034783397,9.574750709987967,6992.568684170657,2019
+2004,89,"(85,90]",HS,-2.906858168761221,24.19809606956679,-0.12012755716004815,9619.539368063688,2019
+2004,89,"(85,90]",HS,-2.906858168761221,24.19809606956679,-0.12012755716004815,9684.201162562935,2019
+2004,89,"(85,90]",HS,-2.906858168761221,24.19809606956679,-0.12012755716004815,9473.035560138553,2019
+2004,89,"(85,90]",HS,-3.0639856373429084,24.19809606956679,-0.12662093862815885,9546.375011107275,2019
+2004,89,"(85,90]",HS,-2.906858168761221,24.19809606956679,-0.12012755716004815,9514.827494454057,2019
+2004,40,"(35,40]",College,6317.2313105924595,298.4431848579905,21.16728285686408,1462.0826219806745,2019
+2004,40,"(35,40]",College,6348.499676840215,298.4431848579905,21.272054444336028,1456.0446729308553,2019
+2004,40,"(35,40]",College,6377.254003590664,298.4431848579905,21.368402185579075,1656.9418642145356,2019
+2004,40,"(35,40]",College,7127.380538599641,298.4431848579905,23.881867304127226,1389.3873866098706,2019
+2004,40,"(35,40]",College,7134.7655296229805,298.4431848579905,23.90661235242462,1471.7058430816617,2019
+2004,46,"(45,50]",College,4071.3298384201075,535.584526339745,7.601656952720629,2297.053904389363,2019
+2004,46,"(45,50]",College,6329.251561938959,546.8769711722094,11.573446854733076,2256.2888535992306,2019
+2004,46,"(45,50]",College,4385.930456014363,521.065668698005,8.417231684009343,2354.444881592243,2019
+2004,46,"(45,50]",College,4712.252782764811,554.9430031953985,8.491417597179074,2233.1573050868365,2019
+2004,46,"(45,50]",College,7080.163734290844,524.2920815072805,13.504235490141628,2263.443088105437,2019
+2004,59,"(55,60]",College,91412.04739676841,9695.370491873095,9.428422304582616,224.5756583048576,2019
+2004,59,"(55,60]",College,85895.30197486535,10050.275900893406,8.54656158914302,225.22005859747796,2019
+2004,59,"(55,60]",College,99210.28366247755,11840.93501004135,8.378585270364649,228.18458897274687,2019
+2004,59,"(55,60]",College,92702.06391382405,10130.936221125296,9.150394582538114,223.03356697833487,2019
+2004,59,"(55,60]",College,101003.10807899461,11227.916576278993,8.995712373957424,222.32970521398997,2019
+2004,57,"(55,60]",HS,581.3716337522442,217.78286462610117,2.669501270223291,5892.056858944326,2019
+2004,57,"(55,60]",HS,587.8138599640934,217.78286462610117,2.6990822302446844,6516.460248753045,2019
+2004,57,"(55,60]",HS,689.9467145421903,217.78286462610117,3.1680486696082357,5815.293871288477,2019
+2004,57,"(55,60]",HS,403.58190305206466,217.78286462610117,1.8531389223158172,5796.706471658132,2019
+2004,57,"(55,60]",HS,918.7243087971275,217.78286462610117,4.218533493782591,6092.429026622366,2019
+2004,43,"(40,45]",HS,0.07856373429084382,14.518857641740075,0.005411151223425593,4509.195153062303,2019
+2004,43,"(40,45]",HS,0.07856373429084382,14.518857641740075,0.005411151223425593,4502.713772198059,2019
+2004,43,"(40,45]",HS,0.07856373429084382,14.518857641740075,0.005411151223425593,4513.89742851776,2019
+2004,43,"(40,45]",HS,0.07856373429084382,14.518857641740075,0.005411151223425593,4508.445175222607,2019
+2004,43,"(40,45]",HS,0.07856373429084382,14.518857641740075,0.005411151223425593,4489.390294394998,2019
+2004,34,"(30,35]",NoHS,4.558267863554757,50.00939854377137,0.09114822405962501,6058.471179428599,2019
+2004,34,"(30,35]",NoHS,4.558267863554757,50.00939854377137,0.09114822405962501,6144.258611585855,2019
+2004,34,"(30,35]",NoHS,4.558267863554757,50.00939854377137,0.09114822405962501,6043.3186357652485,2019
+2004,34,"(30,35]",NoHS,4.40114039497307,50.00939854377137,0.08800626528473274,6103.966748224337,2019
+2004,34,"(30,35]",NoHS,4.558267863554757,50.00939854377137,0.09114822405962501,6091.369828480787,2019
+2004,78,"(75,80]",College,68407.07757271094,23762.53034031459,2.8787791785226733,19.85074517363883,2019
+2004,78,"(75,80]",College,74052.33126606823,17051.5916970214,4.342839811195093,20.80433162821725,2019
+2004,78,"(75,80]",College,44376.26964452424,12808.858852824022,3.464498294064691,19.310723412189553,2019
+2004,78,"(75,80]",College,74081.1704416517,11292.444832464504,6.560241961835997,19.550079502266545,2019
+2004,78,"(75,80]",College,55290.55259174147,10856.879103212299,5.092674613589671,19.146782650704957,2019
+2004,49,"(45,50]",HS,-8.422032315978457,74.20749461333816,-0.11349301522523939,3392.2945428249186,2019
+2004,49,"(45,50]",HS,-14.220035906642728,80.6603202318893,-0.17629530685920577,3320.641563479109,2019
+2004,49,"(45,50]",HS,-12.177378815080791,48.39619213913358,-0.25161853188929006,3421.4988020170626,2019
+2004,49,"(45,50]",HS,-11.721709156193896,58.0754305669603,-0.20183594063377455,3419.047613823779,2019
+2004,49,"(45,50]",HS,-15.791310592459606,79.04711382725151,-0.1997708686362632,3377.5555907772095,2019
+2004,64,"(60,65]",HS,8291.962197486535,716.2636436591771,11.576690051061892,294.0782415789,2019
+2004,64,"(60,65]",HS,7874.270247755835,613.0184337623588,12.845079061371841,293.0190960111748,2019
+2004,64,"(60,65]",HS,7796.036481149013,688.8391347803347,11.317644552287389,304.0768756051631,2019
+2004,64,"(60,65]",HS,7827.6191023339325,485.57512779597363,16.120304880242752,290.0616229138954,2019
+2004,64,"(60,65]",HS,13177.04105421903,424.27328441973776,31.05790898958147,296.3295687508992,2019
+2004,44,"(40,45]",College,13265.486535008977,1887.4514934262095,7.02825295442624,1240.1946621704903,2019
+2004,44,"(40,45]",College,13270.200359066426,1871.3194293798317,7.0913603261546125,1239.6978031315468,2019
+2004,44,"(40,45]",College,13267.057809694794,1887.4514934262095,7.029085439229845,1272.473272739166,2019
+2004,44,"(40,45]",College,13261.872603231597,1887.4514934262095,7.026338239377951,1198.2982046391487,2019
+2004,44,"(40,45]",College,13264.700897666069,1887.4514934262095,7.027836712024439,1220.9668332492822,2019
+2004,65,"(60,65]",HS,117.21709156193896,50.00939854377137,2.34390124606964,10354.847095328896,2019
+2004,65,"(60,65]",HS,117.21709156193896,50.00939854377137,2.34390124606964,9570.212432087787,2019
+2004,65,"(60,65]",HS,117.05996409335727,50.00939854377137,2.340759287294748,10442.784698244086,2019
+2004,65,"(60,65]",HS,117.21709156193896,50.00939854377137,2.34390124606964,10373.772019485343,2019
+2004,65,"(60,65]",HS,117.05996409335727,50.00939854377137,2.340759287294748,10175.623651326165,2019
+2004,34,"(30,35]",HS,173.31159784560145,67.75466899478702,2.557928485473612,8251.600876026709,2019
+2004,34,"(30,35]",HS,173.31159784560145,67.75466899478702,2.557928485473612,8194.73134380083,2019
+2004,34,"(30,35]",HS,173.31159784560145,67.75466899478702,2.557928485473612,8253.797511055982,2019
+2004,34,"(30,35]",HS,173.31159784560145,66.14146259014923,2.62031698511931,8243.789178801931,2019
+2004,34,"(30,35]",HS,173.31159784560145,67.75466899478702,2.557928485473612,8239.561070423068,2019
+2004,52,"(50,55]",NoHS,406.9601436265709,62.91504978087366,6.468406924002592,6365.868916442498,2019
+2004,52,"(50,55]",NoHS,406.9601436265709,61.30184337623587,6.6386281588447655,7087.587490055288,2019
+2004,52,"(50,55]",NoHS,389.6761220825853,62.91504978087366,6.193686938813293,6284.614459668728,2019
+2004,52,"(50,55]",NoHS,405.38886894075404,62.91504978087366,6.443432379894474,6304.147023004881,2019
+2004,52,"(50,55]",NoHS,394.5470736086176,62.91504978087366,6.271108025548459,6585.696665428075,2019
+2004,62,"(60,65]",HS,34.175224416517054,10.48584163014561,3.2591780061094138,7935.416777729983,2019
+2004,62,"(60,65]",HS,34.01809694793537,10.48584163014561,3.244193279644543,7902.66901705113,2019
+2004,62,"(60,65]",HS,34.01809694793537,10.48584163014561,3.244193279644543,7926.937087986708,2019
+2004,62,"(60,65]",HS,33.860969479353685,10.48584163014561,3.229208553179673,7907.581911360217,2019
+2004,62,"(60,65]",HS,34.01809694793537,10.324520989681831,3.2948837996389893,7939.965018104277,2019
+2004,41,"(40,45]",College,445.4877989228007,129.0565123710229,3.451881588447653,8023.670376494412,2019
+2004,41,"(40,45]",College,445.33067145421904,129.0565123710229,3.450664079422382,8905.212334534765,2019
+2004,41,"(40,45]",College,445.33067145421904,129.0565123710229,3.450664079422382,7918.687982819048,2019
+2004,41,"(40,45]",College,445.4877989228007,129.0565123710229,3.451881588447653,7906.047913471511,2019
+2004,41,"(40,45]",College,445.33067145421904,129.0565123710229,3.450664079422382,8260.696632063282,2019
+2004,82,"(80,85]",HS,188779.22585278275,7481.244701507734,25.23366543734856,20.74019594646676,2019
+2004,82,"(80,85]",HS,94621.53307001795,6884.358331791751,13.744423010792259,21.35350431432254,2019
+2004,82,"(80,85]",HS,150467.93508078996,7997.470750991824,18.814440185621102,20.995578422063275,2019
+2004,82,"(80,85]",HS,76117.88811490126,9352.564130887564,8.13871864973543,20.4852844289174,2019
+2004,82,"(80,85]",HS,131200.80775583483,9046.054914006385,14.503649270655115,20.567919624948274,2019
+2004,49,"(45,50]",College,30911.686894075407,2339.1492867247903,13.21492692642848,335.59775648954763,2019
+2004,49,"(45,50]",College,30911.686894075407,2339.1492867247903,13.21492692642848,330.94122779386026,2019
+2004,49,"(45,50]",College,30913.258168761222,2339.1492867247903,13.215598655545872,339.8749107159677,2019
+2004,49,"(45,50]",College,30914.82944344704,2355.281350771168,13.12574798476831,336.03331411666016,2019
+2004,49,"(45,50]",College,30911.686894075407,2339.1492867247903,13.21492692642848,346.6478307522565,2019
+2004,69,"(65,70]",HS,766.1535368043088,120.99048034783397,6.332345607701564,6807.521955944855,2019
+2004,69,"(65,70]",HS,767.7248114901257,120.99048034783397,6.345332370637785,7629.432159549091,2019
+2004,69,"(65,70]",HS,766.3106642728906,120.99048034783397,6.333644283995187,6793.254739150955,2019
+2004,69,"(65,70]",HS,766.3106642728906,120.99048034783397,6.333644283995187,6775.38897421959,2019
+2004,69,"(65,70]",HS,767.7248114901257,120.99048034783397,6.345332370637785,7097.722811255112,2019
+2004,40,"(35,40]",NoHS,0,14.357537001276295,0,5662.505846897309,2019
+2004,40,"(35,40]",NoHS,0,14.357537001276295,0,5653.541756802433,2019
+2004,40,"(35,40]",NoHS,0,14.357537001276295,0,5670.553011811428,2019
+2004,40,"(35,40]",NoHS,0,14.357537001276295,0,5649.965740761011,2019
+2004,40,"(35,40]",NoHS,0,14.357537001276295,0,5637.415116350304,2019
+2004,63,"(60,65]",College,128413.99497307002,7356.221205148305,17.456516245487364,28.051123467131287,2019
+2004,63,"(60,65]",College,127862.4775583483,6839.995155664214,18.693357911586403,29.24567987686131,2019
+2004,63,"(60,65]",College,126454.61543985638,6420.561490458389,19.695258059249316,29.209571447481505,2019
+2004,63,"(60,65]",College,128172.01867145422,7469.14565347295,17.160198049138017,27.62633965252826,2019
+2004,63,"(60,65]",College,127274.34944344703,6404.429426412011,19.87286313415599,28.30095239983563,2019
+2004,53,"(50,55]",College,473.55233608617596,104.8584163014561,4.516111846709247,4316.315997027913,2019
+2004,53,"(50,55]",College,475.12361077199284,104.8584163014561,4.531096573174119,4291.620165120268,2019
+2004,53,"(50,55]",College,473.55233608617596,104.8584163014561,4.516111846709247,4329.616115864153,2019
+2004,53,"(50,55]",College,464.1246879712747,104.8584163014561,4.426203487920022,4301.974986045354,2019
+2004,53,"(50,55]",College,462.55341328545785,104.8584163014561,4.411218761455151,4282.81732030075,2019
+2004,74,"(70,75]",College,53701.140682226214,1887.4514934262095,28.451666635811044,299.71474133008655,2019
+2004,74,"(70,75]",College,56655.4513464991,1871.3194293798317,30.275670982198434,288.4396797014724,2019
+2004,74,"(70,75]",College,56669.59281867146,1887.4514934262095,30.024396926779605,300.4102991736644,2019
+2004,74,"(70,75]",College,56341.479238779175,1871.3194293798317,30.107889841902157,292.67950482330895,2019
+2004,74,"(70,75]",College,56655.92272890485,1871.3194293798317,30.275922880617458,298.82280545365245,2019
+2004,71,"(70,75]",College,681.9332136445242,72.59428820870036,9.393758523866829,6727.770728109281,2019
+2004,71,"(70,75]",College,694.5034111310594,72.59428820870036,9.566915363016449,7479.182598376714,2019
+2004,71,"(70,75]",College,686.6470377019749,72.59428820870036,9.458692338547936,6658.827568580933,2019
+2004,71,"(70,75]",College,708.6448833034112,70.9810818040626,9.983574007220216,6639.001401246956,2019
+2004,71,"(70,75]",College,658.364093357271,72.59428820870036,9.069089450461291,6958.5603906333945,2019
+2004,26,"(25,30]",NoHS,0.10998922800718133,25.81130247420457,0.004261281588447655,4106.375812996105,2019
+2004,26,"(25,30]",NoHS,0.09427648114901258,25.81130247420457,0.0036525270758122758,4167.087138282792,2019
+2004,26,"(25,30]",NoHS,0.7070736086175943,25.81130247420457,0.027393953068592065,4123.290341582862,2019
+2004,26,"(25,30]",NoHS,0.09427648114901258,25.81130247420457,0.0036525270758122758,4128.697867746729,2019
+2004,26,"(25,30]",NoHS,0.6599353680430879,25.81130247420457,0.025567689530685927,4148.708312508405,2019
+2004,29,"(25,30]",HS,37.91485816876123,43.55657292522023,0.8704738601417302,8899.296461777805,2019
+2004,29,"(25,30]",HS,34.772308797127465,41.94336652058244,0.8290299916689808,8774.59685383625,2019
+2004,29,"(25,30]",HS,34.772308797127465,43.55657292522023,0.7983251771627221,8836.691490846359,2019
+2004,29,"(25,30]",HS,37.91485816876123,41.94336652058244,0.9039536239933353,8877.01851765889,2019
+2004,29,"(25,30]",HS,36.34358348294434,43.55657292522023,0.834399518652226,8802.786974700499,2019
+2004,46,"(45,50]",NoHS,0.04713824057450629,61.30184337623587,7.689530685920578e-4,8857.548885761384,2019
+2004,46,"(45,50]",NoHS,0.04713824057450629,61.30184337623587,7.689530685920578e-4,8791.712515061354,2019
+2004,46,"(45,50]",NoHS,0.03142549371633752,61.30184337623587,5.126353790613718e-4,8860.623225367231,2019
+2004,46,"(45,50]",NoHS,0.04713824057450629,61.30184337623587,7.689530685920578e-4,8858.78028090727,2019
+2004,46,"(45,50]",NoHS,0.03142549371633752,61.30184337623587,5.126353790613718e-4,8736.452839486663,2019
+2004,46,"(45,50]",College,373048.9562082585,1284.1122980916778,290.51116227346114,16.42827629525571,2019
+2004,46,"(45,50]",College,370093.70277917414,1284.1122980916778,288.20976430890914,16.392917991781363,2019
+2004,46,"(45,50]",College,365904.84159425495,1284.1122980916778,284.9476966601963,16.72735588945185,2019
+2004,46,"(45,50]",College,365651.8663698384,1438.9801129369055,254.10487822764722,16.281075713172804,2019
+2004,46,"(45,50]",College,365432.0450412927,1359.9329991096538,268.713271374796,16.26491725344543,2019
+2004,51,"(50,55]",College,2116.8212567324954,451.69779329858005,4.686366168127901,634.4076775748521,2019
+2004,51,"(50,55]",College,2116.742692998205,451.69779329858005,4.686192238267149,654.7663185408455,2019
+2004,51,"(50,55]",College,2115.1242800718132,451.69779329858005,4.682609283135637,633.689146341873,2019
+2004,51,"(50,55]",College,2114.5429084380607,451.69779329858005,4.681322202166065,644.407595241403,2019
+2004,51,"(50,55]",College,2117.056947935368,451.69779329858005,4.6868879577101605,655.8402717884301,2019
+2004,27,"(25,30]",HS,-31.111238779174148,37.10374730666908,-0.83849317218647,4242.202943684112,2019
+2004,27,"(25,30]",HS,-31.111238779174148,38.716953711306864,-0.8035559566787004,4302.272173437044,2019
+2004,27,"(25,30]",HS,-31.111238779174148,32.264128092755726,-0.9642671480144404,4231.592978986874,2019
+2004,27,"(25,30]",HS,-31.111238779174148,37.10374730666908,-0.83849317218647,4274.059402211999,2019
+2004,27,"(25,30]",HS,-31.268366247755836,38.716953711306864,-0.8076143200962697,4265.238911293618,2019
+2004,52,"(50,55]",College,2946.2971633752245,669.4806579246812,4.400869731634118,3514.708408520118,2019
+2004,52,"(50,55]",College,3075.141687612208,669.4806579246812,4.593324170327519,1452.1005741197982,2019
+2004,52,"(50,55]",College,2946.2971633752245,669.4806579246812,4.400869731634118,3477.7345515485176,2019
+2004,52,"(50,55]",College,2946.2971633752245,669.4806579246812,4.400869731634118,3753.3385878415875,2019
+2004,52,"(50,55]",College,2994.849551166966,669.4806579246812,4.473392196946632,1470.1992071756645,2019
+2004,73,"(70,75]",HS,1.8855296229802514,11.615086113392062,0.16233453670276773,5487.111965555753,2019
+2004,73,"(70,75]",HS,1.8855296229802514,11.615086113392062,0.16233453670276773,5469.458526805304,2019
+2004,73,"(70,75]",HS,1.8855296229802514,11.615086113392062,0.16233453670276773,5452.517415971164,2019
+2004,73,"(70,75]",HS,1.8855296229802514,11.615086113392062,0.16233453670276773,5497.714817523001,2019
+2004,73,"(70,75]",HS,1.8855296229802514,11.615086113392062,0.16233453670276773,5478.637601988177,2019
+2004,33,"(30,35]",HS,-13.670089766606823,72.59428820870036,-0.18830806257521063,5837.371061965945,2019
+2004,33,"(30,35]",HS,-13.670089766606823,72.59428820870036,-0.18830806257521063,5920.027735427641,2019
+2004,33,"(30,35]",HS,-13.670089766606823,72.59428820870036,-0.18830806257521063,5822.771500909031,2019
+2004,33,"(30,35]",HS,-13.670089766606823,72.59428820870036,-0.18830806257521063,5881.206298425876,2019
+2004,33,"(30,35]",HS,-12.098815080789945,72.59428820870036,-0.16666345768150825,5869.069095391787,2019
+2004,55,"(50,55]",HS,227.03347935368043,74.20749461333816,3.05944137498038,214.5147574728895,2019
+2004,55,"(50,55]",HS,228.74616876122082,72.59428820870036,3.151021580425191,178.06065721448118,2019
+2004,55,"(50,55]",HS,228.68331777378816,45.16977932985802,5.062750386797318,215.64629331364898,2019
+2004,55,"(50,55]",HS,228.49476481149014,80.6603202318893,2.832802599277979,191.62420194485696,2019
+2004,55,"(50,55]",HS,227.12775583482946,70.9810818040626,3.1998350836888743,194.0120564174106,2019
+2004,55,"(50,55]",College,37281.63447037702,2578.871758453965,14.456567818140513,18.066308243526656,2019
+2004,55,"(50,55]",College,37283.205745062834,2561.1264880029494,14.557346511274652,18.63705803531676,2019
+2004,55,"(50,55]",College,37281.63447037702,2562.739694407587,14.547569755809784,18.977774896945714,2019
+2004,55,"(50,55]",College,37281.63447037702,2578.871758453965,14.456567818140513,17.44483212710631,2019
+2004,55,"(50,55]",College,37281.63447037702,2578.871758453965,14.456567818140513,18.60978708433786,2019
+2004,56,"(55,60]",College,323.8397127468582,48.39619213913358,6.691429602888087,7276.996370386975,2019
+2004,56,"(55,60]",College,253.808,61.30184337623587,4.14029963898917,6298.30484217607,2019
+2004,56,"(55,60]",College,231.60588868940755,137.12254439421181,1.689043108940327,7245.211574405318,2019
+2004,56,"(55,60]",College,281.5724236983842,54.84901775768473,5.133590995965173,7198.854219268202,2019
+2004,56,"(55,60]",College,186.03892280071815,124.21689315710954,1.4976942191382625,6912.007027218786,2019
+2004,30,"(25,30]",NoHS,73.5356552962298,51.62260494840914,1.4244855595667874,5688.010925800705,2019
+2004,30,"(25,30]",NoHS,72.12150807899461,51.62260494840914,1.3970916064981953,5543.331172927053,2019
+2004,30,"(25,30]",NoHS,73.6927827648115,51.62260494840914,1.4275293321299645,5713.445382659326,2019
+2004,30,"(25,30]",NoHS,73.6927827648115,51.62260494840914,1.4275293321299645,5691.868605340007,2019
+2004,30,"(25,30]",NoHS,73.5356552962298,51.62260494840914,1.4244855595667874,5670.995712686048,2019
+2004,67,"(65,70]",College,43497.12574506284,1430.9140809137164,30.398139430766914,204.72617866235854,2019
+2004,67,"(65,70]",College,39860.09622980251,1484.1498922667631,26.85719039397269,203.6316254562594,2019
+2004,67,"(65,70]",College,41686.860179533214,1264.7538212360241,32.9604540263759,209.87321215910782,2019
+2004,67,"(65,70]",College,38329.046175942545,1393.8103336070474,27.49947051744885,199.26585490784475,2019
+2004,67,"(65,70]",College,37848.70750448833,1432.5272873183542,26.420933017855397,206.9678713331844,2019
+2004,48,"(45,50]",College,112608.07152603232,5081.600174609026,22.159962936221422,18.968049583545866,2019
+2004,48,"(45,50]",College,80692.34010771992,5129.99636674816,15.72951213586722,20.08277893185048,2019
+2004,48,"(45,50]",College,113726.50484739676,5162.260494840915,22.030369246389892,19.680052415018398,2019
+2004,48,"(45,50]",College,109655.96064631957,5081.600174609026,21.57902174087445,18.634196351820794,2019
+2004,48,"(45,50]",College,96629.46499102333,5000.939854377138,19.322260975893787,19.074323977144275,2019
+2004,69,"(65,70]",College,89015.85350089766,9679.238427826718,9.196576173285196,19.81794948471067,2019
+2004,69,"(65,70]",College,83202.13716337523,9679.238427826718,8.595938387484956,20.612904765621785,2019
+2004,69,"(65,70]",College,87287.4513464991,9679.238427826718,9.018008182912153,20.633580245552746,2019
+2004,69,"(65,70]",College,85716.17666068223,9679.238427826718,8.855673646209386,19.525588748991442,2019
+2004,69,"(65,70]",College,85716.17666068223,9679.238427826718,8.855673646209386,19.991066487296695,2019
+2004,39,"(35,40]",HS,222.46107001795332,80.6603202318893,2.757998844765343,2663.4633651626177,2019
+2004,39,"(35,40]",HS,222.63391023339318,80.6603202318893,2.7601416606498197,2530.6327518185467,2019
+2004,39,"(35,40]",HS,221.18833752244163,80.6603202318893,2.7422199277978336,2579.9526650142698,2019
+2004,39,"(35,40]",HS,222.7753249551167,80.6603202318893,2.7618948736462094,2473.7709975719154,2019
+2004,39,"(35,40]",HS,223.30955834829444,80.6603202318893,2.7685181227436826,2439.680417969826,2019
+2004,55,"(50,55]",College,730.1399210053861,290.37715283480145,2.5144537505014046,7162.107100518876,2019
+2004,55,"(50,55]",College,2003.3202298025135,290.37715283480145,6.899028419574811,4086.330911573966,2019
+2004,55,"(50,55]",College,834.7396768402155,290.37715283480145,2.874674087444846,7064.2688854634835,2019
+2004,55,"(50,55]",College,1362.7743913824058,290.37715283480145,4.693118511833134,4164.974353464133,2019
+2004,55,"(50,55]",College,1030.4655080789946,290.37715283480145,3.548714139590855,7404.943657100021,2019
+2004,47,"(45,50]",College,586.6825421903052,372.65067947132854,1.5743498523137514,379.46845776401335,2019
+2004,47,"(45,50]",College,570.3412854578097,298.4431848579905,1.9110548151039122,382.12717785209406,2019
+2004,47,"(45,50]",College,579.2975511669658,298.4431848579905,1.9410647672943695,373.9360020277844,2019
+2004,47,"(45,50]",College,582.6443662477558,372.65067947132854,1.5635134949286573,367.2411364283381,2019
+2004,47,"(45,50]",College,570.3412854578097,356.5186154249507,1.5997517682996554,386.0881985604627,2019
+2004,49,"(45,50]",HS,491.8089766606823,133.89613158493626,3.6730633726240702,5752.41188154398,2019
+2004,49,"(45,50]",HS,1767.6840215439856,133.89613158493626,13.201905093297377,3302.586200657029,2019
+2004,49,"(45,50]",HS,576.8149371633752,133.89613158493626,4.307928319777304,5676.010665324532,2019
+2004,49,"(45,50]",HS,565.6588868940754,133.89613158493626,4.22460962985516,5690.226472500904,2019
+2004,49,"(45,50]",HS,395.96122082585276,133.89613158493626,2.957226740898612,6478.88672877527,2019
+2004,48,"(45,50]",HS,42.42441651705566,177.45270451015648,0.23907449950771253,7285.812666611729,2019
+2004,48,"(45,50]",HS,42.42441651705566,177.45270451015648,0.23907449950771253,6757.7997434393255,2019
+2004,48,"(45,50]",HS,42.26728904847397,177.45270451015648,0.23818903839842467,7372.863068041751,2019
+2004,48,"(45,50]",HS,42.42441651705566,177.45270451015648,0.23907449950771253,7312.58684208809,2019
+2004,48,"(45,50]",HS,42.58154398563734,177.45270451015648,0.23995996061700028,7130.10133828027,2019
+2004,51,"(50,55]",College,2149.8180251346503,371.0374730666908,5.794072516088527,3359.879363364818,2019
+2004,51,"(50,55]",College,2132.8482585278275,369.424266662053,5.773438431100531,3520.879661270941,2019
+2004,51,"(50,55]",College,2111.3217953321364,371.0374730666908,5.6903195730654526,3326.34090441643,2019
+2004,51,"(50,55]",College,2123.2634829443446,369.424266662053,5.747493260605678,3589.543382006594,2019
+2004,51,"(50,55]",College,2134.733788150808,371.0374730666908,5.753418301679486,3414.3034461076822,2019
+2004,50,"(45,50]",College,498.5654578096948,153.2546084405897,3.2531841155234655,7955.596433213391,2019
+2004,50,"(45,50]",College,503.7506642728905,153.2546084405897,3.287018050541516,8855.252579897626,2019
+2004,50,"(45,50]",College,500.6081149012568,153.2546084405897,3.2665126353790614,7849.933407726858,2019
+2004,50,"(45,50]",College,491.9661041292639,153.2546084405897,3.21012274368231,7869.593895744145,2019
+2004,50,"(45,50]",College,488.50929982046677,153.2546084405897,3.1875667870036097,8228.120511622797,2019
+2004,46,"(45,50]",HS,8.202053859964094,72.59428820870036,0.11298483754512638,6742.762595032218,2019
+2004,46,"(45,50]",HS,7.887798922800719,72.59428820870036,0.1086559165663859,6222.356078967513,2019
+2004,46,"(45,50]",HS,8.202053859964094,72.59428820870036,0.11298483754512638,6774.277433653801,2019
+2004,46,"(45,50]",HS,8.044926391382406,72.59428820870036,0.11082037705575613,6721.300926319864,2019
+2004,46,"(45,50]",HS,8.044926391382406,72.59428820870036,0.11082037705575613,6505.358456041393,2019
+2004,35,"(30,35]",HS,169.35198563734292,51.62260494840914,3.280578068592059,6851.114542648441,2019
+2004,35,"(30,35]",HS,169.35198563734292,51.62260494840914,3.280578068592059,6463.9247897570995,2019
+2004,35,"(30,35]",HS,169.5091131059246,51.62260494840914,3.283621841155236,6822.271171847666,2019
+2004,35,"(30,35]",HS,169.5091131059246,51.62260494840914,3.283621841155236,6793.201851985805,2019
+2004,35,"(30,35]",HS,169.35198563734292,51.62260494840914,3.280578068592059,6668.90760556657,2019
+2004,55,"(50,55]",College,7130.287396768403,359.74502823422637,19.82039176960062,257.66427198170487,2019
+2004,55,"(50,55]",College,7130.287396768403,359.74502823422637,19.82039176960062,254.48907844907254,2019
+2004,55,"(50,55]",College,7152.285242369838,359.74502823422637,19.881540204950536,265.9445854286846,2019
+2004,55,"(50,55]",College,7140.9720646319565,359.74502823422637,19.85009243819915,254.1138144918406,2019
+2004,55,"(50,55]",College,7149.142692998204,359.74502823422637,19.872804714186262,261.081810151749,2019
+2004,46,"(45,50]",College,818.8855152603232,241.98096069566793,3.3840906859205777,5507.449850221108,2019
+2004,46,"(45,50]",College,818.869802513465,241.98096069566793,3.384025752105896,6129.644408375724,2019
+2004,46,"(45,50]",College,817.4556552962298,241.98096069566793,3.3781817087845964,5437.25525660411,2019
+2004,46,"(45,50]",College,818.8855152603232,241.98096069566793,3.3840906859205777,5450.259832869145,2019
+2004,46,"(45,50]",College,820.5982046678636,241.98096069566793,3.391168471720818,5697.004240454393,2019
+2004,48,"(45,50]",College,1352.6475260323161,164.5470532730542,8.220429956820274,515.2573057406888,2019
+2004,48,"(45,50]",College,1268.2229371633753,164.5470532730542,7.707357329935584,262.4037351488348,2019
+2004,48,"(45,50]",College,1323.78321005386,164.5470532730542,8.045013166277341,251.94070830517893,2019
+2004,48,"(45,50]",College,1307.0962728904847,164.5470532730542,7.943601826290082,247.70720735148834,2019
+2004,48,"(45,50]",College,1282.6001005385995,164.5470532730542,7.794731507043249,260.2163799666701,2019
+2004,85,"(80,85]",HS,575.8721723518852,22.58488966492901,25.498117586384733,7939.8226645468285,2019
+2004,85,"(80,85]",HS,575.8721723518852,24.19809606956679,23.798243080625756,8778.198584573964,2019
+2004,85,"(80,85]",HS,576.6578096947935,24.19809606956679,23.830709987966305,7888.018592472212,2019
+2004,85,"(80,85]",HS,575.8721723518852,24.19809606956679,23.798243080625756,7898.730862332256,2019
+2004,85,"(80,85]",HS,575.0865350089767,24.19809606956679,23.765776173285204,8253.692419544528,2019
+2004,84,"(80,85]",College,81691.3565529623,1839.0553012870762,44.42028279181709,224.5756583048576,2019
+2004,84,"(80,85]",College,81361.23174147218,1839.0553012870762,44.24077496991576,233.31197362120798,2019
+2004,84,"(80,85]",College,81691.3565529623,1839.0553012870762,44.42028279181709,232.18788864895015,2019
+2004,84,"(80,85]",College,83089.79102333932,1839.0553012870762,45.18069193742479,233.99581520855227,2019
+2004,84,"(80,85]",College,81691.3565529623,1839.0553012870762,44.42028279181709,260.2593226387703,2019
+2004,58,"(55,60]",HS,636.5233752244166,154.86781484522746,4.1101075511432015,6430.908353209988,2019
+2004,58,"(55,60]",HS,634.9521005385997,122.60368675247175,5.178898916967509,6574.315759252121,2019
+2004,58,"(55,60]",HS,636.5233752244166,124.21689315710954,5.124289933892822,6304.785553650401,2019
+2004,58,"(55,60]",HS,636.3662477558348,137.12254439421181,4.640857931620301,6245.036652880635,2019
+2004,58,"(55,60]",HS,636.5233752244166,122.60368675247175,5.191714801444044,6482.902260115799,2019
+2004,50,"(45,50]",College,1590.2085457809696,141.9621636081252,11.20163644568428,6346.608843427895,2019
+2004,50,"(45,50]",College,1689.685946140036,141.9621636081252,11.902368231046932,3643.1243706923424,2019
+2004,50,"(45,50]",College,2758.6869658886894,141.9621636081252,19.432550869707907,3442.39260451929,2019
+2004,50,"(45,50]",College,957.5347935368043,141.9621636081252,6.744999999999999,6281.252424309824,2019
+2004,50,"(45,50]",College,1981.2988150807898,141.9621636081252,13.95652732195602,3532.8718608911054,2019
+2004,66,"(65,70]",HS,353371.97759425495,16938.667248696755,20.86185249441293,29.35650823389555,2019
+2004,66,"(65,70]",HS,339849.58764811495,17116.11995320691,19.855527337808827,30.29644577155334,2019
+2004,66,"(65,70]",HS,377628.68768402154,17148.384081299668,22.021240362573057,29.722027912855282,2019
+2004,66,"(65,70]",HS,377101.2107719928,17099.987889160533,22.05271800286084,28.98419262984593,2019
+2004,66,"(65,70]",HS,435782.19231597846,16277.252622795262,26.772465993781598,29.1175918322915,2019
+2004,67,"(65,70]",NoHS,-1.257019748653501,11.776406753855838,-0.1067405172840117,5723.922317501416,2019
+2004,67,"(65,70]",NoHS,-1.5712746858168762,11.776406753855838,-0.1334256466050146,5754.114455159413,2019
+2004,67,"(65,70]",NoHS,-0.7856373429084381,11.776406753855838,-0.0667128233025073,5735.690896272094,2019
+2004,67,"(65,70]",NoHS,-1.257019748653501,11.937727394319618,-0.10529807786125477,5785.875218107164,2019
+2004,67,"(65,70]",NoHS,-0.9427648114901257,11.776406753855838,-0.08005538796300876,5763.1830674682715,2019
+2004,61,"(60,65]",HS,0,46.782985734495796,0,5152.433134906934,2019
+2004,61,"(60,65]",HS,0,46.782985734495796,0,5004.740128700703,2019
+2004,61,"(60,65]",HS,0,46.782985734495796,0,5141.920365482994,2019
+2004,61,"(60,65]",HS,0,48.39619213913358,0,5125.671612456738,2019
+2004,61,"(60,65]",HS,0,46.782985734495796,0,5075.082723707247,2019
+2004,56,"(55,60]",College,7225.349515260323,734.0089141101926,9.843680882294601,266.8321558874626,2019
+2004,56,"(55,60]",College,7123.216660682227,734.0089141101926,9.70453699369223,265.8711392079645,2019
+2004,56,"(55,60]",College,7138.929407540395,734.0089141101926,9.725943745784903,275.90442542645786,2019
+2004,56,"(55,60]",College,7281.915403949732,732.3957077055549,9.942597051479828,263.18767334429066,2019
+2004,56,"(55,60]",College,7077.6496947935375,734.0089141101926,9.64245741262348,268.8748996133748,2019
+2004,59,"(55,60]",HS,38999.82333931778,3226.4128092755723,12.087673104693142,23.907465601703212,2019
+2004,59,"(55,60]",HS,38999.82333931778,3226.4128092755723,12.087673104693142,24.741440063254313,2019
+2004,59,"(55,60]",HS,38999.82333931778,3226.4128092755723,12.087673104693142,24.7917585788844,2019
+2004,59,"(55,60]",HS,38999.82333931778,3226.4128092755723,12.087673104693142,23.42409676290042,2019
+2004,59,"(55,60]",HS,38999.82333931778,3226.4128092755723,12.087673104693142,24.90252657493076,2019
+2004,52,"(50,55]",College,19.79806104129264,66.14146259014923,0.29932904816412786,5426.859633181452,2019
+2004,52,"(50,55]",College,19.79806104129264,66.14146259014923,0.29932904816412786,5460.6682773528155,2019
+2004,52,"(50,55]",College,19.79806104129264,66.14146259014923,0.29932904816412786,5412.624547508416,2019
+2004,52,"(50,55]",College,18.38391382405745,66.14146259014923,0.2779484018666902,5429.688698277774,2019
+2004,52,"(50,55]",College,18.38391382405745,66.14146259014923,0.2779484018666902,5423.859460126976,2019
+2004,55,"(50,55]",College,1341.554326750449,241.98096069566793,5.544049097472924,789.8884562585132,2019
+2004,55,"(50,55]",College,1341.1457953321365,241.98096069566793,5.542360818291215,761.9122452706578,2019
+2004,55,"(50,55]",College,1341.2400718132853,241.98096069566793,5.542750421179301,799.7558219392415,2019
+2004,55,"(50,55]",College,1341.2400718132853,241.98096069566793,5.542750421179301,735.8748788290974,2019
+2004,55,"(50,55]",College,1341.554326750449,241.98096069566793,5.544049097472924,794.9521253226494,2019
+2004,41,"(40,45]",NoHS,403.81759425493715,80.6603202318893,5.0063971119133575,11825.224591017268,2019
+2004,41,"(40,45]",NoHS,402.2463195691203,80.6603202318893,4.986916967509026,11335.89322241212,2019
+2004,41,"(40,45]",NoHS,403.81759425493715,80.6603202318893,5.0063971119133575,11901.309723823753,2019
+2004,41,"(40,45]",NoHS,402.2463195691203,80.6603202318893,4.986916967509026,11779.089483721627,2019
+2004,41,"(40,45]",NoHS,403.81759425493715,80.6603202318893,5.0063971119133575,11659.298230842074,2019
+2004,32,"(30,35]",College,281.5724236983842,109.69803551536945,2.5667954979825867,7067.733230877355,2019
+2004,32,"(30,35]",College,288.0146499102334,127.4433059663851,2.259943335008911,7007.932697442909,2019
+2004,32,"(30,35]",College,320.8542908438061,112.92444832464501,2.841318205260444,7053.749318942246,2019
+2004,32,"(30,35]",College,296.9709156193896,127.4433059663851,2.330219805328337,7166.093404704001,2019
+2004,32,"(30,35]",College,315.66908438061046,132.28292518029846,2.3863176895306863,7068.045653181087,2019
+2004,80,"(75,80]",HS,228.3062118491921,60.81788145484454,3.753932336802995,9565.333709107546,2019
+2004,80,"(75,80]",HS,236.94822262118493,62.431087859482325,3.795356299965485,8693.40401624252,2019
+2004,80,"(75,80]",HS,233.80567324955115,60.81788145484454,3.8443574102979055,9493.109682740056,2019
+2004,80,"(75,80]",HS,227.83482944344703,62.431087859482325,3.6493810576591197,9339.310085646284,2019
+2004,80,"(75,80]",HS,232.86290843806105,60.81788145484454,3.82885596912735,9192.460431598049,2019
+2004,43,"(40,45]",College,158.5416157989228,129.0565123710229,1.2284666064981948,7388.012840355511,2019
+2004,43,"(40,45]",College,158.38448833034113,130.66971877566067,1.2120978740473327,6970.480357398439,2019
+2004,43,"(40,45]",College,158.5416157989228,129.0565123710229,1.2284666064981948,7356.909113726984,2019
+2004,43,"(40,45]",College,156.97034111310592,129.0565123710229,1.216291516245487,7325.561731186101,2019
+2004,43,"(40,45]",College,156.81321364452424,130.66971877566067,1.2000730935508312,7191.526971905516,2019
+2004,49,"(45,50]",College,507.521723518851,221.0092774353767,2.2963819863501014,4379.83439500398,2019
+2004,49,"(45,50]",College,455.66965888689407,221.0092774353767,2.061767108487707,4868.646248252225,2019
+2004,49,"(45,50]",College,513.0211849192101,221.0092774353767,2.321265382487022,4334.564636721332,2019
+2004,49,"(45,50]",College,458.0265709156194,219.3960710307389,2.0876698874495645,4342.422192671985,2019
+2004,49,"(45,50]",College,738.4991023339319,221.0092774353767,3.341484624100767,4526.979589038226,2019
+2004,46,"(45,50]",HS,208.97953321364452,222.62248384001447,0.9387171035420918,6568.529307124052,2019
+2004,46,"(45,50]",HS,215.26463195691204,222.62248384001447,0.9669491968817037,6092.498901306452,2019
+2004,46,"(45,50]",HS,212.1220825852783,222.62248384001447,0.9528331502118977,6647.00965504877,2019
+2004,46,"(45,50]",HS,210.5508078994614,222.62248384001447,0.9457751268769948,6592.6675830224285,2019
+2004,46,"(45,50]",HS,210.5508078994614,222.62248384001447,0.9457751268769948,6428.147654397306,2019
+2004,54,"(50,55]",College,317.86886894075406,162.9338468684164,1.9509075311863318,7516.264022202459,2019
+2004,54,"(50,55]",College,319.44014362657094,164.5470532730542,1.9413300771572168,6899.754145952214,2019
+2004,54,"(50,55]",College,347.7230879712747,162.9338468684164,2.1341366122171785,7580.431762622939,2019
+2004,54,"(50,55]",College,309.5411131059246,162.9338468684164,1.899796261214569,7569.067169434515,2019
+2004,54,"(50,55]",College,300.5848473967684,162.9338468684164,1.844827536905315,7300.881069264253,2019
+2004,60,"(55,60]",College,4742.89263913824,1203.4519778597887,3.9410734507021794,375.755916975604,2019
+2004,60,"(55,60]",College,2970.337666068223,450.0845868939423,6.599509853395961,206.88506792114813,2019
+2004,60,"(55,60]",College,3968.159942549372,951.791778736294,4.169147108853943,386.6214076313423,2019
+2004,60,"(55,60]",College,3001.8731490125674,706.5844052313504,4.248428251158036,211.07037996129125,2019
+2004,60,"(55,60]",College,3053.772351885099,763.0466293936728,4.002078292792759,212.5890146081618,2019
+2004,69,"(65,70]",HS,1407.2178958707361,120.99048034783397,11.63081501805054,7375.179880632351,2019
+2004,69,"(65,70]",HS,1405.4894937163376,120.99048034783397,11.616529578820698,8269.577149823073,2019
+2004,69,"(65,70]",HS,1407.202183123878,120.99048034783397,11.63068515042118,7357.021564509241,2019
+2004,69,"(65,70]",HS,1407.2178958707361,120.99048034783397,11.63081501805054,7339.290229820651,2019
+2004,69,"(65,70]",HS,1408.773457809695,120.99048034783397,11.643671913357402,7691.1746838973095,2019
+2004,33,"(30,35]",HS,119.35402513464992,64.52825618551145,1.8496397111913356,7105.948247371414,2019
+2004,33,"(30,35]",HS,119.66828007181329,64.52825618551145,1.8545097472924186,7056.974483501744,2019
+2004,33,"(30,35]",HS,122.05661759425493,64.52825618551145,1.8915220216606494,7107.839901496582,2019
+2004,33,"(30,35]",HS,120.59533213644525,64.52825618551145,1.8688763537906137,7099.221126533,2019
+2004,33,"(30,35]",HS,120.65818312387792,64.52825618551145,1.8698503610108301,7095.580048907473,2019
+2004,42,"(40,45]",NoHS,-14.487152603231598,11.615086113392062,-1.2472703569995987,3871.4419497998947,2019
+2004,42,"(40,45]",NoHS,-16.51409694793537,12.099048034783396,-1.3649087845968715,3924.5300527257154,2019
+2004,42,"(40,45]",NoHS,-13.088718132854577,10.969803551536945,-1.193158844765343,3880.7648555390697,2019
+2004,42,"(40,45]",NoHS,-17.425436265709155,15.970743405914082,-1.0910848557779966,3861.726892040352,2019
+2004,42,"(40,45]",NoHS,-10.747518850987433,15.164140203595188,-0.7087456793916584,3899.7105082749304,2019
+2004,45,"(40,45]",College,105423.10377019749,4888.015406052492,21.567670109971285,18.968049583545866,2019
+2004,45,"(40,45]",College,102505.24667863555,4758.95889368147,21.539426788227374,20.08277893185048,2019
+2004,45,"(40,45]",College,93151.44847396768,5097.732238655404,18.27311520358269,19.680052415018398,2019
+2004,45,"(40,45]",College,93685.68186714542,5291.317007211938,17.7055507616448,18.634196351820794,2019
+2004,45,"(40,45]",College,115889.36445242369,5017.071918423515,23.09900402799865,19.074323977144275,2019
+2004,55,"(50,55]",HS,1386.649910233393,109.69803551536945,12.640608409428753,6531.622711553378,2019
+2004,55,"(50,55]",HS,1388.2211849192101,109.69803551536945,12.654932045020175,7224.9997074751545,2019
+2004,55,"(50,55]",HS,1388.2211849192101,108.08482911073166,12.84381162778167,6442.397250589888,2019
+2004,55,"(50,55]",HS,1388.2211849192101,108.08482911073166,12.84381162778167,6422.594954292907,2019
+2004,55,"(50,55]",HS,1389.792459605027,109.69803551536945,12.669255680611595,6753.082227014391,2019
+2004,58,"(55,60]",HS,13.45011131059246,17.74527045101565,0.7579547095503774,7555.952918339717,2019
+2004,58,"(55,60]",HS,13.45011131059246,17.74527045101565,0.7579547095503774,7493.419835627804,2019
+2004,58,"(55,60]",HS,13.45011131059246,17.74527045101565,0.7579547095503774,7486.490005223003,2019
+2004,58,"(55,60]",HS,13.45011131059246,19.358476855653432,0.694791817087846,7546.969131371222,2019
+2004,58,"(55,60]",HS,13.45011131059246,17.74527045101565,0.7579547095503774,7542.560744964916,2019
+2004,50,"(45,50]",HS,38.76334649910233,120.99048034783397,0.3203834416365824,7731.897786701384,2019
+2004,50,"(45,50]",HS,43.272904847396774,120.99048034783397,0.3576554512635379,7309.910471293691,2019
+2004,50,"(45,50]",HS,46.82398563734291,120.99048034783397,0.38700553549939826,7795.6068953769445,2019
+2004,50,"(45,50]",HS,47.515346499102336,120.99048034783397,0.3927197111913357,7756.4397667398935,2019
+2004,50,"(45,50]",HS,41.82733213644524,120.99048034783397,0.34570762936221416,7580.308927017331,2019
+2004,56,"(55,60]",HS,370.6636983842011,106.47162270609388,3.4813379280166283,7618.224406092993,2019
+2004,56,"(55,60]",HS,644.9296947935368,106.47162270609388,6.057291871786457,8335.835168073336,2019
+2004,56,"(55,60]",HS,251.87533213644525,106.47162270609388,2.3656569303139703,7636.719307822032,2019
+2004,56,"(55,60]",HS,358.0777881508079,106.47162270609388,3.363128869926704,7500.478862264101,2019
+2004,56,"(55,60]",HS,578.8261687612209,106.47162270609388,5.436436057324144,7793.362783625371,2019
+2004,54,"(50,55]",HS,38.669070017953324,96.79238427826716,0.39950529482551145,7462.250819580103,2019
+2004,54,"(50,55]",HS,38.65335727109515,96.79238427826716,0.39934296028880867,6921.451179376815,2019
+2004,54,"(50,55]",HS,38.65335727109515,96.79238427826716,0.39934296028880867,7551.409292236529,2019
+2004,54,"(50,55]",HS,37.09779533213645,96.79238427826716,0.3832718411552347,7489.673376545868,2019
+2004,54,"(50,55]",HS,38.65335727109515,96.79238427826716,0.39934296028880867,7302.768680712579,2019
+2004,73,"(70,75]",HS,616.7253141831239,77.43390742261373,7.964538206979544,5832.685161719981,2019
+2004,73,"(70,75]",HS,1118.2761938958708,120.99048034783397,9.242679181708786,6484.12663366812,2019
+2004,73,"(70,75]",HS,448.9131777378815,48.39619213913358,9.27579542719615,7120.716767581517,2019
+2004,73,"(70,75]",HS,1066.7069587073609,82.2735266365271,12.965372973738232,5755.726008899492,2019
+2004,73,"(70,75]",HS,793.2265996409336,50.00939854377137,15.861550483288694,6032.769780308203,2019
+2004,47,"(45,50]",College,2957.2960861759425,225.84889664929003,13.094135636926252,3643.933326921246,2019
+2004,47,"(45,50]",College,2988.564452423698,225.84889664929003,13.232583806085612,3596.5441441361945,2019
+2004,47,"(45,50]",College,2913.4575224416517,225.84889664929003,12.900029912325943,4050.5172030113586,2019
+2004,47,"(45,50]",College,2936.55526032316,225.84889664929003,13.002300670448687,3559.838066757247,2019
+2004,47,"(45,50]",College,2936.55526032316,225.84889664929003,13.002300670448687,3730.011843083447,2019
+2004,47,"(45,50]",HS,1141.3582190305206,154.86781484522746,7.369886507220216,7208.159063196875,2019
+2004,47,"(45,50]",HS,1173.2393824057451,150.02819563131413,7.820125926788555,8021.962884619497,2019
+2004,47,"(45,50]",HS,1183.295540394973,154.86781484522746,7.640680806257521,7116.982809139983,2019
+2004,47,"(45,50]",HS,1184.2540179533214,154.86781484522746,7.6468698104693145,7133.9305300658525,2019
+2004,47,"(45,50]",HS,1163.3403518850987,148.4149892266763,7.838428975043165,7455.810534582373,2019
+2004,55,"(50,55]",College,934.6727468581688,201.65080057972327,4.635105559566787,256.5949463911286,2019
+2004,55,"(50,55]",College,590.5635906642729,201.65080057972327,2.928644909747292,262.4037351488348,2019
+2004,55,"(50,55]",College,934.6727468581688,201.65080057972327,4.635105559566787,251.94070830517893,2019
+2004,55,"(50,55]",College,590.5635906642729,201.65080057972327,2.928644909747292,247.70720735148834,2019
+2004,55,"(50,55]",College,934.6727468581688,201.65080057972327,4.635105559566787,260.2163799666701,2019
+2004,57,"(55,60]",HS,867.3436265709156,129.0565123710229,6.720649819494584,10384.168745882274,2019
+2004,57,"(55,60]",HS,867.3436265709156,129.0565123710229,6.720649819494584,10442.851053073717,2019
+2004,57,"(55,60]",HS,867.3436265709156,129.0565123710229,6.720649819494584,10452.389214767796,2019
+2004,57,"(55,60]",HS,867.3436265709156,129.0565123710229,6.720649819494584,9428.685184767575,2019
+2004,57,"(55,60]",HS,867.3436265709156,129.0565123710229,6.720649819494584,9857.354058255169,2019
+2004,75,"(70,75]",NoHS,62.85098743267505,15.486781484522748,4.058363417569193,7039.058354481664,2019
+2004,75,"(70,75]",NoHS,47.138240574506284,15.486781484522748,3.043772563176895,7047.671810296806,2019
+2004,75,"(70,75]",NoHS,64.42226211849191,15.486781484522748,4.159822503008423,7056.657568592459,2019
+2004,75,"(70,75]",NoHS,62.85098743267505,15.486781484522748,4.058363417569193,7043.4413900936515,2019
+2004,75,"(70,75]",NoHS,72.2786355475763,15.486781484522748,4.667117930204572,7047.735408483553,2019
+2004,53,"(50,55]",HS,47.29536804308797,51.62260494840914,0.9161755415162457,7246.639916906509,2019
+2004,53,"(50,55]",HS,45.40983842010772,79.04711382725151,0.5744654829440802,6851.136741797131,2019
+2004,53,"(50,55]",HS,46.195475763016155,75.82070101797595,0.6092726015823027,7306.350609253343,2019
+2004,53,"(50,55]",HS,45.56696588868941,51.62260494840914,0.8826940433213,7269.641629693362,2019
+2004,53,"(50,55]",HS,45.09558348294434,40.33016011594465,1.1181602888086641,7104.5648517867685,2019
+2004,46,"(45,50]",HS,171.89745062836624,100.01879708754274,1.7186514498660765,6673.520741616305,2019
+2004,46,"(45,50]",HS,113.76028725314183,100.01879708754274,1.1373890765110048,7123.854533620224,2019
+2004,46,"(45,50]",HS,157.04890484739678,100.01879708754274,1.5701938977524166,7772.234453088298,2019
+2004,46,"(45,50]",HS,124.75921005385996,100.01879708754274,1.2473576336322347,7708.693199746724,2019
+2004,46,"(45,50]",HS,118.78836624775585,100.01879708754274,1.1876604169092815,7516.3228672456125,2019
+2004,61,"(60,65]",HS,861.2156552962298,56.46222416232251,15.25295306859206,9114.352256189088,2019
+2004,61,"(60,65]",HS,859.6443806104129,56.46222416232251,15.225124290871584,10077.087548703066,2019
+2004,61,"(60,65]",HS,861.2156552962298,56.46222416232251,15.25295306859206,8993.146279840006,2019
+2004,61,"(60,65]",HS,861.2156552962298,56.46222416232251,15.25295306859206,8963.52822134734,2019
+2004,61,"(60,65]",HS,859.6443806104129,56.46222416232251,15.225124290871584,9421.426897945532,2019
+2004,71,"(70,75]",College,68832.35877917414,266.1790567652347,258.5941945082595,29.35650823389555,2019
+2004,71,"(70,75]",College,52084.14190305206,266.1790567652347,195.67332808226672,28.115462507669967,2019
+2004,71,"(70,75]",College,57505.03956912029,266.1790567652347,216.03893359588668,28.661405128192467,2019
+2004,71,"(70,75]",College,59249.15447037702,266.1790567652347,222.59134580461657,27.13421954030061,2019
+2004,71,"(70,75]",College,57505.03956912029,266.1790567652347,216.03893359588668,28.408460769403725,2019
+2004,43,"(40,45]",HS,0.2514039497307002,14.518857641740075,0.017315683914961893,4271.629543184603,2019
+2004,43,"(40,45]",HS,0.5028078994614004,14.518857641740075,0.034631367829923786,4253.336821894937,2019
+2004,43,"(40,45]",HS,2.0740825852782763,14.518857641740075,0.1428543922984356,4239.610916020637,2019
+2004,43,"(40,45]",HS,0.3613931777378815,14.518857641740075,0.02489129562775772,4253.294272177988,2019
+2004,43,"(40,45]",HS,0.32996768402154397,14.518857641740075,0.022726835138387483,4230.369512481707,2019
+2004,43,"(40,45]",College,74.82410053859964,151.6414020359519,0.49342791305015743,875.4515641844312,2019
+2004,43,"(40,45]",College,74.66697307001795,151.6414020359519,0.49239173515630996,923.7393404167957,2019
+2004,43,"(40,45]",College,74.83981328545782,151.6414020359519,0.49353153083954227,870.5486441647317,2019
+2004,43,"(40,45]",College,74.82410053859964,151.6414020359519,0.49342791305015743,867.8170756680898,2019
+2004,43,"(40,45]",College,74.68268581687613,151.6414020359519,0.4924953529456948,873.6228517177746,2019
+2004,54,"(50,55]",HS,1485.0902692998206,221.0092774353767,6.719583388231574,6642.325815474292,2019
+2004,54,"(50,55]",HS,1484.9331418312388,221.0092774353767,6.718872434056233,7393.471163071704,2019
+2004,54,"(50,55]",HS,1485.0902692998206,221.0092774353767,6.719583388231574,6554.105121045873,2019
+2004,54,"(50,55]",HS,1484.9331418312388,221.0092774353767,6.718872434056233,6570.520152677801,2019
+2004,54,"(50,55]",HS,1484.9331418312388,221.0092774353767,6.718872434056233,6869.862963261209,2019
+2004,59,"(55,60]",College,303529.41615798924,14938.2913069459,20.31888453111477,20.74019594646676,2019
+2004,59,"(55,60]",College,274773.5181328546,17583.949810551872,15.626382075315469,21.35350431432254,2019
+2004,59,"(55,60]",College,276351.0779174147,16809.610736325732,16.44006409501306,20.995578422063275,2019
+2004,59,"(55,60]",College,277514.7639497307,16228.85643065613,17.10008127408832,20.4852844289174,2019
+2004,59,"(55,60]",College,527509.9087971275,17212.912337485177,30.646174131053364,20.567919624948274,2019
+2004,26,"(25,30]",College,146.04998204667865,100.01879708754274,1.460225340631187,8460.022222961172,2019
+2004,26,"(25,30]",College,160.80425134649911,100.01879708754274,1.6077403051123793,8242.697740574476,2019
+2004,26,"(25,30]",College,139.23064991023338,100.01879708754274,1.3920448352160242,8493.397333264775,2019
+2004,26,"(25,30]",College,153.34069658886895,100.01879708754274,1.5331187842086877,8456.231884057415,2019
+2004,26,"(25,30]",College,134.97249551166968,100.01879708754274,1.349471293816234,8432.459587699039,2019
+2004,56,"(55,60]",HS,445.9906068222621,193.58476855653433,2.30385174488568,214.5147574728895,2019
+2004,56,"(55,60]",HS,444.1050771992819,193.58476855653433,2.294111672683514,178.06065721448118,2019
+2004,56,"(55,60]",HS,442.8480574506284,193.58476855653433,2.2876182912154035,215.64629331364898,2019
+2004,56,"(55,60]",HS,447.57759425493714,193.58476855653433,2.3120496389891696,191.62420194485696,2019
+2004,56,"(55,60]",HS,445.8491921005386,193.58476855653433,2.303121239470517,194.0120564174106,2019
+2004,53,"(50,55]",HS,3.1425493716337525,41.94336652058244,0.07492363232435435,3723.269729420066,2019
+2004,53,"(50,55]",HS,3.1425493716337525,41.94336652058244,0.07492363232435435,3717.226545083926,2019
+2004,53,"(50,55]",HS,3.2996768402154397,41.94336652058244,0.07866981394057206,3766.394213574998,2019
+2004,53,"(50,55]",HS,3.2996768402154397,41.94336652058244,0.07866981394057206,3743.0417858818155,2019
+2004,53,"(50,55]",HS,3.2996768402154397,41.94336652058244,0.07866981394057206,3731.804098081182,2019
+2004,55,"(50,55]",HS,44.78132854578097,41.94336652058244,1.0676617606220495,5694.983938999199,2019
+2004,55,"(50,55]",HS,44.78132854578097,43.55657292522023,1.0281187324508623,4947.540580585823,2019
+2004,55,"(50,55]",HS,44.78132854578097,41.94336652058244,1.0676617606220495,5728.495473566429,2019
+2004,55,"(50,55]",HS,44.78132854578097,41.94336652058244,1.0676617606220495,5595.710775251032,2019
+2004,55,"(50,55]",HS,44.78132854578097,41.94336652058244,1.0676617606220495,5458.843681965549,2019
+2004,60,"(55,60]",HS,309.5411131059246,83.88673304116487,3.6899888919744517,7344.287710367896,2019
+2004,60,"(55,60]",HS,309.5411131059246,83.88673304116487,3.6899888919744517,6400.220633841664,2019
+2004,60,"(55,60]",HS,311.2695152603232,83.88673304116487,3.7105928908636496,7368.39661070032,2019
+2004,60,"(55,60]",HS,308.91260323159787,83.88673304116487,3.6824965287420164,7265.458172828144,2019
+2004,60,"(55,60]",HS,309.5411131059246,83.88673304116487,3.6899888919744517,7029.908008526805,2019
+2004,49,"(45,50]",College,25.01469299820467,74.20749461333816,0.3370911944749647,7239.102006840023,2019
+2004,49,"(45,50]",College,25.171820466786354,74.20749461333816,0.3392086014754356,6726.658584214917,2019
+2004,49,"(45,50]",College,25.01469299820467,74.20749461333816,0.3370911944749647,7274.600415891104,2019
+2004,49,"(45,50]",College,25.171820466786354,74.20749461333816,0.3392086014754356,7234.1807944149505,2019
+2004,49,"(45,50]",College,25.171820466786354,74.20749461333816,0.3392086014754356,7011.531493642814,2019
+2004,71,"(70,75]",HS,96.03630879712746,15.970743405914082,6.013264777741312,7949.33743635577,2019
+2004,71,"(70,75]",HS,114.89160502693,15.970743405914082,7.1938795901250785,8236.32477670094,2019
+2004,71,"(70,75]",HS,100.76584560143627,15.970743405914082,6.30940232651424,7964.76965632642,2019
+2004,71,"(70,75]",HS,91.32248473967685,15.970743405914082,5.718111074645372,7946.901023491412,2019
+2004,71,"(70,75]",HS,92.89375942549371,15.970743405914082,5.816495642344018,7955.243339326558,2019
+2004,50,"(45,50]",College,920.7669658886894,245.2073735049435,3.7550541516245484,6609.600104576591,2019
+2004,50,"(45,50]",College,919.1956912028726,245.2073735049435,3.7486462093862816,7357.044675342135,2019
+2004,50,"(45,50]",College,919.1956912028726,245.2073735049435,3.7486462093862816,6521.8140598508935,2019
+2004,50,"(45,50]",College,919.1956912028726,245.2073735049435,3.7486462093862816,6538.14821716342,2019
+2004,50,"(45,50]",College,919.1956912028726,245.2073735049435,3.7486462093862816,6836.0162120646955,2019
+2004,49,"(45,50]",College,1414.0686535008977,161.3206404637786,8.765577978339351,388.53709128896173,2019
+2004,49,"(45,50]",College,1414.0686535008977,161.3206404637786,8.765577978339351,394.0841844141688,2019
+2004,49,"(45,50]",College,1414.0686535008977,161.3206404637786,8.765577978339351,379.4938461394065,2019
+2004,49,"(45,50]",College,1414.0686535008977,161.3206404637786,8.765577978339351,380.02794675207184,2019
+2004,49,"(45,50]",College,1414.0686535008977,161.3206404637786,8.765577978339351,397.5057240561311,2019
+2004,52,"(50,55]",College,151.40802872531418,37.10374730666908,4.080666771307487,7220.231271440483,2019
+2004,52,"(50,55]",College,101.11152603231598,38.716953711306864,2.6115568592057765,6779.050919715582,2019
+2004,52,"(50,55]",College,170.24761220825854,37.10374730666908,4.5884209700204055,7204.3252895188925,2019
+2004,52,"(50,55]",College,106.56384919210053,38.716953711306864,2.752382069795427,7222.170700966492,2019
+2004,52,"(50,55]",College,99.5402513464991,38.716953711306864,2.5709732250300843,7050.275095240734,2019
+2004,38,"(35,40]",College,22385.164811490125,642.0561490458389,34.86480870054242,490.993858571081,2019
+2004,38,"(35,40]",College,27393.917127468583,588.820337692792,46.523388160822904,440.87482574253056,2019
+2004,38,"(35,40]",College,25859.5673967684,575.9146864556897,44.90173285198556,456.01100291480145,2019
+2004,38,"(35,40]",College,19417.49831238779,724.329675682366,26.807542151431576,486.95182742288017,2019
+2004,38,"(35,40]",College,23331.072172351887,863.0654264812155,27.032796653058476,464.1497073216616,2019
+2004,65,"(60,65]",College,157232.69684739676,0,Inf,15.802976299044108,2019
+2004,65,"(60,65]",College,177062.3876481149,0,Inf,16.731698115882246,2019
+2004,65,"(60,65]",College,242557.72038779175,0,Inf,16.396171915760185,2019
+2004,65,"(60,65]",College,167688.10002154397,0,Inf,15.52483095336305,2019
+2004,65,"(60,65]",College,205571.0298886894,0,Inf,15.89151738577174,2019
+2004,47,"(45,50]",NoHS,6.049407540394973,43.55657292522023,0.13888621473459015,4725.115374096333,2019
+2004,47,"(45,50]",NoHS,5.8922800718132855,43.55657292522023,0.13527878058563977,4633.703432072488,2019
+2004,47,"(45,50]",NoHS,6.049407540394973,43.55657292522023,0.13888621473459015,4732.618912109307,2019
+2004,47,"(45,50]",NoHS,6.049407540394973,43.55657292522023,0.13888621473459015,4741.717083787858,2019
+2004,47,"(45,50]",NoHS,6.049407540394973,43.55657292522023,0.13888621473459015,4656.202503718396,2019
+2004,50,"(45,50]",College,30945.78355475763,5049.3360465162705,6.128683706070287,269.12275921867814,2019
+2004,50,"(45,50]",College,29963.26549371634,5436.5055836293395,5.51149355643874,264.88702990304034,2019
+2004,50,"(45,50]",College,29841.49170556553,5517.165903861229,5.408844364219815,275.2303847387191,2019
+2004,50,"(45,50]",College,29589.773500897667,5291.317007211938,5.592137734436911,267.43281864552534,2019
+2004,50,"(45,50]",College,30456.96,5613.958288139496,5.425220216606498,279.84868622087083,2019
+2004,68,"(65,70]",HS,555.6027289048474,96.79238427826716,5.740149217809868,6979.667839915661,2019
+2004,68,"(65,70]",HS,554.0314542190306,96.79238427826716,5.7239157641395915,6450.786121558125,2019
+2004,68,"(65,70]",HS,555.6027289048474,96.79238427826716,5.740149217809868,7038.942038108622,2019
+2004,68,"(65,70]",HS,554.0314542190306,96.79238427826716,5.7239157641395915,6992.424154257291,2019
+2004,68,"(65,70]",HS,555.6027289048474,96.79238427826716,5.740149217809868,6858.86256903637,2019
+2004,61,"(60,65]",HS,1803.6662118491922,95.17917787362938,18.950218442146486,4035.4778393687216,2019
+2004,61,"(60,65]",HS,935.159842010772,95.17917787362938,9.825256562442634,8144.622845127679,2019
+2004,61,"(60,65]",HS,694.58197486535,95.17917787362938,7.297625282995777,7268.547016820031,2019
+2004,61,"(60,65]",HS,776.9953321364452,95.17917787362938,8.163501193171387,7244.608759395766,2019
+2004,61,"(60,65]",HS,1080.502750448833,95.17917787362938,11.35230178057884,7614.697041764152,2019
+2004,69,"(65,70]",HS,87197.57443447037,8066.032023188931,10.810467176895305,26.53403282575663,2019
+2004,69,"(65,70]",HS,78111.6785637343,8388.673304116488,9.311565217995001,27.460195446701853,2019
+2004,69,"(65,70]",HS,108052.16057450628,8259.616791745466,13.081982287906136,27.68412532033214,2019
+2004,69,"(65,70]",HS,76544.48919210055,8259.616791745466,9.267317252369134,26.087486167993212,2019
+2004,69,"(65,70]",HS,108889.17859964093,8824.23903336869,12.339781162758465,26.767361096680492,2019
+2004,34,"(30,35]",College,-17.912531418312387,108.08482911073166,-0.16572660164879574,9253.153793068148,2019
+2004,34,"(30,35]",College,-20.583698384201078,109.69803551536945,-0.18763962624761096,9031.81477790845,2019
+2004,34,"(30,35]",College,-15.712746858168762,109.69803551536945,-0.14323635591420683,9224.991978413382,2019
+2004,34,"(30,35]",College,-16.184129263913825,109.69803551536945,-0.14753344659163303,9208.879408915584,2019
+2004,34,"(30,35]",College,-15.869874326750448,108.08482911073166,-0.1468279540923541,9128.155628861814,2019
+2004,85,"(80,85]",HS,890.7556193895871,37.10374730666908,24.00716057133888,8500.9348448789,2019
+2004,85,"(80,85]",HS,890.5984919210055,37.10374730666908,24.00292575733794,9451.439379331849,2019
+2004,85,"(80,85]",HS,890.7556193895871,37.10374730666908,24.00716057133888,8410.352236227993,2019
+2004,85,"(80,85]",HS,890.7556193895871,37.10374730666908,24.00716057133888,8384.235106688064,2019
+2004,85,"(80,85]",HS,890.7556193895871,37.10374730666908,24.00716057133888,8792.60737107386,2019
+2004,73,"(70,75]",HS,382.13400359066424,46.782985734495796,8.168226067471679,6869.997939155737,2019
+2004,73,"(70,75]",HS,437.44287253141835,79.04711382725151,5.533951226700068,6404.802722897433,2019
+2004,73,"(70,75]",HS,382.91964093357274,70.9810818040626,5.394671808336068,5698.62355182124,2019
+2004,73,"(70,75]",HS,562.5163375224416,67.75466899478702,8.30225201994155,5682.295615504748,2019
+2004,73,"(70,75]",HS,361.3931777378815,48.39619213913358,7.467388688327317,5957.436896186615,2019
+2004,49,"(45,50]",College,31.818312387791742,40.33016011594465,0.7889458483754513,4895.847376717358,2019
+2004,49,"(45,50]",College,31.818312387791742,40.33016011594465,0.7889458483754513,4792.435940435638,2019
+2004,49,"(45,50]",College,31.818312387791742,40.33016011594465,0.7889458483754513,4937.995720249981,2019
+2004,49,"(45,50]",College,31.818312387791742,40.33016011594465,0.7889458483754513,4934.458101940474,2019
+2004,49,"(45,50]",College,31.818312387791742,40.33016011594465,0.7889458483754513,4874.575739243845,2019
+2004,43,"(40,45]",NoHS,0.6285098743267505,16.132064046377863,0.03896028880866426,4681.844280620664,2019
+2004,43,"(40,45]",NoHS,0.6285098743267505,17.74527045101565,0.03541844437151297,4674.340571685082,2019
+2004,43,"(40,45]",NoHS,0.7856373429084381,17.74527045101565,0.044273055464391205,4689.731149607762,2019
+2004,43,"(40,45]",NoHS,0.6285098743267505,16.132064046377863,0.03896028880866426,4683.490711089165,2019
+2004,43,"(40,45]",NoHS,0.7856373429084381,16.132064046377863,0.04870036101083032,4661.738399338237,2019
+2004,55,"(50,55]",HS,230.66312387791743,122.60368675247175,1.8813718411552347,4628.058376011483,2019
+2004,55,"(50,55]",HS,232.2343985637343,120.99048034783397,1.9194435619735257,4126.5966715610975,2019
+2004,55,"(50,55]",HS,230.66312387791743,122.60368675247175,1.8813718411552347,4639.293997371248,2019
+2004,55,"(50,55]",HS,229.09184919210054,120.99048034783397,1.893470036101083,4556.528158298351,2019
+2004,55,"(50,55]",HS,232.2343985637343,122.60368675247175,1.894187725631769,4461.541239056311,2019
+2004,21,"(20,25]",HS,4.713824057450628,56.46222416232251,0.08348633316142341,7330.694943525503,2019
+2004,21,"(20,25]",HS,4.713824057450628,56.46222416232251,0.08348633316142341,7291.146077950638,2019
+2004,21,"(20,25]",HS,4.713824057450628,56.46222416232251,0.08348633316142341,7317.52118888531,2019
+2004,21,"(20,25]",HS,4.713824057450628,56.46222416232251,0.08348633316142341,7229.573630534724,2019
+2004,21,"(20,25]",HS,4.713824057450628,56.46222416232251,0.08348633316142341,7285.846904401847,2019
+2004,51,"(50,55]",College,303.41314183123876,275.8582951930614,1.0998876855194546,6977.391023456004,2019
+2004,51,"(50,55]",College,318.96876122082585,290.37715283480145,1.0984636983553953,7765.649626434824,2019
+2004,51,"(50,55]",College,311.2695152603232,188.74514934262095,1.6491523959393999,6888.461457010888,2019
+2004,51,"(50,55]",College,307.96983842010775,237.14134148175458,1.2986762936221419,6904.936961312004,2019
+2004,51,"(50,55]",College,311.4266427289048,204.87721338899885,1.5200648113931605,7217.537577095037,2019
+2004,52,"(50,55]",College,84602.45716337523,33732.14592097611,2.508066263011324,29.35650823389555,2019
+2004,52,"(50,55]",College,90382.23396768402,33022.33510293548,2.7370031127704713,30.29644577155334,2019
+2004,52,"(50,55]",College,78069.09701974866,31683.37378708612,2.4640398950054045,29.722027912855282,2019
+2004,52,"(50,55]",College,86834.45285457809,34248.3719704602,2.5354330106398715,28.98419262984593,2019
+2004,52,"(50,55]",College,71954.63870736086,32522.241117497764,2.2124747937080973,29.1175918322915,2019
+2004,50,"(45,50]",College,342.8521364452424,274.24508878842363,1.2501669144191976,984.0586781576789,2019
+2004,50,"(45,50]",College,342.8521364452424,274.24508878842363,1.2501669144191976,972.7895511326226,2019
+2004,50,"(45,50]",College,342.8521364452424,274.24508878842363,1.2501669144191976,999.4654926984252,2019
+2004,50,"(45,50]",College,342.8521364452424,274.24508878842363,1.2501669144191976,918.9195077081101,2019
+2004,50,"(45,50]",College,342.8521364452424,274.24508878842363,1.2501669144191976,993.0913690667467,2019
+2004,56,"(55,60]",HS,131.49997845601436,96.79238427826716,1.3585777376654633,5121.6223607620395,2019
+2004,56,"(55,60]",HS,131.34285098743268,96.79238427826716,1.3569543922984357,4566.681763666041,2019
+2004,56,"(55,60]",HS,131.65710592459604,96.79238427826716,1.3602010830324909,5134.056216370146,2019
+2004,56,"(55,60]",HS,131.49997845601436,96.79238427826716,1.3585777376654633,5042.4637303504915,2019
+2004,56,"(55,60]",HS,131.34285098743268,96.79238427826716,1.3569543922984357,4937.346834658007,2019
+2004,32,"(30,35]",College,1351.2962298025136,104.8584163014561,12.886864759788947,5277.515517790679,2019
+2004,32,"(30,35]",College,1351.1391023339318,104.8584163014561,12.885366287142459,5875.460345231241,2019
+2004,32,"(30,35]",College,1351.1391023339318,104.8584163014561,12.885366287142459,5207.423371198422,2019
+2004,32,"(30,35]",College,1351.2962298025136,104.8584163014561,12.886864759788947,5246.365643851775,2019
+2004,32,"(30,35]",College,1351.1391023339318,104.8584163014561,12.885366287142459,5466.342640983677,2019
+2004,58,"(55,60]",College,588.5994973070019,164.5470532730542,3.5770892616974592,5177.918450940277,2019
+2004,58,"(55,60]",College,582.6286535008977,164.5470532730542,3.5408027181991932,5727.590362376672,2019
+2004,58,"(55,60]",College,587.3424775583484,164.5470532730542,3.5694499893820346,5107.185314471864,2019
+2004,58,"(55,60]",College,589.542262118492,164.5470532730542,3.5828187159340272,5091.487121251709,2019
+2004,58,"(55,60]",College,593.6275763016158,164.5470532730542,3.6076463509591563,5353.47961879732,2019
+2004,39,"(35,40]",HS,1.5712746858168762,19.358476855653432,0.08116726835138388,6829.639680557072,2019
+2004,39,"(35,40]",HS,1.5712746858168762,19.358476855653432,0.08116726835138388,6819.140237070971,2019
+2004,39,"(35,40]",HS,1.5712746858168762,19.358476855653432,0.08116726835138388,6840.477027466094,2019
+2004,39,"(35,40]",HS,1.5712746858168762,19.358476855653432,0.08116726835138388,6831.445873988916,2019
+2004,39,"(35,40]",HS,1.5712746858168762,19.358476855653432,0.08116726835138388,6800.709368882215,2019
+2004,27,"(25,30]",HS,48.00244165170557,27.424508878842364,1.7503482692716077,7073.9865715537,2019
+2004,27,"(25,30]",College,48.00244165170557,29.03771528348015,1.6531066987565182,7087.611069196892,2019
+2004,27,"(25,30]",HS,55.07317773788151,20.97168326029122,2.62607331296862,7067.899333820275,2019
+2004,27,"(25,30]",College,48.78807899461401,19.358476855653432,2.5202436823104697,7124.50082038243,2019
+2004,27,"(25,30]",HS,48.00244165170557,24.19809606956679,1.983728038507822,7088.287057686248,2019
+2004,60,"(55,60]",College,13737.654578096948,5565.5620960003625,2.468331920682258,350.99059067841506,2019
+2004,60,"(55,60]",College,13736.083303411133,5565.5620960003625,2.4680495997488623,356.67339457451305,2019
+2004,60,"(55,60]",College,13736.083303411133,5565.5620960003625,2.4680495997488623,358.1440850781791,2019
+2004,60,"(55,60]",College,13737.654578096948,5565.5620960003625,2.468331920682258,347.82791671237203,2019
+2004,60,"(55,60]",College,13739.225852782765,5581.694160046741,2.46147951837399,350.2300407697719,2019
+2004,62,"(60,65]",HS,14546.86104129264,3065.0921688117937,4.74597833935018,17.18439058453913,2019
+2004,62,"(60,65]",HS,14512.292998204668,3065.0921688117937,4.73470036101083,17.62967026871015,2019
+2004,62,"(60,65]",HS,14919.25314183124,3065.0921688117937,4.867472924187726,18.314575674547036,2019
+2004,62,"(60,65]",HS,15004.10197486535,3065.0921688117937,4.8951552346570395,16.51779410985279,2019
+2004,62,"(60,65]",HS,14477.724955116697,3065.0921688117937,4.72342238267148,17.20664276407947,2019
+2004,76,"(75,80]",HS,21550.032315978457,1248.6217571896464,17.259055588205115,312.9438578319533,2019
+2004,76,"(75,80]",HS,28306.51346499102,1248.6217571896464,22.670206811630706,278.4357808814075,2019
+2004,76,"(75,80]",HS,21374.04955116697,1248.6217571896464,17.1181139749438,326.17343126559774,2019
+2004,76,"(75,80]",HS,26314.137163375224,1248.6217571896464,21.074546404350787,278.96804002249337,2019
+2004,76,"(75,80]",HS,32537.95619389587,1248.6217571896464,26.05909756620864,290.4419445755936,2019
+2004,36,"(35,40]",NoHS,0,16.132064046377863,0,4400.367474942667,2019
+2004,36,"(35,40]",NoHS,0,16.132064046377863,0,4393.401426418841,2019
+2004,36,"(35,40]",NoHS,0,16.132064046377863,0,4406.620975373577,2019
+2004,36,"(35,40]",NoHS,0,16.132064046377863,0,4390.622482766681,2019
+2004,36,"(35,40]",NoHS,0,16.132064046377863,0,4380.869316776157,2019
+2004,49,"(45,50]",College,166.46084021543984,112.92444832464501,1.4740903558535328,4273.057881530947,2019
+2004,49,"(45,50]",College,244.86744703770196,187.13194293798318,1.3085283206772065,4168.398112620937,2019
+2004,49,"(45,50]",College,89.90833752244166,69.36787539942482,1.2961091428091678,4296.300985819462,2019
+2004,49,"(45,50]",College,105.44824416517056,103.24520989681828,1.0213378835740077,4331.984136412047,2019
+2004,49,"(45,50]",College,170.95468581687612,146.80178282203855,1.1645273138413932,4239.338569267798,2019
+2004,30,"(25,30]",HS,5.656588868940754,64.52825618551145,0.08766064981949458,7819.04700313458,2019
+2004,30,"(25,30]",HS,5.656588868940754,64.52825618551145,0.08766064981949458,7779.321832908847,2019
+2004,30,"(25,30]",HS,7.3849910233393175,64.52825618551145,0.11444584837545124,7826.881629937763,2019
+2004,30,"(25,30]",HS,7.22786355475763,64.52825618551145,0.11201083032490973,7862.161556252548,2019
+2004,30,"(25,30]",HS,5.656588868940754,64.52825618551145,0.08766064981949458,7845.806171576443,2019
+2004,43,"(40,45]",HS,312.91935368043085,137.12254439421181,2.282041622425143,9219.444893238071,2019
+2004,43,"(40,45]",HS,316.29759425493717,137.12254439421181,2.306678275642387,8698.40929125145,2019
+2004,43,"(40,45]",HS,336.4099102333932,137.12254439421181,2.453352304098535,9180.630789930123,2019
+2004,43,"(40,45]",HS,321.9541831238779,137.12254439421181,2.347930346145678,9141.512630266903,2019
+2004,43,"(40,45]",HS,308.2055296229803,137.12254439421181,2.247664897005734,8974.251676114813,2019
+2004,33,"(30,35]",NoHS,2.364768402154399,32.264128092755726,0.07329404332129964,5521.201639958987,2019
+2004,33,"(30,35]",NoHS,2.372624775583483,32.264128092755726,0.07353754512635377,5580.217888225005,2019
+2004,33,"(30,35]",NoHS,2.372624775583483,32.264128092755726,0.07353754512635377,5484.963182718763,2019
+2004,33,"(30,35]",NoHS,2.372624775583483,32.264128092755726,0.07353754512635377,5485.01325140764,2019
+2004,33,"(30,35]",NoHS,2.372624775583483,32.264128092755726,0.07353754512635377,5491.907464730159,2019
+2004,58,"(55,60]",College,1166.0429443447038,112.92444832464501,10.325867973182053,5581.317371917676,2019
+2004,58,"(55,60]",College,1042.0693716337523,117.76406753855836,8.84878888284457,6173.812873193489,2019
+2004,58,"(55,60]",College,1100.3636624775584,119.37727394319619,9.217530490779588,5505.073590351422,2019
+2004,58,"(55,60]",College,1004.3587791741472,100.01879708754274,10.041700244555724,5488.152389417586,2019
+2004,58,"(55,60]",College,1005.9300538599641,91.95276506435381,10.939638989169675,5770.5560795718575,2019
+2004,60,"(55,60]",NoHS,399.1037701974866,88.72635225507824,4.498142435182147,10143.84929271213,2019
+2004,60,"(55,60]",NoHS,403.3462118491921,88.72635225507824,4.545957335083688,9066.882323137233,2019
+2004,60,"(55,60]",NoHS,400.9892998204668,88.72635225507824,4.5193935018050535,10245.387507300342,2019
+2004,60,"(55,60]",NoHS,399.9679712746858,88.72635225507824,4.507882507384312,10013.56162511686,2019
+2004,60,"(55,60]",NoHS,398.7895152603232,88.72635225507824,4.494600590744995,9746.271957129722,2019
+2004,36,"(35,40]",HS,864.9867145421904,91.95276506435381,9.406859205776174,6932.5182794670955,2019
+2004,36,"(35,40]",HS,864.9867145421904,91.95276506435381,9.406859205776174,7684.367645207601,2019
+2004,36,"(35,40]",HS,864.9867145421904,91.95276506435381,9.406859205776174,6857.3758381583175,2019
+2004,36,"(35,40]",HS,864.9867145421904,91.95276506435381,9.406859205776174,6826.646226139465,2019
+2004,36,"(35,40]",HS,864.9867145421904,91.95276506435381,9.406859205776174,7130.244154730366,2019
+2004,21,"(20,25]",NoHS,0.1257019748653501,16.132064046377863,0.007792057761732851,9382.831876607072,2019
+2004,21,"(20,25]",NoHS,0.1257019748653501,16.132064046377863,0.007792057761732851,9382.384386752437,2019
+2004,21,"(20,25]",NoHS,0.1257019748653501,16.132064046377863,0.007792057761732851,9378.221676349038,2019
+2004,21,"(20,25]",NoHS,0.10998922800718133,16.132064046377863,0.006818050541516245,9267.587757910365,2019
+2004,21,"(20,25]",NoHS,0.10998922800718133,16.132064046377863,0.006818050541516245,9384.60266779923,2019
+2004,63,"(60,65]",NoHS,4.101026929982047,1.4518857641740077,2.8246209386281587,5445.597482524358,2019
+2004,63,"(60,65]",NoHS,4.101026929982047,1.4518857641740077,2.8246209386281587,5403.856497961367,2019
+2004,63,"(60,65]",NoHS,4.116739676840215,1.4518857641740077,2.835443241075009,5431.344115738395,2019
+2004,63,"(60,65]",NoHS,4.116739676840215,1.4518857641740077,2.835443241075009,5427.929075136083,2019
+2004,63,"(60,65]",NoHS,4.116739676840215,1.4518857641740077,2.835443241075009,5462.323245076405,2019
+2004,31,"(30,35]",College,3556.265996409336,158.09422765450302,22.494597362410673,1329.0452954520158,2019
+2004,31,"(30,35]",College,3556.4231238779175,158.09422765450302,22.495591247329262,1317.1365276408108,2019
+2004,31,"(30,35]",College,3558.308653500898,158.09422765450302,22.507517866352323,1514.5353344828848,2019
+2004,31,"(30,35]",College,3554.537594254937,158.09422765450302,22.4836646283062,1271.182135495958,2019
+2004,31,"(30,35]",College,3563.6509874326753,158.09422765450302,22.541309953584324,1349.6669208110256,2019
+2004,25,"(20,25]",College,-8.26490484739677,8.22735266365271,-1.004564309478304,5958.196524094654,2019
+2004,25,"(20,25]",College,-6.363662477558349,8.22735266365271,-0.773476321936717,5938.954521503502,2019
+2004,25,"(20,25]",College,11.65885816876122,8.22735266365271,1.4170850145112195,5923.6295444098105,2019
+2004,25,"(20,25]",College,-1.8383913824057452,8.22735266365271,-0.22344871522616266,5979.877377152381,2019
+2004,25,"(20,25]",College,1.5712746858168762,8.066032023188932,0.19480144404332128,5918.261315202666,2019
+2004,30,"(25,30]",NoHS,4.242441651705565,24.19809606956679,0.17532129963898915,7281.7657823157715,2019
+2004,30,"(25,30]",NoHS,4.085314183123878,24.19809606956679,0.16882791817087847,7244.7703038219815,2019
+2004,30,"(25,30]",NoHS,4.242441651705565,24.19809606956679,0.17532129963898915,7289.062057341335,2019
+2004,30,"(25,30]",NoHS,3.9281867145421905,24.19809606956679,0.16233453670276776,7321.917744247757,2019
+2004,30,"(25,30]",NoHS,4.242441651705565,24.19809606956679,0.17532129963898915,7306.68621022023,2019
+2004,52,"(50,55]",College,180.30377019748653,132.28292518029846,1.3630162014616536,6407.609644301879,2019
+2004,52,"(50,55]",College,225.24222621184919,101.63200349218052,2.216252936794453,6057.898607429404,2019
+2004,52,"(50,55]",College,265.6239856373429,75.82070101797595,3.5033174590982408,6460.406914835067,2019
+2004,52,"(50,55]",College,356.75791741472176,191.97156215189653,1.858389406304038,6427.9481733827315,2019
+2004,52,"(50,55]",College,481.04574506283666,135.50933798957405,3.5499084579680247,6281.984310641767,2019
+2004,64,"(60,65]",HS,20897.95332136445,3371.601385692973,6.198227765014767,20.626138171850155,2019
+2004,64,"(60,65]",HS,21059.794614003593,2468.2057990958133,8.53243057030273,21.160599969936417,2019
+2004,64,"(60,65]",HS,14086.477558348295,2629.5264395595914,5.3570397111913355,21.982680535781373,2019
+2004,64,"(60,65]",HS,24904.703770197488,2435.941671003057,10.223850622803454,18.279329651680335,2019
+2004,64,"(60,65]",HS,34351.207181328544,3274.809001414706,10.489529974569187,19.504203208628326,2019
+2004,57,"(55,60]",College,3297.3199281867146,382.3299178991553,8.624279120778686,3205.420857915385,2019
+2004,57,"(55,60]",College,3223.4700179533215,382.3299178991553,8.431121570777925,3338.4476431212433,2019
+2004,57,"(55,60]",College,3402.5953321364454,383.94312430379307,8.86223796377757,3170.482573073431,2019
+2004,57,"(55,60]",College,3297.3199281867146,383.94312430379307,8.58804265388466,3402.697704828567,2019
+2004,57,"(55,60]",College,3467.017594254937,382.3299178991553,9.068130512269798,3255.7304886505713,2019
+2004,56,"(55,60]",College,14077.67842010772,1242.1689315710953,11.333143232219046,1405.1578330170792,2019
+2004,56,"(55,60]",College,14082.23511669659,1242.1689315710953,11.33681157110038,1389.6551059862818,2019
+2004,56,"(55,60]",College,14083.806391382406,1242.1689315710953,11.33807651554222,1442.3952155883323,2019
+2004,56,"(55,60]",College,14077.521292639138,1242.1689315710953,11.33301673777486,1350.4283355966081,2019
+2004,56,"(55,60]",College,14080.820969479355,1242.1689315710953,11.335673121102724,1380.2505930576149,2019
+2004,69,"(65,70]",College,19697.49946140036,1129.2444832464503,17.4430778751934,1420.303182351971,2019
+2004,69,"(65,70]",College,19787.062118491922,1129.2444832464503,17.52238989169675,1428.194532688023,2019
+2004,69,"(65,70]",College,19752.494075403953,1129.2444832464503,17.49177823620423,1627.6742694224395,2019
+2004,69,"(65,70]",College,19710.069658886896,1129.2444832464503,17.45420938628159,1363.4184743803792,2019
+2004,69,"(65,70]",College,19706.92710951526,1129.2444832464503,17.45142650850954,1447.7416170052247,2019
+2004,76,"(75,80]",College,952819.2410771993,33274.64058462083,28.63499723322577,2.948805466293711,2019
+2004,76,"(75,80]",College,737855.0368402154,31903.737781959644,23.1275420417179,2.9573252286264955,2019
+2004,76,"(75,80]",College,738723.7946140035,45554.69037800459,16.21619614762403,2.8988062811777175,2019
+2004,76,"(75,80]",College,668786.2012208259,33198.49724232193,20.145074529706346,2.9030959168701105,2019
+2004,76,"(75,80]",College,1067873.63016158,52426.3043791997,20.369042655336624,2.832307309976691,2019
+2004,56,"(55,60]",College,122.40229802513464,51.62260494840914,2.371098826714802,6736.876487431316,2019
+2004,56,"(55,60]",College,123.97357271095153,51.62260494840914,2.4015365523465713,6006.919064342264,2019
+2004,56,"(55,60]",College,127.11612208258528,51.62260494840914,2.462412003610109,6753.23172481393,2019
+2004,56,"(55,60]",College,128.3731418312388,51.62260494840914,2.4867621841155243,6632.752856590739,2019
+2004,56,"(55,60]",College,120.83102333931778,51.62260494840914,2.3406611010830334,6494.484258646493,2019
+2004,51,"(50,55]",College,29445.687612208258,2742.4508878842366,10.736997239328943,29.61522827315356,2019
+2004,51,"(50,55]",College,29445.687612208258,2742.4508878842366,10.736997239328943,30.288865272540924,2019
+2004,51,"(50,55]",College,29445.687612208258,2742.4508878842366,10.736997239328943,30.73317210105531,2019
+2004,51,"(50,55]",College,29445.687612208258,2742.4508878842366,10.736997239328943,29.418209941644864,2019
+2004,51,"(50,55]",College,29445.687612208258,2742.4508878842366,10.736997239328943,31.16929348498715,2019
+2004,35,"(30,35]",College,43.52430879712747,101.63200349218052,0.4282539682539683,8863.314398514653,2019
+2004,35,"(30,35]",College,43.36718132854578,101.63200349218052,0.4267079250472753,8508.293949320028,2019
+2004,35,"(30,35]",College,43.36718132854578,101.63200349218052,0.4267079250472753,8855.300111752269,2019
+2004,35,"(30,35]",College,43.36718132854578,101.63200349218052,0.4267079250472753,8822.285416305323,2019
+2004,35,"(30,35]",College,43.36718132854578,101.63200349218052,0.4267079250472753,8732.975367082374,2019
+2004,70,"(65,70]",HS,35110.1328545781,1274.433059663851,27.54960928574693,271.9464389850264,2019
+2004,70,"(65,70]",HS,36836.963734290846,1255.0745828081974,29.350418085807362,261.71600171780705,2019
+2004,70,"(65,70]",HS,35165.12746858168,1255.0745828081974,28.018356797490558,272.5775540173724,2019
+2004,70,"(65,70]",HS,38722.4933572711,1297.0179493287799,29.855017332112013,265.56301083949995,2019
+2004,70,"(65,70]",HS,35163.55619389587,1287.3387109009534,27.31492178098676,271.1371401686824,2019
+2004,52,"(50,55]",HS,1.382721723518851,43.55657292522023,0.03174542051076346,4431.350937994841,2019
+2004,52,"(50,55]",HS,1.2648761220825853,43.55657292522023,0.02903984489905067,4375.689460640754,2019
+2004,52,"(50,55]",HS,0.07070736086175942,43.55657292522023,0.0016233453670276773,4443.988923400844,2019
+2004,52,"(50,55]",HS,0.5106642728904848,43.55657292522023,0.011724160984088782,4405.564898915703,2019
+2004,52,"(50,55]",HS,-0.18069658886894074,43.55657292522023,-0.004148549271292953,4379.833830521207,2019
+2004,64,"(60,65]",NoHS,17895.09026929982,512.9996366748159,34.88324160479532,1348.4757155892573,2019
+2004,64,"(60,65]",NoHS,20821.746499102337,451.69779329858005,46.096630995358446,1454.7770231336274,2019
+2004,64,"(60,65]",NoHS,22422.40402154399,524.2920815072805,42.76700871980006,1350.438692812286,2019
+2004,64,"(60,65]",NoHS,18805.015439856372,521.065668698005,36.08953068592057,1460.0910371203622,2019
+2004,64,"(60,65]",NoHS,14330.9678994614,462.99023813104463,30.95306708260481,1357.811171094922,2019
+2004,54,"(50,55]",NoHS,447.34190305206465,56.46222416232251,7.922853017019083,4567.293087435583,2019
+2004,54,"(50,55]",NoHS,414.50226211849196,56.46222416232251,7.341231562661167,4458.17122900337,2019
+2004,54,"(50,55]",NoHS,416.6234829443447,56.46222416232251,7.378800412583806,4622.613482438699,2019
+2004,54,"(50,55]",NoHS,413.7951885098743,56.46222416232251,7.3287086126869525,4620.747746784325,2019
+2004,54,"(50,55]",NoHS,478.4531418312388,56.46222416232251,8.473862815884477,4553.239501806763,2019
+2004,41,"(40,45]",College,508.1345206463196,185.5187365333454,2.7389929995291165,5963.51481897451,2019
+2004,41,"(40,45]",College,508.18165888689407,185.5187365333454,2.739247088369173,6620.779158876874,2019
+2004,41,"(40,45]",College,509.70579533213646,185.5187365333454,2.747462627531,5887.099062755244,2019
+2004,41,"(40,45]",College,509.91006104129264,185.5187365333454,2.748563679171245,5878.274537465159,2019
+2004,41,"(40,45]",College,508.3387863554758,185.5187365333454,2.7400940511693617,6141.558220987596,2019
+2004,75,"(70,75]",College,28175.78341113106,590.4335440974297,47.720499102404766,275.7612141265069,2019
+2004,75,"(70,75]",College,14000.057450628366,217.78286462610117,64.28447653429602,1689.3553728556951,2019
+2004,75,"(70,75]",College,9222.596768402154,204.87721338899885,45.01523920520765,1924.1920068742681,2019
+2004,75,"(70,75]",College,32703.72567324955,225.84889664929003,144.80356627127387,271.49908696120343,2019
+2004,75,"(70,75]",College,23114.55052064632,245.2073735049435,94.26531588447654,279.3843421777243,2019
+2004,58,"(55,60]",College,23.25486535008977,40.33016011594465,0.5766122743682311,7175.258007403498,2019
+2004,58,"(55,60]",College,28.440071813285456,35.4905409020313,0.8013423039054807,6395.925632251765,2019
+2004,58,"(55,60]",College,26.240287253141833,35.4905409020313,0.739360026255333,7141.810907500842,2019
+2004,58,"(55,60]",College,20.112315978456017,38.716953711306864,0.5194705174488569,7071.063390184385,2019
+2004,58,"(55,60]",College,52.323447037701975,41.94336652058244,1.2474784782005,6878.8697924104,2019
+2004,79,"(75,80]",College,143618.90585278277,4484.713804893046,32.02409609640807,18.968049583545866,2019
+2004,79,"(75,80]",College,142092.56962298023,4436.317612753912,32.02939510338037,20.08277893185048,2019
+2004,79,"(75,80]",College,138626.6519210054,4500.845868939423,30.800133121126255,19.680052415018398,2019
+2004,79,"(75,80]",College,140788.0973788151,4420.185548707534,31.851173627763583,18.634196351820794,2019
+2004,79,"(75,80]",College,136391.19942549372,4662.166509403201,29.254896655965425,19.074323977144275,2019
+2004,61,"(60,65]",College,4587.6507001795335,256.49981833740793,17.885590445700796,1485.5121993403518,2019
+2004,61,"(60,65]",College,4043.989658886894,287.1507400255259,14.083159453210563,1473.1704104320002,2019
+2004,61,"(60,65]",College,5132.88301615799,162.9338468684164,31.5028652107088,1682.8320323145879,2019
+2004,61,"(60,65]",College,4498.0880430879715,306.5092168811794,14.675212996389892,1408.5463281241593,2019
+2004,61,"(60,65]",College,5002.467217235189,224.23569024465226,22.308969690673457,1500.771019087219,2019
+2004,67,"(65,70]",College,956747.58491921,34280.63609855296,27.909271641537476,2.948805466293711,2019
+2004,67,"(65,70]",College,958689.6804308797,33135.259551260126,28.932614182417684,2.9573252286264955,2019
+2004,67,"(65,70]",College,969308.3547576301,30441.204855515025,31.841983895128934,2.8988062811777175,2019
+2004,67,"(65,70]",College,956090.7921005386,29441.016884639594,32.47478834874636,2.9030959168701105,2019
+2004,67,"(65,70]",College,985956.01005386,32183.467772523836,30.635480832044006,2.832307309976691,2019
+2004,74,"(70,75]",HS,2015.474039497307,167.77346608232975,12.013067897806167,3282.0710318672254,2019
+2004,74,"(70,75]",HS,1253.1858384201078,106.95558462748521,11.71688082286511,6661.027051872438,2019
+2004,74,"(70,75]",HS,1201.443763016158,98.56691132336874,12.189118507270438,5926.597161441805,2019
+2004,74,"(70,75]",HS,1242.1712028725315,99.69615580661518,12.459569707803208,5909.616025533188,2019
+2004,74,"(70,75]",HS,1854.8897666068224,90.01691737878846,20.606012965335196,3334.3450666221156,2019
+2004,45,"(40,45]",College,1300.0726750448832,325.8676937368328,3.989572148550595,13246.48318220023,2019
+2004,45,"(40,45]",College,1300.0726750448832,325.8676937368328,3.989572148550595,13671.411373622333,2019
+2004,45,"(40,45]",College,1300.0726750448832,325.8676937368328,3.989572148550595,13085.091713932907,2019
+2004,45,"(40,45]",College,1300.0726750448832,325.8676937368328,3.989572148550595,13353.748652767938,2019
+2004,45,"(40,45]",College,1300.0726750448832,324.25448733219497,4.009420766205076,13460.622651255317,2019
+2004,38,"(35,40]",College,233.6485457809695,153.2546084405897,1.52457761732852,8045.5056859761335,2019
+2004,38,"(35,40]",College,232.0772710951526,154.86781484522746,1.498550691937425,7723.242600835902,2019
+2004,38,"(35,40]",College,232.2343985637343,154.86781484522746,1.4995652827918171,8038.230869037834,2019
+2004,38,"(35,40]",College,235.21982046678636,154.86781484522746,1.5188425090252708,8008.2624048723665,2019
+2004,38,"(35,40]",College,235.21982046678636,154.86781484522746,1.5188425090252708,7927.1929001103,2019
+2004,35,"(30,35]",HS,4.870951526032316,48.39619213913358,0.10064741275571601,4425.77923162618,2019
+2004,35,"(30,35]",HS,4.870951526032316,48.39619213913358,0.10064741275571601,4398.844090726123,2019
+2004,35,"(30,35]",HS,4.713824057450628,48.39619213913358,0.09740072202166064,4423.396679484553,2019
+2004,35,"(30,35]",HS,4.713824057450628,48.39619213913358,0.09740072202166064,4425.985334022774,2019
+2004,35,"(30,35]",HS,4.870951526032316,48.39619213913358,0.10064741275571601,4428.574732612416,2019
+2004,46,"(45,50]",College,2024.6188581687613,195.19797496117215,10.37213044126861,2188.674392612379,2019
+2004,46,"(45,50]",College,2043.5055798922801,195.19797496117215,10.468887191574423,2137.739851169534,2019
+2004,46,"(45,50]",College,2167.604854578097,195.19797496117215,11.10464826804308,2237.8382157387887,2019
+2004,46,"(45,50]",College,1958.766736086176,195.19797496117215,10.034769758629947,2158.4763609759525,2019
+2004,46,"(45,50]",College,2073.485500897666,195.19797496117215,10.62247444580362,2245.216319966507,2019
+2004,43,"(40,45]",College,11287.094578096949,827.5748855791844,13.6387591924054,1396.2534519173973,2019
+2004,43,"(40,45]",College,11420.652926391382,842.0937432209245,13.562210880119505,1394.3849704277395,2019
+2004,43,"(40,45]",College,11397.083806104129,774.3390742261373,14.718466606498195,1443.3904504542636,2019
+2004,43,"(40,45]",College,11227.386140035907,840.4805368162866,13.358294033273973,1340.4194575111553,2019
+2004,43,"(40,45]",College,11301.2360502693,782.4051062493263,14.444225836465815,1374.969632305692,2019
+2004,58,"(55,60]",College,769.7674685816877,182.29232372406983,4.222709178620492,4926.97079422748,2019
+2004,58,"(55,60]",College,838.9035547576302,182.29232372406983,4.601968627200409,5060.621318770907,2019
+2004,58,"(55,60]",College,580.9002513464991,182.29232372406983,3.1866413213635347,4815.118604757261,2019
+2004,58,"(55,60]",College,587.49960502693,182.29232372406983,3.2228433596370722,4747.106176581516,2019
+2004,58,"(55,60]",College,620.653500897666,182.29232372406983,3.404715504296987,4939.371068058339,2019
+2004,38,"(35,40]",HS,50.7521723518851,96.79238427826716,0.5243405535499398,5335.391189986962,2019
+2004,38,"(35,40]",HS,50.7521723518851,96.79238427826716,0.5243405535499398,5248.30857775692,2019
+2004,38,"(35,40]",HS,50.7521723518851,96.79238427826716,0.5243405535499398,5314.545828170051,2019
+2004,38,"(35,40]",HS,50.7521723518851,96.79238427826716,0.5243405535499398,5353.450449890055,2019
+2004,38,"(35,40]",HS,50.7521723518851,96.79238427826716,0.5243405535499398,5299.025915746862,2019
+2004,38,"(35,40]",HS,394.43708438061043,146.80178282203855,2.68686848891181,9527.621141191357,2019
+2004,38,"(35,40]",HS,360.52897666068225,141.9621636081252,2.5396131440761405,11406.223405755074,2019
+2004,38,"(35,40]",HS,394.5942118491921,140.3489572034874,2.8115222208390387,12141.768313816085,2019
+2004,38,"(35,40]",HS,260.3602154398564,125.83009956174732,2.069140979357586,12010.778371047567,2019
+2004,38,"(35,40]",HS,394.01284021543984,129.0565123710229,3.0530256317689526,11792.183846062642,2019
+2004,57,"(55,60]",College,4328.076122082585,753.3673909658461,5.744974064425359,1407.987530378975,2019
+2004,57,"(55,60]",College,4328.076122082585,535.584526339745,8.081032795441693,1396.2898244340197,2019
+2004,57,"(55,60]",College,4328.076122082585,613.0184337623588,7.060270758122743,1595.0098008440414,2019
+2004,57,"(55,60]",College,4328.076122082585,796.9239638910664,5.430977506248264,1335.0382897162103,2019
+2004,57,"(55,60]",College,4328.076122082585,482.3487149866981,8.972919358149305,1422.4500355953103,2019
+2004,51,"(50,55]",College,14022.212423698385,1935.8476855653435,7.243448194945849,310.70106045890736,2019
+2004,51,"(50,55]",College,19399.114398563735,1935.8476855653435,10.020992117930204,301.00706597605534,2019
+2004,51,"(50,55]",College,12639.490700179535,1935.8476855653435,6.52917623345367,325.20157999077855,2019
+2004,51,"(50,55]",College,13379.561077199281,1935.8476855653435,6.911474067388688,305.05559433682316,2019
+2004,51,"(50,55]",College,13347.978456014363,1935.8476855653435,6.89515944645006,314.7908370098702,2019
+2004,44,"(40,45]",HS,231.76301615798923,53.23581135304694,4.353517120665135,6962.18550710497,2019
+2004,44,"(40,45]",HS,142.20035906642727,53.23581135304694,2.671141013018269,6683.314859514835,2019
+2004,44,"(40,45]",HS,130.88718132854578,53.23581135304694,2.4586303467891915,6955.890237791699,2019
+2004,44,"(40,45]",HS,179.91095152603233,53.23581135304694,3.379509900448529,6929.957000649537,2019
+2004,44,"(40,45]",HS,137.80078994614001,53.23581135304694,2.5884979761514053,6859.803432539277,2019
+2004,39,"(35,40]",College,896836.4681364453,31780.166171364388,28.22000562553831,2.137424366587618,2019
+2004,39,"(35,40]",College,756729.0312387792,31780.166171364388,23.81136168887097,2.1820483676834277,2019
+2004,39,"(35,40]",College,1122953.407253142,31796.29823541077,35.31711141149557,2.093878738556749,2019
+2004,39,"(35,40]",College,718031.6782764812,31780.166171364388,22.593704337627592,2.098208240718619,2019
+2004,39,"(35,40]",College,722850.7777378815,31796.29823541077,22.73380292215463,2.046605978488266,2019
+2004,79,"(75,80]",College,509.941486535009,48.39619213913358,10.53681010830325,9465.685802326578,2019
+2004,79,"(75,80]",College,1231.156567324955,62.91504978087366,19.568554290474864,8107.083315271656,2019
+2004,79,"(75,80]",College,967.0252926391383,27.424508878842364,35.26135315353579,7214.078570824175,2019
+2004,79,"(75,80]",College,317.46033752244165,62.91504978087366,5.045856891604184,9282.289903396606,2019
+2004,79,"(75,80]",College,357.52784201077196,61.30184337623587,5.832252707581227,9191.221600277559,2019
+2004,41,"(40,45]",College,1.5555619389587074,80.6603202318893,0.01928534296028881,8996.976832061762,2019
+2004,41,"(40,45]",College,3.1268366247755837,80.6603202318893,0.038765487364620946,8328.1947182894055,2019
+2004,41,"(40,45]",College,1.5555619389587074,80.6603202318893,0.01928534296028881,8989.436798199778,2019
+2004,41,"(40,45]",College,1.5555619389587074,80.6603202318893,0.01928534296028881,8967.1900120553,2019
+2004,41,"(40,45]",College,4.69811131059246,80.6603202318893,0.058245631768953074,8748.635013919808,2019
+2004,57,"(55,60]",College,397078.24,31312.336314019423,12.681207688172945,2.948805466293711,2019
+2004,57,"(55,60]",College,391831.5966965889,33683.74972883698,11.632659660843466,2.9573252286264955,2019
+2004,57,"(55,60]",College,393002.6677199282,27150.263790053938,14.475095739728998,2.8988062811777175,2019
+2004,57,"(55,60]",College,411361.1268940754,30715.44994430345,13.392645318235596,2.9030959168701105,2019
+2004,57,"(55,60]",College,437876.5443447038,29392.62069250047,14.897499237161524,2.832307309976691,2019
+2004,91,"(90,95]",NoHS,84.69170556552963,19.358476855653432,4.374915764139591,11184.97548451249,2019
+2004,91,"(90,95]",NoHS,84.69170556552963,19.358476855653432,4.374915764139591,11176.986827977264,2019
+2004,91,"(90,95]",NoHS,84.69170556552963,19.358476855653432,4.374915764139591,11137.052195775492,2019
+2004,91,"(90,95]",NoHS,84.69170556552963,19.358476855653432,4.374915764139591,11201.955159188312,2019
+2004,91,"(90,95]",NoHS,84.69170556552963,19.358476855653432,4.374915764139591,11188.54138017428,2019
+2004,21,"(20,25]",NoHS,0,32.264128092755726,0,6564.649087964765,2019
+2004,21,"(20,25]",NoHS,0,32.264128092755726,0,6647.232679757023,2019
+2004,21,"(20,25]",NoHS,0,32.264128092755726,0,6618.2400295885745,2019
+2004,21,"(20,25]",NoHS,0,32.264128092755726,0,6485.687345771318,2019
+2004,21,"(20,25]",NoHS,0,32.264128092755726,0,6636.228095669668,2019
+2004,59,"(55,60]",College,5489.2481149012565,2032.6400698436103,2.700550971291044,1847.3157704018752,2019
+2004,59,"(55,60]",College,9651.554757630161,2129.4324541218775,4.53245405316705,1847.299573869644,2019
+2004,59,"(55,60]",College,9593.65328545781,1514.8008139548813,6.333277086385009,1894.2772300348668,2019
+2004,59,"(55,60]",College,4976.3840574506285,1221.1972483108038,4.075004315915476,1762.0921498530447,2019
+2004,59,"(55,60]",College,4827.898599640934,1487.3763050760388,3.2459160356155587,1769.8837134125156,2019
+2004,58,"(55,60]",College,163132.40904847396,9404.993339038292,17.345297669839187,29.35650823389555,2019
+2004,58,"(55,60]",College,236290.17278276483,8888.767289554202,26.58300809162206,30.29644577155334,2019
+2004,58,"(55,60]",College,187256.0321723519,8888.767289554202,21.066591808788747,29.722027912855282,2019
+2004,58,"(55,60]",College,180436.48005745062,10292.256861589074,17.53128419587384,28.98419262984593,2019
+2004,58,"(55,60]",College,152868.3714183124,8888.767289554202,17.197927050914977,29.1175918322915,2019
+2004,61,"(60,65]",College,1539.5349371633754,167.77346608232975,9.1762718689253,5408.801443484403,2019
+2004,61,"(60,65]",College,1487.918563734291,167.77346608232975,8.86861670369342,5981.992442309735,2019
+2004,61,"(60,65]",College,1551.319497307002,167.77346608232975,9.246512774229382,5338.334411617789,2019
+2004,61,"(60,65]",College,1465.5436122082585,156.48102124986525,9.365631694517846,5321.271515525971,2019
+2004,61,"(60,65]",College,1619.9842010771993,167.77346608232975,9.655783115801167,5592.7394630447325,2019
+2004,57,"(55,60]",College,2182.500538599641,241.98096069566793,9.019306859205775,815.1632365076338,2019
+2004,57,"(55,60]",College,2182.500538599641,241.98096069566793,9.019306859205775,820.2561184244851,2019
+2004,57,"(55,60]",College,2182.500538599641,241.98096069566793,9.019306859205775,805.873073626051,2019
+2004,57,"(55,60]",College,2182.500538599641,241.98096069566793,9.019306859205775,838.4075178015028,2019
+2004,57,"(55,60]",College,2182.500538599641,241.98096069566793,9.019306859205775,847.9184739065546,2019
+2004,43,"(40,45]",College,236611.9698384201,2790.8470800233704,84.78141691533982,19.81794948471067,2019
+2004,43,"(40,45]",College,247871.72423698383,3129.6204249973052,79.20184897093304,20.612904765621785,2019
+2004,43,"(40,45]",College,237473.02836624774,2774.715015976992,85.58465536059104,20.633580245552746,2019
+2004,43,"(40,45]",College,255715.52746858168,2694.0546957451024,94.91846170474936,19.525588748991442,2019
+2004,43,"(40,45]",College,238299.51885098743,3065.0921688117937,77.74628158844764,19.991066487296695,2019
+2004,79,"(75,80]",NoHS,7.856373429084381,10.48584163014561,0.7492363232435435,10555.371697426996,2019
+2004,79,"(75,80]",NoHS,7.856373429084381,10.48584163014561,0.7492363232435435,10565.549889792826,2019
+2004,79,"(75,80]",NoHS,7.856373429084381,10.647162270609387,0.7378842577398536,10576.215428079438,2019
+2004,79,"(75,80]",NoHS,7.856373429084381,10.647162270609387,0.7378842577398536,10550.057007127421,2019
+2004,79,"(75,80]",NoHS,7.856373429084381,10.48584163014561,0.7492363232435435,10565.557657548361,2019
+2004,75,"(70,75]",College,12876.5960502693,752.3994671230636,17.114041958994616,307.2549821473893,2019
+2004,75,"(70,75]",College,15467.628007181329,752.3994671230636,20.557733867522025,300.7539315690902,2019
+2004,75,"(70,75]",College,15467.628007181329,752.3994671230636,20.557733867522025,318.80985280446123,2019
+2004,75,"(70,75]",College,15467.628007181329,752.3994671230636,20.557733867522025,303.9371193664785,2019
+2004,75,"(70,75]",College,15467.628007181329,752.3994671230636,20.557733867522025,310.5716416555325,2019
+2004,70,"(65,70]",HS,304.0416517055655,74.20749461333816,4.09718254591116,7391.905664999971,2019
+2004,70,"(65,70]",HS,286.6005026929982,74.20749461333816,3.862150368858892,6896.9267527781285,2019
+2004,70,"(65,70]",HS,279.54547935368043,74.20749461333816,3.7670787945377495,7760.566363213724,2019
+2004,70,"(65,70]",HS,281.10104129263914,74.20749461333816,3.788041123842411,7502.217597976593,2019
+2004,70,"(65,70]",HS,312.5265350089766,74.20749461333816,4.211522523936587,7520.97260586898,2019
+2004,47,"(45,50]",College,1769.569551166966,290.37715283480145,6.094038507821903,515.2573057406888,2019
+2004,47,"(45,50]",College,1769.7266786355476,290.37715283480145,6.094579622944245,532.1267557962403,2019
+2004,47,"(45,50]",College,1767.8411490125673,290.37715283480145,6.088086241476134,510.283954807586,2019
+2004,47,"(45,50]",College,1768.1554039497307,290.37715283480145,6.08916847172082,521.5366118323628,2019
+2004,47,"(45,50]",College,1768.1554039497307,290.37715283480145,6.08916847172082,529.6128730681471,2019
+2004,75,"(70,75]",College,5467.564524236984,172.77440593670687,31.645685566645433,3643.933326921246,2019
+2004,75,"(70,75]",College,5460.65091561939,164.70837391351796,33.1534504644346,3596.5441441361945,2019
+2004,75,"(70,75]",College,5467.564524236984,155.02913548569126,35.26798048062149,4050.5172030113586,2019
+2004,75,"(70,75]",College,5469.135798922801,155.02913548569126,35.278115831508245,3559.838066757247,2019
+2004,75,"(70,75]",College,5470.707073608617,159.8687546996046,34.2199892898906,3730.011843083447,2019
+2004,40,"(35,40]",College,126.48761220825853,69.36787539942482,1.8234321215682978,6667.942802070693,2019
+2004,40,"(35,40]",College,126.48761220825853,69.36787539942482,1.8234321215682978,7400.534132225337,2019
+2004,40,"(35,40]",College,124.91633752244165,72.59428820870036,1.7207460890493385,6580.698864644934,2019
+2004,40,"(35,40]",College,126.48761220825853,69.36787539942482,1.8234321215682978,6570.194537389604,2019
+2004,40,"(35,40]",College,124.91633752244165,74.20749461333816,1.6833385653743527,6864.9196768127385,2019
+2004,36,"(35,40]",HS,173.92439497307,98.40559068290497,1.7674239214061662,7223.257584654991,2019
+2004,36,"(35,40]",HS,172.90306642728905,98.40559068290497,1.757045155944842,6802.691824272627,2019
+2004,36,"(35,40]",HS,172.03886535008976,119.37727394319619,1.4411358181285976,7243.268302253707,2019
+2004,36,"(35,40]",HS,206.74832315978458,104.8584163014561,1.971690308247709,5910.2580850480545,2019
+2004,36,"(35,40]",HS,171.25322800718132,103.24520989681828,1.6587038583032494,7104.214790957155,2019
+2004,25,"(20,25]",College,29.759942549371633,80.6603202318893,0.36895393501805057,4242.202943684112,2019
+2004,25,"(20,25]",College,12.42878276481149,80.6603202318893,0.15408794223826716,4302.272173437044,2019
+2004,25,"(20,25]",College,4.8395260323159786,80.6603202318893,0.059998844765342965,4231.592978986874,2019
+2004,25,"(20,25]",College,13.795791741472172,80.6603202318893,0.1710356678700361,4274.059402211999,2019
+2004,25,"(20,25]",College,51.160703770197486,80.6603202318893,0.6342735018050542,4265.238911293618,2019
+2004,32,"(30,35]",HS,4.462420107719929,45.16977932985802,0.09879216090768438,4581.75057448468,2019
+2004,32,"(30,35]",HS,14.015770197486535,45.16977932985802,0.31029087158329033,4646.627769560675,2019
+2004,32,"(30,35]",HS,10.558965888689407,45.16977932985802,0.2337617328519855,4570.291383943314,2019
+2004,32,"(30,35]",HS,2.891145421903052,45.16977932985802,0.06400618875709127,4616.156836773124,2019
+2004,32,"(30,35]",HS,7.573543985637343,45.16977932985802,0.16766838576585869,4606.630350212007,2019
+2004,38,"(35,40]",HS,50.62647037701975,48.39619213913358,1.0460837545126354,4247.13843637401,2019
+2004,38,"(35,40]",HS,50.64218312387792,48.39619213913358,1.046408423586041,4228.950595197763,2019
+2004,38,"(35,40]",HS,50.62647037701975,48.39619213913358,1.0460837545126354,4215.3033859012985,2019
+2004,38,"(35,40]",HS,50.64218312387792,48.39619213913358,1.046408423586041,4228.90828943681,2019
+2004,38,"(35,40]",HS,50.62647037701975,48.39619213913358,1.0460837545126354,4206.114967341253,2019
+2004,30,"(25,30]",NoHS,2.844007181328546,14.357537001276295,0.19808461444854583,5959.675032090623,2019
+2004,30,"(25,30]",NoHS,2.844007181328546,14.357537001276295,0.19808461444854583,5977.088914165155,2019
+2004,30,"(25,30]",NoHS,2.844007181328546,14.357537001276295,0.19808461444854583,5995.121437688749,2019
+2004,30,"(25,30]",NoHS,2.844007181328546,14.357537001276295,0.19808461444854583,5991.580893518468,2019
+2004,30,"(25,30]",NoHS,2.844007181328546,14.357537001276295,0.19808461444854583,6002.886029846161,2019
+2004,71,"(70,75]",College,2500.6836624775588,195.19797496117215,12.811012322105201,3458.7126403664056,2019
+2004,71,"(70,75]",College,1332.440933572711,243.5941671003057,5.469921342673393,1707.9832634097068,2019
+2004,71,"(70,75]",College,1323.0132854578096,275.8582951930614,4.795988768551946,1711.688808331496,2019
+2004,71,"(70,75]",College,1824.2499102333932,208.1036261982744,8.766064981949459,3445.516253230219,2019
+2004,71,"(70,75]",College,1140.7454219030521,241.98096069566793,4.714194945848376,1722.3523565284959,2019
+2004,62,"(60,65]",College,53203.517989228014,3984.619819455332,13.352219383504583,26.717572668833196,2019
+2004,62,"(60,65]",College,53203.989371633754,3984.619819455332,13.352337683976671,27.140339242739294,2019
+2004,62,"(60,65]",College,53203.36086175942,3984.619819455332,13.352179950013882,28.16723553762133,2019
+2004,62,"(60,65]",College,53203.203734290844,3968.487755408954,13.406417510492794,25.86303419936243,2019
+2004,62,"(60,65]",College,53202.88947935368,3968.487755408954,13.406338322913914,27.611709808222166,2019
+2004,65,"(60,65]",College,28772.223569120288,1406.7159848441495,20.45347026628689,213.89932839736997,2019
+2004,65,"(60,65]",College,28965.34894075404,1479.31027305285,19.580306760784065,209.00689675678632,2019
+2004,65,"(60,65]",College,29198.05472172352,1522.8668459780702,19.17308450100961,220.04188165536567,2019
+2004,65,"(60,65]",College,29420.704344703772,1568.0366253079283,18.762766041211687,208.79801098943534,2019
+2004,65,"(60,65]",College,29656.866929982047,1188.9331202180483,24.944100240510608,216.91507817072346,2019
+2004,49,"(45,50]",HS,30.270606822262117,79.04711382725151,0.38294385913210055,4484.228900312712,2019
+2004,49,"(45,50]",HS,30.270606822262117,79.04711382725151,0.38294385913210055,4389.511782821958,2019
+2004,49,"(45,50]",HS,30.270606822262117,79.04711382725151,0.38294385913210055,4522.833620931275,2019
+2004,49,"(45,50]",HS,30.278463195691202,79.04711382725151,0.38304324762395936,4519.593427959329,2019
+2004,49,"(45,50]",HS,30.278463195691202,79.04711382725151,0.38304324762395936,4464.745676229928,2019
+2004,62,"(60,65]",HS,221.86398563734292,19.358476855653432,11.460818291215404,6199.039987151009,2019
+2004,62,"(60,65]",HS,221.70685816876122,19.358476855653432,11.452701564380265,6171.006072077823,2019
+2004,62,"(60,65]",HS,221.70685816876122,20.97168326029122,10.571724520966399,6127.522772696939,2019
+2004,62,"(60,65]",HS,221.86398563734292,20.97168326029122,10.579216884198834,6173.320327387059,2019
+2004,62,"(60,65]",HS,221.70685816876122,19.358476855653432,11.452701564380265,6176.98331601123,2019
+2004,38,"(35,40]",HS,315.8262118491921,166.16025967769198,1.9007325365392027,6977.767266273101,2019
+2004,38,"(35,40]",HS,315.8262118491921,166.16025967769198,1.9007325365392027,7746.8166835172715,2019
+2004,38,"(35,40]",HS,315.8262118491921,166.16025967769198,1.9007325365392027,6888.355002103364,2019
+2004,38,"(35,40]",HS,315.8262118491921,166.16025967769198,1.9007325365392027,6878.02963433306,2019
+2004,38,"(35,40]",HS,315.8262118491921,166.16025967769198,1.9007325365392027,7186.091628709488,2019
+2004,54,"(50,55]",HS,448.6617737881508,54.84901775768473,8.179941813548524,8479.574176297236,2019
+2004,54,"(50,55]",HS,1084.3366606822262,59.68863697159809,18.166550883012974,8188.189133392967,2019
+2004,54,"(50,55]",HS,486.30951526032317,79.04711382725151,6.152147646062036,8551.965874222367,2019
+2004,54,"(50,55]",HS,640.7972423698384,79.04711382725151,8.106522949974215,7281.326280807902,2019
+2004,54,"(50,55]",HS,550.7317773788151,75.82070101797595,7.26360703587065,8236.587006028258,2019
+2004,38,"(35,40]",College,462.6618312387792,225.84889664929003,2.048545899948427,6709.051376152429,2019
+2004,38,"(35,40]",College,462.50470377019747,225.84889664929003,2.0478501805054155,7448.4844718978275,2019
+2004,38,"(35,40]",College,464.2331059245961,225.84889664929003,2.055503094378546,6623.0824048351515,2019
+2004,38,"(35,40]",College,464.07597845601435,225.84889664929003,2.054807374935534,6613.15467004476,2019
+2004,38,"(35,40]",College,464.07597845601435,225.84889664929003,2.054807374935534,6909.35310551011,2019
+2004,60,"(55,60]",College,168165.5161220826,7098.108180406259,23.69159666885461,20.74019594646676,2019
+2004,60,"(55,60]",College,188971.54987432674,7098.108180406259,26.62280498851329,21.35350431432254,2019
+2004,60,"(55,60]",College,174039.09802513465,7098.108180406259,24.519082212011813,20.995578422063275,2019
+2004,60,"(55,60]",College,359095.5027648115,7081.9761163598805,50.705551228176944,20.4852844289174,2019
+2004,60,"(55,60]",College,195615.2135008977,7081.9761163598805,27.621557922090744,20.567919624948274,2019
+2004,59,"(55,60]",NoHS,1209.8815080789948,83.88673304116487,14.422799222438215,346.0354690713172,2019
+2004,59,"(55,60]",NoHS,1095.1784560143626,83.88673304116487,13.055442932518744,349.22527431975215,2019
+2004,59,"(55,60]",NoHS,1445.572710951526,83.88673304116487,17.2324354346015,59.932321206314306,2019
+2004,59,"(55,60]",NoHS,1315.1569120287252,83.88673304116487,15.677770063871145,59.25666562166664,2019
+2004,59,"(55,60]",NoHS,1224.0229802513466,83.88673304116487,14.59137739516801,62.74718744984201,2019
+2004,21,"(20,25]",HS,6.285098743267505,43.55657292522023,0.14429736595801576,6432.828890759605,2019
+2004,21,"(20,25]",HS,6.127971274685817,41.94336652058244,0.14610108303249097,6509.744096770599,2019
+2004,21,"(20,25]",HS,6.127971274685817,53.23581135304694,0.11510994420741713,6442.585949370975,2019
+2004,21,"(20,25]",HS,6.127971274685817,45.16977932985802,0.13566529138731304,6368.559279526386,2019
+2004,21,"(20,25]",HS,6.127971274685817,37.10374730666908,0.16515774603672895,6471.567745868619,2019
+2004,31,"(30,35]",College,124.13070017953322,129.0565123710229,0.9618321299638989,6623.344084090555,2019
+2004,31,"(30,35]",College,124.91633752244165,129.0565123710229,0.9679196750902526,6453.200934721838,2019
+2004,31,"(30,35]",College,123.81644524236984,129.0565123710229,0.9593971119133573,6649.47342909219,2019
+2004,31,"(30,35]",College,124.28782764811491,129.0565123710229,0.9630496389891696,6620.376631039809,2019
+2004,31,"(30,35]",College,124.75921005385996,129.0565123710229,0.9667021660649818,6601.765320773603,2019
+2004,52,"(50,55]",College,53965.429084380616,3226.4128092755723,16.726138989169677,400.64994496298493,2019
+2004,52,"(50,55]",College,53965.429084380616,3226.4128092755723,16.726138989169677,393.66858440695324,2019
+2004,52,"(50,55]",College,53965.429084380616,3226.4128092755723,16.726138989169677,406.92838714251235,2019
+2004,52,"(50,55]",College,53965.429084380616,3226.4128092755723,16.726138989169677,396.6812062356402,2019
+2004,52,"(50,55]",College,53965.429084380616,3226.4128092755723,16.726138989169677,410.9195812538657,2019
+2004,30,"(25,30]",HS,36.7678276481149,25.81130247420457,1.4244855595667874,10774.590690664345,2019
+2004,30,"(25,30]",HS,36.7678276481149,24.19809606956679,1.5194512635379063,10623.613898214835,2019
+2004,30,"(25,30]",HS,36.61070017953321,24.19809606956679,1.5129578820697953,10698.793357708379,2019
+2004,30,"(25,30]",HS,36.7678276481149,24.19809606956679,1.5194512635379063,10747.618251849464,2019
+2004,30,"(25,30]",HS,36.7678276481149,24.19809606956679,1.5194512635379063,10657.74435056431,2019
+2004,62,"(60,65]",College,429796.56281508075,51396.75605175986,8.36232859486789,3.9481229427783164,2019
+2004,62,"(60,65]",College,448109.5650125673,51461.28430794538,8.707702713579213,3.939703292715241,2019
+2004,62,"(60,65]",College,468767.80781041295,50106.19092804963,9.355486799695942,3.8893355109706045,2019
+2004,62,"(60,65]",HS,394570.70557989227,49767.41758307571,7.9282937460285865,3.878729371457162,2019
+2004,62,"(60,65]",HS,502482.11136804306,49670.62519879744,10.116283202737067,3.7923635815572645,2019
+2004,22,"(20,25]",HS,31.111238779174148,41.94336652058244,0.7417439600111081,11594.551822177202,2019
+2004,22,"(20,25]",HS,26.711669658886894,40.33016011594465,0.6623249097472924,11407.249477304424,2019
+2004,22,"(20,25]",HS,28.282944344703772,32.264128092755726,0.8766064981949457,11559.359190618805,2019
+2004,22,"(20,25]",HS,33.31102333931778,69.36787539942482,0.48020821089748966,11364.635220635613,2019
+2004,22,"(20,25]",HS,28.282944344703772,62.91504978087366,0.4495417939461261,11475.5646547173,2019
+2004,74,"(70,75]",College,38135.936517055656,4436.317612753912,8.596304378076796,27.96089942569834,2019
+2004,74,"(70,75]",College,20732.34096947935,4097.5442677799765,5.0596990818385965,31.10143751073473,2019
+2004,74,"(70,75]",College,24839.338743267504,4646.034445356823,5.346352687525071,28.661405128192467,2019
+2004,74,"(70,75]",College,31426.593608617593,4726.694765588713,6.648746146548219,27.13421954030061,2019
+2004,74,"(70,75]",College,28143.100897666067,3774.902986852419,7.45531765867506,28.408460769403725,2019
+2004,67,"(65,70]",College,1317.828078994614,283.9243272162504,4.641476452248113,515.2573057406888,2019
+2004,67,"(65,70]",College,1319.1793752244166,285.53753362088815,4.619985885904261,532.1267557962403,2019
+2004,67,"(65,70]",College,1316.5710592459607,282.31112081161257,4.663546570397113,510.283954807586,2019
+2004,67,"(65,70]",College,1315.4240287253142,285.53753362088815,4.606834036998511,521.5366118323628,2019
+2004,67,"(65,70]",College,1314.5284021543987,283.9243272162504,4.62985477518871,529.6128730681471,2019
+2004,59,"(55,60]",College,250553.89012567326,2887.639464301637,86.76771917794406,26.53403282575663,2019
+2004,59,"(55,60]",College,77890.91447037701,2871.5074002552597,27.12544444895144,27.460195446701853,2019
+2004,59,"(55,60]",College,242720.33160502693,2258.4889664929005,107.47023129448169,27.68412532033214,2019
+2004,59,"(55,60]",College,165485.8642728905,4097.5442677799765,40.38659583842634,26.087486167993212,2019
+2004,59,"(55,60]",College,90788.87985637343,2645.658503605969,34.31617487012415,26.767361096680492,2019
+2004,43,"(40,45]",NoHS,136.07238779174148,95.17917787362938,1.4296444961145445,7717.9261189614335,2019
+2004,43,"(40,45]",NoHS,144.08588868940757,91.95276506435381,1.5669554753309267,7408.784247827559,2019
+2004,43,"(40,45]",NoHS,150.68524236983842,103.24520989681828,1.4594889440433216,7710.94750234612,2019
+2004,43,"(40,45]",NoHS,104.80402154398564,108.08482911073166,0.9696459938574278,7682.199229539474,2019
+2004,43,"(40,45]",NoHS,145.65716337522443,87.11314585044046,1.6720457280385077,7604.430538213458,2019
+2004,45,"(40,45]",College,3455.8929694793537,350.0657898063996,9.87212424096225,1558.631650063167,2019
+2004,45,"(40,45]",College,6211.563087971275,440.4053484661156,14.104195395458936,1555.3628473954154,2019
+2004,45,"(40,45]",College,4098.1986355475765,435.56572925220235,9.408909747292418,1766.3422464613693,2019
+2004,45,"(40,45]",College,6626.6938599640935,240.36775429103014,27.56898020497662,1486.717788950526,2019
+2004,45,"(40,45]",College,4892.635116696589,237.14134148175458,20.63172573000319,1575.1744364225046,2019
+2004,62,"(60,65]",College,68895.00550089766,3323.2051935538398,20.73149308821983,19.81794948471067,2019
+2004,62,"(60,65]",College,69323.96349012568,3113.4883609509275,22.265688980752323,20.612904765621785,2019
+2004,62,"(60,65]",College,70411.28557271094,3290.941065461084,21.39548663198131,20.633580245552746,2019
+2004,62,"(60,65]",College,69597.36528545781,3613.5823463886404,19.259936155879323,19.525588748991442,2019
+2004,62,"(60,65]",College,75404.79652423698,3419.997577832107,22.048201733533137,19.991066487296695,2019
+2004,64,"(60,65]",College,2246.1371633752246,161.3206404637786,13.923433212996391,13246.48318220023,2019
+2004,64,"(60,65]",College,2247.7084380610413,161.3206404637786,13.933173285198556,14100.846143816167,2019
+2004,64,"(60,65]",College,2246.1371633752246,161.3206404637786,13.923433212996391,13227.753154647977,2019
+2004,64,"(60,65]",College,2246.1371633752246,161.3206404637786,13.923433212996391,14141.46206116561,2019
+2004,64,"(60,65]",College,2246.1371633752246,161.3206404637786,13.923433212996391,13782.702038243297,2019
+2004,47,"(45,50]",College,4139.994542190306,533.9713199351072,7.753215177724215,1503.204100833965,2019
+2004,47,"(45,50]",College,4139.994542190306,533.9713199351072,7.753215177724215,1470.9689164184124,2019
+2004,47,"(45,50]",College,4141.565816876122,533.9713199351072,7.756157797724868,1534.7585839214898,2019
+2004,47,"(45,50]",College,4138.423267504489,533.9713199351072,7.75027255772356,1464.2971769796936,2019
+2004,47,"(45,50]",College,4141.565816876122,533.9713199351072,7.756157797724868,1489.3666028001585,2019
+2004,62,"(60,65]",College,322.11131059245963,72.59428820870036,4.437144003208986,5478.667322940315,2019
+2004,62,"(60,65]",College,322.11131059245963,72.59428820870036,4.437144003208986,5345.483273481409,2019
+2004,62,"(60,65]",College,322.11131059245963,72.59428820870036,4.437144003208986,5470.766676770503,2019
+2004,62,"(60,65]",College,322.11131059245963,72.59428820870036,4.437144003208986,5499.023963875256,2019
+2004,62,"(60,65]",College,325.25385996409335,72.59428820870036,4.480433212996391,5447.380895052916,2019
+2004,44,"(40,45]",NoHS,-0.4540983842010772,13.228292518029845,-0.03432781544421942,5456.035736669342,2019
+2004,44,"(40,45]",NoHS,-0.46981113105924593,13.228292518029845,-0.03551562912741041,5447.647982475162,2019
+2004,44,"(40,45]",NoHS,-0.46981113105924593,13.389613158493624,-0.03508772998129703,5464.693433823504,2019
+2004,44,"(40,45]",NoHS,-0.46981113105924593,13.228292518029845,-0.03551562912741041,5457.478661387543,2019
+2004,44,"(40,45]",NoHS,-0.46981113105924593,13.228292518029845,-0.03551562912741041,5432.92400285118,2019
+2004,48,"(45,50]",College,3211.2140754039497,1043.7445438006475,3.0766283708758557,255.4023934996322,2019
+2004,48,"(45,50]",College,3209.642800718133,1043.7445438006475,3.0751229501336357,262.80273738943595,2019
+2004,48,"(45,50]",College,3209.7999281867146,1043.7445438006475,3.0752734922078577,253.25531214807938,2019
+2004,48,"(45,50]",College,3209.7999281867146,1043.7445438006475,3.0752734922078577,267.9034621952993,2019
+2004,48,"(45,50]",College,3209.7999281867146,1045.3577502052854,3.070527699781611,268.43123493787294,2019
+2004,45,"(40,45]",HS,42.26728904847397,95.17917787362938,0.44408125803096127,5739.6940539203915,2019
+2004,45,"(40,45]",HS,45.09558348294434,93.56597146899159,0.4819656417278725,5618.20135211855,2019
+2004,45,"(40,45]",HS,43.36718132854578,95.17917787362938,0.45563727589793795,5788.149455429162,2019
+2004,45,"(40,45]",HS,44.93845601436266,95.17917787362938,0.47214587285076176,5770.622299039028,2019
+2004,45,"(40,45]",HS,44.62420107719928,93.56597146899159,0.4769276733474418,5713.636721154029,2019
+2004,54,"(50,55]",NoHS,0,6.452825618551143,0,5226.412017942757,2019
+2004,54,"(50,55]",NoHS,0,6.452825618551143,0,5230.660326085176,2019
+2004,54,"(50,55]",NoHS,0,6.452825618551143,0,5236.090442938272,2019
+2004,54,"(50,55]",NoHS,0,6.452825618551143,0,5249.443838683551,2019
+2004,54,"(50,55]",NoHS,0,6.452825618551143,0,5226.714869352361,2019
+2004,55,"(50,55]",College,17325.660323159784,1774.5270451015647,9.763536921562192,330.8365091718462,2019
+2004,55,"(50,55]",College,16774.771418312386,1774.5270451015647,9.45309425664588,328.0336321160737,2019
+2004,55,"(50,55]",College,16411.068466786353,1790.6591091479427,9.164820027970206,344.14618611141196,2019
+2004,55,"(50,55]",College,16263.478635547577,1790.6591091479427,9.08239795752431,320.4211222745283,2019
+2004,55,"(50,55]",College,17355.514542190307,1790.6591091479427,9.692249325137412,325.1670609369383,2019
+2004,32,"(30,35]",College,-18.933859964093358,80.6603202318893,-0.2347357400722022,5540.248093830628,2019
+2004,32,"(30,35]",College,-18.77673249551167,80.6603202318893,-0.23278772563176897,5618.697531553079,2019
+2004,32,"(30,35]",College,-18.77673249551167,80.6603202318893,-0.23278772563176897,5526.391652385033,2019
+2004,32,"(30,35]",College,-18.933859964093358,80.6603202318893,-0.2347357400722022,5581.852110889281,2019
+2004,32,"(30,35]",College,-18.933859964093358,80.6603202318893,-0.2347357400722022,5570.332693113674,2019
+2004,53,"(50,55]",NoHS,-3.1425493716337525,12.421689315710953,-0.25298888836794975,4045.611846039308,2019
+2004,53,"(50,55]",NoHS,-3.1425493716337525,12.260368675247175,-0.2563176895306859,4051.3945082986893,2019
+2004,53,"(50,55]",NoHS,-3.1425493716337525,12.260368675247175,-0.2563176895306859,4080.0030203807387,2019
+2004,53,"(50,55]",NoHS,-3.1425493716337525,12.260368675247175,-0.2563176895306859,4055.077503405048,2019
+2004,53,"(50,55]",NoHS,-3.1425493716337525,12.421689315710953,-0.25298888836794975,4065.4784567220113,2019
+2004,33,"(30,35]",HS,25.564639138240576,45.16977932985802,0.5659677668901495,5001.327667799651,2019
+2004,33,"(30,35]",HS,25.878894075403952,45.16977932985802,0.5729249613202682,4985.1758742906895,2019
+2004,33,"(30,35]",HS,25.878894075403952,45.16977932985802,0.5729249613202682,4972.312043492706,2019
+2004,33,"(30,35]",HS,25.72176660682226,45.16977932985802,0.5694463641052088,5019.52663955572,2019
+2004,33,"(30,35]",HS,25.72176660682226,45.16977932985802,0.5694463641052088,4967.805936124107,2019
+2004,48,"(45,50]",College,39697.46929982047,3339.337257600217,11.887828702977032,223.8533298917561,2019
+2004,48,"(45,50]",College,39697.46929982047,3339.337257600217,11.887828702977032,216.51629027378266,2019
+2004,48,"(45,50]",College,39695.89802513465,3339.337257600217,11.887358168088038,223.9023246307118,2019
+2004,48,"(45,50]",College,39695.89802513465,3323.2051935538398,11.945063790263221,219.0605721700319,2019
+2004,48,"(45,50]",College,39695.89802513465,3323.2051935538398,11.945063790263221,223.1742811765377,2019
+2004,51,"(50,55]",College,25712.33895870736,2210.092774353767,11.634054125273394,213.89932839736997,2019
+2004,51,"(50,55]",College,15549.334290843806,2113.3003900754998,7.357843855926365,231.20426836373204,2019
+2004,51,"(50,55]",College,4712.252782764811,2145.5645181682557,2.1962764311500766,243.10414687521916,2019
+2004,51,"(50,55]",College,25913.462118491923,2193.960710307389,11.811269908685498,208.79801098943534,2019
+2004,51,"(50,55]",College,15241.364452423699,2177.8286462610113,6.998422248963765,229.68966707660843,2019
+2004,37,"(35,40]",College,3020.147073608618,630.7637042133744,4.788079994829513,4722.201616718686,2019
+2004,37,"(35,40]",College,3219.541831238779,403.30160115944653,7.982963176895307,1945.3372985432657,2019
+2004,37,"(35,40]",College,3101.6962298025137,464.6034445356824,6.676007821901324,4673.460528952439,2019
+2004,37,"(35,40]",College,3116.780466786355,383.94312430379307,8.117818159754876,5023.191727871605,2019
+2004,37,"(35,40]",College,3144.277773788151,400.07518835017095,7.859217130546175,4776.068649171578,2019
+2004,73,"(70,75]",College,3044.1875763016155,266.1790567652347,11.436615687561536,1571.7280313189128,2019
+2004,73,"(70,75]",College,3030.046104129264,266.1790567652347,11.383488021004268,1631.0736423873022,2019
+2004,73,"(70,75]",College,3045.7588509874327,266.1790567652347,11.442518761623456,1536.327729565716,2019
+2004,73,"(70,75]",College,3031.617378815081,266.1790567652347,11.389391095066186,1623.7177306397011,2019
+2004,73,"(70,75]",College,3045.7588509874327,266.1790567652347,11.442518761623456,1610.2598499295395,2019
+2004,73,"(70,75]",College,297.3480215439856,77.43390742261373,3.840023465703971,7845.991963679303,2019
+2004,73,"(70,75]",College,303.7273967684021,75.82070101797595,4.005863737614256,8504.182538027326,2019
+2004,73,"(70,75]",College,297.59942549371635,77.43390742261373,3.843270156438027,7746.581077931236,2019
+2004,73,"(70,75]",College,299.0135727109515,75.82070101797595,3.9436930639834085,7702.658519686639,2019
+2004,73,"(70,75]",College,299.0135727109515,75.82070101797595,3.9436930639834085,8058.0369182191225,2019
+2004,28,"(25,30]",HS,2.4197630161579893,32.264128092755726,0.07499855595667869,5592.320782090768,2019
+2004,28,"(25,30]",HS,2.4197630161579893,32.264128092755726,0.07499855595667869,5608.661272821873,2019
+2004,28,"(25,30]",HS,2.2626355475763016,32.264128092755726,0.07012851985559566,5625.582271955475,2019
+2004,28,"(25,30]",HS,2.4197630161579893,32.264128092755726,0.07499855595667869,5622.259966857167,2019
+2004,28,"(25,30]",HS,2.4197630161579893,32.264128092755726,0.07499855595667869,5632.868254807316,2019
+2004,45,"(40,45]",HS,82.02053859964093,56.46222416232251,1.4526621970087674,7239.102006840023,2019
+2004,45,"(40,45]",HS,81.54915619389588,56.46222416232251,1.4443135636926254,6726.658584214917,2019
+2004,45,"(40,45]",HS,80.92064631956912,54.84901775768473,1.4753344659163303,7274.600415891104,2019
+2004,45,"(40,45]",HS,84.69170556552963,54.84901775768473,1.5440879167551498,7234.1807944149505,2019
+2004,45,"(40,45]",HS,85.16308797127468,54.84901775768473,1.552682098110002,7011.531493642814,2019
+2004,83,"(80,85]",HS,932.3943985637343,51.62260494840914,18.061746389891702,7964.369713884262,2019
+2004,83,"(80,85]",HS,932.551526032316,48.39619213913358,19.269109506618534,8853.993500342236,2019
+2004,83,"(80,85]",HS,932.3943985637343,54.84901775768473,16.999290719898067,7883.786451378798,2019
+2004,83,"(80,85]",HS,932.551526032316,51.62260494840914,18.06479016245488,7858.420273701791,2019
+2004,83,"(80,85]",HS,935.5369479353681,51.62260494840914,18.12262184115524,8238.92400587299,2019
+2004,41,"(40,45]",HS,0.2042657091561939,8.066032023188932,0.025324187725631768,4793.556977459046,2019
+2004,41,"(40,45]",HS,1.257019748653501,8.066032023188932,0.15584115523465705,4789.615508515302,2019
+2004,41,"(40,45]",HS,3.4568043087971274,8.066032023188932,0.4285631768953068,4830.402552356432,2019
+2004,41,"(40,45]",HS,0.47138240574506285,8.066032023188932,0.058440433212996384,4782.896159701063,2019
+2004,41,"(40,45]",HS,1.8855296229802514,8.066032023188932,0.23376173285198554,4795.661405203603,2019
+2004,42,"(40,45]",NoHS,-0.9113393177737882,17.74527045101565,-0.05135674433869379,3800.3094756418554,2019
+2004,42,"(40,45]",NoHS,-0.9113393177737882,16.132064046377863,-0.05649241877256317,3849.874161623363,2019
+2004,42,"(40,45]",NoHS,-0.9113393177737882,17.74527045101565,-0.05135674433869379,3783.7193786600874,2019
+2004,42,"(40,45]",NoHS,-0.7542118491921006,17.74527045101565,-0.04250213324581555,3789.176047894505,2019
+2004,42,"(40,45]",NoHS,-0.9113393177737882,17.74527045101565,-0.05135674433869379,3808.826791721555,2019
+2004,62,"(60,65]",HS,1165.8858168761221,338.77334497393514,3.441492178098676,6763.249819140702,2019
+2004,62,"(60,65]",HS,1164.3145421903052,338.77334497393514,3.4368540484785965,7477.641704593024,2019
+2004,62,"(60,65]",HS,1165.8858168761221,338.77334497393514,3.441492178098676,6673.309659425562,2019
+2004,62,"(60,65]",HS,1164.3145421903052,338.77334497393514,3.4368540484785965,6651.331758735166,2019
+2004,62,"(60,65]",HS,1164.3145421903052,338.77334497393514,3.4368540484785965,6991.112694849912,2019
+2004,26,"(25,30]",HS,24.103353680430878,56.46222416232251,0.4268934502320784,8357.711192747238,2019
+2004,26,"(25,30]",HS,24.103353680430878,56.46222416232251,0.4268934502320784,8503.152909541155,2019
+2004,26,"(25,30]",HS,22.532078994614004,56.46222416232251,0.399064672511604,8364.016610717337,2019
+2004,26,"(25,30]",HS,22.532078994614004,56.46222416232251,0.399064672511604,8352.675423140263,2019
+2004,26,"(25,30]",HS,24.103353680430878,56.46222416232251,0.4268934502320784,8390.40365601986,2019
+2004,48,"(45,50]",HS,1587.6945062836626,319.4148681182817,4.970634321554899,3520.2507825005678,2019
+2004,48,"(45,50]",HS,1589.2657809694795,319.4148681182817,4.975553549939831,3688.9358343707836,2019
+2004,48,"(45,50]",HS,1587.6945062836626,319.4148681182817,4.970634321554899,3485.1114892139535,2019
+2004,48,"(45,50]",HS,1589.2657809694795,319.4148681182817,4.975553549939831,3760.876963949619,2019
+2004,48,"(45,50]",HS,1587.6945062836626,319.4148681182817,4.970634321554899,3577.272597614364,2019
+2004,63,"(60,65]",HS,299.5635188509874,20.97168326029122,14.284190502638156,5185.560957045705,2019
+2004,63,"(60,65]",HS,319.8643877917415,20.97168326029122,15.252203832268815,4544.411752365295,2019
+2004,63,"(60,65]",HS,271.10773429084384,20.97168326029122,12.927323521244102,5180.950351229113,2019
+2004,63,"(60,65]",HS,288.53317055655293,20.97168326029122,13.758226603721187,5085.800449130942,2019
+2004,63,"(60,65]",HS,261.74293716337525,20.97168326029122,12.480778672590949,4938.661029252649,2019
+2004,57,"(55,60]",HS,345.13048473967683,180.67911731943207,1.9101846957194426,6694.160716640133,2019
+2004,57,"(55,60]",HS,343.41779533213645,180.67911731943207,1.900705518308406,5797.0560306789885,2019
+2004,57,"(55,60]",HS,343.55921005386,180.67911731943207,1.9014882026817947,6715.91221868184,2019
+2004,57,"(55,60]",HS,341.97222262118487,180.67911731943207,1.8927047447137695,6623.45273470798,2019
+2004,57,"(55,60]",HS,344.97335727109515,179.06591091479427,1.9265160828698733,6395.445411805322,2019
+2004,61,"(60,65]",College,4029.141113105925,395.23556913625765,10.19427760996095,2485.5509342181244,2019
+2004,61,"(60,65]",College,4029.125400359066,395.23556913625765,10.194237854564205,2355.2989118518462,2019
+2004,61,"(60,65]",College,4029.141113105925,395.23556913625765,10.19427760996095,2624.286246581857,2019
+2004,61,"(60,65]",College,4029.141113105925,395.23556913625765,10.19427760996095,2322.5326881482742,2019
+2004,61,"(60,65]",College,4029.125400359066,395.23556913625765,10.194237854564205,2428.288610209649,2019
+2004,83,"(80,85]",HS,205.6798563734291,45.16977932985802,4.5534837545126345,13051.11986936037,2019
+2004,83,"(80,85]",HS,205.5227289048474,45.16977932985802,4.5500051572975755,11830.781473201287,2019
+2004,83,"(80,85]",HS,204.73709156193897,45.16977932985802,4.532612171222279,13009.638040098309,2019
+2004,83,"(80,85]",HS,201.90879712746857,45.16977932985802,4.469997421351211,12737.019935773245,2019
+2004,83,"(80,85]",HS,227.2063195691203,45.16977932985802,5.0300515729757604,12496.388544028745,2019
+2004,58,"(55,60]",College,6168.824416517055,235.52813507711673,26.191454428564366,1747.032965393392,2019
+2004,58,"(55,60]",College,5067.3608617594255,235.52813507711673,21.514885515058605,1790.4722328977018,2019
+2004,58,"(55,60]",College,5068.932136445242,235.52813507711673,21.521556797388854,1757.261032609343,2019
+2004,58,"(55,60]",College,5072.074685816876,235.52813507711673,21.53489936204936,1705.0999141796187,2019
+2004,58,"(55,60]",College,5213.489407540395,283.9243272162504,18.36224975385625,1699.2978178032288,2019
+2004,41,"(40,45]",HS,-14.141472172351886,24.19809606956679,-0.5844043321299639,6422.743238908566,2019
+2004,41,"(40,45]",HS,-14.141472172351886,24.19809606956679,-0.5844043321299639,6123.069570437204,2019
+2004,41,"(40,45]",HS,-14.141472172351886,24.19809606956679,-0.5844043321299639,6415.468149303254,2019
+2004,41,"(40,45]",HS,-14.141472172351886,24.19809606956679,-0.5844043321299639,6376.998559016146,2019
+2004,41,"(40,45]",HS,-14.298599640933574,24.19809606956679,-0.5908977135980746,6303.645929286533,2019
+2004,32,"(30,35]",HS,337.19554757630164,114.53765472928282,2.943971119133574,5774.655886800372,2019
+2004,32,"(30,35]",HS,337.35267504488326,114.53765472928282,2.945342960288808,6418.327072550034,2019
+2004,32,"(30,35]",HS,337.35267504488326,114.53765472928282,2.945342960288808,5709.476651673852,2019
+2004,32,"(30,35]",HS,335.7814003590664,116.1508611339206,2.8909075411151224,5681.510612595613,2019
+2004,32,"(30,35]",HS,335.7814003590664,114.53765472928282,2.931624548736462,5971.889777754885,2019
+2004,48,"(45,50]",College,2173.0728904847397,393.6223627316199,5.520704858850682,3578.675162719895,2019
+2004,48,"(45,50]",College,2188.7856373429086,393.6223627316199,5.560623187548084,3750.5352842388115,2019
+2004,48,"(45,50]",College,2179.3579892280072,393.6223627316199,5.536672190329643,3541.028391427725,2019
+2004,48,"(45,50]",College,2190.356912028725,393.6223627316199,5.564615020417825,3821.6483475630457,2019
+2004,48,"(45,50]",College,2187.2143626570914,393.6223627316199,5.556631354678344,3636.0732133603437,2019
+2004,50,"(45,50]",College,4303.721364452424,1109.886006390797,3.8776246746704714,375.755916975604,2019
+2004,50,"(45,50]",College,4567.695511669659,1093.7539423444189,4.176163700840229,371.0079051499786,2019
+2004,50,"(45,50]",College,4225.15763016158,1071.16905267949,3.944435866208516,386.6214076313423,2019
+2004,50,"(45,50]",College,4825.384560143626,1072.7822590841279,4.4980092831356355,368.6390626980565,2019
+2004,50,"(45,50]",College,4575.551885098744,1072.7822590841279,4.265126353790613,373.4120534263591,2019
+2004,45,"(40,45]",HS,42.58154398563734,58.0754305669603,0.7332109907741676,4981.625475029708,2019
+2004,45,"(40,45]",HS,43.52430879712747,58.0754305669603,0.7494444444444445,4970.250368423507,2019
+2004,45,"(40,45]",HS,43.995691202872536,58.0754305669603,0.7575611712795829,5005.272491064255,2019
+2004,45,"(40,45]",HS,44.15281867145422,58.0754305669603,0.7602667468912956,5005.970241460512,2019
+2004,45,"(40,45]",HS,42.42441651705566,58.0754305669603,0.7305054151624549,4967.9595733723945,2019
+2004,46,"(45,50]",College,85.35164093357271,48.39619213913358,1.763602406738869,4761.566386799793,2019
+2004,46,"(45,50]",College,35.54223339317774,48.39619213913358,0.7344014440433213,4694.730523163211,2019
+2004,46,"(45,50]",College,97.70185996409336,48.39619213913358,2.0187922984356197,4787.46671091743,2019
+2004,46,"(45,50]",College,66.08781328545781,48.39619213913358,1.3655581227436824,4900.459933126114,2019
+2004,46,"(45,50]",College,47.0282513464991,48.39619213913358,0.9717345367027677,4788.97366105538,2019
+2004,76,"(75,80]",College,402089.19210053864,19934.0689008282,20.17095426432649,2.137424366587618,2019
+2004,76,"(75,80]",College,403776.1126032316,20534.504324634378,19.66329969401007,2.1820483676834277,2019
+2004,76,"(75,80]",College,399239.6854578097,19694.023787818096,20.272123653306583,2.093878738556749,2019
+2004,76,"(75,80]",College,402286.7013285458,19101.815716675566,21.060128905827327,2.098208240718619,2019
+2004,76,"(75,80]",College,397641.3848473968,18995.50541460993,20.933445895130575,2.046605978488266,2019
+2004,52,"(50,55]",College,17378.612280071815,4726.694765588713,3.676694422197854,30.97358746793055,2019
+2004,52,"(50,55]",College,17368.08473967684,4404.053484661155,3.943658904272623,32.643960580506686,2019
+2004,52,"(50,55]",College,18820.885314183124,3161.884553090061,5.9524264716717,32.38516129506572,2019
+2004,52,"(50,55]",College,19864.054578096948,3952.355691362576,5.025877256317689,30.450774514151686,2019
+2004,52,"(50,55]",College,20692.587719928186,5549.430031953984,3.7287771177902775,31.491392588040803,2019
+2004,56,"(55,60]",College,170.48330341113106,88.72635225507824,1.9214506071545783,5048.640135495352,2019
+2004,56,"(55,60]",College,128.0588868940754,88.72635225507824,1.4433016081391532,4501.607345108647,2019
+2004,56,"(55,60]",College,74.63554757630162,88.72635225507824,0.8411880538234329,5060.896810829907,2019
+2004,56,"(55,60]",College,77.77809694793537,88.72635225507824,0.8766064981949457,4970.609501759382,2019
+2004,56,"(55,60]",College,148.4854578096948,88.72635225507824,1.6735214965539875,4866.990503494777,2019
+2004,55,"(50,55]",HS,412.3024775583483,141.9621636081252,2.904312438464063,8087.319581094736,2019
+2004,55,"(50,55]",HS,805.4354039497307,166.16025967769198,4.847340787213907,8647.628015330001,2019
+2004,55,"(50,55]",HS,1434.1024057450627,133.89613158493626,10.71055891435779,7717.446468500147,2019
+2004,55,"(50,55]",HS,530.4623339317774,148.4149892266763,3.574183016794852,7992.890207205834,2019
+2004,55,"(50,55]",HS,625.3673249551167,159.70743405914084,3.915705794406155,8084.974432671585,2019
+2004,69,"(65,70]",College,18768.876122082584,806.6032023188931,23.269032490974727,519.0665677857753,2019
+2004,69,"(65,70]",College,18717.02405745063,806.6032023188931,23.204748014440437,519.4079939692135,2019
+2004,69,"(65,70]",College,18768.876122082584,806.6032023188931,23.269032490974727,531.5654156287058,2019
+2004,69,"(65,70]",College,18786.16014362657,806.6032023188931,23.290460649819494,515.6762323580624,2019
+2004,69,"(65,70]",College,18717.02405745063,806.6032023188931,23.204748014440437,519.6432505128166,2019
+2004,62,"(60,65]",College,19094.852768402157,2000.3759417508547,9.545632083381857,212.0787521087118,2019
+2004,62,"(60,65]",College,51458.79029084381,2968.2997845335262,17.33611630434783,189.64259496906303,2019
+2004,62,"(60,65]",College,16273.48765529623,1758.394981055187,9.254739595270427,220.58076540318694,2019
+2004,62,"(60,65]",College,14278.125931777378,2258.4889664929005,6.321981707065498,205.48361636970156,2019
+2004,62,"(60,65]",College,23135.291346499103,2403.6775429103013,9.624956315266639,208.40912514325373,2019
+2004,43,"(40,45]",HS,354.9509515260323,521.065668698005,0.6812019537056699,256.5949463911286,2019
+2004,43,"(40,45]",HS,355.73658886894077,438.7921420614778,0.8107177744744107,262.4037351488348,2019
+2004,43,"(40,45]",HS,336.09565529622984,483.96192139133586,0.6944671480144404,251.94070830517893,2019
+2004,43,"(40,45]",HS,345.3661759425494,521.065668698005,0.662807390104056,247.70720735148834,2019
+2004,43,"(40,45]",HS,353.37967684021544,521.065668698005,0.6781864514758972,260.2163799666701,2019
+2004,29,"(25,30]",College,-37.63202872531418,48.39619213913358,-0.7775824308062574,5662.491099966762,2019
+2004,29,"(25,30]",College,-37.78915619389587,50.00939854377137,-0.7556410853615931,5644.204078386103,2019
+2004,29,"(25,30]",College,-37.78915619389587,48.39619213913358,-0.7808291215403129,5629.63968024158,2019
+2004,29,"(25,30]",College,-37.78915619389587,48.39619213913358,-0.7808291215403129,5683.095931811868,2019
+2004,29,"(25,30]",College,-37.63202872531418,48.39619213913358,-0.7775824308062574,5624.537876367686,2019
+2004,62,"(60,65]",HS,1.5712746858168762,19.358476855653432,0.08116726835138388,4383.98069527673,2019
+2004,62,"(60,65]",HS,4.3995691202872536,19.358476855653432,0.22726835138387488,4350.377096936373,2019
+2004,62,"(60,65]",HS,1.4141472172351885,20.97168326029122,0.06743126909191892,4372.506015954048,2019
+2004,62,"(60,65]",HS,5.342333931777379,19.358476855653432,0.27596871239470516,4369.756735985749,2019
+2004,62,"(60,65]",HS,4.3995691202872536,19.358476855653432,0.22726835138387488,4397.445777919593,2019
+2004,83,"(80,85]",HS,505.47906642728907,43.55657292522023,11.605115657173418,9636.126941920145,2019
+2004,83,"(80,85]",HS,565.1875044883303,45.16977932985802,12.512514182568331,8651.853361032883,2019
+2004,83,"(80,85]",HS,525.9056373429084,45.16977932985802,11.642864878803506,9597.947148219726,2019
+2004,83,"(80,85]",HS,507.05034111310596,45.16977932985802,11.22543321299639,9480.971737736949,2019
+2004,83,"(80,85]",HS,525.9056373429084,45.16977932985802,11.642864878803506,9287.080494974774,2019
+2004,48,"(45,50]",HS,964.2912746858169,219.3960710307389,4.395207581227437,6975.4065069181215,2019
+2004,48,"(45,50]",HS,672.8198204667864,219.3960710307389,3.0666903801231684,7763.440912596192,2019
+2004,48,"(45,50]",HS,940.3293357271094,219.3960710307389,4.285989859842854,6886.502233909296,2019
+2004,48,"(45,50]",HS,849.9339030520646,219.3960710307389,3.873970482055638,6902.973052230991,2019
+2004,48,"(45,50]",HS,926.9735008976661,219.3960710307389,4.225114408579317,7215.484757834031,2019
+2004,72,"(70,75]",College,493.0345709156194,70.9810818040626,6.945999671808335,5952.6061328301985,2019
+2004,72,"(70,75]",College,478.8773859964094,70.9810818040626,6.746549556941253,5555.445327163781,2019
+2004,72,"(70,75]",College,474.1792746858169,70.9810818040626,6.680361339021988,6252.7615812075255,2019
+2004,72,"(70,75]",College,485.1153464991023,70.9810818040626,6.834431572038069,6048.246078289009,2019
+2004,72,"(70,75]",College,491.3533070017953,70.9810818040626,6.9223135871348855,6058.161836734095,2019
+2004,81,"(80,85]",College,80775.31912387791,4454.062883204928,18.135199533993983,19.85074517363883,2019
+2004,81,"(80,85]",College,190041.25796768404,4450.836470395651,42.69787471000716,20.80433162821725,2019
+2004,81,"(80,85]",College,42686.97651705566,4475.034566465219,9.538915483902873,19.310723412189553,2019
+2004,81,"(80,85]",College,147374.09522441652,4541.176029055368,32.45284795865368,19.550079502266545,2019
+2004,81,"(80,85]",College,95345.89070017953,4494.393043320872,21.21440866011336,19.624724009168094,2019
+2004,32,"(30,35]",HS,5.028078994614004,22.58488966492901,0.22263022176379577,5038.638775980524,2019
+2004,32,"(30,35]",HS,5.028078994614004,20.97168326029122,0.23975562343793394,5113.13328200273,2019
+2004,32,"(30,35]",HS,5.028078994614004,20.97168326029122,0.23975562343793394,5059.393378943298,2019
+2004,32,"(30,35]",HS,5.028078994614004,20.97168326029122,0.23975562343793394,5066.028565845857,2019
+2004,32,"(30,35]",HS,5.028078994614004,22.58488966492901,0.22263022176379577,5090.581945149745,2019
+2004,68,"(65,70]",HS,1694.054089766607,135.50933798957405,12.501382671480144,7791.953932586743,2019
+2004,68,"(65,70]",HS,1694.2740682226213,133.89613158493626,12.653644643556174,8736.019269379618,2019
+2004,68,"(65,70]",HS,1692.577091561939,135.50933798957405,12.490483066872956,7776.993400782737,2019
+2004,68,"(65,70]",HS,1692.5299533213645,133.89613158493626,12.64061876386412,7757.377029314086,2019
+2004,68,"(65,70]",HS,1692.577091561939,133.89613158493626,12.640970814666607,8127.079840303278,2019
+2004,57,"(55,60]",HS,997.445170556553,98.40559068290497,10.136062022844289,5657.765102863869,2019
+2004,57,"(55,60]",HS,997.445170556553,100.01879708754274,9.972577151508094,6258.376060339375,2019
+2004,57,"(55,60]",HS,995.8738958707361,100.01879708754274,9.956867357633632,5580.477004389779,2019
+2004,57,"(55,60]",HS,995.8738958707361,98.40559068290497,10.12009469136533,5563.324032472485,2019
+2004,57,"(55,60]",HS,995.8738958707361,98.40559068290497,10.12009469136533,5849.595827571254,2019
+2004,68,"(65,70]",NoHS,12.585910233393177,64.52825618551145,0.19504494584837542,6676.874056047486,2019
+2004,68,"(65,70]",NoHS,18.242499102333934,54.84901775768473,0.3325948184327883,6959.043857701707,2019
+2004,68,"(65,70]",NoHS,9.286233393177739,66.14146259014923,0.14039957735317427,6748.146362127425,2019
+2004,68,"(65,70]",NoHS,7.557831238779174,95.17917787362938,0.07940635134308266,6811.028442781561,2019
+2004,68,"(65,70]",NoHS,10.857508078994613,59.68863697159809,0.18190242950531754,6868.7929364470665,2019
+2004,69,"(65,70]",NoHS,18.462477558348297,40.33016011594465,0.45778339350180514,8212.885206965975,2019
+2004,69,"(65,70]",NoHS,18.478190305206464,40.33016011594465,0.45817299638989173,8554.698215877417,2019
+2004,69,"(65,70]",NoHS,18.635317773788152,41.94336652058244,0.4442971396834213,8245.828258844249,2019
+2004,69,"(65,70]",NoHS,18.478190305206464,40.33016011594465,0.45817299638989173,8395.179092648712,2019
+2004,69,"(65,70]",NoHS,18.478190305206464,41.94336652058244,0.44055095806720357,8408.154942747438,2019
+2004,54,"(50,55]",HS,2.1526463195691203,38.716953711306864,0.05559957882069796,4012.0243666173797,2019
+2004,54,"(50,55]",HS,1.9326678635547576,19.358476855653432,0.09983574007220217,3961.6299820264867,2019
+2004,54,"(50,55]",HS,1.7126894075403951,24.19809606956679,0.07077785800240674,4023.4664541665975,2019
+2004,54,"(50,55]",HS,1.979806104129264,24.19809606956679,0.08181660649819496,3988.6783896113557,2019
+2004,54,"(50,55]",HS,2.1840718132854575,22.58488966492901,0.09670500257864877,3965.3821815650263,2019
+2004,27,"(25,30]",NoHS,0.10998922800718133,7.743390742261374,0.014204271961492177,5142.542439777243,2019
+2004,27,"(25,30]",NoHS,0.10998922800718133,7.904711382725152,0.013914388860237237,5125.934592998254,2019
+2004,27,"(25,30]",NoHS,0.10998922800718133,7.904711382725152,0.013914388860237237,5112.707546059766,2019
+2004,27,"(25,30]",NoHS,0.10998922800718133,8.066032023188932,0.01363610108303249,5161.2552678165785,2019
+2004,27,"(25,30]",NoHS,0.10998922800718133,7.904711382725152,0.013914388860237237,5108.07420669062,2019
+2004,71,"(70,75]",College,11659.64380610413,2371.413414817546,4.916748692256686,309.30433785217014,2019
+2004,71,"(70,75]",College,11661.215080789947,2371.413414817546,4.917411282202411,306.9329149080271,2019
+2004,71,"(70,75]",College,11662.786355475762,2371.413414817546,4.9180738721481365,317.5809256661627,2019
+2004,71,"(70,75]",College,11659.64380610413,2371.413414817546,4.916748692256686,304.08709309169,2019
+2004,71,"(70,75]",College,11661.215080789947,2371.413414817546,4.917411282202411,307.35725306476564,2019
+2004,56,"(55,60]",College,113.94884021543986,112.92444832464501,1.0090714801444045,5658.543096253689,2019
+2004,56,"(55,60]",College,166.14658527827646,112.92444832464501,1.4713074780814852,5043.946962351375,2019
+2004,56,"(55,60]",College,175.29140394973072,112.92444832464501,1.5522892212480663,5632.166085692036,2019
+2004,56,"(55,60]",College,107.31806104129264,112.92444832464501,0.9503527591542033,5576.373266078431,2019
+2004,56,"(55,60]",College,239.1637199281867,112.92444832464501,2.1179091284167098,5424.805788685141,2019
+2004,24,"(20,25]",HS,49.495152603231595,96.79238427826716,0.5113537906137184,8595.0265987097755,2019
+2004,24,"(20,25]",HS,51.06642728904847,96.79238427826716,0.5275872442839952,8533.172118485214,2019
+2004,24,"(20,25]",HS,47.29536804308797,96.79238427826716,0.4886269554753309,8639.722374507355,2019
+2004,24,"(20,25]",HS,46.82398563734291,96.79238427826716,0.4837569193742479,8513.401922694367,2019
+2004,24,"(20,25]",HS,42.440129263913825,96.79238427826716,0.4384655836341757,8631.208905965072,2019
+2004,49,"(45,50]",College,5910.506858168761,974.3766684012228,6.0659363568986535,411.3802887864772,2019
+2004,49,"(45,50]",College,5894.951238779175,974.3766684012228,6.049971669017621,400.65977290232183,2019
+2004,49,"(45,50]",College,5910.663985637343,974.3766684012228,6.0660976163722005,427.74796294974794,2019
+2004,49,"(45,50]",College,5894.951238779175,974.3766684012228,6.049971669017621,406.08022115708366,2019
+2004,49,"(45,50]",College,5910.506858168761,974.3766684012228,6.0659363568986535,415.84491171919717,2019
+2004,36,"(35,40]",NoHS,2.356912028725314,19.358476855653432,0.12175090252707581,4625.095429566942,2019
+2004,36,"(35,40]",NoHS,2.514039497307002,19.358476855653432,0.12986762936221422,4685.631785603053,2019
+2004,36,"(35,40]",NoHS,2.356912028725314,19.358476855653432,0.12175090252707581,4605.6666186613875,2019
+2004,36,"(35,40]",NoHS,2.514039497307002,19.358476855653432,0.12986762936221422,4623.003325934767,2019
+2004,36,"(35,40]",NoHS,2.514039497307002,19.358476855653432,0.12986762936221422,4636.369373609983,2019
+2004,72,"(70,75]",NoHS,259.62171633752246,37.200539690947345,6.978977146417602,7578.234305825424,2019
+2004,72,"(70,75]",NoHS,258.836078994614,32.45771286131225,7.974563090769464,7617.403088102501,2019
+2004,72,"(70,75]",NoHS,263.23564811490127,37.200539690947345,7.076124440715009,7573.3637401736505,2019
+2004,72,"(70,75]",NoHS,258.9932064631957,38.9105384798634,6.656119822068957,7557.396596764309,2019
+2004,72,"(70,75]",NoHS,259.4645888689407,37.29733207522562,6.9566527800332265,7572.024355978849,2019
+2004,24,"(20,25]",NoHS,36.107892280071816,41.94336652058244,0.8608725354068315,9605.57753892933,2019
+2004,24,"(20,25]",NoHS,36.107892280071816,41.94336652058244,0.8608725354068315,9276.660524225475,2019
+2004,24,"(20,25]",NoHS,36.12360502692998,41.94336652058244,0.8612471535684532,9685.177356437398,2019
+2004,24,"(20,25]",NoHS,36.26501974865351,41.94336652058244,0.8646187170230494,9421.47323219863,2019
+2004,24,"(20,25]",NoHS,36.107892280071816,41.94336652058244,0.8608725354068315,9545.158184257187,2019
+2004,89,"(85,90]",HS,582.188696588869,51.62260494840914,11.277786101083036,12749.079516683476,2019
+2004,89,"(85,90]",HS,540.5342046678636,56.46222416232251,9.573377823620424,11757.833486781801,2019
+2004,89,"(85,90]",HS,533.9505637342909,53.23581135304694,10.02991313860628,12751.991942875964,2019
+2004,89,"(85,90]",HS,524.1143842010772,50.00939854377137,10.480317689530686,12491.321789857808,2019
+2004,89,"(85,90]",HS,550.1504057450629,56.46222416232251,9.743689943269729,12355.567276196924,2019
+2004,48,"(45,50]",College,1331.4981687612208,317.80166171364385,4.189714306657626,1859.7723753670132,2019
+2004,48,"(45,50]",College,1305.6821256732496,251.66019912349464,5.188274229380728,3773.7846362263313,2019
+2004,48,"(45,50]",College,1284.202800718133,316.18845530900603,4.061510719811391,3359.8073461716617,2019
+2004,48,"(45,50]",College,1320.3421184919212,295.21677204871486,4.47244954725691,1990.5954841864477,2019
+2004,48,"(45,50]",College,1341.7114542190304,240.36775429103014,5.581911176798391,1888.3960342556413,2019
+2004,52,"(50,55]",College,714.128631956912,233.91492867247896,3.0529416656292794,6012.391211398537,2019
+2004,52,"(50,55]",College,712.4159425493716,235.52813507711673,3.0247594085356813,6691.630640710568,2019
+2004,52,"(50,55]",College,714.0972064631958,233.91492867247896,3.052807319805802,5935.760943447285,2019
+2004,52,"(50,55]",College,712.5730700179533,233.91492867247896,3.046291547367111,5949.957822614641,2019
+2004,52,"(50,55]",College,714.3643231597846,235.52813507711673,3.0330317986251925,6219.324580001951,2019
+2004,44,"(40,45]",College,433.86036624775585,193.58476855653433,2.2411906137184117,6800.887767493031,2019
+2004,44,"(40,45]",College,418.9018312387792,193.58476855653433,2.1639193742478944,7551.693052021566,2019
+2004,44,"(40,45]",College,445.4563734290844,193.58476855653433,2.301092057761733,6709.440748966495,2019
+2004,44,"(40,45]",College,411.2025852782765,193.58476855653433,2.124147412755716,6700.207203822439,2019
+2004,44,"(40,45]",College,432.72904847396774,193.58476855653433,2.235346570397112,7003.244296915061,2019
+2004,35,"(30,35]",College,41.010269299820465,146.80178282203855,0.27935811480937833,3288.2044007324375,2019
+2004,35,"(30,35]",College,41.010269299820465,146.80178282203855,0.27935811480937833,3333.2947148662315,2019
+2004,35,"(30,35]",College,42.58154398563734,146.80178282203855,0.29006149085571464,3296.122799116469,2019
+2004,35,"(30,35]",College,42.58154398563734,146.80178282203855,0.29006149085571464,3279.9529285180733,2019
+2004,35,"(30,35]",College,41.010269299820465,146.80178282203855,0.27935811480937833,3312.214265683345,2019
+2004,30,"(25,30]",College,374.59188509874326,322.6412809275572,1.161016606498195,589.9581728674117,2019
+2004,30,"(25,30]",College,374.59188509874326,322.6412809275572,1.161016606498195,571.9269035068515,2019
+2004,30,"(25,30]",College,374.749012567325,322.6412809275572,1.1615036101083034,596.0753947574369,2019
+2004,30,"(25,30]",College,374.749012567325,322.6412809275572,1.1615036101083034,550.7771106117335,2019
+2004,30,"(25,30]",College,374.749012567325,322.6412809275572,1.1615036101083034,593.7059217060323,2019
+2004,30,"(25,30]",HS,7.856373429084381,48.39619213913358,0.16233453670276776,5792.763148466243,2019
+2004,30,"(25,30]",HS,7.856373429084381,48.39619213913358,0.16233453670276776,5805.846788557436,2019
+2004,30,"(25,30]",HS,7.856373429084381,48.39619213913358,0.16233453670276776,5787.8405042978175,2019
+2004,30,"(25,30]",HS,7.699245960502694,48.39619213913358,0.15908784596871242,5821.32214890464,2019
+2004,30,"(25,30]",HS,7.699245960502694,48.39619213913358,0.15908784596871242,5805.450575560654,2019
+2004,73,"(70,75]",College,16099.280430879713,629.1504978087365,25.588917893177822,397.23986511225843,2019
+2004,73,"(70,75]",College,16146.41867145422,629.1504978087365,25.66384152550218,395.13114343490213,2019
+2004,73,"(70,75]",College,16113.421903052065,629.1504978087365,25.61139498287513,407.9249569441727,2019
+2004,73,"(70,75]",College,16099.123303411132,629.1504978087365,25.588668147736744,390.3844122697079,2019
+2004,73,"(70,75]",College,16129.134649910235,629.1504978087365,25.63636952698325,394.8060741353704,2019
+2004,67,"(65,70]",College,19323.378958707362,2242.356902446523,8.617441290289069,32.1876893840808,2019
+2004,67,"(65,70]",College,19335.792028725315,2258.4889664929005,8.56138432181537,33.20582930964516,2019
+2004,67,"(65,70]",College,19321.49342908438,2226.224838400145,8.679039554230105,33.86955557903988,2019
+2004,67,"(65,70]",College,19337.20617594255,2242.356902446523,8.623607666935044,31.381038836523622,2019
+2004,67,"(65,70]",College,19321.49342908438,2274.6210305392783,8.494379138182657,32.59591955998333,2019
+2004,40,"(35,40]",College,186.83241651705566,64.52825618551145,2.8953582129963897,7630.708098647732,2019
+2004,40,"(35,40]",College,187.04453859964096,66.14146259014923,2.8279468169410937,7112.410374366933,2019
+2004,40,"(35,40]",College,153.97706283662478,64.52825618551145,2.3861959386281586,7626.057205635353,2019
+2004,40,"(35,40]",College,160.27001795332137,64.52825618551145,2.4837184115523465,7624.542712693719,2019
+2004,40,"(35,40]",College,186.84027289048475,64.52825618551145,2.8954799638989166,7449.092491309139,2019
+2004,69,"(65,70]",NoHS,4.94951526032316,40.33016011594465,0.12272490974729243,10071.927836303084,2019
+2004,69,"(65,70]",NoHS,3.1582621184919213,40.33016011594465,0.07831018050541518,10493.55537567565,2019
+2004,69,"(65,70]",NoHS,4.3995691202872536,40.33016011594465,0.10908880866425995,10117.584479120793,2019
+2004,69,"(65,70]",NoHS,5.499461400359067,40.33016011594465,0.13636101083032492,10178.274750970859,2019
+2004,69,"(65,70]",NoHS,3.5825062836624775,40.33016011594465,0.08882945848375451,10250.090042421722,2019
+2004,47,"(45,50]",HS,56.95870736086176,48.39619213913358,1.176925391095066,8403.100198330369,2019
+2004,47,"(45,50]",HS,94.4650341113106,48.39619213913358,1.9519104693140796,7791.831419763699,2019
+2004,47,"(45,50]",HS,51.06642728904847,48.39619213913358,1.0551744885679903,8443.363138540439,2019
+2004,47,"(45,50]",HS,57.131547576301614,48.39619213913358,1.180496750902527,8441.984622575928,2019
+2004,47,"(45,50]",HS,78.65801077199282,48.39619213913358,1.6252933814681108,8178.068193577914,2019
+2004,62,"(60,65]",College,25594.179102333932,5226.788751026426,4.896731113785266,259.8538993683102,2019
+2004,62,"(60,65]",College,27159.95432675045,5226.788751026426,5.196298457904355,252.63895516344033,2019
+2004,62,"(60,65]",College,26385.31590664273,5226.788751026426,5.048093038284977,267.87787032548147,2019
+2004,62,"(60,65]",College,27364.220035906645,5226.788751026426,5.235378994517984,253.1219009718218,2019
+2004,62,"(60,65]",College,26873.19669658887,5226.788751026426,5.141435396889068,263.53275854466716,2019
+2004,43,"(40,45]",College,374.4033321364453,137.9291475965307,2.714461291616527,7474.271573828594,2019
+2004,43,"(40,45]",College,374.24620466786354,137.9291475965307,2.713322101885279,7051.864190957033,2019
+2004,43,"(40,45]",College,374.24620466786354,137.9291475965307,2.713322101885279,7442.804695683795,2019
+2004,43,"(40,45]",College,374.24620466786354,137.9291475965307,2.713322101885279,7411.091316822366,2019
+2004,43,"(40,45]",College,374.24620466786354,137.9291475965307,2.713322101885279,7275.491634899292,2019
+2004,50,"(45,50]",NoHS,294.4568761220826,138.73575079884964,2.122429686844093,7340.238325786534,2019
+2004,50,"(45,50]",NoHS,290.21443447037706,138.73575079884964,2.0918503903954324,8168.520085624768,2019
+2004,50,"(45,50]",NoHS,289.27166965888694,138.73575079884964,2.0850549911846192,7249.207776443142,2019
+2004,50,"(45,50]",NoHS,296.3424057450629,138.73575079884964,2.1360204852657207,7270.1360810671495,2019
+2004,50,"(45,50]",NoHS,298.07080789946144,138.73575079884964,2.148478717152212,7592.138442277219,2019
+2004,63,"(60,65]",College,827.9360574506284,99.5348351661514,8.318053233007038,5250.877140524792,2019
+2004,63,"(60,65]",College,650.5548581687613,53.23581135304694,12.22024876928126,5807.712659637182,2019
+2004,63,"(60,65]",College,425.3754829443447,100.01879708754274,4.252955397694189,5320.627208657339,2019
+2004,63,"(60,65]",College,933.5257163375226,88.72635225507824,10.521403085001642,5165.4525784763155,2019
+2004,63,"(60,65]",College,935.8826283662478,64.52825618551145,14.503454512635377,5429.763279504442,2019
+2004,76,"(75,80]",HS,18787.73141831239,145.18857641740072,129.40227035699962,312.9438578319533,2019
+2004,76,"(75,80]",HS,18819.156912028728,145.18857641740072,129.61871640593665,308.0067787422426,2019
+2004,76,"(75,80]",HS,16083.567684021544,146.80178282203855,109.55975721029871,326.17343126559774,2019
+2004,76,"(75,80]",HS,17043.616517055656,145.18857641740072,117.3895146409948,302.5728960262254,2019
+2004,76,"(75,80]",HS,18473.476481149013,146.80178282203855,125.83959217677628,307.546686552354,2019
+2004,51,"(50,55]",College,7666.249192100539,3145.752489043683,2.4370160140701658,309.30433785217014,2019
+2004,51,"(50,55]",College,18270.782046678636,3145.752489043683,5.808079977783949,306.9329149080271,2019
+2004,51,"(50,55]",College,19136.554398563734,3145.752489043683,6.08329945385541,317.5809256661627,2019
+2004,51,"(50,55]",College,13967.060682226213,3161.884553090061,4.417321520666028,304.08709309169,2019
+2004,51,"(50,55]",College,12867.168402154399,3145.752489043683,4.090330834027585,307.35725306476564,2019
+2004,80,"(75,80]",College,3808.7698384201076,492.02795341452475,7.740962301000177,1539.5423379369454,2019
+2004,80,"(75,80]",College,3833.1245960502697,492.02795341452475,7.790461028584957,1540.7789587467182,2019
+2004,80,"(75,80]",College,3813.4836624775585,492.02795341452475,7.750542699887554,1558.2348239852422,2019
+2004,80,"(75,80]",College,3832.9674685816876,492.02795341452475,7.790141681955377,1490.6764276845856,2019
+2004,80,"(75,80]",College,3811.912387791742,492.02795341452475,7.747349233591763,1491.281296918461,2019
+2004,34,"(30,35]",HS,416.38779174147214,170.99987889160533,2.4350180505415158,6247.1184754936685,2019
+2004,34,"(30,35]",HS,416.38779174147214,172.6130852962431,2.412260872499072,6943.452635565611,2019
+2004,34,"(30,35]",HS,416.5449192100539,170.99987889160533,2.4359369252775696,6176.606498337045,2019
+2004,34,"(30,35]",HS,417.95906642728903,170.99987889160533,2.44420679790205,6146.352373617443,2019
+2004,34,"(30,35]",HS,418.11619389587077,172.6130852962431,2.4222740308377477,6460.489368639328,2019
+2004,43,"(40,45]",NoHS,35.982190305206466,53.23581135304694,0.6759019800897058,6886.538301624967,2019
+2004,43,"(40,45]",NoHS,35.5108078994614,46.782985734495796,0.7590539026515623,6440.965373155083,2019
+2004,43,"(40,45]",NoHS,36.29644524236984,51.62260494840914,0.7031114620938631,6904.036847210113,2019
+2004,43,"(40,45]",NoHS,36.29644524236984,50.00939854377137,0.7257924770001165,6840.903144674716,2019
+2004,43,"(40,45]",NoHS,37.08208258527828,46.782985734495796,0.7926403585211005,6746.66457504621,2019
+2004,71,"(70,75]",NoHS,72.29434829443447,30.650921688117936,2.3586353790613717,4992.015121617702,2019
+2004,71,"(70,75]",NoHS,72.29434829443447,30.650921688117936,2.3586353790613717,4716.1603341056425,2019
+2004,71,"(70,75]",NoHS,72.29434829443447,30.650921688117936,2.3586353790613717,5223.3236474175465,2019
+2004,71,"(70,75]",NoHS,72.29434829443447,30.650921688117936,2.3586353790613717,5056.992276800116,2019
+2004,71,"(70,75]",NoHS,72.29434829443447,30.650921688117936,2.3586353790613717,5069.882390964497,2019
+2004,52,"(50,55]",College,9580.077472172352,2548.866119327702,3.758564406160033,490.993858571081,2019
+2004,52,"(50,55]",College,12224.454204667865,2548.866119327702,4.796036210757209,487.69750236713173,2019
+2004,52,"(50,55]",College,16044.22296588869,2532.734055281324,6.334744436524179,503.8048438566996,2019
+2004,52,"(50,55]",College,9595.71165529623,2548.866119327702,3.764698185806334,486.95182742288017,2019
+2004,52,"(50,55]",College,13434.49284021544,2532.734055281324,5.304344059417325,491.48446778102596,2019
+2004,53,"(50,55]",College,241.70918491921006,298.4431848579905,0.8099001658698408,258.68018275469296,2019
+2004,53,"(50,55]",College,243.43758707360863,298.4431848579905,0.8156915601522098,224.0389497940203,2019
+2004,53,"(50,55]",College,241.70918491921006,298.4431848579905,0.8099001658698408,260.05040855641994,2019
+2004,53,"(50,55]",College,243.28045960502695,298.4431848579905,0.8151650697629036,233.5295813076646,2019
+2004,53,"(50,55]",College,241.70918491921006,298.4431848579905,0.8099001658698408,235.01947189496587,2019
+2004,75,"(70,75]",NoHS,226.84492639138242,46.782985734495796,4.848876633885224,12634.091957779772,2019
+2004,75,"(70,75]",NoHS,228.43191382405743,46.782985734495796,4.882798954313457,11679.32446880042,2019
+2004,75,"(70,75]",NoHS,228.43191382405743,46.782985734495796,4.882798954313457,12491.354823428817,2019
+2004,75,"(70,75]",NoHS,226.68779892280074,46.782985734495796,4.84551798829827,12394.880365626705,2019
+2004,75,"(70,75]",NoHS,229.98747576301616,46.782985734495796,4.9160495456243,12221.985625434074,2019
+2004,40,"(35,40]",College,57.33581328545781,53.23581135304694,1.07701586259709,5108.478895173806,2019
+2004,40,"(35,40]",College,57.58721723518851,53.23581135304694,1.0817383218466252,5220.606558734309,2019
+2004,40,"(35,40]",College,57.618642728904845,53.23581135304694,1.082328629252817,5057.983264674047,2019
+2004,40,"(35,40]",College,57.55579174147218,53.23581135304694,1.0811480144404333,5036.733524503101,2019
+2004,40,"(35,40]",College,57.55579174147218,53.23581135304694,1.0811480144404333,5083.4841128852095,2019
+2004,52,"(50,55]",HS,18.242499102333934,48.39619213913358,0.37694079422382676,8248.11331387379,2019
+2004,52,"(50,55]",HS,18.839583482944345,48.39619213913358,0.38927821901323706,7650.361131543653,2019
+2004,52,"(50,55]",HS,16.498384201077197,48.39619213913358,0.34090252707581226,8346.661218941865,2019
+2004,52,"(50,55]",HS,16.498384201077197,48.39619213913358,0.34090252707581226,8278.423787573805,2019
+2004,52,"(50,55]",HS,18.069658886894075,48.39619213913358,0.37336943441636583,8071.835836109739,2019
+2004,43,"(40,45]",HS,139.37206463195693,41.94336652058244,3.322863093585116,7992.513800994954,2019
+2004,43,"(40,45]",HS,139.21493716337523,41.94336652058244,3.3191169119688975,7672.3733081451255,2019
+2004,43,"(40,45]",HS,139.37206463195693,41.94336652058244,3.322863093585116,7985.286899784702,2019
+2004,43,"(40,45]",HS,139.37206463195693,41.94336652058244,3.322863093585116,7955.51582351107,2019
+2004,43,"(40,45]",HS,139.21493716337523,41.94336652058244,3.3191169119688975,7874.980284672281,2019
+2004,27,"(25,30]",HS,50.783597845601435,13.066971877566067,3.886409056469225,6274.994024771748,2019
+2004,27,"(25,30]",HS,111.12054578096948,13.066971877566067,8.50392476712573,6254.7289242844045,2019
+2004,27,"(25,30]",HS,52.82625493716338,13.066971877566067,4.0427312029237426,6238.589117666112,2019
+2004,27,"(25,30]",HS,79.38079712746858,13.066971877566067,6.074919106832465,6297.827649483357,2019
+2004,27,"(25,30]",HS,77.18101256732496,13.066971877566067,5.906572179881446,6232.935459539491,2019
+2004,38,"(35,40]",College,439.2498384201077,141.9621636081252,3.0941331637676397,7953.169208077037,2019
+2004,38,"(35,40]",College,437.67856373429083,141.9621636081252,3.083064899901542,8829.72182316344,2019
+2004,38,"(35,40]",College,390.5403231597846,141.9621636081252,2.7510169839186083,7851.258261626259,2019
+2004,38,"(35,40]",College,392.11159784560147,140.3489572034874,2.793833354081082,7839.489540503991,2019
+2004,38,"(35,40]",College,415.8378456014363,141.9621636081252,2.929216032162783,8190.614631719883,2019
+2004,49,"(45,50]",College,538.4758348294434,241.98096069566793,2.22528182912154,7311.039816979331,2019
+2004,49,"(45,50]",College,538.4601220825853,241.98096069566793,2.225216895306859,8133.918879764642,2019
+2004,49,"(45,50]",College,540.0471095152603,241.98096069566793,2.231775210589651,7216.586394960711,2019
+2004,49,"(45,50]",College,538.4915475763016,241.98096069566793,2.2253467629362214,7233.066596331574,2019
+2004,49,"(45,50]",College,538.4915475763016,241.98096069566793,2.2253467629362214,7559.916080921845,2019
+2004,83,"(80,85]",College,1159.6007181328548,106.31030206563011,10.907698460088858,9527.621141191357,2019
+2004,83,"(80,85]",College,1117.1763016157988,99.5348351661514,11.223972991474994,10442.851053073717,2019
+2004,83,"(80,85]",College,1117.1763016157988,101.7933241326443,10.97494664935035,9406.18789852356,2019
+2004,83,"(80,85]",College,1272.7324955116696,104.21313373960098,12.21278403057974,9428.685184767575,2019
+2004,83,"(80,85]",College,1162.7432675044884,120.50651842644263,9.648799771891417,9855.541043307177,2019
+2004,39,"(35,40]",College,6.772193895870736,96.79238427826716,0.0699661853188929,3399.033922306091,2019
+2004,39,"(35,40]",College,6.787906642728904,96.79238427826716,0.07012851985559566,3445.644013599099,2019
+2004,39,"(35,40]",College,6.772193895870736,96.79238427826716,0.0699661853188929,3407.2192117338577,2019
+2004,39,"(35,40]",College,5.20091921005386,96.79238427826716,0.05373273164861613,3390.504332734546,2019
+2004,39,"(35,40]",College,6.772193895870736,96.79238427826716,0.0699661853188929,3423.853044079647,2019
+2004,47,"(45,50]",HS,100.10591023339319,72.59428820870036,1.378977777777778,9325.771263691591,2019
+2004,47,"(45,50]",HS,100.10591023339319,72.59428820870036,1.378977777777778,8501.952036528193,2019
+2004,47,"(45,50]",HS,100.10591023339319,72.59428820870036,1.378977777777778,9403.236039039355,2019
+2004,47,"(45,50]",HS,100.10591023339319,72.59428820870036,1.378977777777778,9367.763125138656,2019
+2004,47,"(45,50]",HS,100.10591023339319,72.59428820870036,1.378977777777778,9023.2538649256785,2019
+2004,56,"(55,60]",HS,143.12741113105926,79.04711382725151,1.8106595446843001,4869.36423254096,2019
+2004,56,"(55,60]",HS,149.30252064631958,43.55657292522023,3.4277839283326648,4317.464644670992,2019
+2004,56,"(55,60]",HS,113.21034111310593,116.1508611339206,0.9746836141195347,4901.567116627647,2019
+2004,56,"(55,60]",HS,110.30348294434471,64.52825618551145,1.7093826714801443,4835.676556352295,2019
+2004,56,"(55,60]",HS,114.05882944344705,129.0565123710229,0.8837898014440433,4717.857615133931,2019
+2004,57,"(55,60]",NoHS,328.5535368043088,103.24520989681828,3.182264214801445,5410.365367851963,2019
+2004,57,"(55,60]",NoHS,329.0249192100539,101.63200349218052,3.2374144748151976,5986.264064704278,2019
+2004,57,"(55,60]",NoHS,328.0978671454219,101.63200349218052,3.2282928198957084,5339.2557655739965,2019
+2004,57,"(55,60]",NoHS,331.0675763016158,101.63200349218052,3.2575130365022065,5326.048319159326,2019
+2004,57,"(55,60]",NoHS,329.4963016157989,103.24520989681828,3.1913955324909757,5595.303831007272,2019
+2004,26,"(25,30]",College,-5.656588868940754,46.782985734495796,-0.12091124113033737,6606.99287995641,2019
+2004,26,"(25,30]",College,-2.514039497307002,46.782985734495796,-0.05373832939126106,6551.0906994817915,2019
+2004,26,"(25,30]",College,-4.085314183123878,46.782985734495796,-0.0873247852607992,6593.920568994591,2019
+2004,26,"(25,30]",College,-2.514039497307002,46.782985734495796,-0.05373832939126106,6698.941026118015,2019
+2004,26,"(25,30]",College,-4.085314183123878,46.782985734495796,-0.0873247852607992,6607.284935679068,2019
+2004,52,"(50,55]",HS,6370.890341113107,377.4902986852419,16.876964423462624,950.1617103003521,2019
+2004,52,"(50,55]",HS,6444.740251346499,371.0374730666908,17.36951310626275,954.2652590928553,2019
+2004,52,"(50,55]",HS,6419.599856373429,388.7827435177064,16.51204937309945,971.8188949464256,2019
+2004,52,"(50,55]",HS,6389.745637342909,388.7827435177064,16.435260422128017,910.8751677230182,2019
+2004,52,"(50,55]",HS,6372.461615798923,358.13182182958855,17.7936201905877,930.2636395296498,2019
+2004,37,"(35,40]",HS,93.25515260323161,95.17917787362938,0.9797852291500949,7347.500355607869,2019
+2004,37,"(35,40]",HS,75.27977019748654,95.17917787362938,0.7909268800097902,7053.195904764657,2019
+2004,37,"(35,40]",HS,64.10800718132855,95.17917787362938,0.6735507556752126,7340.856681222764,2019
+2004,37,"(35,40]",HS,77.80952244165171,95.17917787362938,0.8175057211038365,7313.488196293765,2019
+2004,37,"(35,40]",HS,55.34029443447038,95.17917787362938,0.5814327846784556,7239.452052598477,2019
+2004,72,"(70,75]",HS,594.3346499102335,51.62260494840914,11.513069720216611,6108.2288520909515,2019
+2004,72,"(70,75]",HS,605.4749874326751,119.37727394319619,5.0719451653819885,6790.445272843006,2019
+2004,72,"(70,75]",HS,613.8970197486535,101.63200349218052,6.040390808549654,6045.634478233069,2019
+2004,72,"(70,75]",HS,597.0372423698384,62.91504978087366,9.48957752476164,6027.634048041566,2019
+2004,72,"(70,75]",HS,621.2820107719929,74.20749461333816,8.372227279861875,6317.765730258363,2019
+2004,36,"(35,40]",College,49.605141831238775,254.8866119327702,0.19461650596353333,250.07126111652738,2019
+2004,36,"(35,40]",College,118.89835547576303,259.7262311466836,0.4577833935018051,761.9122452706578,2019
+2004,36,"(35,40]",College,178.669644524237,314.57524890436827,0.5679710821068222,799.7558219392415,2019
+2004,36,"(35,40]",College,273.3703698384201,237.14134148175458,1.1527739875733687,735.8748788290974,2019
+2004,36,"(35,40]",College,296.4681077199282,174.22629170088092,1.701626688059901,794.9521253226494,2019
+2004,49,"(45,50]",College,1522.024652064632,340.3865513785729,4.4714594213561,589.9581728674117,2019
+2004,49,"(45,50]",College,1522.1817795332138,341.99975778321067,4.450827069000749,571.9269035068515,2019
+2004,49,"(45,50]",College,1522.1817795332138,340.3865513785729,4.471921036152412,596.0753947574369,2019
+2004,49,"(45,50]",College,1522.1817795332138,341.99975778321067,4.450827069000749,550.7771106117335,2019
+2004,49,"(45,50]",College,1522.024652064632,340.3865513785729,4.4714594213561,593.7059217060323,2019
+2004,60,"(55,60]",HS,6.127971274685817,50.00939854377137,0.12253639222079889,6007.73139971132,2019
+2004,60,"(55,60]",HS,5.342333931777379,54.84901775768473,0.09740072202166065,5933.67138946937,2019
+2004,60,"(55,60]",HS,5.813716337522442,59.68863697159809,0.09740072202166065,5975.71797783016,2019
+2004,60,"(55,60]",HS,6.913608617594255,53.23581135304694,0.1298676293622142,6011.948933801125,2019
+2004,60,"(55,60]",HS,6.756481149012568,48.39619213913358,0.13960770156438027,5960.896624421965,2019
+2004,51,"(50,55]",HS,-8.5005960502693,83.88673304116487,-0.10133421271868925,5152.167721149237,2019
+2004,51,"(50,55]",HS,-8.359181328545782,83.88673304116487,-0.0996484309913913,5043.111250421303,2019
+2004,51,"(50,55]",HS,-8.406319569120287,83.88673304116487,-0.10021035823382393,5195.663132790262,2019
+2004,51,"(50,55]",HS,-8.437745062836624,83.88673304116487,-0.10058497639544571,5179.930090480261,2019
+2004,51,"(50,55]",HS,-6.819332136445242,83.88673304116487,-0.08129214107192446,5128.777668035447,2019
+2004,42,"(40,45]",HS,80.4806894075404,64.52825618551145,1.2472162454873645,7502.74128158333,2019
+2004,42,"(40,45]",HS,75.73543985637343,64.52825618551145,1.1736787003610107,7078.724937273182,2019
+2004,42,"(40,45]",HS,89.34267863554759,64.52825618551145,1.384551263537906,7471.1545452268065,2019
+2004,42,"(40,45]",HS,107.94657091561939,64.52825618551145,1.6728574007220214,7439.320369225595,2019
+2004,42,"(40,45]",HS,82.88473967684021,64.52825618551145,1.2844720216606496,7303.204184352655,2019
+2004,54,"(50,55]",College,7464.811777378815,345.2261705924862,21.622960288808667,2729.1470719425383,2019
+2004,54,"(50,55]",College,7461.669228007182,453.3109997032178,16.4603753998741,2632.515616100399,2019
+2004,54,"(50,55]",College,7466.3830520646325,345.2261705924862,21.627511724417158,2871.462689514968,2019
+2004,54,"(50,55]",College,7466.3830520646325,467.82985734495793,15.959612100087142,2542.779365151207,2019
+2004,54,"(50,55]",College,7466.3830520646325,477.50909577278475,15.636106449409697,2657.9928472060665,2019
+2004,28,"(25,30]",HS,69.52890484739677,74.20749461333816,0.9369525977083661,5210.675329645202,2019
+2004,28,"(25,30]",HS,65.44359066427289,74.20749461333816,0.8819000156961231,5193.84744761929,2019
+2004,28,"(25,30]",HS,66.33921723518851,74.20749461333816,0.8939692355988071,5180.4451572204125,2019
+2004,28,"(25,30]",HS,65.28646319569121,74.20749461333816,0.8797826086956524,5229.636081560098,2019
+2004,28,"(25,30]",HS,63.290944344703775,74.20749461333816,0.852891539789672,5175.7504313280315,2019
+2004,48,"(45,50]",College,1063.8629515260322,306.5092168811794,3.47090036101083,737.0170140798839,2019
+2004,48,"(45,50]",College,953.1509371633753,264.5658503605969,3.6026982918024126,723.8887970825349,2019
+2004,48,"(45,50]",College,1078.3186786355477,361.35823463886413,2.98407113847344,744.4168328381566,2019
+2004,48,"(45,50]",College,1027.0008473967684,183.90553012870762,5.584393501805054,691.4940683113751,2019
+2004,48,"(45,50]",College,959.7502908438062,219.3960710307389,4.374509927797834,743.5024301572955,2019
+2004,67,"(65,70]",HS,678.005026929982,145.18857641740072,4.669823505816286,5970.457695136263,2019
+2004,67,"(65,70]",HS,680.9904488330342,143.57537001276296,4.743086845414352,6694.502551638228,2019
+2004,67,"(65,70]",HS,679.576301615799,143.57537001276296,4.733237334198678,5955.757923743211,2019
+2004,67,"(65,70]",HS,679.576301615799,145.18857641740072,4.680645808263138,5941.403808270779,2019
+2004,67,"(65,70]",HS,679.4191741472172,145.18857641740072,4.679563578018452,6226.2661818866345,2019
+2004,45,"(40,45]",College,30105.622980251348,5146.128430794537,5.850149949639556,18.066308243526656,2019
+2004,45,"(40,45]",College,29100.007181328547,5904.335440974298,4.9285829831725545,18.63705803531676,2019
+2004,45,"(40,45]",College,22909.184919210056,5630.090352185874,4.069061682165652,18.977774896945714,2019
+2004,45,"(40,45]",College,23223.43985637343,5920.467505020675,3.9225685871393576,17.44483212710631,2019
+2004,45,"(40,45]",College,29587.10233393178,5355.845263397449,5.524263842373103,18.60978708433786,2019
+2004,24,"(20,25]",College,-16.341256732495513,69.36787539942482,-0.23557383930820247,5629.162429977665,2019
+2004,24,"(20,25]",College,-13.04157989228007,69.36787539942482,-0.1880060448325077,5696.468462101888,2019
+2004,24,"(20,25]",College,-16.498384201077197,69.36787539942482,-0.2378389723784736,5637.700519315176,2019
+2004,24,"(20,25]",College,-8.327755834829444,69.36787539942482,-0.12005205272437242,5572.922152630481,2019
+2004,24,"(20,25]",College,-18.38391382405745,69.36787539942482,-0.2650205692217278,5663.061560743177,2019
+2004,80,"(75,80]",HS,300.2391669658887,38.57176513488947,7.7839104826009695,9286.410894846358,2019
+2004,80,"(75,80]",HS,281.65098743267504,39.781669938367806,7.079918662766695,9413.586537633697,2019
+2004,80,"(75,80]",HS,262.79569120287255,38.36204830228655,6.850408224610069,9147.072558179674,2019
+2004,80,"(75,80]",HS,251.51393895870737,38.087803213498134,6.603529679799754,9238.922013535743,2019
+2004,80,"(75,80]",HS,245.52738240574507,37.52318097187491,6.543352030569515,9221.240907416559,2019
+2004,72,"(70,75]",College,41212.963734290846,1742.2629170088094,23.654847573204968,270.91777734348284,2019
+2004,72,"(70,75]",College,42312.85601436266,1758.394981055187,24.0633398469844,270.32912848486836,2019
+2004,72,"(70,75]",College,42894.38477558349,1742.2629170088094,24.619926393902926,274.1694448520926,2019
+2004,72,"(70,75]",College,43846.42010771993,1742.2629170088094,25.166362481615185,267.56477980953105,2019
+2004,72,"(70,75]",College,40752.26599640933,1742.2629170088094,23.390422650086904,276.9522774588399,2019
+2004,47,"(45,50]",College,14622.753608617595,322.6412809275572,45.32201696750903,437.8018107627233,2019
+2004,47,"(45,50]",College,10890.976229802514,322.6412809275572,33.755681227436824,435.4777686666956,2019
+2004,47,"(45,50]",College,10812.41249551167,322.6412809275572,33.51217942238267,449.5779514852967,2019
+2004,47,"(45,50]",College,11040.247324955117,322.6412809275572,34.21833465703971,430.24635137493294,2019
+2004,47,"(45,50]",College,11085.657163375225,322.6412809275572,34.35907870036101,435.11950671854476,2019
+2004,49,"(45,50]",HS,0,70.9810818040626,0,4623.770445175898,2019
+2004,49,"(45,50]",HS,0,22.58488966492901,0,4060.648702147994,2019
+2004,49,"(45,50]",HS,0,22.58488966492901,0,4660.088989082664,2019
+2004,49,"(45,50]",HS,0,22.58488966492901,0,4169.811444990255,2019
+2004,49,"(45,50]",HS,0,22.58488966492901,0,4646.020420810428,2019
+2004,44,"(40,45]",HS,4.242441651705565,177.45270451015648,0.023907449950771247,4801.747384674393,2019
+2004,44,"(40,45]",HS,1.0998922800718134,177.45270451015648,0.006198227765014769,4772.524114465056,2019
+2004,44,"(40,45]",HS,10.52754039497307,177.45270451015648,0.05932589432228421,4799.162435693395,2019
+2004,44,"(40,45]",HS,-4.3995691202872536,177.45270451015648,-0.024792911060059077,4801.9709953860975,2019
+2004,44,"(40,45]",HS,-11.313177737881508,177.45270451015648,-0.06375319986872333,4804.780362337081,2019
+2004,52,"(50,55]",HS,55.34029443447038,59.68863697159809,0.9271495755683481,3758.0974214909024,2019
+2004,52,"(50,55]",HS,331.66466068222627,112.92444832464501,2.9370492006188766,3712.2067344174006,2019
+2004,52,"(50,55]",HS,172.51024775583483,119.37727394319619,1.4450844960483948,3736.289656994799,2019
+2004,52,"(50,55]",HS,138.46072531418312,172.6130852962431,0.8021450116400689,3721.5965724436455,2019
+2004,52,"(50,55]",HS,276.2300897666068,167.77346608232975,1.6464468203276867,3715.6011948947826,2019
+2004,46,"(45,50]",HS,109.21930341113105,29.03771528348015,3.7612912154031286,7659.682392927561,2019
+2004,46,"(45,50]",HS,109.07788868940754,29.03771528348015,3.7564211793020457,7117.4668173017035,2019
+2004,46,"(45,50]",HS,107.33377378815081,29.03771528348015,3.6963574007220217,7697.243203443645,2019
+2004,46,"(45,50]",HS,109.07788868940754,29.03771528348015,3.7564211793020457,7654.47526583796,2019
+2004,46,"(45,50]",HS,109.21930341113105,29.03771528348015,3.7612912154031286,7418.890392560784,2019
+2004,24,"(20,25]",HS,-7.3849910233393175,48.39619213913358,-0.15259446450060168,8680.935542974297,2019
+2004,24,"(20,25]",HS,-7.22786355475763,48.39619213913358,-0.14934777376654634,8833.140724638597,2019
+2004,24,"(20,25]",HS,-7.22786355475763,48.39619213913358,-0.14934777376654634,8719.348913550468,2019
+2004,24,"(20,25]",HS,-7.22786355475763,48.39619213913358,-0.14934777376654634,8673.571239885458,2019
+2004,24,"(20,25]",HS,-7.22786355475763,48.39619213913358,-0.14934777376654634,8737.472313317614,2019
+2004,45,"(40,45]",HS,-14.141472172351886,45.16977932985802,-0.31307374935533777,4299.114292572016,2019
+2004,45,"(40,45]",HS,-13.984344703770198,29.03771528348015,-0.48159245888487767,4210.899585231142,2019
+2004,45,"(40,45]",HS,-14.141472172351886,83.88673304116487,-0.1685781727297973,4364.903093263414,2019
+2004,45,"(40,45]",HS,-13.984344703770198,46.782985734495796,-0.2989194572388896,4324.101534543822,2019
+2004,45,"(40,45]",HS,-14.141472172351886,79.04711382725151,-0.17889928534590735,4301.205869705993,2019
+2004,43,"(40,45]",College,-27.02592459605027,54.84901775768473,-0.4927330643448715,1297.071419856283,2019
+2004,43,"(40,45]",College,-26.554542190305206,56.46222416232251,-0.47030634347601863,1350.363937403868,2019
+2004,43,"(40,45]",College,-33.54671454219031,56.46222416232251,-0.5941444043321301,1284.647906819026,2019
+2004,43,"(40,45]",College,-34.2537881508079,56.46222416232251,-0.6066673543063436,1282.7196360651767,2019
+2004,43,"(40,45]",College,-33.31102333931778,56.46222416232251,-0.5899700876740589,1285.1326393167528,2019
+2004,47,"(45,50]",HS,7.699245960502694,51.62260494840914,0.14914485559566792,7906.933065938392,2019
+2004,47,"(45,50]",HS,7.667820466786356,51.62260494840914,0.14853610108303256,7659.861025915697,2019
+2004,47,"(45,50]",HS,8.48488330341113,50.00939854377137,0.16966577384418308,7946.809518233215,2019
+2004,47,"(45,50]",HS,8.139202872531419,48.39619213913358,0.1681785800240674,7976.07564987088,2019
+2004,47,"(45,50]",HS,8.909127468581689,41.94336652058244,0.2124084976395446,7812.454260621688,2019
+2004,55,"(50,55]",HS,85.08452423698384,48.39619213913358,1.7580830324909746,5063.742518210853,2019
+2004,55,"(50,55]",HS,90.09689048473967,43.55657292522023,2.068502741008156,4407.129857959208,2019
+2004,55,"(50,55]",HS,86.29440574506283,46.782985734495796,1.8445681563550353,5058.083147821027,2019
+2004,55,"(50,55]",HS,104.77259605026931,40.33016011594465,2.5978720577617334,4953.885856506783,2019
+2004,55,"(50,55]",HS,104.8197342908438,43.55657292522023,2.4065193207648075,4803.859088833387,2019
+2004,59,"(55,60]",NoHS,-1.3355834829443447,25.81130247420457,-0.051744133574007235,6698.305174017891,2019
+2004,59,"(55,60]",NoHS,-1.1313177737881508,25.81130247420457,-0.0438303249097473,6427.6318970248885,2019
+2004,59,"(55,60]",NoHS,-0.8642010771992819,25.81130247420457,-0.033481498194945856,6708.808275158162,2019
+2004,59,"(55,60]",NoHS,-1.0998922800718134,25.81130247420457,-0.04261281588447655,6714.891729477109,2019
+2004,59,"(55,60]",NoHS,-0.8642010771992819,25.81130247420457,-0.033481498194945856,6616.689350812582,2019
+2004,55,"(50,55]",HS,887.4716552962298,177.45270451015648,5.001172891368559,7502.136809852074,2019
+2004,55,"(50,55]",HS,886.1989228007182,177.45270451015648,4.994000656383328,8297.709841398695,2019
+2004,55,"(50,55]",HS,885.8846678635548,177.45270451015648,4.992229734164752,7403.67476379575,2019
+2004,55,"(50,55]",HS,885.8375296229802,177.45270451015648,4.991964095831966,7380.087343780334,2019
+2004,55,"(50,55]",HS,887.8487612208258,177.45270451015648,5.00329799803085,7757.7185445024925,2019
+2004,46,"(45,50]",College,975.8401436265709,203.26400698436103,4.80085066758352,5687.948782713004,2019
+2004,46,"(45,50]",College,974.1117414721723,203.26400698436103,4.792347429946708,6294.70377024196,2019
+2004,46,"(45,50]",College,975.6830161579893,203.26400698436103,4.800077645980174,5639.451393170631,2019
+2004,46,"(45,50]",College,975.8401436265709,203.26400698436103,4.80085066758352,5678.190311023771,2019
+2004,46,"(45,50]",College,975.8401436265709,203.26400698436103,4.80085066758352,5913.065145917651,2019
+2004,43,"(40,45]",College,274.7373788150808,203.26400698436103,1.3516282734513783,10087.740975862493,2019
+2004,43,"(40,45]",College,294.1426211849192,177.45270451015648,1.6575831965868066,9629.496650446334,2019
+2004,43,"(40,45]",College,247.1772208258528,169.38667248696757,1.4592483410692796,10120.702929613873,2019
+2004,43,"(40,45]",College,286.4433752244165,122.60368675247175,2.3363357400722022,10128.115009273299,2019
+2004,43,"(40,45]",College,284.8721005385997,254.8866119327702,1.117642462185258,9989.562942956236,2019
+2004,42,"(40,45]",HS,15.47705565529623,56.46222416232251,0.27411346054667357,4646.935522519963,2019
+2004,42,"(40,45]",HS,20.348007181328548,56.46222416232251,0.36038267148014447,4618.654432004168,2019
+2004,42,"(40,45]",HS,20.348007181328548,56.46222416232251,0.36038267148014447,4644.433914192538,2019
+2004,42,"(40,45]",HS,17.676840215439857,56.46222416232251,0.3130737493553378,4647.1519238580995,2019
+2004,42,"(40,45]",HS,20.348007181328548,56.46222416232251,0.36038267148014447,4649.870714755348,2019
+2004,46,"(45,50]",NoHS,4.713824057450628,120.99048034783397,0.038960288808664256,4566.7018098236185,2019
+2004,46,"(45,50]",NoHS,4.713824057450628,120.99048034783397,0.038960288808664256,4573.528824649789,2019
+2004,46,"(45,50]",NoHS,4.713824057450628,120.99048034783397,0.038960288808664256,4605.073246816216,2019
+2004,46,"(45,50]",NoHS,4.713824057450628,120.99048034783397,0.038960288808664256,4576.987676747127,2019
+2004,46,"(45,50]",NoHS,4.713824057450628,120.99048034783397,0.038960288808664256,4589.396670247263,2019
+2004,51,"(50,55]",HS,43.68143626570916,61.30184337623587,0.7125631768953069,3857.5070850825928,2019
+2004,51,"(50,55]",HS,43.838563734290844,61.30184337623587,0.7151263537906137,3782.879867311097,2019
+2004,51,"(50,55]",HS,43.52430879712747,61.30184337623587,0.71,3863.6328510706417,2019
+2004,51,"(50,55]",HS,43.838563734290844,61.30184337623587,0.7151263537906137,3871.060449961391,2019
+2004,51,"(50,55]",HS,43.52430879712747,62.91504978087366,0.6917948717948718,3801.2477422539314,2019
+2004,80,"(75,80]",College,1931.0965888689407,503.32039824698927,3.8367143386096454,940.7994973880102,2019
+2004,80,"(75,80]",College,1898.0998204667865,503.32039824698927,3.7711561603258357,945.238997447891,2019
+2004,80,"(75,80]",College,1899.6710951526034,503.32039824698927,3.7742779783393505,939.8959946397151,2019
+2004,80,"(75,80]",College,1910.6700179533213,503.32039824698927,3.7961307044339536,960.5332692773802,2019
+2004,80,"(75,80]",College,1921.6689407540396,503.32039824698927,3.8179834305285567,975.4673912582754,2019
+2004,26,"(25,30]",HS,13.748653500897666,38.716953711306864,0.35510679903730447,5228.13678870346,2019
+2004,26,"(25,30]",HS,13.748653500897666,38.716953711306864,0.35510679903730447,5301.923938400703,2019
+2004,26,"(25,30]",HS,13.59152603231598,38.716953711306864,0.3510484356197353,5214.19829352672,2019
+2004,26,"(25,30]",HS,13.59152603231598,38.716953711306864,0.3510484356197353,5254.342344952629,2019
+2004,26,"(25,30]",HS,15.162800718132853,38.716953711306864,0.3916320697954272,5255.496992897892,2019
+2004,24,"(20,25]",HS,112.34614003590664,17.74527045101565,6.331046931407942,6989.2026826819665,2019
+2004,24,"(20,25]",HS,65.20789946140036,17.74527045101565,3.6746636035444693,6989.132837879903,2019
+2004,24,"(20,25]",HS,73.06427289048474,17.74527045101565,4.1173941581883815,7125.9382229668045,2019
+2004,24,"(20,25]",HS,65.20789946140036,19.358476855653432,3.368441636582431,7069.015776537652,2019
+2004,24,"(20,25]",HS,33.78240574506284,19.358476855653432,1.7450962695547536,7089.827861876154,2019
+2004,58,"(55,60]",HS,1335.426355475763,225.84889664929003,5.912919546157815,5578.061594810424,2019
+2004,58,"(55,60]",HS,1333.6979533213646,225.84889664929003,5.905266632284684,6169.593778988842,2019
+2004,58,"(55,60]",HS,1768.1554039497307,225.84889664929003,7.828930892212481,3024.0764813571077,2019
+2004,58,"(55,60]",HS,1152.3728545780968,225.84889664929003,5.102406395048995,5487.314190888405,2019
+2004,58,"(55,60]",HS,1558.5473608617594,225.84889664929003,6.900841155234658,5768.094207454372,2019
+2004,74,"(70,75]",NoHS,49.887971274685825,32.264128092755726,1.546236462093863,7544.718380084227,2019
+2004,74,"(70,75]",NoHS,52.55913824057451,33.87733449739351,1.5514543579164517,6991.0842176773485,2019
+2004,74,"(70,75]",NoHS,51.30211849192101,33.87733449739351,1.514349320955819,7919.188816749648,2019
+2004,74,"(70,75]",NoHS,51.77350089766607,33.87733449739351,1.528263709816056,7638.130663669954,2019
+2004,74,"(70,75]",NoHS,50.12366247755835,33.87733449739351,1.4795633488052258,7646.554615966367,2019
+2004,52,"(50,55]",HS,-19.232402154398567,129.0565123710229,-0.1490231046931408,4255.58510633076,2019
+2004,52,"(50,55]",HS,-19.24025852782765,129.0565123710229,-0.14908398014440433,4259.749660043692,2019
+2004,52,"(50,55]",HS,-20.80367684021544,129.0565123710229,-0.16119819494584836,4260.734267319595,2019
+2004,52,"(50,55]",HS,-19.232402154398567,129.0565123710229,-0.1490231046931408,4272.125410706993,2019
+2004,52,"(50,55]",HS,-20.80367684021544,129.0565123710229,-0.16119819494584836,4255.414246833607,2019
+2004,27,"(25,30]",College,450.32732495511675,95.17917787362938,4.731363886679312,7355.0850485103465,2019
+2004,27,"(25,30]",College,448.44179533213645,95.17917787362938,4.711553570335924,8176.272478393298,2019
+2004,27,"(25,30]",College,452.07143985637344,95.17917787362938,4.749688429296946,7267.408352556388,2019
+2004,27,"(25,30]",College,471.586671454219,95.17917787362938,4.9547252034510185,7232.700380221768,2019
+2004,27,"(25,30]",College,437.97710592459606,95.17917787362938,4.601606314630117,7605.552536807831,2019
+2004,74,"(70,75]",NoHS,4.3995691202872536,30.650921688117936,0.14353790613718412,8135.205737143993,2019
+2004,74,"(70,75]",NoHS,4.3995691202872536,29.03771528348015,0.1515122342559166,8143.774885724492,2019
+2004,74,"(70,75]",NoHS,4.556696588868941,30.650921688117936,0.14866425992779783,8145.776718760157,2019
+2004,74,"(70,75]",NoHS,4.556696588868941,30.650921688117936,0.14866425992779783,8128.501217476092,2019
+2004,74,"(70,75]",NoHS,4.556696588868941,29.03771528348015,0.15692338547934215,8140.4511534567255,2019
+2004,45,"(40,45]",College,1765.484236983842,254.8866119327702,6.926547548325185,599.5072073672007,2019
+2004,45,"(40,45]",College,1960.165170556553,259.7262311466836,7.547043523106935,616.2255942354915,2019
+2004,45,"(40,45]",College,2514.82513464991,262.9526439559591,9.563794821820116,595.5979041545912,2019
+2004,45,"(40,45]",College,1644.338958707361,251.66019912349464,6.533965102286402,611.6018144138613,2019
+2004,45,"(40,45]",College,2148.718132854578,243.5941671003057,8.820893202955029,619.6326174226867,2019
+2004,54,"(50,55]",HS,370.6165601436266,33.87733449739351,10.939956334880522,2545.834433009142,2019
+2004,54,"(50,55]",HS,640.4515619389588,33.87733449739351,18.905016331442322,8607.602669071432,2019
+2004,54,"(50,55]",HS,272.4590305206463,33.87733449739351,8.04251676121712,2488.1659913898266,2019
+2004,54,"(50,55]",HS,569.1156912028725,33.87733449739351,16.79930548392642,7920.097598059995,2019
+2004,54,"(50,55]",HS,1006.4014362657091,33.87733449739351,29.707220216606494,8262.081608031393,2019
+2004,50,"(45,50]",HS,18.61960502692998,56.46222416232251,0.32977101598762254,8414.934240724195,2019
+2004,50,"(45,50]",HS,18.61960502692998,56.46222416232251,0.32977101598762254,7671.576460782237,2019
+2004,50,"(45,50]",HS,18.61960502692998,56.46222416232251,0.32977101598762254,8484.833123303675,2019
+2004,50,"(45,50]",HS,18.61960502692998,56.46222416232251,0.32977101598762254,8452.824806848022,2019
+2004,50,"(45,50]",HS,18.61960502692998,56.46222416232251,0.32977101598762254,8141.963357640103,2019
+2004,54,"(50,55]",College,37124.50700179533,11921.59533027324,3.114055289858966,35.12158006974005,2019
+2004,54,"(50,55]",College,36808.68078994614,11905.463266226861,3.091747038047998,35.30455466562282,2019
+2004,54,"(50,55]",College,37338.200359066424,11953.859458365996,3.123526798111635,36.93886892133896,2019
+2004,54,"(50,55]",College,36708.74771992819,11905.463266226861,3.083353154686782,34.710533512426764,2019
+2004,54,"(50,55]",College,36835.39245960503,11937.727394319616,3.0856285491267443,37.33478372449191,2019
+2004,60,"(55,60]",HS,50.90929982046679,64.52825618551145,0.7889458483754512,6878.913059742733,2019
+2004,60,"(55,60]",HS,44.93845601436266,46.782985734495796,0.9605726378687912,6197.493988880029,2019
+2004,60,"(55,60]",HS,49.966535008976656,53.23581135304694,0.9385887758450935,6846.847356726413,2019
+2004,60,"(55,60]",HS,54.36610412926392,40.33016011594465,1.3480259927797835,6779.021778843297,2019
+2004,60,"(55,60]",HS,41.79590664272891,87.11314585044046,0.47978874181040243,6685.4811030685105,2019
+2004,24,"(20,25]",College,-34.88229802513465,112.92444832464501,-0.30889943269726666,7370.217672903133,2019
+2004,24,"(20,25]",College,-31.739748653500897,112.92444832464501,-0.2810706549767922,7330.455583462955,2019
+2004,24,"(20,25]",College,-34.72517055655296,112.92444832464501,-0.30750799381124294,7356.972893245043,2019
+2004,24,"(20,25]",College,-33.153895870736086,112.92444832464501,-0.2935936049510057,7268.551174180514,2019
+2004,24,"(20,25]",College,-36.29644524236984,112.92444832464501,-0.3214223826714802,7325.1278399349585,2019
+2004,47,"(45,50]",HS,-4.556696588868941,37.10374730666908,-0.12280960602731127,7024.595790381088,2019
+2004,59,"(55,60]",HS,3.723921005385997,53.23581135304694,0.06995142763373811,4987.489857019186,2019
+2004,56,"(55,60]",HS,-9.097680430879713,30.650921688117936,-0.2968158844765343,5792.701721193459,2019
+2004,24,"(20,25]",HS,-13.858642728904849,22.58488966492901,-0.6136245487364621,9514.187584472902,2019
+2004,43,"(40,45]",HS,-9.851892280071814,72.59428820870036,-0.13571167268351386,7153.120199748007,2019
+2004,59,"(55,60]",College,720.822262118492,193.58476855653433,3.7235484356197355,5429.283378345699,2019
+2004,59,"(55,60]",College,725.5360861759426,188.74514934262095,3.843998580641181,6005.038199393987,2019
+2004,59,"(55,60]",College,734.1780969479354,170.99987889160533,4.293442204209523,5358.026566639799,2019
+2004,59,"(55,60]",College,703.5382405745063,193.58476855653433,3.634264440433213,5340.956391745153,2019
+2004,59,"(55,60]",College,727.1073608617594,177.45270451015648,4.097471283229406,5614.247435775842,2019
+2004,43,"(40,45]",NoHS,6.442226211849192,40.33016011594465,0.15973718411552348,6214.64587714195,2019
+2004,43,"(40,45]",NoHS,6.5993536804308794,40.33016011594465,0.1636332129963899,6295.699005409826,2019
+2004,43,"(40,45]",NoHS,6.442226211849192,40.33016011594465,0.15973718411552348,6187.516092457321,2019
+2004,43,"(40,45]",NoHS,6.442226211849192,40.33016011594465,0.15973718411552348,6196.4393833571685,2019
+2004,43,"(40,45]",NoHS,6.442226211849192,40.33016011594465,0.15973718411552348,6228.5742436600685,2019
+2004,72,"(70,75]",HS,3367.2416517055653,198.4243877704477,16.969898153855183,3297.335455077111,2019
+2004,72,"(70,75]",HS,3367.2416517055653,198.4243877704477,16.969898153855183,3451.694355673496,2019
+2004,72,"(70,75]",HS,3367.2416517055653,196.81118136580994,17.108995679706453,3270.9030933695085,2019
+2004,72,"(70,75]",HS,3367.2416517055653,198.4243877704477,16.969898153855183,3511.20751464636,2019
+2004,72,"(70,75]",HS,3367.2416517055653,196.81118136580994,17.108995679706453,3349.8526085767307,2019
+2004,40,"(35,40]",College,499913.76861759427,16954.799312743133,29.485089112311808,16.511059011265516,2019
+2004,40,"(35,40]",College,578109.5103770198,17083.855825114155,33.839521727124904,17.173365349495242,2019
+2004,40,"(35,40]",College,561152.1568402154,17454.893298180847,32.14870164223226,17.190590848505103,2019
+2004,40,"(35,40]",College,516174.2618312388,17680.742194830134,29.194151249044776,16.26748258254561,2019
+2004,40,"(35,40]",College,522638.17163375224,16470.837391351797,31.731123270524755,16.65528912184059,2019
+2004,59,"(55,60]",College,37527.85321364453,633.9901170226499,59.19312021752511,1134.9517314155019,2019
+2004,59,"(55,60]",College,10221.770341113106,633.9901170226499,16.122917481926496,1239.6978031315468,2019
+2004,59,"(55,60]",College,36634.28501256733,633.9901170226499,57.78368468046409,1151.7590994998734,2019
+2004,59,"(55,60]",College,4580.108581687613,633.9901170226499,7.224258641754165,1198.2982046391487,2019
+2004,59,"(55,60]",College,4581.224186714542,632.3769106180121,7.244452018713623,1220.9668332492822,2019
+2004,35,"(30,35]",NoHS,366.15414003590666,50.00939854377137,7.321706533131478,5550.170429829269,2019
+2004,35,"(30,35]",NoHS,366.15414003590666,50.00939854377137,7.321706533131478,6164.495972209094,2019
+2004,35,"(30,35]",NoHS,366.31126750448834,50.00939854377137,7.32484849190637,5478.412806977829,2019
+2004,35,"(30,35]",NoHS,366.15414003590666,50.00939854377137,7.321706533131478,5474.166583161554,2019
+2004,35,"(30,35]",NoHS,366.31126750448834,50.00939854377137,7.32484849190637,5716.84108489127,2019
+2004,44,"(40,45]",NoHS,3.613931777378815,11.453765472928282,0.3155234657039711,4374.510408368378,2019
+2004,44,"(40,45]",NoHS,3.613931777378815,11.453765472928282,0.3155234657039711,4355.7771125921345,2019
+2004,44,"(40,45]",NoHS,3.613931777378815,11.453765472928282,0.3155234657039711,4341.720622556097,2019
+2004,44,"(40,45]",NoHS,3.4568043087971274,11.453765472928282,0.3018050541516245,4355.7335380785225,2019
+2004,44,"(40,45]",NoHS,3.4568043087971274,11.453765472928282,0.3018050541516245,4332.256642695418,2019
+2004,37,"(35,40]",HS,39.046175942549375,56.46222416232251,0.6915451263537907,7892.585648539864,2019
+2004,37,"(35,40]",HS,38.889048473967684,56.46222416232251,0.6887622485817433,7522.12636446353,2019
+2004,37,"(35,40]",HS,39.046175942549375,56.46222416232251,0.6915451263537907,7827.892527671424,2019
+2004,37,"(35,40]",HS,39.046175942549375,56.46222416232251,0.6915451263537907,7843.8095455855055,2019
+2004,37,"(35,40]",HS,38.889048473967684,56.46222416232251,0.6887622485817433,7703.428173777825,2019
+2004,24,"(20,25]",HS,64.7365170556553,58.0754305669603,1.1146971520256719,8507.190506491232,2019
+2004,24,"(20,25]",HS,61.59396768402155,58.0754305669603,1.060585639791416,8270.647385417706,2019
+2004,24,"(20,25]",HS,64.7365170556553,58.0754305669603,1.1146971520256719,8575.152861607305,2019
+2004,24,"(20,25]",HS,64.7365170556553,58.0754305669603,1.1146971520256719,8355.676573525754,2019
+2004,24,"(20,25]",HS,64.7365170556553,58.0754305669603,1.1146971520256719,8484.46580456697,2019
+2004,45,"(40,45]",College,1847.8190305206465,193.58476855653433,9.545270758122745,149.04167198964194,2019
+2004,45,"(40,45]",College,1847.8190305206465,193.58476855653433,9.545270758122745,158.28636162635877,2019
+2004,45,"(40,45]",College,1849.3903052064632,193.58476855653433,9.553387484957883,153.43161074834367,2019
+2004,45,"(40,45]",College,1850.96157989228,193.58476855653433,9.56150421179302,151.9590108522481,2019
+2004,45,"(40,45]",College,1847.8190305206465,195.19797496117215,9.466384222931646,160.13049457131072,2019
+2004,69,"(65,70]",HS,551.3602872531419,40.33016011594465,13.671165342960292,7320.242979664242,2019
+2004,69,"(65,70]",HS,591.7420466786356,41.94336652058244,14.108119966675924,8206.6187965775,2019
+2004,69,"(65,70]",HS,562.0449551166965,41.94336652058244,13.400091641210775,7306.901206630597,2019
+2004,69,"(65,70]",HS,558.9024057450629,40.33016011594465,13.85817472924188,7288.394616535021,2019
+2004,69,"(65,70]",HS,582.9429084380611,40.33016011594465,14.454267148014441,7634.632854576693,2019
+2004,49,"(45,50]",College,92008.91179892281,1209.9048034783398,76.04640591095065,224.5756583048576,2019
+2004,49,"(45,50]",College,92601.25092998205,1209.9048034783398,76.53598090012032,233.31197362120798,2019
+2004,49,"(45,50]",College,91986.96109156194,1209.9048034783398,76.02826340312875,232.18788864895015,2019
+2004,49,"(45,50]",College,91993.52901974866,1209.9048034783398,76.0336918700361,233.99581520855227,2019
+2004,49,"(45,50]",College,91990.51217235188,1209.9048034783398,76.03119841155232,260.2593226387703,2019
+2004,62,"(60,65]",College,1033.5844883303412,135.50933798957405,7.627404160220044,7460.438828506076,2019
+2004,62,"(60,65]",College,1779.7828366247757,135.50933798957405,13.13402355165893,7600.161727521221,2019
+2004,62,"(60,65]",College,849.1168402154399,135.50933798957405,6.266113116726834,7252.928243431404,2019
+2004,62,"(60,65]",College,934.594183123878,135.50933798957405,6.896898745057589,7282.92500080746,2019
+2004,62,"(60,65]",College,1637.5824775583483,135.50933798957405,12.084646725116038,7545.36771682829,2019
+2004,51,"(50,55]",HS,613.4256373429084,16.132064046377863,38.02524187725631,5624.5093751340955,2019
+2004,51,"(50,55]",HS,613.4256373429084,16.132064046377863,38.02524187725631,6259.518561665764,2019
+2004,51,"(50,55]",HS,613.4256373429084,16.132064046377863,38.02524187725631,5553.364760921718,2019
+2004,51,"(50,55]",HS,613.4256373429084,16.132064046377863,38.02524187725631,5566.589027256434,2019
+2004,51,"(50,55]",HS,613.58276481149,16.132064046377863,38.034981949458476,5817.751229310899,2019
+2004,76,"(75,80]",HS,562.5949012567326,35.4905409020313,15.85196750902527,268.85611835086104,2019
+2004,76,"(75,80]",HS,561.4950089766606,35.4905409020313,15.820976370200194,223.73204233888418,2019
+2004,76,"(75,80]",HS,562.7520287253142,33.87733449739351,16.611461234313218,268.066328765828,2019
+2004,76,"(75,80]",HS,561.8092639138241,40.33016011594465,13.930251263537908,241.754410787096,2019
+2004,76,"(75,80]",HS,562.4377737881508,33.87733449739351,16.602184975073058,244.42782397317802,2019
+2004,57,"(55,60]",HS,2126.9716912028725,90.33955865971603,23.544189530685916,3067.8050974464095,2019
+2004,57,"(55,60]",HS,1104.606104129264,61.30184337623587,18.01913357400722,6191.612610854978,2019
+2004,57,"(55,60]",HS,858.9530197486536,80.6603202318893,10.649015740072203,5525.612201780194,2019
+2004,57,"(55,60]",HS,1178.7702692998205,50.00939854377137,23.57097472924188,5507.414131793606,2019
+2004,57,"(55,60]",HS,1824.0927827648115,141.9621636081252,12.849147522152936,3115.3086335534017,2019
+2004,54,"(50,55]",College,2591.6604667863553,269.4054695745103,9.619925203744135,3579.520031205878,2019
+2004,54,"(50,55]",College,2866.6335368043087,269.4054695745103,10.640591452474112,3751.0451751348382,2019
+2004,54,"(50,55]",College,3141.606606822262,271.0186759791481,11.591845452982636,3543.7891097536,2019
+2004,54,"(50,55]",College,3108.7669658886894,271.0186759791481,11.47067431665807,3824.197552708373,2019
+2004,54,"(50,55]",College,2591.6604667863553,269.4054695745103,9.619925203744135,3637.5019029606424,2019
+2004,54,"(50,55]",College,14745.784416517057,6517.353874736656,2.2625416234764275,21.76517774528393,2019
+2004,54,"(50,55]",College,15010.38707360862,6517.353874736656,2.3031413303785255,22.80218247899165,2019
+2004,54,"(50,55]",College,15002.530700179534,6517.353874736656,2.3019358758980593,22.81973325994671,2019
+2004,54,"(50,55]",College,15530.478994614003,6517.353874736656,2.382942416985381,21.166772245572535,2019
+2004,54,"(50,55]",College,15277.503770197487,6517.353874736656,2.3441267827143726,21.969053240189435,2019
+2004,54,"(50,55]",College,849.9024775583483,280.6979144069748,3.0278189966388647,3469.9508661910913,2019
+2004,54,"(50,55]",College,849.9024775583483,280.6979144069748,3.0278189966388647,3857.2150777142474,2019
+2004,54,"(50,55]",College,851.4737522441652,282.31112081161257,3.0160829293450235,3434.085620431039,2019
+2004,54,"(50,55]",College,849.9024775583483,280.6979144069748,3.0278189966388647,3440.310817691515,2019
+2004,54,"(50,55]",College,849.7453500897666,280.6979144069748,3.027259222374372,3586.5275555009416,2019
+2004,20,"(15,20]",HS,7.086448833034111,43.55657292522023,0.16269528011766277,5527.0034077404125,2019
+2004,20,"(15,20]",HS,5.358046678635548,37.10374730666908,0.14440715743211427,5593.087958246719,2019
+2004,20,"(15,20]",HS,4.116739676840215,32.264128092755726,0.1275949458483754,5535.386546342472,2019
+2004,20,"(15,20]",HS,3.7867719928186716,37.10374730666908,0.1020590174226966,5471.783788762144,2019
+2004,20,"(15,20]",HS,5.515174147217236,37.10374730666908,0.14864197143305605,5560.287331164374,2019
+2004,48,"(45,50]",College,8135.903195691203,845.3201560302,9.624641193815966,2729.1470719425383,2019
+2004,48,"(45,50]",College,7963.062980251347,858.2258072673022,9.27851727694688,2632.515616100399,2019
+2004,48,"(45,50]",College,7910.739533213645,846.9333624348377,9.340450954100051,2871.462689514968,2019
+2004,48,"(45,50]",College,7189.053070017953,803.3767895096175,8.9485446479057,2542.779365151207,2019
+2004,48,"(45,50]",College,6526.76078994614,854.9993944580267,7.633643757237245,2657.9928472060665,2019
+2004,47,"(45,50]",HS,1213.0240574506283,209.7168326029122,5.784104415440155,7365.5979502245345,2019
+2004,47,"(45,50]",HS,1213.0240574506283,209.7168326029122,5.784104415440155,8194.617691583077,2019
+2004,47,"(45,50]",HS,1213.0240574506283,209.7168326029122,5.784104415440155,7270.439676021693,2019
+2004,47,"(45,50]",HS,1213.0240574506283,209.7168326029122,5.784104415440155,7287.042859765078,2019
+2004,47,"(45,50]",HS,1213.0240574506283,209.7168326029122,5.784104415440155,7616.331436218859,2019
+2004,47,"(45,50]",HS,2004.0037342908438,153.2546084405897,13.07630324909747,2847.7763662622274,2019
+2004,47,"(45,50]",HS,1984.8341831238781,153.2546084405897,12.9512202166065,2984.042029043446,2019
+2004,47,"(45,50]",HS,1985.4626929982046,153.2546084405897,12.955321299638987,2819.6249063003443,2019
+2004,47,"(45,50]",HS,1986.7197127468582,153.2546084405897,12.96352346570397,3042.700892889617,2019
+2004,47,"(45,50]",HS,1984.8341831238781,153.2546084405897,12.9512202166065,2893.735443382773,2019
+2004,56,"(55,60]",College,5096.115188509874,1129.2444832464503,4.512853739040742,1438.7386515847907,2019
+2004,56,"(55,60]",College,5096.115188509874,1129.2444832464503,4.512853739040742,1433.138313107786,2019
+2004,56,"(55,60]",College,5096.115188509874,1129.2444832464503,4.512853739040742,1463.8336641787785,2019
+2004,56,"(55,60]",College,5096.115188509874,1129.2444832464503,4.512853739040742,1397.4483158499336,2019
+2004,56,"(55,60]",College,5095.958061041293,1129.2444832464503,4.512714595152141,1421.0678114947616,2019
+2004,49,"(45,50]",College,38455.84804308797,10695.558462748522,3.5954969697959718,29.61522827315356,2019
+2004,49,"(45,50]",College,13384.90341113106,10614.898142516631,1.260954484105648,30.288865272540924,2019
+2004,49,"(45,50]",College,10792.143052064632,10631.03020656301,1.0151549607489743,30.73317210105531,2019
+2004,49,"(45,50]",College,10447.719640933574,10598.766078470255,0.9857486771178479,29.418209941644864,2019
+2004,49,"(45,50]",College,38545.56782764812,10663.294334655768,3.6147898217884507,31.16929348498715,2019
+2004,41,"(40,45]",College,935.8512028725314,258.1130247420458,3.625741877256317,564.6576041482207,2019
+2004,41,"(40,45]",College,927.523447037702,259.7262311466836,3.5711581496513216,557.218000029867,2019
+2004,41,"(40,45]",College,968.8479712746858,258.1130247420458,3.753580324909747,568.5293038108367,2019
+2004,41,"(40,45]",College,945.9073608617595,258.1130247420458,3.6647021660649814,525.6327456839268,2019
+2004,41,"(40,45]",College,956.4349012567326,258.1130247420458,3.7054887184115524,566.4799876968088,2019
+2004,59,"(55,60]",College,43826.77917414722,3355.4693216465953,13.061296341294085,302.7617198762218,2019
+2004,59,"(55,60]",College,35416.531418312385,3419.997577832107,10.355718275321843,296.53990372088106,2019
+2004,59,"(55,60]",College,37251.7802513465,3855.5633070843087,9.661825597027326,311.4984887334801,2019
+2004,59,"(55,60]",College,36807.10951526032,3710.374730666908,9.92005179720609,295.42385863598713,2019
+2004,59,"(55,60]",College,37317.459533213645,3016.6959766726595,12.370308384331747,307.0823313011955,2019
+2004,73,"(70,75]",HS,22.233536804308798,33.87733449739351,0.6562953412411896,5013.867651116722,2019
+2004,73,"(70,75]",HS,22.233536804308798,33.87733449739351,0.6562953412411896,5281.903815323004,2019
+2004,73,"(70,75]",HS,22.233536804308798,33.87733449739351,0.6562953412411896,5204.057002717152,2019
+2004,73,"(70,75]",HS,22.233536804308798,33.87733449739351,0.6562953412411896,5169.6237485178335,2019
+2004,73,"(70,75]",HS,22.233536804308798,33.87733449739351,0.6562953412411896,5260.034048009735,2019
+2004,30,"(25,30]",College,154.33059964093357,129.0565123710229,1.1958373646209384,8260.891945718542,2019
+2004,30,"(25,30]",College,154.34631238779176,129.0565123710229,1.1959591155234657,8048.682802664148,2019
+2004,30,"(25,30]",College,154.48772710951525,129.0565123710229,1.1970548736462092,8293.481479484326,2019
+2004,30,"(25,30]",College,154.33059964093357,129.0565123710229,1.1958373646209384,8257.190823038673,2019
+2004,30,"(25,30]",College,154.33059964093357,129.0565123710229,1.1958373646209384,8233.978074142437,2019
+2004,52,"(50,55]",HS,104.96114901256733,72.59428820870036,1.4458596068993184,5770.642129571586,2019
+2004,52,"(50,55]",HS,105.11827648114902,74.20749461333816,1.4165452833150214,5418.167142149317,2019
+2004,52,"(50,55]",HS,104.96114901256733,72.59428820870036,1.4458596068993184,5816.860277750087,2019
+2004,52,"(50,55]",HS,105.11827648114902,72.59428820870036,1.4480240673886886,5774.458591681772,2019
+2004,52,"(50,55]",HS,104.96114901256733,74.20749461333816,1.4144278763145506,5635.469625375098,2019
+2004,30,"(25,30]",HS,161.68416517055655,56.46222416232251,2.8635812274368235,7705.875191604673,2019
+2004,30,"(25,30]",HS,161.68416517055655,56.46222416232251,2.8635812274368235,7652.766767661054,2019
+2004,30,"(25,30]",HS,161.84129263913823,56.46222416232251,2.866364105208871,7707.92655056294,2019
+2004,30,"(25,30]",HS,161.68416517055655,56.46222416232251,2.8635812274368235,7698.580126713248,2019
+2004,30,"(25,30]",HS,161.84129263913823,56.46222416232251,2.866364105208871,7694.63164738741,2019
+2004,23,"(20,25]",College,-13.670089766606823,35.4905409020313,-0.38517558254020345,7935.481855726507,2019
+2004,23,"(20,25]",College,-13.670089766606823,35.4905409020313,-0.38517558254020345,8030.363785915337,2019
+2004,23,"(20,25]",College,-12.098815080789945,35.4905409020313,-0.3409025270758122,7947.518078497339,2019
+2004,23,"(20,25]",College,-13.670089766606823,37.10374730666908,-0.3684288180819338,7856.199421438791,2019
+2004,23,"(20,25]",College,-10.52754039497307,35.4905409020313,-0.296629471611421,7983.269770973375,2019
+2004,46,"(45,50]",HS,1282.6629515260324,196.81118136580994,6.517226016452624,2880.2892057747017,2019
+2004,46,"(45,50]",HS,1531.0814793536806,122.60368675247175,12.48805415162455,3019.392735641177,2019
+2004,46,"(45,50]",HS,1350.8562728904847,132.28292518029846,10.211871797129522,2851.4840530665906,2019
+2004,46,"(45,50]",HS,1431.7769192100538,166.16025967769198,8.616843293259961,3079.311363229992,2019
+2004,46,"(45,50]",HS,1340.642987432675,148.4149892266763,9.033070004708836,2927.268567050941,2019
+2004,42,"(40,45]",HS,2190.356912028725,258.1130247420458,8.486037906137183,9893.638719708177,2019
+2004,42,"(40,45]",HS,1564.9895870736086,258.1130247420458,6.063194945848375,5060.621318770907,2019
+2004,42,"(40,45]",HS,1585.416157989228,258.1130247420458,6.142333032490973,4815.118604757261,2019
+2004,42,"(40,45]",HS,2188.471382405745,258.1130247420458,8.478732851985558,9994.822911348489,2019
+2004,42,"(40,45]",HS,1567.346499102334,258.1130247420458,6.072326263537906,4939.371068058339,2019
+2004,55,"(50,55]",HS,577.7577019748654,82.2735266365271,7.022401075953848,6592.519232759825,2019
+2004,55,"(50,55]",HS,578.7004667863555,82.2735266365271,7.033859984426984,7288.87710368206,2019
+2004,55,"(50,55]",HS,577.2863195691203,82.2735266365271,7.016671621717279,6504.849510573688,2019
+2004,55,"(50,55]",HS,579.4861041292639,82.2735266365271,7.043409074821264,6483.426417109492,2019
+2004,55,"(50,55]",HS,579.3289766606822,82.2735266365271,7.041499256742408,6814.629968089105,2019
+2004,63,"(60,65]",College,117766.7234470377,1438.9801129369055,81.84041071052758,20.912358362384357,2019
+2004,63,"(60,65]",College,112737.49742190306,1611.5931982331483,69.95406629011683,22.21199855181596,2019
+2004,63,"(60,65]",College,118097.31964093358,1437.3669065322674,82.1622642793762,21.419262161173148,2019
+2004,63,"(60,65]",College,116424.85486535009,1709.9987889160534,68.08475866766568,20.846009857222377,2019
+2004,63,"(60,65]",College,116958.4597486535,1438.9801129369055,81.27871865438473,21.265097350211597,2019
+2004,47,"(45,50]",College,52010.76337522442,8066.032023188931,6.448122599277979,25.272604537569986,2019
+2004,47,"(45,50]",College,65570.86391382405,8066.032023188931,8.12925906137184,27.460195446701853,2019
+2004,47,"(45,50]",College,93918.23052064632,8066.032023188931,11.6436719133574,27.68412532033214,2019
+2004,47,"(45,50]",College,52529.28402154399,8066.032023188931,6.512407075812274,24.422401064502107,2019
+2004,47,"(45,50]",College,93916.6592459605,8066.032023188931,11.643477111913356,26.767361096680492,2019
+2004,37,"(35,40]",NoHS,21.526463195691203,59.68863697159809,0.3606459166747975,5103.945244758737,2019
+2004,37,"(35,40]",NoHS,21.526463195691203,59.68863697159809,0.3606459166747975,5081.8554952052,2019
+2004,37,"(35,40]",NoHS,21.526463195691203,58.0754305669603,0.370663858804653,5064.849921823565,2019
+2004,37,"(35,40]",NoHS,21.526463195691203,59.68863697159809,0.3606459166747975,5069.44210128987,2019
+2004,37,"(35,40]",NoHS,21.526463195691203,58.0754305669603,0.370663858804653,5053.655776381409,2019
+2004,58,"(55,60]",College,25050.04667863555,1613.2064046377861,15.52811010830325,321.20552583563233,2019
+2004,58,"(55,60]",College,25050.20380610413,1613.2064046377861,15.528207509025272,322.4300307399586,2019
+2004,58,"(55,60]",College,25050.20380610413,1613.2064046377861,15.528207509025272,324.16846605579263,2019
+2004,58,"(55,60]",College,25050.20380610413,1613.2064046377861,15.528207509025272,320.69254538234384,2019
+2004,58,"(55,60]",College,25050.20380610413,1613.2064046377861,15.528207509025272,330.7513900743841,2019
+2004,71,"(70,75]",College,374.3090556552963,27.424508878842364,13.648705882352942,10296.30509713999,2019
+2004,71,"(70,75]",College,477.82463195691207,24.19809606956679,19.74637304452467,10345.127726566956,2019
+2004,71,"(70,75]",College,438.2285098743268,27.424508878842364,15.979447865788917,10290.886695054673,2019
+2004,71,"(70,75]",College,480.02441651705567,50.00939854377137,9.598684057295912,10261.750721870425,2019
+2004,71,"(70,75]",College,507.20746858168764,45.16977932985802,11.228911810211448,9685.78399212998,2019
+2004,51,"(50,55]",HS,881.4850987432675,130.66971877566067,6.745901858537238,7627.583241620443,2019
+2004,51,"(50,55]",HS,881.9564811490126,133.89613158493626,6.586870514549171,8488.740207751105,2019
+2004,51,"(50,55]",HS,881.0137163375225,156.48102124986525,5.630163385313931,7531.101676579943,2019
+2004,51,"(50,55]",HS,893.2696588868941,153.2546084405897,5.828664259927797,7549.035541660395,2019
+2004,51,"(50,55]",HS,891.6983842010771,156.48102124986525,5.698444303844579,7889.644913170858,2019
+2004,52,"(50,55]",HS,0,13.389613158493624,0,4952.037402735901,2019
+2004,52,"(50,55]",HS,0,13.389613158493624,0,4956.062684467878,2019
+2004,52,"(50,55]",HS,0,13.389613158493624,0,4961.2077326702465,2019
+2004,52,"(50,55]",HS,0,13.389613158493624,0,4973.860105838902,2019
+2004,52,"(50,55]",HS,0,13.389613158493624,0,4952.32435514277,2019
+2004,52,"(50,55]",HS,1454.2147217235188,237.14134148175458,6.132269947690267,7256.455226641995,2019
+2004,52,"(50,55]",HS,1474.79842010772,217.78286462610117,6.771875384409679,8075.711702761483,2019
+2004,52,"(50,55]",HS,1380.5219389587073,212.94324541218776,6.483051088502352,7164.668072738187,2019
+2004,52,"(50,55]",HS,1438.5019748653501,209.7168326029122,6.85925853929464,7181.729346915681,2019
+2004,52,"(50,55]",HS,1397.805960502693,190.35835574725877,7.343023924616044,7505.766014343154,2019
+2004,61,"(60,65]",College,170440.40761220825,10356.785117774587,16.456883644297488,17.27941629084851,2019
+2004,61,"(60,65]",College,175422.6053859964,12292.632803339931,14.270547912106652,17.790385937914266,2019
+2004,61,"(60,65]",College,192293.06743267504,10372.917181820965,18.537993127880927,17.492184777733097,2019
+2004,61,"(60,65]",College,188372.42283662478,12550.745828081977,15.008862853006411,17.06704017634909,2019
+2004,61,"(60,65]",College,170902.99087971277,10663.294334655768,16.02722249954942,17.13588658243797,2019
+2004,27,"(25,30]",HS,-14.47143985637343,30.650921688117936,-0.47213718411552347,4998.620122816939,2019
+2004,27,"(25,30]",HS,-9.694764811490126,29.03771528348015,-0.333868030485359,4973.45207726733,2019
+2004,27,"(25,30]",HS,-3.4568043087971274,30.650921688117936,-0.1127797833935018,5004.4565252861885,2019
+2004,27,"(25,30]",HS,-11.391741472172352,30.650921688117936,-0.3716606498194946,5038.670537116878,2019
+2004,27,"(25,30]",HS,-6.127971274685817,29.03771528348015,-0.21103489771359807,5016.709528098309,2019
+2004,52,"(50,55]",College,345.8218456014363,54.84901775768473,6.304977914631557,7450.383733683023,2019
+2004,52,"(50,55]",College,347.4088330341113,56.46222416232251,6.152942753996906,6839.277585721521,2019
+2004,52,"(50,55]",College,347.4088330341113,54.84901775768473,6.333911658526226,7513.989041857897,2019
+2004,52,"(50,55]",College,347.3931202872531,54.84901775768473,6.333625185814397,7502.724059683128,2019
+2004,52,"(50,55]",College,347.377407540395,54.84901775768473,6.333338713102569,7236.88861904318,2019
+2004,39,"(35,40]",HS,44.87560502692998,30.650921688117936,1.464086642599278,8027.54508544475,2019
+2004,39,"(35,40]",HS,98.2832315978456,29.03771528348015,3.3846750902527076,7703.742757301904,2019
+2004,39,"(35,40]",HS,70.016,29.03771528348015,2.411208985158444,7963.567055050333,2019
+2004,39,"(35,40]",HS,46.446879712746856,29.03771528348015,1.5995363016446047,7997.96834341621,2019
+2004,39,"(35,40]",HS,84.14175942549372,30.650921688117936,2.745162454873646,7865.789453304591,2019
+2004,41,"(40,45]",College,1955.9227289048474,233.91492867247896,8.36168405328022,1586.1411283878074,2019
+2004,41,"(40,45]",College,1955.9227289048474,233.91492867247896,8.36168405328022,1545.0766775379298,2019
+2004,41,"(40,45]",College,1955.9227289048474,233.91492867247896,8.36168405328022,1619.8357401028177,2019
+2004,41,"(40,45]",College,1955.9227289048474,233.91492867247896,8.36168405328022,1549.3521369061284,2019
+2004,41,"(40,45]",College,1955.9227289048474,233.91492867247896,8.36168405328022,1617.9491817451467,2019
+2004,52,"(50,55]",College,3757.389156193896,371.0374730666908,10.12671072045205,360.44150035953055,2019
+2004,52,"(50,55]",College,3760.688833034111,371.0374730666908,10.135603829854027,347.97573866529854,2019
+2004,52,"(50,55]",College,3740.262262118492,371.0374730666908,10.080551247841784,374.1068913847504,2019
+2004,52,"(50,55]",College,3741.8335368043086,371.0374730666908,10.084786061842724,355.7540392668519,2019
+2004,52,"(50,55]",College,3752.6753321364454,371.0374730666908,10.114006278449224,366.38106265159144,2019
+2004,43,"(40,45]",HS,-14.062908438061042,66.14146259014923,-0.21261864929118607,7860.176439878111,2019
+2004,43,"(40,45]",HS,-14.062908438061042,64.52825618551145,-0.21793411552346567,7364.947636113972,2019
+2004,43,"(40,45]",HS,-14.062908438061042,64.52825618551145,-0.21793411552346567,7825.2947945384685,2019
+2004,43,"(40,45]",HS,-14.062908438061042,66.14146259014923,-0.21261864929118607,7774.212276128163,2019
+2004,43,"(40,45]",HS,-14.062908438061042,66.14146259014923,-0.21261864929118607,7621.332990182539,2019
+2004,27,"(25,30]",College,241.7406104129264,187.13194293798318,1.2918190588821115,9676.447557640542,2019
+2004,27,"(25,30]",College,241.7406104129264,185.5187365333454,1.303052268089782,9330.78300010335,2019
+2004,27,"(25,30]",College,241.7406104129264,188.74514934262095,1.2807778703446575,9681.878601810964,2019
+2004,27,"(25,30]",College,241.7406104129264,190.35835574725877,1.2699238205959738,9704.398519880217,2019
+2004,27,"(25,30]",College,241.7406104129264,187.13194293798318,1.2918190588821115,9573.136618038017,2019
+2004,62,"(60,65]",HS,10891.60473967684,27.424508878842364,397.14857931620304,1734.884007521046,2019
+2004,62,"(60,65]",HS,10825.155533213645,27.424508878842364,394.7255931195583,1695.1012648378753,2019
+2004,62,"(60,65]",HS,10556.043317773787,29.03771528348015,363.528714801444,1790.0007991036302,2019
+2004,62,"(60,65]",HS,10470.974506283663,27.424508878842364,381.8108303249098,1677.5924890155159,2019
+2004,62,"(60,65]",HS,10632.972926391381,27.424508878842364,387.7178976428116,1713.4059457003655,2019
+2004,55,"(50,55]",HS,10057.41500897666,524.2920815072805,19.182847431269092,257.66427198170487,2019
+2004,55,"(50,55]",HS,10057.41500897666,524.2920815072805,19.182847431269092,254.48907844907254,2019
+2004,55,"(50,55]",HS,10057.257881508078,524.2920815072805,19.182547736739792,265.9445854286846,2019
+2004,55,"(50,55]",HS,10057.41500897666,524.2920815072805,19.182847431269092,254.1138144918406,2019
+2004,55,"(50,55]",HS,10057.257881508078,524.2920815072805,19.182547736739792,261.081810151749,2019
+2004,41,"(40,45]",HS,110.90056732495512,62.91504978087366,1.7627033231509766,3993.5317772990975,2019
+2004,41,"(40,45]",HS,112.62896947935369,62.91504978087366,1.7901753216699066,4003.972044044537,2019
+2004,41,"(40,45]",HS,112.471842010772,62.91504978087366,1.7876778672590947,3964.5043769200333,2019
+2004,41,"(40,45]",HS,112.62896947935369,62.91504978087366,1.7901753216699066,3986.3753171146973,2019
+2004,41,"(40,45]",HS,114.20024416517056,62.91504978087366,1.8151498657780247,3970.422254269165,2019
+2004,56,"(55,60]",HS,52580.350448833036,3694.2426666205306,14.23305266974603,25.272604537569986,2019
+2004,56,"(55,60]",HS,56822.792100538594,3758.7709228060417,15.1173863125765,25.483388426372862,2019
+2004,56,"(55,60]",HS,52305.84876122083,3920.09156326982,13.3430170997311,26.696224556148234,2019
+2004,56,"(55,60]",HS,54458.023698384204,5807.54305669603,9.377119233854794,24.422401064502107,2019
+2004,56,"(55,60]",HS,52552.06750448833,5807.54305669603,9.048932912154031,26.11546765252076,2019
+2004,50,"(45,50]",HS,0,67.75466899478702,0,6595.808075738803,2019
+2004,50,"(45,50]",HS,1.5712746858168762,72.59428820870036,0.02164460489370237,6445.8861323759675,2019
+2004,50,"(45,50]",HS,1.5712746858168762,77.43390742261373,0.02029181708784597,6592.324559226043,2019
+2004,50,"(45,50]",HS,1.5712746858168762,69.36787539942482,0.022651330702711775,6579.3162803264,2019
+2004,50,"(45,50]",HS,-1.5712746858168762,104.8584163014561,-0.01498472646487087,6470.607304768274,2019
+2004,41,"(40,45]",College,1717.4032315978457,532.3581135304694,3.226029974838639,4912.947530804299,2019
+2004,41,"(40,45]",College,2132.062621184919,553.3297967907606,3.8531498458073274,5134.002713045093,2019
+2004,41,"(40,45]",College,1380.0505565529625,422.6600780151,3.265154738611624,8850.933282802396,2019
+2004,41,"(40,45]",College,1921.354685816876,546.8769711722094,3.5133216191176,5226.095664537053,2019
+2004,41,"(40,45]",College,1726.9880071813286,403.30160115944653,4.282125342960289,4968.990437389279,2019
+2004,47,"(45,50]",College,115.41012567324955,59.68863697159809,1.9335359547272903,4686.582604894115,2019
+2004,47,"(45,50]",College,161.33848473967686,151.6414020359519,1.0639474614025655,4711.384015879778,2019
+2004,47,"(45,50]",College,61.12258527827648,124.21689315710954,0.49206338787566223,4824.870469027146,2019
+2004,47,"(45,50]",College,93.9622262118492,75.82070101797595,1.2392687610415547,4723.301221992896,2019
+2004,47,"(45,50]",College,40.72743985637343,166.16025967769198,0.24510938978654795,4780.55943377629,2019
+2004,52,"(50,55]",College,562.6734649910234,96.79238427826716,5.813199759326113,6731.04214579971,2019
+2004,52,"(50,55]",College,584.514183123878,96.79238427826716,6.038844765342961,7494.161556544497,2019
+2004,52,"(50,55]",College,578.3862118491921,96.79238427826716,5.975534296028881,6645.1265889044635,2019
+2004,52,"(50,55]",College,600.2269299820467,96.79238427826716,6.201179302045729,6665.779622882517,2019
+2004,52,"(50,55]",College,573.5152603231597,96.79238427826716,5.925210589651022,6963.4801464340535,2019
+2004,38,"(35,40]",College,6093.2461041292645,6485.089746643901,0.9395777610144225,33.626202353861174,2019
+2004,38,"(35,40]",College,6185.149960502694,6485.089746643901,0.9537493237782207,33.91869954975901,2019
+2004,38,"(35,40]",College,6131.7423339317775,6485.089746643901,0.9455138746699713,35.69261508250918,2019
+2004,38,"(35,40]",College,6106.444811490126,6485.089746643901,0.9416129999820392,32.98183864853496,2019
+2004,38,"(35,40]",College,6083.5042010771995,6485.089746643901,0.9380755608240385,34.83108335452836,2019
+2004,50,"(45,50]",HS,413.1666786355476,161.3206404637786,2.561151985559567,303.1853731330864,2019
+2004,50,"(45,50]",HS,413.1666786355476,161.3206404637786,2.561151985559567,274.8035214235396,2019
+2004,50,"(45,50]",HS,413.1666786355476,161.3206404637786,2.561151985559567,298.8268275497556,2019
+2004,50,"(45,50]",HS,413.00955116696593,161.3206404637786,2.5601779783393503,284.47604307593826,2019
+2004,50,"(45,50]",HS,413.32380610412923,161.3206404637786,2.5621259927797833,281.79591710042575,2019
+2004,78,"(75,80]",NoHS,56.565888689407544,20.97168326029122,2.697250763676757,11184.97548451249,2019
+2004,78,"(75,80]",NoHS,56.72301615798923,19.358476855653432,2.9301383874849583,11176.986827977264,2019
+2004,78,"(75,80]",NoHS,67.56481149012568,20.97168326029122,3.2217161899472373,11137.052195775492,2019
+2004,78,"(75,80]",NoHS,55.151741472172354,20.97168326029122,2.629819494584838,11201.955159188312,2019
+2004,78,"(75,80]",NoHS,73.84991023339319,20.97168326029122,3.521410719244655,11188.54138017428,2019
+2004,86,"(85,90]",College,99773.42850987433,2931.1960372268572,34.0384700452406,19.81794948471067,2019
+2004,86,"(85,90]",College,100661.19870736086,2931.1960372268572,34.34133965416871,20.612904765621785,2019
+2004,86,"(85,90]",College,100698.90929982047,2947.3281012732355,34.166168760213324,20.633580245552746,2019
+2004,86,"(85,90]",College,101027.30570915621,2947.3281012732355,34.27759049476465,19.525588748991442,2019
+2004,86,"(85,90]",College,102677.1441292639,2931.1960372268572,35.02909489001786,19.991066487296695,2019
+2004,41,"(40,45]",HS,15855.418599640934,451.69779329858005,35.10182877772048,296.0397099261976,2019
+2004,41,"(40,45]",HS,20302.125960502693,451.69779329858005,44.94625889633833,299.03916731264485,2019
+2004,41,"(40,45]",HS,15854.790089766608,451.69779329858005,35.10043733883445,302.9047401731085,2019
+2004,41,"(40,45]",HS,15916.698312387793,451.69779329858005,35.2374940691078,290.2047499601082,2019
+2004,41,"(40,45]",HS,16707.049479353682,451.69779329858005,36.98722846828263,293.2625843352513,2019
+2004,36,"(35,40]",NoHS,5.342333931777379,45.16977932985802,0.11827230531201649,4113.851907291655,2019
+2004,36,"(35,40]",NoHS,5.342333931777379,45.16977932985802,0.11827230531201649,4096.234849069203,2019
+2004,36,"(35,40]",NoHS,5.342333931777379,45.16977932985802,0.11827230531201649,4083.0159255905974,2019
+2004,36,"(35,40]",NoHS,5.342333931777379,45.16977932985802,0.11827230531201649,4096.193870975838,2019
+2004,36,"(35,40]",NoHS,5.185206463195691,45.16977932985802,0.11479370809695717,4074.1158641057846,2019
+2004,33,"(30,35]",College,375.6917773788151,91.95276506435381,4.085703971119134,5948.4046270519875,2019
+2004,33,"(30,35]",College,382.91964093357274,91.95276506435381,4.164308062575211,6612.537682669344,2019
+2004,33,"(30,35]",College,374.6704488330341,91.95276506435381,4.07459687123947,5877.4963424492435,2019
+2004,33,"(30,35]",College,379.14858168761225,91.95276506435381,4.123297232250301,5849.426366117337,2019
+2004,33,"(30,35]",College,377.57730700179536,91.95276506435381,4.106209386281589,6150.969513316168,2019
+2004,41,"(40,45]",College,16502.469515260324,2177.8286462610113,7.577487578553282,19.60009540752646,2019
+2004,41,"(40,45]",College,17132.70779174147,2177.8286462610113,7.866875945982083,20.147863682884736,2019
+2004,41,"(40,45]",College,17836.481723518853,2177.8286462610113,8.19002989704506,20.90433577571394,2019
+2004,41,"(40,45]",College,16031.087109515262,2177.8286462610113,7.3610415296162595,19.07617672695207,2019
+2004,41,"(40,45]",College,17916.616732495513,2177.8286462610113,8.226825725364353,20.169918850441626,2019
+2004,56,"(55,60]",College,96966.50341113105,1377.6782695606694,70.38399715925904,224.5756583048576,2019
+2004,56,"(55,60]",College,96377.27540394974,1693.8667248696754,56.89779130135809,233.31197362120798,2019
+2004,56,"(55,60]",College,97791.42262118492,1314.7632197797957,74.3794936989214,232.18788864895015,2019
+2004,56,"(55,60]",College,96377.27540394974,1511.5744011456056,63.759531340902875,233.99581520855227,2019
+2004,56,"(55,60]",College,96378.84667863556,1629.338468684164,59.152133538263584,260.2593226387703,2019
+2004,56,"(55,60]",NoHS,72.2786355475763,85.49993944580267,0.8453647571691301,5694.161292501588,2019
+2004,56,"(55,60]",NoHS,72.2786355475763,85.49993944580267,0.8453647571691301,5042.260307306932,2019
+2004,56,"(55,60]",NoHS,73.84991023339319,85.49993944580267,0.8637422518901983,5706.679663473332,2019
+2004,56,"(55,60]",NoHS,70.70736086175943,85.49993944580267,0.8269872624480621,5592.111268381904,2019
+2004,56,"(55,60]",NoHS,72.2786355475763,85.49993944580267,0.8453647571691301,5467.905728677297,2019
+2004,36,"(35,40]",HS,90.034039497307,90.33955865971603,0.9966181021144919,6409.936931391962,2019
+2004,36,"(35,40]",HS,90.034039497307,90.33955865971603,0.9966181021144919,6151.383104594167,2019
+2004,36,"(35,40]",HS,90.034039497307,90.33955865971603,0.9966181021144919,6358.850934931288,2019
+2004,36,"(35,40]",HS,88.46276481149013,90.33955865971603,0.9792251160391954,6386.320115912126,2019
+2004,36,"(35,40]",HS,90.034039497307,90.33955865971603,0.9966181021144919,6280.776224191965,2019
+2004,67,"(65,70]",College,314595.90377019753,16954.799312743133,18.554976556623057,2.69684473769009,2019
+2004,67,"(65,70]",College,314696.46535008977,14970.555435038654,21.02102802502179,2.781337803943229,2019
+2004,67,"(65,70]",College,313638.997486535,15535.177676661879,20.18895464309412,2.7171749407300085,2019
+2004,67,"(65,70]",College,313257.1777378815,14793.102730528499,21.175894161230506,2.640766816337819,2019
+2004,67,"(65,70]",College,313785.12603231595,14341.404937229916,21.87966432896249,2.6266315805609963,2019
+2004,62,"(60,65]",College,2035.5863554757632,85.49993944580267,23.808044411143655,13246.48318220023,2019
+2004,62,"(60,65]",College,2034.3293357271095,85.49993944580267,23.793342415366798,14100.846143816167,2019
+2004,62,"(60,65]",College,2035.5863554757632,85.49993944580267,23.808044411143655,13227.753154647977,2019
+2004,62,"(60,65]",College,2034.3293357271095,85.49993944580267,23.793342415366798,14141.46206116561,2019
+2004,62,"(60,65]",College,2035.114973070018,85.49993944580267,23.802531162727334,13782.702038243297,2019
+2004,46,"(45,50]",HS,613.58276481149,124.21689315710954,4.939608045384218,6238.072116117864,2019
+2004,46,"(45,50]",HS,613.58276481149,124.21689315710954,4.939608045384218,6942.352762798701,2019
+2004,46,"(45,50]",HS,615.154039497307,124.21689315710954,4.952257489802617,6159.166525508977,2019
+2004,46,"(45,50]",HS,616.7253141831239,124.21689315710954,4.9649069342210135,6173.833391821512,2019
+2004,46,"(45,50]",HS,615.154039497307,124.21689315710954,4.952257489802617,6452.394209265499,2019
+2004,60,"(55,60]",HS,3837.7755691202874,98.40559068290497,38.99956844410249,1731.875798330798,2019
+2004,60,"(55,60]",HS,3971.239640933573,222.62248384001447,17.838448176633708,1718.0235264946782,2019
+2004,60,"(55,60]",HS,4036.4789658886893,122.60368675247175,32.92298194945848,1962.4571365011336,2019
+2004,60,"(55,60]",HS,3916.0250484739677,87.11314585044046,44.953319160315544,1642.7552206221803,2019
+2004,60,"(55,60]",HS,3987.109515260323,74.20749461333816,53.72920263694867,1750.1998059148996,2019
+2004,51,"(50,55]",HS,154.29917414721726,104.8584163014561,1.4715001388503195,4158.915225494533,2019
+2004,51,"(50,55]",HS,363.27870736086174,104.8584163014561,3.4644687586781444,4099.267046475669,2019
+2004,51,"(50,55]",HS,1119.0618312387792,104.8584163014561,10.672122188281032,3764.8586297333145,2019
+2004,51,"(50,55]",HS,591.1135368043088,104.8584163014561,5.63725409608442,3772.107827575224,2019
+2004,51,"(50,55]",HS,383.7052782764811,104.8584163014561,3.6592702027214656,4157.036614197756,2019
+2004,53,"(50,55]",College,21933.45476481149,645.2825618551144,33.99046566787003,1847.3157704018752,2019
+2004,53,"(50,55]",College,37110.36552962298,645.2825618551144,57.51025631768953,1454.7770231336274,2019
+2004,53,"(50,55]",College,34980.534118491916,645.2825618551144,54.209638050541514,1350.438692812286,2019
+2004,53,"(50,55]",College,24757.0039497307,645.2825618551144,38.36614440433213,1460.0910371203622,2019
+2004,53,"(50,55]",College,29950.91527468582,645.2825618551144,46.41519397111914,1357.811171094922,2019
+2004,75,"(70,75]",College,900769.1172710952,14389.801129369052,62.59774608230399,19.85074517363883,2019
+2004,75,"(70,75]",College,568534.4452710951,14389.801129369052,39.50954152595878,0.9890388346736145,2019
+2004,75,"(70,75]",College,695409.2509874328,14389.801129369052,48.326536602936656,20.025321777052817,2019
+2004,75,"(70,75]",College,672610.5266786356,14389.801129369052,46.74216972365674,0.9294116337999917,2019
+2004,75,"(70,75]",College,669394.9130341113,14389.801129369052,46.51870495054313,19.624724009168094,2019
+2004,38,"(35,40]",College,15414.990305206464,806.6032023188931,19.110995667870036,373.26627348270506,2019
+2004,38,"(35,40]",College,15411.84775583483,806.6032023188931,19.10709963898917,363.53900379339865,2019
+2004,38,"(35,40]",College,15432.274326750448,806.6032023188931,19.1324238267148,388.1174972944376,2019
+2004,38,"(35,40]",College,15438.559425493717,806.6032023188931,19.140215884476536,368.4572523721749,2019
+2004,38,"(35,40]",College,15419.389874326751,806.6032023188931,19.116450108303248,377.317253099443,2019
+2004,70,"(65,70]",College,573675.5303411131,40330.16011594466,14.224479364620937,2.99000105708316,2019
+2004,70,"(65,70]",College,575708.7597845601,40330.16011594466,14.274893978339346,2.9836246693784885,2019
+2004,70,"(65,70]",College,585122.266427289,40330.16011594466,14.508305068592055,2.945480031320833,2019
+2004,70,"(65,70]",College,571103.3536804309,40330.16011594466,14.160701371841155,2.9374477666683934,2019
+2004,70,"(65,70]",College,504413.74219030526,40330.16011594466,12.507109833935017,2.872041038752573,2019
+2004,58,"(55,60]",HS,392.347289048474,83.88673304116487,4.6771077478478205,2530.604171496737,2019
+2004,58,"(55,60]",HS,390.7760143626571,83.88673304116487,4.658376839766732,2193.4221751511736,2019
+2004,58,"(55,60]",HS,390.93314183123874,85.49993944580267,4.57232068660173,2455.232840753818,2019
+2004,58,"(55,60]",HS,392.5044165170557,83.88673304116487,4.67898083865593,2346.172903561648,2019
+2004,58,"(55,60]",HS,390.7760143626571,83.88673304116487,4.658376839766732,2265.396033521051,2019
+2004,30,"(25,30]",HS,-23.569120287253142,48.39619213913358,-0.48700361010830323,4776.9460719793115,2019
+2004,30,"(25,30]",HS,0.47138240574506285,41.94336652058244,0.011238544848653153,4794.463810323914,2019
+2004,30,"(25,30]",HS,-5.028078994614004,48.39619213913358,-0.10389410348977138,4755.225429790285,2019
+2004,30,"(25,30]",HS,0,41.94336652058244,0,4749.742115339315,2019
+2004,30,"(25,30]",HS,-9.89903052064632,46.782985734495796,-0.2115946719780904,4759.175253723659,2019
+2004,56,"(55,60]",College,2299.7176301615796,185.5187365333454,12.39614754355674,515.2573057406888,2019
+2004,56,"(55,60]",College,2041.4000718132854,185.5187365333454,11.00374070004709,532.1267557962403,2019
+2004,56,"(55,60]",College,1523.1936804308798,185.5187365333454,8.210457385025899,510.283954807586,2019
+2004,56,"(55,60]",College,1621.5554757630161,185.5187365333454,8.740656097943809,521.5366118323628,2019
+2004,56,"(55,60]",College,2204.027001795332,185.5187365333454,11.880347198242035,529.6128730681471,2019
+2004,56,"(55,60]",NoHS,-9.616201077199284,13.228292518029845,-0.7269419741128821,7573.530633999379,2019
+2004,56,"(55,60]",NoHS,-9.600488330341113,13.228292518029845,-0.725754160429691,7510.0162410279545,2019
+2004,56,"(55,60]",NoHS,-9.600488330341113,13.228292518029845,-0.725754160429691,7503.397103428173,2019
+2004,56,"(55,60]",NoHS,-9.600488330341113,13.228292518029845,-0.725754160429691,7546.435877527559,2019
+2004,56,"(55,60]",NoHS,-9.616201077199284,13.228292518029845,-0.7269419741128821,7558.18292015075,2019
+2004,23,"(20,25]",HS,9.427648114901256,19.358476855653432,0.48700361010830323,6750.127012394469,2019
+2004,23,"(20,25]",HS,9.427648114901256,19.358476855653432,0.48700361010830323,6705.178715878763,2019
+2004,23,"(20,25]",HS,9.427648114901256,19.358476855653432,0.48700361010830323,6768.966938232152,2019
+2004,23,"(20,25]",HS,9.427648114901256,19.358476855653432,0.48700361010830323,6786.520534047074,2019
+2004,23,"(20,25]",HS,9.427648114901256,19.358476855653432,0.48700361010830323,6733.436803844104,2019
+2004,29,"(25,30]",NoHS,-86.89149012567326,41.94336652058244,-2.0716384337683977,4961.731412699374,2019
+2004,29,"(25,30]",NoHS,-85.63447037701975,45.16977932985802,-1.8958354822073231,4972.840124621263,2019
+2004,29,"(25,30]",NoHS,-85.94872531418312,40.33016011594465,-2.131127797833935,4958.819093208455,2019
+2004,29,"(25,30]",NoHS,-86.89149012567326,43.55657292522023,-1.994911084369568,4999.017542334978,2019
+2004,29,"(25,30]",NoHS,-86.57723518850987,40.33016011594465,-2.1467119133574006,4973.280944368761,2019
+2004,58,"(55,60]",College,1326.5486535008977,129.0565123710229,10.278819945848374,479.88604051529165,2019
+2004,58,"(55,60]",College,1326.5486535008977,129.0565123710229,10.278819945848374,486.86482978212314,2019
+2004,58,"(55,60]",College,1326.5486535008977,129.0565123710229,10.278819945848374,476.9119130233791,2019
+2004,58,"(55,60]",College,1326.5486535008977,129.0565123710229,10.278819945848374,487.1426894671152,2019
+2004,58,"(55,60]",College,1326.5486535008977,129.0565123710229,10.278819945848374,494.79267225559545,2019
+2004,40,"(35,40]",College,-19.326678635547577,75.82070101797595,-0.2548997618864736,4880.73978951954,2019
+2004,40,"(35,40]",College,-19.483806104129265,75.82070101797595,-0.2569721176741685,4859.838629492801,2019
+2004,40,"(35,40]",College,-19.483806104129265,75.82070101797595,-0.2569721176741685,4844.155486965896,2019
+2004,40,"(35,40]",College,-19.483806104129265,75.82070101797595,-0.2569721176741685,4859.790012426535,2019
+2004,40,"(35,40]",College,-19.483806104129265,75.82070101797595,-0.2569721176741685,4833.596311478539,2019
+2004,44,"(40,45]",College,74.949802513465,37.10374730666908,2.0200062784492236,7754.499205300684,2019
+2004,44,"(40,45]",College,74.79267504488331,37.10374730666908,2.0157714644482816,7303.002520260699,2019
+2004,44,"(40,45]",College,74.949802513465,37.10374730666908,2.0200062784492236,7775.981630909647,2019
+2004,44,"(40,45]",College,76.36394973070017,37.10374730666908,2.058119604457699,7722.455616284316,2019
+2004,44,"(40,45]",College,74.949802513465,37.10374730666908,2.0200062784492236,7626.7012916436015,2019
+2004,23,"(20,25]",HS,27.18305206463196,43.55657292522023,0.6240861077684182,7897.613174396798,2019
+2004,23,"(20,25]",HS,27.18305206463196,41.94336652058244,0.6480894196056651,7909.3544922213405,2019
+2004,23,"(20,25]",HS,27.18305206463196,41.94336652058244,0.6480894196056651,7893.368978835193,2019
+2004,23,"(20,25]",HS,27.18305206463196,43.55657292522023,0.6240861077684182,7716.238334066058,2019
+2004,23,"(20,25]",HS,27.18305206463196,41.94336652058244,0.6480894196056651,7872.86488438205,2019
+2004,34,"(30,35]",HS,14.000057450628367,75.82070101797595,0.18464690068361625,6747.244949159905,2019
+2004,34,"(30,35]",HS,13.355834829443447,74.20749461333816,0.17997959504002511,6652.700531692799,2019
+2004,34,"(30,35]",HS,14.440014362657092,75.82070101797595,0.190449496889162,6699.779278617998,2019
+2004,34,"(30,35]",HS,14.612854578096947,75.82070101797595,0.19272908825562637,6730.354316672313,2019
+2004,34,"(30,35]",HS,9.741903052064632,74.20749461333816,0.1312792340291948,6674.073642638636,2019
+2004,28,"(25,30]",NoHS,401.7277989228007,29.03771528348015,13.834690332932208,6978.520754951179,2019
+2004,28,"(25,30]",NoHS,401.71208617594255,29.03771528348015,13.834149217809868,6811.591841229942,2019
+2004,28,"(25,30]",NoHS,401.7435116696589,29.03771528348015,13.835231448054554,6957.281746883181,2019
+2004,28,"(25,30]",NoHS,401.7277989228007,25.81130247420457,15.564026624548738,6945.130008873578,2019
+2004,28,"(25,30]",NoHS,401.7277989228007,32.264128092755726,12.451221299638986,6884.2499470998955,2019
+2004,36,"(35,40]",College,49.80940754039498,85.49993944580267,0.5825665826578571,6390.328943543724,2019
+2004,36,"(35,40]",College,48.39526032315978,85.49993944580267,0.5660268374088958,6134.364035831718,2019
+2004,36,"(35,40]",College,49.80940754039498,85.49993944580267,0.5825665826578571,6384.550751960212,2019
+2004,36,"(35,40]",College,48.2381328545781,85.49993944580267,0.564189087936789,6360.7476062755395,2019
+2004,36,"(35,40]",College,48.2381328545781,85.49993944580267,0.564189087936789,6296.356277384582,2019
+2004,74,"(70,75]",HS,609.5288761220826,107.116905267949,5.690314470879909,5117.252717582049,2019
+2004,74,"(70,75]",HS,582.8172064631957,108.73011167258677,5.3602189632454555,5689.358461585167,2019
+2004,74,"(70,75]",HS,613.2999353680432,108.73011167258677,5.640571189835993,5062.062568771157,2019
+2004,74,"(70,75]",HS,615.4997199281868,108.73011167258677,5.660802793816753,5047.558533805279,2019
+2004,74,"(70,75]",HS,650.99481508079,107.116905267949,6.077423665782263,5291.9653393080425,2019
+2004,49,"(45,50]",College,3722.3497307001794,524.2920815072805,7.099763399055817,3307.9202769210615,2019
+2004,49,"(45,50]",College,3656.356193895871,524.2920815072805,6.973891696750902,3123.6230583679194,2019
+2004,49,"(45,50]",College,3692.6526391382404,524.2920815072805,7.043121133018605,3463.3356201319148,2019
+2004,49,"(45,50]",College,3657.770341113106,524.2920815072805,6.976588947514579,3107.227092269889,2019
+2004,49,"(45,50]",College,3679.925314183124,524.2920815072805,7.018845876145515,3242.287725846992,2019
+2004,30,"(25,30]",HS,5.420897666068223,32.264128092755726,0.1680162454873646,4881.588985822509,2019
+2004,30,"(25,30]",HS,3.8653357271095152,32.264128092755726,0.11980288808664258,4953.761565812929,2019
+2004,30,"(25,30]",HS,4.085314183123878,32.264128092755726,0.12662093862815885,4901.696686678375,2019
+2004,30,"(25,30]",HS,3.896761220825853,32.264128092755726,0.12077689530685919,4908.125060837052,2019
+2004,30,"(25,30]",HS,5.735152603231598,32.264128092755726,0.17775631768953068,4931.913133628845,2019
+2004,48,"(45,50]",College,16.027001795332136,241.98096069566793,0.06623249097472923,4137.488306715738,2019
+2004,48,"(45,50]",College,17.12689407540395,241.98096069566793,0.07077785800240674,4050.0951395122343,2019
+2004,48,"(45,50]",College,20.269443447037702,241.98096069566793,0.08376462093862815,4173.10793802675,2019
+2004,48,"(45,50]",College,19.64093357271095,241.98096069566793,0.08116726835138385,4170.118291237758,2019
+2004,48,"(45,50]",College,20.897953321364454,241.98096069566793,0.08636197352587244,4119.5116124809665,2019
+2004,39,"(35,40]",HS,61.43684021543986,66.14146259014923,0.9288703002553491,9267.21505120843,2019
+2004,39,"(35,40]",HS,61.279712746858166,66.14146259014923,0.9264946728889671,8637.761478962195,2019
+2004,39,"(35,40]",HS,61.43684021543986,66.14146259014923,0.9288703002553491,9261.566712264168,2019
+2004,39,"(35,40]",HS,61.279712746858166,66.14146259014923,0.9264946728889671,9259.727416146143,2019
+2004,39,"(35,40]",HS,61.279712746858166,66.14146259014923,0.9264946728889671,9046.649558713598,2019
+2004,29,"(25,30]",NoHS,239.2265709156194,59.68863697159809,4.007908088594009,6963.498595874812,2019
+2004,29,"(25,30]",NoHS,239.33656014362657,59.68863697159809,4.009750804956581,6796.9290180048865,2019
+2004,29,"(25,30]",NoHS,239.44654937163378,59.68863697159809,4.011593521319153,6942.305307489975,2019
+2004,29,"(25,30]",NoHS,239.58796409335727,59.68863697159809,4.01396272807103,6930.179727651688,2019
+2004,29,"(25,30]",NoHS,239.54082585278277,59.68863697159809,4.013172992487071,6869.430718002756,2019
+2004,39,"(35,40]",HS,58.01146140035907,49.202795341452486,1.1790277564064624,4080.7188847649877,2019
+2004,39,"(35,40]",HS,67.56481149012568,49.541568686426416,1.3638004060343236,4136.676749295789,2019
+2004,39,"(35,40]",HS,58.01146140035907,48.79949374029304,1.188771787451144,4090.545754960651,2019
+2004,39,"(35,40]",HS,61.43684021543986,51.78392558887294,1.186407548612751,4070.4786641495157,2019
+2004,39,"(35,40]",HS,63.32236983842011,48.92855025266405,1.2941803816264175,4110.515545004237,2019
+2004,43,"(40,45]",HS,1141.688186714542,125.83009956174732,9.073251874479311,6380.052478845513,2019
+2004,43,"(40,45]",HS,1155.2011490125672,125.83009956174732,9.180642414144218,7086.234252726482,2019
+2004,43,"(40,45]",HS,1176.0991023339318,125.83009956174732,9.346723132463204,6297.565390324977,2019
+2004,43,"(40,45]",HS,862.4726750448833,125.83009956174732,6.8542636304730165,6292.684255389165,2019
+2004,43,"(40,45]",HS,1095.1784560143626,125.83009956174732,8.703628621679163,6571.6443478562505,2019
+2004,75,"(70,75]",College,56.911569120287254,37.10374730666908,1.5338496311411083,12269.106726016083,2019
+2004,75,"(70,75]",College,67.91049192100539,22.58488966492901,3.0068994326972662,11260.726469405758,2019
+2004,75,"(70,75]",College,50.62647037701975,48.39619213913358,1.0460837545126354,12145.271243965279,2019
+2004,75,"(70,75]",College,44.341371633752246,45.16977932985802,0.9816601340897368,11995.271462165669,2019
+2004,75,"(70,75]",College,50.783597845601435,40.33016011594465,1.259196534296029,11888.37144665371,2019
+2004,66,"(65,70]",College,0.15712746858168763,8.066032023188932,0.01948014440433213,10178.111873488608,2019
+2004,66,"(65,70]",College,0.15712746858168763,8.066032023188932,0.01948014440433213,10227.466218341158,2019
+2004,66,"(65,70]",College,0.15712746858168763,8.066032023188932,0.01948014440433213,10195.555135336415,2019
+2004,66,"(65,70]",College,0.15712746858168763,8.066032023188932,0.01948014440433213,10259.862059897107,2019
+2004,66,"(65,70]",College,0.15712746858168763,8.066032023188932,0.01948014440433213,10242.186194006583,2019
+2004,62,"(60,65]",HS,52.52771274685817,53.23581135304694,0.986698829449732,4826.7296856730545,2019
+2004,62,"(60,65]",HS,52.590563734290846,43.55657292522023,1.2074082096536969,4194.327824267086,2019
+2004,62,"(60,65]",HS,93.06659964093357,30.650921688117936,3.0363393501805054,4857.678505857057,2019
+2004,62,"(60,65]",HS,55.513134649910235,32.264128092755726,1.7205837545126352,4747.935355431094,2019
+2004,62,"(60,65]",HS,56.927281867145425,20.97168326029122,2.714483199111358,4627.828585221248,2019
+2004,38,"(35,40]",NoHS,9.427648114901256,38.716953711306864,0.24350180505415162,3973.8498170477005,2019
+2004,38,"(35,40]",NoHS,8.327755834829444,38.716953711306864,0.2150932611311673,3956.832300332981,2019
+2004,38,"(35,40]",NoHS,9.113393177737882,38.716953711306864,0.23538507821901325,3944.0632415941595,2019
+2004,38,"(35,40]",NoHS,8.327755834829444,38.716953711306864,0.2150932611311673,3956.7927168009314,2019
+2004,38,"(35,40]",NoHS,8.170628366247756,38.716953711306864,0.2110348977135981,3935.466065881432,2019
+2004,22,"(20,25]",HS,45.95978456014363,16.132064046377863,2.848971119133574,11057.696479060533,2019
+2004,22,"(20,25]",HS,36.37500897666069,17.74527045101565,2.0498424680013128,10882.25630545075,2019
+2004,22,"(20,25]",HS,51.144991023339315,16.132064046377863,3.1703935018050537,11102.651282525214,2019
+2004,22,"(20,25]",HS,55.387432675044884,16.132064046377863,3.4333754512635375,10828.148941632708,2019
+2004,22,"(20,25]",HS,43.44574506283663,16.132064046377863,2.693129963898917,11005.031234007562,2019
+2004,43,"(40,45]",HS,4.3995691202872536,35.4905409020313,0.12396455530029536,4564.690544935251,2019
+2004,43,"(40,45]",HS,4.7609622980251345,38.716953711306864,0.12296841155234657,4560.480668881573,2019
+2004,43,"(40,45]",HS,3.1425493716337525,58.0754305669603,0.05411151223425592,4602.276576596669,2019
+2004,43,"(40,45]",HS,2.9854219030520643,40.33016011594465,0.0740245487364621,4556.501080709916,2019
+2004,43,"(40,45]",HS,4.4152818671454215,40.33016011594465,0.10947841155234657,4567.4105546557485,2019
+2004,89,"(85,90]",NoHS,0.2828294434470377,7.904711382725152,0.035779857069181464,8145.496409722107,2019
+2004,89,"(85,90]",NoHS,0.34568043087971273,7.743390742261374,0.044641997593261123,8118.848885998874,2019
+2004,89,"(85,90]",NoHS,0.31425493716337527,8.388673304116487,0.037461816162177176,8095.991327562265,2019
+2004,89,"(85,90]",NoHS,0.31425493716337527,9.19527650643538,0.03417569193742479,8161.050451292312,2019
+2004,89,"(85,90]",NoHS,0.29854219030520646,7.743390742261374,0.038554452466907335,8133.766216370519,2019
+2004,25,"(20,25]",HS,-9.427648114901256,29.03771528348015,-0.32466907340553547,4290.499155353396,2019
+2004,25,"(20,25]",HS,-9.12910592459605,29.03771528348015,-0.31438788608102686,4353.932679639832,2019
+2004,25,"(20,25]",HS,-8.971978456014364,30.650921688117936,-0.2927148014440434,4308.172104425667,2019
+2004,25,"(20,25]",HS,-8.971978456014364,30.650921688117936,-0.2927148014440434,4313.822095438469,2019
+2004,25,"(20,25]",HS,-9.113393177737882,30.650921688117936,-0.29732851985559566,4334.729776629387,2019
+2004,46,"(45,50]",HS,788.3085098743268,290.37715283480145,2.71477456879262,8019.23168748015,2019
+2004,46,"(45,50]",HS,789.8797845601437,290.37715283480145,2.7201857200160453,8921.819830951423,2019
+2004,46,"(45,50]",HS,788.3085098743268,290.37715283480145,2.71477456879262,7915.628931401113,2019
+2004,46,"(45,50]",HS,791.4510592459606,290.37715283480145,2.725596871239471,7933.705505507894,2019
+2004,46,"(45,50]",HS,788.3085098743268,290.37715283480145,2.71477456879262,8292.215623012054,2019
+2004,41,"(40,45]",HS,198.46770556552963,150.02819563131413,1.3228693761888124,8058.4967445512275,2019
+2004,41,"(40,45]",HS,207.34540754039497,150.02819563131413,1.3820429331159503,7603.071960193103,2019
+2004,41,"(40,45]",HS,201.13887253141831,150.02819563131413,1.3406738092465351,8024.570263209685,2019
+2004,41,"(40,45]",HS,199.5518850987433,150.02819563131413,1.3300958813710648,7990.37801346479,2019
+2004,41,"(40,45]",HS,215.15464272890486,150.02819563131413,1.4340947168199991,7844.17920538755,2019
+2004,53,"(50,55]",College,1440.544631956912,198.4243877704477,7.259917231663291,3796.412094726414,2019
+2004,53,"(50,55]",College,1440.544631956912,198.4243877704477,7.259917231663291,4220.1110441282635,2019
+2004,53,"(50,55]",College,1440.544631956912,198.4243877704477,7.259917231663291,3757.1725613628614,2019
+2004,53,"(50,55]",College,1440.544631956912,198.4243877704477,7.259917231663291,3763.9834399842266,2019
+2004,53,"(50,55]",College,1440.544631956912,198.4243877704477,7.259917231663291,3923.956596169138,2019
+2004,38,"(35,40]",College,3.80248473967684,112.92444832464501,0.03367282104177411,4337.332214349701,2019
+2004,38,"(35,40]",College,6.206535008976661,112.92444832464501,0.05496183599793709,4396.8089524758625,2019
+2004,38,"(35,40]",College,5.499461400359067,112.92444832464501,0.048700361010830334,4347.777040829911,2019
+2004,38,"(35,40]",College,9.89903052064632,112.92444832464501,0.0876606498194946,4326.448044179744,2019
+2004,38,"(35,40]",College,9.254807899461401,112.92444832464501,0.08195575038679734,4369.002618017602,2019
+2004,41,"(40,45]",College,54815.488689407546,6420.561490458389,8.537491428260436,224.5756583048576,2019
+2004,41,"(40,45]",College,56605.17055655296,6291.504978087366,8.99707951494955,233.31197362120798,2019
+2004,41,"(40,45]",College,55593.26965888689,6436.693554504767,8.636929688843045,232.18788864895015,2019
+2004,41,"(40,45]",College,55964.090484739674,5210.656686980048,10.740314291781695,233.99581520855227,2019
+2004,41,"(40,45]",College,54681.930341113104,6436.693554504767,8.495344679388,260.2593226387703,2019
+2004,19,"(15,20]",HS,-6.285098743267505,5.807543056696031,-1.0822302446851182,6955.771948545839,2019
+2004,19,"(15,20]",HS,-6.442226211849192,5.646222416232252,-1.1409798865394531,6955.30321974634,2019
+2004,19,"(15,20]",HS,-6.285098743267505,6.291504978087367,-0.9989817643247244,6954.183151731217,2019
+2004,19,"(15,20]",HS,-6.285098743267505,5.646222416232252,-1.1131511088189787,6888.008189280981,2019
+2004,19,"(15,20]",HS,-6.285098743267505,5.646222416232252,-1.1131511088189787,6958.0392098502125,2019
+2004,28,"(25,30]",HS,68.80611849192101,48.39619213913358,1.42172587244284,11767.617286824956,2019
+2004,28,"(25,30]",HS,69.70174506283662,51.62260494840914,1.350217509025271,11657.250373745426,2019
+2004,28,"(25,30]",HS,87.0643303411131,45.16977932985802,1.927490716864363,11838.896179753046,2019
+2004,28,"(25,30]",HS,93.09802513464992,45.16977932985802,2.0610688499226404,11787.030934885552,2019
+2004,28,"(25,30]",HS,61.16972351885099,51.62260494840914,1.1849406588447657,11709.596471305198,2019
+2004,48,"(45,50]",HS,114.46736086175943,120.99048034783397,0.9460856799037304,6956.59718157203,2019
+2004,48,"(45,50]",HS,108.81077199281867,120.99048034783397,0.8993333333333333,6465.8269647467005,2019
+2004,48,"(45,50]",HS,92.62664272890484,120.99048034783397,0.7655696750902526,6994.376782763664,2019
+2004,48,"(45,50]",HS,117.45278276481149,120.99048034783397,0.9707605294825511,6959.701012636891,2019
+2004,48,"(45,50]",HS,117.92416517055656,120.99048034783397,0.9746565583634176,6739.70956065099,2019
+2004,69,"(65,70]",HS,1567.9750089766608,64.52825618551145,24.29904512635379,6430.908353209988,2019
+2004,69,"(65,70]",HS,1253.782922800718,64.52825618551145,19.42998303249097,6574.315759252121,2019
+2004,69,"(65,70]",HS,1127.8609694793536,64.52825618551145,17.478559566787,6304.785553650401,2019
+2004,69,"(65,70]",HS,974.3160071813285,64.52825618551145,15.09905992779783,6245.036652880635,2019
+2004,69,"(65,70]",HS,1146.2920215439858,64.52825618551145,17.764187184115524,6482.902260115799,2019
+2004,61,"(60,65]",HS,1197.2327468581689,79.04711382725151,15.145812274368234,6499.624168142479,2019
+2004,61,"(60,65]",HS,1093.528617594255,83.88673304116487,13.035775479033601,7188.413747100814,2019
+2004,61,"(60,65]",HS,1659.1875044883304,79.04711382725151,20.989855595667873,6414.945662532103,2019
+2004,61,"(60,65]",HS,1156.37960502693,80.6603202318893,14.336412274368232,6394.441598373773,2019
+2004,61,"(60,65]",HS,1083.3153321364452,80.6603202318893,13.430585559566788,6720.657979397421,2019
+2004,24,"(20,25]",College,93.80509874326751,175.8394981055187,0.5334700096048753,6102.240208924164,2019
+2004,24,"(20,25]",College,93.80509874326751,175.8394981055187,0.5334700096048753,6058.325173642587,2019
+2004,24,"(20,25]",College,93.64797127468582,175.8394981055187,0.532576424999172,6133.97302058085,2019
+2004,24,"(20,25]",College,95.37637342908438,175.8394981055187,0.5424058556619084,6044.288860629746,2019
+2004,24,"(20,25]",College,93.64797127468582,175.8394981055187,0.532576424999172,6127.928684422083,2019
+2004,47,"(45,50]",HS,114.2316696588869,108.08482911073166,1.0568705210410045,4293.593998125901,2019
+2004,47,"(45,50]",HS,112.50326750448833,108.08482911073166,1.0408793577240154,4286.625128857524,2019
+2004,47,"(45,50]",HS,111.08912028725315,108.08482911073166,1.027795678646479,4343.324219086476,2019
+2004,47,"(45,50]",HS,107.94657091561939,108.08482911073166,0.9987208362519533,4316.394705333326,2019
+2004,47,"(45,50]",HS,112.66039497307001,108.08482911073166,1.0423330998437417,4303.435647193552,2019
+2004,38,"(35,40]",College,1220.9747073608619,296.8299784533526,4.113380709464763,702.6718115905215,2019
+2004,38,"(35,40]",College,1220.81757989228,340.3865513785729,3.586562321419405,709.5405228619868,2019
+2004,38,"(35,40]",College,1222.5459820466788,206.49041979363656,5.92059420126354,700.5249110626231,2019
+2004,38,"(35,40]",College,1224.1172567324954,216.16965822146332,5.662761678969772,718.9262113972829,2019
+2004,38,"(35,40]",College,1217.6750305206465,259.7262311466836,4.68830208309976,728.5228231651256,2019
+2004,41,"(40,45]",HS,0,8.066032023188932,0,4154.264438080837,2019
+2004,41,"(40,45]",HS,0,8.066032023188932,0,4208.445502459249,2019
+2004,41,"(40,45]",HS,0,8.066032023188932,0,4136.129165057051,2019
+2004,41,"(40,45]",HS,0,8.066032023188932,0,4142.09406004684,2019
+2004,41,"(40,45]",HS,0,8.066032023188932,0,4163.575043841918,2019
+2004,37,"(35,40]",College,1099.8922800718135,395.23556913625765,2.7828777720474474,6430.908353209988,2019
+2004,37,"(35,40]",College,1066.8955116696588,395.23556913625765,2.6993914388860234,6574.315759252121,2019
+2004,37,"(35,40]",College,1099.8922800718135,393.6223627316199,2.7942830088181334,6304.785553650401,2019
+2004,37,"(35,40]",College,1099.8922800718135,395.23556913625765,2.7828777720474474,6245.036652880635,2019
+2004,37,"(35,40]",College,1099.8922800718135,393.6223627316199,2.7942830088181334,6482.902260115799,2019
+2004,23,"(20,25]",HS,25.454649910233396,38.716953711306864,0.6574548736462095,8492.390123594068,2019
+2004,23,"(20,25]",HS,25.454649910233396,38.716953711306864,0.6574548736462095,8653.058933723552,2019
+2004,23,"(20,25]",HS,25.454649910233396,38.716953711306864,0.6574548736462095,8505.809451616746,2019
+2004,23,"(20,25]",HS,27.02592459605027,38.716953711306864,0.6980385078219014,8407.76635258509,2019
+2004,23,"(20,25]",HS,25.454649910233396,38.716953711306864,0.6574548736462095,8575.258033082686,2019
+2004,47,"(45,50]",College,3043.2605242369837,256.49981833740793,11.86457185023727,1716.9024741384096,2019
+2004,47,"(45,50]",College,2761.0438779174146,256.49981833740793,10.764311241286926,1697.028804714669,2019
+2004,47,"(45,50]",College,2921.738140035907,256.49981833740793,11.390800036328137,1734.4940446952799,2019
+2004,47,"(45,50]",College,2892.5595691202875,256.49981833740793,11.277043344004726,1697.8740206781924,2019
+2004,47,"(45,50]",College,2874.8041651705566,256.49981833740793,11.207821447222036,1761.2346858829587,2019
+2004,42,"(40,45]",HS,14.392876122082585,24.19809606956679,0.594793742478941,4823.095698617803,2019
+2004,42,"(40,45]",HS,12.978728904847397,24.19809606956679,0.5363533092659447,4793.522968444027,2019
+2004,42,"(40,45]",HS,14.235748653500897,20.97168326029122,0.6788081088586504,4819.701864384415,2019
+2004,42,"(40,45]",HS,13.465824057450629,29.03771528348015,0.4637356598475732,4811.366213030144,2019
+2004,42,"(40,45]",HS,14.07862118491921,40.33016011594465,0.3490841877256318,4825.1968867016085,2019
+2004,80,"(75,80]",HS,9131.77709156194,479.28362281788634,19.052971261302094,1847.3157704018752,2019
+2004,80,"(75,80]",HS,7877.899892280072,453.47232034368164,17.372394165777305,1847.299573869644,2019
+2004,80,"(75,80]",HS,9611.015870736086,471.2175907946973,20.39613133823662,1894.2772300348668,2019
+2004,80,"(75,80]",HS,18700.682800718132,458.31193955759505,40.803394340478576,1762.0921498530447,2019
+2004,80,"(75,80]",HS,6312.753177737882,451.8591139390439,13.970622663128307,1769.8837134125156,2019
+2004,66,"(65,70]",College,2059.312603231598,253.2734055281324,8.130788935133024,515.2573057406888,2019
+2004,66,"(65,70]",College,2058.9983482944344,253.2734055281324,8.129548161604085,532.1267557962403,2019
+2004,66,"(65,70]",College,2059.705421903052,253.2734055281324,8.132339902044196,510.283954807586,2019
+2004,66,"(65,70]",College,2058.684093357271,254.8866119327702,8.076862404606317,521.5366118323628,2019
+2004,66,"(65,70]",College,2065.534850987433,254.8866119327702,8.103740072202168,529.6128730681471,2019
+2004,48,"(45,50]",HS,411.15544703770195,56.46222416232251,7.2819562661165556,9527.621141191357,2019
+2004,48,"(45,50]",HS,412.7267217235189,56.46222416232251,7.309785043837031,10442.851053073717,2019
+2004,48,"(45,50]",HS,412.4124667863555,56.46222416232251,7.304219288292935,9406.18789852356,2019
+2004,48,"(45,50]",HS,411.15544703770195,56.46222416232251,7.2819562661165556,9428.685184767575,2019
+2004,48,"(45,50]",HS,412.7267217235189,56.46222416232251,7.309785043837031,9855.541043307177,2019
+2004,26,"(25,30]",College,60.9654578096948,145.18857641740072,0.419905334937826,6772.062637804223,2019
+2004,26,"(25,30]",College,60.9654578096948,146.80178282203855,0.4152909905978498,6561.183293523485,2019
+2004,26,"(25,30]",College,60.808330341113106,145.18857641740072,0.4188231046931409,6827.167052265817,2019
+2004,26,"(25,30]",College,60.808330341113106,145.18857641740072,0.4188231046931409,6827.72623253182,2019
+2004,26,"(25,30]",College,60.808330341113106,145.18857641740072,0.4188231046931409,6784.068370966806,2019
+2004,40,"(35,40]",College,11340.675044883303,932.4333018806403,12.162451750715151,222.10695069028898,2019
+2004,40,"(35,40]",College,11340.675044883303,932.4333018806403,12.162451750715151,220.1389416420962,2019
+2004,40,"(35,40]",College,11339.103770197487,932.4333018806403,12.160766617116161,231.17884584075895,2019
+2004,40,"(35,40]",College,11342.24631956912,932.4333018806403,12.164136884314141,217.9000999363456,2019
+2004,40,"(35,40]",College,11340.675044883303,932.4333018806403,12.162451750715151,224.3188033544073,2019
+2004,50,"(45,50]",College,190.8313105924596,124.21689315710954,1.5362750246143746,7065.5207467548,2019
+2004,50,"(45,50]",College,358.8005745062837,124.21689315710954,2.8885006329410663,6565.364839202362,2019
+2004,50,"(45,50]",College,172.76165170556555,122.60368675247175,1.409106498194946,7100.167964792372,2019
+2004,50,"(45,50]",College,187.68876122082588,122.60368675247175,1.530857400722022,7060.7175365699295,2019
+2004,50,"(45,50]",College,193.81673249551167,124.21689315710954,1.56030896900933,6843.40698446422,2019
+2004,56,"(55,60]",College,625.0530700179532,322.6412809275572,1.9373003610108301,6259.094175332074,2019
+2004,56,"(55,60]",College,462.269012567325,208.1036261982744,2.2213404975792685,6920.2328599455695,2019
+2004,56,"(55,60]",College,615.9396768402155,301.66959766726603,2.041769146122512,6175.858461014935,2019
+2004,56,"(55,60]",College,459.91210053859965,203.26400698436103,2.262634232995244,6155.518867790389,2019
+2004,56,"(55,60]",College,504.6934290843806,316.18845530900603,1.596179179252929,6469.971377308204,2019
+2004,42,"(40,45]",HS,4.556696588868941,29.03771528348015,0.15692338547934215,4782.825426578431,2019
+2004,42,"(40,45]",HS,4.556696588868941,30.650921688117936,0.14866425992779783,4753.717314758329,2019
+2004,42,"(40,45]",HS,4.3995691202872536,30.650921688117936,0.14353790613718412,4780.250663950938,2019
+2004,42,"(40,45]",HS,4.556696588868941,30.650921688117936,0.14866425992779783,4783.048156120808,2019
+2004,42,"(40,45]",HS,4.3995691202872536,30.650921688117936,0.14353790613718412,4785.846452367844,2019
+2004,43,"(40,45]",HS,633.302262118492,129.0565123710229,4.90717012635379,302.3822747359757,2019
+2004,43,"(40,45]",HS,633.6636552962298,129.0565123710229,4.909970397111913,314.5761973950969,2019
+2004,43,"(40,45]",HS,633.412251346499,129.0565123710229,4.908022382671479,298.4106793890286,2019
+2004,43,"(40,45]",HS,633.6479425493717,129.0565123710229,4.909848646209386,292.0929143541031,2019
+2004,43,"(40,45]",HS,633.5222405745062,129.0565123710229,4.908874638989168,307.45911325805184,2019
+2004,27,"(25,30]",HS,113.65029802513465,108.08482911073166,1.0514916751980172,6091.407911968758,2019
+2004,27,"(25,30]",HS,112.25186355475763,108.08482911073166,1.0385533703324534,5934.92935475151,2019
+2004,27,"(25,30]",HS,113.66601077199282,74.20749461333816,1.5317322241406373,6115.438748485288,2019
+2004,27,"(25,30]",HS,112.39327827648114,98.40559068290497,1.142143220690063,6088.67878197608,2019
+2004,27,"(25,30]",HS,112.07902333931779,72.59428820870036,1.5439096670677903,6071.5621893352145,2019
+2004,60,"(55,60]",College,749.49802513465,62.91504978087366,11.912857539572341,5458.472322465438,2019
+2004,60,"(55,60]",College,905.0542190305207,62.91504978087366,14.385337406276035,6036.92713084879,2019
+2004,60,"(55,60]",College,700.7885098743268,62.91504978087366,11.13864667222068,5387.35816767361,2019
+2004,60,"(55,60]",College,906.6254937163375,62.91504978087366,14.410311950384152,5370.138577154074,2019
+2004,60,"(55,60]",College,787.208617594255,62.91504978087366,12.512246598167176,5644.099507953755,2019
+2004,51,"(50,55]",HS,1938.7958348294435,91.95276506435381,21.084693140794222,3287.8461809765895,2019
+2004,51,"(50,55]",HS,3252.381472172352,91.95276506435381,35.37013237063778,3445.1691169631367,2019
+2004,51,"(50,55]",HS,1905.799066427289,91.95276506435381,20.725848375451264,3255.3444469144897,2019
+2004,51,"(50,55]",HS,1737.6726750448834,91.95276506435381,18.897448856799038,5939.9500720228125,2019
+2004,51,"(50,55]",HS,1759.6705206463196,91.95276506435381,19.13667870036101,6207.9581704971015,2019
+2004,37,"(35,40]",College,227408.8568761221,7630.466293936729,29.802747055815477,19.81794948471067,2019
+2004,37,"(35,40]",College,228605.06829443446,8066.032023188931,28.34170105415162,20.612904765621785,2019
+2004,37,"(35,40]",College,211423.17960502693,7565.938037751217,27.944080238313333,20.633580245552746,2019
+2004,37,"(35,40]",College,227822.57350089768,8533.861880533888,26.696304286406477,19.525588748991442,2019
+2004,37,"(35,40]",College,219615.64868940754,8662.918392904912,25.35123138979085,19.991066487296695,2019
+2004,33,"(30,35]",HS,0,29.03771528348015,0,4772.77781942997,2019
+2004,33,"(30,35]",HS,0,29.03771528348015,0,4748.746889572094,2019
+2004,33,"(30,35]",HS,0,29.03771528348015,0,4778.3505278106995,2019
+2004,33,"(30,35]",HS,0,29.03771528348015,0,4811.018718784811,2019
+2004,33,"(30,35]",HS,0,29.03771528348015,0,4790.049928566549,2019
+2004,53,"(50,55]",HS,94.63787432675045,80.6603202318893,1.1732890974729242,7375.5306930937395,2019
+2004,53,"(50,55]",HS,100.27875044883304,80.6603202318893,1.2432228158844767,7350.478369937235,2019
+2004,53,"(50,55]",HS,103.73555475763017,80.6603202318893,1.2860791335740074,7397.235510821367,2019
+2004,53,"(50,55]",HS,108.61436265709156,80.6603202318893,1.3465649819494585,7454.526117928697,2019
+2004,53,"(50,55]",HS,93.67939676840216,80.6603202318893,1.1614062093862816,7418.352527023894,2019
+2004,57,"(55,60]",HS,8.374894075403951,24.19809606956679,0.34609723225030087,5180.017583790383,2019
+2004,57,"(55,60]",HS,5.1066427289048475,67.75466899478702,0.07536960632628502,5031.533877331768,2019
+2004,57,"(55,60]",HS,8.217766606822263,24.19809606956679,0.3396038507821902,5169.448532422902,2019
+2004,57,"(55,60]",HS,1.4927109515260322,50.00939854377137,0.02984860836147665,5153.112788865076,2019
+2004,57,"(55,60]",HS,54.75892280071813,20.97168326029122,2.611088586503749,5102.253063681759,2019
+2004,45,"(40,45]",NoHS,12.57019748653501,32.264128092755726,0.38960288808664256,5110.988723046605,2019
+2004,45,"(40,45]",NoHS,12.727324955116698,32.264128092755726,0.3944729241877256,5003.033012012104,2019
+2004,45,"(40,45]",NoHS,12.727324955116698,32.264128092755726,0.3944729241877256,5154.989218142669,2019
+2004,45,"(40,45]",NoHS,12.57019748653501,32.264128092755726,0.38960288808664256,5151.296144013703,2019
+2004,45,"(40,45]",NoHS,12.727324955116698,32.264128092755726,0.3944729241877256,5088.782332429758,2019
+2004,76,"(75,80]",HS,476.09622980251345,51.62260494840914,9.222630866425995,13041.205850083661,2019
+2004,76,"(75,80]",HS,505.63619389587075,53.23581135304694,9.498046165627393,11682.50305103094,2019
+2004,76,"(75,80]",HS,532.8192459605027,45.16977932985802,11.795923156266115,13050.331484057504,2019
+2004,76,"(75,80]",HS,439.3284021543986,43.55657292522023,10.086385880465302,12830.236741715698,2019
+2004,76,"(75,80]",HS,487.2522800718133,43.55657292522023,11.186653295895171,12526.571505662756,2019
+2004,43,"(40,45]",HS,28.345795332136444,56.46222416232251,0.5020311500773595,11825.224591017268,2019
+2004,43,"(40,45]",HS,24.85756552962298,56.46222416232251,0.4402512635379062,11335.89322241212,2019
+2004,43,"(40,45]",HS,40.648876122082584,56.46222416232251,0.7199304796286746,11901.309723823753,2019
+2004,43,"(40,45]",HS,25.89460682226212,56.46222416232251,0.45861825683341934,11779.089483721627,2019
+2004,43,"(40,45]",HS,29.55567684021544,56.46222416232251,0.5234593089221249,11659.298230842074,2019
+2004,80,"(75,80]",College,12822.072818671453,301.66959766726603,42.50369582424371,2444.5856696921655,2019
+2004,80,"(75,80]",College,12815.787719928187,227.46210305392788,56.34251837058657,2452.3640801655215,2019
+2004,80,"(75,80]",College,13265.172280071814,325.8676937368328,40.70723344175573,2474.603267428387,2019
+2004,80,"(75,80]",College,13326.451992818673,209.7168326029122,63.54498028325465,2366.054125517778,2019
+2004,80,"(75,80]",College,13142.612854578098,327.4809001414706,40.132456118511136,2368.354673164735,2019
+2004,65,"(60,65]",College,10116.652064631959,403.30160115944653,25.08458194945849,232.05887930626244,2019
+2004,65,"(60,65]",College,10115.080789946142,403.30160115944653,25.08068592057762,225.94995715840315,2019
+2004,65,"(60,65]",College,10115.080789946142,403.30160115944653,25.08068592057762,242.37980499937171,2019
+2004,65,"(60,65]",College,10118.223339317774,403.30160115944653,25.08847797833935,228.32365074362275,2019
+2004,65,"(60,65]",College,10116.652064631959,403.30160115944653,25.08458194945849,235.09992372899652,2019
+2004,55,"(50,55]",College,42381.9921005386,2823.111208116126,15.012512429087156,19.754206743799788,2019
+2004,55,"(50,55]",College,42381.9921005386,2806.979144069748,15.098791236150875,19.816306324632045,2019
+2004,55,"(50,55]",College,42380.42082585278,2823.111208116126,15.011955853532747,20.246356702841897,2019
+2004,55,"(50,55]",College,42381.9921005386,2823.111208116126,15.012512429087156,19.17777086767523,2019
+2004,55,"(50,55]",College,42381.9921005386,2823.111208116126,15.012512429087156,20.067007640569997,2019
+2004,73,"(70,75]",HS,68.5075763016158,24.19809606956679,2.8311143200962694,7616.784383594265,2019
+2004,73,"(70,75]",HS,150.19814721723517,24.19809606956679,6.207023345367027,7117.728004835636,2019
+2004,73,"(70,75]",HS,90.4897091561939,25.81130247420457,3.505817238267149,7965.535644319018,2019
+2004,73,"(70,75]",HS,118.78836624775585,24.19809606956679,4.908996389891697,7592.067810529807,2019
+2004,73,"(70,75]",HS,126.62902692998205,24.19809606956679,5.233016125150421,7628.589466890019,2019
+2004,42,"(40,45]",College,4215.729982046679,680.7731027571458,6.192562492514585,1329.1625952283903,2019
+2004,42,"(40,45]",College,4214.158707360862,680.7731027571458,6.190254418533029,1304.8149666741785,2019
+2004,42,"(40,45]",College,4215.729982046679,680.7731027571458,6.192562492514585,1367.067297840751,2019
+2004,42,"(40,45]",College,4217.301256732496,680.7731027571458,6.194870566496141,1275.2062332122437,2019
+2004,42,"(40,45]",College,4215.729982046679,680.7731027571458,6.192562492514585,1305.4566329186566,2019
+2004,46,"(45,50]",HS,2225.2077845601434,145.18857641740072,15.326328279181709,515.2573057406888,2019
+2004,46,"(45,50]",HS,2226.3076768402157,145.18857641740072,15.333903890894508,532.1267557962403,2019
+2004,46,"(45,50]",HS,2228.6488761220826,145.18857641740072,15.350029121540315,510.283954807586,2019
+2004,46,"(45,50]",HS,2228.193206463196,145.18857641740072,15.34689065383073,521.5366118323628,2019
+2004,46,"(45,50]",HS,2228.4603231597844,145.18857641740072,15.348730445246693,529.6128730681471,2019
+2004,37,"(35,40]",College,11116.92552962298,730.7825013009171,15.212358683784796,1529.3418024549294,2019
+2004,37,"(35,40]",College,9774.585565529622,404.9148075640843,24.139857033958027,1509.7609510562324,2019
+2004,37,"(35,40]",College,6541.3736445242375,669.4806579246812,9.770817972250013,1564.2646479081382,2019
+2004,37,"(35,40]",College,6530.3747217235195,679.159896352508,9.615371515302229,1489.9412360173826,2019
+2004,37,"(35,40]",College,13787.463985637343,864.6786328858533,15.94518872245272,1506.8773420374237,2019
+2004,59,"(55,60]",NoHS,184.15339317773788,20.97168326029122,8.78104970841433,5615.609824652101,2019
+2004,59,"(55,60]",NoHS,177.554039497307,22.58488966492901,7.861629706034037,5008.442048525052,2019
+2004,59,"(55,60]",NoHS,155.55619389587073,20.97168326029122,7.417439600111081,5632.195387492173,2019
+2004,59,"(55,60]",NoHS,180.38233393177737,20.97168326029122,8.601232990835879,5535.045811471749,2019
+2004,59,"(55,60]",NoHS,170.95468581687612,20.97168326029122,8.151691196889754,5415.008477361992,2019
+2004,28,"(25,30]",HS,5.342333931777379,45.16977932985802,0.11827230531201649,8481.95630643217,2019
+2004,28,"(25,30]",HS,5.185206463195691,45.16977932985802,0.11479370809695717,8501.964930398388,2019
+2004,28,"(25,30]",HS,5.342333931777379,45.16977932985802,0.11827230531201649,8470.145518424852,2019
+2004,28,"(25,30]",HS,5.342333931777379,45.16977932985802,0.11827230531201649,8520.102394025145,2019
+2004,28,"(25,30]",HS,5.185206463195691,45.16977932985802,0.11479370809695717,8499.200985348349,2019
+2004,63,"(60,65]",College,1860.3892280071814,258.1130247420458,7.207653429602887,988.3731225030457,2019
+2004,63,"(60,65]",College,1817.807684021544,258.1130247420458,7.0426809566787,984.9856578796459,2019
+2004,63,"(60,65]",College,1860.2321005385995,258.1130247420458,7.207044675090251,1003.7512692852346,2019
+2004,63,"(60,65]",College,1830.3778815080789,258.1130247420458,7.091381317689529,964.691067651143,2019
+2004,63,"(60,65]",College,1860.3892280071814,258.1130247420458,7.207653429602887,1005.0048557514381,2019
+2004,33,"(30,35]",College,60.5097881508079,70.9810818040626,0.8524776829668526,9899.436119180315,2019
+2004,33,"(30,35]",College,61.43684021543986,77.43390742261373,0.7934100481347774,9659.805628454382,2019
+2004,33,"(30,35]",College,61.12258527827648,64.52825618551145,0.9472220216606497,9799.511629253218,2019
+2004,33,"(30,35]",College,52.904818671454215,75.82070101797595,0.6977621937168753,9861.419669150033,2019
+2004,33,"(30,35]",College,65.99353680430879,75.82070101797595,0.8703894308318609,9711.743341501002,2019
+2004,51,"(50,55]",HS,4.556696588868941,22.58488966492901,0.2017586384734399,8078.570696303534,2019
+2004,51,"(50,55]",HS,4.556696588868941,22.58488966492901,0.2017586384734399,8126.260878697637,2019
+2004,51,"(50,55]",HS,4.3995691202872536,22.58488966492901,0.19480144404332128,8053.942191756158,2019
+2004,51,"(50,55]",HS,4.556696588868941,22.58488966492901,0.2017586384734399,8074.388951858427,2019
+2004,51,"(50,55]",HS,4.556696588868941,22.58488966492901,0.2017586384734399,8071.4720431446785,2019
+2004,31,"(30,35]",College,473.03224416517054,154.86781484522746,3.0544257671480146,7491.97154024936,2019
+2004,31,"(30,35]",College,410.4012351885099,161.3206404637786,2.5440094584837545,8324.463531268562,2019
+2004,31,"(30,35]",College,405.3103052064632,133.89613158493626,3.027050150058719,7405.3812411268755,2019
+2004,31,"(30,35]",College,406.69302692998207,140.3489572034874,2.8977274575708534,7368.390467009636,2019
+2004,31,"(30,35]",College,428.56517055655297,135.50933798957405,3.1626246346914213,7745.493907202834,2019
+2004,47,"(45,50]",HS,407.0387073608618,129.0565123710229,3.153957129963899,3799.060645501327,2019
+2004,47,"(45,50]",HS,686.7256014362657,129.0565123710229,5.321123194945848,3949.192247849256,2019
+2004,47,"(45,50]",HS,950.6997486535009,129.0565123710229,7.366538357400722,3515.9730627967742,2019
+2004,47,"(45,50]",HS,631.7309874326751,129.0565123710229,4.894995036101083,3522.3467029146,2019
+2004,47,"(45,50]",HS,364.61429084380615,129.0565123710229,2.8252296931407943,3804.197950247633,2019
+2004,68,"(65,70]",NoHS,9.89903052064632,20.97168326029122,0.4720188836434324,7266.910595938872,2019
+2004,68,"(65,70]",NoHS,9.89903052064632,37.10374730666908,0.2667932820593314,7366.3515661482215,2019
+2004,68,"(65,70]",NoHS,9.89903052064632,33.87733449739351,0.29220216606498195,7239.012130462601,2019
+2004,68,"(65,70]",NoHS,9.89903052064632,30.650921688117936,0.3229602888086643,7243.620197897627,2019
+2004,68,"(65,70]",NoHS,9.89903052064632,46.782985734495796,0.2115946719780904,7260.606029214325,2019
+2004,54,"(50,55]",HS,7.070736086175943,20.97168326029122,0.3371563454595946,4625.952925704513,2019
+2004,54,"(50,55]",HS,7.070736086175943,19.358476855653432,0.36525270758122746,4528.242274328065,2019
+2004,54,"(50,55]",HS,7.070736086175943,20.97168326029122,0.3371563454595946,4665.777748268543,2019
+2004,54,"(50,55]",HS,7.070736086175943,19.358476855653432,0.36525270758122746,4662.435149018675,2019
+2004,54,"(50,55]",HS,7.070736086175943,20.97168326029122,0.3371563454595946,4605.853934450604,2019
+2004,46,"(45,50]",HS,21.997845601436268,145.18857641740072,0.15151223425591662,7297.987058689547,2019
+2004,46,"(45,50]",HS,21.997845601436268,145.18857641740072,0.15151223425591662,6769.0918404811555,2019
+2004,46,"(45,50]",HS,21.997845601436268,145.18857641740072,0.15151223425591662,7385.182918940156,2019
+2004,46,"(45,50]",HS,20.42657091561939,145.18857641740072,0.14068993180906542,7324.805973074898,2019
+2004,46,"(45,50]",HS,20.42657091561939,145.18857641740072,0.14068993180906542,7142.015541021792,2019
+2004,84,"(80,85]",HS,112.18901256732497,17.74527045101565,6.322192320315064,8920.991555550534,2019
+2004,84,"(80,85]",HS,98.51892280071814,19.358476855653432,5.08918772563177,8980.957766054298,2019
+2004,84,"(80,85]",HS,111.40337522441652,17.74527045101565,6.277919264850672,8785.126501793893,2019
+2004,84,"(80,85]",HS,152.413644524237,17.74527045101565,8.588972760091893,8720.842149936007,2019
+2004,84,"(80,85]",HS,121.30240574506283,19.358476855653432,6.266113116726835,8704.15252583529,2019
+2004,62,"(60,65]",College,34481.46585278276,403.30160115944653,85.49796418772563,270.91777734348284,2019
+2004,62,"(60,65]",College,34168.7821903052,403.30160115944653,84.7226544404332,270.32912848486836,2019
+2004,62,"(60,65]",College,35072.26513464991,403.30160115944653,86.96287104693141,274.1694448520926,2019
+2004,62,"(60,65]",College,34082.36208258528,403.30160115944653,84.50837285198556,267.56477980953105,2019
+2004,62,"(60,65]",College,33182.02168761221,403.30160115944653,82.2759483032491,276.9522774588399,2019
+2004,43,"(40,45]",HS,17.91567396768402,46.782985734495796,0.38295276982447407,3491.918834239515,2019
+2004,43,"(40,45]",HS,18.04137594254937,46.782985734495796,0.38563968629403705,3470.6671357499713,2019
+2004,43,"(40,45]",HS,17.742833752244167,46.782985734495796,0.37925825967882487,3490.0390118937785,2019
+2004,43,"(40,45]",HS,17.91567396768402,46.782985734495796,0.38295276982447407,3492.0814480534414,2019
+2004,43,"(40,45]",HS,17.91567396768402,46.782985734495796,0.38295276982447407,3494.1244712661487,2019
+2004,94,"(90,95]",NoHS,3.613931777378815,10.48584163014561,0.34464870869203,8978.807084892203,2019
+2004,94,"(90,95]",NoHS,3.613931777378815,14.680178282203853,0.24617764906573572,8950.915644340374,2019
+2004,94,"(90,95]",NoHS,3.613931777378815,16.132064046377863,0.22402166064981946,8918.520016132752,2019
+2004,94,"(90,95]",NoHS,3.613931777378815,10.163200349218052,0.35558993753939605,8991.294227851979,2019
+2004,94,"(90,95]",NoHS,3.613931777378815,27.424508878842364,0.13177744744107028,8964.997390805856,2019
+2004,44,"(40,45]",HS,179.98951526032315,158.09422765450302,1.1384951742429825,8305.5683744633,2019
+2004,44,"(40,45]",HS,173.70441651705565,158.09422765450302,1.0987397774994476,7821.986328845211,2019
+2004,44,"(40,45]",HS,178.5125170556553,158.09422765450302,1.1291526560082519,8328.577436689087,2019
+2004,44,"(40,45]",HS,215.50032315978459,158.09422765450302,1.3631131658439553,6795.833051886909,2019
+2004,44,"(40,45]",HS,208.27245960502694,158.09422765450302,1.31739445958889,7103.195112572394,2019
+2004,35,"(30,35]",HS,13.512962298025135,10.808482911073169,1.2502182229645993,5335.588100497634,2019
+2004,35,"(30,35]",HS,13.512962298025135,10.808482911073169,1.2502182229645993,5327.036619989833,2019
+2004,35,"(30,35]",HS,13.512962298025135,10.808482911073169,1.2502182229645993,5344.576243160115,2019
+2004,35,"(30,35]",HS,13.512962298025135,10.808482911073169,1.2502182229645993,5337.464428348261,2019
+2004,35,"(30,35]",HS,13.512962298025135,10.808482911073169,1.2502182229645993,5312.674758128565,2019
+2004,63,"(60,65]",HS,2198.6846678635548,325.8676937368328,6.7471698180648385,459.30595483493533,2019
+2004,63,"(60,65]",HS,2174.8012926391384,325.8676937368328,6.673878185652501,474.3435657120234,2019
+2004,63,"(60,65]",HS,2144.789946140036,325.8676937368328,6.581781463344891,454.8726558334309,2019
+2004,63,"(60,65]",HS,2150.9179174147216,327.4809001414706,6.568071348544396,464.9033964393607,2019
+2004,63,"(60,65]",HS,2289.3472172351885,325.8676937368328,7.025388712156414,472.10266336303073,2019
+2004,55,"(50,55]",NoHS,90.19116696588868,77.43390742261373,1.1647503008423585,4803.74256820555,2019
+2004,55,"(50,55]",NoHS,488.00649192100536,53.23581135304694,9.166883710753746,4557.932971863687,2019
+2004,55,"(50,55]",NoHS,72.0272315978456,64.52825618551145,1.1162122743682308,4779.554296805944,2019
+2004,55,"(50,55]",NoHS,186.22747576301614,61.30184337623587,3.0378772563176892,4753.4572896040645,2019
+2004,55,"(50,55]",NoHS,126.15764452423699,61.30184337623587,2.0579747292418773,4658.219788855675,2019
+2004,53,"(50,55]",HS,350123.9956912029,34264.50403450657,10.218271227232863,2.8570458090874595,2019
+2004,53,"(50,55]",HS,147076.02441651706,34264.50403450657,4.292372779375472,2.8801441796608325,2019
+2004,53,"(50,55]",HS,509308.2628366248,34264.50403450657,14.864019695826283,2.894695128954638,2019
+2004,53,"(50,55]",HS,341071.00231238775,34248.3719704602,9.958750816142947,2.799834059547961,2019
+2004,53,"(50,55]",HS,454628.846535009,29957.24293412369,15.175924150788605,2.791491040751853,2019
+2004,26,"(25,30]",HS,27.811561938958707,40.33016011594465,0.6895971119133574,5054.597405329795,2019
+2004,26,"(25,30]",HS,27.811561938958707,40.33016011594465,0.6895971119133574,5041.377214952558,2019
+2004,26,"(25,30]",HS,27.811561938958707,40.33016011594465,0.6895971119133574,5058.624154731678,2019
+2004,26,"(25,30]",HS,27.811561938958707,40.33016011594465,0.6895971119133574,5062.549955164044,2019
+2004,26,"(25,30]",HS,27.968689407540396,40.33016011594465,0.6934931407942239,5045.081311018197,2019
+2004,73,"(70,75]",College,18213.807626570913,9324.333018806403,1.9533630544764093,30.4468805929719,2019
+2004,73,"(70,75]",College,21298.392675044885,8872.635225507824,2.4004585034460124,31.178572926051505,2019
+2004,73,"(70,75]",College,13675.966333931778,10760.086718934033,1.2709903452605826,32.10074556827981,2019
+2004,73,"(70,75]",College,16634.99082226212,9630.842235687582,1.7272623115577892,29.633039587643953,2019
+2004,73,"(70,75]",College,21766.30256373429,10663.294334655768,2.0412362146840195,30.829589648208874,2019
+2004,82,"(80,85]",HS,909.2966606822262,80.49899959142553,11.295751068924853,5557.150749596436,2019
+2004,82,"(80,85]",HS,916.6816517055655,94.69521595223804,9.680337517450907,5910.773224080025,2019
+2004,82,"(80,85]",HS,947.164380610413,90.01691737878846,10.522070830583699,5439.696429254989,2019
+2004,82,"(80,85]",HS,977.1757271095153,88.88767289554201,10.993377318560936,5342.17184122428,2019
+2004,82,"(80,85]",HS,965.0769120287252,80.17635831049797,12.03692625064466,5568.49179811034,2019
+2004,65,"(60,65]",College,939.7793895870736,108.08482911073166,8.69483161808287,4715.67587724899,2019
+2004,65,"(60,65]",College,939.7793895870736,108.08482911073166,8.69483161808287,4930.471486589638,2019
+2004,65,"(60,65]",College,939.7793895870736,108.08482911073166,8.69483161808287,4592.600285477727,2019
+2004,65,"(60,65]",College,939.7793895870736,108.08482911073166,8.69483161808287,4530.388800795079,2019
+2004,65,"(60,65]",College,939.7793895870736,108.08482911073166,8.69483161808287,4712.863320991246,2019
+2004,66,"(65,70]",NoHS,356.0508438061042,64.52825618551145,5.517750902527076,9058.37793000019,2019
+2004,66,"(65,70]",NoHS,356.0508438061042,64.52825618551145,5.517750902527076,8272.899653233206,2019
+2004,66,"(65,70]",NoHS,356.0508438061042,64.52825618551145,5.517750902527076,9173.145021368804,2019
+2004,66,"(65,70]",NoHS,356.0508438061042,64.52825618551145,5.517750902527076,9155.207248346273,2019
+2004,66,"(65,70]",NoHS,356.0508438061042,64.52825618551145,5.517750902527076,8929.537560981025,2019
+2004,33,"(30,35]",HS,1.5869874326750448,43.55657292522023,0.03643508490439898,7105.565110492474,2019
+2004,33,"(30,35]",HS,1.445572710951526,43.55657292522023,0.033188394170343624,7206.179302885615,2019
+2004,33,"(30,35]",HS,-0.15712746858168763,43.55657292522023,-0.0036074341489503946,7087.793731806198,2019
+2004,33,"(30,35]",HS,-0.15712746858168763,43.55657292522023,-0.0036074341489503946,7158.923741200281,2019
+2004,33,"(30,35]",HS,1.5712746858168762,43.55657292522023,0.03607434148950394,7144.149678441124,2019
+2004,56,"(55,60]",College,5395.443016157989,454.92420610785575,11.860092172977954,1444.9850851920278,2019
+2004,56,"(55,60]",College,5584.090254937164,504.93360465162704,11.059058465300286,1433.3513556899147,2019
+2004,56,"(55,60]",College,5441.811332136445,446.8581740846667,12.177938432665616,1637.7802605141535,2019
+2004,56,"(55,60]",College,5396.904301615799,471.05627015423346,11.457026779091047,1371.662741192011,2019
+2004,56,"(55,60]",College,5581.623353680431,519.4524622933671,10.745205305289593,1460.2180371350319,2019
+2007,47,"(45,50]",HS,443.19521255722697,95.65733658346481,4.633154427946272,10308.172596367334,2019
+2007,47,"(45,50]",HS,448.9049051667757,95.65733658346481,4.692843447246604,10566.28633117244,2019
+2007,47,"(45,50]",HS,465.51882275997383,95.65733658346481,4.866525029722004,9905.428279494015,2019
+2007,47,"(45,50]",HS,448.93352517985613,95.65733658346481,4.693142640325804,10385.869665651448,2019
+2007,47,"(45,50]",HS,437.471209941138,95.65733658346481,4.573315812106341,10488.5455757981,2019
+2007,56,"(55,60]",College,8565.96991497711,2972.735690747675,2.881510771925598,217.73169173734442,2019
+2007,56,"(55,60]",College,8584.572923479398,2958.0191774271425,2.9021356551671107,208.1237021835721,2019
+2007,56,"(55,60]",College,8586.00392413342,2958.0191774271425,2.902619425071289,211.00857412855083,2019
+2007,56,"(55,60]",College,8584.572923479398,2972.735690747675,2.8877686469732144,210.64689744874113,2019
+2007,56,"(55,60]",College,8586.00392413342,2972.735690747675,2.888250021976877,216.84742364671246,2019
+2007,50,"(45,50]",NoHS,510.29483322432964,130.97696855274413,3.896065383577992,534.2051937126923,2019
+2007,50,"(45,50]",NoHS,465.9338129496403,130.97696855274413,3.5573720944839993,558.5312692270999,2019
+2007,50,"(45,50]",NoHS,484.39372138652715,130.97696855274413,3.6983122051069834,541.6745558463127,2019
+2007,50,"(45,50]",NoHS,465.7907128842381,130.97696855274413,3.556279535486922,535.8201135798312,2019
+2007,50,"(45,50]",NoHS,465.7907128842381,130.97696855274413,3.556279535486922,535.0738359747769,2019
+2007,61,"(60,65]",HS,8461.220667102682,233.99256179647546,36.16021211162332,4047.153053946452,2019
+2007,61,"(60,65]",HS,8465.513669064749,236.93586446058208,35.72913576565407,4156.83572521505,2019
+2007,61,"(60,65]",HS,8457.643165467625,239.87916712468865,35.25793117778903,3993.041109117819,2019
+2007,61,"(60,65]",HS,8456.784565075213,238.40751579263537,35.47197133009366,3962.4098564931796,2019
+2007,61,"(60,65]",HS,8451.919162851536,239.87916712468865,35.23406915306759,4000.0773806516613,2019
+2007,26,"(25,30]",NoHS,4.722302158273381,76.52586926677185,0.06170857258492904,6404.3774315093815,2019
+2007,26,"(25,30]",NoHS,4.865402223675605,76.52586926677185,0.06357852932992689,6397.557352926123,2019
+2007,26,"(25,30]",NoHS,4.865402223675605,76.52586926677185,0.06357852932992689,6433.329233301004,2019
+2007,26,"(25,30]",NoHS,4.865402223675605,76.52586926677185,0.06357852932992689,6454.81062241586,2019
+2007,26,"(25,30]",NoHS,4.722302158273381,76.52586926677185,0.06170857258492904,6374.736689440139,2019
+2007,62,"(60,65]",College,2592.2576847612822,151.5800872014904,17.101571404398786,1773.1977760473528,2019
+2007,62,"(60,65]",College,2591.1128842380645,151.5800872014904,17.094018957739376,1800.4539092076761,2019
+2007,62,"(60,65]",College,2590.969784172662,151.5800872014904,17.09307490190695,1719.7603756809592,2019
+2007,62,"(60,65]",College,2590.82668410726,151.5800872014904,17.092130846074525,1736.5438364687961,2019
+2007,62,"(60,65]",College,2590.82668410726,151.5800872014904,17.092130846074525,1731.5937704916755,2019
+2007,79,"(75,80]",College,39846.78561151079,1115.5117096964052,35.72063409567919,269.59873264400534,2019
+2007,79,"(75,80]",College,35181.7234793983,1237.6587702568293,28.426028502264533,303.0351234841105,2019
+2007,79,"(75,80]",College,52681.43047743623,905.0655692127824,58.20730814371609,272.2777221816178,2019
+2007,79,"(75,80]",College,54557.47233485939,1056.6456564142727,51.63270392839184,277.5493856583654,2019
+2007,79,"(75,80]",College,60025.325833878356,1395.125462786533,43.02503784425787,253.40780988681655,2019
+2007,49,"(45,50]",HS,150.39816873773708,132.44861988479744,1.135520844751361,8142.105972345678,2019
+2007,49,"(45,50]",HS,150.39816873773708,132.44861988479744,1.135520844751361,7958.315222620293,2019
+2007,49,"(45,50]",HS,150.25506867233486,132.44861988479744,1.1344404252986955,8414.96473584479,2019
+2007,49,"(45,50]",HS,150.25506867233486,132.44861988479744,1.1344404252986955,8153.334264991658,2019
+2007,49,"(45,50]",HS,150.39816873773708,132.44861988479744,1.135520844751361,7918.576123891381,2019
+2007,65,"(60,65]",College,3963.0132112491824,76.52586926677185,51.78658209597045,1629.5833728290079,2019
+2007,65,"(60,65]",College,3963.0132112491824,76.52586926677185,51.78658209597045,1620.4759442931556,2019
+2007,65,"(60,65]",College,3963.0132112491824,75.05421793471854,52.802005274322816,1605.8539377676977,2019
+2007,65,"(60,65]",College,3963.0132112491824,75.05421793471854,52.802005274322816,1589.2524185951377,2019
+2007,65,"(60,65]",College,3963.0132112491824,76.52586926677185,51.78658209597045,1603.5449793130208,2019
+2007,40,"(35,40]",NoHS,8.58600392413342,113.31715256810448,0.07576967590121157,5482.031265711315,2019
+2007,40,"(35,40]",NoHS,0.5008502289077829,145.69348187327716,0.003437698258480896,5487.439579228833,2019
+2007,40,"(35,40]",NoHS,2.4327011118378024,41.206237297492535,0.05903720580636068,5446.850589829982,2019
+2007,40,"(35,40]",NoHS,0.5151602354480053,52.979447953918964,0.00972377507398882,5460.364518810079,2019
+2007,40,"(35,40]",NoHS,2.0034009156311314,33.84798063722601,0.05918819610254064,5509.881130500241,2019
+2007,54,"(50,55]",College,269409.62773054285,5989.62092145695,44.979412096919496,38.609318878162284,2019
+2007,54,"(50,55]",College,196948.62001308045,6122.069541341748,32.17026835175676,35.15529748766629,2019
+2007,54,"(50,55]",College,242829.3629823414,7181.658500420127,33.812435242936694,36.1714348493425,2019
+2007,54,"(50,55]",College,270313.1615434925,6489.982374355073,41.65083138154967,36.54474238243301,2019
+2007,54,"(50,55]",College,246572.86069326356,7799.752059882515,31.612910102808783,34.454784614093164,2019
+2007,30,"(25,30]",HS,1.8746108567691302,95.65733658346481,0.019597146687577467,8514.53461322055,2019
+2007,30,"(25,30]",HS,1.8746108567691302,95.65733658346481,0.019597146687577467,8505.467409455141,2019
+2007,30,"(25,30]",HS,1.8746108567691302,95.65733658346481,0.019597146687577467,8553.02564862659,2019
+2007,30,"(25,30]",HS,1.8746108567691302,95.65733658346481,0.019597146687577467,8581.584869739734,2019
+2007,30,"(25,30]",HS,1.8746108567691302,95.65733658346481,0.019597146687577467,8475.127640878725,2019
+2007,33,"(30,35]",College,7505.6270503597125,200.14458115924944,37.501025543068266,924.3230228264099,2019
+2007,33,"(30,35]",College,7522.19803793329,325.2349443837804,23.12850500177811,910.5263151189523,2019
+2007,33,"(30,35]",College,7507.058051013734,231.04925913236883,32.49115828894703,912.3854204840036,2019
+2007,33,"(30,35]",College,7506.313930673643,284.0287070862878,26.42801147699915,908.3036802801837,2019
+2007,33,"(30,35]",College,7496.296926095488,158.93834386175692,47.16481085656521,939.6440574143924,2019
+2007,77,"(75,80]",HS,309.1247612818836,44.885365627625795,6.886983250764147,11003.83574137215,2019
+2007,77,"(75,80]",HS,294.5571746239372,46.35701695967909,6.354101146761456,10759.795075711436,2019
+2007,77,"(75,80]",HS,341.8660562459123,44.885365627625795,7.616425787462061,11335.41269795932,2019
+2007,77,"(75,80]",HS,286.14289077828647,46.35701695967909,6.172590678713665,10949.89586742206,2019
+2007,77,"(75,80]",HS,352.5127011118378,46.35701695967909,7.604300799131448,11038.22734441389,2019
+2007,62,"(60,65]",HS,92.29954218443426,14.716513320533048,6.271834922722787,8461.720759080465,2019
+2007,62,"(60,65]",HS,92.15644211903205,16.18816465258635,5.692828316044364,8469.259695147919,2019
+2007,62,"(60,65]",HS,92.29954218443426,14.716513320533048,6.271834922722787,8499.233737998851,2019
+2007,62,"(60,65]",HS,92.15644211903205,16.18816465258635,5.692828316044364,8565.160576272627,2019
+2007,62,"(60,65]",HS,92.29954218443426,14.716513320533048,6.271834922722787,8603.989115389846,2019
+2007,43,"(40,45]",HS,378.7715631131458,36.79128330133262,10.2951440973364,5648.054768722459,2019
+2007,43,"(40,45]",HS,134.03467625899282,36.79128330133262,3.6431095692206514,5586.837182117847,2019
+2007,43,"(40,45]",HS,107.16763897972531,36.79128330133262,2.9128540611640905,5757.416489246229,2019
+2007,43,"(40,45]",HS,182.5742184434271,36.79128330133262,4.962431371259455,5599.860374598169,2019
+2007,43,"(40,45]",HS,374.6574362328319,36.79128330133262,10.18332068398553,5585.3244713247495,2019
+2007,49,"(45,50]",NoHS,11.448005232177895,8.829907992319828,1.2965033431985094,8244.384284868827,2019
+2007,49,"(45,50]",NoHS,11.448005232177895,8.829907992319828,1.2965033431985094,8255.019520339538,2019
+2007,49,"(45,50]",NoHS,11.591105297580118,8.829907992319828,1.3127096349884906,8265.267140025191,2019
+2007,49,"(45,50]",NoHS,11.591105297580118,8.829907992319828,1.3127096349884906,8278.421070143404,2019
+2007,49,"(45,50]",NoHS,11.591105297580118,8.829907992319828,1.3127096349884906,8283.814261467636,2019
+2007,29,"(25,30]",College,158.2686723348594,128.03366588863753,1.2361488772220268,7382.853313330386,2019
+2007,29,"(25,30]",College,156.83767168083713,128.03366588863753,1.2249721242634188,7385.215520433393,2019
+2007,29,"(25,30]",College,152.54466971877042,128.03366588863753,1.1914418653875953,7457.894836390126,2019
+2007,29,"(25,30]",College,155.4066710268149,128.03366588863753,1.213795371304811,7368.090939456653,2019
+2007,29,"(25,30]",College,156.83767168083713,128.03366588863753,1.2249721242634188,7353.262418743475,2019
+2007,65,"(60,65]",College,83142.28279921517,5754.156708328423,14.44908211812812,23.88893723369693,2019
+2007,65,"(60,65]",College,82152.8889470242,5754.156708328423,14.277137921551244,21.320630340532443,2019
+2007,65,"(60,65]",College,82177.64525833879,5768.873221648954,14.245008011261065,23.507482177238263,2019
+2007,65,"(60,65]",College,84143.84015696534,5768.873221648954,14.585836249823837,23.38423999638356,2019
+2007,65,"(60,65]",College,83571.43989535645,5754.156708328423,14.523664219015314,21.625240624643574,2019
+2007,60,"(55,60]",HS,43.93172007848267,41.206237297492535,1.0661424813266311,8908.6339519059,2019
+2007,60,"(55,60]",HS,134.37096141268802,41.206237297492535,3.260937426598393,8685.365504943535,2019
+2007,60,"(55,60]",HS,27.904512753433618,41.206237297492535,0.6771914783670785,9231.596263193376,2019
+2007,60,"(55,60]",HS,50.228122956180506,41.206237297492535,1.218944661060741,8915.382408596834,2019
+2007,60,"(55,60]",HS,43.073119686069326,41.206237297492535,1.045305820453798,8632.454107540992,2019
+2007,52,"(50,55]",College,3518.1151079136694,515.0779662186567,6.830257434114718,1395.6943745336134,2019
+2007,52,"(50,55]",College,3518.286827992152,515.0779662186567,6.830590820688683,1391.9759529867174,2019
+2007,52,"(50,55]",College,3625.4687769784173,515.0779662186567,7.0386796072720434,1371.2179302317913,2019
+2007,52,"(50,55]",College,3625.5117069980383,515.0779662186567,7.038762953915535,1361.127770864487,2019
+2007,52,"(50,55]",College,3625.497396991498,515.0779662186567,7.038735171701038,1394.0429575000126,2019
+2007,52,"(50,55]",HS,192.61268803139308,123.6187118924776,1.558119196379637,5897.615132188626,2019
+2007,52,"(50,55]",HS,191.32478744277307,123.6187118924776,1.5477008659432205,5874.936133788919,2019
+2007,52,"(50,55]",HS,192.61268803139308,123.6187118924776,1.558119196379637,5978.322243713129,2019
+2007,52,"(50,55]",HS,191.32478744277307,125.0903632245309,1.5294926204615356,5927.6282219129835,2019
+2007,52,"(50,55]",HS,192.7557880967953,125.0903632245309,1.5409323558426988,5818.201679188516,2019
+2007,69,"(65,70]",College,33428.60457815566,1443.1012962114708,23.164420034764532,379.74365736703095,2019
+2007,69,"(65,70]",College,33281.21151079136,1436.3317000840254,23.170978896340177,426.5327302341431,2019
+2007,69,"(65,70]",College,33278.20640941792,1451.0482134045585,22.933908123795618,382.4819737357394,2019
+2007,69,"(65,70]",College,33357.19764551995,1442.3654705454442,23.126730587155283,390.61758444975135,2019
+2007,69,"(65,70]",College,33365.64054937868,1436.3317000840254,23.229759913693186,413.8809633760852,2019
+2007,57,"(55,60]",HS,1657.8142576847613,98.74780438077674,16.788365757400964,8050.477322951419,2019
+2007,57,"(55,60]",HS,1657.671157619359,116.4076203654164,14.240228882058974,8247.82548298432,2019
+2007,57,"(55,60]",HS,1657.671157619359,101.69110704488337,16.301043481488634,7795.379776097322,2019
+2007,57,"(55,60]",HS,1657.671157619359,95.80450171667015,17.30264369540499,8200.889963555981,2019
+2007,57,"(55,60]",HS,1657.8142576847613,94.33285038461683,17.574092703925192,8312.531255220858,2019
+2007,48,"(45,50]",College,25446.626030085023,618.0935594623879,41.16953758945209,427.71087989302225,2019
+2007,48,"(45,50]",College,22827.89483322433,618.0935594623879,36.93274987864268,484.25809722495615,2019
+2007,48,"(45,50]",College,20752.943884892087,618.0935594623879,33.575732293575115,391.9945929546238,2019
+2007,48,"(45,50]",College,28594.827468933945,618.0935594623879,46.262943580589095,438.27199781295514,2019
+2007,48,"(45,50]",College,22942.37488554611,618.0935594623879,37.11796464195675,464.72366514819424,2019
+2007,44,"(40,45]",HS,382.2632047089601,198.67292982719616,1.9240829892700984,7891.590040002149,2019
+2007,44,"(40,45]",HS,382.2632047089601,198.67292982719616,1.9240829892700984,7759.272505435542,2019
+2007,44,"(40,45]",HS,383.69420536298236,198.67292982719616,1.9312857856212016,7978.63959381141,2019
+2007,44,"(40,45]",HS,380.81789404839765,198.67292982719616,1.9168081649554847,7795.968390437025,2019
+2007,44,"(40,45]",HS,383.69420536298236,198.67292982719616,1.9312857856212016,7805.852065673162,2019
+2007,45,"(40,45]",College,193.18508829300197,203.08788382335604,0.9512388659336889,7349.268688639808,2019
+2007,45,"(40,45]",College,274.17972531066056,278.1421017580746,0.9857541291937871,7321.007425554158,2019
+2007,45,"(40,45]",College,188.31968606932637,206.03118648746263,0.9140348569549491,7449.8412479511635,2019
+2007,45,"(40,45]",College,351.31066056245913,235.46421312852877,1.4919917379151595,7386.669274404837,2019
+2007,45,"(40,45]",College,193.04198822759975,151.5800872014904,1.2735313179428076,7250.308212157531,2019
+2007,39,"(35,40]",HS,318.55505559189015,147.16513320533048,2.164609569220651,5643.867805065862,2019
+2007,39,"(35,40]",HS,459.3225899280576,147.16513320533048,3.1211373232489312,5774.36491078407,2019
+2007,39,"(35,40]",HS,400.36536298234137,147.16513320533048,2.7205177902005917,5430.760704857426,2019
+2007,39,"(35,40]",HS,462.4564813603663,147.16513320533048,3.142432390660967,5687.385585705783,2019
+2007,39,"(35,40]",HS,369.3412688031393,147.16513320533048,2.509706346596514,5733.892661090819,2019
+2007,46,"(45,50]",HS,424.29169391759325,36.79128330133262,11.532397237750741,7424.999688671606,2019
+2007,46,"(45,50]",HS,314.8201438848921,36.79128330133262,8.556922065110161,8118.9255555919635,2019
+2007,46,"(45,50]",HS,397.6750817527796,36.79128330133262,10.808948372245972,7147.226059914569,2019
+2007,46,"(45,50]",HS,444.18260300850227,36.79128330133262,12.073039131864517,7480.652326523899,2019
+2007,46,"(45,50]",HS,463.9304120340092,36.79128330133262,12.6097915159487,7542.307143420786,2019
+2007,39,"(35,40]",HS,5.924342707652061,12.65620145565842,0.46809800937574086,7187.4408741067555,2019
+2007,39,"(35,40]",HS,5.781242642249837,12.65620145565842,0.4567912941734283,7192.784995470754,2019
+2007,39,"(35,40]",HS,5.924342707652061,12.65620145565842,0.46809800937574086,7185.777239589656,2019
+2007,39,"(35,40]",HS,5.924342707652061,12.65620145565842,0.46809800937574086,7230.0822748210585,2019
+2007,39,"(35,40]",HS,5.781242642249837,12.65620145565842,0.4567912941734283,7229.049974844873,2019
+2007,51,"(50,55]",HS,347.30385873119684,176.59815984639656,1.9666335087142388,10308.172596367334,2019
+2007,51,"(50,55]",HS,347.30385873119684,176.59815984639656,1.9666335087142388,10566.28633117244,2019
+2007,51,"(50,55]",HS,347.1607586657946,176.59815984639656,1.9658231941247397,9905.428279494015,2019
+2007,51,"(50,55]",HS,347.30385873119684,176.59815984639656,1.9666335087142388,10385.869665651448,2019
+2007,51,"(50,55]",HS,347.30385873119684,176.59815984639656,1.9666335087142388,10488.5455757981,2019
+2007,59,"(55,60]",NoHS,24.47011118378025,33.84798063722601,0.7229415381096036,8819.571845369603,2019
+2007,59,"(55,60]",NoHS,24.1839110529758,33.84798063722601,0.7144860815235263,8853.556541497124,2019
+2007,59,"(55,60]",NoHS,24.47011118378025,33.84798063722601,0.7229415381096036,8843.010268397109,2019
+2007,59,"(55,60]",NoHS,24.47011118378025,33.84798063722601,0.7229415381096036,8851.864287367509,2019
+2007,59,"(55,60]",NoHS,24.613211249182473,33.84798063722601,0.7271692664026421,8846.984434994534,2019
+2007,30,"(25,30]",HS,10.590835840418574,30.9046779731194,0.3426936158218631,5200.095232526436,2019
+2007,30,"(25,30]",HS,10.590835840418574,30.9046779731194,0.3426936158218631,5165.224100710208,2019
+2007,30,"(25,30]",HS,10.590835840418574,30.9046779731194,0.3426936158218631,5161.17729856465,2019
+2007,30,"(25,30]",HS,10.590835840418574,30.9046779731194,0.3426936158218631,5181.325998058173,2019
+2007,30,"(25,30]",HS,10.590835840418574,30.9046779731194,0.3426936158218631,5204.386326125716,2019
+2007,46,"(45,50]",College,591.146370176586,314.9333850594072,1.8770520948900844,462.3025988582261,2019
+2007,46,"(45,50]",College,588.4274689339438,314.9333850594072,1.8684188366468237,484.7760122160686,2019
+2007,46,"(45,50]",College,589.8584695879659,314.9333850594072,1.8729626567748556,467.35120191275394,2019
+2007,46,"(45,50]",College,591.146370176586,314.9333850594072,1.8770520948900844,463.69190214955535,2019
+2007,46,"(45,50]",College,591.146370176586,314.9333850594072,1.8770520948900844,470.0166159467638,2019
+2007,50,"(45,50]",HS,497.9882275997384,63.28100727829211,7.869473780809556,7205.644179122632,2019
+2007,50,"(45,50]",HS,540.0596468279922,63.28100727829211,8.534308634705535,7075.945446414774,2019
+2007,50,"(45,50]",HS,413.9884892086331,63.28100727829211,6.542065416058058,7436.931530155428,2019
+2007,50,"(45,50]",HS,534.3356442119032,63.28100727829211,8.443854913087034,7200.395106784211,2019
+2007,50,"(45,50]",HS,409.6954872465664,63.28100727829211,6.4742251248441836,7084.986097860963,2019
+2007,45,"(40,45]",HS,56.6819359058208,79.46917193087846,0.7132569086679577,7475.016026461885,2019
+2007,45,"(40,45]",HS,54.39233485938522,79.46917193087846,0.6844457232635464,7302.728745722941,2019
+2007,45,"(40,45]",HS,56.25263570961413,79.46917193087846,0.7078548114046306,7765.501314781705,2019
+2007,45,"(40,45]",HS,54.10613472858077,79.46917193087846,0.6808443250879949,7460.611592225056,2019
+2007,45,"(40,45]",HS,53.390634401569656,79.46917193087846,0.6718408296491164,7296.395750901679,2019
+2007,48,"(45,50]",HS,23.239450621321126,48.56449395775905,0.47852759758054075,6658.184068371246,2019
+2007,48,"(45,50]",HS,22.724290385873118,47.09284262570575,0.48254233804669516,6591.639710483866,2019
+2007,48,"(45,50]",HS,22.867390451275345,47.09284262570575,0.4855810177573167,6729.843589674684,2019
+2007,48,"(45,50]",HS,22.867390451275345,48.56449395775905,0.47086644146164053,6697.469463808729,2019
+2007,48,"(45,50]",HS,23.239450621321126,47.09284262570575,0.4934815850049326,6550.799649299579,2019
+2007,67,"(65,70]",College,28976.332243296274,419.42062963519186,69.08656893796477,39.358111417202494,2019
+2007,67,"(65,70]",College,28973.470241988227,419.42062963519186,69.07974523615846,42.491646529666426,2019
+2007,67,"(65,70]",College,28974.901242642252,419.42062963519186,69.08315708706162,42.07677953643549,2019
+2007,67,"(65,70]",College,28974.901242642252,419.42062963519186,69.08315708706162,42.72256721475744,2019
+2007,67,"(65,70]",College,28972.039241334205,419.42062963519186,69.07633338525531,42.82610522985575,2019
+2007,35,"(30,35]",HS,358.8234139960759,105.95889590783793,3.38643972194819,5903.855003146432,2019
+2007,35,"(30,35]",HS,373.99202092871155,104.48724457578463,3.579307909277434,5839.8648738442835,2019
+2007,35,"(30,35]",HS,429.0855461085677,107.43054723989124,3.9940739122404763,5058.389141324606,2019
+2007,35,"(30,35]",HS,463.85886200130807,105.95889590783793,4.377724569768717,5295.339477536997,2019
+2007,35,"(30,35]",HS,354.10111183780253,107.43054723989124,3.2960933452856627,5838.283652423838,2019
+2007,35,"(30,35]",NoHS,17.315107913669063,47.09284262570575,0.3676802449852022,6300.680965028238,2019
+2007,35,"(30,35]",NoHS,17.45820797907129,47.09284262570575,0.3707189246958238,6307.326433625638,2019
+2007,35,"(30,35]",NoHS,17.315107913669063,47.09284262570575,0.3676802449852022,6337.947579209621,2019
+2007,35,"(30,35]",NoHS,17.45820797907129,47.09284262570575,0.3707189246958238,6303.623449733319,2019
+2007,35,"(30,35]",NoHS,17.17200784826684,47.09284262570575,0.36464156527458075,6293.387525228734,2019
+2007,60,"(55,60]",HS,24.1839110529758,35.319631969279314,0.6847158281267127,9586.999024292458,2019
+2007,60,"(55,60]",HS,24.327011118378024,35.319631969279314,0.688767401074208,9330.184787403294,2019
+2007,60,"(55,60]",HS,24.327011118378024,35.319631969279314,0.688767401074208,9839.870347193508,2019
+2007,60,"(55,60]",HS,24.327011118378024,35.319631969279314,0.688767401074208,9539.460581159967,2019
+2007,60,"(55,60]",HS,24.327011118378024,35.319631969279314,0.688767401074208,9394.376968318516,2019
+2007,35,"(30,35]",College,108.84334074558535,69.16761260650532,1.5736171402184334,7943.437401619881,2019
+2007,35,"(30,35]",College,107.26924002616089,69.16761260650532,1.5508593687686723,7816.943459638738,2019
+2007,35,"(30,35]",College,108.47128057553957,69.16761260650532,1.5682380306030352,8150.30055241644,2019
+2007,35,"(30,35]",College,108.11353041203402,69.16761260650532,1.563065809818999,7866.210493249254,2019
+2007,35,"(30,35]",College,108.6859306736429,69.16761260650532,1.5713413630734572,7798.086524513465,2019
+2007,36,"(35,40]",HS,167.31259646827993,97.1289879155181,1.722581487349656,7303.241928648281,2019
+2007,36,"(35,40]",HS,148.8526880313931,97.1289879155181,1.5325258836307838,7186.942672534258,2019
+2007,36,"(35,40]",HS,134.39958142576847,97.1289879155181,1.383722659013682,7493.433096527519,2019
+2007,36,"(35,40]",HS,158.72659254414648,97.1289879155181,1.6341835321315756,7232.239065943371,2019
+2007,36,"(35,40]",HS,138.69258338783519,97.1289879155181,1.427921636622722,7169.605498173873,2019
+2007,46,"(45,50]",HS,64.39502943100067,77.99752059882516,0.8256035440179187,6530.590713348013,2019
+2007,46,"(45,50]",HS,64.96742969260956,77.99752059882516,0.8329422421869668,6425.378810277987,2019
+2007,46,"(45,50]",HS,65.110529758011765,77.99752059882516,0.8347769167292286,6779.014284000621,2019
+2007,46,"(45,50]",HS,64.39502943100067,77.99752059882516,0.8256035440179187,6599.526768336007,2019
+2007,46,"(45,50]",HS,64.1088293001962,77.99752059882516,0.8219341949333944,6528.166365594497,2019
+2007,92,"(90,95]",College,351188.59620667103,4974.18150234017,70.60228824409597,28.216352633430365,2019
+2007,92,"(90,95]",College,350698.1922825376,4988.898015660702,70.29572285936838,25.108957653071553,2019
+2007,92,"(90,95]",College,350822.40313930676,4988.898015660702,70.32062031295017,27.849888526598374,2019
+2007,92,"(90,95]",College,351002.5661216481,4179.489783031385,83.9821567567192,27.620722454720227,2019
+2007,92,"(90,95]",College,317222.79398299544,4988.898015660702,63.58574438427044,25.16423465728726,2019
+2007,51,"(50,55]",College,327.9281098757358,92.71403391935819,3.53698459675441,5402.725177263788,2019
+2007,51,"(50,55]",College,329.50221059516025,92.71403391935819,3.5539626167248666,5379.330816360508,2019
+2007,51,"(50,55]",College,327.7850098103336,92.71403391935819,3.535441140393459,5505.003369903583,2019
+2007,51,"(50,55]",College,327.64190974493135,92.71403391935819,3.533897684032509,5412.291902104416,2019
+2007,51,"(50,55]",College,329.2160104643558,92.71403391935819,3.5508757040029653,5349.4745811872435,2019
+2007,52,"(50,55]",HS,232.98121648136038,339.9514577043134,0.6853367185264587,5946.947940121525,2019
+2007,52,"(50,55]",HS,217.15434924787442,178.06981117844987,1.2194899731221516,6082.650575186164,2019
+2007,52,"(50,55]",HS,232.7379463701766,217.8043971438891,1.0685640392118523,5723.813655301472,2019
+2007,52,"(50,55]",HS,216.98262916939177,288.4436610824477,0.7522530686065944,5993.1876195442865,2019
+2007,52,"(50,55]",HS,195.11693917593198,194.2579758310362,1.0044217661654362,6042.468389237949,2019
+2007,66,"(65,70]",HS,3285.1939934597776,103.01559324373132,31.89025942594072,2385.750513381394,2019
+2007,66,"(65,70]",HS,3286.640735120994,103.01559324373132,31.904303335369008,2417.930812712596,2019
+2007,66,"(65,70]",HS,3286.367413996076,103.01559324373132,31.901650133884534,2410.8891052627305,2019
+2007,66,"(65,70]",HS,3286.5963741007195,103.01559324373132,31.903872711044304,2589.94864599592,2019
+2007,66,"(65,70]",HS,3286.2672439502944,103.01559324373132,31.900677756377135,2482.9676219472303,2019
+2007,68,"(65,70]",College,4271.1792020928715,490.05989357375046,8.715626922548989,2275.2864945814067,2019
+2007,68,"(65,70]",College,3808.2504905166775,490.05989357375046,7.770989914610434,2254.9637468083342,2019
+2007,68,"(65,70]",College,3809.6814911706997,490.05989357375046,7.773909967185205,2234.8037824563853,2019
+2007,68,"(65,70]",College,4428.446173969915,491.5315449058038,9.009485189436976,2212.2556971920035,2019
+2007,68,"(65,70]",College,4351.458338783518,491.5315449058038,8.852856716688292,2241.9335300888183,2019
+2007,28,"(25,30]",HS,-10.015573577501636,39.73458596543923,-0.2520618583068435,6416.959230114242,2019
+2007,28,"(25,30]",HS,-57.23859516023545,39.73458596543923,-1.4405232562388102,6373.927973730124,2019
+2007,28,"(25,30]",HS,-57.23859516023545,45.62119129365245,-1.254649287691867,6368.934187420607,2019
+2007,28,"(25,30]",HS,-170.28764682799215,44.14953996159914,-3.857065033431985,6393.79784422078,2019
+2007,28,"(25,30]",HS,-12.448274689339438,36.79128330133262,-0.33834847747451496,6422.254474037263,2019
+2007,53,"(50,55]",HS,2299.4892609548724,80.94082326293177,28.409511643897037,3110.833123184176,2019
+2007,53,"(50,55]",HS,778.3355657292349,80.94082326293177,9.616106364533197,7216.892860127516,2019
+2007,53,"(50,55]",HS,1071.6906998037934,80.94082326293177,13.240422528474484,6791.143004360609,2019
+2007,53,"(50,55]",HS,1768.5880183126226,80.94082326293177,21.85038336671549,3377.6913758510877,2019
+2007,53,"(50,55]",HS,1055.9496926095487,80.94082326293177,13.045947026994707,7169.217833050177,2019
+2007,30,"(25,30]",College,140.95356442119032,154.52338986559698,0.9121827093218083,9126.63457119148,2019
+2007,30,"(25,30]",College,140.95356442119032,154.52338986559698,0.9121827093218083,9336.621969546055,2019
+2007,30,"(25,30]",College,140.95356442119032,154.52338986559698,0.9121827093218083,8782.581239630712,2019
+2007,30,"(25,30]",College,142.38456507521258,154.52338986559698,0.9214434474875122,9196.698719697491,2019
+2007,30,"(25,30]",College,140.95356442119032,154.52338986559698,0.9121827093218083,9273.467567625205,2019
+2007,34,"(30,35]",HS,91.19767168083715,63.28100727829211,1.4411539196867613,10234.900696685807,2019
+2007,34,"(30,35]",HS,86.07468933943754,67.69596127445202,1.271489284131364,10244.857551595494,2019
+2007,34,"(30,35]",HS,89.83822105951603,67.69596127445202,1.327083911184822,10403.020400024438,2019
+2007,34,"(30,35]",HS,89.967011118378025,57.39440195007889,1.5675224074401974,10331.091328592234,2019
+2007,34,"(30,35]",HS,91.59835186396337,44.14953996159914,2.0747294749534144,10226.98884405312,2019
+2007,49,"(45,50]",HS,300.2954872465664,128.03366588863753,2.3454416083638545,8103.534006729761,2019
+2007,49,"(45,50]",HS,300.4385873119686,126.56201455658422,2.373844856725526,7913.097579510804,2019
+2007,49,"(45,50]",HS,300.8678875081753,126.56201455658422,2.37723687128622,8424.683793030557,2019
+2007,49,"(45,50]",HS,300.2954872465664,128.03366588863753,2.3454416083638545,8060.66366484811,2019
+2007,49,"(45,50]",HS,299.57998691955527,126.56201455658422,2.3670608276041385,7884.908705492841,2019
+2007,77,"(75,80]",College,4479.747547416612,119.35092302952302,37.53425137992848,1989.893841924304,2019
+2007,77,"(75,80]",College,4135.734990189667,165.85510512240742,24.935831713695734,1990.0754012214595,2019
+2007,77,"(75,80]",College,4628.285415304121,91.2423825873049,50.725170519035544,1933.8338663808179,2019
+2007,77,"(75,80]",College,4441.3967298888165,84.03129106024369,52.85408178132943,1913.3042770723368,2019
+2007,77,"(75,80]",College,4280.552256376717,109.04936370514987,39.25334464078645,2023.9491646518854,2019
+2007,78,"(75,80]",HS,1822.8086330935253,125.0903632245309,14.571934928525833,2697.5284697716716,2019
+2007,78,"(75,80]",HS,1329.1134074558533,125.0903632245309,10.625226222024487,6258.432496116745,2019
+2007,78,"(75,80]",HS,1822.8086330935253,125.0903632245309,14.571934928525833,2725.453203994561,2019
+2007,78,"(75,80]",HS,2035.884630477436,125.0903632245309,16.27531152678105,2928.6258825835152,2019
+2007,78,"(75,80]",HS,1686.8635709614127,125.0903632245309,13.485160067315318,2807.6166741726793,2019
+2007,58,"(55,60]",College,18972.49287115762,712.2792447137995,26.636312951644335,1478.7312404038005,2019
+2007,58,"(55,60]",College,14421.481491170702,713.7508960458529,20.20520264291792,1363.0968029504556,2019
+2007,58,"(55,60]",College,18606.729103989535,682.8462180727333,27.24878400367393,1496.271761170075,2019
+2007,58,"(55,60]",College,15723.97828646174,806.4649299652109,19.49741111140448,1352.9032348941278,2019
+2007,58,"(55,60]",College,12487.484107259646,737.2973173587056,16.936836488154896,1371.9792826424182,2019
+2007,48,"(45,50]",HS,86.360889470242,73.58256660266524,1.1736596514304507,3068.0629945820283,2019
+2007,48,"(45,50]",HS,86.21778940483976,73.58256660266524,1.1717148964156527,3095.2931988184887,2019
+2007,48,"(45,50]",HS,86.360889470242,73.58256660266524,1.1736596514304507,3138.8563989348945,2019
+2007,48,"(45,50]",HS,86.21778940483976,73.58256660266524,1.1717148964156527,3107.9867810200903,2019
+2007,48,"(45,50]",HS,86.21778940483976,73.58256660266524,1.1717148964156527,3054.65974269754,2019
+2007,25,"(20,25]",HS,2.804761281883584,69.16761260650532,0.04055021094684699,6471.918955695472,2019
+2007,25,"(20,25]",HS,2.8620013080444737,69.16761260650532,0.04137776627229286,6470.126458422927,2019
+2007,25,"(20,25]",HS,2.7045912361020275,69.16761260650532,0.039101989127316744,6516.8172963156385,2019
+2007,25,"(20,25]",HS,2.8620013080444737,69.16761260650532,0.04137776627229286,6509.813467997258,2019
+2007,25,"(20,25]",HS,2.489941137998692,69.16761260650532,0.03599865665689478,6433.479338712179,2019
+2007,40,"(35,40]",NoHS,22.037410071942446,44.14953996159914,0.4991537871314261,7020.440198750221,2019
+2007,40,"(35,40]",NoHS,22.037410071942446,44.14953996159914,0.4991537871314261,7029.5209482167165,2019
+2007,40,"(35,40]",NoHS,22.037410071942446,44.14953996159914,0.4991537871314261,7066.732195599421,2019
+2007,40,"(35,40]",NoHS,22.037410071942446,44.14953996159914,0.4991537871314261,7013.299730115743,2019
+2007,40,"(35,40]",NoHS,21.894310006540223,44.14953996159914,0.49591252877342984,7067.32554270185,2019
+2007,48,"(45,50]",HS,5.480732504905167,11.626045523221109,0.4714184624478124,6358.7218824627,2019
+2007,48,"(45,50]",HS,5.480732504905167,11.773210656426437,0.4655257316672148,6364.620878960018,2019
+2007,48,"(45,50]",HS,5.480732504905167,11.773210656426437,0.4655257316672148,6388.137034941288,2019
+2007,48,"(45,50]",HS,5.3376324395029435,11.773210656426437,0.45337101282472875,6437.323356894656,2019
+2007,48,"(45,50]",HS,5.495042511445389,11.773210656426437,0.4667412035514633,6466.66097109927,2019
+2007,41,"(40,45]",College,177.44408109875738,80.94082326293177,2.1922692894083884,6164.749286720236,2019
+2007,41,"(40,45]",College,176.98616088947026,103.01559324373132,1.7180521445013393,6191.344352903665,2019
+2007,41,"(40,45]",College,177.01478090255068,94.1856852514115,1.8794234010194015,6105.290496160865,2019
+2007,41,"(40,45]",College,176.87168083714846,94.1856852514115,1.8779040611640907,6031.077277625161,2019
+2007,41,"(40,45]",College,177.01478090255068,97.1289879155181,1.8224711767460866,6032.736863819346,2019
+2007,44,"(40,45]",HS,92.67160235448006,72.11091527061193,1.285125864880645,7957.388547238435,2019
+2007,44,"(40,45]",HS,163.2485546108568,75.05421793471854,2.1750750204718523,7823.967775401325,2019
+2007,44,"(40,45]",HS,96.04876389797253,75.05421793471854,1.2797250646394698,8045.163902903494,2019
+2007,44,"(40,45]",HS,133.21185088293,66.22430994239872,2.011524936972487,7860.969623389047,2019
+2007,44,"(40,45]",HS,105.39319816873774,66.22430994239872,1.5914578537761699,7870.935706742339,2019
+2007,42,"(40,45]",College,293.92753433616747,111.84550123605116,2.627978158154347,6278.035056841239,2019
+2007,42,"(40,45]",College,279.7606278613473,110.37384990399784,2.534664035953086,6328.972188135797,2019
+2007,42,"(40,45]",College,295.50163505559186,111.84550123605116,2.6420520431298566,6276.822209336397,2019
+2007,42,"(40,45]",College,303.9445389143231,111.84550123605116,2.7175392443621385,6247.525937748591,2019
+2007,42,"(40,45]",College,305.3755395683453,111.84550123605116,2.7303336852489655,6297.602473009693,2019
+2007,71,"(70,75]",HS,128027.19241334205,10051.378597924071,12.737276898492684,40.70508870105401,2019
+2007,71,"(70,75]",HS,30493.336036625245,9712.898791551812,3.1394681125626533,41.48144346863144,2019
+2007,71,"(70,75]",HS,24936.331196860694,7770.319033241449,3.2091772667483784,41.07643958828766,2019
+2007,71,"(70,75]",HS,93838.29718770439,10021.945571283006,9.363281462692203,39.72752380813522,2019
+2007,71,"(70,75]",HS,274298.78456507524,12773.933562222684,21.473321685050852,36.353797466574335,2019
+2007,52,"(50,55]",HS,7470.75356442119,968.3465764910744,7.714958410337346,911.8921545728459,2019
+2007,52,"(50,55]",HS,7469.322563767168,968.3465764910744,7.7134806329704775,898.2809935320942,2019
+2007,52,"(50,55]",HS,7467.905873119686,968.3465764910744,7.712017633377279,900.1150964972358,2019
+2007,52,"(50,55]",HS,7469.308253760628,968.3465764910744,7.71346585519681,896.0882500626564,2019
+2007,52,"(50,55]",HS,7467.905873119686,963.9316224949146,7.747339851545418,927.0071424025331,2019
+2007,86,"(85,90]",HS,216.25281883584043,26.489723976959482,8.163649384339948,10565.653829326295,2019
+2007,86,"(85,90]",HS,340.74987573577505,26.489723976959482,12.863474003434545,10331.33106640509,2019
+2007,86,"(85,90]",HS,211.91688685415303,26.489723976959482,7.9999658372611355,10884.027115098803,2019
+2007,86,"(85,90]",HS,256.56410725964685,26.489723976959482,9.685420183419199,10513.86188612131,2019
+2007,86,"(85,90]",HS,233.82550686723349,26.489723976959482,8.827026928276519,10598.675930065985,2019
+2007,47,"(45,50]",HS,457.3478090255068,85.35577725909167,5.3581353683565975,7403.639204845771,2019
+2007,47,"(45,50]",HS,464.6316023544801,85.35577725909167,5.44346987719557,7572.581889275076,2019
+2007,47,"(45,50]",HS,464.50281229561807,85.35577725909167,5.441961015546157,7125.848688488026,2019
+2007,47,"(45,50]",HS,457.77710922171354,85.35577725909167,5.363164907187972,7461.205187739995,2019
+2007,47,"(45,50]",HS,464.93211249182474,85.35577725909167,5.446990554377531,7522.557168995358,2019
+2007,33,"(30,35]",HS,1704.321778940484,204.55953515540935,8.331666268432146,2662.2255578773375,2019
+2007,33,"(30,35]",HS,1704.321778940484,206.03118648746263,8.272154366514775,2698.2689025500467,2019
+2007,33,"(30,35]",HS,1704.321778940484,206.03118648746263,8.272154366514775,2688.9913658929554,2019
+2007,33,"(30,35]",HS,1704.321778940484,204.55953515540935,8.331666268432146,2890.318212288842,2019
+2007,33,"(30,35]",HS,1704.321778940484,206.03118648746263,8.272154366514775,2770.8291005236033,2019
+2007,84,"(80,85]",HS,380.64617396991497,55.92275061802558,6.806642551792173,8997.005043469231,2019
+2007,84,"(80,85]",HS,392.0941792020929,55.92275061802558,7.011353605981412,8752.240499427417,2019
+2007,84,"(80,85]",HS,392.2372792674951,57.39440195007889,6.834068584052142,9328.839052206931,2019
+2007,84,"(80,85]",HS,427.8691955526488,55.92275061802558,7.651075650322782,8942.164216748408,2019
+2007,84,"(80,85]",HS,422.14519293655985,55.92275061802558,7.548720123228162,8959.489469313183,2019
+2007,44,"(40,45]",College,1162.8311314584696,108.90219857194455,10.677756250166642,6154.87937830119,2019
+2007,44,"(40,45]",College,1165.5500327011118,108.90219857194455,10.702722699680937,6293.420828173121,2019
+2007,44,"(40,45]",College,1165.5500327011118,108.90219857194455,10.702722699680937,5929.115727841924,2019
+2007,44,"(40,45]",College,1165.4069326357096,108.90219857194455,10.70140867602229,6181.126187257594,2019
+2007,44,"(40,45]",College,1165.693132766514,108.90219857194455,10.704036723339584,6233.309005529168,2019
+2007,51,"(50,55]",College,63.75107913669065,58.86605328213219,1.0829854488655046,2949.36102539007,2019
+2007,51,"(50,55]",College,63.89417920209287,58.86605328213219,1.085416392634002,2992.134768545875,2019
+2007,51,"(50,55]",College,63.89417920209287,58.86605328213219,1.085416392634002,3041.6495406098284,2019
+2007,51,"(50,55]",College,63.89417920209287,58.86605328213219,1.085416392634002,2999.235614890406,2019
+2007,51,"(50,55]",College,63.75107913669065,58.86605328213219,1.0829854488655046,2936.2737727867225,2019
+2007,88,"(85,90]",HS,1051.9285807717463,151.5800872014904,6.939754424164254,9711.295263576414,2019
+2007,88,"(85,90]",HS,1051.9285807717463,161.88164652586354,6.498133688081073,9933.100433024121,2019
+2007,88,"(85,90]",HS,1051.6423806409418,122.14706056042431,8.609641327559498,9350.064496627709,2019
+2007,88,"(85,90]",HS,1051.785480706344,88.29907992319828,11.911624465636304,9784.49341522538,2019
+2007,88,"(85,90]",HS,1051.785480706344,83.88412592703838,12.538552069090844,9867.183704002866,2019
+2007,54,"(50,55]",College,1615.8859385219098,556.2842035161492,2.9047848713090407,803.5415686388029,2019
+2007,54,"(50,55]",College,1614.4549378678876,556.2842035161492,2.90221244404079,821.5095563527013,2019
+2007,54,"(50,55]",College,1614.4549378678876,556.2842035161492,2.90221244404079,784.6913016095119,2019
+2007,54,"(50,55]",College,1614.4549378678876,556.2842035161492,2.90221244404079,796.4876467091657,2019
+2007,54,"(50,55]",College,1614.4549378678876,556.2842035161492,2.90221244404079,806.6426730210349,2019
+2007,27,"(25,30]",College,29.049313276651407,178.06981117844987,0.16313440826609343,5630.563514804683,2019
+2007,27,"(25,30]",College,30.05101373446697,178.06981117844987,0.16875973268906214,5629.004043832896,2019
+2007,27,"(25,30]",College,27.475212557226946,178.06981117844987,0.1542946127442854,5669.625029681765,2019
+2007,27,"(25,30]",College,27.475212557226946,178.06981117844987,0.1542946127442854,5663.5317055126325,2019
+2007,27,"(25,30]",College,30.05101373446697,178.06981117844987,0.16875973268906214,5597.121083527213,2019
+2007,82,"(80,85]",NoHS,1.4310006540222369,8.829907992319828,0.16206291789981367,7733.300733725538,2019
+2007,82,"(80,85]",NoHS,6.582603008502289,8.829907992319828,0.7454894223391428,7742.63800526429,2019
+2007,82,"(80,85]",NoHS,6.439502943100066,8.829907992319828,0.7292831305491615,7742.796712537027,2019
+2007,82,"(80,85]",NoHS,1.4310006540222369,8.829907992319828,0.16206291789981367,7764.418189650889,2019
+2007,82,"(80,85]",NoHS,4.006801831262263,8.829907992319828,0.45377617011947824,7767.788233126026,2019
+2007,42,"(40,45]",HS,-1.2163505559189012,77.99752059882516,-0.015594733609227349,6792.596163689099,2019
+2007,42,"(40,45]",HS,-1.2163505559189012,79.46917193087846,-0.01530594224609351,6803.070311558562,2019
+2007,42,"(40,45]",HS,-1.0732504905166775,77.99752059882516,-0.013760059066965308,6797.592545737107,2019
+2007,42,"(40,45]",HS,-1.0732504905166775,77.99752059882516,-0.013760059066965308,6818.2789117143375,2019
+2007,42,"(40,45]",HS,-1.2163505559189012,77.99752059882516,-0.015594733609227349,6760.002750554719,2019
+2007,36,"(35,40]",College,394.5984303466318,183.95641650666312,2.1450647813219335,8835.432681930992,2019
+2007,36,"(35,40]",College,394.5984303466318,185.42806783871637,2.128040457660649,9039.724921328445,2019
+2007,36,"(35,40]",College,394.741530412034,183.95641650666312,2.1458426833278526,8501.815116288668,2019
+2007,36,"(35,40]",College,393.31052975801174,183.95641650666312,2.138063663268661,8903.559440847275,2019
+2007,36,"(35,40]",College,394.5984303466318,183.95641650666312,2.1450647813219335,8976.365918247251,2019
+2007,59,"(55,60]",College,12386.741661216482,2045.5953515540934,6.055323528089729,523.703956805123,2019
+2007,59,"(55,60]",College,12386.741661216482,2045.5953515540934,6.055323528089729,508.09674674514724,2019
+2007,59,"(55,60]",College,12372.431654676258,2030.8788382335604,6.092156470268647,511.04589411673453,2019
+2007,59,"(55,60]",College,12372.431654676258,2045.5953515540934,6.048328006453765,507.3609758101191,2019
+2007,59,"(55,60]",College,12372.431654676258,2045.5953515540934,6.048328006453765,517.5006609798717,2019
+2007,52,"(50,55]",College,2670.962720732505,741.7122713548655,3.601076622142884,658.8547632284741,2019
+2007,52,"(50,55]",College,2672.7228515369525,740.2406200228123,3.6106136021751767,651.9824973969774,2019
+2007,52,"(50,55]",College,2674.110922171354,740.2406200228123,3.6124887635711547,641.9240468623241,2019
+2007,52,"(50,55]",College,2673.9105820797904,741.7122713548655,3.605051022272331,648.505762853371,2019
+2007,52,"(50,55]",College,2669.674820143885,740.2406200228123,3.6064959797283382,650.993842668639,2019
+2007,55,"(50,55]",HS,1104.8756049705692,103.01559324373132,10.72532390660967,7304.712902591253,2019
+2007,55,"(50,55]",HS,1104.8756049705692,103.01559324373132,10.72532390660967,7470.135983493112,2019
+2007,55,"(50,55]",HS,1104.8756049705692,103.01559324373132,10.72532390660967,7031.673890101255,2019
+2007,55,"(50,55]",HS,1104.8756049705692,103.01559324373132,10.72532390660967,7357.501318119226,2019
+2007,55,"(50,55]",HS,1104.8756049705692,103.01559324373132,10.72532390660967,7418.558087385875,2019
+2007,49,"(45,50]",College,1205.9042511445389,239.87916712468865,5.027132058190416,6546.305265224665,2019
+2007,49,"(45,50]",College,975.9424460431655,284.0287070862878,3.436069741171179,6695.421604657128,2019
+2007,49,"(45,50]",College,1044.630477436233,201.61623249130272,5.181281608767766,6302.101648134724,2019
+2007,49,"(45,50]",College,1137.359319816874,241.350818456742,4.712473432198972,6596.336937447768,2019
+2007,49,"(45,50]",College,1039.9081752779596,286.97200975039436,3.6237268442398345,6651.110741746592,2019
+2007,83,"(80,85]",HS,34144.53420536299,401.76081365055217,84.98721887561086,263.776524305253,2019
+2007,83,"(80,85]",HS,34144.677305428384,401.76081365055217,84.98757505784799,292.1298700974816,2019
+2007,83,"(80,85]",HS,34144.53420536299,400.2891623184989,85.29967188618296,262.62342681528196,2019
+2007,83,"(80,85]",HS,34144.53420536299,401.76081365055217,84.98721887561086,267.6048231348285,2019
+2007,83,"(80,85]",HS,34144.53420536299,401.76081365055217,84.98721887561086,283.58753941729714,2019
+2007,85,"(80,85]",HS,34824.116415958146,721.1091527061193,48.29243434960305,53.24500285140492,2019
+2007,85,"(80,85]",HS,34838.42642249837,721.1091527061193,48.31227878852956,57.41158931853389,2019
+2007,85,"(80,85]",HS,34829.84041857423,721.1091527061193,48.30037212517365,56.7639555256041,2019
+2007,85,"(80,85]",HS,34828.40941792021,721.1091527061193,48.29838768128099,57.74509339663837,2019
+2007,85,"(80,85]",HS,34841.28842380641,721.1091527061193,48.31624767631485,58.410472030964925,2019
+2007,65,"(60,65]",College,76403.55761935907,5371.527361994562,14.223804975832573,24.755079029137033,2019
+2007,65,"(60,65]",College,70765.27194244604,5371.527361994562,13.17414343695522,22.093652968638946,2019
+2007,65,"(60,65]",College,71569.49431000654,5371.527361994562,13.323862932614993,24.35979354714505,2019
+2007,65,"(60,65]",College,76805.66880313931,5371.527361994562,14.29866472366246,24.232082971453217,2019
+2007,65,"(60,65]",College,82658.31837802485,5371.527361994562,15.388233701062646,22.409307515448265,2019
+2007,61,"(60,65]",College,26427.72007848267,1913.1467316692958,13.81374446664812,2071.5016161171857,2019
+2007,61,"(60,65]",College,16824.274689339436,1913.1467316692958,8.79403258037589,2013.4149513010361,2019
+2007,61,"(60,65]",College,21015.675604970573,1913.1467316692958,10.984873902815373,2039.9307301958063,2019
+2007,61,"(60,65]",College,18283.89535644212,1913.1467316692958,9.556974932335013,2030.3574295685837,2019
+2007,61,"(60,65]",College,21420.64879005886,1913.1467316692958,11.196553006349127,2064.996470486276,2019
+2007,52,"(50,55]",HS,1065.8443466317854,139.80687654506394,7.623690429048615,7216.387389899399,2019
+2007,52,"(50,55]",HS,1069.3266867233488,139.80687654506394,7.648598646567093,7380.767330630968,2019
+2007,52,"(50,55]",HS,1180.9812282537607,139.80687654506394,8.447232764499214,6947.187004103577,2019
+2007,52,"(50,55]",HS,1065.4629849574885,139.80687654506394,7.620962654251545,7271.540321805025,2019
+2007,52,"(50,55]",HS,1111.9662132112492,139.80687654506394,7.953587410650929,7331.920792104598,2019
+2007,64,"(60,65]",College,57658.45075212557,7740.886006600383,7.44855959679063,273.59706398398384,2019
+2007,64,"(60,65]",College,53292.46775670373,7740.886006600383,6.88454366997048,307.5293390891251,2019
+2007,64,"(60,65]",College,54508.81831262263,7740.886006600383,7.0416769173638345,276.31578474630453,2019
+2007,64,"(60,65]",College,53721.7679529104,7755.602519920915,6.926833578038783,281.66563055383017,2019
+2007,64,"(60,65]",College,54131.03413996076,7740.886006600383,6.992873179349899,295.7485871656477,2019
+2007,61,"(60,65]",College,2726.3424460431656,94.1856852514115,28.94646292338047,3193.1812942722377,2019
+2007,61,"(60,65]",College,2661.8043165467625,94.1856852514115,28.261240648635315,3234.9536926120477,2019
+2007,61,"(60,65]",College,2766.124264224984,94.1856852514115,29.368839403156862,3226.8528175103047,2019
+2007,61,"(60,65]",College,2704.5912361020273,94.1856852514115,28.715523265373232,3465.4978276192624,2019
+2007,61,"(60,65]",College,2684.557226945716,94.1856852514115,28.502815685629727,3321.9728265019535,2019
+2007,45,"(40,45]",HS,79.89276651406149,107.43054723989124,0.7436689895627341,6932.576225410446,2019
+2007,45,"(40,45]",HS,79.63518639633747,76.52586926677185,1.0406309285913034,6889.64778211619,2019
+2007,45,"(40,45]",HS,79.57794637017659,75.05421793471854,1.0602728075774868,7060.7043902389105,2019
+2007,45,"(40,45]",HS,80.57964682799215,101.54394191167802,0.7935446006033484,6990.409903835304,2019
+2007,45,"(40,45]",HS,81.22359712230217,79.46917193087846,1.0220768022214914,6885.069367156994,2019
+2007,45,"(40,45]",College,-18.98937867887508,257.53898310932834,-0.07373399727533235,360.15835896295516,2019
+2007,45,"(40,45]",College,-19.003688685415305,257.53898310932834,-0.07378956170432659,377.8874802947663,2019
+2007,45,"(40,45]",College,-20.00538914323087,257.53898310932834,-0.07767907173392212,370.2207160518702,2019
+2007,45,"(40,45]",College,-22.151890124264224,257.53898310932834,-0.08601373608305538,365.02944666695936,2019
+2007,45,"(40,45]",College,-20.42037933289732,257.53898310932834,-0.07929044017475455,355.3338322753063,2019
+2007,51,"(50,55]",HS,3580.3636363636365,516.5496175507099,6.931306334792032,377.58496973706576,2019
+2007,51,"(50,55]",HS,3580.3636363636365,516.5496175507099,6.931306334792032,358.84919001728116,2019
+2007,51,"(50,55]",HS,3580.3636363636365,516.5496175507099,6.931306334792032,365.8650571720491,2019
+2007,51,"(50,55]",HS,3580.3636363636365,516.5496175507099,6.931306334792032,364.22057793160275,2019
+2007,51,"(50,55]",HS,3580.3636363636365,516.5496175507099,6.931306334792032,371.00885629764207,2019
+2007,24,"(20,25]",HS,0.8872204054937868,13.539192254890402,0.06552978854209857,7054.719131373097,2019
+2007,24,"(20,25]",HS,0.8872204054937868,13.539192254890402,0.06552978854209857,7064.6516818368445,2019
+2007,24,"(20,25]",HS,0.8872204054937868,13.539192254890402,0.06552978854209857,7120.608672933765,2019
+2007,24,"(20,25]",HS,0.8872204054937868,13.539192254890402,0.06552978854209857,7029.358870871156,2019
+2007,24,"(20,25]",HS,0.8872204054937868,13.686357388095734,0.06482516715992546,7035.135735119353,2019
+2007,32,"(30,35]",College,407.84949640287766,158.93834386175692,2.566086235034771,6404.521771685013,2019
+2007,32,"(30,35]",College,804.6516677567037,158.93834386175692,5.0626654852814,5519.026009284165,2019
+2007,32,"(30,35]",College,438.88790058861997,158.93834386175692,2.7613720511040465,6430.925105452879,2019
+2007,32,"(30,35]",College,395.9865009810334,158.93834386175692,2.4914472578464686,6423.759767144853,2019
+2007,32,"(30,35]",College,827.9769784172662,158.93834386175692,5.209422460935121,5481.694436051484,2019
+2007,55,"(50,55]",College,76176.45781556574,3664.411816812729,20.78818146641152,38.570675103394535,2019
+2007,55,"(50,55]",College,76377.22720732506,3164.0503639146054,24.139068100303604,34.20759343307035,2019
+2007,55,"(50,55]",College,53782.01308044474,4341.371429557249,12.388254254008773,37.9449233455012,2019
+2007,55,"(50,55]",College,54081.235317200786,4444.38702280098,12.168435160967876,39.51759286435269,2019
+2007,55,"(50,55]",College,56248.915107913665,4444.38702280098,12.656169415341328,34.44468156715415,2019
+2007,40,"(35,40]",College,266.1661216481361,117.73210656426438,2.260777704702401,8248.898675639519,2019
+2007,40,"(35,40]",College,139.5225637671681,113.31715256810448,1.231257233394688,8175.1869209077095,2019
+2007,40,"(35,40]",College,289.3483322432963,138.33522521301063,2.091646085064404,7108.298137181619,2019
+2007,40,"(35,40]",College,215.50869849574886,125.0903632245309,1.7228241484031954,8270.867832930304,2019
+2007,40,"(35,40]",College,368.91196860693265,114.78880390015777,3.2138323257363046,7583.536239232833,2019
+2007,84,"(80,85]",College,9567.38417266187,5294.412832194969,1.8070718086967545,21.18622661468281,2019
+2007,84,"(80,85]",College,14772.076651406149,5087.792985174685,2.9034350836306606,19.927439269057675,2019
+2007,84,"(80,85]",College,11782.716285153694,5248.644475768111,2.2449065353067863,22.017763524318898,2019
+2007,84,"(80,85]",College,12420.942576847614,4837.3179284592125,2.567733351527702,21.78821516343404,2019
+2007,84,"(80,85]",College,6907.153956834532,5101.773672829191,1.3538730645031078,21.15499314409652,2019
+2007,66,"(65,70]",HS,35885.91890124264,235.46421312852877,152.40498088622164,1508.2678518825505,2019
+2007,66,"(65,70]",HS,35885.91890124264,235.46421312852877,152.40498088622164,716.5361203957398,2019
+2007,66,"(65,70]",HS,35883.0568999346,235.46421312852877,152.39282616737916,1496.271761170075,2019
+2007,66,"(65,70]",HS,35881.62589928058,235.46421312852877,152.38674880795793,1388.8200948345213,2019
+2007,66,"(65,70]",HS,35887.77920209287,235.46421312852877,152.41288145346923,1107.4379408830573,2019
+2007,61,"(60,65]",HS,10.660954872465664,10.890219857194454,0.9789476256921177,6921.052334209729,2019
+2007,61,"(60,65]",HS,10.660954872465664,10.890219857194454,0.9789476256921177,6923.278773035267,2019
+2007,61,"(60,65]",HS,10.57509483322433,10.890219857194454,0.9710634837402349,6910.824547186708,2019
+2007,61,"(60,65]",HS,10.660954872465664,11.037384990399785,0.9658949906828895,6962.640643407593,2019
+2007,61,"(60,65]",HS,10.660954872465664,11.037384990399785,0.9658949906828895,6959.689654996556,2019
+2007,21,"(20,25]",HS,5.580902550686724,7.358256660266524,0.7584544557711279,6396.104923015664,2019
+2007,21,"(20,25]",HS,26.47351209941138,7.358256660266524,3.597796777375863,6403.877742205677,2019
+2007,21,"(20,25]",HS,46.50752125572269,7.358256660266524,6.320453798092732,6406.80691932106,2019
+2007,21,"(20,25]",HS,12.44970568999346,7.358256660266524,1.6919368628740543,6413.448199140611,2019
+2007,21,"(20,25]",HS,16.456507521255723,7.358256660266524,2.2364682670174285,6416.443983823543,2019
+2007,24,"(20,25]",HS,4.722302158273381,41.206237297492535,0.1146016348005825,11036.74678585098,2019
+2007,24,"(20,25]",HS,8.15670372792675,41.206237297492535,0.19794827829191525,11043.574762315548,2019
+2007,24,"(20,25]",HS,9.015304120340092,41.206237297492535,0.21878493916474842,11113.090564633754,2019
+2007,24,"(20,25]",HS,3.2913015042511446,41.206237297492535,0.07987386667919387,11019.152133429223,2019
+2007,24,"(20,25]",HS,8.15670372792675,41.206237297492535,0.19794827829191525,11020.627513379786,2019
+2007,62,"(60,65]",College,2588.680183126226,176.59815984639656,14.658590924038144,3496.7984772542395,2019
+2007,62,"(60,65]",College,2588.680183126226,176.59815984639656,14.658590924038144,3543.0255396958883,2019
+2007,62,"(60,65]",College,2589.681883584042,176.59815984639656,14.664263126164641,3532.3312110064994,2019
+2007,62,"(60,65]",College,2588.680183126226,176.59815984639656,14.658590924038144,3795.198311415627,2019
+2007,62,"(60,65]",College,2588.8232831916284,176.59815984639656,14.659401238627645,3637.8323050855033,2019
+2007,66,"(65,70]",College,738.5394375408764,216.3327458118358,3.413904976656891,10308.172596367334,2019
+2007,66,"(65,70]",College,720.5088293001962,235.46421312852877,3.0599504685958565,10566.28633117244,2019
+2007,66,"(65,70]",College,886.9342053629823,260.48228577343497,3.404969373366254,9905.428279494015,2019
+2007,66,"(65,70]",College,798.9276651406147,260.48228577343497,3.0671093919818966,10385.869665651448,2019
+2007,66,"(65,70]",College,637.9400915631131,200.14458115924944,3.187396270576629,10488.5455757981,2019
+2007,66,"(65,70]",College,179490.41203400918,3679.128330133262,48.78612430121671,40.122773661084516,2019
+2007,66,"(65,70]",College,183368.4238064094,3164.0503639146054,57.95369944097335,36.55315692614589,2019
+2007,66,"(65,70]",College,180018.45127534337,3090.46779731194,58.24958002536759,37.59284293156753,2019
+2007,66,"(65,70]",College,180659.53956834535,2913.8696374655433,61.99987029120539,37.9795143479471,2019
+2007,66,"(65,70]",College,181671.25703073904,3414.2310903636667,53.210006066516236,35.80836496322078,2019
+2007,64,"(60,65]",HS,11228.847482014387,267.84054243370144,41.92362881281822,5243.223405025408,2019
+2007,64,"(60,65]",HS,4839.429561805101,259.0106344413816,18.684289053391527,5291.975973004401,2019
+2007,64,"(60,65]",HS,3152.2797907128843,270.78384509780807,11.641314087900147,5112.547144833816,2019
+2007,64,"(60,65]",HS,11223.123479398299,276.67045042602126,40.56495177608149,5135.290390243297,2019
+2007,64,"(60,65]",HS,11223.123479398299,279.6137530901279,40.137952283701686,5242.715091217857,2019
+2007,67,"(65,70]",HS,5055.296010464355,167.76825185407677,30.132614213930083,4266.316378291589,2019
+2007,67,"(65,70]",HS,5036.693001962067,167.76825185407677,30.02172905957758,4381.938636854726,2019
+2007,67,"(65,70]",HS,5266.225506867234,167.76825185407677,31.389881271742325,4209.274138127607,2019
+2007,67,"(65,70]",HS,5080.1954218443425,167.76825185407677,30.28102972821728,4176.9841275897925,2019
+2007,67,"(65,70]",HS,5118.260039241334,167.76825185407677,30.50791781327702,4216.691441127222,2019
+2007,43,"(40,45]",HS,-0.8586003924133421,19.131467316692962,-0.044878961879948394,4860.8960538645315,2019
+2007,43,"(40,45]",HS,-1.244970568999346,19.131467316692962,-0.06507449472592518,4870.08708493172,2019
+2007,43,"(40,45]",HS,-0.28620013080444734,19.131467316692962,-0.014959653959982798,4845.9475116934245,2019
+2007,43,"(40,45]",HS,-0.271890124264225,19.131467316692962,-0.014211671261983659,4841.178336644513,2019
+2007,43,"(40,45]",HS,-1.2592805755395684,19.131467316692962,-0.06582247742392432,4862.88519857281,2019
+2007,72,"(70,75]",HS,13124.565598430347,2484.1474485059784,5.2833279306040195,371.05539688603915,2019
+2007,72,"(70,75]",HS,10872.742969260955,2472.2270727163464,4.397954819463483,360.06200403562246,2019
+2007,72,"(70,75]",HS,15798.247220405494,2153.0258987939847,7.337694929380491,363.0329080949026,2019
+2007,72,"(70,75]",HS,12372.431654676258,2475.3175405136585,4.998321004144312,359.75382961615276,2019
+2007,72,"(70,75]",HS,12715.299411379987,2151.407082328726,5.9102247621201895,363.6252105348131,2019
+2007,64,"(60,65]",College,42097.17724002616,5253.795255430298,8.012717510549106,59.71458494817737,2019
+2007,64,"(60,65]",College,45990.93001962067,5253.795255430298,8.75384893845733,64.93834236482134,2019
+2007,64,"(60,65]",College,40837.896664486594,5253.795255430298,7.773027816848541,63.44013681154395,2019
+2007,64,"(60,65]",College,42882.79659908437,5253.795255430298,8.162251194460026,64.51705137391983,2019
+2007,64,"(60,65]",College,45458.597776324394,5253.795255430298,8.652525567938453,65.31124940043,2019
+2007,39,"(35,40]",College,439.4603008502289,164.82494918997014,2.666224397519613,5874.691495156609,2019
+2007,39,"(35,40]",College,438.0293001962067,164.82494918997014,2.6575424554892657,6009.966982260945,2019
+2007,39,"(35,40]",College,439.4603008502289,164.82494918997014,2.666224397519613,5653.516033031834,2019
+2007,39,"(35,40]",College,439.4603008502289,164.82494918997014,2.666224397519613,5918.343923370504,2019
+2007,39,"(35,40]",College,439.4603008502289,164.82494918997014,2.666224397519613,5966.852669918804,2019
+2007,64,"(60,65]",College,4.221451929365599,54.451099285972276,0.07752739586018113,9485.56385377544,2019
+2007,64,"(60,65]",College,4.679372138652714,54.451099285972276,0.0859371472755228,9476.69593847811,2019
+2007,64,"(60,65]",College,4.722302158273381,54.451099285972276,0.08672556147071109,9559.19560053984,2019
+2007,64,"(60,65]",College,4.2786919555264875,54.451099285972276,0.07857861478709882,9499.904233322826,2019
+2007,64,"(60,65]",College,4.89402223675605,54.451099285972276,0.08987921825146422,9565.658926559281,2019
+2007,48,"(45,50]",HS,485.25232177894054,136.86357388095735,3.54551841676302,7191.539301312087,2019
+2007,48,"(45,50]",HS,382.79267495094837,136.86357388095735,2.7968922927871067,7062.094450801506,2019
+2007,48,"(45,50]",HS,439.1741007194245,136.86357388095735,3.2088457744163104,7422.373912833415,2019
+2007,48,"(45,50]",HS,391.23557880967957,136.86357388095735,2.8585807583102616,7186.30050390844,2019
+2007,48,"(45,50]",HS,446.32910398953567,136.86357388095735,3.2611241350291533,7071.117405386625,2019
+2007,21,"(20,25]",HS,-11.934545454545454,54.451099285972276,-0.21917914626234256,7435.834353817452,2019
+2007,21,"(20,25]",HS,-12.077645519947678,54.451099285972276,-0.22180719357963685,7484.7854332562365,2019
+2007,21,"(20,25]",HS,-10.646644865925442,54.451099285972276,-0.1955267204066941,7456.425768998279,2019
+2007,21,"(20,25]",HS,-12.077645519947678,54.451099285972276,-0.22180719357963685,7418.00134292323,2019
+2007,21,"(20,25]",HS,-12.077645519947678,54.451099285972276,-0.22180719357963685,7469.514866883095,2019
+2007,68,"(65,70]",NoHS,249.85271419228252,17.659815984639657,14.148092732653732,8534.865097501322,2019
+2007,68,"(65,70]",NoHS,249.85271419228252,16.18816465258635,15.434282981076798,8560.997635520007,2019
+2007,68,"(65,70]",NoHS,249.13721386527143,16.18816465258635,15.39008400346776,8509.09987682883,2019
+2007,68,"(65,70]",NoHS,249.85271419228252,17.659815984639657,14.148092732653732,8482.54008132179,2019
+2007,68,"(65,70]",NoHS,249.5665140614781,16.18816465258635,15.416603390033183,8483.571536110645,2019
+2007,58,"(55,60]",College,12962.00392413342,4120.6237297492535,3.1456412364353827,2020.609006958266,2019
+2007,58,"(55,60]",College,12946.978417266186,4120.6237297492535,3.141994820782637,1963.9494141302998,2019
+2007,58,"(55,60]",College,12961.28842380641,4120.6237297492535,3.1454675975947763,1989.8137539137813,2019
+2007,58,"(55,60]",College,12961.145323741008,4120.6237297492535,3.1454328698266547,1980.4756499397452,2019
+2007,58,"(55,60]",College,12962.00392413342,4120.6237297492535,3.1456412364353827,2014.2636796116108,2019
+2007,42,"(40,45]",HS,61.53302812295618,110.37384990399784,0.557496437575359,6311.618813752127,2019
+2007,42,"(40,45]",HS,65.68293001962066,110.37384990399784,0.5950950345281157,6243.209053725393,2019
+2007,42,"(40,45]",HS,88.57894048397647,110.37384990399784,0.8025355694398775,6433.828941136968,2019
+2007,42,"(40,45]",HS,60.24512753433617,110.37384990399784,0.5458279074865725,6257.762281347952,2019
+2007,42,"(40,45]",HS,68.11563113145847,110.37384990399784,0.6171355913624905,6241.518621480587,2019
+2007,60,"(55,60]",College,20725.182472204055,3090.46779731194,6.706163542694289,53.8443151205901,2019
+2007,60,"(55,60]",College,19734.930019620668,3090.46779731194,6.385742002160943,50.72085731347189,2019
+2007,60,"(55,60]",College,19606.139960758668,3090.46779731194,6.344068680415277,55.598449082302636,2019
+2007,60,"(55,60]",College,21911.48201438849,3090.46779731194,7.090021139662705,61.9174428043498,2019
+2007,60,"(55,60]",College,20400.345323741007,3090.46779731194,6.6010541645135525,53.31744583474337,2019
+2007,64,"(60,65]",HS,125.48444735120994,33.84798063722601,3.7072949401655633,8586.366143099285,2019
+2007,64,"(60,65]",HS,125.34134728580771,33.84798063722601,3.7030672118725247,8631.39230977569,2019
+2007,64,"(60,65]",HS,125.79926749509482,35.319631969279314,3.5617377781431543,8601.107441067652,2019
+2007,64,"(60,65]",HS,125.21255722694572,33.84798063722601,3.6992622564087903,8658.501305804084,2019
+2007,64,"(60,65]",HS,125.24117724002616,33.84798063722601,3.700107802067398,8702.70498630726,2019
+2007,66,"(65,70]",HS,221.23270111183783,103.01559324373132,2.1475651806266742,8821.821926861161,2019
+2007,66,"(65,70]",HS,219.80170045781557,103.01559324373132,2.1336740733781183,8585.810656338846,2019
+2007,66,"(65,70]",HS,219.80170045781557,103.01559324373132,2.1336740733781183,9157.225121860076,2019
+2007,66,"(65,70]",HS,219.80170045781557,103.01559324373132,2.1336740733781183,8643.792113448322,2019
+2007,66,"(65,70]",HS,221.0896010464356,103.01559324373132,2.1461760699018186,8519.647503238431,2019
+2007,46,"(45,50]",HS,232.89535644211904,73.58256660266524,3.1650887865833606,10232.804972597489,2019
+2007,46,"(45,50]",HS,242.9123610202747,73.58256660266524,3.301221637619204,9983.774299339135,2019
+2007,46,"(45,50]",HS,234.32635709614127,73.58256660266524,3.184536336731338,10482.696989315658,2019
+2007,46,"(45,50]",HS,234.32635709614127,73.58256660266524,3.184536336731338,10154.054866480832,2019
+2007,46,"(45,50]",HS,231.17815565729234,73.58256660266524,3.1417517264057873,10032.129633790875,2019
+2007,26,"(25,30]",HS,376.4962720732505,88.29907992319828,4.263875369944098,6964.334944427125,2019
+2007,26,"(25,30]",HS,375.3514715500327,88.29907992319828,4.250910336512113,7002.565926342468,2019
+2007,26,"(25,30]",HS,378.4996729888816,88.29907992319828,4.286564178450072,6989.325501117892,2019
+2007,26,"(25,30]",HS,375.9238718116416,88.29907992319828,4.257392853228105,6958.755871574595,2019
+2007,26,"(25,30]",HS,375.9238718116416,88.29907992319828,4.257392853228105,6987.235992215562,2019
+2007,35,"(30,35]",College,11.734205362982342,14.275017920917055,0.8220098516155497,4928.206107747619,2019
+2007,35,"(30,35]",College,11.734205362982342,29.433026641066096,0.3986747780335416,4962.810961639537,2019
+2007,35,"(30,35]",HS,12.02040549378679,20.603118648746268,0.5834265044393292,4936.932996672689,2019
+2007,35,"(30,35]",College,11.591105297580118,13.539192254890402,0.85611497934032,4926.536855546867,2019
+2007,35,"(30,35]",HS,11.734205362982342,16.18816465258635,0.7248632327882575,4952.030286644504,2019
+2007,59,"(55,60]",College,20907.63505559189,442.9670509480447,47.19907498953942,1785.7675897087727,2019
+2007,59,"(55,60]",College,21324.05624591236,442.9670509480447,48.13914759636027,1785.4260895992043,2019
+2007,59,"(55,60]",College,20979.185088293,444.438702280098,47.20377631530234,1735.329864521834,2019
+2007,59,"(55,60]",College,20834.65402223676,444.438702280098,46.878577215145775,1716.0280216962442,2019
+2007,59,"(55,60]",College,20943.410071942446,444.438702280098,47.123281488530914,1815.0243153546319,2019
+2007,56,"(55,60]",NoHS,7.942053629823414,33.84798063722601,0.23463892026364325,8129.543208720049,2019
+2007,56,"(55,60]",NoHS,7.942053629823414,14.716513320533048,0.5396695166063794,8138.2533027542795,2019
+2007,56,"(55,60]",NoHS,7.942053629823414,14.716513320533048,0.5396695166063794,8138.892166360679,2019
+2007,56,"(55,60]",NoHS,7.942053629823414,14.716513320533048,0.5396695166063794,8160.931260019277,2019
+2007,56,"(55,60]",NoHS,7.942053629823414,14.716513320533048,0.5396695166063794,8163.738175374067,2019
+2007,59,"(55,60]",College,2832.665794637018,154.52338986559698,18.331631199010353,2998.5938885595942,2019
+2007,59,"(55,60]",College,2835.5277959450623,154.52338986559698,18.35015267534176,3038.234773736495,2019
+2007,59,"(55,60]",College,2832.665794637018,154.52338986559698,18.331631199010353,3029.064114100588,2019
+2007,59,"(55,60]",College,2832.665794637018,154.52338986559698,18.331631199010353,3254.4793577634514,2019
+2007,59,"(55,60]",College,2835.5277959450623,154.52338986559698,18.35015267534176,3119.533993334252,2019
+2007,28,"(25,30]",HS,0,9.860063924757142,0,8019.752040252662,2019
+2007,28,"(25,30]",HS,0,33.84798063722601,0,8029.105397039743,2019
+2007,28,"(25,30]",HS,0,8.829907992319828,0,8035.85644935581,2019
+2007,28,"(25,30]",HS,0,8.829907992319828,0,8048.413188586326,2019
+2007,28,"(25,30]",HS,0,8.829907992319828,0,8054.344217528451,2019
+2007,57,"(55,60]",College,28504.388227599742,456.2119129365246,62.48058724316066,272.7266140626655,2019
+2007,57,"(55,60]",College,28504.388227599742,442.9670509480447,64.34877755940137,306.5509335276205,2019
+2007,57,"(55,60]",College,28504.245127534337,460.6268669326843,61.88142111063601,275.4366852063125,2019
+2007,57,"(55,60]",College,28505.67612818836,473.87172892116416,60.15483597868468,280.76951046254123,2019
+2007,57,"(55,60]",College,28502.814126880316,466.5134722608976,61.097515552434295,294.80766210351527,2019
+2007,67,"(65,70]",College,20717.598168737735,657.8281454278272,31.49393699970647,21.125823347379765,2019
+2007,67,"(65,70]",College,20002.240941792024,467.9851235929509,42.74118969471728,20.400691129667152,2019
+2007,67,"(65,70]",College,20717.598168737735,540.0960388635629,38.35910037838908,20.907898868344592,2019
+2007,67,"(65,70]",College,20717.598168737735,488.58824224169723,42.402981442375875,21.07159225913946,2019
+2007,67,"(65,70]",College,20717.598168737735,648.9982374355073,31.922425938477986,21.079746555880362,2019
+2007,56,"(55,60]",HS,1577.9071811641597,4.709284262570575,335.063056971391,6908.745766154692,2019
+2007,56,"(55,60]",HS,1071.3329496402878,4.709284262570575,227.49379521538967,7065.479220737728,2019
+2007,56,"(55,60]",HS,1075.6259516023545,4.709284262570575,228.4053991285761,6649.009912173724,2019
+2007,56,"(55,60]",HS,1205.847011118378,4.709284262570575,256.0573844952318,6959.588595606108,2019
+2007,56,"(55,60]",HS,1215.8640156965337,4.856449395775905,250.3606887686467,7016.780422856854,2019
+2007,37,"(35,40]",HS,101.0858862001308,95.65733658346481,1.0567499557331848,12580.914068234417,2019
+2007,37,"(35,40]",HS,102.53119686069327,95.65733658346481,1.0718592062327676,12396.253864850933,2019
+2007,37,"(35,40]",HS,101.0858862001308,95.65733658346481,1.0567499557331848,13045.428043139596,2019
+2007,37,"(35,40]",HS,102.53119686069327,95.65733658346481,1.0718592062327676,12527.404360332253,2019
+2007,37,"(35,40]",HS,102.54550686723348,95.65733658346481,1.0720088027723673,12486.203110358343,2019
+2007,52,"(50,55]",HS,13757.640287769784,1471.651332053305,9.34843735613285,2291.728546653795,2019
+2007,52,"(50,55]",HS,13752.917985611512,1471.651332053305,9.345228510358433,2298.6161660941043,2019
+2007,52,"(50,55]",HS,13791.841203400916,1471.651332053305,9.371677178559683,2271.9351159989537,2019
+2007,52,"(50,55]",HS,13751.916285153695,1471.651332053305,9.344547846103254,2254.007485540022,2019
+2007,52,"(50,55]",HS,13782.968999345978,1471.651332053305,9.36564843801381,2287.146741879098,2019
+2007,80,"(75,80]",NoHS,110.90255068672334,20.603118648746268,5.382804058815239,8282.270626006608,2019
+2007,80,"(75,80]",NoHS,111.04565075212557,19.131467316692962,5.8043457364733255,8274.977600042315,2019
+2007,80,"(75,80]",NoHS,111.04565075212557,20.603118648746268,5.389749612439516,8274.791655034871,2019
+2007,80,"(75,80]",NoHS,110.90255068672334,19.131467316692962,5.796865909493334,8291.369215569162,2019
+2007,80,"(75,80]",NoHS,110.90255068672334,20.603118648746268,5.382804058815239,8286.963064993963,2019
+2007,77,"(75,80]",College,201692.6876913015,49282.65980780107,4.09256903904718,1.6256068981403407,2019
+2007,77,"(75,80]",College,208982.9920732505,47497.546742020415,4.399869180787945,2.225645244946382,2019
+2007,77,"(75,80]",College,206498.3885676913,47724.18104715662,4.326913192363609,1.3076119090253133,2019
+2007,77,"(75,80]",College,201440.1303858731,48301.06836932152,4.170510864182417,1.5045721184764855,2019
+2007,77,"(75,80]",College,203681.79291039897,48281.936902004825,4.218592003129465,0.9935776241349756,2019
+2007,27,"(25,30]",NoHS,23.32531066056246,26.489723976959482,0.8805418539223211,4601.828432749133,2019
+2007,27,"(25,30]",NoHS,23.611510791366907,23.546421312852875,1.0027643045050971,4570.96919677393,2019
+2007,27,"(25,30]",NoHS,23.468410725964684,30.9046779731194,0.7593805295876983,4567.387975980385,2019
+2007,27,"(25,30]",NoHS,23.468410725964684,26.489723976959482,0.8859439511856482,4585.218583703155,2019
+2007,27,"(25,30]",NoHS,23.468410725964684,38.262934633385925,0.6133458123592948,4605.625839459923,2019
+2007,24,"(20,25]",HS,7.01190320470896,44.14953996159914,0.1588216595418174,3359.4351789048487,2019
+2007,24,"(20,25]",HS,7.01190320470896,44.14953996159914,0.1588216595418174,3361.5135218061478,2019
+2007,24,"(20,25]",HS,7.155003270111184,44.14953996159914,0.16206291789981367,3382.6731838269307,2019
+2007,24,"(20,25]",HS,7.01190320470896,44.14953996159914,0.1588216595418174,3354.0796067010865,2019
+2007,24,"(20,25]",HS,7.01190320470896,44.14953996159914,0.1588216595418174,3354.5286922336586,2019
+2007,29,"(25,30]",NoHS,-43.674139960758666,70.63926393855863,-0.618270031787789,6090.7657780260215,2019
+2007,29,"(25,30]",NoHS,-42.44347939829954,67.69596127445202,-0.6269721058576269,6117.568973464611,2019
+2007,29,"(25,30]",NoHS,-45.97805101373447,44.14953996159914,-1.0414163104242027,6124.629120398093,2019
+2007,29,"(25,30]",NoHS,-43.53103989535644,39.73458596543923,-1.0955453250027403,6113.534843611413,2019
+2007,29,"(25,30]",NoHS,-44.73308044473512,50.03614528981236,-0.8940153200379133,6121.256577206885,2019
+2007,47,"(45,50]",NoHS,0,11.331715256810448,0,5905.6902740922815,2019
+2007,47,"(45,50]",NoHS,0,11.331715256810448,0,5883.410118114201,2019
+2007,47,"(45,50]",NoHS,0,11.331715256810448,0,5890.681410273513,2019
+2007,47,"(45,50]",NoHS,0,11.331715256810448,0,5908.795846030045,2019
+2007,47,"(45,50]",NoHS,0,11.331715256810448,0,5908.107250028985,2019
+2007,85,"(80,85]",College,93119.50555918901,5754.156708328423,16.18299783605305,39.883575726774815,2019
+2007,85,"(80,85]",College,74796.9731850883,4517.969589403646,16.555439717990932,35.37197986452965,2019
+2007,85,"(80,85]",College,76758.87508175278,5459.82644191776,14.058848920990842,39.236524111650105,2019
+2007,85,"(80,85]",College,72836.50228907783,5901.321841533752,12.34240467558496,38.92343718743968,2019
+2007,85,"(80,85]",College,66067.86919555264,5106.630122224967,12.937664881584721,35.6171382011235,2019
+2007,57,"(55,60]",HS,-23.68306082406802,25.01807264490618,-0.9466381027912645,9789.61954864614,2019
+2007,57,"(55,60]",HS,-20.549169391759317,25.01807264490618,-0.821373000367526,9726.216131521674,2019
+2007,57,"(55,60]",HS,-20.520549378678876,25.01807264490618,-0.8202290268294098,9787.0081359365,2019
+2007,57,"(55,60]",HS,-22.91032047089601,25.01807264490618,-0.9157508172621235,9766.84133451575,2019
+2007,57,"(55,60]",HS,-18.07353826030085,25.01807264490618,-0.7224192893204635,9872.963099762359,2019
+2007,33,"(30,35]",NoHS,29.664643557880968,70.63926393855863,0.41994553600789214,8306.697515639353,2019
+2007,33,"(30,35]",NoHS,29.19241334205363,70.63926393855863,0.41326044064452483,8220.930412563597,2019
+2007,33,"(30,35]",NoHS,29.507233485938524,70.63926393855863,0.41771717088676974,8347.125101410546,2019
+2007,33,"(30,35]",NoHS,28.362432962720735,70.63926393855863,0.40151087909678834,8303.573220578657,2019
+2007,33,"(30,35]",NoHS,29.407063440156968,69.16761260650532,0.4251565484478091,8251.74195658593,2019
+2007,67,"(65,70]",College,5725.433616742969,232.52091046442217,24.623306374069152,1337.473906330593,2019
+2007,67,"(65,70]",College,5467.853499018966,279.6137530901279,19.55502345142699,1333.9105962804447,2019
+2007,67,"(65,70]",College,7456.944408109875,281.08540442218117,26.52910571233285,1314.0184807225476,2019
+2007,67,"(65,70]",College,4709.423152387181,267.84054243370144,17.582936136536926,1304.349225683101,2019
+2007,67,"(65,70]",College,4695.113145846959,241.350818456742,19.453479279120316,1335.8913770668714,2019
+2007,50,"(45,50]",NoHS,60.389658600392416,72.11091527061193,0.8374551671375555,5894.264724158509,2019
+2007,50,"(45,50]",NoHS,60.67585873119686,72.11091527061193,0.8414240549228571,5892.682682841205,2019
+2007,50,"(45,50]",NoHS,78.4202668410726,72.11091527061193,1.0874950976115538,5962.843939248525,2019
+2007,50,"(45,50]",NoHS,131.51039110529757,72.11091527061193,1.8237237817849927,5907.920970786078,2019
+2007,50,"(45,50]",NoHS,157.55460300850228,72.11091527061193,2.1848925702474347,5875.07367687602,2019
+2007,52,"(50,55]",HS,31832.609548724657,3679.128330133262,8.652215060835251,274.456665768769,2019
+2007,52,"(50,55]",HS,31739.594506213212,3679.128330133262,8.626933245642881,303.9580202582178,2019
+2007,52,"(50,55]",HS,31745.3185088293,3679.128330133262,8.628489049654718,273.2568801046075,2019
+2007,52,"(50,55]",HS,31692.371484630476,3679.128330133262,8.614097862545215,278.43996995059155,2019
+2007,52,"(50,55]",HS,31831.178548070635,3679.128330133262,8.651826109832292,295.06981611437766,2019
+2007,32,"(30,35]",College,207.93870503597122,164.82494918997014,1.2615729964297457,2847.5531135134042,2019
+2007,32,"(30,35]",College,207.93870503597122,166.29660052202343,1.2504086336294826,2885.7122718601054,2019
+2007,32,"(30,35]",College,209.36970568999345,164.82494918997014,1.2702549384600927,2877.2735862003246,2019
+2007,32,"(30,35]",College,205.07670372792674,166.29660052202343,1.233198412259591,3091.368868954266,2019
+2007,32,"(30,35]",College,209.36970568999345,164.82494918997014,1.2702549384600927,2963.7198801524382,2019
+2007,70,"(65,70]",HS,359.18116415958144,41.206237297492535,8.716669798468548,10939.17281387299,2019
+2007,70,"(65,70]",HS,359.18116415958144,41.206237297492535,8.716669798468548,10766.677493756706,2019
+2007,70,"(65,70]",HS,359.18116415958144,41.206237297492535,8.716669798468548,11329.918753493272,2019
+2007,70,"(65,70]",HS,359.18116415958144,41.206237297492535,8.716669798468548,10976.947667642573,2019
+2007,70,"(65,70]",HS,359.18116415958144,41.206237297492535,8.716669798468548,10656.949692958204,2019
+2007,52,"(50,55]",HS,108.01192936559843,66.22430994239872,1.6310012057437244,6952.950099989357,2019
+2007,52,"(50,55]",HS,103.5758273381295,66.22430994239872,1.5640151996784681,6792.695612025707,2019
+2007,52,"(50,55]",HS,105.14992805755396,66.22430994239872,1.5877844276371076,7223.147475796824,2019
+2007,52,"(50,55]",HS,102.28792674950948,66.22430994239872,1.5445676495304905,6939.5516922651905,2019
+2007,52,"(50,55]",HS,106.5809287115762,66.22430994239872,1.6093928166904161,6786.8049227188485,2019
+2007,48,"(45,50]",HS,12.521255722694573,110.37384990399784,0.11344404252986959,5496.490634218569,2019
+2007,48,"(45,50]",HS,10.374754741661215,110.37384990399784,0.09399649238189192,5495.015356861608,2019
+2007,48,"(45,50]",HS,10.131484630477436,110.37384990399784,0.09179243669845447,5575.0155802631325,2019
+2007,48,"(45,50]",HS,9.015304120340092,110.37384990399784,0.0816797106215061,5537.880527798955,2019
+2007,48,"(45,50]",HS,15.16860693263571,110.37384990399784,0.137429354379042,5491.571004063258,2019
+2007,54,"(50,55]",College,1685.0032701111838,211.91779181567586,7.951211909459609,1235.3923144733783,2019
+2007,54,"(50,55]",College,1685.0032701111838,213.38944314772917,7.896375965256438,1259.452937950316,2019
+2007,54,"(50,55]",College,1685.0032701111838,211.91779181567586,7.951211909459609,1202.5686096285083,2019
+2007,54,"(50,55]",College,1685.5756703727927,210.44614048362254,8.009534727028974,1220.911607286183,2019
+2007,54,"(50,55]",College,1685.0032701111838,211.91779181567586,7.951211909459609,1241.92670530616,2019
+2007,67,"(65,70]",HS,233.5679267495095,45.62119129365245,5.119724411536952,6862.472986836032,2019
+2007,67,"(65,70]",HS,221.7478613472858,66.22430994239872,3.348435967700683,6713.396375608347,2019
+2007,67,"(65,70]",HS,219.42964028776979,39.73458596543923,5.522383962390538,7077.010713274847,2019
+2007,67,"(65,70]",HS,225.48277305428385,44.14953996159914,5.107250794694728,6732.0585933487,2019
+2007,67,"(65,70]",HS,230.29093525179857,55.92275061802558,4.118018743834265,6675.9630385488945,2019
+2007,50,"(45,50]",College,4057.2732243296273,89.77073125525159,45.195947137751276,5243.223405025408,2019
+2007,50,"(45,50]",College,3669.9872073250494,89.77073125525159,40.881779127875326,5291.975973004401,2019
+2007,50,"(45,50]",College,4523.579097449313,89.77073125525159,50.39035590104635,5112.547144833816,2019
+2007,50,"(45,50]",College,3778.614466971877,89.77073125525159,42.091831203066285,5135.290390243297,2019
+2007,50,"(45,50]",College,3574.912954872466,89.77073125525159,39.822700616169186,5242.715091217857,2019
+2007,42,"(40,45]",College,412.1281883584042,172.18320585023665,2.393544633597248,6542.639569944974,2019
+2007,42,"(40,45]",College,414.1315892740353,170.71155451818333,2.4259142296658314,6693.918011808708,2019
+2007,42,"(40,45]",College,415.13328973185094,170.71155451818333,2.431782024969101,6295.595699567917,2019
+2007,42,"(40,45]",College,415.13328973185094,172.18320585023665,2.410997563217228,6593.087447791331,2019
+2007,42,"(40,45]",College,415.5625899280576,172.18320585023665,2.4134908388772254,6647.000658058845,2019
+2007,43,"(40,45]",College,2238.8005232177893,294.33026641066095,7.606423051627753,5849.52835590557,2019
+2007,43,"(40,45]",College,2237.6557226945715,294.33026641066095,7.602533541598158,5799.422268863169,2019
+2007,43,"(40,45]",College,2238.514323086985,294.33026641066095,7.6054506741203545,5713.6292782086075,2019
+2007,43,"(40,45]",College,2238.0850228907784,294.33026641066095,7.6039921078592565,5817.442018469361,2019
+2007,43,"(40,45]",College,2235.223021582734,294.33026641066095,7.594268332785268,6014.513591185726,2019
+2007,25,"(20,25]",HS,9.501844342707653,38.262934633385925,0.24833025573571446,5419.29334778093,2019
+2007,25,"(20,25]",HS,3.191131458469588,38.262934633385925,0.08340007082690411,5422.62691669132,2019
+2007,25,"(20,25]",HS,12.921935905820797,39.73458596543923,0.3252062552522927,5397.906766876216,2019
+2007,25,"(20,25]",HS,1.3308306082406802,39.73458596543923,0.03349300303262816,5347.592380489489,2019
+2007,25,"(20,25]",HS,4.479032047089602,39.73458596543923,0.11272376289475929,5313.232274358186,2019
+2007,85,"(80,85]",HS,1102.35704381949,36.79128330133262,29.96245156198619,8166.176202402395,2019
+2007,85,"(80,85]",HS,1554.4960104643558,35.319631969279314,44.01223692864189,8352.690982063894,2019
+2007,85,"(80,85]",HS,1147.5051144538916,38.262934633385925,29.98999228492652,7862.419184150051,2019
+2007,85,"(80,85]",HS,1541.9032047089602,32.3763293051727,47.624398373740696,8227.728136292983,2019
+2007,85,"(80,85]",HS,1256.8049444081098,47.09284262570575,26.6878122944755,8297.261957483362,2019
+2007,50,"(45,50]",NoHS,0,19.131467316692962,0,6924.6055622842305,2019
+2007,50,"(45,50]",NoHS,0,19.131467316692962,0,6928.073536037287,2019
+2007,50,"(45,50]",NoHS,0,19.131467316692962,0,6925.483393544379,2019
+2007,50,"(45,50]",NoHS,0,19.131467316692962,0,6967.1544496025235,2019
+2007,50,"(45,50]",NoHS,0,19.131467316692962,0,6966.901303271356,2019
+2007,31,"(30,35]",HS,273.92214519293657,73.58256660266524,3.7226500493258796,6915.177722384944,2019
+2007,31,"(30,35]",HS,273.7790451275343,73.58256660266524,3.720705294311081,6888.228225396053,2019
+2007,31,"(30,35]",HS,273.7790451275343,73.58256660266524,3.720705294311081,7000.9102101269655,2019
+2007,31,"(30,35]",HS,273.63594506213207,73.58256660266524,3.7187605392962833,6961.112882774032,2019
+2007,31,"(30,35]",HS,273.7933551340746,73.58256660266524,3.720899769812562,6889.510081474758,2019
+2007,40,"(35,40]",HS,258.6104381948986,63.28100727829211,4.086699142723859,5828.125370205062,2019
+2007,40,"(35,40]",HS,257.1221975147155,63.28100727829211,4.063181175103049,5730.4057501764455,2019
+2007,40,"(35,40]",HS,256.97909744931326,63.28100727829211,4.060919832062586,5892.413518784639,2019
+2007,40,"(35,40]",HS,256.89323741007195,63.28100727829211,4.059563026238308,5757.50652673417,2019
+2007,40,"(35,40]",HS,256.89323741007195,63.28100727829211,4.059563026238308,5764.805854005685,2019
+2007,53,"(50,55]",College,1281.3179856115107,242.82246978879527,5.2767686068179325,7453.416176586687,2019
+2007,53,"(50,55]",College,1279.7438848920863,242.82246978879527,5.27028609010194,7561.3141514537465,2019
+2007,53,"(50,55]",College,1279.8869849574885,241.350818456742,5.303014894009512,7528.956350199395,2019
+2007,53,"(50,55]",College,1279.8869849574885,242.82246978879527,5.270875409803394,7422.806873772865,2019
+2007,53,"(50,55]",College,1281.3179856115107,241.350818456742,5.308944025152187,7396.448687083847,2019
+2007,39,"(35,40]",College,98044.00810987574,9035.939178807292,10.850450204426581,24.039964567940608,2019
+2007,39,"(35,40]",College,83420.18312622629,8888.77404560196,9.384891853281097,21.45542068022925,2019
+2007,39,"(35,40]",College,99039.98456507522,8550.294239229699,11.583225301261422,23.656097929093526,2019
+2007,39,"(35,40]",College,94375.20863309353,8888.77404560196,10.617348145978472,23.532076603572047,2019
+2007,39,"(35,40]",College,92686.34166121649,8623.876805832364,10.747642127555942,21.761956729339577,2019
+2007,57,"(55,60]",College,3098.1164159581426,220.74769980799567,14.034648690123865,290.88294981380665,2019
+2007,57,"(55,60]",College,3113.857423152387,220.74769980799567,14.105956373999783,282.83524575059334,2019
+2007,57,"(55,60]",College,3112.426422498365,220.74769980799567,14.09947385728379,282.04851198128017,2019
+2007,57,"(55,60]",College,3113.857423152387,220.74769980799567,14.105956373999783,279.18823956630223,2019
+2007,57,"(55,60]",College,3098.1164159581426,220.74769980799567,14.034648690123865,282.13591142255416,2019
+2007,49,"(45,50]",HS,543.6371484630477,132.44861988479744,4.104513500675946,10308.172596367334,2019
+2007,49,"(45,50]",HS,543.9233485938521,132.44861988479744,4.106674339581277,10566.28633117244,2019
+2007,49,"(45,50]",HS,543.9233485938521,132.44861988479744,4.106674339581277,9905.428279494015,2019
+2007,49,"(45,50]",HS,543.9233485938521,132.44861988479744,4.106674339581277,10385.869665651448,2019
+2007,49,"(45,50]",HS,543.6371484630477,132.44861988479744,4.104513500675946,10488.5455757981,2019
+2007,65,"(60,65]",College,134297.26487900587,8079.365812972644,16.62225327925755,245.94114893482362,2019
+2007,65,"(60,65]",College,134614.94702419883,7196.37501374066,18.70593830465573,227.88356184151,2019
+2007,65,"(60,65]",College,139202.73512099413,7534.854820112921,18.474507929392058,227.89824600593138,2019
+2007,65,"(60,65]",College,137826.11249182472,7608.4373867155855,18.114903952876134,227.64891904865175,2019
+2007,65,"(60,65]",College,138700.45389143232,7181.658500420127,19.313150838809495,221.48813162543578,2019
+2007,40,"(35,40]",HS,69.01716154349248,42.67788862954583,1.6171643855809683,9765.431042394686,2019
+2007,40,"(35,40]",HS,69.1602616088947,42.67788862954583,1.6205174114685506,9740.794665615247,2019
+2007,40,"(35,40]",HS,69.14595160235449,42.67788862954583,1.6201821088797925,9658.821410041886,2019
+2007,40,"(35,40]",HS,69.01716154349248,42.67788862954583,1.6171643855809683,9702.524695614444,2019
+2007,40,"(35,40]",HS,69.01716154349248,42.67788862954583,1.6171643855809683,9919.209255705751,2019
+2007,90,"(85,90]",HS,1879.4476389797253,47.09284262570575,39.909411583360736,3859.9631284005873,2019
+2007,90,"(85,90]",HS,1879.4476389797253,47.09284262570575,39.909411583360736,3911.368869899022,2019
+2007,90,"(85,90]",NoHS,1880.8786396337475,47.09284262570575,39.939798380466954,3900.3679397238425,2019
+2007,90,"(85,90]",HS,1879.4476389797253,47.09284262570575,39.909411583360736,4189.481813446748,2019
+2007,90,"(85,90]",College,1879.4476389797253,47.09284262570575,39.909411583360736,4016.4508436673677,2019
+2007,80,"(75,80]",College,12035.144800523218,1493.7261020341045,8.057129606381098,1976.9423632935304,2019
+2007,80,"(75,80]",College,12033.713799869194,1493.7261020341045,8.056171598984646,1976.938957783371,2019
+2007,80,"(75,80]",College,12033.713799869194,1493.7261020341045,8.056171598984646,1921.467267339975,2019
+2007,80,"(75,80]",College,12033.570699803795,1493.7261020341045,8.056075798245002,1900.323050080447,2019
+2007,80,"(75,80]",College,12033.713799869194,1493.7261020341045,8.056171598984646,2010.255337552399,2019
+2007,87,"(85,90]",NoHS,109192.50490516677,1589.3834386175693,68.70117194636266,37.48281252294427,2019
+2007,87,"(85,90]",NoHS,23694.508829300197,1913.1467316692958,12.385097513469761,39.19542480197054,2019
+2007,87,"(85,90]",NoHS,15263.052975801178,2339.9256179647546,6.522879555922311,32.890680178899785,2019
+2007,87,"(85,90]",NoHS,30015.23871811642,2693.1219376575477,11.145146567044563,37.24612366377116,2019
+2007,87,"(85,90]",NoHS,70669.96729888816,2648.972397695949,26.678257334940987,33.44949534810207,2019
+2007,59,"(55,60]",HS,442.02179202092873,36.79128330133262,12.014307530417625,6765.696716949298,2019
+2007,59,"(55,60]",HS,483.3634009156312,36.79128330133262,13.137986977967774,6600.457190065725,2019
+2007,59,"(55,60]",HS,436.14037933289734,36.79128330133262,11.854448668201249,6997.22653867935,2019
+2007,59,"(55,60]",HS,485.094911706998,36.79128330133262,13.185050049325879,6740.200963135239,2019
+2007,59,"(55,60]",HS,436.28347939829956,36.79128330133262,11.858338178230845,6544.745551114178,2019
+2007,51,"(50,55]",HS,757.4286461739699,91.2423825873049,8.301280881713357,6467.20163112768,2019
+2007,51,"(50,55]",HS,881.9257030739045,91.2423825873049,9.665746093708563,6614.1609924508575,2019
+2007,51,"(50,55]",HS,853.2627599738391,91.2423825873049,9.351605424785989,6225.25979404955,2019
+2007,51,"(50,55]",HS,761.5928580771747,91.2423825873049,8.34691989052837,6515.675280337936,2019
+2007,51,"(50,55]",HS,830.4382995421845,91.2423825873049,9.101453469253535,6569.37684924315,2019
+2007,44,"(40,45]",HS,337.8449444081099,150.10843586943707,2.250672605115706,8470.091962992867,2019
+2007,44,"(40,45]",HS,336.2708436886854,150.10843586943707,2.2401861810163064,8335.211398424777,2019
+2007,44,"(40,45]",HS,336.41394375408765,150.10843586943707,2.2411394922980703,8690.67026208591,2019
+2007,44,"(40,45]",HS,337.70184434270766,150.10843586943707,2.2497192938339428,8387.74486527628,2019
+2007,44,"(40,45]",HS,336.2708436886854,150.10843586943707,2.2401861810163064,8315.10423743442,2019
+2007,71,"(70,75]",College,2736.788750817528,217.8043971438891,12.565351235813257,3498.5468942599073,2019
+2007,71,"(70,75]",College,2736.788750817528,217.8043971438891,12.565351235813257,3550.3747526599245,2019
+2007,71,"(70,75]",College,2736.788750817528,217.8043971438891,12.565351235813257,3534.7900993485623,2019
+2007,71,"(70,75]",College,2736.788750817528,217.8043971438891,12.565351235813257,3803.0133288782745,2019
+2007,71,"(70,75]",College,2735.357750163506,217.8043971438891,12.55878111752002,3645.800436280699,2019
+2007,34,"(30,35]",HS,93.22969260954874,54.451099285972276,1.7121728272172205,5630.563514804683,2019
+2007,34,"(30,35]",HS,93.22969260954874,54.451099285972276,1.7121728272172205,5629.004043832896,2019
+2007,34,"(30,35]",HS,94.66069326357096,54.451099285972276,1.7384533003901632,5669.625029681765,2019
+2007,34,"(30,35]",HS,93.22969260954874,54.451099285972276,1.7121728272172205,5663.5317055126325,2019
+2007,34,"(30,35]",HS,93.22969260954874,54.451099285972276,1.7121728272172205,5597.121083527213,2019
+2007,92,"(90,95]",HS,313.53224329627204,38.262934633385925,8.194150456580577,10219.676224914145,2019
+2007,92,"(90,95]",HS,313.67534336167427,38.262934633385925,8.197890370070573,11241.006035364964,2019
+2007,92,"(90,95]",HS,313.67534336167427,38.262934633385925,8.197890370070573,11981.564731415563,2019
+2007,92,"(90,95]",HS,313.53224329627204,38.262934633385925,8.194150456580577,10193.089119582015,2019
+2007,92,"(90,95]",HS,313.53224329627204,38.262934633385925,8.194150456580577,11507.187811501199,2019
+2007,56,"(55,60]",College,4492.769653368215,334.06485237610013,13.448794811583832,2332.6804949415223,2019
+2007,56,"(55,60]",College,3273.557096141269,467.9851235929509,6.99500247146441,2313.0980308952744,2019
+2007,56,"(55,60]",College,3160.508044473512,467.9851235929509,6.753436990066574,2291.3909444165192,2019
+2007,56,"(55,60]",College,3619.8592544146504,407.64741897876536,8.879877771538672,2268.193939707554,2019
+2007,56,"(55,60]",College,6448.947547416613,467.9851235929509,13.780240486930195,2298.6775027798476,2019
+2007,45,"(40,45]",HS,514.4447351209941,176.59815984639656,2.9130809492491507,9218.068237781981,2019
+2007,45,"(40,45]",HS,248.70791366906477,176.59815984639656,1.4083267565493809,9005.60636415772,2019
+2007,45,"(40,45]",HS,332.70765206017,176.59815984639656,1.8839814205853336,9576.289972735418,2019
+2007,45,"(40,45]",HS,265.4506213211249,176.59815984639656,1.5031335635207717,9200.304923663101,2019
+2007,45,"(40,45]",HS,295.50163505559186,176.59815984639656,1.673299627315576,8997.796617903634,2019
+2007,50,"(45,50]",College,950.6137344669719,363.49787901716627,2.615183717267519,549.5122936366095,2019
+2007,50,"(45,50]",College,950.4706344015697,363.49787901716627,2.614790042163309,571.1337730898988,2019
+2007,50,"(45,50]",College,950.4706344015697,363.49787901716627,2.614790042163309,554.20177458574085,2019
+2007,50,"(45,50]",College,950.4706344015697,363.49787901716627,2.614790042163309,549.5825860018152,2019
+2007,50,"(45,50]",College,952.0447351209941,363.49787901716627,2.61912046830962,558.2834855418947,2019
+2007,60,"(55,60]",NoHS,2534.588358404186,551.8692495199892,4.5927334429463995,261.29843157537624,2019
+2007,60,"(55,60]",NoHS,2925.251536952256,551.8692495199892,5.300624268332785,250.53434428262835,2019
+2007,60,"(55,60]",NoHS,2922.3895356442117,551.8692495199892,5.295438254959991,252.83234147980087,2019
+2007,60,"(55,60]",NoHS,2979.6295618051017,551.8692495199892,5.399158522415873,250.39763093901638,2019
+2007,60,"(55,60]",NoHS,2546.0363636363636,551.8692495199892,4.613477496437575,254.3159314515521,2019
+2007,58,"(55,60]",HS,3843.3815565729237,317.87668772351384,12.090794024869986,634.2310650863633,2019
+2007,58,"(55,60]",HS,3840.8057553956837,275.19879909396803,13.956477165019244,626.532298505362,2019
+2007,58,"(55,60]",HS,3842.952256376717,417.9489783031385,9.194788014505978,628.0404243654601,2019
+2007,58,"(55,60]",HS,3851.9675604970566,232.52091046442217,16.56611249630576,625.0952260615579,2019
+2007,58,"(55,60]",HS,3841.091955526488,303.1601744029808,12.670173326990675,643.8265549945048,2019
+2007,74,"(70,75]",NoHS,171.69145846958796,50.03614528981236,3.4313486275799367,8364.87349025521,2019
+2007,74,"(70,75]",NoHS,171.69145846958796,50.03614528981236,3.4313486275799367,8228.965714113312,2019
+2007,74,"(70,75]",NoHS,171.69145846958796,50.03614528981236,3.4313486275799367,8708.503066484618,2019
+2007,74,"(70,75]",NoHS,171.69145846958796,50.03614528981236,3.4313486275799367,8366.046866229297,2019
+2007,74,"(70,75]",NoHS,171.69145846958796,50.03614528981236,3.4313486275799367,8178.877765304198,2019
+2007,51,"(50,55]",College,813.5095618051014,260.48228577343497,3.123089769385256,5388.962701295309,2019
+2007,51,"(50,55]",College,814.124892086331,259.0106344413816,3.143210292666886,5511.932743440302,2019
+2007,51,"(50,55]",College,816.9296533682145,260.48228577343497,3.136219612564258,5186.7644728287405,2019
+2007,51,"(50,55]",College,821.9524656638326,260.48228577343497,3.155502352965219,5430.863842895688,2019
+2007,51,"(50,55]",College,822.753826030085,260.48228577343497,3.158578801576198,5475.520737902042,2019
+2007,66,"(65,70]",HS,207.409234793983,76.52586926677185,2.7103153061998833,6127.865356081073,2019
+2007,66,"(65,70]",HS,231.87934597776325,77.99752059882516,2.9729066282814114,6138.230445355042,2019
+2007,66,"(65,70]",HS,206.9513145846959,75.05421793471854,2.7573575513730653,6176.39546973391,2019
+2007,66,"(65,70]",HS,211.33017658600392,77.99752059882516,2.7094473640125822,6041.191647744352,2019
+2007,66,"(65,70]",HS,236.0578678875082,80.94082326293177,2.916425338554901,6068.09399015326,2019
+2007,55,"(50,55]",College,857.2552517985612,83.88412592703838,10.21951701021709,7837.38363161637,2019
+2007,55,"(50,55]",College,855.3520209287117,82.41247459498507,10.378914419598816,8015.18438634865,2019
+2007,55,"(50,55]",College,842.8880052321779,83.88412592703838,10.048242094878761,7542.735427812605,2019
+2007,55,"(50,55]",College,891.484787442773,83.88412592703838,10.627574378234305,7895.060491181776,2019
+2007,55,"(50,55]",College,1068.9717985611512,83.88412592703838,12.743433715825242,7959.939747985966,2019
+2007,65,"(60,65]",HS,645.5243950294309,103.01559324373132,6.266278479823367,6496.966218651467,2019
+2007,65,"(60,65]",HS,639.0848920863309,103.01559324373132,6.203768497204868,6645.763316033541,2019
+2007,65,"(60,65]",HS,722.941530412034,103.01559324373132,7.0177873819702175,6254.343072873685,2019
+2007,65,"(60,65]",HS,539.4872465663833,103.01559324373132,5.236947432705408,7813.284903848847,2019
+2007,65,"(60,65]",HS,715.214126880314,103.01559324373132,6.942775402828018,6599.835206690931,2019
+2007,27,"(25,30]",College,178.01648136036624,73.58256660266524,2.419275238408418,9589.356095601248,2019
+2007,27,"(25,30]",College,180.59228253760628,73.58256660266524,2.454280828674778,9502.874766052959,2019
+2007,27,"(25,30]",College,180.87848266841073,73.58256660266524,2.4581703387043734,9771.854832962283,2019
+2007,27,"(25,30]",College,179.30438194898628,73.58256660266524,2.4367780335415983,9641.476865780302,2019
+2007,27,"(25,30]",College,179.30438194898628,73.58256660266524,2.4367780335415983,9484.282988143696,2019
+2007,77,"(75,80]",NoHS,148.53786788750818,10.743054723989124,13.82640894082246,10109.4829388242,2019
+2007,77,"(75,80]",NoHS,257.6802877697842,11.037384990399785,23.34613570097556,10144.907725025401,2019
+2007,77,"(75,80]",NoHS,163.44889470241986,14.716513320533048,11.106495889510027,10070.77003060037,2019
+2007,77,"(75,80]",NoHS,203.74587311968605,8.388412592703837,24.288966579553122,10083.689015339394,2019
+2007,77,"(75,80]",NoHS,193.45697841726619,22.07476998079957,8.763714348350323,10083.259616732303,2019
+2007,37,"(35,40]",HS,274.8952256376717,82.41247459498507,3.3356021280593784,7453.116031350129,2019
+2007,37,"(35,40]",HS,284.62603008502293,83.88412592703838,3.393085723186625,7372.333922322071,2019
+2007,37,"(35,40]",HS,271.7470241988227,82.41247459498507,3.2974015831258505,7597.428653275379,2019
+2007,37,"(35,40]",HS,284.3398299542185,82.41247459498507,3.4502037628599616,7389.519195593841,2019
+2007,37,"(35,40]",HS,281.9357488554611,82.41247459498507,3.421032437637995,7370.337764436833,2019
+2007,31,"(30,35]",HS,14.739306736429038,41.206237297492535,0.35769601165030296,8077.868159655035,2019
+2007,31,"(30,35]",HS,14.739306736429038,39.73458596543923,0.37094401208179567,8005.0181401752925,2019
+2007,31,"(30,35]",HS,14.739306736429038,39.73458596543923,0.37094401208179567,8231.601186670498,2019
+2007,31,"(30,35]",HS,14.739306736429038,39.73458596543923,0.37094401208179567,8121.773579965707,2019
+2007,31,"(30,35]",HS,14.739306736429038,39.73458596543923,0.37094401208179567,7989.356824722262,2019
+2007,44,"(40,45]",HS,-83.3557880967953,20.603118648746268,-4.0457849861417765,7112.275537138416,2019
+2007,44,"(40,45]",HS,-76.35819489862655,17.659815984639657,-4.323838649567028,6991.437603073158,2019
+2007,44,"(40,45]",HS,-65.39672988881622,19.131467316692962,-3.4182809298560697,7311.828553112003,2019
+2007,44,"(40,45]",HS,-74.39772400261609,17.659815984639657,-4.212825550805656,7075.126375267821,2019
+2007,44,"(40,45]",HS,-74.19738391105298,20.603118648746268,-3.601269554188002,6994.087618001742,2019
+2007,48,"(45,50]",College,805.0094179202092,170.71155451818333,4.7156117826486295,10308.172596367334,2019
+2007,48,"(45,50]",College,792.9890124264225,170.71155451818333,4.6451982390094,10566.28633117244,2019
+2007,48,"(45,50]",College,809.4168999345978,170.71155451818333,4.741430081983014,9905.428279494015,2019
+2007,48,"(45,50]",College,797.5682145192936,170.71155451818333,4.672022446110059,10385.869665651448,2019
+2007,48,"(45,50]",College,809.4168999345978,170.71155451818333,4.741430081983014,10488.5455757981,2019
+2007,61,"(60,65]",HS,23074.885546108566,662.2430994239872,34.84352734845993,2227.0362654276596,2019
+2007,61,"(60,65]",HS,23466.979725310663,662.2430994239872,35.43559720852058,716.5361203957398,2019
+2007,61,"(60,65]",HS,23475.565729234793,662.2430994239872,35.448562241952565,1496.271761170075,2019
+2007,61,"(60,65]",HS,23103.505559189016,662.2430994239872,34.886744126566555,2190.380016940706,2019
+2007,61,"(60,65]",HS,23205.10660562459,662.2430994239872,35.040163688845034,2222.5837985727776,2019
+2007,52,"(50,55]",College,2018.0686723348595,339.9514577043134,5.9363436355379795,3386.6867241855425,2019
+2007,52,"(50,55]",College,2346.354532374101,339.9514577043134,6.902028154898922,3431.7683760125788,2019
+2007,52,"(50,55]",College,2131.4039241334203,339.9514577043134,6.26973020950331,3422.135654513543,2019
+2007,52,"(50,55]",College,2545.406723348594,339.9514577043134,7.487559372557729,3676.7247324283553,2019
+2007,52,"(50,55]",College,2550.701425768476,339.9514577043134,7.503134250381866,3524.5716775688356,2019
+2007,56,"(55,60]",College,151.47141922825378,216.3327458118358,0.7001779534569501,6146.1899834176875,2019
+2007,56,"(55,60]",College,151.04211903204708,214.86109447978248,0.7029756568900821,6195.870795323101,2019
+2007,56,"(55,60]",College,153.18862001308045,216.3327458118358,0.7081157290275532,6232.536163619081,2019
+2007,56,"(55,60]",College,151.18521909744933,216.3327458118358,0.6988549908618495,6166.997386777859,2019
+2007,56,"(55,60]",College,152.75931981687378,214.86109447978248,0.7109678007865113,6220.930704565239,2019
+2007,58,"(55,60]",College,1350.4353172007848,245.7657724529019,5.4948063097743995,6528.869776417801,2019
+2007,58,"(55,60]",College,1344.5682145192939,245.7657724529019,5.470933568574788,6676.723055201549,2019
+2007,58,"(55,60]",College,1347.430215827338,245.7657724529019,5.482578808184354,6284.830595111098,2019
+2007,58,"(55,60]",College,1347.430215827338,245.7657724529019,5.482578808184354,6576.051465182505,2019
+2007,58,"(55,60]",College,1346.1423152387183,245.7657724529019,5.47733845036005,6630.623315004193,2019
+2007,61,"(60,65]",HS,445.47050359712233,63.28100727829211,7.039560884959813,166.84957837654372,2019
+2007,61,"(60,65]",HS,445.47050359712233,63.28100727829211,7.039560884959813,174.48702878577643,2019
+2007,61,"(60,65]",HS,445.47050359712233,63.28100727829211,7.039560884959813,171.52554833941738,2019
+2007,61,"(60,65]",HS,445.47050359712233,63.28100727829211,7.039560884959813,169.15993094447245,2019
+2007,61,"(60,65]",HS,445.47050359712233,63.28100727829211,7.039560884959813,166.31306532417062,2019
+2007,57,"(55,60]",HS,544.5243688685416,92.71403391935819,5.8731601446892485,7622.667734251261,2019
+2007,57,"(55,60]",HS,542.7499280575539,100.07229057962472,5.423578544209528,7794.872754494757,2019
+2007,57,"(55,60]",HS,542.4207979071289,101.54394191167802,5.341734698254293,7336.931894310602,2019
+2007,57,"(55,60]",HS,542.7356180510137,107.43054723989124,5.05196735933115,7676.630549463023,2019
+2007,57,"(55,60]",HS,541.3189274035318,86.82742859114498,6.234423110149985,7739.861483413263,2019
+2007,56,"(55,60]",HS,28.51984303466318,51.50779662186566,0.5536995349274205,7938.812596730907,2019
+2007,56,"(55,60]",HS,28.376742969260956,52.979447953918964,0.5356179436588843,7777.559470118416,2019
+2007,56,"(55,60]",HS,28.51984303466318,52.979447953918964,0.5383189922905478,8205.332048411112,2019
+2007,56,"(55,60]",HS,28.5341530412034,52.979447953918964,0.5385890971537141,7865.655604538029,2019
+2007,56,"(55,60]",HS,28.391052975801177,51.50779662186566,0.5511991356226805,7739.583530679069,2019
+2007,59,"(55,60]",College,1089.563897972531,138.33522521301063,7.876257809930944,5914.709825308643,2019
+2007,59,"(55,60]",College,1092.4258992805755,138.33522521301063,7.896946693067091,6048.330069652366,2019
+2007,59,"(55,60]",College,1096.7189012426422,138.33522521301063,7.9279800177713105,5692.996818936101,2019
+2007,59,"(55,60]",College,1079.5468933943755,138.33522521301063,7.803846718954433,5956.581569488199,2019
+2007,59,"(55,60]",College,1075.2538914323086,138.33522521301063,7.772813394250211,6005.64478978553,2019
+2007,55,"(50,55]",HS,6.697083060824068,36.79128330133262,0.18202906938507069,7277.071269400015,2019
+2007,55,"(50,55]",HS,6.9975931981687385,63.28100727829211,0.11057967467861704,7220.878719627389,2019
+2007,55,"(50,55]",HS,6.582603008502289,54.451099285972276,0.12089017659553668,7372.500551989634,2019
+2007,55,"(50,55]",HS,6.639843034663179,73.58256660266524,0.09023663268661625,7267.370954432123,2019
+2007,55,"(50,55]",HS,6.711393067364291,57.39440195007889,0.11693462845386556,7172.305215976847,2019
+2007,46,"(45,50]",College,464.41695225637676,300.21687173887415,1.5469382169178096,6546.305265224665,2019
+2007,46,"(45,50]",College,459.69465009810335,345.8380630325266,1.3292193637311356,6695.421604657128,2019
+2007,46,"(45,50]",College,464.7317724002616,300.21687173887415,1.5479868593277495,6302.101648134724,2019
+2007,46,"(45,50]",College,480.0148593852191,319.3483390555672,1.503107424340465,6596.336937447768,2019
+2007,46,"(45,50]",College,472.64520601700457,345.8380630325266,1.3666662422075606,6651.110741746592,2019
+2007,45,"(40,45]",College,723.0846304774362,157.4666925297036,4.591984621389299,4256.714380660135,2019
+2007,45,"(40,45]",College,724.229431000654,208.97448915156926,3.4656356091167195,4303.2651410052285,2019
+2007,45,"(40,45]",College,731.6706344015696,288.4436610824477,2.536615405780859,4330.308714806434,2019
+2007,45,"(40,45]",College,725.0880313930674,154.52338986559698,4.692416028562033,4283.844155719013,2019
+2007,45,"(40,45]",College,722.941530412034,288.4436610824477,2.5063526364179345,4302.349309369613,2019
+2007,88,"(85,90]",College,1309.3655984303468,51.50779662186566,25.42072626485649,9291.122597733476,2019
+2007,88,"(85,90]",College,1309.3655984303468,51.50779662186566,25.42072626485649,9503.704288072473,2019
+2007,88,"(85,90]",College,1309.3655984303468,51.50779662186566,25.42072626485649,8943.506726874786,2019
+2007,88,"(85,90]",College,1309.3655984303468,51.50779662186566,25.42072626485649,9362.38587058117,2019
+2007,88,"(85,90]",College,1309.3655984303468,51.50779662186566,25.42072626485649,9440.7515955417,2019
+2007,25,"(20,25]",NoHS,0,20.603118648746268,0,6937.6090193997825,2019
+2007,25,"(20,25]",NoHS,0,20.603118648746268,0,6926.849390704452,2019
+2007,25,"(20,25]",NoHS,0,20.603118648746268,0,7005.038064786857,2019
+2007,25,"(20,25]",NoHS,0,20.603118648746268,0,6969.156432185647,2019
+2007,25,"(20,25]",NoHS,0,19.131467316692962,0,6930.763208089904,2019
+2007,60,"(55,60]",HS,20.291589274035317,73.58256660266524,0.2757662610983229,5891.767285865521,2019
+2007,60,"(55,60]",HS,21.56517985611511,73.58256660266524,0.293074580730023,5871.18113920227,2019
+2007,60,"(55,60]",HS,21.422079790712885,73.58256660266524,0.2911298257152253,5910.292218980427,2019
+2007,60,"(55,60]",HS,18.846278613472858,73.58256660266524,0.2561242354488655,5891.594919162131,2019
+2007,60,"(55,60]",HS,21.09294964028777,73.58256660266524,0.28665688918119037,5876.797061285651,2019
+2007,43,"(40,45]",College,368.0533682145193,103.01559324373132,3.572792784328464,6670.7427290441,2019
+2007,43,"(40,45]",College,395.6716808371485,103.01559324373132,3.8408911542255844,6690.29118263761,2019
+2007,43,"(40,45]",College,388.37357750163505,103.01559324373132,3.7700465072579514,6713.155102113933,2019
+2007,43,"(40,45]",College,388.23047743623283,103.01559324373132,3.768657396533096,6630.363060929483,2019
+2007,43,"(40,45]",College,338.8609548724657,103.01559324373132,3.289414196457933,6642.870125990303,2019
+2007,92,"(90,95]",NoHS,292.4965336821452,16.18816465258635,18.068542046575587,10395.028402091011,2019
+2007,92,"(90,95]",NoHS,295.2154349247874,16.18816465258635,18.23649816148994,10164.489732627742,2019
+2007,92,"(90,95]",NoHS,295.2154349247874,16.18816465258635,18.23649816148994,10708.26025707441,2019
+2007,92,"(90,95]",NoHS,292.4965336821452,17.659815984639657,16.562830209360953,10344.072850327528,2019
+2007,92,"(90,95]",NoHS,298.22053629823415,16.18816465258635,18.422133867447908,10427.517226789494,2019
+2007,56,"(55,60]",College,1050.24,235.46421312852877,4.460295626438671,3024.111236730122,2019
+2007,56,"(55,60]",College,1050.368790058862,235.46421312852877,4.4608425887865835,3047.6818092802378,2019
+2007,56,"(55,60]",College,1049.3813996075867,235.46421312852877,4.456649210785925,3069.6425162084442,2019
+2007,56,"(55,60]",College,1050.5262001308045,235.46421312852877,4.461511098322919,3043.637505862847,2019
+2007,56,"(55,60]",College,1048.823309352518,235.46421312852877,4.454279040611641,3095.8681237171313,2019
+2007,47,"(45,50]",College,9654.961412688031,1320.071244851814,7.313969946956809,375.204497549866,2019
+2007,47,"(45,50]",College,9792.337475474165,997.7796031321406,9.81412873618075,356.39368635345556,2019
+2007,47,"(45,50]",College,9361.606278613472,1399.5404167826928,6.689057469404295,363.5244656131724,2019
+2007,47,"(45,50]",College,9202.765206017004,672.5446587483602,13.683500547225842,361.90294889886457,2019
+2007,47,"(45,50]",College,9238.540222367561,822.6530946177974,11.230177437866157,368.63916174956813,2019
+2007,69,"(65,70]",NoHS,630.785088293002,54.451099285972276,11.584432574633167,5802.91210819474,2019
+2007,69,"(65,70]",NoHS,630.785088293002,54.451099285972276,11.584432574633167,5935.813596212926,2019
+2007,69,"(65,70]",NoHS,630.785088293002,54.451099285972276,11.584432574633167,5586.207766048041,2019
+2007,69,"(65,70]",NoHS,630.785088293002,54.451099285972276,11.584432574633167,5846.1379554637915,2019
+2007,69,"(65,70]",NoHS,630.785088293002,54.451099285972276,11.584432574633167,5894.791868095332,2019
+2007,69,"(65,70]",HS,28.620013080444735,11.478880390015776,2.493275659997133,6498.489381783295,2019
+2007,69,"(65,70]",HS,28.620013080444735,11.478880390015776,2.493275659997133,6492.883369131745,2019
+2007,69,"(65,70]",HS,28.620013080444735,11.478880390015776,2.493275659997133,6493.348988041471,2019
+2007,69,"(65,70]",HS,28.620013080444735,11.478880390015776,2.493275659997133,6506.5387731056635,2019
+2007,69,"(65,70]",HS,28.620013080444735,11.478880390015776,2.493275659997133,6502.46063759497,2019
+2007,51,"(50,55]",College,2628.748201438849,329.6498983799403,7.974363754873866,1873.3752478915903,2019
+2007,51,"(50,55]",College,2525.716154349248,329.6498983799403,7.661813841781369,1901.1408870079044,2019
+2007,51,"(50,55]",College,2499.958142576848,329.6498983799403,7.5836763635082445,1816.7489274015338,2019
+2007,51,"(50,55]",College,2625.8862001308044,329.6498983799403,7.965681812843519,1834.5419884289483,2019
+2007,51,"(50,55]",College,2561.4911706998037,329.6498983799403,7.7703381171607075,1829.268561344517,2019
+2007,44,"(40,45]",College,3453.2907782864618,543.0393415276694,6.3591907882248835,1406.0763509728376,2019
+2007,44,"(40,45]",College,3531.423413996076,498.8898015660703,7.078564049436463,1402.3302696706282,2019
+2007,44,"(40,45]",College,3337.9521255722693,581.3022761610555,5.742196895591472,1381.4178368191237,2019
+2007,44,"(40,45]",College,4248.354741661216,545.9826441917761,7.781116830096497,1371.2526210506965,2019
+2007,44,"(40,45]",College,3911.497187704382,551.8692495199892,7.087724476597611,1404.4126497507727,2019
+2007,21,"(20,25]",HS,-2.8620013080444737,17.659815984639657,-0.16206291789981367,9569.15542830385,2019
+2007,21,"(20,25]",HS,-2.8620013080444737,17.659815984639657,-0.16206291789981367,9580.408017218206,2019
+2007,21,"(20,25]",HS,-2.8620013080444737,17.659815984639657,-0.16206291789981367,9587.325358147482,2019
+2007,21,"(20,25]",HS,-2.8620013080444737,19.131467316692962,-0.149596539599828,9593.839781173778,2019
+2007,21,"(20,25]",HS,-2.8620013080444737,17.659815984639657,-0.16206291789981367,9599.091063816308,2019
+2007,52,"(50,55]",HS,48.3678221059516,23.546421312852875,2.054147484380138,5301.355773399296,2019
+2007,52,"(50,55]",HS,46.93682145192937,23.546421312852875,1.993373890167708,5272.684030010282,2019
+2007,52,"(50,55]",HS,46.93682145192937,23.546421312852875,1.993373890167708,5412.325939286736,2019
+2007,52,"(50,55]",HS,47.07992151733159,25.01807264490618,1.8818364702013657,5334.869834711757,2019
+2007,52,"(50,55]",HS,46.93682145192937,23.546421312852875,1.993373890167708,5258.091330498843,2019
+2007,79,"(75,80]",HS,276.18312622629173,42.972218895956495,6.427015716711789,8406.236941033783,2019
+2007,79,"(75,80]",HS,276.18312622629173,42.972218895956495,6.427015716711789,8181.524804504532,2019
+2007,79,"(75,80]",HS,276.18312622629173,42.972218895956495,6.427015716711789,8671.404466174585,2019
+2007,79,"(75,80]",HS,276.18312622629173,42.972218895956495,6.427015716711789,8382.672489741115,2019
+2007,79,"(75,80]",HS,276.18312622629173,42.972218895956495,6.427015716711789,8340.671530914444,2019
+2007,63,"(60,65]",College,103052.08109875736,6990.343827253198,14.742061856383808,36.90505218455256,2019
+2007,63,"(60,65]",College,130339.8325703074,6990.343827253198,18.645696948718392,33.62170759340992,2019
+2007,63,"(60,65]",College,111662.41203400916,7019.776853894263,15.906832134138819,34.57801401952445,2019
+2007,63,"(60,65]",College,109910.86723348594,7019.776853894263,15.657316396391181,34.933675592682455,2019
+2007,63,"(60,65]",College,130497.24264224984,7005.060340573731,18.628996225257612,32.9366456260952,2019
+2007,25,"(20,25]",HS,12.02040549378679,32.3763293051727,0.37127141191593677,7228.99595236268,2019
+2007,25,"(20,25]",HS,12.02040549378679,32.3763293051727,0.37127141191593677,7163.801462239794,2019
+2007,25,"(20,25]",HS,13.451406147809026,32.3763293051727,0.41547038952497684,7366.573764735229,2019
+2007,25,"(20,25]",HS,12.02040549378679,32.3763293051727,0.37127141191593677,7268.287520315949,2019
+2007,25,"(20,25]",HS,12.02040549378679,32.3763293051727,0.37127141191593677,7149.7859344073295,2019
+2007,47,"(45,50]",College,19254.113799869196,927.140339193582,20.767205336590408,527.2348053880677,2019
+2007,47,"(45,50]",College,19254.113799869196,927.140339193582,20.767205336590408,511.2452966898689,2019
+2007,47,"(45,50]",College,19252.68279921517,927.140339193582,20.76566188022945,514.4432757454704,2019
+2007,47,"(45,50]",College,19255.544800523217,927.140339193582,20.768748792951357,510.75141994083515,2019
+2007,47,"(45,50]",College,19252.68279921517,927.140339193582,20.76566188022945,520.9463289705853,2019
+2007,56,"(55,60]",NoHS,109.47298103335513,25.01807264490618,4.375755981971874,8955.178762869902,2019
+2007,56,"(55,60]",NoHS,109.47298103335513,23.546421312852875,4.649240730845117,8720.7015366396,2019
+2007,56,"(55,60]",NoHS,109.47298103335513,25.01807264490618,4.375755981971874,9180.164299506356,2019
+2007,56,"(55,60]",NoHS,109.47298103335513,25.01807264490618,4.375755981971874,8840.58269502723,2019
+2007,56,"(55,60]",NoHS,109.47298103335513,23.546421312852875,4.649240730845117,8732.58040686527,2019
+2007,27,"(25,30]",College,113.19215173315892,151.5800872014904,0.7467481634490443,7809.04060153912,2019
+2007,27,"(25,30]",College,114.62315238718116,151.5800872014904,0.7561887217733053,7731.989148539634,2019
+2007,27,"(25,30]",College,114.62315238718116,151.5800872014904,0.7561887217733053,7841.234216107003,2019
+2007,27,"(25,30]",College,114.62315238718116,151.5800872014904,0.7561887217733053,7832.497511046755,2019
+2007,27,"(25,30]",College,114.48005232177894,151.5800872014904,0.7552446659408791,7781.959506373505,2019
+2007,34,"(30,35]",HS,299.0791366906475,139.80687654506394,2.1392305162775402,7200.468717140735,2019
+2007,34,"(30,35]",HS,299.0791366906475,139.80687654506394,2.1392305162775402,7402.151849555242,2019
+2007,34,"(30,35]",HS,299.0791366906475,139.80687654506394,2.1392305162775402,6956.598473162155,2019
+2007,34,"(30,35]",HS,300.5101373446697,139.80687654506394,2.149466068987002,7275.608181801294,2019
+2007,34,"(30,35]",HS,299.0791366906475,139.80687654506394,2.1392305162775402,7337.89374177991,2019
+2007,53,"(50,55]",HS,435.02419882275996,77.99752059882516,5.577410608476605,5316.665632982656,2019
+2007,53,"(50,55]",HS,393.26759973839114,77.99752059882516,5.042052577044542,5262.162349069399,2019
+2007,53,"(50,55]",HS,1373.9037279267495,77.99752059882516,17.614710280257857,5312.234610187314,2019
+2007,53,"(50,55]",HS,223.09300196206672,83.88412592703838,2.6595377790085206,5293.440355822094,2019
+2007,53,"(50,55]",HS,360.182864617397,94.1856852514115,3.8241784158171654,5280.767918019092,2019
+2007,46,"(45,50]",HS,352.4554610856769,88.29907992319828,3.9916096678724107,7182.877342611022,2019
+2007,46,"(45,50]",HS,351.7399607586658,88.29907992319828,3.98350652197742,7011.315122859404,2019
+2007,46,"(45,50]",HS,718.5054283845651,88.29907992319828,8.137179107749644,5948.919771952341,2019
+2007,46,"(45,50]",HS,1261.1408763897973,88.29907992319828,14.282604954510578,6228.887674200354,2019
+2007,46,"(45,50]",HS,582.7034663178548,88.29907992319828,6.599202016880413,6280.106557773913,2019
+2007,44,"(40,45]",HS,7741.284238064095,220.74769980799567,35.06847067850489,921.5069211983789,2019
+2007,44,"(40,45]",HS,7766.75604970569,220.74769980799567,35.18385947604955,907.7522474228665,2019
+2007,44,"(40,45]",HS,7923.593721386527,220.74769980799567,35.89434330812233,909.60568871863,2019
+2007,44,"(40,45]",HS,7890.108306082408,220.74769980799567,35.74265241696811,905.5363842055256,2019
+2007,44,"(40,45]",HS,7735.274035317201,220.74769980799567,35.04124410829772,936.7812777426683,2019
+2007,59,"(55,60]",HS,935.0158273381295,105.95889590783793,8.824325879644855,7808.518157377368,2019
+2007,59,"(55,60]",HS,936.01752779594506,105.95889590783793,8.833779549855677,7999.934967725823,2019
+2007,59,"(55,60]",HS,935.0158273381295,105.95889590783793,8.824325879644855,7561.0876328749555,2019
+2007,59,"(55,60]",HS,933.5848266841073,105.95889590783793,8.810820636486536,7954.4101074001765,2019
+2007,59,"(55,60]",HS,933.2986265533029,105.95889590783793,8.808119587854874,8062.6959913431,2019
+2007,63,"(60,65]",College,5575.035448005232,491.5315449058038,11.342172248728454,215.06012329657202,2019
+2007,63,"(60,65]",College,5391.724264224984,467.9851235929509,11.521144567224866,210.00825278164197,2019
+2007,63,"(60,65]",College,5192.528973185089,459.1552156006311,11.308875074831997,210.46504625428915,2019
+2007,63,"(60,65]",College,4297.438064094179,571.0007168366822,7.526151784715419,209.1394190024942,2019
+2007,63,"(60,65]",College,5478.0136036625245,462.09851826473766,11.854644382400192,213.63593657269053,2019
+2007,52,"(50,55]",NoHS,0.30194113799869193,14.716513320533048,0.020517165406116405,7389.036449654168,2019
+2007,52,"(50,55]",NoHS,0.30194113799869193,16.18816465258635,0.018651968551014916,7360.157003990125,2019
+2007,52,"(50,55]",NoHS,0.30194113799869193,16.18816465258635,0.018651968551014916,7373.0544915477585,2019
+2007,52,"(50,55]",NoHS,0.30194113799869193,16.18816465258635,0.018651968551014916,7392.550706276667,2019
+2007,52,"(50,55]",NoHS,0.30194113799869193,14.716513320533048,0.020517165406116405,7392.067791248688,2019
+2007,79,"(75,80]",NoHS,0.14310006540222367,10.595889590783795,0.013505243158317803,8081.178399515884,2019
+2007,79,"(75,80]",NoHS,0.028620013080444737,10.595889590783795,0.002701048631663561,8090.9357023374705,2019
+2007,79,"(75,80]",NoHS,0.10017004578155657,10.595889590783795,0.009453670210822463,8091.101548956974,2019
+2007,79,"(75,80]",NoHS,0.7727403531720078,10.595889590783795,0.07292831305491614,8113.695654609192,2019
+2007,79,"(75,80]",NoHS,0.057240026160889475,10.595889590783795,0.005402097263327122,8117.2172973687875,2019
+2007,43,"(40,45]",HS,27.203322432962718,22.07476998079957,1.232326427710183,6202.933377952895,2019
+2007,43,"(40,45]",HS,27.203322432962718,22.07476998079957,1.232326427710183,6241.565861195773,2019
+2007,43,"(40,45]",HS,27.203322432962718,22.07476998079957,1.232326427710183,6199.003349463569,2019
+2007,43,"(40,45]",HS,27.203322432962718,22.07476998079957,1.232326427710183,6213.282532980772,2019
+2007,43,"(40,45]",HS,27.203322432962718,22.07476998079957,1.232326427710183,6241.141631879077,2019
+2007,65,"(60,65]",College,941.1691301504252,175.12650851434324,5.3742242572793675,6946.37759800128,2019
+2007,65,"(60,65]",College,941.026030085023,175.12650851434324,5.37340713332357,7105.159534952155,2019
+2007,65,"(60,65]",College,942.6001308044474,175.12650851434324,5.382395496837342,6688.743099002425,2019
+2007,65,"(60,65]",College,943.8880313930673,175.12650851434324,5.389749612439517,6999.714794146578,2019
+2007,65,"(60,65]",College,942.6001308044474,175.12650851434324,5.382395496837342,7058.196984204372,2019
+2007,55,"(50,55]",College,342.29535644211904,29.433026641066096,11.629634988490627,11145.89973725232,2019
+2007,55,"(50,55]",College,342.29535644211904,29.433026641066096,11.629634988490627,10924.558674094797,2019
+2007,55,"(50,55]",College,342.1522563767168,29.433026641066096,11.624773100953632,11511.554171586444,2019
+2007,55,"(50,55]",College,342.29535644211904,29.433026641066096,11.629634988490627,11080.528373450688,2019
+2007,55,"(50,55]",College,342.29535644211904,29.433026641066096,11.629634988490627,10900.620422813483,2019
+2007,48,"(45,50]",College,874.098129496403,220.74769980799567,3.959715685629728,7324.220297348996,2019
+2007,48,"(45,50]",College,866.4565860039241,223.69100247210233,3.8734530062825594,7491.056531787894,2019
+2007,48,"(45,50]",College,941.4410202746893,222.219351140049,4.236539326772519,7050.997308730113,2019
+2007,48,"(45,50]",College,851.4453891432308,226.63430513620895,3.756913096768407,7380.197367522208,2019
+2007,48,"(45,50]",College,930.4366252452584,225.16265380415567,4.132286636017993,7441.480090058782,2019
+2007,83,"(80,85]",NoHS,557.6609548724657,250.1807264490618,2.2290324390196723,457.4354711808613,2019
+2007,83,"(80,85]",NoHS,557.6609548724657,250.1807264490618,2.2290324390196723,474.4791539474683,2019
+2007,83,"(80,85]",NoHS,557.5178548070635,250.1807264490618,2.2284604522506144,466.522408182886,2019
+2007,83,"(80,85]",NoHS,557.5178548070635,250.1807264490618,2.2284604522506144,457.590778375994,2019
+2007,83,"(80,85]",NoHS,557.6609548724657,250.1807264490618,2.2290324390196723,452.99677996307867,2019
+2007,59,"(55,60]",HS,1469.6376716808372,95.65733658346481,15.363564616902334,372.1736451519661,2019
+2007,59,"(55,60]",HS,1472.2134728580772,95.65733658346481,15.390491994030304,387.9120477550167,2019
+2007,59,"(55,60]",HS,1472.7858731196861,95.65733658346481,15.396475855614296,376.5491200473506,2019
+2007,59,"(55,60]",HS,1471.7841726618706,95.65733658346481,15.386004097842308,373.3296945341973,2019
+2007,59,"(55,60]",HS,1472.3565729234795,95.65733658346481,15.391987959426302,377.57632805903256,2019
+2007,58,"(55,60]",College,490.69012426422495,147.16513320533048,3.3342824728707656,2405.552595322378,2019
+2007,58,"(55,60]",College,1921.5476782210596,200.14458115924944,9.600797918641314,9532.878770525374,2019
+2007,58,"(55,60]",College,490.5470241988227,147.16513320533048,3.333310095363367,2457.531892741673,2019
+2007,58,"(55,60]",College,490.5470241988227,147.16513320533048,3.333310095363367,2425.5317471979774,2019
+2007,58,"(55,60]",College,490.5470241988227,147.16513320533048,3.333310095363367,2413.895302889901,2019
+2007,35,"(30,35]",HS,3.3628515369522565,52.979447953918964,0.0634746428440937,6244.300150064969,2019
+2007,35,"(30,35]",HS,3.219751471550033,52.979447953918964,0.06077359421243013,6250.460482115658,2019
+2007,35,"(30,35]",HS,3.3628515369522565,52.979447953918964,0.0634746428440937,6204.227649738454,2019
+2007,35,"(30,35]",HS,3.3628515369522565,52.979447953918964,0.0634746428440937,6219.620671899085,2019
+2007,35,"(30,35]",HS,3.219751471550033,52.979447953918964,0.06077359421243013,6276.022500130446,2019
+2007,32,"(30,35]",College,57.95552648790059,117.73210656426438,0.49226611312068397,7642.123111989825,2019
+2007,32,"(30,35]",College,57.95552648790059,117.73210656426438,0.49226611312068397,7566.718626365344,2019
+2007,32,"(30,35]",College,56.52452583387836,117.73210656426438,0.480111394278198,7673.628591151923,2019
+2007,32,"(30,35]",College,55.093525179856115,117.73210656426438,0.4679566754357119,7665.078632319537,2019
+2007,32,"(30,35]",College,57.95552648790059,117.73210656426438,0.49226611312068397,7615.620872620973,2019
+2007,36,"(35,40]",College,62710.74166121648,15996.849979419421,3.920193146894315,38.9891338197341,2019
+2007,36,"(35,40]",College,70840.2563767168,16335.329785791682,4.336628479844527,34.578716458495634,2019
+2007,36,"(35,40]",College,70024.58600392414,17851.130657806585,3.9226975224284333,38.35659319240422,2019
+2007,36,"(35,40]",College,61188.15696533682,17233.0370983442,3.5506310707829876,38.05052765633307,2019
+2007,36,"(35,40]",College,60069.11445389144,16629.660052202344,3.612167312219723,34.81837679532107,2019
+2007,34,"(30,35]",HS,20.320209287115762,82.41247459498507,0.24656715366185933,7542.924294427593,2019
+2007,34,"(30,35]",HS,36.23293655984304,73.58256660266524,0.49241196974679385,7534.89176714673,2019
+2007,34,"(30,35]",College,29.621713538260302,50.03614528981236,0.5920063059752017,7577.0230419540985,2019
+2007,34,"(30,35]",HS,17.15769784172662,42.67788862954583,0.40202780392112397,7602.323314082865,2019
+2007,34,"(30,35]",College,27.346422498364944,57.39440195007889,0.4764649786254521,7508.014129333496,2019
+2007,84,"(80,85]",NoHS,4.722302158273381,29.433026641066096,0.1604422887208155,6730.562108920081,2019
+2007,84,"(80,85]",NoHS,4.722302158273381,29.433026641066096,0.1604422887208155,6739.315114802228,2019
+2007,84,"(80,85]",NoHS,4.722302158273381,29.433026641066096,0.1604422887208155,6738.055202528773,2019
+2007,84,"(80,85]",NoHS,4.722302158273381,29.433026641066096,0.1604422887208155,6759.5231720617685,2019
+2007,84,"(80,85]",NoHS,4.865402223675605,29.433026641066096,0.1653041762578099,6762.328906393443,2019
+2007,54,"(50,55]",College,16895.538521909744,1340.6743635005607,12.60226866559508,370.8345603491381,2019
+2007,54,"(50,55]",College,16386.10228907783,1353.9192254890404,12.10271778448165,360.04273283239127,2019
+2007,54,"(50,55]",College,20116.7209941138,1339.2027121685073,15.021415959903297,362.85078718859967,2019
+2007,54,"(50,55]",College,21457.568606932637,1339.2027121685073,16.02264422851072,359.56099169381235,2019
+2007,54,"(50,55]",College,20807.89431000654,1340.6743635005607,15.520468561564941,363.43904207130316,2019
+2007,43,"(40,45]",College,474.9491170699804,207.50283781951597,2.288880104295666,6742.066341753363,2019
+2007,43,"(40,45]",College,1160.1122302158274,223.69100247210233,5.186226613475484,6897.955915100433,2019
+2007,43,"(40,45]",College,592.1480706344015,194.2579758310362,3.0482561557701318,6487.492305448984,2019
+2007,43,"(40,45]",College,302.91421844342705,80.94082326293177,3.7424158321126413,7807.586721003371,2019
+2007,43,"(40,45]",College,535.8954349247875,110.37384990399784,4.855275369944099,6849.608469367035,2019
+2007,57,"(55,60]",HS,6071.163374754742,696.0910800612131,8.721794530423884,107.8275822688104,2019
+2007,57,"(55,60]",HS,6043.7740222367565,565.114111508469,10.694785175517922,106.51869118387386,2019
+2007,57,"(55,60]",HS,6257.7658600392415,719.637501374066,8.695719508906565,106.77509231936438,2019
+2007,57,"(55,60]",HS,6153.302812295618,648.9982374355073,9.481231931553726,106.27437005914408,2019
+2007,57,"(55,60]",HS,6053.132766514062,615.1502567982814,9.840088172959979,109.45894114483572,2019
+2007,40,"(35,40]",NoHS,24.327011118378024,44.14953996159914,0.5510139208593664,6416.5481670936515,2019
+2007,40,"(35,40]",NoHS,24.47011118378025,44.14953996159914,0.5542551792173628,6421.916050048254,2019
+2007,40,"(35,40]",NoHS,24.47011118378025,44.14953996159914,0.5542551792173628,6414.328448310594,2019
+2007,40,"(35,40]",NoHS,24.47011118378025,44.14953996159914,0.5542551792173628,6456.4102608494395,2019
+2007,40,"(35,40]",NoHS,24.47011118378025,44.14953996159914,0.5542551792173628,6455.366093890852,2019
+2007,43,"(40,45]",HS,1836.9741085676915,161.88164652586354,11.347636671549429,2779.1881110788154,2019
+2007,43,"(40,45]",HS,1809.928196206671,175.12650851434324,10.334975621685702,2816.866279701325,2019
+2007,43,"(40,45]",HS,1814.5073982995423,175.12650851434324,10.36112358827122,2807.2723741384207,2019
+2007,43,"(40,45]",HS,1860.871819489863,157.4666925297036,11.817558301345784,3016.564326337867,2019
+2007,43,"(40,45]",HS,1841.124010464356,167.76825185407677,10.974209900367491,2891.422718746528,2019
+2007,55,"(50,55]",HS,130.57880967952912,98.60063924757141,1.324320112688776,8145.269331688525,2019
+2007,55,"(50,55]",HS,79.7782864617397,97.1289879155181,0.8213643339013285,7946.336316063435,2019
+2007,55,"(50,55]",HS,121.82108567691301,98.60063924757141,1.2354999582815944,8424.009694315875,2019
+2007,55,"(50,55]",HS,137.13279267495093,97.1289879155181,1.411862674758104,8114.574816353593,2019
+2007,55,"(50,55]",HS,151.39986919555267,98.60063924757141,1.5354856758627125,7879.2646864656535,2019
+2007,81,"(80,85]",HS,395.385480706344,46.94567749250042,8.422191388536397,9518.991271770525,2019
+2007,81,"(80,85]",HS,395.385480706344,48.41732882455373,8.166197729310367,9486.278833581842,2019
+2007,81,"(80,85]",HS,395.2423806409418,46.94567749250042,8.41914318318405,9596.998386050509,2019
+2007,81,"(80,85]",HS,395.2423806409418,47.09284262570575,8.392833360736601,9539.33191278355,2019
+2007,81,"(80,85]",HS,395.385480706344,48.56449395775905,8.141451675585186,9613.911702617905,2019
+2007,60,"(55,60]",College,4980.683636363637,588.6605328213219,8.46104564288063,2225.137309592668,2019
+2007,60,"(55,60]",College,5131.310765206017,588.6605328213219,8.716926783952648,2228.8946790782475,2019
+2007,60,"(55,60]",College,5203.976978417266,588.6605328213219,8.840370108516934,2175.314571728947,2019
+2007,60,"(55,60]",College,5016.887952910399,588.6605328213219,8.52254852022361,2162.8776749452372,2019
+2007,60,"(55,60]",College,5152.904565075212,588.6605328213219,8.753609725419269,2299.8514651061987,2019
+2007,52,"(50,55]",HS,1173.5636363636365,88.29907992319828,13.29077989696372,5853.753304037583,2019
+2007,52,"(50,55]",HS,1167.8253237410072,88.29907992319828,13.225792666885894,5987.3293427677945,2019
+2007,52,"(50,55]",HS,1179.860039241334,88.29907992319828,13.362087580839635,5634.115757154538,2019
+2007,52,"(50,55]",HS,1196.31654676259,88.29907992319828,13.548459936424422,5899.268361328144,2019
+2007,52,"(50,55]",HS,1168.268933943754,88.29907992319828,13.230816617340787,5947.776851956346,2019
+2007,72,"(70,75]",HS,434.8381687377371,41.206237297492535,10.552726899046366,11912.704068443974,2019
+2007,72,"(70,75]",HS,436.2691693917593,41.206237297492535,10.587454667167753,11719.153129548738,2019
+2007,72,"(70,75]",HS,434.8381687377371,41.206237297492535,10.552726899046366,12402.078767960305,2019
+2007,72,"(70,75]",HS,434.8381687377371,41.206237297492535,10.552726899046366,11914.375113529906,2019
+2007,72,"(70,75]",HS,434.8381687377371,41.206237297492535,10.552726899046366,11647.821158748047,2019
+2007,24,"(20,25]",HS,32.626814911707,60.3377046141855,0.5407367602120612,12796.560853998355,2019
+2007,24,"(20,25]",HS,32.52664486592544,60.3377046141855,0.5390766034921118,12726.101189077312,2019
+2007,24,"(20,25]",HS,32.769914977109224,60.3377046141855,0.5431084126691316,13142.397723915143,2019
+2007,24,"(20,25]",HS,32.48371484630478,60.3377046141855,0.5383651077549908,12871.255719209486,2019
+2007,24,"(20,25]",HS,32.48371484630478,60.3377046141855,0.5383651077549908,12802.504235215647,2019
+2007,67,"(65,70]",HS,1352.1525179856114,83.88412592703838,16.119289591950935,571.9209140096311,2019
+2007,67,"(65,70]",HS,1381.5738914323085,83.88412592703838,16.470027864795163,593.705964183673,2019
+2007,67,"(65,70]",HS,1625.1874427730545,83.88412592703838,19.374195353559827,576.524531232434,2019
+2007,67,"(65,70]",HS,1516.4313930673643,83.88412592703838,18.077692010361314,568.502190729377,2019
+2007,67,"(65,70]",HS,1407.4034532374103,83.88412592703838,16.777947408804813,563.6284242780949,2019
+2007,34,"(30,35]",College,262.5456899934598,117.73210656426438,2.230026266030911,9115.144138325735,2019
+2007,34,"(30,35]",College,262.5456899934598,117.73210656426438,2.230026266030911,9021.029779955237,2019
+2007,34,"(30,35]",College,262.5456899934598,116.26045523221109,2.2582544466135808,9159.506325678183,2019
+2007,34,"(30,35]",College,262.5456899934598,117.73210656426438,2.230026266030911,9111.715772268668,2019
+2007,34,"(30,35]",College,262.5456899934598,117.73210656426438,2.230026266030911,9054.840047436284,2019
+2007,85,"(80,85]",College,46115.4270765206,515.0779662186567,89.53096443838962,269.70469057858384,2019
+2007,85,"(80,85]",College,58031.36952256377,515.0779662186567,112.66521445013389,296.7474846035524,2019
+2007,85,"(80,85]",College,56092.36363636363,515.0779662186567,108.90072438577533,269.73737647159976,2019
+2007,85,"(80,85]",College,56908.03400915631,515.0779662186567,110.48431061211068,276.22840572057936,2019
+2007,85,"(80,85]",College,51096.740353172005,515.0779662186567,99.20195330483392,292.2926850619897,2019
+2007,27,"(25,30]",HS,12.44970568999346,147.16513320533048,0.08459684314370272,6451.5721774990725,2019
+2007,27,"(25,30]",HS,12.44970568999346,147.16513320533048,0.08459684314370272,6449.785315578988,2019
+2007,27,"(25,30]",HS,12.306605624591237,147.16513320533048,0.08362446563630385,6496.329364222805,2019
+2007,27,"(25,30]",HS,12.592805755395684,147.16513320533048,0.0855692206511016,6489.347554928815,2019
+2007,27,"(25,30]",HS,12.592805755395684,147.16513320533048,0.0855692206511016,6413.253409118192,2019
+2007,71,"(70,75]",NoHS,-14.694945716154349,16.18816465258635,-0.9077586021344654,7723.59217572147,2019
+2007,71,"(70,75]",NoHS,-14.680635709614128,16.18816465258635,-0.9068746225822846,7714.432542703806,2019
+2007,71,"(70,75]",NoHS,-14.680635709614128,16.18816465258635,-0.9068746225822846,7660.027912369359,2019
+2007,71,"(70,75]",NoHS,-14.680635709614128,16.18816465258635,-0.9068746225822846,7633.097052600728,2019
+2007,71,"(70,75]",NoHS,-14.680635709614128,16.18816465258635,-0.9068746225822846,7577.617614113835,2019
+2007,83,"(80,85]",HS,22322.179202092873,960.988319830808,23.22835641334634,23.591958236865175,2019
+2007,83,"(80,85]",HS,26809.797253106604,947.7434578423283,28.288031989313744,27.185641439450364,2019
+2007,83,"(80,85]",HS,21160.206671026815,960.988319830808,22.019213172905463,24.592171632713807,2019
+2007,83,"(80,85]",HS,24481.559189012427,906.5372205448358,27.00557531912349,27.337419171612897,2019
+2007,83,"(80,85]",HS,25788.062786134728,960.988319830808,26.834938837419983,27.283441807509842,2019
+2007,19,"(15,20]",NoHS,-0.014310006540222369,13.686357388095734,-0.0010455672122568623,8471.839442145467,2019
+2007,19,"(15,20]",NoHS,0.271890124264225,13.686357388095734,0.019865777032880384,8438.585131441623,2019
+2007,19,"(15,20]",NoHS,0.11448005232177895,12.214706056042429,0.009372313324326574,8446.86542139468,2019
+2007,19,"(15,20]",NoHS,0.5151602354480053,13.833522521301063,0.037239989645063566,8462.10564015929,2019
+2007,19,"(15,20]",NoHS,0,13.392027121685073,0,8460.917740928171,2019
+2007,59,"(55,60]",College,652.6078482668411,33.84798063722601,19.28055488040261,5829.147314569874,2019
+2007,59,"(55,60]",College,612.6256899934598,48.56449395775905,12.61468286947077,5957.818616516447,2019
+2007,59,"(55,60]",College,729.0662132112492,26.489723976959482,27.522605137199022,5616.2877002521645,2019
+2007,59,"(55,60]",College,853.835160235448,25.01807264490618,34.128734549393585,5851.963528541742,2019
+2007,59,"(55,60]",College,696.6111183780249,50.03614528981236,13.922157958875758,5901.604351326847,2019
+2007,65,"(60,65]",College,1443.4217396991498,66.22430994239872,21.795949870291203,6287.435574530212,2019
+2007,65,"(60,65]",College,1423.4020405493786,42.67788862954583,33.352213201192896,6431.7791754864365,2019
+2007,65,"(60,65]",College,1442.0050490516678,42.67788862954583,33.7881065665786,6053.307151758112,2019
+2007,65,"(60,65]",College,1456.1576455199477,42.67788862954583,34.119720826860494,6335.1975428979595,2019
+2007,65,"(60,65]",College,1438.9999476782211,42.67788862954583,33.71769302293937,6388.312937683992,2019
+2007,85,"(80,85]",NoHS,1.1448005232177894,11.920375789631768,0.09603728468137106,7917.237975630618,2019
+2007,85,"(80,85]",NoHS,1.1448005232177894,11.920375789631768,0.09603728468137106,7926.7973349987315,2019
+2007,85,"(80,85]",NoHS,1.1448005232177894,11.920375789631768,0.09603728468137106,7926.959817137982,2019
+2007,85,"(80,85]",NoHS,1.1448005232177894,11.920375789631768,0.09603728468137106,7949.09556299726,2019
+2007,85,"(80,85]",NoHS,1.1448005232177894,11.920375789631768,0.09603728468137106,7952.545763254508,2019
+2007,81,"(80,85]",College,8648.9679529104,304.631825735034,28.3915442256949,1245.618778944066,2019
+2007,81,"(80,85]",College,8694.759973839109,304.631825735034,28.54186345389182,1243.9770241387832,2019
+2007,81,"(80,85]",College,8617.485938521912,304.631825735034,28.288199756309517,1238.879722968621,2019
+2007,81,"(80,85]",College,8553.090909090908,304.631825735034,28.076813341657576,1230.831480449989,2019
+2007,81,"(80,85]",College,8513.022890778286,304.631825735034,27.945284016985262,1255.3476801635277,2019
+2007,84,"(80,85]",College,162.5616742969261,42.67788862954583,3.809037408293552,9285.767226922742,2019
+2007,84,"(80,85]",College,117.9144538914323,39.73458596543923,2.9675520966543654,9033.146874883929,2019
+2007,84,"(80,85]",College,116.48345323741007,42.67788862954583,2.7293630724920344,9628.251570126671,2019
+2007,84,"(80,85]",College,182.5956834532374,44.14953996159914,4.135845664803244,9229.166263713192,2019
+2007,84,"(80,85]",College,172.43557880967953,41.206237297492535,4.184696058627331,9247.047576626414,2019
+2007,32,"(30,35]",HS,381.2615042511445,111.84550123605116,3.4088228854774223,6180.6807089789345,2019
+2007,32,"(30,35]",HS,381.2615042511445,111.84550123605116,3.4088228854774223,6227.265396433353,2019
+2007,32,"(30,35]",HS,381.2615042511445,111.84550123605116,3.4088228854774223,6266.925178514297,2019
+2007,32,"(30,35]",HS,381.2615042511445,111.84550123605116,3.4088228854774223,6201.237977536872,2019
+2007,32,"(30,35]",HS,381.2615042511445,111.84550123605116,3.4088228854774223,6255.320234056786,2019
+2007,32,"(30,35]",HS,298.07743623283193,154.52338986559698,1.9290117599160679,9535.277799209372,2019
+2007,32,"(30,35]",HS,298.07743623283193,154.52338986559698,1.9290117599160679,9444.698951212335,2019
+2007,32,"(30,35]",HS,297.9343361674297,154.52338986559698,1.9280856860994975,8888.827394197568,2019
+2007,32,"(30,35]",HS,298.07743623283193,154.52338986559698,1.9290117599160679,9716.495306521172,2019
+2007,32,"(30,35]",HS,297.9343361674297,154.52338986559698,1.9280856860994975,9382.101279009772,2019
+2007,61,"(60,65]",College,0.9015304120340092,42.67788862954583,0.021124063091768817,7195.937235115476,2019
+2007,61,"(60,65]",College,0.9015304120340092,63.28100727829211,0.014246461154913851,7143.846831992023,2019
+2007,61,"(60,65]",College,0.9015304120340092,36.79128330133262,0.024503913186451825,7252.767112702782,2019
+2007,61,"(60,65]",College,0.9015304120340092,82.41247459498507,0.010939246958237421,7210.149364785868,2019
+2007,61,"(60,65]",College,0.9015304120340092,91.2423825873049,0.009880610155827347,7066.487463979846,2019
+2007,82,"(80,85]",HS,-15.583597122302159,20.603118648746268,-0.7563707896838445,9311.055347005662,2019
+2007,82,"(80,85]",HS,-15.583597122302159,20.603118648746268,-0.7563707896838445,9312.377262042366,2019
+2007,82,"(80,85]",HS,-15.583597122302159,20.603118648746268,-0.7563707896838445,9392.930343182303,2019
+2007,82,"(80,85]",HS,-15.583597122302159,20.603118648746268,-0.7563707896838445,9353.615217637172,2019
+2007,82,"(80,85]",HS,-15.583597122302159,20.603118648746268,-0.7563707896838445,9523.725649898843,2019
+2007,47,"(45,50]",College,392.4089993459778,139.80687654506394,2.806793263988647,6595.137034656002,2019
+2007,47,"(45,50]",College,589.600889470242,126.56201455658422,4.658592797656829,6757.978269556891,2019
+2007,47,"(45,50]",College,426.89611510791366,153.0517385335437,2.7892274808387927,6384.957556491783,2019
+2007,47,"(45,50]",College,471.257135382603,144.22183054122385,3.2675853136387736,6719.6038079073915,2019
+2007,47,"(45,50]",College,375.3944015696534,130.97696855274413,2.8661100170331313,6810.894534217332,2019
+2007,28,"(25,30]",NoHS,188.89208633093526,26.489723976959482,7.130768387591802,11522.471954676845,2019
+2007,28,"(25,30]",NoHS,186.03008502289077,14.716513320533048,12.640907596185464,11541.00003443764,2019
+2007,28,"(25,30]",NoHS,189.7506867233486,26.489723976959482,7.163180971171764,11609.91610898346,2019
+2007,28,"(25,30]",NoHS,189.7506867233486,41.206237297492535,4.604902052896134,11547.002766347552,2019
+2007,28,"(25,30]",NoHS,187.60418574231522,19.131467316692962,9.806053170768724,11623.542097124384,2019
+2007,69,"(65,70]",HS,191.29616742969262,35.319631969279314,5.416142716211772,8625.025807626527,2019
+2007,69,"(65,70]",HS,191.29616742969262,35.319631969279314,5.416142716211772,8655.438967539354,2019
+2007,69,"(65,70]",HS,191.29616742969262,35.319631969279314,5.416142716211772,8592.61953784383,2019
+2007,69,"(65,70]",HS,191.29616742969262,35.319631969279314,5.416142716211772,8601.132219654097,2019
+2007,69,"(65,70]",HS,191.29616742969262,35.319631969279314,5.416142716211772,8600.357648049518,2019
+2007,40,"(35,40]",HS,268.24107259646826,86.82742859114498,3.089358707829159,6904.23610876665,2019
+2007,40,"(35,40]",HS,301.5833878351864,75.05421793471854,4.018207052633615,6829.403146050409,2019
+2007,40,"(35,40]",HS,334.49640287769785,86.82742859114498,3.852427836516757,7037.920920737383,2019
+2007,40,"(35,40]",HS,270.6737737083061,77.99752059882516,3.470286896688651,6845.322820957243,2019
+2007,40,"(35,40]",HS,274.82367560497056,83.88412592703838,3.2762298297536008,6827.553993925035,2019
+2007,88,"(85,90]",College,172807.78207979072,8167.664892895841,21.15755045607923,23.404783135871885,2019
+2007,88,"(85,90]",College,218661.04983649444,8138.231866254776,26.868373060636635,21.44574749038843,2019
+2007,88,"(85,90]",College,223142.5145846959,8123.5153529342415,27.468713345152484,21.932647800491637,2019
+2007,88,"(85,90]",College,200548.874558535,8167.664892895841,24.554003768319454,22.220136352616485,2019
+2007,88,"(85,90]",College,185473.56886854154,7711.4529799593165,24.051701975043365,21.171966886270983,2019
+2007,65,"(60,65]",NoHS,396.10098103335514,67.69596127445202,5.851175957565446,9598.567848392413,2019
+2007,65,"(60,65]",NoHS,398.9629823413996,66.22430994239872,6.024418868062406,9390.053808304792,2019
+2007,65,"(60,65]",NoHS,398.9629823413996,61.8093559462388,6.454734501495435,9898.642606750374,2019
+2007,65,"(60,65]",NoHS,401.82498364944405,54.451099285972276,7.379556866962325,9416.156725361932,2019
+2007,65,"(60,65]",NoHS,408.9799869195553,67.69596127445202,6.041423730752184,9337.695653125735,2019
+2007,52,"(50,55]",HS,283.6958796599084,89.77073125525159,3.160226899046366,7311.684940463332,2019
+2007,52,"(50,55]",HS,282.121778940484,89.77073125525159,3.1426922226834355,7143.162182578546,2019
+2007,52,"(50,55]",HS,283.5527795945062,88.29907992319828,3.211276718184808,7595.823048062746,2019
+2007,52,"(50,55]",HS,283.5527795945062,89.77073125525159,3.158632837558827,7297.595246941271,2019
+2007,52,"(50,55]",HS,283.5527795945062,89.77073125525159,3.158632837558827,7136.967565376561,2019
+2007,36,"(35,40]",College,62.334388489208635,70.63926393855863,0.8824325879644853,7546.648779906951,2019
+2007,36,"(35,40]",College,62.17697841726619,70.63926393855863,0.880204222843363,7420.11484241961,2019
+2007,36,"(35,40]",College,62.320078482668414,70.63926393855863,0.8822300093171106,7629.893399269608,2019
+2007,36,"(35,40]",College,62.320078482668414,70.63926393855863,0.8822300093171106,7455.206750941252,2019
+2007,36,"(35,40]",College,62.320078482668414,70.63926393855863,0.8822300093171106,7464.658410908846,2019
+2007,18,"(15,20]",HS,35.40295618051014,5.0036145289812355,7.0754763332495125,7107.450472683127,2019
+2007,18,"(15,20]",HS,48.12455199476782,3.679128330133262,13.08042222952976,7079.1717002982305,2019
+2007,18,"(15,20]",HS,22.108960104643558,3.9734585965439226,5.564160181226936,7085.714162808603,2019
+2007,18,"(15,20]",HS,30.637724002616093,3.2376329305172704,9.463001106095485,7098.245594707674,2019
+2007,18,"(15,20]",HS,37.86427730542838,5.886605328213219,6.432277211443603,7096.8143932959065,2019
+2007,55,"(50,55]",HS,0,11.773210656426437,0,8997.176872477217,2019
+2007,55,"(50,55]",HS,0,11.773210656426437,0,9006.816560045128,2019
+2007,55,"(50,55]",HS,0,11.773210656426437,0,9007.523607011555,2019
+2007,55,"(50,55]",HS,0,11.773210656426437,0,9031.914845075557,2019
+2007,55,"(50,55]",HS,0,11.773210656426437,0,9035.02133129068,2019
+2007,58,"(55,60]",College,30604.667887508178,930.0836418576887,32.90528562181827,387.4582592335604,2019
+2007,58,"(55,60]",College,30604.81098757358,930.0836418576887,32.90543947901881,424.8747687224488,2019
+2007,58,"(55,60]",College,30604.81098757358,930.0836418576887,32.90543947901881,386.2348032236929,2019
+2007,58,"(55,60]",College,30604.667887508178,930.0836418576887,32.90528562181827,395.62861637168123,2019
+2007,58,"(55,60]",College,30604.725127534337,930.0836418576887,32.90534716469848,420.4713912640058,2019
+2007,51,"(50,55]",College,98.75335513407457,41.206237297492535,2.3965632780570303,7877.947993139435,2019
+2007,51,"(50,55]",College,76.71594506213212,41.206237297492535,1.861755648987645,7689.784088853761,2019
+2007,51,"(50,55]",College,83.01234793982995,41.206237297492535,2.0145578287217547,8064.3554905086075,2019
+2007,51,"(50,55]",College,91.74145192936561,41.206237297492535,2.2263972142622257,7843.752461207664,2019
+2007,51,"(50,55]",College,85.30194898626553,41.206237297492535,2.0701222577159766,7747.92826770355,2019
+2007,70,"(65,70]",HS,1637.579908436887,55.77558548482025,29.360156315751574,6735.000016741807,2019
+2007,70,"(65,70]",HS,1902.1862393721387,51.50779662186566,36.93006426457463,3013.0678749196586,2019
+2007,70,"(65,70]",HS,2586.6338521909747,52.83228282071364,48.95934292615591,3000.464198857817,2019
+2007,70,"(65,70]",HS,2468.0897580117726,42.53072349634051,58.03074942339356,3226.8756634633887,2019
+2007,70,"(65,70]",HS,1886.373682145193,41.206237297492535,45.77883849297693,3093.538366846974,2019
+2007,53,"(50,55]",College,38882.86357096142,504.77640689428347,77.02987508904066,41.91639855258005,2019
+2007,53,"(50,55]",College,37768.8295618051,501.8331042301769,75.2617339179792,45.712183270907566,2019
+2007,53,"(50,55]",College,40082.757619359065,501.8331042301769,79.87268532403199,44.67382881447458,2019
+2007,53,"(50,55]",College,39172.64120340092,495.94649890196365,78.98561899343981,45.42233145890607,2019
+2007,53,"(50,55]",College,37923.3776324395,503.3047555622302,75.3487369497953,45.779738656264875,2019
+2007,59,"(55,60]",College,1365.8901242642248,103.01559324373132,13.259061868746183,10308.172596367334,2019
+2007,59,"(55,60]",College,1322.960104643558,103.01559324373132,12.842328651289522,10566.28633117244,2019
+2007,59,"(55,60]",College,1331.5461085676914,103.01559324373132,12.925675294780854,9905.428279494015,2019
+2007,59,"(55,60]",College,1302.9260954872466,103.01559324373132,12.647853149809745,10385.869665651448,2019
+2007,59,"(55,60]",College,1079.6899934597777,103.01559324373132,10.480840419035093,10488.5455757981,2019
+2007,67,"(65,70]",HS,120.91955526487901,26.489723976959482,4.5647721875114184,7501.656380576047,2019
+2007,67,"(65,70]",HS,113.04905166775671,26.489723976959482,4.267656838028427,7335.550918243122,2019
+2007,67,"(65,70]",HS,120.20405493786788,27.96137530901279,4.2989321379740035,7736.1765466300685,2019
+2007,67,"(65,70]",HS,111.33185088293003,27.96137530901279,3.981630003980685,7397.371949925691,2019
+2007,67,"(65,70]",HS,115.19555264879007,27.96137530901279,4.119809965558421,7315.059675606806,2019
+2007,63,"(60,65]",College,3319.5208371484628,147.16513320533048,22.556435514633343,1660.1248560897045,2019
+2007,63,"(60,65]",College,3322.397148463048,145.69348187327716,22.804020507608143,1659.9616846408019,2019
+2007,63,"(60,65]",College,3322.5259385219097,147.16513320533048,22.576855442288718,1613.0511059516377,2019
+2007,63,"(60,65]",College,3322.54024852845,147.16513320533048,22.576952680039458,1595.7354632845215,2019
+2007,63,"(60,65]",College,3322.382838456507,145.69348187327716,22.803922287657898,1687.760191342451,2019
+2007,67,"(65,70]",College,8408.846043165468,294.33026641066095,28.569423544886547,3404.627143404405,2019
+2007,67,"(65,70]",College,8408.846043165468,294.33026641066095,28.569423544886547,3474.8595217950096,2019
+2007,67,"(65,70]",College,8408.846043165468,294.33026641066095,28.569423544886547,3372.1208374254843,2019
+2007,67,"(65,70]",College,8408.846043165468,294.33026641066095,28.569423544886547,3358.41466829147,2019
+2007,67,"(65,70]",College,8408.846043165468,294.33026641066095,28.569423544886547,3432.1781916584064,2019
+2007,38,"(35,40]",HS,145.1463963374755,132.44861988479744,1.09586945083854,6480.07503179131,2019
+2007,38,"(35,40]",HS,149.58249836494443,132.44861988479744,1.1293624538711682,6371.424234212243,2019
+2007,38,"(35,40]",HS,146.57739699149772,132.44861988479744,1.1066736453651942,6551.554624282636,2019
+2007,38,"(35,40]",HS,149.4393982995422,132.44861988479744,1.1282820344185027,6401.556575978887,2019
+2007,38,"(35,40]",HS,148.00839764551995,132.44861988479744,1.1174778398918483,6409.672425483919,2019
+2007,39,"(35,40]",College,898.4108306082406,147.16513320533048,6.10478046695166,2561.7300539631906,2019
+2007,39,"(35,40]",College,970.7336036625245,147.16513320533048,6.596220059191055,2589.2895908291507,2019
+2007,39,"(35,40]",College,999.3106867233486,148.63678453738376,6.723172126157042,2592.4482879123148,2019
+2007,39,"(35,40]",College,907.6694048397646,148.63678453738376,6.106627021465712,2578.2249050038276,2019
+2007,39,"(35,40]",College,1074.567011118378,148.63678453738376,7.22948235500959,2661.9464904493775,2019
+2007,52,"(50,55]",HS,77.00214519293655,98.60063924757141,0.7809497563154304,8131.058474750682,2019
+2007,52,"(50,55]",HS,77.00214519293655,98.60063924757141,0.7809497563154304,7933.1769582268535,2019
+2007,52,"(50,55]",HS,77.14524525833878,98.60063924757141,0.782401066027966,8329.624420818258,2019
+2007,52,"(50,55]",HS,77.159555264879,98.60063924757141,0.7825461969992197,8068.483089072749,2019
+2007,52,"(50,55]",HS,75.71424460431655,98.60063924757141,0.7678879689026097,7971.600445535177,2019
+2007,30,"(25,30]",HS,258.0094179202093,173.65485718228996,1.485759869356088,10007.818393768084,2019
+2007,30,"(25,30]",HS,256.2922171353826,173.65485718228996,1.4758712845350825,9936.640608762878,2019
+2007,30,"(25,30]",HS,259.1542184434271,173.65485718228996,1.4923522592367588,10256.993688490287,2019
+2007,30,"(25,30]",HS,260.29901896664484,172.18320585023665,1.5117561418449283,10175.841784467013,2019
+2007,30,"(25,30]",HS,259.01111837802483,173.65485718228996,1.4915282105016747,10062.989757886851,2019
+2007,57,"(55,60]",HS,186.6024852844997,36.79128330133262,5.071921078592569,10901.442293814272,2019
+2007,57,"(55,60]",HS,195.1884892086331,36.79128330133262,5.305291680368299,10620.919148085759,2019
+2007,57,"(55,60]",HS,190.75238718116418,36.79128330133262,5.184716869450839,11167.047762129132,2019
+2007,57,"(55,60]",HS,186.6024852844997,36.79128330133262,5.071921078592569,10798.3289355899,2019
+2007,57,"(55,60]",HS,195.04538914323086,36.79128330133262,5.3014021703387035,10664.152257956275,2019
+2007,48,"(45,50]",College,102.54550686723348,80.94082326293177,1.2669194941855249,8293.234026743005,2019
+2007,48,"(45,50]",College,102.53119686069327,80.94082326293177,1.266742698275089,8095.151062120017,2019
+2007,48,"(45,50]",College,102.53119686069327,80.94082326293177,1.266742698275089,8489.467995457737,2019
+2007,48,"(45,50]",College,102.53119686069327,80.94082326293177,1.266742698275089,8257.235877323117,2019
+2007,48,"(45,50]",College,103.9621975147155,80.94082326293177,1.2844222893187047,8156.360311395848,2019
+2007,64,"(60,65]",College,32892.694833224334,3885.1595166207244,8.466240496048949,559.6958627767664,2019
+2007,64,"(60,65]",College,33525.19712230216,5621.708088443624,5.96352507011506,626.5437497517546,2019
+2007,64,"(60,65]",College,38115.8472204055,3311.215497119935,11.511134582922287,561.8836463797996,2019
+2007,64,"(60,65]",College,33166.015958142576,2766.7045042602126,11.987552666745962,573.979385308114,2019
+2007,64,"(60,65]",College,35385.49797253107,5621.708088443624,6.2944388815335275,610.8282309163454,2019
+2007,22,"(20,25]",HS,10.732504905166776,30.9046779731194,0.34727768121388636,6593.66266893358,2019
+2007,22,"(20,25]",HS,10.732504905166776,29.433026641066096,0.3646415652745807,6597.292603449607,2019
+2007,22,"(20,25]",HS,10.732504905166776,35.319631969279314,0.3038679710621506,6557.8775167884,2019
+2007,22,"(20,25]",HS,10.732504905166776,22.07476998079957,0.486188753699441,6554.071582369035,2019
+2007,22,"(20,25]",HS,10.732504905166776,25.01807264490618,0.4289900767936244,6625.149857559862,2019
+2007,47,"(45,50]",HS,58.38482668410726,66.22430994239872,0.8816222733749862,8520.312774843629,2019
+2007,47,"(45,50]",HS,58.51361674296926,66.22430994239872,0.883567028389784,8548.492135280574,2019
+2007,47,"(45,50]",HS,58.52792674950948,66.22430994239872,0.883783112280317,8489.961902298766,2019
+2007,47,"(45,50]",HS,58.52792674950948,66.22430994239872,0.883783112280317,8499.034912626765,2019
+2007,47,"(45,50]",HS,58.52792674950948,66.22430994239872,0.883783112280317,8497.865283381707,2019
+2007,47,"(45,50]",HS,39.35251798561151,89.77073125525159,0.4383669090732665,9397.402136305047,2019
+2007,47,"(45,50]",HS,39.495618051013736,89.77073125525159,0.4399609705608056,9171.083313167395,2019
+2007,47,"(45,50]",HS,39.495618051013736,89.77073125525159,0.4399609705608056,9738.620040235084,2019
+2007,47,"(45,50]",HS,39.35251798561151,89.77073125525159,0.4383669090732665,9421.257839218655,2019
+2007,47,"(45,50]",HS,39.35251798561151,89.77073125525159,0.4383669090732665,9126.138111655993,2019
+2007,25,"(20,25]",HS,5.609522563767168,35.319631969279314,0.15882165954181737,5200.095232526436,2019
+2007,25,"(20,25]",HS,6.053132766514062,66.22430994239872,0.09140348569549489,5165.224100710208,2019
+2007,25,"(20,25]",HS,5.8527926749509485,52.979447953918964,0.11047288903503966,5161.17729856465,2019
+2007,25,"(20,25]",HS,6.067442773054284,22.07476998079957,0.274858708758084,5181.325998058173,2019
+2007,25,"(20,25]",HS,5.695382603008502,42.67788862954583,0.1334504303257776,5204.386326125716,2019
+2007,60,"(55,60]",College,436209.06736429036,17954.146251050315,24.295728756179212,24.755079029137033,2019
+2007,60,"(55,60]",College,481002.24983649445,17954.146251050315,26.79059439032674,22.093652968638946,2019
+2007,60,"(55,60]",College,456356.12557226943,17954.146251050315,25.417868340332397,24.35979354714505,2019
+2007,60,"(55,60]",College,485270.9247874428,17954.146251050315,27.028348661193206,24.232082971453217,2019
+2007,60,"(55,60]",College,436174.72334859386,17968.862764370853,24.273919227289827,22.409307515448265,2019
+2007,63,"(60,65]",College,229.24630477436233,47.09284262570575,4.8679648964156526,10169.017818189637,2019
+2007,63,"(60,65]",College,240.83741007194246,47.09284262570575,5.114097952975995,9920.658519296036,2019
+2007,63,"(60,65]",College,223.5223021582734,47.09284262570575,4.746417707990792,10517.013151281786,2019
+2007,63,"(60,65]",College,240.83741007194246,47.09284262570575,5.114097952975995,10130.697038280336,2019
+2007,63,"(60,65]",College,252.1423152387181,47.09284262570575,5.3541536501150935,9836.92247955314,2019
+2007,48,"(45,50]",HS,548.93185088293,104.48724457578463,5.2535776315241005,6120.674424979516,2019
+2007,48,"(45,50]",HS,547.5008502289078,104.48724457578463,5.239882173673412,6259.759373256479,2019
+2007,48,"(45,50]",HS,547.5008502289078,104.48724457578463,5.239882173673412,5891.696375584993,2019
+2007,48,"(45,50]",HS,547.5008502289078,104.48724457578463,5.239882173673412,6166.550747062717,2019
+2007,48,"(45,50]",HS,547.5008502289078,104.48724457578463,5.239882173673412,6217.374865147641,2019
+2007,25,"(20,25]",College,-122.5795160235448,60.3377046141855,-2.031557494726542,5875.034210661412,2019
+2007,25,"(20,25]",College,-123.00881621975148,58.86605328213219,-2.0896392634001972,5865.52308781339,2019
+2007,25,"(20,25]",College,-124.6258469587966,57.39440195007889,-2.1713937722915033,5859.409890626207,2019
+2007,25,"(20,25]",College,-122.79416612164813,60.3377046141855,-2.0351149734121474,5875.680159478538,2019
+2007,25,"(20,25]",College,-122.5795160235448,54.451099285972276,-2.251185331994276,5905.890309160296,2019
+2007,50,"(45,50]",HS,-1.5583597122302157,100.07229057962472,-0.015572339787608564,6127.321809545272,2019
+2007,50,"(45,50]",HS,-1.6442197514715502,75.05421793471854,-0.021907093254927755,6057.9405124568275,2019
+2007,50,"(45,50]",HS,-1.6442197514715502,94.1856852514115,-0.017457214937520553,6134.241482117173,2019
+2007,50,"(45,50]",HS,-1.5869797253106606,75.05421793471854,-0.021144444229516866,6128.270238494724,2019
+2007,50,"(45,50]",HS,-1.5869797253106606,76.52586926677185,-0.020737820302026155,6096.370408960338,2019
+2007,41,"(40,45]",NoHS,2.8620013080444737,64.7526586103454,0.04419897760904009,6382.670493255072,2019
+2007,41,"(40,45]",NoHS,1.4166906474820145,64.7526586103454,0.021878493916474846,6388.967334960892,2019
+2007,41,"(40,45]",NoHS,4.1499018966644865,64.7526586103454,0.06408851753310812,6341.710007807816,2019
+2007,41,"(40,45]",NoHS,1.202040549378679,64.7526586103454,0.01856357059579684,6357.444131085937,2019
+2007,41,"(40,45]",NoHS,6.010202746893395,64.7526586103454,0.09281785297898419,6415.095793588772,2019
+2007,68,"(65,70]",HS,130741.81496402877,2428.224697887953,53.84255216485804,286.40883887600677,2019
+2007,68,"(65,70]",HS,169117.23139306737,2016.1623249130278,83.88076163478685,331.95145820008395,2019
+2007,68,"(65,70]",HS,131625.8013080445,2295.776078003155,57.33390227784385,331.31571327411456,2019
+2007,68,"(65,70]",HS,165020.13342053632,2766.7045042602126,59.645015637353346,328.4458908773273,2019
+2007,68,"(65,70]",HS,132570.90568999347,2825.570557542345,46.91827826989478,351.3020646411225,2019
+2007,59,"(55,60]",College,33432.18207979071,3929.3090565823227,8.508412445639927,21.754961817095207,2019
+2007,59,"(55,60]",College,39986.165075212564,3914.59254326179,10.214642937498303,23.62273936971944,2019
+2007,59,"(55,60]",College,39986.165075212564,3929.3090565823227,10.176385847844752,23.26155739698094,2019
+2007,59,"(55,60]",College,50604.18992805755,3929.3090565823227,12.87864843394951,23.684545512847098,2019
+2007,59,"(55,60]",College,47028.11929365598,3914.59254326179,12.013541326186232,23.993615538202032,2019
+2007,43,"(40,45]",HS,1844.7029431000656,161.88164652586354,11.395380407162715,3075.1845032252963,2019
+2007,43,"(40,45]",HS,1842.41334205363,161.88164652586354,11.381236734327821,3116.875571129611,2019
+2007,43,"(40,45]",HS,1840.9823413996075,161.88164652586354,11.372396938806013,3106.2598702366645,2019
+2007,43,"(40,45]",HS,1845.9908436886856,161.88164652586354,11.403336223132342,3337.8423836649004,2019
+2007,43,"(40,45]",HS,1840.9823413996075,161.88164652586354,11.372396938806013,3199.372615879299,2019
+2007,49,"(45,50]",College,47323.47782864617,3988.175109864456,11.86594783955074,365.3083716590867,2019
+2007,49,"(45,50]",College,47322.04682799215,4002.891623184989,11.821965539586435,414.82184564605393,2019
+2007,49,"(45,50]",College,47322.04682799215,3988.175109864456,11.8655890286624,365.5241179375158,2019
+2007,49,"(45,50]",College,47322.04682799215,3988.175109864456,11.8655890286624,374.3219729618056,2019
+2007,49,"(45,50]",College,47322.04682799215,4002.891623184989,11.821965539586435,402.8889748097991,2019
+2007,52,"(50,55]",HS,1756.5533028122957,225.16265380415567,7.801263989098872,3181.595967274664,2019
+2007,52,"(50,55]",HS,1757.984303466318,225.16265380415567,7.807619397643962,3223.947567328688,2019
+2007,52,"(50,55]",HS,1755.1223021582732,223.69100247210233,7.846190873846898,3214.898183558896,2019
+2007,52,"(50,55]",HS,1757.984303466318,225.16265380415567,7.807619397643962,3454.069872461046,2019
+2007,52,"(50,55]",HS,1756.5533028122957,223.69100247210233,7.852588094290313,3311.130892515687,2019
+2007,26,"(25,30]",HS,17.028907782864618,73.58256660266524,0.2314258467609339,5784.182850266147,2019
+2007,26,"(25,30]",HS,15.741007194244606,73.58256660266524,0.21392305162775405,5790.367134691691,2019
+2007,26,"(25,30]",HS,18.173708306082407,73.58256660266524,0.246983886879316,5796.691771856523,2019
+2007,26,"(25,30]",HS,16.02720732504905,73.58256660266524,0.21781256165734955,5805.326909840094,2019
+2007,26,"(25,30]",HS,21.193119686069327,73.58256660266524,0.28801821769154884,5809.43653749405,2019
+2007,26,"(25,30]",HS,50.51432308698496,66.22430994239872,0.7627761335817895,7228.940673717103,2019
+2007,26,"(25,30]",HS,50.51432308698496,66.22430994239872,0.7627761335817895,7157.613040659698,2019
+2007,26,"(25,30]",HS,50.65742315238718,66.22430994239872,0.7649369724871203,7258.742763584312,2019
+2007,26,"(25,30]",HS,50.51432308698496,66.22430994239872,0.7627761335817895,7250.655070641364,2019
+2007,26,"(25,30]",HS,50.51432308698496,66.22430994239872,0.7627761335817895,7203.871316247901,2019
+2007,83,"(80,85]",HS,1285.0385873119687,82.70680486139572,15.537277609327333,8394.039327206578,2019
+2007,83,"(80,85]",HS,1305.07259646828,108.01920777271256,12.08185676768093,8585.758481530398,2019
+2007,83,"(80,85]",HS,1355.1576193590581,59.01321841533752,22.96362841662696,8081.806490940433,2019
+2007,83,"(80,85]",HS,1415.2596468279921,67.84312640765734,20.86076691578079,8457.308762121687,2019
+2007,83,"(80,85]",HS,1356.5886200130806,67.25446587483603,20.170981991556676,8528.782805196006,2019
+2007,23,"(20,25]",HS,-2.8620013080444737,22.07476998079957,-0.12965033431985093,5860.451692552958,2019
+2007,23,"(20,25]",HS,-2.8620013080444737,22.07476998079957,-0.12965033431985093,5868.97502794304,2019
+2007,23,"(20,25]",HS,-2.8620013080444737,22.07476998079957,-0.12965033431985093,5848.252077601577,2019
+2007,23,"(20,25]",HS,-2.8620013080444737,22.07476998079957,-0.12965033431985093,5824.654441098593,2019
+2007,23,"(20,25]",HS,-2.8620013080444737,22.07476998079957,-0.12965033431985093,5861.071685680308,2019
+2007,73,"(70,75]",College,70429.55918901242,3870.4430033001913,18.19676949872653,33.50205369158921,2019
+2007,73,"(70,75]",College,68925.57750163507,3870.4430033001913,17.808188221054966,29.878676269214708,2019
+2007,73,"(70,75]",College,68925.57750163507,3855.7264899796583,17.876158405104793,32.87811399965182,2019
+2007,73,"(70,75]",College,74364.81098757358,3870.4430033001913,19.21351404068354,32.767001247287716,2019
+2007,73,"(70,75]",College,70358.00915631132,3855.7264899796583,18.24766599476368,30.578010535098024,2019
+2007,64,"(60,65]",HS,207.63819489862658,23.546421312852875,8.818248520223612,8613.391346333347,2019
+2007,64,"(60,65]",HS,209.92779594506214,22.07476998079957,9.509852022361066,8391.74584560587,2019
+2007,64,"(60,65]",HS,210.50019620667103,33.84798063722601,6.218988319059806,8823.250168740737,2019
+2007,64,"(60,65]",HS,206.35029431000655,25.01807264490618,8.248049209818753,8531.919951678978,2019
+2007,64,"(60,65]",HS,208.4967952910399,29.433026641066096,7.083770141400854,8425.904967343833,2019
+2007,48,"(45,50]",HS,333.4231523871812,63.28100727829211,5.268929284277663,7695.863729908068,2019
+2007,48,"(45,50]",HS,322.1182472204055,64.7526586103454,4.974594929897463,7512.0488878285005,2019
+2007,48,"(45,50]",HS,329.27325049051666,64.7526586103454,5.0850923739200615,7877.9627611831775,2019
+2007,48,"(45,50]",HS,326.26814911707,64.7526586103454,5.03868344743057,7662.45856473716,2019
+2007,48,"(45,50]",HS,321.9751471550033,64.7526586103454,4.972384981017011,7568.84917103741,2019
+2007,36,"(35,40]",HS,71.37831262262917,73.58256660266524,0.9700438013811246,6093.686690128316,2019
+2007,36,"(35,40]",HS,71.37831262262917,73.58256660266524,0.9700438013811246,6027.639031603454,2019
+2007,36,"(35,40]",HS,72.66621321124919,73.58256660266524,0.9875465965143045,6211.677058149474,2019
+2007,36,"(35,40]",HS,72.95241334205363,73.58256660266524,0.9914361065439,6041.689754893139,2019
+2007,36,"(35,40]",HS,71.37831262262917,73.58256660266524,0.9700438013811246,6026.0069678216105,2019
+2007,57,"(55,60]",College,265.02132112491825,257.53898310932834,1.029053224972988,294.27013965228,2019
+2007,57,"(55,60]",College,252.57161543492478,257.53898310932834,0.9807121717480151,295.82438472910314,2019
+2007,57,"(55,60]",College,258.8680183126226,257.53898310932834,1.0051605205054728,299.28971051349504,2019
+2007,57,"(55,60]",College,256.8646173969915,257.53898310932834,0.9973815004462817,294.57547406197875,2019
+2007,57,"(55,60]",College,268.16952256376715,257.53898310932834,1.0412773993517168,291.34664255180405,2019
+2007,51,"(50,55]",HS,0.701190320470896,27.96137530901279,0.02507710413818169,6454.838038706354,2019
+2007,51,"(50,55]",HS,0.6868803139306736,26.489723976959482,0.025930066863970185,6423.052783942175,2019
+2007,51,"(50,55]",HS,0.6868803139306736,26.489723976959482,0.025930066863970185,6556.02380717099,2019
+2007,51,"(50,55]",HS,0.701190320470896,26.489723976959482,0.0264702765903029,6517.160565526707,2019
+2007,51,"(50,55]",HS,0.6296402877697842,27.96137530901279,0.022518215960816212,6378.823950600946,2019
+2007,85,"(80,85]",HS,587.1395683453238,47.79923526509134,12.283451086384275,7392.621092137121,2019
+2007,85,"(80,85]",HS,415.4337998691956,49.270886597144646,8.43162826084138,9762.941027724075,2019
+2007,85,"(80,85]",HS,561.79654676259,49.270886597144646,11.402200884997821,10262.666431491121,2019
+2007,85,"(80,85]",HS,573.5450621321124,47.79923526509134,11.999042640562555,9959.201888352796,2019
+2007,85,"(80,85]",HS,498.13132766514065,47.79923526509134,10.421324209530505,10078.430824588631,2019
+2007,38,"(35,40]",HS,-51.80222367560497,126.56201455658422,-0.40930309032371537,6466.818417090673,2019
+2007,38,"(35,40]",HS,-34.74469587965991,126.56201455658422,-0.2745270451121494,6478.745414574458,2019
+2007,38,"(35,40]",HS,-53.376324395029435,113.31715256810448,-0.47103481851919865,6520.71825543658,2019
+2007,38,"(35,40]",HS,-46.178391105297585,128.03366588863753,-0.36067381797427495,6456.874227785687,2019
+2007,38,"(35,40]",HS,-50.356913015042515,126.56201455658422,-0.3978833079693797,6450.823505038187,2019
+2007,73,"(70,75]",HS,746.4099411379988,36.79128330133262,20.287684314370274,6286.581039837618,2019
+2007,73,"(70,75]",HS,496.55722694571614,36.79128330133262,13.49659980269648,7534.531252334236,2019
+2007,73,"(70,75]",HS,686.451013734467,40.76474189787654,16.83933177975609,6053.717764244855,2019
+2007,73,"(70,75]",HS,516.5912361020274,38.55726489979658,13.398025960725054,7660.04425853773,2019
+2007,73,"(70,75]",HS,493.55212557226946,36.79128330133262,13.414920092074976,7488.670177105747,2019
+2007,43,"(40,45]",College,218.59965990843688,147.16513320533048,1.485403880302532,6594.484602020643,2019
+2007,43,"(40,45]",College,85.94589928057555,147.16513320533048,0.5840099309437685,7326.642207240984,2019
+2007,43,"(40,45]",College,137.89122302158273,147.16513320533048,0.9369829661295626,7550.341862439267,2019
+2007,43,"(40,45]",College,324.77990843688684,147.16513320533048,2.2069079907925024,6643.485518227848,2019
+2007,43,"(40,45]",College,550.3056115107913,147.16513320533048,3.7393749424531397,6697.937770306077,2019
+2007,43,"(40,45]",College,8464.36886854153,2531.240291131684,3.343961021083946,409.44144065095793,2019
+2007,43,"(40,45]",College,8464.36886854153,2516.523777811151,3.3635163486926243,396.99024636553065,2019
+2007,43,"(40,45]",College,8464.36886854153,2531.240291131684,3.343961021083946,395.7417063443189,2019
+2007,43,"(40,45]",College,8464.36886854153,2531.240291131684,3.343961021083946,391.8133981490706,2019
+2007,43,"(40,45]",College,8464.36886854153,2516.523777811151,3.3635163486926243,397.69499484888695,2019
+2007,60,"(55,60]",College,770.4235631131459,126.56201455658422,6.087320637336249,5822.963211760807,2019
+2007,60,"(55,60]",College,749.9173237410073,145.69348187327716,5.147226314443349,5955.064344293457,2019
+2007,60,"(55,60]",College,812.4363113145847,135.39192254890403,6.000626152724362,5604.047597595973,2019
+2007,60,"(55,60]",College,717.8772190974494,142.75017920917054,5.028905904528151,5865.815552185285,2019
+2007,60,"(55,60]",College,737.0826788750817,129.5053172206908,5.691524446204896,5914.019078174897,2019
+2007,40,"(35,40]",HS,2241.3763243950293,294.33026641066095,7.615174449194344,2955.6136149691656,2019
+2007,40,"(35,40]",HS,2238.514323086985,294.33026641066095,7.6054506741203545,2995.553848778144,2019
+2007,40,"(35,40]",HS,2238.514323086985,294.33026641066095,7.6054506741203545,2986.2715997967484,2019
+2007,40,"(35,40]",HS,2237.0833224329626,294.33026641066095,7.60058878658336,3208.789269837513,2019
+2007,40,"(35,40]",HS,2237.0833224329626,294.33026641066095,7.60058878658336,3075.7724922872917,2019
+2007,42,"(40,45]",College,1525.732897318509,416.4773269710853,3.6634236692179782,2984.785728414562,2019
+2007,42,"(40,45]",College,1643.2180510137346,416.4773269710853,3.9455162252513643,3030.939299381614,2019
+2007,42,"(40,45]",College,1651.6609548724657,416.4773269710853,3.9657884065010225,3033.1082970860166,2019
+2007,42,"(40,45]",College,1497.2559843034662,415.00567563903195,3.607796404225,3277.0533405195433,2019
+2007,42,"(40,45]",College,1577.2489208633094,415.00567563903195,3.800547832110098,3157.855598370017,2019
+2007,24,"(20,25]",College,11.877305428384565,41.206237297492535,0.2882404754075257,9200.920578815934,2019
+2007,24,"(20,25]",College,10.446304774362329,41.206237297492535,0.25351270728613706,9213.87483060969,2019
+2007,24,"(20,25]",College,11.877305428384565,41.206237297492535,0.2882404754075257,9286.85517487636,2019
+2007,24,"(20,25]",College,10.875604970569,39.73458596543923,0.2737062613419075,9167.845166685243,2019
+2007,24,"(20,25]",College,15.025506867233485,39.73458596543923,0.3781468084328985,9175.379480688744,2019
+2007,49,"(45,50]",College,37743.45792020929,5327.377822032964,7.084809672051028,41.91639855258005,2019
+2007,49,"(45,50]",College,29634.234793982996,4444.38702280098,6.667788975611456,45.712183270907566,2019
+2007,49,"(45,50]",College,34744.20933943755,6063.203488059615,5.730338658080666,44.67382881447458,2019
+2007,49,"(45,50]",College,29836.721386527144,3811.576950018059,7.827920511059282,45.42233145890607,2019
+2007,49,"(45,50]",College,29867.087220405494,4164.773269710853,7.171359708251074,45.779738656264875,2019
+2007,39,"(35,40]",HS,370.77226945716154,129.5053172206908,2.8629887746255718,6740.556813482113,2019
+2007,39,"(35,40]",HS,367.3378678875082,129.5053172206908,2.8364693880601477,6895.47168621889,2019
+2007,39,"(35,40]",HS,364.41862655330283,129.5053172206908,2.8139279094795375,6488.500967725304,2019
+2007,39,"(35,40]",HS,372.34637017658605,129.5053172206908,2.875143493468058,6792.1895668303505,2019
+2007,39,"(35,40]",HS,372.4894702419883,130.97696855274413,2.8439310693924607,6848.081614506019,2019
+2007,39,"(35,40]",NoHS,-0.18603008502289078,36.79128330133262,-0.005056363038474186,6407.124536323181,2019
+2007,39,"(35,40]",NoHS,-0.1717200784826684,36.79128330133262,-0.004667412035514633,6416.94605648045,2019
+2007,39,"(35,40]",NoHS,-0.18603008502289078,36.79128330133262,-0.005056363038474186,6421.052878758309,2019
+2007,39,"(35,40]",NoHS,-0.1717200784826684,36.79128330133262,-0.004667412035514633,6432.22173912808,2019
+2007,39,"(35,40]",NoHS,-0.1717200784826684,36.79128330133262,-0.004667412035514633,6435.727032520296,2019
+2007,49,"(45,50]",NoHS,43.073119686069326,88.29907992319828,0.4878093828784391,5442.300981584756,2019
+2007,49,"(45,50]",NoHS,29.478613472858076,94.1856852514115,0.3129840101940151,5408.232424951257,2019
+2007,49,"(45,50]",NoHS,27.332112491824724,86.82742859114498,0.3147866168020109,5474.932049561714,2019
+2007,49,"(45,50]",NoHS,26.616612164813603,92.71403391935819,0.2870828831368128,5463.461671385485,2019
+2007,49,"(45,50]",NoHS,53.09012426422499,86.82742859114498,0.6114441614321784,5438.760806338607,2019
+2007,26,"(25,30]",HS,5.151602354480052,29.433026641066096,0.17502795133179871,6245.156773772489,2019
+2007,26,"(25,30]",HS,5.2947024198822765,29.433026641066096,0.17988983886879317,6203.277601308675,2019
+2007,26,"(25,30]",HS,5.2947024198822765,29.433026641066096,0.17988983886879317,6198.417514579232,2019
+2007,26,"(25,30]",HS,5.151602354480052,29.433026641066096,0.17502795133179871,6222.615492019646,2019
+2007,26,"(25,30]",HS,5.2947024198822765,29.433026641066096,0.17988983886879317,6250.310247134052,2019
+2007,55,"(50,55]",HS,4117.275081752779,236.93586446058208,17.377171206758153,1727.479917762045,2019
+2007,55,"(50,55]",HS,4071.9123610202746,236.93586446058208,17.185715511201977,1727.0747396592528,2019
+2007,55,"(50,55]",HS,4137.165990843689,236.93586446058208,17.461121811434207,1679.1332000136929,2019
+2007,55,"(50,55]",HS,4117.561281883584,236.93586446058208,17.378379129127595,1660.3946936326781,2019
+2007,55,"(50,55]",HS,4073.057161543493,236.93586446058208,17.190547200679738,1756.2382132983864,2019
+2007,32,"(30,35]",College,622.0559843034663,66.22430994239872,9.393166721473198,7169.7460207293525,2019
+2007,32,"(30,35]",College,639.3710922171354,66.22430994239872,9.65462822901823,7348.526218446057,2019
+2007,32,"(30,35]",College,622.9145846958796,66.22430994239872,9.406131754905184,6923.166847734488,2019
+2007,32,"(30,35]",College,630.6419882275998,66.22430994239872,9.52281705579305,7241.648550520176,2019
+2007,32,"(30,35]",College,622.7714846304774,66.22430994239872,9.403970915999853,7312.116228554022,2019
+2007,55,"(50,55]",College,842.1438848920864,345.8380630325266,2.4350815451244343,7541.797186648652,2019
+2007,55,"(50,55]",College,809.2308698495749,432.6654916236716,1.8703383688233597,7712.892196776082,2019
+2007,55,"(50,55]",College,902.2459123610203,116.26045523221109,7.760557195126519,7258.261621854562,2019
+2007,55,"(50,55]",College,809.2308698495749,756.4287846753988,1.0698044366421549,7597.298766978391,2019
+2007,55,"(50,55]",College,852.160889470242,183.95641650666312,4.6324064452482725,7659.731106574963,2019
+2007,51,"(50,55]",College,358.03636363636366,185.42806783871637,1.9308639075492087,6800.741739238949,2019
+2007,51,"(50,55]",College,386.51327665140616,185.42806783871637,2.084437815463794,6989.9347802797765,2019
+2007,51,"(50,55]",College,396.6733812949641,183.95641650666312,2.1563443604077603,6571.6176542331405,2019
+2007,51,"(50,55]",College,372.34637017658605,185.42806783871637,2.0080367255967393,6872.381449027782,2019
+2007,51,"(50,55]",College,352.16926095487247,185.42806783871637,1.8992230521497213,6930.358297663423,2019
+2007,58,"(55,60]",College,2198.1601046435576,244.29412112084862,8.998006560936277,2938.358335327371,2019
+2007,58,"(55,60]",College,2282.58914323087,242.82246978879527,9.400238557890646,3015.4480818379357,2019
+2007,58,"(55,60]",College,2283.87704381949,244.29412112084862,9.348882541015756,2846.4207293669465,2019
+2007,58,"(55,60]",College,2284.020143884892,244.29412112084862,9.349468310598526,2873.43719435475,2019
+2007,58,"(55,60]",College,2282.58914323087,244.29412112084862,9.3436106147708209,2863.38017901863,2019
+2007,52,"(50,55]",College,2895.6298234139963,303.1601744029808,9.551484884571057,9604.322374007594,2019
+2007,52,"(50,55]",College,1566.5164159581427,316.4050363914605,4.950984452788633,6526.794175349894,2019
+2007,52,"(50,55]",College,1802.3453237410072,261.95393710548825,6.880390284094897,9430.300811966708,2019
+2007,52,"(50,55]",College,2000.6820143884893,292.8586150786076,6.831562779368729,9560.195764228252,2019
+2007,52,"(50,55]",College,2071.802746893394,316.4050363914605,6.547944907963261,9605.314485857702,2019
+2007,28,"(25,30]",College,5.8742576847612815,52.979447953918964,0.11087804632978918,6011.643784278153,2019
+2007,28,"(25,30]",College,7.026213211249183,55.92275061802558,0.125641409508645,6026.2849813865805,2019
+2007,28,"(25,30]",College,9.60201438848921,54.451099285972276,0.1763419749904459,6027.244670912709,2019
+2007,28,"(25,30]",College,5.309012426422499,52.979447953918964,0.10020890423471814,6053.33610368038,2019
+2007,28,"(25,30]",College,12.743060824068017,57.39440195007889,0.2220261975227447,6123.951103076748,2019
+2007,50,"(45,50]",College,848.0825376062787,50.03614528981236,16.949397934116103,6428.702749275416,2019
+2007,50,"(45,50]",College,847.8678875081754,48.56449395775905,17.458596155570838,6575.39848495494,2019
+2007,50,"(45,50]",College,848.1540876389798,48.56449395775905,17.464489352585378,6187.492635327288,2019
+2007,50,"(45,50]",College,847.8965075212558,50.03614528981236,16.945680020117223,6478.688247252492,2019
+2007,50,"(45,50]",College,847.9394375408765,48.56449395775905,17.460069454824474,6531.961190416942,2019
+2007,62,"(60,65]",HS,1084.1275264879007,147.16513320533048,7.366741719829004,8208.829832493644,2019
+2007,62,"(60,65]",HS,1084.1275264879007,147.16513320533048,7.366741719829004,8394.727613775165,2019
+2007,62,"(60,65]",HS,1084.1275264879007,147.16513320533048,7.366741719829004,7901.996309937627,2019
+2007,62,"(60,65]",HS,1084.1275264879007,147.16513320533048,7.366741719829004,8268.151961367786,2019
+2007,62,"(60,65]",HS,1084.1275264879007,147.16513320533048,7.366741719829004,8336.76583240082,2019
+2007,50,"(45,50]",College,2727.4872465663834,807.9365812972643,3.3758679947218018,565.8724819886519,2019
+2007,50,"(45,50]",College,2727.344146500981,807.9365812972643,3.3756908767787412,560.6475518658226,2019
+2007,50,"(45,50]",College,2725.9131458469587,809.4082326293176,3.3677852978984184,558.6571511105426,2019
+2007,50,"(45,50]",College,2727.344146500981,807.9365812972643,3.3756908767787412,557.7113943859811,2019
+2007,50,"(45,50]",College,2727.4872465663834,810.8798839613711,3.3636143903852425,583.0706988666938,2019
+2007,27,"(25,30]",NoHS,5.867102681491171,70.63926393855863,0.0830572454236545,6072.0861438023085,2019
+2007,27,"(25,30]",NoHS,4.579202092871157,70.63926393855863,0.06482516715992546,6062.256012574704,2019
+2007,27,"(25,30]",NoHS,5.867102681491171,70.63926393855863,0.0830572454236545,6055.937775334952,2019
+2007,27,"(25,30]",NoHS,5.867102681491171,70.63926393855863,0.0830572454236545,6072.753758104019,2019
+2007,27,"(25,30]",NoHS,4.579202092871157,70.63926393855863,0.06482516715992546,6103.977173101658,2019
+2007,62,"(60,65]",College,126.3573577501635,48.56449395775905,2.6018464819188267,6372.842915703367,2019
+2007,62,"(60,65]",College,126.3573577501635,48.56449395775905,2.6018464819188267,6357.460772465589,2019
+2007,62,"(60,65]",College,126.3573577501635,48.56449395775905,2.6018464819188267,6380.347069086124,2019
+2007,62,"(60,65]",College,126.3573577501635,48.56449395775905,2.6018464819188267,6343.836273719791,2019
+2007,62,"(60,65]",College,126.3573577501635,48.56449395775905,2.6018464819188267,6345.7856719443525,2019
+2007,65,"(60,65]",HS,1011.7174623937213,135.39192254890403,7.472509757945756,5402.414331388905,2019
+2007,65,"(60,65]",HS,1004.5624591236102,135.39192254890403,7.419663154282773,5526.4400854831665,2019
+2007,65,"(60,65]",HS,963.0634401569653,135.39192254890403,7.113152853037473,5201.241892868296,2019
+2007,65,"(60,65]",HS,967.3564421190321,135.39192254890403,7.144860815235263,5443.453311327012,2019
+2007,65,"(60,65]",HS,968.7874427730543,135.39192254890403,7.155430135967859,5489.0921678382165,2019
+2007,64,"(60,65]",College,9314.383257030739,718.1658500420127,12.969682777990414,2981.154984493033,2019
+2007,64,"(60,65]",College,9185.593198168737,718.1658500420127,12.79035086064226,2957.984232162301,2019
+2007,64,"(60,65]",College,9270.02223675605,716.6941987099594,12.934417849958843,2956.5315105930376,2019
+2007,64,"(60,65]",College,9314.383257030739,718.1658500420127,12.969682777990414,2934.6289750410965,2019
+2007,64,"(60,65]",College,9360.175277959452,718.1658500420127,13.033445237491982,2988.6431824826104,2019
+2007,82,"(80,85]",HS,355.88986265533026,36.79128330133262,9.673211443604076,10955.454323656992,2019
+2007,82,"(80,85]",HS,356.0329627207325,36.79128330133262,9.677100953633673,10662.597535894969,2019
+2007,82,"(80,85]",HS,355.88986265533026,36.79128330133262,9.673211443604076,11301.034721898772,2019
+2007,82,"(80,85]",HS,355.88986265533026,36.79128330133262,9.673211443604076,10924.74387954154,2019
+2007,82,"(80,85]",HS,355.88986265533026,36.79128330133262,9.673211443604076,10870.005999893005,2019
+2007,47,"(45,50]",College,5931.927011118379,938.9135498500085,6.317862823543237,650.4763834021812,2019
+2007,47,"(45,50]",College,6082.182079790713,938.9135498500085,6.477893604541485,642.5804191110194,2019
+2007,47,"(45,50]",College,5926.203008502289,938.9135498500085,6.311766412838541,644.1271744013147,2019
+2007,47,"(45,50]",College,6158.025114453892,938.9135498500085,6.558671046378696,641.1065372130942,2019
+2007,47,"(45,50]",College,5950.530019620667,938.9135498500085,6.337676158333496,660.3176540620627,2019
+2007,48,"(45,50]",College,850.5724787442773,129.5053172206908,6.5678575752593344,7247.978931545991,2019
+2007,48,"(45,50]",College,847.4385873119686,129.5053172206908,6.543658635018385,7412.680515850564,2019
+2007,48,"(45,50]",College,846.0075866579464,129.5053172206908,6.5326088906161255,6976.827753985432,2019
+2007,48,"(45,50]",College,847.5816873773708,129.5053172206908,6.544763609458611,7302.304744818927,2019
+2007,48,"(45,50]",College,849.1557880967954,129.5053172206908,6.556918328301098,7362.489638102993,2019
+2007,49,"(45,50]",College,2425.1597383911053,294.33026641066095,8.239586665570535,8271.153758089673,2019
+2007,49,"(45,50]",College,2425.1168083714847,294.33026641066095,8.239440808944426,8225.867494609764,2019
+2007,49,"(45,50]",College,2424.544408109876,294.33026641066095,8.237496053929629,8096.766423227686,2019
+2007,49,"(45,50]",College,2424.544408109876,294.33026641066095,8.237496053929629,8225.102036374525,2019
+2007,49,"(45,50]",College,2425.961098757358,294.33026641066095,8.242309322591252,8396.382621468354,2019
+2007,39,"(35,40]",HS,250.56821451929366,176.59815984639656,1.4188608462128687,5519.185706227856,2019
+2007,39,"(35,40]",HS,258.0094179202093,176.59815984639656,1.46099720486682,6606.195166960913,2019
+2007,39,"(35,40]",HS,203.34519293655984,176.59815984639656,1.151457031678176,6887.919350658924,2019
+2007,39,"(35,40]",HS,247.13381294964032,176.59815984639656,1.399413296064891,5561.462740920714,2019
+2007,39,"(35,40]",HS,272.0332243296272,176.59815984639656,1.540408034637729,5607.227297048534,2019
+2007,31,"(30,35]",NoHS,11.448005232177895,51.50779662186566,0.22225771597688734,7526.6491659165495,2019
+2007,31,"(30,35]",NoHS,11.448005232177895,51.50779662186566,0.22225771597688734,7508.541621111198,2019
+2007,31,"(30,35]",NoHS,11.30490516677567,51.50779662186566,0.21947949452717624,7488.615575754487,2019
+2007,31,"(30,35]",NoHS,11.591105297580118,51.50779662186566,0.22503593742659841,7542.590549118888,2019
+2007,31,"(30,35]",NoHS,11.448005232177895,51.50779662186566,0.22225771597688734,7576.160066382811,2019
+2007,69,"(65,70]",HS,3968.8803139306738,264.8972397695949,14.982716759837771,5243.223405025408,2019
+2007,69,"(65,70]",HS,4004.65533028123,264.8972397695949,15.117769191420951,5291.975973004401,2019
+2007,69,"(65,70]",HS,4040.4303466317856,264.8972397695949,15.252821623004127,5112.547144833816,2019
+2007,69,"(65,70]",HS,4003.2243296272077,264.8972397695949,15.112367094157623,5135.290390243297,2019
+2007,69,"(65,70]",HS,3900.192282537606,264.8972397695949,14.723416091198068,5242.715091217857,2019
+2007,68,"(65,70]",HS,25.371641595814257,27.96137530901279,0.9073817476937988,7994.791650927102,2019
+2007,68,"(65,70]",HS,25.371641595814257,50.03614528981236,0.507066270770064,7784.69344843704,2019
+2007,68,"(65,70]",HS,25.371641595814257,30.9046779731194,0.8209644383896274,8256.023767894188,2019
+2007,68,"(65,70]",HS,25.228541530412034,19.131467316692962,1.3186934965724837,7859.399610670727,2019
+2007,68,"(65,70]",HS,25.371641595814257,44.14953996159914,0.5746751068727393,7692.802476580128,2019
+2007,32,"(30,35]",College,55.66592544146501,91.2423825873049,0.6100884683518791,7637.63041375265,2019
+2007,32,"(30,35]",College,55.66592544146501,91.2423825873049,0.6100884683518791,7607.865408990528,2019
+2007,32,"(30,35]",College,55.66592544146501,91.2423825873049,0.6100884683518791,7732.319672960769,2019
+2007,32,"(30,35]",College,55.66592544146501,91.2423825873049,0.6100884683518791,7688.364580267646,2019
+2007,32,"(30,35]",College,55.522825376062784,91.2423825873049,0.6085201175334938,7609.2811850364715,2019
+2007,62,"(60,65]",College,1114.1771092217136,126.56201455658422,8.803408456520575,6650.005834618465,2019
+2007,62,"(60,65]",College,1115.6081098757359,126.56201455658422,8.814715171722888,6799.942675821074,2019
+2007,62,"(60,65]",College,1152.814126880314,126.56201455658422,9.108689766983014,6402.425909215405,2019
+2007,62,"(60,65]",College,1122.763113145847,126.56201455658422,8.87124874773445,6698.608055217288,2019
+2007,62,"(60,65]",College,1157.1071288423807,126.56201455658422,9.142609912589952,6754.00113668018,2019
+2007,41,"(40,45]",HS,0,10.301559324373134,0,7690.878558020835,2019
+2007,41,"(40,45]",HS,0,10.301559324373134,0,7698.990298994143,2019
+2007,41,"(40,45]",HS,0,10.301559324373134,0,7736.3677687154395,2019
+2007,41,"(40,45]",HS,0,10.301559324373134,0,7694.470279717467,2019
+2007,41,"(40,45]",HS,0,10.301559324373134,0,7681.975875901308,2019
+2007,61,"(60,65]",College,2317.1048790058862,139.80687654506394,16.573611658214922,2713.6777959116544,2019
+2007,61,"(60,65]",College,2317.2479790712882,139.80687654506394,16.574635213485866,2728.219478983541,2019
+2007,61,"(60,65]",College,2321.555291039895,139.80687654506394,16.605444227141348,2635.1066752059814,2019
+2007,61,"(60,65]",College,2317.1334990189666,139.80687654506394,16.57381636926911,2674.8031942122716,2019
+2007,61,"(60,65]",College,2318.5501896664487,139.80687654506394,16.58394956645148,2674.9005736290683,2019
+2007,70,"(65,70]",College,7821.134074558535,956.5733658346479,8.1761988718286,1435.9438081649455,2019
+2007,70,"(65,70]",College,7446.211903204709,956.5733658346479,7.7842559380770515,1399.6281891640565,2019
+2007,70,"(65,70]",College,7467.676913015042,956.5733658346479,7.806695419017025,1418.577642794971,2019
+2007,70,"(65,70]",College,7334.593852190975,956.5733658346479,7.667570637189185,1411.6142580854544,2019
+2007,70,"(65,70]",College,7740.99803793329,956.5733658346479,8.092424809652696,1429.398284940252,2019
+2007,35,"(30,35]",College,8409.275343361674,1403.9553707788527,5.98970274866827,176.47561761209275,2019
+2007,35,"(30,35]",College,9164.128188358403,1501.0843586943708,6.105005448414156,169.7765504387309,2019
+2007,35,"(30,35]",College,9190.601700457815,1589.3834386175693,5.78249494561974,171.31945403934714,2019
+2007,35,"(30,35]",College,8896.531066056246,1375.99399546984,6.465530442244758,169.62708004252016,2019
+2007,35,"(30,35]",College,9313.66775670373,1346.5609688287739,6.916632794432376,171.52972564268256,2019
+2007,56,"(55,60]",College,73501.20209287116,5710.007168366823,12.872348479711976,39.46097085334837,2019
+2007,56,"(55,60]",College,73501.20209287116,6122.069541341748,12.005940408962132,34.99717969174931,2019
+2007,56,"(55,60]",College,73499.77109221714,5577.558548482025,13.177767737143819,38.82077537288378,2019
+2007,56,"(55,60]",College,73501.20209287116,6283.951187867611,11.696653887888166,38.51100590598671,2019
+2007,56,"(55,60]",College,73501.20209287116,6519.41540099614,11.274201377264665,35.23974033979801,2019
+2007,66,"(65,70]",College,78935.4270765206,5150.779662186567,15.324947338751349,26.60156618686811,2019
+2007,66,"(65,70]",College,78428.85284499674,5150.779662186567,15.226598299431577,23.672003521110216,2019
+2007,66,"(65,70]",College,78085.41268803139,5150.779662186567,15.159920984638507,26.25607436091705,2019
+2007,66,"(65,70]",College,79460.60431654677,5150.779662186567,15.426908065955747,26.040023175703674,2019
+2007,66,"(65,70]",College,77796.3505559189,5150.779662186567,15.103800911354346,23.724117091753428,2019
+2007,53,"(50,55]",College,3683.1667233485937,422.3639322992984,8.720362800151701,5243.223405025408,2019
+2007,53,"(50,55]",College,4562.430765206017,457.68356426857775,9.968526557201631,5291.975973004401,2019
+2007,53,"(50,55]",College,2778.10173969915,487.1165909096439,5.7031556541962765,3047.113009048934,2019
+2007,53,"(50,55]",College,3528.8905428384564,590.1321841533752,5.979830684715373,5135.290390243297,2019
+2007,53,"(50,55]",College,4345.2048659254415,594.547138149535,7.30842785561029,5242.715091217857,2019
+2007,38,"(35,40]",College,837.5789928057553,220.74769980799567,3.7942818590375973,5769.947315701521,2019
+2007,38,"(35,40]",College,836.1479921517332,220.74769980799567,3.7877993423216054,5913.909313051114,2019
+2007,38,"(35,40]",College,836.1479921517332,220.74769980799567,3.7877993423216054,5586.162433863514,2019
+2007,38,"(35,40]",College,836.1479921517332,220.74769980799567,3.7877993423216054,5879.801778239456,2019
+2007,38,"(35,40]",College,836.1479921517332,220.74769980799567,3.7877993423216054,5959.606140484188,2019
+2007,53,"(50,55]",College,15915.15997383911,1367.16408747752,11.641002071085195,249.85114652394637,2019
+2007,53,"(50,55]",College,22869.82315238718,1239.1304215888827,18.456348705459273,238.1254651409337,2019
+2007,53,"(50,55]",College,21868.122694571615,1118.4550123605115,19.552080730023018,242.86956964410896,2019
+2007,53,"(50,55]",College,15872.229954218445,1150.8313416656842,13.791968796440127,241.72551602779566,2019
+2007,53,"(50,55]",College,24531.214911707,1236.1871189247759,19.844257019150973,288.1972654849581,2019
+2007,78,"(75,80]",College,1521.0105951602354,86.82742859114498,17.517628010411382,8229.219317577186,2019
+2007,78,"(75,80]",College,1521.0105951602354,147.16513320533048,10.335400526142715,8417.17399670259,2019
+2007,78,"(75,80]",College,1521.0105951602354,89.77073125525159,16.94327955105363,7923.117286406654,2019
+2007,78,"(75,80]",College,1521.0105951602354,89.77073125525159,16.94327955105363,8291.246434167886,2019
+2007,78,"(75,80]",College,1521.0105951602354,85.35577725909167,17.81965607955641,8361.31705845793,2019
+2007,39,"(35,40]",HS,48.22472204054938,69.16761260650532,0.6972153616881346,6834.657342143866,2019
+2007,39,"(35,40]",HS,48.22472204054938,69.16761260650532,0.6972153616881346,6745.602765066522,2019
+2007,39,"(35,40]",HS,49.655722694571615,69.16761260650532,0.717904244824281,6951.17164265921,2019
+2007,39,"(35,40]",HS,46.79372138652714,69.16761260650532,0.6765264785519881,6801.083059389942,2019
+2007,39,"(35,40]",HS,46.79372138652714,69.16761260650532,0.6765264785519881,6791.952256698874,2019
+2007,42,"(40,45]",HS,59.314977109221715,82.41247459498507,0.7197329943157795,8318.964662267372,2019
+2007,42,"(40,45]",HS,60.31667756703728,73.58256660266524,0.8197142387372575,8179.481378331142,2019
+2007,42,"(40,45]",HS,59.88737737083061,80.94082326293177,0.739890885175331,8410.728446033969,2019
+2007,42,"(40,45]",HS,58.88567691301505,98.60063924757141,0.5972139467084179,8218.16455485584,2019
+2007,42,"(40,45]",HS,58.742576847612824,98.60063924757141,0.5957626369958823,8228.583487492484,2019
+2007,50,"(45,50]",HS,24949.4964028777,3708.561356774328,6.727540413293455,230.90407082357518,2019
+2007,50,"(45,50]",HS,24950.92740353172,3723.2778700948606,6.7013336834019395,260.3047618730541,2019
+2007,50,"(45,50]",HS,24949.4964028777,3708.561356774328,6.727540413293455,232.49442921135318,2019
+2007,50,"(45,50]",HS,24946.634401569652,3708.561356774328,6.726768685112979,237.70936082005636,2019
+2007,50,"(45,50]",HS,24950.92740353172,3723.2778700948606,6.7013336834019395,253.3518633222076,2019
+2007,63,"(60,65]",HS,360.26872465663837,16.18816465258635,22.25506920570387,8274.218324205418,2019
+2007,63,"(60,65]",HS,375.99542184434273,16.18816465258635,23.22656273355057,8301.638574103521,2019
+2007,63,"(60,65]",HS,375.7807717462394,14.716513320533048,25.53463334429464,8240.979481912022,2019
+2007,63,"(60,65]",HS,374.5787311968607,16.18816465258635,23.139048757884666,8250.561126217839,2019
+2007,63,"(60,65]",HS,376.1099018966645,14.716513320533048,25.556998026964813,8248.961497509574,2019
+2007,38,"(35,40]",HS,20.177109221713536,73.58256660266524,0.27421045708648467,5825.255616621104,2019
+2007,38,"(35,40]",HS,20.320209287115762,73.58256660266524,0.27615521210128247,5835.999355597631,2019
+2007,38,"(35,40]",HS,18.7461085676913,73.58256660266524,0.25476290693850706,5873.8081374758185,2019
+2007,38,"(35,40]",HS,18.889208633093524,73.58256660266524,0.2567076619533048,5816.29797456817,2019
+2007,38,"(35,40]",HS,18.889208633093524,73.58256660266524,0.2567076619533048,5810.847534429579,2019
+2007,49,"(45,50]",HS,120.3471550032701,126.56201455658422,0.9508947485144879,6544.751823487546,2019
+2007,49,"(45,50]",HS,140.66736429038588,120.675409228371,1.165667182650123,6426.948890634825,2019
+2007,49,"(45,50]",HS,164.85127534336166,117.73210656426438,1.4002236106543897,6754.8257981097295,2019
+2007,49,"(45,50]",HS,145.7474166121648,144.22183054122385,1.0105780523324095,6539.984189268522,2019
+2007,49,"(45,50]",HS,133.61253106605625,110.37384990399784,1.2105451715444484,6435.160345234455,2019
+2007,52,"(50,55]",HS,717.8900981033355,64.7526586103454,11.08665054856357,6503.860940162619,2019
+2007,52,"(50,55]",HS,692.246566383257,61.8093559462388,11.199705219147836,6648.2878239579995,2019
+2007,52,"(50,55]",HS,679.7539306736429,66.22430994239872,10.264416968102596,6266.847747423517,2019
+2007,52,"(50,55]",HS,662.2241726618705,63.28100727829211,10.464817188348386,6532.015513013261,2019
+2007,52,"(50,55]",HS,680.8414911706998,60.3377046141855,11.283848060249756,6587.458348261021,2019
+2007,24,"(20,25]",HS,-25.729391759319817,20.603118648746268,-1.2488105416451354,7754.7369968413095,2019
+2007,24,"(20,25]",HS,-12.149195552648791,16.18816465258635,-0.7504986398015008,7759.00612447202,2019
+2007,24,"(20,25]",HS,-25.743701765860038,22.07476998079957,-1.166204757207059,7712.650457506306,2019
+2007,24,"(20,25]",HS,-20.019699149771093,20.603118648746268,-0.971682952036454,7708.1743382488785,2019
+2007,24,"(20,25]",HS,-21.45069980379333,17.659815984639657,-1.2146615696591034,7791.76874669366,2019
+2007,70,"(65,70]",College,15610.507089601047,882.9907992319827,17.679127691000772,39.59001748731079,2019
+2007,70,"(65,70]",College,15447.508960104644,882.9907992319827,17.494529924366987,37.398970267555384,2019
+2007,70,"(65,70]",College,15384.473381294963,882.9907992319827,17.423141209032117,41.01040282748281,2019
+2007,70,"(65,70]",College,15618.942838456509,882.9907992319827,17.688681300010966,40.52588117083802,2019
+2007,70,"(65,70]",College,15730.417789404839,882.9907992319827,17.814928313054917,39.14686128012533,2019
+2007,37,"(35,40]",College,1197.6044473512102,291.38696374655433,4.110013817889517,1096.8201280224384,2019
+2007,37,"(35,40]",College,1197.6044473512102,291.38696374655433,4.110013817889517,1120.1156512065659,2019
+2007,37,"(35,40]",College,1197.461347285808,291.38696374655433,4.109522718138306,1063.9430772460234,2019
+2007,37,"(35,40]",College,1197.6044473512102,291.38696374655433,4.110013817889517,1077.3271971851377,2019
+2007,37,"(35,40]",College,1197.461347285808,291.38696374655433,4.109522718138306,1085.6436333033487,2019
+2007,41,"(40,45]",HS,304.7172792674951,79.46917193087846,3.8344086375095907,5606.835975644003,2019
+2007,41,"(40,45]",HS,332.4786919555265,85.35577725909167,3.895210173604418,5736.476834064097,2019
+2007,41,"(40,45]",HS,349.3931196860693,101.54394191167802,3.440807133427696,5395.127162223295,2019
+2007,41,"(40,45]",HS,381.032544146501,80.94082326293177,4.707544707183641,5650.068217521304,2019
+2007,41,"(40,45]",HS,232.07968606932636,73.58256660266524,3.1540036829990132,5696.270140102968,2019
+2007,60,"(55,60]",HS,203.84604316546762,55.92275061802558,3.6451362086571244,8010.468632269022,2019
+2007,60,"(55,60]",HS,203.98914323086984,55.92275061802558,3.64769509683449,7842.493648591783,2019
+2007,60,"(55,60]",HS,203.98914323086984,55.92275061802558,3.64769509683449,8238.288427793248,2019
+2007,60,"(55,60]",HS,204.2753433616743,54.451099285972276,3.751537545437578,7956.420977731168,2019
+2007,60,"(55,60]",HS,203.98914323086984,54.451099285972276,3.7462814508029894,7859.220182170701,2019
+2007,57,"(55,60]",College,1151.2400261608896,111.84550123605116,10.29312769345264,6080.198112219234,2019
+2007,57,"(55,60]",College,1158.3950294310007,111.84550123605116,10.357099897886775,6217.5569314019795,2019
+2007,57,"(55,60]",College,1159.826030085023,111.84550123605116,10.369894338773603,5852.281774374132,2019
+2007,57,"(55,60]",College,1137.0731196860695,110.37384990399784,10.302015565055358,6123.241390323342,2019
+2007,57,"(55,60]",College,1136.9300196206673,110.37384990399784,10.30071906171216,6173.677355610222,2019
+2007,47,"(45,50]",HS,0,11.331715256810448,0,5418.893091794171,2019
+2007,47,"(45,50]",HS,0,11.478880390015776,0,5398.237447788382,2019
+2007,47,"(45,50]",HS,0,11.331715256810448,0,5406.338726153795,2019
+2007,47,"(45,50]",HS,0,11.331715256810448,0,5421.029145330727,2019
+2007,47,"(45,50]",HS,0,11.331715256810448,0,5420.832176302809,2019
+2007,54,"(50,55]",HS,25.786631785480708,73.58256660266524,0.35044485366655703,5628.863111164892,2019
+2007,54,"(50,55]",HS,25.786631785480708,73.58256660266524,0.35044485366655703,5615.648248048354,2019
+2007,54,"(50,55]",HS,25.772321778940483,73.58256660266524,0.35025037816507726,5689.466285800142,2019
+2007,54,"(50,55]",HS,25.786631785480708,73.58256660266524,0.35044485366655703,5686.170413680412,2019
+2007,54,"(50,55]",HS,25.786631785480708,73.58256660266524,0.35044485366655703,5697.688582350218,2019
+2007,33,"(30,35]",HS,640.3584826684107,132.44861988479744,4.834769008732507,5590.145903284007,2019
+2007,33,"(30,35]",HS,638.6555918901242,132.44861988479744,4.821912017245788,5699.792053500465,2019
+2007,33,"(30,35]",HS,637.3676913015042,132.44861988479744,4.8121882421718,5372.607776735489,2019
+2007,33,"(30,35]",HS,637.353381294964,132.44861988479744,4.812080200226533,5625.6671509380485,2019
+2007,33,"(30,35]",HS,637.3676913015042,132.44861988479744,4.8121882421718,5676.340824274832,2019
+2007,49,"(45,50]",College,111.58943100065402,132.44861988479744,0.8425110891884978,6961.319674643339,2019
+2007,49,"(45,50]",College,90.86854153041205,138.33522521301063,0.6568720395726491,6836.018685955683,2019
+2007,49,"(45,50]",College,105.14992805755396,126.56201455658422,0.8308174330659284,7184.764677923641,2019
+2007,49,"(45,50]",College,118.45823413996075,126.56201455658422,0.9359698844474352,6956.248584587444,2019
+2007,49,"(45,50]",College,124.02482668410727,128.03366588863753,0.9686891789225412,6844.752792611451,2019
+2007,66,"(65,70]",College,298620.21478090255,26990.08542985761,11.064070751349155,1.6256068981403407,2019
+2007,66,"(65,70]",College,296220.85598430346,52081.74064136645,5.687614360358514,2.225645244946382,2019
+2007,66,"(65,70]",College,299883.359058208,13701.073901416266,21.88758058061488,1.3076119090253133,2019
+2007,66,"(65,70]",College,292294.19018966646,18925.4361302055,15.444515422456085,1.5045721184764855,2019
+2007,66,"(65,70]",College,295985.0270765206,33524.21734417428,8.828991413514858,0.9935776241349756,2019
+2007,74,"(70,75]",College,116832.975147155,6033.770461418549,19.363178611817357,41.96932920059552,2019
+2007,74,"(70,75]",College,116831.74448659255,6033.770461418549,19.362974649706054,37.24196736362218,2019
+2007,74,"(70,75]",College,116831.61569653368,6019.053948098016,19.410295488953334,41.29230181468349,2019
+2007,74,"(70,75]",College,116832.74618705036,6019.053948098016,19.410483307591683,40.9614025723754,2019
+2007,74,"(70,75]",College,116832.51722694571,6033.770461418549,19.363102718938734,37.48289322673618,2019
+2007,36,"(35,40]",HS,4.722302158273381,23.546421312852875,0.2005528609010194,6595.5840308374045,2019
+2007,36,"(35,40]",HS,4.722302158273381,23.546421312852875,0.2005528609010194,6596.887406759584,2019
+2007,36,"(35,40]",HS,4.722302158273381,23.546421312852875,0.2005528609010194,6537.528513598272,2019
+2007,36,"(35,40]",HS,4.722302158273381,22.07476998079957,0.21392305162775402,6582.706593094941,2019
+2007,36,"(35,40]",HS,4.722302158273381,23.546421312852875,0.2005528609010194,6637.835283215007,2019
+2007,48,"(45,50]",HS,30.301438848920867,64.7526586103454,0.467956675435712,7063.040790434228,2019
+2007,48,"(45,50]",HS,31.71812949640288,66.22430994239872,0.47894994336658264,6935.908862072094,2019
+2007,48,"(45,50]",HS,28.87043819489863,64.7526586103454,0.44585718663119195,7289.750846335856,2019
+2007,48,"(45,50]",HS,28.87759319816874,64.7526586103454,0.44596768407521453,7057.895599925707,2019
+2007,48,"(45,50]",HS,31.725284499672988,66.22430994239872,0.4790579853118491,6944.770594395976,2019
+2007,43,"(40,45]",College,6552.551994767822,615.1502567982814,10.651953603778662,419.62958244882674,2019
+2007,43,"(40,45]",College,6552.551994767822,659.2997967598806,9.93865313923991,406.86856477881236,2019
+2007,43,"(40,45]",College,6551.1209941138,490.05989357375046,13.36800068730355,405.58895730444743,2019
+2007,43,"(40,45]",College,6551.1209941138,724.052455370226,9.047854123723743,401.5629009163068,2019
+2007,43,"(40,45]",College,6552.551994767822,703.4493367214795,9.314888297865023,407.5908495366328,2019
+2007,42,"(40,45]",HS,206.20719424460432,155.99504119765032,1.3218830076998007,5520.966184926864,2019
+2007,42,"(40,45]",HS,227.95840418574232,155.99504119765032,1.4613182729117158,5461.126073701573,2019
+2007,42,"(40,45]",HS,224.8102027468934,155.99504119765032,1.4411368529468334,5627.867124393806,2019
+2007,42,"(40,45]",HS,233.82550686723349,155.99504119765032,1.4989291010280876,5473.856227400121,2019
+2007,42,"(40,45]",HS,220.37410071942446,155.99504119765032,1.4126993975417717,5459.647400870264,2019
+2007,30,"(25,30]",College,7817.985873119686,241.350818456742,32.392622171782385,1959.0685296834658,2019
+2007,30,"(25,30]",College,6615.229823413996,241.350818456742,27.409187446363116,1959.225633470056,2019
+2007,30,"(25,30]",College,5559.723741007194,238.40751579263537,23.320253652753923,1904.0375742875217,2019
+2007,30,"(25,30]",College,5492.752910398954,241.350818456742,22.758376978047977,1883.5835932058949,2019
+2007,30,"(25,30]",College,5980.867233485939,241.350818456742,24.7808036108148,1992.566682324649,2019
+2007,30,"(25,30]",HS,57.24002616088947,103.01559324373132,0.5556442899422184,7684.004620699062,2019
+2007,30,"(25,30]",HS,57.24002616088947,103.01559324373132,0.5556442899422184,7608.186892108574,2019
+2007,30,"(25,30]",HS,54.378024852844995,103.01559324373132,0.5278620754451073,7715.68276091105,2019
+2007,30,"(25,30]",HS,57.24002616088947,103.01559324373132,0.5556442899422184,7707.08594531255,2019
+2007,30,"(25,30]",HS,57.24002616088947,103.01559324373132,0.5556442899422184,7657.357139785068,2019
+2007,61,"(60,65]",HS,97836.8278351864,8049.932786331577,12.153744687323218,44.40666060409813,2019
+2007,61,"(60,65]",HS,96781.8226030085,6931.477773971066,13.962653529156725,39.80406222000245,2019
+2007,61,"(60,65]",HS,102380.11181164159,7696.736466638785,13.301756173594399,43.55581589094903,2019
+2007,61,"(60,65]",HS,100077.78916939176,7505.421793471855,13.334065949023474,43.266650610260356,2019
+2007,61,"(60,65]",HS,105280.90754741662,6916.761260650533,15.221127863174907,39.80743661205351,2019
+2007,36,"(35,40]",College,847.1523871811642,267.84054243370144,3.1628982658249347,1295.639983826471,2019
+2007,36,"(35,40]",College,847.1523871811642,267.84054243370144,3.1628982658249347,1355.5477514436202,2019
+2007,36,"(35,40]",College,847.1523871811642,267.84054243370144,3.1628982658249347,1300.3618190281054,2019
+2007,36,"(35,40]",College,848.5833878351865,267.84054243370144,3.1682409993820717,1282.20514966718,2019
+2007,36,"(35,40]",College,850.0143884892086,267.84054243370144,3.1735837329392083,1275.9830250703023,2019
+2007,72,"(70,75]",College,4944.822759973839,267.5756451939319,18.480092821564384,2300.908980224789,2019
+2007,72,"(70,75]",College,5655.31458469588,274.91918534087785,20.57082548707447,2307.8241907743623,2019
+2007,72,"(70,75]",College,7186.628384565075,439.7588510441685,16.34220293122256,2281.036259081756,2019
+2007,72,"(70,75]",College,4865.4022236756055,389.7227057543562,12.484266766695109,2263.036812342159,2019
+2007,72,"(70,75]",College,5558.722040549379,335.2716064683839,16.57975782411973,2296.308821201971,2019
+2007,40,"(35,40]",HS,233.2545376062786,44.14953996159914,5.283283536117505,8025.345669246395,2019
+2007,40,"(35,40]",HS,233.2545376062786,44.14953996159914,5.283283536117505,7890.785466851599,2019
+2007,40,"(35,40]",HS,233.2545376062786,44.14953996159914,5.283283536117505,8113.870637742196,2019
+2007,40,"(35,40]",HS,233.2545376062786,44.14953996159914,5.283283536117505,7928.103315381872,2019
+2007,40,"(35,40]",HS,233.2545376062786,44.14953996159914,5.283283536117505,7938.154510369255,2019
+2007,61,"(60,65]",College,675.7900588620013,141.27852787711726,4.7833883111366875,6235.092125354804,2019
+2007,61,"(60,65]",College,698.6860693263571,141.27852787711726,4.945451229036501,6375.95018228443,2019
+2007,61,"(60,65]",College,684.3760627861348,141.27852787711726,4.844161905349117,6001.369582584068,2019
+2007,61,"(60,65]",College,670.0660562459124,141.27852787711726,4.742872581661734,6279.23193780878,2019
+2007,61,"(60,65]",College,690.1000654022238,141.27852787711726,4.8846776348240715,6330.952767326309,2019
+2007,53,"(50,55]",College,16423.880706344014,169.23990318613005,97.04496632972563,3269.2962664101697,2019
+2007,53,"(50,55]",College,8171.872334859386,173.65485718228996,47.05812706569539,3269.868880191331,2019
+2007,53,"(50,55]",College,11453.58613472858,204.55953515540935,55.991455622085695,3230.736263416169,2019
+2007,53,"(50,55]",College,9868.466710268149,153.0517385335437,64.47797852427085,3205.9377804607925,2019
+2007,53,"(50,55]",College,16840.158796599084,185.42806783871637,90.81774400651416,3267.4079347457714,2019
+2007,27,"(25,30]",NoHS,0,0.956573365834648,0,7062.584107974899,2019
+2007,27,"(25,30]",NoHS,0,0.956573365834648,0,7065.248177844153,2019
+2007,27,"(25,30]",NoHS,0,0.956573365834648,0,7059.781275192543,2019
+2007,27,"(25,30]",NoHS,0,0.956573365834648,0,7102.055609218965,2019
+2007,27,"(25,30]",NoHS,0,0.956573365834648,0,7102.403966622316,2019
+2007,34,"(30,35]",HS,-21.32190974493133,51.50779662186566,-0.4139549960069527,6082.123355913772,2019
+2007,34,"(30,35]",HS,-19.89090909090909,51.50779662186566,-0.38617278150984174,6077.7624638461675,2019
+2007,34,"(30,35]",HS,-19.89090909090909,51.50779662186566,-0.38617278150984174,6086.352777781403,2019
+2007,34,"(30,35]",HS,-19.89090909090909,51.50779662186566,-0.38617278150984174,6082.156497379346,2019
+2007,34,"(30,35]",HS,-21.32190974493133,51.50779662186566,-0.4139549960069527,6085.652672975584,2019
+2007,20,"(15,20]",HS,63.379018966644864,27.96137530901279,2.266663147510341,8873.130359119034,2019
+2007,20,"(15,20]",HS,16.456507521255723,52.979447953918964,0.31062059264130953,8871.017870266045,2019
+2007,20,"(15,20]",HS,14.252766514061477,32.3763293051727,0.44022181698603924,8803.792985760429,2019
+2007,20,"(15,20]",HS,78.44745585349902,23.546421312852875,3.3316084347254193,8837.561107116464,2019
+2007,20,"(15,20]",HS,10.446304774362329,23.546421312852875,0.4436472377507399,8927.263121551598,2019
+2007,54,"(50,55]",College,75937.48070634401,15422.905959918633,4.923681756453155,41.111695564748175,2019
+2007,54,"(50,55]",College,81846.08240680184,15084.426153546372,5.425866491285762,36.461175840277114,2019
+2007,54,"(50,55]",College,91878.82799215174,13848.239034621598,6.634693968124614,40.44471953436614,2019
+2007,54,"(50,55]",College,86107.60235448006,14039.553707788526,6.133215068418546,40.121991843107445,2019
+2007,54,"(50,55]",College,78437.43884892086,14687.080293891982,5.340573979264019,36.71388324465462,2019
+2007,49,"(45,50]",College,519.3530673642904,117.73210656426438,4.411312109503452,5638.261327086562,2019
+2007,49,"(45,50]",College,509.15003270111185,117.73210656426438,4.324648964156527,5766.693603889334,2019
+2007,49,"(45,50]",College,514.1012949640287,117.73210656426438,4.366704291351528,5427.931415115122,2019
+2007,49,"(45,50]",College,527.8102812295618,117.73210656426438,4.4831464978625455,5681.353060697509,2019
+2007,49,"(45,50]",College,519.7394375408765,117.73210656426438,4.414593883590924,5728.529140944793,2019
+2007,60,"(55,60]",College,18378.341399607587,816.7664892895842,22.501341130673584,1400.6655701782972,2019
+2007,60,"(55,60]",College,18378.341399607587,816.7664892895842,22.501341130673584,1365.242152559149,2019
+2007,60,"(55,60]",College,18376.910398953565,816.7664892895842,22.499589099128723,1383.7260564024555,2019
+2007,60,"(55,60]",College,18378.341399607587,816.7664892895842,22.501341130673584,1376.9337479854637,2019
+2007,60,"(55,60]",College,18376.910398953565,816.7664892895842,22.499589099128723,1394.2808572337517,2019
+2007,61,"(60,65]",College,337.55874427730544,332.59320104404685,1.0149297797359393,6833.56650898666,2019
+2007,61,"(60,65]",College,350.10862001308044,332.59320104404685,1.0526631900894268,6987.642069517981,2019
+2007,61,"(60,65]",College,329.5308306082407,332.59320104404685,0.9907924442646662,6579.152613930457,2019
+2007,61,"(60,65]",College,340.83573577501636,332.59320104404685,1.0247826314702022,6883.510300797718,2019
+2007,61,"(60,65]",College,345.84423806409416,332.59320104404685,1.0398415751688574,6940.432402180522,2019
+2007,75,"(70,75]",HS,36.13276651406148,8.829907992319828,4.092088676970295,7349.566629240228,2019
+2007,75,"(70,75]",HS,36.13276651406148,8.829907992319828,4.092088676970295,7316.377545198031,2019
+2007,75,"(70,75]",HS,36.13276651406148,8.829907992319828,4.092088676970295,7424.351142395809,2019
+2007,75,"(70,75]",HS,36.13276651406148,8.829907992319828,4.092088676970295,7398.73214493802,2019
+2007,75,"(70,75]",HS,36.13276651406148,8.829907992319828,4.092088676970295,7435.5629548788975,2019
+2007,47,"(45,50]",College,3240.2147809025505,1177.3210656426438,2.75219298750411,953.5193149920966,2019
+2007,47,"(45,50]",College,3248.0852844996734,1177.3210656426438,2.758878082867478,938.1520467181408,2019
+2007,47,"(45,50]",College,3251.8058862001308,1177.3210656426438,2.762038309766524,940.7524870152623,2019
+2007,47,"(45,50]",College,3229.482275997384,1177.3210656426438,2.743076948372246,931.2738585789008,2019
+2007,47,"(45,50]",College,3233.9183780248527,1177.3210656426438,2.7468449112134166,940.261461621392,2019
+2007,76,"(75,80]",HS,173.4372792674951,33.84798063722601,5.124006691162804,11449.12708103381,2019
+2007,76,"(75,80]",HS,173.29417920209286,35.319631969279314,4.906454839416858,11488.178152853365,2019
+2007,76,"(75,80]",HS,173.29417920209286,33.84798063722601,5.119778962869765,11406.5902284441,2019
+2007,76,"(75,80]",HS,173.29417920209286,35.319631969279314,4.906454839416858,11416.741548495613,2019
+2007,76,"(75,80]",HS,173.29417920209286,33.84798063722601,5.119778962869765,11416.471724541703,2019
+2007,35,"(30,35]",NoHS,14.653446697187706,79.46917193087846,0.18439158658823243,6122.272460857932,2019
+2007,35,"(30,35]",NoHS,16.685467625899282,79.46917193087846,0.20996151363464746,6019.620904725456,2019
+2007,35,"(30,35]",NoHS,16.685467625899282,79.46917193087846,0.20996151363464746,6189.805249980902,2019
+2007,35,"(30,35]",NoHS,14.238456507521256,79.46917193087846,0.17916955923368286,6048.089464931015,2019
+2007,35,"(30,35]",NoHS,15.41187704381949,79.46917193087846,0.19393529175344368,6055.757191257843,2019
+2007,59,"(55,60]",College,30713.567037279267,877.1041939037698,35.01701080755402,1662.0750737233436,2019
+2007,59,"(55,60]",College,31135.712230215828,877.1041939037698,35.498305043598776,716.5361203957398,2019
+2007,59,"(55,60]",College,30732.170045781557,877.1041939037698,35.038220384057695,1496.271761170075,2019
+2007,59,"(55,60]",College,30865.253106605625,877.1041939037698,35.189950431353154,1388.8200948345213,2019
+2007,59,"(55,60]",College,30819.461085676914,877.1041939037698,35.137742243036435,1107.4379408830573,2019
+2007,37,"(35,40]",HS,23.339620667102682,61.8093559462388,0.3776065987065658,7883.824595140936,2019
+2007,37,"(35,40]",HS,12.335225637671682,61.8093559462388,0.19956890747091338,7743.2425116508875,2019
+2007,37,"(35,40]",HS,26.931432308698497,61.8093559462388,0.4357177306963561,7986.446091752054,2019
+2007,37,"(35,40]",HS,32.297684761281886,61.8093559462388,0.5225371509998278,7823.679459986117,2019
+2007,37,"(35,40]",HS,7.727403531720079,61.8093559462388,0.1250199652369991,7811.52229593268,2019
+2007,59,"(55,60]",College,1496.1111837802484,532.7377822032963,2.8083444308992567,640.7312989983222,2019
+2007,59,"(55,60]",College,1493.2491824722042,534.2094335353496,2.7952504930323236,632.9536277619598,2019
+2007,59,"(55,60]",College,1504.697187704382,532.7377822032963,2.824461185165537,634.4772104033464,2019
+2007,59,"(55,60]",College,1488.9561805101373,532.7377822032963,2.794913802344024,631.5018267633002,2019
+2007,59,"(55,60]",College,1488.9561805101373,534.2094335353496,2.7872143152852247,650.4251330783853,2019
+2007,83,"(80,85]",College,131.3658600392413,76.52586926677185,1.7166202919080258,10051.547841296799,2019
+2007,83,"(80,85]",College,127.07285807717463,125.0903632245309,1.0158485018473025,9769.72227957701,2019
+2007,83,"(80,85]",College,139.66566383257032,83.88412592703838,1.664983240739138,10269.794788157105,2019
+2007,83,"(80,85]",College,131.3658600392413,85.35577725909167,1.5390388824002992,9966.119461250895,2019
+2007,83,"(80,85]",College,142.24146500981036,108.90219857194455,1.306139516695255,10085.431212843545,2019
+2007,28,"(25,30]",HS,-20.463309352517985,36.79128330133262,-0.5561999342321604,5475.146092257386,2019
+2007,28,"(25,30]",HS,-20.463309352517985,36.79128330133262,-0.5561999342321604,5499.240174366905,2019
+2007,28,"(25,30]",HS,-20.320209287115762,36.79128330133262,-0.5523104242025649,5505.586722125,2019
+2007,28,"(25,30]",HS,-20.463309352517985,36.79128330133262,-0.5561999342321604,5495.61379123113,2019
+2007,28,"(25,30]",HS,-20.463309352517985,36.79128330133262,-0.5561999342321604,5502.555056264373,2019
+2007,80,"(75,80]",College,88204.01831262263,5665.857628405222,15.567637610662933,26.31790332028937,2019
+2007,80,"(75,80]",College,54298.318116415954,4620.985182647378,11.75037702356541,27.613217944409246,2019
+2007,80,"(75,80]",College,72889.30621321125,4988.898015660702,14.610301911244461,24.737227961287456,2019
+2007,80,"(75,80]",College,77066.11092217136,4120.6237297492535,18.702535338469488,24.98625194645153,2019
+2007,80,"(75,80]",College,56441.24159581426,4812.299855814307,11.728537972882329,26.973400547686946,2019
+2007,55,"(50,55]",NoHS,0.8729103989535644,10.301559324373134,0.08473575421618827,5365.280079800594,2019
+2007,55,"(50,55]",NoHS,1.0160104643557881,12.50903632245309,0.08122212120625955,5378.76933034246,2019
+2007,55,"(50,55]",NoHS,0.8729103989535644,14.422183054122387,0.06052553872584877,5426.504699278251,2019
+2007,55,"(50,55]",NoHS,0.8729103989535644,14.569348187327716,0.0599141696478099,5384.587491495941,2019
+2007,55,"(50,55]",NoHS,0.8872204054937868,12.50903632245309,0.07092635936321257,5350.337957157844,2019
+2007,49,"(45,50]",NoHS,186.74558534990192,85.35577725909167,2.1878493916474846,5827.842653329715,2019
+2007,49,"(45,50]",NoHS,186.45938521909747,85.35577725909167,2.1844963657599026,5722.943800740284,2019
+2007,49,"(45,50]",NoHS,186.45938521909747,85.35577725909167,2.1844963657599026,6014.905219287377,2019
+2007,49,"(45,50]",NoHS,186.45938521909747,85.35577725909167,2.1844963657599026,5823.597263618009,2019
+2007,49,"(45,50]",NoHS,186.45938521909747,85.35577725909167,2.1844963657599026,5730.2557762975375,2019
+2007,69,"(65,70]",College,55960.71157619359,2855.0035841834115,19.600925156876635,335.2173176366628,2019
+2007,69,"(65,70]",College,55960.71157619359,2663.688911016482,21.00872641123794,377.6275591146207,2019
+2007,69,"(65,70]",College,53971.62066710268,2590.1063444138167,20.837607993781948,336.6150961100528,2019
+2007,69,"(65,70]",College,58965.81294964029,2501.807264490618,23.569286805810783,328.4458908773273,2019
+2007,69,"(65,70]",College,53973.05166775671,2678.4054243370147,20.151188157452545,370.8451778595428,2019
+2007,91,"(90,95]",HS,10.160104643557881,30.9046779731194,0.3287562048824791,10590.746844254394,2019
+2007,91,"(90,95]",HS,10.160104643557881,32.3763293051727,0.31381274102418466,10563.112790541609,2019
+2007,91,"(90,95]",HS,10.160104643557881,32.3763293051727,0.31381274102418466,10506.290490340018,2019
+2007,91,"(90,95]",HS,10.160104643557881,32.3763293051727,0.31381274102418466,10455.977486464984,2019
+2007,91,"(90,95]",HS,10.160104643557881,32.3763293051727,0.31381274102418466,10380.52757127325,2019
+2007,69,"(65,70]",College,9023.460824068019,490.05989357375046,18.41297552073613,3632.349698125517,2019
+2007,69,"(65,70]",College,8083.293394375409,488.58824224169723,16.544183210976094,3680.8777624709087,2019
+2007,69,"(65,70]",College,5030.968999345978,490.05989357375046,10.266028837123873,3576.6192345709183,2019
+2007,69,"(65,70]",College,6072.594375408764,490.05989357375046,12.391535106299987,3550.893705428948,2019
+2007,69,"(65,70]",College,4533.266971877044,490.05989357375046,9.250434551618373,3602.792271165068,2019
+2007,49,"(45,50]",HS,2721.9492740353176,147.16513320533048,18.495884281486354,1345.0424158119104,2019
+2007,49,"(45,50]",HS,2744.3730542838457,147.16513320533048,18.648255836895757,1344.959602411131,2019
+2007,49,"(45,50]",HS,2628.934231523872,147.16513320533048,17.86383890167708,2443.4520011420723,2019
+2007,49,"(45,50]",HS,2585.1026814911706,147.16513320533048,17.5659996711608,2625.1385669590877,2019
+2007,49,"(45,50]",HS,2649.726671026815,147.16513320533048,18.005125353502137,2516.348906335447,2019
+2007,42,"(40,45]",NoHS,0.14310006540222367,27.96137530901279,0.005117776354730957,6387.571022370934,2019
+2007,42,"(40,45]",NoHS,0.14310006540222367,27.96137530901279,0.005117776354730957,6392.663601498245,2019
+2007,42,"(40,45]",NoHS,0.14310006540222367,27.96137530901279,0.005117776354730957,6386.799437302306,2019
+2007,42,"(40,45]",NoHS,0.14310006540222367,27.96137530901279,0.005117776354730957,6426.407237429887,2019
+2007,42,"(40,45]",NoHS,0.14310006540222367,27.96137530901279,0.005117776354730957,6425.883317861315,2019
+2007,58,"(55,60]",College,44895.78521909745,6666.58053420147,6.7344547911435555,21.94396156795144,2019
+2007,58,"(55,60]",College,44895.78521909745,6666.58053420147,6.7344547911435555,24.463597504264882,2019
+2007,58,"(55,60]",College,44895.64211903205,6666.58053420147,6.734433325856416,22.34460356130672,2019
+2007,58,"(55,60]",College,44895.64211903205,6651.864020880937,6.749332514630435,23.170608112366423,2019
+2007,58,"(55,60]",College,44895.64211903205,6666.58053420147,6.734433325856416,24.18493194968203,2019
+2007,60,"(55,60]",College,21020.970307390453,1471.651332053305,14.283933870437355,24.019282797606476,2019
+2007,60,"(55,60]",College,21829.485676913017,1471.651332053305,14.833327162117723,22.52591885598372,2019
+2007,60,"(55,60]",College,45752.954610856774,1471.651332053305,31.08953433081223,27.417816199790572,2019
+2007,60,"(55,60]",College,39872.9729234794,1471.651332053305,27.094035152910223,27.832585809414752,2019
+2007,60,"(55,60]",College,23661.16651406148,1471.651332053305,16.07797037158829,27.777630745488153,2019
+2007,57,"(55,60]",College,103023.46108567691,3016.8852307092743,34.14894939886591,39.07069014668823,2019
+2007,57,"(55,60]",College,64176.08633093526,2266.3430513620892,28.3170221261803,34.66982663369591,2019
+2007,57,"(55,60]",College,57011.066056245916,2634.2558843754155,21.642189885347182,39.42713048163899,2019
+2007,57,"(55,60]",College,56876.551994767826,2030.8788382335604,28.00588145585215,40.03225177031999,2019
+2007,57,"(55,60]",College,72696.26422498365,2678.4054243370147,27.14162074361022,34.89411279517016,2019
+2007,54,"(50,55]",College,118.04324395029433,264.8972397695949,0.4456190032518543,6952.613160974729,2019
+2007,54,"(50,55]",College,109.90085022890779,264.8972397695949,0.4148810698235229,7110.294864425698,2019
+2007,54,"(50,55]",College,122.33624591236102,264.8972397695949,0.4618252950418356,6694.284754951266,2019
+2007,54,"(50,55]",College,246.84761281883584,264.8972397695949,0.9318617779239284,7006.320304934816,2019
+2007,54,"(50,55]",College,125.92805755395685,264.8972397695949,0.4753845591727867,7064.293666417829,2019
+2007,25,"(20,25]",HS,23.940640941792022,45.62119129365245,0.5247701838317191,5309.842816809493,2019
+2007,25,"(20,25]",HS,23.933485938521912,45.62119129365245,0.5246133487498806,5333.209460669055,2019
+2007,25,"(20,25]",HS,23.7975408763898,45.62119129365245,0.5216334821949485,5339.364396164296,2019
+2007,25,"(20,25]",HS,23.7975408763898,45.62119129365245,0.5216334821949485,5329.692563746118,2019
+2007,25,"(20,25]",HS,23.7975408763898,45.62119129365245,0.5216334821949485,5336.424261066207,2019
+2007,82,"(80,85]",NoHS,282.62262916939176,38.262934633385925,7.3863291427415065,8410.119583151056,2019
+2007,82,"(80,85]",NoHS,285.77083060824066,27.96137530901279,10.220199380397721,8420.432623287825,2019
+2007,82,"(80,85]",NoHS,250.35356442119033,19.131467316692962,13.085957301494952,8467.439163846684,2019
+2007,82,"(80,85]",NoHS,253.1440156965337,29.433026641066096,8.60067905294311,8410.352933440958,2019
+2007,82,"(80,85]",NoHS,303.3721386527142,41.206237297492535,7.362286841734392,8587.509212507179,2019
+2007,43,"(40,45]",HS,264.46323086984955,176.59815984639656,1.497542392853228,8222.117974129958,2019
+2007,43,"(40,45]",HS,281.6209287115762,176.59815984639656,1.5946991121341665,8095.124688531422,2019
+2007,43,"(40,45]",HS,286.0570307390451,176.59815984639656,1.6198188644086375,8392.803033498534,2019
+2007,43,"(40,45]",HS,277.90032701111835,176.59815984639656,1.5736309328071905,8169.152143712627,2019
+2007,43,"(40,45]",HS,294.0849444081099,176.59815984639656,1.6652775128795354,8042.246271102029,2019
+2007,23,"(20,25]",College,14.310006540222368,80.94082326293177,0.17679591043616033,7642.248031149914,2019
+2007,23,"(20,25]",College,16.75701765860039,80.94082326293177,0.2070280111207437,7692.557959083106,2019
+2007,23,"(20,25]",College,16.3134074558535,80.94082326293177,0.2015473378972228,7663.4110499365615,2019
+2007,23,"(20,25]",College,15.884107259646829,80.94082326293177,0.19624346058413797,7623.919988066776,2019
+2007,23,"(20,25]",College,15.311706998037932,80.94082326293177,0.18917162416669153,7676.863492228859,2019
+2007,31,"(30,35]",NoHS,7.55568345323741,44.14953996159914,0.17113844130220324,6560.824875542856,2019
+2007,31,"(30,35]",NoHS,7.713093525179857,44.14953996159914,0.17470382549599914,6534.287426336486,2019
+2007,31,"(30,35]",NoHS,8.958064094179203,44.14953996159914,0.20290277321056674,6543.88628239972,2019
+2007,31,"(30,35]",NoHS,8.872204054937868,44.14953996159914,0.20095801819576894,6487.674654430245,2019
+2007,31,"(30,35]",NoHS,7.55568345323741,44.14953996159914,0.17113844130220324,6362.367383144205,2019
+2007,49,"(45,50]",HS,201.05559189012425,73.58256660266524,2.7323807957908577,7261.301750100542,2019
+2007,49,"(45,50]",HS,202.51521255722696,73.58256660266524,2.7522172969417955,7087.866372171515,2019
+2007,49,"(45,50]",HS,199.76769130150424,73.58256660266524,2.714878000657678,7433.118203834098,2019
+2007,49,"(45,50]",HS,199.26684107259646,73.58256660266524,2.708071358105886,7229.78287283986,2019
+2007,49,"(45,50]",HS,201.05559189012425,73.58256660266524,2.7323807957908577,7141.4593164265225,2019
+2007,24,"(20,25]",College,1.4310006540222369,7.063926393855863,0.20257864737476708,6321.21680084588,2019
+2007,24,"(20,25]",College,1.4310006540222369,6.033770461418549,0.2371652457070444,6304.186336044348,2019
+2007,24,"(20,25]",College,1.4310006540222369,6.033770461418549,0.2371652457070444,6274.315185059747,2019
+2007,24,"(20,25]",College,1.4310006540222369,6.6224309942398705,0.2160838905330849,6230.889151794978,2019
+2007,24,"(20,25]",College,1.4310006540222369,6.033770461418549,0.2371652457070444,6186.249031988462,2019
+2007,43,"(40,45]",NoHS,12.735905820797907,58.86605328213219,0.21635399539625122,1060.864765881839,2019
+2007,43,"(40,45]",NoHS,11.448005232177895,58.86605328213219,0.19447550147977638,1095.2265286301094,2019
+2007,43,"(40,45]",NoHS,12.735905820797907,58.86605328213219,0.21635399539625122,1050.794482280732,2019
+2007,43,"(40,45]",NoHS,14.166906474820143,60.3377046141855,0.2347935932499739,1061.7859746254946,2019
+2007,43,"(40,45]",NoHS,11.30490516677567,60.3377046141855,0.18736054410856504,1104.1126704259436,2019
+2007,48,"(45,50]",HS,82887.56468279922,16070.432546022088,5.15776812138864,27.812697782504966,2019
+2007,48,"(45,50]",HS,62095.26827992152,16085.149059342619,3.8604098756458325,25.40997761227106,2019
+2007,48,"(45,50]",HS,60570.107782864616,16070.432546022088,3.769040292438023,26.142243813693533,2019
+2007,48,"(45,50]",HS,81938.95434924787,16070.432546022088,5.098739820138208,26.40541177033786,2019
+2007,48,"(45,50]",HS,79657.22380640943,16070.432546022088,4.956756675857301,24.786684237232244,2019
+2007,63,"(60,65]",College,29146.62132112492,1471.651332053305,19.805385070700424,51.22025340574068,2019
+2007,63,"(60,65]",College,29145.190320470898,1471.651332053305,19.804412693193026,55.258328454325564,2019
+2007,63,"(60,65]",College,29145.190320470898,1471.651332053305,19.804412693193026,54.610499006915575,2019
+2007,63,"(60,65]",College,29145.190320470898,1471.651332053305,19.804412693193026,55.55250546739158,2019
+2007,63,"(60,65]",College,29145.190320470898,1471.651332053305,19.804412693193026,56.193971667929546,2019
+2007,30,"(25,30]",NoHS,50.65742315238718,88.29907992319828,0.5737027293653404,6271.825387217474,2019
+2007,30,"(25,30]",NoHS,52.088423806409416,88.29907992319828,0.5899090211553217,6256.736686162476,2019
+2007,30,"(25,30]",NoHS,50.51432308698496,88.29907992319828,0.5720821001863422,6240.1326603363505,2019
+2007,30,"(25,30]",NoHS,50.51432308698496,88.29907992319828,0.5720821001863422,6285.109063614744,2019
+2007,30,"(25,30]",NoHS,52.088423806409416,88.29907992319828,0.5899090211553217,6313.08195646139,2019
+2007,79,"(75,80]",College,116326.47246566384,3585.0898100150557,32.4472966174243,4.29506195022647,2019
+2007,79,"(75,80]",College,167872.11772400263,4505.460553081192,37.25970203183741,5.846651618775497,2019
+2007,79,"(75,80]",College,75808.40444735122,3891.7819476149643,19.479098641127507,3.454303916812008,2019
+2007,79,"(75,80]",College,172158.25088293,3853.5190129815783,44.67559399680403,3.9635402173000216,2019
+2007,79,"(75,80]",College,116252.06043165468,4682.058712927589,24.829261561943294,2.589957633235665,2019
+2007,57,"(55,60]",HS,-5.4378024852845,58.86605328213219,-0.09237586320289379,5224.845430342424,2019
+2007,57,"(55,60]",HS,-3.8637017658600397,58.86605328213219,-0.06563548174942453,5180.060889140398,2019
+2007,57,"(55,60]",HS,-5.2947024198822765,58.86605328213219,-0.08994491943439659,5215.918748405366,2019
+2007,57,"(55,60]",HS,-5.4378024852845,58.86605328213219,-0.09237586320289379,5205.262249950907,2019
+2007,57,"(55,60]",HS,-3.8637017658600397,58.86605328213219,-0.06563548174942453,5188.619332318242,2019
+2007,60,"(55,60]",HS,316.95233485938525,125.0903632245309,2.5337869895738634,13053.139012099751,2019
+2007,60,"(55,60]",HS,283.89621975147156,125.0903632245309,2.2695291022689905,12779.422090762393,2019
+2007,60,"(55,60]",HS,297.07573577501637,125.0903632245309,2.3748890651295045,13424.373654815474,2019
+2007,60,"(55,60]",HS,276.8843165467626,125.0903632245309,2.21347439890129,12965.067816724422,2019
+2007,60,"(55,60]",HS,286.91563113145844,125.0903632245309,2.293666943923245,12806.678145060716,2019
+2007,32,"(30,35]",HS,10.589404839764553,103.01559324373132,0.1027941936393104,7048.258650805183,2019
+2007,32,"(30,35]",HS,9.172714192282537,103.01559324373132,0.08904199746324049,7031.302013594419,2019
+2007,32,"(30,35]",HS,15.597907128842381,103.01559324373132,0.1514130690092545,7012.642458928608,2019
+2007,32,"(30,35]",HS,25.758011772400263,103.01559324373132,0.25003993047399825,7063.186806692999,2019
+2007,32,"(30,35]",HS,14.45310660562459,103.01559324373132,0.14030018321041013,7094.6226601841145,2019
+2007,82,"(80,85]",HS,39.35251798561151,16.18816465258635,2.430943768497205,7580.620948476159,2019
+2007,82,"(80,85]",HS,37.4922171353826,22.07476998079957,1.6984193795900473,7589.773872779175,2019
+2007,82,"(80,85]",HS,41.212818835840416,22.07476998079957,1.8669648142058533,7589.929446669007,2019
+2007,82,"(80,85]",HS,42.21451929365598,20.603118648746268,2.0489383191619295,7611.124047524444,2019
+2007,82,"(80,85]",HS,40.06801831262263,22.07476998079957,1.815104680477913,7614.427555695732,2019
+2007,22,"(20,25]",HS,-4.1499018966644865,52.979447953918964,-0.07833041031824327,7698.07365434626,2019
+2007,22,"(20,25]",HS,-4.851092217135382,38.262934633385925,-0.1267830673108542,7696.240919547364,2019
+2007,22,"(20,25]",HS,-6.22485284499673,48.56449395775905,-0.12817703506621628,7637.918535970828,2019
+2007,22,"(20,25]",HS,-5.537972531066056,57.39440195007889,-0.09648976804188904,7667.214790488322,2019
+2007,22,"(20,25]",HS,-3.6061216481360368,44.14953996159914,-0.08167971062150609,7745.037687945836,2019
+2007,45,"(40,45]",College,88714.31314584696,3281.7824704788695,27.032356331924092,286.40883887600677,2019
+2007,45,"(40,45]",College,75706.53151079136,2810.854044221812,26.933640210319354,331.95145820008395,2019
+2007,45,"(40,45]",College,83851.34362328319,2913.8696374655433,28.77662835191773,331.31571327411456,2019
+2007,45,"(40,45]",College,68870.82741661217,3031.6017440298074,22.717636824243435,328.4458908773273,2019
+2007,45,"(40,45]",College,72836.07298888161,2751.98799093968,26.46671178387351,351.3020646411225,2019
+2007,54,"(50,55]",HS,585.2792674950948,110.37384990399784,5.3026986736819035,8472.891614028187,2019
+2007,54,"(50,55]",HS,510.8672334859385,110.37384990399784,4.628516935218679,8708.602980866053,2019
+2007,54,"(50,55]",HS,526.6082406801831,110.37384990399784,4.771132302970515,8187.43105503998,2019
+2007,54,"(50,55]",HS,552.5093525179857,110.37384990399784,5.0057994080894455,8562.145921804495,2019
+2007,54,"(50,55]",HS,571.1123610202748,110.37384990399784,5.174344842705252,8634.377977284325,2019
+2007,43,"(40,45]",HS,7.226553302812295,79.46917193087846,0.09093530393267321,4783.663082331386,2019
+2007,43,"(40,45]",HS,7.927743623283192,80.94082326293177,0.09794493438163282,4817.252984704181,2019
+2007,43,"(40,45]",HS,7.369653368214519,75.05421793471854,0.0981910620216518,4792.134013835011,2019
+2007,43,"(40,45]",HS,7.083453237410072,69.16761260650532,0.10240997152392481,4782.042788870995,2019
+2007,43,"(40,45]",HS,7.3839633747547415,75.05421793471854,0.09838172427800453,4806.788504151047,2019
+2007,35,"(30,35]",HS,58.52792674950948,70.63926393855863,0.8285466677627973,6829.271368589153,2019
+2007,35,"(30,35]",HS,58.52792674950948,70.63926393855863,0.8285466677627973,6714.765629467183,2019
+2007,35,"(30,35]",HS,58.671026814911706,70.63926393855863,0.8305724542365449,6904.602831889277,2019
+2007,35,"(30,35]",HS,58.52792674950948,70.63926393855863,0.8285466677627973,6746.521733815653,2019
+2007,35,"(30,35]",HS,58.671026814911706,70.63926393855863,0.8305724542365449,6755.074927780933,2019
+2007,33,"(30,35]",HS,704.7678221059516,135.39192254890403,5.205390460803797,9562.406692592911,2019
+2007,33,"(30,35]",HS,704.7678221059516,135.39192254890403,5.205390460803797,9482.163172813129,2019
+2007,33,"(30,35]",HS,706.1988227599738,135.39192254890403,5.215959781536394,9389.14460447114,2019
+2007,33,"(30,35]",HS,706.1988227599738,135.39192254890403,5.215959781536394,9509.33483815333,2019
+2007,33,"(30,35]",HS,706.1988227599738,135.39192254890403,5.215959781536394,9563.394474617067,2019
+2007,66,"(65,70]",NoHS,126.3573577501635,70.63926393855863,1.7887694563191932,7653.017795611804,2019
+2007,66,"(65,70]",NoHS,102.44533682145193,69.16761260650532,1.4811171437167228,7483.303960925524,2019
+2007,66,"(65,70]",NoHS,103.03204708960105,69.16761260650532,1.4895995858025428,7898.119659836588,2019
+2007,66,"(65,70]",NoHS,99.32575539568346,69.16761260650532,1.4360153784799234,7482.280777080266,2019
+2007,66,"(65,70]",NoHS,100.74244604316547,69.16761260650532,1.4564973727847084,7421.504505874899,2019
+2007,63,"(60,65]",College,8939.174885546108,621.0368621264946,14.39395216402686,399.7171730382807,2019
+2007,63,"(60,65]",College,6028.519555264879,676.9596127445202,8.905286876456543,392.01740422442367,2019
+2007,63,"(60,65]",College,5241.612295618051,651.9415400996139,8.040003548197213,389.90755278625795,2019
+2007,63,"(60,65]",College,7296.386134728581,959.5166684987546,7.604230728106472,386.9078533638707,2019
+2007,63,"(60,65]",College,4523.106867233486,835.897956606277,5.411075396807018,393.2051555121327,2019
+2007,57,"(55,60]",College,563.8142576847613,144.22183054122385,3.909354468522036,1172.8426911141162,2019
+2007,57,"(55,60]",College,563.8142576847613,144.22183054122385,3.909354468522036,1211.725869539413,2019
+2007,57,"(55,60]",College,563.8142576847613,144.22183054122385,3.909354468522036,1179.616354515841,2019
+2007,57,"(55,60]",College,563.8142576847613,144.22183054122385,3.909354468522036,1195.2969998495769,2019
+2007,57,"(55,60]",College,563.8142576847613,144.22183054122385,3.909354468522036,1195.9134067753162,2019
+2007,34,"(30,35]",HS,12.549875735775016,77.99752059882516,0.160900957356381,6585.135793796345,2019
+2007,34,"(30,35]",HS,13.093655984303467,89.77073125525159,0.1458566261098323,6549.76859813101,2019
+2007,34,"(30,35]",HS,15.283086984957489,123.6187118924776,0.12363085451214355,6598.74295738669,2019
+2007,34,"(30,35]",HS,20.377449313276653,128.03366588863753,0.15915696213057562,6599.060089594689,2019
+2007,34,"(30,35]",HS,12.235055591890125,75.05421793471854,0.1630162291815773,6517.1966971224265,2019
+2007,61,"(60,65]",HS,1002.9883584041858,150.10843586943707,6.681758773881141,8222.810532374766,2019
+2007,61,"(60,65]",HS,1002.9883584041858,153.0517385335437,6.553263412844965,8408.209202344886,2019
+2007,61,"(60,65]",HS,1002.9883584041858,151.5800872014904,6.616887329474528,7916.675038837166,2019
+2007,61,"(60,65]",HS,1002.9883584041858,148.63678453738376,6.747914801345311,8282.907750539043,2019
+2007,61,"(60,65]",HS,1074.5383911052975,155.99504119765032,6.888285568922833,8351.40194813848,2019
+2007,63,"(60,65]",College,10794.037933289732,905.0655692127824,11.926249655788238,254.21894009687608,2019
+2007,63,"(60,65]",College,12521.255722694572,905.0655692127824,13.834639332910921,242.28827524072148,2019
+2007,63,"(60,65]",College,12577.06474820144,905.0655692127824,13.896302296794754,247.11531420085876,2019
+2007,63,"(60,65]",College,12511.238718116416,905.0655692127824,13.823571621444593,245.95126071621638,2019
+2007,63,"(60,65]",College,10794.037933289732,905.0655692127824,11.926249655788238,249.43607052772336,2019
+2007,77,"(75,80]",College,39995.0372792675,4407.595739499648,9.074116512284258,22.255735756404107,2019
+2007,77,"(75,80]",College,39995.0372792675,4407.595739499648,9.074116512284258,24.166507377721455,2019
+2007,77,"(75,80]",College,44774.57946370176,4407.595739499648,10.158504116528752,23.797011415704734,2019
+2007,77,"(75,80]",College,32196.083714846307,4407.595739499648,7.304681649070933,24.229736226438206,2019
+2007,77,"(75,80]",College,36373.174623937215,4407.595739499648,8.252384468469042,24.545920684602557,2019
+2007,57,"(55,60]",College,3895.1837802485284,323.7632930517271,12.03096170518071,1695.9100489614023,2019
+2007,57,"(55,60]",College,4307.311968606933,323.7632930517271,13.303892260321065,1695.5122755290868,2019
+2007,57,"(55,60]",College,3856.546762589928,323.7632930517271,11.911624465636303,1648.446872330121,2019
+2007,57,"(55,60]",College,4082.6448659254415,323.7632930517271,12.609968311859134,1630.0508140330953,2019
+2007,57,"(55,60]",College,4248.64094179202,323.7632930517271,13.122676452123999,1724.1427837617393,2019
+2007,49,"(45,50]",NoHS,368.7688685415304,110.37384990399784,3.341089115422559,7240.878220828534,2019
+2007,49,"(45,50]",NoHS,370.19986919555265,110.37384990399784,3.354054148854544,7067.930656605624,2019
+2007,49,"(45,50]",NoHS,370.19986919555265,110.37384990399784,3.354054148854544,7412.211414329559,2019
+2007,49,"(45,50]",NoHS,370.3429692609549,110.37384990399784,3.3553506521977425,7209.44799526344,2019
+2007,49,"(45,50]",NoHS,368.91196860693265,110.37384990399784,3.3423856187657575,7121.372862452636,2019
+2007,71,"(70,75]",HS,489.18757357750167,36.71770073472995,13.322935907988288,6935.17878986864,2019
+2007,71,"(70,75]",HS,559.9505559189013,38.61613095307872,14.50043135080726,6857.758066514068,2019
+2007,71,"(70,75]",HS,736.965336821452,48.90297376413132,15.069949332242679,5934.5162213847825,2019
+2007,71,"(70,75]",HS,845.0774362328319,83.92827546699998,10.069043257836396,6217.741117107516,2019
+2007,71,"(70,75]",HS,1134.7835186396337,56.025766211269314,20.25467200859767,6269.776041955538,2019
+2007,51,"(50,55]",College,3218.892871157619,1061.060610410433,3.033655984941809,1220.7517477969177,2019
+2007,51,"(50,55]",College,3220.3238718116413,1061.060610410433,3.0350046361309895,1193.3779010138146,2019
+2007,51,"(50,55]",College,3223.185873119686,1061.060610410433,3.03770193850935,1202.3467108558439,2019
+2007,51,"(50,55]",College,3220.3238718116413,1061.060610410433,3.0350046361309895,1200.0468917471014,2019
+2007,51,"(50,55]",College,3211.7378678875084,1061.060610410433,3.026912728995909,1233.4581908654477,2019
+2007,31,"(30,35]",HS,55.95212557226946,91.2423825873049,0.6132251699886497,5681.262675877546,2019
+2007,31,"(30,35]",HS,54.521124918247224,89.77073125525159,0.6073374267524164,5809.289286966432,2019
+2007,31,"(30,35]",HS,54.521124918247224,91.2423825873049,0.5975416618047967,5471.144237407088,2019
+2007,31,"(30,35]",HS,53.09012426422499,89.77073125525159,0.591396811877025,5705.585344269156,2019
+2007,31,"(30,35]",HS,54.521124918247224,91.2423825873049,0.5975416618047967,5754.430137624369,2019
+2007,81,"(80,85]",HS,533.4054937867888,23.546421312852875,22.65335724268333,8892.806992119684,2019
+2007,81,"(80,85]",HS,533.4054937867888,25.01807264490618,21.320806816643135,8643.47023668755,2019
+2007,81,"(80,85]",HS,533.4054937867888,25.01807264490618,21.320806816643135,9085.894465381683,2019
+2007,81,"(80,85]",HS,533.4054937867888,25.01807264490618,21.320806816643135,8817.226782246293,2019
+2007,81,"(80,85]",HS,533.4054937867888,25.01807264490618,21.320806816643135,8922.784293940747,2019
+2007,31,"(30,35]",HS,15.95565729234794,29.433026641066096,0.5421004603748767,7221.944097499033,2019
+2007,31,"(30,35]",HS,19.27557880967953,29.433026641066096,0.654896251233147,7204.569609404198,2019
+2007,31,"(30,35]",HS,17.5297580117724,29.433026641066096,0.5955812232818152,7185.450240017078,2019
+2007,31,"(30,35]",HS,19.246958796599085,29.433026641066096,0.6539238737257481,7237.240117784587,2019
+2007,31,"(30,35]",HS,19.161098757357752,29.433026641066096,0.6510067412035515,7269.450623643941,2019
+2007,67,"(65,70]",College,394876.0444735121,4076.474189787654,96.86705375511808,38.34562330796444,2019
+2007,67,"(65,70]",College,387182.98495748854,4076.474189787654,94.97986910537931,34.91519233984594,2019
+2007,67,"(65,70]",College,391123.9607586658,4076.474189787654,95.94662999179684,35.924389643298575,2019
+2007,67,"(65,70]",College,390985.15369522566,4076.474189787654,95.91257922709731,36.2951475447028,2019
+2007,67,"(65,70]",College,395621.5958142577,4076.474189787654,97.04994497582379,34.21946385892708,2019
+2007,31,"(30,35]",NoHS,80.56533682145194,51.50779662186566,1.5641386761873446,7098.679508214734,2019
+2007,31,"(30,35]",NoHS,72.12243296272074,51.50779662186566,1.4002236106543902,7017.777010753775,2019
+2007,31,"(30,35]",NoHS,85.57383911052976,51.50779662186566,1.6613764269272329,7147.240151348892,2019
+2007,31,"(30,35]",NoHS,93.7305428384565,51.50779662186566,1.819735049560765,7128.246912563052,2019
+2007,31,"(30,35]",NoHS,73.26723348593852,51.50779662186566,1.4224493822520787,7063.789266992596,2019
+2007,72,"(70,75]",College,1980.5049051667756,203.08788382335604,9.751959929275744,2675.140587014189,2019
+2007,72,"(70,75]",College,1980.5049051667756,203.08788382335604,9.751959929275744,2689.475762195161,2019
+2007,72,"(70,75]",College,1980.5049051667756,203.08788382335604,9.751959929275744,2597.6852626261566,2019
+2007,72,"(70,75]",College,1980.5049051667756,203.08788382335604,9.751959929275744,2636.8180474088213,2019
+2007,72,"(70,75]",College,1980.5049051667756,203.08788382335604,9.751959929275744,2636.914043930815,2019
+2007,43,"(40,45]",HS,1574.7303597122302,110.37384990399784,14.267241389893677,5579.781078686125,2019
+2007,43,"(40,45]",HS,1576.6908306082407,110.37384990399784,14.285003485695498,5708.01841866,2019
+2007,43,"(40,45]",HS,1535.6783518639634,110.37384990399784,13.913425627534805,5371.131188500046,2019
+2007,43,"(40,45]",HS,1413.0129758011774,110.37384990399784,12.802062961745044,5622.522274724514,2019
+2007,43,"(40,45]",HS,1506.2283584041859,110.37384990399784,13.646605239504552,5668.789281842675,2019
+2007,61,"(60,65]",College,399192.22864617396,12479.603295812025,31.987573577770466,25.582206049031914,2019
+2007,61,"(60,65]",College,408493.08894702425,13730.506928057332,29.75076529128704,23.372176552657315,2019
+2007,61,"(60,65]",College,403548.9101373447,12641.48494233789,31.92258757401274,24.045717285527722,2019
+2007,61,"(60,65]",College,399710.22369391756,13230.145475159208,30.212080769966555,24.28777999174289,2019
+2007,61,"(60,65]",College,386427.98901242646,12391.304215888824,31.185416989192056,22.798869364914104,2019
+2007,66,"(65,70]",College,29490.49077828646,691.6761260650532,42.63627103346464,399.8320802809729,2019
+2007,66,"(65,70]",College,27521.72007848267,765.2586926677185,35.96394309817115,448.1522035371903,2019
+2007,66,"(65,70]",College,29109.84460431655,740.2406200228123,39.32484089216755,402.51899269941026,2019
+2007,66,"(65,70]",College,30205.27560497057,710.8075933817462,42.49430631609549,410.40126629691105,2019
+2007,66,"(65,70]",College,28965.456638325704,675.4879614124668,42.88078884153318,432.81978842464486,2019
+2007,47,"(45,50]",College,6105.9366906474825,401.76081365055217,15.197939876631098,1451.7956848980696,2019
+2007,47,"(45,50]",College,6182.209025506867,532.7377822032963,11.604600296863673,1415.0791653099739,2019
+2007,47,"(45,50]",College,4355.822890778287,448.85365627625794,9.704327523840842,1434.2378084658615,2019
+2007,47,"(45,50]",College,4366.269195552649,528.3228282071364,8.264396241157295,1427.1975525616413,2019
+2007,47,"(45,50]",College,7793.372661870504,519.4929202148165,15.001884257917993,1445.177903395077,2019
+2007,60,"(55,60]",HS,255.14741661216482,17.659815984639657,14.447909130768387,12216.558075434854,2019
+2007,60,"(55,60]",HS,255.14741661216482,16.18816465258635,15.761355415383695,11902.193497892611,2019
+2007,60,"(55,60]",HS,255.29051667756704,16.18816465258635,15.770195210905504,12514.20535378285,2019
+2007,60,"(55,60]",HS,255.14741661216482,17.659815984639657,14.447909130768387,12101.005445319486,2019
+2007,60,"(55,60]",HS,255.14741661216482,16.18816465258635,15.761355415383695,11950.642114440767,2019
+2007,35,"(30,35]",HS,1.3608816219751474,47.09284262570575,0.02889784404801053,9464.449831952086,2019
+2007,35,"(30,35]",HS,1.3036415958142578,45.62119129365245,0.028575351910980044,9493.230747728448,2019
+2007,35,"(30,35]",HS,7.127814257684761,45.62119129365245,0.1562391085275429,9436.308987805523,2019
+2007,35,"(30,35]",HS,7.585734466971877,47.09284262570575,0.16108041146004604,9439.662558975251,2019
+2007,35,"(30,35]",HS,1.1605415304120341,45.62119129365245,0.025438650274209457,9612.82526769264,2019
+2007,62,"(60,65]",HS,261.8430686723349,117.73210656426438,2.22405829907925,3472.7634538242214,2019
+2007,62,"(60,65]",HS,273.176593852191,117.73210656426438,2.3203236723117393,3518.5345922035217,2019
+2007,62,"(60,65]",HS,261.95754872465665,117.73210656426438,2.225030676586649,3508.8420381480378,2019
+2007,62,"(60,65]",HS,260.92722825376063,117.73210656426438,2.216279279020059,3768.6162199421146,2019
+2007,62,"(60,65]",HS,264.77662001308045,117.73210656426438,2.2489754727063462,3612.6421827776903,2019
+2007,37,"(35,40]",HS,-1.1448005232177894,66.22430994239872,-0.017286711242646788,7147.640479145708,2019
+2007,37,"(35,40]",HS,-1.1448005232177894,66.22430994239872,-0.017286711242646788,7154.692004164093,2019
+2007,37,"(35,40]",HS,-1.1448005232177894,66.22430994239872,-0.017286711242646788,7101.770835062149,2019
+2007,37,"(35,40]",HS,-1.1448005232177894,66.22430994239872,-0.017286711242646788,7119.390710091793,2019
+2007,37,"(35,40]",HS,-1.1448005232177894,66.22430994239872,-0.017286711242646788,7183.951986916402,2019
+2007,81,"(80,85]",NoHS,0,23.546421312852875,0,7335.96361160523,2019
+2007,81,"(80,85]",NoHS,0,23.546421312852875,0,7307.790063609586,2019
+2007,81,"(80,85]",NoHS,0,25.01807264490618,0,7310.24948381433,2019
+2007,81,"(80,85]",NoHS,0,25.01807264490618,0,7339.164257215116,2019
+2007,81,"(80,85]",NoHS,0,23.546421312852875,0,7337.752362153825,2019
+2007,23,"(20,25]",HS,9.015304120340092,25.01807264490618,0.3603516645066445,7957.9880504506455,2019
+2007,23,"(20,25]",HS,9.015304120340092,45.62119129365245,0.19761220311654695,7962.369071584551,2019
+2007,23,"(20,25]",HS,9.015304120340092,30.9046779731194,0.2917132522196646,7914.7984261926995,2019
+2007,23,"(20,25]",HS,8.872204054937868,19.131467316692962,0.4637492727594667,7910.2049881976345,2019
+2007,23,"(20,25]",HS,8.872204054937868,51.50779662186566,0.17224972988208767,7995.990399586711,2019
+2007,43,"(40,45]",College,138.8213734466972,92.71403391935819,1.4973070157581836,7532.868865409614,2019
+2007,43,"(40,45]",College,138.8213734466972,92.71403391935819,1.4973070157581836,7451.222339121824,2019
+2007,43,"(40,45]",College,138.8213734466972,92.71403391935819,1.4973070157581836,7678.72571937696,2019
+2007,43,"(40,45]",College,138.8213734466972,92.71403391935819,1.4973070157581836,7468.591505176393,2019
+2007,43,"(40,45]",College,138.96447351209943,92.71403391935819,1.498850472119134,7449.204821143986,2019
+2007,42,"(40,45]",NoHS,0,9.12423825873049,0,8724.9633094992,2019
+2007,42,"(40,45]",NoHS,0,11.773210656426437,0,8732.262340163194,2019
+2007,42,"(40,45]",NoHS,0,13.244861988479741,0,8721.945025456871,2019
+2007,42,"(40,45]",NoHS,0,10.743054723989124,0,8779.166176274626,2019
+2007,42,"(40,45]",NoHS,0,11.920375789631768,0,8777.74636017329,2019
+2007,65,"(60,65]",HS,912.0482668410726,110.37384990399784,8.2632640578757,6298.515354525424,2019
+2007,65,"(60,65]",HS,962.8344800523219,110.37384990399784,8.723393094376851,6442.488303562075,2019
+2007,65,"(60,65]",HS,936.403897972531,110.37384990399784,8.483928926888085,6064.909446279565,2019
+2007,65,"(60,65]",HS,925.7286330935252,110.37384990399784,8.387209777485477,6346.8779930588,2019
+2007,65,"(60,65]",HS,906.5102943100065,110.37384990399784,8.213089378493917,6399.905771472588,2019
+2007,24,"(20,25]",HS,-10.017004578155657,11.920375789631768,-0.8403262409619967,7561.500357908441,2019
+2007,24,"(20,25]",HS,-10.017004578155657,10.595889590783795,-0.9453670210822461,7542.156147274853,2019
+2007,24,"(20,25]",HS,-10.017004578155657,10.448724457578463,-0.9586820495481935,7502.549277019265,2019
+2007,24,"(20,25]",HS,-10.017004578155657,10.743054723989124,-0.9324167879167361,7453.823963289089,2019
+2007,24,"(20,25]",HS,-10.017004578155657,12.803366588863751,-0.7823727071025486,7400.043318210899,2019
+2007,41,"(40,45]",College,532.260693263571,220.74769980799567,2.4111720925134286,4323.6805952602035,2019
+2007,41,"(40,45]",College,532.260693263571,220.74769980799567,2.4111720925134286,4416.407864014946,2019
+2007,41,"(40,45]",College,533.8491039895356,220.74769980799567,2.4183676860681795,4136.197852980228,2019
+2007,41,"(40,45]",College,532.4037933289733,220.74769980799567,2.4118203441850277,4294.681263207278,2019
+2007,41,"(40,45]",College,532.389483322433,220.74769980799567,2.4117555190178672,4302.348436106831,2019
+2007,43,"(40,45]",HS,48.22472204054938,83.88412592703838,0.5748968771814441,7182.930007774992,2019
+2007,43,"(40,45]",HS,46.79372138652714,83.88412592703838,0.5578376226656743,7059.226943982397,2019
+2007,43,"(40,45]",HS,48.22472204054938,83.88412592703838,0.5748968771814441,7267.545296355798,2019
+2007,43,"(40,45]",HS,49.655722694571615,83.88412592703838,0.591956131697214,7071.983307652944,2019
+2007,43,"(40,45]",HS,43.35931981687377,83.88412592703838,0.5168954118278266,7082.4479516312085,2019
+2007,56,"(55,60]",College,492.6935251798561,360.55457635305964,1.3664880644793267,8293.349677432081,2019
+2007,56,"(55,60]",College,615.0440810987574,360.55457635305964,1.70582797012261,8090.800075475224,2019
+2007,56,"(55,60]",College,490.5470241988227,360.55457635305964,1.3605347328013744,8577.157517584083,2019
+2007,56,"(55,60]",College,510.43793328973186,360.55457635305964,1.415702273017066,8262.097138260473,2019
+2007,56,"(55,60]",College,938.3071288423806,360.55457635305964,2.6023997208222323,8022.509089009551,2019
+2007,56,"(55,60]",NoHS,61.103727926749514,22.07476998079957,2.7680346377288174,10463.409280488084,2019
+2007,56,"(55,60]",NoHS,46.006671026814914,26.489723976959482,1.73677427015967,10243.997522726746,2019
+2007,56,"(55,60]",NoHS,56.9395160235448,27.96137530901279,2.0363632115474477,10760.991341188555,2019
+2007,56,"(55,60]",NoHS,67.90098103335512,20.603118648746268,3.2956651947197813,10392.811322236075,2019
+2007,56,"(55,60]",NoHS,35.38864617396992,20.603118648746268,1.717635411283882,10265.846003098413,2019
+2007,47,"(45,50]",HS,730.3684238064095,69.16761260650532,10.559399063857775,6309.307502919651,2019
+2007,47,"(45,50]",HS,730.3684238064095,67.69596127445202,10.7889512174199,6452.399363723952,2019
+2007,47,"(45,50]",HS,726.0754218443427,69.16761260650532,10.497332414449335,6074.881494654204,2019
+2007,47,"(45,50]",HS,726.0754218443427,69.16761260650532,10.497332414449335,6358.04527654551,2019
+2007,47,"(45,50]",HS,733.2161151079137,69.16761260650532,10.600569941298705,6410.654526636878,2019
+2007,64,"(60,65]",HS,7.584303466317855,30.9046779731194,0.24540956139114636,6160.208922322418,2019
+2007,64,"(60,65]",HS,7.2981033355134075,30.9046779731194,0.23614882322544273,6166.477982189758,2019
+2007,64,"(60,65]",HS,7.441203400915631,30.9046779731194,0.24077919230829456,6166.610536920523,2019
+2007,64,"(60,65]",HS,7.441203400915631,30.9046779731194,0.24077919230829456,6183.088615090029,2019
+2007,64,"(60,65]",HS,7.441203400915631,29.433026641066096,0.25281815192370927,6184.83637019542,2019
+2007,49,"(45,50]",College,853.7349901896664,128.03366588863753,6.668050815105435,5897.183840373243,2019
+2007,49,"(45,50]",College,949.4689339437541,144.22183054122385,6.583392613868962,6031.1902345167755,2019
+2007,49,"(45,50]",College,696.1818181818182,138.33522521301063,5.032570822867618,5676.566705898868,2019
+2007,49,"(45,50]",College,644.8088947024199,111.84550123605116,5.765175063604424,5941.385032343313,2019
+2007,49,"(45,50]",College,842.1438848920864,126.56201455658422,6.6540018965609535,5990.353356266637,2019
+2007,49,"(45,50]",College,54903.34519293656,2501.807264490618,21.945473567131558,24.987831675360315,2019
+2007,49,"(45,50]",College,54904.77619359058,2501.807264490618,21.946045553900614,27.053602444089584,2019
+2007,49,"(45,50]",College,54903.20209287116,2501.807264490618,21.94541636845465,26.79923118508313,2019
+2007,49,"(45,50]",College,54903.20209287116,2501.807264490618,21.94541636845465,27.204643001103324,2019
+2007,49,"(45,50]",College,54904.77619359058,2501.807264490618,21.946045553900614,27.150927801751624,2019
+2007,47,"(45,50]",College,3490.353695225638,367.91283301332624,9.48690391318645,1705.404810208387,2019
+2007,47,"(45,50]",College,3491.9277959450624,367.91283301332624,9.491182374219006,1705.4583401132058,2019
+2007,47,"(45,50]",College,3491.7846958796604,367.91283301332624,9.490793423216047,1657.1752543309703,2019
+2007,47,"(45,50]",College,3491.9277959450624,367.91283301332624,9.491182374219006,1639.9364131303678,2019
+2007,47,"(45,50]",College,3490.353695225638,367.91283301332624,9.48690391318645,1734.5189390248863,2019
+2007,51,"(50,55]",College,1183.4375408763897,52.979447953918964,22.33767218385765,6888.757207946794,2019
+2007,51,"(50,55]",College,1183.4375408763897,52.979447953918964,22.33767218385765,7045.2959115983995,2019
+2007,51,"(50,55]",College,1183.580640941792,52.979447953918964,22.340373232489313,6631.044727473959,2019
+2007,51,"(50,55]",College,1183.4375408763897,52.979447953918964,22.33767218385765,6940.390544811594,2019
+2007,51,"(50,55]",College,1182.1496402877697,52.979447953918964,22.31336274617268,6997.592576072428,2019
+2007,81,"(80,85]",HS,583.2758665794637,49.153154490580384,11.866499162149228,8726.762310252085,2019
+2007,81,"(80,85]",HS,584.7068672334859,47.68150315852707,12.262760787752567,8696.77240223441,2019
+2007,81,"(80,85]",HS,584.7068672334859,47.68150315852707,12.262760787752567,8798.277193015869,2019
+2007,81,"(80,85]",HS,581.8448659254415,47.68150315852707,12.20273748482671,8745.410078097539,2019
+2007,81,"(80,85]",HS,586.1378678875082,47.68150315852707,12.292772439215495,8813.782879421891,2019
+2007,61,"(60,65]",HS,167.54155657292347,41.206237297492535,4.065927091652181,6565.334968779997,2019
+2007,61,"(60,65]",HS,179.00387181164157,41.206237297492535,4.344096514304504,6434.957138705124,2019
+2007,61,"(60,65]",HS,161.81755395683456,39.73458596543923,4.07246105691354,6780.71855384848,2019
+2007,61,"(60,65]",HS,158.95555264879007,50.03614528981236,3.1768145153490535,6526.828889339029,2019
+2007,61,"(60,65]",HS,168.98686723348595,45.62119129365245,3.704130962862386,6420.856649562611,2019
+2007,43,"(40,45]",College,189.03518639633748,176.59815984639656,1.0704255727282692,6908.297401041156,2019
+2007,43,"(40,45]",College,189.03518639633748,173.65485718228996,1.0885683790456975,6792.46663999995,2019
+2007,43,"(40,45]",College,187.60418574231522,170.71155451818333,1.0989542346551158,6984.5005747100895,2019
+2007,43,"(40,45]",College,190.4661870503597,175.12650851434324,1.0875919851663125,6824.590215312355,2019
+2007,43,"(40,45]",College,187.60418574231522,175.12650851434324,1.0712495060503648,6833.242383962836,2019
+2007,43,"(40,45]",HS,14.02380640941792,22.07476998079957,0.6352866381672696,7734.3134657596875,2019
+2007,43,"(40,45]",HS,14.02380640941792,22.07476998079957,0.6352866381672696,7752.349843244086,2019
+2007,43,"(40,45]",HS,13.880706344015696,22.07476998079957,0.628804121451277,7758.624247083087,2019
+2007,43,"(40,45]",HS,14.02380640941792,22.07476998079957,0.6352866381672696,7748.000224147986,2019
+2007,43,"(40,45]",HS,13.880706344015696,22.07476998079957,0.628804121451277,7687.061485945608,2019
+2007,42,"(40,45]",HS,85.1588489208633,66.22430994239872,1.285915232562388,6289.077075303532,2019
+2007,42,"(40,45]",HS,89.58064094179203,27.96137530901279,3.2037279980615794,6232.878190447153,2019
+2007,42,"(40,45]",HS,92.4426422498365,94.1856852514115,0.9814935465307465,6447.758714932912,2019
+2007,42,"(40,45]",HS,87.14793982995423,48.56449395775905,1.794478490927028,6305.826671693807,2019
+2007,42,"(40,45]",HS,87.14793982995423,41.206237297492535,2.1149210785925683,6322.79327878388,2019
+2007,33,"(30,35]",College,-76.65870503597124,63.28100727829211,-1.21140146677577,7136.307793051195,2019
+2007,33,"(30,35]",College,-79.09140614780902,32.3763293051727,-2.442877492451646,7130.860271895959,2019
+2007,33,"(30,35]",College,-75.94320470896011,50.03614528981236,-1.5177668916958431,7223.004210421406,2019
+2007,33,"(30,35]",College,-90.76837148463048,94.1856852514115,-0.9637172702236106,7154.393991106381,2019
+2007,33,"(30,35]",College,-74.99874427730543,45.62119129365245,-1.6439453278314646,7119.874222596014,2019
+2007,71,"(70,75]",College,31798.265533028123,978.6481358154475,32.492030965279035,397.3701265685885,2019
+2007,71,"(70,75]",College,31798.265533028123,978.6481358154475,32.492030965279035,445.39272015497556,2019
+2007,71,"(70,75]",College,31798.265533028123,978.6481358154475,32.492030965279035,400.04049440661396,2019
+2007,71,"(70,75]",College,31796.834532374098,978.6481358154475,32.49056874346339,407.8742331473524,2019
+2007,71,"(70,75]",College,31796.834532374098,978.6481358154475,32.49056874346339,430.1547139159744,2019
+2007,46,"(45,50]",HS,15.597907128842381,75.05421793471854,0.20782185942446693,8328.644508182839,2019
+2007,46,"(45,50]",HS,15.597907128842381,73.58256660266524,0.21197829661295625,8252.379872788404,2019
+2007,46,"(45,50]",HS,15.741007194244606,75.05421793471854,0.20972848198799418,8422.59931049444,2019
+2007,46,"(45,50]",HS,15.597907128842381,75.05421793471854,0.20782185942446693,8239.604103150989,2019
+2007,46,"(45,50]",HS,15.741007194244606,73.58256660266524,0.21392305162775405,8058.662306331379,2019
+2007,66,"(65,70]",College,2883.5664879005885,123.6187118924776,23.326294569455534,2951.633481057374,2019
+2007,66,"(65,70]",College,2883.4376978417267,123.6187118924776,23.325252736411894,2991.1565314130885,2019
+2007,66,"(65,70]",College,2883.4233878351865,125.0903632245309,23.05072360098265,2983.1947211973434,2019
+2007,66,"(65,70]",College,2882.0066971877045,123.6187118924776,23.313676813704763,3204.5267327296933,2019
+2007,66,"(65,70]",College,2882.149797253107,123.6187118924776,23.31483440597548,3072.0707365397875,2019
+2007,29,"(25,30]",College,-0.5724002616088947,36.79128330133262,-0.01555804011838211,7298.099768701328,2019
+2007,29,"(25,30]",College,-0.5724002616088947,36.79128330133262,-0.01555804011838211,7324.438595460498,2019
+2007,29,"(25,30]",College,-0.5724002616088947,36.79128330133262,-0.01555804011838211,7321.0618516918785,2019
+2007,29,"(25,30]",College,-0.5724002616088947,36.79128330133262,-0.01555804011838211,7340.0902746285165,2019
+2007,29,"(25,30]",College,-0.5724002616088947,36.79128330133262,-0.01555804011838211,7344.309542005709,2019
+2007,29,"(25,30]",HS,81.85323741007194,48.56449395775905,1.6854543461580622,11232.10492896972,2019
+2007,29,"(25,30]",HS,81.71013734466973,47.09284262570575,1.7350861147648804,11327.988715457961,2019
+2007,29,"(25,30]",HS,79.99293655984303,39.73458596543923,2.0131815801332404,11230.301320756536,2019
+2007,29,"(25,30]",HS,84.71523871811642,29.433026641066096,2.8782374219006908,11234.191962151906,2019
+2007,29,"(25,30]",HS,81.13773708306083,51.50779662186566,1.575251561986189,11235.836948139335,2019
+2007,64,"(60,65]",College,222645.81425768477,1986.7292982719614,112.06650772772115,26.31790332028937,2019
+2007,64,"(60,65]",College,223835.83440156968,1986.7292982719614,112.66549227227887,24.044317433712724,2019
+2007,64,"(60,65]",College,222653.25546108568,1986.7292982719614,112.07025318182372,24.737227961287456,2019
+2007,64,"(60,65]",College,228422.90699803794,1986.7292982719614,114.97434864262488,24.98625194645153,2019
+2007,64,"(60,65]",College,222325.2701111838,1986.7292982719614,111.90516508945645,23.454522983971597,2019
+2007,73,"(70,75]",College,11682.68933943754,900.6506152166227,12.97138884053018,344.17948404046354,2019
+2007,73,"(70,75]",College,11541.02027468934,900.6506152166227,12.814092479039184,338.5422853700393,2019
+2007,73,"(70,75]",College,11403.644211903205,900.6506152166227,12.661562673957008,334.7191184526328,2019
+2007,73,"(70,75]",College,12582.788750817528,900.6506152166227,13.970776834245699,333.1439935964769,2019
+2007,73,"(70,75]",College,12711.57880967953,900.6506152166227,14.11377352651024,343.6628936521897,2019
+2007,43,"(40,45]",College,317.20991497710924,139.80687654506394,2.2689149691064228,5331.514804386714,2019
+2007,43,"(40,45]",College,317.35301504251146,139.80687654506394,2.269938524377369,5454.575486048174,2019
+2007,43,"(40,45]",College,317.35301504251146,139.80687654506394,2.269938524377369,5131.357280261289,2019
+2007,43,"(40,45]",College,317.35301504251146,139.80687654506394,2.269938524377369,5371.9170798710975,2019
+2007,43,"(40,45]",College,317.35301504251146,139.80687654506394,2.269938524377369,5416.278914560787,2019
+2007,65,"(60,65]",NoHS,0,10.301559324373134,0,7114.120201250591,2019
+2007,65,"(60,65]",NoHS,0,10.301559324373134,0,7087.613100216829,2019
+2007,65,"(60,65]",NoHS,0,10.301559324373134,0,7088.885215966018,2019
+2007,65,"(60,65]",NoHS,0,10.301559324373134,0,7117.640765944717,2019
+2007,65,"(60,65]",NoHS,0,10.301559324373134,0,7115.798809334012,2019
+2007,69,"(65,70]",College,186.88868541530414,61.8093559462388,3.0236310111022378,8445.060314163507,2019
+2007,69,"(65,70]",College,189.60758665794637,44.14953996159914,4.294667324345062,8223.12932841729,2019
+2007,69,"(65,70]",College,188.31968606932637,39.73458596543923,4.739439999025661,8721.005089225635,2019
+2007,69,"(65,70]",College,188.17658600392414,39.73458596543923,4.73583860085011,8302.042960372917,2019
+2007,69,"(65,70]",College,189.32138652714193,42.67788862954583,4.436053249271452,8126.063034066929,2019
+2007,45,"(40,45]",HS,148.82406801831263,412.06237297492527,0.36116878846244194,7281.784784679624,2019
+2007,45,"(40,45]",HS,148.82406801831263,412.06237297492527,0.36116878846244194,7150.7155513193775,2019
+2007,45,"(40,45]",HS,148.82406801831263,412.06237297492527,0.36116878846244194,7515.516103042411,2019
+2007,45,"(40,45]",HS,148.6809679529104,412.06237297492527,0.36082151078122804,7276.480246440231,2019
+2007,45,"(40,45]",HS,148.6809679529104,412.06237297492527,0.36082151078122804,7159.851733527095,2019
+2007,55,"(50,55]",College,12778.835840418573,827.0680486139572,15.45076715493241,309.9226389270861,2019
+2007,55,"(50,55]",College,7620.078482668411,772.616949327985,9.862686146474374,302.42416070697044,2019
+2007,55,"(50,55]",College,7972.104643557881,828.5396999460106,9.621874056339557,302.4820241130884,2019
+2007,55,"(50,55]",College,6496.742969260956,746.1272253510255,8.707285766451529,301.1397913731095,2019
+2007,55,"(50,55]",College,11095.979071288424,803.5216273011043,13.809185334012694,310.4140686806517,2019
+2007,82,"(80,85]",College,189030.6071942446,2545.9568044522166,74.24737405743852,286.40883887600677,2019
+2007,82,"(80,85]",College,183276.839764552,3002.1687173887417,61.04814786157804,331.95145820008395,2019
+2007,82,"(80,85]",College,184491.7593198169,3016.8852307092743,61.153058605561405,331.31571327411456,2019
+2007,82,"(80,85]",College,185822.30372792677,2913.8696374655433,63.77165997362644,328.4458908773273,2019
+2007,82,"(80,85]",College,186763.90215827338,2943.30266410661,63.45385557382439,351.3020646411225,2019
+2007,48,"(45,50]",College,721.7537998691955,183.95641650666312,3.923504347254192,7677.235337316661,2019
+2007,48,"(45,50]",College,712.0229954218444,182.4847651746098,3.901821583519852,7851.691256004796,2019
+2007,48,"(45,50]",College,713.7258862001308,183.95641650666312,3.8798640447221304,7390.02542379682,2019
+2007,48,"(45,50]",College,725.7462916939176,183.95641650666312,3.945207813219335,7734.7785583064715,2019
+2007,48,"(45,50]",College,715.414466971877,183.95641650666312,3.8890432883919757,7798.527859160818,2019
+2007,52,"(50,55]",College,1891.3535644211904,151.5800872014904,12.47758593717575,3233.7460881594247,2019
+2007,52,"(50,55]",College,1895.646566383257,151.5800872014904,12.505907612148533,3282.7766438722233,2019
+2007,52,"(50,55]",College,1966.3379986919556,151.5800872014904,12.972271193367026,3286.9128524406747,2019
+2007,52,"(50,55]",College,2025.8676258992807,151.5800872014904,13.364998419656285,3550.619747864962,2019
+2007,52,"(50,55]",College,2115.1620667102684,151.5800872014904,13.95408925909017,3421.6260861934825,2019
+2007,56,"(55,60]",NoHS,0.1717200784826684,0,Inf,8516.062567234738,2019
+2007,56,"(55,60]",NoHS,0.1717200784826684,0,Inf,8518.467555890446,2019
+2007,56,"(55,60]",NoHS,0.1717200784826684,0,Inf,8505.392858396079,2019
+2007,56,"(55,60]",NoHS,0.1717200784826684,0,Inf,8566.107730439546,2019
+2007,56,"(55,60]",NoHS,0.1717200784826684,0,Inf,8563.163959819154,2019
+2007,82,"(80,85]",HS,12157.49535644212,2089.7448915156924,5.817693540393959,24.460238605567294,2019
+2007,82,"(80,85]",HS,12104.405232177895,2104.4614048362255,5.751782952332115,22.454665686523743,2019
+2007,82,"(80,85]",HS,8623.066841072598,2104.4614048362255,4.097517218066381,25.24945141215191,2019
+2007,82,"(80,85]",HS,9395.664094179203,2104.4614048362255,4.464640725929777,25.026140235743675,2019
+2007,82,"(80,85]",HS,5131.282145192937,2104.4614048362255,2.438287598623015,24.124421002140807,2019
+2007,43,"(40,45]",NoHS,0.014310006540222369,23.546421312852875,6.077359421243013e-4,6957.009306388123,2019
+2007,43,"(40,45]",NoHS,0.02146500981033355,8.241247459498506,0.002604582609104148,6958.384104795356,2019
+2007,43,"(40,45]",NoHS,0.028620013080444737,20.603118648746268,0.0013891107248555456,6895.772458850227,2019
+2007,43,"(40,45]",NoHS,0.02146500981033355,8.094082326293176,0.002651938656542405,6943.426209910562,2019
+2007,43,"(40,45]",NoHS,0.028620013080444737,10.007229057962471,0.00285993384529083,7001.575845851983,2019
+2007,48,"(45,50]",College,424603.6520601701,138305.79218636957,3.070035212176862,4.786703634160355,2019
+2007,48,"(45,50]",College,449457.2714192283,147253.43228525366,3.0522702557354116,6.55355497969647,2019
+2007,48,"(45,50]",College,446921.5382603009,154611.6889455202,2.89060640439534,3.850347020650047,2019
+2007,48,"(45,50]",College,449120.986265533,134038.003323415,3.3506988699456133,4.430308972979018,2019
+2007,48,"(45,50]",College,436346.4434270765,132742.9501512081,3.2871534264533997,2.92565295441845,2019
+2007,63,"(60,65]",College,280849.0469587966,19057.884750090296,14.736632666301855,1.898024395814342,2019
+2007,63,"(60,65]",College,286509.0838456507,18837.1370502823,15.209799826845607,2.5909963259260955,2019
+2007,63,"(60,65]",College,275808.0609548725,18851.853563602835,14.630288741865337,1.5313639698580066,2019
+2007,63,"(60,65]",College,288549.57629823417,18837.1370502823,15.318122681169847,1.7567380002252744,2019
+2007,63,"(60,65]",College,279697.2345323741,18837.1370502823,14.848181747883096,1.1428962085907495,2019
+2007,23,"(20,25]",HS,18.288188358404188,72.11091527061193,0.25361192948076966,7078.4992469388235,2019
+2007,23,"(20,25]",HS,18.331118378024854,72.11091527061193,0.25420726264856486,7082.396093051253,2019
+2007,23,"(20,25]",HS,18.63162851536952,72.11091527061193,0.25837459482313146,7040.082787797731,2019
+2007,23,"(20,25]",HS,19.733499018966647,72.11091527061193,0.2736548127965425,7035.997000387295,2019
+2007,23,"(20,25]",HS,17.000287769784173,72.11091527061193,0.23575193444691261,7112.301710329841,2019
+2007,52,"(50,55]",College,17309.527011118378,4503.253076083112,3.8437828651136,35.73221139023509,2019
+2007,52,"(50,55]",College,15401.860039241335,4503.253076083112,3.4201631085405775,32.70985178331346,2019
+2007,52,"(50,55]",College,16300.914820143884,4473.820049442046,3.643623266022257,36.76762947142809,2019
+2007,52,"(50,55]",College,12479.756703727928,4488.536562762579,2.7803620465657874,36.45035066569467,2019
+2007,52,"(50,55]",College,14008.881072596469,4488.536562762579,3.1210353033137292,35.29184231357542,2019
+2007,56,"(55,60]",College,2612.7209941138,301.6885230709275,8.660326112238431,3381.429397714637,2019
+2007,56,"(55,60]",College,2531.01085676913,301.6885230709275,8.389483401640987,3426.131301163452,2019
+2007,56,"(55,60]",College,2860.856507521256,301.6885230709275,9.482815184350462,3415.789808036424,2019
+2007,56,"(55,60]",College,2898.7780248528447,301.6885230709275,9.608512764575194,3669.984193785925,2019
+2007,56,"(55,60]",College,2674.254022236756,301.6885230709275,8.86428822354649,3517.8101284324475,2019
+2007,62,"(60,65]",College,26.001281883584042,73.58256660266524,0.3533619861887537,7967.024303035959,2019
+2007,62,"(60,65]",College,26.001281883584042,73.58256660266524,0.3533619861887537,7975.560272286732,2019
+2007,62,"(60,65]",College,26.001281883584042,73.58256660266524,0.3533619861887537,7976.186364275889,2019
+2007,62,"(60,65]",College,26.001281883584042,73.58256660266524,0.3533619861887537,7997.784871139916,2019
+2007,62,"(60,65]",College,26.001281883584042,73.58256660266524,0.3533619861887537,8000.535673032966,2019
+2007,77,"(75,80]",NoHS,76.94490516677567,20.603118648746268,3.734624183774134,11016.174399032912,2019
+2007,77,"(75,80]",NoHS,77.70333551340745,22.07476998079957,3.5200065767839526,11541.00003443764,2019
+2007,77,"(75,80]",NoHS,86.28933943754089,20.603118648746268,4.188168835439471,11609.91610898346,2019
+2007,77,"(75,80]",NoHS,74.81271419228254,22.07476998079957,3.3890597391209036,10990.003784351375,2019
+2007,77,"(75,80]",NoHS,79.84983649444081,20.603118648746268,3.875618922346972,11623.542097124384,2019
+2007,73,"(70,75]",HS,68.40183126226292,20.603118648746268,3.3199746324047537,7204.606267163916,2019
+2007,73,"(70,75]",HS,68.40183126226292,20.603118648746268,3.3199746324047537,7208.505328145469,2019
+2007,73,"(70,75]",HS,68.40183126226292,22.07476998079957,3.0986429902444375,7196.53329879142,2019
+2007,73,"(70,75]",HS,68.40183126226292,20.603118648746268,3.3199746324047537,7222.483146830537,2019
+2007,73,"(70,75]",HS,68.40183126226292,20.603118648746268,3.3199746324047537,7217.91859008851,2019
+2007,49,"(45,50]",HS,885.1311445389143,138.33522521301063,6.398450887516005,7628.366031236137,2019
+2007,49,"(45,50]",HS,883.8432439502943,139.80687654506394,6.321886775472057,7801.373463478232,2019
+2007,49,"(45,50]",HS,883.5570438194899,138.33522521301063,6.3870720017911244,7344.929632318688,2019
+2007,49,"(45,50]",HS,883.5570438194899,139.80687654506394,6.319839664930165,7687.2931918783415,2019
+2007,49,"(45,50]",HS,883.7001438848921,138.33522521301063,6.388106445947932,7750.901221149393,2019
+2007,45,"(40,45]",NoHS,-2.0034009156311314,22.07476998079957,-0.09075523402389565,6673.2636721471745,2019
+2007,45,"(40,45]",NoHS,-2.0034009156311314,22.07476998079957,-0.09075523402389565,6635.169122103628,2019
+2007,45,"(40,45]",NoHS,-2.0034009156311314,20.603118648746268,-0.09723775073988819,6761.605694066442,2019
+2007,45,"(40,45]",NoHS,-2.0034009156311314,22.07476998079957,-0.09075523402389565,6751.223235209889,2019
+2007,45,"(40,45]",NoHS,-2.0034009156311314,20.603118648746268,-0.09723775073988819,6603.3762513648835,2019
+2007,46,"(45,50]",HS,88.29274035317201,88.29907992319828,0.9999282034418503,5095.477533879619,2019
+2007,46,"(45,50]",HS,86.43243950294311,88.29907992319828,0.9788600241148747,5069.069701026953,2019
+2007,46,"(45,50]",HS,88.00654022236756,88.29907992319828,0.996686945083854,5115.979418878773,2019
+2007,46,"(45,50]",HS,88.8651406147809,88.29907992319828,1.0064107201578427,5092.155921743268,2019
+2007,46,"(45,50]",HS,88.29274035317201,88.29907992319828,0.9999282034418503,5083.459535043925,2019
+2007,87,"(85,90]",HS,2.218051013734467,13.392027121685073,0.1656247402712381,9365.914947115418,2019
+2007,87,"(85,90]",HS,3.234061478090255,13.392027121685073,0.24149155678257947,9378.095194069112,2019
+2007,87,"(85,90]",HS,2.575801177240026,13.392027121685073,0.19233840805692168,9376.341962912038,2019
+2007,87,"(85,90]",HS,3.577501635055592,13.244861988479741,0.2701048631663561,9406.215719885,2019
+2007,87,"(85,90]",HS,2.71890124264225,13.244861988479741,0.20527969600643067,9410.120040013,2019
+2007,41,"(40,45]",College,185.68664486592544,132.44861988479744,1.4019522817786545,8749.063991180783,2019
+2007,41,"(40,45]",College,185.82974493132767,132.44861988479744,1.40303270123132,8605.757563301257,2019
+2007,41,"(40,45]",College,184.39874427730544,132.44861988479744,1.3922285067046658,8983.56099040125,2019
+2007,41,"(40,45]",College,184.25564421190322,132.44861988479744,1.3911480872520003,8634.808650822804,2019
+2007,41,"(40,45]",College,185.82974493132767,132.44861988479744,1.40303270123132,8561.840279727889,2019
+2007,51,"(50,55]",NoHS,1677.1327665140616,242.82246978879527,6.906826901039332,5844.363393751785,2019
+2007,51,"(50,55]",NoHS,1674.2707652060171,242.82246978879527,6.895040507010254,5794.30154891619,2019
+2007,51,"(50,55]",NoHS,1673.8414650098105,242.82246978879527,6.893272547905893,5708.58431095874,2019
+2007,51,"(50,55]",NoHS,1672.839764551995,242.82246978879527,6.889147309995716,5812.305387611439,2019
+2007,51,"(50,55]",NoHS,1672.839764551995,242.82246978879527,6.889147309995716,6009.202951903066,2019
+2007,46,"(45,50]",NoHS,12.743060824068017,14.716513320533048,0.8659021703387042,6560.788453269177,2019
+2007,46,"(45,50]",NoHS,11.176115107913668,16.18816465258635,0.6903880302532062,6448.099409499328,2019
+2007,46,"(45,50]",NoHS,7.1693132766514065,16.18816465258635,0.4428737556425817,6823.738833561534,2019
+2007,46,"(45,50]",NoHS,10.317514715500327,14.716513320533048,0.7010841828345938,6660.163718076798,2019
+2007,46,"(45,50]",NoHS,3.8708567691301505,14.716513320533048,0.26302811575139756,6569.581500918884,2019
+2007,44,"(40,45]",HS,549.7904512753433,117.73210656426438,4.66984297928313,4249.29501851142,2019
+2007,44,"(40,45]",HS,548.2163505559189,117.73210656426438,4.656472788556395,4295.764641876576,2019
+2007,44,"(40,45]",HS,549.9335513407456,117.73210656426438,4.6710584511673785,4322.761079306891,2019
+2007,44,"(40,45]",HS,548.2163505559189,117.73210656426438,4.656472788556395,4276.377506952457,2019
+2007,44,"(40,45]",HS,549.7904512753433,117.73210656426438,4.66984297928313,4294.85040651592,2019
+2007,66,"(65,70]",College,45377.03073904513,1986.7292982719614,22.84006722934707,35.380829974825346,2019
+2007,66,"(65,70]",College,45305.48070634402,1986.7292982719614,22.804053247591558,39.19542480197054,2019
+2007,66,"(65,70]",College,45186.70765206018,1986.7292982719614,22.744270037877406,36.017435707348014,2019
+2007,66,"(65,70]",College,44997.81556572924,1986.7292982719614,22.649193126042846,37.24612366377116,2019
+2007,66,"(65,70]",College,44861.87050359713,1986.7292982719614,22.58076656070737,38.46791668962645,2019
+2007,50,"(45,50]",College,524.0753695225637,132.44861988479744,3.9568201614965832,733.2603406356459,2019
+2007,50,"(45,50]",College,524.0324395029431,136.86357388095735,3.8288671312846296,764.0733524761378,2019
+2007,50,"(45,50]",College,523.8034793982995,123.6187118924776,4.237250747717699,741.0753684207227,2019
+2007,50,"(45,50]",College,524.0038194898626,122.14706056042431,4.28994211637738,733.2499452631439,2019
+2007,50,"(45,50]",College,524.161229561805,120.675409228371,4.343562892501663,735.4376972061175,2019
+2007,57,"(55,60]",College,30492.47743623283,1515.8008720149037,20.11641370525153,357.1209994597581,2019
+2007,57,"(55,60]",College,30492.47743623283,1662.9660052202341,18.336200103016882,324.39731703103246,2019
+2007,57,"(55,60]",College,30492.47743623283,1604.099951938102,19.009088180191814,327.12201101086106,2019
+2007,57,"(55,60]",College,30492.620536298236,1013.9677677847269,30.072573808649953,342.44289998091716,2019
+2007,57,"(55,60]",College,30492.47743623283,1430.4450947558123,21.31677583992703,339.586441439452,2019
+2007,53,"(50,55]",HS,1815.9398299542183,169.23990318613005,10.729974407732009,447.1473187410662,2019
+2007,53,"(50,55]",HS,1815.9398299542183,169.23990318613005,10.729974407732009,443.9759104876055,2019
+2007,53,"(50,55]",HS,1817.3708306082408,169.23990318613005,10.738429864318087,437.0898618217017,2019
+2007,53,"(50,55]",HS,1817.3708306082408,169.23990318613005,10.738429864318087,441.4604926854636,2019
+2007,53,"(50,55]",HS,1815.9398299542183,169.23990318613005,10.729974407732009,441.22055852075243,2019
+2007,47,"(45,50]",College,1482.6597776324395,294.33026641066095,5.037401677079908,319.89903208202065,2019
+2007,47,"(45,50]",College,1476.9357750163506,294.33026641066095,5.01795412693193,316.6430555812202,2019
+2007,47,"(45,50]",College,1482.8028776978417,294.33026641066095,5.037887865833607,312.017332422746,2019
+2007,47,"(45,50]",College,1485.521778940484,294.33026641066095,5.047125452153896,315.85674217436684,2019
+2007,47,"(45,50]",College,1468.3497710922172,294.33026641066095,4.988782801709964,319.72129872506014,2019
+2007,24,"(20,25]",HS,33.34231523871812,52.979447953918964,0.6293443311776099,8438.393832965645,2019
+2007,24,"(20,25]",HS,33.48541530412034,52.979447953918964,0.6320453798092733,8436.384844909819,2019
+2007,24,"(20,25]",HS,31.768214519293657,52.979447953918964,0.5996327962293106,8372.453624711863,2019
+2007,24,"(20,25]",HS,33.34231523871812,52.979447953918964,0.6293443311776099,8404.567286460191,2019
+2007,24,"(20,25]",HS,32.48371484630478,52.979447953918964,0.6131380393876285,8489.874375929026,2019
+2007,48,"(45,50]",College,-9.945454545454545,107.43054723989124,-0.09257566680030452,8265.13324854249,2019
+2007,48,"(45,50]",College,-10.63233485938522,92.71403391935819,-0.11467880761863006,8182.4383251911295,2019
+2007,48,"(45,50]",College,4.765232177894049,77.99752059882516,0.061094662257325974,8236.085749122092,2019
+2007,48,"(45,50]",College,-9.616324395029432,80.94082326293177,-0.11880685181309975,8156.997827988908,2019
+2007,48,"(45,50]",College,-0.8586003924133421,75.05421793471854,-0.011439735381163317,8057.76726819089,2019
+2007,34,"(30,35]",HS,9.30150425114454,38.262934633385925,0.2430943768497205,8194.035384716004,2019
+2007,34,"(30,35]",HS,9.158404185742315,38.262934633385925,0.23935446335972477,8104.398910336537,2019
+2007,34,"(30,35]",HS,9.30150425114454,38.262934633385925,0.2430943768497205,8243.978681041433,2019
+2007,34,"(30,35]",HS,9.158404185742315,38.262934633385925,0.23935446335972477,8255.986266580065,2019
+2007,34,"(30,35]",HS,9.444604316546762,38.262934633385925,0.24683429033971616,8179.599578511787,2019
+2007,63,"(60,65]",HS,67720.67495094833,4238.355836313518,15.978053180605793,40.70508870105401,2019
+2007,63,"(60,65]",HS,64256.2223675605,3796.860436697526,16.923514424314728,36.1201290040273,2019
+2007,63,"(60,65]",HS,54123.30673642904,4135.340243069787,13.0879936244984,41.07643958828766,2019
+2007,63,"(60,65]",HS,67720.67495094833,3944.025569902857,17.17044520900921,39.72752380813522,2019
+2007,63,"(60,65]",HS,60565.67168083715,3811.576950018059,15.889924951023275,36.353797466574335,2019
+2007,40,"(35,40]",NoHS,27.260562459123612,32.3763293051727,0.8419905234522137,6417.037317873722,2019
+2007,40,"(35,40]",NoHS,27.260562459123612,32.3763293051727,0.8419905234522137,6299.694568582205,2019
+2007,40,"(35,40]",NoHS,27.43228253760628,30.9046779731194,0.8876417531826937,6505.3842978858165,2019
+2007,40,"(35,40]",NoHS,26.845572269457165,32.3763293051727,0.8291728199455921,6346.622972227369,2019
+2007,40,"(35,40]",NoHS,26.802642249836495,32.3763293051727,0.8278468506173209,6338.1023055029755,2019
+2007,41,"(40,45]",College,14247.04251144539,2928.5861507860764,4.864819328474004,526.921017448227,2019
+2007,41,"(40,45]",College,15735.283191628516,2516.523777811151,6.252785421846846,511.2179338692904,2019
+2007,41,"(40,45]",College,12644.321778940484,2810.854044221812,4.4983914426055085,514.1851975560523,2019
+2007,41,"(40,45]",College,12028.991497710924,2707.838450978081,4.442285503910328,510.47764316753785,2019
+2007,41,"(40,45]",College,14018.082406801832,2766.7045042602126,5.06670748004226,520.6796154017073,2019
+2007,36,"(35,40]",College,552.79555264879,219.27604847594245,2.5210028933435438,6810.277138986794,2019
+2007,36,"(35,40]",College,552.9386527141922,219.27604847594245,2.5216554956975026,6967.743877484632,2019
+2007,36,"(35,40]",College,552.9386527141922,219.27604847594245,2.5216554956975026,6553.12752761521,2019
+2007,36,"(35,40]",College,552.9386527141922,219.27604847594245,2.5216554956975026,6862.788671302538,2019
+2007,36,"(35,40]",College,552.9386527141922,219.27604847594245,2.5216554956975026,6918.907291233993,2019
+2007,58,"(55,60]",NoHS,0,10.890219857194454,0,5530.138840016374,2019
+2007,58,"(55,60]",NoHS,0,10.890219857194454,0,5507.856504728907,2019
+2007,58,"(55,60]",NoHS,0,11.037384990399785,0,5509.71566099394,2019
+2007,58,"(55,60]",NoHS,0,10.890219857194454,0,5530.844960230117,2019
+2007,58,"(55,60]",NoHS,0,10.890219857194454,0,5528.944267475341,2019
+2007,51,"(50,55]",HS,202.63112361020276,45.62119129365245,4.441600884683519,6608.793876580663,2019
+2007,51,"(50,55]",HS,36.921247874427735,45.62119129365245,0.8093003893031792,6518.7737235846425,2019
+2007,51,"(50,55]",HS,46.79515238718117,45.62119129365245,1.0257328022403496,6848.064348879624,2019
+2007,51,"(50,55]",HS,34.77474689339437,45.62119129365245,0.7622498647516202,6656.501118350684,2019
+2007,51,"(50,55]",HS,55.524256376716814,45.62119129365245,1.2170716020833554,6517.297585336339,2019
+2007,65,"(60,65]",College,5657.604185742315,219.27604847594245,25.801286666122273,1810.3233361184382,2019
+2007,65,"(60,65]",College,5657.604185742315,219.27604847594245,25.801286666122273,1810.4498353918164,2019
+2007,65,"(60,65]",College,5660.46618705036,220.74769980799567,25.64224312178012,1759.9157766318451,2019
+2007,65,"(60,65]",College,5656.1731850882925,220.74769980799567,25.62279557163214,1740.6597844181674,2019
+2007,65,"(60,65]",College,5570.31314584696,219.27604847594245,25.4031992302073,1841.2927759061633,2019
+2007,68,"(65,70]",HS,189.32138652714193,14.716513320533048,12.864554422887208,6726.984681815981,2019
+2007,68,"(65,70]",HS,189.32138652714193,14.716513320533048,12.864554422887208,6541.411252040213,2019
+2007,68,"(65,70]",HS,189.32138652714193,14.716513320533048,12.864554422887208,6880.582836816415,2019
+2007,68,"(65,70]",HS,189.32138652714193,14.716513320533048,12.864554422887208,6575.290310520475,2019
+2007,68,"(65,70]",HS,189.32138652714193,16.18816465258635,11.695049475352008,6545.758920198869,2019
+2007,46,"(45,50]",HS,70.37661216481361,77.99752059882516,0.9022929398844719,9004.921240186304,2019
+2007,46,"(45,50]",HS,73.75377370830608,79.46917193087846,0.9280803098395995,8789.83970628762,2019
+2007,46,"(45,50]",HS,65.8403400915631,75.05421793471854,0.8772370414788736,9217.995105849215,2019
+2007,46,"(45,50]",HS,67.29996075866579,79.46917193087846,0.846868780980915,8965.83389509592,2019
+2007,46,"(45,50]",HS,58.08431654676259,77.99752059882516,0.7446943967041625,8856.301651907675,2019
+2007,64,"(60,65]",HS,1856.7233485938523,176.59815984639656,10.513831798750411,1195.9764672697506,2019
+2007,64,"(60,65]",HS,1855.1492478744278,176.59815984639656,10.504918338265922,1218.6089882763097,2019
+2007,64,"(60,65]",HS,1850.9993459777631,176.59815984639656,10.481419215170448,1164.0911211264565,2019
+2007,64,"(60,65]",HS,1844.98914323087,176.59815984639656,10.44738600241149,1181.887847575746,2019
+2007,64,"(60,65]",HS,1851.1424460431654,176.59815984639656,10.482229529759946,1202.2023174980936,2019
+2007,61,"(60,65]",HS,-3.4344015696533683,19.131467316692962,-0.17951584751979358,6101.581627248583,2019
+2007,61,"(60,65]",HS,-3.8637017658600397,19.131467316692962,-0.2019553284597678,6084.507684225058,2019
+2007,61,"(60,65]",HS,-4.1499018966644865,19.131467316692962,-0.21691498241975057,6051.783247738555,2019
+2007,61,"(60,65]",HS,-4.1499018966644865,19.131467316692962,-0.21691498241975057,6022.079555771738,2019
+2007,61,"(60,65]",HS,-3.7206017004578156,19.131467316692962,-0.19447550147977638,5977.719879883284,2019
+2007,94,"(90,95]",HS,81061.89404839765,4032.3246498260555,20.103017759716955,22.695584342331124,2019
+2007,94,"(90,95]",HS,77577.40745585349,2457.657724529019,31.56558648569352,20.795910311446466,2019
+2007,94,"(90,95]",HS,31839.76455199477,2972.735690747675,10.710593831497588,21.813976180832615,2019
+2007,94,"(90,95]",HS,82192.38456507522,3517.2466836073986,23.36838782111698,21.546834070681037,2019
+2007,94,"(90,95]",HS,31134.281229561806,3193.483390555671,9.74931678731681,23.61060146079267,2019
+2007,32,"(30,35]",HS,29.063623283191628,51.50779662186566,0.5642567764363227,7533.869513462865,2019
+2007,32,"(30,35]",HS,28.920523217789405,52.979447953918964,0.5458819284592057,7451.454748342208,2019
+2007,32,"(30,35]",HS,29.063623283191628,52.979447953918964,0.5485829770908692,7579.789046381875,2019
+2007,32,"(30,35]",HS,28.777423152387183,51.50779662186566,0.5587003335369005,7590.829221139795,2019
+2007,32,"(30,35]",HS,28.777423152387183,52.979447953918964,0.5431808798275422,7520.596751611355,2019
+2007,52,"(50,55]",HS,971.0770438194899,226.63430513620895,4.284775172213514,7169.902251791206,2019
+2007,52,"(50,55]",HS,939.5950294310007,226.63430513620895,4.1458640997279606,7333.223321395953,2019
+2007,52,"(50,55]",HS,998.1229561805102,226.63430513620895,4.4041124117579225,6902.435949330493,2019
+2007,52,"(50,55]",HS,951.0430346631786,225.16265380415567,4.2238045190673,7224.699910134288,2019
+2007,52,"(50,55]",HS,939.5950294310007,225.16265380415567,4.172961250706574,7284.691433118642,2019
+2007,62,"(60,65]",HS,470.22681491170704,135.39192254890403,3.4730787927312243,9840.782458423488,2019
+2007,62,"(60,65]",HS,443.46710268149116,119.20375789631768,3.720244315344611,9600.439696159196,2019
+2007,62,"(60,65]",HS,441.02009156311317,82.41247459498507,5.351375428665382,10177.545204908287,2019
+2007,62,"(60,65]",HS,454.0565075212557,139.80687654506394,3.2477408747122656,9803.698595904334,2019
+2007,62,"(60,65]",HS,460.35291039895355,148.63678453738376,3.097166773566538,9519.406486681892,2019
+2007,51,"(50,55]",College,12678.537004578156,1243.5453755850424,10.195475978199324,221.23917354937618,2019
+2007,51,"(50,55]",College,12678.665794637018,1243.5453755850424,10.195579545034432,211.476407038969,2019
+2007,51,"(50,55]",College,12675.131223021584,1249.4319809132555,10.144714891767752,214.40775194246075,2019
+2007,51,"(50,55]",College,12677.707024198822,1246.4886782491492,10.170735800028496,214.04024894326616,2019
+2007,51,"(50,55]",College,12680.111105297581,1242.0737242529892,10.208823242697354,220.34066061353997,2019
+2007,33,"(30,35]",HS,0.5724002616088947,41.206237297492535,0.013891107248555454,8911.41966742838,2019
+2007,33,"(30,35]",HS,2.146500981033355,41.206237297492535,0.052091652182082955,8876.690512642277,2019
+2007,33,"(30,35]",HS,0.5724002616088947,42.67788862954583,0.013412103550329407,9021.901018461296,2019
+2007,33,"(30,35]",HS,0.7155003270111184,42.67788862954583,0.01676512943791176,8970.615180277267,2019
+2007,33,"(30,35]",HS,2.0034009156311314,42.67788862954583,0.04694236242615293,8878.342409083583,2019
+2007,50,"(45,50]",NoHS,-13.594506213211249,22.07476998079957,-0.6158390880192919,4489.184959590028,2019
+2007,50,"(45,50]",NoHS,-13.737606278613473,25.01807264490618,-0.5491072982958393,4465.112856412011,2019
+2007,50,"(45,50]",NoHS,-13.594506213211249,30.9046779731194,-0.4398850628709227,4531.292461135356,2019
+2007,50,"(45,50]",NoHS,-13.737606278613473,30.9046779731194,-0.4445154319537746,4506.168867016786,2019
+2007,50,"(45,50]",NoHS,-13.594506213211249,23.546421312852875,-0.5773491450180861,4465.415375984881,2019
+2007,50,"(45,50]",NoHS,486.769182472204,367.91283301332624,1.3230557316672145,6727.385326960268,2019
+2007,50,"(45,50]",NoHS,485.33818181818185,367.91283301332624,1.319166221637619,6566.70248291796,2019
+2007,50,"(45,50]",NoHS,485.3238718116416,367.91283301332624,1.3191273265373231,6886.568284721451,2019
+2007,50,"(45,50]",NoHS,485.33818181818185,367.91283301332624,1.319166221637619,6698.1840019495185,2019
+2007,50,"(45,50]",NoHS,486.769182472204,367.91283301332624,1.3230557316672145,6616.354790344066,2019
+2007,73,"(70,75]",College,13243.195552648791,1648.249491899701,8.03470325198478,2862.79152128286,2019
+2007,73,"(70,75]",College,13500.489470241988,1648.249491899701,8.190804569690423,2840.5407380598454,2019
+2007,73,"(70,75]",College,13343.222498364945,1648.249491899701,8.095390026776908,2839.145695194612,2019
+2007,73,"(70,75]",College,13142.882406801831,1648.249491899701,7.973842838352047,2818.1127756051055,2019
+2007,73,"(70,75]",College,13214.718639633747,1648.249491899701,8.01742618734439,2869.982408648916,2019
+2007,86,"(85,90]",College,16725.96494440811,147.16513320533048,113.65440019730352,516.3055360963149,2019
+2007,86,"(85,90]",College,16584.29587965991,147.16513320533048,112.69174646497862,500.9188107292922,2019
+2007,86,"(85,90]",College,16598.60588620013,147.16513320533048,112.7889842157185,503.8262951867388,2019
+2007,86,"(85,90]",College,16582.864879005887,147.16513320533048,112.68202268990464,500.1934341074092,2019
+2007,86,"(85,90]",College,16726.251144538914,147.16513320533048,113.6563449523183,510.1898748816101,2019
+2007,83,"(80,85]",College,46474.60824068018,1604.099951938102,28.972389273205035,431.4749191557188,2019
+2007,83,"(80,85]",College,46474.60824068018,1604.099951938102,28.972389273205035,488.5197762631169,2019
+2007,83,"(80,85]",College,46474.60824068018,1604.099951938102,28.972389273205035,433.03726351286815,2019
+2007,83,"(80,85]",College,46474.60824068018,1604.099951938102,28.972389273205035,442.1289794448486,2019
+2007,83,"(80,85]",College,46476.039241334205,1604.099951938102,28.973281362661364,468.8134328023617,2019
+2007,30,"(25,30]",College,476.8094179202093,120.675409228371,3.951172993479359,7269.067582379246,2019
+2007,30,"(25,30]",College,485.3954218443427,116.26045523221109,4.17506899379368,7435.302343114691,2019
+2007,30,"(25,30]",College,509.72243296272075,122.14706056042431,4.173022507656406,6997.694631985668,2019
+2007,30,"(25,30]",College,442.46540222367565,125.0903632245309,3.537166179855698,7324.503466807606,2019
+2007,30,"(25,30]",College,594.1514715500327,119.20375789631768,4.984335074963158,7386.022570280691,2019
+2007,34,"(30,35]",HS,485.86765206017003,139.80687654506394,3.475277211443604,6001.159623737316,2019
+2007,34,"(30,35]",HS,485.85334205362983,139.80687654506394,3.4751748559165097,6139.235481455657,2019
+2007,34,"(30,35]",HS,485.7817920209287,139.80687654506394,3.4746630782810364,5774.929577418585,2019
+2007,34,"(30,35]",HS,485.8104120340092,139.80687654506394,3.4748677893352258,6047.229852122818,2019
+2007,34,"(30,35]",HS,485.7245519947678,139.80687654506394,3.474253656172658,6097.708712315034,2019
+2007,48,"(45,50]",HS,4.994192282537606,33.84798063722601,0.14754771742704773,6341.868618787044,2019
+2007,48,"(45,50]",HS,4.865402223675605,33.84798063722601,0.14374276196331298,6340.166439015122,2019
+2007,48,"(45,50]",HS,4.994192282537606,33.84798063722601,0.14754771742704773,6432.4709547596885,2019
+2007,48,"(45,50]",HS,4.851092217135382,33.84798063722601,0.1433199891340091,6389.624411473787,2019
+2007,48,"(45,50]",HS,4.851092217135382,33.84798063722601,0.1433199891340091,6336.1923336490745,2019
+2007,30,"(25,30]",NoHS,14.02380640941792,33.84798063722601,0.41431737271778446,7135.2397788086255,2019
+2007,30,"(25,30]",NoHS,14.02380640941792,33.84798063722601,0.41431737271778446,7160.990844205832,2019
+2007,30,"(25,30]",NoHS,14.02380640941792,33.84798063722601,0.41431737271778446,7157.689453813223,2019
+2007,30,"(25,30]",NoHS,14.02380640941792,33.84798063722601,0.41431737271778446,7176.293249947636,2019
+2007,30,"(25,30]",NoHS,14.166906474820143,33.84798063722601,0.4185451010108231,7180.418362700444,2019
+2007,68,"(65,70]",HS,23243.17122302158,1320.071244851814,17.60751271089976,35.68516434685527,2019
+2007,68,"(65,70]",HS,20529.99398299542,1574.666925297036,13.037673969765233,33.37205559588158,2019
+2007,68,"(65,70]",HS,20316.774885546107,1362.7491334813603,14.908668357501472,37.07960250939,2019
+2007,68,"(65,70]",HS,20846.245127534337,1318.5995935197611,15.809382340160662,36.59081680225503,2019
+2007,68,"(65,70]",HS,21566.038456507522,1395.125462786533,15.458135509499566,35.15474366103784,2019
+2007,28,"(25,30]",HS,-135.22956180510138,48.56449395775905,-2.784535589369526,5909.288042540646,2019
+2007,28,"(25,30]",HS,-135.64455199476782,52.979447953918964,-2.5603239979538897,5904.7771704541765,2019
+2007,28,"(25,30]",HS,-151.3855591890124,52.979447953918964,-2.8574393474368813,5981.07784160113,2019
+2007,28,"(25,30]",HS,-157.99678221059514,48.56449395775905,-3.2533394118760777,5924.264492128008,2019
+2007,28,"(25,30]",HS,-152.4015696533682,45.62119129365245,-3.3405872431606745,5895.68006707165,2019
+2007,71,"(70,75]",HS,658.8327011118378,36.79128330133262,17.907304176257806,6474.272423585726,2019
+2007,71,"(70,75]",HS,646.0967952910398,35.319631969279314,18.292851857941464,6630.95114989123,2019
+2007,71,"(70,75]",HS,658.8327011118378,35.319631969279314,18.65344185026855,6232.805631711603,2019
+2007,71,"(70,75]",HS,654.6827992151734,36.79128330133262,17.794508385399542,6530.266395023772,2019
+2007,71,"(70,75]",HS,654.6827992151734,35.319631969279314,18.53594623479119,6584.9167760387845,2019
+2007,69,"(65,70]",HS,201.9141922825376,14.716513320533048,13.720246629398224,7505.563808751074,2019
+2007,69,"(65,70]",HS,212.0886069326357,14.716513320533048,14.411607037158829,7298.512167596632,2019
+2007,69,"(65,70]",HS,199.62459123610202,14.716513320533048,13.564666228214401,7676.9393667151835,2019
+2007,69,"(65,70]",HS,206.20719424460432,14.716513320533048,14.011959881617889,7336.312377829209,2019
+2007,69,"(65,70]",HS,204.06069326357095,14.716513320533048,13.866103255508055,7303.363033523569,2019
+2007,54,"(50,55]",HS,315.75029431000655,44.14953996159914,7.151836566918777,7396.061513782693,2019
+2007,54,"(50,55]",HS,315.9649444081099,44.14953996159914,7.156698454455771,7262.935344696198,2019
+2007,54,"(50,55]",HS,315.66443427076524,44.14953996159914,7.14989181190398,7633.460895860796,2019
+2007,54,"(50,55]",HS,316.96664486592545,44.14953996159914,7.179387262961745,7390.673728743603,2019
+2007,54,"(50,55]",HS,315.73598430346635,44.14953996159914,7.1515124410829785,7272.214905629058,2019
+2007,54,"(50,55]",HS,287.3463623283192,50.03614528981236,5.742775760682438,7718.625347188989,2019
+2007,54,"(50,55]",HS,264.7365519947678,50.03614528981236,5.290906213126487,7534.266846433425,2019
+2007,54,"(50,55]",HS,271.891555264879,48.56449395775905,5.598566629796818,7901.262962384307,2019
+2007,54,"(50,55]",HS,264.7365519947678,50.03614528981236,5.290906213126487,7685.121381466053,2019
+2007,54,"(50,55]",HS,266.1675526487901,50.03614528981236,5.319505551579396,7591.235124600828,2019
+2007,27,"(25,30]",HS,111.68960104643558,33.84798063722601,3.299741932716641,11457.478949436161,2019
+2007,27,"(25,30]",HS,111.54650098103336,33.84798063722601,3.2955142044236023,11344.428519068175,2019
+2007,27,"(25,30]",HS,110.25860039241334,33.84798063722601,3.2574646497862543,11504.713645737404,2019
+2007,27,"(25,30]",HS,110.25860039241334,33.84798063722601,3.2574646497862543,11491.89509101053,2019
+2007,27,"(25,30]",HS,111.68960104643558,33.84798063722601,3.299741932716641,11417.745377334295,2019
+2007,32,"(30,35]",College,280.2757880967953,38.262934633385925,7.3249945615055765,9601.673751245327,2019
+2007,32,"(30,35]",College,101.71552648790059,57.39440195007889,1.772220339125962,9566.25513196897,2019
+2007,32,"(30,35]",College,280.5476782210595,54.451099285972276,5.152286765555427,9772.76242594028,2019
+2007,32,"(30,35]",College,86.73294964028777,50.03614528981236,1.7334059036307716,9712.35379477424,2019
+2007,32,"(30,35]",College,275.4819359058208,44.14953996159914,6.2397464649786265,9489.760452157872,2019
+2007,47,"(45,50]",College,139281.15395683452,3487.8136569663325,39.933656913878806,25.43115745416592,2019
+2007,47,"(45,50]",College,129208.35466317856,3193.483390555671,40.46000522354247,23.23417694384826,2019
+2007,47,"(45,50]",College,145639.6765729235,3634.9787901716622,40.066169565200035,23.90374079602707,2019
+2007,47,"(45,50]",College,135456.11782864618,3958.7420832233897,34.2169595747828,24.144374257572206,2019
+2007,47,"(45,50]",College,130979.73313276652,3782.1439233769934,34.63108115034861,22.664254813866272,2019
+2007,26,"(25,30]",HS,-149.30917724002614,95.65733658346481,-1.560875334530645,6961.667375232531,2019
+2007,26,"(25,30]",HS,-151.64170830608242,98.60063924757141,-1.5379383892768976,6992.303084770075,2019
+2007,26,"(25,30]",HS,-136.28707128842382,91.2423825873049,-1.4936816359219696,7000.372742406308,2019
+2007,26,"(25,30]",HS,-140.5657632439503,95.65733658346481,-1.4694718488351504,6987.69212594979,2019
+2007,26,"(25,30]",HS,-148.53643688685415,91.2423825873049,-1.6279324659757506,6996.5179686781,2019
+2007,45,"(40,45]",College,547.7870503597122,334.06485237610013,1.6397625983801412,6345.323070859347,2019
+2007,45,"(40,45]",College,546.35604970569,148.63678453738376,3.6757795279692393,6490.116176452679,2019
+2007,45,"(40,45]",College,546.35604970569,364.9695303492196,1.4969908561487624,6107.241429717645,2019
+2007,45,"(40,45]",College,547.7870503597122,189.8430218348763,2.8854737196301703,6394.66026156366,2019
+2007,45,"(40,45]",College,546.35604970569,329.6498983799403,1.6573827335932727,6447.242259596167,2019
+2007,74,"(70,75]",HS,146.8206671026815,32.3763293051727,4.534815102687514,10185.127966056116,2019
+2007,74,"(70,75]",HS,143.95866579463703,33.84798063722601,4.253094662796849,10234.008711440085,2019
+2007,74,"(70,75]",HS,145.38966644865926,33.84798063722601,4.295371945727235,10147.36288862648,2019
+2007,74,"(70,75]",HS,145.38966644865926,33.84798063722601,4.295371945727235,10169.007607961674,2019
+2007,74,"(70,75]",HS,143.95866579463703,33.84798063722601,4.253094662796849,10168.559549417867,2019
+2007,29,"(25,30]",HS,-35.775016350555916,58.86605328213219,-0.6077359421243012,7242.186041431017,2019
+2007,29,"(25,30]",HS,-36.919816873773705,58.86605328213219,-0.6271834922722788,7230.461629511288,2019
+2007,29,"(25,30]",HS,-34.20091563113146,58.86605328213219,-0.5809955606708319,7222.925858697022,2019
+2007,29,"(25,30]",HS,-36.919816873773705,58.86605328213219,-0.6271834922722788,7242.98230598695,2019
+2007,29,"(25,30]",HS,-35.6319162851537,58.86605328213219,-0.6053049983558041,7280.222518807796,2019
+2007,49,"(45,50]",College,303183.1034663178,61485.59265318707,4.930961716128184,22.033393950480324,2019
+2007,49,"(45,50]",College,309372.32439502946,61941.804566123596,4.994564277906545,20.189146819909233,2019
+2007,49,"(45,50]",College,317815.08515369525,57041.205630386095,5.5716754518315055,20.647517499305614,2019
+2007,49,"(45,50]",College,301051.0555918901,54348.08369272854,5.539313166844354,20.918160832698092,2019
+2007,49,"(45,50]",College,319963.160235448,58498.140449118866,5.469629594700518,19.93140822555863,2019
+2007,56,"(55,60]",HS,170.60389797253106,77.99752059882516,2.1872989892848054,7613.54074136038,2019
+2007,56,"(55,60]",HS,165.60970568999346,77.99752059882516,2.12326884775986,7420.545704133323,2019
+2007,56,"(55,60]",HS,166.82605624591235,77.99752059882516,2.1388635813690873,7920.70220299116,2019
+2007,56,"(55,60]",HS,166.19641595814258,77.99752059882516,2.1307910133831345,7534.333500504453,2019
+2007,56,"(55,60]",HS,169.57357750163507,77.99752059882516,2.174089332580519,7368.49480101341,2019
+2007,46,"(45,50]",College,1816.5122302158272,85.35577725909167,21.281655308485185,2789.3966844719507,2019
+2007,46,"(45,50]",College,1759.272204054938,85.35577725909167,20.611050130968717,2826.2533623127933,2019
+2007,46,"(45,50]",College,1836.832439502943,85.35577725909167,21.519720146503534,2819.028337746194,2019
+2007,46,"(45,50]",College,2253.5398299542185,85.35577725909167,26.401725838823438,3028.528852379665,2019
+2007,46,"(45,50]",College,1798.9109221713538,85.35577725909167,21.07544421639887,2903.115771010983,2019
+2007,72,"(70,75]",HS,1847.7509744931326,117.73210656426438,15.694537610983227,4498.733122361078,2019
+2007,72,"(70,75]",HS,1846.162563767168,114.78880390015777,16.083123972377507,4565.377849527018,2019
+2007,72,"(70,75]",HS,1846.3199738391104,128.03366588863753,14.420581969784587,4545.33775912052,2019
+2007,72,"(70,75]",HS,1847.7366644865926,129.5053172206908,14.267650967086187,4890.242304733946,2019
+2007,72,"(70,75]",HS,1847.7509744931326,128.03366588863753,14.431758722743195,4688.0844178834595,2019
+2007,33,"(30,35]",College,529.6276520601701,369.3844843453795,1.4338113118063753,7061.977810140561,2019
+2007,33,"(30,35]",College,529.6276520601701,369.3844843453795,1.4338113118063753,7238.073896954085,2019
+2007,33,"(30,35]",College,529.6276520601701,369.3844843453795,1.4338113118063753,6836.420616974987,2019
+2007,33,"(30,35]",College,528.1966514061479,369.3844843453795,1.4299372978326748,7195.6047472889795,2019
+2007,33,"(30,35]",College,531.0586527141922,369.3844843453795,1.4376853257800757,7294.710762422923,2019
+2007,54,"(50,55]",College,4410.644525833879,510.6630122224967,8.637094170259102,364.91608437595943,2019
+2007,54,"(50,55]",College,4423.366121648136,510.6630122224967,8.662006089684969,354.1045831644225,2019
+2007,54,"(50,55]",College,4413.392047089601,512.1346635545501,8.617639775557796,357.02633200696016,2019
+2007,54,"(50,55]",College,4426.428463047744,512.1346635545501,8.643094830421028,353.80150765763415,2019
+2007,54,"(50,55]",College,4410.630215827338,510.6630122224967,8.637066147852549,357.6088344822033,2019
+2007,85,"(80,85]",HS,469363.90720732504,15216.874773431171,30.84496088689903,4.337965717904746,2019
+2007,85,"(80,85]",HS,480564.50673642906,15216.874773431171,31.581025269097957,5.901855796950388,2019
+2007,85,"(80,85]",HS,506014.68164813606,15216.874773431171,33.253522105054266,3.4884829329399496,2019
+2007,85,"(80,85]",HS,467855.933028123,15202.158260110638,30.775625738336316,4.002895550106633,2019
+2007,85,"(80,85]",HS,436974.6527141923,15216.874773431171,28.716451914104912,2.6156112643430105,2019
+2007,50,"(45,50]",College,4016.8188358404186,412.06237297492527,9.748084511673794,1706.1223420160927,2019
+2007,50,"(45,50]",College,4175.659908436887,432.6654916236716,9.651012131258291,1705.9433880614936,2019
+2007,50,"(45,50]",College,4018.249836494441,410.59072164287204,9.78650910672423,1658.5015902196415,2019
+2007,50,"(45,50]",College,4072.627861347286,389.9876029941258,10.442967494555539,1640.543990514143,2019
+2007,50,"(45,50]",College,4159.918901242642,389.9876029941258,10.666797788711508,1735.2504311527111,2019
+2007,70,"(65,70]",College,18572.957488554614,419.42062963519186,44.2824128720354,3363.2786584924024,2019
+2007,70,"(65,70]",College,18572.957488554614,419.42062963519186,44.2824128720354,3362.0456439369505,2019
+2007,70,"(65,70]",College,18574.388489208635,417.9489783031385,44.441760725484116,3323.2992821217276,2019
+2007,70,"(65,70]",College,18571.526487900588,419.42062963519186,44.279001021132245,3297.9036848739024,2019
+2007,70,"(65,70]",College,18574.388489208635,419.42062963519186,44.28582472293856,3361.0563075939876,2019
+2007,21,"(20,25]",HS,-1.4310006540222369,20.603118648746268,-0.06945553624277728,7836.142931510978,2019
+2007,21,"(20,25]",HS,-1.4310006540222369,20.603118648746268,-0.06945553624277728,7840.45687462997,2019
+2007,21,"(20,25]",HS,-1.4310006540222369,20.603118648746268,-0.06945553624277728,7793.614585564998,2019
+2007,21,"(20,25]",HS,-1.4310006540222369,20.603118648746268,-0.06945553624277728,7789.091477909125,2019
+2007,21,"(20,25]",HS,-1.4310006540222369,20.603118648746268,-0.06945553624277728,7873.563424941664,2019
+2007,54,"(50,55]",College,7959.225637671681,389.9876029941258,20.408919608122947,418.329175199205,2019
+2007,54,"(50,55]",College,7957.794637017659,394.40255699028563,20.176833278526804,405.387999691041,2019
+2007,54,"(50,55]",College,7957.794637017659,394.40255699028563,20.176833278526804,404.2942399888549,2019
+2007,54,"(50,55]",College,7959.225637671681,388.5159516620724,20.486226121790086,400.2947975456142,2019
+2007,54,"(50,55]",College,7960.656638325703,392.9309056582324,20.259685669138502,406.29393440624006,2019
+2007,44,"(40,45]",HS,438.6732504905167,88.29907992319828,4.968038748218788,7830.388642764514,2019
+2007,44,"(40,45]",HS,438.6732504905167,88.29907992319828,4.968038748218788,8006.644476380659,2019
+2007,44,"(40,45]",HS,440.6766514061478,88.29907992319828,4.990727556724762,7543.166584321314,2019
+2007,44,"(40,45]",HS,439.53185088293003,88.29907992319828,4.9777625232927765,7863.780477458398,2019
+2007,44,"(40,45]",HS,440.39045127534337,88.29907992319828,4.987486298366766,7930.168739912692,2019
+2007,67,"(65,70]",HS,204.48999345977765,45.62119129365245,4.4823466389451685,9504.663795477489,2019
+2007,67,"(65,70]",HS,204.7761935905821,44.14953996159914,4.638240710292667,9254.887082600853,2019
+2007,67,"(65,70]",HS,203.63139306736429,45.62119129365245,4.463526429124545,9815.231419095933,2019
+2007,67,"(65,70]",HS,207.7812949640288,44.14953996159914,4.706307135810589,9343.702024438553,2019
+2007,67,"(65,70]",HS,205.6347939829954,44.14953996159914,4.657688260440644,9145.641860026688,2019
+2007,71,"(70,75]",HS,543.9233485938521,132.44861988479744,4.106674339581277,9263.266426006086,2019
+2007,71,"(70,75]",HS,415.13328973185094,94.1856852514115,4.407604920256495,9104.95966523394,2019
+2007,71,"(70,75]",HS,1438.6278875081753,157.4666925297036,9.136077378629139,7594.17942070642,2019
+2007,71,"(70,75]",HS,1105.0187050359714,150.10843586943707,7.361469717778596,7959.734889893209,2019
+2007,71,"(70,75]",HS,421.0576324395029,95.06867605064348,4.428983866517756,9125.87937294706,2019
+2007,55,"(50,55]",HS,9.086854153041203,45.62119129365245,0.19918055393493225,5360.070426400576,2019
+2007,55,"(50,55]",HS,9.086854153041203,45.62119129365245,0.19918055393493225,5348.52143868487,2019
+2007,55,"(50,55]",HS,9.086854153041203,45.62119129365245,0.19918055393493225,5428.662726525166,2019
+2007,55,"(50,55]",HS,9.229954218443426,45.62119129365245,0.20231725557170283,5390.704392962694,2019
+2007,55,"(50,55]",HS,9.086854153041203,45.62119129365245,0.19918055393493225,5286.928886684696,2019
+2007,42,"(40,45]",HS,28.548463047743624,44.14953996159914,0.6466310424202565,5578.2572711125085,2019
+2007,42,"(40,45]",HS,30.122563767168085,44.14953996159914,0.6822848843582155,5583.760516668994,2019
+2007,42,"(40,45]",HS,29.693263570961413,44.14953996159914,0.6725611092842267,5542.459069401187,2019
+2007,42,"(40,45]",HS,28.834663178548073,44.14953996159914,0.6531135591362491,5556.210208156275,2019
+2007,42,"(40,45]",HS,29.12086330935252,44.14953996159914,0.6595960758522417,5606.595984123874,2019
+2007,49,"(45,50]",HS,10.303204708960104,61.8093559462388,0.16669328698266545,6817.380427308252,2019
+2007,49,"(45,50]",HS,10.303204708960104,61.8093559462388,0.16669328698266545,6783.809922145003,2019
+2007,49,"(45,50]",HS,10.303204708960104,61.8093559462388,0.16669328698266545,6924.249394944064,2019
+2007,49,"(45,50]",HS,10.303204708960104,61.8093559462388,0.16669328698266545,6883.2033607386065,2019
+2007,49,"(45,50]",HS,10.446304774362329,61.8093559462388,0.16900847152409137,6737.096932456479,2019
+2007,74,"(70,75]",College,1570.9525179856114,160.40999519381023,9.7933580515825,8100.3570108479635,2019
+2007,74,"(70,75]",College,1570.9525179856114,158.93834386175692,9.884037292800857,8296.027898112045,2019
+2007,74,"(70,75]",College,1570.9525179856114,158.93834386175692,9.884037292800857,7800.309074606678,2019
+2007,74,"(70,75]",College,1570.9525179856114,158.93834386175692,9.884037292800857,8172.275132742931,2019
+2007,74,"(70,75]",College,1570.9525179856114,160.40999519381023,9.7933580515825,8240.93303831176,2019
+2007,26,"(25,30]",HS,7.899123610202747,51.50779662186566,0.15335782402405226,7629.863384812308,2019
+2007,26,"(25,30]",HS,7.913433616742969,51.50779662186566,0.15363564616902337,7627.750177060365,2019
+2007,26,"(25,30]",HS,7.899123610202747,51.50779662186566,0.15335782402405226,7682.794858071128,2019
+2007,26,"(25,30]",HS,7.899123610202747,51.50779662186566,0.15335782402405226,7674.537917030035,2019
+2007,26,"(25,30]",HS,7.913433616742969,51.50779662186566,0.15363564616902337,7584.5462187361,2019
+2007,70,"(65,70]",College,30389.44538914323,1898.430218348763,16.00767049292741,374.5650641841841,2019
+2007,70,"(65,70]",College,20458.30085022891,1913.1467316692958,10.693534641944707,350.60661334356075,2019
+2007,70,"(65,70]",College,34266.02616088947,1913.1467316692958,17.91081969493841,359.0645585578066,2019
+2007,70,"(65,70]",College,32521.636363636364,1898.430218348763,17.130804203023793,372.86214802563836,2019
+2007,70,"(65,70]",College,40835.75016350556,1898.430218348763,21.5102718913862,405.14740478630137,2019
+2007,22,"(20,25]",HS,38.49391759319817,42.67788862954583,0.9019639637596526,7229.5969617528735,2019
+2007,22,"(20,25]",HS,38.49391759319817,42.67788862954583,0.9019639637596526,7233.5769899809,2019
+2007,22,"(20,25]",HS,38.63701765860039,42.67788862954583,0.905316989647235,7190.3604644956595,2019
+2007,22,"(20,25]",HS,38.63701765860039,42.67788862954583,0.905316989647235,7186.187461826819,2019
+2007,22,"(20,25]",HS,38.49391759319817,42.67788862954583,0.9019639637596526,7264.120972861184,2019
+2007,85,"(80,85]",NoHS,32937.34205362982,1883.7137050282302,17.485322724843797,396.0486180854613,2019
+2007,85,"(80,85]",NoHS,30075.34074558535,3016.8852307092743,9.969003938049903,443.9115059955458,2019
+2007,85,"(80,85]",NoHS,38947.544800523225,3237.6329305172703,12.029635735852443,398.710105251501,2019
+2007,85,"(80,85]",NoHS,38232.0444735121,2251.626538041556,16.979745009918908,406.5177918269952,2019
+2007,85,"(80,85]",NoHS,36686.56376716808,3311.215497119935,11.079485403193395,428.7241758219162,2019
+2007,56,"(55,60]",HS,8912.272073250491,588.6605328213219,15.139917790200592,1419.7593731931343,2019
+2007,56,"(55,60]",HS,8912.272073250491,588.6605328213219,15.139917790200592,1383.8530653162875,2019
+2007,56,"(55,60]",HS,8913.703073904513,588.6605328213219,15.142348733969088,1402.5889408125304,2019
+2007,56,"(55,60]",HS,8912.272073250491,588.6605328213219,15.139917790200592,1395.7040399868356,2019
+2007,56,"(55,60]",HS,8913.703073904513,588.6605328213219,15.142348733969088,1413.287624160985,2019
+2007,60,"(55,60]",College,14836.328580771746,1306.8263828633346,11.352945406768162,34.06582313129632,2019
+2007,60,"(55,60]",College,39370.834793983,1114.0400583643518,35.340591658604964,38.31692799045321,2019
+2007,60,"(55,60]",College,27557.92439502943,1277.3933562222687,21.573561707357356,38.385266298350466,2019
+2007,60,"(55,60]",College,21096.956442119033,1018.3827217808869,20.716137450983002,34.75047164840794,2019
+2007,60,"(55,60]",College,12596.383257030739,1142.0014336733643,11.030094083606519,33.64599087087034,2019
+2007,45,"(40,45]",College,82.25391759319818,67.69596127445202,1.2150491114192987,5624.640966655573,2019
+2007,45,"(40,45]",College,44.174990189666445,67.69596127445202,0.6525498620305105,5611.436015853592,2019
+2007,45,"(40,45]",College,80.89446697187705,67.69596127445202,1.1949674020273653,5685.1986835570015,2019
+2007,45,"(40,45]",College,78.64779594506213,67.69596127445202,1.1617797349270118,5681.905283632475,2019
+2007,45,"(40,45]",College,79.99293655984303,67.69596127445202,1.1816500579042934,5693.414812658424,2019
+2007,81,"(80,85]",HS,3999.50372792675,76.96736466638784,51.963630887746376,1948.019159049271,2019
+2007,81,"(80,85]",HS,3998.9313276651405,76.96736466638784,51.95619396608366,1948.015803362651,2019
+2007,81,"(80,85]",HS,4000.076128188359,76.96736466638784,51.97106780940908,1893.3556788314731,2019
+2007,81,"(80,85]",HS,3998.5020274689336,76.96736466638784,51.95061627483663,1872.5208072189082,2019
+2007,81,"(80,85]",HS,4002.07952910399,76.96736466638784,51.997097035228556,1980.8447554379677,2019
+2007,48,"(45,50]",HS,6622.671026814912,61.8093559462388,107.14674057719108,2052.055803932397,2019
+2007,48,"(45,50]",HS,6651.291039895356,61.8093559462388,107.60977748547626,2051.8405652639094,2019
+2007,48,"(45,50]",HS,6595.48201438849,61.8093559462388,106.70685551432017,1994.7794658263858,2019
+2007,48,"(45,50]",HS,6595.48201438849,61.8093559462388,106.70685551432017,1973.1807821957514,2019
+2007,48,"(45,50]",HS,6612.654022236756,61.8093559462388,106.98467765929126,2087.089906058757,2019
+2007,52,"(50,55]",NoHS,19.175408763897973,58.86605328213219,0.3257464649786254,934.6300654748964,2019
+2007,52,"(50,55]",NoHS,19.175408763897973,58.86605328213219,0.3257464649786254,932.9346909392277,2019
+2007,52,"(50,55]",NoHS,19.318508829300196,58.86605328213219,0.32817740874712265,958.8973326737629,2019
+2007,52,"(50,55]",NoHS,19.175408763897973,58.86605328213219,0.3257464649786254,950.9791071293524,2019
+2007,52,"(50,55]",NoHS,19.318508829300196,58.86605328213219,0.32817740874712265,954.859349902197,2019
+2007,47,"(45,50]",College,25407.416612164816,812.3515352934241,31.27638160120861,258.7240319053077,2019
+2007,47,"(45,50]",College,25380.22759973839,812.3515352934241,31.242912085555382,291.27384344262697,2019
+2007,47,"(45,50]",College,25480.54074558535,809.4082326293176,31.48045660817315,257.3296859276212,2019
+2007,47,"(45,50]",College,25385.951602354482,812.3515352934241,31.249958299377116,262.873364506679,2019
+2007,47,"(45,50]",College,25587.86579463702,809.4082326293176,31.61305354100027,281.343078427342,2019
+2007,67,"(65,70]",College,26205.91497710922,1103.7384990399785,23.7428657239943,36.539506448966826,2019
+2007,67,"(65,70]",College,33575.13904512754,1103.7384990399785,30.419468990463667,40.50096228050573,2019
+2007,67,"(65,70]",College,26619.187965990845,1103.7384990399785,24.117295889510032,37.20043991783406,2019
+2007,67,"(65,70]",College,24662.00837148463,1103.7384990399785,22.344068267017427,38.4681619553091,2019
+2007,67,"(65,70]",College,32419.462916939177,1103.7384990399785,29.37241289049655,39.730997738489904,2019
+2007,81,"(80,85]",NoHS,0.14310006540222367,12.50903632245309,0.011439735381163316,8450.19127085051,2019
+2007,81,"(80,85]",NoHS,0.14310006540222367,12.50903632245309,0.011439735381163316,8428.960144700624,2019
+2007,81,"(80,85]",NoHS,0.14310006540222367,12.50903632245309,0.011439735381163316,8381.512392028035,2019
+2007,81,"(80,85]",NoHS,0.14310006540222367,12.50903632245309,0.011439735381163316,8341.98198933713,2019
+2007,81,"(80,85]",NoHS,0.14310006540222367,12.50903632245309,0.011439735381163316,8282.02668821049,2019
+2007,41,"(40,45]",College,68.97423152387182,45.62119129365245,1.5118901889234229,8029.486316450055,2019
+2007,41,"(40,45]",College,64.53812949640287,58.86605328213219,1.0963556395922391,8044.2954013687295,2019
+2007,41,"(40,45]",College,14.1382864617397,70.63926393855863,0.20014770360626988,8096.4107275814285,2019
+2007,41,"(40,45]",College,13.952256376716809,39.73458596543923,0.3511363221162629,8017.139173418863,2019
+2007,41,"(40,45]",College,15.311706998037932,66.22430994239872,0.23120976287040076,8009.626329795901,2019
+2007,63,"(60,65]",HS,1693.1027338129497,77.99752059882516,21.707135314227568,5723.5657437596365,2019
+2007,63,"(60,65]",HS,1693.3746239372138,77.99752059882516,21.71062119585786,5852.614257306393,2019
+2007,63,"(60,65]",HS,1692.8022236756049,77.99752059882516,21.703282497688814,5510.477211941704,2019
+2007,63,"(60,65]",HS,1693.6751340745586,77.99752059882516,21.714474012396614,5765.396985988316,2019
+2007,63,"(60,65]",HS,1691.8005232177893,77.99752059882516,21.69043977589298,5813.073025887685,2019
+2007,49,"(45,50]",NoHS,28.5341530412034,44.14953996159914,0.6463069165844568,6708.625971661019,2019
+2007,49,"(45,50]",NoHS,28.5341530412034,44.14953996159914,0.6463069165844568,6672.343177112971,2019
+2007,49,"(45,50]",NoHS,28.5341530412034,44.14953996159914,0.6463069165844568,6849.053697845227,2019
+2007,49,"(45,50]",NoHS,28.5341530412034,44.14953996159914,0.6463069165844568,6751.036500542093,2019
+2007,49,"(45,50]",NoHS,28.548463047743624,44.14953996159914,0.6466310424202565,6653.876775851939,2019
+2007,25,"(20,25]",NoHS,3.148201438848921,51.50779662186566,0.06112087189364402,8350.967008104122,2019
+2007,25,"(20,25]",NoHS,3.148201438848921,51.50779662186566,0.06112087189364402,8353.30667457222,2019
+2007,25,"(20,25]",NoHS,3.0051013734466974,51.50779662186566,0.05834265044393293,8348.94012570971,2019
+2007,25,"(20,25]",NoHS,3.148201438848921,51.50779662186566,0.06112087189364402,8398.322496010478,2019
+2007,25,"(20,25]",NoHS,3.148201438848921,51.50779662186566,0.06112087189364402,8398.490944936813,2019
+2007,69,"(65,70]",HS,1666.5576716808373,35.319631969279314,47.1850237038255,3351.1943205381235,2019
+2007,69,"(65,70]",HS,1623.8423021582732,35.319631969279314,45.97562917899813,3396.530439055051,2019
+2007,69,"(65,70]",HS,1682.0983387835188,35.319631969279314,47.62502452592349,3385.7432327852357,2019
+2007,69,"(65,70]",HS,1658.4438979725312,35.319631969279314,46.955299517702514,3638.504342156856,2019
+2007,69,"(65,70]",HS,1643.3325310660564,44.14953996159914,37.2219627315576,3487.9316555875,2019
+2007,31,"(30,35]",College,404.973185088293,176.59815984639656,2.2931902882823634,9136.501777495516,2019
+2007,31,"(30,35]",College,406.4184957488555,176.59815984639656,2.301374465636304,9363.419396425485,2019
+2007,31,"(30,35]",College,402.1111837802485,176.59815984639656,2.276983996492382,8846.04888604581,2019
+2007,31,"(30,35]",College,403.5421844342708,176.59815984639656,2.285087142387373,9310.140565219644,2019
+2007,31,"(30,35]",College,403.5421844342708,176.59815984639656,2.285087142387373,9438.096730519517,2019
+2007,64,"(60,65]",HS,3.148201438848921,33.84798063722601,0.09301002244684958,8843.795354711441,2019
+2007,64,"(60,65]",HS,3.148201438848921,32.3763293051727,0.0972377507398882,8805.948678345983,2019
+2007,64,"(60,65]",HS,3.148201438848921,32.3763293051727,0.0972377507398882,8850.3090753193,2019
+2007,64,"(60,65]",HS,3.2913015042511446,33.84798063722601,0.09723775073988819,8861.292883019605,2019
+2007,64,"(60,65]",HS,3.2913015042511446,32.3763293051727,0.1016576485007922,8832.96044548057,2019
+2007,53,"(50,55]",HS,57.88397645519947,54.451099285972276,1.0630451398455343,7868.848022525252,2019
+2007,53,"(50,55]",HS,57.74087638979726,54.451099285972276,1.0604170925282401,7727.211884100696,2019
+2007,53,"(50,55]",HS,58.0270765206017,54.451099285972276,1.0656731871628287,8121.4229442904125,2019
+2007,53,"(50,55]",HS,58.0270765206017,54.451099285972276,1.0656731871628287,7863.115828225402,2019
+2007,53,"(50,55]",HS,57.74087638979726,54.451099285972276,1.0604170925282401,7737.084632530436,2019
+2007,43,"(40,45]",HS,83.3557880967953,70.63926393855863,1.1800206209580182,6572.583206791965,2019
+2007,43,"(40,45]",HS,82.13943754087639,47.09284262570575,1.7442021538967445,6462.381333500487,2019
+2007,43,"(40,45]",HS,80.85153695225637,54.451099285972276,1.4848467342712655,6645.0832267658,2019
+2007,43,"(40,45]",HS,81.78168737737084,42.67788862954583,1.9162542947533143,6492.943838179084,2019
+2007,43,"(40,45]",HS,80.63688685415305,42.67788862954583,1.8894300876526553,6501.175547828107,2019
+2007,64,"(60,65]",HS,0.30051013734466975,12.50903632245309,0.024023444300442967,9307.492338380887,2019
+2007,64,"(60,65]",HS,0.4436102027468934,12.50903632245309,0.03546317968160628,9281.447354705226,2019
+2007,64,"(60,65]",HS,0.4436102027468934,12.65620145565842,0.035050817127169,9231.528749910078,2019
+2007,64,"(60,65]",HS,0.30051013734466975,12.50903632245309,0.024023444300442967,9186.2180579793,2019
+2007,64,"(60,65]",HS,0.4436102027468934,12.50903632245309,0.03546317968160628,9118.550792557326,2019
+2007,59,"(55,60]",College,142417.47809025508,12612.05191569682,11.292173473612479,40.95947261478115,2019
+2007,59,"(55,60]",College,155346.568999346,10080.811624565138,15.41012517492085,36.345859498016765,2019
+2007,59,"(55,60]",College,159120.11772400263,10566.456564142729,15.058985645573632,40.2987357099767,2019
+2007,59,"(55,60]",College,150940.5179856115,10169.110704488336,14.843040101726002,39.97579849101878,2019
+2007,59,"(55,60]",College,156883.32060170046,11037.384990399785,14.213812487120464,36.58098825705041,2019
+2007,74,"(70,75]",NoHS,48.22472204054938,14.716513320533048,3.276912199934232,10560.907965308403,2019
+2007,74,"(70,75]",NoHS,48.3678221059516,14.716513320533048,3.286635975008221,10618.284053493402,2019
+2007,74,"(70,75]",NoHS,48.3678221059516,14.716513320533048,3.286635975008221,10591.049574127475,2019
+2007,74,"(70,75]",NoHS,48.3678221059516,14.716513320533048,3.286635975008221,10616.094619308564,2019
+2007,74,"(70,75]",NoHS,48.22472204054938,14.716513320533048,3.276912199934232,10611.631024756865,2019
+2007,72,"(70,75]",College,11573.647089601047,685.78952073684,16.876383700301883,2391.340956011237,2019
+2007,72,"(70,75]",College,11313.204970569,684.3178694047866,16.532090533320606,2394.8682816943265,2019
+2007,72,"(70,75]",College,10630.617658600391,682.8462180727333,15.568099196044857,2323.9885993800444,2019
+2007,72,"(70,75]",College,10652.082668410727,682.8462180727333,15.599533813740946,2302.1728346111286,2019
+2007,72,"(70,75]",College,12203.28737737083,682.8462180727333,17.871208852577986,2435.2559387837373,2019
+2007,55,"(50,55]",College,-10.660954872465664,72.11091527061193,-0.1478410700024831,6683.277287377719,2019
+2007,55,"(50,55]",College,-10.646644865925442,73.58256660266524,-0.14468977310095363,6640.510528027186,2019
+2007,55,"(50,55]",College,-12.077645519947678,70.63926393855863,-0.1709763783843034,6739.512566932304,2019
+2007,55,"(50,55]",College,-10.689574885546108,69.16761260650532,-0.1545459570270138,6586.026138639545,2019
+2007,55,"(50,55]",College,-11.948855461085678,61.8093559462388,-0.19331790920906344,6454.399136191348,2019
+2007,70,"(65,70]",HS,-20.177109221713536,91.2423825873049,-0.22113746539232632,6337.9082300643995,2019
+2007,70,"(65,70]",HS,-20.177109221713536,91.2423825873049,-0.22113746539232632,6377.251939945983,2019
+2007,70,"(65,70]",HS,-20.177109221713536,89.77073125525159,-0.22476266974302023,6461.584593684999,2019
+2007,70,"(65,70]",HS,-20.177109221713536,89.77073125525159,-0.22476266974302023,6399.139302302633,2019
+2007,70,"(65,70]",HS,-20.177109221713536,91.2423825873049,-0.22113746539232632,6318.776863931282,2019
+2007,55,"(50,55]",College,4989.613080444736,1259.7335402376289,3.960848005605633,1380.043714847305,2019
+2007,55,"(50,55]",College,4989.613080444736,1261.2051915696823,3.9562262459724873,1376.3669899291713,2019
+2007,55,"(50,55]",College,4989.613080444736,1261.2051915696823,3.9562262459724873,1355.8417378694826,2019
+2007,55,"(50,55]",College,4989.613080444736,1259.7335402376289,3.960848005605633,1345.8647247993326,2019
+2007,55,"(50,55]",College,4989.613080444736,1259.7335402376289,3.960848005605633,1378.4108160269066,2019
+2007,31,"(30,35]",HS,187.1319555264879,173.65485718228996,1.077608530869083,8087.598386297631,2019
+2007,31,"(30,35]",HS,169.84546762589926,204.55953515540935,0.8302984629724697,8269.52672664739,2019
+2007,31,"(30,35]",HS,164.07853499018967,157.4666925297036,1.0419888317603345,7790.2370384853475,2019
+2007,31,"(30,35]",HS,154.5623806409418,207.50283781951597,0.7448687558450584,8121.154150230158,2019
+2007,31,"(30,35]",HS,164.06422498364944,198.67292982719616,0.8258006016539392,8191.335317309119,2019
+2007,60,"(55,60]",College,14506.053629823415,2384.0751579263538,6.084562217594115,315.9309313594623,2019
+2007,60,"(55,60]",College,12766.95853499019,1883.7137050282302,6.777547193562972,308.2870844431447,2019
+2007,60,"(55,60]",College,10656.804970569,1957.296271630895,5.444656041616702,308.3460696139272,2019
+2007,60,"(55,60]",College,8842.009941138,1972.0127849514286,4.483748791393247,306.97781577770945,2019
+2007,60,"(55,60]",College,21359.115761935904,2781.4210175807457,7.679209881182916,316.43188817978097,2019
+2007,44,"(40,45]",HS,36.06121648136037,32.3763293051727,1.1138142357478102,6404.306680173847,2019
+2007,44,"(40,45]",HS,36.06121648136037,32.3763293051727,1.1138142357478102,6419.241488973728,2019
+2007,44,"(40,45]",HS,36.06121648136037,32.3763293051727,1.1138142357478102,6424.436934774846,2019
+2007,44,"(40,45]",HS,35.918116415958146,32.3763293051727,1.1093943379869062,6415.63983838681,2019
+2007,44,"(40,45]",HS,35.918116415958146,32.3763293051727,1.1093943379869062,6365.180237818694,2019
+2007,38,"(35,40]",HS,218.6568999345978,108.90219857194455,2.0078281504128266,6426.656225535864,2019
+2007,38,"(35,40]",HS,177.5871811641596,110.37384990399784,1.6089606489093504,6315.977565966574,2019
+2007,38,"(35,40]",HS,186.03008502289077,100.07229057962472,1.858956999439039,6502.362569680205,2019
+2007,38,"(35,40]",HS,219.9448005232178,108.90219857194455,2.0196543633406505,6327.390842151886,2019
+2007,38,"(35,40]",HS,217.36899934597776,116.26045523221109,1.8696727009353182,6336.753688413532,2019
+2007,28,"(25,30]",College,33.27935120994114,235.46421312852877,0.1413350707004275,8524.208707773902,2019
+2007,28,"(25,30]",College,30.703550032701113,235.46421312852877,0.13039582374219005,8485.599253645243,2019
+2007,28,"(25,30]",College,33.286506213211254,235.46421312852877,0.1413654574975337,8546.202760484819,2019
+2007,28,"(25,30]",College,32.141705689993465,235.46421312852877,0.1365035699605393,8401.33876805767,2019
+2007,28,"(25,30]",College,33.286506213211254,235.46421312852877,0.1413654574975337,8296.602444068993,2019
+2007,34,"(30,35]",HS,87.7203400915631,113.31715256810448,0.7741135221240448,6142.883887425024,2019
+2007,34,"(30,35]",HS,86.28933943754089,113.31715256810448,0.7614852428071764,6169.916435283825,2019
+2007,34,"(30,35]",HS,86.28933943754089,114.78880390015777,0.7517226114891357,6177.036995229999,2019
+2007,34,"(30,35]",HS,86.28933943754089,114.78880390015777,0.7517226114891357,6165.847785761232,2019
+2007,34,"(30,35]",HS,86.28933943754089,114.78880390015777,0.7517226114891357,6173.63559350418,2019
+2007,24,"(20,25]",HS,-53.497959450621316,20.603118648746268,-2.5965952224362283,6082.932133242373,2019
+2007,24,"(20,25]",HS,-50.12795291039895,20.603118648746268,-2.433027434584488,6122.97687871498,2019
+2007,24,"(20,25]",HS,-53.31192936559843,20.603118648746268,-2.5875660027246674,6099.77707291052,2019
+2007,24,"(20,25]",HS,-50.285362982341404,20.603118648746268,-2.4406675435711938,6068.343723947693,2019
+2007,24,"(20,25]",HS,-50.7933682145193,20.603118648746268,-2.4653242589373794,6110.48469364683,2019
+2007,39,"(35,40]",HS,-46.23563113145847,33.84798063722601,-1.365979011480777,5320.794506351209,2019
+2007,39,"(35,40]",HS,-46.23563113145847,35.319631969279314,-1.3090632193357448,5306.028796125526,2019
+2007,39,"(35,40]",HS,-46.23563113145847,33.84798063722601,-1.365979011480777,5311.698761871376,2019
+2007,39,"(35,40]",HS,-46.23563113145847,33.84798063722601,-1.365979011480777,5310.387526066428,2019
+2007,39,"(35,40]",HS,-46.23563113145847,35.319631969279314,-1.3090632193357448,5264.99938584861,2019
+2007,29,"(25,30]",HS,133.94166121648135,94.1856852514115,1.4221021045708648,7168.6533046039185,2019
+2007,29,"(25,30]",HS,134.6571615434925,94.1856852514115,1.4296988038474188,7107.46095108099,2019
+2007,29,"(25,30]",HS,146.10516677567037,94.1856852514115,1.5512459922722788,7267.471176284099,2019
+2007,29,"(25,30]",HS,135.3726618705036,94.1856852514115,1.4372955031239725,7231.491648491658,2019
+2007,29,"(25,30]",HS,132.51066056245912,94.1856852514115,1.4069087060177574,7064.260840022197,2019
+2007,58,"(55,60]",College,2474.743911052976,272.25549642986135,9.08978493916475,9604.322374007594,2019
+2007,58,"(55,60]",College,2132.8635448005234,272.25549642986135,7.834051370015199,9532.878770525374,2019
+2007,58,"(55,60]",College,2282.5462132112493,272.25549642986135,8.38383886879316,9430.300811966708,2019
+2007,58,"(55,60]",College,2042.0093132766513,272.25549642986135,7.5003419216651706,9560.195764228252,2019
+2007,58,"(55,60]",College,2027.5418966644866,272.25549642986135,7.44720280490948,9605.314485857702,2019
+2007,57,"(55,60]",HS,150.25506867233486,20.603118648746268,7.292831305491614,9046.312461338992,2019
+2007,57,"(55,60]",HS,150.25506867233486,20.603118648746268,7.292831305491614,9095.390203507322,2019
+2007,57,"(55,60]",HS,150.25506867233486,20.603118648746268,7.292831305491614,9032.222349264162,2019
+2007,57,"(55,60]",HS,150.25506867233486,20.603118648746268,7.292831305491614,9046.939024283542,2019
+2007,57,"(55,60]",HS,150.25506867233486,20.603118648746268,7.292831305491614,9055.203254782231,2019
+2007,36,"(35,40]",HS,98.16664486592543,88.29907992319828,1.1117516167927217,7160.541818762431,2019
+2007,36,"(35,40]",HS,98.16664486592543,88.29907992319828,1.1117516167927217,7038.883838043183,2019
+2007,36,"(35,40]",HS,98.16664486592543,88.29907992319828,1.1117516167927217,7361.4490682745745,2019
+2007,36,"(35,40]",HS,98.16664486592543,88.29907992319828,1.1117516167927217,7123.140550248941,2019
+2007,36,"(35,40]",HS,98.30974493132766,88.29907992319828,1.1133722459717197,7041.551836859793,2019
+2007,68,"(65,70]",HS,2.71890124264225,12.803366588863751,0.21235830621354895,6379.420255674319,2019
+2007,68,"(65,70]",HS,2.71890124264225,12.65620145565842,0.21482758884393904,6388.45072693315,2019
+2007,68,"(65,70]",HS,2.71890124264225,12.803366588863751,0.21235830621354895,6386.253542114655,2019
+2007,68,"(65,70]",HS,2.8620013080444737,12.803366588863751,0.22353505917215677,6407.245501491711,2019
+2007,68,"(65,70]",HS,2.71890124264225,12.803366588863751,0.21235830621354895,6409.479253376239,2019
+2007,38,"(35,40]",HS,2.3897710922171354,52.979447953918964,0.04510751214878147,4881.110600799528,2019
+2007,38,"(35,40]",HS,0.9587704381948986,52.979447953918964,0.01809702583214586,4885.926074328092,2019
+2007,38,"(35,40]",HS,2.3897710922171354,52.979447953918964,0.04510751214878147,4849.786304810603,2019
+2007,38,"(35,40]",HS,0.9587704381948986,52.979447953918964,0.01809702583214586,4861.8188852184885,2019
+2007,38,"(35,40]",HS,2.3897710922171354,52.979447953918964,0.04510751214878147,4905.907662994761,2019
+2007,37,"(35,40]",College,13593.075212557227,838.8412592703837,16.20458586452979,2002.4830074446413,2019
+2007,37,"(35,40]",College,14450.244604316547,838.8412592703837,17.226435210024402,2014.4083953060115,2019
+2007,37,"(35,40]",College,14766.495748855461,838.8412592703837,17.603444734822915,1979.193647748231,2019
+2007,37,"(35,40]",College,14292.834532374101,838.8412592703837,17.038783410350934,1969.4877756735361,2019
+2007,37,"(35,40]",College,14384.418574231524,838.8412592703837,17.147962639251862,2028.5277895259703,2019
+2007,51,"(50,55]",HS,233.8970568999346,147.16513320533048,1.5893510358434724,8608.430360410297,2019
+2007,51,"(50,55]",HS,233.8970568999346,147.16513320533048,1.5893510358434724,8402.818966707677,2019
+2007,51,"(50,55]",HS,234.04015696533682,147.16513320533048,1.5903234133508712,8812.122484445428,2019
+2007,51,"(50,55]",HS,233.8970568999346,147.16513320533048,1.5893510358434724,8571.064049344497,2019
+2007,51,"(50,55]",HS,233.8970568999346,147.16513320533048,1.5893510358434724,8466.35456188139,2019
+2007,58,"(55,60]",College,6205.577266187051,2060.3118648746267,3.0119601658289095,650.4763834021812,2019
+2007,58,"(55,60]",College,6176.957253106605,2060.3118648746267,2.9980690585803536,642.5804191110194,2019
+2007,58,"(55,60]",College,6188.405258338784,2060.3118648746267,3.0036255014797764,644.1271744013147,2019
+2007,58,"(55,60]",College,6182.681255722695,2060.3118648746267,3.000847280030065,641.1065372130942,2019
+2007,58,"(55,60]",College,6184.112256376718,2060.3118648746267,3.0015418353924934,660.3176540620627,2019
+2007,53,"(50,55]",HS,3.577501635055592,19.131467316692962,0.186995674499785,6071.434222285637,2019
+2007,53,"(50,55]",HS,3.4344015696533683,20.603118648746268,0.16669328698266547,6079.505111755837,2019
+2007,53,"(50,55]",HS,3.577501635055592,19.131467316692962,0.186995674499785,6085.442477989946,2019
+2007,53,"(50,55]",HS,3.4344015696533683,17.659815984639657,0.19447550147977638,6097.302462248927,2019
+2007,53,"(50,55]",HS,3.4344015696533683,19.131467316692962,0.17951584751979358,6100.785347957885,2019
+2007,60,"(55,60]",College,33818.83845650752,2207.476998079957,15.320131754905184,182.3772466076816,2019
+2007,60,"(55,60]",College,34176.588620013084,2207.476998079957,15.482194672805,202.55254375197632,2019
+2007,60,"(55,60]",College,35809.360366252455,2207.476998079957,16.22184983009975,182.16020192253401,2019
+2007,60,"(55,60]",College,32058.70765206017,2207.476998079957,14.522782198838101,185.57514923218756,2019
+2007,60,"(55,60]",College,36210.04054937868,2207.476998079957,16.40336029814754,195.79582723023742,2019
+2007,54,"(50,55]",College,7721.393328973186,1839.564165066631,4.19740364353831,2306.388995534843,2019
+2007,54,"(50,55]",College,7721.393328973186,1839.564165066631,4.19740364353831,2287.0272442450014,2019
+2007,54,"(50,55]",College,7721.393328973186,1839.564165066631,4.19740364353831,2265.5648170123422,2019
+2007,54,"(50,55]",College,7722.824329627208,1854.280678387164,4.164862644389116,2242.6292643268603,2019
+2007,54,"(50,55]",College,7721.393328973186,1854.280678387164,4.16409091620864,2272.769249021334,2019
+2007,82,"(80,85]",HS,0.07155003270111183,16.18816465258635,0.004419897760904009,6739.768446286167,2019
+2007,82,"(80,85]",HS,0.07155003270111183,16.18816465258635,0.004419897760904009,6748.533424886763,2019
+2007,82,"(80,85]",HS,0.07155003270111183,16.18816465258635,0.004419897760904009,6747.271789253915,2019
+2007,82,"(80,85]",HS,0.07155003270111183,16.18816465258635,0.004419897760904009,6768.769123551229,2019
+2007,82,"(80,85]",HS,0.07155003270111183,16.18816465258635,0.004419897760904009,6771.578695680754,2019
+2007,56,"(55,60]",HS,112.47665140614781,48.56449395775905,2.316026426713701,5793.44653310859,2019
+2007,56,"(55,60]",HS,146.3198168737737,38.262934633385925,3.8240615435206027,5746.249697431436,2019
+2007,56,"(55,60]",HS,85.97451929365599,39.73458596543923,2.16372002387129,5783.548392539673,2019
+2007,56,"(55,60]",HS,99.0967952910399,50.03614528981236,1.9805041878638991,5771.732185754387,2019
+2007,56,"(55,60]",HS,84.67230869849575,50.03614528981236,1.6922228562585837,5753.278079361147,2019
+2007,31,"(30,35]",HS,14.152596468279922,66.22430994239872,0.21370696773722092,7058.006370181116,2019
+2007,31,"(30,35]",HS,14.295696533682145,66.22430994239872,0.21586780664255176,6980.797183563385,2019
+2007,31,"(30,35]",HS,14.310006540222368,66.22430994239872,0.21608389053308485,7101.025479455435,2019
+2007,31,"(30,35]",HS,13.737606278613473,66.22430994239872,0.20744053491176145,7111.368321686781,2019
+2007,31,"(30,35]",HS,14.295696533682145,66.22430994239872,0.21586780664255176,7045.571958152813,2019
+2007,42,"(40,45]",HS,37.062916939175935,36.79128330133262,1.0073830976652418,4474.689056939975,2019
+2007,42,"(40,45]",HS,41.49901896664486,36.79128330133262,1.127957908582703,4506.10940699062,2019
+2007,42,"(40,45]",HS,37.062916939175935,36.79128330133262,1.0073830976652418,4482.612855888388,2019
+2007,42,"(40,45]",HS,43.216219751471556,36.79128330133262,1.1746320289378496,4473.173417294902,2019
+2007,42,"(40,45]",HS,37.692557226945716,36.79128330133262,1.024496941795462,4496.320821170142,2019
+2007,54,"(50,55]",College,840.1404839764552,110.37384990399784,7.611771127918449,7526.64958995157,2019
+2007,54,"(50,55]",College,798.6414650098103,110.37384990399784,7.235785158390881,7698.399232431834,2019
+2007,54,"(50,55]",College,562.5263570961413,110.37384990399784,5.0965546421133405,7244.243624697619,2019
+2007,54,"(50,55]",College,701.3334205362981,110.37384990399784,6.354162885015894,7585.172023251987,2019
+2007,54,"(50,55]",College,708.4884238064095,110.37384990399784,6.418988052175821,7647.543358723895,2019
+2007,57,"(55,60]",College,2024.2935251798563,185.42806783871637,10.91686684100364,2864.9285370081475,2019
+2007,57,"(55,60]",College,2030.3037279267496,166.29660052202343,12.208931039801184,2907.9898876567386,2019
+2007,57,"(55,60]",College,2022.0039241334205,172.18320585023665,11.743328358586497,2911.806329785287,2019
+2007,57,"(55,60]",College,2021.002223675605,166.29660052202343,12.152997820349036,3144.362878890247,2019
+2007,57,"(55,60]",College,2019.714323086985,151.5800872014904,13.32440401886196,3030.1131748539506,2019
+2007,36,"(35,40]",HS,728.1217527795945,108.90219857194455,6.686015179928367,5625.18479194489,2019
+2007,36,"(35,40]",HS,738.1387573577503,104.48724457578463,7.064391068542132,5754.7149321079305,2019
+2007,36,"(35,40]",HS,733.8457553956835,86.82742859114498,8.451773446513469,5413.402973798112,2019
+2007,36,"(35,40]",HS,733.8457553956835,107.43054723989124,6.830885388278009,5666.983237960774,2019
+2007,36,"(35,40]",HS,753.8797645519948,83.88412592703838,8.987156463997875,5713.431747399061,2019
+2007,57,"(55,60]",College,120513.00797907129,2663.688911016482,45.24289885378646,23.33602696123593,2019
+2007,57,"(55,60]",College,137890.6506213211,2766.7045042602126,49.839312586145375,20.827163619292293,2019
+2007,57,"(55,60]",College,188108.04107259648,2869.720097503944,65.54926427710184,22.96340069515562,2019
+2007,57,"(55,60]",College,126444.79189012427,2737.2714776191465,46.19373449947492,22.843010958808115,2019
+2007,57,"(55,60]",College,110133.3878351864,2722.554964298614,40.45221833145214,21.124723687919385,2019
+2007,25,"(20,25]",College,-4.436102027468934,88.29907992319828,-0.050239504548942236,5968.119777837276,2019
+2007,25,"(20,25]",College,-2.8620013080444737,88.29907992319828,-0.03241258357996273,5963.840626515501,2019
+2007,25,"(20,25]",College,-3.0051013734466974,88.29907992319828,-0.034033212758960874,5972.269923242089,2019
+2007,25,"(20,25]",College,-4.436102027468934,88.29907992319828,-0.050239504548942236,5968.152298097819,2019
+2007,25,"(20,25]",College,-4.436102027468934,88.29907992319828,-0.050239504548942236,5971.582941230436,2019
+2007,65,"(60,65]",College,25231.40353172008,345.8380630325266,72.95727749130675,1662.0750737233436,2019
+2007,65,"(60,65]",College,17259.585088293003,329.5027332467349,52.38070385100221,2287.0272442450014,2019
+2007,65,"(60,65]",College,18167.984303466317,310.6655961964526,58.480837678523,2265.5648170123422,2019
+2007,65,"(60,65]",College,16515.894048397644,286.6776794839838,57.61137064499072,2242.6292643268603,2019
+2007,65,"(60,65]",College,20748.937083060824,303.1601744029808,68.44215973922732,1107.4379408830573,2019
+2007,66,"(65,70]",HS,9625.482799215173,107.43054723989124,89.59726117490192,1365.1277666996189,2019
+2007,66,"(65,70]",HS,9624.194898626552,108.90219857194455,88.37466116231325,1361.4907809851368,2019
+2007,66,"(65,70]",HS,9625.625899280576,108.90219857194455,88.38780139889973,1341.1873723294984,2019
+2007,66,"(65,70]",HS,9625.482799215173,107.43054723989124,89.59726117490192,1331.3181939663382,2019
+2007,66,"(65,70]",HS,9625.482799215173,107.43054723989124,89.59726117490192,1363.512516765175,2019
+2007,49,"(45,50]",College,1408.820143884892,298.7452204068208,4.715791409035465,253.8644297277774,2019
+2007,49,"(45,50]",College,1437.4401569653369,317.87668772351384,4.522005584176744,243.4065832507114,2019
+2007,49,"(45,50]",College,1308.6500981033357,407.64741897876536,3.2102499296616527,245.63920188703074,2019
+2007,49,"(45,50]",College,1453.1811641595816,381.15769500180596,3.81254578673191,243.27375943388634,2019
+2007,49,"(45,50]",College,1437.4401569653369,398.81751098644565,3.604255373365966,247.08058337507782,2019
+2007,31,"(30,35]",HS,47.881281883584045,52.979447953918964,0.9037708721546276,5193.690248429257,2019
+2007,31,"(30,35]",HS,41.15557880967953,52.979447953918964,0.7768215864664403,5158.8620675658,2019
+2007,31,"(30,35]",HS,41.871079136690646,52.979447953918964,0.790326829624758,5154.820249887299,2019
+2007,31,"(30,35]",HS,138.70689339437538,52.979447953918964,2.6181264386714895,5148.166874193252,2019
+2007,31,"(30,35]",HS,134.45682145192936,52.979447953918964,2.537905294311082,5185.693496506692,2019
+2007,66,"(65,70]",College,4223.169130150425,345.8380630325266,12.211406382279067,5243.223405025408,2019
+2007,66,"(65,70]",College,4223.169130150425,344.3664117004733,12.263591879639232,5291.975973004401,2019
+2007,66,"(65,70]",College,4223.169130150425,345.8380630325266,12.211406382279067,5112.547144833816,2019
+2007,66,"(65,70]",College,4223.169130150425,345.8380630325266,12.211406382279067,5135.290390243297,2019
+2007,66,"(65,70]",College,4223.169130150425,344.3664117004733,12.263591879639232,5242.715091217857,2019
+2007,21,"(20,25]",HS,-9.659254414650098,44.14953996159914,-0.21878493916474845,5951.302347558303,2019
+2007,21,"(20,25]",HS,-9.659254414650098,44.14953996159914,-0.21878493916474845,5967.902958109802,2019
+2007,21,"(20,25]",HS,-9.659254414650098,44.14953996159914,-0.21878493916474845,5911.365731742924,2019
+2007,21,"(20,25]",HS,-9.659254414650098,44.14953996159914,-0.21878493916474845,5836.659504617902,2019
+2007,21,"(20,25]",HS,-9.659254414650098,44.14953996159914,-0.21878493916474845,5832.06238788679,2019
+2007,62,"(60,65]",College,22452.11406147809,404.7041163146588,55.47784951122537,39.837432833016386,2019
+2007,62,"(60,65]",College,21802.654414650096,445.9103536121513,48.894703247042884,46.240062158885436,2019
+2007,62,"(60,65]",College,22282.9125441465,447.38200494420465,49.80735098392149,41.26669478280562,2019
+2007,62,"(60,65]",College,23198.55262262917,391.45925432617906,59.26172996615181,40.779145138279304,2019
+2007,62,"(60,65]",College,22108.072884238063,494.4748475699104,44.710207188268264,46.30839766584597,2019
+2007,50,"(45,50]",HS,397.2457815565729,79.46917193087846,4.998740667665363,7671.549946368688,2019
+2007,50,"(45,50]",HS,340.0057553956835,77.99752059882516,4.35918671241461,8388.517915441978,2019
+2007,50,"(45,50]",HS,646.239895356442,77.99752059882516,8.285390232855377,7384.552726685986,2019
+2007,50,"(45,50]",HS,806.5119686069327,77.99752059882516,10.340225720188863,8536.05271676081,2019
+2007,50,"(45,50]",HS,631.9298888162198,79.46917193087846,7.951887171617523,7792.752644809565,2019
+2007,41,"(40,45]",HS,202.4865925441465,88.29907992319828,2.2931902882823634,7863.921839019711,2019
+2007,41,"(40,45]",HS,398.5336821451929,88.29907992319828,4.51345226350981,7778.68712796521,2019
+2007,41,"(40,45]",HS,137.37606278613472,88.29907992319828,1.555804011838211,8016.188780045534,2019
+2007,41,"(40,45]",HS,719.077828646174,88.29907992319828,8.143661624465636,7053.380501423807,2019
+2007,41,"(40,45]",HS,193.90058862001308,88.29907992319828,2.195952537542475,7776.580944521692,2019
+2007,69,"(65,70]",College,3259.003819489863,628.395118786761,5.186233505094698,1541.5426668327373,2019
+2007,69,"(65,70]",College,6613.56986265533,568.0574141725756,11.642432081075048,3020.7463941289307,2019
+2007,69,"(65,70]",College,4079.1389143230867,469.45677492500425,8.689061767134428,3020.6165898363142,2019
+2007,69,"(65,70]",College,4904.368371484631,412.06237297492527,11.902004873866682,2998.34238212905,2019
+2007,69,"(65,70]",College,4578.200392413342,434.1371429557249,10.545516472614382,3053.455815808068,2019
+2007,60,"(55,60]",HS,63250.22890778287,4944.748475699103,12.79139459137815,39.69882831416042,2019
+2007,60,"(55,60]",HS,63250.22890778287,4944.748475699103,12.79139459137815,35.20813092069902,2019
+2007,60,"(55,60]",HS,63250.22890778287,4944.748475699103,12.79139459137815,39.05477395064978,2019
+2007,60,"(55,60]",HS,63250.22890778287,4944.748475699103,12.79139459137815,38.74313729758774,2019
+2007,60,"(55,60]",HS,63250.22890778287,4944.748475699103,12.79139459137815,35.452153642756286,2019
+2007,76,"(75,80]",HS,809.4455199476782,44.14953996159914,18.33417790200592,8356.919841587855,2019
+2007,76,"(75,80]",HS,814.5971223021583,44.14953996159914,18.450863202893785,8546.962009622392,2019
+2007,76,"(75,80]",HS,809.302419882276,44.14953996159914,18.330936643647924,8047.308485258982,2019
+2007,76,"(75,80]",HS,811.1627207325049,44.14953996159914,18.373073002301876,8420.594752071656,2019
+2007,76,"(75,80]",HS,811.5920209287117,44.14953996159914,18.382796777375866,8491.51233173835,2019
+2007,60,"(55,60]",College,127.7597383911053,88.29907992319828,1.4468977310095363,8115.911051903435,2019
+2007,60,"(55,60]",College,127.7597383911053,88.29907992319828,1.4468977310095363,7913.842922383669,2019
+2007,60,"(55,60]",College,126.32873773708307,88.29907992319828,1.430691439219555,8437.086603631182,2019
+2007,60,"(55,60]",College,127.7597383911053,88.29907992319828,1.4468977310095363,8058.633478968828,2019
+2007,60,"(55,60]",College,126.32873773708307,88.29907992319828,1.430691439219555,7879.586498425042,2019
+2007,23,"(20,25]",HS,6.833028122956181,51.50779662186566,0.13266007422370463,9524.1384150076,2019
+2007,23,"(20,25]",HS,6.8044081098757365,51.50779662186566,0.13210442993376242,9586.837075837724,2019
+2007,23,"(20,25]",HS,6.818718116415958,51.50779662186566,0.13238225207873353,9550.512790633971,2019
+2007,23,"(20,25]",HS,6.811563113145847,51.50779662186566,0.13224334100624796,9501.297122957332,2019
+2007,23,"(20,25]",HS,7.090608240680184,51.50779662186566,0.1376608728331846,9567.277873616029,2019
+2007,74,"(70,75]",College,329568.7521255723,3362.723293741801,98.00650346072675,22.91884966509225,2019
+2007,74,"(70,75]",College,171185.1704381949,2919.756242793757,58.629952709475866,20.45483718088566,2019
+2007,74,"(70,75]",College,206995.53250490516,2925.64284812197,70.7521537147912,22.552884825072763,2019
+2007,74,"(70,75]",College,186182.05729234795,2850.588630187251,65.31354798819847,22.434647291616372,2019
+2007,74,"(70,75]",College,162026.19385219098,2810.854044221812,57.64304773677714,20.747077779104337,2019
+2007,29,"(25,30]",HS,7.441203400915631,38.262934633385925,0.19447550147977638,6324.352416883227,2019
+2007,29,"(25,30]",HS,7.441203400915631,38.262934633385925,0.19447550147977638,6314.1138904995005,2019
+2007,29,"(25,30]",HS,-1.1448005232177894,38.262934633385925,-0.029919307919965596,6307.53316058043,2019
+2007,29,"(25,30]",HS,7.441203400915631,38.262934633385925,0.19447550147977638,6325.047767380994,2019
+2007,29,"(25,30]",HS,1.1448005232177894,38.262934633385925,0.029919307919965596,6357.5683666325685,2019
+2007,58,"(55,60]",College,2623.7396991497712,189.8430218348763,13.820574882293412,3013.2596509182576,2019
+2007,58,"(55,60]",College,2623.8827992151732,188.371370502823,13.929307793488984,3052.678359359651,2019
+2007,58,"(55,60]",College,2623.8827992151732,188.371370502823,13.929307793488984,3045.0339327419088,2019
+2007,58,"(55,60]",College,2623.8827992151732,188.371370502823,13.929307793488984,3270.23235199364,2019
+2007,58,"(55,60]",College,2623.8827992151732,188.371370502823,13.929307793488984,3134.794349916983,2019
+2007,51,"(50,55]",College,20614.423021582734,367.91283301332624,56.03072568234133,2368.334228706798,2019
+2007,51,"(50,55]",College,20461.305951602357,367.91283301332624,55.61454810917461,2348.45245750679,2019
+2007,51,"(50,55]",College,20567.2,367.91283301332624,55.90237185136468,2326.4135901931495,2019
+2007,51,"(50,55]",College,20595.820013080443,367.91283301332624,55.98016205195658,2302.862032071559,2019
+2007,51,"(50,55]",College,20454.150948332244,367.91283301332624,55.595100559026626,2333.811519579006,2019
+2007,74,"(70,75]",College,111068.54676258993,5299.41644672395,20.958637215848828,24.166547902343968,2019
+2007,74,"(70,75]",College,111068.54676258993,5299.41644672395,20.958637215848828,21.568395001928213,2019
+2007,74,"(70,75]",College,111069.97776324395,5299.41644672395,20.9589072457037,23.780659999323465,2019
+2007,74,"(70,75]",College,111069.97776324395,5299.41644672395,20.9589072457037,23.655985634864372,2019
+2007,74,"(70,75]",College,111068.54676258993,5299.41644672395,20.958637215848828,21.876545128093493,2019
+2007,37,"(35,40]",HS,656.8293001962066,80.94082326293177,8.114932289019759,4809.51976083948,2019
+2007,37,"(35,40]",HS,656.8293001962066,80.94082326293177,8.114932289019759,4931.038341693301,2019
+2007,37,"(35,40]",HS,656.8293001962066,80.94082326293177,8.114932289019759,4646.111506305078,2019
+2007,37,"(35,40]",HS,656.8293001962066,80.94082326293177,8.114932289019759,4860.5206785962355,2019
+2007,37,"(35,40]",HS,656.8293001962066,80.94082326293177,8.114932289019759,4907.0347868790495,2019
+2007,29,"(25,30]",College,28.505533028122954,35.319631969279314,0.8070733311410719,6669.764631584444,2019
+2007,29,"(25,30]",College,28.51984303466318,35.319631969279314,0.8074784884358215,6653.718571877757,2019
+2007,29,"(25,30]",College,28.505533028122954,35.319631969279314,0.8070733311410719,6636.061041994554,2019
+2007,29,"(25,30]",College,28.505533028122954,35.319631969279314,0.8070733311410719,6683.891140143258,2019
+2007,29,"(25,30]",College,28.505533028122954,35.319631969279314,0.8070733311410719,6713.638877019339,2019
+2007,64,"(60,65]",College,39431.79542184434,3899.8760299412575,10.11103817636949,24.98493661949319,2019
+2007,64,"(60,65]",College,39431.79542184434,3899.8760299412575,10.11103817636949,26.478794463413248,2019
+2007,64,"(60,65]",College,39431.938521909746,3899.8760299412575,10.111074869860337,26.53568985957805,2019
+2007,64,"(60,65]",College,39431.938521909746,3899.8760299412575,10.111074869860337,27.061391523030743,2019
+2007,64,"(60,65]",College,39431.938521909746,3899.8760299412575,10.111074869860337,27.217771041408742,2019
+2007,58,"(55,60]",College,141.81216481360366,125.0903632245309,1.1336777762732846,6542.744374298848,2019
+2007,58,"(55,60]",College,140.09496402877699,125.0903632245309,1.1199500938158888,6374.3821352383075,2019
+2007,58,"(55,60]",College,138.80706344015695,125.0903632245309,1.1096543319728416,6702.153435665532,2019
+2007,58,"(55,60]",College,141.81216481360366,125.0903632245309,1.1336777762732846,6480.858586505394,2019
+2007,58,"(55,60]",College,141.382864617397,125.0903632245309,1.1302458556589356,6400.32945292023,2019
+2007,55,"(50,55]",HS,546.1127795945063,229.57760780031555,2.378771975311765,368.6806969681006,2019
+2007,55,"(50,55]",HS,549.3182210595161,228.1059564682623,2.40817131461425,384.271390496354,2019
+2007,55,"(50,55]",HS,547.7298103335514,228.1059564682623,2.4012078369806193,373.015106873289,2019
+2007,55,"(50,55]",HS,547.7870503597122,228.1059564682623,2.401458773111561,369.82589652084295,2019
+2007,55,"(50,55]",HS,548.6456507521256,228.1059564682623,2.4052228150756854,374.0326742658523,2019
+2007,50,"(45,50]",HS,53.13305428384565,79.46917193087846,0.6685995712911201,7594.889696843704,2019
+2007,50,"(45,50]",HS,53.4192544146501,79.46917193087846,0.6722009694666715,7508.890737626345,2019
+2007,50,"(45,50]",HS,54.69284499672989,79.46917193087846,0.6882271913478752,7603.466714920343,2019
+2007,50,"(45,50]",HS,55.551445389143225,79.46917193087846,0.6990313858745294,7596.065286029365,2019
+2007,50,"(45,50]",HS,50.800523217789404,79.46917193087846,0.639248176160376,7556.525060431227,2019
+2007,34,"(30,35]",HS,241.4384303466318,55.92275061802558,4.317356132851036,8042.005243150314,2019
+2007,34,"(30,35]",HS,149.28198822759975,55.92275061802558,2.669432146627668,8010.664328312594,2019
+2007,34,"(30,35]",HS,151.65744931327666,55.92275061802558,2.711909690371934,8141.70783122666,2019
+2007,34,"(30,35]",HS,128.5324787442773,55.92275061802558,2.298393360909673,8095.425533347365,2019
+2007,34,"(30,35]",HS,139.69428384565077,55.92275061802558,2.4979866387441807,8012.155062711592,2019
+2007,35,"(30,35]",NoHS,114.43712230215827,33.84798063722601,3.380914315942982,7950.056250930892,2019
+2007,35,"(30,35]",NoHS,114.27971223021582,33.84798063722601,3.3762638148206396,7846.468190589937,2019
+2007,35,"(30,35]",NoHS,114.4514323086985,33.84798063722601,3.3813370887722862,8085.5853925929305,2019
+2007,35,"(30,35]",NoHS,114.4514323086985,33.84798063722601,3.3813370887722862,7911.002729574012,2019
+2007,35,"(30,35]",NoHS,114.42281229561804,33.84798063722601,3.380491543113678,7900.3818028214055,2019
+2007,50,"(45,50]",College,3337.522825376063,491.5315449058038,6.790048085348539,5243.223405025408,2019
+2007,50,"(45,50]",College,2957.1628515369525,651.9415400996139,4.535932548622551,5291.975973004401,2019
+2007,50,"(45,50]",College,8527.905297580117,532.7377822032963,16.007697562411316,5112.547144833816,2019
+2007,50,"(45,50]",College,13860.529234793983,584.245578825162,23.72380679827413,5135.290390243297,2019
+2007,50,"(45,50]",College,2874.307913669065,678.4312640765735,4.236697313148361,5242.715091217857,2019
+2007,55,"(50,55]",College,13027.829954218443,295.80191774271424,44.04241207641503,5243.223405025408,2019
+2007,55,"(50,55]",College,13180.66082406802,270.78384509780807,48.67594970190012,5291.975973004401,2019
+2007,55,"(50,55]",College,12963.148724656638,278.1421017580746,46.6062082752645,5112.547144833816,2019
+2007,55,"(50,55]",College,13063.318770438194,282.5570557542345,46.232498903869335,5135.290390243297,2019
+2007,55,"(50,55]",College,12866.556180510137,260.48228577343497,49.39512927839303,5242.715091217857,2019
+2007,62,"(60,65]",College,93039.65572269457,2634.2558843754155,35.319141270421554,37.952169677201105,2019
+2007,62,"(60,65]",College,87866.874558535,3252.3494438378034,27.016431068013173,34.55693739417501,2019
+2007,62,"(60,65]",College,88131.19468933945,3252.3494438378034,27.09770158809989,35.55577960859934,2019
+2007,62,"(60,65]",College,87964.3257030739,2693.1219376575477,32.662585556591786,35.92273326769746,2019
+2007,62,"(60,65]",College,89963.57671680838,2796.1375309012788,32.1742316758684,33.8683475870663,2019
+2007,61,"(60,65]",HS,278.4727272727273,33.84798063722601,8.227159258253149,7387.607792121955,2019
+2007,61,"(60,65]",HS,274.17972531066056,29.433026641066096,9.315376520881289,7240.900841454359,2019
+2007,61,"(60,65]",HS,269.4574231523872,27.96137530901279,9.636772875958394,7629.967010488357,2019
+2007,61,"(60,65]",HS,278.90202746893397,29.433026641066096,9.475818809602105,7344.279033745591,2019
+2007,61,"(60,65]",HS,274.17972531066056,27.96137530901279,9.805659495664514,7225.034342036224,2019
+2007,33,"(30,35]",HS,12.435395683453239,33.84798063722601,0.36738958866505583,7249.982026766023,2019
+2007,33,"(30,35]",HS,13.165206017004579,33.84798063722601,0.38895100295955276,7220.657051106393,2019
+2007,33,"(30,35]",HS,14.43879659908437,33.84798063722601,0.4265777847675965,7231.264182870478,2019
+2007,33,"(30,35]",HS,12.006095487246567,33.84798063722601,0.35470640378594,7169.1480160462215,2019
+2007,33,"(30,35]",HS,12.435395683453239,32.3763293051727,0.3840891154225584,7030.678314159579,2019
+2007,61,"(60,65]",HS,80.3506867233486,64.7526586103454,1.2408862963738005,10474.946124543934,2019
+2007,61,"(60,65]",HS,76.44405493786789,72.11091527061193,1.0600899274540465,10244.186323524538,2019
+2007,61,"(60,65]",HS,75.57114453891433,55.92275061802558,1.3513488464667094,10794.018203012241,2019
+2007,61,"(60,65]",HS,78.54762589928059,72.11091527061193,1.089261252676013,10451.53717670518,2019
+2007,61,"(60,65]",HS,81.05187704381949,66.22430994239872,1.2238991559793926,10294.760628090013,2019
+2007,27,"(25,30]",College,122.49365598430346,103.01559324373132,1.1890787804763472,7939.2544779488,2019
+2007,27,"(25,30]",College,122.49365598430346,103.01559324373132,1.1890787804763472,7911.862778876789,2019
+2007,27,"(25,30]",College,122.49365598430346,103.01559324373132,1.1890787804763472,7944.133997819756,2019
+2007,27,"(25,30]",College,122.49365598430346,103.01559324373132,1.1890787804763472,7789.42864327453,2019
+2007,27,"(25,30]",College,122.49365598430346,103.01559324373132,1.1890787804763472,7714.059870576255,2019
+2007,49,"(45,50]",HS,109.90228122956181,48.56449395775905,2.2630171195679254,6161.3161340897595,2019
+2007,49,"(45,50]",HS,109.90228122956181,48.56449395775905,2.2630171195679254,6014.153789233169,2019
+2007,49,"(45,50]",HS,109.75918116415959,48.56449395775905,2.260070521060656,6307.104799114731,2019
+2007,49,"(45,50]",HS,109.75918116415959,47.09284262570575,2.3306977248438017,6134.571925726299,2019
+2007,49,"(45,50]",HS,109.90228122956181,48.56449395775905,2.2630171195679254,6059.628152298601,2019
+2007,23,"(20,25]",College,15.240156965336821,67.69596127445202,0.22512653160430635,6770.152387180666,2019
+2007,23,"(20,25]",College,15.11136690647482,67.69596127445202,0.223224053872439,6814.721194331063,2019
+2007,23,"(20,25]",College,15.240156965336821,67.69596127445202,0.22512653160430635,6788.90038666647,2019
+2007,23,"(20,25]",College,15.240156965336821,67.69596127445202,0.22512653160430635,6753.915849956819,2019
+2007,23,"(20,25]",College,15.097056899934598,67.69596127445202,0.22301266745778706,6800.817702609025,2019
+2007,41,"(40,45]",HS,808.5153695225638,147.16513320533048,5.493932916803683,7415.225891803297,2019
+2007,41,"(40,45]",HS,809.946370176586,147.16513320533048,5.503656691877672,7585.6463492120265,2019
+2007,41,"(40,45]",HS,808.5153695225638,147.16513320533048,5.493932916803683,7137.9415241531515,2019
+2007,41,"(40,45]",HS,809.946370176586,147.16513320533048,5.503656691877672,7472.026619115194,2019
+2007,41,"(40,45]",HS,808.5153695225638,147.16513320533048,5.493932916803683,7533.512957787029,2019
+2007,61,"(60,65]",HS,1262.4287769784173,161.88164652586354,7.798467609339032,4319.900951968122,2019
+2007,61,"(60,65]",HS,1176.425637671681,161.88164652586354,7.267195898478371,4341.2862986809205,2019
+2007,61,"(60,65]",HS,1191.3223544800524,161.88164652586354,7.359218169860392,4370.974844416475,2019
+2007,61,"(60,65]",HS,1245.7862393721387,161.88164652586354,7.695660787420405,4334.8850545409205,2019
+2007,61,"(60,65]",HS,1262.9725572269456,161.88164652586354,7.801826731637318,4428.704523430968,2019
+2007,23,"(20,25]",HS,196.04852060170046,54.451099285972276,3.6004511051663304,7560.95366573114,2019
+2007,23,"(20,25]",HS,196.04852060170046,54.451099285972276,3.6004511051663304,7618.979509819954,2019
+2007,23,"(20,25]",HS,196.04852060170046,54.451099285972276,3.6004511051663304,7567.027100082455,2019
+2007,23,"(20,25]",HS,196.04852060170046,54.451099285972276,3.6004511051663304,7508.708344023161,2019
+2007,23,"(20,25]",HS,196.19162066710268,54.451099285972276,3.6030791524836245,7582.219329883866,2019
+2007,47,"(45,50]",HS,92.87194244604316,147.16513320533048,0.6310730023018744,8183.776283951071,2019
+2007,47,"(45,50]",HS,108.61294964028777,147.16513320533048,0.7380345281157513,8036.471561929345,2019
+2007,47,"(45,50]",HS,71.2638325703074,147.16513320533048,0.48424399868464324,8446.459798583137,2019
+2007,47,"(45,50]",HS,122.77985611510792,147.16513320533048,0.8342999013482407,8177.814674877947,2019
+2007,47,"(45,50]",HS,145.6758665794637,147.16513320533048,0.9898803025320617,8046.739439034793,2019
+2007,41,"(40,45]",HS,-13.909326357096141,29.433026641066096,-0.4725754685958566,7190.02941820691,2019
+2007,41,"(40,45]",HS,-13.909326357096141,29.433026641066096,-0.4725754685958566,7201.437666843158,2019
+2007,41,"(40,45]",HS,-13.89501635055592,29.433026641066096,-0.4720892798421572,7206.457334917388,2019
+2007,41,"(40,45]",HS,-13.909326357096141,29.433026641066096,-0.4725754685958566,7219.249576201311,2019
+2007,41,"(40,45]",HS,-13.766226291693918,29.433026641066096,-0.4677135810588622,7223.626267628953,2019
+2007,43,"(40,45]",College,6654.153041203401,651.9415400996139,10.206671353058242,3306.0620903836266,2019
+2007,43,"(40,45]",College,5744.036625245259,625.4518161226545,9.183819563997911,3306.6411436599474,2019
+2007,43,"(40,45]",College,5742.605624591236,420.8922809672451,13.643884395775222,3267.0684496379613,2019
+2007,43,"(40,45]",College,5801.276651406148,369.3844843453795,15.705252649382738,3241.991088115195,2019
+2007,43,"(40,45]",College,9265.729234793984,578.3589734969487,16.020723563378528,3304.1525229351582,2019
+2007,33,"(30,35]",HS,27.045912361020275,52.979447953918964,0.5104981913844131,8244.22061737465,2019
+2007,33,"(30,35]",HS,27.045912361020275,51.50779662186566,0.5250838539953963,8231.434547638333,2019
+2007,33,"(30,35]",HS,28.476913015042513,51.50779662186566,0.5528660684925073,8324.34907728577,2019
+2007,33,"(30,35]",HS,28.476913015042513,51.50779662186566,0.5528660684925073,8281.709589466727,2019
+2007,33,"(30,35]",HS,28.476913015042513,51.50779662186566,0.5528660684925073,8236.085483413412,2019
+2007,48,"(45,50]",College,6548.258992805756,1324.4861988479745,4.9439994153969815,149.70956507693455,2019
+2007,48,"(45,50]",College,6549.689993459778,1324.4861988479745,4.945079834849646,144.45013248483707,2019
+2007,48,"(45,50]",College,6549.689993459778,1324.4861988479745,4.945079834849646,144.89660810853928,2019
+2007,48,"(45,50]",College,6548.258992805756,1324.4861988479745,4.9439994153969815,143.89718398581869,2019
+2007,48,"(45,50]",College,6551.1209941138,1324.4861988479745,4.946160254302312,147.70170149473125,2019
+2007,81,"(80,85]",HS,607.1735775016351,76.52586926677185,7.9342264690258775,6754.743070339845,2019
+2007,81,"(80,85]",HS,607.0304774362329,76.52586926677185,7.9323565122808795,6909.020835625372,2019
+2007,81,"(80,85]",HS,607.1735775016351,76.52586926677185,7.9342264690258775,6503.487089174086,2019
+2007,81,"(80,85]",HS,607.0304774362329,75.05421793471854,8.087892914482467,6805.656434025432,2019
+2007,81,"(80,85]",HS,607.0304774362329,76.52586926677185,7.9323565122808795,6863.172104174917,2019
+2007,34,"(30,35]",HS,19.46160889470242,36.79128330133262,0.5289733640249917,7077.609026017419,2019
+2007,34,"(30,35]",HS,19.318508829300196,36.79128330133262,0.5250838539953963,7066.151048667334,2019
+2007,34,"(30,35]",HS,19.318508829300196,36.79128330133262,0.5250838539953963,7058.786526515056,2019
+2007,34,"(30,35]",HS,19.46160889470242,36.79128330133262,0.5289733640249917,7078.387195644103,2019
+2007,34,"(30,35]",HS,19.46160889470242,36.79128330133262,0.5289733640249917,7114.781133176742,2019
+2007,54,"(50,55]",HS,865.8984957488555,135.39192254890403,6.395495975294168,6642.171098128683,2019
+2007,54,"(50,55]",HS,865.8984957488555,135.39192254890403,6.395495975294168,6793.106429676406,2019
+2007,54,"(50,55]",HS,865.8984957488555,135.39192254890403,6.395495975294168,6393.683549830561,2019
+2007,54,"(50,55]",HS,866.0415958142577,135.39192254890403,6.396552907367427,6691.95619687301,2019
+2007,54,"(50,55]",HS,865.8984957488555,135.39192254890403,6.395495975294168,6747.110656135509,2019
+2007,51,"(50,55]",College,457.92020928711577,132.44861988479744,3.4573422485293577,8383.29015516417,2019
+2007,51,"(50,55]",College,309.89750163505556,132.44861988479744,2.3397563666922427,8183.056210013849,2019
+2007,51,"(50,55]",College,380.7177240026161,132.44861988479744,2.874455953816361,8581.655026181932,2019
+2007,51,"(50,55]",College,451.65242642249837,132.44861988479744,3.410019876502612,7269.868358599235,2019
+2007,51,"(50,55]",College,623.1292347939831,132.44861988479744,4.704686506631591,7329.647015805798,2019
+2007,43,"(40,45]",HS,777.2480052321779,203.08788382335604,3.8271510372732083,5407.226809031589,2019
+2007,43,"(40,45]",HS,748.8426422498364,200.14458115924944,3.741508453101727,5516.3518914407705,2019
+2007,43,"(40,45]",HS,1162.1156311314585,169.23990318613005,6.866676293553322,5196.270333526138,2019
+2007,43,"(40,45]",HS,846.8661870503597,219.27604847594245,3.86210073072925,5444.516988437101,2019
+2007,43,"(40,45]",HS,717.3606278613473,153.0517385335437,4.6870465813371105,5492.560320362835,2019
+2007,37,"(35,40]",HS,21.46500981033355,47.09284262570575,0.4558019565932259,7024.890719917709,2019
+2007,37,"(35,40]",HS,21.207429692609548,47.09284262570575,0.4503323331141072,7033.977226012935,2019
+2007,37,"(35,40]",HS,21.27897972531066,47.09284262570575,0.4518516729694179,7071.212063005328,2019
+2007,37,"(35,40]",HS,21.336219751471553,47.09284262570575,0.4530671448536666,7017.745724671523,2019
+2007,37,"(35,40]",HS,21.32190974493133,47.09284262570575,0.4527632768826044,7071.805786252806,2019
+2007,36,"(35,40]",HS,545.6405493786789,132.44861988479744,4.119639373013262,3139.010880771287,2019
+2007,36,"(35,40]",HS,545.4974493132767,132.44861988479744,4.118558953560598,3179.957491718701,2019
+2007,36,"(35,40]",HS,545.4974493132767,132.44861988479744,4.118558953560598,3173.921984673842,2019
+2007,36,"(35,40]",HS,545.4974493132767,132.44861988479744,4.118558953560598,3396.4122463408166,2019
+2007,36,"(35,40]",HS,545.4974493132767,132.44861988479744,4.118558953560598,3256.306887813215,2019
+2007,59,"(55,60]",College,7648.841595814258,2192.760484759424,3.4882248421461504,1418.22777056814,2019
+2007,59,"(55,60]",College,7687.62171353826,2192.760484759424,3.5059103659384387,1414.4493153441956,2019
+2007,59,"(55,60]",College,7691.914715500327,2192.760484759424,3.5078681730003156,1393.3561556451327,2019
+2007,59,"(55,60]",College,7640.398691955526,2192.760484759424,3.4843744882577923,1383.1030913029113,2019
+2007,59,"(55,60]",College,7666.0136036625245,2192.760484759424,3.4960560703936583,1416.5496915125987,2019
+2007,65,"(60,65]",College,24.45580117724003,79.46917193087846,0.3077394741008684,5819.744340320097,2019
+2007,65,"(60,65]",College,26.258862001308046,79.46917193087846,0.33042828260684226,5664.048015086889,2019
+2007,65,"(60,65]",College,25.31440156965337,79.46917193087846,0.3185436686275226,6041.009387608883,2019
+2007,65,"(60,65]",College,24.226841072596468,79.46917193087846,0.30485835556042723,5702.29830620067,2019
+2007,65,"(60,65]",College,25.19992151733159,79.46917193087846,0.317103109357302,5620.4002698721,2019
+2007,70,"(65,70]",College,920.7058207979071,151.5800872014904,6.074055225829521,8520.090078773537,2019
+2007,70,"(65,70]",College,938.3071288423806,154.52338986559698,6.072266015251875,8726.27801375868,2019
+2007,70,"(65,70]",College,939.5950294310007,150.10843586943707,6.259441876059863,8202.321736140131,2019
+2007,70,"(65,70]",College,935.3020274689339,150.10843586943707,6.230842537606954,8593.777691729465,2019
+2007,70,"(65,70]",College,939.5950294310007,154.52338986559698,6.08060067960101,8665.697150569493,2019
+2007,62,"(60,65]",College,25378.79659908437,2413.50818456742,10.51531408153608,274.53686564728696,2019
+2007,62,"(60,65]",College,25378.79659908437,2398.791671246887,10.579825210870657,308.58569759013335,2019
+2007,62,"(60,65]",College,25378.79659908437,2398.791671246887,10.579825210870657,277.2649251731793,2019
+2007,62,"(60,65]",College,25378.79659908437,2398.791671246887,10.579825210870657,282.6331476179214,2019
+2007,62,"(60,65]",College,25378.79659908437,2398.791671246887,10.579825210870657,296.7644789668625,2019
+2007,28,"(25,30]",HS,23.228002616088947,64.7526586103454,0.35871890227496933,10223.243090663216,2019
+2007,28,"(25,30]",HS,23.041972531066058,64.7526586103454,0.35584596873038177,10171.859472138978,2019
+2007,28,"(25,30]",HS,23.714542838456506,64.7526586103454,0.36623272846850613,10306.236127308386,2019
+2007,28,"(25,30]",HS,22.45526226291694,64.7526586103454,0.3467851783205285,10282.02154430589,2019
+2007,28,"(25,30]",HS,20.93840156965337,64.7526586103454,0.3233597201877373,10217.840720113109,2019
+2007,56,"(55,60]",College,11837.237410071943,2899.15312414501,4.082998345788605,2142.5293245076787,2019
+2007,56,"(55,60]",College,11838.668410725964,3531.9631969279308,3.3518662994628965,2081.3229917077165,2019
+2007,56,"(55,60]",College,11835.80640941792,2192.760484759424,5.397674069594734,2109.6785777867344,2019
+2007,56,"(55,60]",College,10121.467625899282,2266.3430513620892,4.46599098041058,2099.85014589978,2019
+2007,56,"(55,60]",College,11837.237410071943,3929.3090565823227,3.012549341274739,2135.6233856938516,2019
+2007,60,"(55,60]",HS,182.30948332243295,67.69596127445202,2.693062922665599,8352.753730016146,2019
+2007,60,"(55,60]",HS,182.16638325703076,67.69596127445202,2.69094905851908,8148.753294840679,2019
+2007,60,"(55,60]",HS,182.16638325703076,67.69596127445202,2.69094905851908,8638.594444280043,2019
+2007,60,"(55,60]",HS,182.30948332243295,67.69596127445202,2.693062922665599,8321.277333470553,2019
+2007,60,"(55,60]",HS,182.16638325703076,67.69596127445202,2.69094905851908,8079.973150012125,2019
+2007,69,"(65,70]",HS,22475.29627207325,2678.4054243370147,8.391297324838922,592.5498882105377,2019
+2007,69,"(65,70]",HS,22678.49836494441,2693.1219376575477,8.420895484840154,579.1818361547682,2019
+2007,69,"(65,70]",HS,22751.479398299543,2678.4054243370147,8.494412082491662,576.112918373789,2019
+2007,69,"(65,70]",HS,22735.738391105297,2678.4054243370147,8.48853507557881,571.8242845314318,2019
+2007,69,"(65,70]",HS,22735.738391105297,2678.4054243370147,8.48853507557881,583.6780997902737,2019
+2007,59,"(55,60]",College,9699.322432962721,441.49539961599135,21.969249150498744,2175.9891658876004,2019
+2007,59,"(55,60]",College,9762.286461739699,441.49539961599135,22.111864518250577,2217.803655249304,2019
+2007,59,"(55,60]",College,9772.303466317855,441.49539961599135,22.134553326756553,2142.9597040562844,2019
+2007,59,"(55,60]",College,9722.218443427077,441.49539961599135,22.021109284226682,2133.4888970057655,2019
+2007,59,"(55,60]",College,9697.891432308697,441.49539961599135,21.966007892140745,2187.617251789995,2019
+2007,71,"(70,75]",HS,186.54524525833878,20.603118648746268,9.054223704608445,3534.5547220254302,2019
+2007,71,"(70,75]",HS,184.112544146501,20.603118648746268,8.936149292995724,3708.2957020574495,2019
+2007,71,"(70,75]",HS,183.23963374754743,29.433026641066096,6.225646991121342,3611.628683146261,2019
+2007,71,"(70,75]",HS,180.0914323086985,26.489723976959482,6.798539405897184,3571.931073650304,2019
+2007,71,"(70,75]",HS,179.3902419882276,17.659815984639657,10.158103693960319,3488.946187235906,2019
+2007,66,"(65,70]",HS,380.9323741007194,27.96137530901279,13.623520656293808,7519.623530407,2019
+2007,66,"(65,70]",HS,380.9323741007194,27.96137530901279,13.623520656293808,7326.249756512011,2019
+2007,66,"(65,70]",HS,380.9323741007194,27.96137530901279,13.623520656293808,7735.599902438841,2019
+2007,66,"(65,70]",HS,380.9323741007194,29.433026641066096,12.942344623479118,7433.055997790771,2019
+2007,66,"(65,70]",HS,380.9323741007194,27.96137530901279,13.623520656293808,7438.891475534672,2019
+2007,31,"(30,35]",College,96.30634401569654,139.80687654506394,0.6888526973467869,9682.761271706291,2019
+2007,31,"(30,35]",College,97.02184434270765,139.80687654506394,0.6939704737015179,9600.108236939517,2019
+2007,31,"(30,35]",College,119.91785480706345,139.80687654506394,0.8577393170529086,9816.235415342555,2019
+2007,31,"(30,35]",College,91.54111183780249,139.80687654506394,0.6547683068242788,9767.637559723122,2019
+2007,31,"(30,35]",College,94.58914323086987,141.27852787711726,0.6695224295736053,9541.75747780532,2019
+2007,24,"(20,25]",College,0,0,NA,8511.876915056291,2019
+2007,24,"(20,25]",College,0,0,NA,8516.562862360768,2019
+2007,24,"(20,25]",College,0.14310006540222367,0,Inf,8465.681222959174,2019
+2007,24,"(20,25]",College,-0.7155003270111184,0,-Inf,8460.768074235773,2019
+2007,24,"(20,25]",College,-0.8586003924133421,0,-Inf,8552.52428927682,2019
+2007,65,"(60,65]",HS,1118.327011118378,175.12650851434324,6.385823714556524,4935.997206813251,2019
+2007,65,"(60,65]",HS,1116.8960104643559,175.12650851434324,6.37765247499855,5049.044132461615,2019
+2007,65,"(60,65]",HS,1118.327011118378,175.12650851434324,6.385823714556524,4751.666993362341,2019
+2007,65,"(60,65]",HS,1118.327011118378,175.12650851434324,6.385823714556524,4972.765411708319,2019
+2007,65,"(60,65]",HS,1116.8960104643559,173.65485718228996,6.4317003773290455,5014.1507665736235,2019
+2007,39,"(35,40]",HS,151.6860693263571,79.46917193087846,1.9087410330422498,7331.972276119853,2019
+2007,39,"(35,40]",HS,151.6860693263571,79.46917193087846,1.9087410330422498,7229.09470429285,2019
+2007,39,"(35,40]",HS,150.25506867233486,79.46917193087846,1.8907340421644925,7566.221880447377,2019
+2007,39,"(35,40]",HS,150.25506867233486,79.46917193087846,1.8907340421644925,7342.681881638532,2019
+2007,39,"(35,40]",HS,151.6860693263571,79.46917193087846,1.9087410330422498,7317.67207341315,2019
+2007,58,"(55,60]",HS,20.463309352517985,51.50779662186566,0.3972856673086861,7047.718099842944,2019
+2007,58,"(55,60]",HS,20.463309352517985,51.50779662186566,0.3972856673086861,7028.862384347718,2019
+2007,58,"(55,60]",HS,20.463309352517985,51.50779662186566,0.3972856673086861,7170.579087495113,2019
+2007,58,"(55,60]",HS,20.463309352517985,51.50779662186566,0.3972856673086861,7069.7093458264835,2019
+2007,58,"(55,60]",HS,20.463309352517985,51.50779662186566,0.3972856673086861,7044.259427555988,2019
+2007,58,"(55,60]",College,292.1244735120994,158.93834386175692,1.8379735588926644,1394.7630797704137,2019
+2007,58,"(55,60]",College,335.1689731850883,158.93834386175692,2.1087987016941305,2615.622884979734,2019
+2007,58,"(55,60]",College,190.60928711576193,158.93834386175692,1.1992655924586209,1438.5274853826184,2019
+2007,58,"(55,60]",College,195.0596991497711,158.93834386175692,1.2272664632735333,1418.7996569827358,2019
+2007,58,"(55,60]",College,228.94579463701766,158.93834386175692,1.440469235266177,1402.9017128747657,2019
+2007,43,"(40,45]",College,216.3672988881622,117.73210656426438,1.8377934889838867,11020.332030065974,2019
+2007,43,"(40,45]",College,216.3672988881622,117.73210656426438,1.8377934889838867,10856.398463119496,2019
+2007,43,"(40,45]",College,216.3672988881622,117.73210656426438,1.8377934889838867,11206.038838560082,2019
+2007,43,"(40,45]",College,216.51039895356442,117.73210656426438,1.8390089608681353,11009.739562468272,2019
+2007,43,"(40,45]",College,216.3672988881622,117.73210656426438,1.8377934889838867,11082.124813077435,2019
+2007,57,"(55,60]",College,3810.7547416612165,236.93586446058208,16.08348634908834,1918.4196709576695,2019
+2007,57,"(55,60]",College,9231.242119032047,236.93586446058208,38.960932065089736,1922.081087015443,2019
+2007,57,"(55,60]",College,4401.901111837803,236.93586446058208,18.578450003165845,1868.913231142973,2019
+2007,57,"(55,60]",College,3786.570830608241,236.93586446058208,15.981416908870692,1849.5781080675774,2019
+2007,57,"(55,60]",College,3823.919947678221,236.93586446058208,16.13905077808256,1958.351645333249,2019
+2007,68,"(65,70]",College,2073.233747547417,57.39440195007889,36.12257776203847,1536.2339374024557,2019
+2007,68,"(65,70]",College,2071.0872465663833,57.39440195007889,36.08517862713851,1554.2336549219074,2019
+2007,68,"(65,70]",College,2071.0872465663833,57.39440195007889,36.08517862713851,1492.141886288316,2019
+2007,68,"(65,70]",College,2071.2303466317853,57.39440195007889,36.0876719027985,1518.7987837183439,2019
+2007,68,"(65,70]",College,2072.661347285808,57.39440195007889,36.11260465939848,1534.9912464692438,2019
+2007,72,"(70,75]",HS,517.3067364290386,17.07115545181834,30.302971459025493,7989.709898700831,2019
+2007,72,"(70,75]",HS,517.3067364290386,15.59950411976503,33.161742351386394,8183.823249960707,2019
+2007,72,"(70,75]",HS,517.3067364290386,15.59950411976503,33.161742351386394,7690.842111423173,2019
+2007,72,"(70,75]",HS,517.3067364290386,17.07115545181834,30.302971459025493,8061.0505619658525,2019
+2007,72,"(70,75]",HS,517.3067364290386,17.07115545181834,30.302971459025493,8128.3577089166665,2019
+2007,59,"(55,60]",HS,-26.58799215173316,128.03366588863753,-0.20766406997093362,6965.651505861266,2019
+2007,59,"(55,60]",HS,43.40224983649444,128.03366588863753,0.3389909172345757,6827.323982176558,2019
+2007,59,"(55,60]",HS,44.962040549378685,129.5053172206908,0.3471829691190099,7194.167948785254,2019
+2007,59,"(55,60]",HS,43.38793982995421,128.03366588863753,0.33887914970498956,6924.797546159553,2019
+2007,59,"(55,60]",HS,-28.162092871157622,128.03366588863753,-0.21995849822540225,6812.363725937386,2019
+2007,50,"(45,50]",College,21704.688109875737,934.4985958538484,23.226025385350347,2302.0631086181,2019
+2007,50,"(45,50]",College,21703.25710922171,934.4985958538484,23.224494082189086,2357.7797622978364,2019
+2007,50,"(45,50]",College,21703.25710922171,934.4985958538484,23.224494082189086,2264.0491781030782,2019
+2007,50,"(45,50]",College,21706.11911052976,934.4985958538484,23.2275566885116,2247.16842138606,2019
+2007,50,"(45,50]",College,21703.25710922171,933.0269445217951,23.261125776325027,2278.527187903532,2019
+2007,63,"(60,65]",HS,132249.78914323088,3944.025569902857,33.531676405051364,40.26002203575502,2019
+2007,63,"(60,65]",HS,140536.28463047743,3576.1127368895304,39.29861695375817,36.65832738446734,2019
+2007,63,"(60,65]",HS,123504.08554610857,3826.2934633385917,32.27773476589179,37.71790869180756,2019
+2007,63,"(60,65]",HS,116101.23296272074,3561.3962235689974,32.59992027687717,38.10717661843853,2019
+2007,63,"(60,65]",HS,134186.64852844996,3428.9476036841997,39.13347885055882,35.92786477735989,2019
+2007,39,"(35,40]",NoHS,419.8555918901243,176.59815984639656,2.3774630055902666,10308.172596367334,2019
+2007,39,"(35,40]",NoHS,419.8555918901243,176.59815984639656,2.3774630055902666,10566.28633117244,2019
+2007,39,"(35,40]",NoHS,419.8555918901243,176.59815984639656,2.3774630055902666,9905.428279494015,2019
+2007,39,"(35,40]",NoHS,419.8555918901243,176.59815984639656,2.3774630055902666,10385.869665651448,2019
+2007,39,"(35,40]",NoHS,419.8555918901243,176.59815984639656,2.3774630055902666,10488.5455757981,2019
+2007,69,"(65,70]",HS,7.584303466317855,17.659815984639657,0.42946673243450617,5992.926656924871,2019
+2007,69,"(65,70]",HS,7.584303466317855,32.3763293051727,0.23425458132791246,5970.597105569373,2019
+2007,69,"(65,70]",HS,7.584303466317855,33.84798063722601,0.22406959953104671,5971.668734410091,2019
+2007,69,"(65,70]",HS,7.584303466317855,29.433026641066096,0.25768003946070367,5995.892376564969,2019
+2007,69,"(65,70]",HS,7.584303466317855,20.603118648746268,0.36811434208671956,5994.340714439375,2019
+2007,50,"(45,50]",College,108643.85925441465,13862.955547942132,7.836991100396491,23.57795369727192,2019
+2007,50,"(45,50]",College,118011.33263570962,16305.896759150615,7.237340845389782,21.04308073850342,2019
+2007,50,"(45,50]",College,120781.89300196207,15290.457340033834,7.899168109624039,23.20146438044764,2019
+2007,50,"(45,50]",College,119743.98822759974,14348.600487519721,8.345342692602804,23.07982655263988,2019
+2007,50,"(45,50]",College,111767.73368214519,14186.718840993857,7.87833571207331,21.343725639707067,2019
+2007,56,"(55,60]",HS,1644.0766514061477,54.451099285972276,30.193635628393928,786.4608457879019,2019
+2007,56,"(55,60]",HS,1800.0557226945716,54.451099285972276,33.05820720424469,1815.431756489199,2019
+2007,56,"(55,60]",HS,1699.885676913015,54.451099285972276,31.218574082138698,794.8428801365476,2019
+2007,56,"(55,60]",HS,1480.9425768476128,54.451099285972276,27.197661686678455,786.4496961961441,2019
+2007,56,"(55,60]",HS,1545.3376062786135,52.979447953918964,29.1686241733348,788.7961769044198,2019
+2007,20,"(15,20]",HS,0.11304905166775671,27.96137530901279,0.004043043320237457,3321.2546620256826,2019
+2007,20,"(15,20]",HS,0.3563191628515369,19.131467316692962,0.018624769180178583,3322.53943697149,2019
+2007,20,"(15,20]",HS,0.6854493132766515,42.67788862954583,0.016060994001519467,3319.574487268819,2019
+2007,20,"(15,20]",HS,1.715769784172662,27.96137530901279,0.06136213849322418,3336.507781170737,2019
+2007,20,"(15,20]",HS,3.2898705035971227,13.686357388095734,0.24037590209785267,3336.0394066081376,2019
+2007,69,"(65,70]",HS,295.50163505559186,55.92275061802558,5.284104086259713,8004.920867271145,2019
+2007,69,"(65,70]",HS,320.4010464355788,55.92275061802558,5.729350629121306,7784.093752198518,2019
+2007,69,"(65,70]",HS,322.6906474820144,57.39440195007889,5.622336613293536,8187.698312782642,2019
+2007,69,"(65,70]",HS,327.2698495748856,57.39440195007889,5.702121434413444,7824.408870341312,2019
+2007,69,"(65,70]",HS,319.9717462393721,55.92275061802558,5.72167396458921,7789.267353925495,2019
+2007,52,"(50,55]",College,4062.897056899935,1854.280678387164,2.1910906500054805,409.44144065095793,2019
+2007,52,"(50,55]",College,4061.4660562459126,1854.280678387164,2.190318921825005,396.99024636553065,2019
+2007,52,"(50,55]",College,4062.897056899935,1854.280678387164,2.1910906500054805,395.7417063443189,2019
+2007,52,"(50,55]",College,4062.7539568345323,1854.280678387164,2.191013477187433,391.8133981490706,2019
+2007,52,"(50,55]",College,4061.4660562459126,1854.280678387164,2.190318921825005,397.69499484888695,2019
+2007,44,"(40,45]",College,565.5457684761283,248.7090751170085,2.273924939048001,6100.540213829283,2019
+2007,44,"(40,45]",College,566.9767691301505,248.7090751170085,2.279678652109533,6149.852030044263,2019
+2007,44,"(40,45]",College,565.5457684761283,248.7090751170085,2.273924939048001,6186.245072619904,2019
+2007,44,"(40,45]",College,565.5457684761283,248.7090751170085,2.273924939048001,6121.193073777732,2019
+2007,44,"(40,45]",College,566.9767691301505,248.7090751170085,2.279678652109533,6174.725811118239,2019
+2007,48,"(45,50]",HS,11.591105297580118,32.3763293051727,0.35801171863322473,5791.347351695208,2019
+2007,48,"(45,50]",HS,11.448005232177895,30.9046779731194,0.3704295266281455,5798.506866281992,2019
+2007,48,"(45,50]",HS,11.448005232177895,32.3763293051727,0.3535918208723207,5805.374089265262,2019
+2007,48,"(45,50]",HS,11.448005232177895,30.9046779731194,0.3704295266281455,5814.405983711216,2019
+2007,48,"(45,50]",HS,10.303204708960104,30.9046779731194,0.3333865739653309,5817.8375212827705,2019
+2007,23,"(20,25]",HS,16.456507521255723,72.11091527061193,0.22821104765483965,10096.433114258492,2019
+2007,23,"(20,25]",HS,16.3134074558535,72.11091527061193,0.2262266037621889,10078.939242045632,2019
+2007,23,"(20,25]",HS,16.456507521255723,72.11091527061193,0.22821104765483965,10193.23954066858,2019
+2007,23,"(20,25]",HS,16.456507521255723,72.11091527061193,0.22821104765483965,10101.363767695291,2019
+2007,23,"(20,25]",HS,16.3134074558535,72.11091527061193,0.2262266037621889,10054.187292392817,2019
+2007,38,"(35,40]",HS,10215.91366906475,735.8256660266525,13.883606050641237,414.7030434696456,2019
+2007,38,"(35,40]",HS,10215.91366906475,735.8256660266525,13.883606050641237,406.71460119970754,2019
+2007,38,"(35,40]",HS,10215.91366906475,735.8256660266525,13.883606050641237,404.5256489312185,2019
+2007,38,"(35,40]",HS,10215.91366906475,735.8256660266525,13.883606050641237,401.4134872232226,2019
+2007,38,"(35,40]",HS,10215.91366906475,735.8256660266525,13.883606050641237,407.9468826905274,2019
+2007,73,"(70,75]",HS,768.7335513407455,53.42094335353496,14.390115619137172,7220.735116024793,2019
+2007,73,"(70,75]",HS,802.5051667756704,53.42094335353496,15.022294935242233,7395.4783932534065,2019
+2007,73,"(70,75]",HS,748.9857423152387,54.892594685588264,13.64456802607439,6951.427983212848,2019
+2007,73,"(70,75]",HS,647.0984957488554,54.892594685588264,11.788447958331753,7283.1850114563595,2019
+2007,73,"(70,75]",HS,660.6930019620668,53.42094335353496,12.367677552784128,7344.136404830178,2019
+2007,73,"(70,75]",College,6.940353172007848,9.860063924757142,0.7038852105797876,8994.153868096846,2019
+2007,73,"(70,75]",College,14.095356442119032,9.860063924757142,1.42954006684761,9017.957638608304,2019
+2007,73,"(70,75]",College,36.56206671026815,10.007229057962471,3.6535654873590344,9006.262062907563,2019
+2007,73,"(70,75]",College,19.533158927403534,10.007229057962471,1.9519048494109914,9042.95078701253,2019
+2007,73,"(70,75]",College,23.82616088947024,9.860063924757142,2.416430671371848,9047.245165427445,2019
+2007,47,"(45,50]",HS,220.94650098103335,58.86605328213219,3.753377178559684,8115.955364944297,2019
+2007,47,"(45,50]",HS,171.0045781556573,58.86605328213219,2.90497780335416,7969.871392522136,2019
+2007,47,"(45,50]",HS,167.99947678221062,58.86605328213219,2.853927984215719,8376.461958219754,2019
+2007,47,"(45,50]",HS,143.67246566383258,58.86605328213219,2.4406675435711938,8110.04316115696,2019
+2007,47,"(45,50]",HS,200.91249182472203,58.86605328213219,3.413045050970075,7980.054177264671,2019
+2007,52,"(50,55]",HS,84.81540876389798,110.37384990399784,0.7684375315137566,7461.548090258349,2019
+2007,52,"(50,55]",HS,81.33807717462393,110.37384990399784,0.7369325002740328,7422.877855039075,2019
+2007,52,"(50,55]",HS,81.35238718116416,110.37384990399784,0.7370621506083527,7491.569967471036,2019
+2007,52,"(50,55]",HS,83.52750817527797,110.37384990399784,0.7567690014249701,7456.684096937257,2019
+2007,52,"(50,55]",HS,81.78168737737084,110.37384990399784,0.7409516606379483,7443.949567712627,2019
+2007,55,"(50,55]",HS,6.317867887508175,13.097696855274414,0.48236479720967,7510.452093762239,2019
+2007,55,"(50,55]",HS,6.460967952910399,13.097696855274414,0.49329038718044393,7516.119114173957,2019
+2007,55,"(50,55]",HS,6.317867887508175,13.097696855274414,0.48236479720967,7546.610404668863,2019
+2007,55,"(50,55]",HS,6.325022890778286,13.097696855274414,0.4829110767082087,7601.881317606843,2019
+2007,55,"(50,55]",HS,6.460967952910399,13.097696855274414,0.49329038718044393,7636.734136861445,2019
+2007,26,"(25,30]",College,-230.54851536952256,12.950531722069082,-17.802243206481123,6153.918304916633,2019
+2007,26,"(25,30]",College,-230.72023544800524,12.803366588863751,-18.020278795163417,6149.220693613171,2019
+2007,26,"(25,30]",College,-232.85242642249838,14.275017920917055,-16.311883299375886,6228.680028387243,2019
+2007,26,"(25,30]",College,-232.42312622629171,14.569348187327716,-15.952884318356205,6169.514743369937,2019
+2007,26,"(25,30]",College,-230.40541530412034,14.422183054122387,-15.975765557785099,6139.7469921072625,2019
+2007,71,"(70,75]",College,163772.3008502289,10772.487750630191,15.202830083575469,23.88893723369693,2019
+2007,71,"(70,75]",College,162278.3361674297,11626.045523221108,13.958171404309873,21.320630340532443,2019
+2007,71,"(70,75]",College,162145.2531066056,10919.65288383552,14.848938407797831,23.507482177238263,2019
+2007,71,"(70,75]",College,167202.4094179202,12052.824409516566,13.872467044811666,23.38423999638356,2019
+2007,71,"(70,75]",College,162452.9182472204,11037.384990399785,14.718424553326756,21.625240624643574,2019
+2007,84,"(80,85]",HS,333.4231523871812,32.3763293051727,10.29836178290634,8313.30650739021,2019
+2007,84,"(80,85]",HS,333.4231523871812,33.84798063722601,9.850606922779978,8080.217801731544,2019
+2007,84,"(80,85]",HS,333.4231523871812,35.319631969279314,9.440164967664145,8493.811419887126,2019
+2007,84,"(80,85]",HS,332.1352517985611,38.262934633385925,8.680339210280017,8242.651487987769,2019
+2007,84,"(80,85]",HS,333.5662524525834,30.9046779731194,10.793390332127588,8341.330335920835,2019
+2007,29,"(25,30]",NoHS,0,22.07476998079957,0,6524.329741181097,2019
+2007,29,"(25,30]",NoHS,0,22.07476998079957,0,6498.912641600764,2019
+2007,29,"(25,30]",NoHS,0,22.07476998079957,0,6504.341454952292,2019
+2007,29,"(25,30]",NoHS,0,22.07476998079957,0,6524.154821085952,2019
+2007,29,"(25,30]",NoHS,0,22.07476998079957,0,6523.951529552715,2019
+2007,42,"(40,45]",College,-30.33721386527142,114.78880390015777,-0.2642872199596961,5828.125370205062,2019
+2007,42,"(40,45]",College,-31.768214519293657,114.78880390015777,-0.27675359825968177,5730.4057501764455,2019
+2007,42,"(40,45]",College,-31.768214519293657,114.78880390015777,-0.27675359825968177,5892.413518784639,2019
+2007,42,"(40,45]",College,-31.768214519293657,114.78880390015777,-0.27675359825968177,5757.50652673417,2019
+2007,42,"(40,45]",College,-31.91131458469588,114.78880390015777,-0.27800023608968033,5764.805854005685,2019
+2007,65,"(60,65]",HS,1021.3051667756704,441.49539961599135,2.3132860901019403,8671.298145745412,2019
+2007,65,"(60,65]",HS,971.2201438848921,440.0237482839381,2.2071993788348534,8869.508723278102,2019
+2007,65,"(60,65]",HS,992.6851536952256,441.49539961599135,2.248460922942015,8349.687993989244,2019
+2007,65,"(60,65]",HS,996.9781556572924,440.0237482839381,2.2657371552000036,8737.880004204564,2019
+2007,65,"(60,65]",HS,974.0821451929365,441.49539961599135,2.2063245642880633,8810.884458548255,2019
+2007,55,"(50,55]",HS,471.0854153041204,220.74769980799567,2.1340445029047466,7456.433713964252,2019
+2007,55,"(50,55]",HS,469.65441465009815,220.74769980799567,2.1275619861887543,7624.552982655476,2019
+2007,55,"(50,55]",HS,469.65441465009815,220.74769980799567,2.1275619861887543,7178.830453367709,2019
+2007,55,"(50,55]",HS,469.65441465009815,220.74769980799567,2.1275619861887543,7510.9297919015135,2019
+2007,55,"(50,55]",HS,469.65441465009815,220.74769980799567,2.1275619861887543,7573.040239683393,2019
+2007,57,"(55,60]",HS,455.0582079790713,167.76825185407677,2.712421468007407,7750.3400439516645,2019
+2007,57,"(55,60]",HS,455.27285807717465,113.31715256810448,4.017687064661744,7557.373819234835,2019
+2007,57,"(55,60]",HS,458.49260954872466,161.88164652586354,2.8322704851872884,8057.048646815175,2019
+2007,57,"(55,60]",HS,464.0735120994114,161.88164652586354,2.86674568772234,7695.642467266017,2019
+2007,57,"(55,60]",HS,446.90150425114456,204.55953515540935,2.184701406911301,7524.6604328175645,2019
+2007,52,"(50,55]",College,66648.13996075866,6799.029154086269,9.802596584058271,41.3380052942433,2019
+2007,52,"(50,55]",College,66646.70896010465,6784.3126407657355,9.8236494231761,36.759029602878925,2019
+2007,52,"(50,55]",College,66648.13996075866,6784.3126407657355,9.823860351051891,40.69099259859364,2019
+2007,52,"(50,55]",College,66648.13996075866,6784.3126407657355,9.823860351051891,40.43174758607299,2019
+2007,52,"(50,55]",College,66648.13996075866,6784.3126407657355,9.823860351051891,37.171154070192344,2019
+2007,56,"(55,60]",College,834.9888816219751,176.59815984639656,4.728185629727063,6193.507240678973,2019
+2007,56,"(55,60]",College,833.5578809679529,176.59815984639656,4.720082483832073,6333.425846204302,2019
+2007,56,"(55,60]",College,834.9888816219751,176.59815984639656,4.728185629727063,5961.343508073645,2019
+2007,56,"(55,60]",College,832.1268803139307,176.59815984639656,4.711979337937082,6237.3526630945025,2019
+2007,56,"(55,60]",College,834.9888816219751,176.59815984639656,4.728185629727063,6288.728541055968,2019
+2007,37,"(35,40]",NoHS,2.2896010464355787,12.36187118924776,0.18521476331407274,6278.891435361198,2019
+2007,37,"(35,40]",NoHS,2.2896010464355787,12.067540922837098,0.1897321965656355,6257.056713153309,2019
+2007,37,"(35,40]",NoHS,2.2896010464355787,12.36187118924776,0.18521476331407274,6261.383824784161,2019
+2007,37,"(35,40]",NoHS,2.2896010464355787,13.097696855274414,0.17480943953238323,6281.789735776469,2019
+2007,37,"(35,40]",NoHS,2.2896010464355787,13.686357388095734,0.16729075396109797,6280.773809430732,2019
+2007,22,"(20,25]",HS,-6.582603008502289,30.9046779731194,-0.21299697781118365,10362.75099644531,2019
+2007,22,"(20,25]",HS,-6.296402877697842,30.9046779731194,-0.20373623964548002,10336.343981763952,2019
+2007,22,"(20,25]",HS,-6.582603008502289,30.9046779731194,-0.21299697781118365,10263.788592990342,2019
+2007,22,"(20,25]",HS,-6.582603008502289,30.9046779731194,-0.21299697781118365,10289.997412802031,2019
+2007,22,"(20,25]",HS,-6.582603008502289,30.9046779731194,-0.21299697781118365,10538.942997353719,2019
+2007,45,"(40,45]",College,63.10712884238064,292.8586150786076,0.2154866737502045,5903.814626761885,2019
+2007,45,"(40,45]",College,65.96913015042512,292.8586150786076,0.2252593120155199,5878.250496521509,2019
+2007,45,"(40,45]",College,63.10712884238064,292.8586150786076,0.2154866737502045,6015.578869786255,2019
+2007,45,"(40,45]",College,64.53812949640287,292.8586150786076,0.2203729928828622,5914.2686417619425,2019
+2007,45,"(40,45]",College,64.53812949640287,292.8586150786076,0.2203729928828622,5845.625169092726,2019
+2007,61,"(60,65]",College,120.91955526487901,35.319631969279314,3.4235791406335636,8262.578065783287,2019
+2007,61,"(60,65]",College,122.20745585349903,35.319631969279314,3.4600432971610218,8046.235496005784,2019
+2007,61,"(60,65]",College,122.20745585349903,35.319631969279314,3.4600432971610218,8470.163040841348,2019
+2007,61,"(60,65]",College,120.77645519947679,35.319631969279314,3.4195275676860684,8156.844949599414,2019
+2007,61,"(60,65]",College,122.20745585349903,35.319631969279314,3.4600432971610218,8057.195644895258,2019
+2007,26,"(25,30]",College,3091.7198430346634,1028.68428110526,3.005508978627334,126.5222757011262,2019
+2007,26,"(25,30]",College,3090.489182472204,950.6867605064349,3.2507964882417077,121.61687912471061,2019
+2007,26,"(25,30]",College,3089.9883322432966,1090.4936370514988,2.833568420076321,120.59495773695794,2019
+2007,26,"(25,30]",College,3090.503492478744,966.8749251590211,3.196383950044471,121.46877613089637,2019
+2007,26,"(25,30]",College,3090.86124264225,960.988319830808,3.216335910499337,121.24872217581598,2019
+2007,56,"(55,60]",HS,879.636102027469,161.88164652586354,5.4338223072553875,6436.2123929067675,2019
+2007,56,"(55,60]",HS,866.7570961412689,161.88164652586354,5.354264147559116,6581.967345575159,2019
+2007,56,"(55,60]",HS,879.7792020928712,161.88164652586354,5.434706286807568,6195.6366030886975,2019
+2007,56,"(55,60]",HS,871.1931981687377,163.35329785791683,5.333184022562516,6482.72448157524,2019
+2007,56,"(55,60]",HS,882.6412034009156,161.88164652586354,5.452385877851184,6536.521850515701,2019
+2007,35,"(30,35]",HS,23.611510791366907,35.319631969279314,0.6685095363367314,7050.3331098435565,2019
+2007,35,"(30,35]",HS,23.611510791366907,35.319631969279314,0.6685095363367314,6921.409834265009,2019
+2007,35,"(30,35]",HS,23.468410725964684,35.319631969279314,0.664457963389236,7147.39903099677,2019
+2007,35,"(30,35]",HS,23.611510791366907,35.319631969279314,0.6685095363367314,6972.969590211888,2019
+2007,35,"(30,35]",HS,23.611510791366907,35.319631969279314,0.6685095363367314,6963.608021040773,2019
+2007,81,"(80,85]",College,486.82642249836493,29.433026641066096,16.54014140085498,14053.912366898614,2019
+2007,81,"(80,85]",College,399.24918247220404,29.433026641066096,13.564666228214401,13678.540793362346,2019
+2007,81,"(80,85]",College,402.39738391105294,29.433026641066096,13.671627754028277,14511.62364257598,2019
+2007,81,"(80,85]",College,529.756442119032,29.433026641066096,17.998707661953304,14011.282138572293,2019
+2007,81,"(80,85]",College,478.66971877043824,29.433026641066096,16.2630138112463,14253.849528700051,2019
+2007,69,"(65,70]",College,9394.94859385219,282.5570557542345,33.24973984023895,1405.3558813723357,2019
+2007,69,"(65,70]",College,9394.94859385219,282.5570557542345,33.24973984023895,1369.813843822971,2019
+2007,69,"(65,70]",College,9395.234793982996,282.5570557542345,33.25075273347583,1388.3596434270871,2019
+2007,69,"(65,70]",College,9403.391497710923,282.5570557542345,33.27962019072674,1381.5445900801994,2019
+2007,69,"(65,70]",College,9393.517593198168,282.5570557542345,33.24467537405459,1398.9497883844504,2019
+2007,61,"(60,65]",College,3931.5311968606934,703.4493367214795,5.588932978719014,364.47907739169625,2019
+2007,61,"(60,65]",College,4133.302289077828,554.8125521840958,7.449907672071435,353.8722037147367,2019
+2007,61,"(60,65]",College,3716.1655984303466,747.5988766830789,4.970801474338891,356.63213272473234,2019
+2007,61,"(60,65]",College,3617.9989535644213,628.395118786761,5.757522369921765,353.39871881202004,2019
+2007,61,"(60,65]",College,3754.8026160889467,806.4649299652109,4.655878360700595,357.21030590448424,2019
+2007,43,"(40,45]",HS,40.640418574231525,36.79128330133262,1.1046208484051299,7509.05684422881,2019
+2007,43,"(40,45]",HS,40.640418574231525,36.79128330133262,1.1046208484051299,7379.7372856617,2019
+2007,43,"(40,45]",HS,40.35421844342707,36.79128330133262,1.0968418283459387,7597.513923882422,2019
+2007,43,"(40,45]",HS,40.35421844342707,36.79128330133262,1.0968418283459387,7393.072826983158,2019
+2007,43,"(40,45]",HS,40.640418574231525,36.79128330133262,1.1046208484051299,7404.012597578493,2019
+2007,23,"(20,25]",College,-33.14197514715501,44.14953996159914,-0.7506754357119371,10573.577399534217,2019
+2007,23,"(20,25]",College,-33.14197514715501,45.62119129365245,-0.7264600990760679,10580.118832352342,2019
+2007,23,"(20,25]",College,-33.14197514715501,45.62119129365245,-0.7264600990760679,10646.717326506847,2019
+2007,23,"(20,25]",College,-33.14197514715501,44.14953996159914,-0.7506754357119371,10556.721126321729,2019
+2007,23,"(20,25]",College,-33.14197514715501,44.14953996159914,-0.7506754357119371,10558.13459030742,2019
+2007,54,"(50,55]",College,12132.238194898626,1471.651332053305,8.243962364353829,253.40164959723566,2019
+2007,54,"(50,55]",College,12130.950294310007,1471.651332053305,8.24308722459717,241.50934073075527,2019
+2007,54,"(50,55]",College,12130.950294310007,1471.651332053305,8.24308722459717,246.32086120481114,2019
+2007,54,"(50,55]",College,12130.950294310007,1471.651332053305,8.24308722459717,245.1605500450076,2019
+2007,54,"(50,55]",College,12132.524395029432,1471.651332053305,8.24415683985531,248.6341565136368,2019
+2007,38,"(35,40]",HS,2.876311314584696,44.14953996159914,0.0651492929957251,6807.668071342765,2019
+2007,38,"(35,40]",HS,2.876311314584696,44.14953996159914,0.0651492929957251,6733.881780876759,2019
+2007,38,"(35,40]",HS,2.876311314584696,44.14953996159914,0.0651492929957251,6939.483063144833,2019
+2007,38,"(35,40]",HS,2.876311314584696,45.62119129365245,0.06304770289908879,6749.578790779391,2019
+2007,38,"(35,40]",HS,2.876311314584696,44.14953996159914,0.0651492929957251,6732.05849243693,2019
+2007,69,"(65,70]",HS,1.3751916285153696,32.3763293051727,0.042475217482287525,5207.850143819085,2019
+2007,69,"(65,70]",HS,1.232091563113146,32.3763293051727,0.03805531972138352,5211.009597765203,2019
+2007,69,"(65,70]",HS,1.232091563113146,32.3763293051727,0.03805531972138352,5259.4053025759995,2019
+2007,69,"(65,70]",HS,1.232091563113146,32.3763293051727,0.03805531972138352,5157.514053745655,2019
+2007,69,"(65,70]",HS,1.232091563113146,32.3763293051727,0.03805531972138352,5165.882060274025,2019
+2007,63,"(60,65]",College,255.14741661216482,139.80687654506394,1.8249990480970595,7500.808939719282,2019
+2007,63,"(60,65]",College,256.50686723348593,139.80687654506394,1.8347228231710484,7307.793147627941,2019
+2007,63,"(60,65]",College,255.92015696533682,139.80687654506394,1.8305262465601688,7683.560525929563,2019
+2007,63,"(60,65]",College,254.00261608894704,139.80687654506394,1.8168106059294902,7429.861116639698,2019
+2007,63,"(60,65]",College,255.21896664486593,139.80687654506394,1.8255108257325325,7337.539972705631,2019
+2007,54,"(50,55]",HS,367.4809679529104,63.28100727829211,5.807128927907741,8157.3786496133325,2019
+2007,54,"(50,55]",HS,367.4809679529104,63.28100727829211,5.807128927907741,8010.5490745229545,2019
+2007,54,"(50,55]",HS,367.4809679529104,63.28100727829211,5.807128927907741,8419.214850838332,2019
+2007,54,"(50,55]",HS,367.4809679529104,63.28100727829211,5.807128927907741,8151.436270339623,2019
+2007,54,"(50,55]",HS,367.4809679529104,63.28100727829211,5.807128927907741,8020.783831506849,2019
+2007,51,"(50,55]",HS,214.93629823413994,86.82742859114498,2.4754424001917297,6743.63041910801,2019
+2007,51,"(50,55]",HS,407.62053629823413,103.01559324373132,3.9568818997510222,6622.247750540688,2019
+2007,51,"(50,55]",HS,376.85402223675607,89.77073125525159,4.1979609274343535,6960.0880150157755,2019
+2007,51,"(50,55]",HS,186.45938521909747,85.35577725909167,2.1844963657599026,6738.717908440876,2019
+2007,51,"(50,55]",HS,114.40850228907783,98.60063924757141,1.160322115172248,6646.4138776973705,2019
+2007,51,"(50,55]",College,66721.83649444081,16350.046299112215,4.080834712869511,23.740094807728433,2019
+2007,51,"(50,55]",College,52391.795945062135,16335.329785791682,3.207268946025934,24.332695860080403,2019
+2007,51,"(50,55]",College,60538.482668410725,16350.046299112215,3.7026490054464176,23.36101644536233,2019
+2007,51,"(50,55]",College,116734.59385219097,16335.329785791682,7.146142464397972,23.23854213731004,2019
+2007,51,"(50,55]",College,121420.40549378679,16335.329785791682,7.432993829080643,21.490502388059983,2019
+2007,52,"(50,55]",HS,44235.09221713539,2281.059564682622,19.392344199170484,39.61574921024904,2019
+2007,52,"(50,55]",HS,44239.38521909745,2207.476998079957,20.040700427490957,42.76979641137115,2019
+2007,52,"(50,55]",HS,44226.50621321124,3311.215497119935,13.356577441631043,42.3522137030641,2019
+2007,52,"(50,55]",HS,44246.54022236756,1839.564165066631,24.052730023018743,43.002228700894754,2019
+2007,52,"(50,55]",HS,44253.695225637675,1662.9660052202341,26.61130479319507,43.10644447477633,2019
+2007,36,"(35,40]",College,242.44013080444734,323.7632930517271,0.748819078652357,5114.319714714004,2019
+2007,36,"(35,40]",College,221.30425114453894,323.7632930517271,0.6835371887238049,5232.5726475500105,2019
+2007,36,"(35,40]",College,222.90697187704384,323.7632930517271,0.6884874742160174,4921.207848599198,2019
+2007,36,"(35,40]",College,231.66469587965992,323.7632930517271,0.7155372485127499,5153.7543455654895,2019
+2007,36,"(35,40]",College,225.1965729234794,323.7632930517271,0.6955593106334638,5195.8977941242765,2019
+2007,71,"(70,75]",HS,766.44395029431,83.88412592703838,9.136936718646334,6608.868351626086,2019
+2007,71,"(70,75]",HS,765.728449967299,82.41247459498507,9.29141436087753,6768.804327115989,2019
+2007,71,"(70,75]",HS,768.7335513407455,82.41247459498507,9.327878517404987,6362.381621631222,2019
+2007,71,"(70,75]",HS,766.1434401569653,82.41247459498507,9.29644988725513,6666.026401443494,2019
+2007,71,"(70,75]",HS,767.0163505559188,83.88412592703838,9.143760420452642,6721.812928463682,2019
+2007,50,"(45,50]",HS,11593.25179856115,832.9546539421706,13.918226813060143,944.1981701778174,2019
+2007,50,"(45,50]",HS,11563.773185088294,364.9695303492196,31.68421532072429,929.6009952098426,2019
+2007,50,"(45,50]",HS,11537.299672988882,891.8207072243026,12.936792765103542,931.9167015023379,2019
+2007,50,"(45,50]",HS,11559.193982995423,351.72466836073977,32.864325487514435,927.7794809303183,2019
+2007,50,"(45,50]",HS,11603.125703073903,902.1222665486757,12.86203226915676,959.7687634776563,2019
+2007,82,"(80,85]",HS,708.9177240026162,27.96137530901279,25.353464061337167,7944.013216741284,2019
+2007,82,"(80,85]",HS,709.0608240680184,26.489723976959482,26.767391939785895,8125.772927683228,2019
+2007,82,"(80,85]",HS,708.9177240026162,26.489723976959482,26.761989842522567,7646.7977787355385,2019
+2007,82,"(80,85]",HS,708.774623937214,26.489723976959482,26.756587745259242,8004.944108074958,2019
+2007,82,"(80,85]",HS,708.9177240026162,26.489723976959482,26.761989842522567,8071.9476750043,2019
+2007,50,"(45,50]",College,73075.62249836494,2001.4458115924945,36.5114169342515,38.82009264434492,2019
+2007,50,"(45,50]",College,72755.36455199477,2001.4458115924945,36.35140363560748,34.447456055432234,2019
+2007,50,"(45,50]",College,71880.59385219097,1986.7292982719614,36.18036635122462,38.19386710430243,2019
+2007,50,"(45,50]",College,71462.16926095488,1986.7292982719614,35.969756585918375,37.88779742229853,2019
+2007,50,"(45,50]",College,72845.37449313277,2001.4458115924945,36.396376095324676,34.67030365639822,2019
+2007,50,"(45,50]",College,4752.49627207325,88.29907992319828,53.822715663707115,1699.1849321799862,2019
+2007,50,"(45,50]",College,4752.639372138653,88.29907992319828,53.824336292886116,1699.0067058853529,2019
+2007,50,"(45,50]",College,4754.070372792676,88.29907992319828,53.84054258467611,1651.7578151914145,2019
+2007,50,"(45,50]",College,4752.639372138653,88.29907992319828,53.824336292886116,1633.873234416483,2019
+2007,50,"(45,50]",College,4753.927272727273,88.29907992319828,53.8389219554971,1728.1945811044893,2019
+2007,68,"(65,70]",NoHS,307.666571615435,70.63926393855863,4.35546117642223,8382.085153166616,2019
+2007,68,"(65,70]",NoHS,307.666571615435,70.63926393855863,4.35546117642223,8190.703262776837,2019
+2007,68,"(65,70]",NoHS,306.2355709614127,70.63926393855863,4.335203311684753,8607.588819923028,2019
+2007,68,"(65,70]",NoHS,307.666571615435,70.63926393855863,4.35546117642223,8215.496204894587,2019
+2007,68,"(65,70]",NoHS,307.666571615435,70.63926393855863,4.35546117642223,8180.329383104098,2019
+2007,26,"(25,30]",HS,-1.4882406801831263,52.979447953918964,-0.02809090576930104,6601.955200649204,2019
+2007,26,"(25,30]",HS,-0.057240026160889475,52.979447953918964,-0.0010804194526654247,6584.105027513036,2019
+2007,26,"(25,30]",HS,-1.4882406801831263,52.979447953918964,-0.02809090576930104,6553.685411912813,2019
+2007,26,"(25,30]",HS,1.3737606278613472,52.979447953918964,0.025930066863970185,6514.069429184759,2019
+2007,26,"(25,30]",HS,-0.057240026160889475,52.979447953918964,-0.0010804194526654247,6468.625798205192,2019
+2007,53,"(50,55]",HS,78.70503597122303,39.73458596543923,1.980768996553278,9452.99326088755,2019
+2007,53,"(50,55]",HS,78.70503597122303,70.63926393855863,1.114182560561219,9284.784834928134,2019
+2007,53,"(50,55]",HS,78.70503597122303,47.09284262570575,1.6712738408418284,9808.657121878645,2019
+2007,53,"(50,55]",HS,78.70503597122303,69.16761260650532,1.1378885724880534,9491.94214558117,2019
+2007,53,"(50,55]",HS,78.70503597122303,54.451099285972276,1.4454260245118515,9220.592920866266,2019
+2007,42,"(40,45]",College,1513.9986919555265,220.74769980799567,6.858502685520115,2748.2784962413502,2019
+2007,42,"(40,45]",College,1256.4185742315237,220.74769980799567,5.691649676641456,6374.482145285324,2019
+2007,42,"(40,45]",College,1123.335513407456,220.74769980799567,5.08877562205415,6003.976266971798,2019
+2007,42,"(40,45]",College,883.5427338129497,220.74769980799567,4.0025002959552785,6259.624343744288,2019
+2007,42,"(40,45]",College,1034.613472858077,220.74769980799567,4.686859585662611,6312.6528780233975,2019
+2007,65,"(60,65]",HS,243.12701111837802,29.433026641066096,8.2603469253535,6532.462474271874,2019
+2007,65,"(60,65]",HS,254.86121648136037,29.433026641066096,8.659021703387044,6390.554830991592,2019
+2007,65,"(60,65]",HS,196.6194898626553,29.433026641066096,6.680233475830318,6736.68326318653,2019
+2007,65,"(60,65]",HS,241.83911052975802,29.433026641066096,8.216589937520553,6408.319598490045,2019
+2007,65,"(60,65]",HS,236.40130804447352,29.433026641066096,8.031838211114765,6354.921631400617,2019
+2007,36,"(35,40]",HS,859037.4200130805,108946.34811190615,7.884958375389555,4.4927319942699615,2019
+2007,36,"(35,40]",HS,873684.7134074558,115259.73232641483,7.5801383169378385,5.956826361477943,2019
+2007,36,"(35,40]",HS,869685.2096795291,102956.7271904492,8.447094555276477,3.7942371145564535,2019
+2007,36,"(35,40]",HS,895470.124264225,109741.03983121492,8.159847269913657,4.274729923222465,2019
+2007,36,"(35,40]",HS,809657.4511445389,108946.34811190615,7.431708039565357,2.711073391037371,2019
+2007,44,"(40,45]",College,11087.39306736429,1972.0127849514286,5.622373826363087,1892.4235761420834,2019
+2007,44,"(40,45]",College,11084.531066056246,1972.0127849514286,5.620922516650551,1903.6935270278543,2019
+2007,44,"(40,45]",College,11085.96206671027,1972.0127849514286,5.62164817150682,1870.4142341407332,2019
+2007,44,"(40,45]",College,11084.531066056246,1986.7292982719614,5.5792860535642514,1861.241811167412,2019
+2007,44,"(40,45]",College,11087.39306736429,1972.0127849514286,5.622373826363087,1917.0368984339343,2019
+2007,79,"(75,80]",College,340264.9096141269,22971.00564202003,14.812799879849083,38.82009264434492,2019
+2007,79,"(75,80]",College,300355.8754741661,22973.94894468414,13.073759160749958,34.447456055432234,2019
+2007,79,"(75,80]",College,322089.7703073905,22971.594302552858,14.021219688334662,38.19386710430243,2019
+2007,79,"(75,80]",College,295911.04434270767,22972.477293352087,12.881111626056114,37.88779742229853,2019
+2007,79,"(75,80]",College,321979.72635709617,22972.477293352087,14.015890504341584,34.67030365639822,2019
+2007,61,"(60,65]",HS,2008.1232177894049,69.16761260650532,29.03270970495428,2321.3740655908787,2019
+2007,61,"(60,65]",HS,1920.8321778940485,63.28100727829211,30.354007632128354,2351.969853354446,2019
+2007,61,"(60,65]",HS,1839.2651406147809,69.16761260650532,26.591421494889,2345.490850706293,2019
+2007,61,"(60,65]",HS,2136.770176586004,72.11091527061193,29.63171620506144,2519.1373015933514,2019
+2007,61,"(60,65]",HS,1787.6060170045782,51.50779662186566,34.70554234979096,2414.8762168424496,2019
+2007,35,"(30,35]",HS,25.758011772400263,58.86605328213219,0.43756987832949684,6016.933133821551,2019
+2007,35,"(30,35]",HS,25.758011772400263,58.86605328213219,0.43756987832949684,6013.292366618182,2019
+2007,35,"(30,35]",HS,25.901111837802485,58.86605328213219,0.44000082209799407,6007.990288975518,2019
+2007,35,"(30,35]",HS,25.758011772400263,58.86605328213219,0.43756987832949684,6024.578621406459,2019
+2007,35,"(30,35]",HS,25.901111837802485,58.86605328213219,0.44000082209799407,6019.741497119374,2019
+2007,65,"(60,65]",College,14390.099646827992,367.91283301332624,39.11279617231173,2209.5539326518065,2019
+2007,65,"(60,65]",College,14427.34859385219,367.91283301332624,39.2140401183821,2216.19458241077,2019
+2007,65,"(60,65]",College,14443.31856115108,367.91283301332624,39.25744705031239,2190.470235933916,2019
+2007,65,"(60,65]",College,14455.267416612165,367.91283301332624,39.28992445905951,2173.1854373300407,2019
+2007,65,"(60,65]",College,14435.934597776324,367.91283301332624,39.237377178559676,2205.1364178578497,2019
+2007,32,"(30,35]",HS,69.1602616088947,104.48724457578463,0.6619014779237742,12279.132206241815,2019
+2007,32,"(30,35]",HS,64.56674950948332,104.48724457578463,0.617939058223064,12173.069329902606,2019
+2007,32,"(30,35]",HS,72.82362328319162,103.01559324373132,0.7069184478789872,12464.432152509922,2019
+2007,32,"(30,35]",HS,69.37491170699805,103.01559324373132,0.6734408794099687,12383.824848901742,2019
+2007,32,"(30,35]",HS,72.12243296272074,103.01559324373132,0.7001118053271951,12369.132634418424,2019
+2007,39,"(35,40]",HS,-76.64439502943101,147.16513320533048,-0.5208053929628412,6664.08959598329,2019
+2007,39,"(35,40]",HS,-78.7479659908437,129.5053172206908,-0.6080674344563691,6591.859509929207,2019
+2007,39,"(35,40]",HS,-77.53161543492479,150.10843586943707,-0.5165040524595238,6793.124517524278,2019
+2007,39,"(35,40]",HS,-74.55513407455854,135.39192254890403,-0.5506616101682799,6607.225458927294,2019
+2007,39,"(35,40]",HS,-74.76978417266187,138.33522521301063,-0.5404970719318254,6590.074675916296,2019
+2007,38,"(35,40]",NoHS,338.60337475474165,132.44861988479744,2.5564885088969267,7081.450277387741,2019
+2007,38,"(35,40]",NoHS,340.0343754087639,132.44861988479744,2.567292703423581,7004.696542979413,2019
+2007,38,"(35,40]",NoHS,338.60337475474165,132.44861988479744,2.5564885088969267,7218.566438234363,2019
+2007,38,"(35,40]",NoHS,340.90728580771747,132.44861988479744,2.5738832620848404,7021.024835423201,2019
+2007,38,"(35,40]",NoHS,340.0486854153041,132.44861988479744,2.567400745368847,7002.799927825339,2019
+2007,38,"(35,40]",HS,46.65062132112492,32.3763293051727,1.440886670054707,7665.907961450852,2019
+2007,38,"(35,40]",HS,46.65062132112492,32.3763293051727,1.440886670054707,7677.326462270804,2019
+2007,38,"(35,40]",HS,46.65062132112492,32.3763293051727,1.440886670054707,7684.608000300745,2019
+2007,38,"(35,40]",HS,46.65062132112492,32.3763293051727,1.440886670054707,7697.688513178046,2019
+2007,38,"(35,40]",HS,46.65062132112492,32.3763293051727,1.440886670054707,7702.131957945114,2019
+2007,23,"(20,25]",HS,-1.0017004578155657,36.79128330133262,-0.027226570207168694,8485.286631475694,2019
+2007,23,"(20,25]",HS,-1.0017004578155657,36.79128330133262,-0.027226570207168694,8489.957940332162,2019
+2007,23,"(20,25]",HS,-1.1448005232177894,36.79128330133262,-0.03111608023676422,8439.2352502709109,2019
+2007,23,"(20,25]",HS,-1.1448005232177894,36.79128330133262,-0.03111608023676422,8434.337449750867,2019
+2007,23,"(20,25]",HS,-1.0017004578155657,36.79128330133262,-0.027226570207168694,8525.80702721449,2019
+2007,32,"(30,35]",HS,105.72232831916286,110.37384990399784,0.9578566699550588,7515.665497407298,2019
+2007,32,"(30,35]",HS,105.72232831916286,110.37384990399784,0.9578566699550588,7438.06584288931,2019
+2007,32,"(30,35]",HS,105.72232831916286,110.37384990399784,0.9578566699550588,7552.243236147874,2019
+2007,32,"(30,35]",HS,105.72232831916286,110.37384990399784,0.9578566699550588,7512.838723403892,2019
+2007,32,"(30,35]",HS,105.72232831916286,110.37384990399784,0.9578566699550588,7465.943258419911,2019
+2007,63,"(60,65]",College,67875.50922171354,2648.972397695949,25.623335781358467,24.48193279445881,2019
+2007,63,"(60,65]",College,84482.414911707,3723.2778700948606,22.69033305041898,21.849872768560893,2019
+2007,63,"(60,65]",College,101288.65899280575,5680.574141725756,17.830708035092083,24.09100887159989,2019
+2007,63,"(60,65]",College,69357.88279921516,2855.0035841834115,24.29344859090708,23.964707447655776,2019
+2007,63,"(60,65]",College,93789.21386527142,6180.93559462388,15.173951002959551,22.16204439977061,2019
+2007,56,"(55,60]",HS,3.7492217135382604,44.14953996159914,0.08492096897950237,7037.2459591828565,2019
+2007,56,"(55,60]",HS,3.7635317200784826,111.84550123605116,0.03364937953235604,7018.4182612249515,2019
+2007,56,"(55,60]",HS,3.6919816873773708,45.62119129365245,0.08092690222868112,7159.924388803321,2019
+2007,56,"(55,60]",HS,3.7492217135382604,45.62119129365245,0.08218158288338936,7059.204528572644,2019
+2007,56,"(55,60]",HS,3.6776716808371486,45.62119129365245,0.08061323206500408,7033.792426105804,2019
+2007,60,"(55,60]",College,6923.324264224984,170.71155451818333,40.55568636678044,355.1820143253795,2019
+2007,60,"(55,60]",College,6076.314977109222,169.23990318613005,35.903559755801155,349.3646089547612,2019
+2007,60,"(55,60]",College,6333.322694571615,192.7863244989829,32.85151429195398,345.419225252963,2019
+2007,60,"(55,60]",College,10786.739829954218,185.42806783871637,58.17209851604788,343.793747718231,2019
+2007,60,"(55,60]",College,6810.132112491825,201.61623249130272,33.777697501542185,354.6489098749509,2019
+2007,56,"(55,60]",College,308.4521909744932,14.716513320533048,20.959597171982903,9554.381139834553,2019
+2007,56,"(55,60]",College,337.14375408763897,30.9046779731194,10.909149559198884,9312.187894089295,2019
+2007,56,"(55,60]",College,263.80497056899935,16.18816465258635,16.29616304445308,9939.844063799253,2019
+2007,56,"(55,60]",College,347.5900588620013,16.18816465258635,21.471863322471673,9454.982424587517,2019
+2007,56,"(55,60]",College,276.8270765206017,16.18816465258635,17.10058443693761,9246.868198040569,2019
+2007,71,"(70,75]",College,2300.476651406148,161.88164652586354,14.210855280858567,1632.6439210655487,2019
+2007,71,"(70,75]",College,2300.476651406148,161.88164652586354,14.210855280858567,1651.7732533069125,2019
+2007,71,"(70,75]",College,2300.476651406148,161.88164652586354,14.210855280858567,1585.7847693008564,2019
+2007,71,"(70,75]",College,2300.476651406148,161.88164652586354,14.210855280858567,1614.11458319443,2019
+2007,71,"(70,75]",College,2299.0456507521258,161.88164652586354,14.20201548533676,1631.3232421321677,2019
+2007,22,"(20,25]",HS,0.014310006540222369,29.433026641066096,4.86188753699441e-4,7345.38763974084,2019
+2007,22,"(20,25]",HS,-0.5580902550686724,29.433026641066096,-0.018961361394278196,7343.638871393952,2019
+2007,22,"(20,25]",HS,0.7298103335513407,29.433026641066096,0.024795626438671486,7287.9885185032035,2019
+2007,22,"(20,25]",HS,0.15741007194244605,29.433026641066096,0.00534807629069385,7315.942569800443,2019
+2007,22,"(20,25]",HS,-0.5580902550686724,29.433026641066096,-0.018961361394278196,7390.200023644172,2019
+2007,93,"(90,95]",HS,720.0795291039894,42.67788862954583,16.872426266314392,10308.172596367334,2019
+2007,93,"(90,95]",HS,720.0795291039894,41.206237297492535,17.47501291868276,10566.28633117244,2019
+2007,93,"(90,95]",HS,700.7610202746894,42.67788862954583,16.419767771490775,9905.428279494015,2019
+2007,93,"(90,95]",HS,725.6604316546762,42.67788862954583,17.003194275930106,10385.869665651448,2019
+2007,93,"(90,95]",HS,700.0455199476783,42.67788862954583,16.403002642052865,10488.5455757981,2019
+2007,41,"(40,45]",HS,325.8388489208633,63.28100727829211,5.1490781031331485,4245.00121739645,2019
+2007,41,"(40,45]",HS,346.15905820797906,38.262934633385925,9.046850732299596,4291.423884426556,2019
+2007,41,"(40,45]",HS,342.86775670372793,42.67788862954583,8.033850026647315,4318.393042665232,2019
+2007,41,"(40,45]",HS,341.15055591890126,44.14953996159914,7.727159925463116,4272.05633969356,2019
+2007,41,"(40,45]",HS,343.58325703073905,66.22430994239872,5.188174211699367,4290.510572876743,2019
+2007,23,"(20,25]",HS,6.153302812295618,27.96137530901279,0.22006438325343117,6960.433373259568,2019
+2007,23,"(20,25]",HS,7.01190320470896,27.96137530901279,0.25077104138181694,7006.254825267557,2019
+2007,23,"(20,25]",HS,4.436102027468934,27.96137530901279,0.15865106699665968,6979.708301479781,2019
+2007,23,"(20,25]",HS,4.29300196206671,27.96137530901279,0.15353329064192872,6943.740494119494,2019
+2007,23,"(20,25]",HS,7.441203400915631,27.96137530901279,0.2661243704460098,6991.960563890199,2019
+2007,48,"(45,50]",NoHS,308.32340091563117,128.03366588863753,2.4081431924616448,8574.89278986606,2019
+2007,48,"(45,50]",NoHS,303.9731589274035,120.675409228371,2.518932074654518,8420.548126112928,2019
+2007,48,"(45,50]",NoHS,289.8062524525834,132.44861988479744,2.1880654755380173,8850.130393813331,2019
+2007,48,"(45,50]",NoHS,311.1281621975147,119.20375789631768,2.6100533044279617,8568.64626541532,2019
+2007,48,"(45,50]",NoHS,288.2178417266187,110.37384990399784,2.611287383536118,8431.306722426394,2019
+2007,40,"(35,40]",College,36.347416612164814,110.37384990399784,0.3293118491724214,5872.2748759612305,2019
+2007,40,"(35,40]",College,33.48541530412034,110.37384990399784,0.3033817823084512,5913.508787379087,2019
+2007,40,"(35,40]",College,48.79712230215827,110.55044806384424,0.4414013977942209,5882.673525989164,2019
+2007,40,"(35,40]",College,14.882406801831262,110.37384990399784,0.134836347692645,5870.285854490574,2019
+2007,40,"(35,40]",College,15.025506867233485,110.37384990399784,0.1361328510358435,5900.662919017432,2019
+2007,69,"(65,70]",NoHS,402.1111837802485,113.31715256810448,3.548546488040075,6905.482419118988,2019
+2007,69,"(65,70]",NoHS,416.5642903858731,113.31715256810448,3.676092109140448,6755.4714944990465,2019
+2007,69,"(65,70]",NoHS,413.70228907782865,113.31715256810448,3.6508355505067107,7121.364725833034,2019
+2007,69,"(65,70]",NoHS,429.44329627207327,113.31715256810448,3.7897466229922654,6774.250674651009,2019
+2007,69,"(65,70]",NoHS,417.9952910398954,113.31715256810448,3.688720388457317,6717.803550093459,2019
+2007,54,"(50,55]",College,17.672858077174624,25.01807264490618,0.7064036597868348,6809.27907481883,2019
+2007,54,"(50,55]",College,17.672858077174624,25.01807264490618,0.7064036597868348,6818.330797488057,2019
+2007,54,"(50,55]",College,17.672858077174624,25.01807264490618,0.7064036597868348,6824.98971565752,2019
+2007,54,"(50,55]",College,17.81595814257685,25.01807264490618,0.7121235274774166,6838.291011477531,2019
+2007,54,"(50,55]",College,17.801648136036626,25.01807264490618,0.7115515407083584,6842.197162793629,2019
+2007,36,"(35,40]",HS,24.24115107913669,73.58256660266524,0.3294414995067412,7912.233752409817,2019
+2007,36,"(35,40]",HS,-5.237462393721387,73.58256660266524,-0.07117803354159816,7890.18965075866,2019
+2007,36,"(35,40]",HS,8.500143884892086,73.58256660266524,0.11551844787898717,7787.138276456742,2019
+2007,36,"(35,40]",HS,14.796546762589928,73.58256660266524,0.20108766853008878,7747.7282564219,2019
+2007,36,"(35,40]",HS,35.11675604970569,73.58256660266524,0.47724288063137127,7757.955565006245,2019
+2007,66,"(65,70]",College,1911.673773708306,73.58256660266524,25.979982242683327,3852.3057431452226,2019
+2007,66,"(65,70]",College,1911.673773708306,73.58256660266524,25.979982242683327,3904.267736335371,2019
+2007,66,"(65,70]",College,1911.673773708306,73.58256660266524,25.979982242683327,3892.8973898140102,2019
+2007,66,"(65,70]",College,1911.673773708306,73.58256660266524,25.979982242683327,4182.027411273692,2019
+2007,66,"(65,70]",College,1911.673773708306,73.58256660266524,25.979982242683327,4009.2836096738306,2019
+2007,81,"(80,85]",HS,556.330124264225,51.50779662186566,10.800891530041811,8582.854357318394,2019
+2007,81,"(80,85]",HS,482.8053106605625,41.206237297492535,11.716801686475314,8392.505688012674,2019
+2007,81,"(80,85]",HS,1081.7935644211905,47.09284262570575,22.9715070083854,6346.7209937544985,2019
+2007,81,"(80,85]",HS,609.291458469588,42.67788862954583,14.276513624148137,6641.369912216205,2019
+2007,81,"(80,85]",HS,882.8129234793983,45.62119129365245,19.350939737565103,6697.086899910784,2019
+2007,22,"(20,25]",HS,-2.060640941792021,9.271403391935818,-0.22225771597688734,7467.870276827709,2019
+2007,22,"(20,25]",HS,-2.060640941792021,9.271403391935818,-0.22225771597688734,7477.33899639423,2019
+2007,22,"(20,25]",HS,-2.060640941792021,9.271403391935818,-0.22225771597688734,7527.503589581985,2019
+2007,22,"(20,25]",HS,-2.2037410071942447,9.12423825873049,-0.2415260260313352,7455.927640139353,2019
+2007,22,"(20,25]",HS,-2.489941137998692,9.12423825873049,-0.27289304239904105,7527.033967037729,2019
+2007,57,"(55,60]",College,25986.256376716807,1221.4706056042428,21.27456547663855,38.42240551080851,2019
+2007,57,"(55,60]",College,36275.4372792675,1222.9422569362964,29.66242851902459,41.48144346863144,2019
+2007,57,"(55,60]",College,19720.33381294964,1883.7137050282302,10.468859339033212,37.51050042439972,2019
+2007,57,"(55,60]",College,26874.621582733813,1780.6981117844987,15.092182894382828,41.7068742091807,2019
+2007,57,"(55,60]",College,23851.432361020274,1515.8008720149037,15.735201635895194,41.80795069528855,2019
+2007,56,"(55,60]",NoHS,32.34061478090255,88.29907992319828,0.3662621944535789,7387.607792121955,2019
+2007,56,"(55,60]",NoHS,33.77161543492479,88.29907992319828,0.3824684862435603,7240.900841454359,2019
+2007,56,"(55,60]",NoHS,33.77161543492479,88.29907992319828,0.3824684862435603,7629.967010488357,2019
+2007,56,"(55,60]",NoHS,25.185611510791368,88.29907992319828,0.28523073550367206,7344.279033745591,2019
+2007,56,"(55,60]",NoHS,23.75461085676913,88.29907992319828,0.26902444371369066,7225.034342036224,2019
+2007,73,"(70,75]",HS,33489.56520601701,787.333462648518,42.53542722972953,266.5677176419008,2019
+2007,73,"(70,75]",HS,28588.960366252453,787.333462648518,36.31112066554595,299.62819350177364,2019
+2007,73,"(70,75]",HS,20809.18221059516,787.333462648518,26.4299476623221,245.8452836842,2019
+2007,73,"(70,75]",HS,21566.897056899936,787.333462648518,27.39232876543931,243.56351213285689,2019
+2007,73,"(70,75]",HS,28770.411249182474,787.333462648518,36.54158322243975,288.15011655672777,2019
+2007,81,"(80,85]",HS,718.3623283191629,27.96137530901279,25.691237300749407,10308.172596367334,2019
+2007,81,"(80,85]",HS,718.3623283191629,27.96137530901279,25.691237300749407,10566.28633117244,2019
+2007,81,"(80,85]",HS,718.9347285807718,27.96137530901279,25.71170840616833,9905.428279494015,2019
+2007,81,"(80,85]",HS,718.3623283191629,27.96137530901279,25.691237300749407,10385.869665651448,2019
+2007,81,"(80,85]",NoHS,718.3623283191629,27.96137530901279,25.691237300749407,10488.5455757981,2019
+2007,46,"(45,50]",College,576.6932635709614,167.76825185407677,3.437439784927626,6512.379319008533,2019
+2007,46,"(45,50]",College,609.6062786134728,167.76825185407677,3.633621211858979,6660.72286940862,2019
+2007,46,"(45,50]",College,558.0902550686724,167.76825185407677,3.326554630575122,6269.441276688403,2019
+2007,46,"(45,50]",College,568.107259646828,167.76825185407677,3.386262021380316,6562.151704236577,2019
+2007,46,"(45,50]",College,553.7972531066056,167.76825185407677,3.3009657488014668,6616.641645644287,2019
+2007,56,"(55,60]",HS,18.6173185088293,35.319631969279314,0.5271096404691439,8100.061932849494,2019
+2007,56,"(55,60]",HS,18.78903858731197,33.84798063722601,0.5551007248759705,7930.608815482738,2019
+2007,56,"(55,60]",HS,18.56007848266841,33.84798063722601,0.5483363596071086,8382.227591747345,2019
+2007,56,"(55,60]",HS,19.017998691955526,33.84798063722601,0.5618650901448322,8089.137538303568,2019
+2007,56,"(55,60]",HS,18.574388489208634,33.84798063722601,0.5487591324364125,7935.373038902352,2019
+2007,58,"(55,60]",College,115.89674296926096,103.01559324373132,1.1250407760605066,8363.475597975968,2019
+2007,58,"(55,60]",College,115.89674296926096,103.01559324373132,1.1250407760605066,8197.389357817094,2019
+2007,58,"(55,60]",College,115.75364290385873,103.01559324373132,1.123651665335651,8637.849314852681,2019
+2007,58,"(55,60]",College,115.89674296926096,103.01559324373132,1.1250407760605066,8314.423316971315,2019
+2007,58,"(55,60]",College,116.03984303466318,103.01559324373132,1.1264298867853622,8179.42696939004,2019
+2007,61,"(60,65]",College,2786.158273381295,328.17824704788694,8.489771331415351,457.8656621758955,2019
+2007,61,"(60,65]",College,2801.469980379333,328.17824704788694,8.536428010021485,451.9265890253828,2019
+2007,61,"(60,65]",College,2811.9162851536953,328.17824704788694,8.568259201967727,445.1622680216593,2019
+2007,61,"(60,65]",College,2816.06618705036,328.17824704788694,8.580904470001165,450.7377492888248,2019
+2007,61,"(60,65]",College,2806.049182472204,328.17824704788694,8.550381409230797,458.2631572343168,2019
+2007,90,"(85,90]",NoHS,544.0664486592544,11.184550123605115,48.64446425171776,7954.9860650994115,2019
+2007,90,"(85,90]",NoHS,544.0664486592544,11.037384990399785,49.293057108407325,7982.54774465256,2019
+2007,90,"(85,90]",NoHS,544.0664486592544,11.184550123605115,48.64446425171776,7926.308272697689,2019
+2007,90,"(85,90]",NoHS,544.0664486592544,11.184550123605115,48.64446425171776,7933.64500222261,2019
+2007,90,"(85,90]",NoHS,544.0664486592544,11.184550123605115,48.64446425171776,7933.943510760514,2019
+2007,52,"(50,55]",College,7181.190582079791,450.32530760831133,15.946673350914407,287.1135175070258,2019
+2007,52,"(50,55]",College,7182.621582733813,442.9670509480447,16.21479874713358,279.17010032522217,2019
+2007,52,"(50,55]",College,7109.497449313277,448.85365627625794,15.839232564784018,278.3935615147018,2019
+2007,52,"(50,55]",College,7109.64054937868,448.85365627625794,15.839551377081527,275.57035419155574,2019
+2007,52,"(50,55]",College,7181.190582079791,450.32530760831133,15.946673350914407,278.47982838262374,2019
+2007,64,"(60,65]",College,2739.2214519293657,251.6523777811151,10.884941664695555,50.20523736385145,2019
+2007,64,"(60,65]",College,2906.6485284499677,325.2349443837804,8.937073271622666,48.733850496349866,2019
+2007,64,"(60,65]",College,2928.1135382603006,245.7657724529019,11.914244644548456,48.03719149538661,2019
+2007,64,"(60,65]",College,2693.429431000654,245.7657724529019,10.959334996563925,48.784412495483664,2019
+2007,64,"(60,65]",College,2873.735513407456,272.25549642986135,10.55528924518073,50.202399499589475,2019
+2007,29,"(25,30]",HS,12.03471550032701,75.05421793471854,0.16034695759263914,6798.732498945722,2019
+2007,29,"(25,30]",HS,13.89501635055592,73.58256660266524,0.18883571193686288,6740.697827033755,2019
+2007,29,"(25,30]",HS,16.470817527795944,73.58256660266524,0.2238413022032226,6892.451116253827,2019
+2007,29,"(25,30]",HS,12.464015696533684,76.52586926677185,0.16287323248931274,6858.328223918938,2019
+2007,29,"(25,30]",HS,16.1846173969915,73.58256660266524,0.2199517921736271,6699.726951956724,2019
+2007,55,"(50,55]",College,5604.084761281883,1177.3210656426438,4.760030993094376,284.6088376177243,2019
+2007,55,"(50,55]",College,5604.084761281883,1177.3210656426438,4.760030993094376,276.73471608399865,2019
+2007,55,"(50,55]",College,5604.084761281883,1177.3210656426438,4.760030993094376,275.96495153182343,2019
+2007,55,"(50,55]",College,5604.084761281883,1177.3210656426438,4.760030993094376,273.16637290142233,2019
+2007,55,"(50,55]",College,5604.084761281883,1177.3210656426438,4.760030993094376,276.0504658371663,2019
+2007,83,"(80,85]",HS,7745.291039895357,807.9365812972643,9.586508668117393,35.35200980128797,2019
+2007,83,"(80,85]",HS,7743.860039241335,806.4649299652109,9.602227885563961,33.94241365622708,2019
+2007,83,"(80,85]",HS,7743.860039241335,807.9365812972643,9.584737488686793,34.98151665483396,2019
+2007,83,"(80,85]",HS,7743.860039241335,807.9365812972643,9.584737488686793,35.15719193288433,2019
+2007,83,"(80,85]",HS,7742.429038587313,807.9365812972643,9.582966309256195,34.801888296762606,2019
+2007,55,"(50,55]",College,18920.690647482017,2207.476998079957,8.571183601885346,217.54892612498375,2019
+2007,55,"(50,55]",College,18977.930673642903,2207.476998079957,8.597113668749314,212.43859237924372,2019
+2007,55,"(50,55]",College,18863.450621321124,2207.476998079957,8.545253535021375,212.90067213588114,2019
+2007,55,"(50,55]",College,18979.361674296928,2207.476998079957,8.597761920420915,211.5597039421992,2019
+2007,55,"(50,55]",College,18893.501635055592,2207.476998079957,8.55886682012496,216.10825787076436,2019
+2007,43,"(40,45]",NoHS,-88.5631994767822,98.60063924757141,-0.8982010679911852,7539.349468106161,2019
+2007,43,"(40,45]",NoHS,-95.57510268149117,100.07229057962472,-0.955060607965646,7547.301387972165,2019
+2007,43,"(40,45]",NoHS,-94.85960235448006,100.07229057962472,-0.947910773352419,7583.942430258353,2019
+2007,43,"(40,45]",NoHS,-89.27869980379333,98.60063924757141,-0.9054576165538635,7542.87042411382,2019
+2007,43,"(40,45]",NoHS,-94.28720209287115,98.60063924757141,-0.956253456492611,7530.6221905661205,2019
+2007,76,"(75,80]",College,29475.751471550033,1941.108106978309,15.185012810767375,239.78635871143243,2019
+2007,76,"(75,80]",College,29475.751471550033,1926.3915936577757,15.301017492285846,270.318019003125,2019
+2007,76,"(75,80]",College,29475.894571615438,1941.108106978309,15.18508653157916,241.43789411092226,2019
+2007,76,"(75,80]",College,29475.894571615438,1926.3915936577757,15.301091776281828,246.8534307747844,2019
+2007,76,"(75,80]",College,29474.463570961412,1941.108106978309,15.184349323461342,263.0976602625841,2019
+2007,51,"(50,55]",HS,705.7695225637672,157.4666925297036,4.482024174290921,5617.821337915797,2019
+2007,51,"(50,55]",HS,685.8786134728581,157.4666925297036,4.355705974731627,5745.788018288263,2019
+2007,51,"(50,55]",HS,943.4587311968606,157.4666925297036,5.991481220823204,5408.253920066851,2019
+2007,51,"(50,55]",HS,700.0455199476783,157.4666925297036,4.445673613266664,5660.756854119061,2019
+2007,51,"(50,55]",HS,625.633485938522,157.4666925297036,3.9731163199513198,5707.761910266285,2019
+2007,53,"(50,55]",College,9.015304120340092,91.2423825873049,0.09880610155827348,9672.366655962269,2019
+2007,53,"(50,55]",College,3.620431654676259,97.1289879155181,0.03727447111695715,9580.957882388573,2019
+2007,53,"(50,55]",College,-33.87178548070634,94.1856852514115,-0.35962774375205525,9683.897339054685,2019
+2007,53,"(50,55]",College,6.868803139306737,83.88412592703838,0.0818844216756953,9685.084405284517,2019
+2007,53,"(50,55]",College,14.238456507521256,88.29907992319828,0.1612526033103146,9767.592723052037,2019
+2007,38,"(35,40]",HS,10.102864617396992,57.39440195007889,0.17602526159579762,4268.728751069736,2019
+2007,38,"(35,40]",HS,10.102864617396992,57.39440195007889,0.17602526159579762,4251.1685606411975,2019
+2007,38,"(35,40]",HS,10.102864617396992,57.39440195007889,0.17602526159579762,4220.816919496227,2019
+2007,38,"(35,40]",HS,11.533865271419229,57.39440195007889,0.20095801819576894,4236.044957266027,2019
+2007,38,"(35,40]",HS,8.671863963374756,57.39440195007889,0.15109250499582627,4271.520882932946,2019
+2007,59,"(55,60]",College,523.7462393721387,58.86605328213219,8.89725419269977,6211.422003161352,2019
+2007,59,"(55,60]",College,621.197383911053,58.86605328213219,10.552726899046364,4981.872880998437,2019
+2007,59,"(55,60]",College,523.7462393721387,58.86605328213219,8.89725419269977,6362.7586433586785,2019
+2007,59,"(55,60]",College,553.7972531066056,58.86605328213219,9.407752384084182,6152.670090815026,2019
+2007,59,"(55,60]",College,519.453237410072,58.86605328213219,8.824325879644855,6076.218925427718,2019
+2007,49,"(45,50]",HS,152.48742969260957,86.82742859114498,1.756212664210591,6924.246378695493,2019
+2007,49,"(45,50]",HS,152.6305297580118,86.82742859114498,1.7578607616807587,6764.65346604771,2019
+2007,49,"(45,50]",HS,152.6305297580118,85.35577725909167,1.7881687058476683,7193.328304218123,2019
+2007,49,"(45,50]",HS,152.48742969260957,85.35577725909167,1.7864921929038773,6910.903283343134,2019
+2007,49,"(45,50]",HS,152.6305297580118,85.35577725909167,1.7881687058476683,6758.787095152695,2019
+2007,52,"(50,55]",HS,2291.7189274035313,931.555293189742,2.4600997323051517,88.7214922890807,2019
+2007,52,"(50,55]",HS,2291.1894571615435,931.555293189742,2.4595313599864514,85.5229987570642,2019
+2007,52,"(50,55]",HS,2291.647377370831,931.555293189742,2.4600229252350574,84.83528333477253,2019
+2007,52,"(50,55]",HS,2291.219508175278,931.555293189742,2.459563618955891,85.43146768266094,2019
+2007,52,"(50,55]",HS,2291.1894571615435,931.555293189742,2.4595313599864514,84.90256045581755,2019
+2007,52,"(50,55]",College,13.494336167429692,61.8093559462388,0.21832190225646322,6703.464779695287,2019
+2007,52,"(50,55]",College,13.35123610202747,61.8093559462388,0.21600671771503732,6667.209898831579,2019
+2007,52,"(50,55]",College,10.646644865925442,60.3377046141855,0.176450942806041,6843.784469680254,2019
+2007,52,"(50,55]",College,12.063335513407456,61.8093559462388,0.19517005684220415,6745.842680601294,2019
+2007,52,"(50,55]",College,12.063335513407456,61.8093559462388,0.19517005684220415,6648.757704450198,2019
+2007,61,"(60,65]",HS,36380.32962720733,966.8749251590211,37.62671745905902,34.461590930116074,2019
+2007,61,"(60,65]",HS,46753.65336821452,1028.68428110526,45.44995410834945,38.197768115346705,2019
+2007,61,"(60,65]",HS,28239.36690647482,1041.9291430937399,27.10296289690612,35.08493867204404,2019
+2007,61,"(60,65]",HS,28223.625899280574,997.7796031321406,28.286433006531194,36.28056834836644,2019
+2007,61,"(60,65]",HS,30943.95814257685,1031.6275837693665,29.99527991439861,37.47158964014746,2019
+2007,49,"(45,50]",NoHS,2.5901111837802486,23.546421312852875,0.11000020552449853,5061.334118832253,2019
+2007,49,"(45,50]",NoHS,2.5901111837802486,22.07476998079957,0.11733355255946509,5010.694083829034,2019
+2007,49,"(45,50]",NoHS,2.604421190320471,22.07476998079957,0.11798180423106434,5043.546250752915,2019
+2007,49,"(45,50]",NoHS,2.5901111837802486,22.07476998079957,0.11733355255946509,4995.115042013544,2019
+2007,49,"(45,50]",NoHS,2.604421190320471,22.07476998079957,0.11798180423106434,4934.3490503672365,2019
+2007,52,"(50,55]",NoHS,189.17828646173973,80.94082326293177,2.33724193596604,6246.140579225137,2019
+2007,52,"(50,55]",NoHS,189.17828646173973,77.99752059882516,2.4254397448704186,6105.147221506012,2019
+2007,52,"(50,55]",NoHS,189.17828646173973,88.29907992319828,2.142471774635537,6455.46163214162,2019
+2007,52,"(50,55]",NoHS,189.17828646173973,88.29907992319828,2.142471774635537,6254.754259097356,2019
+2007,52,"(50,55]",NoHS,189.17828646173973,79.46917193087846,2.3805241940394852,6074.661742933817,2019
+2007,57,"(55,60]",HS,247.37708306082408,44.14953996159914,5.6031633234681575,9707.878763174342,2019
+2007,57,"(55,60]",HS,122.82278613472859,44.14953996159914,2.7819720486682016,9504.310051823819,2019
+2007,57,"(55,60]",HS,156.12217135382605,44.14953996159914,3.5362128685739345,9983.97334094861,2019
+2007,57,"(55,60]",HS,139.8516939175932,44.14953996159914,3.167681793269758,9642.378465779284,2019
+2007,57,"(55,60]",HS,279.0451275343362,44.14953996159914,6.320453798092734,9524.580920803712,2019
+2007,73,"(70,75]",College,27927.408763897976,1564.365365972663,17.85222900695821,55.13997365988513,2019
+2007,73,"(70,75]",College,27619.743623283193,1554.0638066482895,17.77259305900173,59.45484746485598,2019
+2007,73,"(70,75]",College,27885.90974493133,1377.4656468018932,20.24435949431839,58.78416461442852,2019
+2007,73,"(70,75]",College,27913.09875735775,1375.99399546984,20.285770758633788,59.80022083507565,2019
+2007,73,"(70,75]",College,28376.742969260955,1506.970964022584,18.830318331757645,60.489280059525434,2019
+2007,55,"(50,55]",HS,35.202616088947025,69.16761260650532,0.5089465251492021,7037.2459591828565,2019
+2007,55,"(50,55]",HS,35.0595160235448,67.69596127445202,0.5178967158972306,7018.4182612249515,2019
+2007,55,"(50,55]",HS,35.0595160235448,66.22430994239872,0.5294055318060579,7159.924388803321,2019
+2007,55,"(50,55]",HS,35.0595160235448,63.28100727829211,0.5540290449133164,7059.204528572644,2019
+2007,55,"(50,55]",HS,36.63361674296926,66.22430994239872,0.5531747597646972,7033.792426105804,2019
+2007,36,"(35,40]",College,215.90937867887507,125.0903632245309,1.7260272743099212,6440.143630936396,2019
+2007,36,"(35,40]",College,157.09525179856118,125.0903632245309,1.2558541501441092,6332.162359331959,2019
+2007,36,"(35,40]",College,74.24746893394376,125.0903632245309,0.5935506702516588,6511.182753179042,2019
+2007,36,"(35,40]",College,172.83625899280577,125.0903632245309,1.3816912393369054,6362.1090201285715,2019
+2007,36,"(35,40]",College,78.40452583387835,125.0903632245309,0.6267831015339381,6370.17485829295,2019
+2007,44,"(40,45]",HS,86.71863963374754,58.86605328213219,1.473151923709306,7822.9521422821,2019
+2007,44,"(40,45]",HS,86.57553956834532,60.3377046141855,1.4348497365276183,7691.785452774359,2019
+2007,44,"(40,45]",HS,86.71863963374754,58.86605328213219,1.473151923709306,7909.244573845953,2019
+2007,44,"(40,45]",HS,86.71863963374754,58.86605328213219,1.473151923709306,7728.16217162698,2019
+2007,44,"(40,45]",HS,86.57553956834532,60.3377046141855,1.4348497365276183,7737.959882604138,2019
+2007,82,"(80,85]",College,3956.7168083714846,148.63678453738376,26.620037702553553,2237.2508870292804,2019
+2007,82,"(80,85]",College,4064.0418574231526,122.14706056042431,33.27171230135933,2237.150109764075,2019
+2007,82,"(80,85]",College,3972.457815565729,135.39192254890403,29.340434353688,2175.0473137408694,2019
+2007,82,"(80,85]",College,4111.2648790058865,141.27852787711726,29.10042269538529,2151.0326770684333,2019
+2007,82,"(80,85]",College,4088.3688685415304,144.22183054122385,28.347781006516385,2275.5417565102343,2019
+2007,45,"(40,45]",College,546.9284499672989,211.91779181567586,2.580851967554533,5538.5486790762625,2019
+2007,45,"(40,45]",College,496.8434270765206,339.9514577043134,1.4615128596055922,5664.405521488094,2019
+2007,45,"(40,45]",College,1763.2790058862001,220.74769980799567,7.987757097446017,2467.14849466225,2019
+2007,45,"(40,45]",College,1771.8650098103337,226.63430513620895,7.818167725073348,2650.5970490624563,2019
+2007,45,"(40,45]",College,466.79241334205364,185.42806783871637,2.517377324710439,5626.0521236269915,2019
+2007,92,"(90,95]",HS,827.1183780248529,80.94082326293177,10.218803623210066,6659.418110723027,2019
+2007,92,"(90,95]",HS,807.0843688685416,83.88412592703838,9.621419546894199,6621.973299604241,2019
+2007,92,"(90,95]",NoHS,771.3093525179856,89.77073125525159,8.591991417836022,6743.756800571291,2019
+2007,92,"(90,95]",NoHS,775.6023544800523,85.35577725909167,9.086700155348174,6685.153247370164,2019
+2007,92,"(90,95]",NoHS,818.5323741007195,94.1856852514115,8.690623972377509,6685.215473671895,2019
+2007,28,"(25,30]",College,29.907913669064747,97.1289879155181,0.307919544009646,5939.20758099092,2019
+2007,28,"(25,30]",College,33.19921517331589,97.1289879155181,0.3418054268432434,5942.86096464701,2019
+2007,28,"(25,30]",College,34.77331589274036,97.1289879155181,0.3580117186332248,5915.769221911732,2019
+2007,28,"(25,30]",College,32.769914977109224,97.1289879155181,0.33738552908233943,5860.627791861018,2019
+2007,28,"(25,30]",College,34.63021582733813,97.1289879155181,0.3565384193795901,5822.971258117138,2019
+2007,77,"(75,80]",NoHS,47.36612164813604,20.603118648746268,2.298978249635928,8509.4154869326,2019
+2007,77,"(75,80]",NoHS,38.92321778940484,20.603118648746268,1.8891905858035418,8512.606149157078,2019
+2007,77,"(75,80]",NoHS,41.785219097449314,19.131467316692962,2.1841094781574886,8501.667344421016,2019
+2007,77,"(75,80]",NoHS,34.34401569653368,19.131467316692962,1.7951584751979357,8562.759598877661,2019
+2007,77,"(75,80]",NoHS,40.35421844342707,19.131467316692962,2.1093112083575742,8560.86411256235,2019
+2007,62,"(60,65]",College,103169.42315238719,4356.087942877782,23.683962423456013,22.982260511475758,2019
+2007,62,"(60,65]",College,126524.4986265533,4356.087942877782,29.04544175546806,21.058591007921923,2019
+2007,62,"(60,65]",College,207944.14283845652,4356.087942877782,47.73644278197962,21.536701388391943,2019
+2007,62,"(60,65]",College,161994.85493786787,4356.087942877782,37.18815071278118,21.818999957904165,2019
+2007,62,"(60,65]",College,48758.77148463048,4356.087942877782,11.193247731453916,23.90883554350612,2019
+2007,45,"(40,45]",College,20105.845389143233,2575.3898310932836,7.806913402546154,284.6088376177243,2019
+2007,45,"(40,45]",College,10870.167168083715,2590.1063444138167,4.196803421422379,276.73471608399865,2019
+2007,45,"(40,45]",College,14656.594898626554,2590.1063444138167,5.658684605841379,275.96495153182343,2019
+2007,45,"(40,45]",College,12531.558927403532,2590.1063444138167,4.838241083973572,273.16637290142233,2019
+2007,45,"(40,45]",College,14944.369130150424,2590.1063444138167,5.769789785806103,276.0504658371663,2019
+2007,44,"(40,45]",College,46.35011118378025,95.65733658346481,0.48454319176384286,6039.436091847949,2019
+2007,44,"(40,45]",College,37.22032701111838,88.29907992319828,0.42152564945741533,6050.574851965377,2019
+2007,44,"(40,45]",College,35.51743623283192,77.99752059882516,0.45536622138943866,6089.7737707582955,2019
+2007,44,"(40,45]",College,36.83395683453237,88.29907992319828,0.41714995067412036,6030.149099092133,2019
+2007,44,"(40,45]",College,49.627102681491166,76.52586926677185,0.6485009991652543,6024.498259531455,2019
+2007,21,"(20,25]",HS,7.884813603662525,14.716513320533048,0.5357800065767839,9178.192035000224,2019
+2007,21,"(20,25]",HS,7.984983649444081,14.716513320533048,0.5425866491285761,9183.244801229765,2019
+2007,21,"(20,25]",HS,7.913433616742969,14.716513320533048,0.5377247615915817,9128.380114845795,2019
+2007,21,"(20,25]",HS,8.228253760627862,14.716513320533048,0.5591170667543571,9123.082361726254,2019
+2007,21,"(20,25]",HS,8.442903858731198,14.716513320533048,0.5737027293653404,9222.021311438024,2019
+2007,49,"(45,50]",HS,13.150896010464356,47.09284262570575,0.27925466540611643,5875.590753017832,2019
+2007,49,"(45,50]",HS,16.513747547416614,47.09284262570575,0.35066363860572186,5853.424152270941,2019
+2007,49,"(45,50]",HS,23.82616088947024,47.09284262570575,0.5059401718184807,5860.658384848488,2019
+2007,49,"(45,50]",HS,11.877305428384565,47.09284262570575,0.252210415981585,5878.680496792646,2019
+2007,49,"(45,50]",HS,13.222446043165467,47.09284262570575,0.28077400526142715,5877.9954103575965,2019
+2007,31,"(30,35]",College,5274.668410725964,1171.4344603144305,4.502743080744069,1622.5411652093549,2019
+2007,31,"(30,35]",College,5274.668410725964,1252.3752835773623,4.211731483281174,1622.828704674756,2019
+2007,31,"(30,35]",College,5274.668410725964,1165.5478549862173,4.525484207414493,1576.720248372208,2019
+2007,31,"(30,35]",College,5274.668410725964,1253.8469349094155,4.206788136469811,1559.8960227647724,2019
+2007,31,"(30,35]",College,5274.668410725964,1253.8469349094155,4.206788136469811,1650.1985722856418,2019
+2007,79,"(75,80]",HS,123.25208633093526,54.451099285972276,2.2635371543855594,11522.471954676845,2019
+2007,79,"(75,80]",HS,111.01703073904514,54.451099285972276,2.038839108756899,11541.00003443764,2019
+2007,79,"(75,80]",HS,112.13321124918247,54.451099285972276,2.059337877831794,11609.91610898346,2019
+2007,79,"(75,80]",HS,112.37648136036626,54.451099285972276,2.0638055582711945,11547.002766347552,2019
+2007,79,"(75,80]",HS,111.91856115107913,54.451099285972276,2.0553958068558527,11623.542097124384,2019
+2007,65,"(60,65]",HS,1568.0905166775672,136.86357388095735,11.457325511910698,6105.879347017012,2019
+2007,65,"(60,65]",HS,1561.651013734467,136.86357388095735,11.410274987359138,6246.054876691291,2019
+2007,65,"(60,65]",HS,1553.7805101373447,136.86357388095735,11.35276879068501,5878.511625438307,2019
+2007,65,"(60,65]",HS,1560.5062132112491,136.86357388095735,11.401910449661083,6152.26213897927,2019
+2007,65,"(60,65]",HS,1553.351209941138,136.86357388095735,11.349632089048239,6203.843771616026,2019
+2007,55,"(50,55]",College,7255.17331589274,515.0779662186567,14.08558275003523,2103.1633748859244,2019
+2007,55,"(50,55]",College,6714.255068672335,515.0779662186567,13.03541504204444,2044.1888874609103,2019
+2007,55,"(50,55]",College,7901.985611510792,515.0779662186567,15.341338845304646,2071.109945399829,2019
+2007,55,"(50,55]",College,7132.107259646828,515.0779662186567,13.846655705360078,2061.390322156819,2019
+2007,55,"(50,55]",College,7137.831262262917,515.0779662186567,13.857768591158923,2096.558801694776,2019
+2007,45,"(40,45]",HS,317.20991497710924,119.20375789631768,2.6610731119149404,6735.353358254596,2019
+2007,45,"(40,45]",HS,321.4886069326357,83.88412592703838,3.8325321195128557,7364.826235576419,2019
+2007,45,"(40,45]",HS,417.7090909090909,110.37384990399784,3.784493258796449,6483.379806506476,2019
+2007,45,"(40,45]",HS,277.90032701111835,79.46917193087846,3.496957628460423,7494.356646832173,2019
+2007,45,"(40,45]",HS,316.0937344669719,120.675409228371,2.6193715562114517,7374.235978410337,2019
+2007,47,"(45,50]",HS,383.5081752779594,142.75017920917054,2.6865687833288696,7516.39050922382,2019
+2007,47,"(45,50]",HS,375.6376716808372,119.20375789631768,3.1512234036074878,7377.6834952109075,2019
+2007,47,"(45,50]",HS,377.9129627207325,144.22183054122385,2.620358938050722,7763.402211543145,2019
+2007,47,"(45,50]",HS,383.9374754741661,128.03366588863753,2.9987228187944823,7485.60471313523,2019
+2007,47,"(45,50]",HS,379.97360366252457,145.69348187327716,2.6080343387840923,7367.183411581582,2019
+2007,64,"(60,65]",College,358928.69271419226,7667.303439997718,46.81289784903819,24.917125522175116,2019
+2007,64,"(60,65]",College,160991.06521909745,8756.325425717163,18.385687761931475,22.23827779402344,2019
+2007,64,"(60,65]",College,172235.98283845652,9403.852011820616,18.31547142829942,24.51925250547842,2019
+2007,64,"(60,65]",College,331835.5430215827,8932.92358556356,37.14747359507922,24.390705937669967,2019
+2007,64,"(60,65]",College,336075.5264094179,7667.303439997718,43.83229763103232,22.55599861225374,2019
+2007,40,"(35,40]",College,798.1119947678221,357.6112736889531,2.2317864493892117,752.6434141582764,2019
+2007,40,"(35,40]",College,796.6809941137999,357.6112736889531,2.227784895860821,784.6959823931535,2019
+2007,40,"(35,40]",College,795.2499934597777,357.6112736889531,2.2237833423324305,760.73618422683,2019
+2007,40,"(35,40]",College,796.6666841072596,357.6112736889531,2.227744880325537,752.6772739922118,2019
+2007,40,"(35,40]",College,798.1119947678221,357.6112736889531,2.2317864493892117,754.941154508968,2019
+2007,53,"(50,55]",College,101.41501635055592,63.28100727829211,1.602613812775785,8750.367914771541,2019
+2007,53,"(50,55]",College,99.84091563113147,63.28100727829211,1.5777390393306976,8592.864768479409,2019
+2007,53,"(50,55]",College,99.98401569653367,63.28100727829211,1.5800003823711597,9031.237933504035,2019
+2007,53,"(50,55]",College,99.98401569653367,63.28100727829211,1.5800003823711597,8743.993562523403,2019
+2007,53,"(50,55]",College,101.2719162851537,61.8093559462388,1.6384560999671158,8603.84352684949,2019
+2007,50,"(45,50]",College,535.1942446043165,206.03118648746263,2.5976370554798707,7268.176097655851,2019
+2007,50,"(45,50]",College,532.3322432962722,206.03118648746263,2.5837459482313156,7433.735717948895,2019
+2007,50,"(45,50]",College,533.7632439502944,206.03118648746263,2.590691501855593,6997.043783963889,2019
+2007,50,"(45,50]",College,535.1942446043165,206.03118648746263,2.5976370554798707,7323.724836898034,2019
+2007,50,"(45,50]",College,533.7632439502944,206.03118648746263,2.590691501855593,7384.538630183417,2019
+2007,87,"(85,90]",NoHS,574.4036625245259,29.433026641066096,19.51561657349556,9314.042727926922,2019
+2007,87,"(85,90]",NoHS,574.2605624591235,27.96137530901279,20.53763651153533,9052.895353898066,2019
+2007,87,"(85,90]",NoHS,574.1174623937213,29.433026641066096,19.50589279842157,9516.27639585465,2019
+2007,87,"(85,90]",NoHS,574.2605624591235,29.433026641066096,19.510754685958563,9234.882424012732,2019
+2007,87,"(85,90]",NoHS,574.2605624591235,27.96137530901279,20.53763651153533,9345.43999880853,2019
+2007,35,"(30,35]",HS,635.0780902550687,117.73210656426438,5.3942642222952975,5311.182987838804,2019
+2007,35,"(30,35]",HS,637.3676913015042,117.73210656426438,5.413711772443275,5433.247271162859,2019
+2007,35,"(30,35]",HS,627.7799869195552,117.73210656426438,5.332275156198618,5112.577033314207,2019
+2007,35,"(30,35]",HS,628.2092871157619,117.73210656426438,5.3359215718513635,5351.866718988423,2019
+2007,35,"(30,35]",HS,633.9332897318509,117.73210656426438,5.384540447221308,5395.906536615468,2019
+2007,36,"(35,40]",HS,95.11861347285809,97.1289879155181,0.9793020138909652,8016.735169582722,2019
+2007,36,"(35,40]",HS,223.82281229561806,186.8997191707697,1.1975556372618827,7889.074009539766,2019
+2007,36,"(35,40]",HS,151.97226945716156,60.3377046141855,2.5186949094088114,8225.50714227345,2019
+2007,36,"(35,40]",HS,155.23495094833223,75.05421793471854,2.0683041569143277,7938.7956528381565,2019
+2007,36,"(35,40]",HS,141.23976455199477,94.1856852514115,1.4995884371917132,7870.043072759368,2019
+2007,81,"(80,85]",College,189533.17462393723,10272.126297732066,18.45121147563999,36.90505218455256,2019
+2007,81,"(80,85]",College,187416.72465663834,11287.565716848847,16.60382135156769,33.62170759340992,2019
+2007,81,"(80,85]",College,189348.57553956835,12288.288622645096,15.40886459898355,34.57801401952445,2019
+2007,81,"(80,85]",College,187074.71550032703,10272.126297732066,18.211878444449265,34.933675592682455,2019
+2007,81,"(80,85]",College,188206.6370176586,11331.715256810445,16.60883924033875,32.9366456260952,2019
+2007,41,"(40,45]",College,920.1334205362982,294.33026641066095,3.1261936862874053,3381.502604131386,2019
+2007,41,"(40,45]",College,865.612295618051,294.33026641066095,2.940955771127918,3427.665123403983,2019
+2007,41,"(40,45]",College,1025.4550686723348,294.33026641066095,3.4840286090101937,3415.2822869052447,2019
+2007,41,"(40,45]",College,1004.9917593198169,294.33026641066095,3.4145036172311736,3671.3440046776295,2019
+2007,41,"(40,45]",College,920.8489208633094,294.33026641066095,3.128624630055903,3518.972299104461,2019
+2007,85,"(80,85]",HS,71663.08175277959,2972.735690747675,24.106778808430004,22.17562734344831,2019
+2007,85,"(80,85]",HS,22986.163505559187,4356.087942877782,5.276790507212243,18.991704110777327,2019
+2007,85,"(80,85]",HS,50202.36494440811,3193.483390555671,15.720252403026533,21.314216870052,2019
+2007,85,"(80,85]",HS,28624.3060824068,2501.807264490618,11.441451341470492,22.102131504054427,2019
+2007,85,"(80,85]",HS,27001.551340745587,2178.043971438891,12.397156207506423,23.069681372893722,2019
+2007,51,"(50,55]",HS,-11.161805101373448,117.73210656426438,-0.09480680697139099,3106.67512219989,2019
+2007,51,"(50,55]",HS,-11.018705035971223,117.73210656426438,-0.09359133508714237,3101.7030449236377,2019
+2007,51,"(50,55]",HS,-17.17200784826684,117.73210656426438,-0.14585662610983227,3154.9010231444227,2019
+2007,51,"(50,55]",HS,-14.02380640941792,117.73210656426438,-0.11911624465636303,3171.9540675185904,2019
+2007,51,"(50,55]",HS,-14.653446697187706,117.73210656426438,-0.1244643209470569,560.4793675977846,2019
+2007,29,"(25,30]",NoHS,22.180510137344672,29.433026641066096,0.7535925682341336,6532.031862560643,2019
+2007,29,"(25,30]",NoHS,19.80504905166776,29.433026641066096,0.6728852351200263,6496.878319842815,2019
+2007,29,"(25,30]",NoHS,47.25164159581426,29.433026641066096,1.605395264715554,6453.07328757802,2019
+2007,29,"(25,30]",NoHS,11.362145192936559,29.433026641066096,0.3860338704373561,6422.30881352514,2019
+2007,29,"(25,30]",NoHS,34.87348593852191,29.433026641066096,1.1848419927655376,6405.760959591863,2019
+2007,79,"(75,80]",College,56321.323741007196,2516.523777811151,22.380604641055672,23.232719794816525,2019
+2007,79,"(75,80]",College,56319.89274035318,2516.523777811151,22.38003599923848,25.227370619028413,2019
+2007,79,"(75,80]",College,56319.89274035318,2517.9954291432045,22.36695590806417,24.841654494214126,2019
+2007,79,"(75,80]",College,56304.15173315893,2516.523777811151,22.373780939249365,25.2933750927184,2019
+2007,79,"(75,80]",College,56318.461739699145,2516.523777811151,22.379467357421284,25.62343944109181,2019
+2007,56,"(55,60]",HS,6715.542969260955,735.8256660266525,9.126540808944425,282.22716406849327,2019
+2007,56,"(55,60]",HS,6722.697972531067,735.8256660266525,9.136264584018415,274.41893503177255,2019
+2007,56,"(55,60]",HS,6721.266971877044,735.8256660266525,9.134319829003616,273.6556120500291,2019
+2007,56,"(55,60]",HS,6714.111968606933,735.8256660266525,9.124596053929627,270.88045258241743,2019
+2007,56,"(55,60]",HS,6715.542969260955,735.8256660266525,9.126540808944425,273.7404107515953,2019
+2007,57,"(55,60]",HS,1.4310006540222369,14.716513320533048,0.09723775073988819,8084.287183466685,2019
+2007,57,"(55,60]",HS,1.4310006540222369,14.716513320533048,0.09723775073988819,8554.604497501432,2019
+2007,57,"(55,60]",HS,1.4310006540222369,14.716513320533048,0.09723775073988819,8018.306848231562,2019
+2007,57,"(55,60]",HS,1.4310006540222369,16.18816465258635,0.08839795521808018,7978.950958080624,2019
+2007,57,"(55,60]",HS,1.4310006540222369,14.716513320533048,0.09723775073988819,7920.176630184027,2019
+2007,53,"(50,55]",College,164.70817527795944,83.88412592703838,1.9635201947651102,6924.246378695493,2019
+2007,53,"(50,55]",College,164.70817527795944,82.41247459498507,1.998583055385916,6764.65346604771,2019
+2007,53,"(50,55]",College,164.70817527795944,82.41247459498507,1.998583055385916,7193.328304218123,2019
+2007,53,"(50,55]",College,164.70817527795944,82.41247459498507,1.998583055385916,6910.903283343134,2019
+2007,53,"(50,55]",College,164.70817527795944,82.41247459498507,1.998583055385916,6758.787095152695,2019
+2007,32,"(30,35]",HS,31.510634401569654,44.14953996159914,0.7137250904307794,7682.754090493586,2019
+2007,32,"(30,35]",HS,20.034009156311313,44.14953996159914,0.45377617011947824,7649.272548381099,2019
+2007,32,"(30,35]",HS,32.870085022890784,44.14953996159914,0.7445170448317441,7783.767855015207,2019
+2007,32,"(30,35]",HS,11.104565075212557,44.14953996159914,0.2515216485805108,7707.726603396947,2019
+2007,32,"(30,35]",HS,6.854493132766515,44.14953996159914,0.1552562753480215,7630.0587690858565,2019
+2007,44,"(40,45]",HS,84.71523871811642,100.07229057962472,0.8465404182060855,7788.341483418391,2019
+2007,44,"(40,45]",HS,82.29684761281884,100.07229057962472,0.8223739772133779,7668.0480167648275,2019
+2007,44,"(40,45]",HS,87.86344015696534,100.07229057962472,0.8779996905042846,7950.021665174811,2019
+2007,44,"(40,45]",HS,82.32546762589928,100.07229057962472,0.822659970597907,7738.169985570644,2019
+2007,44,"(40,45]",HS,83.28423806409418,100.07229057962472,0.8322407489796313,7617.959320234481,2019
+2007,42,"(40,45]",College,2221.6285153695226,412.06237297492527,5.391486000845587,2911.297412057838,2019
+2007,42,"(40,45]",College,2223.059516023545,412.06237297492527,5.394958777657726,2950.6387856176825,2019
+2007,42,"(40,45]",College,2223.059516023545,413.5340243069786,5.3757596361002244,2941.4957138370046,2019
+2007,42,"(40,45]",College,2221.6285153695226,413.5340243069786,5.372299217924428,3160.6769740822074,2019
+2007,42,"(40,45]",College,2221.6285153695226,413.5340243069786,5.372299217924428,3029.654638049872,2019
+2007,56,"(55,60]",College,2535.5185088293006,441.49539961599135,5.7430236216156985,5813.270961979955,2019
+2007,56,"(55,60]",College,2416.4592544146503,441.49539961599135,5.473350926230408,5763.4754497438325,2019
+2007,56,"(55,60]",College,2617.371746239372,441.49539961599135,5.928423599693084,5678.214233630563,2019
+2007,56,"(55,60]",College,2677.6168737737084,441.49539961599135,6.064880576564728,5781.383506727963,2019
+2007,56,"(55,60]",College,2612.792544146501,441.49539961599135,5.918051572947496,5977.233561877647,2019
+2007,46,"(45,50]",HS,-0.271890124264225,82.41247459498507,-0.0032991379715319206,6376.940932288594,2019
+2007,46,"(45,50]",HS,-4.665062132112492,77.99752059882516,-0.059810390077742547,6224.628413309855,2019
+2007,46,"(45,50]",HS,35.903806409417925,89.77073125525159,0.399950027223573,6527.831697383025,2019
+2007,46,"(45,50]",HS,32.84146500981033,83.88412592703838,0.39150989113691814,6349.260768943137,2019
+2007,46,"(45,50]",HS,-9.144094179202094,104.48724457578463,-0.08751397566589939,6271.694222122564,2019
+2007,46,"(45,50]",College,301.0825376062786,98.60063924757141,3.0535556351749964,6396.735927145795,2019
+2007,46,"(45,50]",College,301.0825376062786,98.60063924757141,3.0535556351749964,6252.343199289083,2019
+2007,46,"(45,50]",College,301.0825376062786,98.60063924757141,3.0535556351749964,6611.103740760547,2019
+2007,46,"(45,50]",College,300.9394375408764,98.60063924757141,3.052104325462461,6405.55728407888,2019
+2007,46,"(45,50]",College,300.9394375408764,98.60063924757141,3.052104325462461,6221.122711442937,2019
+2007,88,"(85,90]",HS,538.7717462393722,36.79128330133262,14.644005261427163,9937.404451180993,2019
+2007,88,"(85,90]",HS,538.9148463047744,36.79128330133262,14.647894771456759,9658.779244823772,2019
+2007,88,"(85,90]",HS,538.7717462393722,36.79128330133262,14.644005261427163,10153.173028859721,2019
+2007,88,"(85,90]",HS,538.9148463047744,35.319631969279314,15.258223720267457,9852.946178929884,2019
+2007,88,"(85,90]",HS,538.7717462393722,36.79128330133262,14.644005261427163,9970.903049859127,2019
+2007,59,"(55,60]",HS,42.78691955526488,51.50779662186566,0.8306882134636164,5257.1475264981445,2019
+2007,59,"(55,60]",HS,42.78691955526488,51.50779662186566,0.8306882134636164,5219.091756278467,2019
+2007,59,"(55,60]",HS,42.78691955526488,51.50779662186566,0.8306882134636164,5298.665822256943,2019
+2007,59,"(55,60]",HS,41.355918901242646,51.50779662186566,0.8029059989665055,5267.530505101451,2019
+2007,59,"(55,60]",HS,42.78691955526488,51.50779662186566,0.8306882134636164,5162.575197433002,2019
+2007,71,"(70,75]",HS,59801.517331589275,2796.1375309012788,21.387187386420674,41.64822265677397,2019
+2007,71,"(70,75]",HS,59780.05232177894,2766.7045042602126,21.60695232531292,36.93701144804511,2019
+2007,71,"(70,75]",HS,59788.638325703076,2751.98799093968,21.72561745274475,40.97254227340633,2019
+2007,71,"(70,75]",HS,59788.080235448004,2678.4054243370147,22.322266708464173,40.64560283297679,2019
+2007,71,"(70,75]",HS,59778.33512099412,2781.4210175807457,21.492012443692815,37.19301680369759,2019
+2007,51,"(50,55]",College,54825.64185742315,3370.081550402068,16.268342779682044,40.87835909474112,2019
+2007,51,"(50,55]",College,54826.92975801177,3370.081550402068,16.268724936781023,44.58014302943391,2019
+2007,51,"(50,55]",College,54827.072858077176,3370.081550402068,16.268767398680907,43.56750292190067,2019
+2007,51,"(50,55]",College,54828.503858731194,3370.081550402068,16.26919201767977,44.29746925820343,2019
+2007,51,"(50,55]",College,54827.072858077176,3370.081550402068,16.268767398680907,44.64602543815176,2019
+2007,56,"(55,60]",HS,787.8374100719425,60.3377046141855,13.057132602401328,6128.959974736486,2019
+2007,56,"(55,60]",HS,786.4064094179201,60.3377046141855,13.033416077830621,6281.439176065926,2019
+2007,56,"(55,60]",HS,785.9771092217135,61.8093559462388,12.716151093781805,5911.775489711032,2019
+2007,56,"(55,60]",HS,788.5529103989536,61.8093559462388,12.757824415527473,6193.0112589412,2019
+2007,56,"(55,60]",HS,788.5529103989536,61.8093559462388,12.757824415527473,6250.317847835275,2019
+2007,50,"(45,50]",College,8503.721386527142,397.3458596543923,21.40130865821428,1215.9857564801937,2019
+2007,50,"(45,50]",College,8503.57828646174,397.3458596543923,21.400948518396724,1188.7187811525755,2019
+2007,50,"(45,50]",College,8503.864486592545,397.3458596543923,21.401668798031835,1197.6525754642932,2019
+2007,50,"(45,50]",College,8503.57828646174,397.3458596543923,21.400948518396724,1195.3617351818536,2019
+2007,50,"(45,50]",College,8502.433485938522,397.3458596543923,21.39806739985628,1228.6425917579174,2019
+2007,53,"(50,55]",HS,37.93582733812949,27.96137530901279,1.3567225116391766,6096.763022993757,2019
+2007,53,"(50,55]",HS,38.03599738391105,36.79128330133262,1.0338317658664913,5992.044146589475,2019
+2007,53,"(50,55]",HS,37.735487246566386,33.84798063722601,1.1148519508742833,6341.115689882409,2019
+2007,53,"(50,55]",HS,39.996468279921515,23.546421312852875,1.6986219582374218,6189.1097651871305,2019
+2007,53,"(50,55]",HS,36.89119686069326,35.319631969279314,1.044495505864299,6104.934164031451,2019
+2007,71,"(70,75]",HS,1288.6160889470243,141.27852787711726,9.121103598048888,795.4445405075501,2019
+2007,71,"(70,75]",HS,1292.9090909090908,141.27852787711726,9.1514903951551,792.5688450682862,2019
+2007,71,"(70,75]",HS,1288.6160889470243,141.27852787711726,9.121103598048888,772.0849145884532,2019
+2007,71,"(70,75]",HS,1288.6160889470243,141.27852787711726,9.121103598048888,777.1498283172482,2019
+2007,71,"(70,75]",HS,1292.7659908436885,141.27852787711726,9.150477501918227,770.6403317379146,2019
+2007,36,"(35,40]",College,8.299803793328973,22.07476998079957,0.3759859695275677,6849.30596374665,2019
+2007,36,"(35,40]",College,8.299803793328973,27.96137530901279,0.29683102857439553,6856.063166001411,2019
+2007,36,"(35,40]",College,8.299803793328973,22.07476998079957,0.3759859695275677,6805.350867279066,2019
+2007,36,"(35,40]",College,8.299803793328973,23.546421312852875,0.3524868464320947,6822.235308441591,2019
+2007,36,"(35,40]",College,8.299803793328973,25.01807264490618,0.33175232605373617,6884.101869815526,2019
+2007,68,"(65,70]",College,181480.36154349247,1434.860048751972,126.47948606649297,39.20787010957434,2019
+2007,68,"(65,70]",College,185701.67037279267,1618.8164652586352,114.71446847627873,34.772709486926075,2019
+2007,68,"(65,70]",College,185282.95958142576,1589.3834386175693,116.57536820855711,38.57178081171912,2019
+2007,68,"(65,70]",College,179934.02223675605,1342.1460148326141,134.06441642580634,38.26399819108492,2019
+2007,68,"(65,70]",College,179093.309352518,1408.3703247750125,127.1635067865607,35.01371436280029,2019
+2007,55,"(50,55]",HS,7.6129234793983,29.433026641066096,0.2586524169681026,5587.701004360167,2019
+2007,55,"(50,55]",HS,7.469823413996076,29.433026641066096,0.2537905294311082,5572.948872525537,2019
+2007,55,"(50,55]",HS,7.6129234793983,29.433026641066096,0.2586524169681026,5688.494511279188,2019
+2007,55,"(50,55]",HS,7.6129234793983,29.433026641066096,0.2586524169681026,5601.082712722002,2019
+2007,55,"(50,55]",HS,7.6129234793983,29.433026641066096,0.2586524169681026,5531.616203808355,2019
+2007,54,"(50,55]",HS,3707.4364944408107,95.65733658346481,38.75747147952343,3580.0069410274214,2019
+2007,54,"(50,55]",HS,3778.9865271419226,95.65733658346481,39.50545417752257,3687.8436710691994,2019
+2007,54,"(50,55]",HS,3725.8964028776977,94.1856852514115,39.559051812726075,3521.4759000354143,2019
+2007,54,"(50,55]",HS,3793.2965336821453,95.65733658346481,39.6550507171224,3504.98291906436,2019
+2007,54,"(50,55]",HS,3807.4634401569656,95.65733658346481,39.80315129132623,3591.5663988741326,2019
+2007,55,"(50,55]",College,35.918116415958146,35.319631969279314,1.0169448098213307,6259.726211162574,2019
+2007,55,"(50,55]",College,35.918116415958146,35.319631969279314,1.0169448098213307,6206.071233201084,2019
+2007,55,"(50,55]",College,35.918116415958146,35.319631969279314,1.0169448098213307,6249.031428772343,2019
+2007,55,"(50,55]",College,34.48711576193591,35.319631969279314,0.9764290803463774,6236.264206548465,2019
+2007,55,"(50,55]",College,35.918116415958146,35.319631969279314,1.0169448098213307,6216.324840087896,2019
+2007,76,"(75,80]",HS,1299.9209941138,82.41247459498507,15.77335228073472,6708.121222226294,2019
+2007,76,"(75,80]",HS,1566.659516023545,86.82742859114498,18.043371103394847,6670.402561533747,2019
+2007,76,"(75,80]",HS,1437.0108567691302,72.11091527061193,19.92778556999913,6793.076716207805,2019
+2007,76,"(75,80]",HS,1040.9957357750163,72.11091527061193,14.436035541477361,6734.044570697473,2019
+2007,76,"(75,80]",HS,1120.902812295618,67.69596127445202,16.557897859685745,6734.107252086193,2019
+2007,46,"(45,50]",College,387.34325703073904,114.78880390015777,3.3743992782401198,8094.089388215228,2019
+2007,46,"(45,50]",College,333.7093525179856,114.78880390015777,2.907159419556657,7922.744386353089,2019
+2007,46,"(45,50]",College,336.7144538914323,114.78880390015777,2.933338813986627,8457.041811113311,2019
+2007,46,"(45,50]",College,306.09103989535646,114.78880390015777,2.666558318366934,8169.718858746487,2019
+2007,46,"(45,50]",College,376.4104120340092,114.78880390015777,3.2791561480282296,8032.242415389863,2019
+2007,48,"(45,50]",NoHS,0,17.659815984639657,0,4875.7954847278515,2019
+2007,48,"(45,50]",NoHS,0,19.131467316692962,0,4857.400770668173,2019
+2007,48,"(45,50]",NoHS,0,17.659815984639657,0,4863.404020387186,2019
+2007,48,"(45,50]",NoHS,0,17.659815984639657,0,4878.359475206335,2019
+2007,48,"(45,50]",NoHS,0,17.659815984639657,0,4877.790963632422,2019
+2007,46,"(45,50]",HS,134.2278613472858,104.48724457578463,1.2846339463945793,7828.429761616479,2019
+2007,46,"(45,50]",HS,164.15008502289078,105.95889590783793,1.5491864426906354,7647.996854006631,2019
+2007,46,"(45,50]",HS,191.4249574885546,82.41247459498507,2.322766770799079,8132.6489991865965,2019
+2007,46,"(45,50]",HS,212.83272727272728,79.46917193087846,2.678179753248809,7813.344295407493,2019
+2007,46,"(45,50]",HS,157.9538521909745,103.01559324373132,1.5333004180955514,7641.364439445459,2019
+2007,80,"(75,80]",NoHS,6511.625376062786,1047.815748421953,6.214475575376225,34.847320354275055,2019
+2007,80,"(75,80]",NoHS,6511.625376062786,1047.815748421953,6.214475575376225,31.899808029946836,2019
+2007,80,"(75,80]",NoHS,6511.625376062786,1047.815748421953,6.214475575376225,35.85709680448943,2019
+2007,80,"(75,80]",NoHS,6513.056376716809,1047.815748421953,6.215841274122572,35.54767525584059,2019
+2007,80,"(75,80]",NoHS,6510.194375408764,1047.815748421953,6.213109876629878,34.41785680608084,2019
+2007,59,"(55,60]",College,17221.94977109222,441.49539961599135,39.008220212649356,257.9858802128889,2019
+2007,59,"(55,60]",College,17189.036756049707,441.49539961599135,38.933671270415445,247.35825218555857,2019
+2007,59,"(55,60]",College,14721.99162851537,441.49539961599135,33.34574186122987,249.62711704657198,2019
+2007,59,"(55,60]",College,14760.628646173971,441.49539961599135,33.43325583689577,247.2232719942274,2019
+2007,59,"(55,60]",College,18452.61033355134,441.49539961599135,41.795702400526146,251.09189914430485,2019
+2007,62,"(60,65]",College,18170.56010464356,1824.8476517460983,9.957302510846388,368.5704690912501,2019
+2007,62,"(60,65]",College,16022.628122956181,1433.3883974199189,11.178148331461808,357.8445299380752,2019
+2007,62,"(60,65]",College,10800.90673642904,1287.6949155466418,8.38778394325175,360.63544001486804,2019
+2007,62,"(60,65]",College,11373.306998037933,1839.564165066631,6.182609562643867,357.3657300191588,2019
+2007,62,"(60,65]",College,9583.125179856117,1345.0893174967205,7.12452701482367,361.2201033694893,2019
+2007,48,"(45,50]",HS,59.243427076520604,77.99752059882516,0.759555260496485,7627.8914988425895,2019
+2007,48,"(45,50]",HS,60.67442773054284,77.99752059882516,0.7779020059191054,7452.080680584137,2019
+2007,48,"(45,50]",HS,60.67442773054284,77.99752059882516,0.7779020059191054,7924.3176541136445,2019
+2007,48,"(45,50]",HS,60.67442773054284,77.99752059882516,0.7779020059191054,7613.192471968029,2019
+2007,48,"(45,50]",HS,60.67442773054284,76.52586926677185,0.7928616598790883,7445.618166364999,2019
+2007,28,"(25,30]",HS,46.93682145192937,66.22430994239872,0.7087551609485183,9383.705762254476,2019
+2007,28,"(25,30]",HS,49.08332243296272,66.22430994239872,0.741167744528481,9299.301049530619,2019
+2007,28,"(25,30]",HS,47.50922171353826,66.22430994239872,0.7173985165698417,9520.10861070724,2019
+2007,28,"(25,30]",HS,48.9402223675605,66.22430994239872,0.7390069056231503,9434.062129005995,2019
+2007,28,"(25,30]",HS,47.65232177894048,66.22430994239872,0.7195593554751726,9217.846835770297,2019
+2007,31,"(30,35]",HS,0.7155003270111184,76.52586926677185,0.00934978372498925,7039.426845734028,2019
+2007,31,"(30,35]",HS,2.8620013080444737,76.52586926677185,0.037399134899957,7022.491456000399,2019
+2007,31,"(30,35]",HS,1.7172007848266841,76.52586926677185,0.022439480939974197,7003.855282648712,2019
+2007,31,"(30,35]",HS,-5.2947024198822765,76.52586926677185,-0.06918839956492046,7054.336295928793,2019
+2007,31,"(30,35]",HS,-0.28620013080444734,76.52586926677185,-0.0037399134899956995,7085.732758792516,2019
+2007,62,"(60,65]",College,1019.3017658600393,470.92842625705754,2.1644515578756987,210.01351953557705,2019
+2007,62,"(60,65]",College,1003.4176586003924,470.92842625705754,2.1307222130878,211.21518948565046,2019
+2007,62,"(60,65]",College,1015.0087638979726,470.92842625705754,2.155335518743834,211.53022447175186,2019
+2007,62,"(60,65]",College,1016.2966644865926,470.92842625705754,2.1580703304833935,209.21057770679832,2019
+2007,62,"(60,65]",College,1010.5726618705036,470.92842625705754,2.1459156116409073,212.4096654923532,2019
+2007,32,"(30,35]",NoHS,2.575801177240026,14.716513320533048,0.17502795133179871,8571.333713259544,2019
+2007,32,"(30,35]",NoHS,2.575801177240026,14.716513320533048,0.17502795133179871,8573.735119235203,2019
+2007,32,"(30,35]",NoHS,2.575801177240026,14.716513320533048,0.17502795133179871,8569.253345155685,2019
+2007,32,"(30,35]",NoHS,2.575801177240026,14.716513320533048,0.17502795133179871,8619.938825650204,2019
+2007,32,"(30,35]",NoHS,2.575801177240026,14.716513320533048,0.17502795133179871,8620.111719634802,2019
+2007,42,"(40,45]",NoHS,1088.275997383911,66.22430994239872,16.433179875041102,4213.859077418741,2019
+2007,42,"(40,45]",NoHS,1086.8449967298886,66.22430994239872,16.411571485987793,4259.941178894033,2019
+2007,42,"(40,45]",NoHS,1086.8449967298886,66.22430994239872,16.411571485987793,4286.712486235162,2019
+2007,42,"(40,45]",NoHS,1086.8449967298886,66.22430994239872,16.411571485987793,4240.715718169549,2019
+2007,42,"(40,45]",NoHS,1086.8449967298886,66.22430994239872,16.411571485987793,4259.0345675722465,2019
+2007,67,"(65,70]",HS,532.3322432962722,88.29907992319828,6.028740545873069,5255.901131849307,2019
+2007,67,"(65,70]",HS,532.3322432962722,88.29907992319828,6.028740545873069,5376.274673318734,2019
+2007,67,"(65,70]",HS,530.7581425768476,88.29907992319828,6.010913624904089,5059.6244045907515,2019
+2007,67,"(65,70]",HS,530.9012426422498,88.29907992319828,6.012534254083087,5295.052298599827,2019
+2007,67,"(65,70]",HS,530.9012426422498,88.29907992319828,6.012534254083087,5339.11985463051,2019
+2007,75,"(70,75]",HS,3073.50320470896,204.55953515540935,15.024981369721717,1248.9765366993229,2019
+2007,75,"(70,75]",HS,2871.5890124264224,214.86109447978248,13.364862630803675,1265.5551730687898,2019
+2007,75,"(70,75]",HS,3082.804708960105,259.0106344413816,11.902232182894384,1262.3847472613797,2019
+2007,75,"(70,75]",HS,3046.3141922825375,207.50283781951597,14.680831473409501,1355.908314309604,2019
+2007,75,"(70,75]",HS,3173.5444604316544,207.50283781951597,15.293981006621093,1299.9495081199866,2019
+2007,73,"(70,75]",College,9138.370176586004,195.72962716308953,46.688742573302704,1700.9048629553708,2019
+2007,73,"(70,75]",College,9138.370176586004,197.20127849514282,46.34031912126314,1703.1816371947357,2019
+2007,73,"(70,75]",College,9138.370176586004,195.72962716308953,46.688742573302704,1653.6259545477017,2019
+2007,73,"(70,75]",College,9138.370176586004,197.20127849514282,46.34031912126314,1637.3994135025387,2019
+2007,73,"(70,75]",College,9138.370176586004,195.72962716308953,46.688742573302704,1732.1422703407916,2019
+2007,85,"(80,85]",NoHS,153.83257030739045,17.659815984639657,8.710881837114984,11522.471954676845,2019
+2007,85,"(80,85]",NoHS,134.94336167429694,26.489723976959482,5.094177719317477,11541.00003443764,2019
+2007,85,"(80,85]",NoHS,144.10176586003925,11.331715256810448,12.716677272086676,11609.91610898346,2019
+2007,85,"(80,85]",NoHS,145.6758665794637,13.686357388095734,10.643874220774858,11547.002766347552,2019
+2007,85,"(80,85]",NoHS,117.04154349247874,29.433026641066096,3.976537816507727,11623.542097124384,2019
+2007,69,"(65,70]",College,88224.05232177895,3746.8242914077136,23.54635431506515,23.444626403206122,2019
+2007,69,"(65,70]",College,87866.30215827339,3746.8242914077136,23.45087341292465,20.92408750229236,2019
+2007,69,"(65,70]",College,88068.07325049052,3746.8242914077136,23.50472464173189,23.070266037116973,2019
+2007,69,"(65,70]",College,87674.5480706344,3746.8242914077136,23.399695649377335,22.949316040095788,2019
+2007,69,"(65,70]",College,88355.70438194899,3746.8242914077136,23.581491287052856,21.223032333521026,2019
+2007,51,"(50,55]",College,1017.0121648136036,157.4666925297036,6.45858592998491,7952.499725532844,2019
+2007,51,"(50,55]",College,891.0841072596469,229.57760780031555,3.881406883700537,8133.9667871199945,2019
+2007,51,"(50,55]",College,1130.2043165467626,175.12650851434324,6.453645002887706,7654.115519608184,2019
+2007,51,"(50,55]",College,945.6052321778941,236.93586446058208,3.990975508628454,8014.333298252954,2019
+2007,51,"(50,55]",College,989.9662524525834,272.25549642986135,3.6361662682083598,8080.233540092787,2019
+2007,40,"(35,40]",College,548.0732504905167,485.64493957759055,1.1285472282841569,7418.535071755769,2019
+2007,40,"(35,40]",College,548.2163505559189,485.64493957759055,1.1288418881348838,7589.767829490695,2019
+2007,40,"(35,40]",College,548.0732504905167,485.64493957759055,1.1285472282841569,7140.0259299676745,2019
+2007,40,"(35,40]",College,546.7853499018967,485.64493957759055,1.1258952896276144,7474.752808863619,2019
+2007,40,"(35,40]",College,548.5025506867233,485.64493957759055,1.1294312078363378,7536.480073734405,2019
+2007,52,"(50,55]",College,3450.2856769130153,375.2710896735927,9.194115325840958,2340.3688332622455,2019
+2007,52,"(50,55]",College,3450.4287769784173,376.742741005646,9.158580647813219,2379.934261023812,2019
+2007,52,"(50,55]",College,3451.7166775670376,375.2710896735927,9.197928570968013,2312.719397766389,2019
+2007,52,"(50,55]",College,3450.2856769130153,376.742741005646,9.158200812849392,2308.656846218023,2019
+2007,52,"(50,55]",College,3450.2856769130153,375.2710896735927,9.194115325840958,2389.4721072402554,2019
+2007,33,"(30,35]",NoHS,214.65009810333552,85.35577725909167,2.514769415686764,9080.747625066004,2019
+2007,33,"(30,35]",NoHS,212.7897972531066,85.35577725909167,2.4929747474174784,9284.115894121669,2019
+2007,33,"(30,35]",NoHS,225.81190320470898,85.35577725909167,2.645537425302476,8748.219407246197,2019
+2007,33,"(30,35]",NoHS,215.93799869195553,85.35577725909167,2.5298580321808846,9119.166114291487,2019
+2007,33,"(30,35]",NoHS,218.6568999345978,85.35577725909167,2.561711778112917,9197.705212146273,2019
+2007,44,"(40,45]",HS,19.118168737737083,110.37384990399784,0.17321284665132086,6995.1631531763105,2019
+2007,44,"(40,45]",HS,19.089548724656638,110.37384990399784,0.17295354598268114,7005.58256814997,2019
+2007,44,"(40,45]",HS,19.103858731196862,110.37384990399784,0.17308319631700103,7012.226992630621,2019
+2007,44,"(40,45]",HS,18.96075866579464,110.37384990399784,0.17178669297380253,7024.162998406333,2019
+2007,44,"(40,45]",HS,18.97506867233486,110.37384990399784,0.17191634330812236,7028.217654588492,2019
+2007,75,"(70,75]",College,911.5474166121649,169.23990318613005,5.386125845331198,9861.210177519515,2019
+2007,75,"(70,75]",College,907.1113145846958,169.23990318613005,5.3599139299143586,10085.460953774895,2019
+2007,75,"(70,75]",College,911.6905166775671,169.23990318613005,5.386971390989806,9495.867118595812,2019
+2007,75,"(70,75]",College,895.9495094833225,169.23990318613005,5.2939613685429565,9936.346912969666,2019
+2007,75,"(70,75]",College,878.0620013080444,169.23990318613005,5.18826816121699,10020.030036851513,2019
+2007,51,"(50,55]",HS,137.27589274035319,141.27852787711726,0.9716684821330703,7187.254656756105,2019
+2007,51,"(50,55]",HS,218.64258992805753,141.27852787711726,1.5475995766195327,7057.88692814542,2019
+2007,51,"(50,55]",HS,132.52497056899935,141.27852787711726,0.9380404266688589,7417.951739409121,2019
+2007,51,"(50,55]",HS,373.72013080444736,141.27852787711726,2.6452719774197084,7182.018980573639,2019
+2007,51,"(50,55]",HS,109.29982995421844,141.27852787711726,0.7736478543242354,7066.904506947741,2019
+2007,69,"(65,70]",HS,151.58589928057555,29.433026641066096,5.150197467938178,7187.848915686764,2019
+2007,69,"(65,70]",HS,152.51604970569002,29.433026641066096,5.181799736928642,7212.881875822085,2019
+2007,69,"(65,70]",HS,163.8467128842381,29.433026641066096,5.56676399210786,7162.739493107726,2019
+2007,69,"(65,70]",HS,151.3140091563113,67.69596127445202,2.2351999485295164,7169.569040811133,2019
+2007,69,"(65,70]",HS,158.55487246566383,29.433026641066096,5.386971390989806,7169.154715101203,2019
+2007,65,"(60,65]",College,230185.05551340748,7108.075933817462,32.383595456300135,28.216352633430365,2019
+2007,65,"(60,65]",College,246184.04350555918,5974.904408136418,41.20300956954462,25.108957653071553,2019
+2007,65,"(60,65]",College,224070.5614388489,5945.47138149535,37.687602388642354,27.849888526598374,2019
+2007,65,"(60,65]",College,244772.86221059517,6592.997967598804,37.126184994069156,27.620722454720227,2019
+2007,65,"(60,65]",College,245509.6415173316,6990.343827253198,35.121254059087214,25.16423465728726,2019
+2007,52,"(50,55]",College,1645.50765206017,211.91779181567586,7.764839553874822,1200.0731079162283,2019
+2007,52,"(50,55]",College,1624.0426422498367,211.91779181567586,7.6635502301874405,1230.7326130218698,2019
+2007,52,"(50,55]",College,1576.8196206671028,211.91779181567586,7.440713718075195,1174.4985978802254,2019
+2007,52,"(50,55]",College,1516.7175931981687,211.91779181567586,7.157103611750522,1189.439582339736,2019
+2007,52,"(50,55]",College,1545.3376062786135,211.91779181567586,7.2921560433337,1189.397483925937,2019
+2007,76,"(75,80]",College,6734.289077828646,94.1856852514115,71.50013359092404,5243.223405025408,2019
+2007,76,"(75,80]",College,6548.258992805756,94.1856852514115,69.52499177902007,5291.975973004401,2019
+2007,76,"(75,80]",College,6519.6389797253105,94.1856852514115,69.22112380795791,5112.547144833816,2019
+2007,76,"(75,80]",College,6741.444081098758,94.1856852514115,71.57610058368958,5135.290390243297,2019
+2007,76,"(75,80]",College,6662.739045127534,94.1856852514115,70.74046366326866,5242.715091217857,2019
+2007,41,"(40,45]",HS,363.6172661870504,70.63926393855863,5.147523429792832,9493.710530035296,2019
+2007,41,"(40,45]",HS,363.4741661216482,69.16761260650532,5.2549763165811925,9338.207067636004,2019
+2007,41,"(40,45]",HS,363.4741661216482,70.63926393855863,5.145497643319084,9748.165936122754,2019
+2007,41,"(40,45]",HS,363.4741661216482,69.16761260650532,5.2549763165811925,9369.7307387156,2019
+2007,41,"(40,45]",HS,363.6172661870504,69.16761260650532,5.2570452048948075,9290.551915275557,2019
+2007,40,"(35,40]",College,3831.361151079137,519.4929202148165,7.375194159517753,1655.8928917188477,2019
+2007,40,"(35,40]",College,2454.309221713538,473.87172892116416,5.179269139564665,834.981034342995,2019
+2007,40,"(35,40]",College,3669.9442773054284,501.8331042301769,7.313077288783497,1631.7803464525607,2019
+2007,40,"(35,40]",College,3567.6277305428384,562.1708088443623,6.346163255749091,1614.9107968192388,2019
+2007,40,"(35,40]",College,3180.828253760628,532.7377822032963,5.970720230514461,1629.4341100119332,2019
+2007,59,"(55,60]",HS,928.7194244604317,66.22430994239872,14.023844495597208,7489.582335461589,2019
+2007,59,"(55,60]",HS,930.1504251144539,64.7526586103454,14.364667722938028,7658.449001932776,2019
+2007,59,"(55,60]",HS,930.0073250490517,66.22430994239872,14.043292045745185,7210.744950648974,2019
+2007,59,"(55,60]",HS,930.0073250490517,66.22430994239872,14.043292045745185,7544.320683353889,2019
+2007,59,"(55,60]",HS,930.0073250490517,66.22430994239872,14.043292045745185,7606.707251839516,2019
+2007,48,"(45,50]",NoHS,-0.5724002616088947,73.58256660266524,-0.007779020059191055,6767.587005559055,2019
+2007,48,"(45,50]",NoHS,-0.5724002616088947,73.58256660266524,-0.007779020059191055,6725.222218688361,2019
+2007,48,"(45,50]",NoHS,-0.5724002616088947,73.58256660266524,-0.007779020059191055,6808.16425263995,2019
+2007,48,"(45,50]",NoHS,-0.5724002616088947,73.58256660266524,-0.007779020059191055,6793.900656679907,2019
+2007,48,"(45,50]",NoHS,-0.5724002616088947,73.58256660266524,-0.007779020059191055,6763.184741870534,2019
+2007,67,"(65,70]",College,236.8306082406802,80.94082326293177,2.9259723177184536,8577.389439134673,2019
+2007,67,"(65,70]",College,238.26160889470242,82.41247459498507,2.891086696105604,8336.91098861551,2019
+2007,67,"(65,70]",College,236.8306082406802,82.41247459498507,2.87372281204491,8779.740882410515,2019
+2007,67,"(65,70]",College,238.26160889470242,82.41247459498507,2.891086696105604,8355.715823750797,2019
+2007,67,"(65,70]",College,236.8306082406802,80.94082326293177,2.9259723177184536,8319.948785220518,2019
+2007,49,"(45,50]",College,221.26132112491823,82.41247459498507,2.6848037534645552,6119.72317314794,2019
+2007,49,"(45,50]",College,227.84392413342056,86.82742859114498,2.6241007920008474,6088.007082636981,2019
+2007,49,"(45,50]",College,232.99552648790058,91.2423825873049,2.5535888024949345,6144.346156938627,2019
+2007,49,"(45,50]",College,224.5526226291694,108.90219857194455,2.0619659251490887,6115.733881344004,2019
+2007,49,"(45,50]",College,226.57033355134075,92.71403391935819,2.443754456293095,6105.289427639173,2019
+2007,36,"(35,40]",College,-34.20091563113146,39.73458596543923,-0.860734163956788,10577.192972193932,2019
+2007,36,"(35,40]",College,-34.057815565729236,41.206237297492535,-0.8265208812890495,10439.37370786945,2019
+2007,36,"(35,40]",College,-34.20091563113146,39.73458596543923,-0.860734163956788,10757.508411414547,2019
+2007,36,"(35,40]",College,-34.20091563113146,39.73458596543923,-0.860734163956788,10525.23401510013,2019
+2007,36,"(35,40]",College,-34.057815565729236,41.206237297492535,-0.8265208812890495,10511.103348818027,2019
+2007,72,"(70,75]",HS,503.1398299542185,36.79128330133262,13.675517264057877,9315.793567259421,2019
+2007,72,"(70,75]",HS,503.2829300196207,36.79128330133262,13.679406774087472,9168.896647276244,2019
+2007,72,"(70,75]",HS,503.2829300196207,36.79128330133262,13.679406774087472,9648.55259508381,2019
+2007,72,"(70,75]",HS,503.1398299542185,36.79128330133262,13.675517264057877,9347.96261200699,2019
+2007,72,"(70,75]",HS,503.2829300196207,36.79128330133262,13.679406774087472,9075.452512310956,2019
+2007,76,"(75,80]",College,29156.924525833878,735.8256660266525,39.62477237750739,35.257040007931906,2019
+2007,76,"(75,80]",College,29156.924525833878,735.8256660266525,39.62477237750739,39.079456354394964,2019
+2007,76,"(75,80]",College,29158.355526487903,735.8256660266525,39.626717132522195,35.894775982471685,2019
+2007,76,"(75,80]",College,29158.355526487903,735.8256660266525,39.626717132522195,37.11800341321488,2019
+2007,76,"(75,80]",College,29156.924525833878,735.8256660266525,39.62477237750739,38.336516087797335,2019
+2007,45,"(40,45]",College,260.58521909744934,44.14953996159914,5.902331469911214,7285.360091245266,2019
+2007,45,"(40,45]",College,287.77423152387183,44.14953996159914,6.518170557930506,7111.350082536197,2019
+2007,45,"(40,45]",College,290.6362328319163,44.14953996159914,6.582995725090431,7457.745811895476,2019
+2007,45,"(40,45]",College,257.7232177894049,44.14953996159914,5.837506302751289,7253.736784788862,2019
+2007,45,"(40,45]",College,283.4812295618051,44.14953996159914,6.420932807190617,7165.120592382084,2019
+2007,42,"(40,45]",HS,41.871079136690646,42.67788862954583,0.9810953747065961,6343.271297971798,2019
+2007,42,"(40,45]",HS,20.391759319816874,44.14953996159914,0.46187931601446897,6274.518466078144,2019
+2007,42,"(40,45]",HS,107.12470896010466,44.14953996159914,2.4264060067960105,6466.0943036439185,2019
+2007,42,"(40,45]",HS,15.025506867233485,47.09284262570575,0.3190613696152581,6289.144677482089,2019
+2007,42,"(40,45]",HS,51.58757357750164,44.14953996159914,1.1684736380576566,6272.819556391727,2019
+2007,59,"(55,60]",HS,12398.18966644866,1030.1559324373134,12.035255320148446,152.59053229479773,2019
+2007,59,"(55,60]",HS,10552.198822759974,1028.68428110526,10.25795670895473,147.2298887154489,2019
+2007,59,"(55,60]",HS,9693.598430346632,1027.2126297732066,9.436798331117517,147.68495618586988,2019
+2007,59,"(55,60]",HS,12111.989535644212,1031.6275837693665,11.740660802602193,146.66629943674482,2019
+2007,59,"(55,60]",HS,9579.118378024854,1030.1559324373134,9.298707192183024,150.5440299712735,2019
+2007,70,"(65,70]",HS,198.65151079136692,36.79128330133262,5.399417823084511,11408.127356840889,2019
+2007,70,"(65,70]",HS,256.7644473512099,36.79128330133262,6.978947846103255,11267.987092323674,2019
+2007,70,"(65,70]",HS,177.90200130804448,36.79128330133262,4.83543886879316,11749.579744821902,2019
+2007,70,"(65,70]",HS,159.31330281229563,36.79128330133262,4.330191515948702,11413.293392032396,2019
+2007,70,"(65,70]",HS,287.3735513407456,36.79128330133262,7.8109140414337395,11272.080576156173,2019
+2007,64,"(60,65]",College,3976.7508175277962,301.6885230709275,13.181644356397527,3597.1004730035847,2019
+2007,64,"(60,65]",College,4693.682145192937,301.6885230709275,15.558040118382111,3705.452093274219,2019
+2007,64,"(60,65]",College,3442.9875735775017,301.6885230709275,11.412391623422975,3538.289962659346,2019
+2007,64,"(60,65]",College,3859.4087638979727,301.6885230709275,12.792693353437974,3521.7182323165025,2019
+2007,64,"(60,65]",College,3404.350555918901,301.6885230709275,11.28432239074117,3608.7151240288526,2019
+2007,64,"(60,65]",HS,370.84381948986265,38.262934633385925,9.691985809323855,12636.996666790832,2019
+2007,64,"(60,65]",HS,370.9869195552649,38.262934633385925,9.695725722813851,12406.47996119924,2019
+2007,64,"(60,65]",HS,370.9869195552649,38.262934633385925,9.695725722813851,13191.214836541296,2019
+2007,64,"(60,65]",HS,370.84381948986265,38.262934633385925,9.691985809323855,12639.543742415523,2019
+2007,64,"(60,65]",HS,370.84381948986265,38.262934633385925,9.691985809323855,12501.598247450758,2019
+2007,59,"(55,60]",College,18791.900588620014,737.2973173587056,25.487547758806624,260.40585426867017,2019
+2007,59,"(55,60]",College,17892.05875735775,718.1658500420127,24.9135471372122,253.54311034389826,2019
+2007,59,"(55,60]",College,19043.613603662525,674.0163100804136,28.25393587492048,255.61370364146555,2019
+2007,59,"(55,60]",College,15681.620667102681,784.3901599844114,19.99211803908189,253.2412681472311,2019
+2007,59,"(55,60]",College,15861.783649444082,803.5216273011043,19.740331946908732,254.84956397060847,2019
+2007,48,"(45,50]",HS,1226.9399607586658,44.14953996159914,27.79054916146005,5442.736050927107,2019
+2007,48,"(45,50]",HS,1226.7968606932636,44.14953996159914,27.787307903102054,5566.415666859445,2019
+2007,48,"(45,50]",HS,1226.9399607586658,44.14953996159914,27.79054916146005,5239.120076970985,2019
+2007,48,"(45,50]",HS,1226.9399607586658,44.14953996159914,27.79054916146005,5483.531018074377,2019
+2007,48,"(45,50]",HS,1226.7968606932636,44.14953996159914,27.787307903102054,5528.72575325396,2019
+2007,44,"(40,45]",College,186103.06605624594,43649.17850870102,4.263609818433311,58.59291559661182,2019
+2007,44,"(40,45]",College,182443.99738391105,38719.146546322445,4.7119839577466,51.95560518402711,2019
+2007,44,"(40,45]",College,170656.8449967299,37173.912647666475,4.590768978617121,57.492124158904765,2019
+2007,44,"(40,45]",College,180649.52256376718,37880.30528705206,4.768956353303608,57.138224014681725,2019
+2007,44,"(40,45]",College,170098.75474166122,40808.891437838145,4.168178765668333,52.761831603992995,2019
+2007,57,"(55,60]",College,936.2321778940484,331.1215497119936,2.827457707625415,5557.6686022870845,2019
+2007,57,"(55,60]",College,686.8803139306737,331.1215497119936,2.0744053491176144,5683.751198021235,2019
+2007,57,"(55,60]",College,633.7901896664487,331.1215497119936,1.9140711023420656,5348.726798750189,2019
+2007,57,"(55,60]",College,936.2321778940484,331.1215497119936,2.827457707625415,5598.568587097332,2019
+2007,57,"(55,60]",College,1308.864748201439,331.1215497119936,3.952822609521721,5644.575957085676,2019
+2007,32,"(30,35]",NoHS,37.92151733158928,27.96137530901279,1.356210734003704,7032.667562948549,2019
+2007,32,"(30,35]",NoHS,37.92151733158928,27.96137530901279,1.356210734003704,6958.475279804821,2019
+2007,32,"(30,35]",NoHS,37.92151733158928,27.96137530901279,1.356210734003704,7185.9089379856905,2019
+2007,32,"(30,35]",NoHS,37.92151733158928,27.96137530901279,1.356210734003704,7079.079454864036,2019
+2007,32,"(30,35]",NoHS,37.92151733158928,27.96137530901279,1.356210734003704,6945.508160528041,2019
+2007,78,"(75,80]",HS,131.6520601700458,47.09284262570575,2.7955853337717858,10099.757929012007,2019
+2007,78,"(75,80]",HS,99.31144538914323,37.08561356774327,2.677896786249302,9866.970142248229,2019
+2007,78,"(75,80]",HS,75.12753433616743,35.7611273688953,2.100815602404992,10439.09308881353,2019
+2007,78,"(75,80]",HS,63.90848920863309,27.90250925573066,2.2904208586726824,10068.480737078005,2019
+2007,78,"(75,80]",HS,140.58150425114454,40.323246498260545,3.4863637345571594,10099.320556350463,2019
+2007,45,"(40,45]",NoHS,-1.1448005232177894,14.569348187327716,-0.07857596019384905,7231.085332899599,2019
+2007,45,"(40,45]",NoHS,-1.1448005232177894,14.569348187327716,-0.07857596019384905,7239.711057327928,2019
+2007,45,"(40,45]",NoHS,-1.1448005232177894,14.716513320533048,-0.07779020059191055,7250.519419972634,2019
+2007,45,"(40,45]",NoHS,-1.1448005232177894,14.569348187327716,-0.07857596019384905,7261.5296696728565,2019
+2007,45,"(40,45]",NoHS,-1.1448005232177894,14.569348187327716,-0.07857596019384905,7266.049722114391,2019
+2007,49,"(45,50]",College,8078.4852321778935,732.8823633625458,11.022894854657036,1707.1296665171103,2019
+2007,49,"(45,50]",College,8005.3610987573575,638.6966781111344,12.533901260348204,1703.6502180452615,2019
+2007,49,"(45,50]",College,8055.446121648136,713.7508960458529,11.28607496855687,1693.3108372523216,2019
+2007,49,"(45,50]",College,8094.0831393067365,709.3359420496928,11.410789527904258,1685.4613390297454,2019
+2007,49,"(45,50]",College,8049.86521909745,656.3564940957739,12.264471048141765,1734.6787699112624,2019
+2007,39,"(35,40]",HS,24505.05621975147,1942.5797583103622,12.614697602463304,278.989750893786,2019
+2007,39,"(35,40]",HS,25168.611223021584,1942.5797583103622,12.956282034418503,313.5908421518299,2019
+2007,39,"(35,40]",HS,25891.83895356442,3487.8136569663325,7.423515560199078,281.7620585245213,2019
+2007,39,"(35,40]",HS,25393.56452583388,2869.720097503944,8.848794886972067,287.21735152886856,2019
+2007,39,"(35,40]",HS,25330.743597122302,2825.570557542345,8.964824300531625,301.5778877852406,2019
+2007,52,"(50,55]",HS,1047.4924787442774,125.0903632245309,8.373886299011549,534.2051937126923,2019
+2007,52,"(50,55]",HS,1047.4924787442774,145.69348187327716,7.1897003577371885,558.5312692270999,2019
+2007,52,"(50,55]",HS,1046.0614780902552,130.97696855274413,7.986606268635761,541.6745558463127,2019
+2007,52,"(50,55]",HS,1047.4924787442774,129.5053172206908,8.088412902454337,535.8201135798312,2019
+2007,52,"(50,55]",HS,1046.0614780902552,129.5053172206908,8.077363158052076,535.0738359747769,2019
+2007,61,"(60,65]",College,468.23772400261606,89.77073125525159,5.215928593376854,5098.1790672830775,2019
+2007,61,"(60,65]",College,480.4012295618051,89.77073125525159,5.351423819817683,5085.8735826348475,2019
+2007,61,"(60,65]",College,469.68303466317855,89.77073125525159,5.232028614401,5104.182277812462,2019
+2007,61,"(60,65]",College,468.5382341399608,89.77073125525159,5.219276122500688,5074.974187305814,2019
+2007,61,"(60,65]",College,468.3951340745586,89.77073125525159,5.217682061013148,5076.533676744631,2019
+2007,34,"(30,35]",HS,3138.8999345977763,235.46421312852877,13.330687890496547,3734.33116378945,2019
+2007,34,"(30,35]",HS,3138.8999345977763,235.46421312852877,13.330687890496547,3803.394005157592,2019
+2007,34,"(30,35]",HS,3139.0430346631783,235.46421312852877,13.331295626438669,3786.8843619878708,2019
+2007,34,"(30,35]",HS,3139.0430346631783,235.46421312852877,13.331295626438669,4065.3774803847955,2019
+2007,34,"(30,35]",HS,3139.0430346631783,235.46421312852877,13.331295626438669,3898.135001522295,2019
+2007,48,"(45,50]",HS,2068.6545454545453,95.65733658346481,21.625675764551133,3456.322388128809,2019
+2007,48,"(45,50]",HS,2049.9084368868544,95.65733658346481,21.42970429767536,3502.4685392944034,2019
+2007,48,"(45,50]",HS,2011.7007194244604,95.65733658346481,21.030281536943818,3491.7138019313315,2019
+2007,48,"(45,50]",HS,2357.8597776324395,95.65733658346481,24.649021829863656,3752.8179301993796,2019
+2007,48,"(45,50]",HS,2006.4060170045782,95.65733658346481,20.97493081729188,3597.2273852452004,2019
+2007,37,"(35,40]",HS,27.61831262262917,105.95889590783793,0.26065119295553363,7041.735760377591,2019
+2007,37,"(35,40]",HS,24.47011118378025,105.95889590783793,0.2309396580072345,7012.768302356589,2019
+2007,37,"(35,40]",HS,24.47011118378025,105.95889590783793,0.2309396580072345,6962.699944936797,2019
+2007,37,"(35,40]",HS,26.330412034009157,105.95889590783793,0.24849647411304765,6987.820261634626,2019
+2007,37,"(35,40]",HS,23.182210595160235,105.95889590783793,0.21878493916474845,7046.341687794256,2019
+2007,62,"(60,65]",College,24192.067756703727,2825.570557542345,8.561834597309,32.04040484669721,2019
+2007,62,"(60,65]",College,23373.821582733814,2825.570557542345,8.27224842088677,34.766153190009206,2019
+2007,62,"(60,65]",College,23644.123296272075,2825.570557542345,8.36791112264332,34.166826173768776,2019
+2007,62,"(60,65]",College,23988.76549378679,2825.570557542345,8.489883726227667,34.85327252227068,2019
+2007,62,"(60,65]",College,23499.74964028777,2825.570557542345,8.316815723309219,35.62944371157318,2019
+2007,34,"(30,35]",College,564.5297580117724,88.29907992319828,6.393382111147649,7705.897814944937,2019
+2007,34,"(30,35]",College,346.3021582733813,88.29907992319828,3.9219226131754907,8731.112304022401,2019
+2007,34,"(30,35]",College,304.08763897972534,88.29907992319828,3.4438370053710408,8873.941349624934,2019
+2007,34,"(30,35]",College,523.4600392413342,88.29907992319828,5.928261536775184,7762.897239502852,2019
+2007,34,"(30,35]",College,334.56795291039896,88.29907992319828,3.7890310204976436,8732.73710927196,2019
+2007,49,"(45,50]",College,9641.037776324396,890.3490558922493,10.828379850038456,150.14998852690852,2019
+2007,49,"(45,50]",College,6602.637017658601,1043.400794425793,6.327996924031652,144.87508346018373,2019
+2007,49,"(45,50]",College,8835.527508175279,1219.9989542721896,7.242241870154928,145.32287254929093,2019
+2007,49,"(45,50]",College,7189.3472858077175,860.9160292511832,8.350811277217066,144.3205082682719,2019
+2007,49,"(45,50]",College,9517.556729888816,809.4082326293176,11.758660643926937,148.1362181063178,2019
+2007,34,"(30,35]",HS,11.734205362982342,52.979447953918964,0.22148598779641204,5190.827989125714,2019
+2007,34,"(30,35]",HS,18.030608240680184,52.979447953918964,0.34033212758960874,5156.0190021841,2019
+2007,34,"(30,35]",HS,12.02040549378679,52.979447953918964,0.22688808505973915,5151.979411964245,2019
+2007,34,"(30,35]",HS,13.880706344015696,52.979447953918964,0.26200171727136545,5172.092203864917,2019
+2007,34,"(30,35]",HS,20.74950948332243,53.68584059330456,0.3864987351229108,5195.111435440267,2019
+2007,39,"(35,40]",HS,239.005729234794,66.22430994239872,3.609033139683583,7939.1347011375765,2019
+2007,39,"(35,40]",HS,239.005729234794,66.22430994239872,3.609033139683583,7806.019989790198,2019
+2007,39,"(35,40]",HS,239.43502943100066,66.22430994239872,3.615515656399576,8026.708704584596,2019
+2007,39,"(35,40]",HS,239.005729234794,66.22430994239872,3.609033139683583,7842.9369574136335,2019
+2007,39,"(35,40]",HS,240.43672988881622,66.22430994239872,3.630641528736892,7852.880179076732,2019
+2007,77,"(75,80]",HS,68.54493132766514,14.716513320533048,4.657688260440644,9123.409464476894,2019
+2007,77,"(75,80]",HS,68.61648136036625,14.716513320533048,4.662550147977639,9155.378936274898,2019
+2007,77,"(75,80]",HS,72.76638325703074,14.716513320533048,4.944539625123315,9088.472592292232,2019
+2007,77,"(75,80]",HS,68.90268149117071,14.716513320533048,4.681997698125617,9100.13146627745,2019
+2007,77,"(75,80]",HS,71.9077828646174,14.716513320533048,4.886196974679382,9099.743950977243,2019
+2007,73,"(70,75]",College,5.967272727272727,26.489723976959482,0.22526745588074099,9043.103536471583,2019
+2007,73,"(70,75]",College,5.9386527141922825,45.62119129365245,0.13017311792597933,9096.494207863474,2019
+2007,73,"(70,75]",College,5.952962720732505,26.489723976959482,0.2247272461544083,9150.085564413535,2019
+2007,73,"(70,75]",College,5.995892740353172,26.489723976959482,0.22634787533340645,9179.106902920834,2019
+2007,73,"(70,75]",College,6.010202746893395,44.14953996159914,0.1361328510358435,8994.792723911854,2019
+2007,52,"(50,55]",HS,699.1439895356442,83.88412592703838,8.334639978769678,6522.710278048886,2019
+2007,52,"(50,55]",HS,650.4327272727273,80.94082326293177,8.035904517054796,6668.46447075874,2019
+2007,52,"(50,55]",HS,631.872648790059,88.29907992319828,7.156050202784173,6282.6261743299,2019
+2007,52,"(50,55]",HS,656.1853499018966,91.2423825873049,7.191672677705762,6551.27552076889,2019
+2007,52,"(50,55]",HS,581.74469587966,108.90219857194455,5.34190037949821,6606.543452570278,2019
+2007,57,"(55,60]",HS,1778.6336429038588,217.8043971438891,8.166197130211435,2926.6820795249023,2019
+2007,57,"(55,60]",HS,1778.6336429038588,217.8043971438891,8.166197130211435,2965.255847141191,2019
+2007,57,"(55,60]",HS,1777.2026422498366,217.8043971438891,8.159627011918198,2957.0874174061414,2019
+2007,57,"(55,60]",HS,1778.6193328973186,217.8043971438891,8.166131429028502,3176.012907923714,2019
+2007,57,"(55,60]",HS,1778.6336429038588,217.8043971438891,8.166197130211435,3044.565308480225,2019
+2007,29,"(25,30]",HS,0.0429300196206671,16.18816465258635,0.002651938656542405,7048.798359568779,2019
+2007,29,"(25,30]",HS,0.0429300196206671,16.18816465258635,0.002651938656542405,7056.640447033109,2019
+2007,29,"(25,30]",HS,0.050085022890778284,16.18816465258635,0.003093928432632806,7062.171256434229,2019
+2007,29,"(25,30]",HS,0.050085022890778284,16.18816465258635,0.003093928432632806,7072.954491448331,2019
+2007,29,"(25,30]",HS,0.0429300196206671,16.18816465258635,0.002651938656542405,7077.733096188138,2019
+2007,65,"(60,65]",HS,14415.757488554611,250.1807264490618,57.62137512815057,3236.2586689457466,2019
+2007,65,"(60,65]",HS,14311.43754087639,251.6523777811151,56.86986813740479,3236.8254962266756,2019
+2007,65,"(60,65]",HS,14437.365598430348,250.1807264490618,57.707745130278354,3198.0883308072166,2019
+2007,65,"(60,65]",HS,14460.261608894702,251.6523777811151,57.46125562728481,3173.5404468281477,2019
+2007,65,"(60,65]",HS,14358.517462393722,251.6523777811151,57.056951295261065,3234.3894196575925,2019
+2007,52,"(50,55]",College,98821.90006540222,16144.015112624753,6.1212715285507064,23.404783135871885,2019
+2007,52,"(50,55]",College,96257.689993459775,16276.463732509552,5.9139191150717165,21.44574749038843,2019
+2007,52,"(50,55]",College,101325.72190974494,15805.535306252496,6.410774449990416,21.932647800491637,2019
+2007,52,"(50,55]",College,103389.6541530412,16909.273805292472,6.114375776485507,22.220136352616485,2019
+2007,52,"(50,55]",College,94374.35003270111,19057.884750090296,4.951984507737879,21.171966886270983,2019
+2007,50,"(45,50]",College,956.1946370176586,88.29907992319828,10.82904417406555,8342.861404096388,2019
+2007,50,"(45,50]",College,956.1946370176586,88.29907992319828,10.82904417406555,8533.23607828461,2019
+2007,50,"(45,50]",College,956.1946370176586,88.29907992319828,10.82904417406555,8029.830513041062,2019
+2007,50,"(45,50]",College,956.1946370176586,88.29907992319828,10.82904417406555,8407.730180597913,2019
+2007,50,"(45,50]",College,957.6256376716809,88.29907992319828,10.845250465855532,8476.865245438083,2019
+2007,79,"(75,80]",College,2134.4805755395687,138.482390346216,15.413371838854117,609.1403054141417,2019
+2007,79,"(75,80]",College,1976.9274035317203,139.95404167826928,14.12554707120458,596.6629362113905,2019
+2007,79,"(75,80]",College,2005.5474166121649,139.95404167826928,14.330042866661756,590.9427475023626,2019
+2007,79,"(75,80]",College,2034.4536298234138,139.95404167826928,14.536583620073506,599.8832726378912,2019
+2007,79,"(75,80]",College,2108.0070634401573,138.482390346216,15.222203040906408,605.9707793496317,2019
+2007,61,"(60,65]",HS,1000.2694571615435,338.4798063722601,2.955182076833993,447.1473187410662,2019
+2007,61,"(60,65]",HS,1000.2694571615435,338.4798063722601,2.955182076833993,443.9759104876055,2019
+2007,61,"(60,65]",HS,1000.2694571615435,338.4798063722601,2.955182076833993,437.0898618217017,2019
+2007,61,"(60,65]",HS,1000.2694571615435,338.4798063722601,2.955182076833993,441.4604926854636,2019
+2007,61,"(60,65]",HS,1000.2694571615435,338.4798063722601,2.955182076833993,441.22055852075243,2019
+2007,69,"(65,70]",NoHS,946.177632439503,86.82742859114498,10.897220472748149,3599.813665490282,2019
+2007,69,"(65,70]",NoHS,946.0345323741008,86.82742859114498,10.89557237527798,3649.883623429996,2019
+2007,69,"(65,70]",NoHS,946.0345323741008,86.82742859114498,10.89557237527798,3650.993576954871,2019
+2007,69,"(65,70]",NoHS,946.3207325049052,86.82742859114498,10.898868570218315,3622.6922689215025,2019
+2007,69,"(65,70]",NoHS,946.3207325049052,86.82742859114498,10.898868570218315,3693.111721324939,2019
+2007,80,"(75,80]",College,318513.90001308045,52376.07090777712,6.081286635148983,39.63302457854834,2019
+2007,80,"(75,80]",College,310321.4212688031,68005.00805418321,4.5632142418328,36.10697952027667,2019
+2007,80,"(75,80]",College,355400.94697187707,48623.360011041186,7.309263425875425,37.133974846046335,2019
+2007,80,"(75,80]",College,360767.9006147809,35937.72552874171,10.038695974965128,37.51592644985726,2019
+2007,80,"(75,80]",College,324645.4373054284,80675.92602316216,4.024068310194819,35.371278683094864,2019
+2007,68,"(65,70]",College,76093.60287769785,10434.00794425793,7.29284502026605,41.111695564748175,2019
+2007,68,"(65,70]",College,80680.67547416613,10522.30702418113,7.667584236874602,36.461175840277114,2019
+2007,68,"(65,70]",College,79677.40091563114,10375.141890975798,7.679644457193766,40.44471953436614,2019
+2007,68,"(65,70]",College,79805.90477436232,10463.440970898997,7.627118554624538,40.121991843107445,2019
+2007,68,"(65,70]",College,75868.50647482014,10404.574917616865,7.2918410483412215,36.71388324465462,2019
+2007,35,"(30,35]",NoHS,15.669457161543493,54.451099285972276,0.28777118124372314,5902.109330680289,2019
+2007,35,"(30,35]",NoHS,16.356337475474167,73.58256660266524,0.2222854981913844,5796.8646215064555,2019
+2007,35,"(30,35]",NoHS,13.880706344015696,58.86605328213219,0.23580154554422883,5978.935404797937,2019
+2007,35,"(30,35]",NoHS,15.71238718116416,72.11091527061193,0.21789193941305562,5857.082559839763,2019
+2007,35,"(30,35]",NoHS,13.923636363636364,50.03614528981236,0.2782715631467977,5847.981277774374,2019
+2007,69,"(65,70]",HS,365.0768868541531,73.58256660266524,4.961458993752055,5781.51644197256,2019
+2007,69,"(65,70]",HS,300.30979725310664,73.58256660266524,4.0812628740545875,7192.996099090396,2019
+2007,69,"(65,70]",HS,315.2780640941792,73.58256660266524,4.284684248602432,5564.973844164487,2019
+2007,69,"(65,70]",HS,300.2382472204055,73.58256660266524,4.080290496547189,7230.249824028317,2019
+2007,69,"(65,70]",HS,316.422864617397,73.58256660266524,4.300242288720815,5874.578671543192,2019
+2007,32,"(30,35]",HS,3.4773315892740353,33.84798063722601,0.10273379752083839,9978.36422983414,2019
+2007,32,"(30,35]",HS,3.470176586003924,32.3763293051727,0.1071825207019222,9986.848049269938,2019
+2007,32,"(30,35]",HS,3.470176586003924,33.84798063722601,0.10252241110618646,9989.082061734205,2019
+2007,32,"(30,35]",HS,3.470176586003924,32.3763293051727,0.1071825207019222,9997.700753740817,2019
+2007,32,"(30,35]",HS,3.4773315892740353,32.3763293051727,0.10740351558996741,10140.156044573283,2019
+2007,66,"(65,70]",College,11249.239241334206,447.38200494420465,25.144594813859708,20.695870672291985,2019
+2007,66,"(65,70]",College,11249.239241334206,447.38200494420465,25.144594813859708,19.466218002999717,2019
+2007,66,"(65,70]",College,11250.670241988228,447.38200494420465,25.147793424081414,21.5081616316051,2019
+2007,66,"(65,70]",College,11249.239241334206,447.38200494420465,25.144594813859708,21.283926175414084,2019
+2007,66,"(65,70]",College,11250.670241988228,447.38200494420465,25.147793424081414,20.66536010145476,2019
+2007,57,"(55,60]",College,263.332740353172,155.99504119765032,1.6880840463353042,6548.291663944621,2019
+2007,57,"(55,60]",College,263.47584041857425,155.99504119765032,1.6890013836064353,6696.847770775942,2019
+2007,57,"(55,60]",College,263.332740353172,155.99504119765032,1.6880840463353042,6302.107163165433,2019
+2007,57,"(55,60]",College,263.332740353172,155.99504119765032,1.6880840463353042,6596.481840213531,2019
+2007,57,"(55,60]",College,263.332740353172,155.99504119765032,1.6880840463353042,6650.68976424317,2019
+2007,38,"(35,40]",HS,187.31798561151078,105.95889590783793,1.7678363294238006,6093.686690128316,2019
+2007,38,"(35,40]",HS,187.03178548070633,105.95889590783793,1.7651352807921372,6027.639031603454,2019
+2007,38,"(35,40]",HS,187.03178548070633,105.95889590783793,1.7651352807921372,6211.677058149474,2019
+2007,38,"(35,40]",HS,187.17488554610856,105.95889590783793,1.7664858051079688,6041.689754893139,2019
+2007,38,"(35,40]",HS,188.6058862001308,104.48724457578463,1.8050613447207415,6026.0069678216105,2019
+2007,45,"(40,45]",College,11717.462655330282,1030.1559324373134,11.374455348334665,171.35295289172143,2019
+2007,45,"(40,45]",College,7933.46762589928,1030.1559324373134,7.701229858599144,164.84834360173596,2019
+2007,45,"(40,45]",College,8613.62223675605,1030.1559324373134,8.361474186122985,166.34646040433012,2019
+2007,45,"(40,45]",College,7813.692871157619,1030.1559324373134,7.584961290928735,164.70321197331512,2019
+2007,45,"(40,45]",College,7828.0028776978415,1030.1559324373134,7.59885239817729,166.5506283263826,2019
+2007,70,"(65,70]",College,422337.09012426424,40543.99419806855,10.416760816929669,4.29506195022647,2019
+2007,70,"(65,70]",College,393498.4201438849,46886.81143921828,8.39251823839624,5.846651618775497,2019
+2007,70,"(65,70]",College,448393.89483322436,47887.53434501454,9.363478428492229,3.454303916812008,2019
+2007,70,"(65,70]",College,391746.8753433617,43560.87942877782,8.993089223184052,3.9635402173000216,2019
+2007,70,"(65,70]",College,435428.74270765204,43295.98218900823,10.057024247811071,2.589957633235665,2019
+2007,28,"(25,30]",College,5.867102681491171,100.07229057962472,0.058628643828462,6603.151559870594,2019
+2007,28,"(25,30]",College,5.7240026160889474,100.07229057962472,0.057198676905816585,6632.2095746129025,2019
+2007,28,"(25,30]",College,5.7240026160889474,100.07229057962472,0.057198676905816585,6639.863656535565,2019
+2007,28,"(25,30]",College,5.7240026160889474,100.07229057962472,0.057198676905816585,6627.8360735124415,2019
+2007,28,"(25,30]",College,5.867102681491171,100.07229057962472,0.058628643828462,6636.20739808706,2019
+2007,76,"(75,80]",NoHS,42.35761935905821,27.96137530901279,1.5148618010003636,10602.47557938618,2019
+2007,76,"(75,80]",NoHS,42.35761935905821,27.96137530901279,1.5148618010003636,10639.210028949983,2019
+2007,76,"(75,80]",NoHS,42.35761935905821,27.96137530901279,1.5148618010003636,10564.253564775248,2019
+2007,76,"(75,80]",NoHS,42.35761935905821,27.96137530901279,1.5148618010003636,10574.032022585727,2019
+2007,76,"(75,80]",NoHS,42.35761935905821,27.96137530901279,1.5148618010003636,10574.429877397477,2019
+2007,45,"(40,45]",NoHS,38.66563767168084,58.86605328213219,0.6568410062479447,6022.620435493713,2019
+2007,45,"(40,45]",NoHS,38.52253760627862,58.86605328213219,0.6544100624794476,6021.0039430534725,2019
+2007,45,"(40,45]",NoHS,38.52253760627862,58.86605328213219,0.6544100624794476,6108.661871059855,2019
+2007,45,"(40,45]",NoHS,38.52253760627862,58.86605328213219,0.6544100624794476,6067.972212743774,2019
+2007,45,"(40,45]",NoHS,38.52253760627862,58.86605328213219,0.6544100624794476,6017.2298932222475,2019
+2007,30,"(25,30]",NoHS,7.441203400915631,30.9046779731194,0.24077919230829456,5963.906556452809,2019
+2007,30,"(25,30]",NoHS,7.441203400915631,29.433026641066096,0.25281815192370927,5954.657055660588,2019
+2007,30,"(25,30]",NoHS,7.441203400915631,29.433026641066096,0.25281815192370927,6021.871847485322,2019
+2007,30,"(25,30]",NoHS,7.441203400915631,29.433026641066096,0.25281815192370927,5991.026248759856,2019
+2007,30,"(25,30]",NoHS,7.441203400915631,29.433026641066096,0.25281815192370927,5958.021563677768,2019
+2007,26,"(25,30]",College,117.7713538260301,191.31467316692962,0.6155897604532922,6554.793092608701,2019
+2007,26,"(25,30]",College,117.7713538260301,191.31467316692962,0.6155897604532922,6560.081980869772,2019
+2007,26,"(25,30]",College,117.9144538914323,191.31467316692962,0.6163377431512912,6587.326399456065,2019
+2007,26,"(25,30]",College,117.9144538914323,191.31467316692962,0.6163377431512912,6563.355369543584,2019
+2007,26,"(25,30]",College,117.9144538914323,191.31467316692962,0.6163377431512912,6504.724461069595,2019
+2007,86,"(85,90]",HS,619.6232831916285,38.262934633385925,16.193825411681377,7944.013216741284,2019
+2007,86,"(85,90]",HS,618.1922825376063,38.262934633385925,16.15642627678142,8125.772927683228,2019
+2007,86,"(85,90]",HS,618.1922825376063,38.262934633385925,16.15642627678142,7646.7977787355385,2019
+2007,86,"(85,90]",HS,618.1922825376063,36.79128330133262,16.80268332785268,8004.944108074958,2019
+2007,86,"(85,90]",HS,618.1922825376063,38.262934633385925,16.15642627678142,8071.9476750043,2019
+2007,36,"(35,40]",College,513.0137344669719,151.5800872014904,3.3844401592475646,6442.437508969526,2019
+2007,36,"(35,40]",College,513.0137344669719,151.5800872014904,3.3844401592475646,6591.399085981719,2019
+2007,36,"(35,40]",College,511.58273381294964,151.5800872014904,3.374999600923304,6199.177173463754,2019
+2007,36,"(35,40]",College,511.58273381294964,151.5800872014904,3.374999600923304,6492.11276572343,2019
+2007,36,"(35,40]",College,511.58273381294964,151.5800872014904,3.374999600923304,6545.200282518936,2019
+2007,56,"(55,60]",HS,16190.913799869195,176.59815984639656,91.68223391428258,1542.9609260872785,2019
+2007,56,"(55,60]",HS,16083.01635055592,176.59815984639656,91.0712567138003,1542.5990266670387,2019
+2007,56,"(55,60]",HS,16351.901373446697,176.59815984639656,92.59383782746903,1499.778313297824,2019
+2007,56,"(55,60]",HS,15670.60196206671,176.59815984639656,88.73593006686397,1483.0413412138873,2019
+2007,56,"(55,60]",HS,16127.377370830609,176.59815984639656,91.322454236545,1568.6474338476298,2019
+2007,45,"(40,45]",HS,553.0102027468934,178.06981117844987,3.1055808903660984,5420.249236038721,2019
+2007,45,"(40,45]",HS,540.9897972531066,157.4666925297036,3.4355823988051153,5543.417866208953,2019
+2007,45,"(40,45]",HS,540.1311968606933,151.5800872014904,3.563338739492311,5217.474507124033,2019
+2007,45,"(40,45]",HS,555.1567037279267,170.71155451818333,3.252015982718933,5460.875657648228,2019
+2007,45,"(40,45]",HS,547.5724002616089,169.23990318613005,3.2354804626624536,5505.883669526439,2019
+2007,55,"(50,55]",HS,7.841883584041858,176.59815984639656,0.04440523950454894,7469.099835344854,2019
+2007,55,"(50,55]",HS,8.271183780248528,176.59815984639656,0.046836183273046145,7411.424467230872,2019
+2007,55,"(50,55]",HS,7.269483322432962,176.59815984639656,0.04116398114655267,7567.047321701679,2019
+2007,55,"(50,55]",HS,8.128083714846305,176.59815984639656,0.046025868683547085,7459.143546853609,2019
+2007,55,"(50,55]",HS,7.269483322432962,176.59815984639656,0.04116398114655267,7361.569197894157,2019
+2007,44,"(40,45]",HS,6.725703073904513,23.546421312852875,0.2856358927984216,5018.976017307901,2019
+2007,44,"(40,45]",HS,6.725703073904513,23.546421312852875,0.2856358927984216,5050.234696882668,2019
+2007,44,"(40,45]",HS,6.725703073904513,23.546421312852875,0.2856358927984216,5015.796115552808,2019
+2007,44,"(40,45]",HS,6.725703073904513,23.546421312852875,0.2856358927984216,5027.349823331504,2019
+2007,44,"(40,45]",HS,6.725703073904513,23.546421312852875,0.2856358927984216,5049.891440452749,2019
+2007,42,"(40,45]",HS,817.4591236102027,117.73210656426438,6.94338313877014,6114.373472171529,2019
+2007,42,"(40,45]",HS,817.602223675605,117.73210656426438,6.94459861065439,6255.1680739762,2019
+2007,42,"(40,45]",HS,817.602223675605,117.73210656426438,6.94459861065439,5884.174255850815,2019
+2007,42,"(40,45]",HS,817.602223675605,117.73210656426438,6.94459861065439,6159.806879063954,2019
+2007,42,"(40,45]",HS,817.4591236102027,117.73210656426438,6.94338313877014,6210.294737585164,2019
+2007,36,"(35,40]",College,442.8947024198823,189.8430218348763,2.332952236743829,3008.7190244894314,2019
+2007,36,"(35,40]",College,460.0667102681491,189.8430218348763,2.4234059583623297,3032.1696268311352,2019
+2007,36,"(35,40]",College,454.0565075212557,189.8430218348763,2.3917471557958545,3054.018557493346,2019
+2007,36,"(35,40]",College,835.561281883584,188.371370502823,4.435712707579744,3028.1459082308,2019
+2007,36,"(35,40]",College,455.34440810987576,188.371370502823,2.4172697097994083,3080.1106811169147,2019
+2007,26,"(25,30]",HS,359.6104643557881,27.96137530901279,12.860971979438895,6676.560656128779,2019
+2007,26,"(25,30]",HS,359.59615434924785,27.96137530901279,12.860460201803422,6678.696878851377,2019
+2007,26,"(25,30]",HS,359.6104643557881,27.96137530901279,12.860971979438895,6744.423209964436,2019
+2007,26,"(25,30]",HS,359.6104643557881,27.96137530901279,12.860971979438895,6663.210548736226,2019
+2007,26,"(25,30]",HS,359.6104643557881,29.433026641066096,12.217923380466951,6649.800622549093,2019
+2007,29,"(25,30]",College,7.01190320470896,29.433026641066096,0.23823248931272606,6507.740800101468,2019
+2007,29,"(25,30]",College,9.30150425114454,29.433026641066096,0.3160226899046366,6482.388326740851,2019
+2007,29,"(25,30]",College,7.01190320470896,29.433026641066096,0.23823248931272606,6487.803336641543,2019
+2007,29,"(25,30]",College,6.296402877697842,29.433026641066096,0.21392305162775402,6507.5663247629855,2019
+2007,29,"(25,30]",College,1.8603008502289078,29.433026641066096,0.06320453798092732,6507.363550124425,2019
+2007,29,"(25,30]",NoHS,6.310712884238065,17.659815984639657,0.3573487339690891,5892.880759331349,2019
+2007,29,"(25,30]",NoHS,6.310712884238065,17.659815984639657,0.3573487339690891,5914.148153632824,2019
+2007,29,"(25,30]",NoHS,6.303557880967953,17.659815984639657,0.35694357667433957,5911.421587949435,2019
+2007,29,"(25,30]",NoHS,6.303557880967953,17.659815984639657,0.35694357667433957,5926.786166532566,2019
+2007,29,"(25,30]",NoHS,6.310712884238065,17.659815984639657,0.3573487339690891,5930.1930313786925,2019
+2007,62,"(60,65]",College,2876.7406147809024,454.7402616044712,6.326118133087289,2282.9906255997657,2019
+2007,62,"(60,65]",College,2995.370568999346,450.32530760831133,6.651570583291958,2263.825299726515,2019
+2007,62,"(60,65]",College,2837.817396991498,503.3047555622302,5.638367938370535,2242.5806093166857,2019
+2007,62,"(60,65]",College,2923.248136036625,504.77640689428347,5.7911742627243035,2219.877738345972,2019
+2007,62,"(60,65]",College,2882.464617396992,506.24805822633687,5.6937791080045574,2249.7119521955938,2019
+2007,84,"(80,85]",College,10655.302419882275,144.66332594083985,73.65586509631174,2250.517588138145,2019
+2007,84,"(80,85]",College,10654.730019620667,144.66332594083985,73.65190832110362,2257.2813511123636,2019
+2007,84,"(80,85]",College,10655.159319816874,144.66332594083985,73.65487590250972,2231.080092417566,2019
+2007,84,"(80,85]",College,10655.874820143885,144.66332594083985,73.65982187151988,2213.4748451816404,2019
+2007,84,"(80,85]",College,10655.016219751471,144.66332594083985,73.65388670870767,2246.018175567695,2019
+2007,64,"(60,65]",College,58964.381948986265,3899.8760299412575,15.119552902781484,23.530065098899122,2019
+2007,64,"(60,65]",College,58964.381948986265,3899.8760299412575,15.119552902781484,21.56054305711446,2019
+2007,64,"(60,65]",College,58964.381948986265,3885.1595166207244,15.17682393650414,22.05004966466952,2019
+2007,64,"(60,65]",College,58964.381948986265,3885.1595166207244,15.17682393650414,22.33907709583244,2019
+2007,64,"(60,65]",College,58964.381948986265,3899.8760299412575,15.119552902781484,21.285296950354944,2019
+2007,35,"(30,35]",College,174.5963897972531,61.8093559462388,2.824756658993752,8028.317806509005,2019
+2007,35,"(30,35]",College,174.5963897972531,61.8093559462388,2.824756658993752,7893.70777057331,2019
+2007,35,"(30,35]",College,174.5963897972531,61.8093559462388,2.824756658993752,8116.875559680802,2019
+2007,35,"(30,35]",College,174.5963897972531,61.8093559462388,2.824756658993752,7931.039439538584,2019
+2007,35,"(30,35]",College,176.02739045127535,61.8093559462388,2.847908504408011,7941.094356924031,2019
+2007,49,"(45,50]",HS,706.7569130150425,125.0903632245309,5.649970907402751,7216.387389899399,2019
+2007,49,"(45,50]",HS,706.7569130150425,125.0903632245309,5.649970907402751,7380.767330630968,2019
+2007,49,"(45,50]",HS,706.6281229561805,125.0903632245309,5.648941331218445,6947.187004103577,2019
+2007,49,"(45,50]",HS,706.6996729888816,125.0903632245309,5.649513317987504,7271.540321805025,2019
+2007,49,"(45,50]",HS,706.8427730542838,125.0903632245309,5.65065729152562,7331.920792104598,2019
+2007,56,"(55,60]",HS,261.30071942446045,42.67788862954583,6.122625270725375,9263.009276791898,2019
+2007,56,"(55,60]",HS,262.7317200784826,36.79128330133262,7.1411404143373876,9289.4064528067,2019
+2007,56,"(55,60]",HS,261.30071942446045,38.262934633385925,6.829082032732148,9232.636488798877,2019
+2007,56,"(55,60]",HS,259.8697187704382,39.73458596543923,6.54013908680137,9205.39964852723,2019
+2007,56,"(55,60]",HS,261.30071942446045,41.206237297492535,6.341290458965566,9205.5630335729,2019
+2007,72,"(70,75]",College,1805.4649051667757,316.4050363914605,5.706182574581495,2926.1304761262663,2019
+2007,72,"(70,75]",College,1610.7915761935906,406.1757676467121,3.9657500631466576,1355.5477514436202,2019
+2007,72,"(70,75]",College,1329.7573577501635,298.7452204068208,4.451141865765572,1300.3618190281054,2019
+2007,72,"(70,75]",College,519.9827076520602,366.4411816812729,1.4190072886085612,1282.20514966718,2019
+2007,72,"(70,75]",College,785.5191890124264,258.2748087753549,3.041408462316059,1275.9830250703023,2019
+2007,48,"(45,50]",HS,56.66762589928057,61.8093559462388,0.91681307840466,5627.640136796416,2019
+2007,48,"(45,50]",HS,12.950555918901243,61.8093559462388,0.20952420099904479,5614.42814485272,2019
+2007,48,"(45,50]",HS,8.042223675604971,61.8093559462388,0.1301133712281361,5688.230144273795,2019
+2007,48,"(45,50]",HS,7.841883584041858,61.8093559462388,0.12687211287013983,5684.934988243096,2019
+2007,48,"(45,50]",HS,1.0160104643557881,61.8093559462388,0.016437810244123954,5696.450654378237,2019
+2007,80,"(75,80]",HS,40422.90647482014,5141.655423927837,7.8618466509255285,24.84203292106395,2019
+2007,80,"(75,80]",HS,57414.60824068018,3278.6037036016346,17.51190855351279,27.613217944409246,2019
+2007,80,"(75,80]",HS,71658.78875081752,2977.444975010246,24.067208412666275,24.737227961287456,2019
+2007,80,"(75,80]",HS,97751.654676259,2759.3462475999463,35.42565734955607,24.98625194645153,2019
+2007,80,"(75,80]",HS,42381.946370176585,4698.982703246202,9.019387609343154,26.973400547686946,2019
+2007,55,"(50,55]",HS,7450.504905166776,415.00567563903195,17.95277834139106,1512.2011514587318,2019
+2007,55,"(50,55]",HS,7254.171615434925,415.00567563903195,17.47969254701118,1511.846466702464,2019
+2007,55,"(50,55]",HS,7487.567822105952,416.4773269710853,17.978332401815933,1469.8794078039505,2019
+2007,55,"(50,55]",HS,8204.642249836494,415.00567563903195,19.769951910182584,1453.4760964631746,2019
+2007,55,"(50,55]",HS,8214.373054283846,415.00567563903195,19.793399311070218,1537.3755845603255,2019
+2007,52,"(50,55]",College,675.3607586657946,63.28100727829211,10.672408479462844,7239.48580861046,2019
+2007,52,"(50,55]",College,708.2737737083062,63.28100727829211,11.192517378769224,7421.213279943387,2019
+2007,52,"(50,55]",College,791.2718116415958,63.28100727829211,12.504096342237482,6992.595168830126,2019
+2007,52,"(50,55]",College,709.7047743623284,63.28100727829211,11.21513080917385,7317.091990036077,2019
+2007,52,"(50,55]",College,791.2718116415958,63.28100727829211,12.504096342237482,7387.070449439148,2019
+2007,82,"(80,85]",HS,7546.281778940484,82.41247459498507,91.56722712218725,2213.9448038555647,2019
+2007,82,"(80,85]",HS,5991.184748201439,98.60063924757141,60.762128865701094,2214.1468057182074,2019
+2007,82,"(80,85]",HS,7570.995160235448,133.92027121685072,56.53360086148643,2151.572787347011,2019
+2007,82,"(80,85]",HS,7968.069221713538,66.22430994239872,120.31939975885125,2128.7316806421195,2019
+2007,82,"(80,85]",HS,7838.792622629169,70.63926393855863,110.9693417735394,2251.8345662176825,2019
+2007,43,"(40,45]",HS,71.97933289731851,67.69596127445202,1.0632736656992123,9574.610164296679,2019
+2007,43,"(40,45]",HS,73.41033355134076,67.69596127445202,1.0844123071644054,9426.727197047256,2019
+2007,43,"(40,45]",HS,73.55343361674298,67.69596127445202,1.0865261713109247,9773.37195650958,2019
+2007,43,"(40,45]",HS,73.55343361674298,67.69596127445202,1.0865261713109247,9512.93175249697,2019
+2007,43,"(40,45]",HS,71.97933289731851,67.69596127445202,1.0632736656992123,9365.150577180648,2019
+2007,70,"(65,70]",HS,114.76625245258339,80.94082326293177,1.4179032016980058,12144.803240284713,2019
+2007,70,"(65,70]",HS,75.98613472858078,80.94082326293177,0.9387862844160114,11937.052447637454,2019
+2007,70,"(65,70]",HS,123.20915631131459,80.94082326293177,1.5222127888553405,12591.008186002904,2019
+2007,70,"(65,70]",HS,60.24512753433617,80.94082326293177,0.744310782936235,12168.724827646165,2019
+2007,70,"(65,70]",HS,96.02014388489208,80.94082326293177,1.1863005590266358,12079.27965279915,2019
+2007,30,"(25,30]",College,-43.93172007848267,160.40999519381023,-0.2738714630930796,6606.114452078325,2019
+2007,30,"(25,30]",College,-6.010202746893395,292.8586150786076,-0.020522540357162337,6757.843824773021,2019
+2007,30,"(25,30]",College,-32.41216481360367,153.0517385335437,-0.2117726013710065,6358.510726622563,2019
+2007,30,"(25,30]",College,-31.98286461739699,200.14458115924944,-0.1597988036056251,6655.952775918236,2019
+2007,30,"(25,30]",College,-43.97465009810334,154.52338986559698,-0.28458248383207285,6712.051258909402,2019
+2007,31,"(30,35]",College,-1.8603008502289078,183.95641650666312,-0.01011272607694837,6970.68425760602,2019
+2007,31,"(30,35]",College,-0.28620013080444734,183.95641650666312,-0.0015558040118382108,6943.518443226038,2019
+2007,31,"(30,35]",College,-1.7172007848266841,183.95641650666312,-0.009334824071029266,7057.104900235953,2019
+2007,31,"(30,35]",College,-1.7172007848266841,183.95641650666312,-0.009334824071029266,7016.988128923498,2019
+2007,31,"(30,35]",College,-1.7172007848266841,183.95641650666312,-0.009334824071029266,6944.810588467575,2019
+2007,53,"(50,55]",HS,130.65035971223023,88.29907992319828,1.4796344404252988,7450.9461625874,2019
+2007,53,"(50,55]",HS,119.81768476128188,88.29907992319828,1.3569528115751397,8021.74293363444,2019
+2007,53,"(50,55]",HS,128.36075866579463,88.29907992319828,1.4537043735613286,7962.712077117183,2019
+2007,53,"(50,55]",HS,126.64355788096796,88.29907992319828,1.434256823413351,7418.60410249173,2019
+2007,53,"(50,55]",HS,120.3471550032701,88.29907992319828,1.362949139537433,7327.973787656663,2019
+2007,31,"(30,35]",College,114.48005232177894,83.88412592703838,1.3647403612615885,9046.192532509765,2019
+2007,31,"(30,35]",College,113.04905166775671,83.88412592703838,1.3476811067458188,9010.938147416138,2019
+2007,31,"(30,35]",College,113.04905166775671,83.88412592703838,1.3476811067458188,9158.344760773523,2019
+2007,31,"(30,35]",College,113.04905166775671,83.88412592703838,1.3476811067458188,9106.28329540459,2019
+2007,31,"(30,35]",College,113.04905166775671,83.88412592703838,1.3476811067458188,9012.61502650045,2019
+2007,58,"(55,60]",College,371.38759973839115,231.04925913236883,1.6073957611161265,5548.510237849575,2019
+2007,58,"(55,60]",College,428.01229561805104,232.52091046442217,1.8407475472342125,5685.773807353469,2019
+2007,58,"(55,60]",College,545.454519293656,232.52091046442217,2.3458299651596946,5353.925272217164,2019
+2007,58,"(55,60]",College,256.6213472858077,231.04925913236883,1.110678078992621,5606.2138600930575,2019
+2007,58,"(55,60]",College,394.355160235448,232.52091046442217,1.6959986929682522,5658.3803620373155,2019
+2007,83,"(80,85]",HS,2609.2865925441465,122.14706056042431,21.36184514447134,3596.065415309024,2019
+2007,83,"(80,85]",HS,3110.1368214519293,123.6187118924776,25.159110411675353,3644.2954072045513,2019
+2007,83,"(80,85]",HS,2573.511576193591,120.675409228371,21.32589889397743,3633.2917771791276,2019
+2007,83,"(80,85]",HS,2573.511576193591,113.31715256810448,22.710697523456485,3904.1405378119607,2019
+2007,83,"(80,85]",HS,5213.707782864617,129.5053172206908,40.25863875519416,2034.246453199455,2019
+2007,93,"(90,95]",HS,34.77331589274036,10.595889590783795,3.2817740874712267,10222.088057355717,2019
+2007,93,"(90,95]",HS,34.77331589274036,10.595889590783795,3.2817740874712267,10235.381745972794,2019
+2007,93,"(90,95]",HS,34.77331589274036,10.595889590783795,3.2817740874712267,10233.468245436678,2019
+2007,93,"(90,95]",HS,34.63021582733813,10.595889590783795,3.268268844312908,10266.072873612986,2019
+2007,93,"(90,95]",HS,34.77331589274036,10.595889590783795,3.2817740874712267,10270.334102161174,2019
+2007,34,"(30,35]",HS,334.1386527141923,110.37384990399784,3.0273353063685198,6889.811705058586,2019
+2007,34,"(30,35]",HS,335.5696533682145,110.37384990399784,3.040300339800505,7047.678667504272,2019
+2007,34,"(30,35]",HS,334.1386527141923,110.37384990399784,3.0273353063685198,6630.840724336891,2019
+2007,34,"(30,35]",HS,337.00065402223674,110.37384990399784,3.0532653732324895,3296.9521689251765,2019
+2007,34,"(30,35]",HS,335.5696533682145,110.37384990399784,3.040300339800505,6998.84495221637,2019
+2007,72,"(70,75]",College,42348.890255068676,1292.1098695428016,32.77499170411364,560.8214082114519,2019
+2007,72,"(70,75]",College,42348.74715500327,1292.1098695428016,32.77488095496701,628.1439695082502,2019
+2007,72,"(70,75]",College,42347.45925441465,1292.1098695428016,32.77388421264735,563.0662605307255,2019
+2007,72,"(70,75]",College,42347.45925441465,1292.1098695428016,32.77388421264735,575.1676829827671,2019
+2007,72,"(70,75]",College,42348.890255068676,1292.1098695428016,32.77499170411364,612.107543777727,2019
+2007,74,"(70,75]",HS,14201.250490516677,367.91283301332624,38.59949753370601,308.26047803193603,2019
+2007,74,"(70,75]",HS,17363.761935905823,367.91283301332624,47.19531469911213,300.8022152582096,2019
+2007,74,"(70,75]",HS,18624.616612164813,367.91283301332624,50.62236198618874,300.8597683343329,2019
+2007,74,"(70,75]",HS,15090.044996729888,367.91283301332624,41.01527221308779,299.52473418681654,2019
+2007,74,"(70,75]",HS,16702.63963374755,367.91283301332624,45.398361065439,308.74927217513806,2019
+2007,32,"(30,35]",College,378.57122302158274,211.91779181567586,1.7864060387664877,946.142400411806,2019
+2007,32,"(30,35]",College,378.57122302158274,211.91779181567586,1.7864060387664877,992.6912800834937,2019
+2007,32,"(30,35]",College,378.57122302158274,211.91779181567586,1.7864060387664877,952.6248242126661,2019
+2007,32,"(30,35]",College,378.57122302158274,211.91779181567586,1.7864060387664877,939.1199114615465,2019
+2007,32,"(30,35]",College,378.57122302158274,211.91779181567586,1.7864060387664877,930.462413707897,2019
+2007,35,"(30,35]",NoHS,27.489522563767167,48.56449395775905,0.5660415732464401,6941.918887606099,2019
+2007,35,"(30,35]",NoHS,27.775722694571613,50.03614528981236,0.5551131593709498,6902.887125196552,2019
+2007,35,"(30,35]",NoHS,27.08884238064094,50.03614528981236,0.541385476913554,6851.062737237646,2019
+2007,35,"(30,35]",NoHS,25.94404185742315,48.56449395775905,0.5342183093679312,6897.772824027612,2019
+2007,35,"(30,35]",NoHS,27.575382603008503,50.03614528981236,0.5511092519875428,7141.981201237491,2019
+2007,55,"(50,55]",College,23990.983544800525,14584.064700648252,1.6450135155896655,27.282641708255778,2019
+2007,55,"(50,55]",College,20093.352753433617,6298.667701188144,3.1900957006579858,24.039743952460757,2019
+2007,55,"(50,55]",College,22426.127089601046,11581.895983259508,1.9363087979736484,26.72023345404108,2019
+2007,55,"(50,55]",College,22225.07149771092,5592.2750618025575,3.974245052700808,26.36228975995226,2019
+2007,55,"(50,55]",College,21126.44936559843,14893.111480379443,1.4185383217893013,25.2165324605724,2019
+2007,52,"(50,55]",NoHS,0,11.920375789631768,0,6523.466135948638,2019
+2007,52,"(50,55]",NoHS,0,11.920375789631768,0,6526.733211471559,2019
+2007,52,"(50,55]",NoHS,0,11.920375789631768,0,6524.2931148208845,2019
+2007,52,"(50,55]",NoHS,0,12.067540922837098,0,6563.55018449791,2019
+2007,52,"(50,55]",NoHS,0,11.920375789631768,0,6563.311702824989,2019
+2007,28,"(25,30]",HS,40.640418574231525,44.14953996159914,0.9205173736709417,6061.368325941439,2019
+2007,28,"(25,30]",HS,40.78351863963375,44.14953996159914,0.9237586320289379,6056.741362931603,2019
+2007,28,"(25,30]",HS,40.640418574231525,44.14953996159914,0.9205173736709417,6135.0056932551215,2019
+2007,28,"(25,30]",HS,40.78351863963375,44.14953996159914,0.9237586320289379,6076.730206511549,2019
+2007,28,"(25,30]",HS,40.640418574231525,44.14953996159914,0.9205173736709417,6047.4101382724375,2019
+2007,48,"(45,50]",College,8265.173577501635,1271.5067508940554,6.500298619484331,2341.467593169693,2019
+2007,48,"(45,50]",College,8266.604578155657,1271.5067508940554,6.501424056414191,2321.811362898068,2019
+2007,48,"(45,50]",College,8263.742576847613,1271.5067508940554,6.499173182554471,2300.022506840689,2019
+2007,48,"(45,50]",College,8265.173577501635,1271.5067508940554,6.500298619484331,2276.7381201008725,2019
+2007,48,"(45,50]",College,8263.742576847613,1271.5067508940554,6.499173182554471,2307.3365133282778,2019
+2007,31,"(30,35]",HS,44.361020274689345,44.14953996159914,1.0047900909788448,6171.632700328102,2019
+2007,31,"(30,35]",HS,44.361020274689345,44.14953996159914,1.0047900909788448,6147.580911125973,2019
+2007,31,"(30,35]",HS,44.361020274689345,44.14953996159914,1.0047900909788448,6248.146919639684,2019
+2007,31,"(30,35]",HS,44.361020274689345,44.14953996159914,1.0047900909788448,6212.628745452783,2019
+2007,31,"(30,35]",HS,44.50412034009156,44.14953996159914,1.008031349336841,6148.724937383876,2019
+2007,49,"(45,50]",NoHS,85.43073904512752,41.206237297492535,2.0732477568469014,6363.417718050055,2019
+2007,49,"(45,50]",NoHS,85.57383911052976,69.16761260650532,1.2371952115415563,6204.70144055099,2019
+2007,49,"(45,50]",NoHS,85.57383911052976,50.03614528981236,1.710240439483916,6526.784400185905,2019
+2007,49,"(45,50]",NoHS,85.57383911052976,26.489723976959482,3.2304541634696196,6364.579929607329,2019
+2007,49,"(45,50]",NoHS,85.57383911052976,39.73458596543923,2.1536361089797458,6269.109242704717,2019
+2007,27,"(25,30]",College,3.0480313930673644,104.48724457578463,0.02917132522196646,8153.618031891213,2019
+2007,27,"(25,30]",College,6.296402877697842,86.82742859114498,0.07251628868737425,8116.687126961842,2019
+2007,27,"(25,30]",College,0.07155003270111183,85.35577725909167,8.382564718955879e-4,8174.655891348421,2019
+2007,27,"(25,30]",College,7.441203400915631,75.05421793471854,0.09914437330341541,8036.089872927437,2019
+2007,27,"(25,30]",College,1.4310006540222369,80.94082326293177,0.017679591043616032,7935.906969253429,2019
+2007,56,"(55,60]",College,97793.15369522564,1471.651332053305,66.45130647813218,26.909692578237987,2019
+2007,56,"(55,60]",College,96931.69130150425,1471.651332053305,65.86593521867806,23.946196738540245,2019
+2007,56,"(55,60]",College,92439.78024852845,1471.651332053305,62.813642222952964,26.560198914619555,2019
+2007,56,"(55,60]",College,96340.68803139307,1471.651332053305,65.46434330812232,26.341645204871224,2019
+2007,56,"(55,60]",College,98434.385088293,1471.651332053305,66.88702883919761,23.99891394155423,2019
+2007,49,"(45,50]",College,5825.889862655331,515.0779662186567,11.310695166063795,2250.517588138145,2019
+2007,49,"(45,50]",College,5737.167822105952,515.0779662186567,11.138445436181707,2257.2813511123636,2019
+2007,49,"(45,50]",College,5829.324264224984,515.0779662186567,11.317362897543102,2231.080092417566,2019
+2007,49,"(45,50]",College,5737.454022236756,515.0779662186567,11.139001080471647,2213.4748451816404,2019
+2007,49,"(45,50]",College,5819.164159581425,515.0779662186567,11.29763752525015,2246.018175567695,2019
+2007,48,"(45,50]",HS,743.5479398299542,117.73210656426438,6.315591910555738,5647.511834380795,2019
+2007,48,"(45,50]",HS,743.5479398299542,117.73210656426438,6.315591910555738,5776.1548257362365,2019
+2007,48,"(45,50]",HS,743.5479398299542,117.73210656426438,6.315591910555738,5436.836841138372,2019
+2007,48,"(45,50]",HS,743.5479398299542,117.73210656426438,6.315591910555738,5690.674267161742,2019
+2007,48,"(45,50]",HS,743.5479398299542,117.73210656426438,6.315591910555738,5737.927747630324,2019
+2007,62,"(60,65]",HS,268.7433538260301,54.451099285972276,4.935499142351823,7375.803930030488,2019
+2007,62,"(60,65]",HS,268.7433538260301,54.451099285972276,4.935499142351823,7192.162821310327,2019
+2007,62,"(60,65]",HS,268.7433538260301,54.451099285972276,4.935499142351823,7667.690802805868,2019
+2007,62,"(60,65]",HS,268.7433538260301,54.451099285972276,4.935499142351823,7323.749620310747,2019
+2007,62,"(60,65]",HS,268.7433538260301,54.451099285972276,4.935499142351823,7161.03031322258,2019
+2007,40,"(35,40]",NoHS,0,35.319631969279314,0,6203.91129766112,2019
+2007,40,"(35,40]",NoHS,0,35.319631969279314,0,6218.378785504706,2019
+2007,40,"(35,40]",NoHS,0,35.319631969279314,0,6223.411662053501,2019
+2007,40,"(35,40]",NoHS,0,35.319631969279314,0,6214.889833166494,2019
+2007,40,"(35,40]",NoHS,0,35.319631969279314,0,6166.0091499523205,2019
+2007,49,"(45,50]",College,672.1410071942447,154.52338986559698,4.349768716431,7014.6704635888555,2019
+2007,49,"(45,50]",College,672.2841072596469,154.52338986559698,4.35069479024757,7174.0703941956,2019
+2007,49,"(45,50]",College,672.2841072596469,155.99504119765032,4.309650499773535,6752.247493769923,2019
+2007,49,"(45,50]",College,672.2841072596469,154.52338986559698,4.35069479024757,7067.247558717751,2019
+2007,49,"(45,50]",College,672.999607586658,154.52338986559698,4.355325159330421,7125.495133284576,2019
+2007,64,"(60,65]",College,4462.718639633747,885.9341018960894,5.037303147133145,3563.6808925922683,2019
+2007,64,"(60,65]",College,4442.684630477436,849.1428185947568,5.2319639678866015,3671.025850493166,2019
+2007,64,"(60,65]",College,4595.801700457816,1303.8830801992278,3.5247038405894466,3505.4167730409,2019
+2007,64,"(60,65]",College,4637.157619359058,1303.8830801992278,3.5564213461919607,3488.9990056687593,2019
+2007,64,"(60,65]",College,4534.125572269458,804.9932786331577,5.6325011557465405,3575.1876353823327,2019
+2007,54,"(50,55]",HS,19.318508829300196,69.16761260650532,0.27929992233797674,8135.74528872113,2019
+2007,54,"(50,55]",HS,20.034009156311313,54.451099285972276,0.36792662442119856,8085.366487402913,2019
+2007,54,"(50,55]",HS,17.028907782864618,50.03614528981236,0.3403321275896087,8286.110474686893,2019
+2007,54,"(50,55]",HS,19.46160889470242,55.92275061802558,0.3480087921217051,8203.61617271514,2019
+2007,54,"(50,55]",HS,16.170307390451274,72.11091527061193,0.22424215986953808,8079.993475015753,2019
+2007,62,"(60,65]",College,68295.93721386527,1250.903632245309,54.59728108014005,37.75168359237013,2019
+2007,62,"(60,65]",College,68295.93721386527,1250.903632245309,54.59728108014005,34.39301645081763,2019
+2007,62,"(60,65]",College,68295.93721386527,1250.903632245309,54.59728108014005,35.37126131104676,2019
+2007,62,"(60,65]",College,68295.93721386527,1250.903632245309,54.59728108014005,35.7350820450937,2019
+2007,62,"(60,65]",College,68295.93721386527,1250.903632245309,54.59728108014005,33.692238614170705,2019
+2007,65,"(60,65]",College,74.7268541530412,25.01807264490618,2.986914908021742,6277.612439882764,2019
+2007,65,"(60,65]",College,74.86995421844343,25.01807264490618,2.9926347757123235,6243.775330165265,2019
+2007,65,"(60,65]",College,74.86995421844343,25.01807264490618,2.9926347757123235,6287.937917274297,2019
+2007,65,"(60,65]",College,74.86995421844343,25.01807264490618,2.9926347757123235,6194.463463966282,2019
+2007,65,"(60,65]",College,74.7268541530412,25.01807264490618,2.986914908021742,6228.54777497782,2019
+2007,60,"(55,60]",College,68215.80117724004,588.6605328213219,115.88308944426177,44.919463470668326,2019
+2007,60,"(55,60]",College,68185.75016350555,588.6605328213219,115.8320396251233,40.26371482458652,2019
+2007,60,"(55,60]",College,68201.49117069981,588.6605328213219,115.8587800065768,44.058793303364936,2019
+2007,60,"(55,60]",College,68187.18116415959,588.6605328213219,115.83447056889182,43.76628877620216,2019
+2007,60,"(55,60]",College,68187.18116415959,588.6605328213219,115.83447056889182,40.26712818371805,2019
+2007,55,"(50,55]",HS,287.05873119686066,94.1856852514115,3.0477957497533703,7809.803792174396,2019
+2007,55,"(50,55]",HS,283.33812949640287,94.1856852514115,3.008292913515291,7654.712654162989,2019
+2007,55,"(50,55]",HS,370.19986919555265,94.1856852514115,3.9305322056889183,6152.732683220576,2019
+2007,55,"(50,55]",HS,293.0689339437541,94.1856852514115,3.111608023676422,7763.998829187764,2019
+2007,55,"(50,55]",HS,287.4880313930674,94.1856852514115,3.052353769319303,7637.939396728238,2019
+2007,70,"(65,70]",HS,71.97933289731851,26.489723976959482,2.7172549234535426,8274.13721034083,2019
+2007,70,"(65,70]",HS,72.12243296272074,25.01807264490618,2.882813316053156,8277.486935806493,2019
+2007,70,"(65,70]",HS,72.12243296272074,26.489723976959482,2.72265702071687,8268.001987197196,2019
+2007,70,"(65,70]",HS,72.12243296272074,26.489723976959482,2.72265702071687,8294.251286341065,2019
+2007,70,"(65,70]",HS,72.12243296272074,26.489723976959482,2.72265702071687,8289.433933649787,2019
+2007,46,"(45,50]",College,5512.214519293656,417.9489783031385,13.188725910213005,987.3368515164096,2019
+2007,46,"(45,50]",College,6052.98966644866,463.570169596791,13.057332122369939,971.4245673754834,2019
+2007,46,"(45,50]",College,5546.558534990189,400.2891623184989,13.856379480434066,974.1172349440874,2019
+2007,46,"(45,50]",College,5520.80052321779,348.78136569663326,15.828828791328636,964.3024372678294,2019
+2007,46,"(45,50]",College,6010.202746893395,372.32778700948614,16.1422353006929,973.6087948330421,2019
+2007,47,"(45,50]",HS,566.819359058208,114.78880390015777,4.937932444624322,7706.862036557046,2019
+2007,47,"(45,50]",HS,475.9365075212557,114.78880390015777,4.146192758792232,7881.649717972582,2019
+2007,47,"(45,50]",HS,478.51230869849576,114.78880390015777,4.168632239732207,7420.509072678438,2019
+2007,47,"(45,50]",HS,466.9212034009156,114.78880390015777,4.067654575502322,7766.395558600413,2019
+2007,47,"(45,50]",HS,573.960052321779,114.78880390015777,5.000139672341251,7830.658115483757,2019
+2007,48,"(45,50]",HS,97.02184434270765,67.69596127445202,1.4331998913400912,9092.115553627538,2019
+2007,48,"(45,50]",HS,97.02184434270765,52.979447953918964,1.8313109722678944,8886.880355281228,2019
+2007,48,"(45,50]",HS,97.16494440810987,75.05421793471854,1.294596720634982,9396.811097505251,2019
+2007,48,"(45,50]",HS,97.02184434270765,54.451099285972276,1.7818160811255188,9104.653947816205,2019
+2007,48,"(45,50]",HS,97.16494440810987,76.52586926677185,1.26970062985354,8842.50455387708,2019
+2007,49,"(45,50]",HS,0,23.546421312852875,0,7774.678235036884,2019
+2007,49,"(45,50]",HS,0,23.546421312852875,0,7736.39375339252,2019
+2007,49,"(45,50]",HS,0,23.546421312852875,0,7896.553762673686,2019
+2007,49,"(45,50]",HS,0,23.546421312852875,0,7849.744036830387,2019
+2007,49,"(45,50]",HS,0,23.546421312852875,0,7683.121317139722,2019
+2007,33,"(30,35]",HS,547.3577501635056,163.35329785791683,3.350760329550201,7397.973918937454,2019
+2007,33,"(30,35]",HS,549.0749509483322,161.88164652586354,3.3918295417177355,7568.187953937418,2019
+2007,33,"(30,35]",HS,547.5008502289078,161.88164652586354,3.382105766643747,7119.087155831543,2019
+2007,33,"(30,35]",HS,546.0698495748856,161.88164652586354,3.373265971121939,7454.767333778032,2019
+2007,33,"(30,35]",HS,546.0698495748856,163.35329785791683,3.342876187598318,7516.9955220905995,2019
+2007,69,"(65,70]",HS,5610.95356442119,1177.3210656426438,4.76586525813877,2014.7650217244943,2019
+2007,69,"(65,70]",HS,5610.95356442119,1177.3210656426438,4.76586525813877,2000.548068241862,2019
+2007,69,"(65,70]",HS,5610.95356442119,1177.3210656426438,4.76586525813877,2003.5315200457248,2019
+2007,69,"(65,70]",HS,5609.522563767167,1177.3210656426438,4.7646497862545205,1984.9712085608746,2019
+2007,69,"(65,70]",HS,5609.522563767167,1177.3210656426438,4.7646497862545205,2003.273465115632,2019
+2007,28,"(25,30]",HS,163.86388489208633,48.56449395775905,3.374149950674121,10144.545286946755,2019
+2007,28,"(25,30]",HS,156.4226814911707,67.69596127445202,2.310664898560256,10154.414241081273,2019
+2007,28,"(25,30]",HS,52.43186396337475,48.56449395775905,1.079633693063486,10311.18080151497,2019
+2007,28,"(25,30]",HS,156.65164159581425,70.63926393855863,2.217628452811575,10239.886731917573,2019
+2007,28,"(25,30]",HS,87.59155003270111,67.69596127445202,1.2938962440844688,10136.703281468199,2019
+2007,67,"(65,70]",HS,128.0745585349902,76.52586926677185,1.6736112867730755,7471.330196511924,2019
+2007,67,"(65,70]",HS,130.93655984303467,76.52586926677185,1.7110104216730326,7271.4487948253345,2019
+2007,67,"(65,70]",HS,119.77475474166123,76.52586926677185,1.5651537955632004,7755.388074757214,2019
+2007,67,"(65,70]",HS,137.80536298234142,76.52586926677185,1.8007683454329295,7320.554140062549,2019
+2007,67,"(65,70]",HS,123.9246566383257,76.52586926677185,1.619382541168138,7215.414251422175,2019
+2007,63,"(60,65]",HS,19.032308698495747,39.73458596543923,0.47898595734833804,9643.572561951254,2019
+2007,63,"(60,65]",HS,19.318508829300196,39.73458596543923,0.4861887536994409,9609.877409124314,2019
+2007,63,"(60,65]",HS,19.89090909090909,39.73458596543923,0.5005943464016466,9673.89394567724,2019
+2007,63,"(60,65]",HS,19.747809025506868,39.73458596543923,0.4969929482260952,9643.290434241397,2019
+2007,63,"(60,65]",HS,18.459908436886852,39.73458596543923,0.4645803646461324,9619.069481635943,2019
+2007,80,"(75,80]",HS,660.836102027469,23.987916712468866,27.548707540908204,10308.172596367334,2019
+2007,80,"(75,80]",HS,660.836102027469,25.459568044522168,25.95629670039328,10566.28633117244,2019
+2007,80,"(75,80]",HS,660.836102027469,23.987916712468866,27.548707540908204,9905.428279494015,2019
+2007,80,"(75,80]",HS,660.836102027469,25.459568044522168,25.95629670039328,10385.869665651448,2019
+2007,80,"(75,80]",HS,660.836102027469,25.459568044522168,25.95629670039328,10488.5455757981,2019
+2007,35,"(30,35]",HS,6.153302812295618,73.58256660266524,0.08362446563630385,6765.708787300029,2019
+2007,35,"(30,35]",HS,6.153302812295618,73.58256660266524,0.08362446563630385,6781.4863838737265,2019
+2007,35,"(30,35]",HS,6.296402877697842,73.58256660266524,0.0855692206511016,6786.975014425943,2019
+2007,35,"(30,35]",HS,6.153302812295618,73.58256660266524,0.08362446563630385,6777.681488161887,2019
+2007,35,"(30,35]",HS,6.153302812295618,73.58256660266524,0.08362446563630385,6724.374396541144,2019
+2007,74,"(70,75]",College,53582.60313930674,1452.0783693369958,36.90062759062516,37.87274586591573,2019
+2007,74,"(70,75]",College,89850.0268149117,1345.677978029542,66.76933730198802,36.55315692614589,2019
+2007,74,"(70,75]",College,74937.13969914977,1226.3270550000188,61.10697745239636,37.59284293156753,2019
+2007,74,"(70,75]",College,44803.12792674951,1268.121952830333,35.33029912994803,39.87177341043436,2019
+2007,74,"(70,75]",College,116474.93878351865,1328.1653271781076,87.69611463279774,35.80836496322078,2019
+2007,38,"(35,40]",HS,12.735905820797907,30.9046779731194,0.41210284837381184,4928.206107747619,2019
+2007,38,"(35,40]",HS,12.592805755395684,30.9046779731194,0.40747247929096003,4962.810961639537,2019
+2007,38,"(35,40]",HS,12.735905820797907,30.9046779731194,0.41210284837381184,4936.932996672689,2019
+2007,38,"(35,40]",HS,12.735905820797907,30.9046779731194,0.41210284837381184,4926.536855546867,2019
+2007,38,"(35,40]",HS,12.592805755395684,30.9046779731194,0.40747247929096003,4952.030286644504,2019
+2007,41,"(40,45]",HS,9.501844342707653,45.62119129365245,0.20827698868156697,7911.9986555599635,2019
+2007,41,"(40,45]",HS,8.085153695225637,45.62119129365245,0.17722364247753813,7779.338931690462,2019
+2007,41,"(40,45]",HS,10.932844996729889,45.62119129365245,0.23964400504927283,7999.273330145797,2019
+2007,41,"(40,45]",HS,8.085153695225637,45.62119129365245,0.17722364247753813,7816.129716731826,2019
+2007,41,"(40,45]",HS,10.932844996729889,45.62119129365245,0.23964400504927283,7826.038952359113,2019
+2007,46,"(45,50]",HS,449.89229561805104,50.03614528981236,8.991346016209839,6465.167807161344,2019
+2007,46,"(45,50]",HS,250.94027468933945,48.56449395775905,5.167155142347514,7035.615802351771,2019
+2007,46,"(45,50]",HS,361.04146500981034,54.451099285972276,6.630563381533457,6216.83346466232,2019
+2007,46,"(45,50]",HS,386.6277567037279,48.56449395775905,7.961119846940302,6509.845086787012,2019
+2007,46,"(45,50]",HS,213.8058077174624,61.8093559462388,3.459117223344451,7001.429517837598,2019
+2007,56,"(55,60]",College,5260.358404185742,503.3047555622302,10.451636599995,1967.1221058751566,2019
+2007,56,"(55,60]",College,5277.53041203401,503.3047555622302,10.485755109026542,1966.9287600776959,2019
+2007,56,"(55,60]",College,5277.53041203401,503.3047555622302,10.485755109026542,1911.3432804673216,2019
+2007,56,"(55,60]",College,5306.150425114454,503.3047555622302,10.542619290745774,1890.825556548562,2019
+2007,56,"(55,60]",College,5291.840418574232,503.3047555622302,10.514187199886157,1999.867883206022,2019
+2007,28,"(25,30]",HS,-26.545062132112495,94.1856852514115,-0.2818375431601447,7361.607112021846,2019
+2007,28,"(25,30]",HS,-27.332112491824724,94.1856852514115,-0.2901939123643539,7343.89662390398,2019
+2007,28,"(25,30]",HS,-27.403662524525835,94.1856852514115,-0.29095358229200924,7324.407510756964,2019
+2007,28,"(25,30]",HS,-26.044211903204708,94.1856852514115,-0.27651985366655707,7377.198937463805,2019
+2007,28,"(25,30]",HS,-27.217632439502946,94.1856852514115,-0.28897844048010524,7410.032352651573,2019
+2007,63,"(60,65]",College,1165.9793328973185,176.59815984639656,6.602443275238409,375.3783933415371,2019
+2007,63,"(60,65]",College,1166.1224329627207,176.59815984639656,6.603253589827908,391.2523176772678,2019
+2007,63,"(60,65]",College,1166.1224329627207,176.59815984639656,6.603253589827908,379.79154499193146,2019
+2007,63,"(60,65]",College,1165.9793328973185,176.59815984639656,6.602443275238409,376.54439734364263,2019
+2007,63,"(60,65]",College,1164.6914323086985,176.59815984639656,6.595150443932917,380.8275981839709,2019
+2007,89,"(85,90]",College,63010.679398299544,7269.9575803433245,8.667269196820246,37.75168359237013,2019
+2007,89,"(85,90]",College,63797.87285807718,7284.674093663857,8.757821151335786,34.39301645081763,2019
+2007,89,"(85,90]",College,86626.62629169392,7269.9575803433245,11.915699002964878,35.37126131104676,2019
+2007,89,"(85,90]",College,82702.82249836494,7284.674093663857,11.352988676638136,35.7350820450937,2019
+2007,89,"(85,90]",College,75718.10830608242,7269.9575803433245,10.415206343268185,33.692238614170705,2019
+2007,29,"(25,30]",College,254.43191628515368,119.20375789631768,2.1344286520434714,7221.7018935077695,2019
+2007,29,"(25,30]",College,254.57501635055593,119.20375789631768,2.135629118101989,7207.395360472578,2019
+2007,29,"(25,30]",College,287.4880313930674,119.20375789631768,2.4117363115609307,7353.326176134906,2019
+2007,29,"(25,30]",College,300.3670372792675,120.675409228371,2.4890492536954305,7351.766418866713,2019
+2007,29,"(25,30]",College,297.50503597122304,119.20375789631768,2.4957689356571304,7314.709924317425,2019
+2007,51,"(50,55]",College,1596.9967298888162,339.9514577043134,4.697719905875118,3163.7872969385435,2019
+2007,51,"(50,55]",College,1604.5810333551342,339.9514577043134,4.720029866001586,3206.0277451564975,2019
+2007,51,"(50,55]",College,1605.3108436886855,341.42310903636667,4.701822463685947,3196.1832637597226,2019
+2007,51,"(50,55]",College,1599.8587311968608,341.42310903636667,4.685853677896337,3435.188145662503,2019
+2007,51,"(50,55]",College,1598.5708306082408,339.9514577043134,4.70235027495797,3292.766422694617,2019
+2007,45,"(40,45]",HS,257.90924787442776,108.90219857194455,2.3682648399797364,9110.469194461559,2019
+2007,45,"(40,45]",HS,245.44523217789404,108.90219857194455,2.2538133793115707,8892.86665951246,2019
+2007,45,"(40,45]",HS,242.0251406147809,108.90219857194455,2.2224082138699037,9326.040529011803,2019
+2007,45,"(40,45]",HS,258.03803793328973,108.90219857194455,2.3694474612725185,9070.923701076228,2019
+2007,45,"(40,45]",HS,234.99892740353172,108.90219857194455,2.1578896522303297,8960.107614988383,2019
+2007,42,"(40,45]",HS,77.70333551340745,47.09284262570575,1.6500030828674777,6829.271368589153,2019
+2007,42,"(40,45]",HS,77.56023544800523,47.09284262570575,1.6469644031568562,6714.765629467183,2019
+2007,42,"(40,45]",HS,77.56023544800523,47.09284262570575,1.6469644031568562,6904.602831889277,2019
+2007,42,"(40,45]",HS,77.56023544800523,47.09284262570575,1.6469644031568562,6746.521733815653,2019
+2007,42,"(40,45]",HS,77.70333551340745,47.09284262570575,1.6500030828674777,6755.074927780933,2019
+2007,56,"(55,60]",HS,549.5042511445389,248.7090751170085,2.209425815628229,318.7873787102431,2019
+2007,56,"(55,60]",HS,561.667756703728,247.2374237849552,2.2717748312741737,315.5427167708906,2019
+2007,56,"(55,60]",HS,502.9967298888163,259.0106344413816,1.9419925786971992,310.9330680616339,2019
+2007,56,"(55,60]",HS,554.5127534336167,248.7090751170085,2.22956381134359,314.7591358135363,2019
+2007,56,"(55,60]",HS,570.5399607586659,248.7090751170085,2.294005397632747,318.6102629790511,2019
+2007,21,"(20,25]",HS,75.41373446697187,35.319631969279314,2.135178943330045,6737.125604770988,2019
+2007,21,"(20,25]",HS,75.41373446697187,35.319631969279314,2.135178943330045,6706.488566815309,2019
+2007,21,"(20,25]",HS,75.41373446697187,35.319631969279314,2.135178943330045,6668.14786311709,2019
+2007,21,"(20,25]",HS,75.41373446697187,35.319631969279314,2.135178943330045,6671.76857323164,2019
+2007,21,"(20,25]",HS,75.41373446697187,35.319631969279314,2.135178943330045,6739.487604942997,2019
+2007,63,"(60,65]",College,1403.096141268803,88.29907992319828,15.890269100076727,1897.5615393426565,2019
+2007,63,"(60,65]",College,1401.5220405493787,88.29907992319828,15.87244217910775,1914.16522495174,2019
+2007,63,"(60,65]",College,1402.9530412034007,88.29907992319828,15.88864847089773,1848.680825630115,2019
+2007,63,"(60,65]",College,1401.665140614781,88.29907992319828,15.87406280828675,1876.0589654668202,2019
+2007,63,"(60,65]",College,1401.665140614781,88.29907992319828,15.87406280828675,1867.9409813477505,2019
+2007,53,"(50,55]",HS,19165.391759319817,2648.972397695949,7.235028864774013,20.4399233826842,2019
+2007,53,"(50,55]",HS,52078.40680183126,2648.972397695949,19.65985257042639,23.62273936971944,2019
+2007,53,"(50,55]",HS,14158.320470896011,2648.972397695949,5.344835032335854,21.24216868251765,2019
+2007,53,"(50,55]",HS,15732.421190320472,2648.972397695949,5.939065731301837,21.020706361999682,2019
+2007,53,"(50,55]",HS,14158.320470896011,2648.972397695949,5.344835032335854,20.409790138224487,2019
+2007,44,"(40,45]",HS,1203.2139699149773,147.16513320533048,8.17594455771128,4927.042106085442,2019
+2007,44,"(40,45]",HS,1194.5077619359058,147.16513320533048,8.11678511016113,5040.496237495374,2019
+2007,44,"(40,45]",HS,1207.0275866579466,147.16513320533048,8.20185841828346,4741.5445670878435,2019
+2007,44,"(40,45]",HS,1290.9056899934596,147.16513320533048,8.771817494245314,4963.652939525813,2019
+2007,44,"(40,45]",HS,1286.2549378678875,147.16513320533048,8.74021522525485,5004.336716189481,2019
+2007,48,"(45,50]",College,1430.9291039895356,191.31467316692962,7.479452988642399,5887.406111245028,2019
+2007,48,"(45,50]",College,1429.6412034009159,191.31467316692962,7.472721144360408,6020.929464700036,2019
+2007,48,"(45,50]",College,1429.6412034009159,191.31467316692962,7.472721144360408,5668.6560958022765,2019
+2007,48,"(45,50]",College,1431.21530412034,191.31467316692962,7.480948954038397,5932.88480540609,2019
+2007,48,"(45,50]",College,1431.0722040549379,191.31467316692962,7.480200971340398,5981.976091629278,2019
+2007,42,"(40,45]",HS,257.22236756049705,60.3377046141855,4.263045291584122,7081.450277387741,2019
+2007,42,"(40,45]",HS,258.51026814911705,60.3377046141855,4.284390163697756,7004.696542979413,2019
+2007,42,"(40,45]",HS,267.0962720732505,60.3377046141855,4.426689311121983,7218.566438234363,2019
+2007,42,"(40,45]",HS,258.51026814911705,60.3377046141855,4.284390163697756,7021.024835423201,2019
+2007,42,"(40,45]",HS,261.5153695225638,60.3377046141855,4.334194865296236,7002.799927825339,2019
+2007,47,"(45,50]",College,38041.72138652715,7976.350219728912,4.76931432780293,52.4025291578878,2019
+2007,47,"(45,50]",College,33777.339437540875,7976.350219728912,4.2346861041777135,56.533811832320886,2019
+2007,47,"(45,50]",College,33936.18051013734,7976.350219728912,4.254600108480531,55.87102906085894,2019
+2007,47,"(45,50]",College,39170.780902550694,7976.350219728912,4.910865223252694,56.834779095849584,2019
+2007,47,"(45,50]",College,46441.695225637675,7976.350219728912,5.822424285078102,57.49105174274992,2019
+2007,55,"(50,55]",College,0.9301504251144539,80.94082326293177,0.011491734178350421,6302.0718757462,2019
+2007,55,"(50,55]",College,0.9301504251144539,80.94082326293177,0.011491734178350421,6317.916384364651,2019
+2007,55,"(50,55]",College,0.9873904512753434,80.94082326293177,0.012198917820095063,6373.986472332882,2019
+2007,55,"(50,55]",College,0.9301504251144539,80.94082326293177,0.011491734178350421,6324.750411522331,2019
+2007,55,"(50,55]",College,0.9301504251144539,80.94082326293177,0.011491734178350421,6284.520819795676,2019
+2007,45,"(40,45]",HS,101.74414650098103,27.96137530901279,3.6387389882137104,8966.965334409197,2019
+2007,45,"(40,45]",HS,101.60104643557881,29.433026641066096,3.451940151266031,8977.66173313389,2019
+2007,45,"(40,45]",HS,101.60104643557881,27.96137530901279,3.6336212118589795,8991.064729875729,2019
+2007,45,"(40,45]",HS,101.60104643557881,27.96137530901279,3.6336212118589795,9004.718078279171,2019
+2007,45,"(40,45]",HS,101.60104643557881,27.96137530901279,3.6336212118589795,9010.323205543886,2019
+2007,49,"(45,50]",College,360015.99563113146,39322.523592464306,9.15546518230392,23.444626403206122,2019
+2007,49,"(45,50]",College,358179.20612164814,41500.56756390319,8.630706208297477,20.92408750229236,2019
+2007,49,"(45,50]",College,359395.5566775671,42545.44000966104,8.447334346429535,23.070266037116973,2019
+2007,49,"(45,50]",College,360484.2190451275,41897.91342355759,8.603870445787905,22.949316040095788,2019
+2007,49,"(45,50]",College,359849.1838848921,46121.552746550566,7.802191436666347,21.223032333521026,2019
+2007,77,"(75,80]",College,571.970961412688,83.14830026101171,6.878925481545719,14053.912366898614,2019
+2007,77,"(75,80]",College,629.2109875735775,83.14830026101171,7.567334336341388,10566.28633117244,2019
+2007,77,"(75,80]",College,570.6830608240681,83.14830026101171,6.863436282312818,14511.62364257598,2019
+2007,77,"(75,80]",College,779.7522563767168,83.14830026101171,9.377849624453996,10385.869665651448,2019
+2007,77,"(75,80]",College,653.9672988881623,83.14830026101171,7.865071166040516,10488.5455757981,2019
+2007,48,"(45,50]",HS,108.75604970568999,33.84798063722601,3.213073502709349,6841.945687801708,2019
+2007,48,"(45,50]",HS,108.75604970568999,33.84798063722601,3.213073502709349,6834.848763937718,2019
+2007,48,"(45,50]",HS,108.75604970568999,33.84798063722601,3.213073502709349,6836.061181436557,2019
+2007,48,"(45,50]",HS,108.75604970568999,33.84798063722601,3.213073502709349,6850.735419836967,2019
+2007,48,"(45,50]",HS,108.75604970568999,33.84798063722601,3.213073502709349,6845.894970351798,2019
+2007,78,"(75,80]",College,68870.75586657946,2660.5984432191694,25.885437932997455,37.952169677201105,2019
+2007,78,"(75,80]",College,71293.09653368215,2644.704608832994,26.956922257242574,34.55693739417501,2019
+2007,78,"(75,80]",College,67777.98652714193,2659.1267918871163,25.48881337058831,35.55577960859934,2019
+2007,78,"(75,80]",College,73307.78804447352,2660.1569478195534,27.557692828824102,35.92273326769746,2019
+2007,78,"(75,80]",College,75143.99084368868,2661.187103751991,28.237019012208364,33.8683475870663,2019
+2007,54,"(50,55]",HS,-163.7207848266841,120.675409228371,-1.3567037880671473,375.6671892032046,2019
+2007,54,"(50,55]",HS,-128.87591890124264,120.675409228371,-1.0679551014188207,391.9733832519366,2019
+2007,54,"(50,55]",HS,-153.74671026814912,120.675409228371,-1.2740516999382423,383.08612433478595,2019
+2007,54,"(50,55]",HS,-154.71979071288425,120.675409228371,-1.282115318292282,379.2887047635451,2019
+2007,54,"(50,55]",HS,-149.26767822105953,120.675409228371,-1.23693533898509,370.660482098569,2019
+2007,61,"(60,65]",HS,1439.58665794637,220.74769980799567,6.521411816288501,7784.635651509978,2019
+2007,61,"(60,65]",HS,1439.58665794637,220.74769980799567,6.521411816288501,7960.499717305856,2019
+2007,61,"(60,65]",HS,1439.58665794637,220.74769980799567,6.521411816288501,7492.828441217779,2019
+2007,61,"(60,65]",HS,1439.58665794637,220.74769980799567,6.521411816288501,7839.745079048812,2019
+2007,61,"(60,65]",HS,1439.58665794637,220.74769980799567,6.521411816288501,7904.319556104337,2019
+2007,77,"(75,80]",College,465498.78875081753,12416.322288533733,37.490875150743946,5.588854404815144,2019
+2007,77,"(75,80]",College,388792.8606932636,12757.745397570096,30.475044655407142,7.6293546389318205,2019
+2007,77,"(75,80]",College,468356.49705689994,12710.652554944394,36.847557199155055,4.509199295430601,2019
+2007,77,"(75,80]",College,467588.04970568995,12893.137320119004,36.266429038651864,5.172827563395316,2019
+2007,77,"(75,80]",College,405298.02223675605,12629.711731681458,32.09083713447485,3.3653310904301668,2019
+2007,36,"(35,40]",HS,231.5359058207979,164.82494918997014,1.4047382205101704,6684.933527829073,2019
+2007,36,"(35,40]",HS,88.43584041857423,251.6523777811151,0.3514206430248591,6704.913728188946,2019
+2007,36,"(35,40]",HS,106.8957488554611,148.63678453738376,0.7191742554722425,6710.340384272198,2019
+2007,36,"(35,40]",HS,107.32504905166776,242.82246978879527,0.4419897760904009,6701.151795177728,2019
+2007,36,"(35,40]",HS,65.39672988881622,150.10843586943707,0.4356632557659697,6648.446616668827,2019
+2007,62,"(60,65]",College,5732.588620013081,133.92027121685072,42.80598125977936,3244.8663981081454,2019
+2007,62,"(60,65]",College,5732.588620013081,133.92027121685072,42.80598125977936,3276.383169035541,2019
+2007,62,"(60,65]",College,5732.588620013081,132.44861988479744,43.281603273776895,3199.807717210643,2019
+2007,62,"(60,65]",College,5732.588620013081,133.92027121685072,42.80598125977936,3202.2936348974376,2019
+2007,62,"(60,65]",College,5732.588620013081,133.92027121685072,42.80598125977936,3293.124129632362,2019
+2007,45,"(40,45]",HS,45.9351209941138,54.451099285972276,0.8436031888514625,6765.935048742858,2019
+2007,45,"(40,45]",HS,65.39672988881622,72.11091527061193,0.9068908589414063,6723.580603046704,2019
+2007,45,"(40,45]",HS,40.92661870503597,55.92275061802558,0.7318420187265269,6806.502390984727,2019
+2007,45,"(40,45]",HS,66.25533028122956,54.451099285972276,1.2167859079072496,6792.242276744912,2019
+2007,45,"(40,45]",HS,66.58446043165468,60.3377046141855,1.1035298882748774,6761.533859639635,2019
+2007,74,"(70,75]",HS,129.4340091563113,26.489723976959482,4.886196974679382,7738.5158408035495,2019
+2007,74,"(70,75]",HS,124.36826684107261,30.9046779731194,4.024253769906516,7612.784772690243,2019
+2007,74,"(70,75]",HS,125.15531720078484,33.84798063722601,3.6975711650915746,8056.414601868823,2019
+2007,74,"(70,75]",HS,123.99620667102681,25.01807264490618,4.956265353889007,7739.601354956672,2019
+2007,74,"(70,75]",HS,145.04622629169393,32.3763293051727,4.480008370452303,7566.44738507234,2019
+2007,60,"(55,60]",NoHS,4.436102027468934,19.131467316692962,0.23187463637973335,6357.286429923912,2019
+2007,60,"(55,60]",NoHS,4.1499018966644865,19.131467316692962,0.21691498241975057,6350.73415000834,2019
+2007,60,"(55,60]",NoHS,4.436102027468934,19.131467316692962,0.23187463637973335,6348.918480774704,2019
+2007,60,"(55,60]",NoHS,4.29300196206671,20.603118648746268,0.20836660872833182,6363.144511949355,2019
+2007,60,"(55,60]",NoHS,4.29300196206671,19.131467316692962,0.22439480939974196,6358.290773867435,2019
+2007,53,"(50,55]",College,25629.22171353826,7623.153900036118,3.3620233894814624,365.3083716590867,2019
+2007,53,"(50,55]",College,30186.958796599083,7623.153900036118,3.95990415416591,414.82184564605393,2019
+2007,53,"(50,55]",College,20026.854153041204,7637.870413356652,2.6220468624368696,333.7921377424593,2019
+2007,53,"(50,55]",College,19533.158927403532,7623.153900036118,2.5623461343619187,332.22137508217844,2019
+2007,53,"(50,55]",College,32173.18770438195,7623.153900036118,4.220456273909086,402.8889748097991,2019
+2007,31,"(30,35]",NoHS,-2.9764813603662525,48.56449395775905,-0.06128924895120227,5790.507501737592,2019
+2007,31,"(30,35]",NoHS,-1.9747809025506868,51.50779662186566,-0.038339456006013066,5781.1332196097555,2019
+2007,31,"(30,35]",NoHS,-2.9621713538260304,44.14953996159914,-0.06709404801052286,5775.107975687306,2019
+2007,31,"(30,35]",NoHS,-1.8316808371484632,72.11091527061193,-0.02540088182592998,5791.14415700413,2019
+2007,31,"(30,35]",NoHS,12.63573577501635,55.92275061802558,0.22594982606137176,5820.919659935395,2019
+2007,56,"(55,60]",NoHS,247.8493132766514,32.3763293051727,7.655262921885743,8171.755628609249,2019
+2007,56,"(55,60]",NoHS,249.5665140614781,32.3763293051727,7.7083016950165915,7961.474591175985,2019
+2007,56,"(55,60]",NoHS,248.70791366906477,32.3763293051727,7.681782308451168,8370.854327863282,2019
+2007,56,"(55,60]",NoHS,250.42511445389144,30.9046779731194,8.103145894990682,8094.461529099778,2019
+2007,56,"(55,60]",NoHS,251.14061478090255,32.3763293051727,7.756920570386535,7993.88226709673,2019
+2007,83,"(80,85]",HS,87345.9903204709,1854.280678387164,47.10505337112374,27.246653864766763,2019
+2007,83,"(80,85]",HS,126113.22903858732,1927.8632449898291,65.41606587828934,24.246049337637377,2019
+2007,83,"(80,85]",HS,196250.2916939176,1736.5485718228997,113.01169162686224,26.892783865960393,2019
+2007,83,"(80,85]",HS,79051.33812949639,1810.1311384255648,43.67160834449514,26.671493441959434,2019
+2007,83,"(80,85]",HS,146266.8698495749,2030.8788382335604,72.02146533605938,24.29942666177679,2019
+2007,37,"(35,40]",HS,227.60065402223677,110.37384990399784,2.0620885673572293,6449.937654190559,2019
+2007,37,"(35,40]",HS,226.16965336821454,110.37384990399784,2.0491235339252443,6598.173370987803,2019
+2007,37,"(35,40]",HS,217.01124918247223,110.37384990399784,1.9661473199605397,6208.749198178444,2019
+2007,37,"(35,40]",HS,223.73695225637672,110.37384990399784,2.0270829770908696,6499.344260977732,2019
+2007,37,"(35,40]",HS,218.7284499672989,110.37384990399784,1.9817053600789218,6552.826522584382,2019
+2007,32,"(30,35]",HS,2.575801177240026,42.67788862954583,0.06035446597648233,5237.951211043988,2019
+2007,32,"(30,35]",HS,2.71890124264225,42.67788862954583,0.06370749186406469,5261.00148667828,2019
+2007,32,"(30,35]",HS,2.4327011118378024,42.67788862954583,0.05700144008889998,5267.073088596354,2019
+2007,32,"(30,35]",HS,2.4327011118378024,42.67788862954583,0.05700144008889998,5257.532206111575,2019
+2007,32,"(30,35]",HS,2.4327011118378024,42.67788862954583,0.05700144008889998,5264.17276089759,2019
+2007,60,"(55,60]",HS,27106.300588620015,7902.767653126248,3.4299756463037427,26.981606480458133,2019
+2007,60,"(55,60]",HS,26001.424983649445,7902.767653126248,3.2901669547836914,29.212204744638363,2019
+2007,60,"(55,60]",HS,26490.541007194242,7902.767653126248,3.3520586925916867,28.937537246488915,2019
+2007,60,"(55,60]",HS,27564.363897972533,7902.767653126248,3.4879380373872406,29.375296801799642,2019
+2007,60,"(55,60]",HS,27485.658862001306,7917.4841664467795,3.4715142189335584,29.31729567590139,2019
+2007,70,"(65,70]",College,286932.8031393067,60514.302774031894,4.741570008841551,2.765453145164275,2019
+2007,70,"(65,70]",College,141606.10071942446,56717.44233733435,2.49669404831769,3.762433070555871,2019
+2007,70,"(65,70]",College,246539.94767822104,65900.54664934697,3.7410910866953193,2.223907869749218,2019
+2007,70,"(65,70]",College,259333.09352517987,56717.44233733435,4.572369324814801,2.5518459131929787,2019
+2007,70,"(65,70]",College,266573.9568345324,57659.299189848476,4.623260438126614,1.6674521810186687,2019
+2007,67,"(65,70]",College,3615.852452583388,229.57760780031555,15.750022344201891,1799.5919857155234,2019
+2007,67,"(65,70]",College,3638.748463047744,229.57760780031555,15.849753370601775,1799.7177351184218,2019
+2007,67,"(65,70]",College,3630.734859385219,231.04925913236883,15.714115998550593,1749.483235382529,2019
+2007,67,"(65,70]",College,3618.57135382603,229.57760780031555,15.761865403586876,1730.3413900705007,2019
+2007,67,"(65,70]",College,3630.019359058208,229.57760780031555,15.811730916786818,1830.377842878248,2019
+2007,29,"(25,30]",HS,-23.039110529758013,30.9046779731194,-0.7454894223391427,5908.782839564075,2019
+2007,29,"(25,30]",HS,-18.7461085676913,32.3763293051727,-0.5790066066784252,5884.9616783442925,2019
+2007,29,"(25,30]",HS,-0.28620013080444734,32.3763293051727,-0.008839795521808018,5892.915652964868,2019
+2007,29,"(25,30]",HS,-18.7461085676913,30.9046779731194,-0.6065783498535882,5908.327630200664,2019
+2007,29,"(25,30]",HS,-0.8586003924133421,30.9046779731194,-0.02778221449711091,5908.446136181617,2019
+2007,25,"(20,25]",College,158.8410725964683,80.94082326293177,1.96243460584138,7780.407122439703,2019
+2007,25,"(20,25]",College,158.69797253106606,80.94082326293177,1.960666646737018,7750.085695176914,2019
+2007,25,"(20,25]",College,158.69797253106606,80.94082326293177,1.960666646737018,7876.866488349171,2019
+2007,25,"(20,25]",College,158.8410725964683,80.94082326293177,1.96243460584138,7832.089705796128,2019
+2007,25,"(20,25]",College,158.69797253106606,80.94082326293177,1.960666646737018,7751.527937526296,2019
+2007,67,"(65,70]",College,83385.83911052975,8623.876805832364,9.669182548402773,65.23907949943145,2019
+2007,67,"(65,70]",College,79816.92347939829,9109.521745409957,8.761922492760489,58.31226127312904,2019
+2007,67,"(65,70]",College,89072.63570961413,7976.350219728912,11.167091872332731,63.785261594133104,2019
+2007,67,"(65,70]",College,85429.30804447351,11390.58131009258,7.499995454031763,63.37553191874798,2019
+2007,67,"(65,70]",College,87159.3878351864,11552.462956618441,7.544658499446,58.56553937870184,2019
+2007,37,"(35,40]",College,23319.586657946373,6504.698887675607,3.585037072527643,424.1316948688109,2019
+2007,37,"(35,40]",College,23418.325703073904,6504.698887675607,3.6002167213988017,480.20571181480665,2019
+2007,37,"(35,40]",College,22901.734466971877,6504.698887675607,3.520798558464187,425.6674498588417,2019
+2007,37,"(35,40]",College,23393.998691955527,6504.698887675607,3.596476807908806,434.60443487535656,2019
+2007,37,"(35,40]",College,23741.73185088293,6504.698887675607,3.649935571324627,460.8347484502814,2019
+2007,22,"(20,25]",HS,15.95565729234794,153.0517385335437,0.10425008853363013,8127.710201360855,2019
+2007,22,"(20,25]",HS,13.666056245912362,216.3327458118358,0.06317146391604982,8132.184657710461,2019
+2007,22,"(20,25]",HS,18.388358404185745,151.5800872014904,0.12131117446675373,8083.599460373458,2019
+2007,22,"(20,25]",HS,12.950555918901243,126.56201455658422,0.10232577258092884,8078.9080568911795,2019
+2007,22,"(20,25]",HS,14.667756703727926,117.73210656426438,0.12458586813548174,8166.523036815082,2019
+2007,39,"(35,40]",HS,322.4330673642904,148.63678453738376,2.1692683165061,6503.577363575876,2019
+2007,39,"(35,40]",HS,317.28146500981035,147.16513320533048,2.1559554094048012,6653.045855199144,2019
+2007,39,"(35,40]",HS,358.3511837802485,147.16513320533048,2.43502775402828,6260.383108534187,2019
+2007,39,"(35,40]",HS,345.4721778940484,147.16513320533048,2.3475137783623805,6553.394851238475,2019
+2007,39,"(35,40]",HS,325.72436886854155,147.16513320533048,2.213325682341335,6607.321888147402,2019
+2007,52,"(50,55]",HS,3125.8778286461743,189.8430218348763,16.465592458621067,2564.495844128662,2019
+2007,52,"(50,55]",HS,3124.446827992152,189.8430218348763,16.458054648486193,2598.380876572199,2019
+2007,52,"(50,55]",HS,3124.446827992152,189.8430218348763,16.458054648486193,2591.7383844598676,2019
+2007,52,"(50,55]",HS,3124.446827992152,189.8430218348763,16.458054648486193,2784.347489543842,2019
+2007,52,"(50,55]",HS,3124.446827992152,189.8430218348763,16.458054648486193,2669.0460956045154,2019
+2007,40,"(35,40]",HS,138.0629431000654,30.9046779731194,4.467380091135435,6199.4310108902055,2019
+2007,40,"(35,40]",NoHS,140.56719424460434,79.46917193087846,1.7688267139220775,6095.485744737415,2019
+2007,40,"(35,40]",HS,143.71539568345324,35.319631969279314,4.068994711169571,6267.814910792988,2019
+2007,40,"(35,40]",HS,132.13860039241337,66.22430994239872,1.9953186451825058,6124.313092115711,2019
+2007,40,"(35,40]",NoHS,144.87450621321125,48.56449395775905,2.9831363287594796,6132.077454234105,2019
+2007,57,"(55,60]",HS,232.53760627861348,51.50779662186566,4.514609855780524,8596.083576696941,2019
+2007,57,"(55,60]",HS,232.53760627861348,51.50779662186566,4.514609855780524,8425.3780865427525,2019
+2007,57,"(55,60]",HS,233.9686069326357,51.50779662186566,4.542392070277635,8878.088273654741,2019
+2007,57,"(55,60]",HS,232.53760627861348,51.50779662186566,4.514609855780524,8545.667036084847,2019
+2007,57,"(55,60]",HS,233.9686069326357,51.50779662186566,4.542392070277635,8406.916121735512,2019
+2007,50,"(45,50]",HS,4155.625899280576,220.74769980799567,18.82522854324236,1407.201869005034,2019
+2007,50,"(45,50]",HS,4135.591890124264,194.2579758310362,21.289174215020978,1407.0542686054748,2019
+2007,50,"(45,50]",HS,4251.502943100065,285.5003584183411,14.89141017774267,1367.9244917143733,2019
+2007,50,"(45,50]",HS,4145.60889470242,285.5003584183411,14.520503293477121,1353.1131459825306,2019
+2007,50,"(45,50]",HS,4083.360366252453,285.5003584183411,14.30247019259129,1431.226583097435,2019
+2007,26,"(25,30]",HS,21.736899934597776,29.433026641066096,0.7385207168694508,6422.621299725641,2019
+2007,26,"(25,30]",HS,24.327011118378024,29.433026641066096,0.8265208812890495,6412.22368534628,2019
+2007,26,"(25,30]",HS,22.466710268149118,29.433026641066096,0.7633163433081223,6405.540702906352,2019
+2007,26,"(25,30]",HS,56.38142576847613,29.433026641066096,1.9155836895757972,6423.327454699833,2019
+2007,26,"(25,30]",HS,20.391759319816874,29.433026641066096,0.6928189740217033,6456.353364653149,2019
+2007,38,"(35,40]",HS,0.271890124264225,147.16513320533048,0.0018475172640578755,4783.663082331386,2019
+2007,38,"(35,40]",HS,0.2289601046435579,147.16513320533048,0.0015558040118382112,4817.252984704181,2019
+2007,38,"(35,40]",HS,0.28620013080444734,147.16513320533048,0.0019447550147977638,4792.134013835011,2019
+2007,38,"(35,40]",HS,0.3148201438848921,147.16513320533048,0.0021392305162775405,4782.042788870995,2019
+2007,38,"(35,40]",HS,0.20034009156311314,147.16513320533048,0.0013613285103584345,4806.788504151047,2019
+2007,51,"(50,55]",HS,87.69172007848267,92.71403391935819,0.9458300579905317,6755.249855340049,2019
+2007,51,"(50,55]",HS,84.11421844342708,100.07229057962472,0.8405345571309747,6718.714901139679,2019
+2007,51,"(50,55]",HS,89.6951209941138,94.1856852514115,0.95232222130878,6896.653531890038,2019
+2007,51,"(50,55]",HS,110.430320470896,108.90219857194455,1.0140320573779962,6762.779756139101,2019
+2007,51,"(50,55]",HS,92.55712230215828,104.48724457578463,0.8858222137825308,6700.120161326459,2019
+2007,64,"(60,65]",HS,545.2971092217135,72.11091527061193,7.56192189733506,2125.0401982604335,2019
+2007,64,"(60,65]",HS,545.5117593198169,73.58256660266524,7.413600591910555,2140.11531124678,2019
+2007,64,"(60,65]",HS,545.4258992805755,72.11091527061193,7.563707896838446,2183.688381458848,2019
+2007,64,"(60,65]",HS,545.5260693263571,73.58256660266524,7.4137950674120345,2142.086614197215,2019
+2007,64,"(60,65]",HS,545.4115892740354,73.58256660266524,7.412239263400197,2076.307719333576,2019
+2007,95,"(90,95]",College,108849.06474820145,2972.735690747675,36.61578965361186,22.309294566979876,2019
+2007,95,"(90,95]",College,108849.06474820145,2869.720097503944,37.93020261553639,20.4419539029547,2019
+2007,95,"(90,95]",College,108849.06474820145,2751.98799093968,39.55288508037217,20.90606426790816,2019
+2007,95,"(90,95]",College,108849.06474820145,2796.1375309012788,38.92836584226104,21.18009657817375,2019
+2007,95,"(90,95]",College,108849.06474820145,2722.554964298614,39.98048383799782,20.18098792396981,2019
+2007,50,"(45,50]",College,2415.958404185742,676.9596127445202,3.568836838568548,191.69058406684002,2019
+2007,50,"(45,50]",College,2354.425376062786,834.4263052742239,2.8216097229689248,182.44158411010739,2019
+2007,50,"(45,50]",College,2776.570568999346,837.3696079383304,3.3158243894658184,182.93301622513252,2019
+2007,50,"(45,50]",College,3088.5287115761935,807.9365812972643,3.822736565061943,185.22662802851423,2019
+2007,50,"(45,50]",College,2936.8426422498364,678.4312640765735,4.328872794869253,185.42636389321507,2019
+2007,39,"(35,40]",College,2564.3388620013084,735.8256660266525,3.484981538967445,2156.906130909282,2019
+2007,39,"(35,40]",College,2567.172243296272,735.8256660266525,3.4888321538967437,2161.4687320104554,2019
+2007,39,"(35,40]",College,2564.267311968607,735.8256660266525,3.4848843012167046,2108.25220575843,2019
+2007,39,"(35,40]",College,2565.7269326357095,735.8256660266525,3.486867951331798,2097.28702885714,2019
+2007,39,"(35,40]",College,2565.855722694572,735.8256660266525,3.4870429792831303,2230.0174854613356,2019
+2007,30,"(25,30]",HS,5.4378024852845,20.603118648746268,0.26393103772255366,6394.197827618995,2019
+2007,30,"(25,30]",HS,5.4378024852845,19.131467316692962,0.2842334252396732,6324.250198295636,2019
+2007,30,"(25,30]",HS,5.2947024198822765,19.131467316692962,0.2767535982596818,6433.170971116016,2019
+2007,30,"(25,30]",HS,5.4378024852845,19.131467316692962,0.2842334252396732,6442.541064575617,2019
+2007,30,"(25,30]",HS,5.4378024852845,19.131467316692962,0.2842334252396732,6382.93287740373,2019
+2007,74,"(70,75]",College,134349.35330281232,8049.932786331577,16.68950000811578,26.1690823123159,2019
+2007,74,"(70,75]",College,126610.50176586004,12759.21704890215,9.923061993584792,23.908352972069594,2019
+2007,74,"(70,75]",College,114545.87835186397,8064.649299652111,14.203454371761111,24.59734526794121,2019
+2007,74,"(70,75]",College,114887.45820797907,13686.357388095734,8.39430499658785,24.84496108619964,2019
+2007,74,"(70,75]",College,136913.70647482015,14127.852787711723,9.691048493505427,23.321893659001,2019
+2007,66,"(65,70]",College,71155.07652060171,4532.6861027241785,15.698214018799355,39.306195126659524,2019
+2007,66,"(65,70]",College,71156.50752125571,4444.38702280098,16.01042104483755,34.87880468850686,2019
+2007,66,"(65,70]",College,71156.50752125571,4547.402616044712,15.647725422462587,38.6721280342464,2019
+2007,66,"(65,70]",College,71156.50752125571,4606.268669326843,15.447754490546135,38.36222576911225,2019
+2007,66,"(65,70]",College,71156.50752125571,4429.670509480447,16.06361181242837,35.10444277153068,2019
+2007,35,"(30,35]",NoHS,5.080052321778941,36.79128330133262,0.13807760605064123,6352.482607816134,2019
+2007,35,"(30,35]",NoHS,5.223152387181164,36.79128330133262,0.14196711608023677,6358.749667577818,2019
+2007,35,"(30,35]",NoHS,5.223152387181164,36.79128330133262,0.14196711608023677,6311.7158516932295,2019
+2007,35,"(30,35]",NoHS,5.223152387181164,36.79128330133262,0.14196711608023677,6327.375557858404,2019
+2007,35,"(30,35]",NoHS,5.223152387181164,36.79128330133262,0.14196711608023677,6384.754547381355,2019
+2007,51,"(50,55]",HS,5.151602354480052,41.206237297492535,0.1250199652369991,5660.8499784599935,2019
+2007,51,"(50,55]",HS,4.865402223675605,39.73458596543923,0.12244753796874808,5630.233954015732,2019
+2007,51,"(50,55]",HS,5.008502289077828,39.73458596543923,0.1260489361442995,5779.345225341117,2019
+2007,51,"(50,55]",HS,5.008502289077828,39.73458596543923,0.1260489361442995,5696.636686873471,2019
+2007,51,"(50,55]",HS,5.151602354480052,39.73458596543923,0.1296503343198509,5614.65169803331,2019
+2007,56,"(55,60]",College,33967.66252452584,10419.291430937397,3.260074137447354,20.559649939194582,2019
+2007,56,"(55,60]",College,34630.21582733813,9727.615304872344,3.5599902691456795,22.920337304801166,2019
+2007,56,"(55,60]",College,35664.82930019621,8241.247459498507,4.327600824446845,20.935017855731413,2019
+2007,56,"(55,60]",College,36187.14453891433,8800.474965678763,4.111953579783099,21.7089147824728,2019
+2007,56,"(55,60]",College,36858.28384565075,8432.562132665436,4.370947200361781,22.65925107228141,2019
+2007,30,"(25,30]",HS,33.19921517331589,10.743054723989124,3.090295639952611,4529.235422028361,2019
+2007,30,"(25,30]",HS,36.20431654676259,10.595889590783795,3.4168265190544043,4525.987953065893,2019
+2007,30,"(25,30]",HS,36.20431654676259,10.154394191167803,3.5653841937959,4532.384987766606,2019
+2007,30,"(25,30]",HS,34.63021582733813,9.860063924757142,3.5121695043362595,4529.260101813861,2019
+2007,30,"(25,30]",HS,33.19921517331589,10.890219857194454,3.0485348880613596,4531.86363374268,2019
+2007,57,"(55,60]",College,1623.3843819489864,284.0287070862878,5.715564453334651,3232.8858501472,2019
+2007,57,"(55,60]",College,1300.765284499673,263.4255884375416,4.937885086315696,7499.073217645642,2019
+2007,57,"(55,60]",College,2304.197253106606,188.371370502823,12.232205175106873,3265.736834529615,2019
+2007,57,"(55,60]",College,1981.034375408764,225.16265380415567,8.798236927567254,3508.7646598131532,2019
+2007,57,"(55,60]",College,1542.3325049051668,261.95393710548825,5.887800435250084,3363.275482078693,2019
+2007,55,"(50,55]",College,5926.499225637672,331.1215497119936,17.89825890460009,252.04261911729023,2019
+2007,55,"(50,55]",College,5926.499225637672,331.1215497119936,17.89825890460009,240.21409046002373,2019
+2007,55,"(50,55]",College,5926.499225637672,331.1215497119936,17.89825890460009,244.9998060390068,2019
+2007,55,"(50,55]",College,5926.499225637672,331.1215497119936,17.89825890460009,243.8457177993576,2019
+2007,55,"(50,55]",College,5926.499225637672,331.1215497119936,17.89825890460009,247.3006948033652,2019
+2007,58,"(55,60]",College,1386.7827338129496,198.67292982719616,6.98022994385375,86.94137939165637,2019
+2007,58,"(55,60]",College,1386.353433616743,198.67292982719616,6.97806910494842,83.80706060965557,2019
+2007,58,"(55,60]",College,1385.3517331589273,198.67292982719616,6.9730271475026475,83.13314354739362,2019
+2007,58,"(55,60]",College,1403.2392413342052,200.14458115924944,7.011127821730467,83.71736601975964,2019
+2007,58,"(55,60]",College,1388.0706344015696,198.67292982719616,6.986712460569743,83.19907081658437,2019
+2007,77,"(75,80]",College,28549.894048397648,735.8256660266525,38.799807300230185,232.14912085238265,2019
+2007,77,"(75,80]",College,28525.567037279267,735.8256660266525,38.76674646497862,261.7083423734448,2019
+2007,77,"(75,80]",College,28534.1530412034,735.8256660266525,38.77841499506741,233.7480545578218,2019
+2007,77,"(75,80]",College,28537.015042511444,735.8256660266525,38.782304505097,238.9911054228312,2019
+2007,77,"(75,80]",College,28516.981033355136,735.8256660266525,38.75507793488983,254.71795333353867,2019
+2007,83,"(80,85]",College,4128.436886854153,348.78136569663326,11.836747294707909,3255.694649442502,2019
+2007,83,"(80,85]",College,4557.737083060824,350.2530170286865,13.012698996073274,3254.501076355499,2019
+2007,83,"(80,85]",College,6274.937867887508,348.78136569663326,17.99103531621982,3216.9941268410234,2019
+2007,83,"(80,85]",College,4557.737083060824,348.78136569663326,13.06760489901029,3192.41087981498,2019
+2007,83,"(80,85]",College,6273.506867233486,348.78136569663326,17.98693245753881,3253.5433867420766,2019
+2007,23,"(20,25]",HS,3.8651327665140616,22.07476998079957,0.17509277649895869,7027.644050047316,2019
+2007,23,"(20,25]",HS,3.8651327665140616,22.07476998079957,0.17509277649895869,7040.964066659239,2019
+2007,23,"(20,25]",HS,3.8651327665140616,22.07476998079957,0.17509277649895869,7056.759680565951,2019
+2007,23,"(20,25]",HS,3.8651327665140616,22.07476998079957,0.17509277649895869,7025.576043646872,2019
+2007,23,"(20,25]",HS,3.8651327665140616,22.07476998079957,0.17509277649895869,6982.590953495371,2019
+2007,41,"(40,45]",College,1018.3000654022237,173.65485718228996,5.863930798856308,373.6665402831057,2019
+2007,41,"(40,45]",College,1018.4431654676259,170.71155451818333,5.9658713104809,389.4680741285857,2019
+2007,41,"(40,45]",College,1017.0121648136036,176.59815984639656,5.758905787569878,378.0595664620181,2019
+2007,41,"(40,45]",College,1015.4380640941793,173.65485718228996,5.847449824154633,374.8272269106566,2019
+2007,41,"(40,45]",College,1016.8690647482014,169.23990318613005,6.008447450066482,379.09089489936486,2019
+2007,53,"(50,55]",NoHS,-38.63701765860039,10.890219857194454,-3.5478638783472722,6103.765523204513,2019
+2007,53,"(50,55]",NoHS,-38.63701765860039,10.890219857194454,-3.5478638783472722,6080.738096841295,2019
+2007,53,"(50,55]",NoHS,-38.63701765860039,10.743054723989124,-3.5964647533931253,6088.253266166357,2019
+2007,53,"(50,55]",NoHS,-38.63701765860039,10.743054723989124,-3.5964647533931253,6106.975255182282,2019
+2007,53,"(50,55]",NoHS,-38.63701765860039,10.743054723989124,-3.5964647533931253,6106.263563858216,2019
+2007,41,"(40,45]",College,695.466317854807,139.80687654506394,4.974478616798491,6291.394979882261,2019
+2007,41,"(40,45]",College,696.8973185088294,141.27852787711726,4.932790063575578,6433.287994318184,2019
+2007,41,"(40,45]",College,696.8973185088294,139.80687654506394,4.984714169507953,6059.018737806459,2019
+2007,41,"(40,45]",College,695.466317854807,139.80687654506394,4.974478616798491,6316.785422046708,2019
+2007,41,"(40,45]",College,695.466317854807,139.80687654506394,4.974478616798491,6369.907969629828,2019
+2007,75,"(70,75]",NoHS,76975.52858077174,2722.554964298614,28.273268892700656,28.06855659671574,2019
+2007,75,"(70,75]",NoHS,76973.95448005233,2722.554964298614,28.272690722290854,24.977438017087042,2019
+2007,75,"(70,75]",NoHS,76975.52858077174,2722.554964298614,28.273268892700656,27.70401201305146,2019
+2007,75,"(70,75]",NoHS,76975.52858077174,2722.554964298614,28.273268892700656,27.476046303162445,2019
+2007,75,"(70,75]",NoHS,76972.66657946371,2722.554964298614,28.272217673773742,25.032425482741523,2019
+2007,70,"(65,70]",College,4204.709221713539,163.94195839073814,25.647547845512882,2419.1220362212325,2019
+2007,70,"(65,70]",College,4263.5233485938525,163.94195839073814,26.006297536303673,2458.378463833087,2019
+2007,70,"(65,70]",College,4234.330935251799,163.94195839073814,25.82823199634912,2389.617303064295,2019
+2007,70,"(65,70]",College,4190.68541530412,163.94195839073814,25.562006556711186,2371.91523875444,2019
+2007,70,"(65,70]",College,3896.185480706344,163.94195839073814,23.765639491875547,2396.0237650992194,2019
+2007,61,"(60,65]",College,169778.06749509485,12538.469349094157,13.540573635278733,41.96932920059552,2019
+2007,61,"(60,65]",College,169144.4204054938,13318.444555082408,12.700013106331335,37.24196736362218,2019
+2007,61,"(60,65]",College,148754.37828646175,11125.684070322983,13.370357934507066,41.29230181468349,2019
+2007,61,"(60,65]",College,169086.6079790713,11125.684070322983,15.197861714417948,40.9614025723754,2019
+2007,61,"(60,65]",College,170074.42773054284,12082.257436157632,14.07637841100574,37.48289322673618,2019
+2007,60,"(55,60]",College,651.8207979071288,294.33026641066095,2.2145897731009536,2576.887005015352,2019
+2007,60,"(55,60]",College,653.2517985611511,294.33026641066095,2.2194516606379477,2604.609602993337,2019
+2007,60,"(55,60]",College,653.2517985611511,294.33026641066095,2.2194516606379477,2607.786989093715,2019
+2007,60,"(55,60]",College,651.8207979071288,294.33026641066095,2.2145897731009536,2593.4794509018834,2019
+2007,60,"(55,60]",College,651.8207979071288,294.33026641066095,2.2145897731009536,2677.6963906376513,2019
+2007,70,"(65,70]",HS,978.9475474166122,51.50779662186566,19.00581293747358,7600.1408430602405,2019
+2007,70,"(65,70]",HS,983.2405493786789,51.50779662186566,19.08915958096491,7784.065817038028,2019
+2007,70,"(65,70]",HS,963.3496402877698,50.03614528981236,19.253074646497865,7316.68325785272,2019
+2007,70,"(65,70]",HS,947.465533028123,50.03614528981236,18.93562198967058,7665.872100790626,2019
+2007,70,"(65,70]",HS,1010.4295618051013,50.03614528981236,20.193992881598543,7730.02611929128,2019
+2007,52,"(50,55]",College,3159.334623937214,279.6137530901279,11.298924280447915,2200.8142608063417,2019
+2007,52,"(50,55]",College,3159.649444081099,279.6137530901279,11.300050191245955,2200.5834189694992,2019
+2007,52,"(50,55]",College,3157.6460431654677,279.6137530901279,11.292885304349332,2139.3858233004453,2019
+2007,52,"(50,55]",College,3156.6443427076524,279.6137530901279,11.28930286090102,2116.221399185929,2019
+2007,52,"(50,55]",College,3159.5063440156964,279.6137530901279,11.299538413610481,2238.388069192295,2019
+2007,66,"(65,70]",College,3291.6020143884894,293.3001104782236,11.222641576989377,1675.1794573587842,2019
+2007,66,"(65,70]",College,2898.4202746893397,308.01662379875665,9.409947550697877,1709.2458032489717,2019
+2007,66,"(65,70]",College,2574.4560366252454,277.1119458256373,9.290310560069212,1660.8336029843413,2019
+2007,66,"(65,70]",College,2958.7512622629174,334.3591826425108,8.849020502081878,1657.4997853197638,2019
+2007,66,"(65,70]",College,3105.614859385219,322.7331371192897,9.622857098300727,1708.0355919532708,2019
+2007,29,"(25,30]",HS,363.33106605624596,51.50779662186566,7.053904260816463,9111.485499501523,2019
+2007,29,"(25,30]",HS,363.4741661216482,51.50779662186566,7.056682482266173,9021.582881171951,2019
+2007,29,"(25,30]",HS,363.33106605624596,51.50779662186566,7.053904260816463,9149.048584044078,2019
+2007,29,"(25,30]",HS,361.9000654022237,51.50779662186566,7.026122046319351,9138.854711898737,2019
+2007,29,"(25,30]",HS,361.9000654022237,51.50779662186566,7.026122046319351,9079.88763511554,2019
+2007,51,"(50,55]",College,2066.3649444081097,612.2069541341748,3.3752719247211185,1229.5836250316015,2019
+2007,51,"(50,55]",College,1024.310268149117,621.0368621264946,1.6493550232135537,565.5537012401356,2019
+2007,51,"(50,55]",College,1174.565336821452,621.0368621264946,1.891297294011854,549.0331897823213,2019
+2007,51,"(50,55]",College,1841.5547416612164,621.0368621264946,2.9652905551460216,1215.0991125440003,2019
+2007,51,"(50,55]",College,1259.2805755395684,621.0368621264946,2.027706650500038,553.082541312913,2019
+2007,47,"(45,50]",HS,376.32455199476783,83.88412592703838,4.486242752557157,7319.048621863777,2019
+2007,47,"(45,50]",HS,376.3102419882276,83.88412592703838,4.486072160011998,7144.233966379137,2019
+2007,47,"(45,50]",HS,376.3102419882276,83.88412592703838,4.486072160011998,7492.231478352936,2019
+2007,47,"(45,50]",HS,376.32455199476783,83.88412592703838,4.486242752557157,7287.2790847867245,2019
+2007,47,"(45,50]",HS,376.32455199476783,83.88412592703838,4.486242752557157,7198.253118631798,2019
+2007,55,"(50,55]",College,76.7016350555919,95.65733658346481,0.801837452255078,6287.645940256276,2019
+2007,55,"(50,55]",College,76.7016350555919,95.65733658346481,0.801837452255078,6271.045878483511,2019
+2007,55,"(50,55]",College,76.7016350555919,95.65733658346481,0.801837452255078,6401.065374132404,2019
+2007,55,"(50,55]",College,76.7016350555919,95.65733658346481,0.801837452255078,6302.7039120749805,2019
+2007,55,"(50,55]",College,76.7016350555919,95.65733658346481,0.801837452255078,6224.535661409127,2019
+2007,51,"(50,55]",HS,94.80379332897319,23.546421312852875,4.0262506165734955,10452.888970501483,2019
+2007,51,"(50,55]",HS,94.80379332897319,23.546421312852875,4.0262506165734955,10192.173157078914,2019
+2007,51,"(50,55]",HS,94.80379332897319,23.546421312852875,4.0262506165734955,10721.243786342262,2019
+2007,51,"(50,55]",HS,94.80379332897319,23.546421312852875,4.0262506165734955,10454.798081125156,2019
+2007,51,"(50,55]",HS,94.80379332897319,23.546421312852875,4.0262506165734955,10297.972844381733,2019
+2007,76,"(75,80]",HS,3.0194113799869196,19.131467316692962,0.15782434927781852,6716.4453549940445,2019
+2007,76,"(75,80]",HS,6.496742969260955,19.131467316692962,0.33958414489160954,6690.291860991461,2019
+2007,76,"(75,80]",HS,2.5901111837802486,19.131467316692962,0.13538486833784433,6692.161983085837,2019
+2007,76,"(75,80]",HS,12.778835840418575,19.131467316692962,0.667948549313232,6718.392588693455,2019
+2007,76,"(75,80]",HS,7.784643557880968,19.131467316692962,0.4069025877115321,6716.688644443377,2019
+2007,22,"(20,25]",HS,17.887508175277958,94.1856852514115,0.1899174819138441,8160.401474506523,2019
+2007,22,"(20,25]",HS,18.459908436886852,77.99752059882516,0.2366730159518033,8174.302458672604,2019
+2007,22,"(20,25]",HS,17.744408109875735,83.88412592703838,0.2115347559955462,8200.739584256042,2019
+2007,22,"(20,25]",HS,17.744408109875735,94.1856852514115,0.18839814205853336,8110.545852699137,2019
+2007,22,"(20,25]",HS,19.032308698495747,76.52586926677185,0.248704247084714,8134.555896613696,2019
+2007,90,"(85,90]",HS,444.998273381295,14.716513320533048,30.23802334758303,10261.969140521755,2019
+2007,90,"(85,90]",HS,536.1959450621321,14.716513320533048,36.4349852022361,10034.381430299323,2019
+2007,90,"(85,90]",HS,408.6651667756704,14.716513320533048,27.769156856297272,10571.191540435679,2019
+2007,90,"(85,90]",HS,495.08329627207326,14.716513320533048,33.641344623479114,10211.665834026706,2019
+2007,90,"(85,90]",HS,387.15722694571616,14.716513320533048,26.30767346267675,10294.04209920656,2019
+2007,64,"(60,65]",College,134723.70307390453,12979.964748710147,10.37935816330259,40.70508870105401,2019
+2007,64,"(60,65]",College,132074.92086330935,13038.83080199228,10.129353073829966,36.1201290040273,2019
+2007,64,"(60,65]",College,133169.49326357097,13244.86198847974,10.054426643282548,40.04845538521342,2019
+2007,64,"(60,65]",College,139073.2295618051,13495.042714928804,10.305504954642066,39.72752380813522,2019
+2007,64,"(60,65]",College,137998.6911706998,13495.042714928804,10.225880279581453,36.353797466574335,2019
+2007,64,"(60,65]",College,117833.60235448006,13097.696855274413,8.996513177584252,37.75168359237013,2019
+2007,64,"(60,65]",College,90156.76180510139,13053.547315312815,6.9066867133764145,34.39301645081763,2019
+2007,64,"(60,65]",College,88090.39686069326,12170.556516080831,7.237992506283532,35.37126131104676,2019
+2007,64,"(60,65]",College,102775.03937213865,13421.46014832614,7.657515518902485,35.7350820450937,2019
+2007,64,"(60,65]",College,106897.89535644212,12170.556516080831,8.78332023808435,33.692238614170705,2019
+2007,69,"(65,70]",College,48.78281229561805,39.29309056582323,1.2415112070122807,6817.604257428492,2019
+2007,69,"(65,70]",College,34.84486592544147,33.40648523761002,1.0430569297428536,6821.740303220773,2019
+2007,69,"(65,70]",College,37.99306736429039,29.13869637465543,1.3038698394666828,6885.095191331557,2019
+2007,69,"(65,70]",College,48.31058207979071,29.72735690747675,1.6251220123656565,6751.709208126005,2019
+2007,69,"(65,70]",College,38.42236756049706,35.02530170286865,1.0969889106579824,6762.663777738901,2019
+2007,29,"(25,30]",College,317.96834532374106,176.59815984639656,1.8005190178669301,7668.0245958985515,2019
+2007,29,"(25,30]",College,292.35343361674296,176.59815984639656,1.6554727063465966,7592.364541495289,2019
+2007,29,"(25,30]",College,303.229038587312,176.59815984639656,1.717056615148526,7699.636856729773,2019
+2007,29,"(25,30]",College,316.25114453891433,176.59815984639656,1.790795242792941,7691.057919481595,2019
+2007,29,"(25,30]",College,325.1233485938522,176.59815984639656,1.8410347473418833,7641.432532364801,2019
+2007,68,"(65,70]",College,11985.403217789404,566.5857628405223,21.15373170992112,1621.962622917139,2019
+2007,68,"(65,70]",College,11983.972217135382,568.0574141725756,21.09641018345138,1654.9467545518296,2019
+2007,68,"(65,70]",College,11700.63408763898,568.0574141725756,20.597625866184597,1608.0725053617064,2019
+2007,68,"(65,70]",College,11862.337161543492,566.5857628405223,20.93652530567098,1604.84459588621,2019
+2007,68,"(65,70]",College,11905.267181164161,568.0574141725756,20.95785898421061,1653.7749890559971,2019
+2007,38,"(35,40]",HS,146.97807717462393,58.86605328213219,2.496822344623479,6930.52849884061,2019
+2007,38,"(35,40]",HS,148.40907782864616,60.3377046141855,2.459640763227757,6855.410560724468,2019
+2007,38,"(35,40]",HS,147.10686723348596,58.86605328213219,2.499010194015127,7064.722403079909,2019
+2007,38,"(35,40]",HS,147.12117724002616,60.3377046141855,2.438295891114123,6871.390860195104,2019
+2007,38,"(35,40]",HS,148.55217789404838,60.3377046141855,2.462012415684827,6853.554366744174,2019
+2007,29,"(25,30]",HS,125.49875735775016,35.319631969279314,3.5532294749534143,8585.200187943245,2019
+2007,29,"(25,30]",HS,125.35565729234794,61.8093559462388,2.0281016582890965,8516.841955156906,2019
+2007,29,"(25,30]",HS,125.35565729234794,66.22430994239872,1.8928948810698234,8670.223321866568,2019
+2007,29,"(25,30]",HS,125.35565729234794,66.22430994239872,1.8928948810698234,8708.22865234278,2019
+2007,29,"(25,30]",HS,125.49875735775016,54.451099285972276,2.3047974972670797,8697.897178449124,2019
+2007,90,"(85,90]",NoHS,952.617135382603,35.319631969279314,26.971321111476488,9450.20582766379,2019
+2007,90,"(85,90]",NoHS,952.617135382603,35.319631969279314,26.971321111476488,9661.95504517329,2019
+2007,90,"(85,90]",NoHS,951.1861347285809,33.84798063722601,28.10170996382769,9103.3805042321,2019
+2007,90,"(85,90]",NoHS,952.617135382603,35.319631969279314,26.971321111476488,9490.599623235026,2019
+2007,90,"(85,90]",NoHS,952.617135382603,35.319631969279314,26.971321111476488,9572.06423257503,2019
+2007,50,"(45,50]",NoHS,461.5692609548725,191.31467316692962,2.4126181923962258,10308.172596367334,2019
+2007,50,"(45,50]",NoHS,447.574074558535,191.31467316692962,2.33946548453191,10566.28633117244,2019
+2007,50,"(45,50]",NoHS,440.31890124264226,191.31467316692962,2.3015427617433537,9905.428279494015,2019
+2007,50,"(45,50]",NoHS,443.0234924787443,191.31467316692962,2.3156796347355373,10385.869665651448,2019
+2007,50,"(45,50]",NoHS,441.6497318508829,191.31467316692962,2.3084990008347455,10488.5455757981,2019
+2007,83,"(80,85]",HS,369.3412688031393,44.14953996159914,8.36568782198838,11522.471954676845,2019
+2007,83,"(80,85]",HS,377.92727272727274,44.14953996159914,8.560163323468158,11541.00003443764,2019
+2007,83,"(80,85]",HS,378.07037279267496,44.14953996159914,8.563404581826154,11609.91610898346,2019
+2007,83,"(80,85]",HS,370.6291693917593,44.14953996159914,8.394859147210347,11547.002766347552,2019
+2007,83,"(80,85]",HS,372.20327011118377,44.14953996159914,8.430512989148307,11623.542097124384,2019
+2007,61,"(60,65]",HS,11630.45781556573,1471.651332053305,7.902998191384412,178.16149353028828,2019
+2007,61,"(60,65]",HS,10628.614257684761,1471.651332053305,7.222236698454455,171.39843000335222,2019
+2007,61,"(60,65]",HS,12202.872387181165,1471.651332053305,8.29195891811904,172.9560730000367,2019
+2007,61,"(60,65]",HS,11630.629535644213,1471.651332053305,7.903114876685301,171.2475317127679,2019
+2007,61,"(60,65]",HS,10628.857527795944,1471.651332053305,7.222402002630712,173.16835333317357,2019
+2007,40,"(35,40]",HS,2831.091693917593,64.7526586103454,43.721628650862456,2317.4152568663344,2019
+2007,40,"(35,40]",HS,2832.393904512753,64.7526586103454,43.74173918567456,2348.8330520377067,2019
+2007,40,"(35,40]",HS,2829.5032831916283,66.22430994239872,42.72605159121633,2340.833210992122,2019
+2007,40,"(35,40]",HS,2830.934283845651,66.22430994239872,42.747659980269646,2515.3504958181798,2019
+2007,40,"(35,40]",HS,2830.9485938521907,64.7526586103454,43.719418701982,2411.0016503604406,2019
+2007,19,"(15,20]",HS,8.013603662524526,14.716513320533048,0.5445314041433739,6710.822036202104,2019
+2007,19,"(15,20]",HS,8.013603662524526,14.716513320533048,0.5445314041433739,6680.304613565463,2019
+2007,19,"(15,20]",HS,8.013603662524526,14.716513320533048,0.5445314041433739,6642.113602390122,2019
+2007,19,"(15,20]",HS,8.013603662524526,14.716513320533048,0.5445314041433739,6645.720176268776,2019
+2007,19,"(15,20]",HS,8.013603662524526,14.716513320533048,0.5445314041433739,6713.174814483779,2019
+2007,67,"(65,70]",College,2562.349771092217,420.8922809672451,6.087899177442091,2735.393526688442,2019
+2007,67,"(65,70]",College,2704.4481360366253,420.8922809672451,6.425511367948068,2772.141170725886,2019
+2007,67,"(65,70]",College,2972.3314584695877,420.8922809672451,7.061976645518244,2763.9103470586915,2019
+2007,67,"(65,70]",College,2777.5722694571614,420.8922809672451,6.5992473491651396,2969.083387374121,2019
+2007,67,"(65,70]",College,2874.8803139306738,420.8922809672451,6.8304420012739655,2846.267369463346,2019
+2007,44,"(40,45]",College,205.77789404839763,122.14706056042431,1.684673320047701,5789.535245883118,2019
+2007,44,"(40,45]",College,201.48489208633094,122.14706056042431,1.6495271450814766,5692.4626627739335,2019
+2007,44,"(40,45]",College,205.77789404839763,122.14706056042431,1.684673320047701,5853.397719397641,2019
+2007,44,"(40,45]",College,202.9158927403532,122.14706056042431,1.661242536736885,5719.383995296028,2019
+2007,44,"(40,45]",College,218.6568999345978,122.14706056042431,1.7901118449463753,5726.634991083751,2019
+2007,79,"(75,80]",College,206573.67351209943,16875.425824655245,12.241093982368863,8.143053917402375,2019
+2007,79,"(75,80]",College,220744.72988881622,16146.95841528886,13.670979029697786,11.078725165793495,2019
+2007,79,"(75,80]",College,198837.5408763898,16734.147296778126,11.882143580430451,6.548439167146907,2019
+2007,79,"(75,80]",College,207072.94964028776,15676.029989031804,13.209527526112954,7.5140737409958716,2019
+2007,79,"(75,80]",College,202230.30032701112,16722.3740861217,12.09339650491654,4.909919749849398,2019
+2007,28,"(25,30]",HS,135.65886200130805,80.94082326293177,1.6760252309348,5581.762097818358,2019
+2007,28,"(25,30]",HS,135.94506213211247,80.94082326293177,1.6795611491435227,5612.403393436714,2019
+2007,28,"(25,30]",HS,135.65886200130805,80.94082326293177,1.6760252309348,5601.79148228263,2019
+2007,28,"(25,30]",HS,135.80196206671025,80.94082326293177,1.6777931900391612,5577.29059298154,2019
+2007,28,"(25,30]",HS,135.51576193590583,80.94082326293177,1.6742572718304383,5600.116786610014,2019
+2007,55,"(50,55]",HS,127.78835840418574,55.92275061802558,2.2850871423873724,6748.656205064518,2019
+2007,55,"(50,55]",HS,128.0745585349902,55.92275061802558,2.2902049187421034,6614.637886711884,2019
+2007,55,"(50,55]",HS,127.78835840418574,55.92275061802558,2.2850871423873724,6970.0538602875195,2019
+2007,55,"(50,55]",HS,127.21595814257684,55.92275061802558,2.2748515896779105,6709.07493568714,2019
+2007,55,"(50,55]",HS,129.7917593198169,55.92275061802558,2.3209115768704893,6600.14367522099,2019
+2007,72,"(70,75]",College,7993.855853499019,125.0903632245309,63.90464978625452,1771.630854672551,2019
+2007,72,"(70,75]",College,7920.874820143885,125.0903632245309,63.321223281815186,1774.2440826185416,2019
+2007,72,"(70,75]",College,4585.212295618051,125.0903632245309,36.6552001083235,1721.7326948794944,2019
+2007,72,"(70,75]",College,3562.046827992152,125.0903632245309,28.47578931079173,1705.57043165821,2019
+2007,72,"(70,75]",College,7634.6746893394375,125.0903632245309,61.033276205582524,1804.165378144247,2019
+2007,53,"(50,55]",HS,31992.8830529758,794.6917193087846,40.25823130610057,236.64966269995108,2019
+2007,53,"(50,55]",HS,31380.699542184437,765.2586926677185,41.006655452406854,266.78193189377015,2019
+2007,53,"(50,55]",HS,31378.58166121648,796.1633706408378,39.412239771794106,238.27959401600506,2019
+2007,53,"(50,55]",HS,31385.078404185744,797.6350219728913,39.34766846941734,243.62428890077325,2019
+2007,53,"(50,55]",HS,31381.844342707653,756.4287846753988,41.486845792329724,259.6560241911641,2019
+2007,62,"(60,65]",College,21157.344669718772,2766.7045042602126,7.647128429198124,20.910426665456015,2019
+2007,62,"(60,65]",College,21157.344669718772,2766.7045042602126,7.647128429198124,19.66802607393887,2019
+2007,62,"(60,65]",College,21158.775670372794,2766.7045042602126,7.647645651276527,21.731138719792064,2019
+2007,62,"(60,65]",College,21157.344669718772,2766.7045042602126,7.647128429198124,21.504578594019982,2019
+2007,62,"(60,65]",College,21157.344669718772,2766.7045042602126,7.647128429198124,20.87959978872707,2019
+2007,83,"(80,85]",NoHS,18.459908436886852,14.422183054122387,1.2799663107597525,7131.508916536119,2019
+2007,83,"(80,85]",NoHS,18.31680837148463,14.422183054122387,1.2700440912964988,7140.119578079944,2019
+2007,83,"(80,85]",NoHS,18.31680837148463,14.569348187327716,1.2572153631015848,7140.265935032764,2019
+2007,83,"(80,85]",NoHS,18.459908436886852,14.422183054122387,1.2799663107597525,7160.204866950124,2019
+2007,83,"(80,85]",NoHS,18.459908436886852,14.422183054122387,1.2799663107597525,7163.312659588684,2019
+2007,35,"(30,35]",NoHS,62.57765860039242,44.14953996159914,1.4174022799517705,12125.022078639999,2019
+2007,35,"(30,35]",NoHS,87.19086984957488,44.14953996159914,1.9748987175271293,11935.197561021352,2019
+2007,35,"(30,35]",NoHS,87.391209941138,44.14953996159914,1.979436479228324,12393.461639892474,2019
+2007,35,"(30,35]",NoHS,84.44334859385219,44.14953996159914,1.912666557053601,12043.649001381853,2019
+2007,35,"(30,35]",NoHS,90.49648136036625,44.14953996159914,2.049771785596843,12124.878453398587,2019
+2007,66,"(65,70]",College,964.065140614781,88.29907992319828,10.918178778910447,6248.296617991887,2019
+2007,66,"(65,70]",College,977.3734466971878,88.29907992319828,11.068897292557274,6391.398547269329,2019
+2007,66,"(65,70]",College,1008.8554610856769,88.29907992319828,11.425435711936863,6014.959806595542,2019
+2007,66,"(65,70]",College,978.3751471550033,88.29907992319828,11.08024169681026,6294.840131018672,2019
+2007,66,"(65,70]",College,972.3649444081099,89.77073125525159,10.831647807828528,6347.228323719092,2019
+2007,58,"(55,60]",College,832.8423806409418,316.4050363914605,2.632203299098369,499.95700113813274,2019
+2007,58,"(55,60]",College,832.8423806409418,316.4050363914605,2.632203299098369,520.5272727288943,2019
+2007,58,"(55,60]",College,832.8423806409418,316.4050363914605,2.632203299098369,502.45962148392056,2019
+2007,58,"(55,60]",College,832.8423806409418,314.9333850594072,2.6445033145147163,496.9596056968159,2019
+2007,58,"(55,60]",College,832.8423806409418,314.9333850594072,2.6445033145147163,500.1160936010662,2019
+2007,41,"(40,45]",College,399.1060824068018,142.75017920917054,2.7958359465314246,7337.056178309045,2019
+2007,41,"(40,45]",College,399.1060824068018,142.75017920917054,2.7958359465314246,7506.703063890214,2019
+2007,41,"(40,45]",College,399.1060824068018,142.75017920917054,2.7958359465314246,7060.015889586767,2019
+2007,41,"(40,45]",College,400.5370830608241,142.75017920917054,2.8058604569169807,7393.629509283213,2019
+2007,41,"(40,45]",College,399.1060824068018,142.75017920917054,2.7958359465314246,7454.0889382731375,2019
+2007,48,"(45,50]",HS,486.0966121648136,77.99752059882516,6.232205952609927,6295.388905361362,2019
+2007,48,"(45,50]",HS,398.9486723348594,77.99752059882516,5.114889156372344,6182.074405972922,2019
+2007,48,"(45,50]",HS,453.3982472204055,108.90219857194455,4.163352560057591,6497.4588088213395,2019
+2007,48,"(45,50]",HS,438.65894048397644,108.90219857194455,4.028008123216936,6290.802923741771,2019
+2007,48,"(45,50]",HS,468.78150425114455,101.54394191167802,4.616538371721735,6189.972994273534,2019
+2007,54,"(50,55]",College,24402.138652714195,728.4674093663858,33.49791403014027,162.9444959358808,2019
+2007,54,"(50,55]",College,24403.569653368217,728.4674093663858,33.49987842914512,181.50230427478198,2019
+2007,54,"(50,55]",College,24400.70765206017,728.4674093663858,33.495949631135424,162.25916569663318,2019
+2007,54,"(50,55]",College,24403.569653368217,728.4674093663858,33.49987842914512,165.79870321478353,2019
+2007,54,"(50,55]",College,24402.138652714195,728.4674093663858,33.49791403014027,177.56351737668155,2019
+2007,25,"(20,25]",HS,42.18589928057554,95.65733658346481,0.4410105987402929,6736.972337785791,2019
+2007,25,"(20,25]",HS,42.32899934597776,95.65733658346481,0.4425065641362912,6710.71733422403,2019
+2007,25,"(20,25]",HS,42.32899934597776,95.65733658346481,0.4425065641362912,6820.495483763358,2019
+2007,25,"(20,25]",HS,42.32899934597776,95.65733658346481,0.4425065641362912,6781.723740757152,2019
+2007,25,"(20,25]",HS,42.32899934597776,95.65733658346481,0.4425065641362912,6711.966156639009,2019
+2007,65,"(60,65]",College,18023.45323741007,802.049975969051,22.471733404933794,249.20898205890322,2019
+2007,65,"(60,65]",College,9198.472204054939,896.2356612204627,10.263452573990168,237.51343788365338,2019
+2007,65,"(60,65]",College,16955.926749509483,993.3646491359807,17.069186792843485,242.24534914548167,2019
+2007,65,"(60,65]",College,12874.712884238064,922.7253851974222,13.952919352580128,241.1042359622573,2019
+2007,65,"(60,65]",College,13395.597122302159,1011.0244651206202,13.249528161224069,244.52036973051082,2019
+2007,37,"(35,40]",HS,0,14.716513320533048,0,6164.94512483074,2019
+2007,37,"(35,40]",HS,0,14.716513320533048,0,6142.935580082729,2019
+2007,37,"(35,40]",HS,0,14.716513320533048,0,6148.459226365157,2019
+2007,37,"(35,40]",HS,0,14.716513320533048,0,6166.076816185664,2019
+2007,37,"(35,40]",HS,0,14.716513320533048,0,6165.196433264894,2019
+2007,28,"(25,30]",HS,4.722302158273381,22.07476998079957,0.21392305162775402,6019.149432180263,2019
+2007,28,"(25,30]",HS,0,22.07476998079957,0,6033.808909092737,2019
+2007,28,"(25,30]",HS,0,22.07476998079957,0,6034.7697968089005,2019
+2007,28,"(25,30]",HS,0,22.07476998079957,0,6060.893805210566,2019
+2007,28,"(25,30]",HS,0,20.603118648746268,0,6131.596968733269,2019
+2007,31,"(30,35]",HS,6.725703073904513,73.58256660266524,0.0914034856954949,6798.732498945722,2019
+2007,31,"(30,35]",HS,6.725703073904513,73.58256660266524,0.0914034856954949,6740.697827033755,2019
+2007,31,"(30,35]",HS,6.725703073904513,73.58256660266524,0.0914034856954949,6892.451116253827,2019
+2007,31,"(30,35]",HS,6.725703073904513,73.58256660266524,0.0914034856954949,6858.328223918938,2019
+2007,31,"(30,35]",HS,6.725703073904513,73.58256660266524,0.0914034856954949,6699.726951956724,2019
+2007,73,"(70,75]",HS,185.05700457815567,55.92275061802558,3.3091541909690374,7994.665104459078,2019
+2007,73,"(70,75]",HS,217.11141922825377,55.92275061802558,3.882345142698904,7858.038403040681,2019
+2007,73,"(70,75]",HS,202.80141268803138,55.92275061802558,3.6264563249623563,8201.316891709084,2019
+2007,73,"(70,75]",HS,192.92750817527798,55.92275061802558,3.4498930407241386,7976.4502233244,2019
+2007,73,"(70,75]",HS,215.68041857423154,55.92275061802558,3.8567562609252497,7876.093163592532,2019
+2007,61,"(60,65]",College,54.95042511445389,86.82742859114498,0.632869428544357,13188.794548255904,2019
+2007,61,"(60,65]",College,54.95042511445389,85.35577725909167,0.6437809704158115,12869.415180143793,2019
+2007,61,"(60,65]",College,54.95042511445389,85.35577725909167,0.6437809704158115,13656.246223447257,2019
+2007,61,"(60,65]",College,54.95042511445389,86.82742859114498,0.632869428544357,13140.11534822467,2019
+2007,61,"(60,65]",College,54.95042511445389,85.35577725909167,0.6437809704158115,13038.21383371106,2019
+2007,55,"(50,55]",College,6712.251667756704,735.8256660266525,9.12206787241039,361.55690616741236,2019
+2007,55,"(50,55]",College,6676.61975147155,735.8256660266525,9.073643472541926,343.61643953592386,2019
+2007,55,"(50,55]",College,6635.120732504905,735.8256660266525,9.01724557711279,350.33449090413853,2019
+2007,55,"(50,55]",College,6686.4936559843045,735.8256660266525,9.087062282144032,348.7598179852288,2019
+2007,55,"(50,55]",College,7200.365990843689,735.8256660266525,9.785423807957908,355.25994145660917,2019
+2007,55,"(50,55]",College,96237.36978417267,2089.7448915156924,46.05220961414658,41.87115875751651,2019
+2007,55,"(50,55]",College,84042.66841072596,2104.4614048362255,39.935476230445,37.13472920837242,2019
+2007,55,"(50,55]",College,139497.3781556573,2075.02837819516,67.22673271436933,41.19186156794666,2019
+2007,55,"(50,55]",College,139936.4091563113,2266.3430513620892,61.74546658865632,40.8631720743485,2019
+2007,55,"(50,55]",College,98823.47416612165,2089.7448915156924,47.28973118553479,37.392104918679124,2019
+2007,53,"(50,55]",HS,2197.1584041857423,367.91283301332624,5.971953699440972,3038.5095090604755,2019
+2007,53,"(50,55]",HS,2200.8790058862005,367.91283301332624,5.982066425517922,3078.7911297566034,2019
+2007,53,"(50,55]",HS,2198.7325049051665,367.91283301332624,5.9762321604735265,3069.9741884022346,2019
+2007,53,"(50,55]",HS,2210.0374100719428,367.91283301332624,6.006959289707333,3298.2467581834208,2019
+2007,53,"(50,55]",HS,2207.6047089601047,367.91283301332624,6.00034712265702,3161.5624894015864,2019
+2007,44,"(40,45]",College,23259.69928057554,367.91283301332624,63.22067944755014,394.69285426427825,2019
+2007,44,"(40,45]",College,22987.966566383257,367.91283301332624,62.48210038803024,442.3918967047848,2019
+2007,44,"(40,45]",College,23069.662393721388,367.91283301332624,62.70415251561985,397.3452305589616,2019
+2007,44,"(40,45]",College,23176.70124264225,367.91283301332624,62.995087865833604,405.1261896608508,2019
+2007,44,"(40,45]",College,22625.207900588623,367.91283301332624,61.496109595527784,427.25655619063025,2019
+2007,34,"(30,35]",College,-47.65232177894048,107.43054723989124,-0.44356398625181875,7903.223290329091,2019
+2007,34,"(30,35]",College,-46.79372138652714,107.43054723989124,-0.4355718423553896,7821.6220805467165,2019
+2007,34,"(30,35]",College,110.04395029431001,107.43054723989124,1.0243264427256715,7941.687221011179,2019
+2007,34,"(30,35]",College,-13.022105951602354,107.43054723989124,-0.1212141824291757,7900.25074902214,2019
+2007,34,"(30,35]",College,-41.92831916285154,107.43054723989124,-0.390283026942291,7850.937041380409,2019
+2007,58,"(55,60]",HS,218.0844996729889,370.85613567743275,0.5880568735221811,8009.1329638799025,2019
+2007,58,"(55,60]",HS,213.3621975147155,370.85613567743275,0.5753233585443385,7803.036640748384,2019
+2007,58,"(55,60]",HS,213.7914977109222,370.85613567743275,0.5764809508150516,8204.269483831427,2019
+2007,58,"(55,60]",HS,214.5069980379333,370.85613567743275,0.5784102712662398,7933.377061668709,2019
+2007,58,"(55,60]",HS,211.35879659908437,370.85613567743275,0.5699212612810114,7834.799385169046,2019
+2007,28,"(25,30]",NoHS,190.32308698495748,13.244861988479741,14.369578720450145,3144.985732193876,2019
+2007,28,"(25,30]",NoHS,188.89208633093526,13.244861988479741,14.261536775183604,3217.8688354203423,2019
+2007,28,"(25,30]",NoHS,188.89208633093526,13.244861988479741,14.261536775183604,3156.718687353039,2019
+2007,28,"(25,30]",NoHS,190.32308698495748,13.244861988479741,14.369578720450145,3209.7249947128203,2019
+2007,28,"(25,30]",NoHS,188.89208633093526,13.244861988479741,14.261536775183604,3172.669307219817,2019
+2007,64,"(60,65]",NoHS,74.58375408763898,14.716513320533048,5.068031568562972,6720.694908993113,2019
+2007,64,"(60,65]",NoHS,78.64779594506213,14.716513320533048,5.344186780664255,6580.098119407934,2019
+2007,64,"(60,65]",NoHS,74.7268541530412,14.716513320533048,5.077755343636961,6954.810317365103,2019
+2007,64,"(60,65]",NoHS,75.19908436886854,14.716513320533048,5.109843801381124,6711.630839678919,2019
+2007,64,"(60,65]",NoHS,75.54252452583388,14.716513320533048,5.133180861558698,6584.051038823479,2019
+2007,42,"(40,45]",HS,232.78087638979727,51.50779662186566,4.519332832245033,5900.69670532497,2019
+2007,42,"(40,45]",HS,190.85255722694572,51.50779662186566,3.705313947479683,5836.740807874021,2019
+2007,42,"(40,45]",HS,182.16638325703076,51.50779662186566,3.53667590548222,6014.95026170988,2019
+2007,42,"(40,45]",HS,182.12345323741008,51.50779662186566,3.535842439047306,5850.3465380073385,2019
+2007,42,"(40,45]",HS,177.4011510791367,51.50779662186566,3.4441611312068403,5835.160432336166,2019
+2007,42,"(40,45]",College,6194.086330935252,272.25549642986135,22.751005625816543,848.812924315965,2019
+2007,42,"(40,45]",College,6194.086330935252,272.25549642986135,22.751005625816543,837.5892992702353,2019
+2007,42,"(40,45]",College,6194.086330935252,272.25549642986135,22.751005625816543,834.9194209524496,2019
+2007,42,"(40,45]",College,6194.086330935252,272.25549642986135,22.751005625816543,828.9954973679475,2019
+2007,42,"(40,45]",College,6194.086330935252,272.25549642986135,22.751005625816543,849.5958691175413,2019
+2007,45,"(40,45]",HS,359.3528842380641,95.65733658346481,3.7566683024308807,8999.853035801347,2019
+2007,45,"(40,45]",HS,481.3170699803793,105.95889590783793,4.542488536300194,8788.352737757257,2019
+2007,45,"(40,45]",HS,409.1373969914977,76.52586926677185,5.346393329623353,9356.524690018607,2019
+2007,45,"(40,45]",HS,529.9710922171354,92.71403391935819,5.716190632780571,7496.007841235932,2019
+2007,45,"(40,45]",HS,381.99131458469594,100.07229057962472,3.8171537033096703,8757.045937144623,2019
+2007,84,"(80,85]",NoHS,1194.527795945062,66.22430994239872,18.037602762249257,8166.176202402395,2019
+2007,84,"(80,85]",NoHS,1194.8139960758665,66.22430994239872,18.04192444005992,8352.690982063894,2019
+2007,84,"(80,85]",NoHS,1194.8139960758665,66.22430994239872,18.04192444005992,7862.419184150051,2019
+2007,84,"(80,85]",NoHS,1194.6708960104643,66.22430994239872,18.039763601154586,8227.728136292983,2019
+2007,84,"(80,85]",NoHS,1194.9570961412687,66.22430994239872,18.044085278965248,8297.261957483362,2019
+2007,61,"(60,65]",HS,28456.8790058862,1633.5329785791685,17.420449650571317,52.963730864868,2019
+2007,61,"(60,65]",HS,29033.572269457163,1633.5329785791685,17.773484006861185,57.13925726047578,2019
+2007,61,"(60,65]",HS,28298.037933289732,1515.8008720149037,18.66870408622611,56.46937645713102,2019
+2007,61,"(60,65]",HS,29428.5284499673,1589.3834386175693,18.51568837005371,57.44344771465485,2019
+2007,61,"(60,65]",HS,29087.95029431001,1633.5329785791685,17.806772606213578,58.1067486736539,2019
+2007,24,"(20,25]",HS,15.068436886854153,51.50779662186566,0.29254671865457793,5069.180710570546,2019
+2007,24,"(20,25]",HS,14.925336821451928,51.50779662186566,0.28976849720486686,5076.553235695877,2019
+2007,24,"(20,25]",HS,14.925336821451928,51.50779662186566,0.28976849720486686,5058.628272630225,2019
+2007,24,"(20,25]",HS,14.925336821451928,51.50779662186566,0.28976849720486686,5905.023110852957,2019
+2007,24,"(20,25]",HS,15.082746893394376,51.50779662186566,0.29282454079954906,5946.029917867718,2019
+2007,81,"(80,85]",NoHS,223.95160235448006,17.659815984639657,12.681423325660418,9684.844929258863,2019
+2007,81,"(80,85]",NoHS,223.80850228907784,17.659815984639657,12.673320179765428,9718.78173523469,2019
+2007,81,"(80,85]",NoHS,186.6024852844997,17.659815984639657,10.56650224706785,9647.758115306337,2019
+2007,81,"(80,85]",NoHS,223.95160235448006,17.659815984639657,12.681423325660418,9660.134451919996,2019
+2007,81,"(80,85]",NoHS,186.74558534990192,17.659815984639657,10.574605392962841,9659.723089741765,2019
+2007,42,"(40,45]",HS,104.33425768476128,63.28100727829211,1.6487452108012204,6951.1819427617575,2019
+2007,42,"(40,45]",HS,125.49875735775016,129.5053172206908,0.969062584078204,6875.840148106734,2019
+2007,42,"(40,45]",HS,104.5345977763244,75.05421793471854,1.392787782656634,7085.7757539167,2019
+2007,42,"(40,45]",HS,113.33525179856115,97.1289879155181,1.1668530088786584,6891.868069951197,2019
+2007,42,"(40,45]",HS,113.73593198168737,36.79128330133262,3.091382571522525,6873.978422542775,2019
+2007,39,"(35,40]",HS,-12.992054937867888,38.262934633385925,-0.33954674575670957,7043.584643837105,2019
+2007,39,"(35,40]",HS,-13.278255068672335,33.84798063722601,-0.3922909083110533,7054.076183448002,2019
+2007,39,"(35,40]",HS,-13.13515500327011,35.319631969279314,-0.3718938808505974,7060.766601557523,2019
+2007,39,"(35,40]",HS,-12.992054937867888,38.262934633385925,-0.33954674575670957,7072.785230022591,2019
+2007,39,"(35,40]",HS,-13.13515500327011,38.262934633385925,-0.34328665924670526,7076.8679530978525,2019
+2007,48,"(45,50]",HS,37.635317200784826,39.73458596543923,0.9471677201700219,7253.676166738954,2019
+2007,48,"(45,50]",HS,37.635317200784826,39.73458596543923,0.9471677201700219,7107.334048084895,2019
+2007,48,"(45,50]",HS,37.635317200784826,39.73458596543923,0.9471677201700219,7469.5020755376945,2019
+2007,48,"(45,50]",HS,37.635317200784826,39.73458596543923,0.9471677201700219,7274.861210524762,2019
+2007,48,"(45,50]",HS,37.635317200784826,39.73458596543923,0.9471677201700219,7167.252799081114,2019
+2007,21,"(20,25]",HS,64.6812295618051,16.18816465258635,3.9955875758572237,7322.576859976926,2019
+2007,21,"(20,25]",HS,64.6812295618051,17.659815984639657,3.6626219445357884,7326.608075376452,2019
+2007,21,"(20,25]",HS,64.6812295618051,16.18816465258635,3.9955875758572237,7282.835741847899,2019
+2007,21,"(20,25]",HS,64.6812295618051,16.18816465258635,3.9955875758572237,7278.609070161894,2019
+2007,21,"(20,25]",HS,64.6812295618051,16.18816465258635,3.9955875758572237,7357.54488463898,2019
+2007,42,"(40,45]",NoHS,309.16769130150425,45.62119129365245,6.776843886242852,6463.034924900387,2019
+2007,42,"(40,45]",NoHS,354.387311968607,45.62119129365245,7.7680416034623585,6481.974695692704,2019
+2007,42,"(40,45]",NoHS,302.4419882275998,45.62119129365245,6.629418909314635,6504.1266982654015,2019
+2007,42,"(40,45]",NoHS,335.78430346631785,45.62119129365245,7.360270390682182,6423.912563885861,2019
+2007,42,"(40,45]",NoHS,358.10791366906477,45.62119129365245,7.849595846018393,6436.030194797355,2019
+2007,64,"(60,65]",College,2838.9621975147156,294.33026641066095,9.64549868464321,1876.101585522069,2019
+2007,64,"(60,65]",College,2833.0950948332247,294.33026641066095,9.625564945741534,1875.7428104492603,2019
+2007,64,"(60,65]",College,2837.674296926096,294.33026641066095,9.641122985859916,1823.1124413923033,2019
+2007,64,"(60,65]",College,2835.6708960104647,294.33026641066095,9.634316343308123,1802.834204662465,2019
+2007,64,"(60,65]",College,2829.660693263571,294.33026641066095,9.613896415652745,1906.8382780724871,2019
+2007,30,"(25,30]",NoHS,183.38273381294965,138.33522521301063,1.3256401869485823,9526.53553786402,2019
+2007,30,"(25,30]",NoHS,219.3008502289078,114.78880390015777,1.9104724744728032,9432.537639441136,2019
+2007,30,"(25,30]",NoHS,252.070765206017,132.44861988479744,1.9031588658701448,9565.809711084843,2019
+2007,30,"(25,30]",NoHS,202.52952256376716,123.6187118924776,1.6383403407400445,9555.151483590942,2019
+2007,30,"(25,30]",NoHS,261.0860693263571,132.44861988479744,1.9712252913880668,9493.498314898552,2019
+2007,57,"(55,60]",HS,3417.515761935906,72.11091527061193,47.392489044285924,3644.920406229206,2019
+2007,57,"(55,60]",HS,3417.6588620013085,69.16761260650532,49.411259594058514,3692.6023425473904,2019
+2007,57,"(55,60]",HS,3417.6588620013085,69.16761260650532,49.411259594058514,3683.355437268439,2019
+2007,57,"(55,60]",HS,3417.372661870504,70.63926393855863,48.37780677956813,3955.761538591653,2019
+2007,57,"(55,60]",HS,3417.6588620013085,72.11091527061193,47.394473488178576,3791.932066611805,2019
+2007,35,"(30,35]",HS,36.275866579463695,63.28100727829211,0.5732504607572477,6569.052154499814,2019
+2007,35,"(30,35]",HS,36.13276651406148,83.88412592703838,0.43074617652318886,6570.350287367146,2019
+2007,35,"(30,35]",HS,36.13276651406148,45.62119129365245,0.7920171632845732,6511.230175609507,2019
+2007,35,"(30,35]",HS,36.13276651406148,33.84798063722601,1.0675013939922509,6556.226518475611,2019
+2007,35,"(30,35]",HS,36.418966644865925,107.43054723989124,0.3390001036068705,6611.133443914623,2019
+2007,49,"(45,50]",College,448.3325049051668,172.18320585023665,2.603810880923673,6326.81436181643,2019
+2007,49,"(45,50]",College,449.6204054937868,172.18320585023665,2.611290707903664,6470.303269208684,2019
+2007,49,"(45,50]",College,449.763505559189,170.71155451818333,2.634640091167833,6091.7378759753465,2019
+2007,49,"(45,50]",College,449.763505559189,172.18320585023665,2.61212179979033,6375.687371413182,2019
+2007,49,"(45,50]",College,448.1894048397645,172.18320585023665,2.6029797890370068,6428.4425999209725,2019
+2007,30,"(25,30]",HS,-23.039110529758013,17.659815984639657,-1.3046064890934999,5761.570879688855,2019
+2007,30,"(25,30]",HS,-13.022105951602354,17.659815984639657,-0.7373862764441521,5722.934568500272,2019
+2007,30,"(25,30]",HS,-27.332112491824724,17.659815984639657,-1.5477008659432205,5718.450816500523,2019
+2007,30,"(25,30]",HS,-20.10555918901243,19.131467316692962,-1.0509156906887918,5740.775053860517,2019
+2007,30,"(25,30]",HS,-27.332112491824724,17.659815984639657,-1.5477008659432205,5766.3253002942665,2019
+2007,56,"(55,60]",College,847.0379071288424,236.93586446058208,3.5749670445934547,5746.247947737917,2019
+2007,56,"(55,60]",College,883.8146239372139,183.95641650666312,4.80447836895758,5876.062440335832,2019
+2007,56,"(55,60]",College,837.7364028776979,222.219351140049,3.7698625190824733,5530.849737938408,2019
+2007,56,"(55,60]",College,880.094022236756,291.38696374655433,3.020361689901315,5786.9271071838175,2019
+2007,56,"(55,60]",College,895.6919293655985,187.6061118101553,4.774321693058583,5834.592916203999,2019
+2007,75,"(70,75]",NoHS,145.10346631785478,47.09284262570575,3.081221226570207,8375.914326449112,2019
+2007,75,"(70,75]",NoHS,143.67246566383258,47.09284262570575,3.0508344294639924,8386.185421857064,2019
+2007,75,"(70,75]",NoHS,143.67246566383258,47.09284262570575,3.0508344294639924,8433.000779547405,2019
+2007,75,"(70,75]",NoHS,145.10346631785478,47.09284262570575,3.081221226570207,8376.146727667307,2019
+2007,75,"(70,75]",NoHS,143.67246566383258,47.09284262570575,3.0508344294639924,8552.582484754987,2019
+2007,47,"(45,50]",HS,-38.03599738391105,91.2423825873049,-0.41686764752681094,9873.113256140286,2019
+2007,47,"(45,50]",HS,-41.212818835840416,86.82742859114498,-0.47465207140826776,9637.295053310327,2019
+2007,47,"(45,50]",HS,-40.51162851536952,104.48724457578463,-0.3877184117529908,10106.730225295481,2019
+2007,47,"(45,50]",HS,-40.82644865925441,97.1289879155181,-0.42033227706197124,9830.257380484543,2019
+2007,47,"(45,50]",HS,-36.63361674296926,88.29907992319828,-0.41488106982352296,9710.16479851164,2019
+2007,40,"(35,40]",HS,208.06749509483322,125.0903632245309,1.6633375244211461,7179.597386642918,2019
+2007,40,"(35,40]",HS,207.924395029431,125.0903632245309,1.66219355088303,7101.779864894194,2019
+2007,40,"(35,40]",HS,206.636494440811,125.0903632245309,1.6518977890399829,7318.613942788819,2019
+2007,40,"(35,40]",HS,208.06749509483322,125.0903632245309,1.6633375244211461,7118.334463340236,2019
+2007,40,"(35,40]",HS,208.06749509483322,125.0903632245309,1.6633375244211461,7099.856963133929,2019
+2007,78,"(75,80]",HS,3855.9743623283193,178.06981117844987,21.654284557330804,5243.223405025408,2019
+2007,78,"(75,80]",HS,3999.0744277305425,178.06981117844987,22.45790233204062,5291.975973004401,2019
+2007,78,"(75,80]",HS,3713.017396991498,178.06981117844987,20.851470400395698,5112.547144833816,2019
+2007,78,"(75,80]",HS,3483.9141922825374,178.06981117844987,19.564878343085272,2820.9841827619175,2019
+2007,78,"(75,80]",HS,3999.0744277305425,178.06981117844987,22.45790233204062,5242.715091217857,2019
+2007,51,"(50,55]",College,2798.178678875082,314.9333850594072,8.884985878354083,4123.650992596074,2019
+2007,51,"(50,55]",College,2788.734074558535,314.9333850594072,8.854996665509072,4235.406849174391,2019
+2007,51,"(50,55]",College,2799.0372792674953,313.4617337273539,8.929438518648888,4068.51624181458,2019
+2007,51,"(50,55]",College,2803.330281229562,313.4617337273539,8.943133976499578,4037.3060074581394,2019
+2007,51,"(50,55]",College,2760.400261608895,314.9333850594072,8.765029026974036,4075.6855106087046,2019
+2007,57,"(55,60]",NoHS,7.01190320470896,29.433026641066096,0.23823248931272606,8269.029221086439,2019
+2007,57,"(55,60]",NoHS,4.722302158273381,29.433026641066096,0.1604422887208155,8271.68929166795,2019
+2007,57,"(55,60]",NoHS,4.006801831262263,113.31715256810448,0.035359182087232065,8256.809421888796,2019
+2007,57,"(55,60]",NoHS,5.7240026160889474,42.67788862954583,0.13412103550329407,8318.717466082493,2019
+2007,57,"(55,60]",NoHS,6.010202746893395,29.433026641066096,0.2041992765537652,8315.191729211328,2019
+2007,61,"(60,65]",College,4136.736690647482,331.1215497119936,12.493106215060832,2108.487922423598,2019
+2007,61,"(60,65]",College,4141.888293001962,331.1215497119936,12.508664255179214,2048.2540614405225,2019
+2007,61,"(60,65]",College,4994.907782864618,331.1215497119936,15.084816398114652,2076.159122107355,2019
+2007,61,"(60,65]",College,5102.375931981687,331.1215497119936,15.409374401695345,2066.486848457252,2019
+2007,61,"(60,65]",College,5170.920863309353,331.1215497119936,15.616382768826043,2101.6917080542594,2019
+2007,23,"(20,25]",HS,34.20091563113146,117.73210656426438,0.29049778033541596,10384.281408424244,2019
+2007,23,"(20,25]",HS,30.609103989535644,100.07229057962472,0.30586992475385416,10304.16196450833,2019
+2007,23,"(20,25]",HS,29.936533682145193,110.37384990399784,0.2712284993971282,10398.155081516596,2019
+2007,23,"(20,25]",HS,30.38014388489209,107.43054723989124,0.2827886915353187,10351.796876548233,2019
+2007,23,"(20,25]",HS,35.43157619359059,110.37384990399784,0.32101422777595096,10343.362350027786,2019
+2007,63,"(60,65]",HS,64.39502943100067,91.2423825873049,0.705757868273382,9325.592066099289,2019
+2007,63,"(60,65]",HS,68.2587311968607,85.35577725909167,0.7996966741883909,9097.83186853514,2019
+2007,63,"(60,65]",HS,99.025245258338785,85.35577725909167,1.1601469571034937,9644.724412540725,2019
+2007,63,"(60,65]",HS,60.960627861347284,80.94082326293177,0.7531505784580429,9290.44963961541,2019
+2007,63,"(60,65]",HS,72.69483322432963,91.2423825873049,0.796722215739729,9021.040956980629,2019
+2007,51,"(50,55]",HS,448.2609548724657,139.80687654506394,3.206286886238945,10308.172596367334,2019
+2007,51,"(50,55]",HS,527.7244211903205,133.92027121685072,3.9405865624017555,10566.28633117244,2019
+2007,51,"(50,55]",HS,459.88068018312623,132.44861988479744,3.472143995030874,9905.428279494015,2019
+2007,51,"(50,55]",HS,385.81208633093524,132.44861988479744,2.91291888633125,10385.869665651448,2019
+2007,51,"(50,55]",HS,637.410621321125,133.92027121685072,4.759627616710813,10488.5455757981,2019
+2007,25,"(20,25]",HS,2.4327011118378024,42.67788862954583,0.05700144008889998,6938.630532124334,2019
+2007,25,"(20,25]",HS,2.4327011118378024,44.14953996159914,0.055101392085936646,6927.869319151541,2019
+2007,25,"(20,25]",HS,2.4327011118378024,58.86605328213219,0.04132604406445248,7006.069505950388,2019
+2007,25,"(20,25]",HS,2.575801177240026,38.262934633385925,0.0673184428199226,6970.182590038434,2019
+2007,25,"(20,25]",HS,2.4327011118378024,48.56449395775905,0.05009217462357877,6931.783712818277,2019
+2007,51,"(50,55]",College,31553.564421190324,5960.187894815884,5.29405531806058,21.807675857467963,2019
+2007,51,"(50,55]",College,124459.85088293003,5363.344980588346,23.205639639700575,21.16947580810895,2019
+2007,51,"(50,55]",College,65568.44996729889,5680.574141725756,11.542574453113154,21.650103696705976,2019
+2007,51,"(50,55]",College,44051.78103335513,5356.810848674029,8.223508777477043,23.026704160513912,2019
+2007,51,"(50,55]",College,83334.32308698496,5348.628467267812,15.580503225634184,20.89922214228585,2019
+2007,70,"(65,70]",HS,216018.13472858077,4061.7576764671207,53.18341268366146,26.974896950137783,2019
+2007,70,"(65,70]",HS,213307.81948986265,3958.7420832233897,53.88272714048035,24.644553827765595,2019
+2007,70,"(65,70]",HS,212138.6919555265,3944.025569902857,53.78735208371166,25.354762002388092,2019
+2007,70,"(65,70]",HS,210341.35513407458,3988.175109864456,52.741253666071685,25.610002560732074,2019
+2007,70,"(65,70]",HS,207938.70503597122,4047.041163146588,51.38042749095692,24.040035895242276,2019
+2007,74,"(70,75]",HS,76118.559529104,4047.041163146588,18.808447075423754,38.37558756408917,2019
+2007,74,"(70,75]",HS,53222.5490647482,4032.3246498260555,13.198974211325988,39.10751252272938,2019
+2007,74,"(70,75]",HS,51792.97941137999,4032.3246498260555,12.844446791657564,38.72568650613296,2019
+2007,74,"(70,75]",HS,51073.186082406806,4047.041163146588,12.619883026516398,39.32004214493758,2019
+2007,74,"(70,75]",HS,54652.11871811642,4032.3246498260555,13.553501630994413,39.41533415060768,2019
+2007,47,"(45,50]",HS,571.1123610202748,83.88412592703838,6.80834847724375,7063.822435165525,2019
+2007,47,"(45,50]",HS,731.3844342707652,83.88412592703838,8.718984983009973,7224.026307963177,2019
+2007,47,"(45,50]",HS,551.0783518639635,83.88412592703838,6.569518914022972,6801.361983554084,2019
+2007,47,"(45,50]",HS,553.6541530412034,83.88412592703838,6.6002255721513565,7118.38864209379,2019
+2007,47,"(45,50]",HS,579.6983649444081,83.88412592703838,6.910704004338369,7177.289306060584,2019
+2007,44,"(40,45]",College,2248.245127534336,191.31467316692962,11.751556168264486,2866.9066850602703,2019
+2007,44,"(40,45]",College,2246.671026814912,191.31467316692962,11.743328358586497,2905.6481913011075,2019
+2007,44,"(40,45]",College,2226.780117724003,191.31467316692962,11.63935876356462,2896.64453076768,2019
+2007,44,"(40,45]",College,2226.780117724003,191.31467316692962,11.63935876356462,3112.48377056309,2019
+2007,44,"(40,45]",College,2235.223021582734,191.31467316692962,11.683489742746566,2983.459229989682,2019
+2007,46,"(45,50]",HS,636.7952910398953,151.5800872014904,4.20104845429614,7302.227206639577,2019
+2007,46,"(45,50]",HS,629.7833878351864,151.5800872014904,4.154789718507262,7468.855783812127,2019
+2007,46,"(45,50]",HS,637.0814911706998,151.5800872014904,4.202936565960992,7028.241750275585,2019
+2007,46,"(45,50]",HS,636.7952910398953,151.5800872014904,4.20104845429614,7359.004674427577,2019
+2007,46,"(45,50]",HS,636.0797907128843,151.5800872014904,4.196328175134011,7419.51628153168,2019
+2007,53,"(50,55]",College,929.7926749509484,105.95889590783793,8.775031742116996,8131.367890211554,2019
+2007,53,"(50,55]",College,941.0832701111838,105.95889590783793,8.881588110636121,8316.916521289559,2019
+2007,53,"(50,55]",College,964.136690647482,105.95889590783793,9.099157577916623,7826.272406434034,2019
+2007,53,"(50,55]",College,946.9503727926749,105.95889590783793,8.936959607585225,8194.592227854611,2019
+2007,53,"(50,55]",College,933.956886854153,105.95889590783793,8.814331999707699,8261.9747024158,2019
+2007,22,"(20,25]",HS,-5.080052321778941,17.659815984639657,-0.28766167927216924,7054.719131373097,2019
+2007,22,"(20,25]",HS,-5.080052321778941,17.659815984639657,-0.28766167927216924,7064.6516818368445,2019
+2007,22,"(20,25]",HS,-5.080052321778941,17.659815984639657,-0.28766167927216924,7120.608672933765,2019
+2007,22,"(20,25]",HS,-5.223152387181164,17.659815984639657,-0.2957648251671599,7029.358870871156,2019
+2007,22,"(20,25]",HS,-5.080052321778941,17.659815984639657,-0.28766167927216924,7035.135735119353,2019
+2007,45,"(40,45]",NoHS,82.56873773708307,25.01807264490618,3.3003636574656174,9703.032055498017,2019
+2007,45,"(40,45]",NoHS,82.56873773708307,26.489723976959482,3.11701012093975,9731.56295988599,2019
+2007,45,"(40,45]",NoHS,82.56873773708307,26.489723976959482,3.11701012093975,9674.142612275478,2019
+2007,45,"(40,45]",NoHS,82.56873773708307,25.01807264490618,3.3003636574656174,9645.399860988055,2019
+2007,45,"(40,45]",NoHS,82.56873773708307,26.489723976959482,3.11701012093975,9646.393503166479,2019
+2007,27,"(25,30]",NoHS,0,16.18816465258635,0,5989.909794250537,2019
+2007,27,"(25,30]",NoHS,0,16.18816465258635,0,5991.587970092801,2019
+2007,27,"(25,30]",NoHS,0,16.18816465258635,0,5988.455969478591,2019
+2007,27,"(25,30]",NoHS,0,16.18816465258635,0,6023.876531341764,2019
+2007,27,"(25,30]",NoHS,0,16.18816465258635,0,6023.997354938924,2019
+2007,88,"(85,90]",HS,8.872204054937868,50.03614528981236,0.1773158984080314,10056.844347703078,2019
+2007,88,"(85,90]",HS,12.879005886200131,50.03614528981236,0.25739404607617467,9997.991314107,2019
+2007,88,"(85,90]",HS,11.018705035971223,50.03614528981236,0.22021490608739386,10062.35200451122,2019
+2007,88,"(85,90]",HS,10.446304774362329,50.03614528981236,0.20877517070623053,10066.29317688835,2019
+2007,88,"(85,90]",HS,9.30150425114454,50.03614528981236,0.1858956999439039,10289.0668364571,2019
+2007,68,"(65,70]",HS,1218488.0415958143,105164.20418852915,11.58652842949694,5.588854404815144,2019
+2007,68,"(65,70]",HS,1218902.1731850884,114023.54520749005,10.689916463893814,7.6293546389318205,2019
+2007,68,"(65,70]",HS,1211129.550032701,104884.59043543904,11.547259182731931,4.509199295430601,2019
+2007,68,"(65,70]",HS,1222974.3717462395,102294.48409102522,11.9554283167213,5.172827563395316,2019
+2007,68,"(65,70]",HS,1319542.588881622,101161.31256534418,13.043944917473032,3.3653310904301668,2019
+2007,29,"(25,30]",HS,66.65601046435579,176.59815984639656,0.37744453578866605,7041.87710629771,2019
+2007,29,"(25,30]",HS,68.08701111837803,176.59815984639656,0.3855476816836567,6978.37014205559,2019
+2007,29,"(25,30]",HS,68.08701111837803,176.59815984639656,0.3855476816836567,7175.893787682648,2019
+2007,29,"(25,30]",HS,68.08701111837803,176.59815984639656,0.3855476816836567,7080.151632201989,2019
+2007,29,"(25,30]",HS,68.08701111837803,176.59815984639656,0.3855476816836567,6964.717398960078,2019
+2007,41,"(40,45]",HS,3396.1938521909747,100.07229057962472,33.93740497514363,216.5689348920585,2019
+2007,41,"(40,45]",HS,3404.0643557880967,100.07229057962472,34.016053155889125,210.28581722510813,2019
+2007,41,"(40,45]",HS,3395.120601700458,100.07229057962472,33.926680223223784,206.15850951389103,2019
+2007,41,"(40,45]",HS,3410.3607586657945,100.07229057962472,34.07897170048552,207.60437709353891,2019
+2007,41,"(40,45]",HS,3435.2601700457817,100.07229057962472,34.32778594502582,207.08832352429886,2019
+2007,37,"(35,40]",NoHS,80.27913669064749,27.96137530901279,2.8710725350040676,6980.010929903295,2019
+2007,37,"(35,40]",NoHS,80.27913669064749,29.433026641066096,2.727518908253864,6985.850188133403,2019
+2007,37,"(35,40]",NoHS,80.27913669064749,27.96137530901279,2.8710725350040676,6977.596288734307,2019
+2007,37,"(35,40]",NoHS,80.42223675604971,27.96137530901279,2.876190311358798,7023.373473572979,2019
+2007,37,"(35,40]",NoHS,80.27913669064749,27.96137530901279,2.8710725350040676,7022.237614136757,2019
+2007,44,"(40,45]",HS,0.8586003924133421,32.3763293051727,0.026519386565424054,4345.42638171579,2019
+2007,44,"(40,45]",HS,0.973080444735121,36.79128330133262,0.026448668201249588,4327.5506816641055,2019
+2007,44,"(40,45]",HS,-0.0429300196206671,33.84798063722601,-0.001268318487911585,4296.653702762209,2019
+2007,44,"(40,45]",HS,1.0160104643557881,23.546421312852875,0.043149251890825385,4312.1553476137515,2019
+2007,44,"(40,45]",HS,1.287900588620013,35.319631969279314,0.03646415652745807,4348.268680715599,2019
+2007,57,"(55,60]",NoHS,57.24002616088947,20.603118648746268,2.778221449711091,7946.376973502032,2019
+2007,57,"(55,60]",NoHS,57.24002616088947,20.603118648746268,2.778221449711091,7976.9969640745885,2019
+2007,57,"(55,60]",NoHS,57.24002616088947,20.603118648746268,2.778221449711091,7967.494840480887,2019
+2007,57,"(55,60]",NoHS,57.24002616088947,20.603118648746268,2.778221449711091,7975.472254090404,2019
+2007,57,"(55,60]",NoHS,57.24002616088947,20.603118648746268,2.778221449711091,7971.075538783746,2019
+2007,72,"(70,75]",College,1728.0763897972531,110.37384990399784,15.656574372465201,6412.088264478444,2019
+2007,72,"(70,75]",College,1600.8604316546764,119.20375789631768,13.429613796631227,6567.262121324051,2019
+2007,72,"(70,75]",College,1639.06814911707,113.31715256810448,14.46443112954129,6172.940715358197,2019
+2007,72,"(70,75]",College,1580.826422498365,130.97696855274413,12.069499240713988,6467.5444244372775,2019
+2007,72,"(70,75]",College,1647.940353172008,123.6187118924776,13.330832589530386,6521.669898904347,2019
+2007,65,"(60,65]",HS,7.584303466317855,33.84798063722601,0.22406959953104671,4843.730235256817,2019
+2007,65,"(60,65]",HS,7.441203400915631,33.84798063722601,0.21984187123800808,4793.075144450234,2019
+2007,65,"(60,65]",HS,7.584303466317855,32.3763293051727,0.23425458132791246,4828.227150228471,2019
+2007,65,"(60,65]",HS,7.441203400915631,32.3763293051727,0.22983468356700845,4761.798532687746,2019
+2007,65,"(60,65]",HS,7.441203400915631,33.84798063722601,0.21984187123800808,4784.708681918454,2019
+2007,63,"(60,65]",HS,358.894964028777,44.14953996159914,8.129075961854653,2972.741875659059,2019
+2007,63,"(60,65]",HS,351.0244604316547,44.14953996159914,7.950806752164858,3054.0930136316447,2019
+2007,63,"(60,65]",HS,350.16586003924135,44.14953996159914,7.931359202016881,2974.4362007786904,2019
+2007,63,"(60,65]",HS,352.59856115107914,44.14953996159914,7.986460594102818,2987.3199677798193,2019
+2007,63,"(60,65]",HS,352.4554610856769,44.14953996159914,7.983219335744821,2937.3909068429452,2019
+2007,26,"(25,30]",HS,194.0436886854153,92.71403391935819,2.0929268254490223,8045.972673393776,2019
+2007,26,"(25,30]",HS,195.47468933943756,92.71403391935819,2.1083613890585284,7966.58342227925,2019
+2007,26,"(25,30]",HS,195.61778940483978,92.71403391935819,2.109904845419479,8079.1430660563465,2019
+2007,26,"(25,30]",HS,197.048790058862,92.71403391935819,2.125339409028985,8070.141282897937,2019
+2007,26,"(25,30]",HS,195.61778940483978,92.71403391935819,2.109904845419479,8018.069917756278,2019
+2007,59,"(55,60]",HS,1793.902419882276,226.63430513620895,7.915405475813236,2790.1058557258198,2019
+2007,59,"(55,60]",HS,773.5989535644212,62.839511878676106,12.310709145195213,6471.990990995582,2019
+2007,59,"(55,60]",HS,1296.6296926095488,67.69596127445202,19.153723031611456,6090.504395558259,2019
+2007,59,"(55,60]",HS,731.3844342707652,195.72962716308953,3.7367078498614172,6374.994998158859,2019
+2007,59,"(55,60]",HS,890.9410071942447,57.39440195007889,15.523134259142152,6427.382809255798,2019
+2007,69,"(65,70]",College,1648.5127534336168,67.69596127445202,24.351714967902435,1384.850470400993,2019
+2007,69,"(65,70]",College,1618.4617396991498,66.22430994239872,24.439088019291898,1448.0983409369169,2019
+2007,69,"(65,70]",College,2064.9339437540875,66.22430994239872,31.180905403924143,3029.4649963194283,2019
+2007,69,"(65,70]",College,1534.0327011118377,85.35577725909167,17.972218757441404,1370.4095079209533,2019
+2007,69,"(65,70]",College,1380.9156311314587,67.69596127445202,20.39878901391133,1363.7265431512394,2019
+2007,32,"(30,35]",HS,-17.844578155657292,35.319631969279314,-0.5052311465526691,7226.746736205127,2019
+2007,32,"(30,35]",HS,10.260274689339438,29.433026641066096,0.3485973364024992,7147.691659157863,2019
+2007,32,"(30,35]",HS,-0.18603008502289078,30.9046779731194,-0.006019479807707364,7270.794331409357,2019
+2007,32,"(30,35]",HS,1.6885807717462396,39.73458596543923,0.042496498471506695,7281.384446722121,2019
+2007,32,"(30,35]",HS,-6.954663178548071,27.96137530901279,-0.24872393083992453,7214.015046570807,2019
+2007,60,"(55,60]",College,31781.23662524526,4562.119129365244,6.966332032120166,277.1595230812958,2019
+2007,60,"(55,60]",College,31775.51262262917,4562.119129365244,6.965077351465457,311.5336243536498,2019
+2007,60,"(55,60]",College,31732.5826030085,4562.119129365244,6.955667246555145,279.9136438269778,2019
+2007,60,"(55,60]",College,31802.70163505559,4562.119129365244,6.971037084575321,285.33314903284895,2019
+2007,60,"(55,60]",College,31725.42759973839,4562.119129365244,6.9540988957367595,299.59947733794513,2019
+2007,82,"(80,85]",College,5856.155526487901,44.14953996159914,132.64363641346048,1733.7076560364105,2019
+2007,82,"(80,85]",College,5856.155526487901,44.14953996159914,132.64363641346048,1733.7046695259555,2019
+2007,82,"(80,85]",College,5856.155526487901,44.14953996159914,132.64363641346048,1685.0579835119147,2019
+2007,82,"(80,85]",College,5857.586527141923,44.14953996159914,132.67604899704045,1666.515262173964,2019
+2007,82,"(80,85]",College,5856.155526487901,44.14953996159914,132.64363641346048,1762.921941485646,2019
+2007,26,"(25,30]",HS,3.8637017658600397,22.07476998079957,0.17502795133179877,6067.418895178942,2019
+2007,26,"(25,30]",HS,3.8637017658600397,22.07476998079957,0.17502795133179877,6057.596319783939,2019
+2007,26,"(25,30]",HS,3.8637017658600397,22.07476998079957,0.17502795133179877,6051.282938994402,2019
+2007,26,"(25,30]",HS,3.7206017004578156,22.07476998079957,0.1685454346158062,6068.085996325562,2019
+2007,26,"(25,30]",HS,3.8637017658600397,22.07476998079957,0.17502795133179877,6099.285411755796,2019
+2007,54,"(50,55]",College,50381.24002616089,1242.0737242529892,40.56219775236071,392.8098420477814,2019
+2007,54,"(50,55]",College,39276.674950948334,1365.6924361454667,28.759531730147753,440.04283554091023,2019
+2007,54,"(50,55]",College,57450.38325703074,1240.602072920936,46.30846950123714,395.41257404223563,2019
+2007,54,"(50,55]",College,50110.780902550694,1242.0737242529892,40.34444970864224,403.1695479978791,2019
+2007,54,"(50,55]",College,63105.697841726615,1331.844455508241,47.38218309257822,351.3020646411225,2019
+2007,25,"(20,25]",College,90.72544146500981,98.60063924757141,0.9201303577475988,9307.072643610265,2019
+2007,25,"(20,25]",College,92.4426422498365,95.65733658346481,0.9663936458148887,9288.63489248176,2019
+2007,25,"(20,25]",College,92.4426422498365,98.60063924757141,0.9375460742980265,9476.705339356826,2019
+2007,25,"(20,25]",College,91.01164159581427,100.07229057962472,0.9094589628024838,9474.695179644403,2019
+2007,25,"(20,25]",College,92.4426422498365,98.60063924757141,0.9375460742980265,9426.938086957178,2019
+2007,42,"(40,45]",College,13433.518639633747,373.7994383415394,35.9377710657756,1689.9381557332963,2019
+2007,42,"(40,45]",College,13457.130150425113,373.7994383415394,36.000937321177496,1690.2615694765645,2019
+2007,42,"(40,45]",College,11561.05428384565,373.7994383415394,30.9284955995101,1642.3624919175156,2019
+2007,42,"(40,45]",College,10191.586657946371,373.7994383415394,27.264852786200144,1624.8774997189262,2019
+2007,42,"(40,45]",College,13510.077174623937,373.7994383415394,36.14258286359387,1718.601861472255,2019
+2007,55,"(50,55]",HS,545.06814911707,107.43054723989124,5.073679350249783,7035.922626705824,2019
+2007,55,"(50,55]",HS,544.9250490516678,108.90219857194455,5.003802092128301,7194.872385583454,2019
+2007,55,"(50,55]",HS,543.4940483976454,107.43054723989124,5.059027086439662,6772.180937891839,2019
+2007,55,"(50,55]",HS,543.7802485284499,107.43054723989124,5.061691134405138,7085.731723177805,2019
+2007,55,"(50,55]",HS,543.4940483976454,107.43054723989124,5.059027086439662,7144.095536792453,2019
+2007,55,"(50,55]",HS,103.1765781556573,88.29907992319828,1.1684898443494465,7488.234855055141,2019
+2007,55,"(50,55]",HS,103.1765781556573,88.29907992319828,1.1684898443494465,7301.794466429786,2019
+2007,55,"(50,55]",HS,103.1765781556573,88.29907992319828,1.1684898443494465,7784.571020601854,2019
+2007,55,"(50,55]",HS,102.89037802485285,88.29907992319828,1.1652485859914503,7435.387070583519,2019
+2007,55,"(50,55]",HS,103.1765781556573,88.29907992319828,1.1684898443494465,7270.187398996936,2019
+2007,30,"(25,30]",HS,83.58474820143886,58.86605328213219,1.4199142551792174,4981.5955061134155,2019
+2007,30,"(25,30]",HS,46.078221059516025,67.69596127445202,0.6806642551792174,4948.189603763354,2019
+2007,30,"(25,30]",HS,48.75419228253761,48.56449395775905,1.003906111426664,4944.312841804005,2019
+2007,30,"(25,30]",HS,62.89247874427731,48.56449395775905,1.295030043944875,4963.614925008778,2019
+2007,30,"(25,30]",HS,49.29797253106606,55.92275061802558,0.8815369771024074,4985.706294788358,2019
+2007,42,"(40,45]",HS,-9.158404185742315,22.07476998079957,-0.41488106982352296,6340.996567588705,2019
+2007,42,"(40,45]",HS,-9.18702419882276,22.07476998079957,-0.4161775731667215,6355.783737545889,2019
+2007,42,"(40,45]",HS,-9.37305428384565,22.07476998079957,-0.4246048448975118,6360.927823492615,2019
+2007,42,"(40,45]",HS,-8.88651406147809,22.07476998079957,-0.40256428806313715,6352.217691266436,2019
+2007,42,"(40,45]",HS,-9.47322432962721,22.07476998079957,-0.4291426065987067,6302.256911749918,2019
+2007,55,"(50,55]",College,408.0212164813604,125.0903632245309,3.2618117492310965,8674.431282326908,2019
+2007,55,"(50,55]",College,397.1742315238718,125.0903632245309,3.1750985550418784,8502.169922761645,2019
+2007,55,"(50,55]",College,359.19547416612164,125.0903632245309,2.871487978025804,8959.006268508449,2019
+2007,55,"(50,55]",College,420.1274820143885,125.0903632245309,3.358591910555738,8623.555227769015,2019
+2007,55,"(50,55]",College,437.75741007194245,125.0903632245309,3.49952945045167,8483.53968916419,2019
+2007,35,"(30,35]",HS,-14.45310660562459,120.675409228371,-0.11976844908205739,7024.890719917709,2019
+2007,35,"(30,35]",HS,-26.187311968606934,94.1856852514115,-0.27803919352186784,7033.977226012935,2019
+2007,35,"(30,35]",HS,-33.34231523871812,23.546421312852875,-1.4160247451496222,7071.212063005328,2019
+2007,35,"(30,35]",HS,-63.536429038587315,79.46917193087846,-0.799510394972414,7017.745724671523,2019
+2007,35,"(30,35]",HS,-21.894310006540223,58.86605328213219,-0.3719343965800723,7071.805786252806,2019
+2007,38,"(35,40]",NoHS,12.735905820797907,52.979447953918964,0.24039332821805695,4956.41551580429,2019
+2007,38,"(35,40]",NoHS,14.166906474820143,57.39440195007889,0.24683429033971616,4961.3052816106665,2019
+2007,38,"(35,40]",NoHS,12.735905820797907,36.79128330133262,0.34616639263400195,4924.607954091653,2019
+2007,38,"(35,40]",NoHS,12.735905820797907,60.3377046141855,0.21107706867926948,4936.826171031673,2019
+2007,38,"(35,40]",NoHS,12.735905820797907,66.22430994239872,0.19231466257444552,4981.595142709423,2019
+2007,34,"(30,35]",HS,129.96347939829954,92.71403391935819,1.4017670670153408,9965.879298358986,2019
+2007,34,"(30,35]",HS,250.22477436232833,94.1856852514115,2.656717670996383,8275.657579000877,2019
+2007,34,"(30,35]",HS,424.6494440810988,94.1856852514115,4.50864102063466,7788.590422332027,2019
+2007,34,"(30,35]",HS,421.4869326357096,94.1856852514115,4.475063609832292,8152.335954924,2019
+2007,34,"(30,35]",HS,204.4041334205363,94.1856852514115,2.1702250493258797,9856.680526722392,2019
+2007,34,"(30,35]",HS,-1.4238456507521255,95.65733658346481,-0.014884855690182884,7951.031164389661,2019
+2007,34,"(30,35]",HS,-1.4238456507521255,95.65733658346481,-0.014884855690182884,7942.564040467155,2019
+2007,34,"(30,35]",HS,-1.4166906474820145,95.65733658346481,-0.014810057420382971,7986.974810867747,2019
+2007,34,"(30,35]",HS,-1.4238456507521255,95.65733658346481,-0.014884855690182884,8013.6439439932055,2019
+2007,34,"(30,35]",HS,-1.4238456507521255,95.65733658346481,-0.014884855690182884,7914.232198924464,2019
+2007,42,"(40,45]",HS,0,44.14953996159914,0,6467.01219300281,2019
+2007,42,"(40,45]",HS,0,44.14953996159914,0,6472.168107699463,2019
+2007,42,"(40,45]",HS,0,44.14953996159914,0,6466.231011857539,2019
+2007,42,"(40,45]",HS,0,44.14953996159914,0,6506.331407683432,2019
+2007,42,"(40,45]",HS,0,44.14953996159914,0,6505.800972213326,2019
+2007,42,"(40,45]",HS,20226.049444081098,294.33026641066095,68.71889082538638,1355.4079864400424,2019
+2007,42,"(40,45]",HS,20228.911445389145,294.33026641066095,68.72861460046038,1351.7968962518362,2019
+2007,42,"(40,45]",HS,20224.618443427076,294.33026641066095,68.71402893784939,1331.6380489152677,2019
+2007,42,"(40,45]",HS,20224.618443427076,294.33026641066095,68.71402893784939,1321.8391396121708,2019
+2007,42,"(40,45]",HS,20226.049444081098,294.33026641066095,68.71889082538638,1353.8042371686213,2019
+2007,56,"(55,60]",College,22561.213551340745,2016.1623249130278,11.190177136314647,221.6573133391145,2019
+2007,56,"(55,60]",College,11257.081124918246,2016.1623249130278,5.583420038068536,216.45047151036562,2019
+2007,56,"(55,60]",College,12018.015722694572,2016.1623249130278,5.960837366214052,216.9212775916873,2019
+2007,56,"(55,60]",College,11680.442668410726,2016.1623249130278,5.79340389614442,215.55498536317972,2019
+2007,56,"(55,60]",College,10729.786003924133,2016.1623249130278,5.321885976808435,220.1894382255423,2019
+2007,57,"(55,60]",College,967.6426422498365,251.6523777811151,3.8451559678545264,1224.7257261811303,2019
+2007,57,"(55,60]",College,987.6623413996076,252.77083279347565,3.9073429892386717,1255.9679334369207,2019
+2007,57,"(55,60]",College,937.7204185742315,251.6523777811151,3.7262529638796105,1232.2672811772463,2019
+2007,57,"(55,60]",College,957.7544277305428,251.6523777811151,3.805862818286536,1221.7273891159118,2019
+2007,57,"(55,60]",College,1005.2350294310007,252.9032814133604,3.974780492420673,1220.1427541993626,2019
+2007,51,"(50,55]",HS,515.4464355788098,83.88412592703838,6.144743476580303,7154.83556898963,2019
+2007,51,"(50,55]",HS,518.8379071288424,80.94082326293177,6.410089324683865,7026.051371079918,2019
+2007,51,"(50,55]",HS,526.2934205362982,80.94082326293177,6.502199994021104,7384.492061135247,2019
+2007,51,"(50,55]",HS,529.3843819489863,85.35577725909167,6.202091984261076,7149.6235090353,2019
+2007,51,"(50,55]",HS,514.3874950948332,88.29907992319828,5.8255136468267015,7035.028274868957,2019
+2007,33,"(30,35]",College,-98.83921517331589,29.433026641066096,-3.3581057218020387,8378.947129572365,2019
+2007,33,"(30,35]",College,-120.3328449967299,30.9046779731194,-3.8936773617700946,8372.551036092289,2019
+2007,33,"(30,35]",College,-117.05585349901897,32.3763293051727,-3.615476368419479,8480.73992194263,2019
+2007,33,"(30,35]",College,-104.36287769784174,27.96137530901279,-3.7323942955052876,8400.182662241928,2019
+2007,33,"(30,35]",College,-118.42961412688032,30.9046779731194,-3.832093452968165,8359.651995171334,2019
+2007,56,"(55,60]",HS,-9.30150425114454,47.09284262570575,-0.1975141811903979,5668.252925808246,2019
+2007,56,"(55,60]",HS,-3.577501635055592,47.09284262570575,-0.07596699276553766,5631.9813784232765,2019
+2007,56,"(55,60]",HS,294.2137344669719,47.09284262570575,6.2475254850378175,5715.947458619405,2019
+2007,56,"(55,60]",HS,26.47351209941138,47.09284262570575,0.5621557464649787,5585.771818909611,2019
+2007,56,"(55,60]",HS,-3.577501635055592,47.09284262570575,-0.07596699276553766,5474.135699434,2019
+2007,51,"(50,55]",College,2443.8342969260957,173.65485718228996,14.072939488014091,3180.208269651015,2019
+2007,51,"(50,55]",College,2491.4007586657945,189.8430218348763,13.123478201020164,3222.66795803351,2019
+2007,51,"(50,55]",College,2387.1094310006542,170.71155451818333,13.983291510279061,3212.772380926053,2019
+2007,51,"(50,55]",College,2548.826814911707,214.86109447978248,11.862672584270676,3453.0177674125866,2019
+2007,51,"(50,55]",College,3010.682275997384,235.46421312852877,12.786156486353171,3309.8568344387736,2019
+2007,50,"(45,50]",HS,1503.981687377371,257.53898310932834,5.8398214872927134,3302.3487917712964,2019
+2007,50,"(45,50]",HS,2004.8319162851537,257.53898310932834,7.784576502090477,3346.307784901334,2019
+2007,50,"(45,50]",HS,1256.9909744931326,257.53898310932834,4.880779442852444,3336.9149449977676,2019
+2007,50,"(45,50]",HS,2502.8201438848923,257.53898310932834,9.718218631089398,3585.164045762273,2019
+2007,50,"(45,50]",HS,1350.8646173969914,257.53898310932834,5.24528209705454,3436.800025762614,2019
+2007,52,"(50,55]",NoHS,157.55317200784827,51.50779662186566,3.058821816131912,9954.875608971004,2019
+2007,52,"(50,55]",NoHS,167.57017658600392,51.50779662186566,3.2532973176116884,9735.796353675261,2019
+2007,52,"(50,55]",NoHS,161.13067364290387,51.50779662186566,3.128277352374689,10249.09465819605,2019
+2007,52,"(50,55]",NoHS,164.70817527795944,51.50779662186566,3.197732888617466,10023.592912512646,2019
+2007,52,"(50,55]",NoHS,174.72517985611512,51.50779662186566,3.392208390097243,9953.615876097097,2019
+2007,68,"(65,70]",College,202.9158927403532,32.3763293051727,6.267415024961886,7014.621342064254,2019
+2007,68,"(65,70]",College,207.06579463701766,29.433026641066096,7.03515126603091,6826.958327677999,2019
+2007,68,"(65,70]",College,201.48489208633094,27.96137530901279,7.205829107461188,7281.3152777774885,2019
+2007,68,"(65,70]",College,204.48999345977765,32.3763293051727,6.3160339003318295,6873.061952287071,2019
+2007,68,"(65,70]",College,207.63819489862658,32.3763293051727,6.413271651071717,6774.349074210375,2019
+2007,55,"(50,55]",College,18827.675604970573,807.9365812972643,23.30340776839179,249.36511881045968,2019
+2007,55,"(50,55]",College,18827.675604970573,1237.6587702568293,15.212331587214141,239.22219797755173,2019
+2007,55,"(50,55]",College,18827.675604970573,2737.2714776191465,6.878263905831771,241.30824092363574,2019
+2007,55,"(50,55]",College,18826.244604316547,1161.1329009900574,16.213686295741056,238.97628830316944,2019
+2007,55,"(50,55]",College,18826.244604316547,1389.2388574583197,13.551481448453062,242.72170414328326,2019
+2007,40,"(35,40]",College,106.32334859385219,35.319631969279314,3.0103186999890386,7783.883619551481,2019
+2007,40,"(35,40]",College,106.32334859385219,35.319631969279314,3.0103186999890386,7649.831046172473,2019
+2007,40,"(35,40]",College,106.32334859385219,35.319631969279314,3.0103186999890386,7875.5781728931925,2019
+2007,40,"(35,40]",College,106.32334859385219,35.319631969279314,3.0103186999890386,7663.654659950237,2019
+2007,40,"(35,40]",College,106.32334859385219,35.319631969279314,3.0103186999890386,7674.994819294506,2019
+2007,36,"(35,40]",NoHS,0,20.603118648746268,0,6475.5865634974525,2019
+2007,36,"(35,40]",NoHS,0,20.603118648746268,0,6486.115945308085,2019
+2007,36,"(35,40]",NoHS,0,20.603118648746268,0,6488.920674441487,2019
+2007,36,"(35,40]",NoHS,0,20.603118648746268,0,6502.759036200026,2019
+2007,36,"(35,40]",NoHS,0,20.603118648746268,0,6506.179475883675,2019
+2007,34,"(30,35]",College,-10.603714846304774,120.675409228371,-0.08786972353445993,5459.269174735662,2019
+2007,34,"(30,35]",College,-10.746814911706998,120.675409228371,-0.08905554976299516,5450.431136024822,2019
+2007,34,"(30,35]",College,-10.603714846304774,120.675409228371,-0.08786972353445993,5444.7505582160165,2019
+2007,34,"(30,35]",College,-10.603714846304774,120.675409228371,-0.08786972353445993,5459.86941097929,2019
+2007,34,"(30,35]",College,-10.603714846304774,120.675409228371,-0.08786972353445993,5487.941645626448,2019
+2007,78,"(75,80]",HS,15896.986265533029,521.1117366800752,30.505907172251284,173.3013259935515,2019
+2007,78,"(75,80]",HS,15895.555264879005,521.1117366800752,30.503161118855637,166.7227558784699,2019
+2007,78,"(75,80]",HS,15895.555264879005,522.5833880121286,30.41726091857724,168.23790705620797,2019
+2007,78,"(75,80]",HS,15898.417266187049,522.5833880121286,30.422737559001902,166.575974027183,2019
+2007,78,"(75,80]",HS,15895.555264879005,522.5833880121286,30.41726091857724,168.44439647480243,2019
+2007,53,"(50,55]",NoHS,12320.772531066057,2943.30266410661,4.186036550476817,349.5130435250384,2019
+2007,53,"(50,55]",NoHS,12320.772531066057,2943.30266410661,4.186036550476817,343.7884882984298,2019
+2007,53,"(50,55]",NoHS,12317.910529758012,2943.30266410661,4.185064172969417,339.9060758736095,2019
+2007,53,"(50,55]",NoHS,12319.341530412034,2943.30266410661,4.1855503617231165,338.30654217699254,2019
+2007,53,"(50,55]",NoHS,12320.772531066057,2943.30266410661,4.186036550476817,348.9884478206644,2019
+2007,27,"(25,30]",College,19.390058862001307,44.14953996159914,0.43919050750849503,5211.709754554771,2019
+2007,27,"(25,30]",College,19.390058862001307,44.14953996159914,0.43919050750849503,5214.915632608021,2019
+2007,27,"(25,30]",College,19.390058862001307,44.14953996159914,0.43919050750849503,5191.142377008529,2019
+2007,27,"(25,30]",College,19.533158927403534,44.14953996159914,0.44243176586649136,5142.755260552927,2019
+2007,27,"(25,30]",College,19.390058862001307,44.14953996159914,0.43919050750849503,5109.7113028263375,2019
+2007,63,"(60,65]",College,48069.887769784174,331.1215497119936,145.1729366801856,1662.0750737233436,2019
+2007,63,"(60,65]",College,48069.74466971877,331.1215497119936,145.17250451240452,675.6736447548537,2019
+2007,63,"(60,65]",College,48069.887769784174,331.1215497119936,145.1729366801856,1496.271761170075,2019
+2007,63,"(60,65]",College,48069.887769784174,331.1215497119936,145.1729366801856,1388.8200948345213,2019
+2007,63,"(60,65]",College,48069.887769784174,331.1215497119936,145.1729366801856,1107.4379408830573,2019
+2007,28,"(25,30]",HS,48.08162197514716,103.01559324373132,0.4667412035514634,8115.474825728536,2019
+2007,28,"(25,30]",HS,48.22472204054938,103.01559324373132,0.46813031427631896,8035.399799997476,2019
+2007,28,"(25,30]",HS,48.22472204054938,103.01559324373132,0.46813031427631896,8148.931748532008,2019
+2007,28,"(25,30]",HS,48.22472204054938,103.01559324373132,0.46813031427631896,8139.852206806706,2019
+2007,28,"(25,30]",HS,48.08162197514716,103.01559324373132,0.4667412035514634,8087.331042479881,2019
+2007,26,"(25,30]",NoHS,16.3134074558535,73.58256660266524,0.22170207168694508,5011.304793904821,2019
+2007,26,"(25,30]",NoHS,13.265376062786133,73.58256660266524,0.1802787898717527,5033.357682932005,2019
+2007,26,"(25,30]",NoHS,14.467416612164815,73.58256660266524,0.19661473199605395,5039.166566324153,2019
+2007,26,"(25,30]",NoHS,16.3134074558535,73.58256660266524,0.22170207168694508,5030.038518313081,2019
+2007,26,"(25,30]",NoHS,14.953956834532374,73.58256660266524,0.20322689904636632,5036.391735953441,2019
+2007,29,"(25,30]",College,83.4273381294964,30.9046779731194,2.69950517530261,9203.648431447498,2019
+2007,29,"(25,30]",College,28.305192936559845,25.01807264490618,1.131389829197052,9213.488711591852,2019
+2007,29,"(25,30]",College,52.98995421844342,19.131467316692962,2.769779930690815,9223.552317537316,2019
+2007,29,"(25,30]",College,43.57396991497711,35.319631969279314,1.2337039625123316,9237.2923351362,2019
+2007,29,"(25,30]",College,46.36442119032047,20.603118648746268,2.2503593742659835,9243.831472831238,2019
+2007,61,"(60,65]",HS,154.1187704381949,17.659815984639657,8.727088128904965,9358.652668079283,2019
+2007,61,"(60,65]",HS,163.42027468933946,17.659815984639657,9.25379261207936,9435.573109770161,2019
+2007,61,"(60,65]",HS,153.26017004578156,17.659815984639657,8.678469253535022,9358.14653808907,2019
+2007,61,"(60,65]",HS,167.14087638979726,17.659815984639657,9.464474405349117,9357.440552744687,2019
+2007,61,"(60,65]",HS,149.9688685415304,17.659815984639657,8.492096897950235,9357.60663633806,2019
+2007,58,"(55,60]",HS,955.0498364944408,329.6498983799403,2.897164055526847,7651.117470674077,2019
+2007,58,"(55,60]",HS,939.3088293001963,172.18320585023665,5.455287144073728,7823.96520388991,2019
+2007,58,"(55,60]",HS,959.3428384565076,247.2374237849552,3.880249291429824,7364.315191841383,2019
+2007,58,"(55,60]",HS,945.0328319162851,189.8430218348763,4.977969813071485,7705.281688849068,2019
+2007,58,"(55,60]",HS,940.7398299542185,157.4666925297036,5.974214704336682,7768.7486167409825,2019
+2007,59,"(55,60]",College,454.4858077174624,79.46917193087846,5.719020302775646,7522.9072642077035,2019
+2007,59,"(55,60]",College,454.4858077174624,79.46917193087846,5.719020302775646,7693.271591126392,2019
+2007,59,"(55,60]",College,454.4858077174624,79.46917193087846,5.719020302775646,7241.712479708449,2019
+2007,59,"(55,60]",College,454.4858077174624,79.46917193087846,5.719020302775646,7577.272488404339,2019
+2007,59,"(55,60]",College,454.4858077174624,79.46917193087846,5.719020302775646,7640.15304499434,2019
+2007,57,"(55,60]",College,547.8442903858731,120.675409228371,4.539817133324243,8227.80907017102,2019
+2007,57,"(55,60]",College,485.4526618705036,122.14706056042431,3.974329465180683,8410.574035942946,2019
+2007,57,"(55,60]",College,492.0352648790059,119.20375789631768,4.127682495605328,7924.351932372809,2019
+2007,57,"(55,60]",College,586.3382079790713,113.31715256810448,5.174311167293738,8260.42895385335,2019
+2007,57,"(55,60]",College,402.75513407455855,128.03366588863753,3.1456971202001758,8330.073562336398,2019
+2007,50,"(45,50]",HS,2173.6899934597773,85.35577725909167,25.466231616187958,467.7793525089531,2019
+2007,50,"(45,50]",HS,2470.050228907783,85.35577725909167,28.93828992277949,461.7116867668933,2019
+2007,50,"(45,50]",HS,2291.032047089601,85.35577725909167,26.840972230096725,454.8009049357174,2019
+2007,50,"(45,50]",HS,2126.4669718770438,85.35577725909167,24.91298234473687,460.49710631645905,2019
+2007,50,"(45,50]",HS,2126.6100719424458,85.35577725909167,24.91465885768066,468.1854541156341,2019
+2007,47,"(45,50]",College,2860.5703073904515,632.810072782921,4.5204247378845706,3134.475987212862,2019
+2007,47,"(45,50]",College,4293.00196206671,594.547138149535,7.220625054942193,1743.2826777156654,2019
+2007,47,"(45,50]",College,3042.3073904512753,494.4748475699104,6.152602918839354,3167.284991982035,2019
+2007,47,"(45,50]",College,3905.4583649444085,703.4493367214795,5.551868714734061,1676.1527938857969,2019
+2007,47,"(45,50]",College,2202.8824068018316,665.1864020880937,3.311676847101414,3262.092478071442,2019
+2007,64,"(60,65]",HS,7780.9229561805105,1515.8008720149037,5.133209183233672,526.921017448227,2019
+2007,64,"(60,65]",HS,8602.317331589275,1545.23389865597,5.567000140931085,511.2179338692904,2019
+2007,64,"(60,65]",HS,7313.128842380641,1486.3678453738376,4.920133912437611,514.1851975560523,2019
+2007,64,"(60,65]",HS,11467.323741007194,1545.23389865597,7.421092529086609,510.47764316753785,2019
+2007,64,"(60,65]",HS,10253.119686069327,1530.517385335437,6.699120038954797,520.6796154017073,2019
+2007,36,"(35,40]",HS,20.377449313276653,107.43054723989124,0.1896802151419189,5348.558978595075,2019
+2007,36,"(35,40]",HS,15.912727272727272,100.07229057962472,0.1590123217981701,5326.55671055243,2019
+2007,36,"(35,40]",HS,20.76381948986266,88.29907992319828,0.23515329387262968,5288.527228655657,2019
+2007,36,"(35,40]",HS,18.63162851536952,88.29907992319828,0.21100591910555735,5307.607395817753,2019
+2007,36,"(35,40]",HS,20.42037933289732,105.95889590783793,0.1927198198691951,5352.057416377673,2019
+2007,53,"(50,55]",HS,172248.83322432963,11287.565716848847,15.260051418102963,27.246653864766763,2019
+2007,53,"(50,55]",HS,236271.08698495748,10787.204263950724,21.902902847083492,24.246049337637377,2019
+2007,53,"(50,55]",HS,207150.22367560497,10257.409784411535,20.19517870782708,26.892783865960393,2019
+2007,53,"(50,55]",HS,206178.57423152387,9448.001551782218,21.82245346822911,26.671493441959434,2019
+2007,53,"(50,55]",HS,200580.4996729889,9757.048331513408,20.55749780649872,24.29942666177679,2019
+2007,41,"(40,45]",HS,11.161805101373448,36.79128330133262,0.3033817823084512,7740.185086205075,2019
+2007,41,"(40,45]",HS,11.161805101373448,36.79128330133262,0.3033817823084512,7647.613713722041,2019
+2007,41,"(40,45]",HS,11.161805101373448,36.79128330133262,0.3033817823084512,7856.702940137811,2019
+2007,41,"(40,45]",HS,9.73080444735121,36.79128330133262,0.26448668201249587,7667.329663567421,2019
+2007,41,"(40,45]",HS,9.73080444735121,36.79128330133262,0.26448668201249587,7678.675260934205,2019
+2007,36,"(35,40]",HS,456.57506867233485,147.16513320533048,3.1024676751068725,7420.334941931268,2019
+2007,36,"(35,40]",HS,434.9669587965991,147.16513320533048,2.9556386714896417,7627.984888639529,2019
+2007,36,"(35,40]",HS,407.77794637017655,147.16513320533048,2.770886945083854,7171.28140071023,2019
+2007,36,"(35,40]",HS,479.041778940484,147.16513320533048,3.255130943768497,7497.643231261516,2019
+2007,36,"(35,40]",HS,412.9295487246566,147.16513320533048,2.8058925353502135,7560.9404593635045,2019
+2007,29,"(25,30]",HS,877.3465009810334,206.03118648746263,4.258318927044676,8090.6345773676485,2019
+2007,29,"(25,30]",HS,829.2362589928058,206.03118648746263,4.024809414196459,8275.657579000877,2019
+2007,29,"(25,30]",HS,818.8185742315239,206.03118648746263,3.9742457838117167,7788.590422332027,2019
+2007,29,"(25,30]",HS,824.3994767822106,206.03118648746263,4.0013334429464,8152.335954924,2019
+2007,29,"(25,30]",HS,821.394375408764,206.03118648746263,3.9867477803354165,8220.80809114881,2019
+2007,64,"(60,65]",HS,52717.634793983,136201.33078153335,0.3870566791931129,7.686403093446896,2019
+2007,64,"(60,65]",HS,20606.123217789405,155524.11277139324,0.13249471641788815,10.354788737189722,2019
+2007,64,"(60,65]",HS,12261.958404185742,155524.11277139324,0.07884281212527952,89.86646474322197,2019
+2007,64,"(60,65]",HS,55768.2419882276,134611.94734291578,0.4142889475193564,7.888448568497201,2019
+2007,64,"(60,65]",HS,21177.951079136692,131609.77862552702,0.16091472305712867,70.3751132314061,2019
+2007,51,"(50,55]",HS,189.32138652714193,69.16761260650532,2.7371392389121723,9198.396279502409,2019
+2007,51,"(50,55]",HS,187.461085676913,55.92275061802558,3.3521435123487766,9022.590796033026,2019
+2007,51,"(50,55]",HS,186.03008502289077,80.94082326293177,2.2983468356700842,9453.515169087335,2019
+2007,51,"(50,55]",HS,186.88868541530414,54.451099285972276,3.432229796386324,9183.540017620482,2019
+2007,51,"(50,55]",HS,189.03518639633748,83.88412592703838,2.253527521533198,9073.268282014427,2019
+2007,28,"(25,30]",College,84.55782864617397,100.07229057962472,0.8449674545911755,6418.98556527314,2019
+2007,28,"(25,30]",College,84.75816873773708,85.35577725909167,0.9929986166075134,6408.593836802826,2019
+2007,28,"(25,30]",College,84.91557880967953,76.52586926677185,1.109632332481724,6401.914637483273,2019
+2007,28,"(25,30]",College,85.13022890778286,76.52586926677185,1.112437267599221,6419.691320505255,2019
+2007,28,"(25,30]",College,84.9012688031393,88.29907992319828,0.9615192918995944,6452.698535064114,2019
+2007,70,"(65,70]",College,63322.49444081099,1986.7292982719614,31.872733993447575,41.96932920059552,2019
+2007,70,"(65,70]",College,63325.35644211903,1986.7292982719614,31.874174552717793,37.24196736362218,2019
+2007,70,"(65,70]",College,63326.78744277305,1986.7292982719614,31.8748948323529,41.29230181468349,2019
+2007,70,"(65,70]",College,63341.097449313274,1986.7292982719614,31.882097628704006,40.9614025723754,2019
+2007,70,"(65,70]",College,63341.097449313274,1986.7292982719614,31.882097628704006,37.48289322673618,2019
+2007,68,"(65,70]",College,66742.15670372793,1442.2183054122386,46.27743002100544,39.48911533256337,2019
+2007,68,"(65,70]",College,67343.74937867887,1545.23389865597,43.58158945209125,35.04112103876012,2019
+2007,68,"(65,70]",College,65870.24800523218,1604.099951938102,41.06368055534605,38.852097466545025,2019
+2007,68,"(65,70]",College,68920.56899934597,1501.0843586943708,45.91385460793985,38.540753001626186,2019
+2007,68,"(65,70]",College,70427.5557880968,1434.860048751972,49.083223028861966,35.2678091792742,2019
+2007,20,"(15,20]",HS,65.98344015696534,8.829907992319828,7.472721144360408,10136.238783207711,2019
+2007,20,"(15,20]",HS,66.95652060170046,8.829907992319828,7.582923928532281,10147.173794116618,2019
+2007,20,"(15,20]",HS,65.768790058862,8.829907992319828,7.448411706675435,10157.051523194237,2019
+2007,20,"(15,20]",HS,67.05669064748201,8.829907992319828,7.594268332785267,10163.2130437282,2019
+2007,20,"(15,20]",HS,65.768790058862,8.829907992319828,7.448411706675435,10168.481171880168,2019
+2007,56,"(55,60]",College,185961.39699149772,6166.219081303346,30.1580911316228,21.675313581533945,2019
+2007,56,"(55,60]",College,183492.92086330935,6004.337434777483,30.560061431675596,19.861038623857652,2019
+2007,56,"(55,60]",College,181705.60104643556,6107.353028021214,29.751940032408488,20.311959995064793,2019
+2007,56,"(55,60]",College,179265.74493132767,6460.549347714007,27.74775569120277,20.57820491099639,2019
+2007,56,"(55,60]",College,185502.04578155658,7314.107120304924,25.36222709489426,19.60748872286788,2019
+2007,20,"(15,20]",HS,0,7.358256660266524,0,6963.094377784919,2019
+2007,20,"(15,20]",HS,0,7.358256660266524,0,6935.3899622901135,2019
+2007,20,"(15,20]",HS,0,7.358256660266524,0,6941.799543911249,2019
+2007,20,"(15,20]",HS,0,7.358256660266524,0,6954.076455771193,2019
+2007,20,"(15,20]",HS,0,7.358256660266524,0,6952.674322820416,2019
+2007,59,"(55,60]",College,419.71249182472206,158.93834386175692,2.640725212223075,9106.470296141937,2019
+2007,59,"(55,60]",College,416.4211903204709,158.93834386175692,2.620017172713654,8925.629281555764,2019
+2007,59,"(55,60]",College,444.8981033355134,157.4666925297036,2.825347355610396,9405.218833578281,2019
+2007,59,"(55,60]",College,386.6563767168084,157.4666925297036,2.4554803971885786,9053.06030711358,2019
+2007,59,"(55,60]",College,442.8947024198823,158.93834386175692,2.786581838332907,8906.071149922267,2019
+2007,76,"(75,80]",College,9616.467495094834,889.3188999598121,10.813294865913,259.605019102981,2019
+2007,76,"(75,80]",College,9620.188096795291,1267.2389620311008,7.5914554279299304,252.76338041289554,2019
+2007,76,"(75,80]",College,9618.041595814258,923.4612108634487,10.415209088014926,254.82760594299785,2019
+2007,76,"(75,80]",College,9620.188096795291,1574.0782647642147,6.111632637425639,252.46246648201685,2019
+2007,76,"(75,80]",College,9622.334597776324,840.6072408688477,11.446885215776542,254.0658162574037,2019
+2007,21,"(20,25]",NoHS,1.1448005232177894,22.07476998079957,0.05186013372794037,8928.755926172536,2019
+2007,21,"(20,25]",NoHS,1.1448005232177894,22.07476998079957,0.05186013372794037,8893.708092016168,2019
+2007,21,"(20,25]",NoHS,1.1448005232177894,22.07476998079957,0.05186013372794037,8902.434967506862,2019
+2007,21,"(20,25]",NoHS,1.1448005232177894,22.07476998079957,0.05186013372794037,8918.4971455663,2019
+2007,21,"(20,25]",NoHS,1.1448005232177894,22.07476998079957,0.05186013372794037,8917.245178697478,2019
+2007,44,"(40,45]",HS,12192.125572269457,971.2898791551811,12.552509640967385,34.65036922078646,2019
+2007,44,"(40,45]",HS,11635.466317854807,971.2898791551811,11.979396231303499,32.40433578543439,2019
+2007,44,"(40,45]",HS,11707.01635055592,971.2898791551811,12.053061193985233,36.00437159324972,2019
+2007,44,"(40,45]",HS,11778.566383257032,971.2898791551811,12.126726156666967,35.52975964926513,2019
+2007,44,"(40,45]",HS,11634.035317200785,971.2898791551811,11.977922932049864,34.13532962541645,2019
+2007,69,"(65,70]",College,98.266814911707,30.9046779731194,3.179674449194344,8539.615209537338,2019
+2007,69,"(65,70]",College,98.266814911707,30.9046779731194,3.179674449194344,8315.199379354632,2019
+2007,69,"(65,70]",College,98.40991497710922,30.9046779731194,3.1843048182771954,8818.64959300536,2019
+2007,69,"(65,70]",College,98.40991497710922,32.3763293051727,3.039563690173687,8394.996565711952,2019
+2007,69,"(65,70]",College,98.40991497710922,36.79128330133262,2.674816047352844,8217.046284796194,2019
+2007,41,"(40,45]",College,3806.4617396991503,759.3720873395052,5.012643739691911,1466.682307363095,2019
+2007,41,"(40,45]",College,3805.030739045128,759.3720873395052,5.0107592871581925,1438.193296686421,2019
+2007,41,"(40,45]",College,3806.4617396991503,759.3720873395052,5.012643739691911,1442.3006059490713,2019
+2007,41,"(40,45]",College,3805.030739045128,759.3720873395052,5.0107592871581925,1428.1272550450924,2019
+2007,41,"(40,45]",College,3803.5997383911053,759.3720873395052,5.008874834624473,1448.2291213582603,2019
+2007,87,"(85,90]",HS,185065.5905820798,2206.2996770143145,83.88053196495986,27.52912242928956,2019
+2007,87,"(85,90]",HS,214017.5958142577,1632.0613272471146,131.13330500591707,24.49741035927855,2019
+2007,87,"(85,90]",HS,413689.41007194243,1437.2146908832572,287.8410669582738,27.1715838276857,2019
+2007,87,"(85,90]",HS,243268.82328319162,1332.4331160410622,182.57488526403054,26.94799926552303,2019
+2007,87,"(85,90]",HS,442651.4323086985,1705.7910589829858,259.4992100454629,24.551341051042577,2019
+2007,55,"(50,55]",HS,2266.132635709614,154.52338986559698,14.665304959208282,3114.713946634916,2019
+2007,55,"(50,55]",HS,2472.196729888816,154.52338986559698,15.998851255069605,3196.4304975784044,2019
+2007,55,"(50,55]",HS,2376.3196860693265,154.52338986559698,15.378381797967462,3017.2583912445766,2019
+2007,55,"(50,55]",HS,1925.5544800523217,154.52338986559698,12.461249275770815,3045.896341651979,2019
+2007,55,"(50,55]",HS,1972.7775016350556,154.52338986559698,12.766853635239036,3035.2357201912405,2019
+2007,51,"(50,55]",College,3236.9234793982996,1046.3440970898996,3.0935554454799874,5243.223405025408,2019
+2007,51,"(50,55]",College,3284.1465009810336,1047.815748421953,3.134278622865778,5291.975973004401,2019
+2007,51,"(50,55]",College,3225.475474166122,1046.3440970898996,3.0826144889972995,5112.547144833816,2019
+2007,51,"(50,55]",College,3259.8194898626552,1046.3440970898996,3.115437358445363,5135.290390243297,2019
+2007,51,"(50,55]",College,3269.836494440811,1046.3440970898996,3.1250106953677146,5242.715091217857,2019
+2007,43,"(40,45]",College,35080.26553302813,5415.676901956162,6.477540327480949,25.50212390164312,2019
+2007,43,"(40,45]",College,35080.12243296272,5415.676901956162,6.477513904179117,27.20430186704038,2019
+2007,43,"(40,45]",College,35080.12243296272,5415.676901956162,6.477513904179117,26.96330813905111,2019
+2007,43,"(40,45]",College,35080.26553302813,5415.676901956162,6.477540327480949,27.360635594526105,2019
+2007,43,"(40,45]",College,35080.26553302813,5415.676901956162,6.477540327480949,27.559555681456953,2019
+2007,47,"(45,50]",College,3400.773054283846,541.5676901956161,6.279497680253921,3483.371382162786,2019
+2007,47,"(45,50]",College,4506.936559843035,625.4518161226545,7.205889316594774,3588.2972623527676,2019
+2007,47,"(45,50]",College,4459.713538260301,462.09851826473766,9.651001598116611,3426.420276615143,2019
+2007,47,"(45,50]",College,3456.5820797907127,778.5035546561983,4.440033779058599,3410.3724926673735,2019
+2007,47,"(45,50]",College,4471.161543492479,466.5134722608976,9.584206693589296,3494.618814170558,2019
+2007,30,"(25,30]",HS,72.75207325049053,91.2423825873049,0.7973495560670832,12031.131850211486,2019
+2007,30,"(25,30]",HS,75.614074558535,83.88412592703838,0.9014110086132793,11943.711720351837,2019
+2007,30,"(25,30]",HS,65.59706998037935,85.35577725909167,0.7685135334338752,12327.428818544391,2019
+2007,30,"(25,30]",HS,71.32107259646828,95.65733658346481,0.7455891533655427,12205.020078492356,2019
+2007,30,"(25,30]",HS,81.19497710922171,91.2423825873049,0.8898822543518153,11985.005729256245,2019
+2007,88,"(85,90]",College,1236.3130150425116,45.76835642685778,27.012397026278588,8229.988392212177,2019
+2007,88,"(85,90]",College,1385.781033355134,50.62480582263368,27.373557504798757,8417.144050828367,2019
+2007,88,"(85,90]",College,1606.441334205363,46.79851235929509,34.326760685722796,7925.079655861353,2019
+2007,88,"(85,90]",College,1665.970961412688,49.59464989019637,33.59174759981538,8292.696158242068,2019
+2007,88,"(85,90]",College,1742.3863963374754,46.79851235929509,37.23166204430436,8362.536586117918,2019
+2007,37,"(35,40]",College,429.72949640287766,197.20127849514282,2.1791415333722703,7312.8618203556925,2019
+2007,37,"(35,40]",College,559.9505559189013,203.08788382335604,2.7571834684433516,6673.47420003382,2019
+2007,37,"(35,40]",College,461.21151079136695,191.31467316692962,2.410748235651228,7497.374888035201,2019
+2007,37,"(35,40]",College,499.84852844996726,195.72962716308953,2.5537704010107474,6633.187973271248,2019
+2007,37,"(35,40]",College,447.0446043165468,186.8997191707697,2.3918955378851234,7352.066608944944,2019
+2007,64,"(60,65]",HS,75197.65336821452,6107.353028021214,12.312642322000928,27.473208709867663,2019
+2007,64,"(60,65]",HS,75116.08633093526,6107.353028021214,12.299286775513762,25.09981677124863,2019
+2007,64,"(60,65]",HS,85862.90124264226,6107.353028021214,14.058938602156077,25.823144739652918,2019
+2007,64,"(60,65]",HS,79477.77632439503,6107.353028021214,13.013457050827448,26.083100399300825,2019
+2007,64,"(60,65]",HS,85213.22694571616,6107.353028021214,13.95256284592497,24.4841314783717,2019
+2007,48,"(45,50]",HS,108.08347939829954,135.39192254890403,0.7983007949330169,7452.2417201661465,2019
+2007,48,"(45,50]",HS,108.08347939829954,135.39192254890403,0.7983007949330169,7288.238509029422,2019
+2007,48,"(45,50]",HS,196.5193198168738,135.39192254890403,1.4514848162074834,7672.49474588217,2019
+2007,48,"(45,50]",HS,198.23652060170048,135.39192254890403,1.4641680010865992,7503.683644351406,2019
+2007,48,"(45,50]",HS,172.335408763898,135.39192254890403,1.2728632958266017,7451.298681373101,2019
+2007,53,"(50,55]",College,39185.07659908437,734.354014694599,53.359926976610254,393.9007219852397,2019
+2007,53,"(50,55]",College,39508.98359712231,732.8823633625458,53.909038574554714,441.2648871534956,2019
+2007,53,"(50,55]",College,40084.27448005232,734.354014694599,54.58440163457465,396.51068207790195,2019
+2007,53,"(50,55]",College,39065.8313145847,732.8823633625458,53.30436815991358,404.2891980784684,2019
+2007,53,"(50,55]",College,38724.36593852191,734.354014694599,52.73255836236762,426.3635843378885,2019
+2007,44,"(40,45]",NoHS,-7.06914323086985,48.56449395775905,-0.1455619662591054,5200.141737941892,2019
+2007,44,"(40,45]",NoHS,-7.054833224329627,48.56449395775905,-0.14526730640837845,5182.058346716147,2019
+2007,44,"(40,45]",NoHS,-7.054833224329627,48.56449395775905,-0.14526730640837845,5185.6420356567805,2019
+2007,44,"(40,45]",NoHS,-7.06914323086985,48.56449395775905,-0.1455619662591054,5202.5420936597275,2019
+2007,44,"(40,45]",NoHS,-7.06914323086985,48.56449395775905,-0.1455619662591054,5201.700709309078,2019
+2007,40,"(35,40]",HS,10592.983772400263,220.74769980799567,47.986836472651554,1946.2785312304386,2019
+2007,40,"(35,40]",HS,10593.126872465664,220.74769980799567,47.987484724323146,1997.9071938427783,2019
+2007,40,"(35,40]",HS,10592.125172007847,220.74769980799567,47.982946962621945,1928.0166706464217,2019
+2007,40,"(35,40]",HS,10592.697572269457,220.74769980799567,47.98553996930835,1925.543756362366,2019
+2007,40,"(35,40]",HS,10593.413072596468,220.74769980799567,47.988781227666344,1988.6955576502794,2019
+2007,91,"(90,95]",HS,36.919816873773705,14.127852787711726,2.613264551134495,8322.628897663028,2019
+2007,91,"(90,95]",HS,36.919816873773705,14.127852787711726,2.613264551134495,8314.853927381315,2019
+2007,91,"(90,95]",HS,37.20601700457816,14.127852787711726,2.633522415871972,8314.193143452507,2019
+2007,91,"(90,95]",HS,36.919816873773705,14.127852787711726,2.613264551134495,8330.552792812918,2019
+2007,91,"(90,95]",HS,37.34911706998038,14.127852787711726,2.6436513482407102,8325.61578268271,2019
+2007,55,"(50,55]",HS,409.40928711576197,80.94082326293177,5.058130997578547,6742.242427931477,2019
+2007,55,"(50,55]",HS,346.5883584041857,100.07229057962472,3.463379886647194,6568.746572596741,2019
+2007,55,"(50,55]",HS,350.8813603662524,82.41247459498507,4.257624371682247,6906.5121098046,2019
+2007,55,"(50,55]",HS,410.8402877697842,89.77073125525159,4.5765505307249015,6678.469649984353,2019
+2007,55,"(50,55]",HS,345.72975801177245,95.65733658346481,3.6142523967318447,6595.485062771186,2019
+2007,55,"(50,55]",HS,0.7870503597122303,67.69596127445202,0.011626252805856198,7144.830484306632,2019
+2007,55,"(50,55]",HS,-0.6439502943100065,67.69596127445202,-0.009512388659336887,7152.485544840687,2019
+2007,55,"(50,55]",HS,2.218051013734467,67.69596127445202,0.03276489427104928,7153.047024379341,2019
+2007,55,"(50,55]",HS,2.218051013734467,67.69596127445202,0.03276489427104928,7172.416573710177,2019
+2007,55,"(50,55]",HS,0.7870503597122303,67.69596127445202,0.011626252805856198,7174.883493914531,2019
+2007,62,"(60,65]",College,38089.946108567696,3237.6329305172703,11.764751263041465,157.09036078567797,2019
+2007,62,"(60,65]",College,27628.329627207324,3811.576950018059,7.248529936428654,174.98143952758662,2019
+2007,62,"(60,65]",College,25017.612034009155,3811.576950018059,6.563585718475557,156.4296525247306,2019
+2007,62,"(60,65]",College,22859.23374754742,3723.2778700948606,6.139545461044254,141.86433337984926,2019
+2007,62,"(60,65]",College,23242.169522563767,3546.6797102484643,6.553219185652241,145.6151040710049,2019
+2007,46,"(45,50]",HS,3.892321778940484,23.546421312852875,0.16530417625780994,5631.5713027454785,2019
+2007,46,"(45,50]",HS,3.7492217135382604,23.546421312852875,0.15922681683656692,5618.350081616616,2019
+2007,46,"(45,50]",HS,3.906631785480706,23.546421312852875,0.16591191219993423,5692.20363513498,2019
+2007,46,"(45,50]",HS,3.906631785480706,23.546421312852875,0.16591191219993423,5688.906177285957,2019
+2007,46,"(45,50]",HS,3.892321778940484,23.546421312852875,0.16530417625780994,5700.429887644518,2019
+2007,53,"(50,55]",College,21.46500981033355,261.95393710548825,0.08194192478080466,9373.113517465545,2019
+2007,53,"(50,55]",College,8.271183780248528,261.95393710548825,0.031574955015536726,9586.997381236859,2019
+2007,53,"(50,55]",College,19.318508829300196,261.95393710548825,0.07374773230272419,9021.426735890298,2019
+2007,53,"(50,55]",College,3.0051013734466974,261.95393710548825,0.011471869469312652,9445.992878207335,2019
+2007,53,"(50,55]",College,24.71338129496403,261.95393710548825,0.09434246939763309,9523.66536722484,2019
+2007,67,"(65,70]",HS,212.81841726618705,29.433026641066096,7.230599145018085,8147.796384217351,2019
+2007,67,"(65,70]",HS,212.67531720078483,27.96137530901279,7.606039218401149,8176.526760206631,2019
+2007,67,"(65,70]",HS,212.67531720078483,27.96137530901279,7.606039218401149,8117.183178686076,2019
+2007,67,"(65,70]",HS,212.67531720078483,27.96137530901279,7.606039218401149,8125.224847154173,2019
+2007,67,"(65,70]",HS,211.38741661216483,27.96137530901279,7.559979231208571,8124.493133202251,2019
+2007,76,"(75,80]",College,13215.53431000654,231.04925913236883,57.1979081847448,1605.031621175701,2019
+2007,76,"(75,80]",College,12678.17925441465,231.04925913236883,54.87219176561515,1596.061407665076,2019
+2007,76,"(75,80]",College,12639.885676913016,231.04925913236883,54.70645404524576,1581.6597003147758,2019
+2007,76,"(75,80]",College,13573.642223675604,231.04925913236883,58.74782838364014,1565.3083041997957,2019
+2007,76,"(75,80]",College,13372.57232177894,231.04925913236883,57.877581481954685,1579.3855292637402,2019
+2007,60,"(55,60]",HS,1460.9085676913014,97.1289879155181,15.040912080356343,2567.256339100883,2019
+2007,60,"(55,60]",HS,1459.4775670372792,97.1289879155181,15.026179087819997,2601.1950175415477,2019
+2007,60,"(55,60]",HS,1449.4605624591236,97.1289879155181,14.923048140065571,2593.343526156256,2019
+2007,60,"(55,60]",HS,1448.1726618705036,97.1289879155181,14.909788446782859,2786.333552391998,2019
+2007,60,"(55,60]",HS,1450.8915631131458,97.1289879155181,14.937781132601916,2670.799620443129,2019
+2007,69,"(65,70]",HS,1782.0251144538915,39.73458596543923,44.848211480141764,2424.335935445807,2019
+2007,69,"(65,70]",HS,2291.4613472858077,39.73458596543923,57.669188985104796,2456.7983505358643,2019
+2007,69,"(65,70]",HS,3328.9368214519295,41.206237297492535,80.7872069807864,2450.2588859508787,2019
+2007,69,"(65,70]",HS,2940.7063440156967,39.73458596543923,74.00873250758157,2632.050816644848,2019
+2007,69,"(65,70]",HS,2228.926618705036,39.73458596543923,56.09537798238883,2523.257555730411,2019
+2007,49,"(45,50]",College,329.5594506213211,478.28668291732396,0.6890416613968078,4270.646728316434,2019
+2007,49,"(45,50]",College,326.6974493132767,478.28668291732396,0.6830577998128148,4317.349850628715,2019
+2007,49,"(45,50]",College,323.8354480052322,410.59072164287204,0.7887062004457598,4344.481938818808,2019
+2007,49,"(45,50]",College,323.8354480052322,478.28668291732396,0.6770739382288217,4297.865299903376,2019
+2007,49,"(45,50]",College,328.1284499672989,479.7583342493773,0.6839452835784161,4316.43102145002,2019
+2007,78,"(75,80]",HS,2.0749509483322433,30.9046779731194,0.06714035170135137,8384.317254588608,2019
+2007,78,"(75,80]",HS,2.0749509483322433,30.9046779731194,0.06714035170135137,8394.891249887778,2019
+2007,78,"(75,80]",HS,1.9318508829300198,23.546421312852875,0.08204435218678068,8395.541879736167,2019
+2007,78,"(75,80]",HS,1.9318508829300198,16.18816465258635,0.11933723954440825,8419.286122459835,2019
+2007,78,"(75,80]",HS,2.9335513407455855,29.433026641066096,0.0996686945083854,8423.456401806077,2019
+2007,39,"(35,40]",College,124.36826684107261,92.71403391935819,1.3414179233021721,4757.428067257377,2019
+2007,39,"(35,40]",College,124.08206671026815,92.71403391935819,1.3383310105802708,4796.0276825657065,2019
+2007,39,"(35,40]",College,125.94236756049706,92.71403391935819,1.3583959432726287,4756.508984342323,2019
+2007,39,"(35,40]",College,124.36826684107261,92.71403391935819,1.3414179233021721,4734.308581914504,2019
+2007,39,"(35,40]",College,124.22516677567037,94.1856852514115,1.3189389283952648,4772.256046719211,2019
+2007,48,"(45,50]",HS,2466.5442773054283,294.33026641066095,8.380192453140413,2441.8622767629868,2019
+2007,48,"(45,50]",HS,2466.4011772400263,294.33026641066095,8.379706264386716,2474.234125437953,2019
+2007,48,"(45,50]",HS,2466.4011772400263,294.33026641066095,8.379706264386716,2467.14849466225,2019
+2007,48,"(45,50]",HS,2466.4011772400263,294.33026641066095,8.379706264386716,2650.5970490624563,2019
+2007,48,"(45,50]",HS,2467.8321778940485,294.33026641066095,8.384568151923709,2540.7523509398898,2019
+2007,57,"(55,60]",HS,2436.42171353826,155.99504119765032,15.618584378276754,3069.071546051884,2019
+2007,57,"(55,60]",HS,2628.17580117724,155.99504119765032,16.847816321592322,3109.355077059971,2019
+2007,57,"(55,60]",HS,2545.1777632439503,155.99504119765032,16.31576070433633,3100.6129476932306,2019
+2007,57,"(55,60]",HS,1964.3345977763245,155.99504119765032,12.59228872081552,3330.0455692247133,2019
+2007,57,"(55,60]",HS,2641.0548070634404,155.99504119765032,16.93037667599412,3192.02737801114,2019
+2007,23,"(20,25]",HS,-18.90351863963375,30.9046779731194,-0.6116717558447252,7481.64404228722,2019
+2007,23,"(20,25]",HS,-28.992073250490517,30.9046779731194,-0.9381127761857784,7486.272624461683,2019
+2007,23,"(20,25]",HS,-21.751209941138,32.3763293051727,-0.6718244596574094,7533.396337486025,2019
+2007,23,"(20,25]",HS,-27.74710268149117,30.9046779731194,-0.8978285651649676,7469.716893008399,2019
+2007,23,"(20,25]",HS,-17.873198168737737,29.433026641066096,-0.6072497533706017,7470.717030805476,2019
+2007,46,"(45,50]",College,3464.4525833878356,367.91283301332624,9.416503781650773,5243.223405025408,2019
+2007,46,"(45,50]",College,3465.883584041858,367.91283301332624,9.420393291680368,5192.405270624112,2019
+2007,46,"(45,50]",College,3465.883584041858,367.91283301332624,9.420393291680368,5112.547144833816,2019
+2007,46,"(45,50]",College,3465.883584041858,367.91283301332624,9.420393291680368,5135.290390243297,2019
+2007,46,"(45,50]",College,3464.4525833878356,367.91283301332624,9.416503781650773,5236.738656183452,2019
+2007,59,"(55,60]",College,676.0047089601046,76.52586926677185,8.833675663369842,9448.796461839776,2019
+2007,59,"(55,60]",College,677.4357096141268,76.52586926677185,8.85237523081982,9710.3976463138,2019
+2007,59,"(55,60]",College,677.4357096141268,76.52586926677185,8.85237523081982,9129.750686761656,2019
+2007,59,"(55,60]",College,676.0047089601046,76.52586926677185,8.833675663369842,9544.388029690128,2019
+2007,59,"(55,60]",College,676.0047089601046,76.52586926677185,8.833675663369842,9624.857842002715,2019
+2007,41,"(40,45]",College,2748.952256376717,462.09851826473766,5.948844559596345,625.83923705897,2019
+2007,41,"(40,45]",College,2906.505428384565,532.7377822032963,5.455789931706821,618.2423367042186,2019
+2007,41,"(40,45]",College,2720.3322432962723,510.6630122224967,5.32705948577889,619.7305077977368,2019
+2007,41,"(40,45]",College,2746.233355134075,535.6810848674029,5.126619984750534,616.8242788837514,2019
+2007,41,"(40,45]",College,2907.9364290385874,537.1527361994563,5.413611870644569,635.3077642470864,2019
+2007,63,"(60,65]",College,10032.459385219097,538.6243875315096,18.626077128065795,361.55690616741236,2019
+2007,63,"(60,65]",College,10032.459385219097,547.4542955238294,18.325656529226023,343.61643953592386,2019
+2007,63,"(60,65]",College,10032.459385219097,572.4723681687356,17.524792362139028,350.33449090413853,2019
+2007,63,"(60,65]",College,10032.459385219097,541.5676901956161,18.52484844802196,348.7598179852288,2019
+2007,63,"(60,65]",College,10019.580379332898,556.2842035161492,18.011621246839926,355.25994145660917,2019
+2007,56,"(55,60]",College,18703.464748201437,153.0517385335437,122.20354324235447,1595.7666849525192,2019
+2007,56,"(55,60]",College,17986.819620667105,153.0517385335437,117.52117155287988,1639.0138639926977,2019
+2007,56,"(55,60]",College,18528.882668410726,154.52338986559698,119.90988991716385,1574.4306895837944,2019
+2007,56,"(55,60]",College,18827.10320470896,153.0517385335437,123.01136455619356,1562.3529816727732,2019
+2007,56,"(55,60]",College,18154.67599738391,153.0517385335437,118.6179011838211,1577.2050466566104,2019
+2007,61,"(60,65]",College,399.67848266841077,88.29907992319828,4.526417296941796,7171.089779618787,2019
+2007,61,"(60,65]",College,212.21739699149774,88.29907992319828,2.4033930724542367,7159.911263941979,2019
+2007,61,"(60,65]",College,169.2873773708306,88.29907992319828,1.9172043187547956,7286.132496408657,2019
+2007,61,"(60,65]",College,165.5667756703728,88.29907992319828,1.8750679601008442,7155.754701171509,2019
+2007,61,"(60,65]",College,236.54440810987575,88.29907992319828,2.67890003288392,7086.978539978985,2019
+2007,79,"(75,80]",College,232662.1033355134,9318.496234561526,24.967773498967468,23.665911554150643,2019
+2007,79,"(75,80]",College,230193.62720732504,8972.658171529,25.655009118451524,21.685018843105542,2019
+2007,79,"(75,80]",College,231258.29169391762,8641.536621817006,26.76124650216344,22.177351526031792,2019
+2007,79,"(75,80]",College,228400.58338783518,8572.369009210499,26.643811429773077,22.468047603321647,2019
+2007,79,"(75,80]",College,229533.93590582078,9324.382839889739,24.616528498151524,21.408183654132788,2019
+2007,42,"(40,45]",HS,20765.25049051668,2943.30266410661,7.055085004932587,19.54061299416028,2019
+2007,42,"(40,45]",HS,20763.819489862653,2943.30266410661,7.054598816178887,18.869892246243175,2019
+2007,42,"(40,45]",HS,20763.819489862653,2943.30266410661,7.054598816178887,19.339040831184274,2019
+2007,42,"(40,45]",HS,20765.25049051668,2943.30266410661,7.055085004932587,19.49045122341503,2019
+2007,42,"(40,45]",HS,20763.819489862653,2943.30266410661,7.054598816178887,19.497993649299858,2019
+2007,77,"(75,80]",NoHS,195.08831916285155,22.07476998079957,8.83761503891264,10487.7851643721,2019
+2007,77,"(75,80]",College,219.8875604970569,29.433026641066096,7.47077638934561,10255.189355694502,2019
+2007,77,"(75,80]",College,223.92298234139963,22.07476998079957,10.143842157185137,10803.812045168574,2019
+2007,77,"(75,80]",College,208.3250752125572,23.546421312852875,8.847419845445577,10436.374926789682,2019
+2007,77,"(75,80]",HS,190.4661870503597,22.07476998079957,8.62822974898608,10520.563892866205,2019
+2007,65,"(60,65]",College,391.73642903858735,176.59815984639656,2.2182361887537,5960.652469795906,2019
+2007,65,"(60,65]",College,390.4485284499673,176.59815984639656,2.210943357448208,5970.734723793093,2019
+2007,65,"(60,65]",College,390.4485284499673,176.59815984639656,2.210943357448208,6007.858327789703,2019
+2007,65,"(60,65]",College,388.87442773054283,176.59815984639656,2.202029896963718,5876.343852742016,2019
+2007,65,"(60,65]",College,388.87442773054283,176.59815984639656,2.202029896963718,5902.512102924574,2019
+2007,43,"(40,45]",College,65.253629823414,128.03366588863753,0.5096599349125174,4918.109743390994,2019
+2007,43,"(40,45]",College,66.68463047743624,130.97696855274413,0.5091324926380664,4904.407505248465,2019
+2007,43,"(40,45]",College,39.35251798561151,123.6187118924776,0.31833787444606254,4840.352526100543,2019
+2007,43,"(40,45]",College,40.92661870503597,138.33522521301063,0.2958510288468939,4815.855928858133,2019
+2007,43,"(40,45]",College,35.918116415958146,133.92027121685072,0.26820522456826307,4822.213049687886,2019
+2007,57,"(55,60]",HS,525.9786003924133,136.86357388095735,3.8430868453713227,10308.172596367334,2019
+2007,57,"(55,60]",HS,525.9786003924133,136.86357388095735,3.8430868453713227,10566.28633117244,2019
+2007,57,"(55,60]",HS,524.6906998037933,136.86357388095735,3.8336767404610113,9905.428279494015,2019
+2007,57,"(55,60]",HS,525.9786003924133,136.86357388095735,3.8430868453713227,10385.869665651448,2019
+2007,57,"(55,60]",HS,525.9786003924133,136.86357388095735,3.8430868453713227,10488.5455757981,2019
+2007,31,"(30,35]",College,28.21933289731851,130.97696855274413,0.21545263422366237,7557.9063366463215,2019
+2007,31,"(30,35]",College,29.664643557880968,130.97696855274413,0.22648748009414407,7528.452028711115,2019
+2007,31,"(30,35]",College,26.78833224329627,130.97696855274413,0.2045270442528884,7651.607198485981,2019
+2007,31,"(30,35]",College,26.64523217789405,130.97696855274413,0.20343448525581104,7608.110923385388,2019
+2007,31,"(30,35]",College,26.802642249836495,130.97696855274413,0.20463630015259615,7529.853026424967,2019
+2007,31,"(30,35]",HS,464.6459123610203,114.78880390015777,4.047833034005346,6886.888749525798,2019
+2007,31,"(30,35]",HS,479.95761935905824,114.78880390015777,4.181223281815193,7044.688737991482,2019
+2007,31,"(30,35]",HS,1432.7178548070635,114.78880390015777,12.48133795394565,6628.027635472938,2019
+2007,31,"(30,35]",HS,1557.5011118378025,114.78880390015777,13.568406141704397,3295.553459497977,2019
+2007,31,"(30,35]",HS,783.3297580117725,114.78880390015777,6.8240954814121535,6995.875740073576,2019
+2007,33,"(30,35]",HS,98.59594506213212,120.675409228371,0.8170342714607678,7688.192292175911,2019
+2007,33,"(30,35]",HS,98.59594506213212,120.675409228371,0.8170342714607678,7658.230240100611,2019
+2007,33,"(30,35]",HS,98.59594506213212,120.675409228371,0.8170342714607678,7783.508403765297,2019
+2007,33,"(30,35]",HS,98.59594506213212,120.675409228371,0.8170342714607678,7739.2623239554305,2019
+2007,33,"(30,35]",HS,98.59594506213212,120.675409228371,0.8170342714607678,7659.655388725801,2019
+2007,50,"(45,50]",College,5611.56889470242,161.88164652586354,34.66463935308361,3518.275757429804,2019
+2007,50,"(45,50]",College,5959.030163505559,161.88164652586354,36.81103010373381,3542.0308618617046,2019
+2007,50,"(45,50]",College,5187.992701111838,161.88164652586354,32.048059878628436,3479.9278355418874,2019
+2007,50,"(45,50]",College,5800.475291039896,161.88164652586354,35.831580759917486,3472.177649454576,2019
+2007,50,"(45,50]",College,5146.651092217136,161.88164652586354,31.792678186003403,3517.7088361205874,2019
+2007,54,"(50,55]",NoHS,59.386527141922826,22.07476998079957,2.690244437136907,7240.95564225286,2019
+2007,54,"(50,55]",NoHS,59.10032701111838,22.07476998079957,2.677279403704922,7234.430698998398,2019
+2007,54,"(50,55]",NoHS,60.81752779594506,20.603118648746268,2.951860290318034,7231.983714046646,2019
+2007,54,"(50,55]",NoHS,60.24512753433617,22.07476998079957,2.729139537432862,7250.622177015468,2019
+2007,54,"(50,55]",NoHS,60.38822759973839,22.07476998079957,2.735622054148855,7245.128096614295,2019
+2007,70,"(65,70]",HS,180.86417266187053,52.979447953918964,3.4138553655595754,10365.639412821562,2019
+2007,70,"(65,70]",HS,180.7210725964683,52.979447953918964,3.4111543169279117,10416.354724157502,2019
+2007,70,"(65,70]",HS,180.7210725964683,51.50779662186566,3.508615868840138,10326.022568775634,2019
+2007,70,"(65,70]",HS,180.7210725964683,52.979447953918964,3.4111543169279117,10352.110175873582,2019
+2007,70,"(65,70]",HS,180.7210725964683,52.979447953918964,3.4111543169279117,10351.457887097578,2019
+2007,60,"(55,60]",HS,167.71327665140615,42.67788862954583,3.929746340246516,8886.599706620504,2019
+2007,60,"(55,60]",HS,167.71327665140615,42.67788862954583,3.929746340246516,8657.92382710447,2019
+2007,60,"(55,60]",HS,167.71327665140615,42.67788862954583,3.929746340246516,9103.115045892899,2019
+2007,60,"(55,60]",HS,167.85637671680837,42.67788862954583,3.9330993661340985,8802.544118905713,2019
+2007,60,"(55,60]",HS,167.71327665140615,42.67788862954583,3.929746340246516,8693.166442818685,2019
+2007,62,"(60,65]",College,3690.693786788751,204.55953515540935,18.042149851312637,1621.962622917139,2019
+2007,62,"(60,65]",College,3686.4007848266842,206.03118648746263,17.892440691501857,1654.9467545518296,2019
+2007,62,"(60,65]",College,3690.693786788751,206.03118648746263,17.913277352374692,1608.0725053617064,2019
+2007,62,"(60,65]",College,3694.9867887508176,204.55953515540935,18.063136416220527,1604.84459588621,2019
+2007,62,"(60,65]",College,3690.693786788751,204.55953515540935,18.042149851312637,1653.7749890559971,2019
+2007,35,"(30,35]",HS,-35.56036625245259,47.09284262570575,-0.7551119080894444,5529.820281623241,2019
+2007,35,"(30,35]",HS,-32.69836494440811,47.09284262570575,-0.6943383138770142,5535.652706282539,2019
+2007,35,"(30,35]",HS,-34.12936559843035,47.09284262570575,-0.7247251109832292,5562.527488998361,2019
+2007,35,"(30,35]",HS,-34.12936559843035,47.09284262570575,-0.7247251109832292,5532.402766229404,2019
+2007,35,"(30,35]",HS,-34.12936559843035,47.09284262570575,-0.7247251109832292,5523.419162196636,2019
+2007,63,"(60,65]",HS,9575.397776324395,73.58256660266524,130.13133706017757,1453.8783117560392,2019
+2007,63,"(60,65]",HS,9576.8287769784165,73.58256660266524,130.15078461032553,1453.6783209266555,2019
+2007,63,"(60,65]",HS,9576.8287769784165,73.58256660266524,130.15078461032553,1412.9709527220261,2019
+2007,63,"(60,65]",HS,9575.397776324395,73.58256660266524,130.13133706017757,1397.3044542907069,2019
+2007,63,"(60,65]",HS,9576.8287769784165,73.58256660266524,130.15078461032553,1478.0043771944343,2019
+2007,63,"(60,65]",College,894.5185088293002,323.7632930517271,2.7628780903410957,1371.1538884741228,2019
+2007,63,"(60,65]",College,811.5204708960106,323.7632930517271,2.5065240202086634,1434.553266035367,2019
+2007,63,"(60,65]",College,768.8766514061479,323.7632930517271,2.3748110669337237,1376.1509268322122,2019
+2007,63,"(60,65]",College,831.5544800523218,323.7632930517271,2.568402588861319,1356.9360306367066,2019
+2007,63,"(60,65]",College,782.9004578155658,323.7632930517271,2.418126064990583,1350.3512613782102,2019
+2007,55,"(50,55]",HS,589.7153695225637,176.59815984639656,3.3393064233256604,7929.833993256891,2019
+2007,55,"(50,55]",HS,539.6303466317855,176.59815984639656,3.055696317000987,8109.413613660525,2019
+2007,55,"(50,55]",HS,662.6964028776979,176.59815984639656,3.752566863970186,7633.428909087134,2019
+2007,55,"(50,55]",HS,678.5805101373447,176.59815984639656,3.8425117834045825,7987.139924028709,2019
+2007,55,"(50,55]",HS,608.461478090255,176.59815984639656,3.445457634550038,8053.421795870292,2019
+2007,73,"(70,75]",HS,88169.6742969261,5960.187894815884,14.79310314589499,23.33602696123593,2019
+2007,73,"(70,75]",HS,93402.84368868542,5960.187894815884,15.671124021094426,20.827163619292293,2019
+2007,73,"(70,75]",HS,89000.51327665141,5960.187894815884,14.932501264610003,22.96340069515562,2019
+2007,73,"(70,75]",HS,91060.29561805101,5960.187894815884,15.278091433535915,22.843010958808115,2019
+2007,73,"(70,75]",HS,89331.64682799215,5960.187894815884,14.988058833798174,21.124723687919385,2019
+2007,55,"(50,55]",HS,28.57708306082407,39.73458596543923,0.7191992156576175,5843.497825329993,2019
+2007,55,"(50,55]",HS,28.720183126226292,41.206237297492535,0.69698630619627,5830.90722870852,2019
+2007,55,"(50,55]",HS,28.863283191628515,39.73458596543923,0.7264020120087202,5918.276498878427,2019
+2007,55,"(50,55]",HS,28.57708306082407,39.73458596543923,0.7191992156576175,5876.894684465515,2019
+2007,55,"(50,55]",HS,28.57708306082407,39.73458596543923,0.7191992156576175,5763.7596140248015,2019
+2007,63,"(60,65]",NoHS,-0.14310006540222367,20.603118648746268,-0.006945553624277727,5720.538751694743,2019
+2007,63,"(60,65]",NoHS,-2.6759712230215826,29.433026641066096,-0.09091729694179546,5679.128555924137,2019
+2007,63,"(60,65]",NoHS,-2.6759712230215826,17.659815984639657,-0.15152882823632577,5765.716677289451,2019
+2007,63,"(60,65]",NoHS,-2.218051013734467,20.603118648746268,-0.10765608117630478,5731.836937861071,2019
+2007,63,"(60,65]",NoHS,3.577501635055592,23.546421312852875,0.15193398553107532,5617.630345467168,2019
+2007,42,"(40,45]",HS,234.25480706344015,119.20375789631768,1.9651629377925552,6847.144818681727,2019
+2007,42,"(40,45]",HS,233.39620667102682,119.20375789631768,1.9579601414414525,6732.339397133469,2019
+2007,42,"(40,45]",HS,229.1032047089601,117.73210656426438,1.9459704866820124,6922.673438175686,2019
+2007,42,"(40,45]",HS,233.39620667102682,117.73210656426438,1.9824346432094704,6764.1786130052005,2019
+2007,42,"(40,45]",HS,228.24460431654677,119.20375789631768,1.9147433633348354,6772.754192240774,2019
+2007,39,"(35,40]",NoHS,-3.146770438194899,54.451099285972276,-0.05779076050730113,5291.855445558531,2019
+2007,39,"(35,40]",NoHS,-3.146770438194899,48.56449395775905,-0.06479570117485278,5277.1700439757315,2019
+2007,39,"(35,40]",NoHS,-3.146770438194899,48.56449395775905,-0.06479570117485278,5282.8091715670125,2019
+2007,39,"(35,40]",NoHS,-3.146770438194899,51.50779662186566,-0.061093089679146916,5281.5050673911155,2019
+2007,39,"(35,40]",NoHS,-3.146770438194899,45.62119129365245,-0.06897606899258521,5236.363786951,2019
+2007,41,"(40,45]",HS,2.1608109875735777,20.603118648746268,0.10487785972659369,6991.251791292842,2019
+2007,41,"(40,45]",HS,2.1536559843034664,20.603118648746268,0.10453058204537981,6962.492008240757,2019
+2007,41,"(40,45]",HS,2.1536559843034664,20.603118648746268,0.10453058204537981,6912.782603427843,2019
+2007,41,"(40,45]",HS,2.1536559843034664,20.603118648746268,0.10453058204537981,6937.722826277402,2019
+2007,41,"(40,45]",HS,2.1536559843034664,20.603118648746268,0.10453058204537981,6995.824697661114,2019
+2007,36,"(35,40]",NoHS,836.3626422498365,64.7526586103454,12.916267226689786,6779.861653465729,2019
+2007,36,"(35,40]",NoHS,836.3626422498365,64.7526586103454,12.916267226689786,6932.771303955798,2019
+2007,36,"(35,40]",NoHS,836.3626422498365,64.7526586103454,12.916267226689786,6529.443617741688,2019
+2007,36,"(35,40]",NoHS,836.3626422498365,64.7526586103454,12.916267226689786,6807.223420728112,2019
+2007,36,"(35,40]",NoHS,836.3626422498365,64.7526586103454,12.916267226689786,6864.470426272176,2019
+2007,59,"(55,60]",College,12317.767429692609,273.7271477619147,45.00016724832309,1389.345268061289,2019
+2007,59,"(55,60]",College,13820.31811641596,275.19879909396803,50.21939834736322,1363.0968029504556,2019
+2007,59,"(55,60]",College,12317.767429692609,273.7271477619147,45.00016724832309,1366.377005771233,2019
+2007,59,"(55,60]",College,12317.767429692609,273.7271477619147,45.00016724832309,1352.9032348941278,2019
+2007,59,"(55,60]",College,9498.696141268803,275.19879909396803,34.5157615968572,1371.9792826424182,2019
+2007,44,"(40,45]",College,804185.1615434925,40529.27768474801,19.84207978732677,2.549971604926024,2019
+2007,44,"(40,45]",College,891426.1164159582,42133.37763668611,21.157243174346913,3.4912082273668745,2019
+2007,44,"(40,45]",College,821497.4074558535,46209.851826473765,17.777538230174873,2.051155935725982,2019
+2007,44,"(40,45]",College,803449.6272073251,42427.70790309677,18.936908612701224,2.360113127021938,2019
+2007,44,"(40,45]",College,908998.8044473513,43663.895022021556,20.818087895935637,1.558553135898001,2019
+2007,72,"(70,75]",HS,4792.564290385873,211.91779181567586,22.615204930761085,5185.887739443571,2019
+2007,72,"(70,75]",HS,4794.710791366907,289.91531241450105,16.53831510807459,5203.350100092421,2019
+2007,72,"(70,75]",HS,4919.923348593853,310.5184310632473,15.844223261554959,5112.547144833816,2019
+2007,72,"(70,75]",HS,4797.572792674951,244.29412112084862,19.638511031960793,5102.442385202331,2019
+2007,72,"(70,75]",HS,4736.755264879006,326.70659571583366,14.498499041626303,5192.006252060903,2019
+2007,50,"(45,50]",HS,170.14597776324396,88.29907992319828,1.9269280938287847,5131.3502207445345,2019
+2007,50,"(45,50]",HS,284.62603008502293,88.29907992319828,3.223431437027294,5109.130941575865,2019
+2007,50,"(45,50]",HS,98.61025506867234,88.29907992319828,1.116775567247616,5242.194813658056,2019
+2007,50,"(45,50]",HS,156.66595160235448,88.29907992319828,1.77426482516716,5140.436415953822,2019
+2007,50,"(45,50]",HS,96.16324395029432,88.29907992319828,1.089062808286748,5092.8084176160955,2019
+2007,31,"(30,35]",College,1295.9141922825377,634.2817241149743,2.0431208136900874,3249.417463346415,2019
+2007,31,"(30,35]",College,1380.3432308698498,663.7147507560403,2.0797236000819552,3293.281344176533,2019
+2007,31,"(30,35]",College,1366.033224329627,753.485482011292,1.8129522823495559,3282.8260437280233,2019
+2007,31,"(30,35]",College,1228.6571615434925,753.485482011292,1.6306314997122657,3527.3549332983916,2019
+2007,31,"(30,35]",College,1353.154218443427,674.0163100804136,2.0075986266296564,3381.8012247562096,2019
+2007,59,"(55,60]",HS,51387.30503597123,3164.0503639146054,16.240988330032195,36.40768677676157,2019
+2007,59,"(55,60]",HS,51318.61700457816,6769.596127445203,7.580750171568276,39.28503004608935,2019
+2007,59,"(55,60]",HS,51387.30503597123,2354.6421312852876,21.823828068480765,38.918913014037585,2019
+2007,59,"(55,60]",HS,51318.61700457816,6004.337434777483,8.546924213042667,39.51759286435269,2019
+2007,59,"(55,60]",HS,51385.874035317196,4223.6393229929845,12.166255237652202,39.61241050535549,2019
+2007,49,"(45,50]",College,29828.20693263571,1633.5329785791685,18.259935565292352,1662.0750737233436,2019
+2007,49,"(45,50]",College,29789.71301504251,1633.5329785791685,18.236370741013946,716.5361203957398,2019
+2007,49,"(45,50]",College,29792.431916285153,1633.5329785791685,18.23803517098157,1496.271761170075,2019
+2007,49,"(45,50]",College,29849.671942446043,1633.5329785791685,18.273075801878825,1388.8200948345213,2019
+2007,49,"(45,50]",College,29756.8,1633.5329785791685,18.216222378248023,1107.4379408830573,2019
+2007,58,"(55,60]",College,4048.359521255723,404.7041163146588,10.00325758512451,1977.8381454056296,2019
+2007,58,"(55,60]",College,4046.8698495748854,404.7041163146588,9.99957669426923,1977.5660803449664,2019
+2007,58,"(55,60]",College,4048.2722302158277,404.7041163146588,10.00304189411378,1922.188278101707,2019
+2007,58,"(55,60]",College,4048.300850228908,404.7041163146588,10.003112612477954,1900.8757666268125,2019
+2007,58,"(55,60]",College,4048.157750163506,404.7041163146588,10.002759020657082,2010.6589476259858,2019
+2007,60,"(55,60]",NoHS,91.8702419882276,29.433026641066096,3.121331798750411,5545.876810601587,2019
+2007,60,"(55,60]",NoHS,91.8702419882276,29.433026641066096,3.121331798750411,5559.820112844873,2019
+2007,60,"(55,60]",NoHS,91.72714192282538,29.433026641066096,3.1164699112134167,5609.162266784457,2019
+2007,60,"(55,60]",NoHS,91.72714192282538,29.433026641066096,3.1164699112134167,5565.834114824547,2019
+2007,60,"(55,60]",NoHS,91.8702419882276,29.433026641066096,3.121331798750411,5530.4317322025,2019
+2007,47,"(45,50]",College,1255.8461739699148,188.371370502823,6.666863285103584,4354.56549828545,2019
+2007,47,"(45,50]",College,1530.5982995421846,188.371370502823,8.125429546201907,9532.878770525374,2019
+2007,47,"(45,50]",College,1287.3281883584043,188.371370502823,6.833990669187768,4406.049227285632,2019
+2007,47,"(45,50]",College,1288.7591890124265,188.371370502823,6.841587368464322,4369.66983905895,2019
+2007,47,"(45,50]",College,1128.487115761936,188.371370502823,5.990757049490299,4464.242151442624,2019
+2007,54,"(50,55]",College,349.6793198168738,54.451099285972276,6.421896424540291,6433.762463281236,2019
+2007,54,"(50,55]",College,372.28913015042514,54.451099285972276,6.837127900672788,6285.474428072344,2019
+2007,54,"(50,55]",College,334.7969130150425,54.451099285972276,6.148579503541686,6683.783779290655,2019
+2007,54,"(50,55]",College,317.91110529758015,54.451099285972276,5.838469920100962,6421.36453557518,2019
+2007,54,"(50,55]",College,329.0156703727927,54.451099285972276,6.042406391922999,6280.023605730701,2019
+2007,71,"(70,75]",HS,655.1407194244605,100.07229057962472,6.546674565255238,7280.251571797633,2019
+2007,71,"(70,75]",HS,656.5574100719425,100.07229057962472,6.560831237789428,7493.586524194143,2019
+2007,71,"(70,75]",HS,656.5574100719425,100.07229057962472,6.560831237789428,7035.807149920889,2019
+2007,71,"(70,75]",HS,655.1264094179202,101.54394191167802,6.451654299453365,7365.3647422054855,2019
+2007,71,"(70,75]",HS,656.5574100719425,100.07229057962472,6.560831237789428,7428.435191177916,2019
+2007,54,"(50,55]",College,10070.123322432963,6990.343827253198,1.4405762536561726,377.5291214807663,2019
+2007,54,"(50,55]",College,10027.050202746894,6990.343827253198,1.4344144509250767,358.60176567427686,2019
+2007,54,"(50,55]",College,10028.481203400916,6990.343827253198,1.4346191619792656,365.77672452198215,2019
+2007,54,"(50,55]",College,10147.969758011774,6990.343827253198,1.4517125350040674,364.1451615087013,2019
+2007,54,"(50,55]",College,10132.801151079137,6990.343827253198,1.4495425978296612,370.92310936444494,2019
+2007,19,"(15,20]",HS,20.463309352517985,7.063926393855863,2.896874657459169,8561.922946543196,2019
+2007,19,"(15,20]",HS,20.463309352517985,6.32810072782921,3.233720547861398,8618.287215885724,2019
+2007,19,"(15,20]",HS,20.463309352517985,7.2110915270611935,2.8377547664906144,8585.632741806186,2019
+2007,19,"(15,20]",HS,20.463309352517985,6.6224309942398705,3.0899996346231138,8541.389290477711,2019
+2007,19,"(15,20]",HS,20.463309352517985,6.32810072782921,3.233720547861398,8600.704062951476,2019
+2007,27,"(25,30]",HS,2.3611510791366905,22.07476998079957,0.10696152581387701,5576.657470920286,2019
+2007,27,"(25,30]",HS,2.3611510791366905,17.659815984639657,0.13370190726734626,5539.261163916895,2019
+2007,27,"(25,30]",HS,2.3611510791366905,30.9046779731194,0.076401089867055,5534.921314662366,2019
+2007,27,"(25,30]",HS,2.3611510791366905,25.01807264490618,0.09437781689459736,5556.529071931323,2019
+2007,27,"(25,30]",HS,2.3611510791366905,16.18816465258635,0.14585662610983227,5581.259301869292,2019
+2007,95,"(90,95]",College,605.5994767822107,69.16761260650532,8.755535343217169,6787.139027918345,2019
+2007,95,"(90,95]",College,600.1616742969261,69.16761260650532,8.676917587299812,6941.483288730633,2019
+2007,95,"(90,95]",College,603.0236756049705,69.16761260650532,8.718295353572104,6535.685698239506,2019
+2007,95,"(90,95]",College,602.8376455199476,69.16761260650532,8.715605798764404,6838.853113758097,2019
+2007,95,"(90,95]",College,621.7697841726618,69.16761260650532,8.989319722655623,6896.44939107621,2019
+2007,77,"(75,80]",NoHS,66.99945062132113,26.489723976959482,2.529261938689759,10975.191663209218,2019
+2007,77,"(75,80]",NoHS,78.49038587311968,16.18816465258635,4.848627843711697,10655.91645692398,2019
+2007,77,"(75,80]",NoHS,62.820928711576194,41.206237297492535,1.5245490205289611,11235.520958656149,2019
+2007,77,"(75,80]",NoHS,77.417135382603007,41.206237297492535,1.8787722553671253,10931.350003165755,2019
+2007,77,"(75,80]",NoHS,73.62498364944409,23.546421312852875,3.1268014222295304,11031.042653230801,2019
+2007,58,"(55,60]",HS,533.0477436232833,176.59815984639656,3.01842184588403,5108.8665250418235,2019
+2007,58,"(55,60]",HS,469.2251144538914,176.59815984639656,2.657021538967445,6346.634751464696,2019
+2007,58,"(55,60]",HS,406.54728580771746,176.59815984639656,2.302103748766853,6672.9792789326075,2019
+2007,58,"(55,60]",HS,663.2688031393068,176.59815984639656,3.755808122328182,5146.463686410136,2019
+2007,58,"(55,60]",HS,509.79398299542186,176.59815984639656,2.886745725090431,6372.469121700682,2019
+2007,25,"(20,25]",HS,8.013603662524526,51.50779662186566,0.15558040118382113,7971.87770837924,2019
+2007,25,"(20,25]",HS,8.15670372792675,51.50779662186566,0.15835862263353223,7981.488678724427,2019
+2007,25,"(20,25]",HS,8.15670372792675,51.50779662186566,0.15835862263353223,7986.087356794327,2019
+2007,25,"(20,25]",HS,8.013603662524526,51.50779662186566,0.15558040118382113,8001.420792893177,2019
+2007,25,"(20,25]",HS,8.013603662524526,51.50779662186566,0.15558040118382113,8006.674956445413,2019
+2007,70,"(65,70]",College,638.7986919555265,179.54146251050318,3.5579452401873843,7768.9402700697265,2019
+2007,70,"(65,70]",College,624.7748855461086,72.11091527061193,8.664082035313305,7956.950224952646,2019
+2007,70,"(65,70]",College,956.9101373446697,111.84550123605116,8.555642621021478,7479.1870807474215,2019
+2007,70,"(65,70]",College,509.2931327665141,89.77073125525159,5.673264834151837,8752.031379224984,2019
+2007,70,"(65,70]",College,753.2787442773055,125.0903632245309,6.02187670464437,7901.710303393763,2019
+2007,39,"(35,40]",HS,580.3709352517986,48.56449395775905,11.950519565932263,5613.118749048617,2019
+2007,39,"(35,40]",HS,587.6261085676913,42.67788862954583,13.768865504768169,5742.371046565533,2019
+2007,39,"(35,40]",HS,560.5945062132113,58.86605328213219,9.5232222130878,5401.791203711879,2019
+2007,39,"(35,40]",HS,466.57776324395036,48.56449395775905,9.607384432951683,6250.856641135148,2019
+2007,39,"(35,40]",HS,457.84865925441466,60.3377046141855,7.588102036396884,6234.630906664396,2019
+2007,44,"(40,45]",HS,1860.7301504251145,678.6078622364199,2.741981421041738,322.24117498336125,2019
+2007,44,"(40,45]",HS,1955.03309352518,485.64493957759055,4.025642880631372,318.96135982885,2019
+2007,44,"(40,45]",HS,1747.82419882276,484.1732882455372,3.609914551784178,314.3017694073561,2019
+2007,44,"(40,45]",HS,1839.5084107259647,460.6268669326843,3.9934891835017283,318.16928942313325,2019
+2007,44,"(40,45]",HS,1971.4896010464356,460.6268669326843,4.280014351256996,322.0621403504399,2019
+2007,54,"(50,55]",HS,-15.368947024198823,17.659815984639657,-0.8702778691219993,7241.135583412402,2019
+2007,54,"(50,55]",HS,-15.426187050359713,17.659815984639657,-0.8735191274799956,7250.087389043462,2019
+2007,54,"(50,55]",HS,-16.85718770438195,17.659815984639657,-0.9545505864299024,7258.673731682509,2019
+2007,54,"(50,55]",HS,-15.368947024198823,17.659815984639657,-0.8702778691219993,7269.966643035697,2019
+2007,54,"(50,55]",HS,-16.900117724002616,17.659815984639657,-0.9569815301983996,7274.25722125631,2019
+2007,49,"(45,50]",HS,138.8356834532374,63.28100727829211,2.193955017856733,6700.419324444231,2019
+2007,49,"(45,50]",HS,139.12188358404185,63.28100727829211,2.198477703937658,6579.814438414805,2019
+2007,49,"(45,50]",HS,138.97878351863963,63.28100727829211,2.1962163608971954,6915.489927132292,2019
+2007,49,"(45,50]",HS,138.69258338783519,63.28100727829211,2.1916936748162703,6695.538291623644,2019
+2007,49,"(45,50]",HS,138.97878351863963,63.28100727829211,2.1962163608971954,6588.22120318833,2019
+2007,27,"(25,30]",HS,21.293289731850884,41.206237297492535,0.5167491896462629,7871.197019469226,2019
+2007,27,"(25,30]",HS,22.724290385873118,41.206237297492535,0.5514769577676515,7865.188518501493,2019
+2007,27,"(25,30]",HS,9.559084368868541,52.979447953918964,0.18043004859512587,7966.82133974694,2019
+2007,27,"(25,30]",HS,5.695382603008502,44.14953996159914,0.12900208264825166,7891.145714558319,2019
+2007,27,"(25,30]",HS,9.559084368868541,50.03614528981236,0.1910435808654274,7853.071137775606,2019
+2007,54,"(50,55]",College,569.1089601046436,141.27852787711726,4.0282764030472435,5740.604379881368,2019
+2007,54,"(50,55]",College,245.05886200130803,142.75017920917054,1.7166974035263767,6511.939283798854,2019
+2007,54,"(50,55]",College,337.8306344015697,141.27852787711726,2.3912383536117505,6829.137555797068,2019
+2007,54,"(50,55]",College,251.9992151733159,141.27852787711726,1.783704990134824,6642.324309023068,2019
+2007,54,"(50,55]",College,260.29901896664484,141.27852787711726,1.8424527978735064,6561.17751441771,2019
+2007,39,"(35,40]",HS,3.191131458469588,132.44861988479744,0.02409335379443896,6090.062644894183,2019
+2007,39,"(35,40]",HS,15.383257030739045,132.44861988479744,0.11614509116153311,6024.054266318275,2019
+2007,39,"(35,40]",HS,18.703178548070635,132.44861988479744,0.14121082246337097,6207.982841530988,2019
+2007,39,"(35,40]",HS,4.2786919555264875,132.44861988479744,0.032304541634696184,6038.096633343624,2019
+2007,39,"(35,40]",HS,18.416978417266186,132.44861988479744,0.1390499835580401,6022.423173159515,2019
+2007,43,"(40,45]",HS,77.57454545454546,73.58256660266524,1.0542516935218678,7370.898172525034,2019
+2007,43,"(40,45]",HS,77.57454545454546,73.58256660266524,1.0542516935218678,7397.78774187918,2019
+2007,43,"(40,45]",HS,78.118325703073907,73.58256660266524,1.0616417625780994,7340.878949528153,2019
+2007,43,"(40,45]",HS,79.30605624591236,73.58256660266524,1.0777832292009206,7350.34458790481,2019
+2007,43,"(40,45]",HS,79.29174623937213,73.58256660266524,1.0775887536994408,7348.763768599027,2019
+2007,66,"(65,70]",College,944.7466317854806,175.12650851434324,5.394652356174301,8185.674217925257,2019
+2007,66,"(65,70]",College,946.177632439503,175.12650851434324,5.402823595732276,8373.925432463566,2019
+2007,66,"(65,70]",College,944.7466317854806,175.12650851434324,5.394652356174301,7879.0855957617405,2019
+2007,66,"(65,70]",College,944.7466317854806,175.12650851434324,5.394652356174301,8248.941599827247,2019
+2007,66,"(65,70]",College,943.3156311314584,175.12650851434324,5.386481116616328,8317.434993995812,2019
+2007,63,"(60,65]",HS,0.14310006540222367,22.07476998079957,0.006482516715992546,5698.277469835826,2019
+2007,63,"(60,65]",HS,0.14310006540222367,22.07476998079957,0.006482516715992546,5683.233404235373,2019
+2007,63,"(60,65]",HS,0.14310006540222367,22.07476998079957,0.006482516715992546,5801.06560562445,2019
+2007,63,"(60,65]",HS,0.14310006540222367,22.07476998079957,0.006482516715992546,5711.923992297686,2019
+2007,63,"(60,65]",HS,0.14310006540222367,22.07476998079957,0.006482516715992546,5641.082792608959,2019
+2007,27,"(25,30]",HS,-13.0507259646828,36.79128330133262,-0.3547233146991121,7222.3851039546225,2019
+2007,27,"(25,30]",HS,-13.179516023544801,36.79128330133262,-0.3582238737257481,7216.871875435618,2019
+2007,27,"(25,30]",HS,-13.222446043165467,36.79128330133262,-0.35939072673462674,7310.12724338288,2019
+2007,27,"(25,30]",HS,-13.079345977763243,36.79128330133262,-0.3555012167050312,7240.689455617833,2019
+2007,27,"(25,30]",HS,-11.991785480706344,36.79128330133262,-0.3259409404801052,7205.753313692454,2019
+2007,33,"(30,35]",HS,630.7135382603009,23.546421312852875,26.785961649128577,7652.152596605124,2019
+2007,33,"(30,35]",HS,632.1445389143231,23.546421312852875,26.84673524334101,7828.214824476658,2019
+2007,33,"(30,35]",HS,630.7135382603009,23.546421312852875,26.785961649128577,7363.683876406365,2019
+2007,33,"(30,35]",HS,632.1445389143231,23.546421312852875,26.84673524334101,7710.897312604991,2019
+2007,33,"(30,35]",HS,630.7135382603009,23.546421312852875,26.785961649128577,7775.263529355111,2019
+2007,57,"(55,60]",College,29890.02616088947,1471.651332053305,20.31053518579414,384.5522747895972,2019
+2007,57,"(55,60]",College,29890.02616088947,1471.651332053305,20.31053518579414,431.0258176409722,2019
+2007,57,"(55,60]",College,29890.02616088947,1471.651332053305,20.31053518579414,387.1365053544495,2019
+2007,57,"(55,60]",College,29894.319162851538,1471.651332053305,20.31345231831634,394.71755347920936,2019
+2007,57,"(55,60]",College,29892.888162197516,1471.651332053305,20.31247994080894,416.27933930585624,2019
+2007,55,"(50,55]",HS,82.42563767168083,151.5800872014904,0.543776159477433,13133.03457143861,2019
+2007,55,"(50,55]",HS,81.13773708306083,151.5800872014904,0.5352796569855981,12857.642285538715,2019
+2007,55,"(50,55]",HS,81.13773708306083,151.5800872014904,0.5352796569855981,13506.541464484175,2019
+2007,55,"(50,55]",HS,82.56873773708307,151.5800872014904,0.5447202153098591,13044.42431052436,2019
+2007,55,"(50,55]",HS,81.13773708306083,151.5800872014904,0.5352796569855981,12885.065168498064,2019
+2007,25,"(20,25]",HS,5.7240026160889474,48.56449395775905,0.1178639402907736,5120.220509149222,2019
+2007,25,"(20,25]",HS,5.7240026160889474,48.56449395775905,0.1178639402907736,5142.75269574069,2019
+2007,25,"(20,25]",HS,5.7240026160889474,48.56449395775905,0.1178639402907736,5148.687829424018,2019
+2007,25,"(20,25]",HS,5.7240026160889474,48.56449395775905,0.1178639402907736,5139.361392386777,2019
+2007,25,"(20,25]",HS,5.867102681491171,48.56449395775905,0.12081053879804293,5145.852690880698,2019
+2007,73,"(70,75]",College,25197.059516023546,1265.620145565842,19.908864128231993,233.58301721749513,2019
+2007,73,"(70,75]",College,25197.059516023546,1264.148494233789,19.93204091999943,263.3248147489206,2019
+2007,73,"(70,75]",College,25195.628515369524,1264.148494233789,19.930908932214333,235.1918269251342,2019
+2007,73,"(70,75]",College,25195.628515369524,1264.148494233789,19.930908932214333,240.46726211083282,2019
+2007,73,"(70,75]",College,25197.059516023546,1265.620145565842,19.908864128231993,256.2912487484545,2019
+2007,22,"(20,25]",HS,13.251066056245913,47.09284262570575,0.28138174120355147,7664.554425854747,2019
+2007,22,"(20,25]",HS,13.251066056245913,47.09284262570575,0.28138174120355147,7708.930522179355,2019
+2007,22,"(20,25]",HS,13.680366252452583,47.09284262570575,0.29049778033541596,7667.332346441576,2019
+2007,22,"(20,25]",HS,13.251066056245913,47.09284262570575,0.28138174120355147,7661.525049809934,2019
+2007,22,"(20,25]",HS,13.251066056245913,47.09284262570575,0.28138174120355147,7709.426884061107,2019
+2007,81,"(80,85]",HS,1192.0235448005233,101.54394191167802,11.738992227003894,10308.172596367334,2019
+2007,81,"(80,85]",HS,1192.0235448005233,103.01559324373132,11.571292338046696,10543.610394042887,2019
+2007,81,"(80,85]",HS,1192.0235448005233,103.01559324373132,11.571292338046696,9905.428279494015,2019
+2007,81,"(80,85]",HS,1192.0235448005233,103.01559324373132,11.571292338046696,10385.869665651448,2019
+2007,81,"(80,85]",HS,1192.0235448005233,103.01559324373132,11.571292338046696,10473.64227946114,2019
+2007,89,"(85,90]",NoHS,1849.9976455199476,100.07229057962472,18.48661237595992,2976.5754497287953,2019
+2007,89,"(85,90]",NoHS,1827.101635055592,100.07229057962472,18.257817668336653,3016.216519611954,2019
+2007,89,"(85,90]",NoHS,1836.9755395683453,100.07229057962472,18.356485385999186,3007.733252390388,2019
+2007,89,"(85,90]",NoHS,1826.9585349901897,100.07229057962472,18.25638770141401,3230.680785844204,2019
+2007,89,"(85,90]",NoHS,1836.9755395683453,100.07229057962472,18.356485385999186,3097.2495276804834,2019
+2007,61,"(60,65]",HS,797.8687246566384,117.73210656426438,6.776985037816508,7410.463788854492,2019
+2007,61,"(60,65]",HS,836.2195421844343,117.73210656426438,7.102731502795133,7577.546579453412,2019
+2007,61,"(60,65]",HS,817.7596337475475,117.73210656426438,6.945935629727064,7134.571990008886,2019
+2007,61,"(60,65]",HS,818.6182341399607,117.73210656426438,6.953228461032554,7464.623891080354,2019
+2007,61,"(60,65]",HS,806.597828646174,117.73210656426438,6.851128822755672,7526.351419528061,2019
+2007,85,"(80,85]",NoHS,0.3577501635055592,16.18816465258635,0.022099488804520045,10941.05193500071,2019
+2007,85,"(80,85]",NoHS,0.18603008502289078,14.716513320533048,0.012640907596185465,10852.05595940485,2019
+2007,85,"(80,85]",NoHS,0.5724002616088947,16.18816465258635,0.03535918208723207,11025.853965557788,2019
+2007,85,"(80,85]",NoHS,0.3148201438848921,14.716513320533048,0.0213923051627754,11036.357632563202,2019
+2007,85,"(80,85]",NoHS,8.872204054937868,16.18816465258635,0.5480673223520971,11046.40542806219,2019
+2007,80,"(75,80]",HS,323.40614780902547,35.319631969279314,9.15655486133947,10408.966085013233,2019
+2007,80,"(75,80]",HS,324.83714846304775,22.07476998079957,14.715312945303081,10444.469340351063,2019
+2007,80,"(75,80]",HS,324.83714846304775,17.659815984639657,18.39414118162885,10370.293734463214,2019
+2007,80,"(75,80]",HS,323.26304774362325,23.546421312852875,13.728754932587963,10379.52280017158,2019
+2007,80,"(75,80]",HS,324.69404839764553,30.9046779731194,10.506307448990777,10379.277489907721,2019
+2007,58,"(55,60]",HS,104.31994767822106,54.451099285972276,1.9158464943075266,7738.614609191003,2019
+2007,58,"(55,60]",HS,107.18194898626554,55.92275061802558,1.9166072448467437,7729.920032202006,2019
+2007,58,"(55,60]",HS,107.32504905166776,54.451099285972276,1.9710354879707066,7729.313448303103,2019
+2007,58,"(55,60]",HS,107.32504905166776,54.451099285972276,1.9710354879707066,7743.593029560562,2019
+2007,58,"(55,60]",HS,105.7509483322433,54.451099285972276,1.9421269674804695,7737.832931162341,2019
+2007,63,"(60,65]",College,10662.385873119685,259.0106344413816,41.165822770619705,528.7309829552258,2019
+2007,63,"(60,65]",College,10656.661870503598,259.0106344413816,41.1437232818152,512.973959528209,2019
+2007,63,"(60,65]",College,10660.954872465665,259.0106344413816,41.16029789841859,515.9514157196263,2019
+2007,63,"(60,65]",College,10653.799869195553,259.0106344413816,41.132673537412934,512.2311259393992,2019
+2007,63,"(60,65]",College,10662.385873119685,259.0106344413816,41.165822770619705,522.4681417896629,2019
+2007,36,"(35,40]",HS,1.8746108567691302,23.546421312852875,0.07961340841828346,4961.267616260846,2019
+2007,36,"(35,40]",HS,-2.41839110529758,23.546421312852875,-0.10270737421900691,4996.104621293876,2019
+2007,36,"(35,40]",HS,0.4436102027468934,23.546421312852875,0.018839814205853338,4970.05305064976,2019
+2007,36,"(35,40]",HS,-2.561491170699804,23.546421312852875,-0.10878473364024992,4959.587165665659,2019
+2007,36,"(35,40]",HS,2.0177109221713536,23.546421312852875,0.08569076783952646,4985.251622745334,2019
+2007,50,"(45,50]",HS,618.4784826684107,64.7526586103454,9.551399061313562,6622.730948195848,2019
+2007,50,"(45,50]",HS,502.56742969260955,64.7526586103454,7.76134046814744,3204.570189301984,2019
+2007,50,"(45,50]",HS,502.56742969260955,63.28100727829211,7.941836758104356,3261.7693426831233,2019
+2007,50,"(45,50]",HS,575.5484630477437,63.28100727829211,9.09512170874024,3206.183929511467,2019
+2007,50,"(45,50]",HS,1167.9827338129496,63.28100727829211,18.457081896255055,6594.800321864408,2019
+2007,55,"(50,55]",College,912.1198168737737,139.80687654506394,6.524141297011025,6863.9477920694535,2019
+2007,55,"(50,55]",College,933.441726618705,139.80687654506394,6.676651032382008,7018.70835555121,2019
+2007,55,"(50,55]",College,923.5678221059517,139.80687654506394,6.606025718686721,6608.4028008929845,2019
+2007,55,"(50,55]",College,903.3907128842382,139.80687654506394,6.461704425483308,6914.113628471027,2019
+2007,55,"(50,55]",College,900.6718116415958,139.80687654506394,6.442256875335329,6971.288799239121,2019
+2007,47,"(45,50]",College,427.9121255722694,138.33522521301063,3.0932983621009327,5761.59342792135,2019
+2007,47,"(45,50]",College,574.7471026814912,144.22183054122385,3.985160225221296,5892.518693386358,2019
+2007,47,"(45,50]",College,611.0802092871157,117.73210656426438,5.190429587306807,5546.048810951443,2019
+2007,47,"(45,50]",College,488.9443034663178,138.33522521301063,3.534488794979255,5804.778328384777,2019
+2007,47,"(45,50]",College,432.1765075212557,125.0903632245309,3.454914482465133,5852.6207529945405,2019
+2007,44,"(40,45]",College,1621.3237410071943,459.1552156006311,3.5311016534709396,2619.233216971802,2019
+2007,44,"(40,45]",College,1621.3237410071943,488.58824224169723,3.318384686394377,2654.8853633099493,2019
+2007,44,"(40,45]",College,1621.3237410071943,478.28668291732396,3.3898575873321026,2645.993968975161,2019
+2007,44,"(40,45]",College,1621.3237410071943,485.64493957759055,3.3384961087361615,2843.363368834981,2019
+2007,44,"(40,45]",College,1621.3237410071943,491.5315449058038,3.2985141194099796,2725.573932194383,2019
+2007,23,"(20,25]",HS,31.625114453891435,33.84798063722601,0.9343279527615345,7414.556511028248,2019
+2007,23,"(20,25]",HS,29.907913669064747,33.84798063722601,0.883595213245071,7463.3675156182535,2019
+2007,23,"(20,25]",HS,30.909614126880317,33.84798063722601,0.9131893112963414,7435.0890033129745,2019
+2007,23,"(20,25]",HS,29.764813603662525,33.84798063722601,0.8793674849520323,7396.7745297810325,2019
+2007,23,"(20,25]",HS,30.194113799869196,33.84798063722601,0.8920506698311482,7448.140646387238,2019
+2007,72,"(70,75]",HS,39.538548070634405,41.206237297492535,0.9595282331939682,10164.483585344613,2019
+2007,72,"(70,75]",HS,39.52423806409418,38.262934633385925,1.0329641059368122,9979.95560354283,2019
+2007,72,"(70,75]",HS,38.107547416612164,44.14953996159914,0.8631471007344076,10447.705336326942,2019
+2007,72,"(70,75]",HS,38.107547416612164,39.73458596543923,0.9590523341493417,10187.397318423693,2019
+2007,72,"(70,75]",HS,38.09323741007194,36.79128330133262,1.0353875698783295,10030.874818770102,2019
+2007,59,"(55,60]",NoHS,0.07155003270111183,12.067540922837098,0.0059291311426761095,6760.2784594944405,2019
+2007,59,"(55,60]",NoHS,0.0858600392413342,12.067540922837098,0.007114957371211331,6767.787290640142,2019
+2007,59,"(55,60]",NoHS,0.07155003270111183,11.920375789631768,0.006002330292585691,6766.528809641626,2019
+2007,59,"(55,60]",NoHS,0.0858600392413342,11.920375789631768,0.007202796351102829,6787.273040949689,2019
+2007,59,"(55,60]",NoHS,0.0858600392413342,12.067540922837098,0.007114957371211331,6789.062924744651,2019
+2007,59,"(55,60]",College,86838.70058862,6857.8952073683995,12.66258785863584,23.530065098899122,2019
+2007,59,"(55,60]",College,82542.83662524525,6843.178694047867,12.06206067613582,21.56054305711446,2019
+2007,59,"(55,60]",College,86837.12648790059,6857.8952073683995,12.662358327464567,22.05004966466952,2019
+2007,59,"(55,60]",College,86835.83858731197,6843.178694047867,12.68940100348994,22.33907709583244,2019
+2007,59,"(55,60]",College,86835.83858731197,6843.178694047867,12.68940100348994,21.285296950354944,2019
+2007,45,"(40,45]",College,155208.93535644212,7814.4685732030475,19.86173901686369,22.982260511475758,2019
+2007,45,"(40,45]",College,154779.6208502289,7505.421793471855,20.6223747457944,21.058591007921923,2019
+2007,45,"(40,45]",College,146748.83086984957,8344.263052742237,17.586793458245833,21.536701388391943,2019
+2007,45,"(40,45]",College,152345.47442773054,8344.263052742237,18.257510994654478,21.818999957904165,2019
+2007,45,"(40,45]",College,153404.42922171354,8049.932786331577,19.056609948618124,20.78975291913089,2019
+2007,78,"(75,80]",NoHS,469.5113145846959,32.3763293051727,14.501684553526054,9906.12731195325,2019
+2007,78,"(75,80]",NoHS,482.8196206671027,32.3763293051727,14.912735045290127,9686.431384083338,2019
+2007,78,"(75,80]",NoHS,531.4736429038587,32.3763293051727,16.41550028399749,10204.627182622255,2019
+2007,78,"(75,80]",NoHS,517.2351863963374,32.3763293051727,15.975720456787538,9857.568312064579,2019
+2007,78,"(75,80]",NoHS,461.0684107259647,32.3763293051727,14.240910585632717,9937.088115640343,2019
+2007,37,"(35,40]",College,217.7267495094833,111.84550123605116,1.9466741809307877,7179.597386642918,2019
+2007,37,"(35,40]",College,216.29574885546108,111.84550123605116,1.9338797400439605,7101.779864894194,2019
+2007,37,"(35,40]",College,216.15264879005886,111.84550123605116,1.9326002959552777,7318.613942788819,2019
+2007,37,"(35,40]",College,216.29574885546108,113.31715256810448,1.9087644187446882,7118.334463340236,2019
+2007,37,"(35,40]",College,216.29574885546108,111.84550123605116,1.9338797400439605,7099.856963133929,2019
+2007,72,"(70,75]",HS,0.42930019620667104,29.433026641066096,0.014585662610983229,8547.385638639575,2019
+2007,72,"(70,75]",HS,0.42930019620667104,29.433026641066096,0.014585662610983229,8563.252447531555,2019
+2007,72,"(70,75]",HS,0.42930019620667104,29.433026641066096,0.014585662610983229,8538.349926413552,2019
+2007,72,"(70,75]",HS,0.42930019620667104,29.433026641066096,0.014585662610983229,8611.013407513447,2019
+2007,72,"(70,75]",HS,0.42930019620667104,29.433026641066096,0.014585662610983229,8609.180967846689,2019
+2007,30,"(25,30]",NoHS,22.981870503597122,47.09284262570575,0.4880119615258139,9494.57079793755,2019
+2007,30,"(25,30]",NoHS,23.12497056899935,47.09284262570575,0.49105064123643544,9404.591104151581,2019
+2007,30,"(25,30]",NoHS,23.26807063440157,47.09284262570575,0.49408932094705693,9682.43696975646,2019
+2007,30,"(25,30]",NoHS,24.41287115761936,47.09284262570575,0.518398758632029,9514.007585180667,2019
+2007,30,"(25,30]",NoHS,23.12497056899935,47.09284262570575,0.49105064123643544,9360.872963287327,2019
+2007,41,"(40,45]",HS,633.6041595814257,63.28100727829211,10.012548580255881,5874.691495156609,2019
+2007,41,"(40,45]",HS,632.1731589274035,63.28100727829211,9.989935149851256,6009.966982260945,2019
+2007,41,"(40,45]",HS,632.1731589274035,61.8093559462388,10.227790748657238,5653.516033031834,2019
+2007,41,"(40,45]",HS,633.6041595814257,63.28100727829211,10.012548580255881,5918.343923370504,2019
+2007,41,"(40,45]",HS,633.6041595814257,63.28100727829211,10.012548580255881,5966.852669918804,2019
+2007,48,"(45,50]",College,1503.8958273381295,125.0903632245309,12.022475501479775,2319.415872985219,2019
+2007,48,"(45,50]",College,1227.5123610202747,111.84550123605116,10.975071392720539,5380.654576369828,2019
+2007,48,"(45,50]",College,1491.1026814911709,113.31715256810448,13.158667048177078,5064.570101186396,2019
+2007,48,"(45,50]",College,1541.0446043165468,123.6187118924776,12.466111163307808,2518.0521257225246,2019
+2007,48,"(45,50]",College,1430.3853237410071,138.33522521301063,10.339993458198942,5345.044952154881,2019
+2007,84,"(80,85]",HS,3392.68790058862,50.03614528981236,67.80474157107763,2722.914175554823,2019
+2007,84,"(80,85]",HS,3724.680052321779,48.56449395775905,76.69553924646,5291.975973004401,2019
+2007,84,"(80,85]",HS,3447.065925441465,48.56449395775905,70.97913814235748,2644.322976509793,2019
+2007,84,"(80,85]",HS,2960.3826030085024,50.03614528981236,59.16488142445403,2684.066053837302,2019
+2007,84,"(80,85]",HS,3119.2236756049706,50.03614528981236,62.33940799272685,2684.228355095549,2019
+2007,65,"(60,65]",HS,3995.625716154349,362.026227685113,11.03684045684587,339.3675165587532,2019
+2007,65,"(60,65]",HS,4197.368188358404,298.7452204068208,14.049992775257039,333.80913146655723,2019
+2007,65,"(60,65]",HS,4544.843767168084,322.2916417196737,14.101649496455597,330.03941618045593,2019
+2007,65,"(60,65]",HS,3440.8696926095486,294.33026641066095,11.690505820453797,328.48631311798306,2019
+2007,65,"(60,65]",HS,3118.7085153695225,319.3483390555672,9.765851685944925,168.83888631742147,2019
+2007,54,"(50,55]",HS,-2.332531066056246,51.50779662186566,-0.0452850096302908,5953.980373587367,2019
+2007,54,"(50,55]",HS,-2.3182210595160235,51.50779662186566,-0.045007187485319684,5902.331936361438,2019
+2007,54,"(50,55]",HS,-2.332531066056246,51.50779662186566,-0.0452850096302908,5990.145810639656,2019
+2007,54,"(50,55]",HS,-2.332531066056246,51.50779662186566,-0.0452850096302908,5909.8384992355805,2019
+2007,54,"(50,55]",HS,-2.3182210595160235,51.50779662186566,-0.045007187485319684,5739.97660664602,2019
+2007,29,"(25,30]",College,6.010202746893395,97.1289879155181,0.06187856865265614,6329.494902543987,2019
+2007,29,"(25,30]",College,14.45310660562459,97.1289879155181,0.14880322461710163,6324.663264337863,2019
+2007,29,"(25,30]",College,6.153302812295618,97.1289879155181,0.06335186790629081,6406.389642474898,2019
+2007,29,"(25,30]",College,4.436102027468934,97.1289879155181,0.04567227686267476,6345.5363208398985,2019
+2007,29,"(25,30]",College,3.906631785480706,97.1289879155181,0.04022106962422649,6314.919269955949,2019
+2007,40,"(35,40]",HS,33.91471550032701,12.65620145565842,2.679691502948082,8464.351099972951,2019
+2007,40,"(35,40]",HS,33.91471550032701,12.65620145565842,2.679691502948082,8475.501614664563,2019
+2007,40,"(35,40]",HS,33.77161543492479,12.65620145565842,2.668384787745769,8500.428493068639,2019
+2007,40,"(35,40]",HS,33.91471550032701,12.65620145565842,2.679691502948082,8570.8120867052,2019
+2007,40,"(35,40]",HS,33.91471550032701,12.65620145565842,2.679691502948082,8609.32065602653,2019
+2007,27,"(25,30]",HS,153.04551994767823,88.29907992319828,1.7332629069385073,7925.689789349718,2019
+2007,27,"(25,30]",HS,154.47652060170046,88.29907992319828,1.7494691987284885,7928.225681629037,2019
+2007,27,"(25,30]",HS,154.47652060170046,88.29907992319828,1.7494691987284885,8006.24886425616,2019
+2007,27,"(25,30]",HS,153.04551994767823,88.29907992319828,1.7332629069385073,7909.841987570113,2019
+2007,27,"(25,30]",HS,153.04551994767823,88.29907992319828,1.7332629069385073,7893.923175395498,2019
+2007,71,"(70,75]",College,268077.65232177894,13405.271983673552,19.997927132569487,38.603519721292784,2019
+2007,71,"(70,75]",College,275268.28750817524,14937.26102034104,18.428297338670355,34.25527757925021,2019
+2007,71,"(70,75]",College,278969.1413996076,15499.431829185407,17.998668885030295,37.98078782298216,2019
+2007,71,"(70,75]",College,276314.0627861347,15965.945301446305,17.306464325736123,37.67642566924967,2019
+2007,71,"(70,75]",College,269613.9746239372,14151.39920902458,19.05210719036178,34.47688193855838,2019
+2007,44,"(40,45]",HS,1576.962720732505,247.2374237849552,6.37833341162838,2728.0759996279116,2019
+2007,44,"(40,45]",HS,1565.5147155003272,247.2374237849552,6.332029720799862,2765.2096783435363,2019
+2007,44,"(40,45]",HS,1788.750817527796,247.2374237849552,7.234951691955967,2755.9488002625812,2019
+2007,44,"(40,45]",HS,1641.3577501635057,247.2374237849552,6.638791672538795,2961.519926701275,2019
+2007,44,"(40,45]",HS,1551.2047089601047,247.2374237849552,6.274150107264214,2838.8357254523225,2019
+2007,39,"(35,40]",NoHS,-1.4310006540222369,51.50779662186566,-0.027782214497110918,7127.52095356547,2019
+2007,39,"(35,40]",NoHS,-1.4310006540222369,51.50779662186566,-0.027782214497110918,7128.929447362573,2019
+2007,39,"(35,40]",NoHS,-1.4310006540222369,51.50779662186566,-0.027782214497110918,7064.783231832671,2019
+2007,39,"(35,40]",NoHS,-2.8620013080444737,51.50779662186566,-0.055564428994221836,7113.604944473857,2019
+2007,39,"(35,40]",NoHS,-2.8620013080444737,51.50779662186566,-0.055564428994221836,7173.179789117824,2019
+2007,28,"(25,30]",HS,-21.40061478090255,45.62119129365245,-0.46909372977904124,5905.666468225225,2019
+2007,28,"(25,30]",HS,-21.250359712230217,45.62119129365245,-0.46580019306043213,5901.158360677965,2019
+2007,28,"(25,30]",HS,-20.785284499672986,45.62119129365245,-0.45560591274092765,5977.412270091714,2019
+2007,28,"(25,30]",HS,-21.522249836494442,45.62119129365245,-0.4717599261702962,5920.633739325301,2019
+2007,28,"(25,30]",HS,-21.250359712230217,45.62119129365245,-0.46580019306043213,5892.066832558602,2019
+2007,57,"(55,60]",College,242274.7071288424,6386.966781111342,37.9326706137473,22.67286850390063,2019
+2007,57,"(55,60]",College,231704.77820797908,6313.384214508677,36.700566658924764,20.235301528998072,2019
+2007,57,"(55,60]",College,252534.26631785484,5739.440195007888,43.99980794947682,22.310831455093126,2019
+2007,57,"(55,60]",College,222077.8357880968,5842.45578825162,38.011042588403484,22.193862929732738,2019
+2007,57,"(55,60]",College,221907.90446043166,5886.60532821322,37.69709231173955,20.52440559624998,2019
+2007,45,"(40,45]",College,1718.6317854807062,132.44861988479744,12.975837626511744,3054.1126704554135,2019
+2007,45,"(40,45]",College,1695.449574885546,132.44861988479744,12.800809675179947,3094.7672852052087,2019
+2007,45,"(40,45]",College,1711.333682145193,130.97696855274413,13.065913046048573,3086.0805009889195,2019
+2007,45,"(40,45]",College,1710.618181818182,132.44861988479744,12.915334137162482,3315.6688249004496,2019
+2007,45,"(40,45]",College,1685.4325703073905,132.44861988479744,12.725180313493368,3178.457263708084,2019
+2007,79,"(75,80]",HS,91.72714192282538,19.131467316692962,4.794569094174487,8467.408700925087,2019
+2007,79,"(75,80]",HS,91.72714192282538,19.131467316692962,4.794569094174487,8459.498477866686,2019
+2007,79,"(75,80]",HS,91.8702419882276,20.603118648746268,4.459045426786301,8458.826198992181,2019
+2007,79,"(75,80]",HS,91.8702419882276,17.659815984639657,5.202219664584018,8475.470439537059,2019
+2007,79,"(75,80]",HS,91.8702419882276,19.131467316692962,4.802048921154478,8470.447545563637,2019
+2007,43,"(40,45]",HS,269.02812295618054,206.03118648746263,1.3057640813642133,470.8661909570181,2019
+2007,43,"(40,45]",HS,269.02812295618054,206.03118648746263,1.3057640813642133,473.19717883403507,2019
+2007,43,"(40,45]",HS,267.59712230215825,206.03118648746263,1.2988185277399353,476.4332096136726,2019
+2007,43,"(40,45]",HS,266.1661216481361,206.03118648746263,1.2918729741156578,472.4994476871637,2019
+2007,43,"(40,45]",HS,269.02812295618054,206.03118648746263,1.3057640813642133,482.7257043641231,2019
+2007,41,"(40,45]",College,198.1363505559189,58.86605328213219,3.3658847418612297,5233.563982421792,2019
+2007,41,"(40,45]",College,196.70534990189668,58.86605328213219,3.3415753041762577,5353.844386657094,2019
+2007,41,"(40,45]",College,198.1363505559189,58.86605328213219,3.3658847418612297,5037.86050681675,2019
+2007,41,"(40,45]",College,198.1363505559189,58.86605328213219,3.3658847418612297,5273.65315097477,2019
+2007,41,"(40,45]",College,198.1363505559189,58.86605328213219,3.3658847418612297,5317.049359287132,2019
+2007,82,"(80,85]",NoHS,16.24185742315239,47.09284262570575,0.344890147155541,11685.09447144954,2019
+2007,82,"(80,85]",NoHS,16.25616742969261,45.62119129365245,0.35632930593713863,11487.715117473961,2019
+2007,82,"(80,85]",NoHS,17.672858077174624,45.62119129365245,0.3873826521411674,11734.860663314448,2019
+2007,82,"(80,85]",NoHS,16.25616742969261,47.09284262570575,0.3451940151266031,11647.831351108338,2019
+2007,82,"(80,85]",NoHS,17.672858077174624,45.62119129365245,0.3873826521411674,11740.186089906561,2019
+2007,86,"(85,90]",HS,6.725703073904513,14.716513320533048,0.4570174284774745,9250.049845523698,2019
+2007,86,"(85,90]",HS,6.267782864617397,14.716513320533048,0.42590134824071024,9261.218456460801,2019
+2007,86,"(85,90]",HS,10.131484630477436,14.716513320533048,0.6884432752384083,9261.408291336518,2019
+2007,86,"(85,90]",HS,15.755317200784827,14.716513320533048,1.070587635646169,9287.270435836455,2019
+2007,86,"(85,90]",HS,6.267782864617397,14.716513320533048,0.42590134824071024,9291.301453276481,2019
+2007,43,"(40,45]",College,53.877174623937215,144.22183054122385,0.37357156279150927,7062.20395474562,2019
+2007,43,"(40,45]",College,52.44617396991498,144.22183054122385,0.3636493433282554,6985.658825506927,2019
+2007,43,"(40,45]",College,52.44617396991498,144.22183054122385,0.3636493433282554,7198.947454376282,2019
+2007,43,"(40,45]",College,53.877174623937215,144.22183054122385,0.37357156279150927,7001.942740094171,2019
+2007,43,"(40,45]",College,53.877174623937215,144.22183054122385,0.37357156279150927,6983.767365069162,2019
+2007,34,"(30,35]",HS,0.14310006540222367,44.14953996159914,0.003241258357996273,7049.291852607584,2019
+2007,34,"(30,35]",HS,0.14310006540222367,44.14953996159914,0.003241258357996273,7030.536764818132,2019
+2007,34,"(30,35]",HS,0.14310006540222367,44.14953996159914,0.003241258357996273,6995.898053761985,2019
+2007,34,"(30,35]",HS,0.14310006540222367,44.14953996159914,0.003241258357996273,6953.867493352111,2019
+2007,34,"(30,35]",HS,0.14310006540222367,44.14953996159914,0.003241258357996273,6905.132915943561,2019
+2007,62,"(60,65]",College,1677.8482668410727,107.43054723989124,15.617981197605332,1205.472410245003,2019
+2007,62,"(60,65]",College,1820.089731850883,164.82494918997014,11.042562068398553,1197.0763145183194,2019
+2007,62,"(60,65]",College,1662.5365598430346,105.95889590783793,15.690391501333627,1166.2355862290551,2019
+2007,62,"(60,65]",College,2585.388881621975,111.84550123605116,23.11571635023105,1174.1810363832087,2019
+2007,62,"(60,65]",College,1879.476258992806,120.675409228371,15.574641685581604,1169.44872732871,2019
+2007,60,"(55,60]",HS,317.10974493132767,61.8093559462388,5.130448943799815,9570.58089297579,2019
+2007,60,"(55,60]",HS,316.30838456507524,61.8093559462388,5.11748391036783,9369.891240087916,2019
+2007,60,"(55,60]",HS,316.39424460431655,61.8093559462388,5.118873021092686,9842.770683882973,2019
+2007,60,"(55,60]",HS,317.6821451929366,61.8093559462388,5.1397096819655195,9506.00696183943,2019
+2007,60,"(55,60]",HS,316.25114453891433,61.8093559462388,5.11655783655126,9389.875419544187,2019
+2007,76,"(75,80]",HS,713.1821059516024,44.14953996159914,16.153783404581826,9447.428895858851,2019
+2007,76,"(75,80]",HS,714.2410464355788,54.451099285972276,13.117109770079187,9680.856350470269,2019
+2007,76,"(75,80]",HS,718.8345585349902,70.63926393855863,10.176133193576673,9149.790649390281,2019
+2007,76,"(75,80]",HS,712.8100457815565,54.451099285972276,13.090829296906243,9626.911409263708,2019
+2007,76,"(75,80]",HS,713.6829561805101,38.262934633385925,18.65207054865555,9759.442223123138,2019
+2007,71,"(70,75]",College,16894.966121648136,1696.8139858574605,9.956875805164058,254.96681470721677,2019
+2007,71,"(70,75]",College,16882.087115761937,1696.8139858574605,9.949285694525212,243.0010515954917,2019
+2007,71,"(70,75]",College,16909.41922825376,1696.8139858574605,9.965393595992095,247.84229099199302,2019
+2007,71,"(70,75]",College,16896.39712230216,1696.8139858574605,9.957719150790599,246.67481303376127,2019
+2007,71,"(70,75]",College,16906.414126880314,1696.8139858574605,9.963622570176366,250.16987464153075,2019
+2007,48,"(45,50]",College,31668.0444735121,2869.720097503944,11.035238071147312,1662.0750737233436,2019
+2007,48,"(45,50]",College,21294.720732504906,2869.720097503944,7.420487019283468,2280.059440796618,2019
+2007,48,"(45,50]",College,23900.572923479398,2869.720097503944,8.328538014654423,1496.271761170075,2019
+2007,48,"(45,50]",College,21569.472858077177,2869.720097503944,7.516228804627358,2235.7967266031674,2019
+2007,48,"(45,50]",College,30228.45781556573,2884.436610824477,10.479848197088767,1107.4379408830573,2019
+2007,38,"(35,40]",HS,-3.0051013734466974,35.319631969279314,-0.08508303189740217,4681.589308760022,2019
+2007,38,"(35,40]",HS,-2.8620013080444737,35.319631969279314,-0.08103145894990683,4666.326076954004,2019
+2007,38,"(35,40]",HS,-3.0051013734466974,35.319631969279314,-0.08508303189740217,4697.773602151092,2019
+2007,38,"(35,40]",HS,-3.0051013734466974,35.319631969279314,-0.08508303189740217,4657.006528115205,2019
+2007,38,"(35,40]",HS,-2.8620013080444737,35.319631969279314,-0.08103145894990683,4649.444406484801,2019
+2007,33,"(30,35]",College,-30.76651406147809,101.54394191167802,-0.3029871943344343,5506.5630200341,2019
+2007,33,"(30,35]",College,17.887508175277958,100.07229057962472,0.17874586533067682,5502.61480563781,2019
+2007,33,"(30,35]",College,-6.439502943100066,100.07229057962472,-0.06434851151904367,5510.39220545004,2019
+2007,33,"(30,35]",College,17.887508175277958,101.54394191167802,0.17615534554327572,5506.593025273732,2019
+2007,33,"(30,35]",College,-25.042511445389145,101.54394191167802,-0.24661748376058604,5509.75835259829,2019
+2007,49,"(45,50]",HS,363.11641595814257,103.01559324373132,3.5248684643209476,7044.032740895744,2019
+2007,49,"(45,50]",HS,362.97331589274035,103.01559324373132,3.523479353596092,6875.786808884343,2019
+2007,49,"(45,50]",HS,362.8159058207979,103.01559324373132,3.5219513317987508,7210.708189345055,2019
+2007,49,"(45,50]",HS,363.11641595814257,103.01559324373132,3.5248684643209476,7013.456955585975,2019
+2007,49,"(45,50]",HS,362.97331589274035,103.01559324373132,3.523479353596092,6927.776172087439,2019
+2007,61,"(60,65]",College,1684.0015696533683,103.01559324373132,16.347055010100064,6622.652534272983,2019
+2007,61,"(60,65]",College,1377.6958796599083,103.01559324373132,13.373663503546766,6628.6393357520765,2019
+2007,61,"(60,65]",College,1459.1484368868544,103.01559324373132,14.164345328134546,6676.398945191906,2019
+2007,61,"(60,65]",College,1485.1640287769785,103.01559324373132,14.416885657913284,6585.443258879679,2019
+2007,61,"(60,65]",College,1573.957619359058,103.01559324373132,15.278828862686147,6595.271106949358,2019
+2007,51,"(50,55]",College,186.2876651406148,63.28100727829211,2.9438163700741034,4756.459521433995,2019
+2007,51,"(50,55]",College,109.14957488554612,63.28100727829211,1.7248394041127841,4707.699136332778,2019
+2007,51,"(50,55]",College,74.6624591236102,65.92997967598805,1.1324508135834077,4752.495386387801,2019
+2007,51,"(50,55]",College,77.51730542838457,66.81297047522004,1.160213426779679,4735.681443910559,2019
+2007,51,"(50,55]",College,56.05229561805102,63.28100727829211,0.8857680689491676,4724.344274788256,2019
+2007,32,"(30,35]",NoHS,0,9.41856852514115,0,6982.858887060128,2019
+2007,32,"(30,35]",NoHS,0,9.41856852514115,0,6955.382314230304,2019
+2007,32,"(30,35]",NoHS,0,9.41856852514115,0,6963.033685936769,2019
+2007,32,"(30,35]",NoHS,0,9.41856852514115,0,6981.752716101689,2019
+2007,32,"(30,35]",NoHS,0,9.41856852514115,0,6982.095172621439,2019
+2007,50,"(45,50]",HS,183.31118378024854,48.56449395775905,3.7745926878120244,9720.635646935467,2019
+2007,50,"(45,50]",HS,183.31118378024854,48.56449395775905,3.7745926878120244,9547.66473958686,2019
+2007,50,"(45,50]",HS,183.31118378024854,48.56449395775905,3.7745926878120244,10086.369410840867,2019
+2007,50,"(45,50]",HS,183.31118378024854,48.56449395775905,3.7745926878120244,9760.687290527314,2019
+2007,50,"(45,50]",HS,183.31118378024854,48.56449395775905,3.7745926878120244,9481.655361302779,2019
+2007,50,"(45,50]",College,3209.3051667756704,251.6523777811151,12.752930034172355,3165.118269646718,2019
+2007,50,"(45,50]",College,3209.3051667756704,251.6523777811151,12.752930034172355,3206.9394079028634,2019
+2007,50,"(45,50]",College,3207.874166121648,251.6523777811151,12.747243616000432,3198.7411988128147,2019
+2007,50,"(45,50]",College,3207.874166121648,251.6523777811151,12.747243616000432,3436.460670574613,2019
+2007,50,"(45,50]",College,3209.3051667756704,251.6523777811151,12.752930034172355,3294.1549034162767,2019
+2007,71,"(70,75]",College,67679.17593198168,0,Inf,283.46744381273646,2019
+2007,71,"(70,75]",College,67679.17593198168,0,Inf,256.34981726366874,2019
+2007,71,"(70,75]",College,67679.17593198168,0,Inf,260.90634477499384,2019
+2007,71,"(70,75]",College,67679.17593198168,0,Inf,261.03739390074327,2019
+2007,71,"(70,75]",College,67679.17593198168,0,Inf,252.15023869550032,2019
+2007,32,"(30,35]",HS,159.41347285807717,101.54394191167802,1.5698964394816732,8392.563807295921,2019
+2007,32,"(30,35]",HS,157.98247220405494,101.54394191167802,1.5558040118382113,8309.754757024677,2019
+2007,32,"(30,35]",HS,159.5565729234794,101.54394191167802,1.5713056822460194,8427.163059398059,2019
+2007,32,"(30,35]",HS,159.41347285807717,101.54394191167802,1.5698964394816732,8417.77351227889,2019
+2007,32,"(30,35]",HS,159.5565729234794,101.54394191167802,1.5713056822460194,8363.459102794315,2019
+2007,43,"(40,45]",College,767.3025506867233,200.14458115924944,3.8337413196123564,6304.711242600692,2019
+2007,43,"(40,45]",College,767.3025506867233,201.61623249130272,3.8057578063305146,6449.888718745294,2019
+2007,43,"(40,45]",College,767.3025506867233,200.14458115924944,3.8337413196123564,6067.3460254152205,2019
+2007,43,"(40,45]",College,768.7335513407455,200.14458115924944,3.8408911542255835,6351.558971567201,2019
+2007,43,"(40,45]",College,768.7335513407455,200.14458115924944,3.8408911542255835,6403.618495029783,2019
+2007,40,"(35,40]",HS,1.359450621321125,52.979447953918964,0.025659962000803834,6519.22981334843,2019
+2007,40,"(35,40]",HS,1.359450621321125,52.979447953918964,0.025659962000803834,6501.138331295578,2019
+2007,40,"(35,40]",HS,1.359450621321125,52.979447953918964,0.025659962000803834,6508.085378336562,2019
+2007,40,"(35,40]",HS,1.359450621321125,52.979447953918964,0.025659962000803834,6506.478804817937,2019
+2007,40,"(35,40]",HS,1.359450621321125,52.979447953918964,0.025659962000803834,6450.867614322375,2019
+2007,52,"(50,55]",College,21366.270765206016,2413.50818456742,8.852785709129698,39.532711866270105,2019
+2007,52,"(50,55]",College,18912.10464355788,3693.844843453795,5.119896867642877,35.087424918282565,2019
+2007,52,"(50,55]",College,17939.02419882276,3134.6173372735393,5.722875320541025,38.47564303999444,2019
+2007,52,"(50,55]",College,21791.27795945062,3090.46779731194,7.051126039366749,42.83927064026405,2019
+2007,52,"(50,55]",College,18409.823413996073,3914.59254326179,4.7028709145438405,36.727282760093075,2019
+2007,65,"(60,65]",HS,349.45035971223024,52.979447953918964,6.595960758522417,13233.701709428206,2019
+2007,65,"(60,65]",HS,355.1743623283192,55.92275061802558,6.351160456221119,12884.741248414097,2019
+2007,65,"(60,65]",HS,317.96834532374106,47.09284262570575,6.7519463170009875,13680.260240007174,2019
+2007,65,"(60,65]",HS,350.8813603662524,55.92275061802558,6.274393810900153,13005.824840766767,2019
+2007,65,"(60,65]",HS,353.7433616742969,48.56449395775905,7.283991509969807,13016.605141678347,2019
+2007,66,"(65,70]",HS,25174.163505559187,941.8568525141151,26.728226734626762,634.950593209918,2019
+2007,66,"(65,70]",HS,25165.577501635056,1081.663729059179,23.265620197437737,716.479878485463,2019
+2007,66,"(65,70]",HS,25164.146500981034,997.7796031321406,25.220145232462155,635.1605255867797,2019
+2007,66,"(65,70]",HS,25165.577501635056,1217.055651608083,20.6774254475414,648.658772603738,2019
+2007,66,"(65,70]",HS,25151.26749509483,769.6736466638783,32.6778337859326,690.8225506082166,2019
+2007,61,"(60,65]",College,119432.28766514061,3620.2622768511296,32.98995446512834,38.34562330796444,2019
+2007,61,"(60,65]",College,119431.31458469588,2987.452204068209,39.97764865394615,34.91519233984594,2019
+2007,61,"(60,65]",College,119429.26825376063,3340.6485237610013,35.750324346993445,35.924389643298575,2019
+2007,61,"(60,65]",College,119429.16808371485,3605.5457635305966,33.123742122959015,36.2951475447028,2019
+2007,61,"(60,65]",College,119430.59908436888,3311.215497119935,36.068506923892,34.21946385892708,2019
+2007,75,"(70,75]",HS,188.39123610202748,27.96137530901279,6.737552571003306,10680.866456537475,2019
+2007,75,"(70,75]",HS,188.10503597122303,26.489723976959482,7.101056852643503,10381.396042995735,2019
+2007,75,"(70,75]",HS,188.10503597122303,27.96137530901279,6.727317018293844,10912.777653774661,2019
+2007,75,"(70,75]",HS,188.10503597122303,26.489723976959482,7.101056852643503,10590.08948036672,2019
+2007,75,"(70,75]",HS,188.10503597122303,26.489723976959482,7.101056852643503,10716.871236328818,2019
+2007,72,"(70,75]",NoHS,2.8620013080444737,10.595889590783795,0.27010486316635607,9172.391220024527,2019
+2007,72,"(70,75]",NoHS,2.8620013080444737,10.743054723989124,0.26640479654763893,9189.77914937,2019
+2007,72,"(70,75]",NoHS,2.8620013080444737,10.595889590783795,0.27010486316635607,9160.631639455933,2019
+2007,72,"(70,75]",NoHS,2.8620013080444737,10.595889590783795,0.27010486316635607,9241.88788839302,2019
+2007,72,"(70,75]",NoHS,2.8620013080444737,10.595889590783795,0.27010486316635607,9239.180099287032,2019
+2007,49,"(45,50]",HS,4241.772138652714,179.54146251050318,23.62558530681775,2049.4091151581842,2019
+2007,49,"(45,50]",HS,4247.6392413342055,179.54146251050318,23.658263567312304,2049.1941540989937,2019
+2007,49,"(45,50]",HS,4230.324133420537,179.54146251050318,23.56182284731619,1992.2066505992782,2019
+2007,49,"(45,50]",HS,4309.172269457162,179.54146251050318,24.000986787133222,1970.635824395032,2019
+2007,49,"(45,50]",HS,4243.346239372139,179.54146251050318,23.634352644999222,2084.3980312010895,2019
+2007,45,"(40,45]",NoHS,165.60970568999346,19.131467316692962,8.656403763944047,8786.274983695812,2019
+2007,45,"(40,45]",NoHS,160.88740353172008,23.546421312852875,6.832775197303519,8816.53542421824,2019
+2007,45,"(40,45]",NoHS,160.90171353826028,23.546421312852875,6.833382933245642,8751.655803677906,2019
+2007,45,"(40,45]",NoHS,164.035604970569,20.603118648746268,7.961688119509559,8764.773189131603,2019
+2007,45,"(40,45]",NoHS,161.04481360366253,23.546421312852875,6.839460292666886,8763.118152208346,2019
+2007,34,"(30,35]",HS,126.27149771092216,73.58256660266524,1.7160518250575467,7519.73149007367,2019
+2007,34,"(30,35]",HS,126.55769784172662,73.58256660266524,1.7199413350871424,7515.696994766656,2019
+2007,34,"(30,35]",HS,120.69059516023545,73.58256660266524,1.640206379480434,7485.029801287131,2019
+2007,34,"(30,35]",HS,122.40779594506213,73.58256660266524,1.663543439658007,7486.546708001694,2019
+2007,34,"(30,35]",HS,122.12159581425769,73.58256660266524,1.6596539296284116,7546.305568978375,2019
+2007,27,"(25,30]",HS,9.101164159581426,25.01807264490618,0.3637835851209935,6177.870028551204,2019
+2007,27,"(25,30]",HS,9.101164159581426,25.01807264490618,0.3637835851209935,6173.15413363036,2019
+2007,27,"(25,30]",HS,9.086854153041203,25.01807264490618,0.36321159835193534,6252.922732832785,2019
+2007,27,"(25,30]",HS,9.24426422498365,25.01807264490618,0.3695034528115752,6193.5271700501135,2019
+2007,27,"(25,30]",HS,9.086854153041203,25.01807264490618,0.36321159835193534,6163.643559441224,2019
+2007,50,"(45,50]",HS,90648.1674296926,3237.6329305172703,27.998284356222534,39.292766184653104,2019
+2007,50,"(45,50]",HS,90648.1674296926,3237.6329305172703,27.998284356222534,34.130025727716415,2019
+2007,50,"(45,50]",HS,90648.1674296926,3222.9164171967373,28.126130403511223,38.28318271871879,2019
+2007,50,"(45,50]",HS,90648.1674296926,3222.9164171967373,28.126130403511223,38.1516045835242,2019
+2007,50,"(45,50]",HS,90648.1674296926,3222.9164171967373,28.126130403511223,35.182920180890086,2019
+2007,86,"(85,90]",HS,23608.64879005886,4164.773269710853,5.6686516314723505,37.62644355292092,2019
+2007,86,"(85,90]",HS,28170.67887508175,4135.340243069787,6.812179220873446,41.705740421393074,2019
+2007,86,"(85,90]",HS,23176.486592544148,4959.464989019637,4.673182821908692,34.98151665483396,2019
+2007,86,"(85,90]",HS,19646.20797907129,4768.1503158527075,4.120299629345447,35.15719193288433,2019
+2007,86,"(85,90]",HS,26386.221059516025,4488.536562762579,5.878579953746881,40.91287181988713,2019
+2007,79,"(75,80]",NoHS,175.58378024852846,35.319631969279314,4.971280006576784,7284.101670030492,2019
+2007,79,"(75,80]",NoHS,175.58378024852846,35.319631969279314,4.971280006576784,7309.625996634546,2019
+2007,79,"(75,80]",NoHS,175.58378024852846,35.319631969279314,4.971280006576784,7256.208180209961,2019
+2007,79,"(75,80]",NoHS,175.58378024852846,35.319631969279314,4.971280006576784,7265.516588847879,2019
+2007,79,"(75,80]",NoHS,175.58378024852846,35.319631969279314,4.971280006576784,7265.207197840451,2019
+2007,54,"(50,55]",College,50.12795291039895,103.01559324373132,0.4866054869168977,5701.67740946352,2019
+2007,54,"(50,55]",College,51.558953564421195,103.01559324373132,0.5004965941654532,5599.049481143238,2019
+2007,54,"(50,55]",College,48.69695225637672,103.01559324373132,0.47271437966834223,5884.690313195176,2019
+2007,54,"(50,55]",College,48.69695225637672,103.01559324373132,0.47271437966834223,5697.523926939453,2019
+2007,54,"(50,55]",College,47.26595160235448,103.01559324373132,0.45882327241978677,5606.203161901846,2019
+2007,56,"(55,60]",HS,57634.2668410726,4768.1503158527075,12.087342684951748,38.602945188142044,2019
+2007,56,"(55,60]",HS,38883.86527141923,4974.18150234017,7.8171384082237045,41.6537823697074,2019
+2007,56,"(55,60]",HS,41544.095487246566,5842.45578825162,7.1107248377961305,41.26558973864573,2019
+2007,56,"(55,60]",HS,43132.50621321124,5636.424601764157,7.652458652549189,41.900367926797756,2019
+2007,56,"(55,60]",HS,53407.090909090904,5165.4961755071,10.339198616064778,42.000902745748036,2019
+2007,39,"(35,40]",HS,1062.9472858077174,111.84550123605116,9.503710690735387,5642.057664985815,2019
+2007,39,"(35,40]",HS,1062.9472858077174,111.84550123605116,9.503710690735387,5772.286218727269,2019
+2007,39,"(35,40]",HS,1072.964290385873,113.31715256810448,9.468683831788072,5430.241636215296,2019
+2007,39,"(35,40]",HS,1062.9472858077174,111.84550123605116,9.503710690735387,5684.813237546917,2019
+2007,39,"(35,40]",HS,1062.9472858077174,111.84550123605116,9.503710690735387,5731.759000360491,2019
+2007,52,"(50,55]",College,5453.543492478744,678.4312640765735,8.038461346414618,5243.223405025408,2019
+2007,52,"(50,55]",College,5453.543492478744,679.9029154086268,8.021062079431037,5291.975973004401,2019
+2007,52,"(50,55]",College,5453.543492478744,678.4312640765735,8.038461346414618,5112.547144833816,2019
+2007,52,"(50,55]",College,5453.543492478744,678.4312640765735,8.038461346414618,5135.290390243297,2019
+2007,52,"(50,55]",College,5453.543492478744,678.4312640765735,8.038461346414618,5242.715091217857,2019
+2007,63,"(60,65]",HS,220698.22236756052,23413.972692968076,9.425919525132224,37.724777406570624,2019
+2007,63,"(60,65]",HS,259743.64761281884,21177.062668247057,12.265329317945454,34.3498878229138,2019
+2007,63,"(60,65]",HS,242941.41033355135,35407.93104920252,6.861214511403174,35.3427454256263,2019
+2007,63,"(60,65]",HS,240362.17475474166,19602.39574295002,12.261877471848699,35.70750046402714,2019
+2007,63,"(60,65]",HS,248660.54754741662,24282.246978879528,10.240425763056411,33.66542373512769,2019
+2007,73,"(70,75]",College,4185.090202746894,154.52338986559698,27.083862232035205,1311.417543880805,2019
+2007,73,"(70,75]",College,4685.124761281883,153.0517385335437,30.6113789112893,1313.172963449523,2019
+2007,73,"(70,75]",College,3940.8183911052975,153.0517385335437,25.74827590241064,1274.964952503283,2019
+2007,73,"(70,75]",College,4057.902864617397,153.0517385335437,26.513275206789263,1262.4540995645984,2019
+2007,73,"(70,75]",College,4113.025009810333,153.0517385335437,26.87342887587585,1335.5019503416197,2019
+2007,44,"(40,45]",College,1155.2468279921518,206.03118648746263,5.607145440879411,531.8611043538152,2019
+2007,44,"(40,45]",College,1155.2468279921518,206.03118648746263,5.607145440879411,552.788068268829,2019
+2007,44,"(40,45]",College,1153.8158273381296,206.03118648746263,5.600199887255133,536.3999518834039,2019
+2007,44,"(40,45]",College,1153.8158273381296,206.03118648746263,5.600199887255133,531.9291388189562,2019
+2007,44,"(40,45]",College,1155.2468279921518,206.03118648746263,5.607145440879411,540.3505519371832,2019
+2007,22,"(20,25]",HS,-12.850385873119688,41.206237297492535,-0.31185535773007,6561.367425078895,2019
+2007,22,"(20,25]",HS,-9.988384565075211,41.206237297492535,-0.24239982148729267,6545.841332411973,2019
+2007,22,"(20,25]",HS,-8.557383911052975,41.206237297492535,-0.20767205336590402,6560.041278213213,2019
+2007,22,"(20,25]",HS,-9.988384565075211,41.206237297492535,-0.24239982148729267,6427.254382260175,2019
+2007,22,"(20,25]",HS,-11.419385219097448,41.206237297492535,-0.2771275896086813,6383.142919843112,2019
+2007,51,"(50,55]",College,106.86712884238064,169.23990318613005,0.6314534978482478,7321.547067438334,2019
+2007,51,"(50,55]",College,108.15502943100066,170.71155451818333,0.6335542414586853,7524.529131129874,2019
+2007,51,"(50,55]",College,128.33213865271418,170.71155451818333,0.7517484039959632,7075.686666522942,2019
+2007,51,"(50,55]",College,90.96871157619358,170.71155451818333,0.5328796391840253,7396.616923017922,2019
+2007,51,"(50,55]",College,136.9038325703074,170.71155451818333,0.801959966662509,7459.157681941526,2019
+2007,72,"(70,75]",College,8092.594898626553,233.99256179647546,34.584838238000984,2243.341526328738,2019
+2007,72,"(70,75]",College,8092.737998691956,232.52091046442217,34.804345048056305,2250.08372218372,2019
+2007,72,"(70,75]",College,8107.048005232178,232.52091046442217,34.86588792827143,2223.9660095375593,2019
+2007,72,"(70,75]",College,8092.737998691956,233.99256179647546,34.58544979618174,2206.4168988735055,2019
+2007,72,"(70,75]",College,8107.048005232178,233.99256179647546,34.64660561425714,2238.856460708022,2019
+2007,51,"(50,55]",HS,14286.395029431,965.403273826968,14.798370190726732,59.08808398346512,2019
+2007,51,"(50,55]",HS,17363.04643557881,974.2331818192878,17.822269616350958,55.63029079331102,2019
+2007,51,"(50,55]",HS,14284.96402877698,987.4780438077674,14.466107999417794,61.0073417023418,2019
+2007,51,"(50,55]",HS,12782.41334205363,966.8749251590211,13.22033802867658,60.30170858955317,2019
+2007,51,"(50,55]",HS,14286.395029431,990.4213464718741,14.424562919935715,58.50503487845291,2019
+2007,64,"(60,65]",College,694.8939175931981,67.69596127445202,10.264924295497762,8549.54797710843,2019
+2007,64,"(60,65]",College,695.7525179856115,67.69596127445202,10.277607480376878,8743.505062074577,2019
+2007,64,"(60,65]",College,694.8939175931981,67.69596127445202,10.264924295497762,8228.125794247951,2019
+2007,64,"(60,65]",College,694.8939175931981,67.69596127445202,10.264924295497762,8612.465795247908,2019
+2007,64,"(60,65]",College,694.4646173969915,67.69596127445202,10.258582703058204,8683.240475273644,2019
+2007,56,"(55,60]",College,9767.294964028777,777.0319033241448,12.5700050696043,1395.7982387778634,2019
+2007,56,"(55,60]",College,9428.147809025508,777.0319033241448,12.13354016571503,1360.4979180039286,2019
+2007,56,"(55,60]",College,9428.147809025508,778.5035546561983,12.110603416819535,1378.9175900366627,2019
+2007,56,"(55,60]",College,9496.835840418573,778.5035546561983,12.198834268152511,1372.1488849813466,2019
+2007,56,"(55,60]",College,9881.059516023544,778.5035546561983,12.692375592796369,1389.4357127953301,2019
+2007,71,"(70,75]",HS,68.4590712884238,33.84798063722601,2.022545215389674,6777.633160803375,2019
+2007,71,"(70,75]",HS,183.64031393067364,33.84798063722601,5.4254437184564575,6782.054540695432,2019
+2007,71,"(70,75]",HS,233.35327665140613,33.84798063722601,6.8941565274580725,6758.145628386459,2019
+2007,71,"(70,75]",HS,124.6830869849575,33.84798063722601,3.6836196617245474,6765.984024923307,2019
+2007,71,"(70,75]",HS,578.3675343361674,33.84798063722601,17.087209441974178,6999.691056908645,2019
+2007,43,"(40,45]",HS,-3.8622707652060173,5.886605328213219,-0.6561117231173956,7040.549931551641,2019
+2007,43,"(40,45]",HS,-3.7191706998037937,5.886605328213219,-0.6318022854324236,7049.65669241347,2019
+2007,43,"(40,45]",HS,-3.7191706998037937,5.886605328213219,-0.6318022854324236,7086.974529727983,2019
+2007,43,"(40,45]",HS,-3.8622707652060173,5.886605328213219,-0.6561117231173956,7033.389009368349,2019
+2007,43,"(40,45]",HS,-3.7191706998037937,5.886605328213219,-0.6318022854324236,7087.569576446299,2019
+2007,52,"(50,55]",HS,306.2341399607587,73.58256660266524,4.161775731667214,11517.408018779914,2019
+2007,52,"(50,55]",HS,306.09103989535646,75.05421793471854,4.078265663384723,11327.29038287881,2019
+2007,52,"(50,55]",HS,306.2341399607587,73.58256660266524,4.161775731667214,12013.352911521837,2019
+2007,52,"(50,55]",HS,306.2341399607587,75.05421793471854,4.08017228594825,11574.468988291906,2019
+2007,52,"(50,55]",HS,306.2341399607587,73.58256660266524,4.161775731667214,11450.513133319035,2019
+2007,54,"(50,55]",HS,93.7305428384565,29.433026641066096,3.184536336731338,11264.279181248394,2019
+2007,54,"(50,55]",HS,93.58744277305428,29.433026641066096,3.1796744491943434,11037.023588001279,2019
+2007,54,"(50,55]",HS,93.7305428384565,29.433026641066096,3.184536336731338,11599.436587696086,2019
+2007,54,"(50,55]",HS,93.58744277305428,29.433026641066096,3.1796744491943434,11297.177568519195,2019
+2007,54,"(50,55]",HS,93.58744277305428,29.433026641066096,3.1796744491943434,11130.071791959988,2019
+2007,47,"(45,50]",HS,183.48290385873122,50.03614528981236,3.667007176431902,7967.643240754213,2019
+2007,47,"(45,50]",HS,181.8086330935252,44.14953996159914,4.1180187438342655,7784.001682931725,2019
+2007,47,"(45,50]",HS,189.35000654022235,44.14953996159914,4.288833059300669,8277.272428949473,2019
+2007,47,"(45,50]",HS,188.06210595160238,60.3377046141855,3.1168256590819774,7952.28950871168,2019
+2007,47,"(45,50]",HS,183.62600392413344,39.73458596543923,4.621314138867575,7777.251323708051,2019
+2007,41,"(40,45]",HS,-0.10017004578155657,32.3763293051727,-0.003093928432632806,5144.063682897973,2019
+2007,41,"(40,45]",HS,-0.24327011118378025,32.3763293051727,-0.007513826193536815,5180.184244470582,2019
+2007,41,"(40,45]",HS,-0.24327011118378025,32.3763293051727,-0.007513826193536815,5153.172813360998,2019
+2007,41,"(40,45]",HS,-0.3863701765860039,30.9046779731194,-0.01250199652369991,5142.321316723394,2019
+2007,41,"(40,45]",HS,-0.24327011118378025,30.9046779731194,-0.007871627440848092,5168.931371212726,2019
+2007,67,"(65,70]",HS,9.97407455853499,44.14953996159914,0.22591570755234025,5468.983067208636,2019
+2007,67,"(65,70]",HS,10.117174623937213,42.67788862954583,0.23705893025207225,5472.300943041419,2019
+2007,67,"(65,70]",HS,10.117174623937213,44.14953996159914,0.22915696591033652,5523.1233136601295,2019
+2007,67,"(65,70]",HS,10.117174623937213,44.14953996159914,0.22915696591033652,5416.123016193572,2019
+2007,67,"(65,70]",HS,10.117174623937213,44.14953996159914,0.22915696591033652,5424.910612753788,2019
+2007,35,"(30,35]",HS,0,36.79128330133262,0,6907.618564263159,2019
+2007,35,"(30,35]",HS,0,36.79128330133262,0,6882.957592135443,2019
+2007,35,"(30,35]",HS,0,36.79128330133262,0,6889.146656406146,2019
+2007,35,"(30,35]",HS,0,36.79128330133262,0,6908.8865872631995,2019
+2007,35,"(30,35]",HS,0,36.79128330133262,0,6907.900147111012,2019
+2007,34,"(30,35]",NoHS,-9.73080444735121,73.58256660266524,-0.13224334100624793,9561.312636388748,2019
+2007,34,"(30,35]",NoHS,-9.73080444735121,73.58256660266524,-0.13224334100624793,9554.013980785738,2019
+2007,34,"(30,35]",NoHS,-9.73080444735121,73.58256660266524,-0.13224334100624793,9677.46955884361,2019
+2007,34,"(30,35]",NoHS,-9.73080444735121,73.58256660266524,-0.13224334100624793,9585.544746188954,2019
+2007,34,"(30,35]",NoHS,-9.73080444735121,73.58256660266524,-0.13224334100624793,9539.294737299937,2019
+2007,58,"(55,60]",College,2857.135905820798,3149.333850594072,0.907219126762901,206.52228548444154,2019
+2007,58,"(55,60]",College,5681.172766514062,3164.0503639146054,1.795538032929804,400.22313174100543,2019
+2007,58,"(55,60]",College,6722.554872465664,3164.0503639146054,2.124667467096961,398.0691167891397,2019
+2007,58,"(55,60]",College,7923.307521255722,3149.333850594072,2.5158677666901257,395.0066275114385,2019
+2007,58,"(55,60]",College,12145.417710922171,3149.333850594072,3.8565037201855024,401.4357450968762,2019
+2007,52,"(50,55]",College,49367.376062786134,5754.156708328423,8.5794285010231,58.698213954732594,2019
+2007,52,"(50,55]",College,51009.44931327665,5695.29065504629,8.956426002258537,63.833060504463944,2019
+2007,52,"(50,55]",College,52777.45062132113,5680.574141725756,9.29086555417924,62.360355131216124,2019
+2007,52,"(50,55]",College,54195.57226945716,5945.47138149535,9.115437413109941,63.41894008911487,2019
+2007,52,"(50,55]",College,53170.26030085023,6622.43099423987,8.028813036647302,64.19962048274024,2019
+2007,34,"(30,35]",HS,32.884395029431,58.86605328213219,0.5586308780006576,10157.990369009522,2019
+2007,34,"(30,35]",HS,31.12426422498365,79.46917193087846,0.39165205159121635,10057.761934119239,2019
+2007,34,"(30,35]",HS,30.866684107259648,64.7526586103454,0.47668597351349734,10199.867783074926,2019
+2007,34,"(30,35]",HS,31.210124264224987,72.11091527061193,0.4328072129871351,10188.503087923847,2019
+2007,34,"(30,35]",HS,31.338914323086986,63.28100727829211,0.495234125861291,10122.763313867785,2019
+2007,27,"(25,30]",College,133.3692609548725,107.43054723989124,1.2414463519119974,8511.548616613649,2019
+2007,27,"(25,30]",College,119.70320470896011,107.43054723989124,1.1142380615604999,8478.377819994534,2019
+2007,27,"(25,30]",College,119.41700457815566,107.43054723989124,1.1115740135950232,8617.07247539711,2019
+2007,27,"(25,30]",College,122.88002616088947,107.43054723989124,1.1438089939772875,8568.087922841169,2019
+2007,27,"(25,30]",College,123.75293655984304,107.43054723989124,1.1519343402719906,8479.955592941444,2019
+2007,76,"(75,80]",HS,235.25650752125574,38.262934633385925,6.148417777552931,7937.671215354016,2019
+2007,76,"(75,80]",HS,216.3672988881622,47.09284262570575,4.594483722459717,7715.114581854918,2019
+2007,76,"(75,80]",HS,216.51039895356442,48.56449395775905,4.458203541498511,8110.020045134692,2019
+2007,76,"(75,80]",HS,289.4914323086985,38.262934633385925,7.565844990261301,7870.208730573443,2019
+2007,76,"(75,80]",HS,216.3672988881622,50.03614528981236,4.324219974079734,7964.428792122511,2019
+2007,56,"(55,60]",HS,105.7509483322433,58.86605328213219,1.7964674449194342,7332.175540262867,2019
+2007,56,"(55,60]",HS,62.391628515369526,58.86605328213219,1.0598914830647812,7183.490975348295,2019
+2007,56,"(55,60]",HS,67.40013080444736,58.86605328213219,1.1449745149621835,7592.564159901422,2019
+2007,56,"(55,60]",HS,49.94192282537606,58.86605328213219,0.8483993752055244,7327.085203258481,2019
+2007,56,"(55,60]",HS,73.98273381294963,58.86605328213219,1.2567979283130546,7187.8063761877,2019
+2007,32,"(30,35]",HS,5.208842380640942,47.09284262570575,0.11060794146662282,7181.53514033694,2019
+2007,32,"(30,35]",HS,5.351942446043165,48.56449395775905,0.1102027841718733,7213.1384061545195,2019
+2007,32,"(30,35]",HS,5.208842380640942,48.56449395775905,0.10725618566460396,7221.462924802348,2019
+2007,32,"(30,35]",HS,5.351942446043165,47.09284262570575,0.11364662117724432,7208.381821127737,2019
+2007,32,"(30,35]",HS,5.208842380640942,47.09284262570575,0.11060794146662282,7217.4864071816355,2019
+2007,39,"(35,40]",HS,193.3281883584042,122.14706056042431,1.5827494126456498,6706.615335058754,2019
+2007,39,"(35,40]",HS,258.0094179202093,117.73210656426438,2.19149580730023,6861.04738600466,2019
+2007,39,"(35,40]",HS,161.846173969915,133.92027121685072,1.2085263306243248,7678.72571937696,2019
+2007,39,"(35,40]",HS,145.38966644865926,116.26045523221109,1.2505513259712202,7468.591505176393,2019
+2007,39,"(35,40]",HS,201.9141922825376,138.33522521301063,1.4596007052551303,6811.82759147541,2019
+2007,60,"(55,60]",College,30632,3473.0971436457994,8.819793611601892,327.2524426193305,2019
+2007,60,"(55,60]",College,25225.679529103993,3178.7668772351385,7.935680879827542,368.65500264691394,2019
+2007,60,"(55,60]",College,21276.117724002615,3340.6485237610013,6.368858493394968,300.08901926575595,2019
+2007,60,"(55,60]",College,22621.25833878352,3370.081550402068,6.712377134044334,336.61729723993375,2019
+2007,60,"(55,60]",College,28612.858077174624,3561.3962235689974,8.034168702661423,362.03377302742996,2019
+2007,31,"(30,35]",NoHS,-10.015573577501636,36.79128330133262,-0.272226806971391,6061.743286030408,2019
+2007,31,"(30,35]",NoHS,-9.872473512099413,36.79128330133262,-0.2683372969417955,6063.704282651608,2019
+2007,31,"(30,35]",NoHS,-9.872473512099413,36.79128330133262,-0.2683372969417955,6058.666979551585,2019
+2007,31,"(30,35]",NoHS,-10.015573577501636,36.79128330133262,-0.272226806971391,6094.7294126035395,2019
+2007,31,"(30,35]",NoHS,-10.015573577501636,36.79128330133262,-0.272226806971391,6094.654994821582,2019
+2007,28,"(25,30]",College,10.947155003270112,80.94082326293177,0.13524887148366266,8869.63444665806,2019
+2007,28,"(25,30]",College,10.804054937867889,80.94082326293177,0.13348091237930107,8825.054276861181,2019
+2007,28,"(25,30]",College,10.804054937867889,80.94082326293177,0.13348091237930107,8941.638789128701,2019
+2007,28,"(25,30]",College,12.235055591890125,80.94082326293177,0.1511605034229171,8920.630338326377,2019
+2007,28,"(25,30]",College,10.947155003270112,80.94082326293177,0.13524887148366266,8864.947377055982,2019
+2007,54,"(50,55]",College,7818.844473512099,1287.6949155466418,6.071969671630572,20.48945097806541,2019
+2007,54,"(50,55]",College,8200.206147809025,1287.6949155466418,6.368128078169774,19.786161890434133,2019
+2007,54,"(50,55]",College,7721.536429038587,1287.6949155466418,5.99640204819843,20.278091029783667,2019
+2007,54,"(50,55]",College,7913.719816873774,1287.6949155466418,6.14564810447691,20.436853490823587,2019
+2007,54,"(50,55]",College,7653.850098103335,1287.6949155466418,5.943838098369896,20.4447621559954,2019
+2007,54,"(50,55]",HS,1348.889836494441,213.38944314772917,6.321258524305754,8030.664145423716,2019
+2007,54,"(50,55]",HS,1440.302158273381,213.38944314772917,6.749641111703273,8213.59225403767,2019
+2007,54,"(50,55]",HS,1381.6025114453892,213.38944314772917,6.474558867886018,7731.08794900574,2019
+2007,54,"(50,55]",HS,1355.8731196860695,213.38944314772917,6.3539840569685575,8092.0403782725025,2019
+2007,54,"(50,55]",HS,1426.0207717462395,213.38944314772917,6.682714714987131,8159.23401017166,2019
+2007,23,"(20,25]",HS,4.294432962720733,9.71289879155181,0.44213710601576445,10828.347101419537,2019
+2007,23,"(20,25]",HS,4.294432962720733,9.71289879155181,0.44213710601576445,10728.199393365116,2019
+2007,23,"(20,25]",HS,4.294432962720733,9.565733658346481,0.4489392153390838,10872.165894875166,2019
+2007,23,"(20,25]",HS,4.294432962720733,9.565733658346481,0.4489392153390838,10806.972401680372,2019
+2007,23,"(20,25]",HS,4.294432962720733,9.71289879155181,0.44213710601576445,10770.015758416233,2019
+2007,42,"(40,45]",HS,505.429431000654,97.1289879155181,5.2036929638376535,5227.809508642315,2019
+2007,42,"(40,45]",HS,505.429431000654,95.65733658346481,5.283749778665924,5358.764825620756,2019
+2007,42,"(40,45]",HS,505.57253106605623,97.1289879155181,5.2051662630912885,5060.512490471643,2019
+2007,42,"(40,45]",HS,505.57253106605623,95.65733658346481,5.285245744061922,5326.9086339451405,2019
+2007,42,"(40,45]",HS,505.57253106605623,95.65733658346481,5.285245744061922,5399.365318112557,2019
+2007,35,"(30,35]",HS,49.58417266187051,58.86605328213219,0.8423220157842816,5776.417257616284,2019
+2007,35,"(30,35]",HS,49.44107259646828,58.86605328213219,0.8398910720157843,5679.564622560298,2019
+2007,35,"(30,35]",HS,49.29797253106606,58.86605328213219,0.837460128247287,5840.1350308841265,2019
+2007,35,"(30,35]",HS,49.44107259646828,58.86605328213219,0.8398910720157843,5706.424956451389,2019
+2007,35,"(30,35]",HS,49.44107259646828,58.86605328213219,0.8398910720157843,5713.6595228585775,2019
+2007,49,"(45,50]",College,4811.739699149771,882.9907992319827,5.449365614381235,2115.2904840375986,2019
+2007,49,"(45,50]",College,4811.739699149771,882.9907992319827,5.449365614381235,2054.8622920620487,2019
+2007,49,"(45,50]",College,4811.739699149771,882.9907992319827,5.449365614381235,2082.857382125069,2019
+2007,49,"(45,50]",College,4810.308698495748,882.9907992319827,5.447744985202236,2073.153903061479,2019
+2007,49,"(45,50]",College,4810.451798561151,882.9907992319827,5.447907048120137,2108.472343212576,2019
+2007,60,"(55,60]",HS,3919.7969914977107,38.262934633385925,102.4437103179622,1269.6289340680519,2019
+2007,60,"(55,60]",HS,3919.6538914323087,36.79128330133262,106.5375692206511,1269.3861374003363,2019
+2007,60,"(55,60]",HS,3919.5107913669062,38.262934633385925,102.4362304909822,1233.7691751414413,2019
+2007,60,"(55,60]",HS,3919.5823413996077,38.262934633385925,102.43810044772721,1220.046125023705,2019
+2007,60,"(55,60]",HS,3919.4392413342057,38.262934633385925,102.43436053423721,1290.4296169845395,2019
+2007,55,"(50,55]",College,150664.04865925442,1677.6825185407674,89.80486295482211,286.40883887600677,2019
+2007,55,"(50,55]",College,151083.04565075214,1957.296271630895,77.1896660922283,264.6018138321293,2019
+2007,55,"(50,55]",College,152797.67063440155,1707.1155451818333,89.5063436483008,266.20088963134083,2019
+2007,55,"(50,55]",College,152683.619882276,2060.3118648746267,74.10704296049231,265.11148412059686,2019
+2007,55,"(50,55]",College,150312.02249836497,1927.8632449898291,77.96819763486802,254.1115536992416,2019
+2007,86,"(85,90]",College,1176.8549378678877,64.7526586103454,18.174619592837285,8780.316875974506,2019
+2007,86,"(85,90]",College,1176.8549378678877,64.7526586103454,18.174619592837285,8981.211287125861,2019
+2007,86,"(85,90]",College,1178.2859385219099,63.28100727829211,18.619898595168358,8451.812169987561,2019
+2007,86,"(85,90]",College,1176.8549378678877,63.28100727829211,18.597285164763733,8847.662249005583,2019
+2007,86,"(85,90]",College,1176.7118378024854,64.7526586103454,18.172409643956836,8921.719596772875,2019
+2007,52,"(50,55]",HS,9.845284499672989,39.73458596543923,0.2477761944779373,7093.786000137958,2019
+2007,52,"(50,55]",HS,10.131484630477436,39.73458596543923,0.25497899082904013,7049.379222396456,2019
+2007,52,"(50,55]",HS,9.988384565075211,39.73458596543923,0.2513775926534887,7136.319078328184,2019
+2007,52,"(50,55]",HS,9.988384565075211,39.73458596543923,0.2513775926534887,7121.367974301023,2019
+2007,52,"(50,55]",HS,10.131484630477436,39.73458596543923,0.25497899082904013,7089.171546493419,2019
+2007,37,"(35,40]",College,769.8068018312623,213.38944314772917,3.6075205524498526,4203.06666101299,2019
+2007,37,"(35,40]",College,965.7107913669065,213.38944314772917,4.5255790404699,4249.030738316416,2019
+2007,37,"(35,40]",College,734.0317854807064,213.38944314772917,3.439869258070735,4275.733479744152,2019
+2007,37,"(35,40]",College,725.4457815565729,213.38944314772917,3.399632947419746,4229.854517296893,2019
+2007,37,"(35,40]",College,994.3308044473513,213.38944314772917,4.659700075973195,4248.126448981842,2019
+2007,33,"(30,35]",HS,20.606409417920208,92.71403391935819,0.22225771597688732,7269.187500110516,2019
+2007,33,"(30,35]",HS,20.606409417920208,92.71403391935819,0.22225771597688732,7257.419375391619,2019
+2007,33,"(30,35]",HS,20.74950948332243,92.71403391935819,0.22380117233783792,7249.855508529678,2019
+2007,33,"(30,35]",HS,20.74950948332243,92.71403391935819,0.22380117233783792,7269.986733425389,2019
+2007,33,"(30,35]",HS,20.606409417920208,92.71403391935819,0.22225771597688732,7307.365791073184,2019
+2007,51,"(50,55]",College,3305.611510791367,331.1215497119936,9.98307574262852,934.8597702065214,2019
+2007,51,"(50,55]",College,3308.1300719424457,331.1215497119936,9.990681895575284,920.9057880179565,2019
+2007,51,"(50,55]",College,3304.0374100719428,331.1215497119936,9.978321897036793,922.7860861079544,2019
+2007,51,"(50,55]",College,3307.042511445389,331.1215497119936,9.987397420439182,918.6578164286841,2019
+2007,51,"(50,55]",College,3306.327011118378,331.1215497119936,9.985236581533849,950.3554557196342,2019
+2007,29,"(25,30]",College,498.5606278613473,282.5570557542345,1.7644600186342212,10308.172596367334,2019
+2007,29,"(25,30]",College,492.97972531066057,282.5570557542345,1.7447086005151813,10566.28633117244,2019
+2007,29,"(25,30]",College,485.8247220405494,282.5570557542345,1.7193862695933355,12039.98519424369,2019
+2007,29,"(25,30]",College,490.11772400261606,282.5570557542345,1.734579668146443,10385.869665651448,2019
+2007,29,"(25,30]",College,502.9967298888163,282.5570557542345,1.7801598638057659,10488.5455757981,2019
+2007,35,"(30,35]",College,349.02105951602357,116.26045523221109,3.00206169689351,6981.269655306101,2019
+2007,35,"(30,35]",College,348.87795945062135,116.26045523221109,3.0008308392892076,7142.69007047566,2019
+2007,35,"(30,35]",College,352.59856115107914,116.26045523221109,3.0328331370010693,6717.663528550258,2019
+2007,35,"(30,35]",College,352.3123610202747,116.26045523221109,3.0303714217924647,7035.099647775995,2019
+2007,35,"(30,35]",College,349.45035971223024,116.26045523221109,3.0057542697064172,7092.62729465872,2019
+2007,44,"(40,45]",HS,43.78862001308045,29.433026641066096,1.4877375863202893,4822.860884737363,2019
+2007,44,"(40,45]",HS,42.35761935905821,29.433026641066096,1.4391187109503454,4831.979998524852,2019
+2007,44,"(40,45]",HS,45.21962066710268,29.433026641066096,1.5363564616902334,4808.02931078022,2019
+2007,44,"(40,45]",HS,42.35761935905821,29.433026641066096,1.4391187109503454,4803.297453208904,2019
+2007,44,"(40,45]",HS,42.35761935905821,29.433026641066096,1.4391187109503454,4824.834464937666,2019
+2007,39,"(35,40]",College,1056.221582733813,147.16513320533048,7.177118382111147,6175.989286931254,2019
+2007,39,"(35,40]",College,1054.6474820143885,147.16513320533048,7.1664222295297595,6222.53861445687,2019
+2007,39,"(35,40]",College,1056.221582733813,147.16513320533048,7.177118382111147,6262.168292931948,2019
+2007,39,"(35,40]",College,1054.7905820797907,147.16513320533048,7.167394607037159,6196.530951573133,2019
+2007,39,"(35,40]",College,1056.0784826684107,147.16513320533048,7.176146004603749,6250.572157163131,2019
+2007,46,"(45,50]",College,69232.09784172662,1692.3990318613007,40.90766807257337,59.838460011141706,2019
+2007,46,"(45,50]",College,81538.70346631785,1707.1155451818333,47.76402141990498,53.03131557530027,2019
+2007,46,"(45,50]",College,66742.15670372793,1692.3990318613007,39.43641862659594,58.70877627607621,2019
+2007,46,"(45,50]",College,78301.77998691956,1707.1155451818333,45.86788528047716,58.34939290685012,2019
+2007,46,"(45,50]",College,68701.19659908436,1692.3990318613007,40.5939706332299,53.87893694333864,2019
+2007,38,"(35,40]",College,109764.90516677567,1471.651332053305,74.58621670503123,24.166547902343968,2019
+2007,38,"(35,40]",College,109786.370176586,1471.651332053305,74.6008023676422,21.568395001928213,2019
+2007,38,"(35,40]",College,109936.62524525834,1471.651332053305,74.7029020059191,23.780659999323465,2019
+2007,38,"(35,40]",College,109795.52858077174,1471.651332053305,74.60702558368956,23.655985634864372,2019
+2007,38,"(35,40]",College,110006.74427730542,1471.651332053305,74.75054850378163,21.876545128093493,2019
+2007,46,"(45,50]",College,9933.748960104644,1559.9504119765031,6.367990215482742,2378.2715991958253,2019
+2007,46,"(45,50]",College,9042.493132766513,1559.9504119765031,5.796654216276918,2358.306405426486,2019
+2007,46,"(45,50]",College,9613.662733812951,1574.666925297036,6.105203950987594,2336.1750645138927,2019
+2007,46,"(45,50]",College,10536.858495748855,1574.666925297036,6.691483974467326,2312.5246856448707,2019
+2007,46,"(45,50]",College,7956.363636363637,1559.9504119765031,5.100395227488475,2343.604035111867,2019
+2007,35,"(30,35]",College,1481.085676913015,169.23990318613005,8.751397566589937,2630.81760635525,2019
+2007,35,"(30,35]",College,1481.8011772400262,169.23990318613005,8.755625294882975,2666.627435614819,2019
+2007,35,"(30,35]",College,1642.788750817528,169.23990318613005,9.706864160816664,2657.696716269387,2019
+2007,35,"(30,35]",College,1644.21975147155,169.23990318613005,9.715319617402741,2855.9390448800846,2019
+2007,35,"(30,35]",College,1482.2304774362328,169.23990318613005,8.7581619318588,2737.628647108398,2019
+2007,42,"(40,45]",HS,182.85326357096142,107.43054723989124,1.702060245142865,6746.738439642346,2019
+2007,42,"(40,45]",HS,225.06778286461739,86.82742859114498,2.592127701079596,6636.229362717405,2019
+2007,42,"(40,45]",HS,188.31968606932637,94.1856852514115,1.9994512495889512,6927.56805984129,2019
+2007,42,"(40,45]",HS,119.81768476128188,97.1289879155181,1.2335934650683091,6658.631769316856,2019
+2007,42,"(40,45]",HS,212.28894702419885,85.35577725909167,2.4871069521142095,6602.363062785458,2019
+2007,66,"(65,70]",College,2557.9136690647483,91.2423825873049,28.03427087863712,2528.140625285308,2019
+2007,66,"(65,70]",College,3104.555918901243,69.16761260650532,44.88453196386968,2566.9212613816144,2019
+2007,66,"(65,70]",College,2566.3565729234797,69.16761260650532,37.103443016365006,2569.8839577066547,2019
+2007,66,"(65,70]",College,2855.848005232178,95.65733658346481,29.85498140793767,2775.7446478579855,2019
+2007,66,"(65,70]",College,2758.110660562459,103.01559324373132,26.77372011086579,2675.115687067583,2019
+2007,49,"(45,50]",HS,42032.782210595164,5386.2438753150955,7.8037280122479125,37.27462219070285,2019
+2007,49,"(45,50]",HS,46039.58404185742,5386.2438753150955,8.547623373099515,40.242278240056436,2019
+2007,49,"(45,50]",HS,42403.41137998692,5386.2438753150955,7.872538333126686,39.84937294365756,2019
+2007,49,"(45,50]",HS,43864.46304774363,5386.2438753150955,8.143794462922932,40.46097474206958,2019
+2007,49,"(45,50]",HS,42962.932635709614,5386.2438753150955,7.97641800673132,40.559031794509316,2019
+2007,77,"(75,80]",HS,434.1799084368869,22.530981893736097,19.27035006661625,11929.981979984084,2019
+2007,77,"(75,80]",HS,363.6029561805101,24.105648819033135,15.083724105920748,11611.07451184079,2019
+2007,77,"(75,80]",HS,355.1743623283192,16.747392158766605,21.20774141796156,12306.303016233354,2019
+2007,77,"(75,80]",HS,624.0736952256376,35.923009015421165,17.37253399228703,9028.783072705284,2019
+2007,77,"(75,80]",HS,517.6215565729235,30.109986253810614,17.19102600079783,11836.932715881641,2019
+2007,27,"(25,30]",HS,16.814257684761284,48.56449395775905,0.34622532460414746,6968.748698545681,2019
+2007,27,"(25,30]",HS,16.957357750163506,48.56449395775905,0.34917192311141676,6963.429084108953,2019
+2007,27,"(25,30]",HS,16.814257684761284,48.56449395775905,0.34622532460414746,7053.409501195694,2019
+2007,27,"(25,30]",HS,16.814257684761284,48.56449395775905,0.34622532460414746,6986.410236250296,2019
+2007,27,"(25,30]",HS,16.814257684761284,48.56449395775905,0.34622532460414746,6952.700985072122,2019
+2007,44,"(40,45]",HS,85.8600392413342,110.37384990399784,0.7779020059191056,7328.6275839081845,2019
+2007,44,"(40,45]",HS,88.43584041857423,110.37384990399784,0.8012390660966788,7343.810751848991,2019
+2007,44,"(40,45]",HS,78.84813603662525,110.37384990399784,0.7143733421023787,7267.320735759464,2019
+2007,44,"(40,45]",HS,89.00824068018312,110.37384990399784,0.8064250794694728,7266.649929876704,2019
+2007,44,"(40,45]",HS,80.85153695225637,110.37384990399784,0.7325243889071578,7353.268956497372,2019
+2007,40,"(35,40]",HS,68.47338129496403,86.82742859114498,0.788614639475195,6872.044711021088,2019
+2007,40,"(35,40]",HS,74.62668410725965,86.82742859114498,0.8594828306924016,6878.824346251566,2019
+2007,40,"(35,40]",HS,68.3302812295618,86.82742859114498,0.7869665420050274,6827.943689720347,2019
+2007,40,"(35,40]",HS,71.62158273381294,86.82742859114498,0.824872783818882,6844.884184889292,2019
+2007,40,"(35,40]",HS,67.75788096795291,86.82742859114498,0.780374152124357,6906.956134679407,2019
+2007,36,"(35,40]",HS,1.8603008502289078,88.29907992319828,0.021068179326975776,4515.787783811612,2019
+2007,36,"(35,40]",HS,2.146500981033355,88.29907992319828,0.024309437684972048,4524.326280696533,2019
+2007,36,"(35,40]",HS,1.8603008502289078,88.29907992319828,0.021068179326975776,4501.900540930043,2019
+2007,36,"(35,40]",HS,2.0034009156311314,88.29907992319828,0.022688808505973913,4497.469962249469,2019
+2007,36,"(35,40]",HS,2.0034009156311314,88.29907992319828,0.022688808505973913,4517.635705526937,2019
+2007,42,"(40,45]",HS,76.98783518639634,41.206237297492535,1.8683539249307088,5600.48420223452,2019
+2007,42,"(40,45]",HS,78.41883584041857,41.206237297492535,1.903081693052097,5577.445594063736,2019
+2007,42,"(40,45]",HS,78.41883584041857,41.206237297492535,1.903081693052097,5537.624866007004,2019
+2007,42,"(40,45]",HS,76.98783518639634,41.206237297492535,1.8683539249307088,5557.603737922776,2019
+2007,42,"(40,45]",HS,78.41883584041857,41.206237297492535,1.903081693052097,5604.147421732021,2019
+2007,58,"(55,60]",College,1128.3440156965337,100.07229057962472,11.275289185059094,5559.267076556358,2019
+2007,58,"(55,60]",College,1099.724002616089,97.1289879155181,11.322304764182437,5684.857451584217,2019
+2007,58,"(55,60]",College,1108.3100065402223,94.1856852514115,11.767287179381782,5350.877848145325,2019
+2007,58,"(55,60]",College,1128.3440156965337,95.65733658346481,11.795687147446436,5598.622550574603,2019
+2007,58,"(55,60]",College,1088.275997383911,97.1289879155181,11.204440823891664,5644.737331066738,2019
+2007,49,"(45,50]",HS,53.04719424460432,33.84798063722601,1.5672188782294154,9684.384906428348,2019
+2007,49,"(45,50]",HS,72.98103335513407,33.84798063722601,2.156141429449695,9722.96281578288,2019
+2007,49,"(45,50]",HS,53.233224329627205,33.84798063722601,1.5727149250103656,9710.872451506133,2019
+2007,49,"(45,50]",HS,54.80732504905167,33.84798063722601,1.6192199362337905,9723.859326851529,2019
+2007,49,"(45,50]",HS,53.376324395029435,33.84798063722601,1.5769426533034043,9718.547877860176,2019
+2007,42,"(40,45]",College,591.146370176586,114.78880390015777,5.149860875724078,8020.24588614582,2019
+2007,42,"(40,45]",College,595.4393721386527,114.78880390015777,5.187260010624035,8224.00822432951,2019
+2007,42,"(40,45]",College,599.7323741007194,116.26045523221109,5.158524219631283,7744.811147855519,2019
+2007,42,"(40,45]",College,589.7153695225637,120.675409228371,4.886789887793649,8105.7010102114655,2019
+2007,42,"(40,45]",College,589.7153695225637,113.31715256810448,5.204113906481548,8182.85166036189,2019
+2007,36,"(35,40]",HS,-7.197933289731851,72.11091527061193,-0.09981752780033422,6662.804836176498,2019
+2007,36,"(35,40]",HS,-8.442903858731198,72.11091527061193,-0.11708218966639601,6709.589687058399,2019
+2007,36,"(35,40]",HS,-17.887508175277958,72.11091527061193,-0.24805548658134743,6674.603360114719,2019
+2007,36,"(35,40]",HS,-20.606409417920208,72.11091527061193,-0.28575992054171223,6660.548051173435,2019
+2007,36,"(35,40]",HS,-9.158404185742315,72.11091527061193,-0.1270044091296499,6695.014498455547,2019
+2007,43,"(40,45]",NoHS,31.625114453891435,103.01559324373132,0.30699347019307566,4985.786112827808,2019
+2007,43,"(40,45]",NoHS,26.659542184434272,103.01559324373132,0.2587913280405882,4990.704854280109,2019
+2007,43,"(40,45]",NoHS,25.056821451929366,103.01559324373132,0.24323328792220608,4953.790066700498,2019
+2007,43,"(40,45]",NoHS,30.480313930673642,103.01559324373132,0.29588058439423126,4966.080686029896,2019
+2007,43,"(40,45]",NoHS,24.06943100065402,103.01559324373132,0.23364842392070279,5011.114948505425,2019
+2007,83,"(80,85]",College,51916.27442773055,1231.7721649286161,42.14762754501699,35.99058065723659,2019
+2007,83,"(80,85]",College,45816.20483976455,1913.1467316692958,23.948087243568665,39.87091593763371,2019
+2007,83,"(80,85]",College,38519.81870503597,1336.2594095044005,28.82660240298882,36.63815760722669,2019
+2007,83,"(80,85]",College,65658.17370830609,669.6013560842537,98.05561639281468,36.089907774026074,2019
+2007,83,"(80,85]",College,44889.24554610857,971.2898791551811,46.21611581616892,39.13087000273778,2019
+2007,55,"(50,55]",HS,4392.742707652061,600.4337434777483,7.315949104074384,5243.223405025408,2019
+2007,55,"(50,55]",HS,4394.3168083714845,531.266130871243,8.271404015846223,5291.975973004401,2019
+2007,55,"(50,55]",HS,4392.742707652061,579.8306248290021,7.57590668645266,5112.547144833816,2019
+2007,55,"(50,55]",HS,4392.885807717462,543.0393415276694,8.089443014127609,5135.290390243297,2019
+2007,55,"(50,55]",HS,4392.885807717462,491.5315449058038,8.937139138362536,5242.715091217857,2019
+2007,49,"(45,50]",College,583.9913669064748,94.1856852514115,6.200425949523183,8531.13562564445,2019
+2007,49,"(45,50]",College,583.9913669064748,94.1856852514115,6.200425949523183,8338.56335773593,2019
+2007,49,"(45,50]",College,583.9913669064748,94.1856852514115,6.200425949523183,8817.031575164492,2019
+2007,49,"(45,50]",College,583.9913669064748,94.1856852514115,6.200425949523183,8542.900405878538,2019
+2007,49,"(45,50]",College,583.9913669064748,94.1856852514115,6.200425949523183,8296.925525699757,2019
+2007,50,"(45,50]",HS,459.2796599084369,98.60063924757141,4.657978522383152,7239.883136710867,2019
+2007,50,"(45,50]",HS,459.2796599084369,160.40999519381023,2.863161110088726,7405.089092623713,2019
+2007,50,"(45,50]",HS,459.2796599084369,151.5800872014904,3.0299471941715646,6968.236880150944,2019
+2007,50,"(45,50]",HS,459.4227599738391,98.60063924757141,4.659429832095688,7296.175856719601,2019
+2007,50,"(45,50]",HS,457.84865925441466,145.69348187327716,3.1425473080027504,7356.170835162605,2019
+2007,75,"(70,75]",College,112211.41543492478,6734.276495475921,16.662727690243827,23.33602696123593,2019
+2007,75,"(70,75]",College,105860.77763243951,7306.748863644658,14.488082128997029,20.827163619292293,2019
+2007,75,"(70,75]",College,104279.37880967953,7159.583730439328,14.565005834952462,22.96340069515562,2019
+2007,75,"(70,75]",College,103851.22341399608,7916.012515114727,13.119133302998696,22.843010958808115,2019
+2007,75,"(70,75]",College,102054.17279267494,6743.106403468241,15.134593269977843,21.124723687919385,2019
+2007,51,"(50,55]",HS,127.35905820797907,44.14953996159914,2.8847199386166835,9224.788834176927,2019
+2007,51,"(50,55]",HS,127.35905820797907,44.14953996159914,2.8847199386166835,9301.815219121407,2019
+2007,51,"(50,55]",HS,127.35905820797907,44.14953996159914,2.8847199386166835,9225.003217569309,2019
+2007,51,"(50,55]",HS,127.5021582733813,44.14953996159914,2.8879611969746795,9227.404550267933,2019
+2007,51,"(50,55]",HS,127.5021582733813,44.14953996159914,2.8879611969746795,9227.614961228563,2019
+2007,69,"(65,70]",HS,131.17982995421843,75.05421793471854,1.747800903985402,9636.068437779404,2019
+2007,69,"(65,70]",HS,136.80366252452583,64.7526586103454,2.112711129712116,9382.838491804026,2019
+2007,69,"(65,70]",HS,124.81187704381949,122.14706056042431,1.0218164601847044,9950.929745884781,2019
+2007,69,"(65,70]",HS,127.73111837802486,88.29907992319828,1.4465736051737368,9472.881325118415,2019
+2007,69,"(65,70]",HS,127.00130804447352,64.7526586103454,1.9613296314011541,9272.082923392863,2019
+2007,25,"(20,25]",HS,-20.692269457161544,38.262934633385925,-0.5407914906533782,6558.552165360059,2019
+2007,25,"(20,25]",HS,-20.692269457161544,38.262934633385925,-0.5407914906533782,6547.934491809038,2019
+2007,25,"(20,25]",HS,-20.677959450621323,38.262934633385925,-0.5404174993043787,6541.110068118617,2019
+2007,25,"(20,25]",HS,-20.677959450621323,38.262934633385925,-0.5404174993043787,6559.273265673926,2019
+2007,25,"(20,25]",HS,-20.677959450621323,38.262934633385925,-0.5404174993043787,6592.998148884239,2019
+2007,56,"(55,60]",College,91576.27152387181,3693.844843453795,24.791585842096918,38.128788621606184,2019
+2007,56,"(55,60]",College,92859.86480052322,3693.844843453795,25.1390810215239,34.71775586269326,2019
+2007,56,"(55,60]",College,96785.11390451275,3708.561356774328,26.097751821664758,35.721246413669576,2019
+2007,56,"(55,60]",College,89444.06623937214,3708.561356774328,24.118265180104707,36.089907774026074,2019
+2007,56,"(55,60]",College,92699.60703727926,3693.844843453795,25.095695939032424,34.025961548282496,2019
+2007,54,"(50,55]",HS,482.9627207325049,195.72962716308953,2.46749931388814,6643.279189422416,2019
+2007,54,"(50,55]",HS,490.2608240680183,195.72962716308953,2.504785970186894,6794.239701009067,2019
+2007,54,"(50,55]",HS,489.68842380640945,195.72962716308953,2.5018615265556194,6394.750186773782,2019
+2007,54,"(50,55]",HS,502.2812295618051,195.72962716308953,2.566199286443666,6693.072593649044,2019
+2007,54,"(50,55]",HS,528.6116415958143,195.72962716308953,2.700723693482308,6748.236254146381,2019
+2007,48,"(45,50]",NoHS,174.86827992151734,54.451099285972276,3.2114738217336045,7550.656341721818,2019
+2007,48,"(45,50]",NoHS,147.67926749509482,54.451099285972276,2.712144831447692,7366.8997825616625,2019
+2007,48,"(45,50]",NoHS,167.71327665140615,54.451099285972276,3.080071455868891,7735.0484752405855,2019
+2007,48,"(45,50]",NoHS,149.11026814911708,54.451099285972276,2.7384253046206353,7492.547642322842,2019
+2007,48,"(45,50]",NoHS,167.71327665140615,54.451099285972276,3.080071455868891,7402.580567420929,2019
+2007,50,"(45,50]",College,1243.8257684761281,169.23990318613005,7.349482864618332,9222.13819168187,2019
+2007,50,"(45,50]",College,1243.8257684761281,170.71155451818333,7.28612525371645,9478.693202338447,2019
+2007,50,"(45,50]",College,1243.8257684761281,169.23990318613005,7.349482864618332,8911.434733737784,2019
+2007,50,"(45,50]",College,1243.8257684761281,170.71155451818333,7.28612525371645,9319.285139620308,2019
+2007,50,"(45,50]",College,1243.8257684761281,170.71155451818333,7.28612525371645,9397.904580048573,2019
+2007,46,"(45,50]",HS,233.55361674296927,110.37384990399784,2.1160231064342874,6649.610200783029,2019
+2007,46,"(45,50]",HS,232.97406147809028,110.37384990399784,2.1107722678943337,6496.347217076878,2019
+2007,46,"(45,50]",HS,233.26026160889472,110.37384990399784,2.1133652745807305,6908.019537906975,2019
+2007,46,"(45,50]",HS,233.40336167429695,110.37384990399784,2.114661777923929,6636.7963322242695,2019
+2007,46,"(45,50]",HS,232.69501635055593,110.37384990399784,2.1082440863750964,6490.713523875969,2019
+2007,42,"(40,45]",HS,478.81281883584046,80.94082326293177,5.915591163193925,8562.862149419283,2019
+2007,42,"(40,45]",HS,478.81281883584046,80.94082326293177,5.915591163193925,8759.658161506386,2019
+2007,42,"(40,45]",HS,478.9559189012427,82.41247459498507,5.811691995114389,8242.663162763774,2019
+2007,42,"(40,45]",HS,478.9559189012427,82.41247459498507,5.811691995114389,8628.45378547398,2019
+2007,42,"(40,45]",HS,478.9559189012427,80.94082326293177,5.917359122298286,8699.45621342448,2019
+2007,45,"(40,45]",College,1357.2611903204709,360.55457635305964,3.7643709977249697,2778.8993998641117,2019
+2007,45,"(40,45]",College,1357.2468803139307,360.55457635305964,3.7643313088471166,2816.001121688601,2019
+2007,45,"(40,45]",College,1355.8158796599084,360.55457635305964,3.760362421061815,2807.354262441158,2019
+2007,45,"(40,45]",College,1355.8301896664486,360.55457635305964,3.760402109939668,3017.2832053656452,2019
+2007,45,"(40,45]",College,1358.692190974493,360.55457635305964,3.768339885510271,2892.1876779684508,2019
+2007,72,"(70,75]",HS,338.7178548070634,77.87978849226089,4.349239531392958,5313.034323240236,2019
+2007,72,"(70,75]",HS,507.4328319162852,88.63755972957054,5.724805979140687,5438.767414525211,2019
+2007,72,"(70,75]",HS,315.67874427730544,78.65976369824914,4.0132175515845345,5451.72755570832,2019
+2007,72,"(70,75]",HS,321.9751471550033,78.4242994851206,4.10555337145334,5351.562751952438,2019
+2007,72,"(70,75]",HS,311.09954218443426,79.76350219728911,3.9002743562456996,5195.585434539729,2019
+2007,47,"(45,50]",College,186.3592151733159,176.59815984639656,1.0552726899046367,9218.263039648378,2019
+2007,47,"(45,50]",College,185.64371484630476,176.59815984639656,1.0512211169571413,8998.085860796335,2019
+2007,47,"(45,50]",College,186.53093525179858,176.59815984639656,1.0562450674120356,9436.384985211875,2019
+2007,47,"(45,50]",College,186.54524525833878,176.59815984639656,1.0563260988709855,9178.2496493083745,2019
+2007,47,"(45,50]",College,186.3592151733159,176.59815984639656,1.0552726899046367,9066.122402206422,2019
+2007,62,"(60,65]",College,1090.851798561151,52.979447953918964,20.59009371917133,6782.488425566135,2019
+2007,62,"(60,65]",College,1089.2776978417266,52.979447953918964,20.56038218422303,6970.269696225869,2019
+2007,62,"(60,65]",College,1089.4207979071289,52.979447953918964,20.56308323285469,6553.472562494854,2019
+2007,62,"(60,65]",College,1090.851798561151,52.979447953918964,20.59009371917133,6851.105492845039,2019
+2007,62,"(60,65]",College,1089.2776978417266,52.979447953918964,20.56038218422303,6908.867936223073,2019
+2007,57,"(55,60]",College,45.21962066710268,73.58256660266524,0.6145425846760934,8042.4568672335035,2019
+2007,57,"(55,60]",College,45.362720732504904,73.58256660266524,0.6164873396908911,8025.128319625941,2019
+2007,57,"(55,60]",College,45.362720732504904,73.58256660266524,0.6164873396908911,8145.3754058518125,2019
+2007,57,"(55,60]",College,45.362720732504904,73.58256660266524,0.6164873396908911,8088.421254853229,2019
+2007,57,"(55,60]",College,45.21962066710268,73.58256660266524,0.6145425846760934,7932.712473676528,2019
+2007,40,"(35,40]",College,16040.086330935252,2840.287070862878,5.647346881053921,2218.2071427357832,2019
+2007,40,"(35,40]",College,16123.084368868542,2840.287070862878,5.6765685885301576,2260.8329059638577,2019
+2007,40,"(35,40]",College,16037.224329627206,2840.287070862878,5.646339235968534,2184.536851861398,2019
+2007,40,"(35,40]",College,16101.61935905821,2840.287070862878,5.669011250389752,2174.8822946713763,2019
+2007,40,"(35,40]",College,16052.965336821451,2825.570557542345,5.681318165625343,2230.0608337418753,2019
+2007,32,"(30,35]",HS,4.29300196206671,51.50779662186566,0.08334664349133275,6245.156773772489,2019
+2007,32,"(30,35]",HS,4.29300196206671,51.50779662186566,0.08334664349133275,6203.277601308675,2019
+2007,32,"(30,35]",HS,4.29300196206671,51.50779662186566,0.08334664349133275,6198.417514579232,2019
+2007,32,"(30,35]",HS,4.29300196206671,51.50779662186566,0.08334664349133275,6222.615492019646,2019
+2007,32,"(30,35]",HS,4.29300196206671,51.50779662186566,0.08334664349133275,6250.310247134052,2019
+2007,69,"(65,70]",College,2949.7216481360365,132.44861988479744,22.27068617779239,2904.0176910575046,2019
+2007,69,"(65,70]",College,2949.7216481360365,132.44861988479744,22.27068617779239,2980.206488378196,2019
+2007,69,"(65,70]",College,2948.1475474166123,132.44861988479744,22.258801563813073,2813.154561475047,2019
+2007,69,"(65,70]",College,2949.7216481360365,132.44861988479744,22.27068617779239,2839.855284573094,2019
+2007,69,"(65,70]",College,2949.7216481360365,132.44861988479744,22.27068617779239,2829.915805747726,2019
+2007,67,"(65,70]",HS,515.4464355788098,35.319631969279314,14.593765756878222,6255.678391283256,2019
+2007,67,"(65,70]",HS,553.3679529103989,35.319631969279314,15.667432587964484,6091.283014549188,2019
+2007,67,"(65,70]",HS,519.0239372138653,35.319631969279314,14.695055080565604,6460.084482220056,2019
+2007,67,"(65,70]",HS,536.1959450621321,35.319631969279314,15.181243834265043,6149.738287079877,2019
+2007,67,"(65,70]",HS,534.9080444735121,35.319631969279314,15.144779677737585,6019.38115742792,2019
+2007,62,"(60,65]",College,870937.0490516678,28962.098214809037,30.071614376555637,1.6256068981403407,2019
+2007,62,"(60,65]",College,799404.1883584042,27799.49366248693,28.75607009479934,2.225645244946382,2019
+2007,62,"(60,65]",College,855423.5709614127,27063.667996460274,31.607820901191065,1.3076119090253133,2019
+2007,62,"(60,65]",College,822208.6147809025,31331.456859414855,26.242272054892823,1.5045721184764855,2019
+2007,62,"(60,65]",College,900036.44735121,31257.87429281219,28.793910901298084,0.9935776241349756,2019
+2007,34,"(30,35]",NoHS,6.439502943100066,41.206237297492535,0.15627495654624887,7327.160527998693,2019
+2007,34,"(30,35]",NoHS,7.870503597122303,41.206237297492535,0.1910027246676375,7309.532911162567,2019
+2007,34,"(30,35]",NoHS,6.439502943100066,41.206237297492535,0.15627495654624887,7290.134991876255,2019
+2007,34,"(30,35]",NoHS,6.439502943100066,41.206237297492535,0.15627495654624887,7342.679395849055,2019
+2007,34,"(30,35]",NoHS,5.008502289077828,41.206237297492535,0.12154718842486023,7375.359176242435,2019
+2007,34,"(30,35]",HS,8.15670372792675,57.39440195007889,0.1421167126198366,6849.612753804629,2019
+2007,34,"(30,35]",HS,8.15670372792675,57.39440195007889,0.1421167126198366,6812.825115389673,2019
+2007,34,"(30,35]",HS,8.15670372792675,57.39440195007889,0.1421167126198366,6863.7664180858355,2019
+2007,34,"(30,35]",HS,8.15670372792675,57.39440195007889,0.1421167126198366,6864.096287185664,2019
+2007,34,"(30,35]",HS,8.15670372792675,57.39440195007889,0.1421167126198366,6778.945038265944,2019
+2007,63,"(60,65]",College,1105.7914453891433,110.37384990399784,10.018599934232162,9450.899631766928,2019
+2007,63,"(60,65]",College,1106.6500457815566,110.37384990399784,10.026378954291353,9665.304995394716,2019
+2007,63,"(60,65]",College,1108.3672465663833,110.37384990399784,10.041936994409735,9095.590930327813,2019
+2007,63,"(60,65]",College,1111.5154480052322,110.37384990399784,10.070460067960102,9520.450675386794,2019
+2007,63,"(60,65]",College,1110.9430477436233,110.37384990399784,10.065274054587308,9598.686904855833,2019
+2007,40,"(35,40]",College,5140.154349247875,331.1215497119936,15.523466695896817,1652.6204200318061,2019
+2007,40,"(35,40]",College,5138.723348593852,332.59320104404685,15.45047623482029,1686.2280067334445,2019
+2007,40,"(35,40]",College,5141.585349901897,332.59320104404685,15.459081345505234,1638.4677561020624,2019
+2007,40,"(35,40]",College,5141.585349901897,332.59320104404685,15.459081345505234,1635.178833757093,2019
+2007,40,"(35,40]",College,5141.585349901897,332.59320104404685,15.459081345505234,1685.0340929166039,2019
+2007,26,"(25,30]",NoHS,54.521124918247224,70.63926393855863,0.7718246464978625,8190.006591867384,2019
+2007,26,"(25,30]",NoHS,55.809025506867236,70.63926393855863,0.7900567247615916,8176.747748424396,2019
+2007,26,"(25,30]",NoHS,128.79005886200133,70.63926393855863,1.823207826372904,8146.872960184395,2019
+2007,26,"(25,30]",NoHS,66.11223021582734,70.63926393855863,0.9359133508714238,8190.9070674868535,2019
+2007,26,"(25,30]",NoHS,84.42903858731196,70.63926393855863,1.1952140195111256,8233.0210903441,2019
+2007,47,"(45,50]",HS,1405.3857423152388,320.81999038762046,4.380605275304779,763.959820318134,2019
+2007,47,"(45,50]",HS,1403.9547416612163,438.5520969518849,3.201340847345781,796.0628834249103,2019
+2007,47,"(45,50]",HS,1398.9462393721387,295.80191774271424,4.7293345832494875,772.1020406068967,2019
+2007,47,"(45,50]",HS,1399.9479398299543,272.25549642986135,5.14203738101798,763.9489897215931,2019
+2007,47,"(45,50]",HS,1409.1063440156965,222.219351140049,6.341060473746219,766.228336481034,2019
+2007,32,"(30,35]",HS,73.26723348593852,58.86605328213219,1.2446432094705688,6107.42428025538,2019
+2007,32,"(30,35]",HS,74.55513407455854,58.86605328213219,1.2665217033870437,6083.622721010148,2019
+2007,32,"(30,35]",HS,72.98103335513407,58.86605328213219,1.2397813219335743,6183.1424610835265,2019
+2007,32,"(30,35]",HS,73.26723348593852,58.86605328213219,1.2446432094705688,6147.993810806935,2019
+2007,32,"(30,35]",HS,73.26723348593852,58.86605328213219,1.2446432094705688,6084.754845049933,2019
+2007,45,"(40,45]",NoHS,454.9151079136691,47.09284262570575,9.659962800065768,7727.392719341195,2019
+2007,45,"(40,45]",NoHS,454.9151079136691,47.09284262570575,9.659962800065768,7545.795769175127,2019
+2007,45,"(40,45]",NoHS,454.9151079136691,47.09284262570575,9.659962800065768,8033.635713868987,2019
+2007,45,"(40,45]",NoHS,454.9151079136691,47.09284262570575,9.659962800065768,7686.512287734835,2019
+2007,45,"(40,45]",NoHS,456.3461085676913,47.09284262570575,9.690349597171984,7518.915336554998,2019
+2007,89,"(85,90]",HS,1.7172007848266841,16.18816465258635,0.10607754626169622,11016.174399032912,2019
+2007,89,"(85,90]",HS,1.7172007848266841,14.716513320533048,0.11668530088786583,10897.174933236514,2019
+2007,89,"(85,90]",HS,1.7172007848266841,14.716513320533048,0.11668530088786583,10912.438819025128,2019
+2007,89,"(85,90]",HS,1.7172007848266841,16.18816465258635,0.10607754626169622,10990.003784351375,2019
+2007,89,"(85,90]",HS,1.7172007848266841,16.18816465258635,0.10607754626169622,10941.451768324447,2019
+2007,55,"(50,55]",College,495.6986265533028,272.25549642986135,1.8207111814214743,5784.791921030689,2019
+2007,55,"(50,55]",College,497.1296272073251,272.25549642986135,1.8259672760560628,5916.027090555795,2019
+2007,55,"(50,55]",College,492.97972531066057,272.25549642986135,1.8107246016157559,5567.311365142843,2019
+2007,55,"(50,55]",College,494.41072596468285,272.25549642986135,1.8159806962503446,5827.363351360889,2019
+2007,55,"(50,55]",College,500.13472858077176,272.25549642986135,1.8370050747886988,5875.2508886111145,2019
+2007,43,"(40,45]",HS,-9.444604316546762,11.478880390015776,-0.822780967799054,7190.02941820691,2019
+2007,43,"(40,45]",HS,-9.444604316546762,3.679128330133262,-2.567076619533048,7201.437666843158,2019
+2007,43,"(40,45]",HS,-9.444604316546762,3.679128330133262,-2.567076619533048,7206.457334917388,2019
+2007,43,"(40,45]",HS,-9.444604316546762,3.679128330133262,-2.567076619533048,7219.249576201311,2019
+2007,43,"(40,45]",HS,-9.444604316546762,11.331715256810448,-0.8334664349133273,7223.626267628953,2019
+2007,39,"(35,40]",HS,5281.107913669065,117.73210656426438,44.85698988819467,1683.1779707951744,2019
+2007,39,"(35,40]",HS,5279.676913015042,117.73210656426438,44.84483516935218,1717.4069739601596,2019
+2007,39,"(35,40]",HS,5279.676913015042,117.73210656426438,44.84483516935218,1668.7636189779846,2019
+2007,39,"(35,40]",HS,5279.676913015042,117.73210656426438,44.84483516935218,1665.4138832663782,2019
+2007,39,"(35,40]",HS,5279.676913015042,117.73210656426438,44.84483516935218,1716.1909842439636,2019
+2007,40,"(35,40]",College,486.6833224329627,125.0903632245309,3.890654003133644,8135.435888843471,2019
+2007,40,"(35,40]",College,475.23531720078483,125.0903632245309,3.7991361200843374,8323.542852705597,2019
+2007,40,"(35,40]",College,645.9536952256376,126.56201455658422,5.1038512423238975,7828.249538793441,2019
+2007,40,"(35,40]",College,483.5351209941138,125.0903632245309,3.8654865852950846,8198.165230962906,2019
+2007,40,"(35,40]",College,477.23871811641595,125.0903632245309,3.815151749617966,8265.203535763914,2019
+2007,65,"(60,65]",College,993.1860039241334,220.74769980799567,4.499190726734628,6101.488847985542,2019
+2007,65,"(60,65]",College,1172.0610856769129,220.74769980799567,5.309505316233695,2726.19262389756,2019
+2007,65,"(60,65]",College,1166.3370830608242,220.74769980799567,5.283575249369726,2718.098227043943,2019
+2007,65,"(60,65]",College,976.0139960758667,220.74769980799567,4.421400526142717,6146.938791072633,2019
+2007,65,"(60,65]",College,953.1179856115108,220.74769980799567,4.317680258686836,6198.096089304492,2019
+2007,23,"(20,25]",HS,5.2947024198822765,17.659815984639657,0.29981639811465527,8505.003059561288,2019
+2007,23,"(20,25]",HS,5.4378024852845,27.96137530901279,0.1944755014797764,8510.264751421088,2019
+2007,23,"(20,25]",HS,5.2947024198822765,26.489723976959482,0.19987759874310354,8563.83417027938,2019
+2007,23,"(20,25]",HS,5.2947024198822765,23.546421312852875,0.22486229858599147,8491.444483326597,2019
+2007,23,"(20,25]",HS,5.4378024852845,27.96137530901279,0.1944755014797764,8492.581422611063,2019
+2007,30,"(25,30]",College,-63.96572923479398,54.451099285972276,-1.174737150830541,5190.827989125714,2019
+2007,30,"(25,30]",College,-63.82262916939176,54.451099285972276,-1.172109103513247,5156.0190021841,2019
+2007,30,"(25,30]",College,-63.82262916939176,54.451099285972276,-1.172109103513247,5151.979411964245,2019
+2007,30,"(25,30]",College,-63.96572923479398,54.451099285972276,-1.174737150830541,5172.092203864917,2019
+2007,30,"(25,30]",College,-63.82262916939176,54.451099285972276,-1.172109103513247,5195.111435440267,2019
+2007,50,"(45,50]",HS,35755.268541530415,6710.73007416307,5.328074314774111,36.92270690319988,2019
+2007,50,"(45,50]",HS,36444.724656638326,6710.73007416307,5.430813675095334,39.94631995894019,2019
+2007,50,"(45,50]",HS,35760.70634401569,6710.73007416307,5.328884629363609,39.49239542146456,2019
+2007,50,"(45,50]",HS,35886.63440156966,6725.446587483602,5.3359481686103205,40.164912884766764,2019
+2007,50,"(45,50]",HS,35846.566383257035,6696.013560842535,5.353419024250989,40.45044581029605,2019
+2007,64,"(60,65]",HS,697.4697187704382,61.8093559462388,11.284209454909883,7297.763621832701,2019
+2007,64,"(60,65]",HS,698.9007194244605,61.8093559462388,11.307361300324141,7463.322428292716,2019
+2007,64,"(60,65]",HS,697.4697187704382,61.8093559462388,11.284209454909883,7023.402553901414,2019
+2007,64,"(60,65]",HS,697.4697187704382,61.8093559462388,11.284209454909883,7351.46931078992,2019
+2007,64,"(60,65]",HS,697.4697187704382,61.8093559462388,11.284209454909883,7411.881497097497,2019
+2007,54,"(50,55]",HS,994.1175853499019,173.65485718228996,5.724674803114497,8200.939722983181,2019
+2007,54,"(50,55]",HS,993.6882851536952,153.0517385335437,6.492499168416259,8387.74648830373,2019
+2007,54,"(50,55]",HS,994.9761857423152,186.8997191707697,5.323583096629527,7895.011560034858,2019
+2007,54,"(50,55]",HS,994.5468855461086,244.29412112084862,4.071104457950182,8263.617326840325,2019
+2007,54,"(50,55]",HS,994.6899856115108,170.71155451818333,5.826729118710951,8332.235677078184,2019
+2007,58,"(55,60]",College,30961.04429038587,2413.50818456742,12.828232565507172,25.400635483334096,2019
+2007,58,"(55,60]",College,30953.889287115762,3090.46779731194,10.015923580902271,27.500533184356307,2019
+2007,58,"(55,60]",College,30961.04429038587,3164.0503639146054,9.785256468572912,27.241959662995868,2019
+2007,58,"(55,60]",College,30962.475291039897,2634.2558843754155,11.753784237396182,27.65406896055929,2019
+2007,58,"(55,60]",College,30962.475291039897,2781.4210175807457,11.131890891502204,27.599466375734266,2019
+2007,21,"(20,25]",HS,-9.630634401569655,20.603118648746268,-0.4674357589138911,10405.243163147728,2019
+2007,21,"(20,25]",HS,-9.773734466971877,17.659815984639657,-0.5534448646278637,10411.680454571066,2019
+2007,21,"(20,25]",HS,-9.630634401569655,16.18816465258635,-0.5949182386176797,10477.21868253236,2019
+2007,21,"(20,25]",HS,-9.773734466971877,20.603118648746268,-0.4743813125381688,10388.655246402715,2019
+2007,21,"(20,25]",HS,-9.616324395029432,25.01807264490618,-0.3843751088070875,10390.046207656203,2019
+2007,49,"(45,50]",HS,532.7615434924788,147.16513320533048,3.620161460046038,6622.2516623641295,2019
+2007,49,"(45,50]",HS,531.3305428384565,147.16513320533048,3.6104376849720485,6773.363965631683,2019
+2007,49,"(45,50]",HS,532.6184434270766,147.16513320533048,3.619189082538639,6373.7794370381,2019
+2007,49,"(45,50]",HS,532.7615434924788,147.16513320533048,3.620161460046038,6673.742073413245,2019
+2007,49,"(45,50]",HS,532.7615434924788,147.16513320533048,3.620161460046038,6728.618904741244,2019
+2007,39,"(35,40]",HS,3.2483714846304776,75.05421793471854,0.04328033219206789,6339.167036441805,2019
+2007,39,"(35,40]",HS,3.534571615434925,61.8093559462388,0.057185058173219956,6353.949939942177,2019
+2007,39,"(35,40]",HS,3.1338914323086984,75.05421793471854,0.04175503414124611,6359.092541695462,2019
+2007,39,"(35,40]",HS,2.7761412688031393,67.69596127445202,0.04100896444247459,6350.384922553474,2019
+2007,39,"(35,40]",HS,2.876311314584696,72.11091527061193,0.03988732224228067,6300.438557932359,2019
+2007,40,"(35,40]",HS,130.65035971223023,88.29907992319828,1.4796344404252988,6829.271368589153,2019
+2007,40,"(35,40]",HS,132.08136036625245,88.29907992319828,1.4958407322152802,6714.765629467183,2019
+2007,40,"(35,40]",HS,132.08136036625245,88.29907992319828,1.4958407322152802,6904.602831889277,2019
+2007,40,"(35,40]",HS,132.08136036625245,88.29907992319828,1.4958407322152802,6746.521733815653,2019
+2007,40,"(35,40]",HS,129.21935905820797,88.29907992319828,1.4634281486353173,6755.074927780933,2019
+2007,46,"(45,50]",College,6.740013080444736,32.3763293051727,0.20817718453857884,6060.202145890348,2019
+2007,46,"(45,50]",College,4.164211903204708,29.433026641066096,0.14148092732653728,6030.360178055603,2019
+2007,46,"(45,50]",College,6.596913015042512,35.319631969279314,0.18677751287953526,6155.201618767253,2019
+2007,46,"(45,50]",College,43.23052975801177,30.9046779731194,1.3988344999295341,6118.71439801956,2019
+2007,46,"(45,50]",College,6.883113145846959,26.489723976959482,0.2598408783660346,5988.83540716012,2019
+2007,89,"(85,90]",HS,889.6531066056245,22.07476998079957,40.30180642332566,8409.223531400632,2019
+2007,89,"(85,90]",HS,889.6531066056245,23.546421312852875,37.78294352186781,8601.289491674925,2019
+2007,89,"(85,90]",HS,888.3652060170045,23.546421312852875,37.72824728707662,8096.425888733526,2019
+2007,89,"(85,90]",HS,889.6531066056245,22.07476998079957,40.30180642332566,8472.607416103448,2019
+2007,89,"(85,90]",HS,889.6531066056245,23.546421312852875,37.78294352186781,8544.210750502516,2019
+2007,36,"(35,40]",College,453.627207325049,216.3327458118358,2.0968957132343236,8260.819452826543,2019
+2007,36,"(35,40]",College,453.627207325049,216.3327458118358,2.0968957132343236,8451.493606466829,2019
+2007,36,"(35,40]",College,453.627207325049,216.3327458118358,2.0968957132343236,7950.688987172682,2019
+2007,36,"(35,40]",College,452.19620667102686,216.3327458118358,2.090280900258821,8323.420029868033,2019
+2007,36,"(35,40]",College,453.627207325049,216.3327458118358,2.0968957132343236,8392.15567450436,2019
+2007,65,"(60,65]",HS,110351.61543492478,20220.489302412407,5.457415682901367,27.37345228723104,2019
+2007,65,"(60,65]",HS,115068.19359058207,20117.473709168677,5.719813295351242,24.358883773097322,2019
+2007,65,"(60,65]",HS,117809.99084368869,20367.654435617733,5.78417074072455,27.017935474917635,2019
+2007,65,"(60,65]",HS,108863.37475474166,20661.9847020284,5.268776273174497,26.795615226234027,2019
+2007,65,"(60,65]",HS,112595.42446043165,20750.283781951595,5.426211306004697,24.412509500601416,2019
+2007,46,"(45,50]",HS,784.9038587311968,98.60063924757141,7.9604337732580115,6392.561367737258,2019
+2007,46,"(45,50]",HS,814.9548724656638,92.71403391935819,8.789983975613703,6534.516696473105,2019
+2007,46,"(45,50]",HS,803.5068672334859,88.29907992319828,9.099832840074537,6159.604145329277,2019
+2007,46,"(45,50]",HS,782.0418574231525,95.65733658346481,8.1754508891306,6420.23413571093,2019
+2007,46,"(45,50]",HS,780.6108567691301,79.46917193087846,9.822813523816482,6474.728186242365,2019
+2007,64,"(60,65]",HS,94.2313930673643,58.86605328213219,1.6007764715554094,9086.62334783065,2019
+2007,64,"(60,65]",HS,84.50058862001308,58.86605328213219,1.4354722952975993,8860.386641710498,2019
+2007,64,"(60,65]",HS,92.65729234793983,58.86605328213219,1.5740360901019401,9446.213447872131,2019
+2007,64,"(60,65]",HS,94.51759319816874,58.86605328213219,1.6056383590924037,9022.49502900037,2019
+2007,64,"(60,65]",HS,86.21778940483976,58.86605328213219,1.4646436205195659,8822.032941212188,2019
+2007,64,"(60,65]",College,11329.37527795945,735.8256660266525,15.396819927655374,254.96681470721677,2019
+2007,64,"(60,65]",College,11329.37527795945,735.8256660266525,15.396819927655374,243.0010515954917,2019
+2007,64,"(60,65]",College,11329.37527795945,735.8256660266525,15.396819927655374,247.84229099199302,2019
+2007,64,"(60,65]",College,11329.23217789405,735.8256660266525,15.396625452153895,246.67481303376127,2019
+2007,64,"(60,65]",College,11329.37527795945,735.8256660266525,15.396819927655374,250.16987464153075,2019
+2007,34,"(30,35]",College,306.8065402223676,191.31467316692962,1.603674904510156,10308.172596367334,2019
+2007,34,"(30,35]",College,309.66854153041203,191.31467316692962,1.6186345584701387,10566.28633117244,2019
+2007,34,"(30,35]",College,306.8065402223676,191.31467316692962,1.603674904510156,9905.428279494015,2019
+2007,34,"(30,35]",College,308.2375408763898,191.31467316692962,1.6111547314901473,10385.869665651448,2019
+2007,34,"(30,35]",College,308.2375408763898,191.31467316692962,1.6111547314901473,10488.5455757981,2019
+2007,40,"(35,40]",HS,94.3029431000654,91.2423825873049,1.0335431893159084,6525.227903306644,2019
+2007,40,"(35,40]",HS,94.15984303466318,91.2423825873049,1.031974838497523,6424.443636609494,2019
+2007,40,"(35,40]",HS,94.3029431000654,89.77073125525159,1.0504865202883003,6660.6867857471225,2019
+2007,40,"(35,40]",HS,95.59084368868542,91.2423825873049,1.047658346681376,6483.19322128817,2019
+2007,40,"(35,40]",HS,95.73394375408765,89.77073125525159,1.0664271351636918,6382.4783271869555,2019
+2007,78,"(75,80]",HS,1417.8354480052324,64.7526586103454,21.896173507518462,8142.683223223891,2019
+2007,78,"(75,80]",HS,1393.0648266841074,67.69596127445202,20.57825607995082,8324.000501017857,2019
+2007,78,"(75,80]",HS,1389.644735120994,39.73458596543923,34.973177682779784,7846.820787190853,2019
+2007,78,"(75,80]",HS,1401.2358404185743,66.22430994239872,21.15893456099967,8177.077408701381,2019
+2007,78,"(75,80]",HS,1432.6749247874427,70.63926393855863,20.281566439219553,8247.689532454333,2019
+2007,59,"(55,60]",HS,197.33499018966646,36.79128330133262,5.363634330812233,7407.577346072516,2019
+2007,59,"(55,60]",HS,193.61438848920864,42.67788862954583,4.536644025898922,7226.661081683645,2019
+2007,59,"(55,60]",HS,216.22419882275997,32.3763293051727,6.678465516725957,7661.0730515615305,2019
+2007,59,"(55,60]",HS,200.76939175931983,33.84798063722601,5.93150279513318,7379.662738564186,2019
+2007,59,"(55,60]",HS,201.35610202746895,33.84798063722601,5.948836481134639,7165.663923242275,2019
+2007,48,"(45,50]",College,13234.359123610202,382.62934633385925,34.58793542736448,1442.9342048414178,2019
+2007,48,"(45,50]",College,13235.790124264226,382.62934633385925,34.59167534085447,1423.5539182174316,2019
+2007,48,"(45,50]",College,13234.359123610202,382.62934633385925,34.58793542736448,1435.2426503711333,2019
+2007,48,"(45,50]",College,13235.790124264226,382.62934633385925,34.59167534085447,1432.474557306169,2019
+2007,48,"(45,50]",College,13234.359123610202,382.62934633385925,34.58793542736448,1484.5938399587542,2019
+2007,48,"(45,50]",College,17671.427076520602,1187.622624967017,14.87966522784237,260.82209969065923,2019
+2007,48,"(45,50]",College,17669.99607586658,1187.622624967017,14.878460299084752,248.58154413920437,2019
+2007,48,"(45,50]",College,17669.99607586658,1187.622624967017,14.878460299084752,253.53396206837942,2019
+2007,48,"(45,50]",College,17657.11706998038,1187.622624967017,14.867615940266177,252.33967310666398,2019
+2007,48,"(45,50]",College,17654.255068672337,1187.622624967017,14.86520608275094,255.9149984215816,2019
+2007,57,"(55,60]",College,21170.22367560497,2663.688911016482,7.947708753844783,310.9222252708261,2019
+2007,57,"(55,60]",College,15699.50817527796,3061.034770670874,5.128823862342853,303.399562381744,2019
+2007,57,"(55,60]",College,13023.536952256376,1780.6981117844987,7.31372536763407,303.4576124133721,2019
+2007,57,"(55,60]",College,22940.371484630476,3164.0503639146054,7.250318056330918,302.1110506010749,2019
+2007,57,"(55,60]",College,17874.62916939176,1239.1304215888827,14.425139483277237,311.41524002144865,2019
+2007,25,"(20,25]",College,1855.7359581425767,244.29412112084862,7.596318526324962,3014.0412296824215,2019
+2007,25,"(20,25]",College,2326.0200130804446,161.88164652586354,14.36864563092284,3054.431442599304,2019
+2007,25,"(20,25]",College,1940.3939568345324,172.18320585023665,11.269356655621042,3045.499371628545,2019
+2007,25,"(20,25]",College,2293.808188358404,201.61623249130272,11.377100742408496,3272.112180442745,2019
+2007,25,"(20,25]",College,2223.8608763897973,186.8997191707697,11.898684953923672,3136.999927979341,2019
+2007,45,"(40,45]",HS,1709.6737213865272,81.82381406216375,20.894573798376623,9398.612891455497,2019
+2007,45,"(40,45]",HS,1029.1756703727926,104.13404825609183,9.883181222742735,9612.185040065193,2019
+2007,45,"(40,45]",HS,1254.2434532374102,147.5771955783054,8.498897463950659,9047.005225784425,2019
+2007,45,"(40,45]",HS,1406.9598430346632,132.33088777823315,10.632134845135463,9469.058362363747,2019
+2007,45,"(40,45]",HS,1877.5014780902552,104.84044089547743,17.90817991658452,4311.517183148098,2019
+2007,58,"(55,60]",HS,1140.2213211249184,154.52338986559698,7.37895617043266,7663.671052262837,2019
+2007,58,"(55,60]",HS,1141.5092217135384,154.52338986559698,7.387290834781793,7832.83722336306,2019
+2007,58,"(55,60]",HS,1141.5092217135384,153.0517385335437,7.458322477423925,7383.821191483871,2019
+2007,58,"(55,60]",HS,1143.0833224329626,154.52338986559698,7.397477646764066,7693.6678852647065,2019
+2007,58,"(55,60]",HS,1141.5092217135384,153.0517385335437,7.458322477423925,7758.931450595752,2019
+2007,36,"(35,40]",HS,281.477828646174,545.9826441917761,0.5155435463756336,6471.9239612325655,2019
+2007,36,"(35,40]",HS,282.9088293001962,547.4542955238294,0.5167715946579542,6621.567321874553,2019
+2007,36,"(35,40]",HS,282.9088293001962,545.9826441917761,0.5181645100074365,6227.550245230606,2019
+2007,36,"(35,40]",HS,282.765729234794,545.9826441917761,0.5179024136442562,6521.826577131964,2019
+2007,36,"(35,40]",HS,281.477828646174,545.9826441917761,0.5155435463756336,6575.157070677739,2019
+2007,38,"(35,40]",HS,201.7710922171354,58.86605328213219,3.427630713581059,6452.495965324,2019
+2007,38,"(35,40]",HS,201.7710922171354,66.22430994239872,3.0467828565164967,6349.744271189068,2019
+2007,38,"(35,40]",HS,201.7710922171354,58.86605328213219,3.427630713581059,6620.531990334642,2019
+2007,38,"(35,40]",HS,201.7710922171354,57.39440195007889,3.5155186805959575,6389.764141620791,2019
+2007,38,"(35,40]",HS,201.7710922171354,63.28100727829211,3.1884936870521474,6334.426683643231,2019
+2007,60,"(55,60]",HS,1977.0132635709613,220.74769980799567,8.955985794146663,9604.322374007594,2019
+2007,60,"(55,60]",HS,2263.2706344015696,220.74769980799567,10.252748438013812,9532.878770525374,2019
+2007,60,"(55,60]",HS,1618.604839764552,220.74769980799567,7.33237465745917,9430.300811966708,2019
+2007,60,"(55,60]",HS,1702.8907782864617,220.74769980799567,7.714194892031131,9560.195764228252,2019
+2007,60,"(55,60]",HS,1729.4930804447351,220.74769980799567,7.834704877781433,9605.314485857702,2019
+2007,69,"(65,70]",College,3098.1164159581426,122.14706056042431,25.363822933958783,2656.138587906863,2019
+2007,69,"(65,70]",College,3099.547416612165,122.14706056042431,25.375538325614194,2691.966028514996,2019
+2007,69,"(65,70]",College,3099.547416612165,122.14706056042431,25.375538325614194,2684.1262519845377,2019
+2007,69,"(65,70]",College,3099.547416612165,122.14706056042431,25.375538325614194,2883.4794337219737,2019
+2007,69,"(65,70]",College,3098.1164159581426,122.14706056042431,25.363822933958783,2764.3737583566267,2019
+2007,58,"(55,60]",College,49953.94323086985,6740.163100804136,7.411384929974482,37.1019598884788,2019
+2007,58,"(55,60]",College,51670.14231523872,7402.4062002281235,6.98018197294366,40.05586925723375,2019
+2007,58,"(55,60]",College,45654.21556572924,8417.845619344902,5.423503545944356,39.664783964071546,2019
+2007,58,"(55,60]",College,50562.83400915631,7652.586926677183,6.607286463207953,40.27355272036666,2019
+2007,58,"(55,60]",College,50157.717724002614,7991.066733049444,6.276723671516893,40.37115555609193,2019
+2007,39,"(35,40]",HS,623.2007848266842,147.16513320533048,4.234704044722132,752.6434141582764,2019
+2007,39,"(35,40]",HS,650.3897972531066,147.16513320533048,4.419455771127918,784.6959823931535,2019
+2007,39,"(35,40]",HS,646.0967952910398,147.16513320533048,4.390284445905952,760.73618422683,2019
+2007,39,"(35,40]",HS,614.6147809025507,147.16513320533048,4.176361394278198,752.6772739922118,2019
+2007,39,"(35,40]",HS,601.7357750163505,147.16513320533048,4.088847418612298,754.941154508968,2019
+2007,45,"(40,45]",HS,15.741007194244606,51.50779662186566,0.3056043594682201,8575.052984552149,2019
+2007,45,"(40,45]",HS,15.311706998037932,50.03614528981236,0.3060129214461187,8393.526391610727,2019
+2007,45,"(40,45]",HS,14.31716154349248,51.50779662186566,0.2779610560435947,8959.572614611356,2019
+2007,45,"(40,45]",HS,14.302851536952256,50.03614528981236,0.2858503878368184,8655.17647786857,2019
+2007,45,"(40,45]",HS,15.733852190974492,51.50779662186566,0.3054654483957345,8509.530966759285,2019
+2007,78,"(75,80]",HS,66574.51497710923,1611.4582085983686,41.313212233418774,38.91415688348876,2019
+2007,78,"(75,80]",HS,59489.63073904513,1670.3242618805007,35.61561793520855,35.452067577034406,2019
+2007,78,"(75,80]",HS,60707.41229561805,1552.5921553162364,39.10068209977075,36.460435160649055,2019
+2007,78,"(75,80]",HS,57988.5110529758,1743.9068284831662,33.25206949468377,36.83545888873068,2019
+2007,78,"(75,80]",HS,66574.51497710923,1714.4738018420999,38.83087330093868,34.72971095394431,2019
+2007,78,"(75,80]",HS,33.62851536952257,20.603118648746268,1.6322051017052661,8842.614948504546,2019
+2007,78,"(75,80]",HS,33.62851536952257,20.603118648746268,1.6322051017052661,8853.766932149572,2019
+2007,78,"(75,80]",HS,33.62851536952257,20.603118648746268,1.6322051017052661,8854.453126272314,2019
+2007,78,"(75,80]",HS,33.62851536952257,20.603118648746268,1.6322051017052661,8879.495260208063,2019
+2007,78,"(75,80]",HS,33.62851536952257,20.603118648746268,1.6322051017052661,8883.89349245128,2019
+2007,28,"(25,30]",HS,1.0732504905166775,47.09284262570575,0.022790097829661297,7215.760944095787,2019
+2007,28,"(25,30]",HS,-0.11448005232177895,57.39440195007889,-0.0019946205279977067,7210.252772148332,2019
+2007,28,"(25,30]",HS,-0.21465009810333552,58.86605328213219,-0.003646415652745807,7303.42260900634,2019
+2007,28,"(25,30]",HS,1.7172007848266841,60.3377046141855,0.028459829484845323,7234.048507544338,2019
+2007,28,"(25,30]",HS,1.0732504905166775,66.22430994239872,0.016206291789981363,7199.144408024009,2019
+2007,41,"(40,45]",HS,90.94009156311316,33.84798063722601,2.6867213302260415,5621.188742265562,2019
+2007,41,"(40,45]",HS,93.80209287115761,33.84798063722601,2.7712758960868134,5660.659578280148,2019
+2007,41,"(40,45]",HS,100.9570961412688,33.84798063722601,2.9826623107387444,5631.142767870029,2019
+2007,41,"(40,45]",HS,93.94519293655985,33.84798063722601,2.7755036243798523,5619.2847671732625,2019
+2007,41,"(40,45]",HS,106.06576847612818,33.84798063722601,3.1335922108002228,5648.362972255325,2019
+2007,42,"(40,45]",College,938.0209287115762,167.76825185407677,5.59117066754357,898.1244320116932,2019
+2007,42,"(40,45]",College,938.0209287115762,167.76825185407677,5.59117066754357,942.3108949560856,2019
+2007,42,"(40,45]",College,938.0209287115762,167.76825185407677,5.59117066754357,904.2778642980722,2019
+2007,42,"(40,45]",College,938.0209287115762,167.76825185407677,5.59117066754357,891.4583435909486,2019
+2007,42,"(40,45]",College,938.0209287115762,167.76825185407677,5.59117066754357,883.2402252091335,2019
+2007,55,"(50,55]",HS,350.8813603662524,33.84798063722601,10.366389774530688,9305.30470269531,2019
+2007,55,"(50,55]",HS,350.7382603008502,33.84798063722601,10.36216204623765,9065.854428428063,2019
+2007,55,"(50,55]",HS,350.8813603662524,33.84798063722601,10.366389774530688,9532.021475280002,2019
+2007,55,"(50,55]",HS,350.8813603662524,33.84798063722601,10.366389774530688,9217.288714412698,2019
+2007,55,"(50,55]",HS,350.8813603662524,33.84798063722601,10.366389774530688,9102.757550945942,2019
+2007,33,"(30,35]",HS,5.3805624591236105,44.14953996159914,0.12187131426065988,6411.358695481262,2019
+2007,33,"(30,35]",HS,11.276285153695225,44.14953996159914,0.2554111586101063,6406.464566312471,2019
+2007,33,"(30,35]",HS,11.848685415304121,44.14953996159914,0.26837619204209145,6489.24796896731,2019
+2007,33,"(30,35]",HS,9.959764551994768,44.14953996159914,0.22559158171654062,6427.6075886809385,2019
+2007,33,"(30,35]",HS,13.809156311314585,44.14953996159914,0.31278143154664034,6396.594546023159,2019
+2007,28,"(25,30]",HS,32.66974493132767,52.979447953918964,0.6166494026087911,6886.765092217863,2019
+2007,28,"(25,30]",HS,28.23364290385873,52.979447953918964,0.5329168950272206,6879.431314717132,2019
+2007,28,"(25,30]",HS,28.23364290385873,52.979447953918964,0.5329168950272206,6917.897588712274,2019
+2007,28,"(25,30]",HS,25.657841726618706,52.979447953918964,0.48429801965727654,6940.996989437891,2019
+2007,28,"(25,30]",HS,26.072831916285157,52.979447953918964,0.4921310606891009,6854.8917633934925,2019
+2007,44,"(40,45]",NoHS,3.7206017004578156,23.546421312852875,0.1580113449523183,6106.480020784973,2019
+2007,44,"(40,45]",NoHS,3.8637017658600397,23.546421312852875,0.16408870437356135,6085.244855900456,2019
+2007,44,"(40,45]",NoHS,3.7206017004578156,23.546421312852875,0.1580113449523183,6089.453149831564,2019
+2007,44,"(40,45]",NoHS,3.8637017658600397,22.07476998079957,0.17502795133179877,6109.298737076259,2019
+2007,44,"(40,45]",NoHS,3.8637017658600397,23.546421312852875,0.16408870437356135,6108.310706944398,2019
+2007,62,"(60,65]",HS,236.40130804447352,117.73210656426438,2.0079595527786913,8695.1062937533,2019
+2007,62,"(60,65]",HS,222.66370176586005,94.1856852514115,2.364092814863532,8512.774846641536,2019
+2007,62,"(60,65]",HS,235.25650752125574,77.99752059882516,3.016204947478796,8942.397361085426,2019
+2007,62,"(60,65]",HS,233.68240680183126,76.52586926677185,3.0536393645814885,8636.43930150749,2019
+2007,62,"(60,65]",HS,233.25310660562462,75.05421793471854,3.1077947785493683,8530.930961354827,2019
+2007,52,"(50,55]",HS,236.11510791366905,73.58256660266524,3.20884577441631,7821.37894322185,2019
+2007,52,"(50,55]",HS,220.37410071942446,73.58256660266524,2.9949227227885564,7780.843847848226,2019
+2007,52,"(50,55]",HS,188.89208633093526,73.58256660266524,2.567076619533048,7852.848616194123,2019
+2007,52,"(50,55]",HS,187.461085676913,73.58256660266524,2.5476290693850703,7816.280385324561,2019
+2007,52,"(50,55]",HS,204.63309352517987,73.58256660266524,2.7809996711608025,7802.931737359753,2019
+2007,81,"(80,85]",College,9927.853237410072,6033.770461418549,1.645381325141762,23.73208289097256,2019
+2007,81,"(80,85]",College,9926.422236756049,6033.770461418549,1.6451441598960548,22.25657518545056,2019
+2007,81,"(80,85]",College,9927.853237410072,6033.770461418549,1.645381325141762,24.738237063535014,2019
+2007,81,"(80,85]",College,9926.422236756049,6033.770461418549,1.6451441598960548,24.406844152054763,2019
+2007,81,"(80,85]",College,9927.853237410072,6033.770461418549,1.645381325141762,23.346074389766326,2019
+2007,30,"(25,30]",HS,24.756311314584696,88.29907992319828,0.28036884796667766,6886.944471089526,2019
+2007,30,"(25,30]",HS,24.756311314584696,88.29907992319828,0.28036884796667766,6885.037026131531,2019
+2007,30,"(25,30]",HS,24.613211249182473,88.29907992319828,0.2787482187876795,6934.722012930193,2019
+2007,30,"(25,30]",HS,24.756311314584696,88.29907992319828,0.28036884796667766,6927.2690492815555,2019
+2007,30,"(25,30]",HS,24.613211249182473,88.29907992319828,0.2787482187876795,6846.0398322233505,2019
+2007,56,"(55,60]",HS,1448.3157619359058,175.12650851434324,8.270111556625281,2662.9943594908714,2019
+2007,56,"(55,60]",HS,1445.4537606278614,175.12650851434324,8.253769077509334,2697.947867170713,2019
+2007,56,"(55,60]",HS,1449.746762589928,175.12650851434324,8.278282796183255,2690.3624326690265,2019
+2007,56,"(55,60]",HS,1448.3157619359058,175.12650851434324,8.270111556625281,2889.4382013025443,2019
+2007,56,"(55,60]",HS,1449.8898626553303,175.12650851434324,8.279099920139053,2769.6815715877083,2019
+2007,42,"(40,45]",HS,555.42859385219106,132.44861988479744,4.193540063575578,6529.055505227527,2019
+2007,42,"(40,45]",HS,565.1021582733813,82.41247459498507,6.856997815568186,6676.30859774812,2019
+2007,42,"(40,45]",HS,579.8271550032701,166.29660052202343,3.4867047984332125,6287.901136846494,2019
+2007,42,"(40,45]",HS,587.5688685415305,150.10843586943707,3.914296122921382,6555.40508377474,2019
+2007,42,"(40,45]",HS,567.1055591890124,95.65733658346481,5.928510864341183,6610.534361599191,2019
+2007,40,"(35,40]",HS,0.001431000654022237,41.206237297492535,3.472776812138864e-5,9765.431042394686,2019
+2007,40,"(35,40]",HS,0.001431000654022237,42.67788862954583,3.353025887582352e-5,9740.794665615247,2019
+2007,40,"(35,40]",HS,0.001431000654022237,41.206237297492535,3.472776812138864e-5,9658.821410041886,2019
+2007,40,"(35,40]",HS,0.001431000654022237,42.67788862954583,3.353025887582352e-5,9702.524695614444,2019
+2007,40,"(35,40]",HS,0.001431000654022237,42.67788862954583,3.353025887582352e-5,9919.209255705751,2019
+2007,22,"(20,25]",HS,-21.56517985611511,92.71403391935819,-0.23259887359525638,8062.3895260179515,2019
+2007,22,"(20,25]",HS,-14.596206671026815,94.1856852514115,-0.1549726652416968,8109.069000692461,2019
+2007,22,"(20,25]",HS,-27.97606278613473,82.41247459498507,-0.33946393338657394,8065.311636893413,2019
+2007,22,"(20,25]",HS,-28.162092871157622,83.88412592703838,-0.3357261288703508,8059.202907678904,2019
+2007,22,"(20,25]",HS,-29.07793328973185,120.675409228371,-0.24095988963835704,8109.59112665233,2019
+2007,51,"(50,55]",HS,133.82718116415958,35.319631969279314,3.789031020497643,12472.273979860533,2019
+2007,51,"(50,55]",HS,137.5477828646174,36.79128330133262,3.738597040447221,12203.857193728036,2019
+2007,51,"(50,55]",HS,111.21737083060825,36.79128330133262,3.0229271950016443,13091.110454697959,2019
+2007,51,"(50,55]",NoHS,100.62796599084369,36.79128330133262,2.735103452811575,12516.181775333162,2019
+2007,51,"(50,55]",NoHS,113.50697187704382,36.79128330133262,3.0851593554751724,12306.455866051965,2019
+2007,40,"(35,40]",College,-0.42930019620667104,11.773210656426437,-0.036464156527458075,6872.235837651549,2019
+2007,40,"(35,40]",College,-0.42930019620667104,11.773210656426437,-0.036464156527458075,6877.984934619619,2019
+2007,40,"(35,40]",College,-0.42930019620667104,11.773210656426437,-0.036464156527458075,6869.858479830301,2019
+2007,40,"(35,40]",College,-0.42930019620667104,11.773210656426437,-0.036464156527458075,6914.92884051518,2019
+2007,40,"(35,40]",College,-0.42930019620667104,11.773210656426437,-0.036464156527458075,6913.810519354575,2019
+2007,48,"(45,50]",College,4726.595160235448,547.4542955238294,8.63377125521104,2347.705485289589,2019
+2007,48,"(45,50]",College,4728.02616088947,547.4542955238294,8.636385173241681,2326.7358946307313,2019
+2007,48,"(45,50]",College,4729.4571615434925,548.9259468558828,8.615838235799743,2305.934268547586,2019
+2007,48,"(45,50]",College,4729.4571615434925,547.4542955238294,8.638999091272325,2282.66851120932,2019
+2007,48,"(45,50]",College,4729.4571615434925,547.4542955238294,8.638999091272325,2313.290945460695,2019
+2007,51,"(50,55]",HS,208.6398953564421,105.95889590783793,1.969064452482736,8871.426782807644,2019
+2007,51,"(50,55]",HS,206.49339437540877,105.95889590783793,1.9488065877452594,8701.870544173944,2019
+2007,51,"(50,55]",HS,226.6705035971223,105.95889590783793,2.1392305162775402,9117.477124746849,2019
+2007,51,"(50,55]",HS,224.52400261608895,105.95889590783793,2.118972651540064,8857.098606944483,2019
+2007,51,"(50,55]",HS,210.64329627207326,105.95889590783793,1.9879717929043812,8750.746630043666,2019
+2007,26,"(25,30]",College,-30.480313930673642,38.262934633385925,-0.796601573369084,5617.535231918586,2019
+2007,26,"(25,30]",College,-37.635317200784826,38.262934633385925,-0.9835972478688689,5642.255915686708,2019
+2007,26,"(25,30]",College,-37.635317200784826,38.262934633385925,-0.9835972478688689,5648.767514652546,2019
+2007,26,"(25,30]",College,-35.6319162851537,38.262934633385925,-0.9312384590089293,5638.535223181633,2019
+2007,26,"(25,30]",College,-34.63021582733813,38.262934633385925,-0.9050590645789592,5645.657005910586,2019
+2007,32,"(30,35]",HS,2.71890124264225,8.829907992319828,0.30791954400964594,6536.234420377249,2019
+2007,32,"(30,35]",HS,2.71890124264225,8.829907992319828,0.30791954400964594,6529.2739261118295,2019
+2007,32,"(30,35]",HS,2.71890124264225,8.829907992319828,0.30791954400964594,6565.782298438168,2019
+2007,32,"(30,35]",HS,2.71890124264225,8.829907992319828,0.30791954400964594,6587.705958689548,2019
+2007,32,"(30,35]",HS,2.71890124264225,8.829907992319828,0.30791954400964594,6505.983417741878,2019
+2007,52,"(50,55]",HS,579.6983649444081,248.7090751170085,2.330829161226551,8131.367890211554,2019
+2007,52,"(50,55]",HS,579.9845650752126,248.7090751170085,2.331979903838857,8316.916521289559,2019
+2007,52,"(50,55]",HS,579.8414650098103,238.40751579263537,2.432144234555722,7826.272406434034,2019
+2007,52,"(50,55]",HS,578.2673642903859,248.7090751170085,2.325075448165019,8194.592227854611,2019
+2007,52,"(50,55]",HS,578.5535644211903,245.7657724529019,2.35408518707406,8261.9747024158,2019
+2007,55,"(50,55]",College,2439.2837148463045,367.91283301332624,6.630058796448535,1179.4222618027547,2019
+2007,55,"(50,55]",College,2437.8527141922823,367.91283301332624,6.626169286418939,1201.7415129304886,2019
+2007,55,"(50,55]",College,2437.8527141922823,367.91283301332624,6.626169286418939,1147.9782592693794,2019
+2007,55,"(50,55]",College,2439.426814911707,367.91283301332624,6.630447747451495,1165.5286508832064,2019
+2007,55,"(50,55]",College,2438.425114453891,367.91283301332624,6.627725090430777,1185.561936419196,2019
+2007,38,"(35,40]",HS,150.7845389143231,103.01559324373132,1.4637059707802886,6802.824610679777,2019
+2007,38,"(35,40]",HS,169.24444735120994,103.01559324373132,1.6429012542866541,6688.762301815348,2019
+2007,38,"(35,40]",HS,152.0724395029431,103.01559324373132,1.4762079673039885,6877.864348425986,2019
+2007,38,"(35,40]",HS,160.65844342707655,103.01559324373132,1.5595546107953215,6720.395428768645,2019
+2007,38,"(35,40]",HS,166.52554610856768,103.01559324373132,1.6165081505143986,6728.915499983644,2019
+2007,66,"(65,70]",HS,380.7892740353172,284.0287070862878,1.3406717861079922,3276.95644923273,2019
+2007,66,"(65,70]",HS,389.9476782210595,284.0287070862878,1.3729164288403903,3311.29566494272,2019
+2007,66,"(65,70]",HS,392.2372792674951,284.0287070862878,1.38097758952349,3376.5262291481945,2019
+2007,66,"(65,70]",HS,396.8164813603663,284.0287070862878,1.397099910889689,3271.5759369738453,2019
+2007,66,"(65,70]",HS,408.8368868541531,284.0287070862878,1.4394210044759617,3227.68880310903,2019
+2007,50,"(45,50]",HS,365.9068672334859,117.73210656426438,3.107961608023676,6854.522902878745,2019
+2007,50,"(45,50]",HS,367.194767822106,117.73210656426438,3.1189008549819137,6690.8033920944,2019
+2007,50,"(45,50]",HS,367.194767822106,117.73210656426438,3.1189008549819137,7016.714181762281,2019
+2007,50,"(45,50]",HS,367.194767822106,117.73210656426438,3.1189008549819137,6824.769716261294,2019
+2007,50,"(45,50]",HS,335.71275343361674,117.73210656426438,2.851497040447221,6741.394054274712,2019
+2007,36,"(35,40]",NoHS,-1.1448005232177894,44.14953996159914,-0.025930066863970185,5430.973780373979,2019
+2007,36,"(35,40]",NoHS,-1.1448005232177894,44.14953996159914,-0.025930066863970185,5435.011905141247,2019
+2007,36,"(35,40]",NoHS,-1.1448005232177894,44.14953996159914,-0.025930066863970185,5429.716704927967,2019
+2007,36,"(35,40]",NoHS,-1.287900588620013,44.14953996159914,-0.029171325221966457,5463.194473843902,2019
+2007,36,"(35,40]",NoHS,-1.1448005232177894,44.14953996159914,-0.025930066863970185,5462.414447377968,2019
+2007,23,"(20,25]",HS,-10.589404839764553,38.262934633385925,-0.2767535982596818,9408.904619485676,2019
+2007,23,"(20,25]",HS,-10.589404839764553,38.262934633385925,-0.2767535982596818,9419.308221080106,2019
+2007,23,"(20,25]",HS,-10.446304774362329,38.262934633385925,-0.27301368476968607,9425.209692451937,2019
+2007,23,"(20,25]",HS,-10.589404839764553,38.262934633385925,-0.2767535982596818,9425.021743754247,2019
+2007,23,"(20,25]",HS,-10.589404839764553,38.262934633385925,-0.2767535982596818,9360.917184152935,2019
+2007,65,"(60,65]",NoHS,409.7670372792675,36.79128330133262,11.137611969746795,8451.426761843915,2019
+2007,65,"(60,65]",NoHS,409.7670372792675,38.262934633385925,10.709242278602687,8218.282147298623,2019
+2007,65,"(60,65]",NoHS,409.7670372792675,38.262934633385925,10.709242278602687,8644.399337097362,2019
+2007,65,"(60,65]",NoHS,409.7670372792675,38.262934633385925,10.709242278602687,8260.845999462594,2019
+2007,65,"(60,65]",NoHS,409.7670372792675,36.79128330133262,11.137611969746795,8223.744326977281,2019
+2007,41,"(40,45]",College,413.70228907782865,244.29412112084862,1.6934598637892575,3642.2615302245554,2019
+2007,41,"(40,45]",College,413.70228907782865,244.29412112084862,1.6934598637892575,3692.921897279677,2019
+2007,41,"(40,45]",College,412.2712884238064,244.29412112084862,1.6876021679615534,3694.044939025628,2019
+2007,41,"(40,45]",College,413.70228907782865,244.29412112084862,1.6934598637892575,3665.4099109148237,2019
+2007,41,"(40,45]",College,412.1281883584042,244.29412112084862,1.687016398378783,3736.6597272392987,2019
+2007,41,"(40,45]",HS,470.5130150425115,176.59815984639656,2.664314370272937,6696.2895143186415,2019
+2007,41,"(40,45]",HS,480.8162197514715,178.06981117844987,2.700155723024994,7718.074248832893,2019
+2007,41,"(40,45]",HS,476.52321778940484,176.59815984639656,2.6983475830318975,6443.443967640223,2019
+2007,41,"(40,45]",HS,489.402223675605,178.06981117844987,2.748372789507584,6747.922130150638,2019
+2007,41,"(40,45]",HS,489.402223675605,176.59815984639656,2.771275896086814,6803.101459645724,2019
+2007,37,"(35,40]",HS,35.48881621975147,29.433026641066096,1.2057481091746134,7214.650729618847,2019
+2007,37,"(35,40]",HS,35.34571615434925,29.433026641066096,1.200886221637619,7086.001161254785,2019
+2007,37,"(35,40]",HS,35.48881621975147,29.433026641066096,1.2057481091746134,7308.5617808434345,2019
+2007,37,"(35,40]",HS,35.48881621975147,29.433026641066096,1.2057481091746134,7159.61067412406,2019
+2007,37,"(35,40]",HS,35.48881621975147,29.433026641066096,1.2057481091746134,7148.48540218912,2019
+2007,58,"(55,60]",College,52570.24172661871,3061.034770670874,17.174009988490628,385.13999451137346,2019
+2007,58,"(55,60]",College,52784.748724656645,3075.751283991407,17.161579026038087,432.59396225418357,2019
+2007,58,"(55,60]",College,52570.09862655331,3075.751283991407,17.09179116665539,387.9172236520184,2019
+2007,58,"(55,60]",College,52570.24172661871,3075.751283991407,17.09183769189498,396.16844524572855,2019
+2007,58,"(55,60]",College,52970.778809679534,3061.034770670874,17.304860211721852,419.7624077996428,2019
+2007,20,"(15,20]",HS,0.14310006540222367,13.244861988479741,0.010804194526654244,9046.647895266287,2019
+2007,20,"(15,20]",HS,0.14310006540222367,13.244861988479741,0.010804194526654244,9106.203172953255,2019
+2007,20,"(15,20]",HS,0.14310006540222367,13.244861988479741,0.010804194526654244,9071.699997551286,2019
+2007,20,"(15,20]",HS,0.14310006540222367,13.244861988479741,0.010804194526654244,9024.951746213468,2019
+2007,20,"(15,20]",HS,0.14310006540222367,13.244861988479741,0.010804194526654244,9087.624566899694,2019
+2007,49,"(45,50]",College,843.5748855461086,220.74769980799567,3.8214436040776065,7866.430748129232,2019
+2007,49,"(45,50]",College,845.0058862001308,220.74769980799567,3.8279261207935993,8044.837366148259,2019
+2007,49,"(45,50]",College,843.5748855461086,220.74769980799567,3.8214436040776065,7574.148915499083,2019
+2007,49,"(45,50]",College,845.0058862001308,220.74769980799567,3.8279261207935993,7927.196897325228,2019
+2007,49,"(45,50]",College,845.0058862001308,220.74769980799567,3.8279261207935993,7992.78999488201,2019
+2007,35,"(30,35]",College,64.76708960104644,58.86605328213219,1.1002451496218348,7825.714095094202,2019
+2007,35,"(30,35]",College,50.07071288423806,57.39440195007889,0.8723971534329968,7690.941125166854,2019
+2007,35,"(30,35]",College,53.40494440810988,64.7526586103454,0.8247529221846881,7917.901413610528,2019
+2007,35,"(30,35]",College,54.99335513407456,58.86605328213219,0.9342116902334758,7704.839026840777,2019
+2007,35,"(30,35]",College,57.95552648790059,60.3377046141855,0.9605192451135297,7716.240128033777,2019
+2007,42,"(40,45]",College,27.189012426422497,44.14953996159914,0.6158390880192919,5145.760564184985,2019
+2007,42,"(40,45]",College,27.332112491824724,44.14953996159914,0.6190803463772883,5135.821393130358,2019
+2007,42,"(40,45]",College,27.189012426422497,44.14953996159914,0.6158390880192919,5139.5981792148405,2019
+2007,42,"(40,45]",College,27.332112491824724,44.14953996159914,0.6190803463772883,5050.988475458719,2019
+2007,42,"(40,45]",College,27.332112491824724,44.14953996159914,0.6190803463772883,5007.506534749969,2019
+2007,75,"(70,75]",HS,372.2605101373447,28.697200975039443,12.972014603833085,9234.53618614495,2019
+2007,75,"(70,75]",HS,373.83461085676913,28.697200975039443,13.026866668353021,9029.734659577112,2019
+2007,75,"(70,75]",HS,366.5221975147155,28.697200975039443,12.772053895901314,9512.799100647011,2019
+2007,75,"(70,75]",HS,372.4036102027469,28.697200975039443,12.977001155153078,9189.269269264743,2019
+2007,75,"(70,75]",HS,370.81519947678225,28.844366108244774,12.855723647564913,9263.397985816715,2019
+2007,33,"(30,35]",NoHS,264.11979071288425,79.46917193087846,3.323550306307623,6419.477921172319,2019
+2007,33,"(30,35]",NoHS,265.06425114453896,79.46917193087846,3.335434920286943,6391.501753013577,2019
+2007,33,"(30,35]",NoHS,265.0499411379987,79.46917193087846,3.3352548503781647,6503.881980373361,2019
+2007,33,"(30,35]",NoHS,264.43461085676915,79.46917193087846,3.3275118443007297,6440.344200807339,2019
+2007,33,"(30,35]",NoHS,264.83529103989537,79.46917193087846,3.3325538017465015,6375.447297734225,2019
+2007,42,"(40,45]",HS,2721.620143884892,328.17824704788694,8.29311561130912,2667.7001554723947,2019
+2007,42,"(40,45]",HS,2714.894440810988,470.92842625705754,5.7649831469911215,2703.7497146577307,2019
+2007,42,"(40,45]",HS,2888.617920209287,541.5676901956161,5.333807707704845,2695.371671964536,2019
+2007,42,"(40,45]",HS,3395.621451929366,317.87668772351384,10.68219716345744,1426.5701068931428,2019
+2007,42,"(40,45]",HS,2734.2129496402877,351.72466836073977,7.773730976514829,2776.154066389401,2019
+2007,21,"(20,25]",HS,34.51573577501635,36.79128330133262,0.9381498191384413,6957.500332183066,2019
+2007,21,"(20,25]",HS,34.65883584041857,36.79128330133262,0.9420393291680366,6967.296005386221,2019
+2007,21,"(20,25]",HS,34.95934597776325,36.79128330133262,0.9502073002301875,7022.481871314381,2019
+2007,21,"(20,25]",HS,34.8019359058208,36.79128330133262,0.9459288391976323,6932.489553216428,2019
+2007,21,"(20,25]",HS,34.530045781556574,36.79128330133262,0.9385387701414009,6938.186808369656,2019
+2007,46,"(45,50]",NoHS,396.58752125572266,98.60063924757141,4.022159737321286,9395.973848458216,2019
+2007,46,"(45,50]",NoHS,396.7306213211249,98.60063924757141,4.023611047033821,9175.164546188716,2019
+2007,46,"(45,50]",NoHS,396.3156311314585,98.60063924757141,4.019402248867468,9768.344099636806,2019
+2007,46,"(45,50]",NoHS,396.7592413342054,98.60063924757141,4.023901308976329,9346.266077643662,2019
+2007,46,"(45,50]",NoHS,396.47304120340095,98.60063924757141,4.0209986895512575,9142.479803597356,2019
+2007,90,"(85,90]",HS,312.1012426422499,14.275017920917055,21.863457150896515,10461.920279973516,2019
+2007,90,"(85,90]",HS,307.23584041857424,14.275017920917055,21.522623797787627,10497.149369842236,2019
+2007,90,"(85,90]",HS,320.544146500981,14.275017920917055,22.454903263644283,10425.812437650913,2019
+2007,90,"(85,90]",HS,311.95814257684765,14.275017920917055,21.85343264051096,10434.702962091966,2019
+2007,90,"(85,90]",HS,313.8184434270765,14.275017920917055,21.983751275523176,10434.793047042127,2019
+2007,35,"(30,35]",College,38.35081752779595,73.58256660266524,0.5211943439658007,6182.049607696057,2019
+2007,35,"(30,35]",College,39.63871811641596,73.58256660266524,0.5386971390989805,6173.112173937978,2019
+2007,35,"(30,35]",College,42.64381948986266,72.11091527061193,0.5913642800099324,6142.854918687203,2019
+2007,35,"(30,35]",College,44.79032047089601,60.3377046141855,0.7423272190630489,6088.2921406449495,2019
+2007,35,"(30,35]",College,42.64381948986266,60.3377046141855,0.7067524322069922,5994.024696796022,2019
+2007,66,"(65,70]",HS,507.7190320470896,55.92275061802558,9.078935253292718,5408.573174902786,2019
+2007,66,"(65,70]",HS,513.5861347285808,55.92275061802558,9.183849668564703,5532.443295559058,2019
+2007,66,"(65,70]",HS,512.1551340745585,55.92275061802558,9.158260786791049,5206.595052545146,2019
+2007,66,"(65,70]",HS,505.00013080444734,55.92275061802558,9.030316377922773,5448.861594517431,2019
+2007,66,"(65,70]",HS,531.7598430346632,55.92275061802558,9.508828467090119,5494.20921340371,2019
+2007,53,"(50,55]",College,3529.4057030739045,543.0393415276694,6.499355448437747,953.1311491369257,2019
+2007,53,"(50,55]",College,3650.353878351864,543.0393415276694,6.722079965850629,938.9044431620983,2019
+2007,53,"(50,55]",College,3655.0189404839766,541.5676901956161,6.748960483894028,940.8214907625567,2019
+2007,53,"(50,55]",College,3606.851458469588,541.5676901956161,6.660019649929228,936.6125360628794,2019
+2007,53,"(50,55]",College,3548.1375016350557,541.5676901956161,6.551604842514619,968.9296902769672,2019
+2007,58,"(55,60]",College,4519.214545454546,654.8848427637206,6.900777434980363,1641.7051499824884,2019
+2007,58,"(55,60]",College,4356.4525310660565,700.506034057373,6.219007858980489,1632.5299751619143,2019
+2007,58,"(55,60]",College,4555.891092217135,538.6243875315096,8.458382497488781,1617.7992017530955,2019
+2007,58,"(55,60]",College,4436.302367560497,596.0187894815884,7.443225693302641,1601.0741909450817,2019
+2007,58,"(55,60]",College,5100.515631131459,479.7583342493773,10.631426839330782,1615.4730679391757,2019
+2007,39,"(35,40]",HS,154.09015042511447,76.52586926677185,2.013569423013685,7759.381300537291,2019
+2007,39,"(35,40]",HS,153.4032701111838,76.52586926677185,2.0045936306376952,7775.4568874127235,2019
+2007,39,"(35,40]",HS,153.4748201438849,76.52586926677185,2.005528609010194,7694.471028365109,2019
+2007,39,"(35,40]",HS,153.00258992805755,76.52586926677185,1.999357751751701,7693.760794618967,2019
+2007,39,"(35,40]",HS,153.53206017004578,76.52586926677185,2.006276591708193,7785.471015630463,2019
+2007,42,"(40,45]",HS,143.10006540222366,80.94082326293177,1.767959104361603,6388.972024276699,2019
+2007,42,"(40,45]",HS,143.10006540222366,80.94082326293177,1.767959104361603,6407.694755492672,2019
+2007,42,"(40,45]",HS,143.10006540222366,82.41247459498507,1.7363884060694317,6429.592908042238,2019
+2007,42,"(40,45]",HS,143.10006540222366,80.94082326293177,1.767959104361603,6350.297984456418,2019
+2007,42,"(40,45]",HS,143.10006540222366,82.41247459498507,1.7363884060694317,6362.276753841644,2019
+2007,59,"(55,60]",NoHS,673.4575277959451,103.01559324373132,6.53743289331517,6875.402396720126,2019
+2007,59,"(55,60]",NoHS,694.0496272073251,103.01559324373132,6.7373259266218835,7043.944951160993,2019
+2007,59,"(55,60]",NoHS,671.4111968606933,103.01559324373132,6.517568609949736,6657.539751478229,2019
+2007,59,"(55,60]",NoHS,804.2366775670373,103.01559324373132,7.806941184760653,7003.860299056092,2019
+2007,59,"(55,60]",NoHS,693.0479267495095,103.01559324373132,6.727602151547894,7099.2060498101855,2019
+2007,70,"(65,70]",College,7370.082668410726,367.91283301332624,20.032143505425843,36.97900224410431,2019
+2007,70,"(65,70]",College,11618.723610202747,367.91283301332624,31.580098783294964,34.58202705122836,2019
+2007,70,"(65,70]",College,16549.236363636363,367.91283301332624,44.98140559026635,38.42399858601357,2019
+2007,70,"(65,70]",College,9136.652975801178,367.91283301332624,24.833743636961525,37.917490963256235,2019
+2007,70,"(65,70]",College,12526.693525179855,367.91283301332624,34.04799289707332,36.42935008219994,2019
+2007,52,"(50,55]",College,6648.858338783519,1471.651332053305,4.517957612627424,955.5197597638004,2019
+2007,52,"(50,55]",College,6633.117331589274,1471.651332053305,4.507261460046037,940.1202515855335,2019
+2007,52,"(50,55]",College,6630.25533028123,1471.651332053305,4.505316705031239,942.7261475007163,2019
+2007,52,"(50,55]",College,6648.858338783519,1471.651332053305,4.517957612627424,933.2276332871081,2019
+2007,52,"(50,55]",College,6630.25533028123,1471.651332053305,4.505316705031239,942.2340919555252,2019
+2007,43,"(40,45]",College,392.0941792020929,125.0903632245309,3.134487494438749,6908.297401041156,2019
+2007,43,"(40,45]",College,392.0941792020929,125.0903632245309,3.134487494438749,6792.46663999995,2019
+2007,43,"(40,45]",College,393.5251798561151,125.0903632245309,3.145927229819912,6984.5005747100895,2019
+2007,43,"(40,45]",College,393.5251798561151,125.0903632245309,3.145927229819912,6824.590215312355,2019
+2007,43,"(40,45]",College,390.6631785480707,125.0903632245309,3.123047759057586,6833.242383962836,2019
+2007,55,"(50,55]",HS,19.533158927403534,33.84798063722601,0.5770849119997713,8752.362336916856,2019
+2007,55,"(50,55]",HS,18.874898626553303,30.9046779731194,0.6107456820281548,8729.255158677022,2019
+2007,55,"(50,55]",HS,19.60470896010464,29.433026641066096,0.666078592568234,8910.241452688335,2019
+2007,55,"(50,55]",HS,18.502838456507522,29.433026641066096,0.6286420585333772,8773.32293595004,2019
+2007,55,"(50,55]",HS,18.56007848266841,30.9046779731194,0.6005588700458808,8664.513238398495,2019
+2007,40,"(35,40]",HS,0,19.131467316692962,0,4137.1095087303775,2019
+2007,40,"(35,40]",HS,0,13.097696855274414,0,4120.0907579421455,2019
+2007,40,"(35,40]",HS,0,16.18816465258635,0,4090.674959818414,2019
+2007,40,"(35,40]",HS,0,13.097696855274414,0,4105.43346604605,2019
+2007,40,"(35,40]",HS,0,13.097696855274414,0,4139.815549791903,2019
+2007,40,"(35,40]",HS,282.9803793328973,55.92275061802558,5.060201370740234,7624.205284679058,2019
+2007,40,"(35,40]",HS,282.8372792674951,55.92275061802558,5.057642482562868,7506.4469549852365,2019
+2007,40,"(35,40]",HS,282.8372792674951,55.92275061802558,5.057642482562868,7782.478120917631,2019
+2007,40,"(35,40]",HS,282.9803793328973,55.92275061802558,5.060201370740234,7575.091131191381,2019
+2007,40,"(35,40]",HS,282.9803793328973,55.92275061802558,5.060201370740234,7457.413857810131,2019
+2007,69,"(65,70]",College,2957.1628515369525,67.69596127445202,43.68300258782151,3000.4296388532857,2019
+2007,69,"(65,70]",College,3100.262916939176,61.073530280212154,50.762792042883795,3040.6060809712603,2019
+2007,69,"(65,70]",College,3158.9339437540875,103.01559324373132,30.66461925118617,3032.512646775057,2019
+2007,69,"(65,70]",College,3069.4964028776976,59.60187894815884,51.49999391038522,3257.503700606977,2019
+2007,69,"(65,70]",College,3048.031393067364,59.4547138149535,51.26643789008958,3122.8579529683984,2019
+2007,41,"(40,45]",College,950.0842642249836,357.6112736889531,2.656751434104278,6450.888362174236,2019
+2007,41,"(40,45]",College,890.9410071942447,354.6679710248464,2.512042473471137,6563.520374663845,2019
+2007,41,"(40,45]",College,926.2867233485938,210.44614048362254,4.401538185589485,6496.592599175773,2019
+2007,41,"(40,45]",College,923.2816219751472,239.87916712468865,3.848944587569072,6424.281850882302,2019
+2007,41,"(40,45]",College,922.9954218443428,195.72962716308953,4.7156653554306684,6497.834869234879,2019
+2007,81,"(80,85]",NoHS,282.1933289731851,17.659815984639657,15.979403704921626,8116.799079050851,2019
+2007,81,"(80,85]",NoHS,282.1933289731851,19.131467316692962,14.750218804543039,8144.484133250835,2019
+2007,81,"(80,85]",NoHS,282.3364290385873,19.131467316692962,14.75769863152303,8086.642798708936,2019
+2007,81,"(80,85]",NoHS,282.05022890778287,19.131467316692962,14.742738977563048,8093.839524246359,2019
+2007,81,"(80,85]",NoHS,282.05022890778287,19.131467316692962,14.742738977563048,8093.648233958013,2019
+2007,27,"(25,30]",College,342.29535644211904,42.67788862954583,8.020437923096985,6476.647157244244,2019
+2007,27,"(25,30]",College,343.2970568999346,42.67788862954583,8.043909104310062,6512.200958478175,2019
+2007,27,"(25,30]",College,343.72635709614127,42.67788862954583,8.05396818197281,6499.887713484108,2019
+2007,27,"(25,30]",College,342.1522563767168,42.67788862954583,8.017084897209402,6471.458767165546,2019
+2007,27,"(25,30]",College,342.0091563113146,42.67788862954583,8.013731871321822,6497.944525512779,2019
+2007,31,"(30,35]",NoHS,22.89601046435579,14.716513320533048,1.555804011838211,7635.8047750005835,2019
+2007,31,"(30,35]",NoHS,21.46500981033355,14.716513320533048,1.4585662610983228,7638.985066946938,2019
+2007,31,"(30,35]",NoHS,20.034009156311313,14.716513320533048,1.3613285103584345,7631.055791389173,2019
+2007,31,"(30,35]",NoHS,22.89601046435579,16.18816465258635,1.4143672834892829,7679.490565203625,2019
+2007,31,"(30,35]",NoHS,24.327011118378024,14.716513320533048,1.653041762578099,7679.2512736088875,2019
+2007,57,"(55,60]",College,1575.8179202092872,117.73210656426438,13.38477638934561,1724.110790068817,2019
+2007,57,"(55,60]",College,1575.5317200784827,117.73210656426438,13.382345445577112,1779.569245765524,2019
+2007,57,"(55,60]",College,1575.674820143885,117.73210656426438,13.383560917461361,1670.4432545152322,2019
+2007,57,"(55,60]",College,1575.674820143885,117.73210656426438,13.383560917461361,1691.0083835428482,2019
+2007,57,"(55,60]",College,1575.5317200784827,117.73210656426438,13.382345445577112,1702.9522401357804,2019
+2007,38,"(35,40]",College,1907.5238718116416,398.81751098644565,4.782949141559813,3322.817005370865,2019
+2007,38,"(35,40]",College,1908.9548724656638,398.81751098644565,4.786537250443204,3374.6574106579224,2019
+2007,38,"(35,40]",College,1907.5238718116416,398.81751098644565,4.782949141559813,3375.3313714484952,2019
+2007,38,"(35,40]",College,1906.0928711576194,398.81751098644565,4.779361032676422,3648.367603761486,2019
+2007,38,"(35,40]",College,1906.0928711576194,398.81751098644565,4.779361032676422,3515.483820992455,2019
+2007,89,"(85,90]",HS,3613.276651406148,152.315912867517,23.722253199827804,361.3069560600042,2019
+2007,89,"(85,90]",HS,3613.276651406148,158.20251819573025,22.839564708671418,350.79239574844826,2019
+2007,89,"(85,90]",HS,6045.97776324395,164.08912352394347,36.84569478708768,353.5283046425316,2019
+2007,89,"(85,90]",HS,3613.276651406148,156.73086686367694,23.05402071532561,350.32303166268196,2019
+2007,89,"(85,90]",HS,3613.276651406148,164.08912352394347,22.020208127194415,354.1014458860472,2019
+2007,68,"(65,70]",HS,143.88854676258993,67.69596127445202,2.12551153796663,7018.7508468350325,2019
+2007,68,"(65,70]",HS,140.85339437540878,55.92275061802558,2.518713632980841,6863.102558442585,2019
+2007,68,"(65,70]",HS,142.026814911707,57.39440195007889,2.4745760925471543,7243.539154275657,2019
+2007,68,"(65,70]",HS,144.1303858731197,60.3377046141855,2.388728354761351,6862.164174046756,2019
+2007,68,"(65,70]",HS,143.7440156965337,54.451099285972276,2.6398735302220997,6806.424919757456,2019
+2007,62,"(60,65]",College,841.1421844342707,198.67292982719616,4.233803695178242,6968.451868947532,2019
+2007,62,"(60,65]",College,835.561281883584,198.67292982719616,4.205712789408941,7125.568672644642,2019
+2007,62,"(60,65]",College,844.0041857423153,198.67292982719616,4.2482092878804485,6709.01618771736,2019
+2007,62,"(60,65]",College,841.1421844342707,198.67292982719616,4.233803695178242,7019.381483656101,2019
+2007,62,"(60,65]",College,838.4232831916286,198.67292982719616,4.220118382111147,7077.427150328664,2019
+2007,62,"(60,65]",NoHS,64.75277959450621,27.96137530901279,2.315793800515758,6884.895199058013,2019
+2007,62,"(60,65]",NoHS,64.75277959450621,29.433026641066096,2.20000411048997,6700.464273162678,2019
+2007,62,"(60,65]",NoHS,64.75277959450621,32.3763293051727,2.000003736809064,7066.494524624798,2019
+2007,62,"(60,65]",NoHS,64.75277959450621,42.67788862954583,1.517244214131014,6850.755506536485,2019
+2007,62,"(60,65]",NoHS,64.75277959450621,33.84798063722601,1.913047052599974,6746.563833314966,2019
+2007,25,"(20,25]",HS,630.9281883584042,110.37384990399784,5.7162832401622286,10308.172596367334,2019
+2007,25,"(20,25]",HS,745.5513407455854,110.37384990399784,6.754782418064235,10566.28633117244,2019
+2007,25,"(20,25]",HS,613.8992805755396,110.37384990399784,5.561999342321606,9905.428279494015,2019
+2007,25,"(20,25]",HS,617.1905820797908,110.37384990399784,5.591818919215172,10385.869665651448,2019
+2007,25,"(20,25]",HS,594.5807717462394,110.37384990399784,5.386971390989807,10488.5455757981,2019
+2007,53,"(50,55]",College,1765.9979071288424,164.82494918997014,10.71438465965143,4278.268415091219,2019
+2007,53,"(50,55]",College,1767.715107913669,164.82494918997014,10.724802990087847,4335.38855576093,2019
+2007,53,"(50,55]",College,1766.1410071942446,164.82494918997014,10.715252853854464,4322.076240529266,2019
+2007,53,"(50,55]",College,1769.0030085022893,164.82494918997014,10.73261673791516,4645.273390440932,2019
+2007,53,"(50,55]",College,1767.5720078482668,164.82494918997014,10.72393479588481,4452.6819480307595,2019
+2007,43,"(40,45]",College,1415.188096795291,607.7920001380148,2.328408561603206,698.4094731204805,2019
+2007,43,"(40,45]",College,1342.6077436232833,420.8922809672451,3.189908212471515,697.9312008653465,2019
+2007,43,"(40,45]",College,1212.4296141268806,373.7994383415394,3.243529791018806,310.04745295658074,2019
+2007,43,"(40,45]",College,1300.9942446043165,672.5446587483602,1.9344354723231805,682.3343609841055,2019
+2007,43,"(40,45]",College,1384.0638325703073,534.2094335353496,2.590863705664459,686.8046349755738,2019
+2007,40,"(35,40]",College,201.62799215173317,367.91283301332624,0.5480319631700098,6033.664946962175,2019
+2007,40,"(35,40]",College,307.092740353172,367.91283301332624,0.8346888523512002,6028.539462264986,2019
+2007,40,"(35,40]",College,237.1024983649444,367.91283301332624,0.6444529168036829,6014.624273480634,2019
+2007,40,"(35,40]",College,587.8550686723349,367.91283301332624,1.5978107201578426,5409.603648046163,2019
+2007,40,"(35,40]",College,555.37135382603,367.91283301332624,1.509518842486024,5861.519541439212,2019
+2007,54,"(50,55]",College,10765.417920209287,513.6063148866033,20.96044695748364,368.5704690912501,2019
+2007,54,"(50,55]",College,7990.7076520601695,513.6063148866033,15.558040118382111,357.8445299380752,2019
+2007,54,"(50,55]",College,7829.004578155657,382.62934633385925,20.461066703766473,360.63544001486804,2019
+2007,54,"(50,55]",College,6288.961674296926,300.21687173887415,20.94806210547356,357.3657300191588,2019
+2007,54,"(50,55]",College,7733.5568345323745,512.1346635545501,15.100631503551083,361.2201033694893,2019
+2007,19,"(15,20]",HS,10.746814911706998,16.18816465258635,0.6638686436877822,10576.368279511697,2019
+2007,19,"(15,20]",HS,12.192125572269457,16.18816465258635,0.7531505784580431,10573.850288769838,2019
+2007,19,"(15,20]",HS,10.761124918247221,16.18816465258635,0.664752623239963,10493.721280482663,2019
+2007,19,"(15,20]",HS,10.746814911706998,16.18816465258635,0.6638686436877822,10533.971347044755,2019
+2007,19,"(15,20]",HS,10.746814911706998,16.18816465258635,0.6638686436877822,10640.89207306621,2019
+2007,51,"(50,55]",College,2818.6419882276,228.1059564682623,12.356722427894049,148.84013150621632,2019
+2007,51,"(50,55]",College,2745.804054937868,228.1059564682623,12.037406201270802,72.8227049546296,2019
+2007,51,"(50,55]",College,2776.2843688685416,228.1059564682623,12.171029690997228,71.80781282535636,2019
+2007,51,"(50,55]",College,2912.658731196861,228.1059564682623,12.768885022965703,143.06150563470732,2019
+2007,51,"(50,55]",College,2725.6269457161543,228.1059564682623,11.94895121511387,73.16620673507819,2019
+2007,53,"(50,55]",HS,105.52198822759973,166.29660052202343,0.6345408619079076,5538.5486790762625,2019
+2007,53,"(50,55]",HS,278.67306736429043,166.29660052202343,1.6757592547863567,5664.405521488094,2019
+2007,53,"(50,55]",HS,303.00007848266847,166.29660052202343,1.8220461364304363,5331.3482980470535,2019
+2007,53,"(50,55]",HS,126.98699803793329,166.29660052202343,0.7636175221820954,5580.061791101602,2019
+2007,53,"(50,55]",HS,314.5911837802485,167.76825185407677,1.8751532563734223,5626.0521236269915,2019
+2007,35,"(30,35]",College,42.915709614126875,110.37384990399784,0.38882135262523293,6518.736028123211,2019
+2007,35,"(30,35]",College,31.18150425114454,110.37384990399784,0.2825080784829552,6418.052030549154,2019
+2007,35,"(30,35]",College,33.04180510137344,110.37384990399784,0.2993626219445358,6654.060144058926,2019
+2007,35,"(30,35]",College,31.91131458469588,110.37384990399784,0.2891202455332676,6476.743165932802,2019
+2007,35,"(30,35]",College,44.203610202746894,110.37384990399784,0.4004898827140196,6376.128471936677,2019
+2007,36,"(35,40]",HS,225.62587311968608,103.01559324373132,2.1902108798797393,7863.515876046517,2019
+2007,36,"(35,40]",HS,225.62587311968608,103.01559324373132,2.1902108798797393,7742.061316455249,2019
+2007,36,"(35,40]",HS,225.62587311968608,103.01559324373132,2.1902108798797393,8026.756622332546,2019
+2007,36,"(35,40]",HS,225.48277305428385,103.01559324373132,2.1888217691548837,7812.860114394211,2019
+2007,36,"(35,40]",HS,225.62587311968608,103.01559324373132,2.1902108798797393,7691.489155332706,2019
+2007,37,"(35,40]",HS,239.64967952910402,103.01559324373132,2.3263437309155828,5327.75618312737,2019
+2007,37,"(35,40]",HS,237.9324787442773,103.01559324373132,2.3096744022173157,5242.915219770532,2019
+2007,37,"(35,40]",HS,237.86092871157618,103.01559324373132,2.308979846854888,5466.501712926956,2019
+2007,37,"(35,40]",HS,238.47625899280575,103.01559324373132,2.314953022971767,5275.959194270695,2019
+2007,37,"(35,40]",HS,238.17574885546108,103.01559324373132,2.3120358904495704,5230.2676532789765,2019
+2007,68,"(65,70]",College,87223.78286461739,7564.287846753987,11.530997316825689,39.71368606368934,2019
+2007,68,"(65,70]",College,87226.64486592545,7564.287846753987,11.53137567383246,35.24039646199703,2019
+2007,68,"(65,70]",College,87225.21386527142,7564.287846753987,11.531186495329075,39.07304553945979,2019
+2007,68,"(65,70]",College,87223.78286461739,7564.287846753987,11.530997316825689,38.759930489063684,2019
+2007,68,"(65,70]",College,87223.78286461739,7564.287846753987,11.530997316825689,35.468373755763196,2019
+2007,48,"(45,50]",HS,152.50173969914977,86.82742859114498,1.7563774739576075,5930.159422012898,2019
+2007,48,"(45,50]",HS,153.64654022236758,86.82742859114498,1.7695622537189486,5796.298667821706,2019
+2007,48,"(45,50]",HS,152.21553956834532,86.82742859114498,1.7530812790172723,6128.8912946683095,2019
+2007,48,"(45,50]",HS,154.50514061478088,86.82742859114498,1.7794508385399537,5938.337351120407,2019
+2007,48,"(45,50]",HS,153.07413996075869,86.82742859114498,1.7629698638382783,5767.355395460725,2019
+2007,43,"(40,45]",College,63.96572923479398,272.25549642986135,0.23494743016610825,6499.733648221879,2019
+2007,43,"(40,45]",College,51.22982341399608,272.25549642986135,0.18816818791827014,6506.145978915761,2019
+2007,43,"(40,45]",College,234.11170699803793,272.25549642986135,0.859897082218687,6441.139830372438,2019
+2007,43,"(40,45]",College,75.41373446697187,272.25549642986135,0.27699618724281666,6440.545284645484,2019
+2007,43,"(40,45]",College,88.14964028776978,272.25549642986135,0.32377542949065474,6517.317080293517,2019
+2007,39,"(35,40]",HS,31.83976455199477,55.92275061802558,0.569352619463819,5624.9922444002805,2019
+2007,39,"(35,40]",HS,31.78252452583388,54.451099285972276,0.5836893091710587,5557.998982038519,2019
+2007,39,"(35,40]",HS,32.125964682799214,55.92275061802558,0.57447039581855,5745.170943972376,2019
+2007,39,"(35,40]",HS,31.882694571615435,54.451099285972276,0.5855289422931645,5602.331062063584,2019
+2007,39,"(35,40]",HS,32.068724656638324,55.92275061802558,0.5734468405476038,5572.041721032345,2019
+2007,47,"(45,50]",College,4.207141922825376,57.39440195007889,0.07330230440391572,6730.167606565665,2019
+2007,47,"(45,50]",College,4.335931981687378,38.262934633385925,0.11331937874686972,6697.026559385617,2019
+2007,47,"(45,50]",College,4.436102027468934,57.39440195007889,0.07729154545991113,6835.6694297070835,2019
+2007,47,"(45,50]",College,4.178521909744932,57.39440195007889,0.0728036492719163,6795.148485814765,2019
+2007,47,"(45,50]",College,4.2786919555264875,38.262934633385925,0.11182341335087141,6650.911155769854,2019
+2007,41,"(40,45]",College,1047.8502289077828,147.16513320533048,7.120234297928312,222.96794824992236,2019
+2007,41,"(40,45]",College,953.6188358404186,147.16513320533048,6.479923709306149,224.0942130415374,2019
+2007,41,"(40,45]",College,685.0200130804448,147.16513320533048,4.654771127918448,224.49132036838355,2019
+2007,41,"(40,45]",College,801.9327665140615,147.16513320533048,5.449203551463334,220.7725793441579,2019
+2007,41,"(40,45]",College,780.7539568345323,147.16513320533048,5.305291680368299,218.76867869072717,2019
+2007,67,"(65,70]",College,10271.293394375409,323.7632930517271,31.724700158440697,2040.793055618753,2019
+2007,67,"(65,70]",College,10271.150294310008,323.7632930517271,31.724258168664612,1982.4930559364832,2019
+2007,67,"(65,70]",College,10271.150294310008,323.7632930517271,31.724258168664612,2009.5021999869873,2019
+2007,67,"(65,70]",College,10271.150294310008,323.7632930517271,31.724258168664612,2000.1404632242356,2019
+2007,67,"(65,70]",College,10271.150294310008,323.7632930517271,31.724258168664612,2034.2150397136386,2019
+2007,22,"(20,25]",College,68.04408109875736,14.716513320533048,4.623655047681684,3459.8971910222303,2019
+2007,22,"(20,25]",College,69.47508175277959,12.067540922837098,5.757186339538502,3451.0804631137203,2019
+2007,22,"(20,25]",College,69.47508175277959,13.244861988479741,5.245436442690635,3426.855796719875,2019
+2007,22,"(20,25]",College,107.03884892086332,13.833522521301063,7.737642292918764,7403.569734998609,2019
+2007,22,"(20,25]",College,92.72884238064094,11.478880390015776,8.078213138390712,3518.72386834302,2019
+2007,41,"(40,45]",HS,5217.428384565075,1059.5889590783795,4.924011655522671,344.17948404046354,2019
+2007,41,"(40,45]",HS,5217.428384565075,1059.5889590783795,4.924011655522671,338.5422853700393,2019
+2007,41,"(40,45]",HS,5217.428384565075,1059.5889590783795,4.924011655522671,334.7191184526328,2019
+2007,41,"(40,45]",HS,5217.428384565075,1059.5889590783795,4.924011655522671,333.1439935964769,2019
+2007,41,"(40,45]",HS,5217.428384565075,1059.5889590783795,4.924011655522671,343.6628936521897,2019
+2007,44,"(40,45]",College,962.4910398953564,217.8043971438891,4.419061564030324,6740.595509361212,2019
+2007,44,"(40,45]",College,962.6341399607586,217.8043971438891,4.419718575859648,6895.511271426176,2019
+2007,44,"(40,45]",College,962.4910398953564,217.8043971438891,4.419061564030324,6488.538216613774,2019
+2007,44,"(40,45]",College,962.4910398953564,217.8043971438891,4.419061564030324,6792.228559120389,2019
+2007,44,"(40,45]",College,962.4910398953564,217.8043971438891,4.419061564030324,6848.1209276585605,2019
+2007,52,"(50,55]",HS,883.6429038587312,70.63926393855863,12.509231475391866,6467.20163112768,2019
+2007,52,"(50,55]",HS,811.8782210595161,70.63926393855863,11.493299558807411,6614.1609924508575,2019
+2007,52,"(50,55]",HS,747.912491824722,70.63926393855863,10.5877730050422,6225.25979404955,2019
+2007,52,"(50,55]",HS,1047.7071288423806,70.63926393855863,14.83179566754357,6515.675280337936,2019
+2007,52,"(50,55]",HS,748.7710922171352,69.16761260650532,10.825458100988614,6569.37684924315,2019
+2007,45,"(40,45]",College,15562.847612818836,1103.7384990399785,14.100122108955388,375.204497549866,2019
+2007,45,"(40,45]",College,16075.288947024199,1225.8855596004028,13.11320524263635,356.39368635345556,2019
+2007,45,"(40,45]",College,12585.50765206017,1190.5659276311235,10.571029591869502,363.5244656131724,2019
+2007,45,"(40,45]",College,17868.90516677567,1089.0219857194454,16.40821342552681,361.90294889886457,2019
+2007,45,"(40,45]",College,10747.387311968609,1283.2799615504819,8.374935816018995,368.63916174956813,2019
+2007,49,"(45,50]",College,125.21255722694572,92.71403391935819,1.3505243158317806,8357.052122085925,2019
+2007,49,"(45,50]",College,133.79856115107913,92.71403391935819,1.4431316974888169,8246.751027690378,2019
+2007,49,"(45,50]",College,85.14453891432309,92.71403391935819,0.9183565347656109,8659.61804343572,2019
+2007,49,"(45,50]",College,152.4015696533682,92.71403391935819,1.6437810244123956,8373.824672996545,2019
+2007,49,"(45,50]",College,123.78155657292348,92.71403391935819,1.3350897522222744,8241.351846182934,2019
+2007,45,"(40,45]",HS,33.7143754087639,42.67788862954583,0.7899728991144022,5855.1010022334285,2019
+2007,45,"(40,45]",HS,32.28337475474166,44.14953996159914,0.7312278855639592,5853.5294725963995,2019
+2007,45,"(40,45]",HS,33.57127534336168,44.14953996159914,0.7603992107859258,5938.749191757035,2019
+2007,45,"(40,45]",HS,32.140274689339435,44.14953996159914,0.727986627205963,5899.1913179479925,2019
+2007,45,"(40,45]",HS,33.7143754087639,42.67788862954583,0.7899728991144022,5849.860398115294,2019
+2007,83,"(80,85]",NoHS,8005.017658600393,281.37973468859184,28.44916201040453,1201.4375179180347,2019
+2007,83,"(80,85]",NoHS,7990.7076520601695,281.37973468859184,28.398305446210024,1199.8539950524266,2019
+2007,83,"(80,85]",NoHS,8789.206017004577,281.37973468859184,31.236101728263247,1194.9374917293537,2019
+2007,83,"(80,85]",NoHS,8005.017658600393,281.37973468859184,28.44916201040453,1187.1747149643916,2019
+2007,83,"(80,85]",NoHS,8730.534990189666,281.37973468859184,31.027589815065788,1210.821341549121,2019
+2007,61,"(60,65]",College,906.2527141922825,245.7657724529019,3.6874651223695323,5374.609689168274,2019
+2007,61,"(60,65]",College,905.5372138652714,245.7657724529019,3.6845538124671404,5496.539366729363,2019
+2007,61,"(60,65]",College,904.2779332897319,245.7657724529019,3.679429907038931,5172.5500267228435,2019
+2007,61,"(60,65]",College,913.2646173969915,245.7657724529019,3.7159959594129726,5414.162507153414,2019
+2007,61,"(60,65]",College,906.6820143884892,245.7657724529019,3.689211908310967,5458.654482873366,2019
+2007,38,"(35,40]",HS,-32.02579463701766,27.96137530901279,-1.1453583481887883,5634.145028848305,2019
+2007,38,"(35,40]",HS,-30.594793982995423,27.96137530901279,-1.0941805846414787,5567.042757466935,2019
+2007,38,"(35,40]",HS,-30.723584041857425,27.96137530901279,-1.0987865833607366,5754.519278864674,2019
+2007,38,"(35,40]",HS,-30.365833878351864,26.489723976959482,-1.1463250392780153,5611.446973053256,2019
+2007,38,"(35,40]",HS,-30.594793982995423,26.489723976959482,-1.1549683948993388,5581.108346299033,2019
+2007,33,"(30,35]",College,492.26422498364946,173.65485718228996,2.834727648688266,7080.4509296185015,2019
+2007,33,"(30,35]",College,482.2472204054938,173.65485718228996,2.7770442372324,7239.021469087672,2019
+2007,33,"(30,35]",College,492.12112491824723,173.65485718228996,2.833903599953182,6821.171647096924,2019
+2007,33,"(30,35]",College,489.2591236102028,173.65485718228996,2.817422625251506,7110.406638000952,2019
+2007,33,"(30,35]",College,492.12112491824723,173.65485718228996,2.833903599953182,7171.645233255194,2019
+2007,64,"(60,65]",HS,1467.3480706344017,103.01559324373132,14.243941372668768,795.4445405075501,2019
+2007,64,"(60,65]",HS,1467.2049705689994,103.01559324373132,14.242552261943912,792.5688450682862,2019
+2007,64,"(60,65]",HS,1674.6857553956836,103.01559324373132,16.25662390191197,772.0849145884532,2019
+2007,64,"(60,65]",HS,1464.1855591890126,103.01559324373132,14.21324202564946,777.1498283172482,2019
+2007,64,"(60,65]",HS,1416.9625376062786,103.01559324373132,13.75483548644713,770.6403317379146,2019
+2007,64,"(60,65]",HS,61.676128188358405,38.262934633385925,1.6119027141881466,9963.542408834825,2019
+2007,64,"(60,65]",HS,61.676128188358405,36.79128330133262,1.6763788227556724,9755.105320922457,2019
+2007,64,"(60,65]",HS,61.676128188358405,38.262934633385925,1.6119027141881466,10310.622410451118,2019
+2007,64,"(60,65]",HS,61.676128188358405,38.262934633385925,1.6119027141881466,9950.104774746156,2019
+2007,64,"(60,65]",HS,61.676128188358405,38.262934633385925,1.6119027141881466,9760.965589952499,2019
+2007,45,"(40,45]",HS,36.919816873773705,139.80687654506394,0.2640772599041174,5513.609640590554,2019
+2007,45,"(40,45]",HS,39.78181818181818,139.80687654506394,0.28454836532304123,5491.3550321658095,2019
+2007,45,"(40,45]",HS,36.919816873773705,139.80687654506394,0.2640772599041174,5539.5110272799275,2019
+2007,45,"(40,45]",HS,38.35081752779595,139.80687654506394,0.27431281261357937,5461.214666402829,2019
+2007,45,"(40,45]",HS,39.924918247220404,139.80687654506394,0.28557192059398745,5373.961902192981,2019
+2007,72,"(70,75]",College,400.6801831262263,110.37384990399784,3.630209360955827,8487.572173449735,2019
+2007,72,"(70,75]",College,462.21321124918245,111.84550123605116,4.132604406445248,8709.317653899687,2019
+2007,72,"(70,75]",College,393.5251798561151,110.37384990399784,3.5653841937959005,8220.235190398183,2019
+2007,72,"(70,75]",College,390.3769784172662,110.37384990399784,3.5368611202455336,8659.62553275801,2019
+2007,72,"(70,75]",College,393.5251798561151,110.37384990399784,3.5653841937959005,8778.660680162156,2019
+2007,55,"(50,55]",College,1137.5024198822762,404.7041163146588,2.8107013841140778,726.0081783669405,2019
+2007,55,"(50,55]",College,778.607455853499,404.7041163146588,1.9238930973662969,756.9264409045988,2019
+2007,55,"(50,55]",College,877.6040810987573,404.7041163146588,2.1685079190457683,733.8145540621083,2019
+2007,55,"(50,55]",College,1520.4381948986265,404.7041163146588,3.7569130967684075,1620.2953026116786,2019
+2007,55,"(50,55]",College,1516.5744931327665,404.7041163146588,3.7473661176048547,1627.3778320963422,2019
+2007,41,"(40,45]",College,31502.048397645518,1103.7384990399785,28.541224597171983,391.80353328951026,2019
+2007,41,"(40,45]",College,31527.80640941792,1103.7384990399785,28.564561657349557,438.91552427724446,2019
+2007,41,"(40,45]",College,31500.6173969915,1103.7384990399785,28.539928093828788,394.39959754878817,2019
+2007,41,"(40,45]",College,31510.634401569652,1103.7384990399785,28.549003617231175,402.13669952060206,2019
+2007,41,"(40,45]",College,31494.89339437541,1103.7384990399785,28.53474208045599,424.09355831499226,2019
+2007,36,"(35,40]",NoHS,466.79241334205364,42.67788862954583,10.937570445293632,7531.676846822571,2019
+2007,36,"(35,40]",NoHS,466.64931327665147,42.67788862954583,10.93421741940605,7408.31076949715,2019
+2007,36,"(35,40]",NoHS,466.79241334205364,42.67788862954583,10.937570445293632,7733.544797663769,2019
+2007,36,"(35,40]",NoHS,466.79241334205364,42.67788862954583,10.937570445293632,7433.3195479769565,2019
+2007,36,"(35,40]",NoHS,466.79241334205364,42.67788862954583,10.937570445293632,7370.504349496303,2019
+2007,38,"(35,40]",College,534.5502943100065,88.29907992319828,6.053860298147539,7420.931992938751,2019
+2007,38,"(35,40]",College,663.6981033355135,88.29907992319828,7.516478132193359,7588.707426560815,2019
+2007,38,"(35,40]",College,421.2865925441465,88.29907992319828,4.771132302970514,7147.62677933964,2019
+2007,38,"(35,40]",College,514.0011249182472,88.29907992319828,5.821137948043407,7451.9712601260935,2019
+2007,38,"(35,40]",College,678.5805101373447,88.29907992319828,7.685023566809165,7515.100785432102,2019
+2007,53,"(50,55]",College,5864.240680183127,735.8256660266525,7.969606050641236,1225.526938566108,2019
+2007,53,"(50,55]",College,5863.095879659909,735.8256660266525,7.968050246629398,1198.0460140411847,2019
+2007,53,"(50,55]",College,5967.272727272728,735.8256660266525,8.109628411706675,1207.0499070015026,2019
+2007,53,"(50,55]",College,5873.542184434271,735.8256660266525,7.982246958237421,1204.7410917352706,2019
+2007,53,"(50,55]",College,5896.724395029431,735.8256660266525,8.013751989477145,1238.2830851798178,2019
+2007,53,"(50,55]",College,19005.119686069324,2148.610944797825,8.845305257372978,355.1820143253795,2019
+2007,53,"(50,55]",College,19005.119686069324,2148.610944797825,8.845305257372978,349.3646089547612,2019
+2007,53,"(50,55]",College,19006.55068672335,2133.894431477292,8.906977967773757,345.419225252963,2019
+2007,53,"(50,55]",College,19006.55068672335,2148.610944797825,8.845971269364348,343.793747718231,2019
+2007,53,"(50,55]",College,19005.119686069324,2148.610944797825,8.845305257372978,354.6489098749509,2019
+2007,22,"(20,25]",NoHS,10.589404839764553,47.09284262570575,0.22486229858599147,6137.655600705255,2019
+2007,22,"(20,25]",NoHS,10.589404839764553,47.09284262570575,0.22486229858599147,6109.744648968733,2019
+2007,22,"(20,25]",NoHS,10.589404839764553,47.09284262570575,0.22486229858599147,6074.815504316637,2019
+2007,22,"(20,25]",NoHS,10.589404839764553,47.09284262570575,0.22486229858599147,6078.114043340071,2019
+2007,22,"(20,25]",NoHS,10.589404839764553,47.09284262570575,0.22486229858599147,6139.80742990291,2019
+2007,55,"(50,55]",HS,28.476913015042513,73.58256660266524,0.387006247944755,4799.825479261389,2019
+2007,55,"(50,55]",HS,30.05101373446697,73.58256660266524,0.40839855310753037,4758.683978559726,2019
+2007,55,"(50,55]",HS,28.476913015042513,73.58256660266524,0.387006247944755,4791.624946637415,2019
+2007,55,"(50,55]",HS,24.327011118378024,73.58256660266524,0.3306083525156198,4781.835311042763,2019
+2007,55,"(50,55]",HS,21.46500981033355,73.58256660266524,0.2917132522196646,4766.546227151667,2019
+2007,71,"(70,75]",NoHS,339.14715500327014,61.8093559462388,5.486987363179405,8371.231811903726,2019
+2007,71,"(70,75]",NoHS,339.14715500327014,58.86605328213219,5.761336731338376,8228.169685557594,2019
+2007,71,"(70,75]",NoHS,339.14715500327014,54.451099285972276,6.228472141987433,8587.617363119516,2019
+2007,71,"(70,75]",NoHS,339.14715500327014,61.8093559462388,5.486987363179405,8352.158968900012,2019
+2007,71,"(70,75]",NoHS,340.57815565729237,57.39440195007889,5.933996070793177,8247.074865938903,2019
+2007,34,"(30,35]",College,99.88384565075212,73.58256660266524,1.357439000328839,9368.255167361778,2019
+2007,34,"(30,35]",College,104.17684761281883,73.58256660266524,1.415781650772772,9321.168851846402,2019
+2007,34,"(30,35]",College,128.50385873119686,73.58256660266524,1.746390003288392,9444.307349385726,2019
+2007,34,"(30,35]",College,98.4528449967299,73.58256660266524,1.3379914501808616,9422.117874839645,2019
+2007,34,"(30,35]",College,125.64185742315239,73.58256660266524,1.7074949029924367,9363.304606627462,2019
+2007,60,"(55,60]",College,121628.32988881622,5606.991575123091,21.692261930346508,40.3433394826623,2019
+2007,60,"(55,60]",College,113231.50425114455,5224.362228789232,21.67374682160705,35.87454207735313,2019
+2007,60,"(55,60]",College,114121.87285807717,4885.882422416971,23.357474247532718,39.71189506137519,2019
+2007,60,"(55,60]",College,120341.00170045781,4665.1347226089765,25.795825599042317,39.45888794419908,2019
+2007,60,"(55,60]",College,119994.69954218443,4812.299855814307,24.935000548065325,36.276750098170524,2019
+2007,44,"(40,45]",HS,2.089260954872466,23.546421312852875,0.08872944755014799,7696.538339482759,2019
+2007,44,"(40,45]",HS,0.6582603008502289,23.546421312852875,0.027955853337717856,7669.773777882192,2019
+2007,44,"(40,45]",HS,-0.7584303466317855,22.07476998079957,-0.0343573385947605,7675.077863947216,2019
+2007,44,"(40,45]",HS,-0.7584303466317855,22.07476998079957,-0.0343573385947605,7700.091017609957,2019
+2007,44,"(40,45]",HS,-0.7727403531720078,23.546421312852875,-0.032817740874712266,7698.8457156087125,2019
+2007,43,"(40,45]",College,174.3244996729889,110.37384990399784,1.5794003726844243,7694.237363794229,2019
+2007,43,"(40,45]",College,107.56831916285154,79.46917193087846,1.353585504280999,7610.841812323501,2019
+2007,43,"(40,45]",College,175.12586003924133,100.07229057962472,1.7499935199334584,7843.218751312384,2019
+2007,43,"(40,45]",College,101.93017658600394,94.1856852514115,1.0822257789378495,7628.583059227276,2019
+2007,43,"(40,45]",College,250.68269457161543,97.1289879155181,2.5809256325172147,7608.781075241177,2019
+2007,77,"(75,80]",HS,600.4478744277305,30.9046779731194,19.42902867164623,9159.472024612558,2019
+2007,77,"(75,80]",HS,600.3047743623283,30.9046779731194,19.42439830256338,9364.339046675015,2019
+2007,77,"(75,80]",HS,600.3047743623283,30.9046779731194,19.42439830256338,8825.303902112384,2019
+2007,77,"(75,80]",HS,600.3047743623283,30.9046779731194,19.42439830256338,9197.412523929997,2019
+2007,77,"(75,80]",HS,600.3047743623283,30.9046779731194,19.42439830256338,9277.104579062836,2019
+2007,49,"(45,50]",NoHS,3.4344015696533683,25.01807264490618,0.13727682457395982,6182.144564507513,2019
+2007,49,"(45,50]",NoHS,3.4344015696533683,25.01807264490618,0.13727682457395982,6184.6406990917185,2019
+2007,49,"(45,50]",NoHS,3.4344015696533683,25.01807264490618,0.13727682457395982,6183.881715341978,2019
+2007,49,"(45,50]",NoHS,3.2913015042511446,25.01807264490618,0.13155695688337815,6220.637560920519,2019
+2007,49,"(45,50]",NoHS,3.2913015042511446,23.546421312852875,0.13977926668858928,6220.231200588187,2019
+2007,66,"(65,70]",HS,191.6109875735775,67.69596127445202,2.830464092189354,7729.250476927194,2019
+2007,66,"(65,70]",HS,191.6109875735775,67.69596127445202,2.830464092189354,7522.468902738945,2019
+2007,66,"(65,70]",HS,193.04198822759975,67.69596127445202,2.8516027336545475,8023.1144118831635,2019
+2007,66,"(65,70]",HS,191.7540876389797,67.69596127445202,2.8325779563358733,7573.2694299692375,2019
+2007,66,"(65,70]",HS,191.6109875735775,67.69596127445202,2.830464092189354,7464.49997218285,2019
+2007,40,"(35,40]",HS,85.4021190320471,135.39192254890403,0.6307770613213617,7182.930007774992,2019
+2007,40,"(35,40]",HS,96.70702419882277,142.75017920917054,0.6774564118558397,7059.226943982397,2019
+2007,40,"(35,40]",HS,82.69752779594506,160.40999519381023,0.5155384968126733,7267.545296355798,2019
+2007,40,"(35,40]",HS,88.14964028776978,155.99504119765032,0.5650797590167087,7071.983307652944,2019
+2007,40,"(35,40]",HS,103.86202746893395,138.33522521301063,0.7507995690107538,7082.4479516312085,2019
+2007,54,"(50,55]",College,29568.694964028775,3531.9631969279308,8.371744923544886,1662.0750737233436,2019
+2007,54,"(50,55]",College,29568.83806409418,3531.9631969279308,8.371785439274364,716.5361203957398,2019
+2007,54,"(50,55]",College,29568.83806409418,3531.9631969279308,8.371785439274364,1496.271761170075,2019
+2007,54,"(50,55]",College,29583.004970569,3531.9631969279308,8.375796496492383,1388.8200948345213,2019
+2007,54,"(50,55]",College,29555.81595814258,3531.9631969279308,8.368098507892142,1107.4379408830573,2019
+2007,60,"(55,60]",HS,669.5652060170046,119.20375789631768,5.616980687801689,5838.162364404369,2019
+2007,60,"(55,60]",HS,674.0013080444735,119.20375789631768,5.654195135615721,5970.608308539764,2019
+2007,60,"(55,60]",HS,660.9792020928712,119.20375789631768,5.5449527242906615,5618.6753346707355,2019
+2007,60,"(55,60]",HS,666.8463047743624,119.20375789631768,5.594171832689864,5881.126558405724,2019
+2007,60,"(55,60]",HS,672.4272073250492,119.20375789631768,5.640990008972033,5929.45590568646,2019
+2007,59,"(55,60]",College,245.37368214519293,136.86357388095735,1.7928340988568416,10574.16591101986,2019
+2007,59,"(55,60]",College,242.25410071942446,136.86357388095735,1.770040733629642,10414.849504828762,2019
+2007,59,"(55,60]",College,269.61483322432963,136.86357388095735,1.9699531846131542,10964.519520133888,2019
+2007,59,"(55,60]",College,260.3991890124264,136.86357388095735,1.902618656143812,10540.924327499164,2019
+2007,59,"(55,60]",College,261.55829954218444,136.86357388095735,1.9110877505630928,10371.972588804743,2019
+2007,39,"(35,40]",NoHS,218.57103989535642,235.46421312852877,0.9282558780006576,9604.322374007594,2019
+2007,39,"(35,40]",NoHS,218.84293001962067,235.46421312852877,0.9294105762906938,9532.878770525374,2019
+2007,39,"(35,40]",NoHS,218.0415696533682,235.46421312852877,0.9260072550147976,9430.300811966708,2019
+2007,39,"(35,40]",NoHS,216.52470896010465,235.46421312852877,0.9195652540282802,9560.195764228252,2019
+2007,39,"(35,40]",NoHS,217.74105951602357,235.46421312852877,0.9247310095363368,9605.314485857702,2019
+2007,64,"(60,65]",College,6016.499149771093,847.6711672627034,7.097680541853923,2915.865765760024,2019
+2007,64,"(60,65]",College,6000.758142576848,877.1041939037698,6.841556777728978,2893.2024678638977,2019
+2007,64,"(60,65]",College,6316.866187050359,878.5758452358228,7.189892849096959,2891.7815618348486,2019
+2007,64,"(60,65]",College,6091.197383911053,877.1041939037698,6.944667949654497,2870.358705951322,2019
+2007,64,"(60,65]",College,6093.916285153696,877.1041939037698,6.947767810835803,2923.1899673794005,2019
+2007,42,"(40,45]",HS,44.146370176586004,113.31715256810448,0.38958241692539614,9877.808182350116,2019
+2007,42,"(40,45]",HS,42.85846958796599,113.31715256810448,0.37821696554021444,9720.510676000504,2019
+2007,42,"(40,45]",HS,42.71536952256376,113.31715256810448,0.37695413760852753,10135.046254516248,2019
+2007,42,"(40,45]",HS,44.289470241988234,113.31715256810448,0.39084524485708305,9781.77512401124,2019
+2007,42,"(40,45]",HS,42.71536952256376,113.31715256810448,0.37695413760852753,9697.061735868305,2019
+2007,54,"(50,55]",HS,828.6924787442773,44.14953996159914,18.77012715115642,7087.3615571322425,2019
+2007,54,"(50,55]",HS,828.5493786788751,44.14953996159914,18.766885892798424,7248.4133052158995,2019
+2007,54,"(50,55]",HS,828.6924787442773,44.14953996159914,18.77012715115642,6822.219170521594,2019
+2007,54,"(50,55]",HS,828.6924787442773,44.14953996159914,18.77012715115642,7140.4834941835215,2019
+2007,54,"(50,55]",HS,828.6924787442773,44.14953996159914,18.77012715115642,7199.334672285751,2019
+2007,52,"(50,55]",HS,1742.5438064094178,231.04925913236883,7.541871430157277,1211.990775806297,2019
+2007,52,"(50,55]",HS,1732.6555918901245,169.23990318613005,10.237866834422316,1242.9547538620552,2019
+2007,52,"(50,55]",HS,1654.6660562459124,179.54146251050318,9.2160664902076,1186.1622908123938,2019
+2007,52,"(50,55]",HS,1816.6410202746895,135.39192254890403,13.417646976823987,1201.2516509746547,2019
+2007,52,"(50,55]",HS,1624.4719424460434,304.631825735034,5.332574620286044,1201.209134490564,2019
+2007,50,"(45,50]",College,76383.09431000655,3605.5457635305966,21.184891087115545,37.35166816808912,2019
+2007,50,"(45,50]",College,41964.5234793983,1913.1467316692958,21.934817013634184,39.079456354394964,2019
+2007,50,"(45,50]",College,28346.691955526487,2369.3586446058207,11.963867108114565,35.894775982471685,2019
+2007,50,"(45,50]",College,47693.963897972535,2060.3118648746267,23.14890512989148,37.11800341321488,2019
+2007,50,"(45,50]",College,62174.68881621976,2222.19351140049,27.978971451966615,33.33523691671667,2019
+2007,20,"(15,20]",HS,26.044211903204708,19.131467316692962,1.3613285103584345,8642.619306231807,2019
+2007,20,"(15,20]",HS,96.87874427730544,17.659815984639657,5.485829770908693,8647.377229665828,2019
+2007,20,"(15,20]",HS,25.829561805101374,16.18816465258635,1.5955830916863472,8595.714048511614,2019
+2007,20,"(15,20]",HS,25.758011772400263,14.716513320533048,1.7502795133179874,8590.725433845892,2019
+2007,20,"(15,20]",HS,25.471811641595814,16.18816465258635,1.573483602881827,8683.891023937755,2019
+2007,60,"(55,60]",HS,58141.699672988885,6887.328234009466,8.441836616104128,36.223539467801096,2019
+2007,60,"(55,60]",HS,58140.26867233486,6887.328234009466,8.441628843132461,39.10751252272938,2019
+2007,60,"(55,60]",HS,58140.411772400264,6887.328234009466,8.441649620429628,38.72568650613296,2019
+2007,60,"(55,60]",HS,58143.27377370831,6887.328234009466,8.442065166372961,39.32004214493758,2019
+2007,60,"(55,60]",HS,58141.699672988885,6887.328234009466,8.441836616104128,39.41533415060768,2019
+2007,23,"(20,25]",HS,6.453812949640288,14.127852787711726,0.45681484983009973,6105.511407862263,2019
+2007,23,"(20,25]",HS,6.46812295618051,12.65620145565842,0.5110635271445286,6114.391153688566,2019
+2007,23,"(20,25]",HS,6.453812949640288,12.50903632245309,0.5159320656904657,6092.801655753591,2019
+2007,23,"(20,25]",HS,6.46812295618051,13.097696855274414,0.4938366666789826,6068.2172642380665,2019
+2007,23,"(20,25]",HS,6.453812949640288,12.214706056042429,0.5283641636589106,6106.157326523557,2019
+2007,55,"(50,55]",College,3219.0359712230215,281.08540442218117,11.452163365936048,4264.688134423143,2019
+2007,55,"(50,55]",College,3146.0549378678875,281.08540442218117,11.192523298515404,4318.47878618353,2019
+2007,55,"(50,55]",College,3105.986919555265,257.53898310932834,12.060259313195846,4312.852834039816,2019
+2007,55,"(50,55]",College,3031.574885546109,204.55953515540935,14.820012585787998,4612.78668112641,2019
+2007,55,"(50,55]",College,3276.275997383911,488.58824224169723,6.7055972987642765,4422.682201564361,2019
+2007,59,"(55,60]",College,6964.537083060824,735.8256660266525,9.464928181519236,1682.5972922634282,2019
+2007,59,"(55,60]",College,6662.739045127534,707.8642907176395,9.412452545632421,1682.3658395859402,2019
+2007,59,"(55,60]",College,6724.558273381294,566.5857628405223,11.86856203316578,1635.2545325649612,2019
+2007,59,"(55,60]",College,7301.108436886854,678.4312640765735,10.761751150758862,1617.1234361543218,2019
+2007,59,"(55,60]",College,7076.441334205363,531.266130871243,13.319955711463187,1710.5187847648067,2019
+2007,57,"(55,60]",College,4846.799215173316,189.8430218348763,25.53056292682181,2250.517588138145,2019
+2007,57,"(55,60]",College,4848.230215827339,189.8430218348763,25.538100736956686,2257.2813511123636,2019
+2007,57,"(55,60]",College,4848.087115761936,189.8430218348763,25.537346955943192,2231.080092417566,2019
+2007,57,"(55,60]",College,4848.230215827339,191.31467316692962,25.341653808210864,2213.4748451816404,2019
+2007,57,"(55,60]",College,4846.656115107914,191.31467316692962,25.33342599853287,2246.018175567695,2019
+2007,40,"(35,40]",HS,821.394375408764,516.5496175507099,1.5901558098203943,7458.833030832337,2019
+2007,40,"(35,40]",HS,821.394375408764,515.0779662186567,1.5946991121341663,7668.304169916091,2019
+2007,40,"(35,40]",HS,821.394375408764,515.0779662186567,1.5946991121341663,7207.375936480933,2019
+2007,40,"(35,40]",HS,821.394375408764,515.0779662186567,1.5946991121341663,7535.929092616845,2019
+2007,40,"(35,40]",HS,821.394375408764,516.5496175507099,1.5901558098203943,7599.769868399521,2019
+2007,50,"(45,50]",College,31390.916886854153,3267.065957158337,9.608289914709184,36.91748023760408,2019
+2007,50,"(45,50]",College,30420.569653368217,3090.46779731194,9.843354355553467,39.01438674816458,2019
+2007,50,"(45,50]",College,33105.45601046435,3061.034770670874,10.815119229504463,39.08396897497262,2019
+2007,50,"(45,50]",College,29714.513930673646,2855.0035841834115,10.407872723975089,39.866908114024476,2019
+2007,50,"(45,50]",College,32438.95314584696,2575.3898310932836,12.59574482829896,40.273982892450015,2019
+2007,33,"(30,35]",NoHS,0,2.207476998079957,0,6001.706300321912,2019
+2007,33,"(30,35]",NoHS,0,2.207476998079957,0,5977.769492169997,2019
+2007,33,"(30,35]",NoHS,0,2.207476998079957,0,5984.004313742606,2019
+2007,33,"(30,35]",NoHS,0,2.207476998079957,0,5999.877579041464,2019
+2007,33,"(30,35]",NoHS,0,2.207476998079957,0,5999.804319418068,2019
+2007,90,"(85,90]",HS,0.6439502943100065,17.659815984639657,0.03646415652745807,9204.91626683601,2019
+2007,90,"(85,90]",HS,0.6010202746893395,17.659815984639657,0.034033212758960874,9151.04874859954,2019
+2007,90,"(85,90]",HS,0.6010202746893395,17.659815984639657,0.034033212758960874,9209.95736302808,2019
+2007,90,"(85,90]",HS,0.6439502943100065,17.659815984639657,0.03646415652745807,9213.564673678455,2019
+2007,90,"(85,90]",HS,0.6439502943100065,17.659815984639657,0.03646415652745807,9417.466893091372,2019
+2007,35,"(30,35]",NoHS,-7.870503597122303,50.03614528981236,-0.15729636149099563,6616.475884546717,2019
+2007,35,"(30,35]",NoHS,-8.013603662524526,50.03614528981236,-0.16015629533628645,6598.11453540801,2019
+2007,35,"(30,35]",NoHS,-7.870503597122303,50.03614528981236,-0.15729636149099563,6605.165210185774,2019
+2007,35,"(30,35]",NoHS,-8.013603662524526,50.03614528981236,-0.16015629533628645,6603.534671725398,2019
+2007,35,"(30,35]",NoHS,-8.013603662524526,50.03614528981236,-0.16015629533628645,6547.09394001942,2019
+2007,60,"(55,60]",HS,485.3954218443427,170.71155451818333,2.843365952669834,5773.462756340081,2019
+2007,60,"(55,60]",HS,599.8754741661216,170.71155451818333,3.5139711301863046,5904.4409097323605,2019
+2007,60,"(55,60]",HS,459.4943100065402,170.71155451818333,2.691641531256733,5556.408122951835,2019
+2007,60,"(55,60]",HS,479.814519293656,170.71155451818333,2.8106739502659064,5815.950813101808,2019
+2007,60,"(55,60]",HS,534.0494440810987,170.71155451818333,3.128373153114334,5863.744565510066,2019
+2007,43,"(40,45]",HS,11.991785480706344,58.86605328213219,0.20371308780006575,9157.684318245516,2019
+2007,43,"(40,45]",HS,13.408476128188358,58.86605328213219,0.22777943110818807,9048.159882244985,2019
+2007,43,"(40,45]",HS,4.994192282537606,58.86605328213219,0.08483993752055244,9295.540675925793,2019
+2007,43,"(40,45]",HS,14.853786788750819,58.86605328213219,0.2523319631700099,9071.486513676595,2019
+2007,43,"(40,45]",HS,10.546474820143885,58.86605328213219,0.179160555738244,9084.90988765664,2019
+2007,70,"(65,70]",College,269.6434532374101,17.659815984639657,15.268757809930944,12144.803240284713,2019
+2007,70,"(65,70]",College,271.27479398299545,17.659815984639657,15.361133673133839,11937.052447637454,2019
+2007,70,"(65,70]",College,269.78655330281225,17.659815984639657,15.276860955825931,12591.008186002904,2019
+2007,70,"(65,70]",College,271.0887638979725,17.659815984639657,15.350599583470348,12168.724827646165,2019
+2007,70,"(65,70]",College,264.1341007194245,16.18816465258635,16.316494574153243,12079.27965279915,2019
+2007,54,"(50,55]",NoHS,134.47113145846959,42.67788862954583,3.150838426561136,10473.754220238367,2019
+2007,54,"(50,55]",NoHS,134.37096141268802,42.67788862954583,3.148491308439828,10227.616629945634,2019
+2007,54,"(50,55]",NoHS,135.80196206671025,41.206237297492535,3.2956651947197813,10888.837803129878,2019
+2007,54,"(50,55]",NoHS,135.65886200130805,41.206237297492535,3.292192417907643,10418.344639204568,2019
+2007,54,"(50,55]",NoHS,135.8305820797907,42.67788862954583,3.182692172493168,10191.182731110355,2019
+2007,41,"(40,45]",College,154.17601046435578,132.44861988479744,1.1640439183017282,8763.811452253505,2019
+2007,41,"(40,45]",College,155.46391105297582,132.44861988479744,1.173767693375717,8965.225782461277,2019
+2007,41,"(40,45]",College,155.60701111837804,132.44861988479744,1.1748481128283825,8436.098183338878,2019
+2007,41,"(40,45]",College,154.16170045781558,132.44861988479744,1.1639358763564618,8830.942362596044,2019
+2007,41,"(40,45]",College,154.17601046435578,132.44861988479744,1.1640439183017282,8903.611042805102,2019
+2007,42,"(40,45]",College,445.61360366252455,260.48228577343497,1.710725174033965,8011.484768563084,2019
+2007,42,"(40,45]",College,394.97049051667756,77.99752059882516,5.06388520409746,8195.963818295291,2019
+2007,42,"(40,45]",College,731.6706344015696,111.84550123605116,6.541797625434846,7709.861466734654,2019
+2007,42,"(40,45]",College,323.5492478744277,86.82742859114498,3.726348380048935,8071.014833083873,2019
+2007,42,"(40,45]",College,507.28973185088296,191.31467316692962,2.651598664406951,8137.167597775298,2019
+2007,64,"(60,65]",NoHS,244.02854153041204,32.3763293051727,7.537251651669607,5956.768626302384,2019
+2007,64,"(60,65]",NoHS,215.2224983649444,26.489723976959482,8.124754284043993,5811.285659692415,2019
+2007,64,"(60,65]",NoHS,212.93289731850882,25.01807264490618,8.511163123585508,6160.616010516329,2019
+2007,64,"(60,65]",NoHS,197.47809025506868,22.07476998079957,8.945873068069714,5934.321225424507,2019
+2007,64,"(60,65]",NoHS,290.20693263570956,26.489723976959482,10.955453250027402,5762.235080437938,2019
+2007,34,"(30,35]",College,354.88816219751476,176.59815984639656,2.0095801819576895,9111.485499501523,2019
+2007,34,"(30,35]",College,356.31916285153693,176.59815984639656,2.01768332785268,9021.582881171951,2019
+2007,34,"(30,35]",College,356.46226291693915,176.59815984639656,2.018493642442179,9149.048584044078,2019
+2007,34,"(30,35]",College,356.31916285153693,176.59815984639656,2.01768332785268,9138.854711898737,2019
+2007,34,"(30,35]",College,355.031262262917,176.59815984639656,2.010390496547189,9079.88763511554,2019
+2007,63,"(60,65]",College,23850.344800523217,264.8972397695949,90.0362148781468,353.7931318681691,2019
+2007,63,"(60,65]",College,23861.651136690645,264.8972397695949,90.07889684862434,321.3870098386482,2019
+2007,63,"(60,65]",College,23850.38773054284,264.8972397695949,90.0363769410647,324.0007206199199,2019
+2007,63,"(60,65]",College,23851.747181164163,264.8972397695949,90.04150893346487,339.2964649775325,2019
+2007,63,"(60,65]",College,23882.442145192937,264.8972397695949,90.15738391976323,336.43926550732135,2019
+2007,45,"(40,45]",NoHS,229.87594506213213,55.92275061802558,4.110597968119905,7794.928940215335,2019
+2007,45,"(40,45]",NoHS,228.44494440810988,55.92275061802558,4.0850090863462505,7611.744860705394,2019
+2007,45,"(40,45]",NoHS,229.87594506213213,55.92275061802558,4.110597968119905,8103.84845129545,2019
+2007,45,"(40,45]",NoHS,229.87594506213213,55.92275061802558,4.110597968119905,7753.6912199401195,2019
+2007,45,"(40,45]",NoHS,229.87594506213213,55.92275061802558,4.110597968119905,7584.629497248883,2019
+2007,53,"(50,55]",HS,51.21551340745585,19.131467316692962,2.6770300761389216,9298.922850510737,2019
+2007,53,"(50,55]",HS,48.3678221059516,17.659815984639657,2.738863312506851,9079.176327285248,2019
+2007,53,"(50,55]",HS,31.18150425114454,17.659815984639657,1.7656754905184697,9629.427635290991,2019
+2007,53,"(50,55]",HS,51.21551340745585,17.659815984639657,2.900115915817165,9354.049928922806,2019
+2007,53,"(50,55]",HS,45.491510791366906,17.659815984639657,2.575990080017538,9059.117927606443,2019
+2007,19,"(15,20]",HS,25.414571615434927,17.659815984639657,1.4391187109503454,9165.681799211256,2019
+2007,19,"(15,20]",HS,19.447298888162198,16.18816465258635,1.2013282114137096,9178.586437271255,2019
+2007,19,"(15,20]",HS,29.707573577501638,16.18816465258635,1.8351415503273447,9251.28727273823,2019
+2007,19,"(15,20]",HS,24.842171353826032,17.659815984639657,1.4067061273703827,9132.733063226548,2019
+2007,19,"(15,20]",HS,18.831968606932634,17.659815984639657,1.0663739997807737,9140.23852141846,2019
+2007,48,"(45,50]",NoHS,1.5741007194244605,48.56449395775905,0.03241258357996274,6448.300157238803,2019
+2007,48,"(45,50]",NoHS,1.5741007194244605,48.56449395775905,0.03241258357996274,6408.3704862703535,2019
+2007,48,"(45,50]",NoHS,1.5741007194244605,48.56449395775905,0.03241258357996274,6567.477911445347,2019
+2007,48,"(45,50]",NoHS,1.5741007194244605,48.56449395775905,0.03241258357996274,6502.0938560825025,2019
+2007,48,"(45,50]",NoHS,1.5741007194244605,48.56449395775905,0.03241258357996274,6404.111897119459,2019
+2007,76,"(75,80]",College,300.4528973185088,79.46917193087846,3.7807478046938745,3708.526338348585,2019
+2007,76,"(75,80]",College,426.43819489862653,72.11091527061193,5.913642800099323,3765.151710120568,2019
+2007,76,"(75,80]",College,530.9012426422498,80.94082326293177,6.559128277181548,3795.7795965995415,2019
+2007,76,"(75,80]",College,233.25310660562462,76.52586926677185,3.0480294943464954,3735.306010471293,2019
+2007,76,"(75,80]",College,515.5895356442119,70.63926393855863,7.298908664912857,3707.070133209984,2019
+2007,42,"(40,45]",HS,1.7458207979071287,54.451099285972276,0.03206217727099016,4202.711307915628,2019
+2007,42,"(40,45]",HS,1.7458207979071287,54.451099285972276,0.03206217727099016,4185.422692220693,2019
+2007,42,"(40,45]",HS,1.7601308044473514,54.451099285972276,0.03232498200271959,4155.540450248346,2019
+2007,42,"(40,45]",HS,1.6170307390451275,54.451099285972276,0.02969693468542531,4170.5329808738825,2019
+2007,42,"(40,45]",HS,1.7458207979071287,54.451099285972276,0.03206217727099016,4205.460258443759,2019
+2007,59,"(55,60]",HS,87.8348201438849,66.22430994239872,1.326322920092075,5291.974054006923,2019
+2007,59,"(55,60]",HS,87.96361020274689,66.22430994239872,1.3282676751068725,5291.013849142726,2019
+2007,59,"(55,60]",HS,87.8348201438849,66.22430994239872,1.326322920092075,5291.368834890158,2019
+2007,59,"(55,60]",HS,87.96361020274689,66.22430994239872,1.3282676751068725,5197.617869518637,2019
+2007,59,"(55,60]",HS,87.97792020928712,66.22430994239872,1.3284837589974057,5139.383875318563,2019
+2007,80,"(75,80]",College,14103.942446043166,441.49539961599135,31.945842376411274,520.66256261678,2019
+2007,80,"(75,80]",College,14101.080444735122,441.49539961599135,31.939359859695283,505.14599093628533,2019
+2007,80,"(75,80]",College,14095.356442119033,441.49539961599135,31.926394826263298,508.07801122765886,2019
+2007,80,"(75,80]",College,14101.080444735122,441.49539961599135,31.939359859695283,504.4144929677235,2019
+2007,80,"(75,80]",College,14101.080444735122,441.49539961599135,31.939359859695283,514.4952922361075,2019
+2007,43,"(40,45]",HS,0,17.659815984639657,0,8535.985909366933,2019
+2007,43,"(40,45]",HS,0,17.659815984639657,0,8549.52975514912,2019
+2007,43,"(40,45]",HS,0,17.659815984639657,0,8555.489093207296,2019
+2007,43,"(40,45]",HS,0,17.659815984639657,0,8570.676011785445,2019
+2007,43,"(40,45]",HS,0,17.659815984639657,0,8575.872009490462,2019
+2007,58,"(55,60]",HS,1104.8326749509483,186.8997191707697,5.911366158562635,7162.860692936038,2019
+2007,58,"(55,60]",HS,1086.0865663832571,154.52338986559698,7.028622445624091,7338.44995573576,2019
+2007,58,"(55,60]",HS,1098.822472204055,263.4255884375416,4.171282215678097,6935.889282679862,2019
+2007,58,"(55,60]",HS,1078.7884630477436,225.16265380415567,4.791151839887549,7296.689377607387,2019
+2007,58,"(55,60]",HS,1071.7765598430346,150.10843586943707,7.140015507024908,7396.021502610109,2019
+2007,47,"(45,50]",College,4226.818181818182,426.77888629545834,9.904000215446372,1419.6844603388145,2019
+2007,47,"(45,50]",College,4498.708306082407,426.77888629545834,10.541075134087018,1437.8721278104736,2019
+2007,47,"(45,50]",College,4108.045127534336,426.77888629545834,9.625699066777035,1397.7717471083583,2019
+2007,47,"(45,50]",College,4633.222367560497,426.77888629545834,10.85625956751976,1387.765713023365,2019
+2007,47,"(45,50]",College,4424.29627207325,426.77888629545834,10.366717787932735,1408.0149111754408,2019
+2007,60,"(55,60]",College,1464.1283191628515,244.29412112084862,5.993301486115457,767.0242820579582,2019
+2007,60,"(55,60]",College,1465.4162197514718,242.82246978879527,6.034928402738335,799.256119749478,2019
+2007,60,"(55,60]",College,1464.1283191628515,244.29412112084862,5.993301486115457,775.1991631253228,2019
+2007,60,"(55,60]",College,1464.1283191628515,244.29412112084862,5.993301486115457,767.0134080167913,2019
+2007,60,"(55,60]",College,1464.1283191628515,244.29412112084862,5.993301486115457,769.3018978891955,2019
+2007,30,"(25,30]",HS,2.1479319816873774,45.62119129365245,0.047081891567926505,7206.695702885301,2019
+2007,30,"(25,30]",HS,4.008232831916286,45.62119129365245,0.08785901284594413,7204.699697916772,2019
+2007,30,"(25,30]",HS,13.309737083060824,45.62119129365245,0.29174461923603223,7256.691489394538,2019
+2007,30,"(25,30]",HS,5.439233485938522,45.62119129365245,0.11922602921365,7248.892495032686,2019
+2007,30,"(25,30]",HS,5.582333551340746,45.62119129365245,0.12236273085042058,7163.8919186552375,2019
+2007,37,"(35,40]",College,641.5175931981688,80.94082326293177,7.925760664853068,9065.347825413783,2019
+2007,37,"(35,40]",College,655.3982995421844,80.94082326293177,8.097252697976142,9274.956146232977,2019
+2007,37,"(35,40]",College,633.360889470242,80.94082326293177,7.824986995904456,8723.048881820396,2019
+2007,37,"(35,40]",College,632.5022890778287,80.94082326293177,7.814379241278287,9135.247375105018,2019
+2007,37,"(35,40]",College,632.7884892086331,80.94082326293177,7.8179151594870095,9209.948418657044,2019
+2007,43,"(40,45]",HS,111.0599607586658,167.76825185407677,0.6619843714844492,8202.179262518719,2019
+2007,43,"(40,45]",HS,109.62896010464355,167.76825185407677,0.6534547442265642,8071.565028995537,2019
+2007,43,"(40,45]",HS,243.6278613472858,167.76825185407677,1.4521690406549088,8415.780573872526,2019
+2007,43,"(40,45]",HS,241.63877043819488,167.76825185407677,1.4403128587664489,8122.436839393842,2019
+2007,43,"(40,45]",HS,118.62995421844343,167.76825185407677,0.7071060996786606,8052.093866270996,2019
+2007,64,"(60,65]",College,14123.976455199476,1471.651332053305,9.597365998026962,376.26361000765246,2019
+2007,64,"(60,65]",College,12793.002746893395,885.9341018960894,14.44012903387918,357.5933962049597,2019
+2007,64,"(60,65]",College,13923.650673642904,1264.148494233789,11.01425246887799,364.58471131166374,2019
+2007,64,"(60,65]",College,15426.301530412033,885.9341018960894,17.412470631163686,362.9459869312311,2019
+2007,64,"(60,65]",College,12454.356442119033,1214.1123489439765,10.25799338335675,369.7105096968522,2019
+2007,57,"(55,60]",HS,430.9458469587966,169.23990318613005,2.546360750897159,7669.642756809686,2019
+2007,57,"(55,60]",HS,432.37684761281884,169.23990318613005,2.554816207483236,7843.638102040281,2019
+2007,57,"(55,60]",HS,430.9458469587966,169.23990318613005,2.546360750897159,7381.300808995084,2019
+2007,57,"(55,60]",HS,432.37684761281884,169.23990318613005,2.554816207483236,7726.085178030056,2019
+2007,57,"(55,60]",HS,432.37684761281884,169.23990318613005,2.554816207483236,7789.575846013706,2019
+2007,72,"(70,75]",College,6657.444342707652,122.14706056042431,54.50351659845564,2447.295989553876,2019
+2007,72,"(70,75]",College,6156.594113799869,122.14706056042431,50.40312951906276,2487.0096114465396,2019
+2007,72,"(70,75]",College,6936.489470241988,122.14706056042431,56.78801797126024,2417.4476338088216,2019
+2007,72,"(70,75]",College,6385.554218443427,122.14706056042431,52.27759218392808,2399.5394049788265,2019
+2007,72,"(70,75]",College,6342.62419882276,122.14706056042431,51.92613043426583,2423.9287077730723,2019
+2007,60,"(55,60]",College,23143.573577501636,784.3901599844114,29.50518091400022,221.23917354937618,2019
+2007,60,"(55,60]",College,23143.573577501636,760.8437386715585,30.41830063280874,211.476407038969,2019
+2007,60,"(55,60]",College,23143.573577501636,774.0886006600383,29.897835412855738,214.40775194246075,2019
+2007,60,"(55,60]",College,23143.573577501636,760.8437386715585,30.41830063280874,214.04024894326616,2019
+2007,60,"(55,60]",College,23143.573577501636,760.8437386715585,30.41830063280874,220.34066061353997,2019
+2007,35,"(30,35]",HS,169.5306474820144,77.99752059882516,2.1735389302178403,9046.165900550743,2019
+2007,35,"(30,35]",HS,169.54495748855462,77.99752059882516,2.1737223976720665,8894.489703083056,2019
+2007,35,"(30,35]",HS,169.5306474820144,77.99752059882516,2.1735389302178403,9145.951203808498,2019
+2007,35,"(30,35]",HS,169.54495748855462,77.99752059882516,2.1737223976720665,8936.554364565503,2019
+2007,35,"(30,35]",HS,169.54495748855462,77.99752059882516,2.1737223976720665,8947.884066873921,2019
+2007,59,"(55,60]",HS,299.89480706344017,44.14953996159914,6.7927051408527905,11480.581591680047,2019
+2007,59,"(55,60]",HS,300.0379071288424,44.14953996159914,6.795946399210786,11239.84030749361,2019
+2007,59,"(55,60]",HS,300.0379071288424,44.14953996159914,6.795946399210786,11807.092295458297,2019
+2007,59,"(55,60]",HS,300.0379071288424,44.14953996159914,6.795946399210786,11403.120641984659,2019
+2007,59,"(55,60]",HS,299.89480706344017,44.14953996159914,6.7927051408527905,11263.812729372297,2019
+2007,39,"(35,40]",College,14955.55955526488,8079.365812972644,1.851080877072241,20.756848014345586,2019
+2007,39,"(35,40]",College,16425.19722694572,9065.372205448357,1.8118613174066975,20.04438067113869,2019
+2007,39,"(35,40]",College,31193.267076520602,13951.25462786533,2.2358754039380226,22.495626203868987,2019
+2007,39,"(35,40]",College,9579.57629823414,6607.714480919339,1.449756390942201,20.703564104992243,2019
+2007,39,"(35,40]",College,23655.041831262264,8329.546539421706,2.839895511635446,24.348392998485515,2019
+2007,93,"(90,95]",NoHS,377.7841726618705,50.03614528981236,7.550225351567789,10670.15900514958,2019
+2007,93,"(90,95]",NoHS,377.7841726618705,54.451099285972276,6.938044917656887,10370.988807410382,2019
+2007,93,"(90,95]",NoHS,377.7841726618705,45.62119129365245,8.280892321074349,10901.837713957026,2019
+2007,93,"(90,95]",NoHS,377.7841726618705,58.86605328213219,6.417691548832621,10579.473031901052,2019
+2007,93,"(90,95]",NoHS,377.7841726618705,33.84798063722601,11.161202693621949,10706.127690544372,2019
+2007,65,"(60,65]",HS,950.1844342707652,105.95889590783793,8.967481457123023,7559.399803878157,2019
+2007,65,"(60,65]",HS,948.753433616743,105.95889590783793,8.953976213964706,7732.529340174429,2019
+2007,65,"(60,65]",HS,948.753433616743,105.95889590783793,8.953976213964706,7277.10106645459,2019
+2007,65,"(60,65]",HS,948.753433616743,105.95889590783793,8.953976213964706,7615.709714363735,2019
+2007,65,"(60,65]",HS,947.3224329627208,105.95889590783793,8.940470970806388,7679.0907152728105,2019
+2007,56,"(55,60]",HS,401.39568345323744,101.54394191167802,3.9529259539911075,7921.49206436512,2019
+2007,56,"(55,60]",HS,414.27468933943754,101.54394191167802,4.079757802782265,7724.264535106222,2019
+2007,56,"(55,60]",HS,417.2797907128842,101.54394191167802,4.109351900833536,8234.973763216756,2019
+2007,56,"(55,60]",HS,404.973185088293,101.54394191167802,3.9881570230997623,7865.586592192512,2019
+2007,56,"(55,60]",HS,406.11798561151085,101.54394191167802,3.9994309652145326,7690.8287336532085,2019
+2007,68,"(65,70]",College,120033.76586003923,7108.075933817462,16.88695604516058,27.52912242928956,2019
+2007,68,"(65,70]",College,120033.76586003923,7108.075933817462,16.88695604516058,24.49741035927855,2019
+2007,68,"(65,70]",College,120035.19686069326,7108.075933817462,16.88715736555549,27.1715838276857,2019
+2007,68,"(65,70]",College,120048.07586657946,7108.075933817462,16.888969249109646,26.94799926552303,2019
+2007,68,"(65,70]",College,120046.64486592545,7108.075933817462,16.888767928714742,24.551341051042577,2019
+2007,55,"(50,55]",College,17220.518770438193,804.9932786331577,21.39212739723474,261.26653694633353,2019
+2007,55,"(50,55]",College,21547.721648136037,735.8256660266525,29.283732061821766,254.3811105636966,2019
+2007,55,"(50,55]",College,16223.111314584698,787.333462648518,20.605133763795113,256.4585475007385,2019
+2007,55,"(50,55]",College,28738.64303466318,760.8437386715585,37.772070103174094,286.2762203759471,2019
+2007,55,"(50,55]",College,28951.71903204709,803.5216273011043,36.03103892709286,300.58970116031674,2019
+2007,26,"(25,30]",College,59.28635709614127,98.60063924757141,0.6012776139035176,5776.854866090912,2019
+2007,26,"(25,30]",College,67.71495094833224,98.60063924757141,0.6867597559718671,5909.769875949147,2019
+2007,26,"(25,30]",College,57.84104643557881,98.60063924757141,0.5866193858069076,5559.080598137273,2019
+2007,26,"(25,30]",College,70.57695225637671,98.60063924757141,0.71578595022258,5821.203132045714,2019
+2007,26,"(25,30]",College,72.16536298234139,98.60063924757141,0.7318954880317255,5869.795248806392,2019
+2007,42,"(40,45]",College,3315.6285153695226,729.9390606984392,4.542336057748406,1527.0210961694656,2019
+2007,42,"(40,45]",College,3315.6285153695226,339.9514577043134,9.753241059061512,1527.4615032207564,2019
+2007,42,"(40,45]",College,3315.6285153695226,250.1807264490618,13.252933439077703,1483.8031134829923,2019
+2007,42,"(40,45]",College,3317.059516023545,460.6268669326843,7.201185502078622,1468.1130741853735,2019
+2007,42,"(40,45]",College,3315.6285153695226,208.97448915156926,15.866187920022602,1552.8401450785364,2019
+2007,49,"(45,50]",HS,411.41268803139303,73.58256660266524,5.591170667543571,9918.033290827818,2019
+2007,49,"(45,50]",HS,411.41268803139303,73.58256660266524,5.591170667543571,9708.076944761267,2019
+2007,49,"(45,50]",HS,411.41268803139303,73.58256660266524,5.591170667543571,10362.774390244263,2019
+2007,49,"(45,50]",HS,411.41268803139303,73.58256660266524,5.591170667543571,10010.705309942015,2019
+2007,49,"(45,50]",HS,411.41268803139303,73.58256660266524,5.591170667543571,9842.249554573062,2019
+2007,55,"(50,55]",College,513.729234793983,72.11091527061193,7.124153574616298,8926.166002692988,2019
+2007,55,"(50,55]",College,482.2472204054938,72.11091527061193,6.687575918233128,8696.471976995934,2019
+2007,55,"(50,55]",College,542.3492478744278,72.11091527061193,7.521042353146455,9143.645345105017,2019
+2007,55,"(50,55]",College,484.2506213211249,72.11091527061193,6.7153581327302385,8841.736169667302,2019
+2007,55,"(50,55]",College,487.9712230215828,72.11091527061193,6.766953673939159,8731.8715053442,2019
+2007,42,"(40,45]",HS,107.96899934597776,97.1289879155181,1.1116042868673583,5979.446770801527,2019
+2007,42,"(40,45]",HS,108.11209941137999,97.1289879155181,1.113077586120993,5887.092271161066,2019
+2007,42,"(40,45]",HS,107.84020928711577,97.1289879155181,1.1102783175390873,6103.575642495746,2019
+2007,42,"(40,45]",HS,107.82589928057554,97.1289879155181,1.1101309876137238,5940.927940902928,2019
+2007,42,"(40,45]",HS,107.96899934597776,97.1289879155181,1.1116042868673583,5848.637011416782,2019
+2007,64,"(60,65]",College,19276.96688031393,79.46917193087846,242.57163390453914,2084.8443314421766,2019
+2007,64,"(60,65]",College,16510.98571615435,79.46917193087846,207.76592123692257,2025.2859046207923,2019
+2007,64,"(60,65]",College,16345.59066056246,70.63926393855863,231.39525738518032,2052.8780510737447,2019
+2007,64,"(60,65]",College,27140.029274035318,82.41247459498507,329.3194314017945,1388.8200948345213,2019
+2007,64,"(60,65]",College,18703.171393067365,73.58256660266524,254.179383196317,2078.1243266214256,2019
+2007,64,"(60,65]",HS,171.29077828646174,17.659815984639657,9.699465636303847,8217.43610762664,2019
+2007,64,"(60,65]",HS,155.34943100065402,17.659815984639657,8.796775183601884,8284.976686103408,2019
+2007,64,"(60,65]",HS,138.73551340745584,17.659815984639657,7.855999945193466,8216.991696341782,2019
+2007,64,"(60,65]",HS,148.96716808371485,17.659815984639657,8.435374876685302,8216.371800544159,2019
+2007,64,"(60,65]",HS,150.38385873119688,17.659815984639657,8.51559602104571,8216.517631505674,2019
+2007,72,"(70,75]",College,102729.67665140616,1479.8925795128032,69.41698206583743,279.8434979586892,2019
+2007,72,"(70,75]",College,112043.20130804447,1296.6719886721667,86.40828388895812,265.43303737578566,2019
+2007,72,"(70,75]",College,112907.2395029431,1248.5489901140238,90.43076434880768,247.69398697716196,2019
+2007,72,"(70,75]",College,101557.54401569655,1341.704519432998,75.69292831972764,251.2308762200938,2019
+2007,72,"(70,75]",College,102812.24538914324,1258.2618889055755,81.70973490945384,248.11080690644516,2019
+2007,66,"(65,70]",HS,732.6723348593853,70.63926393855863,10.372026745588075,8442.306449384569,2019
+2007,66,"(65,70]",HS,732.6723348593853,69.16761260650532,10.592708165706972,8635.282680730217,2019
+2007,66,"(65,70]",HS,732.6723348593853,69.16761260650532,10.592708165706972,8129.1893805532045,2019
+2007,66,"(65,70]",HS,732.6723348593853,69.16761260650532,10.592708165706972,8507.13001370377,2019
+2007,66,"(65,70]",HS,734.1033355134075,69.16761260650532,10.613397048843117,8578.20656595471,2019
+2007,34,"(30,35]",NoHS,181.8086330935252,50.03614528981236,3.633545950441999,7756.592033124519,2019
+2007,34,"(30,35]",NoHS,183.1537737083061,50.03614528981236,3.6604293285877323,7726.363416878824,2019
+2007,34,"(30,35]",NoHS,180.44918247220406,50.03614528981236,3.606376578911736,7852.756146050655,2019
+2007,34,"(30,35]",NoHS,187.5183257030739,50.03614528981236,3.7476573108691027,7808.116420988177,2019
+2007,34,"(30,35]",NoHS,188.82053629823415,48.56449395775905,3.8880367303418937,7727.80124466097,2019
+2007,36,"(35,40]",NoHS,0,41.206237297492535,0,6191.0043391712525,2019
+2007,36,"(35,40]",NoHS,0,41.206237297492535,0,6195.940202798341,2019
+2007,36,"(35,40]",NoHS,0,41.206237297492535,0,6190.256498326715,2019
+2007,36,"(35,40]",NoHS,0,41.206237297492535,0,6228.645435466684,2019
+2007,36,"(35,40]",NoHS,0,41.206237297492535,0,6228.137638635768,2019
+2007,80,"(75,80]",HS,606908.842380641,133144.71096485865,4.558264748051649,8.062516698765098,2019
+2007,80,"(75,80]",HS,536900.2835840419,126410.4344693827,4.247278207987506,10.97509811371962,2019
+2007,80,"(75,80]",HS,606058.8279921517,127258.10563664541,4.762437920635134,6.484279699490249,2019
+2007,80,"(75,80]",HS,609196.8693263571,135218.26769172173,4.505285267485002,7.440197500882029,2019
+2007,80,"(75,80]",HS,608229.0835840418,128514.89587421894,4.7327516351048695,4.861763790381563,2019
+2007,42,"(40,45]",HS,-10.589404839764553,13.244861988479741,-0.7995103949724142,6637.752299731428,2019
+2007,42,"(40,45]",HS,-10.732504905166776,17.659815984639657,-0.6077359421243012,6623.48757746523,2019
+2007,42,"(40,45]",HS,-10.660954872465664,8.829907992319828,-1.2073687383536118,6588.540449945879,2019
+2007,42,"(40,45]",HS,-10.732504905166776,12.214706056042429,-0.8786543741556162,6552.917988519152,2019
+2007,42,"(40,45]",HS,-10.603714846304774,13.244861988479741,-0.8005908144250795,6506.020465471867,2019
+2007,42,"(40,45]",HS,7.870503597122303,73.58256660266524,0.10696152581387702,6987.388881357588,2019
+2007,42,"(40,45]",HS,8.242563767168084,73.58256660266524,0.1120178888523512,6967.92146980268,2019
+2007,42,"(40,45]",HS,8.88651406147809,73.58256660266524,0.12076928641894114,6876.915560531283,2019
+2007,42,"(40,45]",HS,7.412583387835187,73.58256660266524,0.10073830976652418,6842.112097385162,2019
+2007,42,"(40,45]",HS,12.163505559189012,73.58256660266524,0.1653041762578099,6851.143956721558,2019
+2007,49,"(45,50]",HS,1658.959058207979,73.58256660266524,22.545544886550477,5298.5763136097585,2019
+2007,49,"(45,50]",HS,1695.7071550032701,73.58256660266524,23.04495797435054,5418.9800732857075,2019
+2007,49,"(45,50]",HS,1876.8861478090257,73.58256660266524,25.507212298585994,2360.252718435188,2019
+2007,49,"(45,50]",HS,1894.3014257684763,73.58256660266524,25.74388898388688,2535.752875865059,2019
+2007,49,"(45,50]",HS,1351.980797907129,73.58256660266524,18.373656428806317,5382.288438485962,2019
+2007,75,"(70,75]",College,107510.22053629823,7505.421793471855,14.324340922426186,21.675313581533945,2019
+2007,75,"(70,75]",College,111597.15840418574,7505.421793471855,14.86887232656956,19.861038623857652,2019
+2007,75,"(70,75]",College,108470.42197514715,7505.421793471855,14.452275296438861,20.311959995064793,2019
+2007,75,"(70,75]",College,111511.29836494442,7505.421793471855,14.857432591188397,20.57820491099639,2019
+2007,75,"(70,75]",College,113042.4690647482,7505.421793471855,15.06144120548581,19.60748872286788,2019
+2007,51,"(50,55]",HS,343.55463701765865,83.88412592703838,4.095585824146028,7288.619313221179,2019
+2007,51,"(50,55]",HS,337.2582341399608,91.2423825873049,3.6962892087704593,7171.195095052133,2019
+2007,51,"(50,55]",HS,309.9261216481361,80.94082326293177,3.8290458282263606,7565.878280195956,2019
+2007,51,"(50,55]",HS,325.0947285807718,95.65733658346481,3.3985341866288925,7365.557018218642,2019
+2007,51,"(50,55]",HS,336.5427338129496,95.65733658346481,3.5182114183087543,7285.913562909472,2019
+2007,35,"(30,35]",College,58.671026814911706,111.84550123605116,0.5245720763599231,7421.620859834053,2019
+2007,35,"(30,35]",College,58.671026814911706,111.84550123605116,0.5245720763599231,7297.183253510919,2019
+2007,35,"(30,35]",College,58.671026814911706,111.84550123605116,0.5245720763599231,7503.4863370211915,2019
+2007,35,"(30,35]",College,58.671026814911706,111.84550123605116,0.5245720763599231,7331.693782341809,2019
+2007,35,"(30,35]",College,58.671026814911706,111.84550123605116,0.5245720763599231,7340.9888534152615,2019
+2007,54,"(50,55]",College,906.5389143230869,220.74769980799567,4.106674339581279,5335.605070618886,2019
+2007,54,"(50,55]",College,906.5389143230869,220.74769980799567,4.106674339581279,5456.613859256693,2019
+2007,54,"(50,55]",College,906.6820143884892,220.74769980799567,4.107322591252878,5137.357545386167,2019
+2007,54,"(50,55]",College,906.6820143884892,220.74769980799567,4.107322591252878,5376.8212440211955,2019
+2007,54,"(50,55]",College,906.5389143230869,220.74769980799567,4.106674339581279,5421.3114168997645,2019
+2007,36,"(35,40]",HS,-0.4149901896664487,16.18816465258635,-0.025635407013243253,7156.399615113405,2019
+2007,36,"(35,40]",HS,-0.4149901896664487,16.18816465258635,-0.025635407013243253,7167.05919455057,2019
+2007,36,"(35,40]",HS,-0.4149901896664487,16.18816465258635,-0.025635407013243253,7173.85677106948,2019
+2007,36,"(35,40]",HS,-0.4149901896664487,16.18816465258635,-0.025635407013243253,7186.067898282507,2019
+2007,36,"(35,40]",HS,-0.4006801831262263,16.18816465258635,-0.024751427461062448,7190.216013102137,2019
+2007,24,"(20,25]",HS,16.370647482014387,105.95889590783793,0.1544999817311557,6600.7536636138275,2019
+2007,24,"(20,25]",HS,18.94644865925442,128.03366588863753,0.14798020917196777,6579.496141470382,2019
+2007,24,"(20,25]",HS,16.19892740353172,116.26045523221109,0.13933308080702964,6502.867790157268,2019
+2007,24,"(20,25]",HS,22.638430346631786,120.675409228371,0.18759770935427209,6450.199150109377,2019
+2007,24,"(20,25]",HS,18.90351863963375,105.95889590783793,0.17840426212137822,6470.084667922715,2019
+2007,26,"(25,30]",College,120.43301504251144,151.5800872014904,0.7945173885698049,8952.184295681973,2019
+2007,26,"(25,30]",College,121.70660562459123,151.5800872014904,0.8029194854783972,8947.381259087368,2019
+2007,26,"(25,30]",College,121.70660562459123,153.0517385335437,0.7951991058103356,8910.872193807252,2019
+2007,26,"(25,30]",College,120.41870503597123,151.5800872014904,0.7944229829865623,8912.678059945694,2019
+2007,26,"(25,30]",College,120.28991497710922,151.5800872014904,0.7935733327373787,8983.820538566039,2019
+2007,59,"(55,60]",College,1843.9874427730545,191.31467316692962,9.638505046416919,2097.3154118662687,2019
+2007,59,"(55,60]",College,1842.6995421844344,191.31467316692962,9.631773202134925,2158.4304992592415,2019
+2007,59,"(55,60]",College,1841.9840418574233,191.31467316692962,9.62803328864493,2038.185024335849,2019
+2007,59,"(55,60]",College,1843.9874427730545,191.31467316692962,9.638505046416919,2057.0842000961266,2019
+2007,59,"(55,60]",College,1843.3005624591235,191.31467316692962,9.634914729466521,2040.8908540517853,2019
+2007,52,"(50,55]",HS,548.93185088293,142.75017920917054,3.845402183899084,6865.731940076106,2019
+2007,52,"(50,55]",HS,549.0749509483322,142.75017920917054,3.8464046349376395,6701.744702695425,2019
+2007,52,"(50,55]",HS,548.93185088293,144.22183054122385,3.806163386104195,7028.188446474944,2019
+2007,52,"(50,55]",HS,550.3628515369523,142.75017920917054,3.85542669428464,6835.930098784903,2019
+2007,52,"(50,55]",HS,549.0749509483322,142.75017920917054,3.8464046349376395,6752.4180945743965,2019
+2007,57,"(55,60]",HS,173.38003924133423,47.09284262570575,3.681664337389017,9252.313951709224,2019
+2007,57,"(55,60]",HS,258.35285807717463,166.29660052202343,1.5535666830601254,9021.95191816858,2019
+2007,57,"(55,60]",HS,279.47442773054286,88.29907992319828,3.165088786583361,9618.461020004357,2019
+2007,57,"(55,60]",HS,290.35003270111184,108.90219857194455,2.6661540033950426,9187.01628102337,2019
+2007,57,"(55,60]",HS,341.25072596468283,77.99752059882516,4.3751483809322895,8982.898854710753,2019
+2007,41,"(40,45]",HS,4791.748620013081,522.4362228789231,9.17193029535318,2013.587363907302,2019
+2007,41,"(40,45]",HS,4787.555788096795,522.4362228789231,9.163904757052675,1957.1246639145545,2019
+2007,41,"(40,45]",HS,4788.843688685415,522.4362228789231,9.166369939465799,1982.8991247748581,2019
+2007,41,"(40,45]",HS,4788.986788750817,522.4362228789231,9.166643848622812,1973.5934708357643,2019
+2007,41,"(40,45]",HS,4788.986788750817,522.4362228789231,9.166643848622812,2007.2640866571842,2019
+2007,27,"(25,30]",NoHS,41.255748855461086,9.71289879155181,4.247521748228753,5731.052164451766,2019
+2007,27,"(25,30]",NoHS,41.098338783518635,9.71289879155181,4.231315456438771,5721.774134872701,2019
+2007,27,"(25,30]",NoHS,40.96954872465664,9.71289879155181,4.21805576315606,5715.810756496497,2019
+2007,27,"(25,30]",NoHS,41.098338783518635,9.71289879155181,4.231315456438771,5731.682282717253,2019
+2007,27,"(25,30]",NoHS,41.255748855461086,9.71289879155181,4.247521748228753,5761.152058979637,2019
+2007,47,"(45,50]",College,26749.69522563767,2604.8228577343493,10.269295336614293,37.30020714786147,2019
+2007,47,"(45,50]",College,26748.264224983654,2781.4210175807457,9.616762099629579,39.41885248091799,2019
+2007,47,"(45,50]",College,26748.264224983654,2531.240291131684,10.56725602808134,39.4891560730658,2019
+2007,47,"(45,50]",College,26749.69522563767,2648.972397695949,10.098140414337387,40.28021201412257,2019
+2007,47,"(45,50]",College,26749.69522563767,2722.554964298614,9.825217700436378,40.69150697418529,2019
+2007,64,"(60,65]",College,1562.738574231524,367.91283301332624,4.247578322920091,1151.5148525281447,2019
+2007,64,"(60,65]",College,1372.8018574231523,367.91283301332624,3.731323656691877,1144.1142969285268,2019
+2007,64,"(60,65]",College,1849.3966252452585,367.91283301332624,5.026724972048668,1114.1385049679463,2019
+2007,64,"(60,65]",College,1194.5993459777633,367.91283301332624,3.246962972706346,1121.6904580716014,2019
+2007,64,"(60,65]",College,1974.0081621975148,367.91283301332624,5.365423505425846,1117.1965827340011,2019
+2007,57,"(55,60]",HS,223.37920209287117,117.73210656426438,1.8973516113120683,7179.489923088557,2019
+2007,57,"(55,60]",HS,262.302419882276,117.73210656426438,2.227959963827688,6991.506307407528,2019
+2007,57,"(55,60]",HS,197.19189012426423,117.73210656426438,1.674920256494574,7359.863920737756,2019
+2007,57,"(55,60]",HS,302.37043819489867,117.73210656426438,2.5682920914172973,7087.616680120666,2019
+2007,57,"(55,60]",HS,183.7404839764552,117.73210656426438,1.5606658993752054,7001.029760969004,2019
+2007,63,"(60,65]",College,205097.31013734467,27402.147802832533,7.484716585469405,23.530065098899122,2019
+2007,63,"(60,65]",College,204732.6911706998,29800.93947407942,6.870007952224943,21.56054305711446,2019
+2007,63,"(60,65]",College,209315.32766514062,30919.394486439935,6.769709793538755,22.05004966466952,2019
+2007,63,"(60,65]",College,203458.81438848923,31611.07061250499,6.436315203699655,22.33907709583244,2019
+2007,63,"(60,65]",College,214509.14453891432,30860.5284331578,6.9509226001599185,21.285296950354944,2019
+2007,28,"(25,30]",HS,9.158404185742315,36.79128330133262,0.24892864189411376,6153.256820465829,2019
+2007,28,"(25,30]",HS,9.158404185742315,36.79128330133262,0.24892864189411376,6180.335015745939,2019
+2007,28,"(25,30]",HS,9.158404185742315,36.79128330133262,0.24892864189411376,6187.467599538386,2019
+2007,28,"(25,30]",HS,9.158404185742315,36.79128330133262,0.24892864189411376,6176.259495862479,2019
+2007,28,"(25,30]",HS,9.158404185742315,36.79128330133262,0.24892864189411376,6184.060454172774,2019
+2007,40,"(35,40]",HS,1674.9290255068674,136.86357388095735,12.237945992581672,2794.9946627661798,2019
+2007,40,"(35,40]",HS,1976.5553433616744,135.39192254890403,14.59876856869165,2831.4537778834447,2019
+2007,40,"(35,40]",HS,1913.0046043165469,133.92027121685072,14.284653002374148,2826.07972515849,2019
+2007,40,"(35,40]",HS,1850.469875735775,123.6187118924776,14.96917293027043,3024.186427395804,2019
+2007,40,"(35,40]",HS,1688.0656115107913,111.84550123605116,15.092834247737066,2899.4357514079047,2019
+2007,28,"(25,30]",HS,22.523950294310005,52.979447953918964,0.4251450546238445,6796.854590629674,2019
+2007,28,"(25,30]",HS,22.523950294310005,52.979447953918964,0.4251450546238445,6794.972097446582,2019
+2007,28,"(25,30]",HS,22.523950294310005,52.979447953918964,0.4251450546238445,6844.007142236839,2019
+2007,28,"(25,30]",HS,22.523950294310005,51.50779662186566,0.43729205618452577,6836.651672710158,2019
+2007,28,"(25,30]",HS,22.523950294310005,52.979447953918964,0.4251450546238445,6756.485035796939,2019
+2007,73,"(70,75]",College,1503.981687377371,75.7900436007452,19.844053597596602,6462.793684804663,2019
+2007,73,"(70,75]",College,1504.2678875081754,75.7900436007452,19.847829820926307,6575.633563307747,2019
+2007,73,"(70,75]",College,1504.1247874427731,75.7900436007452,19.845941709261453,6508.582270450377,2019
+2007,73,"(70,75]",College,1504.1247874427731,75.7900436007452,19.845941709261453,6436.1380703376,2019
+2007,73,"(70,75]",College,1504.1247874427731,75.7900436007452,19.845941709261453,6509.826833158964,2019
+2007,44,"(40,45]",HS,215.50869849574886,125.0903632245309,1.7228241484031954,8710.591442352972,2019
+2007,44,"(40,45]",HS,245.55971223021584,125.0903632245309,1.9630585914076253,8616.179931162858,2019
+2007,44,"(40,45]",HS,216.65349901896667,125.0903632245309,1.7319759367081262,8879.252212462821,2019
+2007,44,"(40,45]",HS,285.48463047743627,125.0903632245309,2.282227208542082,8636.264670708832,2019
+2007,44,"(40,45]",HS,215.36559843034664,125.0903632245309,1.7216801748650792,8613.846985356084,2019
+2007,41,"(40,45]",HS,0.0858600392413342,19.131467316692962,0.004487896187994839,5469.84751694591,2019
+2007,41,"(40,45]",HS,0.10017004578155657,19.131467316692962,0.005235878885993979,5478.526393880359,2019
+2007,41,"(40,45]",HS,0.24327011118378025,19.131467316692962,0.012715705865985378,5482.34512915315,2019
+2007,41,"(40,45]",HS,0.2289601046435579,19.131467316692962,0.011967723167986239,5492.076884776552,2019
+2007,41,"(40,45]",HS,0.11448005232177895,20.603118648746268,0.0055564428994221825,5495.406472646849,2019
+2007,24,"(20,25]",HS,-7.584303466317855,73.58256660266524,-0.10307201578428148,8003.677129964033,2019
+2007,24,"(20,25]",HS,-11.018705035971223,73.58256660266524,-0.1497461361394278,7984.738115465165,2019
+2007,24,"(20,25]",HS,-9.587704381948987,73.58256660266524,-0.13029858599145017,8002.059471532147,2019
+2007,24,"(20,25]",HS,-8.442903858731198,73.58256660266524,-0.11474054587306808,7840.0835641570975,2019
+2007,24,"(20,25]",HS,-7.870503597122303,73.58256660266524,-0.10696152581387702,7786.275587855198,2019
+2007,70,"(65,70]",College,1366854.3325049053,36129.040201908625,37.83256695628181,4.786703634160355,2019
+2007,70,"(65,70]",College,1288645.7106605626,34833.987029701726,36.99391946037585,6.55355497969647,2019
+2007,70,"(65,70]",College,1244996.4701111838,36276.20533511397,34.31992014076718,3.850347020650047,2019
+2007,70,"(65,70]",College,1402543.3457161544,34436.641170047325,40.728227203995544,4.430308972979018,2019
+2007,70,"(65,70]",College,1262234.3039895357,38351.23371330912,32.91248238388481,2.92565295441845,2019
+2007,48,"(45,50]",HS,139.66566383257032,153.0517385335437,0.9125388915589507,7346.505765423453,2019
+2007,48,"(45,50]",HS,165.28057553956836,153.0517385335437,1.0799000202362583,7214.271580120895,2019
+2007,48,"(45,50]",HS,173.15107913669064,153.0517385335437,1.131323830723699,7582.314503073171,2019
+2007,48,"(45,50]",HS,159.98587311968606,153.0517385335437,1.045305820453798,7341.1540801002875,2019
+2007,48,"(45,50]",HS,174.5820797907129,153.0517385335437,1.1406736144486884,7223.488965315273,2019
+2007,64,"(60,65]",College,15508.612688031393,151.5800872014904,102.3129948950109,836.0964694198144,2019
+2007,64,"(60,65]",College,12524.690124264225,142.75017920917054,87.73852469853583,825.0409906376213,2019
+2007,64,"(60,65]",College,12627.579071288425,181.0131138425565,69.76057592308905,822.4111109888397,2019
+2007,64,"(60,65]",College,12112.991236102029,129.5053172206908,93.53277144181043,816.5759364147646,2019
+2007,64,"(60,65]",College,12060.187311968608,135.39192254890403,89.07612127017715,836.8676845669876,2019
+2007,53,"(50,55]",HS,43.51672988881622,79.46917193087846,0.5475925925925926,5113.085762422148,2019
+2007,53,"(50,55]",HS,27.489522563767167,80.94082326293177,0.33962494394786397,5111.713392276995,2019
+2007,53,"(50,55]",HS,26.344722040549378,79.46917193087846,0.33150870205950767,5186.133241320016,2019
+2007,53,"(50,55]",HS,65.41103989535644,80.94082326293177,0.8081341066036888,5151.588525304434,2019
+2007,53,"(50,55]",HS,91.75576193590582,80.94082326293177,1.13361537771666,5096.43814389496,2019
+2007,38,"(35,40]",College,439.4603008502289,103.01559324373132,4.265959036031381,9155.668357548047,2019
+2007,38,"(35,40]",College,438.0293001962067,103.01559324373132,4.252067928782826,9413.162472988479,2019
+2007,38,"(35,40]",College,438.0293001962067,103.01559324373132,4.252067928782826,8845.014360590718,2019
+2007,38,"(35,40]",College,438.0293001962067,103.01559324373132,4.252067928782826,9251.520815336151,2019
+2007,38,"(35,40]",College,439.4603008502289,103.01559324373132,4.265959036031381,9329.146946462923,2019
+2007,36,"(35,40]",HS,10.70388489208633,23.546421312852875,0.4545864847089773,7686.652693590164,2019
+2007,36,"(35,40]",HS,10.70388489208633,23.546421312852875,0.4545864847089773,7564.1089148388755,2019
+2007,36,"(35,40]",HS,10.70388489208633,22.07476998079957,0.48489225035624245,7831.536603031464,2019
+2007,36,"(35,40]",HS,10.560784826684106,22.07476998079957,0.47840973364024986,7714.151558900912,2019
+2007,36,"(35,40]",HS,10.560784826684106,23.546421312852875,0.44850912528773423,7742.987166395602,2019
+2007,35,"(30,35]",College,-22.89601046435579,95.65733658346481,-0.2393544633597248,5809.630813226062,2019
+2007,35,"(30,35]",College,-25.32871157619359,95.65733658346481,-0.26478587509169554,5823.178841096439,2019
+2007,35,"(30,35]",College,-26.90281229561805,95.65733658346481,-0.2812414944476766,5827.891860556931,2019
+2007,35,"(30,35]",College,-25.185611510791368,95.65733658346481,-0.26328990969569727,5819.911624007505,2019
+2007,35,"(30,35]",College,-24.613211249182473,95.65733658346481,-0.25730604811170416,5774.137480931078,2019
+2007,57,"(55,60]",College,508145.756442119,2913.8696374655433,174.38863767567153,38.34562330796444,2019
+2007,57,"(55,60]",College,514058.0787442773,3016.8852307092743,170.39364756458482,34.91519233984594,2019
+2007,57,"(55,60]",College,508889.1612818836,3075.751283991407,165.45198694398246,35.924389643298575,2019
+2007,57,"(55,60]",College,519280.37253106607,3208.199903876204,161.8603541205965,36.2951475447028,2019
+2007,57,"(55,60]",College,519108.50935251795,2869.720097503944,180.8916868944932,34.21946385892708,2019
+2007,75,"(70,75]",College,17059.674296926096,553.3409008520425,30.8303150384462,1970.8291575333237,2019
+2007,75,"(70,75]",College,17073.984303466317,729.9390606984392,23.390972236955157,1971.0089773554253,2019
+2007,75,"(70,75]",College,17059.674296926096,410.59072164287204,41.549098403067276,1915.3062788530901,2019
+2007,75,"(70,75]",College,17048.226291693918,485.64493957759055,35.10430131635327,1894.9733784998673,2019
+2007,75,"(70,75]",College,17042.50228907783,640.1683294431875,26.621907872108014,2004.5582045742551,2019
+2007,38,"(35,40]",HS,22.53826030085023,22.07476998079957,1.0209963827688262,5628.517053960478,2019
+2007,38,"(35,40]",HS,22.53826030085023,22.07476998079957,1.0209963827688262,5637.145041974074,2019
+2007,38,"(35,40]",HS,21.10725964682799,23.546421312852875,0.8964105146333443,5640.752794421753,2019
+2007,38,"(35,40]",HS,22.53826030085023,23.546421312852875,0.9571841088457744,5650.564390982453,2019
+2007,38,"(35,40]",HS,22.53826030085023,22.07476998079957,1.0209963827688262,5653.643713621707,2019
+2007,55,"(50,55]",College,25856.750817527798,1986.7292982719614,13.014732726807702,406.4927119900343,2019
+2007,55,"(50,55]",College,25856.750817527798,1986.7292982719614,13.014732726807702,455.3709873416334,2019
+2007,55,"(50,55]",College,25858.181818181816,1986.7292982719614,13.015453006442812,409.18610577439944,2019
+2007,55,"(50,55]",College,25856.750817527798,1986.7292982719614,13.014732726807702,417.2132808666214,2019
+2007,55,"(50,55]",College,25858.181818181816,1986.7292982719614,13.015453006442812,439.9933283133065,2019
+2007,56,"(55,60]",College,2301.049051667757,515.0779662186567,4.467380091135435,125.09982496484285,2019
+2007,56,"(55,60]",College,2301.049051667757,515.0779662186567,4.467380091135435,120.24957824194682,2019
+2007,56,"(55,60]",College,2302.480052321779,515.0779662186567,4.470158312585146,119.23914599966183,2019
+2007,56,"(55,60]",College,2301.049051667757,515.0779662186567,4.467380091135435,120.10314032419475,2019
+2007,56,"(55,60]",College,2301.049051667757,515.0779662186567,4.467380091135435,119.88556036753634,2019
+2007,47,"(45,50]",HS,27.19044342707652,47.09284262570575,0.5773795318151924,5831.661741856575,2019
+2007,47,"(45,50]",HS,22.468141268803137,47.09284262570575,0.47710310136468265,5720.492338199635,2019
+2007,47,"(45,50]",HS,21.351960758665797,47.09284262570575,0.45340139962183496,6030.670152943339,2019
+2007,47,"(45,50]",HS,30.052444735120993,47.09284262570575,0.6381531260276225,5853.887650433819,2019
+2007,47,"(45,50]",HS,21.50937083060824,47.09284262570575,0.4567439473035186,5743.828157956903,2019
+2007,38,"(35,40]",HS,202.9158927403532,117.73210656426438,1.7235391318645183,6550.852713548494,2019
+2007,38,"(35,40]",HS,202.62969260954873,117.73210656426438,1.7211081880960208,6446.534753806576,2019
+2007,38,"(35,40]",HS,202.62969260954873,117.73210656426438,1.7211081880960208,6721.450146903039,2019
+2007,38,"(35,40]",HS,202.77279267495095,117.73210656426438,1.7223236599802696,6487.164655510103,2019
+2007,38,"(35,40]",HS,204.3468933943754,117.73210656426438,1.735693850707004,6430.983677063732,2019
+2007,74,"(70,75]",College,6044.546762589928,445.9103536121513,13.55552010314481,2033.7012727314661,2019
+2007,74,"(70,75]",College,5628.125572269458,444.438702280098,12.663446147681467,1975.6038663199538,2019
+2007,74,"(70,75]",College,6011.633747547417,445.9103536121513,13.481709269249848,2002.519153237296,2019
+2007,74,"(70,75]",College,5993.030739045127,445.9103536121513,13.439990102265734,1993.1899486337384,2019
+2007,74,"(70,75]",College,5416.337475474166,444.438702280098,12.186916773194596,2027.1461155187123,2019
+2007,53,"(50,55]",HS,136.80366252452583,220.74769980799567,0.6197285980488875,5760.980598831316,2019
+2007,53,"(50,55]",HS,138.80706344015695,220.74769980799567,0.6288041214512771,5891.636686454687,2019
+2007,53,"(50,55]",HS,139.09326357096143,220.74769980799567,0.6301006247944757,5546.927997202098,2019
+2007,53,"(50,55]",HS,138.80706344015695,220.74769980799567,0.6288041214512771,5805.4826885073835,2019
+2007,53,"(50,55]",HS,138.66396337475473,220.74769980799567,0.6281558697796777,5853.519793840289,2019
+2007,58,"(55,60]",HS,162889.37344669717,10124.961164526736,16.087901059550482,38.603519721292784,2019
+2007,58,"(55,60]",HS,166206.43296272072,9080.088718768891,18.304494384417815,34.25527757925021,2019
+2007,58,"(55,60]",HS,167040.7063440157,8506.144699268101,19.637651632988145,37.98078782298216,2019
+2007,58,"(55,60]",HS,197664.12034009155,8123.5153529342415,24.332337879892673,37.67642566924967,2019
+2007,58,"(55,60]",HS,160146.1451929366,9359.702471859018,17.1101747811358,34.47688193855838,2019
+2007,37,"(35,40]",HS,952.0475971223021,367.91283301332624,2.5876988017099634,6772.592245286852,2019
+2007,37,"(35,40]",HS,867.1921203400915,367.91283301332624,2.3570586359750076,6929.187636381277,2019
+2007,37,"(35,40]",HS,933.5075526487901,367.91283301332624,2.537306309766524,6516.865579791294,2019
+2007,37,"(35,40]",HS,941.3809182472205,367.91283301332624,2.5587063939493584,6824.813203302467,2019
+2007,37,"(35,40]",HS,1066.2113982995422,367.91283301332624,2.898000022361065,6880.621288995219,2019
+2007,32,"(30,35]",College,265.59372138652714,150.10843586943707,1.7693457389532596,7997.879256459853,2019
+2007,32,"(30,35]",College,277.041726618705,150.10843586943707,1.8456106414943483,7970.285292515799,2019
+2007,32,"(30,35]",College,272.74872465663833,150.10843586943707,1.8170113030414403,8002.794807518934,2019
+2007,32,"(30,35]",College,272.74872465663833,150.10843586943707,1.8170113030414403,7846.94708284691,2019
+2007,32,"(30,35]",College,279.9037279267495,150.10843586943707,1.8646768671296208,7771.021774567316,2019
+2007,64,"(60,65]",HS,222.37750163505558,38.262934633385925,5.811825563453317,11050.730629631713,2019
+2007,64,"(60,65]",HS,222.37750163505558,52.979447953918964,4.197429573605174,10831.279484018489,2019
+2007,64,"(60,65]",HS,222.37750163505558,36.79128330133262,6.0442985859914495,11413.26292873822,2019
+2007,64,"(60,65]",HS,222.37750163505558,38.262934633385925,5.811825563453317,10985.917438297405,2019
+2007,64,"(60,65]",HS,222.37750163505558,30.9046779731194,7.195593554751725,10807.545629157934,2019
+2007,47,"(45,50]",College,2438.425114453891,1177.3210656426438,2.071164090759618,4123.650992596074,2019
+2007,47,"(45,50]",College,2435.706213211249,1177.3210656426438,2.0688546941795463,4235.406849174391,2019
+2007,47,"(45,50]",College,2437.2803139306734,1177.3210656426438,2.0701917132522194,4068.51624181458,2019
+2007,47,"(45,50]",College,2436.994113799869,1177.3210656426438,2.0699486188753697,4037.3060074581394,2019
+2007,47,"(45,50]",College,2434.1321124918245,1177.3210656426438,2.0675176751068722,4075.6855106087046,2019
+2007,40,"(35,40]",HS,281.477828646174,147.16513320533048,1.9126665570536008,7793.380203454859,2019
+2007,40,"(35,40]",HS,343.01085676913016,147.16513320533048,2.33078888523512,7972.491593776902,2019
+2007,40,"(35,40]",HS,448.9049051667757,145.69348187327716,3.0811598391013058,7501.955163529795,2019
+2007,40,"(35,40]",HS,368.7688685415304,145.69348187327716,2.5311281177443625,7853.077597739728,2019
+2007,40,"(35,40]",HS,371.6308698495749,145.69348187327716,2.5507721077928247,7917.699555530349,2019
+2007,52,"(50,55]",College,336.1449156311314,214.86109447978248,1.5644754879658367,528.8465293737798,2019
+2007,52,"(50,55]",College,336.1449156311314,214.86109447978248,1.5644754879658367,552.9285876549242,2019
+2007,52,"(50,55]",College,336.1449156311314,214.86109447978248,1.5644754879658367,536.2409656081937,2019
+2007,52,"(50,55]",College,336.1449156311314,214.86109447978248,1.5644754879658367,530.4452498224106,2019
+2007,52,"(50,55]",College,336.1449156311314,214.86109447978248,1.5644754879658367,529.706458200713,2019
+2007,63,"(60,65]",College,470.22681491170704,32.3763293051727,14.523784042330574,10666.12895911124,2019
+2007,63,"(60,65]",College,472.94571615434927,30.9046779731194,15.30336981882526,10701.055585317441,2019
+2007,63,"(60,65]",College,470.79921517331593,30.9046779731194,15.233914282582484,10625.67400663951,2019
+2007,63,"(60,65]",College,470.22681491170704,30.9046779731194,15.215392806251076,10634.233232435596,2019
+2007,63,"(60,65]",College,470.0837148463048,30.9046779731194,15.210762437168224,10633.024288076535,2019
+2007,69,"(65,70]",College,14526.373839110529,4635.70169596791,3.133586842256358,356.4293398648648,2019
+2007,69,"(65,70]",College,17102.175016350557,4620.985182647378,3.700980275931693,350.5915049736072,2019
+2007,69,"(65,70]",College,16887.524918247218,4620.985182647378,3.654529121119644,346.632265902855,2019
+2007,69,"(65,70]",College,14122.831654676258,4620.985182647378,3.0562382471404597,345.0010800282827,2019
+2007,69,"(65,70]",College,15819.998430346634,4635.70169596791,3.4126437523162285,355.89436326221727,2019
+2007,35,"(30,35]",HS,-14.381556572923479,73.58256660266524,-0.19544787898717525,6732.494664739119,2019
+2007,35,"(30,35]",HS,-14.381556572923479,73.58256660266524,-0.19544787898717525,6710.54493358513,2019
+2007,35,"(30,35]",HS,-14.524656638325704,73.58256660266524,-0.19739263400197304,6755.768955096901,2019
+2007,35,"(30,35]",HS,-14.381556572923479,73.58256660266524,-0.19544787898717525,6697.142687318546,2019
+2007,35,"(30,35]",HS,-14.238456507521256,73.58256660266524,-0.1935031239723775,6686.267759986593,2019
+2007,49,"(45,50]",HS,693.6060170045781,141.27852787711726,4.90949351912748,5810.171310681279,2019
+2007,49,"(45,50]",HS,669.2790058862001,141.27852787711726,4.737301668858928,5941.943018440399,2019
+2007,49,"(45,50]",HS,693.6060170045781,141.27852787711726,4.90949351912748,5594.290999399713,2019
+2007,49,"(45,50]",HS,664.9860039241333,141.27852787711726,4.706914871752712,5855.053385922725,2019
+2007,49,"(45,50]",HS,673.5720078482668,141.27852787711726,4.767688465965143,5903.500660907481,2019
+2007,22,"(20,25]",HS,3.820771746239372,42.67788862954583,0.08952579119844879,7382.906250296604,2019
+2007,22,"(20,25]",HS,3.634741661216481,39.73458596543923,0.09147551365900591,7386.970678152885,2019
+2007,22,"(20,25]",HS,4.013956834532374,36.79128330133262,0.10910075633015455,7342.837712261557,2019
+2007,22,"(20,25]",HS,3.6705166775670373,29.433026641066096,0.1247074153239066,7338.576217789695,2019
+2007,22,"(20,25]",HS,3.80646173969915,36.79128330133262,0.10346096678724104,7418.162370208309,2019
+2007,41,"(40,45]",College,7389.687377370831,247.2374237849552,29.88903242980849,1390.125671207694,2019
+2007,41,"(40,45]",College,6931.767168083716,332.59320104404685,20.84157807893887,1386.422085850449,2019
+2007,41,"(40,45]",College,7432.617396991498,247.2374237849552,30.062671270415432,1365.746885862788,2019
+2007,41,"(40,45]",College,7046.247220405494,191.31467316692962,36.83066804947765,1355.6969853838573,2019
+2007,41,"(40,45]",College,7375.377370830609,248.7090751170085,29.654637119135135,1388.4808431893498,2019
+2007,57,"(55,60]",NoHS,27699.879659908438,3546.6797102484643,7.810087722290523,276.285072556514,2019
+2007,57,"(55,60]",NoHS,27699.879659908438,3546.6797102484643,7.810087722290523,305.81722229483165,2019
+2007,57,"(55,60]",NoHS,27699.879659908438,3546.6797102484643,7.810087722290523,275.05156335312097,2019
+2007,57,"(55,60]",NoHS,27699.879659908438,3546.6797102484643,7.810087722290523,280.27833032238686,2019
+2007,57,"(55,60]",NoHS,27699.879659908438,3546.6797102484643,7.810087722290523,297.01082620177823,2019
+2007,61,"(60,65]",College,45833.51994767822,2163.327458118358,21.18658447923727,36.879661691151995,2019
+2007,61,"(60,65]",College,45832.0889470242,2178.043971438891,21.042774869575265,39.81587256824468,2019
+2007,61,"(60,65]",College,45832.0889470242,2163.327458118358,21.185922997939716,39.42713048163899,2019
+2007,61,"(60,65]",College,45832.0889470242,2178.043971438891,21.042774869575265,40.03225177031999,2019
+2007,61,"(60,65]",College,45833.51994767822,2178.043971438891,21.04343188140459,40.12926981390757,2019
+2007,24,"(20,25]",HS,9.07254414650098,73.58256660266524,0.12329746793817822,7191.827897184781,2019
+2007,24,"(20,25]",HS,9.05823413996076,73.58256660266524,0.12310299243669846,7196.277182157248,2019
+2007,24,"(20,25]",HS,10.489234793982996,73.58256660266524,0.1425505425846761,7241.575465800772,2019
+2007,24,"(20,25]",HS,10.503544800523217,73.58256660266524,0.14274501808615586,7180.3627694090565,2019
+2007,24,"(20,25]",HS,9.07254414650098,73.58256660266524,0.12329746793817822,7181.32416490841,2019
+2007,57,"(55,60]",College,20215.74623937214,735.8256660266525,27.47355409404801,36.661168280329676,2019
+2007,57,"(55,60]",College,43988.960104643564,735.8256660266525,59.78176915488326,42.215176149109496,2019
+2007,57,"(55,60]",College,20192.850228907784,735.8256660266525,27.442438013811245,38.11231870136854,2019
+2007,57,"(55,60]",College,20088.387181164162,735.8256660266525,27.300470897731007,37.67219357889128,2019
+2007,57,"(55,60]",College,20152.78221059516,735.8256660266525,27.387984873396903,36.36285594052366,2019
+2007,65,"(60,65]",College,668.7066056245912,111.84550123605116,5.978842226414441,7417.0932268776105,2019
+2007,65,"(60,65]",College,649.5884368868541,111.84550123605116,5.8079084961664265,7587.668890058286,2019
+2007,65,"(60,65]",College,648.8586265533029,111.84550123605116,5.801383331314145,7139.291260619643,2019
+2007,65,"(60,65]",College,664.12740353172,111.84550123605116,5.937900015576592,7474.420217580455,2019
+2007,65,"(60,65]",College,687.4097841726618,111.84550123605116,6.146065568805275,7536.482532357293,2019
+2007,50,"(45,50]",College,37.034296926095486,103.01559324373132,0.3595018555926152,5291.0823911008,2019
+2007,50,"(45,50]",College,37.034296926095486,103.01559324373132,0.3595018555926152,5242.632433967592,2019
+2007,50,"(45,50]",College,42.75829954218443,103.01559324373132,0.41506628458683703,5350.7706872673425,2019
+2007,50,"(45,50]",College,34.17229561805102,103.01559324373132,0.3317196410955044,5234.51614929547,2019
+2007,50,"(45,50]",College,42.75829954218443,103.01559324373132,0.41506628458683703,5119.5661170272215,2019
+2007,67,"(65,70]",HS,64.46657946370176,25.01807264490618,2.576800394607037,6460.759808143195,2019
+2007,67,"(65,70]",HS,49.16918247220406,25.01807264490618,1.965346538483858,6456.06613348572,2019
+2007,67,"(65,70]",HS,82.62597776324395,25.01807264490618,3.3026516045418495,6453.200527996816,2019
+2007,67,"(65,70]",HS,58.22741661216482,25.01807264490618,2.327414163297677,6469.087410117005,2019
+2007,67,"(65,70]",HS,78.70503597122303,25.01807264490618,3.1459272298199124,6464.701633458539,2019
+2007,44,"(40,45]",College,77487.2544146501,8094.082326293176,9.573321754207647,24.755079029137033,2019
+2007,44,"(40,45]",College,136538.92740353174,6592.997967598804,20.709687470639363,22.093652968638946,2019
+2007,44,"(40,45]",College,79898.49051667757,8049.932786331577,9.925361197094913,24.35979354714505,2019
+2007,44,"(40,45]",College,76329.5748855461,8241.247459498507,9.261895757974349,24.232082971453217,2019
+2007,44,"(40,45]",College,79374.74427730542,6975.627313932665,11.378868265907421,22.409307515448265,2019
+2007,81,"(80,85]",NoHS,50.78621321124918,19.131467316692962,2.6545905951989477,7199.924711381634,2019
+2007,81,"(80,85]",NoHS,47.49491170699804,19.131467316692962,2.4825545746591455,7208.305682875088,2019
+2007,81,"(80,85]",NoHS,49.212112491824726,19.131467316692962,2.572312498419042,7210.675468031911,2019
+2007,81,"(80,85]",NoHS,47.30888162197515,19.131467316692962,2.4728307995851564,7230.542192753646,2019
+2007,81,"(80,85]",NoHS,47.42336167429693,19.131467316692962,2.47881466116915,7233.913930998538,2019
+2007,63,"(60,65]",College,104405.80771746239,6666.58053420147,15.661073496649543,24.48193279445881,2019
+2007,63,"(60,65]",College,108853.35775016352,6740.163100804136,16.149959002798724,21.849872768560893,2019
+2007,63,"(60,65]",College,100411.88489208632,6696.013560842535,14.995770838829044,24.09100887159989,2019
+2007,63,"(60,65]",College,107121.84695879661,6710.73007416307,15.962770931768752,23.964707447655776,2019
+2007,63,"(60,65]",College,95566.51667756704,6696.013560842535,14.272151005850448,22.16204439977061,2019
+2007,59,"(55,60]",College,22398.73773708306,4429.670509480447,5.056524562977076,1662.0750737233436,2019
+2007,59,"(55,60]",College,23429.058207979073,4429.670509480447,5.289119847138935,716.5361203957398,2019
+2007,59,"(55,60]",College,22272.809679529106,4429.670509480447,5.028096250468405,1496.271761170075,2019
+2007,59,"(55,60]",College,23171.47809025507,4429.670509480447,5.23097102609847,1388.8200948345213,2019
+2007,59,"(55,60]",College,22272.809679529106,4429.670509480447,5.028096250468405,1107.4379408830573,2019
+2007,38,"(35,40]",College,11581.231393067364,1150.8313416656842,10.063361131879656,1389.2935172144714,2019
+2007,38,"(35,40]",College,12145.045650752125,1648.249491899701,7.368451020575939,1362.3077155543176,2019
+2007,38,"(35,40]",College,11489.504251144539,1150.8313416656842,9.9836560190609,1366.1983046090488,2019
+2007,38,"(35,40]",College,11539.589274035317,1545.23389865597,7.467859256823413,1352.7728037836478,2019
+2007,38,"(35,40]",College,11475.194244604318,2810.854044221812,4.082458236561066,1371.814004739434,2019
+2007,71,"(70,75]",NoHS,2258.1190320470896,30.610347706708737,73.76979359016518,9604.322374007594,2019
+2007,71,"(70,75]",NoHS,2214.4019620667104,32.08199903876204,69.02319145983486,9532.878770525374,2019
+2007,71,"(70,75]",NoHS,2285.7087246566384,33.55365037081535,68.12101513237221,9430.300811966708,2019
+2007,71,"(70,75]",NoHS,2216.190712884238,37.96860436697526,58.369032779404975,9560.195764228252,2019
+2007,71,"(70,75]",NoHS,2300.476651406148,29.13869637465543,78.94919600476985,9605.314485857702,2019
+2007,64,"(60,65]",HS,8190.189143230869,314.9333850594072,26.006100120779255,294.73848621339033,2019
+2007,64,"(60,65]",HS,15678.186265533028,298.7452204068208,52.480124181344294,286.5841130725682,2019
+2007,64,"(60,65]",HS,8772.463309352517,344.3664117004733,25.47421296413404,285.7869514638567,2019
+2007,64,"(60,65]",HS,15690.063570961413,314.9333850594072,49.8202614117958,282.88876728947264,2019
+2007,64,"(60,65]",HS,7552.964551994768,320.81999038762046,23.542686797257055,285.87550934954055,2019
+2007,39,"(35,40]",College,480.6731196860693,181.0131138425565,2.6554602010998734,8737.04079346737,2019
+2007,39,"(35,40]",College,503.56913015042517,77.99752059882516,6.456219714220123,7625.591115865345,2019
+2007,39,"(35,40]",College,388.6597776324395,186.8997191707697,2.079509692988475,8833.416238571515,2019
+2007,39,"(35,40]",College,531.6167429692609,97.1289879155181,5.473306727252798,7510.726749163781,2019
+2007,39,"(35,40]",College,445.61360366252455,89.77073125525159,4.963907472196915,8642.117441460428,2019
+2007,65,"(60,65]",HS,6141.282406801831,303.1601744029808,20.257550052199228,2471.198029089072,2019
+2007,65,"(60,65]",HS,6147.4357096141275,303.1601744029808,20.277847252596395,2511.2995225610684,2019
+2007,65,"(60,65]",HS,6142.7134074558535,303.1601744029808,20.26227033136136,2441.0581529957944,2019
+2007,65,"(60,65]",HS,6141.425506867234,303.1601744029808,20.258022080115445,2422.9750196199952,2019
+2007,65,"(60,65]",HS,6138.420405493786,303.1601744029808,20.24810949387497,2447.6025257546266,2019
+2007,79,"(75,80]",NoHS,264.94977109221713,33.84798063722601,7.827638934561,8977.773439131779,2019
+2007,79,"(75,80]",NoHS,283.33812949640287,35.319631969279314,8.022114436040775,8737.783219377776,2019
+2007,79,"(75,80]",NoHS,283.6243296272073,22.07476998079957,12.848348131097227,9260.969592277159,2019
+2007,79,"(75,80]",NoHS,284.053629823414,22.07476998079957,12.867795681245205,8952.606850751385,2019
+2007,79,"(75,80]",NoHS,283.91052975801176,20.603118648746268,13.779978390567011,8907.750264478931,2019
+2007,67,"(65,70]",HS,1363.8437933289733,50.03614528981236,27.25717149931331,5137.661229489073,2019
+2007,67,"(65,70]",HS,1372.4154872465665,51.50779662186566,26.644810635599196,5265.92542075187,2019
+2007,67,"(65,70]",HS,1268.138469587966,73.58256660266524,17.234224465636302,4973.70403361618,2019
+2007,67,"(65,70]",HS,1061.959895356442,54.451099285972276,19.503001946372546,5235.8361775135345,2019
+2007,67,"(65,70]",HS,1202.7131196860694,47.09284262570575,25.539191363860574,5307.291973687728,2019
+2007,57,"(55,60]",HS,339.71955526487903,183.95641650666312,1.8467393620519563,3613.2672841708422,2019
+2007,57,"(55,60]",HS,243.84251144538914,183.95641650666312,1.3255450180861557,3663.5243690521324,2019
+2007,57,"(55,60]",HS,288.2035317200785,183.95641650666312,1.5666946399210784,3664.6384708171304,2019
+2007,57,"(55,60]",HS,369.62746893394376,183.95641650666312,2.0093208812890495,3636.231392029543,2019
+2007,57,"(55,60]",HS,378.35657292347946,183.95641650666312,2.0567729036501152,3706.914023738457,2019
+2007,43,"(40,45]",College,270.1729234793983,32.3763293051727,8.34476697258677,501.255776542293,2019
+2007,43,"(40,45]",College,241.55291039895357,60.3377046141855,4.0033493475349085,524.0814360748338,2019
+2007,43,"(40,45]",College,241.26671026814913,36.79128330133262,6.55771390989806,508.2644334416065,2019
+2007,43,"(40,45]",College,239.26330935251798,60.3377046141855,3.9654029082217814,502.77108923783317,2019
+2007,43,"(40,45]",College,258.7249182472204,88.29907992319828,2.930097555628631,502.07084153369215,2019
+2007,86,"(85,90]",HS,1012.4329627207326,63.28100727829211,15.999002011272301,7498.096390265802,2019
+2007,86,"(85,90]",HS,1012.1467625899281,85.35577725909167,11.857976051434989,7669.653485568398,2019
+2007,86,"(85,90]",HS,1006.4227599738392,107.43054723989124,9.368124670597723,7217.56437929864,2019
+2007,86,"(85,90]",HS,1021.0189666448659,72.11091527061193,14.159007174063312,7555.607082141527,2019
+2007,86,"(85,90]",HS,1010.2864617396991,66.22430994239872,15.25552267163579,7618.84957552876,2019
+2007,34,"(30,35]",College,488.6867233485939,197.20127849514282,2.4781113341546135,7008.127164231957,2019
+2007,34,"(30,35]",College,359.0380640941792,195.72962716308953,1.834357267717139,7182.88044195264,2019
+2007,34,"(30,35]",College,617.333682145193,178.06981117844987,3.4668070800981634,6784.289942562733,2019
+2007,34,"(30,35]",College,515.8757357750163,182.4847651746098,2.826952350139491,7140.735137986597,2019
+2007,34,"(30,35]",College,549.5042511445389,158.93834386175692,3.4573422485293577,7239.085426740215,2019
+2007,68,"(65,70]",HS,756.6559058207979,114.78880390015777,6.591722189900421,6977.437790415129,2019
+2007,68,"(65,70]",HS,1010.2578417266187,76.52586926677185,13.20152062833582,7137.902414762719,2019
+2007,68,"(65,70]",HS,835.7186919555265,66.22430994239872,12.619515291022688,6716.102806705351,2019
+2007,68,"(65,70]",HS,2236.5109221713537,54.451099285972276,41.07375152199223,3339.98447298974,2019
+2007,68,"(65,70]",HS,1606.441334205363,60.3377046141855,26.624170483072803,7089.750178347192,2019
+2007,63,"(60,65]",College,2198.30320470896,160.40999519381023,13.704278228129928,1632.6439210655487,2019
+2007,63,"(60,65]",College,2246.9572269457162,157.4666925297036,14.26941273007219,1651.7732533069125,2019
+2007,63,"(60,65]",College,2226.0646173969917,151.5800872014904,14.685732529220397,1585.7847693008564,2019
+2007,63,"(60,65]",College,2318.507259646828,148.63678453738376,15.59847561868979,1614.11458319443,2019
+2007,63,"(60,65]",College,2329.955264879006,178.06981117844987,13.084504607825286,1631.3232421321677,2019
+2007,30,"(25,30]",HS,26338.56873773708,771.1452979959316,34.15513108383893,161.4076921838829,2019
+2007,30,"(25,30]",HS,36614.126514061485,894.7640098884093,40.920428302237845,179.79047338044168,2019
+2007,30,"(25,30]",HS,28187.02090255069,997.7796031321406,28.24974655131104,160.72882560624583,2019
+2007,30,"(25,30]",HS,25128.085284499673,999.251254464194,25.1469139240396,164.23498013402894,2019
+2007,30,"(25,30]",HS,31102.51301504251,809.4082326293176,38.42623754147858,175.88883497544347,2019
+2007,56,"(55,60]",HS,72.09381294964028,44.14953996159914,1.6329459607585224,9242.70763616934,2019
+2007,56,"(55,60]",HS,72.38001308044474,44.14953996159914,1.6394284774745151,9016.97173625858,2019
+2007,56,"(55,60]",HS,71.23521255722694,44.14953996159914,1.6134984106105448,9559.003583332373,2019
+2007,56,"(55,60]",HS,72.39432308698495,44.14953996159914,1.6397526033103147,9207.877550174391,2019
+2007,56,"(55,60]",HS,71.24952256376717,44.14953996159914,1.6138225364463445,8940.863330531349,2019
+2007,61,"(60,65]",College,1770.147809025507,387.04430033001915,4.5735018123666045,655.2173632082503,2019
+2007,61,"(60,65]",College,1618.4617396991498,385.5726489979658,4.197553285756243,283.2829370043026,2019
+2007,61,"(60,65]",College,1617.0307390451276,385.5726489979658,4.193841921224186,286.9232520232921,2019
+2007,61,"(60,65]",College,1617.0307390451276,385.5726489979658,4.193841921224186,284.55370779063895,2019
+2007,61,"(60,65]",College,1857.4388489208634,385.5726489979658,4.817351162609729,642.473596880214,2019
+2007,56,"(55,60]",College,1126.4708358404184,323.7632930517271,3.4793037383037864,6936.1958542263965,2019
+2007,56,"(55,60]",College,1174.2934466971876,323.7632930517271,3.6270123015754376,7092.585385635731,2019
+2007,56,"(55,60]",College,1090.2364682799214,323.7632930517271,3.367387507099936,6677.9610654340795,2019
+2007,56,"(55,60]",College,1149.0935251798562,323.7632930517271,3.5491779020059187,6986.889722684196,2019
+2007,56,"(55,60]",College,1202.8562197514716,323.7632930517271,3.7152334608830824,7044.666703870527,2019
+2007,54,"(50,55]",HS,566.6619489862655,147.16513320533048,3.8505176915488324,8534.424146441439,2019
+2007,54,"(50,55]",HS,565.0878482668411,150.10843586943707,3.764530920556319,8727.98051240432,2019
+2007,54,"(50,55]",HS,565.2309483322433,155.99504119765032,3.6233904872404183,8217.322628633237,2019
+2007,54,"(50,55]",HS,565.3740483976455,183.95641650666312,3.073413035185794,8600.350372399498,2019
+2007,54,"(50,55]",HS,565.0878482668411,160.40999519381023,3.522772054098573,8671.513436507274,2019
+2007,45,"(40,45]",HS,35.5746762589928,94.1856852514115,0.3777078880302532,8166.200731916062,2019
+2007,45,"(40,45]",HS,41.5848790058862,94.1856852514115,0.44152016195330485,8019.2123628489035,2019
+2007,45,"(40,45]",HS,75.49959450621321,94.1856852514115,0.8016037076619533,8428.320105054036,2019
+2007,45,"(40,45]",HS,59.17187704381949,94.1856852514115,0.6282470301709964,8160.251926048554,2019
+2007,45,"(40,45]",HS,56.309875735775016,94.1856852514115,0.5978602330647813,8029.45818856852,2019
+2007,37,"(35,40]",College,17651.39306736429,735.8256660266525,23.988553107530414,247.8318276207395,2019
+2007,37,"(35,40]",College,17651.39306736429,735.8256660266525,23.988553107530414,237.75127337392559,2019
+2007,37,"(35,40]",College,17654.255068672337,735.8256660266525,23.992442617560013,239.82448970141155,2019
+2007,37,"(35,40]",College,17652.824068018315,735.8256660266525,23.990497862545215,237.5068757439663,2019
+2007,37,"(35,40]",College,17652.824068018315,735.8256660266525,23.990497862545215,241.22926184705472,2019
+2007,51,"(50,55]",College,16756.30215827338,1106.093141171264,15.149087843117623,1900.7684955719772,2019
+2007,51,"(50,55]",College,15359.645519947679,1106.093141171264,13.886394326325036,1912.088142959792,2019
+2007,51,"(50,55]",College,15283.802485284501,1106.093141171264,13.817825928384456,1878.6621001476924,2019
+2007,51,"(50,55]",College,14771.504251144539,1106.093141171264,13.35466580644619,1869.4492300294216,2019
+2007,51,"(50,55]",College,15947.786788750818,1106.093141171264,14.418122846203882,1925.4903539199288,2019
+2007,34,"(30,35]",HS,-1.715769784172662,23.546421312852875,-0.07286753946070372,8018.4918749367525,2019
+2007,34,"(30,35]",HS,-2.332531066056246,25.01807264490618,-0.09323384335648104,8009.952911502584,2019
+2007,34,"(30,35]",HS,-0.21465009810333552,23.546421312852875,-0.009116039131864519,8054.740486127086,2019
+2007,34,"(30,35]",HS,-2.8190712884238063,23.546421312852875,-0.11972398059848734,8081.635894138542,2019
+2007,34,"(30,35]",HS,-0.4579202092871158,25.01807264490618,-0.01830357660986131,7981.3806877852985,2019
+2007,52,"(50,55]",HS,11.448005232177895,13.539192254890402,0.8455456586077236,6175.526573225261,2019
+2007,52,"(50,55]",HS,11.591105297580118,13.539192254890402,0.85611497934032,6183.161026815607,2019
+2007,52,"(50,55]",HS,11.448005232177895,13.539192254890402,0.8455456586077236,6190.483799124375,2019
+2007,52,"(50,55]",HS,11.591105297580118,13.686357388095734,0.8469094419280584,6200.114840187942,2019
+2007,52,"(50,55]",HS,11.591105297580118,13.539192254890402,0.85611497934032,6203.774014845103,2019
+2007,70,"(65,70]",College,2571.5081752779597,201.61623249130272,12.754469932815994,690.8608430482292,2019
+2007,70,"(65,70]",College,2693.14323086985,201.61623249130272,13.357769846165667,690.3877401106186,2019
+2007,70,"(65,70]",College,2283.87704381949,200.14458115924944,11.41113604271041,668.5477616468634,2019
+2007,70,"(65,70]",College,2809.054283845651,200.14458115924944,14.035125345764746,674.9594757987113,2019
+2007,70,"(65,70]",College,2428.551209941138,200.14458115924944,12.133984322107667,679.3814336576218,2019
+2007,44,"(40,45]",HS,38.279267495094835,52.979447953918964,0.7225305089700027,7446.46528502513,2019
+2007,44,"(40,45]",HS,12.950555918901243,52.979447953918964,0.2444449011655523,7460.199082232556,2019
+2007,44,"(40,45]",HS,19.533158927403534,52.979447953918964,0.36869313822207617,7508.530314414315,2019
+2007,44,"(40,45]",HS,30.981164159581425,52.979447953918964,0.584777028755161,7435.014668095547,2019
+2007,44,"(40,45]",HS,26.945742315238718,52.979447953918964,0.5086074573422485,7428.047332076104,2019
+2007,63,"(60,65]",HS,85852.8842380641,2384.0751579263538,36.01098059036785,22.78352669758812,2019
+2007,63,"(60,65]",HS,85852.8842380641,2384.0751579263538,36.01098059036785,20.33406282669339,2019
+2007,63,"(60,65]",HS,85852.8842380641,2384.0751579263538,36.01098059036785,22.4197226749254,2019
+2007,63,"(60,65]",HS,85852.8842380641,2384.0751579263538,36.01098059036785,22.302183267864148,2019
+2007,63,"(60,65]",HS,85852.8842380641,2384.0751579263538,36.01098059036785,20.624577907900782,2019
+2007,33,"(30,35]",NoHS,12.735905820797907,35.319631969279314,0.3605899923270854,5839.978289684153,2019
+2007,33,"(30,35]",NoHS,13.022105951602354,36.79128330133262,0.353945412693193,5835.520325397614,2019
+2007,33,"(30,35]",NoHS,12.306605624591237,36.79128330133262,0.3344978625452154,5910.926069673192,2019
+2007,33,"(30,35]",NoHS,11.877305428384565,35.319631969279314,0.3362805546421133,5854.7790812206495,2019
+2007,33,"(30,35]",NoHS,12.879005886200131,35.319631969279314,0.36464156527458075,5826.529921499458,2019
+2007,75,"(70,75]",HS,160.02880313930675,47.09284262570575,3.3981555203880305,12146.399641160131,2019
+2007,75,"(70,75]",HS,144.54537606278615,47.09284262570575,3.069370375698784,11821.70698335746,2019
+2007,75,"(70,75]",HS,155.9075212557227,47.09284262570575,3.3106415447221313,12529.5473866746,2019
+2007,75,"(70,75]",HS,278.5728973185088,47.09284262570575,5.9153977926668855,12112.350726677572,2019
+2007,75,"(70,75]",HS,268.5845127534336,47.09284262570575,5.7032979488655045,12051.662402663005,2019
+2007,34,"(30,35]",NoHS,23.182210595160235,41.206237297492535,0.5625898435664959,8260.1687904527,2019
+2007,34,"(30,35]",NoHS,23.32531066056246,39.73458596543923,0.5870279026148806,8173.026781217823,2019
+2007,34,"(30,35]",NoHS,23.32531066056246,38.262934633385925,0.6096058988692991,8440.157338490531,2019
+2007,34,"(30,35]",NoHS,23.32531066056246,39.73458596543923,0.5870279026148806,8314.681542217897,2019
+2007,34,"(30,35]",NoHS,23.32531066056246,39.73458596543923,0.5870279026148806,8157.796345114683,2019
+2007,64,"(60,65]",College,91243.17750163506,5121.3466355455,17.81624716990403,22.982260511475758,2019
+2007,64,"(60,65]",College,91244.46540222368,5106.630122224967,17.86784302334948,21.058591007921923,2019
+2007,64,"(60,65]",College,91243.03440156965,5106.630122224967,17.867562799283945,21.536701388391943,2019
+2007,64,"(60,65]",College,91244.60850228908,5106.630122224967,17.867871045756033,21.818999957904165,2019
+2007,64,"(60,65]",College,91246.0395029431,5106.630122224967,17.868151269821567,20.78975291913089,2019
+2007,46,"(45,50]",HS,67.78650098103336,33.84798063722601,2.002674892412393,6363.417718050055,2019
+2007,46,"(45,50]",HS,67.19979071288424,41.206237297492535,1.6308159909804103,6204.70144055099,2019
+2007,46,"(45,50]",HS,66.89928057553956,94.1856852514115,0.710291382357777,6526.784400185905,2019
+2007,46,"(45,50]",HS,67.19979071288424,38.262934633385925,1.7562633749019805,6364.579929607329,2019
+2007,46,"(45,50]",HS,67.15686069326358,26.489723976959482,2.535204245679419,6269.109242704717,2019
+2007,56,"(55,60]",College,21928.65402223676,4267.788862954584,5.138176870131195,36.766736328967056,2019
+2007,56,"(55,60]",College,21930.08502289078,4267.788862954584,5.138512172719953,34.38352019128459,2019
+2007,56,"(55,60]",College,21928.79712230216,4267.788862954584,5.138210400390071,38.2034381401353,2019
+2007,56,"(55,60]",College,21928.79712230216,4267.788862954584,5.138210400390071,37.69983795937325,2019
+2007,56,"(55,60]",College,21930.08502289078,4267.788862954584,5.138512172719953,36.22023926622906,2019
+2007,52,"(50,55]",College,900.814911706998,147.16513320533048,6.121116409075961,7839.512481682274,2019
+2007,52,"(50,55]",College,900.814911706998,147.16513320533048,6.121116409075961,8018.40130198102,2019
+2007,52,"(50,55]",College,900.814911706998,147.16513320533048,6.121116409075961,7545.367648307065,2019
+2007,52,"(50,55]",College,902.2459123610203,147.16513320533048,6.1308401841499505,7900.467537558601,2019
+2007,52,"(50,55]",College,900.814911706998,147.16513320533048,6.121116409075961,7965.431484277207,2019
+2007,52,"(50,55]",College,49913.87521255723,4061.7576764671207,12.28873782937535,22.811322439795966,2019
+2007,52,"(50,55]",College,60426.86461739699,4223.6393229929845,14.306824043530519,21.568395001928213,2019
+2007,52,"(50,55]",College,49063.57462393722,4072.059235791494,12.048836174260769,24.391074123484913,2019
+2007,52,"(50,55]",College,50855.90294310007,4132.6912706720905,12.305759035039044,24.834601369377047,2019
+2007,52,"(50,55]",College,50084.736690647485,4054.399419806855,12.353182680021556,25.158678978159934,2019
+2007,54,"(50,55]",College,12378.155657292347,1074.3054723989126,11.52200745068538,17.3441029734884,2019
+2007,54,"(50,55]",College,12378.155657292347,1074.3054723989126,11.52200745068538,16.071863961893506,2019
+2007,54,"(50,55]",College,12378.155657292347,1074.3054723989126,11.52200745068538,17.88023883372651,2019
+2007,54,"(50,55]",College,12378.155657292347,1074.3054723989126,11.52200745068538,17.630082896744053,2019
+2007,54,"(50,55]",College,12378.155657292347,1074.3054723989126,11.52200745068538,16.945382753959223,2019
+2007,81,"(80,85]",NoHS,430.01569653368216,32.56764397833964,13.203770491340443,10154.2400485964,2019
+2007,81,"(80,85]",NoHS,431.4466971877044,32.5529274650191,13.253698846327437,9869.535200077858,2019
+2007,81,"(80,85]",NoHS,435.02419882275996,32.5529274650191,13.363596846711577,10374.716727739073,2019
+2007,81,"(80,85]",NoHS,430.3018966644866,32.56764397833964,13.212558358555976,10067.938884671692,2019
+2007,81,"(80,85]",NoHS,452.9117069980379,32.56764397833964,13.906799868583192,10188.46959152588,2019
+2007,24,"(20,25]",College,13294.282275997384,73.58256660266524,180.67163038474186,5243.223405025408,2019
+2007,24,"(20,25]",College,13295.570176586005,73.58256660266524,180.68913317987506,5291.975973004401,2019
+2007,24,"(20,25]",College,13294.58278613473,73.58256660266524,180.67571437027294,5112.547144833816,2019
+2007,24,"(20,25]",College,13295.856376716807,73.58256660266524,180.6930226899046,5135.290390243297,2019
+2007,24,"(20,25]",College,13296.428776978417,73.58256660266524,180.70080170996383,5242.715091217857,2019
+2007,46,"(45,50]",College,9393.073982995424,1240.602072920936,7.571383433915999,178.75034554261666,2019
+2007,46,"(45,50]",College,9498.953721386528,1240.602072920936,7.656728880858398,171.96492901735058,2019
+2007,46,"(45,50]",College,9394.519293655985,1240.602072920936,7.572548441368516,173.52772027135444,2019
+2007,46,"(45,50]",College,9380.209287115762,1240.602072920936,7.561013714115861,171.81353198396675,2019
+2007,46,"(45,50]",College,9387.335670372793,1240.602072920936,7.5667580082876835,173.74070222468364,2019
+2007,24,"(20,25]",College,2.0034009156311314,30.9046779731194,0.06482516715992545,6327.936654614392,2019
+2007,24,"(20,25]",College,2.0034009156311314,30.9046779731194,0.06482516715992545,6369.594297203565,2019
+2007,24,"(20,25]",College,2.0034009156311314,30.9046779731194,0.06482516715992545,6345.460064186611,2019
+2007,24,"(20,25]",College,2.0034009156311314,30.9046779731194,0.06482516715992545,6312.760662529285,2019
+2007,24,"(20,25]",College,2.0034009156311314,30.9046779731194,0.06482516715992545,6356.598959748298,2019
+2007,53,"(50,55]",College,1744.532897318509,331.1215497119936,5.268557418977675,4118.643172389353,2019
+2007,53,"(50,55]",College,1779.306213211249,331.1215497119936,5.373574189776753,4173.632119914331,2019
+2007,53,"(50,55]",College,1800.842773054284,331.1215497119936,5.4386154408272125,4160.8164966485765,2019
+2007,53,"(50,55]",College,1795.9058207979072,331.1215497119936,5.42370565238043,4471.954930628999,2019
+2007,53,"(50,55]",College,1752.4034009156312,331.1215497119936,5.292326646936314,4286.549212150634,2019
+2007,71,"(70,75]",College,13492.76206671027,295.80191774271424,45.61418049509114,5233.746088401216,2019
+2007,71,"(70,75]",College,13489.900065402224,459.1552156006311,29.379825399033717,5254.215626191424,2019
+2007,71,"(70,75]",College,13491.331066056246,275.19879909396803,49.02394600003164,5112.547144833816,2019
+2007,71,"(70,75]",College,13491.331066056246,441.49539961599135,30.558259673353067,5135.290390243297,2019
+2007,71,"(70,75]",College,13491.331066056246,943.3285038461681,14.301837600633261,5240.3571765114275,2019
+2007,47,"(45,50]",HS,376.39610202746894,295.80191774271424,1.2724599789608355,6720.762391263513,2019
+2007,47,"(45,50]",HS,402.139803793329,295.80191774271424,1.3594901847225564,6873.852637650943,2019
+2007,47,"(45,50]",HS,382.12010464355785,295.80191774271424,1.2918107751279773,6470.050819001952,2019
+2007,47,"(45,50]",HS,354.91678221059516,295.80191774271424,1.1998461163436354,6772.127392959247,2019
+2007,47,"(45,50]",HS,405.01611510791366,295.80191774271424,1.3692139597965451,6828.36090316744,2019
+2007,60,"(55,60]",College,45594.5428384565,2163.327458118358,21.076117102546373,390.60446829744893,2019
+2007,60,"(55,60]",College,86056.08633093526,1986.7292982719614,43.315456416627086,331.95145820008395,2019
+2007,60,"(55,60]",College,59508.162197514714,1942.5797583103622,30.633574731198866,331.31571327411456,2019
+2007,60,"(55,60]",College,53329.1013734467,1618.8164652586352,32.94326597112194,400.9060111846144,2019
+2007,60,"(55,60]",College,117077.3185088293,1559.9504119765031,75.05194883758445,351.3020646411225,2019
+2007,45,"(40,45]",College,1020.446566383257,210.44614048362254,4.848967835847152,5591.452096258368,2019
+2007,45,"(40,45]",College,448.04630477436234,158.93834386175692,2.8189944219128695,5889.300803217834,2019
+2007,45,"(40,45]",College,1011.8605624591236,151.5800872014904,6.675418791084946,5400.764909095929,2019
+2007,45,"(40,45]",College,1011.8605624591236,178.06981117844987,5.682381284973135,5651.391608163864,2019
+2007,45,"(40,45]",College,260.58521909744934,166.29660052202343,1.566990655728641,5906.019070283123,2019
+2007,57,"(55,60]",NoHS,108.627259646828,73.58256660266524,1.4762635317329824,8474.192058113025,2019
+2007,57,"(55,60]",NoHS,108.77035971223022,73.58256660266524,1.4782082867477804,8296.493057219977,2019
+2007,57,"(55,60]",NoHS,108.78466971877045,73.58256660266524,1.4784027622492601,8715.200267562248,2019
+2007,57,"(55,60]",NoHS,108.627259646828,73.58256660266524,1.4762635317329824,8417.01560241863,2019
+2007,57,"(55,60]",NoHS,108.74173969914978,73.58256660266524,1.4778193357448208,8314.187884391913,2019
+2007,59,"(55,60]",NoHS,329.6310006540222,66.22430994239872,4.977492418429609,8208.019894740235,2019
+2007,59,"(55,60]",NoHS,329.48790058862,66.22430994239872,4.975331579524278,8003.849504047003,2019
+2007,59,"(55,60]",NoHS,329.48790058862,67.69596127445202,4.867172197360707,8495.199651532665,2019
+2007,59,"(55,60]",NoHS,329.6310006540222,66.22430994239872,4.977492418429609,8149.533676556387,2019
+2007,59,"(55,60]",NoHS,329.48790058862,66.22430994239872,4.975331579524278,7914.88479131442,2019
+2007,53,"(50,55]",College,185.17148463047744,95.65733658346481,1.935779222421774,6920.002775632279,2019
+2007,53,"(50,55]",College,183.7404839764552,95.65733658346481,1.9208195684617915,6760.507671314232,2019
+2007,53,"(50,55]",College,183.7404839764552,95.65733658346481,1.9208195684617915,7188.919791239666,2019
+2007,53,"(50,55]",College,182.30948332243295,95.65733658346481,1.9058599145018085,6906.667857747506,2019
+2007,53,"(50,55]",College,183.7404839764552,95.65733658346481,1.9208195684617915,6754.644895691272,2019
+2007,28,"(25,30]",HS,105.89404839764552,88.29907992319828,1.199265592458621,8885.84863249159,2019
+2007,28,"(25,30]",HS,102.88894702419881,88.29907992319828,1.1652323796996602,8847.123988738897,2019
+2007,28,"(25,30]",HS,109.04224983649445,88.29907992319828,1.2349194343965801,9002.680827140115,2019
+2007,28,"(25,30]",HS,98.4528449967299,88.29907992319828,1.114992875150718,8914.73176047128,2019
+2007,28,"(25,30]",HS,110.04395029431001,88.29907992319828,1.246263838649567,8824.901393499653,2019
+2007,38,"(35,40]",College,1574.5300196206672,132.44861988479744,11.887855237677664,3563.9037943763533,2019
+2007,38,"(35,40]",College,1573.0990189666447,132.44861988479744,11.877051043151008,3619.012234867615,2019
+2007,38,"(35,40]",College,1573.0990189666447,132.44861988479744,11.877051043151008,3621.602068729096,2019
+2007,38,"(35,40]",College,1571.6680183126225,132.44861988479744,11.866246848624353,3912.8781417937616,2019
+2007,38,"(35,40]",College,1575.9610202746894,132.44861988479744,11.898659432204317,3770.5532567999444,2019
+2007,37,"(35,40]",HS,74.31186396337475,55.92275061802558,1.328830630505893,5152.207658162703,2019
+2007,37,"(35,40]",HS,61.44716808371485,66.22430994239872,0.9278642259490664,5072.630135600431,2019
+2007,37,"(35,40]",HS,84.01404839764551,51.50779662186566,1.6310938131253816,5259.163660591727,2019
+2007,37,"(35,40]",HS,81.89616742969261,54.451099285972276,1.5040314796875138,5119.017796626331,2019
+2007,37,"(35,40]",HS,59.14325703073904,44.14953996159914,1.3396120793598598,5039.495049471958,2019
+2007,83,"(80,85]",HS,290.49313276651407,29.433026641066096,9.869631700098651,13465.919351920917,2019
+2007,83,"(80,85]",HS,291.9241334205363,27.96137530901279,10.440263763651153,13186.49992061257,2019
+2007,83,"(80,85]",HS,289.06213211249184,27.96137530901279,10.337908236556535,14017.464386925054,2019
+2007,83,"(80,85]",HS,297.64813603662526,27.96137530901279,10.644974817840392,13477.52350604265,2019
+2007,83,"(80,85]",HS,293.3551340745586,27.96137530901279,10.491441527198464,13657.685946001458,2019
+2007,53,"(50,55]",College,201892.7272727273,18498.657243910042,10.91391254028411,22.982260511475758,2019
+2007,53,"(50,55]",College,209618.69980379334,18292.626057422578,11.459191214305537,21.058591007921923,2019
+2007,53,"(50,55]",College,197739.96337475473,18071.878357614583,10.941860024828964,21.536701388391943,2019
+2007,53,"(50,55]",College,208503.95029431,18057.16184429405,11.546883839898458,21.818999957904165,2019
+2007,53,"(50,55]",College,197904.5284499673,18086.594870935118,10.942055697172544,20.78975291913089,2019
+2007,44,"(40,45]",College,282.765729234794,88.29907992319828,3.202363257700318,9488.120309594276,2019
+2007,44,"(40,45]",College,282.47952910398953,88.29907992319828,3.1991219993423217,9341.573206273606,2019
+2007,44,"(40,45]",College,282.47952910398953,88.29907992319828,3.1991219993423217,9685.086636693306,2019
+2007,44,"(40,45]",College,282.47952910398953,88.29907992319828,3.1991219993423217,9426.999054355856,2019
+2007,44,"(40,45]",College,282.62262916939176,88.29907992319828,3.20074262852132,9280.552823456226,2019
+2007,81,"(80,85]",NoHS,160.84447351209943,33.84798063722601,4.751966601375406,10459.177569649131,2019
+2007,81,"(80,85]",NoHS,163.5633747547417,33.84798063722601,4.8322934389431405,10495.827725892272,2019
+2007,81,"(80,85]",NoHS,164.99437540876391,35.319631969279314,4.671463608462129,10419.125552765505,2019
+2007,81,"(80,85]",NoHS,159.41347285807717,27.96137530901279,5.701202859170286,10432.491414919163,2019
+2007,81,"(80,85]",NoHS,166.42537606278614,35.319631969279314,4.711979337937082,10432.047163090767,2019
+2007,62,"(60,65]",College,1265.2621582733811,80.94082326293177,15.631940808944421,2616.2449542117693,2019
+2007,62,"(60,65]",College,1265.2621582733811,80.94082326293177,15.631940808944421,2650.470015775885,2019
+2007,62,"(60,65]",College,1264.1173577501634,80.94082326293177,15.617797136109528,2643.8327873643157,2019
+2007,62,"(60,65]",College,1262.543257030739,80.94082326293177,15.598349585961552,2839.359989238294,2019
+2007,62,"(60,65]",College,1262.543257030739,80.94082326293177,15.598349585961552,2721.7667411975576,2019
+2007,88,"(85,90]",College,14653.446697187705,169.23990318613005,86.58387544143088,1872.0043162818408,2019
+2007,88,"(85,90]",College,14653.446697187705,169.23990318613005,86.58387544143088,1872.1015952211874,2019
+2007,88,"(85,90]",College,14653.446697187705,169.23990318613005,86.58387544143088,1819.6752996392486,2019
+2007,88,"(85,90]",College,14653.446697187705,169.23990318613005,86.58387544143088,1799.7153499344652,2019
+2007,88,"(85,90]",College,14653.446697187705,169.23990318613005,86.58387544143088,1903.9441868013605,2019
+2007,50,"(45,50]",College,22230.02275997384,2236.910024721023,9.937826070025443,513.3831882309396,2019
+2007,50,"(45,50]",College,26461.491693917596,3222.9164171967373,8.210418226400533,612.005486696816,2019
+2007,50,"(45,50]",College,31192.37985611511,2634.2558843754155,11.841059192892665,548.5997757622932,2019
+2007,50,"(45,50]",College,30853.23270111184,1839.564165066631,16.772033988819466,560.3902844625255,2019
+2007,50,"(45,50]",College,20707.438064094178,1868.9971917076969,11.079437762650599,507.3021423520133,2019
+2007,72,"(70,75]",HS,41.49901896664486,38.55726489979658,1.0762957142964724,8197.215123521815,2019
+2007,72,"(70,75]",HS,41.355918901242646,38.55726489979658,1.0725843497644159,8096.927488874501,2019
+2007,72,"(70,75]",HS,41.49901896664486,38.55726489979658,1.0762957142964724,8495.057939463059,2019
+2007,72,"(70,75]",HS,41.49901896664486,38.55726489979658,1.0762957142964724,8245.500147899804,2019
+2007,72,"(70,75]",HS,41.355918901242646,38.55726489979658,1.0725843497644159,8087.48582592641,2019
+2007,58,"(55,60]",College,4167.016664486593,351.72466836073977,11.847382453745812,1187.723464266307,2019
+2007,58,"(55,60]",College,4306.51060824068,345.8380630325266,12.452390493048899,1161.090235855864,2019
+2007,58,"(55,60]",College,4153.050098103336,363.49787901716627,11.425238874384757,1169.8163883394839,2019
+2007,58,"(55,60]",College,4075.9191628515373,353.1963196927931,11.540095226350983,1167.5787924286437,2019
+2007,58,"(55,60]",College,3997.915317200785,356.13962235689974,11.225696514032737,1200.0861257223262,2019
+2007,23,"(20,25]",NoHS,3.364282537606279,14.275017920917055,0.23567623916440947,5471.741467160154,2019
+2007,23,"(20,25]",NoHS,-2.932120340091563,14.127852787711726,-0.20754182423544887,5479.69946939942,2019
+2007,23,"(20,25]",NoHS,-0.3563191628515369,14.127852787711726,-0.025221041598158498,5460.351024492112,2019
+2007,23,"(20,25]",NoHS,6.083183780248529,14.275017920917055,0.4261419364899637,5438.318564716968,2019
+2007,23,"(20,25]",NoHS,-3.475900588620013,14.275017920917055,-0.2434953572651427,5472.320337575309,2019
+2007,49,"(45,50]",HS,544.6388489208633,86.82742859114498,6.272658971457872,6781.006368770242,2019
+2007,49,"(45,50]",HS,557.7754349247875,94.1856852514115,5.922082888030254,6931.58763547451,2019
+2007,49,"(45,50]",HS,558.6054153041204,103.01559324373132,5.422532625546109,6533.893463953701,2019
+2007,49,"(45,50]",HS,575.8489731850883,103.01559324373132,5.5899204678912024,6810.360676859958,2019
+2007,49,"(45,50]",HS,542.2920078482668,85.35577725909167,6.35331345179104,6868.166066977714,2019
+2007,48,"(45,50]",HS,12.163505559189012,44.14953996159914,0.2755069604296832,7632.890191264507,2019
+2007,48,"(45,50]",HS,12.02040549378679,44.14953996159914,0.272265702071687,7448.888530307212,2019
+2007,48,"(45,50]",HS,12.02040549378679,45.62119129365245,0.2634829374887293,7945.087115565056,2019
+2007,48,"(45,50]",HS,12.163505559189012,44.14953996159914,0.2755069604296832,7652.791114257359,2019
+2007,48,"(45,50]",HS,12.02040549378679,44.14953996159914,0.272265702071687,7463.253464925637,2019
+2007,75,"(70,75]",College,3686.2576847612822,310.5184310632473,11.871300753836588,1900.7684955719772,2019
+2007,75,"(70,75]",College,3684.82668410726,295.56645352958566,12.466999011910584,1912.088142959792,2019
+2007,75,"(70,75]",College,3684.82668410726,309.04677973119396,11.923200388343435,1878.6621001476924,2019
+2007,75,"(70,75]",College,3684.82668410726,300.06970660566884,12.279902312663664,1869.4492300294216,2019
+2007,75,"(70,75]",College,3683.395683453238,312.43157779491656,11.789447499033079,1925.4903539199288,2019
+2007,51,"(50,55]",College,8102.325703073905,1064.0039130745392,7.614939760570498,1888.4616603260486,2019
+2007,51,"(50,55]",College,8102.325703073905,1121.3983150246183,7.225198749202716,1899.708016812964,2019
+2007,51,"(50,55]",College,8102.325703073905,1121.3983150246183,7.225198749202716,1866.498396359909,2019
+2007,51,"(50,55]",College,8102.325703073905,1059.5889590783795,7.646668676239541,1857.345176469929,2019
+2007,51,"(50,55]",College,8102.325703073905,1094.9085910476588,7.400001944747943,1913.0234529751153,2019
+2007,40,"(35,40]",College,639.5285022890779,57.39440195007889,11.142698252093188,3599.813665490282,2019
+2007,40,"(35,40]",College,351.5753956834532,66.22430994239872,5.308857064562095,1825.1450067986032,2019
+2007,40,"(35,40]",College,571.45580117724,57.39440195007889,9.95664702063255,3650.993576954871,2019
+2007,40,"(35,40]",College,542.2633878351864,67.69596127445202,8.010276796820268,3622.6922689215025,2019
+2007,40,"(35,40]",College,361.77127534336165,57.39440195007889,6.303250196038752,1790.534422669878,2019
+2007,64,"(60,65]",College,33024.63309352518,1030.1559324373134,32.05789730821628,1662.0750737233436,2019
+2007,64,"(60,65]",College,19561.721700457816,1030.1559324373134,18.989088044346314,2935.1256426276127,2019
+2007,64,"(60,65]",College,21984.463047743622,1030.1559324373134,21.340908065955745,2933.6841473406594,2019
+2007,64,"(60,65]",College,24436.911968606935,1030.1559324373134,23.721566026213182,1388.8200948345213,2019
+2007,64,"(60,65]",College,18471.35644211903,1030.1559324373134,17.93064123643538,2965.5476679659287,2019
+2007,54,"(50,55]",HS,310.38404185742314,88.29907992319828,3.5151446892469584,6598.528979972046,2019
+2007,54,"(50,55]",HS,296.5033355134075,88.29907992319828,3.3579436588841394,6446.443337504921,2019
+2007,54,"(50,55]",HS,302.08423806409417,88.29907992319828,3.421148196865066,6854.9532587225385,2019
+2007,54,"(50,55]",HS,310.2409417920209,88.29907992319828,3.5135240600679603,6585.813545461223,2019
+2007,54,"(50,55]",HS,306.09103989535646,88.29907992319828,3.4665258138770145,6440.852921416159,2019
+2007,73,"(70,75]",NoHS,-6.296402877697842,98.60063924757141,-0.06385762735156837,8069.802593752516,2019
+2007,73,"(70,75]",NoHS,-4.722302158273381,51.50779662186566,-0.09168130784046602,8112.945047442164,2019
+2007,73,"(70,75]",NoHS,-5.008502289077828,69.16761260650532,-0.0724110909765125,8106.906868927862,2019
+2007,73,"(70,75]",NoHS,0.7155003270111184,42.67788862954583,0.01676512943791176,8128.061785554887,2019
+2007,73,"(70,75]",NoHS,-7.584303466317855,66.22430994239872,-0.11452446198253498,8106.366071801315,2019
+2007,71,"(70,75]",HS,15.16860693263571,91.2423825873049,0.1662451867488411,9867.77847840045,2019
+2007,71,"(70,75]",HS,10.875604970569,91.2423825873049,0.1191946621972823,9684.154351438196,2019
+2007,71,"(70,75]",HS,18.030608240680184,91.2423825873049,0.19761220311654695,10150.250697604622,2019
+2007,71,"(70,75]",HS,18.173708306082407,91.2423825873049,0.19918055393493225,9856.695853140276,2019
+2007,71,"(70,75]",HS,10.875604970569,92.71403391935819,0.1173026834322461,9707.308680363509,2019
+2007,45,"(40,45]",HS,592.8921909744931,117.73210656426438,5.035943110818809,7952.499725532844,2019
+2007,45,"(40,45]",HS,591.461190320471,117.73210656426438,5.023788391976324,8133.9667871199945,2019
+2007,45,"(40,45]",HS,594.3231916285154,117.73210656426438,5.0480978296612955,7654.115519608184,2019
+2007,45,"(40,45]",HS,591.461190320471,117.73210656426438,5.023788391976324,8014.333298252954,2019
+2007,45,"(40,45]",HS,592.9065009810333,117.73210656426438,5.036064658007234,8080.233540092787,2019
+2007,47,"(45,50]",College,2036.6001308044474,618.0935594623879,3.294970639357355,283.0935359093437,2019
+2007,47,"(45,50]",College,2113.688136036625,618.0935594623879,3.419689630603968,275.26133742309577,2019
+2007,47,"(45,50]",College,2033.5091693917593,618.0935594623879,3.2899698407478746,274.49567121709526,2019
+2007,47,"(45,50]",College,2196.5430739045128,618.0935594623879,3.5537388155525282,271.7119926545038,2019
+2007,47,"(45,50]",College,2218.337213865271,618.0935594623879,3.5889990761184447,274.58073023097916,2019
+2007,53,"(50,55]",College,2719.1445127534334,183.95641650666312,14.781460545873065,1055.0934114589686,2019
+2007,53,"(50,55]",College,2855.1038848920866,183.95641650666312,15.520545241696809,1026.9864315624059,2019
+2007,53,"(50,55]",College,2764.936533682145,183.95641650666312,15.03038918776718,1023.3074470389132,2019
+2007,53,"(50,55]",College,2760.6578417266187,183.95641650666312,15.007129917790198,1035.9313896950227,2019
+2007,53,"(50,55]",College,2847.934571615435,183.95641650666312,15.48157235120026,1035.4427018303577,2019
+2007,50,"(45,50]",College,527.7530412034009,242.82246978879527,2.1734110589618645,4358.7499396887515,2019
+2007,50,"(45,50]",College,676.734519293656,242.82246978879527,2.7869518001454865,4380.3276054109665,2019
+2007,50,"(45,50]",College,620.3387835186396,242.82246978879527,2.554700905802517,4410.283141052434,2019
+2007,50,"(45,50]",College,576.8363636363637,242.82246978879527,2.3755477165605416,4373.868794706881,2019
+2007,50,"(45,50]",College,838.5520732504905,242.82246978879527,3.4533545185495202,4468.531984653358,2019
+2007,91,"(90,95]",HS,159.84277305428384,29.550758747630358,5.409092010779637,3121.4951441491603,2019
+2007,91,"(90,95]",HS,157.26697187704383,22.207218600684367,7.081795100274164,3198.722330699431,2019
+2007,91,"(90,95]",HS,157.98247220405494,32.494061411736965,4.86188753699441,3114.602663323784,2019
+2007,91,"(90,95]",HS,160.41517331589276,31.051843106324732,5.166043534569416,3138.873164611624,2019
+2007,91,"(90,95]",HS,160.98757357750165,29.550758747630358,5.447832150516645,3162.180487459739,2019
+2007,68,"(65,70]",College,40808.70425114454,4002.891623184989,10.19480617830822,37.58298220369681,2019
+2007,68,"(65,70]",College,86211.49300196207,4503.253076083112,19.144270052205908,36.25384133605347,2019
+2007,68,"(65,70]",College,42627.219882276,4532.6861027241785,9.404405890065213,38.25921116534622,2019
+2007,68,"(65,70]",College,40348.06514061478,4311.938402916182,9.357291633230941,39.564374374717076,2019
+2007,68,"(65,70]",College,58986.27625899281,4105.90721642872,14.366198053130516,35.53143861477672,2019
+2007,56,"(55,60]",College,75954.65271419229,20823.866348554264,3.647480801252145,21.781103065036206,2019
+2007,56,"(55,60]",College,75638.40156965336,21235.92872152919,3.561812744877525,19.957973277648605,2019
+2007,56,"(55,60]",College,76293.79986919556,21235.92872152919,3.592675454398571,20.41109543542249,2019
+2007,56,"(55,60]",College,76014.75474166122,21235.92872152919,3.5795352178121,20.67863979793581,2019
+2007,56,"(55,60]",College,77185.31327665142,21235.92872152919,3.634656825646631,19.703185889922285,2019
+2007,53,"(50,55]",College,257.6230477436233,86.82742859114498,2.9670698755427245,9144.120962189885,2019
+2007,53,"(50,55]",College,269.80086330935256,97.1289879155181,2.777758412802807,8937.711852196897,2019
+2007,53,"(50,55]",College,263.0179202092871,97.1289879155181,2.7079240281805235,9450.559314565033,2019
+2007,53,"(50,55]",College,280.6478482668411,80.94082326293177,3.4673213954739763,9156.731073935229,2019
+2007,53,"(50,55]",College,257.15081752779594,104.48724457578463,2.4610737757687193,8893.082228492687,2019
+2007,62,"(60,65]",NoHS,294.35683453237414,51.50779662186566,5.7148015220557165,5956.768626302384,2019
+2007,62,"(60,65]",NoHS,295.93093525179853,51.50779662186566,5.745361958002537,5811.285659692415,2019
+2007,62,"(60,65]",NoHS,295.7878351863963,51.50779662186566,5.742583736552826,6160.616010516329,2019
+2007,62,"(60,65]",NoHS,294.35683453237414,51.50779662186566,5.7148015220557165,5934.321225424507,2019
+2007,62,"(60,65]",NoHS,295.7878351863963,51.50779662186566,5.742583736552826,5762.235080437938,2019
+2007,45,"(40,45]",College,2665.954218443427,348.78136569663326,7.643625722717792,420.49562605491883,2019
+2007,45,"(40,45]",College,2665.954218443427,348.78136569663326,7.643625722717792,415.7590457594858,2019
+2007,45,"(40,45]",College,2665.954218443427,348.78136569663326,7.643625722717792,407.39882083351597,2019
+2007,45,"(40,45]",College,2665.954218443427,348.78136569663326,7.643625722717792,411.41509721474966,2019
+2007,45,"(40,45]",College,2665.954218443427,347.3097143645799,7.676013967305581,414.38035520881294,2019
+2007,66,"(65,70]",HS,28147.639764551994,941.8568525141151,29.88526301997698,566.3765940768894,2019
+2007,66,"(65,70]",HS,28147.639764551994,941.8568525141151,29.88526301997698,634.3660153320723,2019
+2007,66,"(65,70]",HS,28147.639764551994,941.8568525141151,29.88526301997698,568.643682658352,2019
+2007,66,"(65,70]",HS,28147.496664486593,941.8568525141151,29.885111085991447,580.8649750903421,2019
+2007,66,"(65,70]",HS,28147.496664486593,941.8568525141151,29.885111085991447,618.1707416612854,2019
+2007,65,"(60,65]",College,9544.058862001308,1103.7384990399785,8.647029047462457,2338.057007928296,2019
+2007,65,"(60,65]",College,8157.276128188359,1103.7384990399785,7.3905876575687826,2345.0838641080436,2019
+2007,65,"(60,65]",College,8794.214519293657,1103.7384990399785,7.967661295626439,2317.8634429787894,2019
+2007,65,"(60,65]",College,8151.695225637672,1103.7384990399785,7.385531294530308,2299.573396327646,2019
+2007,65,"(60,65]",College,8640.238848920862,1103.7384990399785,7.828157535898279,2333.3825796335123,2019
+2007,30,"(25,30]",HS,2.2466710268149117,27.96137530901279,0.08034908876927603,6106.077392662094,2019
+2007,30,"(25,30]",HS,2.1178809679529103,27.96137530901279,0.07574309005001817,6132.947968823328,2019
+2007,30,"(25,30]",HS,2.0463309352517984,27.96137530901279,0.07318420187265269,6140.025864304865,2019
+2007,30,"(25,30]",HS,2.189431000654022,27.96137530901279,0.07830197822738365,6128.903697545559,2019
+2007,30,"(25,30]",HS,2.3182210595160235,27.96137530901279,0.08290797694664151,6136.644842855987,2019
+2007,38,"(35,40]",HS,82.56873773708307,36.79128330133262,2.2442472870766195,6074.3385664037605,2019
+2007,38,"(35,40]",HS,82.9121778940484,36.79128330133262,2.2535821111476486,6049.350672308423,2019
+2007,38,"(35,40]",HS,81.99633747547416,36.79128330133262,2.228689246958237,6006.160730967139,2019
+2007,38,"(35,40]",HS,81.79599738391104,36.79128330133262,2.2232439329168034,6027.830005945684,2019
+2007,38,"(35,40]",HS,86.14623937213865,36.79128330133262,2.3414850378165077,6078.311729199577,2019
+2007,58,"(55,60]",HS,1139.2196206671028,166.29660052202343,6.8505286162853984,5470.742232944842,2019
+2007,58,"(55,60]",HS,1139.2196206671028,164.82494918997014,6.911694050359374,5594.332727744724,2019
+2007,58,"(55,60]",HS,1139.2196206671028,164.82494918997014,6.911694050359374,5265.671359921556,2019
+2007,58,"(55,60]",HS,1137.7886200130806,164.82494918997014,6.903012108329028,5509.4710169453665,2019
+2007,58,"(55,60]",HS,1139.2196206671028,164.82494918997014,6.911694050359374,5554.851473348546,2019
+2007,52,"(50,55]",NoHS,6.883113145846959,12.950531722069082,0.5314927057487071,7132.960427231759,2019
+2007,52,"(50,55]",NoHS,11.276285153695225,12.803366588863751,0.8807281331382976,7125.870354592727,2019
+2007,52,"(50,55]",NoHS,12.063335513407456,12.950531722069082,0.9314934531105198,7124.9381090665465,2019
+2007,52,"(50,55]",NoHS,20.234349247874427,12.803366588863751,1.5803928683471482,7140.497914177709,2019
+2007,52,"(50,55]",NoHS,20.821059516023546,12.950531722069082,1.6077378105288331,7135.222490794105,2019
+2007,53,"(50,55]",HS,212.50359712230215,147.16513320533048,1.4439805984873395,5701.67740946352,2019
+2007,53,"(50,55]",HS,212.64669718770438,147.16513320533048,1.4449529759947384,5599.049481143238,2019
+2007,53,"(50,55]",HS,212.64669718770438,147.16513320533048,1.4449529759947384,5884.690313195176,2019
+2007,53,"(50,55]",HS,212.64669718770438,147.16513320533048,1.4449529759947384,5697.523926939453,2019
+2007,53,"(50,55]",HS,212.50359712230215,147.16513320533048,1.4439805984873395,5606.203161901846,2019
+2007,27,"(25,30]",NoHS,-1.8173708306082406,14.716513320533048,-0.12349194343965798,5269.280729187557,2019
+2007,27,"(25,30]",NoHS,-1.516860693263571,14.716513320533048,-0.10307201578428149,5233.945648834626,2019
+2007,27,"(25,30]",NoHS,-8.256873773708307,14.716513320533048,-0.5610618217691549,5229.845005364285,2019
+2007,27,"(25,30]",NoHS,-3.276991497710922,14.716513320533048,-0.22267444919434393,5250.261776444809,2019
+2007,27,"(25,30]",NoHS,-1.7458207979071287,14.716513320533048,-0.11863005590266358,5273.628914326242,2019
+2007,35,"(30,35]",HS,31.410464355788097,35.319631969279314,0.8893202619752274,7229.538825836673,2019
+2007,35,"(30,35]",HS,27.13177240026161,36.79128330133262,0.7374511016113121,7100.62377724024,2019
+2007,35,"(30,35]",HS,34.587285807717464,35.319631969279314,0.979265181409624,7323.643671164255,2019
+2007,35,"(30,35]",HS,28.87759319816874,35.319631969279314,0.81760742080456,7174.385190118422,2019
+2007,35,"(30,35]",HS,31.410464355788097,35.319631969279314,0.8893202619752274,7163.236960160262,2019
+2007,60,"(55,60]",HS,688.3113145846959,144.22183054122385,4.772587561825125,6122.3081594154155,2019
+2007,60,"(55,60]",HS,668.2773054283846,144.22183054122385,4.63367648933957,6261.200302841496,2019
+2007,60,"(55,60]",HS,725.6604316546762,144.22183054122385,5.031557489816051,5892.138604485408,2019
+2007,60,"(55,60]",HS,619.1939829954218,144.22183054122385,4.293344361749962,6167.363438641797,2019
+2007,60,"(55,60]",HS,1008.283060824068,144.22183054122385,6.991195833808696,6218.044995393304,2019
+2007,76,"(75,80]",HS,5.73831262262917,19.131467316692962,0.2999410618976551,6737.1211748369315,2019
+2007,76,"(75,80]",HS,5.595212557226946,20.603118648746268,0.2715711467092592,6745.255648325665,2019
+2007,76,"(75,80]",HS,5.7240026160889474,20.603118648746268,0.27782214497110913,6745.39391142503,2019
+2007,76,"(75,80]",HS,5.609522563767168,19.131467316692962,0.2932092176156629,6764.230177634074,2019
+2007,76,"(75,80]",HS,5.580902550686724,19.131467316692962,0.2917132522196646,6767.166102672842,2019
+2007,38,"(35,40]",College,1604.2948332243298,233.99256179647546,6.856178764433249,7363.939160553267,2019
+2007,38,"(35,40]",College,1602.8638325703075,233.99256179647546,6.850063182625709,7533.9117492189835,2019
+2007,38,"(35,40]",College,1602.8638325703075,233.99256179647546,6.850063182625709,7087.47967684821,2019
+2007,38,"(35,40]",College,1602.8638325703075,233.99256179647546,6.850063182625709,7419.743169269534,2019
+2007,38,"(35,40]",College,1602.8638325703075,233.99256179647546,6.850063182625709,7481.01615897156,2019
+2007,51,"(50,55]",College,6113.234793982996,610.7353028021214,10.009630630380782,164.81435698640664,2019
+2007,51,"(50,55]",College,6113.234793982996,610.7353028021214,10.009630630380782,162.158148140516,2019
+2007,51,"(50,55]",College,6113.234793982996,610.7353028021214,10.009630630380782,162.60763027340295,2019
+2007,51,"(50,55]",College,6111.803793328973,610.7353028021214,10.0072875520497,160.96926382786856,2019
+2007,51,"(50,55]",College,6113.234793982996,610.7353028021214,10.009630630380782,162.52275728417015,2019
+2007,47,"(45,50]",College,526.5080706344015,130.97696855274413,4.01985231794686,8081.683559264267,2019
+2007,47,"(45,50]",College,569.323610202747,113.31715256810448,5.0241609262161715,8266.098450027263,2019
+2007,47,"(45,50]",College,710.5490647482014,117.73210656426438,6.03530409404801,7778.452271670118,2019
+2007,47,"(45,50]",College,941.2979202092871,113.31715256810448,8.306755851842993,8144.52158319507,2019
+2007,47,"(45,50]",College,494.61106605624593,120.675409228371,4.098689776309141,8211.492336971842,2019
+2007,35,"(30,35]",College,1798.3599869195555,185.42806783871637,9.698423803260209,2406.7236189107657,2019
+2007,35,"(30,35]",College,1575.553185088293,185.42806783871637,8.49684302626016,2439.5789611796263,2019
+2007,35,"(30,35]",College,1669.9992282537607,186.8997191707697,8.935268793678002,2430.765700165362,2019
+2007,35,"(30,35]",College,1785.4809810333552,185.42806783871637,9.628968267017429,2613.0130192443803,2019
+2007,35,"(30,35]",College,1631.076010464356,185.42806783871637,8.796273560284577,2504.5652001569065,2019
+2007,66,"(65,70]",HS,983.5267495094834,101.54394191167802,9.685725519351474,6808.34177385669,2019
+2007,66,"(65,70]",HS,1024.310268149117,108.90219857194455,9.405781348596213,6963.968455393204,2019
+2007,66,"(65,70]",HS,990.39555264879,95.65733658346481,10.353576505704094,6555.826891506319,2019
+2007,66,"(65,70]",HS,1013.1484630477437,108.90219857194455,9.303287503221735,6860.619073138679,2019
+2007,66,"(65,70]",HS,977.8027468933944,100.07229057962472,9.770963982436118,6917.939126933578,2019
+2007,73,"(70,75]",College,916.2697187704382,161.88164652586354,5.660121072613673,8911.60670510081,2019
+2007,73,"(70,75]",College,930.7228253760628,161.88164652586354,5.7494030073839335,9127.759446407796,2019
+2007,73,"(70,75]",College,920.7058207979071,161.88164652586354,5.687524438731278,8580.185895878667,2019
+2007,73,"(70,75]",College,921.9937213865272,161.88164652586354,5.695480254700906,8989.995759698302,2019
+2007,73,"(70,75]",College,934.8727272727273,161.88164652586354,5.775038414397177,9065.786428023923,2019
+2007,52,"(50,55]",HS,6.868803139306737,80.94082326293177,0.08486203700935696,6762.394317999021,2019
+2007,52,"(50,55]",HS,6.868803139306737,80.94082326293177,0.08486203700935696,6700.471692228535,2019
+2007,52,"(50,55]",HS,6.868803139306737,80.94082326293177,0.08486203700935696,6838.680371591103,2019
+2007,52,"(50,55]",HS,6.868803139306737,80.94082326293177,0.08486203700935696,6690.098480606974,2019
+2007,52,"(50,55]",HS,6.868803139306737,80.94082326293177,0.08486203700935696,6543.183844317806,2019
+2007,65,"(60,65]",HS,316.8235448005232,51.50779662186566,6.150982289660357,5355.2439388670255,2019
+2007,65,"(60,65]",HS,316.8235448005232,52.979447953918964,5.980121670503125,5293.201221825811,2019
+2007,65,"(60,65]",HS,316.8235448005232,51.50779662186566,6.150982289660357,5449.114377296618,2019
+2007,65,"(60,65]",HS,316.680444735121,52.979447953918964,5.977420621871461,5312.681359157186,2019
+2007,65,"(60,65]",HS,316.680444735121,51.50779662186566,6.148204068210646,5239.359198754175,2019
+2007,82,"(80,85]",HS,14.395866579463702,64.7526586103454,0.22232085737347165,6519.310456283308,2019
+2007,82,"(80,85]",HS,12.964865925441465,64.7526586103454,0.20022136856895162,6481.159204852776,2019
+2007,82,"(80,85]",HS,12.979175931981686,64.7526586103454,0.20044236345699679,6522.8807735098135,2019
+2007,82,"(80,85]",HS,12.979175931981686,64.7526586103454,0.20044236345699679,6525.435623261876,2019
+2007,82,"(80,85]",HS,12.964865925441465,64.7526586103454,0.20022136856895162,6669.847786560669,2019
+2007,61,"(60,65]",HS,100.52779594506212,61.8093559462388,1.6264171403517012,12636.996666790832,2019
+2007,61,"(60,65]",HS,123.20915631131459,61.8093559462388,1.9933738901677078,12406.47996119924,2019
+2007,61,"(60,65]",HS,137.51916285153698,61.8093559462388,2.224892344310299,13191.214836541296,2019
+2007,61,"(60,65]",HS,101.60104643557881,61.8093559462388,1.6437810244123956,12639.543742415523,2019
+2007,61,"(60,65]",HS,108.1836494440811,61.8093559462388,1.7502795133179874,12501.598247450758,2019
+2007,63,"(60,65]",College,1677.1327665140616,183.95641650666312,9.117011509371917,3517.4455577306276,2019
+2007,63,"(60,65]",College,1677.1327665140616,183.95641650666312,9.117011509371917,3570.3145750873205,2019
+2007,63,"(60,65]",College,1677.1327665140616,183.95641650666312,9.117011509371917,3575.0002512701626,2019
+2007,63,"(60,65]",College,1677.1327665140616,183.95641650666312,9.117011509371917,3860.5239528228185,2019
+2007,63,"(60,65]",College,1676.9896664486594,183.95641650666312,9.116233607365997,3720.252700418672,2019
+2007,31,"(30,35]",HS,352.03331589274035,147.16513320533048,2.3920972870766195,7952.8662744136745,2019
+2007,31,"(30,35]",HS,351.8902158273381,147.16513320533048,2.3911249095692204,8135.091115269139,2019
+2007,31,"(30,35]",HS,351.8973708306082,147.16513320533048,2.3911735284445905,7653.937701790821,2019
+2007,31,"(30,35]",HS,351.8902158273381,147.16513320533048,2.3911249095692204,8011.6924893614605,2019
+2007,31,"(30,35]",HS,351.8902158273381,147.16513320533048,2.3911249095692204,8078.722665158615,2019
+2007,47,"(45,50]",College,338.78940483976453,82.41247459498507,4.110899551369379,8746.621549367283,2019
+2007,47,"(45,50]",College,336.2136036625246,82.41247459498507,4.079644560060131,8549.185144390194,2019
+2007,47,"(45,50]",College,340.2204054937868,80.94082326293177,4.203322770619712,9039.738876611736,2019
+2007,47,"(45,50]",College,339.6480052321779,82.41247459498507,4.121317881805797,8758.683493384407,2019
+2007,47,"(45,50]",College,339.6480052321779,80.94082326293177,4.196250934202266,8506.495592267525,2019
+2007,24,"(20,25]",College,88.72204054937869,67.69596127445202,1.3105957708419715,10436.227790697758,2019
+2007,24,"(20,25]",College,88.72204054937869,69.16761260650532,1.2827107544410785,10418.145163567096,2019
+2007,24,"(20,25]",College,87.29103989535645,67.69596127445202,1.2894571293767783,10536.292229909697,2019
+2007,24,"(20,25]",College,88.72204054937869,67.69596127445202,1.3105957708419715,10441.324384895046,2019
+2007,24,"(20,25]",College,87.29103989535645,67.69596127445202,1.2894571293767783,10392.560188960986,2019
+2007,59,"(55,60]",College,5.795552648790059,55.92275061802558,0.10363497118330188,7320.975177580434,2019
+2007,59,"(55,60]",College,5.795552648790059,55.92275061802558,0.10363497118330188,7295.395302916126,2019
+2007,59,"(55,60]",College,4.364551994767822,55.92275061802558,0.078046089409647107,7343.9938354669985,2019
+2007,59,"(55,60]",College,5.795552648790059,55.92275061802558,0.10363497118330188,7320.760998659961,2019
+2007,59,"(55,60]",College,4.364551994767822,55.92275061802558,0.078046089409647107,7302.373519158692,2019
+2007,61,"(60,65]",HS,422.3598430346632,44.14953996159914,9.566574043626002,8124.000670731368,2019
+2007,61,"(60,65]",HS,422.3598430346632,44.14953996159914,9.566574043626002,7925.587102492273,2019
+2007,61,"(60,65]",HS,422.3598430346632,44.14953996159914,9.566574043626002,8402.013195637666,2019
+2007,61,"(60,65]",HS,422.3598430346632,44.14953996159914,9.566574043626002,8093.386303911277,2019
+2007,61,"(60,65]",HS,422.3598430346632,44.14953996159914,9.566574043626002,7858.69060814069,2019
+2007,43,"(40,45]",College,477.95421844342707,80.94082326293177,5.904983408567754,3001.65017035585,2019
+2007,43,"(40,45]",College,944.4604316546762,80.94082326293177,11.66853008878658,3025.045676530066,2019
+2007,43,"(40,45]",College,619.6232831916285,80.94082326293177,7.6552629218857415,3046.8432740825488,2019
+2007,43,"(40,45]",College,585.2792674950948,82.41247459498507,7.101828580823976,3021.0314114811026,2019
+2007,43,"(40,45]",College,467.9372138652714,82.41247459498507,5.677990087847042,3072.8740953995775,2019
+2007,63,"(60,65]",HS,101.31484630477436,17.659815984639657,5.737027293653403,11178.828366303725,2019
+2007,63,"(60,65]",HS,98.59594506213212,16.18816465258635,6.090619114525724,10956.833389336247,2019
+2007,63,"(60,65]",HS,94.3029431000654,16.18816465258635,5.8254252488714835,11545.563063291653,2019
+2007,63,"(60,65]",HS,98.48146500981034,16.18816465258635,6.083547278108278,11113.263874137407,2019
+2007,63,"(60,65]",HS,100.04125572269457,17.659815984639657,5.664909295187986,10932.824416640315,2019
+2007,68,"(65,70]",College,3332.8005232177893,662.2430994239872,5.032593810515546,265.0349410010148,2019
+2007,68,"(65,70]",College,9766.579463701766,662.2430994239872,14.74772552888304,508.09674674514724,2019
+2007,68,"(65,70]",College,3837.9437540876393,662.2430994239872,5.795369944097335,511.04589411673453,2019
+2007,68,"(65,70]",College,17203.48986265533,662.2430994239872,25.977605319887456,507.3609758101191,2019
+2007,68,"(65,70]",College,4769.525179856115,662.2430994239872,7.202076071467717,517.5006609798717,2019
+2007,42,"(40,45]",College,86.21778940483976,58.86605328213219,1.4646436205195659,6756.617907662509,2019
+2007,42,"(40,45]",College,86.360889470242,57.39440195007889,1.50469186080827,6683.384934744621,2019
+2007,42,"(40,45]",College,86.21778940483976,57.39440195007889,1.5021985851482726,6887.4444292811795,2019
+2007,42,"(40,45]",College,86.360889470242,57.39440195007889,1.50469186080827,6698.964234013241,2019
+2007,42,"(40,45]",College,86.360889470242,57.39440195007889,1.50469186080827,6681.575319000393,2019
+2007,34,"(30,35]",College,4114.126880313931,1545.23389865597,2.6624622226397956,3632.822504037928,2019
+2007,34,"(30,35]",College,4114.126880313931,1545.23389865597,2.6624622226397956,3742.250140942232,2019
+2007,34,"(30,35]",College,4114.126880313931,1545.23389865597,2.6624622226397956,3573.42795916604,2019
+2007,34,"(30,35]",College,4114.126880313931,1545.23389865597,2.6624622226397956,3556.691658533863,2019
+2007,34,"(30,35]",College,4112.695879659908,1545.23389865597,2.661536148823225,3644.552497664131,2019
+2007,88,"(85,90]",College,159980.7215173316,3016.8852307092743,53.02844135032604,27.246653864766763,2019
+2007,88,"(85,90]",College,157141.18691955527,3002.1687173887417,52.34255690207684,24.246049337637377,2019
+2007,88,"(85,90]",College,158498.34793982995,3105.1843106324727,51.04313692334306,26.892783865960393,2019
+2007,88,"(85,90]",College,157962.43819489863,2943.30266410661,53.66843176586648,26.671493441959434,2019
+2007,88,"(85,90]",College,160109.3684761282,2766.7045042602126,57.870064630895506,24.29942666177679,2019
+2007,46,"(45,50]",HS,-0.14310006540222367,117.73210656426438,-0.0012154718842486024,8649.92424300023,2019
+2007,46,"(45,50]",HS,1.287900588620013,117.73210656426438,0.01093924695823742,8603.142170860465,2019
+2007,46,"(45,50]",HS,-0.14310006540222367,117.73210656426438,-0.0012154718842486024,8830.988025396411,2019
+2007,46,"(45,50]",HS,0,117.73210656426438,0,8704.60725312429,2019
+2007,46,"(45,50]",HS,1.1448005232177894,117.73210656426438,0.009723775073988819,8579.332083277177,2019
+2007,46,"(45,50]",HS,145.28949640287772,103.01559324373132,1.4103641189458358,5565.38344887527,2019
+2007,46,"(45,50]",HS,146.2482668410726,103.01559324373132,1.4196711608023678,5437.110174639884,2019
+2007,46,"(45,50]",HS,147.13548724656638,103.01559324373132,1.4282836472964722,5781.658840129798,2019
+2007,46,"(45,50]",HS,145.1463963374755,103.01559324373132,1.4089750082209802,5554.658896632404,2019
+2007,46,"(45,50]",HS,146.72049705689994,103.01559324373132,1.4242552261943913,5432.395061731059,2019
+2007,61,"(60,65]",NoHS,4.221451929365599,33.84798063722601,0.12471798464463921,8894.733555905048,2019
+2007,61,"(60,65]",NoHS,4.221451929365599,33.84798063722601,0.12471798464463921,8897.24548358625,2019
+2007,61,"(60,65]",NoHS,4.364551994767822,35.319631969279314,0.12357297489860791,8883.589413117266,2019
+2007,61,"(60,65]",NoHS,4.364551994767822,33.84798063722601,0.12894571293767784,8947.0040023648,2019
+2007,61,"(60,65]",NoHS,4.221451929365599,33.84798063722601,0.12471798464463921,8943.92933550892,2019
+2007,47,"(45,50]",HS,335.19759319816876,95.65733658346481,3.504149343586371,6442.72013118845,2019
+2007,47,"(45,50]",HS,335.3550032701112,95.65733658346481,3.505794905521969,6589.123179936183,2019
+2007,47,"(45,50]",HS,328.2,95.65733658346481,3.4309966357220545,6201.694161498957,2019
+2007,47,"(45,50]",HS,356.8057030739045,97.1289879155181,3.673524359012686,6491.01028408795,2019
+2007,47,"(45,50]",HS,328.3431000654022,95.65733658346481,3.432492601118053,6544.508566466647,2019
+2007,53,"(50,55]",College,209579.77658600392,1133.1715256810446,184.94973782547606,27.89222026032516,2019
+2007,53,"(50,55]",College,177665.4568999346,1133.1715256810446,156.78602301020254,24.820521151868853,2019
+2007,53,"(50,55]",College,216885.17802485285,1133.1715256810446,191.39660069953067,27.529965871246162,2019
+2007,53,"(50,55]",College,177774.35604970568,1133.1715256810446,156.8821242158039,27.303432320434002,2019
+2007,53,"(50,55]",College,197800.06540222367,1133.1715256810446,174.55439085741617,24.875163167332214,2019
+2007,46,"(45,50]",College,8239.70176586004,809.4082326293176,10.179908522914113,1985.3256708299625,2019
+2007,46,"(45,50]",College,8239.70176586004,809.4082326293176,10.179908522914113,1997.1488815976743,2019
+2007,46,"(45,50]",College,8239.70176586004,809.4082326293176,10.179908522914113,1962.2358550909107,2019
+2007,46,"(45,50]",College,8241.132766514062,809.4082326293176,10.181676482018474,1952.6131432296647,2019
+2007,46,"(45,50]",College,8241.132766514062,809.4082326293176,10.181676482018474,2011.1473004093405,2019
+2007,51,"(50,55]",HS,50093.25114453892,5459.82644191776,9.174879765398494,575.6953013209557,2019
+2007,51,"(50,55]",HS,44941.64879005886,5459.82644191776,8.231332857949443,644.4540987217583,2019
+2007,51,"(50,55]",HS,46329.71942446043,5459.82644191776,8.485566330234327,577.9456247990045,2019
+2007,51,"(50,55]",HS,50422.381294964034,5459.82644191776,9.235161928929962,590.3871319284094,2019
+2007,51,"(50,55]",HS,46469.95748855461,5459.82644191776,8.511251773825995,628.2893368339709,2019
+2007,41,"(40,45]",HS,545.0824591236102,117.73210656426438,4.6298539542913515,5425.2919217432445,2019
+2007,41,"(40,45]",HS,512.6273642903859,117.73210656426438,4.354184930943768,5550.219163965602,2019
+2007,41,"(40,45]",HS,515.7326357096141,117.73210656426438,4.380560670831962,5221.0358431146615,2019
+2007,41,"(40,45]",HS,526.4937606278614,117.73210656426438,4.471964156527458,5465.605045649168,2019
+2007,41,"(40,45]",HS,516.1905559189013,117.73210656426438,4.384450180861559,5510.402991379486,2019
+2007,35,"(30,35]",HS,5924.34270765206,588.6605328213219,10.064107201578429,627.1522223441311,2019
+2007,35,"(30,35]",HS,5801.276651406148,588.6605328213219,9.855046037487668,619.5393840011744,2019
+2007,35,"(30,35]",HS,6018.788750817528,588.6605328213219,10.224549490299244,621.0306772171674,2019
+2007,35,"(30,35]",HS,6071.735775016351,588.6605328213219,10.31449440973364,618.1183511530302,2019
+2007,35,"(30,35]",HS,5912.894702419882,588.6605328213219,10.04465965143045,636.6406141174862,2019
+2007,38,"(35,40]",HS,57.511916285153696,44.14953996159914,1.3026617340787023,4556.3550889936705,2019
+2007,38,"(35,40]",HS,56.08091563113146,45.62119129365245,1.229273371450393,4537.611695424166,2019
+2007,38,"(35,40]",HS,54.64991497710922,44.14953996159914,1.2378365669187767,4505.214965002831,2019
+2007,38,"(35,40]",HS,57.511916285153696,44.14953996159914,1.3026617340787023,4521.469065798163,2019
+2007,38,"(35,40]",HS,57.511916285153696,44.14953996159914,1.3026617340787023,4559.335354305886,2019
+2007,55,"(50,55]",HS,544.0664486592544,147.16513320533048,3.696979283130549,7220.896216624778,2019
+2007,55,"(50,55]",HS,534.0494440810987,147.16513320533048,3.628912857612627,7384.024746230325,2019
+2007,55,"(50,55]",HS,559.6643557880968,147.16513320533048,3.8029684314370273,6950.220789397295,2019
+2007,55,"(50,55]",HS,505.2863309352518,147.16513320533048,3.433464978625452,7272.014788466778,2019
+2007,55,"(50,55]",HS,472.51641595814255,147.16513320533048,3.2107905294311077,7331.912979973061,2019
+2007,60,"(55,60]",College,994.4023544800524,211.91779181567586,4.692396735357522,6243.211362265743,2019
+2007,60,"(55,60]",College,949.0396337475474,211.91779181567586,4.478338631298184,6384.595598996135,2019
+2007,60,"(55,60]",College,943.1725310660562,211.91779181567586,4.450652882823633,6009.8496562205055,2019
+2007,60,"(55,60]",College,952.4740353172008,211.91779181567586,4.494544923088166,6288.328705002562,2019
+2007,60,"(55,60]",College,950.7568345323741,211.91779181567586,4.486441777193175,6340.5128662025945,2019
+2007,59,"(55,60]",HS,1171.7462655330282,103.01559324373132,11.374455348334667,7197.22983029218,2019
+2007,59,"(55,60]",HS,1170.315264879006,103.01559324373132,11.360564241086111,7360.507903174231,2019
+2007,59,"(55,60]",HS,1168.8699542184436,103.01559324373132,11.34653422276507,6926.6483529093875,2019
+2007,59,"(55,60]",HS,1171.7462655330282,103.01559324373132,11.374455348334667,7250.195671151004,2019
+2007,59,"(55,60]",HS,1170.315264879006,103.01559324373132,11.360564241086111,7309.775620836585,2019
+2007,62,"(60,65]",NoHS,9.90252452583388,13.980687654506395,0.7083002474947645,7147.240043317773,2019
+2007,62,"(60,65]",NoHS,8.986684107259647,22.07476998079957,0.40710204976433195,7154.5135751545695,2019
+2007,62,"(60,65]",NoHS,8.829274035317201,16.18816465258635,0.5454153836955548,7154.667368717676,2019
+2007,62,"(60,65]",NoHS,8.657553956834532,17.659815984639657,0.49024032664693623,7173.785678115147,2019
+2007,62,"(60,65]",NoHS,8.7004839764552,13.980687654506395,0.6223216047352844,7175.813470586584,2019
+2007,59,"(55,60]",HS,98.88214519293656,19.131467316692962,5.168560443174057,9991.491235939488,2019
+2007,59,"(55,60]",HS,98.88214519293656,20.603118648746268,4.799377554375909,10043.491314590277,2019
+2007,59,"(55,60]",HS,98.88214519293656,19.131467316692962,5.168560443174057,10010.899033883103,2019
+2007,59,"(55,60]",HS,97.45114453891432,19.131467316692962,5.0937621733741425,10074.105053259813,2019
+2007,59,"(55,60]",HS,98.88214519293656,19.131467316692962,5.168560443174057,10126.347918022415,2019
+2007,47,"(45,50]",HS,345.18597776324395,20.603118648746268,16.754064452482734,6663.418370879021,2019
+2007,47,"(45,50]",HS,345.18597776324395,22.07476998079957,15.63712682231722,6701.031376558919,2019
+2007,47,"(45,50]",HS,345.18597776324395,26.489723976959482,13.030939018597685,6662.230204424852,2019
+2007,47,"(45,50]",HS,346.6169784172662,20.603118648746268,16.82351998872551,6665.6555912598105,2019
+2007,47,"(45,50]",HS,345.18597776324395,22.07476998079957,15.63712682231722,6673.7956169865065,2019
+2007,65,"(60,65]",College,2577.389587965991,229.57760780031555,11.22665930994359,1803.4997498903685,2019
+2007,65,"(60,65]",College,2986.784565075213,229.57760780031555,13.009912393865042,1861.5118634705657,2019
+2007,65,"(60,65]",College,3012.3994767822105,231.04925913236883,13.037910132645774,1747.361021738066,2019
+2007,65,"(60,65]",College,2517.845650752126,232.52091046442217,10.828469773850207,1768.8730993095367,2019
+2007,65,"(60,65]",College,2558.1283191628518,231.04925913236883,11.071787586634468,1781.3669265636534,2019
+2007,61,"(60,65]",College,3370.5789404839766,301.6885230709275,11.172380394767446,1985.2563691387481,2019
+2007,61,"(60,65]",College,3397.696402877698,301.6885230709275,11.262266022890415,2037.918991490372,2019
+2007,61,"(60,65]",College,3346.1803793328972,301.6885230709275,11.091507045981343,1966.6287809210298,2019
+2007,61,"(60,65]",College,3346.3234793982997,301.6885230709275,11.091981376472758,1964.1063419412135,2019
+2007,61,"(60,65]",College,3383.357776324395,301.6885230709275,11.214738107650724,2028.5228751956565,2019
+2007,66,"(65,70]",College,33.19921517331589,105.95889590783793,0.3133216412729731,27.590262166093652,2019
+2007,66,"(65,70]",College,33.19921517331589,105.95889590783793,0.3133216412729731,26.99110084498981,2019
+2007,66,"(65,70]",College,33.19921517331589,105.95889590783793,0.3133216412729731,27.36129157222578,2019
+2007,66,"(65,70]",College,33.19921517331589,105.95889590783793,0.3133216412729731,27.051282714837612,2019
+2007,66,"(65,70]",College,33.19921517331589,105.95889590783793,0.3133216412729731,27.883721425105403,2019
+2007,49,"(45,50]",College,1616.7445389143231,88.29907992319828,18.30986846432095,8496.102336968805,2019
+2007,49,"(45,50]",College,1619.7496402877698,88.29907992319828,18.34390167707991,8689.973796163371,2019
+2007,49,"(45,50]",College,1616.8876389797254,88.29907992319828,18.311489093499947,8177.321722474505,2019
+2007,49,"(45,50]",College,1616.8876389797254,88.29907992319828,18.311489093499947,8562.162617361368,2019
+2007,49,"(45,50]",College,1618.3186396337476,88.29907992319828,18.32769538528993,8632.567548895606,2019
+2007,36,"(35,40]",NoHS,39.78181818181818,55.92275061802558,0.711370913307603,5541.042955254326,2019
+2007,36,"(35,40]",NoHS,39.78181818181818,55.92275061802558,0.711370913307603,5575.5531194095265,2019
+2007,36,"(35,40]",NoHS,39.78181818181818,55.92275061802558,0.711370913307603,5537.532284520357,2019
+2007,36,"(35,40]",NoHS,39.78181818181818,55.92275061802558,0.711370913307603,5550.287792989302,2019
+2007,36,"(35,40]",NoHS,39.78181818181818,55.92275061802558,0.711370913307603,5575.174157920911,2019
+2007,56,"(55,60]",HS,-9.859594506213211,33.84798063722601,-0.29129047939036073,7265.682235409059,2019
+2007,56,"(55,60]",HS,-10.002694571615436,32.3763293051727,-0.30895085348719026,7113.684322949492,2019
+2007,56,"(55,60]",HS,-9.47322432962721,33.84798063722601,-0.27987561299915653,7518.782277395451,2019
+2007,56,"(55,60]",HS,-9.687874427730543,33.84798063722601,-0.2862172054387144,7255.883152384394,2019
+2007,56,"(55,60]",HS,-9.687874427730543,33.84798063722601,-0.2862172054387144,7117.957788233138,2019
+2007,69,"(65,70]",HS,1755.8378024852843,156.58370173047163,11.213413548669436,1117.4742238066565,2019
+2007,69,"(65,70]",HS,1754.4068018312623,162.47030705868485,10.798322681802802,1141.2084223532206,2019
+2007,69,"(65,70]",HS,1755.8378024852843,160.9986557266315,10.90591591936406,1083.9780690053517,2019
+2007,69,"(65,70]",HS,1755.8378024852843,158.05535306252492,11.109005601288903,1097.614223793342,2019
+2007,69,"(65,70]",HS,1755.8378024852843,160.9986557266315,10.90591591936406,1106.0872657795342,2019
+2007,67,"(65,70]",HS,587.282668410726,147.16513320533048,3.990637290365012,6693.633548107541,2019
+2007,67,"(65,70]",HS,580.5569653368215,147.16513320533048,3.944935547517264,8170.566205731469,2019
+2007,67,"(65,70]",HS,644.6657946370177,147.16513320533048,4.380560670831963,6444.3793256736335,2019
+2007,67,"(65,70]",HS,661.6947024198823,147.16513320533048,4.49627359421243,6744.481164755115,2019
+2007,67,"(65,70]",HS,624.2024852844997,147.16513320533048,4.241510687273923,6801.028064400652,2019
+2007,59,"(55,60]",HS,1077.5434924787444,191.31467316692962,5.632309715933524,3354.2734539581775,2019
+2007,59,"(55,60]",HS,907.254414650098,191.31467316692962,4.742210305314547,3398.1532196046574,2019
+2007,59,"(55,60]",HS,882.9274035317201,191.31467316692962,4.615053246654694,3389.6436650872392,2019
+2007,59,"(55,60]",HS,812.8083714846305,191.31467316692962,4.248541724635115,3640.328029224008,2019
+2007,59,"(55,60]",HS,957.3394375408765,191.31467316692962,5.004004249614247,3489.5623642457454,2019
+2007,92,"(90,95]",HS,473.0888162197515,67.69596127445202,6.988434868392835,10013.75527895401,2019
+2007,92,"(90,95]",HS,476.09391759319817,69.16761260650532,6.883191419395916,9732.989346087332,2019
+2007,92,"(90,95]",HS,475.950817527796,66.22430994239872,7.186950199130403,10231.181644598812,2019
+2007,92,"(90,95]",HS,474.66291693917594,63.28100727829211,7.500874865214166,9928.648098929212,2019
+2007,92,"(90,95]",HS,473.2319162851537,50.03614528981236,9.457801226376773,10047.511253262855,2019
+2007,31,"(30,35]",HS,-43.073119686069326,117.73210656426438,-0.3658570371588293,5985.780735656388,2019
+2007,31,"(30,35]",HS,-43.216219751471556,117.73210656426438,-0.367072509043078,5981.2114726518075,2019
+2007,31,"(30,35]",HS,-43.073119686069326,117.73210656426438,-0.3658570371588293,6058.499816726626,2019
+2007,31,"(30,35]",HS,-43.23052975801177,117.73210656426438,-0.36719405623150275,6000.9510476775995,2019
+2007,31,"(30,35]",HS,-43.216219751471556,117.73210656426438,-0.367072509043078,5971.996611946861,2019
+2007,25,"(20,25]",HS,-2.1965860039241334,63.28100727829211,-0.03471161567109962,5901.304168317443,2019
+2007,25,"(20,25]",HS,-2.1965860039241334,63.28100727829211,-0.03471161567109962,5927.273613659869,2019
+2007,25,"(20,25]",HS,-2.332531066056246,64.7526586103454,-0.03602216675136768,5934.114145055413,2019
+2007,25,"(20,25]",HS,-2.1965860039241334,64.7526586103454,-0.03392271531493827,5923.364970939752,2019
+2007,25,"(20,25]",HS,-2.1965860039241334,64.7526586103454,-0.03392271531493827,5930.846509438245,2019
+2007,35,"(30,35]",HS,-0.30051013734466975,55.92275061802558,-0.005373665172467506,6706.92285360053,2019
+2007,35,"(30,35]",HS,-5.867102681491171,55.92275061802558,-0.10491441527198463,6712.533654910852,2019
+2007,35,"(30,35]",HS,-8.872204054937868,55.92275061802558,-0.15865106699665968,6704.602683589028,2019
+2007,35,"(30,35]",HS,-1.0160104643557881,55.92275061802558,-0.0181681060592949,6748.588867887485,2019
+2007,35,"(30,35]",HS,-3.4344015696533683,55.92275061802558,-0.06141331625677149,6747.497448162246,2019
+2007,82,"(80,85]",College,375.7807717462394,92.71403391935819,4.053116403856293,10683.585529204045,2019
+2007,82,"(80,85]",College,328.55775016350555,92.71403391935819,3.5437758047425922,10632.579493330082,2019
+2007,82,"(80,85]",College,345.72975801177245,92.71403391935819,3.7289905680566657,10668.479550346075,2019
+2007,82,"(80,85]",College,352.8847612818836,92.71403391935819,3.8061633861041955,10645.2615283305,2019
+2007,82,"(80,85]",College,394.38378024852847,91.2423825873049,4.322374855469868,10911.598262016101,2019
+2007,58,"(55,60]",HS,9169.852190974492,1108.1534530361387,8.274893847824746,3244.828916953634,2019
+2007,58,"(55,60]",HS,9686.443427076521,1530.517385335437,6.3288686034452235,3243.6393273624017,2019
+2007,58,"(55,60]",HS,10804.054937867888,1545.23389865597,6.991857315106246,3206.25755558226,2019
+2007,58,"(55,60]",HS,14613.378678875082,1109.6251043681916,13.169653986150376,3181.756354022592,2019
+2007,58,"(55,60]",HS,9603.445389143231,1530.517385335437,6.2746398578402856,3242.684833994411,2019
+2007,26,"(25,30]",HS,8.5716939175932,17.659815984639657,0.48537843910994194,7226.746736205127,2019
+2007,26,"(25,30]",HS,8.58600392413342,17.659815984639657,0.4861887536994409,7147.691659157863,2019
+2007,26,"(25,30]",HS,8.557383911052975,17.659815984639657,0.4845681245204428,7270.794331409357,2019
+2007,26,"(25,30]",HS,8.557383911052975,17.659815984639657,0.4845681245204428,7281.384446722121,2019
+2007,26,"(25,30]",HS,8.557383911052975,17.659815984639657,0.4845681245204428,7214.015046570807,2019
+2007,60,"(55,60]",College,65888.77946370177,691.6761260650532,95.25958317882557,38.609318878162284,2019
+2007,60,"(55,60]",College,42233.265402223675,699.0343827253197,60.41657813392409,40.373401911021816,2019
+2007,60,"(55,60]",College,52416.06571615435,573.9440195007887,91.32609441900861,37.099901709549606,2019
+2007,60,"(55,60]",College,33812.39895356442,415.00567563903195,81.4745458637393,38.36551658522791,2019
+2007,60,"(55,60]",College,66113.94741661217,563.6424601764157,117.2976702215071,34.454784614093164,2019
+2007,44,"(40,45]",College,8117.923610202746,1868.9971917076969,4.343464851750486,218.81971470688478,2019
+2007,44,"(40,45]",College,8117.923610202746,1883.7137050282302,4.309531532596185,213.6795294978925,2019
+2007,44,"(40,45]",College,8117.923610202746,1868.9971917076969,4.343464851750486,214.14430844357736,2019
+2007,44,"(40,45]",College,8117.923610202746,1868.9971917076969,4.343464851750486,212.79550712886112,2019
+2007,44,"(40,45]",College,8117.923610202746,1868.9971917076969,4.343464851750486,217.37063094448368,2019
+2007,75,"(70,75]",HS,112.90595160235449,58.86605328213219,1.9180146333442947,8406.236941033783,2019
+2007,75,"(70,75]",HS,82.13943754087639,58.86605328213219,1.3953617231173954,8181.524804504532,2019
+2007,75,"(70,75]",HS,85.00143884892087,58.86605328213219,1.4439805984873397,8671.404466174585,2019
+2007,75,"(70,75]",HS,104.74924787442774,58.86605328213219,1.779450838539954,8382.672489741115,2019
+2007,75,"(70,75]",HS,92.01334205362983,58.86605328213219,1.5630968431437027,8340.671530914444,2019
+2007,44,"(40,45]",College,413.9312491824722,264.8972397695949,1.5626106543900031,6141.367022510139,2019
+2007,44,"(40,45]",College,426.50974493132765,264.8972397695949,1.6100950893346484,6282.783200047549,2019
+2007,44,"(40,45]",College,416.9935905820798,264.8972397695949,1.5741711425335232,5910.1515296793405,2019
+2007,44,"(40,45]",College,492.4073250490517,264.8972397695949,1.8588616683108625,6187.001007427702,2019
+2007,44,"(40,45]",College,443.324002616089,264.8972397695949,1.6735697321787424,6237.71175821362,2019
+2007,65,"(60,65]",College,15161.595029431,1471.651332053305,10.302436928641892,346.1899713650111,2019
+2007,65,"(60,65]",College,17867.474166121647,1471.651332053305,12.141105557382437,340.5198436067175,2019
+2007,65,"(60,65]",College,15132.402616088948,1471.651332053305,10.282600427490955,336.67434407222174,2019
+2007,65,"(60,65]",College,14860.798691955528,1471.651332053305,10.098043176586648,335.0900182941494,2019
+2007,65,"(60,65]",College,15290.95748855461,1471.651332053305,10.390339855310751,345.67036336971626,2019
+2007,79,"(75,80]",College,111175.5856115108,5198.314000211889,21.38685458534809,37.35166816808912,2019
+2007,79,"(75,80]",College,52397.80614780903,1605.8659335365662,32.62900411145431,39.079456354394964,2019
+2007,79,"(75,80]",College,95931.2787442773,1959.3565834957697,48.96060245099557,34.9964687520322,2019
+2007,79,"(75,80]",College,88666.08842380642,6817.424795736934,13.005803669334352,35.35643445521845,2019
+2007,79,"(75,80]",College,131870.86017004578,2297.5420596016193,57.39649449242789,33.33523691671667,2019
+2007,55,"(50,55]",College,10917.103989535644,765.2586926677185,14.265900007588597,980.0348358477249,2019
+2007,55,"(50,55]",College,10917.103989535644,765.2586926677185,14.265900007588597,964.2402336792113,2019
+2007,55,"(50,55]",College,10917.103989535644,765.2586926677185,14.265900007588597,966.912987172141,2019
+2007,55,"(50,55]",College,10917.103989535644,765.2586926677185,14.265900007588597,957.1707764820845,2019
+2007,55,"(50,55]",College,10917.103989535644,765.2586926677185,14.265900007588597,966.4083073154119,2019
+2007,48,"(45,50]",HS,550.8637017658601,281.08540442218117,1.9597734108544487,8476.288454416905,2019
+2007,48,"(45,50]",HS,553.7257030739045,269.3121937657548,2.0560736420109142,8665.356299724615,2019
+2007,48,"(45,50]",HS,560.8807063440157,200.14458115924944,2.8023776766543516,8166.136949316805,2019
+2007,48,"(45,50]",HS,560.8807063440157,213.38944314772917,2.628436993275806,8512.288692302338,2019
+2007,48,"(45,50]",HS,560.8807063440157,282.5570557542345,1.9850175209634988,8584.788694300476,2019
+2007,35,"(30,35]",HS,340.57815565729237,98.60063924757141,3.4541171158348347,7054.313392242759,2019
+2007,35,"(30,35]",HS,340.57815565729237,98.60063924757141,3.4541171158348347,6945.357228132569,2019
+2007,35,"(30,35]",HS,337.57305428384564,98.60063924757141,3.423639611871586,7200.755696275363,2019
+2007,35,"(30,35]",HS,340.57815565729237,98.60063924757141,3.4541171158348347,7008.870409300912,2019
+2007,35,"(30,35]",HS,342.0091563113146,98.60063924757141,3.4686302129601914,6899.989242729478,2019
+2007,84,"(80,85]",HS,1932.1370830608241,42.67788862954583,45.27255553413691,3535.194271218604,2019
+2007,84,"(80,85]",HS,1930.9922825376063,52.979447953918964,36.447950235668095,3590.146582644401,2019
+2007,84,"(80,85]",HS,1931.993982995422,39.73458596543923,48.62247676811965,3580.611124042008,2019
+2007,84,"(80,85]",HS,1930.8491824722041,38.262934633385925,50.462652720511976,3849.3261750436636,2019
+2007,84,"(80,85]",HS,1931.993982995422,47.09284262570575,41.025214773100956,3694.361409824246,2019
+2007,61,"(60,65]",College,4304.020667102682,292.8586150786076,14.696582055294561,1564.7643127235362,2019
+2007,61,"(60,65]",College,4304.020667102682,292.8586150786076,14.696582055294561,1564.5490687721267,2019
+2007,61,"(60,65]",College,4304.306867233486,292.8586150786076,14.69755931912109,1520.7369859338007,2019
+2007,61,"(60,65]",College,4302.589666448659,292.8586150786076,14.691695736161902,1503.8756176525321,2019
+2007,61,"(60,65]",College,4302.732766514061,292.8586150786076,14.692184368075166,1590.7304516356962,2019
+2007,33,"(30,35]",NoHS,-2.575801177240026,44.14953996159914,-0.058342650443932914,5989.909794250537,2019
+2007,33,"(30,35]",NoHS,-2.575801177240026,44.14953996159914,-0.058342650443932914,5991.587970092801,2019
+2007,33,"(30,35]",NoHS,-2.71890124264225,44.14953996159914,-0.061583908801929196,5988.455969478591,2019
+2007,33,"(30,35]",NoHS,-2.575801177240026,44.14953996159914,-0.058342650443932914,6023.876531341764,2019
+2007,33,"(30,35]",NoHS,-2.71890124264225,44.14953996159914,-0.061583908801929196,6023.997354938924,2019
+2007,60,"(55,60]",College,2139.202877697842,438.5520969518849,4.877876294666404,273.0328245591945,2019
+2007,60,"(55,60]",College,2140.633878351864,438.5520969518849,4.881139306436199,271.0486850681188,2019
+2007,60,"(55,60]",College,2140.633878351864,438.5520969518849,4.881139306436199,265.5017296409751,2019
+2007,60,"(55,60]",College,2139.202877697842,438.5520969518849,4.877876294666404,269.57794487286725,2019
+2007,60,"(55,60]",College,2140.633878351864,438.5520969518849,4.881139306436199,276.98405658908024,2019
+2007,58,"(55,60]",College,4145.465794637018,722.5808040381726,5.737027293653404,252.50291728962878,2019
+2007,58,"(55,60]",College,4146.89679529104,696.0910800612131,5.957405451778477,242.10115778807972,2019
+2007,58,"(55,60]",College,4146.89679529104,709.3359420496928,5.846167590645685,244.32180256084416,2019
+2007,58,"(55,60]",College,4146.89679529104,718.1658500420127,5.774288480924631,241.9690463250053,2019
+2007,58,"(55,60]",College,4146.89679529104,719.637501374066,5.7624801200229445,245.75545370704623,2019
+2007,61,"(60,65]",College,6403.871026814912,1321.690061317073,4.845213877475488,5243.223405025408,2019
+2007,61,"(60,65]",College,8636.375147155004,1321.8372264502782,6.533614710146663,5291.975973004401,2019
+2007,61,"(60,65]",College,6833.171223021583,1321.690061317073,5.170025426545374,5112.547144833816,2019
+2007,61,"(60,65]",College,6803.120209287115,1321.690061317073,5.147288618110482,5135.290390243297,2019
+2007,61,"(60,65]",College,7820.704774362329,1323.1617126491262,5.910619011718796,5242.715091217857,2019
+2007,82,"(80,85]",HS,400.5370830608241,34.58380630325266,11.58163677961477,11356.321734010935,2019
+2007,82,"(80,85]",HS,400.6801831262263,34.58380630325266,11.585774556241999,11037.912887702805,2019
+2007,82,"(80,85]",HS,399.1060824068018,34.58380630325266,11.540259013342476,11602.898936362635,2019
+2007,82,"(80,85]",HS,399.24918247220404,34.58380630325266,11.544396789969705,11259.804044961023,2019
+2007,82,"(80,85]",HS,399.24918247220404,34.58380630325266,11.544396789969705,11394.603446916579,2019
+2007,59,"(55,60]",HS,1059.2982341399606,286.97200975039436,3.691294614625756,3613.2672841708422,2019
+2007,59,"(55,60]",HS,933.0839764551996,286.97200975039436,3.2514807882022625,3663.5243690521324,2019
+2007,59,"(55,60]",HS,765.6568999345978,286.97200975039436,2.668054283762933,3664.6384708171304,2019
+2007,59,"(55,60]",HS,767.8034009156311,286.97200975039436,2.675534110742924,3636.231392029543,2019
+2007,59,"(55,60]",HS,766.5155003270111,286.97200975039436,2.671046214554929,3706.914023738457,2019
+2007,67,"(65,70]",College,1172.2614257684763,42.67788862954583,27.467652768485873,6102.600619240727,2019
+2007,67,"(65,70]",College,1172.8338260300852,41.206237297492535,28.46253147460892,6240.057662207269,2019
+2007,67,"(65,70]",College,1172.132635709614,41.206237297492535,28.44551486822943,5878.385887906742,2019
+2007,67,"(65,70]",College,1176.2825376062788,42.67788862954583,27.561872795926934,6129.044299361549,2019
+2007,67,"(65,70]",College,1174.121726618705,41.206237297492535,28.493786465918163,6181.243674787903,2019
+2007,68,"(65,70]",College,271.4608240680183,294.33026641066095,0.9223000657678395,534.2051937126923,2019
+2007,68,"(65,70]",College,271.6039241334205,294.33026641066095,0.9227862545215387,558.5312692270999,2019
+2007,68,"(65,70]",College,271.6039241334205,294.33026641066095,0.9227862545215387,541.6745558463127,2019
+2007,68,"(65,70]",College,271.6039241334205,294.33026641066095,0.9227862545215387,535.8201135798312,2019
+2007,68,"(65,70]",College,271.4608240680183,294.33026641066095,0.9223000657678395,535.0738359747769,2019
+2007,73,"(70,75]",HS,293.3551340745586,35.319631969279314,8.30572454236545,8016.556113856901,2019
+2007,73,"(70,75]",HS,303.3721386527142,31.051843106324732,9.769859316045638,8310.524993278144,2019
+2007,73,"(70,75]",HS,397.8181818181818,31.78766877235138,12.514858660041165,8017.505689397648,2019
+2007,73,"(70,75]",HS,407.83518639633746,34.289476036842,11.893887966037827,8129.962832971958,2019
+2007,73,"(70,75]",HS,330.5611510791367,31.78766877235138,10.39903723190471,8050.875802549245,2019
+2007,35,"(30,35]",College,21736.957174623938,7564.287846753987,2.873629033558232,213.44079728736656,2019
+2007,35,"(30,35]",College,22179.279476782212,7372.973173587057,3.0081866507038537,204.0221548549193,2019
+2007,35,"(30,35]",College,23050.901975147153,7579.004360074519,3.0414155844238766,206.85017388648512,2019
+2007,35,"(30,35]",College,21349.299097449315,7240.524553702259,2.9485845865314952,206.49562486202814,2019
+2007,35,"(30,35]",College,21944.595369522565,6681.297047522003,3.284481323527069,212.57395569543164,2019
+2007,25,"(20,25]",College,7.0405232177894055,80.94082326293177,0.08698358793459089,5322.5494379258025,2019
+2007,25,"(20,25]",College,-2.1178809679529103,80.94082326293177,-0.026165794744551725,5345.9719989001505,2019
+2007,25,"(20,25]",College,8.471523871811641,80.94082326293177,0.1046631789782069,5352.141663349906,2019
+2007,25,"(20,25]",College,-1.0160104643557881,80.94082326293177,-0.012552509640967383,5342.446685932095,2019
+2007,25,"(20,25]",College,-1.8746108567691302,80.94082326293177,-0.023160264267137003,5349.194492415916,2019
+2007,32,"(30,35]",HS,16.456507521255723,55.92275061802558,0.29427214039703004,6581.364418610217,2019
+2007,32,"(30,35]",HS,15.025506867233485,55.92275061802558,0.2686832586233752,6537.2306833785115,2019
+2007,32,"(30,35]",HS,15.025506867233485,55.92275061802558,0.2686832586233752,6532.108954167987,2019
+2007,32,"(30,35]",HS,16.456507521255723,55.92275061802558,0.29427214039703004,6557.609628289976,2019
+2007,32,"(30,35]",HS,15.025506867233485,55.92275061802558,0.2686832586233752,6586.795328904815,2019
+2007,59,"(55,60]",College,100513.4859385219,2339.9256179647546,42.95584661616193,66.39877441402105,2019
+2007,59,"(55,60]",College,100510.62393721387,2339.9256179647546,42.95462349980042,59.348824532076534,2019
+2007,59,"(55,60]",College,100514.91693917594,2339.9256179647546,42.956458174342686,64.91911332938218,2019
+2007,59,"(55,60]",College,100512.0549378679,2339.9256179647546,42.95523505798118,64.50210026765028,2019
+2007,59,"(55,60]",College,100510.62393721387,2339.9256179647546,42.95462349980042,59.606604928810796,2019
+2007,60,"(55,60]",HS,437.24224983649447,80.94082326293177,5.401999043376879,7826.92433044933,2019
+2007,60,"(55,60]",HS,437.3137998691956,80.94082326293177,5.40288302292906,7625.516720760611,2019
+2007,60,"(55,60]",HS,437.17069980379335,80.94082326293177,5.401115063824698,8017.621473655194,2019
+2007,60,"(55,60]",HS,436.62691955526486,80.94082326293177,5.394396819228124,7752.891883133748,2019
+2007,60,"(55,60]",HS,436.52674950948335,80.94082326293177,5.393159247855071,7656.5568593410335,2019
+2007,29,"(25,30]",HS,448.3325049051668,183.95641650666312,2.4371669845445574,9198.779998441138,2019
+2007,29,"(25,30]",HS,448.1894048397645,183.95641650666312,2.436389082538638,9404.791666527035,2019
+2007,29,"(25,30]",HS,446.75840418574234,183.95641650666312,2.4286100624794473,8861.92954897433,2019
+2007,29,"(25,30]",HS,448.3325049051668,183.95641650666312,2.4371669845445574,9237.697854640797,2019
+2007,29,"(25,30]",HS,448.3325049051668,183.95641650666312,2.4371669845445574,9317.257810744848,2019
+2007,77,"(75,80]",College,10736.797907128843,279.6137530901279,38.398675989546376,1977.0246323550211,2019
+2007,77,"(75,80]",College,10736.797907128843,279.6137530901279,38.398675989546376,1988.7984079449568,2019
+2007,77,"(75,80]",College,10736.797907128843,279.6137530901279,38.398675989546376,1954.0313596928288,2019
+2007,77,"(75,80]",College,10736.797907128843,279.6137530901279,38.398675989546376,1944.4488822891162,2019
+2007,77,"(75,80]",College,10736.797907128843,279.6137530901279,38.398675989546376,2002.7382966046928,2019
+2007,24,"(20,25]",College,34.12936559843035,70.63926393855863,0.48315007398881943,7517.5598032164535,2019
+2007,24,"(20,25]",College,39.06631785480707,70.63926393855863,0.5530397073331141,7515.7700446258295,2019
+2007,24,"(20,25]",College,35.01658600392413,70.63926393855863,0.495709950126055,7458.815275668116,2019
+2007,24,"(20,25]",College,34.14367560497057,70.63926393855863,0.4833526526361942,7487.424555760044,2019
+2007,24,"(20,25]",College,37.4922171353826,70.63926393855863,0.5307560561218897,7563.4225666866,2019
+2007,59,"(55,60]",HS,221719.24133420538,15054.993126905307,14.72728944246166,22.78352669758812,2019
+2007,59,"(55,60]",HS,216169.82079790713,16894.557291971938,12.795234409641978,20.33406282669339,2019
+2007,59,"(55,60]",HS,218118.84368868542,15069.709640225841,14.473991131617888,22.4197226749254,2019
+2007,59,"(55,60]",HS,221544.65925441464,15717.23622632929,14.09564990079402,22.302183267864148,2019
+2007,59,"(55,60]",HS,218785.6899934598,15172.725233469573,14.419669942406891,20.624577907900782,2019
+2007,42,"(40,45]",HS,131.78085022890778,91.2423825873049,1.4442942686510165,7157.0081365811,2019
+2007,42,"(40,45]",HS,132.65376062786135,91.2423825873049,1.4538612086431668,7093.053462251641,2019
+2007,42,"(40,45]",HS,131.95257030739046,91.2423825873049,1.446176289633079,7337.588811989456,2019
+2007,42,"(40,45]",HS,133.3692609548725,91.2423825873049,1.4617029627350935,7176.069279609599,2019
+2007,42,"(40,45]",HS,138.66396337475473,91.2423825873049,1.519731943015349,7195.377382140365,2019
+2007,48,"(45,50]",HS,3.148201438848921,88.29907992319828,0.03565384193795901,6690.055139754656,2019
+2007,48,"(45,50]",HS,3.577501635055592,88.29907992319828,0.04051572947495342,6688.25950549976,2019
+2007,48,"(45,50]",HS,2.146500981033355,88.29907992319828,0.024309437684972048,6785.631800181201,2019
+2007,48,"(45,50]",HS,7.727403531720079,88.29907992319828,0.08751397566589939,6740.43286050569,2019
+2007,48,"(45,50]",HS,5.4378024852845,88.29907992319828,0.061583908801929196,6684.06721051098,2019
+2007,69,"(65,70]",College,1413.84295618051,104.48724457578463,13.531249311058723,5724.124159419812,2019
+2007,69,"(65,70]",College,1309.379908436887,104.48724457578463,12.531480887958466,5708.6785467500285,2019
+2007,69,"(65,70]",College,1337.9999215173316,104.48724457578463,12.805390044972235,5779.115331845935,2019
+2007,69,"(65,70]",College,1431.014964028777,104.48724457578463,13.695594805266987,5746.1426101817215,2019
+2007,69,"(65,70]",College,1297.931903204709,104.48724457578463,12.421917225152956,5832.697311781265,2019
+2007,65,"(60,65]",College,11773.844081098758,367.91283301332624,32.001721670503116,3226.07305393965,2019
+2007,65,"(60,65]",College,12391.177763243952,367.91283301332624,33.67965629727063,3257.407288685136,2019
+2007,65,"(60,65]",College,14849.694126880315,367.91283301332624,40.36199010851693,3181.2753401187515,2019
+2007,65,"(60,65]",College,18716.34375408764,367.91283301332624,50.87167957908582,1197.7811875384498,2019
+2007,65,"(60,65]",College,20333.61776324395,367.91283301332624,55.26748712923379,1231.7552918063075,2019
+2007,56,"(55,60]",HS,280.4761281883584,55.92275061802558,5.015420827636339,9840.782458423488,2019
+2007,56,"(55,60]",HS,286.2001308044473,55.92275061802558,5.117776354730957,9600.439696159196,2019
+2007,56,"(55,60]",HS,280.4761281883584,55.92275061802558,5.015420827636339,10177.545204908287,2019
+2007,56,"(55,60]",HS,287.6311314584696,55.92275061802558,5.1433652365046125,9803.698595904334,2019
+2007,56,"(55,60]",HS,280.4761281883584,55.92275061802558,5.015420827636339,9519.406486681892,2019
+2007,54,"(50,55]",College,53905.22223675605,5960.187894815884,9.04421524758344,25.838388210747855,2019
+2007,54,"(50,55]",College,47007.94218443427,5739.440195007888,8.190335744820784,27.97447539791562,2019
+2007,54,"(50,55]",College,35299.351733158925,5739.440195007888,6.150312667054528,27.711445639061175,2019
+2007,54,"(50,55]",College,50311.979594506214,6872.611720688933,7.320649214482726,28.13065719865734,2019
+2007,54,"(50,55]",College,39496.61975147155,7137.508960458528,5.533670075972025,28.075113596807505,2019
+2007,28,"(25,30]",College,10.03131458469588,55.92275061802558,0.17937806123332004,5237.951211043988,2019
+2007,28,"(25,30]",College,10.03131458469588,55.92275061802558,0.17937806123332004,5261.00148667828,2019
+2007,28,"(25,30]",College,10.03131458469588,55.92275061802558,0.17937806123332004,5267.073088596354,2019
+2007,28,"(25,30]",College,10.174414650098104,55.92275061802558,0.18193694941068556,5257.532206111575,2019
+2007,28,"(25,30]",College,10.03131458469588,55.92275061802558,0.17937806123332004,5264.17276089759,2019
+2007,36,"(35,40]",College,1512.5963113145847,110.37384990399784,13.704299638276884,7216.654520172604,2019
+2007,36,"(35,40]",College,1512.6106213211249,110.37384990399784,13.704429288611204,7382.511310273643,2019
+2007,36,"(35,40]",College,1512.753721386527,110.37384990399784,13.705725791954402,6946.795514611144,2019
+2007,36,"(35,40]",College,1512.5963113145847,110.37384990399784,13.704299638276884,7271.934188180776,2019
+2007,36,"(35,40]",College,1512.5963113145847,110.37384990399784,13.704299638276884,7331.773992170494,2019
+2007,46,"(45,50]",HS,8.442903858731198,48.56449395775905,0.17384931192889105,6817.550767957722,2019
+2007,46,"(45,50]",HS,9.30150425114454,48.56449395775905,0.19152890297250708,6810.349022180397,2019
+2007,46,"(45,50]",HS,8.013603662524526,48.56449395775905,0.16500951640708303,6898.35210284613,2019
+2007,46,"(45,50]",HS,8.729103989535645,48.56449395775905,0.17974250894342972,6882.680075288781,2019
+2007,46,"(45,50]",HS,8.729103989535645,48.56449395775905,0.17974250894342972,6820.433575212666,2019
+2007,59,"(55,60]",HS,582.5603662524526,120.675409228371,4.827498576366888,7387.7813832365955,2019
+2007,59,"(55,60]",HS,582.7034663178548,120.675409228371,4.828684402595423,7555.382354106213,2019
+2007,59,"(55,60]",HS,578.982864617397,120.675409228371,4.797852920653508,7110.036077279609,2019
+2007,59,"(55,60]",HS,577.9811641595815,120.675409228371,4.789552137053761,7442.149530742089,2019
+2007,59,"(55,60]",HS,579.4121648136037,120.675409228371,4.8014103993391135,7503.306900102271,2019
+2007,66,"(65,70]",College,110.83100065402225,16.335329785791682,6.784742157481388,7930.852264803558,2019
+2007,66,"(65,70]",College,106.82419882275998,16.18816465258635,6.5989073570296854,7715.3708648210695,2019
+2007,66,"(65,70]",College,116.7553433616743,14.569348187327716,8.01376574027018,8232.381043182102,2019
+2007,66,"(65,70]",College,116.89844342707651,16.18816465258635,7.221228961764969,7770.80276928964,2019
+2007,66,"(65,70]",College,106.35196860693264,14.422183054122387,7.374193505090297,7677.337449707542,2019
+2007,80,"(75,80]",HS,52.231523871811646,44.14953996159914,1.1830593006686398,11034.213453159868,2019
+2007,80,"(75,80]",HS,11.376455199476784,79.46917193087846,0.14315557747816873,10852.05595940485,2019
+2007,80,"(75,80]",HS,11.376455199476784,42.67788862954583,0.26656555806279697,11025.853965557788,2019
+2007,80,"(75,80]",HS,53.8056245912361,47.09284262570575,1.1425435711936864,11036.357632563202,2019
+2007,80,"(75,80]",HS,16.170307390451274,32.3763293051727,0.49944844698215296,11046.40542806219,2019
+2007,74,"(70,75]",HS,20.177109221713536,22.07476998079957,0.914034856954949,11016.174399032912,2019
+2007,74,"(70,75]",HS,20.177109221713536,29.433026641066096,0.6855261427162116,10897.174933236514,2019
+2007,74,"(70,75]",HS,20.177109221713536,23.546421312852875,0.8569076783952646,10912.438819025128,2019
+2007,74,"(70,75]",HS,17.315107913669063,29.433026641066096,0.5882883919763234,10990.003784351375,2019
+2007,74,"(70,75]",HS,20.177109221713536,27.96137530901279,0.7216064660170649,10941.451768324447,2019
+2007,68,"(65,70]",College,97378.16350555919,2796.1375309012788,34.8259563163087,26.909692578237987,2019
+2007,68,"(65,70]",College,97379.59450621322,2796.1375309012788,34.82646809394417,23.946196738540245,2019
+2007,68,"(65,70]",College,97379.59450621322,2796.1375309012788,34.82646809394417,26.560198914619555,2019
+2007,68,"(65,70]",College,97378.16350555919,2796.1375309012788,34.8259563163087,26.341645204871224,2019
+2007,68,"(65,70]",College,97378.16350555919,2796.1375309012788,34.8259563163087,23.99891394155423,2019
+2007,63,"(60,65]",College,3.033721386527142,66.22430994239872,0.045809784793013994,6022.316731525858,2019
+2007,63,"(60,65]",College,6.897423152387182,67.69596127445202,0.10188825186223067,6037.457886885089,2019
+2007,63,"(60,65]",College,7.899123610202747,66.22430994239872,0.11927830757426285,6091.038968720846,2019
+2007,63,"(60,65]",College,6.482432962720733,67.69596127445202,0.09575804583732468,6043.988544882467,2019
+2007,63,"(60,65]",College,3.176821451929366,67.69596127445202,0.046927784052728655,6005.544784142398,2019
+2007,34,"(30,35]",HS,50.371223021582736,61.8093559462388,0.8149449585819201,7142.897835752856,2019
+2007,34,"(30,35]",HS,51.80222367560497,61.8093559462388,0.8380968039961791,7064.760001488206,2019
+2007,34,"(30,35]",HS,51.80222367560497,61.8093559462388,0.8380968039961791,7186.434365250725,2019
+2007,34,"(30,35]",HS,51.80222367560497,61.8093559462388,0.8380968039961791,7196.901607913176,2019
+2007,34,"(30,35]",HS,48.9402223675605,61.8093559462388,0.791793113167661,7130.313866554259,2019
+2007,20,"(15,20]",HS,-18.889208633093524,14.716513320533048,-1.283538309766524,6047.0411367142315,2019
+2007,20,"(15,20]",HS,-19.032308698495747,14.716513320533048,-1.2932620848405127,6030.749349155472,2019
+2007,20,"(15,20]",HS,-19.032308698495747,14.716513320533048,-1.2932620848405127,6002.173825724491,2019
+2007,20,"(15,20]",HS,-18.889208633093524,14.716513320533048,-1.283538309766524,5960.631347776062,2019
+2007,20,"(15,20]",HS,-19.175408763897973,14.716513320533048,-1.3029858599145017,5917.927442923165,2019
+2007,77,"(75,80]",College,26112.899934597775,909.4805232089424,28.71188471685242,327.56303542918306,2019
+2007,77,"(75,80]",College,26112.899934597775,909.4805232089424,28.71188471685242,297.6158935154855,2019
+2007,77,"(75,80]",College,26112.899934597775,909.4805232089424,28.71188471685242,300.03598391920093,2019
+2007,77,"(75,80]",College,26112.899934597775,909.4805232089424,28.71188471685242,314.2380807728001,2019
+2007,77,"(75,80]",College,26114.3309352518,909.4805232089424,28.7134581432398,311.6390490547351,2019
+2007,41,"(40,45]",College,153.68947024198823,64.7526586103454,2.3734850976054527,5269.575651146357,2019
+2007,41,"(40,45]",College,144.9603662524526,64.7526586103454,2.2386782158978806,5312.33059984906,2019
+2007,41,"(40,45]",College,159.41347285807717,64.7526586103454,2.461883052823533,5268.557626936201,2019
+2007,41,"(40,45]",College,149.53956834532374,64.7526586103454,2.309396580072345,5243.967302410972,2019
+2007,41,"(40,45]",College,249.13721386527143,64.7526586103454,3.84752100086694,5285.999895175511,2019
+2007,41,"(40,45]",HS,0.9301504251144539,33.84798063722601,0.02748023390475101,7551.783691230492,2019
+2007,41,"(40,45]",HS,0.9301504251144539,33.84798063722601,0.02748023390475101,7557.804454970767,2019
+2007,41,"(40,45]",HS,0.9301504251144539,33.84798063722601,0.02748023390475101,7550.871475379228,2019
+2007,41,"(40,45]",HS,0.9301504251144539,33.84798063722601,0.02748023390475101,7597.6982798094905,2019
+2007,41,"(40,45]",HS,0.9301504251144539,33.84798063722601,0.02748023390475101,7597.078869514157,2019
+2007,41,"(40,45]",College,1049.6389797253105,294.33026641066095,3.566194508385399,6634.31356486125,2019
+2007,41,"(40,45]",College,1049.6389797253105,295.80191774271424,3.5484522471496507,6787.4451193260265,2019
+2007,41,"(40,45]",College,1048.2079790712885,294.33026641066095,3.5613326208484053,6385.245930964452,2019
+2007,41,"(40,45]",College,1049.6389797253105,294.33026641066095,3.566194508385399,6684.588463109072,2019
+2007,41,"(40,45]",College,1049.6389797253105,294.33026641066095,3.566194508385399,6739.790470876507,2019
+2007,40,"(35,40]",HS,2885.0261085676916,80.94082326293177,35.64364670712385,3574.535817357545,2019
+2007,40,"(35,40]",HS,2926.668227599738,80.94082326293177,36.15812280649307,3623.333525914017,2019
+2007,40,"(35,40]",HS,2847.6197514715504,80.94082326293177,35.18150219724373,3610.243814691809,2019
+2007,40,"(35,40]",HS,2934.1666710268146,80.94082326293177,36.250763863561616,3880.922826002701,2019
+2007,40,"(35,40]",HS,2817.940797907129,80.94082326293177,34.81482747899913,3719.8529754404976,2019
+2007,31,"(30,35]",College,233.46775670372793,163.35329785791683,1.42921973272187,6970.68425760602,2019
+2007,31,"(30,35]",College,234.6125572269457,163.35329785791683,1.4362278589013215,6943.518443226038,2019
+2007,31,"(30,35]",College,234.6125572269457,163.35329785791683,1.4362278589013215,7057.104900235953,2019
+2007,31,"(30,35]",College,233.03845650752126,163.35329785791683,1.426591685404576,7016.988128923498,2019
+2007,31,"(30,35]",College,233.18155657292348,163.35329785791683,1.4274677011770074,6944.810588467575,2019
+2007,40,"(35,40]",College,897.0513799869196,286.97200975039436,3.1259194259648067,6657.174939349907,2019
+2007,40,"(35,40]",College,892.7583780248528,286.97200975039436,3.1109597720048234,6810.468535005411,2019
+2007,40,"(35,40]",College,899.913381294964,286.97200975039436,3.1358925286047947,6406.539864321691,2019
+2007,40,"(35,40]",College,899.913381294964,286.97200975039436,3.1358925286047947,6706.641681797046,2019
+2007,40,"(35,40]",College,899.913381294964,286.97200975039436,3.1358925286047947,6761.611583131757,2019
+2007,32,"(30,35]",NoHS,10.947155003270112,42.67788862954583,0.2565064804000499,8082.350570163944,2019
+2007,32,"(30,35]",NoHS,10.947155003270112,44.14953996159914,0.24795626438671492,8069.815546803981,2019
+2007,32,"(30,35]",NoHS,10.947155003270112,44.14953996159914,0.24795626438671492,8160.905758544532,2019
+2007,32,"(30,35]",NoHS,10.947155003270112,47.09284262570575,0.23245899786254523,8119.103470046888,2019
+2007,32,"(30,35]",NoHS,10.947155003270112,41.206237297492535,0.2656674261286231,8074.375164402549,2019
+2007,44,"(40,45]",HS,18427.42472204055,3752.7108967359277,4.9104301474618115,215.86773129258708,2019
+2007,44,"(40,45]",HS,18427.42472204055,3767.4274100564603,4.891248779698289,206.34199394720463,2019
+2007,44,"(40,45]",HS,18427.42472204055,3767.4274100564603,4.891248779698289,209.20216904097757,2019
+2007,44,"(40,45]",HS,18427.42472204055,3782.1439233769934,4.8722166832792295,208.84358860783536,2019
+2007,44,"(40,45]",HS,18427.42472204055,3767.4274100564603,4.891248779698289,214.99103325632032,2019
+2007,39,"(35,40]",HS,0.28620013080444734,47.09284262570575,0.006077359421243012,6191.0043391712525,2019
+2007,39,"(35,40]",HS,0.28620013080444734,47.09284262570575,0.006077359421243012,6195.940202798341,2019
+2007,39,"(35,40]",HS,0.28620013080444734,48.56449395775905,0.0058931970145386795,6190.256498326715,2019
+2007,39,"(35,40]",HS,0.28620013080444734,48.56449395775905,0.0058931970145386795,6228.645435466684,2019
+2007,39,"(35,40]",HS,0.28620013080444734,48.56449395775905,0.0058931970145386795,6228.137638635768,2019
+2007,47,"(45,50]",College,3173.816350555919,139.80687654506394,22.701432354315585,2623.8847553801547,2019
+2007,47,"(45,50]",College,3173.816350555919,139.80687654506394,22.701432354315585,2639.374924756289,2019
+2007,47,"(45,50]",College,3173.816350555919,139.80687654506394,22.701432354315585,2548.1518325680418,2019
+2007,47,"(45,50]",College,3173.816350555919,139.80687654506394,22.701432354315585,2586.4494974991435,2019
+2007,47,"(45,50]",College,3173.816350555919,139.80687654506394,22.701432354315585,2586.60589603756,2019
+2007,35,"(30,35]",HS,15425.042249836495,250.1807264490618,61.655597810317815,1860.2460198189856,2019
+2007,35,"(30,35]",HS,15422.323348593853,250.1807264490618,61.64473006170571,1864.435155276807,2019
+2007,35,"(30,35]",HS,15423.754349247874,250.1807264490618,61.65044992939629,1817.5942342530197,2019
+2007,35,"(30,35]",HS,15443.645258338784,250.1807264490618,61.729956090295374,1808.9177707021568,2019
+2007,35,"(30,35]",HS,15427.90425114454,250.1807264490618,61.66703754569898,1923.299768113085,2019
+2007,28,"(25,30]",HS,35.34571615434925,105.95889590783793,0.33357950601044983,10011.541895065611,2019
+2007,28,"(25,30]",HS,36.77671680837149,105.95889590783793,0.34708474916876764,9908.1721811637035,2019
+2007,28,"(25,30]",HS,35.34571615434925,105.95889590783793,0.3335795060